# প্রাক্কথন

নেতাজি সুভাষ মুক্ত বিশ্ববিদ্যালয়ের স্নাতক শ্রেণির জন্য যে পাঠক্রম প্রবর্তিত হয়েছে, তার লক্ষণীয় বৈশিষ্ট্য হল প্রতিটি শিক্ষার্থীকে তাঁর পছন্দমতো কোনো বিষয়ে সাম্মানিক (honours) স্তরে শিক্ষাগ্রহণের সুযোগ করে দেওয়া। এ ক্ষেত্রে ব্যক্তিগতভাবে তাঁদের গ্রহণ ক্ষমতা আগে থেকেই অনুমান করে না নিয়ে নিয়ত মৃল্যায়নের মধ্য দিয়ে সেটা স্থির করাই যুক্তিযুক্ত। সেই অনুযায়ী একাধিক বিষয়ে সাম্মানিক মানের পাঠ-উপকরণ রচিত হয়েছে ও হচ্ছে—যার মূল কাঠামো স্থিরীকৃত হয়েছে একটি সুচিন্ডিত পাঠক্রমের ভিত্তিতে। কেন্দ্র ও রাজ্যের অগ্রগণ্য বিশ্ববিদ্যালয়সমূহের পাঠক্রম অনুসরণ করে তার আদর্শ উপকরণগুলির সমন্বয়ে রচিত হয়েছে এই পাঠক্রম। সেই সঞ্চো যুক্ত হয়েছে অধ্যেতব্য বিষয়ে নতুন তথ্য, মনন ও বিশ্লেষণের সমাবেশ।

দুর-সঞ্চারী শিক্ষাদানের স্বীকৃতি পম্বতি অনুসরণ করেই এইসব পাঠ-উপকরণ লেখার কাজ চলছে। বিভিন্ন বিষয়ের অভিজ্ঞ পণ্ডিতমঙ্চলীর সাহায্য এ কাজে অপরিহার্য এবং যাঁদের নিরলস পরিশ্রমে লেখা, সম্পাদনা তথা বিন্যাসকর্ম সুসম্পন্ন হচ্ছে তাঁরা সকলেই ধন্যবাদের পাত্র। আসলে, এঁরা সকলেই অলক্ষ্যে থেকে দূর-সঞ্চারী শিক্ষাদানের কার্যক্রমে অংশ নিচ্ছেন; যখনই কোনো শিক্ষার্থী এই পাঠ্যবস্তুনিচয়ের সাহায্য নেবেন, তখনই তিনি কার্যত একাধিক শিক্ষকমন্ডলীর পরোক্ষ অধ্যাপনার তাবৎ সুবিধা পেয়ে যাচ্ছেন।

এইসব পাঠ-উপকরণের চর্চা ও অনুশীলনে যতটা মনোনিবেশ করবেন কোনো শিক্ষার্থী, বিষয়ের গভীরে যাওয়া তাঁর পক্ষে ততই সহজ হবে। বিষয়বস্থু যাতে নিজের চেষ্টায় অধিগত হয়, পাঠ-উপকরণের ভাষা ও উপস্থাপনা তার উপযোগী করার দিকে সর্বস্তরে নজর রাখা হয়েছে। এর পর যেখানে যতটুকু অস্পষ্টতা দেখা দেবে, বিশ্ববিদ্যালয়ের বিভিন্ন পাঠকেন্দ্রে নিযুক্ত শিক্ষা-সহায়কগণের পরামর্শে তার নিরসন অবশ্যই হতে পারবে। তার ওপর প্রতি পর্যায়ের শেষে প্রদত্ত অনুশীলনী ও অতিরিক্ত জ্ঞান অর্জনের জন্য গ্রন্থ-নির্দেশ শিক্ষার্থীর গ্রহণ ক্ষমতা ও চিন্ডাশীলতা বৃদ্ধির সহায়ক হবে।

এই অভিনব আয়োজনের বেশ কিছু প্রয়াসই এখনও পরীক্ষামূলক—অনেক ক্ষেত্রে একেবারে প্রথম পদক্ষেপ। স্বভাবতই ত্রুটি-বিচ্যুতি কিছু কিছু থাকতে পারে, যা অবশ্যই সংশোধন ও পরিমার্জনার অপেক্ষা রাখে। সাধারণভাবে আশা করা যায়, ব্যাপকতর ব্যবহারের মধ্য দিয়ে পাঠ-উপকরণগুলি সর্বত্র সমাদৃত হবে।

> **অধ্যাপক (ড.) শুভ শঙ্কর সরকার** উপাচার্য

অষ্টম পুনর্মুদ্রণ ঃ জুন, 2014

বিশ্ববিদ্যালয় মঞ্জুরি কমিশনের দূরশিক্ষা ব্যুরোর বিধি অনুযায়ী ও অর্থানুকুল্যে মুদ্রিত। Printed in accordance with the regulations and financial assistance of the Distance Education Bureau of the University Grants Commission.

# পরিচিতি

সাম্মানিক স্তর

বিষয় ঃ ভূগোল

# পাঠক্রম ঃ পর্যায় ঃ

# EGR 01 : 01 & 02

|       | রচনা                        | সম্পাদনা           |
|-------|-----------------------------|--------------------|
| একক 1 | ড. দীপংকর লাহিড়ী           | ড. অনীশ চ্যাটার্জী |
| একক 2 | এ                           | র                  |
| একক 3 | ঐ                           | ि                  |
| একক 4 | শ্র                         | હે                 |
| একক 5 | ড. সুভাষচন্দ্র মুখোপাধ্যায় | ড. নিখিলকৃষ্ণ দে   |
| একক 6 | ঐ                           | ि                  |
| একক 7 | ড. কমলাপ্রসাদ ঘোষ           | ড. অনীশ চ্যাটার্জী |

#### প্রজ্ঞাপন

এই পাঠ-সংকলনের সমুদয় স্বত্ব নেতাজি সুভাষ মুক্ত বিশ্ববিদ্যালয়ের দ্বারা সংরক্ষিত। বিশ্ববিদ্যালয় কর্তৃপক্ষের লিখিত অনুমতি ছাড়া এর কোনো অংশের পুনর্মুদ্রণ বা কোনোভাবে উদ্ধৃতি সম্পূর্ণ নিষিম্ব।

> **অধ্যাপক (ড.) দেবেশ রা**য় নিবন্ধক



# নেতাজি সুভাষ মুক্ত বিশ্ববিদ্যালয়

# E G R - 01

প্রাকৃতিক ভূগোল এবং ভূসংগঠন প্রক্রিয়ার ধারণা (স্নাতক পাঠক্রম)

পৰ্যায়

# একক 1 ৢকম্প ও ভূগোলকের অভ্যন্তরীণ গঠন 7 - 29 একক 2 আগ্নেয়গিরি ও অগ্ন্যচ্ছাস 30 - 48 একক 3 মহীজনী (Epeirogeny) ও গিরিজনি (Orogony) 49 - 62 একক 4 সহীসঞ্জার (Continental Drift) ও পাত সঞ্জালন (Plate Tectonics) 63 - 94

#### পৰ্যায়

#### 2

| একক | 5 🗖 ভূ-ত্বক                                    | 95 - 103  |
|-----|------------------------------------------------|-----------|
| একক | 6 🗖 শিলা ঃ উৎপত্তি ও শ্রেণিবিভাগ               | 104 - 147 |
| একক | 7 🗖 বলি, চ্যুতি এবং ভূমিরূপের উপর তাদের প্রভাব | 148 – 170 |

একক 1 🗆 ভূকম্প ও ভূগোলকের আভ্যন্তরীণ গঠন

গঠন 1.1

প্রস্তাবনা উদ্দেশ্য 1.2 ভুকম্পের ফলাফল

1.3 ভূকম্প তরঞ্জের বিস্তারণ প্রক্রিয়া

1.4 ভূকম্পের উৎপত্তির কারণ 1.5 ভূকম্পের শ্রেণীবিভাগ

1.6 প্রধান প্রধান ভারতীয় ভূকম্প 1.7 ভূগোলকের অভ্যন্তরীণ গঠন

> 1.7.2 পৃথিবীর ম্যান্টেল 1.7.3 ভূগোলকের অষ্ঠি

গিয়েছিল 1897 খ্রীফ্টাব্দে আসামের ভুকম্পে।

1.7.1 ভূত্বক

1.9 নির্বাচিত উল্লেখ্য গ্রন্থ

1.8 সারাংশ

**1.10** প্রশ্নাবলী

1.11 উত্তর সংকেত

নাম স্থানীয় ভূকম্প।

1.1 প্রস্তাবনা

7

সব ধরনের অন্দরের ভূতাত্ত্বিক শক্তির মধ্যে সম্ভবত ভূকম্পন আমাদের কাছে সর্বাধিক পরিচিত। ভূকম্প ঘটার কালে ভূপৃষ্ঠ কম্পিত হয় এবং কখনো কখনো ফেটে যায়, দিঘি এবং পুকুরের জল ফুলে ওঠে আর নদী ও সাগরের জল সুবিশাল তরঙ্গে ভূভাগকে প্লাবিত করে। সুতরাং, দীর্ঘকাল ধরে মানুষ ভূকম্পের কারণ অনুসন্ধানে সচেষ্ট হয়েছে, যাতে প্রাকৃতিক শক্তির এই ভয়াবহ তাণ্ডব থেকে তাদের বসতি এবং সম্পত্তি রক্ষা করা সম্ভব হয়। শান্ত জলে যেমন একটা ঢিল পড়লে ঢিলের আঘাতে জলের উপর তরঙ্গের সৃষ্টি হয়ে চারদিকে ছড়িয়ে পড়ে, তেমনি যে উচ্চমাত্রার ভূকম্পে ঘটে থাকে তা দেখা

যখন কোন ভারি গাড়ি অথবা দ্রুতগামী ট্রেন চলে যায় কিম্বা কোথাও কোনরকম বিস্ফোরণ ঘটে, তখন চারপাশের ভূমি কেঁপে ওঠে। অবশ্য এধরনের কম্পনে কদাচিৎ আমাদের জীবন বা সম্পত্তির কোনো ক্ষতি ঘটে থাকে। ভয়াবহ ভূকম্পনগুলি অবশ্য এরকম কোনো অভিঘাতে ঘটেনা, সেগুলির উৎপত্তি কঠিন ভূ-দেহে বিচিত্র এবং জটিল বিন্যাস ঘটার সময়ে। এধরনের ভূকম্পে ভূগোলকের দেহে স্থায়ী পরিবর্তন ঘটে থাকে। স্থাপত্যের গ্রিক দেবতা টেক্টন (Tekton)-এর নামে এধরনের ভূকম্পের নাম দেওয়া হয়েছে টেক্টনিক ভূকম্প। বোমার বিস্ফোরণ বা ভারি যানবাহনের চলাচলে উদ্ভূত ভূকম্পের

#### উদ্দেশ্য

এই এককটি পাঠ করে আপনি

- ভূকম্পের মুখ্য ও গৌণ ফলাফল বিষয়ে আলোচনা করতে পারবেন।
- ভূকম্প তরঞ্চোর বিস্তারণ প্রক্রিয়া ও মাত্রাসাপেক্ষ পর্যবেক্ষণ পদ্ধতি ব্যাখ্যা করতে পারবেন।
- ভূকম্পতরজোর বৈশিষ্ট্য চিহ্নিত করতে পারবেন এবং এদের প্রকারভেদ করতে সক্ষম হবেন।
- ভূকম্পের উৎপত্তির কারণ নির্দেশ করতে পারবেন এবং ভূকম্পের শ্রেণীবিভাগ করতে পারবেন।
- কিভাবে ভূকম্পতরঞ্চালব্ধ তথ্যের সাহায্যে ভূগোলকের অভ্যন্তরীণ গঠন—ভূত্বক, ম্যান্টেল এবং অষ্ঠি (core)—সম্পর্কে ধারণা সৃষ্টি সম্ভব হয়েছে তা বুঝিয়ে দিতে পারবেন।

## 1.2 ভূকম্পের ফলাফল

ভূকম্পের ফলাফল দু'ধরনের : (a) মুখ্য এবং (b) গৌণ।

সভ্যতার ইতিহাসে টেক্টনিক ভূকম্পের ফলে স্থায়ী ভূ-সংস্থানিক পরিবর্তন ঘটতে দেখা গেছে। 1762 সালের এপ্রিল মাসে বাংলাদেশের উত্তরে এরকম একটি ভূকম্পে শালগাছের জঞ্চাল মধুপুর ব্যুখিত (uplifted) হয়। ঢাকা মহানগরীর 100 কিমি উত্তরে বড় ধরনের বিন্যাসের ফলে সে অঞ্জলের পরিবাহ চিত্র বা জলনির্গম প্রণালীর (drainage pattern) পরিবর্তন ঘটে (Fergusson, 1912)।

বিস্তৃত অঞ্চল সমুদ্রগর্ভে নিমজ্জিত বা সমুদ্রপৃষ্ঠের ওপর ভূকম্পের ফলে ব্যুথিত হতে পারে। যেমন 1819 খ্রীফ্টাব্দের 16 জুন কচ্ছের ভূকম্পে কচ্ছের রানের প্রান্তে অবস্থিত অঞ্চল জোয়ারের জলের সর্বোচ্চ রেখার পাঁচমিটার নিচে নিমজ্জিত হয় এবং ভূপৃষ্ঠে সংলগ্ন অঞ্চল ব্যুথিত হয় (Krishnan, 1968)। এছাড়াও ভূপৃষ্ঠে সুগভীর ফাটল এবং শিলাদেহের বিচুর্ণন ঘটতে পারে।

যদিও গৌণ ফলগুলি টেক্টনিক ব্যুত্থান বা নিমজ্জনের সঙ্গো প্রত্যক্ষভাবে জড়িত নয়, তবু মুখ্য ফলের পরিণতি সেগুলির উৎপত্তিতে। এই গৌণ ফলেই জীবন এবং সম্পত্তির প্রভূত হানি ঘটে। ভূকম্পের প্রধান ধার্কার অনুগামী রূপে সাধারণত পৌনঃপুনিক কম্পন ঘটে। এগুলির প্রভাবে পাহাড়ে ধস নামে। ধস এবং জমিতে ফাটল পথঘাটের প্রভূত ক্ষতি করে। ভূমির তরঞ্জিত কম্পনে রেলপথ দুমড়ে মুচড়ে যায়, রেলওয়ে সেতু তার নিচের স্তম্ভগুলি থেকে বিচ্যুত হয়, ভূগর্ভের জলের পাইপ এবং বৈদ্যুতিক ও টেলিগ্রাফের কেব্ল্ ছিঁড়ে যায়। এর ফলে অনেক সময় বর্ত্মক্ষেপ (short circuit) ঘটে আগুন ধরে যায়। টোকিওর ইম্পিরিয়াল বিশ্ববিদ্যালয়ের আকিৎসুনে ইমামুরা (Akitsune Imamura) বড় মাপের ভূকম্পের কালে যে বিশৃঙ্খল অবস্থার সৃষ্টি হয় তার বিস্তৃত বিবরণ দিয়ে গেছেন 1923 খ্রীষ্টাব্দের 1 সেপ্টেম্বর সংঘটিত ভূকম্পের ব্যক্তিগত অভিজ্ঞতা থেকে।

ভূ-জলে যদি আর্তেজীয় অবস্থা থাকে, তবে ভূকম্পে জমি ফেটে গিয়ে বিস্তীর্ণ অঞ্চলে প্লাবন ঘটে। 1934 সালের 15 জানুয়ারি বিহার ভূমিকম্পে গঙ্গার দুই পাড় এভাবে প্লাবিত হয়েছিল।

ভূভাগে অথবা সাগরগর্ভে **ভূকম্পের** উৎপত্তি ঘটতে পারে। পূর্বোক্ত ক্ষেত্রে ভূকম্পের শক্তি বায়ুমণ্ডলে মুক্ত হয়ে অপচিত (dissipated) হয়। যেসব জায়গায় মাটির সুগভীর আবরণ আছে, সেসব অঞ্জলে ভূকম্পের শক্তি ভূকম্পনের সঙ্গো সঙ্গেই দ্রুত আন্তর্কণা বিচলনে (intergranular movement) ব্যয়িত হয়ে যায়। 1934 সালের বিহার ভুকস্পে দক্ষিণ বিহার, দক্ষিণ উত্তরপ্রদেশ এবং মধ্যপ্রদেশের বিস্তীর্ণ অঞ্চল ভীষণভাবে প্রভাবিত হলেও গাঙ্গেয় বদ্বীপে তার কোনো প্রভাবই প্রায় পডেনি। সাগরগর্ভে ভুকম্পের উৎপত্তি ঘটলে যদিও অনুরূপ আন্তর্কণা বিচলনে ভুকম্পের শক্তি ব্যয়িত হয়, তবু সাগরপৃষ্ঠে বিশালাকৃতি তরঞ্চোর উদ্ভব ঘটে। উৎসের ঠিক উপরের বিন্দু থেকে এই তরঙ্গা সাগরপৃষ্ঠ ধরে বৃত্তাকারে চতুর্দিকে সঞ্জারিত হয়। যখন এই উঁচু তরঙ্গাগুলি সমুদ্রসৈকতে এসে নদী বা খাঁড়িতে ঢোকে, তখন বিধ্বংসী বন্যা ঘটে এইসব নদী এবং খাঁড়ির দুই কুল প্লাবিত হয়। এজাতীয় তরঙ্গের জাপানী নাম **ৎসুনামি** (tsunami)। বোধহয় সভ্যতার ইতিহাসে ৎসুনামি সংঘটিত সর্ববৃহৎ প্লাবন ঘটে 1755 সালের লিসবন ভুকম্পে। অনুমান করা হয় এটিই ইতিহাসের সর্বোচ্চ মাত্রার ভুকম্প। জন মিশেল (John Mitchell 1724-1793) ৎসুনামি প্রভাবিত অঞ্চলের বিস্তার দেখে অভিভূত হয়েছিলেন। 30 মিটার উঁচু সাগরতরঙ্গা বেরিয়ে ইউরোপের প্রায় এক তৃতীয়াংশ সাময়িকভাবে ডুবিয়ে দেয় এবং পঞ্চাশ হাজার থেকে আশি হাজার মানুষের প্রাণনাশ ঘটায়। লিসবন ভুকম্পের ভুভাগীয় প্রভাব বর্ণিত হয়েছে একটি সরকারী রিপোর্টে। মরক্বো শহরে জমি ফেটে গিয়ে হাজার হাজার লোকের জীবন্ত সমাধি ঘটে। এই ভুকম্পের উপকেন্দ্র ছিল লিসবন শহরের 100 কিমি পশ্চিমে। 1883 সালের 27 আগস্ট যে অগ্যচ্ছাস ঘটে ক্যাকাটাও (Krakatao) দ্বীপটি সম্পূর্ণ উড়ে গিয়েছিল, তার প্রভাবে উৎপন্ন ৎসুনামির উচ্চতা ছিল 15 মিটার। লিসিট জিন (Lisit Zin, 1974) ৎসুনামির নৈসর্গিক প্রভাবের ভিত্তিতে তার যে শ্রেণীবিভাগ করেছেন তা সারণি-1-এ দেওয়া হল।

| মাত্রা | তরঞ্জের উচ্চতা | ক্ষতির পরিমাণ                                                             |
|--------|----------------|---------------------------------------------------------------------------|
| -1     | 50-70 সেমি     | با آمار                                                                   |
| 0      | 1-1.5 মি       | সামান্য।                                                                  |
| 1      | 2-3 মি         | ক্ষয়ক্ষতি শুধু সাগরসৈকতে<br>সীমাবন্ধ।                                    |
| 3      | 8-12 মি        | সাগরপ্রান্ত থেকে ভূভাগের ভিতরে<br>40 মি দূরত্ব পর্যন্ত ভয়াবহ ক্ষয়ক্ষতি। |
| 4      | 16-24 মি       | সাগরপ্রান্ত থেকে 500 কিমি পর্যন্ত<br>ভূভাগের অভ্যন্তরে ভয়াবহ ক্ষয়ক্ষতি। |

| সারণি-1 : | ৎসুনামির | মাত্রা | এবং | প্রভাব |
|-----------|----------|--------|-----|--------|
|-----------|----------|--------|-----|--------|

টেক্টনিক্ ভূকম্পের উৎপত্তি আলোচনার আগে দেখে নেওয়া যাক ভূকম্প তরঙ্গের প্রকৃতি এবং তার বিস্তারণ প্রক্রিয়া।

# 1.3 ভূকম্প তরজ্গের বিস্তারণ প্রক্রিয়া

ভূকম্পের উৎস ভূগর্ভে, ক্ষেত্রবিশেষে অতি গভীরে। ফলে, উৎসবিন্দুটি প্রত্যক্ষ পর্যবেক্ষণের আওতার বাইরে। কিন্তু, উৎসবিন্দুর ঠিক উপরে ভূপৃষ্ঠে যে বিন্দুটি, সেখানে প্রত্যক্ষ পর্যবেক্ষণ করা সম্ভব। উৎসবিন্দুর (focus) উপরের অঞ্চলটিকে বলে *উপকেন্দ্র* (epicentre)। উৎসবিন্দুটিকে আলোকবিদ্যার উৎসবিন্দুর সঙ্গে তুলনা করে বলা হয় যে, এই বিন্দু থেকে একটি ভূকম্প তরঙ্গা-শ্রেণী (system of seismic waves) উৎপন্ন হয়। Focus-এর ইংরিজী সমার্থক শব্দ হিসেবে কেউ কেউ hypocentre কথাটি ব্যবহার করে থাকেন (চিত্র : 1.1)।



চিত্র 1.1 : টেক্টনিক্ ভুকম্পের উৎস, উপকেন্দ্র, সমমাত্রা রেখা

উৎসবিন্দু থেকে যে কোনো তরজোর উৎসের মতো ভূকম্প তরঙ্গা সমকেন্দ্রিক তরঙ্গামুখে বিস্তৃত হয়। ভূগোলকের স্থিতিস্থাপক ধর্ম যদি সমসাত্ত্বিক হতো, তবে তরঙ্গাগুলি নিখুঁত গোলকাকৃতি হতো। তরঙ্গামুখ *সমমাত্রা রেখায়* (isoseismal lines) ভূপৃষ্ঠকে ছেদ করে। সমমাত্রারেখাগুলি মোটেই বৃত্তাকৃতি নয়। সেগুলি যেকোনো আকৃতির হতে পারে। তবে, সাধারণভাবে সব রেখাই বন্দ্বরেখা (close curves)। কম্পনের শক্তি, যা *ভূকম্পের মাত্রা* রূপে পরিচিত, তা উপকেন্দ্রে চরম এবং উপকেন্দ্র থেকে দূরত্ব বাড়তে বাড়তে ক্রমে কমতে থাকে।

ভূকম্পবিদ্যার (Seismology) শুরু থেকে বিভিন্ন ভূকম্প মাত্রামান (scale of seismic Intensity) প্রস্তাবিত হয়েছে। 1878 সালে রসি (M.S.de Rossi) এবং ফোরেল (F. A. Forrel) যে মাত্রামান প্রস্তাব করেন তা সেযুগে বহুল ব্যবহৃত হয়েছিল। গুণবাচক এই মাত্রামান দশটি মাত্রার। প্রথমটিতে ন্যূনতম ক্ষয়ক্ষতি এবং দশমটিতে সর্বোচ্চ ক্ষয়ক্ষতি ধরা হতো। পরবর্তীকালে যখন মাত্রাবাচক ভূকম্পবিদ্যার উন্নতি হল তখন দেখা গেল রসি-ফোরেল মাত্রামান নিতান্তই অনুপযুক্ত। বিশেষ করে যেসব জায়গায় উচ্চমাত্রার ভূকম্পন, সেইসব জায়গায়। অপেক্ষাকৃত আধুনিক মাত্রামানের ভিত্তি ভূকম্পের প্রভাবে জমির ত্বরণের (acceleration) পরিমাণ। এই ত্বরণ বিবৃত হয় 'g' (অভিকর্যজনিত ত্বরণ)-এর অংশরূপে। সুক্ষ্ম যন্ত্রে এগুলি স্বয়ংক্রিয়ভাবে লিপিবন্ধ হয়। তবে গুণবাচক মাত্রামান এখন ব্যবহৃত হয় ভূকম্পের পর দ্বুত ক্ষয়ক্ষতির একটি স্কুল প্রাক্-কলনে (estimation)। 1904 সালে ক্যানক্যানি (A. Cancani) প্রথম মাত্রাবাচক ভূকম্প মাত্রামান প্রস্তাব করেন। এটিতে 12টি মাত্রা আছে। (1)-মাত্রায় ত্বরণের পরিমাণ 2 × 10<sup>-4</sup> g, (2)-মাত্রায় 5 × 10<sup>-4</sup> g, (3)-মাত্রায় 1 × 10<sup>-3</sup> g...... (9)-মাত্রায় 0.1 g, (10)-মাত্রায় 0.25 g, (11)-মাত্রায় 0.50 g এবং (12)-মাত্রায় > 0.50 g। 1956 সালে গুটেনবার্গ ও রিখ্শ্টার্ (Beno Gütenberg এবং C. F. Richter) ভূকম্পমান নির্ধারণের জন্য শিলার ভৌতধর্ম বিবেচনা করে কয়েকটি সমীকরণ প্রস্তাব করেন। যেমন, পৃষ্ঠতরক্ষোর ক্ষেত্রে Log<sub>10</sub>(A) + 2.56 Log<sub>10</sub>(D) 4.67 : যেখানে A = মিলিমিটারে তরঙ্গা বিস্তার, D = কিলোমিটারে উপকেন্দ্রের দূরত্ব। ভূগর্ভস্থ তরঙ্গা সম্বন্থে তাঁদের সমীকরণটি হল Log<sub>10</sub>(A/T) + B(h) – 3; B = ধ্র্বক, h = ভূকম্প উৎসের গভীরতা।

যে যন্ত্র দিয়ে ভূকম্পের মাত্রাসাপেক্ষ পর্যবেক্ষণ করা হয় সেই যন্ত্রের নাম ভূকম্প পরিলেখন যন্ত্র (seismograph)। এর্প প্রাচীনতম যন্ত্র (136 খ্রীষ্টাব্দ) চোকো সাইস্মোমিটার (choko seismometer)। এই যন্ত্রে হালকা শিলার কতকগুলি গোলকের স্থানচ্যুতি দেখে কোনদিক থেকে ভূকম্প তরজোর সঞ্চার ঘটছে তা বোঝা হত। যেকোন বস্তুর স্থিতিজাড্য (inertia of rest) বিঘ্নিত হয় সেটি যে জায়গায় আছে সেই জায়গাটির বিচলন ঘটলে। এটি যেকোন ভূকম্প পরিলেখন যন্ত্রের মূল সূত্র (principle)। অতি সাধারণ ভূকম্প পরিলেখ যন্ত্রে একটি ভারি স্তম্ভ ভূমিগর্ভে কংক্রিটের সুগভীর ভিত্তির উপর গাঁথা হয়। এই স্তম্ভের উপরের দিক থেকে একটি অস্থিতিস্থাপক তার দিয়ে একটি আনুমানিক কড়ি (beam) এমনভাবে ঝোলানো থাকে যাতে স্তম্ভটির বিন্দুমাত্র বিচলন ঘটলে তা বহুগুণ পরিবর্ধিত হয়ে কড়িটির মুক্ত প্রান্তে আন্দোলন ঘটায়। এই মুক্তপ্রান্তের সঙ্গো লাগানো একটি ঘূর্ণ্যোনান চোঙের গায়ে আটকানো একটি কাগজের উপর কড়ির গায়ে লাগানো লেখনীর সাহায্যে ভূকম্প পরিলেখ অজ্ঞিত হতো। সাধারণভাবে পরিলেখটি একটি সরলরেখা, কিন্তু, ভূকম্পে তরজোর সঞ্জারের সঙ্গো সঙ্গো সেজা সেই সরলরেখাটি দু দৈকে আন্দোলিত হয়ে আঁকাবাঁকা রেখা অজ্ঞিত হত (চিত্র : 1.2)। এই পরিলেখ আরো উন্নত করা গেল প্রথমে লেখনীর পরিবর্তে একটি আলোকরশ্বি এবং সাধারণ কাগজের পরিবর্তে একটি আলোক সংবেদনশীল (photosensitive) কাগজ ব্যবহার করে। অত্যাধনিক যন্ত্রপ্তলি অবশ্য কমেণ্যিউটার নিয়ন্ত্রিত।



চিত্র 1.2 : ভুকম্পলেখ (প্রা : প্রাথমিক তরজা; অ : অনুতরজা; পৃ : পৃষ্ঠতরজা)

যে কোনো পর্যবেক্ষণ কেন্দ্রে অন্তত তিনটি ভূকম্প পরিলেখন যন্ত্র প্রয়োজন। তার মধ্যে দুটি ব্যবহৃত হয় দুটি সমকোণে বিন্যস্ত রেখা বরাবর ভূকম্পের আনুভূনিক অংশ ও অন্যটি ভূকম্পের উল্লম্ব অংশ রেকর্ড করতে।

একই ভূকম্পের জন্য ভূপৃষ্ঠের বিভিন্ন অঞ্চলে গৃহীত ভূকম্প পরিলেখ (seismograph) বিশ্লেষণ করে ভূগোলকের মধ্যে ভূকম্প তরজোর গতিবিধি অনুমান করা যায়। কোন উপকেন্দ্র থেকে গ্রাহক যন্ত্রের দূরত্ব বৃদ্ধির সঙ্গো সঙ্গো ভূকম্প তরঙ্গাগুলি বর্ণালী বিশ্লেষণের মতো তিন ধরনের তরঙ্গাগুচ্ছে বিশ্লেষিত হয়। প্রথম যে তরঙ্গাগুলি আসে সেগুলিকে বলে প্রাথমিক তরঙ্গা (primary waves)। ভূকম্পলেখতে প্রাথমিক তরঞ্চা অঙ্কিত হবার পরে কিছুকাল একটি সরলরেখা অঙ্কিত হয়, তারপর কিছুক্ষণ আলোড়ন ঘটে সরলরেখাটির বদলে আঁকাবাঁকা রেখা লিপিবদ্ধ হয়। পরে-আসা এই তরঙ্গাগুলিকে *অনুবর্তী তরঙ্গা* (secondary waves) বা অনুতরঙ্গা বলে। এরপর আবার কিছুক্ষণ একটি সরলরেখা অঙ্কিত হবার পর তৃতীয় শ্রেণীর আলোড়ন লিখিত হয়। এগুলিকে পৃষ্ঠতরঙ্গ (surface waves) বলে। পরিলেখন কেন্দ্রের দূরত্ব উপকেন্দ্র থেকে যত বাড়ে, তত প্রথম গুচ্ছের আলোড়ন এবং দ্বিতীয় গুচ্ছের আলোড়নের মধ্যে সরলেখাটির দৈর্ঘ্য বৃদ্ধি পায়। একইভাবে দ্বিতীয় গুচ্ছ ও তৃতীয়গুচ্ছের মধ্যের সরলরেখাটির দৈর্ঘ্যও দূরত্বের সঙ্গো সঙ্গো বৃদ্ধি পায়। ভূকম্প পরিলেখর প্রাথমিক পরীক্ষা থেকে বোঝা গেল যেকোনো টেক্টনিক্ ভূকম্পের তিনটি তরঙ্গের মধ্যে সর্বাধিক গতিবেগ প্রাথমিক তরঙ্গের, তারপর অনুতরঙ্গের, আর সবথেকে কম গতিবেগ পৃষ্ঠতরঞ্চোর। পৃষ্ঠতরঞ্চোর গতিবেগ ন্যূনতম হলেও তার ক্ষয়কারী শক্তির মাত্রা সর্বাধিক। এই পৃষ্ঠতরজোর বিস্তারণপথের ভূপৃষ্ঠ ঠিক জলপৃষ্ঠের মতোই তরজ্গিত হয়। ফলে তার উপরে উঁচু বাড়ি, গাছপালা সবই মূল বা ভিত্তির দু'পাশে পেন্ডুলামের মতো আন্দোলিত হয়। এই আন্দোলনের মাত্রা অত্যধিক হলে বাড়িটি কাত হয়ে পড়ে যায়, গাছপালা সমূলে উৎপাটিত হয়। প্রাথমিক ও অনুতরঙ্গাকে ভূগোলকের দেহতরঙ্গ (body waves) বলে। এগুলির প্রভাবে দুটি সংলগ্ন কিন্তু বিভিন্ন মাত্রার স্থিতিস্থাপক মানাঙ্কের বস্তুর মধ্যে চিড় ধরে। তখন বাড়িঘরের দেওয়ালের উপরের পলেস্তারা (plaster) খসে পড়ে, জানলা-দরজা দেওয়ালের গাঁথুনির থেকে আলাদা হয়ে যায়। পরে পৃষ্ঠতরজোর সংঘাতে বাড়ি চুরমার হয়ে ভেঙে পড়ে।

ফলিত বলবিদ্যা প্রয়োগ করে প্রাথমিক তরঙ্গের গতিবেগের জন্য যে সমীকরণ পাওয়া গেল তা হল :

$$V_1 = \frac{K + \frac{4}{3}\mu}{\rho}$$
$$V_2 = \frac{\mu}{\rho}$$

এখানে V<sub>1</sub> = প্রাথমিক তরজোর গতিবেগ, V<sub>2</sub> = অনুতরজোর গতিবেগ, K = স্থিতিস্থাপকতার আয়তনাঙ্ক (bulk modulus of elasticity);  $\mu$  = কাঠিন্যের মানাঙ্ক (modulus of rigidity) এবং  $\rho$  = বস্তুর ঘনত্ব। প্রাথমিক তরজা সংকোচন-প্রসারণ তরজা বলে তার গতিবেগ অনুতরজোর চেয়ে বেশি কারণ অনুতরজা শুধুই পীড়ন তরজা।

এই দুটি সমীকরণ থেকে বোঝা গেল যে প্রাথমিক এবং অনুতরঙ্গা ভূগোলকের কাঠিন্য, ঘনত্ব এবং অন্যান্য ভৌতধর্ম প্রাক্-কলনের ভিত্তি। এই দুটি তরঙ্গের বিস্তারণ সম্বন্ধে আরো পরিশীলিত সমীকরণ আবিষ্কারের ফলে শিলাদেহের এবং ভূগর্ভের *ভূ-ভৌত অনুসম্থান বিদ্যা* (Science of geophysical exploration) উদ্ভূত হল। তৃতীয়, পৃষ্ঠতরঙ্গা দীর্ঘতরঙ্গা এবং লাভতরঙ্গা (love waves) নামেও পরিচিত। বস্তুত পৃষ্ঠতরঙ্গা র্যালে তরঙ্গা (Rayleigh waves), যেগুলির উৎপত্তি ঘটে কঠিন এবং তরল বা বায়বীয় বস্তুর অন্তস্তলে (interface)। ভূপৃষ্ঠের নিচে একটি সংকীর্ণ বলয়ে পৃষ্ঠতরঙ্গোর সঞ্জার সীমাবন্ধ। ফলে ভূগর্ভে বর্তমান খনি, সুড়ঙ্গা এবং ভূ-ছিদ্রে (boneholes) পৃষ্ঠতরঙ্গোর কোন প্রভাব পড়েনা।

সংকোচন-প্রসারণশীল প্রাথমিক তরজ্ঞা একান্তরী প্রসারণ এবং সংকোচনের দ্বারা মাধ্যমের মধ্য দিয়ে বিস্তারণের সময় বিস্তারণ পথে কোন ভিন্ন ভৌতধর্মের বস্তু পড়লে তাতে প্রতিফলিত কিংবা প্রতিসরিত হয়। প্রাথমিক তরজোর বিস্তারণ পদ্ধতি একটি শঞ্জিল (spiral) স্প্রিং মুক্তপ্রান্তে টেনে ছেড়ে দিলে যে ঘটনা ঘটে তার অনুরূপ (চিত্র : 1.3)। অর্থাৎ এটি সর্বৈবভাবে শব্দতরজোর বিস্তারণের তুল্য এবং কঠিন, তরল ও বায়বীয় বস্তুর মধ্য দিয়ে সঞ্চারিত হতে পারে। পীড়ন তরঙ্গা মাধ্যমের আকৃতির পরিবর্তন ঘটিয়ে সঞ্চারিত হয়। একটি সূতো কোথাও আটকিয়ে তার মুক্তপ্রান্ত নাড়ালে যেমনটি ঘটে। ফলে, অনুতরজোর বিস্তারে স্থিতিস্থাপকতার আয়তনাঙ্ক এবং কাঠিন্যের মানাঙ্কের কোন প্রভাব নেই।



চিত্র 1.3 : (a : প্রাথমিক তরজা; b : অনুতরজা; c : পৃষ্ঠতরজা)

পৃষ্ঠতরঙ্গা জলভাগের উপর তরঙ্গের তুল্য। এটিতে ভূমির প্রত্যেকটি বিন্দু উপবৃত্তের (elliptical) আকৃতির কক্ষপথে আবর্তিত হয়। কিন্তু, তরঙ্গের শক্তি বিস্তারণ পথে এগিয়ে চলে। উপকেন্দ্র থেকে বিভিন্ন দিকে ও বিভিন্ন দূরত্বে ভিন্নভিন্ন পর্যবেক্ষণ কেন্দ্রে এই তিনটি তরঙ্গের পৌঁছবার সময়ের মধ্যে ব্যবধান বার করা হয়। যেহেতু প্রাথমিক তরঙ্গের গতিবেগ অনুতরঙ্গের গতিবেগের চেয়ে বেশি সেজন্য এ'দুটি তরঙ্গের আগমন কালের ব্যবধান ভূকম্পের উৎস এবং উপকেন্দ্রের দূরত্বের সূচক। তিনটি গ্রাহকযন্ত্রে পাওয়া পরিলেখ থেকে উপকেন্দ্রের দূরত্বের তিনটি মাপ পাওয়া যায়। মানচিত্রে এই তিনটি অঞ্চলকে কেন্দ্র করে যে অঞ্চলের জন্য যে দূরত্ব পাওয়া গেল, সেই দূরত্বকে ব্যাসার্ধ ধরে তিনটি বৃত্ত আঁকা হয়। সেই তিনটি বৃত্ত পরস্পরকে যে বিন্দুতে ছেদ করে সেই বিন্দুটি উপকেন্দ্রের স্থানাঞ্চের নির্দেশক। এই পম্বতিতে, অবশ্য, ধরা হয় যে উৎসবিন্দু এবং উপকেন্দ্রের মধ্যে দূরত্ব উভয়ের পর্যবেক্ষণ কেন্দ্র থেকে দূরত্বের তুলনায় অনেক কম সেজন্য ER ≅ FR (চিত্র : 1.4)। তবে, প্রাথমিক এবং





অনুতরঙ্গের উৎপত্তি উপকেন্দ্রে নয়, উৎসবিন্দুতে। সেজন্য, সুগভীর উৎসের ভূকম্পে এই পদ্ধতিতে উপকেন্দ্ররূপে নির্ণীত হয় একটি ক্ষুদ্র অঞ্চলের পরিবর্তে একটি বড় ত্রিভুজাকৃতি অঞ্চল। উপকেন্দ্র নির্ধারণের আরো অনেক জটিল গাণিতিক এবং ভূভৌত পদ্ধতি আছে এবং সঠিক উপকেন্দ্র নির্ধারণে সব ধরনের পদ্ধতিই ব্যবহৃত হয়।

রীতিবদ্ধ ভূকম্পবিদ্যার উপকেন্দ্র নির্ধারণের পরবর্তী ধাপ ভূকম্পের উৎসবিন্দু নির্ধারণ। এজন্য একটি সরল সমীকরণ ব্যবহার করা হয় :—

$$\sqrt{d^2 + l^2} = V = (t_r - t_0)$$

এখানে d = উপকেন্দ্র থেকে উৎসবিন্দুর গভীরতা, l = উৎসবিন্দু থেকে পর্যবেক্ষণকেন্দ্রের দূরত্ব,  $t_r$ = প্রত্যক্ষ প্রাথমিক তরজোর পর্যবেক্ষণ কেন্দ্রে আগমন কাল, V = প্রাথমিক তরজোর গতিবেগ এবং  $t_0$ = ভূকম্পের উৎপত্তিকাল। সঞ্জার-কাল পরিলেখ (travel-time curves) থেকে প্রাথমিক তরজা এবং অনুতরজোর পর্যবেক্ষণ কেন্দ্রে পৌঁছবার কালের ব্যবধান প্রয়োগ করে প্রাথমিক তরজা কতটা পথ পার হয়ে এসেছে তা বার করা যায়। এই পথের দৈর্ঘ্যকে প্রাথমিক তরজোর গতিবেগ দিয়ে ভাগ দিলে উৎসবিন্দু থেকে পর্যবেক্ষণ কেন্দ্রের দূরত্ব বার হয়। সমকোণী ত্রিভূজটির অতিভূজ আর ভূমির মাপ থেকে পিথাগোরাসের উপপাদ্য প্রয়োগ করে উৎসবিন্দু থেকে উপকেন্দ্রের দূরত্ব স্থির করা যায়। এই সরলীকৃত পম্বতিতে প্রাথমিক তরজোর সঞ্জারমাধ্যম সমসাত্ত্বিক (homogenous) বলে ধরা হয়। বাস্তবক্ষেত্রে অবশ্য ব্যাপক অসমসত্ত্বতা বর্তমান থাকায় এই পম্বতি একটি পরখী (empirical) হিসেব ছাড়া আর কিছু দিতে পারেনা।

নথিবন্ধ সব ভূকম্পের উপকেন্দ্র পৃথিবীর মানচিত্রে স্থাপন করে দেখা গেছে যে উচ্চমাত্রার ভূকম্পের অধিকাংশ ভূপৃষ্ঠে দুটি সুস্পফ্ট রেখা ধরে বিস্তৃত। এর একটি রেখা প্রশান্ত মহাসাগরকে বেস্টন করে এশিয়ার পূর্ব উপকূল এবং আমেরিকার দুটি মহাদেশের পশ্চিম উপকূল দিয়ে প্রশান্ত মহাসাগরীয় দ্বীপপুঞ্জ পর্যন্ত বিস্তৃত। অস্ট্রেলিয়া অবশ্য এই রেখার বাইরে। দ্বিতীয় রেখাটি অ্যাল্পস্ পর্বতমালা এবং হিমালয় পর্বতমালার মধ্য দিয়ে ইয়োরোপের পশ্চিম প্রান্ত থেকে ভারতবর্যের পূর্ব দিয়ে দক্ষিণে জাভা, সুমাত্রা পর্যন্ত বিস্তৃত। প্রথমটিকে বলা হয় প্রশান্ত মহাসাগরীয় ভূকম্প বলয়, দ্বিতীয়টি ভূমধ্যসাগরীয় বলয় নামে পরিচিত। ভূকম্পবিদ্যার প্রাথমিক অবস্থায় যখন এই দুটি বলয় প্রস্তাবিত হয়েছিল, তখনই দেখা গিয়েছে যে অধিকাংশ সক্রিয় এবং সুপ্ত আগ্নেয়গিরি এবং যেসব আগ্নেয়গিরি কয়েক কোটি বছর আগেও সক্রিয় ছিল কিন্ডু বর্তমানে নিষ্ক্রিয়, এই দুটি বলয়েই প্রধানত বর্তমান। তখন বলা হতো যে মাত্র ৩% উচ্চমাত্রার ভূকম্প এই দুটি বলয়ের বাইরে ঘটে। এবং সেগুলির উপকেন্দ্র প্রধানত পূর্ব আফ্রিকার গ্রস্ত উপত্যকা অঞ্চলের (East African Rift System) মধ্যে সীমাবন্দ্ব। একটি সামান্য অংশ বিক্ষিপ্তভাবে মধ্য আটলান্টিকের কতকগুলি দ্বীপপুঞ্জে (যেমন, ট্রিস্তান দা' কুন্হা, Tristan de Cunha) ঘটে থাকে। বিংশ শতাব্দীর দ্বিতীয়ার্যে দেখা গেল সুগভীর উৎসের ভূকম্পের এ'দুটি বলয় ছাড়া মাঝারি গভীরতার উৎসের ভূকম্পের উপকেন্দ্র আটলান্টিক মহাসাগর এবং ভারত মহাসাগরের মাঝামাঝি একটি সংকীর্ণ বলয় বিস্থৃত হয়ে দক্ষিণ আমেরিকার বেশ কিছুটা পশ্চিম দিক দিয়ে গিয়ে মেক্সিকোর বাহা ক্যালিফোর্নিয়া অঞ্চলে (Ba a California) প্রশান্ত মহাসাগরীয় ভূকম্প বলয়ের সঙ্গে মিলিত হয়ে গেছে (চিত্র : 1.5)।



চিত্র 1.5 : ভূকম্পবলয় (a : প্রশান্ত মহাসাগরীয় বলয়; b : আল্পীয়-হিমালয় বলয়; c : মহাসাগরীয় গ্রস্ত উপত্যকা)

# 1.4 ভূকম্পের উৎপত্তির কারণ

সভ্যতার উন্মেষের কাল থেকে মানুষ ভূকম্পের উৎপত্তির কারণ অনুসন্ধান করতে গিয়ে অদ্ভূত সব প্রস্তাব দিয়েছে। প্রথম ব্যতিক্রমী প্রস্তাব এসেছিল গ্রিক দার্শনিক অ্যারিস্টটলের (384-322 খ্রীস্টপূর্ব) কাছ থেকে। তিনি অনুমান করেছিলেন ভূগোলকের অভ্যন্তর থেকে বায়ু এবং গ্যাসের নিষ্ক্রমণে বাধা ঘটলে ভূকম্পের উৎপত্তি ঘটে। মধ্যযুগে অ্যারিস্টটলের মতবাদ পরিশীলিত করে বলা হয় যে, আগ্নেয়গিরির অগ্ন্যচ্ছ্লাসে গ্যাসের অভিঘাতে ভূকম্পের উৎপত্তি ঘটে।

ঊনবিংশ শতাব্দীর শেষার্ধে ভূকম্পের উৎপত্তির কারণ হিসেবে বলা হয় শিলাদেহে চ্যুতি (faulting) দায়ী। এ সম্বন্ধে প্রথম সন্দেহ জাগায় বাহ্য ক্যালিফোর্নিয়া দিয়ে মার্কিন যুক্তরাস্ট্রের ক্যালিফোর্নিয়া রাজ্যের প্রায় উত্তর সীমানা পর্যন্ত বিস্তৃত সান অ্যান্ড্রিয়াস চ্যুতিগুচ্ছ। পরে দেখা গেছে যে এই চ্যুতিগুচ্ছ একটি ভূগোলকীয় চ্যুতিবলয়ের অংশ এবং উত্তর আমেরিকার পশ্চিম তটরেখার বিবর্তনে তার গুরুত্বপূর্ণ ভূমিকা আছে। এই চ্যুতিবলয় উত্তরে ইউরেকা (Eureka) শহর থেকে সান ফ্রান্সিস্কোর মধ্য দিয়ে মোটামুটি উত্তরপশ্চিম-দক্ষিণপূর্বে গ্রেট জোয়াকুইন উপত্যকার (Great Joaquin valley) দক্ষিণ পর্যন্ত গিয়ে সালটন সাগরের (Salton sea) উত্তর থেকে মেক্সিকোর সীমানা পর্যন্ত বিস্তৃত হয়েছে। এই চ্যুতিগুচ্ছে যেকোনো ভূকম্পের সময় শিলাদেহে যে বিচ্যুতি ঘটে তা চ্যুতিটির আয়ামের (strike) সমান্তরাল (Anderson, 1972)।

সান অ্যান্ড্রিয়াস চ্যুতিবলয়ে 1200 কিমি দৈর্ঘ্য ধরে 1906-1946, এই চল্লিশ বছর রীতিবন্ধ অনুসন্ধান চালানো হয়। কোন কোন অংশে 1906 সালের ভূমিকন্পের আগে এবং পরে নির্দিষ্ট কাল ব্যবধানে ইউ. এস্. কোস্ট অ্যান্ড জিওডেটিক সার্ভে (U. S. Coast and Geodetic Survey) অনুসন্ধান চালায়। পরে জন্স্ হপ্কিন্স বিশ্ববিদ্যালয়ের অধ্যাপক রাইড (H. F. Ride) 1850 সাল থেকে 1906 সাল পর্যন্ত এই অঞ্চলে ঘটা সব ভূকন্পের রিপোর্ট নিয়ে সেগুলিকে তিনটি ভাগে ভাগ করেন :—1851-1865; 1874-1892 এবং 1906-1907। এই তিন শ্রেণীর কালব্যবধানে সান অ্যান্ড্রিয়াস চ্যুতিবলয়ের দু'ধারে শিলাদেহে যা যা বিচ্যুতি ঘটেছে তারও নথিবন্ধ রেকর্ড বিবেচনা করা হয়। তার ফলে এই



চ্যুতিবলয় বরাবর বিচ্যুতির ইতিহাস রচনা করা সম্ভব হয় (চিত্র : 1.6)। রাইড বললেন যে, এখানে সমহারে ভূকম্পের শক্তি সঞ্চিত হবার কোন প্রত্যক্ষ নিদর্শন নেই। তবু তিনি অনুমান করলেন, সমহারে না হলেও বেশ কিছুকাল ধরে চ্যুতিবলয়ের দু'ধারের শিলাদেহে শক্তি সঞ্চিত হয়ে চলে যতক্ষণ শিলার সহতামাত্রা (strength) অতিক্রান্ত না হয়। অতিক্রমণ ঘটলেই শিলাদেহটি ছিঁড়ে যায় এবং চ্যুতির দু'পাশের শিলাদেহ তার পূর্ববর্তী জ্যামিতি ফিরে পায়। যে তল বরাবর শিলাদেহটি ছেঁড়ে সেই তলটি হয়ে যায় চ্যুতিতল (fault plane)। ইউ. এস্. কোস্ট অ্যান্ড জিওডেটিক সার্ভে 1907 সাল থেকে পর্যবেক্ষণ করে দেখতে পেল যে অধিকাংশ ক্ষেত্রে চ্যুতির প্রভাবে চ্যুতিবলয়ের সমকোণে অবস্থিত 18 কিমি দীর্ঘ একটি সরলরেখাকে দুটি বক্ররেখায় পরিণত করেছে। বস্তুত এই সরলরেখাগুলি হল রাস্তা এবং গোচারণভূমির

সীমান্তে গাঁথা তারের বেড়া। 1940 এবং 1952 সালে এখানে প্রবল ভূকম্প ঘটে এবং রাইডের অনুমান সমর্থিত হয়। যেহেতু চ্যুতি সংঘটিত হবার পর শিলাদেহগুলি তাদের স্থিতিস্থাপক ধর্মের জন্য পূর্বাবস্থা ফিরে পায় (চিত্র : 1.7) সেজন্য টেক্টনিক্ ভূকম্পের উৎপত্তি সম্বন্ধে এই প্রস্তাব *স্থিতিস্থাপক প্রতিঘাত* অনুমিতি (elastic rebound hypothesis) নামে পরিচিত। সক্রিয় চ্যুতির দু'পাশে নিয়মিত রীতিবন্ধ পর্যবেক্ষণ চালিয়ে ভূকম্পের পূর্বাভাস দেওয়া সম্ভব মনে করলেন অনেকে। 1966 সালের 26 এপ্রিল তাশকেন্ট ভূকম্পে তাঁদের অনুমান সমর্থিত হলো।



চিত্র 1.7 : স্থিতিস্থাপক প্রতিঘাত অনুমিতি

# 1.5 ভূকম্পের শ্রেণীবিভাগ

বিভিন্ন ভূকম্পের রেকর্ড থেকে দেখা যায় গভীরতায় 85% ভূকম্পের উৎসবিন্দু গড় সাগরপৃষ্ঠ থেকে যাট কিলোমিটারের মধ্যে। এগুলিকে বলা হয় *অগভীর উৎসের ভূকম্প*। 12% ভূকম্পের উৎস যাট থেকে তিনশো কিমি-র মধ্যে। এগুলিকে বলা হয় *মাঝারি উৎসের ভূকম্প*। বাকি 3% ভূকম্পের উৎস বিন্দু তিনশো কিলোমিটারের নিচে। এগুলিকে বলা হয় *মাঝারি উৎসের ভূকম্প*। বাকি 3% ভূকম্পের উৎসবিন্দু তিনশো কিলোমিটারের নিচে। এগুলিকে বলে *গভীর উৎসের ভূকম্প*। পরে পুঙ্খানুপুঙ্খ পর্যবেক্ষণের ফলে দেখা গেছে গড়ে ভূকম্পে উৎপন্ন শস্তির বার্ষিক পরিমাণ 3 × 10<sup>15</sup> erg। এগুলির মধ্যে গভীর উৎসের ভূকম্প সবচেয়ে শক্তিশালী এবং তার কোন কোনটি 10<sup>27</sup> erg-ও হতে পারে। যে ভূকম্পনগুলির শস্তি নির্ণয় করা গেছে তার একটি সারণি-2-তে দেওয়া গেল।

| ভূকপ্প                  | তারিখ                | নিৰ্গত শক্তি (erg-এ) |
|-------------------------|----------------------|----------------------|
| লিস্বন                  | 1 নভেম্বর, 1755      | $7 \times 10^{27}$   |
| সান ফ্রান্সিসকো         | 18 জুন, 1906         | $2 \times 10^{24}$   |
| সারেজ (পামির)           | 18 ফেব্রুয়ারি, 1911 | $4.3 \times 10^{23}$ |
| লস অ্যাঞ্জেলস           | 10 মার্চ, 1933       | $1 \times 10^{18}$   |
| খাইত (তাজিকিস্তান)      | 10 জুলাই, 1949       | $5 \times 10^{24}$   |
| আসাম                    | 15 আগস্ট, 1950       | $3 \times 10^{27}$   |
| শেফালোনিয়া (গ্রিস)     | 12 আগস্ট, 1953       | $6 \times 10^{24}$   |
| অর্লিন্সভিল (আলজেরিয়া) | 9 সেপ্টেম্বর, 1954   | $1 \times 10^{24}$   |
| আগাদির (মরক্কো)         | 1 মার্চ, 1960        | $1 \times 10^{20}$   |

সারণি-2 : কতকগুলি বড় মাপের ভূকম্পে নির্গত শক্তির সম্ভাব্য মাত্রা

গোরশ্কভ্ (1967) সারণি-21, পৃষ্ঠা 448।

# 1.6 প্রধান প্রধান ভারতীয় ভূকম্প

ভূমধ্যসাগরীয় ভূকম্প বলয় কেন্দ্রীয় হিমালয়ের দক্ষিণে শিবালিক শ্রেণী পর্যন্ত বিস্তৃত। সেজন্য অঞ্চলটিতে ঘন ঘন ভূকম্প ঘটে থাকে। বহু উচ্চমাত্রার ভূকম্প এখানে ঘটেছে, যেমন, 1819, 1830, 1852, 1869, 1885, 1918 এবং 1934 সালে। এই শ্রেণীর দক্ষিণে সিম্থু-গাঙ্গোয় পাললিক সমভূমি অঞ্চলটি সুগভীর অসংসক্ত (incoherent) পললে গঠিত। ফলে এখানে কোন ভূকম্পের উৎসবিন্দু থাকলেও তার শক্তি আন্তর্কণা বিচলনে প্রশমিত হয়। 1974 সালে ন্যাশনাল জিওফিজিকাল রিসার্চ ইনস্টিট্যটের বিজ্ঞানী দেশিকাচার দেখিয়েছেন, যে, সিম্থু-গাঙ্গোয় সমভূমির নিচে বেশ কয়েকটি সক্রিয় চ্যুতি বর্তমান। বিম্যু-মেকাল পর্বতশ্রেণীর দক্ষিণে 1967 সালের কয়না ভূকম্পের আগে উচ্চমাত্রার ভূকম্পের কোন ইতিহাস পাওয়া যায়না। তাই মনে করা হত যে অঞ্চলটি টেক্টনিক্ভাবে নিষ্ক্রিয়। কয়না ভূকম্প এবং পরবর্তীকালে লাতুর ভূকম্প এই ধারণা সংশোধন করেছে।

#### কয়না ভূকম্প 11 ডিসেম্বর, 1967 :

1967-এর কয়না ভূকম্প বিগত বারোশো বছরে তৃতীয় ভূকম্প। ওই বছর সেপ্টেম্বর মাস থেকে 5.7 মাত্রার দুর্বল ভূকম্পন অনুভূত হতে থাকে। ডিসেম্বরে মূল ভূকম্প ঘটে। কয়নানগর বাঁধের 700 কিমি ব্যাসার্ধের সর্বত্র এই ভূকম্প অনুভূত হয়েছিল এবং উপকেন্দ্র কয়নানগরে তার মাত্রা ছিল 8.5। সমস্ত পাকা বাড়ি এবং মাটির বাড়ি বাঁধের 10 কিমি ব্যাসার্ধের মধ্যে ধ্বংস হয়ে গিয়েছিল। তবে কংক্রিটের বাড়ি, ইলেকট্রিক এবং টেলিফোনের পোস্ট এবং পাইপলাইন বিশেষ ক্ষতিগ্রস্ত হয়নি; যদিও অধিকাংশ ক্ষেত্রে বাড়ির ছাদ ধসে পড়েছিল।

ভূবিজ্ঞানীরা এই ভূকম্পের বিভিন্ন কারণ অনুমান করেন। ভূকম্পের পর নিকটবর্তী উষ্ণ প্রস্রবণের তাপমাত্রা লক্ষণীয় ভাবে বেড়ে যায়। কোঙ্কনের উষ্ণ প্রস্রবণের তাপমাত্রা লক্ষণীয়ভাবে বেড়ে গিয়েছিল। কোঙ্কনের উষ্ণ প্রস্রবণ এবং কাম্বে ও আংকলেশ্বরের অয়েল অ্যান্ড ন্যাচারাল গ্যাস কমিশনের তৈল-কূপগুলিতে ভূতাপীয় অবক্রম বৃদ্ধি পায়। ফলে অনেকে অনুমান করেন যে, এটি এখানে ভূগর্ভে ম্যাগমার ক্রিয়ার নিদর্শন। পরবর্তীকালে ভূভৌত পর্যবেক্ষণের ফলে এখানে অনেকগুলি সক্রিয় চ্যুতিতল এবং পীড়নতল ধরা পড়ে। ফলে ভারতীয় উপদ্বীপ যে ভূকম্পহীন অঞ্চল, সেই প্রচলিত ধারণা পরিত্যক্ত হয়। চ্যুতিগুলির মধ্যে একটি 540 কিমি দীর্ঘ। কয়না চ্যুতি নামে পরিচিত এই চ্যুতিটি কালাদগিতে শুরু হয়ে কয়নানগরের মধ্যে দিয়ে নাসিকের 60 কিমি পশ্চিমে শেষ হয়েছে। কৃম্বব্রন্থণ ও নেগি (1973) অনুমান করেন যে, কয়না চ্যুতিতে বিচলন ঘটে এই টেক্টনিক্ ভূকম্প উৎপন্ন হয়। যদিও চ্যুতিটি প্রাক্-ক্যান্ত্রীয় কালের, তবু সন্তবত এটি আধুনিক কালে সক্রিয় হয়েছে। ভূ-ভৌতবিদদের মতে, কয়না

#### আসাম ভূকম্প 15 আগস্ট, 1950 :

ভারতের উত্তর-পশ্চিম কোণে ভারত, তিব্বত এবং চীনের সাধারণ সীমানায় রিমার কাছে ছিল এই ভূকম্পের উপকেন্দ্র। এখানে ভূকম্পের মাত্রা 8.7। জনবসতি বিরল হওয়ায় 1897-এর আসাম ভূমিকম্পের তুলনায় লোকক্ষয় কম হলেও ভূপৃষ্ঠের অনেক পরিবর্তন ঘটে। যারা এসময়ে বিমানে এখান দিয়ে গিয়েছেন, তাঁরা অনেকেই ভূমিপৃষ্ঠে পরিবর্তন ঘটতে দেখেছেন। পাহাড়ে বড় ধরনের ধস নামে। এফ কিংডন-ওয়ার্ড নামে একজন উদ্ভিদবিদ এই ভূকম্পের একমাত্র প্রত্যক্ষ বিবরণ দেন। পরে দেখা যায় যে এই ভূকম্পে উদ্ভূত শক্তির পরিমাণ একলক্ষ পারমাণবিক বোমার শক্তির সমান।

#### কোয়েটা ভূকম্প 31 মে, 1935 :

এই ভূকম্পের উপকেন্দ্র ছিল কোয়েটা থেকে মাস্তুং পর্যন্ত 90 কিমি বিস্তৃত একটি সংকীর্ণ বলয়। 2,59,000 বর্গ কিলোমিটারে ভূকম্পটি অনুভূত হয়েছিল। ভূকম্পের মাত্রা ছিল 7.6। উৎসবিন্দুর সঠিক গভীরতা নিরূপণ করা যায়নি। অনুমান করা হয় এটি একটি অগভীর উৎসের ভূকম্প।

#### বিহার-নেপাল ভূকম্প, 15 জানুয়ারি, 1934 :

ভারতের ইতিহাসে প্রবলতম ভূকম্পগুলির একটি। এটি অনুভূত হয়েছিল প্রায় 39,50,000 বর্গ কিলোমিটার জুড়ে এবং অন্তত 10,000 মানুষ মারা গিয়েছিল। এখানে উপকেন্দ্রটি 120 কিমি দীর্ঘ একটি বলয়ে মতিহারির পূর্ব থেকে সীতামারি হয়ে মধুবনি পর্যন্ত বিস্তৃত। ভূকম্পের ফলে রেলওয়ে বাঁধগুলি এবং পথঘাট দুই মিটার পর্যন্ত ভূগর্ভে ঢুকে যায়। মার্কালি মাত্রামানে (Mercalli) এই ভূকম্পের মাত্রা ছিল দশ। এবং এই মাত্রা 120 কিমি দীর্ঘ এবং 30 কিমি বিস্তৃত একটি অঞ্জলে সর্বত্র অনুভূত হয়েছিল।

#### আসাম ভূকম্প, 12 জুন, 1897 :

এর উপকেন্দ্র ছিল শিলং উপত্যকায় এবং প্রভাবিত অঞ্চলের আয়তন 36,50,000 বর্গ কিমি। শিলং, গোয়ালপাড়া, নওগাঁ এবং সিলেটে পাথরে তৈরি সব বাড়ি ধ্বংস হয়ে গিয়েছিল। আর. ডি. ওল্ডহ্যাম লিখেছেন যে, নরম জেলির মতো জমি বিভিন্ন দিকে প্রকম্পিত হতে হতে দীর্ঘ ফাটল উৎপন্ন হয়। জলাধারের চারপাশ থেকে ফাটল বরাবর ভূমি নেমে আসে। 10 থেকে 15 সেকেন্ডের মধ্যে এই ক্ষয়ক্ষতি সাধিত হয়। সবচেয়ে বেশি ক্ষতি হয় ব্রত্নপুত্রের দুটি প্রধান উপনদী মানস এবং পাগলাদিয়ার অববাহিকায়। এই ভূকম্পের প্রভাব কিন্তু কলকাতাতেও পড়েছিল।

#### বাংলাদেশের ভূকম্প, 14 জুলাই, 1885 :

এটির উপকেন্দ্র ছিল ঢাকার উত্তর-পশ্চিমে এবং 5,98,000 বর্গ কিমি এলাকায় কম্পন অনুভূত হয়। রিপোর্টে দেখা যায় বহু জায়গা বসে গিয়ে ব্রত্নপুত্র, মেঘনা এবং অন্যান্য নদীর জলে প্লাবিত হয় এবং পরে সেগুলি জলাভূমিতে পরিণত হয়।

#### কচ্ছ ভূকম্প, 16 জুন, 1819 :

যদিও এই ভূকম্প 1897 এবং 1934 সালের ভূকম্পের তুলনায় কম আয়তনের অঞ্চলে অনুভূত হয়েছিল তবু সুদূর কলকাতায় এজন্য কম্পন অনুভূত হয়। প্রায় 100 কিমি দীর্ঘ একটি অঞ্চল উঠে পড়ে সিম্বুনদীর একটি শাখা বন্থ হয়ে যায়। ফলে নদীর জলে বিস্তৃত এলাকা প্লাবিত হয়। যদিও এই অঞ্চলের ইতিহাসে এটিই প্রথম ভূকম্প, তবে পরবর্তীকালে বহুবার মৃদু কম্পন ঘটেছে। 1956 সালের 21 জুলাই একটি মাঝারি মাত্রার ভূকম্পন ঘটে।

#### উত্তরকাশী-চামোলি, 19 অক্টোবর, 1991 এবং 28 মার্চ, 1999 :

উত্তরকাশী চামোলি অঞ্চলে এই দু'বার উচ্চমাত্রার ভুকম্পন ঘটে। প্রথমটির উপকেন্দ্র 34°48' উ ও 78°48' পু অক্ষাংশ ও দ্রাঘিমাংশে। দুটিই অগভীর উৎসের ভুকম্প (যথাক্রমে 10 ও 15 কিমি)। কিন্তু প্রথমটির তীব্রতা রিখ্টার মাত্রাক্রমে 7 ও পরেরটির 6.6। 1980 সাল থেকে প্রায়ই হিমালয়ের পার্বত্য বলয়ে ভুকম্পন ঘটে আসছে। তীব্রতা সাধারণভাবে 6 থেকে 7 এর মধ্যে। উপকেন্দ্রগুলিকে মানচিত্রে সন্নিবেশ করলে মনে হয় ভারতীয় প্লেটের তিব্বতীয় প্লেটের নীচে সঞ্চার এইসব ভুকম্পের কারণ। তবে 6 আগস্ট, 1998-এর ভুকম্প এর ব্যতিক্রম। গৌহাটির কাছে উপকেন্দ্র (25°6' উ, 95°6' পু) এবং উৎসের 100 কিমি গভীরতা হিমালয়ের পরিবর্তে বেঙ্গাল বেসিনের পূর্বে বর্মী প্লেটের অধোগমনের নির্দেশক।

#### লাটুর-ওসমানাবাদ, 29 সেপ্টেম্বর, 1993 :

6.3 তীব্রতার এক ভূকম্পে ভারতীয় উপদ্বীপের মধ্য-পশ্চিমে লাটুর, ওসমানাবাদ এবং কিলারির চারপাশে ব্যাপক ক্ষয়ক্ষতি ঘটে। মাত্র 6 কিমি গভীরতার উৎসের এই ভূকম্প নর্মদা গ্রস্ত উপত্যকার কাছাকাছি। সম্ভবত এটিও কয়না ভূকম্পের মতো দাক্ষিণাত্যের শিল্ড্ অঞ্জলে টেকটনিক ক্রিয়ার পুনরুন্মেযের ইঞ্জিতবহ।

#### ভূজ-অঞ্জর, 26 জানুয়ারি, 2001 :

আমেদাবাদ, অঞ্জর এবং ভূজ অঞ্চল এক ভয়াবহ ভূকম্পে বিপর্যস্ত হয়। এর উপকেন্দ্র 23.326° উ ও 70.317° পূ অক্ষাংশ ও দ্রাঘিমাংশে, উৎসের গভীরতা 23 কিমি এবং তীব্রতা রিখ্টার মাত্রাক্রমে 7.5।

আমেদাবাদে ক্ষয়ক্ষতির প্রকৃতি থেকে মনে হয় এই ভূকম্পের সম্ভাব্য কারণ সবরমতী গ্রস্ত উপত্যকার চ্যুতি। বিংশ শতকের আশির দশকে আংকলেশ্বরের তৈল কূপে অত্যুয় জলীয় বাষ্পের বিস্ফোরণ এই অনুমানের সমর্থক। ভারতের পশ্চিম উপকূল উত্তর-পূর্ব আফ্রিকা থেকে বিচ্ছিন্ন হওয়ার স্মারক টেকটনিক চ্যুতির পুনর্জাগরণের ফলে এই ভূকম্প ঘটে থাকতে পারে। ভূবিজ্ঞানীদের গবেষণায় এই সম্ভাবনা সত্য প্রমাণিত হলে বর্তমান শতকে উত্তর ভারতে ব্যাপক ভূকম্পের সম্ভাবনা এবং পূর্ব আরবসাগরে কোথাও কোথাও অগ্ন্যুৎপাতের সম্ভাবনা আছে।

# 1.7 ভূগোলকের অভ্যন্তরীণ গঠন

গভীরতম ভূছিদ্র ভূগর্ভে মাত্র 10 কিমি পর্যন্ত বিস্তৃত। একটি স্কুলের গ্লোবে এটি উপরের বার্নিশ এবং রঙের আস্তরণের চেয়েও পৃথিবীর ব্যাসের তুলনায় কম বেধ-এর। সুতরাং পৃথিবীর গভীরে কী ধরনের বস্তু আছে তা নিরূপণ করার জন্য পরোক্ষ নিদর্শনের সাহায্য নিতে হয়।

এ সম্বন্ধে মানুষের প্রাচীনতম নিদর্শন ছিল আগ্নেয়গিরি থেকে নির্গত তরল পদার্থ। অনুমান করা হয়েছিল যে, ভূগোলকের অভ্যন্তর তরল পদার্থে তৈরি। এই ধারণা মধ্যযুগ পর্যন্ত প্রচলিত ছিল। অনুমান করা হয় যে, তার উপরে ব্রমে শীতল হওয়ায় তরল বস্তুটি ঘনীভূত হয়ে ভূত্বক সৃষ্টি হয়। এই ভূত্বকের তুলনা করা হত আপেলের শুকিয়ে যাওয়া খোসার সঞ্জো। যাঁরা এসম্বন্ধে প্রতিবাদ করলেন তাঁরা বললেন, চন্দ্র এবং সূর্যের আকর্ষণে যেমন জলভাগে জোয়ার-ভাটা ঘটে তেমনি পৃথিবীর অভ্যন্তর তরল হলে সেখানেও জোয়ার-ভাটা ঘটবে। ফলে ভূপৃষ্ঠের সর্বত্র কোথাও না কোথাও ভূকম্প ও অগ্ন্যচ্ছাস ঘটবে।

অন্টাদশ শতাব্দীর শেষার্ধে মিশেল দেখালেন যে ভূগোলকের মধ্য দিয়ে ভূকম্পের শক্তি তরঞ্চারূপে সঞ্জারিত হয়। 1892 সালে মিল্নে (Milney) প্রথম ভূকম্প পরিলেখন যন্ত্র (Seismograph) তৈরি করেন। তখন দেখা গেল প্রাথমিক এবং অনুতরঞ্চা—দু'টিই গভীরতা বৃদ্ধির সঞ্চো সঙ্গে ত্বরিত হয়। তরঞ্চা-বলবিদ্যার সূত্র প্রয়োগ করে প্রতিসরণের যে সমীকরণ পাওয়া গেছে তা থেকে দেখা যায় :

$$\frac{\sin i}{\sin r} = \, \mathfrak{L}_{q} \mathfrak{P} \mathfrak{P} = \frac{V_1}{V_2}$$

এখানে *i* হল আপতন কোণ, *r* হল প্রতিসরণ কোণ, *V*<sub>1</sub> আপতন মাধ্যমে তরজোর গতিবেগ, *V*<sub>2</sub> প্রতিসরণ মাধ্যমে তরজোর গতিবেগ। সুতরাং, পরপর ক্রমবর্ধমান ঘনত্বের স্তর থাকলে ভূকম্প তরজোর গতিবেগ হবে এরূপ : *V*<sub>1</sub> < *V*<sub>2</sub> <....., যার অর্থ sin*i*<sub>1</sub> < sin*r*<sub>1</sub>(= sin*i*<sub>2</sub>) < sin*r*<sub>2</sub>(= sin*r*<sub>3</sub>)...... অর্থাৎ তরজোর গতিপথ সরলরেখা নয় এবং এটি ক্রমণঃ বেঁকে গিয়ে উপকেন্দ্র থেকে কোন দূরবর্তী স্থানে ভূপৃষ্ঠকে ছেদ করবে (চিত্র : 1.8)। ভূকম্পের রীতিবন্ধ অনুসন্ধানে পর্যবেক্ষণ কেন্দ্রগুলি উপকেন্দ্র থেকে ক্রমান্বয়ে দূরবর্তী স্থানে তরজাগুলিকে রেকর্ড করে। বিভিন্ন পর্যবেক্ষণ কেন্দ্রের ভূকম্পলেখ থেকে দেখা যায়, প্রাথমিক এবং অনুতরঙ্গা ছাড়া সেগুলির প্রতিফলিত অনেকগুলি উপাংশ (component)



চিত্র 1.8 : স্নেলের সূত্র (আ : আপতন কোণ; প্র : প্রতিসরণ কোণ)

ভূকম্পলেখতে ধরা পড়ে। এগুলি প্রাথমিক তরঙ্গা 1-2 অথবা ইংরিজীতে PKP, PKIKP ইত্যাদি রুপে চিহ্নিত করা হয়।

ভূকম্পবিদ্যা যত উন্নত হতে লাগল, তত অধিকসংখ্যক পর্যবেক্ষণ কেন্দ্রে যে কোনো বিশেষ ভূকম্পের ভূকম্পলেখ গৃহীত হল। এরূপ বহু ভূকম্পলেখ বিশ্লেষণ করে দেখা গেল উপকেন্দ্র থেকে 1150 কিমি দূরে হঠাৎ প্রাথমিক এবং অনুতরঙ্গা—দু'টিরই গতিবেগ অনেকটা বেড়ে যাচ্ছে। এই আকস্মিক বৃদ্ধির পর 11,500 কিমি পর্যন্ত তরঙ্গাই ক্রমান্বয়ে ত্বরিত হতে হতে 11,500 কিমির পর হঠাৎ দুটি তরঙ্গাই অদৃশ্য হয়ে গেল। উপকেন্দ্র থেকে 16,000 কিমি দূরত্বের পর প্রাথমিক তরঙ্গাটি আবার পাওয়া গেল; কিন্তু তার গতিবেগ অনেকটা কমে গেছে (চিত্র : 1.9)। এই নব্য পর্যায়ের প্রাথমিক তরঙ্গ ক্রমাগত ত্বরিত হতে হতে উপকেন্দ্রের প্রতিপাদ বিন্দু পর্যন্ত অব্যাহতভাবে পরিলিখিত হল। সুতরাং দেখা যাচ্ছে যে কোনো বড় মাপের টেক্টনিক্ ভূকম্পে প্রায় 5000 কিমি বিস্তৃত একটি অঞ্জলে প্রাথমিক বা অনুতরঙ্গা—কোনটিই ধরা পড়েনা। এই বলয়টির নাম দেওয়া হয়েছে ছায়াবলয় (shadow zone)।



চিত্র 1.9 : ভূগোলকের আভ্যন্তরীণ গঠন (A B C D E F G ইত্যাদি যথাক্রমে ভূত্বক, অ্যাস্থেনোস্ফিয়ার ইত্যাদির আন্তর্জাতিক প্রতীক)

এভাবে হঠাৎ দেহতরঞ্চাদুটির গতিবেগ বৃদ্ধি থেকে ভূগর্ভে প্রথম ছেদ-তল নির্ণীত হয়। যে যুগোশ্লাভ ভূকম্পবিদ 1909 সালে এটি আবিষ্কার করেন, তাঁর নামে এই ছেদতলটির নাম দেওয়া হয় *মোহোরোভিসিক* ছেদতল। ভূপৃষ্ঠে 11,500 কিমি ব্যবধান নির্দেশ করে ভূগর্ভে 2,900 কিমি গভীরতা। এই গভীরতায় আর একটি ছেদতল প্রথম অনুমিত হয় 1899 সালে এবং পরে প্রমাণিত হয় 1906 সালে (R. D. Oldham) এবং 1913 সালে (Gütenberg)। এই ছেদতলটি গুটেনবার্গ ছেদতল নামে পরিচিত। উপরের ছেদতলটি সংক্ষেপে *মোহো* নামে পরিচিত। মোহোর উপরে ভূগোলকের সমকেন্দ্রিক খোলকটিকে বলে ভূত্বক (crust of the earth)। মোহো থেকে গুটেনবার্গ ছেদতল পর্যন্ত সমকেন্দ্রিক অংশটিকে বলা হয় *পৃথিবীর ম্যান্টেল* (mantle of the earth)। গুটেনবার্গ ছেদতল থেকে কেন্দ্র পর্যন্ত অংশটিকে বলা হয় *ভূগোলকের* অষ্ঠি (core of the earth)। অনুতরঞ্চা ভূগোলকের অষ্ঠি পার হয়ে যেতে পারেনা দেখে অনুমান করা হয়েছিল যে ভূগোলকের অষ্ঠি তরল অবস্থায় আছে।

#### 1.7.1 ভূত্বক

পৃষ্ঠতরজ্ঞের বিস্তারণ দেখে ভূত্বকের অসমসত্ত্বতার সম্বন্ধে প্রথম অবহিত হওয়া যায়। দেখা গেল যে, টোকিওর কাছে উপকেন্দ্র, এমন ভূকম্পের পৃষ্ঠতরজ্ঞা প্রশান্ত মহাসাগরের অপরদিকে সান ফ্রান্সিসকোতে পৌঁছয় মস্কোর তুলনায় বেশ কিছুটা আঘে। অথচ, টোকিও থেকে সান ফ্রান্সিসকো এবং মস্কোর দূরত্ব সমান। কেবল টোকিও ও সান ফ্রান্সিসকোর মধ্যে বর্তমান মহাসাগরীয় ভূত্বক আর টোকিও ও মস্কোর মধ্যে বর্তমান ভূভাগীয় ভূত্বক। সুতরাং, মহাসাগরীয় ভূত্বক এবং ভূভাগীয় ভূত্বকের শৈল উপাদনে একটি মৌলিক পার্থক্য আছে। পরীক্ষাগারে পরীক্ষা করে দেখা গেল ভূভাগীয় ভূত্বকের পৃষ্ঠতরজ্ঞের গতিবেগ গ্রানাইট, বেলেপাথর, কাদাপাথর ইত্যাদির মধ্য দিয়ে তার গতিবেগের সমান। অন্যদিকে মহাসাগরীয় ভূত্বকে পৃষ্ঠতরজোর গতিবেগ বেসন্টের মধ্য দিয়ে তার গতিবেগের সমান। অন্যদিকে মহাসাগরীয় ভূত্বকে পৃষ্ঠতরজোর গতিবেগ বেসন্টের মধ্য দিয়ে তার গতিবেগের সমান। বিজ্ঞানীরা বললেন, ভূভাগীয় শিলার প্রধান রাসায়নিক উপাদান সিলিকন এবং অ্যালুমিনিয়াম। এই দুটি মৌলের রাসায়নিক সংকেতের প্রথম দুটি অক্ষর নিয়ে ভূভাগীয় শিলাগোষ্ঠীর নাম দেওয়া হল সিআল (sial)। বেসন্ট প্রধানত সিলিকন এবং ম্যাগনেসিয়াম মৌলের শিলা। এই দুটি মৌলের প্রথম অক্ষরদুটি নিয়ে মহাসাগরীয় শিলাগোষ্ঠীর নামদেওয়া হল সিমা (sima)। ভূত্বকের সর্বত্র সিআল আর সিমা এই দুই শিলাগোষ্ঠীর স্তর আছে। ভূভাগের নিচে সিআল অনেক বেশি পুরু আর সাগরগর্ভে সিমা অনেক বেশি পুরু। এই দুই গোষ্ঠীর শিলাস্তরের মধ্যে যে ছেদতল তার নাম দেওয়া হল কোন্রাড ছেদতল (Conrad discontinuity)।

## 1.7.2 পৃথিবীর ম্যান্টেল

ভূকম্পবিদ্যার উন্নতির সঙ্গো সঙ্গো দেখা গেল যে, মোহোর ঠিক নিয়ে দেহতরঙ্গের গতি আকস্মিক বৃদ্ধি পেলেও প্রায় 60 কিমি নীচে গিয়ে তার গতিবেগ 6% কমে যাচ্ছে। এই 60 কিমি থেকে 250 কিমি গভীরতা পর্যন্ত যদিও এই দুই তরঙ্গা ত্বরিত হলেও এই ত্বরণের হার আগের তুলনায় অনেক কম। বেনো গুটেনবার্গ প্রথম এরূপ একটি স্বল্প গতিবেগ অঞ্চলের কথা বলেছিলেন এবং অনুমান করেন যে গড়ে 150 কিমি গভীরে এই অঞ্চলটি বর্তমান। 1960 সালের 22 মে চিলির ভুকম্প বিশ্লেষণ করে দেখা গেল যে এই স্বল্প গতিবেগ অঞ্চল সমগ্র ভূগোলকব্যাপী বর্তমান। এটির নাম দেওয়া হয়েছে অ্যাসথেনোস্পিয়ার। অনুমান করা হয় যে অত্যধিক তাপমাত্রায় যদিও অ্যাসথেনোস্ফিয়ারে শিলা গলিত অবস্থায় থাকার কথা তবু উপরের বিপুল চাপে তার গলনাঙ্ক অনেক বৃদ্ধি পাওয়ায় এখানে তাপমাত্রার প্রভাব শুধু শিলার দৃঢ়তা হ্রাসে সীমাবন্ধ। একইসঞ্চো অনুমান করা হল যে, কোন কারণে যদি একটি গভীর ফাটল উৎপন্ন হয়, তবে সেই ফাটলের নীচে অ্যাস্থেনোস্ফিয়ার গলে বেসল্টের সংযুতির ম্যাগমা (magma) সৃষ্টি হবে। এই তত্ত্বীয় মডেলের সমর্থন পাওয়া গেল 1957 সালে ভূবিজ্ঞানী গোর্শ্কভ-এর পর্যবেক্ষণে। তিনি দেখলেন যে, সাইবেরিয়ার উত্তর-পূর্বে কামচাটকা উপদ্বীপে এমন কোন ভূকম্পের অনুতরজ্ঞা ধরা পড়েনা যার উপকেন্দ্র জাপানে। তাঁর মতে, জাপান এবং এই উপদ্বীপের মধ্যে আছে প্রশান্ত মহাসাগরীয় আগ্নেয়গিরি বলয় (Pacific girdle of fire)। তার নীচে অহরহ ম্যাগমার উৎপত্তি ঘটছে। ফলে কোন অনুতরঙ্গা এই বলয়টি পার হতে পারেনা। গোরশ্কভ-এর মতে ম্যাগমার উৎপত্তি ঘটে 55 কিমি গভীর অঞ্চলে। পরে অবশ্য দেখা গেছে ম্যাগমার উৎস 400 কিমি পর্যন্ত গভীরতায় হতে পারে।

আন্তর্জাতিক ভূ-ভৌত বর্ষে (International Geophysical Year) বহির্বিশ্বে প্রথম মহাকাশযান উৎক্ষেপণ করা হয়। তারই পাশাপাশি একটি কর্মসূচী নেওয়া হয়েছিল মোহো পর্যন্ত ভূ-ছিদ্রণের। এটি অবশ্য সফল হয়নি। বিপুল অর্থব্যয়ের পর বিজ্ঞানীরা বুঝতে পারলেন যে বিজ্ঞান যতটা এগিয়েছে, প্রযুক্তি ততটা এগোয়নি। মোহো কর্মসূচী পরিত্যক্ত হল, তার পদলে এল উর্ধ্ব-ম্যান্টেল কর্মসূচী (Upper Mantle Project)। মোহো থেকে অ্যাস্থেনোস্ফিয়ার পর্যন্ত বিস্তৃত অঞ্চলকে বলা হয় উর্ধ্ব ম্যান্টেল। ভূত্বক থেকে অ্যাস্থেনোস্ফিয়ার অঞ্চলের নাম দেওয়া হয়েছে শিলামন্ডল (lithosphere)। অর্থাৎ মোরোভিসিক ছেদ শিলামন্ডলেরই একটি অংশ এবং বর্তমানে নিষ্ক্রিয় (inactive)। অ্যাস্থেনোস্ফিয়ারের গলিত অবস্থার জন্য দায়ী তার অত্যন্ত উচ্চ তাপমাত্রা। বিজ্ঞানীদের মতে, এই তাপমাত্রার কারণ এখানের তেজষ্ক্রিয়ে মৌলের (radioactive elements) সর্বাধিক সমাবেশ। গভীরতা বৃষ্ণির সঙ্গো উর্ধ্ব ম্যান্টেলের উপরের শিলার মতো দৃঢ় শিলা যে ভিতরে আর কোথাও নেই সে সম্বন্থে বিজ্ঞানীরা ক্রমে একমত হলেন। তাঁরা দেখলেন, শিলামণ্ডলে প্রথম 100 কিলোমিটারের মধ্যে প্রাথমিক তরজোর গতিবেগ সেকেন্ডে 4 কিমি-এর কম থেকে বেড়ে হয়ে দাঁড়িয়েছিল ৪.3 কিমি। কিন্ডু পরবর্তী 900 কিলোমিটারে তা হয়ে দাঁড়াল 11.4 কিমি। অর্থাৎ বৃদ্ধি মাত্র 3.1 কিমি। বস্তুর দৃঢ়তা কমে গেলেই শুধু তা হওয়া সম্ভব। তবে বস্তুর ঘনত্ব বাড়তে সান্থতে সন্তবত পৌঁছে গেছে 4.64-এ।

গড় সাগরপৃষ্ঠ থেকে প্রায় 100 কিমি নিচে নিম্ন ম্যান্টেলের শুরু। দেখা গেল নিম্ন ম্যান্টেলে প্রাথমিক তরঙ্গের গতিবেগ বাড়তে বাড়তে 13.7 কিলোমিটারে পৌঁছে হঠাৎ নেমে গেল 8.2 কিলোমিটারে। ঘনত্ব কিন্তু বেড়ে হচ্ছে 9.71। চাপ প্রায় 136,800 কোটি বার-এ (1 বার = নর্মাল অ্যাট্মস্ফিয়ারিক প্রেশার)। বিগলন চুল্লী থেকে নিম্কাশিত ধাতুমলে (slag) পাওয়া বস্তুর গঠন থেকে বিজ্ঞানীরা ভাবলেন এখানে ক্যালসিয়াম ফেরাইট গঠনের মণিকের অস্তিত্বের কথা। ধাতুসংকর নয়, দুটি ইলেকট্রোপজিটিভ মৌলের সংযোগে উৎপন্ন একটি যৌগ। দুটি ইলেকট্রোনেগেটিভ মৌলের সংযোগে উৎপন্ন যৌগের কথা অবশ্য রসায়নবিদ্যায় জানা। যেমন নাইট্রাস অক্সাইড। কিন্তু এইসব গ্যাসীয় যৌগ থেকে দুটি ধাতুর সংযোগে উৎপন্ন যৌগের সম্ভাব্য প্রকৃতি সম্বন্ধে কোন ধারণা করা গেলনা।

ভূগোলকের গঠন সম্বন্থে বেশ কিছু তথ্য পাওয়া গেল উক্কাপিণ্ড থেকে। অনুমান করা হয়, এগুলি মহাবিশ্বে ভাসমান শিলাখণ্ড, ভূগোলকের সৃষ্টির আগে মহাজাগতিক বস্তুকণার সমবায়নে তৈরি। উক্কাপিণ্ড অবশ্য মানুযের কাছে নতুন নয়, কিন্তু তা মহাজাগতির বস্তুখণ্ডের জারিত (oxidized) অবশেষ মাত্র। এগুলি ভূপৃষ্ঠে পড়ার সময় বায়ুমণ্ডলের সংঘর্ষে উৎপন্ন অতি উচ্চতাপে সীসক এবং যাবতীয় উদ্বায়ী বস্তু হারিয়ে ফেলেছে। তবে মহাকাশযানে সংগৃহীত উক্কাপিণ্ডে সে সমস্যা নেই। উক্কাপিণ্ড বিভিন্ন ধরনের। সেগুলির রাসায়নিক সংযুতি, তার মধ্যে মণিক উপাদান এবং সেগুলির গ্রথন (texture) পরিচিত শিলা থেকে আলাদা হলেও শিলাবিদ্যার পম্বতি প্রয়োগ করে সেগুলির অনুরূপ রাসায়নিক এবং মণিক সংযুতি প্রায়া করা যায়। শিলামণ্ডল, ম্যান্টেল এবং ভূগোলকের অষ্ঠি (core)—এই তিনটির অনুরূপ রাসায়নিক এবং মণিক সংযুতি হয় লোহা-নিকেল (sederite) এবং নিকেল-লোহা (sederolite)—এই দুই সংযুতির উক্কাপিণ্ডের ভিত্তিতে।

#### 1.7.3 ভূগোলকের অষ্ঠি

তবে নিম্ন ম্যান্টেলের নিম্নসীমা ধরা গেল ভূকম্পতরজোর সঞ্চার বিশ্লেষণ করে। দেখা গেল গড় সাগরপৃষ্ঠ থেকে 2,898 কিমি নিচে গিয়ে প্রাথমিক তরজোর গতিবেগ হঠাৎ 13.7 থেকে নেমে যাচ্ছে 8.2 কিলোমিটারে। এই সঙ্গো অনুতরঙ্গা হারিয়ে যাচ্ছে, যা ঘটতে পারে শুধু সঞ্চার মাধ্যম তরল অবস্থায় থাকলে। কিন্তু এই চাপে তরল বলতে আমরা যা বুঝি, সে অবস্থা কোনমতে সম্ভব নয়। ফলিত বলবিদ্যার প্রয়োগে জানা গেল, যে-বস্তুর দৃঢ়তা (rigidity) নেই, তার মধ্য দিয়ে অনুতরঙ্গোর সঞ্চার সম্ভব নয়। কোন তরল বস্তুরই দৃঢ়তা বা rigidity নেই। কাচেরও rigidity নেই, কিন্তু কাচ তরল বস্তু নয়। 2898 কিমি নিচে ভূগোলকের ভৌত অবস্থাটি বাস্তবিকই আমাদের ইন্দ্রিয়বোধ্য কোন অবস্থা নয়। কোন বিজ্ঞানীর অসতর্ক মুহূর্তে এই গাণিতিক অবস্থাটি অতি সরল করে বলা হল যে ভূগোলকের তরল অভ্যন্তর।

ভূগোলকের ব্যাসার্ধ 6,391 কিমি ধরলে গুটেনবার্গ ছেদতলের নীচে অষ্ঠির ব্যাসার্ধ দাঁড়ায় 3.493 কিমি। এই সুবিশাল গোলকের প্রকৃতি নিয়ে ভূবিজ্ঞানীরা বড় রকমের বিতর্কে জড়িয়ে পড়লেন। এতবড় গোলকের সবটাই কি দৃঢ়তা বিহীন? লেভিন 1972 সালে বললেন যে তা নয়। তিনি দেখালেন, 4,992 থেকে 5,121 কিমি পর্যন্ত মাত্র 29 কিলোমিটারের ব্যবধানে প্রাথমিক তরঙ্গের গতিবেগ 10.4 থেকে বেড়ে হচ্ছে সেকেন্ডে 11 কিমি। এই অঞ্চলে সম্ভাব্য চাপ 318,000 কোটি বার। সুতরাং, এখানে বস্তুর দৃঢ়তা নীচের বা উপরের তুলনায় অনেক বেশি। উপরে প্রায় 2000 কিলোমিটারে প্রাথমিক তরঙ্গের গতিবেগ 10.4 থেকে বিড়ে হচ্ছে সেকেন্ডে 1.1 কিমি। এই অঞ্চলে সম্ভাব্য চাপ 318,000 কোটি বার। সুতরাং, এখানে বস্তুর দৃঢ়তা নীচের বা উপরের তুলনায় অনেক বেশি। উপরে প্রায় 2000 কিলোমিটারে প্রাথমিক তরঙ্গের গতিবেগ বেড়েছিল সেকেন্ডে 1.4 কিমি। আর এই অঞ্চলের নীচে প্রায় 1200 কিলোমিটারে তা বাড়ছে 1.3 কিমি। মাঝের এই 29 কিমি একটি পরিবৃত্তী অঞ্চল (transition zone)। কারো কারো মতে এটিও একটি ছেদতল। তাঁরা উপরের অংশটিকে বলেন বহিরাষ্ঠি (outer core), আর নীচের অংশটিকে বলেন অন্তর্রষ্ঠি (inner core)। এই ছেদতলের সর্বসন্মেত কোন নাম নেই। কারো কারো মতে অন্তর্রষ্ঠি লোহা আর নিকেলের সংকরে তৈরি। আবার অনেকে বলেন সেখানেও মণ্ডি হাইড্রোজেনের ধাতব রূপ হাইড্রোজেনাম দিয়ে এটি তৈরি। মহাবিশ্বে সব মৌলের মধ্যে হাইড্রোজেন আর হিলিয়াম—এ'দুটি গ্যাসের প্রাধান্য তাঁদের এই অন্থমানের কারণ। তবে এই ধারণা বিজ্ঞানীদের কারে হাছে গ্রহে গ্রেজের কাহে গ্রেন্য

অন্তরষ্ঠির ভৌত এবং রাসায়নিক অবস্থা সম্বন্ধে অনুমানের আর একটি যুক্তি আছে। ভূগোলকের ঘনত্ব প্রতি ঘন সেন্টিমিটারে 5.52 গ্রাম। প্রাথমিক তরজ্ঞোর গতিবিধি বিশ্লেষণ করে গুটেনবার্গ ছেদতলে বস্তুর ঘনত্ব পাওয়া গেছে 9.72। যেকোনো ভূকম্পের উপকেন্দ্র থেকে ভূপৃষ্ঠ বরাবর 103° থেকে 143°-এর মধ্যে যে ছায়াবলয় বর্তমান তার ব্যাখ্যা দেওয়ার চেম্টা করা হল অষ্ঠিতে অতি উচ্চ ঘনত্বে বস্তুর অস্তিত্ব থেকে। বিজ্ঞানীরা হিসাব করে দেখলেন অন্তরষ্ঠিতে যদি তরজোর গতিবেগ 11 কিমি ছাড়িয়ে যায়, তবে অন্তরষ্ঠি একটি গোলকীয় পরকলার (spherical lense) মতো প্রাথমিক তরজ্ঞাকে তার পথ থেকে বিচ্যুত করবে। যে ঘনত্বের বস্তু থাকলে এই বিচ্যুতি ঘটা সম্ভব তা থেকে বহিঃপ্রক্ষেপণ (extrapolation) করে ভূকেন্দ্রে ঘনত্ব পাওয়া গেল 16। বিজ্ঞানীরা অনুমান করলেন যে অন্তরষ্ঠির শুরুতে অর্থাৎ 5,121 কিমি গভীরতায় বস্তুর ঘনত্ব 14। ভূকেন্দ্রে চাপের মাত্রা বস্তুর এই ঘনত্ব ধরে পাওয়া গেল প্রায় 3,60,000 কোটি বার। পরীক্ষাগারে এই বিপুল চাপের ধারেকাছেও পৌঁছনো যায়নি। তাই ভূকেন্দ্রে বর্তমান বস্তুর প্রকৃতি শুধুই অনুমানের বিষয়।

তবে কেন্দ্রে যাই থাকুক ভূচৌম্বকত্বের উৎস যে ভূগোলকের অষ্ঠি এটি বহুকাল ধরেই ভাবা হয়ে আসছে। আয়নোস্ফিয়ার আবিষ্কারের আগে এ সম্বন্থে ঠিক মাত্রাসাপেক্ষ ধারণা না থাকলেও অনুমান করা হত যে ভূচৌম্বকত্বের একটি ক্ষুদ্র অংশ সূর্যের শস্তি বিকিরণে উৎপন্ন। আয়নোস্ফিয়ার আবিষ্কারের পর দেখা গেল যে, তার জন্য মাত্র 2 শতাংশ ভূচৌম্বকত্ব ঘটে থাকে, বাকি 98 শতাংশ ভূগর্ভে কোন কারণে উৎপন্ন। বহুকাল আগে অবশ্য ভাবা হত যে, ভূগোলকের অষ্ঠিতে যে নিকেল ও লোহা, সে দুটি চৌম্বক শস্তি সম্পন্ন বলেই ভূগোলকও চৌম্বকত্ব সম্পন্ন। কিন্ডু উত্তপ্ত করলে চুম্বক 750° সেন্টিগ্রেড তাপমাত্রার উপরে তার চৌম্বকত্ব হারায়। ভূগর্ভে প্রতি কিলোমিটারে গড়ে 30° করে তাপমাত্রা বাড়ে। সুতরাং 25 কিলোমিটারের অধিক গভীরতায় কোন স্থায়ী চৌম্বকত্ব সম্ভব নয়। সুতরাং অষ্ঠিতে লোহা আর নিকেলের অস্তিত্ব দিয়ে ভূচৌম্বকত্বের ব্যাখ্যা গ্রহণযোগ্য হলনা। বিজ্ঞানীরা তখন বললেন, ভূগর্ভের অসমসত্ত্বতা (inhomogeneity) এবং বিভিন্ন অঞ্চলের মধ্যে তড়িৎ বিভবের (electrical potential) তারতম্য ভূচৌম্বকত্বের কারণ হতে পারে। তবে এজন্য ভূগোলক চৌম্বকধর্মী হলেও তা সাময়িক হবে। মাত্র দশলক্ষ বছর কালটি যৎসামান্য। বিকল্প প্রস্তাব হিসেবে অনেকে বললেন যে, ভূগোলকের অসমসত্ত্বতা যদি ক্রমাগত স্থান পরিবর্তন করে, তবে চৌম্বক ক্ষেত্রটি স্থায়ী হতে পারে। এরকম অবস্থায় চৌম্বক মেরুর অবস্থানও মাঝে শরিবর্তিত হবে।

ভূচৌম্বকত্বের কারণের ব্যাখ্যা করে দেওয়া এই মডেলের নাম ডায়নামো মডেল। 1919 সালে প্রথম ডায়নামো মডেল প্রস্তাবিত হয়। ক্রমশ পরিমার্জিত এবং পরিশোধিত হতে হতে 1972 সালে প্রস্তাব দেওয়া হল যে একটি কঠিন খোলকের মধ্যে বর্তমান অষ্ঠিতে বস্তুর পরিচলন স্রোত, অথবা ভূগোলকের আহিন্দ গতির জন্য নিয়মিত আলোড়নের ফলে ভূচৌম্বকত্বের অস্তিত্ব। এই মডেলটি দেন বুলার্ড (Bullard)। এখনও পর্যন্ত এই মডেলের ভিত্তিতেই বিভিন্ন ঘটনা বিশেষ করে প্রত্নচৌম্বকত্বের ব্যাখ্যা করা হয়।

# 1.8 সারাংশ

প্রাকৃতিক কারণে ভূগোলকের অভ্যন্তর যে কম্পন উৎপন্ন হয় তাকে ভূকম্প বলে। এই কম্পন তিন ধরনের তরঙ্গা রূপে পৃথিবীর নানা অংশে ছড়িয়ে পড়ে। গতিবেগ অনুযায়ী ভূকম্প তরঙ্গাগুলিকে তিন ভাগে ভাগ করা যায়। যথা : প্রাথমিক তরঙ্গা, অনুবর্তী তরঙ্গা এবং পৃষ্ঠ তরঙ্গা। আগ্নেয়গিরির অগ্ন্যুৎপাত, ধস নামা, পাত সঞ্চালন প্রভৃতি নানা কারণে ভূকম্প হয়। ভূকম্পের গতিবিধি পর্যবেক্ষণ করে পৃথিবীর বা ভূগোলকের অভ্যন্তরীণ গঠন নির্ণয় করা যায়।

# 1.9 নির্বাচিত উল্লেখ্য গ্রন্থ

- 1) Bullen, K. E., Seismology, Methuen and Co. Ltd., London, 1954.
- 2) Gütenberg, B. and Richter, C. F., *Seismicity of the Earth and Associated Phenomena*, Princeton University Press and Oxford University Press, 1954.
- Bullard, E. C., '*The Interior of the Earth*' in the *The Earth as a Planet*, Vol. II, pp, 57-137, University of Chicago Press, 1954.
- 4) Lahiri Dipankar and Roy Sobhen, *The Earth Alive, Its Processes and Features,* Allied Publishers, 1985.
- 5) লাহিড়ী দীপংকর, সংসদ ভূবিজ্ঞানকোষ, 1999।

# 1.10 প্রশাবলী

(A) বড় উত্তরভিত্তিক প্রশ্ন :

- স্থানীয় ভূকম্প ও টেকটনিক ভূকম্পের পার্থক্য কী? টেক্টনিক্ ভূকম্পে উৎপন্ন ভূকম্প তরঙ্গাগুলি কি স্থানীয় ভূকম্পেও উৎপন্ন হয়? বিষয়টি চিত্র এবং যুক্তি সহকারে আলোচনা করতে হবে।
- সমমাত্রা রেখাগুলি কেন বৃত্তাকৃতি হয়না? ভূকম্পের উৎসের গভীরতা ও উপকেন্দ্র কীভাবে নির্ধারণ করা হয়?
- 3) ভূকম্পলেখ-এর একটি বর্ণনা দিতে হবে। বিভিন্ন ধরনের ভূকম্পতরজ্ঞোর মধ্যে পার্থক্য কী? এই পার্থক্য ফলিত বলবিদ্যার আলোকে ব্যাখ্যা করে উপকেন্দ্র থেকে ভিন্ন ভিন্ন দূরত্বে স্থাপিত ভূকম্প পরিলেখন যন্ত্রে গৃহীত ভূকম্পলেখ থেকে সেগুলির সঞ্জারমাধ্যম সম্বন্ধে কী কী তথ্য পাওয়া যায়?
- 5) গভীরতা অনুযায়ী ভূকম্প ক'ভাগে ভাগ করা যায়? এই বিভাগগুলির ভূগাঠনিক তাৎপর্য কী? ভূপৃষ্ঠে যেসব অঞ্জলে ভূকম্প অনুভূত হয়না, সেসব অঞ্জলের নাম কী? অন্তত দুটি এরূপ অঞ্জলের নাম দিতে হবে। ছায়াবলয়ের সঙ্গো এসব অঞ্জলের পার্থক্য কী?
- (B) সংক্ষিপ্ত উত্তরভিত্তিক প্রশ্ন :
  - উৎসবিন্দু থেকে ভূকম্প তরঙ্গাগুলি কোন দিকে সরল আর কোন দিকে বর্করেখায় বিস্তৃত হয়? সচিত্র ব্যাখ্যা প্রয়োজন।

- চিত্র 1.2 ও তার উপরের অনুচ্ছেদ

- 2) গঠন 1.3 ও চিত্র 1.1
- (A) 1) গঠন 1.5
- 1.11 উত্তর সংকেত
- 10) ভূগোলকের পরিবৃত্তি অঞ্চলে তেজস্ক্রিয় মৌলের অনুপাত অন্যান্য অংশের তুলনায় বেশি।
- অ্যাস্থেনোস্ফিয়ার ঊর্ধ্ব ম্যান্টেলের অংশ।
- 8) শিলামন্ডলের নিম্নসীমা মোহো।
- আগ্নেয়গিরির অগ্ন্যচ্ছ্লাসে টেক্টনিক্ ভূকম্প উৎপন্ন হয়।
- ভূগোলকের অভ্যন্তরে শিলার তরল অবস্থা।
- 5) সিআলের অন্যতম শিলা বেসল্ট।
- ভূচৌম্বকত্বের কারণ ভূগর্ভে বর্তমান একটি স্থায়ী চুম্বক।
- ভারতে ৎসুনামি একটি প্রধান প্রাকৃতিক দুর্যোগ।
- ৎসুনামি ভূভাগে উৎপন্ন হয়।
- 1) চ্যুতিতলে টেক্টনিক্ ভূকম্প উৎপন্ন হয়?

হ্যা না

### (C) প্রশোত্তরমূলক :

- 9) কয়না ভূকম্প থেকে দাক্ষিণাত্যের ভূগঠন সম্বন্ধে কি জানা গেছে?
- 8) ম্যান্টেল ও অষ্ঠি সম্বন্থে ভূকম্প তরঙ্গের বিস্তারণ থেকে অনুমিত চিত্র অন্য কোন কোন তথ্য থেকে সমর্থিত হয়েছে?
- 7) ভূত্বক ও ম্যান্টেল এবং ম্যান্টেল ও অষ্ঠির মধ্যে ছেদতল উপকেন্দ্র থেকে কোন কোন দূরত্বে স্থাপিত পরিলেখন যন্ত্রে গৃহীত ভূকম্পলেখ থেকে অনুমান করা গেছে? পৃষ্ঠতরঞ্চোর বিস্তারণ সম্বন্ধে কোন তথ্য থেকে ভূত্বকের গঠন সম্বন্ধে জানা গেছে?
- 6) ভূকম্প বলয় বলতে কী বুঝায়? এই বলয়গুলিতে ভূকম্পের উৎস কোন গভীরতায়?
- 5) ভূগোলকে সর্বাধিক গুরুত্বপূর্ণ ছেদতল কোনগুলি? কেন সেগুলির এই গুরুত্ব?
- 4) ভূচৌম্বকত্বের কারণ সম্বন্ধে সর্বাধুনিক অনুমানটি কি? কোন তথ্য এই অনুমানের সমর্থক?
- 3) ভূগোলকে পরিবৃত্তি অঞ্চলগুলি কি কি? কেন এই অঞ্চলগুলিকে পরিবৃত্তি অঞ্চল বলে?
- 2) ভূকম্পের উৎসে কেন পৃষ্ঠতরজোর উৎপত্তি ঘটেনা?

- 4) 1.7.1, 1.7.2 3 1.7.3
- 5) 1.5, para 4, 1.3 শেষ 2 para ও 1.7
- (B) 1) 1.7 ও চিত্র 1.8
  - 2) 1.7 ও চিত্র 1.8
  - 3) 1.7.2 @ 1.7.3
  - 4) 1.7.3 শেষ 2 para
  - 5) 1.7 para 6
  - 6) 1.3 শেষ para
  - 7) 1.7 শেষ para 1.7.1
  - 8) 1.7
  - 9) 1.6
- (C) 1) राँ
  - 2) না
  - 3) না
  - 4) না
  - 5) না
  - 6) না
  - 7) না
  - 8) না
  - 9) হাঁা
  - 10) না

# একক 2 🗆 আগ্নেয়গিরি ও অগ্ন্যচ্ছাস

গঠন

2.1 প্রস্তাবনা

#### উদ্দেশ্য

- 2.2.1 আগ্নেয়গিরির বিভিন্ন অংশ
- 2.2.2 অগ্ন্যচ্ছ্নাসে উৎপন্ন বিভিন্ন বস্তুর শ্রেণীবিভাগ
- 2.2.3 অগ্যুচ্ছ্লাস উৎপন্ন ভূমিরূপ
- 2.2.4 অগ্যুচ্ছ্লাসের শ্রেণীবিভাগ
- 2.2.5 গঠন অনুযায়ী আগ্নেয়গিরির শ্রেণীবিভাগ
- 2.2.6 ভূপৃষ্ঠে আগ্নেয়গিরিসমূহের বিন্যাস
- 2.2.7 ভূগোলকে উৎপন্ন তাপপ্রবাহ
- 2.2.8 আগ্নেয়োচ্ছ্লাসের পূর্বাভাস
- 2.2.9 ভারতীয় আগ্নেয়গিরি
- 2.3 নিষ্ক্রিয় আগ্নেয় অঞ্জলের ভূবৈচিত্র্য
- 2.4 সারাংশ
- 2.5 নির্বাচিত উল্লেখ্য গ্রন্থ
- 2.6 প্রশ্নাবলী
- 2.7 উত্তর সংকেত

## 2.1 প্রস্তাবনা

সভ্যতার উন্মেষকাল থেকে ভীত হয়ে মানুষ দেখে আসছে ভূপৃষ্ঠের কোন কোন জায়গায় বিপুল পরিমাণে অতি উত্তপ্ত তরল বস্তু ভূগর্ভ থেকে নির্গত হয়ে জনবসতি ধ্বংস করেছে। খ্রীষ্টীয় প্রথম শতকে প্রথম লিখিত বিবরণ হিসেবে জ্যেষ্ঠ প্লিনির (Gaius Plinius Secundus, 23-79) লেখায় ভিসুভিয়াসের অগ্ন্যচ্ছ্লাসের বর্ণনা পাওয়া যায়। কিন্তু তখন ভিসুভিয়াস শুধু একটি পর্বতশিখর রূপে যথেষ্ট পরিচিত ছিল। পরবর্তীকালে অনেক বিস্তারিত ও বৈজ্ঞানিক বিবরণ সবই ভূপৃষ্ঠ বর্তমান নিষ্ক্রিয় আগ্নেয়গিরির কিংবা সুপ্ত আগ্নেয়গিরির আকস্মিক সক্রিয় হয়ে ওঠার বিবরণ। মানুষ প্রথম একটি আগ্নেয়গিরিরর উৎপত্তি এবং ক্রমবিকাশ পর্যবেক্ষণ করে 1943 সালের 20 ফেব্রুয়ারি। সেদিন বিকেল চারটেয় পুলিডো (Pulido) তাঁর চাযের জমিতে ঘুরতে ঘুরতে প্রায় 50 সেন্টিমিটার গভীর একটি সরু ফাটল দেখতে পান। দেখতে দেখতে তাঁর সামনে ফাটলের চারপাশের জমি ফুলে ওঠে এবং গন্থকবাহী গ্যাস ও স্ক্ষ্ম শিলাচূর্ণ ফাটল দিয়ে বেরোতে শুরু করে। কয়েক মিনিটের মধ্যে স্ফুলিঙ্গের মতো গলিত পদার্থের কণা উৎক্ষিপ্ত হয় এবং আশেপাশের গাছপালায় আগুন ধরে যায়। বিকেল পাঁচটার সময় পাঁচ কিলোমিটার দূরে পারাংগারিকুটিরো গ্রাম থেকে দেখা যায় যে প্রচুর ধুলিকণাবাহী ধোঁয়া পুলিডোর খেত থেকে বেরোচ্ছে। চব্বিশ ঘন্টার মধ্যে এই ধুলিকণা জমে প্রায় 10 মিটার উঁচু একটি স্থুপ তৈরি হয়। 22 ফেব্রুয়ারি এই স্থুপের উত্তরপূর্ব দিকে থেকে কালো লাভা বেরিয়ে ধীরে ধীরে পুলিডোর আবাদ ঢেকে ফেলে। সারা বছর ধরে এই আগ্নেয়গিরি সক্রিয় থাকে। কখনও তরল গলিত বস্তু, কখনও ধূলিকণার মেঘ নির্গত হতে থাকে এবং মাঝে মাঝে বিস্ফোরণ ঘটে। এক সপ্তাহের মধ্যে স্থুপটির উচ্চতা বেড়ে হয় 100 মিটার এবং এক বছর বাদে 310 মিটার। তারপ বৃদ্ধির হার কমে যায়। 1944 সালে এই নুতন সদ্যোজাত আগ্নেয়গিরি থেকে লাভা বেরিয়ে পারিকুটিন এবং পারাংগারিকুটিরো অঞ্চলটি লাভার আবরণে ঢেকে যায়। প্রথম শতকে প্লিনির বিবরণ থেকে বিংশ শতাব্দীতে এই পারিকুটিনা আগ্নেয়গিরির জন্ম এবং বিবরণ প্রত্যক্ষ করার ঐতিহাসিক সুযোগের মধ্যবর্তী কালে আগ্নেয়গিরির উৎপত্তির তত্ত্বীয় মডেল প্রস্তাবিত হয়েছে। আগ্নেয়গিরি থেকে উৎক্ষিপ্ত বস্তুর পরীক্ষা, শ্রেণীবিভাগ, রাসায়নিক সংযুক্তি নিরূপণ অনেক কিছু করা হলেও পারিকুটিনের উৎপত্তি ভূ-বিজ্ঞানে নতুন অধ্যায় সংযোজন করেছে। সে সম্বন্থে আলোচনায় আসার আগে আমরা আগ্নেয়গিরির বিভিন্ন অংশ সম্বন্থে একটু জেনে নিই।

# উদ্দেশ্য

এই এককটি পাঠ করে আপনি

- আগ্নেয়গিরির বিভিন্ন অংশ চিহ্নিত করতে পারবেন।
- অগ্ন্যচ্ছ্বাসে উৎপন্ন বিভিন্ন বস্তুর শ্রেণীভেদ করতে পারবেন।
- আগ্নেয়গিরির গঠনগত শ্রেণীবিভাগ করতে পারবেন।
- অগ্ন্যচ্ছ্বাসের বিবিধ প্রক্রিয়া নির্দেশ করতে পারবেন।
- ভূপৃষ্ঠে আগ্নেয়গিরিসমূহের বিন্যাস, ভূগোলকের তাপপ্রবাহ, উন্ন প্রস্রবণ এবং আগ্নেয়েচ্ছ্বাসের পূর্বাভাস সম্পর্কিত তথ্য ব্যাখ্যা করতে পারবেন।
- অগ্ন্যচ্ছ্বাসে সৃষ্ট ভূমিরূপ এবং নিষ্ক্রিয় আগ্নেয় অঞ্চলের ভূবৈচিত্র্য নির্ধারণ করতে পারবেন।

# 2.2.1 আগ্নেয়গিরির বিভিন্ন অংশ

আগ্নেয়গিরি একটি শিখর। তার শীর্ষভাগে যে গহ্বর দিয়ে বস্তু উৎক্ষিপ্ত হয়, তার নাম **জ্বালামুখ** (crater)। সাধারণত এই শিখরটি শাংকব (conical) আকৃতির বেং তার শীর্ষকোণটি যেন উড়ে গেছে। যে সুড়ঙ্গা দিয়ে জ্বালামুখ ভূগর্ভের সঙ্গো যুক্ত তাকে **নির্গম নল** (conduit) বলা হয়। নির্গম নল গিয়ে শেষ হয়েছে ম্যাগমা প্রকোষ্ঠে (magma chamber)। জ্বালামুখের ব্যাস কয়েক মিটার থেকে কয়েক কিলোমিটার পর্যন্ত হতে পারে। আগ্নেয়গিরির শীর্ষভাগে অনেক ক্ষেত্রে বিস্ফোরণের তীব্রতায় সম্পূর্ণ বিচূর্ণিত হয়ে উড়ে গিয়ে উৎপন্ন হয় বিশাল গহ্বর। মূল জ্বালামুখ এই গহ্বরের তলদেশের মধ্যভাগে কোথাও বর্তমান থাকে। ইংরিজী U-আকৃতির এই গহ্বর ক্যালডেরা (caldera) নামে পরিচিত। ক্যালডেরার ব্যাস এক কিলোমিটার থেকে 25 কিলোমিটার পর্যন্ত হয়ে থাকে। জ্বালামুখের সঞ্জে

সমকেন্দ্রিক বৃত্ত বা উপবৃত্তাকৃতি জ্বালামুখের ভূমিতে অনেক সময় বিভিন্ন ভূমিরুপ দৃষ্ট হয়। বিস্ফোরক অগ্ন্যচ্ছ্মাসে (explosive) এগুলির উৎপত্তি ঘটে থাকে। ক্যালডেরারর সঙ্গো জ্বালামুখের কতকগুলি মৌলিক পার্থক্য আছে। জ্বালামুখের দেওয়াল গঠিত হয় লাভা কিংবা আগ্নেয়শিলাখণ্ডে (pyroclastics)। জ্বালামুখ আগ্নেয়গিরির একটি প্রাথমিক (primary) গঠন। এছাড়া জ্বালামুখ ক্যালডেরার তুলনায় অনেক ছোট। জ্বালামুখ হল নির্গমনলের প্রস্থচ্ছেদ। ক্যালডেরা ম্যাগমাপৃষ্ঠের উপরাংশে লাভার আধারের প্রস্থচ্ছেদ। ক্যালডেরারর গঠন থেকে তার উৎপত্তির অন্তত দু'ধরনের কারণ অনুমান করা হয়। পূর্বোক্ত বিস্ফোরণ ছাড়া অপর কারণটি হল আগ্নেয়গিরির নির্গম নলে লাভার চাপ হঠাৎ প্রশামিত হয়ে গিরিশীর্বের ধসে পড়া (collapse)। বিস্ফোরণজনিত ক্যালডেরার একধার ফেটে গিয়ে বহু ক্যালডেরাতে লাভা ও আগ্নেয়শিলাখণ্ডের প্রবাহ নির্গত হয়। তৃতীয় এক ধরনের ক্যালডেরা উৎপন্ন হয় জ্বালামুখকে ঘিরে প্রায় অভিশীর্ষ বিভঞ্চা বরাবর (fracture) পর্বতশীর্ষের অন্তননের (subsidance) ফলে। এই সব ক্যালডেরার ভূমিতে ধসে পড়া গিরিশীর্ষ ও ক্যালডেরারর অন্তবর্তী ফাঁক দিয়ে নির্গমনের ম্যাগমা প্রচণ্ড চাপে অনুবিন্ধ হয়ে (injected) উৎপন্ন হয় বৃত্তাকৃতি ডাইক (ring dyke)।

আগ্নেয়গিরি শীর্ষে বৃত্ত বা উপবৃত্তাকৃতি গহ্বর ছাড়া ক্ষেত্রবিশেষে সরলরেখা দিয়ে বেস্টিত আর এক ধরনের গহ্বর দেখা যায়। এগুলি আঞ্চলিক ভূগাঠনিক জ্যামিতির (tectonic geometry) প্রতিফলন। এগুলির আকারই ক্যালডেরা থেকে শুধু স্বতন্ত্র নয়, আয়তনও অনেক বড়। এধরনের গহ্বর আগ্নেয়-ভূগাঠনিক বিবর (volcano tectonic depressions) নামে পরিচিত। এগুলির ধারে উল্লম্ব পার দ্বারা বেস্টিত।

নিষ্ক্রিয় আগ্নেয়গিরির শীর্ষে দু'ধরনের গব্বরই কালে বৃষ্টির জলে পরিপূর্ণ হয়ে তৈরি হয় হ্রদ।

আগ্নেয়গিরি নিষ্ক্রিয় হয়ে যাবার পরে কোটি কোটি বছর ধরে নগ্নীভবনের ফলে আগ্নেয়গিরি সমভূমিতে পরিণত হলে ম্যাগমা এবং লাভা-জমা নির্গমনলটি অনেক বেশি কঠিন শিলায় তৈরি বলে ক্রমশ স্তম্ভ বা গম্বুজ রূপে ভূ পৃষ্ঠে প্রকাশিত হয়। এরূপ ভূবৈচিত্র্যকে বলে আগ্নেয়গ্রীবা (volcanic neck); এবং শিলাদেহটিকে বলে আগ্নেয়রোধক (volcanic plug, চিত্র : 2.1)। ভূপৃষ্ঠ থেকে আগ্নেয়রোধকের কিছুটা গভীরতা পর্যন্ত লাভায় সংযুক্ত খণ্ডশিলা (rock fragments comented by lava) বর্তমান। তার



নীচে থাকে আগ্নেয়শিলা (চিত্র : 2.2)। অনেক আগ্নেয়গিরিবিদের মতে আগ্নেয়রোধকের উপরে প্রথমাবস্থায় ছিল ভস্মকোণক (cinder cone)।



চিত্র 2.2 : আগ্নেয়গ্রীবা

যেসব আগ্নেয়গিরিতে লাভার আধার অনেক বড় এবং লাভায় গ্যাসের অনুপাতও খুব বেশি, সেসব আগ্নেয়গিরিতে মুখ্য জ্বালামুখ ছাড়াও একাধিক জ্বালামুখ তৈরি হয়। এগুলি *গৌণ জ্বালামুখ* (secondary craters)। সব অগ্ন্যচ্ছ্বাসে গৌণ জ্বালামুখ দিয়ে অগ্ন্যদগার ঘটেনা।

এই ধরনের বৈশিষ্ট্যমূলক আগ্নেয়গিরির আকৃতি একমাত্র কেন্দ্রীয় অগ্ন্যচ্ছ্বাসে (central eruption) দেখা যায়। ডিসুভিয়াস, পারিকুটিন, এট্না, কিলিম্যাঞ্জ্বারো, ফুজিয়ামা ইত্যাদি আমাদের পরিচিত আগ্নেয়গিরিগুলি সবই কেন্দ্রীয় অগ্ন্যচ্ছ্বাসে উৎপন্ন। কেন্দ্রীয় অগ্ন্যচ্ছ্বাস ছাড়া আর এক ধরনের অগ্ন্যচ্ছ্বাস ঘটে থাকে। তাকে বলে বিদারীয় অগ্ন্যচ্ছ্বাস। এক্ষেত্রে একটি দীর্ঘ রৈখিক ফাটল দিয়ে তপ্ত গলিত শিলা বেরিয়ে আসে। বর্তমানে বা ভূগোলকের ইতিহাসের যেকোন সময়ে বিদারীয় অগ্ন্যচ্ছ্বাসের ক্ষেত্র সাগরগর্ভে। তবে কোন কোন সময় ভূভাগীয় অঞ্চলে এর্প অগ্ন্যচ্ছ্বাসের শুরুর পর্বে বিস্তীর্ণ অঞ্চল প্লাবিত হয়ে লাভায় ঢেকে গেছে। ভারতবর্যে বিন্ধ্যপর্বতের দক্ষিণে প্রায় সাত থেকে আট কোটি বছর আগে বিদারীয় অগ্ন্যচ্ছ্বাসে উৎপন্ন লাভা সমগ্র দাক্ষিণাত্যকে প্লাবিত করেছিল। এই ধরনের লাভার আবরণকে সাধারণত *প্লাবন লাভা* বলা হয়।

## 2.2.2 অগ্ন্যচ্ছ্লাসে উৎপন্ন বিভিন্ন বস্তুর শ্রেণীবিভাগ

আগ্নেয়গিরির সক্রিয় অবস্থায় উৎপন্ন লাভা ছাড়াও আর একটি প্রধান বস্তু বিভিন্ন আকার এবং

আকৃতির শিলাখন্ড। এগুলিকে *আগ্নেয়শিলাখন্ড* (pyroclastic debris) বলা হয়। শিলাখন্ডগুলির মধ্যে বিভিন্ন আকারের খন্ড থাকে। আকার অনুযায়ী সেগুলিকে তিনভাগে ভাগ করা হয়।

| শিলাখণ্ডের | আকৃতি                                     | অগ্যুচ্ছ্বাসের সময় | আগ্নেয়শিলা-                   |
|------------|-------------------------------------------|---------------------|--------------------------------|
| গড় ব্যাস  |                                           | ভৌত অবস্থা          | খণ্ডের নাম                     |
| > 64 মিমি  | গোল খাঁজখোঁচহীন বা<br>খোঁচবিশিষ্ট পিণ্ড   | নমনীয় কঠিন         | বন্ধ্ ব্লক                     |
| 64-2 মিমি  | গোল এবং ধারালো<br>খোঁচবিশিষ্ট             | তরল অথবা<br>কঠিন    | লাপিলি<br>(Lapilli)            |
| < 2 মিমি   | সাধারণত খোঁচবিশিষ্ট,<br>কখনও কখনও গোলাকার | তরল অথবা<br>কঠিন    | আগ্নেয়ভস্ম<br>(volacanic ash) |

প্রথম শ্রেণীতে অনেক সময় কেবল খাঁজখোঁচওয়ালা বড় বড় শিলাখণ্ড থাকতে পারে। এগুলিকে বলে ব্লক (blocks)।

অনেকসময় ভিসুভিয়াস এবং অন্যান্য ভূভাগীয় আগ্নেয়গিরিতে উৎপন্ন সিলিকাসমৃষ্ধ লাভায় প্রবাহের কতকগুলি বৈচিত্র্য এবং সঙ্গে আগ্নেয় শিলাখণ্ডের চরিত্র বর্তমান থাকে। এরূপ বস্তুকে বলা হয় *ইগ্নিম্রাইট* (ignimbrite)।

অগ্যুচ্ছ্বাসে উৎপন্ন তরল বস্তু লাভা নামে পরিচিত। ভূগর্ভ থেকে ম্যাগমা ভূপৃষ্ঠে নিষ্কাশনের সঙ্গো সঙ্গো ম্যাগমায় দ্রবীভূত বায়বীয় উপাদানগুলি থেকে মুক্ত হয়ে যায়। যে বস্তুটি পড়ে থাকে, সেই তরল গলিত শিলাকেই লাভা বলে। লাভা একটি তরল বস্তুর পাতের মতো বিস্তীর্ণ এলাকায় ছড়িয়ে পড়ে। বিদারীয় অগ্যুচ্ছ্বাসে এই পাতপ্রবাহে বিপুল পরিমাণে লাভা ভূভাগকে প্লাবিত করে বলেই তাকে প্লাবন লাভা (flood basalt) বলা হয়। সাধারণত কম সিলিকাবিশিন্ট বেসল্টীয় লাভা প্লাবন ঘটিয়ে থাকে বলে এই বেসল্টকে প্লাবন বেসল্টও বলে। দাক্ষিণাত্যের প্লাবন বেসল্ট ছাড়া ভারতেও রাজমহল পাহাড় এবং কান্মীরে পাঞ্জ্বাল পাহাড়ে প্লাবন বেসল্ট দেখা যায়। প্লাবন বেসল্ট রাড়া ভারতেও রাজমহল পাহাড় এবং কান্মীরে পাঞ্জ্বাল পাহাড়ে প্লাবন বেসল্ট দেখা যায়। প্লাবন বেসল্ট উৎসারিত হলে দুত ঘনীভূত হওয়ার ফলে বালিশের মতো এক ধরনের গঠন উৎপন্ন হয়। এটিকে *বালিশাকৃতি লাভা* (pillow lava) বলে। এই ধরনের বিস্ফোরণকে ফ্রিটিক (phraetic) বিস্ফোরণ বলে। অনেক সময় লাভাপ্রবাহে শাখাপ্রশাখা সমেত বড় গাছের গুঁড়ি আটকে গিয়ে গাছটি সম্পূর্ণ ভস্মীভূত হয়ে গেলেও গাছের আকৃতিটা থেকে যায়। যে লাভার পৃষ্ঠ সাধারণভাবে মসৃণ, তাকে বলে *রজ্জু লাভা* (ropy lava)। যে লাভায় খাঁজখোঁচওয়ালা বড় বড় খগু বর্তমান, তাকে বলে *ব্লক লাভা* (block lava)। হাওয়াই দ্বীপের ভাষায় প্রথমটির নাম পা হোএ হেথে (pa hoe hoe), পরেরটির নাম আ আ (a a)। প্রচুর গ্যাসযুক্ত লাভা উৎক্ষেবের সঙ্গো জমে গিয়ে সছিদ্র পিউমিস (pumice) উৎপন্ন হয়। এগুলি আল্লিক লাভার অন্যতম বৈশিন্ট্য।

অগ্ন্যচ্ছ্বাসে উৎপন্ন তৃতীয় প্রধান বস্তু আগ্নেয় গ্যাস (volcanic gas) আর জলীয় বাষ্প। 90%

অনুপাত এই বায়বীয় উপাদানের অনেক সময় চল্লিশ শতাংশ পর্যন্ত কার্বন ডাই অক্সাইড এবং পনেরো শতাংশ পর্যন্ত সালফার ডাই অক্সাইড বর্তমান থাকে। তাছাড়া, স্বল্প পরিমাণে হাইড্রোজেন, গন্ধক, ক্লোরিন, কার্বন মনোক্সাইড, হাইড্রোক্লরিক অ্যাসিড এবং বিরল নিষ্ক্রিয় (inert) গ্যাস থাকে। প্রধানত গ্যাসের অনুপাতের উপর নির্ভর করে অগ্যুচ্ছ্বাস কী ধরনের হবে। সাধারণত সিলিকা-প্রধান লাভায় গ্যাসের পরিমাণ কম এবং বেসন্টীয় লাভায় গ্যাসের পরিমাণ বেশি থাকে।

একটি অগ্ন্যচ্ছ্বাসে কী পরিমাণ শক্তি উৎপন্ন হয়, তার হিসাব নেওয়ার চেম্টা হয়েছে। মনে করা হয় 1.6 × 10<sup>18</sup> আর্গ (erg) থেকে 8.4 × 10<sup>26</sup> আর্গ পর্যন্ত শক্তি কোনো একটি বিশেষ অগ্যুচ্ছ্বাসে নির্গত হয়। 1883 সালের ক্র্যাকাটাও অগ্ন্যচ্ছ্বাসে উৎপন্ন শক্তি সম্ভবত ছিল 1 × 10<sup>25</sup> আর্গ।

# 2.2.3 অগ্ন্যচ্ছ্লাসে উৎপন্ন ভূমিরূপ

ক্যালডেরা এবং আগ্নেয় রোধকশিলা আগ্নেয়গিরির সংলগ্ন ভূমিরপ। কতকগুলি বৈশিষ্ট্যমূলক ভূমিরূপ অগ্ন্যচ্ছ্লাসে উৎপন্ন আগ্নেয় শিলাখণ্ডের স্তুপ এবং লাভার সঙ্গো যুক্ত। প্রচুর শিলাখণ্ড উৎক্ষিপ্ত হয়ে স্তুপের আকারে ভূপৃষ্ঠে সঞ্জিত হয়। এগুলি কোণকের আকৃতির। *আগ্নেয়কোণক* (pyroclastic cones) নামে পরিচিত এই কোণকগুলি উচ্চতায় দশ মিটার বা ততোধিক হতে পারে। উইটিবির মতো দেখতে কোণকগুলি সাধারণত সাময়িক বৈচিত্র্য। ভূক্ষয়ে এগুলি কালে বিলুপ্ত হয়ে যেতে পারে। তবে ভূভাগীয় আগ্নেয়গিরিতে উৎপন্ন এধরনের কোণক সমকালীন বা পরবর্তীকালের লাভাজাত সিলিকায় সংসক্ত হয়ে যেতে পারে। এরুপ স্থূপ আলপীয় পর্বতশ্রেণীর বহুস্থানে দেখা যায়। তুরস্কের গোয়েরমে (Goerme) অঞ্চলে এরুপ সংসক্ত স্তুপে গুহা খনন করে প্রাগৈতিহাসিক কাল থেকে বহু মানুষের বসবাসের চিহ্ন পাওয়া যায় (চিত্র : 2.3)।

বেসল্ট বা সমক্ষারাল্ল (intermediate) লাভা প্রবাহে উৎপন্ন বিশাল বুদবুদগুলি ফেটে গিয়ে গহ্বর উৎপন্ন হয়। কালে ভুক্ষয়ে



চিত্র 2.3 : গোয়েরমের আগ্নেয় শিলাখন্ডের কোণক। এই কোণগুলিতে বিশাল বুদবুদ গহ্বরগুলি এখনও মানুষের বাসস্থানরপে ব্যবহৃত হয়ে থাকে।

সংলগ্ন আঞ্চলিক শিলা (country rock) সমভূমিতে পরিণত হলে লাভাপ্রবাহের একধারে যে খাড়া পাড় (cliff) উৎপন্ন হয়, তার গায়ে এরূপ গহ্বর অনেকটা প্রকোষ্ঠের মতো। এইসব প্রকোষ্ঠের কিছুটা রদবদল করে মার্কিন যুক্তরাস্ট্রের নিউ মেক্সিকো রাজ্যে ব্যান্ডেলিয়ার, সান্তা ক্লারা ইত্যাদি স্থানে রেড ইন্ডিয়ানদের নাভাহো (Navajo) গোষ্ঠী বহু শতাব্দী বসবাস করেছে (চিত্র : 2.4)।



চিত্র 2.4 : রকি পর্বতে ক্লিফ ডোয়েলিং

প্লাবন লাভার পৃষ্ঠে ঘনীভবন (solidification)-জ্ঞাত সংকোচনের ফলে উৎপন্ন স্তম্ভাকৃতি দারণ (columnar joint, চিত্র : 2.5) দেখা যায়। প্লাবন লাভা সাধারণত বেসল্ট। তবে অ্যান্ডেসাইট এবং রায়োলাইট ইত্যাদি অনেক বেশি আন্লিক লাভাতেও এধরনের গঠন দেখা যায়। স্তম্ভগুলি সাধারণত উল্লম্ব (vertical) হয়। অনিয়তাকৃতি (irregular) এবং পাকানো গঠনকে বলে *এনট্যাব্লেচার* (entablature)। নিয়তাকৃতি হলে তাকে বলে *কলোনেড* (colonnade)।



চিত্র 2.5 : স্তম্ভাকৃতি গঠন। মার্কিন যুক্তরাস্ট্রের ওয়াশিংটন রাজ্যে ভ্যান্টেজ-এর কাছে লাভায় স্তম্ভাকৃতি গঠন।

প্লাবন বেসন্টের আয়তন অনেক বড় হয়। যেমন, দাক্ষিণাত্যের প্লাবন বেসন্টের উদ্ভেদের (outcrop) আয়তন প্রায় ছয় লক্ষ বর্গ কিলোমিটার। এই বিপুল পরিমাণ লাভা এককালে একটানা নিঃসরণ হয়নি। প্রায় চার কোটি বছর ধরে বারবার নিঃসরণ ঘটেছে। অন্তর্বর্তীকালে বহু সহস্র বছর থেকে কয়েক লক্ষ বছর ধরে চলেছে তার শিলাবিকার (weathering)। এবং তার ফলে উৎপন্ন পলল স্তররূপে জমেছে জনক লাভার উপর। এভাবে গড়ে উঠেছে প্লাবন বেসন্ট স্তরসংঘ (flood basalt formation)। ভূক্ষয়ে লাভা প্রবাহের সঞ্চো আর্স্তস্তরায়িত (interstratified) পাললিক শিলা বেশি হয়ে ক্ষয়ে গিয়ে দীর্ঘ এবং বিস্তৃত খাঁজ সৃষ্টি হয়েছে। ফলে দূর থেকে প্লাবন বেসন্টের ভূদৃশ্য বহু বিভিন্নমুখী সোপানের সমষ্টি বলে মনে হয়। এজন্য এটি প্লাবন বেসল্ট ট্র্যাপ (trap) নামেও পরিচিত। এদেশে দাক্ষিণাত্যের ডেকান ট্র্যাপ ছাড়া রাজমহল পাহাড়ে রাজমহল ট্র্যাপ, আসামে সিলেট ট্র্যাপ এবং কাশ্মীরে পাঞ্জাল ট্র্যাপ সোপানিত অঞ্জল। অবশ্য বেসল্ট ছাড়াও অন্যান্য লাভাতেও অনুরূপ কারণে সোপানিত গঠন উৎপন্ন হতে পারে। তবে প্লাবন বেসল্টের মতো বহু বিস্তৃত হয়না।

ভূমিরূপ না হলেও লাভার অন্তঃস্থ অপর একটি গঠন উল্লেখযোগ্য। লাভার মধ্যে আটকে যাওয়া বুদবুদে যে ফোকর সৃষ্টি করে, লাভায় দ্রবীভূত যৌগগুলি তার মধ্যে সুগঠিত কেলাস রূপে অধংক্ষিপ্ত (precipitated) হয়। বুদবুদপূরক (vesicle filling) নামে পরিচিত এই প্রাকৃতিক বৈচিত্র্যে জিওলাইট (zeolite), ক্যালসাইট (calcite) কোআর্টজের প্রায়-স্বচ্ছ বা স্বচ্ছ কেলাসগুলি উপরত্ন ও কিউরিওরূপে (curio) বিক্রীত হয়ে থাকে।

## 2.2.4 অগ্ন্যচ্ছাসের শ্রেণীবিভাগ

আগ্নেয়গিরিতে অগ্ন্যচ্ছ্বাসের সময় যে সব বস্তু উৎক্ষিপ্ত হয় সেগুলির পারস্পরিক অনুপাত এবং বিস্ফোরণ প্রবলতার উপর নির্ভর করে অগ্ন্যচ্ছ্বাসের শ্রেণীবিভাগ করা হয়। এই শ্রেণীগুলি নিচে বর্ণিত হল :

হাওয়াইদ্বীপীয় অগ্ন্যচ্ছ্লাস (Hawaian volcanism) ঃ বিস্তীর্ণ কড়াই-এর মতো প্রশস্ত জ্বালামুখ থেকে বিস্ফোরণ-বিহীন লাভাপ্রবাহ এবং গ্যাস বার হয়ে এরকম অগ্ন্যচ্ছ্লাস ঘটে। তবে জ্বালামুখে সাময়িকভাবে লাভা হ্রদ সৃষ্টি হতে পারে এবং তাতে গ্যাসের চাপে মাঝে মাঝে লাভার ফোয়ারা উঠতে পারে। উদাহরণ : কিলৌআ (Kilauea), সামোয়া (Samoa), নিরাগোংগো (Niragongo) এবং এরেবুস (Erebus) (চিত্র : 2.6a)।

স্ট্রম্বোলীয় অগ্ন্যচ্ছ্বাস (Strombolian volcanism) ঃ এরকম অগ্ন্যচ্ছ্বাসে পরপর বিস্ফোরণ ঘটে। এরকম অগ্ন্যচ্ছ্বাসে লাভা তেমন ঘন হয়না বলে দুটো বিস্ফোরণের মধ্যবর্তী সময়ে লাভার উপর সরের মতো পাতলা আবরণ তৈরি হয়। উদাহরণ : স্ট্রম্বোলি (Stromboli), সাকুরাজিমা (Sakurajima), ইরাজু (Irazu) (চিত্র : 2.6b)।

ভালকানীয় অগ্ন্যচ্ছ্বাস (Vulcanian volcanism) ঃ এরকম ক্ষেত্রে লাভা অনেক বেশি ঘন হয়ে থাকে, তাই স্ট্রম্বোলীয় অগ্ন্যচ্ছ্বাসের তুলনায় ভালকানীয় অগ্ন্যচ্ছ্বাসে দুটি বিস্ফোরণের মধ্যে সময়ের ব্যবধান অনেক বেশি। বেশিরভাগ আগ্নেয়গিরিতে ভালকানীয় অগ্ন্যচ্ছ্বাস দিয়ে অগ্ন্যুৎপাত শুরু হয়। উদাহরণ : ভালকান (Vulcan) (চিত্র : 2.6c)।

ভিসুভীয় অগ্ন্যচ্ছ্বাস (Vesuvian volcanism) ঃ এক্ষেত্রে শুধু লাভার ঘনত্ব নয়, বিভিন্ন প্রাকৃতিক কারণে ভূগর্ভে লাভার এবং অন্যান্য বস্তুর উৎক্ষেপণ শক্তির হ্রাসবৃদ্ধি ঘটে থাকে। ফলে দুটি বিস্ফোরণের মধ্যে ব্যবধান কয়েক দশক হয়ে থাকে। এরকম অগ্ন্যচ্ছ্বাসের সময়ে প্রচণ্ড বিস্ফোরণের ফলে বস্তুসমূহ শূন্যে বহুদূর পর্যন্ত উৎক্ষিপ্ত হয় (চিত্র : 2.6d)। সর্বাধিক শক্তিসম্পন্ন ভিসুভীয় অগ্ন্যচ্ছ্বাসকে প্লিনীয় অগ্ন্যচ্ছ্বাসও বলে। উদাহরণ : ভিসুভিয়াস (Vesuvius)।
পিলীয় অগ্ন্যচ্ছ্লাস (Pelean volcanism) ঃ অত্যন্ত ঘন লাভা অনেক সময় অগ্ন্যচ্ছ্লাসের প্রাবল্যে লাঠির মতো খাড়া হয়ে জ্বালামুখে উৎপন্ন লাভা হ্রদের উপর দাঁড়িয়ে পড়ে। পরে আগ্নেয়গিরির জ্বালামুখে চাপ কমে গেলে জমে-যাওয়া লাভার এই লাঠির মতো দেহটা ক্রমে লাভাহুদে ডুবে যায়। উদাহরণ : মেরাপি (Merapi), সেন্ট হেলেন্স্ (St. Helens), মেজিমিয়ান্নি (Mezymianni)।



চিত্র 2.6 : অগ্ন্যচ্ছ্বাসের শ্রেণীবিভাগ : a : হাওয়াইদ্বীপীয় অগ্ন্যচ্ছ্বাস; b : স্ট্রম্বোলীয় অগ্ন্যচ্ছ্বাস; c : ভালকানীয় অগ্ন্যচ্ছ্বাস; d : ভিসুভীয় অগ্ন্যচ্ছাস; e : পিলীয় অগ্ন্যচ্ছাস

প্লিনীয় অগ্ন্যচ্ছাুস (Plinian volcanism) ঃ যে অগ্ন্যচ্ছাুসে প্রচুর পরিমাণে শিলাখন্ড এবং গ্যাস উৎক্ষিপ্ত হয় ও সবেগে লাভা নিদ্ধান্ত কিংবা কখনো কখনো ফোয়ারার মতো উৎক্ষিপ্ত হয়ে জ্বালামুখ থেকে বেশ কয়েক কিলোমিটার পর্যন্ত ছড়িয়ে যায় এবং গাছপালা ও জনবসতির ধ্বংসের কারণ হয়, তাকে প্লিনীয় অগ্ন্যচ্ছাুস বলে (চিত্র : 2.6e)। খ্রীফীয় প্রথম শতকে ভিসুভিয়াসের যে অগ্ন্যচ্ছাুসে পম্পেই ধ্বংস হয়েছিল সেটাই নথিভুক্ত প্রথম অগ্ন্যচ্ছাুস। প্লিনি ডায়েরিতে এই অগ্ন্যচ্ছাুসের বর্ণনা রেখে যান। তাঁর নামে এই নাম। অগ্ন্যচ্ছাুসের একেবারে শুরুর পর্যায়ে বেশ কিছুকাল ধরে ভূ-বিবর থেকে জলীয় বাম্প ও গ্যাস বার হতে পারে। এগুলিকে বলে ধূমোৎসারী বিবর। প্লিনীয় অগ্ন্যচ্ছাুসের উদাহরণ : কাটমাই (Katmai), ক্র্যাকাটাও (Krakatao), এল চিচন (El Chichon)।

কোনো আগ্নেয়গিরিতেই শুধু এক ধরনের অগ্যুচ্ছ্বাস ঘটেনা। ভিন্ন ভিন্ন কালে বিভিন্ন ধরনের অগ্ন্যচ্ছ্বাস ঘটতে পারে।

### 2.2.5 গঠন অনুযায়ী আগ্নেয়গিরিরর শ্রেণীবিভাগ

ম্যাগমার রাসায়নিক সংযুতি অনুযায়ী আগ্নেয়গিরির ভিন্ন ভিন্ন গঠন হতে পারে। যে ম্যাগমায় সিলিকা বেশি সেরকম আল্লিক ম্যাগমার সান্দ্রতা (viscosity) অনেক বেশি। এরূপ ম্যাগমার সান্দ্রতা 10<sup>6</sup>—10<sup>17</sup> পয়েজ (poise)। এই ম্যাগমায় গ্যাসের চাপ অত্যন্ত বেশি, কিন্তু গ্যাসের দ্রাব্যতা (solubility) অনেক কম। ফলে এই ম্যাগমা থেকে উৎপন্ন আগ্নেয়গিরিতে আগ্নেয়শিলাখণ্ডই প্রধানত উৎপন্ন হয়। জ্বালামুখকে ঘিরে শাংকব (conical) এই আগ্নেয়গিরিকে *ভস্মকোণক* (cinder cone) বলে। সাধারণত অবিমিশ্র ভস্মকোণক কোথাও দেখা যায়না। কারণ অগ্যুচ্ছ্বাসের মধ্য পর্বে লাভা নিঃসৃত হয়। ফলে ভস্মকোণকের উপরে লাভার একটি স্তর জমে। পরবর্তীকালের অগ্যুচ্ছ্বাসে আবার বিচূর্ণিত শিলার স্তর ও তার উপর লাভার স্তর জমে। আগ্নেয়গিরির শাংকব গঠনটি অবশ্য থেকেই যায়। তাই এধরনের আগ্নেয়গিরিকে বলে *মিশ্র কোণক* (composite cone)।

ক্ষারীয় ম্যাগমার সান্দ্রতা অনেক কম, সাধারণত 10<sup>2</sup>—10<sup>3</sup> পয়েজ। এই ম্যাগমায় গ্যাসের চাপও কম। ফলে এই ম্যাগমা থেকে উৎপন্ন আগ্নেয়গিরি ভূপৃষ্ঠে আত্মপ্রকাশের আগে দীর্ঘকাল ধরে দুটি স্তর বা স্তরসংঘের মধ্যবর্তী দুর্বল তল (weak plane) ধরে ভূগর্ভে বহুদূর পর্যন্ত বিস্তৃত হয়। ফলে ভূপৃষ্ঠ কচ্ছপের পিঠের মতো ফুলে ওঠে। এই স্ফীত অঞ্চল বিদীর্ণ হয়ে যে আগ্নেয়গিরি সৃষ্ট হয়, তাকে বলে *ঢালাকৃতি* আগ্নেয়গিরি (shield volcano)। হাওয়াই দ্বীপের আগ্নেয়গিরিগুলি এ ধরনের। আগ্নেয়গিরিটি দীর্ঘকাল সক্রিয় থাকলে জ্বালামুখ থেকে অরীয় বিদারে (radial fissure) আগ্নেয়গিরিটি বিদীর্ণ হয়ে সেখান দিয়ে বিদারীয় অগ্ন্যচ্ছ্বাস শুরু হয় (চিত্র : 2.7)।



চিত্র 2.7 : ঢালাকৃতি আগ্নেয়গিরি। হাওয়াই দ্বীপের কিলৌআ আগ্নেয়গিরি।

# 2.2.6 ভূপৃষ্ঠে আগ্নেয়গিরি সমূহের বিন্যাস

বর্তমান ভূপৃষ্ঠে বিভিন্ন মাত্রার সক্রিয় আগ্নেয়গিরির সংখ্যা প্রায় 500। এগুলির অধিকাংশ থেকে শুধু গ্যাস নির্গত হয়, বর্তমানে লাভা উদগীরণ ঘটেনা। আগ্নেয়গিরিগুলির 60% বিন্যস্ত আছে প্রশাস্ত মহাসাগরকে ঘিরে। এই প্রশান্ত মহাসাগরীয় আগ্নেয়গিরি বলয়ের শুরু কামচাটকা উপদ্বীপে। ক্রমশ দক্ষিণে ক্যুরিল দ্বীপপুঞ্জ এবং জাপানের মধ্য দিয়ে ফিলিপাইন্স্, নিউ গিনি, সলোমন, নিউ হেব্রাইডিস এবং নিউজিল্যান্ডের দক্ষিণ পর্যন্ত বিস্তৃত। পূর্বদিকে এই বলয়ের মধ্যে পড়ে আমেরিকার দুই ভূখণ্ডের আগ্নেয়গিরিগুলি। এই দিকে প্রধান প্রধান আগ্নেয়গিরিরর মধ্যে আছে হাওয়াই দ্বীপপুঞ্জের মনা লোআ, মনা কিআ, কিলৌআ এবং গ্যালাপাগস দ্বীপপুঞ্জ, ইস্টার দ্বীপপুঞ্জ, জুয়ান ফারনান্ডেজ দ্বীপপুঞ্জ, সামোয়া দ্বীপপুঞ্জের আগ্নেয়গিরিগুলি।

আগ্নেয়গিরির দ্বিতীয় যে বলয়টি, তা টারশারি গিরিবলয়ে ইয়োরোপের পশ্চিম প্রান্ত থেকে ককেশাস, অ্যাপেনাইন এবং অ্যাল্প্স্ পর্বতমালা হয়ে হিমালয়ের মধ্য দিয়ে ব্রশ্নদেশ পর্যন্ত বিস্তৃত। তবে হিমালয়ে কোনো সক্রিয় আগ্নেয়গিরি বর্তমানে নেই। সদ্য নির্বাপিত আগ্নেয়ক্রিয়ার স্মারকরূপে শুধু থেকে গেছে অসংখ্য উষ্ণ প্রস্রব্রবণ। এই বলয়ে প্রধান প্রধান আগ্নেয়গিরিগুলির মধ্যে উল্লেখযোগ্য তিসুতিয়াস, এট্না, স্যান্টোরিন, স্ট্রম্বোলি ইত্যাদি। এই দুটি আগ্নেয়গিরি বলয় মধ্যযুগ থেকে নাবিকদের কাছে পরিচিত। এই দুটি বলয় ছাড়া আটলান্টিক মহাসাগরে কতকগুলি বিচ্ছিন্ন আগ্নেয়গিরি লক্ষিত হয়েছে। তার মধ্যে উল্লেখযোগ্য ট্রিস্টান দা' কুন্হা, অ্যাজোর্স্ ও ক্যানারি দ্বীপের আগ্নেয়গিরি (চিত্র : 2.8)। পরবর্তীকালে মধ্যমহাসাগরীয় শৈলশ্রেণী সম্বন্থে যথেষ্ট তথ্য পাওয়া গেলে জানা গেল যে, আটলান্টিক মহাসাগরের আগ্নেয়গিরিগুলি এই শৈলশ্রেণীর উপরে পঞ্জীভূত লাভা দিয়ে উৎপন্ন শিখর।

প্রায় 80,000 কিমি দীর্ঘ এই মহাসাগরীয় বিদারে বহুসংখ্যক অগ্ন্যদগার কেন্দ্র আছে। তবে এই অগ্ন্যদগার



চিত্র 2.8 : ভূপুষ্ঠে আগ্নেয়গিরির বিন্যাস

ঘটে গড় সাগরপৃষ্ঠ থেকে 2000 মিটার তারও বেশি গভীরতায়। তাই সেগুলি এতদিন অজানা ছিল। এরূপ বিদার ভূভাগে পূর্ব আফ্রিকার গ্রস্ত উপত্যকা অঞ্চল। কিলিম্যাঞ্জারো শিখর এই বিদারে একমাত্র আগ্নেয়গিরি।

শিলাবিদ্যার অগ্রগতির সঙ্গো সঙ্গো দেখা গেল প্রশান্ত মহাসাগরীয় বলয় বা দ্বিতীয় বলয়, যেটি হিমালয়ে আল্পীয় বলয় নামে পরিচিত, সাধারণভাবে সিলিকাসমৃদ্ধ লাভা উদগীরণ করে থাকে। অন্যদিকে আটলান্টিক মহাসাগরের সব আগ্নেয়গিরি থেকেই যে লাভা নিঃসৃত হয় তা বেসল্টীয়। কিলিম্যঞ্জারো আগ্নেয়গিরিতে উৎপন্ন লাভাও বেসল্টীয়। বোঝা গেল যে, প্রথম দুটি বলয়ের ম্যাগমা উৎপন্ন হয় ভূত্বকের সিআল স্তর তরল বস্তুতে পরিণত হলে, কিন্তু মহাসাগরীয় শৈলশ্রেণীর আগ্নেয়গিরিগুলিতে ম্যাগমার উৎপত্তি নিচের সিমা স্তরে অথবা তারও নিচে অ্যাস্থেনোস্ফিায়ারে। এই প্রসঙ্গো উল্লেখ করা যেতে পারে যে মেক্সিকোর পারিকুটিন আগ্নেয়গিরির লাভাও সিআল গোষ্ঠীর।

#### 2.2.7 ভূগোলকে উৎপন্ন তাপপ্ৰবাহ

সূর্যকিরণে উৎপন্ন তাপ ছাড়াও ভূগোলক থেকে নির্গত তাপের পরিচয় বহু জায়গায় পাওয়া যায়। বিভিন্ন অঞ্চলের উষ্ণ প্রস্রবণ দেখে বিজ্ঞানীরা বহুদিন ভেবেছেন যে, কেন সেগুলি শুধু বিশেষ বিশেষ অঞ্চলে বর্তমান। ঊনবিংশ শতাব্দীর শেষার্ধে প্রথম সমদ্রগর্ভে বৈজ্ঞানিক অনুসন্ধান শুরু হয়। তখন লোহিতসাগর গর্ভে তিনটি অঞ্চলে অতি উত্তপ্ত জলের ধারার সন্ধান পাওয়া যায়। এই জায়গাগুলি আটলান্টিস II ডিপ, চেইন ডিপ এবং ডিসকভারি ডিপ (Atlantis II dip, Chain dip and Discovery dip) নামে পরিচিত। 1880 সালের শুরুতে মক্কার কাছে 600 মিটার গভীরতায় প্রথম একটি উষ্ণু জলপ্রবাহের সন্ধান পাওয়া যায়। আকার এবং আকৃতিতে এটি কোনমতেই ভূভাগে পরিচিত উষ্ণ প্রস্রবণের তুলনীয় নয়। যেমন, প্রথম আটলান্টিস II ডিপ অঞ্চলটি 80 বর্গ কিলোমিটার বিস্তৃত। এই জলে দ্রাব্য পদার্থের অনুপাত সাধারণ সাগরজলের প্রায় আটগুণ। বিশেষজ্ঞরা এগুলিকে সাধারণ উষ্ণ প্রস্রবণের সঙ্গো মেলাতে রাজি হলেন না। পরবর্তীকালে দেখা গেল ভূভাগীয় বহু জায়গায় অন্যান্য অঞ্চলের তুলনায় ভূপুষ্ঠের তাপমাত্রা অনেক বেশি। পারিকুটিন আগ্নেয়গিরি রূপে প্রকাশিত হওয়ার অনেক আগে থেকেই অঞ্চলটিতে উচ্চমাত্রার তাপপ্রবাহ ধরা পড়েছিল। উচ্চমাত্রার তাপপ্রবাহের অঞ্চলকে নাম দেওয়া হল তপ্ত অঞ্চল (hot spot)। পরে যখন তেজস্ক্রিয় মৌলের অনুপাত নিরপিত হতে লাগল, তখন দেখা গেল যে বহু সপরিচিত মৌলের অনেকেরই তেজস্ক্রিয় আইসোটোপ আছে। যেমন, পটাসিয়ামের 40 পারমাণবিক ভরের আইসোটোপটি তেজস্ক্রিয় আইসোটোপ। পটাসিয়াম সিআলগোষ্ঠীর শিলায় বহল পরিমাণে পাওয়া যায়। এজন্য ভূভাগে তপ্ত অঞ্চল প্রচুর বর্তমান। কালব্রুমে তপ্ত অঞ্চলের আরো কতকগুলি অভিব্যক্তি ধরা পড়ল। যেমন দেখা গেল বহু তপ্ত অঞ্চল ক্রমশ ঢিবির মতো ফুলে ওঠে। পারিকুটিনও এভাবেই ফুলে উঠেছিল। তবে অন্য বহু তপ্ত অঞ্চল আগ্নেয়গিরি রপে বিকশিত হওয়ার আগে কয়েকশো বছর ধরে পাহাড়ের আকৃতির ভূমিরপ-এ বর্তমান থাকতে পারে। অবশ্য যদি তপ্ত অঞ্চলের নীচে ভূগর্ভের তাপের উৎপাদক রেডিও অ্যাকটিভ মৌলের পরিমাণ বেশি না হয় তবে তপ্ত অঞ্চলটি একটি পাহাড় রপেই থেকে যায়। তা থেকে কখনও অগ্যচ্ছাস ঘটেনা। ভূভাগীয় পর্যবেক্ষণে তপ্ত অঞ্চলের ব্যত্থানের কারণ হিসাবে বলা হয়েছিল যে উত্তপ্ত হওয়ায় শিলার ঘনত্ব কমে যাওয়ায় তা

সমস্থিতিক (isostatic) চাপে উপরের দিকে ঠেলে ওঠে। পরে মধ্য মহাসাগরীয় শৈলশ্রেণীতে বহু অঞ্চলে উচ্চ তাপপ্রবাহ দেখা গেল। এই তাপপ্রবাহ ঘটে থাকে অ্যাস্থেনোস্ফিয়ার বা ঊর্ধ্ব ম্যান্টেল থেকে ওঠা লাভার জন্য। এখানে তাপপ্রবাহের সঞ্চো ব্যুত্থানের কোন সম্পর্ক নেই। বস্তুত তাপপ্রবাহ নির্দেশ করে শিলামণ্ডলে সুগভীর ফাটলের। পূর্ব আফ্রিকার গ্রস্ত উপত্যকায় একটি সংকীর্ণ উচ্চ তাপপ্রবাহের বলয় বর্তমান বলেই এটিকে একটি মহাসাগরীয় বিদার বলে চিহ্নিত করা গিয়েছে।

তপ্ত অঞ্চলের অন্যতম বৈশিষ্ট্য উষ্ণ প্রস্রবণ এবং গিজার (geyser)। ভূপষ্ঠের সর্বত্র গভীরতা বৃদ্ধির সঙ্গে তাপমাত্রার বৃদ্ধি লক্ষ্য করা যায়। গড়ে এই বৃদ্ধির হার 100 মিটারে 3° সেন্টিগ্রেড বা 1 কিলোমিটারে 30° সেন্টিগ্রেড। গভীরতার সঙ্গে তাপমাত্রার বৃদ্ধির হারকে ভূতাপীয় অবক্রম (geothermal gradient) বলে। তপ্ত অঞ্চলে ভূতাপীয় অবক্রম গড় অবক্রমের থেকে অনেক বেশি বলে এরূপ অঞ্চলে সঞ্জালিত ভূ-জলের তাপমাত্রা বন্ধি পায়। এই ভূ-জল কোথাও ফাটল দিয়ে ভূপুষ্ঠে নির্গত হলে উষ্ণ প্রস্রবণ সৃষ্টি হয়। জলের দ্রাবণ ক্ষমতা তাপমাত্রা বৃষ্ধির সঙ্গো বাড়ে। ফলে উষ্ণ প্রস্রবণের জলে বহু যৌগ দ্রবীভূত অবস্থায় থাকে। সাধারণত উচ্চ ভূতাপীয় অবক্রম আগ্নেয়গিরি বা আগ্নেয়ক্রিয়ার সঙ্গে জড়িত বলে উষ্ণ প্রস্রবণে গন্ধক এবং আর্সেনিকের অনুপাত বেশি হয়ে থাকে। তাই এই জল অপেয়, কিন্তু গন্ধক থাকায় অনেক সময় চর্মরোগের উৎকৃষ্ট ওষুধ। গিজার এক বিশেষ ধরনের তপ্ত প্রস্রবণ। এটি থেকে কিছুক্ষণ বাদে বাদে উষ্ন জল সবেগে উৎক্ষি প্ত হয়। নিষ্ক্রিয় আগ্নেয়গিরি অঞ্চলে বিশেষ ধরনের ফাটলের মধ্য দিয়ে ভূপৃষ্ঠ থেকে সঞ্চালিত জল ভূগর্ভে নেমে আসে। এসব অঞ্চলে ভূগর্ভের শিলার মধ্যে বিশেষ জ্যামিতিক বৈচিত্র্যের ফাঁক-ফোকরের জন্য কোথাও কোথাও বেশ কিছুটা বায়ু আটকে পড়ে। এই অবরুদ্ধ বায়ুতে গরম জল থেকে ওঠা জলীয় বাষ্প ক্রমশ জমতে থাকে। ফলে ফোকরে জমা জলের জন্য অবরুদ্ধ বায়ুর চাপও ক্রমশ বাড়তে থাকে। যখন অবরুম্ধ বায়ুর চাপ বায়ুমণ্ডলের চাপ ছাড়িয়ে যায় তখন ফোকরের খোলা মুখ দিয়ে অবরুদ্ধ বায়ু, বাষ্প ও গরম জল উৎক্ষিপ্ত হয়ে চাপের প্রশমন ঘটে। এই গরম জলের ফোয়ারাই স্বতঃনিঃসারিত উষ্ণ প্রস্রবণ বা গিজার। একবার চাপের প্রশমন হলে কিছুটা সময় শান্ত অবস্থা বর্তমান থাকে। তখন ফোকরে জল জমে এবং অবরুদ্ধ বায়ুতে বাষ্প চাপের বৃদ্ধি ঘটে চলে। কিছুকাল পরে সংকটসীমা পার হলে আবার বিস্ফোরণ ঘটে। এইভাবে পর্যায়ক্রমে বিস্ফোরণ ও শান্ত অবস্থা চলে। ভারতে গিজার নেই। মার্কিন যুক্তরাফ্ট্রে ওয়াইয়ুমিং রাজ্যে ওল্ড ফেইথফুল গিজার বিখ্যাত।

#### 2.2.8 আগ্নেয়োচ্ছাসের পূর্বাভাস

ভূকম্পের মতোই আগেয়োচ্ছ্বাসের পূর্বভাস দেওয়া অত্যন্ত কঠিন। বিশেষ করে কোনো নির্দিষ্ট দিন এবং সময় বলা প্রায় অসম্ভব। তবে আঞ্চলিক পরিকল্পনায় কাজে লাগে এধরনের সাধারণ পূর্বাভাস বিভিন্নভাবে দেওয়া হয়ে থাকে। যেসব আগ্নেয়গিরিতে মাঝে মাঝে অগ্ন্যচ্ছ্বাস ঘটে সেসব অগ্ন্যচ্ছ্বাসের রেকর্ড থেকে সম্ভাব্য অগ্ন্যচ্ছ্বাসের একটা ধারণা করা যায়। সাধারণত সুপ্ত আগ্নেয়গিরি অঞ্চলে যেসব ধূমোৎসারী বিবর আছে, সেইসব বিবরের তাপমাত্রা এবং গ্যাসের অনুপাত বৃদ্ধি এসম্বন্ধে আলোকপাত করে। তাপমাত্রা বাড়ার সঞ্চো সঙ্গো শিলার চৌম্বকীয় আকর্ষণ মাত্রা কমে আসে। সুতরাং সম্ভাব্য আগ্নেয়চ্ছ্বাসের সঙ্গো ক্ষীয়মাণ চৌম্বকীয় আকর্ষণ পূর্বাভাসের অন্য একটি পদ্ধতি। ম্যাগনেটোমিটার নামক যন্ত্রের সাহায্যে চৌম্বকীয় আকর্ষণের তারতম্য নির্দিষ্ট সময় পরপর পর্যবেক্ষণ করা হয়। চৌম্বকীয় আকর্ষণের মতন শিলার বৈদ্যুতিক ধর্মও তাপমাত্রা বৃদ্ধির সঙ্গে প্রভাবিত হয়।

### 2.2.9 ভারতীয় আগ্নেয়গিরি

ভারতে নিষ্ক্রিয় আগ্নেয়গিরি বহু জায়গায় পাওয়া গেলেও সক্রিয় আগ্নেয়গিরি বর্তমানে একটিই। এটি আন্দামান দ্বীপপুঞ্জে ব্যারেন আইল্যান্ড। বহুকাল সুপ্ত অবস্থায় থাকার পর 1991 সালের জুন মাসে এটিতে প্রথম অগ্ন্যচ্ছ্বাস শুরু হয়। ব্যারেন আইল্যান্ড থেকে আরো কিছুটা পূর্বে নরকোন্ডাম দ্বীপে আগ্নেয়গিরিটি (চিত্র : 2.9) বর্তমানে নিষ্ক্রিয়। তবে এখানে উচ্চ তাপপ্রবাহ পাওয়া গেছে। অনুমান করা হয় যে, এটি দীর্ঘকাল নিষ্ক্রিয় অবস্থায় আছে এবং এটির জ্বালামুখ চারদিকের শিলাক্ষয় হয়ে সম্পূর্ণ জমে গেছে।



চিত্র 2.9 : নরকোন্ডাম দ্বীপের নিষ্ক্রিয় আগ্নেয়গিরি

সাধারণভাবে আগ্নেয়গিরি গলিত শিলার ঊর্ধ্বপ্রবাহী পরিচলন স্রোতে উৎপন্ন হয়। পরিচলন স্রোত সুগঠিত না হলে, অর্থাৎ তার ঠিক আগের অবস্থায় তপ্ত অঞ্চলের সৃষ্টি ঘটে। গুজরাটের আংকলেশ্বরের তৈলখনি অঞ্চলে হঠাৎ 300° সেন্টিগ্রেড তাপমাত্রার জলীয় বাষ্প উদগীরণ এবং ক্যানিং-এর সন্ধানী কৃপ (exploratory wells) থেকে 480° সেন্টিগ্রেড তাপমাত্রার জলীয় বাষ্প নিষ্ক্রমণ ভূগর্ভে এরূপ পরিবহন স্রোতের উৎপত্তির সম্ভাবনার নির্দেশক।

# 2.3 নিষ্ক্রিয় আগ্নেয় অঞ্চলের ভূবৈচিত্র্য

নিষ্ক্রিয় আগ্নেয় অঞ্চলের ভূবৈচিত্র্যের মধ্যে উষ্ণ প্রস্রবণ এবং গিজারের কথা আগেই বলা হয়েছে। এ দুটি ছাড়াও আর একটি প্রধান ভূবৈচিত্র্য হলো ধূমোৎসারী ভূবিবর। ম্যাগমার মধ্যে তরল সিলিকেট-এ একটি প্রধান উপাদান গ্যাসীয় যৌগ। উদ্বায়ী যৌগ (volatiles), যেগুলির গলনাঙ্ক (melting point) এবং স্ফুটনাঙ্কের (boiling point) মধ্যে ব্যবধান খুব কম, সেগুলি ম্যাগমায় গ্যাসীয় অবস্থায় বর্তমান থাকে। অগ্ন্যচ্ছ্রাসের কালে এই বস্তুগুলি আকস্মিক চাপের নিরসনে গ্যাসরূপে অবমুক্ত হয়। আগ্নেয়গিরি নিষ্ক্রিয় হয়ে যাবার পরও দীর্ঘকাল ধরে ভূগর্ভ থেকে গ্যাস নিষ্কাশিত হয়। যেসব বিবর থেকে গ্যাস নিষ্ক্রমণ ঘটে, সেগুলিকে বলে ধূমোৎসারি ভূবিবর (fumaroles)। যে গ্যাসের অনুপাত বেশি, তার ভিত্তিতে ধূমোৎসারী ভূবিবরের শ্রেণীবিভাগ করা হয়ে থাকে। ইতালির তাস্কানিতে বোরোন উৎসারী ভূবিবরকে সোফোনি (soffoni) বলে। যেখানে প্রধান গ্যাস হাইড্রোজেন সালফাইড, সেখানে নাম দেওয়া হয়েছে সোলফাটারা (solfatara)। উৎসারিত ধূমে ক্লোরিনের আধিক্য থাকলেও তার মুখে লোহা, তামা এবং সীসকের মণিক অবক্ষিপ্ত হয়। বস্তুত গিজারও ধূমোৎসারী ভূবিবর, কারণ সেখানে নিষ্কাশিত গ্যাসে জলীয় বাষ্পের আধিক্য।

অনেক সময় ধূমোৎসারী ভূবিবরে আগ্নেয়ভস্মের আধিক্য থাকলে মনে হয় এসব গব্বরে কাদা ফুটন্ত অবস্থায় আছে। এগুলিকে *কর্দম আগ্নেয়গিরি* (mud volcano) বলে। তবে যেসব অঞ্চলে পেট্রোলিয়াম আছে, সেখানেও এরূপ ফুটন্ত কর্দম বিবর দেখা যায়। প্রাকৃতিক গ্যাসের বুদবুদ উঠে কাদার ফুটন্ত অবস্থা বলে মনে হয়। পাকিস্তানের সিম্ব্রপ্রদেশে হিংলাজ দ্বিতীয় শ্রেণীর কর্দমকুপ।

#### 2.4 সারাংশ

এই এককে আগ্নেয়গিরি এবং অগ্ন্যচ্ছ্লাস সম্পর্কে সহজ ও স্বচ্ছ আলোচনা তুলে ধরা হয়েছে।

আপনি জেনেছেন আগ্নেয়গিরির অবয়বগত বৈশিষ্ট্য এবং তার বিভিন্ন অংশের কথা। ধারণা করতে পেরেছেন ম্যাগমা প্রকোষ্ঠ, নির্গম নল, মুখ্য ও গৌণ জ্বালামুখ, ক্যালডেরার গঠন, উৎপত্তি ও সংশ্লিষ্ট ভূমিরূপ এবং আগ্নেয় ভূগাঠনিক বিবর সম্পর্কে।

আপনি পরিচিত হয়েছেন অগ্যুচ্ছ্বাসে উৎপন্ন বিভিন্ন কঠিন বস্তু—বস্থ্ ব্লক, লাপিলি, আগ্নেয় ভস্ম এবং বিভিন্ন ধরনের তরল লাভা—প্লাবন লাভা, বালিশাকৃতি লাভা, রজ্জু লাভা, ব্লক লাভা এবং নির্গত গ্যাসীয় পদার্থের সঞ্জে।

আপনি দেখেছেন কিভাবে অগ্ন্যচ্ছ্বাসের ফলে কতগুলি বিশেষ ধরনের ভূমিরূপের উদ্ভব হতে পারে, যেমন আগ্নেয় কোণক, স্তম্ভাকৃতি দারণ, প্লাবন বেসন্টের স্তরসংঘ বা বেসন্ট ট্র্যাপ ইত্যাদি।

আপনি জেনেছেন যে, উৎক্ষিপ্ত বস্তুগুলির পারস্পরিক অনুপাত ও বিস্ফোরণ প্রাবল্য অনুসারে অগ্যুচ্ছ্বাসের শ্রেণী বিভাগ করা হয়েছে—যেমন, হাওয়াই দ্বীপীয়, স্ট্রম্বোলীয়, ভালকানীয়, ভিসুভীয় ও পিলীয় অগ্ন্যচ্ছ্বাস। প্রতিটির বৈশিষ্ট্য এবং উদাহরণের উল্লেখ পেয়েছেন।

আপনি দেখেছেন যে, ম্যাগমার রাসায়নিক সংযুতি—তার আল্লিকতা ও ক্ষারকীয়তা অনুসারে ভিন্ন ভিন্ন গঠনের আগ্নেয়গিরি তৈরি হতে পারে। এই প্রসঙ্গে ভস্মকোণক, মিশ্রকোণক এবং ঢালাকৃতি আগ্নেয়গিরি বিষয়ে জেনেছেন।

ভূপৃষ্ঠে আগ্নেয়গিরিসমূহের বিন্যাস এবং তার তাৎপর্য সম্পর্কে আপনি অবহিত হয়েছেন—যেমন, প্রশান্ত মহাসাগরীয় বলয়, আল্পীয়-হিমালয় অঞ্জলের বলয় এবং প্রায় 80,000 কিমি দীর্ঘ মধ্য মহাসাগরীয় শৈলশ্রেণীভুক্ত আটলান্টিক মহাসাগরের আগ্নেয়গিরিশৃংখল। ভূগোকে উৎপন্ন তাপপ্রবাহ—ভূভাগের তপ্ত অঞ্চল-এর ব্যুত্থান এবং গীজার সম্পর্কে আপনি ধারণা পেয়েছেন।

আগ্নেয়োচ্ছ্বাসের সঠিক দিনক্ষণ জানিয়ে পূর্বাভাস দেওয়া প্রায় অসম্ভব। তবে সম্ভাব্য আগ্নেয়োচ্ছ্বাসের সঙ্গো ক্ষীয়মান চৌম্বকীয় আকর্ষণ পূর্বাভাসের একটি পদ্ধতি হিসাবে প্রয়োগ করা হয়।

নিষ্ক্রিয় আগ্নেয় অঞ্চলের ভূবৈচিত্র্যের উদাহরণ হিসাবে আপনি ধূমোৎসারী বিবর (সোফোনি, সোলফাটারা এবং কর্দম আগ্নেয়গিরি) সম্পর্কে জেনেছেন।

### 2.5 নির্বাচিত উল্লেখ্য গ্রন্থ

- 1) Lahiri Dipankar and Roy Sobhen, *The Earth Alive : Its Processes and Features;* Allied Publishers, 1985.
- 2) Bullard, F. M., *Volcanoes : In History, in Theory, in Eruption;* University of Texas Press, 1962.
- 3) Holmes, Arthur, Principles of Physical Geology; Nelson, 1972.

### 2.6 প্রশ্নাবলী

(A) বড় উত্তরভিত্তিক প্রশ্ন :

- আগ্নেয় অঞ্জলের ভূবৈচিত্র্যের উৎপত্তিসহ সচিত্র বিবরণ।
- 2) বিভিন্ন ধরনের অগ্ন্যচ্ছ্লাসের সচিত্র বিবরণ।
- 3) আগ্নেয়গিরিরর উৎপত্তির বিভিন্ন গঠনসহ সচিত্র বর্ণনা।
- ম্য্যচ্ছ্বাসে উৎসারিত বস্তুসমূহের শ্রেণীবিভাগ এবং বর্ণনা।
- 5) আ আ এবং ব্লক লাভার স্বাতন্ত্র্য দেখিয়ে বর্ণনা। এগুলি বালিশাকৃতি লাভার সঙ্গে পাওয়া যায়না কেন?
- 6) স্তম্ভাকৃতি গঠন এবং সোপানিত ভূমিপৃষ্ঠ কী ধরনের লাভার সঙ্গে জড়িত? এগুলির উৎপত্তির কারণ কী?
- 7) একটি আগ্নেয়গিরির উৎপত্তি বর্ণনা। এটির নাম কী? কী ধরনের গঠন এই বিশেষ আগ্নেয়গিরিটির?
- 8) ইণ্নিম্ব্রাইট কাকে বলে? এটির সঙ্গে লাভার তফাৎ কী? কী ধরনের অগ্ন্যচ্ছ্বাসে ইণ্নিম্ব্রাইট উৎপন্ন হয়?

#### (B) সংক্ষিপ্ত উত্তরভিত্তিক প্রশ্ন :

- 1) আগ্নেয়গিরি কাকে বলে? সব অগ্ন্যচ্ছ্রাসই কি আগ্নেয়গিরির মাধ্যমে হয়?
- 2) অগ্ন্যচ্ছ্বাসে নির্গত লাভার উৎস কোথায়? কার ভূ-ভৌত অনুসন্ধানে এ সম্বন্ধে যুক্তিসন্মত সিদ্ধান্তে পৌঁছনো গেল?
- 3) আগ্নেয়গিরি বলয় কাকে বলে? এরুপ বলয় ক'টি, এবং কোথায় কোথায় আছে?
- 4) আগ্নেয় শিলাখণ্ড কাকে বলে? এগুলির কীভাবে শ্রেণীবিভাগ করা হয়েছে?
- 5) আগ্নেয় পৃষ্ঠদন্ড কী? কী ধরনের অগ্ন্যচ্ছাসের সঙ্গে তা যুক্ত? এই বিশেষ অগ্ন্যচ্ছাসে আগ্নেয় পৃষ্ঠদণ্ডের উৎপত্তির কারণ কী?
- 6) ভারতের একমাত্র সক্রিয় আগ্নেয়গিরি কোনটি? এখানে নির্গত লাভার সঙ্গে ডেকান ট্র্যাপ লাভার প্রধান পার্থক্য কি কি?
- 7) কোনো সুপ্ত আগ্নেয়গিরিতে অগ্ন্যচ্ছ্রাসের পূর্বাভাস কি সম্ভব ? এই পূর্বাভাস কতটা নির্ভরযোগ্য ?
- 8) ধূমোৎসারী ভূ-বিবর কাকে বলে? উয়ু প্রস্রবণের সঙ্গে সেগুলির কী পার্থক্য?
- 9) সব উষ্ণ প্রস্রবণই গিজার হয়না কেন? ভারতে গিজার নেই কেন?
- 10) কর্দম কুপ কোন কোন ধরনের? কোনটির সঙ্গে আগ্নেয়ক্রিয়া যুক্ত?
- 11) ক্ষয়প্রাপ্ত আগ্নেয়গিরির প্রধান নিদর্শন কী? এটির সচিত্র বর্ণনা সহ গঠনের ব্যাখ্যা।

#### (C) প্রশোতরমূলক:

হাঁা না

- ভূপৃষ্ঠের যে কোনো অঞ্জলে সক্রিয় আগ্নেয়গিরি থাকতে পারে।
- ক্লিফ্ ডোয়েলার্স বেসল্ট লাভার গিরিখাতে বাস করত।
- ফুজিয়ামা প্রশান্ত মহাসাগরীয় আগ্নেয়গিরি বলয়ে বর্তমান।
- ভূভাগে বিদারীয় অগ্যুচ্ছ্বাসের চিহ্ন নেই।

- 6) ক্যালডেরার উৎপত্তির সঙ্গে চোঙাকৃতি ডাইকের উৎপত্তি জড়িত।

ভিসুভিয়াসের লাভা আল্লিক।

8) ঢালাকৃতি আগ্নেয়গিরি আম্লিক লাভায় উৎপন্ন।

পিউমিস বেসল্টিক লাভা থেকে উৎপন।

10) ইরানে সক্রিয় আগ্নেয়গিরি বর্তমান।

- 5) প্লাবনলাভা সিলিকা-সমৃদ্ধ লাভা।

| 2.7    | উত্তর সংকেত  |
|--------|--------------|
| (A) 1) | 2.2.3        |
| 2)     | 2.2.4        |
| 3)     | 2.2.5        |
| 4)     | 2.2.2        |
| 5)     | 2.2.2        |
| 6)     | 2.2.3        |
| 7)     | 2.1, 2.2.5   |
| 8)     | 2.2.2        |
| (B) 1) | 2.1, 2.2.6   |
| 2)     | 1.7          |
| 3)     | 2.2.6        |
| 4)     | 2.2.2        |
| 5)     | 2.2.2, 2.2.4 |
| 6)     | 2.2.9        |
| 7)     | 2.2.8        |
| 8)     | 2.3          |
| 9)     | 2.3          |
| 10)    | ) 2.3        |
| 11)    | ) 2.2.1      |
| (C) 1) | না           |
| 2)     | না           |
| 3)     | হঁ্যা        |
| 4)     | না           |
| 5)     | না           |
| 6)     | হাঁ          |
| 7)     | হাঁ          |
| 8)     | হাঁ          |
| 9)     | না           |
| 10)    | ) नो         |

11) না

# একক 3 🗆 মহীজনি (Epeirogeny) ও গিরিজনি (Orogeny)

গঠন

3.1 প্রস্তাবনা

উদ্দেশ্য

- 3.2. মহীগঠক প্রক্রিয়া বা এপাইরোজেনি
- 3.3 গিরিজনি
- 3.4 সারাংশ
- 3.5 নির্বাচিত উল্লেখ্য গ্রন্থ
- 3.6 প্রশ্নাবলী
- 3.7 উত্তর সংকেত

#### 3.1 প্রস্তাবনা

ভূপুষ্ঠে বিভিন্ন ধরনের বন্ধুরতার নিদর্শন বর্তমান। এগুলি সম্বন্ধে মানুষের কৌতৃহলও চিরদিনের। উনবিংশ শতাব্দীর শুরু থেকেই এই বন্ধুরতামূলক বৈচিত্র্যগুলিকে প্রধানত দুটি শ্রেণীতে ভাগ করা হয় : ধনাত্মক, যেগুলি গড় ভূতলের উপরে উচ্চভূমিরপে বর্তমান; এবং ঋণাত্মক, যেগুলি গড় ভূতলের নীচে নিম্নভূমিরুপে বিদ্যমান। সাধারণভাবে পর্বতশ্রেণী, মালভূমি এবং ভূক্ষয়ে কঠিন শিলাস্তরে তৈরি ভূপৃষ্ঠের অংশবিশেষের অবশেষরপ উচ্চভূমিগুলি পড়ে। দ্বিতীয় শ্রেণীতে পড়ে হ্রদ, জলাভূমি এবং উপসাগর, সাগর ও মহাসাগর। ধনাত্মক ভূমিরুপের মধ্যে দুটি সম্পূর্ণ স্বতন্ত্র শ্রেণীর ভূমিরূপ বহুকাল ধরেই লক্ষ্য করা গেছে। তার একটিতে পড়ে মালভূমি জাতীয় বিস্তীর্ণ অঞ্চল। এগুলির প্রান্তে উল্লম্ব তল বর্তমান। গাঠনিক ভূবিদ্যার অগ্রগতির সঙ্গো সঙ্গো দেখা গেল অধিকাংশ ক্ষেত্রে এই উল্লম্ব তলগুলি চ্যুতিতল এবং চ্যুতিগুলি অনুলোম চ্যুতি (normal fault)। দ্বিতীয় আর এক ধরনের ধনাত্মক ভূবৈচিত্র্যের মধ্যে পড়ে সংকীর্ণ বলয় বা রৈখিক অঞ্চল ধরে দীর্ঘ পর্বতশ্রেণী। 1890 সালে গিলবার্ট (Gilbert, G. K.) প্রথম শ্রেণীর ধনাত্মক ভূবৈচিত্র্যের নাম দিলেন মহীগঠক ভূবৈচিত্র্য এবং বললেন যে, মহাদেশের বৃহদায়তন ভূবৈচিত্র্যগুলি মহীগঠক (epeirogeny) প্রক্রিয়ায় উৎপন্ন। এগুলির বৈশিষ্ট্য এই যে, প্রান্তিক চ্যুতি ছাড়া এগুলিতে উ খিত শিলাদেহের মধ্যে তেমন কোন গাঠনিক বিকৃতি (structural diformation) লক্ষিত হয়না। মহীগঠক বিচলন প্রধানত অভিশীর্ষতলে এবং সেটি উপরদিকে হলে মালভূমি সৃষ্ট হয় এবং নিচের দিকে হলে গ্র্যাবেন (graben) সৃষ্ট হয়। দ্বিতীয় ধরনের ধনাত্মক ভূবৈচিত্র্যের সর্বপ্রধান বৈশিষ্ট্য সেগুলির মধ্যে শিলাদেহের এবং শিলাস্তরের বিভিন্ন মাত্রার গাঠনিক বিকৃতি। এই বিকৃতির সর্বপ্রধান নিদর্শন বলি বা ভঙ্গা (fold)। তাই এই ধরনের উচ্চভূমিকে বলিত পর্বতমালা (folded mountain chain) বলে। গিলবার্ট

মালভূমি এবং গ্র্যাবেন-এর উৎপত্তি থেকে বলিত পর্বতশৃঙ্খলের উৎপত্তিকে আলাদা করে সেগুলির উৎপত্তির কারণের নাম দিলেন গিরিজনি (orogeny)।

### উদ্দেশ্য

এই এককটি পাঠ করে আপনি

- মহাদেশের বড় মাপের ভূবৈচিত্র্য বা ভূভাগগুলির বৈশিষ্ট্য নির্ধারণ করতে পারবেন।
- এইসব ভূবৈচিত্র্য সৃষ্টির কারণ হিসেবে উপস্থাপিত মহীজনি ও গিরিজনি প্রক্রিয়ার ভূমিকা ও তাৎপর্য ব্যাখ্যা করতে পারবেন।
- এ বিষয়ে প্রচলিত ধারণার বিবর্তন ও বৈজ্ঞানিক মতবাদগুলি বিবৃত করতে পারবেন।

# 3.2 মহীগঠক প্রক্রিয়া বা এপাইরোজেনি

যেহেতু মহাদেশের আয়তনের যেকোনো ভূভাগের বিস্তীর্ণ অঞ্চল প্রধানত মালভূমি জাতীয় উচ্চভূমি, সেই জন্য সেগুলির উৎপত্তিকে বাংলাভাষায় *মহীগঠক* বলা যায়। মহীগঠক প্রক্রিয়ায় উচ্চভূমি যেমন মালভূমি তেমনই তার সংলগ্ন সুদীর্ঘ নিম্নভূমিকে বলা হয় গ্র্যাবেন। আধুনিক ভূবিদ্যায় গ্র্যাবেন কথাটি প্রথম আসে রাইন (Rhine) নদীর অববাহিকা পর্যবেক্ষণ করে পাওয়া তথ্য থেকে। পরে দেখা গেল



চিত্র 3.1 : পূর্ব আফ্রিকার গ্রস্ত উপত্যকা (a : টাইবেরিয়াস হ্রদ; b : ডেড সি; c : রুডল্ফ্ হ্রদ; d : ভিক্টোরিয়া হ্রদ; e : অ্যালবার্ট হ্রদ; f : এডওয়ার্ড হ্রদ; g : কিডু হ্রদ; h : ট্যাংগানিয়াকা হ্রদ; i : নিয়াসা হ্রদ)

আফিকার পূর্বাঞ্জলে কেনিয়া থেকে উত্তরে লোহিতসাগর পর্যন্ত বিস্তৃত একটি সুদীর্ঘ গ্রস্ত উপত্যকা বর্তমান (চিত্র : 3.1)। বস্তুত রাইন নদীর গ্র্যাবেন আর পূর্ব আফ্রিকার গ্রস্ত উপত্যকার মধ্যে পার্থক্য অনেক। দ্বিতীয়টির ভূমিতে ক্ষারীয় শিলা (basic rocks), উচ্চমাত্রার ভূতাপপ্রবাহ এবং ক্ষারীয় ম্যাগমার সঙ্গে সংযুক্ত বিভিন্ন ধরনের রাসায়নিক পদার্থের অবক্ষেপ বর্তমান। রাইন নদীর গ্র্যাবেনে সর্বত্র পূর্ব আফ্রিকার গ্রস্ত উপত্যাকার বৈশিষ্ট্যগুলি নেই, তবে কোথাও কোথাও আছে। গাঠনিক ভূবিদরা এসম্বন্থে একমত হলেন যে, গ্র্যাবেন এবং গ্রস্ত উপত্যকার উৎপত্তির কারণ এক হলেও দুটি ক্ষেত্রে বিপর্যয়ের (diastrophism) মাত্রা আলাদা। গ্রস্ত উপত্যকার বিপর্যয়ের ফলে যে উল্লম্ব চ্যুতি সৃষ্টি হয় তা ধরে শিলামণ্ডল বিচ্যুত হয়ে ব্যুথিত (uplifted) হয়েছে। ফলে এই চ্যুতিতল বরাবর অ্যাস্থেনোস্ফিয়ারের উপর চাপ কমে গিয়ে সেখানে তরল ম্যাগমার উৎপত্তি ঘটেছে। আফ্রিকার গ্রস্ত উপত্যকায় এই তরলিত অ্যাসথেনোস্ফিয়ার উথিত হয়ে মালভূমি সংলগ্ন নিস্নভূমিতে গভীর লাভা প্রবাহের সৃষ্টি হয়েছে। গ্র্যাবেনের ক্ষেত্রে অবশ্য সমগ্র শিলামণ্ডল প্রভাবিত হয়নি। উল্লম্বচ্যুতিগুলি সাধারণতঃ সিআল-এর মধ্যে সীমাবন্ধ, কোন কোন ক্ষেত্রে সিমা-এর উপরিভাগ পর্যন্ত বিস্তৃত হয়েছে। আফ্রিকার গ্রস্ত উপত্যকায় অনুসন্ধানরত ভূবিদরা দেখলেন যে বহু দীর্ঘ তরজোর ভঙ্গাশীর্ষ (crest of the fold) অনুলোম চ্যুতিতে ক্ষুদ্রাকৃতি উচ্চভূমি এবং নিম্ন ভূমি সৃষ্টি করেছে। এই নিম্নভূমিগুলি যথার্থই গ্র্যাবেন। উচ্চভূমিগুলির নাম দেওয়া হল *হোস্ট* (horst) (চিত্র : 3.2)। সুতরাং ভূগোলকীয় বিপর্যয়, যার ফলে ভূখণ্ড এবং সমুদ্রের উৎপত্তি, তার মধ্যে সব



চিত্র 3.2 : হোস্ট্ ও গ্র্যাবেন

গ্র্যাবেন পড়েনা। তবে ক্ষেত্রবিশেষে পরপর সজ্জিত গ্র্যাবেনের শৃঙ্খল উচ্চমাত্রার ভূগোলকীয় বিপর্যয়ে কোথাও কোথাও গ্রস্ত উপত্যকায় রূপান্তরিত হতে পারে। সাধারণত ধরা হয় যে, মহীগঠন প্রক্রিয়া প্রধানত ভূগোলকের শাস্ত অবস্থার প্রক্রিয়া। উত্থান এবং পতনের কারণ হিসেবে শুরুতে ধরা হত অভিকর্ষ (gravitation) এবং পার্শ্বটান (lateral tension)। কারণ টানচ্যুতি (tension fold) সর্বদাই অনুলোম চ্যুতি। অনেকে এভাবে গ্রস্ত উপত্যকার উৎপত্তির কারণ ব্যাখ্যা করার চেম্টা করেছেন। কিন্তু, পূর্ব আফ্রিকার 6,500 কিমি দীর্ঘ সিরিয়া থেকে জাম্বেজি পর্যন্ত বিস্তৃত গ্রস্ত উপত্যকার সঙ্গো রাইন নদীর 300 কিমি দীর্ঘ গ্র্যাবেনের উৎপত্তিগত পার্থক্য অনেকেই অনুভব করতেন।

পরবর্তীকালে যখন সমস্ত মহাসাগরের তলদেশে বিস্তৃত এবং পরস্পর সংযুক্ত প্রায় 80,000 কিমি দীর্ঘ গ্রস্ত উপত্যকা আবিষ্কৃত হল, প্রকৃতপক্ষে তখনই গ্রস্ত উপত্যকার সঙ্গো গ্র্যাবেনের উৎপত্তিগত পার্থক্য স্পষ্ট হল। এসব সত্ত্বেও এখনও কেউ কেউ গ্রস্ত উপত্যকা এবং গ্র্যাবেনকে সমার্থক বলে ধরে থাকেন। 1929 সালে রাইন নদীর গ্র্যাবেনের কাছে ফ্রাইবার্গে একটি রেলওয়ে টানেল খোঁড়া হয়। এই টানেল খুঁড়তে গিয়ে দেখা যায় যে, রাইন গ্র্যাবেনের প্রান্তিক চ্যুতিগুলি প্রকৃতপক্ষে ধাপচ্যুতি (step faults)। এগুলি থেকে এবং ক্লুজ (Cloos)-এর পরীক্ষা থেকে অনেকে অনুমান করলেন যে গ্রস্ত উপত্যকা অনেক সময় নমিত (buckled) ভূত্বক থেকেও তৈরি হতে পারে, এজন্য টানচ্যুতির প্রয়োজন নেই। অনেকগুলি সুগভীর হ্রদ যেমন বৈকাল হ্রদ, ট্যাঙ্গানিয়াকা হ্রদ এবং অ্যালবার্ট হ্রদ গ্রস্ত উপত্যকায় বর্তমান। এগুলির মধ্যে বৈকাল হ্রদের তলদেশ গড় সাগরপৃষ্ঠ থেকে 1300 মি গভীর। বৈকাল হ্রদের দক্ষিণে বলিত পর্বতশ্রেণী এবং উত্তরে ক্ষয়প্রাপ্ত বলিত পর্বতশ্রেণী থেকে গ্রস্ত উপত্যকার উৎপত্তির জন্য সংকোচনের কোন প্রক্রিয়ার প্রস্তাব দেওয়া হল। এই প্রস্তাবের সপক্ষে এই মতবাদের সমর্থকরা অ্যালবার্ট গ্রস্ত উপত্যকায় ভূছিদ্রণে পাওয়া তথ্য থেকে দেখালেন যে সেখানে পললের মধ্যে পার্শ্ব সংকোচনের (lateral compression) নিদর্শন আছে। বুলার্ড (Bullard, E. C.) দেখালেন যে গ্রস্ত উপত্যকায় অভিকর্যজনিত হরণ (g) পাশের মালভূমির তুলনায় কম। অর্থাৎ গ্রস্ত উপত্যকা ঋণাত্মক সমস্থিতিক বৈষম্য (negative isostatic) অঞ্চল। কিন্ডু পূর্ব আফ্রিকার গ্রস্ত উপত্যকায় সমস্থিতিক বৈষম্য সম্পূর্ণ ভিন্ন ধরনের। সেখানে গ্রস্ত উপত্যকায় ধনাত্মক সমস্থিতিক বৈষম্য এবং সংলগ্ন মালভূমিতে ঋণাত্মক সমস্থিতিক বৈষম্য।



চিত্র 3.3 : ভারতীয় উপদ্বীপে গ্রস্ত উপত্যকা

ভারতে চারটি গ্রস্ত উপত্যকার অস্তিত্বের নিদর্শন পাওয়া গেছে (চিত্র : 3.3)। এই গ্রস্ত উপত্যকাগুলি কোনোটিরই উদ্ভব আধুনিক ভূকালে (geological time) নয়। চারটি গ্রস্ত উপত্যকা যথাক্রমে শোন-নর্মদা গ্রস্ত উপত্যকা, মহানদী গ্রস্ত উপত্যকা, কয়না গ্রস্ত উপত্যকা এবং কুর্দু-ভাদি গ্রস্ত উপত্যকা (চিত্র : 3.1)।

এগুলির সবই নিম্ন অভিকর্ষ বৈষম্য (gravity anomaly) অঞ্চল। এই গ্রস্ত উপত্যকাগুলির একটি বৈশিষ্ট্য এই যে অভিকর্ষ বৈষম্যের মধ্যে বিভিন্ন গ্রস্ত উপত্যকায় কোন প্রতিসাম্য (symmetry) নেই। এই ভূ-ভৌত (geophysical) তথ্য থেকে অনুমান করা হয় যে, গোদাবরী উপত্যকার পশ্চিম প্রান্তিক চ্যুতির নতি পূর্বের প্রান্তিক চ্যুতির নতির থেকে অনেক বেশি। প্রত্যেকটি গ্রস্ত উপত্যকায় উচ্চ তাপপ্রবাহ আরও প্রমাণ করে যে এই গ্রস্ত উপত্যকাগুলি সমগ্র শিলামঙলকে প্রভাবিত করেছিল। গ্রস্ত উপত্যকা ধরে মাঝে মাঝে ভূকম্পও ঘটে থাকে এবং বিভিন্ন গ্রস্ত উপত্যকায় ভূকম্পের মাত্রা এবং পরিসংখ্যা (frequency) আলাদা। ন্যাশনাল জিওফিজিক্যাল রিসার্চ ইনস্টিট্যুটের কৃষ্ণব্রত্নণ এবং নেগি 1973 সালে তাঁদের ভূ-ভৌত পর্যবেক্ষণ থেকে অনুমান করেন যে, ডেকান ট্র্যাপ নামে পরিচিত প্লাবন বেসল্ট এই ফাটলগুলি দিয়ে উৎসারিত হয়েছিল।

# 3.3 গিরিজনি

পর্বতের উৎপত্তি মহীগঠক প্রক্রিয়া থেকে যে সম্পূর্ণ আলাদা তা ধরা পড়েছে উনবিংশ শতকেই। তখনই দেখা গেছে যে ভূপৃষ্ঠে স্থিত (stable) অঞ্চল পর্বতজনিতে ব্যুখিত হতে পারে। তাই সাধারণভাবে 40/50 কোটি বছরের সুপ্রাচীন স্থিত অঞ্চলকে প্রকৃত স্থিত অঞ্চল (stable shelf বা platform বা kraton) নাম দেওয়া হল। অধিকাংশ ক্ষেত্রে অবশ্য দেখা গেছে যে এই প্রাচীন স্থিত অঞ্চলও উচ্চমাত্রার বলিত শিলাস্তরের উপর অসংগতভাবে বিন্যস্ত। বহু ক্ষেত্রে এই স্থিত অঞ্চল ক্ষয়ে গিয়ে নীচের বলিত স্তরসঙ্ঘ বর্তমানে ভূপৃষ্ঠে প্রকাশিত। উদাহরণস্বরূপ উল্লেখ করা যায় বিহারের সিংভূম জেলায় একটি সুপ্রাচীন বলিত পর্বতশৃঙ্খলের অস্থিত্ব।

বলিত পর্বত সম্বন্ধে আধুনিক বৈজ্ঞানিক পর্যবেক্ষণের শুরু পঞ্চদশ শতাব্দীর কোন সময়ে। এ সম্বন্ধে সর্বপ্রাচীন নথিভুক্ত বিবরণ পাওয়া যায় লিওনার্দো দা ভিঞ্জির (Leonardo da Vinci, 1452-1519) দিনলিপিতে ইতালি থেকে ফ্রান্সে যাবার পথে অ্যাল্পস্ পর্বতের উচ্চতর শৃঙ্গের ঢালে শিলায় আবন্ধ শামুক, ঝিনুকের খোলক দেখে তাঁর বিখ্যাত মন্তব্য : বাইবেলে বর্ণিত মহাপ্লাবনে শামুক-ঝিনুক একবারে এখানে এসে জমেছিল, একথা বিশ্বাসযোগ্য নয়। অফ্টাদশ শতাব্দীর শেষে মার্কিন যুক্তরাস্ট্রের রাস্ট্রপতি জেফারসন (Thomas Jefferson, 1743-1826) একটি চিঠিতে লিখেছেন অ্যান্ডিজ পর্বতে 15,000 ফিট উচ্চতায় শিলাস্তরে যে সব শামুক-ঝিনুকের খোলা পাওয়া যায়, তা বাইবেলে বর্ণিত মহাপ্লাবনে জলোচ্ছ্রাস ঘটে এখানে এসে জমেছিল, তা হলে পারেনা। বরং এগুলি অজানা কোন রহস্যজনক পন্ধতিতে যে উৎপন্ন, তা ধরে নেওয়াই ভালো। কারণ অজ্ঞতা দূর হতে পারে, কিন্ডু ভ্রান্ত ধারণা থেকে জন্ম নেয় যে অন্ধ বিশ্বাস, তা আর দূর হয়না।

বলিত পর্বতের এ জাতীয় বৈশিষ্ট্য ছাড়া আর একটি যে প্রধান বৈশিষ্ট্য, তা ঊনবিংশ শতাব্দীর মধ্যভাগ থেকে অ্যাল্পস্ পর্বতে ধারাবাহিক অনুসন্ধানে পাওয়া যেতে থাকে। তা হল, পরের পর বহু ঊধ্বর্ভঙ্গা এবং নিম্নভঙ্গের অস্তিত্ব। পাশাপাশি সমতল ভূমিতে লন্ডন বা প্যারিসের ধারে কাছে কয়লা খনি অঞ্চলে যে সব স্তর পাওয়া যায় সেগুলি প্রায় আনুভূমিক। আরও দেখা গেল যে অ্যাল্পস্ পর্বতের যে সব অঞ্চল দীর্ঘকাল ধরে ভূক্ষয়ের ফলে প্রায় সমতলভূমিতে পরিণত হয়েছে, সেখানে রাস্তা তৈরি করতে গিয়ে পাথর কাটলে অনুরূপ বলিত স্তর পাওয়া যায়। বলিত পর্বতের দ্বিতীয় যে বৈশিষ্ট্য তা হল, এখানে পাশাপাশি স্বল্প দূরত্বের ব্যবধানে বিভিন্ন ধরনের শিলা পাওয়া যায়, যেমন ম ব্লাঁ (Mot blanc) শিখরে পাওয়া যায় গ্র্যানাইট, আইগুইল পর্বতশিখরে (Aiguilles) পাওয়া যায় সিস্ট্ (schist) এবং মার্বল্। অন্যদিকে মার্কিন যুক্তরাস্ট্রের কাস্কেড্ পর্বতমালায় পাওয়া যায় পাললিক শিলার সঞ্চো লাভা এবং আগ্নেয়ভস্ম। এসব জায়গায় নদীখাতে দেখে বোঝা যায় যে এই গ্র্যানাইট ভূগর্ভের গভীর থেকে গলিত পদার্থ বৃপে উত্থিত হয়েছিল এবং বর্তমানে ভূক্ষয়ের ফলে তা ভূপুষ্ঠ প্রকাশিত হয়েছে। অ্যাল্পস্ এবং অন্যান্য বলিত পর্বতে আরও এমন কিছু শিলা পাওয়া গেল যেগুলি স্পষ্টত মূল পাললিক ও আগ্নেয়শিলা চাপ ও তাপের প্রভাবে রূপান্তরিত হয়ে রূপান্তরিত শিলাগোষ্ঠী সৃষ্টি করেছে। এছাড়া অবিকৃত বেশ কিছু পাললিক স্তরসংঘ পাওয়া গেল, যার মধ্যে প্রধান শিলা মোটা দানার বেলে পাথর। এসব স্তরক্রমের



চিত্র 3.4 : নাপে গঠন

বিভিন্ন আকৃতির ভঞ্চাতে বলিত হওয়া ছাড়াও অ্যাল্প্স্ পর্বতের একটি প্রধান বৈশিষ্ট্য যে, এগুলির কোন কোন স্তর-সংঘ ভঙ্গাক্ষ-তলে (fault plane-এ) ভেঙে গিয়ে উপরের অংশটি চাদরের মতো বিস্তীর্ণ অঞ্চলকে ঢেকে ফেলেছে। অনেক সময়ে এই চাদরটিকেও আবার বলিত হতে দেখা গিয়েছে। অ্যাল্প্স্ পর্বতে অনুসন্ধানকারী ভূবিদরা এই বিশেষ গঠনটির নাম দিলেন 'নাপে' ('nappe') (চিত্র : 3.4)।

সুতরাং বলিত পর্বতের উৎপত্তির কারণ অনুসন্ধানে অনেকগুলি নিদর্শনের উৎপত্তির উপযুক্ত ব্যাখ্যা দরকার হল। প্রথমটি, অর্থাৎ পরস্পর-সংলগ্ন বিভিন্ন আকার এবং আকৃতির ভঙ্গা, বিশেষ করে নাপে-র অস্তিত্ব ব্যাখ্যা করা হল প্রবল পার্শ্বচাপের ফল রূপে। দ্বিতীয় নিদর্শন অর্থাৎ বিভিন্ন ধরনের শিলার অস্তিত্ব আপাতত অব্যাখ্যাত রইল। বিজ্ঞানীরা জোর দিলেন তৃতীয় নিদর্শনটির উপর। তাঁরা বললেন যে, পাললিক শিলা কোন খাতে জমা পলল থেকে উৎপন্ন। সুতরাং এটা মানতেই হবে যে ভূপুষ্ঠে সরু, সুগভীর রৈখিক খাতে এই পাললিক শিলার পললগুলি সঞ্চিত হয়েছিল। কিন্তু সেখানে প্রশ্ন উঠল যে, পললের অবক্ষেপণের সঙ্গে সঙ্গে খাতটির গভীরতা ক্রমশ কমে আসবে। বিজ্ঞানীরা বললেন, তাই যদি হয়, তবে সর্বনিম্ন পললের স্তরটি হওয়ার কথা মিহি দানার (fine-grained) এবং উপরের দিকে পললের দানার আকার ক্রমশঃ বেডে যাবার কথা। এই নিদর্শনের একটি সুষ্ঠ ব্যাখ্যার প্রস্তাব দিতে গিয়ে ডানা (J. D. Dana, 1813-95) বললেন, এই রৈখিক খাতগুলি অন্য সাধারণ খাতের মতো নয়। অপর একজন ভূবিদ হল (James Hall, 1811-98)'র সঙ্গো ডানা প্রস্তাব দিলেন যে, পলল এবং অবক্ষেপণের সঙ্গো সঙ্গে রৈখিক খাতগুলির তলভাগ নিমজ্জিত হয়ে চলেছিল। ফলে জলপষ্ঠ থেকে খাতের তলদেশের গভীরতা সর্বদাই সমান ছিল এবং এই গভীরতা মোটা দানার পললের অবক্ষেপণের উপযোগী ছিল। ডানা 1873 সালে এই খাতগুলির নাম দিলেন ভূ-অবতলভঙ্গ বা geosyncline। কিন্তু ডানার এই উত্তর কিছু সংখ্যক বিশেষজ্ঞের মধ্যে বিশেষ বিতর্কের সৃষ্টি করল। যাঁরা ডানা'র সমর্থক তাঁরা অবশ্য বিভিন্ন বলিত পর্বতের উৎপত্তিম্থল রূপে ভিন্ন ভিন্ন জিওসিনক্লাইনের অস্তিত্ব অনুমান করতে লাগলেন। তাঁরা বললেন যে বেশ কিছু বলিত পর্বতে বেলেপাথরের সঙ্গে অন্যতম উপাদান রূপে চুনাপাথর (lime stone) বর্তমান। সেগুলির মধ্যে প্রবাল এবং বহু প্রাণীর জীবাশ্ম আছে, যা থেকে বোঝা যায় যে জিওসিনক্লাইনের গভীরতা মোটামুটি 180 মিটারের মধ্যে সীমাবন্ধ ছিল। বহুদিন ধরে পুরু পললের স্তর অবক্ষিপ্ত হবার পর খাত-তলের অবনমন (subsidence) ধীরে ধীরে বন্ধ হয়ে যায়। তখন খাতের উপর ব্রুমে জিপসাম এবং

সৈম্বব লবণের স্তর জমতে থাকে। কোথাও কোথাও খাতের অংশবিশেষ বিচ্ছিন্ন হয়ে হ্রদে পরিণত হয় এবং সেখানে লিগ্নাইট (lignite), কয়লা এবং উদ্ভিদের জীবাশ্মবাহী মিহি দানার কাদাপাথর সঞ্চিত হয়। সমর্থকদের আরো বন্তুব্য যে জিওসিনক্লাইনে অধ্যক্ষিপ্ত প্রাচীনতম পলল ভূগর্ভের বহু কিলোমিটার নীচে গিয়ে রূপান্তরের উপযুক্ত পরিবেশে উপস্থিত হয়। সেখানে দীর্ঘকাল ধরে উচ্চ তাপ ও চাপে সেখান থেকে রূপান্তরের উপযুক্ত পরিবেশে উপস্থিত হয়। সেখানে দীর্ঘকাল ধরে উচ্চ তাপ ও চাপে সেখান থেকে রূপান্তরের উপযুক্ত পরিবেশে উপস্থিত হয়। সেখানে দীর্ঘকাল ধরে উচ্চ তাপ ও চাপে সেখান থেকে রূপান্তরের উপযুক্ত পরিবেশে উপস্থিত হয়। সেখানে দীর্ঘকাল ধরে উচ্চ তাপ ও চাপে সেখান থেকে রূপান্তরিত শিলা সৃষ্টি হয়। তাঁরা আরও বললেন যে, সব জিওসিনক্লাইন একটি সাধারণ রৈখিক খাতে নয়, তার মধ্যে কয়েকটি আবার একাধিক রৈখিক খাতের সমাহার। এরকম ধরনের জিওসিনক্লাইন-সমবায়ের মধ্যবর্তী উচ্চভূমিগুলির নাম দেওয়া হল জিত্যান্টিক্লাইন (geanticlines)। একটা কথা, এই সমবায়গুলির পাললিক ইতিহাস অনেক বেশি জটিল। কারণ বিভিন্ন খাতে অবনমনের হার এবং কাল ভিন্ন ভিন্ন। তাঁরা বললেন যে, জিওসিনক্লাইনগুলি ভূত্বকের দুর্বল অঞ্চল এবং প্রবল পার্শ্বসের ফলে এগুলি ধীরে ধীরে বসে যায়। এই পার্শ্বচাপেই স্তরগুলি বেঁকে যায়, উপরে ওঠে, ভঙ্গো বলিত হয় এবং কোথাও কোথোও ছিঁড়ে গিয়ে নাপে-র মতো বিচিত্র গঠন সৃষ্টি করে। তাদের বিকাশের সঙ্গো নদী, হিমবাহ, বায়ুপ্রবাহ ইত্যাদির ভূক্রিয়ায় এগুলির ক্ষয় হতে থাকে এবং বিভিন্ন ধ্বনের ভূবেচিত্র্য উৎপন্ন প্রক্লিয়ার দিকার হয়।

হল এবং ডানার প্রস্তাবিত জিওসিনক্লাইন মতবাদ এমিল হগ (Emile Haug) তাঁর রচিত Treatise of Geology (1912) গ্রন্থে বিস্তারিতভাবে প্রকাশ করেন এবং বিভিন্ন ভূতাত্ত্বিক কালে ভিন্ন ভিন্ন পর্বতশ্রেণীর ক্ষেত্রে এই মতবাদ প্রয়োগ করার চেম্টা করেন। তিনি বলেন, ভূগোলকের ইতিহাসের যেকোনো কালে ভূভাগের মতো এবং মহাসাগরের মতো নির্দিষ্ট কিছু সংখ্যক জিওসিনক্লাইন ছিল। সংলগ্ন ভূভাগ থেকে প্রচর পরিমাণ পলল এসে এই সব খাতে জমত। তাঁর মতে, ভূভাগের যে সব অঞ্জল স্থিত (stable), সেখানে বিভিন্ন ধরনের পললের সামগ্রিক বেধ জিওসিনক্লাইনের তুলনায় অনেক কম। প্রকৃতপক্ষে হগের এই বন্তুব্যটি সঠিক নয়, এবং বোঝা যায় হগ জিওসিনক্লাইনের প্রকৃত চরিত্র অনুধাবন করতে সক্ষম হননি। আমরা এখন জানি, পর্বতহীন অঞ্জলেও পললের সামগ্রিক বেশ পর্বতশ্রেণীর পাললিক শিলার সামগ্রিক বেধের সমান। যেমন ইংল্যান্ড এবং প্যারিসের অবক্ষেপণ মঞ্চে টার্শারি এবং মধ্যযুগীয় কল্পের পলল বহু সহস্র মিটার। অনুরূপভাবে গাঞ্চোয় বদ্বীপে পললের বেধও বেশ কয়েক কিলোমিটার। তবে এগুলির কোনটিই পর্বতশ্রেণী নয় এবং পর্বতশ্রেণীর অন্যতম প্রধান ভূ-ভৌত বৈশিষ্ট্য, ঋণাত্মক সমস্থিতিক বৈষম্য এসব অঞ্চলে উচ্চমাত্রায় নয়। সুতরাং পললের প্রকৃতির সমতা উভয়ক্ষেত্রেই বৈশিষ্ট্যমূলক হলেও শুধুমাত্র পুরু পাললিক স্তরক্রম বলিত পর্বতের প্রধান বৈশিষ্ট্য নয়। কিন্তু বিশেষজ্ঞরা একমত হলেন যে, পাললিক স্তরসংঘ, তার বেধ যাই হোক না কেন, তাতে যদি নাপে-র মতো শিলাগঠন থাকে এবং একইসঙ্গে বিশেষ ধরনের গ্র্যানাইট থাকে. তবে তা পর্বতশ্রেণী ছাডা অন্য কোথাও পাওয়া যায়না। বলিত নাপে-র অংশবিশেষ সম্পূর্ণ ক্ষয়ে গিয়ে আবৃত শিলাসংঘের অংশবিশেষ যে ফাঁক দিয়ে ভূপুষ্ঠে প্রকাশিত হয়, সেই সব ফাঁক গাঠনিক গবাক্ষ (fensters) নামে পরিচিত। অতি মাত্রায় ক্ষয় হলে নাপে-র অবশেষমাত্র পড়ে থাকে, সেগুলিকে বলে ক্লিপপে। ক্লিপুপে এবং গাঠনিক গবাক্ষ সব বলিত পর্বতের অন্যতম প্রধান বৈশিষ্ট্য। এগলি ছাডা পর্বতশ্রেণীর মধ্যে গ্র্যাবেন এবং হোস্ট দেখা যায়। কিন্তু এই মহীগঠক বৈশিষ্ট্যগুলি এত নগণ্য এবং ছোট মাপের যে, পর্বতশীর্ষের উৎপত্তি যে

অভিশীর্ষ ব্যুত্থানের ফলে, তা মনে করার কোন কারণ নেই। অ্যাল্প্স্ পর্বতমালা ছাড়াও হিমালয় পর্বতমালায় এই সমস্ত বৈচিত্র্যের প্রায় সবগুলিই বিদ্যমান। অপরদিকে ক্যালিডোনীয় পর্বতমালা (Caledonian mountain ranges) ব্রিটিশ দ্বীপপুঞ্জ থেকে স্ক্যান্ডিনেভিয়া পর্যন্ত বিস্তৃত। এগুলি ক্ষয়ে গিয়ে মালভূমিতে পরিণত হলেও এখানেও এই সব গাঠনিক ভূবৈচিত্র্য দেখা যায়। এভাবে অ্যান্ডিজ, অ্যাল্প্স্, ইউরাল (Ural), আলতাই, তিয়েনশান ইত্যাদি যাবতীয় পর্বতমালায় গাঠনিক বৈচিত্র্যগুলির অস্তিত্বের নিদর্শন পাওয়া গেল। সুতরাং এসব থেকে বিজ্ঞানীরা সম্পূর্ণ একমত হলেন যে, জিওসিনক্লাইনে প্রথমে পললের অবক্ষেপণ ও পরে আনুভূমিক পার্শ্বচিপে ও তার সঙ্গো স্বল্পনতি বিশিষ্ট চ্যুতিতল বরাবর বিচ্যুতি ঘটে প্রধানত বলিত পর্বতমালার উৎপত্তি। যদিও পার্শ্ববিচলন (horizontal movement) অত্যন্ত শ্লথগে তবু ভূবিদরা এই গতি মেপে দেখতে সক্ষম হলেন। কিন্তু কেন এই পার্শ্বীয় বিচলন ঘটে পার্শ্বচাপ সৃষ্টি হয়, তার উপযুক্ত ব্যাখ্যা দেওয়া সম্ভব হলনা। উনবিংশ শতান্দীতে বলিত পর্বতমালার উৎপত্তি সম্বন্থে বিভিন্ন মতবাদ প্রস্তাবিত হয়েছিল। সেইসব মতবাদের মূল বস্তব্য ছিল, ক্রমাগত তাপ হারিয়ে ভূগোলকের সংকোচন। সংকোচন জনিত যে ধরনের ভাঁজ শুকনো আপেলের উপর দেখা যায়, লাপ্লাস (Laplace) সেই ভাঁজের সঙ্গে বলিত পর্বতমালার তুলনা করেন।

বিজ্ঞানে কোন মতবাদ বা কোন প্রস্তাব এককভাবে আসেনা। বলিত পর্বতের উৎপত্তি সম্বন্ধে যখন বিভিন্ন পর্যবেক্ষণ এবং সেগুলির ব্যাখ্যা করে নানা ধরনের প্রস্তাব প্রকাশিত হচ্ছিল, সে সময় ভূগোলকের সামগ্রিক বহির্গঠন সম্বন্ধে চিন্তাভাবনা শুরু হয়ে গেছে। ঊনবিংশ শতাব্দীর শেষার্ধে অনেকেই লক্ষ্য করেন যে অধিকাংশ বলিত পর্বতশ্রেণী সরলরৈখিক নয়, সেগুলির আকৃতি বুত্তচাপের। ইয়োরোপ এবং এশিয়ার টার্শারি কালের সব পর্বতমালাই এই আকৃতির। টেলার (F. B. Taylor) 1910 সালে একটি গ্রন্থে বলেন যে, এই ব্রত্তাপের আকৃতি পার্শ্বচাপের অন্যতম প্রধান নিদর্শন। তাঁর মতে, এই পার্শ্বচাপ শিলামণ্ডলে শ্লথগতি বিচলনের (creep-এর) ফলে উৎপন্ন হয়। এই শ্লথগতি বিচলন কেন হয় সে সম্বন্ধে অবশ্য টেলার কিছু বলেননি। ইতিমধ্যে আলফ্রেড বেগেনার কতগুলি নিদর্শনের ভিত্তিতে অনুমান করেন যে, মহাদেশগলি ভূগোলকের ইতিহাসের বিভিন্ন কালে সরে সরে গিয়ে বর্তমান ভূসংস্থানে এসেছে। তাঁর মতে, এই সঞ্জরমান ভূভাগগুলির মধ্যে অবস্থিত মহাসাগরের কোথাও কোথাও জিওসিনক্লাইনের উৎপত্তি ঘটেছিল। যেখানে সঞ্জরমান দুটি ভূভাগ পরস্পর পরস্পরের সঙ্গে মিলিত হতে থাকে সেখানে অন্তর্বর্তী মহাসাগরে জিওসিনক্লাইন উৎপন্ন হয়। ক্রমে উভয় ভূভাগের চাপে অন্তর্বর্তী মহাসাগরে সঞ্চিত পলল বলিত পর্বতরূপে ব্যুখিত হয়। বেগেনারের মতবাদ অবশ্য প্রধানত ভূভাগের সঞ্জার সম্বন্ধে। তাঁর প্রস্তাবিত মহাসঞ্চার প্রকল্পে গিরিজনি একটি অনুসিদ্ধান্ত (corollary)। গিরিজনি সম্বন্ধে তাঁর পর্যবেক্ষণ সীমাবন্ধ ছিল প্রধানত ভূমধ্যসাগরে ও স্কটল্যান্ড ও স্ক্যান্ডিনেভিয়ার কর্ডিলেরা পর্বতশ্রেণীতে। তাঁর মহীসঞ্জার প্রকল্পে (দ্রন্টব্য-মহীসঞ্জার/প্লেট টেকটনিকস) বেগেনার বিভিন্ন তথ্যের মাধ্যমে মহীসঞ্জারের যৌন্ত্তিকতা প্রমাণ করতে কিছুটা সক্ষম হলেও আটকে গেলেন মহীসঞ্চারের কারণ নির্দেশ করতে। বেগেনারের প্রধান বন্ধব্য ছিল যে, সিআল স্তরে তৈরি ভূভাগ নীচের সিমা স্তরের উপর দিয়ে সঞ্জারিত হয়। অর্থাৎ তাঁর মতে, মহাসাগরের তলভাগ স্থির, শুধু সঞ্চার ঘটেছে ভূভাগের। হ্যারল্ড জেফ্রিস (Harold Jeffrys) পদার্থবিদ্যার যুক্তিতে এ ধরনের সঞ্জার সম্পূর্ণ অবাস্তব বলে ঘোষণা করলেন।

গিরিজনি এবং মহীসঞ্জার যখন এইরকম এক সংকটের মুখে, তখন এক সম্পূর্ণ অন্যদিক থেকে পার্শ্বচাপের একটি সন্তাব্য ব্যাখ্যা প্রস্তাবিত হল। আর্থার হোমস (Arthur Holmes) ভূগোলকে বর্তমান বিভিন্ন শিলার তেজস্ক্রিয়তা সম্বন্ধে গবেষণা করছিলেন। তিনি দেখালেন যে ভূত্বকের বিভিন্ন আগ্নেয় এবং রূপান্তরিত শিলায় বহু তেজস্ক্রিয় মৌল এবং সাধারণ মৌলের তেজস্ক্রিয় আইসোটোপ বর্তমান। এগুলির তেজস্ক্রিয় বিভাজনে প্রতিনিয়ত তাপের উৎপত্তি ঘটে। শিলার পরিবহন শক্তি খব কম বলে এগুলি ভূগর্ভের বিভিন্ন অঞ্চলে ক্রমে সঞ্চিত হতে থাকে। দীর্ঘকাল ধরে এই তাপ পুঞ্জীভূত হওয়ায় ভূগর্ভের সেইসব অঞ্চলে ক্রমে সঞ্জিত হতে থাকে। দীর্ঘকাল ধরে এই তাপ পুঞ্জীভূত হওয়ায় ভূগর্ভের সেইসব অচলে শিলার তাপমাত্রা বৃদ্ধি পায় এবং সেইজন্য তাদের ঘনত্ব কমে যায়। ফলে সমস্থিতিক সাম্য (isostatic equilibrium) বিনন্ট হয়। হোম্স্ অনুমান করলেন যে দীর্ঘমেয়াদীব্যাপী এই প্রক্রিয়ায় ধীরে ধীরে শিলামণ্ডলে কতকগলি ঊর্ধ্বমুখী পরিচলন স্রোতের উদ্ভব ঘটে। এই পরিচলন স্রোত ভূপৃষ্ঠের দিকে যতই প্রবাহিত হয় ততই তার গলনাঙ্ক কমতে থাকে। এবং কোন এক বিশেষ গভীরতায় পৌঁছলে উপরিন্যস্ত চাপ (superincumbent pressure) কমে গিয়ে শিলার পরিচলন স্রোত আরো উপরে উঠে ভূপুষ্ঠে পৌঁছে যায় এবং সাগরের জলের সংস্পর্শে এসে তা শীতল হয়। তবে শীতল হওয়ার আগে ভূপুষ্ঠের কাছাকাছি বিস্তীর্ণ অঞ্চলে পরিচলন স্রোতগুলি দু'দিকে ছড়িয়ে যায় এবং সেগুলির বিস্তার ও শীতলীভবন একযোগে চলতে থাকে। শীতল হবার ফলে এই পরিচলন স্রোতগুলির ঘনত্ব বৃদ্ধি পায় এবং সেগুলি তখন অপেক্ষাকৃত কম ঘনত্বের শিলামণ্ডলের মধ্যে দিয়ে নামতে থাকে। ফলে পরিচলন স্রোতের নিম্নমুখী একটি ধারা উৎপন্ন হয়। শেষ পর্যন্ত নিম্নমুখী ধারাটি আবার গিয়ে ভূগর্ভের অত্যন্ত গভীরে উচ্চতাপ অঞ্চলে পৌঁছে যায় এবং আবার উত্তপ্ত হয়ে ঊর্ধ্বমুখী পরিচলন স্রোত রূপে পুনরাবর্তিত হয়। হোমস শিলামণ্ডলের একটি ঊর্ধ্বমুখী প্রবাহ এবং তা থেকে উৎপন্ন একটি নিম্নমুখী প্রবাহ নিয়ে একটি সম্পূর্ণ পরিচলন কোষ (convection cell)-এর প্রস্তাব করেন। এই প্রস্তাব সমর্থন করলেন ড্যালি (R. A. Daly)। তিনি বললেন যে, এধরনের পরিচলন কোষ সম্ভব। ভুকম্প তরঞ্জোর সঞ্চারে ভুগর্ভে যে অ্যাস্থেনোস্ফিায়ার অনুমিত হয়েছিল, হোম্সের প্রস্তাবে তার প্রকৃত চরিত্র ব্যাখ্যা করা গেল। পরিচলন কোষ মতবাদের সমর্থকরা বললেন যে, দুটি অভিসারী কোষের (converging cells) অন্তর্বর্তী অঞ্জলে ভূত্বকে প্রচণ্ড পার্শ্বচাপের উৎপত্তি ঘটে রৈখিক খাত বা জিওসিনক্লাইনের উৎপত্তি হবে। অন্যদিকে দুটি অপসারী কোষের (diverging cells) অন্তর্বর্তী অঞ্চলের ভূত্বক ছিঁড়ে গিয়ে গ্রস্ত উপত্যকার উৎপত্তি ঘটবে। কালক্রমে পুঞ্জীভূত তাপ ভূপৃষ্ঠে অবমুক্ত হলে ধীরে ধীরে পরিচলন কোষগুলি বন্ধ হয়ে যাবে। তখন গ্রস্ত উপত্যকার অবনমন এবং পর্বতমালার ব্যুত্থানও বন্ধ হয়ে যাবে।

ক্রমে পরিচলন কোষের বিভিন্ন ধরনের মডেল প্রস্তাবিত হল। কেউ কেউ পরিচলন কোষের উৎপত্তি ধরলেন অ্যাস্থেনোস্ফিায়ারে। কারো কারো মতে পরিচলন কোষের উৎপত্তি নিম্ন ম্যান্টেলে। আবার কেউ কেউ বললেন, পরিচলন কোষ সমগ্র ম্যান্টেলকে প্রভাবিত করে। ব্যুশভেল্ড কম্প্লেক্স (Bushveld complex)-এর মতো প্রাচীন উদ্বেধ (intrusive)-গুলিতে বহু শিলা এবং মণিকখণ্ড দেখা যায় যেগুলি ভূপৃষ্ঠে অস্থিত (unstable)। যেসব বিশেষজ্ঞ সমগ্র ম্যান্টেলকে পরিচলন কোষের ক্রিয়াক্ষেত্র বলে ভাবলেন, তাঁরা এইসব অস্থিত শিলাখণ্ড তাঁদের প্রস্তাবের তথ্যরূপে পেশ করলেন। বেগেনারের সমর্থকেরা ইয়োরোপের ক্যালিডোনীয় পর্বতমালা এবং মার্কিন যুক্তরাস্ট্রের আপালাশীয়ান পর্বতমালা (Appalachian mountains)-এর সাধারণ কিছু গুরুমণিকের (heavy minerals) অস্তিত্ব থেকে আপালাশীয়ান যে ক্যালিডোনীয় পর্বতমালার পশ্চিমাংশ ছিল, সেই প্রস্তাব করেন। ফলে তাঁদের মডেল এবং বেগেনারের মহীসঞ্জারণ মডেল-এর সমর্থনে অনুমান করতে হয় যে ইয়োরোপ এবং মার্কিন যুক্তরাফ্ট একটি অখণ্ড ভূভাগের অন্তর্ভুক্ত ছিল। সুতরাং পরিচলন কোষ মতবাদের স্বপক্ষে এই ভূভাগে একটি অপসারী পরিচলন কোষের অস্তিত্বের কথা ভাবতে হয়। প্রশ্ন হল, তিরিশ কোটি বছর আগে সেই অখণ্ড ভূভাগটি ভেঙে গিয়ে যদি আটলান্টিক মহাসাগরের উৎপত্তি ঘটে থাকে, তবে এযুগেও ভূগোলকের কোথাও না কোথাও অনুরূপ অপসারী কোষ বর্তমান থাকবে।

পরিচলন কোষের ঊধর্বমুখী প্রবাহ সম্বন্ধে বিশেষজ্ঞরা অনুমান করলেন যে, পারিকুটিন আগ্নেয়গিরির উৎপত্তি এরূপ একটি পরিচলন প্রবাহের প্রভাবে। তাঁরা ভূপৃষ্ঠে বেশ কয়েকটি অঞ্চলকে তপ্ত অঞ্চল (hot spot) বলে চিহ্নিত করলেন। দেখা গেল, ভূগর্ভ থেকে নির্গত তাপের পরিমাণ এইসব অঞ্চলে অত্যধিন। লোহিত সাগরগর্ভে এরূপ তিনটি তপ্ত অঞ্চল ঊনবিংশ শতকে রুশ জাহাজ ভিতিয়াজ থেকে চিহ্নিত করা হয়েছিল। কালে এরূপ তপ্ত অঞ্চল পাওয়া গেল পূর্ব আফ্রিকার গ্রস্ত উপত্যকা অঞ্চলের অনেকগুলি জায়গায় এবং হিন্দুকুশ পর্বতের পশ্চিমে উত্তরপূর্ব থেকে দক্ষিণ পশ্চিম বরাবর একটি বলয় ধরে অনেকগুলি জায়গায়। সুতরাং হোম্সের প্রস্তাবিত ঊধর্বমুখী পরিচলন কোষ অসন্তব বা অবাস্তব বলে নাকচ করা গেলনা। ঊধর্বমুখী প্রবাহ স্বীকার করলে সঞ্চাত যুক্তিতে নিম্নমুখী প্রবাহও স্বীকার করতে হয় এবং দুয়ের সমন্বয়ে পরিচলন কোষকেও মেনে নিতে হয়। এসব সত্ত্বেও জেফ্রিস এবং তাঁর সমর্থকরা বলতে চাইলেন যে, পরিচলন কোষে উৎপন্ন পার্শ্বচাপ বা টান-প্রসারণে গ্রস্ত উপত্যকা বা বলিত পর্বতের উৎপত্তির ব্যাখ্যা যথোপযুক্ত নয়।

যাঁরা পরিচলন কোষের প্রভাবে বলিত পর্বতের উৎপত্তি সমর্থন করলেন, তাঁরা এই মতবাদের আলোকে অ্যাল্পস্ এবং হিমালয় পর্বতমালা পুঙ্খানুপুঙ্খ রূপে অনুসন্ধান করে দেখতে লাগলেন। হিমালয় পর্বতমালার ক্ষেত্রে একটি বিচিত্র তথ্য পাওয়া গেল। দেখা গেল যে পূর্বে নাম্চাবারোয়া শৃঙ্গা থেকে



চিত্র 3.5 : ভূপৃষ্ঠে বিভিন্ন স্থিত অঞ্চল (a : রুশ ও বাল্টিক শিল্ড; b : সাইবেরীয় শিল্ড; c : চীনা শিল্ড; d :ভারতীয় শিল্ড; e : ইথিওপীয় ও আরবীয় শিল্ড; f : ক্যারু মালভূমি; g : পশ্চিম আফ্রিকার শিল্ড; h : অস্ট্রেলীয় শিল্ড; i : কানাডীয় শিল্ড; j : ব্রাজিলীয় শিল্ড)। x এবং y যথাক্রমে মহাজীবীয়-টারশারি ও পুরাজীবীয় গিরিবলয়।

পশ্চিমে গিল্গিট পর্যন্ত হিমালয় পর্বতমালার আকৃতি বৃত্তচাপের। কিন্তু এই দুটি বিন্দুতে পর্বতমালা হঠাৎ বেঁকে দক্ষিণপূর্ব এবং দক্ষিণ পশ্চিম দিকে চলে গেছে। ভূবিদরা এই বাঁককে চুলের কাঁটার বাঁকের সঙ্গে তুলনা করে নাম দিলেন হেয়ারপিন বেন্ড (hairpin bend)। বিশেষজ্ঞরা বললেন যে, ভারতীয় ভূখণ্ড এবং তিব্বতের মধ্যে বর্তমান জিওসিনক্লাইনে অবক্ষিপ্ত পলল ব্যুত্থিত হয়ে যখন হিমালয় পর্বতমালার ক্রমবিকাশ ঘটতে থাকে, তখন ভারতীয় ভূখণ্ড একটি স্থিত অঞ্চল স্বরূপ অত্যন্ত সরল ভূখণ্ড রূপে বর্তমান ছিল। বিজ্ঞানীরা এই সবল সুস্থিত ভূখণ্ডের নাম দিয়েছিলেন শিল্ড (shield) (চিত্র : 3.5)। গিরিজনি সম্বন্ধে যাঁরা গবেষণা করছিলেন তাঁরা বললেন যে, সবকটি বলিত পর্বতে দুটি শিল্ডের মধ্যবর্তী কোন অঞ্জলে জিওসিনক্লাইনের উৎপত্তি ঘটে। শিল্ডের পার্শ্ববিচলন ঘটতে পারে কিন্তু শিল্ড বলিত হতে পারেনা। তবে টান-প্রসারণে (tension) শিল্ডে গ্রস্ত উপত্যকার উদ্ভব ঘটে। এইসব গ্রস্ত উপত্যকা গ্র্যাবেনের থেকে সম্পূর্ণ আলাদা কারণ এ ধরনের গ্রস্ত উপত্যাকার ভূমিতে ক্ষারীয় বা অতিক্ষারীয় লাভার আবরণ বর্তমান। তাঁরা একথাও বললেন যে, কোন অঞ্চলে গিরিজনি প্রক্রিয়া নিষ্ক্রিয় হয়ে গিয়ে দীর্ঘকাল ধরে ভূক্ষয় ঘটে একটি অঞ্জল শিল্ডে পরিণত হতে পারে। তখন আর সেখানে শিলামণ্ডল জিওসিনক্লাইনের মতো দুর্বল অঞ্চল থাকেনা। উদাহরণ স্বরূপ তাঁরা বিম্থ্যপর্বতের দক্ষিণে ডেকান শিল্ড, সাইবেরিয় শিল্ড, উত্তর ইয়োরোপের বাল্টিক শিল্ড, তিব্বতীয় শিল্ড, আফ্রিকা মহাদেশের উত্তর থেকে দক্ষিণে পরপর তিনটি শিল্ডের উদাহরণ দিলেন। তাঁদের মতে, এই শিল্ড অঞ্চল ছিঁডে গিয়ে গ্রস্ত উপত্যকা উৎপন্ন হয় এবং সম্ভবত মহাসাগরের উৎপত্তি ঘটে।

বিংশ শতাব্দীর ত্রিশের দশকের শেষে দ্বিতীয় মহাযুদ্ধের ফলে গিরিজনি এবং মহীসঞ্জার—দুটি প্রকল্পই মোটামুটি স্থগিত হয়ে যায়। ইতিমধ্যে 1930 সালে গ্রিনল্যান্ডে একটি দুর্ঘটনায় বেগেনার মারা যান। বেগেনারের প্রধান সমর্থকদেরও অনেকে দেহরক্ষা করেন। ফলে চল্লিশের দশকে মহীসঞ্জার প্রকল্প এবং তার সঙ্গো জড়িত অন্যান্য প্রকল্পগুলি সাময়িকভাবে ঐতিহাসিক প্রস্তাবের পর্যায়ে নেমে যায়। পঞ্জাশের দশকে মহীসঞ্জার প্রকল্প অনেক নতুন ধরনের তথ্য এবং সূক্ষ্ম পর্যবেক্ষণের ভিত্তিতে আবার সংগঠিত হয়, বেগেনারের মূল প্রস্তাব সংশোধিত হয় এবং আসে ভূগোলকীয় সংগঠন প্রক্রিয়া (geotectonics) সম্বন্ধে প্রস্তাব।

#### 3.4 সারাংশ

বড় মাপের ভূভাগ গঠনকারী এবং মূলত উল্লম্ব তল বরাবর ক্রিয়াশীল বল যার ফলে ভূত্বক সাগরপৃষ্ঠের উপর উন্নীত হয়, তাকে মহীজনি বা এপাইরোজেনি বলে। মহীজনির প্রভাবে শিলাস্তর বলিত বা বিচ্যুত হয়না, তবে স্বল্প আনত হতে পারে। যে ধরনের ভূ-সংক্ষোভে ভূত্বকের বিস্তীর্ণ অঞ্জল উঠে পড়ে ভূভাগ রুপে প্রকাশ পায় কিংবা সমুদ্রপৃষ্ঠের নিচে অবনমিত হয়ে সাগর সৃষ্টি করে, তাকে মহীগঠক ভূ-আন্দোলন বলে।

ভঞ্চিল পর্বতের উৎপত্তির বিভিন্ন পর্যায়কে গিরিজনি বা আরোজেনি বলে। গিরিজনি আলোড়নের কারণ ও প্রভাব ভূবিজ্ঞানীরা অনুসন্ধান করেছেন। এঁদের মধ্যে ডানা, হল, টেলার, জেফ্রিস, হোম্স, ড্যালি প্রমুখ অন্যতম।

### 3.5 নির্বাচিত উল্লেখ্য গ্রন্থ

- গিরিজনি এবং মহীজনি সম্বন্ধে আধুনিক তথ্যের ভিত্তিতে বিস্তারিত আলোচনা আছে মহীসঞ্জার প্রক্রিয়ার অধ্যায়ে।
- 2) Dixey, F., The East African Rift System, *Overseas Geology and Mineral Resources Bulletin*, Supplement No. 1, 1956.
- Willis, Bailey, *East African Plateaus and Rift valleys*, Carnegie Institution of Washington, Publication No. 470, 1936.
- 4) Lahiri, Dipankar and Roy Sobhen, *The Earth Alive : Its Processes and Features*, Allied Publishers, 1984.
- 5) Bemmelen, R. W. Van, Mountain Building, Martinus Nijhoff, The Hague, 1954.
- 6) Holmes, Arthur, Principles of Physical Geology, Nelson, 1972.
- 7) লাহিড়ী দীপংকর, সংসদ ভূবিজ্ঞানকোষ, 1999।

### 3.6 প্রশ্নাবলী

#### (A) বড় উত্তরভিত্তিক প্রশ্ন :

- 1) গ্রস্ত উপত্যকা ও গ্র্যাবেনের মধ্যে আকার, আকৃতি এবং শিলাজাত পার্থক্য কী কী?
- 2) মহীজনি কী ধরনের ভূগোলকীয় ঘটনা? গিরিজনি আর মহীজনির কারণ কতটা স্বতন্ত্র?
- 3) বলিত পর্বতশ্রেণীগুল বৃত্তচাপের আকৃতির হয় কেন?
- 4) স্থিত বা শিল্ড অঞ্জলের সঙ্গো কেন শুধু গ্রস্ত উপত্যকা জড়িত?
- কোনো গ্রস্ত উপত্যকা কি বলিত পর্বতশ্রেণীকে ছেদে করে যেতে পারে? অন্তত একটি উদাহরণ চাই।

#### (B) সংক্ষিপ্ত উত্তরভিত্তিক প্রশ্ন :

- 1) গ্র্যাবেন এবং গ্রস্ত উপত্যকার প্রান্তে উন্নত অঞ্চলের নাম কী? উভয়ের ভূমিপৃষ্ঠের বর্ণনা।
- 2) গ্র্যাবেন এবং গ্রস্ত উপত্যকার প্রান্তিক চ্যুতি কী ধরনের চ্যুতি? এরূপ চ্যুতির কারণ কী?
- 3) বলিত গিরিবলয়ের বিভিন্ন গঠনের সচিত্র বর্ণনা।
- 4) গ্রস্ত উপত্যকার ভূমিতে কী ধরনের শিলা দেখা যায়?
- 5) বলিত পর্বতে কেন বেসল্ট পাওয়া যায়না?

6) পূর্ব আফ্রিকার গ্রস্ত উপত্যকা কিসের নিদর্শন? ভূভাগে অনুরূপ নিদর্শন আর কোথায় পাওয়া

হ্যা

না

- 8) ভারতে গ্রস্ত উপত্যকা কি কোথাও আছে? থাকলে, কোথায়?

9) গ্রস্ত উপত্যকায় সাগরের অনুপ্রবেশ ঘটলে কি তা জিওসিনক্লাইনে পরিণত হয়?

6) গ্রস্ত উপত্যকার ভূমিতে যেসব হ্রদ থাকে, সধারণত সেগুলি স্বাদু জলের নয়।

- 7) নাপে-র অনুরূপ গঠন গ্রস্ত উপত্যকায় পাওয়া যায়না কেন?

গ্র্যাবেন বলিত পর্বতের অন্যতম বৈশিষ্ট্য।

ক্লিপ্পে পর্বতশিখরে দেখা যায়।

সব মহাসাগরই জিওসিনক্লাইন।

8) জিওসিনক্লাইন ভূভাগের অংশ।

উত্তর সংকেত

4) 3.3-এর শেষ 2 para

5) গ্র্যাবেনে উচ্চ ভূতাপপ্রবাহ দেখা যায়।

2) নাপে বলিত পর্বতের উপত্যকায় পাওয়া যায়।

গাঠনিক গবাক্ষ বলিত পর্বতের উপত্যকায় দেখা যায়।

9) স্থিত অঞ্চল ভেঙে গিয়ে জিওসিনক্লাইন উৎপন্ন হয়।

10) স্থিত অঞ্চল ভেঙে গিয়ে গ্রস্ত উপত্যকা তৈরি হয়।

(C) প্রশ্লোত্তরমূলক :

- যায় ?

- 2) 3.2
- 3) 3.3

3.7

(A) 1) 3.2

2) 3.2, 3.3

3) 3.3

5) 3.3

(B) 1) 3.2

4) 3.2

- 5) 3.3
- 6) 3.2
- 7) 3.3
- 8) 3.2
- 9) 3.2
- (C) 1) না
  - 2) হাঁা
  - 3) হাঁা
  - 4) হাঁ
  - 5) না
  - 6) হাঁা 7) না
  - 8) না
  - 9) না
  - 10) হাঁ

# একক 4 🗆 মহীসঞ্জার (Continental Drift) ও পাত সঞ্জালন (Plate Tectonics)

গঠন

4.1 প্রস্তাবনা

উদ্দেশ্য

- 4.2. বেগেনারের সময়ে প্রচলিত ধারণা
- 4.3 বেগেনারের সংগৃহীত এবং প্রদর্শিত তথ্য
  - 4.3.1 তটরেখার জ্যামিতিক সাদৃশ্য
  - 4.3.2 জীবাশ্মের নিদর্শন
  - 4.3.3 ভু-কালের নিদর্শন
  - 4.3.4 ভূ-ভৌত নিদর্শন
  - 4.3.5 পুরাজলবায়ুর নিদর্শন
- 4.4 মহীসঞ্জারের কারণ
- 4.5 দ্বিতীয় মহাযুদ্ধের আগে বেগেনারের সমর্থন এবং সমালোচনা
  - 4.5.1 বেগেনারের সমর্থকগণ
  - 4.5.2 বেগেনারের সমালোচকগণ
- 4.6 পুরাচৌম্বকত্ব
- 4.7 মধ্যমহাসাগরীয় শৈলশ্রেণী
- 4.8 মহীসঞ্জার প্রকল্পের নবজাগরণ
- 4.9 অবনমন বলয়
- 4.10 দুটি স্পর্শক প্লেটের সংযোগ রেখা
- 4.11 প্লেট টেক্টনিক্সের বিরোধীগণ
- 4.12 সারাংশ
- 4.13 নির্বাচিত উল্লেখ্য গ্রন্থ
- 4.14 প্রশ্নাবলী
- 4.15 উত্তর সংকেত

### 4.1 প্রস্তাবনা

ভূগোলকের বিভিন্ন পৃষ্ঠবৈচিত্র্য যেমন, ভূভাগ এবং জলভাগের সংস্থান, পর্বতশ্রেণী ও সমতলভূমির সংস্থান ইত্যাদি চিরকাল একরকম ছিলনা—এরূপ সন্দেহের প্রথম প্রকাশ দেখা যায় ফ্রান্সিস বেকন (Francis Bacon, 1560-1626)-এর রচনায়। তাঁর Novum Organum গ্রন্থে তিনি বলেন যে, দক্ষিণ আমেরিকার উত্তর-পূর্ব উপকূল এবং আফ্রিকার উত্তর-পশ্চিম উপকূলের তটরেখা যেন পরস্পরের খাঁজে খাঁজে মিলে যায়। বেকন অবশ্য তাঁর প্রদর্শিত এই নিদর্শনের কোনো ব্যাখ্যা দেবার চেন্টা করেননি। অন্টাদশ শতাব্দীতে এই নিদর্শনের ভিত্তিতে অনুমান করা হয় যে দক্ষিণ আমেরিকা এবং আফ্রিকা একদা একটি অখণ্ড ভূভাগের অংশ ছিল। পরে সেই ভূভাগটি ভেহে গিয়ে তার খণ্ড দুটির অপসারী সঞ্চার ঘটে এসেছে দক্ষিণ আটলান্টিক মহাসাগরের জলভাগ এবং তার দুদিকে দক্ষিণ আমেরিকা ও আফ্রিকার ভূভাগদ্বয়। তবে তার আগে, সপ্তদশ শতাব্দী থেকেই এই বিষয়ে বিতর্কের শুরু। 1666 খ্রীন্টাব্দে প্লাসেৎ (Francois Placet) একটি গ্রন্থে বলেন যে, দক্ষিণ আমেরিকা আফ্রিকা থেকে বিযুক্ত হয়েছিল বাইবেলের মহাপ্লাবনের পরে।

সপ্তদশ শতাব্দীতে ভূতাত্ত্বিক কাল সম্বন্থে মানুযের কোন ধারণা ছিলনা। তা সত্ত্বেও বেকন এবং প্লাসেতের প্রদন্ত নিদর্শন এবং অনুমানের গুরুত্ব অস্বীকার করা যায়না। সেযুগে আটলান্টিস নামে একটি ভূভাগের বিলুপ্তির কথা বিশেষভাবে প্রচলিত ছিল। প্লাসেৎ বলেন, সেই ভূভাগ বসে গিয়ে দক্ষিণ আটলান্টিকের আবির্ভাব ঘটে। কঁৎ দ্য বুফোঁ (Conte de Buffon, 1707-1788) প্লাসেতের এই প্রস্তাবে আকৃষ্ট হন। তার কিছুকাল পরে কেউ কেউ বেলেপাথরে কণার আকার এবং গুরুমণিকের (heavy minerals) বিভিন্ন প্রজাতির অনুপাত বিশ্লেষণ করে বলেন যে, গ্রেট ব্রিটেনের ক্যালিডোনীয় (Caledonian) পর্বতমালার পললের উৎস ছিল উত্তর এবং পূর্ব দিকে। একই ভাবে উত্তর আমেরিকার আপালাশীয় (Appalachian) পর্বতমালার বেলেপাথর পরীক্ষা করে বিজ্ঞানীরা অনুমান করেন যে সেগুলির পললের উৎস ছিল দক্ষিণে এবং পূর্বে। অর্থাৎ ক্যালিডোনীয় এবং আপালাশীয় পর্বতমালার পাললিক শিলাগোষ্ঠীর পললের উৎস ছিল একই। উনবিংশ শতকে স্লাইডার-পেলিগ্রিনি (Sneider-Pelligrini) অনুমান করেন যে, আটলান্টিকের পূর্ব এবং পশ্চিম তটরেখা পরস্পর পরস্পরের থেকে ক্রমশ সরে গেছে। ফলে আটলান্টিক মহাসাগরের আয়তন ক্রমে বেড়ে গেছে। 1910 সালে টেলর (F. B. Tralor) প্রথম বলেন যে, ইয়োরোপ এবং এশিয়ার টার্শারি কালের সব পর্বতশ্রেণীই বৃত্তচাপের আকৃতির।

1880 সালে আলফ্রেড বেগেনার জন্মগ্রহণ করেন। 1906 সালে জলবায়ু সংক্রান্ত তথ্য সংগ্রহের জন্য তিনি উত্তর-পূর্ব গ্রিনল্যান্ড পরিদর্শন করেন। পরবর্তীকালে 1912 এবং 1930 সালে বেগেনার আবার গ্রিনল্যান্ডে গিয়েছিলেন।

#### উদ্দেশ্য

এই এককটি পাঠ করে আপনি

- ভূবিজ্ঞানের দুটি অত্যন্ত গুরুত্বপূর্ণ প্রকল্প—মহীসঞ্জার (Continental Drift) ও পাতসঞ্জালন তত্ত্ব (Plate Tectonics)—সম্পর্কে বিশেষভাবে অবহিত হবেন এবং আলোচনা করতে সক্ষম হবেন।
- মহীসঞ্জার সম্পর্কে প্রস্তাবিত বেগেনার-এর প্রকল্পটির বিভিন্ন দিক, সংগৃহীত তথ্য প্রমাণ ও নিদর্শন, মতবাদের সমর্থন ও বিরুদ্ধ সমালোচনা—এসব বিষয় বিবৃত করতে পারবেন।
- গত পাঁচ দশকের নতুন নতুন তথ্য ও পর্যবেক্ষণের ফলশ্রুতি হিসাবে পাতসঞ্চালন তত্ত্ব বা প্লেট টেক্টনিক্স-এর উপস্থাপন কিভাবে সঞ্চরণশীল ভূভাগের প্রস্তাবকে পুনরুজ্জীবিত ও বহুলগ্রাহ্য করেছে—এই সম্পর্কে ব্যাখ্যা করতে পারবেন।

### 4.2 বেগেনারের সময় প্রচলিত ধারণা

বেগেনারের অনেক আগে থেকে ভূগোলক সম্বন্ধে বিজ্ঞানীদের কতকগুলি বদ্ধমূল ধারণা ছিল। এগুলির মধ্যে সবচেয়ে গুরুত্বপূর্ণ হল গলিত অবস্থায় ভূগোলকের উৎপত্তি, তারপর ক্রমশ শীতল হওয়া। এই ধারণার ভিত্তিতে ভূগোলকের ক্রমিক সংকোচনে ভূপৃষ্ঠের যাবতীয় ভূবৈচিত্র্যের উৎপত্তি অনুমান করা হত। একটি শুকিয়ে যাওয়া আপেলের উপর সংকোচনজনিত বলিরেখার সঙ্গে তুলনা করা হত ভূপৃষ্ঠে পর্বতমালাগুলির বিন্যাসের। দ্বিতীয়ত, সিমার উপরে সিআল স্তরের অস্তিত্বকে ব্যাখ্যা করা হত অভিকর্ষ ক্ষেত্রে জল আর তেলের মিশ্রণ ভেঙে গিয়ে তেল যেমন ভেসে ওঠে, তেমনি গলিত ভূগোলক থেকে সিআল ভেসে উঠেছে বলে।

অবশ্য ঊনবিংশ শতকেই বিভিন্ন মহাদেশে প্রাণী এবং উদ্ভিদজগতের কিছু কিছু বৈশিষ্ট্যের প্রতি বিজ্ঞানীদের দৃষ্টি আকৃষ্ট হয়। বেগেনারের বিজ্ঞানের জগতে আবির্ভাব মোটামুটি এই সময়ে। তবে তাঁর সংগৃহীত তথ্য আলোচনার আগে তিনি এই প্রচলিত ধারণাগুলি কীভাবে গ্রহণ করেছিলেন দেখা যাক।

ভূগোলকের সংকোচনে পর্বতমালার উৎপত্তি সম্বন্থে প্রচলিত ধারণা খন্ডন করতে গিয়ে তিনি বললেন, শুকিয়ে যাওয়া আপেলের উপর বলিরেখাগুলি যথেচ্ছভাবে (randomly) বিন্যস্ত। টেলরের দেখানো জ্যামিতিক সম্পর্ক, পর্বতমালার বিন্যাসের যা প্রধান বৈশিষ্ট্য, তার কোনো আভাস সেখানে নেই। তাছাড়া, ভূগোলকের উৎপত্তি গলিত অবস্থায় কিনা, এ সম্বন্থেও বেগেনার সন্দেহ প্রকাশ করলেন। তিনি বললেন, গলিত ভূগোলক থেকে সিআল যদি জলের উপরে তেলের মতো ভেসে উঠেই থাকে, তবে ভূভাগে হিমালয়ের মতো পর্বতশ্রেণী, পামিরের মতো মালভূমি, গাঞ্চোয় সমভূমি এবং নেদারল্যান্ডসের মতো নিম্নভূমির পরিবর্তে থাকবে 840 মি উচ্চতার সমভূমি। সাগরতলও তার বৈচিত্র্য হারিয়ে হবে 3795 মি গভীর একটি সমভূমি। সুপ্রাচীন ভূগোলকে বাস্তব চিত্র এই চিত্র থেকে সম্পূর্ণ আলাদা। তাছাড়া, ভূভাগের কত শতাংশ কত উচ্চতায়, কোন গভীরতায় সাগরতলের কত শতাংশ, তাও এক এক মহাদেশে এক এক রকম, মহাসাগরগুলিতেও ভিন্ন ভিন্ন। জল এবং তেলের মিশ্রণের বিমিশ্রণের অনুরূপ যদি সিআল আর সিমার বিমিশ্রণ হত, তবে উচ্চতা পরিলেখতে (hypsographic curve) মাত্র দুটি গণগরিষ্ঠ মান (mode) থাকত। একটি গড় সাগরপৃষ্ঠ থেকে 840 মি উধ্বের্ব ও অন্যটি 3795 মি নীচে।

বেগেনার ভূগোলকের গলিত অবস্থায় উৎপত্তি সম্বন্ধে আরও দ্বিধাগ্রস্ত হলেন তেজস্ক্রিয়তা আবিষ্কারের ফলে। তাঁরই মতো আরও অনেকেরই মনে হল, উৎপত্তির পর ভূগোলকের ক্রমে শীতল এবং কঠিন হয়ে ওঠাই বরং অসম্ভব। অনেক বেশি সম্ভব তেজস্ক্রিয় বিভাজনে উৎপন্ন তাপে ভূগোলকের অভ্যন্তরে উম্নতার ক্রমাগত পূরণ। সম্ভবত ভূগর্ভে উম্নতার সামগ্রিক হ্রাস কখনো ঘটেনি।

# 4.3 বেগেনারের সংগৃহীত এবং প্রদর্শিত তথ্য

#### 4.3.1 তটরেখার জ্যামিতিক সাদৃশ্য

জলবায়ুবিদ বেগেনার গ্রিনল্যান্ডে মহাদেশীয় হৈম আবরণের ক্রিয়ায় উৎপন্ন বিভিন্ন ভূমির্প পুঙ্খানুপুঙ্খরূপে পর্যবেক্ষণ করার সুযোগ পেয়েছিলেন। এগুলির মধ্যে প্রধান রেখিত হৈম অজ্ঞান (striated glacial pavement)। এরকম হৈম অজ্ঞান পাওয়া গেল দক্ষিণ আফ্রিকায়। পরে অনুরূপ হৈম অজ্ঞানের সন্থান মিলল ভারতীয় উপদ্বীপে, অস্ট্রেলিয়ায় এবং দক্ষিণ আমেরিকায়। এই হৈম অজ্ঞানের উপরে আছে কার্বনিফেরাস উপকল্লের (carboniferous period) পাললিক শিলার স্তর। হৈম অজ্ঞানে মেরুবিন্দু থেকে মাত্র 10° অক্ষরেখার মধ্যে তৈরি হয়ে থাকে। তাই বেগেনারের প্রাথমিক অনুমান হল যে, কার্বনিফেরাস উপকল্লের শেষে দক্ষিণ আফ্রিকা, দক্ষিণ আমেরিকা, অস্ট্রেলিয়া এবং দক্ষিণাত্য ভূগোলকের সেযুগের দক্ষিণ মেরুর প্রায় 10° অর্থাৎ 80° দ অক্ষরেখার মধ্যে বর্তমান ছিল। তাঁর অনুমান থেকে দুটি সম্ভাবনা পাওয়া গেল। এক : ভূভাগগুলি পরস্পর সংলগ্ন বা অখন্ড এক মহাভূভাগের মধ্যে ছিল। দুই : পরবর্তী 28 কোটি বছরে দক্ষিম মেরু এই অখন্ড ভূভাগ থেকে সরে গেছে, বা অখন্ড ভূভাগ দক্ষিণ মেরু থেকে সরে গেছে। পরে অখন্ড ভূভাগটি বিভিন্ন খন্ডে ভেঙে গিয়ে অংশগুলি তাদের বর্তমান অবস্থানে সঞ্জারিত হয়েছে। ভূতাগের সঞ্জার প্রক্রিয়ার নাম বেগেনার দিলেন মহীসঞ্জার (continental drift)। বেগেনারের এই তথ্য জ্যামিতিক মিল (geometric fit) নামে সুপরিচিত। জ্যামিতিক মিলের প্রথম ইঞ্জিত দিয়েছিলেন অবশ্য ফ্রান্সিস বেকন।

তবে দক্ষিণ আমেরিকা আর আফ্রিকার তটরেখা যেমন খাঁজে খাঁজে মিলে যায়, তেমন মিল কিন্তু অন্য ভূখণ্ডগুলির ক্ষেত্রে দেখানো বেগেনারের পক্ষে সম্ভব হল না। তাই এই বিষয়ে বেগেনারের মতের প্রতিবাদীরা সোচ্চার হলেন।

বেগেনারের সময়ে অ্যান্টার্কটিকা সম্বন্ধে জানা থাকলেও সেখানকার ভূবিদ্যা সম্বন্ধে তেমন কিছুই জানা ছিলনা। কার্বনিফেরাস কালের হৈম অঙ্গান সেখানে সম্বান করা বাতুলতা। তবে আন্টার্কটিকার তটরেখা, বিশেষ করে যেদিকটা রয়েছে দক্ষিণ আমেরিকার দিকে, তার সঙ্গো অনেকটাই সাদৃশ্য আছে আফ্রিকা আর অস্ট্রেলিয়ার। বেগেনারের সমর্থকরা বললেন, আধুনিক তটরেখা ধরে মেলাতে গেলে মিলবে কেন? অখণ্ড ভূভাগটি ভেঙে যাবার পর অন্তত 15 কোটি বছর ধরে চলেছে নানান ধরনের ভূতাত্ত্বিক ক্রিয়া। অবশেষে তাঁরা মহীসোপানের সঙ্গো মহীঢালের সংযোগরেখা ধরে সাদৃশ্য খোঁজা যুক্তিসন্মত বলে মনে করলেন। এই নতুন অন্বেষণ পদ্ধতিতে আরো অনেকগুলি ভূভাগকে জোড়া গেল। কিন্তু ফাঁক থেকে গেল ক্যারিবীয় (Carribean) অঞ্চলে। সেখানে থেকে গেল একটি অর্ধচন্দ্রাকৃতি বিশাল ফাঁক (চিত্র : 4.1)। আবার ইয়োরোপের পশ্চিম তটরেখার সঙ্গো উত্তর আমেরিকার পূর্ব তটরেখারও সম্পূর্ণ মিলন হলোনা। 1964 সালে বুলার্ড (Edward Bulard) 1000 মিটার সমগভীরতা রেখা (isobath) ধরে কমপিউটার ব্যবহার করে দেখালেন অস্ট্রেলিয়া এবং অ্যান্টার্কটিকা এবং একটি ভূভাগের সঞ্জা দক্ষিণ আমেরিকার পূর্ব তটরেখা সম্পূর্ণ মিলে যায়।



চিত্র 4.1 : কমপিউটার ব্যবহৃত করে বুলার্ডের জোড়া ভূভাগ

### 4.3.2 জীবাশ্মের নিদর্শন

কার্বনিফেরাস উপকল্পের শেষ এবং পার্মিয়ান উপকল্পের প্রায় শেষ পর্যন্ত এই মহাভূভাগে ধীরে ধীরে আবহাওয়ার পরিবর্তন ঘটেছে। মেরু অঞ্চলের জলবায়ুর স্থানে এসেছে নাতিশীতোম্ব জলবায়ু। এই উম্বতর জলবায়ুতে আবির্ভাব ঘটেছিল এক স্থলজ উদ্ভিদকুলের (flora)। এই উদ্ভিদকুলের বিভিন্ন উদ্ভিদের জীবান্ম পাওয়া যায় দক্ষিণ আফ্রিকা, দক্ষিণ আমেরিকা, উপদ্বীপ ভারত, অস্ট্রেলিয়া এবং পরে অ্যান্টার্কটিকায়। এছাড়া পাওয়া গেল স্থলচর প্রাণী (mesosaurus)-এর জীবান্ম সব ক'টি ভূভাগে। অস্ট্রেলিয়া এবং দক্ষিণ আমেরিকার অঙ্কগর্ভ (marsupial) প্রাণীর গায়ের পরজীবীর জীবাশ্ম পাওয়া গেছে আফ্রিকা আর ব্রাজিলে। পাওয়া গেছে কেঁচোর জীবাশ্মও। একমাত্র অখন্ড মহাভূভাগের অস্তিত্ব মেনে না নিলে কোনোটিরই ব্যাখ্যা সম্ভব নয়।

সুয়েস (Eduard Suess, 1831-1914) তাঁর গ্রন্থে এই ভূতাগের নাম দেন গভোয়ানাল্যান্ড। ফলে ইয়োরোপ, উত্তর আমেরিকা এবং এশিয়ার অবশিষ্টাংশ নিয়ে স্বতন্ত্র একটি মহাভূতাগের অস্তিত্ব অনুমান করার প্রয়োজন হল। ডু টয়েট (Alexander du Toit) এই ভূতাগের নাম দিলেন লরেসিয়া (Laurasia)। লরেসিয়ায় গন্ডোয়ানাল্যান্ডের কোনো উদ্ভিদ বা প্রাণীর জীবাশ্ম পাওয়া যায়না। তাই দুটি ভূতাগের মধ্যে একটি দুরতিক্রম্য জলভাগের অস্তিত্বও অনুমান করতে হল। সুয়েস এই জলভাগের নাম দিলেন *টেথিস* (Tethys)। গন্ডোয়ানাল্যান্ডের অস্তিত্বের অন্য নিদর্শনও দিলেন ডু টয়েট।

### 4.3.3 ভূ-কালের নিদর্শন

তেজস্ক্রিয় বয়োনিরূপণ (radiometric dating) পদ্ধতি প্রয়োগ করা হল দুটি পরস্পর সংলগ্ন শিলাদেহের উপর। তার একটি প্রাচীনত্ব 50 কোটি বছর, অন্যটির প্রাচীনত্ব 200 কোটি বছর। তখনকার দিনের স্থৃল পদ্ধতিতেও দুটি শিলাদেহের প্রাচীনত্বের তারতম্য অস্পফ্ট নয়। দেখা গেল যে, দুটি শিলাদেহের সংযোগরেখাটি ঘানার রাজধানী আক্রার কাছে আটলান্টিক মহাসাগর গর্ভে নেমে গেছে। দক্ষিণ আমেরিকাকে আফ্রিকার সঙ্গে মেলালে এই সংযোগরেখাটি ওঠার কথা ব্রেজিলের সাও লুইতে (Sao Luis) (চিত্র : 4.2)। ক্ষেত্রসমীক্ষা (fieldwork) করতেই এই রেখাটি ঠিক যেখানে আশা করা গিয়েছিল, সেখানেই পাওয়া গেল। বেগেনার এই নিদর্শন সম্বন্ধে বললেন যে, একটি ছিঁড়ে যাওয়া বই-এর পাতার বিভিন্ন খণ্ড সাজাতে গেলে যেমন বিভিন্ন খণ্ডের লেখাগুলি কতটা মিলে গেছে তা দেখা দরকার, দুটি শিলাদেহের সংযোগরেখার নিদর্শন যেন তেমনই এক তথ্য।



চিত্র 4.2 : ডু টয়েট প্রস্তাবিত দুটি ভিন্ন প্রাচীনত্বের শিলাদেহের সংযোগরেখা

#### 4.3.4 ভূ-ভৌত নিদর্শন

উচ্চতা পরিলেখতে যে দুটি গণগরিষ্ঠ মানের কথা বেগেনার বলেছিলেন, বস্তুত তা ভূ-ভৌত নিদর্শন (geophysical evidence)। এটি অবশ্য মহীসঞ্জারের প্রত্যক্ষ কোনো নিদর্শন নয়। তবে প্রমাণ করে যে ভূপৃষ্ঠ, বিশেষ করে শিলামঙল ইস্পাতের মতো কঠিন নয়। বারবার তার কোনো কোনো অংশ উঠে গেছে, কোনো কোনো অংশ নেমে গেছে। অবশ্য সমস্থিতি (isostasy) সম্বন্ধে জানা গিয়েছিল উনবিংশ শতকের মাঝামাঝি। তবে বেগেনারের আগে ভূপৃষ্ঠ যে সাম্যাবস্থা থেকে কতদূরে, তার এমন মাত্রাসাপেক্ষ তথ্য আর কেউ দেননি।

বেগেনার বললেন, শিলামণ্ডল ইস্পাতের মতো কঠিন নয়। বরং রাস্তা সারাবার পিচের মতো। হাতুড়ির আঘাতে তা কাচের মতো চূর্ণ হয়, কিন্তু স্থুপাকারে ফেলে রাখলে তা কয়েকদিনের মধ্যে চারপাশে ছড়িয়ে পড়ে। পিচের এই ধর্ম শিলামণ্ডলেরও আছে। তবে পিচের ক্ষেত্রে তরল পদার্থের মতো ব্যবহারের কালটি যেখানে কয়েকদিন, শিলার ক্ষেত্রে সেখানে কয়েক কোটি বছর। শিলার বা যেকোনো কঠিন বস্তুর এই অবস্থা বোঝাতে rheid কথাটি ব্যবহৃত হল। rheid বিকৃতির নিদর্শনরূপে পেশ করা হলো অ্যাল্প্স্, অ্যান্ডিজ এবং হিমালয় পর্বতমালায় দীর্ঘকাল স্থায়ী প্রবল চাপে উৎপন্ন ঘনসংবন্ধ বলিরেখার নিদর্শন।

#### 4.3.5 পুরাজলবায়ুর নিদর্শন

হৈম অঞ্চান ছাড়াও অখণ্ড গভোয়ানাল্যান্ডের অস্তিত্বের আরো প্রমাণ ক্রমে ক্রমে সংগৃহীত হল। যেমন, একটি গাছের গুঁড়ির প্রস্থচ্ছেদে সমকেন্দ্রিক বৃত্তাকৃতি দাগ। এগুলি উম্নমণ্ডলের গাছে থাকেনা। আবার বড় আকারের সরীসৃপ আর প্রবালপ্রাচীর গঠনের উপযোগী প্রবাল উম্ন জলবায়ু অঞ্চলের বৈশিষ্ট্য। এই তিন ধরনের নিদর্শন পাওয়া গেল প্রস্তাবিত গভোয়ানা ভূভাগের অন্তর্গত ভূভাগগুলিতে বর্তমান মধ্য ও উধ্ব পার্মিয়ান যুগের স্তরসঙ্ঘে। গভোয়ানা মহাভূভাগে নিম্ন পার্মিয়ান স্তরসঙ্ঘে এগুলি অনুপস্থিত। কিন্তু উত্তরের লরেসিয়া ভূভাগের ঐ কালের স্তরসঙ্ঘে সেগুলি প্রায় সর্বত্র পাওয়া যায়। এই জাতীয় আরও অনেক নিদর্শনের ভিত্তিতে বোঝা গেল যে, কার্বনিফেরাস উপকল্প থেকে বর্তমান কাল পর্যন্ত ইয়োরোপের জলবায়ু উম্ব থেকে ধীরে ধীরে নাতিশীতোম্বে পরিবর্তিত হয়েছে। আবার, স্পিট্স্বার্গেনের (Spitsbergen) জলবায়ু উপ-উম্বমণ্ডলীয় থেকে মেরুদেশীয় জলবায়ুতে রূপান্তরিত হয়েছে। আবার এই একই কাল-পরিসরে আফ্রিকার মেরুদেশীয় জলবায়ুর স্থানে এসেছে উম্বমণ্ডলীয় জলবায়ু।

রেখিত (striated) হৈম অঞ্চান ছাড়াও হিমযুগের ভূতাত্ত্বিক নিদর্শনও আছে গন্ডোয়ানাল্যান্ডের সবক-টি ভূভাগে। নিম্ন পার্মিয়ান যুগের স্তরসঙ্ঘের শুরু সর্বত্র হিমকর্দম দিয়ে। অনেক জায়গায় তার ঠিক উপরেই আছে সবুজাভ রঙের একটি কাদাপাথরের স্তর। এই সবের ভিত্তিতে গন্ডোয়ানা ভূভাগে মহাদেশীয় হৈম আবরণের পরিসর এবং হিমবাহের সঞ্চারপথের অনুমিত চিত্র (চিত্র : 4.3) প্রস্তাব করা হল। তারই কেন্দ্রবিন্দুরূপে সেযুগের দক্ষিণ মেরুর অবস্থান প্রস্তাবিত হল এযুগের 50° দ অক্ষাংশে আর 45° পু দ্রাঘিমাংশে।



চিত্র 4.3 : বিভিন্ন ভূভাগে পার্মোকার্বনিফেরাস হৈম আবরণের পরিসর (সাদা অংশগুলি হৈমমুকুট। তীরচিহ্ন দিয়ে দেখান হয়েছে দক্ষিণ মেরুর গভোয়ানা ভূভাগে অবস্থান।)

এই দক্ষিণ মেরুবিন্দু থেকে 90° উত্তরে সেযুগের বিযুবরেখা থাকার কথা। অর্থাৎ সেই বিযুবরেখা বিস্তৃত ছিল এযুগের 40° উ অক্ষরেখা দিয়ে। অনুমিত লরেসিয়া ভূভাগে এখানে পাওয়া গেল ইয়োরোপের কার্বনিফেরাস কয়লাসঙ্খ। তবে সেযুগেও নিরক্ষীয় অঞ্চলে এযুগের মতোই ছিল উষর অঞ্চল। উষর অঞ্চলে অবক্ষেপণ ঘটে লবণ এবং অন্যান্য বাষ্পীভবনজাত (evaporite) মণিক স্তরের। কার্বনিফেরাস উপকল্পে এশিয়া, ইয়োরোপ এবং উত্তর দক্ষিণ-আমেরিকার মধ্য দিয়ে কার্বনিফেরাস বিযুবরেখার বিস্তার (চিত্র : 4.4) অনুমান করলেন বেগেনার। ইউরাল পর্বত, উত্তর ইয়োরোপের জেখ্স্টাইন লবণ অবক্ষেপ (Zechstein salt deposit) এবং উত্তর-পশ্চিম ব্রাজিলের কার্বনিফেরাস কয়লার স্তর কার্বনিফেরাস বিযুবরেখা নির্ধারণে উপযুক্ত নিদর্শনরূপে বিবেচিত হল।



চিত্র 4.4 : কার্বনিফেরাস কালের শেষে বিযুবরেখার অবস্থান (গোল বিন্দুগুলি এভাপোরাইট অবক্ষেপ ও অনিয়তাকৃতি বিন্দুগুলি গন্ডোয়ানা কয়লার অবক্ষেপ)

বেগেনার অবশ্য কাল-পরিসরে আরো পিছিয়ে গিয়ে ডেভনিয়েন উপকল্পে একটিমাত্র ভূভাগ আর একটি মাত্র জলভাগের অস্তিত্ব ভেবেছিলেন। তিনি ভূভাগের নাম দেন প্যান্জিয়া (Pangea), আর জলভাগের নাম দেন প্যান্থালাসা (Panthalassa)। তাঁর মতে, কার্বনিফেরাসের শেষে এবং পার্মিয়ানের শুরুতে এটি দ্বিখণ্ডিত হয়ে লরেসিয়া এবং গন্ডোয়ানাল্যান্ড সৃষ্ট হয়। সুয়েস উত্তর ইয়োরোপে একটি স্থায়ী ভূখণ্ড (shield) থেকে লরেসিয়ার অংশগুলির সঞ্চার প্রস্তাব করেন। তিনি এই শিল্ডের নাম দিয়েছিলেন আঙ্গারাল্যান্ড (Angaraland)। কেউ কেউ লরেসিয়ার সমার্থক শব্দরূপে আঙ্গারাল্যান্ড শব্দটি ব্যবহার শুরু করেন। তবে আঙ্গারাল্যান্ড শব্দটি বিশেষ প্রচলিত হয়নি।

### 4.4 মহীসঞ্জারের কারণ

বেগেনার অবশ্য মহীসঞ্জারের কারণ সুষ্ঠভাবে ব্যাখ্যা করতে পারেননি। তাঁর প্রস্তাবিত Pohlflucht বল মেরুর দিক থেকে ভূভাগগুলির বিষুবরেখার দিকে সঞ্জারের জন্য কার্যকর বলা হয়। এটির মূলে অনুমান করা হয় মেরুবিন্দু আর নিরক্ষরেখার মধ্যে অভিকর্ষজনিত বলের তারতম্য। এই বলের অস্তিত্ব সবাই স্বীকার করে নিলেও তা মহাদেশের আকারের ভূখণ্ডকে সঞ্জালন করতে কতটা কার্যকর তা যথেষ্ট বিতর্কের বিষয় হলে দাঁড়াল। Pohlflucht ছাড়াও বেগেনার আরও কতকগুলি বলকে মহীসঞ্জারের জন্য দায়ী করেন। এগুলির মধ্যে একটি হল জোয়ারের বল (tidal force)। তাঁর অনুমান ছিল যে এই বলের প্রভাবে বাহিরের সিআল স্তর নীচের সিমা স্তর থেকে স্থলিত হয়ে নিচু জায়গায় সঞ্জারিত হয়। বেগেনার তাঁর জীবদ্দশায় মহীসঞ্জারের কোনো নির্ভরযোগ্য কারণ নির্দেস করে যেতে পারেন নি।

# 4.5 দ্বিতীয় মহাযুদ্ধের আগে বেগেনারের সমর্থন এবং সমালোচনা

#### 4.5.1 বেগেনারের সমর্থকগণ

বেগেনারের প্রধান সমর্থকদের মধ্যে ডু টয়েটের নাম আমরা আগেই পেয়েছি। 1926 সালে ড্যালি (R. A. Daly) বেগেনারের প্রস্তাবের সমর্থনে কতকগুলি বিকল্প বলের প্রস্তাব করেন। তাঁর মতে, মেরু অঞ্চল এবং বিযুবরেখা—দুদিক থেকেই মধ্যবর্তী নিম্ন অঞ্চলে ভূভাগের স্থলন ঘটেছিল। কিন্তু ঠিক কীভাবে এই স্থলন শুরু হয় তার কোনো ব্যাখ্যা পাওয়া গেলনা। আগাঁদি (E. Argand) এবং স্টাওব (R. Staub) অ্যাল্প্স্ পর্বতমালায় তাঁদের অনুসন্ধান থেকে পর্বতের উৎপত্তিতে পার্শ্বচাপের যে ভূমিকা আছে, একটি বিস্তৃত নিবন্ধে এই মত প্রকাশ করেন। বেইলি (E. B. Bailey) উত্তর আটলান্টিকের দু'দিকে ক্যালিডোনীয় ও আর্মোরীয় পর্বতশ্রেণীর সাদৃশ্য উল্লেখ করেন। এঁরা বেগেনারের মতোই ভূভাগের স্থিতাবস্থা সন্থন্থে বিশেষ আস্থাবান ছিলেন না।

তবে মহীসঞ্জারের কারণ সম্বন্ধে প্রধান সমর্থন এল হোম্সের (A. Holmes) কাছ থেকে। শিলার মধ্যে তেজস্ক্রিয় মৌলের বিভাজন নিয়ে তিনি গবেষণা করছিলেন। শুরুতে তাঁর লক্ষ্য ছিল শিলার প্রাচীনত্ব নিরূপণ। কিন্তু যখন মহীসঞ্জার বিতর্কের বিষয় হয়ে দাঁড়াল, তখন তিনি ভূগোলকের একটি কার্যকর মডেল নিয়ে চিন্তা শুরু করলেন। তাঁর প্রস্তাবিত মডেলে ভূগোলকে সবার উপরে আছে গ্র্যানাইট জাতীয় শিলার স্তর, মধ্যে ডায়োরাইটের স্তর এবং সবার নীচে পেরিডোটাইটের স্তর। এই তৃতীয় স্তরটি অ্যাস্থেনোস্ফিয়ার। আগ্নেয়গিরির অগ্ন্যচ্ছ্লাস ভূগর্ভে তেজস্ক্রিয় মৌলের বিভাজন উৎপন্ন তাপ সম্পূর্ণ মোচন করার পক্ষে যথেন্ট নয়। কিন্তু এই তাপের প্রভাবে যদি ভূত্বকের উপস্তরে (substratum) পরিচলন স্রোতের উৎপত্তি ধরা যায়, তবে তা যুক্তিসন্মত হতে পারে। মহাদেশের নীচে পরিচলন স্রোতের উৎপত্তি ঘটলে তার টানে মহাদেশীয় ভূভাগের সঞ্জার সম্ভব। এরুপ পরিচলন স্রোতের অনেকগুলি সংকট মানের (critical values) কথাও ভাবা হল। তার মধ্যে ছিল পেষণমাত্রা (compressibility), তাপ পরিবাহিতা (thermal conductivity) এবং অ্যাস্থেনোস্ফিয়ারের সান্দ্রতা। স্থানীয় কেন্দ্রবিশেষে উর্ধ্বর্গামী পরিচলন স্রোতের উৎপত্তি ঘটবে। উর্ধ্বতম স্তরের নীচে এরূপ পরিচলন স্রোত ছড়িয়ে পড়ার ফলে একশ্রেণীর অনিয়তাকৃতি শিলাদেহ সৃষ্টি হবে।

শিলার বিভিন্ন ভৌত ধর্ম, ভূগর্ভে সম্ভাব্য উন্নতা এবং চাপ ও ভূ-কালের (geologic time) সুদীর্ঘ ব্যাপ্তি ইত্যাদির মাত্রাসাপেক্ষ (quantitative) বিচার করে হোম্স্ ভূভাগের এবং সাগরতলের নীচে দু'ধরনের পরিচলন স্রোতের প্রভাবের কথা বললেন। একটি ক্ষেত্রে পাশাপাশি দুটি স্রোত অভিসারী (convergent), অন্যটিতে অপসারী (divergent)। প্রথমটির প্রভাবে শিলামণ্ডল বা ভূত্বক সংকুচিত হয়, পার্শ্বচাপে উৎপন্ন হয় জিওসিনক্লাইন এবং তা থেকে বলিত পর্বতের। দ্বিতীয়টির প্রভাবে ভূত্বক বিদীর্ণ (rifted) হয় (চিত্র : 4.5)। হোম্স্ জানতেন সিআলে তেজস্ক্রিয় মৌলের আধিক্য। তাই তাঁর প্রস্তাবে ধরা হল ভূতাগ বিদীর্ণ হবে এবং ভূতাগের প্রান্তে পৌঁছে তার অর্থাৎ পরিচলন স্রোতের নিম্নগতি ঘটে উৎপন্ন হবে জিওসিনক্লাইন। হোম্সের এই মডেল পরিচলন মডেল রূপে পরিচিত হল।



চিত্র 4.5 : হোম্সের পরিচলন স্রোতের মডেল (দুটি পর্যায়ে পচিলন স্রোতের প্রভাবে উৎপন্ন জিওসিনক্লাইন)

হোম্স্-এর মডেলের সাহায্যে পূর্ব আফ্রিকার গ্রস্ত উপত্যকার মতো গ্রস্ত উপত্যকা, জিওসিনক্লাইন জিওসিনক্লাইনে সঞ্চিত পলল বলিত হয়ে বলিত পর্বতমালার উৎপত্তি, পর্বতমালার সঙ্গে যুক্ত আগ্নেয়শিলা ও রূপান্তরিত শিলাদল, ঋণাত্মক সমস্থিতিক বৈষম্য বলয়, তার সঙ্গে আগ্নেয়গিরি বলয় ও ভূকম্প বলয়ের সমান্তরলতা ইত্যাদির যুক্তিসন্মত ব্যাখ্যা সম্ভব।

#### 4.5.2 বেগেনারের সমালোচকগণ

বেগেনারের তীব্র সমালোচনাও হল। অনেকে মহীসঞ্জারের নিদর্শনগুলি সম্বন্ধে সন্দেহ প্রকাশ করে বললেন, এগুলির বিকল্প ব্যাখ্যা অধিকতর গ্রহণযোগ্য। আবার কেউ কেউ মহীসঞ্জারের কারণ সম্বন্ধে প্রশ্ন তুললেন এবং তার যুক্তিসন্মত হেতুর অভাবে মহীসঞ্জারকেই নাকচ করতে ইতস্তত করলেন না।

নিদর্শনগুলির সততা সম্বন্ধে কতকগুলি সন্দেহ বিশেষ কৌতুহলোদ্দীপক। যেমন, ওয়াশিংটন (H. A. Washington) বললেন, যে দুটি শিলাদেহের সংযোগরেখা সম্বন্ধে বেগেনার ছাপার অক্ষরের সাদৃশ্য টেনেছিলেন, পশ্চিম উত্তর-আফ্রিকা আর উত্তরপূর্ব দক্ষিণ আমেরিকায় সেগুলি সম্পূর্ণ স্বতন্ত্র ধরনের। শুকার্ট (C. Schuert) বললেন, দুটি স্তরক্রমের সাদৃশ্য সে দুটির পরস্পর সংলগ্ন থাকার নিদর্শন, এটি এক অদ্ভুত যুক্তি। পরে, 1932 সালে বিচ্ছিন্ন ভূভাগগুলিতে প্রাণীকুল এবং উদ্ভিদকুলের সাদৃশ্যের কারণ সম্বন্ধে শুকার্ট সেগুলির কতকগুলি যোজকের (landbridges) মাধ্যমে সঞ্চার বলেন। কিন্ডু সিআলে তৈরি এইসব যোজক ভেঙে গিয়ে কীভাবে নিচের অধিক ঘনত্বের সিমায় ডুবে গেল তা ব্যাখ্যা করলেন না।

তবে সবচেয়ে বড় বাধা হয়ে দাঁড়াল মহীসঞ্চার প্রক্রিয়ার কারণ নির্দেশ। ভূগোলকের ইতিহাসে সুদীর্ঘকাল ধরে প্যানজিয়া একটি একক ভূভাগরপে বর্তমান থেকে হঠাৎ পুরাজীবীয় কল্পের শেষে এসে দ্বিখণ্ডিত হল কেন। বেগেনার আর টেলর টার্শারি উপকল্পের পর্বতশ্রেণীর উৎপত্তির কথাই বলেছেন, কিন্তু প্রাচীনতর ক্যালিডোনীয় ও আর্মোরীয় পর্বতশ্রেণীর উৎপত্তির কারণ নির্দেশ করেন নি। পদার্থবিদ জেফ্রিজ (H. Jeffrys) বললেন, Pohlflucht বল দিয়ে কিংবা জোয়ারের বল (tidal force) দিয়ে ভূত্বকের আকৃতির পরিবর্তন কল্পনা করা বাতুলতা। ভূত্বকের সহতামাত্রা (strength) সম্বন্থে সামান্য ধারণা থাকলে এমন প্রস্তাব দেওয়া যেতনা। জেফ্রিজ হিসাব করে দেখালেন সিআলের উপরে এবং নীচে জোয়ারের বলের অন্তরফলের মাত্রা বর্গ সেন্টিমিটারে 10-5 ডাইন, আর রকি পর্বতমালার উত্থানের জন্য সেখানে ন্যনতম 10<sup>9</sup> ডাইন বল দরকার। মহীসঞ্জারের জন্য প্রয়োজনীয় জোয়ারের বলে মাত্র একবছরেই ভূগোলকের আবর্তন বন্ধ হয়ে যাবে। তাছাড়া, দীর্ঘকালব্যাপী চাপের প্রভাবে ভূভাগের সঞ্জারও অবাস্তব। তাঁর মতে, তাই যদি হয়, তবে সাগরতল এতদিনে বৈচিত্র্যহীন সমতল ভূমিতে পর্যবসিত হয়ে যাবার কথা, যা বাস্তবে হয়নি। তাছাড়া, Pohlflucht বলের সঞ্চার তো হওয়ার কথা উত্তর-দক্ষিণ বরাবর, তাতে আমেরিকা পশ্চিমে সরে কী করে! এসব ছাড়াও জেফ্রিজ বেগেনারের প্রতি ব্যক্তিগত কটাক্ষও করেন। বলেন, বেগেনার জলবায়ু বিশেষজ্ঞ। ভূগোলকের আবর্তনের সঙ্গো বায়ুপ্রবাহের গতিপথ কতটা সম্পর্কিত, তা তিনি বিবেচনা করতে পারেন। কিন্তু সেই পদ্ধতি শিলামণ্ডলের ক্ষেত্রে ব্যবহার করা যায়না, কারণ শিলামন্ডল বায়তে তৈরি নয়। স্পষ্টতই বোঝা যায়, জেফ্রিজের সমালোচনা কোনো কোনো নিদর্শন সম্বন্থে ভব্যতার সীমা অতিক্রম করে গিয়েছিল।

তবে শুধু জেফ্রিজই নন, আরও এক ধাপ এগিয়ে বেগেনারের বিজ্ঞানমনস্কতা সম্বন্ধে সন্দেহ প্রকাশ করেছিলেন লেক (P. Lake, *Geol. Mag. 59, 338-46),* বেরি (E. W. Berry) এবং চেম্বারলিন (W. T. Chamberlin)। বেগেনার তাঁর গ্রন্থের শেষ সংস্করণে এঁদের অভিযোগের কিছুটা উত্তর দেবার চেষ্টা করলেও সমালোচকদের একটি বড় অংশকে সন্তুষ্ট করতে গেলে তাঁর মতবাদ বা প্রস্তাবের যে মৌলিক পরিবর্তন দরকার ছিল, তা করার মতো সময় বেগেনার পাননি। বেগেনারের সময়েও ভূবিদ্যা তার কৈশোর অবস্থা কাটিয়ে উঠতে পারেনি। তখনো কার্যকর বহুমুখী পরিকল্পনা (multiple working hypothesis) ছিল ভূবিদ্যার যে কোনো প্রস্তাবের ভিত্তি। কোনো বিশেষ ঘটনার কারণ অনুসন্ধানে একটি নির্দিষ্ট পরীক্ষার কর্মসূচী, যেমন গোর্শ্কভ নির্দেশিত ম্যাগমা প্রকোষ্ঠের তাৎক্ষণিক উৎপত্তি সম্বন্ধে কামচাট্কা অন্তরীপে ভূকম্প তরঞ্জোর বিস্তার সম্বন্ধীয় পরীক্ষা সম্ভব হয়েছে পঞ্চাশের দশকের শেষে।

1930 সালে গ্রিনল্যান্ডে হৈম ফাটলে পড়ে গিয়ে বেগেনারের আকস্মিক মৃত্যু মহীসঞ্চার, ফলে প্রথম ভূগোলকীয় (global) সংগঠন সম্বন্ধে অনুসন্ধানকে বেশ কয়েক বছর পিছিয়ে দিল।

### 4.6 পুরাচৌম্বকত্ব

1905 সালে অ্যাল্প্স্ পর্বতে অনুসন্ধানরত ভূবিজ্ঞানীরা শিলার একটি বিশেষ ধর্ম সম্বন্ধে আভাস পান। চৌম্বকত্ব বলতে আমরা বুঝি পদার্থবিশেষের এমন একটি ধর্ম যা বর্তমানে পরীক্ষা করে দেখা যায়। ভূগোলক চৌম্বক শক্তিসম্পন্ন। এজন্য একটি চৌম্বক শলাকা সুতো দিয়ে ঝুলিয়ে দিলে তা বার কয়েক আন্দোলিত হয়ে চুম্বকীয় মধ্যরেখা (magnetic meridian) বরাবর স্থির হয়ে যায়। আগে ভাবা হত, ভূগোলকের চৌম্বকত্ব বরাবর এখনকার মতোই ছিল। যাঁরা স্থাবরত্বের ধারণার (stabilist concept) সমর্থক তাঁরা সম্ভবত ব্যতিক্রমী কোনো তথ্যের সন্ধান পাননি।

অ্যাল্পস্ পর্বতে ভূবিজ্ঞানীরা সেই ব্যতিক্রমী তথ্যের সম্ধান পেলেন। সেখানে বিভিন্ন যুগের আগ্নেয়শিলায় চৌম্বকশস্তি সম্পন্ন ম্যাগনেটাইট মণিকের কেলাসাণু (microcrystals) বর্তমান যুগের স্থানীয় চৌম্বক মধ্যরেখা থেকে সম্পূর্ণ অন্য দিক বরাবর সংবদ্ধ। ম্যাগনেটাইটের মতো চৌম্বক মণিকের এই বিচিত্র গ্রথনের উৎপত্তি ব্যাখ্যা করতে গিয়ে তাঁরা বললেন, লাভায় চৌম্বক মণিকের কেলাসাণুর সুতোয় ঝোলান চুম্বকের মতো স্থানীয় চৌম্বক মধ্যরেখা বরাবর সংবদ্ধ। ম্যাগনেটাইটের মতো চৌম্বক মণিকের কেলাসাণুর সুতোয় ঝোলান চুম্বকের মতো স্থানীয় চৌম্বক মধ্যরেখা বরাবর সজ্জিত হবার প্রবণতা থাকে। লাভা কঠিন হতে হতে সবগুলি চৌম্বক অণুর গ্রথন সম্পূর্ণ না হলেও অধিকাংশই এভাবে সজ্জিত হয়ে যায়। পরিসংখ্যান বিদ্যায় এই গ্রথনকে বলে পক্ষপাতী দিকস্থাপন (preferred orientation)। এরুপ গ্রথনের মাত্রাসাপেক্ষ বিশ্লেষণ করে সেই লাভার উৎপত্তির কালে সেই স্থানের ভূ-চৌম্বক মধ্যরেখা নিরূপণ করা যায়। তখন ভূচৌম্বকত্ব সম্বন্থে অন্যান্য জ্রাতব্য বিষয়গুলি যেমন, চৌম্বকক্ষেত্রের উত্তর ও দক্ষিণ মেরু, তার তীব্রতা (intensity), চৌম্বকনতি (magnetic declination)—সবই জানা যায়। দেখা গেল, কোনো এক অজ্ঞাত কারণে ভূগোলকের ইতিহাসে বারবার চৌম্বকমেরুর দিক পরিবর্তিত হয়েছে। শুধু তাই নয়, মাঝে মাঝে কোনো কোনো যুগের উত্তর চৌম্বক মেরু সম্বন্ধে সব তথ্যকে বলা হলো পুরাচৌম্বকত্ব (palaeomagnetism)।

জীবাশ্মের ভিত্তিতে স্তরের পারম্পর্য নির্ধারণের পদ্ধতি ঊনবিংশ শতক থেকে চালু ছিল। বিংশ শতাব্দীর প্রথম দিক থেকে পুরাচৌম্বকত্বের ভিত্তিতে স্তরের পারম্পর্য নির্ধারণের পদ্ধতি চালু হল। দেখা
গেল, জীবাশ্মের তুলনায় পুরাচৌম্বকত্বের পম্বতির ক্ষেত্র অনেক বেশি প্রসারিত। জীবাশ্মের ব্যবহার শুধু একই স্তরের ক্ষেত্রে সীমাবন্দ্ব। জীবাশ্মের ভিত্তিতে স্থির করা যায়না একটি বেলেপাথরের স্তর আর একটি আগ্নেয়শিলা সমপ্রাচীনত্বের কিনা; কিন্তু বেলেপাথরের আন্তর্কণারস্রে (intergranular pore space) অবক্ষেপণজাত লৌহসমৃন্দ্ব যোড়কে (ferruginous cement) দিকস্থাপিত চৌম্বকাণু আর একই ভূ-কালে (geologic time) নিঃসৃত লাভার চৌম্বকাণুর গ্রথন একই। তেজস্ক্রিয় মৌলের ভিত্তিতে প্রাচীনত্ব নিরূপণের আগে পুরাচৌম্বকত্বের সাহায্যে কোনো পাললিক স্তরকে কোনো লাভার সমকালীন বলে স্থির করা গেল।

চৌম্বক উত্তর মেরুর দক্ষিণমুখী অবস্থাকে বলা হল চৌম্বক ব্যুৎক্রম (magnetic reversal)। বিংশ শতকের চল্লিশের দশকের শেষে দুটি ভিন্ন অঞ্চলে একই কালের দুটি স্তর থেকে দুটি ভিন্ন উত্তর মেরু এবং দক্ষিণ মেরু পাওয়া গেল। প্রথমে এই অবাস্তব তথ্যের আরো তথ্যের ভিত্তিতে সমর্থন (confirmation) এবং সত্যতা যাচাই (verification) করার জন্য বিভিন্ন ভূভাগ থেকে একই কালের এবং আলাদাভাবে প্রতিটি ভূভাগ থেকে বিভিন্ন কালের শিলাদেহের পুরাচৌম্বকত্ব পরীক্ষা করে দেখা হল। দেখা গেল, একই ভূভাগ থেকে পাওয়া যেকোনো একটি চৌম্বক মেরু বিভিন্ন কালে বিভিন্ন। আপাতদৃষ্টিতে, ভূপৃষ্ঠের তুলনায় ভূগোলকের চৌম্বক মেরুর সঞ্চার (drift) ঘটেছে বলে সন্দেহ হল। বিভিন্ন চৌম্বকমেরুর



চিত্র 4.6 : তিনটি যুগে ভূভাগগুলির অবস্থান

অবস্থানবিন্দু যোগ করে যে রেখাটি পাওয়া গেল, তার নাম দেওয়া হল মেরুসঞ্জার রেখা (polar wandering curve)। পঞ্জাশের দশকে হস্পার (Hosper), ফিশার (Fischer), ব্লাকেট (Blackett) এবং যাটের দশকের মাঝামাঝি রুনকর্ন (Runcorn) দেখলেন যে, দুটি স্বতন্ত্র ভূভাগে পাওয়া মেরুসঞ্জার রেখাও সম্পূর্ণ স্বতন্ত্র। ফলে ভূগোলকের মেরুর সঞ্জার সম্ভাবনা নাকচ করতে হল। একমাত্র সুষ্ঠু ব্যাখ্যা হয়ে দাঁড়াল ভূভাগের সঞ্জার। দক্ষিণ আমেরিকা, দক্ষিণ আফ্রিকা, অস্ট্রেলিয়া, উত্তর আমেরিকা, ইয়োরোপ ইত্যাদি বিভিন্ন ভূভাগের মেরুসঞ্জার রেখার জ্যামিতিক প্রকৃতিও ভিন্ন। তবে যেকোনো দুটি ভূভাগের মেরুসঞ্জার রেখার জ্যামিতিক প্রকৃতিও ভিন্ন। তবে যেকোনো দুটি ভূভাগের মেরুসঞ্জার রেখার জ্যামিতিক প্রকৃতিও ভিন্ন। তবে যেকোনো দুটি ভূভাগের মেরুসঞ্জার রেখার জ্যামিতিক প্রকৃতিও ভিন্ন। তবে যেকোনো দুটি ভূভাগের মেরুসঞ্জার রেখার জ্যামিতিক প্রকৃতিও ভিন্ন। তবে যেকোনো দুটি ভূভাগের মেরুসঞ্জার রেখার জ্যামিতিক প্রকৃতিও ভিন্ন। তবে যেকোনো দুটি ভূভাগের মেরুসঞ্জার রেখার জ্যামিতিক প্রকৃতিও ভিন্ন। তবে যেকোনো দুটি ভূতাগের মেরুসঞ্জার রেখার জ্যামিতিক প্রকৃতিও ভিন্ন। তবে যেকোনো দুটি ভূতাগের মেরুসঞ্জার রেখার জ্যামিতিক প্রকৃতিও ভিন্ন। তবে যেকোনো দুটি ভূতাগের মেরুসঞ্জার রেখা ধরে অতীত থেকে বর্তমানের দিকে এগোলে 25 কোটি বছরের পর তাদের মধ্যে দূরত্ব ক্রমে কমে আসছে, এবং প্রায় 6 কোটি বছর আগে ইয়োসিন অবকল্পে (Eocene epoch) পৌঁছে যাচ্ছে মোটামুটি আধুনিক অবস্থানে। এই তথ্য থেকে অনুমান করা যায় যে, মহাদেশীয় ভূখগুগুলি জুরাসিক উপকল্পের (jurassic period) পরে সাধারণভাবে বর্তমান সংস্থানের অনুরূপ সংস্থানে গৌঁছে গিয়েছিল। পরে যখন আরো অনেক বেশি তথ্য সংগৃহীত হল, তখন দেখা গেল এই তথ্যও সঠিক নয়। 10 কোটি বছর ধরে আফ্রিকার দক্ষিণাংশ মোটামুটি স্থির, সরে গেছে আমেরিকার ভূখগুর অর্থ আর্র আ্যান্টার্জা আর আ্যান্টার্কিটিকা এবং ভারতীয় উপদ্বীপ। আফ্রিকা বামাবর্তরুমে (anticlockwise) আর এশিয়া দক্ষিণাবর্তর্জমে (clockwise) ঘ্রের গেছে (চিত্র : 4.6)। বিভিন্ন ভূভাগের সঞ্জার এবং ঘূর্ণনের হারও (rate) এক নয়।



চিত্র 4.7 : মেরুসঞ্জার রেখার ভিত্তিতে মহীসঞ্জারের সমর্থন

মেরুসঞ্জার রেখা থেকে বেগেনারের এবং তাঁর সমর্থকগণের পেশ করা একটি তথ্যের সমর্থন পাওয়া গেল। দেখা গেল, দক্ষিণ আফ্রিকা আর দক্ষিণ আমেরিকা থেকে পাওয়া মেরুসঞ্জার রেখার 35 কোটি বছর প্রাচীনত্বের বিন্দু দুটির মধ্যে দূরত্ব ঠিক 5000 কিমি (চিত্র : 4.7)। ঠিক এই একই দূরত্ব আফ্রিকার আক্রা আর দক্ষিণ আমেরিকার সাও লুই-এর মধ্যে। পরে উত্তর আমেরিকা আর ইয়োরোপের মধ্যেও 35 কোটি বছর প্রাচীনত্বের বিন্দু দুটির ব্যবধান দেখা গেল 5000 কিমি।

# 4.7 মধ্যমহাসাগরীয় শৈলশ্রেণী

দ্বিতীয় মহাযুদ্ধে ডুবোজাহাজের ব্যবহার ছিল প্রধান রণকৌশলগুলির অন্যতম। ডুবোজাহাজের অনেক অফিসার এসেছিলেন শিক্ষা ও গবেষণার ক্ষেত্র থেকে। ভূপৃষ্ঠের তিনভাগ যে জল, তা বহুকাল জানা থাকলেও তা ছিল অবয়বহীন তথ্য। সাগরগর্ভে ভূপৃষ্ঠের বৈচিত্র্য যে ভূভাগের তুলনায় অনেক বেশি, তা কারো সন্দেহ হয়নি। সাবমেরিনের কর্মীদের অনেকে সাগর মহাসাগরগুলিতে পরিক্রমার সময় বিচিত্র সব তথ্য সংগ্রহ করেন। সাধারণভাবে ধনাত্মক সমস্থিতিক বৈষম্য (positive isostatic anomaly) দিয়ে চিহ্নিত সাগরতলের কোথাও আছে বহু সহস্র কিলোমিটার দৈর্ঘ্যের ঋণাত্মক বৈষম্যের বলয়, কোথাও বিস্তীর্ণ গভীর সমভূমি; আবার কোথাও সুদীর্ঘ পর্বতশ্রেণী, কিন্তু ধনাত্মক সমস্থিতিক বৈষম্য-চিহ্নিত। অবশ্য এই পর্বতের অস্তিত্বের আভাস পাওয়া গিয়েছিল উনবিংশ শতকেই। নাবিকরা জানত, উত্তর আটলান্টিক মহাসাগরের মাঝ-বরাবর সাগরের গভীরতা 3-4 কিমি কম। এইসব বৈচিত্র্য পর্যবেক্ষণ করে লিপিবন্দ্ব করার কার্যক্রমের পাশাপাশি সংগৃহীত হল সাগরগর্ভের ভূত্বকের প্রায় সাত হাজার নমুনা। এগুলি নিয়ে বিভিন্ন ধরনের পরীক্ষা এবং গবেষণা শুরু হল যুদ্ধবিরতির পর।

প্রথম যে তথ্য বেরোল মহাসাগরীয় ভূত্বকের তেজস্ক্রিয়মিতিক প্রাচীনত্ব নিরূপণে, তা চমকপ্রদ। দেখা গেল কোনো শিলার প্রাচীনত্বই কুড়ি কোটি বছরের বেশি নয়। ভূভাগীয় ভূপৃষ্ঠে প্রাচীনতম শিলার প্রাচীনত্ব ততদিনে বেরিয়ে গেছে 300 কোটি বছরের বেশি। স্বভাবতই প্রশ্ন উঠল, সাগরতলের স্থায়িত্ব কি ভূভাগের তুলনায় অনেক কম?

এ সম্বন্থে কোনো নিশ্চিত সিম্ধান্তে আসার আগে আরো অনেক নতুন তথ্য সংগৃহীত হল। জানা গেল, উত্তর আটলান্টিকের কেন্দ্র দিয়ে প্রসারিত শৈলশ্রেণীটি ভূভাগের মতো বিচ্ছিন্ন শৈলশ্রেণী নয়। এটি আশি হাজার কিলোমিটার বিস্তৃত একটি শৈলশ্রেণীর অংশ মাত্র। এই শৈলশ্রেণী বরাবর অগভীর ভূকম্প প্রায়ই ঘটে থাকে। এইসব ভূকম্পের প্রাথমিক তরঞ্চা এবং অনুতরঙ্গের গতিবিধি পর্যালোচনা করে জানা গেল যে, এই পর্বতশ্রেণী ভূভাগে পরিচিত শৈলশ্রেণীর মতো বলিত পর্বতশ্রেণী নয়। এটি একটি গ্রস্ত উপত্যকা (rift valley)। দু'পাশের গ্র্যাবেনের মধ্যবর্তী খাতটি লাভায় ভরে গিয়ে তা গ্র্যাবেনের সমউচ্চতায় সাধারণভাবে পৌঁছে গেছে, আবার কোথাও কোথাও লাভা সঞ্চিত হয়ে সাগরপৃষ্ঠের উপরে উঠে পড়ে দ্বীপরূপে প্রকাশিত হয়েছে। আটলান্টিক মহাসাগরে ট্রিস্টান দা কুন্হা (Tristan de cunha) এর্প একটি দ্বীপ। আটলান্টিক মহাসাগরের মাঝ-বরাবর বর্তমান বলে এটির নাম দেওয়া হয়েছিল মধ্য মহাসাগরীয় শৈলশ্রেণী (mid-oceanic ridge)। এর কেন্দ্রে গ্রস্ত উপত্যকার নাম দেওয়া হলো মধ্যমহাসাগরীয় বিদার (mid-oceanic rift)। 1956 থেকে 1960 সালের মধ্যে এই শৈলশ্রেণীর প্রায় 80 শতাংশ মানচিত্রে দেখা সম্ভব হল। তখন দেখা গেল, আটলান্টিক এবং ভারত মহাসাগরে এটি মধ্য মহাসাগরীয় হলেও প্রশান্ত মহাসাগরে তা নয়। দক্ষিণ আমেরিকার পশ্চিমে এটি প্রশান্ত মহাসাগরের মধ্যরেখা থেকে অনেকটা পূর্বদিকে সরে গেছে এবং মধ্য আমেরিকা পার হয়ে উত্তর আমেরিকার পশ্চিম তটরেখার কাছাকাছি সরে এসেছে (চিত্র : 4.8)। কিছুদূর পরপর শৈলশ্রেণীটি আড়াআড়িভাবে (transversely) বিচ্যুত হয়েছে। চ্যুতির মাত্রা 10 থেকে 100 কিলোমিটার।



চিত্র 4.8 : মধ্যমহাসাগরীয় শৈলশ্রেণী, অবনমন বলয়, পরিবর্তী চ্যুতি ও প্রধান প্রধান শিলামন্ডলীয় প্লেট (কোকোজ প্লেটের উত্তরে তীরচিহ্নু দিয়ে দেখান হয়েছে সানা আন্ড্রিয়াজ পরিবর্তী চ্যুতি)

শৈলশ্রেণীর শীর্ষ থেকে সংগৃহীত লাভা সবই বেসল্টীয় লাভা। কেন্দ্রের অর্থাৎ শৈলশ্রেণীর কেন্দ্রীয় অঞ্চল থেকে দু'ধারে 100 কিমি পর্যন্ত এই লাভা বর্তমান। তারপর লাভার স্তর ধীরে ধীরে চাপা পড়ে গেছে গভীর সমুদ্রের প্রাণীকুলের দেহাবশেষে তৈরি পললে। শৈলশ্রেণীর একেবারে প্রান্তে, যেখানে শৈলশ্রেণী খাড়া নেমে গেছে সাগরতলের সমভূমিতে, সেখানে বেসল্টের প্রাচীনত্ব 22 কোটি বছর। যেকোনো প্রাচীনত্বের শিলার আয়তন কমে আসছে তার প্রাচীনত্ব বাড়ার সঞ্চো সঞ্চো।

প্রাচীনত্ব নিরূপণের পর নজর দেওয়া হল মধ্যমহাসাগরীয় বেসল্টের পুরাচৌম্বকত্বের দিকে। ভূভাগীয় শিলার তুলনায় এখানে চৌম্বকমাত্রা অনেক বেশি বলে পুরাচৌম্বকত্ব অনেক বেশি স্পন্ট। 1959 সালে বেশ কতকগুলি নমুনা পরীক্ষার ফলাফল একত্র করতে দেখা গেল যে, চুম্বকীয় বৈষম্যের (magnetic anomaly) একটি বিশেষ ধাঁচ আছে। কেন্দ্রে স্বাভাবিক (এখনকার মতো, normal) চৌম্বকমেরু, তার দু'পাশে ব্যুৎক্রমী (reverse) চৌম্বকমেরুর দুটি সমবিস্তারের বলয়, তারপর আবার স্বাভাবিক চৌম্বকমেরুর বলয়—এভাবে একান্তরক্রমে (alternatively) স্বাভাবিক ও ব্যুৎক্রমী বলয়গুলি বর্তমান। গ্রস্ত উপত্যকার মধ্যরেখার একদিকের চৌম্বক বলয়গুলি বিপরীত দিকের বলয়গুলির আয়নায় প্রতিবিম্ব। গ্রস্ত উপত্যকার দৈর্ঘ্যের সমান্তর একান্তরী স্বাভাবিক ও ব্যুৎক্রমী বলয়গুলির নাম দেওয়া হল চৌম্বক সমান্তররেখা (magnetic stripes, চিত্র : 4.9)। আড়চ্যুতি (transverse fault) বরাবর চৌম্বক সমান্তররেখা অবিকৃতভাবে সরে গেছে।



চিত্র 4.9 : উত্তরপূর্ব প্রশান্ত মহাসাগরে চৌম্বক সমান্তররেখা (সৌজন্য : A. Hallam)

1963 সালে ভাইন আর ম্যাথুজ (Vine and Matthews) প্রস্তাব দিলেন যে, বেসন্ট লাভা গ্রস্ত উপত্যকায় শীতল সাগরতলের সংস্পর্শে এসে মুহূর্তে কঠিন হয়ে গেছে। পরে আবার লাভার উদগারের সময় আগেরবারের লাভা তার নিষ্ক্রমণের পথ দিতে দু'পাশে সরে গেছে। এভাবেই প্রাচীনতর লাভার স্তরগুলি নবীনতর লাভার জায়গা দিতে বারবার সরে সরে গেছে। গ্রস্ত উপত্যকার কেন্দ্র থেকে দু'পাশের সমপ্রাচীনত্বের দুটি বলয়ের মধ্যের দূরত্ব থেকে জানা গেল সেই বিশেষ বলয়টি বিদারের কেন্দ্র থেকে এতদূর আসতে কতটা সময় লেগেছে। এই তথ্যের ভিত্তিতে অনুমান করা হল যে, একটি বিশেষ কাল পরিসরে দুটি সমপ্রাচীনত্বের বলয়ের মধ্যবর্তী সাগরতল সৃষ্ট হয়েছে। অর্থাৎ সাগরতলের ক্রমিক প্রসারণ ঘটেছে। এই অনুমান সাগরতলের প্রসারণ (sea-floor spreading) নামে পরিচিত। প্রস্তাবকরুপে দু'জনের নাম করা হয়—হেস (H. H. Hess), আর ডিয়েট্জ্ (R. S. Dietz)। সমপ্রাচীনত্বের বলয়ের ভিত্তিতে দেখা গেল সর্বত্র সাগরতলের প্রসারণের হার সমান নয়। উত্তর আটলান্টিকে এই হার বছরে এক সেন্টিমিটার করে। প্রশান্ত মহাসাগরের প্রসারণ ঘটে বছরে পাঁচ সেন্টিমিটার করে। ভারত মহাসাগরে হার সর্বাধিক, বছরে কুড়ি সেন্টিমিটার।

#### 4.8 মহীসঞ্জার প্রকল্পের নবজাগরণ

সাগরতলের প্রসারণ যদি বাস্তব হয়, তবে মহাসাগরের প্রান্তে অবস্থিত ভূভাগেরও সঞ্চার ঘটছে। অর্থাৎ মহীসঞ্চার একটি বাস্তব এবং পারস্পরিক ঘটনা। আজ যেমন ঘটছে অতীতেও তেমনি ঘটেছে, এবং যতদিন না ভূগর্ভে তেজস্ক্রিয় পদার্থের ভাণ্ডার নিঃশেষ হচ্ছে, ততদিন ঘটে চলবে। তবে এই সঞ্চার বেগেনারের প্রস্তাবিত মহীসঞ্চার নয়। বেগেনার ভেবেছিলেন সাগরতল চিরকালই স্থির। তার উপর দিয়ে সিআলে তৈরি ভূভাগ শুধু সঞ্চারিত হয়েছে। কিন্তু পুরাচৌম্বকত্বের নিদর্শন থেকে দেখা গেল, গ্রস্ত উপত্যকার কেন্দ্রের বিদার শিলামণ্ডলকে বিদীর্ণ করে শিলামণ্ডলের খণ্ডগুলিকে সঞ্চারিত করছে। সব শিলামণ্ডলই সরছে। কিন্তু সাগরতল সম্বন্থে উপযুক্ত তথ্যের অভাবে এতদিন, বা বেগেনারের সময়ে শিলামণ্ডলের উপরে অবস্থিত ভূভাগের সঞ্চার ঘটেছে বলে প্রতীয়মান হয়েছে।

ভূবিজ্ঞানীরা শিলামঙলের খঙগুলির নাম দিলেন শিলামঙলীয় প্লেট (lithospheric plate); সংক্ষেপে প্লেট। প্লেটের সঞ্চারে ভূত্বকে এবং পরিণামে ভূপৃষ্ঠে পরিবর্তন বোঝাতে প্লেট টেক্টনিক্স্ শব্দটি ব্যবহৃত হলো। ক্রমে প্লেটের উৎপত্তি, সঞ্চার, বৃদ্ধি, ক্ষয় ও তার ফলে ভূপ্রকৃতির পরিবর্তন—সবই চলে এল প্লেট টেক্টনিক্সের মধ্যে। পরে দেখা গেল প্লেট টেক্টনিক্স্ একটি ভূগোলকীয় ঘটনা। ভূ-কালের (geologic time) প্রধান প্রধান ঘটনা দিয়ে চিহ্নিত পুরাজীবীয় কল্প (Palaeozoic era) ইত্যাদি কল্পগুলির শুরু এবং শেষ ভূগোলকীয় টেক্টনিজমে। এখন তাই ভূবিজ্ঞানীরা গ্লোবাল টেক্টনিক্স্ কথাটি ব্যবহারের পক্ষপাতী।

# মহাসাগরীয় গ্রস্ত উপত্যকা

এবার প্রশ্ন হল, মহাসাগরীয় গ্রস্ত উপত্যকায় সর্বাধিক কোন গভীরতা থেকে লাভা উঠছে, আর সেই উত্থানের কারণ কি। প্রথম প্রশ্নের উত্তর পাওয়া গেল ভূকম্প তরঙ্গের গতিবিধি পরীক্ষা করে দেখা গেল লাভার উৎসের সর্বাধিক গভীরতা প্রায় 400 কিমি। শৈলশ্রেণীর এবং তার কেন্দ্রস্থ গ্রস্ত উপত্যকার সবটাই সমান সক্রিয় নয়। কোথাও লাভা বেরোন বন্ধ হয়ে গিয়ে পূর্বসঞ্চিত ভূগর্ভের লাভার উর্ধ্বচাপে ফুলে উঠে পড়েছে গ্যালাপ্যাগস দ্বীপপুঞ্জ, আইসল্যান্ড বা ট্রিস্টান দা কুনহা। আর তরল ম্যাগমা যে ওঠে তরলীকৃত অ্যাস্থেনোস্ফিয়ারে পরিচলন স্রোতের ফলে তার উৎপত্তিও প্রমাণিত হল।

যখন দেখা গেল গ্রস্ত উপত্যকার নিচে ঊর্ধ্বমুখী পরিচলন স্রোতও প্লিউম, আর ভূভাগে ব্যুখিত অঞ্চল (rise) বা তপ্ত অঞ্চলের নিচের প্লিউমের মতো, তখন দুটি প্রশ্ন দেখা দিল। এক : সব ব্যুখিত অঞ্চলের পরিণতি কি মহাসাগরীয় গ্রস্ত উপত্যকায়? বহু ব্যুখিত অঞ্চলের অন্যতম বৈশিষ্ট্য ভূগর্ভ থেকে নিঃসৃত তাপপ্রবাহ, তা কি গ্রস্ত উপত্যকার আবির্ভাবের ইঙ্গিত? দুই : মধ্য মহাসাগরীয় গ্রস্ত উপত্যকায় এবং তা থেকে তৈরি শৈলশ্রেণীতে ধনাত্মক সমস্থিতিক বৈষম্য। কিন্তু প্লিউমেরই মতো ম্যাগমার উর্ধ্বগামী পরিচলন স্রোতের চাপে পারিকুটিন আগ্নেয়গিরির উৎপত্তি। সেখানে ঋণাত্মক সমস্থিতিক বৈষম্য। শুধু প্যারিকুটিনই নয়, ভিসুভিয়াস, এমনকী হাওয়াই দ্বীপের মনা লোআ, মনা কিআতেও ঋণাত্মক সমস্থিতিক বৈষম্য।

এর উত্তরে বলা হল, শিলামণ্ডল যদি ভূভাগীয়, অর্থাৎ সিআলে তৈরি হয়, তবে উচ্চ তাপমাত্রার সিমাগোষ্ঠীর ম্যাগমার সংস্পর্শে এসে নিম্ন গলনাঞ্চের সিআল গোষ্ঠীর শিলাগোষ্ঠীর শিলা গলিয়ে সিআলীয় ম্যাগমা তৈরি হবে। অ্যাস্থেনোস্ফিয়ার থেকে ওঠা বেসল্টীয় সংযুতির ম্যাগমা এই সিআলীয় ম্যাগমার তাপ পরিবহন করে দিয়ে শীতল এবং ঘন হয়ে ক্রমে অ্যাস্থেনোস্ফিয়ারে ডুবে যাবে। অনেকে এই অনুমিত মডেল সম্বন্ধে সন্দেহ প্রকাশ করলেন। হাওয়াই দ্বীপশৃঙ্খলের (island chain) লাভার স্তরগুলির শিলালক্ষণ (petrography) এই সন্দেহ নিরসন করল। বরং আর একটি বিচিত্র মডেলের তথ্য যোগাল।

উত্তর-পশ্চিম থেকে দক্ষিণ-পূর্বে বিস্তৃত এই দ্বীপশৃঙ্খলের উত্তর-পশ্চিম প্রান্তে যে দ্বীপটি, তার প্রাচীনত্ব 38 লক্ষ বছর। এই আগ্নেয়গিরিজাত দ্বীপে যে লাভা এবং শিলা, তাতে সাধারণ বেসন্টের চেয়ে অনেক বেশি ম্যাগনেসিয়াম। দক্ষিণ-পূর্বদিকে এগোলে ধীরে ধীরে কমছে ম্যাগনেসিয়ামের অনুপাত, বাড়ছে লোহার অনুপাত। তারপর লোহার বদলে বাড়ছে অ্যালুমিনিয়ামের অনুপাত। কোনো অবস্থাতেই কিন্তু গ্র্যানাইটের মতো কোনো সিআলীয় শিলার কথা কেউ বলছেন না। তাই আপাতদৃষ্টিতে ভিসুভিয়াস আর পারিকুটিনের লাভা আর হাওয়াই দ্বীপপুঞ্জের নবীনতম আগ্নেয়গিরিদ্বয়—মনা লোআ আর কিলৌআর লাভা এক নয়। কিন্তু যে প্রাকৃতিক প্রক্রিয়ায় দু'ধরনের লাভার উৎপত্তি, ভূবিজ্ঞানীদের মতে তা একই। অনেক আগেই এই প্রক্রিয়ার নাম দেওয়া হয়েছিল ম্যাগমার বিভাজন (magmatic differentiation)। শুধু মূল ম্যাগমার বিভাজন নয়, শিলামগুলের আত্তীকরণজাত (assimilation) ম্যাগমারও বিভাজন। প্রথম দ্বীপটি ছিল মহাসাগরীয় ভূত্বকের পরিগলনে তৈরি ম্যাগমা থেকে উৎপন্ন। তারপর প্রায় 11 লক্ষ বছর ধরে তার ক্ষয় হয়ে পলল জমল। ভূত্বকে আর শুধু সিমা নয়, এল সিআলের একটি উপলেপ। নীচে প্লিউম স্থিরভাবে বর্তমান। তার উপর প্রশান্ত মহাসাগরীয় প্লেট পূর্বদিকে এগিয়ে যাচ্ছে। উপলেপের নিচে যখন প্লিউম, 27 লক্ষ বছর আগে, তখন তার লাভায় বেড়ে গেছে লোহার অনুপাত, কমেছে ম্যাগনেসিয়াম (চিত্র : 4.10)।

তপ্ত অঞ্চল (hot spot) যা ভূপৃষ্ঠে প্লিউমের ছেদবিন্দু, তা অক্সি-অ্যাসিটিলিন শিখার মতো একটি স্থির তপ্ত স্রোত, শুধু লোহার প্লেটের মতো শিলামগুলীয় প্লেট তার উপর দিয়ে সঞ্চারিত হয়েছে। তবে লোহার প্লেটে শুধুই লোহা, কিন্তু শিলামঙ্চলীয় প্লেটের শিলা বিমিশ্র (composite)। অর্থাৎ, বোঝা গেল সব প্লিউম বা তপ্ত অঞ্চলের পরিণতি মহাসাগরীয় বিদারে (oceanic rift) নয়।



চিত্র 4.10 : হাওয়াই দ্বীপশৃংখল ও উত্তর প্রশান্ত মহাসাগরের অন্য দুটি দ্বীপশৃংখলের সঙ্গে খাত এবং মধ্যমহাসাগরীয় বিদারের সম্পর্ক

Hot spot সম্বন্ধে এবার স্বভাবতই সন্দেহ হল যে প্লিউম থেকে বিদার তৈরি হতে পারে কিনা। কারণ তা না হলে গড়োয়ানাল্যান্ড বা লরেসিয়া—কোনো পুরাভূভাগ ভেঙে গিয়ে বর্তমানযুগের মহাদেশগুলির উৎপত্তি ব্যাখ্যা করা যায়না। আফ্রিকার পূর্বাঞ্চলে যাঁরা কাজ করছিলেন তাঁরা এ সম্বন্থে নানান তথ্য উপস্থাপিত করলেন। মধ্য পূর্ব আফ্রিকা থেকে লোহিতসাগর পর্যন্ত বিস্তৃত 1200 কিমি দীর্ঘ পূর্বপরিচিত গ্রস্ত উপত্যকায় পাওয়া গেল বিদারের উৎপত্তির প্রায় সব নিদর্শন। এখানে গ্রস্ত উপত্যকার ভূমিতে দেখা যায় উচ্চমাত্রার তাপপ্রবাহ। গ্রস্ত উপত্যকা ধনাত্মক সমস্থিতিক বৈষম্যের অঞ্চল। আর আছে চৌম্বক সমান্তর রেখা (magnetic stripes), সাগরতলের মতো সুস্পন্ট না হলেও চেনা যায়। বিশেষ করে ভূভাগের কোনো সিআলীয় অঞ্চলে এ ধরনের সমান্তররেখা নেই। এই অঞ্চলটিকে মহাসাগর সৃন্ফির প্রথম পর্বে বন্ধ হয়ে যাওয়া একটি বিদার বলে চিহ্নিত করা হল। কোনো ভূবৈচিত্র্য পৃথিবীতে একটিই বা একবারই মাত্র উৎপন্ন হয়েছে, তা মানতে রাজি নন ভূবিজ্ঞানীরা। তাই এই টেক্টনিক্ বৈচিত্র্যের নাম দেওয়া হল অলাকোজেনে (aulacogen)। অলাকোজেনের প্রকৃতি সম্বন্থে নিঃসংশয় হবার পর অন্যান্য সম্ভাব্য ক্ষেত্রে অলাকোজেনের অস্তিত্ব অনুসন্ধান করা হতে লাগল। দেখা গেল লোহিতসাগর আর এডেন উপসাগর পূর্ব আফ্রিকার গ্রস্ত উপত্যকার ফাটলেরই দুটি শাখা। তারা 120° ব্যবধানে থেকে আফ্রিকা থেকে বিচ্ছিন্ন করেছে আরব্য উপদ্বীপকে। উত্তরে ফাটল দুটি সক্রিয়, দক্ষিণেরটি অলাকোজেন। গন্ডোয়ানাল্যান্ড ও লরেসিয়া ভেঙে উত্তর আমেরিকা ও দক্ষিণ আমেরিকার আফ্রিকা এবং ইয়োরোপ থেকে বিচ্ছিন্ন হওয়ার জন্য মোট তেরটি প্লিউমের অস্তিত্ব অনুমান করা হল (চিত্র : 4.11)। এই অনুমানের ভিত্তি আটলান্টিক মহাসাগরে তেরটি সক্রিয় আগ্নেয়গিরির অস্তিত্ব। তবে এটি এখনও তত্ত্বীয় মডেল, অবশ্যই প্রমাণসাপেক্ষ।



চিত্র 4.11 : গণ্ডোয়ানাল্যান্ড ও লরেসিয়ার বিভাজনের জন্য প্রস্তাবিত তেরোটি প্লিউম

সম্ভবত অনুরূপ একটি প্লিউম থেকে উৎপন্ন তিনটি ফাটলের একটি বিচ্ছিন্ন করেছে ভারতীয় উপদ্বীপকে ম্যাদাগাস্কার থেকে, অন্যটি ম্যাদাগাস্কারকে দক্ষিণ আফ্রিকা থেকে। তৃতীয়টি অলাকোজেন, সম্ভবত নর্মদা নদীর খাত। প্রথম দুটিতে একই প্রাচীনত্বের বেসল্ট ভূভাগের বিস্তৃত অঞ্চল প্লাবিত করেছে। তার ঠিক আগে টেথিস থেকে সদ্য আবির্ভূত আরবসাগর জলোচ্ছ্বাস ঘটিয়েছে নর্মদা উপত্যকার পশ্চিম প্রান্তে। ভারতীয় স্তরবিদ্যা (Indian stratigraphy) থেকে এই অনুমানের সমর্থন পাওয়া গেল।

#### 4.9 অবনমন বলয়

মহাসাগরীয় গ্রস্ত উপত্যকা শিলামণ্ডলের বৃদ্ধির স্থান। এখানে দুটি প্লেটের অপসারী সঞ্জার (divergent drift)। প্রশান্ত মহাসাগরে এই সঞ্জারের হার গড়ে বছরে 5 সেন্টিমিটার। এই হিসাবে শিলামণ্ডল শুধু বেড়েই চললে ধরতে হয় মাত্র কুড়িকোটি বছর আগে ভূগোলকের পরিধি ছিল বর্তমান পরিধি থেকে 5,000 কিমি কম। সুতরাং হিসাবটি অবাস্তব। তাহলে গ্রস্ত উপত্যকায় শিলামণ্ডলের বৃদ্ধির সঙ্গো সমহারে কোথাও না কোথাও শিলামণ্ডলের হ্রাস বা বিলুপ্তি ঘটে চলেছে। ভূবিজ্ঞানীরা এই অঞ্চলটিকে চিহ্নিত করলেন সাগরতলে ঋণাত্মক সমস্থিতিক বৈষম্য দিয়ে। ঋণাত্মক বৈষম্য এখানে সিআলের অস্তিত্বে নয়, কোনো শিলারই অনস্তিত্বে। এই অঞ্চলগুলিই মহাসাগরীয় খাত (oceanic trenches)। বোঝা গেল পূর্বভারতীয় দ্বীপপুঞ্জের পশ্চিমপ্রান্তে 6000 কিমি দীর্ঘ যে খাতটি ফেনিঙ মাইনেস্ৎ আবিষ্কার করেছিলেন বিংশ শতাব্দীর তৃতীয় দশকে, তা এই মহাসাগরীয় খাত। এটি ভারত মহাসাগরের খাত।

দ্বিতীয় মহাযুদ্ধের সময়ে ভ্রাম্যমাণ ডুবোজাহাজ থেকে গ্র্যাভিমিটার দিয়ে অনুসন্ধানের ফলে প্রশান্ত মহাসাগরগর্ভে অনেকগুলি মহাসাগরীয় খাতের সন্ধান পাওয়া গেল। ভারত মহাসাগরেও অপর একটি খাতের সন্ধান পাওয়া গেল নিউজিল্যান্ড দ্বীপপুঞ্জের মধ্য দিয়ে। এটি উত্তর-পূর্ব থেকে দক্ষিণ-পশ্চিমে বিস্তৃত। এবার এই খাতগুলির বৈশিষ্ট্য সম্বন্ধে অনুসন্ধান শুরু হল। আগেই জানা ছিল, এগুলির সবই সুগভীর উৎসের ভূকম্প বলয়ের মধ্যে পড়ে। ঋণাত্মক সমস্থিতিক বৈষম্যের অস্তিত্ব থেকে বোঝা গেল, এখানে মহাসাগরীয় গ্রস্ত উপত্যকার মতো পরিগলিত অ্যাস্থেনোস্ফিয়ার ম্যাগমারুপে উঠছে না। অর্থাৎ এখানে পরিচলন স্রোত উর্ধ্বগামী নয়।

এবার একটি মডেল কল্পনা করা হল। শিলামণ্ডলের প্লেটগুলি মহাসাগরীয় গ্রস্ত উপত্যকা থেকে দু'দিকে এগোচ্ছে। এগোতে এগোতে অন্য একটি স্থির প্লেটের প্রাস্তে গিয়ে সেটি ঠেকল। এই সংযোগরেখায় সঞ্জারমান দিক থেকে সংচাপ (compression) অব্যাহত। এমন অবস্থায় যা ঘটা সম্ভব তা হলো, চাপের ফলে ভারি প্লেটটির অ্যাস্থেনোস্ফিয়ারে ডুবে যাওয়া ও লঘু প্লেটটির বলিত এবং চ্যুত হয়ে উপরে ওঠা। বেনিয়ফ (H. Benioff) খাতে সংঘটিত ভূকম্পের পর্যায়ক্রমিক পর্যবেক্ষণ করে এই মডেলের সত্যতা নিরুপণের চেন্টা করলেন। বেনিয়ফের যুক্তি ছিল, অধোগামী প্লেট (subducting plate) নিচে নামার সময় মাঝে মাঝেই ফাটবে, আর তার ফলে উৎপত্তি হবে টেক্টনিক্ ভূকম্পের। মানচিত্রে এই উৎসগুলি বসিয়ে ঠিক কোন জায়গা থেকে শিলামণ্ডলের অবনামন শুরু হলো, আর ঠিক কতটা গভীরতা পর্যন্ত তার কঠিনত্ব বজায় থাকছে, তার মাত্রাসাপেক্ষ (quantitative) চিত্র প্রথম দিলেন বেনিয়ফ। এজন্য অধোগামী বলয় বেনিয়ফ বলয় (Benioff zone) নামেও পরিচিত।

অধোগামী বলয়ে পর্যায়ক্রমে কী কী ঘটনা ঘটে তা সাজাবার চেম্টা করা হল বিভিন্ন তথ্যের ভিত্তিতে। যেহেতু স্থিত অঞ্চল বা শিল্ড (shield) শুধু ভূভাগীয় প্লেটে বর্তমান, তাই আদর্শ অধোগমন বলয়রূপে ভূভাগীয় প্লেটের সঞ্চো মহাসাগরীয় প্লেটের অভিসৃতি (convergence) বিবেচনা করা হলো। মহাসাগরীয় প্লেটের আকর্ষণে ভূভাগীয় প্লেটও নিচে নামতে থাকে। ফলে উভয়ের সংযোগস্থলে যে খাত সৃষ্ট হয়, তার গভীরতা ক্রমে বেড়েই চলে। প্রধানত বেসল্টে তৈরি মহাসাগরীয় প্লেটের চুর্ণন প্রতিরোধ ক্ষমতা (resistance to crushing) প্রতি বর্গ সেন্টিমিটারে প্রায় 3000 থেকে 4000 কিলোগ্রাম। অন্যদিকে ভূভাগের শিলা সিআলের ক্ষেত্রে এই মাত্রা গ্র্যানাইটে 1600-2400 কিলোগ্রাম, কোআর্ট জাইটে 1500-3000 কিলোগ্রাম এবং বেলেপাথরে (sandstones) 300-1800 কিলোগ্রাম। ফলে অধোগামী ভূভাগীয় শিলামণ্ডল প্রথমে ফাটতে শুরু করে। বেনিয়ফ এবং তাঁর সহযোগীরা দেখালেন যে, ভূকম্পবলয়ের সাগরমুখী প্রান্ত মোটেই খাতের মধ্যরেখা বরাবর নয়। সেটি খাতের মধ্যরেখা থেকে ভূভাগীয় প্লেটের মধ্যে প্রায় 100 কিমি দূরে। শুধু তাই নয়, প্রায় 400-500 কিমি বিস্তৃত ভূকম্প বলয়ের ভিতর দিকে ভূকম্পবিদ্যার পরিশীলিত প্রযুক্তি ব্যবহার করে দেখা গেল সিআলীয় প্লেট প্রায় 700 কিমি গভীরতা পর্যন্ত তার সহতামাত্রা বজায় রাখতে পারে। তারপর উচ্চ তাপমাত্রায় (~ 2100° সে) সেটি তার দৃঢ়তা হারায়। অবশ্য, প্রায় 400 কিমি গভীরতা থেকেই তার দৃঢ়তা কমে যেতে থাকে। 400 থেকে 700 কিমি গভীরতার মধ্যে ভূতাপীয় অবক্রমে (geothermal gradient) উচ্চতর উন্নতায় আসার ফলে সিআলীয় প্লেটের আংশিক পরিগলন (partial melting) শুরু হয়। ফলে ম্যাগমায় উৎপত্তি ঘটে। এই ম্যাগমা কম ঘনত্বের বলে তার সমস্থিতিক উত্থান ঘটে। ম্যাগমার উৎসের উপরে কোনো ফাটল থাকলে উৎপত্তি ঘটে আগ্নেয়গিরির (চিত্র : 4.12)। তবে যেকোনো অভিসারী প্লেটের ক্ষেত্রেই যে সিআলীয় প্লেটের শুধু



চিত্র 4.12 : মহাসাগরীয় ও ভূভাগীয় প্লেটের সংযোগে উৎপন্ন অবনমন বলয়

আংশিক পরিগলন ঘটে, তা নাও হতে পারে। কারণ অভিসারী প্লেট দুটিই মহাসাগরীয় প্লেট হতে পারে। একটি মহাসাগরীয় ও অন্যটি ভূভাগীয় প্লেট হতে পারে। আবার দুটিই ভূভাগীয় প্লেট হতে পারে। তৃতীয় ক্ষেত্রে সমস্থিতিক ঊর্ধ্বচাপের জন্য সিআলীয় ভূত্বক মোহো পার হয়ে নীচে নামতে পারেনা। কিন্তু তার নীচে শিলামণ্ডলের অংশটি নীচে নামে। ফলে অবনমন তলের (subduction plane) যেদিকে সিআলীয় ত্বক যত বেশি প্রাচীন, সেদিকে মোহো তত উপরে উঠে আসে (চিত্র : 4.13)।

তবে অবনমন বলয়ে যে তিনটি ভূত্বকীয় যুগ্মের (crustal pair) থাকা সম্ভব (মহাসাগরীয়-মহাসাগরীয়, মহাসাগরীয়-ভূভাগীয় এবং ভূভাগীয়-ভূভাগীয়), সেগুলির মধ্যে একটি পারম্পর্য আছে। দুটি অভিসারী মহাসাগরীয় প্লেটের সংযোগরেখায় যে খাত উৎপন্ন হয়, সেই খাতের দু'দিকে দুটি দ্বীপবলয় উৎপন্ন হয়। প্রশান্ত মহাসাগরে নিউ হেব্রাইডিস খাত এটির বর্তমান ভূপৃষ্ঠে একমাত্র উদাহরণ। দুটি প্লেটের সঞ্জারের হার স্বতন্ত্র হওয়াই স্বাভাবিক। নিউ হেব্রাইডিসের ক্ষেত্রে দক্ষিণের ভারতীয় প্লেটের সঞ্চারের হার উত্তরের প্রশান্ত মহাসাগরীয় প্লেটের তুলনায় অনেক বেশি। ফলে খাতটির উত্তর-পূর্ব দিকে ঢাল দক্ষিণ-পশ্চিম



চিত্র 4.13 : দুটি ভূভাগীয় প্লেটের সংযোগে উৎপন্ন অবনমন বলয়

দিকের চেয়ে কম। ফলে উত্তর-পূর্ব দিকে আগ্নেয়গিরি, এবং কালে লাভা জমে তৈরি হয় দ্বীপবলয়। সাগরপৃষ্ঠের উপরে সেগুলি উঠে পড়লে তার ক্ষয় শুরু হয়ে পলল জমতে থাকে মহাসাগরীয় ভূত্বকে। খাতের দিকে অবনমন প্লেটের পরস্পরের ঘর্ষণে এই পললের স্তর যেন আলগা উপলেপের মতো চেঁছে খাতের মধ্যে জমা হয়। সাধারণ পললের তুলনায় এগুলি সংসক্ত (coherent), পাললিক শিলার খণ্ড। এই পাললিক শিলাখণ্ডের স্তরকে আলাদা করা হয়েছে সাধারণ অসংসক্ত পলল থেকে। এই স্তরীভূত পললের নাম দেওয়া হয়েছে অ্যাক্রিশনারি প্রিজ্ম্ (accretionary prism)। এটি বড় হতে শুরু করলে খাতের মধ্যেই সাগরপৃষ্ঠ দু'ভাগে ভাগ হয়ে যায়, তার একাংশ থাকে উন্মুক্ত খাতের দিকে, অপর অংশটি আগ্নেয়গিরিজাত দ্বীপবলয়ের দিকে। আগ্নেয় গিরিশৃঙ্খলের থেকে ভূভাগের দিকে যে খাতটি উৎপন্ন হয়, তাকে বলে দ্বীপবলয়ের পশ্চাদ্বর্তী অবক্ষেপণ মঞ্জ (back-arc basin)। এই অবক্ষেপণ মঞ্জে আগ্নেয়গিরি এবং আগ্নেয়গিরি থেকে উৎপন্ন দ্বীপবলয় থেকে উদ্ভূত পলল জমতে থাকে এবং তার গভীরতা রুমে কমতে থাকে। এই পললের ভারে অবক্ষেপণ মঞ্জের নীচে শিলামণ্ডল নমিত হয়। সমস্থিতিক সাম্য বজায় রাখার জন্য কালে পশ্চাৎবর্তী অবক্ষেপণ মঞ্জের প্রান্তে নতুন একটি বলয়ের উৎপত্তি ঘটে। নবীন এই বলয়কে বলে তৃত্নীয় বলয় (third arc) (চিত্র : 4.14)। অবনমন প্লেটের উপরদিকে, সাগরতলে প্রসারণ চাপ (extensional forces), মধ্যভাগে যেখানে এটি অ্যাস্থেনোস্ফিয়ারকে ছেদ করছে, সেখানেও প্রসারণ চাপ। কিন্তু আরো নীচে সংচাপ (compression)। দ্বীপবলয়ে কোথাও প্রাচীন ভূভাগীয় ভূত্বক (ancient continental crust)।



চিত্র 4.14 : অবনমন বলয়ের ভুপুষ্ঠে বিভিন্ন ভূসংস্থানগত বৈচিত্র্য

দুটি অভিসারী মহাসাগরীয় প্লেটের (convergent oceanic plates) মধ্যে অবনমন বলয়ে দু'দিকের মহাসাগরীয় প্লেটের আয়তন শুরুতে অপরিবর্তিত থাকে। অবনমন বলয়ে শিলামণ্ডলের যা হ্রাস ঘটে, তা পূরিত হয়ে চলে মহাসাগরীয় প্লেট দুটির দু'ধারে নির্গত লাভা দিয়ে। এই অবস্থা চলে যতদিন মহাসাগরীয় প্লেট দুটি অপসরণের হার সমান থাকে। একটি প্লেটের অপসরণ হার কমে গেলে আগ্নেয়গিরি শুঙ্খল (volcanic chain), ফলে আগ্নেয়দ্বীপের উৎপত্তি ঘটতে থাকে শ্লথগতি প্লেটের দিকে। ফলে এই প্লেটটির আয়তন ক্রমে কমতে কমতে শেষে অ্যাক্রিশনারি প্রিজম্ ও আগ্নেয়দ্বীপ বলয়ের অবনমন ঘটে। এই অবস্থায় স্বল্পকালে প্রচুর সিআলীয় উপাদান অবনমিত হবার ফলে একসঙ্গো দুটি ঘটনা ঘটে। একদিকে সিআলের পরিগলনে বিপুল আয়তনের সিআলীয় ম্যাগমা উৎপন্ন হয়। তার কিছুটা আগ্নেয়গিরি দিয়ে নির্গত হয়, কিন্তু অধিকাংশ ভূগর্ভে সিআলীয় ব্যাথেলিথ তৈরি করে প্রবল সমস্থিতিক ঊর্ধ্বচাপের সৃষ্টি করে। অন্যদিকে সিআলীয় উপাদানগুলি প্রবল চাপের মধ্যে অবনমন বলয়ে নামতে অ্যাসথেনোস্ফিয়ারে পৌঁছে অ্যাসথেনোস্ফিয়ারের তুলনায় অনেক কম ঘনত্বের বলে সমস্থিতিক ঊর্ধ্বচাপের সৃষ্টি করে। এই উধ্বচাপের ফলে খাতে সঞ্জিত পলল এবং অ্যাক্রিশনারি প্রিজম উত্থিত হবে বলিত পর্বতরপে। অবনমনের ঘটনা এগিয়ে চললে অবনমন বলয়টি ক্রমেই এগিয়ে যাবে শ্লথগতি মহাসাগরীয় প্লেটের সঞ্জালক মহাসাগরীয় বিদারের দিকে। কালে এই বিদার নিষ্ক্রিয় হয়ে গেলে অবনমন বলয় পৌঁছে যাবে সেই বলয় থেক উৎপন্ন বলিত পর্বতশ্রেণীর গায়ে। বিদারের অবশেষ থেকে যাবে পর্বতশ্রেণীর ধারে মালভূমির মধ্যে।

প্রথমটি, অর্থাৎ দুটি অভিসারী মহাসাগরীয় প্লেটের সংযোগরেখা বরাবর আছে নিউ হেব্রাইডিসের মতো জাভা খাত (Java trench)। এই খাতটি খাত থেকে বিবর্তনের পথে নিউ হেব্রাইডিসের পরবর্তী পর্যায়। জাভা খাতের পূর্বে এবং উত্তরে সুন্দা বলয় (Sunda arc)। জাভা, সুমাত্রা ইত্যাদি দ্বীপগুলি এই বলয়ে অবস্থিত। অবনমন বলয়ে দ্বীপগুলি থেকে উৎপন্ন আগ্নেয়গিরিগুলি দ্বীপের মধ্যে পশ্চিম এবং সুমাত্রার ক্ষেত্রে দক্ষিণ সীমানা বরাবর সজ্জিত। এই দ্বীপবলয় এবং খাতের মধ্যবর্তী অঞ্চলে অ্যাক্রিশনারি প্রিজ্ম্ সঞ্চিত হয়ে খাতাটি দু'ভাগে বিভক্ত হয়েছে। জাভার দক্ষিণাংশে পূর্বদিকের বিভাগটি গড় সাগরপৃষ্ঠের উপরে একটি উত্থানশীল দ্বীপবলয়ের অংশবিশেষ রূপে প্রকাশিত। উত্তরের অংশটি উত্তর-পশ্চিম দিকে গার্জোয় বদ্বীপ পর্যন্ত বিস্তৃত।

দ্বিতীয়টি, অর্থাৎ বিবর্তনের পথে আর একধাপ এগিয়ে আছে বাহা ক্যালিফোর্নিয়া থেকে আলাস্কার দক্ষিণে কাস্কেড পর্বতমালা (Cascade mountains) পর্যন্ত। একদা অভিসারী প্লেটের সঞ্জালক মহাসাগরীয় বিদার বর্তমানে উত্তর আমেরিকার ভূখণ্ডের মধ্যে (চিত্র : 4.15)। উত্থানশীল পর্বতমালার উধ্বর্মুখী

ইয়েলোস্টোন সান আডিয়াজ চ্যতিরেশা নিষ্ঠিয়

চিত্র 4.15 : সান অ্যান্ড্রিয়াজ চ্যুতিরেখা ও পশ্চিম আমেরিকার নিষ্ক্রিয় গ্রস্ত উপত্যকা

সমস্থিতিক আকর্ষণে ভূভাগের নিচে অবনমনশীল মহাসাগরীয় প্লেট ভেঙে যায়। তখন মধ্য-আটলান্টিক বিদারে নির্গত লাভার চাপে ভূভাগের নীচে শিলামঙলীয় প্লেটের পশ্চিম দিকে অপসরণ ঘটে। ফলে উত্তর আমেরিকার পশ্চিম প্রান্তে নতুন খাতের সৃষ্টি হয়। উত্তর আমেরিকায় পশ্চিম থেকে পূর্ব দিকে আগ্নেয়শিলার প্রাচীনত্বের ক্রমিক বৃষ্ণি এই মডেলের (চিত্র : 4.16) সমর্থক।

একেবারে শেষপর্বে, যেখানে প্রবলবেগে একটি ভূভাগীয় প্লেট (অর্থাৎ যে প্লেটের উপরে ভূভাগ আছে) অপর একটি ভূভাগীয় প্লেটের সঙ্গে মিলিত হয়, সেখানে প্লেট দুটির সংঘর্ষ ঘটেছে বলা হয়। এখানে সঞ্চারমান প্লেটের আনুভূমিক গতি সমস্থিতিক উত্থানের চেয়ে অনেক বেশি বলে এখানে প্রাচীন ভূভাগীয় ভূত্বক মোহোকে নমিত করে অ্যাস্থেনোস্ফিয়ারের প্রমাণ গভীরতা (standard depth) ছাড়িয়ে



চিত্র 4.16 : অ্যান্ডিজ পর্বতের পশ্চিমে অবনমনের একান্তরী দিক পরিবর্তন (সৌজন্য : Weyman)

অনেক দূর পর্যন্ত নিমজ্জিত হয়ে যায়। বস্তুত এটি একটি অস্থিত অবস্থা। পরিণতি—হিমালয়ের মতো উচ্চ পর্বতমালা এবং তার দ্রুত উত্থান। তবে সংঘর্ষের বেগ অত্যন্ত প্রবল হলে অবনমন বলয়ের সমান্তরাল পরিবর্তী চ্যুতিরও (transform fault) উৎপত্তি ঘটে। হিমালয়ের উত্তরের ভূভাগে আমেরিকার ভূভাগের মতো অবনমনের ব্যুৎক্রমের (reversal) নিদর্শন বর্তমান। দুটি অভিসারী প্লেটের সংযোগ তল বরাবর মহাসাগরীয় প্লেটের থেকে বিযুক্ত পাতলা পাত বহুস্থানে থেকে যায়। অবনমন তল বরাবর আংশিক গলনে উৎপন্ন ম্যাগমার মধ্যে বর্তমান উদ্বায়ী পদার্থের রাসায়নিক প্রভাবে এই পাতের শিলালক্ষণ পরিবর্তিত হয়ে উৎপন্ন হয় ওফিওলাইট। দীর্ঘকাল পরে



চিত্র 4.17 : দক্ষিণ ও মধ্য এশিয়ায় প্লেট টেক্টনিক্ বৈচিত্র্যের ভূসংস্থান

পর্বতশ্রেণীর নগ্নীভবনের ফলে ওফিওলাইটের এই পাতলা পাত ভূপৃষ্ঠে উন্মোচিত হয় ওফিওলাইটের একটি দীর্ঘ সরু রেখা রূপে। এই সরু রেখাটি দুটি প্লেটের সন্ধিরেখা বা suture line (চিত্র : 4.17)। পর পর প্রায় সমান্তরাল সন্ধিরেখা থেকে একটি মহাদেশীয় ভূভাগের উৎপত্তি অনুমান করা গেছে।

# 4.10 দুটি স্পর্শক প্লেটের সংযোগরেখা

যেখানে একটি প্লেট ভেঙে গিয়ে তার একাংশ অন্য প্লেটের তুলনায় সঞ্চারিত হয়, সেখানে কোনো প্লেটেরই ক্ষয় বা বৃদ্ধি ঘটেনা, শুধু সংযোগস্থল বা সংযোগরেখার দু'ধারে প্লেট দুটিতেই বেশ কয়েক কিলোমিটার দূরত্ব পর্যন্ত আয়ামচ্যুতির উৎপত্তি ঘটে। সাধারণত এই সংযোগরেখা-বরাবর শিলা বিচূর্ণিত হয়ে মাইলোনাইট (mylonite) জাতীয় ঘাত-রূপান্তরিত শিলার একটি বলয় উৎপন্ন হয়। এই অঞ্জলে স্বল্প গভীরতার উৎসের ভূকম্প প্রায়শ ঘটে থাকে এবং ভূকম্পে ক্ষয়ক্ষতির পরিমাণও খুব বেশি। স্পর্শক প্লেট-প্রান্ত পরিবর্তী চ্যুতি নামেও পরিচিত। ভূভাগে পরিবর্তী চ্যুতির শ্রেষ্ঠ উদাহরণ সান অ্যান্ড্রিয়াজ চ্যুতি (San Andreas fault)।

অনেক সময় দুটি অভিসারী প্লেটের পরিণতি ঘটে পরিবর্তী চ্যুতি দিয়ে যুক্ত স্পর্শক প্লেট রূপে। ককেশাস পর্বতশ্রেণীর উত্তর দিয়ে পূর্ব-পশ্চিমে বিস্তৃত পরিবর্তী চ্যুতি, অনেকের মতে ভূমধ্যসাগরের মধ্য দিয়ে গিয়ে মধ্য আটলান্টিক বিদারে শেষ হয়েছে। ভূমধ্যসাগর টেক্টনিক্ভাবে একটি নিষ্ক্রিয় অঞ্চল।

সাগরতলে পরিবর্তী চ্যুতির সংখ্যা ভূভাগের তুলনায় অনেক বেশি। ভূভাগে নিঃসন্দেহ হওয়া গেছে যে, সান অ্যান্ড্রিয়াজ একটি পরিবর্তী চ্যুতি। কিন্ডু ভূমধ্যসাগরগর্ভ থেকে পূর্বে ককেশাস পর্যন্ত বিস্তৃত কোনো পরিবর্তী চ্যুতি সত্যই আছে কি না, তা তর্কাতীত নয়। অন্য যেসব পরিবর্তী চ্যুতি পাওয়া গেছে, যেমন মধ্য এশিয়ায়, সেগুলি দীর্ঘকাল ধরে নিষ্ক্রিয় হয়ে আছে। সক্রিয় পরিবর্তী চ্যুতি দুটি ক্ষেত্রেই প্রাচীনতর পার্বত্য অঞ্চলের মধ্য দিয়ে বিস্তৃত। পরিবর্তী চ্যুতি যখন সক্রিয় হয়ে ওঠে, তখন প্রাচীনতর পর্বতশ্রেণীগুলির বিভিন্ন অংশের কিছু নতুন করে বিন্যাস ঘটে। অনেকের মতে, এই বিন্যাসের ফলে উৎপন্ন হয় basin and range topography। অ্যারিজোনা, ক্যালিফোর্নিয়া, ইডাহো, কলোরাডো এবং আলবানিয়া, আনাতোলিয়া ও আরব্য উপদ্বীপের উত্তরাঞ্চলে এরূপ ভূবৈচিত্র্য যেমন দেখা যায়, তেমনি প্রাচীন নিষ্ক্রিয় পরিবর্তী চ্যুতির সংলগ্ন এলাকার মালভূমি এবং নদীর অববাহিকাগুলিও এই অনুমানকে সমর্থন করে বলে ধরা হয়।

# 4.11 প্লেট টেক্টনিক্সের বিরোধীগণ

প্লেট টেক্টনিক্স বা ভূগোলকীয় টেক্টনিক্সের যে মডেল দ্বিতীয় মহাযুদ্ধের পর ধীরে ধীরে গড়ে উঠেছে, তা ভূপৃষ্ঠের বহু বৈচিত্র্যের সন্তোষজনক ব্যাখ্যা দিলেও অনেক বৈচিত্র্যের তর্কাতীত ব্যাখ্যা দিতে পারেনি। 1974 সালে ম্যাক্সওয়েল (John C. Maxwell) একটি তথ্যসমৃদ্ধ নিবন্ধে এরূপ অনেকগুলি বিষয়ের প্রতি বিজ্ঞানীদের দৃষ্টি আকর্ষণ করেন। এগুলি সম্বন্ধে সমর্থকরা বলে থাকেন, বহু প্রশ্নের ব্যাখ্যা এই মতবাদে পাওয়া গেছে, অন্যগুলি অসম্পূর্ণ, তবে ভূল নয়। পর্বতের উৎপত্তির একটি সর্বস্বীকৃত প্রক্রিয়া এবং গড় সাগরপৃষ্ঠের উত্থান-পতন এরূপ দুটি ঘটনা স্লস (L. L. Sloss) জানান। তিনি উদাহরণ দিয়ে একই কালে বিভিন্ন ভূভাগের ওঠা-নামা প্রমাণ করলেও তার কারণ নির্দেশ করতে পারেননি। ভূভাগের সংলগ্ন প্লেট প্রান্তের ভূবৈচিত্র্য ব্যাখ্যা করা হয়েছে ভিন্ন ভিন্ন ক্ষেত্রে বিভিন্নভাবে। ফলে অনুমান করতে হয়েছে অত্যস্ত জটিল প্রক্রিয়া। ভূমধ্যসাগরের উৎপত্তি এরূপ একটি কেন ভারতীয় প্লেট আর তিব্বতীয় প্লেটের মধ্যে ভূমধ্যসাগরের মতো জলভাগ নেই, তার উত্তর দেওয়া যায়নি। স্পষ্টতই যে তিন ধরনের প্লেট প্রান্তের কথা ভাবা হয়েছে তার কোনোটিই ভূমধ্যসাগরের ক্ষেত্রে প্রেয়োগ করা যায় না।

জর্ডন (T. H. Jordon) দেখালেন, শিলামণ্ডলের ভূমি ভূভাগের নিচের অ্যাস্থেনোস্ফিয়ারে সাগরতলের তুলনায় অনেক বেশি গভীরতা পর্যন্ত বিস্তৃত। এরূপ অবস্থা প্লেট সঞ্চারকে কীভাবে প্রভাবিত করবে তা স্থির করা যায়নি। অনেকে মনে করেন, প্লেট সংঘর্ষে শিলামণ্ডলের পাতলা পাত বিচ্ছিন্ন হয়ে ঘটনার শেষদিকে উচ্চ তাপপ্রবাহ, আগ্নেয়োচ্ছ্বাস ইত্যাদি ঘটে শিলামণ্ডলীয় বলয়ের সংকোচনে বাধা সৃষ্টি করে।

বেলুসভ (Beloussov) এবং মেয়ারহফ (Meyerhoff) স্থির ভূভাগ এবং ভূভাগের খণ্ডবিশেষের অভিশীর্ষ সঞ্চারের সমর্থক। ক্যারে (Carey) মনে করেন যে, ভূগোলকের আয়তনের বৃদ্ধি ঘটে চলেছে এবং ভূভাগগুলি এই বৃদ্ধির আগে থেকেই বর্তমান। ক্যারের মতবাদ সাগরতলের প্রসারণের সুষ্ঠু ব্যাখ্যা দিলেও ভূভাগের সংচাপে উৎপন্ন বলিত পর্বত এবং নাপে ইত্যাদির উৎপত্তি ব্যাখ্যা করতে পারেনি।

#### 4.12 সারাংশ

মহাদেশীয় ভূখণ্ডগুলির পারস্পরিক অবস্থান বিভিন্ন ভূতাত্ত্বিক সময়ে ভিন্ন ভিন্ন ছিল। যে ভৌত/প্রাকৃতিক পম্বতিতে মহাদেশীয় ভূখণ্ডগুলি একে অপরের সাপেক্ষে স্থান পরিবর্তন করে, তাকে মহীসঞ্চার বলে। এই প্রকল্পের প্রথম প্রস্তাব করেন স্নাইডার এবং বেগেনারের মাধ্যমে এই প্রকল্প সম্পূর্ণ বিকাশ লাভ করে। তিরিশের দশকের শেষে এই প্রস্তাবটি চাপা পড়ে গেলেও পঞ্চাশ ও ষাটের দশকে অনেক নতুন তথ্য ও পর্যবেক্ষণের ফলে সঞ্জরণশীল ভূভাগের প্রস্তাবটি পুনরুজ্জীবিত হয়, যেগুলির মধ্যে প্লেট টেক্টনিক্স বা পাতসঞ্চালন তত্ত্ব অন্যতম।

## 4.13 নির্বাচিত উল্লেখ্য গ্রন্থ

- লাহিড়ী দীপংকর, হারিয়ে যাওয়া মহাদেশ গভোয়ানাল্যান্ড, 2000, লেখনী প্রকাশন, শ্যামাচরণ দে স্ট্রিট, কলকাতা-9।
- 2) Tuzo Wilson (ed). Continents Adrift and Continents Aground, 1976.
- 3) Sullivan Walter, Continents in Motion, The New Earth Debate, 1974.
- 4) Hallam, A., A Revolution in the Earth Sciences, 1973.
- 5) Weyman Derell, *Tectonic Processes*, 1981.
- 6) লাহি

  ি) লাহি

  ি) দীপংকর, সংসদ ভূবিজ্ঞানকোষ, 1999।

#### **4.14 প্রশাবলী**

#### (A) সংক্ষিপ্ত উত্তর :

- 1) মহীসঞ্জার প্রকল্প কে প্রস্তাব করেন? কী কী নিদর্শন তার ভিত্তি ছিল?
- গভোয়ানাল্যান্ড, টেথিস এবং লরেসিয়া নামগুলি কে কে প্রস্তাব করেন? এগুলি কোন ভূকালে কোথায় বর্তমান ছিল?
- 3) গন্ডোয়ানাল্যান্ড নামটি কীভাবে এল? বর্তমান জগতে এই ভূভাগের খণ্ডগুলি কোন কোনটি?
- 4) মহাসাগরগুলির মধ্যে প্রাচীনত্বের ক্রম কি? এই ক্রম অনুমান করার ভিত্তি কী?
- 5) ভূভাগের প্রাচীনতম অংশগুলিকে শিল্ড বলা হয় কেন? সাগরগর্ভে শিল্ড নেই কেন?
- 6) বেগেনার মহীসঞ্চারের কারণস্বরূপ কোন কোন বলের প্রস্তাব করেন? কে গাণিতিক হিসাবের ভিত্তিতে এই বলগুলির কার্যকারিতা অস্বীকার করেন?

#### (B) মাঝারি পরিসরের উত্তর :

- বেগেনারের মতবাদের সমর্থনে কোন কোন নিদর্শনের প্রস্তাব দিতে কে কে এগিয়ে আসেন? প্রতিটি নিদর্শনের তাৎপর্য আলোচনা করতে হবে।
- 2) পরিচলন স্রোতের প্রস্তাব প্রথম কে দেন? তাঁর এই প্রস্তাবের ভিত্তি কী?
- কোন নিদর্শনের ভিত্তিতে সাগরতলের প্রসারণ প্রকল্প প্রস্তাবিত হয়? এ সম্বন্ধে সচিত্র বিস্তারিত আলোচনা করতে হবে।
- কী ধরনের প্লেট-প্রান্ত প্রথম প্রত্যক্ষভাবে নির্ধারিত হয়? এটি নির্ধারণের সচিত্র আলোচনা করতে হবে।
- 5) তিন ধরনের প্লেট-প্রান্তের নিদর্শনগুলির সচিত্র বর্ণনা দিতে হবে।
- তেরোটি তপ্ত অঞ্চলের ভিত্তিতে গডোয়ানাল্যান্ড ও লরেসিয়া ভেঙে যাবার সংক্ষিপ্ত আলোচনা করতে হবে।

#### (C) বড়, প্রবন্ধের ধরনে উত্তর :

- 1) অবনমন বলয়ের সচ্চ্রি বিস্তারিত বর্ণনা। তিন ধরনের অবনমন বলয়ের উদাহরণ।
- 2) মেরুসঞ্জার রেখা কী? মেরুসঞ্জার রেখার ভিত্তিতে মহীসঞ্জার কীভাবে প্রমাণিত হল?
- পরিবর্তী চ্যুতির উৎপত্তি কেন ঘটে? সব বিভঙ্গা বলয় পরিবর্তী চ্যুতি নয় কেন? চিত্র সহকারে আলোচনা করতে হবে।

- 4) মহাসাগরীয় গ্রস্ত উপত্যকার অনুরূপ গাঠনিক বৈচিত্র্য গ্র্যাবেনের থেকে তার কী কী পার্থক্য? ভূপৃষ্ঠে এরূপ গ্রস্ত উপত্যকার নিদর্শন কোথায় পাওয়া গেছে? সেই গ্রস্ত উপত্যকার একটি সংক্ষিপ্ত বিবরণ দিতে হবে।
- 5) প্রাক্কার্বনিফেরাস কালে মহীসঞ্জারের কী কী নিদর্শন পাওয়া যায়? এশিয়া মহাদেশে এই নিদর্শনগুলি কোথায় অবস্থিত? এ ধরনের নিদর্শন উত্তর আমেরিকায় নেই কেন?
- 6) তিন ধরনের অবনমন বলয় কী কী? উদাহরণ সহকারে প্রতিটির সংক্ষিপ্ত বিবরণ দিতে হবে।

# 4.15 উত্তর সংকেত

- (A) 1) 4.1, 4.3, 4.3.1, 4.3.2, 4.3.3, 4.3.4, 4.3.5
  - 2) 4.5
  - 3) 4.3.2
  - 4) 4.7
  - 5) 4.5
  - 6) 4.4
- (B) 1) 4.5.1
  - 2) 4.5.1
  - 3) 4.6, 4.7
  - 4) 4.9
  - 5) 4.7, 4.8, 4.9
  - 6) 4.8
- (C) 1) 4.9
  - 2) 4.6
  - 3) 4.8, 4.9
  - 4) 4.7, 3.2
  - 5) 4.9
  - 6) 4.9

একক 5 🗌 ভূ-ত্বক

গঠন

5.1 প্রস্তাবনা

উদ্দেশ্য

- 5.2 ভূ-ত্বক কাকে বলে
  - 5.2.1 ঊর্ধ্ব ভূ-ত্বক
  - 5.2.2 নিম্ন ভূ-ত্বক
  - 5.2.3 মহাসাগরীয় ভূ-ত্বক
- 5.3 ভূ-ত্বক ও গুরুমণ্ডলের মধ্যে সম্পর্ক
- 5.4 ভূ-ত্বকের গুরুত্ব—জীবজগতের ভূ-ত্বকের ভূমিকা তথা মানুষ ও ভূ-ত্বকের মধ্যে সম্পর্ক
- 5.5 সারাংশ
- 5.6 প্রশ্নাবলী
- 5.7 উত্তর সংকেত

#### 5.1 প্রস্তাবনা

সূর্যকে কেন্দ্র করে ঘুরে চলা গ্রহদের মধ্যে আমাদের এই পৃথিবীর একটা বিশেষ গুরুত্ব আছে। কারণ পৃথিবীর মত এমন প্রাকৃতিক পরিবেশ আর কোন গ্রহের নেই। পৃথিবীর পৃষ্ঠদেশ পাতলা, শক্ত শিলার আস্তরণে মোড়া। এই আস্তরণকে ভূ-ত্বক বলে। ভূ-ত্বকের নীচে রয়েছে গুরুমণ্ডল। আর গুরুমণ্ডলের নীচে "কোর" বা কেন্দ্রীয় অঞ্চল বা কেন্দ্রমণ্ডল (Fig. 5.1)। ভূ-ত্বকের ঠিক উপরেই আছে মাটির খুব পাতলা, হালকা আবরণ। তবে পৃথিবীর সর্বত্র মাটির এই আস্তরণ দেখা যায় না। কারণ সুবিশাল সমুদ্র যেখানে ভূ-ত্বকের উপরে জলমণ্ডল তৈরি করেছে, সেখানে মাটির কোন আবরণ নেই। পৃথিবীর সমস্ত উদ্ভিদ, প্রাণী, এমনকি মানুযের কাছেও ভূ-ত্বকের গুরুত্ব অপরিসীম। কারণ, ভূ-ত্বক জল বা স্থলে বসবাসকারী সব প্রাণীকে, উদ্ভিদকে আশ্রয় দেয়। তাদের বেঁচে থাকার জন্য প্রয়োজনীয় খাদ্য বা পুথি যোগায়। আসলে ভূ-ত্বক আছে বলেই জীবমণ্ডল আছে। তাই এই পৃথিবীতে সকল জীবের সুস্থ ও স্বাভাবিকভাবে বেঁচে থাকার অধিকার আছে—এই ধ্রুব সত্যকে স্বীকার করে নিলে, আমাদের উপর এই পৃথিবীকে নিবিড়ভাবে জানার ও বোঝার দায়িত্ব বর্তায়। সে কারণে আমরা এই এককে ভূ-ত্বক ও পৃথিবীর গঠন সম্পর্কে ধারণা করতে পেরেছেন।



#### উদ্দেশ্য

এই এককটি পাঠ করে আপনি—

- ভূ-ত্বক কাকে বলে জানতে পারবেন।
- ভূ-ত্বক কি কি দিয়ে তৈরি তা উল্লেখ করতে পারবেন।
- ভূ-ত্বকের গুরুত্ব ব্যাখ্যা করতে পারবেন।
- জীবজগতের সাথে ভূ-ত্বকের সম্পর্ক নির্দেশ করতে পারবেন।

#### 5.2 ভূ-ত্বক কাকে বলে

ভূ-ত্বক হল ভূ-গোলকের উপরিভাগের কঠিন ও ভঙ্গুর আবরণের (গড়ে প্রায় 35 কিমি পুরু) এক অগভীর শিলাস্তর। এটি গুরুমণ্ডলের উপরে একটি অপেক্ষাকৃত লঘু ঘনত্বের আবরণ। ভূ-ত্বকের নিম্নসীমা "মোহো" বিযুক্তি (Mohorovicic Discontinuity) পর্যন্ত বিস্তৃত। অর্থাৎ এই মোহো বিযুক্তিকে ভূত্বকের ভিত হিসাবে মনে করা যেতে পারে। ভূ-ত্বকের গভীরতা মহাদেশ ও মহাসাগরের নীচে একরকম নয়। তাই মহাসাগরীয় এলাকায় নীচে ভূ-ত্বকের গভীরতা হল প্রায় 12 কিলোমিটার। অর্থাৎ ভূ-ত্বক কখনই গুরুমণ্ডলের উপরে সমান বা সম গভীরতার আবরণ নয়।

গভীরতা অনুসারে ভূ-ত্বককে দু'ভাগে ভাগ করা যায়। যেমন—উর্ধ্ব ভূ-ত্বক (Upper Crust) ও নিম্ন ভূ-ত্বক (Lower Crust)। উর্ধ্ব ও নিম্ন ভূ-ত্বকের মধ্যে রয়েছে একটি বিযুক্তিতল। এই বিযুক্তি তলটি কনরাড বিযুক্তি (Conrad Discontinuity) নামে পরিচিত। উর্ধ্ব ভূ-ত্বকের গড় গভীরতা হল প্রায় 10 কিলোমিটার এবং ভূ-ত্বকের প্রায় 25% এই অংশে নিহিত রয়েছে। অন্যদিকে, নিম্ন ভূ-ত্বকের গভীরতা প্রায় 25 কিলোমিটার। ভূ-ত্বকের প্রায় 75% রয়েছে এই নিম্ন ভূ-ত্বক বা "লোয়ার ক্রাস্ট" (Lower Crust) অঞ্জলে। ভূমিরূপ গঠনের প্রভাব সবচেয়ে বেশি পড়ে উর্ধ্ব ভূ-ত্বক অঞ্জলে। অর্থাৎ নদী, বাতাস, সমুদ্র স্রোতের মত প্রাকৃতিক শক্তি উধ্ব ভূ-ত্বকের নানান ভূমিরূপ গড়ে তোলে।

ভূ-কম্পীয় তরঙ্গা বিশ্লেষণ করে দেখা যায় যে ঊর্ধ্ব ভূ-ত্বক গ্রানাইট জাতীয় শিলায় তৈরি। এই ঊর্ধ্ব ভূ-ত্বককে "সিয়াল" (Sial) বলে। অন্যদিকে, নিম্ন ভূ-ত্বক "সিমা"-র (Sima) অন্তর্ভুক্ত। সিয়াল মূলত ব্যাসন্ট শিলায় গঠিত হয়েছে।

ভূ-ত্বকের সাথে গুরুমণ্ডলের গঠনগত সম্পর্ক আছে। নীচের ছবিতে ভূ-ত্বক ও গুরুমণ্ডলের একটি সহজ প্রস্থচ্ছেদে দেওয়া হল (চিত্র 5.2)।



চিত্র 5.2 : ভূ-ত্বক ও গুরুমণ্ডলের প্রস্থচ্ছেদ।

ভূ-ত্বকের মহাসাগরীয় অংশ তিন ভাগে বিভক্ত। যথা, উচ্চ (Upper), মধ্য (Middle) ও নিম্ন (Lower)। উচ্চ মহাসাগরীয় ভূ-ত্বকের গভীরতা প্রায় 0.3 কিলোমিটার। এটি চুন জাতীয় অবক্ষেপ ও লাল কর্দমে গঠিত (Calcareous sediment and Red Clays)। ভূ-ত্বকের মধ্য অংশটি 1.4 কিলোমিটার গভীর। এবং এখানে মহাসাগরীয় অবক্ষেপ দেখা যায়। এই অংশটি প্রধানত ব্যাসল্ট শিলায় তৈরি। নিম্ন ভূ-ত্বক প্রায় 4.7 কিলোমিটার গভীর এবং মহাসাগরীয় ব্যাসল্ট দিয়ে তৈরি (Oceanic basalt)। মহাসাগরীয় ত্বকের গভীরতা মধ্য-মহাসাগরীয় শিরা-র (Mid Oceanic Ridge) গভীরতার সাথে ভূ-তাত্ত্বিকভাবে সম্পর্কিত।

### 5.2.1 ঊর্ধ্ব ভূ-ত্বক (Upper Crust)

ঊর্ধ্ব ভূ-ত্বকের ভূ-তাত্ত্বিক গঠন মোটামুটি সরল ও সাধারণ প্রকৃতির। ভূবিজ্ঞানীরা ভূ-ত্বকের এই অংশ থেকে শিলার নমুনা (sample) সংগ্রহ করে ভূ-ত্বকের প্রকৃতি ও বৈশিষ্ট্য সম্বন্ধে জানতে পারেন। তবে "ক্রেটনিক" (Cratonic)\* বা স্থায়ী ভূখণ্ড অঞ্চলে শিলার গঠনগত ব্যতিক্রম দেখা যায়। বস্তুত এখানে শিলার গঠন অনেক বেশি জটিল। \* টীকা : ক্রেটন (Craton) বা স্থায়ী ভূখণ্ড : প্রাক্-কেন্দ্রীয় কালের সৃদৃঢ় শিলামণ্ডলীয় ভূখণ্ডকে স্থায়ী ভূখণ্ড বা ক্রেটন বলে। ভূতাত্ত্বিক কালের প্রায় শুরু থেকে অল্পবিস্তর মোচড় খাওয়া ছাড়া পরবর্তীকালের পর্বতজনির বিশেষ কোন প্রভাব এগুলির ওপর পড়েনি। 11টি প্রধান স্থায়ী ভূখণ্ড অঞ্চল চিহ্নিত করা হয়েছে।

(দ্রুফব্য : ভূবিজ্ঞান কোষ—ড. দীপঙ্কর লাহিড়ী, সাহিত্য সংসদ, কলকাতা, 1999।)

ঊর্ধ্ব ভূ-ত্বকের গঠন সম্বন্ধে ভূ-বিজ্ঞানীরা দীর্ঘদিন ধরে গবেষণা করে চলেছেন। এঁদের মধ্যে নফ (Knoff) [1919], ড্যালি (Daly) প্রভৃতি ভূ-বিজ্ঞানীগণ উত্তর আমেরিকার আপালেশিয়ান পার্বত্য অঞ্জলে ভূ-তাত্ত্বিক অনুসন্ধান চালিয়েছেন। ক্লার্ক (Clark) [1889] ঊর্ধ্ব-ত্বকের গঠনগত বৈশিষ্ট্য সম্বন্ধে সর্বপ্রথম গবেষণা করেন।

ক্লার্ক এবং ওয়াশিংটন [Clark and Washington, 1924] এর মত অনুসারে ঊধ্ব ভূ-ত্বকের মহাদেশীয় ও মহাসাগরীয় অংশের রাসায়নিক গঠন নীচের সারণীতে সংক্ষেপে তুলে ধরা হল। তবে সাধারণভাবে ভূ-ত্বক দশটি মৌলিক পদার্থ দিয়ে তৈরি, যেমন, অক্সিজেন 46.60%, সিলিকন 27.72%, অ্যালুমিনিয়াম 8.13%, লোহা 5%, ক্যালসিয়াম 3.63%, সোডিয়াম 2.83%, পটাসিয়াম 2.59%, ম্যাগনেসিয়াম 2.09%, টাইটেনিয়াম 0.44%, হাইড্রোজেন 0.14%—অর্থাৎ মোট 99.17% এবং অন্যান্য 0.83%।

| অক্সাইড                        | মহাদেশীয় ভূ-ত্বক: | মহাসাগরীয় ভূ-ত্বক: |
|--------------------------------|--------------------|---------------------|
|                                | শতকরা ভাগ          | শতকরা ভাগ           |
|                                | ওজন অনুসারে        | ওজন অনুসারে         |
| $SiO_2$                        | 60.18              | 49.5                |
| TiO <sub>2</sub>               | 1.06               | 1.5                 |
| $Al_2O_3$                      | 15.61              | 16.0                |
| Fe <sub>2</sub> O <sub>3</sub> | 3.14               | —                   |
| FeO                            | 3.88               | 10.5 (t)            |
| MgO                            | 3.56               | 7.7                 |
| CaO                            | 5.17               | 11.3                |
| Na <sub>2</sub> O              | 3.91               | 2.8                 |
| K <sub>2</sub> O               | 3.19               | 0.15                |
| $P_2O_5$                       | 0.30               | _                   |

এখানে উল্লেখ করা যায় যে, উপরের সারণীতে মহাদেশীয় ও মহাসাগরীয় ভূ-ত্বকের যে রাসায়নিক গঠন ও সংযুতির হিসাব তুলে ধরা হয়েছে, সে বিষয়ে বিভিন্ন বিজ্ঞানী একমত হননি।

| খোলক/মণ্ডলের<br>নাম  | গড় গভীরতা<br>কি.মি. | শিলার প্রকৃতি                                                                               | আপেক্ষিক<br>গুরুত্ব | তাপমাত্রার গড়<br>ভিন্নতা °সে.                                                     |
|----------------------|----------------------|---------------------------------------------------------------------------------------------|---------------------|------------------------------------------------------------------------------------|
| উধ্ব                 | 0-5                  | আম্লিক শিলা<br>সাধারণ সিলিকেট পাথর<br>(গ্রানাইট, গ্র্যানোডাইয়োরাইট)                        | 2.90                | প্রতি কি.মি.<br>30° সে. বাড়ে                                                      |
| ভূ-ত্বক              | কনরাড<br>— — — — —   | বিযুক্তি/বিচ্ছেদ<br>(গড় ছয় কিমি)                                                          |                     |                                                                                    |
| নিন্ন<br>(অশ্বমণ্ডল) | 5-35                 | ক্ষারকীয় শিলা<br>অলিভিন, ফেলসপার,<br>পাইরোক্সিন সমন্বিত<br>ক্ষারকীয় শিলা (গ্যারো, নোরাইট) | 3.00                |                                                                                    |
|                      | মোহো<br>— — — — —    | বিযুক্তি/বিচ্ছেদ<br>(গড় 35 কিমি)                                                           |                     |                                                                                    |
| ঊর্ধ্ব               | 200-700              | অলিভিন ও পাইরোক্সিন<br>এর ঘন পলিমর্ফ                                                        | 3.3-4.3             | 100 কিমি গভীরে<br>1100-1200° সে.                                                   |
| গুরুমণ্ডল            |                      | নমনীয় মঙল বা অ্যাস্থেনোস্ফিয়ার<br>(সান্দ্র অবস্থায়)                                      |                     |                                                                                    |
| নিম্ন                | 700-2900             | পেরিক্লেজ (MgO)<br>লোহা-ম্যাগনেসিয়াম<br>(Fe-MgO)                                           | 4.4-5.5             | 400-700 কিমি.<br>গভীরে<br>1500-1900 সে.                                            |
| বহিরষ্ঠি             | 2900-1500            | উইচার্ট-গুটেনবার্গ বিচ্ছেদ<br>ধাতব তরল<br>Fe+Ni                                             | 5.6-10.00           | অষ্ঠি ও গুরুমণ্ডল<br>সীমানায় প্রায়<br>3000° সে.                                  |
| কেন্দ্রমন্ডল         |                      | সিলিকন বা সালফাইড<br>বা কাৰ্বাইড বা MgO                                                     |                     | বহিরষ্ঠি ও অন্তরষ্ঠি<br>সীমানায় 4300° সে.<br>বেশি গলনযোগ্য পদার্থ<br>তরল অবস্থায় |
| অন্তরষ্ঠি            | 5150-6370            | ধাতব-কঠিন                                                                                   | 10.1-13.6           | কম গলনযোগ্য<br>পদার্থ                                                              |

# ভূ-ত্বকের মূল উপাদান ও শ্রেণীবিভাগ সহজভাবে

সারণী 5.1 : ভূ-ত্বকের মূল উপাদান ও শ্রেণীবিভাগ সহজভাবে।

**মন্তব্য ঃ** অ্যাস্থেনোস্ফিয়ারের উপরে ভূপৃষ্ঠ পর্যন্ত অংশকে অশ্বমন্ডল (Lithosphere) বলা হয়। অন্যভাবে ভূ-ত্বক ও গুরুমণ্ডলের উপরের কিছু অংশ নিয়ে অশ্বমণ্ডল বিস্তৃত হয়েছে। বিজ্ঞানীদের ধারণায় এই অধিকসান্দ্রতাযুক্ত অ্যাস্থেনোস্ফিয়ারের উপরেই অশ্বমণ্ডল (প্রায় 10 কিমি) অনেকটা ভাসমান অবস্থায় (সমস্থিতি) বিরাজমান। আবার তিব্বত মালভূমির নীচে অশ্বমণ্ডলের গভীরতা স্থানীয় ক্ষেত্রে গড় গভীরতা (35 কিমি)-র চেয়ে দ্বিগুণ অর্থাৎ প্রায় 75 কিমি পর্যন্ত।

#### 5.2.2 নিম্ন ভূ-ত্বক (Lower Crust)

এটি উধ্ব ভূ-ত্বকের নীচে অবস্থিত। তবে নিম্ন ভূ-ত্বক এলাকা থেকে ভূ-তাত্ত্বিক নমুনা সংগ্রহ করা এখনও ভূতাত্ত্বিকদের পক্ষে সম্ভব হয়নি। অবশ্য স্থানীয়ভাবে যেখানে গ্রানুলাইট (Granulite) গঠিত ত্বক ভূ-পষ্ঠে আত্মপ্রকাশ করে রয়েছে, সেখানকার নমুনা সংগ্রহ করে ভূতাত্ত্বিকরা এই সিম্বান্তে এসেছেন যে, নিম্ন ভূ-ত্বকের শিলার প্রকৃতি ও উদ্ভব জটিল ধরনের। সুতরাং নিম্ন ভূ-ত্বক সম্বন্থে এখনও পর্যন্ত সংগৃহীত প্রায় সব তথ্যই অপ্রত্যক্ষ প্রমাণের উপর নির্ভর করে রয়েছে। বস্তুত নিম্ন ভূ-ত্বকের উপাদানগুলি উর্ধ্ব ভূ-ত্বকের অবশিষ্ট উপাদান থেকে সংগৃহীত হয়েছে।

ভূ-কম্পীয় তরঙ্গা বিশ্লেষণ করে বিজ্ঞানীরা অনুমান করেন যে, ভূ-ত্বক ও গুরুমণ্ডল (Mantle)-এর মধ্যবর্তী এলাকায় একটি 'ট্রানজিশনাল জোন" (Transitional Zone) থাকার সম্ভাবনা আছে। নিম্ন ভূ-ত্বকের শিলাসমূহ ''মাফিক" (Mafic) চরিত্রের এবং গ্র্যানুলাইট গঠিত এলাকা ''সিলিসিক" (Silicic) প্রকৃতির।

আগ্নেয়গিরি থেকে উদগত পদার্থগুলি পরীক্ষা করে ভূ-বিজ্ঞানীরা আরও অনুমান করেন যে, নিম্ন ভূ-ত্বক "জেনোলিথ" (Xenoliths) গঠিত এবং গ্র্যানুলাইট ত্বক আল্লিক (Acidic) চরিত্রের। আইসোটোপ পরীক্ষার মাধ্যমে আরও জানা যায় যে, নিম্ন ভূ-ত্বকের গড় গঠন অসমসত্ত্ব প্রকৃতির (Heterogenous)।

### 5.2.3 মহাসাগরীয় ভূ-ত্বক (Oceanic Crust)

এটি স্তরায়িত গঠনের ভূ-ত্বক। উচ্চ মহাসাগরীয় ভূ-ত্বক মূলত সামুদ্রিক অবক্ষেপ গঠিত। মধ্য মহাসাগরীয় ভূ-ত্বক ইতস্তত বিক্ষিপ্ত সামুদ্রিক অবক্ষেপ এবং ব্যাসল্ট শিলায় তৈরি। তবে নিম্ন মহাসাগরীয় ভূ-ত্বক সমগভীরতা সম্পন্ন ব্যাসল্ট শিলায় গঠিত (Ocean floor basalt)। মধ্যসাগরীয় শিরা (Mid Oceanic Ridge)-র ভূ-তাত্ত্বিক গঠনের সাথে মহাসাগরীয় ভূ-ত্বকের নিবিড় সামঞ্জস্য লক্ষ্য করা যায়। তবে "গায়েট" (Guyots) অর্থাৎ সামুদ্রিক পর্বত শীর্ষ (Sea Mounts) এবং সামুদ্রিক দ্বীপগুলি ক্ষারীয় ব্যাসল্ট (Alkali-rich basalt) দিয়ে তৈরী।

এ প্রসঙ্গে বলা যেতে পারে যে, মহাদেশীয় এবং মহাসাগরীয় ভূ-ত্বকের শিলার চরিত্র সমান নয়; যেমন আকৃতি (Morphology), গঠন (Structure) ও ভূ-পদার্থ বা জিও-ফিজিওক্যাল বৈশিষ্ট্যের পার্থক্য ইত্যাদি।

# 5.3 ভূ-ত্বক ও গুরুমণ্ডলের মধ্যে সম্পর্ক

মহাদেশ ও মহাসাগরীয় ভূ-ত্বকের গভীরতা অনুসন্ধান করলে দেখা যায় যে, মহাদেশীয় ভূ-ত্বকের গভীরতা মহাসাগরীয় ভূ-ত্বকের তুলনায় বেশি। এটা অনেকটা একটা গাছের বৈশিষ্ট্যের মত। যে গাছ যত লম্বা তার শিকড়ও মাটির মধ্যে তত গভীর। একটা বিশাল বটগাছ তার শিকড়কে মাটির যত গভীরে পৌঁছে দেয়, ধান বা ঘাসের মত উদ্ভিদ কখনই তত নীচে তার শিকড়কে চালনা করে না। এর কারণ হল শিকড়ের গভীরতা সর্বদা সেই গাছের উচ্চতার সাথে আনুপাতিক। ভূ-ত্বকের ক্ষেত্রেও দেখা যায় যে, যেখানে পাহাড়, পর্বত, মালভূমি প্রভৃতি-র মত ভূ-পৃষ্ঠের উঁচু অংশগুলি অবস্থিত, ঠিক তার নীচে ভূ-ত্বকের গভীরতা তত বেশি। অর্থাৎ গুরুমণ্ডলের মধ্যে ভূ-ত্বকের এই অংশগুলি (পাহাড় এবং মালভূমি) তার শিকড়কে (Root) প্রোথিত করেছে। এ থেকে বলা যায় যে, গুরুমণ্ডলের উপরে ভূ-ত্বক ভাসমান অবস্থায় রয়েছে। ভূবিজ্ঞানী এরি (G.B. Airy) 'র মতবাদ এই ধারণাকে সমর্থন করে। তবে ভূ-বিজ্ঞানী প্র্যাট (J.H. Prat)-এর ধারণা এরি-র ধারণার থেকে আলাদা। নীচে এরি ও প্র্যাটের ধারণাগুলি চিত্রের সাহায্যে দেখানো হল।



চিত্র 5.3 : ভূ-ত্বকের উচ্চতা অনুযায়ী এরির ধারণা।



চিত্র 5.4 : ভূমিরূপ ও ভূ-ভাগের ঘনত্ব অনুযায়ী এরির ধারণা।



চিত্র 5.5 : প্র্যাটের ধারণা অনুযায়ী গুরুমণ্ডল ও অশ্বমণ্ডলের সম্পর্ক। (a : অন্তর্দেশীয় সমভূমি, b : মালভূমি, c : উপকূলীয় সমভূমি, d : উপকূল সন্নিহিত সমুদ্র)

গুরুমঙল ও ভূ-ত্বকের মধ্যে এই সম্পর্ককে সমস্থিতিবাদ (Isostasy)-এর সাহায্যে ব্যাখ্যা করা যায়। তবে ভূ-ত্বকের ভৌত-রাসায়নিক ও ভৌত-পদার্থ বৈশিষ্ট্য অনুসারে এই সম্পর্কে সর্বদা গতিশীল (dynamic) বা পরিবর্তনশীল অবস্থায় রয়েছে। যেমন, হিমালয়ের উচ্চতা ক্রমাগত বেড়ে চলার কারণ হিসেবে বিজ্ঞানীরা অনুমান করেন যে, হিমালয়ের শিলাগঠিত শিকড় (Roots) গুরুমগুলের মধ্যে অত্যাধিক চাপ ও তাপের প্রভাবে ক্রমশ গলে যাচ্ছে। যার ফলে গুরুমগুলের উপরে হিমালয়ের নিম্নচাপ হ্রাস পাচ্ছে এবং তার ফলে হিমালয়ের উচ্চতা প্রতিবিধান তলের সাপেক্ষে বেড়ে চলেছে। যেমন, একটি জলপূর্ণ পাত্রে একটি কাঠের ব্লক বা ঘনককে চেপে ধরলে তা জলের মধ্যে ঢুকে থাকবে, কিন্তু এ ঘনকটির উপর চাপ কমালেই তা সাথে সাথে জলের উপরে ভেসে উঠবে।

#### 5.4 ভূ-ত্বকের গুরুত্ব—জীবজগতে ভূ-ত্বকের ভূমিকা তথা মানুষ ও ভূ-ত্বকের মধ্যে সম্পর্ক

ভূ-ত্বকের উপরে একদিকে রয়েছে নদী-নালা-জলাভূমি-মহাসাগরের সমষ্টি। অর্থাৎ জলমণ্ডল বা বারিমণ্ডল (Hydrosphere)। অন্যদিকে পাহাড়-মরু-সমভূমি, অর্থাৎ স্থলভাগ। আর ভূ-ত্বকের এই স্থল ও জলভাগকে বাইরে থেকে ঘিরে আছে বায়ুমণ্ডল।

আসলে ভূ-ত্বকের উপরে জল-মাটি-বায়ুর নিবিড় রাসায়নিক সম্পর্কের উপরে ভিত্তি করে এমন এক সুযম পরিবেশের সৃষ্টি হয়েছে যেখানে উদ্ভিদ, প্রাণী, মানুষ সবাই সুস্থ ও স্বাভাবিকভাবে বেঁচে থাকতে পারে। জীবনের লক্ষণ যুক্ত এই মণ্ডলটিকে জীবমণ্ডল (Biosphere) বলে। ভূ-ত্বক না থাকলে জীবমণ্ডল গড়ে উঠতে পারতো না।

আবার ভূ-ত্বক বা ভূ-পৃষ্ঠ হল মানুষের সংসার বা লীলাভূমি। কারণ ঃ

- মানুষ জমিকে নিজের কাজে লাগিয়ে, জমিকে সম্পদ হিসেবে ব্যবহার করে, নানাভাবে তার সমাজ ও অর্থনীতিকে গড়ে তুলেছে।
- (2) মানুষ জমিকে ব্যবহার করে কৃষিকাজ করে।
- (3) মানুষ জমিকে ব্যবহার করে পশুপালন করে।
- (4) মানুষ ভূ-ত্বকের গভীর এলাকা থেকে নিজ সম্পদ আহরণ করে।
- (5) মানুষ বনভূমি থেকে বনজ সম্পদ সংগ্রহ করে।
- (6) মানুষ নদী, হ্রদ, পুকুর, জলাশয়, সমুদ্র থেকে মাছ শিকার করে।
- (7) মানুষ সমুদ্রের তলদেশ থেকে খনিজ সম্পদ আহরণের চেষ্টা করে।
- (8) মানুষ উপযুক্ত পরিবেশে নিজের পছন্দ অনুযায়ী জায়গা বেছে নিয়ে জনবসতি গঠন করে,
   ইত্যাদি।

#### 5.5 সারাংশ

পথিবীর আভ্যন্তরীণ গঠন সমকেন্দ্রিক বৃক্কের মত। ভূগোলকে সবার উপরে রয়েছে ভূ-ত্বক। তার নীচে গুরুমণ্ডল এবং কেন্দ্রে রয়েছে কেন্দ্রমণ্ডল। ভূ-ত্বকের দুটি অংশ। একটি হল মহাদেশ গঠনকারী মহাদেশীয় ত্বক এবং অন্যটি মহাসাগরের তলদেশ গঠনকারী মহাসাগরীয় ত্বক। গ্রানাইট, গ্র্যানোডায়োরাইট জাতীয় হালকা আগ্নেয় শিলা মহাদেশীয় ত্বক তৈরি করেছে। অন্যদিকে ব্যাসল্ট, গ্যাব্রো, পেরিডোটাইট-এর মত ভারি আগ্নেয় শিলা মহাসাগরীয় ত্বক গঠন করেছে। ভূবিজ্ঞানীরা বলেন যে মহাদেশীয় ত্বক রয়েছে "সিয়াল" বা "সায়াল" (Sial)-এর উপরে। আর মহাসাগরীয় ত্বক "সায়মা" বা সিমা (Sima)-র উপরে। সিয়াল ও সিমার মধ্যে আছে কনরাড বিযুক্তি, ভূ-ত্বক ও গুরুমণ্ডলের সংযোগস্থলে মোহো বিযুক্তি এবং গুরুমন্ডল ও কেন্দ্রমন্ডলের মধ্যে গুটেনবার্গ বিযুক্তি। ভূ-কম্পীয় তরজ্ঞোর বিচার বিশ্লেষণ করে পৃথিবীর অভ্যন্তর সম্পর্কে ধারণা করা যায়। ভূ-ত্বক এই পৃথিবীর পরিবেশ তৈরি করার ক্ষেত্রে বিশেষ ভূমিকা নিয়েছে। ভূ-ত্বকের উপরে যে গাছপালার আবরণ আছে, মাটির আবরণ আছে, বা বিরাট জলরাশি আছে, তা জীবন সৃষ্টির ক্ষেত্রে এবং সম্পদ আহরণের ব্যাপারে গুরুত্বপূর্ণ ভূমিকা পালন করে।

(4)

(6)

(1) ভূ-ত্বকের গুরুত্ব কী?

(5) সমস্থিতিবাদ কী?

5.7 উত্তর সংকেত

(3) ভূ-ত্বকের গঠনটি কেমন?

ভূ-ত্বক ও ভূমিরূপের মধ্যে সম্পর্ক কী?

সমস্থিতিবাদের আলোকে ভূ-ত্বকের বৈশিষ্ট্য কেমন?

#### **5.6 প্রশ্নাবলী**

(2) ভূ-ত্বকের অনুসন্থান কেন প্রয়োজন ? এই অনুসন্থান কিভাবে করা যায় ?

- (5) উত্তরের জন্য 5.3 অংশ দেখুন।

(1) উত্তরের জন্য 5.4 অংশ দেখুন।

(2) উত্তরের জন্য 5.1 অংশ দেখুন।

(3) উত্তরের জন্য 5.2 অংশ দেখুন।

(4) উত্তরের জন্য 5.3 অংশ দেখুন।

- (6) উত্তরের জন্য 5.3 অংশ দেখুন।

103

# একক 6 🗆 শিলা ঃ উৎপত্তি ও শ্রেণীবিভাগ

# গঠন

| 6.1 | প্রস্তাবনা                                         |
|-----|----------------------------------------------------|
|     | উদ্দেশ্য                                           |
| 6.2 | শিলার উৎপত্তি ও শ্রেণীবিভাগ                        |
| 6.3 | আগ্নেয় শিলা                                       |
|     | 6.3.1 আগ্নেয় শিলার শ্রেণীবিভাগ ও বিবরণ            |
|     | 6.3.2 আগ্নেয় শিলার বন্টন                          |
| 6.4 | পাললিক শিলা                                        |
|     | 6.4.1 পলির উৎস                                     |
|     | 6.4.2 পলি শিলীভবন প্রক্রিয়া                       |
|     | 6.4.3 পাললিক শিলার গ্রথন, গঠন ও অন্যান্য বৈশিষ্ট্য |
| 6.5 | পাললিক শিলার শ্রেণীবিভাগ                           |
|     | 6.5.1 সংঘাত পাললিক শিলা                            |
|     | 6.5.2 অ-সংঘাত পাললিক শিলা                          |
| 6.6 | রূপান্তরিত শিলা                                    |
|     | 6.6.1 রূপান্তর প্রক্রিয়ার শ্রেণীবিভাগ             |
|     | 6.6.2 রূপান্তরিত শিলার রূপভেদ                      |
|     | 6.6.3 রূপান্তরিত শিলার শ্রেণীবিভাগ                 |
| 6.7 | ভূমিরূপে গঠনে শিলার প্রভাব                         |
|     | 6.7.1 গঠনের প্রভাব                                 |
|     | 6.7.2 শিলাগুণের প্রভাব                             |
|     | 6.7.3 নতির প্রভাব                                  |
| 6.8 | সারাংশ                                             |
| 6.9 | প্রশ্বাবলী                                         |

6.10 উত্তরমালা

#### **6.1 প্রস্তাবনা**

আপনি ইতিমধ্যেই জেনেছেন যে, ভূত্বকের সম্পূর্ণাংশ ও গুরুমণ্ডলের বাইরের অংশ যে প্রধান উপাদান দিয়ে গঠিত তা হল শিলা বা পাথর। পৃথিবীর গঠনকারী অঙ্গা ও অনুযঙ্গাগুলির প্রসঞ্জো একে অশ্বমণ্ডল বলে। এখানে হাল্কা সিলিকা, অ্যালুমিনিয়ম, ম্যাগনেসিয়াম ইত্যাদিতে সায়াল বা সিয়াল (Sial) অর্থাৎ সিলিকেট স্তর গঠিত হয়েছে। আগেই পৃথিবীর রাসায়নিক গঠনের কথা উল্লেখ করা হয়েছে, এক ধরনের উল্কা যেমন 'কার্বনেসিয়াস কন্ড্রাইট' এর সঙ্গো যার বহুলাংশেই মিল আছে। প্রাথমিক পর্যায়ে নানান ভূ-আন্দোলন ইত্যাদির ফলে পৃথিবীর শৈশবকালের অত্যধিক নরম বা কাঁচা ও পাতলা ভূত্বক ফেটে পাথর বেরিয়ে এসেছিল। ভেতর থেকে গলিত পাথর, বিশেষ করে কালো-ব্যাসল্ট প্রভৃতি, প্রবল বেগে উপরে উঠে এসেছিল। সেই সঙ্গো বেরিয়েছিল প্রচুর পরিমাণে বাষ্প বা জল-সহ গ্যাস-কার্বন ডাইঅক্সাইড, গলন্ত পাথর বা লাভা ইত্যাদি উদগীর্ণ হয়ে ভূপৃষ্ঠে জমা হয়েছিল। এ সবের মধ্যে হাইড্রোক্সিলবাহী মণিক যেমন অল, সার্পেন্টিন, অ্যাম্ফিবোল প্রভৃতি দেখা যায়।

শিলা বা পাথর হল কঠিন জৈব (organic) বা অজৈব (inorganic) পদার্থে সৃষ্ট প্রাকৃতিক বস্তুপিন্ড বিশেষ। সাধারণভাবে শিলা বা পাথর বলতে শক্ত শিলা বা পাথরকেই বোঝায়। তবে শক্ত-গ্রানাইট শিলা বা পাথর থেকে আরম্ভ করে নদ-নদীর নরম পলি সবই এই শিলার অন্তর্ভুক্ত। ভূ-ত্বকের বা পৃথিবীর ভিতরের সব শিলাই গঠিত হয়েছে এক বা একাধিক খনিজ মিলিয়ে। প্রকৃতিতে পাওয়া যায় এমন সব রাসায়নিক যৌগকে খনিজ বলে। যেমন, লবণ (শিলায়)-এ একটি মাত্র খনিজ বিদ্যমান। অন্য উদাহরণ হিসেবে গ্রানাইট পাথরে কয়েকটি খনিজ অর্থাৎ কোয়ার্টজ, ফেলস্পার, অভ্র, টুরমেলিন ইত্যাদি দেখতে পাওয়া যায়। এখানে মনে রাখতে হবে, গ্রানাইট শিলায় তার খনিজের মিশ্রণের তারতম্যের জন্য বহুরকম উদাহরণ পাওয়া যায়। এই প্রকার খনিজ মানুষের বহু কাজে প্রয়োজন হয়। আমাদের সভ্যতার অগ্রগতিতে খনিজ সম্পদের অবদান অসামান্য। প্রধানত আগ্নেয় শিলা ও রূপান্তরিত শিলা—এই তিন প্রকার বা শ্রেণীর শিলার সৃষ্টি হয়ে ভূ-ত্বক গঠিত হয়েছে।

ভূত্বকের মোট গভীরতার বিচারে বেশিরভাগই দখল করেছে আগ্নেয় শিলা। পৃথিবীর অভ্যন্তর ভাগ থেকে উঠে উত্তপ্ত ও গলিত শিলা ক্রমশ ঠাণ্ডা আর কঠিন হয়ে আগ্নেয় শিলার সৃষ্টি হয়। প্রাচীন কাল থেকেই বিভিন্ন সময়ে, এমনকি বর্তমানেও ভূগর্ভ থেকে উঠে আসা তরল শিলা বা লাভা থেকে এই শিলার উৎপত্তি হয়েছে ও এর সৃষ্টির কাজ চলছে। আবার অশ্ব্যমণ্ডলের উপরের অংশ বিশেষত ভূ-পৃষ্ঠের গঠনে দেখা যায় যে এর প্রায় দুই-তৃতীয়াংশই (75 শতাংশ) পাললিক শিলায় সৃষ্টি। এই পাললিক শিলার আস্তরণের নীচেই সাধারণত অন্যান্য শিলা যেমন আগ্নেয় শিলা ও রূপান্তরিত বা পরিবর্তিত শিলা ভূত্বকের গঠনের উপর নির্ভর করে বিরাজমান। শিলার গুরুত্ব সম্পর্কে বলতে গিয়ে স্তরীভূত শিলার কথা, যা মুখ্যত পাললিক শিলার অন্তর্গত, বলা দরকার। শিলার এক একটি স্তর যেন ভূত্বকের তথা পৃথিবীর ইতিহাসের এক একটি পৃষ্ঠা। আগেই জেনেছি যে, ভূত্বকের অন্যতম প্রধান উপাদানের মধ্যে স্তরীভূত শিলা বিশেষ উল্লেখযোগ্য। এর প্রধান পরিচয় হল শিলাদেহে স্তরায়নের চিহ্ন। কেননা, স্তরের পর স্তর ক্রমান্বয়ে বিন্যস্ত হয়ে এই স্তরীভূত শিলার সৃষ্টি হয়। পাললিক শিলা ছাড়া ব্যাসন্ট লাভা, ভস্মস্তর ইত্যাদি কয়েক প্রকার আগ্নেয় শিলাকেও স্তরীভূত শিলার অন্তর্গত বলে ধরা হয়। এই শিলাস্তর থেকে পরীক্ষা-নিরীক্ষার মাধ্যমে, বিশেষ করে তাদের গুণাগুণ ও জৈবিক প্রকৃতির বিশ্লেষণ করে, ভূত্বক তথা পৃথিবীর উৎপত্তি ও বিবর্তনের গোটা ইতিহাস জানা সম্ভব। কেবলমাত্র শিলা থেকে খনিজ সম্পদ, জল, মাটি ইত্যাদি সম্পদ সংস্থানের জন্যই নয়—এর বৈশিষ্ট্যগুলি অনুসন্থান করলে ভূত্বকের ও সেইসঙ্গে ভূমিরূপ, স্তর ইত্যাদির উদ্ভব ও পুঙ্ঝানুপুঙ্খ অনুধাবন করা সম্ভব। এই সকল কারণেই আমাদের কাছে শিলার গঠন, উৎপত্তি এবং শ্রেণীবিভাগ সম্বন্থে অধ্যয়ন বিশেষ জরুরী ব্যাপার।

অতএব শিলা প্রসঞ্জে এই কথাগুলি অবশ্যই মনে রাখবেন : (1) শিলা বলতে জৈব এবং অজৈব পদার্থের দ্বারা সৃষ্ট কঠিন প্রাকৃতিক বস্তুপিন্ডকে বোঝায়। (2) শিলা হল বিভিন্ন খনিজের সমষ্টি। আর খনিজ বা মণিক (mineral) হল প্রকৃতিতে পাওয়া যায় এমন সব রাসায়নিক পদার্থের যৌগ। (3) শিলা ভূগঠন তৈরি করে। (4) ভূ-গঠন ভূমিরূপকে প্রভাবিত করে। (5) ভূমিরূপ পরিবেশ ও মানুষের নানা কাজকে প্রভাবিত করে। (6) শিলা সম্পর্কে ভালভাবে জানা না থাকলে একদিকে যেমন পরিবেশকে জানা যায় না, তেমনি অন্যদিকে মানুষের অর্থনৈতিক উন্নয়ন যেখানে জমি বা ভূমিকেন্দ্রিক, সেই অর্থনৈতিক ব্যবস্থা ও সংশ্লিষ্ট সামাজিক ব্যাপারগুলি সম্বন্থেও সঠিক ধারণা করা যায় না।

#### উদ্দেশ্য

এই এককটি পাঠ করে আপনি—

শিলা ও খনিজ বা মণিকের (mineral) সংজ্ঞা নির্দেশ করতে পারবেন। শিলার উদ্ভব কিভাবে ঘটেছে তা বুঝিয়ে দিতে পারবেন। শিলার শ্রেণীবিভাগ করতে পারবেন। আগ্নেয় শিলার বৈশিষ্ট্য চিহ্নিত করতে পারবেন। আগ্নেয় শিলাকে কিভাবে নানা শ্রেণীতে ভাগ করা যায় তা দেখাতে পারবেন। পাললিক শিলার বৈশিষ্ট্য নির্দেশ করতে পারবেন। পাললিক শিলার শ্রেণীবিভাগ করতে পারবেন। রূপান্তরিত শিলা কিভাবে গড়ে ওঠে তার ধারণা দিতে পারবেন। ভূমিরূপ গঠনে শিলার প্রভাব এবং সংশ্লিষ্ট বিষয়গুলি ব্যাখ্যা করতে সক্ষম হবেন।

#### 6.2 শিলার উৎপত্তি ও শ্রেণীবিভাগ

আপনারা জেনেছেন যে, ভূত্বকের গঠনে ও বিন্যাসে প্রধান উপাদান হল শিলা বা পাথর। আবার ভূত্বক তৈরি হয়েছে যে শিলা বা পাথরে, তার ভিত্তি অর্থাৎ বনিয়াদ হল খনিজ পদার্থ। ভূত্বকের উদ্ভব ও ভূমিরূপ বিদ্যায় শিলা এক জটিল এবং গুরুত্বপূর্ণ বিষয়। আমরা জানি, ভূ-পৃষ্ঠে ক্রিয়াশীল বিভিন্ন নগ্নীভবন প্রক্রিয়ার ওপর প্রভাব বিস্তার করে শিলা ভূমিরূপ গঠনে অন্যতম প্রধান ভূমিকা পালন করে। শিলার বিভিন্ন গুণাবলী, যেমন—যান্ত্রিক কাঠিন্য, আবহিকবিকার প্রতিরোধ ক্ষমতা, প্রবেশ্যতার মাত্রা, শিলার গ্রথন, দারণ এবং ফাটলের মাত্রা প্রভৃতি ক্ষয়কার্যের উপর বিভিন্ন প্রতিক্রিয়ার সৃষ্টি করে এবং শিলার উপর বৈষম্যমূলক ক্ষয়কার্যের ফলেই বিভিন্ন রকম ভূমিরূপের সৃষ্টি হয়। এছাড়া, পাললিক শিলায় রক্ষিত জীবাশ্ম পৃথিবীর ভূ-তত্ত্বীয় ইতিহাস উদঘাটনে সাহায্য করে।

শিলা ও খনিজ : শিলা খনিজের সমষ্টি বিশেষ এবং খনিজ (বা মণিক) হল প্রকৃতিতে পাওয়া যায় এমন সব রাসায়নিক যৌগ। কাজেই শিলা সম্পর্কে পর্যালোচনার আগেই খনিজ সম্পর্কে কিছু ধারণা থাকা প্রয়োজন।

আমাদের ভূ-ত্বকে প্রাপ্ত খনিজগুলোর 99% ই দশটি প্রধান মৌলিক উপাদান দিয়ে তৈরি। পৃথিবীতে প্রাপ্ত শিলা গঠনকারী প্রধান খনিজের সংখ্যা খুব বেশি নয়। এটি অনুধাবন করা যায় যে, দুটো মৌল উপাদান অক্সিজেন এবং সিলিকনই ভূ-ত্বকের ওজনের শতকরা প্রায় 75% অধিকার করে রয়েছে। এই জন্য পৃথিবীর অধিকাংশ খনিজ সিলিকন এবং অক্সিজেনের যৌগ অর্থাৎ সিলিকেট খনিজ (বা মণিক)।

সিলিকন খনিজের কেলাস কাঠামোতে (Crystal Structure) একটা সাধারণ নিয়ম রয়েছে যে, একটা সিলিকন পরমাণুর চারপাশে চারটে অক্সিজেন পরমাণু এমনভাবে ঘিরে থাকে যে, ঐ অক্সিজেন অণুর অবস্থান একটা চতুস্তলকের শীর্ষবিন্দু নির্দেশ করে, আর ঐ চতুস্তলকের কেন্দ্রে থাকে একটা



সিলিকন পরমাণু (চিত্র 6.1)। সুস্থিত যৌগে এরকম সিলিকন পরমাণু (চিত্র 6.1)। সুস্থিত যৌগে এরকম সিলিকন-অক্সিজেন একক মাত্র কয়েক প্রকারে পরস্পর সংযুক্ত থাকতে পারে। সেজন্য শিলা গঠনকারী খনিজের সংখ্যা সীমিত হয়েছে। সিলিকন খনিজের এককগুলোর পরস্পর সংযোগের পর এদের মধ্যে যে ফাঁক থাকে সেখানে অন্যান্য মৌলের অন্তর্ভুক্তি হতে পারে। এই মৌলের সংখ্যা এমনভাবে নিরূপিত হয় যে সংযোজনের পর কেলাস কাঠামো তড়িৎ নিরপেক্ষ হয়। যেমন SiO<sub>4</sub><sup>-4</sup> চতুস্তলক এককে দুটো Mg<sup>2+</sup> যুক্ত হলে কেলাস কাঠামো তড়িৎ নিরপেক্ষ হয়। অ্যালুমিনিয়াম, সোডিয়াম, পটাশিয়াম, ক্যালসিয়াম, ম্যাগনেসিয়াম প্রভৃতি মৌল সিলিকন-অক্সিজেন কেলাস কাঠামোয় সংযুক্ত হলে এই সমস্ত ধাতৃ-গঠিত সিলিকেট খনিজের সৃষ্টি হয়।

চিত্র 6.1 : SiO4 চতুস্তলক।

SiO<sub>4</sub><sup>--4</sup> চতুস্তলক এককের পরস্পর সংযোজন এবং এর উপর নির্ভরশীল কেলাস কাঠামোর বিভিন্নতা অনুযায়ী সিলিকেট খনিজকে আমরা প্রধানত চারটি শ্রেণীতে ভাগ করতে পারি :



(1) নেসোসিলিকেট বা অর্থোসিলিকেট (Nesosilicate or Orthosilicate) : এখানে SIO<sub>4</sub><sup>-4</sup> চতুস্তলক একটি স্বাধীন একক তৈরি করে। যেমন অলিভিনের {(Mg, Fe)SiO<sub>4</sub>} ক্ষেত্রে দেখা যায়। এক্ষেত্রে চতুস্তলক এককে দুটো Mg বা দুটো Fe বা একটা Mg ও একটা Fe স্থান করে নেয়। এতে ঐ চতুস্তলক এককে তড়িৎ নিরপেক্ষ অবস্থার সৃষ্টি হয়। ফায়েলাইট (Fe<sub>2</sub>SiO<sub>4</sub>) এবং ফোরস্টেরাইট (Mg<sub>2</sub>SiO<sub>4</sub>) অনুরূপ কারণে নেসোসিলিকেট বিশেষ। এই কেলাস কাঠামোতে Fe ও Mg সমভাবে বণ্টিত থাকে এবং দুর্বল বন্ধনযুক্ত বিশেষ কোন তল দেখা যায়না। এজন্য এই ধরণের খনিজের কোন সুগঠিত সম্ভেদ নেই।

(2) আইনোসিলিকেট বা মেটাসিলিকেট (Inosilicate) : জার্মান ভাষায় Inos-এর অর্থ হল সুতো বা তন্তু। এরকম ক্ষেত্রে SiO<sub>4</sub> চতুস্তলক পরস্পর যুক্ত হয়ে (SiO<sub>3</sub>)<sup>2-</sup>-এর শৃঙ্খল তৈরি হয়। চারটি অক্সিজেনের আটটি বন্ডের চারটি সিলিকন বন্ডের সঙ্গো যুক্ত থাকে, দুটি বন্ড পাশের চতুস্তলক এককের



চিত্র 6.3 : (a) পাইরক্সিন, (b) অ্যাম্ফিবোলে SiO<sub>4</sub> শৃঙ্খলের গঠন। কেবলমাত্র অক্সিজেন পরমাণু দেখানো হয়েছে। প্রত্যেক ফাঁকাবৃত্ত চিহ্নিত পরমাণুর সন্নিহিত তিনটি পরমাণু (কালো বৃত্ত চিহ্নিত) নিয়ে চতুস্তলক গড়ে তুলেছে। ফাঁকা বৃত্ত চিহ্নিত পরমাণুটি অন্য পরমাণুগুলো থেকে একটু ওপরে রয়েছে ধরে নিতে হবে এবং সিলিকন পরমাণুকে আড়াল করে রেখেছে। হ্রস্ব রেখাগুলো বন্ড নির্দেশ করছে।

সঙ্গো যুক্ত থাকে ও দুটো বন্ড মুক্ত থাকে। এই যুক্ত বন্ডের সঙ্গো প্রধানতঃ Fe, Mg, Ca দুটো বন্ড যুক্ত হয়, যেমন MgSiO<sub>3</sub>। আইনোসিলিকেটকে দুটি ভাগে ভাগ করা যায় :

(i) পাইরক্সিন (Pyroxene) : যদি উন্মুক্ত প্রান্তবিশিষ্ট চতুস্তলকের দীর্ঘশৃঙ্খল সৃষ্টি হয় তাহলে সূচের আকৃতিবিশিষ্ট খনিজের সৃষ্টি হয়। এরকম খনিজকে পাইরক্সিন বলে (চিত্র : 6.3a)। MgSiO<sub>3</sub> (এন্স্টেটাইট Enstatite) এক ধরনের পাইরক্সিন। অন্যান্য পাইরক্সিন শৃঙ্খলের বিভিন্ন চতুস্তলকে এককে Mg ছাড়াও অন্যান্য ধাতব মৌল বন্ড তৈরি করতে পারে। যেমন অগাইট {Augite–Ca(Mg, Fe) (SiO<sub>3</sub>)<sub>2</sub>}, ডাইঅপ্সাইড (Diopside–MgCa(SiO<sub>3</sub>)<sub>2</sub>}, হাইপারস্থিন {Hypersthene–(MgFe) SiO<sub>3</sub>}। এখানে Ca(Mg, Fe) (SiO<sub>3</sub>)<sub>2</sub> বলতে বোঝায় যে, দুটো শৃঙ্খলিত SiO<sup>-2</sup> এককের অক্সিজেনের দুটো মুক্ত বন্ড Ca-এর সাথে ও অন্য এককের অক্সিজেনের দুটো মুক্ত বন্ড Mg বা Fe'র সাথে যুক্ত রয়েছে।

যেহেতু চতুস্তলক সম্বন্ধীয় বন্ড অন্যান্য বন্ডের তুলনায় শক্তিশালী সেইজন্য পাইরক্সিনে চতুস্তলক শৃঙ্খলের সমান্তরাল প্রায় পরস্পর লম্ব দু-প্রস্ত সন্তুদ তলের সৃষ্টি হয়।

(ii) অ্যান্দ্বিবোল (Amphibole) : এরকম ক্ষেত্রে চতুস্তলক একক গঠিত দুটো সমান্তরাল শৃঙ্খলের পরস্পর যোগসাধন ঘটে (চিত্র : 6.3b)। সংযুক্ত শৃঙ্খলের এক একটি একক (SiO<sub>11</sub>)6<sup>-</sup> দিয়ে গঠিত হয় ও অক্সিজেনের মোট ছবি মুক্ত বন্ড থাকে। এই মুক্ত বন্ড Ca, Mg, Fe, Na, Al আয়ন দিয়ে যুক্ত থাকে। যেমন হর্নব্লেন্ডে দুটি (Si<sub>4</sub>O<sub>11</sub>)<sup>6-</sup> এককে মোট বারোটি মুক্ত বন্ড থাকে। দুটি Ca ও পাঁচটি Mg অথবা Fe-এর মোট চৌদ্দটি বন্ডের বারোটি বন্ড দুটি (Si<sub>4</sub>O<sub>11</sub>)<sup>6-</sup>-এর বারোটি মুক্ত বন্ডের সঙ্গো যুক্ত হয়। অতিরিক্ত দুটি ধাতব বন্ড দুটি (OH)<sup>-</sup> মূলকের দুটি বন্ডের সঙ্গো যুক্ত হয়ে তড়িৎ নিরপেক্ষতার সৃষ্টি করে। এইভাবে হর্নব্লেন্ডের রাসায়নিক ফর্মূলা দাঁড়ায় Ca<sub>2</sub> (Mg, Fe)<sub>5</sub> (OH)<sub>2</sub> (Si<sub>4</sub>O<sub>11</sub>)<sub>2</sub>।

যেহেতু চতুস্তলক সম্বন্ধীয় বন্ড শক্তিশালী থাকে, সেইজন্য পাইরক্সিনের মত অ্যান্ফিবোলের কেলাসে দ্বিশৃঙ্খল বিন্যাসের সমান্তরাল 60° কোণ করে পরস্পরছেদী দু-প্রস্থ সম্ভোদতলের সৃষ্টি হয়।

(iii) ফাইলোসিলিকেট (Phyllosilicate) : ফাইলোসিলিকেটের ক্ষেত্রে (SiO<sub>4</sub>) শৃঙ্খলের আড়াআড়ি যোগসাধন পাশের দিকে আরও প্রসারিত হতে পারে (চিত্র : 6.4) ও বায়োটাইট, মাসকোভাইট, ক্রোরাইট, কেওলিনাইট, ট্যাক্ষের মত পাতজাতীয় খনিজ সৃষ্টি হয়। এরূপ পাতজাতীয় গঠনের রাসায়নিক সংযুতিতে একতলীয় বিভিন্ন দিকে (Si<sub>2</sub>O<sub>5</sub>)<sup>-2</sup> এর দুটি এককে অক্সিজেনের যে চারটি মুক্ত বন্ড থাকে তার দুটি ম্যাগনেসিয়াম আয়নের দুটি বন্ডের সঙ্গো ও বাকি দুটি বন্ড দুই ম্যাগনেসিয়াম বন্ডের প্রত্যেকের একটি বন্ডের সঙ্গো যুক্ত হয়। শেষের দুটি ম্যাগনেসিয়াম আয়নের দুটি ম্যাগনেসিয়াম আয়নের দুটি বন্ডের রাসায়নিক ফর্মুলা দাঁড়ায় Mg<sub>3</sub> (OH)<sub>2</sub> (Si<sub>2</sub>O<sub>5</sub>)<sub>2</sub>।



চিত্র 6.4 : পাত গঠনযুক্ত খনিজে SiO<sub>4</sub>-এর বিন্যাস। প্রতীক চিহ্নের নির্দেশনা আগের চিত্রের মত।

এখানে উল্লেখযোগ্য যে, A1 এর আয়ন ব্যাসার্ধ ও Si-এর আয়ন ব্যাসার্ধের মধ্যে খুব বেশি পার্থক্য নেই। সেইজন্য বড় ধরনের পাত-খনিজে কিছু কিছু সিলিকন (Si) অ্যালুমিনিয়াম দিয়ে প্রতিস্থাপিত হয়। কিন্তু অ্যালুমিনিয়ামের বন্ডের সংখ্যা হল 3, তাই তড়িৎ নিরপেক্ষতা অর্জনের জন্য অক্সিজেন ও অন্যান্য ধাতব আয়নগুলোর প্রয়োজনীয় সংখ্যার অল্প পরিবর্তন প্রয়োজন হয়।

যেহেতু কেলাস কাঠামোতে চতুস্তলকীয় তল অবিচ্ছিন্নভাবে বিস্তৃত থাকে, সেইজন্য ফাইলোসিলিকেট, বিশেষ করে মাইকা বা অল্রে সুগঠিত এক প্রস্থ সমান্তরাল সম্ভেদের সৃষ্টি হয়।

(iv)  $\overline{U} \Rightarrow \overline{U} \Rightarrow \overline{U} \Rightarrow \overline{U} \Rightarrow \overline{U} = 1$  (Tectosilicate) : ফেলস্পার হল এইরকম একপ্রকার খনিজ যা ভূ-ত্বকে সবচেয়ে সুলভ। টেকটোসিলিকেট হল K, Na, Ca এর অ্যালুমিনোসিলিকেট। ফেলস্পার খনিজে (SiO<sub>4</sub>) চতুস্তলক একক দৈর্ঘ্য, প্রস্থ ও বেধ এই তিন দিকেই পরস্পর যুক্ত হয়ে ত্রিমাত্রিক কাঠামোর (Three dimensional frame work) সৃষ্টি করে। ফেলস্পারের একটি সাধারণ ধর্ম হল Si-এর চারপাশে অক্সিজেন দিয়ে যে চতুস্তলক তৈরি হয় তার কিছু সংখ্যক চতুস্তলকে Si-এর বদলে A1 প্রতিস্থাপিত হয়। কিন্তু A1-এর আয়নিক আধান +3, যেখানে Si-এর আয়নিক আধান +4। প্রথমে ধরে নেওয়া যাক যে, কেলাস কাঠামোয় সমস্ত চতুস্তলকই Si-কে যিরে রয়েছে এবং এ কাঠামো তড়িৎ নিরপেক্ষতায় বিদ্ব ঘটবে। কিন্তু কেলাস কাঠামোর ফাঁকে ফাঁকে যদি Na, K, Ca-এর ধনাত্মক আয়ন প্রয়োজন অনুযায়ী অন্তর্ভুক্ত করা যায়, তাহলে ঐ কেলাস কাঠামোকে আবার তড়িৎ নিরপেক্ষতায় বিদ্ব ঘটবে। কিন্তু কেলাস কাঠামোর ফাঁকে লাসে কাঠামোকে আবার তড়িৎ নিরপেক্ষতায় বিদ্ব ঘটবে। কিন্তু কেলাস কাঠামোর ফাঁকে কাঁকে যদি Na, K, Ca-এর ধনাত্মক আয়ন প্রয়োজন অনুযায়ী অন্তর্ভুক্ত করা যায়, তাহলে ঐ কেলাস কাঠামোকে আবার তড়িৎ নিরপেক্ষ হরে ঘটনে। ফিলস্পারে এরকম Na, Ca, K আয়নের চারপাশে সিলিকা বা অ্যালুমিনা চতুস্তলক ভর্তি হয়ে থাকে। Na এবং Ca-এর আয়ন ব্যাসার্ধ বা আয়তন প্রায় সমান। তাই একের বদলে অন্যটি সহজেই প্রতিম্থাপিত হতে পারে। এইভাবে প্লাজিওক্লেজ নামে এক ধরনের ফেলস্পারের সৃষ্টি হয় এবং এদের ফর্যুলা NaAlSiO<sub>3</sub>O<sub>8</sub> থেকে CaAl<sub>3</sub>Si<sub>2</sub>O<sub>8</sub> পর্যন্ত ধারাবাহিকভাবে নানারকম হতে পারে। NaAlSi<sub>3</sub>O<sub>8</sub>-কে অ্যাল্ব্থাইট বলে। কিন্তু প্রাল্বাহিকভাবে নানারক ফেলস্পারে অ্যাল্বাইট এবং
অ্যানর্থাইট বিভিন্ন অনুপাতে মিশ্রিত থাকতে পারে। এখানে একটা বিষয় লক্ষণীয় যে, প্লাজিওক্লেজের রাসায়নিক ফর্মুলায় সব সময়ই অক্সিজেন অণুর সংখ্যা 8 এবং অ্যালুমিনিয়াম ও সিলিকনের সন্মিলিত অণুর সংখ্যা 4। কোনও কেলাস কাঠামোতে এরকম বিভিন্ন রাসায়নিক সংযুতি দেখা গেলে তাকে কঠিন দ্রবণ (Solid Solution) বলে। অলিভিন কেলাস কাঠামোতেও এরকম কঠিন দ্রবণ দেখা যায়।

পটাশ ফেলস্পার বা অর্থোক্লেজ ফেলস্পারের (KAlSi<sub>3</sub>O<sub>8</sub>) কেলাস কাঠামো প্লাজিওক্লেজ ফেলস্পারের অনুরূপ হয়। কিন্তু পটাশিয়াম আয়ন সোডিয়াম বা ক্যালসিয়াম আয়নের থেকে 1/3 অংশ বড় হয়। কাজেই একই কেলাস কাঠামোতে পটাশিয়াম Na এবং Ca-এর সঙ্গো খাপ খাইয়ে জায়গা করে নিতে পারে না এবং পটাশ ফেলস্পার স্বতন্ত্র কেলাস কাঠামো তৈরি করে। অবশ্য পাতলা লাভা খুব দ্রুত ঠাণ্ডা হলে সোডিয়াম ও পটাশিয়াম ফেলম্পার মিশ্রিত থাকতে পারে, কারণ এদের পৃথকীভবনের মত যথেন্ট সময় থাকে না। কিন্তু লাভা ধীরে ধীরে ঠাণ্ডা হলে পটাশ ফেলস্পার পৃথক কেলাসের সৃন্ধি করে। এইজন্য গ্রানাইট শিলায় অনেক সময় প্লাজিওক্লেজ আর গোলাপী অর্থোক্লেজ ফেলস্পার খুব সহজেই চেনা যায়।

যেহেতু ফেলস্পারের কেলাস কাঠামোতে দৃঢ় চতুস্তলকীয় বন্ড ত্রিমাত্রায় বিস্তৃত, সেইজন্য ফেলস্পার বেশ সংসক্ত (choesive) হয় এবং সহজে ফাটে না। কিন্তু কতকগুলো তল বরাবর বন্ড-ঘনত্ব (bond density) অর্থাৎ প্রতি একক ক্ষেত্রে বন্ড অতিক্রম করার সংখ্যা নিম্নতম থাকে। সেইজন্য ঐ তল বরাবর ফেলস্পারের ভেঙে যাবার প্রবণতা থাকে ও কাঠামোয় সম্ভেদের সৃষ্টি হয়।

কোয়ার্টাজ (SiO<sub>2</sub>) আর একটা সুপরিচিত খনিজ। এই ক্ষেত্রে চতুস্তলকগুলি ত্রিমাত্রিক দিকে বিস্তৃত থাকে এবং প্রত্যেক অক্সিজেনের অণু পাশাপাশি দুই চতুস্তলকের অংশীদার হয়। অতএব প্রত্যেক সিলিকন অণুর জন্য দুটি অক্সিজেন অণু থাকে। অন্য কোন মৌলের আয়ন ছাড়াই এরা তড়িৎ নিরপেক্ষ থাকছে। কারণ সিলিকন অণুর আয়নিক আধান +4 ও দুটি অক্সিজেন অণুর মোট আয়নিক আধানও –4 থাকে।

**অন্যান্য সিলিকেট খনিজ :** চতুস্তলক সমন্টি, তাদের একক বা দ্বি-শৃঙ্খল, পাত, ত্রিমাত্রিক কাঠামোর খনিজগুলোই শিলা উৎপাদনকারী খনিজের সিংহভাগ অধিকার করে আছে। কিন্তু এর অর্থ এই নয় যে, অন্য ধরনের সিলিকেট খনিজ গঠন হতে পারে না। যেমন আংটির মত বিন্যস্ত চতুস্তলকগুলো পরস্পর যুক্ত হয়ে সুন্দর বেরিলের (Beryl) সৃন্টি করে।

ভূ-ত্বকে সিলিকেট খনিজগুলোই শিলার অধিকাংশ অধিকার করে রয়েছে। এই মধ্যে প্লাজিওক্লেজ, অর্থোক্লেজ, কোয়ার্টজ, পাইরক্সিন, অ্যান্ফিবোল, মাইকা, কর্দম ও অলিভিনের অবদান হল 91.4%। অবশিষ্ট 8.4%-এর অধিকাংশ অ-সিলিকেট খনিজ। কর্দম ছাড়া বাকি সিলিকেট খনিজগুলো আগ্নেয় শিলায় পাওয়া যায়।

**অন্যান্য খনিজ**: সিলিকেট ছাড়াও হ্যালাইড, অক্সাইড, কার্বনেট, সালফেট, ফসফেট জাতীয় খনিজও অল্প পরিমাণে ভূ-ত্বকে পাওয়া যায়। নীচের সারণীতে বিভিন্ন খনিজের তালিকা রাসায়নিক সংযুক্তি-সহ প্রকাশ করা হল। এখানে বলা দরকার যে, বিভিন্ন খনিজের বিশেষ করে সিলিকেট খনিজের রাসায়নিক সংযুতি সরল করে প্রকাশ করা হয়েছে।

| শ্রেণীর নাম           | মূলক                                          | উদাহরণ ও রাসায়নিক সংযুক্তি                                                                 |
|-----------------------|-----------------------------------------------|---------------------------------------------------------------------------------------------|
| নেসোসিলিকেট           | SiO4 <sup>4–</sup>                            | অলিভিন {Mg, Fe) <sub>2</sub> SiO <sub>4</sub> }                                             |
| (Nesosilicate)        |                                               | গার্নেট {Ca, Mg, Fe}, (Al, Fe) $(SiO_4)_3$ }                                                |
|                       |                                               | জার্কন ${\rm ZrSiO}_4$                                                                      |
| আইনোসিলিকেট           |                                               | হাইপারস্থিন $\{(Mg, Fe) SiO_3\}$                                                            |
| (Inosilicate)         |                                               | ডাই-অক্সাইড $\{Ca(Mg, Fe) (SiO_3)_2\}$                                                      |
| a. পাইরক্সিন—         | SiO <sub>3</sub> <sup>2–</sup>                | অগাইট {Ca (Mg, Fe, Al) (Al, $Si_{2}O_{4}$ }                                                 |
| প্রসারিত একক শৃঙ্খল   |                                               |                                                                                             |
| b. অ্যান্ফিবোল—       | Si <sub>4</sub> O <sub>11</sub> <sup>4-</sup> | হর্নব্লেন্ড ${Ca_2 (Mg, Fe)_5 (OH)_2}$                                                      |
| প্রসারিত যুগ্ম শৃঙ্খল |                                               | (Si <sub>4</sub> O <sub>11</sub> ) <sub>2</sub> }—সরলীকৃত                                   |
| ফাইলোসিলিকেট          |                                               | ট্যাল্ক {Mg <sub>3</sub> (OH) <sub>2</sub> (Si <sub>2</sub> O <sub>5</sub> ) <sub>2</sub> } |
| (Phyllosilicate)      |                                               | সাপেন্টাইন $\{\mathrm{Mg}_{3}(\mathrm{OH})_{4}\mathrm{Si}_{2}\mathrm{O}_{5}\}$              |
| ষড়ভুজাকৃতি জালকের    | Si <sub>2</sub> O <sub>3</sub> <sup>-2</sup>  | কর্দম খনিজ ${\rm Al}_2{\rm (OH)}_4{\rm Si}_2{\rm O}_5$                                      |
| সমতলীয় বিস্তার       | $AlSi_{3}O_{10}$                              | মাসকোভাইট $\{KAl_2(OH)_2Si_3AlO_{10}\}$                                                     |
| টেকটোসিলিকেট          | $Si_4O_8$                                     | কোয়ার্টজ (SiO <sub>2</sub> )                                                               |
| (Tectosilicate)       |                                               | অর্থোক্লেজ {K(AlSi <sub>3</sub> )O <sub>8</sub> }                                           |
| চতুস্তলক কাঠামোর      | AlSi <sub>3</sub> O <sub>8</sub>              | অ্যালবাইট {Na(AlSi <sub>3</sub> )O <sub>8</sub> }                                           |
| ত্রিমাত্রিক বিস্তার   | $Al_{2}Si_{2}O_{8}^{-2}$                      | অ্যানর্থাইট $\{Ca(Al_2Si_2)O_8\}$                                                           |
|                       |                                               | নেফেলিন $\{Na(AlSi)O_4\}$                                                                   |
| হ্যালাইড              | Cl-বা F-                                      | হ্যালাইট (NaCl)                                                                             |
|                       | ইত্যাদি                                       | ফ্লোরাইট (CaF <sub>2</sub> )                                                                |
| সালফাইড               | ${ m S}^{2-}$                                 | গ্যালেনা (PbS), চ্যালকোপাইরাইট $\{\mathrm{CuFeS}_2\}$                                       |
|                       |                                               | পাইরাইট $\{{ m FeS}_2\}$                                                                    |
| অক্সাইড               | $O^{-2}$                                      | হেমাটাইট $\{Fe_2O_3\}$                                                                      |
|                       |                                               | ম্যাগনেটাইট $\{{ m Fe}_{3}{ m O}_{4}\}$                                                     |
|                       |                                               | ইলমেনাইট $\{\operatorname{FeTiO}_3\}$                                                       |
| কার্বনেট              | CO <sub>3</sub> <sup>2–</sup>                 | ক্যালসাইট {CaCO <sub>3</sub> }                                                              |
|                       |                                               | ডলোমাইট $\{CaMg(CO_3)_2\}$                                                                  |
| সালফেট                | ${ m SO}_4^{\ 2-}$                            | জিপসাম্ $\{CaSO_4, 2H_2O\}$                                                                 |
|                       |                                               | অ্যানহাইড্রাইট {CaSO4}                                                                      |
|                       |                                               | ব্যারাইট {BaSO <sub>4</sub> }                                                               |
| ফসফেট                 | (PO <sub>4</sub> ) <sup>3-</sup>              | অ্যাপেটাইট {Ca <sub>5</sub> (F <sub>2</sub> OH)P <sub>3</sub> O <sub>12</sub> }             |

## 6.3 আগ্নেয় শিলা

গলিত অর্থাৎ তরল বা প্রায় তল অবস্থা থেকে ঠাণ্ডা হয়ে যে সব শিলা তৈরি হয় তাদের আগ্নেয় শিলা বলে। আমাদের চাক্ষুষ অভিজ্ঞতা আছে যে, আগ্নেয়গিরি থেকে উত্তপ্ত ও গলিত শিলা পদার্থ বহির্গত হয় ও এগুলো ঠাণ্ডা হয়ে শিলায় পরিণত হয়। এই অবস্থা থেকে বোঝা যায় যে, পৃথিবীর অভ্যন্তরে এরকম গলিত পদার্থ রয়েছে বা বিশেষ অবস্থার এর সৃষ্টি হয়। পৃথিবীর অভ্যন্তরে যে গলিত তরল পদার্থ থাকে বা সৃষ্টি হয় তাকে ম্যাগমা বলে। ভূ-পুষ্ঠে নির্গত হলে ম্যাগমার ওপর চাপ কমে যায়। এবং বাষ্প ও অন্যান্য বায়বীয় পদার্থ ম্যাগমা থেকে বার হয়ে গিয়ে তরল লাভায় পরিণত হয়। কিন্তু ম্যাগমা অনেক সময় ভূ-পৃষ্ঠে নিঃসৃত হবার আগেই জমে যায়—এরকম মনে করার অনেক কারণ রয়েছে। এ বিষয়ে স্তরীভূত শিলাই নির্ভরযোগ্য সুত্রের সম্বান দেয়। স্তরীভূত শিলা ভূ-পৃষ্ঠ বা উপকূল অঞ্জলে সৃষ্টি হয়—এদের শনান্তুকরণ ও অ-পাললিক শিলা থেকে পৃথক করা সহজ। অনেক স্থানে পর্যবেক্ষণ করে দেখা গেছে যে, এমন কিছু শিলা আছে যেগুলি পাললিক শিলাকে কেটে অগ্রসর হয়েছে, বা দু'টি স্তরের মধ্যে অবস্থান করছে। অনেক সময় দেখা যায় যে, অ-পাললিক শিলার ওপর পাললিক শিলার আবরণ ছিল। যেখানে ঐ অ-পাললিক শিলার সংযোগ হয়েছে সেখানে দেখা যায় যে, পাললিক শিলা রূপান্তরিত হয়ে অন্য এক প্রকার শিলার সৃষ্টি করেছে। সংযোগমন্ডল থেকে যতদুরে যাওয়া যায়, পাললিক শিলার রূপান্তরের মাত্রা তত কমতে থাকে এবং বেশ কিছু দূরে ঐ পাললিক শিলাকে অরূপান্তরিত অবস্থায় দেখা যায়। ওপরের অবস্থা এই সাক্ষ্য বহন করে যে, পাললিক শিলার সৃষ্টির পর ঐ অ-পাললিক শিলা সৃষ্টি হয়েছে? যা পাললিক শিলাকে রূপান্তরিত করেছে। কাজেই ঐ অ-পাললিক শিলা রূপান্তরিত শিলা নয়। এটা আগ্নেয় শিলা ছাড়া আর কিছু হতে পারে না। এছাড়াও খনিজ প্রকৃতি, বৈশিষ্ট্যমূলক গ্রথন প্রভৃতি থেকেও আগ্নেয় শিলাকে শনাক্ত করা যায়। যেমন, পাললিক শিলার মূল খনিজগুলোর দানার মধ্যে ফাঁক থাকে এবং ঐ দানার ফাঁকে ফাঁকে বর্তমান সিমেন্ট জাতীয় পদার্থ তাদের জুড়ে রাখে। আগ্নেয় শিলার খনিজ কেলাসগুলো গায়ে গায়ে লাগানো থাকে ও একে অপরকে অতিক্রম করে। এদের সংসন্তির (cohesion) জন্য কোন সিমেন্ট জাতীয় পদার্থের প্রয়োজন হয় না।

## 6.3.1 আগ্নেয় শিলার শ্রেণীবিভাগ ও বিবরণ

বৈশিষ্ট্য এবং উৎপত্তি অনুসারে আগ্নেয় শিলাকে বিভিন্নভাবে ভাগ করা হয়। নীচে এ সম্পর্কে আলোচনা করা হল।

(a) উৎপত্তিস্থল অনুসারে শ্রেণীবিভাগ ঃ উৎপত্তিস্থল হিসেবে আগ্নেয় শিলাকে প্রধান দুই শ্রেণীতে ভাগ করা যায়, যথা উদ্বেধী ও নিঃসারী আগ্নেয় শিলা। যে সমস্ত আগ্নেয় শিলা ভূ-অভ্যন্তরে ম্যাগমার কঠিনীভবনের ফলে সৃষ্ট হয় তাদের উদ্বেধী আগ্নেয় শিলা বলে। উদ্বেধী আগ্নেয় শিলাকে আবার দুই উপবিভাগে ভাগ করা হয়। গভীর ভূ-অভ্যন্তরে যে উদ্বেধী শিলার সৃষ্টি হয় তাকে পাতালিক (Plutonic) আগ্নেয় শিলা এবং যে উদ্বেধী আগ্নেয় শিলার অগভীর ভূ-অভ্যন্তরে সৃষ্টি হয়, তাকে উপ-পাতালিক (Hypabyssal) আগ্নেয় শিলা বলে। গ্রানাইট, গ্যাব্রো, সায়েনাইট, ডায়োরাইট প্রভৃতি পাতালিক আগ্নেয় শিলা। রায়োলাইট, ব্যাসল্ট, ট্র্যাকাইট, অ্যান্ডেসাইট নিঃসারী আগ্নেয় শিলা ও পরফিরি উপ-পাতালিক আগ্নেয় শিলার উদাহরণ। সাধারণত পাতালিক শিলার খনিজগুলো বড় (খালি চোখে দেখা যায়) ও নিঃসারী শিলার খনিজ কেলাসগুলো খুবই ছোট (অণুবীক্ষণ যন্ত্রে কেবল দেখা যায়) বা কাচ জাতীয় হয়ে থাকে। উপ-পাতালিক শিলায় ছোট ও বড় দুই রকম খনিজ কেলাস মিশ্রিত থাকে। এতে কিছু পরিমাণ কাচও উপস্থিত থাকতে পারে।

(b) গ্রথন হিসাবে শ্রেণীবিভাগ ঃ আগ্নেয় শিলায় কেলাসিত দানা ও কাচ যে রকমভাবে সাজান থাকে তার থেকেই এর গ্রথন (texture) উৎপন্ন হয়। গ্রথন সুষ্ঠুভাবে জানতে হলে চারটি বিষয় লক্ষ্য করা প্রয়োজন। (i) কেলাসের পরিমাণ অর্থাৎ কতটা কেলাস হয়েছে (ii) কেলাস বা দানার মাপ (iii) কেলাসগুলোর আকার এবং (iv) কেলাসগুলোর পারস্পরিক সম্পর্ক, বা কেলাস ও কাচ জাতীয় পদার্থের মধ্যে সম্পর্ক।

একটা শিলায় যদি খালি চোখে বা পকেট লেন্সের সাহায্যে সব কেলাসের দানা দেখা যায়, তাহলে তাকে ফ্যানেরোকুস্টালাইন বা ফ্যানেরিক গ্রথন বলে। এরকম গ্রথনযুক্ত পাথরকে ফ্যানেরাইট বা হলোকস্টালাইন শিলা বলে। অপরপক্ষে কেলাস দানাগুলি যদি খালিচোখে বা পকেট লেন্সের সাহায্যে দেখা না যায়, কিন্তু অনুবীক্ষণ যন্ত্রের সাহায্যে দেখা যায়, তাহলে ঐ শিলার গ্রথনকে অ্যাফিনিটিক বলা হয়। যদি কোনও শিলায় খনিজ কেলাস অনুপস্থিত থাকে, তাহলে এই শিলার গ্রথন কাচ জাতীয় হয়। কাচের মধ্যে অণু ও পরমাণু কেলাসের মত একটা নিয়মিত পম্ধতিতে সাজানো থাকে না। কিন্তু কেলাস গঠনের শক্তিগ্রলো সক্রিয় থাকে বলে কাচের কেলাসিত হবার দিকে একটা ঝোঁক থাকে। এইজন্য কাট শিলার ভেতর ধীরে ধীরে ছোটো ছোটো কেলাস তৈরি হতে থাকে। এই প্রক্রিয়াকে কাচ-কেলাসীভবন বা ডিভিট্রিফিকেশান (devitrifciation) বলে। কার্বনিফেরাস যুগের আগের কোনো যুগে কাচ আগ্নেয় শিলা দেখা যায় না। এর থেকেই অনুমান করা হয় যে, যথেষ্ট সময় পেলে কাচ শিলায় স্বতঃপ্রণোদিত কেলাস তৈরি হয়। এরকম কাচ শিলার মধ্যে ছোট ছোট খনিজ কেলাস তৈরি হলে তাকে ফেলসিটিক গ্রথন ও এই ধরনের শিলাকে ফেলসাইট (Felsite) বলা হয়। অবশ্য, অনেক সময় হালকা রঙের রায়োলাইট ও অ্যান্ডেসাইট শিলায় ফেনোকুস্টের অভাবের জন্য এদের পৃথকীকরণে অসুবিধার সৃষ্টি হয় এবং এদের বিশেষ পরিচিত উহ্য রেখে সাধারণভাবে ফেলসাইট বলা হয়। পরফিরি গ্রথনে বড বড কেলাসগুলোকে বলা হয় ফেনোকৃস্ট। এই ফেনোকৃস্টগুলোর চারধারে পাথরের মধ্যে যে স্থান বা জমি থাকে তা ক্ষুদ্রাতিক্ষুদ্র কেলাস বা কাচ দিয়ে ভর্তি থাকে।

ম্যাগমার শীতলীভবনের হার ও ম্যাগমার মধ্যে দ্রবীভূত গ্যাসের পরিমাণ ও ম্যাগমার প্রকৃতি আগ্নেয় শিলার গ্রথনের ওপর প্রভাব বিস্তার করে। এর মধ্যে শীতলীভবনের হারই প্রধান। যদি ম্যাগমা ধীরে ধীরে ঠান্ডা হয় তাহলে কেলাস দানা বড় হয়। অতি উত্তপ্ত অবস্থায় ম্যাগমার ভেতরের মৌলের অণুগুলো সংগঠিত হয়ে কেলাস গঠন করতে পারে না, কিন্তু এই ম্যাগমা ঠান্ডা হয়ে একসময় এমন এক তাপমাত্রায় উপনীত হয় যখন ঐ ম্যাগমা থেকে খনিজ কেলাস তৈরি হতে থাকে। এই অবস্থায় ম্যাগমা যদি খুব ধীরে ধীরে ঠান্ডা হয়, তাহলে ম্যাগমার সান্দ্রতা তেমন বাড়ে না ও প্রতিটি খনিজের কেলাসগুলি গঠিত ও বড় হবার সুযোগ পায়। অপরপক্ষে ম্যাগমা দ্বুত ঠান্ডা হলে ম্যাগমার সান্দ্রতা বৃদ্ধি পায় ও খনিজ কেলাসগুলোকে বড় হতে বাধা দেয় ও সূক্ষ্ম দানা বিশিষ্ট গ্রথনের উদ্ভব ঘটায়। প্রথম ক্ষেত্রে ফ্যানেরিটিক ও দ্বিতীয় ক্ষেত্রে অ্যাফিনিটিক গ্রথনের সৃষ্টি হয়। অতি দ্রুত শীতলীভবন দানাহীন কাচের সৃষ্টি করে। পরফিরিটিক গ্রথনে ফেনোকৃস্টগুলো ভূগর্ভের গভীর অঞ্চলে ম্যাগমা থেকে কেলাসিত হয়। সেখানে উচ্চচাপের মধ্যে ধীরে ধীরে কেলাস তৈরি হতে থাকে বলে এগুলো বেশ বড় হতে পারে। তারপর ঐ বড় কেলাস সমেত ম্যাগমা যদি ভূগর্ভের অ-গভীর অংশে বা ভূ-পৃষ্ঠে হঠাৎ এসে পৌঁছয় তাহলে ম্যাগমার ওপর চাপ কমে যায়, উদ্বায়ী পদার্থের বহুলাংশে নিষ্ক্রমণ হয় ও ম্যাগমা সান্দ্র হয়ে পড়ে। ম্যাগমার মধ্যে গ্যাসের পরিমাণ বেশি থাকলে ম্যাগমার সান্দ্রতা কমে।

ম্যাগমার শীতলীভবন হার ও দ্রনীভূত গ্যাসীয় পদার্থের পরিমাণ নির্ভর করে ম্যাগমার উৎপত্তিম্থল ও ম্যাগমা সঞ্জয়ের আয়তনের ওপর। উদ্বেধী শিলার ক্ষেত্রে ম্যাগমা সঞ্জয়ের ওপর শিলার আবরণ থাকে। শিলা তাপের কুপরিবাহী বলে গলিত ম্যাগমা ধীরে ধীরে ঠান্ডা হয়। এছাড়া বর্ধিত চাপের প্রভাবে বেশি পরিমাণ গ্যাস দ্রবীভূত অবস্থায় থাকে। ফলে ম্যাগমা কম সান্দ্র থাকে এবং খনিজ কেলাসগুলো গঠিত হবার সুযোগ পায়। অপরপক্ষে ভূ-পৃষ্ঠের ওপর ম্যাগমা উপনীত হলে এর ওপর শিলার আবরণ না থাকায় অধিকাংশ গ্যাস বের হয়ে যায় ও ম্যাগমা দ্রুত শীতল হয় এবং অ্যাফিনিটিক বা কাচ জাতীয় গ্রথনের সৃষ্টি হয়।

উদ্বেধী শিলার আয়তনও ম্যাগমার শীতলীভবন হারকে প্রভাবিত করে। সুবৃহৎ ব্যাথোলিথের সঙ্গো জড়িত ম্যাগমা অভ্যন্তরভাগে খুব ধীরে ধীরে ঠান্ডা হয়। এইজন্য ব্যাথোলিথের সঙ্গে ফ্যানেরাইট জাতীয় শিলা জড়িত থাকতে দেখা যায়। অধিকাংশ ব্যাথোলিথই ফ্যানেরাইট জাতীয় গ্রানাইট পাথরে তৈরি হতে দেখা যায়। ল্যাকোলিথ, ফ্যাকোলিথ, ডাইক, সিল প্রভৃতি উপ-পাতালিক শিলাদেহের ক্ষেত্রে সাধারণত পরফিরিটিক গ্রথন দেখা যায়। প্রাথমিক পর্বে গভীর অঞ্চলে কিছু ফেনোকৃস্ট তৈরি হবার পর ম্যাগমার দ্রুত উত্থান ঘটে ও অগভীর অঞ্চলে অপেক্ষাকৃত দ্রুত ঠান্ডা হয়ে ফেনোকুস্টের চারধারে ক্ষুদ্র খনিজ কেলাস বা কাচের সৃষ্টি করে। ডাইকের সঞ্চো সাধারণত পরিফিরিটিক শিলা গ্রথন জড়িত থাকলেও অনেক সময় ডাইকে খনিজের বেশ বড় দানা সৃষ্টি হতে দেখা যায়। এরকম স্থূল দানাবিশিষ্ট শিলাকে পেগমাটাইট (Pegmatite) বলে। যদিও অধিকাংশ পেগমাটাইটের কেলাস দৈর্ঘ্য কয়েক সেমি'র কম থাকে, তবে কোনও কোনও ক্ষেত্রে কেলাসগুলো কয়েক মিটার লম্বা হতে পারে। বিহারে হাজারীবাগ অঞ্জলে পেগমাটাইট পাথরে বড় বড় অন্রের কেলাস পাওয়া যায় যা এই অঞ্জলকে পৃথিবীর অন্যতম বৃহৎ অভ্রখনিতে পরিণত করেছে। পেগাটাইটের উৎপত্তি এখনও অস্পষ্ট রয়ে গেছে। দেখা গেছে, কোনও ব্যাথোলিথ বা স্টক থেকে বহির্গত ডাইকের সঙ্গে পেগমাটাইট জডিত থাকে, আর পেগমাটাইটের খনিজ সমবায় ঐ ব্যাথোলিথ বা স্টকের অনুরূপ হয়ে থাকে। ও. এফ. টাটল (O. F. Tuttle) এবং এন. এল. বাওয়েন (N. L. Bowen) পরীক্ষা করে দেখেছেন যে, ম্যাগমায় বেশি পরিমাণ অ্যালকালি ও সিলিকা থাকলে জল বেশি পরিমাণ ম্যাগমায় মিশতে পারে। ফলে এই ম্যাগমা 600° সে. এরও কম তাপাঞ্চে তরল অবস্থায় থাকতে পারে। এরকম জলসমৃদ্ধ ম্যাগমা থেকে নিচু তাপাঞ্চে পেগমাইট তৈরি হতে পারে। আর. এইচ. জন্স ও সি. ডব্লু. বার্নহাম পরীক্ষা করে দেখিয়েছেন যে, গ্রানাইট শিলার গলনে জল থাকলে কিছু কেলাসনের পর অবশিষ্ট গলনের মধ্যে জলের অনুপাত বাডতে থাকে ও তার

ফলে এক সময় বাষ্পসমৃদ্ধ গ্যাসের সৃষ্টি হয়। এই সময় কোয়ার্টজ, ফেলস্পার ইত্যাদির বড় কেলাস তৈরি হয়। কিন্তু চাপ বেশি থাকলে জলসমৃদ্ধ পদার্থ আলাদা হবার সুযোগ পায় না ও কেলাসিত পদার্থ চিনির মত দানাযুক্ত অ্যাপলিটিক গ্রথন (Aplitic texture) তৈরি করে। রূপান্তরিত শিলাতেও পেগমাটাইট তৈরি হতে পারে।

ম্যাগমার শীতলীভবনের হার, সান্দ্রতা ও দ্রবীভূত বায়বীয় পদার্থের পরিমাণ ছাড়াও অন্যান্য বিষয় শিলার গ্রথনে প্রভাব বিস্তার করতে পারে—যেমন কিছু কিছু খনিজ (উদাহরণ : অলিভিন) কখনই বড় কেলাস তৈরি করে না।

নিঃসারী ম্যাগমার মধ্যস্থ গ্যাস নিষ্ক্রমণকালে অনেক সময় প্রায় গোলাকার বুদ্বুদ্ সৃষ্টি হয় ও বুদ্বুদ্ ফেটে যাবার পর একরকম গর্তযুক্ত শিলার উদ্ভব ঘটে। একে ভেসিকুলার আগ্নেয়শিলা বলে। অনেকসময় এরকম গর্ত বা শূন্যস্থান পরবর্তীকালে গৌণ খনিজ কেলাস দিয়ে পূর্ণ হয়। এরকম শিলাকে অ্যামিগ্ড্যালয়ডাল (Amygdaloidal) আগ্নেয় শিলা বলে। সাধারণতঃ অনিয়তকার সিলিকা গঠিত অ্যাগেট (Agate), চ্যালসিডনি (Chalcedony) বা ওপ্যাল (Opal) দিয়ে অ্যামিগ্ড্যালয়ডাল শিলার গর্তগুলো পূর্ণ থাকে। নিঃসারী লাভার উপরিভাগে গ্যাস নিষ্ক্রমণকালে যে ফেনার সৃষ্টি হয়, তা থেকে জলের চেয়েও হালকা পিউমিস্ (Pumice) শিলার সৃষ্টি হয়।

(c) রাসায়নিক সংযুতি হিসাবে শ্রেণীবিভাগ ঃ আগ্নেয় শিলা বিভিন্ন খনিজ সমবায়ে গঠিত হয়ে থাকে। যেমন গ্রানাইট পাথরে অর্থোক্লেজ, কোয়ার্টজ এবং কিছু পরিমাণে বায়োটাইট, হর্ণব্লেণ্ড, টুরমালিন প্রভৃতি খনিজের সমাবেশ ঘটে। অনেক সময় বিভিন্ন খনিজের সমবায় উল্লেখ না কলেও কোনও আগ্নেয় শিলার রাসায়নিক সংযুতি সিলিকার শতকরা ভাগ দিয়ে প্রকাশিত হয়। 1900 সাল থেকে এই পম্বতি অনুসৃত হয়ে আসছে। এই পদ্বতিতে একটা খনিজের রাসায়নিক সংযুতি বিভিন্ন মৌলের অক্সাইড রুপে প্রকাশ করে সিলিকার (SiO<sub>2</sub>) শতকরা হার নির্ণয় করা হয়। যেমন, অর্থোক্লেজ ফেলস্পারকে নিম্নলিখিত অক্সাইডের সমফ্টিরপে প্রকাশ করা যায় :

#### 2KAlSi<sub>3</sub>O<sub>8</sub> $\rightleftharpoons$ K<sub>2</sub>O+Al<sub>2</sub>O<sub>3</sub> + 6SiO<sub>2</sub>

অন্যান্য সিলিকেটকেও এরকম বিভিন্ন অক্সাইডের সমন্টি রূপে প্রকাশ করা যায়। এখন, কোনও আগ্নেয় শিলায় যে যে সিলিকেট খনিজগুলো বর্তমান রয়েছে, তাদের ওজনগত অনুপাত ও প্রত্যেক খনিজের রাসায়নিক ফর্মূলা থেকে এর মধ্যে সিলিকার অনুপাত নির্ণয় করে ঐ শিলায় সিলিকার শতকরা ভাগ নির্ণয় করা যায়। সাধারণত আগ্নেয় শিলায় শতকরা 35 থেকে 80 ভাগের মত সিলিকা থাকে। যে সমস্ত আগ্নেয় শিলায় সিলিকার ভাগ 45% থেকে 52% থাকে, তাদের ক্ষারকীয় (Basic) আগ্নেয় শিলা বলে। সিলিকার ভাগ 45% এর কম হলে অতিক্ষারকীয় আগ্নেয় শিলার সৃন্টি হয়। যে সমস্ত আগ্নেয় শিলায় সিলিকার ভাগ 52-66% থাকে, তাদের মধ্যবর্তী (Intermediate) ও যে সমস্ত আগ্নেয় শিলায় সিলিকার শতকরা ভাগ 52-66% থাকে, তাদের মধ্যবর্তী (Intermediate) ও যে সমস্ত আগ্নেয় শিলায় সিলিকার শতকরা ভাগ 66% এর বেশি থাকে, তাদের আল্লিক (Acidic) আগ্নেয় শিলা বলে। সাধারণত হালকা রঙের খনিজ ফেলস্পার, কোয়ার্টাজ প্রভৃতিতে সিলিকার ভাগ বেশি থাকে বলে হালকা রঙের আগ্নেয় শিলা আল্লিক ধরনের ও গাঢ় রঙের শিলা ক্ষারকীয় ধরনের হয়ে থাকে। তবে এই কথা সব ক্ষেত্র প্রযোজ্য হয় না—যেমন চার্নকাইট, রায়োলাইট শিলা। সিলিকার ভাগ লাভার সান্দ্রতার ওপর প্রভাব বিস্তার করে। লাভায় সিলিকার যত বেশি বাড়ে, তত এটা বেশি সান্দ্র হয়ে পড়ে। অগ্নুৎপাতের প্রকৃতি, উদ্বেধী আগ্নেয় শিলার সঞ্জয়রূপ ও শিলা গ্রথনে লাভা বা ম্যাগমার সান্দ্রতা বিশেষ কার্যকরী ভূমিকা নেয়। এই প্রসঙ্গে আগেই আলোচিত হয়েছে।

আগ্নেয় শিলায় সিলিকা ও অন্যান্য অক্সাইডের শতকরা ভাগ থেকে আমরা কিন্তু কোনও আগ্নেয় শিলার নমুনায় খনিজের যথার্থ সমবায় সম্পর্ক সম্যক ধারণা করতে পারি না। এখানে বলা দরকার যে, আগ্নেয় শিলায় খনিজের সংখ্যাও যেমন সীমিত, তেমনি খনিজ সমবায় ও ওদের পারস্পরিক অনুপাত অল্পকয়েক প্রকারের মধ্যে সীমাবন্ধ থাকে। নানা পরীক্ষা-নিরীক্ষার ভেতর দিয়ে উপরোক্ত অবস্থা উদ্ভবের কারণ সম্পর্কে কিছু আলোকপাত ঘটেছে। যখন কোনও গলিত সিলিকেট থেকে কেলাসিত হয়ে আগ্নেয় শিলা তৈরি হয়, তখন কেলাসনের নিয়মগুলো ভৌত রসায়নবিদ্যা থেকে কিছুটা বোঝা গেছে এবং এটাই আগ্নেয় শিলার সীমিত রাসায়নিক সংযুতির যুক্ত্বিসঞ্চাত ব্যাখ্যা উপস্থিত করে।

এই প্রসঞ্জো ম্যাগমা গলন থেকে কেলাস সৃষ্টি প্রক্রিয়ার ইউটেকটিক সূত্র (Eutectic law) উল্লেখ করা প্রয়োজন। ইউটেকটিক হল দুই বা ততোধিক পদার্থের মিশ্রিত গলন যার বিভিন্ন উপাদানগুলোর ওজনগত অনুপাত এমন থাকবে যে, এক নির্দিষ্ট ন্যূনতম তাপমাত্রায় উপাদানগুলোর কেলাস একই সঙ্গো পড়বে (চিত্র : 6.5)। উদাহরণ দিয়ে বিষয়টিকে পরিষ্কার করা যেতে পারে। মনে করা যাক, সীসা (গলনাঙ্ক 326° সে.) এবং রুপোর (গলনাঙ্ক 954° সে.) এক গলনে সীসা ও রুপোর ওজন অনুপাত 96 ও 4 এবং 260° সে.-এ এই গলন থেকে সীসা ও রুপো একই সঙ্গো কেলাস গঠন করল। এই ধরনের মিশ্রণকে আমরা ইউটেকটিক মিশ্রণ বলব। গলিত মিশ্রণে ইউটেকটিক অনুপাত ছাড়া অন্য যে কোনও অনুপাত থাকলে পদার্থের কেলাস একই সঙ্গো হবে না। এরকম গলিত মিশ্রণ ঠাণ্ডা হবার সময় ইউটেকটিক তাপমাত্রায় আসবার আগেই মিশ্রণ যে পদার্থের পরিমান ইউটেকটিক মিশ্রণের অনুপাত থেকে বেশি আছে, সেই পদার্থের প্রথমে কেলাস সৃষ্টি হবে। অবশিষ্ট তরলে ঐ পদার্থের অনুপাত



চিত্র 6.5 : তাপমাত্রা উপাদান অনুপাত সম্পর্কিত দশা পরিবর্তনের চিত্র ডাইঅপ্সাইড অ্যানর্থাইট বর্গ দ্বারা বোঝানো হয়েছে। X (1391° সে.) শুধু ডাইঅপ্সাইডের গলনাঙ্ক; D (1550° সে.) অ্যানর্থাইটের গলনাঙ্ক; E হল ইউটেকটিক বিন্দু (1274° সে.); এই বিন্দুতে গলনের সংযুক্তি হ'ল ডাইঅপসাইড 58% ও অ্যানর্থাইট 42%।

কমতে থাকবে ও একসময় মিশ্রণে পদার্থের অনুপাত ইউটেকটিক বিন্দুতে পৌঁছাবে এবং এক নির্দিষ্ট ন্যূনতম তাপমাত্রায় একসঙ্গো ঐ পদার্থগুলোর কেলাস গঠন হবে। ম্যাগমার মধ্যে অবস্থিত বিভিন্ন মৌলগুলো যখন শিলা খনিজের কেলাস গঠন করে তখন ওপরের অবস্থা সৃষ্টি হয়। অপরপক্ষে ইউটেকটিক মিশ্রণযুক্ত কঠিনকে উত্তপ্ত করলে ঘটনার গতি বিপরীতমুখী হবে। ইউটেকটিক বিন্দু তাপমাত্রায় কিছু পদার্থ গলবে এবং গলন শেষ না হওয়া পর্যন্ত ইউটেকটিক অনুপাত বজায় থাকবে। এমন কিছু কিছু পদার্থের গলনের পর তাকে নিংড়িয়ে বার করে নিলেও অবশিষ্ট কঠিনে ইউটেকটিক অনুপাতের হেরফের হবে না এবং এক্ষেত্রেও শেষ পর্যন্ত ইউটেকটিক অনুপাত থেকে যাবে। অনুরূপ অসম্পূর্ণ গলনকে আংশিক গলন (Partial melting) বলে। প্রকৃতিতে ব্যাসন্ট ও গ্রানাইট এরকম ইউটেকটিক মিশ্রণ। যদি কোনও কারণে তেজস্ক্লিয় ইউরেনিয়াম ও পটাশিয়াম সমন্বিত গ্রানাইট গভীর ভূ-অভ্যন্তরে নিমজ্জিত হয়, তাহলে তেজস্ক্লিয় বিকিরণ ও উদ্ভূত তাপের ফলে এক সময়ে গ্রানাইট গলে যায় ও এই গলন ইউটেকটিক থাকে বলে ঐ গ্রানাইট ওপরে উঠে এসে অপেক্ষাকৃত অগভীর অঞ্চলে সঞ্চিত হলে কঠিন হয়ে আবার উদ্বেধী গ্রানাইট শিলা তৈরি করে।

ইউটেকটিক নয় এমন গলিত পদার্থের মিশ্রণকে যদি ঠাণ্ডা করা যায়, তাহলে প্রথমে যে কেলাস সৃষ্টি হবে তা এ মিশ্রণকে ইউটেকটিক বিন্দুতে নিয়ে যাবার চেষ্টা করবে। উৎপন্ন কেলাস তরলের নীচে থিতিয়ে পড়লে তরলের গঠন ইউটেকটিক ধরনের হবে, কিন্তু কঠিনের গঠন ইউটেকটিক থেকে অনেক দূরে সরে যাবে। এই প্রক্রিয়াকে আংশিক কেলাসন (Partial Crystallisation) বলে। একে এক ধরনের ম্যাগমা অবকলন (Magmatic differentiation) বলে ও এর ফলে বিভিন্ন ধরনের আগ্নেয় শিলার কেলাস সমবায়ের পার্থক্য ঘটতে পারে। আফ্রিকার বুশভেল্ডে (Bushveld) স্তর সমন্বিত ব্যাসল্ট জাতীয় শিলার কঠিনীভবনের শেষ পর্যায়ে সিলিকা সমৃন্ধ গ্রানাইট জাতীয় শিলা দেখা যায়। অবশ্য এই গ্রানাইটে আদর্শ গ্রানাইট থেকে সিলিকার ভাগ কম থাকে। এই পদ্ধতিতে ব্যাসল্ট থেকে শতকরা 10 ভাগ গ্রানাইট তৈরি হতে পারে কিন্তু ভূতত্ত্ববিদরা ব্যাসল্ট ও গ্রানাইটের এরকম অনুপাত কোথাও দেখতে পাননি। কাজেই এইভাবে মহাদেশীয় গ্রানাইটের উৎপত্তি মেনে নেওয়া যাবে কি?

বাওয়েনের বিক্রিয়াক্রম (The Bowen Reaction Series) ঃ এই শতকের প্রারম্ভে নর্মান লেভি বাওয়েন ল্যাবরেটরিতে পরীক্ষা করে সিলিকেট খনিজের এক বিক্রিয়াক্রমে তৈরি করেন। গ্রানাইট পাথরের উৎপত্তির ব্যাখ্যার জন্যই এই পরীক্ষা করা হয়। যদিও গ্রানাইটের উৎপত্তি সম্পর্কে বাওয়েনের ধারণা বর্তমানে গ্রহণযোগ্য নয়, তাহলেও এই ক্রম শিলাখনিজের কেলাসন প্রক্রিয়া সম্পর্কে কিছু সুসম্বন্থ তথ্য উপস্থাপিত করে।

বাওয়েন মূলত শিলা উৎপানকারী খনিজগুলিকে ক্রমনিম্নমান গলনাঞ্চক অনুসারে সাজিয়ে তালিকা প্রস্তুত করেন। ম্যাগমা যখন ঠাণ্ডা হয়, তখন উচ্চতম গলনাঙ্ক বিশিষ্ট খনিজ সবচেয়ে প্রথম ও অন্যান্য খনিজগুলো ক্রমনিম্নমান গলনাঙ্ক অনুসারে পর পর কঠিন হবে। বাওয়েন সিলিকেট খনিজগুলোকে দু'ভাগে ভাগ করেন। একভাগে রয়েছে হাল্কা রঙের খনিজগুলো, আর অন্যভাগে রয়েছে গাঢ় রঙের খনিজগুলো। গাঢ় রঙের সিলিকা চতুস্তলক খনিজ, একক ও দ্বি-শৃঙ্খলে আবন্ধ খনিজ, পাত জাতীয় খনিজ কেলাসের গঠনের পার্থক্য অনুযায়ী ঠাণ্ডা হবার সময় গলনে প্রথমে অলিভিন (চতুস্তলক খনিজ) ও ক্রমে-ক্রমে পাইরক্সিন (একক শৃঙ্খলাবন্দ্র খনিজ), অ্যান্ফিবোল (দ্বি-শৃঙ্খলাবন্দ্র খনিজ), বায়োটাইটের (পাতজাতীয় খনিজ) গলনাঙ্ক ধপে ধাপে ক্রমে। হালকা রঙের খনিজগুলোর গলনের ক্ষেত্রে প্লাজিওক্লেজ ফেলস্পারের (কঠিন দ্রবণ জাতীয় খনিজ) ক্যালসিয়াম ঘটিত অ্যানর্থাইট কঠিন হয়। গলনের ক্রম শীতলীভবনকালে প্রথম ভাগের বায়োটাইট ও দ্বিতীয় ভাগের অ্যালবাইটের পর অর্থোক্লেজ ফেলস্পার (পটাশ ফেলস্পার) ও এরপরে মাসকোভাইট ও সবশেষে কোয়ার্টজ কেলাসিত হয় (চিত্র ঃ 6.6)।



চিত্র 6.6 : খকিনজের আদর্শ মিশ্রণযুক্ত মাগমা ধীরে ধীরে ঠাণ্ডা করা হলে বিভিন্ন খনিজের কেলাস সৃষ্টির অনুক্রম (বাওয়েনের বিক্রিয়া ক্রম অনুযায়ী)।

গলনাঙ্কের ভিত্তিতে সিলিকেট খনিজের এই ক্রমবিন্যাসকে বাওয়েন বিক্রিয়া বলা হয় এই কারণে যে, বাওয়েন মনে করতে যে, তালিকার ঊর্ধ্বে অবস্থিত কোনও কোনও খনিজ অবশিষ্ট ম্যাগমার সঙ্গে বিক্রিয়া ঘটিয়ে পরবর্তী নিম্নধাপের খনিজ সৃষ্টি করতে পারে। বাওয়েনের মতে, আংশিক কেলাসনের (partial crystallisation) মত কোনও ম্যাগমা ঠাণ্ডা হবার কালে প্রথমে অপেক্ষাকৃত কম সিলিকা সমৃদ্ধ গাঢ় রঙের খনিজগুলোর কেলাস গঠিত হবে ও তারী বলে এরা গলনে ডুবে যাবে ও ম্যাগমায় সিলিকার সমৃদ্ধি ঘটবে এবং সবচেয়ে শেষে সিলিকা সমৃদ্ধ গ্রানাইট বা পেগমাটাইট পাথরের সৃষ্টি হবে।

আগ্নেয় শিলায় রাসায়নিক গঠনের বিভিন্নতার মূলে উপরোক্ত বিভিন্ন ধরনের ম্যাগমা অবকলন (magmatic differentiation) কার্য করে বলে মনে করা হয়, কিন্তু প্রাথমিক ম্যাগমার রাসায়নিক সংযুতি সবক্ষেত্রে একইরকম থাকে অথবা এটা বিভিন্ন রকম হতে পারে, সে বিষয়ে মতদ্বৈধতা রয়ে গেছে।

আগ্নেয় শিলার শ্রেণীবিভাগ সারণীর আকারে দেওয়া হল (সারণী : 6.2)।

|                          |                    |                  | আ৫গ্নয়             | শিলার শ্রেণীবিৎ   | হাগ                |                 |                                    |
|--------------------------|--------------------|------------------|---------------------|-------------------|--------------------|-----------------|------------------------------------|
| হালকা রডের               | খনিজের প্রাধান্য ≼ |                  |                     |                   |                    | - 🔰 आए इटिंड    | র খনিজের প্রাধান্য                 |
| હેৎপહિম્થল               | বুলন বা গ্ৰথন<br>ব |                  |                     | খনিজ সমবায় ও     | রাসায়নিক সংযুথি   | 10              |                                    |
|                          |                    | আস্লিক           | মধ্যবর্তী           | মধ্যবৰ্তী         | <u>क्रम्</u>       | কীয়            | অতিক্ষারকীয়                       |
|                          |                    |                  |                     | সোডিয়াম          | ক্যালসিয়াম প্লাভি | ଜିଲ୍ଲେକ         | ركمهماج رهاتي                      |
|                          |                    | অর্থক্লেজ যে     | ন্লস্পার প্রধান     | প্লাজিওক্লেজ      | ফেলস্পার প্রধান    |                 |                                    |
|                          |                    |                  |                     | ফেলস্পার প্রধান   |                    |                 |                                    |
|                          |                    | + বায়োটাইা      | ট + হর্ণব্লেন্ড     | বায়োটাইট এবং     | পাইরক্সিন প্রধান্য | ত অগাইট         | সম্পূর্ণাংশ গাঢ় রঙের খনিজ         |
|                          |                    |                  |                     | অথবা হর্ণব্লেণ্ড  |                    |                 |                                    |
|                          |                    | + কোয়ার্টজ      | - কোয়ার্টজ         |                   | - <u>धलिडि</u> न   | +<br>यनिष्कि    | পেরিডোটাইট (বিভিন্ন গাঢ়           |
|                          |                    |                  |                     | ভায়োৱাইট         |                    |                 | রিঙের খনিজের সমষ্ট);               |
| ব্যাথেলিফ, কিছু কিছু     | ফ্যানেরিটিক        | গ্রাইট           | সায়েনাইট           |                   | ग्रीदवो            | অলিভিন          | হর্ণব্লেন্ডাইট (প্রায় সম্পূর্ণাংশ |
| न्णात्कानिथ ७ रमात्कानिथ |                    |                  |                     |                   |                    | গ্র্যারো        | হর্ণব্লেণ্ড গঠিত); পাইরক্সিনাইট    |
| কিছু কিছু ল্যাকোলিথ,     | পরফিরিটিক          | গ্রানাইট         | সায়েনাইট           | ভায়োইট           | ग्रीरडा            | অলিভিন          | (প্রায় সম্পূর্ণাংশ পাইরক্সিন      |
| ফ্যাকোলিথ ও ভাইক,        |                    | পরফিরি           | পরফিরি              | পরফিরি            | পরফিরি             | গ্যাবো পরফিরি   | খনিজ গঠিত)।                        |
| मिल, भिंठे               | পরফিরিটিক,         | রায়োলাইট        | ট্র্যাকাইট          | অ্যাইট            | ব্যাসল্ট পরফিরি    | অলিভিন ব্যাসল্ট |                                    |
|                          | ফেনোকৃস্ট প্রকট    | পরফিরি           | পরফিরি              | পরফিরি            |                    | পরফিরি          |                                    |
| ভৃপূষ্ঠে সঞ্জিত          | ৰ্কাচ,             | রায়োলাইট        | ট্র্যাকাইট          | অ্যাইট            | ব্যাসল্ট           | অলিভিন          |                                    |
|                          | ফেলসিটিক           |                  |                     |                   |                    | ব্যাসল্ট        |                                    |
| বিস্ফোরণমূলক             | পাইরোক্লাস্টিক     | টুফ-সিমেন্ট      | গপ্রাপ্ত ভম্মজাতি   | য়ে পদার্থ গঠিত   |                    |                 |                                    |
| অগ্নুৎপাত                |                    | ব্রেকসিয়া—ি     | সমেন্টপ্রাণ্ড স্থ্য | লাশ্বিলাখণ্ড গঠিত |                    |                 |                                    |
|                          | টিকা ঃ (+)         | অর্থ যথেষ্ট প    | রিমালে              |                   |                    |                 |                                    |
|                          | <u>ه</u> (-)       | মৰ্থ অঙ্গ পান্নহ | মালে                |                   |                    |                 |                                    |

সারণী 6.2

120

#### 6.3.2 আগ্নেয় শিলার বল্টন

বহুদিন পূর্ব থেকেই লক্ষ্য করা গেছে যে, মহাদেশ প্রধানত গ্রানাইট জাতীয় শিলা দিয়ে গঠিত। অপরদিকে লাভা সমভূমি, মধ্য সামুদ্রিক দ্বীপ (যেমন হাওয়াই, আইসল্যান্ড প্রভৃতি) কম সিলিকাসমৃদ্ধ ব্যাসল্ট জাতীয় শিলা দিয়ে গঠিত। সাম্প্রতিক কালের সমীক্ষায় জানা গেছে যে, মহাসমুদ্রের অবক্ষেপের তলায় ভূমিশিলারও প্রায় সম্পূর্ণাংশ ব্যাসল্ট জাতীয়। আবার গভীর সমুদ্র খাতের পাশে মহাদেশের প্রান্তের দিকে আগ্নেয়গিরিগুলো মধ্যবর্তী সিলিকাযুক্ত অ্যান্ডেসাইট শিলা দিয়ে গঠিত। আগ্নেয় শিলার এইরূপ ভৌগোলিক বন্টন অবশ্যই ব্যাখ্যার দাবি রাখে। প্লেট ভূ-গঠন মতবাদে এর এক সম্ভাব্য ব্যাখ্যা দেওয়া হয়।

যেখানে দুটো প্লেট একে অপর থেকে দূরে সরে যায়, সেখানে নতুন সমুদ্রপৃষ্ঠের সৃষ্টি হয় এবং গুরুমণ্ডল থেকে আংশিকভাবে গলিত ম্যাগমা প্লেট মধ্যবর্তী ফাঁক পূরণের জন্য ওপরে উঠে আসে। গুরুমণ্ডলে সম্ভাব্য ম্যাগমার প্রকৃতি পেরিডোটাইট ধরনের বলে অনুমান করা হয়। ল্যাবরেটরিতে লার্জোলাইট (Lherzolite) বলে এক ধরনের পেরিডোটাইটকে উচ্চচাপের মধ্যে আংশিক গলিয়ে দেখা গেছে যে, এর থেকে 10-30% ব্যাসল্ট শিলার অনুরূপ গঠনযুক্ত পদার্থের সৃষ্টি হয়।

যেখানে দুটো প্লেট পরস্পর মিলিত হয়, সেখানে একটা মহাসাগরীয় প্লেট নিম্নগামী হয় ও গুরুমণ্ডলে শোষিত হয়। এরকম মহাসাগরীয় প্লেটের ওপর কর্দম ও বালি সমৃদ্ধ পদার্থ সঞ্চিত হয় ও নিম্নগামী প্লেটের সঙ্গে এই সমস্ত সামুদ্রিক অবক্ষেপ কিছু পরিমাণে গুরমণ্ডলে স্থানান্তরিত হয়। আবার ল্যাবরেটরিতে পরীক্ষা করে জানা গেছে যে, পরিমাণ মত উপরোক্ত ধরনের উপকরণের উপস্থিতিতে পরিমার্জিত ব্যাসল্টের আংশিক গলন হলে অ্যান্ডেসাইট জাতীয় পদার্থের সৃষ্টি হয়। গভীর সমুদ্রখাতের পাশে অ্যান্ডেসাইট শিলা গঠিত আগ্নেয়গিরির উৎপত্তিতে উপরোক্ত ব্যাখ্যা দেওয়া হয়।

যেখানে দুটো মহাদেশীয় প্লেট পরস্পর মিলিত হয়, সেই অঞ্চলে বিভিন্ন পরিবারের আগ্নেয় শিলা গঠিত হয়। এক্ষেত্রে সামুদ্রিক অবক্ষেপ ছাড়াও মহাদেশীয় ভূত্বকও (গ্রানিট) নিম্নগামী হয় এবং গলনের ফলে আরও সিলিকাসমৃদ্ধ শিলার সৃষ্টি হয়। এইজন্য ভঙ্গিল পদার্থের অন্তঃস্থলে ব্যাথোলিথ গ্রানিট শিলা গঠিত হয়।

এই প্রসঙ্গে উল্লেখযোগ্য যে, প্লেট ভূ-গঠন মতবাদ অনুযায়ী ব্যাসল্টের সঙ্গে অন্যান্য খনিজের মিশ্রণ ও তাদের গলনের ফলে গ্রানিট পাথরের সৃষ্টি এক হিসেবে বাওয়েনের সেই পুরোনো ধারণা—ব্যাসল্ট থেকে গ্রানিট পাথর সৃষ্টি হয়—তাতে ফিরে আসতে সাহায্য করে।

## 6.4 পাললিক শিলা

পলি গঠিত শিলাকে পাললিক শিলা বলে। পাললিক শিলায় সাধারণত স্তর দেখা যায়। সেইজন্য অনেকসময়ে পাললক শিলাকে স্তরীভূত শিলাও বলে। পাললিক শিলায় স্তর নাও থাকতে পারে। কাজেই পাললিক ও স্তরীভূত শিলা পাললিক শিলার এক অংশ বিশেষ।

#### 6.4.1 পলির উৎস

ভূ-পৃষ্ঠে পলি নানাভাবে সৃষ্টি হতে পারে এবং সেই অনুযায়ী পলির প্রকৃতিও বিভিন্ন প্রকার হয়। উৎসের পার্থক্য অনুসারে পলিকে আমরা প্রধান তিনটে শ্রেণীতে ভাগ করতে পারি।

 (i) সংঘাত পলি : স্থলভাগে বর্তমান শিলা ভেঙেই সংঘাত পলির সৃষ্টি হয়। সংঘাত পলি সৃষ্টির মূলে রয়েছে আবহিক বিকার, চ্যুতিতল বরাবর ঘর্ষণ, বিস্ফোরণমূলক অগ্ন্যুৎপাত প্রভৃতি।

(ii) জৈব পলি : সমুদ্রে ছোট, বড় বিভিন্ন প্রাণী বাস করে। এদের অদ্রাব্য দেহাবশেষ সমুদ্রতলে সঞ্চিত হয় ও এক বিশিষ্ট ধরনের পলির সৃষ্টি করে। উদ্ভিদ জগৎ ও সংঘাত পলির তলায় চাপা পড়ে অঞ্চ্যারময় পলির সংস্থান করে।

(iii) লবণ : জলীয় দ্রবণ থেকে লবণের সরাসরি অধ্যক্ষেপণ একশ্রেণীর পলির সৃষ্টি করে।

এছাড়াও নিম্ন সঞ্জরমান ভৌমজলের সঙ্গে পরিবাহিত বিভিন্ন পদার্থে ঐ মাধ্যমের শিলার সঙ্গে বিক্রিয়া করে বা শিলার অংশকে প্রতিস্থাপিত করেও পলি সঞ্চিত করতে পারে।

## 6.4.2 পলিশিলীভবন প্রক্রিয়া (Diagenesis)

আলগা পলি থেকে কঠিন শিলায় পরিণত হওয়ার প্রক্রিয়াকে পলিশিলীভবন বলে। অঞ্চাারময় পলি ছাড়া অন্যান্য পলির ক্ষেত্রে শিলীভবন প্রক্রিয়াকে নিম্নলিখিত কয়েক ধাপে ভাগ করা যায়। যথা, (i) সংসক্তায়ন (compaction)—উপরিস্থিত পলির চাপে); (ii) নিস্পীড়ন (syneresis—পলি মধ্যস্থিত জলের আংশিক নিষ্ক্রমণ); (iii) সিমেন্ট প্রাপ্তি (cementation)—এই প্রক্রিয়ায় পলি কণার ফাঁকে ফাঁকে চুন, সিলিকা, লৌহ-অক্সাইড কণা সঞ্চিত হয় ও এতে শিলা জমাট বেঁধে যায়। অনেক সময়, যেমন চুনাপাথরে, সঞ্চরিত ভৌমজলের থেকে অধ্যক্ষেপণের ফলে কণার আয়তন বৃষ্ধির পরিমাণ শিলার আয়তনের <sup>1</sup>/<sub>3</sub> অংশ থেকে <sup>1</sup>/<sub>4</sub> অংশ পর্যন্ত হতে পারে। প্রসঞ্চাত উল্লেখযোগ্য যে, বিশেষ চাপে ও রাসায়নিক পরিবেশে পলির সিমেন্ট প্রাপ্তি না হয়ে দ্রবণও হতে পারে; (iv) উপক্রান্ত রূপান্তর (incipient metamorphism)—যখন পলি গভীর অঞ্চলে স্থানান্তরিত হয়, তখন উচ্চতর তাপাক্ষ ও অবরোধী চাপের (confining pressure) মধ্যে শিলার সামান্য রূপান্তর হয়। যেমন, কেওলিনাইট ও মন্টমরিলোনাইট কর্দম খনিজ পরিবর্তিত হয়ে ইল্লাইট কর্দম খনিজ বা ক্লোরাইটে পরিণত হয়। উপক্রান্ত রূপান্তরের চরম পর্যায়ে কর্দম খনিজ নতুনভাবে কেলাসিত হয়ে মাইকা ও সিস্টজাতীয় গ্রিথনের সৃষ্টি করতে পারে।

## 6.4.3.1 পাললিক শিলার গ্রথন, গঠন ও অন্যান্য বৈশিষ্ট্য

পলি যেখানে সৃষ্টি হয়েছে সেখানেই ঐ পলি পরিবাহিত হয়ে অন্য কোথাও জমা হবার পর পাললিক শিলার সৃষ্টি হতে পারে। পরিবহনের মাত্রা, প্রকৃতি, পলির প্রকৃতি প্রভৃতির ওপর নির্ভর করে পলির কণাগুলোর বাহ্যিক রূপ গড়ে ওঠে। কণার বাহ্যিক রূপ বলতে আমরা সাধারণত তিন ধরনের মাত্রা ব্যবহার করি, যথা জ্যামিতিক রূপ, গোলীয় মাত্রা (Sphericity) ও উৎকৌণিকতা (Roundness)। কোনও নিয়মিত ত্রিমাত্রিক জ্যামিতিক বস্তুর রূপের সঙ্গো মিলিয়ে কোনও কণার রূপ বর্ণনা করা যেতে পারে। গোলীয় মাত্রায় বলতে কণা কতটা গোলকের কাছে পৌঁছেছে তাকে বোঝায়। কোনও কণার দীর্ঘতম অক্ষ (dn) ও ঐ কণার আয়তনের সমান কোনও গোলকের ব্যাসার্ধের (r) অনুপাতের সাহায্যে সাধারণত গোলীয় মাত্রা পরিমাণ করা যায়। গোলীয় মাত্রা =dn ববং এর মান 0 থেকে 1.0 মধ্যে থাকে।

দ্বিমাত্রিক ক্ষেত্রে দানার কোণ বা পার্শ্বগুলো কতখানি গোলাকৃতি, তার ওপর দানার যে গুণটি নির্ভর করে তাকে বলে উৎকৌণিকতা (Roundness)।

দ্বি-মাত্রিক ক্ষেত্রে কোনও কণার উৎকৌণিকতা মাপতে ঐ কণার কোণ ও পার্শ্ব দেশের গড় ব্যাসার্ধ (a) এবং ঐ কণার মধ্যে যে বৃহত্তম বৃত্ত আঁকা যায় তার ব্যাসার্ধের অনুপাত (r) দিয়ে আমরা কণার উৎকৌণিকতা মাপতে পারি। অতএব উৎকৌণিকতা = <sup>a</sup>/<sub>r</sub> এবং এর মান 0 থেকে 1.0 পর্যন্ত হতে পারে (চিত্র : 6.7)।



চিত্র 6.07 : গোলীয় মাত্রা ও উৎকৌণিকতা।

পলি যেখানে সৃষ্টি হয়েছে সেখানেই শিলীভূত হলে পলির কণাগুলো কৌণিক ধরনের হয়। আবহবিকার প্রাপ্ত, অগ্নুৎপাত উৎক্ষিপ্ত বা চ্যুতিতল বরাবর ঘর্ষণজনিত শিলাচূর্ণ শিলীভূত হলে শিলা কণাগুলো কৌণিকই থেকে যায়। এদের আকার দেখে পলির উৎস সম্পর্কে একটা ধারণা জন্মে। পলি পরিবাহিত হয়ে সঞ্চিত হলে ছোট বড় শিলাখণ্ড ভূমির সঙ্গো ঘর্ষণের ফলে কিছুটা পরিবর্তিত হয়। পরিবহনের ফলে পলির কণাগুলোর রূপ, উৎকৌণিকতা, গোলীয় মাত্রা কেমন হবে তা বেশ জটিল, তবে পর্যবেক্ষণ ও পরীক্ষালস্থ ফল থেকে ও বিষয়ে কয়েকটা সাধারণ নিয়ম লক্ষ্য করা যায়।

(i) কোনও কণা কি পরিমাণ দূরত্ব পরিবাহিত হয়েছে, তার ওপর উৎকৌণিকতা নির্ভর করে। কণা বেশি দূরত্ব অতিক্রম করলে উৎকৌণিকতার মান বাড়ে ও কম করলে উৎকৌণিকতার মান কম থাকে। পরিবহনকালে ভূমির সঙ্গে ঘর্ষণের ফলে কণার গোলীয় রূপ গ্রহণের থেকে উৎকৌণিকতার মান বৃদ্ধি বেশি কার্যকরী হয়। (ii) বড় শিলাখণ্ড অপেক্ষাকৃত দ্রুত উৎকৌণিকতা প্রাপ্ত হয়। কারণ এরা জলে বেশিক্ষণ প্রলম্বিত থাকতে পারে না। ফলে অবঘর্ষের প্রকোপ থাকে বেশি। পদার্থের যান্ত্রিক কাঠিন্য ও উৎকৌণিকতা প্রাপ্তিতে প্রভাব বিস্তার করে। শক্তু কোয়ার্টজ গঠিত বালি অবঘর্ষের ফলে মসৃণতা পেতে বহু সময় লাগে।

(iii) পরিবহন প্রক্রিয়াও কণার বাহ্যিক রূপের প্রভাব বিস্তার করে। সমুদ্রতরঙ্গা বাহিত কব্ল (cobble) চ্যাপ্টা প্রকৃতির হয়। বালি কণার উৎকৌণিকতা বাড়াতে বায়ুজলধারা গায়ে আঁচড় বা দাগ কাটে ও পলির মধ্যে যেকোনও আকারের ও পরিমাপের খণ্ড ও গুঁড়া মিশ্রিত থাকে।

পাললিক শিলার গ্রথনের আর এক বৈশিষ্ট্য হল ছিদ্রতা (Porosity) ও প্রবেশ্যতা (Permeability)। ছিদ্রতা হল শিলার ভেতর খালি জায়গা বা রন্দ্র পরিসর ও শিলার মোট আয়তনের অনুপাত। ছিদ্র ও ফাটলযুক্ত শিলার মধ্যে তরল বায়ব পদার্থের প্রবাহের মাত্রা বোঝাতে প্রবেশ্যতা\* শব্দটি ব্যবহার করা হয়।

দানার আকার, দানার গঠন, দানার ঠাস ও দানার বাছাই-এর ওপর শিলার সছিদ্রতা নির্ভর করে। সাধারণভাবে বলা যায় যে, দানার বাছাই যত ভাল হবে প্রবেশ্যতা তত বাড়বে, আর শিলার মধ্যে দানার আকার যত কম-বেশি হয় তত প্রবেশ্যতা কমে।

পাললিক শিলার গঠন (Structure) বিদ্যায় গ্রথনের থেকে বড় বৈশিষ্ট্যগুলো নিয়ে আলোচনা করা হয়, যেমন স্তর, ক্রশবেডিং, লহরী চিহ্ন প্রভৃতি। পাললিক শিলার গঠন বহুলাংশে নির্ভর করে পলি অবক্ষেপণের পরিবেশের উপর।

## 6.4.3.2 স্তরায়ন

ন্তরের উপস্থিতি থেকে পাললিক শিলাকে সহজে চেনা যায়। তবে সব পাললিক শিলায় স্তর থাকে না, যেমন হিমবাহ অবক্ষেপিত টিল বা বায়ু অবক্ষেপিত লোয়েশ। জল থেকে অবক্ষেপিত হলেই স্তরায়ন সুষ্ঠুভাবে হতে পারে। কাজেই সাগর, উপসাগর, লেগুন, হ্রদ, নদীগর্ভে সঞ্চিত পলিই সাধারণত স্তর যুক্ত হয়। পলির গ্রথন, উপাদান এবং রঙের পার্থক্যই স্তর সৃষ্টিতে সাহায্য করে। (চিত্র : 6.8)। এক সেমি.-এর বেশি বেধযুক্ত স্তরকে অনুস্তর বা বেড (Bed) আর এর কম বেধের স্তরকে ল্যামিনা (Lamina) বা ত্বচ বলে। ত্বচ তৈরির ঘটনাকে ত্বচন বলে। বাগনল্ডের মতে স্তর গঠনে তিনটি প্রক্রিয়া অংশগ্রহণ করে।

(i) সাধারণ অধঃক্ষেপণ (Simple sedimentation)—প্রলম্বিত পলির ধীর অবক্ষেপন এই প্রক্রিয়ার অন্তর্গত।

(ii) উপলেপন (accretion)—পরিবহন মাধ্যমের গতিবেগ, ভূমিতলের মসৃণতা প্রভৃতি পরিবর্তন জনিত অবক্ষেপণ।

(iii) আগ্রাসন (encroachment)—যেমন সঞ্জয়ের ফলে ব-দ্বীপের বিস্তার ঘটে।

<sup>\*</sup> **টীকা :** যদি এক সেন্টিপয়েস সান্দ্র তরল এক বায়ুমণ্ডলীয় চাপের মধ্যে এক বর্গ সেমি. প্রস্থচ্ছেদযুক্ত ও এক সেমি. গভীর শিলার মধ্যে দিয়ে প্রতিসেকেন্ডে এক মিলিমিটার ক্ষারিত হয়, তবে তাই হল প্রবেশ্যতার একক ডারসি (Dercy)।

সাধারণত একটা স্তর বেশ সমসত্ত্ব হয়। তবে সর্বত্র এরকম নাও হতে পারে। যেমন বেলে পাথরের দানাক্রমিক স্তরে (Graded bed) তলার দিকে বড় দানা ও ওপরের দিকে ক্রমাগত সূক্ষ্ম দানা দেখা যাও



চিত্র 6.8 : স্তর গঠনের সরল চিত্র।

ও ওপরের অংশে সূক্ষ্ম দানাযুক্ত শেল পাথর দেখা যায় (চিত্র : 6.9 ও 6.10b)। কোনও কোনও ক্ষেত্রে একটা স্তরের মধ্যে অন্য রকম রঙ ও গ্রথনযুক্ত পাতলা স্তর বা লেন্স থাকতে পারে। ভারতবর্ষে সিমলা শ্লেট ও গ্রেওয়াকি স্তরে এরকম দানাক্রমিক পলি সঞ্জয় দেখা যায়।

একটা স্তর এক বিশেষ অবস্থায় অবক্ষেপিত হয়, অর্থাৎ আগের স্তর যে অবস্থায় অবক্ষেপিত হয়েছে তার পরিবর্তন ঘটলে তবেই পরবর্তী স্তরের মধ্যে পার্থক্য সৃষ্টি হয়। এর থেকে মনে করা যেতে পারে, দুটো স্তর সৃষ্টির প্রক্রিয়া পরিবর্তনের মাঝে অবক্ষেপণে সামান্য সময়ের জন্য এক বিরতি বা যতি থাকে। এর জন্য দুইস্তরের মধ্যে সূক্ষ্ম হলেও এক ফাঁক থাকে।

স্তর গঠনে কয়েকটা মূল নীতি রয়েছে। (i) সাধারণত গঠনকালে স্তর অনুভূমিকভাবে সৃষ্টি হয়। পরে ভূ-সংক্ষোভের ফলে স্তরের ভঞ্চিা পরিবর্তিত হ'তে পারে। (ii) স্তরসজ্জায় একটা কালক্রমিতা অন্তনির্হিত থাকে। যদি এই স্তরক্রম ভূ-সংক্ষোভের ফলে ব্যতিক্রান্ত (inverted) না হয়ে থাকে, তাহলে সবচেয়ে নিচের স্তরটি প্রাচীনতম এবং সবচেয়ে ওপরের স্তরটি নবীনতম হবে। (iii) একই যুগের শিলাস্তর ভূ-পৃষ্ঠে সর্বত্রই নির্দিষ্ট জীবাশ্ম (বা জীবাশ্ম গোষ্ঠী) দিয়ে চিহ্নিত হয়। (iv) দুটো সংলগ্ন শিলাস্তরের মধ্যে যখন নতি (Dip) ও আয়াম (Strike) সংক্রান্ত বৈষম্য দেখা যায় তখন এদের বিভেদতলকে অসংগতি বা ব্যুৎক্রম (unconformity) বলা হয়। যে কোনও স্তরক্রমের মধ্যে অসংগতি দিয়ে চিহ্নিত বিভিন্ন শিলা উপাদান দিয়ে গঠিত পাতলা স্তরের সমষ্টিকে সংঘ (Formation) বলে। সংঘের উপরিভাগ যথাক্রমে



চিত্র 6.9 : বিভিন্ন রকম স্তরায়নের উদাহরণ। A, E সমসত্বতাযুক্ত স্তরায়ন; B, C দানাক্রমিক স্তরায়ন; D বেলেপাথরের স্তরের মধ্যে শেলের পাতলা স্তর; F কংগ্লোমারেট স্তরের মধ্যে বেলে পাথরের লেন্স।

সভ্য (Member), অনুস্তর (Bed) প্রভৃতি। (v) একই শিলাস্তরের পার্শ্বিক বিস্তৃতির দিকে স্থান থেকে স্থানান্তরে গেলে শিলাপ্রকৃতি অল্পবিস্তর মাত্রায় পরিবর্তিত হচ্ছে দেখা যায়। পাশের দিকে একই শিলাস্তর এই যে রূপভেদ (Lateral change of Facies)-এর অন্তনির্হিত কারণ হল প্রাকৃতিক প্রতিবেশের তারতম্য (চিত্র : 6.8)। উদাহরণ হিসাবে বলা যায় যে, সমুদ্রতীর থেকে যতই গভীর সমুদ্রের দিকে যাওয়া যায়, পলি অবক্ষেপনের প্রকৃতির ততই পরিবর্তন হতে থাকে। প্রথমে মোটা দানার বালি, তারপর কাদা মেশানো বালি ও আরও পরে কাদার অবক্ষেপণ হবে। এইভাবে একই স্তরের মধ্যে পাললিক রূপভেদ (Sedimentary Facies) সৃষ্টি হয়। পাললিক শিলার রঙ, গঠন, উপাদান, গ্রথন, জীবাশ্ম প্রভৃতি বৈশিষ্ট্যগুলোর একক বা একাধিক পরিবর্তনের সাহায্যে রূপভেদ শনাক্ত করা যায়।

তির্যক ত্বচন (Cross Lamination) : অনেক সময় কোন স্তরে স্তরায়ন তলের সঙ্গে হেলানো অবস্থায় অনেক উপস্তর দেখতে পাওয়া যায়। একে তির্যক ত্বচন বলে (চিত্র : 6.10a)। তির্যক ত্বচন থেকে একটা স্তরকে অন্য স্তর থেকে আলাদা করে চেনা যায়। পলি মেশানো বায়ু বা জলস্রোত যখন আগের সঞ্জয়ের ঢালের ওপর

দিয়ে প্রবাহিত হয়, তখন তির্যকতলের ওপর নতুন পলি অবক্ষেপিত হয় ও এটা সাধারণ স্তরায়ন তলের সঙ্গো হেলানো অবস্থায় থাকে। এইভাবে তির্যক ত্বচনের সৃষ্টি হয়।

| And a second sec |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

চিত্র 6.10 : বেলেপাথরে প্রধান দুই প্রকার গঠনের বিশেষত্ব। a—তির্যক ত্বচন (যেমন অর্থোকোয়ার্টজাইট পাথরে থাকে)। b—দানাক্রমিক স্তরায়ন (যেমন গ্রেওয়াকি পাথরে থাকে)।

## 6.4.3.3 ভার্ব (Verve)

শীত ও গ্রীষ্ম ঋতুভেদে হ্রদের জল থেকে অবক্ষেপণের পার্থক্যের জন্য দুটো ত্বচের সৃষ্টি হতে পারে। এক বছরে সঞ্চিত দুটো ত্বচ মিলে একটা ভার্ব তৈরি হয়। হিমবাহ অঞ্চলের হ্রদের জলে এরকম ত্বচের সৃষ্টি হতে দেখা যায়। গ্রীষ্মকালে বরফগলা জল হ্রদে এসে পড়ে ও তার থেকে বড় দানাযুক্ত অংশ সঙ্গো সঙ্গো অবক্ষেপিত হয়। কিন্তু সূক্ষ্ম দানাযুক্ত অংশ জলে প্রলম্বিত থাকে। শীতকালে যখন উপরিভাগের জল জমে বরফ হয়, তখন তার তলায় জল থেকে সূক্ষ্ম কণাগুলো ধীরে ধীরে নেমে অবক্ষেপিত হয়। এইভাবে স্থূল ও সূক্ষ্ম দানাযুক্ত দুটো ত্বচ নিয়ে একটা ভার্ব তৈরি হয়। এভাবে অনেক ভার্ব তৈরি হতে পারে। ভারতবর্যে গন্ডোয়ানা যুগের তালচের সংঘের (Formation) শিলায় এরকম ভার্ব দেখতে পাওয়া যায়।

#### 6.4.3.4 কাদার ফাটল (Mud cracks)

জলের মধ্যে কাদার স্তরের অবক্ষেপণের পর যখন কিছু সময়ের জন্য ঐ স্তরের ওপর জল থাকে না এবং ঐ কাদা যখন শুকোতে থাকে তখন কাদার স্তরে পাঁচ-ছয় বাহু বিশিষ্ট ফাটল সৃষ্টি হয়। পরবর্তীকালে পলি সঞ্জয়ের সময় ঐ ফাঁক বালি দিয়ে ভর্তি হয়ে যায় ও কাদার ফাটলের স্থায়ী চিহ্ন থেকে যায় (চিত্র : 6.11)।



চিত্র 6.11 : কাদার ফাটল (Mud cracks)।

## 6.4.3.5 বৃষ্টির চিহ্ন (Rain prints)

বৃষ্টির জলের ফোঁটার ছাপ বালির স্তরের ওপর থেকে যায়। যদি ঐ ছাপ নষ্ট হবার আগেই নতুন পলির অবক্ষেপণ হয় তাহলে ঐ ছাপ স্থায়ীভাবে শিলাস্তরে থেকে যায়।

## 6.4.3.6 লহরী চিহ্ন (Ripple mark)

যখন জলম্রোত জলের তলার পলির ওপর দিয়ে প্রবাহিত হয় তখন স্রোতের আড়াআড়ি দিকে অসংখ্য সমান্তরাল শিরার মত উচ্চ অংশের সৃষ্টি হয়। পুকুরের জলে ওপরে সৃষ্ট ছোট ছোট ঢেউ-এর মত এদেরকে দেখায়। এদের লহরী চিহ্ন বলে (চিত্র : 6.12)। সাধারণত বালি ও সিল্টের ওপর এই ধরনের লহরী চিহ্ন সৃষ্টি হয়। সাময়িকভাবে জল সরে যাওয়ার পর পলি শুকিয়ে গেলে এই লহরী চিহ্ন থেকে যায়। পরবর্তীকালে এর ওপর নতুন করে পলি জমলেও এই চিহ্ন নন্ট হয় না।



চিত্র 6.12 : লহরী চিহ্ন (Ripple mark)।

#### 6.4.3.7 জীবাশ্ম (Fossil)

প্রাকৃতিক প্রক্রিয়ায় পলির তলায় চাপা পড়া অবস্থায় প্রাচীন জীবের অস্তিত্ব লক্ষণ বা চিহ্নকে জীবাশ্ম বা ফসিল বলে। প্রাচীন কঙ্কাল, ছাপ বা ছাঁচ, দেহ নিঃসৃত পদার্থ, চলার দাগ প্রভৃতি এর অস্তর্ভুক্ত হয়। শুধুমাত্র পাললিক শিলাতেই জীবাশ্ম দেখা যায়। জীবের দেহ পচনের ফলে বিনন্ট হয় ও সঞ্জরিত ভৌমজলের সঙ্গো স্থানান্তরিত হয়। কিন্তু গলিত ঐ অংশে ভৌমজল পরিবাহিত অজৈব পদার্থ সঞ্জিত হয়ে ঐ জীবজন্তু বা উদ্ভিদের প্রস্তরীভূত ছাঁচ বা ছাপ থেকে যায়। প্রাণীর চলার পথের দাগও বৃষ্টির চিহ্ন বা লহরী চিহ্নের মত স্থায়ীভাবে সংরক্ষিত থাকতে পারে।

ভূতত্ত্বীয় ইতিহাস উন্মোচনে জীবাশ্মের গুরুত্ব অপরিসীম ও এটা এক স্বতন্ত্র শাখাবিদ্যায় পরিণত হয়েছে। একে পুরাজীববিদ্যা বা জীবাশ্মবিদ্যা (Paleontology) বলে। কেন্দ্রিয়ান যুগের শিলায় প্রথম সুস্পন্টভাবে জীবাশ্মের উপস্থিতি লক্ষ্য করা যায়। এর আগেকার পাললিক শিলায় জীবাশ্ম খুবই অস্পন্ট বা দেখতে পাওয়া যায় না। শিলায় জীবাশ্ম পর্যবেক্ষণ করে বোঝা যায় যে, বিভিন্ন ভূতত্ত্বীয় যুগে বিভিন্ন জীবজন্তুর আবির্ভাব ঘটেছে। ভূ-পৃষ্ঠে স্তরগুলোর অনুক্রম এবং এদের সঙ্গো সংশ্লিন্ট জীবাশ্মগুলো লক্ষ্য করলে অনুধাবন করা যায় যে, কিভাবে জীবজগতের পরিবর্তন হয়েছে। মনে করা যাক, কোনও একটা অঞ্চলে বিভিন্ন স্তরে রক্ষিত জীবাশ্মগুলো বিবর্তনের ক্রম জানা গেল। এ অঞ্চলে নবীনতম স্তরের সঙ্গো জড়িত জীবাশ্ম হয়ত অন্য একটি অঞ্চলে সঞ্চিত শিলার প্রাচীনতম স্তরে পাওয়া গেল। এরপর পর্যায়ক্রমে এ সঞ্চয়ের নবীনতম শিলাস্তরগুলোতে জীবাশ্মের পরিবর্তনের ধারা পর্যবেক্ষণ করা হয়। এইভাবে জীব সৃষ্টির পর থেকে বিভিন্ন ভূতত্ত্বীয় যুগে কিরুপ জীবজন্তুর আবির্ভাব ঘটেছিল, তার একটা তালিকা প্রস্তুত করা সম্ভব হয়েছে। এখানে কোনও শিলাস্তরে জীবাশ্মের প্রিবর্জন্থ রাবির্ভাব ঘটেছিল, তার একটা তালিকা প্রস্তুত করা সম্ভব হয়েছে। এখানে কোনও শিলাস্তরে জীবাশ্মের প্রহাজীবাশ্মের প্রক্তি দেখে তালিকার সঙ্গো মিলিয়ে ঐ শিলার ভূতত্ত্বীয় বয়স আপেক্ষিকভাবে নির্ণয় সহজসাধ্য হয়।

## 6.5 পাললিক শিলার শ্রেণিবিভাগ

উৎপত্তির তারতম্য অনুসারে পাললিক শিলাকে দুটো প্রধান শ্রেণীতে ভাগ করা যায়—যথা সংঘাত (Classic) ও অসংঘাত (Non-clastic) পাললিক শিলা। স্থলসঞ্জাত পলিগঠিত শিলাকে সংঘাত পাললিক শিলা ও স্থলসঞ্জাত পলি গঠিত নয় এমন পাললিক শিলাকে অসংঘাত পাললিক শিলা বলে।

## 6.5.1 সংঘাত পাললিক শিলা

উৎপত্তি ও প্রকৃতির পার্থক্য অনুসারে সংঘাত শিলাকে দুটো শ্রেণীতে ভাগ করা যায়, যথা (i) জলে সঞ্চিত পাললিক শিলা ও (ii) স্থলে সঞ্চিত পাললিক শিলা। জলে সঞ্চিত পাললিক শিলাই সংঘাত পাললিক শিলার অধিকাংশ অধিকার করে রয়েছে। জল থেকে পলির অবক্ষেপণ হলে পলি দানা ক্রমিক বাছাই হয়ে অধ্যক্ষিপ্ত হয়। অপরপক্ষে জল ছাড়া অন্য কোন মাধ্যম থেকে পলির সঞ্চয় হলে এরকম দানাক্রমিক বাছাই সম্ভব হয় না বা অসম্পূর্ণ থাকে। ছোট বড় পাথরের টুকরো বা গুঁড়ো একসঞ্চো মিশে থাকে।\*

<sup>\*</sup> টীকা ঃ ওয়েন্টওয়ার্থের (Wentworth) দানাক্রমিক স্কেল অনুযায়ী দানার গড় ব্যাস 24/2 মি.মি.-এর বেশি হলে তাকে গ্র্যাভেল বলে। কঙ্কর (2-4 মি.মি.), নুড়ি (4-64 মি.মি.), কব্ল (64-145 মি.মি.), গঙশিলা (256 মি.মি.-এর বেশি) এই শ্রেণীর অন্তর্গত। দানার ব্যাস 1/16 মি.মি. থেকে 2 মি.মি. পর্যন্ত হলে তাকে বালি, 1/256 থেকে 1/16 মি.মি. হলে সিল্ট এবং 1/256 মি.মি.-এর কম হলে তাকে কর্দম বলে।

## 6.5.1.1 জলে সঞ্চিত পাললিক শিলা

উৎপত্তি ও পলির দানার আকারের উপর নির্ভর করে জলে সঞ্চিত সংঘাত পাললিক শিলাকে তিনটি প্রধান ভাগে ভাগ করা যায়।

(1) স্থূলখণ্ডময় পাললিক শিলা (Rudaceous Sedimentary rocks) ঃ নদী বা সমুদ্রতরঙ্গা বাহিত পলির স্থূলতর দানাগুলো অর্থাৎ গশুশিলা, নুড়ি ও স্থূল বালি প্রধানত তীরের দিকে সঞ্চিত হয়। এরকম গ্র্যাভেল সমৃদ্ধ শিলাকে কংগ্লোমারেট বলে। যদি নদী বা সমুদ্রতরঙ্গা বা বায়ুর সাহায্যে শিলাখণ্ডগুলো বেশি দুরে রূপান্তরিত না হয় তাহলে গ্র্যাভেলগুলো উৎকৌণিক বা মসৃণ হবার সুযোগ পায় না। এরকম শিলাখণ্ড গঠিত শিলাকে ব্রেকসিয়া (breccia) বলে।

(2) বালুকাময় পাললিক শিলা (Arenaceous Sedimentary rocks) ३ এই ধরনের শিলাকে সাধারণভাবে বেলে পাথর বলে। সাধারণত মহীসোপানের গভীরতম অংশে ও মহীঢালে গ্রাভেল খুব কমই পরিবাহিত হয় ও এই অঞ্চলের প্রাথমিক অংশে অপেক্ষাকৃত স্থূলদানা বালি ও পরবর্তী অংশে বালির সঞ্চো কিছু পরিমাণ সিন্ট ও কর্দমের সঞ্জয় হয়। কাজেই এই ধরনের শিলায় বালি ছাড়াও কিছু পরিমাণে সিন্ট ও কর্দমের সঞ্জয় হয়। কাজেই এই ধরনের শিলায় বালি ছাড়াও কিছু পরিমাণে সিন্ট ও কর্দমের সঞ্জয় হয়। কাজেই এই ধরনের শিলায় বালি ছাড়াও কিছু পরিমাণে সিন্ট ও কর্দম বর্তমান থাকতে পারে। প্রসঞ্জাত উল্লেখযোগ্য যে, এখানে বালিকে দানার আকার দিয়েই বোঝান হচ্ছে ও এই বালির প্রধানত কোয়ার্টজ, ফেলস্পার ও লিথিক দানা নিয়ে গঠিত। লিথিক বালি বলতে অন্যান্য বিভিন্ন খনিজের ক্ষুদ্রাকার দানা বোঝায়। যদি বেলে পাথরের সিন্ট ও কর্দম একত্রে 15% এর কম হয় তাহলে তাকে অ্যারেনাইট বলে এবং এরা সন্মিলিতভাবে 15% বা তার বেশি হলে তাকে গ্রেওয়োকিরও নানাপ্রকার ভেদ দেখা যায়। যেমন, বেলে পাথরে 90%-এর বেশি কোয়ার্টজ থাকলে তাকে কোয়ার্টজ অ্যারেনাইট বলে। ফেলস্পার সমূম্ধ (25%-এর বেশি) বেলে পাথরকে আরকেজ বলে। আককেজের কঙ্করীয় দানাগুলো বড় মাপের, কৌণিক বা অকৌণিক এবং অল্প থেকে মাঝারি রকম বাছাই হয়ে থাকে। এদের রঙ ফিকে গোলাপী বা ফিকে ধূসর হয়। ফেলস্পার সহজেই আবহিক বিকার প্রাপ্ত হতে পারে। কাজেই এর উপস্থিতি প্রমাণ করে যে, জলের সঞ্জো অল্প পথ পরিবহনের পরেই এটা সঞ্জিত হয়েছে, যার ফলে ফেলস্পার বিয়োজিত হবার সূযোগ পায়নি।

(3) কর্দমময় পাললিক শিলা (Argillaceous Sedimentary rocks) <sup>2</sup> মহীসোপান ও মহীঢালের গভীরতম অংশে প্রধানত সিন্ট ও কর্দমের সঞ্জয় হয়। স্বভাবতই এই ধরনের শিলা সূক্ষ্মদানা বিশিষ্ট হয়। মহাদেশের পাললিক শিলার প্রায় অর্ধাংশই এই ধরনের শিলা দিয়ে গঠিত। এখানে শিলা সূক্ষ্মদানা বিশিষ্ট হয় মহাদেশের পাললিক শিলার প্রায় অর্ধাংশই এই ধরনের শিলা দিয়ে গঠিত। এখানে শিলা সূক্ষ্মদানা বিশিষ্ট হয় মহাদেশের পাললিক শিলার প্রায় অর্ধাংশই এই ধরনের শিলা দিয়ে গঠিত। এখানে শিলা সূক্ষ্মদানা বিশিষ্ট হয় মহাদেশের পাললিক শিলার প্রায় অর্ধাংশই এই ধরনের শিলা দিয়ে গঠিত। এখানে বলা দরকার, রাসায়নিক সংযুতির প্রকৃতি হিসাবে নয়, পলির দানার আকার দিয়ে কর্দমকে বোঝান হয়েছে। রাসায়নিক যৌগের এক বিশেষ শ্রেণী হিসেবে কথিত কর্দম খনিজের আকার কর্দম কণার থেকে বড়ও হতে পারে, তবে প্রায়শই কর্দম খনিজ কণাগুলো খুব সূক্ষ্ম আকারের হয়ে থাকে। কর্দমময় পাললিক শিলারও নানা প্রকারভেদ দেখা যায়। সাধারণত শেল (shale) বলতে ফিসাইল (fissile) বা রেখা বিদারণ গঠনযুক্ত ক্লে-স্টোন বা সিন্ট স্টোনকে বোঝায়। কোনও পাথরের পাতলা পাতের আকার ভেঙে যাওয়ার প্রবণতাকে রেখা বিদারণ বলে। শেল পাথর রেখা বিদারণ বরাবর ফেটে গিয়ে পাতলা পাতের সৃষ্টি করে। ক্লে বা সিন্ট স্টোন এরকম পাতের আকারে না ভেঙে খন্ড আকারে ভাঙলে তাকে মাড-স্টোন বলে। সমুদ্র, হ্রদ বা জলাভূমির যে পরিবেশে কর্দম ও সিন্ট অবক্ষেপিত হয়, সেই পরিবেশে উদ্ভিদ ও প্রবাল জাতীয় কীটেরও উদ্ভব হয়। ফলে অনেক সময় শেলের সঙ্গো চুন ও কার্বন জাতীয় পদার্থের মিশ্রণ দেখা যায়। যে শেলে যথেষ্ট পরিমাণ চুন মিশ্রিত অবস্থায় থাকে, তাকে চুনময় শেল ও কার্বন থাকলে তাকে অঞ্চারময় শেল বলে। মার্ল (Marl) হল চুন ও কর্দম মিশ্রিত এমন এক শিলা যা সহজে ভেঙে যায়। এটা আরও ভালভাবে সংঘবন্ধ থাকলে একে মার্লস্টোন বলে। এদের মধ্যে 35%-65% চুন থাকে।

## 6.5.1.2 স্থলে সঞ্জিত সংঘাত শিলা

অনেক সময় স্থলের ওপরেই পলি সঞ্চিত হয়। বায়ু পরিবাহিত ও সঞ্চিত সূক্ষ্ম বালুকণা গঠিত হলুদ রঙের অল্প সংবন্ধ, অস্তরীভূত বা অল্প স্তরীভূত শিলাকে লোয়েশ (Loess) বলে। উত্তর চীনে লোয়েশ মালভূমিতে এরকম বিস্তৃত লোয়েশ সঞ্চয় দেখা যায়। বেন্টোনাইট (Bentonite) হল আগ্নেয়গিরি উৎক্ষিপ্ত ভস্ম দিয়ে গঠিত শিলা। এরা অবশ্য সামুদ্রিক পরিবেশেও সৃষ্টি হতে পারে। হিমবাহ সঞ্চিত কৌণিক অবাছাই দানাবিশিষ্ট পদার্থ থেকে গঠিত শিলাকে টিলাইট (Tillite) বলে।

#### 6.5.2 অসংঘাত পাললিক শিলা

অসংঘাত পাললিক শিলাকে দুটো প্রধান শ্রেণীতে ভাগ করা যায়, যথা—(a) জীব থেকে উৎপন্ন ও (b) রাসায়নিকভাবে উৎপন্ন।

## 6.5.2.1 জীব থেকে উৎপন্ন অসংঘাত শিলা

একে চারটি উপশ্রেণিতে ভাগ করা যায় :

(i) চুনময় (Calcareous) ঃ সমুদ্রের যে অংশে সংঘাত পলি পৌঁছয় না বা অল্প পৌঁছয়, সেখানে প্রবাল, ঝিনুক, শামুক, শাঁখ প্রভৃতি নানা ছোট-বড় সামুদ্রিক প্রাণী বাস করে। এদের কঙ্কাল ও দেহাবরণ চূন (CaCO<sub>3</sub>) দিয়ে গঠিত। এদের মৃত্যু হলে এই সমস্ত অদ্রাব্য চূন জাতীয় পদার্থ সমুদ্রবক্ষে সঞ্চিত হয়। এটাই শিলীভূত হয়ে চুনাপাথরের সৃষ্টি করে। এরকম চুন অধ্যক্ষেপে জীবের দেহের ভগ্নাংশ বর্তমান থাকতে পারে। তার থেকে ফসিলযুক্ত চুনাপাথর সৃষ্টি হয়। অনেক সময় চুন ছাড়া অন্য কণাকে (যেমন, বালি) কেন্দ্র করে চক্রাকারে চুনের সঞ্চয় ঘটে এবং গোল বা ডিম্বাকৃতি পদার্থের সৃষ্টি হয়। এরকম পদার্থ গঠিত চুনাপাথরকে উওলিটিক চুনাপাথর বা উওলাইট (Oolite) বলে।

খনিজ ক্যালসিয়াম বা ম্যাগনেসিয়াম কার্বনেটকে {CaMg(Co<sub>3</sub>)<sub>2</sub>} ডলোমাইট (Dolomite) বলে। কার্বনেট পাথরের অর্ধেকের বেশি ডলোমাইট খনিজ দিয়ে তৈরি হলে সেই পাথরকে ডলোমাইট বা ডলোস্টোন বলে। সরাসরি রাসায়নিক অধ্যক্ষেপণের ফলে ডলোমাইট সৃষ্টি হতে পারে। তবে অধিকাংশ ডলোমাইটে ম্যাগনেসিয়াম আয়ন ক্যালসিয়াম আয়নকে প্রতিস্থাপিত করে কেলাস গঠনে অন্তর্গত হয়। নিম্ন সঞ্জরমান জলের সঞ্চো পরিবাহিত Mg আয়ন এই প্রতিস্থাপনে সাহায্য করে। সম্ভবত চুনাপাথর গভীর স্থানে নিমজ্জিত হলে সঞ্জরমান উষ্ণ জলের Mg আয়নে Ca আয়নকে প্রতিস্থাপত করে ডলোমাইটের সৃষ্টি করে। তবে এ বিষয়ে বিতর্কের অবকাশ আছে।

(ii) অঙ্গারময় (Carbonaceous) ঃ বিভিন্ন প্রকার কয়লা ও পিট এই ধরনের শিলার অন্তর্গত। সামুদ্রিক সংঘাত শিলার সঙ্গে এগুলো অন্তঃস্তর গঠন করে। মিঠে জলের জলাভূমিতে যে ঘন ঝোপ জাতীয় উদ্ভিদ জন্ম তার থেকে কয়লা (Coal) বা শীট (Peat) সৃষ্টি হয়। এই সমস্ত উদ্ভিদের পরিত্যক্ত অংশ জলের তলায় জমা হয় বলে অক্সিজেনের অভাবে উদ্ভিজ্জ পদার্থ আংশিকভাবে জরিত হয় ও বিয়োজনও কম হয়। ফলে জৈব পদার্থের সঞ্জয় বাড়তে পারে। অনেক সময় এ জৈব পদার্থ পরিবাহিত ও স্থানান্তরিত হয়ে অন্যত্রও জমা হতে পারে। পরবর্তীকালে ভূমির ক্রমনিমজ্জনের সময় এদের ওপর সংঘাত পলির সঞ্জয় ঘটে। ওপরের পলির চাপে ও উচ্চতর তাপাঙ্কে এ জৈব পদার্থ পিট বা কয়লার পরিবর্তিত হয়। কয়লা উৎপত্তির প্রাথমিক অবস্থায় উদ্ভিজ্জ পদার্থ অল্প পরিবর্তিত হয়ে যে শিলা তৈদরি করে তাকে পিট বলে। উদ্ভিজ্জের প্রকৃতি, পরিবর্তনের সময়কাল, ভূ-আন্দোলনের প্রকৃতি ও তীব্রতার উপর নির্ভর করে অ্যানথ্রাসাইট, বিটুমিনাস ও লিগনাইট জাতীয় কয়লার সৃষ্টি হয়।

(iii) বালুকাময় (Siliceous) শিলা ঃ সমুদ্রে ডায়াটম, ইউফিউসোরিয়া, প্রভৃতি এককোষী উদ্ভিদ বালুকা জাতীয় পদার্থ দিয়ে তৈরি হয়। এর থেকে ডায়াটোমেসাল্ কর্দম, ইনফিউসোরিয়াল কর্দম নামে বালুকাময় শিলার সৃষ্টি হয়। অবশ্য এরকম পাথর খুবই বিরল।

(iv) ফসফোরাইট (Phosphorite) ঃ সামুদ্রিক মেরুদণ্ডী প্রাণীর কঞ্জাল বা হাড় ক্যালসিয়াম ফসফেট দিয়ে তৈরি হয়। এই সমস্ত অদ্রাব্য দেহাবশেষ সঞ্চিত পদার্থ উৎক্রান্ত রূপান্তরিত (incipient metamorphism) হয়ে ফসফোরাইট শিলার সৃষ্টি হয়। সামুদ্রিক পাখির বিষ্ঠার সঞ্চয় (গুয়ানো-Guano) থেকেও ফসফোরাইট শিলার সৃষ্টি হতে পারে। ভারতবর্ষের রাজস্থানে ও তামিলনাড়ুতে পাললিক ফসফেট পাথরের সঞ্চয় হয়েছে।

#### 6.5.2.2 রাসায়নিকভাবে উৎপন্ন অসংঘাত শিলা

বাষ্পীভবনের ফলে সমুদ্র বা হ্রদের জলের লবণের দ্রাব্যতা সম্পৃক্ত সীমা অতিক্রম করলে জলের মধ্যকার লবণের অধঃক্ষেপণ হয়। এদেরকে সাধারণভাবে ইভাপোরাইট (Evaporite) বলে। এরকম প্রধান লবণগুলো হল হেলাইট (NaCl), জিপসাম (CaSO<sub>4</sub>,2H<sub>2</sub>O), অ্যানহাইড্রাইট (CaSO<sub>4</sub>)। ইভাপোরাইট সাধারণত শেল অথবা ডলোমাইট পাথরের সঙ্গো স্তর গঠন করে। কচ্ছের রান অঞ্চলে, রাজস্থানের সম্বর হ্রদ ও মহারাস্ট্রের লোহার হ্রদে ইভাপোরাইট পলি অবক্ষেপ দেখা যায়। জলাভূমি বা হ্রদ থেকে ব্যাকটিরিয়ার সাহায্যে সোদক লৌহ অক্সাইডের অধ্যক্ষেপণকে বগ আকরিক লোহা বলে (Bog iron ore)।

## 6.6 রূপান্তরিত শিলা

বর্ধিত চাপ, তাপ ও সংশ্লিষ্ট রাসায়নিক ক্রিয়ায় আগ্নেয় ও পাললিক শিলার পরিবর্তনকে শিলার রুপান্তর বলে। রূপান্তরের সময় শিলা কঠিন অবস্থাতেই থাকে। সেইজন্য রূপান্তরের পরও আদি শিলার প্রাথমিক গঠনগুলোর স্পন্ট বা অস্পন্টভাবে চিহ্ন থেকে যায়। রূপান্তরিত শিলার প্রধান ও গঠনগুলো আংশিকভাবে আদি পাথরের বৈশিন্ট্যের ওপর এবং আংশিকভাবে রূপান্তরের নিজস্ব অবস্থার ওপর নির্ভর করে। উচ্চ তাপাঙ্কে শিলার আংশিক গলনের ফলে যে সব পরিবর্তন হয় সেগুলো রূপান্তরের মধ্যে পড়ে না। আবার ভূ-পৃষ্ঠের ওপরে বা কাছে আবহিক বিকার,পলির সিমেন্ট প্রাপ্তি বা অনুরূপ কতকগুলো পরিবর্তনও রূপান্তরের মধ্যে ধরা হয়নি। কেবলমাত্র বর্ধিত চাপ ও তাপের প্রভাবে যে রূপান্তর হয় তাতে সামগ্রিকভাবে শিলার রাসায়নিক সংযুতির পরিবর্তন হয় না অর্থাৎ নতুন পদার্থের সংযোজন ঘটেনা, কিন্ডু ম্যাগমার অনুপ্রবেশ ঘটলে উচ্চ তাপাঙ্ক ছাড়াও ম্যাগমার মধ্যস্থিত নানা উদ্বায়ী গ্যাস শিলার মধ্যে প্রবেশ করে ও শিলা খনিজের সঞ্চো বিক্রিয়া করে রূপান্তরিত শিলার রাসায়নিক সংযুতিতে যথেন্ট পরিবর্তন আনতে পারে।

## 6.6.1 রূপান্তর প্রক্রিয়ার শ্রেণীবিভাগ

রূপান্তরের প্রধান নিয়ন্ত্রকগুলোর ওপর ভিত্তি করে রূপন্তর প্রক্রিয়াকে তিনটি শ্রেণীতে ভাগ করা যায়, যথা (1) তাপীয় রূপান্তর (Thermal metamorphism); (2) বিচূর্ণন রূপান্তর (Cataclastic metamorphism) ও (3) আঞ্চলিক রূপান্তর (Regional metamorphism)।

#### 6.6.1.1 তাপীয় রূপান্তর

প্রধানত উচ্চ তাপমাত্রার প্রভাবে শিলার পরিবর্তনকে তাপীয় রূপান্তর বলে। এই উচ্চ তাপমাত্রার আমদানি দু'ভাবে হতে পারে—(i) উদ্বেধী আগ্নেয় বস্তুর সংস্পর্শের ফলে রূপান্তর ও (ii) ভূ-পৃষ্ঠের শিলার ভূ-ত্বকের গভীরতর অংশে প্রবেশ ও উচ্চ ভূ-তাপমাত্রার প্রভাবে রূপান্তর। প্রথমোক্ত রূপান্তরকে সংস্পর্শে রূপান্তর ও দ্বিতীয়োক্ত প্রকারকে ভূ-তাপীয় রূপান্তর বলে।

(i) সংস্পর্শে রূপান্তর (Contact metamorphism) ঃ ভূ-ত্বকে গলিত ও উত্তপ্ত ম্যাগমার অনুপ্রবেশ হলে উচ্চ তাপাজ্ঞ ও শীতলীভবনের সময় ম্যাগমায় অবস্থিত গ্যাসের প্রভাবে শিলার রূপান্তর ঘটে থাকে। অনুপ্রবিন্ট ম্যাগমার চারপাশের শিলার রূপান্তর সুস্পন্ট হয়, কিন্তু ম্যাগমা থেকে যত দূরে চলে যাওয়া যায়, রূপান্তরের মাত্রা ততই কমতে থাকে ও শেষে যথেন্ট দূরে আদি শিলা অরূপায়িত থাকে। যে শিলার মধ্যে ম্যাগমার অনুপ্রবেশ ঘটে, তার প্রকৃতির ওপর রূপান্তরের প্রকৃতি অনেকাংশে নির্ভর করে। সংস্পর্শ মণ্ডলে বিশুল্ধ বেলেপাথর কোয়ার্টজাইটে পরিবর্তিত হয়। শেল পাথর রূপান্তরিত হয়ে সূক্ষ্মদানা বিশিন্ট ভীষণ কঠিন পাথরে পরিণত হয়। এদের দেখতে সূক্ষ্ম দানাবিশিন্ট আগ্নেয় শিলা বা কাল ফ্লিন্টের মত হয়। একে হর্নফেল (Hornfels) বলে। অনুবীক্ষণ যন্ত্রের সাহায্যে দেখা যায় যে হর্নফেলে নতুন খনিজের সৃষ্টি হয়েছে। বিশুল্ধ চুনাপাথর মার্বেলে পরিণত হয়। এতে ক্যালসাইট খনিজের নতুনভাবে কেলাসন হয় ও ক্ষুদ্র হলেও কোলাসগুলি খালি চোখে দেখা যায়। যে সমস্ত চুনাপাথরে অপবস্তু (impurities) হিসেবে সিলিকা থাকে, সেখানে 500° সে-এর ওপর তাপমাত্রায় চুন (CaCO<sub>3</sub>) থেকে CO<sub>2</sub> বিতাড়িত হয় ও CaO সিলিকার সঙ্গে ক্রিয়া করে উওলাস্টোনাইট (Wollastonite) নামে এক নতুন খনিজ (ক্যালসিয়াম সিলিকেট) তৈরি করে। যদি চুনাপাথরে তাপবস্তু হিসেবে ডলোমাইট খনিজ বর্তমান থাকে, তাহলে পাইরক্সিন খনিজ সুন্টি হয়। আবশ্য বহিঃপ্রান্তদেশে অপেক্ষাকৃত কম উয় পরিবেশে পাইরক্সিনের বদলে টেমোলাইট (Tremolite) খনিজ উৎপন্ন হয়। ট্রেমোলাইট ও পাইরক্সিনের রাসায়নিক সংযুতি একই রকমের, তবে ট্রেমোলাইট খনিজগুলো ছুঁচের মত আকৃতি বিশিষ্ট হয়। চুনাপাথরে অপবস্থু হিসেবে কর্দম খনিজ থাকলে গার্নেট (Garnet) ও অন্যান্য নতুন খনিজের সৃষ্টি হয়।

গ্রানিট পাথরে রায়োলাইট (গ্রানিটের গলিত রূপ) ম্যাগমার অনুপ্রবেশ হলে গ্রানিট অপরিবর্তিত থাকে। কিন্তু ব্যাসল্ট বা অন্য নিঃসারী আগ্নেয় শিলার মধ্যে পাতালিক শিলার অনুপ্রবেশ হলে শিলার আমূল পরিবর্তন হয় (রূপান্তরিত শিলার রূপভেদ দ্রন্টব্য)।

(ii) ভূ-তাপীয় রূপান্তর (Geothermal metamorphism) : কিছু কিছু রূপান্তরিত শিলার ক্ষেত্রে মনে হয় যে, একসময়ে এরা ভূ-ত্বকের গভীর অংশে স্থানান্তরিত হয়েছিল এবং বর্ধিত ভূ-তাপ ও উপরিস্থিত পলির চাপের মধ্যে শিলার রূপান্তর হয়েছে। এরকম অবস্থায় শিলায় নতুন খনিজের উদ্ভব হতে পারে। উচ্চচাপের মধ্যে এই রূপান্তর হয় বলে সাধারণত গার্নেটের মত স্থান সঞ্চুলানকারী (space conserving) খনিজের সৃষ্টি হয়। যেহেতু মূলত পৃথিবীর নিজস্ব তাপ এরূপ রূপান্তরের প্রধান কারণ, স্টেহেতু এরকম রূপান্তরকে ভূ-তাপীয় রূপান্তর বলে।

## 6.6.1.2 বিচূর্ণন রূপান্তর (Cataclastic metamorphism)

নিচু চাপযুক্ত অঞ্চলে ও নিম্ন তাপাঙ্কে থ্রাস্ট স্তুপ অধিরোপিত হবার সময় বা চ্যুতি সমন্বিত এলাকায় চ্যুতির দু-পাশের শিলা চলাচলের সময়ে কৃন্তন পীড়নের উদ্ভব হয়। ফলে খনিজ কেলাসগুলো পিন্ট, দ্রাঘিত, খণ্ডিত বা চূর্ণ হয়ে যায়। কিন্তু নতুন খনিজ সৃন্টি খুব কম হয় বা হয় না। অনেকক্ষেত্র পীড়নের তীব্রতা বেশি হলে তাপাঙ্কও যথেন্ট বৃদ্ধি পেতে পারে ও সেক্ষেত্রে কিছু নতুন খনিজের সৃন্টি হয়। এই রূপান্তরকে বিচূর্ণন রূপান্তর বা ক্যাটাক্লাস্টিক রূপান্তর বলে ও এই রকম গ্রথনযুক্ত শিলাকে মাইলোনাইট (Mylonite) বলে। কোনও কোনও থ্রাস্ট স্তুপের তলায় মাইলোনাইট এতই বিকৃত হয়ে যায় যে শিলার আদিরূপ চিনতেই পারা যায় না। তবে অনেক সময় গুঁড়ো পাথরের গুঁড়ো না হওয়া আদি পাথরের ছোট টুকরো থাকে। এই টুকরোগুলো চ্যুতির চলনের দিকে দ্রাঘিত বা লম্বিত হয়। এখানে বলা দরকার যে, মাইলোনাইট শিলা গুড়ো দিয়ে তৈরি হলেও এদের সংবদ্ধতা নন্ট হয় না।

আদি শিলার খনিজ সংগঠনের ওপরও মাইলোনাইটের আকৃতি নির্ভর করে। যেমন গ্রানাইটে প্রচুর বায়োটাইট থাকে বলে চাপের প্রভাবে এগুলো ভেঙে সমান্তরাল দিকে বিস্তৃত অসংখ্য পাতলা পাতলা পাতার সৃষ্টি করে ও উৎপন্ন মাইলোনাইটকে অনেকটা কাল স্লেট পাথর বা ফিলাইটের মত দেখতে হয়। একে ফিলাইট-মাইলোনাইট বা সংক্ষেপে ফাইলোনাইট (Phyllonite) বলে।

মাইলোনাইট যান্ত্রিকভাবে উৎপন্ন রূপান্তরিত শিলার প্রকৃষ্ট উদাহরণ। দুই বিপরীত প্রান্তে অবস্থিত মাইলোনাইট ও সম্পূর্ণাংশ নতুন খনিজ গঠিত রূপান্তরিত শিলার মাঝামাঝি রূপও দেখা যায়। প্রসঞ্চাত উল্লেখযোগ্য যে, ভূ-ত্বকের গভীর অঞ্চলে বিচূর্ণন রূপান্তর ক্রমবর্ধমান ভূ-তাপমাত্রার জন্য আঞ্চলিক বা গতীয়-তাপীয় রূপান্তরে পরিণত হয়।

# 6.6.1.3 আঞ্জলিক রূপান্তর বা গতীয়-তাপীয় রূপান্তর (Regional or dynamothermal metamorphism)

বলিত অঞ্জলে, বিশেষ করে প্রাক-কেন্দ্রিয়ান যুগের শিলা গঠিত অঞ্জলে, বহুশত বর্গ কি.মি. অঞ্জল জুড়ে রূপান্তরিত শিলা দেখা যায়। এই রূপান্তরের জন্য স্থানীয় কোনও কারণ (যেমন আগ্নেয় অবয়বের সংস্পর্শ ইত্যাদি) দেখা যায় না। এইপ্রকার রূপান্তরকে আঞ্চলিক রূপান্তর বলে। সাধারণত গতিশীল জিওসিনক্লাইন অঞ্চলে এই ধরনের রূপান্তর হয়ে থাকে। এরূপ অংশে সুগভীর পলি ভূগর্ভে স্থানান্তরিত হয় ও উচ্চ তাপাঞ্চ ও অবরোধী চাপের সম্মুখীন হয়। এছাড়া ভূ-সংক্ষোভজনিত ভাঁজপ্রাপ্তি কালে সন্মিলিত স্তরগুলোর মধ্যে বিসর্পণ (slipping) ও ঘর্ষণজনিত পশ্চাদাকর্ষণ (frictional drag) ঘটে। বিশেষ পরিস্থিতিতে এই ঘর্ষণজনিত পশ্চাদাকর্ষণ শিলার মধ্যে অন্তঃ ও আন্তঃখনিজের মধ্যে চলনের সৃষ্টি করে এবং শিলা রূপান্তরে সাহায্য করে। বিশেষ পরিস্থিতিতে বলার অর্থ এই যে, অনেক সময় দেখা যায় যে শিলাস্তর ভীষণভাবে বলিত বা ভাঁজপ্রাপ্ত হয়েছে কিন্তু তা সত্ত্বেও রূপান্তরিত হয়নি। আঞ্চলিক রুপান্তরে শিলার পুরোনো গ্রথন পরিবর্তিত হয়ে নতুন গ্রথনের সুষ্টি হয়। বর্ধিত চাপ ও তাপের মধ্যে ভঙ্গুর খনিজগুলো অবঘর্ষিত ও ত্বচিত (laminated) হয়। অপরপক্ষে অনুরূপ অবস্থায় প্লাস্টিক খনিজগুলো সাধারণত কোনও এক সম্ভেদতল বরাবর দুটো স্বতন্ত্র অংশে ভাগ হয়ে যায়। এই বিভেদ তলের লম্ব অক্ষের সাপেক্ষে এক অর্ধ (180°) আবর্তিত হয় ও দুই অর্ধ ঐ বিভেদতল বা অন্য কোন তল (সংযুতি তল compositional plane) বরাবর মিলে যায়। এই প্রক্রিয়াকে ঘূর্ণন যুগ্ম (rotation twin) বলে। গতীয় বা আঞ্চলিক রূপান্তরকালে ক্ষুদ্র স্কেলে এরকম বহুসংখ্যক সমান্তরাল সন্ডেদ তলে ঘূর্ণন যুগ্মের সৃষ্টি হতে পারে। একে বহু সংশ্লেষিত যুগ্ম (polysynthetic twin) বলে। প্লাস্টিক খনিজের ক্ষেত্রে এধরনের রূপান্তর দেখা যায় ও সিস্ট গঠনে সৃষ্টিতে সাহায্য করে।

কোনও কোনও ক্ষেত্রে কেলাস কাঠামো নতুনভাবে সজ্জিত হয় ও খনিজগুলোর আলোকঅক্ষের দিক বিন্যাসের (orientation) পরিবর্তন ঘটে। এই দিক বিন্যাস অনুধাবন করে শিলার ওপর কোন দিক থেকে বল প্রযুক্ত হয়েছিল সে সম্পর্কে ধারণা জন্মে যা ভূ-সংক্ষোভ সম্পর্কিত নানা সমস্যা সমাধানে সাহায্য করে।

কেলাস অক্ষ (crystal axis) : কেলাস অক্ষ হল কতকগুলো কাল্পনিক রেখা যা কেলাসের ভেতর এক বিন্দুতে মিলিত হয়। কোনও খনিজের কেলাসে যেসব কিনারা থাকে সেই সমস্ত কিনারাগুলোর সমান্তরাল ও কেলাসের কেন্দ্রবিন্দুগামী কাল্পনিক সরলরেখাগুলো বা কেলাসের এক প্রান্ত থেকে অন্য প্রান্ত পর্যন্ত বিস্তৃত থাকে, তাকে কেলাস অক্ষ বলে। যেমন ঘনকে তিনটি পরস্পর লম্ব সমান অক্ষ থাকে। টুর্মালিন কেলাস দুটি পার্শ্ব ও ওপর-নীচ দিয়ে মোট আটটি তল নিয়ে গঠিত। এরকম কেলাস তিনটি সমান অন্দুভূমিক অক্ষ ও উল্লম্ব দিকে একটা দীর্ঘতর অক্ষ রয়েছে।

উপরোক্ত প্রক্রিয়াগুলোর এক বিশেষ বাহ্যিক প্রকাশ হল পত্রায়ন গঠন (foliated structure) বা সিস্ট গঠন। এরকম শিলার কতকগুলো ঘেঁষাঘেঁষি প্রায় সমান্তরাল তল বরাবর সরু পাত বা পাতার আকারে ভাঙবার প্রবণতা থাকে। একে পত্রায়ন গঠন বলে। প্রধানত পাতজাতীয় খনিজ কেলাসের সমান্তরাল সজ্জার ফলেই পত্রায়ন গঠনের সৃষ্টি হয়। অভ্র (মাসকোভাইট ও বায়োলাইট) এব ক্লোরাইট সাধারণত এই ধরনের খনিজের সংস্থান করে। এই সমস্ত খনিজ কেলাস স্বভাবতই পাতজাতীয় এবং পাতের পৃষ্ঠদেশের সমান্তরাল নিখুঁত সন্তেদ থাকে। এই জন্য যে সমস্ত শিলায় এই ধরনের বহু সন্তেদযুক্ত পাতজাতীয় খনিজ রয়েছে, সেগুলো সম্ভবত সংশ্লেষিত যুগ্ম প্রক্রিয়ায় ভেঙে সমান্তরাল দিকস্থিতি সমন্বিত তল বরাবর অবস্থান করে ও পত্রায়ন গঠন তৈরি করে। (চিত্র : 6.13)।



চিত্র 6.13 : পাত জাতীয় খনিজ / মণিক দানার পত্রায়ন (foliation)।

যে শিলায় পত্রায়ন অস্পন্ট থাকে তাকে নাইস (gneiss) বলে। যে শিলায় পত্রায়ন সুস্পন্ট ও খুব ঘেঁষাঘেঁষি, তাকে সিস্ট (schist) বলে। ফিলাইট পাথরে পত্রখনিজগুলো সিস্টের মত বড় হয় না ও খালি চোখে বোঝা যায়না, কিন্তু এদের উপস্থিতিতে ফিলাইটের উপরিভাগ চক্চক্ করে। শ্লেট পাথরে পত্রখনিজগুলো ফিলাইট থেকেও সূক্ষ্ম থাকে কিন্তু অসংখ্য ক্ষুদ্র ক্ষুদ্র পত্রখনিজগুলো বিভিন্ন সমান্তরাল নিখুঁত তল বরাবর ঘেঁষাঘেঁষি সজ্জিত থাকে। শ্লেটের এরকম গঠনকে বিদার্যতা (fissility) বলে।

অনেক সময় অ্যান্ফিবোল, পাইরক্সিন প্রভৃতির সূচের মত বা লাঠির মত লম্বা ধরনের খনিজগুলোর দানা সমান্তরাল বিন্যস্ত হয়ে রেখা সিস্ট গঠন করে। গভীর ভূ-অভ্যন্তরে অনেক ক্ষেত্রে শিলা আংশিক ভাবে গলিত হতে পারে এবং ঐ পদার্থ বা অন্য উৎস থেকে আসা ঐ ধরনের পদার্থ শিলার দুই পত্রায়ন তলের মধ্যবর্তী ফাঁকে অনুপ্রবেশ করতে পারে। বিশেষ পরিস্থিতিতে অনেক সময় অনুপ্রবিস্ট তরল-বায়ব পদার্থ আশ্রয়দাতা শিলার কোনও খনিজ দ্রবণের মধ্যে নিয়ে আসে, আর ঠিক সেই জায়গায় দ্রবণ থেকে এক বিশেষ খনিজ দ্রবণে আসা খনিজটিকে প্রতিস্থাপিত করে। এই ঘটনাকে অভিঘটন (Metasomatism) বলে। এইভাবে ইঞ্জেকশান নাইস ও মিগমাটাইট তৈরি হয়। আরও বেশি পদার্থ প্রবেশ করলে ব্যান্ডেদ্র বা পটিদার নাইস সৃষ্টি হয়। মিগমাটাইটের (মিশ্রিত পাথর) ভেতর দুটো পৃথক অংশের সৃষ্টি হয়। এতে উচ্চ মাত্রায় রূপান্তরিত অংশের অবশেষ ও অনুপ্রবেশকারী আগ্নেয় পদার্থ মিশ্রিত থাকে।

ভঞ্চিল পর্বতের অষ্ঠি (core) অঞ্চলে বহিরাগত আগ্নেয় তরল-বায়ব পদার্থ বা স্থানীয় শিলার আংশিক গলন সঞ্জাত তরল পদার্থের অনুপ্রবেশ বা শুষ্ক অবস্থায় পাথরের কেলাস দানার ভেতর দিয়ে ও দানাগুলোর মধ্যবর্তী সীমানা ধরে আয়নিক ব্যাপনের (ionic diffusion) ফলে স্থানীয় শিলায় K, Na, Al আয়নের বেশি সংখ্যায় প্রবেশ ও Ca, Fe প্রভৃতি আয়নের বেশি সংখ্যায় নির্গমনের ফলে গ্রানাইট পাথর সৃষ্টি হয় বলে অনেকে অভিমত প্রকাশ করেন। এই প্রক্রিয়ায় গ্রানাইট সৃষ্টিকে গ্রানাটীকরণ (Granitisation) বলে। এইভাবে সৃষ্ট গ্রানাইটে নরমভাব আসে ও এই অবস্থায় এটা উদ্বেধী হিসাবে সচল হতে পারে। ভঙ্গিল পর্বতের অষ্ঠি অংশে গ্রানাইটের সঙ্গে মিগমাটাইটের উপস্থিতি প্রক্রিয়ার সমর্থনে যুক্তি উপস্থাপন করে। তবে এ বিষয়ে এখনও ঐক্যমত গড়ে ওঠেনি।

মনে রাখা দরকার, উপরোক্ত অভিঘটন প্রক্রিয়ায় শিলা রূপান্তরে তাপাঞ্চ্চ সাধারণ রূপান্তর থেকে অনেক বেশি থাকে এবং অনেক ক্ষেত্রে স্থানীয় শিলার আংশিক গলন হয়, যা রূপান্তর প্রক্রিয়া বর্হিভূত বলে ধরা হয়। এইজন্য এইসব প্রক্রিয়াকে অতি রূপান্তর (Ultrametamorphism) বলা হয়।

### 6.6.2 রূপান্তরিত শিলার রূপভেদ (Facies of mctamorphic rocks)

রুপান্তরিত শিলায় গঠিত নতুন খনিজগুলোকে প্রাকৃতিক থার্মোমিটার বা ব্যারোমিটার মনে করা যেতে পারে। কোনো একপ্রকার শিলায় এক নির্দিষ্ট তাপমাত্রা ও চাপে এক বিশেষ ধরনের খনিজ সমাবেশের সৃষ্টি হয়। ঐ খনিজগুলোর উপস্থিতি থেকে আন্দাজ করা যায় ঐ রূপান্তরিত শিলা কি রকম তাপ ও চাপের পরিবেশে সৃষ্টি হয়েছিল। এর থেকে শিলা রূপান্তরের মাত্রা ও রূপভেদ সম্পর্কে ধারণা জন্মে। এস্কোলা (1920) অভিমত প্রকাশ করেন, যেসব শিলা একই রকম ভৌত অবস্থার মধ্যে তৈরি হয়েছে এবং যাদের খনিজগুলো সাম্য অবস্থায় গঠিত হয়েছে, তাদের একটা রূপভেদের মধ্যে অন্তর্গত করা যায়। এসকোলা দেখিয়েছেন যে, একই রাসায়নিক উপাদান বিশিষ্ট শিলা বিভিন্ন চাপ ও তাপাঞ্চে বিভিন্ন খনিজ সমাবেশে তৈরি করে। আবার রাসায়নিক উপাদান বিভিন্ন থাকলে অনুরূপ ভৌত পরিবেশে খনিজ সমাবেশের বিভিন্নতার সৃষ্টি হয়।

গবেষণাগারে আধুনিক যন্ত্রের সাহায্যে রূপান্তরিত শিলার খনিজগুলোকে ও খনিজ সমাবেশগুলোকে কৃত্রিম উপায়ে সৃষ্টি করে তাদের স্থায়িত্ব কি রকম তাপাঙ্ক ও চাপের মধ্যে হতে পারে, সেই সম্বন্ধে বহু নির্দেশ পাওয়া গেছে। তার থেকে বিভিন্ন ভৌত পরিবেশে কি রকম রূপভেদ সৃষ্টি হয় সে সম্বন্ধে এক মোটামুটি ধারণা করা সম্ভব হয়েছে। নীচে রূপান্তরিত শিলার বিভিন্ন রূপভেদের বৈশিষ্ট্য সম্পর্কে লেখা হল।

## 6.6.2.1 সবুজ সিস্ট রূপভেদ (Green schist facies)

মাঝারি তাপ, নিম্ন তাপমাত্রা ও জলের উপস্থিতিতে এই ধরনের রূপভেদ সৃষ্টি হয়। মায়োজিও-সিনক্লাইনে বিরুপিত শ্লেট, ফিলাইট, ক্লোরাইট ও মাইকা সিস্ট, মার্বেল এই শ্রেণীর অন্তর্গত। ব্যাথোলিথের অনুপ্রবেশের ফলেও এই ধরনের রূপভেদ সৃষ্টি হতে পারে। এই রূপভেদ নিম্ন থেকে মাঝারি মাত্রার রূপান্তর নির্দেশ করে।

## 6.6.2.2 নীল সিস্ট রুপভেদ (Blue schist facies)

উচ্চ তাপ ও চাপ এবং প্রচুর জলের উপস্থিতিতে এই ধরনের রূপভেদ সৃষ্টি হয়। রসাতলগামী ভূ-প্লেট মণ্ডলে (subduction zone) ইউজিওসিনক্লাইন পরিবেশে ও ভঞ্জিল পর্বতের অষ্ঠি অঞ্জলে তীব্র বিরূপণের জন্য এই ধরনের রূপভেদ সৃষ্টি হয়। এই রূপভেদ উচ্চমাত্রার রূপভেদকে নির্দেশ করে। এই সিস্ট সুক্ষ্ম থেকে মাঝারি দানা বিশিষ্ট হয়।

### 6.6.2.3 অ্যান্ফিবোলাইট রূপভেদ (Amphibolite facies)

এই রূপভেদ নীল রূপভেদের সঙ্গো সম্পর্কযুক্ত থাকতে পারে। ইউজিওসিনক্লাইনে অগ্নুৎপাত-সৃষ্ট ওফিওলাইট (ক্ষারকীয় ও অতিক্ষারকীয় আগ্নেয় শিলা) রূপান্তরিত হয়ে অ্যান্ফিবোলাইট (অ্যান্ফিবোল খনিজ সমৃদ্ধ) শিলায় পরিণত হয়। এর সঙ্গো মাইকা সিস্ট ও কোয়ার্টজাইট থাকে। এরূপ রূপভেদে সার্পেন্টাইন খনিজও সৃষ্টি হতে পারে। এটাও উচ্চমাত্রার রূপান্তরকে নির্দেশ করে। সাধারণভাবে বলা যায়, নিম্ন থেকে মাঝারি চাপ ও উচ্চ তাপাঞ্চে এই ধরনের রূপভেদ তৈরি হয়।

#### 6.6.2.4 গ্র্যানুলাইট (Granulite)

অতি উচ্চ চাপ ও তাপ এবং ঘাটতি জলের পরিবেশে গ্র্যানুলাইট রূপভেদের সৃষ্টি হয়। জিওসিনক্লাইনের গভীরতম অংশে সৃষ্ট নাইস, গ্র্যানুলাইট ও গ্রানাইট শিলা এই রকম রূপভেদকে উপস্থাপিত করে। কোয়ার্টজ ও ফেলস্পার সমৃদ্ধ এবং এর সঙ্গো কিছু পাইরক্সিন ও গার্নেট মিশ্রিত মাঝারি আকারের দানাবিশিষ্ট সম-আকৃতির গ্রথনযুক্ত শিলাকে গ্র্যানুলাইট বলে। এই শিলায় কিছু কিছু ব্যান্ড বা খনিজ পটি দেখা যায়।

## 6.6.2.5 একলোগাইট রূপভেদ (Eclogite facies)

এটাই উচ্চতম মাত্রার রূপান্তর নির্দেশ করে। ক্ষারকীয় আগ্নেয় শিলা থেকে এই ধরনের রূপভেদ সৃষ্টি হয়। খুব সীমিত অঞ্জলেই এই ধরনের রূপান্তর লক্ষ্য করা যায়। নীল সিস্ট যে পরিবেশে সৃষ্টি হয়, অনেকটা সেইরকম পরিবেশেই একলোগাইট সৃষ্টি হয়।

## 6.6.3 রূপান্তরিত শিলার শ্রেণীবিভাগ

শিলা যে চাপ ও তাপাঞ্চ্বে রূপান্তরিত হয়েছিল, সেই চাপ ও তাপাঞ্চ অনুসারে রূপান্তরিত শিলার শ্রেণীবিভাগ করতে পারলে সবচেয়ে ভাল হত। কিন্তু এরকম আদর্শ শ্রেণীবিভাগ এখনও সম্ভব হয়নি। রূপান্তরিত শিলাকে গ্রথন, উৎপত্তিস্থল, রূপভেদ, রূপান্তর প্রক্রিয়া, খনিজ সমাবেশ, রূপান্তর মাত্রা প্রভৃতি নানা ভিত্তিতে ভাগ করা যায়। কিন্তু রূপান্তরিত শিলা উপরোক্ত গুণাবলী বিচ্ছিন্নভাবে অর্জন করে না। এদের উৎপত্তিতে এক পারস্পরিক সম্পর্ক রয়েছে। যেমন আঞ্চলিক রূপান্তরের ক্ষেত্রে মায়াজিওসিনক্লাইনের সঞ্জয় পরিবেশে কর্দমময় পাথর (যেমন শেল) মাঝারি চাপ ও নিম্ন তাপমাত্রায় বিশেষ কতকগুলো সাম্য খনিজের সৃষ্টি করে। এগুলোর প্রধান হল অ্যালবাইট (39.9%), ক্লোরাইট (29.4%), এপিডোট (23%) ও অন্যান্য (7%)। এই বিশিষ্ট ধরনের খনিজের খনিজ সমাবেশকে সবুজ সিস্ট বলে। মাঝারি তাপমাত্রা ও নিম্ন চাপে রূপান্তর স্বভাবতই নিম্ন মাত্রার হবে। ক্লোরাইট, মাইকা প্রভৃতি পত্রজাতীয় খনিজের উপস্থিতিতে এর পত্রায়ন গ্রথন হবে। সাধারণত ক্লোরাইট-এর রঙ সবুজ হয়। এই জন্য ক্লোরাইটের উপস্থিতি সবুজ সিস্ট গঠন করে। উৎপত্তি ও রূপান্তরের আনুযজ্ঞিক বিষয়গুলোর ওপর ভিত্তি করে রুপান্তরিত শিলার শ্রেণীবিভাগ করা হল (সারণী 6.3)।

## 6.7 ভূমিরূপ গঠনে শিলার প্রভাব

ভূ-পৃষ্ঠে প্রায়শই শিলাপ্রকৃতির সঙ্গো ভূমিরূপের ঘনিষ্ঠ সম্পর্ক লক্ষ্য করা যায়। ভূমিরূপের ওপর শিলার প্রভাবকে আমরা দুটো স্বতন্ত্র অংশে ভাগ করতে পারি, যথা শিলার গঠনের প্রভাব ও শিলাগুণের প্রভাব। সঙ্কীর্ণ অর্থে শিলার গঠন বলতে শিলারাশির বিন্যাস, যেমন বলি, সমনতি সম্পন্ন স্তর, চ্যুতি প্রভৃতিকে বোঝায়। কিন্তু কোনও একটা নির্দিষ্ট শিলাস্তরের বা স্থানীয় শিলার প্রবেশ্যতা, যান্ত্রিক কাঠিন্য, আবহিক বিকার ও ক্ষয় প্রতিরোধের ক্ষমতা, দারণ, ফাটল, সম্ভেদ, পত্রায়ন তল প্রভৃতিকে শিলার গুন গুণ বলা হয়। সাধারণভাবে বলা যায় যে, ভূ-পৃষ্ঠে স্থূল ভূমিরূপ সৃষ্টিতে শিলার গঠন মুখ্য ভূমিকা পালন করে, কিন্তু এই স্থূল ভূমিরূপের ওপর পুঙ্খানুপুঙ্খ অবয়ব সৃষ্টিতে শিলাগুণের প্রভাবই বেশি।

## 6.7.1 গঠনের প্রভাব

সমান্তরাল বলি গঠিত অঞ্জলে ভূমিরূপ পরিবর্তনের প্রাথমিক অবস্থায় অনুমান করা যায় যে, সমান্তরাল শ্রেণী ও উপত্যকার সৃষ্টি হয়। উর্ধ্বভঞ্জের ওপর শ্রেণী ও অধোভঞ্জের উপর উপত্যকা শিলা গঠনের সঞ্জে সুসমঞ্জস ভূমিরূপ যা ভূ-সংক্ষোভের ফলে সরাসরি উৎপন্ন হয়। ভারতের শিবালিক পর্বত ও আল্লাসের জুরা পর্বতে এরকম গঠন ও ভূমিরূপের সম্পর্ক লক্ষ্য করা যায়। উধর্বভঙ্গা ও অধোভঙ্গাণুলো যদি পরস্পর সমান্তরাল না হয়ে প্রতিসারী বা অভিসারী হয়, তাহলে যেখানে বলির মিলন হয় সেখানে শৈলশিরা বা শৈলশ্রেণীর মিলন হয়, আর যেখানে উর্ধ্বভঞ্জাণুলো মিলনের পর প্রতিসারী হয় সেখানে শ্রেণীগুলোও প্রতিসারী হয়।

যেখানে স্তরীভূত শিলার নতি একই দিকে রয়েছে ও স্তরগুলো পালার্ক্রমে শক্ত ও নরম শিলা দিয়ে গঠিত, সেখানে ভূমিরূপ বিবর্তনের পরিণত অবস্থায় ভূগু উপত্যকা (scrap and vale) ভূ-প্রকৃতির সৃষ্টি হয়। শিলার আয়াম বরাবর কোমল শিলার ওপর উপত্যকা ও কঠিন শিলার উপর ভূগুর সৃষ্টি হয়। অনুরূপভাবে গম্বুজ গঠন যুক্ত অঞ্চলে গম্বুজকে চক্রাকারে বেস্টন করে কোমল শিলার ওপর উপত্যকা ও ঐ উপত্যকার নিম্ন ঢালের দিকে পাশে কঠিন শিলার ওপর ভূগু বা খাড়াতলের সৃষ্টি হয়।

সরাসরি চ্যুতির ফলে হর্স্ট, গ্রাবেন বা তির্যক চ্যুত স্তুপ পর্বতের সৃষ্টি হতে পারে। আবার ক্ষয়ের ফলে উপরোক্ত বিভিন্ন ভূমিরূপের সমতলীকরণের পর ভূমির পুনরুত্থান ও চ্যুতি রেখার দুই পার্শ্বে বৈষম্যমূলক ক্ষয়কার্যের ফলে চ্যুতি রেখা স্তুপ পর্বত, চ্যুতি রেখা গ্রস্ত উপত্যকা প্রভৃতি ভূমিরূপের সৃষ্টি হয়। এইভাবে দেখা যায় যে, শিলার গঠন বিভিন্নভাবে ভূ-পৃষ্ঠে স্থৃল ভূমিরূপ গঠনে প্রভাব বিস্তার করে।

|                    |               | r                 | নারণী $6.3$ : রূপান্তরিত শি                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | লার শ্রেণীবিভাগ                    |                   |                  |
|--------------------|---------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-------------------|------------------|
| উ୧୍ମାତ୍ତିଅল        | আদিশিলা       | রূপান্তরের মাত্রা | রুপান্তর প্রক্রিয়া ও রূপভেদ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | খনিজ সমাবেশ                        | রুপান্তরিত শিলা   | গ্রথন            |
| মহীসোপান ও         | ট্লময়        | মাঝারি থেকে উচ্চ  | সংস্পর্ম ও আঞ্জলিক রূপান্তর                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | চুল, ডলোমাইট                       | মাৰ্বল            | অপত্রায়ন        |
| মায়োজিও-          | বালুকাময়     | মাঝারি থেকে উচ্চ  | সংস্পর্ম ও আঞ্জলিক রুপান্তর                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | প্রধানত কোয়ার্টজ                  | কোয়ার্টজাইট      | অপত্রায়ন        |
| كامريثه أكحم       | কোয়াৰ্টজ     | टुक               | আঞ্জলিক;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | প্লাজিওক্লেজ (49.5%), হাইপারস্থিন  | নাইস              | পটিদার           |
|                    | كمصمح المعالم | 12                | গ্র্যানুলাইট                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (25.3%), ডাই-অক্সাইড (9.6%),       |                   |                  |
|                    |               |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | অর্থোক্লেজ (7.1%), অন্যান্য (7.4%) |                   |                  |
| মায়োজিওসিন-       | কর্দমময়      | ত্রস্থ            | আঞ্জিলিক; সবুজসিস্ট                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | আলবাইট (39.9%), ক্লোরাইট (29.4%)   | ঞ্জেট, ফিলাইট     | পত্রায়ন         |
| ক্লাইন<br>বা       |               |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | এপিডেটি 23.0%, অন্যান্য (7.7%)     |                   |                  |
| ইউজিওসিনক্লাইন     |               | মাঝারি            | ष्योज्कृलिक; मतूर्জनिर्म्जे                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ওপরের মত                           | মাইকা ও           | পত্রায়ন         |
|                    |               |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                    | ক্লোৱাইট সিস্ট    |                  |
|                    |               | মাঝারি থেকে উচ্চ  | આঞ্জলিক; નীলসিস্ট                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | প্লকোফেন (নীল রঙ্জের এক রকম        | সিলিমেনাইট সিস্ট  | পত্রায়ন         |
|                    |               |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | আম্হিবোল), জেডাইট, আরাগোনাইট       |                   |                  |
| ইউজিওসিনফ্লাইন     | ব্যাসল্ট      | মাঝারি থেকে উচ্চ  | আঞ্জলিক; আ্যাম্ফিবোলাইট                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | আনিরথাইট (26.5%), হর্ণব্লেড        | অ্যান্ফিবোলাইট    | পত্রায়ন         |
|                    |               |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (71.5%), কোয়ার্টিজ (2.0%)         |                   |                  |
|                    |               | ଭାତି উନ୍ଧ         | আঞ্জলিক; একলোগাইট                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | હ્યરણ્યાર્ટ્રો (48.5%), গોર્ત્ભિ   | একলোগাইট          | অপত্রায়ন        |
|                    |               |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (50.5%),  with $(1.8%)$            |                   |                  |
| ভূ-পৃষ্ঠের কাছে    | (محاصا        | <u>।</u><br>इ.    | <del>ما</del> وعمهد; عماريمه                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | কোয়ার্টিজ, আলবাইট, মাসকোভাইট,     | <u>عمار که صا</u> | মধ্যম থেকে       |
| আগ্লেয় উদ্বেধ     |               |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | বায়োটাইট, এপিডোট, ক্লোরাইট,       |                   | সুক্ষ দানা       |
|                    |               |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | କ୍ଷାକ୍ରେକେ,                        |                   | বিশিষ্ট সমা-     |
|                    |               |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                    |                   | কৃতি গ্রথন,      |
|                    |               |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                    |                   | অপত্রায়ন        |
| চু্যতিতল, থ্রাস্ট- | যেকোন শিলা    | निङ्ग             | التوافي المحافية المحافية المحافظ والمحافظ والمحاف | আদি শিলার অনুরূপ                   | মাইলোনাইট         | সুক্ষ্মদানাযুক্ত |
| يراقحم             | ওপরের মত      | নিম               | ওপরের মত                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ওপরের মত                           | ফাইলোনাইট         | পত্রায়ন         |
| টীকা : ওমফাসাই     | টি হল এক ধং   | রনের পাইরক্সিন।   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                    |                   |                  |

| শ্রেণীবিভ |
|-----------|
| শিলার     |
| রপান্তরিত |
| ••        |
| 6.3       |
| সারণী     |

## 6.7.2 ভূমিরূপ গঠনে শিলাগুণের প্রভাব

ভূমিরূপ গঠনে শিলাগুণের প্রভাব বিশ্লেষণের জন! প্রথমে জানা দরকার কি কি বিষয়ের ওপর শিলার ক্ষয়-প্রতিরোধ ক্ষমতা নির্ভর করে। এর পরে লক্ষ্য করার বিষয় হল যে, ভূমিরূপ গঠনে ক্ষয় প্রতিরোধকারী শিলার প্রভাব কেমন হতে পারে। নীচে এই দুই বিষয় পৃথকভাবে আলোচনা করা হল।

#### 6.7.2.1 ক্ষয় প্রতিরোধে শিলার শাসন

কাঠিন্য (Hardness) ३ শিলার কাঠিন্য বলতে শুধুমাত্র শিলা গঠনকারী খনিজের ভৌত কাঠিন্যকেই বোঝায় না, আবহিক বিকারের প্রতিরোধ ক্ষমতাকেও শিলা কাঠিন্যের অন্তর্ভুক্ত করা যায়। সাধারণভাবে বলা যায় যে, বালি বা কোয়ার্টজের ভৌত কাঠিন্য ক্যালসাইট খনিজ থেকে বেশি। এর অর্থ অবঘর্ষ প্রক্রিয়ায় কর্দম ও ক্যালসাইট থেকে বালি কম ক্ষয়প্রাপ্ত হয়। আবার যে সমস্ত শিলায় খনিজ রাসায়নিক ও যান্ত্রিক আবহিক বিকার প্রতিরোধ করে, সেগুলো কঠিন শিলারুপে প্রতিভাত হয়। বালি ও কর্দম খনিজ রাসায়নিক আবহিক বিকারে র অবশেষে পদার্থ (end product) বলে বেলে পাথর বা শেল পাথর দারণহীন চুনাপাথর থেকে কঠিন শিলা হিসাবে আচরণ করে। কারণ চুন সহজেই রাসায়নিক আবহিক বিকারপ্রাপ্ত হয়। আগেয় শিলায় গাঢ় রঙের খনিজগুলো অপেক্ষাকৃত দ্রুত আবহিক বিকার প্রাপ্ত হয় বলে গাঢ় রঙের ক্ষারকীয় আগ্নেয় শিলার হাল্ধা রঙের আন্নিক শিলা থেকে তাড়াতাড়ি রাসায়নিক আবহিকবিকার ও ক্ষয় হবার প্রবণতা থাকে। খনিজের রাসায়নিক সংযুতি ছাড়াও শিলার গ্রথন, পাললিক শিলার সিমেন্ট প্রাপ্তির ভাল-মন্দ প্রভৃতি শিলার আবহিক বিকার ও ক্ষয়কার্যে প্রভাব বিস্তার করে।

এটা স্বাভাবিক যে, ক্ষয় প্রতিরোধ, করে কঠিন শিলার উচ্চভূমির সৃষ্টি করার ঝোঁক থাকবে। কোয়ার্টজাইট পাথর খুব কঠিন বলে আরাবল্লী ও পূর্বঘাট পর্বতে এই পাথরের ওপর সাধারণত শৈলশিরা গঠিত হতে দেখা যায়।

প্রবেশ্যতা ঃ প্রধানত প্রবাহিত জলধারার সাহায্যেই ভূ-পৃষ্ঠ ক্ষয়প্রাপ্ত হয়। কাজেই যদি কোন শিলা জলের নিম্ন গমনে সহায়তা করে তাহলে ভূ-পৃষ্ঠে জলপ্রবাহ কমে ও ঐ শিলার ওপর ক্ষয়কার্য হ্রাস পায়। এই জন্য যে শিলার প্রবেশ্যতা যত বেশি সেই শিলা তত বেশি ক্ষয় প্রতিরোধ করে। বেলে পাথর সুপ্রবেশ্য বলে ক্ষয় প্রতিরোধ করে। চুনাপাথরের ক্যালসাইট খনিজের ভৌত কাঠিন্য কম ও সহজেই রাসায়নিক আবহিক বিকার প্রাপ্ত হতে পারে। তা সত্ত্বেও সাধারণত চুনাপাথর ক্ষয়-প্রতিরোধকারী শিলা হিসাবে আচরণ করে। এর কারণ, চুনাপাথরে সাধারণত প্রচুর সংখ্যায় গভীর দারণ ও ফাটল থাকে আর এর ভেতর দিয়ে জল সহজেই নীচে চলে যেতে পারে। কাজেই চুনাপাথরের সুপ্রবেশ্যতাই একে ক্ষয়-প্রতিরোধের ক্ষমতা দেয় (ব্যাখ্যাসহ উদাহরণের জন্য চিত্র ঃ 6.14 দ্রন্টব্যে)। অবশ্য দুই পাশের শিলা চুনাপাথরের থেকেও সুপ্রবেশ্য হলে চুনাপাথর উচ্চভূমি সৃন্টি না করে নিম্নভূমিও সৃন্টি করতে পারে।

গৌণ শিলা গঠন ঃ দারণ, সন্তেদ, সিস্ট বা পত্রায়ন, স্তরায়ন তল প্রভৃতি গৌণ শিলা গঠনগুলো শিলার ক্ষয় প্রতিরোধ ক্ষমতাকে সাধারণভাবে হ্রাস করে। দেখা যায়, অগভীর দারণ ক্ষয়কার্যে সহায়তা করে, কারণ প্রবাহিত জলের ধাক্কায় দারণ দিয়ে আবন্ধ শিলাখণ্ড সহজেই উৎপাটিত হতে পারে। কিন্তু দারণ সুগভীর হলে জলের নিম্ন গমন বাড়ে (অর্থাৎ প্রবেশ্যতা বাড়ে) ও শিলার প্রতিরোধ ক্ষমতা বাড়ে।



চিত্র 6.14 : খণ্ডিস অঞ্চলে জুরাসিক ও ক্রিটেশাস যুগের শিলা গঠিত অঞ্চলের ভূতত্ত্বীয় প্রস্থচ্ছেদ। (1) কিয়োটো চুনাপাথর, (2) স্ফিতি শেল, (3) গিউমাল বেলেপাথর, (4) ক্রিটেশাস ফ্লিশ, (5) ক্ষারকীয় আগ্নেয় শিলা ভূমিরূপ গঠনে শিলা প্রবেশ্যতার প্রভাব ব্যাখ্যা করা হয়েছে। ওপরের প্রস্থচ্ছেদ থেকে দেখা যায় 600 মি.-এর বেশি গভীর প্রবেশ্য কিয়োটো চুনাপাথর ক্ষয় প্রতিরোধ করে পাঞ্জাব হিমালয়ের দিকে মুখ করে এক খাড়া তলের সৃষ্টি করেছে। এর পাশে ভঙ্গুর স্পিতি শেল উপত্যকা গঠন করেছে। চুনাপাথরে সাধারণত প্রচুর সংখ্যায় গভীর দারণ ও ফাটল থাকে, আর এর ভেতর দিয়ে জল সহজেই নীচে চলে যেতে পারে। কাজেই চুনাপাথরের সুপ্রবেশ্যতাই একে ক্ষয় প্রতিরোধে সাহায্য করে।

খনিজ সম্ভেদ, সিস্ট গঠন ও স্তরায়ন-তল শিলার অভ্যন্তরে জলের অনুপ্রবেশে সাহায্য করে ও রাসায়নিক আবহিক বিকারকে ত্বরান্বিত করে এবং শিলার ক্ষয়-প্রতিরোধ ক্ষমতাকে কমিয়ে দেয়।

## 6.7.2.2 ভূমিরূপ গঠনে ক্ষয়-প্রতিরোধের প্রভাব

সন্মিলিত শিলার গুরুত্ব ঃ যদি মধ্যম প্রকারের ক্ষয় প্রতিরোধকারী শিলা এক ক্ষেত্রে দুটো কম ক্ষয়-প্রতিরোধকারী শিলার মধ্যে, বা দ্বিতীয় ক্ষেত্রে অপেক্ষাকৃত বেশি ক্ষয়-প্রতিরোধকারী শিলার মধ্যে অবস্থান করে, তাহলে ঐ মাঝারি ক্ষয় প্রতিরোধকারী শিলা প্রথম ক্ষেত্রে শৈলশিরা ও দ্বিতীয় ক্ষেত্রে উপত্যকার সৃষ্টি করে (ব্যাখ্যা সহ উদাহরণের জন্য চিত্র ঃ 6.15 দ্রুইব্য)।



চিত্র 6.15 : জম্মু পাহাড়ে পার্মিয়ান, কার্বনিফেরাস ও ইয়োসিন যুগের শিলাগঠিত অঞ্চলে ভূতত্ত্বীয় প্রস্থচ্ছেদ এঁকে ভূমিরূপ গঠনে সমিহিত শিলাস্তরের প্রভাব ব্যাখ্যা করা হয়েছে। উংর্ধে অবস্থিত ইয়োসিন-মুরী শ্রেণী শিলার ক্ষয়প্রাপ্তির পরে পার্মিয়ান কার্বনিফেরাস যুগের চুনাপাথর ক্ষয় প্রতিরোধ করেছে ও পার্শ্ববর্তী মুরী শ্রেণীর শিলা বেশি ক্ষয়প্রাপ্ত হয়েছে। প্রস্থচ্ছেদের ডানপাশে ঐ একই মুরী শ্রেণীর শিলা (পর্যায়ক্রমে বেলেপাথর ও শেল গঠিত) সমিহিত পাতলাস্তর সমন্বিত ও ক্ষয়প্রবণ ইয়োসিন যুগের চুনাপাথর থেকে বেশি ক্ষয় প্রতিরোধ করে উচ্চভূমি গঠনে সাহায্য করেছে।

#### 6.7.3 নতির প্রভাব

নির্দিষ্ট ঃ বেধযুক্ত কোনও শিলাস্তর ভূ-পৃষ্ঠে কতখানি অঞ্চল জুড়ে প্রকাশিত হবে তা নির্ভর করে এ শিলার নতির ওপর। যদি শিলাস্তর উল্লম্ব থাকে, তাহলে বেধের সমান অঞ্চল জুড়ে এ শিলা ভূ-পৃষ্ঠে দেখা যাবে। অপরপক্ষে এ স্তর যদি অনুভূমিকভাবে অবস্থন করে, তাহলে এ শিলা অনেক বেশি স্থান জুড়ে ভূ-পৃষ্ঠে প্রকাশিত হবে। নতি যত কম হয়, একটা শিলাস্তর তত বেশি জায়গা জুড়ে ভূ-পৃষ্ঠে প্রকাশিত হয়। যদি এই শিলা ক্ষয়-প্রতিরোধকারী হয়, তাহলে অনুভূমিক বা অল্প নতিযুক্ত শিলা বিস্তৃততর উচ্চভূমির সৃষ্টি করে (ব্যাখ্যাসহ উদাহরণের জন্য চিত্র ঃ 6.16 দ্রুষ্টব্য)।



চিত্র 6.16 : স্পিতি অঞ্চলে কার্বনিফেরাস থেকে ট্রায়াসযুগের শিলাগঠিত অঞ্চলের ভূতত্ত্বীয় প্রস্থচ্ছেদ এঁকে ভূমিরূপ গঠনে শিলাস্তরের নতির প্রভাব ব্যাখ্যা করা হয়েছে। 1. পো. শ্রেণী, 2. ভূমিদেশ কংগ্লোমারেট সমন্বিত প্রোডাক্টাস শেল, 3. নিম্ন ট্রায়াস, 4. মুসেলকাল্ক (প্রধানত চুনাপাথর), 5. ঊর্ধ্ব ট্রায়াস।

প্রদত্ত প্রস্থচ্ছেদের মধ্যাংশে মুসেলকল্ক শিলা শ্রেণীর কম নতির জন্য উচ্চভূমির বিস্তার বেশি হয়েছে। অথচ চ্যুতিরেখার (চ) বাঁপাশে ঐ একই শ্রেণীর শিলার নতি বেশি হওয়ায় উচ্চভূমির বিস্তার কম হয়েছে।

## 6.7.4 আগ্নেয়, পাললিক ও রূপান্তরিত শিলার বিশেষ গুণাগুণের প্রভাব

বৈষম্যমূলক শিলাগুণের জন্য প্রত্যেক প্রকার শিলারই ভূমিরুপের ওপর কিছু প্রভাব রয়েছে, তবে আগ্নেয় শিলা ও চুনাপাথরের ওপর গঠিত ভূমিরূপের স্বকীয়তা সহজেই নজরে পড়ে। এখানে আগ্নেয়, পাললিক ও রূপান্তরিত শিলার বিশেষ গুণাপুণ কিভাবে ভূমিরূপের ওপর প্রভাব বিস্তার করে প্রধানত তা আলোচনা করা হল।

(i) আগ্নেয় শিলা ঃ ব্যাসল্ট ও ইগনিম্ব্রাইট প্রবাহ সমতল শীর্ষবিশিষ্ট লাভা মালভূমির সৃষ্টি করে কিন্তু এর পার্শ্বদেশ সিঁড়ির মত কতকগুলো ধাপ সৃষ্টি করে বেশ খাড়াভাবে নেমে যায়। ব্যাসল্টের বহুভূজাকৃতি দারণ, লাভা ও ভস্মস্তরের পালাব্রমে সঞ্জয় বৈযম্যমূলক ক্ষয়কার্যকে প্রভাবিত করে ধাপের সৃষ্টি করে। কিন্তু মালভূমির শীর্ষদেশে নদীর ক্ষয়কার্য খুবই সীমিত থাকে, কারণ দারণ, প্রবেশ্য ভস্মন্তর ও লাভা প্রবাহকালে সৃষ্ট বিভিন্ন গর্তের মধ্যে দিয়ে জল বহুল পরিমাণে নীচে ধাবিত হয়। ফলে ভূ-পৃষ্ঠে জলপ্রবাহ এতই কম থাকে যে, যথেষ্ট পরিমাণে ক্ষয়কার্য হতে পারে না। এই জল প্রস্রবণ আকারে এই মালভূমির প্রান্তদেশে বহির্গত হয় ও ব্যাসল্টের ভূমিদেহে বর্ধিত হয়ে আবহিক বিকার ও নিম্ন খনন (undermining বা sapping) করে। ফলে ক্ষয়কার্য বিশেষ বৃদ্ধি পায় ও ধ্বংসের প্রাদুর্ভাব ঘটে। এই জন্য লাভা মালভূমির পার্শ্বদেশ বেশ খাড়া হয়। অনেক সময় লাভা মালভূমির প্রান্তদেশে সৃষ্ট নদী গিরিখাতের উৎস অংশে বাক্সের মত দেখতে এক গর্তের ভেতর দিয়ে অনেক প্রস্রবণ বহির্গত হয়। একে প্রস্রবণ-অ্যাল্কভ্ (spring alcove) বলে।

ভস্ম শঙ্কু সাধারণভাবে ক্ষয় প্রতিরোধ করে, কারণ এর সুপ্রবেশ্যতা। কিন্তু বৃহদাকৃতি স্তর আগ্নেয়গিরিতে (যেখানে পালাক্রমে ভস্ম ও লাভা সঞ্চিত হয়) ক্ষয়কার্য প্রবল হয়। পালাক্রমে ভস্ম ও লাভা সঞ্চয় ও অধিক উচ্চতা এ বিষয়ে সাহায্য করে। এই আগ্নেয়গিরির পার্শ্বদেশে যে প্রতিসারী (radiating) খাতভূমির সৃষ্টি হয়, তা ক্রমশ আয়তনে ও গভীরতায় বাড়তে থাকে এবং কালক্রমে কোনও এক স্থানে ভস্মন্তর ভূ-পৃষ্ঠে প্রকাশিত হয়ে পড়ে। ভস্মন্তরের ভেতর দিয়ে জল সহজে চুঁয়োতে পারে বলে এর ভূমিদেশে প্রস্রবণ দেখা দেয়। এই অংশে আবহিক বিকার, নিম্নখনন, পুঞ্জ ক্ষয় বৃদ্ধির ফলে উপত্যাকার শীর্ষদেশে প্রশস্ত গর্তের সৃষ্টি হয়।

উদ্বেধী আগ্নেয় শিলার মধ্যে গ্রানাইট প্রধান ও ভূমিরূপ গঠনে এর প্রভাব বেশ গুরুত্বপূর্ণ। সাধারণভাবে বলা যায়, যে পাললিক শিলার নীচে গ্রানাইটের উদ্বেধ ঘটে তার থেকে গ্রানাইট কঠিন শিলা হিসেবে নিজেকে প্রতিষ্ঠিত করে। ক্ষয়কার্যের পর যখন গ্রানাইট ভূ-পৃষ্ঠে প্রকাশিত হয়, তারপর থেকে পললিক শিলার তুলনায় বেশি ক্ষয় প্রতিরোধ করে এই শিলা উচ্চভূমিক সৃষ্টি করে। ভঙ্গিল পর্বতের অষ্ঠিতে সুদীর্ঘ গ্রানাইট পাথরের উদ্বেধ থাকে। ক্ষয়কার্যের ফলে অনাবৃত এই গ্রানাইট ক্ষয় প্রতিরোধ করে শৈলশিরা বা শ্রেণীর সৃষ্টি করে। স্কটল্যান্ড ও স্ক্যান্ডিনেভিয়ার ভঙ্গিল পর্বতের সঙ্গো যুক্ত এরকম অনেক শৈলশিরা দেখা যায়।

গ্রানাইট শিলাতে দারণ্যের উপস্থিতি অনুপুঙ্খ ভূমিরূপ গঠনে প্রভাব বিস্তার করে। সুগভীর দারণ-সমৃন্ধ অঞ্চলে ফাটলের মধ্যে দিয়ে জল সহজেই নীচে চলে যেতে পারে ও আবহিক বিকারের ফলে কোর স্টোন ও টবের সৃষ্টি হয়। টব প্রায়শই তরঙ্গায়িত ভূমির ওপর টিলার মত দাঁড়িয়ে থাকে। অপরপক্ষে দারণ যদি অগভীর হয়, তাহলে প্রবাহিত জলের ধাক্কায় দারণ-আবন্ধ শিলাখণ্ড উৎপাটিত হয় এবং এই অংশে ক্ষয় বেশি হয় বলে ছোট ছোট নদীর উপত্যকার সৃষ্টি হয়।

(ii) পাললিক শিলা ঃ ভূ-পৃষ্ঠে যে তিনটি শ্রেণীর পাললিক শিলা ব্যাপকভাবে দেখা যায় তা হল বালুকাময়, কর্দমময় ও চুনময় পাললিক শিলা। এই তিন শ্রেণির কতকগুলো বৈষম্যমূলক শিলাগুণ রয়েছে যা ভূমিরুপের ওপর প্রভাব বিস্তার করে। নীচে এই বিষয়ে সংক্ষিপ্ত আলোচনা করা হল। (a) বালুকাময় শিলা গঠিত ভূমিরূপ ঃ বেলেপাথর যদি জেলি সিলিকা দিয়ে সিমেন্ট প্রাপ্ত হয় তা হলে এই শিলা বিশেষ ক্ষয় প্রতিরোধকারী শিলায় পরিণত হয়। এর কারণ সিলিকা বা বালি যা দিয়ে বেলেপাথর তৈরি হয় তা রাসায়নিক আবহিক বিকারে প্রায় নিষ্ক্রিয় থাকে। এছাড়া বালির ভৌত কাঠিন্য প্রধান শিলা গঠনকারী খনিজগুলোর তুলনায় বেশি। এরকম শিলা সাধারণত দারণ সমৃদ্ধ হয় ও তার জন্য সুপ্রবেশ্য হয়। এইজন্য অন্যান্য অবস্থা, যেমন—বৃষ্টিপাত, প্রাথমিক ভূমির ঢাল ইত্যাদি সমর্প থাকলে এরকম বেলেপাথরের ওপর নদীর ঘনত্ব সাধারণভাবে কম হয়।

ভালভাবে লৌহ-অক্সাইড দিয়ে সিমেন্ট প্রাপ্ত হলেও বালুকাময় পাললিক শিলা কঠিন শিলা হিসাবে আচরণ করে। এরকম শিলায় 20-30% রম্ত্র পরিসর অধিকার করে থাকে ও এতে শিলার প্রবেশ্যতা বৃদ্ধি পায়। সুপ্রবেশ্যতাই এরকম বেলেপাথরের ক্ষয় প্রতিরোধ ক্ষমতা বৃদ্ধি করে। বালুকাময় শিলা যদি ভালভাবে লৌহ-অক্সাইড দিয়ে সিমেন্ট প্রাপ্ত না হয়, তাহলে এটা সহজেই আবহিক বিকার ও ক্ষয়ের অধীন হয়।

চুন দিয়ে সিমেন্ট প্রাপ্ত বালুকাময় শিলাও বেশ ক্ষয় প্রতিরোধক হয়। ভালভাবে সিমেন্ট প্রাপ্তি ও সুপ্রবেশ্যতাই এর প্রধান কারণ।

সাধারণত বালুকাময় এবং কর্দমময় পাললিক শিলার স্তর পাশাপাশি থাকে, আর কর্দমময় পাললিক শিলার তুলনায় বেশি ক্ষয় প্রতিরোধ করে বালুকাময় শিলা উচ্চভূমি, ভৃগু, মেসা, বিউট (butte) প্রভৃতি গঠন করে।

(b) কর্দমময় পাললিক শিলা ঃ কর্দমময় পাললিক শিলা সাধারণত কোমল শিলা হিসাবে প্রতিভাত হয় ও প্রায়শই অবম্থুর নিম্নভূমি বা উপত্যকা সৃষ্টি করে। যদিও উয় ও আর্দ্র ক্রান্তীয় অঞ্জল ছাড়া কর্দম খনিজ রাসায়নিক আবহিক বিকারে নিষ্ক্রিয়, তবুও এর ভৌত কাঠিন্য কম বলে অবঘর্ষ প্রক্রিয়ায় সহজেই ক্ষয়প্রাপ্ত হতে পারে। কলিকরণ আবহিক বিকার প্রক্রিয়াও কর্দমময় পাললিক শিলার ভাঙনে সাহায্য করে। এ ছাড়া কর্দম কণার মধ্যে যে সব রম্ব্র থাকে তা জলের পাতলা আস্তরণ (water film) দিয়ে ভরা থাকে ও কর্দম কণাগুলোকে একসঙ্গো বেঁধে রাখে এবং কর্দমময় শিলাকে অস্থিতিস্থাপক বা প্রাস্টিক করে তোলে। রম্ব্র পরিসর সুদৃঢ়ভাবে আবন্ধ জল আস্তরণ দিয়ে ভর্তি থাকে বলে এই শিলা মূলত অপ্রবেশ্য শিলায় পরিণত হয়। এতে ভূ-পৃষ্ঠে জল ধরার প্রবাহ ও ভূমিক্ষয় বাড়ে। এইসব কারণে কর্দমময় পাললিক শিলা যে শুধুমাত্র দ্রুত ক্ষয়প্রাপ্ত হয় তাই নয়, এর ওপর নদীর বুননও (texture) বেশ স্ক্ষ্ণ প্রকৃতির হয়। সাধারণত এই ধরনের শিলায় দারণের অভাবে লক্ষ্য করা যায়, আর গঠনগত নিয়ন্ত্রণের অভাবে কর্দমময় শিলার ওপর উৎপন্ন নদী-নকশা বুক্ষরুপী (dendritic) হয়ে থাকে।

(c) চুনময় পাললিক শিলা ঃ চুনাপাথর, ডলোমাইট, খড়ি পাথর প্রভৃতি শিলার প্রধান খনিজ ক্যালসাইটের ভৌত কাঠিন্য কম ও সছিদ্রতাও কম। এই অবস্থায় চুনময় পাথর দ্রুত ক্ষয় হবার কথা, কিন্তু চুনাপাথরের এক বিশেষ গুণ হল দারণ-সমৃদ্ধি, বা একে ক্ষয় প্রতিরোধকারী করে তোলে। যদি হেলানো অবস্থায় কর্দমময় শিলার পাশে চুনময় শিলা অবস্থান করে, তাহলে এরা সাধারণত ক্ষয় প্রতিরোধ করে শৈলশিরা, খাড়া ভূগু প্রভৃতির সৃষ্টি করে।

চুনময় শিলার আর একটা বিশেষ গুণ হল এর দ্রাব্যতা (জলে দ্রবীভূত কার্বন ড়াই-অক্সাইড়ের সাহায্যে)। এর সঙ্গো সমৃদ্ধ দারণ্যের যোগাযোগ ঘটে। ফলে এইসব দারণ্যের ভেতর দিয়ে নিম্নগামী জল সব সময়ই কিছু পরিমাণ চুনকে দ্রবীভূত করে সঙ্গো নিয়ে যায়। এতে দারণ্যের ফাঁক বেড়ে কালক্রমে ডোলিন, সোয়ালো হোলের মত অসংখ্য গর্তের সৃষ্টি হয়। এইসব গর্তের ভেতর দিয়ে ভূ-পৃষ্ঠের জল ক্রমবর্ধমান হারে ভূ-নিম্নে চালিত হয় ও শুষ্ক নদী উপত্যকার সৃষ্টি হয়। ভূ-নিম্নে এই বিপথগামী জল সুড়ঙ্গা পথে প্রবাহিত হয় ও সবিস্তৃত গহ্বরের সৃষ্টি করে। যেখানে চুনাপাথর অনুভূমিক বা অল্প নাতিকোণ করে থাকে ও বিস্তৃত সমভূমির সৃষ্টি করে, সেখানেই উপরোক্ত ধরনের ভূমিরূপ সাধারণভাবে লক্ষ্য করা যায়।

(iii) **রূপান্তরিত শিলা ঃ** চুনাপাথর বা গ্রানাইট পাথরের ওপরের বৈশিষ্ট্যমূলক ভূমিরুপের মত রূপান্তরিত শিলার ওপর গঠিত ভূমিরুপে সুনির্দিষ্টতা দেখা যায় না। বিভিন্ন রূপান্তরিত শিলার তুলনামূলক ক্ষয় প্রতিরোধ ক্ষমতা স্থির করাও অসুবিধাজনক, কারণ নাইস, সিস্ট, কোয়ার্টজাইট, শ্লেট, মার্বেল প্রভৃতি রূপান্তরিত শিলার স্তর, ব্যান্ড বা পটি, সম্ভেদ, বিদার্যতা প্রভৃতি জটিল গঠন এতই সূক্ষ্ম প্রকৃতির যে, ক্ষয়কার্যের প্রভাবে উৎপন্ন ভূমিরূপে বিশেষ পার্থক্য লক্ষ্য করা যায় না। এছাড়া অধিকাংশ রূপান্তরিত শিলা খুবই প্রাচীন ও ভূ-পৃষ্ঠের বহু নীচে এর উৎপত্তি হয়। কাজেই ক্ষয়কার্যের ফলে এরা যখন ভূ-পৃষ্ঠে প্রকাশিত হয়, তখন এদের অবস্থান নিম্ন অংশেই সীমাবন্ধ থাকে। এরকম নিম্ন অবস্থান এদের কম ক্ষয় প্রতিরোধকারী ক্ষমতাকে নির্দেশ করে না। এসব অসুবিধা সত্ত্বেও কতকগুলো বিশেষ অঞ্চলের সমীক্ষা থেকে বিভিন্ন রূপান্তরিত শিলার ক্ষয়-প্রতিরোধ বিষয়ে কিছু সাধারণ সূত্র নির্দিষ্ট করা যায়।

(a) কোয়ার্টজাইট ঃ এই শিলা ভৌত ও রাসায়নিক—দুইভাবেই ক্ষয় প্রতিরোধ করে। ভূ-পৃষ্ঠে প্রধান শিলার মধ্যে একেই সবচেয়ে বেশি ক্ষয় প্রতিরোধকারী শিলা বলে মনে করা যায়। সাধারণত এই শিলা শৈলশিরা সৃষ্টি করে।

(b) শ্লেট ঃ অপ্রবেশ্যতা ও বেশি মাত্রায় সম্ভেদের উপস্থিতি এই শিলাকে ক্ষয়প্রবণ করে তোলে। সম্ভেদতল যদি ভূমির সঙ্গে হেলানো অবস্থায় থাকে (যা সাধারণত থাকে), তাহলে এই ক্ষয় প্রবণতা বিশেষ করে বৃদ্ধি পায়।

(c) সিস্ট ঃ গঠন অনুযায়ী সিস্টের আবহিক বিকার ও ক্ষয় প্রতিরোধ ক্ষমতার তারতম্য হয়ে থাকে।

(d) **নাইস ঃ** নাইস পাথরের আচরণ অনেকটা গ্রানাইট শিলার মত ও মালভূমি অঞ্জলে টর সমন্বিত তরঙ্গায়িত ভূমি বা ভারের লাঘব জনিত গম্বুজাকৃতি ভূমিরূপের সৃষ্টি করে।
কার্যকালের ব্যপ্তির প্রভাব ঃ যথেন্ট সময় পেলেই শিলাগুণের পার্থক্যের জন্য নদী ও অন্যান্য ভাস্কর্য শক্তি বৈষম্যমূলক ক্ষয়কার্য করে ভূমির বন্ধুরতা সৃষ্টি করতে পারে। সাধারণত ক্ষয়চক্রের পরিণত অবস্থায় নদীর সঙ্গে শিলাগুণের সম্পর্ক সামঞ্জস্য পূর্ণ হয়, অর্থাৎ কোমল শিলার ওপর উপত্যকা ও কঠিন শিলার ওপর শৈলশিরা গঠিত হয়। যৌবনের প্রারম্ভে ক্ষয়কার্যের স্বল্পতার জন্য কোমল ও কঠিন শিলা ভূ-পৃষ্ঠে বন্ধুরতা সৃষ্টিতে তেমন প্রভাব বিস্তার করতে পারে না। আবার বার্ধক্য অবস্থায় কোমল ও কঠিন দু'রকম শিলাই ক্ষয়প্রাপ্ত হয়ে সমভূমির সৃষ্টি করে ও ভূ-পৃষ্ঠে এদের প্রভাব তেমন প্রকট হয় না।

#### 6.8 সারাংশ

শিলা অশ্মমণ্ডল গঠনের প্রধান উপাদান। শিলা হল নানা ধরনের খনিজ বা মাণিক্যের সমষ্টি। শিলার কোন নির্দিষ্ট রাসায়নিক বৈশিষ্ট্য নেই। কিন্তু খনিজের আছে। ভূ-ত্বকে প্রাপ্ত খনিজের 99%-ই দশটি মৌলিক উপাদানে তৈরি। এর মধ্যে অক্সিজেন এবং সিলিকনই ভূ-ত্বকের ওজনের শতকরা প্রায় 75 ভাগ অধিকার করে আছে। আগ্নেয় শিলা প্রকৃতির প্রাচীনতম শিলা। এছাড়া ভূ-ত্বক গঠনকারী অন্যান্য শিলারা হল পাললিক শিলা এবং রূপান্তরিত শিলা। প্রতিটি শিলাই নানা ধরনের ভূমিরূপ গড়ে তোলে। আসলে শিলার কাঠিন্য প্রবেশ্যতা, নতি প্রভৃতি বিষয়গুলি ভূমিরূপ সৃষ্টির ক্ষেত্রে নানা ধরনের প্রভাব বিস্তার করে।

#### 6.9 প্রশ্নাবলী

- 1) শিলা ও খনিজের তফাৎ কোথায়?
- 2) উদ্ভব অনুসারে আগ্নেয় শিলার শ্রেণীবিভাগটি কেমন?
- 3) রাসায়নিক গঠন অনুসারে আগ্নেয় শিলাকে কি ভাবে শ্রেণীবিভাগ করা যায়?
- 4) পাললিক শিলাকে উদ্ভব ও বৈশিষ্ট্য অনুযায়ী কি ভাবে শ্রেণীবিভাগ করা যায়?
- 5) শিলা কি ভাবে রূপান্তরিত হয়?

#### 6.10 উত্তর সংকেত

- উত্তরের জন্য 6.1 অংশ দেখুন।
- উত্তরের জন্য 6.3.1 অংশ দেখুন।
- উত্তরের জন্য 6.3.1 অংশ দেখুন।
- উত্তরের জন্য 6.5 অংশ দেখুন।
- 5) উত্তরের জন্য 6.6.1 অংশ দেখুন।

# একক 7 🗆 ভাঁজ বা বলি, চ্যুতি এবং ভূমিরূপের উপর তাদের প্রভাব

গঠন

- 7.1 প্রস্তাবনা
- 7.2 উদ্দেশ্য
- 7.3 ভাঁজ বা বলির সংজ্ঞা ও গাঠনিক উপাদান
- 7.4 বলির জ্যামিতিক শ্রেণীবিভাগ
  - 7.4.1 গাঠনিক উপাদানের ভঙ্গির ভিত্তিতে বলির শ্রেণীবিভাগ
  - 7.4.2 বলির পৃষ্ঠদেশের আকৃতির বর্ণনার ভিত্তিতে শ্রেণীবিভাগ
  - 7.4.3 বলির অন্তর্বাহু কোণের পরিমাণের ভিত্তিতে বলির শ্রেণীবিভাগ
  - 7.4.4 বলিতে শিলাস্তরের বক্রতা ও স্থূলতার পরিবর্তনের ভিত্তিতে শ্রেণীবিভাগ
- 7.5 চ্যুতির সংজ্ঞা ও গাঠনিক উপাদান
  - 7.5.1 চ্যুতির জ্যামিতিক শ্রেণীবিভাগ
  - 7.5.2 শিলাস্তরের চ্যুতির অবস্থিতির লক্ষণ
- 7.6 ভূমিরূপের উপর বলি ও চ্যুতির প্রভাব
- 7.7 সারাংশ
- 7.8 প্রশ্নাবলী
- 7.9 উত্তর সংকেত
- 7.10 প্রতিশব্দ
- 7.11 নির্বাচিত সহায়ক পুস্তক

#### 7.1 প্রস্তাবনা

ভঙ্গিল পর্বতমালা (যেমন, হিমালয়, আল্প্স, রকি ইত্যাদি) ও পৃথিবীর পুরনো পাথরের শিলাস্তরে (বয়স 250 কোটি বছরের বেশি) অনেক বলি ও চ্যুতি দেখতে পাওয়া যায়। বলি ও চ্যুতি এই দুটি গঠন শিলাস্তরের আদি গঠন নয় অর্থাৎ এরা শিলাস্তরের উৎপত্তির সাথে সাথেই তৈরি হয় না। সমুদ্র, নদী, হুদে শিলাস্তর যখন তৈরি হয় তখন তারা অনুভূমিক বা প্রায়-অনুভূমিক থাকে। আপনারা জানেন, প্লেট টেক্টনিক্স তত্ত্ব বা পাত সংস্থান তত্ত্ব অনুসারে পৃথিবীর ভূত্বক স্থির নয়। ভূত্বকের এই অস্থিরতা বা সচলতাই শিলাস্তরে বলি ও চ্যুতি উৎপন্ন করে। বলি বলতে আমরা শিলাস্তরের ভাঁজ বুঝি (চিত্র : 7.1A), আর চ্যুতি বলতে শিলাস্তরের বিস্থাপন (dislocation) বোঝায় (চিত্র : 7.1B)। বলি ও চ্যুতি খনি থেকে সম্পদ আহরণের কাজে সহায়তা করে। উদাহরণ স্বরূপ পেট্রোলিয়ামের কথাই ধরা যাক। পেট্রোলিয়াম এক বিশেষ ধরনের শিলাস্তরে ঊর্ধ্বভঙ্গ বলিতে গ্যাস ও জলের মাঝখানে থাকে (চিত্র : 7.1C)। অধোভঙ্গ বলিতে এই তেল থাকেই না। তাই পৃথিবীর উপরিতল থেকে ভূছিদ্র এমনভাবে করতে হয় যে, তা যেন ঊর্ধ্বভঙ্গ বলিকে ভেদ করে। অধোভঙ্গ বলিতে এই ভূছিদ্র করলে তেল না পেয়ে পাওয়া যাবে জল। অনেক রৈখিক আকর দেহকে মানচিত্রে কিছুদূর যাবার পর আর খুঁজে পাওয়া যায় না। কারণ, চ্যুতি অনেক ক্ষেত্রে এই আকর দেহকে বিস্থাপিত করে। চ্যুতির অবস্থান ও তার চলাচলের ইতিহাস জানলে তবেই এ আকর দেহকে আবার খুঁজে পাওয়া সম্ভব হয়। কয়লা খনিতে কয়লার স্তরের এই ধরনের বিস্থাপন খুব লক্ষ্য করা যায় (চিত্র : 7.1D)। এছাড়াও বলি ও চ্যুতি ভূমিরূপকেও নানাভাবে প্রভাবিত



চিত্র 7.1

করে। এ সম্বন্ধে আমরা পরে আলোচনা করব। এবার আমাদের বলির সংজ্ঞা, গাঠনিক উপাদান, জ্যামিতি সম্পর্কে জানা দরকার। বলির পর আমরা চ্যুতি নিয়েও অনুরূপ আলোচনা করব।

#### 7.2 উদ্দেশ্য

এই এককটি পাঠ করে আপনি—

- পৃথিবীর ভূত্বকের বিভিন্ন পাথর ও শিলাস্তরের নানারকম গাঠনিক বিশেষত্ব সম্পর্কে অবহিত হবেন।
- পাথর ও শিলাস্তরের গঠন ভূমিরূপকে কিভাবে প্রভাবিত করে এ বিষয়ে বিশদ আলোচনা করতে পারবেন।
- সর্বাধিক গুরুত্বপূর্ণ দুটি গঠন—ভাঁজ বা বলি (fold) এবং চ্যুতি (fault)—এদের সংজ্ঞা, বিশেষত্ব, শ্রেণীবিভাগ ইত্যাদি সম্পর্কে স্বচ্ছ ধারণা করতে পারবেন।

### 7.3 ভাঁজ বা বলির সংজ্ঞা ও গাঠনিক উপাদান

ভাঁজ বা বলি (fold) বলতে আমরা একটি বক্রতল বা বক্রতলের সমষ্টি বুঝি। পাথরে এই বক্রতল বা বক্রতলের সমষ্টি শিলাস্তরের আকৃতিগত পরিবর্তন বা বিরূপনের ফলে (deformation) সৃষ্টি হয়। বিরূপন ছাড়া অন্য কোনোভাবে তৈরি বক্রতলকে শিলাস্তরের বলি বলা হয় না। একটি বলির নানা গাঠনিক উপাদান থাকে, যেমন গ্রন্থিবিন্দু, গ্রন্থিরেখা, বাহু, অক্ষতল, আচ্ছাদন তল, বিস্তার, তরঙ্গ দৈর্ঘ্য ও আন্তর্বাহু কোণ। এবার একে একে ছবির সাহায্যে এদের বর্ণনা করা যাক।



150

গ্রন্থিবিন্দু ঃ একটি বক্রতলের বক্রতা  $\left(c = \frac{1}{r}\right)$ সর্বত্র সমান নয়। যে বিন্দুতে এই বক্রতা সর্বাধিক, তাকেই আমরা গ্রন্থিবিন্দু বলি। এখানে c = বক্রতা এবং r = একটি নির্দিষ্ট বিন্দুতে ঐ বক্রতলের ব্যাসার্ধ। কোনো বক্রতলের বক্রতা সর্বাধিক কোন বিন্দুতে না হয়ে তা একটি বলয়ও সৃষ্টি করতে পারে। তখন তাকে গ্রন্থিবলয় বলা হয় এবং ঐ বলয়ের মধ্যবিন্দুকে গ্রন্থিবিন্দু নাম দেওয়া হয় (চিত্র : 7.3A)।

**গ্রন্থিরেখা ঃ** একটি বলির গ্রন্থিবিন্দুগুলি যোগ করলে যেল রেখা পাওয়া যায় তাকে গ্রন্থিরেখা বলে (চিত্র : 7.3A)।

বাহু ঃ গ্রন্থিবিন্দু একটি বলিকে দুটি ভাগে ভাগ করে। এই প্রত্যেকটি ভাগকে বাহু বলে অর্থাৎ একটি বলি সবসময় দুটি বাহু দ্বারা গঠিত হয় (চিত্র : 7.3A)।

**অক্ষ তল ঃ** গ্রন্থিবিখাগুলি যোগ করলে যে তল পাওয়া যায় তাই হল অক্ষতল। অক্ষতল সাধারণত একটি বলিকে দুটি সমান অংশে ভাগ করে (চিত্র : 7.3B)।

আচ্ছাদন তল ঃ যে দুটি তলের সীমার মধ্যে বলি দ্বারা সৃষ্ট তরঙ্গ ওঠানামা করে, তাদের বলে আচ্ছাদন তল (চিত্র : 7.3C)।



চিত্র 7.3 B

বিস্তার ঃ আচ্ছাদন তল দুটির মধ্যে যে ব্যবধান থাকে তার অর্ধাংশকে বলে বিস্তার (চিত্র : 7.3C)।

তরঙ্গ দৈর্ঘ্য ঃ বলি শিলাস্তরে যে তরঙ্গ তৈরি করে তার দুটি গ্রন্থিবিন্দুর মধ্যের দূরত্বকে তরঙ্গ দৈর্ঘ্য বলে (চিত্র : 7.3C)।

**আন্তর্বাহু কোণ ঃ** বলির বাহু দুটিকে প্রসারিত করলে তারা একদিকে একটি কোণ তৈরি করে। এই কোণকে আন্তর্বাহু কোণ বলা হয় (চিত্র : 7.3C)।

### 7.4 বলির জ্যামিতিক শ্রেণীবিভাগ

বলির জ্যামিতিক শ্রেণীবিভাগ জানার আগে আপনাদের সরলরেখা এবং সমতলীয় গঠনের ভঙ্গি সম্বন্ধে সম্যক জ্ঞান থাকা দরকার। একটি সরল রৈখিক গঠনের ভঙ্গি তার ট্রেন্ড ও প্লাঞ্জ দ্বারা নির্দিষ্ট করা হয়। কোন সরল রৈখিক গঠন ঐ রেখাগামী উল্লম্ব সমতলে অনুভূমিক রেখার সাথে যে কোণ (angle) তৈরি করে তাকেই ঐ সরল রেখার প্লাঞ্জ (plunge) বলা হয়। আর ঐ সরল রৈখিক গঠন উল্লম্ব সমতল বরাবর উঠে এসে অনুভূমিক সমতলে যে দিক্ নির্দেশ করে, তাকে ঐ সরল রৈখিক গঠনের ট্রেন্ড (trend) বলে। সমতলীয় গঠনের ভঙ্গি তার নতি (dip) ও নতির দিক নির্দেশ দ্বারা নির্দিষ্ট করা হয়। অথবা নতি ও তার স্ট্রাইক (strike) বা আয়াম দ্বারা নির্দিষ্ট হয়। কোন সমতলীয় গঠনের নতি বলতে আমরা ঐ সমতলীয় গঠন ও আনুভূমিক সমতলের মধ্যবর্তী কোণকে (angle) বুঝি। আর সমতলীয় গঠনের উপর অবস্থিত আনুভূমিক রেখার দিক নির্দেশকে গঠনটির স্ট্রাইক বা আয়াম বলে। স্ট্রাইকের সঙ্গে 90° কোণ করে সমতলটির নতির দিকে যে রেখা পাওয়া যায়, তাই হলো নতির দিক নির্দেশ (চিত্র : 7.4)। এবার বলির জ্যামিতিক শ্রেণীবিভাগে আসা যাক। বলির শ্রেণীবিভাগ বলির নানা গাঠনিক উপাদানের উপর ভিত্তি করে করা হয় যেমন—



চিত্র 7.4

#### 7.4.1 গাঠনিক উপাদানের ভঙ্গির ভিত্তিতে বলির শ্রেণীবিভাগ

- উধর্বভঙ্গ বা অ্যান্টিফর্ম (Antiform) ঃ শিলাস্তর বেঁকে বলি বা ভাঁজ সৃষ্টি করে। শিলাস্তরটি যদি উপরের দিকে বাঁক নেয়, তবে তাকে ঊর্ধ্বভঙ্গ বা অ্যান্টিফর্ম বলে। অ্যান্টিফর্মের দুই বাহুর নতির দিক নির্দেশ সাধারণত বিপরীতমুখী হয় (চিত্র : 7.4.1A)। অবশ্য সবসময় তা নাও হতে পারে।
- অধোভঙ্গ বা সিন্ফর্ম (Synform) ঃ যে বলির বাঁক নীচের দিকে তাকে সিন্ফর্ম বলে। এদের দুই বাহু সাধারণত উভয় উভয়ের দিকে নতির দিক নির্দেশ করে (চিত্র : 7.4.1B)। তবে অবশ্য বিশেষ ক্ষেত্রে তা নাও হতে পারে।
- নিউট্রাল (Neutral) বলি : যে বলি উপরে বা নিচে বাঁক না নিয়ে পাশের দিকে বাঁক নেয় তাকে নিউট্রাল বলি বলা হয় (চিত্র : 7.4.1C)।
- আনুভূমিক বলি ঃ যে বলির অক্ষতল ও গ্রন্থিরেখা আনুভূমিক হয়, তাকে আনুভূমিক বলি বলে (চিত্র : 7.4.1D)।
- উল্লম্ব বলি ঃ যে বলির গ্রন্থিরেখা ও অক্ষতল উল্লম্ব থাকে তাকে উল্লম্ব বলি বলা হয় (চিত্র : 7.4.1E)।
- তম্বনত বলি ঃ যে বলির গ্রন্থিরেখা অবনত অর্থাৎ অনুভূমিক নয়, তাকে অবনত বলি বলে (চিত্র : 7.4.1F)।
- 7. **অনাবনত বলি ঃ** যে বলির গ্রন্থিরেখা আনুভূমিক তাকে অনাবনত বলি বলা হয় (চিত্র : 7.4.1G)।
- 8. শায়িত বলি ঃ যে বলির অক্ষতলের নতি  $0^{\circ}$  থেকে  $10^{\circ}$  ডিগ্রির মধ্যে তাকে শায়িত বলি বলে।
- প্রণত বলি ঃ যে বলির অক্ষতলের উপরে গ্রন্থিরেখা ও অক্ষতলের স্ট্রাইকের মধ্যে কোণ 80° থেকে 100° ডিগ্রির মধ্যে তাকে প্রণত বলি বলা হয়় (চিত্র : 7.4.1H)।
- 10. খাড়াই বলি ঃ যে বলির অক্ষতল উল্লম্ব থাকে তাকে খাড়াই বলি বলে।
- 11. আনত বলি ঃ যে বলির অক্ষতলের নতি 10° থেকে 80°-র মধ্যে তাকে আনত বলি বলা হয়।
- 12. বিপর্যস্ত বলি ঃ যে বলির দুটি বাহুই একই দিকে নত তাকে বিপর্যস্ত বলি বলে। এই ধরনের বলিতে অ্যান্টিফর্ম ও সিন্ফর্মের বাহুদুটি সংজ্ঞা অনুসারে নতির দিক নির্দেশ করে না (চিত্র : 7.4.11)।











### 7.4.2 বলির পৃষ্ঠদেশের আকৃতির বর্ণনার ভিত্তিতে শ্রেণীবভাগ

- স্তম্ভাকার বলি : যে বলির পৃষ্ঠদেশের যেকোন জায়গায় গ্রন্থিরেখার সমান্তরালে সরলরেখা টানা যায় তাকে স্তম্ভাকার বলি বলে।
- 2. **অস্তন্তাকার বলি :** যে বলির পৃষ্ঠদেশে সব জায়গায় গ্রন্থিরেখার সমান্তরালে সরলরেখা টানা যায় না তাকে অস্তন্তকার বলি বলা হয়।
- শঙ্কু আকার বলি : যে অস্তন্তাকার বলির আকার একটি শঙ্কু বা cone -এর অংশের মতো তাকে শঙ্কু আকার বলি বলে।
- 4. **প্রতিসম বলি :** প্রস্থচ্ছেদে যে বলির অক্ষতলের দুই পাশে বলির অংশের আকৃতি প্রতিসম হয় অর্থাৎ একটি অপরটির প্রতিবিম্ব সদৃশ, তাকে প্রতিসম বলি বলা হয় (চিত্র : 7.4.2A)।
- 5. **অপ্রতিসম বলি :** প্রস্থচ্ছেদে যে বলির অক্ষতলের দু'পাশের অংশ প্রতিসম হয় না তাকে অপ্রতিসম বলি বলে (চিত্র : 74.2B)। অপ্রতিসম বলির বাহু দুটির দৈর্ঘ্য অসমান হয়।
- তীক্ষ্ণ বলি : এ ধরনের বলির গ্রন্থি তীক্ষ্ণ হয় অর্থাৎ বলির বাহুর তুলনায় গ্রন্থিবলয় খুব ছোট হয় (চিত্র : 7.4.2C)।

প্রতিসম বলি A

অপ্রতিসম বলি B

তীক্ষ্ণ বলি C

চিত্র 7.4.2

### 7.4.3 বলির আন্তর্বাহু কোণের পরিমাণের ভিত্তিতে বলির শ্রেণিবিভাগ

বলির তরঙ্গা দৈর্ঘ্য ও বিস্তার তার আন্তর্বাহু কোণের উপর নির্ভরশীল। ঐ কোণ যত ছোট হবে তরঙ্গা দৈর্ঘ্যের তুলনায় বিস্তার তত বেশি হবে অর্থাৎ বলিটিকে সরু ও লম্বা দেখাবে। আর্ন্তবাহু কোণের পরিমাণের উপর নির্ভর করে বলিকে পাঁচ ভাগে ভাগ করা হয় (চিত্র : 7.4.3A) যথা :

আন্তর্বাহ কোণ

|    | ~                     |
|----|-----------------------|
| 1. | মৃদু বলি 180°—120°    |
| 2. | মুক্ত বলি 120°—70°    |
| 3. | বদ্ধ বলি              |
| 4. | সংকীৰ্ণ বলি 30°—0°    |
| 5. | সমভঙ্গা বা সমনত বলি০º |



চিত্র 7.4.3A

### 7.4.3 বলিতে শিলাস্তরের বরুতা ও স্থূলতা পরিবর্তনের ভিত্তিতে শ্রেণীবিভাগ

বলির উত্তল ও অবতল এই দুটি পৃষ্ঠ থেকে। গ্রন্থিবিন্দুর উভয় পাশে আলাদাভাবে উত্তল ও অবতল পৃষ্ঠের দুটি সমনতি বিন্দু যোগ করলে যে রেখা পাওয়া যায়, তাকে সমনতি রেখা (Dip Isogon) বলে। এই সমনতি রেখার বিন্যাস বলিতে শিলাস্তরের উত্তল ও অবতলের বক্রতা ও স্থূলতার পরিবর্তনের উপর নির্ভর করে। সমনতি রেখার বিন্যাসের উপর নির্ভর করে বলিকে তিনটি শ্রেণীতে ভাগ করা হয়—

- প্রথম শ্রেণী : সমনতি রেখাগুলির বলির ক্রোড়ের দিকে (অর্থাৎ অবতলের দিকে) পরস্পরকে ছেদ করে। এই ধরনের বলিতে অবতলের বক্রতা উত্তলের বক্রতার চেয়ে বেশি হয়। এই ধরনের বলির গ্রন্থিবিন্দুতে শিলাস্তরের যা প্রকৃত স্থূলতা বা সমকোণিক স্থূলতা, সর্বত্রই সেই স্থূলতা দেখা যায় (চিত্র : 7.4.4A)।
- 2. **দ্বিতীয় শ্রেণী :** সমনতি রেখাগুলি বলি বরাবর সমান্তরাল থাকে। বলির উভয়তলের বক্রতা সমান হয়, গ্রন্থিবিন্দুতে স্থূলতা সবচেয়ে বেশি থাকে এবং সেখান থেকে দু'দিকে বলি বরাবর তা কমতে থাকে (চিত্র : 7.4.4B)।
- তৃতীয় শ্রেণী : সমনতি রেখাগুলি বলির উত্তল দিকে পরস্পর ছেদ করে। এইসব বলিতে অবতল পৃষ্ঠের বক্রতা উত্তল পৃষ্ঠের বক্রতার চেয়ে কম হয় এবং শিলাস্তরের স্থূলতা গ্রন্থিবিন্দুতে বলির বাহুর তুলনায় অনেক বেশি থাকে (চিত্র : 7.4.4C)।

B প্রথম শ্রেণীর বলি বা ভাঁজ দ্বিতীয় শ্রেণীর বলি বা ভাঁজ তৃতীয় শ্রেণীর বলি বা ভাঁজ চিত্র 7.4.4 157

### 7.5 চ্যুতির সংজ্ঞা ও গাঠনিক উপাদান

কোন ফাটল বরাবর যদি শিলাস্তরের বিস্থাপন (dislocation) ঘটে, তবে ঐ ফাটলকে আমরা চ্যুতি বলি। চ্যুতি সাধারণত একটি সমতলীয় গঠন হয় এবং যে কোন সমতলীয় গঠনের মতো তার নতি (dip), আয়াম বা স্ট্রাইক (strike) ইত্যাদি থাকে। চ্যুতির নতির পূরক কোণকে হেড বলা হয়। চ্যুতির নিচের শিলাস্তর বা পাথরের স্থুপকে অধোস্থুপ ও উপরের শিলাস্তর বা পাথরের স্থুপকে উধ্বর্স্থুপ বলে (চিত্র : 7.5A)। ভূমিপৃষ্ঠে চ্যুতির ছেদরেখাকে চ্যুতির উদ্ভেদ, ছেদরেখা বা চ্যুতিরেখা বলে। চ্যুতি সৃষ্ট হওয়ার আগে চ্যুতির তলে পরস্পরের উপর লেগে থাকা দুটি বিন্দুকে চ্যুতি সৃষ্টির পর আর এক বিন্দুতে পাওয়া যায় না। তারা একে অন্যের থেকে দূরে সরে যায়। চ্যুতির তল বরাবর ঐ দুটি বিন্দুর যোজক রেখাকে চ্যুতির প্রকৃত স্থলন বা নেট স্লিপ বলা হয়। চ্যুতিতলের স্ট্রাইকের সমান্তরালে নেট স্লিপের উপাংশকে স্ট্রাইক স্লিপ এবং নতির সমান্তরাল উপাংশকে ডিপ্ স্লিপ বলে (চিত্র : 7.5B)। চিত্রে পব নেট স্লিপ, পভ স্ট্রাইক স্লিপ ও পম ডিপ স্লিপ। চ্যুতির স্ট্রাইকের সমকোণীয় উল্লম্ব প্রস্থচ্ছেদে চ্যুতি বরাবর শিলাস্তরের যে বিস্থাপন ঘটে, তাকে নতিবিচ্ছেদ বা ডিপ স্োগেন বলা হয়। আর নতি বিচ্ছেদের উল্লম্ব বরাবর উপাংশ হল থ্রো (Throw) ও আনুভূমিক উপাংশ হল হিভ্ (Heave)।



চিত্র 7.5

#### 7.5.1 চ্যুতির জ্যামিতিক শ্রেণীবিভাগ

বিভিন্ন ভিত্তির উপর নির্ভর করে চ্যুতির নানারকম শ্রেণীবিভাগ করা হয়।

(A) নেট স্লিপের ভাষ্ঠার ভিত্তিতে শ্রেণীবিভাগ : নেট স্লিপের ভাষ্ঠার ভিত্তিতে তিন রকমের চ্যুতি দেখা যায়।

 স্ট্রাইক স্থলন চ্যুতি: এই ধরনের চ্যুতিতে নেট স্লিপের ভঞ্চি চ্যুতিতলে চ্যুতিতলের স্ট্রাইকের সমান্তরাল হয়। ইহা চ্যুতি দ্বারা বিস্থাপিত শিলাস্তরের স্ট্রাইক বা নতির উপর নির্ভরশীল নয় (চিত্র : 7.5.1 Aa)।

2. নতি স্থালন চ্যুতি : এই চ্যুতিতে নেট স্লিপ চ্যুতিতলের নতির সমান্তরাল হয়। চ্যুতিতলে নেট স্লিপ চ্যুতিতলের স্ট্রাইকের সঙ্গে 90° কোণ উৎপাদন করে। এই ধরনের চ্যুতিও শিলাস্তরের স্ট্রাইক বা নতির উপর নির্ভরশীল নয় (চিত্র : 7.5.1Ab)।

3. **তির্যক স্থলন চ্যুতি :** চ্যুতিতলের উপর নেট স্লিপের সঙ্গো চ্যুতির স্ট্রাইকের কোণ 10°-র বেশি এবং 80°-এর কম হলে তাকে তির্যক স্থলন চ্যুতি নাম দেওয়া হয়। এরাও শিলাস্তরের ভঙ্গির উপর নির্ভরশীল নয় (চিত্র : 7.5.1Ac)।



চিত্র 7.5.1 A

(B) চ্যুতিতলের স্ট্রাইকের সাথে শিলাস্তরের স্ট্রাইকের কোণের ভিত্তিতে শ্রেণীবিভাগ :

চ্যুতিতলের স্ট্রাইক ও শিলাস্তরের স্ট্রাইকের কোণের ভিত্তিতে তিন রকমের চ্যুতি দেখা যায়—

- (1) স্ট্রাইক চ্যুতি
- (2) ডিপ চ্যুতি
- (3) তির্যক চ্যুতি

স্ট্রাইক চ্যুতিতে চ্যুতিতলের স্ট্রাইক ও শিলাস্তরের স্ট্রাইক সমান্তরাল থাকে। ডিপ বা নতি চ্যুতিতে দুই স্ট্রাইকের মধ্যে কোণ হয় 90° এবং তির্যক চ্যুতিতে দুই স্ট্রাইকের মধ্যে কোণ 10° থেকে 80°-র মধ্যে থাকে (চিত্র : 7.5.1B : a, b, c)।



চিত্র 7.5.1 B

(C) চ্যুতিতলের সাথে বলির অক্ষতলের কৌণিক সম্পর্কের ভিত্তিতে শ্রেণীবিভাগ:

এই শ্রেণীতেও তিন রকমের চ্যুতি দেখা যায়—

- 1. অনুদৈর্ঘ্য চ্যুতি
- 2. প্রস্থ চ্যুতি
- 3. তির্যক চ্যুতি

প্রথম ধরনের চ্যুতিতে চ্যুতিতল ও বলির অক্ষতল সমান্তরাল থাকে। দ্বিতীয় শ্রেণীতে দুই তলের মধ্যে কোণ হয় 90° এবং তৃতীয় শ্রেণীতে দুই তলের মধ্যে কোণ হয় 45°-র কাছাকাছি। তৃতীয় শ্রেণীর চ্যুতি সাধারণত যুগ্ম হয় (চিত্র : 7.5.1C : a, b, c)।



চিত্র 7.5.1 C

(D) চ্যুতি সমষ্টির জ্যামিতিক বিন্যাসের ভিত্তিতে শ্রেণীবিভাগ :

এই ভিত্তিতে তিন ধরনের চ্যুতি পরিলক্ষিত হয়—

- (1) সমান্তরাল চ্যুতি
- (2) অরীয় চ্যুতি
- (3) আঁনেশেলোঁ চ্যুতি

চিত্রে এই তিন রকমের চ্যুতিই দেখানো হল (চিত্র : 7.5.1D : a, b, c)।



চিত্র 7.5.1 D

(E) অধোস্থূপ ও ঊর্ধ্বস্থূপের পারস্পরিক অবস্থানের ভিত্তিতে শ্রেণীবিভাগ :

এই ভিত্তিতে দু'ধরনের চ্যুতি দেখা যায়—

- 1. নর্ম্যাল চ্যুতি বা গ্র্যাভিটি চ্যুতি
- 2. রিভার্স চ্যুতি বা থ্রাস্ট চ্যুতি

প্রথম ধরনের চ্যুতিতে অধোস্তুপের পাথর ঊর্ধ্বস্তুপের পাথরের তুলনায় চ্যুতি বরাবর উপরে থাকে আর দ্বিতীয় শ্রেণীতে এর ঠিক বিপরীত অবস্থা লক্ষ্য করা যায় অর্থাৎ অধোস্তুপের পাথর নিচে থাকে (চিত্র : 7.5.1E : a, b)।



চিত্র 7.5.1 E

#### 7.5.2 শিলাস্তরে চ্যুতির অবস্থিতির লক্ষণ

শিলাস্তরে চ্যুতির উপস্থিতি নানাভাবে প্রমাণ করা যায়। এদের মধ্যে উল্লেখযোগ্য লক্ষণগুলি হল—

- (A) শিলাস্তরে বিচ্ছেদ : চ্যুতির ফলে শিলাস্তরের মধ্যে বিচ্ছেদ দেখতে পাওয়া যায়। এই বিচ্ছেদই চ্যুতির উপস্থিতির অন্যতম প্রধান প্রমাণ। শিলাস্তরের বিচ্ছেদের প্রকাশ সবসময় চ্যুতি বরাবর একই শিলাস্তরের সরে যাবার মধ্যেই সীমাবন্ধ থাকে না। কখনও যদি দেখা যায় যে, ভূতাত্ত্বিক বিচারে কোনো পুরনো শিলাস্তুপ কোন সমতল বরাবর নবীন শিলাস্থুপের উপরে উঠে এসেছে, তবে এ সমতলকে চ্যুতি হিসাবে চিহ্নিত করা হয় (চিত্র : 7.5.2a)। অনেক সময় আবার গাঠনিক দিক দিয়ে জটিল (অর্থাৎ চ্যুতি, বলি ইত্যাদি যুক্ত) পাথর একটি সমতল বরাবর কোন সরল পাথরের উপরে থাকলে এ তলকেও চ্যুতি হিসাবে চিহ্নিত করা চলে (চিত্র : 7.5.2b)।
- (B) ভূ-বৈজ্ঞানিক মানচিত্রে কোন সমতলের দু'পাশে একই স্তর বা স্তর সমন্টির পুনরাবৃত্তি চ্যুতির অবস্থান ইঞ্চিত করে—এসব ক্ষেত্রে ঐ সমতলটিই চ্যুতি হিসাবে চিহ্নিত হয় (চিত্র : 7.5.2c)। আবার অনেক সময় কোন সমতলের দু'পাশে এক বা একাধিক স্তরের স্তর পরম্পরা বাদ পড়তে দেখা যায়। তখনও ঐ সমতলকে চ্যুতি হিসাবে চিহ্নিত করতে হয়। (চিত্র : 7.5.2d)।
- (C) কোন সমতল বা সমতলীয় অঞ্চল বরাবর মাইলোনাইট্ নামক পাথরের উপস্থিতিও অনেক সময় চ্যুতির অবস্থান ইঞ্চিত করে। মাইলোনাইট্ আর কিছুই নয়, এক ধরনের ভাঙা পাথর যার মধ্যে শিলার ভাঙ্গা টুকরোগুলো প্রলম্বিত হয় এবং সমান্তরালভাবে অবস্থিত হয়ে শিলা সম্ভেদের সৃষ্টি করে।
- (D) কোন সমতল বা সমতলীয় অঞ্চল বরাবর ব্রেকসিয়া নামক পাথরের উপস্থিতিও চ্যুতির অবস্থান ইঞ্চিত করে। চ্যুতির ফলে চ্যুতি বরাবর পাথর টুকরো টুকরো হয়ে যায়। সেই টুকরোগুলি পরে চাপে ও তাপে পাথরে পরিবর্তিত হয়। এই পাথরকেই ব্রেকসিয়া বলে। (চিত্র : 7.5.2e)।
- (E) পাথরের মধ্যে কোন সমতল বরাবর যদি সমান্তরাল মসৃণ আঁচড় কাটা দেখা যায়, তবে তা চ্যুতির অবস্থানের ইঞ্চিতবাহী। এই আঁচড় চ্যুতির অধোস্তুপ ও ঊর্ধ্বস্তুপের ঘর্ষণের ফলে সৃষ্ট হয় (চিত্র : 7.5.2f)।
- (F) ভূ-বৈজ্ঞানিক মানচিত্রে কোনো সমতল বা সমতলীয় অঞ্চল বরাবর বিশেষ কোনো মণিকের উপস্থিতিও চ্যুতির অবস্থান ইঞ্চিত করতে পারে। পৃথিবীর বিভিন্ন দেশে প্রাক্-ক্যাম্বিয়ান যুগের পাথরে অনেক সময়ই একটি সমতল বরাবর লোহাঘটিত মণিকের উপস্থিতি থেকে চ্যুতির অবস্থান ইঞ্চািত করা হয়েছে।





مراجع (مراجع) مراجع (مراجع) چارتی

c ·

a



d



ব্রেকসিয়া

e



চিত্র 7.5.2

### 7.6 ভূমিরূপের উপর বলি ও চ্যুতির প্রভাব

পৃথিবীর উপরিতলকে দু'ভাগে ভাগ করা হয়। মহাদেশীয় ও মহাসাগরীয় উপরিতল। এই দুই উপরিতলের কোনটিই শুধু সমতল দ্বারা গঠিত নয়। দুই উপরিতলেই উচ্চ পর্বতমালা, গভীর গিরিখাত, মালভূমি উপত্যকা প্রভৃতি দেখতে পাওয়া যায়। পর্বত, মালভূমি, উপত্যকা, খাদ প্রভৃতি ভূমিরুপের উপর অনেক ক্ষেত্রেই বলি ও চ্যুতির প্রভাব দেখা যায়।

মহাসাগরীয় ভূমিরূপের কথা প্লেট টেক্টনিক্স তত্ত্বে বিশদভাবে ব্যাখ্যা করা হয়েছে। এখানে আমরা শুধু মহাদেশীয় ভূমিরূপের উপর বলি ও চ্যুতির প্রভাবের কথা আলোচনা করব। এই প্রভাবের কথা বলতে গেলে প্রথমেই গ্রস্থ উপত্যকার কথা বলতে হয়। গ্রস্ত উপত্যকায় ভূত্বকের একটি অংশ, যার দৈর্ঘ্য প্রস্থের তুলনায় অনেক অনেক গুণ বেশি, অবনমিত হয়। গ্র অবনমিত অংশের দু'পাশে থাকে দুটি চ্যুতি (চিত্র : 7.6A)। এরাই ভূত্বককে অবনমিত করে। হরস্ট নামক আর একধরনের ভূমিরূপে দেখা যায় যেখানে চ্যুতি দু'টির মধ্যবর্তী ভূত্বক উথিত হয় এবং গ্রস্ত উপত্যকার নধ্যবর্তী অংশ হরস্টের আকার নেয় (চিত্র : 7.6B)। গ্রস্ত উপত্যকার অনেক উদাহরণ দেওয়া যায়। জার্মানীর রাইন গ্রস্ত উপত্যকা একটি বলিষ্ঠ উদাহরণ। ভারতেও অনেক গ্রস্থ উপত্যকা দেখতে পাওয়া যায়। নর্মদা ও গোদাবরী নদী যে খাতে প্রবাহিত, তারা গ্রস্ত উপত্যকা দ্বারা সৃন্ট।

ভূমিরুপের উপর বলিরও যথেষ্ট প্রভাব আছে। কোথাও পরপর অ্যান্টিফর্ম ও সিন্ফর্ম থাকলে অ্যান্টিফর্ম অঞ্চলে পাথরের ক্ষয় বেশি হয় এবং এই ক্ষয়িত পাথর সিনফর্ম অঞ্চলে জমতে থাকে। অ্যান্টিফর্ম অঞ্চলে ক্ষয় কেন বেশি হয় তার নানা শিলা বলবিদ্যাগত কারণ আছে। যাই হোক, এইভাবে ক্ষয় ও জমা বহু কোটি বছর ধরে চলতে থাকলে সিন্ফর্ম অঞ্চলটি উঁচু পাহাড়ের আকার নেয় এবং অ্যান্টিফর্ম অঞ্চলটি সমতল বা খাদের চেহারা নেয় (চিত্র : 7.6C)। এই ধরনের পাহাড় সমতল বা খাদ পৃথিবীর অনেক স্থানেই দেখতে পাওয়া যায়। ভারতে এর একটি বলিষ্ঠ উদাহরণ পাওয়া যায় বিহার ও ওড়িশার লৌহ আকর সমৃদ্ধ অঞ্চলে। এখানে অবস্থিত বোনাই রেঞ্জ যা প্রধানত লৌহ আকর সংস্থানের জন্য বিখ্যাত, গাঠনিক দিকের বিচারে তা একটি সিন্ফর্ম। রাজস্থানের আরাবল্লি পর্বতমালাও একটি

166





В



#### 7.7 সারাংশ

বলি ও চ্যুতি পাথর ও শিলাস্তরের দু'টি গাঠনিক উপাদান। বলি বলতে আমরা শিলাস্তরের ভাঁজ বুঝি। বলি অ্যান্টিফর্ম, সিন্ফর্ম, নিউট্রাল, আনুভূমিক, উল্লম্ব ইত্যাদি নানা ধরনের হয়। চ্যুতি বলতে আমরা কোন ফাটল বরাবর শিলাস্তরের স্থানাস্তরণ বুঝি। চ্যুতিরও নানা শ্রেণীবিভাগ আছে। একদিকে যেমন আছে স্ট্রাইক, ডিপ ও তির্যক চ্যুতি—অন্যদিকে তেমনই আছে স্ট্রাইক স্লিপ, ডিপ স্লিপ ও তির্যক স্লিপ চ্যুতি। নর্ম্যাল ও রিভার্স চ্যুতিও চ্যুতির একটি বিশেষ শ্রেণী গঠন করে। পাথর ও শিলাস্তরের চ্যুতির অবস্থান জানার নানা লক্ষণ আছে। কিন্তু কোন তল বরাবর পাথরের বিস্থাপনই চ্যুতি চেনার সবচেয়ে বড় লক্ষণ।

বলি ও চ্যুতি ভূমিরূপকেও নানাভাবে প্রভাবিত করে। গ্রস্ত উপত্যকা, হরস্ট প্রভৃতি ভূমিরূপ চ্যুতির প্রভাবে সৃষ্টি হয়। পাথরে বলির প্রভাবে কোথাও কোথাও পাহাড় জন্ম নেয়। গ্রস্ত উপত্যকা, হরস্ট ও বলি জনিত পাহাড়—সবেরই উদাহরণ ভারতে দেখতে পাওয়া যায়।

#### 7.8 প্রশ্নাবলী

- (A) বলি কি? চিত্র-সহ বলির বিভিন্ন গাঠনিক উপাদানের বর্ণনা দিন।
- (B) গাঠনিক উপাদানের ভঞ্চিার ভিত্তিতে বলির শ্রেণীবিভাগ করুন এবং চিত্র-সহ তা ব্যাখ্যা করুন।
- (c) বলি পৃষ্ঠের আকৃতির ভিত্তিতে বলির শ্রেণীবিভাগ করুন এবং চিত্র-সহ তা ব্যাখ্যা করুন।
- (D) চ্যুতি কি? চিত্র-সহ চ্যুতির গাঠনিক উপাদানের বর্ণনা দিন।
- (E) নেট স্লিপের ভঞ্জির ভিত্তিতে চ্যুতির শ্রেণীবিভাগ করুন এবং চিত্র-সহ বিভিন্ন শ্রেণীর বর্ণনা দিন।
- (F) চ্যুতিতলের স্ট্রাইক ও শিলাস্তরের স্ট্রাইকের কৌণিক সম্পর্কের ভিত্তিতে চ্যুতির শ্রেণীবিভাগ করুন ও চিত্র-সহ ব্যাখ্য করুন।
- (G) চ্যুতি সমন্টির জ্যামিতিক বিন্যাসের ভিত্তিতে চ্যুতির শ্রেণীবিভাগ করুন। চিত্রের মাধ্যমে সমান্তরাল ও অরীয় চ্যুতি দেখান।
- (H) গ্রস্ত উপত্যকা ও হরস্ট কি? তাদের উৎপত্তিতে চ্যুতির প্রভাব কতখানি? ভারতের দুটি গ্রস্ত উপত্যকার উদাহরণ দিন।
- (I) ভূমিরূপের উপর বলির প্রভাব কি? চিত্র-সহ ব্যাখ্যা করুন।

#### 7.9 উত্তর সংকেত

- (A) উত্তরের জন্য 7.3 অংশ দেখুন।
- (B) উত্তরের জন্য 7.4.1 অংশ দেখুন।

- (C) উত্তরের জন্য 7.4.2 অংশ দেখুন।
- (D) উত্তরের জন্য 7.5. অংশ দেখুন।
- (E) উত্তরের জন্য 7.5.1A অংশ দেখুন।
- (F) উত্তরের জন্য 7.5.1B অংশ দেখুন।
- (G) উত্তরের জন্য 7.5.1D অংশ দেখুন।
- (H) উত্তরের জন্য 7.6 অংশ দেখুন।
- (I) উত্তরের জন্য 7.6 অংশ দেখুন।

### 7.10 প্রতিশব্দ

| Amplitude-বিস্তার            | Interlim  |
|------------------------------|-----------|
| Bed-শিলাস্তর                 | Antiform  |
| Bore hole-ভূছিদ্র            | Synform   |
| Cross section-প্রস্থচ্ছেদ    | Neutral-  |
| Dip-নতি                      | Horizon   |
| Graben-গ্ৰস্ত উপত্যকা        | Vertical- |
| Horst-হরস্ট                  | Plunging  |
| Heave-হিভ্                   | Recumb    |
| Plunge-엚얧                    | Upright-  |
| Strike-স্ট্রাইক বা আয়াম     | Inclined  |
| Trend-ট্ৰেন্ড                | Reclined  |
| Throw-থ্রো                   | Overtun   |
| Wavelength-তরঙ্গদৈর্ঘ্য      | Cylindri  |
| Fold-বলি                     | Non cyl   |
| Hinge-গ্রন্থিবিন্দু          | Conical-  |
| Hinge line-গ্রন্থিরেখা       | Gentle-3  |
| Hinge zone-গ্রন্থিঅঞ্চল/বলয় | Open-মুর  |
| Limb-বাহু                    | Close-বদ  |
| Axial plane-অক্ষতল           | Tight-সং  |
| Enveloping plane-আচ্ছাদন তল  | Isoclinia |

b angle-আন্তর্বাহু কোণ n-অ্যান্টিফর্ম বা ঊর্ধ্বভঞ্চা n-সিন্ফর্ম বা অধোভঙ্গা -নিউট্রাল ital-আনুভূমিক -উল্লম্ব g-অবনত ent-শায়িত -খাড়াই -আনত d-প্রণত ed-বিপর্যস্ত cal-স্তন্তাকার indrical-অস্তম্ভাকার -শঙ্জু আকার যুদু \$ 创 কীৰ্ণ া-সমভজা

| Symmetric-প্রতিসম          | Longitudinal-অনুদৈর্ঘ্য                  |
|----------------------------|------------------------------------------|
| Asymmetric-অপ্রতিসম        | Transverse-অনুপ্রস্থ                     |
| Chevron-তীক্ষ              | Conjugate-তির্যক                         |
| Fault-চ্যুতি               | Parallel-সমান্তরাল                       |
| Strike slip-স্ট্রাইক স্থলন | Radial-অরীয়                             |
| Dip slip-নতি স্থলন         | Enchelon-আঁনেশেলোঁ                       |
| Oblique slip-তির্যক স্থলন  | Normal or Gravity-নর্ম্যাল বা গ্র্যাভিটি |
| Oblique-তির্যক             | Reverse or Thrust-রিভার্স বা থ্রাস্ট     |

## 7.11 নির্বাচক সহায়ক পুস্তক

- (ক) সুবীর কুমার ঘোষ; গঠন সম্পর্কীয় ভূবিদ্যা, পশ্চিমবঙ্গা রাজ্য পুস্তক পর্ষদ, 1975
- (치) Billings, M.P. Structural Geology, Prentice Hall of India Pvt. Ltd. 1986.

### NOTES

### NOTES