মানুষের জ্ঞান ও ভাবকে বইয়ের মধ্যে সঞ্চিত করিবার যে একটা প্রচুর সুবিধা আছে, সে কথা কেহই অস্বীকার করিতে পারে না। কিন্তু সেই সুবিধার দ্বারা মনের স্বাভাবিক শক্তিকে একেবারে আচ্ছন্ন করিয়া ফেলিলে বুদ্ধিকে বাবু করিয়া তোলা হয়। — রবীন্দ্রনাথ ঠাকুর

ভারতের একটা mission আছে, একটা গৌরবময় ভবিষ্যৎ আছে, সেই ভবিষ্যৎ ভারতের উত্তরাধিকারী আমরাই। নৃতন ভারতের মুক্তির ইতিহাস আমরাই রচনা করছি এবং করব। এই বিশ্বাস আছে বলেই আমরা সব দুঃখ কন্তু সহ্য করতে পারি, অন্ধকারময় বর্তমানকে অগ্রাহ্য করতে পারি, বাস্তবের নিষ্ঠুর সত্যগুলি আদর্শের কঠিন আঘাতে ধূলিসাৎ করতে পারি।

— সুভাষচন্দ্র বসু

Any system of education which ignores Indian conditions, requirements, history and sociology is too unscientific to commend itself to any rational support.

-Subhas Chandra Bose

Price : Rs. 225.00

(NSOU -র ছাত্রছাত্রীদের কাছে বিক্রয়ের জন্য নয়)

Published by : Netaji Subhas Open University, DD-26, Sector-1, Salt Lake City, Kolkata-700 064 and Printed at : Royal Hlaftone Co., 4, Sarkar Bye Lane, Kolkata-700 007

5

NETAJI SUBHAS

OPEN UNIVERSITY

Π

Ζ

()

Block

1.1 \rightarrow

ELECTIVE MATHEMATICS HONOURS

EMT-07

Mathematical Analysis (I)

Analysis

Mathematical Analysis

Block : 1&2

NETAJI SUBHAS OPEN UNIVERSITY

প্রাক্কথন

নেতাজি সুভাষ মুক্ত বিশ্ববিদ্যালয়ের স্নাতক শ্রেণির জন্য যে পাঠ্যক্রম প্রবর্তিত হয়েছে, তার লক্ষণীয় বৈশিষ্ট্য হল প্রতিটি শিক্ষার্থীকৈ তাঁর পছন্দমতো কোনো বিষয়ে সাম্মানিক (honours) ন্তরে শিক্ষা গ্রহণের সুযোগ করে দেওয়া। এক্ষেত্রে ব্যক্তিগতভাবে তাঁদের গ্রহণ ক্ষমতা আগে থেকেই অনুমান করে না নিয়ে নিয়ত মূল্যায়নের মধ্য দিয়ে সেটা স্থির করাই যুক্তিযুক্ত। সেই অনুযায়ী একাধিক বিষয়ে পাঠ-উপকরণ রচিত হয়েছে ও হচ্ছে—যার মূল কাঠামো স্থিরীকৃত হয়েছে একটি সুচিন্তিত পাঠ্যক্রমের ভিত্তিতে। কেন্দ্র ও রাজ্যের অগ্রগণ্য বিশ্ববিদ্যালয়সমূহের পাঠ্যক্রম অনুসরণ করে তার আদর্শ উপকরণগুলির সমন্বয়ে রচিত হয়েছে এই পাঠ্যক্রম। সেইসঙ্গো যুক্ত হয়েছে অধ্যতব্য বিষয়ে নতুন তথ্য, মনন ও বিশ্লেষণের সমাবেশ।

দূর-সঞ্জারী শিক্ষাদানের স্বীকৃত পম্থতি অনুসরণ করেই এইসব পাঠ-উপকরণ লেখার কাজ চলছে। বিভিন্ন বিষয়ের অভিজ্ঞ পণ্ডিতমণ্ডলীর সাহায্য এ কাজে অপরিহার্য এবং যাঁদের নিরলস পরিশ্রমে লেখা, সম্পাদনা তথা বিন্যাসকর্ম সুসম্পন্ন হচ্ছে তাঁরা সকলেই ধন্যবাদের পাত্র। আসলে, এঁরা সকলেই অলক্ষ্যে থেকে দুর-সঞ্জারী শিক্ষাদানের কার্যক্রমে অংশ নিচ্ছেন ; যখনই কোনো শিক্ষার্থী এই পাঠ্যবস্তুনিচয়ের সাহায্য নেবেন, তখনই তিনি কার্যত একাধিক শিক্ষকমণ্ডলীর পরোক্ষ অধ্যাপনার তাবৎ সুবিধা পেয়ে যাচ্ছেন।

এইসব পাঠ উপকরণের চর্চা ও অনুশীলনে যতটা মনোনিবেশ করবেন কোনো শিক্ষার্থী, বিষয়ের গভীরে যাওয়া তাঁর পক্ষে ততই সহজ্ব হবে। বিষয়বস্তু যাতে নিজের চেষ্টায় অধিগত হয় পাঠ-উপকরণের ভাষা ও উপস্থাপনা তার উপযোগী করার দিকে সর্বস্তরে নজর রাখা হয়েছে। এর পর যেখানে যতটুকু অস্পষ্টতা দেখা দেবে, বিশ্ববিদ্যালয়ের বিভিন্ন পাঠ্যকেন্দ্রে নিযুক্ত শিক্ষা-সহায়কগণের পরামর্শে তার নিরসন অবশ্যই হতে পারবে। তার ওপর প্রতি পর্যায়ের শেষে প্রদন্ত অনুশীলনী ও অতিরিক্ত জ্ঞান অর্জনের জন্য গ্রন্থ-নির্দেশ শিক্ষার্থীরে গ্রহণক্ষমতা ও চিন্তাশীলতা বৃদ্ধির সহায়ক হবে।

এই অভিনব আয়োজনের বেশ কিছু প্রয়াসই এখনও পরীক্ষামূলক—অনেক ক্ষেত্রে একেবারে প্রথম পদক্ষেপ। স্বভাবতই ব্রুটি-বিচ্যুতি কিছু কিছু থাকতে পারে, যা অবশ্যই সংশোধন ও পরিমার্জনার অপেক্ষা রাখে। সাধারণভাবে আশা করা যায়, ব্যাপকতর ব্যবহারের মধ্য দিয়ে পাঠ-উপকরণগুলি সর্বত্র সমাদৃত হবে।

> অধ্যাপক (ড.) শুভ শঙ্কর সরকার উপাচার্য

দশম পুনর্মুদ্রণ ঃ আগস্ট, 2019

বিশ্ববিদ্যালয় মঞ্জুরি কমিশনের দুরশিক্ষা ব্যুরোর বিধি অনুযায়ী মুদ্রিত। Printed in accordance with the regulations of the Distance Education Bureau of the University Grants Commission.

পরিচিতি

সাম্মানিক স্তর

সম্পাদনা

বিষয় ঃ গণিতবিদ্যা

পাঠকন ঃ পর্যায় ঃ EMT : 07 : 01 & 02

রচনা

পৰ্যায় 1

একক 1–6	প্র. অমৃতাভ গুপ্ত, ড. জয়ন্রী সরকার	প্র. অমৃতাভ গুপ্ত
পর্যায় 2		
একক 7–11	ড. উমেশচন্দ্র পান	ড. কনক কাস্তি দাশ
একক 12–13	ড. উজ্জ্বল কুমার মুখার্জী	ড. কনক কাস্তি দাশ

প্রজ্ঞাপন

এই পাঠ সংকলনের সমুদয় স্বত্ব নেতাজি সুভাষ মুক্ত বিশ্ববিদ্যালয়ের দ্বারা সংরক্ষিত। বিশ্ববিদ্যালয় কর্তৃপক্ষের লিখিত অনুমতি ছাড়া এর কোন অংশের পুনর্মুদ্রণ বা কোনভাবে উঙ্গৃতি সম্পূর্ণ নিষিধ।

> মোহন কুমার চট্টোপাধ্যায় নিব্ন্থক

নেতাজি সুভাষ মুক্ত বিশ্ববিদ্যালয়

EMT - 07 (স্নাতক পাঠক্রম)

পৰ্যায়

1

গাণিতিক বিশ্লেষণ বিদ্যা

একক	1	বাস্তব সংখ্যা		7-	-22
একক	2	ক্রম I		23-	-39
একক	3	বীজগাণিতিক	প্রেক্ষাপট	40-	-46
একক	4	বিন্দুসেট		47-	-59
একক	5	ক্রম II		60-	-69
একক	6	শ্ৰেণি I		70-	-82
(6a এবং	6b)	শ্রেণি II		83-	-92

পৰ্যায়

2

গাণিতিক বিশ্লেষণ বিদ্যা

একক	7	বম্ব অন্তরালে সন্তত অপেক্ষকের ধর্মাবলী	95–125
একক	8	একাম্বয়ী, ক্রমবর্ধমান, ক্রমক্ষীয়মান সীমিত ভেদযুক্ত অপেক্ষকসমূহ	126-155
একক	9	বিপরীত অপেক্ষক (অস্তিত্বের শর্ত) ত্রিকোণমিতির বিপরীত	156-196
		অপেক্ষক সমূহ ; e ^x , log _e x, ও a ^x	
একক	10	অপেক্ষকের অসীমশ্রেণি ওঁ ঘাতশ্রেণির অভিসারিতা	197-222
একক	11	সুষম অভিসারিতা	223-272
একক	12	বহুচল অপেক্ষকের লিমিট, সন্তুতি ও আংশিক অবকল	
		সংক্রান্ত উপপাদ্য	273-292
একক	13	অন্তর্নিহিত অপেক্ষক, জ্যাকবীয় ইত্যাদি	293-318

একক—1 🗖 বাস্তব সংখ্যা

গঠন

প্রস্তাবনা

- 1.1
- 1.2 উদ্দেশ্য
- প্রয়োজনীয় প্রাথমিক ধারণা 1.3
- 1.4 বাস্তব সংখ্যার স্বতঃসিদ্ধসমূহ
- বাস্তব সংখ্যার ধর্মাবলী 1.5

- পূর্ণসংখ্যার উৎপাদকীকরণ 1.6
- মূলদ সংখ্যা 1.7
- ঘাত এবং লগারিদম 1.8
- 1.9 অমুলদ সংখ্যা
- 1.10 পরম মান
- 1.11 অন্তরাল
- অসীম চিহন্দ্রয় 1.12
- 1.13 ক্যান্টর-ডেডেকিন্ডের স্বতঃসিদ্ধ
- 1.14 সারাংশ
- সর্বশেষ প্রশ্নাবলী 1.15
- উত্তরমালা 1.16

1.1 প্রস্তাবনা

গাণিতিক বিশ্লেষণতত্ত্বের মূল নির্মাণ-উপাদান হল সংখ্যা বা বাস্তব সংখ্যা। এই বাস্তব সংখ্যার সংজ্ঞা কী? বস্তুত বাস্তব সংখ্যার কোন প্রত্যক্ষ সংজ্ঞা দেওয়া সন্থব নয়। যা করা সন্থব তা হল এই বিষয়ের মৌলিকতম উপাদান-স্বাভাবিক সংখ্যা (natural numbers) 1, 2, 3,...ইত্যোদি থেকে শুরু করা। স্বাভাবিক সংখ্যারও কোন সংজ্ঞা হয় না। পরিবর্তে স্বাভাবিক সংখ্যা সম্বন্ধে কয়েকটি স্বতঃসিদ্ধ স্বীকার করে আমাদের শুরু করতে হয়। এই স্বতঃসিদ্ধগুলি পিয়ানো স্বতঃসিদ্ধ (Peano axioms) নামে পরিচিত। এরপর যুক্তির দ্বারা স্বাভাবিক সংখ্যার ক্রমিত জোড়া হিসেবে ভগ্নাংশের সংজ্ঞা দেওয়া যায় যার থেকে সহজেই মূলদ সংখ্যায় পৌঁছানো যায়। তারপর নতুন সংখ্যা শূন্য 0-এর প্রত্যেক মূলদ সংখ্যা x-এর প্রাতসঙ্গী নতুন সংখ্যা ঋণাত্মক মূলদ সংখ্যা –x সংজ্ঞায়িত করা যায়। আগেকার মূলদ সংখ্যা এবং এই নতুন সংখ্যাগুলি অর্থাৎ ০ এবং ঋণাত্মক মূলদ সংখ্যা সব মিলিয়ে আমরা পাই মূলদ সংখ্যাসমষ্টি। স্বাভাবিক সংখ্যার থেকে মূলদ সংখ্যার নির্মাণ সহজ বীজগাণিতিক পদ্ধতির দ্বারাই করা হয়। কিন্তু এর পরের ধাপ, অর্থাৎ মূলদ সংখ্যা থেকে বাস্তব সংখ্যার নির্মাণ কাজ অপেক্ষাকৃত জটিল যাতে সীমায়ন পদ্ধতি (limiting process) বা সমতুল অন্য কোন পদ্ধতি যেমন ডেডেকিন্ড-অবচ্ছেদ (Dedekind section) প্রয়োগ করতে হয়।

পিয়ানো স্বতঃসিদ্ধ দ্বারা বর্ণিত স্বাভাবিক সংখ্যা থেকে বাস্তব সংখ্যা এই পরিক্রমা দীর্ঘ এবং দুরহ। এতে অনেক শ্রম ও সময় লাগে। যেহেতু বিশ্লেষণতত্ত্বের প্রধান উপজীব্য অপেক্ষকতত্ত্ব। সেই লক্ষ্যে তাড়াতাড়ি উপনীত হওয়ায় আগ্রহে অধুনা বাস্তব সংখ্যাকেই মৌলিক বস্তু বলে ধরে নিয়ে তাদের প্রধান ধর্মগুলিকে স্বতঃসিদ্ধ হিসেবে মেনে নিঁই যার থেকে বাস্তব সংখ্যার অন্যান্য সব ধর্ম সহজেই প্রমাণ করা যায়। আমরা এখানে এই দ্বিতীয় সহজ পথই গ্রহণ করব।

1.2 উদ্দেশ্য

এই এককটি পাঠ করলে আপনারা জানতে পারবেন

- বাস্তব সংখ্যার স্বতঃসিদ্ধসমূহ
- বাস্তব সংখ্যার ধর্মাবলী
- পূর্ণসংখ্যার উৎপাদকীকরণ উপপাদ্য
- মূলদ সংখ্যার সংজ্ঞা ও ধর্ম
- ঘাত ও লগারিদম্-এর জন্য স্বতঃসিদ্ধ ও তাদের ধর্ম
- পরম মানের সংজ্ঞা ও ধর্ম
- অন্তরালের সংজ্ঞা
- অসীম চিহৃদ্বয় ±∞-র ধারণা ও প্রয়োগ
- ক্যান্টর-ডেডেকিন্ডের স্বতঃসিদ্ধ ও তার ব্যবহার

1.3 প্রয়োজনীয় প্রাথমিক ধারণা

বান্তব সংখ্যার আলোচনায় প্রয়োজন এমন কিছু সেটতত্ত্বের ভাষা ও চিহ্নের কথা এই পরিচ্ছেদে বলা হবে। সংজ্ঞা 1.3.1 : প্রদন্ত ধর্ম বা নিয়ম মেনে চলে এমন সব বস্তুর সমষ্টিকে সেট (set) বা বর্গ (class) বা পরিবার (family) বলা হয়। বস্তুগুলিকে সেটের উপাদান (element) বা সদস্য (member) বলা হয়। যদি বস্তু x সেট S-এর উপাদান হয়, তাহলে আমরা বলি x, S-এ আছে এবং লিখি $x \in S$ যদি k, S-এর উপাদান না হয়, আমরা লিখি $x \notin S$.

একটি সেট নির্দেশিত হবে { } এই বন্ধনীর মধ্যে তার সব কটি উপাদানের নাম বা চিহ্নু লেখার দ্বারা, যদি অবশ্য তা সন্তব হয়। যদি x সেট S-এর একটি সাধারণ উপাদান হয়, তাহলে আমরা লিখি S = {x}।

সংজ্ঞা 1.2.3 : একটি সেটকে শূন্য বা রিক্ত (empty) বলা হবে যদি তার কোন উপাদানই না থাকে এবং তা চিহ্নিত হবে Ø দ্বারা।

সংজ্ঞা 1.3.3 : ধরুন *A*, *B* দুটি সেট। যদি *A*-র প্রত্যেকটি উপাদান *B*-তে থাকে, তাহলে আমরা বলি *A B*-র উপসেট (subset) অথবা *A*, *B*-তে বিধৃত অথবা *B*, *A*-কে ধারণ করে এবং লিখি *A* ⊆ *B* বা *B* ⊇ *A*.

মনে করুন $S=\{x\}$ । S-এর সব উপাদান x-এর সেট, এমন যে x একটি প্রদন্ত শর্ত C মানে, নির্দেশিত হবে এই চিহ্ন দিয়ে

 $\{x \in S \mid x \text{ mod } C \text{ nice }\}$ বা $\{x \mid x \text{ mod } C \text{ nice }\}$ যা S-এর একটি উপসেট।

সংজ্ঞা 1.3.4 : দুটি সেট $A \otimes B$ -কে সমান বলা হবে যদি $A \subseteq B$ এবং $B \subseteq A$ এবং লেখা হবে A=B. সংজ্ঞা 1.3.5 : সেট A সেট B-এর প্রকৃত উপসেট (proper subset) বলা হয় যখন $A \subseteq B$ কিন্তু $A \neq B$ এবং লেখা হয় ACB

1.4 বাস্তব সংখ্যার স্বতঃসিদ্ধসমূহ

সংজ্ঞা 1.4.1 : সব বাস্তব সংখ্যার সেটকে *R* চিহ্নু দ্বারা নির্দেশিত হবে। এই আলোচনায় *x*, *y*, *z*,...যে-কোন বাস্তব সংখ্যা নির্দেশ করবে।

যোগের স্বতঃসিদ্ধ :

যে-কোন বাস্তব সংখ্যার ক্রমিত জোড়ার প্রতিষঙ্গী একটি অনন্য বাস্তব সংখ্যা আছে যাকে x + ়v দ্বারা চিহ্নিত করা হয় এবং x ও y-এর যোগফল বলা হয় (যোগফল নির্ণয়ের পদ্ধতিকে যোগ করা বলে) যার জন্য নিম্নলিখিত স্বতঃসিদ্ধান্তগুলি খাটে :

স্বতঃসিদ্ধ 1 : (যোগের বিনিময় নিয়ম) x + y = y + x

স্বতঃসিদ্ধ 2 : (যোগের সংযোগ নিয়ম) (x + y) + z = x + (y + z) এবং সেহেতু প্রত্যেক পক্ষকে লেখা যায় x + y + z

স্বতঃসিদ্ধ 3 : (শূন্যর অস্তিত্ব) একটি অনন্য বাস্তব সংখ্যা আছে যাকে শূন্য বলা হবে এবং 0 দ্বারা চিহ্নিত হবে যার ধর্ম হল যে-কোন x-এর জন্য x + 0 = x

স্বতঃসিদ্ধ 4 : (বাস্তব ঋণাত্মক সংখ্যার অস্তিত্ব) যে-কোন বাস্তব সংখ্যা x-এর প্রতিষঙ্গী একটি অনন্য বাস্তব সংখ্যা আছে যাকে x-এর ঋণাত্মক সংখ্যা বলা হয় এবং –x দ্বারা চিহ্নিত হয় যার জন্য x + (–x) = 0

সংজ্ঞা 1.4.2 : x ও v-এ অন্তরের চিহ্ন হবে x – v এবং সংজ্ঞা x – y = x + (–v)। অন্তর নির্ণয় করার পদ্ধতিকে বিয়োগ করা বলে।

গুণের স্বতঃসিদ্ধ :

বাস্তব সংখ্যার যে-কোন ক্রমিত জোড়া (x, y)-এর প্রতিষঙ্গী একটি অনন্য বাস্তব সংখ্যা আছে যার চিহ্ন হল x × y বা x,y বা xy এবং যাকে x ও y-এর গু**ণফল** বলা হয় (গুণফল নির্ণায় করার পদ্ধতিকে গুণ করা বলে) যা নিম্নলিখিত স্বতঃসিদ্ধগুলি মেনে চলে :

স্বতঃসিদ্ধ 5 : (গুণের বিনিময় নিয়ম) xv = vx

স্বতঃসিদ্ধ 6 : (গুণের সংযোগ নিয়ম) (xv)z = x(vz), সেহেতু প্রত্যেক পক্ষকে লেখা যায় xvz

স্বতঃসিদ্ধ 7 : (একের অস্তিত্ব) শূন্য থেকে ভিন্ন একটি অনন্য বাস্তব সংখ্যা আছে যাকে এক বলা হবে এবং 1 দিয়ে চিহ্নিত হবে এবং যার ধর্ম হল যে-কোন x-এর জন্য x1 = x

স্বতঃসিদ্ধ 8 : (বান্তব সংখ্যার বিপরীতের অন্তিত্ব) যে-কোন অশূন্য *x*-এর জন্যে একটি অনন্য বান্তব সংখ্যা আছে যাকে *x-*এর বিপরীত বলা হয় এবং চিহ্নিত হয় 1/x দ্বারা যার জন্যে *x*(1/x) = 1

সংজ্ঞা 1.4.3 : $x \otimes y \neq 0$ এই দুই বাস্তব সংখ্যার ভাগফলের চিহ্ন হবে x/y এবং সংজ্ঞা x/y = x(1/y). ভাগফল নির্ণয়ের পদ্ধতিকে ভাগ করা বলা হয়।

স্বতঃসিদ্ধ 9 : (বন্টন নিয়ম) x(y + z) = xy + xz

ক্রমিকতার স্বতঃসিদ্ধ :

x y-এর চেয়ে ছোট এই উক্তি সাংকেতিক চিহ্নে লেখা হবে x < y

স্বতঃসিদ্ধ 10 : যে-কোন দু'টি বাস্তব সংখ্যা x, y-এর জন্যে x < y, y < x, x = y এই তিনটি উক্তির মধ্যে একটি এবং একমাত্র একটি সত্যি। (আমরা বলি যে বাস্তব সংখ্যার সেট ক্রমিত (ordered)

স্বতঃসিদ্ধ 11 : (ক্রমিকতার সংক্রমণ নিয়ম) যদি x < y এবং y < z হয় তাহলে x < z

সংজ্ঞা 1.4.4 : x, y-এর চেয়ে বড়, চিহ্নে x < y, যদি y < x হয়।

 $x \leq y$ মানে $x \leq y$ অথবা x = y

 $x \ge y$ মানে $x \ge y$ অথবা x = y

সংজ্ঞা 1.4.5 : একটি বাস্তব সংখ্যা x-কে ধনাত্মক বলা হয় যদি x > 0 এবং ঋণাত্মক বলা হয় যদি x < 0

স্বতঃসিদ্ধ 12: (যোগের একান্বয়তা (monotony) নিয়ম) যদি x < v হয়, তাহলে x + z < v + z

স্বতঃসিদ্ধ 13 : (গুণের একান্বয়তা নিয়ম) যদি x < y হয় এবং z > 0 তাহলে xz < yz

ধনাত্মক পূর্ণসংখ্যা :

বাস্তব সংখ্যার সেট *R-*এর একটি উপসেট *N* আছে যার উপাদানগুলিকে ধনাত্মক পূর্ণসংখ্যা বা অখণ্ড সংখ্যা বা **স্বাভাবিক সংখ্যা** বলা হবে যা নিচের দুটি স্বতঃসিদ্ধ দ্বারা শাসিত।

স্বতঃসিদ্ধ 14 : (i) 1 ∈ N, (ii) যদি n ∈ N, তাহলে n + 1 ∈ N

স্বতঃসিদ্ধ 15 : (আরোহ নীতি : Induction Principle) ধরুন $M \le N$ এমন যে (i) $1 \in M$ এবং (ii) n ∈ M হলে n + l ∈ M তাহলে M = N

সংজ্ঞা 1.4.6 আমরা লিখব 1 + I = 2 (দুই), 2 + I = 3 (তিন) ইত্যাদি এবং N = {(I, 2, 3,...)}

ধনাত্মক পূর্ণসংখ্যার ঋণাত্মককে ঋণাত্মক পূর্ণসংখ্যা বলা হবে। শুধু পূর্ণসংখ্যা বলতে আমরা বুঝব ধনাত্মক পূর্ণসংখ্যা বা ঋণাত্মক পূর্ণসংখ্যা বা শূন্য।

লঘিষ্ঠ ঊধ্ববন্ধন স্বতঃসিদ্ধ :

সংজ্ঞা 1.4.7 : বাস্তব সংখ্যার একটি সেট *S*-কে উ**পরে বদ্ধ (bounded above)** বলা হয় যদি এমন একটি স্থির বাস্তব সংখ্যা *a* থাকে যে *S-*এর প্রত্যেক উপাদান $x \leq a$, এবং সেক্ষেত্রে আমরা বলি *a*, *S-*এর একটি **উর্ম্ববন্ধন (upper bound)**।

একটি বাস্তব সংখ্যা *b*-কে *S*-এর **লমিষ্ঠ ঊর্ধ্ববন্ধন (least upper bound)** বলা হয় যদি *b*, *S*-এর একটি ঊর্ধ্ববন্ধন হয় এবং *b*-এর চেয়ে ছোট যে-কোন বাস্তব সংখ্যা *S*-এর ঊর্ধ্ববন্ধন নয়, অর্থাৎ (i) *S*-এর প্রত্যেক উপাদান $x \le a$ এবং (ii) ε ইচ্ছানুরূপ ছোট প্রদন্ত ধনাত্মক বাস্তব সংখ্যা হলে, একটি উপাদান $x' \in S$ আছে যার জন্য $x' \ge b - \in |S$ সেটের লমিষ্ঠ ঊর্ধ্ববন্ধনের চিহ্ন হবে lub *S* (least upper bound of *S*) অথবা sup. *S* (supremum of *S*)

স্বতঃসিদ্ধ 16 : (লঘিষ্ঠ ঊর্ধ্ববন্ধনের অস্তিত্ব) বাস্তব সংখ্যার যে-কোন উপরে বদ্ধ অশূন্য সেটের লঘিষ্ঠ ঊর্ধ্ববন্ধন আছে।

আগের স্বতঃসিদ্ধগুলি আপনাদের পরিচিত, কিন্তু এই স্বতঃসিদ্ধটি একেবারেই নতুন। বস্তুত এই স্বতঃসিদ্ধ দ্বারাই আমরা বাস্তব সংখ্যার গভীর প্রকৃতি বিশ্লেষণ করতে পারব।

1.5 বাস্তব সংখ্যার ধর্মাবলী

এবার আমরা উপরোক্ত স্বতঃসিদ্ধগুলির ফলশ্রুতি হিসেবে বাস্তব সংখ্যার প্রধান ধর্মগুলি প্রমাণ করব।

উপপাদ্য 1.5.1 : (i) – (–x) = x, (ii) – (x + y) = –x - y, (iii) যদি x + y = x + z হয়, তাহলে y = z, (iv) যদি x + y = z = z, (iv) যদি x = z - y এবং তার ক্রমে বিপরীত, (v) যদি x + y < y + z হয়, তাহলে x < z, (vi) যদি x < y এবং z < w হয়, তাহলে x + z < y + w, (vii) যদি x < y হয়, তাহলে x - y > 0 এবং তার ক্রমে বিপরীত।

প্রমাণ : (i) যেহেতু x + (-x) = 0 এবং একটি বাস্তব সংখ্যার ঋণাত্মক অনন্য – (-x) = x

(ii) x + y - (-x - y) = x + y + (-x) + (-y) = x + (-x) + y + (-y) = 0 + 0 = 0 **Solution** (x + y) = -x - y

(iii) যদি x + y = x + z, তাহলে -x + x + y = -x + x + z অথবা 0 + y = 0 + z বা y = z

(iv) যদি x + y = z, তাহলে x + y - y = z - y বা, x + 0 = z - y বা, x = z - y | যদি x = y - z হয়, তাহলে x + y= z - v + y = z + 0 = z

(v) যদি $x + y \le x + z$ হয়, তাহলে স্বতঃসিদ্ধ 12-র দ্বারা $-x + x + y \le -x + x + z$ বা, $0 + y \le 0 + z$ বা, $y \le z$ (vi) যদি $x \le y$ এবং $z \le w$ হয় তাহলে $x + z \le y + z \le y + w$

(vii) যদি x < y হয়, তাহলে x - x - y < y - x - y বা, 0 - y < y - y - x = 0 - x বা, -y < -x বা, -x > -y

(viii) যদি x > y হয়, তাহলে x - y < y - y বা, x - y > 0

যদি $x-y \ge 0$ হয়, তাহলে $x-y+y \ge y$ বা, $x+0 \ge y$ বা, $x \ge y$

উপপাদ্য 1.5.2: (i) যদি $x \neq y$ হয়, 1/(1/x) = x, (ii) যদি $x \neq 0, y \neq 0$ হয়, তাহলে 1/xy = (1/x) (1/y), (iii) যদি $x \neq 0$ এবং xy = xz হয়, তাহলে y = z, (iv) যদি xy = z এবং $y \neq 0$ হয়, তাহলে x = z/y এবং তার ক্রমে বিপরীত, (v) যদি x > 0 এবং xy < xz হয়, তাহলে y < z (vi) যদি 0 < x < y এবং 0 < z < w হয়, তাহলে xz < yw, (vii) যদি 0 < x < y এবং 0 < z < w হয়, তাহলে xz < yw, (vii) যদি 0 < x < y হয়, তাহলে 1/x > 1/y, (viii) যদি x > y হয়, তাহলে x/y > 1 এবং তার ক্রমে বিপরীত।

প্রমাণ : উপপাদ্য 1.5.1-এর অনুরূপ।

নিচের ফলাফল বন্টন নিয়মের থেকে পাই।

উপপাদ্য 1.5.3 : (i) 0x = 0, (ii) (-x)y = -xv, (iii) যদি x ≠ 0 ও v = 0, তাহলে xv ≠ 0

প্রমাণ : (i) 0x = (0+0)x = 0x + 0x, তাই 0x = 0

(ii) $xy + (-x)y = \{x + (-x)\}y = 0y = 0, \forall \xi (-x)y = -xy$

(iii) মনে করুন $x \neq 0, y \neq 0$ এবং সম্ভব হলে xy = 0 তাহলে

1 = x(1/x)y(1/y) = (1/x)(1/y)xy = (1/x)(1/y)0 = 0 যা অসম্ভব। অতএব সিদ্ধান্ত $xy \neq 0$

উপপাদ্য 1.5.4 : যদি দু'টি বাস্তব সংখ্যা x. y এমন হয় যে x < y তাহলে একটি বাস্তব সংখ্যা z আছে যার জন্যে x < z < y (আমরা বলি যে বাস্তব সংখ্যার সেট **ঘন**)।

প্রমাণ : ধরুন $z = \frac{1}{2}(x+y) | \Box$

এরপর আমরা ধনাত্মক পূর্ণসংখ্যা বা স্বাভাবিক সংখ্যার ধর্ম নিয়ে আলোচনা করব।

উপপাদ্য 1.5.5 : (i) N-এর প্রত্যেক উপাদান $n \ge 1$, (ii) যদি $n \in N$ এবং $n \ne 1$, তাহলে $n \ge 2$

প্রমাণ : (i) ধরুন $M = \{n \in N \mid n \ge 1\}$ । এখন $M \le N$ এমন যে $1 \in M$ এবং $n \in M$ হলে সংজ্ঞানুযায়ী $n \ge 1$, সেহেতু $n + 1 \ge 1$ অর্থাৎ $n + 1 \in M$ । স্বতঃসিদ্ধ 15 দ্বারা M = N অর্থাৎ যদি $n \in N$ হয়, $n \in M$ এবং তাই n > 1.

(ii) ধরুন $M = \{n \in N \mid n = 1$ অথবা $n \geq 2$ এবং (i)-এর মত যুক্তি দিন।

আরোহ নীতির নিচের দু'টি রূপ উপপাদ্য প্রমাণে প্রায়ই কাজে লাগে।

উপপাদ্য 1.5.6 : (আরোহ নীতি : প্রথম রূপ) মনে করা যাক P_n একটি উক্তি যা হয় সত্যি না হয় মিথ্যে এবং যা একটি ধনাত্মক পূর্ণসংখ্যা n-এর উপর নির্ভরশীল যেখানে $n \ge m$. একটি স্থির ধনাত্মক পূর্ণসংখ্যা ৷ যদি (i) P_m সত্যি হয় এবং (ii) P_n সত্যি হলে P_{n+1} -ও সত্যি, তাহলে সব n-এর জন্যে P_n সত্যি যেখানে $n \ge m$.

প্রমাণ : ধরুন $M = \{n \in N \mid P_{n+m-1}$ সত্যি $\}$. $M \subseteq N$ এবং যেহেতু P_m সত্যি $1 \in M$ । যদি $n \in M, P_{n+m-1}$ সত্যি এবং তাই (ii)-এর দ্বারা P_{n+m} সত্যি অর্থাৎ $n + 1 \in M$ । স্বতঃসিদ্ধ 15 দ্বারা M = N, অর্থাৎ যদি $n \in N$ হয়, $n \in M$ অর্থাৎ P_{n+m-1} সত্যি বা P_n সত্যি যখন $n \ge m$.

উপপাদ্য 1.5.7 : (আরোহ নীতি : দ্বিতীয় রূপ) মনে করা যাক P_n একটি উক্তি যা হয় সত্যি না হয় মিথ্যে এবং যা একটি ধনাত্মক পূর্ণসংখ্যা n-এর উপর নির্ভরশীল যেখানে $n \ge m$; একটি স্থির ধনাত্মক পূর্ণসংখ্যা যদি (i) P_m সত্যি হয় এবং P_{n+1} সত্যি হয় যখন P_K সব K-এর জন্যে সত্যি যেখানে $K \le n$. তাহলে P_n সত্যি এমন সব n-এর জন্যে যে $n \ge m$.

প্রমাণ : উপপাদ্য 1.5.6-এর অনুরূপ।

উপপাদ্য 1.5.8 : ধরা যাক $m, n \in N$ তাহলে (i) $m + n \in N$, (ii) $mn \in N$ (iii) $m - n \in N$ যদি $m \ge n + 1$, (iv) m - n একটি পুর্ণসংখ্যা, এবং (v) যদি $m \ge n$ হয়, তাহলে $m \ge n + 1$.

প্রমাণ : (i) ধরা যাক *n* স্থির। *m*-এর উপর আরোহ নীতি প্রয়োগ করে প্রমাণ করা যাবে। ফলটি *m* = 1-এর জন্য সত্যি কেননা *I* + *n* ∈ *N*. যদি কোন বিশেষ *m*-এর জন্য ফলটি সত্যি হয় অর্থাৎ *m* + *n* ∈ *N*, তাহলে *m* + *n* + **l** = *m* + 1 + *n* ∈ *N* অর্থাৎ ফলটি *m* + 1 এর জন্য সত্যি। তাই উপপাদ্য 1.5.6 দ্বারা *m*-এর সব মানের জন্য ফলটি সত্য।

(ii) এবং (iii) -এর প্রমাণ (i)-এর অনুরূপ।

(iv) ধরুন n স্থির। n = 1 হলে 1 - n = 0 এবং $n \ge 2$ হলে (iii)-এর n - 1 দ্বারা একটি ধনাত্মক পূর্ণসংখ্যা। তাই 1 - n = -(n - 1) একটি ঋণাত্মক পূর্ণসংখ্যা। তাই প্রত্যেক স্থির n-এর জন্য 1 - n একটি পূর্ণসংখ্যা। মনে করুন m - n একটি পূর্ণসংখ্যা। যদি m - n একটি ধনাত্মক পূর্ণসংখ্যা। হয়, m - n + 1 একটি ধনাত্মক পূর্ণসংখ্যা। যদি m - n একটি ধনাত্মক পূর্ণসংখ্যা হয়, m - n + 1 একটি ধনাত্মক পূর্ণসংখ্যা। যদি m - n একটি ধনাত্মক পূর্ণসংখ্যা। তাই প্রত্যেক স্থির n - n + 1 একটি ধনাত্মক পূর্ণসংখ্যা। বদি m - n একটি ধনাত্মক পূর্ণসংখ্যা হয়, m - n + 1 একটি ধনাত্মক পূর্ণসংখ্যা। যদি m - n = 0 হয় তাহলে m - n + 1 = 1। যদি m - n একটি ঋণাত্মক পূর্ণসংখ্যা হয়, n - m একটি ধনাত্মক পূর্ণসংখ্যা এবং তাই n - m = 1 তা এবং $n - m \ge 2$ । n - m = 1 হলে n - m - 1 = 0 এবং $n - m \ge 2$

হলে n – m – 1 একটি ধনাত্মক পূর্ণসংখ্যা বা m – n + 1 একটি ঋণাত্মক পূর্ণসংখ্যা। সুতরাং যদি m – n একটি পূর্ণসংখ্যা হয়, তাহলে m – n + 1-ও একটি পূর্ণসংখ্যা। আরোহ নীতির দ্বারা সব m-এর জন্য m – n একটি পূর্ণসংখ্যা।

(v) যদি m > n হয়, m - n > 0 এবং (iv)-এর দ্বারা m < n একটি পূর্ণসংখ্যা যার ফলে $m - n \in N$. অতএব $m - n \ge 1$ বা $m \ge n + 1$.

উপপাদ্য 1.5.9 : (সুক্রমিকতার ধর্ম : Well-ordering property) যদি $M \subseteq N$ এবং M অশৃন্য সেট হয়, তাহলে M একটি লঘিষ্ঠ বা ক্ষুদ্রতম উপাদান আছে।

প্রমাণ : যদি M = N হয়, তাহলে উপপাদ্য 1.5.5 (i) দ্বারা 1, M-এর লঘিষ্ঠ উপাদান। ধরা যাক $M \subseteq N$, $M \neq N, M \neq \phi$.

লিখুন *P* = {*P* ∈ *N*, *M*-এর প্রত্যেক উপাদান *n* ≥ *P*}

 $1 \in P$ কেননা M অশুন্য এবং $n \in M$ হলে $n \in N$ যার ফলে $N \ge 1$ । যদি $p \in P$ হলে, $p + 1 \in P$, তাহলে P = N যার ফল হবে $M = \Phi$, কেননা অন্যথায় M-এর একটি উপাদান p_1 আছে এবং তাই $p_1 + 1 \notin P = N$ যা অসত্য। অতএব P-এর এমন একটি উপাদান p_0 আছে যার জন্য $p_0 + 1 \notin P$. অর্থাৎ M-এর প্রত্যেক উপাদান $n \ge p_0$ কিন্তু M-এর একটি উপাদান n_0 আছে যার জন্যে $n_0 < p_0 + 1 \notin P$. অর্থাৎ M-এর প্রত্যেক উপাদান $n \ge p_0$ কিন্তু M-এর একটি উপাদান n_0 আছে যার জন্যে $n_0 < p_0 + 1$ । সুতরাং $n_0 \ge p_0$ এবং $p_0 + 1 \ge n_0 + 1$ (উপপাদ্য 1.5.8 (v)) অথবা $p_0 \ge n_0$ এবং তাই $p_0 = n_0$ এবং $n_0 \in M$ এমন যে M-এর প্রত্যেক উপাদান $n \ge n_0$. অর্থাৎ n_0 : M-এর লঘিষ্ঠ উপাদান ।

এবার আমরা লঘিষ্ঠ ঊধর্ববন্ধন স্বতঃসিদ্ধের কিছু পরিণাম দেখব।

উপপাদ্য 1.5.10 : ধনাত্মক পূর্ণসংখ্যার সেট N উপরে অনাবদ্ধ।

প্রমাণ : সন্তব হলে, মনে করুন N উধের্ব বদ্ধ এবং $a = \sup M$ যা স্বতঃসিদ্ধ 16 এর দরুণ অস্তিত্বমান। যে-কোন এমন ε নিন যে $0 < \varepsilon < 1$ । তাহলে N-এর এমন একটি উপাদান m আছে যে $m > a - \varepsilon$ । এখন $m + 1 \in N$ কিন্তু $m + 1 > a + 1 - \varepsilon > a$ যা a-র সংজ্ঞা বিরোধী। অতএব উপপাদ্যটি সত্য। \Box

উপপাদ্য 1.5.11 : (আর্কিমিডীয় ধর্ম : Archimedean property) যদি x, y যে-কোন ধনাত্মক বাস্তব সংখ্যা হয়, তাহলে এমন একটি ধনাত্মক পূর্ণসংখ্যা n আছে যে nx > y.

প্রমাণ : যেহেতু N উপরে অনাবদ্ধ, বাস্তব সংখ্যা y/x, N-উধ্ববন্ধন হয় যা উপপাদ্যটি প্রমাণ করে। 🗌 উপপাদ্য 1.5.12 : যদি x একটি ধনাত্মক বাস্তব সংখ্যা হয়, তাহলে এমন একটি অনন্য পূর্ণসংখ্যা $p \ge 0$ আছে যে $p \le x , অর্থাৎ p, x-এর সমান বা তার চেয়ে ছোট বৃহত্তম পূর্ণসংখ্যা।$

প্রমাণ : উপপাদ্য 1.5.11 থেকে পাই যে এমন একটি ধনাত্মক পূর্ণসংখ্যা k আছে যে k > x যার ফলে $M = \{n \in N \mid n > x\}$ সেটটি অপূন্য কেননা $k \in M$, এবং উপপাদ্য 1.5.9 দ্বারা M-এর একটি লঘিষ্ঠ উপাদান p + 1 আছে। তাই $p + 1 \ge 1$ বা $p \ge 0$ এবং $p \le x -এর অনন্যতা সহজেই প্রমাণ করা যায়।$ সংজ্ঞা 1.5.1 : যে-কোন ধনাত্মক বাস্তব সংখ্যা x-এর জন্যে x-এর সমান বা তার চেয়ে ছোট বৃহত্য পূর্ণসংখ্যাকেx-এর পূর্ণাংশ (integral part) বলা হয় যা [x] দ্বারা সূচিত হবে, অর্থাৎ

 $0 \le [x] \le x \le [x] + 1$

সংজ্ঞা 1.5.2 : একটি বাস্তব সংখ্যার সেট *S*-কে **নিচে বদ্ধ** বলা হয় যদি এমন একটি স্থির সংখ্যা *a* থাকে যে *S-*এর প্রত্যেক উপাদান *x* ≥ *a*, এবং তখন *a*-কে *S-*এর একটি **নিম্নবন্ধন** বলা হয়। একটি বাস্তব সংখ্যা b, S- এর বৃহত্তম বা গরিষ্ঠ নিম্নবন্ধন বলা হয় যদি b S-এর একটি নিম্নবন্ধন হয় কিন্তু b-এর চেয়ে কোন সংখ্যা S-এর নিম্নবন্ধন নয়, অর্থাৎ (i) S-এর প্রত্যেক উপাদান x≥b এবং (ii) ɛ যে-কোন প্রদন্তধনাত্মক বাস্তব সংখ্যা হলে একটি উপাদান x' ∈ S' আছে যার জন্য x' < b + ɛ। S-এর গরিষ্ঠ নিম্নবন্ধনের চিহ্ন হবে glb S (greatest lower bound of S) অথবা inf S (infimum of S)।

উপপাদ্য 1.5.13 : বাস্তব সংখ্যার নিচে বদ্ধ যে-কোন অশূন্য সেটের গরিষ্ঠ নিম্নবন্ধন আছে।

প্রমাণ : মনে করুন $S \subseteq R, \, S
eq \phi$ । একটি সেট S'-এর সংজ্ঞা হল

$$S' = \{x \in R \ 1 - x \in S\}$$

 $x \in S'$ হলে – $x \in S$ এবং যেহেতু S নিচে বন্ধ – $x \ge a$, একটি স্থির বাস্তব সংখ্যা অথবা $x \le -a$ যা বোঝায় যে S' উপরে বন্ধ। ধরুন $b = \sup S'$ যা স্বতঃসিদ্ধ। b-র দ্বারা অস্তিত্বমান। এবার সহজেই প্রমাণ হয় যে – $b = \inf S$. সংজ্ঞা **1.5.3 :** যে-কোন বাস্তব সংখ্যা $x_1, x_2...x_p$ -এর জন্য আমরা লিখব

$$\mathbf{x}_1 + \mathbf{x}_2 + \ldots + \mathbf{x}_n = \sum_{i=1}^n \mathbf{x}_1, \mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_n = \prod_{i=1}^n \mathbf{x}_1$$

1.6 পূর্ণসংখ্যার উৎপাদকীকরণ

সংজ্ঞা 1.6.1 : ধরা যাক n একটি পূর্ণসংখ্যা। একটি পূর্ণসংখ্যা p n-এর উৎপাদক (factor) বা ভাজক (divisor) বলা হয় যদি এমন একটি পূর্ণসংখ্যা m থাকে যে n = mp। এক্ষেব্রে আমরা আরো বলি যে p.n-কে ভাগ করে অথবা n, p-এর গুণিতক।

একটি পূর্ণসংখ্যা *n*-কে মৌলিক (prime) বলা হয় যদি *n* > 1 হয় এবং *n*-এর কেবল দুটি ধনাত্মক পূর্ণসাংখ্যিক উৎপাদক আছে যা হল 1 ও *n*।দুটি পূর্ণসংখ্যা m ও *n*-কে আপেক্ষিকভাবে মৌলিক বলা হবে যদি *m* ও *n*-এর সাধারণ গুণিতক একমান্দ্র 1 হয়।

এবার আমরা পূর্ণসংখ্যার উৎপাদকীকরণ বিষয়ে একটি মৌলিক উপপাদ্য প্রমাণ ছাড়া বিবৃত করব যা বিশ্লেষণতত্ত্বের মূল ধারায় আসে না কিন্তু দু'-একটি অঙ্ক কষায় কাজে লাগতে পারে।

উপপাদ্য 1.6.1 : (অনন্য উৎপাদকীকরণ উপপাদ্য Unique factorisation theorem) যে-কোন ধনাত্মক পূর্ণসংখ্যা n > 1 মৌলিক উৎপাদকের গুণফল হিসেবে অনন্যভাবে রূপায়িত হতে পারে, যদি উৎপাদকগুলির ক্রম অগ্রাহ্য করা হয়।

1.7 মূলদ সংখ্যা

সংজ্ঞা 1.7.1 : একটি বাস্তব সংখ্যা x-কে মূলদ সংখ্যা (rational number) বলা হয় যদি লেখা যায় x = p/q যেখানে p, q পূর্ণসংখ্যা এবং q ≠ 0.

উপপাদ্য 1.7.1 : (i) যদি x একটি মূলদ সংখ্যা হয়, তাহলে আমরা লিখতে পারি x = p/q যেখানে p. q পূর্ণসংখ্যা এবং q > 0.

(ii) যদি x একটি মূলদ সংখ্যা হয়, তাহলে এমন পূর্ণসংখ্যা p_0 , q_0 আছে যে $q_0 > 0$ ও $x = p_0/q_0$, এবং যদি x = p/qযেখানে p, q পূর্ণসংখ্যা ও q > 0 তাহলে $q_0 \le q$.

15

মন্তব্য: 0º, 0-* (k ধনাত্মক পূর্ণসংখ্যা) সংজ্ঞাহীন।

1.8 ঘাত ও লগারিদম্

যদি $x \neq 0$ হয়, আমরা সংজ্ঞা দিই $x^{o} = 1$, $x^{-*} = 1/x^{*}$ যেখানে k একটি ধনাত্মক পূর্ণসংখ্যা।

সংজ্ঞা 1.8.1 : যদি n একটি ধনাত্মক পূর্ণসংখ্যা এবং x যে-কোন বাস্তব সংখ্যা হয়, তাহলে x-এর n-তম ঘাতের চিহ্ন হবে x" এবং সংজ্ঞা হবে x" = x, x.....x (n-সংখ্যক x)

যদি x < 0, y > 0 হয়, প্রমাণের দ্বিতীয় অংশের দ্বারা এমন একটি মূলদ সংখ্যা r আছে যে 0 < r < y এবং তাই $x \le r \le y$.

যদি x < 0 ও $y \le 0$ হয় তাহলে – y < -x ও – $v \ge 0$ এবং প্রমাণের প্রথম এবং দ্বিতীয় অংশের দ্বারা, এমন একটি মূলদ সংখ্যা – r আছে যে – y < – r < – x বা x < r < y.

সংখ্যা r বিদ্যমান যে $\frac{1}{2}$,v < r < y এবং তাই $x = 0 < \frac{1}{2}$,v < r < y অথবা x < r < y |

যদি x = 0 হয়, তাহলে v > 0, $\frac{1}{2} v > 0$ এবং $\frac{1}{2} v < y$ । সুতরাং প্রমাণের প্রথম অংশের দ্বারা এমন একটি মূলদ

यणि $r = \frac{p}{q}, x < r \le x + \frac{1}{q} < y$ वx < r < y.

 $\frac{p}{q} - \frac{1}{q} \le x < \frac{p}{q}, y - x > q$

অথবা

[qx] = p - 1, অতথ্ৰ $0 \le p - 1 \le qx \le p$

 $x \leq r \leq y$. প্রমাণ : ধরা যাক x>0। উপপাদ্য 1.5.11 দ্বারা নিন একটি ধনাত্মক পূর্ণসংখ্যা q>1/(v-x), এবং লিখুন

বাস্তব সংখ্যার একটি বিশেষ গুরুত্বপূর্ণ ধর্ম নিচের উপপাদ্যে পাওয়া যাবে। উপপাদ্য 1.7.3 : যদি x, y বাস্তব সংখ্যা হয় এবং x < y, তাহলে এমন একটি মূলদ সংখ্যা r আছে যে

প্রমাণ : (i) তুচ্ছ (ii) ধরুন $z = \frac{1}{2}(x+y)$ (iii)

(সব মূলদ সংখ্যায় সেট ঘন।)

উপপাদ্য 1.7.2 : (i) যদি x, y মূলদ সংখ্যা হয়, তাহলে x ± y, xy ও x/y (y ≠ 0) সবই মূলদ সংখ্যা হবে। (ii) যদি x, y দুটি মূলত সংখ্যা হয় এবং x < y হয়, তাহলে এমন একটি মূলদ সংখ্যা z আছে যে x < z < y.

(ii) ধরা যাক $M=\{q\in N\,|\,x=p/q$ যেখানে $p,\,q$ পূর্ণসংখ্যা ও $q>0\}$ যেহেতু x একটি মূলদ সংখ্যা (i)-এর দ্বারা M অশূন্য এবং উপপাদ্য 1.5.9-এর দ্বারা M-এর লঘিষ্ঠ উপাদান q_0 বর্তমান। তাহলে p_0 বের করা যেতে পারে যে $x=p_0/q_0$ \Box

প্রমাণ : (i) তুচ্ছ।

(i) $x^{p}x^{q} = x^{p+q}$

 $(\mathbf{i}) \quad x^p x^p = (xv)^p$ (iii) $(x^p)^q = x^{pq}$

প্রমাণ : তুচ্ছ। 🗖

প্রমাণ : তুচ্ছ। 🗆

পূর্ণসংখ্যা, তাহলে (1 + x)ⁿ≥ 1 + nx.

উপপাদ্য 1.8.1 : ধরা যাক q, p পূর্ণসংখ্যা এবং x, v যে-কোনো বাস্তব সংখ্যা। তাহলে

উপপাদ্য 1.8.2 : যদি 0 < x < y হয়, তাহলে x'' < y'' যেখানে n একটি ধনাত্মক পূর্ণসংখ্যা।

উপপাদ্য 1.8.3 (বারুনুলির অসমতা : Bernouilli's inequality) : যদি x>-1 হয় এবং n একটি ধনাত্মক

উপপাদ্য 1.8.4 (দ্বিপদ উপপাদ্য : Binonial theorem) : যদি x, y যে-কোন বাস্তব সংখ্যা হয় এবং n একটি

16

করে যে y' = x এর জন্য লক্ষ্ম করুন যে যদি 0 < a < b হয়,

 $\frac{b^n - a^n}{b - a} = b^{n-1} + b^{n-2}a + \dots + ba^{n-2} + a^{n-1} < nb^{n-1}$

 $h < \frac{x - y^n}{n(y+1)^{n-1}}$

অথবা b" - a" < n(b - a)b"-1

যদি $\gamma'' < x$ হয়, এমন h নির্বাচন করুন যে 0 < h < 1 এবং

(য 1 + x, S-এর একটি ঊর্ধ্ববন্ধন। যদি $u \in S$, $u^n < x$ যার ফলে $u \le 1 + x$. কেননা যদি u > 1 + x হয়, $u^n \ge (1+x)^n \ge 1 + nx \ge x$ যা অসত্য | ধরুন $y = \sup S$. এবার আমরা দেখাব যে যদি y" < x অথবা y" > x হয়, তাহলে এমন সিদ্ধান্ত পাওয়া যায় যা মিথ্যে যা প্রমাণ

S অশূন্য, কেননা যদি v = x/(1+x) হয় তাহলে 0 < v < 1 এবং $v'' \le v < x$, তাই $v \in S$ । এবার দেখাব

এরপর আসবে একটি গুরুত্বপর্ণ অস্তিত্ব উপপাদ্য। উপপাদ্য 1.8.

।বং n একটি ধনাত্মক পূর্ণসংখ্যা, তাহলে এমন

প্রমাণ : ধরা যাক $S = [u \ge 0 \mid u^n \le x].$

প্রমাণ : n-এর উপর আরোহ প্রয়োগ করুন। 🗔

যদি উপস্থিত প্রত্যেকটি পদ সংজ্ঞায়িত থাকে।

বেখানে
$$\binom{n}{0} = 1, \binom{n}{i} = \frac{n(n-1)...(n-i+1)}{i!}$$
 $(i \ge 1)$

$$(x+y)^n = \sum_{i=0}^n {n \choose i} x^{n-i} y^i$$

উপরোক্ত অসমতা প্রয়োগ করে পাই

 $(y+h)^{n} - y^{n} \le nh \ (y+h)^{n-1} \le nh \ (y+1)^{n-1} \le x - y^{n}$ অথবা $(y + h)^n \le x$ যার ফলে $y + h \in S$, যেখানে $h \ge 0$, যা মিথ্যে। যদি y'' > x হয়, ধরুন

$$k = \frac{y^n - x}{ny^{n-1}}$$

তাহলে $0 \le k \le y$ । যদি $u \in S$, $u^n \le x$ যার ফল হল $u \le y - k$, কেননা যদি $u \ge y - k$ হয়

 $y^{n} - u^{n} \le y^{n} - (y - k)^{n} \le nky^{n-1} = y^{n} - x$ অথবা u'' > x যা অসত্য। অতএব v = k, S-এর একটি ঊধ্ববন্ধন যেখানে k > 0 বা y-এর সংজ্ঞার বিরোধিতা করে।

অনন্যতা অংশটি প্রমাণ করতে হলে ধরা যাক, যদি সম্ভব হয়, $x = v^n = z^n$ যেখানে 0 < v < z। উপপাদ্য 1.8.2দ্বারা 🗸 < z" যা মিথ্যে। 🗔

সংজ্ঞা 1.8.2 : যে-কোন ধনাত্মক বাস্তব সংখ্যা x এবং ধনাত্মক পূর্ণসংখ্যা n-এর জন্য উপপাদ্য 1.8.5-এর বাস্তব সংখ্যা v-কে x-এর 1/n-তম ঘাত বা n-তম মূল বলা হয় এবং তার চিহ্ন হল $x^{1/n}$ বা $\sqrt[n]{x}$ া আমরা লিখি $\sqrt[2]{x}=\sqrt{x}$ এবং সংজ্ঞা দিঁই *খ*√₀ = 0.

ধনাত্মক

সংজ্ঞা 1.8.3 : ধরুন যে-কোন মূলদ সংখ্যা এবং r = p/q যেখানে p, q পূর্ণসংখ্যা ও q > 0। যদি x যে-কোন

$$x^r = x^{p/q} = \left(x^p\right)^{1/q}$$

এবং 0⁵ = 0 যেখানে *s* একটি ধনাত্মক মূলদ সংখ্যা।

নিন্নলিখিত নিয়মগুলি সহজেই প্রমাণ করা যায়।

উপপাদ্য 1.8.6 : মনে করুন r. s যে-কোন মূলদ সংখ্যা এবং x. y যে-কোন বাস্তব সংখ্যা। তাহলে

- $(\mathbf{i}) \quad x^n x^s = x^{r+s}$
- (ii) $x^r y^r = (xy)^r$
- (iii) $(x^r)^s = x^{rs} \square$

উপপাদ্য **1.8.7 :** (i) যদি $0 \le x \le y$ হয় এবং r একটি ধনাত্মক মূলদ সংখ্যা, তাহলে x' < y'. (ii) মনে করুন r, s এমন মূলদ সংখ্যা যে r < s। তাহলে x' < x' যদি 0 < x < 1 হয়, এবং x' < x' यদি

x > np হয়। 🗖

এবার যে-কোন বাস্তব সংখ্যা a-এর জন্যে x^a প্রবর্তন করব কয়েকটি স্বতঃসিদ্ধের মাধ্যমে।

স্বতঃসিদ্ধ 17 : যদি a, b যে-কোন বাস্তব সংখ্যা হয় এবং x, y যে-কোন ধনাত্মক বাস্তব সংখ্যা, তাহলে

- (i) $x^a x^b = x^{a+b}$
- (ii) $x^a y^b = (xy)^a$
- (iii) $(x^a)^b = x^{ab}$

```
ষতঃসিদ্ধ 18: (i) যদি 0 < x < y এবং a > 0 হয়, তাহলে x^a < y^a. (ii) যদি a < b হয়, তাহলে x^a > x^a যদি 0 < x < 1 এবং x^a < x^b যদি x > 1 হয়।

ষতঃসিদ্ধ 19: যদি a > 0 হয়, 0^a = 0

পরের স্বতঃসিদ্ধটি লগারিদমের অস্তিত্ব বিষয়ক।

ষতঃসিদ্ধ 20: যদি 0 < a \neq 1 এবং x > 0 হয়, তাহলে এমন একটি বাস্তব সংখ্যা y আছে যে a^y = x.

সংখ্যা 1.8.4 : যদি 0 < a \neq 1 এবং x > 0 হয়, তাহলে স্বতঃসিদ্ধ 20-র বাস্তব সংখ্যা y-জে x-এর a-ভিস্তিক

লগারিদম্ (logarithm of x to the base a) বলা হবে এবং \log_a x বা শুধু \log x দ্বারা চিহ্নিত হবে।

লগারিদমের ধর্মাবলম্বী বা স্বতঃসিদ্ধ 17 ও 18-এর সহজ ফলশ্রুণতি নিচের উপপাদ্যে আছে।

উপপাদ্য 1.8.8 : মনে করুন 0 < a \neq 1, 0 < b \neq 1, x > 0, y > 0

(i) \log_a 1 = 0, \log_a a = 1

(ii) \log_a x = c \log_a x, c যে-কোন বাস্তব সংখ্যা

(iv) যদি x < y হয়, তাহলে log_a x > \log_a y যেখানে 0 < a < 1 এবং \log_a x < \log_a y. যখন a > 1

(v) \log_p x = \log_p x \log_p a
```

 $(vi) \quad \log_a b = \log_b a = 1$

1.9 অমুলদ সংখ্যা

সংজ্ঞা 1.9.1 : একটি বাস্তব সংখ্যা যা মূলদ নয়, তাকে অমূলদ বলা হয়। উপপাদ্য 1.9.1 : একটি অমূলদ সংখ্যা আছে। প্রমাণ : আমরা প্রমাণ করব যে বাস্তব সংখ্যা $\sqrt{2}$ অমূলদ। মনে করুন $\sqrt{2}$ মূলদ সংখ্যা। তাহলে উপপাদ্য 1.7.1 (ii) দ্বারা এমন দুটি ধনাত্মক পূর্ণসংখ্যা p_0, q_0 আছে যে $\sqrt{2} = q_0/q_0$ এবং যদি $\sqrt{2} = p/q$ যেখানে p, q ধনাত্মক পূর্ণসংখ্যা, তাহলে $q_0 \le q$. যেহেতু $1 < \sqrt{2} < 2, q_0 < p_0 < 2q_0$ এবং $u = p_0 - q_0$ লিখলে $0 < u < q_0$ এবং আবার $v = q_0$ – u লিখলে v > 0। এখন $p_0^2 + v^2 = (q_0 + u)^2 + (q_0 - u)^2 = 2q_0^2 + 2u^2 = p_0^2 + 2u^2$

অথবা $v^2=2u^2$ বা $\sqrt{2}=v/u$ যার দরুন $q_0\leq u$ যা 0 $u< q_0$ উক্তির বিরোধী।

অন্য প্রমাণ : অনন্য উৎপাদকীকরণ উপপাদ্য ব্যবহার করে সহজেই প্রমাণ করা যায় যে $\sqrt{2}$ অমূলদ। মনে করুন $\sqrt{2}$ মূলদ; তাই $\sqrt{2} = p_0/q_0$ যেখানে p_0 , q_0 ধনাত্মক পূর্ণসংখ্যা এবং যদি $\sqrt{2} = p/q$ যেখানে p, q ধনাত্মক পূর্ণসংখ্যা, তাহলে $q_0 \leq q$ । এর মানে এই যে p_0 , q_0 -র কোন সাধারণ উৎপাদক নেই। এখন $p_0^2 = 2q_0^2$, তাই $2, p_0^2$ -এর উৎপাদক এবং তাই $2, p_0$ -র উৎপাদক যার ফলে $p_0 = 2m$ যেখানে m একটি ধনাত্মক পূর্ণসংখ্যা। তাহলে $4m^2 = 2q_0^2$ বা $q_0^2 = 2m^2$ যা দেখায় যে $2, q_0$ -র একটি উৎপাদক যা p_0, q_0 -র কোন সাধারণ উৎপাদক নেই। এখন $p_0^2 = 2q_0^2$, তাই $2, p_0^2$ -এর উৎপাদক এবং তাই $2, p_0$ -র উৎপাদক যার ফলে $p_0 = 2m$ যেখানে m একটি ধনাত্মক পূর্ণসংখ্যা। তাহলে $4m^2 = 2q_0^2$ বা $q_0^2 = 2m^2$ যা দেখায় যে $2, q_0$ -র একটি উৎপাদক যা p_0, q_0 -র কোন সাধারণ উৎপাদক নেই এই উত্তির পরিপন্থী।

উপপাদ্য 1.9.2 : যদি x,y এমন বাস্তব সংখ্যা হয় যে x < y, তাহলে একটি অমূলদ সংখ্যা lpha আছে যার জন্য $x \leq \alpha \leq y$

প্রমাণ : উপপাদ্য 1.7.3 দ্বারা এমন একটি মূলদ সংখ্যা r আছে যে x < r < v। তাহলে y - r > 0 এবং আর্কিমিডীয় ধর্মের দ্বারা এমন একটি ধনাত্মক পূর্ণসংখ্যা n আছে যে $n(y-r)>\sqrt{2}+lpha=r+\sqrt{2}/n$ লিখলে lpha অমূলদ এবং r < a < y যার ফলে $x < \alpha < y$ |

1.10 পরম মান

সংজ্ঞা 1.10.1 : একটি বাস্তব সংখ্যা x-এর পরম মান | x | দ্বারা চিহ্নিত হবে এবং তার সংজ্ঞা হবে

$$|x| = x$$
, यपि $x \ge 0$

$$=-x$$
, यपि $x < 0$

উপপাদ্য 1.10.1 : (i) $|x| \ge 0$, (ii) |-x| = |x|, (iii) |xy| = |x| |y|, (iv) |x/y| = |x| / |y| $(y \neq 0)$

প্রমাণ : সহজ। 🗔

 $x \ge -a$.

উপপাদ্য 1.10.2 : ধরা যাক $a \ge 0$ । $|x| \le a$ যদি এবং একমাত্র যদি – $a \le x \le a$.

প্রমাণ : (i) সংজ্ঞানুযায়ী

অসমতা দুটি যোগ করে পাই

উপপাদ্য 1.10.4 : $\left| \sum_{i=1}^{n} x_{i} \right| \leq \sum_{i=1}^{n} |x_{i}|$

প্রমাণ : n-এর উপর আরোহ প্রয়োগ করে।

উপপাদ্য 1.10.3 : (i) |x + y| = |x| + |y|, (ii) $|x - y| \ge ||x| - ||y||$

প্রমাণ : ধরুন $|x| \le a$ যদি $x \ge 0$ হয়, $|x| = x \le a$, এবং যদি x < 0 হয়, $|x| = -x \le a$ বা $x \ge -a$ যার

ফলে যে-কোন ক্ষেত্রে – $a \le x \le a$.

পক্ষান্তরে ধরুন – $a \le x \le a$ । যদি $x \ge 0$ হয়, $|x| = x \le a$, আর যদি x < 0 হয়, $|x| = -x \le a$ যেহেতু

(ii) $|x| = (x - y + y) \le |x - y| + |y|$ at $|x - y| \ge |x| + |y|$.

যা উপপাদ্য 1.10.2-র সাহায্যে (i) প্রমাণ করে।

 $-(|x| + |y|) \le x + y \le |x| + |y|$

আবার | x - y | = | v - x | ≥ | y | - | x | = - (| x | + | y | যা (ii) প্রমাণ করে।

 $-|x| \le x \le |x|, -|y| \le y \le |y|$

1.11 অন্তরাল

সংজ্ঞা 1.11.1 : ধরা যাক, a, b দুটি বাস্তব সংখ্যা এমন যে $a \le b$ । সব বাস্তব সংখ্যা x-এর সেট যার জন্যে $a \le x \le b$, তাকে একটি রুদ্ধ অন্তরাল (closed interval) বলা হয় এবং [a, b] দ্বারা সূচিত হয়, অর্থাৎ

$$[a, b] = \{ x \in R \mid a \le x \le b \}$$

স্পষ্টতই [a, a] এই রুদ্ধ অন্তরালে একটিমাত্র উপাদান আছে a, অর্থাৎ [a. a] = {a}

ধরা যাক a < b, মুক্ত অন্তরাল (open interval) (a, b)-র সংজ্ঞা হবে

$$(a, b) = \{x \in R \mid a \le x \le b\}$$

অর্ধমুক্ত অন্তরাল (a, b] ও [a, b) এইভাবে সংজ্ঞায়িত হয়

 $(a, b] = \{x \in R \mid a \le x \le b\}$

$$[a, b] = \{x \in R \mid a \le x \le b\}$$

উপরোক্ত সব ক্ষেত্রেই a, b-কে অন্তরালের **প্রান্তবিন্দু** বলা হয় এবং b – a সংখ্যাটিকে অন্তরালের দৈর্ঘ্য বলা হয়।

1.12 অসীম চিহুদ্বয়

সংজ্ঞা 1.12.1 : আমরা দুটি চিহ্ন ∞ বা + ∞ (অসীম বা ধনাত্মক অসীম) এবং – ∞ (ঋণাত্মক অসীম) প্রবর্তন করব যা ব্যবহার করা হবে কেবলমাত্র নিম্নলিখিত অর্থে :

যদি x একটি বাস্তব সংখ্যা হয়, তাহলে $-\infty < x < \infty$ । সব বাস্তব সংখ্যার সেট $R = (-\infty, \infty)$. যে-কোন বাস্তব সংখ্যার জন্যে

$$(a,\infty) = \{x \in R \mid x > a\}, [a,\infty) = \{x \in R \mid x \ge a\}$$
$$(-\infty, a) = \{x \in R \mid x < a\}, (-\infty, a) = \{x \in R \mid x \le a\}$$

এই অন্তরালগুলিকে অসীম অন্তরাল বলা হয়।

আমরা আরো লিখি :

যে-কোন বাস্তব সংখ্যা a-র জন্যে

 $a + \infty = \infty + a = \infty, a - \infty = -\infty + a = -\infty$

যদি a > 0 হয়,

$$a \infty = \infty a = \infty, a(-\infty) = (-\infty)a = -\infty$$
$$-a \infty = \infty(-a) = -\infty, (-a)(-\infty) = (-\infty)(-a) = \infty$$
$$\infty + \infty = \infty, -\infty - \infty = -\infty$$
$$\infty \infty = \infty, (-\infty)(-\infty) = \infty, (-\infty)\infty = \infty(-\infty) = -\infty$$

একটি বাস্তব সংখ্যার সেট S যদি উপরে অনাবদ্ধ হয়, আমরা লিখি $\sup S = \infty$; যদি S নিচে অনাবদ্ধ হয়, লিখি $\inf S' = -\infty$.

লক্ষ করুন ±∞ চিহ্ন দু'টি চিহ্ন হিসেবেই প্রবর্তিত হল, সংখ্যা হিসেবে নয়। অবশ্য এগুলিকে আদর্শ সংখ্যারূপেও সংজ্ঞায়িত করা যায়, তবে আমাদের আলোচনায় তার প্রয়োজন নেই।

1.13 ক্যান্টর-ডেডেকিন্ড স্বতঃসিদ্ধ

ক্যান্টর-ডেডেকিন্ড স্বতঃসিন্ধে (Cantor-Dedekind axiom) : ধরে নেওয়া হয় যে প্রত্যেকটি বাস্তব সংখ্যা x-এর জন্যে সরলরেখার উপরে একটি অনন্য বিন্দু *P* আছে এবং এই *P* বিন্দুটি কেবলমাত্র বাস্তব সংখ্যা x-এরই প্রতিষঙ্গী।

এই স্বতঃসিদ্ধের পরিপ্রেক্ষিতে বাস্তব সংখ্যা এবং সরলরেখার উপরিস্থ বিন্দু এই দু'টি কথা আমাদের আলোচনায় সমার্থক বলে ধরা হবে। এই পরিভাষায় বাস্তব সংখ্যার সেট R ও সরলরেখা একই বস্তু বোঝাবে।

মন্তব্য : বাস্তব সংখ্যার উপরোক্ত চিত্রকল্প কেবলমাত্র ভাষা প্রয়োগের সুবিধার্থে এবং হয়ত কিছুটা সংজ্ঞাকে সাহায্য করার জন্যে ব্যবহৃত হবে—যুক্তি হিসেবে কখনোই নয়। বস্তুত এই চিত্রকল্প যুক্তি হিসেবে প্রয়োগের কোন প্রশ্নই ওঠে না, কেননা সরলরেখা, বিন্দু ইত্যাদি আমদের সম্পূর্ণ অপরিচিত বস্তু এবং গাণিতিক বিশ্লেষণে নিষ্প্রেয়োজন।

1.14 সারাংশ

এই এককে বাস্তব সংখ্যার বিষয়ে আলোচনা করা হল। বাস্তব সংখ্যার কোন সংজ্ঞা দেওয়ার পরিবর্তে তাদের মূল ধর্মগুলিকে স্বতঃসিদ্ধ হিসেবে স্বীকার করে নেওয়া হল। এই বাস্তব সংখ্যার মধ্যে কতগুলি সংখ্যাকে পূর্ণসংখ্যা বলে চিহ্নিত করা হয় কয়েকটি স্বতঃসিদ্ধের মাধ্যমে। এরপর মূলদ সংখ্যার সংজ্ঞা দেওয়া সহজ। মূলদ নয় এমন সংখ্যা অমূলদ। প্রমাণ করা হয়েছে যে যে-কোন দুটি অসমান বাস্তব সংখ্যার মধ্যে একটি মূলদ ও একটি অমূলদ সংখ্যা আছে।

ঘাত ও লগারিদমের সাধারণ সংজ্ঞা এই পর্যায়ে দেওয়া সন্তব নয়। তাই এদের প্রবর্তন করা হয়েছে স্বতঃসিদ্ধের সাহায্যে। তারপর বিভিন্ন ধরনের অন্তরালের সংজ্ঞা এবং ≠ ∞ এই অসীম চিহ্ন দুটির ব্যবহারবিধি দেওয়া হয়েছে।

পরিশেষে ক্যান্টর-ডেডেকিন্ডের স্বতঃসিদ্ধের কথা বলা হয়েছে যার ফলে ভাষা প্রয়োগের ক্ষেত্রে জ্যামিতিক চিত্রকল্প ব্যবহার করা চলে।

1.15 সর্বশেষ প্রশ্নাবলী

- উপপাদ্য 1.8.1-এর প্রমাণ লিখুন।
- উপপাদ্য 1.8.3-এর প্রমাণ লিখুন।
- উপপাদ্য 1.8.4-এর প্রমাণ লিখুন।
- 4, 🛛 উপপাদ্য 1.8.8-এর প্রমাণ লিখুন।
- 6. যদি n একটি ধনাত্মক পূর্ণসংখ্যা হয় যা কোন ধনাত্মক পূর্ণসংখ্যার বর্গ নয়, প্রমাণ করুন \sqrt{n} অমূলদ।
- **7.** উপপাদ্য 1.10.4-এর প্রমাণ লিখুন।

1.16 উত্তরমালা

2. *n* = 1-এর জন্যে অসমতাটি সত্যি, কেননা (1 + x)¹ = 1 + x = 1 + 1.x. ≥ 1 + 1.x। ধরুন *n*-এর জন্যে অসমতাটি সত্যি, অর্থাৎ (1 + x)ⁿ ≥ 1 + *nx*। তাহলে যেহেতু x > − 1 বা 1 + > 0

 $(1 + x)^{n+1} \ge (1 + nx)$ $(1 + x) = 1 + (n + 1)x + nx^2 \ge 1 + (n + 1)x$ যা দেখায় যে অসমতাটি (n + 1)-এর জন্যে সত্যি। আরোহ নীতির দ্বারা অসমতাটি সব $n \ge 1$ -এর জন্যে সত্যি।

4. (i) $a^0 = 1$, $a^1 = a$ তাই (i) সত্যি |

(ii) লিখুন $u = \log_a x$, $v = \log_a v$ | সুতরাং $x = a^u$, $v = a^v$ | সুতরাং $xy = a^u a^v = a^{u+v}$ যা দেখায় $u + v = \log_a (xy)$.

(iv) লিখুন $u = \log_a x, v = \log_a v$ । তাহলে $x = a^u, y = a^v$ । ধরুন x < y এবং 0 < a < 1। যদি u < v হয়, তাহলে $a^u > a^v$ (স্বতঃসিদ্ধ 18) বা u > v যা সত্যি নয়। যদি u = v হয়, তাহলে $a^u = a^v$ বা x = y যা সত্যি নয়। অতএব u > v। ইত্যাদি।

(v) $u = \log_a x$ লিখলে $a^u = x + \overline{\mathbf{v}} \mathbf{\hat{k}} u \log_b a = \log_b a^u - \log_b x$.

5. ধরুন $\sqrt{5}$ মূলদ। তাহলে $\sqrt{5} = p_0 / q_0$ যেখানে p_0 , q_0 ধনাত্মক পূর্ণসংখ্যা যাদের কোন সাধারণ উৎপাদক নেই। অতএব $p_0^2 = 5q_0^2$ যেহেতু 5 মৌলিক সংখ্যা 5, p_0^2 -এর উৎপাদক এবং তাই $p_0 = 0$ উৎপাদক যার ফলে $p_0 = 5m$ যেখানে *m* একটি ধনাত্মক পূর্ণসংখ্যা। সুতরাং $q_0^2 = 5m^2$ যার ফলে 5, q_0 -র উৎপাদক অর্থাৎ p_0 এবং q_0 উভয়েরই 5 একটি উৎপাদক যা মিথ্যে।

6. প্রথমে ধরুন যে n-এর 1 ছাড়া কোন উৎপাদক নেই যা একটি ধনাত্মক পূর্ণসংখ্যার বর্গ এবং প্রমাণ করুন। যদি n = p²q যেখানে p ≠ 1, q ধনাত্মক পূর্ণসংখ্যা এবং q-এর 1 ছাড়া কোন উৎপাদক নেই যা একটি ধনাত্মক পূর্ণসংখ্যার বর্গ। তাহলে প্রথম অংশের দ্বারা √q অমূলদ এবং তাই √n = p√q অমূলদ।

একক—2 🗖 ক্রম I

গঠন

- 2.1
 প্রস্তাবনা
- 2.2 উদ্দেশ্য
- 2.3 ক্রম ও তার বন্ধন
- 2.4 সীমা
- 2.5 একাম্বয়ী ক্রম
- 2.6 অন্তরালের নীড়
- 2.7 বিশেষ উপপাদ্যসমূহ
- 2.8 সারাংশ
- 2.9 সর্বশেষ প্রশ্নাবলী
- 2.10 উত্তরমালা

2.1 প্রস্তাবনা

এই এককে বাস্তব সংখ্যার ক্রম ও তার কয়েকটি মূল ধর্মবিষয়ে আলোচনা করা হবে যা পরবর্তী পর্যায়ে বাস্তব সংখ্যার সেটের ধর্মালোচনায় প্রয়োজন হবে।

প্রথমে ক্রমের সংজ্ঞা দেওয়া হবে এবং তার বন্ধন সম্বন্ধে আলোচনা হবে। তারপর আসবে সীমার ধারণা ও তার কিছু মূল ধর্ম।

একান্বয়ী ক্রমের প্রকৃতি যে খুব সরল তা বিশ্লেষণে বোঝা যাবে।

অন্তরালের নীড়ের চিত্রকল্প বিশেষ হৃদয়গ্রাহী এবং এই বিষয়ক একটি মৌলিক উপপাদ্য আছে যা প্রমাণ করে যে বাস্তব সংখ্যার সেট *R-*এ কোন ফাঁক বা ফুটো নেই।

শেষে কয়েকটি বিশেষ ক্রমের সীমাবিষয়ক উপপাদ্য প্রমাণ করা হবে যা প্রায়ই কাজে লাগবে।

2.2 উদ্দেশ্য

এই এককটি পাঠ করলে আপনারা জানতে পারবেন

- ক্রমের সংজ্ঞা ও তার বন্ধনের ধারণা
- সীমার সংজ্ঞা ও মূল ধর্ম
- একান্বয়ী ক্রমের সংজ্ঞা ও তার সীমা
- অন্তরালের নীড়ের ধারণা এবং এই বিষয়ক উপপাদ্য
- কয়েকটি বিশেষ সীমা

2.3 ক্রম ও তার বন্ধন

প্রথমে সাধারণ ক্রমের সংজ্ঞা দিই।

সংজ্ঞা 2.3.1 : ধরা যাক *S* যে-কোন ধরণের উপাদানের সেট। যদি প্রত্যেক ধনাত্মক পূর্ণ সংখ্যা *n*-এর জন্যে, একটি প্রদন্ত নিয়মানুযায়ী একটি অনন্য *S*-এর উপাদান থাকে যা *x*_n দ্বারা সুচিত, তাহলে এই প্রতিযঙ্গী *S*-এর উপাদানের একটি ক্রম (Sequence) বলা হবে এবং তার চিহ্ন হবে {*x*_n}; *x*_n-কে বলা হবে ক্রমের *n*-তম পদ। ক্রমের পদগুলি আবশ্যিকভাবে ভিন্ন নয়। {*x*_n}-এর সব ভিন্ন বা স্বতন্ত্র পদের সেট *X* স্পষ্টতই *S*-এর একটি উপসেট থাকে {*x*_n}-এর পাল্লা (range) বলা হবে।

এই পরিচ্ছেদে আমরা ক্রম বলতে বাস্তব সংখ্যার ক্রম বুঝব যদি অন্য কথা বলা না থাকে।

সংজ্ঞা 2.3.2 : $\{x_n\}$ ক্রমকে উপরে বদ্ধ (bounded) বলা হয় যদি এমন একটি স্থির বাস্তব সংখ্যা a থাকে যে প্রত্যেক n-এর জন্যে $x_n \le a$; এক্ষেত্রে a-কে $\{x_n\}$ -এর একটি উধ্ববন্ধন বলা হয়।

একটি বাস্তব সংখ্যা *M*-কে {x_n}-এর লঘিষ্ঠ ঊধর্ববন্ধন বলা হয় যদি প্রত্যেক *n*-এর জন্যে x_n ≤ *M* এবং যে-কোন ইচ্ছানুরাপ $\varepsilon > 0$ -র জন্যে একটি ধনাত্মক পূর্ণসংখ্যা *k* আছে যার জন্যে x_k > *M* – ε এবং আমরা লিখি *M* = lub {x_n} or sup {x_n}.

্যদি $\{x_n\}$ উপরে অনাবদ্ধ হয়, তাহলে আমরা লিখি $\sup \{x_n\} = \infty$

উপপাদ্য 2.3.1 : যদি $\{x_n\}$ উপর বন্ধ হয়, $\sup \{x_n\}$ অস্তিত্বমান।

প্রমাণ : মনে করুন { x_n }-এর পাল্লা X। { x_n } উপরে বদ্ধ হলে, X-ও উপরে বদ্ধ এবং স্বতঃসিদ্ধ 16 দ্বারা X-এর লঘিষ্ঠ ঊধ্ববন্ধন বর্তমান। ধরা যাক $M = \sup X$ । এবার *n*-এর জন্য $x_n \in X$, সেহেতু $x_n \leq M$ -এর ইচ্ছানুরূপ ধনাত্মক *ɛ*-এর জন্যে X-এর একটি উপাদান আছে যা x_k , বিশেষ k-র জন্য, এমন যে $x_k > M - \varepsilon$ অর্থাৎ $M = \sup \{x_n\}$. \Box

সংজ্ঞা **2.3.3 :** {x_n} ক্রমে নিচে বদ্ধ বলা হয় যদি এমন একটি স্থির বাস্তব সংখ্যা b যাকে সব n-এর জন্যে x_n ≥ b; তখন b-কে {x_n}-এর একটি নিম্ন বন্ধন বলা হবে।

একটি বাস্তব সংখ্যা *m*-কে $\{x_n\}$ -এর গরিষ্ঠ নিম্নবন্ধন বলা হবে যদি প্রত্যেক *n*-এর জন্যে $x_n \ge m$ এবং ইচ্ছানুরাপ ধনাত্মক *ɛ*-এর জন্যে একটি বিশেষ k আছে যার জন্য $x_k \le m + \varepsilon$ এবং আমরা লিখি $m = \text{glb} \{x_n\}$ বা inf $\{x_n\}$.

যদি $\{x_n\}$ নিচে অনাবদ্ধ হয়, আমরা লিখি $\inf \{x_n\} = -\infty$.

উপপাদ্য 2.3.2 : যদি $\{x_{\mu}\}$ নিচে বদ্ধ হয়, $\inf \{x_{\mu}\}$ অস্তিত্বমান।

প্রমাণ : উপপাদ্য 2.3.1-এর মত। 🗔

সংজ্ঞা 2.3.4 : {x_n}-কে বদ্ধ বলা হয় যখন তা উপরে এবং নিচে উভয়ক্ষেত্রেই বদ্ধ।

উপপাদ্য **2.3.3 :** {x_n} বন্ধ যদি এবং একমাত্র যদি একই স্থির ধনাত্মক বাস্তব সংখ্যা k থাকে এমন যে প্রত্যেক *n-*এর জন্যে | x_n | ≤ k

প্রমাণ : সহজ। 🗔

বন্ধনের সহজ ধর্মগুলি নিচের উপপাদ্যে বর্ণিত হচ্ছে।

উপপাদ্য 2.3.4 : ধরা যাক $\{x_{\mu}\}, \{y_{\mu}\}$ যে-কোন দুটি ক্রম এবং

 $M = \sup \{x_n\}, m = \inf \{x_n\}, M' = \sup \{y_n\}, m' = \inf \{x_n\}$ সব অস্তিত্ব মান এবং c একটি বাস্তব সংখ্যা। তাহলে

- (i) $m \leq M$
- (ii) $\sup \{c + x_n\} = c + M$, $\inf \{c + x_n\} = c + m$
- (iii) sup $\{cx_n\} = cM$, inf $\{cx_n\} = cm$. यपि c > 0 হয়।
- (iv) $\sup \{-x_n\} = -m$, $\inf \{-x_n\} = -M$
- (v) $\sup \{x_n + y_n\} \le M + M', \inf \{x_n + y_n\} \ge m + m'$
- (vi) sup $\{x_ny_n\} \leq MM'$, inf $\{x_ny_n\} \geq mm'$ যদি প্রত্যেক *n*-এর জন্যে $x_n \geq 0, y_n \geq 0$ হয়।
- (vii) যদি প্রত্যেক *n*-এর জন্যে $x_n \leq y_n$ হয় $M \leq M'$, $m \leq m'$.

প্রমাণ : সহজ।

উদাহরণ :

 $1. x_n = 1 - 1/n; \{x_n\}$ -এর পদগুলি হল 0, 1/2, 2/3, ...। ক্রমটির ক্ষুদ্রতম উপাদান 0, তাই inf $\{x_n\}$ = 0। sup $\{x_n\} = 1$, কেননা প্রত্যেক *n*-এর জন্যে $x_n \le 1$ এবং যে-কোন $\varepsilon \ge 0$ -র জন্যে $x_k \le 1 - \varepsilon$ যদি $k \ge 1/\varepsilon$ এবং তাই যদি $k = [1/\varepsilon] + 1$.

2. $x_n = (-1)^n \mathbf{n} + 1/n$; তাহলে

 $x_{2m}=2m + 1/2m, x_{2m+1}=-2m-1 + 1/(2m+1)$. এখানে $\sup \{x_n\} = \infty$, কেননা যে-কোন প্রদন্ত, ইচ্ছানুরাপ বড়, G > 0-র জন্যে $x_{2m} > G$ অর্থাৎ 2m + 1/2m > G হয় যদি 2m > G বা m > G/2, তাই *m*-এর কোন বিশেষ মান > G/2, নেওয়া হলে $x_{2m} > G$. একইভাবে প্রমাণ করা যায় inf $\{x_n\} = \infty$.

2.4 সীমা

সংজ্ঞা 2.4.1 : একটি বাস্তব সংখ্যার ক্রম {x_n}-কে একটি বাস্তব সংখ্যা *l-*এর প্রতি **অভিসারী (converges** to l) অথবা *l* {x_n}-এর **সীমা (limit)** বলা হয় যদি ইচ্ছানুরপে ছোট প্রদন্ত ধনাত্মক *ɛ*-এর জন্যে এমন একটি ধনাত্মক পূর্ণসংখ্যা n₀ যা *ɛ*-এর উপর নির্ভরশীল পাওয়া যায় যে প্রত্যেক $n \ge n_0$ -র জন্যে

 $|x_n - l| < \varepsilon$ এবং আমরা লিখি $x_n \to l$ যখন $n \to \infty$ বা শুধু $x_n \to l$ অথবা $\lim_{n \to \infty} x_n = l$ বা শুধু $\lim_{n \to \infty} x_n = l$

একটি ক্রমকে অভিসারী বলে যদি তা একটি সীমার প্রতি অভিসারী হয়, অন্যথায় একে **অপসারী (divergent)** বলা হয়।

যদি $\lim_n x_n = l$ হয়, তাহলে $n \ge n_0$ জন্যে $l - \varepsilon \le x_n \le l + \varepsilon$ বা $x_n \in (l - \varepsilon, l + \varepsilon)$ অর্থাৎ $(l - \varepsilon, l + \varepsilon)$ এই অন্তরালে $\{x_n\}$ -এর সব পদ অবস্থিত। হয়ত কিছু অসীম সংখ্যক পদ ছাড়া।

উপপাদ্য 2.4.1 : একটি অভিসারী ক্রমের সীমা অনন্য। 🗔 উদাহরণ:

 $1, \quad x_n = \frac{n-1}{n+1}$

যেহেতু $n_n = \frac{1-\frac{1}{n}}{1+\frac{1}{n}}$ আমরা আন্দাজ করতে পারি lim $x_n = 1$ । এখন $|x_n - 1| = 2/(n+1) < \varepsilon$ যদি $n > 2/\varepsilon - 1$ অথবা যদি লিখি $n_0 = [2/\varepsilon - 1] + 1 = [2/\varepsilon]$, তাহলে $n \ge n_0$ হলে $|x_n - 1| < \varepsilon$ যা প্রমাণ করে lim $x_n = 1$.

2. $x_n = (-1)^n \left(1 + \frac{1}{n} \right)$

এখানে $x_{2m} = 1 + \frac{1}{2m}, x_{2m+1} = -\left(1 + \frac{1}{2m+1}\right)$ আমরা দেখাব যে $\{x_n\}$ অপসারী। যদি সম্ভব হয় মনে করুন $x_n \to l$ যখন $n \to \infty$ । তাহলে l = 1 ও 1-এর মধ্যে অন্তত একটি নয়। ধরা যাক $l \neq 1$ । $\varepsilon = \frac{1}{2} | l - 1 |$ ধরলে, $(l - \varepsilon, l + \varepsilon)$ এই অন্তরালে $\{x_n\}$ ক্রম সব পদ অবস্থিত, হয়ত সসীমসংখ্যক পদ ছাড়া। কিন্তু $| x_{2m} - 1 | = 1/2m < \varepsilon$ যখন $m \ge m_0 = [1/2\varepsilon] + 1$ যার ফলে $(1 - \varepsilon, 1 + \varepsilon)$ অন্তরালেও অসীমসংখ্যক পদ বর্তমান যা অসন্তব কেননা $(l - \varepsilon, l + \varepsilon)$ এবং $(l - \varepsilon, l + \varepsilon)$ অন্তরাল দুটির কোন সাধারণ বিন্দু নেই। অতএব $\{x_n\}$ অভিসারী নয়।

উপপাদ্য 2.4.2 : একটি অভিসারী ক্রম বদ্ধ। \Box উপপাদ্য 2.4.3 : যদি $x_n \to l$. তাহলে $|x_n| \to |l|$. এর বিপরীত উক্তি অসত্য যদি না l = 0. \Box উপপাদ্য 2.4.4 : ধরুন $x_n \to a$, $y_n \to b$, এবং c একটি স্থির সংখ্যা তাহলে (i) $x_n \pm y_n \to a \pm b$. (ii) $cx_n \to ca$

- (iii) $x_n/y_n \rightarrow ab$
- (iv) $1/y_n \rightarrow 1/b$ যদি $y_n \neq 0$ প্রত্যেক *n*-এর জন্যে $b \neq 0$
- (v) $x_n/y_n \rightarrow a/b$ যদি $y_n \neq 0$ প্রত্যেক *n*-এর জন্যে $b \neq 0$

প্রমাণ : আমরা কেবল (i), (iii) ও (iv)-এর প্রমাণ দেব, বাকিগুলির প্রমাণ সহজেই পাওয়া যাবে।

(i) স্বীকৃতি থেকে প্রদন্ত arepsilon > 0-র জন্যে ধনাত্মক পূর্ণসংখ্যা n_1, n_2 পাওয়া যায় এমন যে

$$|x_n - a| < \varepsilon/2$$
, यथन $n \ge n_1$

 $|y_n - b| < \varepsilon/2$, যখন $n \ge n_2$

অতএব যদি $n_0 = \max \{n_1, n_2\}$ হয়, $n \ge n_0$ হলে

$$|(x_n \pm y_n| - (a \pm b)| \le |x_n - a| + |y_n - b| < \varepsilon/2 + \varepsilon/2 = \varepsilon$$

যা দেখায় $x_n \pm y_n o a \pm b$ যখন $n o \infty$

(iii) $x_n y_n = (x_n - a) (y_n - b) + a (y_n - b) + b (x_n - a) + ab$ এখন $|x_n - a| \sqrt{\varepsilon} <$ এখন $n \ge n_1$ $|y_n - b| < \sqrt{\varepsilon}$ যখন $n \ge n_2$ তাই $n_0 = max \{n_1, n_2\}$ বলে, যখন $n \ge n_0$ $|(x_n - a) (y_n - b)| = x_n - a| |y_n - b| < \varepsilon$ যা দেখায় যে $(x_n - a) (y_n - b) \rightarrow 01$ (i) ও (ii) ব্যবহার করে $x_n y_n \rightarrow 0 + a.0 + b.0 + ab = ab$

(iv) এমন m আছে যে যখন $n \ge m, |y_n - b| < \frac{1}{2} |b|$ যার ফলে

$$|y_n| = |b - (b - y_n)| \ge |b| - |b - y_n| \ge \frac{1}{2}|b|$$

এখন প্রদত্তarepsilon>0-র জন্যে এমন $n_0\ge m$ পাওয়া যায় যে

$$|y_n-b|\!<\!rac{1}{2}b^2\,arepsilon,$$
 यथन $n\geq n_0$

অতএব $n \ge n_0$ হলে $\left| \frac{1}{y_n} - \frac{1}{b} \right| = \left| \frac{y_n - b}{b ||y_n|} \right| < \varepsilon$ যা (iv) প্রমাণ করে। \Box

মন্তব্য : উপপাদ্য 2.4.4-এ বর্ণিত সীমার গাণিতিক প্রক্রিয়ার সঙ্গে উপপাদ্য 1.3.4-এ বর্ণিত বন্ধনের গাণিতিক প্রক্রিয়ার তুলনা করা যেতে পারে। সীমার বেলায় আমরা সব জাযগায সমতা পাই, আর বন্ধনের বেলায় কেবলমাত্র অসমতা। এই কারণে সীমার প্রয়োগ বন্ধনের চেযে সহজতর।

উপপাদ্য 2.4.5 : যদি $x_n \leq y_n$ সব $n \geq m$ -এর জন্য, যেখানে *m* একটি স্থির ধনাত্মক পূর্ণসংখ্যা এবং $x_n \to a$, $y_n \to b$, তাহলে $a \leq b$

প্রমাণ : প্রদন্ত
$$\varepsilon > 0$$
-র জন্যে এমন $n_1, n_2 \ge m$ পাওয়া যায় যে
 $a - \varepsilon < x_n < a + \varepsilon$ যখন $n \ge n_1$
 $b - \varepsilon < y_n < b + \varepsilon$ যখন $n \ge n_2$
অতএব যদি $n_0 = max \{n_1, n_2\}$, যখন $x \ge n_0$
 $a - \varepsilon < x_n \le y_n < b + \varepsilon$ বা $a < b + 2\varepsilon$

মেহেতু ε ইচ্ছানুরাপ, $a \leq b$ |

মন্তব্য : উপরের উপপাদ্যে যদি $x_n < y_n$ হয় যখন $n \ge m_1$ তাহলে মনে হতে পারে যে সিদ্ধান্ত হবে a < b। এটা মিথ্যে। কেননা উদাহরণস্বরূপ দেখি

$$rac{1}{n^2} < rac{1}{n},$$
 যখন $n \ge 2$

কিন্তু $1/n \rightarrow 0$ এবং $1/n^2 \rightarrow 0$

উপপাদ্য 2.4.6 : (স্যান্ডুইচ নিয়ম) যদি $x_n \le y_n \le z$ সব $n \ge m$ -এর জন্যে এবং $x_n \to l$ ও $z_n \to l$, তাহলে $y_n \to l$

প্রমাণ : সহজ। 🗖

সংজ্ঞা 2.4.2 : $\{x_{\mu}\}$ ক্রমকে ∞ -র প্রতি অপসারী বলা হয় যদি ইচ্ছানুরূপ বড় প্রদত্ত বাস্তব সংখ্যা G>0-র জন্যে এমন একটি ধনাত্মক পূর্ণসংখ্যা $n_{
m o}$ যা G-র উপর নির্ভরশীল পাওয়া যায় যে

$$x_n \geq G$$
, যখন $n\geq n_0$

এবং আমরা লিখি

 $x_{\scriptscriptstyle n} \to \infty,$ যখন $n \to \infty$ ব
t $x_{\scriptscriptstyle n} \to \infty$

অথবা

$$\lim_{n\to\infty} x_n=\infty$$
 বা $\lim_{n\to\infty} x_n=\infty$ বা $\lim_{n\to\infty} x_n=\infty$ $\{x_n\}$ -কে – ∞-র প্রতি অপসারী বলা হয় যদি প্রদন্ত $G>0$ -র জন্যে এমন n_0 পাওয়া যায় যে

 $x_n < -G$, যখন $n \ge n_0$

এবং আমরা লিখি

 $x_n \to -\infty$, যখন $n \to \infty$ বা $x_n \to -\infty$

অথবা

 $\lim_{n\to\infty} x_n = -\infty \text{ at } \lim x_n = -\infty$

একটি ক্রমকে নির্দিষ্টভাবে অপসারী বলা হয় যখন তা ± ∞-এর অপসারী হয়। একটি অপসারী ক্রম যা

 $\pm \infty$ -র প্রতি অপসারী নয়, তাকে অনির্দিষ্টভাবে অপসারী বা দোলনবিশিষ্ট বলা হবে। উদাহরণ : 1. $x_n = \frac{x^2 + 1}{n+1}$ এক্ষেত্রে $x_n = n - 1 + 2/(n + 1)$. আমরা অনুমান করি $x_n \to \infty \mid G > 0$ প্রদন্ত হলে $x_n > G$ বা n-1+2/(n+1)>G হবে যদি n>G+1+তাই $n_0=[G+1]+1=[G]+2$ হলে, যখন $n \ge n_0, x_n \ge G.$

অতএব আমাদের অনুমান সত্যি।

উদাহরণ $: 2. x_n = (-1)^n n$ হলে $\{x_n\}$ অনির্দিষ্টভাবে অপসারী যা সহজেই প্রমাণ করা চলে।

2.5 একান্বয়ী ক্রম

সংজ্ঞা 2.5.1 : $\{x_n\}$ ক্রমকে একান্বয়ে বর্ধমান (monotonic increasing) বলা হয় যদি সব n-র জন্যে $x_n \leq x_{n+1}$

 $\{x_n\}$ -কে যথার্থ **একান্বয়ে হ্রাসমান (monotonic decreasing)** বলা হয় যদি সব n-র জন্যে $x_n \ge x_{n+1}$ $\{x_n\}$ -কে যথার্থ একান্বয়ে বর্ধমান বা হ্রাসমান (strictly monotonic increasing or decreasing) বলা হয় যদি সব n-র জন্যে $x_n \le x_{n+1}$ বা $x_n \ge x_{n+1}$.

নিচের ফলাফলগুলি তুচ্ছ।

উপপাদ্য 2.5.1 : (i) যদি $\{x_p\}$ ও $\{y_p\}$ উভয়ই একান্বয়ে বর্ধমান (হ্রাসমান) হয়, তাহলে $\{x_p+y_p\}$ একান্বয়ে বর্ধমান (হ্রাসমান) হবে।

যদি $\{x_n\}$ ও $\{y_n\}$ উভয়ই একাম্বয়ে বর্ধমান (হ্রাসমান) হয় এবং সব n-এর জন্যে x_n, y_n ধনাত্মক হয়, তাহলে {x,v,} একান্বয়ে বর্ধমান (হ্রাসমান) হবে।

(iii) যদি $\{x_n\}$ একান্বয়ে বর্ধমান (হ্রাসমান) হয়, তাহলে $\{-x_n\}$ একান্বয়ে হ্রাসমান (বর্ধমান) হবে।

(iv) যদি {x_n} একান্বয়ে বর্ধমান এবং {y_n} একান্বয়ে হ্রাসমান এবং সব *n-*এর জন্যে x_n, y_nধনাত্মক হয়, তাহলে {x_vy_n}একান্বয়ে বর্ধমান এবং {y_n/x_n} একান্বয়ে হ্রাসমান হবে।

একাম্বয়ী ক্রমের প্রকৃতি খুব সরল যা নিচের উপপাদ্যে প্রতিফলিত।

উপপাদ্য 2.5.2 : (i) যদি $\{x_n\}$ একান্বয়ে বর্ধমান হয়, তাহলে $x_n \to \sup \{x_n\}$. (ii) যদি $\{x_n\}$ একান্বয়ে হ্রাসমান হয়, তাহলে $x_n \to \inf \{x_n\}$

প্রমাণ : যদি $\{x_n\}$ উপরে বদ্ধ হয়, $M = \sup \{x_n\}$ অস্তিত্বমান। তাহলে প্রত্যেক *n*-র জন্যে $x_n \leq M$ এবং প্রদন্ত $\varepsilon < 0$ -র জন্য এমন *m* আছে যে $x_m > M - \varepsilon$ । যেহেতু $\{x_n\}$ একান্বয়ে বর্ধমান, যখন $n \geq m$. $M \geq x_n \geq x_m \geq M - \varepsilon$ অথবা $x_n \in (M - \varepsilon, M] \subseteq (M - \varepsilon, M + \varepsilon)$ যখন যখন $n \geq m$ । অতএব $x_n \to M$.

যদি $\{x_n\}$ উপরে অনাবদ্ধ হয়, তাহলে $\sup \{x_n\} = \infty$ যার ফলে প্রদত্ত G > 0-র জন্যে এমন *m* আছে যে $x_m > G$ এবং তাই $n \ge m$ হলে $x_n \ge x_m > G$ যা দেখায় যে $x_n \to \infty$.

(ii), (i)-এর অনুরূপ। 🗆

মন্তব্য : উপরের উপপাদ্য বলে যে একান্বয়ী ক্রম সর্বদাই একটি সীমার প্রতি ধাবিত হয়, সে সীমা সসীম বা ≠ ∞ হতে পারে।

উদাহরণ : ধরা যাক $\{x_n\}$ একটি ধনাত্মক বাস্তব সংখ্যার ক্রম যার জন্য এই আবৃত্ত সূত্র খাটে : $x_{n+1}^2 = 2x_n$ এবং $x_1 = \sqrt{2}$.

এখানে $x_1 = \sqrt{2}, x_2 = \sqrt{2\sqrt{2}}, x_3 = \sqrt{2\sqrt{2\sqrt{2}}}, \dots +$ অথবা $x_1 = 2^{1-1/2}, x_2 = \sqrt{2.2^{1-1/2}} = 2^{1-1/2^2}, x_3 = 2^{1-1/2^3}, \dots$ এবং সাধারণভাবে $x_n = 2^{1-1/2^n}$ $(n = 1, 2, \dots)$ + স্পষ্টতই $\{x_n\}$ একান্ধয়ে বর্ধমান এবং সব *n*-এর জন্যে $x_n < 2$ অতএব উপপাদ্য 2.5.2 দ্বারা $x_n \to M$, এবং $\lim x_{n+1} = 2 \lim x_n$ অথবা $M^2 = 2M$ যার ফলে M = 0, 2 + যেহেতু $M \neq 0$ (কেন ?) M = 2.

2.6 অন্তরালের নীড়

সংজ্ঞা 2.6.1 : যদি { a_n } একটি একান্বয়ে বর্ধমান ও { b_n } একান্বয়ে হ্রাসমান ক্রম হয় এমন যে প্রত্যেক *n-*এর জন্যে $a_n \leq b_n$ অর্থাৎ

$$[a_n, b_n] \subseteq [a_{n+1}, b_{n+1}]$$

এবং $b_n - a_n \to 0$ হয়, তাহলে {[a_n, b_n]} এই রুদ্ধ অন্তরালের ক্রমকে **রুদ্ধ অন্তরালের নীড়** বা শুধু **নীড় (nest)** বলা হয় এবং { $a_n \mid b_n$ } দ্বারা চিহ্নিত হয়।

নীড়ের চিত্রকল্পের কথা ভাবলে স্বাভাবিকভাবে মনে হয় যে $n \to \infty$ হলে অন্তরাল [a_n, b_n] ক্রমে একটি বিন্দুতে পরিণত হয়। এই অনুমান যে সত্যি তা নিচের উপপাদ্য প্রমাণ করে।

উপপাদ্য 2.6.1 : (নীড়ীয় উপপাদ্য) যে-কোন নীড় $[a_n \mid b_n]$ -এর জন্যে, একটি অনন্য বাস্তব সংখ্যা x আছে এমন যে প্রত্যেক n-এর জন্যে x ∈ $[a_n, \ b_n]$

অর্থাৎ $a_{n'} \leq x \leq b_{n'}$

প্রমাণ : স্বীকৃতি থেকে পাই প্রত্যেক *n*-এর জন্যে

 $a_1 \le a_n \le b_n \le b_1$

যা দেখায় যে $\{a_n\}$ উপরে বন্ধ এবং $\{b_n\}$ নিচে বন্ধ। অতএব উপপাদ্য 2.5.2 দ্বারা পাই যে

 $\lim a_n = \sup \{a_n\}$ এবং $\lim b_n = \inf \{b_n\}$ দুইই অস্তিত্বমান। এখন

 $\lim b_n - \lim a_n = \lim (b_n - a_n) = 0$

তাই ধরা যাক $\lim a_n = \lim b_n = x$ । ফলত

 $\sup \{a_n\} = \inf \{b_n\} = x$

এবং তাই প্রত্যেক *n*-এর জন্য $a_n \leq x \leq b_n$ বা $x \in [a_n, b_n]$.

x-এর অনন্যতা প্রমাণ করতে ধরা যাক প্রত্যেক n-এর জন্য $a_n \le y \le b_n$. সুতরাং $|x - y| \le b_n - a_n \le c$, যখন $n \ge n_0$ যা দেখায় যে x = y.

সংজ্ঞা 2.6.2 : উপপাদ্য 2.6.1-এর বাস্তব সংখ্যা x-কে নীড় $\{a_n|b_n\}$ দ্বারা নির্ধারিত বাস্তব সংখ্যা বলা হয়। মন্তব্য : উপপাদ্য 2.6.1 এই কথা প্রকাশ করে যে সরলরেখা বা বাস্তব সংখ্যাসমষ্টিতে কোন ফাঁক নেই। এই অর্থে বাস্তব সংখ্যার সেট *R* সম্পূর্ণ।

2.7 বিশেষ উপপাদ্যসমূহ

উপপাদ্য 2.7.1 : $n^{\alpha} \rightarrow \begin{cases} 0, & \overline{u} \overline{\mathbb{H}} \ \alpha < 0 \\ 1, & \overline{u} \overline{\mathbb{H}} \ \alpha = 0 \\ \infty, & \overline{u} \overline{\mathbb{H}} \ \alpha > 0 \end{cases}$ Entrie : स्वरून $\alpha < 0 \ \beta = -\alpha$ निश्रटल, $\beta > 0$ खतर $n^{\alpha} = n^{-\beta} < \varepsilon \overline{u} \overline{\mathbb{H}} \ n < (1/\varepsilon)^{1/\beta}$ तो $\overline{u} \overline{\mathbb{H}}$ $n \ge n_{0} = [(1/\varepsilon)^{1/\beta}] + 1 + \overline{u} \overline{\mathbb{R}} \ n^{\alpha} \rightarrow 0$ $\overline{u} \overline{\mathbb{H}} \ \alpha = 0, \ n^{\alpha} = | \rightarrow 1|$ $\overline{u} \overline{\mathbb{H}} \ \alpha > 0, \ n^{\alpha} > G > 0 \overline{u} \overline{\mathbb{H}} \ n \ge n_{0} = [G^{1/\alpha}] + 1. \square$ $\overline{u} \overline{\mathbb{H}} \ \alpha > 0, \ n^{\alpha} > G > 0 \overline{u} \overline{\mathbb{H}} \ n \ge n_{0} = [G^{1/\alpha}] + 1. \square$ $\overline{u} \overline{\mathbb{H}} \ \alpha > 0, \ n^{\alpha} > G > 0 \overline{u} \overline{\mathbb{H}} \ n \ge n_{0} = [G^{1/\alpha}] + 1. \square$ $\overline{u} \overline{\mathbb{H}} \ \alpha > 0, \ n^{\alpha} > G > 0 \overline{u} \overline{\mathbb{H}} \ n \ge n_{0} = [G^{1/\alpha}] + 1. \square$ $\overline{u} \overline{\mathbb{H}} \ \alpha > 0, \ n^{\alpha} > G > 0 \overline{u} \overline{\mathbb{H}} \ n \ge n_{0} = [I^{1/\alpha}] + 1. \square$ $\overline{u} \overline{\mathbb{H}} \ a = -1 \overline{\varepsilon} \overline{u}, \ \{a^{n}\} \ (n | \overline{n} - n | \overline{n} | \overline{n} | \overline{\alpha} > 1$ $\overline{u} \overline{\mathbb{H}} \ a = -1 \overline{\varepsilon} \overline{u}, \ \{a^{n}\} \ (n | \overline{n} - n | \overline{n} | \overline{n} | \overline{\alpha} - 1 \overline{\varepsilon} \overline{u}, \ \{a_{n}\} \ (n | \overline{n} - n | \overline{n} | \overline{n} | \overline{\alpha} + 1)$ $\overline{u} \overline{\mathbb{H}} \ a = -1 \overline{\varepsilon} \overline{u}, \ \{a^{n}\} \ (n | \overline{n} - n | \overline{n} | \overline{n} | \overline{\alpha} + 1) = 1/(1 + b),$ $|a^{n}| = |a|^{n} = \frac{1}{(1 + b)^{n}} \le \frac{1}{1 + nb} < \frac{1}{nb} < \varepsilon$ $\overline{u} \overline{u} \overline{n} \ n \ge n_{0} = [1/b\varepsilon] + 1 | \overline{u} | \overline{\varepsilon} \ a_{n} \rightarrow 0$ $\overline{u} \overline{n} \ a = 1, \ a^{n} = 1 \rightarrow 1.$

যদি a > 1, b = a - 1 > 0 বা a = 1 + b $a^n = (1 + b)^n \ge 1 + nb \ge G$ যদি $n \ge n_0 = [G/b] + 1 +$ তাই $a_n \to \infty$ $a = -1, a^n = (-1)^n, a^{2m} = 1, a^{2m+1} = -1$ সব m এর জন্যে। তাহলে $a^n = 1$ অসীমসংখ্যক n-এর জন্যে এবং $a^n = -1$ অসীমসংখ্যক n-এর জন্যে। তাই $\{a^n\}$ অভিসারী বা ± ∞-র প্রতি অপসারী কোনটাই নয়। স্পষ্টতই ক্রমটি বদ্ধ। যদি $a \leq -1$ হয়, $b = -a \geq 1 + a^n = (-1)^n b^n$, $a^{2m} = b^{2m}$, $a^{2m+1} = -b^{2m+1} + ধনাত্মক G_n$ G_{γ} প্রদত্ত হলে, এমন m_{1}, m_{γ} পাওয়া যায় যে $a^{2m}=(b^2)^m>G_1$, যখন $m\geq m_1$ $a^{2m+1} = -b(b^2)^m \ge G_p$, যথন $m \ge m$, সুতরাং $a^n > G_1$, n-এর অসীমসংখ্যক মানের জন্যে এবং $a^n < G_2$, n-এর অসীমসংখ্যক মানে জন্যে। তাই উপরোক্ত সিদ্ধান্ত। উপপাদ্য 2.7.3 : $nl/n^n \rightarrow 0$. প্রমাণ : $0 < \frac{n!}{n^n} = \frac{1.2.3....n}{n.n.n...n} \le \frac{1}{n} \to 0$ স্যান্ডুইচ নিয়ম দ্বারা প্রতিপাদ্য পাওয়া য উপপাদ্য 2.7.4 : যদি a > 0 হয়। $\sqrt[n]{a \to 1}$. প্রমাণ : ধরুন a>1+ তাহলে প্রত্যেক n-এর জন্যে $\sqrt[n]{a>1}$ যার ফলে $y_n=\sqrt[n]{a}-1>0$ বা $a = (1+y_n)^n \ge 1+ny_n$ বা $0 < y_n < a/n \rightarrow 0$ । অতএব $y_n \rightarrow 0$ এবং তাই $\sqrt[n]{a} \rightarrow 1$. যদি a = 1 হয়, $\sqrt[n]{a} = 1 \rightarrow 1$. যদি $0 \le a \le 1$ হয়, $b = 1/a > 1, \sqrt[n]{a} = 1/\sqrt[n]{b} \rightarrow 1.$ উপপাদ্য 2.7.5 : $\sqrt[n]{n} \to 1$. প্রমাণ : যখন $n \ge 2, \sqrt[m]{n} > 1,$ তাই $x_n = \sqrt[m]{n} - 1 > 0$ অথবা দ্বিপদ উপপাদ্য ব্যবহার করে $n = (1+x_n)^2 > \frac{1}{2}n(n-1)x_n^2$ বা, $0 < x_n < \sqrt{2/(n-1)} \rightarrow 0$. তাই $\sqrt[n]{n} \rightarrow 1$. উপপাদ্য 2.7.6 : যদি $x_n o 0$ এবং সব n-এর জন্যে $x_n \ge 0$ এবং lpha > 0 তাহলে $x_n^lpha \to 0$. প্রমাণ : arepsilon > 0 প্রদন্ত হলে এমন n_0 পাওয়া যায় যে যখন $n \ge n_0$. $0 \leq x_n \leq \varepsilon^{1/lpha}$ at $0 \leq x_n^{lpha} \leq \varepsilon$ যা প্রতিপাদ্য প্রমাণ করে। 🗆

উপপাদ্য 2.7.7 : যদি a > 1 হয়, (i) $\log_a n \to \infty$, (ii) $1/\log_a^n \to 0$. প্রমাণ : (i) $\log_a n > G$, বা $n > a^G$ যখন $n \ge n_0 = [a^G] + 1$ । যা (i) প্রমাণ করে । (ii)-এর প্রমাণও অনুরূপ। উপপাদ্য 2.7.8 : যদি |a| < 1 হয়, $na^n \rightarrow 0$. প্রমাণ : b=1/|a|-1>0 যার ফলে $n\geq 2$ হলে $(1+b)^n > \frac{1}{2}n(n-1)b^2$ $\exists |na^n| = n/(1+b)^n < 2/(n-1)b^2 \to 0.$ তাই স্যানডুইচ নিয়ম দ্বারা প্রতিপাদ্য প্রমাণিত হয়। উপপাদ্য 2.7.9 : যদি |a| < 1 এবং $lpha < 0, n^{lpha}a^n
ightarrow 0$ প্রমাণ : উপপাদ্য 2.7.6 দ্বারা। 🗖 উপপাদ্য 2.7.10 : যদি $a > 1, \ \alpha > 0$, হয়, তাহলে $\log n/n^{lpha}
ightarrow 0$ । প্রমাণ : যেহেতু $a>1, \, lpha>0,$ তাই $a^{lpha}>1$ এবং উপপাদ্য 2.7.8 দ্বারা পাই $n/(a^{lpha})^n
ightarrow 0$ যার ফলে প্রদত্ত $\varepsilon > 0$ -র জন্যে এমন m পাওয়া যায় যে যখন $n \ge m$ $n/(a^{\alpha})^n < \varepsilon/a^{\alpha} \exists n/(a^{\alpha})^{n-1} < \varepsilon$ এবার ধরুন $N = [\log_a n] + 1$ অর্থাৎ $N - 1 \le \log_a n \le N$ । তাহলে $\log_{\alpha} n / n^{\alpha} \leq N / (a^{\alpha})^{N-1} \leq \varepsilon$ যখন $N \ge m$ অথবা $\log_a n \ge m$ বা $n \ge a^m$ বা যখন $n \ge n_0 = [a^m] + 1$. \square উপপাদ্য 2.7.11 : যদি $\alpha > 0, \ \beta > 0, \ a > 1$ হয়, তাহলে $(\log_n)^{\beta/n^{\alpha}} \rightarrow 0.$ প্রমাণ : উপপাদ্য 2.7.6 ও 2.7.10-এর দ্বারা। 🗖 উপপাদ্য 2.7.12 : যদি $x_n
ightarrow 0$. এবং সব n-এর জন্যে $x_n > -1$ এবং a > 1 হয়, তাহলে $\log_a (1 + x_a) \to 0.$ প্রমাণ : $-\varepsilon < \log_a (1 + x_n) < \varepsilon$ হয় যদি $-(1 - a^{-\varepsilon}) < x_n \le a^{\varepsilon} - 1$ যেহেতু $x_{_{\!\!\!\!n}}
ightarrow 0, \, n_{_1}, \, n_{_2}$ পাওয়া যায় এমন যে, $|x_n| \le |x_n| \le a^{\varepsilon} - 1$ যখন $n \ge n_1$ $-x_n \leq |x_n| \leq 1 - a^{-\varepsilon}$ যখন $n \geq n_2$ তাই যখন $n \ge n_0 = \max \{n_1, n_2\},$ $-(1-a^{-\varepsilon}) \leq x_n \leq a^{\varepsilon} - 1$ যার থেকে প্রতিপাদ্য প্রমাণ হয়। উপপাদ্য 2.7.13 : যদি $x_a \rightarrow 0$ এবং $a \rightarrow 0$ তাহলে $a^{x_a} \rightarrow 1$. প্রমাণ : উপপাদ্য 2.7.4 দ্বারা $a^{1/n}
ightarrow 1, \, a^{-1/n}
ightarrow 1$ । তাই প্রদন্ত arepsilon > 0-র জন্যে $n_1, \, n_2$ পাওয়া যায় এমন যে, $1 - \varepsilon \leq a^{1/n} \leq 1 + \varepsilon$ যখন $n \geq n_1$

32

 $1 - \epsilon \leq a^{-1/n} \leq 1 + \epsilon$ যখন $n \geq n_2$ তাহলে যদি $m = \max \{ n_1, n_2 \}$ $1 - \varepsilon \leq a^{1/m} \leq 1 + \varepsilon$, $1 - \varepsilon < a^{-1/m} \leq 1 + \varepsilon$ যেহেতু $x_n \to 0$, এমন $n_0 \ge m$ পাওয়া যায় যে $-1/m < x_n < 1/m$, যখন $n \ge n_0$ যদি $0 \le a \le 1$ হয়, যখন $n \ge n_0$ $1 - \varepsilon \leq a^{1/m} \leq a^{x_n} \leq a^{1/m} \leq 1 + \varepsilon$ वा $|a^{x_n} - 1| \leq \varepsilon$ এবং যদি a > 1 হয়, যখন $n \ge n_0$ $1 - \varepsilon \leq a^{-1/m} \leq |a^{x_n} \leq a^{1/m} \leq 1 + \varepsilon$ বা, $||a^{x_n} - 1|| < \varepsilon$ সৃতরাং উভয় ক্ষেত্রেই $a^{x_n} \rightarrow 1$. \square উপপাদ্য 2.7.14 : যদি $x_n
ightarrow 0$ এবং প্রত্যেক n জন্যে $x_n > -1$ এবং lpha যে-কোন বাস্তব সংখ্যা হয়, তাহলে $(1 + x_{\mu})^{\alpha} \rightarrow 1.$ প্রমাণ : ধরুন a>1 একটি স্থির সংখ্যা। উপপাদ্য 2.7.12 ও 2.7.13 দ্বারা $(\mathbf{I} + x_n)^{\alpha} = a^{\alpha \log_a(1 + x_n)} \to 1. \square$ উপপাদ্য 2.7.15 যদি $x_n \rightarrow 1$ হয় এবং a > 0. তাহলে $a^{x_n} \rightarrow a^l$ ধমাণ : $a^{x_n} = a^l a^{x_n-1} \rightarrow a^l$. $1 = a^l$. উপপাদ্য 2.7.16 : যদি $x_n \rightarrow l$ এবং প্রত্যেক n-এর জন্যে $x_n > 0$ হয় এবং l > 0, a > 1 তাহলে $\log_n x_n$ $\rightarrow \log_{a} l.$ প্রমাণ :

$$\log_a x_n - \log_a l = \log_a \frac{x_n}{l} = \log_a \left(1 + \frac{x_n - 1}{l}\right) \to 0$$

উপপাদ্য 2.7.12 দ্বারা যেহেতু $(x_n-l)/l o 0, (x_n-l)/l>-1,$ প্রত্যেক n-এর জন্যে। \square

উপপাদ্য 2.7.17 : যদি $x_n \to l$, সব n-এর জন্যে $x_n > 0, l > 0$ এবং α যে-কোন বাস্তব সংখ্যা, তাহলে $x_n^{\alpha} \to l^{\alpha}$.

প্রমাণ :

$$x_n^{\alpha} = l^{\alpha} \left(1 + \frac{x_n - l}{l} \right)^{\alpha} \rightarrow l^{\alpha}. \ 1 = l^{\alpha}$$

যেহেতু (x_n-l) / l ightarrow 0 এর সব n-এর জন্যে (x_n-l) / l \geq -1. \Box

উপপাদ্য 2.7.18 : $\left\{ \left(\mathbf{l} + \frac{1}{n} \right)^n \right\}$ অভিসারী।

প্রমাণ : লিখুন
$$x_n=\left(1+rac{1}{n}
ight)^n$$
 আমরা দেখাব যে (x_n) একান্বয়ে বর্ধমান এবং উপরে বদ্ধ যা উপপাদ্য প্রমাণ

যদি

করবে।

$$\left(1+\frac{1}{n}\right)^{-1} \le \frac{\left(1+\frac{1}{n+1}\right)^{n+1}}{\left(1+\frac{1}{n}\right)^{n+1}} = \left\{\frac{n(n+2)}{(n+1)^2}\right\}^{n+1}$$

অৰ্থাৎ যদি

$$1 - \frac{1}{n+1} \le \left\{ 1 - \frac{1}{(n+1)^2} \right\}^{n+1}$$

এখন প্রত্যেক n-এর জন্যে $x_n \leq x_n + 1$ অথবা

 $\left(\mathbf{I} + \frac{1}{n}\right)^n \le \left(\mathbf{I} + \frac{1}{n+1}\right)^{n+1}$

যা বারনুলি অসমতার দ্বারা সত্যি।

প্রত্যেক n-এর জন্যে

$$\begin{aligned} x_n &= 1 + 1 + \frac{n(n+1)}{2!} \frac{1}{n^2} + \dots + \frac{n(n-1) - 2.1}{n!} \frac{1}{n^n} \\ &= 1 + 1 + \frac{1}{2!} \left(1 - \frac{1}{n} \right) + \dots + \frac{1}{n!} \left(1 - \frac{1}{n} \right) \dots \frac{2}{n} \frac{1}{n} \\ &< 1 + 1 + \frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^{n-1}} \\ &= 1 + 2 \left\{ 1 - \left(\frac{1}{2} \right)^n \right\} < 3 \end{aligned}$$

এতএব, $[x_n]$ উপরে বদ্ধ। তাই $[x_n]$ অভিসারী এবং যেহেতু $x_1=2$; প্রত্যেক n-এর জন্যে $2\leq x_n<3$ এবং তাই $2\leq \lim x_n\leq 3$.

সংজ্ঞা 2.7.1 : আমরা সংজ্ঞা দিই $e = \lim \left(1 + \frac{1}{n}\right)^n$ । তাহলে $2 \le e \le 3$ এবং এই e-কে লগারিদমের স্বাভাবিক উদ্দি বলে ধরা মনে এবং মন্দ ওব বাবলে শ্বাস লেখা মনে মন্দ্র

ভিত্তি বলে ধরা হবে এবং \log_e^x এর বদলে শুধু লেখা হবে $\log x$

মন্তব্য : e সংখ্যাটি অমূলদ। তার প্রমাণ যথাসময়ে দেওয়া হবে। উপপাদ্য 2.7.19 : যদি $x_n \to 0$, তাহলে $(x_1 + x_2 + ... + x_n) / n \to 0$. প্রমাণ : স্বীকৃতি থেকে প্রদত্ত $\varepsilon > 0$ -র জন্যে *m* পাওয়া যায় এমন যে $|x_n| < \varepsilon/2$ যখন $n \ge m$. যখন $n \ge m$ আমরা লিখতে পারি

$$\frac{x_1 + x_2 + \dots + x_n}{n} = \frac{x_1 + x_2 + \dots + x_{m-1}}{n} + \frac{x_m + x_{m+1} + \dots + x_n}{n}$$

যেহেতু *m* স্থির

$$\left| \frac{x_1 + x_2 + \dots + x_{m-1}}{n} \right| < \varepsilon / 2,$$
 যখন $n \ge n_1.$
থেখানে $n_1 = \left[2/(x_1 + \dots + x_{m-1}) / \varepsilon \right] + 1$ এবং যখন $n \ge m$
$$\left| \frac{x_m + x_{m+1} + \dots + x_n}{n} \right| \le \frac{|x_m| + \dots + |x_n|}{n} < \frac{n - m + 1}{n} \frac{\varepsilon}{2} \le \frac{\varepsilon}{2}$$

অতএব যদি n_0 = max $\{n_1, m\}, n \ge n_0$ হলে

$$\left|\frac{x_1 + x_2 + \dots + x_n}{n}\right| \le \left|\frac{x_1 + x_2 + \dots + x_{m-1}}{n}\right| + \left|\frac{x_m + x_{m+1} + \dots + x_n}{n}\right| < \varepsilon$$

যা উপপাদ্য প্রমাণ করে। 🗖

উপপাদ্য 2.7.20 : (কোশির সমান্তরীয় মধ্যক উপপাদ্য : Cauchy's theorem of arithmetic mean)

যদি $x_n \to l$. তাহলে $(x_1 + x_2 + ... + x_n) / n \to l$. প্রমাণ : $\{x_n - l\}$ ক্রমের জন্যে উপপাদ্য 2.7.19 ব্যবহার করে। উপপাদ্য 2.7.21 : যদি $x_n \to l$ এবং সব x-এর জন্যে $x_n > 0$ ও l > 0 হয়, তাহলে $\sqrt[n]{x_1 x_2 x_n} \to l$. প্রমাণ : উপপাদ্য 2.7.16 দ্বারা $\log x_n \to \log l$. উপপাদ্য 2.7.20 দ্বারা

$$\log \sqrt[n]{x_1 x_2 \dots x_n} = \frac{\log x_1 + \log x_2 + \dots + \log x_n}{n} \to \log l$$

এবং উপপাদ্য 2.7.15

$$\sqrt[n]{x_1 x_2 \dots x_n} = e^{\log \sqrt[n]{x_1 x_2 \dots x_n}} \to e^{\log l} = l. \square$$

উপপাদ্য 2.7.22 : যদি প্রত্যেক *n*-এর জন্যে $x_n > 0$ হয় এবং $x_{n+1}/x_n \rightarrow l > 0$, তাহলে $\sqrt[n]{x_n} \rightarrow l$. প্রমাণ : $y_n = x_{n+1}/x_n$ যখন $n \ge 2$, $y_1 = x_1$ লিখলে $y_n \rightarrow l > 0$ এবং প্রত্যেক *n*-এর জন্যে $y_n > 0$ । ফলত উপপাদ্য 2.7.21 দ্বারা $\sqrt[n]{y_1y_2...y_n} = \sqrt[n]{x_n} \rightarrow l$.

উপপাদ্য 2.7.23 : $\sqrt[n]{n!}/n \rightarrow 1/e$

প্রমাণ :
$$x_n = n! / n^n$$
 লিখে $x_{n+1} / x_n = 1 / \left(1 + \frac{1}{n}\right)^n \to 1/e$, তাই
উপপাদ্য 2.7.22 দ্বারা প্রতিপাদ্য প্রমাণ হয়। \Box

2.8 সারাংশ

এই এককে ক্রমের সংজ্ঞা দেওয়া হল এবং তার লঘিষ্ঠ ঊর্ধ্ববন্ধন ও গরিষ্ঠ নিম্নবন্ধনের সংজ্ঞা ও ধর্ম সম্বন্ধে আলোচনা হল।

ক্রম দুই রকমের— অভিসারী ও অপসারী। অভিসারী ক্রমের সীমা ও তার সাধারণ ধর্মাবলী আলোচিত হল। ± ∞ -র প্রতি অপসারী ক্রমের ধারণাও পাওয়া গেল। ক্রমের সীমা নির্ধারণের একটা কার্যকরী পদ্ধতি হল স্যানডুইচ নিয়ম। তারপর এল একান্বয়ী ক্রমের কথা। একান্বয়ী ক্রমের প্রকৃতি খুব সরল— তা সবসময় একটি সীমার প্রতি ধাবিত হয়; সেই সীমা অবশ্য ± ∞ হতে পারে।

পরিশেষে রুদ্ধ অন্তরালের নীড়ের সংজ্ঞা দেওয়া হল এবং সেই সম্বন্ধে একটি মৌলিক উপপাদ্য প্রমাণ করা হল যা দেখায় যে বাস্তব সংখ্যার সেটে কোন ফাঁক নেই বা তা সম্পূর্ণ।

সীমাবিষয়ক কতকগুলি বিশেষ ফলাফল প্রতিষ্ঠা করা হল যার মধ্যে অন্যতম স্বাভাবিক লগারিদমের ভিত্তি e-র অস্তিত্ব প্রমাণ।

2.9 সর্বশেষ প্রশ্নাবলী

- উপপাদ্য 2.3.3 প্রমাণ করুন।
- উপপাদ্য 2.3.4 প্রমাণ করুন।
- 3. sup $[x_n]$ ও inf $\{x_n\}$ বের করন্দ ও যেখানে (i) $x_n = (-1)^n + 1/n$ (ii) $x_n = n^2 - n$ (iii) $x_n = n / (1 + n^2)$
- কেবল সংজ্ঞা 2.4.1 ব্যবহার করে প্রমাণ করুন :

(i)
$$1/(n^2 + 1) \to 0$$
 (ii) $\frac{n^2 - n + 1}{2n^2 + 1} \to \frac{1}{2}$

(iii)
$$\sqrt{n+1} - \sqrt{n} \rightarrow 0$$

5. $\lim x_n$ নির্ণয় করুন যেখানে x_n হল

(i)
$$\frac{5n^2 + 2n + 1}{n^2 + n - 3}$$
 (ii) $\frac{1}{n^2} + \frac{2}{n^2} + \dots + \frac{n}{n^2}$
(iii) $n\left(\sqrt{n^2 + 1} - \sqrt{n^2 - 1}\right)$

স্যান্ডুইচ নিয়ম প্রয়োগ করে প্রমাণ করুন :

(i)
$$\frac{1}{n^2} + \frac{1}{(n+1)^2} + ... + \frac{1}{(n+n)^2} \to 0$$

(ii) $\frac{1}{\sqrt{n^2+1}} + \frac{1}{\sqrt{n^2+2}} + ... + \frac{1}{\sqrt{n^2+n}} \to 1$
7. প্রমাণ করন্দা $\frac{1}{\sqrt{n+1}} + \frac{1}{\sqrt{n^2+2}} + ... + \frac{1}{\sqrt{n+n}} \to \infty$
8. প্রমাণ করন্দা :
(i) যদি $x_n \to 0$ এবং $\{y_n\}$ বদ্ধ হয়, তাহলে $x_n y_n \to \infty$

- 10. উপপাদ্য 2.4.3 প্রমাণ করন।

0.

- 11. দেখান যে $\left\{ rac{n^2-n+1}{n^2+1}
 ight\}$ একান্বয়ে বর্ধমান এবং তার লঘিষ্ঠ ঊধ্ববন্ধন নির্ণয় করুন।
- 12. যদি { x_n } এই আবৃত্ত নিয়ম মানে : $x_{n+1} = \sqrt{a + x_n} (a > 0, x_1 > 0)$, তাহলে প্রমাণ কর যে { x_n } একান্বয়ে বর্ধমান বা হ্রাসমান যদি $x_i < 1 > \alpha$ যেখানে α দ্বিঘাত সমীকরণ $x^2 - x - a = 0$ -র ধনাত্মক বীজ এবং উভয় ক্ষেত্রে $x_n \to \alpha$
- 13. যদি $x_n = \frac{1}{n+1} + \frac{1}{n+2} + ... + \frac{1}{2n}$ হয়, তাহলে { x_n } একান্বয়ে বর্ধমান এবং উপরে বদ্ধ এবং তাই অভিসারী।
- 14. যদি { $a_n \mid b_n$ } একটি নীড় হয়, দেখান যে $a_p \leq b_q$, যেখানে p, q যে-কোন ধনাত্মক পূর্ণসংখ্যা। 15. দেখান যে

$$\left\{ \frac{n-1}{2n+2} \left| \frac{n+1}{2n-1} \right\}$$
 जव् $\left\{ \frac{n^2-1}{2n^2} \left| \frac{n^2+1}{2n^2} \right\} \right\}$

দুটি নীড় যার প্রত্যেক 📙 কে নির্ধারণ করে।

- 16. প্রমাণ করন $\left(1 + \frac{1}{2} + \frac{1}{3} + ... + \frac{1}{n}\right)/n \to 0$
- 17. যদি α প্রদত্ত অমূলদ সংখ্যা হয়, তাহলে একটি মূলদ সংখ্যার ক্রম নির্মাণ করুন যা α-র প্রতি অভিসারী।

2.10 উত্তরমালা

- 1.{ x_n } यापि विक्त रु. ताख्रत সংখ্যा a, b পাওয়া যায় এমন যে প্রত্যেক n-এর জন্যে $a \le n_n \le b$ ।max {|a|, |b|} = k লিখলে | $a| \le k$. | $a| \le k$ যার ফলে $k \le a \le k$. $k \le b \le k$ । তাই $x_n \ge a \ge -k, x_n \le b \le k$ অথবা $k \le x_n \le k$ বা | $x_n | \le k$ । বিপরীত ক্রমে যাদি | $x_n | \le k$ হযপ্রত্যেক n-এর জন্যে $k \le x_n \le k$ প্রত্যেক n-এর জন্যে যা দেখায় { $x_n \ge a$
- 2. প্রত্যেক *n-*এর জন্যে

 $x_n \leq \mathbf{M}, \ x_n \geq m, \qquad y_n \leq M', \ y_n \geq m'$ এবং তাই প্রত্যেক n-এর জন্যে

 $x_n + y_n \leq M + M',$ $x_n + y_n \geq m + m'$ যার ফলে $(x_n + y_n)$ -এর একটি ঊধ্ববন্ধন M + M' এবং একটি নিম্নবন্ধন m + m'। অতএব লযিষ্ঠ ঊধ্ববন্ধন sup { $x_n + y_n$ } $\leq M + M'$ এবং গরিষ্ঠ নিম্নবন্ধন inf { $x_n + y_n$ } $\geq m + m'$ । অন্য প্রমাণগুলিরও অনুরূপ

3. (i) $x_{2m} = 1 + 1/2m$, $x_{2m+1} = -1 + 1/(2m+1) + x_1 = 0$, $x_2 = 3/2$, $1 < x_{2m} \le 3/2$, $-1 < x_{2m+1} \le 0$. বৃহত্তম পদ $3/2 = \sup \{x_n\}$; $\inf \{x_n\} = -1$ কেননা $\varepsilon > 0$ প্ৰদত্ত হলে $x_{2m+1} < -1 + \varepsilon$ যদি $m = \left[\frac{1}{2}(1/\varepsilon - 1)\right] + 1$ ইত্যাদি $\varepsilon < 1$

(ii)
$$x_n = n (n - 1)$$
; $\{x_n\}$ একাষয়ে বর্ষমান এবং $x_1 = 0$ । তাই $x_1 = 0$ কুরতম পদ = inf $\{x_n\}$.
sup $\{x_n\} = \infty$ । যেহেতু ক্রমটি উপরে অনাবদ্ধ কেননা অপভ $G > 0$ -র জনেয $x_n > G$ যখন
 $n = \left[\sqrt{G + \frac{1}{4}} + \frac{1}{2}\right] + 1$
(iii) $\{x_n\}$ একাষয়ে হ্রাসমান এবং $x_1 = 1/2$ । বৃহত্তম পদ = $1/2 = \sup\{x_n\}$ | inf $\{x_n\} = 0$
কারণ প্রত্যেক n -এর জনেয $x_n \ge 0$ এবং প্রদত্ত $\varepsilon > 0$ -র জনেয $x_n < \varepsilon$ যদি
 $n = \left[1/2\varepsilon + \sqrt{1/4\varepsilon^2 - 1}\right] + 1$
4. (i) $1/(1 + n^2) < \varepsilon$ যখন $n \ge n_0 = \left[\sqrt{1/\varepsilon - 1}\right] + 1$
(ii) $\left|\frac{n^2 - n + 1}{2n^2 + 1} - \frac{1}{2}\right| = \frac{2n - 1}{2(2n^2 + 1)} < \varepsilon$ যখন $n \ge n_0 = \left[\frac{1}{2}(\varepsilon^{-1} + \sqrt{\varepsilon^2 - \varepsilon^{-1} - 2})\right] + 1$
(iii) $\left|\sqrt{n + 1} - \sqrt{n}\right| = \frac{1}{\sqrt{n + 1} + \sqrt{n}} < \varepsilon$ যখন $n \ge n_0 = \left[\frac{1}{2}(\varepsilon^{-1} + \sqrt{\varepsilon^2 - \varepsilon^{-1} - 2})\right] + 1$
(iii) $\left|\sqrt{n + 1} - \sqrt{n}\right| = \frac{1}{\sqrt{n + 1} + \sqrt{n}} < \varepsilon$ যখন $n \ge n_0 = \left[\frac{1}{2}(\varepsilon^{-1} + \sqrt{\varepsilon^2 - \varepsilon^{-1} - 2})\right] + 1$
(iii) $\left|\sqrt{n + 1} - \sqrt{n}\right| = \frac{1}{\sqrt{n + 1} + \sqrt{n^2}} < \varepsilon$ যখন $n \ge n_0 = \left[\frac{1}{2}(\varepsilon^{-1} + \sqrt{\varepsilon^2 - \varepsilon^{-1} - 2})\right] + 1$
(iii) $\left|\sqrt{n + 1} - \sqrt{n}\right| = \frac{1}{\sqrt{n + 1} + \sqrt{n^2}} < \varepsilon$ যখন $\frac{1}{2\sqrt{n}} < \varepsilon$ বা $n \ge n_0 = \left[\frac{1}{4\varepsilon^2}\right] + 1$
5. (i) $\lim \frac{5n^2 + 2n + 1}{n^2 + n - 3} = \lim \frac{5 + 2/n + 1/n^2}{1 + 1/n - 3/n^2} = \frac{5 + 2 \lim(1/n) + \lim(1/n^2)}{1 + \lim(1/n) - 3\lim(1/n^2)} = \frac{5 + 2.0 + 0}{1 + 0 - 3.0} = 5$
(ii) $\lim \left(\frac{1}{n^2} + \frac{2}{n^2} + \dots + \frac{n}{n^2}\right) = \lim \frac{1}{2} \left(1 + \frac{1}{n}\right) = \frac{1}{2} \left(1 + \lim \frac{1}{n}\right) = \frac{1}{2} (1 + 0) = \frac{1}{2}$
(iii) $\lim n(\sqrt{n^2 + 1} - \sqrt{n^2 - 1}) = \lim \frac{2}{\sqrt{1 + 1/n^2} + \sqrt{1 - 1/n^2}} = \frac{2}{\sqrt{1 + 0} + \sqrt{1 - 0}} = 1$
(iii) $\frac{1}{\sqrt{n^2 + 1}} + \frac{1}{\sqrt{n^2 + 2}} + \dots + \frac{1}{\sqrt{n^2 + n}} \le \frac{n}{\sqrt{n^2 + 1}} = \frac{1}{\sqrt{1 + 1/n}} \rightarrow 1$
7. $\frac{1}{\sqrt{n^2 + 1}} + \frac{1}{\sqrt{n^2 + 2}} + \dots + \frac{1}{\sqrt{n^2 + n}} \ge \frac{n}{\sqrt{n^2 + n}} = \frac{1}{\sqrt{1 + 1/n}} \rightarrow 1$
7. $\frac{1}{\sqrt{n^2 + 1}} + \frac{1}{\sqrt{n + 2}} + \dots + \frac{1}{\sqrt{n^2 + n}} \ge \frac{n}{\sqrt{n^2 + n}} = \frac{1}{\sqrt{1}}$
8. (i) খ ख code | y_n | \le A সব n-এর জনেও (i) $| x_n | \le \varepsilon / A$ যখন $n \ge n_0$
(i) $| x_n > 1/z$ যখন $n \ge n_0$ আবে $0 < 1/x_n < \varepsilon$ যখন $n \ge n_0$.
(ii) $| x_n > 1/z$ যখন $n \ge n_0$ আবে $0 < 1/x_n < \varepsilon$ যখন $n \ge n_0$.

9. যদি $x_n \to l$ হয় $l - \varepsilon < x_n < l + \varepsilon$ যখন $n \ge n_0$, তাহলে সব *n*-এর জন্যে $a \le x_n \le b$ যেখানে $a = \min \{l - \varepsilon, x_1, x_2, \dots, x_{n_0-1}\}, b = \max \{l + \varepsilon, x_0, \dots, x_{n_0-1}\}.$

- 10. $||x_n| |l|| \le |x_n l| \le \varepsilon$ যখন $n \ge n_0$ অর্থাৎ $|x_n| \to |l|$ । বিপরীত উক্তি অসত্য যদি $l \ne 0$, কেননা, যদি $x_n = (-1)^n$ হয়, $|x_n| = 1 \to 1$, কিন্তু { x_n } অপসারী।
- দেখান যে ক্রমটি একান্বয়ে বর্ধমান।

$$x_n = \frac{n^2 - n + 1}{n^2 + 1} = \frac{1 - 1/n + 1/n^2}{1 + 1/n^2} \rightarrow \frac{1 - 0 + 0}{1 + 0} = 1$$

Solve sup { x_n } = lim $x_n = 1$.

- তাই sup { x_n } = lim $x_n = 1$. 12. দেওয়া আছে $\alpha > 0$, $\alpha^2 - \alpha - a = 0$ বা $\alpha = \sqrt{a + \alpha}$ । আরোহ নীতির দ্বারা প্রমাণ করুন : যদি $x_1 < \alpha > \alpha$ হয়, তাহলে প্রত্যেক *n*-এর জন্যে $x_n < \alpha > \alpha$ । এবার $x_{n+1} \ge \alpha \ge x_n$ হয় যদি $x_n^2 - x_n - \alpha \le 0$ অথবা $(x_n - \alpha)$ $(x_n + \beta) \le 0$ $(\beta > 0)$ অথবা $x_n \le \alpha$ হয় ইত্যাদি।
- 13. $0 < x_n \le \frac{n}{n+1} < 1$. দেখান যে $x_{n+1} > x_n$

14. योप
$$m = \max \{ p, q \}$$
 दश, $a_p \le a_m \le b_m \le l_q$.

15.
$$\frac{n-1}{2n+1} = \frac{1}{2} \left(1 - \frac{3}{2n+1} \right) \rightarrow \frac{1}{2}, \frac{n+1}{2n-1} = \frac{1}{2} \left(1 + \frac{3}{2n-1} \right) \rightarrow \frac{1}{2}$$

এর থেকে স্পষ্ট যে $\left\{ \frac{n-1}{2n+1} \right\}$ একান্বয়ে বর্ধমান ও $\left\{ \frac{n+1}{2n-1} \right\}$ একান্বয়ে হ্রাসমান এবং সহজেই দেখা
যায় $\frac{n-1}{2n+1} < \frac{n+1}{2n-1}$ ইত্যাদি।

- 16. উপপাদ্য 2.7.20 প্রয়োগ করুন।
- 17. প্রত্যেক n-এর জন্য একটি মূলদ সংখ্যা r_n নির্বাচন করুন যে $\alpha < r_n < \alpha + 1/n, \{r_n\}, \alpha$ -র প্রতি অভিসারী।

একক 3 🗆 বীজগাণিতিক প্রেক্ষাপট

গঠন

- 3.1 প্রস্তাবনা
- 3.2 উদ্দেশ্য
- 3.3 সেটের বীজগণিত
- 3.4 অপেক্ষক বা চিত্রণ
- 3.5 সসীম ও অসীম সেট
- 3.6 গণনযোগ্য সেট
- 3.7 সারাংশ
- 3.8 সর্বশেষ প্রশ্নাবলী
- 3.9 উত্তরমালা

3.1 প্রস্তাবনা

আমাদের পরবর্তী এককের আলোচনার বিষয় বাস্তব সংখ্যার সেটের গাঠনিক ধর্মাবলী যা বিশ্লেষণ তত্ত্বে বিশেষ গুরুত্বপূর্ণ। এই আলোচনা সুষ্ঠভাবে করার জন্য প্রয়োজন হয় বিমূর্ত বীজগণিতের কিছু ধারণা ও সংকেত চিহ্ন যা এই এককে জানা যাবে। এরমধ্যে সেটের বীজগণিত, অপেক্ষক বা চিত্রণের বিমূর্ত সংজ্ঞা, দুটি সেটের সমতুল্যতা, গণনযোগ্য সেটের ধারণা অন্যতম।

3.2 উদ্দেশ্য

এই এককে আপনারা জানতে পারবেন

- সেটের বীজগণিত
- অপেক্ষক বা চিত্রণের বিমৃর্ত সংজ্ঞা
- সসীম ও অসীম সেটের সংজ্ঞা
- গণনযোগ্য সেটের ধারণা

3.3 সেটের বীজগণিত

ধরুন *S* একটি প্রদত্ত সেট এবং *A*, *B*, *C* ..., *A*₁, *A*₂...এর উপসেট যাদের বিষয় আমার আলোচনা করব। এই প্রসঙ্গে S-কে একটি **সার্বিক (universal)** সেট বা দেশ (space) বলা হয় এবং উপসেটগুলিকে *S* দেশে সেট বলা হয়। S-এর একটি সাধারণ উপাদানকে *x* দিয়ে চিহ্নিত হবে।

সংজ্ঞা 3.3.1 : $A \, {
m S} \, B$ -র সংযোগের (union) চিহ্ন হবে $A \cup B$ এবং সংজ্ঞা হবে সেইসব উপাদানের সেট Aও B-এর মধ্যে অন্তত একটিতে অবস্থিত, অর্থাৎ

$$A \cup B = \{ x \mid x \in A \ \text{at} \ x \in B \}$$

উপপাদ্য 3.3.1 : (i) $(A \cup B) \cup C = A \cup (B \cup C)$ যার ফলে প্রত্যেক পক্ষকে লেখা যায় $A \cup B \cup C$. (ii) $A \cup B = B \cup A$ এবং (iii) যদি $A \supseteq B$ হয়, $A \cup B = A \square$

সংজ্ঞা 3.3.2 : $A_1 \cup A_2 \cup ... \cup A_m = \bigcup_{i=1}^m A_i = \{x \mid A_1, A_2, ..., A_m$ সেটগুলির অন্তত একটিতে xআছে }

সেটের একটি ক্রম { A, }-র জন্যে,

 $\displaystyle \bigcup_{n=1}^{\infty} A_n = x \, | \, x \in A_n, \; n$ -এর অন্তত একটি মানের জন্যে } আরো সাধারণভাবে যদি $\sigma = \{A\}$ একটি সেটের বর্গ হয়.

 $\bigcup_{A\in\sigma}A=\{\,x\,|\,x\in A$ অন্তত একটি সেট $A\in\sigma$ -র জন্যে $\}$

সংজ্ঞা 3.3.3 : A ও B-র ছেদের (intersection) চিহ্ন হবে $A \cap B$ এবং সংজ্ঞা হবে সেইসব উপাদানের সেট যা A ও B উভয়েই আছে; অৰ্থাৎ

$$A \cap B = \{ x \mid x \in A \quad \text{and} \quad x \in B \}$$

উপপাদ্য 3.3.2 : (i) $(A \cap B) \cap C = A \cap (B \cap C)$ যার ফলে প্রত্যেক পক্ষকে লেখা যায়

 $A \cap B \cap C$, (ii) $A \cap B = B \cap A$ (iii) যদি $A \supseteq B$, $A \cap B = B \square$ সংজ্ঞা 3.3.3 : $A_1 \cap A_2 \cap ... \cap A_m = \bigcap_{i=1}^m A_i = \{x \mid A_1, A_2, ..., A_m \}$ সেটগুলির প্রত্যেকটিতে x আছে। { A "}-এর জন্যে

 $\sum_{n=1}^{\infty} A_n = \{x \mid x \in A_n, n \text{ - এর প্রত্যেক মানের জন্যে }\}$ যদি σ = { A } একটি সেটের বর্গ হয়

 $A \in \sigma^{A} = \{x \mid x \in A \text{ প্রত্যেক সেট } A \in \sigma^{A}$ জন্যে }

সংজ্ঞা 3.3.4 : A ও B-কে বিচ্ছিন্ন (disjoint) বলা হয় যখন $A \cap B = \Phi$

উপপাদ্য 3.3.3 : (i) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$, (ii) $\sigma = \{B\}$ হলে,

$$4 \cap (\bigcup B) = \bigcup_{B \in \sigma} (A \cap B)$$

প্ৰমাণ : (ii) যদি $x \in 4$ াঁপক্ষ, $x \in A$ এবং $x \in \bigcap_{B \in \sigma} B$ বা অন্তত একটি এমন সেট $B \in \sigma$ আছে যে $x \in B$ এবং তাই $x \in A \cap B$ যার মানে হল $x \in \bigcup_{B \in \sigma} (A \cap B)$ অতএব বাঁপক্ষ \subseteq ডানপক্ষ।

যদি $x\in$ ডানপক্ষ, অন্তত একটি এমন সেট $B\in \sigma$ আছে যে $x\in A\cap B$, তাই $x\in A$ এবং $x\in B$ যার ফলে $x \in A$ এবং $x \in \bigcup_{\substack{B \in \sigma \\ B \in \sigma}} B$ বা $x \in 4$ াঁপক্ষ। অতএব ডানপক্ষ $\subseteq 4$ াঁপক্ষ এবং (ii) প্রমাণিত হল। \square সংজ্ঞা 3.3.5 : $A - B = \{x \mid x \in A$ এবং $x \notin B\}$

S-A কে A সেটের পুরক (complement) বলা হয় এবং তার চিহ্ন \overline{A} , অর্থাৎ $\overline{A} = \{x \mid x \notin A\} 1$.

উপপাদ্য 3.3.4 : (i) $A \cap \overline{A} = \Phi$, (ii) $A \cup \overline{A} = S$, (iii) $\overline{\overline{A}} = A$, এবং (iv) $A - B = A \cap \overline{B} \square$ উপপাদ্য 3.3.5 : (i) $\overline{A \cup B} = \overline{A} \cap \overline{B}$ (ii) $\overline{A \cap B} = \overline{A} \cup \overline{B}$

প্ৰমাণ : (i) যদি x বাঁপক্ষে থাকে, $x \in A \cup B$ মিথ্যে যার মানে হল $x \notin A$ এবং $x \notin B$ বা $x \in \overline{A}$ এবং $x \in \overline{B}$ তাই x ডানপক্ষে আছে। যদি x ডানপক্ষে থাকে, $x \in \overline{A}$ এবং $x \in \overline{B}$ অর্থাৎ $x \notin A$ এবং $x \notin B$ যার ফলে $x \in A \cup B$ মিথ্যে বা $x \notin A \cup B$ বা x বাঁপক্ষে আছে। তাই (i) সত্যি \Box

উপপাদ্য 3.3.6 : $\sigma = \{A\}$ বর্গের জন্যে

$$(i) \overline{\bigcup A} = \bigcap_{A \in \sigma} \overline{A} \quad \text{and} \quad (ii) \quad \overline{\bigcap A} = \bigcup_{A \in \sigma} \overline{A} \quad \Box$$

সংজ্ঞা 3.3.6 : একটি সেটের ক্রম { A_n }-কে **একান্বয়ে বর্ধমান বা প্রসারমান (expanding**) বলা হয় যদি প্রত্যেক *n*-এর জন্যে $A_n \subseteq A_{n+1}$ । এক্ষেত্রে { A_n } এই ক্রমের বহির্সীমা সেটের (Outer-limiting set) চিহ্ন হবে $\lim_{n\to\infty} A_n$ বা lim A_n এবং তার সংজ্ঞা হবে

$$\lim A_n = \bigcup_{n=1}^{\infty} A_n$$

 $\{A_n\}$ ক্রমকে **একান্বয়ে হ্রাসমান বা সংকোচমান (Contracting)** বলা হয় প্রত্যেক *n*-এর জন্যে $A_n \supseteq A_{n+1}$ এবং সেক্ষেত্রে এই ক্রমের অন্তর্সীমাসেটের (inner limiting set) চিহ্ন হবে $\lim_{n\to\infty} A_n$ বা lim A_n এবং তার সংজ্ঞা হবে

$$\lim A_n = \bigcap_{n=1}^{\infty} A_n$$

উদাহরণ : 1. যদি $A_n = (-n, n)$ হয় তাহলে $\lim A_n = (-\infty, \infty)$. স্পষ্টতই { A_n } প্রসারমান এবং যে-কোন বাস্তব সংখ্যা x-এর জন্যে একটি ধনাত্মক পূর্ণসংখ্যা *m* আছে এমন যে m > | x | বা -m < x < m অথবা $x \in A_m$ যার মানে $x \in \bigcup_{n=1}^{\infty} A_n = \lim A_n$ উদাহরণ : 2. যদি $A_n = (0, 1/n)$ হয়, তাহলে $\lim A_n = 0$ ।

 $\{A_n\}$ সংকোচমান এবং যদি $x \in \lim A_n = \bigcap_{n=1}^{\infty} A_n$, তাহলে প্রত্যেক *n*-এর জন্যে $x \in A_n$ বা 0 < x < 1/n যার ফলে n < 1/x যা বাস্তব সংখ্যার আর্কিমিডীয় ধর্মের পরিপন্থী।

3.4 অপেক্ষক বা চিত্রণ

সংজ্ঞা 3.4.1 : ধরা যাক A. B যে-কোন দুটি সেট। যদি A-র প্রত্যেক উপাদান a-র জন্যে, কোন প্রদন্ত নিয়ম অনুযায়ী, B-এর একটি অনন্য উপাদান b পাওয়া যায়, তাহলে এই প্রতিসঙ্গকে A থেকে B তে একটি **অপেক্ষক** (function) বা চিত্রণ (mapping) বলা হয় এবং আমরা লিখি $f: A \to B$ বা $f: a \to b$ । এক্ষেত্রে এও লেখা হয় যে b = f(a) এবং b-কে f অপেক্ষকের a-তে মান অথবা f চিত্রণে a-র প্রতিবিশ্ব (image) বলা হয়।

সেট A-কে f-এর **সংজ্ঞাভূমি (domain of definition)** বলা হয়। সব a-র জন্যে স্বতন্ত্র f(a)-গুলির সেটকে f-এর **পাল্লা (range)** বলা হয় এবং f(A) দ্বারা চিহ্নিত হয়। স্পষ্টতই f(A) ⊆ B। সংজ্ঞা 3.4.2 : $f: A \rightarrow B$ -কে সৰ্বগত অপেক্ষক (onto function) বা উপরিচিত্রণ (onto mapping) বলা হয় যখন f(A) = B.

f:A o B-কে **একৈক (one-to-one)** অপেক্ষক বা চিত্রণ বলা হয় যখন A-র দুটি ভিন্ন উপাদান a ও a ⁄-এর জন্যে $f(a) \neq f\left(a'
ight)$ ।

সংজ্ঞা 3.4.3 : যদি $f: A \to B$ একটি একৈক এবং সর্বগত অপেক্ষক হয়, তাহলে f-এর ব্যস্ত অপেক্ষক (inverse function) f^{-1} দ্বারা সুচিত হবে এবং তার সংজ্ঞা হবে $f^{-1}: B \to A$ এমন যে প্রত্যেক $b \in B$ -র জন্যে

 $f^{-1}(b) = a$ যেখানে b = f(a)। f একৈক ও সর্বগত হওয়ার জন্য f^{-1} সত্যিই একটি অপেক্ষক।

ঊপপাদ্য 3.4.1 : f একৈক ও সবর্গত হলে, f ⁻¹-ও একৈক ও সর্বগত এবং (f ⁻¹) = f. 🗖

এবার দুটি অপেক্ষকের যৌগের কথায় আসি।

সংজ্ঞা 3.4.4 : ধরা যাক A, B, C তিনটি সেট এবং $f : A \to B$, $g = B \to C$ দুটি প্রদন্ত অপেক্ষক। তাহলে $g \circ f$ -র যৌগ (composite) $g \circ f$ দ্বারা চিহ্নিত হবে এবং তার সংজ্ঞা হবে $g \circ f : A \to C$ এমন যে প্রত্যেক $a \in A$ -র জন্যে { $(g \circ f) (a) = g (f (a))$.

সংজ্ঞা 3.4.5 : A থেকে A-তে অপেক্ষককে A-র একটি রূপান্তর (Transformation) বলা হয়। একটি একৈক ও সর্বগত রূপান্তরকে **অবিশিষ্ট রূপান্তর (non-singular transformation)** বলা হয়। সংজ্ঞা 3.4.6 : একটি সেট A-কে সেট B-র সমতূল্য (equivalent) বলা হয় এবং লেখা হয় A ~ B যদি A থেকে B-তে একটি একৈক ও সবর্গত অপেক্ষক অস্তিত্বমান।

উপপাদ্য 3.4.2 : (i) $A \sim A$, (ii) $A \sim B$ হলে $B \sim A$ এবং (iii) A - B এবং $B \sim C$ হলে $A \sim C$.

শ্রমাণ: (i) অভেদ অপেক্ষক $I: A \to A$, যার সংজ্ঞা I(a) = a প্রত্যেক $a \in A$ -র জন্যে, একৈক ও সবর্গত। (ii) $A \sim B$ হলে একটি একৈক ও সবর্গত অপেক্ষক $f: A \to B$ আছে এবং তাই $f^{-1}: B \to A$ যা একৈক ও সর্বগত অস্তিত্বমান। (iii) স্বীকৃতি থেকে $f: A \to B$ ও $g: B \to C$ দুটি একৈক ও সর্বগত অপেক্ষক আছে। তাহলে যৌগিক অপেক্ষক $g \circ f: A \to C$ একৈক ও সর্বগত কেননা প্রত্যেক $c \in C$ -র জন্যে এমন একটি $b \in B$ বর্তমান (য g (b) = c এবং এই b-র জন্যে এমন একটি $a \in A$ বর্তমান যে f (a) = b; অতএব ($g \circ f$) (a) = g(f(a)) = g(b) = c. যদি ($g \circ f$)(a) = ($g \circ f$) (a') হয়, g(f(a)) = g(f(a')), তাহলে f(a) = f(a') কেননা g একৈক, ফলে a = a' কেননা f একৈক। \Box

3.5 সসীম ও অসীম সেট

সংজ্ঞা 3.5.1 : একটি সেট S-কে সসীম (finite) বলা হয় যদি এমন একটি ধনাত্মক পূর্ণসংখ্যা থাকে যে $S \sim \{ 1, 2, ..., n \}$ এবং এক্ষেত্রে বলা হয় যে S-এর n-টি উপাদান আছে। শূন্য সেটকেও সসীম সেট বলা হবে। $\sim \dagger \mu$ কি $a = \{x_1, x_2, ..., x_n\}$. একটি সেটকে অসীম (infinite) বলা হয় যে ি তা সসীম না হয়। একটি সেটকে অসীম (infinite) বলা হয় যদি তা সসীম না হয়। উপপাদ্য 3.5.1 : (i) একটি সসীম সেটের উপসেট সসীম। (ii) A, B সসীম হলে, $A \cup B$ সসীম। প্রমাণ : (ii) B-র উপাদান সংখ্যার উপর আরোহ নীতি প্রয়োগ করে। \Box

উপপাদ্য 3.5.2 : বাস্তব সংখ্যার একটি অশূন্য সসীম সেটের একটি বৃহত্তম ও একটি ক্ষুদ্রতম উপাদান আছে। প্রমাণ : বৃহত্তম উপাদানের অংশ প্রমাণ করা যাক। উক্তিটি একটি উপাদানবিশিষ্ট সব সেটের জন্যে সত্যি। ধরা যাক উক্তিটি n উপাদানবিশিষ্ট সব সেটের জন্যে সত্যি এবং S, n + 1 উপাদানবিশিষ্ট বাস্তব সংখ্যার একটি সেট। তাহলে আমরা লিখতে পারি S = {x₁, x₂, ..., x_{n+1} }। আরোহ স্বীকৃতির দ্বারা { x₁, x₂, ..., x_n } এই সেটের একটি বৃহত্তম উপাদান y আছে। যদি y ≤ x_{n+1} হয়, x_{n + 1} S-এর বৃহত্তম উপাদান আর যদি y > x_{n+1} হয়, y S-এর বৃহত্তম উপাদান। আরোহ নীতির দ্বারা সব অশূন্য সেটের জন্যে উক্তিটি সত্যি। □

উপাদান 3.5.3 : ধনাত্মক পূর্ণসংখ্যার সেট N অসীম।

প্রমাণ : যদি N সসীম হোত, উপপাদ্য 3.5.2 দ্বারা N-এর একটি বৃহত্তম সংখ্যা m থাকত, কিন্তু m + l ∈ N যা দেখায় যে m, N-এর বৃহত্তম সংখ্যা নয়। অতএব N অসীম। □

3.6 গণনযোগ্য সেট

সংজ্ঞা 3.6.1 : একটি সেট S-কে গণনাযোগ্য (countable or enumerable) বলা হয় যদি S ~ N যেখানে N সব ধনাত্মক পূর্ণসংখ্যার সেট।

স্পষ্টতই একটি গণনযোগ্য সেট S অসীম এবং এইভাবে সূচিত করা হয় : $S=\{x_1, x_2 \dots\}=\{x_n\}$.

একটি সেটকে সর্বাধিক গণনযোগ্য (at most countable) বলা হয় যদি তা সসীমা অথবা গণনযোগ্য হয়। একটি সেটকে অগণনযোগ্য বলা হয় যদি তা সসীমা বা গণনযোগ্য কোনটাই না হয়।

মন্তব্য: ধরা যাক { x_n } একটি ক্রম যার পদগুলি সব ভিন্ন। তাহলে এইক্রমের পাল্লা একটি সেট যার চিহ্ন হবে { x_n } অর্থাৎ একটি চিহ্ন দুটি পৃথক বস্তুর জন্যে ব্যবহৃত হচ্ছে। এর ফলে বিশৃঙ্খলা সৃষ্টি হতে পারে। বস্তুত ক্রম { x_n } একটি অপেক্ষক যার সংজ্ঞাভূমি *N* এবং রীতি অনুযায়ী *x* চিহ্ন দ্বারা সূচিত করা উচিত যার ফলে *n*-এ *x*-এর মান হবে x(n) যা x_n আকারে লেখা হয়েছে এবং অএপক্ষক *x*-এর বদলে { x_n } লেখা হয়েছে। এই চিহ্নই প্রাচীনকাল থেকে ব্যবহৃত হয়ে আসছে এবং আমরাও এই প্রচলিত চিহ্নই ব্যবহার করব। প্রসঙ্গ থেকেই বোঝা যাবে যে চিহ্নটি ক্রম সূচিত করছে না সেট।

উপপাদ্য 3.6.1 : একটি সর্বাধিক গণনযোগ্য সেট কোন একটি ক্রমের পাল্লা। বিপরীতক্রমে যে-কোন ক্রমের পাল্লা একটি সর্বাধিক গণনযোগ্য সেট।

যদি S গণনযোগ্য হয়, $S = \{x_n\}$ -এর $\{x_n\}$ এই ক্রমটির সব উপাদান ভিন্ন এবং এর পাল্লা S।

বিপরীতক্রমে ধরা যাক $\{x_n\}$ একটি ক্রম। লিখুন $n_1 = 1 + \{n \mid n > n_1 \text{ dat} x_n \neq x_{n1}\}$ এই সেটটি হয় শূন্য না হয় অশূন্য ; প্রথম ক্ষেত্রে $\{x_{n1}\}$ সসীম সেটটি ক্রমের পাল্লা এবং দ্বিতীয় ক্ষেত্রে উপরোক্ত সেটের একটি ক্ষুদ্রতম উপাদান n_2 আছে অর্থাৎ n_2 ক্ষুদ্রতম এমন সংখ্যা যে $n_2 > n_1$ এবং $x_{n2} \neq x_{n1}$ । আবার $\{n \mid n > n_2$ এবং x_{n2} $x_{n1} \otimes x_{n2}$ -র থেকে ভিন্ন $\}$ । সেটটি শূন্য অথবা অশূন্য; আগের ক্ষেত্রে $\{x_{n1}, x_{n2}\}$ এই সসীম সেট প্রদন্ত ক্রমের পাল্লা এবং পরের ক্ষেত্রে এমন ক্ষুদ্রতম সংখ্যা n_3 আছে যে $n_3 > n_2$ এবং $x_{n3} \neq x_{n1}, x_{n2}$ । এই প্রক্রিয়ায় আমরা পাই যে ক্রমের পাল্লা হয় সসীম না হয় অসীম যা এইভাবে লেখা যায় $\{x_{n1}, x_{n1},\}(n_1 < n_2 <)$ এবং তাই গণনযোগ্য। উপপাদ্য 3. 6. 2 : একটি গণনযোগ্য সেটের যে-কোন অসীম উপসেট গণনযোগ্য।

প্রমাণ : মনে করুন S একটি গণনযোগ্য সেট এবং A তার একটি অসীম উপসেট। যেহেতু S গণনযোগ্য, আমরা লিখতে পারি $S = \{x_n\}$.

এখন { $n \mid x_n \in A$ } সেটটি অশূন্য কেননা অন্যথায় $A = \Phi$ এবং তাই তার একটি ক্ষুদ্রতম উপাদান n_1 আছে অর্থাৎ n_1 এমন ক্ষুদ্রতম সংখ্যা যে $x_{n_1} \in A \mid$ এবার { $n \mid n > n_1$ এবং $x_n \in A \mid \neq \Phi$, কেননা অন্যথায় $A = \{x_{n_1}\}$ একটি সসীম সেট। তাই এমন একটি ক্ষুদ্রতম সংখ্যা n_2 আছে যে $n_2 > n_1$ এবং $x_{n_1} \in A \mid$ এই প্রক্রিয়ায় পাই যে

 $A = \{x_{n1}, x_{n2}, ...\} (n_1 < n_2 <)$ যা একটি গণনযোগ্য সেট ।

উপপাদ্য 3.6.3 : যদি A সসীম ও B গণনযোগ্য হয়, অথবা যদি A, B উভয়ই গণনযোগ্য হয়, তাহলে $A \cup B$ গণনযোগ্য।

প্রমাণ : স্বীকৃতির দ্বারা $A \otimes B$ যথাক্রমে $\{x_n\}$ এবং $\{y_n\}$ ক্রমের পাল্লা। তাহলে $\{x_1, y_1x_2, y_2,\}$ এই ক্রমের পাল্লা হল $A \cup B$, সেহেতু $A \cup B$ সর্বাধিক গণনযোগ্য, কিন্তু $A \cup B \supseteq B$ যা অসীম তাই $A \cup B$ সসীম নয়, অর্থাৎ গণনযোগ্য। \Box

উপপাদ্য 3.6.4 : (i) যদি { A_n } গণনযোগ্য সেটের একটি ক্রম হয়, তাহলে $\bigcup_{i=1}^{\infty} A_n$ গণনযোগ্য। (ii) যদি { A_n } সর্বাধিক গণনযোগ্য সেটের ক্রম হয়, তাহলে $\bigcup_{n=1}^{\infty} A_n$ সর্বাধিক গণনযোগ্য।

প্রমাণ : (i) আমরা লিখতে পারি

$$A_{1} = \left\{ x_{1}^{(1)}, x_{2}^{(2)}, x_{3}^{(1)}, \ldots \right\}$$
$$A_{2} = \left\{ x_{1}^{(2)}, x_{2}^{(2)}, x_{3}^{(2)}, \ldots \right\}$$
$$A_{3} = \left\{ x_{1}^{(3)}, x_{2}^{(3)}, x_{3}^{(3)}, \ldots \right\}$$

....

তাহলে

$$\left\{ \begin{array}{l} x_1^{(1)} ; x_2^{(1)} , x_1^{(2)} , \ x_3^{(1)} , x_2^{(2)} , x_1^{(3)} , \dots \end{array} \right\}$$
 এই ক্রমটির পাল্লা $\overset{\infty}{\underset{n=1}{\cup}} A_n$ যা তাই সর্বাধিক গণনযোগ্য। কিন্তু $\overset{\infty}{\underset{n=1}{\cup}} A_n \supseteq A_1$ একটি অসীম সেট যার ফলে

 $\overset{\infty}{\underset{n=1}{\cup}}A_n$ গণনযোগ্য। $(ext{ii})$ (i)-এর মতই। \square

3.7 সারাংশ

এই এককে কয়েকটি প্রয়োজনীয় বিমূর্ত বীজগণিতের ধারণার পরিচয় দেওয়া হয়েছে যা পরবর্তী বিশ্লেষণ তাত্ত্বিক আলোচনায় কাজে লাগবে যার মধ্যে আছে

(1) সেটের সংযোগ, ছেদ, অন্তর, পুরকের ধারণা ও তাদের প্রাথমিক ধর্মাবলী, একাম্বয়ী সেটের ক্রম এবং তার সীমাসেটের ধারণা। (2) অপেক্ষক বা চিত্রণের সংজ্ঞা, সর্বগত ও একৈক অপেক্ষকের ধারণা, দুটি সেটের সমতুল্যতার সংজ্ঞা ও সহজ ধর্ম।

(3) সসীম ও অসীম সেটের সংজ্ঞা, গণনযোগ্য ও অগণনযোগ্য সেটের ধারণা ও কয়েকটি প্রাথমিক ধর্ম।

3.8 সর্বশেষ প্রশ্নাবলী

- 1. প্রমাণ করুন S ∉
- 2. প্রমাণ করুন $(A-C) \cap (B-C) = (A \cap B) C$
- 3. (i) यपि $A_n = [0, 1/n]$ (n = 1, 2...), দেখান যে $\lim A_n = \{0\}$.

(ii) যদি $A_n = (n - 1, n)$ (n = 1, 2, ...) দেখান যে $\bigcup_{n=1}^{\infty} A_n = (0, \infty)$.

- 4. f, g, R থেকে R-এ দুটি অপেক্ষক।
 (i) f o g নির্ণায় করুন যেখানে f (x) = x², g (x) = 2x + 1।
 (ii) যদি (g o f) (x) = x² 2x + 1 এবং g (x) = x² হয়, তাহলে f নির্ণায় করুন।
- প্রমাণ করুন যে প্রত্যেক অসীম সেটের একটি গণনযোগ্য উপসেট আছে।
- প্রমাণ করুন যে সেইসব ক্রমের সেট যার পদগুলির মান 0 বা 1, অগণনযোগ্য।

3.9 উত্তরমালা

- 1. উপপাদ্য 3.3.3 (i)-এ A, B, C-র বদল যথাক্রমে $\overline{A}, \overline{B}, \overline{C}$ লিখে পূরক নিন।
- 2. বাঁপক্ষ = $(A \cap \overline{C}) \cap (B \cap \overline{C}) = A \cap B \cap \overline{C} =$ ডানপক্ষ।
- 3. (i) $0 \in A_n$ প্রত্যেক *n*-এর জন্যে। $0 \neq x \in A_n$ প্রত্যেক *n*-এর জন্যে হলে, $0 < x \le 1/n$ বা $n \le 1/x$ প্রত্যেক *n*-এর জন্যে যা অসত্য। তাই $\bigcap_{n=1}^{\infty} A_n = \{0\}$ । যেহেতু $\{A_n\}$ সংকোচমান প্রতিপাদ্য প্রমাণিত হল।

(ii) x > 0 হলে, লিখুন n = [x], যার ফলে $n \le x < n+1$ বা $n-1 < n \le x \le n$ বা $x \in (n-1, n)$ ইত্যাদি।

- 4. (i) $x_n \to 2x^2 + 1$, (ii) $x \to |x-1|$
- 5. S একটি অসীম সেট। ধরুন x₁ ∈ S তাহলে S { x₁ } অশূন্য এবং তাই এর একটি উপাদান x₂ আছে। আবার S – {x₁, x₂ } সেটটি অশূন্য এবং এর একটি উপাদান x₃ আছে। এই প্রক্রিয়ায় আমরা পাই S-এর একটি উপসেট { x₁, x₂, ... } যা গণনযোগ্য।
- 6. মনে করুন প্রশ্নোক্ত সেটটি S। স্পষ্টতই S অসীম। মনে করুন A, S-এর যে-কোন একটি গণনযোগ্য উপসেট যা এইভাবে লেখা যায় : A = { s₁, s₂, ... } । এবার S-এর উপাদান একটি ক্রম এইভাবে সংজ্ঞায়িত হল : s-এর n-তম পদ 0 (বা 1) হবে যদি s_n-এর n-তম পদ 1 (বা 0) হয় যার ফলে s ≠ s_n যে-কোন n-এর জন্যে। তাই s ∉ A অর্থাৎ A, S-এর একটি প্রকৃত উপসেট। যদি S গণনযোগ্য হত, তাহলে যেহেতু S ⊆ S, S নিজের একটি প্রকৃত উপসেট যা অসম্ভব। অতএব S অগণনযোগ্য।

একক 4 🗆 বিন্দুসেট

গঠন

4.1	প্ৰস্তাবনা

- 4.2 উদ্দেশ্য
- 4.3 বাস্তব সংখ্যার গণনাবিষয়ক ধর্ম
- 4.4 সীমাবিন্দু
- 4.5 বিন্দু সেটের রুদ্ধক ও অভ্যন্তর
- 4.6 মুক্ত ও রুদ্ধ সেট
- 4.7 আবরণ, নিবিড়তা
- 4.8 সারাংশ
- 4.9 সর্বশেষ প্রশ্নাবলী
- 4.10 উত্তরমালা

4.1 প্রস্তাবনা

এই এককে আমরা বাস্তব সংখ্যার সেটের গঠন বিষয়ক বিভিন্ন গুরুত্বপূর্ণ ধর্ম আলোচনা করব। ক্যান্টর-ডেডেকিন্ড স্বতঃসিদ্ধের সুবাদে বাস্তব সংখ্যার সেটকে বিন্দুসেট বলা হবে। বাস্তব সংখ্যা সমষ্টিকে R চিহ্ন দিয়ে সূচিত করা হবে এবং বিন্দুসেট বলতে R-এর একটি উপসেট বোঝাবে।

প্রথমে গণনাবিষয়ক দুটি ধর্ম প্রতিষ্ঠা করা হবে— মূলদ সংখ্যা সমষ্টি গণনযোগ্য এবং R অগণনযোগ্য।

তারপর সীমাবিন্দুর ধারণা দেওয়া হবে এবং এই প্রসঙ্গে একটি গুরুত্বপূর্ণ উপপাদ্য প্রমাণ করা হবে যার নাম বোলৎসানো-ভাইয়েরস্ট্রাস উপপাদ্য।

যে-কোন বিন্দুসেটের রুদ্ধক ও অভ্যন্তরের সংজ্ঞা ও তাদের ধর্ম বিষয়ে আলোচনা হবে।

এরপরে আসবে মুক্ত ও রুদ্ধ সেটের ধারণা ও ধর্মাবলী। এই প্রসঙ্গে একটি গুরুত্বপূর্ণ ফলাফল হল ক্যান্টরের উপপাদ্য।

শেষে যে-কোন সেটকে মুক্ত অন্তর সমূহ দ্বারা আবরণ করার ধারণা দেওয়া হবে এবং এই বিষয়ে দু'টি প্রধান ফল হল লিন্ডেলোয়েফের উপপাদ্য ও হাইনে-বোরেল উপপাদ্য। দ্বিতীয় উপপাদ্যটির সূত্র ধরে নিবিড় সেটের ধারণা আসবে এবং প্রমাণ করা যাবে যে নিবিড় সেট এবং বদ্ধ রুদ্ধ সেট সমার্থক।

4.2 উদ্দেশ্য

এই একক পড়ে আপনারা জানতে পারবেন

- 🔍 মূলদ সংখ্যাসমষ্টি গণনযোগ্য কিন্তু বাস্তব সংখ্যা সমষ্টি অগণনযোগ্য
- সীমাবিন্দুর সংজ্ঞা ও ধর্ম

- বিন্দুসেটের রুদ্ধক ও অভ্যন্তরের ধারণা
- মুক্ত ও রুদ্ধ সেটের সংজ্ঞা ও ধর্মাবলী
- 🔹 মুক্ত অন্তরসমূহ দ্বারা আবরণ ও নিবিড়তার ধারণা

4.3 বাস্তব সংখ্যার গণনাবিষয়ক ধর্ম

উপপাদ্য 4.3.1 : সব মূলদ সংখ্যার সেট গণনযোগ্য।

প্রমাণ : মনে করুন A_+ , সব ধনাত্মক মূলদ সংখ্যার সেট। প্রত্যেক স্থির n-এর জন্যে লিখুন।

~ { m | m ও n আপেক্ষিকভাবে মৌলিক ধনাত্মক পূর্ণসংখ্যা } ⊆ N যার ফলে B_n সর্বাধিক গণনযোগ্য। তাহলে

 $A_+ = igcup_{n=1}^\infty B_n$ সেটও সর্বাধিক গণনযোগ্য। যেহেতু $A_+ \supseteq N$ যা একটি অসীম সেট, $A_+,$ গণনযোগ্য।

সব ঋণাত্মক মূলদ সংখ্যার সেট $A_{\perp} \sim A_{\perp}$ তাই A_{\perp} ও গণনযোগ্য। অতএব সব মূলদ সংখ্যার সেট

 $= A_+ \cup A_- \cup \{0\}$ र्शनरयांश्य। \square

উপপাদ্য 4.3.2 : (i) যদি a < b হয়, [a, b] অগণনযোগ্য। (ii) R অগণনযোগ্য।

প্রমাণ : (i) স্পষ্টতই a < b হলে, [a, b] অসীম সেট। সম্ভব হলে ধরুন যে [a, b] গণনযোগ্য। তাহলে লেখা যায় [a, b] = { x_n }.

[a, b] অন্তরকে তিনটি সমান ভাগে ভাগ করা হোক $c_1 = a + (b - a) / 3$ এবং $c_2 = b - (b - a)/3$ বিন্দুর দ্বারা। $[a, c_1]$, $[c_1, c_2]$, $[c_2, b]$ এই তিনটি উপান্তরালের মধ্যে একটিকে নির্বাচন করুন যাতে x_1 নেই এবং তাকে $[a_1, b_1]$ বলা হোক। তাই $x_1 \notin [a_1, b_1]$.

আবার [a_1, b_1]-কে তিনটি সমান উপান্তরালে ভাগ করা হোক এবং তার মধ্যে একটিকে নির্বাচন করা হোক যাতে x_2 নেই এবং তাকে [a_2, b_2] অখ্যা দেওয়া হোক। যেহেতু $x_2 \notin [a_2, b_2]$ ।

এই প্রক্রিয়ায় পুনরাবৃত্তি করে আমরা একটি রুদ্ধ অন্তরালের নীড় $[a_n | b_n]$ পাব এমন যে $x_n \notin [a_n, b_n]$ প্রত্যেক *n*-এর জন্যে। যদি { $a_n | b_n$ } নীড়টি বাস্তব সংখ্যা α -কে নির্ধারণ করে, অর্থাৎ $\alpha \in [a_n, b_n]$ প্রত্যেক *n*-এর জন্যে, তাহলে যে-কোন *n*-এর জন্যে $\alpha \neq x_n$ এবং তাই $\alpha \notin \{x_n\} = [a, b]$ যা অসম্ভব। অতএব [a, b]অগণনযোগ্য।

(ii) R ⊇ [0,1] যা অগণনযোগ্য। □

4.4 সীমাবিন্দু

সংজ্ঞা 4.4.1 : ধরা যাক *a* একটি প্রদত্ত বিন্দু এবং $\delta > 0$ । তাহলে ($a - \delta$, $a + \delta$) এই মুক্ত অন্তরালকে *a* বিন্দুর δ -সান্নিধ্য বা δ -সামীপ্য (δ -neighbourhood) বলা হয় এবং তার চিহ্ন হল $N(a ; \delta)$ বা শুধু N(a) যদি δ -র উল্লেখ নিষ্প্রয়োজন হয়।

 $N(a \ ; \ \delta) - \{ \ a \ \}$ এই সেটকে **ছিদ্রিত (deleted)** δ-সামীপ্য বলা হবে এবং $N'(a \ ; \ \delta)$ বা N'(a) দ্বারা সূচিত হবে। সংজ্ঞা 4.4.2 : α বিন্দুকে একটি প্রদন্ত সেট E-র সীমাবিন্দু বা গুচ্ছবিন্দু (limit point or accumulation point) বলা হয় যদি প্রত্যেক δ -র জন্যে N' (α , δ) তে E-র একটি বিন্দু থাকে।

E-র এমন একটি বিন্দু যা সেটটির সীমাবিন্দু নয়, তাকে E-র বিচ্ছিন্ন বিন্দু (isolated point) বলা হয়।

মন্তব্য ঃ সীমাবিন্দু সেটের বিন্দু নাও হতে পারে।

সহজেই দেখা যায় যে

উপপাদ্য 4.4.1 : একটি বিন্দু α সেট *E*-র সীমাবিন্দু হয় যদি এবং একমাত্র যদি প্রত্যেক সামীপ্য *N*(α)-তে *E-*র অসীম সংখ্যক বিন্দু থাকে। 🔲

উপরোক্ত উপপাদ্যটি সীমাবিন্দুর আসল রূপ প্রকাশ করে। নিচের উপপাদ্যে সীমাবিন্দুর ক্রমের দ্বারা অন্য একটি রূপায়ণ আছে যা খুবই কাজে লাগে।

উপপাদ্য 4.4.2 : একটি বিন্দু α, *E*-সেটের সীমাবিন্দু হয় যদি এবং একমাত্র যদি *E*-র ভিন্ন বিন্দুর একটি ক্রম থাকে যা α-র প্রতি অভিসারী।

প্রমাণ : যদি তেমন একটি ক্রম { x_n } থাকে, তাহলে প্রদন্ত $\varepsilon > 0$ -এর জন্যে এমন একটি n_0 পাওয়া যায় যে $x_n \in N(\alpha; \varepsilon)$ যখন $n \ge n_0$ । যেহেতু প্রত্যেক x_n, E -র বিন্দু এবং সব x_n গুলি ভিন্ন, $N(\alpha; \varepsilon)$ -এ অসীমসংখ্যক E-র বিন্দু আছে এবং তাই α , E-র সীমাবিন্দু ।

বিপরীতক্রমে, মনে করুন α , E-র সীমাবিন্দু। $N'(\alpha; 1)$ -এ নির্বাচন করুন একটি বিন্দু $x_1 \in E$ । আবার $N'(\alpha; 1/2)$ -এ এমন একটি বিন্দু $x_2 \in E$ নির্বাচন করুন যে $x_2 \neq x_1$; এই নির্বাচন সম্ভব কেননা প্রত্যেক ছিন্দ্রিত সামীপ্য $N'(\alpha)$ -তে অসীমসংখ্যক E-র বিন্দু বর্তমান। তারপর $N'(\alpha; 1/3)$ -এ একটি বিন্দু $x_3 \in E$ নির্বাচন করুন যা x_1, x_2 থেকে ভিন্ন। এই প্রক্রিয়ায় পুনরাবৃত্তি করে একটি ক্রম { x_n } পাওয়া যায় যার পদগুলি ভিন্ন এবং E-র বিন্দু বর্তমান । সুতরাং

$$\left| \left| x_n - lpha \right| < 1/n < arepsilon$$
 যথন $n \geq n_0$

যেখানে $n_0 = [1/\varepsilon] + 1$ । অতথব $x_n \to \alpha$. \Box

উদাহরণ 1 : $E = \left\{ \left(-1 \right)^n + \frac{1}{n} \middle| n = 1, 2, \dots \right\}$ আমরা লিখতে পারি $E = E_1 \cup E_2$ যেখানে

$$E_1 = \{1 + 1/2m \mid m = 1, 2, ..., \}, E_2 = \{-1 + 1/(2m - 1)/m = 1, 2, ..., \}$$

l E1-এর একটি সীমাবিন্দু এবং তাই E-র একটি সীমাবিন্দু, কেননা

$$1 + rac{1}{2m} \in N(1; \delta)$$
 যদি $1/2m < \delta$

অর্থাৎ যদি $m \ge m_0 = \lfloor 1/2\delta \rfloor + 1$ যার ফলে $N(1, \delta)$ -এ E_1 -এর অসীম-সংখ্যক বিন্দু আছে।

অনুরূপে –1, E-র একটি সীমাবিন্দু। <u>+</u> 1 E-র একমাত্র সীমাবিন্দু যার কোনটাই E-তে নেই।

উদাহরণ 2. : E = (a, b) | a, b E-র সীমাবিন্দু, যারা E-র বিন্দু নয়। যদি c এমন বিন্দু হয় যে a < c < b, তাহলে $c \otimes E$ -র সীমাবিন্দু। তাই E-র সীমাবিন্দুর সেট হল রুদ্ধ অন্তরাল [a, b].

উদাহরণ 3 : { 1, 2, 3, ... } এই সেটের কোন সীমাকিন্দু নেই। (কেন?)

উদাহরণ 4 : $\left\{1, \frac{1}{2} - \frac{1}{3}, \dots\right\}$ এই সেটের একমাত্র সীমাবিন্দু 0 যা সেটের বিন্দু নয়।

উপপাদ্য 4.4.3 : (বোলৎসানো-ভাইয়েরস্ট্রাস উপপাদ্য : Balzano-Weierstrass theorem) প্রত্যেক বদ্ধ অসীম বিন্দু সেট *E*-র একটি সীমাবিন্দু আছে। উপরন্তু *E*-র একটি বৃহত্তম এবং একটি ক্ষুদ্রতম সীমাবিন্দু বর্তমান।

প্রমাণ : যেহেতু E বদ্ধ, অমরা পেতে পারি একটি রুদ্ধ অন্তরাল $[a, b] \supseteq E$ । লিখুন c = (a + b)/2। যদি ডান উপান্তরাল [c, b]-তে E-র অসীমসংখ্যক বিন্দু থাকে, তাহলে তাকে $[a_1, b_1]$ নাম দিন; অন্যথায় [a, c]-কে $[a_1, b_1]$ নাম দিন যার মধ্যে E-র অসীমসংখ্যক বিন্দু থাকবে কেননা E অসীম সেট।

আবার লিখুন $c_1 = (a_1 + b_1) / 2$ এবং $[c_1, b_1]$ অথবা $[a_1, c_1]$ -কে $[a_2, b_2]$ বলুন যদি $[c_1, b_1]$ -এ *E*-র অসীমসংখ্যক বিন্দু থাকে বা না থাকে। এই সমদ্বিখণ্ডন প্রক্রিয়ার পুনরাবৃত্তি করে আমরা একটি রুদ্ধ অন্তরালের নীড় { $a_n \mid b_n$ } পাব এমন যে প্রত্যেক *n*-এর জন্যে $[a_n, b_n]$ -এ *E*-র অসীমসংখ্যক বিন্দু আছে এবং b_n সর্বাধিক সসীমসংখ্যক *E*-র বিন্দুর চেয়ে ছোট।

ধরা যাক $\{a_n \mid b_n\}$ নীড়টি বাস্তব সংখ্যা Λ নির্ধারণ করে। তাহলে $\lim a_n = \lim b_n = \Lambda$ । ইচ্ছানুরূপ ছোট $\epsilon > 0$ -র জন্যে ধনাত্মক পূর্ণসংখ্যা n_1 , n_2 পাওয়া যায় এমন যে

$$a_n \in Nig(\Lambda\,; arepsilonig)$$
 যখন $n \ge n_1$ $b_n \in Nig(\Lambda\,; arepsilonig)$ যখন $n \ge n_2$

সুতরাং যদি $m = ma \times \{n_1, n_2\}, [a_m, b_m] \subseteq N(\Lambda; \varepsilon).$

যেহেতু $[a_m b_m]$ -এ *E*-র অসীমসংখ্যক বিন্দু বর্তমান, $N(\Lambda; \varepsilon)$ -এ *E*-র অসীমসংখ্যক বিন্দু বর্তমান যার ফলে Λ, E -র একটি সীমাবিন্দু। যেহেতু $b_m < \Lambda + \varepsilon$, সর্বাধিক সসীমসংখ্যক *E*-র বিন্দু $\Lambda + a$ -এর চেয়ে বড় হতে পারে যা প্রমাণ করে যে Λ, E -র হত্তম সীমাবিন্দু, কেননা যদি $\Lambda'(>\Lambda)$ *E*-র একটি সীমাবিন্দু হয় $\varepsilon = (\Lambda' - \Lambda)/2$ নিলে *E*-র অসীমসংখ্যক বিন্দু $\Lambda' - \varepsilon = \Lambda + \varepsilon$ -এর চেয়ে বড় যা অসত্য।

উপরোক্ত যুক্তির সহজ প্রকারান্তর করে প্রমাণ করা যায় যে E-র একটি ক্ষুদ্রতম সীমাবিন্দু আছে। 🗌

মন্তব্য: উপরের উপপাদ্যে বদ্ধ কথাটি প্রয়োজনীয় কেননা ধনাত্মক পূর্ণসংখযার সেট N অসীম কিন্তু তার কোন সীমাবিন্দু নেই।

পরের উপপাদ্যে আছে বৃহত্তম বা ক্ষুদ্রতম সীমাবিন্দু একটি রূপায়ণ।

উপপাদ্য 4.4.4 : Λ একটি বদ্ধ সেট *E*-র বৃহত্তম সীমাবিন্দু হয় যদি এবং একমাত্র যদি ইচ্ছানুরূপ ε > 0-র জন্যে *E*-র অসীমসংখ্যক বিন্দু Λ – ε-এর চেয়ে বড়। ক্ষুদ্রতম সীমাবিন্দুর জন্য অনুরূপ উক্তি খাটে। □

4.5 বিন্দুসেটের রুদ্ধক ও অভ্যন্তর

সংজ্ঞা 4.5.1 : একটি সেট *E*-র সব সীমাবিন্দুর সেটকে *E*-র **অন্তরকলিত সেট (derived set)** বলা হয়। এবং *E'* দ্বারা চিহ্নিত হয়।

 $E \cup E'$ -কে E-র রুদ্ধক (closure) বলা হয় এবং তার চিহ্ন হবে E^c , অর্থাৎ $E^c = E \cup E'$.

নিচের উপপাদ্য রুদ্ধকের রূপায়ণ করে—

উপপাদ্য 4.5.1 : একটি বিন্দু $a \in E^c$ যদি এবং একমাত্র যদি প্রত্যেক সামীপ্য N(a)-তে E-র একটি বিন্দু থাকে।

প্রমাণ : মনে করুন $a \in E^c$ । তাহলে $a \in E$ অথবা $a \in E'$ । যদি $a \in E$ হয়, প্রত্যেক N(a)-তে আছে $a \in E$, আর যদি $a \in E'$ হয়, a E-র সীমাবিন্দু এবং তাই প্রত্যেক N(a)-তে E-র একটি বিন্দু বর্তমান।

বিপরীতক্রমে, মনে করুন শর্তটি পালিত হচ্ছে। তাহলে হয় $a \in E$ নাহয় $a \notin E$ । দ্বিতীয় ক্ষেত্রে প্রত্যেক ছিদ্রিত সামীপ্য N'(a)-তে E-র একটি বিন্দু আছে যা দেখায় যে $a \in E'$ । অতএব $a \in E \cup E' = E^c$. □

উপপাদ্য 4.5.2 : যদি $A \subseteq B$ হয়, তাহলে (i) $A' \subseteq B'$, (ii) $A^c \subseteq B^c$. \Box

উপপাদ্য 4.5.3 : (i) $(A \cup B)' = A' \cup B'$, (ii) $(A \cup B)^c = A^c \cup B^c$

প্রমাণ : (i) $A \subseteq A \cup B$, $B \subseteq A \cup B$, তাই আগের উপপাদ্যের দ্বারা $A' \subseteq (A \cup B)' B' \subseteq (A \cup B)'$, তাই $A' \cup B' \subseteq (A \cup B)$.

এবার দেখানো হবে যে $A' \cup B' \supseteq (A \cup B)'$ যার ফলে (i) প্রমাণিত হয়। ধরুন $\alpha \in (A \cup B)'$ বা $\alpha, A \cup B$ সেটের সীমাবিন্দু। উপপাদ্য 4.4.2 দ্বারা $A \cup B$ -র ভিন্ন বিন্দুর একটি ক্রম $\{x_n\}$ আছে এমন যে $x_n \to \alpha$.

সূতরাং প্রদত্ত $\varepsilon > 0$ -র জন্যে এমন n_0 আছে যে

 $x_n \in N (\alpha ; \epsilon)$ যখন $n \ge n_0$

এখন $x_n \in A$ অসীমসংখ্যক *n*-এর জন্যে অথবা $x_n \in B$ অসীমসংখ্যক *n*-এর জন্যে, কেননা অন্যথায় $x_n \in A$ কেবল সসীমসংখ্যক *n*-এর জন্যে এবং $x_n \in B$ কেবল সসীমসংখ্যক *n*-এর জন্যে যার ফলে $x \in A \cup B$ কেবল সসীমসংখ্যক *n*-এর জন্যে যা অসত্য। প্রথম ক্ষেত্রে $N(\alpha; \varepsilon)$ -এ A-র অসীমসংখ্যক বিন্দু বর্তমান যা দেখায় $\alpha \in A'$ এবং অনুরূপে দ্বিতীয় ক্ষেত্রে $\alpha \in B'$ । অতএব $\alpha \in A' \cup B'$ এবং প্রতিপাদ্য প্রমাণিত হল।

(ii)
$$A^c \cup B' = (A \cup A') \cup (B \cup B') = A \cup B \cup (A' \cup B') = A \cup B \cup (A \cup B)'$$

= $(A \cup B)^c \square$

সংজ্ঞা 4.5.2 : একটি বিন্দু *a* কে বিন্দুসেট *E*-র অভ্যন্তরীণ বিন্দু (interior point) বলা হয় যদি এমন একটি সামীপ্য *N*(*a*) থাকে যে *N*(*a*) থাকে যে *N*(*a*) $\subseteq E \mid E$ সেটের সব অভ্যন্তরীণ বিন্দুর সেটকে *E*-র অভ্যন্তর (interior) বলা হয় এবং তার চিহ্ন হল E° ।

একটি বিন্দুকে *E*-র **বহির্বিন্দু** (extenior point) বলা হয় যদি তা $\overline{E} = R - E$ সেটের অভ্যন্তরীণ বিন্দু হয়। একটি বিন্দু যা *E-*র অভ্যন্তরীণ বিন্দু বা বহির্বিন্দু কোনটাই নয়, তাকে *E-*র **প্রান্তবিন্দু** (boundary point) বলা হয়। *E-*র সব প্রান্তবিন্দুর সেটকে *E^b* দিয়ে সূচিত হবে।

উপপাদ্য 4.5.4 : $E^{\circ} \subseteq E \subseteq E^{c}$ \Box

উপপাদ্য 4.5.5 : $E^c = E^\circ \cup E^b = E \cup E^b$

প্রমাণ : $a \in E^\circ \cup E^b$ যদি এবং একমাত্র যদি $a \to a$ বহির্বিন্দু না হয় অর্থাৎ এমন সামীপ্য N(a) নেই যে $N(a) \subseteq \overline{E}$ অর্থাৎ প্রত্যেক সামীপ্য N(a)-তে E-র একটি বিন্দু বর্তমান, অর্থাৎ যদি এবং একমাত্র যদি $a \in E^c$ । তাই $E^c = E^\circ \cup E^b$.

 $E^{\circ} \subseteq E$ যার ফলে $E^{\circ} \cup E^{b} \subseteq E \cup E^{b}$ । যেহেতু E-র একটি বিন্দু E-র বহির্বিন্দু হতে পারে না, $E \subseteq E^{\circ} \cup E^{b}$ যার ফলে $E \cup E^{b} \subseteq E^{\circ} \cup E^{b}$ । অতএব $E^{\circ} \cup E^{b} = E \cup E^{b}$ । \Box উপপাদ্য 4.5.6 : $A \subseteq B$ হলে, $A^c \subseteq B^c \square$

উপপাদ্য 4.5.7 : $\left(A \cap B
ight)^o = A^o \cap B^o \square$

উদাহরণ 1 : E [a, b]। a, b E-র অভ্যন্তরীণ বিন্দু নয়, কিন্তু যে-কোন c, এমন যে a < c < b, E-র অভ্যন্তরীণ বিন্দু। তাই $E^{\mathrm{o}}=(a,\ b)$ ।

উদাহরণ 2 : $E = (1, 2) \cup (3, 4) + E^{\circ} = (1, 2) \cup (3, 4), E^{\circ} = [1, 2] \cup [3, 4], E^{b} = \{1, 2, 3, 4\}.$

উদাহরণ 3 : $E = \{1, \frac{1}{2}, \frac{1}{3}, ...\} \mid E' = \{0\}, E^c = \{0, 1, \frac{1}{2}, \frac{1}{3},\}$

4.6 মুক্ত ও রুদ্ধ সেট

সংজ্ঞা 4.6.1 : একটি বিন্দু সেট E-কে মুক্ত (open) বলা হয় যদি $E^{\circ}=E$, অর্থাৎ E-র প্রত্যেক বিন্দু তার অভ্যন্তরীণ বিন্দু হয়।

উপপাদ্য 4.6.1 : (i) শুন্য সেট 🛛 এবং R মুক্ত সেট। (ii) একটি মুক্ত অন্তর মুক্ত সেট। 🗖

ঊপপাদ্য 4.6.2 : যে-কোন সেট *E-*র জন্যে, *E*° একটি মুক্ত সেট।

প্রমাণ : ধরুন $x\in E^{lpha}$ । তাহলে এমন একটি সামীপ্য n(x) আছে যে $N(x)\!\subseteq\!E$ । যেহেতু E^{lpha} মুক্ত, $N\!(x)=$ $N(x)^\circ \subset E^\circ$ যা দেখায় যে $x, \; E^\circ$ -র অভ্যন্তরীরণ বিন্দু। অতএব E° মুক্ত। 🗔

নিচের উপপাদ্য সেটের অভ্যন্তরের তাৎপর্য প্রকাশ করে।

উপপাদ্য 4.6.3 : যদি E যে-কোন বিন্দুসেট হয় এবং একটি মুক্ত সেট $G \subseteq E$, তাহলে $G \subseteq E^{
m o}$ অর্থাৎ E-র অন্তর্গত বৃহত্তম মুক্ত সেট হচ্ছে E^{o} ।

প্রমাণ : যেহেতু G মুক্ত, $G = G^{\circ} \subseteq E^{\circ}$. \Box

উপপাদ্য 4.6.4 : যদি $\sigma=\{G\}$ যুক্ত সেটের যে-কোন বর্গ হয়, তাহলে $\bigcup_{G\in\sigma}^{\bigcup G}$ একটি মুক্ত সেট।

প্রমাণ : লিখুন $E= \bigcup G \mid x \in E$ হলে একটি সেট $G \in \sigma$ আছে এমন যে $x \in G$ । যেহেতু G যুক্ত, একটি $G \in \sigma$ সামীপ্য N(x) আছে যার জন্যে $N(x) \subseteq G \subseteq E$ যা দেখায় যে x. E-র একটি অভ্যন্তরীণ বিন্দু। অতএব E একটি মুক্ত সেট। 🗆

উপপাদ্য 4.6.5 : যে-কোন সসীম সংখ্যক মুক্ত সেট $G_1, G_2, ..., G_m$ -এর জন্যে $\bigcap_{i=1}^m G_i$ একটি মুক্ত সেট। প্রমাণ : লিখুন $E \overset{m}{\underset{i=1}{\overset{m}{\longrightarrow}}} G_i \mid x \in E$ হলে $x \in G_i \left(i = 1, 2, ..., m \right)$ । যেহেতু প্রত্যেক G_i মুক্ত, একটি সামীপ্য $N(x_i\delta_i) \supseteq G_i$ বৰ্তমান (i = 1, 2, ..., n)। যদি $\delta = \min \{ \delta_1, \delta_2, ..., \delta_n \} > 0$, তাহলে $N(x_i\delta) \subseteq N(x_i\delta_1) \subseteq G_i \ (i=1,2,...,m)$ এবং তাই $N(x_i,\delta) \subseteq E$ । এতে প্রমাণ হল যে E মুক্ত। \Box

মন্তব্য : উপরের উপপাদ্যে সসীমসংখ্যক কথাটি প্রয়োজনীয়। কেননা যদি ধরি $G_i = (-1/n, 1/n) (n = 1, 2, ...),$ $\mathop{\cap}\limits_{n=1}^{\infty}G_n=\{0\}$ যা মুক্ত নয়।

নিম্নোক্ত উপপাদ্যটি বদ্ধ মুক্ত সেটের গঠন সম্বন্ধে।

উপপাদ্য 4.6.6 : ধরা যাক G একটি অশৃন্য বদ্ধ মুক্ত সেট। তাহলে এমন একটি অনন্য সর্বাধিক গণনযোগ্য জোড়াগতভাবে বিচ্ছিন্ন মুক্ত অন্তরালের সেট $\sigma = [I]$ আছে যে $G = \bigcup I$.

প্রমাণ: মনে করুন x, G-র একটি স্থির বিন্দু। G মুক্ত হওয়ার জন্যে x, G-র অভ্যন্তরীণ বিন্দু যার ফলে একটি অন্তরাল $[x, y_0] \subseteq G$ আছে। এবার $A = \{y \mid (x, y) \subseteq G\}$ এই বিন্দু সেটটির কথা বিবেচনা করুন। A অশৃন্য কেননা $y_0 \in A \mid A$ উপরে বদ্ধ যেহেতু G উপরে বদ্ধ। লিখুন $b = \sup A$ যা সসীম। আমরা দেখাব $b \in A$ অর্থাৎ $(x, b) \subseteq G$ কিন্তু $b \notin G$ । মনে করুন $\xi \in (x, b)$ বা $x \leq \xi < b$. তাহলে একটি বিন্দু $y_1 \in A$ আছে এমন যে $y_1 > \xi$ যার ফলে $\xi \in (x_1y_1) \subseteq G$ এবং তাই $\xi \in G$ । এতে প্রমাণ হল যে $(x, b) \subseteq G$ । যদি $b \in G$, যেহেতু b, G-এর অভ্যন্তরীণ বিন্দু একটি অন্তরাল $[b, b + \delta) \subseteq G(\delta > 0)$ বর্তমান এবং তাই $[x, b + \delta) = [x, b) \cup$ $[b, b + \delta) \subseteq G$ যার দরুন $b + \delta \in A$ যা $b = \sup A$ উক্তির বিরোধী। অতএব $b \notin G$ ।

অনুরূপ পদ্ধতিতে দেখান যায় যে এমন একটি অন্তরাল (a, x] ⊆G আছে যে a ∉G। এই দুটি ফলাফল

একসঙ্গে করলে দাঁড়ায় যে, $x \in (a,b) \subseteq G$ যেখানে, $a,b \notin G$ । তাই G-র প্রত্যেক বিন্দু x-এর জন্যে একটি মুক্ত অন্তর l(x) পাওয়া যায় এমন যে $x \in I$ $(x) \subseteq G$ কিন্তু I(x)-এর প্রান্তবিন্দু দু'টি G-তে নেই। এর থেকে পাওয়া যায় যে যদি x, x' G-র দুটি ভিন্ন বিন্দু হয়, তাহলে তাদের প্রতিসঙ্গী I(x) ও I(x') হয় বিচ্ছিন্ন নাহয় অভিন্ন হবে।

সব $x \in G$ -র জন্যে I(x) অন্তরগুলি সব ভিন্ন নাও হতে পারে— এদের মধ্যে ভিন্ন অন্তরালগুলির সেটকে বলা যাক $\sigma = \{I\}$ । যেহেতু $x \in I(x)$ প্রত্যেক $x \in G$ -র জন্যে, $G \subseteq \bigcup_{I \in \sigma} I$ । আবার যেহেতু প্রত্যেক $x \in G$ -র জন্যে $I(x) \subseteq G$, প্রত্যেক $I \in \sigma$ -র জন্যে $I \subseteq G$ যার ফলে $\bigcup_{I \in G} I \subseteq G$ তাই $G = \bigcup_{I \in \sigma} I$ ।

 σ সেটটি সর্বাধিক গণনযোগ্য একথা প্রমাণ করতে আমরা এভাবে এগোই। প্রথমে মুলদ সংখ্যার সেটকে $\{x_n\}$ আকারে লিখি যা সম্ভব উপপাদ্য 4.3.1 দ্বারা। এখন σ সেটের যে-কোন অন্তর *I*-তে অসীম সংখ্যক x_n বিন্দু আছে যার ফলে $\{n \mid x_n \in I\}$ ধনাত্মক পূর্ণসংখ্যার একটি অশূন্য সেট যার একটি ক্ষুদ্রতম সংখ্যা *m* আছে যার ফলে $x_m \in I$ । এখন $I \to m, \sigma$ থেকে *N*-এ একটি অপেক্ষক যা একৈক কেননা যদি $I_1 \to m_1, I_2 \to m_2$ এবং $I_1 \neq I_2$ হয়, তাহলে যেহেতু I_1 , I_2 বিচ্ছিন্ন এবং $x_{m_1} \in I_1$, $x_{m_2} \in I_2$, $x_{m_1} \neq x_{m_2}$, এবং তাই $m_1 \neq m_2$ । অতএব সিদ্ধান্ত হয় যে $\sigma \sim \{m\} \subseteq N$ যার ফলে σ স্বাধিক গণনযোগ্য।

σ সেটের অনন্যতা প্রমাণ করতে হলে ধরা যাক σ' = {I´} অন্য একটি সর্বাধিক গণনযোগ্য জোড়াগতভাবে বিচ্ছিন্ন মুক্ত অন্তরালের সেট যার জন্যে G = _ ∪ I' । যেহেতু I, I' G-এর অন্তর্গত দু'টি মুক্ত অন্তর যাদের প্রান্ত বিন্দুগুলি G-তে নেই, প্রত্যেক I ∈ σ -র জন্যে এমন একটি I' ∈ σ' আছে যে I = I' । তাই σ ⊆ σ' । প্রতিসাম্য বিচারে অর্থাৎ σ ⊆ σ' । □

সংজ্ঞা 4.6.2 : উপরের উপপাদ্যের ত সেটের অন্তরাল I-গুলিকে মুক্ত সেট G-র উপাংশ অন্তরাল বলা হবে। এবার রুদ্ধ সেটের আলোচনায় আসা যাক।

সংজ্ঞা 4.6.3 : একটি বিন্দুসেট *E*-কে রুদ্ধ (closed) বলা হয় যদি *E*^c = *E* অথবা *E'* <u>⊂</u> *E* , অর্থাৎ *E*-র প্রত্যেকটি সীমাবিন্দু *E*-তে আছে।

ঊপপাদ্য 4.6.7 : (i) শূন্য সেট Φ এবং R রুদ্ধ সেট। (ii) যে-কোন রুদ্ধ অন্তরাল একটি রুদ্ধ সেট। 🗔 ঊপপাদ্য 4.6.8 : যে-কোন সেট E-র জন্যে, E' এবং E° রুদ্ধ সেট। প্রমাণ : মনে করুন, α, E'-এর সীমাবিন্দু। তাহলে যে-কোন সামীপ্য N(α; δ)-এ E'-এর একটি বিন্দু β আছে যার ফলে | α – β | < δ এবং β, E-র সীমাবিন্দু। তাই δ' = δ – Ι α – β | (> 0) নিলে N(β; δ') ⊆ N(α; β) এবং N(β; δ')-এ E-র অসীমসংখ্যক বিন্দু বর্তমান যার ফলে N(α; δ)-তেও E-র অসীমসংখ্যক বিন্দু বর্তমান যা বোঝায় যে α ∈ E'। অতএব E' রুদ্ধ।

 $(E^c)' = (E \cup E')' = E' \cup (E')' \subseteq E' \cup E' = E' \subseteq E^c$; অতএব E^c রুদ্ধ। \Box

উপপাদ্য 4.6.9 : যদি যে-কোন সেট $E \subseteq F$ যা একটি রুদ্ধ সেট, তাহলে $E^c \subseteq F$, অর্থাৎ E-কে ধারণ করে এমন ক্ষুদ্রতম রুদ্ধ সেট হল E^c ।

প্রমাণ : $E \subseteq F$ হলে $E^c \subseteq F = F$ যেহেতু F রুদ্ধ। \Box

উপপাদ্য 4.6.10 : (i) যদি F একটি রুদ্ধ সেট হয় যা উপরে বদ্ধ, তাহলে $M = \sup F \in F$, এবং তখন লেখা হয় $M = \max F$. (ii) যদি F একটি নিচে বদ্ধ রুদ্ধ সেট হয়, তাহলে $m = \inf F \in F$ এবং তখন লেখা হয় $m = \min F$.

প্রমাণ : (i) যদি $M \notin F$, তাহলে ইচ্ছানুরূপ $\varepsilon > 0$ -র জন্যে একটি বিন্দু $x_1 \in F$ আছে এমন যে $x_1 > M - \varepsilon$, $x_1 \neq M_1$ ফলত $N'(M; \varepsilon)$ -এ একটি বিন্দু আছে $x_1 \in F$ যার ফলে M, F-এর একটি সীমাবিন্দু এবং যেহেতু E রুদ্ধ $M \in F$ । এই স্ববিরোধিতা প্রতিপাদ্য প্রমাণ করে। \Box

উপপাদ্য 4.6.11 : ধরা যাক G একটি মুক্ত এবং F একটি রুদ্ধ সেট। তাহলে G – F মুক্ত এবং F – G রুদ্ধ হবে। বিশেষভাবে, G রুদ্ধ এবং F মুক্ত।

প্রমাণ : ধরুন $x \in G - F$ । তাহলে $x \in G$ এবং $x \notin F$ । যেহেতু G মুক্ত। x, G-র অভ্যন্তরীণ বিন্দু যার ফলে একটি সামীপ্য $N(x; \delta) \subseteq G$ পাওয়া যায়। আবার যেহেতু F রুদ্ধ, x, F-এর সীমাবিন্দু নয় যার ফলে একটি সামীপ্য $N(x; \delta_2)$ আছে যাতে F-এর কোন বিন্দু নেই। যদি $\delta = \min \{\delta, \delta_2\}$ (> 0) হয়, $N(x; \delta) \subseteq$ G—F, অর্থাৎ x, G—F-এর একটি অভ্যন্তরীণ বিন্দু যা প্রমাণ করে যে G—F মুক্ত।

এবার ধরুন ৫, F—G সেটের একটি সীমাবিন্দু। তাহলে ৫, F-এর সীমাবিন্দু এবং F রুদ্ধ হওয়ার জন্যে ৫∈F। কিন্তু ৫∉G। কেননা তাহলে পাওয়া যাবে একটি সামীপ্য N(α)⊆G যার ফলে N(α)-তে F—G-র, কোন বিন্দু থাকবে না যা বোঝায় যে α F—G-র সীমাবিন্দু নয়। এই স্ববিরোধিতা প্রমাণ করে যে α ∈ G, তাই α ∈ F—G, অর্থাৎ F—G রুদ্ধ।

দ্বিতীয় উক্তির প্রমাণ মেলে এই সত্য থেকে যে R মুক্ত এবং রুদ্ধ দুইই। 🗆

উপপাদ্য 4.6.12 : যদি $\sigma = \{F\}$ যে-কোন রুদ্ধ সেটের বর্গ হয়, তাহলে $\bigcap_{F \in \sigma} F$ একটি রুদ্ধ সেট। প্রমাণ : ধরুন $E = \bigcap_{F \in \sigma} F$ । তাহলে $\overline{E} = \bigcup_{F \in \sigma} \overline{F}$ একটি মুক্ত সেট (উপপাদ্য 4.6.4) যেহেতু প্রত্যেক F রুদ্ধ

এবং তাই F মুক্ত সেট। অতএব E = E রুদ্ধ। □ অনুরূপে উপপাদ্য 4.6.5-এর ফলশ্রুতি হল।

উপপাদ্য 4.6.13 : যে-কোন সসীমসংখ্যক রুদ্ধ সেট $F_1, F_2, ..., F_m$ -এর জন্যে $\bigcup_{i=1}^m F_i$ একটি রুদ্ধ সেট। 🗆 এরপর আমরা রুদ্ধ সেট সম্পর্কিত একটি গভীর ফলাফল প্রমাণ করে।

উপপাদ্য 4.6.14 : (ক্যান্টরের উপপাদ্য : Cantor's theorem) যদি $\{F_n\}$ অশ্ন্য বদ্ধ রুদ্ধ সেটের একটি সংকোচমান ক্রম হয়, তাহলে $\lim_{n \to \infty} F_n \neq \Phi$.

প্রমাণ : প্রত্যেক *n*-এর জন্যে F_n অশূন্য এবং একটি নির্দিষ্ট বিন্দু $x_n \in F_n$ নির্বাচন করুন যা একটি ক্রম $\{x_n\}$ তৈরি করে। যেহেতু $\{F_n\}$ সংকোচমান $x_n \in F_n \subseteq F_m$ যখন $n \ge m$ অথবা $x_n \in F_m$ যখন $n \ge m$ । মনে করুন $\{x_n\}$ -এর পাল্লা A সেট। এই A সেট সসীম হতে পারে অথবা অসীম।

ধরন্দ A সসীম। তাহলে এমন একটি বিন্দু $a \in A$ আছে যে $x_n = a$, x-এর অসীমসংখ্যক মানের জন্যে। একটি স্থির k-র জন্যে একটি $M \ge k$ আছে যার জন্যে $x_m = a$ এবং তাই $a = x_m \in F_k$ । যেহেতু এটা প্রত্যেক k-র জন্যে সত্রি $a \in \bigwedge_{k=1}^{\infty} F_k$.

এবার ধরুন A অসীম। A বদ্ধ কেননা যেহেতু $A \subseteq F_1$ যা বদ্ধ। তাহলে A-র একটি সীমাবিন্দু α বিদ্যমান। মনে করুন k একটি স্থির ধনাত্মক পূর্ণসংখ্যা। এখন যে-কোন সামীপ্য $N(\alpha)$ -তে A-র অসীমসংখ্যক বিন্দু আছে অর্থাৎ অসীমসংখ্যক ভিন্ন x_n আছে এবং যেহেতু $x_n \in F_k$ যখন $n \ge K$, $N(\alpha)$ -তে F_k -র অসীমসংখ্যক বিন্দু আছে যা দেখায় যে α , F_k -র সীমাবিন্দু এবং তাই $\alpha \in F_k$ যা রুদ্ধ। এটা প্রত্যেক k-র জন্যে সত্যি হওয়ায় $\alpha \in \bigcap_{k=1}^{\infty} F_k$. অতএব উভয় ক্ষেত্রেই $\bigcap_{k=1}^{\infty} F_k \neq \Phi$ । \Box

4.7 আবরণ, নিবিড়তা

সংজ্ঞা 4.7.1 : একটি মুক্ত অন্তরালের সেট $\sigma = \{I\}$ একটি প্রদত্ত সেট *E*-কে আবরণ করে (covers *E*) বা *E*-র আবরণ (is a cover of *E*) বলা হয় যদি $E \subseteq \bigcup_{I \in \sigma} I$

উপপাদ্য 4.7.1 : (লিন্ডেলোয়েফের উপপাদ্য : Lindeloef's theorem) যদি একটি মুক্ত অন্তরের সেট ত যে-কোন একটি সেট *E*-কে আবরণ করে তাহলে ত-র একটি সর্বাধিক গণনযোগ্য উপসেট আছে যা *E*-কে আবরণ করে।

జ্মাণ : ধরা যাক $\sigma = \{I\}$ । স্বীকৃতি থেকে $E \subseteq \bigcup_{I \in \sigma} I$ । প্রত্যেক $x \in F$ -র জন্যে এমন একটি অন্তর $I(x) \in \sigma$ নিন যে $x \in I(x)$, এবং তারপর একটি মুক্ত অন্তর J(x) নিন যার প্রান্তবিন্দু মুলদ এবং $x \in J(x) \subseteq I(x)$ । ধরুন সব $x \in E$ -র জন্যে পৃথক I(x)-গুলির সেট σ' । স্পষ্টতই σ' , E-কে আবরণ করে। সব মুক্ত অন্তর যার প্রান্তবিন্দু মূলদ, তার সেট গণনযোগ্য (প্রশ্নাবলীর 1নং প্রশ্ন দেখুন) এবং যেহেতু σ' এর একটি উপসেট, σ' স্র্বাধিক গণনযোগ্য এবং আমরা লিখতে পারি $\sigma' = \{J_1, J_2, ...\}$ । এখন প্রত্যেক $J_n \in \sigma'$ -এর জন্যে নির্বাচন করুন একটি $x_n \in G$ এমন যে $J_n = J(x_n)$ । স্তৃত্তাং $J_n = J(x_n) = I_n$ (ধরুন) অথবা $J_n \subseteq I_n \in \sigma$ । যদি σ'' স্ব্বাধিক গণনযোগ্য এবং σ'' শ্বের জন্যে পৃথক I_n -গুলির সেট নির্দেশ করে, তাহলে $\sigma'' \subseteq \sigma, \sigma''$ স্ব্বাধিক গণনযোগ্য এবং σ'' E-কে আবরণ করে।

মন্তব্য : এখানে উল্লেখ্য যে এই উপপাদ্যের সিদ্ধান্ত যে-কোন বিন্দুসেটের ক্ষেত্রে খাটে, সেটের কোন বিশেষ গুণের উপর নির্ভরশীল নয়। বস্তুত, যে-কোন দু'টি অসমান বাস্তুব সংখ্যার মধ্যে একটি মূলদ সংখ্যা আছে বাস্তুব সংখ্যার এই ধর্মই উপরোক্ত উপপাদ্যের মূল ভিত্তি।

উপপাদ্য 4.7.2 : (হাইনে-বোরেল উপপাদ্য : Heine-Borel theorem) যদি একটি বদ্ধ ও রুদ্ধ সেট F-কে একটি মুক্ত অন্তরালের সেট σ আবরণ করে, তাহলে σ-র একটি সসীম উপসেট আছে যা F-কে আবরণ করে।

প্রমাণ : উপপাদ্য 4.7.1. দ্বারা σ-র একটি সর্বাধিক গণনযোগ্য উপসেট σ⁷ আছে যা *E-*কে আবরণ করে। যদি σ⁷ সসীম হয়, প্রতিপাদ্য প্রমাণিত হয়। যদি σ' গণনযোগ্য হয়, লিখতে পারা যায় $\sigma'=\{I_n\}$ । সংজ্ঞা দিন

$$F_n = F - \bigcup_{i=1}^n I_i (n = 1, 2, \dots)$$

যেহতু F বদ্ধ ও রুদ্ধ, প্রত্যেক F_n বদ্ধ ও রুদ্ধ এবং { F_n } ক্রমটি সংকোচমান। সন্তব হলে ধরুন প্রত্যেক n-এর জন্যে $F_n \neq \Phi$ । তাহলে ক্যান্টরের উপপাদ্য দ্বারা $\bigcap_{n=1}^{\infty} F_n \neq \Phi$ যার ফলে একটি বিন্দু α আছে এমন যে $\alpha \in F_n$ প্রত্যেক n-এর জন্যে। সুতরাং $\alpha \in F$ কিন্তু প্রত্যেক n-এর জন্যে $\alpha \notin \bigcup_{i=1}^{n} I_i$ এবং তাই $\alpha \notin I_n$ । এর ফলস্বরূপ পাই $\alpha \notin \bigcup_{n=1}^{\infty} I_n$ যা σ' , F-কে আবরণ করে অর্থাৎ $F \subseteq \bigcup_{n=1}^{\infty} I_n$ এই উক্তির পরিপন্থী। তাই সিদ্ধান্ত করা যায় যে এমন একটি m আছে যে $I_m = \Phi$, অর্থাৎ $F \subseteq \bigcup_{i=1}^{\infty} I_i$ অথবা $\{I_1, I_2, \dots, I_m\}$ মুক্ত অন্তরালের এই সসীম সেটটি F-কে আবরণ করে এবং যা σ' -এর উপসেটে এবং তাই σ -র উপসেট। \Box

এবার উপরোক্ত উপপাদ্যের সিদ্ধান্তকে সেটের একটি ধর্ম হিসেবে ধরা যাক।

সংজ্ঞা 4.7.2 : একটি বিন্দুসেট E-র হাইনে-বোরেল ধর্ম আছে বা E নিবিড় (compact) বলা হয় যদি E-কে আবরণ করে এমন প্রত্যেকটি মুক্ত অন্তরালের সেটের একটি সসীম উপসেট থাকে যা E-কে আবরণ করে।

এই সংজ্ঞানুযায়ী হাইনে-বোরেল উপপাদ্যের বক্তব্য হল

ঊপপাদ্য 4.7.3 : একটি বদ্ধ ও রুদ্ধ বিন্দুসেট নিবিড়। 🗖

সহজেই প্রমাণ করা যায়।

উপপাদ্য 4.7.4 : একটি নিবিড় সেট বদ্ধ।

প্রমাণ : মনে করুন C একটি নিবিড় সেট। প্রত্যেক $x \in C$ -র জন্যে যে-কোন সামীপ্য N(x) নিন। তাহলে { N(x) | x ∈ C } একটি মুক্ত অন্তরালের সেট যা C-কে আবরণ করে। যেহেতু C নিবিড় এই সেটের একটি সসীম উপসেট আছে যা C-কে আবরণ করে, অর্থাৎ সসীমসংখ্যক বিন্দু $x_1, x_2,, x_m \in C$ আছে এমন যে

$$C \subseteq \cup_{i=1}^{m} (x_i)$$
 যা বদ্ধ। তাই C বদ্ধ। \Box

এবার বোলৎসানো-ভাইয়েরস্ট্রাস উপপাদ্যের সিদ্ধান্তকে একটি ধর্মে রূপান্তরিত করা যাক।

সংজ্ঞা 4.7.3 : একটি সেট *E-*এর বোলৎসানো-ভাইয়েরস্ট্রাস ধর্ম আছে বলা হবে যদি *E-*র প্রত্যেক অসীম উপসেটের একটি সীমাবিন্দু থাকে।

উপপাদ্য 4.7.5 : একটি বিন্দুসেটের বোলৎসানো-ভাইয়েরস্ট্রাস ধর্ম থাকবে যদি এবং একমাত্র যদি তা বদ্ধ হয়। প্রমাণ : একটি বিন্দুসেট যদি বদ্ধ হয়, তার যে-কোন অসীম উপসেটও বদ্ধ হবে এবং তাই তার একটি সীমাবিন্দু থাকবে উপপাদ্য 4.4.3 দ্বারা।

পক্ষান্তরে ধরুন E সেটের বোলৎসানো-ভাইয়েরস্ট্রাস ধর্ম আছে। তাহলে করতে হবে যে E বদ্ধ। যদি সম্ভব হয় ধরা যাক E উপরে অনাবদ্ধ। নির্বাচন করুন একটি বিন্দু $x_1 \in E$ । তারপর এমন একটি বিন্দু $x_2 \in E$ নির্বাচন করুন যে $x_2 > x_1 + 1$; এই নির্বাচন সম্ভব যেহেতু E উপরে অনাবদ্ধ। আবার নিন $x_3 \in E$ এমন যে $x_3 > x_2 + 1$ ইত্যাদি। এই প্রক্রিয়ার আমরা পাব E-র একটি অসীম উপসেট $\{x_n\}$ যার কোন সীমাবিন্দু নেই। অতএব সিদ্ধান্ত E উপরে বন্ধ। অনুরূপে E নিচে বন্ধ বা E বন্ধ। \Box এবার আমরা বোলৎসানো-ভাইয়েরস্ট্রাস ধর্মের একটি কঠোর সংস্করণের কথা ভাবতে পারি।

সংজ্ঞা 4.7.4 : একটি সেট *E-*র কঠোর বোলৎসানো-ভাইয়েরস্ট্রাস ধর্ম আছে বলা হবে যদি *E-*র যে-কোন অসীম উপসেটের একটি সীমাবিন্দু থাকে যা *E-*তে অবস্থিত।

স্পস্টতই কঠোর বোলৎসানো-ভাইয়েরস্ট্রাস ধর্ম বোলৎসানো-ভাইয়েরস্ট্রাস ধর্মকে দ্যোতনা করে।

উপপাদ্য 4.7.6 : যদি একটি বিন্দুসেটের কঠোর বোলৎসানো-ভাইয়েরস্ট্রাস ধর্ম থাকে, তাহলে সেটটি বদ্ধ ও রুদ্ধ। প্রমাণ : আলোচ্য বিন্দুসেটটি E হোক। তাহলে উপপাদ্য 4.7.5 দ্বারা E বদ্ধ।

ধরুন α, E -এর একটি সীমাবিন্দু। তাহলে E-র ভিন্ন বিন্দুর একটি ক্রম { x_n } আছে এমন যে $x_n \to \alpha$ । এই ক্রমের পাল্লা হল সেট { x_n } যা E-র একটি অসীম উপসেট এবং যার একটিমাত্র সীমাবিন্দু α । যদি E-র কঠোর বোলৎসানো-ভাইয়েরস্ট্রাস ধর্ম থাকে, তাহলে $\alpha \in E$. অতএব E রুদ্ধ। \Box

উপপাদ্য 4.7.7 : একটি বিন্দুসেট C যদি নিবিড় হয় অর্থাৎ যদি C-র হাইনে-বোরেল ধর্ম থাকে, তাহলে C-র কঠোর বোলৎসানো-ভাইয়েরস্ত্রাস ধর্ম থাকবে।

প্রমাণ : মনে করুন, যদি সম্ভব হয়, *E*, *C*-এর একটি অসীম উপসেট যার *C*-র অবস্থিত কোন সীমাবিন্দু নেই। তাহলে প্রত্যেক *x* ∈ *C* -র জন্যে *x*, *E*-র সীমাবিন্দু নয় যার ফলে একটি ছিদ্রিত সামীপ্য N'(x) বর্তমান যাতে কোন *E*-র বিন্দু নেই অথবা *E* ∩ N'(x) = Φ । এখন

$$\left\{ N(x) \mid E \cap N'(x) = \Phi, x \in C \right\}$$

একটি মুক্ত অন্তরালের সেট যা C-কে আবরণ করে এবং তাই এর একটা সসীম উপসেট আছে যা C-কে আবরণ করে অর্থাৎ সসীমসংখ্যক বিন্দু $x_1, x_2, ..., x_n \in C$ আছে এমন যে

$$E \cap N^{i}(x_{i}) = \Phi(i = 1, 2, ..., m), C \subseteq \bigcup_{i=1}^{m} N(x_{i})$$

অতএব

$$C \subseteq \bigcup_{i=1}^{m} N(x_i) \cup \{x_1, x_2, \dots, x_m\}$$

যার ফলে

$$E \cap C \subseteq (E \cap N'(x_i)) \cup (E \cap \{x_1, x_2, ..., x_m\})$$

= $E \cap \{x_1, x_2, ..., x_m\} \subseteq \{x_1, x_2, ..., x_m\}$

বেহেতু $E \subseteq C$, $E \subseteq \left\{ x_1, x_2, ..., x_m \right\}$

যা অসম্ভব কেন না E একটি অসীম সেট। 🗌

উপপাদ্য 4.7.3., 4.7.6. ও 4.7.7. থেকে পাই

উপপাদ্য 4.7.8 : (i) একটি বিন্দুসেট নিবিড় হয় যদি এবং একমাত্র যদি তা বদ্ধ ও রুদ্ধ হয়।

(ii) একটি বিন্দুসেট নিবিড় হয় যদি এবং একমাত্র যদি তার কঠোর বোলৎসানো-ভাইয়েরস্ট্রাস ধর্ম থাকে।

(iii) একটি বিন্দুসেটের কঠোর বোলৎসানো-ভাইয়েরস্ট্রাস ধর্ম থাকে যদি এবং একমাত্র যদি তা বদ্ধ ও রুদ্ধ হয়। অতএব দেখা যাচ্ছে যে বিন্দুসেটের বেলায় নিবিড়তা বা হাইনে-বোরেল ধর্ম, কঠোর বোলৎসানো-ভাইয়েরস্ট্রাস ধর্ম এবং বদ্ধ-রুদ্ধতা সমার্থক।

4.8 সারাংশ

এই এককে আমরা প্রথমে আলোচনা করলাম বাস্তব সংখ্যার গণনাবিষয়ক ধর্ম। প্রমাণ করা হল যে মূলদ সংখ্যার সেট গণনযোগ্য কিন্তু বাস্তব সংখ্যার সেট অগণনযোগ্য।

তারপর সীমানিন্দুর প্রসঙ্গে বোলৎসানো-ভাইয়েরস্ট্রাস উপপাদ্য প্রমাণ করা হল। রুদ্ধক ও অভ্যন্তরের আলোচিত হল। মুক্ত ও রুদ্ধ সেটের ধারণা ও ধর্মাবলীর কথা বলা হল। এই প্রসঙ্গে একটি গভীর ফলাফল হল ক্যান্টরের উপপাদ্য। শেষ পর্যায়ে একটি সেটকে মুক্ত অন্তরালের সেট দ্বারা আবরণ করার ধারণা দেওয়া হল এবং হাইনে-বোলের উপপাদ্য প্রমাণিত হল। সেটের হাইনে-বোরেল ধর্ম বা নিবিড়তা বোলৎসানো-ভাইয়েরস্ট্রাস ধর্ম ও কাঠোর বোলৎসানো-ভাইয়েরস্ট্রাস ধর্ম সংজ্ঞায়িত হল এবং দেখান হল যে নিবিড়তা, কঠোর বোলৎসানো-ভাইয়েরস্ট্রাস ধর্ম ও রদ্ধ-বদ্ধতা সমার্থক ধারণা।

4.9 সর্বশেষ প্রশ্নাবলী

- প্রমাণ করুন যে সব মুক্ত অন্তরালের সেট যার প্রান্তবিন্দু মূলদ গণনযোগ্য।
- প্রমাণ করুন যে যে-কোন জোড়াগতভাবে বিচ্ছিন্ন মুক্ত অন্তরালের সেট সর্বাধিক গণনযোগ্য।
- নিম্নলিখিত সেটের লঘিষ্ঠ ঊধ্ববন্ধন, গরিষ্ঠ নিম্নবন্ধন, বৃহত্তম ও ক্ষুদ্রতম সীমাবিন্দু নির্ণয় করুন ঃ

(i)
$$\left\{ \left(-1\right)^{n} / n \mid n = 1, 2, \dots \right\}$$

(ii)
$$\left\{ \frac{1}{m} + \frac{1}{n} | m; n = 1, 2, ... \right\}$$

(iii)
$$(0,1) \cup \left\{ 1 + \frac{1}{n} | n = 1, 2, \dots \right\}$$

- 3নং প্রশ্নে উল্লিখিত প্রত্যেকটি সেটের রুদ্ধক ও অভ্যন্তর বের করুন এবং বিচার করুন সেটটি মুক্ত বা রুদ্ধ কিনা।
- যদি E একটি বদ্ধ সেট হয় এবং M = sup E, m = inf E, তাহলে দেখান যে E-কে ধারণ করে এমন ক্ষুদ্রতম রুদ্ধ অন্তর হল [m, M]।
- 6. দেখান যে $\{0\} \cup \{\frac{1}{n} | n = 1, 2, ...\}$ সেটটি নিবিড়।
- 7. যদি $\sigma = \{ C \}$ যে-কোন নিবিড় সেটের বর্গ হয়, প্রমাণ করুন যে $\bigcup_{C \in \sigma} C$ একটি নিবিড় সেট।
- 8. দেখান যে (0, 1) মুক্ত অন্তরালকে $\sigma = \left\{ \left(\frac{1}{n}, \frac{2}{n} \right) | n = 2, 3, ... \right\}$ এই মুক্ত অন্তরালের সেট আবরণ করে কিন্তু σ-র কোন সসীম উপসেট নাই যা (0, 1)-কে আবরণ করে।

4.10 উত্তরমালা

1. সব মূলদ সংখ্যার সেটকে $\{x_n\}$ আকারে লিখলে, বিবেচ্য সেটটি হল সব মুক্ত অন্তরাল (x_m, x_n) -এর সেট যেখানে m, n-এর যে-কোন এমন মান হতে পারে যে $x_m < x_n$ । একটি স্থির n-এর জন্যে ধরুন $A_n = \{(x_m, x_n) \mid x_m < x_n\} \sim \{m \mid x_m < x_n\} \subseteq N$ । তাই A_n সর্বাধিক গ্রহণযোগ্য। কিন্তু যেহেতু A_n স্পষ্টতই অসীম। A_n গণনযোগ্য এবং তাই $\overset{\infty}{\underset{n=1}{\sim}} A_n$, যা বিবেচ্য সেট, গণনযোগ্য।

2. উপপাদ্য 4.6.6 -এর প্রমাণ দেখুন।

3. (i) 1/2, -1, 0, 0
(ii) 2, 0, 1, 0
(iii) 2, 0, 1, 0
4. (i) {(-1)^x / n | n = 1, 2, ...} ∪ {0}, Φ, মুক্ত নয়, রুদ্ধ নয় |
(ii) {
$$\frac{1}{m} + \frac{1}{n}$$
 | m, n = 1, 2, ...} ∪ {0}, Φ, মুক্ত নয়, রুদ্ধ নয়

- 5. যদি $[a, b] \supseteq E$, প্রত্যেক বিন্দু $x \in E$ -র জন্যে $a \le x \le b$, অর্থাৎ, b. E-র একটি ঊধর্ববন্ধন এবং a. E-র একটি নিম্নবন্ধন। তাই $M \le b, m \ge a$ বা $[m, M] \subseteq [a, b]$.
- 6. উপপাদ্য 4.6.11 দ্বারা।

7. প্রত্যেকটি
$$C\in\sigma$$
 বদ্ধ ও রুদ্ধ। উপপাদ্য 4.6.12 দ্বারা ${}_{C\,\epsilon\,\sigma}^{\ }C$ রুদ্ধ এবং স্পষ্টতই বদ্ধ, তাই তা নিবিড়।

8. লক্ষ্য করন্দ
$$\frac{1}{(n+1)} < \frac{1}{n} < \frac{2}{(n+1)} < \frac{2}{n} (n \ge 2),$$
 তাই $(0,1) \subseteq \bigcup_{n=2}^{\infty} \left(\frac{1}{n}, \frac{2}{n}\right)$ কিন্তু $(0,1) \subseteq \bigcup_{k=2}^{m} \left(\frac{1}{k}, \frac{2}{k}\right) = \left(\frac{1}{m}, 1\right)$ কেননা যদি $0 < x < 1$ হয়, এমন m আছে যে $m > \frac{1}{x} > 1$ অর্থাৎ $\frac{1}{m} < x < 1$ যোধানে $m \ge 2$ যার ফলে $x \in \bigcup_{k=2}^{m} \left(\frac{1}{k}, \frac{2}{k}\right) \subseteq \bigcup_{k=2}^{\infty} \left(\frac{1}{k}, \frac{2}{k}\right)$ কিন্তু যদি σ -0 কোন সসীম উপসেট থাকে যা $(0, 1)$ -কে আবরণ করে, তাহলে এমন m থাকবে যে $(0, 1) \subseteq \bigcup_{k=2}^{m} \left(\frac{1}{k}, \frac{2}{k}\right) = \left(\frac{1}{m}, 1\right)$ যা অসত্য I

একক 5 🗆 জ্রম II

গ	ঠন	
5.	1	
_	•	

- 5.2 উদ্দেশ্য
- 5.3 পুনর্বিন্যাস
- 5.4 উধ্ব ও নিম্নসীমা

প্ৰস্তাবনা

- 5.5 অভিসারিত্বের সাধারণ নীতি
- 5.6 বিশেষ উপপাদ্যসমূহ
- 5.7 সারাংশ
- 5.8 সর্বশেষ প্রশ্নাবলী
- 5.9 উত্তরমালা

5.1 প্রস্তাবনা

ক্রমের সীমার কথা আপনারা জেনেছেন। কিন্তু সব ক্রমের, বস্তুত বেশির ভাগ ক্রমেরই সীমা থাকে না। কিন্তু সব ক্রমের যা থাকে তা হল ঊর্ধ্বসীমা ও নিম্নসীমা যাদের কথা এই এককে আলোচিত হবে। এর জন্যে প্রয়োজন উপক্রম এবং উপক্রমিক সীমার ধারণা যা প্রথমে দেওয়া হবে। দেখা যাবে ঊর্ধ্ব ও নিম্নসীমা সমান হওয়ার অর্থ হল সীমার অস্তিত্ব থাকা এবং এটা ক্রমের অভিসারিতার একটা লক্ষণ।

এর পরের আলোচ্য বিষয় হবে অভিসারিতার সাধারণ নীতি যাকে কোশির (Cauchy) নীতিও বলা হয়। এই উপপাদ্যে ক্রমের অভিসারিতার একটা আবশ্যিক ও পর্যাপ্ত শর্ত পাওয়া যায়।

শেষে কয়েকটি গুরুত্বপূর্ণ বিশেষ ফলাফল প্রমাণ করা হবে।

5.2 উদ্দেশ্য

এই একক পাঠ করলে আপনারা জানতে পারবেন

- ক্রমের পুনর্বিন্যাসের ধারণা, উপক্রম ও উপক্রমিক সীমার কথা
- উধ্ব ও নিম্নসীমার সংজ্ঞা ও ধর্ম
- অভিসারিতার সাধারণ নীতি
- কয়েকটি বিশেষ ফলাফল যা তত্ত্ব নির্মাণে কাজে লাগবে

5.3 পুনর্বিন্যাস, উপক্রম

সংজ্ঞা 5.3.1 : মনে করুন $\{x_n\}$ একটি প্রদন্ত ক্রম এবং $\{k_n\}$ ধনাত্মক পূর্ণসংখ্যার এমন একটি ক্রম যার পদগুলি পৃথক এর যার পাল্লা *N*, সব ধনাত্মক পূর্ণসংখ্যার সেট। তাহলে $\{x_{k_n} \mid n = 1, 2, ...\}$ প্রদন্ত ক্রম $\{x_n\}$ -এর একটি পুনর্বিন্যাস (rearrangement) বলা হবে।

উপপাদ্য 5.3.1 : যদি $\{x_n\}$ -এর একটি পুনর্বিন্যাস হয় $\{x_{k_n}\}$ এবং $x_n \to l$ হয়, তাহলে $x_{k_n} \to l$ হবে। প্রমাণ : স্বীকৃতি থেকে প্রদত্ত $\varepsilon > 0$ -র জন্যে এমন n_0 পাওয়া যে $x_n \in N(l;\varepsilon)$ যখন $n \ge n_0$ অর্থাৎ সর্বাধিক সসীমসংখ্যক *n*-এর জন্যে $x_n \notin N(l;\varepsilon)$ । যেহেতু সব k_n গুলি পৃথক, সর্বাধিক সসীমসংখ্যক *n*-এর জন্যে $x_{k_n} \notin N(l;\varepsilon)$. অর্থাৎ এমন n_1 আছে যে $x_{k_n} \in N(l;\varepsilon)$ যখন $n \ge n_1$ যা বোঝায় যে $x_{k_n} \to l$. \Box

উদাহরণ 5.3.1 : যদি { k_n } = {2, 1, 4, 3, ... } নেওয়া যায়, তাহলে $\{x_{k_n}\} = \{x_2, x_1, x_4, x_3, ...\}$ হবে $\{x_n\}$ -এর একটি পুনর্বিন্যাস।

ূর্নিবেম্বিভাবে {1/2, 1, 1/4, 1/3, ... } ক্রমে {1/n }-এর একটি পুনর্বিন্যাস। 1/n
ightarrow 0 এবং তাই পুনর্বিন্যস্ত ক্রমটিও 0-র প্রতি অভিসারী।

সংজ্ঞা 5.3.2 : মনে করুন $\{x_n\}$ একটি প্রদত্ত ক্রম এবং $\{n_k \mid k = 1, 2, ...\}$ যথার্থ একান্বয়ে বর্ধমান ধনাত্মক পূর্ণসংখ্যার ক্রম, অর্থাৎ $n_1 < n_2 < ...$ । তাহলে $\{x_{k_n} \mid k = 1, 2, ...\}$ -কে $\{x_n\}$ -এর একটি উপক্রম (subsequence) বলা হয়।

 α বিন্দুকে $\{x_n\}$ -এর একটি **উপক্রমিক সীমা (subsequential limit)** বলা হয় যখন $\{x_n\}$ -এর একটি উপক্রম $\{x_{nk}\}$ থাকে এমন যে $x_{nk} \to \alpha$ যখন $k \to \infty$ । একটি উপক্রমিক সর্বদা সসীম বলে ধরা হবে।

উপপাদ্য 5.3.2 : যদি $\{n_k\}$ ধনাত্মক পূর্ণসংখ্যার এমন ক্রম হয় যে $n_k \to \infty$ যখন $k \to \infty$ এবং $\{x_n\}$ এমন একটি প্রদত্ত ক্রম যে $x_n \to l$ যখন $n \to \infty$ তাহলে $x_{n_k} \to l$ যখন $k \to \infty$.

প্রমাণ : যেহেতু $x_n \to l$ যখন $n \to \infty$, প্রদত্ত $\varepsilon = 0$ -র জন্যে এমন n_0 পাওয়া যায় যে $x_n \in N(l; \varepsilon)$ যখন $n \ge n_0$ । আবার যেহেতু $n_k \to \infty$ যখন $k \to \infty$, এমন k_0 আছে যে $n_k > n_0$ যখন $k \ge k_0$ যেখানে k_0 , n_0 -এর উপর এবং তাই ε -এর উপর নির্ভরশীল। তাই $k \ge k_0$ হলে $x_{n_k} \in N(l; \varepsilon)$, অর্থাৎ $x_{n_k} \to l$ যখন $k \to \infty$.

উপপাদ্য 5.3.3 : একটি ক্রম { x_n } *l*-এর প্রতি অভিসারী যদি এবং একমাত্র যদি { x_n }-এর প্রত্যেক উপক্রম *l*-এর প্রতি অভিসারী হয়।

প্রমাণ : মনে করুন $\{x_{nk}\}$ $\{x_n\}$ -এর একটি উপক্রম এবং $x_n \to l$ । সংজ্ঞানুযায়ী $n_{k+1} \ge n_k + 1$ এবং $n_1 \ge I$ যার ফলে আরোহ নীতির দ্বারা $n_k \ge k$ এবং তাই $n_k \to \infty$ যখন $k \to \infty$ । উপপাদ্য 5.3.2 থেকে পাই $x_{n_k} \to l$ যখন $k \to \infty$.

ক্রমে বিপরীত উক্তি তুচ্ছ কেন না যে-কোন ক্রম নিজের একটি উপক্রম। 🗌

উপপাদ্য 5.3.4 : একটি বিন্দু α $\{x_n\}$ -এর একটি উপক্রমিক সীমা হবে যদি এবং একমাত্র যদি প্রত্যেক $\delta > 0$ -র জন্যে $x_n \in N(\alpha; \delta)$ অসীমসংখ্যক n-এর জন্যে।

প্রমাণ : ধরা যাক $\alpha_{\{x_n\}}$ -এর উপক্রমিক সীমা। তাহলে $\{x_n\}$ -এর এমন একটি উপক্রম $\{x_{n_k}\}$ আছে। যে $x_{n_k} \to \alpha_{-}$ যখন $k \to \infty$ । তাই প্রদত্ত $\varepsilon = 0$ -র জন্যে এমন k_0 আছে যে $x_{n_k} \in N(\alpha; \delta)$ যখন $k \ge k_0$ হয় যার ফলে $x_n \in N(\alpha; \delta)$ n -এর অসীমসংখ্যক মানের জন্যে।

বিপরীতক্রমে ধরা যাক যে-কোন $\delta > 0$ -র জন্যে $x_n \in N(\alpha; \delta)$ অসীমসংখ্যক *n*-এর জন্যে। $\{n \mid x_n \in N(\alpha; \mathbf{I})\}$ এই সেটটি অসীম এবং এর একটি ক্ষুদ্রতম সংখ্যা n_1 আছে যার ফলে $x_{n1} \in N(\alpha; \mathbf{I})$ । আবার $\{n \mid n > n_1$ এবং $x_n \in N(\alpha; \frac{1}{2})\}$ সেটটি অশূন্য এবং তার একটি ক্ষুদ্রতম সংখ্যা n_2 আছে, অর্থাৎ $n_2 > n_1$ এবং $x_{n2} \in N\left(\alpha; \frac{1}{2}\right)$ । এই প্রক্রিয়া চালিয়ে গেলে একটি ক্রম $\{x_{nk}\}$ পাই এমন যে $x_{nk} \in N(\alpha; 1/k)$ প্রত্যেক *k*-র জন্যে এবং $n_1 < n_2 < \dots$ । অতএব $\{x_{nk}\}$ $\{x_n\}$ -র একটি উপক্রম এবং

 $x_{nk} \in Nig(lpha\,;1/kig) \subseteq Nig(lpha\,;arepsilonig)$ যখন $k \geq k_0$

যেখানে \mathbf{k}_0 = [1/ ε] + 1, অর্থাৎ $x_{nk} \to \alpha$ যখন $k \to \infty$. \Box

উপরোক্ত উপপাদ্যের শর্ত সেটের সীমাবিন্দুর কথা স্মরণ করিয়ে দেয়। বস্তুত পরের উপপাদ্য এর ব্যাখ্যা মেলে। উপপাদ্য 5.3.5 : ধরা যাক $\{x_n\}$ একটি প্রদন্ত ক্রম যার পাল্লা সেট X। একটি বিন্দু $lpha, \{x_n\}$ -এর উপক্রমিক বিন্দু হবে যদি এবং একমাত্র যদি lpha, X-এর সীমাবিন্দু হয় অথবা $x_n = lpha$ অসীমসংখ্যক *n*-এর জন্যে।

প্রমাণ : যদি α, X-এর সীমাবিন্দু হয়, তাহলে প্রত্যেক সামীপ্য N(α ; δ)-তে অসীমসংখ্যক X-এর বিন্দু আছে এবং তাই x_n আছে অসীমসংখ্যক n-এর জন্যে। যদি $x_n = \alpha$ অসীমসংখ্যক n-এর জন্যে হয়, তাহলে $x_n = \alpha \in N(\alpha; \delta)$ অসীমসংখ্যক n-এর জন্যে। উভয় ক্ষেত্রেই উপপাদ্য 5.3.4 দ্বারা α, $\{x_n\}$ -এর উপক্রমিক বিন্দু।

বিপরীত ক্রমে ধরা যাক α , $\{x_n\}$ -এর উপক্রমিক বিন্দু। উপপাদ্য 5.3.4 দ্বারা $x_n \in N(\alpha; \delta)$ অসমীসংখ্যক *n*-এর জন্যে। স্পষ্টতই অসীমসংখ্যক *n*-এর জন্যে $x_n = \alpha$ হতে পারে। কিন্তু তা যদি না হয়, তাহলে $N'(\alpha; \delta)$ -তে কোন x_n এবং তাই X-এর কোন বিন্দু আছে যা দেখায় যে α , X-এর সীমাবিন্দু। \Box

মন্তব্য : উপরের উপপাদ্য দেখায় যে ক্রমের উপক্রমিক সীমা সেটের সীমাবিন্দুর অনুরূপ ভূমিকা পালন করে। তাই প্রত্যাশিতভাবেই নিম্নোক্ত ফলাফল পাই যা বিশেষ গুরুত্বপূর্ণ।

উ**পপাদ্য 5.3.6 :** (ক্রমের জন্যে বোলৎসানো-ভাইয়েরস্ত্রাস উপপাদ্য) প্রত্যেক বদ্ধ ক্রমের একটি অভিসারী উপক্রম আছে। উপরন্তু একটি বৃহত্তম ও একটি ক্ষুদ্রতম উপক্রমিক সীমা বর্তমান।

🛿 প্রমাণ : একক 4-এর উপপাদ্য 4.4.3-এর প্রমাণের অনুরূপ, কেবল সেটের বদলে ক্রম লিখতে হবে। 🗖

5.4 উধ্ব ও নিম্ন সীমা

সংজ্ঞা 5.4.1 : মনে করুন $\{x_n\}$ একটি বদ্ধ ক্রম । $\{x_n\}$ -এর বৃহত্তম উপক্রমিক সীমাকে এর ঊধ্বর্সীমা (upper limit) বলা হবে এবং $\overline{\lim_{n\to\infty} x_n}$ বা শুধু $\overline{\lim_{n\to\infty} x_n}$ দ্বারা চিহ্নিত হবে। এই ক্রমের ক্ষুদ্রতম উপক্রমিক সীমাকে নিম্নসীমা (lower limit) বলা হবে এবং তার চিহ্ন হবে $\lim_{n\to\infty} x_n$ বা lim x_n I

যদি $\{x_n\}$ উপরে অনাবন্দ্ধ হয়, তাহলে আমরা লিখি $\lim_n x_n = \infty$ । নিচে $\{x_n\}$ নিচে অনাবন্দ্ধ হয়, তাহলে লিখি $\lim_n x_n = -\infty$

যদি $\{x_n\}$ উপরে অনাবন্দ্ধ কিন্তু নিচে বন্দ্ধ হয় তাহলে $\lim_n x_n^2$ এর সংজ্ঞা হবে ক্ষুদ্রতম উপক্রমিক সীমা এবং যদি কোন উপক্রমিক সীমা আদৌ না থাকে তখন আমরা লিখি $\lim_n x_n = \infty$

অনুরূপে $\{x_n\}$ নিচে অনাবদ্ধ এবং উপরে বদ্ধ হয়, $\overline{\lim} x_n$ -এর সংজ্ঞা হবে বৃহত্তম উপক্রমিক সীমা এবং লিখি $\overline{\lim} x_n = -\infty$ যদি কোন উপক্রমিক সীমা না থাকে।

অতএব দেখা যাচ্ছে যে-কোন ক্রমের ঊর্ধ্ব এবং নিম্নসীমা আছে— সসীম বা অসীম।

উপপাদ্য 5.4.1 : (i) $\underline{\lim} x_n \leq \overline{\lim} x_n$, (ii) $\overline{\lim} (-x_n) = -\underline{\lim} x_n$, $\underline{\lim} (-x_n) = -\overline{\lim} x_n$. উপপাদ্য 4.4.4–এর অনুরূপ ফলাফল হল

উপপাদ্য 5.4.2 : মনে করুন $\{x_n\}$ একটি বদ্ধ ক্রম। $\Lambda = \overline{\lim} x_n$ যদি এবং একমাত্র যদি প্রদন্ত $\varepsilon = 0$ -র জন্যে $x_n > \Lambda - \varepsilon, n$ -র অসীম সংখ্যক মানের জন্যে এবং $x_n < \Lambda + \varepsilon$ যখন $n \ge n_0$ যেখানে ε -এর উপর নির্ভরশীল। নিম্নসীমার ক্ষেত্রে অনুরূপ উক্তি থাটে।

শ্রমাণ: ধরুন $\Lambda = \overline{\lim} x_n$ যেহেতু $\Lambda \{x_n\}$ একটি উপক্রমিক সীমা। $\varepsilon > 0$ প্রদন্ত হলে অসীমসংখ্যক *n*-এর জন্যে $x_n \in N(\Lambda; \varepsilon)$ এবং তাই $x_n > \Lambda - \varepsilon$ । যে-কোন $\varepsilon > 0$ -র জন্যে এমন n_0 বর্তমান যে $x_n < \Lambda + \varepsilon$ যখন $n \ge n_0$ এই উক্তি মিথ্যে হলে একটি $\varepsilon' > 0$ আছে এমন $x_n \ge \Lambda + \varepsilon'$ অসীমসংখ্যক *n*-এর জন্যে। এর ফলে $\{x_n\}$ - এর একটি উপক্রম $\{x_{nk}\}$ পাওয়া যায় এমন যে প্রত্যেক *k*-র জন্যে $x_{nk} \ge \Lambda + \varepsilon'$ । $\{x_n\}$ বদ্ধ বলে $\{x_{nk}\}$ -ও বদ্ধ যার ফলে $\{x_n\}$ -এর একটি উপক্রমি বুলি মিথ্যে হলে একটি উপক্রম $\{x_n\}$ পাওয়া যায় এমন যে প্রত্যেক *k*-র জন্যে $x_{nk} \ge \Lambda + \varepsilon'$ । $\{x_n\}$ বদ্ধ বলে $\{x_{nk}\}$ -ও বদ্ধ যার ফলে $\{x_{nk}\}$ -এর একটি উপক্রমিক সীমা Λ' বর্তমান, অর্থাৎ যে-কোন $\delta > 0$ -র জন্যে $x_{nk} \in N(\Lambda'; \delta)k$ -র অসীমসংখ্যক মানের জন্যে এবং তাই $x_n \in N(\Lambda'; \delta)n$ -র অসীমসংখ্যক মানের জন্যে যা দেখায় যে Λ' $\{x_n\}$ -এর একটি উপক্রমিক সীমা। অতএব $\Lambda' \ge \Lambda$ + $\varepsilon' > \Lambda$ যা অসত্য কেননা $\Lambda \{x_n\}$ -এর বৃহত্তম উপক্রমিক সীমা।

বিপরীতক্রমে ধরুন যে শর্তটি পালিত হচ্ছে এবং $\varepsilon = 0$ প্রদন্ত। $\{n \mid x_n > \Lambda - \varepsilon\}$ সেটটি অসীম এবং $\{n \mid x_n \geq \Lambda + \varepsilon\}$ সসীম যার ফলে $\{n \mid x_n > \Lambda - \varepsilon\} - \{n \mid x_n \geq \Lambda + \varepsilon\}$ এই সেটটি অসীম যার যে-কোন সংখ্যা n-এর জন্যে $x_n > \Lambda - \varepsilon$ এবং $x_n \geq \Lambda + \varepsilon$ এবং তাই $x_n \in N(\Lambda; \varepsilon)$ অসীমসংখ্যক n-এর জন্য, অর্থাৎ $\Lambda \{x_n\}$ - এর উপক্রমিক সীমা। যদি সম্ভব হয় মনে করুন $\Lambda'(>\Lambda)$ $\{x_n\}$ -এর একটি উপক্রমিক সীমা। $\varepsilon = (\Lambda' - \Lambda)/2$ ধরলে অসীমসংখ্যক n-এর জন্যে $x_n \in N(\Lambda'; \varepsilon)$ যার ফলে $x_n > \Lambda' - \varepsilon = \Lambda + \varepsilon$ যার শর্তের দ্বিতীয় অংশের পরিপন্থী। অতএব $\Lambda \overline{\lim} x_n$

উপপাদ্য 5.4.3 : যদি $\lim_{n \to \infty} x_n = l$ হয়, তাহলে $\lim_{n \to \infty} x_n = l$ বিপরীতক্রমে যদি $\overline{\lim_{n \to \infty} x_n} = l$ এবং { x_n } বদ্ধ হয় তাহলে $\lim_{n \to \infty} x_n = l$

প্রমাণ : যদি $\lim_{n \to \infty} x_n = l$ হয় $\varepsilon > 0$ প্রদন্ত হলে n_0 আছে এমন যে $l - \varepsilon < x_n < l + \varepsilon$ যখন $n \ge n_0$. সুতরাং উপপাদ্য 5.4.2 দ্বারা $\lim_{n \to \infty} x_n = l$.

যদি $\overline{\lim} x_n = \underline{\lim} x_n = l$ এবং { x_n } বদ্ধ হয়, তাহলে l সসীম এবং উপপাদ্য 5.4.2-র থেকে পাই $x_n < l + \varepsilon$ যখন $n \ge n_1$ এবং $x_n > l - \varepsilon$ যখন $n \ge n_2$ অথবা যদি $n_0 = \max \{n_1, n_2\}$ হয় $x_n \in N(l, \varepsilon)$ যখন $n \ge n_0$, অর্থাৎ $\lim x_n = l$

পরের উপপাদ্য উধর্ব ও নিম্নসীমার একটি সুন্দর এবং কার্যকরী রূপায়ণ দেয়। উপপাদ্য 5.4.4 : যদি { x_n } বদ্ধ হয় $\overline{\lim} x_n = \inf \left\{ \sup \left(x_n, x_1 + 1, \dots \right) \right\}$

 $\underline{\lim} x_n = \sup \{ \inf (x_n, x_n + 1, \ldots) \}$

প্রমাণ : লিখুন $m = \inf \{x_n\}$ এবং প্রত্যেক স্থির *n*-এর জন্যে $M_n = \sup \{x_n, x_n + 1, ...\} \{n = 1, 2, ...\}$ । প্রত্যেক স্থির *n*-র জন্যে, যেহেতু $x_n, x_n + 1, ... \ge m, M_n \ge m$ এবং যেহেতু $M_n + 1 = \sup \{x_n + 1, x_n + 2, ...\}, M_{n+1} \le M_n$ । তাই $\{M_n\}$ একটি একান্বয়ে হ্রাসমান এবং নিচে বদ্ধ। লিখুন $\Lambda = \inf \{M_n\}$ যার ফলে $M_n \to \Lambda$ । ইচ্ছানুরূপ $\varepsilon > 0$ নিন।

এখন $M_n \geq \Lambda$ প্রত্যেক *n*-এর জন্যে এবং $M_n < \Lambda + \varepsilon$ যখন $n \geq n_0$ যেখানে n_0 , ত্ব-এর উপর নির্ভরশীল। M_n -এর সংজ্ঞানুপযায়ী প্রত্যেক স্থির *n*-এর জন্যে $x_n \leq M_n$ এবং $x_m > M_n - \varepsilon$ বিশেষ $m \geq n$ -এর জন্যে যেখানে m, $\varepsilon \in n$ -এর উপর নির্ভরশীল। সুতরাং $x_n < \Lambda + \varepsilon$ যখন $n \geq n_0$ এবং যে-কোন স্থির *n*-এর জন্যে এমন $m \geq n$ আছে যে $x_m > \Lambda - \varepsilon$ । n = 1-এর জন্যে $m_1 \geq 1$ আছে এমন যে $x_{m1} > \Lambda - \varepsilon$; $n = m_1 + 1$ -এর জন্যে এমন $m_2 > m_1$ আছে যে $x_{m2} > \Lambda - \varepsilon$ ইত্যাদি। অতএব $x_n > \Lambda - \varepsilon$, n-এর m_1 , m_2 , ... এই অসীমসংখ্যক মানের জন্যে। উপপাদ্য 5.4.2 দ্বারা $\Lambda = \overline{\lim} x_n$.

প্রথম অংশে $\{x_n\}$ -এর বদলে $\{-x_n\}$ নিলে দ্বিতীয় অংশ পাওয়া যায়। \Box উপপাদ্য 5.4.5 : মনে করুন $\{x_n\}, \{y_n\}$ দুটি বদ্ধ ক্রম এবং c একটি ধ্রুবক এবং

 $\overline{\lim} x_n = \Lambda, \ \underline{\lim} x_n = \lambda, \ \overline{\lim} y_n = \Lambda', \ \underline{\lim} y_n = \lambda'$

তাহলে

(i)
$$\lim (c + x_n) + c + \lim x_n, \lim (c + x_n) = c + \lim x_n$$

- (ii) $\overline{\lim}(cx_n) = c\Lambda, \underline{\lim}(cx_n) = c\lambda, \overline{uh}(cz_n) = c\lambda, \overline{uh}(cz_n) = c\lambda$
- (iii) $\overline{\lim}(x_n + y_n) \le \Lambda + \Lambda^{\prime}, \underline{\lim}(x_n + y_n) \ge \lambda + \lambda^{\prime}$
- (iv) $\overline{\lim}(x_ny_n) \leq \Lambda \Lambda^{/}, \underline{\lim}(x_ny_n) \geq \lambda \lambda^{/}$ যদি প্রত্যেক *n*-এর জন্যে $x_n > 0, y_n > 0$
- (v) যদি $x_n \leq y_n$ প্রত্যেক *n*-এর জন্যে, $\Lambda \leq \Lambda', \ \lambda \leq \lambda'$.

প্রমাণ : (iii) $\varepsilon = 0$ প্রদন্ত হলে, $x_n < \Lambda + \frac{1}{2}\varepsilon$ যখন $n \ge n_1$, $y_n < \Lambda' + \frac{1}{2}\varepsilon$ যখন $n \ge n_2$ যার ফলে $x_n + y_n < \Lambda + \Lambda' + \varepsilon$ যখন $n \ge n_0 = \max(n_1, n_2)$ াতাই $\overline{\lim}(x_n + y_n) \le \Lambda + \Lambda' + \varepsilon$. যেহেতু ε ইচ্ছানুরূপ, $\overline{\lim}(x_n + y_n) \ge \Lambda + \Lambda'$.

অন্যগুলির প্রমাণ অনুরূপ। 🗖

ঊদাহরণ 1. মনে করন $x_n=\left(-1
ight)^n+rac{1}{n}$ । তাহলে

$$x_{2k} = \mathbf{l} + \frac{1}{2k} \rightarrow 1$$
 যখন $k \rightarrow \infty, \ x_{2k+1} = -\mathbf{l} + \frac{1}{(2k+1)} \rightarrow -\mathbf{l}$ যখন $k \rightarrow \infty | \neq \mathbf{l}$ উপক্রমিক সীমা

এবং আর কোন উপক্রমিক সীমা নেই, কেননা যে-কোন $\varepsilon > 0$ -র জন্যে $x_n \in N(-1; \varepsilon) \cup N(1; \varepsilon), n$ -এর সব মানের জন্যে কেবল হয়ত সমীসংখ্যক মান ছাড়া এবং যদি $\alpha \neq \pm 1$ হয়, এমন একটি সামীপ্য $N(\alpha)$ আছে যে $x_n \in N(\alpha)$ সর্বাধিক সসীমসংখ্যক *n*-এর জন্যে। অতএব $\overline{\lim} x_n = 1$, $\underline{\lim} x_n = -1$.

2.
$$\{x_n\} = \{1, \frac{1}{2}, 3, \frac{1}{4}, \dots\} \mid \text{order}$$

 $x_{2k} = \frac{1}{2k} \rightarrow 0$ যখন $k \rightarrow \infty$ এবং $x_{2k+1} = 2k + 1 \rightarrow \infty$ যখন $k \rightarrow \infty \mid 0$ একমাত্র উপক্রমিক সীমা। যেহেতু x_n } উপরে অনাবদ্ধ এবং নিচে বদ্ধ $\overline{\lim} x_n = \infty$, $\underline{\lim} x_n = 0$.

5.5 অভিসারিতার সাধারণ নীতি

সীমার অনুমান না করে একটি ক্রমের অভিসারিতা পরীক্ষা করবার জন্যে নিচের উপপাদ্যে বর্ণিত একটি শর্ত ব্যবহার করা চলে যা কোশির (Cauchy) অভিসারিতার সাধারণ নীতি নামে পরিচিত।

উপপাদ্য 5.5.1 : (অভিসারিতার সাধারণ নীতি : General Principle of Convergenc) { x_n }-এর অভিসারিতার একটি আবশ্যিক এবং পর্যাপ্ত শর্ত হল প্রদত্ত $\varepsilon = 0$ -র জন্যে এমন একটি ধনাত্মক পূর্ণসংখ্যা n_0 আছে যে $|x_{n+p} - x_n| < \varepsilon$ যখন $n \ge n_0$, p যে-কোন ধনাত্মক পূর্ণসংখ্যা।

প্রমাণ : যদি $\{x_n\}$ অভিসারী হয়, মনে করুন $x_n \to l$ যার ফলে প্রদত্ত $\varepsilon > 0$ -র জন্যে ε -এর উপর নির্ভরশীল এমন n_0 পাওয়া যায় যে $x_n \in N\left(l; \frac{1}{2}\varepsilon\right)$ যখন $n \ge n_0$ এবং তাই $x_{n+p} \in N\left(l; \frac{1}{2}\varepsilon\right)$ যখন $n \ge n_0$ এবং pযে-কোন ধনাত্মক পূর্ণসংখ্যা। অতএব $n \ge n_0$ এবং যে-কোন p-র জন্যে

 $\left| x_{n+p} - x_n \right| \le \left| x_{n+p} - l \right| + \left| x_n - l \right| < \frac{1}{2}\varepsilon + \frac{1}{2}\varepsilon = \varepsilon$

বিপরীতক্রমে ধরুন যে শর্তটি পালিত হচ্ছে। তাহলে প্রত্যেক p-র জন্যে $|x_{n_0+p} - x_{n_0}| < \varepsilon$, অর্থাৎ $x_{n_0+p} \in N(x_{n_0};\varepsilon)$, অর্থাৎ $x_n \in N(x_{n_0};\varepsilon)$ যখন $n \ge n_0$ । সুতরাং { x_n } বদ্ধ এবং $\Lambda = \overline{\lim} x_n$ ও $\lambda = \overline{\lim} x_n$ অস্তিত্বমান। যদি $\alpha \notin [x_{n_0} - \varepsilon, x_{n_0} - \varepsilon]$ হয়, তাহলে আমরা এমন সামীপ্য $N(\alpha)$ পেতে পারি যে $N(\alpha) \cap N(x_{n_0};\varepsilon) = \Phi$ যার ফলে $x_n \in N(\alpha)$ সর্বাধিক সসীমসংখ্যক n-এর জন্যে যা দেখায় যে $\alpha, \{x_n\}$ - এর উপক্রমিক সীমা নয়। অতএব $\Lambda, \lambda \in [x_{n_0} - \varepsilon, x_{n_0} + \varepsilon]$ এবং তাই $0 \le \Lambda - \lambda \le 2\varepsilon$ । যেহেতু ε ইচ্ছাধীন, $\Lambda = \lambda$ যার ফলে উপপাদ্য 5.4.3 থেকে পাই যে $\{x_n\}$ অভিসারী।

উপরের উপপাদ্যের শর্তকে একটি ধর্ম হিসেবে সংজ্ঞায়িত করলে পাই

সংজ্ঞা 5.5.1 : একটি ক্রম $\{x_n\}$ -কে একটি মৌলিক (fundamental) বা কোশি (Cauchy) ক্রম বলা হয় যদি প্রদত্ত $\varepsilon > 0$ -র জন্যে এমন একটি ধনাত্মক পূর্ণসংখ্যা n_0 পাওয়া যায় যে, প্রত্যেক $n \ge n_0$ এবং প্রত্যেক ধনাত্মক পূর্ণসংখ্যা p-র জন্যে $|x_{n+p} - x_n| < \varepsilon$.

অতএব অভিসারিতার সাঁধারণ নীতি বলে যে একটি ক্রম অভিসারী হয় যদি এবং একমাত্র যদি ক্রমটি কোশি ক্রম হয়।

মন্তব্য : বাস্তব সংখ্যার ক্ষেত্রে অভিসারী ক্রম এবং কোশি ক্রমের ধারণা সমার্থক। কিন্তু ধরুন যদি আমরা মূলদ সংখ্যার ক্ষেত্র বিবেচনা করি তাহলে কী উপরোক্ত নীতি সত্যি হবে। একটি মূলদ সংখ্যার ক্রম {r়}-এর কথা ভাবুন যা একটি অমূলদ সংখ্যার প্রতি অভিসারী বাস্তব সংখ্যার ক্ষেত্রে (2.9 অনুচ্ছেদের 17নং প্রশ্ন দেখুন)। তাহলে বাস্তব সংখ্যার ক্ষেত্রে {r_n} অভিসারী এবং তাই একটি কোশি ক্রম এবং তাই মূলদ সংখ্যার ক্ষেত্রেও একটি কোশি ক্রম, কিন্তু মূলদ সংখ্যার ক্ষেত্রে lim x_n অস্তিত্বমান নয়। অতএব দেখা যাচ্ছে মূলদ সংখ্যার ক্ষেত্রে সব কোশি ক্রমই অভিসারী নয়। বস্তুত এই সাধারণ নীতি বাস্তব সংখ্যার সম্পূর্ণতার ফলস্রুতি এবং যেহেতু মূলদ সংখ্যাসমষ্টি সম্পূর্ণ নয় সাধারণ নীতি এক্ষেত্রে খাটে না।

উদাহরণ 5.5.1 : যদি $x_n = 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n}$ হয়, প্রমাণ করুন যে $\{x_n\}$ অপসারী।

সম্ভব হলে ধরুন যে $\{x_n\}$ অভিসারী। ধরুন $0 < \varepsilon < 1$. তাহলে অভিসারিতার সাধারণ নীতির দ্বারা এমন একটি n_0 পাওয়া যায় যে প্রত্যেক p-র জন্যে

$$\varepsilon > (x_{n0+p} - x_{n0}) = \frac{1}{n_0 + 1} + \frac{1}{n_0 + 2} + \dots + \frac{1}{n_0 + p} \ge \frac{p}{n_0 + p}$$

$$p = n_0$$
 হলে $\varepsilon > \frac{1}{2}$ যা মিথ্যে। অতএব উক্তি সত্যি।

5.6 বিশেষ উপাদানসমূহ

উপপাদ্য 5.6.1 : যদি $x_n \to \infty$, তাহলে $\left(1 + \frac{1}{x_n}\right)^{x_n} \to e$.

প্রমাণ : যেহেতু $x_n \to \infty, x_n \ge 1$ যখন $n \ge N$ (স্থির)। লিখুন প্রত্যেক $n \ge N$ -এর জন্যে [x_n] = k_n যার ফলে $k_n \le x_n < k_n + 1$ । যেহেতু $x_n \to \infty, k_n \to \infty$ এবং $k_n \ge 1$ যখন $n \ge N$ । তাহলে যখন $n \ge N$

$$1 + \frac{1}{k_n + 1} < 1 + \frac{1}{x_n} \le 1 + \frac{1}{k_n}$$
 এবং তাই $\left(1 + \frac{1}{k_n + 1}\right)^{k_n} < \left(1 + \frac{1}{x_n}\right)^{x_n} < \left(1 + \frac{1}{k_n}\right)^{k_n + 1}$ যেহেতু $\left(1 + \frac{1}{k}\right)^k \to e$ যখন $k \to \infty$ এবং $k_n \to \infty$ যখন $n \to \infty$

উপপাদ্য 5.3.2 দ্বারা ডান এবং বাঁ উভয় পক্ষই → e যখন $n o \infty$ এবং স্যানডুইচ নিয়মের দ্বারা উপপাদ্য প্রমাণিত হয়। □

উপপাদ্য 5.6.2 : যদি $x_n \rightarrow 0, -1 < x_n \neq 0$ যে-কোন n-এর জন্যে, তাহলে

(i)
$$(1+x_n)^{\frac{1}{x_n}} \to e$$

(ii) $\frac{\log(1+x_n)}{x_n} \to 1$
(iii) $\frac{e^{x_n}-1}{x_n} \to 1$

প্রমাণ : (i) প্রথমে প্রমাণ করা যাক যে যদি $x_n \to \infty$, তাহলে $\left(1 + \frac{1}{x_n}\right)^{x_n} \to e$, $y_n = -x_n - 1$ লিখলে

$$y_n \to \infty$$
 এবং $\left(1 + \frac{1}{x_n}\right)^{x_n} = \left(1 + \frac{1}{y_n}\right)^{y_n+1} \to e$
যদি $x_n \to 0$ এবং $x_n > 0$ সব *n*-এর জন্যে, তাহলে $y_n = 1/x_n \to \infty$ এবং তাই

$$(1+x_n)^{\frac{1}{x_n}} = \left(1+\frac{1}{y_n}\right)^{y_n} \to e$$

যদি $x_n
ightarrow 0$ এবং $x_n < 0$ সব x-এর জন্যে, তাহলে $y_n = 1/x_n
ightarrow \infty$ এবং প্রথম প্যারার দ্বারা

$$(\mathbf{I} + x_n)^{\frac{1}{x_n}} = \left(\mathbf{I} + \frac{1}{y_n}\right)^{y_n} \to e$$

এবার $\{x_n\}$ -এর সাধারণ ক্ষেত্রে আসা যাক। যদি $x_n < 0$ সর্বাধিক সসীমসংখ্যক *n*-এর জন্যে: তাহলে প্রমাণ তুচ্ছ। যদি $x_n < 0$ অসীমসংখ্যক *n*-এর জন্যে হয়, আমরা $\{x_n\}$ -এর দুটি উপক্রম $\{x_{n_k}\}$ ও $\{x_{m_k}\}$ পেতে পারি এমন যে,

 $x_{n_k}>0, x_{m_k}<0$ সব k-র জন্যে

এবং $\{n_k \mid k = 1, 2, ...\}$ ও $\{m_k \mid k = 1, 2, ...\}$ এই সেট দুটির সংযোগ N, সব ধনাত্মক পূর্ণসংখ্যার সেট। আমরা যা ইতিমধ্যে প্রমাণ করেছি তার থেকে পাই যে ফলাফল সত্যি হয় যদি $\{x_n\}$ -এর বদল উপক্রম $\{x_{n_k}\}$

ও $\{x_{m_k}\}$ নিই, এবং যেহেতু প্রত্যেক *n* কোন n_k বা m_k -র সমান, উপপাদ্যটি সাধারণ ক্ষেত্রে প্রমাণিত হল। নিচের উপপাদ্যটি উপপাদ্য 2.7.22-র সামানীকরণ (generalisation) যা শ্রেণীতত্ত্ব বিচারে কাজে লাগবে। উপপাদ্য 5.6.3 : যদি $x_n > 0$ প্রত্যেক *n*-এর জন্যে হয়, তাহলে

$$\underline{\lim} \frac{x_{n+1}}{x_n} \le \underline{\lim} \sqrt[n]{x_n} \le \overline{\lim} \sqrt[n]{x_n} \le \overline{\lim} \frac{x_{n+1}}{x_n}$$

প্রমাণ : আমরা অন্তিম ডানদিকের অসমতা প্রমাণ করব, অন্তিম বাঁদিকের প্রমাণ অনুরূপ হবে। লিখুন $\Lambda = \overline{\lim} rac{x_{n
eq 1}}{x_n}$

যদি $\Lambda=\infty$ হয়, তাহলে ফলাফল তুচ্ছ। ধরুন Λ সসীম। এখন প্রদন্ত $\varepsilon>0$ -র জন্যে এমন m পাওয়া যায় যে $rac{x_{n+1}}{x_n}<\Lambda+arepsilon$ যখন $n\geq m$

যার ফলে যখন $n \ge m+1$, $\prod_{i=m}^{n-1} \frac{x_{i+1}}{x_i} < (\Lambda + \varepsilon)^{n-m}$ অথবা $x_n < x_m (\Lambda + \varepsilon)^{n-m} = A (\Lambda + \varepsilon)^n$ যেখানে A (> 0) একটি ধ্রুবক, অথবা $\sqrt[n]{x_n} < (\Lambda + \varepsilon) \sqrt[n]{A}$ যখন $n \ge m + 1$ যার ফলে,

$$\overline{\lim} \sqrt[n]{x_n} \le (\Lambda + \varepsilon) \lim \sqrt[n]{A} = \Lambda + \varepsilon$$

যেহেতু ε ইচ্ছাধীন, $\overline{\lim} \sqrt[n]{x_n} \le \Lambda$ যা প্রতিপাদ্য প্রমাণ করে। \Box

5.7 **সা**রাংশ

এই এককে আমরা আলোচনা করলাম একটি ক্রমের উপক্রম ও উপক্রমিক সীমার কথা। ক্রমের জন্যে বোলৎসানো-ভাইয়েরস্ট্রাস উপপাদ্য জানা গেল যা বলে যে একটি বদ্ধ ক্রমের অন্তত একটি উপক্রমিক সীমা আছে অর্থাৎ একটি অভিসারী উপক্রম আছে। উপরম্ভ একটি বদ্ধ ক্রমের একটি বৃহত্তম ও একটি ক্ষুদ্রতম উপক্রমিক সীমা আছে যাদের যথাক্রমে প্রদত্ত ক্রমের ঊধ্বসীমা ও নিম্নসীমা বলে। আরো জানা গেছে যে প্রত্যেক ক্রমের, বদ্ধ বা অনাবদ্ধ, ঊধ্বসীমা এবং নিম্নসীমা বর্তমান তবে ক্ষেত্র বিশেষ তাদের মান ±∞ হতে পারে। প্রমাণ করা হয়েছে যে সীমার অস্তিত্বের একটি আবশ্যিক এবং পর্যাপ্ত শর্ত হল ঊর্ধ্ব ও নিম্নসীমার সমতা।

তারপর আলোচিত হয়েছে অভিসারিতার সাধারণ নীতি বা কোশি নীতির কথা যার দ্বারা ক্রমের অভিসারিতা পরীক্ষা করা যায়।

পরিশেষে সীমাবিষয়ক কয়েকটি বিশেষ ফলাফল প্রমাণ করা হয় যা পরবর্তী তত্ত্ব নির্মাণে সহায়ক হবে।

5.8 সর্বশেষ প্রশ্নমালা

(i)
$$x_n = (-1)^n \left(1 + \frac{1}{n}\right)$$
 (ii) $x_n = n \left\{1 + (-1)^n\right\}$
(iii) $\left\{x_n\right\} = \left\{-1, 1, 0; -2, \frac{1}{2}, 0; -3, \frac{1}{3}, 0, \dots\right\}$

অভিসারিতার সাধারণ নীতি প্রয়োগ করা দেখান যে [x_n] অভিসারী যেখানে

(i)
$$x_n = 1 - \frac{1}{2} + \frac{1}{3} - \dots + \frac{(-1)^{n-1}}{n}$$
 (ii) $|x_{n+2} - x_{n+1}| \le \frac{1}{2} x_{n+1} - x_n$

3. উপপাদ্য 5.6.2 (ii) ও (iii) প্রমাণ লিখুন।

5.9 উত্তরমালা

1. (i) -1, 1 ; 1, -1, (ii) $x_{2m} = 4m \rightarrow \infty$ যখন $m \rightarrow \infty$; $x_{2m+1} = 0 \rightarrow 0$ যখন $m \rightarrow \infty$ । তাই উত্তর যথাক্রমে $0, \infty, \infty, 0$ (iii) $0 - \infty, 0; 0, -\infty$

$$2. (i) x_{n+p} - x_n = (-1)^n \left\{ \frac{1}{n+1} - \frac{1}{n+2} + \dots + \frac{(-1)^{p-1}}{n+p} \right\} \text{at cr-chin} p-\overline{a} \text{sr-st}$$

$$0 < (-1)^n \left(x_{n+p} - x_n \right) < \frac{1}{(n+1)} \text{Form} + 1$$

$$\begin{aligned} \text{(ii)} \quad \left| x_{n+1} - x_n \right| &\leq \frac{1}{2} \left| x_n - x_{n-1} \right| \leq \left(\frac{1}{2} \right)^2 \left| x_{n-1} - x_{n-2} \right| \leq \ldots \leq \left(\frac{1}{2} \right)^{n-1} \left| x_2 - x_1 \right| \\ \text{vertex} \quad \left| x_{n+2} - x_{n+1} \right| &\leq \left(\frac{1}{2} \right)^n \left| x_2 - x_1 \right|, \ldots, \left| x_{n+p} - x_{n+p-1} \right| \leq \left(\frac{1}{2} \right)^{n+p-2} \left| x_2 - x_1 \right| \\ \text{vertex} \quad \left| x_{n+p} - x_n \right| &= \left| x_{n+p} - x_{n+p-1} + x_{n+p-1} - x_{n+p-2} + \ldots + x_{n+1} - x_n \right| \\ &\leq \left| x_{n+p} - x_{n+p-1} \right| + \left| x_{n+p-1} - x_{n+p-2} \right| + \ldots + \left| x_{n+1} - x_n \right| \\ &\leq \left(\frac{1}{2} \right)^{n-1} \left| x_2 - x_1 \right| \left\{ 1 + \frac{1}{2} + \left(\frac{1}{2} \right)^2 + \ldots + \left(\frac{1}{2} \right)^{p-1} \right\} \\ &= \left(\frac{1}{2} \right)^{n-2} \left| x_2 - x_1 \right| \left\{ 1 - \left(\frac{1}{2} \right)^p \right\} < \left(\frac{1}{2} \right)^{n-2} \left| x_2 - x_1 \right| \quad \text{Formula} \end{aligned}$$

3. (ii) (i) থেকে উপপাদ্য 2.7.16–এর দ্বারা।

(iii) লিখুন $y_n = e^{x_n} - 1$ । স্বীকৃতি থেকে $-1 < y_n \neq 0$ যে-কোন n-এর জন্যে এবং উপপাদ্য 2.7.15 দ্বারা $y_n \to 0$ যখন $n \to \infty$ তাই (ii) থেকে পাই

$$\frac{e^{x_n}-1}{x_n} = \frac{y_n}{\log(1+y_n)} \to 1. \ \Box$$

একক 6a 🗆 শ্রেণী I

গঠন	
6a.1	প্রস্তাবনা
6a.2	উদ্দেশ্য
6a.3	সংজ্ঞা এবং প্রাথমিক ধারণা
6a.4	ধনাত্মক পদের শ্রেণীর সাধারণ ধর্ম
6a.5	তুলনা পরীক্ষা ও ঘনীকরণ পরীক্ষা
6a.6	মূল ও অনুপাত পরীক্ষাসমূহ
6a.7	সারাংশ
6a.8	সর্বশেষ প্রশ্নাবলী
6a.9	উত্তরমালা

6a.1 প্রস্তাবনা

এই এককে আমরা শ্রেণী বা অসীম শ্রেণীর বিষয়ে আলোচনা করব। প্রথমে শ্রেণী ও তার যোগফলের সংজ্ঞা দেওয়া হবে এবং কিছু প্রাথমিক বিষয়ের অবতারণা করা হবে। ধনাত্মক পদের শ্রেণীর তত্ত্ব অপেক্ষাকৃত সরল এবং এটাই এই এককের প্রধান উপজীব্য।

ধনাত্মক পদের শ্রেণীর অভিসারিতার প্রাথমিক পরীক্ষাগুলির অন্যতম হল তুলনা পরীক্ষা ও ঘনীকরণ পরীক্ষা। কোশির মূল পরীক্ষা এবং অনুপাত-সম্বলিত নানা পরীক্ষার কথা সবিস্তারে আলোচিত হবে।

6a.2 উদ্দেশ্য

এই একক পাঠ করলে আপনারা জানতে পারবেন

- শ্রেণীর সংজ্ঞা ও তার অভিসারিতার সাধারণ নীতি
- ধনাত্মক পদের শ্রেণীর জন্যে তুলনা ও ঘনীকরণ পরীক্ষার কথা
- মূল পরীক্ষা ও অনুপাত-সম্বলিত বিবিধ পরীক্ষা

6a.3 সংজ্ঞা ও প্রাথমিক ধারণা

সংজ্ঞা 6a.3.1 : মনে করুন {a_n} একটি প্রদত্ত বাস্তব সংখ্যার ক্রম, যার থেকে অন্য একটি ক্রম {s_n} এইভাবে সংজ্ঞায়িত হল

$$s_n = a_1 + a_2 + \dots + a_n = \sum_{i=1}^n a_i$$
 (*n* = 1, 2,)

 $\{s_n\}$ ক্রমকে $a_1 + a_2 + \dots$ to $\infty \sum_{n=1}^{\infty} a_n$ এই চিহ্নদ্বারা সূচিত করা হয় এবং অসীম শ্রেণী বা শ্রেণী (infinite series) বা series) বলে অভিহিত করা হয়। a_n -কে শ্রেণীটির *n*-তম পদ এবং s_n -কে শ্রেণীর *n*-তম আংশিক যোগফল (partial sum) বলা হয়।

 $\sum_{n=1}^{\infty} a_n$ শ্রেণীকে **অভিসারী,** $\pm \infty$ -র প্রতি **অপসারী বা দোলনবিশিষ্ট** বলা হয় যখন { s_n } যথাক্রমে অভিসারী, $\pm \infty$ -র প্রতি অপসারী বা দোলনবিশিষ্ট হয়। যদি $s_n \to s$ যখন $n \to \infty$, তাহলে s-কে প্রদন্ত শ্রেণীর যোগফল (sum) বলা হয়, এবং তখন আমরা লিখি $s = \sum_{n=1}^{\infty} a_n$, অর্থাৎ একটি অভিসারী শ্রেণীর ক্ষেত্রে $\sum_{n=1}^{\infty} a_n$ এই চিহ্নটি ক্রম { s_n } এবং যোগফল উভয়ই সূচিত করে।

অনেক সময় শ্রেণীর চিহ্ন হয়
$$\sum_{n=0}^{\infty}a_n$$
 যার জন্যে আমরা ধরব $s_n=\sum_{i=0}^{\infty}a_i$ অথবা $\sum_{n=m}^{\infty}a_n$ যার জন্যে

 $s_n = \sum_{i=m}^n a_i (n = m, m + 1, ...)$ । সারল্যের জন্যে শ্রেণীকে $\sum a_n$ আকারে লেখা হয়। $\{s_n\}$ ব্রুমের উপর অভিসারিতার সাধারণ নীতি প্রয়োগ করে পাই—

উপপাদ্য 6a.3.1 (শ্রেণীর অভিসারিতার সাধারণ নীতি) : $\sum a_n$ শ্রেণীর অভিসারিতার একটি আবশ্যিক ও পর্যাপ্ত শর্ত হল যে প্রদত্ত ১০-র জন্যে ১-এর উপর নির্ভরশীল এমন একটি ধনাত্মক পূর্ণসংখ্যা n_0 পাওয়া যে

$$\left| a_{n+1} + a_{n+2} + \ldots + a_{n+p} \right| < \varepsilon$$

প্রত্যেক $n\geq n_0$ এবং প্রত্যেক ধনাত্মক পূর্ণসংখ্যা p-র জন্যে। \square

সংজ্ঞা 6a.3.2 : $_pR_n = a_{n+1} + a_{n+2} + ... + a_{n+p}$ -কে $\sum a_n$ শ্রেণীর *n*-তম পদের পরের *p*-তম আংশিক অবশিষ্ট (*p*-th partial remainder after the *n*-th term) বলা হয়।

উপপাদ্য 6a.3.2 : যদি $\sum a_n$ অভিসারী হয়, তাহলে $a_n o 0$

প্রমাণ : উপপাদ্য 6.3.1-এ p=1 বসিয়ে পাই | a_{n+1} | < ɛ যখন $n \ge n_0$, তাই $a_{n+1} \to 0$ অথবা $a_n \to 0$ । □ উপরোক্ত উপপাদ্য শ্রেণীর অভিসারিতার একটি কার্যকরী শর্ত দেয়।

শ্রেণীর যোগ ও ধ্রুবক দিয়ে গুণ প্রক্রিয়ার সংজ্ঞা এই রকম :

সংজ্ঞা 6a.3.3 :
$$\sum_{n=1}^{\infty} a_n + \sum_{i=1}^{\infty} b_n = \sum_{n=1}^{\infty} (a_n + b_n), c \sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} ca_n$$

উপপাদ্য 6a.3.3 : যদি $s = \sum_{n=1}^{\infty} a_n, s' = \sum_{n=1}^{\infty} b_n$ এবং c একটি ধ্রুবক হয় তাহলে,

(i)
$$s + s' = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n$$
 and (ii) $cs = c \sum_{n=1}^{\infty} a_n + \Box$

6a.4 ধনাত্মক পদের শ্রেণীর সাধারণ ধর্ম

এরপর থেকে এই এককে উল্লিখিত সব শ্রেণীই ধনাত্মক পদের বলে ধরা হবে।

ধনাত্মক পদের শ্রেণীর মূল বৈশিষ্ট্য হল যে তার আংশিক যোগফলের ক্রম একাম্বয়ে বর্ধমান হয় যার ফলশ্রুতি হল—

উপপাদ্য 6a.4.1 : $\sum a_n$ অভিসারী অথবা ∞-র প্রতি অপসারী হয় যদি আংশিক যোগফলের ক্রম { s_n } যথাক্রমে উপরে বদ্ধ বা অনাবদ্ধ হয়। 🗆

ধনাত্মক পদের শ্রেণীর বেলায় আর একটি আবশ্যিক শর্ত এই উপপাদ্য থেকে পাওয়া যায়।

উপপাদ্য 6a.4.2 : যদি $\sum a_n$ অভিসারী এবং $\{a_n\}$ একান্বয়ে হ্রাসমান হয়, তাহলে $na_n \to 0$.

প্রমাণ : উপপাদ্য 6a.3.1 থেকে এমন বিশেষ m পাই যে প্রত্যেক p-এর জন্যে

$$a_{m+1} + a_{m+2} + \dots + a_{m+p} < \varepsilon/2$$

অথবা যখন $n \ge m + 1$,

$$\epsilon/2 > a_{m+1} + a_{m+2} + \dots + a_{m+n} \ge (n-m)a_n$$

কেননা $\{a_n\}$ একান্বয়ে হ্রাসমান। অতএব যখন $n \ge 2m$, $\epsilon/2 > na_n/2$ বা $na_n < \epsilon$ যা দেখায় যে $na_n \to 0$. \Box

এর পরবর্তী ফলাফল আমাদের সুপরিচিত গুনোত্তর শ্রেণী সম্পর্কে।

উপপাদ্য 6a.4.3 :
$$\sum_{n=0}^{\infty} a^n$$
 অভিসারী হয় যখন $a < 1$ এবং অপসারী যখন $a \ge 1$

প্রমাণ : এখানে *n*-তম আংশিক যোগফল $s_n = (1 - a^{n+1})/(1 - a)$ যদি $a \neq 1$ হয় এবং $s_n = n + 1$ যখন a = 1. তাই এই ফলাফল। \Box

6a.5 তুলনা পরীক্ষা ও ঘনীকরণ পরীক্ষা

উপপাদ্য 6a.5.1 (তুলনা পরীক্ষা : Comparison test) : $\sum a_n$ একটি প্রদত্ত শ্রেণী।

(i) যদি $\sum c_n$ একটি অভিসারী শ্রেণী হয় এবং $a_n \leq c_n$ যখন $n \geq m$ (স্থির), তাহলে $\sum a_n$ অভিসারী। (ii) যদি $\sum d_n$ একটি অপসারী শ্রেণী হয় এবং $a_n \geq d_n$ যখন $n \geq m$ (স্থির), তাহলে $\sum a_n$ অপসারী। প্রমাণ : (i) লিখুন $s_n = \sum_{i=1}^n a_i, \ \sigma_n = \sum_{i=1}^n c_i$ যখন $n \ge m$

$$s_n = \sum_{i=1}^{m-1} a_i + \sum_{i=m}^n a_i \le \sum_{i=1}^{m-1} a_i + \sum_{i=m}^n c_i = \sum_{i=1}^{m-1} (a_i - c_i) + \sigma_n$$

যেহেতু $\sum c_n$ অভিসারী, $\{\sigma_n\}$ বদ্ধ এবং তাই $\{s_n\}$ বদ্ধ যার ফলে $\sum a_n$ অভিসারী। (ii)-এর প্রমাণ অনুরূপ। \Box তুলনা পরীক্ষার কার্যকরী রূপ হল—

উপপাদ্য 6a.5.2 (তুলনা পরীক্ষা : অন্য রূপ) : $\sum a_n$ একটি প্রদন্ত শ্রেণী।

(i) যদি $\sum c_n$ অভিসারী হয় এবং

$$\overline{\lim}\left(\frac{a_n}{c_n}\right) < \infty$$

- হয়, তাহলে $\sum a_n$ অভিসারী হবে।
- (ii) যদি $\sum d_n$ অপসারী হয় এবং

$$\overline{\lim} \left(\frac{a_n}{d_n}\right) > 0$$

হয়, তাহলে $\sum a_n$ অপসারী।

প্রমাণ : (i) এমন একটি α নির্বাচন করুন যে $\alpha > \overline{\lim} \left(a_n / c_n \right) \ge 0$

উপপাদ্য 5.4.2 দ্বারা এমন *m* পাওয়া যায় যে যখন $n \ge m$, $a_n \neq c_n \le \alpha$ অথবা $a_n \le \alpha c_n$, যেহেতু $\sum c_n$ অভিসারী, $\alpha \sum c_n = \sum \alpha c_n$ অভিসারী এবং তাই উপপাদ্য 6a.5.1. দ্বারা $\sum a_n$ অভিসারী।

(ii) যে-কোন α নিন এমন যে $0 < \alpha < \underline{\lim}(a_n / d_n)$ । তাহলে একটি বিশেষ *m* আছে এমন যে যখন $n \ge m$, $a_n / d_n > \alpha$ অথবা $a_n > \alpha d_n$ যার ফলে প্রতিপাদ্য উপপাদ্য 6a.5.1 থেকে যায়। \Box

আরেকটি গুরুত্বপূর্ণ পরীক্ষা হল—

উপপাদ্য 6a.5.3 (কোশির ঘনীকরণ পরীক্ষা : Cauchy's condensation test) : যদি $\{a_n\}$ একান্বয়ে হ্রাসমান হয়, তাহলে $\sum_{n=1}^{\infty} a_n$ অভিসারী বা অপসারী হয় যদি $\sum_{k=0}^{\infty} 2^k a_2 k = a_1 + 2a_2 + 4a_4 + \dots$ এই শ্রেণীটি যথাক্রমে অভিসারী বা অপসারী হয়।

প্রমাণ : লিখুন
$$s_n = \sum_{i=1}^n a_i, \sigma_k = \sum_{j=0}^k 2^j a_{2j}$$

যদি $n < 2^k$ হয়, $s_n < a_1 + (a_2 + a_3) + \dots + a_{2^k} + \dots + a_{2^{k+1}} - 1) \le a_1 + 2a_2 + \dots + 2^k a_{2^k}$
যেহেতু $\{a_n\}$ একান্বয় হ্রাসমান এবং তাই $s_n < \sigma_k$ যখন $n < 2^k$

এখন যে-কোন n-র জন্যে এমন k বর্তমান যে $n < 2^k$, এবং তাই যদি $\{\sigma_k\}$ বদ্ধ হয়, তাহলে $\{s_n\}$ -ও বদ্ধ যার ফলে $\sum a_n$ অভিসারী যখন $\sum 2^k a_{2^k}$ অভিসারী হয়।

যদি
$$n > 2^k$$
 হয়, $s_n > a_1 + a_2 + (a_3 + a_4) + \dots + (a_{2^{k-1}+1} + \dots + a_{2^k})$
 $> \frac{1}{2}a_1 + a_2 + 2a_4 + \dots + 2^{k-1}a_{2^k} = \frac{1}{2}\sigma_k$

যার ফলে

$$s_n > \frac{1}{2}\sigma_k$$
 যখন $n > 2^k$

যেহেতু যে-কোন k-র জন্যে এমন একটি n আছে যে $n > 2^k$, এটা প্রমাণ হয় যে $\{s_n\}$ অনাবদ্ধ হবে যদি $\{\sigma_k\}$ অনাবদ্ধ হয়, অথবা $\sum a_n$ অপসারী হয় যদি $\sum 2^k a_{2^k}$ অপসারী হয়। \Box

ঘনীকরণ পরীক্ষার দ্বারা আমরা নিচের দুটি গুরুত্বপূর্ণ ফলাফল প্রমাণ করব। উপপাদ্য 6a.4 : $\sum_{n=1}^{\infty} \frac{1}{n^{lpha}}$ অভিসারী যদি lpha > 1 এবং অপসারী যদি $lpha \le 1$

প্রমাণ : যেহেতু

$$\sum_{k=0}^{\infty} 2^k \frac{1}{(2^k)^{\alpha}} = \sum_{k=0}^{\infty} 2^{(1-\alpha)k}$$

একটি গুণোত্তর শ্রেণী যা অভিসারী যদি lpha>1 এবং অপসারী যদি $lpha\leq 1.$ অতএব উপপাদ্য 6a.5.3 দ্বারা ফলাফল প্রমাণিত হয়। 🗆

উপপাদ্য 6a.5.5. :
$$\sum_{n=2}^{\infty} \frac{1}{n(\log n)^{lpha}}$$
 অভিসারী যদি $lpha > 1$ এবং অপসারী যদি $lpha \leq 1$

প্রমাণ : প্রদত্ত শ্রেণী অভিসারী বা অপসারী যখন

$$\sum_{n=2}^{\infty} \frac{1}{n(\log n)^{\alpha}}$$

যথাক্রমে অভিসারী বা অপসারী। তাই উপপাদ্য 6a.5.4 দ্বারা ফলাফল প্রমাণিত হয়। 🗌

6a.6 মূল ও অনুপাত পরীক্ষাসমূহ

উপপাদ্য 6a.6.1 (কোশির মূল পরীক্ষা : Cauchy's root test) : $\sum a_n$ অভিসারী হয় যদি $\lim_{n \to \infty} \sqrt[n]{a_n} < 1$ এবং অপসারী হয় যদি $\overline{\lim} \sqrt[n]{a_n} > 1$

প্রমাণ : ধরুন $\overline{\lim} \sqrt[n]{a_n} > 1$ । এমন α নির্বাচন করুন যে

$$\overline{\lim} \sqrt[n]{a_n} < \alpha < 1$$

উপপাদ্য 5.4.2 দ্বারা এমন একটি m আছে যে $n\geq m$ -এর জন্যে $\sqrt[n]{a_n}<lpha$ অথবা $a_n<lpha^n$ । যেহেতু গুণোত্তর শ্রেণী $\sum lpha^n$ অভিসারী যেহেতু lpha>1। তাই $\sum a_n$ -ও অভিসারী উপপাদ্য 6a.5.1 দ্বারা।

যদি $\lim \sqrt[n]{a_n} > 1$ হয়, উপপাদ্য 5.4:2 দ্বারা n-এর অসীমসংখ্যক মানের জন্যে $\sqrt[n]{a_n} > 1$ এবং তাই $a_n > 1$ । অতএব $\sum a_n$ অপসারী। \Box

মন্তব্য : যদি $\overline{\lim}\sqrt[n]{a_n} = 1$ হয়, মূল পরীক্ষা অমীমাংসিত থাকে। $a_n = \frac{1}{n^{\alpha}}$ হলে $\lim\sqrt[n]{n^{\alpha}} = 1$ যার ফলে $\overline{\lim}\sqrt[n]{n^{\alpha}} = 1$ যেন কোন α -র জন্যে, কিন্তু $\alpha > 1$ হলে $\sum a_n$ অভিসারী এবং $\alpha \le 1$ হলে $\sum a_n$ অপসারী। উদাহরণ 1 : $\sum \frac{a^n}{n^n} (a > 0)$ অভিসারী কারণ $\sqrt[n]{\frac{a^n}{n^n}} = \frac{a}{n} \to 0 < 1$

এরপর একটি সাধারণ পরীক্ষা পদ্ধতির কথা বলা হবে।

উপপাদ্য 6a.6.2 (কুম্মেরের পরীক্ষা : Kummer's test) : ধরা যাক $\sum a_n$ একটি প্রদন্ত শ্রেণী এবং $\{b_n\}$ একটি ধনাত্মক সংখ্যার ক্রম। একটি ক্রম $\{k_n\}$ এইভাবে সংজ্ঞায়িত করা হল—

$$k_n = b_{n+1} \frac{a_{n+1}}{a_n} - b_n$$

- (i) যদি $\overline{\lim} k_n < 0$ হয়, তাহলে $\sum a_n$ অভিসারী।
- (ii) যদি $\lim_{n \to \infty} k_n > 0$ হয় এবং $\sum \frac{1}{b_n}$ অপসারী, তাহলে $\sum a_n$ অপসারী।

প্রমাণ : (i) যদি $\overline{\lim} k_n < 0$ হয়, একটি এমন ধনাত্মক lpha নির্বাচন করুন যে

$$\overline{\lim} k_n < -\alpha < 0$$

তাহলে এমন m আছে যে $n \ge m$ -এর জন্যে $k_n < - lpha$ অথবা

$$a_n < \frac{1}{\alpha} \left(a_n b_n - a_{n+1} b_{n+1} \right)$$

তাহলে $n \ge m$ -এর জন্যে

$$\sum_{i=m}^{n} a_{i} < \frac{1}{\alpha} \sum_{i=m}^{n} (a_{i}b_{i} - a_{i+1}b_{i+1}) = \frac{1}{\alpha}(a_{m}b_{m} - a_{n+1}b_{n+1}) < a_{m}b_{m}/\alpha$$

এবং যদি $s_n = \sum_{i=1}^n a_i$ হয়, $n \ge m$ -এর জন্যে

$$s_n = s_{m-1} + \sum_{i=m}^{n} a_i < s_{m-1} + a_m b_m / \alpha$$

যার ফলে $\{s_n\}$ বদ্ধ, তাই $\sum a_n$ অভিসারী।

(ii) যদি $\lim_{n \to \infty} k_n > 0$ হয়, এমন m বর্তমান যে $n \ge m$ -এর জন্যে $k_n > 0$ অথবা

 $a_{n+1}b_{n+1} > a_n b_n$

তাহলে $n \ge m + 1$ -এর জন্যে $a_n b_n > a_m b_m$ অথবা $a_n > a_m b_m / b_n$ । যেহেতু $\sum \frac{1}{b_n}$ অপসারী, $\sum \frac{a_m b_m}{b_n} - c_n$ ও তাই এবং তুলনা পরীক্ষা (উপপাদ্য 6a.5.1) দ্বারা পাই যে $\sum a_n$ অপসারী। \Box

মন্তব্য : কুন্দ্মেরের পরীক্ষা অমীমাংসিত থাকে যখন $\underline{\lim} k_n \le 0 \le \overline{\lim} k_n$

কুম্মেরের পরীক্ষা প্রধানতঃ একটি তাত্ত্বিক ফলাফল যা প্রয়োগ করে $\displaystyle rac{a_{n+1}}{a_n}$ এই অনুপাত-সম্বলিত বিবিধ ব্যবহারযোগ্য পরীক্ষা পাওয়া যায়।

উপপাদ্য 6a.6.3 (দার্লাবেরের অনুপাত পরীক্ষা : D' Alembert's ratio test) : $\sum a_n$ অভিসারী যদি $\overline{\lim}\left(\frac{a_{n+1}}{a_n}\right) > 1$ হয়।

 (a_n) — (a_n) প্রমাণ : উপপাদ্য 6a.6.2-এ ধরুন $b_n = 1$ প্রত্যেক *n*-এর জন্যে যার ফলে $\sum \frac{1}{b_n}$ অপসারী। তাহলে

$$k_n = \frac{a_{n+1}}{a_n} - 1$$
$$\underline{\lim} k_n = \underline{\lim} \frac{a_{n+1}}{a_n} - 1$$

এবং

উপপাদ্য 6a.6.2-র থেকে প্রতিপাদ্য পাওয়া যায়। 🗆

উপপাদ্য 6a.6.4 (রাবের পরীক্ষা : Raabe's test) : $\sum a_n$ অভিসারী যথন

$$\overline{\lim}\left[n\left(\frac{a_{n+1}}{a_n}-1\right)\right]<-1$$

এবং অপসারী যখন

$$\underline{\lim}\left[n\left(\frac{a_{n+1}}{a_n}-1\right)\right] > -1$$

প্রমাণ : আমরা জানি $\sum \frac{1}{n}$ শ্রেণীটি অপসারী, তাই উপপাদ্য 6a.6.2-তে $b_n = n-1$ ($n \ge 2$) ধরলে পাই

$$k_n = n \left(\frac{a_{n+1}}{a_n} - 1 \right) + 1$$

এবং উপপাদ্য 6a.6.2 দ্বারা প্রতিপাদ্য প্রমাণিত হয়। 🗖

উপপাদ্য 6a.6.5 (বের্ত্রানের পরীক্ষা : Bertard's test) : $\sum a_n$ অভিসারী যদি

$$\overline{\lim}\left[\left\{n\left(\frac{a_{n+1}}{a_n}-1\right)+1\right\}\log n\right] < -1$$

এবং অপসারী যদি

$$\underline{\lim}\left[\left\{n\left(\frac{a_{n+1}}{a_n}-1\right)+1\right\}\log n\right]>-1$$

প্রমাণ : $\sum \frac{1}{n \log n}$ অপসারী এবং তাই উপপাদ্য 6a.6.2-তে ধরা যায় $b_n = (n-1) \log (n-1), (n \ge 2).$ তাহলে $k_n = n \log n \frac{a_{n+1}}{a_n} - (n-1) \log n$ $= \left\{ n \left(\frac{a_{n+1}}{a_n} - 1 \right) + 1 \right\} \log n + \log \left(1 + \frac{1}{n-1} \right)^{n-1}$

যেহেতু দ্বিতীয় পদটি 1-এর প্রতি অভিসারী

$$\underline{\overline{\lim}} k_n = \underline{\overline{\lim}} \left[\left\{ n \left(\frac{a_{n+1}}{a_n} - 1 \right) + 1 \right\} \log n \right] + 1 \quad \text{for } n = 1$$

উপপাদ্য 6a.6.6 (শ্লোয়েমিল্খের পরীক্ষা : Schloemilch's test) : $\sum a_n$ অভিসারী হয় যদি

$$\overline{\lim}\left(n\log\frac{a_{n+1}}{a_n}\right) < -1$$

এবং অপসারী যদি

$$\underline{\lim}\left(n\log\frac{a_{n+1}}{a_n}\right) < -1$$

প্রমাণ : ধরা যাক প্রথম শর্তটি পালিত হচ্ছে। নির্বাচন করুন এমন lpha>1 যে

$$\overline{\lim}\left(n\log\frac{a_{n+1}}{a_n}\right) < -\alpha < -1$$

তাই n ≥ m-এর জন্যে

$$n\log \frac{a_{n+1}}{a_n} < -\alpha$$
 অথবা $\frac{a_{n+1}}{a_n} < e^{-\frac{\alpha}{n}}$

অথবা,
$$n\left(\frac{a_{n+1}}{a_n}-1\right) < n\left(e^{-\frac{\alpha}{n}}-1\right) = -\alpha \frac{e^{x_n}-1}{x_n}$$

যেখানে $x_n=-rac{lpha}{n}
ightarrow 0$ এবং $x_n
eq 0$ যে-কোন n-এর জন্যে যার ফলে উপপাদ্য 5.6.2 দ্বারা

$$\overline{\lim}\left[n\left(\frac{a_{n+1}}{a_n}-1\right)\right] \le -\alpha < -1$$

অতএব রাবের পরীক্ষায় অভিসারিতা নির্দেশ করে।

দ্বিতীয় অংশের প্রমাণ অনুরূপ। 🗖

এবার কুম্মের বংশের নয় এমন একটি পরীক্ষার কথা বলা হবে।

উপপাদ্য 6a.6.7 (গাউসের পরীক্ষা : Gauss's test) : যদি একটি প্রদত্ত শ্রেণী $\sum a_n$ -এর জন্যে লেখা যায় যে

$$\frac{a_{n+1}}{a_n} = 1 - \frac{\alpha}{n} + \frac{\theta_n}{n^{\lambda}}$$

যেখানে $\lambda>1$ এবং $\{m{ heta}_n\}$ বদ্ধ, তাহলে $\sum a_n$ অভিসারী যদি lpha>1 এবং অপসারী যদি $lpha\le 1$ হয়। প্রমাণ : এখানে

$$n\left(\frac{a_{n+1}}{a_n}-1\right)=-\alpha+\frac{\theta_n}{n^{\lambda-1}}\to-\alpha$$

অতএব রাবের পরীক্ষার দ্বারা $\sum a_n$ অভিসারী যদি lpha > 1 এবং অপসারী যদি lpha < 1 + lpha ~=~ 1-এর জন্যে

$$\left\{n\left(\frac{a_{n+1}}{a_n}-1\right)+1\right\}\log n=\theta_n\,\frac{\log n}{n^{\lambda-1}}\to 0$$

যার ফলে বের্ত্রানের পরীক্ষা দ্বারা $\sum a_n$ অপসারী। \Box

উদাহরণ 1 :
$$\sum \frac{a^n}{n} (a > 0)$$

$$a \in \overline{a_n} = \frac{a^n}{n}, \frac{a_{n+1}}{a_n} = a \frac{n}{n+1} \to a$$

তাই অনুপাত পরীক্ষা দ্বারা শ্রেণীটি অভিসারী যদি a < 1 এবং অপসারী যদি a > 1। a = 1 হলে অনুপাত পরীক্ষা নিচ্ফল হয়, এবং রাবের পরীক্ষা চেষ্টা করা যেতে পারে। এখানে

$$n\left(\frac{a_{n+1}}{a_n}-1\right) = -\frac{n}{n+1} \to -1$$

তাই রাবের পরীক্ষাও নিৎ্ফল হয়। এবার বের্ত্রানের পরীক্ষা করা যাক।

$$\left\{n\left(\frac{a_{n+1}}{a_n}-1\right)+1\right\}\log n = \frac{\log n}{n+1} = \frac{n}{n+1}\frac{\log n}{n} \to 0$$

এবং তাই বের্ত্রানের পরীক্ষা দ্বারা শ্রেণীটি অপসারী। যখন a = 1

$$\frac{a_{n+1}}{a_n} - 1 = -\frac{1}{n+1} = -\frac{1}{n} + \frac{1}{n^2} \frac{n}{n+1}$$

যেখানে $\{n \mid (n+1)\}$ অভিসারী এবং তাই বদ্ধ যার ফলে গাউসের পরীক্ষা দ্বারা $\sum a_n$ অপসারী।

উদাহরণ 2 :
$$\sum rac{1}{\sqrt{n}}$$

 $\operatorname{grad}_n = 1/\sqrt{n}, \frac{a_{n+1}}{a_n} = \sqrt{\frac{n}{n+1}} \to 1$

তাই অনুপাত পরীক্ষা নিষ্ফল। এবার

$$n\left(\frac{a_{n+1}}{a_n}-1\right) = -\frac{n}{\sqrt{n+1}\left(\sqrt{n}+\sqrt{n+1}\right)} \to -\frac{1}{2}$$

অতএব এক্ষেত্রে শ্লোয়েমিল্খের পরীক্ষা ব্যবহার করা যায়।

$$n\log\frac{a_{n+1}}{a_n} = -\frac{1}{2}\log\left(1+\frac{1}{n}\right)^n \rightarrow -\frac{1}{2}$$

যা অপসারিতা নির্দেশ করে। রাবের পরীক্ষা দ্বারা শ্রেণীটি অপসারী।

উদাহরণ 3 :
$$\sum_{n=0}^{\infty} \frac{lpha(lpha+1)...(lpha+n-1)eta(eta+1)...(eta+n-1)}{n!\gamma(\gamma+1)...(\gamma+n-1)} a^n(lpha,eta,\gamma,a>0)/$$

 \sim ‡স্ট $rac{a_{n+1}}{a_n}=rac{(lpha+n)(eta+n)}{(n+1)(\gamma+n)}a
ightarrow a$ অনুপাত পরীক্ষা দ্বারা শ্রেণীটি অভিসারী যদি a<1 এবং অপসারী যদি

a > **।** হয়।

a = 1 হলে অনুপাত পরীক্ষা অমীমাংসিত থাকে।

$$n\left(\frac{a_{n+1}}{a_n}-1\right) = \frac{\left(\alpha+\beta-\gamma-1\right)n^2+\left(\alpha\beta-\gamma\right)n}{n^2+\left(\gamma+1\right)n+\gamma} \to \alpha+\beta-\gamma-1$$

রাবের পরীক্ষা দ্বারা প্রদন্ত শ্রেণী অভিসারী বা অপসারী হবে যখন $\alpha + \beta - \gamma - 1 < -1$ অথবা > -1 অর্থাৎ যখন $\alpha + \beta < \gamma$ অথবা $\alpha + \beta > \gamma$ হবে। $\alpha + \beta = \gamma$ হলে রাবের পরীক্ষা অমীমাংসিত থাকে। যখন

$$\left\{n\left(\frac{a_{n+1}}{a_n}-1\right)+1\right\}\log n = \frac{(\alpha\beta+1)n+\gamma}{n^2+(\gamma+1)n+\gamma}\log n$$
$$= \frac{(\alpha\beta+1)n^2+\gamma n}{n^2+(\gamma+1)n+\gamma}\frac{\log n}{n} \to 0$$

তাই বের্ত্রানের পরীক্ষা দ্বারা শ্রেণীটি অপসারী।

তাত্ত্বিক বিচারে দুটি প্রধান পরীক্ষা হল অনুপাত পরীক্ষা এবং মূল পরীক্ষা। এবার আমরা এদের শক্তির তুলনা করব। এর জন্যে প্রয়োজন উপপাদ্য 5.6.3-র যার থেকে পাই

$$\underline{\lim} \ \underline{a_{n+1}} \le \overline{\lim} \ \sqrt[n]{a_n} \le \overline{\lim} \ \frac{a_{n+1}}{a_n}$$

এই অসমতাগুলি দেখায় যে যদি অনুপাত পরীক্ষায় অভিসারিতা পাওয়া যায় অর্থাৎ $\overline{\lim}\left(\frac{a_{n+1}}{a_n}\right) < 1$ হয়, তাহলে $\overline{\lim} \sqrt[n]{a_n} < 1$ যার ফলে মূল পরীক্ষাও অভিসারিতা দেবে। অনুরূপে যদি অনুপাত পরীক্ষায় অপসারিতা পাওয়া যায় মূল পরীক্ষাতেও তাই সিদ্ধান্ত হবে। এবার $\sum a_n = a + b + a^2 + b^2 + ...(0 < a < b < 1)$ এই শ্রেণীটি বিচার করুন। এখানে

$$\left(\frac{b}{a}\right)^n \to \infty, \frac{a^{n+1}}{b^n} = a\left(\frac{a}{b}\right)^n \to 0, \ \stackrel{m-\sqrt{a^n}}{\to} \sqrt{a}, \ \sqrt[2n]{b^n} \to \sqrt{b}$$

যার ফলে

$$\overline{\lim} \, \frac{a_{n+1}}{a_n} = \infty, \underline{\lim} \, \frac{a_{n+1}}{a_n} = 0, \overline{\lim} \, \sqrt[n]{a_n} = \sqrt{b} < 1$$

অতএব অনুপাত পরীক্ষা নিষ্ফল থাকছে, কিন্তু মূল পরীক্ষায় অভিসারিতা পাওয়া যাচ্ছে।

উপরোক্ত আলোচনায় প্রমাণিত হচ্ছে এই গুরুত্বপূর্ণ উপপাদ্য 6a.6.5 শ্রেণীর অভিসারিতা বা অপসারিতা বিচারে মূল পরীক্ষা অনুপাত পরীক্ষার চেয়ে বেশি শক্তিশালী। 🗖

6a.7 সারাংশ

এই এককে অসীম শ্রেণী বা শ্রেণীর অভিসারিতা ও অপসারিতার কথা বলা হল। এখানে প্রধানতঃ ধনাত্মক পদের শ্রেণীর বিষয়ে বিশদভাবে আলোচনা করা হল।

ধনাত্মক পদের শ্রেণীর অভিসারিতা পরীক্ষার প্রাথমিক আকার হল তুলনা পরীক্ষা এবং ঘনীকরণ পরীক্ষা। তারপর আসে কোশির মূল পরীক্ষা এবং দালাঁবেরের অনুপাত পরীক্ষা। জানতে পারা গেল যে মূল পরীক্ষা অনুপাত পরীক্ষার চাইতে বেশি শক্তিশালী।

প্রয়োগের ক্ষেত্রে সবচেয়ে সহজ হল অনুপাত পরীক্ষা, কিন্তু তা সবসময় কার্যকর হয় না। অনুপাত পরীক্ষা নিষ্ফল হলে, ক্রমান্বয়ে বেশি শক্তিশালী রাবের পরীক্ষা, বের্ত্রানের পরীক্ষা, গাউসের পরীক্ষা চেষ্টা করা যায়।

6a.8 সর্বশেষ প্রশ্নাবলী

1. উপপাদ্য 6a.3.2 অথবা 6a.4.2 প্রয়োগ করে দেখান যে $\sum a_n$ অপসারী যেখানে a_n সমান।

(i)
$$\sqrt{n+1} - \sqrt{n}$$
; (ii) $\left(-1\right)^{n-1} / \left(1 + \frac{1}{n}\right)^n$; (iii) $1/\log n$

- 2. তুলনা পরীক্ষা উপপাদ্য 6a.5.1 বা 6a.5.2 দ্বারা ∑a_n -এর অভিসারিতা পরীক্ষা করুন যেখানে a_n সমান

 (i) 1/(1+n^2);
 (ii) ³√n³+1-n;
 (iii) n/(1+n\sqrt{n+1})
- 3. ঘনীকরণ পরীক্ষা দ্বারা প্রমাণ করুন যে

$$\sum \frac{1}{n \log n \left(\log \log n \right)^{\alpha}}$$

অভিসারী যদি lpha>1 এবং অপসারী যখন $lpha\leq 1$ হয়।

4. কোশির মূল পরীক্ষা দ্বারা $\sum a_n$ -এর অভিসারিতা পরীক্ষা করুন যেখানে a_n সমান

(i)
$$\left(\sqrt[n]{n-1}\right)^n$$
 (ii) $n^2 / 2^n$; (iii) $n^a a^n$ ($0 < a \neq 1$); (iv) $\left(1 - \frac{1}{n}\right)^{n^2}$

নিম্নলিখিত শ্রেণীগুলির অভিসারিতা পরীক্ষা করুন :

(i)
$$\sum \frac{a^n}{n!} (a > 0);$$
 (ii) $a + \frac{1}{2} \frac{a^3}{3} + \frac{1 \cdot 3}{2 \cdot 4} \frac{a^5}{5} + \dots (a > 0);$ (iii) $1 + \alpha a + \frac{\alpha(\alpha + 1)}{2!} a^2 + \dots (a, \alpha > 0)$

6. log $\left(1+\frac{1}{n}
ight)=rac{1}{n}-rac{1}{2n^2}+rac{ heta_n}{n^2}ig(heta_n o 0ig)$, এই ফলাফল ধরে নিয়ে $\sum a_n$ -এর অভিসারিতা পরীক্ষা

করুন যেখানে a_n সমান

(i)
$$\frac{n! a^n}{n^n}$$
; (ii) $\frac{(n+1)^n a^n}{n!}$ (INITED A)
 $\sum_{n=1}^{\infty} \sum_{n=1}^{\infty} \sum_{$

7. গাউসের পরীক্ষা দ্বারা $\sum a_n$ -এর অভিসারিতা পরীক্ষা করুন যেখানে a_n সমান

(i)
$$\binom{\alpha+n-1}{n} (\alpha > 0);$$
 (ii) $\left[\frac{1.3...(2n-1)}{2.4...(2n)}\right]^2$

6a.9 উত্তরমালা

$$\begin{aligned} & 1. \quad (i) \quad na_n = \frac{n}{\sqrt{n+1} + \sqrt{n}} \to \infty \\ & (ii) \quad \left|a_n\right| = 1 / \left(1 + \frac{1}{n}\right)^n \to 1/e \text{ tria trian triangle} a_n \to 0 \\ & (iii) \quad na_n = n/\log n \to \infty \end{aligned}$$

$$\begin{aligned} & 2. \quad (i) \quad c_n = 1 / n^2, \sum c_n \text{ usernish uses } a_n/c_n = n^2 / (n^2 + 1) \to 1; \text{ use } \sum a_n \text{ usernish uses } n/c_n = n^2 / \left\{(n^3 + 1)^{\frac{2}{3}} + (n^3 + 1)^{\frac{1}{3}} + n^2\right\} \to 1/3; \text{ usernish uses } n \text{ usernish usernish uses } n/c_n = n^2 / \left\{(n^3 + 1)^{\frac{2}{3}} + (n^3 + 1)^{\frac{1}{3}} + n^2\right\} \to 1/3; \text{ usernish usernish$$

যেহেতু $\sum b_k$ অভিসারী বা অপসারী যদি $\alpha > 1$ বা $\alpha \le 1$ হয়, তাই তুলনা পরীক্ষা দ্বারা $\sum 2^k a_{2^k}$ শ্রেণীর বেলায় একই কথা খাটে এবং ঘনীকরণ পরীক্ষা দ্বারা $\sum a_n$ -এর বেলায়ও সেই ফলাফলই বর্তায়।

4. (i)
$$\sqrt[q]{a_n} = \sqrt[q]{n-1} \rightarrow 0$$
; $\sum a_n$ অভিসারী।

 (ii) $\sqrt[q]{a_n} = (\sqrt[q]{n})^2 / 2 \rightarrow 1/2$; $\sum a_n$ অভিসারী।

 (iii) $\sqrt[q]{a_n} = (\sqrt[q]{n})^a a \rightarrow a$; $\sum a_n$ অভিসারী যদি $a < 1$ এবং অপসারী যদি $a > 1$ হয়।

 (iv) $\sqrt[q]{a_n} = 1/(1-\frac{1}{n})^{-n} \rightarrow 1/e < 1$; $\sum a_n$ অপসারী।

 5. (i) $a_{n+1} / a_n = a / (n+1) \rightarrow 0$; তাই অনুপাত পরীক্ষা দ্বারা $\sum a_n$ অভিসারী।

(ii)
$$a_{n+1} / a_n = \frac{(2n+1)^2}{(2n+2)(2n+3)} a^2 \to a^2$$
; তাই অনুপাত পরীক্ষার দ্বারা $\sum a_n$ অভিসারী যদি $a < 1$

এবং অপসারী যদি a > 1 হয়। a = 1 হলে $n\left(\frac{a_{n+1}}{a_n} - 1\right) = -\frac{6n^2 + 5n}{4n^2 + 10n + 6} \rightarrow -\frac{3}{2};$ তাই $\sum a_n$ অভিসারী রাবের পরীক্ষা দ্বারা। (iii) $\frac{a_{n+1}}{a_n} = \frac{\alpha+n}{n+1} a \rightarrow a$ তাই অনুপাত পরীক্ষায় শ্রেণীটি অভিসারী যদি a < 1 হয় এবং অপসারী যদি a > 1 হয় a = 1 হলে

$$n\left(\frac{a_{n+1}}{a_n}-1\right) = n\frac{\alpha-1}{n+1} \to \alpha-1 > -1$$

তাই রাবের পরীক্ষায় শ্রেণীটি অপসারী যদি a=1 হয়।

6. (i)
$$\frac{a_{n+1}}{a_n} = \frac{a}{\left(1+\frac{1}{n}\right)^n} \to \frac{a}{e}$$

তাই অনুপাত পরীক্ষায় শ্রেণীটি অভিসারী যদি a < e এবং অপসারী যদি a > e হয়। a = e হলে $a \log rac{a_{n+1}}{a} = rac{1}{a} - heta_n o rac{1}{a}$

 $n\log\frac{a_{n+1}}{a_n} = \frac{1}{2} - \theta_n \rightarrow \frac{1}{2}$

তাই শ্লোয়েমিল্খের পরীক্ষা দ্বারা শ্রেণীটি অপসারী যদি a=e হয়।

(ii)
$$\frac{a_{n+1}}{a_n} = \left(1 + \frac{1}{n+1}\right)^{n+1} a \rightarrow ea$$

অনুপাত পরীক্ষার দ্বারা শ্রেণীটি অভিসারী বা অপসারী যদি a < 1/e বা a > 1/e। যদি a = 1/e হয়

$$n\log\frac{a_{n+1}}{a_n} = -\frac{1}{2}\frac{n}{n+1} + \frac{n\theta_{n+1}}{n+1} \to -\frac{1}{2}$$

তাই শ্লোয়েমিল্খের পরীক্ষা দ্বারা শ্রেণীটি অপসারী যদি a=1/e হয়।

7. (i)
$$\frac{a_{n+1}}{a_n} = 1 - \frac{1 - \alpha}{n} + \frac{\theta_n}{n^2}$$

যেখানে $\theta_n = (1-lpha)n/(n+1), \{\theta_n\}$ বদ্ধ। তাই গাউসের পরীক্ষাদ্বারা শ্রেণীটি অপসারী যেহেতু 1-lpha < 1

(ii)
$$\frac{a_{n+1}}{a_n} = \left(\frac{2n+1}{2n+2}\right)^2 = 1 - \frac{1}{n} + \frac{\theta_n}{n^2}$$

যেখানে $\theta_n = \left(\frac{5}{4} + \frac{1}{n}\right) \left(\frac{n}{n+1}\right)^2 \rightarrow \frac{5}{4}$ এবং তাই $\{\theta_n\}$ বদ্ধ। গাউসের পরীক্ষায় শ্রেণীটি অপসারী।

একক 6b 🗆 শ্রেণী II

গঠন

প্রস্তাবনা
প্ৰস্তাবনা

- 6b.2 উদ্দেশ্য
- 6b.3 একান্তর শ্রেণী
- 6b.4 পরম অভিসারিতা
- 6b.5 অপরম অভিসারিতার পরীক্ষাসমূহ
- 6b.6 শ্রেণীর পুনর্বিন্যাস
- 6b.7 সারাংশ
- 6b.8 সর্বশেষ প্রশ্নাবলী
- 6b.9 উত্তরমালা

6b.1 প্রস্তাবনা

এই এককে আমরা ধনাত্মক বা ঋণাত্মক যে-কোন চিহ্নযুক্ত পদের শ্রেণীর কথা আলোচনা করব। প্রথমে আসবে একান্তর শ্রেণীর কথা যার পদগুলি একান্তর ক্রমে ধনাত্মক ও ঋণাত্মক। এই ধরনের কিছু হাল্কা শর্তাসাপেক্ষে অভিসারী হয়।

প্রদত্ত শ্রেণীর পদগুলির পরম মান নিলে যে ধনাত্মক পদের শ্রেণী পাওয়া যায় তা অভিসারী হলে শ্রেণীটিকে পরমভাবে অভিসারী বলা হয়। পরমভাবে অভিসারী শ্রেণী অভিসারী হয় কিন্তু বিপরীত উক্তি অসত্য। পরম অভিসারিতা পরীক্ষার জন্যে মূল পরীক্ষা ও অনুপাত পরীক্ষা করা যায়।

অপরম অভিসারিতা পরীক্ষার কোন সাধারণ পদ্ধতি নেই। দু'একটি বিশেষ পরীক্ষা আছে, যেমন আবেলের পরীক্ষা, ডিরিখ্লেটের পরীক্ষা ইত্যাদি।

অপরমভাবে অভিসারী শ্রেণীর পুনর্বিন্যাসের ব্যাপারটা মজার। এ ধরনের শ্রেণীর এমন পুনর্বিন্যাস করা সম্ভব যার ফলে শ্রেণীর যোগফল যে-কোন নির্দিষ্ট সংখ্যা বা $\pm\infty$ হয়। এই ফলাফলকে রীমানের পুনর্বিন্যাস উপপাদ্য বলে।

6b.2 উদ্দেশ্য

এই একক পাঠ করলে আপনারা জানতে পারবেন

- একান্তর শ্রেণীর অভিসারিতার শর্ত
- পরম অভিসারিতার ধারণা ও পরীক্ষার কথা
- অপরম অভিসারিতার পরীক্ষাসমূহ
- শ্রেণীর পুনর্বিন্যাসের ধারণা এবং অপরমভাবে অভিসারী শ্রেণীর পুনর্বিন্যাসের ফলাফল

একান্তর শ্রেণী 6b.3

সংজ্ঞা 6b.3.1 : $\sum (-1)^{n-1} a_n$, যেখানে সব $a_n > 0$, এই আকৃতির শ্রেণীকে **একান্তর শ্রেণী** (alternating series) বলে।

উপপাদ্য 6b.3.1 : একটি একান্তর শ্রেণী $\sum_{n=1}^{\infty} \left(-1\right)^{n-1} a_n \left(a_n > 0\right)$ প্রত্যেক n-এর জন্যে) অভিসারী হয় যদি $\left(a_n\right)$ একাম্বয়ে হ্রাসমান হয় এবং $a_n \to 0$ হয়, $filde{a}^{\dagger}$ সেক্ষেত্রে যদি s শ্রেণীর যোগফল এবং s_n তার n-তম আংশিক যোগফল সূচিত করে তাহলে

$$0 \le \left(-1\right)^n \left(s - s_n\right) \le a_{n+1}$$

অর্থাৎ যদি শ্রেণীর যোগফল s-এর আসন্নমান s_n ধরা হয়, তাহলে ভুলের পরম মান প্রথম অগ্রাহ্য পদটির পরমমানের চেয়ে কম হবে এবং একই চিহ্নযুক্ত হবে।

প্রমাণ : যে-কোন ধনাত্মক p-এর জন্যে

$$s_{n+p} - s_n = (-1)^n \left[a_{n+1} - a_{n+2} + \dots + (-1)^{p-1} a_{n+p} \right]$$
$$(-1)^n \left(s_{n+p} - s_n \right) = a_{n+1} - a_{n+2} + \dots + (-1)^{p-1} a_{n+p}$$

অথবা,

অথবা, (-1) (s_{n+p} - s_n) = a_{n+1} - a_{n+2} + ... + (-1)^{*} a_{n+p} উপপাদ্যের শর্তগুলির দ্বারা পাওয়া যায় যে (i) p জোড়সংখ্যা হলে

$$(-1)^{n} (s_{n+p} - s_{n}) = (a_{n+1} - a_{n+2}) + (a_{n+3} - a_{n+4}) + \dots + (a_{n+p-1} - a_{n+p}) \ge 0$$

$$(a_{n+p} - s_{n}) = a_{n+1} - (a_{n+2} - a_{n+3}) - \dots - (a_{n+p-2} - a_{n+p-1}) - a_{n+p} < a_{n+1}$$

(ii) p facence zero

$$(-1)^{n} (s_{n+p} - s_{n}) = a_{n+1} - a_{n+2} + (a_{n+3} - a_{n+4}) + \dots + (a_{n+p-2} - a_{n+p-1}) + a_{n+p} > 0$$
 এবং $(-1)^{n} (s_{n+p} - s_{n}) = a_{n+1} - (a_{n+2} - a_{n+3}) - \dots - (a_{n+p-1} - a_{n+p}) \le a_{n+1}$ অতএব যে কোন ক্ষেত্রে প্রত্যেক *p*-র জন্যে $0 \le (-1)^{n} (s_{n+p} - s_{n}) \le a_{n+1}$

যার ফলে $|s_{n+p} - s_n| \le a_{n+1} < \varepsilon$ যখন $n \ge n_0$

সুতরাং $\{s_n\}$ অভিসারী অর্থাৎ প্রদত্ত শ্রেণী অভিসারী, তাই $x_n \to s$ এবং প্রত্যেক স্থির n-এর জন্যে $s_{n+p} \to s$ যখন $p o \infty$ হয়। উপরোক্ত অসমতাতে $p o \infty$ করলে ফলাফল প্রমাণিত হয়। \Box

উ**দাহরণ 1 :** $\sum \frac{(-1)^{n-1}}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \dots$ এই একান্তর শ্রেণীটি অভিসারী কেননা { 1/n } একান্বয়ে হ্রাসমান এবং $1/n \to 0$ । কিন্তু আমরা জানি $\sum \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \dots$ শ্রেণীটি অপসারী।

6b.4 পরম অভিসারিতা

উপপাদ্য 6b.4.1 : $\sum a_n$ অভিসারী যদি $\sum |a_n|$ অভিসারী, কিন্তু বিপরীত উক্তি অসত্য।

প্রমাণ : যদি $\sum |a_n|$ অভিসারী হয়, তাহলে যে কোন p-র জন্যে $\left|\sum_{i=1}^p a_{n+1}\right| \le \sum_{i=1}^r |a_{n+1}| < \epsilon$ যখন $n \ge n_0$ যা প্রমাণ করে $\sum a_n$ অভিসারী।

বিপরীত উক্তির অসত্যতার প্রমাণ অনুচ্ছেদ 6b.3-এর উদাহরণ। 🗖

সংজ্ঞা 6b.4.1 : $\sum a_n$ শ্রেণীকে পরমভাবে অভিসারী (absolutely convergent) বলা হয় যদি $\sum |a_n|$ অভিসারী হয়। যদি $\sum a_n$ অভিসারী কিন্তু $\sum |a_n|$ অপসারী হয়, তখন আমরা বলি $\sum a_n$ অপরমভাবে অভিসারী (non-absolutely convergent)।

একটি $\sum a_n$ শ্রেণী দেওয়া থাকলে আমরা $\sum |a_n|$ এই ধনাত্মক পদের শ্রেণীটি নিতে পারি যার অভিসারিতা পরীক্ষার বিস্তারিত আলোচনা আগের এককে করা হয়েছে। যদি দেখা যায় $\sum |a_n|$ অভিসারী তাহলে $\sum a_n$ -ও অভিসারী, কিন্তু যদি দেখা যায় $\sum |a_n|$ অপসারী তাহলে এটা বলা যায় না যে $\sum a_n$ -ও অপসারী (উদাহরণ 6b.3.1)।

মূল পরীক্ষা ও অনুপাত পর্ক্রীক্ষা অপসারিতা বিষয়ে তীক্ষ্ণতর করা সম্ভব।

উপপাদ্য 6b.4.2 (মূল পরীক্ষা) : $\sum a_n$ পরমভাবে অভিসারী যদি $\overline{\lim} \sqrt{|a_n|} < 1$ এবং অপসারী যদি $\overline{\lim} \sqrt{|a_n|} > 1$.

প্রমাণ : যদি $\overline{\lim} \sqrt[n]{|a_n|} > 1$ হয়, তাহলে n-এর অসীমসংখ্যক মানের জন্যে $\sqrt[n]{|a_n|} > 1$ অথবা $|a_n| > 1$ এবং তাই $a_n \to 0$ অসত্য যার ফলশ্রুতি হল $\sum a_n$ অপসারী।

অন্য অংশটি উপপাদ্য 6a.6.1 থেকে পাওয়া যায়। 🗆

উপপাদ্য 6b.4.3 (অনুপাত পরীক্ষা) : $\sum a_n$ পরমভাবে অভিসারী হয় যদি $\overline{\lim} |a_{n+1}/a_n| < 1$ এবং অপসারী যদি $\underline{\lim} |a_{n+1}/a_n| > 1$ ।

প্রমাণ : যদি $\lim_{n \to 1} |a_{n+1}/a_n| > 1$ হয়, $\lim_{n \to \infty} \sqrt{|a_n|} \ge \lim_{n \to \infty} |a_{n+1}/a_n| > 1$ এবং তাই উপপাদ্য 6b.4.1 দ্বারা $\sum_n a_n$ অপসারী। \Box

নিচের ফলাফল অনেক সময় কাজে লাগে।

উপপাদ্য 6b.4.4 : যদি $\sum a_n$ পরমভাবে অভিসারী হয় এবং $\{b_n\}$ বদ্ধ হয়, তাহলে $\sum a_n b_n$ পরমভাবে অপসারী হয়। 🗆

6b.5 অপরম অভিসারিতার পরীক্ষাসমূহ

এই প্রসং! আমরা দু'টি পরীক্ষার উল্লেখ করব যা আবেলের আংশিক যোগসূত্র নামে পরিচিত স্থ্যব্ধ্রার উপর নির্ভর করে।

উপপাদ্য 6b.5.1 (আবেলের অংশিক যোগসূত্র : Abel's partial summation formula) : $\sum_{n=1}^{n} a_n$ একটি প্রদত্ত শ্রেণী এবং s_n তার n-তম আংশিক যোগফল এবং $\{b_n\}$ যে-কোন একটি ক্রম। তাহলে

$$\sum_{i=1}^{n} a_i b_i = s_n b_{n+1} - \sum_{i=1}^{n} s_i (b_{i+1} - b_i)$$

প্ৰমাণ যেহেতু $a_i = s_i - s_{i-1}$ $(i = 1, 2, ...; s_0 = 0)$ $\sum_{i=1}^n a_i b_i = \sum_{i=1}^n (s_i - s_{i-1}) b_i = \sum_{i=1}^n s_i b_i - \sum_{i=0}^{n-1} s_i b_{i+1}$ $= \sum_{i=1}^n s_i b_i - \sum_{i=1}^n s_i b_{i+1} + s_n b_{n+1}$

উপপাদ্য 6b.5.2 (আবেলের পরীক্ষা : Abel's test) : $\sum a_n$ অভিসারী হয় এবং $\{b_n\}$ একান্বয়ী এবং বদ্ধ হয়, তাহলে $\sum a_n b_n$ অভিসারী।

প্রমাণ : লিখুন

$$s_n = \sum_{i=1}^n a_i, \ S_n = \sum_{i=1}^n a_i b_i$$
$$s_i (b_{i+1} - b_i)$$

যার ফলে $S_n = s_n b_{n+1} - \sum_{i=1}^n s_i (b_{i+1} - b_i)$

যেহেতু $\sum a_n$ অভিসারী, $\{s_n\}$ অভিসারী এবং যেহেতু $\{b_n\}$ একাম্বয়ী ও বদ্ধ, ক্রমটি অভিসারী এবং তাই s_nb_{n+1} একটি সীমার প্রতি অভিসারী। এখন $\sum s_n(b_{n+1}-b_n)$ শ্রেণীটি পরমভাবে অভিসারী, কারণ $\{s_n\}$ বদ্ধ এবং $\sum (b_{n+1}-b_n)$ শ্রেণীটি পরমাভাবে অভিসারী কেননা এই শ্রেণীর সবকটি পদ হয় ≥ 0 না হয় ≤ 0 এবং এর *n*-তম আংশিক যোগফল $= b_{n+1} - b_1$ একটি সীমার প্রতি অভিসারী। তাই $\sum_{i=1}^n s_i (b_{i+1} - b_i)$ একটি সীমার প্রতি অভিসারী। এবং সেহেতু S_n একটি সীমার প্রতি অভিসারী যার অর্থ হল $\sum a_n b_n$ শ্রেণীটি অভিসারী।

উপপাদ্য 6b.5.3 (ডিরিখ্লেটের পরীক্ষা : Dirichlet's test) : ধরা যাক $\sum a_n$ শ্রেণীর n-তম আংশিক যোগফল s_n । যদি $\{s_n\}$ বদ্ধ হয় এবং $\{b_n\}$ একান্বয়ী ও $b_n \to 0$ হয়, তাহলে $\sum a_n b_n$ অভিসারী হবে ।

প্রমাণ : উপপাদ্য 6b.5.2-এর মত S_n সংজ্ঞায়িত হলে, $s_n b_{n+1} \to 0$ যেহেতু $\{s_n\}$ বদ্ধ ও $b_n \to 0$ । আগের উপপাদ্যের মত আমরা প্রমাণ করতে পারি যে $\sum_{i=1}^n s_i (b_{i+1} - b_i)$ একটি সীমার প্রতি অভিসারী। অতএব S_n একটি সীমার প্রতি অভিসারী, অর্থাৎ $\sum a_n b_n$ অভিসারী। \Box

উদাহরণ $1: \sum rac{(-1)^{n-1}}{n} \left(1 + rac{1}{n}\right)^n$

শ্রেণীটি আবেলের পরীক্ষা দ্বারা অভিসারী কেননা $\sum (-1)^{n-1}/n$ অভিসারী এবং $\left\{ \left(1 + rac{1}{n}
ight)^n
ight\}$ ক্রমটি একাম্বয়ে বর্ধমান এবং বদ্ধ।

উদাহরণ 2 : $\sum \frac{(-1)^{n-1}}{\sqrt{n}}$

ডিরিখ্লেটের পরীক্ষারদ্বারা অভিসারী কেননা $\sum (-1)^{n-1}$ শ্রেণীর *n*-তম আংশিক যোগফল $s_n = 1$ বা 0 যখন *n* বিজোড় বা জোড় হয় যার ফলে $\{s_n\}$ বদ্ধ এবং $\{1/\sqrt{n}\}$ একান্বয়ে হ্রাসমান ও $1/\sqrt{n} \to 0$.

6b.6 শ্রেণীর পুনর্বিন্যাস

আমরা প্রথমে একটি ব্যাপারের নিষ্পত্তি করে নিতে চাই যে একটি অভিসারী শ্রেণীতে যদি ইচ্ছেমতো বন্ধনী চিহ্ন ঢোকানো হয়, তাহলে শ্রেণীটির অভিসারিতা বা যোগফলের কোন হেরফের হয় কিনা। এর উত্তর সন্মতিসূচক যা নিচের উপপাদ্যে প্রমাণিত হবে।

উপপাদ্য 6b.6.1 : যদি $s = \sum_{n=1}^{\infty} a_n$ এবং $\{n_k\}$ একটি যথার্থভাবে একান্বয়ে বর্ধমান ধনাত্মক পূর্ণসংখ্যার ক্রম হয় এবং একটি শ্রেণী $\sum_{k=1}^{\infty} \alpha_n$ এইভাবে সংজ্ঞায়িত হয়

$$\alpha_k = \sum_{i=n_{k-1}+1}^{n_k} a_i \quad (n_o = 0)$$

অর্থাৎ $\sum_{k=1}^{\infty} \alpha_k$ প্রদত্ত শ্রেণীতে বন্ধনী ঢুকিয়ে পাওয়া যায়, তাহলে $s = \sum_{k=1}^{\infty} \alpha_k$

প্রমাণ : লিখুন $s_n = \sum_{i=1}^n a_i; \quad \sigma_k = \sum_{j=1}^k \alpha_j$

তাহলে $\sigma_k = s_{n_k}$ অর্থাৎ $\{\sigma_k\}$ $\{s_n\}$ -এর একটি উপক্রম এবং তাই এই ফল। \Box

একটি অভিসারী শ্রেণীতে বন্ধনী অপসারণ করলে অভিসারিতা চলে যেতে পারে। (1 – 1) + (1 – 1) +.... স্পষ্টতই অভিসারী কিন্তু 1 – 1 + 1 – 1.... শ্রেণীটি অপসারী।

যদি অবশ্য বন্ধনী অপসারণের পর প্রাপ্ত শ্রেণীটি অভিসারী হয়, তাহলে তার যোগফল অপরিবর্তিত থাকবে কেননা প্রাপ্ত শ্রেণীতে বন্ধনী ঢুকিয়ে প্রদন্ত শ্রেণী পাওয়া যায়।

উদাহরণ :
$$s = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots$$
 (i)

এই অভিসারী শ্রেণীতে বিভিন্নভাবে বন্ধনী ঢুকিয়ে নিম্নলিখিত ফলাফল পাওয়া যায় :

$$s = \sum_{k=1}^{\infty} \left(\frac{1}{2k-1} - \frac{1}{2k} \right) = \sum_{k=1}^{\infty} \frac{1}{(2k-1)2k}$$

= $\frac{1}{1\cdot 2} + \frac{1}{3\cdot 4} + \dots$ (ii)
$$s = 1 - \sum_{k=1}^{\infty} \left(\frac{1}{2k} - \frac{1}{2k+1} \right) = 1 - \sum_{k=1}^{\infty} \frac{1}{2k(2k+1)}$$

= $1 - \frac{1}{2\cdot 3} - \frac{1}{4\cdot 5} - \dots$ (iii)

$$s = \sum_{k=1}^{\infty} \left(\frac{1}{4k-3} - \frac{1}{4k-2} + \frac{1}{4k-1} - \frac{1}{4k} \right)$$
(iv)

 $\frac{1}{2}$ × (ii) + (iv) লিখে পাই

$$\frac{3}{2}s = \sum_{k=1}^{\infty} \left(\frac{1}{4k-3} + \frac{1}{4k-1} - \frac{1}{2k} \right)$$
(v)

(v)-এর বন্ধনী অপসারণ করলে এই শ্রেণীটি পাওয়া যায়

$$1 + \frac{1}{3} - \frac{1}{2} + \frac{1}{5} + \frac{1}{7} - \frac{1}{4} + \dots$$
 (vi)

মনে করুন σ_n (v)-এর শ্রেণীর n-তম আংশিক যোগফল এবং σ'_n (vi)-এর শ্রেণীর তাই। তাহলে

$$\sigma_{3n}' = \sigma_n, \ \sigma_{3n-1}' = \sigma_n + \frac{1}{2n}, \ \sigma_{3n-2}' = \sigma_n - \frac{1}{4n-1} + \frac{1}{2n}$$

থেহেতু $\sigma_n \to \frac{3}{2}s, \ \sigma_n' \to \frac{3}{2}s$ এবং তাই
$$\frac{3}{2}s = 1 + \frac{1}{3} - \frac{1}{2} + \frac{1}{5} + \frac{1}{7} - \frac{1}{4} + \dots$$
 (vii)

এবার আমরা শ্রেণীর পুনর্বিন্যাসের কথা আলোচনা করব।

সংজ্ঞা 6b.5.1 : ধরা যাক $\sum_{n=1}^{\infty} a_n$ একটি প্রদত্ত শ্রেণী এবং $\{a_{k_n}\}$ $\{a_n\}$ ক্রমে একটি পুনর্বিন্যাস (সংজ্ঞা 5.3.1)। তাহলে $\sum_{n=1}^{\infty} a_{k_n}$ এই শ্রেণীকে প্রদত্ত শ্রেণীর একটি পুনর্বিন্যাস বলা হবে।

কোন শর্তে একটি অভিসারী শ্রেণীর অভিসারিতা বা যোগফলের হেরফের না ঘটিয়ে পুনর্বিন্যাস সম্ভব তা নিচের উপপাদ্যে বর্ণিত হচ্ছে।

উপপাদ্য 6b.5.2 : $\sum a_n$ যদি পরমভাবে অভিসারী হয় এবং s তার যোগফল হয়, তাহলে $\sum a_n$ -এর যে-কোন পুনর্বিন্যাস পরমভাবে অভিসারী হবে এবং যোগফল হবে s ।

প্রমাণ : ধরা যাক $\sum lpha_n$ যেখানে $lpha_n$ = a_{k_n} , $\sum a_n$ -এর একটি পুনর্বিন্যাস এবং

$$s_n = \sum_{i=1}^n a_i, \quad \sigma_n = \sum_{i=1}^n \alpha_i$$

 $\overline{s}_n = \sum_{i=1}^n |a_i|, \quad \overline{\sigma}_n = \sum_{i=1}^n |\alpha_i|$

যদি $N = \max \{k_1, k_2, ..., k_n\}$, তাহলে $\overline{\sigma}_n \leq \overline{s}_N$ যার থেকে দেখা যায় যে $\{\overline{\sigma}_n\}$ বদ্ধ হবে যদি $\{\overline{s}_n\}$ বদ্ধ হয়। অতএব যদি $\sum |a_n|$ অভিসারী হয়, তাহলে $\sum |\alpha_n|$ -ও অভিসারী।

উপপাদ্যের দ্রন্তিন্সী অংশ প্রমাণিত হয় যদি আমরা দেখাই যে $\sigma_n-s_n
ightarrow 0$ কেননা তাহলে

$$\sigma_n = (\sigma_n - s_n) + s_n \to s$$

যেহেতু $\sum |\alpha_n|$ অভিসারী, প্রদত্ত $\varepsilon > 0$ -র জন্যে এমন m আছে যে প্রত্যেক p-র জন্যে

 $|a_{m+1}| + |a_{m+2}| + \dots + |a_{m+p}| < \varepsilon$

এমন n_0 নির্বাচন করুন যে $\{k_1, k_2, \cdots, k_{n_0}\} \supseteq \{1, 2, \dots, m\}$

যার ফলে $n_0 \ge m$ এবং

$$\sigma_n - s_n = a_{k_1} + a_{k_2} + \dots + a_{k_n} - a_1 - a_2 - a_n - \dots - a_n$$

এই রাশিটির কথা বিবেচনা করা যাক। যদি $n \ge n_0$ হয়, উপরোক্ত রাশিতে $a_1, a_2, ... a_m$ পদগুলি এবং হয়ত আরো অন্য কিছু পদ কাটা যাচ্ছে এবং যদি $q = \max\{n, k, ..., k_n\} + 1$ হয়, তাহলে q > m এবং

$$\left|\sigma_{n}-s_{n}\right| \leq \left|a_{m+1}\right|+\left|a_{m+2}\right|+\cdots+\left|a_{q}\right| < \varepsilon$$

যা দেখায় $\sigma_n - s_n
ightarrow 0$ এবং প্রমাণ সম্পূর্ণ হয়। \Box

উপরের উপপাদ্য বলে যে যে-কোন পুনর্বিন্যাসের ফলে অভিসারিতা ও যোগফল অপরিবর্তিত থাকার পর্যাপ্ত শর্ত হল পরম অভিসারিতা। নিচের উপপাদ্য দেখায় যে এই শর্ত আবশ্যিকও বটে।

উপপাদ্য 6b.5.3 (রীমানের পুনর্বিন্যাস উপপাদ্য : Riemann's rearrangement theorem) : মনে করুন $\sum a_n$ একটি অপরমভাবে অভিসারী শ্রেণী এবং x, y যে-কোন দু'টি ইচ্ছানুরূপ সংখ্যা বা $\pm \infty$ চিহ্ন এমন যে $x \leq y$ । তাহলে আমরা $\sum a_n$ -এর এমন একটি পুনর্বিন্যাস $\sum \alpha_n$ নির্মাণ করতে পারি যে যদি $\sigma_n \sum \alpha_n$ -এর *n*-তম আংশিক যোগফল হয়,

 $\underline{\lim}\,\sigma_n = x, \quad \overline{\lim}\,\sigma_n = y$

অর্থাৎ পুনর্বিন্যাস শ্রেণী $\sum \alpha_n$ যে-কোন প্রদত্ত যোগফলের প্রতি অভিসারী হতে পারে (x = y, সসীম ধরে), ∞ বা – ∞ -র প্রতি অপসারী হতে পারে ($x = y = \infty$ বা – ∞ ধরে) অথবা দোলনযুক্ত হতে পারে (x < y ধরে)।

প্রমাণ : যদিও এই উপপাদ্যের প্রমাণ আমাদের অধীত বিদ্যার আয়ত্তের মধ্যে, এই প্রমাণ একটু দীর্ঘ ও জটিল হওয়ার কারণে বাদ রাখা হল। 🗆

সংজ্ঞা 6b.6.2 : একটি শ্রেণী $\sum a_n$ -কে নিঃশর্তভাবে অভিসারী (unconditionally convergent) বলা হয় যদি $\sum a_n$ -এর প্রত্যেক পুনর্বিন্যাস অভিসারী হয়। একটি শ্রেণীকে শর্তসাপেক্ষে অভিসারী (conditionally convergent) বলা হয় যদি তা নিঃশর্তভাবে অভিসারী না হয়।

উপপাদ্য 6b.6.2 ও 6b.6.3 থেকে পাওয়া যায়, উপপাদ্য 6b.5.4 একটি শ্রেণী নিঃশর্তভাবে অভিসারী হয় যদি এবং একমাত্র যদি তা পরমভাবে অভিসারী হয়।

উপপাদ্য 6b.6.5 একটি নিঃশর্তভাবে অভিসারী শ্রেণীর প্রত্যেক পুনর্বিন্যাসের যোগফল প্রদত্ত শ্রেণীর যোগফলের সমান হয়। □

6b.7 সারাংশ

এই এককে ইচ্ছানুরূপ চিহ্নযুক্ত পদের শ্রেণীর অভিসারিতার কথা আলোচিত হল।

প্রথমে দেখানো হল যে একটি একান্তর শ্রেণী স্বল্প শর্তসাপেক্ষে অভিসারী হয়। তারপর পরম অভিসারিতার সংজ্ঞা ও তার জন্যে মূল পরীক্ষা ও অনুপাত পরীক্ষার কথা আলোচিত হল।

অপরম অভিসারিতার জন্যে আবেলের পরীক্ষা ও ডিরিখলেটের পরীক্ষা দেওয়া হল।

শেষে শ্রেণীর পুনর্বিন্যাস ও নিঃশর্ত অভিসারিতার ধারণার প্রবর্তন করা হল এবং দেখানো হল যে নিঃশর্ত অভিসারিতা ও পরম অভিসারিতা সমতুল্য ধর্ম।

6b.8 সর্বশেষ প্রশ্নাবলী

1. দেখান যে যে-কোন $lpha \ge 1$ -এর জন্যে $1 - rac{1}{2^{lpha}} + rac{1}{3^{lpha}} - rac{1}{4^{lpha}} + \cdots$ এই শ্রেণীটি অভিসারী এবং এর যোগফল

<u>।</u> 2 এবং ।-এর মধ্যে অবস্থিত।

2. দেখান যে
$$\sum_{n=1}^{\infty} (-1)^{n-1} / \sqrt{n}$$
 এই শ্রেণীর যোগফলের আসন্ন মান 99-তম আংশিক যোগফল ধরা হলে ভুলের

পরিমাণ <mark>1</mark>1-এর চেয়ে বেশি নয়।

- 3. উপপাদ্য 6b.4.4 প্রমাণ করুন।
- 4. নির্ণায় করন $\sum a_n$ পরমভাবে অভিসারী, অপরমভাবে অভিসারী না অপসারী যেখানে a_n সমান

(i)
$$\frac{a^n}{n!}$$
, (ii) $(-1)^{n-1}2^n$; (iii) $\frac{(-1)^{n-1}}{n+a^2}$

5. যদি $\sum a_n$ অভিসারী হয়, প্রমাণ করুন যে নিম্নলিখিত শ্রেণীগুলিও অভিসারী :

(i)
$$\sum \frac{a_n}{\log n}$$
; (ii) $\sqrt{n} a_n$

6. Sine ও Cosine-এর সাধারণ ধর্ম ধরে নিয়ে দেখান যে

$$\sum \frac{\sin na}{n^{\alpha}} \circ \sum \frac{\cos na}{n^{\alpha}}$$

শ্রেণী দু'টি অভিসারী যেখানে $\alpha > 0$ এবং $a, 2\pi$ -এর গুণিতক নয়।

7.
$$\overline{x}$$
 for $s = 1 - \frac{1}{2} + \frac{1}{3} - \cdots$ হয়, প্রমাণ করুন
(i) $\frac{1}{2}s = 1 - \frac{1}{2} - \frac{1}{4} + \frac{1}{3} - \frac{1}{6} - \frac{1}{8} + \cdots$
(ii) $\frac{2}{3}s = 1 - \frac{1}{2} - \frac{1}{4} + \frac{1}{5} + \frac{1}{7} - \frac{1}{8} - \frac{1}{10} + \frac{1}{10} +$

8. $\overline{alg} s = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \cdots = \overline{alg}$, (real rates)

(i)
$$\frac{3}{4}s = 1 + \frac{1}{3^2} + \frac{1}{5^2} + \cdots$$

(ii) $\frac{2}{3}s = 1 + \frac{1}{5^2} + \frac{1}{7^2} + \frac{1}{11^2} + \frac{1}{13^2} + \cdots$

6b.9 উত্তরমালা

1.
$$(\operatorname{accv}\left\{\frac{1}{n^{\alpha}}\right\}$$
 একাষয়ে হাসমান এবং $\frac{1}{n^{\alpha}} \to 0$, শ্রেণীটি অভিসারী। এখন
 $s_{2n} \ge 1 - \frac{1}{2^{\alpha}} \ge 1 - \frac{1}{2} = \frac{1}{2}; s_{2n+1} \le 1$
 $n \to \infty$ করলে $s \ge 1/2, s \le 1$
2. $n = 99; 0 \le -(s - s_n) \le a_{100} = \frac{1}{\sqrt{100}} = 1/10$
3. প্রত্যেক n-এর জন্যে $|b_n| \le M, \sum_{i=1}^{n} |a_i| \le M'$, তাই $\sum_{i=1}^{n} |a_i b_i| \le MM'$ ইত্যাদি।
4. (i) $|a_{n+1}/a_n| = |a|/(n+1) \to 0$, তাই পরমভাবে অভিসারী।
(ii) $\sqrt[4]{|a_n|} = 2 \to 2$, তাই অপসারী।
(iii) একাম্বের স্রোণী $(1/(n + a^2))$ একাম্বরে হাস্যান $1/(n + a^2)$ একাম্বরে হাস্যান $1/(n + a^2)$ একাম্বের স্রোন্টি মেন্সি স্রেন্সি মেন্সি স্রেন্সি মেন্সি স্রেন্সি স্রি

(iii) একান্তর শ্রেণী, {1/(n + a²} একান্বয়ে হ্রাসমান 1/(n + a²) → 0, তাই অভিসারী। ∑1/(n + a²)
 অপসারী কেননা ∑1/n অপসারী এবং n/(n + a²) → 1। তাই প্রদত্ত শ্রেণী অপরমভাবে অভিসারী।

5. (i) $\left\{\frac{1}{\log n}\right\}$ $(n \ge 2)$ বদ্ধ কেননা $\frac{1}{\log n} \le \frac{1}{\log 2}$ $(n \ge 2)$ এবং $\frac{1}{\log n} \to 0$ । তাই আবেলের পরীক্ষায় শ্রেণীটি অভিসারী।

(ii) $\{\sqrt[n]{n \ge 3}\}$ ($n \ge 3$) ক্রমান্বয়ে হ্রাসমান এবং বদ্ধ কেননা $\sqrt[n]{n \to 1}$ ইত্যাদি।

$$6. \quad \left| \sum_{k=1}^{n} \sin ka \right| = \left| \frac{\sin \frac{n+1}{2} a \sin \frac{na}{2}}{\sin \frac{a}{2}} \right| \le \frac{1}{\left| \sin \frac{a}{2} \right|}$$

 $\left\{\frac{1}{n^{\alpha}}\right\}$ একাম্বয়ে হ্রাসমান এবং $\frac{1}{n^{\alpha}} \to 0$, তাই ডিরিখ্লেটের পরীক্ষা দ্বারা প্রথম শ্রেণীটি অভিসারী, ইত্যাদি। 7. $s = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots$

$$-\frac{1}{2}s = -\frac{1}{2} + \frac{1}{4} - \frac{1}{6} + \frac{1}{8} + \cdots$$

যোগ করে পাই

$$\frac{1}{2}s = \left(1 - \frac{1}{2}\right) + \left(-\frac{1}{2} + \frac{1}{4}\right) + \left(\frac{1}{3} - \frac{1}{6}\right) + \left(-\frac{1}{4} + \frac{1}{8}\right) + \cdots$$

$$= \left(1 - \frac{1}{2}\right) - \frac{1}{4} + \left(\frac{1}{3} - \frac{1}{6}\right) - \frac{1}{8} + \cdots \qquad \dots \dots \quad (i)$$

বন্ধনী অপসারণ করে পাই

$$\frac{1}{2}s = 1 - \frac{1}{2} - \frac{1}{4} + \frac{1}{3} - \frac{1}{6} - \frac{1}{8} + \cdots$$

কেননা শেযোক্ত শ্রেণীটি অভিসারী যা প্রমাণ করতে ধরুন σ_n এই শ্রেণীর n-তম আংশিক যোগফল। তাহলে যদি (i) শ্রেণীর n-তম আংশিক যোগফল s' হয়

$$\begin{split} \sigma_{3n} &= s'_{2n}, \sigma_{3n-1} = s'_{2n} + \frac{1}{4n}, \sigma_{3n-2} = s'_{2n} + \frac{1}{2(n-1)} + \frac{1}{4n} \quad ({(3)}{(2)} \otimes s'_n \to \frac{1}{2}s, \ \sigma_n \to \frac{1}{2}s) \\ \hline \text{wind} &= (1 - \frac{1}{3}s) = -\frac{1}{3} + \frac{1}{6} - \frac{1}{9} + \frac{1}{12} - \cdots \\ \hline \text{wind} &= (1 - \frac{1}{2} + \frac{1}{3}) + (-\frac{1}{4} + \frac{1}{5} - \frac{1}{6}) + (\frac{1}{7} - \frac{1}{8} + \frac{1}{9}) + \cdots \\ \hline \text{wind} &= (1 - \frac{1}{2} + \frac{1}{3}) + (-\frac{1}{4} + \frac{1}{5} - \frac{1}{6}) + (\frac{1}{7} - \frac{1}{8} + \frac{1}{9}) + \cdots \\ \hline \text{wind} &= (1 - \frac{1}{2} + \frac{1}{3}) + (-\frac{1}{4} + \frac{1}{5} - \frac{1}{6}) + (\frac{1}{7} - \frac{1}{8} + \frac{1}{9}) + \cdots \\ \hline \text{wind} &= (1 - \frac{1}{2} + \frac{1}{3}) + (-\frac{1}{4} + \frac{1}{5} - \frac{1}{6}) + (\frac{1}{7} - \frac{1}{8} + \frac{1}{9}) + \cdots \\ \hline \text{wind} &= (1 - \frac{1}{2} + \frac{1}{3}) + (-\frac{1}{4} + \frac{1}{5} - \frac{1}{6}) + (\frac{1}{7} - \frac{1}{8} + \frac{1}{9}) + \cdots \\ \hline \text{wind} &= (1 - \frac{1}{2} + \frac{1}{3}) + (1 - \frac{1}{4} + \frac{1}{5} - \frac{1}{6}) + (1 - \frac{1}{8} + \frac{1}{9}) + \cdots \\ \hline \text{wind} &= (1 - \frac{1}{2} + \frac{1}{3}) + (1 - \frac{1}{4} + \frac{1}{5} - \frac{1}{6}) + (1 - \frac{1}{8} + \frac{1}{9}) + \cdots \\ \hline \text{wind} &= (1 - \frac{1}{2} + \frac{1}{3}) + (1 - \frac{1}{4} + \frac{1}{5} - \frac{1}{6}) + (1 - \frac{1}{8} + \frac{1}{9}) + \cdots \\ \hline \text{wind} &= (1 - \frac{1}{2} + \frac{1}{3}) + (1 - \frac{1}{4} + \frac{1}{5} - \frac{1}{6}) + (1 - \frac{1}{8} + \frac{1}{9}) + \cdots \\ \hline \text{wind} &= (1 - \frac{1}{2} + \frac{1}{3}) + (1 - \frac{1}{4} + \frac{1}{5} - \frac{1}{6}) + (1 - \frac{1}{8} + \frac{1}{9}) + \cdots \\ \hline \text{wind} &= (1 - \frac{1}{2} + \frac{1}{3}) + (1 - \frac{1}{4} + \frac{1}{5} - \frac{1}{6}) + (1 - \frac{1}{4} + \frac{1}{9} + \frac{1}{9}) + \cdots \\ \hline \text{wind} &= (1 - \frac{1}{2} + \frac{1}{3}) + (1 - \frac{1}{4} + \frac{1}{5} - \frac{1}{6}) + (1 - \frac{1}{4} + \frac{1}{9} + \frac{1}{9}) + (1 - \frac{1}{4} + \frac{1}{9} + \frac{1}{9}) + (1 - \frac{1}{4} + \frac{1}{9} + \frac{1}{9}) + (1 - \frac{1}{4} + \frac{1}{9} + \frac{1}{9} + \frac{1}{9}) + (1 - \frac{1}{4} + \frac{1}{9} + \frac{1}{9}) + (1 - \frac{1}{1$$

$$\frac{2}{3}s = \left(1 - \frac{1}{2}\right) + \left(-\frac{1}{4} + \frac{1}{5}\right) + \cdots$$
$$= 1 - \frac{1}{2} - \frac{1}{4} + \frac{1}{5} + \frac{1}{7} - \frac{1}{8} - \cdots$$

যেহেতু বন্ধনী অপসারণ সম্ভব কেননা প্রাপ্ত শ্রেণীটি অভিসারী (প্রমাণ করুন)।

8.
$$s = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots$$

 $-\frac{1}{4}s = \frac{1}{2^2} - \frac{1}{4^2} - \frac{1}{6^2} \dots$
 $s = \left(1 + \frac{1}{2^2}\right) + \left(\frac{1}{3^2} + \frac{1}{4^2}\right) + \dots$
 $t = \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \dots$

যোগ

আবার
$$-\frac{1}{12}s = -\frac{1}{3^2} - \frac{1}{9^2} - \frac{1}{15^2} - \cdots$$

 $\frac{3}{4}s = \left(1 + \frac{1}{3^2} + \frac{1}{5^2}\right) + \left(\frac{1}{7^2} + \frac{1}{9^2} + \frac{1}{11^2}\right) + \cdots$
(যোগ করলে পাই $\frac{2}{3}s = \left(1 + \frac{1}{5^2}\right) + \left(\frac{1}{7^2} + \frac{1}{12^2}\right) + \cdots$ $= 1 + \frac{1}{5^2} + \frac{1}{7^2} + \frac{1}{11^2} + \cdots$

কেননা প্রাপ্ত শ্রেণী অভিসারী।

BLOCK - 2

একক 7 🗅 বদ্ধ অন্তরালে সন্তত অপেক্ষকের ধর্মাবলী

গঠন

- 7.1 প্রস্তাবনা
- 7.2 উদ্দেশ্য
- 7.3 কতিপয় সংজ্ঞা
- 7.4 হাইনে বোরেলের উপপাদ্য
- 7.5 বদ্ধ অন্তরালে সন্ততি
 - 7.5.1 উদাহরণ মালা
 - 7.5.2 অনুশীলনী
- 7.6 বদ্ধ অন্তরালে ফাংশন সমূহের সন্তুতির কতিপয় ধর্ম
 - 7.6.1 উদাহরণমালা
- 7.7 সুষম সন্তুতি
- 7.8 কতিপয় উপপাদ্য
 - 7.8.1 উদাহরণমালা ও অনুশীলনী
- 7.9 সারাংশ
- 7.10 সর্বশেষ প্রশ্নাবলি
- 7.11 উত্তরমালা (সংকেত সহ)
- 7.12 সহায়ক পুস্তক

7.1 প্রস্তাবনা

আপনারা EMT 01-এর একক 01-তে সেট্, সীমাবদ্ধ (bounded) সেট্; একক 02-তে ফাংশন এবং একক 03-তে একটি বিন্দুতে ফাংশনের সন্তুতি, মুক্ত ও বদ্ধ অন্তরালে ফাংশনের সন্তুতির সংজ্ঞা, বদ্ধ অন্তরালে ফাংশনের সীমা, বৃহত্তম নিম্ন সীমা (g.l.b) ক্ষুদ্রতম ঊর্ধ্বসীমা (l.u.b.) ইত্যাদির সংজ্ঞা উদাহরণ সহযোগে জেনেছেন। এই এককে বদ্ধ অন্তরালে ফাংশনের সন্তুতির বিভিন্ন দিক ও তার বিভিন্ন ধর্ম নিয়ে আলোচনা করা হবে।

7.2 উদ্দেশ্য

এই একক পাঠ করে আপনি—

- বদ্ধ অন্তরালে ফাংশনের সন্ততির সংজ্ঞা ও সুযম সন্ততির (Uniform Continuity) সংজ্ঞার মধ্য দিয়ে সন্ততির সম্যক ধারণা উপলব্ধি করতে পারবেন।
- বদ্ধ অন্তরালে সন্তত ফাংশনের মান সম্বন্ধে ধারণা করতে পারবেন।
- 🔍 🛛 বদ্ধ অন্তরালে সন্তত ফাংশনের এবং সুষমভাবে সন্তত ফাংশনের বিভিন্ন ধর্ম সম্বন্ধে অবগত হবেন।

7.3 কতিপয় সংজ্ঞা

সংজ্ঞা 1 : মুক্ত অন্তরাল (open interval), বদ্ধ অন্তরাল (Closed interval)

ধরা যাক্ a এবং b উভয়েই বাস্তব সংখ্যা এবং a < b। তাহলে সকল বাস্তব সংখ্যার সেট্ R-এর সাবসেট্ { x : ∈ R এবং a < x < b } কে **মুক্ত অন্তরাল** এবং সাবসেট্ { X : X ∈ R এবং a ≤ x ≤ b} কে **বদ্ধ অন্তরাল** বলা হয়। সাধারণভাবে মুক্ত অন্তরালকে (a, b) বা] a, b [দ্বারা এবং বদ্ধ অন্তরালকে [a, b] দ্বারা প্রকাশ করা হয়।

আবার, { X : X ∈ R এবং a < x ≤ b } এবং { X : X ∈ R এবং a ≤ x < b} সাবসেট্দ্বয়কে **অর্দ্ধমুক্ত** (বা অর্দ্ধবদ্ধ) অন্তরাল বলা হয়। এদের যথাক্রমে (a, b] বা] a, b] এবং [a, b) বা [a, b [দ্বারা সূচিত করা হয়।

উদাহরণ: 2 < x < 3 বা (2, 3) একটি মুক্ত অন্তরাল ; 2 ≤ x ≤ 3 বা [2, 3] একটি বদ্ধ অন্তরাল; 2 < x ≤ 3 বা (2, 3] এবং 2 ≤ x < 3 বা [2, 3) অর্দ্ধমুক্ত অন্তরালদ্বয়ের উদাহরণ।

সংজ্ঞা 2 : <u>সামীপ্য (Neighbourhood) :</u> কোনও বাস্তব বিন্দু C কে ঘিরে যদি একটি মুক্ত অন্তরাল (a, b) পাওয়া যায় অর্থাৎ যদি C e (a, b) হয় তবে (a, b) অন্তরালকে C বিন্দুর একটি সামীপ্য বলে, একে N(C) দ্বারা প্রকাশ করা হয়।

আবার কোন সংখ্যা $\delta > 0$ -এর জন্য যদি $a = c - \delta$, $b = c + \delta$ হয় তবে $(c - \delta, c + \delta)$ অন্তরালকেও C বিন্দুর একটি সামীপ্য বলা হয়। এটি N(c, δ) দ্বারা নির্দেশিত হয়।

উদাহরণ : N (C, ·001) সামীপ্যটি (C – .001, C + .001) অন্তরালটিকে বোঝায়।

সংজ্ঞা 3. আভ্যন্তরীণ বিন্দু (Interior point) : ধরা যাক্ $S \subset R \mid S$ সেটের কোন সদস্য C-এর জন্য যদি অন্তত

এনটা মাইলে মন্ত্রে প্রথম হয় মন্ত্রে ৫.৫ মন্ত্রপ্রমান ৫ মে ১ এন এনটা মান্তার্জীন বিশ্ব পরা হয়। ১-এর আজাস্তাইশ নিশ্বসমূহ যে সেই নঠন করে মাজে ১৯ ম থানা জিলিন কনা হয়।

BARRY 1 (3) 5-{xeR:55x510} ROR 5 AND THE CRE AND

hit 20~{风雨风(2日光(1日子

(3) $[3] = \{ a \in \mathbb{R} : a \le a \le 10 \}$ (pp) int a = a.

(a) 3 - K 501 ini 5 - K \$10\$

(Index) (#91

Sectors : 65.

PERM 4 : USE (C[L (open.act) : 4]] S ⊂ R , ARE 30 S AT READ (PH[3] S AT REPORT (PH] 20. মামলে ৪.৫ৰ মূৰু সেই পৰা মৰে।

Bergine : 60 5 = { x = R : 5 ≤ x < 10 } XIN S AND UP (N)

(2) 5 - R RO 5 498 Q# (月) () R 48 40498 (H) NOV 87 (H).

- (11) 5 = Q (100) Q (200) rem (per Peps (20)) Kin 5-66 (Ref Ref) throwide Reg. মনে বা কালে মূলৰ ও অনুসৰ সংগ্ৰাৰ অনুস্থাৰ ধন্দ্ৰী অনুস্থাৰী কৰা মাত্ৰ ৪-এবা বেঁকোৰ বিশ্বন মেনেন্দৰ সামীলেন্দ্ৰ মন্দে অনুসম সম্পন্ন কাৰলে, সেই কাৰলে সামীপাটি Q-এন উপস্থেই মনে
 - না, এনা: এজেনার ড সেইটি মুক্ত সেই নয়।

NOT S : UP NOT LODGE ACCEL: AN AD S $\subset \mathbb{R}$ AND CALL PROVIDE CODE NOT (collection).

মাননা রাজেরে টে জে ম একটি চুক্ত আমান করা আবে।

to one or when $S \subset \bigcup_{n \ge 1} A_n$

 $\mathbb{E} \mathbb{P} \ \ \, \mathbb{E} = \left\{ x \in \mathbb{R} : 0 < x < 1 \right\} \ \ \, \mathrm{des} \ \ \, \mathbb{E} = \left\{ A_x : A_x = \left(\frac{1}{x+2}, \frac{1}{x} \right), x \in \mathbb{N} \right\}$ 00.

upper versions were were shown in $S \subseteq \bigcup_{i=1}^{n} (n - .444, n + .491)$

উপরোজ সংমধ্যা মনি 🗛 লেটকানি গলেহকেই মূজ দেউ ময় ভামনে G যে ৪-নায় নামটি মূজ জামাল কর্ণ মনে। with S = N we write $G = \{(n = .001, n + .001) : n \in N\}$ obliger S we write

97

NUM : Settiment (Sub cover) : All the S ⊂ R. All R All fills Setori file Sold G and cold at S are and when the G as it SetChicel the core flag mean file ball G' (G' ⊂ G) colds S-All and when the loce G' coldson G as whether S-as and Seturate are to:

মনি G'-নায় সমস্যলগো সানীম হয় (মারা প্রচরেনেন্ট G-নায় সমস্য) এবং মনি G' সেইটি ৪-নায় একটি আনন্দ হয়। আহলে G' সে নায়—পরিয়েন্দিয়ের ৪-নায় একটি সানীম উপজ্ঞানাল (finite asboower) পালা হয়।

We have f(i) = S = R from the $G = \left\{I_n : I_n\left(\frac{R}{2}, \frac{R}{2}\right), n \in N\right\}$ and $S \subseteq \bigcup_{n=1}^{n-1} I_n$ are noticed specified on the set of the formula of the set of the se

-and all $G'=\{I_{im}:n\in N\ \}$ shows we arrow $G'\subset G$ are $S\subseteq \bigcup_{n\geq 1}I_{im}$ with across G' or S-an and drawner (

 $(ii) \quad S = \{ \ 2, \ 5, \ 8, \ \|2, \ 51 \ \} \text{ we need } ii = \{ I_n : I_n = (n - .01, \ n + .01), \ n \in \mathbb{N} \}$

where we can $S \subseteq \bigcup_{n=1}^{\infty} I_n$ are over a cases G calls S-are and by a where $S = u_{12}^{\infty} I_n$ are any access G calls S-are and by a where $S = u_{12} \cup u_{21}$ and I_1 , I_2 , I_3 , I_4 , I_{12} , I_{21}) are stress of an experiment $S \subset I_2$, $\bigcup I_3 \bigcup I_4$ $\bigcup I_{12} \bigcup I_{21}$ are user $G' \subset G$ are access of an experiment with a solution of an experiment with a solution of an S are and with U-matrix.

সম্ভৱ 7 : সিটটা পিছ (limit point or cluster point) : খন মান a = n কাটা সেঁট। কাটী ব্যৱহা পিছ 5 কে 8 সেটোৰ নিটিট দিছ কৰা হবে যদি 5 কা মাজাৰটি সাইলৈয়ে মধ্যে 5 হয়। 5 কা মন্তত কৰটি নিছ থাকে।

এই ই নিশ্বটি 5 :এর সময় হতে পারে আনর নাও্ হতে পারে।

Define (i) $S = \left\{ \frac{1}{n} : n \in \mathbb{N} \right\}$ colds and the field for a set of a flegs scale were as:

(ii)] a, b \in R. NON [a, b] waveleve abuvely fingh use fielding (

HERE : Here $\alpha \in (a,b)$, couple $a \ge 0$ are neg $\alpha \in (a,b)$ if $\alpha \in N$ size, $\frac{1}{n} \le c$ for a neg

সংকেত : ধরুন $\alpha \in (a,b)$, যেকোন $\varepsilon > 0$ এর জন্য $\alpha \in (a,b) \exists n \in N$ যাতে $\frac{1}{n} < \varepsilon$ হয়। তখন $-\frac{1}{n} > -\varepsilon \Rightarrow \alpha - \frac{1}{n} > \alpha - \varepsilon$ আবার $\frac{1}{n} < \varepsilon \Rightarrow \alpha + \frac{1}{n} < \alpha + \varepsilon$ যেহেতু $\alpha - \frac{1}{n}, \alpha + \frac{1}{n}$ উভয়েই [a, b] এর সদস্য এবং তারা ($\alpha - \varepsilon, \alpha + \varepsilon$) সামীপ্যের মধ্যে অবস্থিত সুতরাং α একটি লিমিট বিন্দু।

আবার
$$rac{1}{n} < \epsilon \Rightarrow a + rac{1}{n} < a + \epsilon$$
 এবং $rac{1}{n} < \epsilon \Rightarrow rac{-1}{N} > -\epsilon$

$$\Rightarrow b - rac{1}{n} > b - arepsilon$$
 । সুতরাং a ও b উভয়েই এক একটি লিমিট বিন্দু।

 (iii) Q সেটটি সকল মূলদ সংখ্যার সেট। আবার যেহেতু মূলদ ও অমূলদ সংখ্যাসমূহ খুব ঘন (dense), সেইজন্য R-এর প্রত্যেকটি বিন্দুই Q-এর লিমিট বিন্দু।

সংজ্ঞা 8 : বদ্ধ সেট (closed set) : একটি বাস্তব সংখ্যার সেট্ S কে বদ্ধ সেট্ বলা হবে যদি এর প্রত্যেকটি লিমিটবিন্দুই এর সদস্য হয়।

উদাহরণ : (i) 🛛 [a, b] \sub{R} একটি বদ্ধ সেট।

- (ii) R একটি বদ্ধ সেট, যেহেতু R-এর যেকোন একটি সদস্যের যেকোন একটি সামীপ্যের মধ্যে R-এর অসীমসংখ্যক সদস্য বিদ্যমান।
- (iii) $S = \left\{ \frac{1}{n} : n \in N \right\}$ সেট্টি বদ্ধসেট্ নয়, কারণ এই সেট্টির একমাত্র লিমিট বিন্দু 0 যা S এর সদস্য নয়।

সংজ্ঞা 9 : কম্প্যাক্ট সেট (compact set) : একটি সেট $S \subset R$ কে কম্প্যাক্ট বলা হবে যদি এর প্রত্যেকটি মুক্ত আবরণ G এর সসীম উপআবরণ G' থাকে। অর্থাৎ R এর কতকগুলি মুক্ত উপসেট দ্বারা নির্মিত সেট G যদি S-এর মুক্ত আবরণ হয় এবং G এর সসীম উপসেট G' ও যদি S এর মুক্ত আবরণ হয় তবে S কে কম্প্যাক্ট সেট বলা হবে।

7.4 হাইনে বোরেলের (Heine Borel) উপপাদ্য :

বাস্তব সংখ্যার সেট <u>R</u> এর কোন উপসেট <u>S</u> বদ্ধ <u>(closed)</u> ও সীমাবদ্<u>ষ</u> <u>(bounded)</u> হলে <u>S-</u>এর যেকোন মুক্ত আবরণের একটি সসীম উপআবরণ থাকবে (যা <u>S-</u>এর মুক্ত আবরণ)।

প্রমাণ : যেহেতু S সেটটি সীমাবদ্ধ অতএব দুটি বাস্তব সংখ্যা a, b পাওয়া যাবে যাতে S ⊂ [a, b] হবে। আবার যেহেতু S বদ্ধ সেট অতএব যদি [a, b] এর যেকোন মুক্ত আবরণ তার একটি সসীম মুক্ত উপ আবরণ ধারণ করে (contains) তাহলেই S-এর যেকোন মুক্ত আবরণ একটি সসীম মুক্ত উপআবরণ ধারণ করে। ধরা যাক A₁ = [a, b]। এখন আমরা A_1 -এর জন্য উপরোক্ত ফল (result) প্রমাণ করব। যদি সম্ভব হয় A_1 এর একটি মুক্ত আবরণ { $G_i : i \in N$ } এর কোন সসীম উপআবরণ (এক্ষেত্রে উপআবরণ মানেই মুক্ত উপআবরণ) নাই। A_1 কে দুটি বদ্ধ উপঅন্তরাল A_2 , $A_2^{-\prime}$ তে সমদ্বিখণ্ডিত করা হল। তাহলে এদের মধ্যে অন্তত একটির, ধরি A_2 এর, কোন সসীম উপআবরণ থাকবে না। একইভাবে A_2 কে সমদ্বিখণ্ডিত করলে A_3 পাওয়া যাবে যার কোন সসীম উপআবরণ নেই। এইভাবে অগ্রসর হলে একঝাঁক বদ্ধ অন্তরালের ক্রম { A_n } পাওয়া যাবে যেখানে যেকোন $n \in N$ -এর জন্য A_n -এর কোন সসীম উপআবরণ নেই। আবার দলগত অন্তরালের (nested interval) উপপাদ্য অনুযায়ী $\bigcap A_n ≠ φ$

এখন যদি $x \in \bigcap A_n$ ধরা হয় তাহলে $x \in A_n \subset A_1 \subset \cup G_i$ হয়। সুতরাং i-এর কোন একমানের জন্য $x \in G_i$ হবে। আবার যেহেতু G_i একটি মুক্ত সেট অতএব কোন $\epsilon > 0$ এর জন্য সামীপ্য $(x - \epsilon, x + \epsilon) \subset G_i$ অর্থাৎ $N(x, \epsilon) \subset G_i$ হবে। এখন n কে খুব বড় ধরে পাই—

$$A_n \subset N(x, \varepsilon) \subset G_i$$

তাহলে দেখা যাচ্ছে কেবলমাত্র একটি মুক্ত সেট G_i দ্বারাই A_n আবৃত (covered) হচ্ছে। অতএব A_n -এর কোন সসীম উপআবরণ নেই মন্তব্যটি ঠিক নয়।

সুতরাং A_1 এর মুক্ত আবরণ { G_i }-এর সসীম উপআবরণ আছে যা A_1 কে আবৃত করে। এর থেকে বলা যায় S এর যেকোন মুক্ত আবরণ একটি সসীম উপ আবরণ ধারণ করে।

প্রান্তলিপি — 1 একটি সেটের কম্প্যাক্ট হওয়ার শর্ত কাজে লাগিয়ে হাইনে-বোরেলের উপপাদ্যকে নিম্নলিখিত উপায়ে বিবৃত করা যায় :

<u>একটি বদ্ধ ও সীমাবদ্ধ সেট কম্প্যাক্ট হয়।</u>

প্লান্ডলিপি –2 যেকোন বদ্ধ অন্তরাল [a, b] $\subset \mathbb{R}$ বদ্ধ (closed) এবং সীমাবদ্ধ (bounded) অতএব বলা যায় : কোন বদ্ধ অন্তরালের একটি আবরণ যদি বাস্তব সংখ্যার মুক্ত অন্তরালগুলির দ্বারা গঠিত সেট G হয় তবে ঐ আবরণ G এর একটি সসীম উপ আবরণ থাকবে।

হাইনে-বোরেলের উপপাদ্যের এইরূপ আমরা এই এককে সন্তত ফাংশনের কয়েকটি ধর্ম প্রমাণ করতে ব্যবহার করব।

7.5 বদ্ধ অন্তরালের সন্তুতি

<u>সংজ্ঞা ঃ</u>ধরা যাক্ $f:I \to R$ ফাংশনটি বদ্ধ অন্তরাল $I = [a, b] \subset R$ তে সংজ্ঞাত। এই f কে I তে সন্তত বলা হবে যদি f ফাংশনটি—

I-এর প্রত্যেক আভ্যন্তরীণ বিন্দুতে সন্তত হয়।

- (ii) a বিন্দুর ডান দিক থেকে সন্তুত হয়, অর্থাৎ $\lim_{x \to a = 0} f(x) = f(a)$ হয়, এবং
- (iii) b বিন্দুর বামদিক থেকে সন্তত হয়, অর্থাৎ $\lim_{x o b = 0} f(x) = f(b)$ হয়।

$\epsilon - \delta$ সম্বলিত সংজ্ঞা (বৈশ্লেষিক সংজ্ঞা) :

f (x) ফাংশন তার সংজ্ঞাত অঞ্চল [a, b]-তে সন্তত হবে যদি

- (i) f(x) যেকোন আভ্যন্তরীণ বিন্দু C তে সন্তত হয় অর্থাৎ যেকোন ধনাত্মক সংখ্যা ε এর জন্য একটি ধনাত্মক সংখ্যা δ পাওয়া যাবে যার জন্য | f(x) – f(c) | < ε যখন | x – c | < δ হয়। এক্ষেত্রে যেহেতু C-কে যেকোন আভ্যন্তরীণ বিন্দু বলা হয়েছে, প্রত্যেক আভ্যন্তরীণ বিন্দুর জন্যই উপরোক্ত সংজ্ঞা কার্যকরী হবে।
- (ii) যেকোন ধনাত্মক সংখ্যা হ-এর জন্য একটি ধনাত্মক সংখ্যা δ_1 পাওয়া যাবে,যাতে | f (x) f (a) | < হ যখন a $\leq x < a + \delta_1$ হয়। এবং
- (iii) যেকোন ধনাত্মক সংখ্যা হ-এর জন্য একটি ধনাত্মক সংখ্যা δ_2 পাওয়া যাবে যার জন্য | f (x) f (b) | < হ, যখন b δ_2 < x \leq b হয়।

7.5.1 উদাহরণমালা

1. যদি f (x) = $2x^2 - 1$, যখন $-1 \le x \le 0$,

 $\mathbf{x}=\mathbf{x}^2+\mathbf{x}-\mathbf{1},$ যখন $0\leq\mathbf{x}\leq1$ হয় তবে দেখান যে ফাংশনটি [-1,~1] অন্তরালে সন্তত।

সমাধান ঃ প্রথম ধাপ ঃ ধরুন $a \in (-1, 0)$ তখন $\lim_{x \to a} f(x) = \lim_{x \to a} (2x^2 - 1) = 2a^2 - 1$

এবং f (a) = $2a^2 - 1 \implies \lim_{x \to a} f(x) = f(a)$

সুতরাং f (x) ফাংশনটি (– I, 0) অন্তরালের সকল বিন্দুতে সন্তত কারণ 'a' ঐ অন্তরালের যেকোন একটি বিন্দু।

দিতীয় ধাপ : $\lim_{x \to -1+0} f(x) = \lim_{x \to -1+0} (2x^2 - 1) = 2(-1)^2 - 1 = 1$ এবং $f(-1) = 2(-1)^2 - 1 = 1$ অতএব f(x) ফাংশন -1 এর ডান দিক থেকে সন্তত। তৃতীয় ধাপ : বরুন b $\in (0, 1)$, তখন $\lim_{x \to b} f(x) = \lim_{x \to b} (x^2 + x - 1) = b^2 + b - 1$

এবং
$$f(b) = b^2 + b - 1 \Rightarrow \lim_{x \to b} f(x) = f(b)$$

অতএব সংজ্ঞানুসারে f (x) ফাংশন (0, 1) অন্তরালে সন্তত।

চতুৰ্থ ধাপ :
$$\lim_{x \to 1-0} f(x) = \lim_{x \to 1-0} (x^2 + x - 1) = I^2 + I - 1 = 1, f(1) = I^2 + I - 1 = I$$

অতএব f (x) ফাংশন I-এর বামদিক থেকে সন্তত।

গঞ্জম ধাপ ঃ

$$\lim_{x \to 0-0} f(x) = \lim_{x \to 0-0} (2x^2 - 1) = 2.0 - 1 = -1$$

 $\lim_{x \to 0+0} f(x) = \lim_{x \to 0+0} (x^2 + x - 1) = 0 + 0 - 1 = -1$
এবং $f(0) = (x^2 + x - 1)_{x=0} = 0 + 0 - 1 = -1$
 $\Rightarrow f(0 - 0) = f(0 + 0) = f(0)$

সুতরাং f (x) ফাংশন 0 বিন্দুতে সন্তত। উপরোক্ত পাঁচটি ধাপের মন্তব্যগুলিকে একত্রিত করলে বলা যায় প্রদন্ত ফাংশনটি [–1, 1] অন্তরালে সন্তত।

2. দেখান যে f (x) = sin x ফাংশন $0 \leq x \leq \pi/2$ অন্তরালে সন্তত।

সমাধান : প্ৰথম ধাপ : ধরুন $a \in \left(0, \frac{\pi}{2}\right)$ তখন $\lim_{x \to a} f(x) = \lim_{x \to a} \sin x = \sin a$

এবং
$$f(a) = (\sin x)_{x=a} = \sin a \Rightarrow \lim_{x \to a} f(x) = f(a)$$

যেহেতু a বিন্দুটি $\left(0, \frac{\pi}{2}
ight)$ অন্তরালের যেকোন একটি বিন্দু অতএব f(x) ফাংশন

(0, ^π/₂)-এর প্রত্যেক বিন্দুতে সন্তত।

দিতীয় ধাপ : $\lim_{x \to 0+0} f(x) = \lim_{x \to 0+0} \sin x = \sin 0 = 0, f(0) = \sin 0 = 0$ $\Rightarrow \lim_{x \to 0+0} f(x) = f(0)$

সুতরাং f (x) ফাংশনটি 0 বিন্দুর ডানদিক থেকে সন্তত।

তৃতীয় ধাপ :
$$\lim_{x \to \frac{\pi}{2} = 0} f(x) = \lim_{x \to \frac{\pi}{2} = 0} \sin x = \sin \frac{\pi}{2} = 1, \ f\left(\frac{\pi}{2}\right) = \sin \frac{\pi}{2} = 1$$

$$\Rightarrow \lim_{x \to \frac{\pi}{2} = 0} f(x) = f\left(\frac{\pi}{2}\right)$$

অতএব ${f f}\left(x
ight)$ ফাংশনটি $\left. \frac{\pi }{2}
ight/ 2$ বিন্দুর বামদিক থেকে সন্তত।

 $\begin{aligned} \therefore | f(x) - f(c) | &= | x^2 - c^2 | = | (x + c) (x - c) | = | x - c | | x + c | \\ &= | x - c | | (x - c) + 2c | \\ &\leq | x - c | (| x - c | + | 2c |) \\ &< \delta (\delta + | 2c |)$ $< \delta (\delta + | 2c |)$ $= \delta^2 + | 2c | \delta \\ &< \delta + 2 | c | \delta,$ $= \delta^2 + \delta^2 < \delta$ $= \delta^2 + | 2c | \delta \\ &< \delta + 2 | c | \delta,$ $= \delta (1 + 2 | c |) \\ &< \epsilon$ $= \delta (1 + 2 | c |) \end{aligned}$

এই তিনটি ধাপের ফল বিশ্লেষণ করলে মন্তব্য করা যায় যে ${f f}$ (x) ফাংশনটি $\left[0, rac{\pi}{2}
ight]$ অন্তরালে সন্তত।

3. দেখান যে $f\left(x\right)=x^{2}$ ফাংশনটি [–a, a] অন্তরালে সন্তত [এখানে a>0 এবং $a\in R$]।

সমাধান ঃ ধরুন $C \in \left[-a, a\right]$ অর্থাৎ C হল [-a, a] অন্তরালের যেকোন একটি বিন্দু।

এখানে ধনাত্মক সংখ্যা δ এমন ভাবে ধরা হল যা l অপেক্ষা ক্ষুদ্রতর এবং $rac{\epsilon}{1+2|c|}$ অপেক্ষাও ক্ষুদ্রতর।

অতএব পাওয়া গেল | f (x) – f (c) | < হ, যখন | x – c | < ১ । সুতরাং সংজ্ঞানুসারে f (x) ফাংশন C বিন্দুতে সন্তত। আবার যেহেতু C বিন্দুটি [–a, a] অন্তরালের যেকোন একটি বিন্দু অতএব f (x) ফাংশন [–a, a] অন্তরালে সন্তত।

4. যদি f (x) = 1, যথন x মুলদ,

= 0, যখন \mathbf{x} অমূলদ

হয় তাহলে দেখান যে যেকোন বাস্তব বিন্দুতে f (x) সন্তত নয়।

সমাধান ঃ প্রথম ধাপ ঃ ধরা যাক a যেকোন একটি মূলদ সংখ্যা সুতরাং f (a) = 1 (সংজ্ঞানুসারে)। প্রত্যেক $n \in N$ -এর জন্য একটি অমূলদ সংখ্যা a_n পাওয়া যাবে যাতে $|a_n - a| < \frac{1}{n}$ অর্থাৎ $a - \frac{1}{n} < a_n < a + \frac{1}{n}$ সম্পর্কটি সত্য হয়; কারণ বাস্তব সংখ্যার নিবিড়তার (dense ness) ধর্ম অনুযায়ী যেকোন দুটি মূলদ সংখ্যা $a - \frac{1}{n}$, $a + \frac{1}{n}$ -এর মধ্যে অবশ্যই একটি অমূলদ সংখ্যা থাকবে।

আবার, $|a_n - a| < rac{1}{n}, \forall n \in \mathbb{N}$ হলে $\{a_n\}$ ক্রমটি (sequence) a বিন্দুতে অভিসারী হয়। অর্থাৎ $\{a_n\}$ ক্রমটি এমন ধরা হল যেন $\lim_{n \to \infty} a_n = a$ হয়।

ক্রমটি এমন ধরা হল যেন $\lim\limits_{n
ightarrow\infty}a_n=a$ হয়।

 a_{n} অমূলদ বলে f $(a_{n}) = 0, \ \forall n \in N \Rightarrow \lim_{n \to \infty} f(a_{n}) = 0$

 $\therefore \lim_{n \to \infty} f(a_n) = 0 \neq f(a)$

সুতরাং {f (a_n) } ক্রমটি f (a) তে অভিসারী নয়। অতএব f (x) ফাংশন R-এর সমস্ত মূলদ বিন্দুতে সস্তত নয়। দ্বিতীয় ধাপ ঃ ধরা যাক b যেকোন একটি অমূলদ সংখ্যা, সুতরাং f (b) = 0 [f (x) যেভাবে সংজ্ঞত।] প্রত্যেক n ∈ N -এর জন্য একটি মূলদ সংখ্যা b_n আছে যার জন্য | b_n - b | < $\frac{1}{n}$ অর্থাৎ b - $\frac{1}{n}$ < b_n < b + $\frac{1}{n}$ সম্পর্কটি সন্তব, কারণ যেকোন দুটি বাস্তব সংখ্যার মধ্যে একটি মূলদ সংখ্যার অস্তিত্ব থাকে। এক্ষেত্রে {b_n} ক্রমটি b তে অভিসারী হবে।

$$\mathbf{b}_{n}$$
 মূলদ বলে $\mathbf{f}(\mathbf{b}_{n}) = 1, \ \forall n \in \mathbb{N} \quad \Rightarrow \lim_{n \to \infty} \mathbf{f}(\mathbf{b}_{n}) = 1$

 $\therefore \quad \lim_{n \to \infty} f(b_n) = 1 \quad \neq f(b)$

অর্থাৎ এখানে $\left\{ f\left(b_{n}
ight)
ight\}$ ক্রমটি $f\left(b
ight)$ তে অভিসারী নয়। অতএব $f\left(x
ight)$ ফাংশন R-এর সকল অমূলদ বিন্দুতে অসন্তত।

উপরোক্ত দুটি ধাপের ফল একত্রিত করে বলা যায় প্রদন্ত ফাংশন R-এর সকল বিন্দুতেই অসন্তত।

7.5.2 অনুশীলনী

1. দেখান যে, f (x) = x, যখন $0 \le x \le 1$

$$= 1 - x$$
, যখন $1 \le x \le 2$

ফাংশনটি [0, 2] অন্তরালে সন্তত নয়।

[সংকেত ঃ এই ফাংশনটি x = 1 বিন্দুতে সন্তত নয়, কারণ f (1 – 0) = 1, f (1 + 0) = 0, অতএব f (x) ফাংশন [0, 2] অন্তরালের সকল বিন্দুতেই সন্তত বলা যাচ্ছে না কারণ 1 বিন্দুটি [0, 2] অন্তরালের একটি বিন্দু। অতএব f (x) ফাংশন [0, 2] অন্তরালে সন্তত নয়। 2. f (x) = 2x + 5 ফাংশনটি [2, 4] অন্তরালে সন্তত ; এটি প্রমাণ করুন।

3. প্রমাণ করুন যে f (x) = x – [x] ফাংশনটি [0, 2] অন্তরালে সন্তত নয়। এখানে [x] = x অপেক্ষা

সংকেত ঃ আমরা জানি [x] = n, যখন $n \le x < n + 1$, n = 0, 1, 2...অর্থাৎ [x] = 0, যখন $0 \le x < 1$ = 1, যখন $1 \le x < 2$ = 2, যখন $2 \le x < 3$, ইত্যাদি \therefore f (x) = 0, যখন x = 0 = x, যখন 0 < x < 1 = 0, যখন x = 1 = x - 1, যখন 1 < x < 2= 0, যখন x = 2

এখানে $\lim_{x \to 0} f(x) = \lim_{x \to 0} x = 0 = f(0)$

[সংকেত উদাহরণ - 2 অনুরূপ]

ক্ষুদ্রতর অথবা সমান বৃহত্তম পূর্ণ সংখ্যা।

 $\Rightarrow \mathbf{f}(\mathbf{x})$ ফাংশন 0-এর ডনাদিক থেকে সন্তত।

যদি $x = a \in (0,1)$ হয় তবে $\lim_{x \to a} f(x) = \lim_{x \to a} x = a = f(a)$ হয়।

অতএব x = a বিন্দুতে f (x) সন্তত এবং এখান থেকে বলা যায় (0, 1) অন্তরালে f (x) অন্তত (\because x = a ঐ অন্তরালের যেকোন বিন্দু)।

 $\lim_{x \to 1-0} (x) = \lim_{x \to 1-0} x = 1; \lim_{x \to 1-0} (x) = \lim_{x \to 1-0} (x-1) = 0 = f(0)$

অতএব x = 1 বিন্দুতে f (x) অসন্তত কারণ f (l − 0) ≠ f (l + 0), এছাড়া দেখান যায় f (x) ফাংশন (l, 2) অন্তরালে সন্তত এবং x = 2 বিন্দুতে অসন্তত।

যেহেতু দেখান গেল f (x) ফাংশন [0, 2] অন্তরালের x = 1, ও x = 2 বিন্দুতে অসন্তত, এটি [0, 2] অন্তরালে সন্তত নয়।]

4. দেখান যে ${f f}({f x})={f x}^2+1$ ফাংশনটি প্রত্যেক সসীম বদ্ধ অন্তরালে সন্তত।

[সংকেত ঃ যেকোন অন্তরাল [a, b], a, b ∈ R নিয়ে অগ্রসর হোন।]

5. দেখান যে $f(x) = \frac{1}{x}$ ফাংশনটি [1, 4] অন্তরালে সন্তত কিন্তু [0, 1] অন্তরালে সন্তত নয়।

[সংকেত ঃ উদাহরণ 2-এর অনুরূপ]

6. কোন কোন বিন্দুতে $f(x) = \sqrt{4x - x^2 - 3}$ ফাংশনটি অসন্তত তা নির্ণয় করুন যখন $1 \le x \le 3$

[সংকেত : $4x - x^2 - 3 = (x - 1) (3 - x) \ge 0$ যখন $x \in [1, 3]$

আবার উদাহরণ 2 অনুসরণ করে দেখান যায় যে f (x) ফাংশন 1-এর ডানদিক থেকে, (1, 3)-এর প্রত্যেক বিন্দুতে এবং 3-এর বামদিক থেকে সন্তত। অতএব f (x) এর [1, 3]-এর মধ্যে কোন অসন্ততির বিন্দু নাই।]

7. লেখচিত্রের মাধ্যমে f (x) = x − [x] ফাংশনটি [1, 3] অন্তরালে সন্তত কিনা পরীক্ষা করুন ([x] = n যখন n ≤ x < n + 1, n = 0.1.2)

$$\begin{bmatrix} \mathfrak{N}(\mathsf{c} \mathfrak{h} \mathfrak{s} \circ \mathfrak{s} \circ \mathfrak{f}(\mathbf{x}) = 0, \ \mathfrak{A} \mathfrak{A} \mathfrak{s} = 1 \\ = \mathbf{x} - 1, \qquad \mathfrak{A} \mathfrak{A} \mathfrak{s} = \mathbf{x} = 1 \\ = 0, \qquad \mathfrak{A} \mathfrak{A} \mathfrak{s} = 2 \\ = \mathbf{x} - 2, \qquad \mathfrak{A} \mathfrak{A} \mathfrak{s} = \mathbf{x} = 2 \\ = 0, \qquad \mathfrak{A} \mathfrak{A} \mathfrak{s} = \mathbf{x} = 1 \\ = 0, \qquad \mathfrak{A} \mathfrak{A} \mathfrak{s} = \mathbf{x} = 1 \\ = 0, \qquad \mathfrak{A} \mathfrak{A} \mathfrak{s} = \mathbf{x} = 1 \\ = 0, \qquad \mathfrak{A} \mathfrak{A} \mathfrak{s} = \mathbf{x} = 1 \\ = 0, \qquad \mathfrak{A} \mathfrak{A} \mathfrak{s} = \mathbf{x} = 3 \\ \end{bmatrix}$$

[1, 3] অন্তরালে ফাংশনটির লেখচিত্র অঙ্কন করে দেখা যাচ্ছে x =2 এবং x = 3 বিন্দুদ্বয়ে
 y = f (x) বক্রটি অবিচ্ছিন্ন নয়। সেই কারণে f (x) ফাংশনটি ঐ দুটি বিন্দুতে অসন্তত। অতএব [1, 3]
 আন্তরালে f (x) সন্তত নয়।]

7.6 বদ্ধ অন্তরালে সন্তত ফাংশন সমূহের কতিপয় ধর্ম

উপপাদ্য 1 : যদি $I = [a, b] \subset R$ হয় এবং $f: 1 \rightarrow R$ ফাংশনটি 1 তে সন্তত হয়, তাহলে f(x) ফাংশন 1 অন্তরালে সীমাবদ্ধ হবে।

প্রমাণ ঃ ধরা যাক, C বিন্দুটি (a, b) অন্তরালের যেকোন একটি বিন্দু। যেহেতু f (x) ফাংশনটি C বিন্দুতে সন্তত অতএব সংজ্ঞানুসারে কোন $\epsilon > 0$ এর জন্য $\delta > 0$ পাওয়া যাবে যার জন্য | f (x) – f (c) | < ϵ , যখন | x – c| < δ_c অর্থাৎ যখন x \in (c – δ_c , c + δ_c) অর্থাৎ যখন x \in N(c, δ_c) ।

সুতরাং
$$\mid f(x) \mid = \mid f(x) - f(c) + f(c) \mid \le \mid f(x) - f(c) \mid + \mid f(c) \mid < \epsilon + \mid f(c) \mid$$

যখন $x \in N(c, \delta_c)$

যেহেতু ε এবং | f(c) | উভয়েই সসীম ধনাত্মক সংখ্যা অতএব f (x) ফাংশনটি N(c, δু) সামীপ্যে সীমাবদ্ধ। আবার যেহেতু C ∈ (a, b) যেকোন একটি বিন্দু অতএব প্রত্যেক C-এর জন্য মুক্ত অন্তরাল (c – δ_c, c + δ_c) পাওয়া যাবে যেখানে f (x) সীমাবদ্ধ।

এখন আমরা f (x) = f (a) যখন x < a এবং f (x) = f (b) যখন x > b ধরব। এর ফলে [a, b] তে f (x)-এর কোন পরিবর্তন হয় না। তাই এইভাবে x < a এবং x > b এর জন্য f (x) কে সংজ্ঞায়িত করে a এবং b বিন্দুতে f (x)-এর সন্ততির জন্য উপরোক্ত যুক্তি অনুযায়ী।

$$| \mathbf{f}(\mathbf{x}) | \leq \varepsilon + | \mathbf{f}(\mathbf{a}) |,$$
 যখন $\mathbf{x} \in N(\mathbf{a}, \delta_{\mathbf{a}})$

এবং $\mid f(x) \mid \leq \epsilon + \mid f(b) \mid$, যখন $x \in N(b, \delta_b)$ হয়।

অর্থাৎ ${f f}$ (x) ফাংশনটি N (a, δ_{a}) এবং N(b, δ_{b}) তেও সীমাবদ্ধ।

উপরের আলোচনা থেকে এটি পরিষ্কার যে [a, b] অন্তরালের অসীম সংখ্যক বিন্দুর প্রত্যেকটির জন্য এক একটি সামীপ্য বা মুক্ত অন্তরাল পওয়া যাবে যেখানে f (x) সীমাবদ্ধ। এই অসীম সংখ্যক মুক্ত অন্তরালগুলি নিয়ে গঠিত সেট S কে I এর একটি মুক্ত আবরণ (open cover) বলা যায়। তাহলে হাইনে-বোরেল (Heine-Borel) এর উপপাদ্য অনুযায়ী S-এর একটি সসীম উপসেট S₁ = {N(x₁, δ₁), N(x₂, δ₂), N(x_n, δ_n)} পাওয়া যাবে যা I-এর মুক্ত আবরণ। সুতরাং এই সসীম সংখ্যক সামীপ্যের প্রত্যেকটিতেই f (x) সীমাবদ্ধ।

অতএব, | f(x) | < ε + | f(x_i) | যখন i = 1, 2, 3,, n

এখন যদি $\epsilon + |f(x_1)|, \epsilon + |f(x_2)|, \dots \epsilon + |f(x_n)|$ এই মানগুলির মধ্যে বৃহত্তমটি K হয় তবে I-এর সকল বিন্দুতেই $|f(x_n)| < K$ হবে। অর্থাৎ I অন্তরালে f (x) ফাংশনটি সীমাবদ্ধ।

উপপাদ্য 2 ঃ যদি f(x) ফাংশন I = [a, b] _{⊂ R} অন্তরালে সন্তত হয় তবে f (x) সীমাবদ্ধ হয় এবং I-তে অন্তত দুটি বিন্দু পাওয়া যাবে যেখানে f (x)-এর মান যথাক্রমে তার লঘিষ্ঠ ঊধ্বসীমা ও গরিষ্ঠ নিম্নসীমার সমান হয়।

প্রমাণ : এই উপপাদ্যের প্রথম অংশের প্রমাণ আমরা উপপাদ্য — 1-এ পেয়েছি।

<u>উপপাদ্যের শেষ অংশের প্রমাণ ঃ</u> যেহেতু f (x) ফাংশন [a, b] অন্তরালে সীমাবদ্ধ অতএব এই অন্তরালে তার লঘিষ্ঠ ঊর্ধ্বসীমা (Supremum) এবং গরিষ্ঠ নিম্নসীমা (Infemum) আছে। ধরা যাক্ তারা যথাক্রমে M ও m অতএব m ≤ f (x) ≤ M, ∀x ∈ I

আমাদের প্রমাণ করতে হবে I তে অন্তত একটি বিন্দু ${f x}_1$ আছে যেখানে ${f f}({f x}_1)=M$ এবং একই অন্তরাল I তে আরও একটি বিন্দু ${f x}_2$ আছে যেখানে ${f f}({f x}_2)={f m}.$ যদি সম্ভব হয় ধরা যাক $f(x) \neq M, \, \forall x \in I,$ তাহলে I এর সকল বিন্দুতে $f(x) \leq M$ হবে।

প্রদন্ত শর্তানুসারে f (x) ফাংশনটি I তে সন্তত। ধরা যাক্ f (x) = f (a) যখন x < a এবং f (x) = f (b) যখন x > b ; এর ফলে I তে f (x)-এর কোনরূপ পরিবর্তন হয় না। অতএব এখন I এর যেকোন বিন্দু C এর জন্য একটি সামীপ্য N (c, δু) পাওয়া যাবে যেখানে

$$f(x) < \frac{1}{2} \{f(c) + M\}, \forall x \in N(c, \delta_c)....(i)$$

যেহেতু I–তে C-এর মত অসীম সংখ্যক বিন্দু আছে, সেইহেতু অসীম সংখ্যক সামীপ্য পাওয়া যাবে যাদের প্রত্যেকটিতেই (i) নং সম্পর্কটি সিদ্ধ হয়। যদি উক্ত সামীপ্যগুলির সংগ্রহ (collection) S = { N(x, δ_x) : $x \in I$ } হয় তবে S সেটটি I-এর একটি মুক্ত আবরণ এবং হাইনে-বোরেলের উপপাদ্য অনুযায়ী S এর উপসেট হিসাবে একটি সসীম সংখ্যক সামীপ্যের সংগ্রহ S₁ = {N(x_1, δ_{x_1}), N(x_2, δ_{x_2})....., N(x_n, δ_{x_n})} পাওয়া যাবে যেখানে এই S₁ সেটটিও I-এর মুক্ত আবরণ হবে। ধরা যাক f(x_1), f(x_2),, f(x_n) এই মানগুলির মধ্যে বৃহত্তম মানটি G। তাহলে প্রত্যেক $x \in I$ -এর জন্য অবশ্যই একটি করে সামীপ্য N(x_k, δ_{x_k}) পাওয়া যাবে এবং

 $f(x) < \frac{1}{2} \left[f(x_k) + M \right] \le \frac{1}{2} \left[G + M \right]$ হবে।

সুতরাং $rac{1}{2}(G+M)$ হল f (x)-এর এটি ঊধ্বসীমা। কিন্তু এটি অসম্ভব, কারণ $rac{1}{2}(G+M) < M$, অতএব I-তে অস্তত একটি বিন্দু x₁ পাওয়া যাবে যেখানে f (x₁) = M হবে।

অনুরূপে দেখানো যাবে I তে অন্তত একটি বিন্দু ${f x}_2$ পাওয়া যাবে যেখানে ${f f}\left({f x}_2
ight)=m$ হবে।

<u>উপপাদ্য 3 : বোলজ্ঞানো (Bolzano) এর উপপাদ্য :</u>

<u>যদি $\mathbf{f}(\mathbf{x})$ </u> ফাংশন $\mathbf{I} = [\mathbf{a}, \mathbf{b}] \subset \mathbf{R}$ অন্তরালে সন্তত এবং $\mathbf{f}(\mathbf{a}) : \mathbf{f}(\mathbf{b}) < 0$ হয় তবে অন্তত একটি বিন্দু $\underline{\xi \in (\mathbf{a}, \mathbf{b})}$ পাওয়া যাবে যেখানে $\mathbf{f}(\underline{\xi}) = 0$ হয়।

প্রমাণ ঃ যেহেতু শর্তানুসারে, f (a). f (b) < 0 , তারা বিপরীত চিহ্ন বিশিষ্ট। ধরা যাক f (a) > 0 এবং f (b) < 0, I-এর একটি উপসেট A নিম্নরূপে নেওয়া হল।

A = {x : x ∈ I এবং f (x) ≥ 0 }

তাহলে অবশ্যই A' সেট টি খালি নয়, (যেহেতু $a \in A$) এবং A এর ঊর্ধ্বসীমা (upperbound) আছে যা b অপেক্ষা ক্ষুদ্রতর। ধরা যাক, A সেটটির লঘিষ্ঠ ঊধ্বসীমা (supremum) ξ এবং তখন $\mathbf{a} < \xi < \mathbf{b}$ হবে। আমরা প্রমাণ করতে চাই $\mathbf{f}(\xi) = 0$, যদি $\mathbf{f}(\xi) \neq 0$, হয় তবে সন্তত ফাংশনের ধর্ম অনুযায়ী ξ এর একটি সামীপ্য N(ξ , δ) পাওয়া যাবে সেখানে $\mathbf{f}(\mathbf{x})$ -এর চিহ্ন $\mathbf{f}(\xi)$ -এর চিহ্নের অনুরূপ। অতএব যদি $\mathbf{f}(\xi) > 0$ হয় তবে (ξ , $\xi + \delta$) অন্তরালের বিন্দুগুলিতেও $\mathbf{f}(\mathbf{x}) > 0$ হবে; অর্থাৎ ξ অপেক্ষা বৃহত্তর মানের জন্যও $\mathbf{f}(\mathbf{x}) > 0$ হবে। কিন্তু এটি A এবং ξ -এর সংজ্ঞার বিরোধী।

সুতরাং f (ξ) = 01

উপপাদ্য <u>4</u>: মধ্যবর্তী মানের ধর্ম <u>(Intermediate value property) :</u>

যদি f (x) ফাংশন [a, b] _⊂ R অন্তরালে সন্তত এবং f (α) ≠ f (β), যখন α < β এবং α, β ∈ [a, b] হয়, তাহলে (α, β) অন্তরালে f (x) ফাংশনটি f (α) এবং f (β) এর অন্তবর্তী সব মানই অন্তত একবার ধারণ করবে; অর্থাৎ f (α) ও f (β)-এর মধ্যবর্তী প্রত্যেক বাস্তবমান K-এর জন্য অন্তত একটি ξ ∈ (α, β) থাকবে যাতে f (ξ) = K হয়।

প্রমাণ ঃ ধরা যাক f (α) এবং f (β) এর মধ্যবর্তী কোন সংখ্যা K। আমাদের প্রমাণ করতে হবে অন্তত একটি বিন্দু ξ ∈ (α, β) পাওয়া যাবে যার জন্য f (ξ) = K হয়।

[α, β] অন্তরালে একটি ফাংশন g(x) = f(x) – K নেওয়া হল। যেহেতু f(x) ফাংশনটি [α,β] অন্তরালে সন্তত এবং K একটি ধ্রুবক, অতএব g(x) ফাংশনটিও [α, β] তে সন্তত। আবার g(α) = f(α) – K এবং g(β) = f(β) – K বিপরীত চিহ্ন বিশিষ্ট। অতএব বোলজানোর উপপাদ্য অনুযায়ী অবশ্যই একটি বিন্দু ξ ∈ (α, β) পাওয়া যাবে যেখানে g(ξ) = 0; তাহলে f (ξ) – K = 0 বা f (ξ) = K হবে।

উপপাদ্য <u>5 : </u>নির্দিষ্ট বিন্দু উপপাদ্<u>য (Fixed Point theorem) :</u>

াযদি $I=[a,b]\subset R$ অন্তরালে f(x) সন্তত হয় এবং যদি f(x) $\in I, \ \forall x\in I$ হয়, তবে অবশ্যই একটি বিন্দু

 $\xi \in I$ পাওয়া যাবে যেখানে $\mathbf{f}(\xi) = \xi$ হবে।

প্রমাণ ঃ যদি f(a) = a এবং f(b) = b হয় তবে মধ্যবর্তী মানের ধর্ম অনুযায়ী উপপাদ্যটি সরাসরি প্রমাণিত হয়। যদি f(a) > a এবং f(b) < b হয়, তবে g(x) = f(x) - x, $\forall x \in I$ ফাংশনটি নেওয়া যাক। তখন g(a) > 0 এবং g(b) < 0 ; আবার g(x) ফাংশনটি I-তে সন্তুত (কারণ f(x) এবং x একই অন্তরালে সন্তুত)। সুতরাং বোলজানোর উপপাদ্য অনুযায়ী একটি বিন্দু $\xi\in({
m a,b})$ পাওয়া যাবে যেখানে ${
m g}$ (ξ) = 0 অর্থাৎ ${
m f}$ (ξ) – ξ = 0,অর্থাৎ f (হু) = হু হয়।

উপপাদ্য ${f 6}$: ধরা যাক ${f f}:{f f}_1 o{f f}_2$, যেখানে ${f I}_1$ এবং ${f I}_2$ অন্তরালদ্বয় উভয়েই ${f R}$ –-এর উপসেট্ (subset) এবং কেউই খালি নয় (non-empty)। এক্ষেত্রে f(x) ফাংশনটি I₁-এর উপর সন্তত হবে যদি এবং কেবলমাত্র যদি (if and only if) L₂-এর যেকোন মুক্ত অন্তরাল Y-এর জন্য f⁻¹ (Y) সেট্টি L₁-এর একটি মুক্ত অন্তরাল হয়।

প্রমাণ ঃ প্রথমে মনে করুন ${f f}$ (x) ফাংশনটি ${f I}_1$ অন্তরালে সন্তত। যদি ${f f}^{-1}$ (Y) সেটের একটি বিন্দু ${f x}_1$ হয় তবে ধরা যাক $y_1=f(x_1)$ আমরা প্রমাণ করব যে x_1 বিন্দুটি f^{-1} (Y)-এর আভ্যন্তরীণ বিন্দু।

যেহেতু m Y একটি মুক্ত অন্তরাল অতএব কোন ছোট ধনাত্মক সংখ্যা ϵ এর জন্য বলা যায় $ig(y_1-\epsilon,\,y_1+\epsilonig)\in
m Y$ অর্থাৎ N(y₁, ε) ⊆ Y আবার যেহেতু f (x) ফাংশনটি x₁ বিন্দুতে সন্তত অতএব সন্তত ফাংশনের ধর্ম অনুযায়ী বলা যায় একটি ধনাত্মক সংখ্যা δ পাওয়া যাবে যাতে (${f x}_1-\delta,\,{f x}_1+\delta$) অন্তরালের প্রত্যেকটি বিন্দুর জন্য ${f f}$ (x)-এর মানসমূহ $(y_1 - \epsilon, y_1 + \epsilon)$ এর অন্তবর্তী হবে, অর্থাৎ $\left[N(x_1, \delta)\right] \subseteq N(y_1, \epsilon)$ হবে।

অতএব বিপরীত (inverse) ফাংশনের ধর্ম ${
m X} \subseteq {
m f}^{-1}ig \lceil {
m f}({
m x})ig
ceil$ কাজে লাগিয়ে বলা যায়—

$$N(x_1,\delta) \subseteq f^{-1} \Big[f \big\{ N(x_1,\delta) \big\} \Big] \subseteq f^{-1} \Big[N(y_1,\epsilon) \Big] \subseteq f^{-1} \big(Y \big)$$

সুতরাং দেখা যাচ্ছে x₁ বিন্দুটি f⁻¹ (Y)-এর আভ্যন্তরীণ বিন্দু।

 $\overline{
m [decay]}$ $\overline{
m [decay]}$ $\overline{
m A}^{-1}$ (Y) সেট্টি I_2 -এর যেকোন মুক্ত উপঅন্তরাল Y-এর জন্য I_1 অন্তরালের একটি মুক্ত উপঅন্তরাল। ধরা যাক্ $\mathrm{x}_2\in\mathrm{I}_1$, এবং $\mathrm{y}_2=\mathrm{f}\left(\mathrm{x}_2
ight)\Rightarrow\mathrm{y}_2\in\mathrm{I}_2$ এক্ষেত্রে আমরা প্রমাণ করব যে x_2 বিন্দুতে $\mathrm{f}\left(\mathrm{x}
ight)$ সন্তত।

প্রত্যেক ছোট ধনাত্মক সংখ্যা ϵ এমন নেওয়া যেতে পারে যাতে ($y_2-\epsilon,\,y_2+\epsilon$) অর্থাৎ N($y_2,\,\epsilon$) মুক্ত অন্তরালটি ${
m I}_2$ -এর উপআন্তরাল হয়। সুতরাং এক্ষেত্রে ${
m f}^{-1}$ $[{
m N}({
m y}_2,~{
m \epsilon})]$ সেট্টিও ${
m I}_1$ এর একটি মুক্ত উপঅন্তরাল, এখন $x_2 \in f^{-1} \Big[N \big(y_2, \epsilon \big) \Big]$ সেইজন্য একটি ধনাত্মক সংখ্যা δ পাওয়া যাবে যাতে $N \big(x_2, \delta \big) \subseteq f^{-1} \Big[N \big(y_2, \epsilon \big) \Big]$ হয়, অতএব $f[N(x_2,\delta)] \subseteq N(y_2,\epsilon)$ এবং সেইকারণে x_2 বিন্দুতে f(x) সন্তত।

প্রান্তলিপি 1 : একটি বিন্দু x = a তে f(x) ফাংশনের সন্তত হওয়ার ε – δ সংজ্ঞার উপর ভিত্তি করে বলা যায়

 $``f({
m x})$ ফাংশনকে $|{
m y}=0$ বিন্দুতে সন্তত বলা যাবে যদি প্রত্যেক arepsilon>0 এর জন্য একটি $\delta>0$ পাওয়া যায় যারা $f[N(a, \delta)] \subseteq N[f(a), \varepsilon]$ হয়; এখানে অবশ্যই a এবং f(a) যথাক্রমে f(x)-এর সংজ্ঞাক্ষেত্র (domain) এবং বিষঞ্চল (range) এ অবস্থিত"।

প্রান্তলিপি $2: {f f}: {f R}
ightarrow {f R}$ ফাংশনটি ${f R}$ -এর প্রত্যেক বিন্দুতে সন্তুত হবে যদি এবং কেবলমাত্র যদি (iff) ${f R}$ -এর প্রত্যেক বদ্ধ উপঅন্তরাল 1 = [a, b] এর জন্য এর জন্য f (1) R-এর বদ্ধ উপঅন্তরাল হয়।

প্রমাণ ঃ প্রথমে ধরুন $\mathrm{f}\left(\mathrm{x}
ight)$ ফাংশনটি R -এর সব বিন্দুতে সন্তত। এখানে $\mathrm{I}=\left[\mathrm{a,\;b}
ight]\subset\mathrm{R}$ অর্থাৎ I একটি R এর বদ্ধ উপ অন্তরাল এবং আমরা জানি \mathbf{f}^{-1} $(\mathbf{R}-\mathbf{I})=\mathbf{R}-\mathbf{f}^{-1}$ $\mathbf{f}(\mathbf{x})$ সন্তত (শর্তানুসারে) এবং \mathbf{I} বদ্ধ বলে \mathbf{R} - l মুক্ত। সেইজন্য উপরের উপপাদ্য অনুযায়ী ${
m f}^{-1}$ (${
m R}-1$) মুক্ত+

অর্থাৎ R – f⁻¹ (l) মুক্ত

অর্থাৎ f⁻¹ (l) বদ্ধ।

বিপরীতক্রমে ধরুন প্রত্যেক বদ্ধ অন্তরাল I এর জন্য f⁻¹ (I) বদ্ধ। আমরা দেখাব যে f(x) ফাংশনটি R-এর সব বিন্দুতে সন্তত। এখন যদি R এর যেকোন অন্তরাল I_1 (মুক্ত ধরা হয় তবে R – I_1 বদ্ধ হয়; সুতরাং এক্ষেত্রে f^{-1} $(R-I_1) = R - f^{-1}(I_1)$ বদ্ধ। অতএব $f^{-1}(I_1)$ মুক্ত।

অতএব উপরের উপপাদ্য অনুযায়ী বলা যায় f(x) ফাংশনটি R-এর সকল বিন্দুতে সন্তত।

7.6.1 উদাহরণমালা

1. যদি
$$f(x) = x^2 \sin\left(\frac{1}{x^2}\right)$$
, যখন $x \neq 0$

= 0 , যখন x ≠ 0

হয় তবে দেখান

সমাধান : $\lim_{x \to 0} f(x) = \lim_{x \to 1} x^2 \sin\left(\frac{1}{x^2}\right) = \sin 1 = f(-1)$

অতএব f (x) ফাংশন x = –। এর ডানদিক থেকে সন্তত।

 $\lim_{x \to a} f(x) = \lim_{x \to a} x^2 \sin \frac{1}{x^2} = a^2 \sin \frac{1}{a^2} = f(a)$

যেকোন একটি বিন্দু $\mathbf{x} = \mathbf{a} \in (-\mathbf{I}, 0)$ তাহলে

$$x \rightarrow 1+0$$
 $x \rightarrow 1+0$ (x^{-1})

$$x \rightarrow 1+0$$
 $x \rightarrow 1+0$ x^2

 $r \Rightarrow \mathbf{f} (\mathbf{x})$ ফাংশন (–1, 0) অন্তরালে সন্তত যেহেতু $\mathbf{x} = \mathbf{a}$ বিন্দুটি (–1, 0) অন্তরালের যেকোন একটি বিন্দু।

আবার $\lim_{x \to 0} f(x) = \lim_{x \to 0} x^2 \sin \frac{1}{x^2} = 0 = f(0)$ $\Rightarrow f(x)$ ফাংশন x = 0 বিন্দুতে সন্তত।

অনুরূপে দেখান যায় f (x) ফাংশনটি (0, 1) অন্তরালে সন্তুত এবং x = 1 বিন্দুর বামদিক থেকে সন্তুত। অতএব, f (x) ফাংশনটি [-1, 1] অন্তরালে সন্তুত। সুতরাং ফাংশনটি অন্তরাল [-1, 1] তে সীমাবদ্ধ।

2. f (x) = | x | হলে [−2, 1] অন্তরালে f (x) কি সীমাবদ্ধ? f (x) এর মান কি [−2, 1] অন্তরালে x এর কোন মানের জন্য লঘিষ্ঠ ঊর্ধ্বসীমা হয়?

সমাধান ঃ এখানে f (x) = -x, যখন $-2 \le x < 0$ = 0, যখন x = 0 = x, যখন $0 < x \le 1$

 $\lim_{x \to -2^+} f(x) = \lim_{x \to -2^+} (-x) = 2, f(-2) = -(-2) = 2 \quad \text{and} \quad \lim_{x \to -2^+} f(x) = f(-2)$

⇒ f (x) ফাংশন –2 বিন্দুর ডানদিক থেকে সন্তত।

ধরা যাক, $\mathbf{x} = \mathbf{a}$ বিন্দুটি (–2, 0) অন্তরালের যেকোন একটি বিন্দু।

طلام,
$$\lim_{x \to a} f(x) = \lim_{x \to a} (-x) = -a$$
; $f(a) = -a$

⇒ f (x) ফাংশন (-2, 0) অন্তরালে সন্তত

আবার, $\lim_{x \to 0} f(x) = \lim_{x \to 0} (-x) = 0$; $\lim_{x \to 0} f(x) = \lim_{x \to 0} x = 0$; f(0) = 0

⇒ f (x) ফাংশন x = 0 বিন্দুতে সন্তত

অনুরূপে প্রমাণ করা যায় f (x) ফাংশনটি (0, 1) অন্তরালে সন্তুত এবং x = 1 বিন্দুর বাম দিক থেকে সন্তুত। সুতরাং উপরের মন্তব্যগুলি একত্রিত করলে দেখা যায় যে f (x) ফাংশনটি [–2, 1] অন্তরালে সন্তত। এখানে f (x)-এর [–2, 1] অন্তরালে +2 হল সুপ্রিমাম্ এবং 0 হল ইন্ফিমাম।

অতএব উপপাদ্য 2 অনুযায়ী f (x) ফাংশন [–2, 1] অন্তরালে সীমাবদ্ধ এবং ঐ অন্তরালে x-এর অন্তত দুটি মান পাওয়া যাবে যার একটি f (x)-এর মান লঘিষ্ঠ ঊধ্বসীমা এবং অন্যটিতে f (x)-এর মান গরিষ্ঠ নিম্নসীমার সমান হয়। 3. f (x) = x³ – l হলে f (x)-এর মান [0, 2] অন্তরালের কোন বিন্দুতে শূন্য হবে কি? যুক্তি সহযোগে উত্তর দিন। সমাধান : $\lim_{x\to 0+} f(x) = \lim_{x\to 0+} (x^3 - 1) = 0^3 - 1 = -1$; $f(0) = 0^3 - 1 = -1$ $\Rightarrow f(x)$ ফাংশন x = 0 বিন্দুর ডানদিক থেকে সন্তত। $x = a \in (0, 2)$ যেকোন বিন্দু ধরে, $\lim_{x\to a} f(x) = \lim_{x\to a} (x^3 - 1) = a^3 - 1$ এবং $f(a) = a^3 - 1$ $\Rightarrow f(x)$ ফাংশন (0, 2) অন্তরালে সন্তত। $aq_{\Re} \lim_{x\to 2^-} f(x) = \lim_{x\to 2^-} (x^3 - 1) = 2^3 - 1 = 7$; $f(2) = 2^3 - 1 = 7$ $\Rightarrow f(x)$ ফাংশন x = 2-এর বাম দিক থেকে সন্তত। \therefore উপরোজ্ঞ ফলগুলি একত্রিত করলে বলা যায়, f(x) ফাংশন [0, 2] অন্তরালে সন্তত। আবার $f(0) = 0^3 - 1 = -1$, $f(2) = 2^3 - 1 = 7$

⇒ f (0) এবং f (2) বিপরীত চিহ্ন বিশিষ্ট।

অতএব বোলজানোর উপপাদ্য অনুযায়ী মন্তব্য করা যায় [0, 2]-এর মধ্যে অন্ততএকটি বিন্দু আছে যেখানে f(x)-এর মান শূন্য হয়।

7.7 সুষম সন্তুতি (Uniform Continuity)

ধরা যাক f (x) ফাংশনটি I = [a, b] $\subset \mathbb{R}$ অন্তরালে সংজ্ঞাত। যদি C \in I হয় তবে সন্ততির সংজ্ঞানুসারে f (x), C-তে সন্তত হবে যদি যেকোন $\varepsilon > 0$ এর জন্য একটি $\delta > 0$ -এর অন্তিত্ব থাকে যাতে | f(x) – f (c) | $\leq \varepsilon$, যখন x $\in \mathbb{N}$ (c, δ) \bigcap I হয়।

আবার, অন্য একটি বিন্দু d ∈ I তে f (x) সন্তত হলে একই ɛ > 0 এর জন্য অন্য একটি ধনাত্মক সংখ্যা δ₁ (≠ δ) এর অস্তিত্ব থাকবে যাতে সন্ততির সংজ্ঞা পালিত হয়। অর্থাৎ I-এর বিভিন্ন বিন্দুতে সন্ততির জন্য যদি একই ɛ ব্যবহৃত হয় তাহলে সাধারণভাবে বিভিন্ন বিন্দুতে বিভিন্ন δ পাওয়া যায়। এ থেকে বোঝা যাচ্ছে যে δ কেবল ɛ এর উপর নির্ভরশীল নয়, ফাংশনের উপর এবং বিভিন্ন বিন্দুর উপর নির্ভরশীল।

এখন যদি কোনও ফাংশনের কোন অন্তরালে সন্তুত হবার জন্য এমন δ পাওয়া যায় যা কেবলমাত্র ৪ এর উপরেই নির্ভরশীল এবং C-এর অবস্থানের উপর নয়, তাহলে I-এর প্রত্যেক বিন্দুতে সন্তুতির জন্য একটি যেকোন ৪-এর সাপেক্ষে একই δ ব্যবহার করে সংজ্ঞা দেওয়া যায়। এই সকল ক্ষেত্রে f(x) কে I তে সুষমভাবে সন্তুত বলা হয়।

সংজ্ঞা ঃ I অন্তরালে সংজ্ঞাত f (x) ফাংশনকে I অন্তরালে সুষমভাবে সন্তুত বলা হবে যদি প্রত্যেক $\epsilon>0$ এর জন্য একটি $\delta>0$ এর অস্তিত্ব থাকে যাতে I-এর দুটি বিন্দু $x_1, \; x_2$ এর জন্য। $\mid f\left(x_{2}
ight)$ – $f\left(x_{1}
ight)\mid$ < ১, যখন \mid x_{2} – $x_{1}\mid$ < ১ হয় ।

উদাহরণ $1: f(x) = x^2$ ফাংশনটি $x \in R$ তে সংজ্ঞাত হলে দেখান যে ফাংশনটি যেকোন বদ্ধ অন্তরাল [a, b] তে সুযমভাবে সন্তত ($a \ge 0$)।

সমাধান ঃ প্রদত্ত অন্তরালের যেকোন বিন্দু C এর জন্য

$$| f(x) - f(c) | = | x^{2} - c^{2} | = | (x - c)(x + c) | = | x - c | | x + c |$$

$$\leq | x - c | . 2b [::|x + c| \leq 2b]$$

তাহলে $\mid f(x) - f(c) \mid < \epsilon$, যদি $\mid x - c \mid 2b < \epsilon$ হয় অর্থাৎ যদি $\mid x - c \mid < \frac{\epsilon}{2b}$ হয়।

যদি $\frac{\varepsilon}{2b} = \delta$ ধরা হয় তবে দেখা যাচ্ছে এখানে δ কেবলমাত্র ε এর উপর নির্ভরশীল এবং f (x), 1-এর প্রত্যেক বিন্দুতে একই ε -এর জন্য একই δ -এর ভিত্তিতে সন্ততির শর্ত পালন করে। সুতরাং f(x) ফাংশনটি [a, b] অন্তরালে সুযমভাবে সন্তত।

উদাহরণ 2. : $f(x) = \frac{1}{x}, x > 0$ এর জন্য সংজ্ঞাত ; দেখান যে f(x) ফাংশনটি (0, 1) অন্তরালে সন্তত কিন্তু সুযমভাবে সন্তত নয়।

সমাধান ঃ যদি f (x) ফাংশনটি (0, 1) অন্তরালে সুষমভাবে সন্তত হয় তাহলে (0, 1) অন্তরালের যেকোন একটি বিন্দু c-এর জন্য

$$\left|\frac{1}{x} - \frac{1}{c}\right| < \varepsilon$$
, যখন $|x - c| < \delta$,(i)

এখানে অবশ্যই δ কেবলমাত্র ɛ-এর উপর নির্ভরশীল, c-এর অবস্থানের উপর নয়।

কিন্তু যদি $\mathbf{x} = \delta$ এবং $\mathbf{c} = \frac{\delta}{k}$ যখন $(\mathbf{k} > 1)$ নেওয়া যায় যেখানে $0 < \delta < 1$ তাহলে $|\mathbf{x} - \mathbf{c}| = \left|\delta - \frac{\delta}{k}\right| = \delta - \frac{\delta}{k} < \delta$ হয় কিন্তু $|\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{c})| = \left|\frac{1}{\delta} - \frac{\mathbf{k}}{\delta}\right| = \frac{\mathbf{k}}{\delta} - \frac{1}{\delta} = \frac{\mathbf{k} - 1}{\delta} > \mathbf{k} - 1$, যা সংজ্ঞার সাথে সামঞ্জস্যপূর্ণ নয়।

7.8 কতিপয় উপপাদ্য

উপপাদ্য <u>1</u>: যদি কোন অন্তরাল <u>I</u> তে <u>f (x)</u> ফাংশন সুষমভাবে সন্তত হয় তবে একই অন্তরাল <u>I</u> তে <u>f (x)</u> সন্তত হয়। **প্রমাণ ঃ** যেহেতু f (x) ফাংশনটি I-তে সুষমভাবে সস্তত, সংজ্ঞানুসারে প্রত্যেক ε > 0 এর জন্য কেবলমাত্র তার উপর নির্ভরশীল δ > 0 পাওয়া যাবে যারা I-এর যেকোন দুটি বিন্দু x₁, x₂ এর জন্য | f(x₂) – f(x₁) | < ε যখন |x₂ – x₁ | < δ হয়।

এই সংজ্ঞা অনুযায়ী I-এর যেকোন বিন্দু c এর জন্য

| f (x) – f (c) | ≤ ε যখন x ∈ I এবং | x – c | ≤ ১ হয়।

অতএব, f (x) ফাংশনটি c বিন্দুতে সন্তত।

আবার যেহেতু I অন্তরালে c যেকোন একটি বিন্দু অতএব f (x) ফাংশন I-এর প্রত্যেক বিন্দুতেই সন্তত, অর্থাৎ I অন্তরালে সন্তত।

<u>উপপাদ্য 2 :</u> যদি <u>I</u> = [a, b] ⊂ R <u>হয় এবং f (x)</u> ফাংশনটি <u>I</u> তে সন্তত হয় তবে <u>f (x)</u> একই অন্তরাল <u>I</u> তে সুযমভাবে সন্তত হবে।

প্রমাণ : এখানে I = [a, b] একটি বদ্ধ অন্তরাল, অতএব সীমাবদ্ধ (যেহেতু নিম্নসীমা = a এবং উর্দ্ধসীমা b)। যেহেতু f (x) ফাংশনটি I তে সন্তুত অতএব যেকোন বিন্দু C \in (a, b) -এর ক্ষেত্রে পূর্ব নির্ধারিত কোন ধনাত্মক সংখ্যা

 ϵ এর জন্য C ও ϵ এর উপর নির্ভরশীল একটি $\delta_c>0$ পাওয়া যাবে যাতে $||f|(x)-f|(c)||\leq rac{\epsilon}{2}$ যখন .

 $x \in N(c, \delta_c), \left[N(c, \delta_c) = (c - \delta_c, c + \delta_c)\right]$ । আবার সীমান্ত বিন্দুদ্বয় a এবং b এর জন্য আমরা f (x) = f (a) যখন x < a এবং f (x) = f (b) যখন x > b সংজ্ঞা দিতে পারি কেননা এতে [a, b] অন্তরালে f (x) এর কোন পরিবর্তন হয় না। তখন a এবং b বিন্দুদ্বয়ে সন্ততির জন্য নিম্নলিখিত অসমতাগুলি সত্য হয় :—

$$| \mathbf{f} (\mathbf{x}) - \mathbf{f} (\mathbf{a}) | \leq \frac{\varepsilon}{2}$$
 যখন $\mathbf{x} \in N(\mathbf{a}, \delta_{\mathbf{a}})$

এবং $\mid f\left(x
ight)$ – $f\left(b
ight)\mid$ < $rac{\epsilon}{2}$ যখন $x\in N\left(b,\delta_{b}
ight)$ ।

অতএব উপরোক্ত আলোচনা থেকে বলা যায়, I-এর যেকোন বিন্দু C-এর ক্ষেত্রে পূর্বনির্ধারিত কোন ১০০ এর জন্য ৫ ও ১ এর উপর নির্ভরশীল δু পাওয়া যাবে যাতে

$$| f(x) - f(c) | \leq \frac{\epsilon}{2}$$
 यथन $x \in N(c, \delta_c)$ (i)

এখন, $S = \left\{ N\left(c \ | \ \frac{1}{2}\delta_c\right) : C \in I \right\}$ সেটটি I এর একটি মুক্ত আবরণ এবং $| f(x) - f(c) | \le \frac{\epsilon}{2}$ যখন $x \in N\left(c, \frac{1}{2}\delta_c\right)$ (ii)

যেহেতু I অন্তরালটি বদ্ধ এবং সীমাবদ্ধ, অতএব হাইনে-বোরেলের উপপাদ্য অনুযায়ী S এর একটি সসীম উপসেট S₁ কে I এর আবরণ হিসাবে পাওয়া যাবে। ধরা যাক

$$S_1 = \left\{ N\left(x_1, \frac{1}{2}\delta_1\right), N\left(x_2, \frac{1}{2}\delta_1\right), \dots, N\left(x_n, \frac{1}{2}\delta_n\right) \right\}$$
 जिल्ला, $I \subset \bigcup_{i=1}^n N\left(x_i, \frac{1}{2}\delta_i\right) + \overline{\lambda} \overline{W} \delta_i$

সংখ্যাটি $rac{1}{2}\delta_1, rac{1}{2}\delta_2, \ldots, rac{1}{2}\delta_n$ সংখ্যাগুলির মধ্যে সর্বনিম্ন মান নির্দিষ্ট হয় তাহলে এখানে দেখান হবে যে এই ১ সংখ্যাটি সুষমভাবে সন্ততির সংজ্ঞায় কার্যকরী ভূমিকা নেবে।

এখন ধরা যাক I-এর অন্তর্গত x' এবং x'' বিন্দুদ্বয় এমন যে $|x'' - x'| < \delta$ হয়। এই x' বিন্দুটি কোন এক x_k –এর সামীপ্য $N\left(x_k, \frac{1}{2}\delta_k\right)$ -এর মধ্যে অবস্থিত, সুতরাং $|x' - x_k| < \frac{1}{2}\delta_k$ এবং (ii) অনুযায়ী

 $\left| f(\mathbf{x}^{\prime}) - f(\mathbf{x}_{k}) \right| < \frac{\varepsilon}{2}$(iii)

আবার | $\mathbf{x}'' - \mathbf{x}_k$ | = | $\mathbf{x}'' - \mathbf{x}' + \mathbf{x}' - \mathbf{x}_k$ | \leq | $\mathbf{x}'' - \mathbf{x}'$ | + | $\mathbf{y}' - \mathbf{x}_k$ |

$$<\delta + \frac{1}{2}\delta_{k} \left[\cdot \cdot |x'' - x'| < \delta, |x' - x_{k}| < \frac{1}{2}\delta_{k} \right]$$
$$\le \frac{1}{2}\delta_{k} + \frac{1}{2}\delta_{k} \left[\cdot \cdot \delta \le \frac{1}{2}\delta_{k} \right]$$
$$= \delta_{k}$$

কিন্তু $|x'' - x_k| < \delta_k$ প্রমাণিত হল বলে (i) থেকে বলা যায় $|f(x'') - f(x_k)| < \frac{\epsilon}{2}$ (iv)

অতএব | f (x') - f(x'') | ≤ | f (x') - f (x_k) | + | f(x_k) - f (x'') |

 $< \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$ [(iii) থেকে (iv) থেকে] = ε যেখানে | x' - x'' | $< \delta$

অতএব, সংজ্ঞানুসারে f (x) ফাংশনটি I অন্তরালে সুষমভাবে সন্তত।

7.8.1 –উদাহরণমালা ও অনুশীলনী

1.
$$f(x) = x^2 \operatorname{Sin}\left(\frac{1}{x^2}\right)$$
 যখন $x \neq 0$

হলে f (x) কি [–l, l] অন্তরালে সুযমভাবে সন্তুত?

[সংকেত ঃ 7.5.] অনুচ্ছেদের উদাহরণ 1-এ প্রমাণ করা আছে f (x) ফাংশনটি [–1, 1] অন্তরালে সন্তত। আবার 7 : 7 অনুচ্ছেদের উপপাদ্য 2 অনুযায়ী জানা আছে যদি f (x) ফাংশন I = [a, b]-তে সন্তত হয় তবে তা I তে সুযমভাবে সন্তত। অতএব, এক্ষেত্রে f (x) ফাংশন [–1, 1] অন্তরালে সুষমভাবে সন্তত।)

2. দেখান যে, f (x) = $\sin \frac{1}{x}$ ফাংশনটি (0, 1) অন্তরালে সন্তত কিন্তু সুযমভাবে সন্তত নয়।

সমাধান ঃ ধরুন $\mathbf{c} \in (0,1)$ যেকোন বিন্দু, এবং $\left| \mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{x}_0) \right| = \left| \sin \frac{1}{\mathbf{x}} - \sin \frac{1}{\mathbf{x}_0} \right|$

$$= \left| 2\cos\frac{\mathbf{x} + \mathbf{x}_0}{2\mathbf{x} \cdot \mathbf{x}_0} \cdot \sin\frac{\mathbf{x} - \mathbf{x}_0}{2\mathbf{x} \cdot \mathbf{x}_0} \right| \le 2\frac{|\mathbf{x} - \mathbf{x}_0|}{2\mathbf{x} \cdot \mathbf{x}_0} \quad [\because |\sin\theta| \le \theta, |\cos\theta| \le 1$$
 ইত্যাদি]
$$= \frac{|\mathbf{x} - \mathbf{x}_0|}{|\mathbf{x} \cdot \mathbf{x}_0|} \le \varepsilon, \text{ যখন } ||\mathbf{x} - \mathbf{x}_0|| \le \varepsilon \cdot \mathbf{x} ||\mathbf{x}_0|| = 0 \le \mathbf{x} ||\mathbf{x}_0| \le 1$$

এখন যদি ε x $x_0 = \delta$ ধরা যায় তবে

$$\begin{split} |\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{x}_0)| &< \varepsilon$$
 যখন $|\mathbf{x} - \mathbf{x}_0| < \delta$ হয়, অর্থাৎ $\mathbf{f}(\mathbf{x})$ ফাংশন \mathbf{x}_0 বিন্দুতে সন্তত হয়। যেহেতু $\mathbf{x}_0 \in (0,1)$ যেকোন বিন্দু অতএব, $\mathbf{f}(\mathbf{x})$ ফাংশন (0, 1) অন্তরালে সন্তত। ফাংশনের সুযম সন্ততির বিচারের জন্য ধরা যাক্ $\mathbf{x}_1 = \frac{2}{n\pi}$; $\mathbf{x}_2 = \frac{2}{3n\pi}$ যখন $\mathbf{n} \in \mathbb{N}$ তাহলে $\mathbf{x}_1, \mathbf{x}_2 \in (0,1)$ হয় এবং $|\mathbf{x}_1 - \mathbf{x}_2| = \left|\frac{2}{n\pi} - \frac{2}{3n\pi}\right| = \frac{4}{3n\pi} < \delta$ ভাবা যায়। কিন্তু $\left|\sin\frac{1}{\mathbf{x}_1} - \sin\frac{1}{\mathbf{x}^2}\right| = \left|\sin\frac{n\pi}{2} - \sin\frac{3n\pi}{2}\right| = 2 > \varepsilon$ হয়। অতএব $\mathbf{f}(\mathbf{x})$ ফাংশন (0, 1) অন্তরালে

সুষমভাবে সন্তুত নয়।

3. দেখান যে, f (x) = x² + x + 1 ফাংশনটি [2, 3] অন্তরালে সন্তত এবং সুযমভাবে সন্তত।

সমাধান : যেকোন $x_1, x_2 \in [2, 3]$ -এর জন্য

$$\begin{split} |f(x_1) - f(x_2)| &= |x_1^2 - x_2^2 + x_1 - x_2| = |x_1 - x_2| |x_1 + x_2 + 1| \\ &< |x_1 - x_2| |3 + 3 + 1| = 7 |x_1 - x_2| \\ \end{aligned}$$
এখন | f(x_1) - f(x_2) | < হ হবে যখন 7 | x_1 - x_2 | < হ হয় বা | x_1 - x_2 | < $\frac{1}{7}$ হয় |

 $\delta=rac{1}{7}\epsilon$ ধরলে সংজ্ঞানুযায়ী ${f f}$ (x) ফাংশনকে প্রদত্ত অন্তরালে সন্তত বলা যায় এবং δ কেবলমাত্র ϵ -এর উপর নির্ভরশীল বলে তাকে একই অন্তরালে সুষমভাবে সন্ততও বলা যায়।

4. যদি $f(x) = \sqrt{x}$ হয় তবে দেখান যে [0, 4] অন্তরালে ফাংশনটি সুযমভাবে সন্তত।

$$\left[\operatorname{\mathfrak{Accov}} \ \mathfrak{s} \ \operatorname{\mathfrak{Carbin}} \ x_1, \ x_2 \in [0, 4] - \mathfrak{as} \ \mathfrak{senj} \ | \ f(x_1) - f(x_2) | = \left| \ \sqrt{x_1} - \sqrt{x_2} \ \right| = \left| \ \frac{x_1 - x_2}{\sqrt{x_1} + \sqrt{x_2}} \right|$$

এখন,
$$|f(x_1) - f(x_2)| < \varepsilon$$
 হবে যখন $\left| \frac{x_1 - x_2}{\sqrt{x_1} + \sqrt{x_2}} \right| < \varepsilon$ হয়

অর্থাৎ যখন $|x_1 - x_2| < \varepsilon \left(\sqrt{x_1} + \sqrt{x_2}\right) \le \varepsilon \left(2 + 2\right) = 4\varepsilon$ হয়।

 $\delta = 4\epsilon$ ধরলে সুযমভাবে সন্তুতির সংজ্ঞা সিদ্ধ হয়।]

7.9 **সা**রাংশ

এই এককে আপনারা যা জানলেন তা হল ঃ

- কতিপয় সংজ্ঞা ও তার সাথে হাইনে বোরেলের উপপাদ্য। 1.
- 2. বদ্ধ

এবং

 $f\left(x\right):\,I\rightarrow R$ ফাংশনটি $I=\left[a,\,b\right]\,\subset\,R\,$ তে সন্তত হবে।

(i) a বিন্দুর ডানদিক থেকে সন্তত হয়। যদি f (x) ফাংশন

(iii) b বিন্দুর বামদিক থেকে সন্তত হয়।

(ii) I এর প্রত্যেক আভ্যন্তরীণ বিন্দুতে সন্তত হয়।

বদ্ধ অন্তরালে সন্তত ফাংশনের নিম্নলিখিত ধর্মসমূহ ঃ

(i) যদি f (x) ফাংশন তার সংজ্ঞার অঞ্চল I = {a, b } ⊂ R তে সন্তুত হয় তবে তা একই অন্তরাল I তে সীমাবদ্ধ হয় এবং I তে অন্তত দুটি বিন্দু পাওয়া যাবে যাদের একটিতে f (x)-এর মান লঘিষ্ঠ ঊর্ধ্বসীমার সমান হয় এবং অন্যটিতে f (x)-এর গরিষ্ঠ নিম্নসীমার সমান হয়।

(ii) যদি \mathbf{f} (x) ফাংশন \mathbf{I} = $[\mathbf{a}, \mathbf{b}] \subset \mathbf{R}$ অন্তরালে সন্তত হয় এবং $\mathbf{f}(\mathbf{a})$. $\mathbf{f}(\mathbf{b}) < 0$ হয় তবে অন্ততঃ একটি বিন্দু $\xi \in (\mathbf{a}, \mathbf{b})$ পাওয়া যায় যেখানে \mathbf{f} (ξ) = 0 হয়।

(iii) যদি f (x) ফাংশন [a, b] $\subset \mathbb{R}$ -তে সন্তত হয় এবং $\alpha, \beta \in [a, b]$ বিন্দুদ্বয়ের জন্য f $(\alpha) \neq f(\beta)$ হয় (যখন $\alpha < \beta$) তবে f (α) ও f (β) এর মধ্যবর্তী প্রত্যেক বাস্তব মান K-এর জন্য অন্ততঃ একটি $\xi \in (\alpha, \beta)$ থাকবে যেখানে f $(\xi) = k$ হয়।

(iv) যদি $I = [a, b] \subset R$ অন্তরালে f(x) সন্তত হয় এবং $f(x) \in I$, $\forall x \in I$ হয়, তবে অবশ্যই একটি বিন্দু $\xi \in I$ পাওয়া যাবে যেখানে $f(\xi) = \xi$ হয়।

(v) যদি f : I₁ → I₂, যেখানে I₁ এবং I₂ অন্তরালদ্বয় উভয়েই R-এর উপসেট্ এবং কেউই খালি নয় এমন হয় তাহলে f (x) ফাংশনটি I₁-এর উপর সন্তত হবে যদি এবং কেবলমাত্র যদি I₂ এর যেকোন মুক্ত অন্তরাল Y এর জন্য f⁻¹ (Y) সেট্টি I₁-এর একটি মুক্ত অন্তরাল হয়।

4. সুষম সন্তুতির সংজ্ঞাঃ

I অন্তরালে সংজ্ঞাত f (x) ফাংশনকে সুষমভাবে সন্তত বলা হবে যদি প্রত্যেক $\varepsilon > 0$ এর জন্য একটি $\delta > 0$ এর অন্তিত্ব থাকে যাতে I-এর দুটি বিন্দু x_1 , x_2 এর জন্য | f (x_2) – f (x_1) | < ε , যখন | $x_2 - x_1$ | < δ হয়।

সুষম সন্তুতি বিষয়ক উপপাদ্য ঃ

(i) যদি কোন অন্তরাল I তে f (x) ফাংশন সুষমভাবে সন্তত হয়, তবে একই অন্তরালে অর্থাৎ I তে f (x) সন্তত হয়।

(ii) যদি I = [a, b] ⊂ R হয় এবং f (x) ফাংশনটি I তে সন্তত হয় তবে f (x) একই অন্তরাল I তে সুষমভাবে সন্তত হবে।

6. উপরোক্ত সংজ্ঞা ও উপপাদ্য সমূহের বিভিন্ন ক্ষেত্রে (অঙ্ক ও উপপাদ্য প্রমাণে) প্রয়োগ।

7.10 সর্বশেষ প্রশ্নাবলি

1. f (x) = 2x + 1, যখন $0 \le x \le 1$

$$= x^2$$
 , যখন $1 \le x \le 2$

হলে f (x) ফাংশনটি [0, 2] অন্তরালে সন্তত কিনা নির্ণয় করুন।

- 2. [3, 4] অন্তরালে f (x) = x [x] ফাংশনটির সন্তত কিনা পরীক্ষা করুন।
- 3. f (x) = | x | + | x 1 | হলে ফাংশনটি [0, 1] অন্তরালে সন্তত কিনা বলুন।
- 4. দেখান যে, f (x) = cos x ফাংশনটি সকল বাস্তব মানের জন্যই সন্তত।

5. দেখান যে, P (x) = $a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + \dots + a_{n-1} x + a_n$ ($a_0 \neq 0$) পলিনোমিয়াল (Polynomial) টি প্রত্যেক সসীম বদ্ধ অন্তরালে সন্তত।

6. f (x) = sin πx, যখন 0 ≤ x < 1

 $= \log x$, যখন $1 < x \le 2$

এই ফাংশনটি [0, 2] অন্তরালে সন্তত কিনা বিচার করুন।

7. $f(x) = \frac{|x|}{x}$, যখন $x \neq 0$

= 0 , যখন x = 0

এই ফাংশনের লেখচিত্র অঙ্কন করে [– 2, 2] অন্তরালে তা সন্তত কিনা বিচার করুন।

8. f: [0, 1] → R ফাংশনটি [0, 1] অন্তরালে সন্তত এবং [0, 1] অন্তরালে তার কেবল মূলদ মান থাকতে পারে। যদি f(1/2) = 1/2 হয় তবে প্রমাণ করন যে [0, 1] অন্তরালের সকল মানের জন্যই f(x) = 1/2 হবে।

9. ধরুন f (x) ফাংশনটি [a, b] ⊂ R অন্তরালে সন্তত এবং একই অন্তরাল [a, b]-এর সকল মূলদ x এর জন্য f (x) = 0, প্রমাণ করুন f (x) = 0 ∀x ∈ [a, b] ।

10. একটি ফাংশন বদ্ধ অন্তরালে সন্তত হলে একই অন্তরালে তা সীমাবদ্ধ হয়। এর বিপরীত উপপাদ্য কি সত্য ? উদাহরণ সহযোগে উত্তর দিন।

11.
$$f(x) = x \sin \frac{1}{x}$$
, যখন $x \neq 0$

= 0 , যখন x = 0

হলে দেখান যে [– 1, 1] অন্তরালে f (x) সীমাবদ্ধ।

12. f (x) = | x | ফাংশনটি কি [0, 3] অন্তরালে সীমাবদ্ধ? f (x) এর মান কি লঘিষ্ঠ ঊর্ধ্বসীমা এবং গরিষ্ঠ নিম্নসীমার সমান হতে পারে? গরিষ্ঠ নিম্নসীমার মান কত?

13.
$$f(x) = \lim_{n \to \infty} \frac{\log(2+x) - x^{2n} \sin x}{1+x^{2n}}$$
 ফাংশনটিতে দেখান যে $f(0)$ এবং $f\left(\frac{\pi}{2}\right)$ বিপরীত চিহ্

বিশিষ্ট। তারা বিপরীত চিহ্নবিশিষ্ট হওয়া সত্ত্বেও f(x) এর মান $\left[0, \frac{\pi}{2}
ight]$ অন্তরালের কোনও বিন্দুতেই শূন্য নয়— কারণ দেখান।

$$14.$$
 দেখান যে, ${f f}$ $(x)=x^2$ ফাংশনটি $[-a,\ a\]\ {}_{\sub}R$ অন্তরালে সুষম ভাবে সন্তত।

15. দেখান যে, $f(x) = \frac{1}{x}(x > 0)$ ফাংশনটি (0, 1) অন্তরালে সুষমভাবে সন্তত নয়।

16. (i) উদাহরণের সাহায্যে দেখান যে সন্তত ম্যাপিং-এর জন্য একটি মুক্ত অন্তরালের বিশ্ববিন্দুগুলি যে সর্বদাই মুক্ত অন্তরালে গঠন করে তা নয়।

 (ii) উদাহরণের সাহায্যে দেখান যে, সন্তত ম্যাপিং-এর জন্য একটি বদ্ধ অন্তরালের বিশ্ববিন্দুগুলির যে সর্বদাই বদ্ধ অন্তরাল গঠন করে তা নয়।

7.11 উত্তরমালা (সংকেত সহ)

 সন্তত নয়। [সংকেত : f(x) ফাংশনটি 0 বিন্দুতে ডানদিক থেকে (0, 1) অন্তরালের প্রত্যেক আভ্যন্তরীণ বিন্দুতে (1, 2) অন্তরালের প্রত্যেক আভ্যন্তরীণ বিন্দুতে এবং 2 বিন্দুতে বামদিক থেকে সন্ততি — যা উদাহরণের মত অগ্রসর হয়ে কষা যায়। কিন্তু lim f(x) = lim (2x + 1) = 2 . 1 + 1 = 3.

 $f(I) = I^2 = I$. $\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} x^2 = I^2 = I$

 $\Rightarrow \lim_{x \to 1^{-}} f(x) \neq f(1) = \lim_{x \to 1^{+}} f(x)$ অর্থাৎ f (x) ফাংশন I বিন্দুতে অসন্তত। যেহেতু I বিন্দুটি [0, 2]

অন্তরালের অন্তর্গত, অতএব f (x) ফাংশন [0, 2] তে অসন্তত।

2. সন্তুত নয় [সংকেত ঃ f (x) = 0, যখন x = 3 = x - 3, যখন 3 < x < 4 = 0, যখন x = 4 অতএব, সহজেই প্রমাণ করা যাবে 4 বিন্দুর বামদিক থেকে f (x) অসন্তত।]

[সংকেত ঃ এখানে f (x) = -x - (x - 1) = 1 - 2x যখন $x \le 0$ = x - (x-1) = 1, যখন 0 < x < 1= x + x - 1 = 2x - 1, যখন $x \ge 1$

অতএব, উদাহরণের মত অগ্রসর হয়ে দেখান যাবে f (x) ফাংশন 0 বিন্দুতে ডানদিক থেকে, (0, 1) অন্তরালের প্রত্যেক আভ্যন্তরীণ বিন্দুতে এবং l বিন্দুর বামদিক থেকে সন্তত অর্থাৎ [0, l] অন্তরালের সকল বিন্দুতেই সন্তত।]

[সংকেত ঃ যেকোন বাস্তব মান a-এর জন্য

3. হাঁা⊺

$$|\cos x - \cos a| = |2\sin \frac{x+a}{2}\sin \frac{a-x}{2}| \le 2 \cdot 1 |\frac{a-x}{2}| = |x-a|$$

∴ $|\cos x - \cos a| < \varepsilon$ यथन $|x-a| < \varepsilon$.

অতএব, সংজ্ঞানুসারে cos x ফাংশন a বিন্দুতে সন্তত। আবার যেহেতু a যেকোন বাস্তব মান সেইজন্য cos x ফাংশন সকল বাস্তব মানের জন্যই সন্তত]

5. [সংকেত ঃ ধরন্দ [a, b] $\subset \mathbb{R}$ একটি সসীম বদ্ধ অন্তরাল। $x_0 \in [a, b]$ যেকোন একটি বাস্তব মান হলে $\lim_{x \to x_0} \mathbb{P}(x) = \mathbf{a}_0 x_0^n + \mathbf{a}_1 x_0^{n-1} + \mathbf{a}_2 x_0^{n-2} + \dots + \mathbf{a}_{n-1} x_0 + \mathbf{a}_n = \mathbb{P}(x_0)$ হয়।

⇒ P (x) : x₀ বিন্দুতে সন্তত। x₀ মানটি [a, b] অন্তরালের যেকোন মান বলে P(x) পলিনোমিয়াল [a, b] অন্তরালে সন্তত। আবার [a, b] অন্তরাল R-এর যেকোন সসীম বদ্ধ অন্তরাল বলে তা R-এর প্রত্যেক সসীম বদ্ধ অন্তরালে সন্তত।] 6. না ৷

[সংকেত ঃ প্রদন্ত ফাংশনটি x = 1 বিন্দুতে অসন্তত বলে [0, 2] অন্তরালের অন্য বিন্দুগুলিতে সন্তত হয়েও ঐ অন্তরালে অসন্তত।]

7. [সংকেত :

$$(0,1)$$
 $y = 1$
 এখানে $f(x) = 1$, যখন $x > 0$
 $(0,-1)$
 $(0,-1)$
 $= 0$, যখন $x = 0$
 $y = -1$
 $= -1$, যখন $x < 0$

উপরের লেখচিত্র থেকে দেখা যাচ্ছে যে তা x = 0-তে বিচ্ছিন্ন। স্বাভাবিক কারণে তা 0 বিন্দুতে অসন্তত এবং o ∈ [−2, 2] বলে f (x) ফাংশনটি ঐ অন্তরালে অসন্তত।]

8. [সংকেত ঃ ধরুন [0, 1] অন্তরালের যেকোন একটি মান c $\left(\neq \frac{1}{2}\right)$; এবং c $\neq \frac{1}{2}$ বলে f (c) $\neq \frac{1}{2}$ হবে। [0, 1] অন্তরালে f (x) সন্তত এবং C \in [0, 1] বলে f (c)-এর নির্দিষ্ট মান থাকবে আবার f $\left(\frac{1}{2}\right) = \frac{1}{2}$ অতএব সন্তত ফাংশনের মধ্যবর্তী মানের ধর্ম থেকে বলা যাবে f (c) এবং f $\left(\frac{1}{2}\right)$ এবং মধ্যবর্তী সকল মানই C এবং $\frac{1}{2}$ এর মধ্যবর্তী x এর মানের জন্য f (x) ধারণ করবে। আবার বাস্তব সংখ্যার ধর্ম অনুযায়ী f (c) এবং f $\left(\frac{1}{2}\right) = \frac{1}{2}$

 $(2)^{-2}$ এর মধ্যে অসীম সংখ্যক মূলদ ও অমূলদ সংখ্যা আছে; কিন্তু বলা আছে f (x)-এর মান ঐ অন্তরালে কেবল মূলদ হতে পারে। অতএব অবশ্যই f(c) = $\frac{1}{2}$ হবে। এখন [0, 1] অন্তরালের C যেকোন একটি মান, সুতরাং

- $f(x) = \frac{1}{2} \quad \forall x \in [0, 1]$
 - 9. [সংকেত ঃ ৪-এর অঙ্কের অনুরূপ]
 - 10. না।

[সংকেত ঃ f (x) = 2x + 3 যখন 0 < x < 1 ; f (1) = 6 ফাংশনটি [0, 1] অন্তরালে সীমাবদ্ধ কিন্তু সহজেই দেখান যায় 1 বিন্দুর বামদিক থেকে সন্তত নয়। সেই কারণে [0, 1] অন্তরালে সন্তত নয়।]

- [সংকেত : 7.5.] অনুচ্ছেদের উদাহরণ] এর অনুরূপ]
- 12. [সংকেত : 7.5.1 অনুচ্ছেদের উদাহরণ 2 এর অনুরূপ]
- 13. [সংকেত ঃ যখন $1 \leq x \leq 1, \lim_{n
 ightarrow \infty} x^{2n} = 0$ এবং তখন

$$f(x) = \frac{\log (2+x) - 0.\sin x}{1+0} = \log (2+x)...(i)$$

যখন
$$x = I, f(x) = f(I) = \frac{\log 3 - \sin I}{2}$$
.....(ii)

যখন
$$x > 1$$
, $\lim_{n \to \infty} \frac{1}{x^{2n}} = 0$; $f(x) = \lim_{n \to \infty} \frac{\frac{1}{x^{2n}} \log (2 + x) - \sin x}{\frac{1}{x^{2n}} + 1} = \frac{0 \cdot \log (2 + x) - \sin x}{0 + 1}$

 $= -\sin x$ (iii)

এখন $\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} \log(2 + x) = \log 3$; $\lim_{x \to 1^{+}} (-\sin x) = -\sin 1$, $f(1) = \frac{1}{2} (\log 3 - \sin 1)$ $\Rightarrow f(x)$ ফাংশন x = 1 তে অসন্তত। আবার $f(0) = \log 2$, $f\left(\frac{\pi}{2}\right) = -1$; অর্থাৎ এরা বিপরীত চিহ্ন বিশিষ্ট। কিন্তু $1 \in \left[0, \frac{\pi}{2}\right]$ এবং 1 বিন্দুতে f(x)অসন্তত, সেইজন্য বোলজানোর উপপাদ্য $\left[0, \frac{\pi}{2}\right]$ অন্তরালে কার্যকর নয়।]

14. [সংকেত ঃ যেকোন $x_1, x_2 \in [-a, a]$ এর জন্য $|f(x_1) - f(x_2)| = |x_1^2 - x_2^2| = |x_1 - x_2|$ $|x_1 + x_2|| \le |x_1 - x_2| 2a$ সুতরাং $|f(x_1) - f(x_2)| \le \epsilon$ যখন $|x_1 - x_2| \le \frac{\epsilon}{2a}$ যদি $\delta = \frac{\epsilon}{2a}$ ধরা যায়, তাহলেই সংজ্ঞা অনুসারে f(x) ফাংশন [-a, a] অন্তরালে সুযমভাবে সন্তত হয় কারণ এখানে δ কেবলমাত্র ϵ -এর উপরে নির্ভরশীল |]

15. [সংকেত ঃ ধরুন $x_1 = \frac{1}{n}, x_2 = \frac{1}{n+k}$ যখন K সংখ্যাটি 1-এর থেকে বড় অথবা সমান বাস্তব সংখ্যা এবং $n \in N$ । অতএব $| f(x_1) - f(x_2) | = | n - (n+k) | = k \ge 1$

যদিও
$$|\mathbf{x}_1 - \mathbf{x}_2| = \left|\frac{1}{n} - \frac{1}{n+k}\right| = \left|\frac{k}{n(n+k)}\right| = \frac{k}{n(n+k)} < \delta$$
 ভাবা যায় $|\mathbf{x}|$

16. [সংকেত ঃ (i) যদি f (x) = k, (k একটি ধ্রুবক) যখন (2, 5) হয় তখন (2, 5) মুক্ত অন্তরালের প্রতিটি বিন্দুর জন্যই f (x) -এর মান k হয় অর্থাৎ একটি মাত্র বিদ্ববিন্দু পাওয়া যায় যাকে মুক্ত অন্তরাল বলা যায় না।

(ii) যদি f (x) = tan⁻¹ x নেওয়া যায় -এর সকল মানের জন্য বিশ্ববিন্দুগুলি $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ অন্তরাল গঠন করে।]

7.12 সহায়ক পুস্তক

- 1. Mathematical Analysis (Second edition) Apostol.
- 2. Introduction to Real Analysis S. K. Mapa.
- 3. Differential Calculas & Geometric Application (EMTOI, Block-I) Study meterial, Netaji Subhas Open University.
- 4. Methods of Real Analysis Richard R. Goldberg.
- 5. Real Analysis (3rd edition) H. L. Royden.
- 6. A first Course in Mathematical Analysis D. Somasundaram & B. Chaudhary.

একক 8 🗆 একাম্বয়ী, ক্রমবর্ধমান, ক্রমক্ষীয়মাণ, সীমিত ভেদযুক্ত

অপেক্ষক সমূহ

গঠন

- 8.1 প্রস্তাবনা
- 8.2 উদ্দেশ্য
- 8.3 ক্রমবর্ধমান অপেক্ষক, ক্রমক্ষীয়মাণ অপেক্ষক ও একান্বয়ী অপেক্ষক
 - 8.3.1 উদাহরণমালা
 - 8.3.2 একাম্বয়ী অপেক্ষকের কিছু ধর্ম
 - 8.3.3 একান্বয়ী ফাংশনের সন্ততা
 - 8.3.4 একান্বয়ী ফাংশন ও তার অবকল
 - 8.3.5 একান্বয়ী অপেক্ষক এবং এটির চরম ও অবম মান
 - 8.3.6 একান্বয়ী অপেক্ষকের আরও কিছু ধর্ম
- 8.4 সীমিত ভেদযুক্ত অপেক্ষক সমূহ
 - 8.4.1 উদাহরণমালা
 - 8.4.2 সীমিত ভেদযুক্ত অপেক্ষক ও সীমাবদ্ধতা
 - 8.4.3 সীমিত ভেদযুক্ত অপেক্ষকের কিছু সাধারণ ধর্ম
 - 8.4.4 উদাহরণমালা
 - 8.4.5 ভেদযুক্ত অপেক্ষক
 - 8.4.6 সন্তত অপেক্ষকের ভেদযুক্ত অপেক্ষক
- 8.5 সারাংশ
- 8.6 সর্বশেষ প্রশ্নাবলি
 - 8.6.1 উত্তরমালা (সংকেত সহ)
- 8.7 সহায়ক গ্রন্থাবলী

8.1 প্রস্তাবনা

আপনারা অবকল গণিত পড়ে বিভিন্ন ধরনের ফাংশন সম্বন্ধে জেনেছেন। তাদের অনেকেরই লেখচিত্র, লিমিট্, সন্ততি, অবকল, সমাকল ইত্যাদি বিষয়েও অবগত হয়েছেন। আমরা এই এককে মূলতঃ একান্বয়ী ফাংশন ও সীমিত ভেদযুক্ত ফাংশন ও তাদের বিভিন্ন ধর্ম নিয়ে আলোচনা করব।

8.2 উদ্দেশ্য

এই এককটি পড়ে আপনি

- 🔹 একাম্বয়ী অপেক্ষকের সম্বন্ধে ও তার বিভিন্ন ধর্ম সম্বন্ধে অবহিত হবেন।
- সীমিত ভেদযুক্ত ও ভেদযুক্ত অপেক্ষক সমৃহের উপর ধারণা করতে পারবেন এবং তাদের বিভিন্ন ধর্ম বিষয়ক উপপাদ্যের প্রমাণ পাবেন।

8.3 ক্রমবর্ধমান অপেক্ষক (Monotonic increasing function), ক্রমক্ষীয়মাণ অপেক্ষক (Monotonic decreasing function) ও একান্বয়ী অপেক্ষক (Monotonic function) ঃ

সংজ্ঞা ঃ f (x) : A \rightarrow B অপেক্ষকটি সংজ্ঞাঞ্চলে যেকোন দুটি বিন্দু x_1, x_2 (যেখানে $x_1 < x_2$) এর জন্য

(i) যদি f $(x_1) \leq f(x_2)$ হয় তবে f(x) কে A তে ক্রমবর্ধমান অপেক্ষক বলা হয়।

(ii) যদি $f(x_1) < f(x_2)$ হয় তবে f(x) কে A তে যথাযথভাবে বা যথার্থভাবে (Strictly) ক্রমবর্ধমান অপেক্ষক বলা হয়।

(iii) যদি $f(x_1) \ge f(x_2)$ হয় তবে f(x) কে A তে ক্রমক্ষীয়মান অপেক্ষক বলা হয়।

(iv) যদি $f(x_1) > f(x_2)$ হয় তবে f(x) কে A তে যথাযথভাবে (Strictly) ক্রমক্ষীয়মান অপেক্ষক বলা হয়।

কোন অপেক্ষক f(x) যদি তার সংজ্ঞাঞ্চলে ক্রমবর্ধমান বা ক্রমক্ষীয়মান হয় তাহলে f(x) কে ঐ অঞ্চলে একান্বয়ী অপেক্ষক (Monotonic Function) বলা হয়।

8.3.1 উদাহরণমালা

1. দেখান যে $f(x) = x^2 + 2x$ অপেক্ষকটি [a, b] অন্তরালে যথার্থভাবে ক্রমবর্ধমান।

সমাধান ঃ এখানে f'(x) = 3x² + 2 > 0 ∀x ∈ [a, b] এই [a, b] অন্তরালে যেকোন দুটি বিন্দু x₁, x₂ (x₁ < x₂) নিয়ে ল্যাগরাঞ্জের মধ্যমান উপপাদ্য প্রয়োগ করে পাই (যেহেতু এখানে f(x) উক্ত উপপাদ্যের শর্তগুলি পূরণ করে)—

$$f(x_2) - f(x_1) = (x_2 - x_1) f'(\xi)$$
, যখন $x_1 < \xi) < x_2$
> 0, যেহেতু $x_1 < x_2$ এবং f'(ξ) > 0

যদি x₁, x₂ (x₁ < x₂) সংখ্যাদুটি উপরের কোন একটি অন্তরালে থাকে, তবে f(x₂) – f(x₁) = 0 হয় আবার যদি তারা দুটি ভিন্ন অন্তরালে থাকে তবে,

এখানে f (x) = 0, যখন 0 ≤ x < 1 = 1, যখন 1 ≤ x < 2 = 2, যখন 2 ≤ x < 3 = - 1, যখন - 1 ≤ x < 0 = -2, যখন - 2 ≤ x < - 1

অর্থাৎ $f(x_1) \leq f(x_2)$ যখন $x_1 \leq x_2$ এবং $x_1, x_2 \in \mathbb{R}$ অতএব f(x) যেকোন অন্তরালে যথাযথভাবে ক্রমবর্ধমান। 4. f(x) = [x], যখন $x \in \mathbb{R}$ এবং [x] = n যখন $n \leq x \leq n + 1$ এবং n একটি পূর্ণসংখ্যা। দেখান যে অপেক্ষকটি ক্রমবর্ধমান। ক্রমবর্ধমান। সমাধান : এখানে f(x) = 0, যখন $0 \leq x < 1$ = 1, যখন $1 \leq x < 2$ = 2, যখন $2 \leq x < 3$

কারণ,
$$\begin{bmatrix} 0, \pi/2 \end{bmatrix}$$
 অন্তরালে sin x ধনাত্মক এবং $\frac{x_1 + x_2}{2}, \frac{x_2 - x_1}{2}$ কোণদ্বয় উক্ত অন্তরালে অবস্থিত। অতএব $f(x_2) \leq f(x_1)$ যখন, $x_1 \leq x_2$, তাই সংজ্ঞানুসারে $f(x)$ প্রদন্ত অন্তরালে যথাযথভাবে ক্রমক্ষীয়মান।

সমাধান ঃ যেহেতু e>2, অতএব x-এর যেকোন দুটি বাস্তব মান x_1, x_2 ($x_1 \leq x_2$)-এর জন্য $e^{x_1} < e^{x_2}$ হবে।

$$f(x_2) - f(x_1) = \cos x_2 - \cos x_1 = 2 \sin \frac{x_2 + x_1}{2} \sin \frac{x_1 - x_2}{2}$$
$$= -2 \sin \frac{x_1 + x_2}{2} \sin \frac{x_2 - x_1}{2}$$
$$< 0$$

সমাধান ঃ ধরা যাক $o \leq x_1 < x_2 \leq rac{\pi}{2}$, তখন

f(x) = e^x অপেক্ষকটি কি যথাযথভাবে ক্রমবর্ধমান ?

 $2. \ {f f}(x)=\cos x$ অপেক্ষকটি $o\leq x\leq rac{\pi}{2}$ অঞ্চলে যথাযথভাবে ক্রমক্ষীয়মান, এটি প্রমাণ করুন।

$$\Rightarrow \mathbf{f}(\mathbf{x}_2) > \mathbf{f}(\mathbf{x}_1)$$
 যখন $\mathbf{x}_2 > \mathbf{x}_1$

অতএব f(x) যথাযথভাবে ক্রমবর্ধমান।

সুতরাং f(x) কোন অন্তরালে ক্রমবর্ধমান হলে -f(x) একই অন্তরালে ক্রমক্ষীয়মান। উপপাদ্য 2 ঃ ধরা যাক $I = (a, b) \subset R$ এবং $f: I \to R, I$ -তে একটি ক্রমবর্ধমান অপেক্ষক

অতএব $-\mathbf{f}(\mathbf{x}_1) \geq -|\mathbf{f}(\mathbf{x}_2)|$ অর্থাৎ $-\mathbf{f}(\mathbf{x})$ ক্রমক্ষীয়মান।

দ্রস্টব্য ঃ যদি f(x), I-তে ক্রমবর্ধমান হয় তবে $x_1, x_2 \in I$ এবং $x_1 \leq x_2$ এর জন্য $f(x_1) \leq f(x_2)$ হয়।

(iii) উপরের (ii)-এর প্রমাণের অনুরূপভাবে প্রমাণ করুন।

f(x) ক্রমক্ষীয়মান হলে প্রমাণ অনুরূপ।

অতএব Kf (x) ফাংশন ক্রমবর্ধমান।

$$\Rightarrow Kf(x_1) \le Kf(x_2) [:: K > o]$$

 $\mathbf{f}(\mathbf{x}_1) \leq \mathbf{f}(\mathbf{x}_2)$

(ii) f(x) ক্রমবর্ধমান বলে সংজ্ঞা থেকে পাই,

ফাংশন দুটি ক্রমক্ষীয়মান হলে অনুরূপভাবে সংজ্ঞা থেকে সহজেই প্রমাণ করা যায়।

এবং
$$g(x_1) \le g(x) \le g(x_2)$$
 [$\because g(x)$ ক্রমবর্ধমান]
 $\Rightarrow f(x_1) + g(x_1) \le f(x) + g(x) \le f(x_2) + g(x_2)$
 $\Rightarrow f(x) + g(x), I$ তে ক্রমবর্ধমান।

প্রমাণ ঃ ধরা যাক্ $x_1x_2 \in I$ এবং $x_1 < x_2$ (i) অতএব $x_1 < x < x_2$ হলে $f(x_1) \le f(x) \le f(x_2)$ [$\because f(x)$ ক্রমবর্ধমান]

- (iii) ${
 m K} < 0$ একটি বাস্তব সংখ্যা হলে, ${
 m Kf}$ ফাংশন I তে ক্রমক্ষীয়মান (ক্রমবর্ধমান) হবে।
- (ii) ${
 m K}>0$ একটি বাস্তব সংখ্যা হলে, ${
 m Kf}$ ফাংশন I তে ক্রমবর্ধমান (ক্রমক্ষীয়মান) হবে।
- (i) f + g ফাংশন I তে ক্রমবর্ধমান (ক্রমক্ষীয়মান) হবে।

উপপাদ্য 1 ঃ $\mathbf{f}:1
ightarrow \mathbf{R}$ এবং $\mathbf{g}:\mathbf{I}
ightarrow \mathbf{R}$ যদি উভয়েই \mathbf{I} তে ক্রমবর্ধমান (ক্রমক্ষীয়মান) হয় তাহলে

8.3.2 একান্বয়ী অপেক্ষকের কিছু ধর্ম

সুতরাং f(x) ক্রমবর্ধমান অপেক্ষক।

অতএব, $\mathbf{f}(\mathbf{x}_2) - \mathbf{f}(\mathbf{x}_1) \ge 0$ যখন $\mathbf{x}_1 < \mathbf{x}_2$

$$f(x_2) - f(x_1) = 1 > 0$$

তখন (i) যদি I-তে f-এর উধ্বসীমা থাকে তবে $\lim_{x\to b^-} f(x) = \sup_{x\in (a, b)} f(x)$

এবং (ii) যদি I তে f-এর নিম্নসীমা থাকে তবে $\lim_{x \to a^+} f(x) = \inf_{x \in (a, b)} f(x)$

প্রমাণ ঃ (i) ধরা যাক্ Sup , f(x)=M তাহলে নিম্নতম ঊর্ধ্বসীমার সংজ্ঞা থেকে পাই, $_{x\in(a,b)}$

(a)
$$f(x) \leq M, \forall x \in (a, b)$$

এবং (b) x এর অন্তত একটি মান η ∈ (a, b) পাওয়া যাবে যেখানে Μ – ε < f (η) ≤ Μ যখন ε = 0 যেকোন প্রদা

সংখ্যা

এখন যদি η = b – δ ধরা হয় তাহলে

$$\mathbf{M} - \varepsilon < \mathbf{f}(\mathbf{x}) \le \mathbf{M} < \mathbf{M} + \varepsilon, \ \forall \mathbf{x} \in (\mathbf{b} - \delta, \mathbf{b})$$

বা, $| \mathbf{f} (\mathbf{x}) - \mathbf{M} | \le \varepsilon$, যখন $\mathbf{x} \in (\mathbf{b} - \delta, \mathbf{b})$

$$\Rightarrow \lim_{x \to b^{-}} f(x) = M = \sup_{x \in (a,b)} f(x)$$

(ii) এই অংশের প্রমাণ (i)-এর অনুরূপভাবে করুন।

দ্বস্টব্য ঃ যদি I তে ক্রমবর্ধমান অপেক্ষক f এর I তে কোন ঊর্ধ্বসীমা না থাকে (Unbounded above) তবে $\lim_{x \to b^-} f(x) = \infty$ এবং যদি কোন নিম্নসীমা না থাকে (Unbounded below) তবে $\lim_{x \to a^+} f(x) = -\infty$ হয়।

উপপাদ্য 3 ঃ যদি f(x) ফাংশন [a, b] অন্তরালে ক্রমবর্ধমান হয় তবে f(x) ঐ অন্তরালে সীমাবদ্ধ।

প্রমাণ ঃ যেহেতু f(x) ফাংশনটি [a, b] অন্তরালের সকলবিন্দুতেই সংজ্ঞাত, অতএব $a \le x \le b$ -এর জন্য f(x) ক্রমবর্ধমান বলে $f(a) \le f(x) \le f(b)$

অতএব f(x) সীমাবদ্ধ।

8.3.3 একাম্বয়ী ফাংশনের সন্ততা (Continuity of Monotonic Function)

একটি বিষয় লক্ষণীয় যে, f(x) ফাংশন কোন অন্তরাল [a, b]-তে ক্রমবর্ধমান হলে –f(x) ফাংশনটি একই অন্তরালে ক্রমক্ষীয়মান হয়। কাজেই একান্বয়ী ফাংশনের কোন ধর্ম প্রমাণের জন্য ফাংশনটিকে ক্রমবর্ধমান ধরে অগ্রসর হওয়া যায়।

উপপাদ্য 1: যদি f(x) অপেক্ষক [a,b] অন্তরালে ক্রমবর্ধমান হয় তাহলে $c\in(a,b)$ -এর জন্য $\lim_{x o c^+} f(x)$ এবং

lim f(x) লিমিট্ দুটির অস্তিত্ব থাকে এবং, x→ ০−

 $\lim_{x \to c^-} f(x) \le \lim_{x \to c^+} f(x)$

প্রমাণ ঃ প্রথমতঃ যেহেতু f(x) ক্রমবর্ধমান {f(x) : x ∈ (a, c)} সেট্টির ঊর্ধ্বসীমা আছে এবং সেটি f(c) (কারণ x < c হলে f(x) ≤ f(c) হয়)। ধরা যাক (a, c) অন্তরালে f(x)-এর ক্ষুদ্রতম ঊর্ধ্বসীমা (least upper bound) M এবং সঙ্গত কারণে M ≤ f(c)। আমরা প্রমাণ করব

 $\lim_{x\to c-} f(x) = M (= \sup_{x\in (a, c)} f(x))$

ক্ষুদ্রতম ঊর্ধ্বসীমার সংজ্ঞানুসারে (a, c) অন্তরালে অন্ততঃ একটি বিন্দু x_1 আছে যেখানে $f(x_1) > M - \epsilon$ ($\epsilon > 0$), অর্থাৎ $M - \epsilon < f(x_1) \le M$ । আবার যেহেতু f(x) ক্রমবর্ধমান, অতএব (x_1 , c) অন্তরালে x-এর জন্য $f(x_1) \le f(x)$ হয়।

অতএব অসমীকরণগুলি একত্রিত করলে,

M – $\epsilon < f\left(x_{1}\right) \leq f\left(x\right) \leq M < M$ + ϵ , यथन $x_{1} < x < c,$

অর্থাৎ $M - \epsilon < f(x) \le M + \epsilon$ যখন $x \in (x_1, c)$

অর্থাৎ | f(x) – M | $\leq \varepsilon$ যখন $x \in (c - \delta, c), x_1 = c - \delta$ ($\delta > 0$) ধরে।

অর্থাৎ $\lim_{x \to c^{-}} \mathbf{f}(x) = \mathbf{M}$

দ্বিতীয়ত x > c হলে যেহেতু $f(x) \ge f(c), \{f(x) : x \in (c,b)\}$ সেট্টির নিম্নসীমা আছে।

ধরা যাক (c, b) অন্তরালে f(x)-এর বৃহত্তম নিম্নসীমা (greatest lower bound) m, সুতরাং f(c) ≤ m হবে। এখন প্রমাণ করতে হবে lim f(x) = m (= inf f(x)) _{x→c+} _{x∈(c, b)}

বৃহত্তম নিম্নসীমার ধর্মানুসারে (c, b) অন্তরালে অন্ততঃ একটি বিন্দু ${f x}_2={f c}+\delta$ আছে যেখানে f(x_2) = f(c+\delta) < m + ε হয়।

আবার যেহেতু f(x) ক্রমবর্ধমান (c, x_2) অন্তরালে বিন্দু x-এর জন্য যেখানে $f(x) \leq f(x_2)$ হয়।

অতএব $m - \epsilon \le m \le f(x) \le f(c + \delta) \le m + \epsilon$, যখন $c \le x \le c + \delta$

অর্থাৎ m – $\epsilon \leq f(x) \leq m + \epsilon$ যখন $x \in (c, c + \delta)$

অর্থাৎ $| \mathbf{f}(\mathbf{x}) - \mathbf{m} | \le \varepsilon$ যখন $\mathbf{x} \in (\mathbf{c}, \mathbf{c} + \delta)$

অর্থাৎ $\lim_{x\to c^+} f(x) = m$ অর্থাৎ f(c + 0) = m

অতএব দেখা গেল যে $\displaystyle \lim_{x o c^-} f(x)$ এবং $\displaystyle \lim_{x o c^+} f(x)$ উভয়েরই অস্তিত্ব আছে এবং এরা যথাক্রমে

$$M = \sup_{x \in (a, c)} f(x) \quad \text{and} \quad m = \inf_{x \to (c, b)} f(x) \mid$$

আবার যেহেতু $M \leq f(c)$ এবং $f(c) \leq m$ অতএব $M \leq f(c) \leq m$

অর্থাৎ $\lim_{x\to c\to 0} f(c) \le \lim_{x\to c\to 0} f(c)$

 $f(c - 0) \leq f(c) \leq f(c + 0)$

প্রান্তলিপি 1 ঃ যদি f(x) ফাংশন [a, b] অন্তরালে একান্বয়ী হয় এবং $c \in (a, b)$ হয় তাহলে দেখা গেল f(c-0) এবং f(c+0) উভয় লিমিটেরই অস্তিত্ব থাকে এবং যথাক্রমে M ও m হয়। সুতরাং মন্তব্য করা যায় যদি f(x) ফাংশনটি C বিন্দুতে অসন্তত হয় তবে তা সসীম অসন্ততি (finite or jump discontinuity) হয়।

প্রান্তলিপি 2 ঃ যদি f(x) ফাংশন [a, b] অন্তরালে ক্রমবর্ধমান হয় তাহলে

(i)
$$f(a+0) = \lim_{x \to a+} f(x) = \inf_{x \in (a, b)} f(b-0) = \lim_{x \to b-} f(x) = \sup_{x \in (a, b)} f(x)$$

এবং (ii) f(a) ≤ f(a + 0) ; f (b-0) ≤ f(b) হয়।

সংকেত ঃ যেহেতু f(x) ফাংশন [a, b] অন্তরালে ক্রমবর্ধমান সুতরাং S = { f(x) : x ∈ (a, b)} সেট্টির ক্ষুদ্রতম ঊর্ধ্বসীমা M আছে এবং M ≤ f(b) হয়। অতএব ক্ষুদ্রতম ঊর্ধ্বসীমার সংজ্ঞানুসারে (a, b) অন্তরালে অন্ততঃ একটি বিন্দু x₁ পাওয়া যাবে যাতে f(x₁) > M – ε (ε > 0) শর্তটি সিদ্ধ হয়। আবার যেহেতু f(x) ক্রমবর্ধমান, x₁ < x < b এর জন্য f(x₁) ≤ f(x) হয়। এদের একত্রিত করে লেখা যায়—

 $M - \epsilon \leq f(x_1) \leq f(x) \leq M \leq M + \epsilon$ যখন $x \in (x_1, b)$

অর্থাৎ | f(x) – M | $\leq \epsilon$ যখন $x \in (b - \delta, b), x_1 = b - \delta, (\delta > 0)$ ধরে।

অতএব $\lim_{x\to b^-} f(x) = M = \sup_{x\in(a,b)} f(x)$

আবার যেহেতু $M \le f(b)$ অতএব $\lim_{x \to b^-} f(b)$

অনুরূপে a প্রান্তের সম্পর্কগুলিকেও প্রতিষ্ঠিত করা যায়।

উপপাদ্য 2 ঃ যদি f(x) ফাংশন [a, b] অন্তরালে ক্রমক্ষীয়মান হয়

তবে (i) $f(a+0) = \underset{x \in (a, b)}{\sup} f(x); f(b-0) = \underset{x \in (a, b)}{\min} f(x)$

এবং (ii) $\mathbf{f}(\mathbf{a}) \geq \mathbf{f}(\mathbf{a}+\mathbf{0})$; $\mathbf{f}(\mathbf{b}) \leq \mathbf{f}(\mathbf{b}-\mathbf{0})$ হয়।

সংকেত ঃ উপরোক্ত উপপাদ্য 1 এবং তার প্রান্তলিপি 2 অনুসরণ করে এই উপপাদ্যের প্রমাণ সহজেই করা যায়।

উপপাদ্য 3 ঃ <u>যদি f(x)</u> ফাংশনটি <u>[a, b]</u> অন্তরালে এক-এক সম্বন্ধযুক্ত (One-One function or injective function) এবং সন্তত হয় তাহলে <u>f(x)</u> ঐ অন্তরালে যথাযথভাবে <u>(strictly)</u> একান্বয়ী <u>(monotonic)</u>।

প্রমাণ ঃ প্রদন্ত আছে f(x) ফাংশন [a, b] অন্তরালে সন্তত এবং ঐ অন্তরালের প্রত্যেক মানের জন্য f(a) এবং f(b) এর মধ্যবর্তী সকল মান f(x) মাত্র একবার করে ধারণ করে। অতএব f(a) ≠ f(b)।

 $\mathbf{f}(\mathbf{a}) \leq \mathbf{f}(\mathbf{b})$ ধরা যাক তাহলে $\mathbf{a} < \mathbf{x}_1 < \mathbf{b}$ -এর জন্য প্রমাণ করতে হবে $\mathbf{f}(\mathbf{a}) \leq \mathbf{f}(\mathbf{x}_1) < \mathbf{f}(\mathbf{b})$ ।

যদি উক্ত অসমতা সত্য না হয় তবে নিম্নোক্ত সম্ভাবনাগুলির যেকোন একটি সত্য হবে। সম্ভাবনাগুলি হল :

(i)
$$f(x_1) = f(a)$$
 $f(x_1) = f(b)$

(ii)
$$f(x_1) \le f(a) \le f(b)$$

অথবা, (iii) $f(a) < f(b) < f(x_1)$

এখন যেহেতু ফাংশনটি এক-এক সম্পর্কযুক্ত, (i) নং সম্ভাবনা অসঙ্গতিপূর্ণ। যদি (ii) নং সম্ভাবনা সত্য ধরা হয় তবে সন্তত অপেক্ষকের মধ্যবতীমানের উপপাদ্য (Intermediate value theorem) অনুযায়ী একটি মান α ∈ (x₁,b) পাওয়া যাবে যেখানে f(α) = f(a) হয়। কিন্তু f(x) এখানে এক-এক সম্বন্ধযুক্ত বলে এটি সন্তব নয়। অতএব (ii) নং সম্ভাবনা সত্য নয়।

যদি (iii) নং সম্ভাবনা সত্য ধরা হয় তবে একই কারণে β∈ (a, x₁)-এর জন্য f(β) = f(b) হয় এবং এটিও অসম্ভব। অতএব (iii) নং সম্ভাবনাও সত্য নয়।

অতএব প্রমাণিত হল যে $a < x_1 < b$ হলে $f(a) < f(x_1) < f(b)$ হয়।

এখন x_1 , x_2 যেকোন দুটি বিন্দু এমন হয় যে, $a < x_1 < x_2 < b$ তবে $a < x_1 < x_2$ -এর জন্য $f(a) < f(x_1) < f(x_2)$ এবং $x_1 < x_2 < b$ এর জন্য $f(x_1) < f(x_2) < f(b)$ পাওয়া যায়। একত্রিত করলে $a < x_1 < x_2 < b$ -এর জন্য $f(a) < f(x_1) < f(x_2) < f(b)$ পাওয়া যায়। আতএব দেখা যাচ্ছে f(x) ফাংশন [a, b] অন্তরালে যথাযথভাবে ক্রমবর্ধমান।

আবার যদি f(a) > f(b) ধরা হয় তাহলে অনুরূপ যুক্তি সহকারে প্রমাণ করা যায় f(x) ফাংশন [a, b] অন্তরালে যথাযথভাবে ক্রমক্ষীয়মান। 8.3.4 একাম্বয়ী ফাংশন ও তার অবকলন (Monotonic function & its derivative) উপপাদ্য 1 ঃ যদি $f(x): I \to R$ ফাংশনটির I অন্তরালের প্রত্যেক বিন্দুতে অবকল সহগ থাকে তাহলে—

- f(x) ফাংশন I অন্তরালে ক্রমবর্ধমান হবে যদি এবং কেবলমাত্র যদি প্রত্যেক x ∈ I -এর জন্য f' (x)
 ≥ 0 হয়।
- এবং (ii) f(x) ফাংশন I অন্তরালে ক্রমক্ষীয়মান হয় যদি এবং কেবলমাত্র যদি x ∈ I এর জন্য f'(x) ≤ 0 হয়।

প্রমাণ ঃ ধরা যাক f(x) ফাংশনের I অন্তরালের প্রত্যেক বিন্দুতে অবকল সহগ আছে এবং একই অন্তরালে ক্রমবর্ধমান। তাহলে যেকোন বিন্দু $x_1 \in I$ - এর জন্য

$$rac{\mathbf{f}\left(\mathbf{x}
ight) - \mathbf{f}\left(\mathbf{x}_{1}
ight)}{\mathbf{x} - \mathbf{x}_{1}} \geq 0$$
 হয় (যখন $\mathbf{x} > \mathbf{x}_{1}$ অথবা $\mathbf{x} < \mathbf{x}_{1}$)।

বা,
$$\lim_{x \to x_1} \frac{f(x) - f(x_1)}{x - x_1} \ge 0$$
 [উভয়পক্ষে লিমিট্ নিয়ে]

বা
$$\mathbf{f}'(\mathbf{x}_1)\geq 0$$
 যেহেতু \mathbf{x}_1 বিন্দুতে অবকলসহগ বিদ্যমান।

যেহেতু x_1 বিন্দুটি I-এর যেকোন একটি বিন্দু অতএব দেখা গেল (i) নং শর্তটি প্রয়োজনীয় (necessary)।

বিপরীতক্রমে, ধরা যাক, f'(x) ≥ 0 ∀_x ∈ I তাহলে I অন্তরালের যেকোন উপঅন্তরাল [x₁, x₂] তে (যেখানে x₁ < x₂) ল্যাগরাঞ্জের মধ্যমান উপপাদ্য (Lagrange's Mean Value Theorem) প্রয়োগ করা যায় এবং তা করলে পাওয়া যায়—

$$\mathbf{f}(\mathbf{x}_2) - \mathbf{f}(\mathbf{x}_1) = (\mathbf{x}_2 - \mathbf{x}_1) \mathbf{f}'(\xi)$$
, যেখানে $\mathbf{x}_1 \leq \xi < \mathbf{x}_2$

এখন যেহেতু শর্তানুসারে $\mathbf{f}'\left(\xi
ight)\geq 0$ এবং $\mathbf{x}_2 \geq \mathbf{x}_1$ অতএব,

$$f(x_2) - f(x_1) \ge 0$$
 যখন $x_2 \ge x_1$

বা, $\mathbf{f}(\mathbf{x}_2) \geq \mathbf{f}(\mathbf{x}_1)$ যখন $\mathbf{x}_2 > \mathbf{x}_1$

যেহেতু x₁, x₂ বিন্দু দুটি I-এর যেকোন দুটি বিন্দু অতএব উপরোক্ত শর্ত থেকে মন্তব্য করা যায় যে f(x) ফাংশন I অন্তরালে ক্রমবর্ধমান। অতএব (i) শর্তটি ক্রমবর্ধমান হওয়ার জন্য যথেষ্ট।

উপপাদ্যের দ্বিতীয় অংশটির প্রমাণ প্রথম অংশটির অনুরূপ।

উপপাদ্য 2 ঃ যদি f(x) : I → R ফাংশন I = [a, b] তে সন্তত হয় এবং (a, b) তে f'(x) > 0 হয় তবে I তে f(x) যথাযথভাবে ক্রমবর্ধমান।

প্রমাণ ঃ যদি যেকোন $x_1 < x_2$ এবং $x_1, x_2 \in I$ হয় তবে $[x_1, x_2]$ অন্তরালে ল্যাগরাঞ্জের মধ্যমান উপপাদ্য প্রয়োগ করা যায়। উক্ত উপপাদ্য অনুযায়ী,

 $\mathbf{f}(\mathbf{x}_2) - \mathbf{f}(\mathbf{x}_1) = (\mathbf{x}_2 - \mathbf{x}_1) \mathbf{f}'(\xi), \ \xi \in (\mathbf{x}_1, \ \mathbf{x}_2)$

যেহেতু উপপাদ্যে প্রদন্ত শর্তানুসারে f' $(\xi)>0$ এবং ধরা হয়েছে ${f x}_1 < {f x}_2$ অর্থাৎ ${f x}_2 - {f x}_1 > 0$ অতএব

 $f(x_2) - f(x_1) \ge 0$ যখন $x_2 \ge x_1$

অর্থাৎ $f(x_2) > f(x_1)$ যখন $x_2 > x_1$

অর্থাৎ f(x) ফাংশন [a, b] অন্তরালে যথাযথভাবে ক্রমবর্ধমান।

উপপাদ্য 3 ঃ যদি f(x) : I → R ফাংশন I = [a, b] তে সন্তত হয় এবং (a, b) তে f' (x) < 0 হয় তবে I তে f(x) যথাযথভাবে ক্রমক্ষীয়মান হয়।

প্রমাণ ঃ সংকেত উপপাদ্য 1-এর মত লেখা যায়—

$$f(x_2) - f(x_1) = (x_2 - x_1)f'(\xi)$$
 যখন $\xi \in (x_1, x_2)$

এখানে $x_2^{}$ – $x_1^{}$ > 0 কিন্তু f^{\prime} (\xi) < 0 হওয়ায়

$$\mathbf{f}(\mathbf{x}_2) = \mathbf{f}(\mathbf{x}_1) \le 0$$
 যখন $\mathbf{x}_1 \le \mathbf{x}_2$ হয়

অর্থাৎ $\mathbf{f}(\mathbf{x}_2) \leq \mathbf{f}(\mathbf{x}_1)$ যখন $\mathbf{x}_1 \leq \mathbf{x}_2$ হয়,

অর্থাৎ f(x) ফাংশন [a, b] তে যথাযথভাবে ক্রমক্ষীয়মান।

উদাহরণ 1 ঃ দেখান যে f(x) = sin x ফাংশনটি $\begin{bmatrix} 0, & \frac{\pi}{2} \end{bmatrix}$ অন্তরালে যথাযথভাবে ক্রমবর্ধমান।

সমাধান ঃ যেহেতু $\mathbf{f}(\mathbf{x}) = \sin \mathbf{x}$ ফাংশনটি $\left[0, \frac{\pi}{2}\right]$ অন্তরালে সন্তত এবং $\mathbf{f}'(\mathbf{x}) = \cos \mathbf{x}$ ফাংশনটি $\left[0 \cdot \frac{\pi}{2}\right]$

অন্তরালের প্রত্যেক বিন্দুতে অখণ্ডাত্মক ধনাত্মক, অতএব f(x) = sin x ফাংশনটি $\left[0, rac{\pi}{2}
ight]$ -তে যথাযথভাবে ক্রমবর্ধমান।

8.3.5 একাম্বয়ী অপেক্ষক এবং এটির চরম ও অবম মান (Monotonic function & its maxima, minima)

সংজ্ঞা ঃ কোন ফাংশন f : I \rightarrow R-এর সংজ্ঞাঞ্চল I-তে অবস্থিত c-বিন্দুতে f(x) এর চরম মান বা স্থানীয় চরম মান (local max.) আছে বলা হবে যদি কোন $\delta > 0$ -এর জন্য f(x) \leq f(c) যখন $x \in (c - \delta, c + \delta)$

অর্থাৎ $\mathrm{x} \in \mathrm{N}(\mathrm{c}, \delta)$ (নির্ভুল ভাবে প্রকাশ করতে হলে $\mathrm{x} \in \mathrm{N}(\mathrm{c}, \delta) \cap \mathrm{I}$ লিখতে হবে।)

যদি কোন বিন্দু $\alpha \in I$ -এর জন্য $f(\alpha) = \sup_{x \in I} f(x)$ হয় তবে α কে f(x)-এর সার্বিক চরম বিন্দু (absolute x e I

maximum point) বলে।

কোন অপেক্ষকের অবমমানের (minimum) জন্য অনুরূপ সংজ্ঞা দেওয়া যায়।

উপপাদ্য 1 ঃ <u>যদি f : I → R অপেক্ষকটি I = [a, b]</u> ⊂ R <u>অন্তরালে সন্তত হয় তবে f(x)-এর (a, b)</u> অন্তরালে কোন চরম বিন্দু বা অবম বিন্দু থাকবে না যদি এবং কেবলমাত্র যদি <u>(iff) f(x)</u> অপেক্ষকটি <u>[a, b]</u> অন্তরালে একান্বয়ী হয়।

প্রমাণ ঃ প্রথমে ধরা যাক্ f(x) অপেক্ষকটি I তে একান্বয়ী। যদি সম্ভব হয় তাহলে ধরা যাক $x_1 \in (a, b)$ এর জন্য f(x)-এর স্থানীয় চরম মান আছে। অতএব সংজ্ঞানুসারে $f(x) < f(x_1)$ যখন $x < x_1$ এবং $x_1 < x$ হয়। কাজেই f(x) অপেক্ষক $N(x_1, \delta)$ তে একান্বয়ী হতে পারছে ন, এবং সেইজন্য I তে একান্বয়ী হতে পারছে না। অতএব (a, b) এর জেন বিন্দুতে f(x)-এর চরম মান নেই। অনুরূপিভাবে দেখান যায় যে (a, b)-এর কোন বিন্দুতে f(x)-এর অবম মানও নেই। অতএব সংগ্রাণ্ডাবে দেখান যায় যে (a, b)-এর কোন বিন্দুতে f(x)-এর অবম মানও নেই। অতএব শর্তটি যথেষ্ট (sufficient)।

উপপাদ্যের প্রয়োজনীয় (necessary) অংশটি প্রমাণের জন্য ধরা যাক (a, b) অন্তরালে f(x)-এর কোন স্থানীয় চরম বা অবম মান নাই। যেহেতু f(x)-ফাংশন [a, b] অন্তরালে সন্তত অতএব আমরা জানি উক্ত অন্তরালে দুটি বিন্দু x₁ ও x₂ আছে যেখানে f(x) যথাক্রমে সার্বিক চরম ও সার্বিক অবম মান ধারণ করে (এই বিষয়ে আগের এককে একটি উপপাদ্য আছে)। যদি x₁ < x₂ হয় তবে অবশ্যই x₁ = a এবং x₂ = b হবে। কারণ উপপাদ্যের এই অংশ প্রমাণের জন্য আমরা ধরে নিয়েছি (a, b) অন্তরালে f(x)-এর কোন স্থানীয় চরম ও অবম মান নেই। আমরা প্রমাণ করব [a, b] অন্তরালে f(x) ক্রমক্ষীয়মান।

 $\alpha \otimes \beta$ ($\alpha < \beta$) বিন্দু দুটির সাহায্যে [a, b] অন্তরালকে তিনটি উপঅন্তরাল [a, α], [α , β] \otimes [β , b]-তে বিভক্ত করলে বলা যায় [a, α] অন্তরালের a বিন্দুতে f(x) সার্বিক চরম, অতএব উপরোক্ত কারণে α বিন্দুতে f(x) সার্বিক অবম মান ধারণ করে; অর্থাৎ ক্রমক্ষীয়মান হয়। অতএব [α , β] উপঅন্তরালের α বিন্দুতে f(x) সার্বিক চরম এবং β বিন্দুতে f(x) সার্বিক অবম মান ধারণ করতে বাধ্য। যদি তা না হয়ে বিপরীত হয়, অর্থাৎ [α , β] তে f(x) ক্রমবর্ধমান হয় তাহলে α বিন্দুতে f(x)-এর স্থানীয় অবম মান থাকবে। কিন্তু এটি এই অংশ প্রমাণের জন্য ধরে নেওয়া শর্তের বিরোধী। অতএব [α , β] অন্তরালের α বিন্দুতে f(x) সার্বিক চরম ও β বিন্দুতে f(x) সার্বিক অবম। আবার একই যুক্তিতে [β , b] উপঅন্তরালের β বিন্দুতে f(x) সার্বিক চরম এবং b বিন্দুতে f(x) সার্বিক অবম।

অতএব বোঝা গেল $f(a) \ge f(\alpha) \ge f(\beta) \ge f(b)$ যখন $a < \alpha < \beta < b$ অর্থাৎ [a, b] অন্তরালে f(x) ক্রমক্ষীয়মান।

উদাহরণ 1 ঃ f(x) = x² + 5 ফাংশনটি [0, 2] -তে সন্তত এবং f'(x) = 2x ≥ 0 যখন x ∈ [0, 2]। অতএব f(x) ফাংশনটি [0, 2] অন্তরালে একান্বয়ী।

আবার যেহেতু f' (x) = 0 ধরলে x = 0 ছাড়া অন্য কোন মান পাওয়া যায় না, অতএব মন্তব্য করা যায় (0,2) অন্তরালে f(x)-এর কোন চরম বা অবম মান নেই।

8.3.6 একান্বয়ী অপেক্ষকের কিছু ধর্ম

উপপাদ্য 1 ঃ যদি f(x) ফাংশন [a, b] অন্তরালে ক্রমবর্ধমান হয় এবং $x_0, x_1, x_2, ..., x_n, x_{n+1}$ বিন্দুগুলি এমন হয় যে

$$\begin{aligned} \mathbf{x}_{\mathbf{o}} &= \mathbf{a} < \mathbf{x}_{1} < \mathbf{x}_{2} < \ldots < \mathbf{x}_{\mathbf{n}} < \mathbf{b} = \mathbf{x}_{\mathbf{n}+1} \\ \end{aligned}$$
তবে $\sum_{r=1}^{n} \left[\mathbf{f} \left(\mathbf{x}_{r}^{+} \right) - \mathbf{f} \left(\mathbf{x}_{r}^{-} \right) \right] \leq \mathbf{f}(\mathbf{b}^{-}) - \mathbf{f}(\mathbf{a}^{+}), \ \text{হলো } \mathbf{f} \left(\mathbf{x}_{r}^{+} \right) = \lim_{\mathbf{x} \to \mathbf{x}_{r}^{+}} \mathbf{f}(\mathbf{x}) \ \text{Formation} \end{aligned}$

প্ৰমাণ ঃ ধরা যাক $\xi_r \in (x_r, x_{r+1})$ তাহলে $f(x_r^+) \leq f(\xi_r)$ এবং $f(x_r^-) \geq f(\xi_{r-1})$ হয় যখন $l \leq r \leq n$

অতএব
$$\mathbf{f}\left(\mathbf{x}_{r}^{+}
ight) - \mathbf{f}\left(\mathbf{x}_{r}^{-}
ight) \leq \mathbf{f}\left(\mathbf{\xi}_{r}
ight) - \mathbf{f}\left(\mathbf{\xi}_{r-1}
ight)$$
, যখন $\mathbf{I} \leq \mathbf{r} \leq \mathbf{n}$

$$\therefore \sum_{r=1}^{n} \left[f\left(x_{r}^{+}\right) - f\left(x_{r}^{-}\right) \right] \leq \sum_{r=1}^{n} \left[f\left(\xi_{r}\right) - f\left(\xi_{r-1}\right) \right]$$
$$= f\left(\xi_{n}\right) - f\left(\xi_{0}\right)$$
$$\leq f\left(b^{-}\right) - f\left(a^{+}\right)$$

গুরুত্বপূর্ণ দ্রস্টব্য ঃ $f(x_r^+) - f(x_r^-) = J(x_r^-) = x_r^-$ বিন্দুতে f(x)-এর স্ফীতি বা লম্ফ (jump) হলে এবং উপরোক্ত উপপাদ্যে n সসীম হলে বলা যায় $x_1, x_2,, x_n^-$ বিন্দুসমূহে স্ফীতিগুলির সমষ্টি f(b⁻) – f(a⁺) অপেক্ষা ক্ষুদ্রতর অথবা সমান।

যদি J $(x_r) \neq 0$ হয় তবে f(x) ফাংশন x_r বিন্দুতে অসন্তত হয়।

উপপাদ্য 2 ঃ যদি f(x) ফাংশন [a, b] অন্তরালে একাম্বয়ী হয় তবে ঐ অন্তরালে f(x)-এর অসন্ততির বিন্দুগুলির সেট কাউন্ট্বেল (Countable) হয়।

প্রমাণ ঃ ধরা যাক্ f(x) ফাংশন [a, b] অন্তরালে ক্রমবর্ধমান। আরও ধরা যাক (a, b) অন্তরালে f(x)-এর অসন্ততির বিন্দুগুলি দ্বারা গঠিত সেট S অর্থাৎ S = {x : x ∈ (a, b), J (x) ≠ 0 }। এখানে যেহেতু ধরা হয়েছে $\mathbf{f}(\mathbf{x})$ ক্রমবর্ধমান অতএব প্রত্যেক অসন্ততির বিন্দু \mathbf{x} তে J (\mathbf{x}) ≥ 0 হবে।

ধরা যাক্ $S_1 = \{x \in (a, b) : J(x) \le I\}$

$$S_{2} = \left\{ x \in (a, b) : \frac{1}{2} \le J(x) < 1 \right\}$$
$$S_{3} = \left\{ x \in (a, b) : \frac{1}{3} \le J(x) < \frac{1}{2} \right\}$$

..... ইত্যাদি

তবে স্পষ্টতই
$$S = \bigcup_{m=1}^{\infty} S_m$$

পূর্ব উপপাদ্য অনুযায়ী আমরা জানি যে (a, b) অন্তরালের সকল অসন্ততির বিন্দুসমূহের লম্ফণ্ডলির সমষ্টি $\leq f(b^-) - f(a^+) |$ সুতরাং S_1, S_2 ইত্যাদি সেটগুলির প্রত্যেকটিতে সসীম সংখ্যক বিন্দুর বেশী থাকতে পারে না। অতএব সেটগুলি প্রত্যেকে কাউন্টেবল। আবার যেহেতু কাউন্টেবল সেট সমূহের কাউন্টেবল সংযোগ (union)

কাউন্টেবল হয়, সেইজন্য $\mathbf{S} = igcup_{m=1}^{\omega} \mathbf{S}_m$ কাউন্টেবল।

8.4 সীমিত ভেদযুক্ত অপেক্ষকসমূহ (Functions of bounded variation)

সংজ্ঞা 1 : যদি P = {x₀, x₁, x₂, ..., x_n}, [a, b] অন্তরালের কিছু বিন্দু দিয়ে গঠিত একটি সসীম সেট্ হয় এবং যদি a = x₀ < x₁ < x₂ < ... < x_n = b হয়, তাহলে P সেটকে [a, b] বদ্ধ অন্তরালের একটি বিভাজন (Partition or Division) বলে।

 $[\ x_{i=1},\ x_i\]$ অন্তরালটিকে P-এর i-তম উপঅন্তরাল বলে এবং $x_i^{}$ – $x_{i-1}^{}$ = $\Delta x_i^{}$ এইভাবে লেখা হয়।

অতএব $\sum_{i=1}^n \Delta x_i = b-a$, একটি বদ্ধ অন্তরাল [a, b] কে বিভিন্ন ভাবে অর্থাৎ অসীম সংখ্যক উপায়ে বিভাজিত

করা যায়। এই অসীম সংখ্যক বিভাজন P সমূহ দ্বারা গঠিত সেট্কে S [a, b] দ্বারা চিহ্নিত করা হবে।

সংজ্ঞা 2 ঃ যদি P = $\{x_0, x_1, x_2, ..., x_n\}$ সেট্টি f(x) অপেক্ষকের সংজ্ঞাঞ্চল [a, b] বদ্ধ অন্তরালের একটি বিভাজন হয় এবং [a, b] -এর সকল বিভাজনের জন্যই $\sum_{i=1}^n |\Delta f_i| \le M$ হয়, যেখানে M একটি

নির্দিষ্ট ধনাত্মক সংখ্যা এবং $\Delta f_i = f(x_i) - f(x_{i-1})$, তখন f(x)-কে [a, b] অন্তরালে **সীমিত ভেদযুক্ত অপেক্ষক** বলা হয়।

সংজ্ঞা 3 ঃ ধরা যাক্ f(x) [a, b] অন্তরালে একটি সীমিত ভেদযুক্ত অপেক্ষক এবং আরও ধরা যাক $V(P; f) = \sum_{i=1}^{n} | \Delta f_i |$ যখন $P \in S[a, b]$ । যেহেতু f সীমিত ভেদযুক্ত অতএব V সীমাবদ্ধ। $\sum_{p \in s[a, b]} \int_{p \in s[a, b]} f$ কে [a, b] অন্তরালের উপর f(x)-এর মোট ভেদ (Total variation) বলে এবং এটিকে V(f; a, b) বা V_f(a, b)

বা $\bigvee_a^b(f)$ দ্বারা চিহ্নিত করা হয়। প্রয়োজনে এই মোট ভেদ সংক্ষেপে V_f বা V(f) দ্বারাও চিহ্নিত করা হবে।

প্রান্তলিপি 1 ঃ (i) সাধারণত V(f) > 0 হয়; কিন্তু f(x) যদি [a, b] অন্তরালে ধ্রুবক অপেক্ষক হয় তখন V(f) = 0 হয়।

(ii) যদি f(x) ফাংশন [a, b] অন্তরালে সীমিত ভেদযুক্ত অপেক্ষক হয় তবে V(p;f) \leq V(f) হয়।

(iii) যদি P এবং P' উভয়েই [a, b] অন্তরালের বিভাজন হয় এবং P ⊆ P' হয়, তখন P' কে P এর পরিমার্জনা (refinement) বলা হয়।

মন্তব্য ঃ যদি f(x)-এর সংজ্ঞাঞ্চল [a, b] -এর বিভাজনদ্বয় P এবং P' (P ⊆ P¹) হয় তখন উক্ত অন্তরালে V(P ; f) ≤ V(P' ; f) হয়।

সংকেত ঃ যদি P = $\{x_0, \, x_1, \,, \, x_n$ } এবং $C \in \left(x_{r-1}, \, x_r\right)$ যখন $I \leq r \leq n$ হয়; তখন

 $|| \mathbf{f}(\mathbf{x}_r) - \mathbf{f}(\mathbf{x}_{r-1}) | \le || \mathbf{f}(\mathbf{c}) - \mathbf{f}(\mathbf{x}_{r-1}) || + || \mathbf{f}(\mathbf{x}_r) - \mathbf{f}(\mathbf{c}) ||$ देखांगि।

উপপাদ্য 1 ঃ যদি f(x) অপেক্ষক [a, b] অন্তরালে একাম্বয়ী হয় তবে একই অন্তরালে এটি সীমিত ভেদযুক্ত অপেক্ষক।

প্রমাণ ঃ ধরা যাক f(x) অপেক্ষক [a, b] অন্তরালে ক্রমবর্ধমান, তাহলে যেকোন বিভাজন P = {a = x₀, x₁, x₂,, x_n = b }-এর জন্য

$$\sum_{r=1}^{n} \left| f(x_r) - f(x_{r-1}) \right| = \sum_{r=1}^{n} \left\{ f(x_r) - f(x_{r-1}) \right\} \quad [\because f(x)$$
 ক্রমবর্ধমান]
$$= f(b) - f(a)$$

:. মোটভেদ = $V(f; a, b) = \sup \sum_{r=1}^{n} |f(x_1) - f(x_{r-1})| = f(b) - f(a)$, এটি একটি ধনাত্মক সসীম

সংখ্যা।

অতএব f(x) অপেক্ষক [a, b] অন্তরালে ক্রমবর্ধমান হলে একই অন্তরালে সীমিত ভেদযুক্ত অপেক্ষক হয়।

আবার f(x) কে [a, b] অন্তালে ক্রমক্ষীয়মান ধরলে অনুরূপে দেখান যায় যে,

মোট ভেদ = f(a) – f(b) এটিও ধনাত্মক সসীম সংখ্যা। অতএব f(x) অপেক্ষক [a, b] অন্তরালে ক্রমক্ষীয়মান হলেও একই অন্তরালে সীমিত ভেদযুক্ত অপেক্ষক হয়।

এখানে লক্ষণীয় f(x) অপেক্ষক [a, b] অন্তরালে একান্বয়ী হলে

মোট ভেদ = V (f ; a, b) = | f(b) - f (a) |.

8.4.1 উদাহরণমালা

উদাহরণ 1 ঃ দেখান যে,

$$f(x) = x \sin \frac{1}{x}$$
, যখন $x \neq 0$
= 0, যখন $x = 0$

অপেক্ষকটি [0, 1] অন্তরালে সন্তুত হলে উক্ত অন্তরালে সীমিত ভেদযুক্ত অপেক্ষক নয়।

সমাধান ঃ যদি
$$\mathbf{P} = \left\{ 0, \frac{2}{(2n+1)\pi}, \frac{2}{(2n-1)\pi}, ..., \frac{2}{5\pi}, \frac{2}{3\pi}, 1 \right\}$$

বিভাজনটি পছন্দ করা হয় তবে

$$\sum_{r=1}^{n} |f(x_r) - f(x_{r-1})| = \left| f\left(\frac{2}{(2n+1)\pi}\right) - f(0) \right| + \left| f\left(\frac{2}{(2n-1)\pi}\right) - f\left(\frac{2}{(2n+1)\pi}\right) \right|$$
$$+ \dots + \left| f\left(\frac{2}{3\pi}\right) - f\left(\frac{2}{5\pi}\right) \right| + \left| f(1) - f\left(\frac{2}{3\pi}\right) \right|$$
$$= \frac{2}{(2n+1)\pi} + \left(\frac{2}{(2n-1)\pi} + \frac{2}{(2n+1)\pi}\right) + \dots + \left(\frac{2}{3\pi} + \frac{2}{5\pi}\right) + \left(\sin 1 + \frac{2}{3\pi}\right)$$
$$= \sin 1 + \frac{4}{\pi} \left(\frac{1}{3} + \frac{1}{5} + \dots + \frac{1}{2n-1} + \frac{1}{2n+1}\right)$$

এখন যদি n এর মান ক্রমাগত বৃদ্ধি করা যায় তবে $\frac{1}{3} + \frac{1}{5} + \dots + \frac{1}{2n+1}$ শ্রেণীটি $\frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \dots$ এই অসীম শ্রেণীতে পরিণত হয়, যা আমরা জানি অপসারী (Divergent)।

অতএব n-এর মান যথেষ্ট ভাবে বৃদ্ধি করলে $\sum\limits_{r=1}^n |f(x_r) - f(x_{r-1})|$ -এর যথেষ্ট পরিমাণে বৃদ্ধি প্রাপ্ত হয়। অর্থাৎ $V(f\ ;\ 0,\ 1)\ o \infty$ হয়।

অতএব f(x) ফাংশন [0, 1] অন্তরালে সীমিত ভেদযুক্ত অপেক্ষক নয়।

উদাহরণ 2 ঃ দেখান f(x) = [x] যখন [x] চিহ্নটি x অপেক্ষা বৃহত্তম নয় এমন বৃহত্তম পূর্ণসংখ্যাটিকে নির্দেশ করে, অপেক্ষকটি [0, 2] অন্তরালে অসন্তত হওয়া সত্ত্বেও উক্ত অন্তরালে সীমিত ভেদযুক্ত অপেক্ষক।

সমাধান ঃ এখানে f (x) = 0, যখন $0 \le x \le 1$

অপেক্ষকটি I ও 2 বিন্দুতে অসন্তত কারণ f (I – 0) = 0, f(1+0) = 1, f(I) = 1 অর্থাৎ f (1 – 0) ≠ f(I + 0) এবং f(2 – 0) = 1, f (2) = 2 অর্থাৎ f (2 – 0) ≠ f (2) এখন যদি আমরা [0, 2] অন্তরালটির বিভাজন নিম্নরূপ নিই

$$\left[x_0 = 0, x_1 = \frac{1}{k}, x_2 = \frac{2}{k}, \dots, x_{k-1} = \frac{k-1}{k}, x_k = \frac{k}{k} = 1, x_{k+1} = \frac{k+1}{k}, \dots, x_{2k} = \frac{2k}{k} = 2\right]$$

তাহলে

$$\begin{split} \sum_{r=1}^{2k} |f(x_r) - f(x_{r-1})| &= |f(x_1) - f(x_0)| + |f(x_2) - f(x_1)| + \dots + |f(x_k) - f(x_{k-1})| \\ &+ |f(x_{k+1}) - f(x_k)| + \dots + |f(x_{2k}) - f(x_{2k-1})| \\ &= \left| f\left(\frac{1}{k}\right) - f(0) \right| + \left| f\left(\frac{2}{k}\right) - f\left(\frac{1}{k}\right) \right| + \dots + \left| f(0) - f\left(\frac{k-1}{k}\right) \right| + \left| f\left(\frac{k+1}{k}\right) - f(0) \right| + \dots + \left| f(2) - f\left(\frac{2k-1}{k}\right) \right| \\ &= (0 - 0) + (0 - 0) + \dots + (1 - 0) + (1 - 1) + \dots + (2 - 1) \\ &= 2 \text{ of 4anistic arbs} \text{ arbs} \end{split}$$

অতএব প্রদত্ত অপেক্ষকটি একটি সীমিত ভেদযুক্ত অপেক্ষক।

8.4.2 সীমিত ভেদযুক্ত অপেক্ষক ও সীমাবদ্ধতা (Function of bounded variation & boundedness) :

উপপাদ্য 1 ঃ যদি [a, b] অন্তরালে f'(x) এর অস্তিত্ব থাকে এবং (a, b) অন্তরালে সীমাবদ্ধ (bounded) হয় তাহলে f(x) একই অন্তরালে সীমিত ভেদযুক্ত অপেক্ষক হয়।

প্রমাণ ঃ যেহেতু f'(x) অপেক্ষকটির [a, b] অন্তরালের সব বিন্দুতে অন্তিত্ব আছে এবং উক্ত অন্তরালে সীমাবদ্ধ অতএব f(x) অপেক্ষক [a, b] অন্তরালে সন্তত এবং | f' (x) | ≤ K, ∀x ∈ (a,b), K > 0 একটি সসীম সংখ্যা।

যদি P = {a = x₀, x₁, x₂, ..., x_n = b } যেকোন একটি বিভাজন হয় তবে তার যেকোন উপঅন্তরাল [x_{r=1}, x_r]-এ f(x)-এর উপর ল্যাগরাঞ্জের মধ্যমান উপপাদ্য প্রয়োগ করা যায়।

তখন
$$\mathbf{f}(\mathbf{x}_r) - \mathbf{f}(\mathbf{x}_{r-1}) = (\mathbf{x}_r - \mathbf{x}_{r-1}) \mathbf{f}'(\xi), \ \xi_r \in (\mathbf{x}_{r-1}, \ \mathbf{x}_r)$$

$$\therefore \sum_{r=1}^{n} \left| f(x_{r}) - f(x_{r-1}) \right| = \sum_{r} (x_{r} - x_{r-1}) \left| f'(\xi_{r}) \right|$$
$$\leq K \sum_{r} (x_{r} - x_{r-1}) \quad (উপরের শাতানুযায়ী)$$

অতএব f(x) অপেক্ষকটি [a, b] অন্তরালে সীমিত ভেদযুক্ত অপেক্ষক।

উপপাদ্য 2 ঃ যদি [a, b] অন্তরালে f(x) একটি সীমিত ভেদযুক্ত অপেক্ষক হয় তবে একই অন্তরালে অপেক্ষকটি সীমাবদ্ধ।

প্রমাণ ঃ যেহেতু [a, b] অন্তরালে f(x) একটি সীমিত ভেদযুক্ত অপেক্ষক, একটি ধনাত্মক সসীম সংখ্যা M পাওয়া যাবে যেখানে $\sum_r |f(x_r) - f(x_{r-1})| \le M$ হবে।

এখন যদি বিভাজনটি P = { $x_0 = a, x_1 = x, x_2 = b$ }, যখন $x \in (a, b)$ নেওয়া হয় তবে উপরোক্ত শর্তানুযায়ী

$$| f(x) - f(a) | + | f(b) - f(x) | ≤ M হয| (c) - c(c) + cM$$

$$\Rightarrow |f(\mathbf{x}) - f(\mathbf{a})| \le \mathbf{M}$$

$$\Rightarrow |f(x)| \le |f(a)| + M[|y-z| \ge |y| - |z|]$$

আবার x = a এবং x = b এর জন্যও এই অসমীকরণটি সত্য।

অতএব f (x) অপেক্ষক [a, b] অন্তরালে সীমাবদ্ধ।

8.4.3 সীমিত ভেদযুক্ত অপেক্ষকের কিছু সাধারণ ধর্ম (Some Fundamental properties of functions of bounded variations)

প্রমাণ ঃ [a, b] অন্তরালের যেকোন বিভাজন P = $\{a = x_0, x_1, x_2, ..., x_n = b\}$ -এর জন্য

$$\begin{split} V(P, f+g) &= \sum_{r=1}^{n} \left| \{f(x_{r}) + g(x_{r})\} - \{f(x_{r-1}) + g(x_{r-1})\} \right| \\ &\leq \sum_{r} ||f(x_{r}) - f(x_{r-1})| + \sum_{r} ||g(x_{r}) - g(x_{r-1})|| \\ &\leq \vee (f) + \vee (g) \qquad [\because |f \otimes g| \text{ becize };n, b] \text{ areasing allowed and we have a substance of the set of$$

]

সুতরাং f(x) + g(x) অপেক্ষক [a, b] অন্তরালে সীমিত ভেদযুক্ত অপেক্ষক।

অনুরূপে দেখান যায় যে f(x) – g(x) অপেক্ষকটিও [a, b] অন্তরালে সীমিত ভেদযুক্ত অপেক্ষক।

উপপাদ্য 2 : যদি [a, b] অন্তরালে f(x) ও g(x) সীমিত ভেদযুক্ত অপেক্ষক হয় তবে f(x), g(x) একই অন্তরালে সীমিত ভেদযুক্ত অপেক্ষক।

প্রমাণ ঃ যেহেতু f(x) ও g(x) অপেক্ষদ্বয় [a, b] অন্তরালে সীমিত ভেদযুক্ত অতএব একই অন্তরালে তারা উভয়েই সীমাবদ্ধ। সেইজন্য একটি ধনাত্মক সংখ্যা K পাওয়া যাবে যেখানে | f(x)| ≤ K এবং |g(x)|≤K ∀x ∈ [a, b]।

এখন, [a, b] অন্তরালের $P = \{a = x_0, x_1, x_2, ..., x_n = b\}$ বিভাজনের জন্য

$$\sum_{r=1}^{n} |f(x_{r})g(x_{r}) - f(x_{r-1})g(x_{r-1})|$$

সুতরাং f(x) এক্ষেত্রে সামত ভেদযুক্ত অপেক্ষক। উপপাদ্য 4 ঃ যদি [a, b] অন্তরালে f(x) সীমিত ভেদযুক্ত অপেক্ষক হয় এবং c∈[a, b] হয় তাহলে f(x)

$$\leq \frac{1}{k^2} \vee (f)$$
সতবাং $\frac{1}{c(1)}$ এক্ষেত্রে সীমিত ভেদযুক্ত আপক্ষক।

অপেক্ষক।

$$\begin{split} \sum_{r=1}^{n} \left| \frac{1}{f(x_{r})} - \frac{1}{f(x_{r-1})} \right| &= \sum_{r=1}^{n} \left| \frac{f(x_{r-1}) - f(x_{r})}{f(x_{r})f(x_{r-1})} \right| \\ &\leq \frac{1}{k^{2}} \sum_{r=1}^{n} \left| f(x_{r}) - f(x_{r-1}) \right|, (প্রদন্ত শতানুসারে) \\ &\leq \frac{1}{k^{2}} \lor (f) \end{split}$$

প্রমাণ ঃ [a, b] অন্তরালের যেকোন বিভাজন $P = \{a = x_0, x_1, ..., x_n, = b\}$ এর জন্য

ভেদযুক্ত হতে পারে না। উ**পপাদ্য 3 ঃ** যদি [a, b] অন্তরালে f(x) একটি সীমিত ভেদযুক্ত অপেক্ষক হয় এবং একটি ধনাত্মক সংখ্যা K পাওয়া যায় যার জন্য | f(x) | ≥ k হয় যখন x ∈ [a, b] তখন একই অন্তরাল [a, b] তে $\frac{1}{f(x)}$ সীমিত ভেদযুক্ত

সুতরাং f(x) g(x) অপেক্ষকটি সীমিত ভেদযুক্ত। **প্রান্তলিপি ঃ** দুটি সীমিত ভেদযুক্ত অপেক্ষক f(x) ও g(x)-এর ভাগফল f / g সবসময় সীমিত ভেদযুক্ত না হতে পারে। উদাহরণ স্বরূপ যদি c ∈ [a, b] এমন একটি বিন্দু যেখানে g(x) → 0 যেহেতু x → c হয়, তখন $\frac{1}{g(x)}$ অপেক্ষকটি x = c বিন্দুতে সীমাবদ্ধ থাকতে পারে না এবং সেই কারণে [a, b] অন্তরালে $\frac{1}{g(x)}$ আপেক্ষকটি সীমিত

$$\begin{split} \sum_{r=1}^{n} \left| f(x_{r}) \left\{ g(x_{r}) - g(x_{r-1}) \right\} + g(x_{r-1}) \left\{ f(x_{r}) - f(x_{r-1}) \right\} \right| \\ & \leq \sum_{r=1}^{n} \left\{ \left| f(x_{r}) \right| \left| g(x_{r}) - g(x_{r-1}) \right| + \left| g(x_{r-1}) \right| \right| f(x_{r}) - f(x_{r-1}) \right| \right\} \\ & \leq K \left\{ \sum_{r=1}^{n} \left| g(x_{r}) - g(x_{r-1}) \right| + \sum_{r=1}^{n} \left| f(x_{r}) - f(x_{r-1}) \right| \right\} \end{split}$$

অপেক্ষকটি [a, c] এবং [c, b] উভয় অন্তরালেই সীমিত ভেদযুক্ত অপেক্ষক, উপপাদ্যটি বিপরীতক্রমেও সত্য।

এছাড়াও $V_r(a, b) = V_r(a, c) + V_r(c, b)$

প্রমাণ ঃ ধরা যাক্ P = { a = $x_0, x_1, ..., x_{p-1}, x_p, x_m = c }$

যথাক্রমে [a, c] এবং [c, b] অন্তরালদ্বয়ের যেকোন দুটি বিভাজন।

অতএব, PUQ = {a = x_o, x₁, ..., x_m, y_o, y₁, ..., y_n = b } বিভাজনটি [a, b] অন্তরালের একটি বিভাজন। যেহেতু f(x) অপেক্ষক [a, b] অন্তরালে সীমিত ভেদযুক্ত,

खल्जव
$$\left\{\sum_{r=1}^{m} \left| f(x_{r}) - f(x_{r-1}) \right| + \sum_{r=1}^{n} \left| f(y_{r}) - f(y_{r-1}) \right| \right\} \le v_{r}(a, b)$$

$$\Rightarrow \sum_{r=1}^{m} \left| f(x_{r}) - f(x_{r-1}) \right| \le V_{r}(a, b)$$
अवर $\sum_{r=1}^{n} \left| f(y_{r}) - f(y_{r-1}) \right| \le V_{r}(a, b)$

সুতরাং f(x) অপেক্ষকটি [a, c] এবং [c, b] উভয় অন্তরালেই সীমিত ভেদযুক্ত।

বিপরীতক্রমে, ধরা যাক f(x) অপেক্ষকটি [a, c] এবং [c, b] উভয় অন্তরালেই সীমিত ভেদযুক্ত। তখন [a, b]-এর যেকোন বিভাজন ঃ

$$\mathbf{R} =$$
 { $\mathbf{a} = z_o, \ z_1, \ \dots, \ z_{r-1}, \ z_r, \ \dots, \ z_s = b$ }, $z_{r-1} \leq C \leq z_r$ এর জন্য

$$\begin{split} \sum_{i=1}^{s} \left| f(z_{i}) - f(z_{i-1}) \right| &= \sum_{i=1}^{r-1} \left| f(z_{i}) - f(z_{i-1}) \right| + \left| f(z_{r}) - f(z_{r-1}) \right| + \sum_{i=r+1}^{s} \left| f(z_{i}) - f(z_{i-1}) \right| \\ &\leq \left\{ \sum_{i=1}^{r-1} \left| f(z_{i}) - f(z_{i-1}) \right| + \left| f(c) - f(z_{r-1}) \right| \right\} \\ &+ \left\{ \left| f(z_{r}) - f(c) \right| + \sum_{i=r+1}^{s} \left| f(z_{i}) - f(z_{i-1}) \right| \right\} \end{split}$$

 $\leq V_{f} (a, c) + V_{f} (c, b)$ (i) (শর্তানুসারে)

সুতরাং f(x) অপেক্ষক [a, b] অন্তরালে সীমিত ভেদযুক্ত। অর্থাৎ f(x) অপেক্ষক [a, c] এবং [c, b] উভয় অন্তরালে সীমিত ভেদযুক্ত হলে অপেক্ষকটি [a, b] অন্তরালে সীমিত ভেদযুক্ত হয়।

আবার উপরোক্ত (i) থেকে এটি পরিষ্কার—

$$V_{f}(a, b) \leq V_{f}(a, c) + V_{f}(c, b)$$
 (ii)

যেহেতু V_f (a, c) = sup V (p, f) এবং V_f (c, b) = Sup V (Q, f), যেখানে P ও Q বিভাজনদ্বয় প্রমাণের প্রথম অংশে বর্ণিত, অতএব সংজ্ঞানুযায়ী খুশীমত ছোট একটি ধনাত্মক সংখ্যা হ পাওয়া যাবে যা

অতএব (iii) নং 3(iv) নং থেকে পাওয়া যায়

$$\begin{split} \sum_{r=1}^{m} \left| f(x_{r}) - f(x_{r-1}) \right| + \sum_{r=1}^{n} \left| f(y_{r}) - f(y_{r-1}) \right| \\ & > V_{f}(a, c) + V_{f}(c, b) - \epsilon \end{split}$$

 $\Rightarrow V_{f}\left(a,\,b\right) \geq V_{f}\left(a,\,c\right) + V_{f}\left(c,\,b\right) - \epsilon$

যেহেতু হ সংখ্যাটি যেমন খুশী (ছোট ধনাত্মক) সংখ্যা, অতএব

$$V_{f}(a, b) \geq V_{f}(a, c) + V_{f}(a, c) + V_{f}(c, b) \qquad (v)$$

অতএব (ii) এবং (v) থেকে মন্তব্য করা যায়

 $V_{f}(a, b) = V_{f}(a, c) + V_{f}(c, b)$

8.4.4 উদাহরণমালা

উদাহরণমালা 1 ঃ দেখান যে $f(x)=\mid x\mid$ ফাংশনটি [$-1,\ l$] অন্তরালে সীমিত ভেদযুক্ত। সমাধান ঃ এখানে f(x)=-x যখন $-l\leq x<0$

এখন যদি [–1, 1] অন্তরালটিকে [–1, 0], [0, 1] অন্তরালদ্বয়ে ভেঙে নেওয়া যায় তাহলে দেখা যায় [–1, 0] অন্তরালে f(x) ক্রমক্ষীয়মাণ বলে ঐ অন্তরালে সীমিত ভেদযুক্ত; আবার [0, 1] অন্তরালে f(x) ক্রমবর্ধমান বলে ঐ অন্তরালে সীমিত ভেদযুক্ত। সুতরাং f(x) অপেক্ষক [–1, 0] এবং [0, 1] এই উভয় অন্তরালদ্বয়েরই সীমিত ভেদযুক্ত বলে [–1, 1] অন্তরালে সীমিত ভেদযুক্ত।

উদাহরণ 2 ঃ দেখান যে
$$\mathrm{f}(\mathrm{x})=||\mathrm{x}|+\mathrm{x}$$
 ফাংশনটি $[|-1,|1]$ অন্তরালে সীমিত ভেদযুক্ত

সমাধান ঃ ধরা যাক g(x) = |x| এবং h(x) = x; তাহলে f(x) = g(x) + h(x)

উদাহরণ - 1 অনুযায়ী g(x) = |x| ফাংশন [-1,1] অন্তরালে সীমিত ভেদযুক্ত। আবার h(x) = x ফাংশনটি [-1,1] অন্তরালে ক্রমবর্ধমান বলে ঐ অন্তরালে সীমিত ভেদযুক্ত। সুতরাং g(x), h(x) উভয়েই একই অন্তরাল [-1, 1] তে সীমিত ভেদযুক্ত বলে তাদের সমষ্টি f(x) অপেক্ষকও [-1, 1] অন্তরালে সীমিত ভেদযুক্ত।

8.4.5 ভেদযুক্ত অপেক্ষক (Variation function)

যদি [a, b] অন্তরালে f(x) সীমিত ভেদযুক্ত অপেক্ষক হয় এবং $x \in (a, b)$ হয় তবে [a, x] অন্তরালে f(x)-এর মোট ভেদ $V_r(a, x)$ একটি x-এর অপেক্ষক হয় এবং এটিকে মোট **ভেদযুক্ত অপেক্ষক** বা সহজভাবে ভেদযুক্ত অপেক্ষক (Total Variation function or Variation function) বলে। এটিকে $\vartheta_r(x)$ বা $\vartheta(x)$ দ্বারাও প্রকাশ করা হয়।

উপপাদ্য 1 ঃ যদি [a, b] অন্তরালে f(x) সীমিত ভেদযুক্ত অপেক্ষক হয় এবং 9(x) = V_r(a, x) যখন $a < x \le b, \ 9(a) = 0$ তাহলে (i) v(x) অপেক্ষক [a, b] অন্তরালে ক্রমবর্ধমান।

(ii) $\vartheta(x) - f(x)$ অপেক্ষক [a, b] অন্তরালে ক্রমবর্ধমান।

প্রমাণ : (i) যদি $a < x < y \le b$ নেওয়া যায় তাহলে,

$$V_{f}(a, y) = V_{f}(a, x) + V_{f}(x, y)$$
 হয়।
বা, $V_{f}(a, y) - V_{f}(a, x) = V_{f}(x, y)$ হয়।
বা, $v(y) - v(x) = V_{f}(x, y) ≥ o$ হয়।

সুতরাং $\vartheta(y) \ge \vartheta(x)$ যখন $y \ge x$

 $\Rightarrow artheta({
m x})$ অপেক্ষক [a, b] অন্তরালে ক্রমবর্ধমান ৷

(ii) ধরা যাক U(x) = v(x) - f(x), যখন $X \in [a, b]$

তাহলে $a \le x \le y \le b$ -এর জন্য

$$\begin{split} u(y) - u(x) &= \{ \vartheta(y) - f(y) \} - \{ \vartheta(x) - f(x) \} \\ &= \{ \vartheta(y) - \vartheta(x) \} - \{ f(y) - f(x) \} \\ &= V_f(x, y) - \{ f(y) - f(x) \} \\ &\geq 0, \qquad [\because সংজ্ঞা থেকে f(y) - f(x) \le V_f(x, y)] \end{split}$$

অতএব $u(y) \ge u(x)$ যথন $y \ge x$

 \Rightarrow u(x) = v(x) - f(x) একটি [a, b] তে ক্রমবর্ধমান অপেক্ষক।

উপপাদ্য 2 ঃ যদি f(x) অপেক্ষক [a, b] অন্তরালে সংজ্ঞায়িত হয় তাহলে f(x) অপেক্ষকটি [a, b] অন্তরালে সীমিত ভেদযুক্ত অপেক্ষক হবে, যদি এবং কেবলমাত্র যদি, f(x) কে দুটি ক্রমবর্ধমান অপেক্ষকের বিয়োগফলরূপে প্রকাশ করা যায়।

প্রমাণ ঃ যদি f(x) অপেক্ষক [a, b] তে অন্তরালে সীমিত ভেদযুক্ত হয় তবে, উপপাদ্য - 1 অনুযায়ী

$$u(x) = \vartheta(x) - f(x) \dots (i)$$

$$\Rightarrow f(x) = \vartheta(x) - u(x)$$

আবার একই উপপাদ্যে প্রমাণ করা হচ্ছে 9(x) এবং u(x) উভয়েই [a,b] অন্তরালে ক্রমবর্ধমান। সুতরাং যদি অংশটি প্রমাণিত হল।

আবার যেহেতু u(x), $\vartheta(x)$ উভয়েই [a, b] তে একান্বয়ী অপেক্ষক, তারা একই অন্তরালে সীমিত ভেদযুক্ত অপেক্ষক এবং দুটি সীমিত ভেদযুক্ত অপেক্ষকের বিয়োগ ফলও সীমিত ভেদযুক্ত অপেক্ষক। সুতরাং f(x) = $\vartheta(x) - u(x)$ এইরূপ দুটি ক্রমবর্ধমান অপেক্ষকের বিয়োগ ফলরূপে লেখা যায় ধরে নিলেও উপরোক্ত কারণে f(x) অপেক্ষকটি [a, b] অন্তরালে সীমিত ভেদযুক্ত অপেক্ষক হয়। অতএব 'কেবলমাত্র' যদি অংশটিও প্রমাণিত হল।

8.4.6 সন্তত অপেক্ষকের ভেদযুক্ত অপেক্ষক (Variation function of a continuous function)

আমরা এখন একটি উপপাদ্যের সাহায্যে প্রমাণ করে দেখাব যে একটি সন্তত সীমিত ভেদযুক্ত অপেক্ষকের ভেদযুক্ত অপেক্ষক নিজেও সন্তত হয় এবং এটি বিপরীত ক্রমেও সত্য।

উপপাদ্য 1 ঃ কোন অন্তরালে সীমিত ভেদযুক্ত অপেক্ষক f(x)-এর ভেদযুক্ত অপেক্ষক সন্তত হবে যদি এবং কেবলমাত্র যদি f(x) উক্ত অন্তরালে সন্তুত হয়। প্রমাণ ঃ যদি ধরা হয় [a, b] অন্তরালে f(x) সীমিত ভেদযুক্ত অপেক্ষক এবং যে কোন একটি বিন্দু $C \in [a, b]$ তে f(x) এর ভেদযুক্ত অপেক্ষক $\vartheta(x)$ সন্তত তবে $\varepsilon = \delta$ সংজ্ঞা অনুযায়ী লেখা যায়

 $| \vartheta(x) - \vartheta(c) | < \epsilon$ यथन $| x - c | < \delta$ (i)

[ε > 0, δ > 0 সাধারণ অর্থে ব্যবহৃত]

আবার [a, b] অন্তরালের যেকোন দুটি বিন্দু $x_1, x_2 (x_2 > x_1)$ এর জন্য $0 \le |f(x_2) - f(x_1)| \le V_f(x_1, x_2)|$ $= 9(x_2) - 9(x_1)$ (ii) সুতরাং | f(x) - f(c) | $\le 9(x) - v(c)$ যখন x > c

এবং $\mid f(x) - f(c) \mid \leq \vartheta(c) - \vartheta(x)$ যখন x < c

এখন (i) ও (ii) থেকে পাওয়া গেল,

 $|f(x) - f(c)| \le \epsilon$ যখন $|x - c| \le \delta$

অর্থাৎ f(x) অপেক্ষক C বিন্দুতে সন্তত। 'প্রয়োজনীয়' অংশটি প্রমাণিত হল।

'যথেষ্ট' অংশটি প্রমাণের জন্য ধরা যাক f(x) ফাংশনটি C বিন্দুতে সন্তত (C যেকোন একটি বিন্দু)। অতএব খুশীমত বেছে নেওয়া সংখ্যা $\varepsilon > 0$ এর জন্য $\delta > 0$ পাওয়া যাবে যারা $|f(x) - f(c)| < \frac{1}{2}\varepsilon$, $|x - c| < \delta$ সম্পর্কগুলি সিদ্ধ করে।

আবার [c, b] অন্তরালের P = { c = $x_0, x_1, ..., x_n = b$ } বিভাজনের জন্য

$$\sum_{r=1}^{n} |f(x_{r}) - f(x_{r-1})| > V_{f}(c, b) - \frac{1}{2}\varepsilon$$
(iii)

লেখা যায় যেখানে $V_f^{}(c,\,b)$ হল $[c,\,b]$ অন্তরালে f(x) এর মোট ভেদ।

যেহেতু কোন বিভাজনের কিছু বাড়তি বিন্দু যোগ করলে $\sum_{f} |f(x_{r}) - f(x_{r-1})|_{-2}$ র মান কমে না, আমরা P-কে এমন ভাবে নিতে পারি যাতে $0 < x_{1} - c < \delta$ হয় ফলে

 $| \mathbf{f}(\mathbf{x}_1) - \mathbf{f}(\mathbf{c}) | < \frac{1}{2} \epsilon \dots (iv)$ হয়।

এখন (iii) নং এ (iv) নং অসমীকরণটি কাজে লাগিয়ে পাওয়া যায়

$$\begin{split} V_{f}\left(c,b\right) - \frac{1}{2}\epsilon < \frac{1}{2}\epsilon + \sum_{r=2}^{n} |f(x_{r}) - f(x_{r-1})| &\leq \frac{1}{2}\epsilon + V_{f}\left(x_{1},b\right) \\ \Rightarrow V_{f}\left(c,b\right) - V_{f}\left(x_{1},b\right) < \epsilon \\ \Rightarrow V_{f}\left(c,x_{1}\right) < \epsilon \\ & \exists \forall f (c,x_{1}) < \epsilon \\ & \exists \forall f (c,x_{1}) = V_{f}\left(a,x_{1}\right) - v_{f}\left(a,c\right) \\ & = \vartheta(x_{1}) - \vartheta(c) \\ & \forall \forall f = 0 < x_{1} - c < \delta \\ & \exists t, -\epsilon < 0 < \vartheta(x_{1}) - \vartheta(c) < \epsilon \qquad \forall \forall f = 0 < x_{1} - c < \delta \\ & \exists t, |\vartheta(x_{1}) - \vartheta(c)| < \epsilon \qquad \forall \forall f = 0 < x_{1} - c < \delta \\ & \exists t, |\vartheta(x_{1}) - \vartheta(c)| < \epsilon \qquad \forall \forall f = 0 < x_{1} - c < \delta \\ & \exists t, |\vartheta(x_{1}) - \vartheta(c)| < \epsilon \qquad \forall \forall f = c < x_{1} < c + \delta \\ & \Rightarrow \lim_{x \to c^{+}} v(x) = v(c) \end{split}$$

অনুরূপভাবে দেখান যায় যে

$$\lim_{x\to c^-} \vartheta(x) = \vartheta(c)$$

অতএব মন্তব্য করা যায[d,s]∋ '্রাপেক্ষকটি C বিন্দুতে সন্তত। যেহেতু যেকোন একটি বিন্দু ঀ(x) অপেক্ষক [a, b] অন্তরালে সন্তত।

প্রান্তলিপি ঃ 8.4.6 অনুচ্ছেদের উপপাদ্য 1 এবং 8.4.5 অনুচ্ছেদের উপপাদ্য 2-কে একত্রিত করলে আমরা নিম্নলিখিত সিদ্ধান্তে উপনীত হতে পারি :

যদি f(x) অপেক্ষক [a, b] অন্তরালে সন্তত হয় তবে f(x) কে [a, b] অন্তরালে সীমিত ভেদযুক্ত অপেক্ষক বলা যাবে যদি এবং কেবলমাত্র যদি f(x) কে দুটি ক্রমবর্ধমান সন্তত অপেক্ষকের বিয়োগফলরূপে প্রকাশ করা যায়।

8.5 সারাংশ

(i) এই এককে প্রস্তাবনা এবং উদ্দেশ্যের পরে ক্রমবর্ধমান, ক্রমক্ষীয়মান ও একান্বয়ী অপেক্ষকের সংজ্ঞা এবং
 তার উদাহরণ দেওয়া হয়েছে।

এরপরে একান্বয়ী ফাংশনের লিমিট, সন্ততা, অবকল, চরম ও অবম মান বিষয়ক বিভিন্ন উপপাদ্য প্রমাণ করা হয়েছে এবং প্রয়োজনে উদাহরণ সহযোগে তাহাদের যথার্থতা দেখান হয়েছে। (ii) এই এককের দ্বিতীয় অংশের প্রথমে সীমিত ভেদযুক্ত অপেক্ষক সম্বন্ধীয় বিভিন্ন সংজ্ঞা, উপপাদ্য ও উদাহরণ আছে।

পরে সীমিত ভেদযুক্ত অপেক্ষকের সীমাবদ্ধতা ও সাধারণ ধর্ম সম্বন্ধীয় কিছু উপপাদ্যের প্রমাণ করা হয়েছে এবং এগুলির প্রয়োগ বিষয়ক কিছু উদাহরণ দেওয়া হয়েছে। এছাড়াও ভেদযুক্ত অপেক্ষক এবং সন্তত অপেক্ষকের ভেদযুক্ত অপেক্ষক বিষয়ক কিছু উপপাদ্যের প্রমাণও করা হয়েছে।

(iii) শেষে আছে প্রশ্নাবলি, উত্তরমালা ও সহায়কগ্রন্থাবলীর বিবরণ।

8.6 সর্বশেষ প্রশ্নাবলি

 দেখান যে sin x ফাংশনটি [-π/2, π/2] অন্তরালে ক্রমবর্ধমান এবং cos x ফাংশনটি [0, π] অন্তরালে ক্রমক্ষীয়মান। এগুলি কি যথাক্রমে নিজ নিজ অন্তরালে যথাযথভাবে ক্রমবর্ধমান এবং যথাযথভাবে ক্রমক্ষীয়মান?

2. দেখান যে
$$\mathbf{x} > 0$$
 হলে $\mathbf{f}(\mathbf{x}) = \left(1 + rac{1}{x}
ight)^{\mathbf{x}}$ ক্রমবর্ধমান।

- 3. x-এর কোন কোন মানরে জন্য $x^3 9x^2 + 24x + 1$ ক্রমক্ষীয়মান ?
- একাম্বয়ী ফাংশনের ধর্ম কাজে লাগিয়ে দেখান যে f(x) = x² ফাংশনটির [1, 1] অন্তরালে চরম বা অবম মান আছে।
- 5. দেখান যে f(x) = x² ফাংশনটি [-1, 1] অন্তরালে সীমিত ভেদযুক্ত অপেক্ষক।
- 6. দেখান যে $f(x) = x \cos\left(rac{\pi}{2x}
 ight)$ যখন $x \neq 0, f(0) = 0$ ফাংশনটি [0, 1] বিন্দুতে সন্তত কিন্তু সীমিত ভেদযুক্ত নয়।
- 7. $\overline{\text{the } f(x)} = \frac{1}{2^n}, \ \overline{\text{ter}} = \frac{1}{2^{n+1}}, \ \overline{\text{ter}} = \frac{1}{2^{n+1}}, \ (n = 0, 1, 2, ...)$

= 0, যখন x = 0

হয় তবে দেখান যে f(x) ফাংশনটি [$0,\,1$] অন্তরালে সীমিত ভেদযুক্ত অপেক্ষক। উক্ত অন্তরালে তার মোট ভেদ নির্ণয় করুন।

8. দেখান যে
$$f(x) = \sqrt{x} \cos \frac{1}{x}$$
, যখন $x \neq 0$

9. $f(x) = x^2 \sin \frac{1}{x}$ যখন $x \neq 0$

8.6.1 উত্তরমালা (সংকেত সহ)

অন্তরালে যথাযথভাবে ক্রমবর্ধমান।

 $a^n - 1 \ge n \ (a - 1)$ যখন $a \ge 0$ এবং $n \ge 1$

 $\left(1 + \frac{1}{x_2}\right)^{\frac{x_2}{x_1}} - 1 > \frac{x_2}{x_1} \left(1 + \frac{1}{x_2} - 1\right)$

অনুরূপে f(x) = cos x ফাংশনটির জন্য যুক্তি প্রয়োগ করা যায়।

10.

1.

2.

= 0য় যথন x = 0

হলে, অপেক্ষকটি [0, **1**] অন্তরালে সীমিত ভেদযুক্ত নয়।

$$=0$$
, 444 x $=0$

$$=0$$
, 444 x $=0$

$$< x \le 1$$

হয় তবে দেখান যে $[0,\,2\,\,]$ অন্তরালে f(x) সীমিত ভেদযুক্ত এবং $V_f^{-}(0,\,2)$ এর মান নির্ণয় করুন।

 $f(x) = \sin x$ ধরলে $f'(x) = \cos x$ হয়। এই f(x) ফাংশনটি $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ অন্তরালে সন্তুত এবং

 ${f f}$ (x)-এর মান উক্ত অন্তরালের সকল বিন্দুতেই ধনাত্মক, সেই কারণে $\sin x$ ফাংশনটি $\left[-rac{\pi}{2}\,,\,\,rac{\pi}{2}
ight]$

 $0 < x_1 < x_2$ এর জন্য, $a = l + rac{l}{x_2}$ এবং $n = rac{x_2}{x_1}$ উপরোক্ত অসীমকরণে বসিয়ে পাই

152

= 4 যখন x = 2

$$= 5 \quad \text{AAM} \quad 0 < X \leq 1$$

$$= 5 \, \text{dam} \quad 0 < x \leq 1$$

$$= 5 \quad \text{Algebra} \quad 0 < x \leq 1$$

$$- \mathbf{J} \mathbf{N} \mathbf{H} \mathbf{U} \mathbf{X} \mathbf{X} \mathbf{X}$$

$$- \int \sqrt{2} \sqrt{2} = 0$$

$$-5 \text{ MM} \quad 0 \le X \le 1$$

= 5 যখন
$$0 < x \leq$$

= 5 যখন
$$0 < x \leq$$

5 যখন
$$0 < x \leq$$

= 5 यथन
$$0 < x \leq$$

$$= 5$$
 यथन $0 < x \leq 1$

5 যখন
$$0 \le x \le 1$$

$$x = 0$$

$$\mathbf{A}\mathbf{A}\mathbf{A} \quad \mathbf{X} = \mathbf{U}$$

যদি
$$f(x) = 2$$
 যখন $x = 0$

$$-2 \quad \text{NM} \quad \mathbf{X} = \mathbf{0}$$

= 0 যথন x = 0

ফাংশনটি [0, 1] অন্তরালে সীমিত ভেদযুক্ত প্রমাণ করুন।

5 যখন
$$0 < x \leq$$

5 যখন
$$0 < x \leq$$

5 যখন
$$0 < x \leq$$

= 5 যখন
$$0 < x \leq$$

$$= 5$$
 যখন $0 < x \leq$

= 5 यथन
$$0 < x \leq$$

= 5 यथन
$$0 < x \leq$$

= 5 यथन
$$0 < x \leq$$

$$\overline{\operatorname{Al}}, \, \left(\mathbf{l} + \frac{1}{x_2}\right)^{\frac{x_2}{x_1}} > \left(\mathbf{l} + \frac{1}{x_2}\right) \Longrightarrow \left(\mathbf{l} + \frac{1}{x_2}\right)^{x_2} > \left(\mathbf{l} + \frac{1}{x_1}\right)^{x_1}$$

- f(x) = x³ 9x² + 24x + 1 ধরে f'(x) = 3x² 18x + 24 = 3(x 2) (x 4) ; f'(x) < 0
 হতে হলে 2 < x < 4 হতে হবে। যেহেতু (2, 4) অন্তরালে f(x) সন্তত এবং f'(x) < 0 অতএব এই
 অন্তরালে f(x) যথাযথভাবে ক্রমক্ষীয়মান।
- 4. $f(x) = x^2$ ফাংশনটি [-1, 1] অন্তরালে সন্তত। কিন্তু [-1, 0] অন্তরালে $f'(x) = 2x \le 0$ বলে f(x)ক্রমক্ষীয়মান এবং [0, 1] অন্তরালে $f'(x) = 2x \ge 0$ বলে f(x) ক্রমবর্ধমান অতএব [-1, 1] অন্তরালে f(x) একান্বয়ী নয়। অতএব [-1, 1] অন্তরালে f(x) এর চরম অথবা অবম মান আছে।
- 5. 4নং অস্কের ব্যাখ্যা অনুযায়ী f(x), [-1, 0] অন্তরালে ক্রমক্ষীয়মান বলে ঐ অন্তরালে f(x) সীমিত ভেদযুক্ত আবার [0, 1] অন্তরালে ক্রমবর্ধমান বলে সেখানেও f(x) সীমিত ভেদযুক্ত। অতএব [-1, 0]^U [0,1]
 = [-1, 1] অন্তরালে f(x) সীমিত ভেদযুক্ত।
- 6. ফাংশনটি যে সন্তত তার প্রমাণ নিজে করুন। ফাংশনটি সীমিত ভেদ যুক্ত নয় প্রমাণের জন্য

$$P = \left\{ \begin{array}{l} 0, \ \frac{1}{2n}, \ \frac{1}{2n-1}, \dots, \frac{1}{3}, \ \frac{1}{2}, \ 1 \end{array} \right\}$$
 বিভাজনটি কাজে লাগিয়ে
$$\sum_{r=1}^{2n} |f(x_r) - f(x_{r-1})| = \frac{1}{2n} + \frac{1}{2n} + \frac{1}{2n-2} + \dots + \frac{1}{2} + \frac{1}{2} = 1 + \frac{1}{2} + \dots + \frac{1}{n} \quad \text{alb} \quad \text{apb}$$
 একটি অপসারী শ্রেণী বলে n-এর সকলমানের জন্য সীমাবদ্ধ নয়। সুতরাং প্রমাণিত হল।

এখানে [0, 1] এর প্রত্যেকটি উপঅন্তরাল $\left[\frac{1}{2},1
ight], \left[\frac{1}{2^2},\ \frac{1}{2}
ight], ... কে যদি [k-1]টি বিন্দুর দ্বারা$ বিভাজিত করা হয় এবং উক্ত বিভাজনকে P বলা হয় তবে

$$V(p; f) = \sum_{r} |f(x_{r}) - f(x_{r-1})| = \left|\frac{1}{2} - 1\right| + \left|\frac{1}{2^{2}} - \frac{1}{2}\right| + \dots + \left|\frac{1}{2^{n+1}} - \frac{1}{2^{n}}\right| + \dots$$
$$= \frac{1}{2} + \frac{1}{2^{2}} + \dots + \frac{1}{2^{n+1}} + \dots = \frac{1}{2^{N}}$$

কারণ $\left(\frac{1}{2}, 1\right)$, $\left(\frac{1}{2}, \frac{1}{2}\right)$, ... ইত্যাদি অন্তরালগুলির প্রত্যেকটিতেই f(x)-এর মান অপরিবর্তিত থাকছে বলে V(p, f)-তে ঐ অংশগুলির জন্য অবদান শূন্য কিন্তু $\frac{1}{2}$, $\frac{1}{2^{n}}$, ... বিন্দুগুলিতে f(x) এর স্ফীতি (jump) যুক্ত অসন্ততি থাকায় উক্ত অন্তরালগুলির বিভাজনের প্রান্তবিন্দু সংলগ্ন উপঅন্তরালগুলির জন্য অবদান $\frac{1}{2}$, $\frac{1}{2^{2}}$, ... ইত্যাদি হবে। এখন $\frac{1}{2} + \frac{1}{2^{2}} + ... + \frac{1}{2^{n+1}}$... শ্রেণীটি অভিসারী এবং এটির নাম $\frac{1}{2} \cdot \frac{1}{1-\frac{1}{2}} = 1$, সসীম বলে f(x)

প্রদত্ত অন্তরালে সীমিত ভেদযুক্ত এবং মোট ভেদ = 1

8. এখন $\mathbf{f}(\mathbf{x})$ ফাংশন $[0,\ 1\]$ অন্তরালে সন্তত। $\mathbf{f}'(0)=0,\ \mathbf{x}
eq 0$ এর জন্য

f'(x) = $\frac{1}{2\sqrt{x}}\cos\frac{1}{x} + \frac{\sqrt{x}}{x^2}\sin\frac{1}{x} = \frac{1}{\sqrt{x}}\left(\frac{1}{2}\cos\frac{1}{x} + \frac{1}{x}\sin\frac{1}{x}\right)$ এটি 0-এর নিকটবর্তী ধনাত্মক বিন্দুগুলিতে সীমাবদ্ধ নয়, সেই কারণে উপপাদ্য - 1 অনুযায়ী f(x) প্রদন্ত অন্তরালে সীমিত ভেদযুক্ত অপেক্ষক নয়।

9. [0, 1] অন্তরালে $\mathbf{f}'(\mathbf{x})$ সন্তত। $\mathbf{f}'(0) = 0, \ \mathbf{x} \neq 0$ -এর জন্য

 $\mathbf{f}'(\mathbf{x}) = 2\mathbf{x} \sin \frac{1}{\mathbf{x}} - \cos \frac{1}{\mathbf{x}} \Rightarrow |\mathbf{f}'(\mathbf{x})| \le 3 \qquad \forall \mathbf{x} \in [0, 1]$ অর্থাৎ $\mathbf{f}'(\mathbf{x})$ সীমাবদ্ধ। সুতরাং $\mathbf{f}(\mathbf{x})$ সীমিত ভেদযুক্ত।

 যদি [0, 1] এবং [1, 2] উপঅন্তরালদুটির প্রত্যেকটিকেই Kটি উপঅন্তরালে বিভাজিত করা হয় [8.4.1 অনুচ্ছেদের উদাহরণ 2 এর অনুরূপ]

তবে $\sum_{r=1}^{2k} |f(x_r) - f(x_{r-1})| = |5-2| + |3-5| + |4-3| = 3+2+1 = 6$, সঙ্গীম। যেহেতু এটি ধ্রুবক অতএব V_f (0, 2) = 6

8.7 সহায়ক গ্রন্থাবলী

- 1. Tom M. Apostol Mathematical Analysis.
- 2. S. K. Mapa Introduction to Real Analysis.
- 3. A. Gupta Introduction to Mathematical Analysis.

একক 9 🗅 বিপরীত ফাংশন, ত্রিকোণমিতির বিপরীত ফাংশন সমূহ, e^x, log_e^x, a^x

গঠন 9.1 প্রস্তাবনা 9.2 উদ্দেশ্য 9.3 কতিপয় সংজ্ঞা বিপরীত ফাংশন ও কিছু উপপাদ্য 9.4 9.5 বিপরীত ফাংশন ও সন্ততা উদাহরণমালা 9.5.1 শ্রেণীর মাধ্যমে e^x, a^x, sin x, cos x এর প্রকাশ 9.6 Sin x ও cos x এর কিছু ধর্ম ও সূত্র 9.6.1 সমাকলের মাধ্যমে arc sin x, arc cos x এর সংজ্ঞা 9.7 9.7.1 প্রান্তলিপি 9.7.2 (괜히র মাধ্যমে sin⁻¹ x, tan⁻¹ x এর প্রকাশ লগারিদম ও সূচক ফাংশন $\log_a x$ (= logx), e^x , a^x 9.8 9.8.1 log x এর সংজ্ঞা ও কিছু ধর্ম 9.8.2 expx বা e^x এর সংজ্ঞা ও কিছু ধর্ম 9.8.3 a^x এর সংজ্ঞা ও কিছু ধর্ম 9.8.4 উদাহরণমালা হাই-পারবোলিক ফাংশনসমূহ 9.9 কয়েকটি সূত্র (হাই-পারবোলিক ফাংশনের) 9.9.1 9.10 সারাংশ সর্বশেষ প্রশ্নাবলি 9.11 উত্তরমালা (সংকেত সহ) 9.12

সহায়ক গ্রন্থাবলী

9.13

9.1 প্রস্তাবনা

এই এককে প্রথমে আমরা ম্যাপিং বা ফাংশনের ধারণা এবং বিপরীত ফাংশনের ধারণা দেব। তারপরে বিভিন্ন অনুচ্ছেদে বাস্তব সংখ্যার সেট R-এর বিভিন্ন উপসেটকে সংজ্ঞাঞ্চল (domain) ধরে এইরকম কিছু ফাংশনের সংজ্ঞা দেব ও তাদের ধর্ম নিয়ে আলোচনা করব।

9.2 উদ্দেশ্য

এই এককটি পড়ে আপনি

- ম্যাপিং বা ফাংশন এবং বিপরীত ফাংশনের ধারণা পাবেন।
- বিপরীত ফাংশন সম্পর্কিত বেশ কয়েকটি উপপাদ্যের প্রমাণ সম্বন্ধে অবহিত হবেন, যেগুলি বিপরীত ফাংশনের অস্তিত্ব, একাম্বয়ীতা, সন্ততা ইত্যাদির ধারণা দেবে।
- সমাকলের সাহায্যে ও শ্রেণীর সাহায্যে বেশ কয়েকটি ফাংশনের সংজ্ঞা ও সেগুলির সাহায্যে বেশ কিছু সূত্রের প্রমাণ জানতে পারবেন।
- 🔹 ফাংশনগুলি যে শ্রেণীগুলির মাধ্যমে প্রকাশ করা হয়েছে সেগুলির অভিসারিতা সম্বন্ধেও জ্ঞাত হবেন।

9.3 কতিপয় সংজ্ঞা

ধরা যাক এখানে ব্যবহৃত A, B, C, D সেটগুলি খালি নয় এমন।

(i) ম্যাপিং বা ফাংশন ঃ যদি কোন নিয়ম (rule) f(x)-এর মাধ্যমে A সেটের প্রত্যেকটি মানের জন্য B সেটের কেবলমাত্র একটি (unique) মান পাওয়া যায় তাহলে f(x)-কে ফাংশন বলা হয় এবং তাকে f : A → B এইভাবে প্রকাশ করা হয়।

A সেটকে f(x)-এর সংজ্ঞাঞ্চল (domain) এবং {f(x): x ∈ A } ⊆ B সেটকে f(x)-এর বিস্তার (range) বলা হয়।

A সেটের কোন একটি মান x-এর জন্য f(x)-এর মাধ্যমে B সেটের কেবলমাত্র মানটি যদি y হয় তবে এই y কে x-এর বিম্ব (image) এবং x-কে y-এর প্রাক্বিম্ব (pre-image) বলে।

উদাহরণ ঃ যদি f(x) = 2x + 1 যখন x ∈ z (সকল পূর্ণসংখ্যার সেট) হয় তাহলে f : z → z বলা যায়, কারণ Z-এর প্রত্যেকটি মানের জন্য f(x)-এর মাধ্যমে Z-এর কেবলমাত্র একটি মান পাওয়া যায়। এখানে f(z) সকল অযুগ্ম পূর্ণসংখ্যাগুলিকে সূচিত করে, সেইজন্য {f(x) : x ∈ z} ⊂ z ; অতএব এখানে Z হল f(x) -এর সংজ্ঞাঞ্চল এবং {f(x) : x ∈ z} সেটটি f(x)-এর বিস্তার।

(ii) ইনজেকটিভ বা এক-এক ফাংশন (Injective or one to one mapping) ঃ

একটি ফাংশন f : A → B কে ইনজেকটিভ বা এক-এক ফাংশন বলা হবে যদি A-এর যেকোন দুটি অসমান মান $x_1, \, x_2$ এর জন্য f($x_1), \,$ f(x_2) উভয়েই B-এর সদস্য হয় এবং f($x_1) \neq$ f(x_2) হয়।

(iii) সারজেকটিভ ফাংশন (Surjective or on to mapping) — ঃ

একটি ফাংশন f : A → B কে সারজেকটিভ বলা হবে যদি f(A) = B হয়।

(iv) বাইজেকটিভ ফাংশন (Bijective mapping) ঃ যদি একটি ফাংশন f : A → B একসঙ্গে ইনজেকটিভ এবং সারজেকটিভ (one-one onto) হয় তবে f-কে বাইজেকটিভ বলা হয়।

উদাহরণ 1 ঃ যদি $f(n) = n - (-1)^n$; $\forall n \in N$ (সকল স্বাভাবিক সংখ্যার সেট) হয় তাহলে $f : N \rightarrow N$ ফাংশনটি ইনেজকটিভ এবং সারজেকটিভ হয় কারণ যেকোন দুটি আলাদা স্বাভাবিক সংখ্যা n_1 ও n_2 -এর জন্য এখানে $f(n_1) \neq f(n_2)$ হয় এবং $\{f(n)\} = N$ অর্থাৎ f(N) = N হয়।

অতএব উক্ত ফাংশনটি বাইজেকটিভ।

2. যদি f (x) = x + 2, ∀x ∈ Z (সকল পূর্ণসংখ্যার সেট) হয় তাহলে এখানেও x₁, x₂ ∈ Z, x₁ ≠ x₂ এর জন্য x₁ + 2 ≠ x₂ + 2 অর্থাৎ f (x₁) ≠ f(x₂); অর্থাৎ ফাংশনটি ইনজেকটিভ এবং f(z) = z হয় বলে ফাংশনটি সারজেকটিভ।

অতএব এই ফাংশনটিও বাইজেকটিভ।

3. যদি f(x) = 3x, $\forall x \in z$ (সকল পূর্ণসংখ্যার সেট) হয়। তাহলে $x_1, x_2 \in Z$, $x_1 \neq x_2$ -এর জন্য $3x_1 \neq 3x_2$ অর্থাৎ $f(x_1) \neq f(x_2)$ । সুতরাং ফাংশনটি ইনজেকটিভ। কিন্তু $f(z) = \{f(x) : x \in z\}$ সেটটি Z-এর একটি অংশমাত্র হওয়ায় $f(z) \neq z$ । সুতরাং এখানে f(x) ফাংশনটি সারজেকটিভ নয়।

(v) অভেদ অপেক্ষক বা ফাংশন (Identity mapping) : যদি $f : A \to A$ হয় তবে f-কে A তে অভেদ অপেক্ষক বলে এবং তখন f(x) = x, $\forall x \in A$ হয়। একে I_A দ্বারা চিহ্নিত করা হয়। যেকোন অভেদ ফাংশন বাইজেকটিভ হয়।

(vi) যোগিক ফাংশন (Composite mapping) : ধরা যাক, $f : A \to B$ এবং $g : C \to D$ ফাংশনদ্বয় এমনভাবে সংজ্ঞাত যে $f(A) \subset C$ । যদি f(x) = y হয় তবে $x \in A$ এবং $y \in B$; আবার $y \in B \Rightarrow y \in C$ কারণ $f(A) \subset C$ । এখন g(y) = z হলে $z \in D$ এই দুটি ফাংশনকে একত্রে $g\{f(x)\} = \psi(x)$ লিখতে উপরোজ বিবৃতি অনুযায়ী $\psi : A \to D$ হয়। এই ψ -কে যৌগিক ফাংশন বলা হয় এবং $\psi = g\{f(x)\}$ বা $\psi = g_0f$ দ্বারা প্রকাশ করা হয়।

ঊদাহরণ ঃ ধরা যাক $\mathrm{f}\left(\mathrm{x}
ight)$ = $2\mathrm{x}$ + 4, $\mathrm{x}\in\mathrm{R}$ এবং $g(\mathrm{x})$ = $3\mathrm{x},\,\mathrm{x}\in\mathrm{R}$ যখন R হল সকল বাস্তব সংখ্যার

সেট্। তাহলে f:R o R এবং g:R o R, f -এর বিস্তার সেট g-এর সংজ্ঞাঞ্চল সেটের উপসেট্ এবং g-এর বিস্তার সেটটি f-এর সংজ্ঞাঞ্চল সেটের উপসেট। অতএব fg এবং gf উভয়েই সংজ্ঞাত। এখন

$$gf = g(2x + 4) = 3 (2x + 4) = 6(x + 2), x \in R$$

9.4 বিপরীত ফাংশন (Inverse function) ও কিছু উপপাদ্য

ধরা যাক্ f : A → B একটি বাইজেকটিভ (one-one & onto) ফাংশন। এখন যেহেতু f সারজেকটিভ (on to), যেকোন y ∈ B সদস্যটির জন্য একটি x ∈ A পাওয়া যাবে যার জন্য f(x) = y হয়। আবার যেহেতু f ইনজেকটিভ (one-one) অতএব এই x সদস্যটি ঐ y-এর জন্য একমাত্র (unique) সদস্য। অতএব বিপরীত দিক থেকে আর একটি ফাংশনের অস্তিত্ব লক্ষ করা যাচ্ছে যাকে g : B → A দ্বারা চিহ্নিত করা যেতে পারে। এক্ষেত্র x = g(y) ফাংশনটিকে যদি এবং কেবলমাত্র যদি (iff) y = f(x) এই শর্তাধীনে সংজ্ঞায়িত করা গেল।

সংজ্ঞা ঃ বিপন্নীত ফাংশন ঃ $f: A \to B$ এই বাইজেকটিভ ফাংশনটির জন্য যদি আর একটি ফাংশন $g: B \to A$ -এর অস্তিত্ব থাকে যার জন্য $g \{ f(x) \} = I_A$ এবং $f \{ g(x) \} = I_B$ হয়, তাহলে g(x) ফাংশনটিকে f(x)-এর বিপিরীত ফাংশন (inverse function) বলা হয়। তখন $gf: A \to A$ এবং $fg: B \to B$ হয় অর্থাৎ gf এবং fg ভৈয়েই অভেদ ফাংশন হয়। এই g ফাংশনটিকে f^{-1} দ্বারা প্রকাশ করা হয় এবং তখন f^{-1} o f(x) = x, $\forall x \in A$; $f \circ f^{-1}(y) = y$, $\forall y \in B$ হয়।

দ্বস্টব্য ঃ যদি $f:A \to B$ বাইজেকটিভ না হয়ে কেবল ইনজেকটিভ হয় এবং $f(A) = C \subseteq B$ হয়, তথন $f:A \to C$ বাইজেকটিভ এবং বিপরীত ফাংশন $f^{-1}:C \to A$ এর অস্তিত্ব থাকে।

উদাহরণ ঃ ধরা যাক f(x) = ax + b যখন $a \neq 0$ এবং $a, b, x \in Q$ (মূলদ সংখ্যার সেট্)। তাহলে $f: Q \rightarrow Q$ হয়।

এখন $x_1, x_2 \in Q$ এবং $x_1 \neq x_2$ -এর জন্য

$$f(x_1) - f(x_2) = (ax_1 + b) - (ax_2 + b) = a(x_1 - x_2) \neq 0 \Rightarrow f(x_1) \neq f(x_2)$$

সুতরাং f (x) ইনজেকটিভ।

আবার $y \in \mathbf{Q}$ এবং $y = \mathbf{f}(x)$ হলে $y = \mathbf{a}x + \mathbf{b}$ থেকে পাই

 $\mathbf{x} = \frac{\mathbf{y} - \mathbf{b}}{\mathbf{a}} \in \mathbf{Q}$ । অতএব $\mathbf{f}(\mathbf{x}) = \mathbf{y}$ বা $\mathbf{f}\left(\frac{\mathbf{y} - \mathbf{b}}{\mathbf{a}}\right) = \mathbf{y}$ থেকে দেখা যাচ্ছে কোন একটি মূলদ সংখ্যা y হল

f-এর সাপেক্ষে অন্য একটি মূলদ সংখ্যা $rac{y-b}{a}$ এর বিশ্ববিন্দু। সুতরাং f(Q) = Q অর্থাৎ f একটি সারজেকটিভ ফাংশন।

অতএব f একটি বাইজেকটিভ ফাংশন এবং সেইজন্য এটির বিপরীত ফাংশন f⁻¹ এর অস্তিত্ব আছে, এবং $f^{-1}(y) = x = rac{y-b}{a}$

আবার, f^{-1} o $f(x) = f^{-1}(ax+b) = \frac{(ax+b)-b}{a} = x$ এবং f o $f^{-1}(y) = f\left(\frac{y-b}{a}\right) = a$ $\left(\frac{y-b}{a}\right) + b = y$

উপপাদ্য 1 ঃ f : A → B ফাংশনটির যদি বিপরীত ফাংশন থাকে তবে তা কেবলমাত্র একটিই ফাংশন। প্রমাণ ঃ যদি সন্তুব হয় তবে ধরা যাক f-এর দুটি বিপরীত ফাংশন আছে এবং তারা φ ও ψ। অতএব

 $\phi:B\rightarrow A,\,\psi:B\rightarrow A,\,f\,\,o\,\,\phi=I_B,\,\phi\,\,o\,\,f=I_A,\,f\,\,o\,\,\psi=I_B\,\,\text{and}\,\,\psi\,\,o\,\,f=I_A$

এখন $\phi = \phi_0 I_B = \phi_0 (f \circ \psi) = (\phi_0 f) \circ \psi$ [আ্যাসেসিয়েটিভ নিয়ম]

= ψ

সুতরাং f-এর দুটি আলাদা বিপরীত ফাংশন থাকতে পারে না।

উপপাদ্য 2 ঃ ধরা যাক A, B, C সেট তিনটির কেউউ খালি নয় এবং $f: A \to B$; $g: B \to C$, যদি $gf: A \to C$ ফাংশন ইনজেকটিভ হয় তাহলে f ইনজেকটিভ।

প্রমাণ ঃ যদি সম্ভব হয় ধরা যাক f ইনজেকটিভ নয়, তাহলে A সেটের দুটি আলাদা সদস্য x₁ ও x₂ পাওয়া যাবে যার জন্য f(x₁) = f(x₂) হবে। অতএব g₀f (x₁) = g₀f (x₂) হবে। কিন্তু এটি g₀ f ইনজেকটিভ না হওয়ার শর্ত; যা প্রদন্ত শর্তবিরোধী।

অতএব উপপাদ্যটি প্রমাণের জন্য প্রথমে যা ধরা হয়েছিল তা সত্য নয় অর্থাৎ f ইনজেকটিভ।

উপপাদ্য 3 ঃ ধরা যাক A, B, C সেট তিনটির কেউ খালি নয় এবং $f: A \to B$; $g: B \to C$; যদি $gf: A \to C$ সারজেকটিভ হয় তাহলে g সারজেকটিভ।

প্রমাণ ঃ ধরা যাক z ∈ C, যেহেতু g₀ f সারজেকটিভ অতএব A সেটে একটি সদস্য x থাকবে যার জন্য g₀f(x) = z হবে। অর্থাৎ g {f(x)} = z হবে।

এই সম্পর্কটি থেকে এটা বোঝা যাচ্ছে যে $z\in C$ সদস্যটির g ফাংশনের সাপেক্ষে B তে একটি প্রাক বিশ্ব f(x) থাকবে। যেহেতু z সদস্যটি C-এর যেকোন সদস্য হতে পারে অতএব C এর প্রত্যেক সদস্যেরই B তে প্রাক্ বিশ্ব থাকবে। অতএব g সারজেকটিভ। উপপাদ্য 4 ঃ f : A → B ফাংশনটির বিপরীত ফাংশন থাকব। যদি এবং কেবলমাত্র যদি (iff) f বাইজেকটিভ হয় (এটি বিপরীত ফাংশনের অস্তিত্বের শর্ত)

প্রমাণ ঃ ধরা যাক f:A o B ফাংশনটির বিপরীত ফাংশন আছে। সুতরাং অন্য একটি ফাংশন g: B o A এর অস্তিত্ব আছে যখন $g_0 \ f=I_A$ এবং $f_0g=I_B$ হয়।

যেহেতু ${f I}_{A}$ ইনজেকটিভ, উপপাদ্য - 2 অনুযায়ী ${f f}$ ইনজেকটিভ।

আবার যেহেতু, I_B সারজেকটিভ, উপপাদ্য 3 অনুযায়ী f সারজেকটিভ।

অতএব, f বাইজেকটিভ, কারণ ইনেজকটিভ এবং সারজেকটিভ। অতএব শর্তটি প্রয়োজনীয় (necessary)।

এখন ধরা যাক f : A → B ফাংশনটি বাইজেকটিভ এবং y ∈ B । যেহেতু f বাইজেকটিভ এই y-এর f-এর সাপেক্ষে A-তে একটি মাত্র প্রাকবিম্ব থাকবে। এই রকম একটি ফাংশন g : B → A ধরা হল যাতে প্রত্যেক y ∈ B -এর জন্য A তে f-এর সাপেক্ষে কেবলমাত্র একটি প্রাকবিম্ব পাওয়া যায়। তাহলে g₀f = I_A এবং f₀g = I_B হয়।

সুতরাং, f-এর বিপরীত ফাংশন g-এর অস্তিত্ব থাকছে অর্থাৎ শর্তটি যথেষ্ট (sufficient)।

উপপাদ্য 5 ঃ যদি f : A → B ফাংশনটির বিপরীত ফাংশন f⁻¹ থাকে তাহলে f⁻¹ : B → A ফাংশনটিরও বিপরীত ফাংশন থাকবে।

প্রমাণ ঃ এখানে f-এর বিপরীত ফাংশন f⁻¹ : B → A থাকায় f⁻¹ o f = I_A এবং f o f⁻¹ = I_B । যেহেতু I_A সারজেকটিভ, উপপাদ্য 3 অনুযায়ী f⁻¹ সাররেজকটিভ, আবার যেহেতু I_B ইনজেকটিভ, উপপাদ্য 2 অনুযায়ী f⁻¹ ইনজেকটিভ; সুতরাং f⁻¹ বাইজেকটিভ। অতএব f⁻¹-এর বিপরীত ফাংশন আছে।

9.5 বিপরীত ফাংশন ও সন্তত (Inverse function & Continuity)

আমরা পূর্ববর্তী আলোচনায় দেখেছি কোন ফাংশন f-এর বিপরীত ফাংশন f⁻¹ থাকতে হলে তাকে অবশ্যই ইনজেকটিভ হতে হবে। আবার কোন ফাংশনকে ইনজেকটিভ হতে হলে তাকে তার সংজ্ঞাঞ্চলে যথাযথভাবে (Strictly) ক্রমবর্ধমান বা যথাযথভাবে ক্রমক্ষীয়মান হতে হবে। এই ধরনের ফাংশনের সন্ততির বিষয়ে নিম্নলিখিত উপাপাদ্যটি বিশেষ তাৎপর্যপূর্ণ।

উপপাদ্য 1 : ধরা যাক $f : A \to B$ ফাংশনটি A = [a, b] অন্তরালে যথাযথভাবে ক্রমবর্ধমান এবং সন্তত। যদি $f(a) = \alpha$ এবং $f(b) = \beta$ হয় তাহলে $[\alpha, \beta] \subset B$ অন্তরালে f^{-1} ফাংশনটি যথাযথভাবে ক্রমবর্ধমান ও সন্তত হবে।

প্রমাণ ঃ যেহেতু f(x) ফাংশনটি [a, b] অন্তরালে সন্তত এবং যথাযথভাবে ক্রমবর্ধমান, অতএব পূর্ববর্তী এককে প্রমাণিত উপপাদ্য অনুযায়ী (i) [a, b] অন্তরালে সীমাবদ্ধ।

(ii)
$$f(a) \leq f(x) \leq f(b)$$
 $\exists \alpha \leq f(x) \leq \beta, \forall x \in A$,

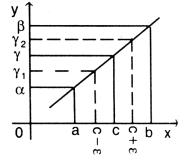
এবং (iii) f : [a, b] → [α, β] বাইজেকটিভ।

অতএব, f⁻¹ : [α, β] → [a, b] এর অস্তিত্ব আছে। আমরা প্রমাণ করব [α, B] অন্তরালে f⁻¹ ফাংশনটি যথাযথভাবে ক্রমবর্ধমান, অর্থাৎ প্রমাণ করব [α, β] অন্তরালে যেকোন দুটি বিন্দু y₁, y₂ যখন y₁ < y₂-এর জন্য f⁻¹ (y₁) < f⁻¹ (y₂)।

যদি সম্ভব হয় ধরা যাক, f⁻¹ (y₁) ≥ f⁻¹ (y₂)। কিন্তু f⁻¹ (y₁), f⁻¹ (y₂) বিন্দুদ্বয় [a, b] তে অবস্থিত যেখানে f যথাযথভাবে ক্রমবর্ধমান। অতএব

$$\Rightarrow y_1 \ge y_2 \qquad [:: f[f^{-1}(x) = x]]$$

কিন্তু এটা হতে পারেনা কারণ উপরের বিবৃতি অনুযায়ী $y_1 < y_2$ । সুতরাং f⁻¹ ফাংশনটি [α, β] অন্তরালে যথাযথভাবে ক্রমবর্ধমান। আমরা এখন প্রমাণ করব f⁻¹ ফাংশনটি [α, β] অন্তরালে সন্তত।



ধরা যাক γ ∈ (α, β) অর্থাৎ γ বিন্দুটি [α, β] অন্তরালের যেকোন একটি আভ্যন্তরীণ বিন্দু। আমাদের জানা আছে এই γ বিন্দুটির জন্য (a, b) অন্তরালে

একটি বিন্দু C আছে যার জন্য γ = f(c) বা c = f⁻¹ (γ) হয়; আবার যেকোন বিন্দু C ∈ (a, b) -এর জন্য সর্বদাই একটি ধনাত্মক সংখ্যা ε পাওয়া যাবে যাতে [c – ε, c + ε] ⊂ [a, b] হয় (প্রান্তবিন্দুর খুব কাছে C অবস্থিত হলে ε-কে যথেষ্ট ছোট ধরতে হতে পারে)। ধরা যাক γ₁ = f(c – ε) এবং γ₂ = f (c + ε)।

যেহেতু, f যথাযথভাবে ক্রমবর্ধমান সুতরাং (γ_1 , γ_2) অন্তরালের y-এর সকল মানের জন্য f⁻¹ (y)-এর মানগুলি (c – ɛ, c + ɛ) এর মধ্যে থাকবে।

এখন $\gamma - \gamma_1$ এবং $\gamma_2 - \gamma$ -এর মধ্যে ন্যূনতম মানকে δ ধরে $N(\gamma, \delta)$ সামীপ্য [= $(\gamma - \delta, \gamma + \delta)$] পাওয়া যাবে যখন $N(\gamma, \delta) \subset (\gamma_1, \gamma_2)$ হবে এবং তখন $y \in N(\gamma, \delta)$ হলেও $f^{-1}(y) \in N(c, \varepsilon)$ হবে [$N(c, \varepsilon) = (c - \varepsilon, c + \varepsilon)$]।

অতএব $f^{-1}(y) = x$ ধরলে দেখা গেল, যেকোন $\epsilon > 0$ এর জন্য $\delta > 0$ পাওয়া যাবে যার জন্য $|x - c| < \epsilon$ যখন $y \in N(\gamma, \delta)$ হয়

বা $\left| \mathbf{f}^{-1} \left(\mathbf{y} \right) - \mathbf{f}^{-1} \left(\gamma \right) \right| < \varepsilon$ যখন $\left| \mathbf{y} - \gamma \right| < \delta$ হয় [এই শর্ত ε খুব ছোট মানের জন্য সত্য; আবার শর্ত থেকে এটা পরিষ্কার তা ε-এর ছোট মানের জন্য সত্য হলে যেকোন মানের জন্য সত্য হবে।)

অতএব f⁻¹ (y) ফাংশনটি γ বিন্দুতে সন্তত। আবার γ বিন্দুটি (α, β) অন্তরালের যেকোন একটি বিন্দু; সুতরাং f⁻¹ (y) ফাংশনটি (α, β) অন্তরালে সন্তত।

যদি $\gamma = \beta$ হয় তাহলে $f^{-1}(\gamma) = f^{-1}(\beta) = b$ এবং একইভাবে দেখান যায় $\left| f^{-1}(y) - f^{-1}(\beta) \right| < \epsilon$ যখন $f^{(\ell-\epsilon)} < y \le \beta$ ।

অতএব \mathbf{f}^{-1} (y) ফাংশনটি $\mathbf{y}=oldsymbol{eta}$ বিন্দুতে সন্তত। অনুরূপে ফাংশনটি $\mathbf{y}=oldsymbol{lpha}$ বিন্দুতেও সন্তত।

দ্রস্টব্য ঃ উপরোক্ত উপপাদ্যটি যদি, 'যথাযথভাবে ক্রমবর্ধমান' ফাংশনের জন্য না হয়ে 'যথাযথভাবে ক্রমক্ষীয়মাণ' ফাংশন f-এর জন্য হত, তাহলে f⁻¹ (y) ফাংশনটি [β, α] অন্তরাল যথাযথভাবে ক্রমক্ষীয়মান হত।

উপরোক্ত উপপাদ্যটি অনুসরণ করে এটির প্রমাণ সহজেই করা যায়।

উপপাদ্য 2 ঃ যদি f : R → R ফাংশনটি R তে সন্তত হয়, তাহলে R-এর যেকোন মুক্ত উপসেট, A-এর জন্য f⁻¹ (A) সেটটিও R-এর মুক্ত উপসেট হবে।

প্রমাণ ঃ এখানে A সেটটি R-এর একটি মুক্ত উপসেট। ধরা যাক $a \in f^{-1}(A)$ তাহলে $f(a) \in A$, আবার A যেহেতু R-এর একটি মুক্ত উপসেট অতএব একটি ধনাত্মক সংখ্যা ε পাওয়া যাবে যার জন্য N(f(a), ε) ⊂ A হবে। প্রদন্ত শর্তানুযায়ী f-ফাংশনটি f বিন্দুতে সন্তত, উক্ত ε এর জন্য একটি δ পাওয়া যাবে যার জন্য f(x) ∈ N(f(a), ε) যখন x ∈ N(a, δ)

কিন্তু $N(f(a), \varepsilon) \subset A$ অতএব $N(a, \delta) \subset f^{-1}(A)$,

অর্থাৎ a বিন্দুটি f⁻¹ (A)-এর একটি আন্ড্যন্তরীণ বিন্দু। যেহেতু a যেকোন একটি বিন্দু, অতএব f⁻¹(A)-এর প্রত্যেকটি বিন্দুই তার আন্ড্যন্তরীণ বিন্দু। সুতরাং f⁻¹ (A) একটি মুক্ত সেট।

9.5.1 উদাহরণমালা

1. ধরা যাক f(x) = Sin x যখন $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$; তখন $f: \begin{bmatrix} -\pi/2, \pi/2 \end{bmatrix} \rightarrow [-1, 1]$ যেখানে $[-1, 1] \subset \mathbb{R}$ । এক্ষেত্রে f(x) ফাংশনটি $\begin{bmatrix} -\pi/2, \pi/2 \end{bmatrix}$ অন্তরালে সন্তত এবং যথাযথভাবে ক্রমবর্ধমান। সূতরাং f^{-1} -এর অন্তিত্ব আছে এবং যা $f^{-1}: [-1, 1] \rightarrow -\frac{\pi}{2}, \frac{\pi}{2}$ । এই বিপরীত ফাংশনটিকে $f^{-1}(y) = sin^{-1} y$,

y ∈ [-1, 1] দ্বারা সংজ্ঞায়িত করা হয় এবং উপপাদ্য-1 অনুযায়ী এটি [-1, 1] অন্তরালে সন্তত ও যথাযথভাবে ক্রমবর্ধমান। এই f⁻¹ (y) ফাংশনটিকে **মুখ্য বিপরীত সাইন ফাংশন** (Principal inverse sine function) বলে।

2. যদি $f(x) = \cos x$, যখন $x \in [0, \pi]$ নেওয়া যায়, তাহলে দেখা যায় $f:[0, \pi] \to [-1, 1] \subset \mathbb{R}$ ফাংশনটি তার সংজ্ঞাঞ্চল $[0, \pi]$ তে সন্তত ও যথাযথভাবে ক্রমক্ষীয়মান। অতএব এই ফাংশনটির উপপাদ্য 1 অনুযায়ী বিপরীত ফাংশন $f^{-1}: [-1, 1] \to [0, \pi]$ থাকবে এবং এই বিপরীত ফাংশনটি [-1, 1] অন্তরালে সন্তত ও ক্রমক্ষীয়মান হবে। এই $f^{-1}(y) = \cos^{-1} y$ ফাংশনটিকে **মুখ্য বিপরীত কোসাইন ফাংশন বলে**।

3.
$$f(x) = \tan x$$
 যখন $-\frac{\pi}{2} < x < \frac{\pi}{2}$ নিলে $f: \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \rightarrow R$ হয়। এই ফাংশনটি $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ অন্তরালে

সন্তত এবং ক্রমবর্ধমান। আবার এটির বিস্তার বাস্তব সংখ্যার সেট। সুতরাং f^{-1} ; $R o \left(-rac{\pi}{2}, rac{\pi}{2}
ight)$ এই বিপরীত ফাংশনটির অস্তিত্ব থাকছে যা R তে সন্তত এবং যথাযথভাবে ক্রমবর্ধমান। এই f^{-1} (y) = tan⁻¹ y, y ∈ R ফাংশনটিকে মুখ্য বিপরীত ট্যানজ্বেন্ট ফাংশন বলা হয়।

4. যদি f(x) = cot x, x ∈ (o, π) নেওয়া যায় তাহলে f : (o, π) → R হয়। এই f ফাংশনটি (o, π) অন্তরালে সন্তত ও যথাযথভাবে ক্রমক্ষীয়মান এবং এটির বিস্তার বাস্তব সংখ্যার সেট R। সুতরাং উপপাদ্য-1 অনুযায়ী এটির বিপরীত ফাংশন f⁻¹ : R → (o, π) বিদ্যমান যাকে f⁻¹(y) = cot⁻¹ y, y ∈ R দ্বারা প্রকাশ করা হয়। এই cot⁻¹ y, y ∈ R ফাংশনটিকে **মুখ্য বিপরীত কোট্যানজেন্ট ফাংশন বলা হয়**। এই cot⁻¹ y ফাংশনটিও R তে সন্তত ও যথাযথভাবে ক্রমক্ষীয়মাণ।

5. যদি $f(x)=e^x, \ x\in R$ হয় তখন এটির বিস্তার $R-\{o\}$ অর্থাৎ $\{x\in R:x
eq o\}$ সেট।

এখানে e^x ফাংশনটি তার সংজ্ঞাঞ্চল R-তে সন্তত এবং যথাযথভাবে ক্রমবর্ধমান াসুতরাং উপপাদ্য I অনুযায়ী R – {o} তে এটির বিপরীত ফাংশন থাকবে এবং তাকে f⁻¹ (y) = log_ey = log y, y ∈ R – {o} দ্বারা প্রকাশ করা হয়।

এখানে f⁻¹ f(x) = log(e^x) = x,
$$\forall x \in R$$

এবং f f⁻¹ (y) e^{log y} = y, $\forall y \in R - \{o\}$
এই f⁻¹ (y) = log y ফাংশনটিকে লগারিদম ফাংশন বলা হয়।
এই লগারিদম ফাংশনটি R – {o} তে সন্তুত ও যথাযথভাবে ক্রমক্ষীয়মান এবং এটির নিধান e।

9.6 শ্রেণীর মাধ্যমে e^x, a^x sin x, cos x-এর প্রকাশ

আমরা অন্তরকলন বিদ্যা (Differential Calculus) থেকে জানি যে ম্যাকলরিন (Maclaurin) এর উপপাদ্য অনুযায়ী কোন ফাংশন f(x)-এর যদি বিস্তৃতি থাকে তা নিন্নরূপ ঃ

$$f(x) = f(o) + xf(o) + \frac{x^2}{2!}f^n(o) + \dots + \frac{x^{n-1}}{(n-1)!}f^{n-1}(o) + R_a \dots \dots (i)$$

যখন $R_n = rac{x^n}{n!} f^n \left(heta x
ight), \, o < heta < l$ (ল্যাগরাঞ্জের গঠন অনুযায়ী),

$$=rac{{{x}^{n}}\left({1 - heta }
ight)^{n - 1}}{{\left({n - 1}
ight)!}}{f^{n}}\left({ heta x}
ight),$$
 $o < heta < 1$ (কসির গঠন অনুযায়ী)।

যদি $\lim_{n o \infty} R_n = 0$ হয় তবে (i) নং শ্রেণীর পদসংখ্যা অসীম হয় এবং f(x)-এর উক্ত অসীম শ্রেণীটি অভিসারী (Convergent) হয়।

(i) $f(x) = e^x$ হলে যেকোন অন্তরাল [a, b] তে $f^n(x) = e^x$ যখন n ধনাত্মক স্নাভাবিক সংখ্যা। এখানে ম্যাকলারিনের বিস্তৃতির $R_n=rac{x^n}{n!}e^{0x},\,o<\theta<1$ (ল্যাগারাঞ্জের গঠন অনুযায়ী)

অতএব
$$|\mathbf{R}_n| = \left|\frac{\mathbf{x}^n}{n!}e^{\theta \mathbf{x}}\right| \le \left|\frac{\mathbf{x}^n}{n!}\right|e^{|\mathbf{x}|} \to \mathbf{0}$$
 যখন $\mathbf{n} \to \infty$ যেহেতু $\lim_{n \to \infty} \frac{\mathbf{x}^n}{n!} = \mathbf{0}, \forall \mathbf{x}$

সুতরাং $e^x = e^o + xe^o + \frac{x^2}{2!}e^o + \dots + \frac{x^n}{n!}e^o + \dots$, $\forall x \in R$, (:: [a, b] যেকোন অন্তরাল) $= 1 + x + \frac{x^2}{21} + \frac{x^3}{21} + \dots + \frac{x^n}{n!} + \dots$

$$= 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} + \dots, \forall x$$

$$=\sum\limits_{n=0}^{\infty}rac{\mathbf{x}^n}{n!},\,arble \mathbf{x}$$
 এটি \mathbf{x} -এর সকল মানের জন্য অভিসারী।

এখন যেকোন অন্তরাল [a, b]-এর অন্তর্গত x-এর মানের জন্য

$$\left| \left| rac{\mathbf{x}^n}{n!}
ight| \leq rac{\mathbf{M}^n}{n!}, \;\;$$
 যখন $\mid a \mid$ এবং $\mid b \mid$ উভয় মানের থেকেও বড় এমন একটি ধনাত্মক সংখ্যা \mathbf{M}

আবার
$$\sum_{n=o}^{n} \frac{M^{o}}{n!}$$
 শ্রেণীর $\frac{U_{n+1}}{U_{n}} = \frac{M^{n}}{n!} \times \frac{(n-1)!}{M^{n-1}} = \frac{M}{n} \to o$ (<1) যখন $n \to \infty$

অতএব D'Alembert-এর পরীক্ষা অনুযায়ী $\sum rac{M^n}{n!}$ শ্রেণীটি অভিসারী।

সুতরাং weiertrass-এর M–test অনুযায়ী $\sum rac{x^n}{n!}$ শ্রেণীটি সকল [a, b] তে সুষমভাবে (Uniformly)

অভিসারী। অর্থাৎ $\sum rac{\mathbf{x}^{\mathbf{n}}}{\mathbf{n}!}, \mathbf{x}$ এর সকল বাস্তব মানের জন্য অভিসারী।

(ii) যখন f(x) = a^x, (a > o, a ≠ l) তখন fⁿ (x) = (log a)^{//} a^x, x ∈ [c, d] যেকোন অন্তরাল, n ধনাত্মক স্বাভাবিক সংখ্যা।

এখানে
$$\mid \mathbf{R}_n \mid = \left| \frac{\left(x \log a\right)^n}{n!} a^{\theta x} \right| \le \left| \frac{x^n}{n!} \right| \left(\log a\right)^n a^{|x|} \to o$$
 যখন $n \to \infty$

[যেহেতু $\lim_{n \to \infty} \frac{x^n}{n!} \to 0, \, \forall x$ এবং $\left| a^{\theta x} \right| \le a^{|x|}$ একটি সসীম সংখ্যা।]

অতথ্য
$$a^{x} = 1 + x \log a + \frac{x^{2} (\log a)^{2}}{2!} + \frac{x^{3} (\log a)^{3}}{3!} + ... + \frac{x^{n} (\log a)^{n}}{n!} + ...$$

উপরের e^x-এর বিস্তৃতির মত অগ্রসর হয়ে দেখান যায় a^x-এর বিস্তৃতিটিও x-এর সকল বাস্তব মানের জন্য সুযমভাবে অভিসারী।

(iii) 각력된 $f(x) = \sin x$, তখন $f^{n}(x) = \sin \left(n \frac{\pi}{2} + x\right)$, n আভাবিক ধনায়ক সংখ্যা। এখানে ম্যাকলারিনের বিস্তৃতির $R_{n} = \frac{x^{n}}{n!} Sin\left(\frac{n\pi}{2} + \theta x\right)$, $o < \theta < 1$ $\therefore |R_{n}| = \left|\frac{x^{n}}{n!}\right| \left|Sin\left(n \frac{\pi}{2} + \theta x\right)\right| \lesssim \frac{1}{1} \frac{x^{n}}{n!} |$, $(\because |Sin x| \le 1)$ (যহেতু $\lim_{n \to \infty} \left|\frac{x^{n}}{n!}\right| = o$, $\forall x$ আতএব $|R_{n}| \to o$ যখন $n \to \infty$, $\forall x$. স্তরাং Sin $x = Sin \ o + x \ Sin\left(\frac{\pi}{2} + o\right) + \frac{x^{2}}{2!} Sin\left(2, \frac{\pi}{2} + o\right) + \frac{x^{3}}{3!} Sin\left(3, \frac{\pi}{2} + o\right)$ $+ \frac{x^{4}}{4!} Sin\left(4, \frac{\pi}{2} + o\right) + \frac{x^{5}}{5!} Sin\left(5, \frac{\pi}{2} + o\right) + ... + \frac{x^{2n-1}}{(2n-1)!} Sin\left(2n - 1\frac{\pi}{2} + o\right) + ..., \forall x \in R$ $= x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \frac{x^{7}}{7!} + ... + (-1)^{n-1} \frac{x^{2n-1}}{(2n-1)!} + ..., \forall x \in R$

ধরা যাক, [a, b] যেকোন একটি অন্তরাল এবং | a | ও | b |-এর থেকে বড় M একটি ধনাত্মক সংখ্যা, তাহলে [a, b] অন্তরালে x-এর যেকোন মানের জন্য

$$\left| \frac{(-1)^{n-1} x^{2n-1}}{(2n-1)!} \right| \leq \frac{M^{2n-1}}{(2n-1)!}$$

$$(a) = \sum_{n=1}^{\infty} \frac{M^{2n-1}}{(2n-1)!} \quad (a) = \frac{1}{U_n} = \frac{M^{2n+1}}{U_n} \times \frac{(2n-1)!}{M^{2n-1}} = \frac{M^2}{(2n+1)(2n)}$$

$$(a) = \sum_{n \to \infty}^{\infty} \frac{M^{2n-1}}{U_n} = \lim_{n \to \infty} \frac{M^2}{(2n+1)(2n)} = o(<1)$$

 \therefore D'Alembert-এর পরীক্ষা অনুযায়ী $\sum_{n=1}^{\infty} rac{M^{2n-1}}{(2n-1)!}$ শ্রেণীটি অভিসারী সুতরাং Weiertrass-এর M–test

অনুযায়ী $\sum_{n=1}^{\infty} {(-1)^{n-1}} \; rac{\mathrm{x}^{2n-1}}{(2n-1)!}$ শ্রেণীটি [a, b] তে সুযমভাবে অভিসারী। যেহেতু [a, b] যেকোন অন্তরাল অতএব উক্ত শ্রেণীটি ঐরূপ প্রত্যেক অন্তরালেই সুযমভাবে অভিসারী।

(iv) উপরের (iii) নং ফাংশনের অনুরূপে অগ্রসর হয়ে দেখান যাবে

Cos x =
$$1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + ... + (-1)^n \frac{x^{2n}}{(2n)!} + ..., \forall x$$

এবং আরও অগ্রসর হয়ে দেখান যাবে উক্ত শ্রেণীটিও প্রত্যেক [a, b] অন্তরালে সুযমভাবে অভিসারী।

9.6.1 sin x ও cos x -এর কিছু ধর্ম ও সূত্র

প্রথমে আমরা Sin x ও cos x এর সংজ্ঞা নিম্নরূপ দিই ঃ

$$\begin{aligned} \sin x &= \sum_{n=0}^{\infty} {(-1)^n} \ \frac{x^{2n+1}}{(2n+1)!}, \ \forall x \\ &= x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + \dots, \ \forall x \end{aligned} \tag{A}$$

(i) যেহেতু সন্তত ফাংশন সমূহের যোগফল দ্বারা সুযমভাবে প্রকাশিত অভিসারী শ্রেণীর সমষ্টিও সন্তত, উপরোক্ত
 (A) ও (B) শ্রেণীদ্বয়ের সমষ্টি যথাক্রমে Sin x ও Cos x ফাংশনদ্বয় x-এর সকল মানের জন্য সন্তত।

(ii) যেহেতু (A) শ্রেণীটি অবকল যোগ্য পদসমূহ দ্বারা প্রকাশিত একটি সুষমভাবে অভিসারী শ্রেণী এবং প্রত্যেকটি পদের অবকল সহগও সন্তত অতএব সমষ্টির অবকল সহগ তাদের প্রত্যেকটি পদের অবকল সহগের সমষ্টির সমান অর্থাৎ

$$\frac{\mathrm{d}}{\mathrm{dx}}(\sin x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + \frac{(-1)^n x^{2n}}{(2n)!} + \dots, \forall x$$

 $= \cos x$

একই কারণে (B) শ্রেণী থেকে পাওয়া যায়—

$$\frac{d}{dx}(\cos x) = -x + \frac{x^3}{3!} - \frac{x^5}{5!} + \dots - \frac{(-1)^{n-1}x^{2n-1}}{(2n-1)!} + \dots, \forall x$$

$$= -\sin x$$
(iii) (A) ও (B) শ্রেণীদ্বয়ে $x = 0$ বসিয়ে পাই
sin $0 = 0$, cos $0 = 1$
(iv) (A) ও (B) শ্রেণীদ্বয়ে x কে $-x$ দ্বারা প্রতিস্থাপিত করে পাই
Sin $(-x) = -x + \frac{x^3}{3!} - \frac{x^5}{5!} + \dots$

$$= -\sin x, \forall x$$
 $\cos(-x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots$

(v) ধরা যাক f (x) = sin (x+y) - sin x cos y - cos \times sin y, যখন y নির্দিষ্ট এবং

 $g(x) = \cos (x+y) - \cos x \cos y + \sin x \sin y$ যখন y নির্দিষ্ট

এবং $g'(x) = \frac{d}{dx}g(x) = -\sin(x+y) + \sin x \cos y + \cos x \sin y$ (: y নির্দিষ্ট) = -f(x)আবার $\frac{d}{dx} \{ f^2(x) + g^2(x) \} = 2f(x) f(x) + 2g(x) g(x)$ $= 2f(x) g(x) + 2g(x) \{-f(x)\}$ [\cdots f'(x) = g(x) এবং g'(x) = f(x)] $= 0, \forall X$ সুতরাং $f^2(x) + g^2(x) =$ ধ্রুবক (সমাকল করে) যেহেতু এটি x-এর সকল মানের জন্য সত্য, x = o এর জন্যও সত্য। সেইজন্য x = o বসিয়ে পাই, $f^{2}(o) + g^{2}(o) =$ ذهم বা o = ঞ্চৰক [:: f(o) = o এবং g(o) = o] ••• অতএব $f^2(x) + g^2(x) = o \implies f(x) = o, g(x) = o$ \Rightarrow sin (x + y) - sin x cos y - cos x sin y = o বা, sin (x + y) = sin x cos y + cos x sin yএবং $\cos (x + y) - \cos x \cos y + \sin x \sin y = 0$ বা $\cos (x + y) = \cos x \cos y - \sin x$ sin y উপরের সুত্রদ্বয়ে v-কে –v দ্বারা প্রতিস্থাপিত করলে পাই $\sin (x - y) = \sin x \cos y - \cos x \sin y [\because \sin (-x) = -\sin x \mod \cos (-x) = \cos x]$ $\cos (x - y) = \cos x \cos y + \sin x \sin y$.

অতএব $f'(x) = \frac{d}{dx}$: $x) = \cos(x + y) - \cos x \cos y + \sin x \sin y$ (: y নিৰ্দিষ্ঠ)

= g(x)

এখন $\cos (x - y) = \cos x \cos y + \sin x \sin y$ সূত্র y = x বসিয়ে পাই

 $\cos (x - x) = \cos x \cos x + \sin x \sin x$

 $\exists 1 = \cos^2 x + \sin^2 x \quad [:: \cos(x - x) = \cos o = 1]$

আবার যেহেতু $\cos^2 x + \sin^2 x = 1$, $\forall x$ অতএব

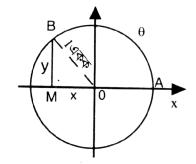
| Sin x $| \leq |$ 1, Cos x $| \leq 1$, \forall x

 $\exists 1, -1 \leq Sin \ x \leq 1, -1 \leq Cos \ x \leq 1, \ \forall x$

বাকী সূত্রগুলিও প্রমাণিত সূত্রগুলির সাহায্যে প্রমাণ করা যায়।

9.7 সমাকলের মাধ্যমে arc Sin x (= Sin⁻¹x), arc cos x (=Cos⁻¹ x)-এর সংজ্ঞা

arc cos x : ধরা যাক পার্শ্ববর্তী চিত্রে অঙ্কিত বৃত্তটির ব্যাসার্দ্ধ 1 একক, সুতরাং বৃত্তটির সমীকরণকে x² + y² = 1 এবং x-অক্ষের উপরদিকের অর্ধবৃত্ত চাপ S-কে y = f(x) = √1-x² যখন −1 ≤ x ≤ 1 দ্বারা প্রকাশ করা যায়।



এক্ষেত্রে f(x) ফাংশনটি $[-1,\,1]$ অন্তরালে সন্তত এবং $\,f^{\,\prime}\,(x)=-rac{x}{\sqrt{1-x^2}}\,$ ফাংশনটি $(-1,\,1)$ অন্তরালে সন্তত।

কিন্তু $\epsilon \in (0, 1)$ নিলে $[-1 + \epsilon, 1 - \epsilon]$ অন্তরালে f(x) এবং f'(x) উভয়েই সন্তত। ধরা যাক $x = -1 + \epsilon$ থেকে $x = 1 - \epsilon$ পর্যন্ত মানের জন্য S-এর যে অংশ পাওয়া যায় তা S_e, তাহলে

$$|S_{\epsilon}| = S_{\epsilon}$$
 চাপটির দৈর্ঘ্য = $\int_{-1+\epsilon}^{1-\epsilon} \sqrt{1 + [f(x)]^2} dx = \int_{-1+\epsilon}^{1-\epsilon} \frac{dx}{\sqrt{1-x^2}}$ |

আবার $\mid S \mid = S$ চাপের দৈর্ঘ্য $= \int_{-1}^{+1} \frac{dx}{\sqrt{l-x^2}}$, এই সমাকলটি

অপ্রকৃত (improper) এবং $\int_{-1}^{+1} \frac{dx}{\sqrt{1-x^2}} = \lim_{\epsilon \to o} \int_{-1+\epsilon}^{1-\epsilon} \frac{dx}{\sqrt{1-x^2}}$ এইভাবে নির্ণয় করা যায়। অতএব $|\mathbf{S}| = \lim_{\epsilon \to o} |\mathbf{S}_{\epsilon}| = \int_{-1}^{+1} \frac{dx}{\sqrt{1-x^2}} < \infty$

তাহলে দেখা গেল x অক্ষের উপরের দিকে অর্ধবৃত্ত চাপ S পরিমাপযোগ্য এবং তার মান $\int_{-1}^{+1} \frac{\mathrm{d}x}{\sqrt{1-x^2}}$ এই অপ্রকৃত সমাকলের মানের সমান; এটিকে π ধরা হয়।

:.
$$\pi = \int_{-1}^{+1} -\frac{\mathrm{d}x}{\sqrt{1-x^2}}$$
(i)

এখন S-এর উপর চলমান বিন্দুর B অবস্থানের স্থানাঙ্ক (x, y) এবং AB বৃত্তচাপের দৈর্ঘ্যকে θ ধরে arc Cos x বা Cos⁻¹ x-এর সংজ্ঞা নিম্নরূপ (এখানে (< A0B = θ রেডিয়ান) ঃ

$$\theta = \operatorname{arc} \operatorname{Cos} x \int_{x}^{1} \frac{dt}{\sqrt{1-t^{2}}}, -1 \le x \le 1.....(ii)$$

উপরের সংজ্ঞায় নির্দিষ্ট সমাকলের (definite integral-এর) ধর্ম থেকে দেখা যাচ্ছে θ বা arc Cos x ফাংশনটি [–1, 1] অন্তরালে x-এর একটি যথাযথভাবে (Strictly) ক্রমক্ষীয়মান এবং সন্তত ফাংশন।

এছাড়াও
$$\frac{d}{dx}(\operatorname{arc} \cos x) = \frac{d}{dx}\left(\int_{x}^{1} \frac{dt}{\sqrt{1-t^{2}}}\right) = -\frac{1}{\sqrt{1-x^{2}}}$$
 যখন $-1 < x < 1$;

arc cos 1 = o, arc Cos = $\frac{\pi}{2}$ এবং arc cos (-1) = π [(i) ও (ii) থেকে] |

সুতরাং দেখা গেল arc cos x ফাংশনটির [o, π] অন্তরালে একটি বিপরীত ফাংশনের অস্তিত্ব আছে যা x = cos θ দ্বারা চিহ্নিত এবং এই cos θ ফাংশনটিও [o, π] অন্তরালে সন্তত ও যথাযথভাবে ক্রমক্ষীয়মান।

θ-এর মান ο থেকে π এবং তারপরে π থেকে 2π এইভাবে ঘড়ির কাঁটার বিপরীত দিকে আবর্তিত হয়ে বাড়লে x = Cos θ-এর মান 1 থেকে –1 এবং –1 থেকে 1 হয়। অতএব দেখা গেল θ কে এইভাবে বাড়িয়ে B কে বৃত্তটির পরিধি একবার পরিক্রমা করালে Cos θ-এর মানের পুনরাবৃত্তি ঘটে, আবার বারবার একই দিকে ঘোরালে θ-এর মান ধনাত্মক থেকে অসীমের দিকে অগ্রসর হয় কিন্তু x = Cos θ -এর মান –1 ও +1-এর মধ্যে সীমাবদ্ধ থাকে এবং বারবার একই মানের পুনরাবৃত্তি ঘটে।

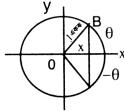
যদি ঘড়ির কাঁটার দিকে B কে ঘোরানো যায় θ-এর মান ঋণাত্মক চিহ্ন নিয়ে বাড়ে এবং উপরের ঘটনার মতই Cos θ-এর মান –1 ও +1-এর মধ্যে সীমাবদ্ধ থেকে পুনরাবৃত্তি ঘটে।

সুতরাং θ কে বাস্তব মানে –∞ < θ < ∞ তে সম্প্রসারিত (extension) করলে Cos θ এর মান –1 থেকে 1-এর মধ্যে আবর্তিত হয় এবং θ এর প্রতি 2π আবর্তনের জন্য Cos θ এর মানের পুরাবৃত্তি ঘটে।

আবার B এর অবস্থান যখন +θ এবং –θ নির্ণায়ক (অর্থাৎ একই মান কিন্তু বিপরীত চিহ্নবিশিষ্ট) তখন উভয় ক্ষেত্রেই বৃত্তস্থিত ত্রিভুজের x–অক্ষের উপরিস্থ বাহু একই থাকায় Cosθ = x = Cos (–θ) হয়। অতএব –∞ < θ < ∞ তে Cos θ একটি যুগ্ম ফাংশন যার পর্যায়কাল 2π।

আরও দেখা যায় যদি θ এর মান $\frac{\pi}{2} - \phi$ এবং $\frac{\pi}{2} + \phi$ ধরা যায়, বৃত্তস্থিত ত্রিভূজটির x অক্ষের উপর বাহুদুটির মান একই কিন্তু বিপরীত চিহ্ন বিশিষ্ট হওয়ায়

 $\cos\left(\frac{\pi}{2}-\phi\right) = -\cos\left(\frac{\pi}{2}+\phi\right)$ হয়।



arc sin y : ধরা যাক পার্শ্ববর্তী বৃত্ত $x^2 + y^2 = 1$ এর y অক্ষের ডানদিকের অর্ধবৃত্তচাপের উপর B(x, y) একটি চলমান বিন্দু। অতএব $x = g(y) = \sqrt{1 - y^2}, -1 \le y \le 1$ এবং বৃত্তচাপ

AB =
$$\theta$$
 = arc Sin y = $\int_{0}^{y} \frac{dt}{\sqrt{1-t^{2}}}$, $-1 \le y \le 1, \dots, (iii)$

এক্ষেত্রে এই সমাকল ফাংশনটি (integral function) অযুগ্ম,

সন্তত এবং [-1, 1] অন্তরালে যথাযথভাবে ক্রমবর্ধমান। এছাড়াও arc sin (-1) = $-\frac{\pi}{2}$, arc sin o = o এবং arc sin I = $\frac{\pi}{2}$ [(i) ও (iii) থেকে]

সুতরাং [– $\frac{\pi}{2}$, $\frac{\pi}{2}$] অন্তরালে arc Sin y ফাংশনটির একটি বিপরীত ফাংশন আছে যা y = sinθ দ্বারা প্রকাশিত হয়। এই Sin θ ফাংশনটিও $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ অন্তরালে সন্তত ও যথাযথভাবে ক্রমবর্ধমান।

যদি θ কে সমস্ত বাস্তবমানে –∞ < θ < ∞ তে সম্প্রসারিত করা যায় তাহলে আগের মত (cos θ–এর মত) বিশ্লেষণ করলে দেখা যাবে Sin θ ফাংশনটিরও পর্যায়কাল 2π এবং Sin θ একটি অযুগ্ম ফাংশন। আরও দেখা যায় y = Sin θ ফাংশনটি (–∞, ∞) তে সন্তত।

9.7.1 প্রান্তলিপি

(a) এই অনুচ্ছেদের আলোচনায় দেখা গেল যে x² + y² = 1 বৃত্তের উপর কোন চলমান বিন্দু B-এর স্থানাঙ্ক (x, y) এবং AB বৃত্তচাপের দৈর্ঘ্য θ হলে x = cos θ এবং y = sin θ হয়।

 $\therefore x^2 + y^2 = 1 \Rightarrow \cos^2 \theta + \sin^2 \theta = 1....(iv)$

(b) সংজ্ঞানুসারে arc sin x + arc cos x = $\int_0^x \frac{dt}{\sqrt{1-t^2}} + \int_x^1 \frac{dt}{\sqrt{1-t^2}}$

ৰা
$$\sin^{-1}x + \cos^{-1}x = \int_{0}^{1} \frac{dt}{\sqrt{1-t^{2}}}$$

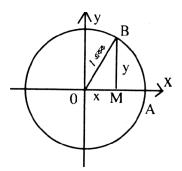
= $\frac{\pi}{2}, -1 \le x \le 1$ [(i) থেকে] (v)

172

(c) যদি $\theta \in [0, \pi]$ এবং $x = \cos \theta$ হয় তখন $\theta = \arcsin x$ হবে,

আবার যেহেতু arc cos x + arc sin x = $\frac{\pi}{2}$

$$\therefore \theta + \arcsin x = \frac{\pi}{2}$$



বা arc sin x = $\frac{\pi}{2} - \theta$ বা x = Sin $\left(\frac{\pi}{2} - \theta\right)$ বা cos θ = Sin $\left(\frac{\pi}{2} - \theta\right)$ (vi) অনুরূপভাবে দেখান যায় যে, যদি $\theta \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ এবং x = sin θ হয় তখন θ = arc sin x এবং $\frac{\pi}{2} - \theta$ =arc cos x এবং স্বাভাবিকভাবেই তখন sin θ = cos $\left(\frac{\pi}{2} - \theta\right)$,, (vii)

যেহেতু sin θ এবং cos θ -এর ধর্মের মধ্যে সাদৃশ্য আছে এবং উত্তয়েরই পর্যায়কাল 2π আমরা (vi) এবং (vii) নং ধর্মকে – ∞ < θ < ∞ তে অর্থাৎ θ -এর সকল বাস্তবমানে সম্প্রসারিত করতে পারি।

(d) সংজ্ঞা (iii) থেকে পাই
$$\theta = \int_0^y \frac{dt}{\sqrt{1-t^2}}, -1 \le y \le 1$$

 $\Rightarrow \frac{d\theta}{dy} = \frac{1}{\sqrt{1-y^2}}, = -1 \le y \le 1$
বা, $\frac{dy}{d\theta} = \sqrt{1-y^2}$
 \because বা, $\frac{d}{d\theta}(\sin\theta) = \sqrt{1-\sin^2\theta} = \cos\theta$ [\because y = sin θ]
আবার সংজ্ঞা (ii) থেকে পাই $\theta = \int_x^1 \frac{dt}{\sqrt{1-t^2}}, -1 \le x \le 1$
 $\Rightarrow \frac{d\theta}{dx} = -\frac{1}{\sqrt{1-x^2}}, -1 \le x \le 1$
বা $\frac{dx}{d\theta} = -\sqrt{1-x^2}$
 \because বা $\frac{d}{d\theta}\cos\theta = -\sqrt{1-\cos^2\theta} = -\sin\theta$ [\because x = cos θ]
 \Rightarrow cos $\theta = \pi \sqrt{-\cos^2\theta} = -\sin\theta$ [\because x = cos θ]

অতএব পাওয়া গেল $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$ তে $\frac{d}{d\theta} \sin \theta = \cos \theta$ এবং $\frac{d}{d\theta} \cos \theta = -\sin \theta$(viii) কিন্তু $\sin \theta \le \cos \theta$ সাদৃশ্য থাকায় ও একই পর্যায়কাল হওয়ায় উক্ত সম্পর্ক দুটি $-\infty < \theta < \infty$ -এর জন্য সত্য।

9.7.2 শ্রেণীর মাধ্যমে Sin⁻¹x ও tan⁻¹x এর প্রকাশ ঃ

1. আমরা জানি
$$\frac{1}{\sqrt{1-x^2}} = (1-x^2)^{\frac{1}{2}} = 1 + \frac{1}{2}x^2 + \frac{1}{2} \cdot \frac{3}{4}x^4 + \frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6}x^6 + \dots$$

= $1 + \sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \dots (2n-1)}{2 \cdot 4 \cdot 6 \dots (2n-2n)} x^{2n} \dots (i)$

 $\mathbf{x}^2=\mathbf{y}$ ধরে উপরোক্ত শ্রেণীটি রূপান্তর করে পাই

$$1 + \sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \dots (2n-1)}{2 \cdot 4 \cdot 6 \dots (2n)} y^n \equiv \sum_{n=0}^{\infty} a_n y^n$$
 (ধরি)
∴ $a_0 = 1, a_n = \frac{1 \cdot 3 \cdot 5 \dots (2n-1)}{2 \cdot 4 \cdot 6 \dots (2n)},$ যখন $n \ge 1$

$$\therefore \lim_{n \to \infty} \left| \frac{\mathbf{a}_{n+1}}{\mathbf{a}_n} \right| = \lim_{n \to \infty} \frac{2\mathbf{n} + 1}{2\mathbf{n} + 2} = \lim_{n \to \infty} \frac{2 + \frac{1}{n}}{2 + \frac{2}{n}} = \mathbf{1}$$

সুতরাং (-1, 1) অন্তরালে y-এর সকল বাস্তব মানে $\sum a_n y^n$ শ্রেণীটি অভিসারী। এই মন্তব্য থেকে বলা যায় (i) নং শ্রেণীটি (-1, 1) অন্তরালে x-এর সকল বাস্তব মানের জন্য অভিসারী। অতএব (i) নং শ্রেণীটি | x | < 1 তে পরমভাবে (absolutely) এবং [-k, k], k < 1 তে সুষমভাবে অভিসারী। সেইজন্য প্রত্যেক পদভিত্তিক (term – by – term) সমাকলন যোগ্য।

(i) নং কে [o, x] এর উপর $\mid x \mid < I$ মানের জন্য প্রত্যেক পদভিত্তিক (term – by – term) সমাকল করে পাই

আবার x = 1 এর জন্য, শ্রেণীটির মান

$$1 + \frac{1}{2} \cdot \frac{1}{3} + \frac{1 \cdot 3}{2 \cdot 4} \cdot \frac{1}{5} + \dots$$

র্যাবের পরীক্ষা (Raabe's test) অনুযায়ী দেখান যায় শ্রেণীটি অভিসারী। এবং এ্যাবেলের উপপাদ্য (Abel's theorem) অনুযায়ী x = 1 তে এই শ্রেণীটির মান Sin⁻¹ 1।

শেষে x = -1 এ শ্রেণীটির মান

$$1 - \frac{1}{2} \cdot \frac{1}{3} - \frac{1 \cdot 3}{2 \cdot 4} \cdot \frac{1}{5} - \dots$$

এই শ্রেণীটিও অভিসারী এবং একইভাবে ${f x}=-1$ তে এই শ্রেণীটির মান ${
m Sin}^{-1}$ (-1) ।

সুতরাং
$$\operatorname{Sin}^{-1}x = x + \frac{1}{2}$$
. $\frac{x^3}{3} + \frac{1.3}{2.4}$ $\frac{x^5}{5} + \frac{1.3.5}{2.4.6}$ $\frac{x^7}{7} + \dots$ া যখন $-1 \le x \le 1$

खबर $\frac{\pi}{2} = \operatorname{Sin}^{-1} \mathbf{I} = 1 + \frac{1}{2.3} + \frac{1.3}{2.4.5} + \frac{1.3.5}{2.4.6.7} + \dots$

ষষ্টব্য ঃ যেহেতু $\operatorname{Sin}^{-1} \mathrm{x} + \operatorname{Cos}^{-1} \mathrm{x} = \frac{\pi}{2}$ অতএব

$$\cos^{-1}x = \frac{\pi}{2} - \sin^{-1}x = \frac{\pi}{2} - \left\{ x + \sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1)}{2 \cdot 4 \cdot 6 \cdot \dots \cdot (2n)} \frac{x^{2n+1}}{2n+1} \right\}, \left| x \right| \le 1$$

2. আমরা জানি (1+x²)⁻¹ = 1 - x² + x⁴ - x⁶ + (i)

-x² = y ধরে শ্রেণীটি রূপান্তরিত হয়ে দাঁড়ায় 1 + y + y² + এটি একটি গুণোন্তর শ্রেণী এবং | y | < 1 জন্য অভিসারী। সুতরাং (i) শ্রেণীটির অভিসারী ব্যাসার্দ্ধ (Radius of convergence)। আরও বলা যায় শ্রেণীটি (-1,1) তে পরমভাবে (absolutely) অভিসারী এবং (-k, k), (|k| < 1) তে সুষমভাবে (Uniformly) অভিসারী।

(i) নং কে [o, x] এর উপর $|\mathbf{x}| < 1$ মানের জন্য প্রত্যেক পদভিত্তিক (term – by – term) সমাকল করে পাই

$$\int_{0}^{x} \frac{1}{1+x^{2}} dx = \int_{0}^{x} \left(1-x^{2}+x^{4}-x^{6}+...\right) dx$$

বা
$$\tan^{-1} x = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots$$
, যখন $|x| < 1$

কিন্তু x –
$$\frac{x^3}{3}$$
 + $\frac{x^5}{5}$ – $\frac{x^7}{7}$ + শ্রেণীটি x = 1 এর জন্য

 $1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} +$ রূপ নেয় যা লিবিনিজের (Leibnitz's) পরীক্ষা অনুযায়ী অভিসারী এবং এই ভাবে উক্ত শ্রেণীটি x = -1 এর জন্যও অভিসারী।

সুতরাং এ্যাবেলের উপপাদ্য অনুযায়ী $x-rac{x^3}{3}+rac{x^5}{5}.....$ শ্রেণীটি [–1, 1] অন্তরালে সুযমভাবে অভিসারী এবং

$$\tan^{-1} x = x - \frac{x^3}{3} + \frac{x^5}{5} - \dots$$
 যখন $-1 \le x \le 1$

x = 1 বসিয়ে পাই

$$\frac{\pi}{4} = \tan^{-1} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots$$

9.7 লগারিদম ও সূচক ফাংশন $\log_e x$ (= log x), e^x, a^x

এই অনুচ্ছেদে আমরা লগারিদম ও সূচক শ্রেণীর সংজ্ঞা দেব এবং রিমান সমাকলের ধর্মসমূহকে যথাসম্ভব কাজে লাগিয়ে এই ফাংশনগুলির বিভিন্ন ধর্ম প্রমাণের চেষ্টা করব।

9.8.1 log x -এর সংজ্ঞা ও কিছু ধর্ম

x > 0-এর জন্য সাধারণ লগারিদম $\log x$ বা L(x) কে $\log x = \int_t^x rac{\mathrm{d} t}{t}$ এই সমাকলের সাহায্যে সংজ্ঞায়িত করা হয়।

এই লগারিদমের নিধান e।

log x ফাংশনের বিভিন্ন ধর্ম ঃ

1. সংজ্ঞা থেকে সরাসরি $\log 1 = \int_1^1 \; \frac{dt}{t} = o \; , \;$ এবং যখন $x > \; 1$

তখন
$$\log x = \int_{1}^{x} \frac{dt}{t} > o$$
 |

(i) $\log (xy) = \log x + \log y$ (ii) $\log \left(\frac{x}{y}\right) = \log x - \log y$

(iv) $\frac{d}{dx}\log x = \frac{1}{x}$ (v) $\log x \to \infty$ ফাংশনটি (o, ∞) তে যথাযথভাবে ক্রমবর্ধমান (vi) log $x\to\infty$ যখন $x\to\infty$ এবং log $x\to-\infty$ যখন $x\to0+$ (vii) $\frac{X}{1+X} < \log(1+X) < X$, যখন X > -1 এবং $X \neq 0$ (viii) $\log x: (o, \infty)
ightarrow (-\infty, \infty)$ একটি বাইজেকটিভ ফাংশন। হামাণ ঃ (i) : log (xy) = $\int_{1}^{xy} \frac{dt}{t} = \int_{1}^{x} \frac{dt}{t} + \int_{x}^{xy} \frac{dt}{t}$ $= \log x + \int_{1}^{y} \frac{du}{u}$ দ্বিতীয় সমাকলে t = xu বসিয়ে, x নির্দিষ্ট $= \log x + \log y$ প্রমাণ : (ii) : $\log\left(\frac{x}{y}\right) = \int_{1}^{x/y} \frac{dt}{t} = \int_{1}^{x} \frac{dt}{t} + \int_{x}^{x/y} \frac{dt}{t}$ = $\log x + \int_{1}^{y} \left(-\frac{du}{u}\right)$ দ্বিতীয় সমাকলে $t = \frac{x}{u}$ বসিয়ে, x নির্দিষ্ট $= \log x - \log y$ দ্ৰস্কৰ্য : যখন x = 1, $\log\left(\frac{1}{y}\right) = \log 1 - \log y = 0 - \log y = -\log y$. প্রমাণ ঃ (iii) প্রথম ধাপ : যখন m একটি ধনাত্মক অখণ্ড সংখ্যা। m = 1 হলে ধর্মটি সরাসরি প্রমাণিত হয়। m = 2 হলে $\log x^2 = \log (x, x) = \log x + \log x = 2\log x \Rightarrow$ ধর্মটি m = 2 এর জন্যও সত্য ৷ এখন ধরা যাক ধর্মটি $\mathbf{m}=\mathbf{p}$ তে সত্য অর্থাৎ $\log\ (\mathbf{x}^p)=\mathbf{p}\ \log\ \mathbf{x}$ অতএৰ তখন $\log (x^{p+1}) = \log (x^p) + \log x$ $\left[\because \log(xy) = \log x + \log y \right]$ $= \log (x^{P-1}x) + \log x$ $= \log (x^{P-1}) + \log x + \log x = \log x^{P-1} + 2 \log x$

(iii) log (x^m) = m log x যখন m মূলদ সংখ্যা

 $= (p + 1) \log x$

.....

দেখা গেল m = p এর জন্য ধর্মটি সত্য হলে m = p +1 এর জন্যও ধর্মটি সত্য হয়। কিন্তু ধর্মটি m = 2 এর জন্যও সত্য। অতএব আরোহী প্রণালীর (method of induction) সাহায্যে বলা যায় ধর্মটি সকল ধনাত্মক স্বাভাবিক সংখ্যার জন্য সত্য।

দ্বিতীয় ধাপ ঃ যখন m = 0, তখন log (x°) = log l = 0, আবার,

 $m \log x = o \log x = o$, অতএব $\log (x^m) = m \log x$

তৃতীয় ধাপ ঃ যখন m একটি ঋণাত্মক অথণ্ড সংখ্যা

ধরা যাক m = -p, p > o একটি অখণ্ড সংখ্যা

$$\therefore \log(x^m) = \log(x^{-p}) = \log\left\{\left(\frac{1}{x}\right)^p\right\} = p \log\left(\frac{1}{x}\right) = p(-\log x)$$

 $= -p \log x = m \log x$

চতুর্থ ধাপ : ধরা যাক m একটি ধনাত্মক মূলদ সংখ্যা $=rac{p}{q}, \, p>o, \, q>o$

$$\therefore \log\left(x^{m}\right) = \log\left(x^{\frac{p}{q}}\right) = \log\left\{\left(x^{\frac{1}{2}}\right)^{p}\right\} = p \log\left(x^{\frac{1}{q}}\right) ($$
 প্ৰথম ধাপ অনুযায়ী)

আবার log x = log
$$\left\{ \left(x^{\frac{1}{q}} \right)^{q} \right\} = q \log \left(x^{\frac{1}{q}} \right) \Rightarrow \log \left(x^{\frac{1}{q}} \right) = \frac{1}{q} \log x$$

$$\therefore \log\left(x^{m}\right) = p \log\left(x^{\frac{1}{q}}\right) = \frac{p}{q} \log x = m \log x$$

পঞ্চম ধাপ : ধরা যাক m একটি ঋণাত্মক মূলদ সংখ্যা এবং $\mathbf{m}=-\mathbf{n},\,\mathbf{n}>\mathbf{o}$

$$\therefore \log(x^m) = \log(x^{-n}) = \log\left\{\left(\frac{1}{x}\right)^n\right\} = n \log \frac{1}{x} = -n \log x = m \log x$$

$$\therefore \log(x^m) = \log(x^{-n}) = \log\left\{\left(\frac{1}{x}\right)^n\right\} = n \log \frac{1}{x} = -n \log x = m \log x$$

$$\therefore \log(x^m) = \log(x^{-n}) = \log\left\{\left(\frac{1}{x}\right)^n\right\} = n \log \frac{1}{x} = -n \log x = m \log x$$

$$\therefore \log(x^m) = \log(x^{-n}) = \log\left\{\left(\frac{1}{x}\right)^n\right\} = n \log \frac{1}{x} = -n \log x = m \log \frac{1}{x}$$

অতএব (iii) নং ধর্মটি প্রু

তখন

$$\therefore \log(x^m) = \log(x^{-n}) = \log\left\{\left(\frac{1}{x}\right)^n\right\} = n \log \frac{1}{x} = -n \log x = m \log x$$

$$\binom{n}{x} = \log\left(x^{-n}\right) = \log\left\{\binom{1}{x}^{n}\right\} = n \log \frac{1}{x} = -n \log x = m$$

 $\log (x^m) = m \log x$ প্রমাণ (iv) : প্রদন্ত ${f x}>0$ এর জন্য একটি সংখ্যা ${f h}$ এমনভাবে নির্বাচন করা হল যেন ${f o}<|{f h}|<{f x}$ হয় |

$$\frac{\log (x+h) - \log x}{h} = \frac{1}{h} \int_{x}^{x+h} \frac{dt}{t} \dots \dots (A)$$
কিন্তু $\frac{1}{h} \int_{x}^{x+h} \frac{dt}{t} \ge \frac{1}{h} \cdot \frac{1}{x+h} \int_{x}^{x+h} dt = \frac{1}{x+h} \dots \dots (B)$
এবং $\frac{1}{h} \int_{x}^{x+h} \frac{dt}{t} \le \frac{1}{h} \cdot \frac{1}{x} \int_{x}^{x+h} dt = \frac{1}{x} \dots \dots (c)$
অতএব (A) তে (B) এবং (C) কাজে লাগিয়ে পাই—

$$\frac{1}{x+h} \le \frac{\log(x+h) - \log x}{h} \le \frac{1}{x}$$

এখন ${f h} o 0$ লিমিট নিলে অবকল সহগের সংজ্ঞানুসারে উপরের অসমতা থেকে পাই

$$\frac{\mathrm{d}}{\mathrm{d}x}\log x = \frac{1}{x}$$

প্রমাণ ঃ $(v): \, o \leq x_1 \leq x_2 \leq \, \infty \,$ নিলে পাই

$$\begin{split} \log x_2 &- \log x_1 = \int_{x_1}^{x_2} \frac{dt}{t} > o \\ \Rightarrow &\log x_2 > \log x_1$$
 যখন $x_2 > x_1$

সুতরাং $\log\,x$ ফাংশন (o, $_\infty$) অন্তরালে যথাযথভাবে ক্রমবর্ধমান।

প্রমাণ (vi) : যেকোন একটি ধনাত্মক সংখ্যা M নিলে $rac{1}{M} > o$ হয় এবং আমরা জানি log 2 > o। অতএব আর্কিমিডিসের ধর্ম (Archimedeam property) অনুযায়ী একটি স্বাভাবিক সংখ্যা n-এর অস্তিত্ব থাকবে যা o < $rac{1}{n \log 2} < rac{1}{M}$ সম্পর্কটিকে সিদ্ধ করে।.

 $\therefore \log (2^n) \ge M$

যেহেতু $\log x$ ফাংশন (o, ∞) তে যথাযথভাবে ক্রমবর্ধমান, অতএব $\log x > M, \ \forall x > 2^n$ । যেহেতু Mযেকোন ধনাত্মক সংখ্যা, এর থেকেই প্রমাণিত হয় যে $\lim_{x \to \infty} \log x = \infty$

আবার, যেহেতু $\log \frac{1}{x}$ = – $\log x$ যেখান থেকে বলা যায় $\log x$ \rightarrow – ∞ যেহেতু x \rightarrow – ∞ ।

অথবা, যেকোন একটি ঋণাত্মক সংখ্যা ${f M}$ নিলে | ${f M}$ | > o হয় এখন যেহেতু $-{1\over M}>o$ এবং $\log 2>o$ অবশ্যই

এখন $\mathbf{f}(t) = \frac{1}{t}$ যখন $t \in [x + 1, 1]$ নিলে [x + 1, 1] অন্তরালে $\mathbf{f}(t)$ সন্তত এবং যথাযথভাবে ক্রমক্ষীয়মাণ হয়।

দ্বিতীয় ধাপ ঃ যখন -1 < x < 0, তখন 0 < x + 1 < 1 এবং $\forall t \in [x + l, 1]$ এর জন্য $1 \le \frac{1}{t} \le \frac{1}{1 + x}$

ধরা যাক
$$f(t) = \frac{1}{t}$$
 যখন $t \in [1, 1+x]$ । তখন $[1, 1+x]$ অন্তরালে সন্তত এবং যথাযথভাবে ক্রমক্ষীয়মাণ
অতএব $f(1+x) < f(t) < f(1)$ যখন $t \in (1, 1+x)$
অর্থাৎ $\frac{1}{1+x} < \frac{1}{t} < 1$ যখন $t \in (1, 1+x)$
 $\therefore \int_{1}^{1+x} \frac{1}{1+x} dt < \int_{1}^{1+x} \frac{1}{t} dt < \int_{1}^{1+x} dt$
বা $\frac{1}{1+x} \int_{1}^{1+x} dt < \int_{1}^{1+x} dt < \int_{1}^{1+x} dt$
বা $\frac{1}{1+x} < \log(1+x) < x$ যখন $x > o$

প্রমাণ (vii) : প্রথম ধাপ : যখন $x > o, t \in \begin{bmatrix} 1, 1+x \end{bmatrix}$ এর জন্য $rac{1}{1+x} \leq rac{1}{t} \leq 1$ হয়।

$$\therefore \lim_{x \to 0+} \log x = -\infty$$

ঋণাত্মক সংখ্যা

হয়।

যেহেতু log x ফাংশন (o,∞) তে যথাযথভাবে ক্রমবর্ধমান, $\log x < M, \, \forall x < rac{1}{2^n}$ এবং M যেকোন

বা,
$$\log \frac{1}{2^n} < M$$

 \therefore - n log 2 < M

একটি স্বাভাবিক সংখ্যা n পাওয়া যাবে যা $0 < \frac{1}{n \log 2} < \frac{1}{M}$ সম্পর্কটি মেনে চলে (আর্কিমিডিয়ান ধর্ম)।

$$\therefore f(l) < f(t) < f(l+x), \forall t \in (x+1, 1)$$

व) $l < \frac{1}{t} < \frac{1}{1+x}, \forall t \in (x+1, 1)$

$$\therefore \int_{l+x}^{l} dt < \int_{l+x}^{l} \frac{1}{t} dt < \int_{l+x}^{l} \frac{1}{1+x} dt$$

व) $-x < -\log (l+x) < \frac{-x}{1+x}$

व) $\frac{x}{1+x} < \log (l+x) < x$ यथन $x \in (-1, 0)$

সুতরাং উপরের দুটি ধাপে প্রমাণিত ফল একত্রিত করে পাই,

$$rac{x}{1+x} < \log \left(1+x
ight) < x$$
 যখন $x > -1$ এবং $x
eq o$

প্রমাণ (viii) : আগে (v)নং ধর্মে প্রমাণিত হয়েছে log x ফাংশন (o, ∞) অন্তরালে যথাযথভাবে ক্রমবর্ধমান অতএব log x একই অন্তরালে (o, ∞) তে ইনজেকটিভ।

আবার পূর্বে প্রমাণিত (vi) নং ধর্মানুসারে log x → ∞ যখন x → ∞ এবং log x → – ∞ যখন x → o তাছাড়াও log x ফাংশনটি সন্তত ও (o, ∞) অন্তরালে যথাযথভাবে ক্রমবর্ধমান অতএব x ∈ (o, ∞) মানের জন্য log x ফাংশন (–∞, ∞) অন্তরালের প্রত্যেক বাস্তব মান কেবলমাত্র একবার ধারণ করে। সুতরাং log x ফাংশনটি সারজেকটিভ।

অতএব প্রমাণিত হল যে $\log x$ ফাংশন বাইজেকটিভ যার সংজ্ঞাঞ্চল (o, ∞) এবং বিস্তার $(-\infty, \infty)$ ।

9.8.2 expx বা e^x-এর সংজ্ঞা ও কিছু ধর্ম

যেহেতু log x বাইজেকটিভ এটির বিপরীত ফাংশনের অস্তিত্ব আছে, log x এর এই বিপরীত ফাংশনকে expx বা e^x দ্বারা প্রকাশ করা হয়। সুতরাং e^x-এর সংজ্ঞাঞ্চল (–∞, ∞) এবং বিস্তার (0,∞)। যদি y = e^x নেওয়া যায় তাহলে বিপরীত ফাংশনের ধর্ম অনুযায়ী log y = log (e^x) = x, যখন y > o এবং e^{log y} = y যখন y > o।

যেহেতু e' = e, log $e = \log (e') = I$ ($\because \log y = \log e^x = x$)

সুতরাং বলা যায় log x = 1 কে সিদ্ধ করে যে বাস্তব সংখ্যাটি (unique real number) তাকেই e দ্বারা প্রকাশ করা হয়।

- ∴ log e = l এবং e-এর নিম্নরূপ সংজ্ঞা দেওয়া যায়—
- $1 = \int_{1}^{e} \frac{I}{t} dt$ e^x বা exp x ফাংশনের বিভিন্ন ধর্ম ঃ (i) $\exp o = I$ (ii) $\exp x$. $\exp y = \exp (x + y)$ (iii) $\exp (nx) = (\exp x)^n$, যখন n একটি মূলদ সংখ্যা (iv) $\lim_{x \to 0} \frac{e^x - l}{x} = l$ (v) $\frac{d}{dx}^{exp x} = exp x, \forall x \in R$ প্রমাণ (i) ঃ আমরা জানি exp log x = x, $\forall x > o$, সুতরাং exp log l = l কিন্তু log 1 = 0 হওয়ায় exp o = 1 হামাণ (ii) constants log exp (x+y) = x + y = log exp x + log exp y, $\forall x, y \in \mathbb{R}$ = log (exp x. exp y), [log x-এর ধর্মানুসারে] সুতরাং exp (x+y) = exp x. exp y, $\forall x, y \in \mathbb{R}$ প্রমাণ (iii) ঃ প্রথম ধাপ : n = o হলে exp (nx) = exp o = 1 এবং $(\exp x)^n = (\exp x)^o = I$ সুতরাং বামপক্ষ = ডানপক্ষ দ্বিতীয় ধাপ ঃ যখন n একটি ধনাত্মক অখণ্ড সংখ্যা এই ধর্মাটি সত্য কারণ $\exp(nx) = \exp((1 \cdot x)) = \exp x = (\exp x)^{1} = (\exp x)^{n}$ ধরা যাক ধর্মটি n = m এর জন্য সত্য $\therefore \exp(mx) = (\exp x)^m$ এখন $\exp[(m+1)x] = \exp(mx + x) = \exp(mx)$. exp x $= (\exp x)^m \exp x.$ $= (\exp x)^{m+1}$

অতএব দেখা গেল ধর্মটি (m+1)-এর জন্যও সত্য। আবার ধর্মটি n = 1 এর জন্যও সত্য। সুতরাং আরোহী প্রণালী অনুযায়ী ধর্মটি সকল ধনাত্মক অখণ্ড সংখ্যার জন্য সত্য।

তৃতীয় ধাপ ঃ যখন n একটি ঋণাত্মক অখণ্ড সংখ্যা, ধরা যাক n = -p

$$\therefore \exp(\mathbf{nx}) = \exp(-\mathbf{px}) = \frac{1}{\exp(\mathbf{px})} = \frac{1}{(\exp x)^p} = (\exp x)^p$$

চতুর্থ ধাপ ঃ যখন ${f n}$ একটি ধনাত্মক মূলদ সংখ্যা ${p\over q},\,p,\,q\in N$

যেকোন ধনাত্মক সংখ্যা a-এর জন্য আমরা a^x ফাংশনটি $a^x = e^{x \log a}, \ \forall x \in R$ এইভাবে সংজ্ঞায়িত করি।

9.8.3 a^x এর সংজ্ঞাও কিছু ধর্ম

হামাণ (v) :
$$\frac{d}{dx}e^x = \lim_{h \to 0} \frac{e^{x+h} - e^x}{h} = e^x \lim_{h \to 0} \frac{e^h - 1}{h}$$
$$= e^x \cdot 1 = e^x$$

$$\therefore \lim_{x \to 0} \frac{e^x - 1}{x} = \lim_{y \to 0} \frac{y}{\log(1 + y)} = 1 \qquad \left[\because \lim_{y \to 0} \frac{1}{y} \log(1 + y) = 1\right]_1$$

$$\therefore x \rightarrow 0$$
 হলে $y \rightarrow 0$ হয়।

এখন ${
m e}^{
m x}
ightarrow 1$ যখন ${
m x}
ightarrow {
m o}$ [কারণ $\exp {
m x}$ ফাংশনটি $\left(- \infty, \infty
ight)$ তে সন্তত]

অতএব (iii)নং ধর্ম প্রমাণিত হল। প্রমাণ (iv) : ধরা যাক e^x – 1 = y, তখন e^x = 1 + y উভয়পক্ষে log নিয়ে পাই x = log (1+y)।

= (exp x)ⁿ [প্রত্যেক স্তরে পরিবর্তন প্রমাণিত ধর্মানুসারে করা হয়েছে]

∀x]

ৰ্জতথ্ৰৰ exp (nx) = exp (-mx) = $\frac{1}{\exp(mn)} = (\exp x)^{-m}$

পঞ্চম ধাপ ঃ যখন n একটি ঋণাত্মক মূলদ সংখ্যা। ধরা যাক n = – m

আবার exp (px) = (exp x)^p

অতএব (exp x)^p = $\left[ex \left\{ \left(\frac{p}{q} \right) x \right\} \right]^{q}$

$$\exp(\mathbf{p}\mathbf{x}) = \exp\left\{q\left(\frac{\mathbf{p}}{q}\right)\mathbf{x}\right\} = \left[\exp\left\{\left(\frac{\mathbf{p}}{q}\right)\mathbf{x}\right\}\right]^{q}$$

 I. প্রমাণ করুন যে $\lim_{x \to 0} \frac{1}{x} \log(1 + x) = 1$

 সমাধান ঃ 9.8.1 অনুচ্ছেদের (vii) নং ধর্মঅনুযায়ী আমরা জানি x > -1 এবং $x \neq 0$ হলে

 $\frac{x}{1 + x} < \log(1 + x) < x$ হয়।

9.8.4 উদাহরণমালা

আবার যদি $\log_{\mathsf{n}} \! \mathrm{y} = \mathrm{x}$ হয়, তখন সংজ্ঞা থেকে $\mathrm{y} = a^{\mathrm{x}}$

$$\Rightarrow \log_a^y = x$$

$$\log \frac{y}{a} = \log_{a} \left(a^{x} \right) = x \log_{a} a = x$$

আবার,
$$a^{xy} = e^{xy \log a} = e^{y \log a} = (a^x)^y$$
 ইত্যাদি।

প্ৰমাণ (iv) :
$$(a^x)^y = e^{y \log a} = e^{yx \log a} = a^{yx}$$

প্রমাণ (iii) :
$$a^x$$
 . $a^y = e^{x \log a}$. $e^{y \log a}$ [সংজ্ঞা থেকে]

$$= e^{x (\log a + \log b)} \qquad [\log x ফাংশনের ধর্মানুযায়]]$$
$$= e^{x \log a} e^{x \log b} = a^x b^x$$

প্রমাণ (ii) : $(ab)^x = e^{x \log (ab)}$ [সংজ্ঞানুসারে]

$$\log (a^{x}) = \log (e^{x \log a}) = (x \log a) \log e = x \log a \qquad [\because \log e = 1]$$

 $x = \log_a y$ এবং $x = \log_a y$ হলে $y = a^x$ । প্রমাণ (i) : সংজ্ঞানুসারে $a^x = e^{x \log a}$ । উভয় পক্ষে \log নিয়ে পাই

(iv) $(a^x)^y = a^{xy} = (a^y)^x$ (v) যদি $a \neq 1$ হয় তখন $y = a^x$ হলে

(i) $\log a^x = x \log a$ (ii) $(ab)^x = a^x b^x$ (iii) $a^x b^y = a^{x+y}$

a^x এর বিভিন্ন ধর্ম ঃ

অতএব $\delta > o$ এর জন্য একটি সামীপ্য N (o, δ) বা ($-\delta$, δ) পাওয়া যাবে যখন $x \in N$ (o, δ) এর জন্য $\frac{1}{1+x} < \frac{\log(1+x)}{x} < 1$ হয়। x ŷ ŷ ûёёён 🏍 $\lim_{x o \infty} rac{1}{1+x} = 1$ অতএব স্যণ্ডউইচ (Sandwich) এর উপপাদ্য অনুযায়ী $\lim_{x \to \infty} \frac{1}{x} \log(1 + x) = 1$ 2. দেখান যে 2 < e < 3 2. ঃ আমরা জানি [1, 2] তে $\frac{1}{t} \le 1$ এবং $\frac{1}{t}$ সন্তত। আবার [1, 2] এর অন্তর্গত কোন একটি বিন্দু ধরি 1.5-তে <u>l</u> < 1 অতএব $\int_1^2 \frac{1}{t} dt < \int_1^2 1 dt = 1$ বা log $2 < 1 = \log e$ $\Rightarrow 2 \leq e$ (A) [যেহেতু $(0,\infty)$ তে $\log x$ যথাযথভাবে ক্রমবর্ধমান ফাংশন] আবার $\int_{1}^{3} \frac{1}{t} dt = \int_{1}^{2} \frac{1}{t} dt + \int_{2}^{3} \frac{1}{t} dt$ $= \int_{0}^{1} \frac{du}{2-u} + \int_{0}^{1} \frac{du}{2+u}$ [প্রথম সম্পর্ককে t = 2 - u এবং দ্বিতীয় সমাকলে t = 2 + u বসিয়ে] $= 4 \int_{0}^{1} \frac{\mathrm{d}u}{4 - u^2} \dots (\mathbf{B})$

কিন্তু রিমান সমাকলের উপপাদ্য অনুযায়ী আমরা জানি [a, b] তে সংজ্ঞাত দুটি ফাংশন $\phi(x)3\psi(x)$ যদি $\phi(x) \ge g(x), \ \forall x \in [a, b]$ হয় এবং যদি একটি বিন্দু $C \in [a, b]$ -এর অস্তিত্ব থাকে, যার জন্য $\phi(c) > \psi(c)$ হয় তখন $\int_a^b \phi(x) \, dx > \int_a^b \psi(x) \, dx$

এখানে $\phi(\mathbf{u}) = \frac{1}{4 - \mathbf{u}^2}$ এবং $\psi(\mathbf{u}) = \frac{1}{4}$ নিলে, যেহেতু $\phi\left(\frac{1}{2}\right) > \psi\left(\frac{1}{2}\right)$

- ∴ (A) এবং (c) একত্রিত করলে পাই
- 2 < e < 3

°

3. দেখান যে $e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$

সমাধান ঃ আমরা 1 নং উদাহরণ থেকে জানি

$$\lim_{x \to \infty} \frac{1}{x} \log (1 + x) = 1$$

এখন যদি একটি ক্রম (sequence) $\{x_n\}$ এমন নেওয়া হয় যখন $x_n = \frac{1}{n}$ তখন $\lim_{n \to \infty} x_n = \lim_{n \to \infty} \frac{1}{n} = o$ হয় এবং উপরোক্ত সীমাটি ক্রমের নিরিখে দাঁড়ায় $\lim_{n \to \infty} \frac{1}{x_n} \log (1 + x_n) = 1$

ৰা
$$\lim_{n \to \infty} n \log\left(1 + \frac{1}{n}\right) = 1$$
 বা $\lim_{n \to \infty} \log\left(1 + \frac{1}{n}\right)^n = \log e$
ৰা $\log \left\{ \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n \right\} = \log e$ [$\because \log x$ ফাংশন সন্তত]
 $\therefore \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = e$

9.9 হাইপারবোলিক (Hyperbolic) ফাংশন সমূহ

হাইপারবোলিক ফাংশন সমূহের সঙ্গে পরিচিত হওয়ার জন্য প্রথমে নিম্নলিখিত H(x) ফাংশনটির অবতারণা করা হচ্ছে

$$H(x) = \int_{0}^{x} \frac{1}{\sqrt{1+t^{2}}} dt, x \in (-\infty, \infty).....(i)$$

উপরোক্ত সমাকল ফাংশনটির কয়েকটি ধর্ম ঃ

(a)
$$H(-x) = \int_{0}^{-x} \frac{dt}{\sqrt{1+t^{2}}} = \int_{0}^{x} \frac{(-dy)}{\sqrt{1+y^{2}}}$$
 where $t = -y$

$$= -\int_{0}^{x} \frac{dx}{\sqrt{1+y^{2}}} = -H(x) \Rightarrow H(x)$$
 একটি অযুগ্ম অপেক্ষক

(b)
$$\int_0^\infty \frac{dt}{\sqrt{1+t^2}} = \int_0^1 \frac{dt}{\sqrt{1+t^2}} + \int_1^\infty \frac{dt}{\sqrt{1+t^2}}$$
.....(ii)

আবার
$$t \ge 1$$
 এর জন্য $\int_1^x \; rac{dt}{\sqrt{l+t^2}} > \int_1^x \; rac{dt}{\sqrt{2t^2}}$ যখন $x > 1$

অতএব তুলনামূলক পরীক্ষা (Comparison Test) অনুযায়ী $\int_1^\infty {{\rm d}t\over \sqrt{{\rm I}+{\rm t}^2}}$

সমাকলটি অপসারী (divergent), এবং সেইজন্য (ii) থেকে বলা যায়—

$$\int_{0}^{\infty} \; rac{\mathrm{d} t}{\sqrt{1+t^2}}$$
 সমাকলটিও অপসারী। সুতরাং $\mathbf{H}(\mathbf{x})$ ফাংশনটির কোন ঊর্ধ্বসীমা নেই।

আবার যেহেতু ধর্ম (a) অনুযায়ী H(-x) = -H(x) অতএব আরও বলা যায় H(x) ফাংশনটির কোনও নিম্নসীমাও নেই। অতএব H(x) ফাংশনটি x ∈ R তে কোন ঊর্ধ্বসীমা ও নিম্নসীমা নেই।

(c) যেহেতু
$$rac{1}{\sqrt{l+t^2}}$$
 ফাংশনটি [o, x] তে সমাকলন যোগ্য, অতএব H(x) সন্তত।

আবার যেহেতু
$$\frac{1}{\sqrt{1+t^2}}$$
 ফাংশন [o, x] তে সন্তত, অতএব $H'(x) = \frac{1}{\sqrt{1+x^2}} > 0$ যখন $x \in (-\infty, \infty)$
এবং $x_1 \neq x_2$ হলে $H(x_1) \neq H(x_2)$ সূতরাং $H(x)$ ফাংশন যথাযথভাবে ক্রমবর্ধমান।

অতএব দেখা যাচ্ছে H(x) ফাংশনটির একটি বিপরীত ফাংশন আছে। তাকে S(x) দ্বারা চিহ্নিত করলে 9.5 অনুচ্ছেদের উপপাদ্য I অনুযায়ী বলা যায় S(x) ফাংশনটিও $X \in \mathbf{R}$ তে যথাযথভাবে ক্রমবর্ধমান ও সন্তত হবে। যদি S(a) = b হয়, তখন H(b) = H (S(a)) = a এবং বিপরীত ফাংশনের উপপাদ্য অনুযায়ী $S'(a) = \frac{1}{H'(b)} = \sqrt{1 + b^2}$

উপপাদ্যটির বিবৃতি ঃ f : I →R ফাংশনটি ইনজেকটিভ এবং এটির বিপরীত ফাংশন g(x)। যদি f(x) ফাংশন $x = a \in I$ তে সন্তত হয় এবং f(a) = b তে g(x) অবকলন যোগ্য হয় ও শূন্য না হয় অর্থাৎ g'(b) ≠ o হয়, তখন f(a) এর অস্তিত্ব থাকবে এবং f'(a) = $\frac{1}{g'(b)}$ হবে]

বা
$$S'(a) = \sqrt{1 + \{S(a)\}^2}, \forall a \in \mathbb{R}, [:: S(a) = b....(iii)]$$

এখানে a কে চলরাশি মনে করে একে a এর সাপেক্ষে অবকল করে পাই

$$\mathbf{S}^{\prime\prime}(\mathbf{a}) = \frac{\mathbf{S}(\mathbf{a}) \cdot \mathbf{S}^{\prime}(\mathbf{a})}{\sqrt{1 + \left[\mathbf{S}(\mathbf{a})\right]^{2}}} = \mathbf{S}(\mathbf{a}), \forall \mathbf{a} \in \mathbf{R} \quad \mathbf{s}^{\prime} \vdash \mathbf{S}^{\prime}(\mathbf{a}) = \sqrt{1 + \left\{\mathbf{S}(\mathbf{a})\right\}^{2}} \quad \dots \dots \dots (iv)$$

আর একটি ফাংশন C(x) কে C(x) = $\sqrt{1 + \{s(x)\}^2}$, ∀x ∈ R(v) এইভাবে সংজ্ঞায়িত করলে দেখা যায়

$$\mathbf{C}(\mathbf{x}) = \mathbf{S}^{/}(\mathbf{x})$$
 এবং $\mathbf{C}^{/}(\mathbf{x}) = \mathbf{S}(\mathbf{x}), \, \forall \mathbf{x} \in \mathbf{R}$ (vi)

এই S(x) এবং C(x) ফাংশনদ্বয়কে হাইপারবোলিক সাইন ও কোসাইন ফাংশন বলা হয় এবং এগুলিকে যথাক্রমে Sinh x ও coshx দ্বারা প্রকাশ করা হয়।

9.9.1 কয়েকটি সূত্র (হারইপারবোলিক ফাংশনের) ঃ

- (a) উপরের (v) নং সমীকরণ থেকে পাওয়া যায় $\cosh^2 x \sinh^2 x = 1$
- (b) (vi) নং সম্পর্কটি থেকে এটা পরিষ্কার যে,

$$\frac{d}{dx}Sinh \ x = Cos \ x \quad \text{arg} \quad \frac{d}{dx}cosh \ x = sinh \ x, \ \forall x \in R$$

(c) যেহেতু $H(o) = \int_0^0 \frac{dt}{\sqrt{1+t^2}} = 0$ অতএব S (o) = o [এখানে a = 0 = b]

বা Sinh o = o

আবার যেহেতু $C(x) = \sqrt{1 + [S(x)^2]}$, Cosh(o) = 1

- (d) যেহেতু H(x) এর বিপরীত অপেক্ষক S(x) = Sinh x
 - \therefore H(x) = Sinh⁻¹ x
 - আবার H(-x) = -H(x)

সুতরাং Sinh (–x) = –Sinh x

$$C(x) = \sqrt{1 + \{S(x)^2\}} \implies C(-x) = \sqrt{1 + \{S(-x)\}^2}$$
$$\therefore = \sqrt{1 + \{-S(x)\}^2} \qquad [\because S(-x) = -S(x)]$$
$$= \sqrt{1 + \{S(x)\}^2}$$
$$= C(x)$$

অতএব Cosh(-x) = Cosh x.

(e) Sinh x এবং $\cosh x$ -এর সাহায্যে একটি নতুন ফাংশন $\tanh x = \frac{\sinh x}{\cosh x}$ এইভাবে সংজ্ঞায়িত করা

হয়।

অতএব
$$\tanh(-x) = \frac{\sinh(-x)}{\cosh(-x)} = \frac{-\sinh x}{\cosh x} = -\tanh x$$

$$\operatorname{add} \frac{d}{dx}(\tanh x) = \frac{d}{dx}\left(\frac{\sinh x}{\cosh x}\right) = \frac{\cosh x \cosh x - \sinh x \sinh x}{\left(\cosh x\right)^2} = \frac{1}{\left(\cosh x\right)^2} > 0, \ \forall x \in \mathbb{R} + \frac{1}{\left(\cosh x\right)^2} = \frac{1}{\left(\cosh x\right)^2} > 0, \ \forall x \in \mathbb{R} + \frac{1}{\left(\cosh x\right)^2} = \frac{1}{\left(\cosh x\right)^2} > 0, \ \forall x \in \mathbb{R} + \frac{1}{\left(\cosh x\right)^2} = \frac{1}{\left(\cosh x\right)^2} =$$

সুতরাং tanh ${\bf x}$ ফাংশনটি $\left(-\infty, \infty\right)$ তে যথাযথভাবে ক্রমবর্ধমান।

9.10 সারাংশ

- (i) এই এককে প্রস্তাবনা ও উদ্দেশ্যের পরে বিভিন্ন ধরনের ফাংশনের সংজ্ঞা উদাহরণ সহযোগে দেওয়া হয়েছে।
- (ii) বিপরীত ফাংশনের সংজ্ঞা দেওয়া হয়েছে ও বিপরীত ফাংশন সম্পর্কিত কয়েকটি উপপাদ্য প্রমাণ করা হয়েছে। উপপাদ্যগুলি নিম্নরূপ ঃ
- (a) f : A → B ফাংশনটির যদি বিপরীত ফাংশন থাকে তবে তা কেবলমাত্র একটিই ফাংশন।

- (b) ধরা যাক A, B, C সেট তিনটির কেউই খালি নয়, এবং $f: B \to B$; $g: B \to C$ া যদি $gf: A \to C$ ফাংশন ইনজেকেটিভ হয় তাহলে f ইনজেকেটিভ।
- (c) ধরা যাক A, B, C সেট তিনটির কেউই খালি নয় এবং $f: A \to B$; $g: B \to C$ যদি $gf: A \to C$ সারজেকেটিভ হয় তাহলে g সারজেকটিভ।
- (d) f: A → B ফাংশনটির বিপরীত ফাংশন থাকবে যদি এবং কেবলমাত্র যদি f বাইজেকটিভ হয় (অস্তিত্বের শর্ত)
- (e) যদি f : A → B ফাংশনটির বিপরীত ফাংশন থাকে তাহলে f⁻¹ : B → A ফাংশনটিরও বিপরীত ফাংশন থাকবে।
- (f) ধরা যাক $f : A \to B$ ফাংশনটি [a, b] অন্তরালে যথাযথভাবে ক্রমবর্ধমান এবং সন্তত। যদি $f(a) = \alpha$ এবং $f(b) = \beta$ তাহলে $[\alpha, \beta] \subset B$ অন্তরালে f^{-1} যথাযথভাবে ক্রমবর্ধমান ও সন্তত।
- (g) যদি $f:R \to R$ ফাংশনটি R তে সন্তত হয়, তাহলে R-এর যেকোন মুক্ত উপসেট A এর জন্য $f^{-1}(A)$ সেটটিও R এর মুক্ত উপসেট হবে।
- (iii) শ্রেণীর মাধ্যমে e^x, a^x, Sin x, Cos x এর প্রকাশ ও কিছু ধর্ম প্রমাণিত আছে।

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!}, \forall x ; a^{x} = \sum_{n=0}^{\infty} \frac{x^{n} \left(\log a\right)^{n}}{n!}, a > 0, \forall x$$

Sin x =
$$\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}$$
, $\forall x$; Cos x = $\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}$, $\forall x$

(iv) সমাকলের মাধ্যমে arc sin x, arc cos x সংজ্ঞা ও সেখান থেকে এই বিপরীত ফাংশনদ্বয়ের কিছু ধর্ম প্রমাণ করা হয়েছে।

arc Cos x =
$$\int_x^1 \frac{dt}{\sqrt{1-t^2}}$$
, $-1 \le x \le 1$; arc sin y = $\int_o^y \frac{dt}{\sqrt{1-t^2}}$, $-1 \le y \le 1$

(v) শ্রেণীর মাধ্যমে $Sin^{-1} x$, $tan^{-1}x$ এর প্রকাশ :

$$Sin^{-1}x = x + \sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \dots (2n-1)}{2 \cdot 4 \cdot 6 \dots (2n)} \frac{x^{2n+1}}{2n+1}, |x| \le 1$$
$$tan^{-1}x = x - \frac{x^3}{3} + \frac{x^5}{5} - \dots |x| \le 1$$

- (vi) সমাকলের সাহায্যে লগারিদম ও সূচক ফাংশনের সংজ্ঞা দেওয়া হয়েছে এবং কিছু ধর্ম প্রমাণ করা হয়েছে।
- (vii) $\log x \int_{1}^{x} \frac{dt}{t}, x > 0, \log x$ এর বিপরীত ফাংশন e^{x} যখন $1 = \int_{1}^{e} \frac{dt}{t}$
- (viii) হাইপারবোলিক ফাংশন ঃ

H(x) = $\int_{0}^{x} \frac{dt}{\sqrt{1+t^{2}}}$, $-\infty < x < \infty$ ফাংশনটির বিপরীত ফাংশন S(x) কে হাইপারবোলিক সাইন বা Sinh x বলা হয় এবং C(x) = $\sqrt{1+\{S(x)\}^{2}}$ কে হাইপারবোলিক কোসাইন বা Cosh x বলা হয়। Sinh hx ও Cosh x-এর কিছু সূত্র প্রমাণ করা হয়েছে।

- (ix) যে যে বিষয়গুলি এই এককে আলোচিত হল সেই সেই বিষয়গুলির উপর কিছু প্রশ্ন সর্বশেষ প্রশ্নাবলিতে সংকলিত করা হয়েছে এবং সংকেত সহ সেগুলির উত্তর ও উত্তরমালায় দেওয়া হয়েছে।
- (x) সহায়ক গ্রন্থাবলীর বিবরণ ও সবশেষ লিপিবদ্ধ করা হয়েছে।

9.11 সর্বশেষ প্রশ্নাবলী

- যদি f(x) = 1 + Sin x, ∀x ∈ (-∞,∞) এবং g(x) = x², ∀ x ∈ [o,∞] হয় তবে g_o f(x) এর মান ও এটির সংজ্ঞাঞ্চল নির্ণয় করুন।
- 2. $f: R \rightarrow R$ এবং $g: R \rightarrow R$ ফাংশন দুটি $f(x) = x^2 + 3$, g(x) = 2x 1 হলে gf ও fg নির্ণয় করন্দ।
- যদি f(x) = x + 1 এবং f : z → z (যখন সকল পূর্ণ সংখ্যার সেট z হয়) তবে দেখান যে f বাইজেকটিভ এবং তখন f⁻¹ এর মান নির্ণয় করুন।
- 4. (i) যদি f(x) = Cosec x এবং $f : A \rightarrow B$ হয়, যখন বাস্তব সংখ্যার সেট, $A = \left\{ x : -\frac{\pi}{2} \le x \le \frac{\pi}{2} \right\} - \{0\}$, বিস্তার সেট B এর মান নির্ণয় করুন এবং দেখান f বাইজেকটিভ। $f^{-1} : B \rightarrow A$ হলে f^{-1} নির্ণয় করুন। (ii) f(x) = Sec x এবং $f : A \rightarrow B$ হলে দেখান f বাইজেকটিভ যখন $A = \left\{ x \in R : o \le x \le \pi \right\} - \left\{ \frac{\pi}{2} \right\}$ এবং $B = R - \left\{ x \in R : -1 < x < 1 \right\} : f^{-1}$ ফাংশনটি নির্ণয় করুন যখন $f^{-1} : B \rightarrow A$
- 5. (i) দেখান যে একটি ধনাত্মক সংখ্যা π আছে যখন $\cos \pi/2 = o$ এবং $\cos x > o$ যখন $o \le x < \pi/2$ হয়।

(ii)
$$\cos \frac{\pi}{2} = 0$$
 ধরে দেখান যে $\sin \frac{\pi}{2} = 1$

(iii) প্রমাণিত সূত্রগুলি কাজে লাগিয়ে দেখান যে, $\cos \pi = -1$, $\sin \pi = 0$, $\cos(2\pi) = 1$, $\sin(2\pi) = 0$

$$\cos \frac{\pi}{4} = \frac{1}{\sqrt{2}}, \sin \frac{\pi}{4} = \frac{1}{\sqrt{2}}$$
 हेणांगि

(iv) যোগফলের সূত্রগুলি কাজে লাগিয়ে প্রমাণ করুন

$$\sin\left(\frac{\pi}{2} - x\right) = \cos x, \cos\left(\frac{\pi}{2} - x\right) = \sin x$$

$$\sin\left(\frac{\pi}{2} + x\right) = +\cos x, \cos\left(\frac{\pi}{2} + x\right) = -\sin x$$

$$\sin\left(\pi - x\right) = \sin x, \cos\left(\pi - x\right) = -\cos x$$

$$\sin\left(\pi + x\right) = -\sin x, \cos\left(\pi + x\right) = -\cos x$$

$$\sin\left(\pi + x\right) = -\sin x, \cos\left(\pi + x\right) = -\cos x$$

$$\cos\left(\pi + x\right) = -\cos x$$

6. log (1+ x) ফাংশনটিকে অসীম শ্রেণীতে প্রকাশ করুন।

7. দেখান যে
$$\lim_{x \to \infty} \frac{\log x}{x} = o$$

8. দেখান যে,
$$\lim_{x \to \infty} \frac{a^x - 1}{x} = \log a(a > o)$$

- (i) $\exp(-x) = C(x) S(x)$
- (ii) exp (x). exp (-x) = 1
- (iii) যদি f(x) = exp x হয় f'(x) = f (x)
- (iv) Sinh (x + y) = Sinh x Cosh y + Cosh x Sinh y
- (v) Cosh (x+y) = Cosh x Cosh y + Sinh x Sinh y
- 10. দেখান যে e একটি অমূলদ সংখ্যা।

9.12 উত্তরমালা (সংকেত সহ)

1. সংকেত :
$$g_{o}f(x) = (1 + \sin x)^{2}, \forall x \in (-\infty, \infty)$$

2. সংকেত : fg = 2 (x² + 3) - 1, fg = $(2x - 1)^2 + 3$, gf : R \rightarrow R, fg : R \rightarrow R

3. সংকেত : $f(x_1) = f(x_2) \Rightarrow x_1 + 1 = x_2 + 1 \Rightarrow x_1 = x_2, \forall x_1, x_2, \in z$ সুতরাং f ইনজেকেটিভ ৷ আবার y = f(x) = x + 1 হলে x = y - 1

$$\therefore \ y-l \in z$$
 এবং $f(y-l) = y \Rightarrow$ প্রত্যেক y এর জন্য তার একটি প্রাকবিম্ব $(y-l)$ বিদ্যমান ৷

সুতরাং f সারজেকটিভ। f⁻¹ (x) = x - 1

4. (i) সংকেত : B = R - { x
$$\in$$
 R : $-1 < x < 1$ }, f⁻¹(y) = cosec⁻¹y

$$\begin{aligned} \overset{\text{def}}{=} & -\frac{\pi}{2} \le \csc^{-1}y < o \ ; \ \forall y \le -1, \ 0 < \csc^{-1}y \le \frac{\pi}{2}, \ \forall y \ge 1 \end{aligned}$$
(ii) f⁻¹ (y) = sec⁻¹ y

5.(i) সংকেত : [o, 2] বিস্তারের cos o = 1, cos 2 = 1 - $\frac{2^2}{2!} + \frac{2^4}{4!} - \frac{2^6}{6!} + \dots$ (শ্রেণীর সংজ্ঞা থেকে)

যেহেতু প্রথম বন্ধনীর মধ্যের সংখ্যাগুলির সবই ধনাত্মক, অতএব,

$$\cos 2 < 1 - \frac{2^2}{2!} \left(1 - \frac{2^2}{3!4} \right) = -\frac{1}{3!3},$$

∴ Cos 0 > 0 এবং Cos2 < o, ⇒ Cos x = o সমীকরণটির 0 এবং 2 এর মধ্যে একটি বীজ আছে। বীজটিকে α ধরা হল। যদি সন্তব হয় ঐ সমীকরণের আর একটি বীজ β, 0 < β < 2। তাহলে cos x ফাংশনটি রোলের উপপাদ্যের (Rolles theorem) শর্তগুলি মেনে চলে এবং বলা যাবে α ও β এর মধ্যে x এর আর একটি মান λ আছে

যার জন্য
$$\left(\frac{d}{dx}\cos x\right)_{x=\lambda} = o$$
 বা $\sin \lambda = o$ যখন $o < \lambda < 2$

কিন্তু Sin $\lambda = \frac{\lambda}{1!} \left(1 - \frac{\lambda^2}{2.3}\right) + \frac{\lambda^5}{5!} \left(1 - \frac{\lambda^2}{6.7}\right) + \dots$, যা একটি ধনাত্মক সংখ্যা। অতএব 0 ও 2 এর মধ্যবতী

Cos x = o সমীকরণের একটি মাত্র বীজই বিদ্যমান। এই বীজকে $rac{\pi}{2}$ দ্বারা চিহ্নিত করা হয় এবং এটি Cos x = o সমীকরণের সব থেকে ছোট বীজ। সুতরাং Cos x > o যখন o ≤ x < $rac{\pi}{2}$

5. (ii) সংকেত :
$$\sin^2 \frac{\pi}{2} + \cos^2 \frac{\pi}{2} = 1 \Rightarrow \sin^2 \frac{\pi}{2} = 1 \Rightarrow \sin \frac{\pi}{2} \neq \pm 1$$

কিন্তু ল্যাগরাঞ্জের মধ্যমান উপপাদ্য অনুসারে—

Sin
$$\frac{\pi}{2}$$
 - sin o = $\left(\frac{\pi}{2} - 0\right)$ Cos $\xi > 0$, যখন $0 < \xi < \frac{\pi}{2}$
বা Sin $\frac{\pi}{2} > 0$ । অতএব Sin $\frac{\pi}{2} = 1$

6. সংকেত : x > -1 এর জন্য f (x) = log (1 + x) এর n তম অবকল সহগ $f^{n}(x) = \frac{(-1)^{n-1}(n-1)!}{(1+x)^{n}}$

ম্যাকলরিনের বিস্তৃতিতে $\mathbf{R}_n=rac{\mathbf{x}^n}{n!} \mathbf{f}^n \; ig(\mathbf{ heta} \mathbf{x} ig), \; 0< \mathbf{ heta} < 1$ (ল্যাগরাঞ্জের গঠন)।

$$= \frac{(-1)^{n-1}}{n} \left(\frac{x}{1+\theta x}\right)^n < \frac{1}{n}, \quad \text{যখন} \ 0 \le x \le 1$$
$$\Rightarrow R_n \to 0 \quad \text{যখন} \quad n \to \infty, \ x \in [0, 1] \quad \text{এর জন্য} +$$

$$-1 < \mathrm{x} < 0$$
 অন্তরালে $rac{\mathrm{x}}{1+ heta\mathrm{x}}$ সংখ্যা মানে l এর থেকে ছোট নাও হতে পারে,

তাই এক্ষেত্রে কসির গঠনে $R_n = rac{x^n}{(l-n)!} (l- heta)^{n-1} f^n(heta x), \ 0 < heta < l$ নেওয়া যাক,

তখন
$$\mathbf{R}_n = (-1)^{n-1} \mathbf{x}^n \left(\frac{\mathbf{I} - \theta}{\mathbf{I} + \theta \mathbf{x}}\right)^{n-1} \frac{1}{\mathbf{I} + \theta \mathbf{x}} +$$
এখানে | $\mathbf{x} \mid \leq 1$ হলে $0 < \left(\frac{\mathbf{I} - \theta}{\mathbf{I} + \theta \mathbf{x}}\right) < 1$ বা $0 < \left(\frac{\mathbf{I} - \theta}{\mathbf{I} + \theta \mathbf{x}}\right)^{n-1} < 1$ হয়।

আবার $\frac{1}{1+\theta x} \leq \frac{1}{|l-||x||}$ এবং $x^n \to o$ যখন $n \to \infty$ । সুতরাং $R_n \to o$ যখন $n \to \infty$ অতএব $\log(1+{
m x})$ এর ম্যাকলরিনের শ্রেণীটির নির্দিষ্টমান থাকবে যখন – $1 < {
m x} \leq 1$ এবং সেটি

$$\log (1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots + (-1)^{n-1} \frac{x^n}{n} + \dots$$

log x 1 rx dt

. সংকেত : সমাকলের সাহায্যে log x এর সংজ্ঞা থেকে
$$\frac{-\infty}{x} = \frac{1}{x} \int_{1} \frac{dt}{t}$$

7. সংকেত : সমাকলের সাহায্যে log x এর সংজ্ঞা থেকে
$$\frac{1}{x} = \frac{1}{x} \int_{1} \frac{dx}{t}$$

7. সংকেত : সমাকলের সাহাবে) log x এর সংজ্ঞা থেকে
$$\frac{1}{x} = \frac{1}{x} \int_{1}^{x} \frac{1}{t}$$

$$\frac{1}{x} = \frac{1}{x} \int_{1} \frac{1}{t}$$

ংকেত : সমাকলের সাহায্যে
$$\log x$$
 এর সংজ্ঞা থেকে $\frac{-2}{x} = \frac{1}{x} \int_{1} \frac{dt}{t}$

'. সংকেত : সমাকলের সাহায্যে log x এর সংজ্ঞা থেকে
$$\frac{\cos x}{x} = \frac{1}{x} \int_{1}^{x} \frac{dt}{t}$$

ৰা
$$\frac{\log x}{x} = \frac{1}{\sqrt{x}} \cdot \frac{1}{\sqrt{x}} \int_1^x \frac{dt}{t} \le \frac{1}{\sqrt{x}} \int_1^x \frac{dt}{t^{1/2}}$$
 [$\because x > \sqrt{x}$ যখন $x < 1$]

 $<\frac{2}{\sqrt{x}}\left(1-\frac{1}{\sqrt{x}}\right)$

$$< \frac{2}{\sqrt{x}} \to 0$$
 যখন $x \to \infty$

8. সংকেত : $a^x = e^{x \log a}$ লিখুন এবং $\lim_{x \to 0} \frac{e^x - 1}{x} = 1$ সূত্রটি কাজে লাগান।

9. সংকেত : (i) exp (-x) = S(-x) + c(-x) সংজ্ঞা থেকে

$$= -S(x) + C(x) [\because S(-x) = -S(x), C(-x) = C(x)]$$

(ii) exp (x) . exp (-x) = {S(x) + C(x)} {C(x) - S(x)}

$$= \{C(x)\}^2 - \{S(x)\}^2 = Cos h^2 x - Sin h^2 x = 1$$

(iii) त्यरङ् exp (x) = C (x) + S(x),

$$f'(x) = [\exp(x)]' = C'(x) + S'(x)$$

= S(x) + C(x) [:: C'(x) = S(x), S'(x) = C(x)]
= exp(x) = f(x),
Sinh x + Cosh x = e^x [সংজ্ঞা থেকে]

(iv) Sinh x + Cosh x = e^x [সংজ্ঞা থেকে] এবং Cosh x - Sinh x = e^{-x} [(i) নং থেকে]

উপরের সমীকরণ দুটি সমাধান করে $\cosh x = \frac{e^x + e^{-x}}{2}$, $\sinh x = \frac{e^x - e^{-x}}{2}$

:.
$$\sinh(x + y) = \frac{e^{(x+y)} - e^{-(x+y)}}{2} = \frac{e^x e^y - e^{-x} e^{-y}}{2}$$

$$= \frac{pq - \frac{1}{p} \cdot \frac{1}{q}}{2},$$
 यथन $e^{x} = p, e^{y} = q.$

$$=\frac{p^2q^2-1}{2pq}=\frac{(p^2-1)(q^2+1)+(p^2+1)(q^2-1)}{4pq}$$

$$=\frac{\left(p-\frac{1}{p}\right)}{2}\frac{\left(q+\frac{1}{q}\right)}{2}+\frac{\left(p+\frac{1}{p}\right)}{2}\frac{\left(q-\frac{1}{q}\right)}{2}$$

= Sinh
$$x \times Cosh y + Cosh x \times Sinh y$$

(v) উপরের (iv) নং এর মত অগ্রসর হোন।

10. সংকেত : যদি সম্ভব হয় ধরা যাক $e = \frac{p}{q}$ । যখন p ও q উভয়েই অখণ্ড সংখ্যা (integers) তখন

 $\frac{p}{q} = 1 + \frac{1}{\underline{1}} + \frac{1}{\underline{2}} + \dots + \frac{1}{\underline{q}} + R, \dots ...(A)$

যখন
$$\mathbf{R} = \frac{1}{\lfloor q+1} \left\{ 1 + \frac{1}{q+2} + \frac{1}{(q+2)(q+3)} + \dots \right\} < \frac{1}{\lfloor q+1} \cdot \frac{1}{1 - \frac{1}{q+2}}$$

জাতএব
$$R | \underline{q} < \frac{q+2}{(q+1)^2} = \frac{q+2}{q(q+2)+1} < 1$$
(B)

যদি (A) সত্য হয় তাহলে R | q অখণ্ড সংখ্যা হওয়া উচিত, কিন্তু (B) তে দেখা যাচ্ছে তা অসম্ভব। অতএব e মূলদ সংখ্যা হতে পারবে না। কার্জেই e একটি অমূলদ সংখ্যা।

9.13 সহায়ক গ্রন্থাবলী

- 1. S.K. Mapa Introduction to Real Analysis.
- 2. S.M. Nikolsky A Course of Mathematical Analysis.
- 3. Shanti Narayan A Course of Mathematical Analysis.
- 4. D. Somasundaram & B. Choudhary A First Course in Mathematical Analysis.

একক 10 🗆 অপেক্ষকের অসীম শ্রেণী ও ঘাত শ্রেণীর অভিসারিতা (Convergence of series of functions and Power series)

গঠন

- 10.1 প্রস্তাবনা
- 10.2 উদ্দেশ্য
- 10.3 অপেক্ষকের ক্রম ও তার অভিসারিতা
 - 10.3.1 উদাহরণমালা
- 10.4 অপেক্ষকের শ্রেণী ও তার অভিসারিতা
 - 10.4.1 উদাহরণমালা
- 10.5 ঘাতশ্রেণী, তার অভিসারিতা ও ধর্ম সমূহ
 - 10.5.1 উদাহরণমালা
 - 10.5.2 ঘাতশ্রেণীর অভিসারিতা সম্পর্কিত কিছু উপপাদ্য
 - 10.5.3 ঘাতশ্রেণীর অভিসারী ব্যাসার্ধ নির্ণয়
 - 10.5.4 উদাহরণমালা
- 10.6 সারাংশ
- 10.7 সর্বশেষ প্রশ্নাবলি
- 10.8 উদাহরণমালা
- 10.9 সহায়ক পুস্তক

10.1 প্রস্তাবনা

আমরা অন্তরকলনবিদ্যায় এবং গাণিতিক বিশ্লেষণবিদ্যায় আলাদা আলাদা এককে অপেক্ষক, বাস্তবসংখ্যার ক্রম, বাস্তব সংখ্যার শ্রেণী ইত্যাদির সংজ্ঞা এবং উক্ত ক্রম ও শ্রেণীর অভিসারিতা সম্বন্ধে সংজ্ঞা পড়েছি এবং বিভিন্ন ' ង្គþý ឪ þö ងDD~¥z~†bithpx yi ŷî ybî Ÿyöšî û(real valued) অপেক্ষকের ক্রম ও শ্রেণীর সংজ্ঞা ও তাদের অভিসারিতার সংজ্ঞা ও বিভিন্ন উপপাদ্য সম্পর্কে অবহিত হব।

10.2 উদ্দেশ্য

এই একক পাঠ করে আপনি

- অপেক্ষকের ক্রম ও তার অভিসারিতা সম্পর্কে জানতে পারবেন
- অপেক্ষকের অসীমশ্রেণী ও তার অভিসারিতা সম্পর্কে জানতে পারবেন
- ঘাতশ্রেণীর সংজ্ঞা, তার অভিসারিতা, অভিসারী ব্যাসার্ধ ইত্যাদি বিষয়গুলিও অবহিত হবেন

10.3 অপেক্ষকের ক্রম ও তার অভিসারিতা

ধরা যাক, সকল e ∈ N -এর জন্য E ⊂ R -তে সংজ্ঞাত বাস্তব মানের (real valued) অপেক্ষকগুলি f_n(x) দ্বারা চিহ্নিত; অর্থাৎ f_n (x) : E → R, ∀n ∈ N , এবং _{x ∈ E} । তখন $\{f_n(x)\}_{n=1}^{\infty}$ অথবা সংক্ষেপে $\{f_n\}$ -কে E-তে সংজ্ঞাত অপেক্ষকের ক্রম বলা হয়। এখানে N = {1, 2, 3, 4,} একটি স্বাভাবিক সংখ্যার সেট (set of natural numbers)।

E-এর যেকোন মান a-এর জন্য $f_1(a), f_2(a), f_3(a), ইত্যাদি মানগুলি দ্বারা গঠিত ক্রম {<math>f_n(a)$ } পাওয়া যায়। এটি একটি বাস্তব সংখ্যার ক্রম এবং এটি অভিসারী হতে পারে আবার নাও হতে পারে।

সংজ্ঞা ঃ ধরা যাক $E \subset R$ এবং প্রত্যেক $n \in N$ -এর জন্য $f_n(x) : E \to R$ । প্রত্যেক বিন্দু $x \in E$ -এর জন্য $\{f_n(x)\}$ ক্রমটিকে বিন্দু অনুসারে (Pointwise) f(x) তে অভিসারী বলা হবে যদি

 $\lim_{n\to\infty} f_n(x) = f(x)$

হয়। এই f(x) অপেক্ষকটিকে E তে $\{f_n(x)\}$ ক্রমের সীমা অপেক্ষক (limit function) বলে।

10.3.1 উদাহরণমালা

1. ধরা যাক $\mathbf{f}_n \; (\mathbf{x}) = \mathbf{x}^n$ যখন $0 \leq \mathbf{x} \leq 1, \; n \; \in \; \mathbf{N}$

এখানে
$$\lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} x^n = \begin{cases} 0 & \text{যখন } 0 \le x \le 1 \\ \\ 1 & \text{যখন } x = 1 \end{cases}$$

অর্থাৎ দেখা গেল [0, 1] অন্তরালের প্রত্যেক বিন্দুর জন্যই $\lim_{n o \infty} f_n(x)$ -এর সসীম সীমামান আছে। অতএব { $f_n(x)$ } ক্রমটি [0, 1] অন্তরালে বিন্দু অনুসারে অভিসারী।

2. ধরা যাক $f_n(x) = rac{x^n}{1+x^n}$ যখন $0 \leq x < \infty$ এবং $n \in N$ |

এখানে $0 \le x < 1$ -এর জন্য $\lim_{n \to \infty} x^n = 0$ এবং সেইকারণে ; $\lim_{n \to \infty} f_n(x) = 0$ x = 1-এর জন্য $f_n(1) = \frac{1}{2}$, $\forall n \in \mathbb{N}$ এবং $1 < x < \infty$ -এর জন্য $\lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \frac{x^n}{1 + x^n} = \lim_{n \to \infty} \frac{1}{\frac{1}{\sqrt{x^n} + 1}} = \frac{1}{0 + 1} = 1$ আতএব $\lim_{n \to \infty} (x) = \begin{cases} 0 &$ যখন $0 \le x < 1$ $\frac{1}{2} &$ যখন x = 11 &যখন $1 < x < \infty$

এক্ষেত্রেও দেখা গেল [0, ∞ [অন্তরালের প্রত্যেক বিন্দুর জন্য $\lim_{n o \infty} f_n(x)$ –এর সসীম মান আছে। সেইজন্য {f_n (x) } ক্রমটি [0, ∞ [অন্তরালে বিন্দু অনুসারে অভিসারী এবং বলা হবে 0 ≤ x < 1-এর জন্য ০-তে অভিসারী, x = 1-এর জন্য $\frac{1}{2}$ -তে অভিসারীও 1 < x < ∞ -এর জন্য 1-তে অভিসারী।

$$\begin{split} &\lim_{n\to\infty} f_n(x) = \lim_{n\to\infty} \frac{1+x^n}{1+x+x^2} = \frac{1}{1+x+x^2} \ \text{ অর্থাৎ } 0 < x < 1 \text{ এর জন্য } \{ f_n(x) \} \text{ span} \\ &\frac{1}{1+x+x^2} \ \text{ অপেক্ষকটিতে অভিসারী } \end{split}$$

সুতরাং এক্ষেত্রে $\{f_n(x)\}$ ক্রমটি x=0 এর জন্য 1 তে এবং 0< x<1 এর জন্য $rac{1}{1+x+x^2}$ বিন্দুঅনুসারে অভিসারী।

4. যদি $f_n(x) = \frac{\sin nx}{n}$, যখন $n \in N$ এবং $x \in R$ হয়, তাহলে যেহেতু | sin nx | ≤ 1 এবং $\lim_{n \to \infty} \frac{1}{n} = 0$ সুতরাং x-এর প্রত্যেক বাস্তব মানের জন্য

ধরা যাক
$$f_n(x) = \frac{nx}{3+nx}$$
 যখন $x \ge 0, n \in N$
এখানে $x = 0$ হলে $f_n(x) = 0, \forall n \in N$
অর্থাৎ { $f_n(x)$ } = { $0, 0, 0, ...$ } যখন $x = 0$
 $\therefore x = 0$ -এর জন্য { $f_n(x)$ } ক্রমটি 0 তে অভিসারী।
আবার $x > 0$ হলে $\lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \frac{nx}{3+nx} = 1$
 $\therefore x > 0$ -এর জন্য { $f_n(x)$ } ক্রমটি 1 তে অভিসারী।
অতএব { $f_n(x)$ } ক্রমটি $x \ge 0$ -এর জন্য $f(x)$ -তে বিন্দু অনুসারে অভিসারী যখন
 $f(x) = \begin{cases} 0, & যখন x = 0\\ 1, & যখন x > 0 \end{cases}$

অতএব এক্ষেত্রে $\{ f_n \; (x) \; \}$ ক্রমটি $\; x \in R$ -এর প্রত্যেক মানের জন্য 0 তে বিন্দুঅনুসারে অভিসারী।

10.4 অপেক্ষকের শ্রেণী ও তার অভিসারিতা

 $\lim_{n\to\infty} f_n(x) = 0$

5.

$$s_n (x) = f_1 (x) + f_2 (x) + \dots + f_n (x)$$

.....

ইত্যাদি ধরা হয় তবে $s_1(x)$, $s_2(x)$ $s_n(x)$ এদের প্রত্যেককে উপরোক্ত অসীম শ্রেণী $\sum_{n=1}^{\infty} f_n(x)$ এর আংশিক যোগফল (Partial sum) বলা হয় এবং E তে সংজ্ঞাত { $s_n(x)$ } ক্রমটিকে $\sum_{n=1}^{\infty} f_n(x)$ শ্রেণীর আংশিক যোগফল সমূহের ক্রম বলা হয়।

যদি $\{s_n(x)\}$ ক্রমটি E এর উপর বিন্দু অনুসারে (Pointwise) s(x)-তে অভিসারী হয় তবে $\sum f_n(x)$ শ্রেণীটিকেও E-এর উপর s(x)-তে বিন্দু অনুসারে অভিসারী বলা হয় এবং s(x) কে $\sum f_n(x)$ শ্রেণীর E এর উপর অপেক্ষক (Sum function) বলা হয়।

10.4.1 উদাহরণমালা

1. ধরা যাক
$$f_n\left(x
ight)=rac{x^2}{(1+x^2)^n}$$
 যখন $n\in N$ এবং $x\in R$

তাহলে
$$\sum f_n$$
 শ্রেণীর $s_n(x) = \frac{x^2}{1+x^2} + \frac{x^2}{(1+x^2)^2} + \dots + \frac{x^2}{(1+x^2)^n}$

$$= \frac{x^{2}}{1+x^{2}} \left\{ \frac{1 - \left(\frac{1}{1+x^{2}}\right)}{1 - \frac{1}{1+x^{2}}} \right\} = 1 - \frac{1}{\left(1+x^{2}\right)^{n}}$$

:
$$s_n(0) = 1 - \frac{1}{(1+0)^n} = 1 - 1 = 0, \quad \forall n \in \mathbb{N};$$

সুতরাং যখন $\mathbf{x}=0,\;\{\mathbf{s_n}\;(\mathbf{x})\}=\{0,\;0,\;0,\;......\}$ এবং সেই কারণে

$$\lim_{n\to\infty}s_n(x)=0$$

আবার যখন
$$x \neq 0$$
, তখন $\lim_{n \to \infty} \frac{1}{\left(1 + x^2\right)^n} = 0$
সুতরাং $\lim_{n \to \infty} s_n(x) = \lim_{n \to \infty} \left\{ 1 - \frac{1}{\left(1 + x^2\right)^n} \right\} = 1$
অতএব দেখা গেল $s(x) = \begin{cases} 0$ যখন $x = 0$
1 যখন $x \neq 0$

যেহেতু প্রত্যেক $x\in R$ -এর জন্য s(x)-এর সসীম মান আছে অতএব এক্ষেত্রে $\sum f_n$ শ্রেণীটি R-এর উপর বিন্দু অনুসারে অভিসারী।

2. ধরা যাক
$$\sum_{1}^{\infty} f_n(x)$$
 ভৌগীর $f_n(x) = x^n$, যখন $n \in N$ এবং $-1 < x < 1$ তাহলে $x = 0$ এর জন্য $s_n(0) = 0$
= $0 + 0 + \dots n$ সংখ্যক পদ পর্যন্ত
= 0
 $\therefore s(0) = \lim_{n \to \infty} s_n(0) = 0$
আবার যখন $-1 < x < 0$ এবং $0 < x < 1$ অর্থাৎ যখন $|x| < 1$ কিন্তু $x \neq 0$
তথন $s_n(x) = \sum_{i=1}^{\infty} f_i(x) = x + x^2 + x^3 + \dots + x^n = \frac{x(1-x^n)}{1-x}$
 $\therefore s(x) = \lim_{n \to \infty} s_n(x) = \lim_{n \to \infty} \frac{x(1-x^n)}{1-x} = \frac{x}{1-x}$
[** এখানে $\lim_{n \to \infty} x^n = 0$]
সূতরাং $\sum_{n=1}^{\infty} x^n$ শ্রেণীটি $-1 < x < 1$ বা $|x| < 1$ অন্তরালে বিন্দু অনুসারে $x = 0$ এর জন্য 0 তে এবং $|x|$
 < 1 কিন্তু $x \neq 0$ এর জন্য $\frac{x}{1-x}$ তে অভিসারী।

3.
$$f_n(x) = \frac{x}{\left\{\left(n-1\right)x+1\right\}\left(nx+1\right)}$$
 যখন $n \in \mathbb{N}$, $x \in [0, \infty)$ হলে দেখান যায় যে $\sum_{1}^{\infty} f_n$ শ্রেণীটি

[0, ∞ [অন্তরালে বিন্দু অনুসারে অভিসারী।

10.5

$$\begin{aligned} \text{and} \quad \text{and} \quad$$

$$iggl(1$$
 যখন $0 < x < \infty$ সুতরাং $\sum_{1}^{\infty} f_n$ শ্রেণীটি $[0,\infty[$ এর উপর s(x) তে বিন্দু অনুসারে অভিসারী।

ঘাত শ্রেণী (Power Series), তার অভিসারিতা ও ধর্মসমূহ

সাধারণভাবে \mathbf{a}_0 + \mathbf{a}_1 $(\mathbf{x} - \mathbf{x}_0)$ + \mathbf{a}_2 $(\mathbf{x} - \mathbf{x}_2)^2$ + \mathbf{a}_3 $(\mathbf{x} - \mathbf{x}_0)^3$ +, যখন \mathbf{a}_0 , \mathbf{a}_1 , \mathbf{a}_2 , \mathbf{a}_3 , $\mathbf{x}_0 \in \mathbf{R}$, এই শ্রেণীটিকে \mathbf{x}_0 -এর বেস্টনীতে (about \mathbf{x}_0) ঘাত শ্রেণী বলা হয়।

যদি $x-x_0=x'$ ধরা হয় তবে উপরোক্ত শ্রেণী $\sum_{n=0}^\infty a_n x'^n$ তে রূপান্তরিত হয়; আবার উপরোক্ত শ্রেণীতে x_0

= 0 বসালেও তা $\sum_{n=0}^{\infty} a_n x^n$ তে রূপান্তরিত হয়। তাই সুবিধার জন্য $\sum_{n=0}^{\infty} a_n x^n$ কে 0-এর বেষ্টনীতে x-এর সাধারণ ঘাতশ্রেণী হিসাবে গণ্য করা হয়। এই অনুচ্ছেদের বিভিন্ন ধাপে আমরা উক্ত শ্রেণীর অভিসারিতা ও বিভিন্ন ধর্ম বিষয়ে আলোচনা করব। $\sum_{n=0}^{\infty} a_n x^n$ ঘাত শ্রেণীটিকে যদি $\sum_{n=0}^{\infty} f_n(x)$ আকারে ভাবা যায় যখন $f_n(x) = a_n x^n$, n = 0, 1, 2, এবং $x \in \mathbf{R}$; তাহলে উক্ত শ্রেণীকে **অপেক্ষকের অসীম শ্রেণী** হিসাবে বিবেচনা করতে পারি।

এই ঘাতশ্রেণীগুলির কোন কোনটি x-এর সকল বাস্তব মানের জন্য অভিসারী হয়, এরূপ ঘাতশ্রেণীগুলিকে সর্বত্ত অভিসারী (everywhere convergent) বলে। আবার কোন কোন ঘাত শ্রেণী কেবল x = 0 তে অভিসারী; সেই ঘাত শ্রেণীগুলিকে x = 0 ব্যতীত কোথাও অভিসারী নয় (nowhere convergent) এমন শ্রেণী বলা হয়।

এছাড়াও কিছু ঘাতশ্রেণী আছে যারা x-এর কিছু বাস্তবমানের জন্য অভিসারী এবং x-এর বাকী বাস্তব মানগুলিতে অপসারী।

দ্রস্টব্য ঃ x-এর কোন বাস্তব মান বসালে উপরোক্ত ঘাতশ্রেণী $\sum u_n$ এইরূপ বাস্তব মানের পদবিশিষ্ট শ্রেণীতে পরিণত হয়। এখানে পূর্বপাঠ্য থেকে আমরা স্মরণ করতে পারি বাস্তব মানবিশিষ্ট পদের শ্রেণী $\sum u_n$ চরমভাবে অভিসারী হবে যদি

$$\lim_{n \to \infty} \left| \frac{U_{n+1}}{u_n} \right| < 1 \qquad (অনুপাত পরীক্ষা) বা \lim_{n \to \infty} \left| u_n \right|_n^1 < 1$$

(মূল পরীক্ষা) হয়।

উক্ত $\sum u_n$ শ্রেণী চরমভাবে অভিসারী হলে তাকে অভিসারী শ্রেণীও বলা হয়।

10.5.1 উদাহরণমালা

$$1. \sum_{n=1}^{\infty} \frac{\left(-1\right)^{n-1}}{(2n-1)!} x^{2n-1}$$
 ঘাতবোঁগীর $u_n = \frac{\left(-1\right)^{n-1}}{\left(2n-1\right)!} x^{2n-1}$ এবং

$$\mathbf{u}_{n+1} = \frac{(-1)^n}{(2n+1)!} \mathbf{x}^{2n+1}$$

$$\therefore \left| \frac{u_{n+1}}{u_n} \right| \left| \frac{(-1)^n}{(2n+1)!} x^{2n+1} \cdot \frac{(2n-1)!}{(-1)^{n-1} x^{2n-1}} \right| = \frac{x^2}{(2n+1)(2n)}$$

$$\therefore \lim_{n \to \infty} \left| \frac{u_{n+1}}{u_n} \right| = \lim_{n \to \infty} \frac{x^2}{(2n+1)(2n)} = 0 < l, \forall x \in \mathbb{R}$$

সুতরাং এই ঘাতশ্রেণীটি x-এর সকল বাস্তবমানের জন্য অভিসারী অর্থাৎ এটি সর্বত্র অভিসারী (every where convergent) [এই ঘাতশ্রেণীটি sin x-এর বিস্তৃতি]

2.
$$\sum_{n=1}^{\infty} n^n x^n$$
 (खंशीत $u_n = n^n x^n$ এবং $u_{n+1} = (n+1)^{n+1} x^{n+1}$
 $\therefore \left| \frac{u_{n+1}}{u_n} \right| = \left| \frac{(n+1)^{n+1} x^{n+1}}{n^n x^n} \right| = (1+\frac{1}{n})^n \cdot (n+1) \cdot |x|$

এখন যেহেতু $\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = e$ একটি সসীম সংখ্যা, অতএব $\lim_{n\to\infty} \left|\frac{u_{n+1}}{u_n}\right| = \infty$ যখন $x \neq 0$ আবার উক্ত শ্রেণীর যোগফল 0 যখন x = 0

সুতরাং ঘাতশ্রেণীটি কেবল x = 0-এর জন্য অভিসারী এবং x ≠ 0 হলে অভিসারী। অর্থাৎ এটি x = 0 ব্যতীত কোথাও অভিসারী নয় (nowhere convergent) এমন একটি শ্রেণী।

$$3. \sum_{n=0}^{\infty} \frac{x^{n}}{(n+1)2^{n}} \text{ ঘাতব্রেণীর } u_{n} = \frac{x^{n-1}}{n \cdot 2^{n-1}} \text{ drg } u_{n+1} = \frac{x^{n}}{(n+1)2^{n}}$$
$$\therefore \lim_{n \to \infty} \left| \frac{u_{n+1}}{u_{n}} \right| = \lim_{n \to \infty} \left| \frac{x^{n}}{(n+1)2^{n}} \cdot \frac{n \cdot 2^{n-1}}{x^{n-1}} \right| = \lim_{n \to \infty} \frac{n}{2(n+1)} \left| x \right| = \frac{|x|}{2}$$
ভাতএব ঘাতশ্রেণীটি অভিসারী যখন $\frac{|x|}{2} < 1$ এবং অপসারী যখন $\frac{|x|}{2} > 1$

আবার ${f x}=2$ হলে ঘাতশ্রেণীর পরিবর্তিত রূপ $\sum_{n=0}^\infty rac{1}{n+l}$ যা অপসারী এবং ${f x}=-2$ হলে ঘাতশ্রেণীর পরিবর্তিত

রূপ
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{n+1}$$
, যা অভিসারী $\left[\log 2 = \sum_{n=0}^{\infty} \frac{(-1)^n}{n+1} \right]$

অতএব মন্তব্য করা যায় যে $-2 \le x \le 2$ এর জন্য অভিসারী এবং $x \le -2$ ও $x \ge 2$ -এর জন্য অপসারী।

10.5.2 ঘাতশ্রেণীর অভিসারিতা সম্পর্কিত কিছু উপপাদ্য

ঊপপাদ্য 1: যদি $\sum_{n=0}^{\infty}a_nx^n$ ঘাতশ্রেণী $x=x_0$ বিন্দুর জন্য অভিসারী হয়, তবে শ্রেণীটি x-এর $|x|<|x_0|$ এই সকল মানের জন্য চরমভাবে (absolutely) অভিসারী হবে।

প্রমাণ ঃ প্রদন্ত শর্তানুসারে ঘাতশ্রেণীটি $x = x_0$ মানের জন্য অভিসারী। অতএব $\{x_n x_0^n\}$ ক্রমটি 0 তে অভিসারী। অর্থাৎ $\lim_{n \to \infty} a_n x_0^n = 0$ সেই কারণে বলা যায় $\{a_n x_0^n\}$ ক্রমটি সীমাবদ্ধ। সুতরাং সংজ্ঞানুসারে একটি ধনাত্মক সংখ্যা k পাওয়া যাবে যাতে

$$\mid a_n x_0^{-n} \mid \leq K, \ \forall n \in \mathbb{N}$$
 হয়।

$$\mathbf{a}_{\mathbf{N}} = \left| \mathbf{a}_{\mathbf{n}} \mathbf{x}^{\mathbf{n}} \right| = \left| \mathbf{a}_{\mathbf{n}} \mathbf{x}_{\mathbf{0}}^{\mathbf{n}} \frac{\mathbf{x}^{\mathbf{n}}}{\mathbf{x}_{\mathbf{0}}^{\mathbf{n}}} \right| = \left| \mathbf{a}_{\mathbf{n}} \mathbf{x}_{\mathbf{0}}^{\mathbf{n}} \right| \left| \frac{\mathbf{x}}{\mathbf{x}_{\mathbf{0}}} \right|^{\mathbf{n}} \leq \mathbf{K} \cdot \left| \frac{\mathbf{x}}{\mathbf{x}_{\mathbf{0}}} \right|^{\mathbf{n}} \dots (\mathbf{i})$$

আবার আমরা জানি $\sum_{n=0}^{\infty} \left| \frac{x}{x_0} \right|^n$ শ্রেণীটি $\left| \frac{x}{x_0} \right| < 1$ -এর জন্য অভিসারী। অতএব তুলনা পরীক্ষা (Comparison test) অনুযায়ী (i) নং থেকে বলা যায় $\sum_{n=0}^{\infty} \left| a_n x^n \right|$ শ্রেণীটি $\left| \frac{x}{x_0} \right| < 1$ এর জন্য অভিসারী এবং সেইকারণে $\sum_{n=0}^{\infty} a_n x^n$ শ্রেণীটি $\left| \frac{x}{x_0} \right| < 1$ অর্থাৎ $|x| < |x_0|$ -এর জন্য চরমভাবে অভিসারী।

উপপাদ্য 2 ঃ যদি
$$\sum_{n=0}^{\infty}a_nx^n$$
 ঘাতশ্রেণী $x=x_0$ বিন্দুর জন্য অপসারী হয় তবে শ্রেণীটি | x | > | x_0 | শর্তসিদ্ধ

করে এমন সকল x এর মানের জন্য অপসারী।

প্রমাণ ঃ ধরা যাক যদি সম্ভব হয় | x | > | x₀ | কে সিদ্ধ করে এমন সকল x এর জন্য শ্রেণীটি অভিসারী। অতএব যদি | x₁ | > | x₀ | হয় তবে শ্রেণীটি x = x₁ এর জন্য অভিসারী। এখন যেহেতু শ্রেণীটি x = x₁ এর জন্য অভিসারী এবং | x₀ | < | x₁ |, অতএব উপপাদ্য 1 অনুযায়ী শ্রেণীটি x = x₀ বিন্দুর জন্যও অভিসারী। কিন্তু এটি উপপাদ্যের শর্তবিরুদ্ধ। সুতরাং আমরা যে ধরেছিলাম শ্রেণীটি | x | > | x₀ | এর জন্য অভিসারী তা ঠিক নয়। অতএব শ্রেণীটি x এর ঐ সকল মানের জন্য অর্থাৎ | x | > | x₀ | এর জন্য অপসারী। উপপাদ্য 3 ঃ যদি $\sum_{n=0}^{\infty} a_n x^n$ ঘাতশ্রেণীটি 'x = 0 ব্যতীত কোথাও অভিসারী নয় (no where convergent)' এমন না হয় এবং 'সর্বত্র অভিসারী (everywhere convergent)' এমনও না হয় তাহলে একটি ধনাত্মক সংখ্যা R_1 -এর অস্তিত্ব থাকবে যাতে শ্রেণীটি সকল $|x| > R_1$ -এর জন্য অভিসারী এবং সকল $|x| < R_1$ -এর জন্য অপসারী।

প্রমাণ ঃ যেহেতু এক্ষেত্রে ঘাতশ্রেণীটি 'x = 0 ব্যতীত কোথাও অভিসারী নয়' এবং 'সর্বত্র অভিসারী' এই দুই এর কোনওটিই নয় অতএব অন্ততপক্ষে শূন্য নয় এমন একটি বিন্দু a₀-এর অস্তিত্ব থাকবে যার জন্য শ্রেণীটি অভিসারী এবং অন্ততপক্ষে একটি বিন্দু b₀ পাওয়া যাবে যার জন্য শ্রেণীটি অপসারী।

যদি $a_1 > 0$ বিন্দুটি এমন হয় যে $a_1 < |a_0|$ এবং $b_1 > 0$ বিন্দুটি এমন হয় যে $b_1 > |b_0|$ তাহলে a_1 বিন্দুটির জন্য শ্রেণীটি অভিসারী (উপপাদ্য 1 অনুযায়ী) এবং b_1 বিন্দুটির জন্য শ্রেণীটি অপসারী (উপপাদ্য 2 অনুযায়ী) হবে এবং $a_1 < b_1$ কারণ $a_1 > b_1$ হলে যেহেতু a_1 এর জন্য শ্রেণীটি অভিসারী b_1 -এর জন্যও তা অভিসারী হবে (উপপাদ্য - 1 অনুযায়ী) যা শর্তবিরুদ্ধ।

তাহলে $I_1 \equiv [a_1, b_1]$ অন্তরালটির a_1 বিন্দুর জন্য শ্রেণীটি অভিসারী এবং b_1 বিন্দুর জন্য শ্রেণীটি অপসারী। I_1 অন্তরালটিকে সমদ্বিখণ্ডিত করে প্রথম অর্দ্ধকে I_2 বলা হবে যদি I_1 -এর মধ্য বিন্দুর জন্য শ্রেণীটি অপসারী হয় কিন্তু যদি উক্ত মধ্যবিন্দুটির জন্য শ্রেণীটি অভিসারী হয় তাহলে I_1 -এর দ্বিতীয় অর্দ্ধকে I_2 বলা হবে। এই $I_2 = [a_2, b_2]$ দ্বারা চিহ্নিত করা হলে a_2 -এর জন্য শ্রেণীটি অভিসারী এবং b_2 -এর জন্য তা অপসারী। এই পদ্ধতি অনুসরণ করে চলতে থাকলে আমরা বদ্ধ এবং সীমাবদ্ধ ক্রম $\{I_n\}$ যখন $I_n = [a_n, b_n]$ $n \in \mathbb{N}$ যাব যাতে

(i) aৣ-এর জন্য শ্রেণীটি অভিসারী এবং bৣ-এর জন্য তা অপসারী

(ii) $I_{n+1} \subset I_n$

এবং (iii) $\mid I_n \mid = \frac{1}{2^{n-1}} (b_1 - a_1)$, এখানে $\mid I_n \mid = I_n$ অন্তরালটির দৈর্ঘ্য

অৰ্থাৎ | I₁ | (b₁ - a₁), | I₂ | = $\frac{1}{2}$ (b₁ - a₁), | I₃ | = $\frac{1}{2^2}$ (b₁ - a₁) ইত্যাদি।

তাহলে এখানে { I_n } একটি nested অন্তরালের ক্রম এবং $\lim_{n\to\infty} |I_n| = 0$ অতএব ক্যান্টর (cantor) এর উপপাদ্য অনুযায়ী একটি এবং কেবলমাত্র একটি বিন্দু c এর অস্তিত্ব থাকবে যাতে $a_n \le c \le b_n, \ \forall n \in \mathbb{N}$ হয়।

ধরা যাক x' এমন একটি মান যাতে | x' | < c এবং $arepsilon = rac{f c - |x'|}{2}$ হয়। অতএব বাস্তব সংখ্যার সেট R এর উপর আর্কিমিডিসের ধর্মানুসারে স্বাভাবিক সংখ্যা m পাওয়া যাবে যাতে $0 < rac{b_1-a}{2^{m-1}} < arepsilon$ বা

- $0 < |\mathbf{I}_m| < \varepsilon$ হবে। যেহেতু এখানে $|\mathbf{I}_m| < \varepsilon$ এবং $\mathbf{a}_m < \mathbf{c} < \mathbf{b}_m$ অতএব $\mathbf{c} - \varepsilon < \mathbf{a}_m$ । আবার উপরের $\varepsilon = \frac{\mathbf{c} - |\mathbf{x}'|}{2}$ এবং $\mathbf{c} - \varepsilon < \mathbf{a}_m$ সম্পর্ক দুটি থেকে \mathbf{c} অপনয়ন করে $|\mathbf{x}'| + \varepsilon < \mathbf{a}_m$ পাওয়া যায়। এখন যেহেতু শ্রেণীটি \mathbf{a}_m বিন্দুর জন্য অভিসারী সেজন্য \mathbf{x}' বিন্দুতেও চরমভাবে অভিসারী। সুতরাং গ্রেণীটি $|\mathbf{x}| < \varepsilon$ দ্বারা সিদ্ধ এমন সকল \mathbf{x} -এর জন্য অভিসারী।

অনুরূপে $|\mathbf{x}''| > \mathbf{c}, \varepsilon = \frac{|\mathbf{x}''| - \mathbf{c}}{2}$ ধরে দেখান যায় কোন স্বাভাবিক সংখ্যা K এর জন্য $0 < \frac{\mathbf{b}_1 - \mathbf{a}_1}{2^{k-1}} < \varepsilon$ আবার $|\mathbf{I}_k| < \varepsilon$ এবং $\mathbf{a}_k < \mathbf{c} < \mathbf{b}_k$, অতএব $\mathbf{c} + \varepsilon + \mathbf{b}_k$ এবং তাহলে $|\mathbf{x}''| - \varepsilon > \mathbf{b}_k$ ।

শ্রেণীটি b_k এর জন্য অভিসারী বলে x[#] এর জন্যও অভিসারী। কাজেই তা | x | > c দ্বারা সিদ্ধ x এর এমন সকল মানের জন্য অভিসারী।

সুতরাং $\mathbf{C} \,=\, \mathbf{R}_{_{1}}$ এবং উপপাদ্যটি প্রমাণিত।

প্রান্তলিপি 1 ঃ উপরের উপপাদ্য 3 এর এই R_1 সংখ্যাটিকে $\sum_{n=0}^{\infty} a_n x^n$ ঘাতশ্রেণীর অভিসারী ব্যাসার্দ্ধ (radius of convergence) বলা হয় এবং $(-R_1, R_1)$ এই মুক্ত অন্তরালকে অভিসারী অন্তরাল (interval of convergence) বলা হয়। $x = R_1$ এবং $x = -R_1$ বিন্দুগুলিতে শ্রেণীটি অভিসারী হতেও পারে আবার নাও হতে পারে।

প্রান্তলিপি 2 ঃ যদি $R_1 = 0$ হয় তবে শ্রেণীটি x = 0 ব্যতীত কোথাও অভিসারী নয় এমন শ্রেণী এবং যদি $R_1 = \infty$ হয় তবে শ্রেণীটি সর্বত্র অভিসারী শ্রেণী বুঝায়।

10.5.3 ঘাত শ্রেণীর অভিসারী ব্যাসার্ধ নির্ণয়

উপপাদ্য 1 ঃ যদি $\sum_{n=0}^{\infty} a_n x^n$ শ্রেণীটি এমন হয় যে $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \mu$ -এর অস্তিত্ব আছে এবং $0 < \mu < \infty$ তাহলে $R_1 = \frac{1}{\mu}$

প্রমাণ ঃ এখানে প্রদন্ত শ্রেণীকে $\sum\limits_{0}^{\infty} u_n$ -এর সাথে তুলনা করলে

$$\begin{aligned} \mathbf{u}_{n} &= \mathbf{a}_{n} \mathbf{x}^{n} \quad \text{agg} \quad \lim_{n \to \infty} \left| \begin{array}{c} \mathbf{u}_{n+1} \\ \mathbf{u}_{n} \end{array} \right| = \lim_{n \to \infty} \left| \begin{array}{c} \mathbf{a}_{n+1} \\ \mathbf{a}_{n} \end{array} \right| \\ &= \lim_{n \to \infty} \left| \begin{array}{c} \mathbf{a}_{n+1} \\ \mathbf{a}_{n} \end{array} \right| \cdot \left| \begin{array}{c} \mathbf{x} \end{array} \right| \\ &= \mu \left| \begin{array}{c} \mathbf{x} \end{array} \right| \end{aligned}$$

সুতরাং ডলেমবার্ট (D' Alembert)-এর অনুপাত পরীক্ষা অনুযায়ী $\sum \mid \mathbf{u}_n \mid$ শ্রেণীটি $\mu \mid \mathbf{x} \mid < 1$ অর্থাৎ $\mid \mathbf{x} \mid < \frac{1}{\mu}$ এর জন্য অভিসারী হবে এবং সেই কারণে $\sum\limits_{n=0}^{\infty} \mathbf{a}_n \mathbf{x}^n$ শ্রেণীটি $\mid \mathbf{x} \mid < \frac{1}{\mu}$ -এর জন্য চরমভাবে (absolutely) অভিসারী হবে।

আবার যখন
$$|x| > \frac{1}{\mu}$$
 তখন $\lim_{n \to \infty} \left| \frac{u_{n+1}}{u_n} \right| > 1$ হয় বলে $\sum_{n=0}^{\infty} a_n x^n$ শ্রেণীটি অপসারী হয়।

অতএব দেখা গেল শ্রেণীটি | x | < R₁-এর জন্য অভিসারী যখন R₁ = <mark>I</mark> এবং | x | > R₁-এর জন্য অপসারী।

প্রান্তলিপি 1 ঃ যদি $\mu = 0$ হয় তবে $\lim_{n \to \infty} \left| \frac{\mathbf{u}_{n+1}}{\mathbf{u}_n} \right| = 0 \cdot |\mathbf{x}| = 0 < 1$; সুতরাং $\sum |\mathbf{u}_n|$ শ্রেণীটি ডলেমবার্ট এর অনুপাত পরীক্ষা অনুযায়ী অভিসারী এবং সেইকারণে $\sum a_n \mathbf{x}^n$ শ্রেণীটি x-এর সকল মানের জন্য চরমভাবে অভিসারী বা সর্বত্র অভিসারী।

প্রান্তলিপি 2 ঃ যদি μ = ∞ হয় তবে

$$\lim_{n \to \infty} \left| \frac{u_{n+1}}{u_n} \right| = \infty, |x| = \infty \quad ($$
যখন $x \neq 0$)

সুতরাং তখন $\sum a_n x^n$ শ্রেণীটি অপসারী।

উপপাদ্য 2 ঃ কসি-হ্যাডামার্ড (cauchy-Hadamard) এর উপপাদ্য

$$\sum_{n=0}^{\infty} a_n x^n$$
 ঘাতশ্রেণীর ক্ষেত্রে যদি $\mu = \lim_{n \to \infty} \sup \sqrt[n]{|a_n|}$ হয়।

তখন (i) $\mu = 0$ হলে শ্রেণীটি সর্বত্র অভিসারী (everywhere convergent) ;

(ii) $0 < \mu < \infty$ হলে, $|x| < \frac{1}{\mu}$ কে সিদ্ধ করে x-এর এমন সকল মানের জন্য শ্রেণীটি চরমভাবে (absolutely) অভিসারী এবং $|x| > \frac{1}{\mu}$ কে সিদ্ধ করে এমন x এর সকল মানের জন্য শ্রেণীটি অপসারী; এবং (iii) $\mu = \infty$ হলে x = 0 ব্যতীত কোথাও শ্রেণীটি অভিসারী নয় (no where convergent)। **শ্রমাণ** : (i) এখানে $\mu = 0$ হওয়ায় $\lim_{n\to\infty} \sup \sqrt[n]{|a_n|} = 0$ সুতরাং একটি ধনাত্মক সংখ্যা m এর অস্তিত্ব থাকবে যখন $\sqrt[n]{|a_n|} < \varepsilon$, $\forall n \ge m$ হবে। এখন যদি $\varepsilon = \frac{1}{K |x_1|}$ নেওয়া যায় তখন $x_1 \ne 0$ x এর কোন একটি মান এবং $k \ge 2$ একটি সসীম স্বাভাবিক সংখ্যা, তখন

$$\sqrt[n]{|a_n|} < \frac{1}{K |x_1|}$$
 . $\forall n \ge m$ हय

অতএব $\mid a_n x_1^n \mid < \frac{1}{k^n}$. $\forall n \ge m$ হয়

যেহেতু $\sum_{n=0}^{\infty} rac{1}{k^n}$ শ্রেণীটি $k\geq 2$ একটি সসীম স্বাভাবিক সংখ্যার জন্য অভিসারী অতএব তুলনা পরীক্ষা

(comparison test) থেকে বলা যায় $\sum_{n=0}^{\infty} |a_n x_1^n|$ শ্রেণীটি অভিসারী। অতএব $\sum_{n=0}^{\infty} a_n x_1^n$ শ্রেণীটি চরমভাবে অভিসারী। আবার x_1 মানটি x-এর যেকোন একটি মান বলে বলা যায় $\sum_{n=0}^{\infty} a_n x^n$ শ্রেণীটি x এর সকল মানের জন্য অভিসারী বা সর্বত্র অভিসারী।

(ii) এক্ষেত্র
$$\lim_{n \to \infty} \sup \sqrt[n]{|a_n x^n|} = \lim_{n \to \infty} \sup \left(|a_n|^{\frac{1}{n}} \cdot |x| \right)$$
$$= \mu \cdot |x| |$$
 প্রদন্ত শর্তানুসারে]

অতএৰ কসির মূল পরীক্ষা (Cauchy's root test) থেকে বলা যায় $\sum_{n=0}^{\infty} a_n x^n$ শ্রেণীটি চরমভাবে অভিসারী যখন $\mu \mid x \mid < 1$ অর্থাৎ $\mid x \mid < \frac{1}{\mu}$ এবং অপসারী যখন $\mu \mid x \mid > 1$ অর্থাৎ $\mid x \mid > \frac{1}{\mu}$

(iii) যদি সম্ভব হয় তবে ধরা যাক $\sum_{n=0}^{\infty}a_nx^n$ ঘাতশ্রেণীটি $x=x_1$ (যখন $x_1
eq 0$) এর জন্য অভিসারী

অতএব $\lim_{n\to\infty}a_nx_1^n=0$ এবং সেই কারণে $\{a_n^-x_1^-^-\}$ ক্রমটি সীমাবদ্ধ (bounded)।

অতএব একটি সসীম ধনাত্মক সংখ্যা M এর অস্তিত্ব থাকবে যা $|a_n|x_1^n| < M, \ orall n \in N$ শর্তকে সিদ্ধ করে।

অর্থাৎ
$$\left| {\left. a_n \right|_{-n}^{1/n} < rac{M^{1/n}}{\left| {\left. x_1 \right|_{-}}
ight|}, \, orall n \in N$$
 শর্তকে সিদ্ধ করে।

$$\therefore \left\{ \left| a_n
ight|^{\frac{1}{n}}
ight\}$$
 একটি সীমাবদ্ধ ক্রম যা $\mu = \infty$ এই শর্তটির পরিপন্থী।

সুতরাং $\sum_{n=0}^{\infty} a_n x^n$ ঘাতশ্রেণীটি $x = x_1$ এর জন্য অভিসারী নয়। আবার যেহেতু x_1 মানটি 0 ব্যতীত x এর যেকোন একটিমান উক্ত শ্রেণীটি x = 0 ব্যতীত x এর সকল মানের জন্য কোথাও অভিসারী নয় বা সর্বত্ত অপসারী (no where convergent)।

উপপাদ্য 3 ঃ অনুপাত পরীক্ষা (ঘাতশ্রেণীর ক্ষেত্রে)

ধরা যাক
$$\sum_{n=0}^{\infty} a_n x^n$$
 ঘাতশ্রেণীর ক্ষেত্রে $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \mu$, তখন

(i) $\mu = 0$ হলে শ্রেণীটি সর্বত্র অভিসারী (everywhere convergent),

(ii) $0 < \mu < \infty$ হলে শ্রেণীটি $|x| < \frac{1}{\mu}$ এর জন্য চরমভাবে অভিসারী এবং $|x| > \frac{1}{\mu}$ এর জন্য অপসারী, এবং (iii) $\mu = \infty$ হলে শ্রেণীটি x = 0 ব্যতীত কোথাও অভিসারী নয় (no where convergent)।

প্রমাণ ঃ ধরা যাক $\mathbf{u}_n = \mathbf{a}_n \mathbf{x}^n$, অতএব তখন

$$\lim_{n \to \infty} \left| \frac{u_{n+1}}{u_n} \right| = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|, |\mathbf{x}| = \mu |\mathbf{x}|....(\mathbf{A})$$

(i) μ = 0 হলে (A) থেকে পাওয়া যায়

$$\lim_{n \to \infty} \left| \begin{array}{c} \frac{u_{n+1}}{u_n} \end{array} \right| = 0 < 1, \ \forall x \in \mathbf{R}$$

সুতরাং অনুপাত পরীক্ষা অনুযায়ী [অবাধ পদবিশিষ্ট শ্রেণীর (series of arbitrary terms)] $\sum | u_n |$ শ্রেণীটি x এর সকল বাস্তব মানের জন্য অভিসারী।

- :. $\sum a_n x^n$ শ্রেণীটি x এর সকল বাস্তব মানের জন্য চরম ভাবে অভিসারী
- $\therefore \ \sum a_n x^n$ শ্রেণীটি n এর সকল বাস্তবমানের জন্য অভিসারী

 $\therefore \ \sum a_n x^n$ শ্রেণীটি সর্বত্র অভিসারী।

(ii) 0 < μ < ∞ হলে সম্পৰ্ক (Α) থেকে অবাধ (arbitrary) পদবিশিষ্ট শ্ৰেণীর অনুপাত পরীক্ষা অনুযায়ী বলা যায়—

 $\sum \mid u_n \mid$ শ্রেণীটি অভিসারী হবে যখন $\mid \! \! \mu \mid x \mid < l$

 $\therefore \ \sum a_n x^n$ শ্রেণীটি চরমভাবে অভিসারী হবে যখন $\mid x \mid < rac{1}{\mu}$

এবং $\sum \mid u_n \mid$ শ্রেণীটি অপসারী হবে যখন $\,\mu \mid x \mid > l$

 $\therefore \ \sum a_n x^n$ শ্রেণীটি অপসারী হবে যখন $\mid x \mid > rac{1}{\mu}$

(iii) μ = ∞ হলে (A) থেকে বলা যায়—

$$\lim_{n \to \infty} \left| \frac{u_{n+1}}{u_n} \right| = \infty \quad \text{यात} \quad x \neq 0$$

অতএব কোন ধনাত্মক স্বাভাবিক সংখ্যা K > 1-এর জন্য একটি বাস্তব সংখ্যা n, এর অস্তিত্ব থাকবে যখন

$$\left| \begin{array}{c} \frac{\mathbf{u}_{n+1}}{\mathbf{u}_n} \right| > \mathbf{K} ; \forall n \ge \mathbf{n}_0 \quad \text{ads} \quad \mathbf{x} \neq \mathbf{0}$$

$$\therefore \ | \mathbf{u}_{n+1} | > | \mathbf{u}_n | ; \forall n \ge \mathbf{n}_0 \quad \text{ads} \quad \mathbf{x} \neq \mathbf{0}$$

সুতরাং দেখা যাচ্ছে { | u_n | } ক্রমটি ক্রমবর্ধমান এবং সেই কারণে $_{X} \neq 0$ হলে $\lim_{n \to \infty} |u_n| = 0$ হতে পারবে না।

অতএব ${
m x}$ = 0 ব্যতীত ${
m x}$ এর সকল বাস্তব মানের জন্য $\sum a_{
m n} {
m x}^{
m n}$ শ্রেণীটি কোথাও অভিসারী নয়।

প্রান্তলিপি ঃ ঘাতশ্রেণীটির অভিসারী ব্যাসার্ধ = $\lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|$

10.5.4 উদাহরণমালা

নিম্নলিখিত শ্রেণীগুলির অভিসারী ব্যাসার্ধ নির্ণয় করুন ঃ

(i)
$$\sum_{n=1}^{\infty} \frac{x^n}{n^2}$$
 (ii) $\sum_{n=1}^{\infty} \frac{n!}{n^n} x^n$ (iii) $\sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!} x^n$
(iv) $\left(\frac{x}{2}\right)^n - \left(\frac{x}{3}\right)^1 + \left(\frac{x}{2}\right)^2 - \left(\frac{x}{3}\right)^3 + \dots$ (iv) $\sum_{n=0}^{\infty} \frac{x^{2n+1}}{2n+1}$

সমাধান ঃ

(i) which
$$a_n = \frac{1}{n^2}$$
 and $a_{n+1} = \frac{1}{(n+1)^2}$

$$\therefore \ \frac{1}{R_1} = \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{n^2}{(n+1)^2} = \lim_{n \to \infty} \frac{1}{\left(1 + \frac{1}{n}\right)^2} = 1 = \mu$$

$$\therefore \text{ जाडिजांदी च्याप्तर } \mathbf{R}_{1} = \frac{1}{\mu} = 1$$
(ii) હાલાંદ્ $\mathbf{a}_{n} = \frac{\mathbf{n}!}{\mathbf{n}^{n}}, \mathbf{a}_{n+1} = \frac{(\mathbf{n}+1)!}{(\mathbf{n}+1)^{n+1}} \cdot \frac{\mathbf{n}_{n}}{\mathbf{n}!} = \lim_{n \to \infty} \left(\frac{\mathbf{n}}{\mathbf{n}+1}\right)^{n}$

$$\therefore \frac{1}{\mathbf{R}_{1}} = \lim_{n \to \infty} \frac{\mathbf{a}_{n+1}}{\mathbf{a}_{n}} = \lim_{n \to \infty} \frac{(\mathbf{n}+1)!}{(\mathbf{n}+1)^{n+1}} \cdot \frac{\mathbf{n}_{n}}{\mathbf{n}!} = \lim_{n \to \infty} \left(\frac{\mathbf{n}}{\mathbf{n}+1}\right)^{n}$$

$$= \lim_{n \to \infty} \left(\frac{1}{(1+\frac{1}{n})}\right)^{n} = \lim_{n \to \infty} \frac{1}{(1+\frac{1}{n})^{n}} = \frac{1}{\mathbf{e}} = \mu$$

$$\therefore \text{ origonial equivalence } \mathbf{a}_{n} = \frac{(\mathbf{n}!)^{2}}{(2n)!}, \quad \mathbf{a}_{n+1} = \frac{\left[\left((n+1)!\right)^{2}\right]^{2}}{\left[2(n+1)\right]!}$$

$$\therefore \frac{1}{\mathbf{R}_{1}} = \lim_{n \to \infty} \frac{\mathbf{a}_{n+1}}{\mathbf{a}_{n}} = \lim_{n \to \infty} \frac{\left[\left((n+1)!\right)^{2}\right]^{2}}{\left[2(n+1)\right]!} \cdot \frac{(2n)!}{(n!)^{2}}$$

$$\therefore \text{ origonial equivalence } \mathbf{a}_{n} = \lim_{n \to \infty} \frac{\left[\left((n+1)!\right)^{2}\right]^{2}}{\left[2(n+1)\right]!} \cdot \frac{(2n)!}{(n!)^{2}}$$

$$\therefore \text{ origonial equivalence } \mathbf{a}_{n} = \frac{1}{\mathbf{p}} = 4$$

$$(iv) \text{ extice } \mathbf{a}_{0} = \frac{1}{2^{0}}, \mathbf{a}_{1} = -\frac{1}{3}, \mathbf{a}_{2} = \frac{1}{2^{2}}, \mathbf{a}_{3} = -\frac{1}{3^{3}}, \dots$$

$$\text{ origonial equivalence } \frac{1}{\mathbf{n} \oplus \mathbf{e}} \quad \frac{1}{\mathbf{n} \oplus \mathbf{e}} \quad \frac{\mathbf{a}_{n+1}}{\mathbf{a}_{n}} \quad \mathbf{a}_{n} = \frac{1}{2^{2}}, \mathbf{a}_{1} = -\frac{1}{3^{3}}, \dots$$

$$\text{ origonial equivalence } \frac{1}{\mathbf{n} \oplus \mathbf{e}} \quad \frac{1}{\mathbf{n} \oplus \mathbf{e}} \quad \frac{1}{\mathbf{a} \oplus \mathbf{e}} \quad$$

(v) এই শ্রেণীটিতে
$$a_{2n+1} = \frac{1}{2n+1}$$

 \therefore অভিসারী ব্যাসার্থ = $R_1 = \lim_{n \to \infty} \frac{1}{(a_{2n+1})^{\frac{1}{2n+1}}} = \lim_{n \to \infty} \left(\frac{1}{a_{2n+1}}\right)^{\frac{1}{2n+1}}$
 $= \lim_{n \to \infty} (2n+1)^{\frac{1}{2n+1}} = 1$
[সংকেত : ধরা যাক $A = (2n+1)^{\frac{1}{2n+1}}$
 $\therefore \log A = \frac{1}{2n+1} \log (2n+1)$
 $\therefore \lim_{n \to \infty} \log A = \lim_{n \to \infty} \frac{\log (2n+1)}{2n+1} \left(\frac{\infty}{\infty}\right)$
বা $\log \left(\lim_{n \to \infty} A\right) = \lim_{n \to \infty} \frac{\frac{1}{2n+1} \times 2}{2} = \lim_{n \to \infty} \frac{1}{2n+1} = 0$
 $\therefore \lim_{n \to \infty} A = e^0 = 1$
2. নিম্নলিখিত শ্রেণীগুলির অভিসারী অন্তরাল (interval of convergence) নির্পম করন্ম :

(i)
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n}$$
 [এটি log (1 + x)-এর বিস্তৃতি]

(ii)
$$\sum_{n=1}^{\infty} \frac{1}{n!} \frac{(-1)^n}{n} x^n$$

সমাধান ঃ

(i) anter
$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{-n}{n+1} \right|$$

$$= \lim_{n \to \infty} \frac{1}{1 + \frac{1}{n}} = 1 = \mu$$
$$\therefore R_1 = \frac{1}{\mu} = 1$$

আবার অন্য প্রান্তবিন্দু
$$\mathbf{x} = -\mathbf{I}$$
-এর জন্য শ্রেণীটি $-1 - \frac{1}{2} - \frac{1}{3} - \dots = -\left(\mathbf{I} + \frac{1}{2} + \frac{1}{3} + \dots\right)$

এই আকার নেয় যা
$$\sum\limits_{n=1}^{\infty}rac{1}{n^p}$$
 শ্রেণীর $\mathbf{p}=1$ -এর সঙ্গে তুলনা করে বলা যায় অপসারী।

অতএব প্রদন্ত শ্রেণীটি – 1 < x ≤ 1-এর জন্য অভিসারী।

(ii) attra
$$a_n = \frac{1}{n!} \frac{(-1)^n}{n}, \ a_{n+1} = \frac{1}{(n+1)!} \frac{(-1)^{n+1}}{n+1}$$

$$\therefore \left| \frac{\mathbf{a}_{n+1}}{\mathbf{a}_n} \right| = \left| \frac{\left(-1\right)^{n+1}}{\left(n+1\right)! \left(n+1\right)} \cdot \frac{n! \mathbf{n}}{\left(-1\right)^n} \right| = \frac{n}{\left(n+1\right)\left(n+1\right)}$$

$$\therefore \mathbf{R}_{1} = \lim_{n \to \infty} \left| \frac{\mathbf{a}_{n}}{\mathbf{a}_{n+1}} \right| = \lim_{n \to \infty} \frac{(n+1)(n+1)}{n} \quad \left(\frac{\infty}{\infty}\right)$$

$$=\lim_{n\to\infty}\frac{2n+2}{1}=\infty$$

অতএব প্রদন্ত শ্রেণীটি সর্বত্র অভিসারী (everywhere convergent)

10.6 সারাংশ

(a) যদি $E \subset R$ এবং প্রত্যেক $n \in N$ এর জন্য $f_n(x) : E \to R$ হয় তাহলে $\{f_n(x)\}$ কে E সংজ্ঞাত অপেক্ষকের ক্রম বলা হয়। আবার যদি $\lim_{n \to \infty} f_n(x) = f(x)$ হয় তাহলে $\{f_n(x)\}$ ক্রমটিকে E এর উপর f(x) তে বিন্দু অনুসারে অভিসারী বলা হয়।

(b) $E \subset R$ সংজ্ঞা { $f_n(x)$ } ক্রমের অপেক্ষক সমূহের সমষ্টি $\sum\limits_{n=1}^{\infty} f_n(x)$ কে E সংজ্ঞাঞ্চলে অপেক্ষকের শ্রেণী

বলে। যদি $s_n(x) = \sum_{i=1}^\infty f_i(x)$ হয় এবং $\{f_n(x)\}$ ক্রম E এর উপর s(x) তে অভিসারী হয় তবে $\sum f_n$ শ্রেণীটিকেড E এর উপর বিন্দু অনুসারে S(x) তে অভিসারী বলা হয়।

(c)
$$\sum_{n=0}^{\infty} a_n x^n$$
 কে 0 এর বেন্টনীতে x-এর সাধারণ ঘাতশ্রেণী বলে। $\mathbf{f}_n(\mathbf{x}) = \mathbf{a}_n x^n$, যখন $n=0,\ 1,\ 2,\ \dots$

মনে করলে উক্ত ঘাতশ্রেণীকে অপেক্ষকের শ্রেণী হিসাবে গণ্য করা যায় এবং একই ভাবে অভিসারিতার সংজ্ঞা দেওয়া যায়।

(d) ঘাতশ্রেণীর অভিসারিতা বিষয়ক উপপাদ্য সমূহ :

(i) যদি
$$\sum\limits_{n=0}^{\infty}a_nx^n$$
 ঘাতশ্ৰেণী $\mathbf{x}=\mathbf{x}_0$ বিন্দুর জন্য অভিসারী হয়, তবে শ্রেণীটি \mathbf{x} এর | \mathbf{x} | < | \mathbf{x}_o | এই সকল

মানের জন্য চরমভাবে অভিসারী হবে।

(ii) যদি
$$\sum_{n=0}^{\infty} a_n x^n$$
 ঘাতশ্রেণী
$$x = x_0$$
 বিন্দুর জন্য অপসারী হয় তবে শ্রেণীটি | x | > | x_0 | শর্তসিদ্ধ করে এমন

সকল x এর মানের জন্য অপসারী।

(iii) যদি $\sum\limits_{n=0}^{\infty}a_nx^n$ ঘাতশ্রেণীটি 'x=0 ব্যতীত কোথাও অভিসারী নয়' এমন না হয় এবং 'সর্বত্র অভিসারী নয়'

এমনও না হয় তাহলে একটি ধনাত্মক সংখ্যা R₁ পাওয়া যাবে যাতে শ্রেণীটি সকল | x | < R₁ এর জন্য অভিসারী এবং সকল | x | > R₁-এর জন্য অপসারী।

এই ${f R}_1$ সংখ্যাটিকে উক্ত ঘাতশ্রেণীর অভিসারী ব্যসার্ধ এবং (– ${f R}_1,\,{f R}_1$) মুক্ত অন্তরালকে অভিসারী অন্তরাল বলে।

10.7 সর্বশেষ প্রশ্নাবলি

l. (a) যদি $f_n(x) = \frac{x}{1+nx}$, $\forall n \in N$ হয় তবে দেখান যে $\{f_n\}$ ক্রমটি $0 \le x < \infty$ এর জন্য বিন্দু অনুসারে 0 তে অভিসারী।

(b) $f_n(x) = \frac{x^{2n}}{1+x^{2n}}$ যখন $n \in N$ এবং $x \in R$ হলে $\{f_n\}$ ক্রমটির সীমা অপেক্ষক f(x) নির্ণয় করুন এবং দেখান যে সেটি x = 1 এ অসন্তত, যদিও $f_n(x)$ ফাংশন সকল $n \in N$ এর জন্য সন্তত। $\{f_n\}$ ক্রমটির অভিসারিতা বিচার করুন।

- (c) $f_n(x) = \frac{nx}{1+n^2x^2}, \quad \forall n \in N$ এবং $x \in R$ হলে $\{f_n\}$ এর অভিসারিতা বিচার করুন।
- (d) $f_n(x) = \frac{\sin nx}{\sqrt{n}}, \quad \forall n \in \mathbb{N}$ এবং $x \in R$ হলে $\{f_n\}$ ক্রমটির অভিসারিতা বিচার করন।

2. x-এর কোন কোন মানের জন্য নিম্নলিখিত অপেক্ষকের অসীম শ্রেণীগুলি অভিসারী তা নির্ণয় করুন :

$$(a) \quad \sum_{n=0}^{\infty} x^{n} \qquad (b) \sum_{n=0}^{\infty} \frac{x^{2}}{\left(1+x^{2}\right)^{n}} \quad (c) \sum_{n=1}^{\infty} \frac{2x}{\left[(2n-1)x+k\right]\left(2n+1\right)x+k} \quad \text{if } x \in [0,\infty[x+1)]$$

এবং k-একটি সসীম বাস্তব সংখ্যা।

নিম্নলিখিত ঘাতশ্রেণীগুলির অভিসারিতা ও অভিসারী অন্তরাল নির্ণয় করুন :

(a)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^{2n-1}}{(2n-2)!} (\equiv \cos x)$$
 (b) $\sum_{n=0}^{\infty} \frac{x^n}{n!}$ (c) $\sum_{n=0}^{\infty} n! x^n$ (d) $\sum_{n=1}^{\infty} \frac{x^{n-1}}{n! 3^n}$

4. নিম্নলিখিত যাতশ্রেণীগুলির অভিসারী ব্যাসার্ধ নির্ণয় করুন ঃ

(a)
$$\sum_{n=0}^{\infty} \frac{(2n)!}{(n!)^2} x^n$$
 (b) $\sum_{n=0}^{\infty} n \cdot 2^n x^n$ (c) $\sum_{n=1}^{\infty} \left(\frac{n}{n+1}\right)^2 x^n$ (d) $\sum_{n=1}^{\infty} \frac{n^n}{n!} x^n$

10.8 উত্তরমালা

1. (a) সংকেত : x > 0 হলে $0 < f_n(x) < \frac{x}{nx} = \frac{1}{a} \Rightarrow \lim_{n \to \infty} f_n(x) = 0$; আবার x = 0 হলে $\{f_n(x)\}$ = $\{0, 0, 0,\}$ যা 0 তে অভিসারী।

(b) সংকেত ঃ f(x) = 0 যখন | x | < 1, = $\frac{1}{2}$ যখন | x | = 1, = 1 যখন | x | > 1 ; = 1 সুতরাং (-∞, ∞) এর জন্য {f_n} বিন্দু অনুসারে অভিসারী।

(c) সংকেত :
$$\lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \frac{\frac{1}{nx}}{\frac{1}{(nx)^2} + 1} = 0$$
 আবার $f_n(0) = 0, \forall n \in \mathbb{N} \Rightarrow \{f_n\}$ ক্রমটি

–∞ < x < ∞ এর জন্য 0 তে অভিসারী।

(d) সংকেত : যেহেতু | sin nx | ≤ 1 এবং $\lim_{n \to \infty} \frac{1}{\sqrt{n}} = 0$ অতএব $\lim_{n \to \infty} f_n(x) = 0$

2. (a) সংকেত
$$s_n(x) = 1 + x + x^2 + \dots + x^{n+1} = \frac{1-x^n}{1-x}$$

অতএব
$$\lim_{n \to \infty} s_n(x) = \begin{cases} \frac{1}{1-x} \ \exists \forall n \mid x \mid < 1 \\ +\infty \ \exists \forall \exists 1 \mid -\infty \mid x \mid \ge \end{cases}$$

অতএব শ্রেণীটি | x | < এর জন্য বিন্দুঅনুসারে অভিসারী কিন্তু x-এর অন্য মানের জন্য অপসারী।

(b) সংকেত ঃ শ্রেণীটি গুনোত্তর প্রগতিভুক্ত যার সাধারণ অনুপাত $rac{1}{1+\mathrm{x}^2}$

1

$$\therefore \ s_{n}(x) = x^{2} + \frac{x^{2}}{1+x^{2}} + \frac{x^{2}}{(1+x^{2})^{2}} + \dots + \frac{x^{2}}{(1+x^{2})^{n-1}} = \frac{x^{2} \left\{ 1 - \frac{1}{(1+x^{2})^{n}} \right\}}{1 - \frac{1}{1+x^{2}}}$$
$$= \left(1 + x^{2} \right) \left\{ 1 - \frac{1}{(1+x^{2})^{n}} \right\} \quad \text{Alter} \quad x \neq 0$$

$$\therefore 0$$
ব্যতীত x-এর সকল বাস্তব মানের জন্য $\lim_{n\to\infty} s_n(x) = (1 + x^2)$
আবার x = o এর জন্য {s_n (x) = {0, 0, 0,}} ⇒ $\lim_{n\to\infty} s_n(x) = 0$, যখন x = 0
অতএব শ্রেণীটি সকল x ∈ R এর জন্যই বিন্দু অনুসারে s(x) তে
অভিসারী যখন s(x) = {0 যখন x = 0
1 + x² যখন x ≠ 0

(c) **সংকেত**ঃ

$$s_{n}(x) = \left(\frac{1}{x+k} - \frac{1}{3x+k}\right) + \left(\frac{1}{3x+k} - \frac{1}{5x+k}\right) + \dots + \left\{\frac{1}{(2n-1)x+k} - \frac{1}{(2n+1)x+k}\right\}$$
$$= \frac{1}{x+k} - \frac{1}{(2n+1)x+k} = \frac{2nx}{(x+k)\{(2n+1)x+k\}}$$
$$\therefore \ s(x) = \lim_{n \to \infty} s_{n}(x) = \lim_{n \to \infty} \frac{2x}{(x+k)\left\{\left(2+\frac{1}{n}\right)x+\frac{k}{n}\right\}} = \frac{2x}{(x+k)\cdot 2x}$$
$$= \frac{1}{x+k} \quad \exists \forall \forall \forall x > 0$$

আবার x = 0 হলে $\{s_n(x)\} = \{0, 0, 0,\} \Rightarrow \lim_{n \to \infty} s_n(x) = 0$ যখন x > 0সুতরাং প্রদন্ত অন্তরালের উপর শ্রেণীটি বিন্দু অনুসারে অভিসারী।

3.(a) সংকেত :
$$\lim_{n \to \infty} \left| \frac{u_{n+1}}{u_n} \right| = \lim_{n \to \infty} \left| \frac{-(2n-2)!}{(2n)!} x^3 \right| = \lim_{n \to \infty} \frac{|x^3|}{2n(2n-1)}$$

= 0 < I, $\forall x \in \mathbf{R} \Rightarrow$ শ্রেণীটি সর্বত্র অভিসারী।

(b) সংকেত ঃ এখানে
$$u_{n+1} = \frac{x^{n+1}}{(n+1)!}, \ u_n = \frac{x^n}{n!}$$

অতএব
$$\left| \begin{array}{c} u_{n+1} \\ u_n \end{array} \right| = \frac{|x|}{n+1} \to 0$$
 যখন $n \to \infty, \quad \forall x \in \mathbb{R}$

অতএব শ্রেণীটি সর্বত্র অভিসারী।

(c) সংকেত :
$$\lim_{n \to \infty} \left| \frac{u_{n+1}}{u_n} \right| = \lim_{n \to \infty} (n+1) |x| = \infty$$
 যখন $x \neq 0$

সুতরাং x = o ব্যতীত শ্রেণীটি সকল বাস্তব মানের জন্য অপসারী

$$\lim_{n \to \infty} \left| \frac{\mathbf{u}_{n+1}}{\mathbf{u}_n} \right| = \lim_{n \to \infty} \left| \frac{\mathbf{x}^n}{(n+1)3^{n+1}} \cdot \frac{\mathbf{n} \cdot 3^n}{\mathbf{x}^{n-1}} \right| = \lim_{n \to \infty} \frac{\mathbf{n}}{3(n+1)} |\mathbf{x}| = \frac{|\mathbf{x}|}{3}$$

অতএব শ্রেণীটি $\frac{|\mathbf{x}|}{3} < \mathbf{I}$ এর জন্য অভিসারী এবং $\frac{|\mathbf{x}|}{3} > 1$ এর জন্য অপসারী যদি $\frac{|\mathbf{x}|}{3} = \mathbf{I}$ হয় তবে কোনও সিদ্ধান্তে উপনীত হওয়া যাবে না। তার জন্য নিম্নরূপ পরীক্ষা করা যায় ঃ

$$x = 3$$
 হলে শ্রেণীটি $\frac{1}{3} \sum_{n=1}^{\infty} \frac{1}{n}$ তে রূপান্তরিত হয় যা একটি অপসারী শ্রেণী ; আবার $x = -3$ হলে শ্রেণীটি $\frac{1}{3} \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$ এইরূপ নেয় যা একটি অভিসারী শ্রেণী।

সুতরাং শ্রেণীটি –3 \leq x < 3 এর জন্য অভিসারী এবং এই অন্তরালের বাইরে x-এর সকল মানের জন্য অপসারী।

4. সংকেত ঃ
$$\sum\limits_{n=0}^{\infty}a_n x^n$$
 ঘাতশ্রেণীর সাথে তুলনা করে পাই

(a)
$$R_1 = \lim_{n \to \infty} \frac{a_n}{a_{n+1}} = \lim_{n \to \infty} \frac{(2n)!}{(n!)^2} \cdot \frac{\{(n+1)!\}^2}{(2n+2)!}$$

 $= \lim_{n \to \infty} \frac{(n+1)^2}{(2n+2)(2n+1)} = \lim_{n \to \infty} \frac{(1+\frac{1}{n})}{2(2+\frac{1}{n})} = \frac{1}{4}$
(b) $\frac{1}{2}$
(c) 1

$$(\mathbf{d}) \left| \frac{\mathbf{a}_{n}}{\mathbf{a}_{n+1}} \right| = \left| \frac{(n+1)!}{(n+1)^{n+1}} \cdot \frac{\mathbf{n}^{n}}{n!} \right| = \left| \frac{\mathbf{n}^{n}}{(n+1)^{n}} \right| = \left| \frac{\mathbf{l}}{\left(1 + \frac{1}{n}\right)^{n}} \right| \rightarrow \frac{1}{e} \quad \text{ind} \quad n \rightarrow \infty$$

অতএব অভিসারী ব্যাসার্ধ = $R_1 = \frac{1}{e}$

10.9 সহায়ক পুস্তক

- I. Methods of Real Analysis Richard R. Goldberg.
- 2. Introduction to Real Analysis S. K. Mapa.
- 3. Infinite Series J. N. Sharma.

একক 11 🗆 সুষম অভিসারিতা (Uniform Convergence)

গঠন

- 11.1 প্রস্তাবনা
- 11.2 উদ্দেশ্য
- 11.3 অপেক্ষকের ক্রমের সুষম অভিসারিতা
- 11.4 অপেক্ষকের ক্রমের সুষম অভিসারিতা ও সন্তুতি
- 11.5 অপেক্ষকের ক্রমের সুষম অভিসারিতা ও সমাকলন
- 11.6 অপেক্ষকের ক্রমের সুষম অভিসারিতা ও অবকলন
- 11.7 অপেক্ষকের শ্রেণী ও ঘাতশ্রেণীর সুষম অভিসারিতা
- 11.8 অপেক্ষকের শ্রেণী ও ঘাতশ্রেণীর সুষম অভিসারিতা ও সন্ততি
- 11.9 অপেক্ষকের শ্রেণী ও ঘাতশ্রেণীর সুষম অভিসারিতা ও সমাকলন
- 11.10 অপেক্ষকের শ্রেণী ও ঘাতশ্রেণীর সুষম অভিসারিতা ও অবকলন
- 11.11 সারাংশ
- 11.12 সর্বশেষ প্রশ্নাবলি
- 11.13 উত্তরমালা
- 11.14 সহায়ক পুস্তক

11.1 প্রস্তাবনা

আগের একক-10-এ আপনি অপেক্ষকের ক্রম, অপেক্ষকের শ্রেণী ও ঘাতশ্রেণীর অভিসারিতা সম্পর্কে অবহিত হয়েছেন। এই এককে তাদের সুযম অভিসারিতা, সুযম অভিসারিতা সম্পর্কিত বিভিন্ন উপপাদ্য ও উদাহরণ সুসজ্জিত করে বিষয়গুলি সহজবোধ্য করার চেষ্টা করা হয়েছে।

11.2 উদ্দেশ্য

এই একক পাঠ করে আপনি

- অপেক্ষকের ক্রমের সুষম অভিসারিতা ও তার বিভিন্ন দিক সম্পর্কে জানতে পারবেন।
- অপেক্ষকের শ্রেণীর সুষম অভিসারিতা এবং এই সম্পর্কিত বিভিন্ন ধর্ম, উপপাদ্য ও উদাহরণের মাধ্যমে জ্ঞাত হতে পারবেন।

ঘাতশ্রেণীর সুষম অভিসারিতা ও এই বিষয়ক কিছু তথ্য সম্বন্ধেও অবগত হতে পারবেন।

<u>11.3 অপেক্ষকের ক্রমের</u> সুষম অভিসারিতা

এর আগের এককে আপনি জেনেছেন { $f_n(x)$ } ক্রমটির সদস্য অপেক্ষকগুলির সংজ্ঞাঞ্চল E এর কোন বিন্দু x এর জন্য ক্রমটি f(x) তে অভিসারী হবে যদি $\lim_{n o \infty} f_n(x) = f(x)$ হয়।

ধরা যাক { $f_n(x)$ } ক্রমটি E এর সকলমানের জন্য f(x)-তে অভিসারী। তাহলে ক্রমটি x-এর কোন একমান $c \in E$ এর জন্য f(c) তে অভিসারী। অতএব সংজ্ঞানুসারে যেকোন একটি $\epsilon > 0$ এর জন্য একটি স্বাভাবিক সংখ্যা M_1 -এর অস্তিত্ব থাকবে যাতে

 $\mid f_{n}(c) - f(c) \mid < \epsilon, \forall n \ge M_{1}$

হয়। সাধারণভাবে এই M_1 সংখ্যাটি ɛ এবং c-এর উপর নির্ভরশীল।

আবার অন্য একটি বিন্দু $\mathbf{d}\in \mathrm{E}$ এর জন্যও $\{\mathbf{f_n}\left(\mathbf{x}
ight)\}$ ক্রমটি f(d) তে অভিসারী, সুতরাং একই $\mathbf{\epsilon}>0$ এর জন্য অন্য একটি স্বাভাবিক সংখ্যা \mathbf{M}_2 পাওয়া যাবে যাতে

$$| \mathbf{f}_n(\mathbf{d}) - \mathbf{f}(\mathbf{d}) | < \varepsilon, \forall n \ge M_2$$

হয়। এখানে M_2 সংখ্যাটি সাধারণভাবে ɛ ও d-এর উপর নির্ভরশীল এবং সেই কারণে M_1 ও M_2 সংখ্যাদুটি বিভিন্ন হওয়াই স্বাভাবিক।

এখন যদি প্রদত্ত কোন একটি ধনাত্মক সংখ্যা ɛ এর জন্য একটি স্বাভাবিক সংখ্যা M-এর অস্তিত্ব থাকে যাতে সকল $x \in E$ এর জন্য

$$|f_n(x) - f(x)| < \varepsilon, \quad \forall n \ge M$$

হয়, অর্থাৎ উক্ত সম্পর্কে আবদ্ধ M সংখ্যাটি যদি x এর মানের উপর নির্ভরশীল না হয়ে কেবল ɛ এর উপর নির্ভরশীল হয়, তখন বলা হয় {f_n(x)} ক্রমটি Eএর উপর সুষমভাবে f(x) তে অভিসারী।

সংজ্ঞা ঃ ধরা যাক E ⊂ R এবং f_n(x) : E → R, ∀n ∈ N । তখন {f_n(x)} ক্রমটিকে E এর সকল মানের জন্য (বা E এর উপর) সুষমভাবে অভিসারী বলা হবে যদি কোন একটি ধনাত্মক সংখ্যা ε এর জন্য কেবলমাত্র এটির (ε এর) উপর নির্ভরশীল (কিন্তু x ∈ E -এর উপর নির্ভরশীল নয়) একটি স্বাভাবিক সংখ্যা M এর অস্তিত্ব থাকে যাতে সকল x ∈ E এর জন্য

$$|f_n(x) - f(x)| < \varepsilon, \quad \forall n \ge M$$

হয়। এখানে f(x) কে {f_n(x)} ক্রমের সীমা অপেক্ষক বলা হয়। [N = {1, 2, 3,.....} স্বাভাবিক সংখ্যার ক্রম।

 $\mid f_n(x) - f(x) \mid < \epsilon$ শর্তটি সিদ্ধ হবে যখন $n \geq 3$ \mid

যেখানে n-এর সর্বনিম্নমান $\mathbf{M}=3$ অর্থাৎ $\mathbf{x}=rac{1}{2}$ বিন্দুটির জন্য একই $\mathbf{\epsilon}=rac{3}{16}$ ধরলে,

$$|\mathbf{f}_{n}(\mathbf{x}) - \mathbf{f}(\mathbf{x})| < \varepsilon$$
$$\Rightarrow \left(\left| \frac{1}{2^{n}} - 0 \right| < \frac{3}{16} \right) \neq 2^{n} > \frac{16}{3} \right)$$

যখন ৫ যেকোন একটি ধনাত্মক সংখ্যা।

এখন ধরা যাক $\epsilon=rac{3}{16}$, তাহলে উক্ত সম্পর্ক থেকে বলা যায় ${f n}$ -এর সর্বনিন্নমান ${f M}=1$

$$\left| \mathbf{f}_{n}(\mathbf{x}) - \mathbf{f}(\mathbf{x}) \right| < \varepsilon, \quad \forall n \ge \mathbf{l}$$

এখন দেখা যাক এই ক্রমটি একই অন্তরাল [0, 1] তে সুষমভাবে অভিসারী কিনা। যখন x = 0, f_n(x) = 0, ∀n ∈ N এবং f(x) = 0 অতএব | f_n(x) - f(x) | = | 0 - 0 | = 0 আবার যখন x = 1, f_n(x) = 1, ∀n ∈ N এবং f(x) = 1 তখন | f_n(x) - f(x) | = | 1 - 1 | = 0 সুতরাং x-এর এই দুই মানের জন্যই বলা যায়

$$\mathbf{f}(\mathbf{x}) = \begin{cases} 0, 0 \le \mathbf{x} < 1\\ \mathbf{l}, \ \mathbf{x} = \mathbf{l} \end{cases}$$

l. একক 10-এর 10.3 অনুচ্ছেদের উদাহরণ—l এ f_n (x) = xⁿ, ∀n ∈ N এর জন্য দেখান হয়েছে {f_n(x)} ক্রমটি 0 ≤ x ≤ 1-এর উপর বিন্দু অনুসারে f(x) -তে অভিসারী যখন

উদাহরণ ঃ

প্রান্তলিপি ঃ যদি {f_n(x)} ক্রমটি E-এর সকল মানের জন্য f(x) তে সুষমভাবে অভিসারী হয় তাহলে {f_n(x)} ক্রমটি E-এর সকল মানের জন্য f(x)-তে বিন্দু অনুসারে অভিসারী হবে, কিন্তু বিপরীত ধর্মটি সত্য নয়। ε-এর জন্য উক্ত অন্তরালের বিভিন্ন বিন্দুর ক্ষেত্রে বিভিন্ন M পাওয়া যাচ্ছে, অর্থাৎ M সংখ্যাটি ε ও x এই দুই মানের উপরেই নির্ভরশীল হচ্ছে।অতএব এক্ষেত্রে ক্রমটি [0, 1] অন্তরালের উপর বিন্দু অনুসারে অভিসারী হলেও সুষমভাবে অভিসারী নয়।

2. একক—10–এর 10.3 অনুচ্ছেদের উদাহরণ-4 তে আর একটি ক্রম $\{f_n(x)\}$ যেখানে $f_n(x) = \frac{\sin nx}{n}$ যখন $n \in N$ এবং $x \in R$ এর সম্বন্ধে আলোচনা করা আছে। সেখানে দেখান হয়েছে সকল $x \in R$ এর জন্য ক্রমটি বিন্দু অনুসারে 0-তে অভিসারী, অর্থাৎ $f(x) = 0, \ \forall x \in R$ ।

এখন x-এর সকল বাস্তবমানের জন্য

$$\left|\mathbf{f}_{n}(\mathbf{x}) - \mathbf{f}(\mathbf{x})\right| = \left|\frac{\sin n\mathbf{x}}{n} - 0\right| = \left|\frac{\sin n\mathbf{x}}{n}\right| \le \frac{1}{n} \quad [\bullet] \sin n\mathbf{x} \le 1$$

আবার ইচ্ছামত ছোট যেকোন একটি $\epsilon > 0$ -এর জন্য

$$| \mathbf{f}_{\mathbf{n}}(\mathbf{x}) - \mathbf{f}(\mathbf{x}) | < \varepsilon \Rightarrow \frac{1}{n} < \varepsilon$$

 $\Rightarrow \mathbf{n} > \frac{1}{\varepsilon}$

এখন $rac{1}{\epsilon}$ এর পূর্ণ সংখ্যার অংশ (Integral part) K হলে M = K + I ধরা যায়। এই M সংখ্যাটি কেবল হ-এর উপর নির্ভরশীল। (যদি হ = .013 নেওয়া হয় তখন $rac{1}{\epsilon} = 7692$ হওয়ায় K =76 এবং M = 77) এই M-এর জন্য

$$|\mathbf{f}_{\mathbf{n}}(\mathbf{x}) - \mathbf{f}(\mathbf{x})| < \varepsilon, \quad \forall \mathbf{n} \ge \mathbf{M}$$

এর থেকে মন্তব্য করা যায় যে $\{\mathbf{f}_n(\mathbf{x})\}$ ক্রমটি সকল বাস্তব মানের জন্য সুষমভাবে অভিসারী।

উপপাদ্য-1 কসির শর্ত (Cauchy Criterion) :

ধরা যাক { $f_n(x)$ } ক্রমটির সদস্য অপেক্ষকগুলির সংজ্ঞাঞ্চল $E \subset R$ এবং সকল $n \in N$ এর জন্য $f_n(x)$: $E \to R$ । সকল $x \in E$ এর জন্য { $f_n(x)$ } ক্রমটির সুযমভাবে অভিসারী হওয়ার প্রয়োজনীয় ও যথেষ্ট (necessary and sufficient) শর্ত হল, যেকোন একটি ধনাত্মক সংখ্যা ε -এর জন্য একটি স্বাভাবিক সংখ্যা M-এর অস্তিত্ব থাকবে যাতে সকল $x \in E$ -এর ক্ষেত্রে

$$\left| \mathbf{f}_{n+p}(\mathbf{x}) - \mathbf{f}_{n}(\mathbf{x}) \right| < \epsilon, \quad \forall n \ge M$$
 अवर $p = 1, 2, 3, \dots$ रहा।

প্রমাণ ঃ ধরা যাক্ {f_n(x)} ক্রমটি সকল $x \in E$ -এর জন্য f(x)-তে সুযমভাবে অভিসারী। তখন যেকোন একটি $\epsilon > 0$ -এর জন্য একটি স্বাভাবিক সংখ্যা M পাওয়া যাবে (যা কেবল ϵ -এর উপর নির্ভরশীল) যাতে সকল $x \in E$ -এর ক্ষেত্রে,

$$\left| \mathbf{f}_{n}(\mathbf{x}) - \mathbf{f}(\mathbf{x}) \right| < \frac{\varepsilon}{2}, \quad \forall n \ge M$$

অতএব সকল $x \in E$ -এর জন্য,

$$| f_{n+p}(x) - f_{n}(x) | = | \{ f_{n+p}(x) - f(x) \} - \{ f_{n}(x) - f(x) \} |$$

$$\leq | f_{n+p}(x) - f(x) | + | f_{n}(x) - f(x) |$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{3} = \varepsilon, \quad \forall n \ge M, \ p = 1, 2, 3, \dots$$

সুতরাং **শর্তটি প্রয়োজনী**য়।

বিপরীতক্রমে, ধরা যাক্ যেকোন একটি ε > 0-এর জন্য একটি স্বাভাবিক সংখ্যা M-এর অস্তিত্ব থাকবে যাতে সকল x ∈ E –এর ক্ষেত্রেই

$$\mathbf{f}_{n+p}(\mathbf{x}) - \mathbf{f}_n(\mathbf{x}) \mid < \frac{\varepsilon}{2}, \quad \forall n \ge M \text{ and } p = 1, 2, 3, \dots$$

অতএব x-এর কোন একটি মান $x_1 \in E$ -এর জন্যও

$$\left| f_{n+p}(x_1) - f_n(x_1) \right| < \frac{\epsilon}{2}, \, \forall n \ge M$$
 खबर $p = 1, 2, 3, \dots$

কিন্তু এই শর্তটি থেকে এটাই প্রমাণিত হয় যে $\{f_n(x)_1\}$ একটি কসির ক্রম (Cauchy Sequence) এবং সেইজন্য এটি অভিসারী। একইভাবে দেখান যায় যে E-এর প্রত্যেক বিন্দুতেই $\{f_n(x)\}$ ক্রমটি অভিসারী। সুতরাং ক্রমটি E-এর সকল মানের জন্য বিন্দু অনুসারে অভিসারী। ধরা যাক f(x) উক্ত ক্রমের সীমা অপেক্ষক।

এখন উপরের ধরে নেওয়া শর্ত অনুযায়ী কোন প্রদন্ত $\epsilon > 0$ -এর জন্য একটি স্বাভাবিক সংখ্যা M পাওয়া যাবে যাতে প্রত্যেক $\mathbf{x} \in \mathbf{E}$ এবং $\mathbf{n} \geq \mathbf{M}$ হলে

$$\left| f_{n}(x) - f_{n+p}(x) \right| < \frac{\varepsilon}{2}, p = 1, 2, 3, \dots$$

আবার যেহেতু $\lim_{p \to \infty} \left| \ f_n(x) - f_{n+p}(x) \ \right| < \frac{\epsilon}{2}$

$$\Rightarrow \left| \mathbf{f}_{n}(\mathbf{x}) - \mathbf{f}(\mathbf{x}) \right| < \frac{\varepsilon}{2}$$

অতএব আগের শর্তটি থেকে পাওয়া যায়।

$$n \geq M$$
 হলে সকল $\, x \in E$ -এর জন্য $\, \Big| \, f_n(x) - f(x) \, \Big| < rac{\epsilon}{2} +$

এর থেকে প্রমাণিত হয় যে $\{f_n(x)\}$ ক্রমটি সকল $x \in E$ -এর জন্য f(x)-তে সুষমভাবে অভিসারী।

উপপাদ্য - 2 ধরা যাক { $f_n(x)$ } ক্রমটি সকল $x \in E$ -এর জন্য বিন্দু অনুসারে f(x) তে অভিসারী, যেখানে $f_n(x)$ ($\forall n \in N$) এবং f(x) সকলেই বাস্তব মানের (real valued) অপেক্ষক এবং সকলেরই সংজ্ঞাঞ্চল $E \subset R$ । আরও ধরা যাক্ $M_n = \sup_{x \in E} |f_n(x) - f(x)|$ তখন { $f_n(x)$ } ক্রমটিকে সকল $x \in E$ -এর জন্য সুষমভাবে f(x) তে অভিসারী বলা হবে যদি এবং কেবলমাত্র যদি $\lim_{n \to \infty} M_n = 0$ হয়।

প্রমাণ ঃ ধরা যাক্ {f_n(x)} ক্রমটি E-এর উপর f(x)-তে সুষমভাবে অ ভিসারী। অতএব যেকোন একটি ɛ > 0-এর জন্য একটি স্বাভাবিক সংখ্যা M (যা কেবল ɛ-এর উপর নির্ভরশীল) পাওয়া যাবে যাতে সকল x ∈ E -এর জন্য

$$\left| \mathbf{f}_{n}(\mathbf{x}) - \mathbf{f}(\mathbf{x}) \right| < \frac{\varepsilon}{2}, \quad \forall n \ge M$$

হয়।

$$\therefore \ M_n = \sup_{x \in E} \left| f_n(x) - f(x) \right| \le \frac{\varepsilon}{2} < \varepsilon, \quad \forall n \ge M$$

 $\Rightarrow M_n \rightarrow 0$ যখন $n \rightarrow \infty$ বা $\lim_{n \rightarrow \infty} M_n$ = 0

অতএব শর্তটি প্রয়োজনীয়।

বিপরীতক্রমে, ধরা যাক $\lim_{n \to \infty} M_n = 0$

সুতরাং যেকোন একটি $\epsilon>0$ এর জন্য একটি স্বান্ডাবিক সংখ্যা M-এর অস্তিত্ব থাকবে যাতে সকল $x\in E$ -র জন্য $M_n<\epsilon, \ \forall n\geq M$ হয়।

এতএব সকল x ∈ E -এর ক্ষেত্রেই,

$$\left|f_n\left(x\right) - f(x)\right| \leq \sup_{x \in E} \left|f_n(x) - f(x)\right| < \epsilon, \quad \forall n \geq M,$$

সুতরাং সকল $x \in E$ -এর জন্য $\{f_n(x)\}$ ক্রমটি f(x)-তে সুষমভাবে অভিসারী।

উদাহরণ

3 ঃ f_n(x) = xⁿ, x ∈ [0, 1] এবং _{n ∈ N} হলে দেখান যে {f_n(x)} ক্রমটি [0, 1]-এর উপর সুষমভাবে অভিসারী নয়।

সমাধান ঃ আমরা আগের এককে দেখেছি যে $\{f_n(x)\}$ ক্রমটি $[0,\,1]$ -এর উপর f(x)-তে বিন্দু অনুসারে অভিসারী যখন,

$$\mathbf{f}(\mathbf{x}) = \begin{cases} 0, \ 0 \le \mathbf{x} < \mathbf{I} \\ 1, \quad \mathbf{x} = \mathbf{I} \end{cases}$$

এখন $M_n = \sup_{x \in [0,1]} \left| f_n(x) - f(x) \right| = l, \quad \forall n \in N$

$$\therefore \quad \lim_{n \to \infty} M_n = l \neq 0$$

সুতরাং উপপাদ্য-2 অনুযায়ী { $f_n(x)$ } ক্রমটি সুযমভাবে অভিসারী নয়।

4. f_n(x) = 2+ $\frac{x^2}{n^2}$, x ∈ [0, 1] এবং n ∈ N হলে দেখান যে {f_n(x)} ক্রমটি [0, 1]-এর উপর সুষমভাবে অভিসারী।

সমাধান ঃ $x \in [0,1]$ হলে $\lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \left(2 + \frac{x^2}{n^2}\right) = 2$ সুতরাং { $f_n(x)$ } ক্রমটি [0, 1]-এর উপর f(x) = 2-তে বিন্দু অনুসারে অভিসারী

এখন $\mathbf{M}_{\mathbf{n}} = \sup_{\mathbf{x} \in [0,1]} \left| \mathbf{f}_{\mathbf{n}}(\mathbf{x}) - \mathbf{f}(\mathbf{x}) \right| = \sup_{\mathbf{x} \in [0,1]} \frac{\mathbf{x}^2}{\mathbf{n}^2} = \frac{1}{\mathbf{n}^2}$

$$\therefore \lim_{n \to \infty} \mathbf{M}_n = \lim_{n \to \infty} \frac{1}{n^2} = 0$$

অতএব প্রদন্ত ক্রমটি [0, 1]-এর উপর সুষমভাবে অভিসারী।

 $\therefore \ \phi(\mathbf{x})$ তে অপেক্ষকটি $\mathbf{x}=rac{1}{\mathbf{n}}$ বিন্দু চরম এবং এই চরম মানটি

$$\therefore \quad \phi^{\prime\prime}\left(\frac{1}{n}\right) = \frac{2n^3 \frac{1}{n}\left(n^2, \frac{1}{n^2} - 3\right)}{\left(1 + n^2, \frac{1}{n^2}\right)^3} = \frac{2n^2(-2)}{8} = -\frac{1}{2}n^2 < 0$$

$$=\frac{2n^{3}x(n^{2}x^{2}-3)}{(1+n^{2}x^{2})^{3}}$$

$$\phi^{\prime\prime}(x) = \frac{\left(-2n^{3}x\right)\left(1+n^{2}x^{2}\right)^{2}-\left(n-n^{3}x^{2}\right).\ 2\left(1+n^{2}x^{2}\right).\ 2n^{2}x}{\left(1+n^{2}x^{2}\right)^{4}}$$

কিন্তু $x \in [0, l]$ হওয়ায় $-\frac{l}{n}$ মানটি অগ্রাহ্য করে $x = \frac{l}{n}$ নেওয়া হল।

$$\phi'(x) = 0$$
 থেকে পাওয়া যায় $n - n^3 x^2 = 0 \Rightarrow x = \frac{1}{n}, -\frac{1}{n}$

$$\therefore \phi'(\mathbf{x}) = \frac{n(1+n^2\mathbf{x}^2) - n\mathbf{x} \cdot 2n^2\mathbf{x}}{(1+n^2\mathbf{x}^2)^2} = \frac{n-n^3\mathbf{x}^2}{(1+n^2\mathbf{x}^2)^2}$$

এটি নির্ণয়ের জন্য ধরা যাক, $\phi(x) = \frac{nx}{l + n^2 x^2}, \ x \in [0,1]$

এখন
$$\mathbf{M}_{\mathbf{n}} = \sup_{\mathbf{x} \in [0,1]} \left| \mathbf{f}_{\mathbf{n}}(\mathbf{x}) - \mathbf{f}(\mathbf{x}) \right| = \sup_{\mathbf{x} \in [0,1]} \frac{\mathbf{n}\mathbf{x}}{\mathbf{n}^{2}\mathbf{x}^{2} + 1}$$
(i)

সুতরাং $\{\mathbf{f}_{\mathsf{n}}(\mathbf{x})\}$ ক্রমটি [0,1]-এর সকল বিন্দুর জন্য বিন্দু অনুসারে $\mathbf{f}(\mathbf{x})=0$ -তে অভিসারী।

$$\lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \frac{nx}{n^2 x^2 + 1} = \frac{x}{nx^2 + \frac{1}{n}} = 0 = f(x)$$

সমাধান ঃ এখানে $x \in [0,1]$ এবং তখন,

5.
$$f_n(x) = \frac{nx}{n^2x^2 + l}, \ n \in N$$
 হলে দেখান যে $[0, 1]$ অন্তরালে $\{f_n(x)\}$ ক্রমটি সুষমভাবে অভিসারী নয়।

$$= \phi\left(\frac{1}{n}\right) = \frac{n \cdot \frac{1}{n}}{1 + n^2 \cdot \frac{1}{n^2}} = \frac{1}{2}$$

$$= \mathbf{M}_{\mathbf{n}} = \frac{1}{2} \Longrightarrow \lim_{\mathbf{n} \to \infty} \mathbf{M}_{\mathbf{n}} = \lim_{\mathbf{n} \to \infty} \frac{1}{2} = \frac{1}{2} \neq 0$$

সুতরাং ক্রমটি [0, 1] অন্তরালের উপর সুষমভাবে অভিসারী নয়।

উপপাদ্য 3 ঃ ধরা যাক $n \in N$ এবং $x \in [a, b] = I \subset R$ –এর জন্য $f_n(x)$ বাস্তব মানের অপেক্ষক। আরও ধরা যাক $\{f_n(x)\}$ ক্রম I-এর উপর f(x)-তে সুষমভাবে অভিসারী। যদি I-এর কোন লিমিটি বিন্দু (limit point) C-এর জন্য

$$\lim_{x\to c} f_n(x) = a_n$$

হয়, তখন

- (i) {a_n} ক্রমটি অভিসারী হয়—
- এবং (ii) $\lim_{x\to c} f(x)$ -এর অস্তিত্ব থাকে এবং তা $\lim_{n\to\infty} a_n$ -এর সমান হয়। অর্থাৎ $\lim_{x\to c} \lim_{n\to\infty} f_n(x) = \lim_{n\to\infty} \lim_{x\to c} f_n(x)$ হয়।

প্রমাণ ঃ যেহেতু শর্তানুসারে {f_n(x)} ক্রমটি I-এর উপর সুযমভাবে অভিসারী, যেকোন একটি ১ > 0–এর জন্য একটি স্বাভাবিক সংখ্যা M-এর অস্তিত্ব থাকবে যাতে

$$\begin{split} \mid \mathbf{f}_{n+p}(\mathbf{x}) - \mathbf{f}_{n}(\mathbf{x}) \mid < \varepsilon, \ \forall n \ge \ \mathbf{M} \quad \text{eqs} p = 1, 2, 3, \dots \\ \therefore \quad \lim_{\mathbf{x} \to \mathbf{c}} \left| \mathbf{f}_{n+p}(\mathbf{x}) - \mathbf{f}_{n}(\mathbf{x}) \right| < \varepsilon, \ \forall n \ge \mathbf{M} \quad \text{eqs} p = 1, 2, 3, \dots \\ \text{di} \mid \mathbf{a}_{n+p} - \mathbf{a}_{n} \mid < \varepsilon, \quad \forall n \ge \mathbf{M} \quad \text{eqs} p = 1, 2, 3, \dots \\ \text{would} \quad \{\mathbf{a}_{n}\} \text{ configures} \text{ constants} \end{split}$$

দ্বিতীয় অংশ প্রমাণের জন্য ধরা যাক $\lim_{n\to\infty} a_n = \ell^2$, যেখানে ℓ একটি সসীম সংখ্যা [$\ell \cdot \{a_n\}$ অভিসারী]; আবার $\{f_n(x)\}$ ক্রমটি f(x)-তে সুযমভাবে অভিসারী; সুতরাং কোন একটি $\varepsilon > 0$ -এর জন্য একটি ধনাত্মক স্বাভাবিক সংখ্যা M_1 পাওয়া যাবে যাতে,

$$|a_n - \ell| < \frac{\varepsilon}{3}$$
, যখন $n \ge M_1$ (A)

এবং $\mid f_n(x) - f(x) \mid < rac{\epsilon}{3}, \quad$ যখন $x \in I$ এবং $n \geq M_1$(B)

এছাড়াও শর্তানুসারে,

$$\lim_{x\to c} f_n(x) = a_n$$

অতএব $|f_n(x) - a_n| < \frac{\epsilon}{3}$, যখন $x \in N(c, \delta) \cap I, \delta > 0$(C)

$$\left[N(c, \delta) = (c - \delta, c + \delta)\right]$$

এখন যেহেতু উপরের শর্ত তিনটিই x ∈ N (c, δ) ∩ I-এর জন্য সিদ্ধ হয় অতএব উক্ত (A), (B), (C) শর্তানুযায়ী—

$$\begin{aligned} |f(x) - \varepsilon| &= |f(x) - f_n(x) + f_n(x) - a_n + a_n - \ell| \\ &\leq |f_n(x) - f(x)| + |f_n(x) - a_n| + |a_n - \ell| \\ &< \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon, \text{ True } x \in N(c, \delta) \cap I \\ &\therefore \lim_{x \to c} f(n) = \ell \\ &\qquad \ell \end{aligned}$$

 $\therefore \lim_{x \to c} f(x) = \lim_{n \to \infty} a_n \quad \text{an } \lim_{x \to c} \lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \lim_{x \to c} f_n(x) +$

এখানে $\{f_n(x)\}$ ক্রমটি [0, 1]-এর উপরে f(x)-তে বিন্দু অনুসারে অভিসারী যখন $f(x) = 1, x \in [0, 1]$

[••• अथारन
$$\lim_{n\to\infty} f_n(x) = 1$$
]

এখন [0, 1 [সেটটির 1 একটি লিমিট বিন্দু এবং,

$$\lim_{x \to 1} f_n(x) = a_n$$
$$\Rightarrow \lim_{x \to 1} (1 + 2x^n) = a_n$$
$$\Rightarrow 3 = a_n, \quad \forall n \in \mathbb{N}$$

- $\therefore \lim_{n \to \infty} a_n = \lim_{n \to \infty} 3 = 3 \text{ and } \lim_{x \to 1} f(x) = \lim_{x \to 1} 1$
- $\therefore \lim_{x \to 1} f(x) \neq \lim_{n \to \infty} a_n \quad \text{in} \lim_{x \to 1} \lim_{n \to \infty} f_n(x) \neq \lim_{n \to \infty} \lim_{x \to 1} f_n(x)$

অতএব প্রদত্ত শ্রেণীটি [0, 1] তে সুষমভাবে অভিসারী নয়।

11.4 অপেক্ষকের ক্রমের সুষম অভিসারিতা ও সন্ততি

উ**পপাদ্য 1 ঃ** ধরা যাক্ $f_n(x): E \to R$ যখন $n \in N$ এবং $E \subset R$ আরও ধরা যাক্ { $f_n(x)$ } ক্রমটি E-এর উপর f(x) তে সুযমভাবে অভিসারী। যদি প্রত্যেক $f_n(x)$ অপেক্ষক E-এর অন্তর্গত প্রত্যেক বিন্দুতে সন্তত হয় তাহলে সীমা অপেক্ষক f(x) ও E-তে সন্তত।

প্রমাণ ঃ ধরা যাক্ যে কোন একটি বিন্দু $c \in E$ । শর্তানুসারে $f_n(x)$ অপেক্ষক c বিন্দুতে সকল $n \in N$ -এর জন্য সন্তত। সুতরাং সংজ্ঞানুসারে পূর্বনির্ধারিত কোন একটি ধনাত্মক সংখ্যা ɛ-এর জন্য একটি ধনাত্মক সংখ্যা ১-এর অস্তিত্ব থাকবে যাবে

$$| f_n(x) - f_n(c) | < \epsilon, \quad \forall x \in N(c, \delta) \cap E$$

আবার যেহেতু {f_n(x)} ক্রমটি E-এর উপর f(x)-তে সুষমভাবে অভিসারী অতএব সকল $x \in E$ -এর জন্য

$$\left| f_n(x) - f(x) \right| < \frac{\varepsilon}{3}, \quad \forall n \ge M,$$

যেখানে প্রদত্ত $\epsilon > 0$ -এর জন্য কেবলমাত্র তার উপর নির্ভরশীল স্বাভাবিক সংখ্যা ${f M}$

এই শর্ত থেকে n = M-এর জন্য পাওয়া যায়

$$|f_M(x) - f(x)| < \frac{\varepsilon}{3}, \quad \forall x \in E$$

এবং $|f_M(c) - f(c)| < \frac{\epsilon}{3}$

 $\therefore |f(x) - f(c)| = |f(x) - f_M(x) + f_M(x) - f_M(c) + f_M(c) - f(c)|$

$$| \leq | f(x) - f_M(x) | + | f_M(x) - f_M(c) | + | f_M(c) - f(c) |$$

$$< \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon, \quad \forall x \in N \ (c, \delta) \cap E$$

অতএব f(x) অপেক্ষকটি C-বিন্দুতে সন্তত। আবার যেহেতু C বিন্দুটি E-এর যেকোন একটি বিন্দু, f(x) অপেকটি E-এর সকল বিন্দুতে সন্তত।

প্রান্তলিপি : { $f_n(x)$ } ক্রমের সুযম অভিসারিতা তার সীমা অপেক্ষকের সন্ততির যথেষ্ট শর্ত কিন্তু তা প্রয়োজনীয় শর্ত নয়।

উদাহরণ

 $\lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} n^2 x (1-x)^n = \lim_{n \to \infty} \frac{n^2 \left(1 - \frac{1}{y}\right)}{y^n} \qquad [\forall \forall \forall \forall y > 1]$

$$= \lim_{n \to \infty} \frac{n^2 (y-1)}{y^{n+1}} \left(\frac{\infty}{\infty}\right)$$
$$= \lim_{n \to \infty} \frac{2n (y-1)}{y^{n+1} \log y} \left(\frac{\infty}{\infty}\right)$$
$$= \lim_{n \to \infty} \frac{2(y-1)}{y^{n+1} (\log y)^2} = 0$$
 অতএব এখানেও $f(x) = 0$

∴ ক্রমটি [0, 1]-এর উপর f(x) = 0-তে বিন্দু অনুসারে অভিসারী

যেহেতু $\mathbf{f}(\mathbf{x})=0$ $\forall \mathbf{x}\in[0,1]$ একটি ধ্রুবক অপেক্ষক, অতএব $\mathbf{f}(\mathbf{x})$ অপেক্ষকটি [0,1] অন্তরালে সন্তত।

এখন
$$\mathbf{M}_{n} = \sup_{\mathbf{x} \in [0,1]} |\mathbf{f}_{n}(\mathbf{x}) - \mathbf{f}(\mathbf{x})|$$

$$= \sup_{\mathbf{x} \in [0,1]} |\mathbf{n}^{2}\mathbf{x}(1-\mathbf{x})^{n}|$$

$$\geq \mathbf{n}^{2} \cdot \frac{1}{n} \left(1 - \frac{1}{n}\right)^{n} \qquad (\mathbf{x} = \frac{1}{n} \in [0,1]$$
 ধরে)

$$= n \left(1 - \frac{1}{n}\right)^{n}$$

 $\therefore \lim_{n \to \infty} M_n \ge \lim_{n \to \infty} \frac{n}{\left(l - \frac{1}{n}\right)^{-n}} = \frac{\infty}{e} = \infty$

সুতরাং প্রদত্ত ক্রম [0, 1]-এর উপর সুষমভাবে অভিসারী নয়। অতএব দেখা গেল f(x) সীমা অপেক্ষকটি [0,1] অন্তরালে সন্তত হলেও { $\mathbf{f}_{p}(\mathbf{x})$ } ক্রমটি উক্ত অন্তরালের উপর সুযমভাবে অভিসারী নয়। অর্থাৎ { $\mathbf{f}_{p}(\mathbf{x})$ } ক্রমের সুযম অভিসারিতা তার সীমা অপেক্ষক f(x)-এর সন্ততির প্রয়োজনীয় শর্ত নয়।

2. $f_n(x) = \frac{x^n}{1+x^n}$, যখন $n \in N$ এবং $x \in [0,1]$ হলে দেখান যে $\{f_n(x)\}$ ক্রমটি [0, 1] এর উপর

সুষমভাবে অভিসারী নয়।

সমাধান ঃ এখানে $0 \leq x < 1$ এর জন্য $\lim_{n o \infty} \, f_n(x) = 0$

এবং
$$x = 1$$
-এর জন্য $\lim_{n \to \infty} f_n(x) = \frac{1}{2}$

অতএব {f (x)} ক্রমটি [0, 1]-এর উপর f(x)-তে বিন্দুঅনুসারে অভিসারী

যখন
$$\mathbf{f}(\mathbf{x}) = \begin{cases} 0, \ 0 \le \mathbf{x} < \mathbf{l} \\ \frac{1}{2}, \ \mathbf{x} = \mathbf{l} \end{cases}$$

আবার এখানে প্রত্যেক ${f f}_{f x}(x)$ অপেক্ষক $[0,\,1]$ অন্তরালে সন্তত। কিন্ত ${f f}(x)$ অপেক্ষকটি x=1 বিন্দুতে অসন্তত হওয়ায় তা [0, 1] অন্তরালেও অসন্তত। সুতরাং {f,(x)} ক্রম [0, 1] অন্তরালের উপর সুষমভাবে অভিসারী নয়।

উপপাদ্য - 2 ঃ ডিনি (Dini)-র উপপাদ্য ঃ

ধরা যাক্ ${
m E}$ সেটটি ${
m R}$ -এর একটি কম্প্যাক্ট (compact) উপসেট্ এবং ${
m n}\in {
m N}$ -এর জন্য ${
m E}$ -তে সংজ্ঞাত সন্তত অপেক্ষক সমূহের ক্রম -{f_n(x)} সকল -_{X e E} -এর জন্য একটি সন্তত অপেক্ষক f(x)-তে বিন্দুঅনুসারে অভিসারী। যদি $\{\mathbf{f}_n(\mathbf{x})\}$ ক্রমটি E-এর উপর ক্রমক্ষীয়মান (monotone decreasing) হয় তাহলে $\{\mathbf{f}_n(\mathbf{x})\}$ একই অন্তরাল E-এর উপর f(x) তে সুযমভাবে অভিসারী।

প্রমাণ ঃ শর্তানুসারে $\lim_{n \to \infty} f_n(x) = f(x)$

এবং $f_1^-(x) \ge f_2^-(x) \ge f_3^-(x) \ge \dots$ া

এখন ধরা যাক $g_n(x)=f_n(x)-f(x)$ তাহলে সকল $x\in E$ -এর জন্য

 $g_1(x) \ge g_2(x) \ge g_3(x) \ge \dots \ge g_n(x) \ge \dots \dots \ge 0, \dots \dots \dots (i)$

এবং $\lim_{n\to\infty} g_n(x) = \lim_{n\to\infty} f_n(x) - f(x) = f(x) - f(x) = 0$ ।

অর্থাৎ {g_n(x)} ক্রমটি E-এর উপর ক্রমক্ষীয়মাণ এবং 0-তে বিন্দু অনুসারে অভিসারী।

এখন আমরা প্রমাণ করব যে সকল $\, \mathrm{x} \in \mathrm{E}$ -এর জন্য $\, \{\mathrm{g}_{\mathrm{n}}(\mathrm{x})\}$ ক্রমটি 0-তে সুষমভাবে অভিসারী।

উপরের ফল (result) থেকে বলা যায় $\mathbf{x}_1 \in E$ -এর জন্য

$$\lim_{n\to\infty}g_n(x)=0,$$

অতএব পূর্বনির্ধারিত কোন ধনাত্মক সংখ্যা ϵ -এর জন্য একটি স্বাভাবিক সংখ্যা M_1 অস্তিত্ব থাকবে যাতে $\left| g_n(x_1) - 0 \right| < \frac{\epsilon}{2}, \quad \forall n \ge M_1,$

অতএব (i) অনুযায়ী $0 \le g_n(x_1) < rac{\epsilon}{2}, \ \forall n \ge M_1.....(ii)$

আবার $g_n(x)$ অপেক্ষকটি x_1 বিন্দুতে সন্তত বলে যেকোন একটি $\epsilon>0$ -এর জন্য একটি $\delta_1>0$ পাওয়া যাবে যাতে

$$\left| g_{n}(x) - g_{n}(x_{1}) \right| \le \frac{\varepsilon}{2}, \forall x \in N(x_{1}, \delta_{1}) \cap E....(iii)$$

অতএব (ii) ও (iii) থেকে $n \ge M_1$ -এর জন্য

$$0 \le g_n(x) < \epsilon, \ \forall x \in N(x_1, \delta_1) \cap E_{\dots,\dots,n}(iv)$$

ধরা যাক {N(x₁, δ₁) : x₁ ∈ E, i ∈ N} সামীপ্য সমূহের পরিবার S-এর জন্য (iv) নং-এর শর্তগুলি সিদ্ধ হয়। এখানে E-এর মুক্ত আবরণ S আবারE কম্প্যাক্ট বলে S-এর একটি উপআবরণ S⁷ পাওয়া যাবে যা E-এর একটি আবরণ।

ধরা যাক
$$S' = \{N(x_1, \delta_1), N(x_2, \delta_2), \dots, N(x_m, \delta_m)\}$$

তখন
$$\mathrm{E}\subset \mathrm{N}ig(\mathrm{x}_1,\delta_1ig)\cup\mathrm{N}(\mathrm{x}_2,\delta_2)\cup\ldots\ldots\cup\mathrm{N}(\mathrm{x}_m,\delta_m)$$
 ।

যদি M সংখ্যাটি $M^{}_1,\,M^{}_2$; $M^{}_m$ এদের মধ্যে বৃহত্তম হয় তাহলে $n\geq M$ ধরে পাওয়া যায়

$$0 \le g_n(x) < \varepsilon, \forall x \in [N(x_1, \delta_1) \cap E] \cup [N(x_2, \delta_2) \cap E] \cup \dots \cup [N(x_m, \delta_m) \cap E]$$

অর্থাৎ $0 \leq g_n^{-}(x) \leq \epsilon, \quad orall x \in E$ এবং $n \geq M$

অতএব {g_n(x)} ক্রমটি E-এর উপর 0-তে সুযমভাবে অভিসারী। এর থেকে প্রমাণিত হয় যে {f_n(x)} ক্রমটি E-এর উপর f(x) সুযমভাবে অভিসারী। উদাহরণ ঃ 3. $f_n(x) = 1 + x^n$ হলে দেখান যে [0, 1]-এর উপর { $f_n(x)$ } ক্রমটি সুযমভাবে অভিসারী।

সমাধান ঃ এখানে $\lim_{n\to\infty} f_n(x) = \lim_{n\to\infty} (1+x^n) = 1$, যেহেতু $x \in [0,1]$ । সুতরাং ক্রমটি [0,1]-এর উপর f(x) = 1-তে বিন্দু অনুসারে অভিসারী সকল $n \in N$ -এর জন্যই $f_n(x)$ অপেক্ষক [0,1] অন্তরালে সন্তত এবং f(x) অপেক্ষকও একই অন্তরালে সন্তত।

আবার প্রত্যেক, $x\in [0,1]$ -এর জন্য $f_{n+1}\left(x
ight)$ – $f_n(x)$ = x^{n+1} – x^n

$$= x^{n} (x-1) \leq 0$$

 $\therefore \ f_1(x) \ge f_2(x) \ge f_3(x) \ge \dots$

অতএব, ডিনির উপপাদ্য অনুযায়ী $\{f_n(x)\}$ ক্রমটি $[0,\ 1]$ অন্তরালের উপর 1-তে সুযমভাবে অভিসারী।

11.5 অপেক্ষকের ক্রমের সুষম অভিসারিতা ও সমাকলন (Integration)

উপপাদ্য 1 ঃ ধরা যাক্ I = [a, b] একটি বদ্ধ ও সীমাবদ্ধ (Closed and bounded) অন্তরাল যখন a, b $\in \mathbb{R}$ এবং প্রত্যেক $n \in \mathbb{N}$ -এর জন্য $f_n(x) : I \to \mathbb{R}$ আরও ধরা যাক এই অপেক্ষকগুলি I অন্তরালে রিমান-সমাকলন যোগ্য (R-intergrable) যদি { $f_n(x)$ } ক্রমটি I-এর উপর f(x) -তে সুষমভাবে অভিসারী হয় তাহলে f(x)

অপেক্ষকটিও I-তে রিমান সমাকলনযোগ্য হবে এবং $\left\{ \int\limits_a^b f_n(x) dx
ight\}$ ক্রমটি $\int_a^b f(x) \, dx$ -তে অভিসারী হবে।

প্রমাণ ঃ প্রথম অংশ ঃ প্রদত্ত শর্তানুসারে $\{f_n(x)\}$ ক্রমটি I-এর উপর f(x)-তে সুষমভাবে অভিসারী। অতএব পূর্বনির্ধারিত কোন একটি $\epsilon > 0$ -এর জন্য একটি স্বাভাবিক সংখ্যা M-এর অস্তিত্ব থাকবে যাতে সকল $x \in I$ -এর জন্য,

$$\left| \begin{array}{c} f_n(x) - f(x) \end{array}
ight| < rac{\epsilon}{3(b-a)}, \hspace{1em}$$
যখন $n \geq M$

স্বাভাবিকভাবেই $| f_M(x) - f(x) | < \frac{\epsilon}{3(b-a)}, \quad \forall x \in I.....(i)$

$$\exists f_{M}(x) - \frac{\varepsilon}{3(b-a)} < f(x) < f_{M}(x) + \frac{\varepsilon}{3(b-a)}(ii)$$

প্রদত্ত শর্তে আরও পাওয়া যায় প্রত্যেক $n\in \mathrm{N}$ -এর জন্য $\mathrm{f}_{\mathsf{n}}(\mathrm{x})$ অপেক্ষক I-তে রিমান-সমাকলনযোগ্য,

অতএব I-এর একটি বিভাজন (partition)

 $\mathbf{P} = \{ \mathbf{a} = \mathbf{x}_{0}, \ \mathbf{x}_{1}, \ \mathbf{x}_{2}, \ \dots, \ \mathbf{x}_{n} = \mathbf{b} \}$

পাওয়া যাবে, যখন

$$U(P, f_M) - L(P.f_M) < \frac{\varepsilon}{3}, \dots, (iii)$$

এখানে উক্ত বিভাজনের $\delta_1 \equiv [\mathbf{x}_{r-1}, \mathbf{x}_r]$ উপ-অন্তরালে

$$\mathbf{M}_{\mathbf{r}}^{\prime} = \sup_{\mathbf{x}\in\delta_{\mathbf{r}}} \mathbf{f}_{\mathbf{M}}(\mathbf{x}), \ \mathbf{m}_{\mathbf{r}}^{\prime} = \inf_{\mathbf{x}\in\delta_{\mathbf{r}}} \mathbf{f}_{\mathbf{M}}(\mathbf{x})$$

হলে $U(\mathbf{P}, \mathbf{f}_M) = \sum_{r=1}^n \mathbf{M}_r^{\prime} \delta_r$ এবং $L(\mathbf{P}, \mathbf{f}_M) = \sum_{r=1}^n \mathbf{m}_r^{\prime} \delta_r [\delta_r = \mathbf{x}_r - \mathbf{x}_{r-1}$ আৰ্থে ব্যবহাত হয়।]

আবার, $M_r = \sup_{x \in \delta_r} f(x)$ এবং $m_r = \inf_{x \in \delta_r} f(x)$ ধরলে (ii) নং থেকে

यारङ्,
$$f_M(x) < f(x) + \frac{\epsilon}{3(b-a)}, \quad \forall x \in I$$

সুতরাং, $m_r^{/} \le m_r + rac{\epsilon}{3(b-a)}$

বা
$$\sum_{r=1}^{n} m_r' \delta_1 \leq \sum_{r=1}^{n} m_r \delta_r + \frac{\epsilon}{3(b-a)} \sum_{r=1}^{n} \delta_r$$
 [যখন $\delta_r = x_r - x_{r-1}$]
 $\Rightarrow L(P, f_M) \leq L(P, f) + \frac{\epsilon}{3}$ ['•• $\sum \delta_r = (b-a)$].....(iv)

একইভাবে (ii) থেকে পাওয়া যায়—

$$f(x) < f_M(x) + \frac{\epsilon}{3(b-a)}, \quad \forall x \in I$$

সুতরাং $M_r \le M_r' + rac{\epsilon}{3ig(b-aig)}$

$$\exists | \sum_{r=1}^{n} M_r \delta_r \leq \sum_{r=1}^{n} M_r' \delta_r + \frac{\epsilon}{3(b-a)} \sum_{r=1}^{n} \delta_r$$

$$\Rightarrow \mathrm{U}\left(\mathrm{P},\,f\right) \leq \mathrm{U}(\mathrm{P},\,f_{\mathrm{M}}) + \frac{\varepsilon}{3}....(\mathrm{v})$$

 $\mathrm{U}(\mathrm{P},\,\mathrm{f})+\mathrm{L}(\mathrm{P},\,\mathrm{f}_{\mathrm{M}})\leq\mathrm{L}(\mathrm{P},\,\mathrm{f})+\mathrm{U}(\mathrm{P},\,\mathrm{f}_{\mathrm{M}})+\frac{2\epsilon}{3}$

বা $U(P,f) - L(P,f) \le U(P, f_M) - L(P, f_M) + \frac{2\epsilon}{3}$

(iv) ও (v) থেকে পাওয়া যায়

$$\Rightarrow \cup (P, f) \le \cup (P, f_M) + \frac{3}{3} \dots (v)$$

$$\Rightarrow 0(1,1) \le 0(1,1_M) + \frac{1}{3}$$
.....(

সুতরাং f(x) ফাংশনটি I-তে রিমান সমাকলন যোগ্য।
দ্বিতীয় অংশ ঃ প্রত্যেক n
$$\ge$$
 M-এর জন্য
$$\bigg| \int_a^b f_n(x) dx - \int_a^b f(x) dx \bigg| = \bigg| \int_a^b \bigg[f_n(x) - f(x) \bigg] dx \bigg| < \int_a^b \frac{\varepsilon}{3(b-a)} dx \quad [(i) থেকে]$$

 $<\frac{\varepsilon}{3}+\frac{2\varepsilon}{3}=\varepsilon$ [(iii) নং থেকে]

$$= \frac{\varepsilon}{3(b-a)} \cdot (b-a) = \frac{\varepsilon}{3}$$

অতএব $\lim_{n\to\infty}\int_a^b f_n(x) dx = \int_a^b f(x) dx....(vi)$

অর্থাৎ $\left\{\int_a^b f_n(x)\;dx
ight\}$ ক্রমটি সকল $x\in I$ -এর জন্য $\int_a^b f(x)\;dx$ তে অভিসারী।

প্রান্তলিপি 1 ঃ যেহেতু $\lim_{n o \infty} \, f_n(x) = f(x)$ অতএব উপরের (vi) নং অনুযায়ী

$$\lim_{n \to \infty} \left[\int_a^b \mathbf{f}_n(\mathbf{x}) \, d\mathbf{x} \right] = \int_a^b \left[\lim_{n \to \infty} \mathbf{f}_n(\mathbf{x}) \right] d\mathbf{x}$$

অতএব দেখা গেল যে $\{f_n(x)\}$ যদি সুষমভাবে অভিসারী হয় তাহলে $\lim_{n o\infty}$ এবং $\int\limits_{a}^{b}$ -এর মধ্যে বিনিময় করা যায়।

প্রান্তলিপি 2 ঃ $\{f_n(x)\}$ ক্রমটির [a, b] এর উপর f(x) তে সুষমভাবে অভিসারী হওয়া শর্তটি $\left\{\int_a^b f_n(x) \ dx
ight\}$ এর $\int_a^b f(x) \, dx$ -তে অভিসারী হওয়ার যথেষ্ট শর্ত তা প্রয়োজনীয় শর্ত নয়।

উদাহরণস্বরূপ ধরা যাক { $f_n(x)$ } ক্রমটির সদস্য $f_n(x) = \frac{nx}{1+n^2x^2}$ সমূহের $(n \in N)$ সংজ্ঞাঞ্চল [0, 1], 11.3 অনুচ্ছেদের উদাহরণ-5-এ দেখান হয়েছে ক্রমটি [0, 1] অন্তরালের উপর বিন্দু অনুসারে f(x) = 0-তে অভিসারী কিন্তু উক্ত অন্তরালে তা সুযমভাবে অভিসারী নয়।

এখানে [0, 1] অন্তরালের উপর প্রত্যেক $f_n(x)$ রিমান-সমাকলনযোগ্য এবং একই অন্তরালের উপর f(x) অর্থাৎ 0 অপেক্ষকটিও সমাকলনযোগ্য।

$$\begin{split} \int_{a}^{1} f_{n}(x) \, dx &= \int_{0}^{1} \frac{nx}{1+n^{2}x^{2}} \, dx = \frac{1}{2n} \int_{0}^{1} \frac{2n^{2}x}{1+n^{2}x^{2}} \, dx = \frac{2}{2n} \Big[\log \left(1+n^{2}x^{2}\right) \Big]_{0}^{1} \\ &= \frac{1}{2n} \log \left(1+n^{2}\right) \\ \therefore \lim_{n \to \infty} \int_{0}^{1} f_{n}(x) \, dx &= \lim_{n \to \infty} \frac{\log \left(1+n^{2}\right)}{2n} \left(\frac{\infty}{\infty}\right) \\ &= \lim_{n \to \infty} \frac{\frac{2n}{1+n^{2}}}{2} = \lim_{n \to \infty} \frac{n}{1+n^{2}} \left(\frac{\infty}{\infty}\right) \\ &= \lim_{n \to \infty} \frac{1}{2n} = 0 \\ \\ &= \lim_{n \to \infty} \frac{1}{2n} = 0 \\ \\ &= \log \left\{ \int_{0}^{1} f_{n}(x) \, dx \right\} \text{ antib } \int_{0}^{1} f(x) \, dx - (\infty \text{ algorithmatical times } \{f_{n}(x)\} \text{ antib } [0, 1] \text{ -ust Watarian times } 1 \\ \end{aligned}$$

অভিসারী নয়।

11.6 অপেক্ষকের ক্রমের সুষম অভিসারিতা ও অবকলন (Differentiation)

উপপাদ্য - 1 ঃ যদি $I = [a, b] \subset R$ -তে সংজ্ঞাত অপেক্ষক $f_n(x)$ সকল $n \in N$ -এর জন্য $f_n : I \to R$ হয় এবং $\{f_n(x)\}$ ক্রমটি এমন হয় যে

- (i) প্রত্যেক $f_n(x)$ অপেক্ষক I-তে অবকলন যোগ্য
- (ii) x-এর অন্তত কোন একটি মান $\, C \in [a,b]\,$ -এর জন্য $\{f_n(c)\}$ ক্রমটি অভিসারী।

এবং (iii) $\left\{f_n^{/}(x)
ight\}$ ক্রমটি I-এর উপর g(x)-তে সুযমভাবে অভিসারী, তাহলে $\{f_n(x)\}$ ক্রমটি I-এর উপর সুযমভাবে অভিসারী হবে এবং যদি $\{f_n(x)\}$ ক্রমটি f(x)-তে অভিসারী হয় তাহলে সকল $x \in I$ -এর জন্য f'(x) = g(x) হবে। প্রমাণ ঃ উপপাদ্যের (ii) এবং (iii) নং শর্ত পালনের জন্য পূর্বনির্ধারিত কোন একটি ধনাত্মক হ-এর জন্য একটি ধনাত্মক স্বাভাবিক সংখ্যা M পাওয়া যাবে যাতে n ≥ M এবং P = 1, 2, 3,..... হলে,

$$\left| f_{n+p}(c) - f_n(c) \right| < \frac{\varepsilon}{2}$$
....(A)

এবং সকল $x \in I$ -এর জন্য $\left| \begin{array}{c} f_{n+p}'(x) - f_n'(x) \end{array} \right| < rac{\epsilon}{2\left(b-a
ight)}$(B)

ল্যাগরাঞ্জের মধ্যমান উপপাদ্য প্রয়োগ করে পাওয়া যায়—

$$| \{ f_{n+p}(x) - f_n(x) \} - \{ f_{n+p}(c) - f_n(c) \} | = | \{ f_{n+p}(x) - f_{n+p}(c) \} - \{ f_n(x) - f_n(c) \} |$$
$$= |x - x| | f_{n+p}(\xi) - f_n(\xi) |$$

যখন $x, c \in I$; ξ বিন্দুটি x c-এর মধ্যে অবস্থিত ; $n \geq M$ এবং p = 1, 2, 3,..... অতএব — একই শর্তসাপেক্ষে,

$$\begin{split} \left| \mathbf{f}_{n+p}(\mathbf{x}) - \mathbf{f}_{n}(\mathbf{x}) - \mathbf{f}_{n+p}(\mathbf{c}) + \mathbf{f}_{n}(\mathbf{c}) \right| &< \left| \mathbf{x} - \mathbf{c} \right| \frac{\varepsilon}{2(b-a)} \qquad [(B) \ \text{wantal} \] \\ &\leq \frac{\varepsilon}{2} \quad \left[\mathbf{\cdot} \mathbf{\cdot} \right| |\mathbf{x} - \mathbf{c}| \leq b - a \right] \dots \dots (C) \end{split}$$

এখন সকল $x \in I, \ n \ge M$ এবং p = 1, 2, 3.... এর জন্য,

$$\begin{vmatrix} \mathbf{f}_{n+p}(\mathbf{x}) - \mathbf{f}_{n}(\mathbf{x}) \end{vmatrix} = \begin{vmatrix} \mathbf{f}_{n+p}(\mathbf{x}) - \mathbf{f}_{n}(\mathbf{x}) - \mathbf{f}_{n+p}(\mathbf{c}) + \mathbf{f}_{n}(\mathbf{c}) + \mathbf{f}_{n+p}(\mathbf{c}) - \mathbf{f}_{n}(\mathbf{c}) \end{vmatrix}$$
$$\leq \begin{vmatrix} \mathbf{f}_{n+p}(\mathbf{x}) - \mathbf{f}_{n}(\mathbf{x}) - \mathbf{f}_{n+p}(\mathbf{c}) + \mathbf{f}_{n}(\mathbf{c}) \end{vmatrix} + \begin{vmatrix} \mathbf{f}_{n+p}(\mathbf{c}) - \mathbf{f}_{n}(\mathbf{c}) \end{vmatrix}$$
$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} \qquad [(C) \ \mathfrak{S} \ (A) \ \mathtt{SupTim}]$$
$$= \varepsilon$$

এর থেকে প্রমাণিত হয় যে, {f_n(x)} ক্রমটি I = [a, b]-এর উপর সুষমভাবে অভিসারী। উ**পপাদ্যের দ্বিতীয় অংশ** প্রমাণের জন্য ধরা যাক— ক্রমটি I-এর উপর f(x) তে সুযমভাবে অভিসারী। অতএব, তখন

$$\lim_{n\to\infty} f_n(x) = f(x), \ \forall x \in I$$

আরও ধরা যাক্ $\phi(x) = \frac{f(x) - f(c)}{x - c}$ এবং $\phi_n(x) = \frac{f_n(x) - f_n(c)}{x - c}$

যখন $x \in I$, $x \neq c$ (D)

 \Rightarrow $\{\mathbf{f}_n\}$ ক্রমটি $[0,\ 1]$ অন্তরালের উপর $\mathbf{f}(\mathbf{x})=5\mathbf{x}$ -তে বিন্দু অনুসারে অভিসারী

$$\therefore \lim_{n \to \infty} f_n(x) = 5x, x \in [0, 1]$$

উদাহরণস্বরূপে ধরা যাক্ $f_n(x) = 5x \frac{2x^n}{n}, x \in \left[0, 1\right]$

প্রান্তলিপি ঃ $\{f_n\}$ ক্রমের প্রত্যেক f_n যদি [a, b] অন্তরালে অবকলনযোগ্য হয় তাহলে $\{f_n'\}$ ক্রমের [a,b]-এর উপর সুষম অভিসারিতা একই অন্তরালে $\{f_n\}$ -এর সুষমভাবে অভিসারী হওয়ার কেবলমাত্র যথেষ্ট শর্ত

242

$$\lim_{n\to\infty} \mathbf{f}_n^{\prime}(\mathbf{x}) = \mathbf{f}^{\prime}(\mathbf{x})$$
If $\mathbf{g}(\mathbf{x}) = \mathbf{f}(\mathbf{x})$

$$[a, b] = (a, b)$$

 $\lim_{n\to\infty} \lim_{x\to c} \phi_n(x) = \lim_{x\to c} \lim_{n\to\infty} \phi_n(x)$

$$\therefore \lim_{n \to \infty} \lim_{x \to c} \frac{f_n(x) - f_n(c)}{x - c} = \lim_{x \to c} \frac{f(x) - f(c)}{x - c} [(D) ও (E) অনুযায়ী]$$

বা,
$$\lim_{n \to \infty} \frac{f'_n(c)}{c} = \frac{f'(x)}{c}$$

যেহেতু
$$[{
m a},{
m b}] \subset {
m R}$$
 -এর প্রত্যেক বিন্দুই লিমিট বিন্দু অতএব 11.3 অনুচ্ছেদের উপপাদ্য - 3 অনুযায়ী

$$\therefore \lim_{n \to \infty} \phi_n(x) = \lim_{n \to \infty} \frac{f_n(x) - f_n(c)}{x - c} = \frac{f(c) - f(c)}{x - c} = \phi(x).....(E)$$

আবার যেহেতু
$$\{\mathbf{f}_{\mathbf{n}}(\mathbf{x})\}$$
 ক্রমটি I-এর উপর $\mathbf{f}(\mathbf{x})$ -তে অভিসারী

অতএব [$\varphi_n\left(x\right)$] ক্রমটি $\,x\in I,\,x\neq c$ -এর জন্য সুষমভাবে অভিসারী।

এখন
$$n \ge M$$
 এর জন্য $\left| \phi_{n+p}(x) - \phi_n(x) \right| = \left| \frac{f_{n+p}(x) - f_n(x) + f_n(c) - f_{n+p}(c)}{x - c} \right|$
$$< \frac{\epsilon}{2(b-a)} \left[(C) অনুযায়ী \right]$$

এখন
$$M_n = \sup_{x \in [0,1]} \left| f_n x(x) - f(x) \right| = \left| = \sup_{x \in [0,1]} \left| \frac{-2x^n}{n} \right| = \frac{2}{n}$$

 $\therefore \lim_{n o \infty} M_n = 0$, যা $\{f_n\}$ ক্রমের [0,1]-এর উপর সুযমভাবে অভিসারী হওয়ার যথেষ্ট শর্ত।

অর্থাৎ {f_} ক্রম [0,1]-এর উপর সুষমভাবে অভিসারী

আবার,
$$\mathrm{f}_{\mathrm{n}}^{/}(\mathrm{x})=5-2\mathrm{x}^{\mathrm{n-1}}$$

$$\Rightarrow \lim_{n \to \infty} f_n^{/}(x) = 5, 0 \le x < 1$$
$$= 3, x = 1$$

অতএব, $\{f_n\}$ ক্রমটি [o, 1]-এর উপর g(x)-তে বিন্দু অনুসারে অভিসারী যখন

$$g(x) = \begin{cases} 5, \ 0 \le x < 1 \\ 3, \ x = 1 \end{cases}$$

এখন যেহেতু প্রত্যেক $\mathrm{f}_n'(\mathrm{x})$ অপেক্ষক [0, 1]-এর উপর সন্তত হলেও $\mathrm{g}(\mathrm{x})$ কিন্তু একই অন্তরালে [o, 1]-তে সন্তত নয়। সুতরাং $\left\{\mathrm{f}_n'
ight\}$ ক্রমটি [0, 1]-এর উপর সুযমভাবে অভিসারী নয়।

অতএব দেখা গেল যদিও $\{f_n\}$ ক্রমটি $[0,\ 1]$ -এর উপর সুষমভাবে অভিসারী নয় তবুও $\{f_n\}$ একই অন্তরালের উপর সুষমভাবে অভিসারী।

11.7 অপেক্ষকের শ্রেণীর ও ঘাতশ্রেণীর সুষম অভিসারিতা

ধরা যাক্, $\{f_n(x)\}$ ক্রমের প্রত্যেক সদস্য অপেক্ষক $E \subset R$ -তে সংজ্ঞাত এবং $f_n(x) : E \to R$, $\forall n \in N \mid$ এখানে $\sum_{n=1}^{\infty} f_n(x)$ শ্রেণীর আংশিক যোগফল সমূহ $s_1(x)$, $s_2(x)$ $s_n(x)$এর ক্রম $\{s_n(x)\}$ যদি E-এর উপর সুযমভাবে s(x) তে অভিসারী হয় তাহলে $\sum_{n=1}^{\infty} f_n(x)$ শ্রেণীটিকে একই সংজ্ঞাঞ্চল E-এর উপর s(x) তে সুযমভাবে অভিসারী (uniformly convergent) বলা হয়। [এখানে $s_n(x) = f_1(x) + f_2(x) + \dots + f_n(x)$ যখন $n = 1, 2, 3, \dots$]

যেহেতু ঘাতশ্রেণীকে অপেক্ষকের শ্রেণী হিসাবে গণ্য করা যায় সেই কারণে অপেক্ষকের শ্রেণীর সুষম অভিসারিতার সংজ্ঞাকে ঘাতশ্রেণীর সুষম অভিসারিতার সংজ্ঞা হিসাবে ভাবা যায়। উপপাদ্য 1 ঃ অপেক্ষকের শ্রেণীর সুষম অভিসারিতা কসির সাধারণ উপপাদ্য ঃ

যদি
$$\sum\limits_{n=1}^{\infty} f_n(x)$$
 শ্রেণীর অপেক্ষকগুলির সংজ্ঞাঞ্চল $E \subset R$ এবং $f_n(x): E o R, \; orall n \in {
m N}$ হয় তাহলে

 $\sum_{n=1}^{\infty} f_n(x)$ শ্রেণীটিকে E-এর উপর সুযমভাবে অভিসারী বলা হবে যদি এবং কেবলমাত্র যদি যেকোন একটি $\epsilon > o$ এর জন্য একটি স্বাভাবিক সংখ্যা M-এর অস্তিত্ব থাকে যাতে সকল $x \in E$ -এর ক্ষেত্রে

$$| f_{n+1}(x) + f_{n+2}(x) + \dots + f_{n+p}(x) | \le \epsilon, \quad \forall n \ge M$$
 এবং $p = 1, 2, 3, \dots$ হয় |
প্রমাণ ঃ এখানে $s_n = f_1(x) + f_2(x) + \dots + f_n(x)$ যখন $n \in N$ এবং $x \in E$

ধরা যাক $\sum_{n=1}^{\infty} f_n(x)$ শ্রেণীটি E-এর উপর সুষমভাবে অভিসারী। তাহলে সংজ্ঞানুসারে {s_n (x)} ক্রমটি E-এর উপর সুষমভাবে অভিসারী। অতএব অপেক্ষকের ক্রমের সুষম অভিসারিতার কসির উপপাদ্য অনুযায়ী কোন একটি ε > ০-এর জন্য একটি স্বাভাবিক সংখ্যা M পাওয়া যাবে যাতে সকল x ∈ E -এর জন্য

$$\left| \begin{array}{l} s_{n+p}(x) - s_{n}(x) \right| < \epsilon \quad \forall n \ge M, \ p = 1, \ 2, \ 3....$$

$$\exists i, \ \left| \begin{array}{l} f_{n+1}(x) + f_{n+2}(x) + \dots + f_{n+p}(x) \right| \epsilon, \ \forall n \ge M, \ p = 1, \ 2, \ 3... \end{array}$$

সুতরাং শর্তটি প্রয়োজনীয় (necessary)।

বিপরীতক্রমে, ধরা যাক সকল $x \in E$ -এর জন্য

$$\left| f_{n+1}(x) + f_{n+2}(x) + \dots + f_{n+p}(x) \right| < \epsilon, \quad \forall n \ge M, \quad p = 1, 2, 3, \dots, n \ge 1, 2, 2, \dots, n \ge 1, 2, \dots, n \ge 1, 2, \dots, n \ge 1, 2, 2, \dots, n \ge 1, n \ge 1, \dots, n \ge 1, n \ge 1, n$$

শর্তটি সত্য।

অর্থাৎ সকল
$$x\in E$$
 -এর জন্য $\left|s_{n+p}(x)-s_n(x)
ight|<\epsilon, \ orall n\geq M, \, p=1,\,2,\,3...$ শর্তটি সত্য।

অতএব $\{s_n(x)\}$ ক্রমটি E-এর উপর সুষমভাবে অভিসারী এবং সেই কারণে $\sum\limits_{n=1}^{\infty} f_n(x)$ শ্রেণীটিও E-এর

উপর সুযমভাবে অভিসারী।

উপপাদ্য 2 ঃ ওয়াসট্রাস এর M পরীক্ষা (Weierstrass M – test)

ধরা যাক $E \subset R$ এবং $f_n(x): E \to R, \ \forall n \in N$ । আরও ধরা যাক, $\{M_n\}$ এমন একটি ধনাত্মক সংখ্যার

ক্রম যাতে সকল $x \in E$ -এর জন্য $|f_n(x)| \le M_n$, $\forall n \in N \mid$ যদি $\sum_{n=1}^{\infty} M_n$ অভিসারী হয় তাহলে $\sum_{n=1}^{\infty} f_n(x)$ শ্রেণীটি E-এর উপর সুষমভাবে এবং চরমভাবে অভিসারী হবে।

প্রমাণ ঃ যেহেতু $\sum_{n=1}^{\infty} M_n$ শ্রেণীটি অভিসারী, পূর্বনির্ধারিত কোন একটি arepsilon > o-এর জন্য একটি স্বাভাবিক সংখ্যাM-এর অস্তিত্ব থাকবে যাতে কসির উপপাদ্য অনুযায়ী

 $\mid \mathbf{M}_{n+1} + \mathbf{M}_{n+2} + \dots + \mathbf{M}_{n+p} \mid < \epsilon, \quad \forall n \ge \mathbf{M}, p = 1, 2, 3 \dots$ অতথ্য সকল $x \in E$ -এর জন্য,

$$\begin{split} \mid \mathbf{f_{n+1}} \ (\mathbf{x}) + \mathbf{f_{n+2}} \ (\mathbf{x}) + \dots + \mathbf{f_{n+p}} \ (\mathbf{x}) \mid \leq \mid \mathbf{f_{n+1}} \ (\mathbf{x}) \mid + \mid \mathbf{f_{n+2}}(\mathbf{x}) \mid + \dots + \mid \mathbf{f_{n+p}} \ (\mathbf{x}) \mid \\ & \leq \mathbf{M_{n+1}} + \mathbf{M_{n+2}} + \dots + \mathbf{M_{n+p}} \\ & = \mid \mathbf{M_{n+1}} + \mathbf{M_{n+2}} + \dots + \mathbf{M_{n+p}} \mid \\ & < \epsilon, \ \forall n \geq \mathbf{M}, \ p = 1, 2, 3 \dots \\ & [\ \bar{\mathbb{G}} \gamma \text{iss} \neq \bar{\mathbb{N}} \text{ is uquilit}] \] \end{split}$$

অতএব, কসির নীতি অনুযায়ী $\sum_{n=1}^\infty f_n(x)$ শ্রেণীটি E-এর উপর সুষমভাবে অভিসারী।

আবার সকল $x \in E$ -এর জন্য $\mid \mid f_{n+1}(x) \mid + \mid f_{n+2}(x) \mid + \dots + \mid f_{n+p}(x) \mid \mid$ $= \mid f_{n+1}(x) \mid + \mid f_{n+2}(x) \mid + \dots + \mid f_{n+p}(x) \mid$

$$\leq M_{n+1} + M_{n+2} + \dots + M_{n+p}$$

= $| M_{n+1} + M_{n+2} + \dots + M_{n+p} |$ [•.• প্রত্যেক M_n ধনাত্মক]
< হ, $\forall n \in \mathbb{N}, p = 1, 2, 3, \dots$

অতএব, কসির নীতি অনুযায়ী $\sum\limits_{n=1}^{\infty} | |f_n(x)|$ শ্রেণীটি E-এর উপর অভিসারী। সেই কারণে $\sum\limits_{n=1}^{\infty} f_n(x)$ শ্রেণীটি E-এর উপর চরমভাবে (Absolutely) অভিসারী। উপপাদ্য - 3 : $\sum_{n=0}^{\infty} a_n x^n$ ঘাতশ্রেণীটির অভিসারী ব্যাসার্ধ $R_1 > 0$ হলে ইচ্ছামত ছোট ধনাত্মক সংখ্যা হ-এর জন্য শ্রেণীটি [$-R_1 + \epsilon, R_1 - \epsilon$]-এর উপর সুযমভাবে অভিসারী।

প্রমাণ ঃ ধরা যাক, $a_n x^n = f_n(x)$, $n = 0, 1, 2, 3, \dots$ ইত্যাদি। যেহেতু প্রদন্ত ঘাতশ্রেণীর অভিসারী ব্যাসার্দ্ধ R₁ অতএব, শ্রেণীটি | $x \mid < R_1$ বা $-R_1 < x < R_1$ -এর জন্য চরমভাবে অভিসারী [আগের এককের 10.5.2 অনুচ্ছেদের উপপাদ্য -1 অনুযায়ী।] সুতরাং সুবিধামত $\varepsilon > 0$ পাওয়া যাবে যাতে | $x \mid \leq R_1 - \varepsilon$ -এর জন্য শ্রেণীটি চরমভাবে অভিসারী ।

$$\therefore \sum_{n=0}^{\infty} |a_n(R_1 - \varepsilon)^n|$$
 শ্রেন্সীটি অভিসারী (• $\mathbf{R}_1 - \varepsilon < \mathbf{R}_1$)
এখন $|a_n x^n| \le a_n(\mathbf{R}_1 - \varepsilon)^n | \forall | x | \le \mathbf{R}_1 - \varepsilon, n \in \mathbf{N}$
 $\Rightarrow |\mathbf{f}_n| \le \mathbf{M}_n, \forall | x | \le \mathbf{R}_i - \varepsilon, n \in \mathbf{N}$ যখন $\mathbf{M}_n = |\mathbf{a}_n(\mathbf{R}_1 - \varepsilon)^n|$
অতএব ওয়াসট্রাস-এর M পরীক্ষা অনুযায়ী,

$$\sum\limits_{n=0}^{\infty} f_n(x)$$
 শ্রেণীটি $\mid x \mid \leq R_1^{}$ – হ-এর উপর সুষমভাবে অভিসারী।

 $\therefore \ \sum_{n=0}^{\infty} a_n x^n$ শ্রেণীটি [– R_1 + $\epsilon, \ R_1$ – ϵ] অন্তরালে সুযমভাবে অভিসারী।

উদ্বাহরণ ঃ

1. দেখান যে $\sum\limits_{n=0}^{\infty} x^n$ শ্রেণী $0 \leq x < 1$ অন্তরালে বিন্দু অনুসারে অভিসারী। কিন্তু সুষমভাবে অভিসারী নয়।

সমাধান ঃ এখানে $s_n(x)=1+x+x^2+....+x^{n-1}$ $=\frac{1-x^n}{1-x}0\leq x<1$

∴
$$\lim_{n \to \infty} s_n(x) = \frac{1}{1-x}, 0 \le x < 1$$

⇒ $\{s_n(x)\}$ ক্রমটি $[0, 1]$ -এর উপর $\frac{1}{1-x}$ -তে বিন্দু অনুসারে অভিসারী এবং সেইজন্য প্রদন্ত ঘাতশ্রেণীটিও
 $[0, 1]$ -এর উপর $\frac{1}{1-x}$ -তে বিন্দু অনুসারে অভিসারী।

যেহেতু $rac{1}{1-x}$ অপেক্ষকটি $x\in[0,1]$ -এর সকল মানের জন্য সীমাবদ্ধ (bounded) নয় অতএব {s_n(x)} ক্রমটি সুযমভাবে অভিসারী নয়। অতএব প্রদত্ত ঘাতশ্রেণীটিও [0, 1] অন্তরালের উপর সুযমভাবে অভিসারী নয়।

2. দেখান যে $\sum_{n=1}^{\infty} rac{\cos nx}{n^2}$ শ্রেণীটি x-এর সকল বাস্তব মানের জন্য সুষমভাবে অভিসারী।

সমাধান ঃ যেহেতু | $\cos nx \mid \leq 1$, অতএব $\left| \frac{\cos nx}{n^2} \right| \leq \frac{1}{n^2}, \quad \forall x \in R$ | আবার $\sum_{n=1}^{\infty} \frac{1}{n^2}$ আমাদের জানা

একটি অভিসারী শ্রেণী ($\sum rac{1}{n^p}$ -এর সাথে তুলনা করে) সুতরাং ওয়াসদ্রীস এর M পরীক্ষা অনুযায়ী প্রদন্ত শ্রেণীটি x-এর সকল বাস্তব মানের জন্য সুযমভাবে অভিসারী।

3. দেখান যে, $\sum_{n=1}^{\infty} \; rac{x}{n+n^2 x^2}$ শ্রেণীটি x-এর বাস্তবমানের জন্য সুষমভাবে অভিসারী।

সমাধান ঃ এখানে $f_n(x)=rac{x}{n+n^2x^2}$ এই অপেক্ষকটির চরম অথবা অবম মান থাকবে যখন $f_n^{/}(x)=0$

অৰ্থাৎ
$$\frac{n(1+nx^2) - x \cdot 2nx^2}{(n+n^2x^2)^2} = 0$$

বা
$$\mathbf{l} - \mathbf{n}\mathbf{x}^2 = 0$$
 বা $\mathbf{x} = \pm \frac{1}{\sqrt{\mathbf{n}}}$

এখন,
$$\mathbf{f}_n'(\mathbf{x}) = \frac{2\mathbf{x}(\mathbf{n}\mathbf{x}^2 - 3)}{(\mathbf{l} + \mathbf{n}\mathbf{x}^2)^3}$$

$$\Rightarrow \mathbf{f}_{\mathbf{n}}^{\prime}(\frac{1}{\sqrt{2}}) = -\frac{1}{2\sqrt{n}} < 0 \quad \text{and} \quad \mathbf{f}_{\mathbf{n}}^{\prime}\left(-\frac{1}{\sqrt{\mathbf{n}}}\right) = +\frac{1}{2\sqrt{n}} > 0$$

 $\therefore \ f_n(x)$ -এর চরম ও অবমমান যথাক্রমে

$$\mathbf{f_n}\left(\frac{1}{\sqrt{n}}\right) = \frac{1}{2n\frac{3}{2}} \quad \mathfrak{G} \quad \mathbf{f_n}\left(-\frac{1}{\sqrt{n}}\right) = \left(-\frac{1}{2n\frac{3}{2}}\right)$$

যেহেতু $f_n(0) = 0$ এবং $\lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \frac{x}{n(1 + nx^2)} \left(\frac{\infty}{\infty}\right)$

$$= \lim_{x \to \infty} \frac{1}{2n^2 x} = 0$$

অতএব দেখা যাচ্ছে যে, x = 0 থেকে $x = \frac{1}{\sqrt{2}}$ পর্যন্ত $f_n(x)$ -এর মান বেড়ে $\frac{1}{\sqrt{n}}$ বিন্দুতে চরমে পৌঁছায় এবং তারপরে x-এর মান বেড়ে অসীমের দিকে গেলে আবার $f_n(x)$ -এর মান কমতে কমতে 0-এর নিকটবর্তী হতে থাকে। $f_n(x)$ অযুগ্ম অপেক্ষক বলে সকল $x \in R$ -এর জন্য $|f_n(x)| \leq \frac{1}{2n\frac{3}{2}}$ । ধরা যাক $M_n = \frac{1}{2n\frac{3}{2}}$ । এখানে $\sum M_n$ শ্রেণীটি আমাদের জানা একটি অভিসারী শ্রেণী এবং সকল $x \in R$ -এর জন্য $|f_n(x)| \leq M_n$, $\forall n \in N$ । অতএব ওয়াসদ্রিস-এর M পরীক্ষা অনুযায়ী প্রদন্ত শ্রেণীটি x-এর সকল বাস্তব মানের জন্য সুযমভাবে অভিসারী।

4. দেখান যে, $\sum_{n=1}^{\infty} \left[nxe^{-nx^2} - (n-1)xe^{-(n-1)x^2} \right]$ শ্রেণীটি [0, 1] অন্তরালে অভিসারী কিন্তু সুষমভাবে

অভিসারী নয়।

সমাধান ঃ এখানে
$$s_n(x) = \left(\frac{x}{e^{x^2}} - 0\right) + \left(\frac{2x}{e^{2x^2}} - \frac{x}{e^{x^2}}\right) + \dots + \left(\frac{nx}{e^{nx^2}} - \frac{(n-1)x}{e^{(n-1)x^2}}\right)$$
$$= \frac{nx}{e^{nx^2}}$$

 $\therefore \lim_{n \to \infty} s_n(x) = \lim_{n \to \infty} \frac{nx}{e^{nx^2}} = 0, \quad \text{যখন} \quad x \in [0,1]$ $= s(x) \quad (ধরি)$

সুতরাং প্রদত্ত শ্রেণীটি [0, 1] অন্তরালের উপর অভিসারী।

আমরা জানি প্রদন্ত শ্রেণীটি [0, 1] অন্তরালের উপর সুযমভাবে অভিসারী হবে যদি কোন একটি পূর্বনির্ধারিত ε > 0 এর জন্য একটি স্বাভাবিক সংখ্যা M-এর অস্তিত্ব থাকে যাতে

$$\begin{split} \sup_{x \in \mathbb{R}} | s_{n}(x) - s(x) | < \varepsilon, \ \forall n \ge M \ \text{হয} \\ \hline \exists, \sup_{x \in \mathbb{R}} | nxe^{-nx^{2}} | < \varepsilon, \ \forall n \ge M \ \text{হয}.....(i) \\ \texttt{and} \phi(x) = nxe^{-nx^{2}} \ \texttt{acm} \ \texttt{am} \ \texttt{a$$

উপপাদ্য - 1 ঃ ধরা যাক্ সকল $x\in E\left(\sub{R}
ight)$ ও $n\in {
m N}$ -এর জন্য ${
m f}_{
m n}(x):E
ightarrow R$ এবং প্রত্যেক ${
m f}_{
m n}(x)$ অপেক্ষক E-এর উপর সন্তত। যদি $\sum_{n=1}^{\infty} f_n(x)$ শ্রেণীটি E-এর উপর s(x) তে সুষমভাবে অভিসারী হয় তাহলে s(x)অপেক্ষকটি E-এর উপর সন্তত হবে।

অপেক্ষকের শ্রেণী ও ঘাতশ্রেণীর সুষম অভিসারিতা ও সন্ততি

প্রমাণ ঃ ধরা যাক, $\mathbf{s}_{n}(\mathbf{x})=\mathbf{f}(\mathbf{x})+\mathbf{f}_{2}(\mathbf{x})+....+\mathbf{f}_{n}(\mathbf{x}),\ n=1,\ 2,\ 3,\$ এবং $\mathbf{x}\in \mathbf{E}$ তাহলে প্রদত্ত শর্তানুসারে প্রত্যেক $s_n(x)$ অপেক্ষক E-এর উপর সন্তত। আবার যেহেতু $\sum\limits_{n=1}^{\infty} f_n(x)$ শ্রেণীটি E-এর উপর s(x)-তে সুষমভাবে অভিসারী অতএব $\{s_n(x)\}$ ক্রমটিও E-এর উপর s(x)-তে সুষমভাবে অভিসারী অতএব সংজ্ঞা থেকে পাওয়া যায় যেকোন একটি ধনাত্মক হ-এর জন্য একটি স্বাভাবিক সংখ্যা M পাওয়া যাবে যাতে

ા ચાર્ચ (ચલ્બોન ચંભાઇ ચનાજીજ દ-ચંત્ર છત્તા ચંભાઇ જાણાવજ ગરેવા) M
$$\left| S_n(x) - s(x) \right| < rac{\epsilon}{3}. \ \forall n \geq M, \ x \in E$$

জাবাগ,
$$\phi'(x) = (-2\pi x)e^{-1}(1-2\pi x) - \pi e^{-1} + \pi x$$

$$= 2x^{2}xe^{-nx^{2}}(2nx^{2} - 3)$$

$$\therefore \phi''\left(\frac{1}{\sqrt{2n}}\right) = \frac{2n^{2}}{\sqrt{2n}}e^{-\frac{1}{2}}(-2) = -\frac{4n^{2}}{\sqrt{2n}}e^{-\frac{1}{2}} < 0$$
সুতরাং Q(x)-এর চরমমান $\phi\left(\frac{1}{\sqrt{2n}}\right) = n\frac{1}{\sqrt{2n}}e^{-\frac{1}{2}}$

$$= \sqrt{\frac{n}{2e}} \quad \text{ঘখন} \quad x \in [0,1]$$

$$\therefore (i) = 1$$
 মার্জ স্তি্য হতে হলে—

কিন্তু এটি সত্য নয়। সুতরাং প্রদত্ত শ্রেণীটি [0, 1] অন্তরালে সুযমভাবে অভিসারী নয়।

 $\sqrt{rac{n}{2e}} < \epsilon, \ \forall n \ge M$ হতে হবে।

11.8

আবাব $\phi''(x) = (-2n^2x)e^{-nx^2}(1-2nx^2) - ne^{-nx^2}4nx$

বা, $x = \pm \frac{1}{\sqrt{2n}}$ [এখানে ঋণাত্মক মান বর্জনীয়]

$$\dot{\cdot} \mid S_{M}(x) - s(x) \mid < \frac{\epsilon}{3}$$
, যখন $x \in E$(i)

এবং x এর যেকোন একটি মান $a\in E$ -এর জন্য

$$|S_{M}(a) - s(a)| < \frac{\varepsilon}{3}$$
....(ii)

আবার যেহেতু $\mathbf{s}_{\mathsf{M}}(\mathbf{x})$ অপেক্ষকটি $\mathbf{x}=\mathbf{a}$ বিন্দুতে সন্তত

$$\therefore |s_{M}(x) - s_{M}(a)| < \frac{\varepsilon}{3}$$
 যখন $x \in N$ $(a, \delta) \cap E$
$$\therefore |S(x) - s(a)| = |s(x) - s_{M}(x) + s_{M}(x) - s_{M}(a) + s_{M}(a) - s(a)|$$
$$\le |s(x) - s_{M}(x)| + |s_{M}(x) - s_{M}(a)| + |s_{M}(a) - s(a)|$$
$$< \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon$$
 যখন $x \in N$ $(a, \delta) \cap E$ [(i), (ii) ≤ 1

 $< \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon$ যখন $x \in N$ (a, δ) $\cap E$ [(i), (ii) ও (iii) অনুযায়ী]

এটি প্রমাণ করে যে s(x) অপেক্ষক x = a তে সন্তুত। যেহেতু a বিন্দুটি E-এর যেকোন একটি বিন্দু, s(x) অপেক্ষক E-এর সকল বিন্দুতেই সন্তুত।

উপপাদ্য -2 ঃ যদি $\sum_{n=0}^{\infty}a_nx^n$ ঘাতশ্রেণীটির অভিসারী ব্যাসার্ধ R_1 হয় এবং (– R_1, R_1)-এর উপর উক্ত শ্রেণীর

যোগ অপেক্ষক f(x) হয় তাহলে f(x) অপেক্ষকটি $(-R_1,R_1)$ এর উপর সন্তত হবে।

প্রমাণ ঃ যেহেতু প্রদন্ত ঘাতশ্রেণীটির অভিসারী ব্যাসার্দ্ধ R₁অতএব কোন ছোট ধনাত্মক সংখ্যা ১-এর জন্য শ্রেণীটি [–R₁+δ, R₁–δ] অন্তরালে সুযমভাবে অভিসারী।

ধরা যাক $f_n(x) = a_n x^n$, $n = 0, 1, 2, 3, \dots$

এবং $s_n(x) = f_o(x) + f_1(x) + f_2(x) + \dots + f_n(x), n = 1, 2, 3$

এখন যেহেতু শ্রেণীটি [– R₁ + δ, R₁ – δ] অন্তরালের উপর f(x) তে সুষমভাবে অভিসারী অতএব {s_n(x)} ক্রমটিও একই অন্তরালের উপর একই যোগ অপেক্ষক f(x) তে সুষমভাবে অভিসারী।

অতএব সকল x ∈ [−R₁ + δ, R₁ − δ] -এর ক্ষেত্রেই পছন্দমত কোন একটি ধনাত্মক ɛ-এর জন্য অপর একটি স্বাভাবিক সংখ্যা M পাওয়া যাবে যাতে

$$|s_n(x) - f(x)| < \frac{\varepsilon}{3}, \forall n \ge M$$

 $\therefore \left| s_{M}(x) - f(x) \right| < \frac{\varepsilon}{3}, \ \forall x \in \left[-R_{1} + \delta, R_{1} - \delta \right].....(i)$

অতএব x-এর যেকোন একটি মান $a \in \left[-R_1 + \delta, R_1 - \delta
ight]$ -এর জন্য

$$| s_M(a) - f(a) | < \frac{\varepsilon}{3}$$
....(ii)

আবার প্রদন্ত শর্তানুসারে প্রত্যেক f_n(x) অপেক্ষক a বিন্দুতে সন্তত বলে প্রত্যেক s_n(x) অপেক্ষক a বিন্দুতে সন্তত। সুতরাং প্রদন্ত $\epsilon > o$ এর জন্য অপর একটি ধনাত্মক সংখ্যা δ_1 পাওয়া যাবে যাতে

∴ f(x) অপেক্ষকটি x = a বিন্দুতে সন্তত। আবার যেহেতু a বিন্দুটি [–R₁ + δ, R₁ – δ] অন্তরালের যেকোন একটি বিন্দু অতএব f(x) অপেক্ষক উক্ত অন্তরালে সন্তত।

প্রান্তলিপি ঃ এখানে লক্ষ করা প্রয়োজন অপেক্ষকের শ্রেণীর সুযম অভিসারিতা তার যোগ অপেক্ষকের সন্তুত হওয়ার প্রয়োজনীয় শর্ত নয়, কেবলমাত্র যথেষ্ট শর্ত। নিম্নের উদাহরণে বিষয়টি আলোচনা করা হয়েছে।

ধরা যাক
$$\sum_{n=1}^{\infty} \left[\frac{n^2 x}{1+n^3 x^2} - \frac{\left(n^2 - 1^2 x\right)}{1+\left(n-1\right)^3 x^2} \right]$$
 द्धशिष्ठित সংজ্ঞাঞ্চল [0,1]।
এখানে $s_n(x) = \left(\frac{1}{1+x^2} - o\right) + \left(\frac{2^2 x}{1+2^3 x^2} - \frac{x}{1+x^2}\right) + \dots + \left(\frac{n^2 x}{1+n^3 x^2} - \frac{\left(n^2 - 1\right)^2 x}{1+\left(n-1\right)^3 x^2}\right)$
$$= \frac{n^2 x}{1+n^3 x^2}$$

 $\therefore s(x) = \lim_{n \to \infty} s_n(x) = \lim_{n \to \infty} \frac{n^2 x}{1+n^3 x^2} = 0, \forall x \in [0,1]$

সুতরাং s(x) অপেক্ষকটি [0, 1] অন্তরালে সন্তত [📬 s(x) = 0, ধ্রুবক অপেক্ষক]

किन्छ
$$M_n = \sup_{x \in [0,1]} |s_n(x) - s(x)| = \sup_{x \in [0,1]} |\frac{n^2 x}{1 + n^3 x^2}|$$

এটি নির্ণয়ের জন্য ধরা যাক,
$$\phi(\mathbf{x}) = \frac{\mathbf{n}^2 \mathbf{x}}{1 + \mathbf{n}^3 \mathbf{x}^2}$$

$$\therefore \phi'(\mathbf{x}) = \frac{\mathbf{n}^2 (\mathbf{l} + \mathbf{n}^3 \mathbf{x}^2) - \mathbf{n}^2 \mathbf{x}}{(\mathbf{l} + \mathbf{n}^3 \mathbf{x}^2)^2} = \frac{\mathbf{n}^2 \left(\mathbf{l} - \mathbf{n}^3 \mathbf{x}^2\right)}{\left(\mathbf{l} + \mathbf{n}^3 \mathbf{x}^2\right)^2}$$

∴.

$$\phi'(\mathbf{x})=0$$
 থেকে পাওয়া যায় $1-\mathrm{n}^3\mathrm{x}^2=0$

$$\Rightarrow x = \frac{1}{\sqrt{n^3}}$$
 [ঋণাত্মক মান বৰ্জন করে]

$$\phi^{\prime\prime}(\mathbf{x}) = \frac{-2\mathbf{n}^{3}\mathbf{x} \left[3n^{2} - \mathbf{n}^{5}\mathbf{x}^{2} \right]}{\left(1 + n^{3}\mathbf{x}^{2}\right)^{3}}$$

$$\therefore \phi^{\prime\prime}\left(\frac{1}{\sqrt{n^3}}\right) = \frac{-2n^3 \cdot \frac{1}{\sqrt{n^3}} \left[3n^2 - n^5 \frac{1}{2n^3}\right]}{\left(1 + n^3 \cdot \frac{1}{n^3}\right)^3} = -\frac{1}{2}n\frac{7}{2} < o$$

সুতরাং $\mathbf{x} = rac{1}{\sqrt{n^3}}$ বিন্দুতে $\phi(\mathbf{x})$ অপেক্ষক চরম এবং সেই চরমমান

$$\phi\left(\frac{1}{\sqrt{n^3}}\right) = \frac{\sqrt{n}}{2}$$

 $\therefore M_n = \frac{\sqrt{n}}{2} \to \infty$ যখন $n \to \infty$

যেহেতু $\lim_{n \to \infty} M_n \neq 0$, প্রদন্ত শ্রেণীটি [0, 1] অন্তরালে সুষমভাবে অভিসারী নয়।

তাহলে দেখা গেল f(x) অপেক্ষকটি [0, 1] তে সন্তত কিন্তু একই অন্তরাল [0, 1] তে প্রদন্ত শ্রেণীটি সুষমভাবে অভিসারী নয়।

উদাহরণ ঃ ধরা যাক,
$$\sum_{n=0}^{\infty} x^n (1-x)$$
 শ্রেণীটি $0 \le x \le 1$ সংজ্ঞাত।
অতএব, $s_n(x) = (1-x) + x(1-x) + x^2 (1-x) + \dots + x^{n-1} (1-x)$
 $= (1-x)(1+x+x^2+\dots+x^{n-1}) = (1-x)\frac{(1-x^n)}{1-x} = 1-x^n,$ যখন $x \ne 1$

$$\therefore s(x) = \lim_{n \to \infty} s_n(x) = \begin{cases} 1 \ \texttt{যখন} \ 0 \le x < 1 \\ 0 \ \texttt{যখন} \ x = 1 \end{cases}$$

অতএব প্রদত্ত শ্রেণীটি [0, 1] অন্তরালের উপর s(x)-তে অভিসারী কিন্তু s(x) অপেক্ষকটি [0, 1] অন্তরালের x = 1 বিন্দুতে অসন্তত।

তাহলে দেখা গেল যদিও শ্রেণীটির প্রত্যেক পদ [0, 1] অন্তরালে সন্তত, তাদের যোগ অপেক্ষক s(x) উক্ত অন্তরালে সন্তত নয়।

11.9 অপেক্ষকের শ্রেণী ও ঘাতশ্রেণীর সুষম অভিসারিতা ও সমাকলন

উপপাদ্য – 1 ঃ ধরা যাক্, a, b বাস্তব এবং $n \in N$ -এর জন্য প্রত্যেক বাস্তবমানের (real valued) অপেক্ষক $f_n(x)$ বদ্ধ ও সীমাবদ্ধ (Closed and bounded) অন্তরাল I = [a, b]-এর উপর রিমান সমাকলন যোগ্য (R –

integrable)। যদি $\sum_{n=1}^{\infty} f_n(x)$ শ্রেণীটি 1-এর উপর s(x) তে সুষমভাবে অভিসারী হয় তবে s(x) অপেক্ষকটি রিমান সমাকলনযোগ্য হয় এবং

$$\int_{a}^{b} \left[\sum_{n=1}^{\infty} f_{n}(x) dx = \sum_{n=1}^{\infty} \int_{a}^{b} f_{n}(x) dx \right]$$

প্রমাণ ঃ ধরা যাক $s_n(x) = f_1(x) + f_2(x) + + f_n(x)$ যখন $x \in I$ এবং n = 1, 2, 3, তাহলে যেহেতু সসীম সংখ্যক রিমান সমাকলনযোগ্য অপেক্ষকের যোগফলও রিমান সমাকলনযোগ্য হয় সেইজন্য সসীম n-এর জন্য প্রত্যেক $s_n(x)$ রিমান সমাকলনযোগ্য ৷

আবার শর্তানুসারে $\sum_{n=1}^{\infty} f_n(x)$ শ্রেণী I এর উপর s(x) তে সুষমভাবে অভিসারী, তাই $\{s_n(x)\}$ ক্রমটিও I-এর উপর s(x)-তে সুষমভাবে অভিসারী। এরই ফলশ্রুতিতে s(x) অপেক্ষকটি I-এর উপর রিমান সমাকলন যোগ্য এবং

$$\lim_{n \to \infty} \left[\int_a^b s_n(x) dx \right] = \int_a^b s(x) dx \quad [11.5 \ \text{অনুচ্ছেদের উপপাদ্য - 1 অনুযায়ী }] \dots (i)$$

কিন্তু $\int_a^b s_n(x) dx = \int_a^b [f_1(x) + f_2(x) + \dots + f_n(x)] dx$

$$= \int_{a}^{b} f_{1}(x) dx + \int_{a}^{b} f_{2}(x) dx + \dots + \int_{a}^{b} f_{n}(x) dx$$
$$= \sum_{k=1}^{n} \int_{a}^{b} f_{k}(x) dx$$

$$\therefore \lim_{n\to\infty}\int_a^b s_n(x) dx = \lim_{n\to\infty}\sum_{k=1}^n \int_a^b f_k(x) dx = \sum_{k=1}^\infty \int_a^b f_k(x) dx....(ii)$$

:: (i) ও (ii) থেকে পাওয়া যায়

$$\sum_{k=1}^{\infty} \int_{a}^{b} f_{k}(x) dx = \int_{a}^{b} s(x) dx = \int_{a}^{b} \left[\sum_{k=1}^{\infty} f_{k}(x) \right] dx$$
$$\left[\cdot \cdot s(x) = \sum_{k=1}^{\infty} f_{k}(x) \right]$$
$$\exists t \sum_{n=1}^{\infty} \int_{a}^{b} f_{n}(x) dx = \int_{a}^{b} \left[\sum_{n=1}^{\infty} f_{n}(x) \right] dx$$

প্রান্তলিপি : উপরের উপপাদ্য অনুযায়ী $\int_a^b \left[\sum_{n=1}^\infty f_n(x)\right] dx = \sum_{n=1}^\infty \int_a^b f_n(x) dx$

$$= \int_{a}^{b} f_{1}(x) dx + \int_{a}^{b} f_{n2}(x) dx + \dots$$

অতএব দেখা গেল যদি অপেক্ষকের শ্রেণীটি I = [a, b] এর উপর সুষমভাবে অভিসারী হয় তবে শ্রেণীটির **প্রত্যেক** পদকে পৃথকভাবে (term – by – term) [a, b] অন্তরালের উপর সমাকল করা যাবে।

প্রান্তলিপি - 2 : যদি I এর উপর প্রত্যেক f_n(x) রিমান-সমাকলনযোগ্যে হয় তাহলে শ্রেণীটির সুষম অভিসারিতা উক্ত শ্রেণীর যোগ অপেক্ষকটির সমাকলনযোগ্য হওয়ার কেবলমাত্র যথেষ্ট শর্ত।

উদাহরণস্বরূপ
$$\sum_{n=1}^{\infty} \left[\frac{n^2 x}{1+n^3 x^2} - \frac{\left(n^2 - 1\right)^2 x}{1+\left(n-1\right)^3 x^2} \right]$$
 শ্রেণীটির s_n(x) = $\frac{n^2 x}{1+n^3 x^2}$ এবং $\lim_{n \to \infty} s_n(x) = 0 = s(x)$

যখন $x \in [0, 1]$

অতএব শ্রেণীটি [0, 1] এর উপর s(x) = 0 তে অভিসারী। কিন্তু 11.8 অনুচ্ছেদের উপপাদ্য 2 এর প্রান্তলিপি দেখান হয়েছে শ্রেণীটি [0, 1] অন্তরালের উপর সুযমভাবে অভিসারী নয়।

তাহলে দেখা গেল প্রদত্ত শ্রেণীর প্রত্যেক পদ $[0,\,1]$ এর উপর রিমানসমাকলনযোগ্য এবং যেহেতু যোগ অপেক্ষক

s(x) = 0 এটি একই অন্তরাল [0, 1] তে রিমানসমাকলনযোগ্য, যদিও শ্রেণীটি [0, 1] এর উপর সুষমভাবে অভিসারী নয়।

উপপাদ্য - 2 ঃ কোন ঘাতশ্রেণীর অভিসারী অন্তরালের অন্তর্গত যেকোন বদ্ধ অন্তরালের উপর ঘাতশ্রেণীটির সমাকল তা প্রত্যেক পদকে পৃথকভাবে (term – by – term) সমাকল করে নির্ণয় করা যায়।

প্রমাণ ঃ ধরা যাক $\sum_{n=0}^{\infty}a_nx^n$ ঘাতশ্রেণীটির অভিসারী ব্যাসার্ধ R_1 এবং $[a, b] \subset (-R_1, R_1)$ সুতরাং শ্রেণীটি

[a, b]-এর উপর তার যোগ অপেক্ষক f(x) তে সুযমভাবে অভিসারী।

যেহেতু প্রদত্ত শ্রেণীর প্রত্যেক পদ [a, b]-এর উপর সমাকলনযোগ্য অতএব f(x) অপেক্ষকটিও [a,b]-এর উপর সমাকলনযোগ্য এবং $\int_a^b a_o dx + \int_a^b a_1 x dx + \int_a^b a_2 x^2 dx + \dots = \int_a^b f(x) dx$

উপপাদ্য - 3 : ধরা যাক $\sum_{n=0}^{\infty}a_nx^n$ ঘাতশ্রেণীটির অভিসারী ব্যাসার্ধ R_1 । তাহলে এই শ্রেণীটির প্রত্যেক পদকে

পৃথকভাবে সমাকলন করে প্রাপ্ত শ্রেণী $\sum\limits_{n=0}^{\infty} rac{a_n}{n+1} x^{n+1}$ -এর অভিসারী ব্যাসার্দ্ধও R_1 হবে।

প্রমাণ : ধরা যাক, $\sum_{n=0}^{\infty} rac{a_n}{n+l} \, x^{n+1}$ শ্রেণীটির অভিসারী ব্যাসার্ধ = R_2

তাহলে
$$\frac{1}{R_2} = \lim_{n \to \infty} \frac{(a_n)^{\frac{1}{n}}}{(n+1)^{\frac{1}{n}}}$$

আবার প্রদত্ত শর্ত থেকে পাওয়া যায়

$$\frac{1}{R_1} = \lim_{n \to \infty} (a_n)^{\frac{1}{n}}$$

এখন $x = (n+1)^{\frac{1}{n}}$ হল $\log x = \frac{1}{n}\log (n+1)$

$$\therefore \lim_{n \to \infty} \log x = \lim_{n \to \infty} \frac{\log(n+1)}{n} \left(\frac{\infty}{\infty}\right)$$

$$\exists i, \qquad \log\left(\lim_{n \to \infty} x\right) = \lim_{n \to \infty} \frac{\frac{1}{(n+1)}}{1}$$

$$= 0$$

$$\therefore \lim_{n \to \infty} x = e^0 = 1$$

$$\exists i = \frac{1}{(n+1)} = 1$$

বা, $\therefore \lim_{n \to \infty} (n+1)^{\gamma_n} = 1$

$$\therefore \frac{1}{R_2} = \frac{\lim_{n \to \infty} (a_n)^{\frac{1}{n}}}{1} = \lim_{n \to \infty} (a_n)^{\frac{1}{n}} = \frac{1}{R_1}$$
$$\therefore R_2 = R_1$$
উদাহরণ 1 ঃ দেখান যে, $\int_1^3 \left[\sum_{n=1}^{\infty} \frac{x}{n+n^2 x^2} \right] dx = \sum_{n=1}^{\infty} \frac{1}{2n^2} \log\left(\frac{1+9n}{1+n}\right)$

সমাধান ঃ $\sum\limits_{n=1}^{\infty} rac{X}{n+n^2 x^2}$ শ্রেণীটি 11.7 অনুচ্ছেদের উদাহরণ 3 অনুযায়ী সকল বাস্তব মানের জন্য সুষমভাবে

অভিসারী। অতএব [1, 3] অন্তরালের উপরেও তা সুষমভাবে অভিসারী। সুতরাং

$$\begin{split} \int_{1}^{3} \left[\sum_{n=1}^{\infty} \frac{x}{n+n^{2}x^{2}} \right] dx &= \sum_{n=1}^{\infty} \int_{1}^{3} \frac{x}{n+n^{2}x^{2}} dx \\ &= \sum_{n=1}^{\infty} \frac{1}{2n^{2}} \int_{1}^{3} \frac{2n^{2}x}{n+n^{2}x^{2}} dx \\ &= \sum_{n=1}^{\infty} \frac{1}{2n^{2}} \left[\log \left(n+n^{2}x^{2} \right) \right]^{3} \\ &= \sum_{n=1}^{\infty} \frac{1}{2n^{2}} \left[\log \left(n+9n^{2} \right) - \log \left(n+n^{2} \right) \right] \\ &= \sum_{n=1}^{\infty} \frac{1}{2n^{2}} \log \left(\frac{1+9n}{1+n} \right) \end{split}$$

2. কোন শ্রেণীর প্রথম n সংখ্যক পদের সমষ্টি n²x(1–x)ⁿ হলে [o, 1] অন্তরালের উপর শ্রেণীটির সমাকল তার প্রত্যেক পদকে পৃথকভাবে উক্ত অন্তরালের উপর সমাকল করে নির্ণয় করা যাবে কিনা বিচার করন।

সমাধান ঃ এখানে $s_n(x)=n^2 x \ (1-x)^n$

∴ যখন
$$0 < x < 1$$
, $s(x) = \lim_{n \to \infty} s_n(x) = \lim_{n \to \infty} n^2 x (1-x)^n = \lim_{n \to \infty} \frac{n^2 x}{(1-x)^{-n}} \left(\frac{\infty}{\infty}\right)$
$$= \lim_{n \to \infty} \frac{2nx}{-l(1-x)^{-n} \log(1-x)} \left(\frac{\infty}{\infty}\right)$$

$$= \lim_{n \to \infty} \frac{2x}{(1-x)^{-n} \left[\log \left(1-x \right) \right]^2} = 0$$

আবার যখন x = 0 বা x = 1 তখন { s_n (x) } = {0, 0, 0, } হওয়ায় সেক্ষেত্রেও s(x) = 0

$$\therefore \int_0^1 s(x) dx = \int_0^1 0 dx = 0$$

 $\lim_{n\to\infty}\int_0^1 s_n(x)\ dx = \lim_{n\to\infty}\int_0^1 n^2 x (1-x)^n\ dx$

$$= \lim_{n \to \infty} n^2 \left[-x \frac{(1-x)^{n+1}}{n+1} - \frac{(1-x)^{n+2}}{(n+1)(n+2)} \right]_0^1$$
$$= \lim_{n \to \infty} \frac{n^2}{(n+1)(n+2)} = \lim_{n \to \infty} \frac{1}{1+\frac{3}{n}+\frac{2}{n^2}} = 1$$

অতএব দেখা গেল $\lim_{n\to\infty}\int_{0}^{1}s_{n}(x) dx \neq \int_{0}^{1}s(x) dx$

অতএব 11.9 অনুচ্ছেদের উপপাদ্য 1 অনুযায়ী [0, 1] অন্তরালের উপর শ্রেণীটির প্রত্যেক পদকে পৃথকভাবে সমাকল করে উক্ত শ্রেণীটির সমাকলের মান নির্ণয় করা যাবে না।

মন্তব্য ঃ উপরিউক্ত কারণে বলা যায় শ্রেণীটি [0, 1] অন্তরালের উপর সুষমভাবে অভিসারী নয়।

যদি সুযমভাবে অভিসারী হত তাহলে

$$\left| \begin{array}{l} \mathbf{S}_{\mathbf{n}}(\mathbf{x}) - \mathbf{s}(\mathbf{x}) \right| < \varepsilon, \quad \forall \mathbf{n} \ge \mathbf{M}, \quad \forall \mathbf{x} \in [0, 1] \quad \overline{\mathbf{v}} \mathbf{v},$$

$$\overline{\mathbf{d}} \mathbf{h} - \mathbf{n}^{2} \mathbf{x} (1 - \mathbf{x})^{\mathbf{n}} < \mathbf{s} \quad \forall \mathbf{n} \ge \mathbf{M}, \quad \forall \mathbf{x} \in [0, 1] \quad \overline{\mathbf{v}} \mathbf{v},$$
(i)

$$\P, \ n^2 x (1-x)^n < \varepsilon, \ \forall n \ge M, \ \forall x \in [0,1] \ \overline{\textcircled{eo}}, \ \dots \dots \dots \dots \dots (1)$$

কিন্দু
$$\mathbf{x} = \frac{1}{n} \in \left[\mathbf{0}, 1\right]$$
 ধরলে, $\left|\mathbf{s}_{n}(\mathbf{x}) - \mathbf{s}(\mathbf{x})\right| = n^{2} \frac{1}{n} \left(1 - \frac{1}{n}\right)^{n} = \frac{n}{\left(1 - \frac{1}{n}\right)^{-n}}$

$$\therefore \lim_{n \to \infty} |s_n(x) - s(x)| = \lim_{n \to \infty} \frac{n}{\left(1 - \frac{1}{n}\right)^{-n}} = \infty \quad [\because \lim_{n \to \infty} \left(1 - \frac{1}{n}\right)^{-n} = e]$$

যা (i) নং শর্তের সঙ্গে পরস্পর বিরোধী। সেই কারণে বোঝা গেল যে শ্রেণীটি [0, 1]-এর উপর সুযমভাবে

অভিসারী নয়। যেহেতু n → ∞ হলে x = $rac{1}{n}$ থেকে পাওয়া যায় x → 0 অতএব 0 বিন্দুটির জন্য শ্রেণীটি উক্ত অন্তরালে অভিসারিতা সুষম হল না।

11.10 অপেক্ষকের শ্রেণী ও ঘাতশ্রেণীর সুষম অভিসারিতা ও অবকলন

উপপাদ্য - 1 ঃ ধরা যাক, [a, b] ⊂ R এই বদ্ধ এবং সীমাবদ্ধ অন্তরাল এর অন্তত একটি মান c ∈ [a, b] -এর জন্য $\sum_{n=1}^{\infty} f_n(x)$ শ্রেণীটি অভিসারী। যদি প্রত্যেক $f_n(x)$ অপেক্ষক [a, b]-এর উপর অবকলন যোগ্য হয় এবং $\sum_{n=1}^{\infty} f'_n(x)$ শ্রেণীটি একই অন্তরাল [a, b]-এর উপর g(x)-তে সুযমভাবে অভিসারী হয় তাহলে সকল $x \in [a, b]$ -এর জন্য $\sum_{n=1}^{\infty} f_n(x)$ শ্রেণীটিও সুযমভাবে অভিসারী হবে। আবার যদি $\sum_{n=1}^{\infty} f_n(x)$ শ্রেণীটি s(x)-তে সুযমভাবে অভিসারী হয় তাহলে s' (x) = g(x) হবে। **শ্রমাণ ঃ** প্রদত্ত শর্তানুসারে [a, b] অন্তরালের উপর প্রত্যেক

$$s_n(x) = f_1(x) + f_2(x) + \dots + f_n(x), n = 1, 2$$
...... অবকলনযোগ্য অর্থাৎ

 $s_n^{\prime}(x) = f_1^{\prime}(x) + f_2^{\prime}(x) + \ldots + f_n^{\prime}(x)$ া যেহেতু $\sum_{n=1}^{\infty} f^{\prime}n(x)$ শ্রেণী [a, b]-এর উপর সুষমভাবে g(x)-তে

অভিসারী, $\{s_n'(x)\}$ ক্রমটিও একই অন্তরালের উপর g(x) তে সুষমভাবে অভিসারী। আবার যেহেতু $\sum_{n=1}^{\infty} f_n(x)$ শ্রেণী $c \in [a,b]$ -এর জন্য অভিসারী, $\{s_n(x)\}$ ক্রমটিও একই মান c-এর জন্য অভিসারী।

অতএব 11.6 অনুচ্ছেদের উপপাদ্য – 1 অনুযায়ী {s_n(x)} ক্রমটি [a, b]-এর উপর সুষমভাবে অভিসারী হবে এবং যদি সীমা অপেক্ষক s(x) হয় তাহলে সকল x \in [a, b]-এর জন্য s'(x) = g(x) হবে।

সুতরাং $\sum_{n=1}^{\infty} f_n(x)$ শ্রেণীটি [a, b]-এর উপর s(x) সুযমভাবে অভিসারী এবং সকল $x \in [a, b]$ -এর জন্য s'(x) = g(x) **গ্রান্তলিপি** - 1 ঃ উপরের উপপাদ্য অনুযায়ী $f_1(x) + f_2(x) + f_3(x) + \dots = s(x),$ $f_1'(x) + f_2'(x) + f_3'(x) + \dots = g(x)$. এবং প্রমাণিত হয়েছে s'(x) = g(x)। অতএব $\mathbf{s}'(\mathbf{x}) = \mathbf{f}_1'(\mathbf{x}) + \mathbf{f}_2'(\mathbf{x}) + \mathbf{f}_3'(\mathbf{x}) + \dots$

$$\overline{q}_{1}, \ \frac{d}{dx}s(x) = \frac{d}{dx}f_{1}(x) + \frac{d}{dx}f_{2}(x) + \frac{d}{dx}f_{3}(x) + \dots$$

$$\overline{q}_{1}, \ \frac{d}{dx}[f_{1}(x) + f_{2}(x) + f_{3}(x) + \dots] = \frac{d}{dx}f_{1}(x) + \frac{d}{dx}f_{2}(x) + \frac{d}{dx}f_{3}(x) + \dots$$

অতএব দেখা গেল উপপাদ্যে বর্ণিত শর্তগুলি পালিত হলে অপেক্ষকের শ্রেণীর প্রত্যেক পদ পৃথকভাবে (term – by – term) অবকলন করা সম্ভব।

প্রান্তলিপি - 2 ঃ $\sum_{n=1}^{\infty} f_n(x)$ শ্রেণীর প্রত্যেক পদ পৃথকভাবে অবকলনযোগ্য হওয়ার জন্য $\sum_{n=1}^{\infty} f_n'(x)$ শ্রেণীকে সুষমভাবে অভিসারী হতে হবে এবং এই শর্ত কেবলমাত্র যথেষ্ট শর্ত প্রয়োজনীয় শর্ত নয়।

উদাহরণস্বরূপ, ধরা যাক্,
$$\sum f_n$$
 জৌনি $s_n = \frac{1}{2n^2} \log (1 + n^4 x^2), x \in [0, 1]$

$$\therefore s = \lim_{n \to \infty} s_n = \lim_{n \to \infty} \frac{\log (1 + n^4 x^2)}{2n^2} \left(\frac{\infty}{\infty}\right)$$

$$= \lim_{n \to \infty} \frac{4n^3 x^2 / (1 + n^4 x^2)}{4n} = \lim_{n \to \infty} \frac{n^2 x^2}{1 + n^4 x^2} = 0, x \in [0, 1]$$

$$\Rightarrow \frac{d}{dx} s = 0$$

আবার $\frac{d}{dx}s_n = s'_n = \frac{n^2x}{1+n^4x^2}$ হওয়ায় $\lim_{n\to\infty} s'_n = 0$, $x \in [0,1]$ অতএব, $\{s_n\}$ ক্রমটি [0, 1]-এর উপর 0 = g(x)-তে অভিসারী। $\therefore f'_1 + f'_2 + f'_3 + \dots$ শ্রেণী [0, 1]-এর উপর 0 = g(x)-তে অভিসারী। $\therefore \frac{d}{dx}f_1 + \frac{d}{dx}f_2 + \frac{d}{dx}f_3 + \dots = 0 = \frac{d}{dx}s = \frac{d}{dx}[f_1 + f_2 + f_3 + \dots]$ এর থেকে প্রমাণিত হয় $\sum f_n$ শ্রেণীটির প্রত্যেক পদের পৃথকভাবে অবকলন বৈধ (valid)

किन्छ
$$\mathbf{M}_{\mathbf{n}} = \sup_{\mathbf{x} \in [0,1]} \left| \mathbf{s}_{\mathbf{n}}' - \mathbf{s}' \right| = \sup_{\mathbf{x} \in [0,1]} \left| \frac{\mathbf{n}^2 \mathbf{x}}{\mathbf{l} + \mathbf{n}^4 \mathbf{x}^2} \right|$$

$$\geq \frac{n^2 - \frac{1}{n^2}}{1 + n^4 \cdot \frac{1}{n^4}}$$
 યથન $x = \frac{1}{n^2}$
લવર $n = 1, 2, \dots$
$$= \frac{1}{2}$$

$$\therefore \lim_{n \to \infty} M_n = \frac{1}{2} \neq 0$$

অতএব $\left\{ {{
m{s}}_n^\prime } \right\}$ ক্রমটি [0, 1]-এর উপর সুষমভাবে অভিসারী নয় এবং সেই কারণে $\sum {{
m{f}}_n^\prime }$ শ্রেণীটিও একই অস্তরাল [0, 1]-এর উপর সুষমভাবে অভিসারী নয়।

দেখা গেল $\sum f_n'$ শ্রেণী কোন অন্তরালে সুষমভাবে অভিসারী না হয়েও $\sum f_n$ শ্রেণীর প্রত্যেক পদের পৃথকভাবে অবকলন বৈধ হতে পারে।

উপপাদ্য 2 : যদি $\sum_{n=0}^{\infty}a_nx^4$ ঘাতশ্রেণীটির অভিসারী ব্যাসার্ধ R_1 হয় তবে তার প্রত্যেক পদকে পৃথকভাবে অবকল

(term – by – term differentiation) করে প্রাপ্ত $\sum_{n=1}^\infty na_n x^{n-1}$ শ্রেণীটিও অভিসারী ব্যাসার্ধ R_1 হবে।

প্রমাণ ঃ ধরা যাক, $\sum\limits_{n=1}^{\infty} na_n x^{n-1}$ শ্রেণীটির অভিসারী ব্যাসার্দ্ধ R_2 ।

তাহলে
$$\frac{1}{R_2} = \lim_{n \to \infty} n^{\frac{1}{n}} (a_n)^{\frac{1}{n}} = \lim_{n \to \infty} n^{\frac{1}{n}}, \lim_{n \to \infty} (a_n)^{\frac{1}{n}}$$
$$= 1 \cdot \frac{1}{R_1} \quad [প্রদন্ত শতানুসার]$$
$$= \frac{1}{R_1}$$

 $\therefore \mathbf{R}_2 = \mathbf{R}_1$ (প্রমাণিত)

উপপাদ্য 3 : কোন ঘাতশ্রেণীর অভিসারী অন্তরালের অন্তর্গত সকল বিন্দুর জন্য ঘাত-শ্রেণীটির প্রত্যেক পদকে পৃথকভাবে অবকল করা যায়। **প্রমাণ ঃ** ধরা যাক $\sum\limits_{n=0}^{\infty}a_n x^n$ ঘাতশ্রেণীর অভিসারী ব্যাসার্ধ R_1 এবং উক্তশ্রেণীর প্রত্যেক পদকে পৃথকভাবে অবকল

করে প্রাপ্ত

$$\mathbf{a}_1 + 2\mathbf{a}_2\mathbf{x} + 3\mathbf{a}_3\mathbf{x}^2 + \dots$$

শ্রেণীর অভিসারী ব্যাসার্ধ \mathbf{R}_2 । অতএব উপরের উপপাদ্য 2 অনুযায়ী

 $R_2 = R_1$

তাহলে দেখা গেল উভয়শ্রেণীরই অভিসারী ব্যাসার্ধ R₁ এবং সেই কারণে উভয় শ্রেণীই ইচ্ছামত ছোট ধনাত্মক _৪-এর জন্য [– R₁ + ε, R₁ – ε] অন্তরালের উপর সুযমভাবে অভিসারী।

ধরা যাক,
$$[-R_1 + \varepsilon, R_1 - \varepsilon]$$
 অন্তরালের উপর $\sum_{n=0}^{\infty} a_n x^n$ শ্রেণীর যোগফল $f(x)$ । অতএব তখন $a_1 + 2a_2x + 3a_3x^2 + \dots$ শ্রেণীর যোগফল $f'(x)$
বা, $\frac{d}{dx}(a_0) + \frac{d}{dx}(a_1x) + \frac{d}{dx}(a_2x^2) + \frac{d}{dx}(a_3x^3) + \dots = \frac{d}{dx}f(x)$ যখন $x \in [-R_1 + \varepsilon, R_1 - \varepsilon]$
বা, $\frac{d}{dx}(a_0) + \frac{d}{dx}(a_1x) + \frac{d}{dx}(a_2x^2) + \frac{d}{dx}(a_3x^3) + \dots$
 $= = \frac{d}{dx}[a_0 + a_1x + a_2x^2 + a_3x^3 + \dots]$ যখন $x \in (-R_1, R_1)$

যেহেতু $f(x) = \sum_{n=0}^{\infty} a_n x^n$ এবং $\epsilon > 0$ ইচ্ছামত ছোট ধরা যায়।

উপপাদ্য 4 : যদি $\sum_{n=0}^{\infty} a_n x^n$ এবং $\sum_{n=0}^{\infty} b_n x^n$ ঘাতশ্রেণীদ্বয় একই অন্তরাল $(-R_1, R_1)$ $(R_1 > 0)$ - এর উপর একই অপেক্ষক f(x) -তে অভিসারী হয় তাহলে $a_n = b_n$ যখন $n = 0, 1, 2, 3, \dots$ (Uniqueness theorem) প্রমাণ ঃ প্রদত্ত শর্তানুসারে $(-R_1, R_1)$ এর উপর

$$\mathbf{a}_{0} + \mathbf{a}_{1}\mathbf{x} + \mathbf{a}_{2}\mathbf{x}^{2} + \mathbf{a}_{3}\mathbf{x}^{3} + \dots = \mathbf{f}(\mathbf{x}) = \mathbf{b}_{0} + \mathbf{b}_{1}\mathbf{x} + \mathbf{b}_{2}\mathbf{x}^{2} + \mathbf{b}_{3}\mathbf{x}^{3} + \dots$$

$$\mathbf{x} = \mathbf{0}$$
 বসালে পাওয়া যায় $\mathbf{a}_0 = \mathbf{b}_0$

উপরের শ্রেণীগুলির প্রত্যেক পদকে পৃথকভাবে অবকল করে পাওয়া যায়

আবার
$$s'_n(0) = \lim_{h \to 0} \frac{s_n(o+h) - s_n(0)}{h} = \lim_{h \to 0} \frac{\frac{nh}{1 + n^2h^2} - 0}{h}$$

সমাধান : এখানে
$$s(x) = \lim_{n \to \infty} s_n(x) = \lim_{n \to \infty} \frac{nx}{1 + n^2 x^2} = o, x \in [o, 1]$$

সংজ্ঞাঞ্চল [0, 1] উক্ত শ্রেণীর প্রত্যেক পদকে পৃথকভাবে $\mathbf{x} = 0$ তে অবকল করা যাবে না— এটি দেখান।

2.
$$\sum \left[\frac{nx}{1+n^2x^2} - \frac{(n-1)x}{1+(n-1)^2x^2} \right]$$
 শ্রেণীর প্রথম n সংখ্যক পদের সমষ্টি $s_n(x) = \frac{nx}{1+n^2x^2}$ এবং

 $\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots$

$$\int_{0}^{x} \frac{1}{1+x^{2}} dx = \int_{0}^{x} 1 dx - \int_{0}^{x} x^{2} dx + \int_{0}^{x} x^{4} dx - \int_{0}^{x} x^{6} dx + \dots$$
. যখন | x | < 1
বা, $\tan^{-1} x = x - \frac{x^{3}}{3} + \frac{x^{5}}{5} - \frac{x^{7}}{7} + \dots$. | x | < 1

শ্রেণীটির প্রত্যেক পদকে পৃথকভাবে সমাকল করে এবং বামপক্ষেরও সমাকল করে পাওয়া যায়—

$$\frac{1}{1+x^2} = 1 - x^2 + x^4 - x^6 + \dots$$

এখন প্রদন্ত শর্তানুসারে—

এবং সুষমভাবে অভিসারী।

সমাধান ঃ শ্রেণীটির অভিসারী ব্যাসার্ধ
$$m R_1=\lim_{n
ightarrow\infty}\left|rac{a_n}{a_{n+1}}
ight|=1\,$$
সুতরাং শ্রেণীটি ($-1,\,1)$ অন্তরালের চরমভাবে

$$\tan^{-1} x = x - \frac{x^3}{3} + \frac{x^5}{5} - \dots$$
 যখন | x | < 1

করে পাওয়া যায় $a_n = b_n$ যখন $n = 0, 1, 2, 3, \dots$ উদাহরণ 1 $f(x) = 1 - x^2 + x^4 - x^6 + \dots = (1+x^2)^{-1}$ এই ঘাতশ্রেণী থেকে দেখান যে

... র = ৩ বনাওন বাবের ব্যব ব্যব ব্যব ব্যব অনুরূপভাবে আবার অবকল করে এবং x = 0 বসিয়ে পাওয়া যাবে a₂ = b₂। এইরূপ একই পদ্ধতি পরপর অনুসরণ

$$a_1 + 2a_2x + 3a_3x^2 + \dots = f(x) = b_1 + 2b_2x + 3b_3x^2 + \dots, x \in (-R_1, R_1)$$

$$= \lim_{h \to 0} \frac{n}{1 + n^2 h^2} = n$$

$$\therefore \quad \lim_{h \to \infty} s_n^{\prime} (o) = \lim_{h \to \infty} n = \infty \neq s^{\prime} (o)$$

সুতরাং x = 0 তে প্রদন্ত শ্রেণীর প্রত্যেক পদকে পৃথকভাবে অবকল করা যাবে না।

11.11 সারাংশ

(a) f_n : E → R ∀n ∈ N হলে {f_n(x)} ক্রমকে E-এর উপর f(x)-তে সুযমভাবে অভিসারী বলা হবে যদি কোন একটি ধনাত্মক ε-এর জন্য একটি স্বাভাবিক সংখ্যা M পাওয়া যাবে যাতে সকল x ∈ E -এর জন্য | f_n(x) – f(x) | < ε, ∀n ≥ M হয় (M কেবলমাত্র ε-এর উপর নির্ভরশীল)

(b) কসির শর্ত : (i) $f_n : E \to R$, $\forall n \in N$ হলে $\{f_n (x)\}$ ক্রমের সুষমভাবে অভিসারী হওয়ার প্রয়োজনীয় ও যথেষ্ট শর্ত হল, যেকোন একটি ধনাত্মক সংখ্যা ɛ-এর জন্য একটি স্বাভাবিক সংখ্যা M-এর অস্তিত্ব থাকবে যাতে সকল $X \in E$ -এর ক্ষেত্রে $| f_{n+p}(x) - f_n(x) | < \epsilon, \forall n \ge M$ এবং p = 1, 2, 3,..... হয়

(ii) উক্ত শর্ত $\sum_{n=1}^{\infty} f_n(x)$ শ্রেণীর ক্ষেত্র $\Big| f_{n+1}(x) + f_{n+2}(x) + \dots + f_{n+p}(x) \Big| < \varepsilon, \forall n \ge M$ এবং $p = 1, 2, 3, \dots$

(c) f_n(x) : E → R, ∀n ∈ N এবং {f_n(x)} ক্রমটি বিন্দু অনুসারে f(x) তে অভিসারী হলে উক্ত ক্রমটিকে f(x) তে সুষমভাবে অভিসারী বলা হবে এবং কেবলমাত্র যদি—

 $\lim_{n \to \infty} M_n = 0$ হয় যখন $M_n = \sup_{x \in E} \left| f_n(x) - f(x) \right|$ ।

(d) ধরা যাক্, $\mathrm{f}_{\mathrm{n}}(\mathrm{x})$: $[\mathrm{a},\,\mathrm{b}]
ightarrow\mathrm{R}$ এবং $\{\mathrm{f}_{\mathrm{n}}(\mathrm{x})\}$ ক্রম $[\mathrm{a},\,\mathrm{b}]$ -এর উপর $\mathrm{f}(\mathrm{x})$ -তে সুষমভাবে অভিসারী।

1. যদি [a, b]-এর কোন লিমিট বিন্দু c-এর জন্য $\lim_{x \to c} f_n(x) = a_n$ হয়

তবে (i) {aৣ} ক্রমটি অভিসারী হয়

এবং (ii) $\lim_{x \to c} \lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \lim_{x \to c} f_n(x)$ হয়

2. যদি প্রত্যেক f,(x) অপেক্ষক E-এর প্রত্যেক বিন্দুতে সন্তত হয় তাহলে f(x) ও E-তে সন্তত।

(e) ধরা যাক f_n(x) সকল _{n ∈ N} -এর জন্য R-এর একটি কম্প্যাক্ট উপসেট E-তে সংজ্ঞাত ও সন্তুত এবং {f_n(x)} ক্রম E-এর উপর একটি সন্তুত অপেক্ষক f(x)-তে বিন্দু অনুসারে অভিসারী। যদি ক্রমটি E-এর উপর ক্রমক্ষীয়মাণ হয় তবে তা E-এর উপর f(x)-তে সুষমভাবে অভিসারী। (ডিনির উপপাদ্য)।

(f) ধরা যাক ∀n ∈ N -এর জন্য f_n(x) : I → R অপেক্ষকগুলি বদ্ধ ও সীমাবদ্ধ অন্তরাল I = [a,b]-এর উপর রিমান সমাকলনযোগ্য। যদি {f_n(x)} ক্রমটি I-এর উপর f(x)-তে সুযমভাবে অভিসারী হয় তাহলে f(x) অপেক্ষকটিও I-এর উপর রিমান সমাকলনযোগ্য হবে এবং $\left\{ \int_a^b f_n(x) \, dx \right\}$ ক্রমটি $\int_a^b f(x) dx$ -তে অভিসারী হবে।

(g) যদি $\{f_n(x)\}$ ক্রমের সদস্য অপেক্ষক $f_n(x)$ প্রত্যেক $n \in N$ -এর জন্য $I = [a, b] \subset R$ -তে অবকলনযোগ্য কোন একটি মান $c \in I$ -এর জন্য $\{f_n(c)\}$ অভিসারী এবং $\{f_n'(x)\}$ ক্রম I-এর উপর g(x) -তে সুষমভাবে অভিসারী হয় তাহলে, $\{f_n(x)\}$ ক্রম I-এর উপর f(x)-তে সুষমভাবে অভিসারী হবে যখন $f'(x) = g(x), \ \forall x \in I$ ।

(h) Weierstrass M – Test : ধরা যাক $\{M_n\}$ এমন একটি ধনাত্মক সংখ্যার ক্রম যাতে সকল $x \in E$ এবং

 $n \in N$ -এর জন্য। $| f_n(x) | \leq M_n$ যখন $| f_n(x) : E \to R$ । যদি $\sum_{n=1}^{\infty} M_n$ অভিসারী হয় তাহলে $\sum_{n=1}^{\infty} f_n(x)$ শ্রেণীটি E-এর উপর সুষমভাবে এবং চরমভাবে অভিসারী হবে।

(i) $\sum_{n=1}^{\infty} a_n x^n$ ঘাতশ্রেণীর অভিসারী ব্যাসার্ধ $R_1 > 0$ হলে ইচ্ছামত ছোট ধনাত্মক সংখ্যা হ-এর জন্য শ্রেণীটি $[-R_1 + \epsilon, R_1 - \epsilon]$ -এর উপর সুষমভাবে অভিসারী।

(j) ধরা যাক্, সকল $x \in E \subset R$ ও $n \in N$ -এর জন্য $f_n(x) : E \to R$ এবং প্রত্যেক $f_n(x)$ অপেক্ষক E-এর উপর সন্তত। যদি $\sum_{n=1}^{\infty} f_n(x)$ শ্রেণীটি E-এর উপর s(x) সুষমভাবে অভিসারী হয় তাহলে s(x) অপেক্ষকটি E-এর উপর সন্তত হবে।

(k) যদি $\sum_{n=0}^{\infty} a_n x^n$ ঘাতশ্রেণীর অভিসারী ব্যাসার্ধ R_1 হয় এবং $(-R_1, R_1)$ -এর উপর উক্ত শ্রেণীর যোগ অপেক্ষক f(x) হয় তাহলে f(x) অপেক্ষকটি $(-R_1R_1)$ -এর উপর সন্তত হবে।

(1) ধরা যাক বদ্ধ ও সীমাবদ্ধ অন্তরাল $[a, b] \subset R$ -এর জন্য $f_n : [a, b] \to R$ এবং প্রত্যেক $f_n(x)$, [a, b]-এর উপর রিমান সমাকলন যোগ্য। যদি $\sum f_n$ শ্রেণী [a, b]-এর উপর s(x) তে সুষমভাবে অভিসারী হয় তবে s(x)

রিমান সমাকলনযোগ্য হয় এবং $\int_a^b \left[\sum_{n=1}^\infty f_n(x)\right] dx = \sum_{n=1}^\infty \int_a^b f_n(x) dx$

m) কোন ঘাতশ্রেণীর অভিসারী অন্তরালের অন্তর্গত যেকোন বদ্ধ অন্তরালের উপর ঘাতশ্রেণীটির সমাকল তার প্রত্যেক পদকে পৃথকভাবে সমাকল করে নির্ণয় করা যায়।

$$(n)\sum_{n=o}^{\infty}a_nx^n$$
 -এর প্রত্যেক পদকে পৃথকভাবে সমকল করে প্রাপ্ত শ্রেণী $\sum_{n=o}^{\infty}rac{a_n}{n+1}x^{n+1}$ উক্ত উভয়শ্রেণীর

অভিসারী ব্যাসার্ধ একই।

(o) বদ্ধ ও সীমাবদ্ধ অন্তরাল [a, b] $\subset R$ -এর অন্ততঃ একটি মান c-এর জন্য $\sum_{n=1}^\infty f_n(x)$ অভিসারী প্রত্যেক

 ${
m f}_n(x)$ অপেক্ষক $[a,\,b]$ উপর অবকলনযোগ্য এবং $\sum_{n=1}^\infty {
m f}_n^{/}(x)$ একই অন্তরাল $[a,\,b]$ -এর উপর g(x)-তে সুষমভাবে

অভিসারী হলে $\sum_{n=1}^{\infty} f_n(x)$ শ্রেণীটিও [a, b]-এর উপর s(x)-তে সুষমভাবে অভিসারী হবে যখন s'(x) = g(x)।

(p) $\sum_{n=1}^{\infty}a_nx^n$ এবং তার প্রত্যেক পদকে পৃথকভাবে অবকল করে প্রাপ্ত ঘাতশ্রেণী $\sum_{n=1}^{\infty}na_nx^{n-1}$ উভয়ের

অভিসারী ব্যাসার্ধ একই।

(q) কোন ঘাতশ্রেণীর অভিসারী অন্তরালের অন্তর্গত সকল বিন্দুর জন্য ঘাতশ্রেণীটির প্রত্যেক পদকে পৃথকভাবে অবকল করা যায়।

(r) $\sum_{n=o}^{\infty} a_n x^n$ এবং $\sum_{n=o}^{\infty} b_n x^n$ ঘাতশ্রেণীদ্বয় একই অন্তরাল (–R₁, R₁)-এর উপর একই অপেক্ষক তে অভিসারী হলে $a_n = b_n$ হয় যখন $n = 0, \ 1, \ 2, \ 3,.......$ ।

11.12 সর্বশেষ প্রশ্নাবলি

1. দেখান যে, $f_n(x) = \frac{x}{1+nx}, 0 \le x < \infty$ হলে $\{f_n(x)\}$ ক্রমটি তার সংজ্ঞাঞ্চল $[0, \infty [$ -তে সুষমভাবে অভিসারী।

2. $f_n(x) = \frac{nx}{1+n^2x^2}$ যখন $-\infty < x < \infty$, $n \in N$ হলে দেখান যে $\{f_n(x)\}$ ক্রমটি তার সংজ্ঞাঞ্চল

(−∞,∞) সুষমভাবে অভিসারী নয়।

3. M_n-পরীক্ষার মাধ্যমে অথবা অন্যভাবে নিম্নলিখিত ক্রমগুলির নির্দিষ্ট অন্তরালে সুষমভাবে অভিসারী কিনা বিচার করুন ঃ

(a)
$$\left\{\frac{x}{1+nx}\right\}_{n=1}^{\infty}$$
, $x \in [0, 1]$ (b) $\left\{nx\left(1-x^2\right)^n\right\}_{n=1}^{\infty}$, $x \in [0, 1]$, (c) $\left\{x^{n-1}\right\}(1-x)\right\}_{n=1}^{\infty}$, $x \in [0, 1]$

উপর সুষমভাবে অভিসারী নয়।

r=1 " 2nহলে দেখান যে $\sum fn$ শ্রেণীটির প্রত্যেক পদের পৃথকভাবে অবকলন বৈধ, যদিও $\sum f_n'$ একই অন্তরাল [0,1]-এর

14.
$$[0, 1]$$
 অন্তরালে সংজ্ঞাত $\sum_{n=1}^{\infty} f_n(n)$ শ্রেণীর $s_n(x) = f_1(x) + f_2(x) + \dots + f_n(x) = \frac{\log(1 + n^2 x^2)}{2n}$

{f´_}} এই অন্তরালের উপর সুষমভাবে অভিসারী নয়।

 $13.\,\,{
m f}_n({
m x})=\,{
m x}-{{
m x}^n\over n},\,\,\,{
m x}\in[0,1]$ হলে দেখান যে $\{{
m f}_n\}$ ক্রমটি $[0,\,1]$ -এর উপর সুষমভাবে অভিসারী কিস্তু

বাস্তব মানের জন্য সন্তত কিন্তু শ্রেণীটি x ∈ R -এর উপর সুযমভাবে অভিসারী নয়। আরও দেখান যে, উক্ত শ্রেণীটি [0, 1] -এর উপর যদিও সুযমভাবে অভিসারী নয় তার যোগ অপেক্ষকটি উক্ত অন্তরালে রিমান-সমাকলনযোগ্য।

12. দেখান যে,
$$\sum_{n=1}^{\infty} \left[\frac{nx}{1+n^2x^2} - \frac{(n-1)x}{1+(n-1)^2x^2} \right]$$
 যখন $x \in \mathbb{R}$ শ্রেণীটির যোগ অপেক্ষক x-এর সকল

11. দেখান যে,
$$\sum_{n=0}^{\infty} x(1-x)^n$$
 শ্রেণীটি $[0,1]$ অন্তরালে সুষমভাবে অভিসারী নয়।

$$10. \sum_{n=0}^{\infty} x e^{-nx}$$
 শ্রেণীটি $[0, 1]$ অন্তরালে সুষমভাবে অভিসারী কিনা তা পরীক্ষা করন।

9. দেখান যে,
$$\sum\limits_{n=1}^{\infty} rac{X}{\left(n+X^2
ight)^2}$$
 শ্রেণীটি $_{X}$ -এর সকল বাস্তব মানের জন্য সুষমভাবে অভিসারী।

৪. দেখান যে,
$$\sum\limits_{n=1}^{\infty}rac{\sin nx}{n^2}$$
 শ্রেণীটি x-এর সকল বাস্তব মানের জন্য সুষমভাবে অভিসারী।

7.
$$\sum_{n=1}^{\infty} \frac{x}{\left\lceil (n-1)x+1 \right\rceil (nx+1)}$$
 শ্লেণীটির $[0, 1]$ অন্তরালে সুষম অভিসারিতার বিচার করুন

যখন $\mathbf{f}_{n}(\mathbf{x}) = \mathbf{x}^{n}, \ \forall n \in \mathbb{N}$ এবং $\mathbf{x} \in \left[0, 1\right]$ ।

একই অন্তরাল [0, 1] তে সন্তত কিন্তু {f_n(x)} উক্ত অন্তরালের উপর সুষমভাবে অভিসারী নয়। 6. ডিনি (Dini) এর উপপাদ্য কাজে লাগিয়ে দেখান যে {f_n(x)} ক্রমটি $0 \le {
m x} < 1$ -এর জন্য সুষমভাবে অভিসারী

5.
$$f_n(x) = \frac{n^2 x}{1 + n^3 x^2}$$
, $\forall n \in \mathbb{N}$ এবং $x \in [0, 1]$ হলে দেখান যে $\lim_{n \to \infty} f_n(x) = f(x)$ হলে উক্ত $f(x)$

4. $f_n(x) = tan^{-1} nx$, $\forall n \in N$ এবং $x \in [0, 1]$ হলে দেখান যে $\{f_n(x)\}$ ক্রমটি [0, 1] এর উপর সুষমভাবে অভিসারী নয়।

15.
$$\sum_{n=1}^{\infty} \left[n^2 x e^{-n^2 x^2} - \left(n-1\right)^2 x e^{-(n-1)^2 x^2}
ight]$$
 শ্রেণীর যোগ অপেক্ষকের $[0,\ 1]$ অন্তরালে সন্ততির বিচার

করুন। প্রত্যেক পদ পৃথকভাবে সমাকলনযোগ্য কিনা তারও পরীক্ষা করুন।

1. সংকেত ঃ যেহেতু $0 \le f_n(x) \le rac{1}{n}$ এবং $\lim_{n o \infty} f_n = 0 = f(x)$ (ধরি) যখন $0 \le x \le 1$ অতএব যেকোন

শর্তটি সিদ্ধ হয় এবং এখানে M কেবলমাত্র ɛ-এর উপর নির্ভরশীল। অতএব ক্রমটি [$0, \ \infty$]-এর উপর সুষমভাবে

2. সংকেত ঃ যেহেতু $\lim_{n o \infty} f_n(x) = 0, \ \forall x \in (-\infty,\infty)$ অতএব ক্রমটি $(-\infty,\infty)$ এর জন্য 0-তে বিন্দু

অনুসারে অভিসারী। সুতরাং প্রদত্ত $\epsilon > o$ -এর জন্য প্রত্যেক $x \in ig(-\infty,\inftyig)$ -এর ক্ষেত্রে একটি স্বাভাবিক সংখ্যা ${f M}$

267

16. দেখান যে $1 + \frac{1}{2}x^2 + \frac{1 \cdot 3}{2 \cdot 4}x^4 + \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6}x^6 + \dots$ ঘাতশ্রেণীটি | x | < 1-এর জন্য চরমভাবে এবং

 $\left| f_{n}(x) - f(x) \right| = \left| f_{n}(x) - 0 \right| \le \frac{1}{n} < \epsilon \Rightarrow n > \frac{1}{\epsilon}$

এখন $rac{1}{\epsilon}$ এর পূর্ণসংখ্যার অংশ (Integral part)-কে M ধরলে,

সুষমভাবে অভিসারী এবং সেখান থেকে প্রমাণ করুন যখন | x | < 1

উত্তরমালা

একটি $\epsilon > o$ এবং $x \in [0, \infty [$ -এর জন্য

 $| f_n(x) - f(x) | < \varepsilon \quad \forall n \ge M$

 $|\mathbf{f}_n(\mathbf{x}) - 0| < \varepsilon, \quad \forall n \ge \mathbf{M}$

 $\exists n, \frac{1}{2} < \epsilon, \forall n \ge M$

रिष्ह, $f_n\left(\frac{1}{n}\right) = \frac{1}{2} \Rightarrow \left|f_n\left(\frac{1}{2}\right) - 0\right| < \epsilon, \quad \forall n \ge M$

11.13

অভিসারী।

পাওয়া যাবে যাতে

 $\sin^{-1} x = x + \frac{1}{2} \frac{x^3}{3} + \frac{1 \cdot 3}{2 \cdot 4} \frac{x^5}{5} + \dots$

সুতরাং $x = rac{1}{n}$ ধরলে $\varepsilon \leq rac{1}{2}$ মানগুলির জন্য $\left| \ \mathbf{f}_n(\mathbf{x}) - \mathbf{f}(\mathbf{x}) \ \right| < \varepsilon, \ \forall n \geq M$ শর্তটি সিদ্ধ হয় না।

3. সংকেত ঃ (a) এখানে $\lim_{n \to \infty} f_n = 0, \ \forall x \in [0, 1] \Rightarrow \{f_n\}$ বিন্দু অনুসারে 0-তে অভিসারী

আবার,
$$\mathbf{M}_{\mathbf{n}} = \sup_{\mathbf{x} \in [0,1]} \left| \mathbf{f}_{\mathbf{n}}(\mathbf{x}) - \mathbf{f}(\mathbf{x}) \right| = \sup \left| \frac{\mathbf{x}}{\mathbf{nx} + 1} \right| \left[\because \mathbf{f}(\mathbf{x}) = 0 \right]$$

এখন $\mathbf{g}(\mathbf{x}) = \frac{\mathbf{x}}{\mathbf{n}\mathbf{x}+1}$ ধরে $\mathbf{g}'(\mathbf{x}) = \frac{1}{\left(\mathbf{l}+\mathbf{n}\mathbf{x}\right)^2} > 0$ $\forall \mathbf{x} \in [0,1]$ হওয়ায় $\mathbf{g}(\mathbf{x})$ অপেক্ষকটি কঠোরভাবে

বর্ধনশীল।

অতএব, x = 1 বিন্দুতে তার চরমমান পাওয়া যাবে এবং $M_n = g(1) = \frac{1}{1+n} \Rightarrow \lim_{n \to \infty} M_n = 0$ সুতরাং [0,1]-এর উপর ক্রমটি সুষমভাবে অভিসারী।

(b) x = 0, x = 1 উভয় বিন্দুতেই ক্রমটি $\{0, 0, 0,\}$ হয় যা 0-তে অভিসারী। আবার 0 < x < 1-এর জন্য 0 < 1 - x < 1 হওয়ায় $1 - x = \frac{1}{v}$, y > 1 ধরে,

 $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{n(1 - \frac{1}{y})}{1 - 1} = \lim_{x \to \infty} \frac{n(y - 1)}{1 - 1} \left(\frac{\infty}{y} \right) = \lim_{x \to \infty} \frac{y - 1}{1 - 1} = 0 \left[\frac{1}{y}, \frac{y}{y} > 1 \right]$

এখন $M_n = \sup_{x \in [0,1]} \left| f_n(x) - f(x) \right| = \sup_{x \in [0,1]} \left| nx(1-x)^n \right| \ge n \cdot \frac{1}{n} \left(1 - \frac{1}{n} \right)^n \quad \left(\because \frac{1}{n} \in [0,1] \right)$

 $=\left(1+\frac{1}{n}\right)^n$

$$\lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \frac{1}{y^n} = \lim_{n \to \infty} \frac{1}{y^{n+1}} \left(\frac{\infty}{\infty}\right) = \lim_{n \to \infty} \frac{1}{y^{n+1}\log y} = 0 [\cdot, y > 1]$$

4. সংকেত ঃ $f(x) = \lim_{n \to \infty} f_n(x) = \begin{cases} \frac{\pi}{2}, 0 < x \le 1 \ \pi_2 \text{ solution} \{f_n\} \text{ sonthing} [0, 1]$ -এর উপর f(x)-তে বিন্দু 0, x = 0 অনুসারে অভিসারী।

কিন্তু $\mathbf{f}(\mathbf{x})$ অপেক্ষক $\mathbf{x}=0$ -তে অসন্তত হওয়ায় $\{\mathbf{f}_{\mathbf{n}}\}$ সুষমভাবে অভিসারী নয়।

 $\therefore \lim_{n \to \infty} M_n \ge \lim_{n \to \infty} \left(1 - \frac{1}{n} \right)^n = \frac{1}{e} \neq 0$

সুতরাং প্রদত্ত একটি [0, 1]-এর উপর সুযমভাবে অভিসারী নয়।

(c) সুযমভাবে অভিসারী। [3(a)-এর মত অগ্রসর হোন]।

5. সংকেত ঃ এখানে f(x) = 0 এটি ধ্রুবক অপেক্ষক হওয়ায় [0, 1] অন্তরালে সন্তত।

কিন্তু
$$M_n = \sup_{x \in [0,1]} \left| f_n(x) - f(x) \right| = \sup_{x \in [0,1]} \frac{n^2 x}{1 + n^3 x^2} \ge \frac{n^2 \cdot \frac{1}{\frac{3}{2}}}{1 + n^3 \cdot \frac{1}{n^3}}$$
 [যখন $x = \frac{1}{n^{\frac{3}{2}}} \in [0, 1], n \in \mathbb{N}$]

$$=rac{\sqrt{\mathbf{n}}}{2}
ightarrow\infty$$
 যখন $\mathbf{n}
ightarrow\infty$ সুতরাং.....

6. সংকেত : $\lim_{n\to\infty} f_n(x) = \lim_{n\to\infty} x^n = 0$ যখন $0 \le x \le 1$ সুতরাং $\{f_n\}$ ক্রম [0, 1[-তে বিন্দু অনুসারে f(x)=0 তে অভিসারী। প্রত্যেক $f_n(x)$ এবং f(x) [0, 1[অন্তরালে সন্তত। আবার প্রত্যেক $x \in [0, 1]$ -এর জন্য $f_{n+1}(x) - f_n(x) = x^{n+1} - x^n = x^n (x-1) \le 0 \Rightarrow f_1 \ge f_2 \ge f_3 \ge \dots$ । সুতরাং ডিনির উপপাদ্য অনুযায়ী প্রদন্ত অপেক্ষক [0, 1[অন্তরালে সুষমভাবে অভিসারী।

7. সংকেত ঃ

$$\begin{split} s_n(x) &= \frac{x}{x+1} + \frac{x}{(x+1)(2x+1)} + \dots n \quad \text{order price} \\ &= \left(1 - \frac{1}{x+1}\right) + \left(\frac{1}{x+1} - \frac{1}{2x+1}\right) + \dots n + \left(\frac{1}{(n-1)x+1} - \frac{1}{nx+1}\right) \\ &= 1 - \frac{1}{nx+1} + \frac{nx}{nx+1} \Rightarrow s(x) = \lim_{n \to \infty} s_n(x) = \lim_{n \to \infty} \frac{nx}{nx+1} = \begin{cases} 0, x = 0 \\ 1, x \in [0, 1] \end{cases}$$

অতএব {s_n(x)} ক্রম তথা প্রদন্ত শ্রেণীটি [0, 1]-এর উপর s(x) তে বিন্দু অনুসারে অভিসারী। কিন্তু s(x) অপেক্ষক [0,1] অন্তরালে সন্তত না হওয়ায় {s_n(x)} ক্রম তথা প্রদন্ত শ্রেণী সুয়মভাবে অভিসারী নয়।

8. সংকেত ঃ
$$\left| \begin{array}{c} \displaystyle \frac{\sin nx}{n^2} \end{array}
ight| \leq \displaystyle \frac{1}{n^2}, \ \forall x \in R$$
 এবং জানা আছে $\displaystyle \sum \displaystyle \frac{1}{n^2}$ অভিসারী। সুতরাং ওয়াসট্রাস এর M

পরীক্ষা অনুযায়ী প্রদত্ত শ্রেণী সকল $x \in R$ -এর জন্য সুষমভাবে অভিসারী।

9. সংকেত ঃ এখানে
$$f_n(x) = \frac{x}{(n+x^2)^2}, f'_n(x) = \frac{n-3x^2}{(n+x^2)^3}$$
 অতথ্য $f'_n = 0 \Rightarrow n = 3x^2 = 0$ বা

$$\mathbf{x} = \sqrt{\frac{\mathbf{n}}{3}} \quad \mathbf{x}$$
-এর এই মানের জন্য $\mathbf{f}_{\mathbf{n}}' < 0$ এবং $\mathbf{f}_{\mathbf{n}}(\mathbf{x}) = \frac{\sqrt{\frac{\mathbf{n}}{3}}}{\left(\mathbf{n} + \frac{\mathbf{n}}{3}\right)^2} = \frac{3\sqrt{3}}{16n^{\frac{3}{2}}} < \frac{1}{n\frac{3}{2}}$ এখন $\mathbf{M}_{\mathbf{n}} = \frac{1}{n^{\frac{3}{2}}}$

ধরলে $\sum M_n$ শ্রেণীটি অভিসারী হওয়ায় weierstrass M – test অনুযায়ী প্রদন্ত শ্রেণী x-এর সকল বাস্তব মানে সুষমভাবে অভিসারী।

10. সংকেত : এখানে
$$s_n(x) = \sum_{n=0}^{n-1} ne^{-nx} = \frac{x(1-e^{-nx})}{1-e^{-x}} = \frac{xe^x}{e^x - 1} \left(1 - \frac{1}{e^{nx}}\right)$$

∴ $s(x) = \lim_{n \to \infty} s_n(x) = \begin{cases} 0 & \text{if } x = 0 \\ \frac{xe^x}{e^x - 1} & \text{if } x = 0 \end{cases}$

আবার $0 < x \le 1$ -এর জন্য $M_n = \sup_{x \in [0,1]} \left| s_n(x) - s(x) \right| = \sup_{x \in [0,1]} \frac{xe^n}{\left(e^x - 1\right)e^{nx}}$

$$\geq \frac{\frac{1}{n}e^{\frac{1}{n}}}{\left(e^{\frac{1}{n}}-1\right)e}\left[x=\frac{1}{n}, n\in N \text{ (य.)}\right]$$

$$\begin{array}{l} \underline{a} \forall \overline{n} \quad \lim_{n \to \infty} \frac{\frac{1}{n} e^{\frac{1}{n}}}{\left(n^{\frac{1}{n}} - 1\right)e} \quad \left(\frac{0}{0}\right) \\ \\ = \lim_{n \to \infty} \frac{-\frac{1}{n^2} e^{\frac{1}{n}} - \frac{1}{n} e^{\frac{1}{n}} \left(-\frac{1}{n^2}\right)}{e \cdot e^{\frac{1}{n}} \left(-\frac{1}{n^2}\right)} = \lim_{n \to \infty} \frac{\frac{1}{n} + 1}{e} = \frac{1}{e} \neq 0 \end{array}$$

সুতরাং \mathbf{M}_n পরীক্ষা থেকে বলা যায় $\{\mathbf{s}_n(\mathbf{x})\}$ সুষমভাবে অভিসারী নয়।

যেহেতু $x = \frac{1}{n}$ এবং $n \to \infty$ হলে $x \to 0$ হয় অতএব বলা যায় 0 বিন্দুতে তা সুষমভাবে অভিসারী নয়। 11. সংকেত : x = 0 এর জন্য $\{s_n(x)\} = \{0, 0, \dots, \}$ বলে $\lim_{n \to \infty} s_n(x) = 0$ এবং $0 < x \le 1$ -এর জন্য

$$s_n(x) = x + x(1-x) + \dots + x(1-x)^{n-1} = x \left\{ \frac{1-(1-x)^n}{1-(n-x)} \right\} = 1-(1-x)^n \to 1$$
 যখন $n \to \infty$

∴
$$s(x) = \lim_{n \to \infty} s_n(x) = \begin{cases} 0, & \text{যখন } x = 0 \\ 1, & \text{যখন } 0 < x \le 1, & \text{য} & x = 0 & \text{বিন্দুতে সন্তুত নয়} \end{cases}$$

∴ শ্রেণীটির প্রত্যেকপদ [0, 1]-তে সন্তত হলেও s(x) উক্ত অন্তরালে অসন্তত বলে [0, 1]-এর উপর শ্রেণীটি সুষমভাবে অভিসারী নয়।

হয়েছে
$$\sum \frac{nx}{1+n^2x^2}$$
 [এখানে $\sum s'_n(x)$] শ্রেণীটি [0,1] অন্তরালের উপর সুষমভাবে অভি
15. সংকেত ঃ এখানে
 $s_n(x) = (xe^{-x^2}-0) + (2^2xe^{-2x^2x^2}-xe^{-x^2}) + \dots + (n^2xe^{-n^2x^2}-(n-1)^2xe^{-(n-1)^2x^2})$
 $= n^2xe^{-n^2x^2} \rightarrow 0$ যখন $n \rightarrow \infty$ এবং $x \in [0,1]$

dx dx এটি প্রমাণ করে শ্রেণীটির প্রত্যেক পদ পৃথকভাবে অবকলন বৈধ। যদিও উপরে 12.নং প্রশ্নের উত্তরে দেখান 7 চসারী নয়।

$$f'_{1}(x) + f'_{2}(x) + \dots = 0 = s'(x) = \frac{d}{dx}s(x) = \frac{d}{dx}[f_{1}(x) + f_{2}(x) + \dots]$$

আবার,
$$\lim_{n\to\infty} s'_n(x) = \lim_{n\to\infty} \frac{nx}{1+n^2 x^2} = 0$$
 যখন $x \in [0,1]$
∴ {s'_n(x)} ক্রম [0,1] -এর উপর g(x) = 0 তে অভিসারী এবং s'_n = f'_1(x) + f'_2(x) ++f'_n(x) বলে
 $\sum f'_n$ শ্রেণীটি [0,1] -এর উপর g(x)-তে অভিসারী। এখন s'(x) = 0 যখন $x \in [0,1]$ বলে

14. সংকেত ঃ এখানে
$$s_n(x) = \frac{\log(1+n^2x^2)}{2n}, x \in [0,1],$$
 অতএব এখন $\lim_{n \to \infty} s_n(x) = 0 = s(x)$

13 সংকেত : 11.6 অনুচ্ছেদের প্রান্তলিপির উদাহরণের মত অগ্রসর হোন।

চরম মান
$$\phi\left(\frac{1}{n}\right) = \frac{1}{2}$$
 $\therefore \lim_{n \to \infty} M_n = \frac{1}{2} \neq 0 \Rightarrow \{s_n\}$ তথা $\sum f_n[0,1]$ -এর উপর এবং সেইজন্য $x \in \mathbb{R}$
তে সুষমভাবে অভিসারী নয়।
এখানে $\sum f_n$ শ্রেণীর প্রত্যেক পদ $f_n[0,1]$ -এর উপর রিমান-সমাকলনযোগ্য এবং যেহেতু যোগ অপেক্ষক $s(x) = 0$ একই অন্তরালে $s(x)$ ও রিমান সমাকলনযোগ্য।

$$x \in [0,1]$$
 $x \in [0,1]$ $1 + 11 \times x$
[কারণ $\phi(x) = \frac{nx}{1 + n^2 x^2}$ ধরে $\phi'(x) = 0$ থেকে পাওয়া যায় $x = \frac{1}{n}$ এবং $\phi''\left(\frac{1}{n}\right) < 0$ । অতএব $\phi(x)$ -এর

⇒
$$\{s_n(x)\}$$
তথা $\sum f_n(x), x \in \mathbb{R}$ -এর জন্য যোগ অপেক্ষক $s(x) = 0$ -তে অভিসারী ৷
আবার, $M_n = \sup_{x \in [0,1]} |s_n(x) - s(x)| = \sup_{x \in [0,1]} \frac{nx}{1 + n^2 x^2} = \frac{1}{2}$

12. সংকেত : এখানে $s(x) = \lim_{n \to \infty} s_n(x) = \lim_{n \to \infty} \frac{nx}{1 + n^2 x^2} = 0, \forall x \in \mathbb{R}$

 \therefore s(x) = 0 = ধ্রাবক অপেক্ষক হওয়ায় [0,1]-তে তা সন্তুত এবং \int_{1}^{1} s(x)dx = 0

किन्छ
$$\int_{0}^{1} s_n(x) dx = \left[-\frac{1}{2}e^{-n^2x^2}\right]_{0}^{1} = \frac{1}{2}\left[1-e^{-n^2}\right] \rightarrow \frac{1}{2}$$
 यथन $n \rightarrow \infty$

অতএব, $\lim_{n\to\infty} \int_0^1 s_n(x) dx \neq \int_0^1 s(x) dx$

অতএব প্রদন্ত শ্রেণীর [0.1]-এর উপর প্রত্যেক পদ পৃথকভাবে সমাকলনযোগ্য নয়। 16. সংকেত ঃ অভিসারী ব্যাসার্ধ

$$R_{1} = \lim_{n \to \infty} \left| \frac{a_{n}}{a_{n+1}} \right| = \lim_{n \to \infty} \left| \frac{1.3.5....(2n-1)}{2.4.6...2n} \frac{2.4.6...2n(2n+2)}{1.3.5...(2n-1)(2n+1)} \right|$$
$$= \lim_{n \to \infty} \left| \frac{2n+2}{2n+1} \right| = 1 > 0$$

∴ শ্রেণীটিি | x |<1-এর জন্য চরমভাবে ও সুষমভাবে অভিসারী। অতএব,

 $(1-x^2)^{-y_2} = 1 + \frac{1}{2}x^2 + \frac{1\cdot 3}{2\cdot 4}x^4 + \frac{1\cdot 3\cdot 5}{2\cdot 4\cdot 6}x^6 + \dots$

শ্রেণীর প্রত্যেক পদ পৃথকভাবে সমাকলনযোগ্য। অতএব | x | < 1 -এর জন্য

$$\int_{0}^{x} (1-x^{2})^{-y_{2}} dx = \int_{0}^{x} 1 \, dx + \frac{1}{2} \int_{0}^{1} x^{2} dx + \frac{1 \cdot 3}{2 \cdot 4} \int_{0}^{x} x^{4} dx + \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} \int_{0}^{x} x^{6} dx + \dots$$

$$\exists i, \sin^{-1} x = x + \frac{1}{2} \cdot \frac{x^{3}}{3} + \frac{1 \cdot 3}{2 \cdot 4} \frac{x^{5}}{5} + \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} \cdot \frac{x^{7}}{7} + \dots \quad \forall \forall \forall i | x| < 1$$

11.14 সহায়ক পুস্তক

- 1. Methods of Real Analysis Richard R. Goldberg.
- 2. Introduction to Real Analysis S. K. Mapa.
- 3. Mathematical Analysis Apostol.
- 4. Infinite Series J. N. Sharma.

একক 12 🗆 বহুচল অপেক্ষকের লিমিট, সন্তুতি ও আংশিক অবকল সংক্রান্ত উপপাদ্য

গঠন

- 12.1 প্রস্তাবনা
- 12.2 উদ্দেশ্য
- 12.3 সন্তুত ও অবকলন হওয়ার পর্যাপ্ত শর্ত
- 12.4 Schwarz's Theorem & Young's Theorem
- 12.5 Chain Rule-এর প্রয়োগ
- 12.6 প্রশ্নাবলি
- 12.7 সারাংশ
- 12.8 সহায়ক পুস্তক

12.1 প্রস্তাবনা

আপনারা 7-এককে বহুচল অপেক্ষকের সীমা, সন্ততি ও আংশিক অবকল সমূহ দেখেছেন। এই এককে বিশেষ বিশেষ উপপাদ্য, জটিল তত্ত্ব আলোচনা হয়নি। এর প্রয়োজনে এই এককের অবতারণা করা হয়েছে।

12.2 উদ্দেশ্য

এই একক পাঠ করে আপনি

- দুটি চলরাশির অপেক্ষকের সন্তত ও অবকলন হওয়ার পর্যাপ্ত শর্ত জানতে পারবেন।
- Schwarz's উপপাদ্য ও Young's উপপাদ্য-এর আলোচনা ও প্রমাণ দেখতে পাবেন।
- কিছু উদাহরণ ও তার সমাধান পাবেন।
- প্রশ্নমালা পাবেন।

12.3 সন্তুত ও অবকলন হওয়ার পর্যাপ্ত শর্ত

উপপাদ্য - 1 ঃ ধরি D অঞ্চলে সংজ্ঞায়িত f(x, y) একটি অপেক্ষক। যদি D-এর সমগ্র অঞ্চলে f_x, f_y-এর অস্তিত্ব থাকে ও সীমাবদ্ধ হয় তা হলে D-এর মধ্যে f (x, y) সন্তত হবে। প্রমাণ ঃ মনে করি (x, y) হল D-এর অন্তবর্তী বিন্দু এবং h, k ক্ষুদ্র বান্তব রাশি যাতে (x+h, y) ; (x, y+k), (x + h, y + k) প্রত্যেকে D-এর মধ্যে থাকবে।

এখন লিখতে পারি

f(x + h, y + k) - f(x, y)

 $= \{f(x + h, y + k) - f(x + h, y)\} + \{f(x + h, y) - f(x, y)\} \dots \dots \dots (1)$

যেহেতু f_y-এর অস্তিত্ব আছে, আমরা f(x +h, y) অপেক্ষকের [y, y + k] উপর Mean Value Thorem প্রয়োগ করতে পারি।

সুতরাং f (x = h, y + k) - f(x + h, y) = kf_y (x + h, y +
$$\theta_1 k$$
), যেখানে $0 < \theta_1 < 1$

একইভাবে (1) নং এর 2য় বন্ধনীর জন্য M, V, T প্রয়োগ করে পাই

 $f(x + h, y) - f(x, y) = hf_x (x + \theta_2 h, y), 0 < \theta_2 < 1$

তা হলে, (1)নং হতে পাই,

 $f(x + h, y + k) - f(x, y) = kf_y(x + h, y + \theta_1 k) + hf_x(x + \theta_2 h, y).....(2)$

এখন D-এর মধ্যে f_x, f_y সীমাবদ্ধ হওয়ায় $\mid f_x \mid < M, \qquad \mid f_y \mid < M,$

যেথানে M একটি ধনাত্মক বাস্তব রাশি।

সুতরাং (2) নং হতে

 $| f(x + h, y + k) - f(x, y) | \le M (| k | + | h |)$

এখন | G | $<\delta$; | R | $<\delta$ নিয়ে যেখানে $\,\delta$ = $\frac{\epsilon}{2M}\,$ ধরলে

 $| \mathbf{f}(\mathbf{x}+\mathbf{h}, \mathbf{y}+\mathbf{k}) - \mathbf{f}(\mathbf{x}, \mathbf{y}) | \leq \varepsilon$

সুতরাং D-এর মধ্যে f(x, y) সন্তত।

উপপাদ্য 2 ঃ ধরি f(x, y) অপেক্ষকটি D অঞ্চলে সংজ্ঞায়িত এবং (a, b) হল D-র অন্তবর্তী বিন্দু। যদি (a, b) বিন্দুতে f_x-এর অস্তিত্ব থাকে এবং (a, b) বিন্দুতে f_y সন্তত হয়, তা হলে (a, b) বিন্দুতে f(x, y) অবকল থাকবে। **প্রমাণ ঃ** যেহেতু (a, b) বিন্দুতে f_y সন্তত সুতরাং (a, b)-এর একটি সামীপ্য N থাকবে, যেখানে প্রতি বিন্দুতে f_y-এর অস্তিত্ব থাকবে। ধরি (a + h, b + k) বিন্দুটি N-এর মধ্যে থাকবে। তাহলে (a + h, b), (a, b + k) উভয়েই N-এর মধ্যে থাকবে।

এখন $f(a + h, b + k) - f(a, b) = \{f(a + h, b + k) - f(a + h, b)\} + \{f(a + h, b) - f(a, b)\}...(1)$

ধরি $\phi(y) = f(a + h, y)$

যেহেতু N-এর মধ্যে f_y-এর অস্তিত্ব থাকে, y-এর সাপেক্ষে φ(y) অপেক্ষক [b, b + k] এই অঞ্চলে অবকলনযোগ্য হবে। সুতরাং φ(y)-এর উপর Lagrange's M.V.T. প্রয়োগ করলে

$$\phi(\mathbf{b} + \mathbf{k}) - \phi(\mathbf{b}) = \mathbf{k}\phi'(\mathbf{b} + \theta\mathbf{k}), \ 0 < \theta < 1$$

বা,
$$f(a + h, b + k) - f(a + h, b) = kf_y(a + h, b + \theta k)$$
(2)

এখন ধরি,

 $f_{y} (a + h,b + \theta k) - f_{y} (a, b) = \epsilon_{1}$ (3)

যেখানে ε_1 হল, h, k-এর অপেক্ষক। যেহেতু (a, b) বিন্দুতে f_y সন্তত, (h, k) \rightarrow (0, 0) হলে $\varepsilon_1 \rightarrow 0$ হবে।

আবার যেহেতু (a, b) বিন্দুতে $\mathbf{f}_{_{\mathrm{s}}}$ -এর অস্তিত্ব আছে,

$$\lim_{h\to 0}\frac{f(a+h, b)-f(a, b)}{h}=f_x(a, b)$$

বা, f (a + h, b) - f(a, b) = $hf_x(a, b) + \varepsilon_2 h$ (4)

যেখানে $h \to 0$ হলে $\epsilon_2 \to 0$ হবে

এখন (1), (2), (3), (4) সাহায্য নিয়ে লিখতে পারি,

f(a + h, b + k) - f(a, b)= k {f_y(a, b) + ε_1 } + hf_x (a, b) + ε_2 h = hf_x (a, b) + kf_y (a, b) + ε_1 k + ε_2 h

যেখানে $\epsilon_1, \, \epsilon_2,$ হল (h, k) এর অপেক্ষক এবং $\epsilon_1 o 0, \, \epsilon_2 o 0$ যখন (h, k) $o (0, \, 0)$

সুতরাং f(x, y) এর অবকলন থাকবে।

12.4 Schwarz's Theorem এবং Young's Theorem

উপপাদ্য - I ঃ ধরি f(x, y) অপেক্ষকটি D অঞ্চলে সংজ্ঞায়িত এবং (a, b) হল D-এর বিন্দু। যদি

(i) (a, b)-এর সামীপ্যে $\frac{\partial f}{\partial y}$ অস্তিত্ব থাকে

(ii) (a, b) বিন্দুতে
$$\frac{\partial^2 f}{\partial y \partial x}$$
 সন্তত,

তাহলে (a, b) বিন্দুতে $\frac{\partial^2 f}{\partial x \partial y}$ অস্তিত্ব থাকবে

এবং
$$\left(\frac{\partial^2 \mathbf{f}}{\partial \mathbf{x} \partial \mathbf{y}}\right)_{(\mathbf{a}, \mathbf{b})} = \left(\frac{\partial^2 \mathbf{f}}{\partial \mathbf{y} \partial \mathbf{x}}\right)_{(\mathbf{a}, \mathbf{b})}$$

প্রমাণ ঃ প্রদন্ত শর্ত হতে লিখতে পারি (a, b) এর একটি সামীপ্যে N থাকবে যেখানে f_y , f_x , f_{yx} -এর অস্তিত্ব থাকবে। ধরি h, k দুটি বাস্তব রাশি যাতে (a + h, b + k), (a, b + k), (a + h, b) প্রত্যেকে N-এর মধ্যে থাকবে। ধরি, F(h, k) = f(a + h, b + k) – f(a + h, b) – f(a, b + k) + f(a, b)

g(x) = f(x, b + k) - f(x, b)

সুতরাং F(h, k) = g(a + h) - g(a)(1)

এখন যেহেতু N-এর মধ্যে f_x-এর অস্তিত্ব আছে, (a, a+h) এ জায়গায় g(x) অবকলন যোগ্য হবে এবং [a, a + h]-এ জায়গায় g(x) সন্তত হবে। সুতরাং g(x)-এর [a, a + h] উপর Lagranges M.V.T. প্রয়োগ করা যায়।

সুতরাং (I) নং হতে পাই,

$$F(\mathbf{h}, \mathbf{k}) = g(\mathbf{a} + \mathbf{h}) - g(\mathbf{a})$$

= $\mathbf{h}g^{\prime} (\mathbf{a} + \theta \mathbf{h}), \ 0 < \theta < 1$
= $\mathbf{h}\{\mathbf{f}_{\mathbf{x}}(\mathbf{a} + \theta \mathbf{h}, \mathbf{b} + \mathbf{k}) - \mathbf{f}_{\mathbf{x}} (\mathbf{a} + \theta \mathbf{h}, \mathbf{b})\}$ (2)

আবার যেহেতু N-এর মধ্যে f_{yx} এর অস্তিত্ব থাকে, (b, b + k)-এর মধ্যে y-এর সাপেক্ষে f_x (a + θ h, y) অবকলন থাকবে এবং [b, b + k] এর মধ্যে f_x (a + θ h, y) সন্তত হবে। সুতরাং f_x (a + θ h, y)-এর উপর Lagranges M.V.T. প্রয়োগ করতে পারি, এবং (2) হতে পাই,

$$\begin{aligned} \mathbf{F}(\mathbf{h}, \mathbf{k}) &= \mathbf{h}\{\mathbf{f}_{\mathbf{x}} (\mathbf{a} + \mathbf{\theta}\mathbf{h}, \mathbf{b} + \mathbf{k}) - \mathbf{f}_{\mathbf{x}} (\mathbf{a} + \mathbf{\theta}\mathbf{h}, \mathbf{b})\} \\ &= \mathbf{h}\mathbf{k} \mathbf{f}_{\mathbf{y}\mathbf{x}} (\mathbf{a} + \mathbf{\theta}\mathbf{h}, \mathbf{b} + \mathbf{\theta}'\mathbf{k}), \ 0 < \mathbf{\theta}' < 1 \\ \\ & \forall \mathbf{h}, \mathbf{h}(\mathbf{a} + \mathbf{h}, \mathbf{b} + \mathbf{k}) - \mathbf{f}(\mathbf{a} + \mathbf{h}, \mathbf{b}) - \mathbf{f}(\mathbf{a}, \mathbf{b} + \mathbf{k}) + \mathbf{f}(\mathbf{a}, \mathbf{b}) = \mathbf{h}\mathbf{k}\mathbf{f}_{\mathbf{y}\mathbf{x}} (\mathbf{a} + \mathbf{\theta}\mathbf{h}, \mathbf{b} + \mathbf{\theta}'\mathbf{k}) \quad 0 < \mathbf{\theta}, \ \mathbf{\theta}' < 1 \end{aligned}$$

$$\exists I \frac{1}{h} \left[\frac{f(a+h, b+k) - f(a+h, b)}{k} - \frac{f(a, b+k) - f(a, b)}{k} \right]$$

$$= f_{yx} (a + \theta h, b + \theta' h)$$

$$\exists I \frac{1}{h} \left[\lim_{k \to 0} \frac{f(a+h, b+k) - f(a+h, b)}{k} - \lim_{k \to 0} \frac{f(a, b+k) - f(a, b)}{k} \right]$$

$$= \lim_{k \to 0} f_{yx} (a + \theta h, b + \theta' k)$$

(যেহেতু (a, b)-এর সামীপ্য N-এতে f_y -এর অস্তিত্ব থাকে, আমরা উভয়পক্ষে $\lim_{k o 0}$ নিতে পারি)

বা,
$$\frac{\mathbf{f}_{y}(\mathbf{a} + \mathbf{h}, \mathbf{b}) - \mathbf{f}_{y}(\mathbf{a}, \mathbf{b})}{\mathbf{h}} \lim_{\mathbf{k} \to 0} \mathbf{f}_{yx}(\mathbf{a} + \theta \mathbf{h}, \mathbf{b} + \theta' \mathbf{k})$$

বা,
$$\lim_{\mathbf{h} \to 0} \frac{\mathbf{f}_{y}(\mathbf{a} + \mathbf{h}, \mathbf{b}) - \mathbf{f}_{y}(\mathbf{a}, \mathbf{b})}{\mathbf{h}}$$
$$= \lim_{\mathbf{b} \to 0} \left[\lim_{\mathbf{k} \to 0} \mathbf{f}_{yx}(\mathbf{a} + \theta \mathbf{h}, \mathbf{b} + \theta' \mathbf{k}) \right]$$

[(a, b) বিন্দুতে f_{yx} সন্তুত হওয়ার জন্য উভয়পক্ষে নিতে পারি)

সুতরাং (a, b) বিন্দুতে \mathbf{f}_{yx} -এর অস্তিত্ব আছে এবং \mathbf{f}_{xy} (a, b) = $\mathbf{f}_{yx}(\mathbf{a},\,\mathbf{b})$ ।

Young's Theorem

উপপাদ্য -2 : যদি (a, b) এর সামীপ্য f_x এবং f_y-এর অস্তিত্ব থাকে এবং এই বিন্দুতে তাদের অবকল থাকে, তাহলে (a, b) বিন্দুতে f_{xy} = f_{yx} হবে। প্রমাণ ঃ মনে করি (a, b)-এর একটি সামীপ্য N-এর মধ্যে f_x , f_y -এর অবকল আছে। সুতরাং f_{xy} , f_{xx} , f_{yx} , f_{yy} প্রত্যেকের N-এর মধ্যে অস্তিত্ব থাকবে।

ধরি ${f h},\,{f k}$ এমন ক্ষুদ্রবাস্তব রাশি (${f a}+{f h},\,{f b}+{f k}$) বিন্দুটি N-এর মধ্যে থাকবে এবং একটি অপেক্ষক ${f F}$

যেখানে
$$F(h, h) = f(a + h, b + h) - f(a + h, b) - f(a, b + h) + f(a, b)$$

আবার ধরি g(x) = f(x,b + h) - f(x, b)

সুতরাং F(h, h) = g(a + h) - g(a)(1)

যেহেতু N-এর মধ্যে f_x-এর অস্তিত্ব আছে, (a, a + h)-এর মধ্যে g(x)-এর অবকল আছে এবং [a, a + h]-এর মধ্যে g(x) সস্তত, তাহলে [a, a + h]-এর মধ্যে g(x)-এর ক্ষেত্রে Lagranges M.V.T. প্রয়োগ করা যায়।

অতএব $F(h, h) = hg'(a + \theta h), \ 0 < \theta < 1$

 $= h[f_x (a + \theta h, b + h) - f_x (a + \theta h, b)] \dots (2)$

আবার যেহেতু (a, b) বিন্দুতে fু-এর অবকল থাকায়

$$\begin{split} \mathbf{f}_{\mathbf{x}} & (\mathbf{a} + \mathbf{\theta} \mathbf{h}, \, \mathbf{b} + \mathbf{h}) - \mathbf{f}_{\mathbf{x}} (\mathbf{a}, \, \mathbf{b}) = \mathbf{\theta} \mathbf{h}_{\mathbf{xx}} (\mathbf{a}, \, \mathbf{b}) + \mathbf{h} \mathbf{f}_{\mathbf{yx}} (\mathbf{a}, \, \mathbf{b}) + \mathbf{\theta} \mathbf{h} \mathbf{\epsilon}_{1} + \mathbf{h} \mathbf{\epsilon}_{2} \dots \dots (3) \\ \text{(যেখানে } \mathbf{\epsilon}_{1}, \mathbf{\epsilon}_{2} \quad \textbf{zer } \mathbf{h} \text{-as ucross and } \mathbf{acc} (\mathbf{\epsilon}_{1} \to \mathbf{0}, \ \mathbf{\epsilon}_{2} \to \mathbf{0} \text{ user } \mathbf{h} \to \mathbf{0} \\ \text{acc} \mathbf{f}_{\mathbf{x}} (\mathbf{a} + \mathbf{\theta} \mathbf{h}, \, \mathbf{b}) - \mathbf{f}_{\mathbf{x}} (\mathbf{a}, \, \mathbf{b}) = \mathbf{\theta} \mathbf{h} \mathbf{f}_{\mathbf{xx}} (\mathbf{a}, \, \mathbf{b}) + \mathbf{\theta} \mathbf{h} \mathbf{\epsilon}_{3} \dots \dots \dots (4) \\ \text{(user } \mathbf{\epsilon}_{3} \text{ zer } \mathbf{h} \text{-as ucross and } \mathbf{acc} (\mathbf{\epsilon}_{3} \to \mathbf{0} \text{ user } \mathbf{h} \to \mathbf{0} \\ \text{acc} (\mathbf{1}, (\mathbf{1}), (\mathbf{1}), (\mathbf{1}) \text{ zco } \mathbf{n} \mathbf{k}, \mathbf{k}) \end{split}$$

$$\frac{\mathbf{F}(\mathbf{h},\mathbf{h})}{\mathbf{h}^2} = \mathbf{f}_{yx}(\mathbf{a},\mathbf{b}) + \boldsymbol{\theta}\boldsymbol{\varepsilon}_1 + \boldsymbol{\varepsilon}_2 - \boldsymbol{\theta}\boldsymbol{\varepsilon}_3.....(5)$$

এবং একইভাবে $\phi(y) = f(a+b,y) - f(x,y)$ ধরলে, আমরা দেখতে পারি

যেখানে $\mathbf{h}
ightarrow 0$ হলে $\epsilon_4
ightarrow 0, \ \epsilon_5
ightarrow 0, \ \epsilon_6
ightarrow 0$

অতএব $h \rightarrow 0$ ধরলে (5), (6) হতে পাই

 \mathbf{F}_{xy} (a, b) = \mathbf{F}_{yx} (a, b)

উদাহরণ -1 : মনে করি

$$\begin{split} f(x,y) &= xy \frac{x^2 - y^2}{x^2 + y^2} \ \overline{q} \overline{q}_{\overline{n}-x^2 + y^2} \neq 0 \\ &= 0, \ \overline{q} \overline{q}_{\overline{n}-x^2 + y^2} = 0 \\ \mathfrak{sl} \overline{q} \overline{q}_{\overline{n}-x^2 + y^2} &= 0 \\ \mathfrak{sl} \overline{q} \overline{q}_{\overline{n}-x^2 + y^2} = \frac{1}{h^{h \to 0}} \frac{f(x+h,y) - f(x,y)}{h} \\ &= \lim_{h \to 0} \frac{f(x+h)y \frac{(x+h)^2 - y^2}{(x+h)^2 + y^2} - xy \frac{x^2 - y^2}{x^2 + y^2}}{h} \\ &= \lim_{h \to 0} \frac{(x+h)y \frac{(x+h)^3 - y^3(x+h)}{h} - \frac{xy(x^2 - y^2)}{x^2 + y^2}}{h} \\ &= \lim_{h \to 0} \frac{y(x^2 + y^2)(x^3 + 3x^{2h} + 3xh^2 + h^3) - y^3(x^2 + y^2)(x+h) - xy(x^2 - y^2)(x+h)^2 - xy^3(x^2 - y^2)}{(x^2 + y^2)((x+h)^2 + y^2)} \times \frac{1}{h} \\ &= \lim_{h \to 0} \frac{(yx^2 + y^3)(x^3 + 3x^{2h} + 3xh^2 + h^3) - (x^2y^3 + y^3)(x+h) - (x^3y - xy^3)(x^2 + 2xh + h^2) - xy^3(x^2 - y^2)}{(x^2 + y^2)((x+h)^2 + y^2)} \times \frac{1}{h} \\ &= \lim_{h \to 0} \frac{(yx^2 + y^3)(x^3 + 3x^2h + 3xh^2 + h^3) - (x^2y^3 + y^3)(x+h) - (x^3y - xy^3)(x^2 + 2xh + h^2) - xy^3(x^2 - y^2)}{(x^2 + y^2)((x+h)^2 + y^2)} \times \frac{1}{h} \\ &= \lim_{h \to 0} \frac{(yx^4 + 3x^3yh^2 + yx^2h^3 + 3x^3yh^2 + x^3y^3 + 2x^3y^3h + xy^3h^2 - x^3y^3 - hx^2y^3 - xy^5)}{(x^2 + y^2)((x+h)^2 + y^2)} \times \frac{1}{h} \\ &= \lim_{h \to 0} \frac{3x^4 y + 3x^3yh^2 + yx^2h^3 + 3x^2y^3h + 3xy^3h^2 + y^3h^3 - hx^2y^3 - y^5 - 2x^4y - x^3yh + 2x^2y^3}{(x^2 + y^2)((x+h)^2 + y^2)} \\ &= \frac{3x^4 y + 3x^2y^3 - x^2y^3 - y^5 - 2x^4 y + 2x^2y^3}{(x^2 + y^2)^2} \end{split}$$

$$= \frac{x^4y + 4x^2y^3 - y^5}{\left(x^2 + y^2\right)^2}$$
$$= \frac{y\left(x^4 + 4x^2y^2 - y^4\right)}{\left(x^2 + y^2\right)^2}$$
যখন $x^2 + y^2 \neq 0$

এবং $\mathbf{f}_{\mathbf{x}}$ (x, y) = 0 যথন $\mathbf{x}^2 + \mathbf{y}^2 = 0$

একইভাবে
$$f_{yx}(x, y) = \frac{-x(y^4 - x^4 + 4x^2y^2)}{(x^2 + y^2)^2}$$
 যখন $(x, y) \neq (0, 0)$
 $= 0$, যখন $(x, y) = (0, 0)$
আবার $f_{yx}(x, y) = \lim_{k \to 0} \frac{f_x(x, y + k) - f_x(x, y)}{k}$
 $= \frac{x^6 + 9x^4y^2 - 9x^2y^4 - y^6}{(x^2 + y^2)^3}$ যখন $(x, y) \neq (0, 0)$
 $= -1$ যখন $(x, y) = (0, 0)$
এবং $f_{xy}(x, y) = \frac{x^6 + 9x^4y^2 - 9x^2y^4 - y^6}{(x^2 + y^2)^2}$ যখন $(x, y) \neq (0, 0)$
 $= 1$, যখন $(x, y) = (0, 0)$
এখন f_{yx} -এ $y = mx$ বসালে, আমরা পাই

$$\frac{1+9m^2-9m^4-m^6}{\left(1+m^2\right)^3}$$

এর থেকে বলা যায়

 $\lim_{\substack{\mathbf{x}\to\mathbf{0}\\\mathbf{y}\to\mathbf{0}}}\mathbf{f}_{\mathbf{y}\mathbf{x}}\neq-\mathbf{1}=\mathbf{f}_{\mathbf{y}\mathbf{x}}\left(\mathbf{0},\,\mathbf{0}\right)$

সুতরাং f_{yx} অপেক্ষকটি (0, 0) বিন্দুতে সন্তত নয়। একইভাবে (0, 0) বিন্দুতে f_{xy} সন্তত নয়। তাহলে Schwarz's Theorem-এর শর্তগুলি সিদ্ধ নয়। আমরা দেখাতে পারি (0, 0) বিন্দুতে f_x এবং y_y-এর অবকল নেই।

সুতরাং Young's Theorem-এর শর্তগুলি সিদ্ধ নয়।

উদাহরণ 2 ঃ ধরি f (x, y) একটি অপেক্ষক নিম্নে সংজ্ঞায়িত

$$\begin{split} \mathbf{f}(\mathbf{x},\mathbf{y}) &= \frac{\mathbf{x}^2 \mathbf{y}^2}{\mathbf{x}^2 + \mathbf{y}^2} \ \text{form } \mathbf{x}^2 + \mathbf{y}^2 \neq 0 \\ &= 0, \ \text{form } \mathbf{x} = \mathbf{y} = 0 \\ \\ \text{Gripping } \mathbf{f}_{\mathbf{x}}(0,0) &= \lim_{h \to 0} \frac{\mathbf{f}(\mathbf{h},0) - \mathbf{f}(0,0)}{\mathbf{h}} = 0 \\ \\ \mathbf{f}_{\mathbf{y}}(0,0) &= \lim_{h \to 0} \frac{\mathbf{f}(0,\mathbf{k}) - \mathbf{f}(0,0)}{\mathbf{k}} = 0 \\ \text{x}^2 + \mathbf{y}^2 \neq 0 \ \text{Form } \mathbf{f}_{\mathbf{x}}(\mathbf{x},\mathbf{y}) = \frac{2\mathbf{x}\mathbf{y}^4}{(\mathbf{x}^2 + \mathbf{y}^2)^2} \\ \\ \mathbf{f}_{\mathbf{y}}(\mathbf{x},\mathbf{y}) &= \frac{2\mathbf{x}^4\mathbf{y}}{(\mathbf{x}^2 + \mathbf{y}^2)^2} \\ \\ \mathbf{f}_{\mathbf{yx}}(0,0) &= \lim_{h \to 0} \frac{\mathbf{f}_{\mathbf{x}}(0,\mathbf{k}) - \mathbf{f}_{\mathbf{x}}(0,0)}{\mathbf{k}} = 0 \\ \\ \text{Gripping } \mathbf{f}_{\mathbf{xy}}(0,0) &= \lim_{h \to 0} \frac{\mathbf{f}_{\mathbf{y}}(\mathbf{h},0) - \mathbf{f}_{\mathbf{y}}(0,0)}{\mathbf{h}} = 0 \\ \\ \text{Gripping } \mathbf{f}_{\mathbf{xy}}(0,0) &= \lim_{h \to 0} \frac{\mathbf{f}_{\mathbf{yx}}(0,0) - \mathbf{f}_{\mathbf{y}}(0,0)}{\mathbf{h}} = 0 \\ \\ \text{Gripping } \mathbf{f}_{\mathbf{xy}}(0,0) &= \mathbf{f}_{\mathbf{yx}}(0,0) \\ \\ \text{Gripping } \mathbf{f}_{\mathbf{yy}}(\mathbf{x},\mathbf{y}) &= \frac{8\mathbf{x}\mathbf{y}^3\left(\mathbf{x}^2 + \mathbf{y}^2\right)^2 - 2\mathbf{x}\mathbf{y}^4 - 2\left(\mathbf{x}^2 + \mathbf{y}^2\right) - 2\mathbf{y}}{\left(\mathbf{x}^2 + \mathbf{y}^2\right)^4} \\ \\ &= \frac{8\mathbf{x}^3\mathbf{y}^3}{\left(\mathbf{x}^2 + \mathbf{y}^2\right)^3} \end{split}$$

এখানে y = mx বসালে $\lim_{\substack{x \to 0 \ y \to 0}} f_{yx}(x, y) \neq 0$

এবং $\mathbf{f}_{_{\mathrm{Xy}}}(0,\ 0)=0$ সুতরাং বলা যায় (0, 0) বিন্দুতে $\mathbf{f}_{_{\mathrm{Yx}}}$ সন্তুত নয়। একইভাবে বলা যায় (0, 0) বিন্দুতে $\mathbf{f}_{_{\mathrm{Xy}}}$ সন্তুত নয়। ফলে Schwarz's উপপাদ্য-এর শর্ত সিদ্ধ নয়। এখানে $f_{yx}(0, 0) = \lim_{h \to 0} \frac{f_x(h, 0) - f(0, 0)}{h} = 0$ এখন (0, 0) বিন্দুতে f_x -এর অবকল থাকবে যদি $f_x(h, k) - f_x(0, 0) = f_{xx}(0, 0)h + f_{yx}(0, 0)k + \varepsilon_1 h + \varepsilon_2 k$ যেখানে (h, k) $\rightarrow (0, 0)$ হলে $\varepsilon_1 \rightarrow 0, \ \varepsilon_2 \rightarrow 0$

বা
$$\frac{2\mathbf{hk}^4}{\left(\mathbf{h}^2 + \mathbf{k}^2\right)^2} = \varepsilon_1 \mathbf{h} + \varepsilon_2 \mathbf{k}$$

 $h = r \cos \theta, K = r \sin \theta$ तत्रात्न

$$\frac{2r^{5}\sin\theta\cos\theta}{r^{4}} = \varepsilon_{1} r \sin\theta + \varepsilon_{2} r \cos\theta$$

 $\exists i \ 2\sin\theta\cos\theta = \epsilon_1\sin\theta + \epsilon_2\,\cos\theta$

সুতরাং $\lim_{r \to 0} 2\sin\theta \cos\theta = \lim_{r \to 0} (\varepsilon_1 \sin\theta + \varepsilon_2 \cos\theta)$

$$= \lim_{(\mathbf{h},\mathbf{k})\to(0,\ 0)} \left(\varepsilon_1 \sin\theta + \varepsilon_2 \cos\theta \right) = 0$$

বা, $2 \sin \theta \cos \theta = 0$ অসম্ভব কারণ θ যে কোন তাহলে (0, 0) বিন্দুতে $\mathbf{f}_{\mathbf{x}}$ অবকল নাই। একইভাবে (0, 0) বিন্দুতে $\mathbf{f}_{\mathbf{y}}$ অবকল নাই।

এখানে দেখা যাচ্ছে Young's Theorem-এর শর্ত সিদ্ধ হচ্ছে না।

সুতরাং Schwarz's Theorem ও Young's Theorem-এর শর্তাবলী সিদ্ধ হচ্ছে না-যদিও $f_{xy}(0, 0) = f_{yx}(0, 0)$

12.5 Chain Rule-এর প্রয়োগ

উদাহরণ 1 ঃ ধরি Z হল x, y-এর অপেক্ষক এবং x, y-এর সাপেক্ষে Z-এর অবকল আছে। এখন $x = r \cos \theta, y = r \sin \theta$ ধরলে প্রমাণ করুন ঃ

(i)
$$\left(\frac{\partial z}{\partial r}\right)^2 + \frac{1}{r^2} \left(\frac{\partial z}{\partial \theta}\right)^2 = \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2$$

(ii)
$$\frac{\partial^2 z}{\partial r^2} + \frac{1}{r} \frac{\partial z}{\partial r} + \frac{1}{r^2} \frac{\partial^2 z}{\partial \theta^2} = \frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2}$$

সমাধান : (i) Chain Rule-এর সাহায্যে লিখতে পারি,

$$\frac{\partial z}{\partial r} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial r}$$

$$= \cos\theta \frac{\partial z}{\partial x} + \sin\theta \frac{\partial z}{\partial y}$$

$$\frac{\partial z}{\partial \theta} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial \theta} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial \theta}$$

$$= -r \sin\theta \frac{\partial z}{\partial x} + r \cos\theta \frac{\partial z}{\partial y}$$
(A)

স্তরাং
$$\left(\frac{\partial z}{\partial r}\right)^2 + \frac{1}{r^2} \left(\frac{\partial z}{\partial \theta}\right)^2$$
$$= \left(\cos\theta \frac{\partial z}{\partial x} + \sin\theta \frac{\partial z}{\partial y}\right)^2 + \left(-\sin\theta \frac{\partial z}{\partial x} + \cos\theta \frac{\partial z}{\partial y}\right)^2$$
$$= \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2$$

(ii) (A) হতে আমরা পাই

$$\begin{split} \frac{\partial}{\partial \mathbf{r}} &= \cos\theta \frac{\partial}{\partial \mathbf{x}} + \sin\theta \frac{\partial}{\partial \mathbf{y}} \\ \frac{\partial}{\partial \mathbf{q}} &= -\mathbf{r} \sin\theta \frac{\partial}{\partial \mathbf{x}} + \mathbf{r} \cos\theta \frac{\partial}{\partial \mathbf{y}} \\ \hline \nabla \mathbf{q} \nabla \mathbf{s} \mathbf{q} \overline{\mathbf{q}} \frac{\partial^2 z}{\partial \mathbf{r}^2} &= \frac{\partial}{\partial \mathbf{r}} \left(\frac{\partial z}{\partial \mathbf{r}} \right) \\ &= \frac{\partial}{\partial \mathbf{r}} \left(\cos\theta \frac{\partial z}{\partial \mathbf{x}} + \sin\theta \frac{\partial z}{\partial \mathbf{y}} \right) \\ &= \cos\theta \frac{\partial}{\partial \mathbf{r}} \left(\frac{\partial z}{\partial \mathbf{x}} \right) + \sin\theta \frac{\partial}{\partial \mathbf{r}} \left(\frac{\partial z}{\partial \mathbf{y}} \right) \\ &= \cos\theta \left[\cos\theta \frac{\partial}{\partial \mathbf{x}} + \sin\theta \frac{\partial}{\partial \mathbf{r}} \right] \left(\frac{\partial z}{\partial \mathbf{x}} \right) + \sin\theta \left[\cos\theta \frac{\partial}{\partial \mathbf{x}} + \sin\theta \frac{\partial}{\partial \mathbf{y}} \right] \left(\frac{\partial z}{\partial \mathbf{y}} \right) \\ &= \cos\theta \left[\cos\theta \frac{\partial}{\partial \mathbf{x}} + \sin\theta \cos\theta \frac{\partial^2 z}{\partial \mathbf{y}^2} + \sin\theta \cos\theta \frac{\partial^2 z}{\partial \mathbf{x} \partial \mathbf{y}} + \sin\theta \cos\theta \frac{\partial^2 z}{\partial \mathbf{x} \partial \mathbf{y}} + \sin^2\theta \frac{\partial^2 z}{\partial \mathbf{y}^2} \right] \\ &= \cos^2\theta \frac{\partial^2 z}{\partial \mathbf{x}^2} + \sin\theta \cos\theta \frac{\partial^2 z}{\partial \mathbf{x} \partial \mathbf{y}} + \sin^2\theta \frac{\partial^2 z}{\partial \mathbf{y}^2} \quad \left(\mathbf{\cdot} \mathbf{\cdot} \frac{\partial^2 z}{\partial \mathbf{y} \partial \mathbf{x}} = \frac{\partial^2 z}{\partial \mathbf{x} \partial \mathbf{y}} \right) \dots (\mathbf{i}) \\ \frac{\partial^2 z}{\partial \theta^2} &= \frac{\partial}{\partial \theta} \left(\frac{\partial z}{\partial \theta} \right) \\ &= \left[-\mathbf{r} \cos\theta \frac{\partial z}{\partial \mathbf{x}} + \mathbf{r} \cos\theta \frac{\partial z}{\partial \mathbf{y}} \right] - \mathbf{r} \sin\theta \frac{\partial}{\partial \theta} \left(\frac{\partial z}{\partial \mathbf{x}} \right) + \mathbf{r} \cos\theta \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial \mathbf{y}} \right) \\ &= -\mathbf{r} \left(\cos\theta \frac{\partial z}{\partial \mathbf{x}} + \sin\theta \frac{\partial z}{\partial \mathbf{y}} \right) - \mathbf{r} \sin\theta \left[-\mathbf{r} \sin\theta \frac{\partial}{\partial \mathbf{x}} + \mathbf{r} \cos\theta \frac{\partial}{\partial \mathbf{y}} \right] \left(\frac{\partial z}{\partial \mathbf{x}} \right) \end{split}$$

$$+r\cos\theta \left[-r\sin\theta\frac{\partial}{\partial x} + r\cos\theta\frac{\partial}{\partial y} \right] \frac{\partial z}{\partial y}$$
$$= -r\frac{\partial z}{\partial r} + r^{2}\sin^{2}\theta\frac{\partial^{2}z}{\partial x^{2}} - 2r^{2}\sin\theta\cos\theta\frac{\partial^{2}z}{\partial x\partial y} + r^{2}\cos^{2}\theta\frac{\partial^{2}z}{\partial x^{2}}$$
$$(18) = -\frac{1}{r}\frac{\partial z}{\partial \theta^{2}} + \frac{1}{r}\frac{\partial z}{\partial x^{2}}$$
$$= -\frac{1}{r}\frac{\partial z}{\partial r} + \sin^{2}\theta\frac{\partial^{2}z}{\partial x^{2}} - 2\sin\theta\cos\theta\frac{\partial^{2}z}{\partial x\partial y} + \cos^{2}\theta\frac{\partial^{2}z}{\partial y^{2}} + \frac{1}{r}\frac{\partial z}{\partial r}$$
$$= \sin^{2}\theta\frac{\partial^{2}z}{\partial x^{2}} - 2\sin\theta\cos\theta\frac{\partial^{2}z}{\partial x\partial y} + \cos^{2}\theta\frac{\partial^{2}z}{\partial y^{2}} \dots \dots \dots (2)$$

এখন (1) + (2) দ্বারা পাই,

 $\frac{\partial^2 z}{\partial r^2} + \frac{1}{r^2} \frac{\partial^2 z}{\partial \theta^2} + \frac{1}{r} \frac{\partial z}{\partial r} = \frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2}$

উদাহরণ 2 : ধরি f(x, y) একটি অবকলনযোগ্য অপেক্ষক এবং যখন (x, y) এর পরিবর্তে u, 9 লেখা হয় f(x, y) অপেক্ষকটি g(u, 9) তে পরিণত হয় যেখানে $x = \frac{1}{2}(u + 9), y = \sqrt{u9}$

প্রমাণ করন্দ
$$\frac{\partial^2 y}{\partial u \partial \vartheta} = \frac{1}{4} \left(\frac{\partial^2 f}{\partial x^2} + 2 \frac{x}{y} \frac{\partial^2 f}{\partial x \partial y} + \frac{\partial^2 f}{\partial y^2} + \frac{1}{y} \frac{\partial f}{\partial y} \right)$$

সমাধান : Chain Rule হতে পাই,

 $\frac{\partial \mathbf{g}}{\partial \mathbf{u}} = \frac{\partial \mathbf{f}}{\partial \mathbf{x}} \cdot \frac{\partial \mathbf{x}}{\partial \mathbf{u}} + \frac{\partial \mathbf{f}}{\partial \mathbf{y}} \cdot \frac{\partial \mathbf{y}}{\partial \mathbf{u}}$ $= \frac{1}{2} \frac{\partial \mathbf{f}}{\partial \mathbf{x}} + \frac{1}{2} \sqrt{\frac{9}{\mathbf{u}}} \frac{\partial \mathbf{f}}{\partial \mathbf{y}}$ $\exists \mathbf{i} \quad \frac{\partial}{\partial \mathbf{u}} = \frac{1}{2} \frac{\partial}{\partial \mathbf{x}} + \frac{1}{2} \sqrt{\frac{9}{\mathbf{u}}} \frac{\partial}{\partial \mathbf{y}}$

where
$$\frac{\partial g}{\partial \theta} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial y} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial \theta}$$

$$= \frac{1}{2} \frac{\partial f}{\partial x} + \frac{1}{2} \sqrt{\frac{u}{\theta}} \frac{\partial f}{\partial y}$$

$$\frac{1}{2} \frac{\partial^2 g}{\partial u \partial \theta} = \frac{\partial}{\partial u} \left(\frac{\partial g}{\partial \theta} \right)$$

$$= \frac{\partial}{\partial u} \left(\frac{1}{2} \frac{\partial f}{\partial x} + \frac{1}{2} \sqrt{\frac{u}{\theta}} \frac{\partial f}{\partial y} \right)$$

$$= \frac{1}{2} \frac{\partial}{\partial u} \left(\frac{\partial f}{\partial x} \right) + \frac{1}{4\sqrt{u\theta}} \frac{\partial f}{\partial y} + \frac{1}{2} \sqrt{\frac{u}{\theta}} \frac{\partial}{\partial u} \left(\frac{\partial f}{\partial y} \right)$$

$$= \frac{1}{2} \left\{ \frac{1}{2} \frac{\partial}{\partial x} + \frac{1}{2} \sqrt{\frac{u}{\theta}} \frac{\partial}{\partial y} \right\} \frac{\partial f}{\partial x} + \frac{1}{4\sqrt{u\theta}} \frac{\partial f}{\partial y} + \frac{1}{2} \sqrt{\frac{u}{\theta}} \frac{\partial}{\partial u} \left(\frac{\partial f}{\partial y} \right)$$

$$= \frac{1}{2} \left\{ \frac{1}{2} \frac{\partial}{\partial x} + \frac{1}{2} \sqrt{\frac{u}{\theta}} \frac{\partial}{\partial y} \right\} \frac{\partial f}{\partial x} + \frac{1}{4\sqrt{u\theta}} \frac{\partial f}{\partial y} + \frac{1}{2} \sqrt{\frac{u}{\theta}} \left\{ \frac{1}{2} \frac{\partial}{\partial x} + \frac{1}{2} \sqrt{\frac{u}{\theta}} \frac{\partial}{\partial y} \right\} \left(\frac{\partial f}{\partial y} \right)$$

$$= \frac{1}{4} \left\{ \frac{\partial^2 f}{\partial x^2} + \frac{1}{4} \sqrt{\frac{u}{\theta}} \frac{\partial^2 f}{\partial y \partial x} + \frac{1}{4\sqrt{u\theta}} \frac{\partial f}{\partial y} + \frac{1}{4} \sqrt{\frac{u}{\theta}} \frac{\partial^2 f}{\partial x \partial y} + \frac{1}{4} \frac{\partial^2 f}{\partial y^2} \right\}$$

$$= \frac{1}{4} \left[\frac{\partial^2 f}{\partial x^2} + \frac{u + \theta}{\sqrt{u\theta}} \frac{\partial^2 f}{\partial y \partial x} + \frac{1}{\sqrt{u\theta}} \frac{\partial f}{\partial y} + \sqrt{\frac{u}{\theta}} \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} \right]$$

$$= \frac{1}{4} \left[\frac{\partial^2 g}{\partial x^2} + \frac{u + \theta}{\sqrt{u\theta}} \frac{\partial^2 f}{\partial y \partial x} + \frac{1}{\sqrt{u\theta}} \frac{\partial f}{\partial y} + \frac{\partial^2 f}{\partial y^2} \right]$$

$$= \frac{1}{4} \left[\frac{\partial^2 g}{\partial u \partial \theta} = \frac{1}{4} \left[\frac{\partial^2 f}{\partial x^2} + \frac{2x}{y} \frac{\partial^2 f}{\partial y \partial x} + \frac{1}{y} \frac{\partial f}{\partial y} + \frac{\partial^2 f}{\partial y^2} \right]$$

উদাহরণ 3 ঃ ধরি $F(x,\,y)$ হল একটি অবকলযোগ্য অপেক্ষক এবং $\,x=e^u\,+e^{-9},\,y=e^9\,+e^{-u}$ প্রমাণ করন

$$\frac{\partial^2 F}{\partial u^2} - 2\frac{\partial^2 F}{\partial u \partial 9} + \frac{\partial^2 F}{\partial 9^2} = x^2 \frac{\partial^2 F}{\partial x^2} - 2xy \frac{\partial^2 F}{\partial x \partial y} + y^2 \frac{\partial^2 F}{\partial y^2} + x \frac{\partial F}{\partial x} + y \frac{\partial F}{\partial y}$$

সমাধান : Chain Rule দ্বারা

 $\frac{\partial F}{\partial u} = \frac{\partial F}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial F}{\partial y} \frac{\partial y}{\partial u}$ $= e^{u} \; \frac{\partial F}{\partial x} + \frac{\partial F}{\partial y} \Big(-e^{-u} \Big)$ সুতরাং $\frac{\partial}{\partial \mathbf{u}} = e^{\mathbf{u}} \frac{\partial}{\partial \mathbf{x}} - e^{-\mathbf{u}} \frac{\partial}{\partial \mathbf{v}}$ $\frac{\partial^2 \mathbf{F}}{\partial \mathbf{u}^2} = \frac{\partial}{\partial \mathbf{u}} \left(\frac{\partial \mathbf{F}}{\partial \mathbf{u}} \right)$ $= \frac{\partial}{\partial \mathbf{u}} \left(e^{\mathbf{u}} \frac{\partial F}{\partial \mathbf{x}} - e^{-\mathbf{u}} \frac{\partial F}{\partial \mathbf{v}} \right)$ $= e^{u} \frac{\partial F}{\partial x} + e^{-u} \frac{\partial F}{\partial v} + e^{u} \frac{\partial}{\partial u} \left(\frac{\partial F}{\partial x} \right) - e^{-u} \frac{\partial}{\partial u} \left(\frac{\partial F}{\partial v} \right)$ $=e^{u}\frac{\partial F}{\partial x}+e^{-u}\frac{\partial F}{\partial y}+e^{u}\left\{e^{u}\frac{\partial}{\partial x}-e^{-u}\frac{\partial}{\partial y}\right\}\frac{\partial F}{\partial x}-e^{-u}\left\{e^{u}\frac{\partial}{\partial x}-e^{-u}\frac{\partial}{\partial x}\right\}\frac{\partial F}{\partial y}$ $= e^{u} \frac{\partial F}{\partial x} + e^{-u} \frac{\partial F}{\partial y} + e^{2u} \frac{\partial^{2} F}{\partial x^{2}} - 2 \frac{\partial^{2} F}{\partial x \partial y} + e^{-2u} \frac{\partial^{2} F}{\partial y^{2}} \quad \left(\cdot \frac{\partial^{2} F}{\partial x \partial y} = \frac{\partial^{2} F}{\partial y \partial x} \right)$ $\frac{\partial F}{\partial 9} = \frac{\partial F}{\partial x} \frac{\partial x}{\partial 9} + \frac{\partial F}{\partial y} \frac{\partial y}{\partial 9}$ $= \frac{\partial F}{\partial x} \Big(- e^{-\vartheta} \Big) + \frac{\partial F}{\partial y} e^{\vartheta}$ সুতরাং $\frac{\partial F}{\partial 9} = -e^{-9} \frac{\partial}{\partial x} + e^9 \frac{\partial}{\partial v}$ $\therefore \quad \frac{\partial^2 F}{\partial \vartheta^2} = \frac{\partial}{\partial \vartheta} \left(\frac{\partial F}{\partial \vartheta} \right)$

$$\begin{split} &= \frac{\partial}{\partial \vartheta} \left(-e^{-\vartheta} \frac{\partial F}{\partial x} + e^{\vartheta} \frac{\partial F}{\partial y} \right) \\ &= e^{-\vartheta} \frac{\partial F}{\partial x} + e^{\vartheta} \frac{\partial F}{\partial y} - e^{-\vartheta} \frac{\partial}{\partial \vartheta} \left(\frac{\partial F}{\partial x} \right) + e^{\vartheta} \frac{\partial}{\partial \vartheta} \left(\frac{\partial F}{\partial y} \right) \\ &= e^{-\vartheta} \frac{\partial F}{\partial x} + e^{\vartheta} \frac{\partial F}{\partial y} - e^{-\vartheta} \left[-e^{-\vartheta} \frac{\partial}{\partial x} \left(\frac{\partial F}{\partial x} \right) + e^{\vartheta} \frac{\partial}{\partial y} \left(\frac{\partial F}{\partial x} \right) \right] + e^{\vartheta} \left[-e^{-\vartheta} \frac{\partial}{\partial x} \left(\frac{\partial F}{\partial y} \right) + e^{\vartheta} \frac{\partial}{\partial y} \left(\frac{\partial F}{\partial y} \right) \right] \\ &= e^{-\vartheta} \frac{\partial F}{\partial x} + e^{\vartheta} \frac{\partial F}{\partial y} + e^{-2\vartheta} \frac{\partial^2 F}{\partial x^2} - 2 \frac{\partial^2 F}{\partial x \partial y} + e^{2\vartheta} \frac{\partial^2 F}{\partial y^2} \\ &= e^{-\vartheta} \frac{\partial F}{\partial u} + e^{\vartheta} \frac{\partial F}{\partial y} + e^{-2\vartheta} \frac{\partial^2 F}{\partial x^2} - 2 \frac{\partial^2 F}{\partial x \partial y} + e^{2\vartheta} \frac{\partial^2 F}{\partial y^2} \\ &= \frac{\partial}{\partial u} \left(-e^{-\vartheta} \frac{\partial F}{\partial x} + e^{\vartheta} \frac{\partial F}{\partial y} \right) \\ &= -e^{-\vartheta} \left[e^{u} \frac{\partial}{\partial x} \left(\frac{\partial F}{\partial x} \right) + e^{\vartheta} \frac{\partial}{\partial u} \left(\frac{\partial F}{\partial y} \right) \right] \\ &= -e^{-\vartheta} \left[e^{u} \frac{\partial}{\partial x} \left(\frac{\partial F}{\partial x} \right) - e^{-u} \frac{\partial}{\partial y} \left(\frac{\partial F}{\partial y} \right) \right] + e^{\vartheta} \left[e^{u} \frac{\partial}{\partial x} \left(\frac{\partial F}{\partial y} \right) - e^{-u} \frac{\partial}{\partial y} \left(\frac{\partial F}{\partial y} \right) \right] \\ &= -e^{-\vartheta} \left[e^{u} \frac{\partial}{\partial x} \left(\frac{\partial F}{\partial x} \right) - e^{-u} \frac{\partial}{\partial x} \left(\frac{\partial F}{\partial y} \right) \right] \\ &= -e^{u-\vartheta} \frac{\partial^2 F}{\partial y^2} + \left(e^{-u-\vartheta} + e^{u+\vartheta} \right) \frac{\partial^2 F}{\partial x \partial y} - e^{\vartheta - u} \frac{\partial^2 F}{\partial y^2} \\ &= \left[e^{u} \frac{\partial F}{\partial x} + e^{-u} \frac{\partial F}{\partial y} + e^{2u} \frac{\partial^2 F}{\partial x^2} - 2 \frac{\partial^2 F}{\partial x \partial y} + e^{2u} \frac{\partial^2 F}{\partial y^2} \right] \\ &= \left[e^{u} \frac{\partial F}{\partial x} + e^{-u} \frac{\partial F}{\partial y} + e^{2u} \frac{\partial^2 F}{\partial x^2} - 2 \frac{\partial^2 F}{\partial x \partial y} + e^{-2u} \frac{\partial^2 F}{\partial y^2} \right] \\ &= \left[e^{u} \frac{\partial F}{\partial x} + e^{-u} \frac{\partial F}{\partial y} + e^{2u} \frac{\partial^2 F}{\partial x^2} - 2 \frac{\partial^2 F}{\partial x \partial y} + e^{2\vartheta} \frac{\partial^2 F}{\partial y^2} \right] \\ \\ &- e^{\vartheta - u} \frac{\partial^2 F}{\partial y^2} \right] \\ &+ \left[e^{-\vartheta} \frac{\partial F}{\partial x} + e^{-2\vartheta} \frac{\partial^2 F}{\partial y^2} - 2 \frac{\partial^2 F}{\partial x \partial y} + e^{2\vartheta} \frac{\partial^2 F}{\partial y^2} \right] \\ \end{aligned}$$

$$= \left(e^{u} + e^{-\vartheta}\right)\frac{\partial F}{\partial x} + \left(e^{\vartheta} + e^{-u}\right)\frac{\partial F}{\partial y} + \frac{\partial^{2}F}{\partial x^{2}}\left(e^{2u} + 2e^{u-\vartheta} + e^{-2\vartheta}\right)$$
$$-2\frac{\partial^{2}F}{\partial x\partial y}\left(e^{u+\vartheta} + e^{-u-\vartheta} + 2\right) + \frac{\partial^{2}F}{\partial y^{2}}\left(e^{-2u} + 2e^{\vartheta-u} + e^{2u}\right)$$
$$= x\frac{\partial F}{\partial y} + y\frac{\partial F}{\partial y} + x^{2}\frac{\partial^{2}F}{\partial x^{2}} - 2xy\frac{\partial^{2}F}{\partial x\partial y} + y^{2}\frac{\partial^{2}F}{\partial y^{2}}$$

উদাহরণ 4 : ধরি y = f (x, t) একটি অবকলযোগ্য অপেক্ষক এবং স্বাধীন চলরাশি x, y নিম্ন সম্পর্কে দুটি চল u, ও-এর সাথে যুক্ত যেথানে

$$u = x + ct, \vartheta = x + ct$$

যেখানে c হল ধ্রুবক

প্রমাণ করুন $\frac{\partial^2 y}{\partial x^2} - \frac{1}{c^2} \frac{\partial^2 y}{\partial t^2} = 0$ সমীকরণটি

$$rac{\partial^2 y}{\partial y \partial z} = 0$$
 -তে পরিবর্তিত হবে।

এখান হতে দেখান y = g(x - ct), +h(x + ct)

হল
$$rac{\partial^2 y}{\partial u \partial 9}=0$$
 সমীকরণের সাধারণ সমাধান যেখানে (${
m g,h}$ যে কোন অপেক্ষক)।

সমাধান : Chain Rule-এর সাহায্য নিয়ে

$$\frac{\partial y}{\partial 9} = \frac{\partial y}{\partial x} \frac{\partial x}{\partial 9} + \frac{\partial y}{\partial t} \frac{\partial t}{\partial 9}$$
$$= \frac{\partial y}{\partial x} \frac{1}{2} + \frac{\partial y}{\partial t} \left(-\frac{1}{2c} \right)$$

$$\begin{bmatrix} c\overline{v}(c\overline{v}\overline{y} \ x = \frac{1}{2}(\mathbf{u} + \theta), \mathbf{t} = \frac{1}{2c}(\mathbf{u} - \theta) \end{bmatrix}$$

$$\exists \overline{v}(\overline{v}, \frac{\partial v}{\partial \mathbf{u}} = \frac{\partial v}{\partial x} \frac{\partial v}{\partial \mathbf{u}} + \frac{\partial v}{\partial t} \frac{\partial t}{\partial \mathbf{u}}$$

$$= \frac{\partial v}{\partial x} \frac{1}{2} + \frac{\partial v}{\partial t} \frac{1}{2c}$$

$$\overline{v}(\overline{v}, \overline{v}) = \frac{1}{2} \frac{\partial}{\partial x} + \frac{1}{2c} \frac{\partial}{\partial t}$$

$$\therefore \quad \frac{\partial^2 y}{\partial u \partial \theta} = \frac{\partial}{\partial u} \left(\frac{\partial v}{\partial \theta}\right)$$

$$= \frac{\partial}{\partial u} \left(\frac{1}{2} \frac{\partial v}{\partial x} - \frac{1}{2c} \frac{\partial}{\partial u}\right)$$

$$= \frac{1}{2} \left[\frac{1}{2} \frac{\partial}{\partial u} \left(\frac{\partial v}{\partial x}\right) + \frac{1}{2c} \frac{\partial}{\partial t} \left(\frac{\partial v}{\partial x}\right)\right] - \frac{1}{2c} \left[\frac{1}{2} \frac{\partial}{\partial x} \left(\frac{\partial v}{\partial t}\right) + \frac{1}{2} \frac{\partial}{\partial t} \left(\frac{\partial v}{\partial t}\right)\right]$$

$$= \frac{1}{4} \left[\frac{\partial^2 y}{\partial x^2} - \frac{1}{c^2} \frac{\partial^2 y}{\partial t^2}\right]$$

$$\overline{v}(\overline{v}, \overline{v}) = \frac{1}{c^2} \frac{\partial^2 y}{\partial u^2 \theta} = 0 \quad \forall \overline{v} = \overline{v} + \frac{\partial^2 y}{\partial u^2 \theta} = 0$$

$$deta \quad \frac{\partial^2 y}{\partial u \partial \theta} = 0 \quad \forall \overline{v} = \overline{v} = \overline{v} + \overline{v} + \overline{v} + \overline{v} = \overline{v} + \overline{v} + \overline{v} + \overline{v} = \overline{v} + \overline{v} + \overline{v} + \overline{v} = \overline{v} + \overline{v} = \overline{v} + \overline{v} + \overline{v} = \overline{v}$$

তাহলে $y = \int f(\vartheta) d\vartheta +$ ধ্রুবক (ϑ -এর সাপেক্ষে)

 $=g(\vartheta)+h(u)$

সুতরাং সাধারণ সমাধান হল

y = g (x - ct) + h (x + ct)

যেখানে g, h হল যেকোন অপেক্ষক।

12.6 প্রশ্নাবলি

1. $F(u, \vartheta)$ অপেক্ষকটি যদি (u, ϑ) চলরাশির জন্য 2 য় ক্রমের অবকলযোগ্য অপেক্ষক হয় এবং $u = x^2 - y^2$ এবং $\vartheta = 2xy$ হয়, তাহলে প্রমাণ করুন

$$4\left(u^{2}+\vartheta^{2}\right)\frac{\partial^{2}F}{\partial u\partial\vartheta}+2u\frac{\partial F}{\partial\vartheta}+2\vartheta\frac{\partial F}{\partial u}$$

$$= xy \left(\frac{\partial^2 F}{\partial x^2} - \frac{\partial^2 F}{\partial y^2} \right) + \left(x^2 - y^2 \right) \frac{\partial^2 F}{\partial x \partial y}$$

Hints : Chain Rule সাহায্য নিন এবং

$$\frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}, \frac{\partial^2 F}{\partial x^2}, \frac{\partial^2 F}{\partial y^2}$$
 and $\frac{\partial^2 F}{\partial x \partial y} - \frac{\partial}{\partial x} \left(\frac{\partial F}{\partial y} \right)$ decorrect the distance of the second sec

দেখান বামপক্ষ = ডানপক্ষ

2. ধরি V হল x, y চলরাশির অবকলযোগ্য অপেক্ষক এবং x অক্ষ y অক্ষ দুটিকে একটি ধ্রুবক কোণে ঘোরালে (x, y) স্থানাঙ্ক (x', y') এ পরিণত হয়। তাহলে প্রমাণ করুন ঃ

$$\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} = \frac{\partial^2 V}{\partial x'^2} + \frac{\partial^2 V}{\partial y'^2}$$

Hints :-- Chain Rule প্রয়োগ করুন।

12.7 সারাংশ

* সন্তত হওয়ার পর্যাপ্ত শর্ত আলোচিত হয়েছে। এখানে কেবলমাত্র Lagrange's Mean Value Theorem প্রযোগ করে প্রমাণ করা হয়েছে।

* f(x, y) অপেক্ষকের অবকলন থাকার পর্যাপ্ত শর্ত আলোচিত হয়েছে। এখানে একটি অপেক্ষক φ(y) তৈরী করা হয়েছে যেখানে φ(y) = f(a + h, y), h হল যে কোন ছোট বাস্তব রাশি। এরপর Largrange's M.V.T φ অপেক্ষেকের উপর প্রয়োগ করা হয়েছে ও শর্ত প্রমাণিত হয়েছে।

* Schwarz's উপপাদ্য প্রমাণ করা হয়েছে। এখানে দুটি অপেক্ষক

$$F(h, k) = f(a + h, b + k) - f(a + h, b) - f(a, b + k) + f(a, b)$$

g(x) = f(x, b + k) - f(x, b)

তৈরী করা হয়েছে। এরপর g(x)-এর Lagrange's M.V.T প্রয়োগ করা হয়েছে। আবার f_x (a + φh, y)-এর উপর M.V.T. প্রয়োগ করে প্রমাণে আসা হয়েছে।

* Young's উপপাদ্য প্রমাণ হয়েছে। এখানেও Lagrange's M.V.T প্রয়োগ করা হয়েছে একটি অপেক্ষকের উপর। বিভিন্ন উদাহরণ ও তার সমাধান আলোচনা হয়েছে।

* Chain Rule-এর বিশেষ প্রয়োগ দেখানো হয়েছে।

12.8 সহায়ক পুস্তক

- 1. Calculus T.M. Apostol
- 2. Introduction to Analysis (Differential Calculus) by R. K. Ghosh & K. C. Maity.
- 3. Introduction to Real Variable Theory S. M. Shah.
- 4. Fundamental Concepts of Analysis—Alton H. Smith, Walter A Albreaht JR.
- 5. Differential Calculus Shanti Narayan.
- 6. Differential Calculus Das and Mukherjee.

একক 13 🗆 অর্ন্তনিহিত অপেক্ষক, জাকবীয় ইত্যাদি Implicit Function Theorem, Jacobian

গঠন

- 13.2 উদ্দেশ্য
- 13.3 Existance Theorem ও উদাহরণ
- 13.4 Jacobian, Jacobian সংক্রান্ত উদাহরণ
- 13.5 Jacobian এর জন্য Chain Rule, উদাহরণ
- 13.6 অপেক্ষকীয় নির্ভরতা সংক্রান্ত উপপাদ্য ও উদাহরণ
- 13.7 প্রশ্নাবলি
- 13.8 সারাংশ
- 13.9 সহায়ক পুস্তক

13.1 প্রস্তাবনা

ধরি দুটি চলরাশির অপেক্ষক F(x, y) এবং সমস্ত x-এর জন্য $\phi(x)$ অপেক্ষকটি সংজ্ঞায়িত যাতে F(x, $\phi(x))=0$

সুতরাং আমরা বলতে পারি F(x, y) = 0 দ্বারা অন্তর্নিহিতভাবে $y = \phi(x)$ নির্দেশ করে।

যেমন 3x + 2y - 6 = 0 দ্বারা $y = 3 - \frac{3}{2}x$ অন্তর্নিহিত অপেক্ষক প্রকাশ পায়।

আবার, $x^2 + y^2 + 2 = 0$ কোনো অন্তর্নিহিত অপেক্ষক প্রকাশ করে না। অবশ্য জটিল অপেক্ষকীয় সম্পর্ক হলেই যে অন্তর্নিহিত অপেক্ষক প্রকাশ করে না— তা নয়। যেমন $x^4y^3 + \cos y + \log x + \tan^{-1} xy = 0$ অন্তর্নিহিত অপেক্ষক প্রকাশ করে। সুতরাং অন্তর্নিহিত অপেক্ষক থাকার প্রশ্বের সমাধান Existence Theorem এ আলোচিত হবে।

13.2 উদ্দেশ্য

এই একক পাঠ করে আপনি

- Existence Theorem ও উদাহরণ পাবেন
- Jacobian সংক্রান্ত বিষয় পাবেন
- অপেক্ষকীয় নির্ভরতা সংক্রান্ত উপপাদ্য পাবেন
- প্রশ্নমালা পাবেন।

13.3 Existance Theorem ও উদাহরণ

উপপাদ্য- 1 ঃ ধরি F(x, y) হল দুটি চলরাশি x, y-এর অপেক্ষক এবং (x₀, y₀) হল F(x, y) সংজ্ঞায়িত অঞ্চলের একটি বিন্দু।

এখন, (i) $F(x_0, y_0) = 0$

- (ii) (x_0, y_0)-এর কোনো সামীপ্যে F_x, F_y সন্তত
- (iii) $F_v(x_0, y_0) \neq 0$

তাহলে (x_0, y_0) কে কেন্দ্র করে একটি আয়তক্ষেত্র $x_0 - h \le x \le x_0 + h, y_0 - k \le y \le y_0 + k$ পাওয়া যাবে যাতে

 $I. \$ x₀ - h $\leq x \leq x_0$ + h এই interval-এর প্রতিটি x-এর জন্য F(x, y) = 0 অপেক্ষকটি $y_0 - k \leq y \leq y_0 + k$ এই interval-এ একটি এবং কেবলমাত্র একটি অপেক্ষক $y = \phi(x)$ নির্দেশ করবে যা নীচের ধর্মাবলী মেনে চলবে

- 1. $y_0 = \phi(x_0)$
- I এর প্রতি x-এর জন্য F(x, φ(x)) = 0
- 3. $\phi(x)$ অবকলনযোগ্য হবে এবং I-এর মধ্যে $\phi(x), \phi'(x)$ উভয়ে সন্তত হবে

4.
$$\phi'(\mathbf{x}) = -\frac{F_{\mathbf{x}}}{F_{\mathbf{y}}}$$

প্রমাণ ঃ (ii) নং শর্ত হতে পাই, $(x_0^{},\,y_0^{})$ এর কোন সামীপ্যে $F_{x^{}}^{},\,F_{y}^{}$ উভয়ে সন্তত।

ধরি R_1 : $[x_0 - h_1, x_0 + h_1; y_0 - k_1, y_0 + k_1]$ হল (x_0, y_0) বিন্দুটির কোনো সামীপ্য। যেহেতু, R_1 -এর মধ্যে F_y , F_y সন্তত, সুতরাং R_1 -এর মধ্যে F অবকলনযোগ্য হবে এবং তার জন্য R_1 -তে F সন্তত হবে।

আবার, $\mathbf{F}_y(\mathbf{x}_0, \mathbf{y}_0) \neq 0$ এবং \mathbf{F}_y সন্তত হওয়ার জন্য একটি আয়তক্ষেত্র \mathbf{R}_2 : $[\mathbf{x}_0 - \mathbf{h}_2, \mathbf{x}_0 + \mathbf{h}_2$; $\mathbf{y}_0 - \mathbf{k}_2, \mathbf{y}_0 + \mathbf{k}_2$] যার $\mathbf{h}_2 < \mathbf{h}_1$, $\mathbf{k}_2 < \mathbf{k}_1$ পাওয়া যাবে যেখানে $\mathbf{F}_y \neq 0$

এখন $F(x_0, y_0) = 0$ এবং $F_y(x_0, y_0) \neq 0$ হওয়ার জন্য একটি ধনাত্মক বাস্তব রাশি k (< k_2) পাওয়া যাবে যাতে $F(x_0, y_0 - k)$, $F(x_0, y_0 + k)$ বিপরীত চিহ্ন যুক্ত হবে।

(x₀, y₀) বিন্দুতে F সন্তত হওয়ায়, একটি ধনাত্মক বাস্তব রাশি h (< h₂) পাওয়া যাবে যাতে R : [x₀ – h, x₀ + h]-এই অঞ্চলের প্রতি x-এর জন্য

 $\mathbf{F}(\mathbf{x}, \mathbf{y}_0 - \mathbf{k}) \rightarrow \mathbf{F}(\mathbf{x}_0, \mathbf{y}_0 - \mathbf{k}),$

 $\mathbf{F}(\mathbf{x}, \mathbf{y}_0 + \mathbf{k}) \rightarrow \mathbf{F}(\mathbf{x}_0, \mathbf{y}_0 + \mathbf{k}),$

এবং $F(x_0, y_0 - k), F(x_0 | y_0 + k),$ উভয়ে বিপরীত চিহ্ন হবে।

সুতরাং R-এর প্রতি x-এর জন্য y-এর সাপেক্ষে F(x, y) সন্তুত এবং y-এর y₀ – k থেকে y₀ + k এর পরিবর্তনের জন্য F(x, y) বিপরীতচিহ্ন হওয়ায়, [y₀ – k, y₀ + k] এই অঞ্চলের কোনো y-এর জন্য F(x, y) শূন্য হবে।

এখানে $[x_0 - h, x_0 + h]$ এই অঞ্চলের প্রতি x-এর জন্য $[y_0 - k, y_0 + k]$ এই অঞ্চলের একটি y পাওয়া যাচ্ছে যাতে F(x, y) = 0 হওয়ায় বলা যায় y হল x-এর অপেক্ষক। সুতরাং ধরি $y = \phi(x)$, যদি সন্তব হয় ধরি $[y_0 - k, y_0 + k)$ এই অঞ্চলের y_1, y_2 -এর জন্য $F(x, y_1) = 0 = F(x, y_2)$ যেখানে x থাকবে $[x_0 - h, x_0 + h]$ এই অঞ্চলে।

আবার $[y_0 - k, y_0 + k]$ এই অঞ্চলের y-এর সাপেক্ষে F(x, y)-এর অবকল আছে। সুতরাং এই অঞ্চলে F(x, y)-অপেক্ষকের ক্ষেত্রে Rolle's Theorem প্রয়োগ করা যায়। তাহলে y_1 ও y_2 -এর মধ্যে কোনো y-এর জন্য $F_y = 0$ । এটা অসম্ভব। কারণ $R \subset R_2$ এবং R_2 -এর সমস্ত y-এর জন্য $F_y \neq 0$ সুতরাং $y = \phi(x)$ হল একটি এবং কেবলমাত্র একটি যাতে F(x, y) = 0

ধরি \mathbf{R}' : $[\mathbf{x}_0 - \mathbf{h}, \mathbf{x}_0 + \mathbf{h}, \mathbf{y}_0 - \mathbf{k}, \mathbf{y}_0 + \mathbf{k}]$ এবং $(\mathbf{x}, \mathbf{y}) \in \mathbf{R}', (\mathbf{x} + \Delta \mathbf{x}, \mathbf{y} + \Delta \mathbf{y}) \in \mathbf{R}' + তাহলে \mathbf{y} = \phi(\mathbf{x}), \mathbf{y} + \Delta \mathbf{y} = \phi(\mathbf{x} + \Delta \mathbf{x})$ হবে এবং $F(\mathbf{x}, \mathbf{y}) = 0, F(\mathbf{x} + \Delta \mathbf{x}, \mathbf{y} + \Delta \mathbf{y}) = 0 + \mathbf{x}$

যেহেতু R_1 -এর মধ্যে $F(x,\,y)$ -এর অবকল আছে এবং $\,R^{\,\prime} \subset R_1$ । সুতরাং R^{\prime} -এর মধ্যে $F(x,\,y)$ -এর অবকল আছে।

তাহলে 0 = F (x + Δx , y + Δy) - F(x, y) = F_x Δx + F_y Δy + $\epsilon_1 \Delta x$ + $\epsilon_2 \Delta y$

যেখানে ε_1 , ε_2 উভয়ে Δx , Δy -এর অপেক্ষক এবং $\varepsilon_1 \rightarrow 0$, $\varepsilon_2 \rightarrow 0$ যখন $(\Delta x, \Delta y) \rightarrow (0, 0)$ সুতরাং $\mathbf{F}_x \Delta x + \mathbf{F}_y \Delta y = 0$

$$\exists \mathbf{I}, \ \frac{\Delta \mathbf{y}}{\Delta \mathbf{x}} = \left(-\frac{\mathbf{F}_{\mathbf{x}}}{\mathbf{F}_{\mathbf{y}}} - \frac{\mathbf{\varepsilon}_{1}}{\mathbf{F}_{\mathbf{y}}} - \frac{\mathbf{\varepsilon}_{2}}{\mathbf{F}_{\mathbf{y}}} \cdot \frac{\Delta \mathbf{y}}{\Delta \mathbf{x}} \right) \qquad (\mathbf{I}, \mathbf{R}' \ \mathrm{CO} \ \mathbf{F}_{\mathbf{y}} \neq \mathbf{0})$$

এখন Limit নিয়ে পাই যখন, $(\Delta x, \Delta y) \rightarrow (0, 0)$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \phi^{/}(x) = -\frac{F_x}{F_y}$$

সুতরাং $\phi(x)$ -এর R-এর মধ্যে অবকল আছে এবং R-এর মধ্যে সন্তত। আবার F_x , F_y উভয়ে R-এর মধ্যে সন্তত এবং $F_y \neq 0$, সুতরাং R-এর মধ্যে $\phi'(x)$ সন্তত।

উপপাদ্য 2 ঃ ধরি (x₀, y₀, z₀) হল R-অঞ্চলের একটি অন্তবর্তী বিন্দু এবং F(x, y, z) অপেক্ষকটি R-অঞ্চলে সংজ্ঞায়িত যাতে

(i)
$$F(x_0, y_0, z_0) = 0$$

- (ii) F_x, F_y, F_z প্রত্যেক R-এর মধ্যে সন্তত
- (iii) $F_x(x_0, y_0, z_0) \neq 0$

তাহলে (x₀, y₀)-এর একটি সামীপ্য থাকবে যেখানে কেবলমাত্র একটি অবকলযোগ্য অপেক্ষক z = f(x, y) পাওয়া যাবে এবং নীচের সম্পর্ক সিদ্ধ হবে

1.
$$z_0 = f(x_0, y_0)$$

2.
$$F(x, y, f(x, y)) = 0$$

3.
$$\mathbf{z}_{\mathbf{x}} = -\frac{\mathbf{F}_{\mathbf{x}}}{\mathbf{F}_{\mathbf{z}}} \cdot \mathbf{Z}_{\mathbf{y}} = -\frac{\mathbf{F}_{\mathbf{y}}}{\mathbf{F}_{\mathbf{x}}}$$

এর প্রমান উপপাদ্য-1-এর অনুযায়ী হবে।

উদাহরণ 1 ঃ
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 এই উপবৃত্তের সমীকরণ হতে,

$$\frac{y^2}{b^2} = 1 - \frac{x^2}{a^2}$$
 of $y' = -\frac{b^2 x}{a^2 y}$

$$\frac{y^2}{b^2} = 1 - \frac{x^2}{a^2}$$
 বা $y' = -\frac{b^2 x}{a^2 y}$

 $y = \pm \frac{a}{b}\sqrt{a^2 - x^2}$ भारे

যেটা উপবৃত্তের নীচের অর্দ্ধেক ও উপরের অর্দ্ধেক প্রকাশ করে।

কিন্তু, (± a, 0) বিন্দুতে Existence উপপাদ্য কাৰ্যকরী হয় যেহেতু এই দুটি বিন্দুতে অন্তর্নিহিত অপেক্ষকীয় সম্পর্ক

 $b^2x^2 + a^2y^2 - a^2b^2 = 0$ সংজ্ঞায়িত করে দুটি অপেক্ষক $y = \pm \frac{a}{b}\sqrt{a^2 - x^2}$

উদাহরণ 2 ঃ দেখান যে, $F_x(0, 0, 0) = -1$ হওয়ার জন্য (0, 0, 0) বিন্দুর নিকটে F(x, y, z) = xyz + x+ y - z = 0 সমধান করা যায়।

সমাধান ঃ এখানে $z = \frac{x+y}{1-xy}$

আবার অন্তর্নিহিত সমাধান হল $z_x = \frac{1+y^2}{(1-xy)^2}, z_y = \frac{1+x^2}{(1+xy)^2}$

এবং F(x, y, z) = 0-এর উপর Chain Rule প্রয়োগ করে

$$\frac{\partial \mathbf{F}}{\partial \mathbf{x}} + \frac{\partial \mathbf{F}}{\partial \mathbf{z}} \frac{\partial z}{\partial \mathbf{y}} = 0$$
 (y হল z-এর অপেক্ষক)

বা,
$$(yz+1) + (xy-1)\frac{\partial z}{\partial x} = 0$$

বা,
$$z_x = \frac{yz + I}{1 - xy}$$

$$=\frac{1+y^2}{\left(1-xy\right)^2}\qquad \qquad \left(\begin{array}{c} \cdot & z=\frac{x+y}{1-xy} \end{array}\right)$$

আবার, $\frac{\partial F}{\partial y} + \frac{\partial F}{\partial z} \frac{\partial z}{\partial y} = 0$

$$\overline{a}, \quad z_y = \frac{xz+1}{1-xy}$$

বা,
$$z_y = \frac{1+x^2}{(1-xy)^2}$$
 $\left(\begin{array}{c} \cdot & z = \frac{x+z}{1-xy} \end{array} \right)$

উদাহরণ 3 ঃ যদি F(x, y, z) = 0 হয়, প্রমাণ করুন $\left(\frac{\partial z}{\partial y}\right)_z \left(\frac{\partial y}{\partial z}\right)_x \left(\frac{\partial z}{\partial x}\right)_y = -1$

যেখানে আংশিক অবকল করা হচ্ছে বাকি চলরাশিগুলিকে ধ্রুবক ধরে।

সমাধান ঃ
$$\left(rac{\partial x}{\partial y}
ight)_z = - rac{F_y}{F_x}$$

(যেখানে z হল ধ্রুবক, x হল y ও z-এর অপেক্ষক $\ F_x \neq 0)$

আবার
$$\left(\frac{\partial y}{\partial z}\right)_x = -\frac{F_z}{F_y}$$

(যেখানে x হল ধ্রুবক, y হল z ও x-এর অপেক্ষক, $\,F_{y} \neq 0)$

এবং
$$\left(\frac{\partial z}{\partial x}\right)_y = -\frac{F_x}{F_z}$$

(যেখানে y হল ধ্রুবক, z হল x, y-এর অপেক্ষক $\,F_{z}\,\neq\,0)$

সুতরাং
$$\left(\frac{\partial x}{\partial y}\right)_z \left(\frac{\partial y}{\partial z}\right)_x \left(\frac{\partial z}{\partial x}\right)_y = -1$$

13.4 Jacobian এবং Iacobian সংক্রান্ত উদাহরণ

সংজ্ঞা 1 ঃ ধরি $F_1, F_2,, F_n$ হল $x_1, x_2,, x_n$ চলরাশির অপেক্ষক এবং D হল প্রতি অপেক্ষকের সংজ্ঞাঞ্চল। D-এর প্রতিবিন্দুতে $F_1, F_2,, F_n$ -এর প্রথম ক্রমের আংশিক অবকল আছে। এখন x_1, x_2, \ldots, x_n এর উপর F_1, F_2, \ldots, F_n এর Jacobian হল নীচের determinant.

$\left \begin{array}{c} \frac{\partial F_1}{\partial x_1} \end{array} \right $	$\frac{\partial F_1}{\partial x_2}$	$\frac{\partial F_1}{\partial x_n}$
$\frac{\partial F_2}{\partial x_1}$	$\frac{\partial F_2}{\partial x_2}$	$\frac{\partial F_2}{\partial x_n}$
$\left \begin{array}{c} \frac{\partial F_n}{\partial x_1} \end{array} \right $	$\frac{\partial F_n}{\partial x_2}$	$\frac{\partial F_n}{\partial x_n}$

এবং লেখা হয়
$$rac{\partial ig(F_1,F_2,...,F_nig)}{\partial ig(x_1,x_2,...,x_nig)}$$
 বা

$$J\!\left(\frac{F_1,\,F_2,\ldots,\ldots,\,F_n}{X_1,X_2,\ldots,\ldots,\,X_n}\right)$$
 এভাবে ৷

উদাহরণ 1 ঃ কোনো বিন্দুর (x, y, z) হল rectangular স্থানাঙ্ক এবং (r, θ , ϕ) হল Sphrical স্থানাঙ্ক যাতে x = r Sin θ Cos ϕ , y = r Sin θ Sin ϕ , z = r Cos θ

সমাধান :
$$\frac{\partial(\mathbf{x}, \mathbf{y}, \mathbf{z})}{\partial(\mathbf{r}, \theta, \phi)} = \begin{vmatrix} \frac{\partial \mathbf{x}}{\partial \mathbf{r}} & \frac{\partial \mathbf{x}}{\partial \theta} & \frac{\partial \mathbf{x}}{\partial \phi} \\ \frac{\partial \mathbf{y}}{\partial \mathbf{r}} & \frac{\partial \mathbf{y}}{\partial \theta} & \frac{\partial \mathbf{y}}{\partial \phi} \\ \frac{\partial \mathbf{z}}{\partial \mathbf{r}} & \frac{\partial \mathbf{z}}{\partial \theta} & \frac{\partial \mathbf{z}}{\partial \phi} \end{vmatrix}$$

=	Sin 0 Cos¢	r Cos o Coso	– r Sinθ Sinφ
	Sin 0 Sinø	r Cos 0 Sinø	r Sinθ Cosφ
	Cosθ	– r Sinθ	0

$= \mathbf{r}^2 \operatorname{Sin} \boldsymbol{\theta}$	Sin 0 Cos¢	Cosθ Cosφ	–Sinø	
	Sin0 Sinø	Cost Sin¢	Cosø	
	Cosθ	−Sinθ	0	

$=\frac{r^2Sin\theta}{Gint}$	Sin 0 Cosø	Cos0 Cosø	– Sinø
Sinφ	Sinθ Sin²φ Cosθ	Cosθ Cosφ Cosθ Sin²φ –Sinθ	Sinφ Cosφ 0

$=\frac{r^2 Sin\theta}{Sin\theta}$	Sin 0 Cosø	Cosθ Cosφ Cosθ	–Sinø
Sinø	Sinθ	Cosθ	0 0
	Cosθ	–Sinθ	0

(1ম Row কে Coso দিয়ে গুণ করে 2য় Row-এর সাথে যোগ করে)

$$= \frac{\mathbf{r}^2 \mathbf{Sin} \theta}{\mathbf{Sin} \phi} \qquad (-\mathbf{Sin} \phi) \begin{vmatrix} \mathbf{Sin} \theta & \mathbf{Cos} \theta \\ \mathbf{Cos} \theta & -\mathbf{Sin} \theta \end{vmatrix}$$

(3য় Column-এর সাপেক্ষে বিস্তৃতি করে)

$$=\frac{r^2 \mathrm{Sin}\theta}{\mathrm{Sin}\phi} \qquad (-\mathrm{Sin}\phi) \qquad (-\mathrm{Sin}^2\theta - \mathrm{Cos}^2\theta)$$

 $= r^2 \sin \theta$

উদাহরণ 2 ঃ যদি $\mathbf{F}_1 = \mathbf{f}_1$ (\mathbf{x}_1), $\mathbf{F}_2 = \mathbf{f}_2$ (\mathbf{x}_1 , \mathbf{x}_2), $\mathbf{F}_3 = \mathbf{f}_3$ (\mathbf{x}_1 , \mathbf{x}_2 , \mathbf{x}_3), $\mathbf{F}_n = \mathbf{f}_n$ (\mathbf{x}_1 , \mathbf{x}_2 ,, \mathbf{x}_n) হয় তাহলে প্রমাণ করুন

$$\frac{\partial(F_1, F_2, \dots, F_n)}{\partial(x_1, x_2, \dots, x_n)} = \frac{\partial F_1}{\partial x_1} \cdot \frac{\partial F_2}{\partial x_2} \dots \frac{\partial F_n}{\partial x_n}$$

সমাধান :
$$\frac{\partial(F_1, F_2, \dots, F_n)}{\partial(x_1, x_2, \dots, x_n)} =$$
 $\frac{\partial F_1}{\partial x_1}$ 000 $\frac{\partial F_2}{\partial x_1}$ $\frac{\partial F_2}{\partial x_2}$ 000 $\frac{\partial F_n}{\partial x_1}$ $\frac{\partial F_n}{\partial x_2}$ 00

$$= \frac{\partial F_1}{\partial x_1} \quad \frac{\partial F_2}{\partial x_2} \quad \frac{\partial F_n}{\partial x_n}$$

উদাহরণ 3 ঃ

যদি $y_1 = 1 - x_1$, $y_2 = x_1 (1 - x_2)$, $y_3 = x_1 x_2 (1 - x_3)$,, $y_n = x_1 x_2 \dots x_{n-1} (1 - x_n)$ হয়, তাহলে প্রমাণ করন

$$\frac{\partial (y_1, y_2, \dots, y_n)}{\partial (x_1, x_2, \dots, x_n)} = (-1)^n x_1^{n-1} x_2^{n-1} \dots x_{n-2}^2 x_{n-1}$$

সমাধান :
$$\frac{\partial (y_1, y_2, \dots, y_n)}{\partial (x_1, x_2, \dots, x_n)} = \begin{vmatrix} \frac{\partial y_1}{\partial x_1} & 0 & 0 \dots & 0 \\ \frac{\partial y_2}{\partial x_1} & \frac{\partial y_2}{\partial x^2} & 0 \dots & 0 \\ \dots & \dots & \dots & 0 \\ \frac{\partial y_n}{\partial x_1} & \frac{\partial y_n}{\partial x_2} \dots & \frac{\partial y_n}{\partial x_n} \end{vmatrix}$$

$$= \frac{\partial y_1}{\partial x_1} \cdot \frac{\partial y_2}{\partial x_2} \dots \dots \frac{\partial y_n}{\partial x_n}$$

$$= (-1) (-x_1) (-x_1 x_2) \dots (-x_1 x_2 \dots x_{n-1})$$
$$= (-1)^n x_1^{n-1} x_2^{n-2} \dots x_{n-2}^2 x_{n-1}$$

13.5 Jacobian এর জন্য Chain Rule ও উদাহরণ

উপপাদ্য 1 ঃ যদি u_1, u_2, \ldots, u_n প্রত্যেকে y_1, y_2, \ldots, y_n এর অপেক্ষক হয় এবং y_1, y_2, \ldots, y_n প্রত্যেকে x_1, x_2, \ldots, x_n -এর অপেক্ষক হয়, তাহলে

$$\frac{\partial (\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n)}{\partial (\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n)} = \frac{\partial (\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n)}{\partial (\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_n)} - \frac{\partial (\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_n)}{\partial (\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n)}$$

প্রমাণ ঃ আমরা Chain Rule দ্বারা পাই,

$$\frac{\partial u_1}{\partial x_1} = \frac{\partial u_1}{\partial y_1} \frac{\partial y_1}{\partial x_1} + \frac{\partial u_1}{\partial y_2} \frac{\partial y_2}{\partial x_1} + \dots + \frac{\partial u_1}{\partial y_n} \frac{\partial y_n}{\partial x_1}$$

$$=\sum_{r=1}^{n} \frac{\partial u_{1}}{\partial y_{r}} \frac{\partial y_{r}}{\partial x_{1}}$$

$$\frac{\partial u_{1}}{\partial x_{2}} =\sum_{r=1}^{n} \frac{\partial u_{1}}{\partial y_{r}} \frac{\partial y_{r}}{\partial x_{2}}$$

$$\dots \qquad \dots$$

$$\frac{\partial u_{1}}{\partial x_{n}} =\sum_{r=1}^{n} \frac{\partial u_{1}}{\partial y_{r}} \frac{\partial y_{r}}{\partial x_{n}}$$

$$(A)$$

$$\begin{array}{c} \text{All } \overline{\textbf{V}} = \left| \begin{array}{c} \frac{\partial (u_1, u_2, \dots, u_n)}{\partial (y_1, y_2, \dots, y_n)} & \frac{\partial (y_1, y_2, \dots, y_n)}{\partial (x_1, x_2, \dots, x_n)} \right| \\ = \left| \begin{array}{c} \frac{\partial u_1}{\partial y_1} & \frac{\partial u_1}{\partial y_2} & \dots & \frac{\partial u_1}{\partial y_n} \\ \frac{\partial u_2}{\partial y_1} & \frac{\partial u_2}{\partial y_2} & \dots & \frac{\partial u_2}{\partial y_n} \\ \frac{\partial u_n}{\partial y_1} & \frac{\partial u_n}{\partial y_2} & \dots & \frac{\partial u_n}{\partial y_n} \end{array} \right| \\ \end{array} \right| \left| \begin{array}{c} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_1}{\partial x_2} & \dots & \frac{\partial y_1}{\partial x_n} \\ \frac{\partial y_2}{\partial x_2} & \frac{\partial y_2}{\partial x_2} & \dots & \frac{\partial y_2}{\partial x_n} \\ \frac{\partial y_n}{\partial x_1} & \frac{\partial y_n}{\partial x_2} & \dots & \frac{\partial y_n}{\partial x_n} \end{array} \right| \\ \end{array} \right|$$

$$= \left| \begin{array}{c|c} \sum \frac{\partial u_1}{\partial y_r} \frac{\partial y_r}{\partial x_1} & \sum \frac{\partial u_1}{\partial y_r} \frac{\partial y_r}{\partial x_2} \cdots & \sum \frac{\partial u_1}{\partial y_r} \frac{\partial y_r}{\partial x_n} \\ \\ \sum \frac{\partial u_2}{\partial y_r} \frac{\partial y_r}{\partial x_1} & \sum \frac{\partial u_2}{\partial y_r} \frac{\partial y_r}{\partial x_2} \cdots & \sum \frac{\partial u_2}{\partial y_r} \frac{\partial y_r}{\partial x_n} \\ \\ \\ \sum \frac{\partial u_n}{\partial y_r} \frac{\partial y_r}{\partial x_1} & \sum \frac{\partial u_n}{\partial y_r} \frac{\partial y_r}{\partial x_2} \cdots & \sum \frac{\partial u_n}{\partial y_r} \frac{\partial y_r}{\partial x_r} \end{array} \right|$$

$$= \begin{vmatrix} \frac{\partial u_1}{\partial x_1} & \frac{\partial u_1}{\partial x_2} & \dots & \frac{\partial u_1}{\partial x_n} \\\\ \frac{\partial u_2}{\partial x_1} & \frac{\partial u_2}{\partial x_2} & \dots & \frac{\partial u_2}{\partial x_n} \\\\ \dots & \dots & \dots \\\\ \frac{\partial u_n}{\partial x_1} & \frac{\partial u_n}{\partial x_2} & \dots & \frac{\partial u_n}{\partial x_n} \end{vmatrix}$$

(A-এর সাহায্যে নিয়ে)

$$=\frac{\partial(\mathbf{u}_1,\mathbf{u}_2,\ldots,\mathbf{u}_n)}{\partial(\mathbf{x}_1,\mathbf{x}_2,\ldots,\mathbf{x}_n)}=$$
বামপক্ষ

অতএব উপপাদ্য প্রমাণিত হল।

অনুসিদ্ধান্ত 1 ঃ $u_1 = x_1, u_2 = x_x, \dots, u_n = x_n$ হলে দেখান,

$$=\frac{\partial(\mathbf{u}_1,\,\mathbf{u}_2,\,\ldots,\,\mathbf{u}_n)}{\partial(\mathbf{x}_1,\,\mathbf{x}_2,\,\ldots,\,\mathbf{x}_n)}=1$$

$$=\frac{\partial(\mathbf{u}_1,\,\mathbf{u}_2,\,\ldots,,\,\mathbf{u}_n)}{\partial(\mathbf{x}_1,\,\mathbf{x}_2,\,\ldots,,\,\mathbf{x}_n)}$$

প্রমাণ ঃ

$$=\frac{\partial(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n)}{\partial(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n)}$$

$$= \begin{vmatrix} \frac{\partial x_1}{\partial x_1} & \frac{\partial x_1}{\partial x_2} & \dots & \frac{\partial x_1}{\partial x_n} \\ \frac{\partial x_2}{\partial x_1} & \frac{\partial x_2}{\partial x_2} & \dots & \frac{\partial x_2}{\partial x_n} \\ \dots & \dots & \dots \\ \frac{\partial x_n}{\partial x_1} & \frac{\partial x_n}{\partial x_2} & \dots & \frac{\partial x_n}{\partial x_n} \end{vmatrix}$$

 $= \begin{vmatrix} 1 & 0 & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & 0 \\ 0 & 0 & 0 & \dots & 1 \end{vmatrix} = \mathbf{I}$

উপপাদ্য 2 ঃ যদি u₁, u₂,, u_n হয় x₁, x₂,, x_n-এর অপেক্ষক এবং তা নীচের সম্পর্কে লেখা যায়

$$F_{1}(u_{1}, u_{2}, \dots, u_{n}, x_{1}, x_{2}, \dots, x_{n}) = 0$$

$$F_{2}(u_{1}, u_{2}, \dots, u_{n}, x_{1}, x_{2}, \dots, x_{n}) = 0$$

$$F_{n}(u_{1}, u_{2}, \dots, u_{n}, x_{1}, x_{2}, \dots, x_{n}) = 0$$
(A)

Sizer

$$\frac{\partial(F_1, F_2, \dots, F_n)}{\partial(u_1, u_2, \dots, u_n)}$$
 $\frac{\partial(u_1, u_2, \dots, u_n)}{\partial(x_1, x_2, \dots, x_n)}$

 = $(-1)^n$
 $\frac{\partial(F_1, F_2, \dots, F_n)}{\partial(x_1, x_2, \dots, x_n)}$

 304

প্রমাণ ঃ এখন (A)-এর প্রত্যেকে ${
m x}_1,\,{
m x}_2,\,\dots,{
m x}_n$ -এর সাপেক্ষে অবকলন করে পাই,

$$\frac{\partial F_{1}}{\partial x_{1}} + \frac{\partial F_{1}}{\partial u_{1}} \frac{\partial u_{1}}{\partial x_{1}} + \frac{\partial F_{1}}{\partial u_{2}} \frac{\partial u_{2}}{\partial x_{1}} + \dots + \frac{\partial F_{1}}{\partial u_{n}} \frac{\partial u_{n}}{\partial x_{1}} = 0$$

$$\frac{\partial F_{1}}{\partial x_{2}} + \frac{\partial F_{1}}{\partial u_{1}} \frac{\partial u_{1}}{\partial x_{2}} + \frac{\partial F_{1}}{\partial u_{2}} \frac{\partial u_{2}}{\partial x_{2}} + \dots + \frac{\partial F_{1}}{\partial u_{n}} \frac{\partial u_{n}}{\partial x_{2}} = 0$$

$$\frac{\partial F_{1}}{\partial x_{n}} + \frac{\partial F_{1}}{\partial u_{1}} \frac{\partial u_{1}}{\partial x_{n}} + \frac{\partial F_{1}}{\partial u_{2}} \frac{\partial u_{2}}{\partial x_{n}} + \dots + \frac{\partial F_{1}}{\partial u_{n}} \frac{\partial u_{n}}{\partial x_{n}} = 0$$

$$\frac{\partial F_{n}}{\partial x_{1}} + \frac{\partial F_{n}}{\partial u_{1}} \frac{\partial u_{1}}{\partial x_{1}} + \frac{\partial F_{n}}{\partial u_{2}} \frac{\partial u_{2}}{\partial x_{1}} + \dots + \frac{\partial F_{n}}{\partial u_{n}} \frac{\partial u_{n}}{\partial x_{2}} = 0$$

$$\frac{\partial F_{n}}{\partial x_{1}} + \frac{\partial F_{n}}{\partial u_{1}} \frac{\partial u_{1}}{\partial x_{2}} + \frac{\partial F_{n}}{\partial u_{2}} \frac{\partial u_{2}}{\partial x_{1}} + \dots + \frac{\partial F_{n}}{\partial u_{n}} \frac{\partial u_{n}}{\partial x_{2}} = 0$$

$$\frac{\partial F_{n}}{\partial x_{2}} + \frac{\partial F_{n}}{\partial u_{1}} \frac{\partial u_{1}}{\partial x_{2}} + \frac{\partial F_{n}}{\partial u_{2}} \frac{\partial u_{2}}{\partial x_{2}} + \dots + \frac{\partial F_{n}}{\partial u_{n}} \frac{\partial u_{n}}{\partial x_{2}} = 0$$

$$\frac{\partial F_{n}}{\partial x_{n}} + \frac{\partial F_{n}}{\partial u_{1}} \frac{\partial u_{1}}{\partial x_{n}} + \frac{\partial F_{n}}{\partial u_{2}} \frac{\partial u_{2}}{\partial x_{2}} + \dots + \frac{\partial F_{n}}{\partial u_{n}} \frac{\partial u_{n}}{\partial x_{n}} = 0$$

$$\frac{\partial F_{n}}{\partial x_{n}} + \frac{\partial F_{n}}{\partial u_{1}} \frac{\partial u_{1}}{\partial x_{n}} + \frac{\partial F_{n}}{\partial u_{2}} \frac{\partial u_{2}}{\partial x_{n}} + \dots + \frac{\partial F_{n}}{\partial u_{n}} \frac{\partial u_{n}}{\partial x_{n}} = 0$$

$$\frac{\partial F_{n}}{\partial x_{n}} + \frac{\partial F_{n}}{\partial u_{1}} \frac{\partial u_{1}}{\partial x_{n}} + \frac{\partial F_{n}}{\partial u_{2}} \frac{\partial u_{2}}{\partial x_{n}} + \dots + \frac{\partial F_{n}}{\partial u_{n}} \frac{\partial u_{n}}{\partial x_{n}} = 0$$

$$\frac{\partial F_{n}}{\partial (u_{1}, u_{2}, \dots, u_{n})} = \frac{\partial (u_{1}, u_{2}, \dots, u_{n})}{\partial (x_{1}, x_{2}, \dots, x_{n})}$$

$$= \begin{vmatrix} \frac{\partial F_{1}}{\partial u_{1}} \frac{\partial F_{1}}{\partial u_{2}} - \frac{\partial F_{1}}{\partial u_{n}} \end{vmatrix} \begin{vmatrix} \frac{\partial u_{1}}{\partial u_{n}} \frac{\partial u_{1}}{\partial x_{1}} - \frac{\partial u_{1}}}{\partial u_{n}} \end{vmatrix} \begin{vmatrix} \frac{\partial u_{1}}{\partial u_{1}} \frac{\partial u_{1}}{\partial x_{2}} - \frac{\partial u_{1}}{\partial x_{n}} \end{vmatrix}$$

$$= \left| \begin{array}{ccc} \sum \frac{\partial F_{1}}{\partial u_{r}} & \frac{\partial u_{r}}{\partial x_{1}} & \sum \frac{\partial F_{1}}{\partial u_{r}} & \frac{\partial u_{r}}{\partial x_{2}} & \cdots & \sum \frac{\partial F_{2}}{\partial u_{r}} & \frac{\partial u_{r}}{\partial x_{n}} \\ \\ \sum \frac{\partial F_{2}}{\partial u_{r}} & \frac{\partial u_{r}}{\partial x_{1}} & \sum \frac{\partial F_{2}}{\partial u_{r}} & \frac{\partial u_{r}}{\partial x_{2}} & \cdots & \sum \frac{\partial F_{2}}{\partial u_{r}} & \frac{\partial u_{r}}{\partial x_{n}} \\ \\ \\ \\ \sum \frac{\partial F_{n}}{\partial u_{r}} & \frac{\partial u_{r}}{\partial x_{1}} & \sum \frac{\partial F_{n}}{\partial u_{r}} & \frac{\partial u_{r}}{\partial x_{2}} & \cdots & \sum \frac{\partial F_{n}}{\partial u_{r}} & \frac{\partial u_{r}}{\partial x_{n}} \end{array} \right|$$

$$= \begin{vmatrix} -\frac{\partial F_{1}}{\partial x_{1}} & -\frac{\partial F_{1}}{\partial x_{2}} & \dots & -\frac{\partial F_{1}}{\partial x_{n}} \\ -\frac{\partial F_{2}}{\partial x_{1}} & -\frac{\partial F_{2}}{\partial x_{2}} & \dots & -\frac{\partial F_{2}}{\partial x_{n}} \\ \dots & \dots & \dots \\ -\frac{\partial F_{n}}{\partial x_{1}} & -\frac{\partial F_{n}}{\partial x_{2}} & \dots & -\frac{\partial F_{n}}{\partial x_{n}} \end{vmatrix}$$

$$= (-1)^{n} \frac{\partial(F_{1}, F_{2}, \dots, F_{n})}{\partial(x_{1}, x_{2}, \dots, x_{n})}$$

উদাহরণ 1 ঃ যদি λ-এর সমীকরণের

$$(\lambda - x)^3 + (\lambda - y)^3 + (\lambda - z)^3 = 0$$
 বীজগুলি u, v, ω হয়, তাহলে প্রমাণ করন
Jacobian $\frac{\partial(u, v, w)}{\partial(x, y, z)} = -2\frac{(y - z)(z - x)(x - y)}{(v - \omega)(\omega - u)(u - v)}$

সমাধান ঃ $(\lambda - x)^3 + (\lambda - y)^3 + (\lambda - z)^3 = 0$

$$\exists \lambda^{3} - 3\lambda^{2} (x + y + z) + 3\lambda (x^{2} + y^{2} + z^{2}) - (x^{3} + y^{3} + z^{3}) = 0$$

যেহেতু, $u, \; v, \; \omega$ হল সমীকরণের তিনটি বীজ, সুতরাং,

(i) $\mathbf{u} + \mathbf{v} + \mathbf{\omega} = \mathbf{x} + \mathbf{y} + \mathbf{z}$

$$\begin{aligned} \overline{a}_{1}, & \phi_{1} = u + v + \omega - x - y - z = 0 \\ (ii) & uv + v\omega + u\omega = x^{2} + y^{2} + z^{2} \\ \overline{a}_{1} & \phi_{2} = uv + v\omega + u\omega - x^{2} - y^{2} - z^{2} = 0 \\ (iii) & uv\omega = -\frac{1}{3}(x^{3} + y^{3} + z^{3}) \\ \overline{a}_{1}, & \phi_{3} = uv\omega + \frac{1}{3}(x^{3} + y^{3} + z^{3}) = 0 \\ \overline{a}_{1} & \frac{\partial(\phi_{1}, \phi_{2}, \phi_{3})}{\partial(x, y, z)} = (-1)^{3} \frac{\partial(\phi_{1}, \phi_{2}, \phi_{3})}{\partial(u, v, \omega)} \frac{\partial(u, v, \omega)}{\partial(x, y, z)} \\ \overline{a}_{1}, & \frac{\partial(u, v, w)}{\partial(x, y, z)} = -\frac{\partial(\phi_{1}, \phi_{2}, \phi_{3})}{\partial(x, y, z)} / \frac{\partial(\phi_{1}, \phi_{2}, \phi_{3})}{\partial(u, v, \omega)} \\ \frac{\partial(\phi_{1}, \phi_{2}, \phi_{3})}{\partial(x, y, z)} = \left| \frac{\partial\phi_{1}}{\partial x} - \frac{\partial\phi_{1}}{\partial y} - \frac{\partial\phi_{1}}{\partial z} \right| \\ \frac{\partial\phi_{2}}{\partial x} - \frac{\partial\phi_{2}}{\partial y} - \frac{\partial\phi_{2}}{\partial z} \\ \frac{\partial\phi_{3}}{\partial x} - \frac{\partial\phi_{3}}{\partial y} - \frac{\partial\phi_{3}}{\partial z} \right| \\ = \left| -1 - 1 - 1 - 1 \\ -2x - 2y - 2z \\ -x^{2} - y^{2} - z^{2} \end{vmatrix} = \left| -1 \right|^{3} 2 \left| 1 - 1 - 1 \\ x - 2x - 2y - 2z \\ x^{2} - y^{2} - z^{2} \right| \\ = -2 \left| 1 \\ x - 2x - 2y - 2z \\ x^{2} - y^{2} - z^{2} - z^{2} \right| \\ = -2 \left| 1 \\ x - 2x - 2y - 2z \\ x^{2} - y^{2} - z^{2} - z^{2} \right| \\ = -2 \left| 1 \\ x - 2x - 2y - 2z \\ x^{2} - y^{2} - z^{2} - z^{2} \right| \\ = -2 \left| 1 \\ x - 2x - 2y - 2z \\ x^{2} - y^{2} - z^{2} - z^{2} \right| \\ \end{array}$$

(2 য় Column- 1 ম Column, 3 য় Column- 1 ম Column)

$$= -2 \qquad y - x \qquad z - x \\ y^{2} - x^{2} \qquad z^{2} - x^{2} \\ = -2 (y - x)(z - x) \qquad \begin{vmatrix} 1 & 1 \\ y - x & z + x \end{vmatrix}$$

= 2(y-z)(z-x)(x-y)

$$\mathfrak{GRR}, \quad \frac{\partial(\phi_1, \phi_2, \phi_3)}{\partial(\mathfrak{u}, \mathfrak{v}, \omega)} = \begin{vmatrix} \frac{\partial \phi_1}{\partial \mathfrak{u}} & \frac{\partial \phi_1}{\partial \mathfrak{v}} & \frac{\partial \phi_1}{\partial \omega} \\ \frac{\partial \phi_2}{\partial \mathfrak{u}} & \frac{\partial \phi_2}{\partial \mathfrak{v}} & \frac{\partial \phi_2}{\partial \omega} \\ \frac{\partial \phi_3}{\partial \mathfrak{u}} & \frac{\partial \phi_3}{\partial \mathfrak{v}} & \frac{\partial \phi_3}{\partial \omega} \end{vmatrix}$$

$$= \begin{vmatrix} 1 & 1 & 1 \\ \mathfrak{v} + \omega & \omega + \mathfrak{u} & \mathfrak{u} + \mathfrak{v} \\ \mathfrak{v} \omega & \mathfrak{u} \omega & \mathfrak{u} v \end{vmatrix}$$

$$= \begin{vmatrix} 1 & 0 & 0 \\ \mathfrak{v} + \omega & \mathfrak{u} - \mathfrak{v} & \mathfrak{u} - \omega \\ \mathfrak{v} \omega & \omega(\mathfrak{u} - \mathfrak{v}) & \mathfrak{v}(\mathfrak{u} - \omega) \end{vmatrix}$$

(2য় Column- 1ম Column, 3য় Column- 1ম Column)

$$= (u - v) (u - \omega) \qquad \begin{vmatrix} 1 & 1 \\ \omega & v \end{vmatrix}$$

 $= -(v-\omega)^{-}(\omega-u)^{-}(u-v)$

 $\therefore \frac{\partial(u, v, w)}{\partial(x, y, z)} = \frac{2(y - z)(z - x)(x - y)}{-(v - \omega)(\omega - u)(u - v)}$

$$= -2 \frac{(y-z)(z-x)(x-y)}{(v-\omega)(\omega-u)(u-v)}$$

উদাহরণ 2 ঃ যদি y_1, y_2, y_3 এই তিনটি চলরাশির অবকলযোগ্য দুটি অপেক্ষক z_1, z_2 হয় তাহলে

$$\frac{\partial(z_1, z_2)}{\partial(x_1, x_2)} = \frac{\partial(z_1, z_2)}{\partial(y_1, y_2)} \quad \frac{\partial(y_1, y_2)}{\partial(x_1, x_2)} + \frac{\partial(z_1, z_2)}{\partial(y_2, y_3)} \quad \frac{\partial(y_2, y_3)}{\partial(x_1, x_2)} + \frac{\partial(z_1, z_3)}{\partial(y_3, y_1)} \quad \frac{\partial(y_3, y_1)}{\partial(x_1, x_2)}$$

সমাধান ঃ Chain Rule দিয়ে,

$$\begin{aligned} \frac{\partial z_1}{\partial x_1} &= \frac{\partial z_1}{\partial y_1} \quad \frac{\partial y_1}{\partial x_1} + \frac{\partial z_1}{\partial y_2} \quad \frac{\partial y_2}{\partial x_1} + \frac{\partial z_1}{\partial y_3} \quad \frac{\partial y_3}{\partial x_1} \\ \\ \frac{\partial z_1}{\partial x_2} &= \frac{\partial z_1}{\partial y_1} \quad \frac{\partial y_1}{\partial x_2} + \frac{\partial z_1}{\partial y_2} \quad \frac{\partial y_2}{\partial x_2} + \frac{\partial z_1}{\partial y_3} \quad \frac{\partial y_3}{\partial x_2} \end{aligned}$$

$$\begin{aligned} \text{AND} \qquad \qquad \frac{\partial (z_1, z_2)}{\partial (x_1, x_2)} &= \quad \begin{vmatrix} \frac{\partial z_1}{\partial x_1} & \frac{\partial z_1}{\partial x_2} \\ \frac{\partial z_2}{\partial x_1} & \frac{\partial z_2}{\partial x_2} \end{vmatrix}$$

$$= \begin{vmatrix} \frac{\partial z_1}{\partial y_1} & \frac{\partial y_1}{\partial x_1} + \frac{\partial z_1}{\partial y_2} & \frac{\partial y_2}{\partial x_1} + \frac{\partial z_1}{\partial y_3} & \frac{\partial y_3}{\partial x_1} & \frac{\partial z_1}{\partial y_1} & \frac{\partial y_1}{\partial x_2} + \frac{\partial z_1}{\partial y_2} & \frac{\partial y_2}{\partial x_2} + \frac{\partial z_1}{\partial y_3} & \frac{\partial y_3}{\partial x_2} \\ & & \frac{\partial z_2}{\partial z_1} & & \frac{\partial z_2}{\partial x_2} \end{vmatrix}$$

$$= \frac{\partial z_1}{\partial y_1} \begin{vmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_1}{\partial x_2} \end{vmatrix} + \frac{\partial z_1}{\partial y_2} \begin{vmatrix} \frac{\partial y_2}{\partial x_1} & \frac{\partial y_2}{\partial x_2} \\ \frac{\partial z_2}{\partial x_1} & \frac{\partial z_2}{\partial x_2} \end{vmatrix} + \frac{\partial z_1}{\partial x_2} \begin{vmatrix} \frac{\partial y_2}{\partial x_1} & \frac{\partial y_2}{\partial x_2} \\ \frac{\partial z_2}{\partial x_1} & \frac{\partial z_2}{\partial x_2} \end{vmatrix} + \frac{\partial z_1}{\partial x_2} \begin{vmatrix} \frac{\partial y_2}{\partial x_1} & \frac{\partial y_3}{\partial x_2} \\ \frac{\partial z_2}{\partial x_1} & \frac{\partial z_2}{\partial x_2} \end{vmatrix}$$

একইভাবে, $\frac{\partial(y_1, z_2)}{\partial(y_1, y_2)} = \frac{\partial z_2}{\partial y_1} \frac{\partial(y_1, y_1)}{\partial(y_1, y_2)} + \frac{\partial z_2}{\partial y_2} \frac{\partial(y_1, y_2)}{\partial(y_1, y_2)} + \frac{\partial z_2}{\partial y_2} \frac{\partial(y_1, y_3)}{\partial(y_1, y_3)}$

একইভাবে,
$$\frac{\partial(y_1, z_2)}{\partial(x_1, x_2)} = \frac{\partial z_2}{\partial y_1} \frac{\partial(y_1, y_1)}{\partial(x_1, x_2)} + \frac{\partial z_2}{\partial y_2} \frac{\partial(y_1, y_2)}{\partial(x_1, x_2)} + \frac{\partial z_2}{\partial y_3} \frac{\partial(y_1, y_3)}{\partial(x_1, x_2)}$$

$$\frac{\partial(y_2, z_2)}{\partial(x_1, x_2)} = \frac{\partial z_2}{\partial y_1} \frac{\partial(y_2, y_1)}{\partial(x_1 x_2)} \frac{\partial z_2}{\partial y_2} \frac{\partial(y_2, y_2)}{\partial(x_1, x_2)} + \frac{\partial z_3}{\partial y_3} \frac{\partial(y_2, y_3)}{\partial(x_1, x_2)}$$
$$\frac{\partial(y_3, z_2)}{\partial(x_1, x_2)} = \frac{\partial z_2}{\partial y_1} \frac{\partial(y_3, y_1)}{\partial(x_1 x_2)} + \frac{\partial z_2}{\partial y_2} \frac{\partial(y_3, y_2)}{\partial(x_1, x_2)} + \frac{\partial z_2}{\partial y_3} \frac{\partial(y_3, y_3)}{\partial(x_1, x_2)}$$

এখন, $\frac{\partial(y_1, y_2)}{\partial(x_1, x_2)}$, $\frac{\partial(y_2, y_3)}{\partial(x_1, x_2)}$, $\frac{\partial(y_3, y_3)}{\partial(x_1, x_2)}$

এরকমগুলি সব শূন্য হবে।

সুতরাং (1) হতে,

$$\begin{aligned} \frac{\partial(z_1, z_2)}{\partial(x_1, x_2)} &= \frac{\partial(y_1, y_2)}{\partial(x_1, x_2)} \left[\frac{\partial z_2}{\partial y_2} \quad \frac{\partial z_1}{\partial y_1} - \frac{\partial z_2}{\partial y_1} \quad \frac{\partial z_1}{\partial y_2} \right] \\ &+ \frac{\partial(y_2, y_3)}{\partial(x_1, x_2)} \left[\frac{\partial z_1}{\partial y_2} \quad \frac{\partial z_2}{\partial y_3} - \frac{\partial z_1}{\partial y_3} \quad \frac{\partial z_2}{\partial y_2} \right] \\ &+ \frac{\partial(y_3, y_1)}{\partial(x_1, x_2)} \left[\frac{\partial z_1}{\partial y_3} \quad \frac{\partial z_2}{\partial y_1} - \frac{\partial z_2}{\partial y_3} \quad \frac{\partial z_1}{\partial y_1} \right] \\ &= \frac{\partial(z_1, z_2)}{\partial(y_1, y_2)} \quad \frac{\partial(y_1, y_2)}{\partial(x_1, x_2)} + \frac{\partial(z_1, z_2)}{\partial(y_2, y_3)} \quad \frac{\partial(y_2, y_3)}{\partial(x_1, x_2)} + \frac{\partial(z_1, z_3)}{\partial(y_3, y_1)} \quad \frac{\partial(y_3, y_1)}{\partial(x_1, x_2)} \end{aligned}$$

13.6 অপেক্ষকীয় নির্ভরতা সংক্রান্ত উপপাদ্য ও উদাহরণ

উপপাদ্য 1 ঃ যদি xy তলের R-অঞ্চলে u = f(x, y), v = g(x, y) অবকলযোগ্য অপেক্ষক হয়, তাহলে অপেক্ষকীয় সম্পর্ক F(u, v) = 0 হওয়ার আবশ্যকীয় ও পর্যাপ্ত শর্ত হল $\frac{\partial(u, v)}{\partial(x, y)} = 0$

প্রমাণ ঃ ধরি, F(u, v) = 0

এখন, x, y-এর সাপেক্ষে অবকল করে পাই,

$$\left. \begin{array}{l} F_{u}u_{x} + F_{v}v_{x} = 0 \\ F_{u}u_{y} + F_{v}v_{y} = 0 \end{array} \right\} \qquad (A)$$

যদি $\mathbf{J} = \begin{vmatrix} \mathbf{u}_{x} & \mathbf{v}_{x} \\ \mathbf{u}_{y} & \mathbf{v}_{y} \end{vmatrix} = \begin{vmatrix} \mathbf{u}_{x} & \mathbf{u}_{y} \\ \mathbf{v}_{x} & \mathbf{v}_{y} \end{vmatrix} \neq \mathbf{0}$

তাহলে (A) এর একমাত্র সমাধান ${f F}_u=0,\,{f F}_v=0$ এটা হতে পারে না কারণ F(u, v)-এর মধ্যে u, v উভয়েই থাকবে না।

সুতরাং
$$\mathbf{J}=rac{\partialig(\mathbf{u},\,\mathbf{v}ig)}{\partialig(\mathbf{x},\,\mathbf{y}ig)}=0$$
 হল আবশ্যকীয় শর্ত।

পৰ্যাপ্ত শৰ্ত ঃ ধৰ্মি $\mathbf{J} = rac{\partial(\mathbf{u}, \mathbf{v})}{\partial(\mathbf{x}, \mathbf{y})} = 0$ এখন যদি $\mathbf{f}_{\mathbf{x}} = \mathbf{f}_{\mathbf{y}} = 0$ হয়, তাহলে $\mathbf{u} =$ ধ্ৰুবক = c বা, $\mathbf{u} - \mathbf{c} = 0$

এটা অপেক্ষকীয় সম্পর্ক।

সুতরাং উপপাদ্য সহজেই প্রমাণিত হয়।

এখন ধরি $\mathbf{f}_{\mathbf{x}}\left(\mathbf{x}_{0},\,\mathbf{y}_{0}
ight)
eq 0$ যেখানে R-এর মধ্যে ($\mathbf{x}_{0},\,\mathbf{y}_{0}$) অবস্থিত। ($\mathbf{x}_{0},\,\mathbf{y}_{0}$)-এর কোনো সামীপ্যে \mathbf{x} = ϕ (\mathbf{u},\mathbf{y}) এর জন্য \mathbf{u} – $\mathbf{f}(\mathbf{x},\,\mathbf{y})$ = o এর সমাধান করব।

যেহেতু u = f (ϕ , y) হল u, y-এর অভেদ f(ϕ , y) হল y নিরপেক্ষ। সুতরাং f_x ϕ_y + f_y = 0

বা,
$$\phi_y = -\frac{f_y}{f_x}$$

এখন, $v = g(\phi, y) = G(u, y)$

আবার, $G_y = g_x \phi_y + g_y$

$$= \frac{\mathbf{f}_{\mathbf{X}}\mathbf{g}_{\mathbf{X}} - \mathbf{f}_{\mathbf{y}}\mathbf{g}_{\mathbf{X}}}{\mathbf{f}_{\mathbf{X}}} = \frac{\begin{vmatrix} \mathbf{f}_{\mathbf{X}} & \mathbf{f}_{\mathbf{y}} \\ \mathbf{g}_{\mathbf{X}} & \mathbf{g}_{\mathbf{y}} \end{vmatrix}}{\mathbf{f}_{\mathbf{X}}} = 0$$

অর্থাৎ G হল y নিরেপেক্ষ এবং G হল কেবলমাত্র u-এর অপেক্ষক। সুতরাং v = G(u) উপপাদ্য প্রমাণিত হল।

উপপাদ্য 2 ঃ ত্রিমাত্রিক অঞ্চলে R-সংজ্ঞায়িত অবকলনযোগ্য তিনটি অপেক্ষক u = f(x, y, z), v = g(x, y, z) এবং w = h(x,y, z) একটি অপেক্ষকীয় সম্পর্ক F(u, v, w) = 0 সিদ্ধ হওয়ায় আবশ্যকীয় ও পর্যাপ্ত শর্ত হল তাদের,

Jacobian
$$\frac{\partial(u, v, w)}{\partial(x, y, z)} = 0$$

প্রমাণ ঃ আবশ্যকীয় শর্ত ঃ

ধরি, F(u,v,w) = 0 এখন x,y,z এর সাপেক্ষে অবকল করে পাই

$$\begin{array}{c} F_{u}u_{x}+F_{v}v_{x}+F_{w}w_{x}=0\\ F_{u}u_{y}+F_{v}v_{y}+F_{w}w_{y}=0\\ F_{u}u_{z}+F_{v}v_{z}+F_{w}w_{z}=0 \end{array} \right\} \qquad (A)$$

$$\begin{array}{c} T_{u}u_{z}+F_{v}v_{z}+F_{w}w_{z}=0\\ J=\frac{\partial(u,v,w)}{\partial(x,y,z)}= & \left| \begin{array}{c} u_{x}&v_{x}&w_{x}\\ u_{y}&v_{y}&w_{y}\\ u_{z}&v_{z}&w_{z} \end{array} \right| \neq 0 \end{array}$$

(A) হতে পাই $F_u = 0 = F_v = F_w - এটা হতে পারে না কারণ <math>F(u,v,w) - এর মধ্যে u,v,w$ থাকবে না।

সুতরাং, $\frac{\partial(u, v, w)}{\partial(x, y, z)} = 0$

পর্যাপ্ত শর্ত ঃ যদি u,v নিয়ে J – এর সম্পর্ক minor শূন্য হয়, তাহলে আমরা F(u,v)=0 এ সম্পর্ক পাই এবং উপপাদ্য প্রমাণ হয়ে যায়।

এখন ধরি, $\frac{\partial(f,g)}{\partial(u,v)} \neq 0 - (x_0, y_0, z_0)$ বিন্দুতে। তাহলে আমরা (x_0, y_0, z_0) এর সামীপ্যে u = f(x, y, z), v = g(x, y, z) সমাধান করে $x = \phi(u, v, z)$, $y = \psi(u, v, z)$ পাই। যেহেতু, $u = f(\phi, \psi, z)$, $v = g(\phi, \psi, z)$ হল u, v, z এর অভেদ এবং ডানপক্ষ z-নিরপক্ষ।

সূতরাং , $\begin{aligned} \mathbf{f}_x \boldsymbol{\varphi}_z + \mathbf{f}_y \boldsymbol{\psi}_z + \mathbf{f}_y &= 0\\ \mathbf{g}_x \boldsymbol{\varphi}_z + \mathbf{g}_y \boldsymbol{\psi}_z + \mathbf{g}_z &= 0 \end{aligned}$

এখন, w = h(x, y, z) এতে x, y – এর মান বসালে $w = h(\phi, \psi, z) = H(u, v, z)$ হবে। আবার, $J = \begin{vmatrix} f_x & f_y & f_z \\ g_x & g_y & g_z \\ h_x & h_y & h_z \end{vmatrix} = \begin{vmatrix} f_x & f_y & 0 \\ g_x & g_y & 0 \\ h_x & h_y & H_z \end{vmatrix}$

312

$$= H_z \begin{vmatrix} f_x & f_y \\ g_x & g_y \end{vmatrix}$$

(যেখানে J-এর 1ম Column-কে ϕ , গুণ করে এবং 2য় Column-কে ψ_z দিয়ে গুণ করে 3য় Column-এর সাথে যোগ করলে 2য় determinant পাওয়া যায়)।

যেহেতু J = 0, $\frac{\partial(f, g)}{\partial(x, y)} \neq 0$ আমরা বলতে পারি H_z = 0 সুতরাং H হল z নিরপেক্ষ এবং u, v-এর অপেক্ষক লিখতে পারি W = H(u, v)। উপপাদ্য প্রমাণিত হল।

উদাহরণ । ঃ দেখান যে u = x + y - z, v = x - y + z, W = x² + y² + z² - zyz নির্ভরশীল নয় এবং তাদের সম্পর্কটি লেখ।

সমাধান :
$$\frac{\partial(\mathbf{u}, \mathbf{v}, \mathbf{w})}{\partial(\mathbf{x}, \mathbf{y}, \mathbf{z})} = \begin{vmatrix} \frac{\partial \mathbf{u}}{\partial \mathbf{x}} & \frac{\partial \mathbf{u}}{\partial \mathbf{y}} & \frac{\partial \mathbf{u}}{\partial \mathbf{z}} \\ \frac{\partial \mathbf{v}}{\partial \mathbf{x}} & \frac{\partial \mathbf{v}}{\partial \mathbf{y}} & \frac{\partial \mathbf{v}}{\partial \mathbf{z}} \\ \frac{\partial \mathbf{w}}{\partial \mathbf{x}} & \frac{\partial \mathbf{w}}{\partial \mathbf{y}} & \frac{\partial \mathbf{w}}{\partial \mathbf{z}} \end{vmatrix}$$

$$= \begin{vmatrix} 1 & 1 & -1 \\ 1 & -1 & 1 \\ 2x & 2(y-z) & 2(z-y) \end{vmatrix}$$

$$\begin{vmatrix} 1 & 0 & -1 \\ 1 & 0 & 1 \\ 2x & 0 & 2(z - y) \end{vmatrix} = 0$$

(3 য় column-কে 2য় column-এর সাথে যোগ করে)

যেহেতু, Jacobian = 0, u, v, w অপেক্ষকগুলি স্বাধীন নয়।

এখন, u + v = 2x, u - v = 2 (y - z) এবং

$$(u + v)^2 + (u - v)^2 = 4(x^2 + y^2 + z^2 - zyz = 4W$$
 এটি সম্পর্ক।

উদাহরণ 2 ঃ দেখান যে u = 3x + 2y - z, v = x - 2y + z, w = x(x + 2y - z) একটি অপেক্ষকীয় সম্পর্ক যুক্ত এবং সম্পর্কটি লিখুন।

সমাধান ঃ এখানে
$$\frac{\partial(\mathbf{u}, \mathbf{v}, \mathbf{w})}{\partial(\mathbf{x}, \mathbf{y}, \mathbf{z})} = \begin{vmatrix} \frac{\partial \mathbf{u}}{\partial \mathbf{x}} & \frac{\partial \mathbf{u}}{\partial \mathbf{y}} & \frac{\partial \mathbf{u}}{\partial \mathbf{z}} \end{vmatrix}$$

 $\frac{\partial \mathbf{v}}{\partial \mathbf{x}} & \frac{\partial \mathbf{v}}{\partial \mathbf{y}} & \frac{\partial \mathbf{v}}{\partial \mathbf{z}}$
 $\frac{\partial \mathbf{w}}{\partial \mathbf{x}} & \frac{\partial \mathbf{w}}{\partial \mathbf{y}} & \frac{\partial \mathbf{w}}{\partial \mathbf{z}}$

$$= \begin{vmatrix} 3 & 2 & -1 \\ 1 & -2 & 1 \\ 2(x+y) & 2x & -x \end{vmatrix} = -2 \begin{vmatrix} 3 & -1 & -1 \\ 1 & 1 & 1 \\ 2(x+y) & -x & -x \end{vmatrix}$$
$$= 0$$

তাহলে, u, v, w এর মধ্যে অপেক্ষকীয় সম্পর্ক আছে।

এখন,
$$\frac{u+v}{4} = x$$
, $u-v = 2x + 2(2y-z)$

$$(1,1), 4 = x, u = 2x + 2(2y - 2)$$

সুতরাং
$$2y - z = \frac{u - v}{2} - x$$

$$=\frac{u-v}{2}-\frac{u+v}{4}$$

$$=\frac{u-3v}{4}$$

এবং, W = x(x + 2y - z)

$$=\frac{(u+v)}{4}\left[\frac{u+v}{4}+\frac{u-3v}{4}\right]$$

$$=\frac{u^2-v^2}{8}$$

সুতরাং $8_W = u^2 - v^2$ —এটাই সম্পর্ক।

13.7 প্রশাবলি

1. रापि
$$y_1 = x_1 (1 - x_2), y_2 = x_1 x_2 (1 - x_3), y_3 = x_1 x_2 x_3 (1 - x_4), \dots$$

$$y_{n-1} = x_1 x_2 \dots x_{n-1} (1 - x_n),$$

$$y_n = x_1 x_2 \dots x_n$$
 হয়

$$\text{Algebra} \quad \frac{\partial \left(y_1, y_2, \dots, y_n\right)}{\partial \left(x_1, x_2, \dots, x_n\right)} = x_1^{n-1} \ x_2^{n-2} \ x_3^{n-3} \ \dots \ x_{n-1}$$

2. यपि
$$y_1 = \cos x_1$$
, $y_2 = \sin x_1 \cos x_2$

 $\mathbf{y}_3 = Sin \ \mathbf{x}_1 \ Sin \ \mathbf{x}_2 \ Cos \ \mathbf{x}_3, \ \dots \dots \ \mathbf{y}_n = Sin \ \mathbf{x}_1 \ Sin \ \mathbf{x}_2 \dots \dots$

$$\frac{\partial(\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_n)}{\partial(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n)} = (-1)^n \operatorname{Sin}^n \mathbf{x}_1 \operatorname{Sin}^{n-1} \mathbf{x}_2, \dots, \operatorname{Sin}^n \mathbf{x}_n$$

3. যদি
$$\frac{x}{a+k} + \frac{y}{b+k} + \frac{z}{c+k} = 1$$
 সমীকরণের λ , μ , υ বীজ হয়, প্রমাণ করুন

$$\frac{\partial(\mathbf{x},\mathbf{y},\mathbf{z})}{\partial(\lambda,\mu,\upsilon)} = \frac{(\mu-\upsilon)(\upsilon-\lambda)(\lambda-\mu)}{(b-c)(c-a)(a-b)}$$

4. Grain (1), u = x + y + z, v = xy + yz + zx, $w = x^3 + y^3 + z^3 - 3xyz$,

অপেক্ষকগুলি স্বাধীন নয় কিন্তু $\mathbf{u}^3 = 3\mathbf{u}\mathbf{v} + \mathbf{w}$ এ সম্পর্ক বর্তমান।

Hints : Jacobian ব্যবহার করুন।

5. यपि f'(0) - 0, $f'(x) = \frac{1}{1 + x^2}$, $x \neq 0$ হয় তাহলে সমাকলন পদ্ধতি ব্যবহার না করে প্রমাণ করুন

$$f(x) + f(y) = f\left(\frac{x+y}{1-xy}\right)$$

Hints : Jacobian
$$\frac{\partial(u,v)}{\partial(x,y)}$$
 ব্যবহার করুন।

13.8 সারাংশ

- দুটি চলরাশির অপেক্ষক F(x, y) যেটা নির্দিষ্ট তিনটি ধর্ম মেনে চলে। এক্ষেত্রে একটি নির্দিষ্ট অঞ্চলে অন্তর্লিখিত অপেক্ষক y = φ(x) পাওয়া যায় যেটা কতকগুলি শর্ত মেনে চলবে। এটা প্রমাণ করার জন্য দেওয়া শর্তগুলির সাহায্য নিয়ে F(x, y) অপেক্ষকের উপর Rolles' Theorem প্রয়োগ করা হয়েছে।
- F₁, F₂,, F_n হল x₁, x₂,, x_n এর n সংখ্যক অপেক্ষক। তাহলে

Jacobian J =
$$\left(\frac{F_1, F_2, \dots, F_n}{x_1, x_2, \dots, x_n}\right)$$

$$= \begin{vmatrix} \frac{\partial F_1}{\partial x_1} & \frac{\partial F_1}{\partial x_2} & \dots & \frac{\partial F_1}{\partial x_n} \\\\ \frac{\partial F_2}{\partial x_1} & \frac{\partial F_2}{\partial x_2} & \dots & \frac{\partial F_2}{\partial x_n} \\\\ \dots & \dots & \dots \\\\ \frac{\partial F_n}{\partial x_1} & \frac{\partial F_n}{\partial x_2} & \dots & \frac{\partial F_n}{\partial x_n} \end{vmatrix}$$

এর উপর বিশেষ বিশেষ প্রয়োগ দেখানো হয়েছে।

Chain Rule-এর উপর Jacobian এর প্রভাব ও এ সংক্রান্ত উপপাদ্য দুটি আলোচনা হয়েছে। যেমন

$$\frac{\partial (\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n)}{\partial (\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n)} = \frac{\partial (\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n)}{\partial (\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_n)} \quad \frac{\partial (\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_n)}{\partial (\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n)}$$

যেখানে u₁, u₂,, u_n প্রত্যেকে y₁, y₂,, y_n-এর অপেক্ষক এবং y₁, y₂,, y_n প্রত্যেকে x₁, x₂,, x_n এর অপেক্ষক। এটা Chain Rule দিয়ে প্রমাণ করা হয়েছে। এখানে কিছু উদাহরণ ও তার সমাধান দেখানো হয়েছে।

● xy তলের R অঞ্চলে u = f(x, y), v = f(x, y) অপেক্ষক দুটি অবকলযোগ্য হলে, অপেক্ষকীয় সম্পর্ক

F(u, v) = 0 হওয়ার Jacobian-এর সাহায্য নিয়ে আবশ্যকীয় ও পর্যাপ্ত শর্ত $\frac{\partial(u, v)}{\partial(x, y)} = 0$ প্রমাণ হয়েছে।

একই বিষয় u = f (x, y, z), v = g(x, y, z), w = h(x, y, z) তিনটির ক্ষেত্রে ত্রিমাত্রিক অঞ্চলে Jacobian-এর সাহায্য নিয়ে দেখানো হয়েছে। বিশেষ কিছু উদাহরণ ও তার সমাধান দেখানো হয়েছে।

13.9 সহায়ক পুস্তক

- 1. Calculus T. M. Apostol.
- 2. Introduction to Analysis (Differential Calculus) by R. K. Ghosh & K. C. Maity.
- 3. Introduction to Real Variable Theory S. M. Shah.
- 4. Fundamental concepts of Analysis Alton H. Smith & Walter A Albreath JR.
- 5. Differential Calculus Shanti Narayan.
- 6. Differnential Calculus Das and Kukherjee.

|--|

Notes	
