প্রিজ্ম স্পেক্ট্রোমিটারের সাহায্যে ‘ $\delta-\lambda$ ' (বিষ্যুতি তরপ্গদ্শ্ব্যে) এবং
এकক 1 ' $\delta-1 / \lambda^{2}$ ' লেখচিত্র অঙ্কন ও তা থেকে একটি বর্ণালি-রেখার তরঙ ไৈर्य्य निर्ণт

গठन
1.1 প্রস্তাবনা, উగ্দেশ্য
1.2 মৃলগত তত্তৃ ও ব্যবহার্य সৃত্রাদি

1.2.1 পরীক্ষণের কার্यক্রম

1.2.2 পরীt্মণলক্ধ ফল

1.3 পরিশিষ্ট A : স্পেক্ট্রোমিটার যন্ত্র ও তার বিভিন্ন অণশের ক্রিয়াকল্নাপ
1.4 পরিশিষ্ট B : প্রিজ্ম্ স্পেক্ট্রোমিটার ব্যবহারের পৃর্বে করণীয়
1.5 পরিশিষ্ট C : অজ্ঞাত ' λ '-এর মান নিরূপণে হার্টম্যান প্রবর্তিত পদ্ধতি
1.6 পরিশিষ্ট D : শস্টার পদ্ধতির তাত্তিক আলোচনা
1.7 পরিশিষ্ট E : প্রিজ্ম্-এর ব্যবহার
1.8 অनूশীलनी

1.1 প্রস্তাবনা

সাধারণ প্রিজ্মে একবর্ণী আলোকরশ্মি আপতিচ হলে এটি প্রিজমের দুই পৃষ্ঠতলে দুবার প্রতিসৃত হয়ে থাকে এবং এর ফলে আপতিত রশ্মির গতিপথ থেকে নির্গত রশ্মির গতিপথে δ পরিমাণ বিচ্যুতি ঘটে थाকে। প্রथম পৃষ্ঠতলে রশ্মির বিচ্যুতি $\delta_{1}=i_{1}-r_{1} \ldots$ (1) এবং দ্বিতীয় পৃষ্ঠতলে $\delta_{2}=i_{2}-r_{2} \ldots$ (2) এবং মোট বিছ্যুতি $\delta=\delta_{1}+\delta_{2}=i_{1}+i_{2}-\left(r_{1}+r_{2}\right)=i_{1}+i_{2}-A \ldots$ (3)

এই সূত্রে $i_{1}=$ প্রথম পৃষ্ঠতলের আপতন কোণ।
$i_{2}=$ দ্বিতীয় পৃষ্ঠতলের নির্গমন কোণ।
এব: $\mathrm{A}=$ প্রিজ্ম্ কোণ।
নির্গমন কোণ i_{2} যেহেতু i_{1}-এর অপেক্কক, কাজেই δ-কে আমরা $i_{1}-এ র$ অপেক্ষক হিসাবে ভাবতে পারি (A জ্যামিতিক ধ্রুবক)। i_{2}-কোণটি প্রতিসরণ সৃত্রের মাধ্যমে i_{1}-এর সক্গে যুক্ত বলে প্রিজ্মের প্রতিসরাঙ্ক μ-এতে জটিলভাবে রয়ে গেছে। আলোকরশ্মির বিচ্যুতি δ, অতএব, ঘনিষ্ঠভাবে প্রিজ্ম্ ঊপাদনের μ-এর

সঙ্গে সংশ্লিষ্ট। বহৃবর্ণী আলোকে যে বিভিন্ন তরস্গদৈর্ঘ্যের মিশ্রণ থাকে তারা ঐ উৎসের পরমাণুগত বৈশিষ্টেরের স্বাক্ষর বহন করে নিয়ে আসে। প্রিজ্মের ভিতর দিয়ে পাঠালে এই বহৃর্ণী আলোকরশ্মির প্রারষ্ভিক আপতনের পথ একটি নির্দিট্ট করে দেওয়া যায় বটে, কিস্ু প্রিজ্ম্ থেকে নির্গত হওয়ার পর বিভিন্ন তরঙ্গদৈর্ঘ্যের আলোকের পথণুলি অতি সুনির্দিষ্ট। আলোকের λ-এর মানের উপর এদের প্রারষ্ভিক পথ থেকে বি্্যুতির মান সুনির্দিষ্টেভবে নির্ভরশীল। কাজেই বাইরে থেকে δ-এর বিভিন্ন মান মেপে নিয়ে $\delta-\lambda$ সম্পর্কটির একটি লেখ রূপ দেওয়া যায়। একটি নির্দিষ্ট প্রিজ্মের ক্ষেত্রে এই লৈথিক সম্পর্ক এতই সুনির্দিষ্ট যে কোনও অজ্ঞাতমানের তরঙ্গ এই প্রিজমে প্রতিসৃত হলে তার বিদ্যুতি মেপে লেখ থেকে আমরা তার তরহ্গদ্দ্দ্য সনাক্ত করতে পারবো। পরীক্শণগত অভিজ্ভতা থেকে দেখা গেছে $\left(\delta-1 / \lambda^{2}\right)$ লেখ आঁকা হলে সেটির বক্রুত কম, অর্ধাৎ প্রায় ঋজুরেখ। এজনাই বর্ণালির বিচ্হুরণ (dispersion) অধ্যয়নে এই বক্রদুটির উপযোগিতা।

উদ্nেশ্য

আমরা এই পরীক্ষণে স্পেক্ট্রোমিটার* যন্তেরের সঙ্গে পরিচিত হবো। এই যুগপ্রাচীন যষ্ত্রটি (classical instrument) আজ অবধি কেবল মূলগত গবেষণার কাজেই নয়, বিভিন্ন শৈল্পিক পরীক্ষণাগারে, সামরিক যন্ত্রব্যবস্থায়, মহাকাশ-গবেষণার যন্ত্রাগারে, এবং অনাত্রও বহ পরীক্ষণেই ব্যবহৃত হয়। যদিও যুগের সাথে তাল রেখে যন্ত্রায়ণ হয়েছে সমুন্নত ও যথেষ্ট কলাকুশল-মণ্ডিত তবুও মৌলিক দিক থেকে দেখলে এর যন্ত্রায়ণের কাঠামো একই রয়েছে। ফলে এখনও ছাত্র-গবেষকের শিক্巾ণ-কেক্দ্রে এর উপস্থিতি অপরিহার্য।

একটি প্রিজ্ম্ কিভাবে বর্ণালি সৃষ্টি করে তার একটা অস্পষ্ট ধারণা আমদের আগেই হয়েছে। এবার নিজের অভিঞ্ঞতায় সেই বর্ণালির পরিমাপ কিভাবে করতে হয় এই পরীক্ষণে আমরা তাই দেখবো।

আলোকের দুরকম উৎস আমরা ক্যবহার করবো—একটি সোডিয়াম বাষ্প ল্যাম্প, অন্যটি মোঙ্ণ নল (discharge tube)। বিভিন্ন মোক্ষশ নলে স্পল্প চাপে নানাবিধ গ্যাস ভরে নিয়ে যখন তাদের তড়িতীয়ভাবে উত্তেজিত করা হয়, তখন পরমাণুবর্ণালিই সাধারণত সৃষ্টি হয়। (মোক্ষণ নলের উত্তেজনার হেরফের হলে অণু-জাত বর্ণালি যা পটির আকরে দৃশ্যমান হয় তাজ কদাচিৎ পাওয়া যায়।) পরমাণুবর্ণালির প্রকৃতিই এই যে তরঙ্গদৈর্ঘ্যগুলি হয় ‘বিচ্ছিন্ন’ মানের-কেননা এদের সৃষ্টি হয় যথন উত্তেজিত পরমাণুটি একটি নির্দিষ্ট

[^0] সঙ্গেই উৎপন্ন λ-র সম্পর্ক নিবিড়ভাবে জড়িত। শক্তিবিনিময়ের পরিমাণের বেশির ভাগ অংশই দৃশ্যমান आলোকে (visible light) পর্যবসিত হয়ে থাকে।

বর্ণালি বীক্ষণের প্রথম পদক্ষেপ হিসাবে প্রিজ্ম্-স্পেক্ট্রোমিটার দ্বারা তরহ্গদ্দর্ঘ্য নিরূপণ বেশ সহজ। তবে পরিমাপের সৃক্ষ্মতার নিরিথে দেখ্লে গ্রেটিং বর্ণালি অনেক উন্নত। পরে গ্রেটিং বর্ণালি অধ্যয়ন শেষ হলে আমরা দুই স্ধ্ধতির তুলনামূলক আলোচনা করবো।

1.2 মूलগত তত্তৃ ও ব্যবহার্য সূত্রাদি

একটি কাচের প্রিজ্মের প্রধান ছেদ CAB এবং ঐ ছেদের সমতলে প্রতিসৃত কয়েকটি রশ্মি চিত্র la-তে দেখানো হয়েছে। ঐই সমতলে অবস্থিত (রেখাছিদ্রের কোনও) বিন্দু σ থেকে যে অপসারী রশ্মিগুচ্ছ $\overrightarrow{\sigma \mathrm{a}}$ এবং $\overrightarrow{\sigma \mathrm{b}}$ निর্গত হয়েছে সেগুলি সমান্তরীকরক (COLLIMATOR) CL এর সাহয্যে সমান্তরাল করে নিয়ে প্রিজ্মের প্রথম প্রতিসারক সমতলে (AB) আপতিত করা হলো—যথাক্রমে $\overrightarrow{a^{\prime} a^{\prime \prime}}$ এবং $\overrightarrow{b^{\prime} b^{\prime \prime} \mid \text { ধরা }}$ যাক, আপতন কোণের মান i_{s} নেওয়া হলো যাতে কোন প্রমাণ তরঙ্গদ্দ্য্য $\lambda_{s}-এ র$ আলোকরশ্মি এই প্রিজ্মে প্রতিসৃত হভয়ার পর সেটির বিচ্যুতি অবম মানের হয়। λ_{s} তরঙ্গের জন্য অরম বিদ্যুতির মান δ_{ms} ধরা

যাক। প্রিজ্মের দ্বিতীয় প্রতিসারক সমতল থেকে λ_{s}-তরঙ্গের আলোক যে নির্গমন কোণে নির্গত হবে, তার মানঙ হবে $i_{s} \mid$ ধরা যাক উৎস থেকে বিভিন্ন বিচ্ছিন্ন মানের তরঙ্গ (যা পরমাণু-উৎস থেকে উৎপন্ন হয়) $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{s}, \ldots, \lambda_{n}$; এঞ্ডলি প্রিজ্মে প্রতিসৃত হওয়ার পর তাদের বিষ্যুতি কোণগুলির মান যথাক্রমে रবে $\delta_{1}, \delta_{2}, \ldots, \delta_{\mathrm{s}}=\delta_{\mathrm{ms}}, \ldots, \delta_{\mathrm{n}}$;

এই তরঙ্গগির অবম বিচ্যুতির মানগুলি यদি $\delta_{\mathrm{m} 1}, \delta_{\mathrm{m} 2}, \ldots, \delta_{\mathrm{ms}}, \ldots, \delta_{\mathrm{mn}}$ দিয়ে সৃচিত হয় তাহলে একমাত্র λ_{s} ছাড়া অন্যগুলির মান δ_{k}-র মান থেকে পৃথক হবে। অর্থাৎ প্রমাণ তরঙ্গদৈর্ঘ্যের জন্য প্রিজ্ম্টি যদি অবম বিচ্যুতির মানে বসান়ো হয়— এটিকে এই স্পেক্ট্রোমিটার ব্যবহার কালে আমরা প্রিজ্ম্মের একটি সুনির্দিষ্ট অবস্থান বলে ধরে নেবো, যার সাপেক্ষে অন্যান্য বিচ্যুতিগুলি অর্থাৎ $\delta_{1}, \delta_{2}, \ldots$ পাওয়া যাবে।

টেলিস্কোপের অভিবস্তুর পশ্চাৎ-ফফাকাস্তলে বিভিন্ন λ_{k}-র জন্য σ-বিন্দুটির বিভিন্ন বাস্তব প্রতিবিম্ব $M_{1}, M_{2}, \ldots, M_{s}, \ldots, M_{k}$ উৎপন্ন হবে। অতএব, σ-গামী রেখাছিদ্রের অন্যান্য উজ্জ্ঞল বিন্দুগুলি প্রতিবিম্বিত হ, বিভিন্ন হ্রস্ব, উজ্জ্রল, সরলরেখায় যাদের কেন্দ্রবিন্দু হবে $M_{1}, M_{2}, \ldots, M_{k} \mid$ এই যে রৈখিক বর্ণালি পাওয়া গেল তাদের প্রত্যেক রেখার কৌণিক অবস্থান যদি টেলিস্কোপ ঘুরিয়ে এবং ঠিক স্থানে ক্রস-তার

চিত্র 1-b স্থাপন করে পরিমাপ করা হয় তাহলে ঐগুলি হবে $\delta_{1}, \delta_{2}, \ldots, \delta_{n}$ এর পরীক্ষণলক্ধ মান। এবার একটি লেখ কাগজে $\left(\delta_{1}, \lambda_{1}\right),\left(\delta_{2}, \lambda_{2}\right), \ldots,\left(\delta_{n}, \lambda_{n}\right)$ বিन्দুগুলি সংস্থাপিত করা হলে যদি ঐ বিন্দুগুলির অভ্যন্তর দিয়ে একটি সন্তত, মসৃণ বক্ররেখা आঁকা হয় তাহলে এভাবে যে $\delta-\lambda$ লেখ পাওয়া যাবে সেটিই হবে এই স্পেক্ট্রোমিটার-প্রিজ্মের পাঠ-মূল্যায়ন রেখা (Calibration Curve); এখানে প্রিজ্ম্টি ব্যবহৃত হবে λ_{s} তরঙ্গের δ_{ms} এই অবম বিচ্যুতির মানে। এই পাঠ-মূল্যায়ন বক্রটট ব্যবহার করে অন্য যে কোনও উৎসের অংশ রৈখিক বর্ণালির প্রতিটি রেখার তরঙ্গদৈর্ঘ্য নির্দেশ করা যাবে যদি তাদের বি্্যুতির মানগুলি মেপে নেওয়া হয়।

কার্যত দেখা যায় $\delta-\lambda$ বক্রের বক্রতা (চিত্র 1-b) বিভিন্ন অংশে-পৃথক মানের। এও দেখা গেছে যে $\delta-\lambda$ বক্র না এঁকে यদি $\left[\delta-\left(1 / \lambda^{2}\right)\right]$ বক্র (চিত্র 1-c) आँকা হয় তাহলে সেটি হয় প্রায় ঋজুরেখ। সে কারণে আমরা প্রাথমিক উপাত্ত থেকে লক্ধ $\delta-\lambda$ বক্রু এঁকে তার থেকে $\delta-1 / \lambda^{2}$ বক্রটি এঁকে নেবো যাতে ব্যবহারকালে ঋজুরেখ লেখএর সুবিধাণুলি পাওয়া যায়।

কোনও বর্ণালি রেখার λ এর মান অজ্ঞাত হলে সেটা এই লেখ-পদ্ধতি आশ্রয় করে নিরূপণ করা যায়। শুধু বিকিরণ বর্ণালিই নয়, শোষণ বর্ণালির ক্ষেত্রেও এটি প্রযোজ্য-অর্থাৎ কোনও তরল বা বায়বীয় মাধ্যমের অভ্যন্তর দিয়ে সাদা আলো পাঠানো হলে যদি বস্তুটি তা থেকে এক বা একাধিক λ মানের তরঙ্গ শোষণ করে তাহলে প্রিজ্ম্-প্রতিসৃত বর্ণালির উজ্জ্ৰল পটিতে সেই তরঙ্গ কালো অর্থাৎ বণহীনন শোষণ রেখার (absorption line) আকারে তার অন্পস্থিতি দেখাবে।

এই লেখাশ্রিত পদ্ধতির মান নির্ণয় কতটা সূক্ম এবং কতটা ত্রুটিপূর্ণ তা অবশ্য বিশেষ ভাবে জানা প্রয়োজন। পরিশিষ্ট ক-এ এবিষয়ে আলোচনা করা গেল। আগে পরীক্ষণটি সম্পাদন করা যাক।

ব্যবহৃত যন্ত্রপাতি: (1) একটি সাধারণ স্পেক্ট্রোমিটার, (2) একটি সোডিয়াম বাষ্প ল্যাম্প, (3) একটি হিলিয়াম মোক্ষণ নল ঞ তৎসংলগ্ম উচ্চবিভব-সরবরাহের যন্ত্রায়ণ, (4) কাচের প্রিজ্ম্, (5) স্পিরিট লেভেল, ও (6) টেব্ল্ ল্যাম্প, লেখ কাগজ প্রভৃতি।

1.2.1 পরীক্ষণের কার্যক্রম

1. প্রথমে সোডিয়াম বাষ্প ল্যাম্পের সুইচ্ অন করে নিন। সোডিয়াম ল্যাম্প এবং স্পেক্ট্রোমিটারের রেখাছিদ্রের মাঝে বেশ কিছুটা ফাঁক রাখা প্রয়োজন-ধরা যাক 2 বা 3 ইঞ্চি—यাতে পরবতী পর্যায়ে হিলিয়াম-এর মোক্ষণ নল ব্যবহারের সময় বাপ্পল্যাম্প বা রেখাছিদ্র-এদের সরাতে না হয়।
2. ল্যাম্প পুরোপুরি প্রজ্জ্,লিত হতে কিছু সময় লাগে। এই অবসরে স্পেক্ট্রোমিটারের বিভিন্ন অংশগ্ডলি পৃথকভাবে স্পিরিট লেভেলের সাহায্যে অনুভৌম* (horizontal) করে নিন।
3. ককৗণিক ভার্ণিয়ারের ধ্রুবাংক সারণী-বদ্ধ আকারে লিখে নিন।
4. রেখাছিদ্র এতক্ষণে হলুদ রঙের আলোয় আলোকিত হয়েছে। রেখাছিদ্রের বেধ প্রথম দিকে একটু বেশি রাখা ভালে!। সমান্তরীকরক লেন্স-এর দিক থেকে খালি চোখে তাকালে উল্লম্ব, আয়তাকার ও উজ্জ্ঞল রেখাছিদ্রের প্রডিবিম্ব দেখা যাবে—যদি না যায় তাহলে সমান্তরীকরক নলটি সোডিয়াম বাপ্পের আলোকিত একটি বাহুর দিকে ঘুরিয়ে নিতে হবে যাতে ঐ বাহ এবং রেখাছিদ্রের মধ্যরেখা নলাক্ষের উপর পড়ে। এবার টেলিস্কোপ-অক্ষটি ঘুরিয়ে এনে সমান্তরীকরক নলাক্ষের সঙ্গে সমরেখ করতে হবে—তাহলেই ঈক্ষক লেস্স (eye lens) এর মধ্য দিয়ে তাকালে রেখাছিদ্রের প্রতিবিম্ব (আয়তাকার যার বেধ, দৈর্ঘ্যের তুলনায় অনেক কম) দেখা যাবে। ঈক্ষক-লেনটি অক্ষ বরাবর এগিয়ে বা পিছিয়ে নিন যাতে ক্রস্তারটির প্রতিবিম্ব স্পষ্ট হয়ে দৃষ্টিক্ষেত্র (field of view) দেখা যায়। এ অবস্থায় সাধারণত রেখাছিদ্রের প্রতিবিম্ব এবং ক্রস্তারের প্রতিবিম্ব একই সমতলে থারে না। দৃंষ্টিরেখার সমকেণে চোখ ডাইনে বা বাঁয়ে সরালেই প্যারালাক্স (Parallax) থেকে এটি বোঝা যাবে।
5. ※স্টার-পদ্ধতিতে (Schuster's Method) এবার আপতিত রশ্মির সমন্তরীকরণ করতে হবে। (পরিশিষ্ট খ-এ এ বিষয়ে বলা হয়েছে, পড়ে নিন এবং কার্যত প্রয়োগ করুন)।

[^1]6. রশ্মিঙ্তুচ সমান্তরীকৃত হয়ে গেলে-(ক) রেখাছিদ্রের পরিসীমার অন্তর্ভুক্ত আলোকিত আয়তক্ষেত্রের সীমারেখা স্পষ্ট হয়ে দেখা দেবে। রেখাছিদ্রের কিনারায় ধৃলিকণা থাকলে সেগুলি কালো বিন্দুর আকারে দৃশ্যমান হবে। অর্থাৎ আলোকিত অংশ ও অনালোকিত (বা স্বল্প-আলোকিত) অংশের বিভাজন রেখাটি অতি স্পষ্ট হর্রে দেখা দেবে। (খ) ক্রস্ত্রেরের প্রতিবিম্ব এবং রেখাছিদ্রের প্রতিবিম্ব এদের মধ্যে কোনও দৃষ্টির্রম (Parallax) হবে না, অর্থাৎ এরা হবে একই সমতলে। (গ) টেলিস্কোপ-অক্ষ একটু ডানে বা বাঁয়ে ঘুরিয়ে রাখুন। একটি কাগজে আলোকরশ্মির প্রস্থচ্ছেদ লক্ষ্য করুন। সমান্তরীকরকের গা থেকে কাগজ ক্রমশ দূরে সরিয়ে নিলেও এই প্রস্থচ্ছেদের বৃত্তাকার আলোকিত অংশের ব্যাস একটুও কমবে না। (যদি বাড়ে বা কমে তাহলে নির্গত রশ্মিগুচ্ছ অপসারী বা অভিসারী। শস্টার-প্রক্রিয়া ঠিকমতো অনুসৃত হয় নি, এটি পুনরাবৃত্তি করতে হবে।)
7. রেখাছিদ্রের বেধ যথাসম্তব কমিয়ে নিন। দৃষ্টিক্ষেত্র আলোকিত অঞ্চলের বাইরে প্রায়াক্ধকার দেখাবে। প্রিজ্ম্-টেব্ল্ থেকে প্রিজ্ম্ তুলে নিন এবং টেলিস্কোপের ক্রস্তারের ছেদবিন্দুকে রেখাছিদ্রের প্রতিবিম্বের মধ্যবিদ্দুতে বসান। টেলিস্কোপের এই অবস্থিতির পাঠ নিন-এটাই টেলিস্কোপের প্রত্যক্ষ অবস্থানের পাঠ বা সংক্ষেপে আমরা বলি ‘প্রত্যক্ষ পাঠ’ (θ_{0}^{\prime} - প্রথম ভার্নিয়ারে $\left(v_{1}\right), \theta_{0}{ }^{\prime \prime}$ - দ্বিতীয় ভার্নিয়ার v_{2}-তে)। 8. এবার প্রিজ্ম্টিকে প্রিজ্ম্-টেব্লে এমনভবে বসান যাতে এটির ভূমিতলের কেন্দ্রবিন্দুটি (অর্থাৎ ত্রিভুজের মধ্যমা- 60° প্রিজ্,ের ক্ষেত্রে) প্রিজ্ম্-টেব্লের আবর্তন-অক্ষের উপর অবস্থিত হয়। এই অবস্থান স্থির করার জন্য প্রিজ্ম্-টেব্লের পৃষ্ঠতলে কয়েকটি সমাক্ষ-বৃত্ত आঁকা থাকে এবং একটি কেন্দ্রগামী রেখা ও তা ट.থকে সমদূরবর্তী কয়েকটি সমন্তরাল রেখা দাগ-কাটা থাকে। এগুলির সাহায্য নিন। প্রিজ্ম্-কিনারাগুলি য়ে ককানও বৃত্তের পরিধি থেকে প্রায় সমান দূরত্বে অবস্থান করছে কি না দেখুন।

প্রিজমের প্রতিসারক কিনারাটি (refracting egde-या অম্ষচ্ছ তলটির বিপরীতে থাকে) আপনার দিকে কিছুটা ঘুরিয়ে নিন যাতে সমান্তরীকরক লেন্স থেকে আগত সমান্তরাল রশ্মিতুচ্ছ প্রিজ্মের প্রথম প্রতিসারক তল (AB -গামী সমতল যা চিত্রের তলের সঙ্গে সমকেণেে অবস্থিত চিত্র 1-a দ্রঃ) AB-তে এসে পড়ে। দ্বিতীয় প্রতিসারক তল AC-র দিক থেকে খালি চোথে তাকান; হয়তো দেখবেন রেখাছিদ্রের বৃত্তাকার সীমারেখা ও তার অন্তর্ভুক্ত উজ্জ্বল রেখাছিদ্রের প্রতিবিম্ব (এটি প্রিজমের অপর পাশে সৃষ্ট অলীক প্রতিবিম্ব) यদি সেরকম কিছু না দেখেন তাহলে প্রিজ্ম্-টেব্ল একটু একটু করে (হাত ব্যবহার করে) ঘুরিয়ে যান। এই ঘূর্ণন্রের সময় প্রতিসারক কিনারাটি হয়তো আপনার কাছে আসতে পারে। যদি কিছ্র না দেখা যায় ধীরে ধীরে বিপরীত্মু,্ে ঘোরান যাতে কিনারাটি আপনার দিক থেকে দূরে চলে যায়। এবার একটা অবস্থানে রেখাছিদ্রের

আলোকিত প্রতিবিম্ব (প্রিজ্মের মধ্য দিয়ে তাকিয়ে) দৃশ্যমান হবে। প্রিজ্ম্ ও আপনার চোখের দূরত্ব বাড়িয়ে নিয়ে প্রতিবিম্বটি দেখুন-প্রিজ্ম্-অবস্থান স্ক্রু এঁটে স্থির করে দিন এবং টেলিস্কোপ ঘুরিয়ে এনে প্রিজ্ম্ ও আপনার চোখের মাঝে বসান যাতে টেলিস্কেপের দৃষ্টিক্ষেত্রে প্রতিবিম্বটি দেখা যায়।
9. প্রিজ্ম্টিকে সোডিয়াম আলোর অবম বিচ্যুতির অবস্থানে স্থাপন :
[লক্ষ্য করো দেখুন রেখাছিদ্রের প্রতিবিম্ব একটি না দুটি। যদি দুটি হয়ে থাকে তাহলে প্রিজ্মের প্রতিসারক ক্ষতা এত বেশি যে $\mathrm{D}_{1}(\lambda=5895.92 \AA)$ এবং $\mathrm{D}_{2}\left(\lambda^{\prime}=5889.95 \AA\right)$ দুটি রেখাই পাওয়া যাচ্ছে। সেক্ষেত্রে যেকোনঙ একটি রেখা ব্যবহার্য। আমরা ধরে নিলাম যে রেখা একটি; তাহলে গড় তরর্গ্ৈৈ্ঘ্য $\left.\bar{\lambda}_{D}=\frac{1}{2}\left(\lambda+\lambda^{\prime}\right)\right]$ টেলিস্কোপের অবস্থান দৃঢ় করে রাখুন। এবার প্রিজ্ম্-টেব্ল একটু একটু করে ঘোরান (হাত দিয়ে নয়, ট্যান্জেন্ট স্ক্রু দিয়ে) যতক্ষণ না প্রতিবিম্বটি অবম বিচ্যুতির অবস্থনে আসে। প্রতিবিম্ব যদি দৃষ্টিক্ষেত্রের বাইরে চলে যায়, তাহলে বিপরীত দিকে ঘোরান। যদি এবারও দৃষ্টিক্ষেত্রের বাইরে চলে যায় তাহলে বুঝতে হবে দৃষ্টিকোেের মধ্যে অবম অবস্থানটি নেই। এক্ষেত্রে করণীয় এই : (ক) প্রথমে প্রিজ্ম্টেব্ল গতিরুদ্ধ করুন। (খ) টেলিস্কোপ মুক্ত করে সরিয়ে নিন। (গ) খালি চোখে প্রতিবিম্ব দেখুন। (ঘ) প্রিজ্ম্-টেব্ল শিথিল করে নিয়ে হাতে ঘোরান-ডাইনে কিংবা বাঁয়ে। (ঙ) প্রতিবিম্বের গতি লক্ষ্য করুন। (চ) দেখবেন প্রিজ্ম্ ঘোরানোর সাথে প্রতিবিম্ব ডাইনে বা বাঁয়ে সরে গিয়ে একটা অবস্থান থেকে ফিরে আসছে। (ছ) এই প্রত্যাবর্তনের অবস্থানটি যখন পাওয়া গেল তখন প্রিজ্ম্-টেব্ল আটকে দিন। টেলিস্কোপ ঘুরিয়ে নিয়ে এসে প্রতিবিম্ব দেখুন। (জ) এবার প্রতিবিম্বটি দৃষ্টিক্ষেত্রে এমনভাবে স্থাপন করুন যাতে ক্রস্ত্তরের কেন্দ্র ও বৃত্তের পরিধির মাঝামাঝিি এটি থাকে। (ঝ) টেলিস্কোপ আটকে দিন এবং প্রিজ্ম্-টেব্লের ট্যান্জ্নেন্ট ঙ্ক্রু ঘোরান যতক্ষণ না অবম বিচ্যুতির অবস্থান সঠিক ভাবে পাওয়া যায়। সঠিক অবস্থানে হয়েছে কি না বোঝার উপায় কি? ট্যান্জেন্ট-ক্ক্রু সামান্য ঘোরানো হলেও প্রতিবিম্ব নড়বে না। একটু বেশি বা কম ঘোরানো হনেইই ঐ অবস্থান থেকে সরে আসবে। প্রিজ্ম্-টেব্লটি এবার প্রিজ্মের অবম বিচ্যুতি অবস্থানে স্থির করে দিন।
10. টেলিস্কোপের ট্যান্জেন্ট-স্ক্রু ঘুরিয়ে ক্রস্তারের সংযোগবিন্দু প্রতিবিম্বের কেন্দ্রস্থলে স্থ|পন করুন। এবার টেলিস্কোপের পাঠ নিন (ভার্নিয়ার V_{1} এবং V_{2})। ট্যান্জেন্ট-স্ক্রুটি ঘুরিয়ে यান যাতে ক্রস্তারের সংযোগবিন্দু দৃষ্টিক্ষেত্রের একপ্রান্তে চলে যায়; এবার ট্যান্জেন্ট-ক্ক্রু বিপরীত দিকে ঘুরিয়ে সংযোগবিন্দুটিকে প্রতিবিম্বের কেন্দ্রে স্থাপন করুন। টেলিস্কোপের পাঠ নিন। এই পাঠগুি থেকে θ_{m}-এর গড় পাঠ পাওয়া যাবে। $\left(V_{1}-এ \bar{\theta}_{m}^{\prime \prime}\right.$ এবং $V_{2}-$ তে $\left.\bar{\theta}_{m}^{\prime}\right)$ ।
11. এবার (প্রিজ্মে হাত না লাগিয়ে — সতর্ক হবেন!) প্রিজ্ম্-টেব্ল ঘোরান যতক্ষণ না নতুন করে এটি আবার অবম বিচৃতির অবস্থানে আসে। টেলিস্কোপের পাঠ নিয়ে দেখুন (10-এর অনুরূপ পদ্ধতিতে) পরিবর্তিত হয়ে়ে কি না। পরিবর্তিত হলে বা না হলেও নতুন করে পাঠ নিন। এরকম চারবার নিরপেক্ষভাবে অবম বিচ্যুতির অবস্থানে প্রিজ্ম্-কে সংস্থাপিত করে নিয়ে লক্র পাঠণুলির গড় ও তার বিস্ক্বতি থেকে আমরা এই প্রমাণ অবস্থানটির ত্রুটির সীমা ও পরিমাপের সূক্ষ্রতা জানতে পারবো। $\delta_{\mathrm{m}}{ }^{\prime}=\theta_{\mathrm{m}}{ }^{\prime} \sim \theta_{0}{ }^{\prime}$ ইত্যাদি মান ट.থকি $\bar{\delta}_{m}$ এবং $\sigma \delta_{m}$ গণনা করা যায়।
12. এবার কোনও মোক্ষণ নল (যথা $\mathrm{H}_{2}, \mathrm{He}, \mathrm{Hg}, \ldots$) নিয়ে উল্মম্বভাবে বসিয়ে রেখাছিদ্রের সমান্তরাল করে যতটা সম্ভব এটির কাছাকাছি রাখতে হবে। নলের ধাতব প্রান্তদুটি উচ্চবিভব উৎসের পজিটিভ ও নেগেটিভ তড়িদ্দ্মারের সঙ্গে অন্তরক-আবৃত তার দিয়ে সংযুক্ত করতে হবে*। এবার ট্রাল্সফর্মারটি চালিয়ে斤িল্ল মোক্ষণজাত আলো নির্গত হবে। মোক্ষণনলের সমান্তরালে একটি তৈললিপু (oil filled) উচ্চবিভবসহনশীল তড়িদ্দারক (High Voltage Condenser) সংযুক্ত করা হলে মোক্ষ যথেষ্ট স্থিতিশীল (stabilised) হবে, আলোক-ওজ্জ্, ্্য ধ্রুবমানের হবে এবং পাঠগ্রহণে কোনও অসুবিধা হবে না। C-র মান $4 \mu \mathrm{~F} ; 4000 \mathrm{~V}$ হলেই চলবে।
13. বিভিন্ন বর্ণালি রেখাগুলি টেলিস্কোপ ঘুরিয়ে প্রথমে দেথে নিতে হবে। এরপর ক্রস্তারের সংযোগস্থল একপ্রন্তের রেখায় (ধরা যাক λ_{1}) সং্থাপন করে টেলিস্কোপের পাঠ নিতে হবে। রেখার রঙ ও আনুমানিক ওজ্জ্বল্য লিখে রাখুন। টেলিস্কোপের ট্যান্জেন্ট-ষ্ক্র খুব সন্তর্পণে ঘুরিয়ে একের পর এক বর্ণালি রেখায় স্থাপন করুন এবং ভার্নিয়ার পাঠ নিন। সর্বশেষ রেখার (λ_{10} ধরা যাক) পাঠ নেওয়া হলে, ঐ ক্রমেই ট্যান্জেন্ট স্ক্রু ঘুরিয়ে নিন এবং পরে বিপরীতক্রমে ঘুরিয়ে $\lambda_{10}, \lambda_{9}, \ldots, \lambda_{1}$ এই পর্यায়ের পাঠগুলি নিন। এভাবে সব রেখাতুলির জন্য পাঠের গড় ধরা যাক $\bar{\theta}_{1}, \bar{\theta}_{2}, \ldots, \bar{\theta}_{10}$; এবার এ থেকে টেলিস্কোপের ‘‘্রত্যক্ষ পাঠ’’ $\bar{\theta}_{0}$ বিয়োগ করা হলে যথাক্রমে $\delta_{1}=\bar{\theta}_{1} \sim \bar{\theta}_{0}, \delta_{2}=\bar{\theta}_{2} \sim \bar{\theta}_{1}, \ldots$ পাওয়া यাবে (লক্ষ্য রাখবেন 0°-দাগ বা 360° দাগ কোনও মধ্যবত্তী মানে রয়েছে কি না। সেক্ষেত্রে পাঠের বিয়োগ-ক্রিয়াটি একটু আলাদা হবেকি হবে নিজেই বিভাজন দেখে স্থির করে নিন)।

[^2]14. এবার মিলিমিটার-দৈর্ঘ্যে বিভাজিত লেখ-কাগজে $\delta-\lambda$ এবং $\delta-1 / \lambda^{2}$ লেখ আঁকতে হবে। সংস্থেপিত বিন্দুগুলির অভ্যন্তর দিয়ে হস্তাঙ্কিত একটি মসৃণ (smooth) সন্তত রেখা (continuous line) [যার বেধ সর্বত্র সমান হবে] এঁকে নিন। লক্ষ্য করে দেখুন $\delta-\lambda$ লেখটির বক্রতা বেশি, $\mathrm{d}-1 / 1^{2}$ বক্রটি অপেক্মকৃত কম বক্রুতাবিশিষ্ট, এমনকি প্রায় ঋজুরেখ হতে পারে (চিত্র lc দ্রঃ)। লেখটি বক্রই হোক বা ঋজুরেখই হোক आँকবার निয়ম এই*। $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{10}$ (বা $1 / \lambda_{1}^{2}, 1 / \lambda_{2}^{2}, \ldots, 1 / \lambda_{10}^{2}$) বিन्দুগুলিতে পরীক্ষণলক বিन्দুগুলি এমনই যে $\delta_{\mathrm{k}}=\delta_{\mathrm{km}}^{\prime}+\varepsilon_{\mathrm{k}} \cdot \mathrm{k}=1,2,3, \ldots, 10$ ধরা যাক।

এখানে δ_{k}^{\prime} হচ্ছে মসৃণ লেখ-এর k -তম বিন্দুর Y -স্থানাংক, ε_{k} হচ্ছে ঐ বিন্দুতে পর্যবেক্ষণলক্ক মান থ্যেক লেখলক্ধ মানের অন্তরফল। আমরা একে অরশিষ্টক (residual) বলবো, k-তম বিন্দুর জন্য। লের্খটি অঙ্কনে ত্রতটির মান $\mathrm{E}=\sum_{\mathrm{k}=1}^{10} \varepsilon_{\mathrm{k}}^{2}$ এবং এটির সর্বনিম্ন মান তখনই হবে যখন $\sum_{\mathrm{k}=1}^{10} \varepsilon_{\mathrm{k}}=0$ অর্থাৎ মসৃণ রেখাটি পর্যবেক্ষণলক্ধ বিন্দুগুলির জন্য "গড়" লেখ। লক্ষ্য করুন এক্ষেত্রে মসৃণ রেখাটির উপরে এবং নীচচ বিন্দুগুলি এমনভাবে বিন্যস্ত যে এদের উল্লম্ব দূরত্বের মান শূন্য।
15. লেখ থেকে অঞ্ঞাতমানের λ निর্ণয় করতে হলে উৎসটি বসাতে হবে রেখাছিদ্রকে ঐ λ দিয়ে আলোকিত করবার জন্য। এবার λ-র জন্য বিষ্যুতি δ পরিমাপ করতে হবে।

বলা বাহ্থল্য এই মান নির্ণয়ে যথেষ্ট স্থূলতা রয়েছে। সূক্মতর পরিমাপ করার জন্য হার্টমান সৃত্র (Hartmann Formula) ব্যবহার করতে হয়।
[বিঃ দ্রঃ লেখ-অঙ্কনের সময় কোণ-সৃচক অক্ষে 1 mm দৈর্ঘ্য যে কোণ সৃচিত করবে তা প্রায় $2 \times$ ভার্নিয়ার স্থিরাঙ্ক হলে ভালো হয়। এজন্য যদি বড় লেখ-কাগজ ব্যবহার করতে হয় তাহলে দूটি কাগজ নিয়ে আঠা দিয়ে জুড়ে নেওয়া চলে। এতে পরীক্ষললক্ক সূক্ম্মতা বজায় রাখা যায়।]

[^3]
1．2．2 পরীক্ষণলद্ধ ফল

সারনী 1 ভার্নিয়ার স্থিরাঙ্ক নির্ণয়（ একটি নমুনা দেখানো হলো）
মূল স্কেলের ক্ষুদ্রতম ভাগ＝ 10^{\prime}
60 ভার্নিয়ার ঘর＝ 59 মূল স্কেল ঘর
$\therefore 1$ ভার্নিয়ার ঘর＝ $59 / 60$ মূল স্কেল ঘর
ভার্নিয়ার ধ্রুবাঙ্ক $\equiv \varepsilon=1$ মূঃ স্কেঃ ঘর -1 ভাঃ স্কেঃ ঘর（ এটি সংজ্ঞা ）

$$
\begin{aligned}
= & (1-59 / 60) \text { মূল স্কেঃ ঘর } \\
= & (1 / 60) \times 10^{\prime}=10^{\prime \prime}
\end{aligned}
$$

বিঃ দ্রঃ ভার্নিয়ার স্থিরাঙ্ক 30＂， $20^{\prime \prime}$ বা $1^{\prime \prime}$ হতে পারে।
সারণী 2 টেলিস্কোপের ‘প্রত্যক্ষ’ অবস্থানের পাঠ＇θ_{0}＇নির্ণয়

		V_{1}－ভার্নিয়ারের পাঠ					V_{2}－ভার্নিয়ারের পাঠ				
স〒খ্যা	ক্রসতরের গতি	মূ：স্কে পাঠ。＇＂	जाঃ পাठ	ভাঃ পাঠর মাन －＇＂	মোট भाठ 。＇	$\begin{gathered} \text { গড় পাঠ } \\ \theta_{0}^{\prime} \\ 0 \quad, \quad \prime \end{gathered}$	মूঃ ক্কে भाठ。＇＂	$\begin{aligned} & \text { जাঃ } \\ & \text { পঠ } \end{aligned}$	जাঃ পাচের घान 。＇＂	মোট भाठ ${ }^{\prime}$	$\left[\begin{array}{c} \text { গড় পাঠ } \\ \theta_{0}^{\prime \prime} \\ 0^{\prime \prime \prime} \end{array}\right.$
1．a	$\begin{gathered} \text { বাম থেকে } \\ \rightarrow \\ \text { ডান্ন } \end{gathered}$										
1．b	$\begin{gathered} \text { ডান থোর্ } \\ \leftarrow \\ \leftarrow \\ \text { বাম্ } \end{gathered}$										
2．a	\rightarrow										
2．b	\leftarrow										

সারণী 3 প্রিজ্ম-এর অবম বি্য্যুতি অবস্থানের জন্য টেলিস্ক্কোপর পাঠ θ_{m}
প্রমাণ তরभ पৈर्था $\lambda_{\mathrm{s}}=\ldots \AA$
স্সেডিয়ামের D_{1}-রেথা হলে $\lambda_{s}=5895.92 \AA=589.592 \mathrm{~nm}$

$$
\mathrm{D}_{2} \text {-রেथা হলে } \lambda_{\mathrm{s}}^{\prime}=5889.95 \AA=588.995 \mathrm{~nm}
$$

D_{1} এヌং D_{2} রেখার আপেক্ষিক ওজ্জ্রল্য $\rightarrow \mathrm{I}\left(\mathrm{D}_{1}\right): \mathrm{I}\left(\mathrm{D}_{2}\right)=1: 2$
$\mathrm{D}_{1}-\mathrm{D}_{2}$ রেখা প্রতিন্ন (resolved) ना হলে D -রেখার গড়
$\lambda_{D}=5892.93 \AA=589.293 \mathrm{~nm}$

	V_{1}-ভার্নিয়ারের পাঠ					V_{2}-ভার্নিয়ারের পাঠ				
$\begin{aligned} & \text { পঃ } \\ & \text { সংथा } \end{aligned}$	মूল ক্কেল भाठ a_{1}	ভাঃ পাঠ b_{1}	$\begin{gathered} \text { ভাঃ भाঠু } \\ \text { घान } \\ \mathrm{b}_{1} \times 10^{\prime \prime} \end{gathered}$	$\begin{gathered} \text { মোট পাঠ } \\ c_{1}= \\ a_{1}+ \\ b_{1} \times 10^{\prime \prime} \end{gathered}$	গড় পাঠ $\theta_{\mathrm{m}}^{\prime}$	মুन স্কেল भाठ a_{2}	$\begin{aligned} & \text { जাঃ } \\ & \text { পাঠ } \\ & b_{2} \end{aligned}$	$\begin{gathered} \text { बাঃ পाठর } \\ \text { मान } \\ b_{2} \times 10^{\prime \prime} \end{gathered}$	$\begin{gathered} \text { মোট পাঠ } \\ c_{2}= \\ a_{2}+ \\ b_{2} \times 10^{\prime \prime} \\ { }^{\prime \prime \prime \prime} \end{gathered}$	গড় পね $\theta_{\mathrm{m}}^{\prime \prime}$
2. 3. 4. 5.										

$\delta_{\mathrm{ms}}^{\prime}=\theta_{\mathrm{m}}^{\prime}-\theta_{0}^{\prime}=\ldots \quad \delta_{\mathrm{ms}}^{\prime \prime}=\theta_{\mathrm{m}}^{\prime \prime}-\theta_{0}^{\prime \prime}=\ldots$
\therefore গড় $\bar{\delta}_{\mathrm{ms}}=\frac{1}{2}\left(\delta_{\mathrm{ms}}^{\prime}+\delta_{\mathrm{ms}}^{\prime \prime}\right)=\ldots$

সারণী 4. $\lambda_{\mathrm{k}}-\theta_{\mathrm{k}}$-র সারণী ; शिलिয়াম মোক্ষণ নল ব্যবহৃত

			V_{1} ভার্নিয়ারের পাঠ					V_{2} ভার্নিয়ারের পাঠ				
বर्ণानि রেখার বৈশিষ্ট্য রঙ, ঔজ्জून] भ্রুত	তরभלৈদ্যৈ ভৌত সারণী থেকে \AA	$\left\|\begin{array}{c} \text { পर्यঃ } \\ \text { সংenा } \\ k=1 \\ 2, \ldots \end{array}\right\|$	$\left\lvert\, \begin{gathered} \text { মूঃ স্কেঃ } \\ \text { भाঠ } \\ a_{1} \end{gathered}\right.$	$\begin{aligned} & \text { ভাঃ } \\ & \text { পঠ } \\ & b_{1} \end{aligned}$	$\begin{array}{\|c\|} \hline \text { ভাঃ } \\ \text { भाঠুর } \\ \text { मान } \\ b_{1} \times 10^{\prime \prime} \end{array}$	মোট পাঠ $\begin{array}{r} c_{1}= \\ a_{1}+ \\ b_{1} \times 10^{\prime \prime} \\ \\ \hline \cdot \prime \prime \\ \hline \end{array}$	গড় পाठ θ_{k}^{\prime} 	$\begin{array}{\|c} \text { মूঃ স্কেঃ } \\ \text { भाঠ } \\ \mathrm{a}_{2} \end{array}$	$\begin{aligned} & \text { ভাঃ } \\ & \text { পাঠ } \\ & b_{2} \end{aligned}$	$\begin{gathered} \text { ভঃঃ } \\ \text { পাঠে } \\ \text { মান } \\ b_{2} \times 10^{\prime} \end{gathered}$	মোট পাঠ $\begin{gathered} c_{2}= \\ a_{2}+ \\ b_{2} \times 10^{\prime \prime} \\ \\ \hline, \ldots \\ \hline \end{gathered}$	গড়
	7065.19 6678.15 5875.62 5015.67 4921.93 4471.48 4026.19 3889	$\begin{aligned} & 1 \mathrm{a} \\ & \mathrm{lb} \\ & 2 \mathrm{a} \\ & 2 \mathrm{~b} \\ & 3 \mathrm{a} \\ & 3 \mathrm{~b} \\ & 4 \mathrm{a} \\ & 4 \mathrm{~b} \\ & 5 \mathrm{a} \\ & 5 \mathrm{~b} \\ & 6 \mathrm{a} \\ & 6 \mathrm{~b} \\ & 7 \mathrm{a} \\ & 7 \mathrm{~b} \\ & 8 \mathrm{a} \\ & 8 \mathrm{~b} \end{aligned}$										

সারণী 4. $\lambda_{k}-\delta_{k}$ র মান : সারণী 3 থেকে গৃহীত

পर्य সংখ্যা	$\sum_{k=1.2 \ldots . \ldots 8(\AA)}^{\lambda_{k}}$	V_{1} ভার্নিয়ার $\begin{gathered} \delta_{\mathrm{k}}^{\prime}=\theta_{\mathrm{k}}^{\prime} \sim \theta_{0}^{\prime} \\ { }^{\prime}, \prime \prime \\ \hline \end{gathered}$	V_{2} ভার্নিয়ার $\delta_{\mathrm{k}}^{\prime \prime}=\theta_{\mathrm{k}}^{\prime \prime} \sim \theta_{0}^{\prime \prime}$ $0^{\prime \prime \prime}$	গড় $\begin{gathered} \delta_{\mathrm{k}}=\frac{1}{2}\left(\delta_{\mathrm{k}}^{\prime}+\delta_{\mathrm{k}}^{\prime \prime}\right) \\ 0, \prime \prime \end{gathered}$	$\frac{1}{\lambda_{\mathrm{k}}}(\AA)^{-1}$
1.	$\lambda_{1}=7065.19$				
2.	$\lambda_{2}=6678.15$				
3.	.				
4.	.				
5.	.				
6.	.				
7.	-				
8.	$\lambda_{8}=3889$				

1.3 পরিশিষ্ট A: স্পেক্ট্রোমিটার যন্ত্র ও এর বিভিন্ন অংশের ক্রিয়াকলাপ

यন্ত্রের সংক্ষিপ্ত বর্ণনা :
চিত্র 1-d দ্রঃ এই যন্ত্রের মূল অংশ তিনটি :
(1) একটি সমান্তরীকরক (Collimator) C(S... L_{C})
(2) একটি টেলিস্কোপ, $\mathrm{T}\left(\mathrm{L}_{\mathrm{T}} \ldots \mathrm{E}\right)$ এবং
(3) একটি চক্রাকার প্লেট, যার চলিত নাম প্রিজ্ম্-টেব্ল, P।
(1) সমান্তরীকরক মূলত একটি পিতলের নল, যার S প্রান্তে একটি রেখাছিদ্র (Slit) S এবং অন্য প্রন্তে L_{C} একটি অভিসারী লেন্স ($\mathrm{L}_{\mathrm{C}} \rightarrow$ Collimator Lens) यूক্ত থাকে। রেখাছিদ্রের বেধ বাড়ানোকমানোর একটা ব্যবস্থা থাকে। এছাড়া একটি যন্ত্রাধান (device) থাকে যার সাহায্যে SL $_{C}$ দূরত্ব

চিত্র 1-d : স্পেক্ট্রোমিটরের বিভিন্ন অংশ পরিবর্তন করা চলে, কিন্তু এই সরণ হবে লেন্স-অক্ষ বরাবর।
(2) টেলিস্কোপটির লেন্সও অভিসারী $\left(L_{r}\right)$ এবং এর অন্যপ্রান্তে E এই অভিনেত্র (eye-piece) যুক্ত থাকে। L_{T} হচ্ছে টেলিস্কোপটির অভিব্বু (objective) যার উপর আপতিত প্রায় সমান্তরাল বা সমান্তরাল রশ্মিগুচ্ছ প্রতিসৃত হয়ে অভিবস্তুর পশ্চাৎ-ফোকাস্তলে একটি বাস্তব প্রতিবিম্ব গঠন করে। এই প্রতিবিম্বের অবস্থানের কাছাকাছি একটি বলয়ের দুইটি পরস্পর-লম্ব ব্যাস বরাবর দুটি ক্ষীণ তার সংযুক্ত থাকে-এদের নাম হচ্ছে ক্রস্ তার (Cross-wires)। ক্রস্তারটি সাধারণত অভিন্নেত্র E-র সম্মুথ-cফাকাসের কাছে বসানো হয়—অভিনেত্রকে টেলিস্কোপ অক্ষ বরাবর গতিশীল করা যায়-এবং এর সম্মুখ ফোকাসতলটি ক্রসতারের সমতলে বসানো যায়। একটি র্যাক-পিনিয়ন (rack-and-pinion) ব্যবস্থার স্ক্রু ঘুরিয়ে অভিনেত্রটির সম্মুখ-ফোকাসতল যখন রেখাছিদ্রের বাস্তব প্রতিবিম্বের উপর সমাপতিত করা হয়, তখন অভিনের্রের ঈক্ষক লেন্স (Eye Lens) থেকে সমান্তরাল রশ্মিং্ডচ্ছ নির্গত হবে এবং তা পর্যবেক্ষকের চোথে (retina) রেখাছিদ্রের বাস্তব প্রতিবিম্ব সৃষ্টি করবে। রেখাছিদ্রটির এই প্রতিবিম্ব আমরা দেখবো টেলিস্কেপের দৃষ্টিক্ষেত্রে (field of view), ক্রস্তরেরে সমতলে, কিছুটা বিবর্ধিত ভাবে (চিত্র 1 h দ্রঃ)।
(3) চিত্র 1 d-তে S_{C} रচ্ছে সর্বত্র সমান কৌণিক বিভাজন যুক্ত একটি ভারী স্টিল প্লেট; এর কেন্দ্র দিয়ে একটি উল্লম্ব রেখা করা যায় যা টেলিস্কোপ নলের অনুভৌম তলে গতিশীল অবস্থার ঘূর্ণনাক্ষ বিশেষ। প্রিজ্ম্-টেব্ল P-কে ঘোরানো হলে এটি তারও ঘূর্ণনাক্ষ। লক্ষ্যণীয় সমান্তরীকরক নলটি স্পেক্ট্রোমিটারের মূল ভারী অংশের সঙ্গে প্রায় দৃঢ়ভাবে যুক্ত। S_{C} প্লেটের কৌণিক বিভাজন $0^{\circ}-360^{\circ}$, প্রতিটি ডিগ্রী তিনভাগে (অর্থাৎ 20^{\prime} বিভাজনে) বিভক্ত এবং প্রতি 20우 সেস্ম্মতর বিভাজনের জন্য ভার্নিয়ার ব্যবস্থা রয়েছে। 59টি 20°-বিভাজনের চাপদৈর্ঘ্যকে 60টি সমান ভাগে ভাগ করে নিয়ে ভার্নিয়ারের ফ্ষুদ্রতম বিভাজন তৈরী করা হয় এবং এই চাপদৈর্ঘ্যের ভার্নিয়ার স্কেলটি মূলস্কেলের গায়ে লেগে থেকে ঘুরতে পারে। ফলে ভার্নিয়ার纟্রুবাংক দাঁড়ায় $\frac{1}{60} \times 20^{\prime}=20^{\prime \prime}$ । অর্থাৎ কৌিিক পরিমাপের সর্বনিম্ন মান $20^{\prime \prime}$ (অনেক পরীক্ষণাগারে $10^{\prime \prime}$ ভাঃ ধ্রুবকক সম্বলিত স্পেক্ট্রোমিটার রয়েছে, এটা লক্ষ্যণীয়)।
S_{C} প্লেটের একটি ব্যাসের বিপরীত দিকে এরকম দুটি ভার্নিয়ার স্কেলের টুকরো লাগানো থাকেV_{1} এবং V_{2} বলে আমরা উল্লেথ করবো—টেলিস্কোপের ঘূর্ণন-অক্ষদগুটির সঙ্গে এদের দৃঢ়ভাবে আটকে দেওয়ার ব্যবস্থা রয়েছে। ফলে টেলিস্কোপটি অনুভৌম তলে ঘোরানো হলে এই ঘূর্ণনের পরিমাণ 20"সূঙ্মতার সঙ্গে আমরা নিরূপণ করতে পারবো।

দুটো ভার্নিয়ার কেন ব্যবহৃত হয় ? চক্রাকার মূলস্কেলের কেন্দ্রস্থলটি যদি যথাযথভাবে ঘূর্ণন-অক্ষে না থাকে তাহলে V_{1} এবং $V_{2}-$ র পাঠে ঠিক $\pm 180^{\circ}$ পার্থক্য হবে না। ফলে যে কোনও একটি ভার্নিয়ারের

পাঠ নিলে তা প্রকৃত ঘূর্ণন কোণ ϕ থেকে $+s$ বা $-\varepsilon$ পরিমাণের পার্থক্য দেখাবে। এটাকে বলে উৎকেন্দ্রিকতার ত্রুটি (eccentricity error)। यদি $V_{1}-এ র$ পাঠ থেকে লद্ধ কোনও ঘূর্ণন কোণের মান ϕ_{1} হয় এবং V_{2}-র পাঠ থেকে লক্ধ ঘূর্ণন কোণের মান ϕ_{2} হয় তাহলে দেখানো যায় যে

$$
\phi_{1}=\phi+\varepsilon \text { এবং } \phi_{2}=\phi-\varepsilon
$$

$\therefore \phi_{1}+\phi_{2}=2 \phi$, যেখানে $\phi=$ ঘৃর্ণন কোণের প্রকৃত মান।
অর্ধাৎ ϕ_{1} এবং ϕ_{2} এর গড় নিলে উৎকেন্দ্রিকতার ত্রুটি অপনীত रচ্ছে।
এখানে লক্ষ্যণীয় যে $\left.\begin{array}{l}\phi_{1}=\theta^{\prime}-\theta_{0}^{\prime} \\ \phi_{2}=\theta^{\prime \prime}-\theta_{0}^{\prime \prime}\end{array}\right\} \theta$ কোণগুলি পর্যবেশ্ষণ-লক্র কৌণিক পাঠের মান।
প্রিজ্ম্-টেব্ল P-কে উপ্লম্বদিকে ওঠানো, নামানো এবং ইচ্ছেমতো আটকানোর ব্যবস্থা রয়েছে। এটিকে ইচ্ছে করলে $V_{1}-V_{2}$ ভার্নিয়ার যুগ্মের সঙ্গে দৃড়ভাবে আটকে দেওয়া যায়। তখন P-এর অনুভৌম তলে ঘূর্ণনের মান পরিমাপযোগ্য হয়।

অন্যান্য যস্ত্রাশশ : ট্যান্জেন্ট-স্ক্রু ও লেভেলিং স্ক্রু-গুলি চিত্র 1-d তে লক্ষ্য করুন। টেলিস্কোপ T-কে অনুভূমিক করার জন্য নলের ত়লদেশে $\mathrm{N}, \mathrm{N}^{\prime}$ স্ক্রদুটির ব্যবস্থা রয়েছে। টেলিস্কোপকে উল্পম্ব মূল অক্ষদণের সঙ্গে দৃঢ়ভাবে আটকানোর জন্য J_{1} স্ক্র রয়েছে; J_{1} স্ক্রুটি আটকানোর পর স্প্রীং-চালিত T_{1} স্ক্রু সাহায্যে কৌীিক স্কেলের চক্রফলক সাপেক্ষে টেলিস্কোপকে সামান্য কোণে ঘোরানো চলে। J J-কে বলে Locking Screw আর T_{1}-কে বলে ট্যান্জেন্ট স্ক্রু। J_{1}-কে শিথিল করলে টেলিস্কোপকে হাত দিয়ে অনুভৌম তলে ঘোরানো যায়—তখন T_{1} অকেজে। সামান্য ঘোরাতে হলে $J_{1}-$ কে দৃঢ়বদ্ধ করে T_{1} ঘোরাতে হবে।

সমান্তরীকরক নলটির কোনও ঘূর্ণনগতি নেই ; এটি উম্মম্ব স্তম্ভ W-এর উপর স্থপপিত ও দৃঢ়বদ্ধ। তবে নলটিকে অনুভূমিক করার জন্য এর তলদেশে M, M' দুটি স্ক্রু লাগানো থাকে; M, M' -কে উপরদিকে বা নিচদিকে ঘুরিয়ে নলাক্ষ অনুভূমিক করা হয় স্পিরিট লেভেল ব্যবহার করে।

প্রিজ্ম্-টেব্ল P-কে স্বল্প ঘোরানোর জন্য T_{2} এবং ঘোরানো বন্ধ করার জন্য J_{2} এই লকিং স্ক্রুটি ব্যবহৃত হয়; এদের ভূমিকা $T_{1}, \mathrm{~J}_{1}$-এর অনুরূপ। P-এর উপরপৃষ্ঠে কতকগুলি সমকেন্দ্রিক বৃত্ত ও বৃত্তব্যাসের সমন্তরাল কয়েকটি সরলরেখা ক্ষোদিত থাকে। এদের সহায়তায় প্রিজ্মের প্রধান প্রস্থচ্ছেদের কেন্দ্রটিকে ঘূর্ণ্ন-অক্ষের উপর সহজেই স্থাপন করা চলে। P-কে অনুভূমিক অবস্থানে সঠিকভাবে রাখার জন্য এর তলদেশে তিনটি লেভেলিং স্ক্রু স্প্রীং সহযোগে পৃথক একটি চক্রফলকের উপর আটকানো হয় এবং প্রিজ্ম্টেব্লটিকে তার উপরে বসানো হয়।

যद্ব্রের মুল অনড় অং্শাটি $\mathrm{S}_{1}, \mathrm{~S}_{2}, \mathrm{~S}_{3}$ এই তিনটি লেভ্লিং ষ্কুর-র উপর প্রতিষ্ঠিত। এই অংশের উష্মম্ব স্তম W-এর উপর অনুডূমিক ভাবে সমাচ্তরীকরকক নল C অবস্গিত (চিত্র 1-d)। ।ব্র্রের কেন্দ্রাংশে একটি

 অংশ হিসাবে (counterpoise) সংবোজিত হয়।

1.4 পরিশিষ্ট B : প্রিজ্ম্ স্পেকৃট্রোমিটার ব্যবহারের পুর্বে করনীয় বিভিম্ন সমম্ধয়ন (adjustments)

আলোক উৎসের সম্মুণে স্প্প দৈর্ষ্য ও অত্ল্প বেধযুক্ত ($5 \mathrm{~mm} \times 0.2 \mathrm{~mm}$ ধরা যাক) রেখাছিদ্রা উন্নুক্ত করা হলে এটি রৈথিক আলোক উৎস হয়ে যায়। এর বিভিন্ন বিন্দু থেকে অপসাীী রশ্মিণচ্ছ নির্গত
 বিভিন্ন প্রতিবিব্ব, বর্ণালিরেথোর আকারে দেখে থাকি এবং ঐ প্রতিবিব্বণলির অব্থানের কৌিিক পরিমাপ করে থাকি। এজন্য বে সব সমন্বয়ন প্রয়োজন সেখেনকে তিন শ্রেণীতে ফেন্লা যায়-
(1) घ ম্রাশশণলির অনুভীৗমকরণ (Levelling)

চক্রাকার স্কেলের সমতন, প্রিজ্ম্-টেব্লের সমতন, টেলিস্কেপের অক্প এবং সমান্তরীকরকের অক্ষ যাতে যथাযথ অনুভৌম সমতলে অবস্থান করে সৌী প্রথমে দেখতে হবে। এই অনুভৌমকরণ (levelling)
 অনুভ্টীমকরণ (mechanical levelling)।
(2) आলোকীয় অनूভৌমকরণ (Optical Levelling)

ঢেলিস্কেপেের অক্ষ যন্রের ঘূর্ণনাশ্कকে অবশ্যুই ছেদ করবে এবং এদের মধ্যবর্তী কোণ হবে 90। অর্থাৎ তখन ঘূর্ণনাক্ষ উম্পম্ব হলে টেলিস্কেপপ অশ্ যে কোনও অবস্থানইই অনুভীযশতলে বিচরণ করবে। সমাচ্তরীকররের অক্ষও ঐ ঘূর্ণনাক্ষকে 90° কোেে ছেদ করবে। তাহলেই থ্রিজ্ম্-টেব্নে আপতিত রশ্মিঙণচেছের প্রতিটি রশ্মিই হরে অনুভৌম। প্রিজ্মের প্রতিসারক তনদুটি অবশাই উল্লম্ব হবে এবং এরা ঘৃর্ণনাক্ষের সমান্তরালও হবে। এর ফলে প্রিজ্মের প্রধান ছেদে সব রশ্মিখলির প্রতিসরণ ঘটবে। প্রতসৃত রশ্মিখলির সবই হবে অনুভৌম এবং টেলিস্কোপ-অক্ যথাযথ অনুভোম হলে ঢেলিস্কোপের পশাৎ-ফোকাসতলে প্রতিবিম্ণণলি হবে উম্ধম্ব উজ্জে রেथা। এই আদর্শ ব্বস্গ সতই হচ্চে কি না অ আলোকনুসারী পদ্ধতিতে যাচাই করতে হবে।

 সমাষ্তরালে অবস্থান করে তাহলে রেখাছিদ্রের প্রতিবিণ্ধে অবিন্দুক্ড (astigmatism) অবম মান গ্রহণ করবে

(1) याब्र्রिक লেডেলিং (Mechanical Levelling)

 সমब্যনযোগ্য) একটি স্পিরিট লেভেল SL নিয়ে এমনভাবে স্পেক্টোমিটারের নিম্নাংশের কোনও সমতলে (অথবা চ্র্রাকার স্কেলের অনুভूমিক সমতলে)
 সরলরেখাটি SL-এর প্রায় সমাষ্তরাল इয় (চিত্র le)

 এবার SL-কে 90° घूরিশ্রে $\mathrm{S}^{\prime \prime} \mathrm{L}^{\prime \prime}$ অবস্शনে বসান याতে $\mathrm{S}_{1} \mathrm{~S}_{2}$ রেখা उ $\mathrm{S}^{\prime \prime} \mathrm{L}^{\prime \prime}$ भরশ্পর बম্ব হয় (চিত্র
 1e)। এবার S_{3}-কে ঘুরিয়ে $S^{\prime \prime} L^{\prime \prime}-এ র$ বুদ্দুদ কেন্দ্রহুলে আন্তে হবে। আবার স্পিরিট লেভেলটিকে চিত্র 1-e : স্পিরিট লেভেল যथাযপ সং্থ্থপপের পর্যায়ক্রম
 কেক্দ্রস্থলে আনতত হবে। এভাবে স্পিরিচ লেভেন একবার SL অবস্থানে রেঙে S_{1} বা S_{2} ঘোরাতে হবে এবং তারপর S"L" অবস্থান রেখে S_{3} घোরাত্ত হবে। সমब্যন তখনই সঠিক হবে যখন স্পিরিট লেডেল SL বा $\mathrm{S}^{\prime \prime} \mathrm{L} "$ अবস্शানে রাখলে বুদ্যু
(ঘ) স্পিরিট লেভেল সমান্তরীকরক নলের উপর বসিয়ে নিন এবং এই নলের নীচে যে দূটি স্ক্র
 অঙ্巾 অনুভৌম হলো বোঝা যায়।
(গ) অनুরূপে টেলিস্কোপ-অস্শ অনুভৌম করুন্ন। টেলিস্কেপপ ঘুরিয়ে ঘুরিয়ে. এর বিভিম্ম অব্থানেই কিষ্ুু স্পিরিট লেভেলের বুদুদ কেন্দ্রস্থ থাকবে। না থাকলে এর কারণ অনুসষ্ধান করুন। হয়তো ঘৃর্ণন-অক্শ উল্লপ্ন হয় নি—সেক্ষেত্রে বনিয়াদের স্ক্রুণলি সামান্য পুনঃসম্ধয়িত করার প্রর্যোজন হবে। হয়তো টেলিম্কোপের

(2) आলোকীয় লেভেনিং* (Optical Levelling)

প্রিজ্মেটি এমনভবে প্রিজ্মে-টেব্লে বসান যেন এর একটি প্রতিসরণ তল AB (চি্রি 1 f) এবং প্রিজ্মেটেব্লের লেভেনিং ד্ক্রু $\mathrm{S}_{1}, \mathrm{~S}_{2}$-এর সংব্যেগকারী সরলরেখাটি পরস্পর সমকেণে হয়। টেলিস্কেপ এবং সমান্তরীকরক একই রেখায় রাখ্থু, AB যেন এই রেথার সমান্তরাল এবং প্রিজ্ম্-টেব্লের কেন্দ্র থেকে সামান্য দূরে থাকে। এবার রেখাছিদ্রের প্রতিবিম্ব দেখুন এবং রেখাছ্দ্রাত্কে অনুভ্মিক করে (অর্থাৎ সাধারণ অব্গ্থন থেকে $\pm 90^{\circ}$ घুরিয়ে) রাখুন। এবার সমান্তরীকরক এবং/অথবা টেলিস্কেপের নীচের স্ক্র ঘুরিয়ে ঐ প্রতিবিব্বটি ক্রস্তারের সংযোপ স্থলে রাখুন (চিত্র 1 f)। এবার

চिত্র 1-f

চिত্র 1-g টেলিস্কোপকে যে কোনও কোপিক অবস্থানে রাখুন (চিত্র 1 g) এবং প্রিজ্ম্-টেব্ল যথোচিত ঘুরিল্যে AB পৃষ্ঠ থেকে রশ্মি প্রতিফনিত করে ঢেলিস্কোপের দৃষ্টিক্কেত্রে রেখাছিদ্রের অনুভুমিক প্রতিবিব্বটি লেখুন। সাধারণত হয়তো এটি আর ক্রস্তারের

[^4]সংযোগস্থলে থাকবে না, (চিত্র 1 g) প্রিজ্ম্-টেব্লের স্ক্রু S_{1} বা S_{2} ঘুরিয়ে এই প্রতিবিম্ব যথাস্ছানে নিয়ে আসতে হবে। এভাবে টেলিস্কোপকে ক্রমশঃ সমাস্তরীকরকের আরও কাছে নিয়ে গিয়ে প্রতিবিম্বের অবস্থান যাচাই করে দেখুন। প্রয়োজনে S_{1}, S_{2} সমন্বয়িত করুন। এবার প্রিজ্ম্-টেব্ল ঘুরিয়ে প্রথম অবস্থানে চলে যান এবং টেলিস্কোপ ও সমান্তরীকরক সমরেখ করুন। প্রতিবিম্ব যথাস্থানে না থাকলে সমাস্তরীকররকের নীচের স্ক্র ঘুরিয়ে সেটা করতে হবে এবং পূর্বের প্রক্রিয়ার পুনরাবৃত্তি করতে হবে। দু তিনবার এরকম করার পর প্রতিবিম্ব যথাস্থানেই থাকবে—এবং তখনই বুঝবেন যে টেলিস্কোপ-অক্ষ ও সমান্তরীকরকের অক্ষ উভয়েই আবর্তন অক্ষের সমকেণে রয়েছে এবং প্রিজ্মের AB পৃষ্ঠ ঐ আবর্তন অক্ষের সমাষ্তরাল।

(3) রশ্মিগুচ্ছের সমান্তরীকরণ (শুস্টার-প্রবর্তিত পদ্ধতি** অবলম্বনে)

সমন্তরীকরক এবং টেলিস্কোপ পৃথকভাবে সমান্তরাল রশ্মিগুচ্ছের জন্য ফোকাসিত হওয়া দরকার। এজন্য ऊস্টার প্রবর্তিত পদ্ধতিই সহজ, নির্র্রম এবং সর্বাধিক নিয়মানুগ

ठिब्র 1-h (systematic) বলে মনে হয়। পদ্ধতিটি সংক্ষেপে এই : প্রথমে সোডিয়াম ল্যাম্প জেলেলে নিন এবং রেখাছিদ্রটটি উল্লম্ব অনস্থায় বেশ চওড়া করে রাখুন। প্রিজ্ম্টি এমনভাবে বসান যাতে প্রিজ্মের ভৃমি-সমতল (Base Plane)-এর কেন্দ্রবিন্দুটি বৃত্তের কেন্দ্রে বসে এবং প্রিজ্মের ‘কিনারা’’ আপনার নিকটতর অবস্থানে থাকে (প্রিজ্ম্-টেব্লের পৃষ্ঠতলে কতকগুলি সমকেন্দ্রিক বৃত্ত এবং সদৃশকোণী ত্রিভুজ आঁকা থাকে যাতে এই সংস্থাপন সহজৌ̀ করা যায়)। এবার খালিচোথে প্রিজ্মের মধ্য দিয়ে তাকালে অনায়াসেই রেখাছিদ্রের অলীক প্রতিবিম্বটি আপনার নজরে আসবে। প্রিজ্ম্-টেব্ল ঘোরাতে থাকুন, দেখবেন ঐ প্রতিবিম্ব হয় ডানে না হয় বামে সরে যাচ্ছে। যमि আপনি প্রিজ্ম্-টেব্লাটিকে ক্রমাগত একই দিকে ঘুরিয়ে যান তাহলে লক্ষ্য করবেন যে প্রতিবিম্বটি কোনও একদিকে কিছ్দূর এগিয়ে গিয়ে দৃষ্টিপটের একটা নির্দিষ্ট অবস্থান থেকে ফিরে আসছে। দৃষ্টিপটের এই নির্দিষ্ট অবস্থানই প্রিজ্মের অবম বিষ্যুতির অবস্থানের সৃচক। টেলিস্কোপ ঘুরিয়ে এনে তার দৃষ্টিপটে এই প্রতিবিম্বটি সংস্থাপিত করুন। অবম বিচ্যুত এই প্রতিবিম্বটি দৃষ্টিবৃত্তের পরিধি থেকে এমন

[^5]দূরত্বে রাখুন যাতে এটি কেন্দ্র ও পরিধির মধ্যবর্তী স্থানে থাকে (চিত্র 1 h)। এবার নীচে নির্দেশিত ক্রমে প্রক্রিয়াগ্গলির অনুষ্ঠান করুন।
(ক) প্রিজ্মের ‘কিনারা’ (প্রিজ্ম্-টেব্ল ঘুরিয়ে) আপনার চোখের দিকে ক্রমশ এগিয়ে আনুন, দেখবেন প্রতিবিম্ব ক্রস্তারের সংযোগস্থলের দিকে ক্রমশ অগ্রসর হচ্ছে। যখন প্রতিবিম্বটি উম্পম্ব ক্রস্তারটির উপর প্রতিসমভাবে অবস্থান করছে, (চিত্র 1 i) তখন টেলিস্কোপের ফোকাস্-স্কু ঘুরিয়ে (অর্থাৎ র্যাক পিনিয়নের নব ঘুরিয়ে) প্রতিবিম্বটি স্পষ্টভাবে ফোকাস্ করুন। ফোকাস ঠিক হল কি না বোঝবার উপায়

চिত্রে 1-i

চिত্র 1-j

এই-আলোকিত আয়তাকার ক্ষেত্রের সীমারেখা খুব স্পষ্ট (sharp) হবে অর্থাৎ আলোকিত ও অনালোকিত অংশের এই বিভেদরেখাটি ক্ষীণতম হবে। (অনেক সময় রেখাছিদ্রের গায়ের ধৃলিকণাগুলি উজ্জ্রল আলোকের পশ্চাৎপটে কালো বিন্দুর আকারে স্পষ্টভাবে দেখা দেয়।)
(খ) এবার প্রিজ্ম্-টেব্ল বিপরীতক্রমে ঘোরান যাতে প্রিজমের কিনারাটি আপনার কাছ থেকে ক্রমশঃ দূরে সরে যেতে থাকে। ক্রমশঃ দেখবেন দৃষ্টিপটে প্রতিবিম্বটি চিত্র -এর অনুরূপ অবস্থানে আসবে এবং তারপর প্রতিবিম্বটি ক্রস্তারের সংযোগস্থলের দিকে অগ্রসর হবে। শেষ অবধি যখন উম্পম্ব ক্রস্তারের

দুপাশে প্রতিবিম্বটি আবার প্রতিসমভাবে অবস্থান করবে, (চিত্র 1 j) তখন সমান্তরীকরক-এর সংল্গ স্ক্র ঘুরিয়ে এই প্রতিবিম্বটি সর্বাধিক স্পষ্ট করে ফোকাস করতে হবে।
(ক) এবং (খ) পর্যায়ক্রমে পুনরাবৃত্ত করা হলে দেখা যাবে বে প্রিজ্মের ঐ দুই অবস্থানে ফোকাস প্রায় অপরিবর্তিত থাকছে।

মনে রাখুন-প্রিজ্ম্ কিনারা নিকটে আনা হলে নিকটের যন্ত্র অর্থাৎ টেলিস্কোপ ফোকাস করতে হবে। প্রিজ্ম্ কিনারা দূরে সরে গেলে দৃরের যষ্ত্র অর্থাৎ সমান্তরীকরক ফোকাস করতে হবে।

1.5 भরিশিষ্ট C : অজ্ঞাত λ-র মান नিরূপতে হার্ট্মান (Hartmann) প্রবর্তিত পদ্ধতি

ধরা যাক, λ-র অজ্ঞাত মানটি λ_{1}, λ_{2} এই দুটি জ্ঞাত মানের অন্তর্বর্তী বলে জানা গেল- $\delta-\lambda$ লেখ থেকে তা পাওয়া সম্ভব। সংগৃহীত উপাত্তে $\lambda_{1}, \lambda_{2}-$ র সংশ্লিষ্ট বিচ্যুতির মান যथাক্রমে δ_{1}, δ_{2} জানা আছে। ধরা যাক, সোডিয়াম D-রেখার ক্ষেত্রে $\lambda_{0}=2700 \AA$ একটি ধ্রুবরাশি এবং

$$
\begin{equation*}
\mathrm{h}_{1}=\frac{1}{\lambda_{1}-\lambda_{0}}, \mathrm{~h}_{2}=\frac{1}{\lambda_{2}-\lambda_{0}} \text { এবং } \mathrm{h}=\frac{1}{\lambda-\lambda_{0}} \tag{4}
\end{equation*}
$$

h_{1}, h_{2}, h-কে বলা হয় λ_{1}, λ_{2} এবং λ-র সংশ্লিষ্ট হার্টমান সংখ্যাত্রয়। অতএব হার্টমান সূত্র অনুসারে,

$$
\begin{equation*}
\delta=\mathrm{A}^{\prime}+\mathrm{B}^{\prime} \mathrm{h} \tag{5}
\end{equation*}
$$

এই হার্টমান সূত্র থেকে পাই

$$
\begin{align*}
& \mathrm{h}=\mathrm{h}_{1}+\frac{\delta-\delta_{1}}{\delta_{2}-\delta_{1}}\left(\mathrm{~h}_{2}-\mathrm{h}_{1}\right) \\
& \text { এবং } \lambda=\lambda_{0}+\frac{1}{\mathrm{~h}} \tag{6}
\end{align*}
$$

কজেই পরীক্ষণলক্ধ মান থেকে h-এর মান গণনা করে নিয়ে তা থেকে λ-র মান পাওয়া যাবে। লেথ-এর থেকে পাওয়া মান এর সঙ্গে তুলনা করে দেখুন।
λ_{0}-র মান $2700 \AA$ না নিয়ে আরও শ্ধতর মান পাওয়া যাবে যদি সংগৃহীত উপাত্তের সর্বোত্তম মিল (Best Fit) থেকে এটি নিন্ণীত হয়। সোডিয়াম D-রেখার জন্য প্রথমে $\lambda_{0}=2700 \AA$ ধরে নিয়ে
$\left(\frac{1}{\lambda_{\mathrm{k}}-\hat{\lambda}_{0}}\right)$ গণনা করুন। $\left(\frac{1}{\lambda_{\mathrm{k}}-\lambda_{0}}\right)$-এর মানের বিপরীতে δ_{k}-র মান স্থানান্ঠরিত করা হলে লেখবিন্দুগ্তলির অভ্যন্তর দিয়ে একটি সুযম সরলরেখা আঁকা যাবে। (অভ্ঞাত $\lambda-$ র δ মেপে নিয়ে এই লেখচিত্র থেকে $\lambda-$ স্রুনমান পাওয়া যায়।) यদি লেখটি সুষম সরলরেখা না হয়ে ঈষৎ বক্রততা প্রদর্শন করে, তাহলে λ_{0}-র মান ঈষৎ পরিবর্তিত করে লেখটিকে ঋজুতর করে নিতে হয়। পরে λ_{0}-র এই মান (ধরা যাক λ_{0}^{\prime}) সুত্র ... তে ব্যবহার করা হলে λ-র अদ্ধতর মান পাওয়া যাবে।

1.6 পরিশিষ্ট D : ঞুস্টার পদ্ধতির তাত্ত্বিক আলোচনা :

শ্স্টার-পদ্ধতির তাত্কিক তাৎপর্য আলোচনা এখানে খুবই প্রাসঙ্গিক বলে সংক্ষেপে (বিশদতর আলোচনা ওস্টার-এর পুস্তকে দ্রঃ) আলোচিত হল। চিত্র 1 k তে প্রিজ্মের প্রধান ছেদের প্রতিসৃত রশ্মিগুলি দেখানো হয়েছে। PQQ' একটি সরু রশ্মিশঙ্কু যার Q, Q^{\prime} বিन্দুতে আপতন কোণ যথাক্রমে i ও $i+d i$ এবং R, R^{\prime} বিন্দুতে নির্গমন কোণ যথাক্রমে i^{\prime} এবং $i^{\prime}+d i^{\prime} । ~ ত া হ ল ে ~ প ্ র ি জ ্ ম ্-প ্ র ত ি স র ণ ে র ~ স ূ ত ্ র ~ থ ে ক ে ~ প া ই ~$

$$
\begin{equation*}
\frac{\mathrm{di}^{\prime}}{\mathrm{di}}=\frac{\mathrm{dr}^{\prime}}{\mathrm{dr}} \cdot \frac{\cos r^{\prime} \cos \mathrm{i}}{\cos \mathrm{i}^{\prime} \cos r}=-\frac{\cos r^{\prime}}{\cos \mathrm{i}^{\prime}} \cdot \frac{\cos \mathrm{i}}{\cos r} \quad \ldots \tag{7}
\end{equation*}
$$

চिब्র 1-k

সূত্রটির তাৎপর্য এই। P-কে यদি সসীম বেধ-বিশিষ্ট উৎস বলে গণ্য করা হয় তবে Q-থেকে পর্যবেশ্ষণ করা হলে P-এর কৌণিক প্রসারতার পরিমাপ di-র সমানুপাতী কেননা $\angle \mathrm{QPQ}^{\prime}=\mathrm{di}$; তখन $d i^{\prime}$ रবে অলীক প্রতিবিম্ব $P^{\prime}-এ র$ কৌিিক প্রসারতা যা R बিन्দू থেকে দৃষ্ট হবে। কাজেই $-\frac{d i}{d i}$ হচ্ছে প্রিজ্মের দ্বারা উеপন্ন প্রতিবিম্বের কোণিক বিবর্ধন M।

যখন $i=i^{\prime}=i_{m}$, তখन $M=1$;
$\mathrm{i}<\mathrm{i}_{\mathrm{m}}$ হলে $\mathrm{M}<1$
$i>i_{m}$ रलে $M>1$
এ থেকে বোঝা যাচ্ছে যে রেখাছিদ্রটি অবম বিচ্যুতিকোণের অবস্থান থেকে দৃষ্ট হলে তার কৌণিক বিবর্ধন হবে না; কিন্তু অবম বিচ্যুতি কেণের বেশি বা কম বিচ্যুতির ক্ষেত্রে প্রতিবিম্ব প্রসারিত বা সংকুচিত দেখাবে। এটাই অ্টার-পদ্ধতির মূল কথা। সমান্তরীকরক যथার্থ সমন্বয়িত না হলে এ থেকে নির্গত রশ্মি হবে অসমান্তরাল। প্রিজ্ম্ যখন অবম বিচ্যুতির অবস্থানে নেই তখন টেলিস্কোপের মধ্য দিয়ে তাকিয়ে বে প্রতিবিম্ব দেখা যাবে সেটি যদি সংকুচিভ দেখায় তবে বুঝতে হবে যে রশ্মিগুচ্ছ সমান্তরীকরকের লেন্স থেকে নির্গত হওয়ার পর যেটুকু অসমান্তরাল ছিল, প্রিজ্মের মধ্যে দিয়ে প্রতিসৃত হওয়ার পর প্রায় সমান্তরাল হয়ে গেছে। কজেই এ অবস্থায় টেলিস্কোপই ফোকাস করা প্রয়োজন। প্রতিবিম্ব যখন অপেক্ষাকৃত প্রসারিত দেখাবে, তখন সমান্তরীকরককে ফোকাস করতে হবে। ఆস্টার-পদ্ধতিতে এ জনjই প্রিজ্ম্ট্টিকে অবম বিচ্যুতির जবস্থানের হয় এপাশে না হয় ওপাশে সরিয়ে বসানো হয় এবং টেলিস্কোপ বা সমান্তরীকরক যথাযথ ফোকাস করে দেখা হয় যেন যে কোনও অবস্থানেই প্রতিবিম্ব বিবর্ধিত বা সংকুচিত না হয়। প্রতিবিম্বটি তখন ক্রমশঃ দূরে সরে যায়।
1.7 পরিশিষ্ট E : প্রিজ্ম্ ব্যবহার করার সময় (ক) আপতিত রশ্মিগুচ্ছ কেন সমান্তরাল করে নেওয়া হয় এবং (খ) প্রিজ্ম্টিকে কেন রশ্মির অবম বিচ্যুতির অবস্থানে বসানো হয় ?

উপরের প্রশ্ন দুটির উত্তর দেওয়ার জন্য একটি অতি ক্ষীণ রশ্মিশঙ্কু কল্পনা করা যাক যার রশ্মিগুচ্ছ একশীর্ষ (homocentric) ও যার অর্ধশিরঃকেণের বিষ্ভৃতি অনন্ততঃ ক্ষুদ্র (1infinitesimally small)। ধরা যাক O বিन্দুটি (চিত্র প. 1 দ্রঃ) আলোকরশ্মির উৎস, OABC ঐ রশ্মিশস্কুর প্রধান রশ্মি (chief ray) या প্রিজ্ম্ UVW-এর প্রধান ছেদে প্রতিসৃত হয়েছে। প্রিজ্মের প্রধান ছেদ রশ্মিশঙ্কুর স্পশ্শকীয় ছেদও বটে (tangential section); 1 এবং 2 এই ছেদের প্রান্তিক রশ্মিদুটি। A’র সন্নিহিত অংশে প্রথম প্রতিসৃত হওয়ার পর স্পর্শকীয় ছেদের রশ্মিশুচ্ছ স্পর্শকীয় ফোকাস বিন্দু (Tangential focus) T_{1} থেকে আগত বলে মনে হবে; অনুরূপে রশ্মিশঙ্কুর শরাশ্রয়ী* (sagittal) সমতলের রশ্মিগুলি S, বিন্দু থেকে আগত বলে মনে হবে।

[^6]B-বিন্দুর সন্নিহিত অংশে প্রতিসরণের পর স্পর্শকীয় ছেদের রশ্মিত্চচ্চ T_{2}-বিন্দু থেকে আগত বলে মনে হবে এবং শরাশ্রয়ী ছেদের রশ্মিণ্ডচ্ছ S_{2} বিন্দু থেকে আগত বলে মনে হবে। S_{2} এবং T_{2} হচ্ছে প্রিজ্ম্ দ্বারা সৃষ্ট O-বিন্দুর অলীক প্রতিবিম্ব দুটি এবং $\mathrm{S}_{2} \mathrm{~T}_{2}$ रচ্ছে প্রতিবিম্ব সৃষ্টিকারী রশ্মিশঙ্কুর অবিন্দুকত্বের ব্যবধান (astigmatic difference)।

শ্পxকীীয় ও পরার্রয়ী প্রতিবিব্ব গঠন ও অবিন্দूকত্ব।

ধরা যাক,

$$
\begin{aligned}
& A O=\tau \\
& A T_{1}=\tau_{1} \\
& A S_{1}=\sigma_{1}
\end{aligned}
$$

A-বিন্দুতে প্রধান রশ্মির আপতন কোণ ও প্রতিসরণ কোণ যথাক্রমে θ_{1} ও θ_{1}^{\prime} ধরা যাক। তাহলে অতি ক্ষীণ রশ্মিশস্কুর অবিন্দুক প্রতিসরণের সূত্র ধেকে পাই

স্পশ্শকীয় প্রতিসরণের ক্ষেত্রে : $\quad \frac{\mu_{2} \cos \theta_{1}^{\prime}}{\tau_{1}}=\frac{\mu_{1} \cos ^{2} \theta_{1}}{\tau}$
এবং শরাশয়ী প্ররিসরণের ক্ষেত্রে : $\frac{\mu_{2}}{\sigma_{1}}=\frac{\mu_{1}}{\tau}$
অর্থাৎ যথাক্রমে : $\tau_{1}=\mu \tau \cos ^{2} \theta_{1}^{\prime} / \cos ^{2} \theta_{1}$
$\sigma_{1}=\mu \tau$
এখানে $\mu_{2} / \mu_{1}=\mu$ ধরা হয়েছে।
মনে করি, $\mathrm{AB}=1$; তাহলে $\mathrm{BT}_{1}=1+\tau_{1}, \mathrm{BS}_{1}=1+\sigma_{1}$

কজেই $\mathrm{Br}_{2}=\tau_{2}$ এবং $\mathrm{BS}_{2}=\sigma_{2}$ লিতে পাই, ($\mathrm{B}-$ বিन্দুতে প্রতিসরণ সৃত্রের প্রয়োগ করে; $\theta_{2}^{\prime}, \theta_{2}$ যथाক্রমে আপতন ও প্রতিসরণ কোণ)

$$
\frac{\mu_{1} \cos ^{2} \theta_{2}}{\tau_{2}}=\frac{\mu_{2} \cos ^{2} \theta_{2}^{\prime}}{\mathrm{BT}}=\frac{\mu_{2} \cos ^{2} \theta_{2}^{\prime}}{1+\tau_{1}}
$$

অর্থাৎ $\tau_{2}=\left(1 \div \tau_{1}\right) \cdot \frac{1}{\mu} \cdot \frac{\cos ^{2} \theta_{2}}{\cos ^{2} \theta_{2}^{\prime}} \quad$ এবং $\frac{\mu_{1}}{\sigma_{2}}=\frac{\mu_{2}}{B S_{1}}=\frac{\mu_{2}}{1+\sigma_{1}}$
ফলে $\mathrm{S}_{2} \mathrm{~T}_{2}=\mathrm{BS}_{2}-\mathrm{BT}_{2}=\sigma_{2}-\tau_{2}$ এবং কয়েক সোপান গণনার পর শেষ পর্যন্ত পাওয়া যাবে (অবিন্দুকত্বের ব্যবধান, $\Delta a \equiv S_{2} T_{2}$ হলে)

$$
\Delta \mathrm{a}=\tau\left(1-\frac{\cos ^{2} \theta_{1}^{\prime}}{\cos ^{2} \theta_{1}} \cdot \frac{\cos ^{2} \theta_{2}}{\cos ^{2} \theta_{2}^{\prime}}\right)+\frac{1}{\mu}\left(1-\frac{\cos ^{2} \theta_{2}}{\cos ^{2} \theta_{2}^{\prime}}\right)
$$

অবম বিচ্যুতির ক্ষেত্রে যখন $\theta_{1}=\theta_{2}$ এবং $\theta_{1}^{\prime}=\theta_{2}^{\prime}$, তখন $\Delta \mathrm{a}$ 'র প্রথম অংশটি শূন্য হয়ে পড়ে। Δa ’র দ্বিতীয় অ"শটি তथन আর বস্তুদূরত্ব τ-এর উপর নির্ভরশীল নয় বরং এটি তখন প্রিজ্মের অনুসৃত পথ-দৈর্ঘ্যের জপর বেশি নির্ভরশীল। কজেেই অবম বিচ্যুতির ক্ষত্রে অবিন্দুকত্ব সাধারণভাবে শূন্যমান হয় না, তবে ক্ষুদ্রতম মান গ্রহণ করে থাকে।

অবিন্দুকত্ব যথার্থই শূন্যমান হওয়ার শর্ত হচ্ছে $\Delta \mathrm{a}=0$ অর্থাৎ

$$
\tau\left(1-\frac{\cos ^{2} \theta_{1}^{\prime}}{\cos ^{2} \theta_{1}} \cdot \frac{\cos ^{2} \theta_{2}}{\cos ^{2} \theta_{2}^{\prime}}\right)+\frac{1}{\mu}\left(1+\frac{\cos ^{2} \theta_{2}}{\cos ^{2} \theta_{2}^{\prime}}\right)=0
$$

अर्थाए $\tau=\frac{1}{\mu} \cdot \frac{\cos ^{2} \theta_{1}\left(\cos ^{2} \theta_{2}^{\prime}-\cos ^{2} \theta_{2}\right)}{\cos ^{2} \theta_{1}^{\prime} \cos ^{2} \theta_{2}-\cos ^{2} \theta_{1} \cos ^{2} \theta_{2}^{\prime}}$
$\tau=\tau_{0}$ এই বিশেষ মানের জন্য যদি উপরের সমীকরণটি সিদ্ধ হয় তবে ঐ বস্তুদূরত্ধে $\Delta \mathrm{a}=0$; অর্থাৎ নির্দিষ্ট 1 এবং θ_{1}-এর দ্বারা এই দূরত্বটি নির্ধারিত হয়।

একটি বিশেষ ক্ষেত্রে যদি উপরের রাশিটির লব শূন্যমানের হয়, তবে $\tau=\infty$; এর অর্থ এই যে অসীম থেকে আগত রশ্মিগুচ্ছ $(\tau=\infty)$ যদি এমন কেণে আপতিত হয় যে,

$$
\cos ^{2} \theta_{1}^{\prime} \cos ^{2} \theta_{2}=\cos ^{2} \theta_{1} \cos ^{2} \theta^{\prime}
$$

তাহলে অবিন্দুকত্বের মান হবে শূন্য। উপরের এই শর্তটি অবম বিচ্যুতির শর্তও বটে। কজেই সমান্তরীকৃত রশ্মিগুচ্ছ $(\tau=\infty)$ यদ্রি প্রিজ্মে অবমভাবে বিচ্যুত হয় তবে সেক্ষেত্রে বস্তুর প্রতিবিম্ব সৃষ্টিতে অবিন্দুকত্ব সम্পূর্ণ অনুপস্থিত থাকবে। বাস্তবক্ষেত্রে অবশ্য আমরা একটি বিন্দুকে বস্তু হিসাবে নিই না; প্রধান ছেদের সমকোেে রেখাছিদ্র ব্যবহার করে থাকি। তথন ঐ রেখাছিদ্রের বিভিন্ন বিন্দু থেকে আগত তির্যক রশ্মির (skew rays) অর্থাৎ প্রধান ছেদে অবস্থিত নয়, এমন বিন্দু থেকে আগত রশ্মির প্রতিসরণ বিবেচনা করতে হয়। কার্যত এই রেখাছিদ্রের দৈর্ঘ্য যদি যথেষ্ট ছোট নেওয়া হয় তাহলে. উপরের আলোচিত অবিন্দুকত্ব অনেকাংশেই বজায় থাকবে।

1.8 अनুশীলनी :

(1) $\delta-1 / \lambda^{2}$ 厅 $\delta-1 / \lambda$ পাঠমূল্যায়ন রেখার কোনটি বেশী উপযোগী?
(2) এই পরীক্ষায় প্রিজ্ম্ দ্বারা আলোর বৃহৎ বিচ্যুতি ও বৃহৎ বিচ্ছুরণ-এর মধ্যে কোনটি বেশী পছল্দ্রর?
(3) প্রিজ্ম্টি Crown কাচের বা Flint কাচের হলে কি তফাৎ হবে?
(4) প্রিজ্ম্ উপাদানের বিচ্ছুরণ ক্ষমতা কাকে বলে ? কোন উপাদানের বিচ্চুরণ ক্ষমতা কি ধ্রুবক?
(5) এই পরীক্ষায় দুটি কোণমাপক ভার্নিয়ার স্কেলের পাঠের তফাৎ কত?
(6) স্পেক্ট্রোমিটারকে অনুভৌম করার প্রয়োজন হয় কেন?
(7) টেলিস্কোপ ও সমান্তরীকরককে সমান্তরাল রশ্মির জন্য ফোকাস করা হয় কেন?
(8) এই টেলিস্কোপে কি ধরনের অভিনেত্র ব্যবহার করা হয়?
(9) প্রিজ্মের বিচ্যুতি কোণ δ এবং আপতন কোণ i-এর সম্পর্কটি লিঢে দেখান। একটি লেখচিত্র এঁকে δ-i সম্পর্ক দেখান।
(10) কোনও স্বচ্ছ বস্তুর (যথা কাচ) $\mu-\lambda$ বক্র কি ধরনের হয় থাকে এঁকে দেখান। কসি (Cauchy) সূত্রটি লিখুন। কসি সূত্রের সত্যতা যাচাই করে দেখতে হলে পরীক্ষণ কিভাবে করতে হবে সংক্ষেপে বলুন।
(11) একটি লেখ-কাগজে বিভিন্ন কাচের $\mu-\lambda$ বক্রগুলি आঁকুন। "Crown" কাচ, "Flint" কাচ এবং EDF (Extra Dense Flint) কাচের বৈশিষ্ট্যগুলি কি কি?
(12) প্রিজ্ম্-বর্ণালিকে অমূলদ (irrational) কেন বলা হয়?
(13) আপনি যে পরীক্ষণ সম্পাদন করেছেন সেটি কঠিন পদার্থের প্রিজ্মে নিয়ে করা হয়েছে। আপনাকে यদি কোনও স্বচ্ছ তরলপদার্থ দেওয়া হয় তাহলে কি ভাবে পরীক্ষণটি করবেন?
(14) आপনার পরীক্ষণে বর্ণালির দৃশ্যমান (visible) অংশ ব্যবহৃত হয়েছে! যদি বর্ণালিতে অতিবেগুনী রশ্মি (Ultra Violet) থাকে তাহলে কার্যপদ্ধতি কী ভাবে পরিবর্তন করতে হবে সংক্কেপে বলুন।
(15) বর্ণালির অবলোহিত (Infra Red) অণশে এই পরীক্শ করা সষ্ভব নয়। कী কী কারণে বলুন। কার্যপদ্ধতির আমূল পরিবর্তন প্রয়োজন কেন সংক্ষেপে বলুন।
(16) প্রিজ্মের প্রভেদন-ক্ষমতার (Resolving Power) সূত্র কী? আপনার প্রিজ্মে এই প্রভেদন-ক্ষমতা কত পাওয়া যাবে গণনা করুন।

অপবর্তন* গ্রেচিং-এর $\sin \theta-\lambda$ লেখচিত্র অঙ্কন ও অজ্ঞাত তরঙ্গ দৈর্ট্যের মান নির্রপণ

भुन

2.1 প্রস্তাবনা; উদ্দেশ্য
2.2 মূलগত তত্ত্ত ও ব্যবহার্य সূত্রাদি

2.2.1 পরীক্ষণের কার্যক্রম

2.2.2 পরীক্কণলক্ধ ফল

2.3 পরিশিষ্ট A : আলোকের উৎস

2.4 অनूশীলनी

2.1 প্রস্তাবনা

গ্রেটিং বলতে কি বোঝায়, দেখা যাক। কোনও কঠিন বস্তুর সমতল পৃষ্ঠে বহুসংখ্যক সমান্তরাল, সমদূরবতী (equally spaced) এবং সদৃশ (similar) অথচ অতিক্ষীণ, রেখাঙ্কল্প অisড় (groove) কেটে নিলে গ্রেটিং সৃষ্টি হয়। আঁচড়গুলি কোনও সমবেধযুক্ত স্বচ্ছ পদর্থের (যथা কাচ) সম כল পৃচ্ঠে অক্কিত করা হলে গ্রেটিং-এ আপতিত আলোকরশ্মিণুলির যে সংসরণ (Transmission) ঘটে সেটি শোষণমুক্ত-এজন্য এই গ্রেটিংকে বলা হয় সমতল সংসরক গ্রেটিং (Plane Transmission Grating)। গ্রেটিং-এর আঁচড়গুলি অবশ্যই সমরূপ (identical) এবং পরস্পর সমদূরবর্তী হবে এটাই প্রধান শর্ত। দুটি आঁচড়ের মধ্যবত্তী স্বচ্ছ অংশের প্রসার সাধারণত আলোকের তরঙ্ধদ্দ্য্য λ থেকে বড় হয় তবে কারুকুশলতার (technological) সীমাবদ্ধতার জন্য. 5λ থেকে বেশি বড় করা হয় না।
[বক্রততলের গ্রেটিং উৎপন্ন করা যায় এবং করা হয়ও তবে স্বচ্ছ বস্তু না নিয়ে ধাতব পৃষ্ঠে খোদাই করা হয়। প্রতিফলন গ্রেটিং এভাবে বহুল ব্যবহৃত। আপনারা যে গ্রেটিং ব্যবহার করবেন সেটিকে বলে (Replica Grating)—পরে আমরা আলোচনা করব।]

[^7]কল্পনা করুন বে আলোকের একটি সমতল তরभমুখ গ্রেটিং পৃষ্ঠে আপতিত হলো। এই তরभ্দুখের পৃষ্ঠতলে পৌনঃপুনিক ভাবে आঁকা आँচড়খলির প্রভাব পড়বে এভাবে-অঁচড়ের মধ্য দিয়ে তরক্গমুখের বে অংশ এগোবে আর মসৃণ অংশ দিয়ে বেঙুলো এগোবে তাদের মধ্যে দশাপার্থক্য সৃষ্টি হবে এবং \bar{E} ভৌ্টরণণির ব্তিস্তারও বদলাবে। কাজেই গ্রে৮িং-এর অপর পৃষ্ঠ (যাতে आচচড় নেই) অতিক্রম করে যেে তরभমুখ আমরা পাব সেগ্গি হবে একাধিক-অর্থাৎ গ্রোিং এর সমতলের লম্ব দিকে (বলা যাক $\theta=0$) ছাড়াও $\pm \theta$ কোে বে কোন দিকেই বহ সমতল তরজ অগ্রসর হবে। आँচড়ษলি যেন হাইগেন নীতি অনুসরণ করেই বিভিন্ন দিকে রশ্মিঙুলিকে অপবর্তিত করে দিয়েছে। গ্গেটিংয়ের পরে একটি অভিসারী লেন্স বসিয়ে দিলে বিভিন্ন দিকের অগ্রসরমান তরभ্গমুখখলি তখন এর ফোকসতলে নানাবিধ উজ্জূল আলোকরেথার সৃষ্টি করবেयাকে আমরা বনি উৎসের গ্রেটিং বর্ণালি। উৎসে একবর্ণী আলোক ব্ববহৃত হলেও কিস্টু গ্রৌিং বর্ণালিতে নানাবিধ উজ্জ্গল একবর্ণী রেখা পাওয়া যাবে-এদের $0, \pm 1, \pm 2$ ধরণের ক্রমাঙ্ক (Order Number) দিয়ে সূচিত করা হয়।

বश্থর্ণী আলোক ব্যবহৃত হলে, গ্রেটিং বর্ণালি হরে বহৃর্ণী-এবং এর বিভিন্ন বর্ণের জন্য বিভিন্ন মানর কৌণিক দিকে রেখাখলিকে পাওয়া যারে। অালাদা করে বর্ণালির ক্রমাক্ক ব্যবহরেের প্রয়োজন হয় না, কৌিিক বিভাজনত্ণ বিভিন্ন বর্ণের স্প্ট্ট স্বাক্ষর হয়ে থাকে।

আমাদ্রের পরীক্ষণে কি কাজ আমরা করবো? প্রথমে সোডিয়াম ন্যাস্প ব্যবহার করে তার বর্ণানী
 করা হবে (প্রতি সেমি প্রসারে)। এথেকে পাওয়া যাবে গ্গেরিংি-এর দৈশিক পর্যায়ূদূরত্ত (Space periodicity) 'd'—याকে গ্রেঢিং-এর ‘পরিসর’ (grating space) বলে। দ্বিতীয় পর্যায়ে বহৃন্ণী আলোকউৎস নিয়ে তার প্রতিি বর্ণের खাত তরঙ্গসংখ্যার জন্য অপবর্তন কোণ θ 'র মান মেপে শেতে হবে। এ থেকে আঁকা যাবে গ্গেটি-এর $\sin \theta-\lambda$ नেখ या হবে ঋজ্ভেরেখা তৃতীয় পর্যায়ে একটি অজানা মানের তরभ্ఘদ্ব্য কতটা অপবর্তন কোণ θ উৎপন্ন করে তা মাপতে হবে। তারপর লেখ থেকে λ 'র মান নির্রপণ করে, সেটির মান কতঢা নির্ভরযোগ্যতার সঙ্গে বলা যায় তা দেখতে হবে।

উ伿伩

আলোকের সমতল তরস নিয়ে তার অপবর্তন ঘটানো হচ্ছে (একটি সমতলে অক্কিত সমদূরবতী आাচড় সপ্বলিত) গ্রেটি-এর সাহাব্যে। এর পরে লেস ব্যবহার করে গ্রেটিং বর্ণালিরেখাখলির সনাক্কীকরণ ও কোণ-পরিমাপ করা হচ্ছে স্পেক্ট্রোমিটরেরের সাহা্যে। जপবর্তন প্রক্রিয়াটি এখানে ফাউনহোশার

শ্রেণীতে (Fraunhofer Class) পড়ে। বর্ণালি রেখাগুলি কি কি বৈশিষ্টেে খণ্ডিত সেটা অধ্য়়ন করাই আমাদের উদ্দেশ্য।

2.2 মृनগত তত্ত্ণ ও ব্যবহার্य সূত্রাদি

চিত্র 2a দ্রঃ। কোনও স্পেক্ট্রোমিটরের রেখাছিদ্র S থেকে উদ্ভূত আলোকরশ্মি সমন্তরীকৃত হয়ে

যখন সমতল গ্রেটিং G-তে আপতিত হয় তখন গ্রেটিং-এর আঁচড়গুলির অন্তর্বতী স্বচ্ছ অংশ থেকে বিভিন্ন দিকক অপবর্তিত আলোকের সমতল তরঙ্গ ছড়িয়ে পড়ে। টেলিস্কোপ-অভিবস্তুর ফোকাস্তলে যখন এই রশ্মিগুলি মিলিত হয় তথন সেখানে S-এর বহবিধ প্রতিবিম্ব সৃষ্টি হয়। এই প্রতিবিম্বগুলিই একত্রে হচ্ছে গ্রেটিং বর্ণালি (Grating Spectrum)-या একবর্ণী বা বহ্বর্ণী হতে পারে। গ্রেটিং বর্ণালি মূলতঃ তিনটি প্রক্রিয়ার সমাহরে উদ্জূত হয় :-
(1) প্রতিটি স্বচ্ছ ফালিতে (strip) আলোকের অপবর্তন
(2) এই স্বচ্ছ ফালিতে সৃষ্ট তরঙ্গক (wavelet) গুলির পারস্পরিক ব্যতিচার, এবং
(3) পর্যবেক্ষণ ব্যবস্থার দ্বারকে (aperture) আলোকের অপবর্তন। গ্রেটিং-এর উন্মুক্ত অংশের থেকে টেলিস্কোপ-অভিবস্তুর বৃত্তাকার পরিধির উন্মুক্ত ব্যাস সাধারণত ছোট হয় বলে, এই অভিবস্তুর কিনারাই দ্বারকেব ভৃমিকা নেয়।

গ্রেটিং সমতলের অভিলম্ব বরাবর আপতিত সমতল তরঙ্গের ক্ষেত্রে $\pm \theta$ এই কৌণিক দিকে অপবর্তিত আলোকের প্রাবল্য হবে,

$$
I(\theta)=I_{0}\left(\frac{\sin ^{2} \beta}{\beta^{2}}\right)\left(\frac{\sin ^{2} N \gamma}{\sin ^{2} \gamma}\right)
$$

$I_{0}=$ সম্মুখ দিকের $(\theta=0)$ আলোক প্রাবল্য
এখানে $\quad \mathrm{N}=$ গ্রেটিং-এর আলোকিত অংশের মোট আঁচড় সংখ্যা

$$
\begin{aligned}
& \beta=(\pi \mathrm{a} \sin \theta) / \lambda, a=\text { স্বচ্ছ ফালির বেধ } \\
& \gamma=(\pi \mathrm{d} \sin \theta / \lambda), d=\text { গ্রেটিং পরিসর (grating space) }
\end{aligned}
$$

সন্নিহিত দুটি স্বচ্ছ ফালির অনুরূপ বিন্দুদ্বয়ের দূরত্ব হচ্ছে এই 'd’. 'a'-এর মান যথেষ্ট স্কুদ্র [2 বা 3μ (মাইক্রন $=10^{-4} \mathrm{~cm}$) থেকে 0.1μ বা তার ও কম হয়ে থাকে।]

ফलে $\left(\sin ^{2} \beta / \beta^{2}\right) \approx 1$ হয়। এজन্য

$$
\mathrm{I}(\theta) \approx \mathrm{I}_{0} \frac{\sin ^{2}(\mathrm{~N} \gamma)}{\sin ^{2} \gamma}
$$

যখन , $\gamma=\mathrm{m} \pi, \mathrm{m}=0, \pm 1, \pm 2, \pm 3, \ldots$
তখন $I(0)$-র মান চরণ্মে ওঠে। এগুলিকে বলা হয় আলোকপ্রাবল্যের মুখ্য চরমশীর্ষ (Principal Maxima)*
m-তম ক্রমাক্কের (order number) বর্ণালিরেখার (অর্থাৎ মুখ্য চরমশীর্ষের) অবস্থান θ_{m} দিয়ে প্রকাশ করা হলে, $\quad \gamma=\frac{\pi}{\lambda}\left(\mathrm{d} \sin \theta_{\mathrm{m}}\right)=\mathrm{m} \pi$

অर्थাৎ

$$
d \sin \theta_{m}=m \lambda, \quad m=0, \pm 1, \pm 2, \pm 3, \ldots
$$

এটিই গ্রেটিং-এর সমীকরণ। यদি 1 cm দৈর্ঘ্যে N^{\prime} সংখ্যক আঁচড় কাটা হয় তাহলে $\mathrm{N}^{\prime} \mathrm{d}=1$
পরীক্ষণে ব্যবহৃত আলোকের $\theta_{m}-এ র$ মান থেকে যদি $\sin \theta_{m}-m$ লেখ অংকন করা হয় তাহলে সেটি হবে ঋজুরেখ, যার নতি λ / d, একটি নির্দিষ λ ’র ক্ষেত্রে। অতএব, λ 'র মান জানা থাকলে নতিমান থেকে d’র মান পাওয়া যাবে। d-র মান জানা হয়ে গেলে গ্রেটিং-এর সাহায্য নিয়ে অভ্ঞাতমানের λ নিরুপণ সহজেই করা যায়।

যষ্ত্রাদি : (1) একটি স্পেক্ট্রোমিটার (যার অংশাঙ্কন অন্তত 20") এবং আনুষঙ্গিক ব্যবস্থা
(2) Replica Grating
(3) প্রিজ्ম्
(4) আলোকউৎস : সোডিয়াম বাপ্পের ল্যাম্প, He -মোক্ষণ নল, Ne -এর মোক্ষণ নল

[^8]
2.2.1 পরীক্ষণের কার্যক্রম

1. স্পেক্ট্রোমিটার যষ্ত্রটটি যथানিয়মে লেভেল করুন। একটি প্রিজম ও সোডিয়াম ল্যাম্প ব্যবহার করে ওস্টার পদ্ধতিতে সমান্তরীকরক ও টেলিস্কোপ সমন্ধয়িত করে নিন যাতে সমান্তরাল রশ্মিগুচ্ সমান্তরীকরক থেকে যথাযথভাবে নির্গত হয়। [পরীক্ষণ 1 অংশে এ সম্বক্ধে বিশদভাবে বলা হয়েছে-সসেটা অনুসরণ করুন।] প্রিজ্ম্ সরিয়ে নিন।
2. চক্রাকার স্কেলের ভার্নিয়ার ধ্রুবক নির্ণয় করুন।
3. সমান্তরীকরকের রেখাছিদ্র বেশ চওড়া করে নিন। টেলিস্কোপের অভিনেত্রটি খুলে নিয়ে টেলিস্কোপটি সমান্তরীকরক অক্ষের সঙ্গে সমরেখ করুন এবং নলের ভিতর দিয়ে তাকিয়ে আলোকউৎসট্টিকে দৃষ্টি রেখার ডাইনে বা বাঁয়ে সরিয়ে এমনভাবে বসান যেন সমধিক আলোক টেলিস্কোপে সরাসরি আসে। এবার অভিনেত্রটি স্বস্থসেন রাখুন। সমান্তরীকরকের রেখাছিদ্র বেশ সরু করে দিন। এবার টেলিস্কোপের প্রত্যক্ষ পাঠ $\phi_{0}^{\mathrm{A}}, \phi_{0}^{\mathrm{B}}$ निয়ে নিন।
4. গ্রেটিংটি প্রিজ্ম্ টেব্লে বসান যাতে মোটামুটিভাবে এর সমতল উপ্মম্ব (vertical) হয়। গ্রেটিং-এর কেন্দ্রাশশ যেন সমান্তরীকরকের অক্ষের উপর পড়ে এভাবে এটিকে রাখতে হবে, অর্থাৎ বৃত্তাকার প্রস্থচ্ছেদের আলোকগুচ্ছ যেন প্রতিসমভাবে এর কেন্দ্রাঞ্চল আলোকিত করে। এবার আপনাকে নিশ্চিত হতে হবে যেন- (ক) গ্রেটিং সমতলে স্পেক্ট্রোমিটারের উল্লম্ব অহ্মটি যেন থাকে।
(খ) সমান্তরীকরক থেকে নির্গত আলোকরশ্মিগুচ্ (যার প্রস্থচ্ছেদ বৃত্ত) গ্রেটিং-এর আচচড়কাটা অংশের কেন্দ্রে লম্বভাবে আপতিত হয়।
(গ) आঁচড়গ্গুলি আবর্তন অক্ষের সমান্তরাল হয়। এবং
(ঘ) আলোক উৎসের রেখাছিদ্রটি যেন আঁচড়রেখাগুলির সমান্তরাল হয়।
5. উপরের শর্তাবলী পূরণ করার জন্য নিম্নলিখিত প্রক্রিয়াগুলি অনুসরণ করতে হবে :বর্তমানে সর্বর্রই প্রতিমূর্ত গ্রেটিং (replica grating) ব্যবহৃত হয়। আঁচড়কাটা অংশের দুপাশে খুব পাতলা কাচের প্লেট লাগানো থাকে যাতে আঁচড়গুলি বাইরের আঘাতে বা হাত লেগে নষ্ট না হয় এবং ধূলিকণা, ময়লা প্রভৃতি থেকে দূরে থাকে। গ্রেটিং-এর মধ্যবর্তী তলটি প্রিজ্ম্ টেব্লের লেভেলিং স্ক্রু S_{1} এবং S_{2}-র সংযোগকারী সরলরেখার সমকোণে এবং টেবিলের কেন্দ্রগামী করে বসান (চিত্র 1 f), যাতে সমান্তরীকরকের আলোকরশ্মি এর কেন্দ্রস্থলে পড়ে। টেলিস্কোপটিকে $\left(\phi_{0}^{\mathrm{A}}+90^{\circ}\right)$ অথবা $\left(\phi_{0}^{\mathrm{A}}-90^{\circ}\right)$ অবস্থানে বসাতে হবে। এবার প্রিজ্ম্ টেব্ল ঘুরিয়ে যান যাতে $\mathrm{G}_{1} \mathrm{G}_{2}$ তলটি থেকে প্রতিফলিত আলোক

টেলিস্কোপে প্রবেশ করে। প্রয়োজন হলে S_{1}-কে ঈষৎ ঘোরাবেন যাতে টেলিস্কোপের অনুভূমিক ক্রস্তারটি রেখাছিদ্রের প্রতিবিম্বকে ঠিক দ্বিখাপ্তিত করে। এবার প্রিজ্ম্ টেব্ল 180° কোণে ঘোরান। এখন প্রতিফলিত রশ্মি $\mathrm{G}_{1} \mathrm{G}_{2}$-র অन্য পাশ থেকে আসবে। প্রয়োজনে S_{2} ঘোরান যাতে টেলিস্কোপের অনুভূমিক ক্রস্তারটি আবার রেখাছিদ্রের প্রতিবিম্বকে ঠিক দ্বিখণ্তিত করে। এই প্রক্রিয়া দুটি কয়েকবার পুনরাবৃত্তি করতে হবে যাতে গ্রেটিং-এর দুই অবস্থান্নই রেখাছিদ্রের প্রতিবিম্ব যথার্থ দ্বিখত্তিত হয় অর্থাৎ দৃষ্টিক্ষেত্রের কেন্দ্রস্থলে অবস্থিত হয়। এই সমম্বম্যন ঠিক হলে গ্রেটিং-এর সমতলটি যে স্পেক্ট্রোমিটার অক্ষের সমান্তরাল হয়েছে তা প্রমাণিত হয়। এবার গ্রেটিংসহ প্রিজ্ম্-টেব্ল খুব সন্তর্পণে ঘুরিয়ে যান যাতে রেখাছিদ্রের প্রতিবিম্বটি ক্রস্ত্রের

চিত্র 2-b কেন্দ্রস্লে আসে। প্রিজ্ম্-টেব্লের পাঠ (ধরুন $\alpha)$ নিন এবং এটিকে সঠিক $\left(\alpha+45^{\circ}\right)$ অথবা $\left(\alpha+135^{\circ}\right)$ কোণে ঘোরান। ঘোরানো শেষ হলে গ্রেটিং-এর সমতল সমান্তরীকরকের রশ্মিগুচ্ছের সমকোণে হবে। এবার সুনিশ্চিত হতে পারেন যে উপরে উল্লিখিত (ক) এবং (খ)-এর সমম্বয়ন ঠিক হয়েছে।

এবার টেলিস্কোপ ঘুরিয়ে এনে প্রত্যক্ষ রেখার $(m=0)$ দুপাশে বিভিন্ন ক্রমের বর্ণালিরেখাগুলি পর্যবেক্ষণ করুন। যদি সব রেখাগুলি অনুভূমিক ক্রস্তার দ্বারা দ্বিখধিত হয়েছে মনে না হয় তাহলে S_{3} স্ক্রু ঈষৎ ঘুরিয়ে সেটা ঠিক করে নিন। এভাবে উপরিলিখিত (গ)-এর শর্ত পৃর্ণ হলো।

এরপর স্পেক্ট্রোমিটারের রেখাছিদ্রটিকে স্বীয় সমতলে আবর্তিত করে দেখুন বর্ণালিরেখাগুলি স্পষ্টতর रচ্ছে কি না। এগুলি যখন সুস্পষ্ট মনে হবে জানবেন (ঘ)-এ উল্পিথিত শর্তটি পৃরিত হল। এবার রেখাছিদ্রের রেধ কথিয়ে বl বাড়িয়ে নিন যাতে সব কটি ক্রমের বর্ণালি রেখাই দৃশ্যমান অথচ সুসংজ্ঞাত ও সুমেয় (optimum) বেধবিশিষ্ট হয়।
6. সোডিয়াম রেখাদ্বয়ের বর্ণালি পর্যবেক্ষণ-

সোডিয়াম বাষ্পল্যাম্প ব্যবহারকালে দুটি হলুদ রেখা দেখা যায় যাদের তরभ্গদৈর্ঘ্যের পার্থক্য সামান্য (মাত্র $6 \AA$ এর কাছাকাছি)—একটিকে বলা হয় D_{1}, अन্যটি D_{2}; যে রেখাটি প্রত্যক্ষ রশ্মির নিকটতর (প্রথম ক্রমাঙ্কে) সেটির তরঙ্গদ্দ্ঘ্য λ_{1} স্পষ্টতই কম মানের, অর্থাৎ এটি D_{1}-রেখা ($\lambda_{1} \approx 5890 \AA$)। বর্ণালির দৃশ্যমান সর্বাধিক ক্রমের বাঁদিকের রেখায় (ধরুন $m=-7$) ক্রস্তার স্থাপন করুন, এবং গুণে ঠিক করুন

এটি D_{2}-রেখার $\left(\lambda_{2} \approx 5896 \AA\right)$ কোন্ ঋণাত্মক ক্রমের বর্ণালিরেখাটি। ক্রমশঃ-টেলিস্কোপ ঘুরিয়ে একের পর এক D_{1} এবং D_{2} রেখার বিভিন্ন ক্রমের বর্ণালি রেখায় ক্রস্তার স্থাপন করুন এবং পাঠ নিন। মাবে প্রত্যক্ষ পাঠটিও নিয়ে নিন $(\mathrm{m}=0)$ (পৃর্বের নেওয়া পাঠের সঙ্গে সংগতি আছে কি না দেখা কর্তব্যঅসংগতি থাকলে তা কিভাবে হলো ভাববেন)। এবার টেলিস্কোপ ক্রমশঃ ডানদিকে সরিয়ে $m=+1,+2$, $+3, \ldots$ প্রতি ক্রমে D_{1}, D_{2} রেখাদ্বয়ের পাঠ নিতে হবে। এই পাঠুুচ্ছ ডান দিক থেকে বাঁদিকে ফিরে

চिত্র 2-c
আবার নিতে হবে। ধরা যাক m ক্রমে $\lambda_{1}-$ এর পাঠ হলো ϕ_{m} এবং ϕ_{-m}; তাহলে m ক্রমের জন্য $\phi_{\mathrm{m}} \sim \phi_{-\mathrm{m}}=2 \theta_{\mathrm{m}}$; বিপরীত ক্রুমে এটি $2 \theta_{\mathrm{m}}^{\prime}$ হলে m ক্রমের গড় পাঠ $\bar{\theta}_{\mathrm{m}}=\frac{1}{2}\left(\theta_{\mathrm{m}}+\theta_{\mathrm{m}}^{\prime}\right)$ । লক্ম্মণীয় যে $\phi_{m} \sim \phi_{0}=\phi_{-m} \sim \phi_{0}$ रবে। না হলে বুঝবেন আপতন কোেের মান যथার্থ শূন্যমান হয় নি।
$\sin \bar{\theta}_{\mathrm{m}}-\mathrm{m}$ लেখ आँকলে যে দুটি সরলরেখা (চিত্র 2 c) পাওয়া যাবে তারা মূলবিন্দুগামী হবে; এদের নতি থেকে λ_{1} / d এবং λ_{2} / d 'র মান পাওয়া যাবে। এ থেকে d'র গড় মান পাওয়া যাবে যেটা পরবত্তী পরীক্ষণে আমরা ব্যবহার করবো।

7. বহুবর্ণী আলোকের বর্ণালি-বীক্ষণ-

হিলিয়াম মোক্ষণ নল ব্যবহার করে রেখাছিদ্র আলোকিত করুন। হিলিয়ামের বিভিন্ন রঙে জন্য তরঙ্গ দৈর্ঘ্যতগুলি প্রমাণ সারণী থেকে দেখে নিতে হবে। হিলিয়াম নল ব্যবহারের সুবিধে এই—এতে অনেকগুলি বিচ্ছিন্ন রেখা একত্র পাওয়া যায়। হিলিয়াম না পাওয়া গেলে অন্যান্য নল ব্যবহার করে বা সাদা আলোর ঊৎস নিয়ে বিভিন্ন ফিল্টার ব্যবহার করা চলে। প্রতিটি রেখার জন্য বিভিন্ন ক্রমের কোণগুলি পরিমাপ

করতে হবে। গড় θ_{m} গণনা করে $\left[\sin \theta_{\mathrm{m}} / \mathrm{m}\right]$ এর মান বিভিন্ন λ 'র মানের সঙ্গে লেখচিত্রিত করলে ‘ $\sin \theta-\lambda$ ' লেখ (চ্রি 2 d) সম্পূর্ণ হবে [প্রসঙ্গত উম্লেখ্য, ' $\sin \theta-\lambda$ ' বলে দিলে ওধু প্রথম ক্রমের অপবর্তন কোণের মান নির্ণয় করতে হবে]।

চিত্র 2-d

8. অホ্ঞাতমানের তরঙ্গদৈর্ঘ্যের মান নিরূপণ-

যে তরঙ্গদৈর্ঘ্যের মান আমদের আঁকা লেখ-এ সরাসরি নেই, এমন তরঙ্গদৈর্ঘ্যের একটি রেখা বেছে নিতে হরে। মনে করুন $\lambda_{1}<\lambda_{2}<\ldots . . .<\lambda_{8}$ এই ক্রুমে আটটি বিন্দু লেখ-এ সংস্থাপিত। অজ্ঞাত রেখাটির λ মান এই পরিসরে হওয়াই বাহ্ণনীয়, তবে পরিসরের বাইরে হলেও, $d \sin \theta_{m}=m \lambda$ সৃত্রটি যেহেতু সর্বত্রই প্রযোজ্য (কেবল $m \lambda<d$ হতে হবে) ঋজুরেখ লেখটির সম্তত অংশের বহির্কলন (extrapolate) করে বিন্দু-অক্কিত সরলরেখা এঁকে নিয়ে তা থেকে লক্ধ $\left(\sin \theta_{m} / m\right)$ মানের সঙ্গে সংযুক্ত λ-মান স্থির করতে হবে।

2.2.2 পরীক্ষণলক্ধ ফन

সারণী 1 : স্পেক্ট্রোমিটারের ভার্নিয়ার স্থিরাংক নির্ণয় (একক 1 দ্রঃ)
সারণী 2 : টেলিস্কোপের প্রত্যক্ষ পাঠ ; ϕ_{0} (সারণী নিজে করে নিন)
সারণী 3 : টেলিস্কেপের $+90^{\circ}$ অবস্থানের পাঠ হবে : $\phi_{0}+90^{\circ}=$ \qquad প্রিজ্ম্ টেব্লের "+45"" অব্থানের পাঠ $=\alpha=\ldots \circ$...' ..."
\therefore প্রিজ্ম্ টেব্লের 0°-অবস্থানের পাঠ $=\beta=\alpha+45^{\circ} 0^{\prime} 0^{\prime \prime}$
जথব! $\beta^{\prime}=\alpha+135^{\circ} 0^{\prime} 0^{\prime \prime}$

সারণী 4 : $\mathrm{D}_{1}, \mathrm{D}_{2}$ রেখাদুটির জন্য পাঠ : d -निর্ণয়
ভার্নিয়ার স্থিরাংক = ...

বর্ণালি রেখার ক্রমসংখ্যা m	$\begin{aligned} & \text { পর্যরেক্ষে } \\ & \text { সיথ্যা } \end{aligned}$	A ভার্নিয়ারের পাঠ					B ভার্নিয়ারের পাঠ				
		$\begin{aligned} & \text { মूल ল্কেল } \\ & \text { পাঠ } \end{aligned}$	$\left\|\begin{array}{l\|l\|} \text { जा } \\ \text { भाঠ } \end{array}\right\|$	$\left\lvert\, \begin{array}{c\|} \hline \text { ভাঃ পাচঠর } \\ \text { মান } \end{array}\right.$		$\begin{array}{l\|l\|l\|} \hline \text { পা পাঠ } \\ \phi_{\mathrm{m}}(\mathrm{~A}) \end{array}$	মून	बাঃ	ভঃঃ পাঠুর	মোট পাঠ	$\begin{aligned} & \text { গড় পাঠ } \\ & \phi_{\mathrm{m}}(\mathrm{~B}) \end{aligned}$
		$\circ^{\circ \prime \prime}$		$\circ^{\prime \prime}$	${ }^{\prime}{ }^{\prime \prime}$	$\circ^{\prime}{ }^{\prime \prime}$	$\circ^{\prime}{ }^{\prime \prime}$		-'"	-'"	$\circ^{\prime \prime \prime}$
-x	$\left.\begin{array}{\|rr\|} 1 . & a \\ \left(\mathrm{D}_{1}\right. & \vec{b} \\ & \stackrel{c}{c} \\ & \vec{c} \\ & \vec{d} \end{array} \right\rvert\,$										
	$\begin{array}{\|l\|l\|} \hline 1 . & a \\ \left(\mathrm{D}_{2}\right) & \vec{b} \\ \stackrel{c}{c} \\ & \vec{c} \\ & \vec{d} \\ & d \end{array}$										
-x+1											
-x+1											
+ + $+x$	$\left(D_{1}\right)$ $\left(D_{2}\right)$										

সারণী 5 : লেখ অঙ্কনের উপাত্ত (এটি সহজ, নিজেই করে নিন)

সারণী 6 : সারণী 4-এর গণনা

পर्यবেক্কণ সংッगा	ক্রম সํ্যা m	$\phi_{\mathrm{m}}(\mathrm{~A})$	$\phi_{-m}(\mathrm{~A})$	$\phi_{\mathrm{m}}(\mathrm{~B})$	$\phi_{-m}(\mathrm{~B})$	$\begin{aligned} & 2 \theta_{m}^{\prime}= \\ & \phi_{m}(\mathrm{~A})- \\ & \phi_{-m}(\mathrm{~A}) \\ & \rho^{\prime \prime} \end{aligned}$	$\begin{aligned} & 2 \theta_{\mathrm{m}}^{\prime \prime}= \\ & \phi_{\mathrm{m}}(\mathrm{~B})- \\ & \phi_{-\mathrm{m}}(\mathrm{~B}) \\ & 0^{\prime \prime \prime} \end{aligned}$	$\begin{aligned} & 4 \theta_{\mathrm{m}} \\ & =2 \theta_{\mathrm{m}}^{\prime} \\ & +2 \theta_{\mathrm{m}}^{\prime \prime} \\ & 0^{\prime \prime} \end{aligned}$	θ_{m}	$\sin \theta_{m}$	$\frac{\sin \theta_{m}}{m}$
$\begin{aligned} & 1 . \\ & \left(\mathrm{D}_{\mathrm{i}}\right) \\ & 1 . \\ & \left(\mathrm{D}_{2}\right) \end{aligned}$	1										
2. (D) 2. $\left(\mathrm{D}_{2}\right)$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$										
.											
$\begin{aligned} & 6 . \\ & \left(D_{1}\right) \\ & 6 . \\ & \left(D_{2}\right) \end{aligned}$											

সারণী 7 : অজ্ঞাত তরঙ্গদৈর্ঘ্যের জন্য পাঠ (সারণী 4-এর অনুরূপ হবে, এজন্য আর পুনর্লিখিত হলো না)

সারণী 8 : সারণী 7-এর গণনা (সারণী 6-এর অনুরূপ)
পরীক্ষণলক্ধ মানের অনিয়ত ত্রুটি (random error) গণনা
আমরা এখানে পর্যবেক্ষণগত অনিয়ত ত্রুটির গণনা করবো। σ_{x} रচ্ছে প্রমাণ ত্রুটি (standard error)
(ক) 'd' निর্ণয়ের ত্রুটি σ_{d}
প্রতি সেন্টিমিটার দৈর্ঘ্যে আঁচড়সংখ্যা N^{\prime} ধরা হলে $\mathrm{d}=\frac{1}{\mathrm{~N}^{\prime}}$; আমরা $\mathrm{N}^{\prime}-$ এর ত্রতটি প্রথমে গণনা করছি, তা থেকে d'র ত্রুটি সহজেই পাওয়া যাবে।

যেহেতু $N^{\prime}=\frac{\sin \theta_{m}}{m \lambda_{0}} \equiv \frac{f_{m}^{\prime}}{\lambda_{0}}\left(\lambda_{0}=D_{1}\right.$ অথবা D_{2} রেখার λ ধরা যাক $)$
अर्थाe $\mathrm{f}_{\mathrm{m}}=\sin \theta_{\mathrm{m}} / \mathrm{m}$
$\therefore \sigma_{\mathrm{x}}$ দ্বারা $\overline{\mathrm{x}}$ এর প্রমাণ জ্রুটি সৃচিত হলে

$$
\sigma_{N^{\prime}} / N^{\prime}=\sigma_{f_{m}} / f_{m}=\left(\theta_{m} \cot \theta_{m}\right)\left(\sigma_{\theta_{m}} / \theta_{m}\right)
$$

উপরিলিথিত সূত্রগুলি একটি নির্দিষ্ট ক্রুমে (m) জন্য লद্ৰমান সূচিত করে। যদি বিভিন্ন ক্রমের পরিমাপ ধরা যায় তাহলে সেক্ষেত্রে প্রকৃতপক্ষে আমরা ϕ_{m}-এর বিভিন্ন মানযুগ্ম থেকে θ_{m} নিরূপণ করে থাকি নিম্নোক্ত সৃত্রের সাহায্যে

$$
2 \theta_{m}=\left(\bar{\phi}_{m}-\bar{\phi}_{-m}\right)
$$

য়হেতু θ_{m} ना মেপে আমরা $2 \theta_{\mathrm{m}}$ মাপছি কাজেই θ_{m}-এর প্রমাণ ত্রুটির মান $\frac{1}{2}$ পরিমাণ কম रবে। যেহেতু $\quad \sigma^{2}\left(2 \theta_{\mathrm{m}}\right)=\sigma^{2} \phi_{\mathrm{m}}+\sigma_{\phi_{-m}}^{2}=2 \sigma^{2} \phi_{\mathrm{m}}$
$\therefore \sigma_{2 \theta_{\mathrm{m}}}=2 \cdot \sigma_{\theta_{\mathrm{m}}}$ लिথে $\sigma_{\theta_{\mathrm{m}}}=\frac{1}{2} \sigma_{2 \theta_{\mathrm{m}}}=\frac{1}{2} \cdot \sqrt{2} \cdot \sigma_{\phi_{\mathrm{m}}}=0.707 \sigma_{\phi_{\mathrm{m}}}$
এবং $\sigma_{\phi_{m}}=\sqrt{\frac{1}{n(n-1)} \sum\left[\left(\phi_{m}\right)_{i}-\bar{\phi}_{m}\right]^{2}}$
লক্ষণীীয় যে $n \geq 2$ रতে হবে
যেযেতু f_{m} এর মানগুলির প্রমাণ ত্রৃটট σ_{f} পৃথকমানের হতে পারে কাজেই f_{m} এর ভারিত গড় weighted average) नিতে হবে। সূত্রটি হচ্ছে
$\overline{\mathrm{f}}=\frac{\sum_{\mathrm{m}}\left(\mathrm{f}_{\mathrm{m}} / \sigma_{\mathrm{f}_{\mathrm{m}}}{ }^{2}\right)}{\sum_{\mathrm{m}}\left(1 / \sigma_{\mathrm{f}_{\mathrm{m}}}{ }^{2}\right)}$ এ
অতএব $\mathrm{N}^{\prime}=\overline{\mathrm{f}} / \lambda_{0}$ लिথে পাই
$\frac{\sigma_{\overline{N^{\prime}}}}{\overline{\mathrm{N}^{\prime}}}=\frac{\sigma_{\overline{\mathrm{f}}}}{\overline{\mathrm{f}}}$ अर्थाৎ $\sigma_{\overline{\mathrm{N}^{\prime}}}=\overline{\mathrm{N}^{\prime}} \cdot\left(\frac{\sigma_{\bar{f}}}{\overline{\mathrm{f}}}\right)$
ফলাফল প্রকাশ করা হবে $\mathrm{N}^{\prime} \pm \sigma_{\overline{\mathrm{N}^{\prime}}}$ রূপে। এ থেকে $\overline{\mathrm{d}} \pm \sigma_{\overline{\mathrm{d}}}$ অনায়াসেই পাওয়া যায়।
(খ) $\quad \lambda$-নিরূপণের ত্রুটি ($\sigma_{\bar{\lambda}}$)
λ-র সূত্রটি এভাবে লেখা যায়- $\lambda=\frac{\sin \beta_{m}}{\mathrm{mN}^{\prime}}=\frac{\mathrm{g}_{\mathrm{m}}}{\mathrm{N}^{\prime}}$ ধরি যেখানে $\mathrm{g}_{\mathrm{m}}=\frac{\sin \beta_{\mathrm{m}}}{\mathrm{m}}$

এবং $\beta_{m}=$ অঞ্ঞত λ 'র m-ক্রমের কৌনিক বিক্ষেপ যা পরিমাপলক্ধ

$$
\begin{aligned}
\therefore \frac{\sigma_{\bar{\lambda}}}{\lambda} & =\sqrt{\left(\frac{\sigma_{N^{\prime}}}{N^{\prime}}\right)^{2}+\left(\frac{\sigma_{g_{m}}}{g_{m}}\right)^{2}} \\
& =\sqrt{\left(\frac{\sigma_{N^{\prime}}}{N^{\prime}}\right)^{2}+\left(\beta_{m} \cot \beta_{m}\right)^{2}\left(\frac{\sigma_{\beta_{m}}}{\beta_{m}}\right)^{2}}
\end{aligned}
$$

বিভিন্ন ক্রমের বর্ণালি থেকে λ 'র গড় মান $\bar{\lambda}$ স্থির করা হয়। যেহেতু $\bar{\lambda}=\frac{\overline{\mathrm{g}}}{\overline{\mathrm{N}^{\prime}}}$

$$
\begin{aligned}
& \text { কাজেই } \frac{\sigma_{\bar{\lambda}}}{\bar{\lambda}}=\sqrt{\left(\frac{\sigma_{\overline{\mathrm{N}^{\prime}}}}{\mathrm{N}^{\prime}}\right)^{2}+\left(\frac{\sigma_{\mathrm{g}}^{-}}{\overline{\mathrm{g}}}\right)^{2}} \\
& \text { যখানে } \overline{\mathrm{g}}=\sum_{\mathrm{m}}\left(\mathrm{~g}_{\mathrm{m}} / \sigma^{2} \mathrm{~g}_{\mathrm{m}}\right) / \sum_{\mathrm{m}}\left(1 / \sigma_{\mathrm{g}_{\mathrm{m}}}\right) \\
& \text { এবং } \sigma_{\mathrm{g}}^{-}=1 /\left[\sum\left(1 / \sigma_{\mathrm{g}_{\mathrm{m}}}^{2}\right)\right]^{1 / 2}
\end{aligned}
$$

লব্ধ ফল $\bar{\lambda} \pm \sigma_{\bar{\lambda}}$ এভাবে প্রকাশ করতে হবে।
উপরের সূত্রগুলি অনিয়ত ত্রুটির (random error) ক্ষেত্রেই প্রযোজ্য। সংগৃহীত উপাত্তে (data) কেবল এই শ্রেণীর ত্রুটিই আছে অনুমান করা হয়েছে। নিহিত ত্রৃট (systematic error).অর্থাৎ প্রথাগত ד্রুটি রয়েছে কি না সেটা পৃথক ভাবে বিশ্লেষণীয়।

2.3 পরিশিষ্ট A : আলোকের উৎস

আমরা এখানে তড়িৎ-মোক্ষণ নলের কথাই ঈধু আলোচনা করবো।

(ক) পারদ বাष্প ল্যাম্প

মূলত একটি শক্ত কাচের তৈরি মোক্ষণ নল G , একটি সাধারণ কাচের তৈরি বহিরাবরণের (S) ভিতর বসানো থাকে। মোক্ষণ নলের ভিতর অল্̣ চাপের কোনও নিষ্ক্রিয় গ্যাস (যথা আর্গন, 10 টোর্* চাপে) এবং সযত্নে নিয়ন্ত্রিত পরিমাণের পারদ রক্ষিত থাকে। G নলের দুই প্রান্তে দুটি টাংস্টেন তারের কুণুলী

* এটি স্বল্পে চাপের পরিমাপে বাবহৃত আধুনিক একক; 1 Torr = 1 mm of Hg; বিজ্ঞানী তোরিচেপ্পির (Torricelli) সম্মানার্থে গৃহীত এই একক্রটি।
$\mathrm{T}_{1}, \mathrm{~T}_{2}$ (অল্প বেরিয়াম অক্সাইডের প্রলেপযুক্ত) সম্নিবেশিত থাকে; মোক্ষণ শুরু করার জন্য একটি অতিরিক্ত তড়িদ্বার A যুক্ত থাকে। G এবং S-এর অভ্যন্তরভাগ বায়ুশূন্য করা হয় যাতে মোক্ষণ চলাকালে উদ্ডূত তাপ

চিত্র ক।: পারদ বাष্প ল্যাম্প
অযথা বাইরে পরিবাহিত না হয়ে যায় এবং মোক্ষণ স্তষ্তের উষ্ণতা একটি ধ্রুবমানে স্থির থাকে। সাধারণ কক্ষ উষ্ণতায় পারদের বাষ্পচাপ অত্যন্ত কম ($\sim 10^{-3}$ টোর্ মাত্র); ফলে $\mathrm{T}_{1}, \mathrm{~T}_{2}$ তড়িৎদ্বার দুট্তিতে বিভবপ্রভেদ প্রयুক্ত হলে মোক্ষণ ওুুু হয় না-T, এবং A-র নৈকট্য হেতু সেখানে তড়িৎক্ষেত্র (E volts/cm) বেশি মানের এবং G নলে আর্গন গ্যাস থাকায় ঐ তড়িৎ্ব্বার দুটিতে মোক্ষণ খুুু হবে। আর্গন গ্যাসের ভুমিকা এটাই—মোক্ষণ চালু করা। আর্গন গ্যাসের তড়িৎপ্রবাই নলট্টিকে ক্রমশঃ উত্তপ্ত করে ফেলে, পারদের বাষ্পচাপ বেড়ে যায় এবং তখন $\mathrm{T}_{1}, \mathrm{~T}_{2}-$ র মধ্যে মোক্ষণ শুু হয়। ক্রমশঃ G নল বেশ উত্তপ্ত হয় এবং পারদের বাষ্পচাপ বেড়ে গিয়ে অস্তিম পর্যায়ে বায়ুমগ্গলীয় চাপের দু-তিন-শুণ পর্যন্ত হতে পারে (এটা নলের अভিকল্পন-design—অनুযায়ী হবে)। R রোধটি মোক্প্রবাহ নিয়ন্ত্রণ করে থাকে এব: L এই স্বাবেশ কুণ্ণলীর মান অনুযায়ী মোট প্রবাহের মান সীমিত হয়। C-ধারক দেওয়ার প্রয়োজন হয় মোক্ষনপ্রবাহ সুস্থিত (steady) করার জন্য। মাত্র কয়েক সেকেণ সময়েই মোক্ষণপ্রবাহ সুস্থিত অবস্থায় নীত হয়;
 বহগুণে বেশি হয়। চলমান অবস্থায় মোক্ষণ নলের উষ্ণতা প্রায় $600^{\circ} \mathrm{C}$ এবং চাপ প্রায় 1 atm . হয়ে থাযক; $\mathrm{T}_{1}, \mathrm{~T}_{2}$-র তড়িৎবিভবের প্রভেদ প্রায় 180 volt পর্যন্ত নেমে যেতে পারে।

(খ) সোডিয়াম বাহ্পের ল্যাম্প (চিত্রি क-2 দ্রঃ)

সোডিয়াম দ্বারা আক্রান্ত হবে না এমন কাচ দিয়ে N এই U-আকৃতি নলটি প্রস্তুত করা হয়ে থাকে; এর এক প্রান্তের পাশে নলাগ্র সামান্য বেঁকিয়ে একটি সোডিয়াম ধাতুর আধার তৈরী করা থাকে, যাতে কঠিন

চিত্র ক 2 : সো心ি্যাম বাপ্পের ন্যাপ্প
ধাতব সোডিয়াম রাখা হয়। এই নলের বাষ্পচাপ কয়েক টোর্ (Torr) পরিমাণ এবং অল্প পরিমাণ নিয়ন (নিষ্ক্রিয় গ্যাস) এতে প্রবিষ্ট করানো হয়। অতএব নলে প্রথমে স্বল্প চাপে সোডিয়াম বাপ্প এবং নিয়ন গ্যাস উপস্থিত থাকে। N নলের বাইরের আবরণ J একটি নির্বাতকৃত নল যার কাজ হলো N নল থেকে পরিবহনজনিত তাপক্ষয় কমানো এবং নলের উষ্ণতা সুস্থিত মানে স্থির রাখা। T_{1}, T_{2} তড়িৎদ্বার দুটি N নলের দুই প্রান্তে যুক্ত। যখন প্রত্যাবর্তী প্রবাহের উৎস 220 volt $(60 \mathrm{c} / \mathrm{s})$ থেকে বিভবপ্রভেদ স্বয়ংক্ষরক ট্রান্সফর্মারের (autoleak transformer) $\mathrm{P}_{1}, \mathrm{P}_{2}$ ঐই প্রথথমিক অংশে প্র্ুক্ত হয়, তখন P_{1} ও S প্রান্তদ্বয়ে উদ্রূত গ্গীণকুণ্ডলীর ভোল্টেজ (secondary voltage, যা প্রায় 440 volt হওয়া প্রয়োজন হয়) T_{1} এবং T_{2} তড়িদ্বারে প্র্ুক্ত হবে। N-নলের উপস্থিত স্বল্প চাপের নিয়ন গ্যাস এতে মোক্ষণ শুরু করবে এবং নিয়নের মোক্ষণস্তম্ত (যার রঙ লাল) দেখা যাবে। মোক্ষণপ্রবাহের জন্য উদ্ডূত তাপে ক্রমশঃ কঠিন সোড়িয়াম বাষ্পীভূত

হবে এবং অধিক পরিমাণ সোডিয়াম বাষ্পর উপস্থিতিতে এবার সোডিয়াম বাষ্পের মোক্ষণ అরু হবে। সসোডিয়ামের আধিক্স হেতু মোক্ষণস্তষ্ভের রঙ হয়ে যাবে হলুদ, যা সোডিয়ামের পরমাণুগত বর্ণালির বিশিষ্ট রঙ। সাম্যাবস্থায় নলের উষ্ণতা প্রায় $280^{\circ} \mathrm{C}$ পর্যন্ত হয় এবং বাষ্পচাপ পারদের কয়েক সেন্টিমিটার পর্যন্ত বাড়ে। (এটি নলের অভিকল্পন অনুযায়ী হবে); T_{1} ও T_{2}-র মধ্যবর্তী বিভবপ্রভেদ ক্রমশঃ কমে এসে একটি মানে স্থিতিলাভ করে।
(গ) হাইড্রোজেন, হিলিয়াম, निয়ন প্রভৃতি বিভিম্ন গ্যাসের মোক্ষণ নল (চিত্র ক-3 দ্রঃ)

চিত্র ক 3 : গ্যাস-ম্মো্ষণ নলের ব্যবহার
এগুলি আকারে অপেক্ষাকৃত ছোট হয়; এর কেন্দ্রাংশে সচরাচর কৈশিক নলের একটি অংশ থাকে যাতে মোক্ষণস্তস্তের প্লাজ্মার ঘনত্ব এই অংশে সর্বাধিক হয় এবং ফলে আলোকের ঔজ্জ্রল্য বেশি পাওয়া যায়। অ্যালুমিনিয়াম বা অন্য কোনও চক্চকে ধাতব পাতের বেলন প্রস্তুত করে (উপযুক্ত বক্রতাব্যাসার্ধ হতে হবে) সেটি ঐ কৈশিক নলাংশের বাইরে এক অর্ধাংশে বসানো হয় যাতে নলোদ্রূত আলোকের একাংশ প্রতিফলিত হয়ে স্পেক্ট্রোমিটারের রেখাছিদ্রে সংহত হতে পারে।

কৈশিক মোক্ষণ নলের দুই প্রান্তদ্বার $\mathrm{T}_{1}, \mathrm{~T}_{2}$-তে উচ্চবিভবযুক্ত প্রত্যাবর্তী প্রবাহ চালনা করা হয়; সাধারণত একটি উচ্চবিভব ট্রান্সফর্মার (প্রাথমিক কুণুলীর বিভব 220 V A.C. এবং গৌণ কুণুলীর
$3000 \mathrm{~V}-5000 \mathrm{~V}$ A.C.) মেইন্স্-এর সঙ্গে যুক্ত করে এই্ কাঁ করা ইয়। (অনেক পরীক্ষণাগারে যেখানে রাম্কর্ফ্ কুণুলী আছে সেখানে T_{1}, T_{2} কে ঐ কুণ্ডলীর প্রান্তভাগেও যোগ করা হয়। সেক্ষেত্রে বিভব হবে একমুখী (unidirectional), প্রত্তাবর্তী নয়)।

2.4 अनूশीलनी :

(1) গ্রেটিং কি কি ধরনের হয়?
(2) প্রতি একক তরঙ্গদৈর্ঘ্যে রেখার সংখ্যা বৃদ্ধি বা হ্রাসে কি হ্বেঃ কেন্টির উপযোগিতা বেশি?
(3) X -রশ্মির ব্যবহারে এই গ্রেটিংএ অপবর্তন সষ্তব কি না কারণ সহ উল্লেখ করুন।
(4) গ্রেটিi-এর কোন তলে আঁচড় কাটা আছে তা কিভাবে নিরূপণ করবেন?
(5) দুটি স্পেক্ট্রোমিটারের একটির ভার্নিয়ার ধ্রুবক 30 sec এবং অপরটির 1 মিনিট, কোনটি রেশী উপযোগী?
(6) এই পরীক্ষ ব্যবস্থায় একদিকে 5 টি বর্ণালি ক্রম এবং অপরদিকে 4টি বর্ণালিক্রম পাওয়া গেলে তার কারণ কি হতে পারে? কিভাবে এই ত্রুটি দূর করবেন ?
(7) গ্রেটিং-তল আপতিত আলোর অভিলম্বে রাখা হয় •কেন?
(8) দুটি ভার্নিয়ারের পাঠ নেওয়া হয় কেন?
(9) গ্রেটিং-সমীকরণ থেকে এর বিচ্ছুরণ (dispersion) সূত্র $\left(\frac{d \theta}{d \lambda}\right)$ निখুন। কেন গ্রেটিং বর্ণালিকে आদর্শ বর্ণালি (normal spectrum) বলে ?
(10) গ্রেটিং-এর প্রভেদন-ক্ষমতার মান স্থির করুন। আপনার ব্যবহৃত গ্রেটিং-এ তা কিভাবে গণনা করবেন? সর্বাধিক কত মান পাওয়া সম্ভব?
(11) প্রিজ्ম-বর্ণালি ও গ্রেটিং-বর্ণালির তুলনামূলক আলোচনা করুন : (1) বিচ্ছুরণ (2) প্রভেদন-কমনতা (3) ব্যবহারের সীমা (4) পরিমাপের সূক্মতত।
(12) কসি সৃত্রটি (Cauchy formula) লিখুন। আপনার লব্ধ $\mu-\lambda^{-2}$ लেখ থেকে কসি ধ্রুবক $A, B \times$ 'র মান উপযুক্ত একক সহ লিখুন। মানগুলি কতখানি নির্ভরযোগ্য কষে দেখান।
(13) স্পেক্ট্রোমিটার যন্ত্রে আপতিত রশ্মিগুচ্ছ কেন সমান্তরাল করে নেওয়া হয়, আলোচনা করুন।।

একক 3
 অয়শ্টৌম্বক পদার্থের হিস্টেরেসিস্-্ক্র অক্কন ও হিস্টেরেসিস্জাত শক্তিক্ষয় নিরাপণ

গঠन

3.1 প্রস্তাবনা, উদ্দেশ্য

3.2 মूলগত তত্ত্ত ও ব্যবহার্य সূত্রাদি

3.2.1 পরীক্ষণের কার্यক্রম

3.2.2 পরীক্ষণলক্ধ ফল

3.3 পরিশিষ্ট A : চৌম্বকায়ন চক্র এবং হিস্টেরেসিস্-চক্র
3.4 পরিশিষ্ট B : চৌম্বকজড়ততর জন্য শক্তিব্যয়
3.5 পরিশিষ্ট C : কুণুলের জ্যামিতিক বৈশিষ্ট্য
3.6 পরিশিষ্ট D : প্রমাণ সলিনয়েড
3.7 अनूभীলनी

3.1 প্রস্তাবনা

অয়শ্চৌম্বক (ferromagnetic) পদার্থের বৈশিষ্ট এই যে পরীক্ষণলক্ক চৌম্বক প্রবাহের ঘনত্ব* (magnetic flux density) $\overrightarrow{\mathrm{B}}$ এর মান এবং চৌম্বকায়ন ক্ছেত্র (magnetising field) $\overrightarrow{\mathrm{H}}$ এর সম্পর্কটি বেশ জটিল। যে পদার্থখণুটি পরীক্ষণের জন্য ব্যবহৃত হবে সেটি উষ্ণ অবস্থা থেকে ঘনীভূত রূপ নেওয়ার পর; বিভিন্ন সময়ে কি কি চোম্বকপ্রভাব এর উপর এতদিন পড়েছিল তার কালানুক্রমিক ছাপ এর অণু পরমাণুর সজ্জায় ও বিন্যাসে রয়ে গেছে। $\overrightarrow{\mathrm{B}}$ এবং $\overrightarrow{\mathrm{H}}$ এর অপেক্ষকীয় সম্বন্ধ একটি রয়েছে-দিক নিরপেক্ষ (isotropic) বস্তুর ক্ষেত্রে তা

$$
\overrightarrow{\mathrm{B}}=\mu \overrightarrow{\mathrm{H}}
$$

আক小রে" লেখাও চলে, কিন্তু এক্ষেত্রে $\mu=\mathrm{f}\left(\mathrm{H}, \mathrm{T} ; \mathrm{H}_{0}\right)$ অর্থাৎ উষ্ণতা T ছাড়াও μ 'র মান ব্যবহৃত H^{\prime} 'র

[^9]মানের উপর নির্ভরশীল। ভেদ্যতা μ, অতএব, গ্রুবক তো নয়ই, বরং অতীতে ব্যবহৃত চৌম্বক ক্কেত্র $H_{0}{ }^{\prime}$ র উপরও জটিলভাবে নির্ভরশীল। μ-এর প্রকৃতি অতিমাত্রায় নঞ্-ররখিক (non-linear) এবং চৌম্বকইতিবৃত্তের ওপর নির্ভরশীল হওয়ার জন্যই $\mathrm{H}=|\overrightarrow{\mathrm{H}}|$ এ র ক্রমবর্ধমান মানে $|\overrightarrow{\mathrm{B}}|$ র যে মানবৃদ্ধি ঘটবে, $\mathrm{H}-$ এর মান ক্রমশঃ কমিয়ে নিলে সেগুলি আর ফিরে পাওয়া যাবে না।

লেখকাগজে X-অক্ষ বরাবর H-এর এবং Y-অক্ষ বরাবর B-এর মান স্থানাঙ্কিত করা হলে H-এর ক্রমবর্ধমান মানের জন্য যে উথ্থান-বক্র পাওয়া যাবে, $\mathrm{H}-এ র$ মান যখন ক্রমশঃ কমিয়ে শূন্য মানের দিকে নেওয়া হয়, তখন এই পশ্ৰাদপসরণকালে B’র পতনবক্রটি হবে একটি পৃথক পথে। B-H সমতলে (অর্থাৎ লেখকাগজে) B’র পতনবক্রটি যেন উত্থানবক্র থেকে ক্রমশঃ উপরের দিকে সরে যাচ্ছে এমন দেখা যায়। H-এর বৃদ্ধি ও হ্রাসের সময় মানগুলির পথ অনুসরণ করতে গিয়ে B’র মানগুলি যেন "পিছিয়ে পড়ছে"। $\mathrm{H}=0$ रলে $\mathrm{B}=0$ रচ্ছে না, হচ্ছে $\mathrm{B}=\mathrm{B}_{\mathrm{r}}(>0)$ । আবার $\overrightarrow{\mathrm{H}}$ এর দিক পরিবর্তন করে $\mathrm{H}=0$ থেকে $H=-H_{c}\left(H_{c}>0\right)$ कরা হলে দেখা যাবে B’র মান তখন শূন্য $(B=0)$ হচ্ছে। এভাবে চাক্রিক ক্রমে (cyclic order) যখন
$H=+H_{m}$ থেকে শুরু করে $H=0,-H_{c},-H_{m},-H_{c}, 0,+H_{c} \rightarrow+H_{m}$ এ ফিরে আসবে তখন ক্রমান্বয়ে B’র মানগুলি হবে,
$\mathrm{B}=\mathrm{B}_{\max }, \mathrm{B}_{\mathrm{r}}, 0,-\mathrm{B}_{\max },-\mathrm{B}^{\prime},-\mathrm{B}_{\mathrm{r}}, 0 \rightarrow \mathrm{~B}_{\max }$ পर্যন্ত। B^{\prime} র পথ यদি প্রত্যনুসরণীয় (reversible) रতো তাহনে চাক্রিক পথটি হতো মূলবিন্দুগামী এবং দুবার অনুসৃত একটি সরলরেখা; তা না হয়ে এই পথটি একটি আবদ্ধবক্রের (closed curve) সৃষ্টি করছে যার আভ্যন্তরীণ ক্ষেত্রফল অশূন্য (non-zero)। "পিছিয়ে পড়ার" গ্রীক ক্রিয়াপদ 'ইসতেরেও" ($\begin{gathered}\text { u } \\ v \\ \sigma \cdot \tau \\ \varepsilon\end{gathered} \rho \varepsilon$ ' ω) থেকে J.A.Ewing 1891-সনে এই প্রক্রিয়ার নামকরণ করেন ‘hysteresis’-ইংরেজী উচ্চারণে "হিস্টেরেসিস্"-(লক্ষ্যণীয়, গ্রীক ভাষায় ‘হ’ নেনই)-আমরা বাংলায় এটাই বলবো, যদিও পরিভাষায় ‘চৌম্বক জড়ত্ব’ বলে শব্দটি গৃইীত হয়েছে এবং তা বহু-প্রচলিত।

হিস্টেরেসিস্-বক্র একবার সম্পূর্ণ করা হলে B-H সমতলে এর আভ্যষ্তরীণ ক্ষেত্রফল হবে ঐ বস্তুখণ্ডে উৎপন্ন মোট তাপের সঙ্গে সমানুপাতী, এটাও আমরা দেখবো।

উम্দেশ্য

অয়শ্চৌম্বক পদার্থ্রের এই বিশেষ প্রকৃতি কেন দেখা যায় তার কারণ অনুসন্ধানের জন্য মুম্বকের আণবিক তত্ত্ উদ্জাবিত হয়েছে প্রায় এক শ ছদ্দীরও আগে। পরে কোয়ান্টাম বলবিদ্যার উদ্ভব হনে এই তত্তের তাৎপর্যগুলির নূতনভাবে বাাখ্যা হয়েছে এবং সম্পৃর্ণতর তক্তের অবতারণা হয়েছে। হিস্টেরেসেস্ বক্রের সংশ্লিষ্ট বহু তথ্য জনা হয়েছে। সামম্প্রকিए; তত্গৃলি অবশ্য গবই পরীক্ষণ-নির্ভর (empirical) পর্यায়ে রয়ে গেছে।

চুম্বকায়িত করা হলে অয়শ্চৌম্বক গদার্থে যে চৌম্বকপ্রবহণ B সৃষ্টি হ.. তা দুটি উপাংশের বীজগাণিতীয় যোগফল : $B=B_{i} \pm H ; H$ উপাংxটির উদ্ভব হয় বহিঃপ্রयুক্ত চৌম্বকায়ন ক্ষেত্র H এর জন্য—এটাই প্রকৃত চৌম্বকায়ন বল। অন্য উপাংশ B_{i} পদার্থখণ্ডের নিজস্ব (অর্থাৎ অয়শ্চৌম্বক হওয়ার জন্য) ধর্ম। এই আভ্যন্তরীণ প্রবহণ B_{i} ব্যাখ্যা করা হয় এভাবে—পরমাণু-ল্যাটিসে অবস্থিত বিভিন্ন ইলেক্ট্রনের সঙ্গে সংশ্লিষ্ট চৌম্বক ভ্রামকগুলির এন্মুখীকরণ সংঘটিত হয় যখন বহিঃপ্রযুক্ত চৌম্বকায়ন ক্ষেত্র H বস্তুখণ্ডে আরাপিত হয়। তবে এই একমুৗীকররণ সব ইলেক্ট্রনের ক্ষেত্রে সম্ভব হয় না; যাদের ক্ষেত্রে হয় তাদেরও হয় নানা শর্তসাপেক্ষে। একমুখীকারক বলের ক্রিয়া নির্ভর করে প্রতিবেশী পরমাণুগুলির দূরত্বের ওপর। উষ্ণতা বৃদ্ধি করা হলে সমান্তরাল ভ্রামকযুক্ত ইলেক্ট্রনের সংখ্যা কমে যায়-এবং কুরী উষ্ণতায় গেলে এই ইলেক্ট্রন ভ্রামকগুলি এতটা ইতস্ততঃ বিক্ষিপ্ত হয়ে পড়ে যে সব ভ্রামকগুলির বিন্যাস হয় দিক্-নিরপেক্ষ (isotropic)। এটা চুম্বকত্ব-রহিত অবস্থ।।

কুরী উষ্ণ্তার নীচে ঠাণ্ডা করা হতে থাকলে সমান্তরাল চৌম্বক-্র্রামকযুক্ত ইলেক্ট্রনগুলি যেখানে সেখানে সষ্তব একমুখী হয়ে পড়ে-বস্তুখণ্ডের বিভিন্ন অঞ্চনে ুুচ্ছায়িত আকারে এই দিক্-নির্ভর খণ্গুলি হচ্ছে স্বতঃফ্ফূর্তভাবে চুম্বকায়িত অঞ্চল, যা ডোমেইন (domain) নামে খ্যাতিলাভ করেছে। ডোমেইনগুলি ক্রিস্টালোগ্রাষিক অক্ষ অনুসরণ করে অবস্থান করার চেষ্টা করে কিন্তু এদের চৌম্বকায়ন দিকগুলি সাধারণত ইতস্ততঃ বিক্ষিপ্ত ভাবে থাকে অর্থাৎ এগুলি অনিয়তভাবে দিগ্বদ্ধ (randomly oriented) হয়ে পড়ে; ফলে বাহ্তত কোনও মোট চৌম্বকধর্ম প্রকাশ পায় না।

বহিঃপ্রবুক্ত চৌম্বকক্ষেত্র প্রয়োগ করা হলে এই অনিয়ত দিগ্বদ্ধ ডোমেইনগুলি (যারা স্বতঃশ্দূর্ত ভাবে চুম্বকিত) তাদের চৌম্বকপ্রাবল্যের মান বজায় রাখে কিন্তু ক্রমশঃ চৌম্বকক্ষেত্রের দিকের অনুবর্তী হয়ে থাকে। H এর মান যথেষ্ট বেশি করা হলে সব ডোমেইনগুলিই $\overrightarrow{\mathrm{H}}$ এর দিকে সম্পূর্ণতঃ একমুখী হয়ে যায়। তथন বস্ত্তটির সম্পৃক্ত অবস্থা হয়েছে বলা হয়। এই সম্পৃক্ত অবস্থার সৃষ্টিকারী বলের মান ধরা যাক $\mathrm{H}=\mathrm{H}_{\mathrm{m}}$,
 কিক্তু একেবারে বিলুপ্ত হয় না।

এসব তत্ত্রের মূন নিহিত রয়েছে পরীক্ষণলক B-H বক্রের খুট্নিাটি অনুসন্ধানের উপর। এই বক্রের (ক) জ্যামিতিক আকার, (খ) আবদ্ধ অংশের ক্কেত্রষ্ল, (গ) $\mathrm{H}_{\mathrm{m}}, \mathrm{B}_{\max }$ ソ্রতৃত মান এবং (घ) B-H সমতলে এ্; বক্রের অন্যান্য বৈশিষ্ট্য যথা প্রতিসাম্য, দিগৃবদ্ধण (orientation) প্ৃত্তি পর্যালোচনা করে তার তাত্তিক ব্যাথ্যা দেওয়াই তাত্বিক গবেষণার মৃল লক্ষ্য। আমরা এবার পরীক্ষণসাধনের দিকে নজর দেব।

3.2 মূনগত তত্ত্ত ও ব্যবহার্य সূন্রাদি

'Anchor ring' এর্" জ্যামিতিক আকার রয়েছে এমন একটি লোহার কুণল নিয়ে সেটির গায়ে
 প্রকৃতি আমরা অধ্যয়ন করবে।। কুখেলের সমগ্র পরিসীমার সর্বত্র জড়ানো এই তারাঢছই হচ্ছে প্রাথমিক তার-
 এই প্রাধমিক তারের উপর নিবিড়ভাবে বে অঙ্তরিত তামার তার জড়ানো হয় সেটি হচ্ছে গগীণণকুণ্ী
 পাঠানো হয় তাহলে যে চোম্বকক্ষের্র উৎপন্ন হবে তার মান

$$
\begin{equation*}
\mathrm{H}=0.4 \pi\left(\frac{\mathrm{~N}_{\mathrm{p}}}{\mathrm{~L}_{\mathrm{p}}}\right) \mathrm{I} \text { ওরস্টেড }(\mathrm{Oe}) \text { বा } \frac{\mathrm{Amp}-\mathrm{turn}}{\mathrm{~cm}} \tag{1}
\end{equation*}
$$

এখানে $\mathrm{N}_{\mathrm{p}}=$ প্রাথমিক তারকুণুলীর মোট পাকসংখ্যা

$$
L_{p}=\text { কুণুলের গড় ‘দৈর্থ্য’’ অর্থাৎ এর বৃত্তাকার অক্ষের দ্র্থ্য্য (cm) }
$$

 বে কোনও বিদ্দুভে \vec{H} এর দিক্ হবে ঐ বৃচ্তের अভিনম্বের সমান্তরাল। ফলে চোষ্বকবলরেোঔলি হরে
 প্ৰছ্ইচ্ছেদে চোম্বক আবেশন ভেৃ্ট্ (magnetic induction vector) \vec{B} 'র দিক্ও হবে \vec{H} এর অনুগামী।
 চৌ্বক অভিষ্ঞणার উপর]।

[^10]অতএব চৌম্বক আবেশনের প্রবাহ (flux) Φ হবে $\quad \Phi=B . \alpha \quad$... (2)
যেখানে $\alpha=$ কুजুলের প্রস্থচ্ছেদের ক্ষেত্রফল
কুণুলের গায়ে জড়ানোর গৌণতারকুগুলীর প্রস্থচ্ছেদের ক্ষেত্রফলও হবে প্রায় α 'র সমান (প্রস্থচ্ছেদের ব্যাসার্ধের তুলনায় গৌণকুণ্ডলীর বেধ খুবই কম ধরা যায় বলে)। চুম্বকায়নকারী প্রবাহ (magnetising current) I'র মান দ্রুত পরিবর্তন করার ফলে যদি প্রবহণ $\Delta \Phi$ পরিমাণে পরিবর্তিত হয় তবে ক্ষেপক গ্যালভানোমিটারে (Ballistic Galvanometer) এর জন্য যে বিক্ষেপ হবে তার প্রথম কোনিক বিস্তার θ_{1} নিচের সূত্র থেকে পাওয়া যাবে-

$$
\begin{equation*}
\frac{\Delta \Phi \cdot \mathrm{N}_{\mathrm{s}}}{\mathrm{R}}=\mathrm{k} \theta_{1}\left(1+\frac{\lambda}{2}\right) \tag{3}
\end{equation*}
$$

এই সূত্রটিতে $\mathrm{R}=$ ক্ষেক গ্যালভানোমিটার বর্তনীর মোট রোধ

$$
\begin{aligned}
\mathrm{R}_{\mathrm{c}}= & \text { ঐ গ্যালভানোমিটারের ক্রাস্তিক অবমন্দন রোধ (Critical Damping } \\
& \text { Resistance, সংক্ষেপে C.D.R) লক্ষণীয় যে } \mathrm{R}>\mathrm{R}_{\mathrm{c}} \text { হওয়া চাই। } \\
\lambda= & \text { লগ্ অপক্ষয় (log decrement)। } \\
\mathrm{k}= & \text { গ্যালভানোমিটারের ধ্রুবক }\left(=c \tau / n A B^{\prime}\right) \\
\mathrm{N}_{\mathrm{S}}= & \text { গৌণকুণুলীর মোট পাকসংখ্যা }
\end{aligned}
$$

\therefore (2) এবং (3) থেকে

$$
\begin{equation*}
\Delta \mathrm{B}=\frac{\Delta \Phi}{\alpha}=\frac{\theta_{1} \mathrm{R}}{\alpha \mathrm{~N}_{\mathrm{s}}} \mathrm{k}\left(1+\frac{\lambda}{2}\right) \tag{4}
\end{equation*}
$$

এখানে $\mathrm{k}\left(1+\frac{\lambda}{2}\right)$ রাশিটির মান অজ্ঞাত; $\mathrm{R}, \alpha, \mathrm{N}_{\mathrm{s}}$ এবং θ_{1} পরিমাপযোগ্য। প্রমাণ সলিনয়েড (Standard Solenoid) ব্যবহার করে $\mathrm{k}\left(1+\frac{\lambda}{2}\right)$ र মান স্থির করা হয়ে থাকে।

ধরা যাক প্রমাণ সলিনয়েডের [চিত্র 3 a দ্রঃ] প্রাথমিক কুণুলীতে $\mathrm{I}_{\mathrm{p}} \mathrm{amp}$ প্রবাহ সুস্থিত করে $+\mathrm{I}_{\mathrm{p}}$ থেকে $-I_{p}$ মানে পরিবর্তন করা হলো এবং এর জন্য গৌণকুণুলীতে যে চৌম্বকপ্রবহণের পরিবর্তন ঘটলো তার ফলে ক্ষেক গ্যালভানোমিটারে পরিলক্ষিত বিক্ষেপের প্রথম বিস্তার ধরা যাক θ_{p}; তাহলে এক্ষেত্রে যেহেতু

$$
\begin{array}{ll}
\text { চৌম্বকপ্রবহণ } & \Phi^{\prime}=\left[0.4 \pi \mathrm{I}_{\mathrm{p}}\left(\frac{\mathrm{~N}_{\mathrm{p}}^{\prime}}{\mathrm{L}_{\mathrm{p}}^{\prime}}\right)\right] \times \alpha^{\prime} \\
\text { কাজেই } & \Delta \Phi^{\prime}=2 \Phi^{\prime} . \mathrm{N}_{\mathrm{s}}^{\prime}
\end{array}
$$

मृত্র (5)

$$
\begin{aligned}
& \left.\begin{array}{l}
\mathrm{N}_{\mathrm{p}}^{\prime}=\text { প্রমাণ সলিনয়্যেডের মোট পাক্সংখ্যা } \\
\mathrm{L}_{\mathrm{p}}^{\prime}=\text { প্রমাণ সলিनয়্যেের মোট দৈর্য্য }
\end{array}\right\} \text { (প্রাথমিক কুঠুলীর) } \\
& \alpha^{\prime}=\text { এর গৌণকুণলীর প্রস্থচ্চেদের ক্ষের্রফন } \\
& \mathrm{N}_{\mathrm{s}}^{\prime}=\text { এর গ্গৌকক্গলীর মোট পাকসং্যা }
\end{aligned}
$$

চिত্রি 3-a
$\therefore \frac{2 \Phi^{\prime} \mathrm{N}_{\mathrm{s}}^{\prime}}{\mathrm{R}}=\frac{2 \times 0.4 \pi \mathrm{I}_{\mathrm{p}}\left(\mathrm{N}_{\mathrm{p}}^{\prime} / \mathrm{L}_{\mathrm{p}}^{\prime}\right) \alpha^{\prime} \mathrm{N}_{\mathrm{s}}^{\prime}}{\mathrm{R}}=\mathrm{k} \theta_{\mathrm{p}}\left(1+\frac{\lambda}{2}\right)$
जन्थाe $\mathrm{KR}\left(1+\frac{\lambda}{2}\right)=2 \times 0.4 \pi\left(\frac{\mathrm{~N}_{\mathrm{p}}^{\prime}}{\mathrm{L}_{\mathrm{p}}^{\prime}}\right)\left(\frac{\mathrm{I}_{\mathrm{p}}}{\theta_{\mathrm{p}}}\right) \alpha \mathrm{N}_{\mathrm{s}}^{\prime}$
এই মানঢি (4) এ বসিয়ে পাই

$$
\begin{align*}
\Delta \mathrm{B} & =\left(\frac{\theta_{\mathrm{l}}}{\alpha \mathrm{~N}_{\mathrm{s}}}\right) 0.8 \pi\left(\frac{\mathrm{~N}_{\mathrm{p}}^{\prime}}{\mathrm{L}_{\mathrm{p}}^{\prime}}\right) \alpha^{\prime} \mathrm{N}_{\mathrm{s}}^{\prime}\left(\frac{\mathrm{I}_{\mathrm{p}}}{\theta_{\mathrm{p}}}\right) \\
& =0.8 \pi\left(\frac{\mathrm{~N}_{\mathrm{p}}^{\prime}}{\mathrm{L}_{\mathrm{p}}^{\prime}}\right)\left(\frac{\mathrm{N}_{\mathrm{s}}^{\prime}}{\mathrm{N}_{\mathrm{s}}}\right)\left(\frac{\alpha^{\prime}}{\alpha}\right)\left(\frac{\mathrm{I}_{\mathrm{p}}}{\theta_{\mathrm{p}}}\right) \cdot \theta_{1} \tag{7}
\end{align*}
$$

$\theta_{1} \approx \frac{d_{1}}{2 \Delta}$ लেখা যায় यमि θ_{1} এর মান বেশি ना হয়,
বেখানে $d_{1}=$ গ্যালভানোমিটরের স্কেল পাঠ

$$
\Delta=\text { দ্পণ-ক্কেল দূরד্ব }
$$

काजেই $\Delta B=0.8 \pi\left(\frac{N_{p}^{\prime}}{L_{p}^{\prime}}\right)\left(\frac{N_{s}^{\prime}}{L_{s}^{\prime}}\right)\left(\frac{D^{\prime}}{D}\right)^{2}\left(\frac{I_{p}}{d_{p}}\right) d_{1}$
ΔB যেহেতু $2 B$ (+ B থেকে - B হওয়ায়) কাজেই
ব্যবহার্य কার্যमूত্র

$$
\begin{array}{ll}
& B=\beta . d_{1} \\
\text { এবং } \quad & H=0.4 \pi\left(N_{p} / L_{p}\right) I \\
\text { যেখানে } & \beta=0.4 \pi\left(N_{p}^{\prime} / L_{p}^{\prime}\right)\left(N_{s}^{\prime} / N_{s}\right)\left(D^{\prime} / D\right)^{2}\left(I_{p} / d_{p}\right) \ldots \tag{10}
\end{array}
$$

প্রবাহমাত্রা I এর মান ক্রমশঃ বাড়িয়ে গেলে (9) অনুযায়ী H-এর মানও বাড়বে কিন্তু চৌম্বকপদার্থের সম্পৃক্তি (saturation) ঘটার পর B’র মান $\mathrm{B}_{\max }-এ$ সীমাবদ্ধ হয়ে পড়বে, $\mathrm{H}-$ - $র$ মান আর বাড়বে না यদি ন্যুনতম মান H_{m}-এর জন্য $B=B_{\text {max }}$ হয় তবে এই চরম চুম্বকায়নের অবস্থায় রেখে যদি প্রবাহমাত্রা হঠাৎ $+\mathrm{I}_{\mathrm{m}}$ থেকে - I_{m} এ পরিবর্তিত করা হয় তাহলে $\Delta \mathrm{B}=2 \mathrm{~B}_{\max }$ এবং সেক্ষেত্রে বিক্ষেপ হবে θ_{m}, अर्थाৎ $B_{\max }=\beta \mathrm{d}_{\mathrm{m}}$

চিত্র 3 b B-H বক্র অকনের তড়িৎবर्তনী
$\mathrm{G}, \mathrm{K}_{\mathrm{D}} \rightarrow$ যথাক্রমে ক্ষেপক গ্যালভানোমিটার ও এর অবমন্দক চাবি।
$\mathrm{R}_{\mathrm{h}} \rightarrow$ রিওস্ট্যাট, या অন্ততः 6 A প্রবাহ বरনে সক্ষম।
$\mathrm{K}_{1} \rightarrow \quad$ মূन চৌম্বকায়ন প্রবাহের (magnetising current) চাবি।
$\mathrm{A}_{\mathrm{m}} \rightarrow \quad 0-5 \mathrm{~A}$ প্রসারের ডি. সি. অ্যাম্মিটার, যার বিভাজন বেশ সৃক্ষ্ম হবে এবং স্কেল যথেষ্ট দীর্ঘ হবে (চাপদৈর্ঘ্য 6" হলে ভাল)।
$\mathrm{R}_{2}, \mathrm{~K}_{2} \rightarrow$ যথাক্রমে রোধবাক্স এবং চাবি ("পজিটিভ" প্রবাহ নিয়ন্ত্রণের জন্য)। R_{2} 'র ওয়াটক্ষমতা বেশি হওয়া চাই। রিওস্ট্যাট হলেই ভাল।
$R_{3} . K_{3} \rightarrow$ যथাক্রমে রোধবাক্স / রিওস্ট্যাট এবং চাবি। এরা "নেগেটিভ" প্রবাহ নিয়ন্ত্রণের জন্য।
$\mathrm{K}_{4} \rightarrow \quad$ পোল (Pohl) কমিউটেটর (Commutator)। এর ক্রিয়াকলাপ বোঝার জন্য একটি পৃথক চিত্র পরিশিষ্টে দেওয়া হল।
$\mathrm{P}^{\prime} \mathrm{P}^{\prime} \rightarrow \quad$ প্রায় 1 মিটার দীর্ঘ প্রাথমিক কুণুলী (Primary Coil) যার প্রবাহ-বাইী তার সুঅন্তরিত, অপেক্ষাকৃত মোটা এবং ঘন-সন্নিবিষ্ট। এটি প্রমাণ সলিনয়েড (Standard Solenoid)।
$S^{\prime} S^{\prime} \rightarrow \quad$ প্রমাণ সলিনয়েডের কেন্দ্রাংশে অবস্থিত গৌণকুণুলী (Secondary Coil)।
PP $\rightarrow \quad$ কুণুলাকারে (Anchor Ring) প্রস্তুত পরীক্মধীন বস্তুর গায়ে জড়ানো প্রথমিক কুণুলী। বিশদ চিত্রের জন্য চিত্র দ্রষ্টব্য।

SS $\rightarrow \quad$ কুণ্ডলের একাংশে জড়ানো গ্গৌণকুণ্ডলী।
$\mathrm{K}_{5} \rightarrow$ দ্বিমুখী (Two-way) চাবি।
$\mathrm{R}_{6}, \mathrm{~K}_{6} \rightarrow$ যথাক্রমে রোধবাক্স ও চাবি। এদের ব্যবহার করে গ্যালভানোমিটার বর্তনীতে ক্রান্তিক অবমন্দন রোধ (CDR) অপেক্ষ বেশি রোধ দেওয়া যাবে।

3.2.1 পরীক্ষণের কার্यক্রম

1. চিত্র 3 b অनুযায়ী বিভিন্ন অংশগলি সংযুক্ত করুন। সব চাবির প্লাগগুলি প্রথমে তুলে রাথুন।

2. কুণুলের চুম্বকায়নের সংপৃক্ত অবস্থা নির্ণয়

K_{3} প্লাগ বন্ধ করুন। $\mathrm{Rh}-এ$ (এবং প্রয়োজনে R_{2}-তে) এমন রোধ ব্যবহার করুন যাতে প্রবাহ 0.5 A- এর মত হয়। K_{5}-এর ‘a’ চিহ্নিত অংশে প্লাগ বন্ধ করতে হবে, তারপর $\mathrm{K}_{1}-এ$ প্লাগ বন্ধ করে প্রবাহ চালু করুন। A_{m}-এর পাঠ লক্ষ্য করুন। Rh-পরিবর্তন করে প্রায় 1 Amp পাঠে স্থির করুন। এবার K_{6} প্লাগ বন্ধ করে $\mathrm{K}_{4}-এ র$ সাহায্যে প্রবাহের দিক পরিবর্তন করতে হবে। ক্ষেপক গ্যালভানোমিটরের পাঠ নিন। প্রবাহের দিক পরিবর্তন করে আবার পাঠ নিন। এবার Rh-এ রোধ পরিবর্তন করে প্রবাহ বাড়িয়ে 2 Amp করতে হবে। প্রবাহ বিপরীতমুখী (reversed) করে গ্যালভানোমিটারের পাঠ নিন। এভাবে ক্রমশঃ প্রবাহমাত্রা ধাপে ধাপে বাড়িয়ে (ধরা যাক, $2.5 \mathrm{~A}, 3.0 \mathrm{~A}, 3.5 \mathrm{~A}, \ldots$) গ্যালভানোমিটারের পাঠ নিয়ে নিন। প্রবাহমাত্রা ও বিক্ষেপের লক্ধ মান লেখচিত্রিত করুন এবং তা থেকে সম্পৃক্তিজনক প্রবাহের (Saturation

Currenrt) মান I_{m} স্থির করে নিতে হবে। (I_{m} এর চেয়ে বেশি প্রবাহের জন্য বিক্ষেপের মান একই হবে, এটা লক্ষ্ীণীয়, গ্যালভানোমিটার বর্তনীর রোধবাক্স R_{6} থেকে রোধের মান এমন পরিবর্তন করে নিতে হবে याতে $+I_{m}$ থেকে $-I_{m}$ পরিবর্তন করা হলে বিক্ষেপ সর্বাধিক ($\leq 16 \mathrm{~cm}$) হয়।

3. প্রমাণ সলিনয়েড ব্যবহার করে গ্যালভানোমিটারের ধ্রুবাঙ্ক নির্ণয়

প্রমাণ সলিনয়েডে প্রবাহ পাঠাবার জন্য K_{5}-এর ' b ' চিহ্তিত ফাঁকে প্লাগ বসান এবং K_{4} ব্যবহার করে দিষ্ট থেকে প্রতিদিষ্ট প্রবাহে পরিবর্তন করুন এবং বিপরীতক্রমে বিভিন্ন I_{p} 'র জন্য d_{p} 'র পাঠ নিন। এভাবে $I_{p}-d_{p}$ লেখ आँকুন। লেখের যে অংশটি ঋজুরেখ (rectilinear) হবে তার নতি নিরূপণ করে নিতে হবে। পরবতী পরীক্ষণে বিক্ষেপের মান ঐ সীমার মধ্যে থাকলে গড় [$\left.\mathrm{I}_{\mathrm{p}} / \mathrm{d}_{\mathrm{p}}\right]$]এর মান ব্যবহার করবেন।
4. যে কোনও পরীক্ষণ সম্পাদন করার পূর্বে পরীক্ষধীন কুণ্ডলটিকে বিচুম্বকায়িত করা উচিত। এটি বিশেষ গুরুত্বপূর্ণ পদক্ষে।

চিত্র 3 c -তে বিচুম্বকায়নের বর্তনী লক্ষ্য করুন। অটোট্রান্সফর্মারের ভোল্টেজ-সৃচকটি সর্বনিম্ন পাऐে বসিয়ে নিয়ে মেইন্স সংযোগ করার আগে একটি অ্যম্মিটার (এ. সি.) এবং অন্তরিত হাতল-যুক্ত রিওস্ট্য্ট

চिত্র 3-c

চिত্র 3-d

কুণ্ডলের প্রাথমিক বর্তনীর সঙ্भে শ্রেণী সমবায়ে যুক্ত করে দিন। অসিলোস্কোপের জন্য R_{0} রোধ যুক্ত করে দিন। R_{0} 'র দুই প্রান্ত C.R.O.'র X-X প্রান্তে এবং কুণ্ডলীর গৌণবর্তনীর প্রান্তদুটি চিত্রপ্রনর্শিত উপায়ে Y-
Y প্রান্তে যুক্ত করে রাখুন। R_{1}, এবং C’র মান যথেষ্ট বেশি নিতে হবে এবং R_{1} যেন >> $1 / \omega c$ হয়। এবার মেইন্স সংযোপ করে আ্যাম্মিটারের পাঠ দেখুন। অটৌট্রান্সফ্মারের ভোল্টেজ বাড়ান যতক্ষণ না পৃর্বে লক্ক সম্পৃক্টি প্রবাহ $I_{m}-এ র$ মান পাওয়া যায়। (প্রয়োজনে Rh-এর মান পরিবর্তন করতে হতে পারে।) C.R.O.তে B-H এর আবদ্ধ বক্র দেখা যাবে। ক্রমশঃ Rh-এর মান খুব অল্প পরিমণে বাড়িয়ে নিন-ধরা যাক এত়ত আ্যাম্মিটারের পাঠ 0.2 Amp কমলো—এভাবে প্রতিবারে অল্প অক্প করে রোধ বাড়াবেন ফলে প্রবাহ কমবে, B-H বক্রের আকৃতি ছোট হবে, ক্ষেন্রফল্ল কমবে এবং অল্পঙশ ঐ প্রবাহ সক্রিয় রেথে চৌম্বকপদার্থটিকে একটি সুস্থিত পর্যায়কৃত অবস্থায় (Steady Cyclic Condition) উপনীত করবে। এভাবে ডোমেইনগুলিকে প্রভাবিত করা সহজসাধ্য হয় এবং বিচুম্বকায়ন ত্বরাপ্বিত ও সম্পূর্ণতর হবে। প্রবাহমাত্রা যখন 0.1 Ampএর কম হয়েছে, C.R.O. অতি ক্ষুদ্র বক্র দেখাবে—তখন পদার্থটি বিচুম্বকায়িত হয়েছে ধরে নিতে পারেন।

यमि C.R.O. না পাওয়া যায় এবং অটোট্রান্সফর্মার না থাকে তাহলে চিত্র 3d অनুযায়ী বর্তনীর সাহায্যে পোল-কমিউটেটে (Pohl Commutator) ব্যবহার করে ঐ একই পদ্ধতি অবলম্বন করবেন। তবে পোল-কমিউটেটর-এর দিক পরিবর্তনের হার যথাসম্ভব দ্রুত করতে হবে। পারদ্তল উন্তণ্তু হয়ে বেশী পরিমােে বাশ্প ঊদ্গিরণ করতে পারে। সতর্ক হবেন যাতে ঐ বিষাক্ত বাষ্প নাসারক্ধে প্রবেশ না করে।

5. शिস্টেরেসেস্ বক্র অক্কন

(চিত্র 3 e দ্রঃ) সম্পৃর্ণরূপে বিমুম্বকায়িত করে কুগ্ডলটির তারগ্গলি বর্তনীচিত্র 3-b অনুযায়ী যুক্ত করুন। K_{6} খোলা রেখে $\mathrm{K}_{3}, \mathrm{~K}_{2}$ বন্ধ করে দিন। কুণুলের প্রাপমিক বর্তনীতে প্রবাহ চালু করুন। প্রবাহ বাড়িয়ে যান যতত্ষণ ना $\mathrm{I}=\mathrm{I}_{\mathrm{m}}$ হয়। এই মানে প্রবাহ স্থির রাখুন-এটি সম্পৃক্তি মান। পোল কমিউটেটের ব্যবহার করে 20 বার প্রবাহের দিক পরিবর্তন করুন। এবার K_{6} বন্ধ করুন। ক্ষেপক গ্যালভানোমিটারটি বর্তনীতে যুক্ত হলো। প্রবাহ বিপরীতমুখী (reversed) করুন এবং বিক্ষেপ d_{m} नক্ষ্য করুন। এটি $2 \mathrm{~B}_{\max }$ - এর জना পাঠ, ধরা याক, $\theta=\theta_{\mathrm{m}} ; \mathrm{B}_{\text {max }}$-এর জना প্রকৃত পাঠ रচ্ছে $\mathrm{d}_{\mathrm{m}} /$

চিত্র 3-e 2 किষ্তু প্রমাণ সলিনয়েডের পাঠের সময় d_{p} 'র পৃর্ণমান ধরা হয়েছিল বলে

$$
B_{m}=\beta d_{m}=2 \beta\left(\frac{d_{m}}{2}\right)=2 \beta y_{m}
$$

আপনার লেখকাগজে T-বিন্দুর স্থানাংক হবে $\left(\mathrm{I}_{\mathrm{m}}, \mathrm{y}_{\mathrm{m}}\right)$ চিত্র , কাজেই লেখকাগজে স্কেলমান হবে X-অক্ষে : $\gamma=0.4 \pi\left(\mathrm{~N}_{\mathrm{p}} / \mathrm{L}_{\mathrm{p}}\right)$ দিয়ে গুণ করে H (Oersted-এ) পাওয়া যাবে।

Y -অক্ষে : $2 \beta=0.8 \pi\left(\mathrm{~N}_{\mathrm{p}}^{\prime} / \mathrm{L}_{\mathrm{p}}^{\prime}\right)\left(\mathrm{N}_{\mathrm{s}}^{\prime} / \mathrm{N}_{\mathrm{s}}\right)\left(\mathrm{D}^{\prime} / \mathrm{D}\right)^{2}\left(\mathrm{I}_{\mathrm{p}} / \mathrm{d}_{\mathrm{p}}\right)$ দিয়ে গুণ কর্রে B^{\prime} র মান পাওয়া যাবে (Gauss-এ)

লেখকাগজে T^{\prime} বিन্দুর স্থানাংক $\left(-\mathrm{I}_{\mathrm{m}},-\mathrm{y}_{\mathrm{m}}\right)$ । অতএব, ঐ বিন্দুটি সংস্থাপিত করুন।
বর্তনীতে K_{3} প্লাগ যে অংশে সংযুক্ত সেই অংশের প্রবাহকে বিপরীতমুখী প্রবাহ বলে আমরা ধরে নেব। পোল কমিউটেটরের স্পন্দক (rocker) এমন পাশে রাখুন যাতে দিষ্টপ্রবাহ $+I_{m}$ কুগুলের প্রাথমিক বর্তনীতে প্রবেশ করে। এবার R_{3}-তে এমন রোধ অন্তর্ভুক্ত করুন যাতে K_{3}-র প্লাগ তুলে নেওয়ার পর বিপরীতমুখী প্রবাহের মান $-\mathrm{I}_{\mathrm{m}}$ থেকে (মানতঃ) কমে $\left(-\mathrm{I}_{\mathrm{m}}+0.5\right) \mathrm{Amp}$ হয়। এজন্য $\Delta \mathrm{I}_{\mathrm{m}} / \mathrm{I}_{\mathrm{m}}=\Delta \mathrm{R} / \mathrm{R}$ সৃত্রটি ব্যবহার করুন। I_{m} প্রবাহকালে বর্তনীর মোট রোধ (কুণুলের প্রাথমিক কুগুলীর রোধ অনেক ক্ষেত্রেই উপেক্ষণীয় হয়ে থাকে) R থেকে সহজেই ΔR হিসেব করা যাবে। এবার K_{3}-র প্লাগ তুলে নিয়ে প্রবাহ বিপরীতমুখী করুন এরং তজ্জনিত বিক্ষেপ (ধরুন - $\mathrm{d}_{1}^{\prime} \mathrm{cm}, \mathrm{d}_{1}^{\prime}>0$) লক্ষ্য করুন এবং প্রকৃত প্রবাহের মান অ্যাম্মিটার Am থেকে পড়ে নিন (ধরুন I_{1} Amp)। অতএব T_{1}^{\prime} বিন্দুর স্থানাঙ্ক হবে $\left(-\mathrm{I}_{1},-\mathrm{d}_{1} / 2\right)$ যেখানে $-d_{1} / 2=-d_{1}^{\prime}+d_{m} / 2\left(d_{1}, d_{1}^{\prime}>0\right) 1$

স্পন্দকের (rocker) অবস্থান পরিবর্তন না করে K_{3} প্লাগ বন্ধ করুন। ফলে প্রতিদিষ্ট প্রবাহের মান বেড়ে সম্পৃক্তি মান $-\mathrm{I}_{\mathrm{m}}-এ$ পৌছবে। এবার পোল কমিউটেটট ব্যবহার করে প্রবাহের দিক পরিবর্তন করে $+\mathrm{I}_{\mathrm{m}}$ করে দিন। আবার K_{3} প্লাগ খুলে নিন এবং প্রবাহের দিক পরিবর্তন করুন। ফলে $\left(-\mathrm{d}_{\mathrm{j}}^{\prime}\right)$-এর আর একটি নিরপেক্ষ মান পাওয়া যারে। চৌম্বকজড়ত্ত বক্রের (Hysteresis Loop) অনুগমন করা হয়েছে বলে কোনও অহেতুক বিশৃঙ্যলা ডোমেইনণলিতে সৃষ্টি হবে না। এই দুই বিক্ষেপের গড় নিন এবং তা থেকে $-d_{1} / 2$ হিসেব করুন।

চৌম্বকজড়তা বক্রের T'C'R' অংশের যে কোনও বিন্দু পেতে হলে উপরের পদ্ধতি প্রয়োগ করতে হবে : (1) প্রতিবারেই $+l_{m}$ চूম্বকায়িত অবস্থা থেকে শরু করবেন।
(2) R_{3} তে উপयুক্ত রোধ সংযুক্ত করবেন।
(3) K_{3} প্লাগ খুলে নেবেন।
(4) $+I_{m}$ থেকে $-I_{k}$ তে প্রবাহ পরিবর্তন করবেন।
(5) K_{3} প্লাগ বন্ধ করে নিয়ে তবে প্রবাহের দিক পরিবর্তন করবেন।
(1) থেকে (5) ক্রমে পুনরাবৃত্তি করে $\left(-I_{k}\right)$ প্রবাহের জন্য যে বিভিন্ন বিক্ষেপ হবে $\left[-d_{k}^{\prime},-d_{k}^{\prime \prime}, \ldots\right]$ তদের গড় থেকে $\left(-d_{k} / 2\right)$ হিসেব করে নিয়ে T_{k}^{\prime} বিन্দুর স্থানাংক $\left(-I_{k},-d_{k} / 2\right)$ স্থির করা হবে। পরীক্ষণ চলাকালীন সময়েই লেখচ্রিরি আঁকতে হবে, কেননা কোনও তারতম্য দেখা গেলে সঙ্গেই সঙ্গেই সেটার কারণ যথাযথ অনুসন্ধান করে প্রকৃত অবস্থা কি তা স্থির করতে হবে।

R' বিन्দू স্থির করার জন্য পদ্ধতি এই :-

(1) প্রথমে $+I_{m}$ প্রবাহে কুণুলের চৌপ্বকায়ন করুন।
(2) K_{1}-এর প্লাগ্ তুলে নিয়ে গ্যাল্ভানোমিটারের বিক্ষেপ দেখুন এবং মান লিখে নিন।
(3) পোল্ কমিউটেটের $\mathrm{K}_{4}-এ র$ স্পন্দক বিপরীতে স্থাপন করে K_{3} বন্ধ করুন।
(4) K ,-এর প্লাগ যুক্ত করুন।
(5) এবার প্রবাহের দিক পরিবর্তন করুন।
(1) থেকে (5) এর নির্দেশিত ক্রমে কয়েকবার বিক্ষেপের মান নিয়ে নিন এবং তা থেকে গড় মান গণনা করুন।

R'T बক্র অংকন করার পদ্ধতি অন্যরকম :-
(1) $+\mathrm{I}_{\mathrm{m}}$ প্রবাহে কুগুলের চুম্বকায়ন করুন।
(2) K_{2} প্লাগ বন্ধ রাখা অবস্থায় R_{2}-তে এমন রোধ অন্তর্ভুক্ত করতে হবে যাতে K_{2} 'র প্লাগ্ তুলে নিলে প্রবাহের মান I_{m} থেকে 0.5 A পরিমাণে কমে যেতে পারে। নির্দিষ্ট রোধ অন্তর্ভুক্ত হয়ে গেলে K_{2} 'র প্লাগ্ তুলে নিন এবং গ্যাল্ভানোমিটারের বিক্ষেপ লক্ষ্য করুন। Am-এর পাঠ নিন। ধরা যাক বিক্ষেপের মান পাওয়া গেল -d' $\left(\mathrm{d}^{\prime}>0\right)$; কজজেই T_{2} বিन্দুর স্থানাঙ্ক হবে $\left[+\mathrm{I}_{2},\left(\mathrm{~d}_{\mathrm{m}} / 2-\mathrm{d}^{\prime}\right)>0\right]$ ।
(3) পোল্ কমিউটেটর ব্যবহার করে প্রবাহের দিক পরিবর্তন করুন (K_{3} প্লাগ্ বরাবর বন্ধ থাকবে)
(4) K_{2} প্পাগ্ বন্ধ করুন।
(5) প্রবাহের দিক এবার পরিবর্তন করুন।
(1) থেকে (5) ক্রমান্বয়ে পুনরাবৃত্তি করে T ${ }_{2}$ 'র স্থানাঙ্ক আরও কয়েকবার নিরপেক্ষভাবে স্থির করে নিন। অন্যান্য বিন্দুর ক্ষেত্রে R_{2}-বাক্স থেকে প্রয়োজনীয় রোধ পরিবর্তন করে উপরের এই পদ্ধতি অনুসরণ করতে হবে।

বক্রের নিম্নাংশ পৃথকভাবে নিরূপণ করার প্রয়োজন নেই। বক্রের প্রতিসাম্য অনুযায়ী বিন্দু সংস্থাপন করে গেলেই $\mathrm{T}^{\prime}, \mathrm{T}_{1}^{\prime \prime}, \ldots, \mathrm{R}^{\prime \prime} . .$. প্রভৃতি বিন্দুগুলি পাওয়া যাবে।

ФHdB পরিমাপ :-

হিস্টেরেসিস্ (বা চৌম্বক জড়তার) বক্রটি আবদ্ধ বক্র-B-H সমতলে এর দ্বারা অন্তর্ভুক্ত ক্ষেত্রফল $A=\Phi H d B$ । ক্ষেত্রফল নির্ণয়ের জন্য লেখকাগজের বর্গাকার অংশগুলি গুণে নিতে হবে। ধরা যাক আপনার বক্রের সীমাররখার অন্তর্ভুক্ত ক্ষেত্রফলে

$$
\begin{aligned}
& (1 \mathrm{~cm})^{2} \text { এর বর্গক্ষেত্র আছে m-টি } \\
& (5 \mathrm{~mm})^{2} \text { এর বর্গক্ষেত্র আছে } \mathrm{n} \text {-টি }
\end{aligned}
$$

এবং $\quad(1 \mathrm{~mm})^{2}$ এর বর্গক্কেত্র আছে p -টি
তাহলে মোট ক্ষেত্রফল $\mathrm{A}=\left[\mathrm{m}+\mathrm{n} \times(0 \cdot 5)^{2}+\mathrm{p}(0 \cdot 1)^{2}\right] \mathrm{cm}^{2}$

$$
=[\mathrm{m}+.25 \mathrm{n}+.01 \mathrm{p}] \mathrm{cm}^{2}
$$

এ থেকে উপযুক্ত আক্ষিক স্কেলমান দিয়ে গুণ করে এবং 4π দিয়ে ভাগ করে শক্তিক্ষযের মান পাওয়া যাবে।

3.2.2 পরীক্ষণলব্ধ ফলাফলের সারণী

সারণী 1 : কুণুলের বিভিন্ন ধ্রুবাঙ্ক নিরূপণ
সারণী 2 : প্রমাণ সলিনয়েডের ধ্রুবাঙ্ক নিরূপণ
সারণী 3 : সম্পৃক্তি-জনিত প্রবাহের মান $\left(\mathrm{I}_{\mathrm{m}}\right)$ নিরূপণ

পर्यः সংখ্যা	$\begin{aligned} & \text { Rh-এর } \\ & \text { রোধ } \end{aligned}$	প্রবাহ পরিবর্তন করা হলো +1 থেকে-1	লক্ক বিক্ষেপের স্কেলপাঠ	গড বিক্ষে	$\begin{aligned} & \text { প्रবाহের } \\ & \text { মাन } \\ & +1 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{m}} \text { - } \\ & \text { মান } \end{aligned}$
একক \rightarrow	Ω	A A	cm	cm	A	A
1. (a)	x_{1}	+1.0 থেকে -1.0	+ ...	\ldots	+1.0	
(b)	x_{1}^{\prime}	-1.0 থেকে +1.0	-	+1.0	
2. (a)	x_{2}	+1.5 থেকে-1.5	+ ...	\cdots	+1.5	
(b)	x_{2}^{\prime}	-1.5 থেকে 1.5	-	+1.5	
3.						
.						
.						
.						

সারণী 4 : প্রমাণ সলিনয়েডের জন্য সংগৃহীত উপাত্ত

সারণী 5 : চৌম্বকজড়তার আবদ্ধ বক্র অঙ্কন। অনুধাবনের সুবিধার্থে একটি পরীক্ষণে লক্ধ কয়েকটি মান প্রদর্শিত হলো।

পर्यक সংश्या	$\begin{aligned} & \mathrm{Rh} \text {-এর } \\ & \text { রোধ } \end{aligned}$	$\mathrm{R}_{2}-$ - রোধ	$\mathrm{R}_{3}-\mathrm{K}$ রোধ	প্রবাহমাত্রা পরিবর্তনের দিক $I_{m} \text { থেকে } I_{k}$	ल বিক্কে $-\mathrm{d}_{\mathrm{k}}$	প্রশুক্ত বিক্ষেপ $\begin{aligned} & -d_{k}^{\prime}+d_{m} / 2 \\ & =d_{k} / 2 \end{aligned}$	$\begin{aligned} & \text { গড় } \\ & \left(\bar{d}_{\mathrm{k}} / 2\right) \end{aligned}$	$\begin{array}{\|c\|} \text { প্রবाহের } \text { মान } \\ \mathrm{I}_{\mathrm{k}} \\ \mathrm{k}=1,2,3, \ldots \end{array}$
একক \rightarrow	Ω	Ω	Ω	A	cm	cm	cm	A
1. (a)	x	-	-	$\begin{aligned} & \mathrm{I}_{\mathrm{m}} \text { থেরে }-\mathrm{I}_{\mathrm{m}} \\ & (4.05 \rightarrow-4.05) \end{aligned}$	$\begin{aligned} & -\mathrm{d}_{\mathrm{m}} \\ & (-20.7) \end{aligned}$	$\begin{aligned} & -d_{m} / 2 \\ & (-10.35) \end{aligned}$		$\begin{aligned} & -\mathrm{I}_{\mathrm{m}}= \\ & -4.05 \end{aligned}$
(b)	x	-	-	\ldots	\cdots	
2. (a)	x	-	z_{1}	$\begin{aligned} & \mathrm{I}_{\mathrm{m}} \rightarrow-\mathrm{I}_{1} \\ & 4.05 \rightarrow-3.50 \end{aligned}$	$\begin{aligned} & -d_{1}^{\prime}= \\ & -20.4 \end{aligned}$	$\begin{aligned} & -\mathrm{d}_{1} / 2= \\ & -10.05 \end{aligned}$		$\begin{aligned} & -\mathrm{I}_{1}= \\ & -3.50 \end{aligned}$
(b)	x	-	z_{1}	\ldots	\cdots	...
3. (a) (b)								
7. (a)				$4.05 \rightarrow-1.0$	-17.8	-7.45		-1.0
13.				$\stackrel{\sim}{4.05} \rightarrow 0$	\cdots	\cdots		\ldots
...								
18			-	$4.05 \rightarrow 0.8$	-2.1	+8.25		+0.8

সারণী 6 : X- এবং Y-অক্ষের স্কেলমান গণনা, লেখকাগজে B-H বক্র অংকন, আবদ্ধ বক্রের ক্ষেত্রফল নিরূপণ প্রভৃতি।

লক্ষ্যণীয় যে লেখকাগজটির সম্পূর্ণ অংশ ব্যবহার করা প্রয়োজন, কিস্তু পরীক্ষণে লক্ক মানগুলির সূক্ম্মতার নিম্নসীমা সম্বক্ধে অবহিত হতে হবে। ধরা যাক, অ্যাম্মিটরের ক্ষুদ্রতম বিভাজন $0.2 \AA$, এক্ষেত্রে বর্গাকার কাগজে 1 mm বা 2 mm দৈর্ঘ্য $0.1 \AA$ সূচিত করলেইই সেটি পরীক্ষণলক্ক অনিশ্চয়তার সঙ্গে সংগতিপূর্ণ হবে। যদি কেউ $1 \mathrm{~mm}=.01 \AA$ ব্যবহার করেন তাহলে পরীক্ষণলক্ধ অনিশ্চয়তার মান 10 ञুণ বেশি দেখানো হবে। অনুরূপে যদি $1 \mathrm{~mm}=0.5 \AA$ নেওয়া হয় তাহলে পরীক্ষণে লক্ধ সূক্মততগুলি জোর করে উপেক্গ করা হবে। লেখকাগজের স্কেল নিরূপণ, অতএব, খুবই বিবেচনার সঙ্গ করতে হবে।

3.3 পরিশিষ্ট A : চৌম্বকায়ন বক্র এবং হিসটটেরেসিস-বক্র সম্পর্কে প্রাসঙ্গিক সংক্ষিপ্ত আলোচ্দা

পরীক্ষণ সম্পন্ন করার আগে যাতে বিবিধ পদার্থতান্ত্রিক বিষয়গুলির জটিলতা ভালভাবে এবং সহজে বুঝে নেওয়া ষায় সে জন়াই এই অংশের অবতারণা। আলোচনা অতএব, তত্ত্রীয় হলেও, পরীক্ষণমুখী হিসেবে পরিবেশন করা গেল।

ভাইস-প্রবক্ত চৌম্বকায়নের তত্ত্বে (Weiss Theory of magnetisation) বলা হয়েছে যে অয়শ্চৌম্বক পদার্থে বহ্সংখ্যক অঞ্চল রয়েছে যাদের প্রত্যেকটি খণ্গ ("domain") বা ডোমেইন্ স্বতঃস্ফূর্তভাবে চৌম্বকায়িত হয়ে সম্পৃক্তি (saturation) অর্জন করেছে। তত্ত্টি প্রথম উপস্থাপিত করা হয় 1907* সনে—মনে রাখতে হবে তখন পদার্থের গঠন, ইলেক্ট্র্রন স্পিন প্রভৃতি অণুবীক্ষণিক চিত্রটি একেবারেই জানা ছিল না—অথচ বর্তমানেও এটি স্বীকৃত সার্থক তন্ত্ব, কেননা ডোমেইনণ্ডলি যে সত্যিই রয়েছে, পরীক্ষণ থেকে তাদের উপস্থিতির স্বাক্ষর পাওয়া গেছে 1931-এ\#।

এখন আমরা জানি যে অয়শ্টৌম্বক পদার্থখণ্ডের চৌম্বকায়িত অবস্থার কারণ বিভিন্ন ইলেক্ট্রনের স্পিনসঞ্জাত বিশিষ্ট চোম্বকভ্রামকের একীভূত সমাহার। ডোমেইনগুলির চৌম্বকায়নের দিকসমূহ বিক্ষিপ্তভাবে নানাদিকে ছড়ানো থাকে বটে কিন্তু এমনভাবে থাকে যে বাইরে থেকে পরিমাপ করা হলে তাদের ঝেiট চৌম্বক প্রাবল্য প্রায় শূন্যমানের কাছাকাছি থাকে। আভ্যন্তরীণ চৌম্বকত্বের উপস্থিতি টের পাওয়া যায় বাইরে থেকে চৌম্বকক্ষেত্র আরোপ করা হয় তখন। এতে যে ডোমেইনের চৌম্বকপ্রাবল্যের মান বেড়ে যায় তা কিক্তু নয়; পৃথক্ পৃথক্ দিকে চৌম্বকায়িত ডোমেইনণ্গলি একমুখী হওয়ার চেষ্টা করে।

[^11]একটি অয়শ্টৌন্বক পদার্থের কুণ্ডল নিয়ে তার পৃষ্ঠতল (toroidal surface) বরাবর ঘনসন্নিবিষ্ট কিস্তু তড়িদ্তরিত (electrically insulated) তামার তার জড়ানো হয় এবং এতে সুস্থিত (steady) তড়িৎপ্রবাহ পাঠিয়ে চুম্বকায়নকারী চৌম্বকক্ষেত্র H সৃষ্টি করা হয়। এর ফলে অয়শ্চৌম্বক পদার্থে যে চৌম্বক আবেশন B (বর্তমান ভাষায় বলা হয় "প্রবহণ ঘনত্ব" flux density) উৎপন্ন হবে তা ঐ কুগুলের অংশবিশেষে জড়ানো গৌণকুগুলীর তড়িচ্চালক বল (অথবা তড়িতাধানের আকস্মিক, স্ষণস্থায়ী চলাচল) পর্যবেক্ষণ করে স্থির করা যায়। B’র পরিমাপ থেকে অসংখ্য ডোমেইনের পৃথক পৃথক চুম্বকত্ব কিভাবে সংগ্রথিত হয়ে অয়শ্চৌম্বক পদার্থে স্থায়ী চৌম্বকত্ব সৃষ্টি করে থাকে তার অনেক খবরই আমরা পেয়ে থাকি। B-H বক্রটটি পুফ্যানুপুফ্র ভাবে অনুসন্ধান করে এই আণবিক চোম্বকত্বের সঙ্গে বৃহড়ুত (macroscopic) চৌম্বক ক্ষেত্রের সম্পর্ক জানা যায়।

চিত্র 3-f
চিত্র $3 \mathrm{f}-এ \mathrm{X}$-অক্ষ বরাবর H-এর (উপযুক্ত একক নিয়ে) মান এবং Y-অক্ষ বরাবর B'র মানগুলি লেখচিত্রিত দেখানো হয়েছে। বিভিন্ন (H, B) স্থানাংক যুক্ত বিন্দুগুলি সম্ততরেখা (continuous line) দিয়ে যুক্ত করা হলে যে বক্র পাওয়া যায় তাকে বলে চৌ্বকায়ন বক্র (magnetisation curve)। চিত্রে দেখানো হয়েছে যে বক্রুগুলি সেগুলি পরীক্সণলক্ক বক্রের অনুগামী। লেখচিত্রের মূলবিন্দু $(H=0, B=0) O$ যে চৌম্বক অবস্থা সূচিত করছে সেটি অয়শ্চৌম্বক খণ্জটির সম্পূর্ণভাবে চুম্বকন-রহিত অবস্থা (বিভিন্ন বিচুম্বকন পদ্ধতি ব্যবহার করে এটা করা যায়)। এবার H-এর মান ধাপে ধাপে ক্রমশঃ বাড়িয়ে গেলে সংশ্লিষ্ট যে B’র মান পাওয়া যায় তার লেখচিত্র OACDE বক্রুটি—এটিকে বলে প্রারষ্ভিক চৌম্বকায়ন বক্র (initial
magnetisation curve)। E বিন্দুর স্থানাংক $\left(+\mathrm{H}_{\mathrm{m}},+\mathrm{B}_{\mathrm{s}}\right)$ । এবার প্রবাহ বাড়িয়ে যদি $\mathrm{H}>\mathrm{H}_{\mathrm{m}}$ করা হয় তাহলে B’র মান বাড়বে না- B ${ }_{S}$ এই মানেইই স্থির থাকবে। বক্রের এই পরবত্তী অংশটি অতএব, H-অক্কের প্রায় সমান্তরাল রেখা হবে (চিত্রে এটা দেখানো হয় নি)। এবার প্রবাহ ক্রমশঃ কমিয়ে নিলে H যখন $+\mathrm{H}_{\mathrm{m}}$ থেকে কম মান নেবে তখন B'র মানগুলি EDC বক্রপথে ফিরে না গিয়ে ED'C'R বক্রপথটি অনুসরণ করবে। এটা ডোমেইন চৌম্বকত্বের জন্য হচ্ছে। H-এর মান যে হারে কমছে ডোমেইনগুলি যেন তাদের চৌম্বক জড়ত্বের* জনjই আনুপাতিকভাবে বিচুম্বকায়নের দিক অনুসরণ করবে না। ফলে B-H সমতলে ED' C^{\prime} ব বক্রাংশের অবস্থান হবে OACDE বক্রের অনেক ওপরে। এমন কি $\mathrm{H}=0$ করা হক্নে চৌম্বকত্বের রেশ অনেকখানিই রয়ে গেছে, যার পরিমাপ $O R=+B_{r}$ (remanent magnetisation) এর মান থেকে পাওয়া যাবে। এবার ডোমেইনগুলিকে জোর করে বিপরীতমুখী করার চেষ্টা করা যায়, H-এর মান ঋপাত্মক করে দিয়ে, অর্থাৎ প্রবাহের দিক পরিবর্তন করে। এভাবে বিপরীতমুখী চোম্বকক্ষেত্র প্রয়োগ করে যখন $\mathrm{H}-$ এর মান $-\mathrm{H}_{\mathrm{C}}\left(\mathrm{H}_{\mathrm{C}}>0\right)$ করা গেল তখন $\mathrm{B}=0$ পাওয়া যাবে বটে কিন্তু এই শূন্য চুম্বকত্বের অবস্থার জন্য বাইরে থেকে $-\mathrm{H}_{\mathrm{C}}$ মানের ক্ষেত্র রজায় রাখতে হবে। H-এর মান আরও ঋণাত্:ক করা হলে আবেশন ডেক্টর B’র দিক হবে বিপরীতমুখী এবং B’র মান হবে ঋণাত্মক। এভাবে যখন $\mathrm{H}-$-এর মান - H_{m}, তখন সব ডোমেইনগলি হবে বিপরীতমুখী এবং বিপরীত দিকে চুম্বকায়নের সম্পৃক্ত অবস্থা আসবে। তখন B’র মান হবে - B_{S} । অতএব দেখা যাচ্ছে
$\mathrm{H}-$ এর মান $+\mathrm{H}_{\mathrm{m}} \rightarrow 0 \rightarrow-\mathrm{H}_{\mathrm{m}}$ করা হলে B ’র মান প্রারম্ভিক চৌম্বকায়নের বক্রপথ অনুসয়ণণ না করে ED'C'RE' পথে যাচ্ছে। অর্থাৎ যেন অনেকটাই পিছিয়ে পড়ছে। ‘পিছিয়ে পড়া’র গ্রীক ক্রিয়াপদ ‘ইস্তেরেও" ($\bar{\gamma} \sigma \tau \varepsilon \rho \varepsilon$ ' ω) থেকে Ewing 1891-সনে এইই প্রক্রিয়ার নামকরণ করেন ‘hysteresis’ইংরেজী উচ্চারণে হিস্টেরেসিস্--লক্ষণীীয় গ্রীক ভাষায় ‘হ’ নেই-আমরা বাংলায় এটাই বলবো, যদি৫ পরিভাষায় চৌম্বকজড়ত্ব বলে শব্দটি গৃহীত হয়েছে। J. A. Ewing 1882-তে সম্পূর্ণ নিরপেক্ষভাবে এই প্রক্রিয়াগুলি পর্যবেক্ষণ করেছিলেন।

এবারে বিপরীত প্রবাহের মান ক্রমশঃ $\left|-\mathrm{H}_{\mathrm{m}}\right|$ থেকে হ্রাস করা হলে দেখা যাবে B’র মানগুলি $E^{\prime} R^{\prime}$ পথে উখ্খিত হচ্ছে-এটি E'KR' পথ থেকে অনেক বিষ্যুত হয়ে যেন পিছিয়ে পড়ছে। তবে লক্ষ্ণণীয় যে $O R=B_{r}=\left|O R^{\prime}\right|$, ফলে $R^{\prime}-$ বিন্দুতে B^{\prime} র মান $-B_{r}$; এবার $H-এ র$ মান শূন্য থেকে

[^12]ক্রমশঃ বাড়িয়ে যখন আবার $+\mathrm{H}_{\mathrm{m}}-এ$ যাওয়া হবে তখন B'র পিছিয়ে পড়া পথ হবে R'K'E কিন্তু এটা লক্ষ্যণীয় যে E'R'K'E পথের অশশবিশেষে B'র মান ঋণাত্মক হলেও সর্বত্রই ERKE' এর মানগুলির সঙ্গে সমান। ফলে E'R'K'E বক্রাংশটি ERKE'এর প্রতিসম হয়ে দেখা দেয়। সম্পৃর্ণত আবদ্ধ বক্র ERKE'R'K'E, अতএব, একটি পৃর্ণ চুম্বকায়ন চক্রের* সূচক হিসাবে দেখা যাচ্ছে। এটিই পরবর্তীকনে হিস্টেরেসিস্ বক্র নামে খ্যাত হয়। যে হিস্টেরেসিস্ বক্রটি একালে ব্যবহার হচ্ছে, তা প্রথম পর্যবেক্ষণ করেন অবশ্য শিডা (R. Shida, Proc. Roy. Soc. 35, 404 1883)। ক্ষেপক গ্যালভানোমিটার সর্বপ্রথম ব্যবহার করেন (এই পরিমাপে) এবং বিস্তারিতভাবে হিস্টেরেসিস্ ধর্মটি অনুসন্ধান করেন হপ্কিন্সন (J. Hopkinson : Phil. Trans. 176, 455, 1885); তিনিই Coercive force, remanence প্রভৃতি নামের সূচনা করেন।

চিত্র তে মূল যে হিস্টেরেসিস্ বক্রটি দেখানো আছে, অর্থাৎ ERKER'K'E বক্রটি-এটিই প্রধান বক্র, কেননা এর চেয়ে বড় ক্ষেত্রফল-বিশিষ্ট বক্র B-H সমতলে সষ্ভব নয়। যদি প্রবাহমান এমন করা হয় যে $\mathrm{H}<\mathrm{H}_{\mathrm{m}}$, তथन -ধরা যাক উত্থান বক্রের D বিন্দুতে যদি H-এর মান কমানো হয় তাহলে লক্ক B-H বক্রাট হবে DC' $R_{1} K_{1} E_{1} R_{1}^{\prime} K_{1}^{\prime} D$ —এটি আকারে প্রধান বক্রের চেয়ে ছোট এবং আকৃতিতে এর সদৃশ (similar)। এটিকে গৌণ (secondary) হিস্ট্টেেেসিস্ বক্র বলা হয়। অনুরূপে $\mathrm{CR}_{2} \mathrm{~K}_{2} \mathrm{E}_{2} \mathrm{R}_{2}^{\prime} \mathrm{K}_{2}^{\prime} \mathrm{C}$ একটি গ্গীণ বক্র।

প্রধান ও গ্গীণ বক্র ছাড়াও হিস্টেরেসিস্ বক্র আংশিক ভাবে উৎপন্ন উপবক্র হতে পারে-তবে সবক্ষেত্রেই আবদ্ধ বক্র হবে। উদাহরণস্বরূপ বলা যায় যে যদি K-বিন্দুতে প্ৗৗছে H-এর মান $\left|-\mathrm{H}_{\mathrm{c}}\right|$ থেকে কমাতে खরু করা হয় তাহলে ঐ B'র মানগুলি বিন্দুরেখাংক্তি পথে এগিয়ে গিয়ে K-R বক্রের কোন্ত বিন্দুতে শেষ হতে পারে। উপবক্র (subcycle) গুলি প্রধান হিস্টেরেসিস্ বক্রের যে কোনও বিন্দুতে উৎপন্ন হয়ে ঐ বক্রের অন্যত প্ৰৗছে আবদ্ধ বক্র সৃষ্টি করতে পারে। গৌণবক্র থেকেও উপবক্র সৃষ্টি হতে পারে। সবক্ষেত্রেই উৎপন্ন তাপ ФHdB দিয়ে সূচিত হয়ে থাকে।

[^13]
3.4 পরিশিষ্ট B : চোম্বকজড়তার জন্য শক্তিব্যয়

কোনও চৌম্বক পদার্থের একটি খণ্ড নিয়ে যখন চুম্বকিত করা হয় তখন এই প্রক্রিয়ায় সমগ্র আয়তনে শক্তি বযয়িত হয়। তড়িৎপ্রবাহের সাহায্যে এই চুম্বকায়ন করা হলেে যে শক্তিবিনিময় হবে তা এবার আমরা আলোচনা কররেো। চিত্র তে একটি কুণুলাকারে প্রস্তুত টোম্বকপদার্থ ও সেটির হিস্ট্রেরেসিস্ বক্র দেখানো হয়েছে। কুণুলের সংশ্লিষ্ট তারে তড়িৎপ্রবাহ পাঠানো হলে, চৌ্বক প্রবহণের মান শূন্য থেকে একটি চরমমানে যাবে OACDE পথে- বেটি নির্ভর করবে অ্যাম্পীয়ার পাকসংখ্যা এবং কুণ্ডলের চোম্বক অনীহার (reluctance) উপর। কুণুলে প্রবহণ যখন বেড়েই চলেছে, তখন একটি ভোল্টেজ আবিষ্ট হবে যার মান নির্ভর করবে সময়ের সাথে চৌম্বক প্রবহণ কতটা পরিবর্তিত হচ্ছে তার উপর। আবিষ্ট ভোল্টেজ হবে
$\mathrm{V}_{\mathrm{i}}=\mathrm{n} \frac{\mathrm{d} \phi}{\mathrm{dt}} \times 10^{-8}$ volt
এখানে $\phi=t$ চিহিত সময়ের প্রবহণ $\mathrm{n}=$ কুণুলের মোট পাকসংখ্যা
প্রবাহ यদি I Amp হয় তাহলে
তাৎক্ষণিক ক্ষমতা অর্থাৎ কার্যসম্পাদনের হার $=\mathrm{nI} \frac{\mathrm{d} \phi}{\mathrm{dt}} \times 10^{-8}$, यमি কুগুলে $\mathrm{d} \phi$ প্রবহণ উৎপন্ন করার জন্য dt সময়ে dW কার্य করা হয় তাহলে
$\frac{\mathrm{dW}}{\mathrm{dt}}=\mathrm{nl} \frac{\mathrm{d} \phi}{\mathrm{dt}} \times 10^{-8} \mathrm{~J} / \mathrm{s}$
$\therefore \mathrm{dW}=\mathrm{nId} \phi \times 10^{-8} \mathrm{~J}$
यদি $\phi=$ B.a, $d \phi=a d B$, যেখানে $a=$ কুখুলের প্রস্থচ্ছেদের ক্ষেত্রষল্, $I=$ কুগুলের "অক্ষীয় ไৈर्थ্য" হলে $\mathrm{nI}=\frac{\mathrm{HI}}{0.4 \pi}$
$\therefore \mathrm{dW}=\frac{\mathrm{adBHI}}{0.4 \pi \times 10^{8}}=\frac{\mathrm{VHdB}}{0.4 \pi \times 10^{8}} \quad(\mathrm{~V}=\mathrm{al}=$ কুগুলের আয়তন $)$
কাজেই V-अয়তনের কুণ্ডলটিকে মুম্বকায়িত করার জন্য ব্যয়িত কার্य

$$
\mathrm{W}=\frac{\mathrm{V}}{0.4 \pi \times 10^{8}} \int \mathrm{HdB} \text { अर्थाৎ } \mathrm{W}=\alpha \int \mathrm{HdB}
$$

 বক্র<রেথিক (curvilinear) ত্রিভুজের ক্ষেক্রফল

এই জংশে ডোমেইনওলির সম্পুর্ণ একমুখী অব্ছান সৃচিত করছে T এই সম্পৃক বিন্দুটি R' বিন্দুতে ডোমেইনওলির সামান্য কিছু অংশ বিপরীতমুখী হয়েছে। চিৗষ্ককায়ন বল যেহেহু H_{m} থেকে শুন্যমানে আনা হয়েছে W_{1} পরিমাণ শজ্তি ডোমেইনখলির সক্চিত শজ্তির ভাওার থেকে উৎসে ফিরে যাবে।

$\overrightarrow{\mathrm{H}}$ এর দিক পরিবর্ত্ন করার পর থেকে ডোমেইনখলিকে ক্রমশঃ বিপরীত্মুখী করার কাब চলছে। বিপরীত দিকে যথন $\mathrm{H}-$ এর মান ($-\mathrm{H}_{\mathrm{m}}$) অর্থাৎ বক্কের T^{\prime} বিদ্দूচে, তখন প্রায় সব ডোল্যইনণলিই বিপরীত দিকে (T বিদ্দুর অবস্থান সাপেক্ষে 180°) মুথ করে থাকবে। এই পরিবর্তন ঘটার সময় ডোমেইন এবং/অথবা ডোেেইনপ্রাচীরণুনির বে অতিরিক্ত গতিশক্তি প্রয়োজন হয়েছে তা তড়িৎ উৎস থেকে নেওয়া হয়েছে এবং এই শক্তি বিনীন হয়েছে দুই ভাবে-(ক) প্রতিবেশী পরমাণু ৫ ক্রিস্টাল ন্যাট্চিরের উজাপ বৃদ্ধির কাজে এবং (খ) ডোেেইনগলির স্থিশিশ্তির পরিবর্তন ঘানেোর কাজ্ে

Бूম্বকায়ন যখন $-H_{m}$ থেকে 0 করা হবে তখন B^{\prime} ম মান - B_{m} থেকে $R^{\prime \prime}$ এ যাবে $T^{\prime} R^{\prime \prime}$ পথে।

 זওয়ায় প্রত্পপীয় (reversible) এবং W_{2} 'র অশ্শ হিসাবে উৎসে ফিরে যেতে পারছে। ফলে $\mathrm{R}^{\prime} \mathrm{C}^{\prime} \mathrm{T}^{\prime} \mathrm{R}^{\prime \prime}$ পথে ঢানিত হ৫য়ায় মোট অপ্রতপনীয় অशশাটি তাপ সৃষ্টির কাজে লাগহহ।

ছूষ্বকায়নের শেষ পর্यায়ে যথন $H=0$ থেকে $H=H_{m}-এ$ आনা হলো তখন B 'র মান্ন $R^{\prime \prime} H_{c} T$ পথে সঞ্চারিত হরে। $R^{\prime \prime} H_{c} T R^{\prime}$, অनנটি $T\left(B_{m}\right) R^{\prime} \Rightarrow W_{1}$ এই পর্যায়ে W_{1} পরিমাণ শক্তি উৎস থেকে নিতে হচ্ছে T-ঢে (পोছবার জनা। W_{4} এর বাকি অংশ তাপ উৎপাদন করছে।

কজজেই দেখা যাচ্ছে কুণুলে তাপ উৎপাদন করছে চৌম্বকজড়তত বক্রের অভ্যন্তরে অন্তর্ভুক্ত ক্কের্রফলে সংশ্লিষ্ট শক্তি। প্রতিবার ঐই বক্রের পুনরাবৃত্তি করা হলে প্রতি চক্রে উৎপন্ন তাপশক্তির পরিমাণ হবে $W=\Phi H d B$ यা কুণুলের উঞ্ণতা বৃদ্ধি করবে।

3.5 भরিশিষ্ট C : কৃণুলের জ্যামিতিক বৈশিষ্ট)

কল্পনা করা যাক যে একটি বেলনাকৃতি দণু রয়েছে যার দ্দ্ঘ্য 1, প্রস্ছচ্ছেদ একটি বৃত্ত (যার ব্যাসার্ধ r); এবার দণুটিকে একটি R-ব্যাসার্ধের (চিত্র 3 g দ্রঃ) বৃত্তের আকারে বাঁকানো হলো এমনভাবে যে প্রান্তদুটি মুঢোমুখি করে জুড়ে দেওয়া হয় (ওয়েন্ডিং করে)

চিত্র 3-g ($\therefore \quad 1=2 \pi r$)|"সাইকেলের চাকার জ্যামিতিক বৈশিষ্ট্য অনেকটা এরকমই বা মোটর লঞ্চে যে ভাসমান বলয় (anchor ring) ব্যারহৃত হয় তাও অনেকটা এরকমই। গণিতের ভাষায় এগুলিকে বলা হয় টোরয়েড (toroid) : r ব্যাসার্ধের একটি বৃত্ত নিয়ে সেটিকে এমনভাবে ঘোরানো হলো যে (1) বৃত্তের কেন্দ্র C-এর সঞ্চারপথ হচ্ছে Rব্যাসার্ধের দ্বিতীয় একটি বৃত্ত এবং (2) ঘূর্ণনের সময় সর্বদাই r-বৃত্তের সমতলে থাকবে ঘূর্ণনাক্ষটি। এভাবে r-বৃত্তের পরিধি বে আবদ্ধ পৃষ্ঠতল (closed surface) উৎপন্ন করবে সেটাই হচ্ছে টোরয়ড্ বা টোরাস্ (torus)। r-বৃক্জের কেন্দ্র C যে বৃত্তপথ অনুসরণ করলো সেটি টোরাসের "অক্ষ"-ললক্ষণীয় যে অক্ষটি কিন্তু ঋজুরেখ নয়, বৃত্তাকার এবং এই অক্ষটির সমতল ঘূর্ণনাক্ষের সঙ্গে লম্ব। কুগুলের মধ্য সমতলের (median plane) প্রস্থচ্ছেদ চিত্র $3 \mathrm{~h}-এ$ দেখানো আছে।

কুঙলের ব্যাস D ধরা হলে $D=2 R=\frac{1}{2}\left(D_{i}+D_{0}\right)$, যেখানে $D_{0}=2 R+r, D_{i}=2 R-r$; লক্ষ্ণণীয় যে কুণুলীর অক্ষ থেকে ρ দূরত্বে $\mathrm{H}=\frac{0.4 \pi \mathrm{~N}_{1} \mathrm{I}_{1}}{2 \pi \rho}$, কাজেই

$$
\text { গড় ক্ষেত্র } \mathrm{H}_{\mathrm{a}}=\frac{2}{\mathrm{D}_{0}-\mathrm{D}_{\mathrm{i}}} \int_{\mathrm{r}_{\mathrm{i}}}^{\mathrm{r}_{0}} \frac{0.4 \pi \mathrm{~N}_{1} \mathrm{I}_{1}}{2 \pi \rho} \mathrm{~d} \rho=\frac{0.2 \mathrm{~N}_{\mathrm{I}} \mathrm{I}_{1}}{\left(\mathrm{r}_{0}-\mathrm{r}_{\mathrm{i}}\right)} \ln \left(\frac{\mathrm{r}_{0}}{\mathrm{r}_{\mathrm{i}}}\right)
$$

আবার $\mathrm{H}=\frac{0.4 \pi \mathrm{~N}_{\mathrm{I}} \mathrm{I}_{\mathrm{I}}}{2 \pi \mathrm{r}_{\mathrm{a}}}=\frac{0.2 \mathrm{~N}_{\mathrm{I}} \mathrm{I}_{1}}{\frac{\mathrm{r}_{0}+\mathrm{r}_{\mathrm{i}}}{2}}=\frac{0.4 \mathrm{~N}_{\mathrm{I}} \mathrm{I}_{\mathrm{I}}}{\mathrm{r}_{0}+\mathrm{r}_{\mathrm{i}}}$

佰 3-h

$$
\therefore \frac{\mathrm{H}_{\mathrm{a}}}{\mathrm{H}}=\frac{1}{2}\left(\frac{\mathrm{r}_{0}+\mathrm{r}_{\mathrm{i}}}{\mathrm{r}_{0}-\mathrm{r}_{\mathrm{i}}}\right) \ln \left(\frac{\mathrm{r}_{0}}{\mathrm{r}_{\mathrm{i}}}\right)
$$

ধরা যাক $\mathrm{r}_{\mathrm{i}}=6 \mathrm{~cm}, \mathrm{r}_{0}=8 \mathrm{~cm}$
তारলে $\frac{H_{a}}{H}=\frac{1}{2} \cdot \frac{14}{2} \ln \left(\frac{8}{6}\right)=1.0069$
অতএব, H_{a} 'র পরিবর্তে H বসালে ত্রুটির পরিমাণ 6.9/1000।

3.6 পরিশিষ্ট D : প্রমাণ সলিনয়েডের কিছ বৈশিষ্ট্য

সাধারণত একটি পোর্সেলেইইনের (porcellain) বেলনাকার ঋজুরেথ নল (যার দৈর্ষ্য কমবেশি 1 মিটার) নিয়ে তার গায়ে ঘনসন্নিবিষ্ট করে সুঅন্তরিত তামার তার জড়িয়ে প্রাথমিক কুল্যলী তৈরী করে নেওয়া হয়। প্রবাহের পথ হবে হেলিক্যাল (helical) কেননা জড়ানো তার একটি হেলিক্স সৃষ্টি করবে। তারের গায়ে যে অন্তরক বস্তুটি থাকে সেটি যাতে কালক্রমে নষ্ট না হয়ে যায় সেজন্য এই হেলিক্সের উপর পৃথক অন্তরকের প্রলেপও দেওয়া থাকে। ধরা যাক $\left(D_{p}\right)_{i}$ প্রাথমিক কুগুলীর অন্তর্ব্যাস = পোর্সেলেইন বেলনের বহির্বাস

তারজড়ানো অবস্থায় প্রাথমিক কুগুলীর বহির্ব্যাস $=\left(\mathrm{D}_{\mathrm{p}}\right)_{0}$ ধরা যাক
তাহলে প্রাথমিক কুণ্ডলীর গড় ব্যাস $\quad D_{p}=\frac{1}{2}\left[\left(D_{p}\right)_{i}+\left(D_{p}\right)_{0}\right]$

$$
\text { এবং প্রস্থচ্ছেদের ক্ষেত্রফল } \mathrm{A}=\pi \mathrm{D}_{\mathrm{p}}^{2} / 4
$$

সাধারণত $\left(D_{p}\right)_{\mathrm{i}} \cong 3 \mathrm{~cm}=300 \mathrm{~mm}$
অন্তরকসহ তারের ব্যাস $=\mathrm{d}_{\mathrm{w}} \sim 1 \mathrm{~mm}: \ll\left(\mathrm{D}_{\mathrm{p}}\right)$
গৌণ কুণুলীর আভ্যত্তরীণ ব্যাস $\left(\mathrm{D}_{\mathrm{s}}\right)_{\mathrm{i}} \geq\left(\mathrm{D}_{\mathrm{p}}\right)_{0}$
গ্গৌণ কুণুলীর তারের ব্যাস $=d_{w}^{\prime} \ll d_{w}$ গৌণকুণ্ডলীর গড় ব্যাস $=\mathrm{D}_{\mathrm{s}}=\frac{1}{2}\left[\left(\mathrm{D}_{\mathrm{s}}\right)_{\mathrm{i}}+\left(\mathrm{D}_{\mathrm{s}}\right)_{0}\right]$

গৌণকুণ্ডলী সচরাচর প্রাথমিক কুণুলীর মধ্যস্থলে থাকে। এ অবস্থায় $H_{p}=0.4 \pi\left(\frac{N_{p}}{L_{p}}\right) I_{p}$
এই সৃত্রটির স্থূলতা সম্বন্ধে সচেতন থাকবেন। সলিনয়েডে যে তারের স্তর জড়ানো থাকে তার বেধ Δr ধরা যাক। সলিনয়েডের গড় ব্যাসার্ধ यদি r হয় এবং $\Delta r \ll r$ হয় তখन H_{p} এর শুদ্ধ মান হবে

$$
\mathrm{H}_{\mathrm{p}}=\frac{1}{2} \frac{0.4 \pi \mathrm{~N}_{\mathrm{p}} \mathrm{I}_{\mathrm{p}}}{\sqrt{\mathrm{r}^{2}+\left(\mathrm{L}_{\mathrm{p}} / 2\right)^{2}}}=\frac{0.4 \pi \mathrm{~N}_{\mathrm{p}} \mathrm{I}_{\mathrm{p}}}{\mathrm{~L}_{\mathrm{p}} \sqrt{1+(2 \mathrm{r} / 4)^{2}}}
$$

Δr यদি r এর তুলনায় অনুপেক্ষণীয় হয়, তাহলে যে সংশোধন প্রয়োজন সেটি নীচে দেওয়া হলো।

ধরা যাক $L_{p}=100 \mathrm{~cm}$; তাহলে সংশোধন হবে নিম্নরূপ

$\mathrm{r}=1 \mathrm{~cm}$	$\left(2 \mathrm{r} / \mathrm{L}_{\mathrm{p}}\right)^{2}=4 \times 10^{-4}$	$\mathrm{H}_{\mathrm{p}}=0.4 \pi \frac{\mathrm{~N}_{\mathrm{p}}}{\mathrm{L}_{\mathrm{p}}} \mathrm{I}_{\mathrm{p}}(1+\varepsilon):$	$\varepsilon=-.0002$
$=2 \mathrm{~cm}$	16×10^{-4}		-.0008
$=3 \mathrm{~cm}$	36×10^{-4}		-.0018
$=4 \mathrm{~cm}$	64×10^{-4}		-.0032
$=5 \mathrm{~cm}$	100×10^{-4}		-.0050

3.7 अनूশীलनी :

(1) চৌম্বক ক্ষেত্র এবং চৌম্বক প্রবহণ এদের সংজ্ঞা এবং একক বলুন।
(2) প্রবাহ পরিমপপে যে অ্যাম্মিটার ব্যবহৃত হয়েছে তার সূক্মতা কত?
(3) ক্ষেক গ্যালভানোমিটার কি নীতিতে কাজ করে?
(4) ক্ষেপক গ্যালভানোমিটার দিয়ে কি সুস্থিত দিষ্ট প্রবাহ মাপা যায়?
(5) ‘ক্রাস্তিক অবমন্দন’ (critical damping) কি ভালো করে বুঝিয়ে দিন।
(6) দাসোঁভাল (d'Arsonval) গ্যালভানোমিটারের কুণুলীর গতিকে বেশ দ্রুত অবমক্দিত করা হয় ক্ষেপক গ্যালভানোমিটারে তা করা হয় না কেন? গঠনশৈলীর কি তফাৎ রয়েছে সেটাও লক্ষ্য করুন।
(7) একটি স্টেপডাউন ট্রান্সফর্মার (230 : 12.6-0-12.6.) যদি দেওয়া থাকে তাহলে এর B-H বক্র কি এখানে উল্লিথিত পদ্ধতিতে করা যাবে? তখন দৈর্ঘ্য ইত্যাদি কিভাবে পরিবর্তন করতে হবে, বলুন।
(8) স্টাইন্ম্টেস্-সূত্র (Steinmetz) इচ্ছে $W_{H}=\eta\left(B_{\max }\right)^{1.6}$

এখানে $\mathrm{W}_{\mathrm{H}}=$ চৌম্বক জড়তার জন্য ব্যয়িত শক্তির হ্রাস (প্রতি চক্রে প্রতি ঘন মিটারে জুল এককে)

$$
\eta=\text { স্টাইনমেটস্ সহগ (Steinmetz Coefficient) }
$$

আপনার লক্ধ B-H বক্রের থেকে W_{H}, $B_{\max }$ স্থির করুন এবং আপনার অয়শচুম্বকটির η 'র মান নির্ণয় করুন।
（9）B－H आবদ্ধ বত্রুটি অসিলোস্কোপে দেখানো চলে। আপনার বর্তনীর কে小ে কে小ে জংশে কি কি যুক্ত করে তা করা সষ্তব এঁকে দেখান।
（10）একটি হিস্টেটেরেসিস্ বক্র आঁকা হলে जার বিভিন্ন বিন্দুতে B－H এর বে মানঔলি পাওয়া যাবে তার বৈশিষ্টাত্লি লিখুন।
（11）দूটि অয়শ্চৌম্বক পদার্থ নিয়ে পরীক্ষণ করার পর দুটি হিস্টেটেরেস্ বক্র পাওয়া গেল যা চিত্রে দেখানো হয়েছে। এদের তুলনামৃনক आলোচনন লিখুন। একটি কাঁচা লোহার অন্যটি Alnico স্টীলের। কোনটা কার বক্র এবং কেন তা বিশদভবে লিখুন।
（12）H এবং B’র S．l．একক कि，লিখুन।
（13）স্টাইন্মেটে্（Steinmetz）সৃত্রটি এই

 ব্যয়িত শক্তির মান）এখানে $\mathrm{B}_{\max }$－এর একক $\mathrm{Wb} / \mathrm{m}^{2}$ এ হলে W_{H}－এর প্রতি চর্রে একক কত？आপনার লক বক্রে এটি প্রয়োগ করে দেখুন，$\Phi H d B-$ স সল্গে সংগতিপৃর্ণ হয়েছে কি না।
（14）अসিলোস্কোপের সাহা্যে B－H বক্র দেখানোর বর্তনী দেওয়া গেল। ハে পরীক্ষণাগারে অসিলোে্কোপ সহজলভ সেখানে অনায়াসেই এই পরীক্ষণ করা যায়।
（15）হিস্টেরেসিস－－বক্রের মৃন বক্র কোনটি？উপবক্রখলির প্রকৃতি কি রকম হয় ব্যাখ্যা করুন।
（16）आপনার্ পরীক্ষণে H －এর মানে কি ধরনের ঞ্রুটি আসতে পারে অলোচনা করুন।
（17）ক্কেপ গ্যালডানোমিটরের কার্যনীতি কি বলুন। এর পর্বায়কাল বেশী না হলে কি পরিমাণ ত্রুটি আসবে，আলোচনা করুন।
（18）পরীক্ষধীন ব্শু কুఆল－আকারে পাওয়া গেল না－একটি বেলনাকার দঔ পাওয়া গেল। সেক্ষেত্রে কি কি করণীীয় আলোচনা করুন।

একক 4
 সঙ্গে প্রবাহের পরিবর্তন পর্যবেক্ষণ করে অनুনাদ নিরূপণ

গঠन

4.1 প্রস্তাবনা, উफ্দেশ্য
4.2 ख্রেণীসংয়ুক্ত R-L-C বর্তনীর অनूनাদ পর্যবেশ্শশ
4.2.1 R-L-C বর্তनীতে কম্পাষ্ক পরিবর্তনের প্রতিক্রিয়া

4.2.2 পরীীশ্কের জন্য প্রয়োজনীয় যঞ্ধ্রাদি

4.2.3 পরী㸚 কার্यক্রম
4.3 সমাস্তরাল অनूनाদ পর্যবেশশ
4.3.1 মৃলগত তত্তু ও ব্যবহার্य সৃত্রাদি
4.3.2 পরীশ্মণের কার্यক্রম

4.3.3 পরীम्मगनক্ধ ফल

4.4 अनूশীलनी

4.1 প्रস্তाবना

এ. সি. মেইন্স্ থেকে যে প্রত্যাবঞ্ণী ভোল্টেজ (Alternating Voltage) সরবরাহ করা হয় তার r.m.s. মান 220 Volt, কম্পাংক 60 Hz , তরঙ্গরাপ প্রায় সাইন্ধর্মী। এটি স্থির কম্পাক্কের প্রবাহ, आমরা জানি। একটি রোধক R, একটি আবেশক L এবং একটি ধারক C यদি পরিবাহী তার দিয়ে শ্রেণীতে সংযুক্ত করা হয় তাহলে এইই শ্রেণীসংযুক্ত R-L-C বর্তনীতে আমরা প্রতাবর্তী ভোল্টেজ প্রয়োগ করতে পারি। यে প্রত্যাবর্তী প্রবাহ এত সঞ্চারিত হবে তার তরঙ্গরূপ সই্-্রর্মীই হবে কিষ্ু প্রবাহের দশামান আরোপিত তোল্টেজ্েের দশামান থেকে সাধারণত পৃথক হবে। তত্ঞালোচনা থেকে জানা যায় যে L এবং C’র ৩ুণফল यमि এমন হয় যে $\left[\frac{1}{2 \pi \sqrt{\mathrm{LC}}}\right]$ র মান $=\mathrm{f}=$ आরোপিত ভোল্টেজের কম্পাক্ক, তাহলে এই শ্রেণীসংযুক্ত বर्তनीতে সর্বাধিক প্রবাহ পাওয়া যাবে। একেত্রে বলা হয় বর্তনীটি শ্রেণী-অনুনাদী অর্থাৎ এটি Series Resonant Circuit, অनুনাদ হয় প্রবাহের।

শব্দবিষ্ঞানের সাথে এর সাদৃশ্য নক্ষ করেই 'অনুনাদ' নামটি দেওয়া হয়েছে। শব্দতরঙ্গে যখন অনুনাদ ঘটে তখন স্পন্দকের ও বহিঃপ্রযুক্ত বলের দশামানের পার্থক্য বিলুপ্ত হয় এবং স্পন্দকের স্বাভাবিক কস্পাঙ্ক

বলের কম্পাংকের সমান হয়ে যায়। এর ফলে বলের উৎস থেকে স্পন্দকে শক্তিসঞ্চারণ হয় সর্বাধিক, এটি শক্তির অনুনাদ।

তড়িদ্বর্তনীর বিশ্লেষণে অন্য এক ধরনের ‘অনুনাদে’র কথা প্রচলিত রয়েছে। ধরা যাক একটি ধারকের সমনন্তরালে আবেশক (এবং রোধক) যুক্ত করলে যে $C \|(L+R)$ বর্তনী হলো সেটিকে এমন প্রত্যাবত্তী ভোল্টেজে যুক্ত করা হলো যার $\omega=1 / \sqrt{\mathrm{LC}}$, এক্ষেত্রেও প্রবাহ এবং ভোল্টেজ সমলয়-যুক্ত (Synchronous) হবে অর্থাৎ দশাপার্থক্স হবে শূন্য (বা 2π-এর অখণ্ড গুণিতক) কিন্তু প্রবাহের মান হবে সর্বনিম্ন, প্রায় শৃন্যের কাছে। এটিকে বলে ‘সমান্তরাল অনুনাদ’, যদিও প্রবাহ প্রায় শূন্য—এটি বর্জনকারী বর্তনী (Rejetor Circuit) বলেৈই সমধিক পরিচিত। বর্তনী খণ্জটি অনুনাদের কাছাকাছি হলে অর্থাৎ $1 / \sqrt{\text { LC }}$ যখন ω ’র কাছাকাছি তখন প্রবাহের প্রকৃতি কি হবে? বর্তনীর এই আচরণগুলি আমরা পরীক্ষণ কৃরে দেখবো।

উप्रिশ্য

আমদের জানা প্রয়োজন কিভাবে এই অনুনাদ ঘটে থাকে। নির্দিষ্ট শীর্ষমানযুক্ত প্রত্যাবত্তী ভোল্টেজ আরোপিত হলে বর্তনীতে যে প্রত্যাবত্তী প্রবাহ সঞ্চালিত হয় তার শীর্ষমান নির্ভর করে ভোল্টেজের শীর্ষমান V_{m} এবং কম্পাংক ω ছাড়া বর্তনীর কয়েকটি মানের উপর। রোধক R , আবেশক L এবং ধারক C পৃথকভবে প্রবাহের পথে প্রতিঘাত (reactance) করে থাকে। এদের প্রকৃতি সম্পূর্ণ আলাদা। পৃথকভাবে দেখলে, বর্তনীতে রোধক কেবলমাত্র প্রবাহের মান নিয়ন্ত্রণ করে থাকে, দশা পরিবর্তনে এর কোনও ভৃমিকা নেই। কেবল একটি আবেশক L যদি বর্তনীতে থাকতো, তাহলে এর কুগুলীর চৌম্বক প্রবহণ (magnetic flux) থেকে যে আবিষ্ট তড়িৎ চালক বল (e.m.f.) সৃষ্টি হয় তা যেহেতু -L $\frac{\mathrm{dI}}{\mathrm{dt}}$ 'র উপর নির্ভর করছে, এর প্রতিঘাত হবে $\mathrm{X}_{\mathrm{L}}=\omega \mathrm{L}$ এবং এটি প্রবাহের দশামানকে -90° পরিমাণে পরিবর্তিত করবে। আবার এককভাবে ধারক যুক্ত থাকনে বর্তনীতে প্রতিঘাত হবে $X_{C}=1 / \omega C$, কেন না ধারকের প্রান্তিক আধান পর্যায়ক্রমে পরিবর্তিত হয় বলে $Q(t)=\int I(t) d t$ এবং V_{C} 'র দশার পরিবর্তন হবে $+90^{\circ}$ । কাজেই শ্রেণীতে সংযুক্ত হলে R-L-C বর্তনীতে
$R-এ র$ প্রান্তিক বিল্ল $V_{R} \Rightarrow V_{i}=$ আরোপিত ভোন্টেজ সাপেক্ষে দশান্তর $=0$
$L-এ র$ প্রান্তিক বিভব $V_{L} \Rightarrow V_{i}$ সাপেক্ষে দশান্তর -90°
$C-এ র$ প্রান্তিক বিভব $V_{C} \Rightarrow V_{i}$ সাপেক্ষে দশান্তর $+90^{\circ}$

অতএব দুটি বিপরীতমুখী ভোন্টেজ V_{L} এবং V_{C} এই বর্তনীতে সক্রিয়। অবস্থা যদি এমন হয় যে $\left|\mathrm{V}_{\mathrm{L}}\right|=\left|\mathrm{V}_{\mathrm{C}}\right|$ তখन কেবল ওহ্মীয় রোধ বর্তনীতে সক্রিয় প্রতিরোধ সৃষ্টি করুবে, ফলে অনুনাদ কালে প্রবাহ হবে সর্বাধিক।

যখন অনুনাদ ঘটে নি তখন বর্তনীর আচরণ কি? অনুনাদ কম্পাংক $\left(\omega_{0}\right)$ থেকে কম বা বেশি মানের ω ব্যবহৃত হলে বর্তনীর প্রবাহ క্রাস পাবে। কিন্তু এই পতন কতখানি তীক্ষ্ তা নির্ভর করবে বর্তনীর তথাকথিত Q (Quality) এর উপর। আমরা Q-এর মানও পর্যবেক্ষণ করতে চাই।

4.2 শ্রেণীসংযুক্ত R-L-C বর্তনীর অনুনাদ পর্যবেক্ষণ

মূলগত তত্ত্ব ও ব্যবহার্য সূত্রাদি

চিত্র 4 a-তে একটি শ্রেণীসংযুক্ত R-L-C বর্তনীচিত্র দেখানো হয়েছে। t-চিহিত সময়ে অডিও-শ্পন্দক থেকে প্রাপ্ত ভোল্টেজ V(t) হলে ধরা যাক এটি বিশুদ্ধ সাইনধর্মী, যার কম্পাংকে ডায়াল থেকে প্রাপ্ত মান

何 4-a
$\mathrm{f}=\frac{\omega}{2 \pi}$ ফলে $\mathrm{V}(\mathrm{t})=\mathrm{V}_{\mathrm{m}} \sin \omega \mathrm{t}$ लেখা যায় যেখানে $\mathrm{V}_{\mathrm{m}}=$ সাইনবক্রের শীর্ষমান অতএব $V_{i} \equiv$ বর্তনীতে অন্তর্বিষ্ট (input) ভোল্টেজের r.m.s. মান হলে
$\mathrm{V}(\mathrm{t})=\mathrm{V}_{\mathrm{m}} \sin \omega \mathrm{t}=\sqrt{2} \cdot \frac{\mathrm{~V}_{\mathrm{m}}}{\sqrt{2}} \sin \omega \mathrm{t}=\sqrt{2} \cdot \mathrm{~V}_{\mathrm{i}} \sin \omega \mathrm{t}$
এবং বর্তनীর প্রবাহ $\mathrm{I}(\mathrm{t})=\sqrt{2} \frac{\mathrm{~V}_{\mathrm{i}}}{\mathrm{Z}} \sin (\omega \mathrm{t}-\phi)$

যেখানে $Z=$ বর্তনীর মোট প্রতিরোধক (impedance)

$$
\begin{equation*}
=\sqrt{\mathrm{R}^{2}+\mathrm{X}^{2}}=\sqrt{\mathrm{R}^{2}+\left(\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}\right)^{2}}=\sqrt{\mathrm{R}^{2}+\left(\omega \mathrm{L}-\frac{1}{\omega \mathrm{C}}\right)^{2}} \quad \cdots \tag{3}
\end{equation*}
$$

$\mathrm{R}=$ বর্তনীর মোট ওহ্মীয় রোধ (Ω)
$X=$ বर्তनীর মোট প্রতিঘাত

$$
\begin{align*}
&=\mathrm{X}_{\mathrm{L}} \text { (আবেশজনিত প্রতিঘাত) - } \mathrm{X}_{\mathrm{C}} \text { (ধৃতীয় প্রতিঘাত) } \\
&=\omega \mathrm{L}-1 / \omega \mathrm{C} \tag{4}\\
& \phi=\text { প্রবাহের দশান্তর [ভোল্টেজ তরঙ্भের সাপেক্ষে প্রবাহ তরঙ্भের] } \\
&=\tan ^{-1}\left(\frac{\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}}{\mathrm{R}}\right)=\tan ^{-1}\left(\frac{\omega \mathrm{~L}-1 / \omega \mathrm{C}}{\mathrm{R}}\right) \tag{5}\\
& \text { অর্থাৎ } \tan \phi=\frac{\mathrm{I}(\omega \mathrm{~L}-1 / \omega \mathrm{C})}{\mathrm{IR}}=\frac{\mathrm{V}_{\mathrm{L}}-\mathrm{V}_{\mathrm{C}}}{\mathrm{~V}_{\mathrm{R}}} \tag{6}
\end{align*}
$$

চিত্র 4 b-তে বিভিন্ন ভোল্টেজের ভেক্টরচিত্র দেখানো হয়েছে।
চিত্র 4 c -তে বিভিন্ন ভোল্টেজের সময়ের সাথে পরিবর্তন দেখানো হয়েছে।

4.2.1 R-L-C বর্তনীতে কম্পাক্ক পরিবর্তনের প্রতিক্রিয়া

এতক্ষণ আমরা ω-কে ধ্রুবমানের মনে করেছি। यদি ω-কে পরিবর্তন করা হয় তাহলে বর্তনীর প্রবাহে এর কি প্রতিক্রিয়া হবে? ধরা যাক অন্তর্বি্ট ভোল্টেজ-এর শীর্ষমান V_{m} निর্দিষ্টমানে স্থির রেখে @-কে সন্ততভাবে ক্রমাগত পরিবর্তন করা হলো। Z-এর রাশিমালা থেকে সমীঃ (3) দেখা যায়

$$
\begin{equation*}
Z=\omega \text { 'র অপেকক } \equiv Z(\omega)=\sqrt{R^{2}+\left(\omega L-\frac{1}{\omega C}\right)^{2}} \ldots \tag{3}
\end{equation*}
$$

চিত্র 4 d-তে $Z(\omega)$ কে ω 'র সাপেক্ষে চিত্রিত করা হয়েছে; ঐ চিত্রে $X_{L}=\omega L$ এবং $X_{C}=1 / \omega C$ ’ও চিত্রিত। ভাল করে এই পরিবর্তনগুলি লক্ষ্য করুন।

যখন (1) ω 'র মান খুব কম, $\omega \mathrm{L} \approx 0, \mathrm{Z} \approx 1 / \omega \mathrm{C}=\mathrm{X}_{\mathrm{C}}=$ ধৃতীয় প্রতিঘাত
(2) ω 'র মান খুব বেশী, $\omega \mathrm{L} \rightarrow$ বৃহৎ, $Z \approx \omega \mathrm{~L}=\mathrm{X}_{\mathrm{L}}=$ আবেশকীয় প্রতিঘাত
(3) A-চিহ্নিত বিন্দুতে, $X_{L}=X_{C}$, তখন $Z=R=$ ওহ्মীয় রোধ

ফলে Z-এর মান খুব বৃহৎ মান থেকে

可 4 -d

ক্রমশ কমে গিয়ে A বিन্দুতে অবমমান $(=\mathrm{R})$ পাচ্ছে এবং এরপর অর্থাৎ $\omega>\omega_{\mathrm{A}}$ रলে ক্রমশ Z -এর মান বেড়ে গিয়ে X_{L} সরলরেখাটির asymptote হচ্ছে। A-বিন্দুতে ω 'র মানকে বলা হয় কস্পাংকের অনুনাদী মান কেননা এখানে Z অবম হলে প্রবাহের মান চরম হবে। আরও লক্ষ্ষণীয় যে A-বিন্দুতে
ধারকের জন্য প্রতিঘাত = আবেশকের প্রতিঘাত

এবং এই প্রবাহ দুটি বিপরীত দশায় ক্রিয়াশীল বলে এদের যৌথ প্রতিক্রিয়ায় দশান্তর শূন্য অর্থাৎ প্রবাহ এবং অন্তর্বিষ্ট ভোন্টেজ সমলয় প্রাপ্ত। অতএব অনুনাদ কালে (যখন $\omega=\omega_{\mathrm{r}}$)
(ক) প্রবাহ I এবং অন্তর্বিষ্ট ভোল্টেজ সমলয়যুক্ত
(খ) প্রবাহের মান চরম $=\mathrm{I}_{\text {max }}$ ধরা যাক
চিত্র 4 e-তে 0 ’র সাথে প্রবাহের ঐই পরিবর্তন লেখচিত্রিত হয়েছে।

$$
\begin{equation*}
I=I(\omega)=\sqrt{2} \frac{V_{i}}{Z}=\frac{\sqrt{2} V_{i}}{\sqrt{R^{2}+(\omega L-1 / \omega C)^{2}}} \tag{7}
\end{equation*}
$$

(7) নং সমীকরণ থেকে এবং চিত্র 4 e থেকে এটা স্পষ্ট যে
(1) স্বল্প ω 'র ক্ষেত্রে $\mathrm{I}(\omega)$ র মান অল্পই হয়

চिত্র 4-e
(2) ক্রমশঃ ω বাড়িয়ে গেলে $\mathrm{I}(\omega)$ বাড়ে এবং চরম মান $\mathrm{I}_{\max }$ পर्यন্ত উन्नীত হয়, তখন $\omega=\omega_{r}$ ।
(3) পরে যখন $\omega>\omega_{r}$ তখন I-এর মান ক্রমশঃ একান্তভাবে (monotonically) কমে আসে। $\omega_{r}-$ ই বর্তনীর অনুনাদ কম্পাংক।
(4) তত্ত্ত থেকে জানা যায়

$$
\omega_{\mathrm{r}}=\frac{1}{\sqrt{\mathrm{LC}}}
$$

(8)
$\left[\frac{\mathrm{dI}}{\mathrm{d} \omega}=0\right.$ করা হলে, এই সমীকরণ থেকেই ω_{r} পাওয়া যাবে]

চিত্রে ω_{1}, ω_{2} এই দুটি কম্পাংক দেখানো হয়েছে ; এদের বলা হয় অর্ধ-ক্ষমতার কম্পাংক (Halfpower frequency)। 1- বক্রের ক্ষীণতার তথা তীক্ষ্নতার (sharpness) পরিচায়ক সংখ্যাটিকে বলা হয় বর্তনীর Q-উৎপাদক (Q-factor) বা Q-অংক। Q-এর সংভ্ঞা এই

$$
\begin{equation*}
\mathrm{Q} \equiv \frac{\omega_{\mathrm{r}}}{\omega_{2}-\omega_{1}}=\frac{\omega_{\mathrm{r}} \mathrm{~L}}{\mathrm{R}}=\frac{1}{\omega_{\mathrm{r}} \mathrm{CR}}=\frac{1}{\mathrm{R}} \sqrt{\frac{\mathrm{~L}}{\mathrm{C}}} \tag{9}
\end{equation*}
$$

Q-অংকটি নির্দেশ করে বর্তনীটি অনুনাদ-কম্পাংকের কাছে এলে কত দ্রুত অনুনাদ-প্রাপ্ত হতে পারে। চিত্রে দুটি অনুনাদ-বক্র দেখানো হয়েছে যাদের ওহ্মীয় রোধের মান R একই এবং $\mathrm{L}_{1} \mathrm{C}_{1}=\mathrm{L}_{2} \mathrm{C}_{2}$ । এদের Q_{1} এবং Q_{2} কতখানি পৃথক তা বোঝা যায়।

4.2.2 পরীক্ষণের জন্য প্রয়োজনীয় যষ্ত্রাদি

(1) একটি সারাফ্-বোর্ড (Saraf Board)*। [ব্যবহৃত মিটারগুলি নিজেদের প্রয়োজন অনুসারে পরিবর্তন করে নিতে হবে। ভোল্ট্ পরিমপের জন্য একটি $50 \mu \mathrm{~A}$ full scale deflection, মাইক্রোঅ্যাম্মিটার, যার সঙ্গে একটি ডায়োড শ্রেণীতে যুক্ত রয়েছে দেখানো আছে। আজকাল ইলেকট্রনিক ডিজিটাল ভোল্টমিটার ব্যবহার করাই উচিত।]
(2) একটি পরিবর্তন-বোগ্য (variable) কম্পাংকের অডিও-স্পন্দক যা সাইন্-তর ন্গ উৎপাদক। এর চক্রযললকে কম্পাংকের মান প্রোথিত থাকে। তবে স্পন্দকের সঙ্গে এটিকে যথাযথ মানাংকিত (calibrate) করে নেওয়া প্রয়োজন। অসিলোস্কোপের X-X প্রান্তে অডিও-স্পন্দকের এবং Y-Y বরাবর প্রমাণ স্পন্দকের আরোপ করে লিসাজু-বক্র (Lisajous' Figures) দেখতে হবে। বক্রটি ঋজুরেখ হনে, চক্র ফলকের (dial) মান, প্রমাণ স্পন্দকের সাপেক্ষে মানাংকিত করা যাবে।
(3) একটি ভাল ডিজ্রিটাল মিটার। এ.সি. মিলি-অ্যাম্মিটার পাওয়া না গেলে, $\mathrm{V}_{\mathrm{R}_{1}}, \mathrm{~V}_{\mathrm{L}}, \mathrm{V}_{\mathrm{C}}$ মেপে নিতে হবে এবং তা থেকে I -এর মান গণনা করে নিতে হবে।

[^14]
4.2.3 পরীক্ষণের কার্যক্রম

(1) চিত্র 4-a অনুযায়ী সংযোগ করার জন্য সারাফ্-বোর্ড চিত্র 4-f থেকে R-এর যে কোনও মান (ধরা যাক $R_{1}=2 K \Omega$) नেওয়া হলো। এবার L_{1} এবং $C_{1}-$ এর দুটি মান বেছে নিয়ে

[Physies threugh experiment, Vol I p89; Ed. B. Saraf 1975]
চिত্র 4-f
$\mathrm{f}_{1}=1 /\left(2 \pi \sqrt{\mathrm{~L}_{1} \mathrm{C}_{1}}\right)$-এর মান গণনা করতে হবে। অডিও স্পন্দকের ডায়ালের সৃচক কাঁটাটি এই মানে বসিয়ে দিন। এবার $\mathrm{R}_{1}-\mathrm{L}_{1}-\mathrm{C}_{1}$ শ্রেণীসংযোগ করার পর স্পন্দকটি অন্ করতে হবে। প্রবাহ পরিমাপের জন্য দেওয়া এ. সি. মিলিঙ্যাম্মিটার কত পাঠ দেয় দেখুন। এই পাঠ খুব কম মানের হবে, R-এর মান পরিবর্তন করে এটা বাড়ানো যাবে। মিলিআ্যাম্মিটারের স্কেলের শেষ প্রন্তের কাছাকাছি কোনও মানে এটিকে রাখুন।
(2) अডিও স্পন্দকের ডায়াল ঘুরিয়ে দেখুন প্রবাহের মান কমছে কি না। সর্বাধিক মানে গেলে মিটারের পাঠ (এটি r.m.s. এককে রয়েছে) নিন; এটি $I_{\max }$ এর মান। R, L, C'র এই মান বজায় রাখুন্য় f -এর পাঠ নিন।
(3) এবার স্পন্দকের ডায়াল ঘুরিয়ে f-এর মান 100 (বা 200) Hz কমিয়ে সৃচক কাঁটটটি স্থির করুন। পরিবর্তিত প্রবাহের মান I_{1} रলে এই পাঠ নিন $\left(\mathrm{I}_{1}<\mathrm{I}_{\max }\right.$ বলাই বাহ্হ্য্য; খুব কাছেও হতে পারে-সেটা কম মানের Q-এ হতে পারে)। ক্রমশঃ f-এর মান কমিয়ে (প্রতিবার 100 Hz বা 200 Hz পরিমাণে) লद্ধ প্রবাহের পাঠ নিয়ে নিন। অন্তত পাচটি পৃথক f-এর জন্য প্রবাহের পাঠ নেবেন। এখুলি সারণীতে লিখুন। $\mathrm{V}_{\mathrm{R}}, \mathrm{V}_{\mathrm{L}}, \mathrm{V}_{\mathrm{C}}-$ এর পাঠ নিন।
(4) f-এর সর্বনিন্ন মান থেকে ওরু করে বিপরীত পর্যায়ে প্রবাহের মান [আগের নেওয়া f-মানে লিখুন। একই f-মানে লক্ধ I-'র মানের গড় নিন। f-'এর যে মানে প্রবাহ সর্বাধিক তাকে f_{0} দিয়ে সূচিত করে $\mathrm{f}_{0}+100, \mathrm{f}_{0}+200, \ldots$ এই ক্রমে বাড়িয়ে প্রবাহের অন্তত পাচটি মান লিখে নিন। f_{0} 'র সর্বাধিক মান থেকে এবার বিপরীত ক্রমে ফিরে আসুন-প্রতি ক্ষেত্রে প্রনাহের মান লিখুন- গড় নিয়ে নিন এবং শেষ মানটি হবে f_{0}-র জন্য। স্পন্দকের সংযোজক চাবি অফ্ করুন, কিক্তু এর মেইন্স্ চালু থাকবে।
(5) লক্ধ গড় মান থেকে I - f লেখ आঁকুন।
(6) এবার দ্বিতীয় পর্যায়ের পাঠগ্রহণ। R-এর মান অল্প বাড়ান, $\mathrm{I}_{\max }$-এর মান কমে যাবে, ধরুন $I_{\text {max }}^{\prime}$ হলো। L-এর মান বাড়িয়ে (ধরুন L_{2}) C'র মান এমন ভাবে কমান যাতে $\mathrm{C}_{2}=\mathrm{L}_{1} \mathrm{C}_{1} / \mathrm{L}_{2}$ হয়। এবং C_{2} 'র এই মান শ্রেণীতে যুক্ত করা হলো। অডিও স্পন্দক অন্ করে f_{0}^{\prime} র মানে দেখা যাবে $\mathrm{I}_{\max }^{\prime}$ পরিবর্তিত হবে না, কেননা $\mathrm{I}_{\text {max }}^{\prime}$ কেবল R-এর উপর নির্ভর করে, $\mathrm{L}, \mathrm{C}-এ র$ উপর নয়। $\mathrm{L}_{1} \mathrm{C}_{1}=\mathrm{L}_{2} \mathrm{C}_{2}$ করার ফলে f_{0} একই থাকছে Q-গুণাংক বদলে গেছে।
(7) এবার f 'র মান কমিয়ে কমিয়ে [কার্যক্রম (3) এর অনুরূপ পদ্ধতিতে] প্রবাহের পাঠ নিন। কার্যক্রম (4) অনুসরণ করুন। I - f এর নতুন লেখ আঁকুন।
(8) यে দুটি I - f লেখ পাওয়া গেল তা থেকে Q-এর মান গণনা করুন সৃত্র (9) প্রযোজ্য।
(9) বিভিন্ন উপাত্ত থেকে Z এবং X-এর মান —সূত্র (3), (4) ব্যবহার করে—গণনা করুন এবং একটি লেখকাগজে Z, X কে, f-সাপেক্ষে লেখচিত্রিত করুন। X - f লেখচিত্রটি যেখানে f-অক্ষকে ছেদ করে তা থেকে $f_{r}-এ র$ মান পাওয়া যাবে। এটি তত্ত্ব-লক্ধ মান। এটি কি পরীক্ষললক্ধ f_{0}^{\prime} 'র সঙ্গে সংগতিপূর্ণ। যদি না হয়ে থাকে তাহলে অসংগতির (discrepancy) কারণ অনুসন্ধান করতে হবে। ব্যবহৃত L, C, Rএর মানণুলি সঠিক আছে কিনা ডিজিটাল মিটার ব্যবহার করে দেখে নিন। যদি এগুলি ঠিক থাকে তাহলে অডিও-ডায়ালের মানাংকন পরীক্ষা করতে হবে। [‘পরীক্ষণের জন্য প্রয়োজনীয় যন্ত্রপাতি’ অংশে এ বিষয়ে নির্দেশ দেওয়া হয়েছে।]
(10) X - f লেখটি যেখানে f-অক্ষকে ছেদ করেছে সেখানে বক্রের একটি স্পর্শক আঁকা হলে তার নতির মান হবে 2 L ; পরীকণে ব্যবহৃত মানের সঙ্গে এর সংগতি থাকবে।
$Z-f$ লেখের অবম মান হবে $Z=R$, যখন $f=f_{r}$; এটা হয় কি না যাচাই করুন।
দুটি लেখ এর জন্য $\mathrm{Q}_{1}, \mathrm{Q}_{2}$ গণনা করুন।
ϕ - এর মান (5) এবং (6) সূত্র ব্যবহার করে গণনা করুন। ϕ - f লেখ াঁকুন। f_{0}-তে ϕ-এর মান শূन্য হবে, এটা দ্রষ্টব্য।

পরীম্ষণলব্ধ ফলের সারণী

সারণী 1 : ব্যবহৃত মিটারগুলির প্রসার (Range) ও ফ্ষুদ্রতম বিভাজন লিখুন
$\left.\begin{array}{c}1 \text { নং মিটার - (m.A.) - প্রসার : } 0-50 \mathrm{~mA} . \\ \text { ক্কুদ্রতম বিভাজন : } 0.5 \mathrm{~mA}\end{array}\right\} \begin{aligned} & \text { এটি নমুনা মাত্র ব্যবহৃত } \\ & \text { মিটার দেখে লিখতে হবে }\end{aligned}$
2 নং মিটার - (m.A.) $)_{2}$ -
$\left.\begin{array}{c}\text { অডিও স্পন্দকের ডায়ালের প্রসার - } 0-20 \mathrm{KHz} \\ \text { ক্ষদ্রত্ম বিভাজন - } 50 \mathrm{Hz-}\end{array}\right\}$ এটিও নমুনা
সারণী 2 : অনুनाদ-বক্র অক্কনের উপাত্ত : $\quad \mathrm{R}_{1}=\ldots(\Omega)$

$$
\begin{aligned}
& \mathrm{L}_{1}=\ldots(\mathrm{mH}) \\
& \mathrm{C}_{1}=\ldots(\mu \mathrm{F})
\end{aligned}
$$

	পर्यঃ সश्या	V_{i} अళ्रর্বি户্ঠ ভো্টেজ	$\begin{aligned} & \text { ডায়ানের } \\ & \text { भাঠ } \mathrm{f} \end{aligned}$	প্রবাহ, I			V_{R}	V_{L}	V_{C}	$\begin{aligned} & \phi=\tan ^{-1} \\ & \frac{V_{L}-V_{C}}{V_{R}} \end{aligned}$
				f कम (a)	f বাড়下ছ (b)	$\begin{gathered} \text { গाড় } \\ \text { मान } \\ \frac{(\mathrm{a})+(\mathrm{b})}{2} \end{gathered}$				
ত্রকক		volt	Hz	mA	mA	mA	Volt	Volt	Volt	rad.
	1.									
	2.									
	3.									
	$\begin{aligned} & 4 . \\ & 5 . \end{aligned}$									
	6.									
	.									

সারণী 3 : দ্বিতীয় অনুনাদ-বক্র অঙ্কনের উপাত্ত

$$
\begin{gathered}
\mathrm{R}_{2}=\ldots(\Omega), \mathrm{L}_{2}=\ldots(\mathrm{mH}), \mathrm{C}_{2}=\ldots(\mu \mathrm{F}) \\
\mathrm{L}_{1} \mathrm{C}_{1}=\mathrm{L}_{2} \mathrm{C}_{2}
\end{gathered}
$$

সারণী 2 এর অনুরূপ স্তন্ত এবং সারি হবে।
সারণী 4 : Z, X গণনা করে $\mathrm{Z}-\mathrm{f}, \mathrm{X}-\mathrm{f}$, লেখ অংকন

পर्य বেক্ণ সংथा	ব্যবহৃ কम्भाংক f Hz	প্রগণিভ Z Ω	প্রগণিত X Ω	$\begin{gathered} \text { পরিমাপ থেকে } \\ \text { পাওয়া } \\ Z^{\prime} \\ \Omega \\ \hline \end{gathered}$	পরিমাপ থেকে পাওয়া X^{\prime} Ω	ম
1. 2. 3. 12.						

সারণী 5 : ϕ-এর মান : প্রগণিত ও পরীক্ষণলক্ক

পर्ব(বেসๆ সश्था		ϕ প্রগাণিত rad.		ম
1. 2. 3. 12.				

4.3 সমান্তরাল অনুনাদ পর্যবেক্ষণ

4.3.1 মূলগত তত্ত্র ও ব্যবহার্য সূত্রাদি

চিত্র 4-g দ্রষ্টব্য। আবেশক L (ও তৎসংশ্লিষ্ট ওহ্মীয় রোধ R) ও ধারক C সমান্তরালে সংযুক্ত 'করে যে বর্তনী পাওয়া যায় তাতে মোট প্রবাহ I যদি আরোপিত ভোল্টেজ V_{i} এর সঙ্গে একই দশায় থাকে, তাহলে বর্তনীটি অনুনাদ-গ্রত্ত এমন বলা যায়। বর্তনীর মোট প্রবাহ I ধরা যাক। তাহলে আবেশক-শাখায়

$$
\begin{equation*}
\underset{\sim}{I}={\underset{\sim}{L}}^{I}+{\underset{\sim}{C}}^{C} \tag{10}
\end{equation*}
$$

এক্ষেত্রে মোট প্রতিররাধ হবে Z যেখানে

$$
\begin{equation*}
\frac{1}{Z}=\frac{1}{Z}+\frac{1}{Z} \tag{11}
\end{equation*}
$$

अर्थाৎ $\quad Z=\frac{R+j \omega L}{\left(1-\omega^{2} L C\right)+j \omega C R}$

চिত्র 4-g : সমান্তরাল অनूनाদ : $(\mathrm{R}+\mathrm{L}) \| \mathrm{C}$ বर्णनीতo

$$
\begin{equation*}
=\frac{R+j\left(\omega L-\omega^{3} L^{2} C-\omega C R^{2}\right)}{\left(1-\omega^{2} L C\right)^{2}+\omega^{2} C^{2} R^{2}} \tag{12}
\end{equation*}
$$

অনুনাদ-এর অর্থ Z এর মান বাস্তব রাশি হওয়া। কাজেই এক্ষেত্রে ω ’র মান যদি অনুনাদ কালে
ω_{r} इয় তাহলে $\operatorname{Im} Z=0$, अर्थाৎ

$$
\omega_{\mathrm{r}} \mathrm{~L}-\omega_{\mathrm{r}}^{3} \mathrm{~L}^{2} \mathrm{C}-\omega_{\mathrm{r}} \mathrm{CR}^{2}=0
$$

ফनে $\quad R^{2}+\omega_{r}^{2} L^{2}=\frac{L}{C}$
अर्थाৎ $\quad \omega_{\mathrm{r}}{ }^{2}=\frac{1}{\mathrm{LC}}-\left(\frac{\mathrm{R}}{\mathrm{L}}\right)^{2}$
(ক) यमि $\mathrm{R}=0$ বा $\mathrm{R} \approx 0$ इয় তाइलে $\omega_{\mathrm{r}}{ }^{2}=\frac{1}{\mathrm{LC}}$
(च) यमि $\left(\frac{\mathrm{R}}{\mathrm{L}}\right)^{2} \ll \frac{1}{\mathrm{LC}}$ তाহলেও $\omega_{\mathrm{r}}^{2}=\frac{1}{\mathrm{LC}}$
এটি L, C'র শ্রেণীসংযুক্ত হৃওয়ার অনুনাদ কম্পাক্কও বটে। লক্ষ্যণীয় যে শ্রেণীসংযুক্ত বর্তনীতে অनুनाদ কম্পাঙ্ক নাও থাকতে পারে-কেননা $\frac{1}{\mathrm{LC}}$, যখন $\left(\frac{\mathrm{R}}{\mathrm{L}}\right)^{2}$ এর তুলনায় ক্ষুদ্র তখন এর ধনাশ্মক মান পাওয়া যাবে না। শ্রেণীসংযুক্ত বর্তনীর অনুনাদ কম্পাক্ক বর্তনীর রোধের মান R এর উপর নির্ভর করে না, কিন্তু সমান্তরাল বর্তনীতত এই কম্পাঙ্ক রোধের উপর নির্ভরশীল (সমীঃ (13) দ্রঃ)। (12) র রাশিমালাকে ভিন্ন ভাবে প্রকাশের জন্য আমরা ধরি

$$
\begin{equation*}
\omega_{0}^{2}=\frac{1}{\mathrm{LC}}, \frac{\omega}{\omega_{0}}=\mathrm{h} \tag{14}
\end{equation*}
$$

যেহেতু , $\mathrm{Q}=\frac{\omega \mathrm{L}}{\mathrm{R}}, \mathrm{Z}=\mathrm{Q} \omega \mathrm{L}\left[\frac{1+\mathrm{j}\left\{\mathrm{Q}-\mathrm{h}^{2}\left(\mathrm{Q}+\frac{1}{\mathrm{Q}}\right)\right\}}{\mathrm{Q}^{2}\left\{1-\mathrm{h}^{2}\right\}^{2}+\mathrm{h}^{4}}\right]$
মোট প্রতিঘাত (reactance) যখন শূন্স তখন

$$
\begin{aligned}
& h^{2}=\frac{Q}{Q+1 / Q} \\
& \cong 1 \text { যथन } Q \text { খুব বেশি মনের }
\end{aligned}
$$

$$
\omega=\omega_{0} \text { अर्थाৎ } \mathrm{h}=1 \text { रলে }
$$

প্রতিরোধ

$$
\begin{align*}
& \mathrm{Z}=\mathrm{Z}_{\max }=\mathrm{Q} \omega_{0} \mathrm{~L} \sqrt{1+\frac{1}{\mathrm{Q}^{2}}} \tag{17}\\
& \cong \mathrm{Q} \omega_{0} \mathrm{~L} \text { यथन } \mathrm{Q} \gg 1 \tag{18}
\end{align*}
$$

$h-এ র$ মান যদি $h=1$ থেকে $\pm \frac{1}{2 Q}$ পরিমাণে পরিবর্তিত করা হয় তাহলে ভোল্টেজের মান অনুনাদ-সংশ্লিষ্ট মানের 0.707 ভগ্নাংশে কমে যায় (প্রবাহ এক রাখতে হবে)।

উপরিলিখিত তত্ত্বের ভিত্তিতে পরীক্ষণ পদ্ধতি দাঁড়ায় এরকম : I- এর মান অক্ষুঞ্ন রেখে h পরিবর্তন করা হলে (অর্থাৎ f পরিবর্তন করা হলে V_{C} 'র মান পরিবর্তিত হবে। এ ভাবে পরিবর্তন করে V_{C} 'র মান চরমে প্ৗৗছবে। তখন h - এর মান এমনভাবে $\pm \alpha$ পরিমাণে পরিবর্তিত করতে হবে যাতে V_{C} 'র মান কহে $0.707 \mathrm{~V}_{\mathrm{C}}$ হয়। অতএব $\frac{1}{2 \alpha}=\mathrm{Q}$ रবে। $\mathrm{h}-এ র$ পরিবর্তন দুভাবে করা যায়-
(ক) I-এর কম্পাঙ্ক পরিবর্তন করে (ω_{0} স্থির)
(খ) C- এর মান পরিবর্তন করে অর্থাৎ ω_{0} পরিবর্তন করে (ω স্থির)

4.3.2 পরীক্ষণের কার্যক্রম

1. শ্রেণী-অনুনাদ পরীক্ষণের কার্যক্রমের সঙ্গে এর অনেক মিল রয়়েছে।I পরিমাপের জন্য একটি নির্ভরযোগ্য এ.সি. মিলিআ্যাম্মিটার ব্যবহার করতে হবে, এটা লক্ষণীীয়। এক্ষেত্রে অনুনাদ কালে I 'র মান প্রায় শূন্য এবং অনুনাদের দুই পাশে I’র মান খুবই কম। ফলে সৃক্ম মানাঙ্কন প্রয়োজন।

চিত্র 4-g দেখুন। R_{0} রোধটি যুক্ত করার কারণ এই। বর্তনী যখন অন্নাদগ্রস্ত হয় নি তথন অডিও শ্পন্দক থেকে অহেতুক অতিমাত্রায় প্রবাহ নিষ্কাশিত হতে পারে। R_{0} এটিকে নিয়ন্ত্রণে রাখবে। তাছাড়া R_{0} 'র প্রান্তস্থ বিভবপ্রভেদ মেপে নিলে তা থেকে I-এর মানও পাওয়া যাবে। এই বিভবপ্রভেদ C.R.O.তে স্থাপন করে দেওয়া যায়।
2. L, C ’র মান বেছে নিন এবং $\mathrm{f} \cong \frac{1}{\sqrt{\mathrm{LC}}}(\mathrm{R} \approx 0)$ গণনা করে নিন। অডিও স্পন্দকের ডায়াল ঘুরিয়ে এই f -মানে রাখুন। এখানে প্রবাহ অবম মান নেবে যখন বর্তনী অনুনাদ-প্রাপ্ত হবে। R_{0} 'র মান স্থির করে প্রবাহের মান মিলিআ্যাম্মিটারের স্কেলের শেষ প্রান্তের কাছাকাছি রাখুন। C'র মান পরিবর্তন করে I 'র মান লক্ষ করুন। I-এর মান সর্বনিম্ন হলে বুঝতে হবে প্রদত্ত f'র মান f_{0} 'র কাছাকাছি হয়েছে। প্রয়োজনে L’র মানও পরিবর্তন করতে হতে পারে। এভাবে $I_{\text {min }}$ এর মান পাবেন।
3. (শ্রেণী অনুনাদ পরীক্ষণের অনুরূপ)। f-পরিবর্তন করে I 'র মান পর্যবেক্ষণ।
4. (পৃর্বোক্ত পরীক্ষণ ক্রমের অনুরূপ)
5. I-f বক্র অঙ্কন। পৃর্বোক্ত পরীক্ষণের 5-এর অনুরূপ।
6. দ্বিতীয় I - f বক্র অঙ্কন।
7. $\mathrm{Z}-\mathrm{f}$ বক্র অঙ্কन।
8. Q-নির্ণয়ের পদ্ধতি তত্ত্ৰাশে বলা হয়েছে।

4.3.3 পরীक্ষণলব্ধ ফল

বিভিন্ন সারণী প্রস্তুত করে নিন। পৃর্বের পরীক্ষণের অনুরূপ বলে পুনরুপ্মিখিত করা হলো না।
মন্তব্য : তুলনামূলক আলোচনা

শ্রেণীসংযোগে অনুনাদ	সমান্তরাল সংযেেগে অনুনাদ
(1) ভোল্টেজের প্রতিঘাত-সংলল্ন উপাংশগুলি একত্রিত হয়ে শূন্যমান উৎপন্ন করে। $\mathrm{V}_{\mathrm{L}}-\mathrm{V}_{\mathrm{C}}=0$ अर्थाৎ $\mathrm{V}_{\mathrm{L}}=\mathrm{V}_{\mathrm{C}}$ (2) ধ্রুবমানের রোধ বর্তনীতে রেখে কম্পাক্ক পরিবর্তন করা হলে অনুনাদের প্রবাহ চরম মান नেয়। (3) অনুনাদ কালে প্রতিরোধ অবম মান গ্রহণ করে থাকে। (4) আবেশকীয় ও ধারকীয় প্রতিঘাতের মান সমান হয়।	(1) প্রবাহের প্রতিঘাত-সংলম্ম উপাশশ একত্রিত হয়ে শুন্যমান উৎপন্ন করে। $\mathrm{I}_{\mathrm{L}}=\mathrm{I}_{\mathrm{C}}$ (2) 纟্রুবমানের পরিবাহিতা বজায় রেখে কম্পাঙ্ক পরিবর্তন করা হলে ভোল্টেজ চরমে ওঠে। (3) অनুনাদ কালে প্রতিরোধ চরম মান গ্রহণ করে থাকে। (4) আবেশকীয় ও ধারকীয় বিলোম প্রতিঘতের (Susceptance) মান সমান হয়।

4.4 পরীী্কণকালীন প্রल্লোত্তর নিয়ে কিছু আলোচনা ও অনুশীলনী :

(1) আবেশন মৃলত কি কারণে হয়?
(2) প্রত্যাবর্তী প্রবাহের সম্মুখীন হলে ধারকের সাথে আবেশকের মৌলিক ক্রিয়াগত পার্থক্য কি তা আলোচনা করুন।
(3) R, L, C-এদের প্রতিক্রিয়ায় কোনটি অপ্রত্যাবর্তী এবং কিভাবে তা হয়, ব্যাখ্যা করুন।
(4) ধারকের প্রান্তিক ভোল্টেজ V_{C} এবং রোধকের প্রান্তিক ভোল্টেজ V_{R};-এর দশাপার্থক্য কত (R, L, C বর্তনীতে)? ধারক যদি ক্ষয়িষ্ণু (leaky) হয়, তাহলে কি ঘটে? পরীক্ষণলব্ধ উপাত্ত থেকে তা পরিশ্মুট হয় কি?
(5) $\quad Z-f$ বক্রটি (R, L, C বর্তনীর) লক্ষ্য করুন। f-এর মান খুব বেশি হলে বক্রুটি প্রায় সরলরেখা হয়ে যায় এবং $\omega \mathrm{L}$ লেখের সঙ্গে প্রায় অভিন্ন হয়ে পড়ে। সূত্র থেকে এটা বোঝা যায় কি?
(6) X_{L} এবং X_{C} বক্রের (R, L, C বর্তনীর) নতি $f=f_{r} এ$ কত হয়? কিভাবে হয় ?
(7) Q-এর মান প্রকৃতপক্ষে কি বোঝায়? Q-বেশি না কম হওয়া বাঞ্ৰনীয়?
(8) শ্রেণী ও সমান্তরাল অনুনাদের তুলনামূলক আলোচনা করুন। বর্জনকারী বর্তনী (rejector circuit) কেন বলে? এটির তাৎপর্য কি?
(9) आমাদের পরিবাহী তড়িৎ সরবরাহ উৎসের কম্পাঙ্ক ও বিভব কত?
(10) প্রতিরোধ ও প্রতিঘাতের একক কি?
(11) আবেশক কুণ্ডলীর মজ্জা মৌম্বকপদার্থের না নিয়ে বায়ুপূর্ণ নেওয়া হয় কেন?
(12) अनুনাদী বর্তনীর ব্যবহারিক প্রয়োগ কি কি?

কয়েকটি সংকারণমূ-ক বিবর্ধক বা অপ্-অ্যাম্প (Op-Amp) বর্তনী ব্যবহার করে তাদের বিভিম্ন বৈশিষ্ট্য পর্যবেক্ষণ :

একক 5
(ক) যোগকারী (Adder) বা সঙ্কলক বর্তনী
(খ) বিয়োগকারী (Subtractor) বা ব্যবকলক বর্তনী
(গ) বিপরীতকারী বিবর্ধক (Inverting Amplifier) এবং
(घ) প্রভেদ বিবর্ধক (Difference Amplifier)

গठन
5.1 প্রস্তাবনা, উদ্দেশ্য
5.2 অপ্-অ্যাম্পের বহিরাঙ্গিক গঠন ও কার্যনীতি
5.3 তড়িৎ সরবরাহের প্রান্তণ্তলি
5.3.1 বহির্দারের প্রান্ত
5.3.2 অন্তর্দ্বরের দুই প্রান্ত
5.4 উन्মুক্ত-লুপ ভোল্টেজ বিবর্ধন
5.5 यোগকারী (Adder) বা সঙ্ক লক বর্তনী
5.6 বিয়োগকারী বা ব্যবকলক বর্তনী
5.7 বিপরীতকারী বিবর্ধকের বৈশিষ্ট)
5.8 প্রভেদ বিবর্ধক ব্স্টনী
5.9 পরিশিষ্ট A :
5.10 अनूশীलनी

5.1 প্রস্তাবনা

বহ ট্রান্সডিউসার (Transducer) রয়েছে যাদের থেকে যে বহির্বিষ্ট মান (output value) আমরা পই তা প্রায়শই তড়িতীয় (electrical) —একটি ভোল্টেজ বা প্রবাহ হিসেবে এরা উদ্ছूত হয় কোনও বর্তনীর মধ্য দিয়ে। পরিমেয় (measurand) রাশিটি যাই হোক না কেন পরিমাপের জন্য ব্যবহৃত যঙ্ত্রাধান (measuring device) যেন কখনই তার মানকে প্রভাবিত না করে, এই নীতি সর্বত্রই অনুসৃত হয়ে থাকে। এ কারণ্ণে ভোল্টেজ বা প্রবাহের উৎসস্থলের আভাষ্তরীণ थ্রতিরোষ (internal source impedance)

স্বভাবতই উচ্চমানে রাখা হয়। এর ফলে ট্রান্ডডিউসার থেকে বে অত্য্্ পরিমাণের শক্তি সরবরাহ হয়ে थাকে তাকে যथাযধ বিবর্ধিত না করা হলে তার সাহা্যে অন্যান্ সৃচক যজ্ত্রাধানকে (indicating instruments) সচন করা যায় না। সংকারণমুলক বিবর্ধক (Operational Amplifier) यার সংকিপ্ত নাম অপ্-অাম্প এই
 তই দেখবে।

অপ্-আ্যাম্প কथাটির উজ্জব আ্যানালগ্ কম্পিউটারের প্রথম যুগে যখন এদের সাহায্যে বিভিন্ন গণিতীয় थ্রক্র্য়া যথা সক্কন (Addition), ব্যবকলন (Subtraction), সমাকলन (Integration) এবং অবকলन (Differentiation) প্রডৃতি সম্পাদন করা হতে।। মৃলত এখলি ছিন উচ্চ প্রব্ধনাকযুক্ত (high gain) দিষ্৪
 করা হতে।। সমাকলিত বর্তনী (Integrated Circuit) বI IC উৎপাদিত হওয়ার পর থেকেই মম্বব্য়, সহজলल অথচ নামমাত্র श্रানে যাদ্দর ব্যাপ্তি এমন সব বিবর্ধক শুলি đাঁকে আাকে তৈরি হতে থাকে।
 IC-র দ্মারা অতিদ্রুত সম্পন করা যায। অপ্-আাম্পের বাবহার তাই বए ক্কেত্রেই হয়েছে।

উchat)

 আমরা জনবো কোনও বিশেব যজ্ত্যান (device) প্রস্তু করার কাब কিতাবে করা হবে। শৈপ্পিকভাবে উৎপা সমুন্নত যম্ত্রাধান কিভাবে যथাযथ ব্যবহার করতে হয় ত জানা অত্ত জরুরী।

5.2 अপ্-অ্যাম্পের বহিরাঙ্ছিক গঠন ও কার্यनीতি

এমনই একটি যন্ত্রাশ (যার বৈশিষ্ট)গুলি আমরা পরিশিষ্টে সন্নিবেশিত করেছি)। এর আবরণের বাইরে বেরিয়ে আছে আটটি সংযোগ-প্রান্ত (terminal) :- 1, 2, 3, ... 8 সংখা দিয়ে চিহ্তিত।
$1 \rightarrow$ এটি ভৃমিসংলপ্ন (ground) করতে হবে।
$2 \rightarrow$ এটি বিপরীতকারী অন্তর্দ্বার (inverting input) : এই প্রান্তে সংকেত আরোপ করা হলে তা বহির্দ্বারে অন্তর্দ্বার সাপেক্ষে 180° দশামানে পরিবর্তিত হয়ে দেখা দেবে।
$3 \rightarrow$ এটি বৈপরীত্যহীন (non-inverting) অন্তর্দ্বার : এ প্রান্তে আরোপিত সংকেত ভোল্টেজের দশামান অপরিবর্তিত ভাবে বহির্দ্বারে দেখা দেবে।
$4 \rightarrow \mathrm{~V}-$: একটি ডি. সি. তড়িৎ সরবরাহের ঋণাত্মক (- Ve) প্রান্ত এতে যুক্ত হবে। ধনাত্মক $(+\mathrm{Ve})$ প্রান্ত ভূমিতে।
$5,6 \rightarrow$ অগ্রসরী (lead) এবং পশ্চাদপসারী (lag) প্রান্ত : বাইরে থেকে কস্পাংকের পরিপূরণ (compensation) করার কজে ব্যবহৃত হয়।
$7 \rightarrow$ বহির্দ্বার : বহির্বিষ্ট ভোল্টেজ এই প্রন্তে (ভূমির সাপেক্ষে) পাওয়া যাবে।
$8 \rightarrow$ V+ : প্রান্তটি দ্বিতীয় একটি তড়িৎ সরবরাহের সঙ্গে সংযোগের জন্য।
741-এর আভ্যন্তরীণ IC-র বিবর্ধিত রূপ চিত্র 5.1 (a)-তে দেখানো গেল এবং 741-এর পিন সংযোগের চিত্রটি চিত্র 5.1 (b)-ঢে দেখানো হয়েছে। এছাড়াও 8 pin যুক্ত IC 741-এর DIP মডেলও 5.1 (b') চিত্রে দেখানো হয়েছে।

চিত্র 5.1 (c)-তে অপ্-অ্যাম্পের অন্তর্দ্বরের সমার্থক বর্তনী (equivalent circuit) প্রদর্শিতএটিকে অন্ধ-কক্ষ সমার্থকও (Black box equivalent) বলা হয়। এই চিত্রে তিনটি অন্তর্দ্বার ,$+-\overline{\overline{\bar{F}}}$ দেখানো হয়।
$Z_{\text {IC }}$ কে বলা হয় সহানু প্রবেশের অন্তর্বিষ্ট প্রতিরোধ (Common mode input impedance)
$1 \mathrm{Z}_{\mathrm{IC}}>1 \mathrm{M} \Omega$ रয়।
$Z_{\text {ID }}$ কে বলে অন্তর্দ্বারের প্রভেদজ্ঞাপক

চिত্র 5.1-b

প্রতিরোধ (Differential input impedance) যা বিপরীতকারী প্রান্ত এবং বৈপরীত্যহীন প্রান্তের মধ্যবর্তী প্রতিরোধ। $\mathrm{Z}_{\mathrm{ID}}>10 \mathrm{~K} \Omega$ হয়।

निर्मिय চिश्न

চিত্র : 5.1 b : IC 741-এর পিনখলির চিহ্চিক্করণ উ উহার উপর হহ্েে চিত্র

চिज्ञ 5.1 c

5.3 তড়িৎ সরবরাহের প্রান্তগুলি

V+ এবং V - চিহ্নিত প্রান্তগুলি তড়িৎ সরবরাহে সংযোগের জন্য (চিত্র 5.1d)। লক্ষ্য করুন যে তড়িৎ সরবরাহের তিনটি প্রান্ত (+,-, 戸); একে বলে খঞ্ডিত সরবরাহ (split supply), প্রায়শই মানগুলি হয় $\pm 15 \mathrm{~V}, \pm 12 \mathrm{~V}$ এবং $\pm 6 \mathrm{~V} . \mathrm{V}+$ এবং $\mathrm{V}-$ - এর মধ্যে সর্বাধিক $\pm 36 \mathrm{~V}$ বা $\pm 18 \mathrm{~V}$ দেওয়া চলে।

5.3.1 বহিদ্বারের প্রান্ত

চিত্র 5.1d-তে বহির্দ্বারের প্রান্তটি ভাররোধ R_{L} এর একপ্রন্তে যুক্ত দেখানো আছে, $\mathrm{R}_{\mathrm{L}}-$-এর অন্য প্রান্তটি ভূমিতে। বহির্বিষ্ট ভোল্টেজ V_{0} পরিমাপ করতে হবে ভূমি সাপেক্ষে। বহির্দ্বারের প্রান্ত থেকে কত প্রবাহ নেওয়া যাবে তার একটা সীমা রয়েছে, সাধারণত 5 থেকে 10 mA বহির্দ্বার প্রান্তে ভোল্টেজ কত হবে তারও মোটামুটি সীমা রয়েছে এতে অন্তর্ভুক্ত ট্রানজিস্টরগুলির জনা। এই ট্রানজিস্টরগুলির সংগ্রাহক (collector) থেকে নিঃসারক (emitter) পর্যন্ত IV থেকে 2V প্রয়োজন হয় যাতে এরা বিবর্ধক হিসাবে কাজ করে, সুইচ হিসাবে

ठि 5.1 d নয়। ফলে বহির্দ্বারে $\pm 2 \mathrm{~V}$ পর্যন্ত হতে পারে। V_{0} 'র ঊর্ধ্বসীমাকে বলে $+\mathrm{V}_{\text {sat }}$ এবং নিম্নসীমাকে বলে $-V_{\text {sat }} \mid$ কাজেই উদাহরণম্বরূপ মনে করুন সরবরাহে $\pm 15 \mathrm{~V}$ आছে, তখন $+\mathrm{V}_{\text {sat }}=+13 \mathrm{~V}$ এবং- $\mathrm{V}_{\mathrm{sat}}=-13 \mathrm{~V}$, अতএব V_{0} 'র শীর্ষ-থেকে-শীর্ষ মান হবে $\pm 13 \mathrm{~V}$, এভাবে R_{L} এর সীমায়িত মান হবে $2 K \Omega$.

741-এর সুবিধে এই যে এর অভ্যন্তরে বর্তনীবিন্যাস এমনি ভাবে করা আছে যে বহির্দ্বারের প্রবাহ সীমায়িত করে দেয়; R_{L} यদি সর্ট-সার্কিট হয়ে যায় বহির্দ্বারের প্রবাহ 25 mA -এর বেশি হবে না।

বর্তनীচিত্র আঁকার সময় অনেক ক্ষেত্রে +V বা -V একটি তীরচিহ্ দিত্যেই দেখানো হয়—তড়িৎ উৎসের চিত্র আঁকা হয় না।

5.3.2 অন্তর্দারের দুই প্রান্ত

'-' এবং ‘+’ চিহ্ৰ দিয়ে সূচিত এ দুট্টিকে বলে প্রভেদজ্ঞাপক (differential) অন্তর্দ্বার প্রান্ত, কেননা এই দুই প্রান্তের ভোল্টেজের প্রভেদ (ধরা যাক E_{d}) এবং বিবর্ধকের বিবর্ধন $A_{O L}$ এর উপর V_{0} নির্ভর

করে। চিত্র $5.1 \mathrm{~d}, \mathrm{e}, \mathrm{f}$ লক্ষ্য করুন। যখন (+) অন্তর্দ্বারটি (-) অন্ত্দ্বারের সাপেক্ষে ধনাত্মক তখন বহির্মেরের প্রান্ত ভূমি সাপেক্ষে ধনাত্মক। E_{d} 'র প্রান্ত পরিবর্তন করা হলে V_{0} ভূমি সাপেক্ষে ঋণাত্মক হবে। তাহলে সিদ্ধান্ত করা যায় যে

বহির্দ্বরের মেরুচিছ্ (polarity), (+)-অন্তর্দ্বারের প্রান্তের মেরুচিছ্ন। বহির্দ্বেরের মেরুচিছ্ (-) অন্তর্দ্বারের মেরুচিহের বিপরীত। একারণেই (-) অন্তর্দ্বারকে বলে বিপরীতকারী অচ্তর্দ্বার (inverting input) এবং ফলে (+) অন্তর্দ্বারকে বলে বৈপরীত্যহীন (non-inverting) প্রান্ত। আরও লক্ষ্যণীয় যে $V_{0}{ }^{\prime}$ র মেরুচিহ্ন নির্ভর করে বিপরীতক্রিয়া এবং বৈপরীত্যহীন অন্তর্দ্বারের ভোল্টেজের প্রভেদের উপর :
$E_{d}=(+)$ अন্তর্দ্বারের ভোল্টেজ - (-) অন্তর্দ্বরের ভোল্টেজ
কাজেই E_{d} 'র চিহ্ন বলে দেবে (1) (-)-অন্তর্দ্বার সাপেক্ষে (+)-অন্তর্দ্বাররর মেরুচিছ্ কি এবং (2)

ভূমিসাপেক্ষে বহির্দ্বারের মেরুচিছু কি। অন্তর্দ্বার-প্রাম্ত দুটির মধ্যে উচ্চমানের প্রতিরোধ (high impedance) রয়েছে একথাও স্মরণ রাখতে হবে।

5.4 উन्মूক্তन-লুপ ভো্ট্টে বিবর্ধন (open-loop voltage gain) $A_{\text {Ol }}$

यদি প্রভেদজ্ঞাপক ভোল্টেজ E_{d} খুব স্বল্পমানের হয় তাহলে V_{0} 'র মান নির্ধারিত হবে E_{d} এবং A_{OL} এর সাহায্যে। $\mathrm{A}_{\mathrm{OL}}-$ কে কেন উন্মুক্ত-লুপ ভোল্টেজ প্ররর্ধনাংক বলা হয় ? এক্ষেত্রে বহির্দ্বার থেকে অন্তর্দ্বার পর্যন্ত পুনর্নিবেশন সংযোগটি (feedback connection) উন্মুক্ত রাখা আছে তাই। ফলে

বহির্বিষ্ট ভোল্টেজ $=$ প্রভেদজ্ঞাপক অন্তর্বিষ্ট ভোল্টেজ \times উন্মুক্ত-লুপের বিবর্ধন

$$
V_{0}=E_{d} \times A_{0 L}
$$

$\mathrm{A}_{\mathrm{OL}}-এ$ মান খুব বেশি হয় (পরিশিষ্ট দেখুন) প্রায়শই 200,000 বা বেশি। লক্ষ্যণীয় যে $\mathrm{V}_{0}<\left| \pm \mathrm{V}_{\text {sat }}\right|$ অর্থাৎ $\pm 15 \mathrm{~V}$ সরবরাহে $\mathrm{V}_{\text {sat }}$ হবে $\pm 13 \mathrm{~V}$ । ফলে $\mathrm{E}_{\mathrm{d}}< \pm 65 \mu \mathrm{~V} ; 65 \mu \mathrm{~V}$-এর বেশি যেন না হয়।

$$
\begin{aligned}
& \left(E_{d}\right)_{\max }=\frac{+V_{\text {sat }}}{A_{0 L}}=\frac{13 \mathrm{~V}}{200 ; 000}=65 \mu \mathrm{~V} \\
& \left(-E_{d}\right)_{\max }=-65 \mu \mathrm{~V}
\end{aligned}
$$

পরীক্ষণাগারে $65 \mu \mathrm{~V}$ পরিমাপ খুব কষ্টসাধ্য হয় (60 Hz এর তুঞ্জনের জন্যই প্রধানত)। অন্যদিক থেকে ক্ষরিত প্রবাহ এসে এর মান $1000 \mu \mathrm{~A}$ হয়ে যেতে পারে। এই offset voltage অনেকসময় নিয়ন্ত্র করা যায় এবং আমরা $\mathrm{E}_{\mathrm{d}} \approx 0$ ধরে নেবো।

5.5 यোগকারী (Adder) বা সক্কলক বर्তনী

মৃলগত তত্ত্ব ও ব্যবহার্য সূত্রাদি

চিত্র 5.2a-তে একটি তিন-অন্তর্বিষ্ট ভোল্টেজ (three input) সপ্ধनিত বিপরীতকারী সঙ্कলক বর্তনী (inverting adder) প্রদর্শিত হয়েছে। অন্তর্বি্ট ভোল্টেজগুলির মেরুচিহ্ পরিবর্তন করে নিয়ে একত্র যোগ করা হলে তা হবে V_{0} 'র মান।
$\mathrm{V}_{0}=-\left(\mathrm{E}_{1}+\mathrm{E}_{2}+\mathrm{E}_{3}\right)$
যোজক বিন্দু S এবং (-) अন্তর্দ্বার ভূমি বিভবে রয়েছে, এটা হচ্ছে ফিডব্যাকের জন্য। প্রবাহ $\mathrm{I}_{1}=\mathrm{E}_{1} / \mathrm{R}, \mathrm{I}_{2}=\mathrm{E}_{2} / \mathrm{R}$ এবং $\mathrm{I}_{3}=\mathrm{E}_{3} / \mathrm{R}$ । যেহেতু (-) অন্তর্দ্বরে প্রবাহ প্রায় শূন্য $\mathrm{I}_{1}, \mathrm{I}_{2}$ এবং I_{3} প্রবাহগুলি ফিডব্যাক রোধ R_{f} দিয়ে যাবে। অতএব
R_{f} 'এ Sোল্টেজ পতন $=-\left(\mathrm{I}_{1}+\mathrm{I}_{2}+\mathrm{I}_{3}\right) \mathrm{R}_{\mathrm{f}}=\mathrm{V}_{0}$
$\therefore V_{0}=-\left(\frac{E_{1}}{R}+\frac{E_{2}}{R}+\frac{E_{3}}{R}\right) R_{f}=-\left(E_{1}+E_{2}+E_{3}\right)$

উদাহরণস্বরূপ यদি $\mathrm{E}_{1}=2 \mathrm{~V} \quad \mathrm{E}_{2}=3 \mathrm{~V} \quad \mathrm{E}_{3}=1 \mathrm{~V}$ इয় $\mathrm{R}=10 \mathrm{~K} \Omega$ তाহলে

$$
V_{0}=-(2+3+1)=-6 \mathrm{~V}
$$

यদি মাত্র দুটি অন্তর্বিষ্ট ভোল্টেজ E_{1}, E_{2} থকে তাহলে E_{3} ’র বদলে ভূমিতে শর্ট-সার্কিট করে দিলেই হবে। যদি চারটি সংকেত যোগ করতে হয় তাহলে ঐ S-বিন্দু আর চতুর্থ সংকেতের মােে R রোধ যুক্ত করলেই হবে।

বৈপরীত্যহীন সক্কলক (non-inverting adder) উৎপন্ন হবে যখন যোজমান ভোল্টেজগুলি অং্অ্যাষ্পের (+) প্রাষ্ঠে যুক্ত করা হবে।

চিত্র 5.2 b দেখুন। এখানে $\mathrm{E}_{1}, \mathrm{E}_{2}, \mathrm{E}_{3}$ স্বক্পসংকেত প্রত্যাবর্তী বিভব হিসাবে দেখানো হয়েছে। $\mathrm{E}_{1}, \mathrm{E}_{2}, \mathrm{E}_{3}$ मिষ্ট প্রবাহের উৎসও (\rightarrow ’ প্রান্তগুলি ভূমিতে যাবে) হতে পারে। এখানে অন্তর্বিষ্৪ ভোল্টেজ

$$
E_{i}=\frac{E_{1}+E_{2}+E_{3}}{3}
$$

[এর সমার্থক বর্তনী আঁকুন এবং থেভ্ন্নাঁ (Thévnin) উপপাদ্য প্রয়োগ করুন]
পর্যবেক্ষণ : এজন্য 'প্রয়োজন হবে
(1) একটি ব্রেডবোর্ড (Bread Board)
(2) সংযোজক তার
(3) ডিজ্টিট্যাল মিটার
(4) তড়িৎ সরবরাহ ব্যবস্থা ± 15 V D.C.
(5) কয়েকটি রোধক, বিভিন্ম মানের।

कार्यक्जम :
(1) তড়িতের ক্ষমতা-উৎসটি চালু করে রাখুন, বর্তনীর সঙ্গে পরে সংযোগ করবেন। অष্তত 20 মি চালू না থাকলে স্ষমতা উৎস থেকে প্রাপ্ত ভোল্টেজ সুস্থিত অবস্থায় আসে না। বর্তনীর চিত্র থাতায় অাঁকুন।

(2) ব্রেডবোর্ড নিয়ে বিভিন্ন সংযোগণলি সম্পল্ন করুন। উপাত্ত গ্রহণের সারণীগুলি এবার প্রস্তুত করে নিতে হরে। রোধকগুলি ব্যবহারের আশে ডিষ্টিট্যাল মিটার দিয়ে রোধমানতলি মেপে লিপিবদ্ধ করুন।
(3) 741 অপ্-অ্যাম্পের পিনখলি ভাল করে লক্ষ্য করুন এবং খাতায় এঁকে নিন।
(4) $E_{1}, E_{2}, E_{3}-$ র মান यতটা সম্ভব পরিবর্তন করে বিভিন্ন ভাবে পরীশ্ষণটি করা বাঞ্ছনীয়। তবে $E_{1}, E_{2}, E_{3}-$ র মানগুলি যেন কখনই 741 এর জন্য নির্দিষ্ট সীমার বাইরে না যায় সেটা লক্ষ্য রাখতে হবে। (অপ্-অ্যাস্পের গঠন ও কার্যনীতিতে এ বিষয়ে আলোচনা হয়েছে, সেটা পড়ে দেখুন)।
(5) সব পরিমাপের সময়ই ভাল করে দেখে নেওয়া দরকার ভূমির সংযোগগুলি।

5.6 বিয়োগকারী (subtractor) বা ব্যবকলক বর্তনী

চিত্র 5.2 c অনুযায়ী সংযোগ করতে হবে। এটি (ক) এর অনুরূপ বিপরীতকারী অন্তর্দ্বারে
$e_{-}=e_{2} \frac{R_{2}}{R_{1}+R_{2}}+e_{0} \frac{R_{1}}{R_{1}+R_{2}}$
বৈপরীত্যরাহিত অন্তর্দ্বরে
$e_{+}=e_{1} \frac{R_{2}}{R_{1}+R_{2}}$
অপ্-অ্যাম্পের ফিডব্যাক ব্যবস্থার জন্য
$\mathrm{e}_{-}=\mathrm{e}_{+}$

চिত্র 5.2 c

काজেই $\quad e_{2} \frac{R_{2}}{R_{1}+R_{2}}+e_{0} \frac{R_{1}}{R_{1}+R_{2}}=e_{1} \frac{R_{2}}{R_{1}+R_{2}}$

$$
\text { ফलে } \mathrm{e}_{0}=\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}\left[\mathrm{e}_{1}-\mathrm{e}_{2}\right]
$$

প্রভেদবিবর্ধক পরীক্ষণে এই পরীক্ষণের কিছু গুরুত্পপূর্ণ আলোচনা করা হয়েছে।

5.7 বিপরীতকারী বিবর্ধনের (inverting amplifier) বৈশিষ্ট্য অধ্যয়ন

মূলগত তত্ত্, ও ব্যবহার্য সূত্রাদি
চিত্র 5.3a দেখুন। এই বিবর্ধকে E_{i} থেকে V_{0} পর্যস্ত আবদ্ধলুপের প্রবর্ধনাঙ্ক স্থির করা হয় R_{f} এবং $\mathrm{R}_{\mathrm{i}}-$ এর সাহায্যে। এটা এ.সি. বা ডি.সি. দুরকম সংকেতই বিবর্ধিত করতে পারে। বাস্তব বর্তনীতে নিম্নলিখিত অনুমানগুলি খাটে : (1) (+) এবং (-) অন্তর্বিশন দ্বারের মধ্যবতী ভোল্টেজ E_{d} প্রায় শূন্য এবং (2) (+) প্রান্ত বা (-) প্রান্ত দুট্টিতে যে প্রবাহ প্রবেশ করে থাকে তার মান প্রায় শৃন্যাই ধরা যায়।

বিপরীতকারী অন্তর্দ্বারে ধনাত্মক ভোল্টেজ প্রয়োগ
চিত্রে 5.3a ধনাহ্মক ভোল্টের E_{i} প্রযুক্ত হয়েছে R_{i} রোধে এবং তা থেকে অপ্-অ্যাস্পের (-) অন্তর্দ্বরে। ফিড ব্যাক রোধ $\mathrm{R}_{\mathrm{f}}-এ র$ মধ্য দিয়ে ঋণাত্মক পুনর্নিবেশ ঘটানো হয়েছে। (+) এবং (-) প্রান্তের মধ্যে ভেল্টেজের মান প্রায় শূন্য। কাজেই (-) প্রান্ত 0V-এ রয়েছে, ভূমি বিভব (-) অন্তর্দ্বারে। $R_{i}-এ র$ ভোল্টেজ পতন E_{i} এবং R_{i}-এর প্রবাহ $I=E_{i} / R_{i}$

অন্তর্বিষ্ট প্রবাহ I^{-}- এর সবটাই R_{f} দিয়ে যাবে। লক্ষ্যণীয় যে $R_{f}-$ এর প্রবাহ নির্দেশ করছে R_{i} এবং $\mathrm{E}_{\mathrm{i}}-\mathrm{R}_{\mathrm{f}}, \mathrm{V}_{0}$ বা অপ্-অ্যাম্প নয়। $\mathrm{R}_{\mathrm{f}}-এ$ র প্রান্তিক বিভব $\mathrm{V}_{\mathrm{R}_{\mathrm{f}}}=\mathrm{IR}_{\mathrm{f}}=\frac{\mathrm{E}_{\mathrm{i}}}{\mathrm{R}_{\mathrm{i}}} \mathrm{R}_{\mathrm{f}} ; \mathrm{R}_{\mathrm{f}}$ - এর

চি 5.3 a : একটি বিপরীতকারী বিবর্ধকের
(-) अন্তর্দ্বরে ধনা|্মক ভোন্টেজ প্রয়োগ করা হয়েছে
একপ্রান্ত এবং R_{L}-এর একপ্রান্ত যুক্ত থাকায় এই সংযোগ থেকে ভূমি পর্যন্ত ভোল্টেজ হচ্ছে $\mathrm{V}_{0} \mid \mathrm{R}_{\mathrm{f}}$ এবং R_{L} অन্য প্রান্ত দুটি ভূমি সংলঞ্ন।
$\therefore \mathrm{V}_{0}=\mathrm{V}_{\mathrm{R}_{\mathrm{f}}} . \mathrm{V}_{0}{ }^{\prime}$ র মেরুচিহ্ কি হবে? $\mathrm{E}_{\mathrm{i}}-$ - $র$ প্রেরিত প্রবাহের দিক এমনই যে $\mathrm{R}_{\mathrm{f}}-$ ডান প্রান্ত ঋণাত্মক (ক্েেনা R_{f}-এর বামপ্রান্ত ভূমিসংলগ্ন)।

কাজেই $\mathrm{E}_{\mathrm{i}}>0$ হওয়ায় V_{0} नেগেটিভ।

$$
\begin{aligned}
& \therefore\left|\mathrm{V}_{0}\right|=\left|\mathrm{V}_{\mathrm{R}_{\mathrm{f}}}\right| \\
& \text { এবং } \mathrm{V}_{0}=-\mathrm{E}_{\mathrm{i}} \frac{\mathrm{R}_{\mathrm{f}}}{\mathrm{R}_{\mathrm{i}}}
\end{aligned}
$$

কাজেই বিবর্ধকে আবদ্ধলুপের বিবর্ধন $A_{C L}=\frac{V_{0}}{E_{i}}=-\frac{R_{f}}{R_{i}}$
ঋাাত্ছক চিহ্নটির জন্য V_{0} ’র মেরুচিহ্ন $E_{i}-এ র$ বিপরীত। এজন্যই এই বিবর্ধককে বলে বিপরীতকারী বিবর্ধক।

ভার রোধ এবং বহি্মেব্রের প্রবাহ

ভারের প্রবাহ I_{L} निर्দিষ্ট করে দেয় $\mathrm{R}_{\mathrm{L}}-$ $I_{L}=V_{0} / R_{L}$ আবার $R_{f}-এ র$ প্রবাহও (I) স্থির করবে বহির্দ্বার। ফলে অপ্-অ্যাম্পের বহির্দ্বারের প্রবাহ I_{0} रচ্ছে $\quad \mathrm{I}_{0}=\mathrm{I}+\mathrm{I}_{\mathrm{L}}$
I_{0} 'র সর্বাধিক মান অপ্-আ্যাম্প স্থির করে দেয়। এটি সচরাচর 5-10 mA
E_{i} যে অন্তর্বিষ্ট ররাধ প্রত্যক্ষ করে তা R_{i}; অপ্-অ্যাম্পের অন্তর্বিষ্ট রোধের মান যথেষ্ট উচ্চমানের হওয়া চাই। এ কারণে $R_{i} \geq 10 \mathrm{~K} \Omega$

বিপরীতকারী বিন্দুতে এ.সি. ভোল্টেজ প্রভ়োগ
চিত্র 5.3 b দ্রষ্টব্য। E_{i} সঙ্কেত ভোল্টেজটির পর্যায়কালের প্রথমার্ধে যেহেতু $\mathrm{E}_{\mathrm{i}}>0$, কাজেই এটির ক্রিয়া চিত্র 5.3 a অনুসারে হবে। কাজেই বহির্দ্বারের তরঙ্গরূপ হবে অন্তর্দ্বারের তরঙ্গরূপের সাথে 180°

দশাকোণ যুক্ত। অর্থাৎ যখন $\mathrm{E}_{\mathrm{i}}>0, \mathrm{~V}_{0}<0$ এবং যখন $\mathrm{E}_{\mathrm{i}}<0, \mathrm{~V}_{0}>0$ ।
লক্ষ্যণীয় যে এই বিবর্ধকে আবদ্ধলুপের বিবর্ধন মান নির্ভর করছে দুই রোধমানের উপর। কাজেই

প্রবর্ধনাঙ্ক্রর মান কত সৃক্ষ্রতবে স্থির করা যাবে তা নির্ভর করবে রোধদুটির সহনশীলতার (tolerance) মানের ঊপর।

পরীক্ণণে কার্यক্রম
উপরের আলোচনা থেকে কার্যক্রম স্পষ্টভাবে বোঝা যায়।
(ক) পরীক্ষণের কার্যক্রমের অংশবিশেষের সাথে এই কার্যক্রমের সাদৃশ্য রয়েছে বলে আর পৃথকভাবে লেখা হল না। সারণী প্রভৃতিও নিজের বিবেচনা মত করে নিন।
5.8 প্রভেদ বিবর্ধক (differential amplifier) বর্তনীর বৈশিষ্ট্য অধ্যয়ন

ক্রিয়া : প্রভেদ বিবর্ধক বর্তনী ব্ববহার করে ব্বল্পমানের সক্কেত কেবল বিবর্রনই নয় পরিমাপ করাও यায়, এটা আমরা দেখবো। তার আগে আমরা বর্তনীর ক্রিয়াকলাপ পর্যবেক্ষে করি, আসুন।

চারটি (1%) সৃক্ম রোধক এবং একটি অপ্-অ্যাম্প্ নিয়ে একটি প্রভেদ বিবর্ধক বর্তনী সৃষ্টি করা চলে (চিত্র 5.4a দ্রঃ)। দूটি অন্ত্ঘ্ঘার প্রান্ত রয়েছে-একটি (-) অत্তব্বশন প্রান্ত অন্যটি (+) অন্তর্বিশন প্রান্ত, যা

যथাক্রম্মে অপ্-অ্যাম্পের সক্গে যুক্ত করা আছে। যদি E_{1}-কে শর্টসার্কিট করা হয় একটি বিপরীতক্রিয়

বিবর্ধকের সম্মুখীন হবে যার প্রবর্ধনাহ্ক -m । কাজেই তখন E_{2} 'র জন্য বহির্বিষ্ট ভোল্টেজ ($-\mathrm{mE}_{2}$)। এবার ধরা যাক E_{2}-কে শর্টসার্কিট করা হলো; E_{1} প্রয়োগ করা হলে এটি R এবং $m R$-এর মধ্যে বিভক্ত হয়ে অপ্-অ্যাম্পের $(+)$ অন্তর্দ্বারে $\left[\mathrm{E}_{1} \mathrm{~m} /(1+\mathrm{m})\right]$ ভোন্টেজ সরবরাহ করবে। এই বিভাজিত ভোল্টেজ যেন একটি $(m+1)$ প্রবর্ধনাঙ্কের বৈপরীত্যহীন বিবর্ধকের সম্মুখীন হচ্ছে। E_{1}-এর জন্য বহির্বিষ্ট ভোল্টেজ অতএব,

$$
\left[E_{1} m /(m+1)\right] \times(1+m)=m E_{1}
$$

এভাবেই বহির্দ্বারে E_{1} বিবর্ধিত হচ্ছে m গুিতক দ্বারা গুণিত হয়ে $m E_{1}$ মানে।
এখন यদি E_{1} এবং E_{2} উভয়েই উপস্থিত থাকে তখন কি হয়? $\mathrm{E}_{1}(+)$-অন্তর্দ্বারে এবং E_{2} (-)-অন্তর্দ্বারে একই সঙ্গে প্রযুক্ত হলে V_{0} 'র মান হবে

$$
V_{0}=m E_{1}-m E_{2}=m\left(E_{1}-E_{2}\right)
$$

আমরা দেখছি যে প্রভেদবিবর্ধকের বহির্বিষ্ট ভোল্টেজ $V_{0},(+)-এ ব ং(-)-$ অন্তর্দ্বরে প্রযুক্ত ভোল্টেজের অন্তরফলের সঙ্গে সমানুপাতী। গণিতক m-কে বলা হয় প্রভেদ বিবর্ধন (differential gain) যা রোধকমানের অনুপাত থেকে নির্দিষ্ট হয়।

সহানুপ্রবেশ* ভোল্টে (Common mode voltage)
প্রভেদ বিবর্ধকের বহির্বিষ্ট ভোল্টেজ 0 হওয়ার কথা যদি $E_{1}=E_{2}$ হয়। দুই দ্বারেই সমান ভোল্টেজ প্রয়োগের সহজতম উপায় হলো দুটি অন্তর্দ্বারকে একই তার দিয়ে যুক্ত করে (চিত্র 5.4b) ভোল্টেজ উৎসে সংযুক্ত করা। এভাবে সংযোগ হলে তাকে বলে সহানুপ্রবিষ্ট অন্তর্দ্বার ভোল্টেজ (common mode input voltage) E_{CM}, রোধ অনুপাত সমান হলে $\mathrm{V}_{0}=0$ । রোধ অনুপাতকে সমানায়িত করার জন্য একটি রোধের সঙ্গে শ্রেণীতে একটি পোটেন্সিওমিটার যুক্ত করা হয় (চিত্র 5.4a)। এই পোটেন্সিওমিটারটির নব ঘুরিয়ে যেতে হবে যতক্ষণ না $V_{0}=0$ হয়। এর ফলে সহানুপ্রবেশ ভোল্টেজ বিবর্ধনের মান (common mode voltage gain) $\mathrm{V}_{0} / \mathrm{E}_{\mathrm{CM}}$ শूন্যমানের দিকে যাবে। প্রভেদ বিবর্ধকের এই বিশেষ গুণটি থাকার ফলেই আমরা একটি বৃহৎ সঙ্কেতের পরিবেশ থেকে একটি স্বল্প সঙ্কেত উদ্ধার করে নিতে পারি।

[^15]সাধারণত এভাবে বর্তনীবিন্যাস করা হয় যাতে বৃহত্তর সক্কেতটি সহানুপ্রবেশ অন্তর্বি্ট ভোল্টেজ রৃপে প্রযুক্ত হয় এবং স্বল্প সক্কেতটি প্রভেদ অন্তর্বিষ্ট ভোল্টেজ হিসাবে আরোপিত হয়। তখন প্রভেদ বিবর্ধকের বহির্বিষ্ট ভোল্টেজ হবে কেবলমাত্র প্রভেদ অণ্তর্বিষ্ট ভোন্টেজটির বিবর্ধিত মান।

একটি প্রভেদ বিবর্ধকের অভিকক্পন (design)
চিত্র 5.4c দ্রঃ প্রভেদ বিবর্ধক তৈরি করতে গেলে নির্দিষ্ট মানের বিবর্ধনের মান ঠিক করতে হরেএটি R_{2} / R_{1} এর অনুপাত থেকে পাওয়া যাবে।

$$
\mathrm{V}_{\text {out }}=-\left(\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}} \times \mathrm{V}_{\text {in } 1}\right)+\left[\left(\frac{\mathrm{R}_{4}}{\mathrm{R}_{3}+\mathrm{R}_{4}}\right)\left(\frac{\mathrm{R}_{1}+\mathrm{R}_{2}}{\mathrm{R}_{1}}\right) \mathrm{V}_{\text {in2 }}\right]
$$

यখन $R_{1}=R_{2}=R_{3}=R_{4}$ তখन $V_{\text {out }}=V_{\text {in2 }}-V_{\text {in } 1}$
এবং $R_{2}=R_{1} \times$ বিবর্ধন
$R_{3}=R_{1}$ /বিবর্ধন
$\mathrm{R}_{4}=\mathrm{R}_{1} \times$ বিবর্ধন
নির্ধারিত বিবর্ধনের জন্য উপাত্ত পজ্জী (data sheet) থেকে দেথে নিন দশা পরিপূরণ (Phase compensation) কত নিতে হবে।

চিত্র... দুটি অন্তর্বি্ট ভোল্টেজ 8 থেকে 70 mV পরিবর্তিত হবে। বহির্বিষ্ট ভোল্টেজ হবে $\left(\mathrm{V}_{\mathrm{in} 2}-\mathrm{V}_{\mathrm{in} 1}\right) \times 30$ । ধরা যাক অন্তর্দ্বারের বায়াস প্রবাহ 200 nA .

8 mV -এর 10% হচ্ছে $0.8 \mathrm{mV} ; 200 \mathrm{nA}$ অন্তর্বিষ্ট বায়াসের জন্য ভোল্টেজ পতন হবে 0.8 mV , কজেই R_{1}-এর সর্বাধিক মান নিতে পারেন $4000 \Omega(0.8 \mathrm{mV} / 200 \mathrm{nA})$ । 3000Ω ব্যবহার করুন ভোন্টেজ পতন হবে 0.6 mV

বিবর্ধন 30 পাওয়ার জন্য $R_{2}=30 \times R_{1}=90 \mathrm{~K} \Omega$ কাজেই $\mathrm{R}_{1}=3000 \Omega$, বিবর্ধন 30 নেওয়া रলে R_{3} এবং R_{4} रবে যथাক্রুমে 100Ω এবং $90 K \Omega$ ।

এবার ধরা যাক $V_{i n 2}=50 \mathrm{mV}, \mathrm{V}_{\mathrm{in} 1}=40 \mathrm{mV}$ । বহির্বিষ্ট ভোল্টেজ হবে এদের অন্তরফল্ল (10 mV) কে বিবর্ধন (30) দিৰে গুণ করে অর্থাৎ 300 mV । উপরের সূত্র থেকে হিসেব করে কিন্তু বহির্বিষ্ট ভোল্টেজ হচ্ছে 333 mV । কর্যকলে দুটি অন্তর্বি্ট ভেল্টেজ এবং বহির্বিষ্ট ভোল্টেজ মেপে দেখতে হয়। তখন প্রয়োজন হলে R_{3}-কে সামান্য পরিবর্তন করে সঠিক বহির্বিষ্ট ভোল্টেজটি আনতে হবে। $\mathrm{R}_{4}{ }^{-}$ পরিবর্তন করেও একাজ করা চলে, তবে R_{3}-র পরিবর্তন সাধন সহজতর।

5.9 741-এর উপাক্তপঞ্জী থেকে গৃহীত কয়েকটি তথ্য

পরিশিষ্ট A :
$\mu \mathrm{A} 741$ উচ্চ দম্ড্গ সম্মন্ন একক-খোদিত-Fairchild Planar Epitaxial পদ্ধতিতে এটি প্রস্তুত হয়। সহানুপ্রবেশ ভোল্টেজ খুব উচ্চ মানের

- কम্পাংকের পরিপূরণ প্রয়োজন নেই
- শর্ট सার্কিট সং:রক্ষিত
- অফ্সেট ভোল্টেজ প্রায় শূন্য
- সহানুপ্রবেশ ভোল্টেজ মান উচ্চ, প্রভেদীয় ভোল্টেজের প্রসার সমধিক
- ক্ষমতার ব্যয় নিম্ন
—-সর্বাধিক মান-
সরবারহ ভোল্টেজ $\quad \pm 18 \mathrm{~V}$
$\begin{array}{ll}\text { ক্ষমতা ব্যয় - ধাতব আবরণের জন্য } & 500 \mathrm{~mW} \\ \text { अना } & 570 \mathrm{~mW}\end{array}$
প্রভেদীয় অন্তর্বিষ্ট ভোল্টেজ (Differential input voltage) $\pm 30 \mathrm{~V}$
অন্তর্বিষ্ট ভোল্টেজ (input voltage) $\pm 15 \mathrm{~V}$

পরিশিষ্ট B : অপ্-অ্যাম্পে পুননির্বেশ-সম্পর্কিত আলোচনা
চিত্র 5.5 a দ্রঃ। সঙ্কেত ভোল্টেজ V_{s} যथন ধনাত্মক তখন V_{0} ঋণা|্মক।

$I_{i}=I_{s}-I_{f}$
$V_{i}=I_{i} R_{\text {in }}=R_{\text {in }}\left(I_{s}-I_{f}\right) \quad\left[I_{s}=\frac{V_{s}-V_{i}}{Z_{i}}\right]$
$V_{0}=-A_{V_{i}}=-A R_{i n}\left(I_{s}-I_{f}\right)\left[I_{f}=\frac{V_{i}-V_{0}}{Z_{f}}\right]$
$\therefore V_{0}=-A R_{i n}\left(\frac{V_{s}-V_{i}}{Z_{i}}-\frac{V_{i}-V_{0}}{Z_{f}}\right)$
अতএব, $\mathrm{V}_{0}\left(\frac{1}{\mathrm{AR}_{\mathrm{in}}}+\frac{\backslash 1}{\mathrm{Z}_{\mathrm{f}}}+\frac{1}{\mathrm{AZ}}+\frac{1}{A Z_{\mathrm{f}}}\right)=-\frac{\mathrm{V}_{\mathrm{s}}}{\mathrm{Z}_{\mathrm{i}}}$
ফलে $\frac{\mathrm{V}_{0}}{\mathrm{~V}_{\mathrm{s}}}=-\frac{1}{\mathrm{Z}_{\mathrm{i}}} /\left[\mathrm{Z}_{\mathrm{f}}^{-1}+\frac{1}{\mathrm{~A}}\left(\frac{1}{\mathrm{R}_{\mathrm{in}}}+\frac{1}{\mathrm{Z}_{\mathrm{i}}}+\frac{1}{\mathrm{Z}_{\mathrm{f}}}\right)\right]$
A^{\prime} र
যथन Z_{s} এবং Z_{i} দूয়েই রোধকাশ্রিত $\quad A^{\prime}=-R_{f} / R_{i}$ এর অর্থ এই যে প্রব্ধন্রর মান অতিসৃক্ষ্মতার সল্গে নির্ৰ্য করা যায়। চিত্র 5.5 b দ্রঃ।

$$
\begin{aligned}
\mathrm{V}_{\text {out }}=\mathrm{A}_{\mathrm{S}} & =\mathrm{A}\left(\mathrm{~V}_{\mathrm{s}}+\beta \mathrm{V}_{\text {out }}\right) \\
\therefore \mathrm{V}_{\text {out }}(1-\beta \mathrm{A}) & =A \mathrm{~V}_{\mathrm{s}} \\
\mathrm{~V}_{\text {out }} & =\frac{\mathrm{A}}{1-\beta \mathrm{A}} \mathrm{~V}_{\mathrm{s}} \text { माधाরণ পুनर्निবেশ সমीকরণ }
\end{aligned}
$$

চि $5.5 \mathrm{~b} \beta=\mathrm{V}_{\text {out }}$ এর যে ভমাংশে পুनर्निবিষ্ট इन

যथन বহির্বিষ্ট ভোল্টেজের ভগ্মাশ্ পরিমাণ বিপরীত দশায় পুনর্নিবিষ্ট হয়, β হয় ঋাশ্ফক। β 'র घान $=-\beta^{\prime}$ वেখানে $\beta^{\prime}>0 .|\beta|=\left|\beta^{\prime}\right|$

$$
V_{\text {out }}=\frac{A}{1+\beta^{\prime} A} V_{s}=A^{\prime} V_{s}
$$

$\beta^{\prime} A$-কে বলা হয় লুপের বিবর্ধন (loop gain)
প্রधान বিবর্ধকের প্রবর্ধন यদি थুব উচ্চমানের হয় $\left(10^{5}-10^{6}\right)$, তখन $A \beta \gg 1$ হওয়ায়

$$
\mathrm{A}^{\prime} \cong \frac{\mathrm{A}}{\beta \mathrm{~A}}=\frac{1}{\beta}
$$

কাজেই পুনর্নিবেশ বির্ধকের প্রব্ধন মূল বিবর্ধকের বিবর্ধনের উপর (অর্থাৎ A'র উপর) নির্ভর করবে না যদি A>>1 হয়। বিবর্ধন কতটা সুস্থিত?

ধরা যাক $\mathrm{A}=10^{6}$ এবং $\beta=10^{-2}$

$$
\therefore \mathrm{A}^{\prime}=\frac{10^{6}}{1+10^{6} \times 10^{-2}} \approx 100
$$

এবার যদি A কমে গিয়ে 10^{4} হয় (কোনও দूর্ঘটনা বশত ধরা যাক)

$$
\text { তाइलে } \mathrm{A}^{\prime}=\frac{10^{4}}{10^{4} \times 10^{-2}} \approx 100
$$

কাজেই পুনর্নিবিষ্ট বিবর্ধকের বিবর্ধন, A 'র বড় পরিবর্তনেও অপরিবর্তিত। [এটা কেন হয়, ভেবে দেখুন।]
5.10 अनूশीलनी :
(1) "অপ্-্যাম্প্ মূলত একটি ডি. সি. ব্যাস ভোল্টেজ বিবর্ধক" (Differential Voltage Amplifier) এখানে "ডি. সি." কথার তাৎপর্य কি?
(2) অপ্-অ্যাম্পের অন্তর্বিষ্ট প্রতিরোধ (input impedance) কত মানের হয়?
(3) "বহির্বিষ্ট প্রতিরোধ এক ওহ্মের ভঞ্মাশ হতে পারে"-ককথাটির যাথার্থ্য আলোচনা করুন।
(4) প্রবর্ধনের (gain) পরিমাণ সুউচ্চ। কত উচ্চ?
(5) C.M.R. কি ব্যাখ্যা করুন। 'C.M.R. R 90 dB' এর অর্থ কি?
(6) आপনি Op-Amp-এর চারটি ব্যবহার শিখেছেন। অন্যান্য উম্লেখনীয় ব্যবহার কি আছে জানেন कि?
(7) Op-Amp এর তড়িৎ-সরবরাহ ভোল্টেজের চরম মান $\pm 18 \mathrm{~V}$ হতে পারে। কেন? এর কম্মে (সাধারণত $\pm 15 \mathrm{~V}$) কেন রাখা হয়?
(8) Op-Amp741 এর ‘কষ্রমতা ব্যয় (Power dissipation)’ 500 mW । কোন্ কোন্ অংশে এই ব্যয় ঘটে থাকে?

[^0]: * সচরাচর স্পেক্ট্রোমিটার (Spectrometer) বলে উপ্পিথিত যষ্ত্রটি মৃন্ত একটি স্পেক্ট্ব্রাম্কোপ্ (Spectroscope). কেননাঁ এ যক্ণেে ঢোথের সাহায্যে বর্ণালি রেখা দেখা হয়ে থাকে। বর্ণালি সংবেদক যষ্ত্র এখানে মানবিক চোথ। বর্ণালি সংরেদক যষ্ত্র তড়িতীয় (electrical) হলে তবেই এটিকে স্পেক্ট্রোমিটার বলা সঙ্গত। বর্ণালি সংবেদনে যদি তাপযুগ্ম (Thermo Couple) বা আলোক-তড়িতীয় পৃষ্ঠতল (Photo Cell) ব্যবহৃত হয় তবেই এটি হবে স্পেক্ট্রোমিটার।

[^1]: * স্পেক্ব্রামিটার যন্ত্রের সংক্ষিপ্ত পরিচয় ও এর বিভিন্ন অংশের ক্রিয়াকলাপ পরিশিষ্ট - ক-তে লেখা হল।

[^2]: * ভালভাবে অন্তরিত দুগাছা তার নিয়ে তাদের একপ্রাষ্তে এক একটি করে দুটি কুমীর-ক্বিপ্ (Crocodile Clip) লাগিয়ে নিন; কুমীর-ক্রিপ্গুলির ধাতব অংশ যাতে পরে হাতে বা অন্যত্র স্পর্শ না হয় সতর্ক হবেন, কেননা এগুলি পরে উচ্চবিভবগ্রস্ত হবে। কুমীর-ক্রিপ্ দিয়ে মোক্ষণনলে সংযোগ করা সুবিধাজনক, কেননা এতে স্মুলিঙ্গন (Sparking) হওয়ার সষ্ভাবনা কম।

[^3]: * ঋজুরেখ লেখ आঁকা গেলে 'অবম বর্গ পদ্ধতি’ (Gauss' Least Square Method) অনুসরণ করা চলে।

[^4]: * এই সমন্বয়নটি রশ্মিগুচ্ছ সমান্তরীকৃত করার পরও করা যায়

[^5]: ** A. Schuster, Philosophical Magazine পত্রিকায় (VII, P. 95 1879) প্রথম এই পদ্ধতি প্রকাশ করেন। দ্র\% A. Schuster, Theory of Optics, 1924

[^6]: * শর-সংযোজিত ধনুকের সমতলটিকে স্পর্শকীয় সমতল ধরে নিলে এই সমতলের অভিলম্ব যে সমতলটিতে শরটি অবস্থিত হয় সেটি শরাশ্রয়ী (Sagittal) সমতল।

[^7]: * 'Diffraction' এর বাংলা পরিভাষা অনেকেই ‘ব্যবর্তন’ করেছেন। শব্দটির ব্যাকরণগত ত্রুটি রয়েছে। বর্তন কথাটি বৃৎ ধাত্ cথেকে উৎপন, অবর্তন এটির নঞর্থক শব্দ, কিস্তু বি উপসর্গ ও বর্তন শব্দের মাঝে নঞর্থক 'অ’ বসানো যায় না। আবার বি-আ+বৃৎ+অন্ এরকমভাবে নিষ্পন্ন শব্দ "ব্যাবর্তন" কথ্থাটির অর্থ মোচড় (twist)। বর্তমান লেथক এজন্য "অপসৃত বর্তন" অর্থে অপবর্তন’ শব্দটি প্রয়োগের পক্ষপাতী।

[^8]: * কেননা m 'এর পর পর দুটি পূর্ণসংখ্যক মানের অন্তর্বত (N-2) সংখ্যক মানের জন্যও $I(\theta)$ চরমমান প্রাপ্ত হয়। তবে শেষোক্ত এই চরমমনগুলি এত ক্ষীণ প্রাবল্যের হয়ে থাকে যে এদের গৌণ চরমশীর্ষ (Secondary Maxima) বলा হয়।

[^9]: * আগেকার ভাষায় এটি ‘চৌম্বক আরেশন’; আমরা বর্তমানকালীন ভাষাই বেশি ব্যবহার করবো। ‘flux’ কথাটি ‘flow’র সঙে সাযুজ্য রেথে সৃষ্টি হনেও এখানে প্রবাহ নৌই কিছুরই; আমরাও ‘প্রবাহ’ কথাটি ‘flux’এর অনুসরণ করেইই ব্যবহার করছি।
 \# দিক-সাপেক্কে (anisotropic) বস্তুর ক্ষেত্রে μ একটি টেন্সর্ হয়ে থাকে।

[^10]: * কুণ্ডুলের জ্যামিতিক বৈশিষ্ট্যণ্লি বিশদভাবে এ্ঁকে দেখানো হয়েছে চিত্র 3 b-ه।
 \# বাংলায় ‘ভাস্যান বলয়’ বলা যায়।

[^11]: * P. J. Weiss, J. Phys., 6, 661 (1907)
 \# F. Bitter, Phys. Rev. 38, 1903 (1931)

[^12]: * উষ্ণতার প্রভাব, পাশাপাশি ডোমেইনের প্রতিক্রিয়া প্রডৃতি বহ্হ জটিলতাময় আণুবীক্কণিক প্রক্রিয়ার সমাহার ঘটে থাকে।

[^13]: * E. Warburg (ভারবুর্গ) 1880-তে প্রথম দেখেন যে যখন চৌম্বকায়ন একটি ‘Cyclic series of values'এ করা হয় (চোম্বক ক্ষেত্রকে পর্যায়ক্রমে পরিবর্তিত করে), তথন B-H সম্পর্কের এই বক্রটি একটি সম্পূর্ণতঃ আবদ্ধ (completely closed) বক্র হয়ে থাকে এবং $\Phi H d B$-র মান শক্তিभ্ষয়ের চক্রীয় পরিমাণ বলে লেয়।

[^14]: * রাজ্থসান বিশ্ধবিদ্যালয়ের প্রথিতযশা অধ্যাপক বাবুলাল সারাফ্ (Babulal Saraf) তাঁর 'Physics through experiments', 1975 নামের বিথ্যাত বইটিতে একটি Network Board-এর বিশদ চিত্র সন্নিবেশিত করেন। সৌিউं’ বিভিন্ন পরীক্ষণাগারে গূহীত .হয়েছে ‘Saraf Board’ নামে। এটি কিনতে পাওয়া যায়; প্রয়োজনে নিজেরাও প্রস্তুত করে নেওয়া যায়।

[^15]: * দूটি অত্ত্র্মরেই এক ধরণের সক্কেত প্রবেশ করলে তাকে বলা হয় Common-mode-Signal—এটি বাংলায় আমরা "সহনুপ্রবেশ সঙ্কেত" বলবো। কাজেই Common Mode Rejection Ratio (CMRR)-এর বাংলায় আমরা "সহানুপ্রবেশ বর্জনের অনুপাত" (সংক্ষেপে স.ব. অনুপাত) বলে ব্যবহার করছি।

