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PREFACE

In the curricular structure introduced by this University for students of Post-
Graduate degree programme, the opportunity to pursue Post-Graduate course in a
subject is introduced by this University is equally available to all learners. Instead
of being guided by any presumption about ability level, it would perhaps stand to
reason if receptivity of a learner is judged in the course of the learning process.
That would be entirely in keeping with the objectives of open education which
does not believe in artificial differentiation.

Keeping this in view, study materials of the Post-Graduate level in different
subjects are being prepared on the basis of a well laid-out syllabus. The course
structure combines the best elements in the approved syllabi of Central and State
Universities in respective subjects. It has been so designed as to be upgradable
with the addition of new information as well as results of fresh thinking and analysis.

The accepted methodology of distance education has been followed in the
preparation of these study materials. Cooperation in every form of experienced
scholars is indispensable for a work of this kind. We, therefore, owe an enormous
debt of gratitude to everyone whose tireless efforts went into the writing, editing
and devising of a proper lay-out of the materials. Practically speaking, their role
amounts to an involvement in ‘invisible teaching’. For, whoever makes use of these
study materials would virtually derive the benefit of learning under their collective
care without each being seen by the other.

The more a learner would seriously pursue these study materials the easier it
will be for him or her to reach out to larger horizons of a subject. Care has also
been taken to make the language lucid and presentation attractive so that they may
be rated as quality self-learning materials. If anything remains still obscure or difficult
to follow, arrangements are there to come to terms with them through the counselling
sessions regularly available at the network of study centres set up by the University.

Needless to add, a great deal of these efforts is still experimental—in fact,
pioneering in certain areas. Naturally, there is every possibility of some lapse or
deficiency here and there. However, these do admit of rectification and further
improvement in due course. On the whole, therefore, these study materials are
expected to evoke wider appreciation the more they receive serious attention of all
concerned.

Professor  (Dr.) Subha Sankar Sarkar
Vice-Chancellor
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1.1 Objective of the Unit

After studying this unit, the reader will be able to know
 what is a mathematical function
 what is meant by derivative or differentiation of a function
 the link between slope and curvature of a function and its derivative
 higher order partial derivatives
 the concept of total derivative
 the concept and properties of homogeneous functions
 the Euler’s theorem

1.2 Introduction

Economics, generally speaking, deals with relationships among various economic
variables. These relationships may concisely and precisely be discussed by the
mathematical concept of ‘function’. Again, while making an economic decision, we
have to consider a basic question. The question is : will a particular line of action add
more to our benefits than the efforts spent on the action? This is a vital question for
making an economic decision or for solving any economic problem. Naturally, if benefits
to be received exceed efforts to be spent, the economic decision will be undertaken. In
the opposite case, the decision will be rejected. If they are equal, the matter is a case of
indifference. In that case, the decision may or may not be undertaken. In a word, the
answer to our basic question determines the economic viability of a line of action. In
Economics, this is the core of marginal analysis which is closely related to a mathematical
concept called derivative or the mathematical technique of differentiation. The
mathematical concept of derivative or differentiation has made marginal analysis
operative, precise and exact in economic decision making. Hence we begin our discussion
on Mathematical Analysis with the notion of function and its derivative/differentiation.

1.3 Definition and Types of Functions

Simply speaking, two varibles x and y are said to be functionally related if for a particular
value of x, we get a particular value of y. We generally denote the function as :
y = f(x). Here x is called independent variable and y is called dependent variable, and f
is the functional notation stating the nature of relation between x and y. Thus y = f(x)
means that the value of y somehow depends on the value of x. Here the value of y
depends on the value of x. Hence y is called the dependent variable and x is called the
independent variable or explanatory variable. The word variable means anything whose
value varies or changes.
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Now, the value of y may depend on the values of a set of variables, say, x1, x2, ..., xn.
Then we shall write the function in usual notation as, y = f(x1, x2, ..., xn) where y is the
dependent variable, x1, x2 ..., xn are the different values of independent variable; and
f denotes the functional relationship.

Thus, technically speaking, a function is a mathematical formalisation of the
relationship whereby the values of a set of independent variables determine the value of
the dependent variable. Stating alternatively, a function is a mathematical relationship
whereby the value of the dependent varible is determined by the values of a set of
independent variables. Thus, a function is a mathematical expression of dependency
between two or more variables. When we say that ‘y is a function of x’, it implies that
for each value of x we get a single, definite value of y. So long there is a one to one
correspondence between two variables, we write, y = f(x). It simply says that y changes
as x does.

In this connection, two points may be noted. First, in the functional expression
y = f(x), we have called x the independent variable while the variable y is called the
dependent variable. Here, y is a function of x and it does not necesarily imply that x is
also a function y. The value of x may or may not depend on the value of y. Secondly, in
the definition of a function, we have stipulated a unique value of y for each value of x.
However, the converse is not required. In other words, more than one x value may
legitimately be associated with the same value of y. If there is one to one corespondence
between the value of x and the value of y, we say that y is a single-valued function of x.

In Economics, we come across a variety of functions. If demand for a commodity
(D) depends on its price (P), we write, D = f(P). If consumption (C) depends on
income(Y), we may say, C = F(Y). If the rate of investment (I) depends on the rate of
interest (r), we get the investment function : I = g(r). Here the symbols f, F and g all
denote the functional relation in demand function, consumption function and investment
function, respectively. Here, D, C, I are dependent variables while P, Y and r independent
variables. If we assume that the level of saving (S) depends on the level of income (Y)
and the rate of interest (r), our saving function can be written as :
S = S(Y, r) where the second ‘S’ stands for functional relation. If the level of consimption
expenditure of an economy (C) depends on the level of income (Y), the rate of interest
(r), the volume of assets (a), the distribution of income (d), the age-distribution of
population (A), the volume of advertisting expenditure (e), etc., the consumption function
of the economy can be written in more general form as : C = f(Y, r, a, d, A, e, ...).
 Types of Functions

The expression y = f(x) is a general statement. A function is also called mapping or
transformation which implies the action of associating one thing with another.In the
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statement y = f(x), the functional notation ‘f’ may thus be interpreted to mean a rule by
which different values of x are mapped or transformed into different values of y. Thus,
the expression y = f(x) implies that a mapping is possible but the actual rule of mapping
is not explicitly mentioned. Depending on different rules of mapping, we get different
types of functions. We mention below some specific types of functions which are more
common in Economics.

 Constant Function :

A constant does not change its magnitude. In a given operation, it has a fixed value. For
example, each number in isolation in the number system can be regarded as a constant.
If we say that k is a constant such that k = 7, it implies that in any entire
operation, k takes or assumes only this value of 7. Now, a function whose range consists
of only one element, is called a constant function. The constant function assumes only
one value or one magnitude. For example, let y = f(x) =
10 is a constant function. We can alternatively write it as
y = 10 or f(x) = 10. Here the value of y remains 10
irrespective of the value of x. The general expression for
a constant function is : y = k or, f(x) = k where k is a real
number. In a two dimensional plane, a constant function
y = k can be represented by a horizontal straight line. (Fig
1.1). In Economics, when investment (I) is autonomously
given or exogeneously given at  I0, we write I = I0 or, say,  for example,
I = ` 1000m. It is a case of constant function.

Similarly, total fixed cost is fixed and does not depend on the level of output i.e.,
TFC = k is a constant function. Similarly, if price is fixed (as in the case of perfect
competition), we write, p = p0 and it is a constant function. All these are examples of
constant function. In the co-ordinate plane, they will appear as horizontal straight lines.

 Polynomial functions

The word ‘polynomial’ means ‘multiterm’. A polynomial equation is an equation by
which, in general, several terms in an independent variable are raised to various powers.
The degree of a polynomial equation is the highest power of the independent variable in
that equation. A polynomial function of a single variable x has the general form :

y = a0 + a1x + a2x2 + ... + anxn.
This is a polynomial in x of degree n provided an  0 . Remembering that x0 = 1 and

x1 = x, we may rewrite the polynomial equation as :
y = a0x0 + a1x1 + a2x2 + ... + anxn

k k k
x

y = (k)

y

–x 0
(Fig. 1.1)
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It shows a specific pattern of the equation. In this equation, each term contains a
coefficient as well as a non-negative integer power of the variable x. Taking different
values of the integer n, we may get several sub-categories of polynomial functions. For
example, we have shown the following cases :

If n = 0, we have, y = a0. It is a constant function
If n = 1, we have, y = a0 + a1x. It is a linear function.
If n = 2, we have, y = a0 + a1x + a2x2. It is a quadratic function.
If n = 3, we get, y = a0 + a1x + a2x2 + a3x3. This is a cubic function in x, and so on.
Thus, polynomial functions represent a general class of several functions. Our previous

constant function is just a special case of polynomial function when the power-integer
(n) is equal to zero. In other words, a constant function is a polynomial of degree zero.
A linear equation is a first degree polynomial (n = 1). A quadratic equation is a second
degree polynomial (n = 2). A cubic equation is a third degree polynomial
(n = 3), and so on.

Let us consider the shapes of these functions in a two-
dimensional diagram. We have shown the shape of the
constant function in our figure 1.1. A linear function will
appear as a straight line when plotted in the co-ordinate
plane. We have shown this in figure 1.2. Putting n = 1 in
the general form of the polynomial equation, we get the
first  degree polynomial or the linear funct ion :
y = a0 + a1x.

In this function, a0 is vertical intercept. (We get it by putting x = 0 in the equation).
The coeffecient a1 measures the slope (the steepness of incline) of the line. We have
assumed that a0 > 0 and a1 > 0. As a0 > 0, the straight line has a positive vertical intercept
equal to a0. As a1 > 0, the straight line is upward
rising. Taking example from Economics, in our
consumption function, a0 > 0, a1 > 0. Thus, the
straight line drawn in figure 1.1 resembles the shape
of the consumption function. If a1 < 0, the straight
line will be downward sloping as shown in figure
1.3. Again, taking an example from Economics, in
our linear demand function where demand (D) is
an inverse function of p, we write, D = a0 + a1p, a1 <
0. Thus, our straight line drawn in figure 1.3. resembles a linear demand function.

A quadratic function plots as a parabola – a curve with a single bump or wiggle.
Putting n = 2 in the general form of a polynomial function, we get y = a0 + a1x + a2x2.

a0

y = a 0 + a x1

Assuming a0 > 0, a > 01 

o x

y

(Fig. 1.2)

a0

y

o x

y = a0 + a x, a > 0, a < 01 0 1  

(Fig. 1.3)
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This is a quadratic function or a second degree polynomial in x. Assuming a0 > 0 and a2
< 0, we have drawn a quadratic function in our figure 1.4.
When a2 < 0 and a0 = 0, the curve will start from the origin
(as a0 is the vertical intercept of the curve) and be concave
to the x-axis. For example, in Economics, our total revenue
function or TR curve is generally of this shape If a2 > 0,
with a0 and a1 also positive, the curve will open the other
way. It will then display, as put it by A.C. Chiang, a valley,
rather than a hill. For example, our average cost (AC) and
marginal cost (MC) curves resemble this shape.

Let us consider the shape of a cubic function. Putting n
= 3 in our general equation of the polynomial function, we get the cubic
function : y = a0 + a1x + a2x2 + a3x3. This is a cubic function
of x or a third degree polynomial in x. When a polynomial
function of degree n is plotted on a graph paper, the number
of turning points may be up to (n – 1). Thus a linear function
( n = 1) has zero or no turning point. A quadratic function
(n = 2) has one curvature or one turning point. Thus, a
cubic function (n = 3) may have two turning points. Hence,
the graph of a cubic function will, in general,
manifest two wiggles. This is shown in our figure 1.5.

Here we have drawn a cubic function assuming a2 < 0.
These functions have many uses in Economics. The curve in our figure resembles the
shape of the total cost (TC) function. If we have a0 = 0 and again, a2 < 0, the curve will
pass through the origin, keeping its shape unchanged. It will then resemble the total
variable cost (TVC) curve.

 Rational functions

A function expressed as a ratio of two polynomial functions is known as rational

function (meaning ratio-nal). For example, y =  


23x 7x 9
4x 5

 is a rational function. As

per this definition, any polynomial function must itself be a rational function. For, it can
always be expressed as a ratio to 1, which is a constant function. For example, y = 5x2 +
3x + 6 is a quadratic function or a polynomial of degree 2.

Now, y = 5x2 + 3x + 6 =    


2 2

0

5x 3x 6 5x 3x 6
1 1.x

a0

y

o x

y = a0 + a x + a x , 
(case of a < 0)

1 2

2

 

 

2

(Fig. 1.4)

a0

y

o x

y = a 0 + a x + a x + a x

1

2

3

 

2 

3

(Fig. 1.5)
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= second degree polynomial
constant function or zero degree polynomial

 .

This the polynomial y = 5x2 + 3x + 6 is itself a rational function.
A special rational function has interesting applications in Economics. Let the function

be, y =  0a
x

 where a0 is a constant (i.e. constant function).

Then, xy = a0 = constant. Plotting this on a two-dimensional
diagram i.e. on (x, y) plane, we get a rectangular hyperbola
(Fig. 1.6). Here the product of two variables is always a
constant (xy = a0).

This means that the area of all the rectangles obatained
by joinig abscisssa and ordinate of all points on this curve
is constant. Such a curve in co-ordinate geometry is called a rectangular hyperbola.
Now, if x represents price and y represents quantity demanded, then xy represent total
reveume of the seller or total expenditure of the buyer. Now, the equation of the rectangular
hyperbola is : xy = a0 = constant. So, if the total reveume of the seller or total expenditure
of the buyer remains the same or constant, the demand curve will be a rectangular
hyperbola. Another example from Economics is the shape of the AFC curve. We know

that 
TFCAFC

q
.

 AFC × q = TFC = constant = a0 (say)
So, plotting AFC on one axis and output (q) on the other, the AFC curve will be a

rectangular hyperbola.
The rectangular drawn from xy = a0 never meets the axes. Rather the curve approaches

the axes asymptotically. As y becomes very large, x will become very small, but not
equal to zero i.e., the curve will not meet the y-axis. Similarly, if x becomes very large,
y will be very small, but not equal to zero, i.e., the curve will not meet the x-axis either.
In symbols, as y , x  0 and as x , y  0. Such a curve is generally referred to
as an asymptotic curve.

 Inverse function

We know that a function y = f(x) represents a one-to-one correspondence or one-to-
one mapping. This means that for a particular value of x, we get a particular value of x.
Now, the function y = f(x) may have an inverse function, say, x = f–1(y). It is read as ‘x
is an inverse function of y’. Here, f–1 represents a functional symbol. It does not mean
the reciprocal of the function f(x). Thus, x = f–1(y) = h(y) (say). Thus, the symbol f–1

xy = a0

y

o
x

(Fig. 1.6)
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signifies a function related to the function f. For example, y = 10x + 7, then  
1x (x 7)

10
.

These two are inverse functions of each other. If y = f(x) = 3x, then, alternatively,


1x
3

 y = h(y).

Let us give an example of an inverse function from Economics. Let quantity
demanded (q) be the function of price : q = f(p). Let the function be linear. Let its

specific form be :  
a 1q .p
b b . (a > 0, b > 0). Plotting q on the vertical axis and p on the

horizontal axis, we get a downward sloping linear demand function. Let us deduce the

inverse demand function from this demand function. We may write,  
1 ap q
b b ,

or, p = a – bq. This is the inverse demand function, say, p = h(q) of our previous demand
function. Plotting p on the vertical axis and q on the horizontal axis, we get, once again,
a downward sloping demand function. By demand function we generally mean this
inverse demand function proper.

 Non-algebraic Function

Any function expressed in terms of polynomials and/or roots, such as, square root
of polynomials is an algebraic function. So far, functions we have discussed are all
algebraic functions. If, however, the independent variable does not appear as a
polynomial, the function is said to be a non-algebraic function. It may be of three
types :

(i) Exponential function, for example, y = abx.
(ii) Logarithmic function, for example, y = logbx
(iii) Trigonometric function, for example, y = cos x.
Trigonometric functions are also called circular functions.
Non-algebraic functions are also known by the more esoteric name of transcendental

functions.

1.4 Concepts of Der ivative and Differentiation

When two variables x and y are somehow related, we express that relation by the
functional notation, say, y = f(x). It simply states that the value y depends on the value
of x. In other words, it states that the value of y changes as the value of x does. Now,
suppose when x = x0, y = f(x0) = y0(say). Further, suppose that x changes its value from
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the initial value of x0 to x1 and correspondingly the value of y also changes from its
initial value of y0 to y1. Then the rate of change of y due to change in x is equal to




1 0

1 0

y y
x x

.  The concept of derivative gives us the rate of change of the dependent variable

when the change in the independent variable is very small. If we denote the change in y
by y i.e., y = y1 – y0 and the change in x by x i.e., x = x1 – x0, then we can write,




 
1 0

1 0

y yy
x x x

. This is the change in y per unit change in x. Now, if the change in x is

very small (x  0), we call it derivative of y with respect to x. It is denoted by 
dy
dx .

Thus, 
x 0

y dyLt
x dx 





. Thus, derivative of a function gives us an idea about the rate of

change of the dependent variable when the independent variable changes by a very

small amount (x  0). Thus, the derivative of y function, 
dy
dx  is change in y due to

infinitesimal change in x. The act of finding the value of this derivative 
dy
dx  is called

differentiation.
Let us see how this value can be found out. We have said that y = f(x). Initially, when

x = x0, y = f(x0) = y0(say) and as x changes to x1(= x0 + x), y changes to f(x1) = y1(say).

So, we can write, 
 

 
  

1 0 1 0

1 0 1 0

y y f(x ) f(x )y
x x x x x

.

We have mentioned that x changes by x amount. So, the new value of x i.e., x1 =

x0 + x. Hence we can write, 
   

 
0 0f(x x) f(x )y

x x
 as x1 – x0 = x. We generally use

h for x.

So, 
 




0 0f(x h) f(x )y
x h

. This is the rate of change of y at a given value of x (say,,

x0) and is known as instanteneous rate of change. In general we can write for any value

of x, y f(x h) f(x)
x h

  



.

The derivative of y = f(x) is obtained when x(= h) tends to zero. This derivative of
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y = f(x) with respect to x is generally denoted by dy
dx

or f(x) or d (y)
dx

 or d [f(x)
dx

].

Thus,   
dy df (x) (y)
dx dx

 = 
h 0

f(x h) f(x)Lt
h

  . To repeat, the act of finding out the

value of 
dy
dx  or the value of derivative is called differentiation. The method is known as

differentiation from first principle or differentiation from definition. It may be

mentioned in this connection that 
dy
dx  is not a ratio of dy to dx. Rather, it indicates an

operation– an operation of finding out the value of 



y
x  when x  0. The alternative

notation f(x) or 
dy
dx  explicitly reflects this idea. Let us give some examples of finding

out the value of 
dy
dx  from the function y = f(x).

Example 1.1 : Given y = 10x + 7, find 
dy
dx .

Solution : Here, y = f(x) = 10x + 7.
f(x + h) = 10(x + h) + 7

Hence, 
      

  


y f(x h) f(x) 10(x h) 7 (10x 7) 10
x h h

So, 
h 0 h 0

f(x h) f(x)Lt Lt 10 10
h 

 
 

So,  
dy f (x) 10
dx

Here y = 10x + 7 and it is a linear function in x. We see that the derivative of a linear
function is constant and it is equal to the gradient or slope of the straight line. Here the
derivative is positive (+10). It indicates that both x and y change in the same direction.

Example 1.2. : Given y = 7 – 8x, find 
dy
dx .

Solution : Here y = f(x) = 7 – 8x. It is again a linear function in x. Here y is an inverse
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function of x. We have y = f(x) = 7 – 8x. Now, x changes by x. Let x = h.
So, f(x + h) = 7 – 8(x + h).

 
      

   


y f(x h) f(x) 7 8(x h) (7 8x) 8
x h h

 
x 0 h 0

dy y yLt Lt 8
dx x x  

 
   

 
. Thus,   

dy f (x) 8
dx

Here the derivate is negative (= –8). Thus, in this case, the gradient or slope of the
straight line is negative. A negative sign of the derivative implies that the independent
and the dependent variables change in the opposite directions.

Our examples (1) and (2) show that the derivative of a linear function is constant and
it is equal to the slope or gradient of the straight line. We may prove it by taking a
general equation in linear form. This we have done in example (3) below.

Example 3 : y = mx + c (m  0, c  0). Find dy
dx

.

Solution : We know that 
dy
dx = 

h 0

f(x h) f(x)Lt
h

 

Here, y = f(x) = mx + c (m  0, c  0)
 f(x + h) = m(x + h) + c

 
f(x h) f(x) m(x h) c (mx c) m

h h
     

  . So, 
h 0

dy Lt m m
dx 

 

Thus, the derivative of a linear function is constant and it is equal to the gradient or
slope (positive or negative) of the linear function.
Example 1.4 : Determine the derivative of the function y = 3x2 + 5x + 6
Solution : Here y = f(x) = 3x2 + 5x + 6

 f(x + h) = 3(x + h)2 + 5(x + h) + 6

 
         

 


2 2y f(x h) f(x) 3(x h) 5(x h) 6 (3x 5x 6)
x h h

= 
   


26xh 3h 5h h(6x 3h 5)

h h
 = 6x + 3h + 5

Now, 
h 0 h 0

dy yLt Lt (6x 3h 5)
dx x 


   


 = 6x + 5
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Note that here 
dy f (x)
dx is a function of x. If x = 1, f(1) = 11; if x = 2, f(2) = 17, etc.

Example 1.5. : Obtain the derivative 
dy
dx  of the function y = x3

Solution : Here y = f(x) = x3

 f(x + h) = (x + h)3 = x3 + 3x2h + 3xh2 + h3

Now,   



y f(x a) f(x)
x h

 = 
   3 2 2 3 3(x 3x h 3xh h ) x

h

= 
 2 2 33x h 3xh h

h
 = 3x2 + 3xh + h2

Now, 
h 0

dy yLt
dx x





 = 

2 2

h 0
Lt (3x 3xh h )


  = 3x2.

So, 
dy
dx  of the function y = x3 is 3x2 .

Here also, 
dy
dx  or f(x) is a function of x, i.e., f(x) varies with the variation in the

value of x. If x = 1, f(1) = 3. If x = 2, f(2) = 12. If x = 3, f(3) = 27 and so on.

Example 1.6. : Obtain 
dy
dx  when y = ax2 + bx + c

Solution : Here y is a quadratic function of x or a second degree polynomial in x.

Now, 
 

  


x 0

dy f (x x) f (x)Lt
dx x . Putting x = h,

we may write, 
h 0

dy Lt
dx 


 f(x h) f(x)

h
.

Now, y = f(x) = ax2 + bx + c
 f(x + h) = a(x + h)2

 + b(x + h) + c


  




y f(x h) f(x)
x h

= 
2 2a(x h) b(x h) c (ax bx c)

h
      
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= 
  22axh bh h
h

= 2ax + b + h

Now, 
dy
dx = h 0

Lt


(2ax + b + h) = 2ax + b

1.5 Rules of Differentiation / Rules of Der ivative

There are some rules which can help us to find out derivative of a function. We here do
not offer any proof of those rules. We are just stating those rules which can be applied
only technically to determine the derivative of a function. Some of such important rules
are mentioned below.

Rule 1 : If y = c where c is a constant, 
dy
dx = 0. This is known as the rule of

differentiation of a constant function. A constant does not depend on any variable. So, if

x changes by dx amount, y does not change i.e., dy = 0. Hence, 
dy
dx = 0

If y = 50(say), then 
dy
dx = 0. If y = y0 , 

dy
dx  = 0

Taking example from Economics, the total fixed cost(TFC) of a firm in the short run
does not depend on the level of output(q). TFC remains fixed. So, TFC = a0(say). So,


dTFC 0

dq

Rule 2 : If y = axn (where a and n are constants), 
dy
dx  = n axn–1. This is known as the

Rule of Differentiation of a power function.

Examples : (i)  If y = 10x4, 
dy
dx = 4 × 10.x4–1 = 40x3

(ii) If y = 5x10, 
dy
dx = 10 × 5.x10–1 = 50x9.

(iii) If y = x = x1, 
dy
dx = 1.x1–1 = x0 = 1

(iv) If y = 30x, 
dy
dx  = 1.30.x1–1 = 1 × 30 × 1 = 30
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(v) If y = 7

10
x = 10x–7, 

dy
dx = –7 × 10.x–7–1 = –70x–8 =  8

70
x

(vi) If y =  11 x
x ,        1 1 2

2

dy 11.x x
dx x , etc.

It may be noted that the earlier result of differentiation of a constant function can be
obtained from this rule of differentiation of a power function. Let y = c where c is
constant. To apply the rule of differentiation of a power function, we rewrite the value
of y as : y = c.x0 (as x0 = 1)

Now, 
dy
dx = 0 × c.x0–1 = 0, a result which we have already stated in Rule 1.

Rule 3 : Sum or Difference Rule of Differentiation

If y = u ± v where both u and v are functions of x, then 
dy du dv
dx dx dx

 

Example 1.7 :

(i) y = 10x3 + 7x5. Then 
dy
dx = 3 × 10.x3–1 + 5 × 7.x5–1 = 30x2 + 35x4

(ii) y =  3

30 40
x x . We have to find out 

dy
dx . The given function can be re-written as,

y = 30x–1 + 40x–3

Now, 
dy
dx = –1 × 30x–1–1 + (–3).40.x–3–1 = –30x–2 – 120x–4  =  2 4

30 120
x x

(iii) y = 50x3 – 70x2

dy
dx  = 3 × 50.x3–1 – 70 × 2.x2–1 = 150x2 – 140x

(iv) y =  2 5

20 50
x x

To calculate 
dy
dx of the function, we rewrite the function as, y = –20x–2 – 50x–5.

Now we apply the rule of differentiation of power function.
dy
dx = –2(–20)x–2–1 – (–5 × 50).x–5–1 = 40x–3 + 250x–6 = 3 6

40 250
x x

(v) If y = ax2 + bx + c where a, b and c are positive or negative constants,
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dy
dx  = 2ax + b

(vi) If y = a0 + a1x + a2x2 + a3x3 where a0, a1, a2 and a3 are constants,
dy
dx = a1 + 2a2x + 3a3x2.

In general, if y is polynomial of degree n, we have, y = a0 + a1x + a2x2 + ... + anxn

(where a0, a1, a2 etc. are positive or negative constants). Then 
dy
dx  = a1 + 2a2x + 3a3x2 +

... + (n – 1) an–1xn–2 + nanxn –1.

For example, if y = 7x5 – 4x4 – 3x3 + 4x2 + 8x + 10 – 
2 3

7 10 20
x x x
  ,

dy
dx = 35x4 – 16x3 – 9x2 + 8x + 8 +  2 3 4

7 20 60
x x x

Thus, we see that the derivative of the sum (or difference) of two or more functions
is actually the sum (or difference) of the derivatives of two or more functions.

Rule 4 : If y = u.v where u and v both are functions of x, dy du dv.v .u
dx dx dx

  . This is

known as product rule of differentiation.
Examples :

(i) y = (3x4 + 5x2)(10x2 + 3x + 9)
dy
dx  = (12x3 + 10x)(10x2 + 3x + 9) + (20x + 3)(3x4 + 5x2)

(ii) y = (5x2 – 4x)(7x3 – 3x2 + 4x – 6)
dy
dx = (10x – 4)(7x3 – 3x2 + 4x – 6) + (21x2 – 6x + 4)(5x2 – 4x)

Rule 5 : If y = 

u

 where both u and v are functions of x, then 2

du d. .udy dx dx
dx


 




This is known as quotient rule of differentiation.
Example 1.8 :

(i)


 

2

2
7x 5

9x 2x 8
, find 

dy
dx .
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Let u = 7x2 + 5 and  = 9x2 + 2x + 8


du
dx = 14x and 

dv
dx  = 18x + 2

Now, if y = 

u

, then 


 


2

du d. .udy dx dx
dx

So, 
2 2

2 2

dy 14x(9x 2x 8) (18x 2)(7x 5)
dx (9x 2x 8)

    


 

(ii) Let y = 


 

3

2

5x 7
2x 4x 3

. Find 
dy
dx .

Here 
dy
dx  = 

      

 

2 3 3 2

2 2

d d(2x 4x 3) (5x 7) (5x 7) (2x 4x 3)
dx dx

(2x 4x 3)

=     
 

2 2 3

2 2

(2x 4x 3)(15x ) (5x 7)(4x 4)
(2x 4x 3)

(iii) Let y = 



23x 7
2x 1

. Find 
dy
dx .

Here 
dy
dx  = 

2 2

2

d d(2x 1) (3x 7) (3x 7) (2x 1)
dx dx

(2x 1)

    



 
2

2

dy (2x 1) 6x (3x 7) 2
dx (2x 1)

   


  = 
2 2 2

2 2

12x 6x 6x 14 6x 6x 14
4x 4x 1 4x 4x 1
    


   

Rule 6 : If y = f(z) and z = F(x), then 
dy dy dz.
dx dz dx . This is known is chain rule of

differentiation or function of a function rule. Let us check the rule.

Let y = z2 and again, z = 2x + 1. We can, in this case, directly find out 
dy
dx by

expressing y as a function of x and then diffentiating y with respect to x.
Here y = z2 = (2x + 1)2 = 4x2 + 4x + 1
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 
dy
dx = 2 × 4x2–1 + 4.x1–1 = 8x + 4.

Let us see what happens if we apply the chain rule. We have y = z2 and z = 2x + 1.

So, 
dy 2z
dz

 and 
dz 2
dx

Now, as per chain rule of differentiation,  
dy dy dz
dx dz dx = 2.z × 2 = 4z

Putting z = 2x + 1, we get,    
dy 4(2x 1) 8x 4
dx

This is our earlier result by direct method.

Rule 7 : If y = log x, 
dy 1
dx x

Rule 8 : If y = ex,  xdy e
dx

Corollary : If y = emx, then  mxdy de . (mx)
dx dx  = emx.m = memx

Thus, if y = e3x, then 
dy
dx = 3e3x

Der ivative of an inverse function

If y = f(x) and its inverse function is : x = g(y) then 
dy dx.
dx dy = f (x).g(y)=1

So, 
dy
dx  or f (x) = 

1
g (y) and 

dx
dy  or g(y) = 

1
f (x)

1. Concept of Higher  Order  Der ivatives or  Higher  Order  Differentiation

Let y = f(x). Then
dy
dx  or f(x) is the derivative, or more specifically, the first

derivative of the function. If we differentiate this derivative again, we get the second

derivative. It is denoted by 
 
 
 

d dy
dx dx  or 

2

2

d y
dx

. Similarly, we may get, if possible, third
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derivative 
 
 
 

3

3

d y
dx , fourth derivative 

 
 
 

4

4

d y
dx , etc. These are called higher derivatives.

Let us see how many times a polynomial can be differentiated. Suppose, y = 3x + 1.

It is a polynomial of degree 1 or first degree polynomial. In this case, 
dy
dx = 3 and

   
 

2

2

d y d dy 0
dx dx dx . It cannot be differentiated further. So, a first degree polynomial

can be differentiated twice. Consider a second degree polynomial, say, y = 2x2 + 5x + 6.

Here 
dy
dx  = 4x + 5, 

   
 

2

2

d y d dy 4
dx dx dx  and 

 
  

 

3 2

3 2

d y d d y 0
dx dx dx . The function can not

be differentiated for still higher order. Thus for a second degree polynomial, we may get
derivative up to third degree. Consider a third degree polynomial, y = x3 + 9. Then,

2dy 3x
dx

 , 
2

2

d y 6x
dx

 , 
3

3

d y 6
dx

  and 
4

4

d y 0
dx

  Thus, a third degree polynomial can be

differentiated maximum 4 times. In general, an n-th degree polynomial can be
differentiated (n + 1) times i.e., we may get up to (n + 1)-st order derivative.

Consider another possibility. Let y = 
k
x  where k is a constant (Note that this is not a

first degree polynomial. It can be written as, y = kx–1 – the value of power of x is not 1,
rather minus one).

Now in this case, 2

dy k
dx x

  , 
2

3
2 3

d y 2k2k.x
dx x

  ,   
3

3 1
3

d y 6k.x
dx

 = – 6kx–4  = 
4

6k
x

 ,

4

4

d y
dx

= 24.k.x– 4–1 = 24k.x–5 = 5

24k
x  and so on. Here we can differentiate the function for

any order.
We have noted that higher order derivatives can be obtained by the same rule of

differentiation. Another point should also be noted. For the function y = f(x), 
dy
dx  or

f(x) gives us the rate of change of y with respect to x. Similarly, its second order

derivative 
2

2

d y
dx

 or, say, f(x) gives the rate of change of 
dy
dx  or f(x) with respect to x.
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Similar explanation may be given for further higher order derivatives.

1.7 Slope and Curvature

We first consider the slope of a funcion. Let y = f(x) be a function. It may either be
linear or non-linear, depending on the nature of the function. The slope or gradient of a

function at any point is the first order derivative of the function, i.e., 
dy
dx  at that point.

1.7.1Slope of a L inear  Function

Sometimes the graphical presentation of a function may be linear. Then the slope of the
linear function will be the tan of the angle between the curve and the horizontal axis on

its positive direction. If that angle is , then the slope of the linear function = tan 
dy
dx

  .

Example : Let the specific form of the function y = f(x) be y = 3 + 2x. This is a linear
function of x of the form : y = mx + c. Here, m = 2 and

c = 3. Its slope = 
dy
dx = m. In our specific linear function,

slope = 
dy
dx = m = tan = 2. Its vertical intercept = 3

which is obtained by putting x = 0. If x = 0, then y = 3 +
2x = 3. In the figure 1.7, we have drawn the function : y
= 2x + 3. We should note that if x changes by 1 unit, y
changes by 2 units. If x = 1, y = 5; if x = 2, y = 7; if x =
3, y = 9, etc. Thus, the slople of a linear function gives us the change in dependent
variable if independent variable changes by one unit. If the slope is positive, the
independent variable and the dependent variable move in the same direction.

In our example, if x rises by 1 unit, y will also rise by 2 units, and if x falls by 1 unit,
y will also fall by 2 units.

We may cite an example from Economics. Suppose our consumption function is :
C = a + bY where C = consumption, Y = Income. a and b are constants (a > 0, b > 0). We

assume that 0 < b < 1. Here, slope = 
dC
dY = tan  = b. It implies that if income (Y) rises

by 1 unit, consumption(C) rises by b units. In Economics, 
dCb
dY

  
 

is called the marginal

propensity to consume (MPC).

y
y = 3 + 2x

01.5 x

3

(Fig. 1.7)
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So far we have assumed that the function y = f(x) is positively sloped i.e., its 
dy
dx  or

f(x) > 0. It means that x and y change in the
same direction. However, it may happen that there
is an inverse relationship between x and y. In that
case, if x rises, y will fall and vice versa. Then
the function will slope downward from left to
right. Let us assume that the slope of the function
is negative or the function is negatively sloped
and it is linear. If a function y = g(x) is represented
by a downward sloping straight line, then the
slope of the function is negative. For example,

let y = g(x) = 10 – 
1
2 x.

Here, vertical (y) intercept = 10 and slope = 
dy 1
dx 2

  < 0. Graphically it will be a

downward sloping straight line with vertical (y) intercept = 10 units and horizontal (x)
intercept = 20 units. In terms of our figure, slope = tan (180º – ) = – tan  =

OA 10 1
OB 20 2

     . It implies that in this case, if x rises by 1 unit, y will fall by  
1
2  unit

and vice versa.
We cite an example from Economics. The law of demand states an inverse relation

between price (p) and quantity demanded (q). So, q = f(p) such that 
dq
dp

= f(p) < 0. Let

the specific equation of the demand function be, q = 200 – 4p. It is a downward sloping
straight line with quantity(q)- intercept = 200. Here

slope = 
dq
dp  = – 4 < 0. Graphically, slope = tan (180º

– ) = – tan  = OA
OB

  = 200
50

 = – 4. It implies that

if p rices by one unit, quantity demanded(q) will fall
by 4 units and vice versa. In the figure 1.9, we have
drawn the specific demand function : q = 200 – 4p.

We may mention the value of slope of a function

y

y = f(x)

10

(Fig. 1.8)
20

180º – 

A

0


B

q

p

200

(Fig. 1.9)

50

180º – 

A

0


B

q = 200 – 4p
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under two special cases. If y = c where c is a constant it can be represented by a horizontal

straight line with a vertical (y) intercept = c. Its slope = 
dy 0
dx

  as dy = 0, dx  0.

Graphically, slope = tan  = tan 0º = 0 (fig. 1.10). If x = k where k is a constant, its can
be represented by a vertical straight line. Its horizontal(x) intercept will be k (fig. 1.11).

It slope = 
dy
dx =  (as dx = 0 and dy  0). Graphically, slope of this vertical straight line

= tan  = tan 90º = .

y

x

(Fig. 1.10)

c

0

y = c



y

x

(Fig. 1.11)

0

90º

k

1.7.2Slope of a Non-linear  Function

So far we have considered slope of a linear function. Let us consider the slope of a
curve. Let y = f(x) = x2. It represents a curve. In figure 1.12, we have shown the shape of
this curve taking only the positive values of x. Slope
of a curve at every point is different. However, slope
of a straight line is the same at all points. In the case of
a non-linear function or curve, slope at any point is
equal to the slope of the tangent drawn at that point.
Hence, in our figure 1.12, slope of the curve at A =
slope of the portion AB where AB is very very small

(AB  0) = 
x 0

y dyLt
x dx 





= slope of the tangent at A =

tan  where  is the angle between the tangent and the x axis on its positive direction.
Here slope of the curve is positive in the first quadrant (x > 0).

Now, suppose the function y = f(x) represents a non-linear inverse relation between
x and y. In this case, the function depicts a downward sloping curve as shown in the
figure 1.13. Here the slope of the curve is negative. Its slope of the portion AB =

x 0

y dyLt
x dx 





= slope of the tangent at A = tan(180º – ) = – tan . Here slope of the

y

x

(Fig. 1.12)

0

x

x

y



y = x2

y A
B



28

curve is negative. We take a simple example. Let y =

f(x) = 
k
x  where k is a positive constant (k > 0).

Then, xy = k and we know that it can be represented
by a rectangular hyperbola. Now the slope of this

function at any point = 2

dy k 0
dx x

   , i.e., the slope

of the given curve is negative.

1.7.3Curvature of a Function

In order to know the curvature of a function, we have to consider the change in its slope

i.e., 
d dy
dx dx

 
 
 

 or, 
2

2

d y
dx

. A linear function or straight line has no curvature. Its slope is

constant and so, 
d dy
dx dx

 
 
 

 or 
2

2

d y 0
dx

 . Again, consider the curvature of the curve drawn

in the figure 1.12. If we go from left to right on this curve, its steepness rises. If we draw
tangent at different points on this curve going from left to right, the tangents will be
steeper and steeper. The equation of the curve was : y = x2. So, its slope at any point =
dy 2x
dx

 . Thus, the slope of the function depends on the value of x (i.e., a function of

x). As x rises, slope rises and vice versa. Mathematically speaking, 
2

2

d dy d y
dx dx dx

   
 

= 2 > 0. This implies that 
dy
dx  or slope rises. Here the curve is convex upward. Again, in

the figure 1.13, the slope of the curve is negative. The equation of the curve is : y = 
k
x

and hence 2

dy k 0
dx x

   . As x rises, the absolute slope of the curve falls. Considering

the negative magnitude we shall say that its slope rises as x rises. Mathematically

speaking, change in slope = 
2

2

d dy d y
dx dx dx

   
 

= 2k.x–2–1 = 3

2k
x . Thus, for x > 0, 

2

2

d y 0
dx



i.e., the negative slope rises or absolute slope falls. Here the curve is convex downward.

y = f(x)

y

0
x

(Fig. 1.13)

x

y y

x
180º – 

A
B


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We may mention the following cases of curvature of the function y = f(x). We here
consider the case when x rises through ‘a’ and the shape of curve at x = a.

A. Cases of an upward r ising function

(i) f(a) > 0, f(a) = 0, the curve is upward rising linear.
(ii) f(a) > 0, f(a) > 0, the curve is upward rising convex.
(iii) f(a) > 0, f(a) < 0, the curve is upward rising concave.

B. Cases of a downward sloping function

(iv) f(a) < 0, f(a) = 0, the curve is downward sloping linear.
(v) f(a) < 0, f(a) > 0, the curve is downward sloping convex.
(vi) f(a) > 0, f(a) < 0, the curve is downward sloping concave.
We have shown the shape of the curve of case (i) in the figure 1.7, the case of (ii) in

the figure 1.12, the case of (iv) in the figure 1.8 and the case of (v) in the figure 1.13.
The shapes of the curve in case (iii) is shown in the figure 1.14.

Here the curve is upward rising concave. We see that as x increases, tangents become
flatter and flatter, though tangents are upward rising. Thus, slope of the curve is positive
but diminishing. Here the curve is said to be upward rising concave.

The case of (ii) i.e., the shape of a downward sloping concave curve has been shown
in the figure 1.15.

0
x

(Fig. 1.14)

y = f(x)

y

   

0
x

(Fig. 1.15)

y = f(x)

y

Here we see that tangents at different points on the curve is negatively sloped. So,
the slope of the curve y = f(x) is negative. Again, as x rises i.e., as we move from left to
right, the tangents become steeper and steeper or absolute slope rises. But here slope is

negative. So we shall say that slope falls, i.e., 
2

2

d y 0
dx

 . In this case, the curve y = f(x) is

said to be downward sloping concave.
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1.8 Multivar iate Functions and their  Der ivatives

A function having more than one independent variable is called multivariate function.
If the independent variables are x1, x2 ... xn, then the general form of a multivariate
function is : y = f(x1, x2, ..., xn).

In our previous discussions on function, we took a single independent variable x and
the function was written as, y = f(x). That function may be called univariate function as
the number of independent variable in this case is unity. If the number of independent
variables is two, it is called bivariate function. A bivariate function is a special case of
multivariate function where the number of independent variable is two. It is written as,
y = f(x1, x2) where x1 and x2 are two independent variables and y is the dependent
variable.

Differentiation of a multivariate function, say, y = f(x1, x2) can produce three types of
derivatives, namely, partial derivative, total derivative and total differential. We explain
them one by one.

1.8.1Par tial Der ivative :

Suppose we have a multivariate function y = f(x1, x2). Now, it may happen that the value
of x2 also depends on the value of x1. In that case a change in x1 will have two effects on
y. First, there will be a direct effect of change in x1 on y. Second, there will be an indirect
effect via x2 i.e., change in x1 will affect x2 and in turn, change in x2 will affect y. If we
like to know the direct effect and ignore the indirect effect, then we have to differentiate
y with respect to x1, assuming x2 as remaining unchanged. This process of differentiation
is called partial differentiation and the result gives us partial derivative. Thus partial
derivative in a multivariate function involving two or more independent variables is the
derivative with respect to one of the variables, treating all other independent variables as
constants. Thus, in the multivariate function y = f(x1, x2, ..., xn) having n
independent variables, we have n number of partial derivatives. They are written as

1

y
x



, 
2

y
x



, ..., 
n

y
x



 or more popularly denoted by simple symbols, such as, f1, f2, ..., fn,

respectively. In a bivariate function y = f(x1, x2), we have two partial derivatives, namely,

1

y
x



and 
2

y
x



. Again, they are denoted by f1 and f2, respectively. They are called first

order partial derivatives with respect to x1 and x2, respectively. When we change only
one variable, treating others as constants, the multivariate function becomes a function
of a single variable. Hence, the same rules of differentiation of a function of single
variable are also applicable in the case of partial differentiation.



31

Example 1.9 : Let us give some examples of partial differentiation.
(i) Let y = f(x1, x2) = 10x1 + 5x2. Obtain f1 and f2.
 We have, y = 10x1 + 5x2

 1 1
1 1

1

y f 10.x 10
x


  


 and 1 1

2 2
2

y f 5.x 5
x


  



(ii) Let y = 3 2
1 1 2 2x 3x x 8x  . Find f1 and f2.

 We have y = 3 2
1 1 2 2x 5x x 8x 

Now, 3 1 1 1 2
1 1 1 2 1 2

1

yf 3.x 5.x .x 3x 5x
x

 
    


Similarly, 1 1 2 1
2 2 2 1 2

2

yf 5.x 2.8x 5x 16x
x

 
    


We should note that while calculating partial derivative with respect to a particular
variable, we treat other variables as constant. To signify this the symbol ‘’ is used
instead of the notation ‘d’. Further, partial derivatives may be themselves functions of
the same independent variables as the original function. In our last example, we see that

2
1 1 2 1 1 2f 3x 5x f (x ,x )    and f2 = 5x1 + 16x2 = f2(x1, x2).

Partial derivatives have important uses in Economics. From the first order partial
derivatives, we get marginal values. For example, let the utility function be, U = f(x1, x2,

..., xn) where x1, x2, ..., xn are the quantities of n goods, respectively. Here, 
1

u
x



 or f1 is

the change in total utility (u) due to one unit change in consumption of x1. Hence, 
1

u
x



or f1 is nothing but the marginal utility of x1. Similarly, 
2

u
x



 or f2 is the marginal utility

(MU) of x2 and so on. In general, 
i

u
x



 or fi is the MU of the i-th commodity (i = 1, 2, ..., n).

Similarly, partial derivative of the production function with respect to a particular
input will give us the marginal productivity of that input. For example, let the production
function be : q = f(K,L) where q = total product or output, K = amount of capital and L

= amount of labour. Now, 
q
K



 or fk is the change in total product due to one unit change
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in K i.e., marginal productivity of capital. Similarly, 
q
L



 or fL is the marginal productivity

of labour.

1.8.2Total Der ivative

Let the bivariate function be : y = f(x1, x2). Now suppose that x1 and x2 are interdependent.
Then, a change in x1 will have a direct effect on y and an indirect effect through x2. If we
like to consider both the direct effect and indirect effect i.e., the total effect of change in
x1 and x2 on y, that effect can be known from total derivative. Thus, total derivative of a
multivariate function with respect to one independent variable is the sum of both direct
effect and indirect effect(s) through other variable(s). For example, let the utility function
of the consumer be : U = f(q1, q2) where q1 and q2 are the quantities of two goods. Then

total derivative of U with respect to q1 is given by : 2

1 1 2 1

dqdU U U .
dq q q dq

 
 
 

Using simpler symbol, 2
1 2

1 1

dqdU f f .
dq dq

 

Similarly, 1

2 1 2 2

dqdU u U.
dq q dq q

 
 
 

= f2 + f1.
1

2

dq
dq

In both expressions, the first term is the direct effect while the second term is the
indirect effect.

In this example we have assumed that independent variables are interdependent, i.e.,
a change in one independent variable affects the other. There may be another type of
linkage between the independent variables. Suppose the bivariate function is :
y = f(x1, x2). Also suppose that both x1 and x2 depend on t (time) i.e., x1 = g(t) and z2 =

h(t). We like to know the rate of change of y due to a change in t i.e., to know 
dy
dt . This

dy
dt  is called the total derivative of y with respect to t.

Here, change in t does not affect y directly. A change in t affects x1 and x2 and changes

in x1 and x2, in turn, affect y, Now, when t changes, the change in x1 is 1dx
dt

. Again,

change in x1 only brings a change in y by 
1

y
x

 . So, change in y due to change in t is

given by  
1

1

dxy .
x dt

 . Similarly, change in y due to a small change in t via only x2 is given
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by 
2

2

dxy .
x dt

 . So the ‘total’ change in y due to a small change in t (say, dt) is :

1 2

1 2

dx dxdy y y. .
dt x dt x dt

 
 
  . Or, using a simple symbol, we have, 1 2

1 2
dx dxdy f f .

dt dt dt
  .

Thus 
dy
dt

 
 
 

 is our total  derivative of y with respect to t. It gives us the rate of change of

y due to a change in t.
Example 1.10 : Let us give a simple example. Let y = f(x1, x2) = 3x1 + 4x2.

Further, x1 = g(t) = t2 + t + 1 and x2 = h(t) = t2 + 3t + 1. We have to find out 
dy
dt .

Solution : We know that 
dy
dt  = f1

1 2
2

dx dxf .
dt dt

 .

Now, in our example, 1
1

yf 3
x


 
  and  2

2

yf 4
x


 


Again, x1 = t2 + t + 1. So, 1dx 2t 1.
dt

  Further, x2 = t2 + 3t + 1. So, 2dx 2t 3
dt

  .

Putting these values in the expression of dy
dt

, we get,

1 2
1 2

dx dxdy f f .
dt dt dt

   = 3(2t + 1) + 4(2t + 3) = 6t + 3 + 8t + 12 = 14t + 15

Check : We may get the same result if we put values of x1 and x2 in terms of t in the
expression of y and then directly differentiate y with respect to t. Obviously, the result

will give us the value of 
dy
dt . We have, y = 3x1 + 4x2 = 3(t2 + t + 1) + 4(t2 + 3t + 1)

or, y = 3t2 + 3t + 3 + 4t2 + 12t + 4 = 7t2 + 15t + 7. Thus, y becomes a function of t.

Applying power rule of differentiation, we get, 
dy
dt  = 14t + 15. We got the same result

using the formula of 
dy
dt .
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1.8.3Total Differential of a Multivar iate Function

By total differential of a multivariate function we mean the total change in the
dependent variable due to change in all the independent variables when independent
variables have no interdependence among themselves. Let the multivariate function
be : y = f(x1, x2, ..., xn) where x1, x2, ..., xn are independent. Now, the rate of change of y

due to a small change in x1, keeping other variables as constant, is 
1

y
x



, or in short

symbol, f1. If the amount of change in x1 is dx1, then the amount of change in y due to
change in x1 only is given by f1.dx1. Similarly, if x2 changes by dx2, the amount of
change in y is given by f2.dx2, and so on. So, total change in y, say, dy due to change in
all n independent variables will be equal to :

dy = f1 dx1 + f2dx2 + ... + fn dxn.
dy is called the total differential of the function y = f(x1, x2, ..., xn).
If we take a bivariate function where y = f(x1, x2), then if x1 changes by dx1 and x2

changes by dx2, then the total change in y(denoted by dy) is given by :

dy = f1 dx1 + f2dx2 = 1 2
1 2

y y.dx .dx
x x
 


 

dy is called the total differential of the function : y = f(x1, x2).

Example 1.11 : (i) Find the total differential of the function : 2
1 2y 2x 3x 

Solution : From the given function, we get, f1 = 
1

y
x

 = 4x1 and f2 = 

2

y 3
x





.

So, total change in y is : dy = f1dx1 + f2dx2 = 4x1dx1 + 3dx2

(ii) Find the total differential of y when y = 3
2

1

5 4x
x



Solution : From the given function, we get, f1 = 2
1 1

y 5
x x


 


 and 3 1
2 2

2

yf 3.4.x
x


 


=

2
212x . Then, total differential of y, say, dy = f1dx1 + f2dx2

or, dy = 2
1 2 22

1

5 .dx 12x .dx
x

 

1.8.4Rules of Total Differential

The rules of total differential are strikingly similar to the rules of derivative of a univariate
function.
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Rule 1 : If y = k where k is a constant, then dy = dk = 0
Rule 2 : If y = kun where u is a function of x1, then dy = d(kun) = nkun–1. du
Rule 3 : If y = u ± v where u and v are two functions of x1 and x2, respectively, then

dy = d(u ± v) = du ± dv
We may generalise this rule. If y = u ± v ± w, then dy = d(u ± v ± w) = du ± dv ± dw).
Rule 4 : If y = u.v where u and v are two functions of x1 and x2, respectively, then

dy = d(u.v) = v.du + u.dv
We may generalise this rule. Let y = u.v.w. Then dy = d(uvw) = vwdu + uwdv + uvdw

Rule 5 : If y = u
v

where u and v are two functions of x1 and x2, respectively, then

dy = 2

u v.du u.dvd
v v

   
 

1.9 Higher  Order  Par tial Der ivatives

Simply speaking, higher order partial derivatives are the derivatives obtained by repitition
of partial differentiation. When we repeat the process of partial differentiation, we get
the higher order partial derivatives. We know that partial derivatives of a function are
generally functions of the same variables of the primary or primitive function. Thus, if
y = f(x1, x2) then the first order partial derivatives are also generally functions of x1 and

x2, i.e., 1
1

yf
x

 
  

= f1(x1, x2) and 2
2

yf
x

 
  

= f2(x1, x2). In this case, we can repeat the

process of partial differentiation and get higher order partial derivatives. This will hold
so long partial derivatives are functions of the same variables as in the primitive or
primary function. When the partial derivative after some repititions of partial
differentiation ceases to be a function of the same variable, further higher order partial
derivatives are not obtainable.

Example 1.12 : (i) Let y = 2 2
1 1 23x 4x .x . Obtain higher order partial derivatives.

Solution : Here 1
1

yf
x



 = 2

1 26x 4x  and 2
2

yf
dx


 = 8x1x2. Now, second order partial

derivative of y with respect to x1 is : 
2

112
1

y f 6
dx


   and 
2

22 12
2

y f 8x
dx


  . Here f111 = 6 is a
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constant. So we can further differentiate it only once, i.e., 
3

3
1

y 0
dx


 . It cannot be

differentiated further. Similarly, in our example, 
3

3
2

y 0
x



 . So, it cannot also be

differentiated further.

(ii) Find f11 and f22 for the function : y = (x1 + 4x2)3

Solution : Here 
1

y
x



= f1 = 3(x1 + 4x2)2 and 
2

y
x



= f2 = 3(x1 + 4x2)2.4.

Now, 11 1
1 1 1

yf (f )
x x x

   
      

= 
2

2
1

y
x



 = 3 × 2 (x1 + 4x2)1 = 6(x1 + 4x2)

Similarly, f22 = 2
2

(f )
x

 =

2 2

y
x x

  
   

= 
2

2
2

y
x

  = 2 × 12 (x1 + 4x2)2–1.4 = 96(x1 + 4x2).

We can repeat the process of partial differentiation further. The process will stop at
the step when the value of higher order partial derivative becomes zero.

(ii) Let z = 3x + 5y. Determine Zyy and Zxx

Solution : Here, z = 3x + 5y.

So, x
zz 3
x


 


 and y
zz 5
y


 


Now, x(z )
x



= 
z

x x
  
   

 = 
2

2

z
x



 = zxx = 0.

Similarly, yy yz (z )
y





= 
z

y y
  
   

 = 
2

2

z 0
y





In these examples we have f11 or fxx and f22 or fyy. These are called direct second order
partial derivatives. But there may be other type of partial derivatives. We may want to
know the change in f1 due to change in x2 or to know the change in f2 due to change in
x1. In symbols, we may want to know f12 or f21. Consider the function y = f(x1, x2). Here
we have two independent variables : x1 and x2. By the process of partial differentiation,

we get two first order partial derivatives, say, 
1

f
x



 or 
1

y
x



 or f1 and 
2

f
x



or 
2

y
x



 or f2.
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Now, these first order partial derivatives f1 and f2 are generally functions of x1 and x2
i.e., f1 = f1(x1, x2) and f2(x1, x2). So, we shall get four second order partial derivatives.
They are :

2
1 1

112
1 1 1 1

f y y f
x x x x

   
       

, 
2

2
222

2 2 2 2

f y y f
x x x x

    
       

2
2

12
1 1 2 1 2

f y y f
x x x x x

    
        

 and 
2

1 1
21

2 2 1 2 1

f f y y f
x x x x x

    
        

Among these four second order partial derivatives, the first two, f11 and f22, are called
direct second order partial derivatives and the last two i.e., f12 and f21, are called cross
second order partial derivatives or mixed partial derivatives. Thus, if the multivariate
function has two independent variables, we have four second order partial derivatives
(2 direct and 2 cross). If the multivariate function has 3 independent variables, we have
9(= 32) second order partial derivatives (3 direct and 6 or 32 – 3 cross derivatives) In
general, if the multivariate function has n independent variables, it will have n2 second
order partial derivatives (n direct and (n2 – n) cross or mixed derivatives).

One important result about cross partial derivatives is that if f1 and f2 are all continuous
and smoth functions of x1 and x2, then cross-partial derivatives will be equal i.e.,
f12 = f21. This is known as Young’s Theorem.

Example 1.13 : (i) Let 3 2 3
1 2 2y 4x 3x x 10x   . Find f111, f22, f12 and f21.

Solution : Here, 2
1 1 1 2

1

yf 12x 6x x
x


  


 and 2 2
2 1 2

2

yf 3x 30x
x


   


Now, 
2

1
11 2

1 1 1 1

f y yf
x x x x

    
       

 = 24x1 – 6x2

Similarly, 
2

2
22 2

2 2 2 2

f y yf
x x x x

    
       

= 2 × 30. 2 1
2x  = 60x2

Again, 
2

12 2
1 1 2 1 2

y yf (f )
x x x x x

    
        

= –2.3. 2 1
1x  = – 6x1

Again, 
2

21 1
2 2 1 2 1

y yf (f )
x x x x x

    
        

 = – 6x1(1) = – 6x1



38

It should be noted that f12 = f21 = – 6x1 i.e., Young theorem holds.
(ii) Given z = 5x3y – 20xy + 8xy3. Obtain fxx and fyy and check whether Young’s

theorem holds (or check whether cross-partial derivatives are equal or not).

Solution : We have, z = 5x3y – 20xy + 8xy3 = f(x, y)

Here x
zf
x





 = 15x2y – 20y + 8y3 and y
zf
x





 = 5x3 – 20x + 24xy2

Now, 
2

xx x 2

z zf (f )
x x x x
           

 = 30xy,,

and 
2

yy y 2

z zf (f )
y y y y

    
       

 = 2 × 24xy2–1 = 48xy

Now we consider the values of fxy and fyx i.e., the values of cross-partial derivatives.
2

xy y
z zf (f )

x x y x y
    

        
 = 15x2 – 20 + 24y2

2

yx x
z zf (f )

y y x y x
            

 = 15x2 – 20 + 24y2 = fxy

Thus, cross-partial derivatives are equal, or, in other words, Young’s theorem holds.

1.10 Homogeneous Function

Mathematically speaking, a function y = f(x1, x2, ... xn) is said to be homogeneous of
degree k if (x1, x2, ... xn) = k.y. Thus, in language, a function is sand to be
homogeneous of degree k if multiplication of its each independent variable by a constant
 changes the value of the dependent variable i.e., the value of the function by k times.
On the other hand, if  cannot be factored out, the function is said to be non-homogeneous.
The power of  i.e., k is called the degree of homogeneity. Thus, a bivariate function y
= f(x1, x2) is said to be homogeneous of degree k of f(x1, x2) = k.y. The degree of
homogeneity of a homogeneous function can easily be calculated by a simple technique.
For a homogeneous function, the sum of indices for each term of the function is the
same and the sum of indices will be the degree of homogeneity. Thus, 3 3

1 2y x x  ,

2 2
1 1 2 2y 3x 2x x 4x   , 

1 3
4 4
1 2y x x are homogeneous functions. The first function is

homogeneous of degree 3, the second function is homogeneous of degree two while the last
function having only a single term is homogeneous of degree 1. Let us check our statement.
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To consider the degree of homogeneity of the function, 3 3
1 2y x x  , we increase the

independent variables by  times. The new value of y, say, y* = (x1)3 + (x2)3 =
3 3 3

1 2(x x )  = 3.y. Thus, the given function is homogeneous of degree 3. For the second

function, 2 2
1 1 2 2y 3x 2x x 4x   , we increase x1 and x2 by  times. The new value of y =

y* (say) = 3(x1)2 + 2(x1)(x2) + 4(x2)2 = 2(3x1
2 + 2x1x2 + 4x2

2) = 2.y. Thus the given
function its homogeneous of degree 2. Let us consider the degree of homogeneity of the

third function, 
1 3
4 4
1 2y x x . If we increase both x1 and x2 by  times, the new value of y,,

say, 
1 3
4 4

1 2y* ( x ) ( x )    = 
1 3 1 3
4 4 4 4

1 2.x x


 = 1.y = y. Thus the given function is
homogeneous of degree 1. It is also called linearly homogeneous function.

On the other hand, functions like y = 3 4
1 2x x , 4 3

1 1 2 2y x x x x   , y = x1x2 + x2 + x1

are examples of non-homogeneous functions. Homogeneous functions have many
applications in Economics. We shall consider some of them in our next unit.

Example 1.14 : (i) Determine the degree of homogeneity of the function, z = ax2 + by2.

Solution : We increase both the independent variables x and y by  times. The new
value of z, say, z* = a(x)2 + b(y)2 = 2(ax2 + by2) = 2.z. Hence the degree of
homogeneity of the given function is 2.

(ii) Let the function be : q = akL1–. Determine its degree of homogeneity.

Solution : We increase the values of K and L by  times. The new value of q = q*(say)
= a(k)(L)1– = +1–. ak L1– = 1.q = q. Hence the given function is homogeneous
of degree 1.

(iii) Suppose the bivariate function is : 1 2y Ax x  . What is its degree of homogeneity?
Solution : We increase both x1 and x2 by  times. the new value of y, say, y* =
A(x1)(x2) = +. Ax1

x2
 = +. y. So, the given function is homogeneous of degree

( + ).
(iv) Determine the degree of homogeneity of the function : z = ax2 + by2 + c.

Solution : Raising x and y by  times, we get the new value of z, say, z* = a(x)2 +
b(y) + c = 2ax2 + by + c. Here,  cannot be factored out. So the given function is
non-homogeneous.

1.11 Euler’s Theorem on Homogeneous Function

The Euler’s theorem states that if a multivariate function y = f(x1, x2 ..., xn)
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is homogenous of degree k, then 1 2 n
1 2 n

y y yx x ... x . k.y
x x x
  

   
  

Using alternative notation, the Euler’s theorem states that

1 2 n
1 2 n

f f fx x ... x . k.f
x x x
  

   
  

If we use symbols for partial derivatives, we may write the Euler’s theorem as
follows :

x1f1 + x2.f2 + ... + xnfn = k.y
We shall prove this theorem taking a bivariate function involving two independent

variables x1 and x2. However the result can easily be generalised for n number of
independent variables.

Now, in our case, y = f(x1, x2). We assume that this function is homogeneous of

degree k. So we have to prove that 1 2
1 2

y yx . x . k.y
x x
 

 
 

 or, using f for y, we have to

prove that  
 

 1 2
1 2

f fx . x . kf
x x

or, using the notation of partial derivative, we have to

prove that x1.f1 + x2.f2 = k.y.
Proof :  Our given function is : y = f(x1, x2). This function is assumed to be

homogeneous of degree k.
Hence, by definition of homogeneous function, we may write, k.y = f(x1, x2)

Putting 
1

1
x

  , we get, 2
k
1 1

x1 .y f 1,
x x

 
  

 

 y = k 2
1

1

xx .
x

 
 
 

 where 2

1

xf 1,
x

 
 
 

 = 
2

1

x
x

 
 
 

... (1)

Differentiating both sides of equation(1) with respect to x1, we get,

k 1 k2 2 2
1 1 2

1 1 1 1 1

x x xy f kx . x .
x x x x x

                      
Multiplying both sides by x1, we get,

k k2 2 2
1 1 1 1

1 1 1 1 1

x x xy fx . x . kx . x . .
x x x x x

                 
... (2)



41

Again, differentiating (1) with respect to x2, we get, k 2
1

2 2 1 1

xy f 1x .
x x x x

          
Multiplying both sides by x2, we get,

k 2 2
2 2 1

2 2 1 1

x xy fx . x . x . .
x x x x

          
... (3)

Adding (2) and (3) we get, 1 2 1 2
1 2 1 2

y y f fx . x . x . x .
x x x x
   

  
   

= k 2
1

1

xkx .
x

 
 
 

 = ky [from(1)]

This proves our theorem. In the similar fashion, we can generalise the theorem for n
independent variables.
Example 1.15 : (i) Check whether Euler’s theorem holds for the function, 2 2

1 2y 3x 5x 

Solution : Here the given function 2 2
1 2y 3x 5x   is homogeneous of degree 2. If we

increase both x1 and x2 by  times, the new value of y, say, y* = 3(x1)2 + 5(x2)2 =
2 2 2

1 2(3x 5x )  = 2.y. So the given function is homogeneous of degree 2. Now, the Euler’ss
theorem states that if y = f(x1, x2) is homogeneous of degree n, then

1 2
1 2

y yx . x . ny
x x
 

 
 

. So, in our context, the Euler ’s theorem will hold if

1 2
1 2

y yx . x . 2y
x x
 

 
 

. Let us examine it. Here 1
1

y 2 3x
x


 


 and 2
2

y 2 5x
x


 


Now, 1 2
1 2

y yx . x .
x x
 


 

 = 2 2
1 22 3x 2 5x    = 2 2

1 22(3x 5x ) 2y 

Thus, in this case, Euler’s theorem holds.

(ii) Let z = x3 + 3x2y + 3xy2 + y3. Prove that 
z zx. y.
x y
 


 

= 3z

Proof : We have, z = x3 + 3x2y + 3xy2 + y3 = f(x, y)

Now, 
z
x



= 3x2 + 6xy + 3y2 and 
z
y

  = 3x2 + 6xy + 3y2
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Now, LHS = 
z zx. y.
x y
 


   = (3x3 + 6x2y + 3xy2) + (3x2y + 6xy2 + 3y3)

= 3x3 + 9x2y + 9xy2 + 3y3 = 3(x3 + 3x2y + 3xy2 + y3) = 3z = RHS.
[Note : Here the degree of homegeneity of the given function is 3. Hence, as per

Euler’s theorem, z zx. y.
x y
 


 

 = 3z]

(iii) Let z = xy1–. Prove that x.zx + y.zy = z
Proof : we have, z = xy1–

Now, x
zz
x





 = x–1 y1– and zy = z
y



 = (1 – )xy–

Now, LHS = x.zx + y.zy = x(x–1 y1–) + y(1 – )x y–

= x y1– + (1 – )x y1–= x y1– ( + 1 – )
= x y1–= z= RHS (Proved)

Actually, here the given function is homogeneous of degree 1. Hence the Euler’s
theorem holds.

(iv) If 1 2y x x  , prove that x1.f1 + x2.f2 = ( + )y..

Solution : We have, 1 2y x x 

Now, 1
1 1 2

1

yf .x x
x

 
  


 and 1
2 1 2

2

yf .x x
x

 
  


 x1.f1 + x2.f2 = 1 2 1 2x x x x      = 1 2x x ( )    = ( + )y = RHS (proved)

[Note : Here the given function, y = 1 2x x   is homogeous of degree ( + ). So as per

Euler’s theorem, 1 2
1 2

y yx . x .
x x
 


  = ny = ( + )y].

1.12 Concept of Homothetic Function

Homothetic function is a generalised class of homogeneous function. Thus, if Q =

f(K, L) is a homogeneous function, then z = F(Q) = F[f(K, L)] is homothetic if 
dz 0
dQ

.

In other words, a homothetic function can be derived from a monotonic transformation
of a homogeneous function. A homothetic function may not be a homogeneous function.
For example, let Q = aK + bL. Here Q is a homogeneous function of degree 1 [If we
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increase K and L by  times, the new value of Q, say, Q* = a(K) + b(L) = (aK + bL)
= 1.Q = Q]

New, let z = aK + bL + c where c is a positive constant. Then z = q + c and 
dz 1 0
dq

  .

Hence, z is a homothetic function which is a monotonic transformation of the
homogeneous function, Q = aK + bL. However, z = aK + bL + c (c > 0), though
homothetic, is not a homogeneous function.

1.13. Summary

1. DEFINITION AND TYPES OF FUNCTIONS

Functions are mathematical expressions showing dependency between two variables or
among more than two variables. Functions may be of different types, such as constant
function, linear function, quadratic function, cubic function, or, in general, polynomial
function of degree n.

2. CONCEPTS OF DERIVATIVE AND DIFFERENTIATION

The concept of derivative gives us the rate of change of the dependent variable when
the independent variable(s) changes (change) infinitesimally. The act or technique of
finding out the value of derivative is called differentiation. These are some standard
rules of differentiation or rules for finding out derivative of a function.

3. CONCEPT OF HIGHER ORDER DERIVATIVES OR HIGHER ORDER
DIFFERENTIATION

When a function is differentiated for the first time, the resultant derivative is called the
first order derivative. If we repeat the process of differentiation, we shall get  higher
order derivatives. Thus, the second order derivative is the derivative of the first order
derivative; a third order derivative is the derivative of the second order dervative, and
so on. The process of differentiation will reach the final stage when the derivative becomes
a constant function. Its further differentiation will give the value zero and the process of
higher order differentiation stops. If y = f(x) then its first order derivative, denoted by
dy
dx , gives us the rate of change of the dependent variable(y) due a very small change in

the independent variable (x). The second order derivative of y, denoted by 
d dy
dx dx

 
 
 

 or

2

2

d y
dx

 gives us the rate of change in 
dy
dx  due to a very small change is x. Similarly we can
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interprete 
3 4

3 4

d y d y,
dx dx

 and so on.

4. SLOPE AND CURVATURE

Slope of a linear function is the tan of the angle between the line and the horizontal(x)
axis on its positive direction. Slope of a non-linear function at any point on it is the tan of
the angle between the tangent at that point and the horizontal axis on its positive direction.

If y = f(x), then the slope of the function is measured by its first derivative i.e., 
dy
dx .

The curvature of a function can be known from the sign of the second derivative
2

2

d y
dx

 
 
 

 i.e., change in the value of 
dy
dx or of the first derivative.

5. MULTIVARIATE FUNCTIONS AND THEIR DERIVATIVES

A function having more than one independent variable is called a multivariate function.
A special case of multivariate function is the bivariate function which has two
independent variables. When a function has one independent variable, it may be called
univariate function. By function we simply or generally mean this univariate function if
not otherwise mentioned.

In the case of multivariate function, we have three types of derivatives, namely,
partial derivative, total derivative and total differential. The rules of finding out these

derivatives of a multivariate function are very much similar to those of finding out 
dy
dx

in the case of a univariate function.

6. HIGHER ORDER PARTIAL DERIVATIVES

Higher order partial derivatives are simply the derivatives obtained by repitition of
partial differentiation. In the case of univariate function, we get higher order derivatives
just by repeating the process of differentiation. Similarly, in the case of a multivariate
function, if we repeat the process of partial differentiation, we get the higher order
partial derivatives.

7. HOMOGENEOUS FUNCTION

A function is said to be homogeneous of degree k if multiplication of its each independent
variable by a constant  will change the value of the function by the proportion k. In
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symbols, the multivariate function y = f(x1, x2, ..., xn) is said to be homogeneous of
degree k if f(x1, x2, ..., xn) = k.y.

8. EULER’S THEOREM

Euler’s theorem states that if a function is homogeneous of degree k, then the sum of its
all partial derivatives multiplied by the corresponding variable will be equal to the
function multiplied by k. In symbols, if y = f(x1, x2, ..., xn) is homogeneous of degree k,

then Euler’s theorem states that 1 2 n
1 2 n

f f fx . x . ... x . k.f
x x x
  

   
  

Or, using alternative notation, 1 2 n
1 2 n

y y yx . x . ... x . k.y
x x x
  

   
  

.

This theorem has important applications in various economic concepts.

9. HOMOTHETIC FUNCTION

A homothetic function is a generalisation of homogeneous function.

1.14 Key Concepts

1. Function : Two variables are said to be functionally related if for a particular value of
one variable we get a particular value of the other.

2. Dependent var iable : The variable whose value is dependent or determined by the
value(s) of independent variable(s) is known as dependent variable

3. Independent var iable : The variable whose value is determined independently of or
outside the system, is called independent variable.

4. Var iable : Variable means anything whose value varies or changes.

5. Polynomial equation : Polynomial equation is an equation by which, in general,
several terms in an independent variable are raised to various powers. The degree of the
polynomial is the highest power to which the independent variable is raised.

6. Linear  Function : Linear function is a mathematical relationship in which the
variables appear as additive elements, with no multiplicative or exponential components.
The general form of a linear function is : a0 + a1x1 + a2x2 + ... + anxn = 0.

7. Quadratic equation : Quadratic equation is an equation which involves the square
of a variable as the highest power. The general form of a quadratic equation is :
y = ax2 + bx + c where a, b and c are constants.
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8. Cubic equation : A cubic equation is an equation in which the highest power of an
independent variable is three (i.e., its cube). For example, y = a0 + a1x + a2x2 + a3x3 is a
cubic equation (provided a3  0)

9. Rational function : A function expressed as a ratio of two polynomial functions, is
known as rational function.

10. Rectangular  hyperbola : Rectangular hyperbola is such a curve that the area of all
the rectangles obtained by joining abscissa and ordintate of all points on this curve is
constant. The equation of a rectangular hyperbola is : xy = k where k is a constant.

11. Algebraic function : Any function expressed in terms of polynomials and/or roots,
such as, square root of polynomials is an algebraic function.

12. Der ivative : The change in the dependent variable of a function per unit change in
independent variable, calculated for an infinitesimally small interval for the latter, is
known as derivative of the function.

13. Differentiation : The process of calculating the derivative of a function is called
differentiation.

14. Inverse function : A function whose dependent and independent variables of the
original function are interchanged, is called an inverse function.

15. Slope of a linear  function : The slope of a linear function is the tan of the angle
between the line and the horizontal axis on its positive direction.

16. Slope of a non-linear  function : The slope of a non-linear function at any point on
it is the tan of the angle between the tangent at that point and the horizontal axis on its
positive direction.

17. Multivar iave function : A function having more than one independent variable is
called a multivariate function.

18. Bivar iate function : A special multivariate function whose number of independent
variables is just two, is known as bivariate function.

19. Partial der ivative : Partial derivative in a multivariate function involving two or
more independent variables is the derivative with respect to one of the variables,
treating all other independent variables as constants.

20. Total der ivative : Total derivative of a multivariate function with respect to one
independent variable is the sum of both direct effect and indirect effect(s) through other
variable(s).
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21. Total differential : Total differential of a multivariate function is the total change in
the dependent variable due to change in all the independent variables when independent
variables have no interdependence among themselves.

22. Higher order  par tial der ivatives : Higher order partial derivatives are the
derivatives obtained by repitition of partial differentiation.

23. Homogeneous function : A function y = f(x1, x2, ..., xn) is said to be homogeneous
of degree k if f(x1, x2, ..., xn) = k.y.

24. Euler’s theorem : The Euler’s theorem states that if a multivariate function y =

f(x1, x2, ..., xn) is homogeneous of degree k, then 1 2 n
1 2 n

y y yx . x . ... x .
x dx x
  

  
 

 = k.y..

25. Homothetic function : A homothetic function is a monotomically increasing function
of any homogeneous function.

1.15 Exercises

1.15.1 Shor t Answer  Type Questions (Each of 2.5 marks)

1. Define function.
2. What is constant function?
3. Give the definition of polynomial function.
4. What is inverse function?
5. What do you mean by rational function?
6. What is a rectangular hyperbola?
7. Define non-algebraic function.
8. What are the different types of non-algebraic function?
9. What is derivative of a function?
10. What is differentiation?
11. State the first principle of differentiation.
12. State the power rule of differentiation.
13. State the product rule of differentiation.

14. Let y = e7x. Determine 
dy
dx .

15. Draw a constant function on (x,y) plane.
16. What is partial derivative of a function?
17. What do you mean by total derivative of a function?
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18. What is total differential of a function?
19. Define a multivariate function.
20. What is a bivariate function?
21. What do you mean by higher order partial derivatives?
22. What is Young’s theorem?
23. What is homogeneous function?
24. Determine the degree of homogeneity in the following cases :

(i)
2
1

2

x
z

x
 (ii) y = a1–bcb (iii)

xz
y

 (iv)
5 5

2 2

x yz
x y





26. State the Euler’s theorem.

1.15.2 Medium Answer Type Questions (Each of 5 marks)

1. Write a short note on the concept of function.
2. Explain the concept of inverse function with a suitable example.
3. Briefly describe the concept of rational function.

4. Determine 
dy
dx  of the following function from first principle of differentiation :

y = 7x2 – 8x + 20
5. Explain the chain rule or function of a function rule of differentiation.
6. State the quotient rule of differentiation. Give on example to clarify the rule.
7. Write a short note on higher order derivatives or higher order differentiation.
8. How can you determine slope of a linear function?
9. How will you determine slope of a non-linear function?
10. Briefly describe the concept of partial derivative.
11. Explain the concept of total derivative of a bivariate function.
12. Discuss the concept of total differential of a multivariate function.
13. Mention the major rules of total differential of a function.
14. What do you mean by direct second order partial derivatives and cross second order

partial derivatives.
15. State Young’s theorem. Show with the help of an example that cross partial dervatives

are equal.
16. Define homogeneous function and show how the degree of homogeneity can be

determined.
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17. Determine the degree of homogeneity of the following two functions :

(a) y = 1 230x x  (b) z = 
1

A[ x (1 )y ]


    

Ans. (a) + , (b) 1

1.15.3 Long Answer  Type QuestionS (Each of 10 marks)

1. Briefly describe some major types of functions.
2. Discuss different types of polynomial functions.
3. Analyse the concept of derivative or differentiation citing some examples.
4. State the major rules of differentiation or derivative.
5. Briefly describe the concept of slope of a function using suitable diagrams wherever

necessary.
6. Discuss the concept of curvature of a function.
7. Write a short note on multivariate functions and their derivatives.
8. Make a clear distinction among partial derivative, total derivative and total differential

of a multivariate function.
9. Write a short note on higher order partial derivatives.
10. State the Euler’s theorem. Prove the Euler’s theorem taking a bivariate function.
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2.1 Objectives

After the study of this unit, the reader will be able to know
 application of various functions in Economics
 average and marginal functions
 conditions of profit maximisation/cost minimisation
 slope and curvature of various curves used in Economics
 relation among different concepts of revenue and price elasticity of demand
 properties of homogeneous production function
 properties of Cobb-Douglas production function
 the product exhaustion theorem
 properties of CES production function

2.2 Introduction

In the previous unit, we have learnt about various types of functions and their derivatives.
In the present unit, we shall learn about the economic applications of those concepts. In
Economics, we come across numerous types of relationships among variables i.e.,
functions. For example, we have the demand function, D = f(p), where D = quantity
demanded and p = price; we may have the supply function, S = S(P), the consumption
function, C = f(Y) where Y stands for income, the saving function, S = S(Y) where
S = amount of saving, the investment function, I = I(r) where r stands for the rate of
interest and so on. These are examples of univariate functions where the number of
independent variable is just one. Similarly, we may have functions of more general type
like, D = f(P, Y, Pr, t...) where D = demand, P = own price of the good, Y = income of the
consumer, Pr = Prices of related goods, t = tastes of the consumer, etc. This is actually a
multivariate function. When we write, C = C(Y, r, a, d, ...) where Y = level of income, a
= asset holding, r = rate of interest, d = distribution of income, it is also an example of
multivariate function. When we say that saving(S) and investment (I) depend on the
level of income (Y) and the rate of interest(r), then S = f(Y, r) and I = g(Y, r). They are
actually examples of bivariate functions when the number of independent variables is
two. Bivariate functions, we know, are special cases of multivariate functions. In
Economics, we have many other functions stating some relationships among different
variables .

Now, in Economics, most of the economic decisions are determined by the application
of the concept of ‘marginal’. While taking a decision, the decision-maker (household,
firm, government or anybody else) has to consider the marginal (or extra) benefit from
and marginal cost of implementing that decision. If the marginal benefit exceeds marginal
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cost, that decision is undertaken. Now, the magnitudes of marginal benefit and marginal
cost of that decision can be known by applying the concept of derivative or the technique
of differentiation. Hence, derivative or differentiation plays a very important role in
Mathematical Economics. In this unit, we shall try to learn about the applications of
functions and their derivatives in Economics.

2.3 Average and Marginal Functions

Suppose we have a function : y = f(x). Then y/x or f(x)/x is the average function of the

original function y = f(x). On the other hand, 
dy
dx  or f(x), i.e., the first derivative of the

function is called its marginal function. Consider the example from Economics. Let

total revenue (R) is a function of the amount of output sold (q), i.e., R = R(q). So, 
R
q  or,,

R(q)
q  is called the average revenue function. The marginal function is given by 

dR
dq  or

R(q). This 
dR
dq is the mathematical notation of MR which is the change in total revenue

due to one unit change in output. We take another example. Let the consumption function
or the propensity to consume be given by : C = C(Y). Here C = total consumption
expenditure and Y = total income. So, average function of the consumption function is
C
Y or 

C(Y)
Y . In Economics, it is called the average propensity to consume(APC). Again,

marginal function of this consumption function is 
dC
dY  or C(Y). In Economics, it is

called the marginal propensity to consume (MPC). Consider another example. Let total
cost (C) of a firm depend on the level of output produced (q). So, C = C(q). Then its

average function is C
q

 or 
C(q)

q
 while 

dC
dq

 or C(q) is the marginal function. In Economics,

the former is called average cost (AC) or average total cost (ATC) while the latter is
called marginal cost (MC).

2.4 Different Elasticities in Terms of Average and Marginal Functions

Let the univariate function be : y = f(x). It simply says that y will change as x does.
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Suppose we want to know the percentage change in y due to one percent change in x.
That is known from the concept of elasticity. Thus, elasticity of y with respect to
x(or x-elasticity of y) denoted by ey is given by :

y
percentage change in ye
percentage change in x  = 

dy 100
y
dx 100
x




 = 

dy x x dy.
y dx y dx
 

This may be re-written as,  x
dy / dx marginal functione

y / x average function
Thus, by using the concepts of average function and marginal function we can get

the value of elasticity. Take examples from Economics. If the demand function is :
D = f(p), then price elasticity of demand,

d

dD 100
De dP 100
P





= dD P

D dP
  = P dD.

D dP
=

dD
dP
D
P

 = 
marginal function
average function

Similarly, we have the supply function S = S(P). The elasticity of supply

= s
marginal functione
average function = 

dS
P dSdP .S S dP

P

 = 

dS 100
S

dP 100
P





 s
percentage change in supplye
percentage change in price



If the cost function is c = f(q) where c = total cost and q = total output, then elasticity
of total cost with respect to output,

   c

dcdc
q dc marginal functiondqce .dq cc dq average function

q q

. Thus, c
MCe
AC

 .

For the consumption function C = C(Y) where C = total consumption, Y = total
income, elasticity of consumption expenditure with respect to income is,



54

C
percentage change in consumptione

percentage change in income
  = 

dC 100
C

dY 100
Y





= 

dC
dC Y Y dC dY. CC dY C dY

Y

   = 
marginal function
average function

. Thus, C
MPCe
APC

Thus we can express various elasticities in terms of marginal function and average
function.

2.5 Major  Applications of Der ivatives in Economics

We know that if y = f(x), then its first derivative is given by : 
dy
dx  or f (x). This derivative

has so many applications in Economics. We consider some of them below.

2.5.1To Determine Different Types of Elasticities

We first consider different types of elasticity of demand. Let us take a multivariate demand
function : qx = f(px, M, py) i.e., demand for any comodity, x, depends on its own price
(px), income of the consumer (M) and price of the related good (py). So, here we have 3
types of elasticity of demand, namely, (own) price elasticity of demand, income elasticity
of demand and cross (price) elasticity of demand.

We first consider (own) price elasticity of demand. In that case we take M and py as
given. So, qx = f(Px) or, simply, q = f(p). We know that price elasticity of demand,

ed = 
marginal function
average function

= 

dq
p dqdp .

q q dp
p



From this formula, we can easily determine the value of ed if the demand function is
given. We give some examples. We should note that to determine ed, we have to know

the first derivative of the demand function, i.e., 
dq
dp .

Example 2.1. The demand function is q = 
60

2p 5 . Calculate price elasticity of demand
at p = 5.
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Solution : If p = 5, q = 
60

2p 5  = 
60

2 5 5 
= 

60 4
15



Again, 2

dq 60 2
dp (2p 5)

  


Putting p = 5, 2

dq 60 2
dp (15)

    = 
60 82

15 15 15
   



So, d
p dq 5 8 2e
q dp 4 15 3

     

Thus, at p = 5, ed = 
2
3

 , or absolute value of ed = |ed| = 
2
3

Example 2.2 The demand function is : D = 74 – 2p – p2. Calculate ed when p = 4.
Solution : When p = 4, D = 74 – 2p – p2 = 74 – 2 × 4 – 42 = 50

Again, dD
dp

 = –2 – 2p. When p = 4, dD
dp

= –2 – 2 × 4 = –10

Putting these values, we get,

d
p dD 4 4e . 10
D dp 50 5

      |ed| = 
4
5  = 0.8

Example 2.3 : Calculate price elasticity of demand for the function : 5

100x
p



Solution : Our demand function is : 5

100x
p

 = 100p–5

 
dx
dp = –5 × 100p–5–1 = –5 × 100p–6

Now, 
    6

d 5

p dx pe . ( 5).100.p
x dp 100p

= (–5).
5

5

p
p



  = –5

So, ed = –5 or, |ed| = 5.
In this case, the value of ed = – 5 for any value of price or quantity demanded. Such

demand curves are called iso-elastic demand curves. We consider a general example.

Example 2.4 : Let q = 

a
p  or, q = ap–. Calculate ed of this demand function.
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Solution : We have, 
aq

p



= ap–.

Now, 
dq
dp = – .ap––1

We know, d
p dq pe .
q dp ap  (–)ap––1 = 






 

( )p
p

 or, |ed| = .

Thus, in general, if q = ap–, ed = –, or, |ed| = 
That is, the value of ed is the same at all points on the demand curve. We have said

that such demand curves are called iso-elastic demand curves. Generally, the exponential
demand curves are of this nature.

Alternative method : We can calculate ed in the case demand functions of exponential

nature in an alternative manner. We know that d

dq dq100
d log qq qe

dp dp d log p100
p p


  


. This is

the definition of ed in terms of logarithms. From this formula we can easily determine ed
in the case of demand functions of exponential nature. Consider the following example.

Example 2.5  Calculate ed if the demand law is : q = ap– (a > 0,  > 0)

Solution : We have, q = ap–

Taking log of both sides, we get, log q = log a – log p

Now, we know,  d

dq
d log qqe dp d log p

p

. This is the formula of price elasticity of demand

in terms of logarithms.
 ed = 0 –  × 1 = –  or, |ed| = 

Thus, if q = 
a

p or, q = ap–, ed = – or, |ed| =  at all points on the demand

curve. One special case of this type of demand function is : q = a
p

 = ap–1. In this case,

 = 1. So, in this case the value of price elasticity of demand = ed = –1. or |ed| = 1.
Let us check it.
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Example 2.6 : If q = 
a
p , calculate its price elasticity of demand.

Solution :  q = a
p

 = ap–1  
dq
dp = ap–2

Now, 2
d 1

p dq pe . ap
q dp ap


   = 




1

1

p
q

 = –1

or, |ed| = 1. Here the value of price elastically of demand is unity at all points. Such

demand curves are called unit-elastic demand curve. In this case, q = 
a
p

or, pq = a = constant. This is an equation of a rectangular hyperbola.
So, the demand curve will be a rectangular hyperbola in this case. Such curves are

also called constant outlay curve or constant expenditure curve because in this case, the
expenditure or outlay of the buyer (= pq) is constant (= a). We have considered it in unit 1.

We can calculate ed in this case by using log-definition also.

Alternative method : Calculate ed if q = a
p

 where a = constant(a > 0).

Solution : We have, q = a
p

 = ap–1

Taking log of both sides, we have, log q = log a – log p

Now, d
d logqe
d log p

  = 0 – 1 = –1 or, |ed| = 1

We have seen that if q = 

a
p

or, q = ap–, then the value of power of p is the value of

price elasticity of demand. Hence, if p = ax–n, the value of price elasticity of demand

will be 
  
 

1
n . Consider the next example.

Example 2.7 : Calculate price elasticity of demand if p = 20x–2

Solution : Here, p = 20x–2

 
dp
dx = (–2) 20x–2–1 = (–2)20x–3 = 

3

2 20
x


  
3dx x

dp 2 20
 


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Now, p
p dxe .
x dp

 = 
 




2 320x x
x 2 20

= 
1 x.
2 x

 = 
1
2



Alternative method : We have, p = 20x–2. Taking log of both sides, we have,
log p = log 20 – 2log x

 
d log p
d log x = 0 – 2 × 1 = – 2

Now, d
d log xe
d log p

  d
d log xe
d log p

  = 
1
2

 or, |ed| = 1
2

 = 0.5

We may consider the general case. Take the following example.

Example 2.8 : Calculate price elasticity of demand if p = ax–n (a > 0, n > 0).

Solution : We have, p = ax–n

Taking log of both sides, log p = log a – n log x

Now, 
d log p
d log x = 0 – n × 1 = – n

 ed = 
d log x
d log p = 

1
n

 , or, |ed| = 1
n

Let us consider the calculation of income elasticity of demand. If own price and
prices of all related goods remain unchanged, then we can say that quantity demanded
(q) of a good will depend on the money income (M) of the consumer, i.e., q = f(M). This
is called income-demand function or Engel function. Its graphical form gives us the
income-demand curve or the Engel curve. Now, income elasticity of demand may precisely
be defined as the percentage change in quantity demanded due to one per cent change in
income of the buyer, ceteris paribus Thus, income elasticity,

M
percentage change in demande
percentage change in income



Using symbols, M

dq 100
qe

dM 100
M





 = 

dq M M dq.
q dM q dM
 

For normal goods, dq 0
dM

  and so, eM > 0.
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For inferior goods, dq 0
dM

  and so, eM < 0.

We should note that to determine eM, we should know the first derivative 
dq
dM

 
 
 

 of

the income demand function or Engel function : q = f(M).
Thus we can say that to determine any sort of elasticity we have to determine the first

derivative of the relevant function with respect to the related variable. We consider
some examples of determination of income elasticity of demand.

Example 2.9 : Calculate income elasticity of demand if the Engel function is :

q = cM where c is a positive constant.

Solution : We have, q = cM  
dq c
dM

Now,    M
dq M cM qe 1
dM q q q

Alternative method : We can calculate eM in this case by using logarithms. In terms
of log, the income elasticity of demand may be written as

M

dq
d log qqe dM d log M

M

 

[In general, if y = f(x), then x-elasticity of y, say, ey = 
d log y
d log x

]

Now, we have, q = cM. So, taking log of both sides, we have, log q = log c + log M

Now, M
d logqe
d log M

  = 0 + 1 = 1

Thus, if the income-demand function or the Engel function is of the form q = cM
(i.e. of the standard form : y = mx) or Engel curve is a straight line passing through the
origin, the value of income elasticity of demand will be equal to unity in all cases. Thus,
if q = 3M or, q = 0.5 M or q = M, the value of income elasticity of demand will be equal
to unity in all such cases.

Let us consider the calculation of income elasticity of demand when the demand
function is of exponential type. Consider the following example.
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Example 2.10 : Calculate price elasticityof demand and income elasticity of demand of
the demand function is : q = Ap M. (A, ,  are constants)

Solution : We have, q = Ap M

Taking log of both sides, we have, log q = log A +  log p +  log M

Now, price elasticity of demand, P
logqe
log p





 = 0 + .1 + 0 = 

Income elasticity of demand, M
logqe
log p





 = 0 + 0 + .1 = 

If the absolute value of eP is greater than one, then demand is said to be price-elastic.
In the opposite case, demaned is said to be price-inelastic i.e., inelastic with respect to
price.

Similarly,if the value of income-elasticity of demand () is positive and greater than
one, the demand is said to be income elastic. If  > 0 but  < 1, demand is said to be
income-inelastic. i.e., inelastic with respect to income. If  < 0, i.e., income elasticity is
negative, the good is an inferior good. If  > 1, the good is called a luxury good. If
0 <  < 1, the good is a necessity.

Let us consider the calculation of cross elasticity of demand. Suppose the demand
function is : x = f(px, M, py) where px is the price of good x i.e., own price, M = income
of the consumer and py is the price of the good y which is somehow related to good x.
Now, cross (price) elasticity of demand for good x is given by :

Cross price elasticity, xy
percentage change in demand for good xe

percentage change in price of good y
.

Using symbols, xy
y

y

x 100
xe p

100
p

 




 = y

y

px
x dp


 = y

y

p x.
x p




.

We see that to determine cross price elasticity of demand for good x, we have to
determine the first derivative of the demand function x = f(px, M, py) with respect to py

i.e., we have to know 
y

x
p



. If x and y are substitutes, the 
y

x
p



 > 0 and so, exy > 0. If x

and y are complementary goods, 
y

x 0
p





 and so, exy < 0. If x and y are unrelated goods,
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y

x
p



 = 0 and hence exy = 0. If we use the log-definition, then exy = 
y

log x
log p



.

Let us give some examples.

Example 2.11 : Calculate cross (price) elasticity of demand for good x when the demand

function is : x = x yAp M p    where the symbols have their usual meanings (A > 0).

Solution : We have, x = x yAp M p   .
Taking log of both sides, log x = log A + log px + log M + log py.
Now, cross price elasticity of demand for good x,

xy
y

log xe
log p





= 0 + 0 + .1 = .

If  > 0, x and y are substitutes. If  < 0, x and y are complements.
Similarly, own price elasticity of demand for good x,



xd

x

log xe
log p

= 0 + .1 + 0 + 0 = 

Income elasticity of demand for x, 



xM

log xe
log M

= 0 + .1 + 0 + 0 = 

Alternative Method : We have, x = x yAp .M p  

 1
x y

y

x Ap M .p
p

  
 


= x y

y y

.Ap M .p x.
p p

  
  .

Now, cross price elasticity of demand, y
xy

y

p xe .
x p





. Putting the value of 

y

x
p

 ,

y
xy

y

p xe . .
x p

   

Similarly, (own) price elasticity of demand =  and income elasticity of demand = 
Example 2.12 : Demand functions of two goods are : 1.5 0.3

1 1 2q p p  and 0.5 0.6
2 1 2q p p .

Calculate cross elasticity of demand for two goods and show the relation between them.

Solution : Demand function of the first good is : 1.5 0.3
1 1 2q p p

 log q = –1.5 log p1 + 0.3 log p2
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 Cross elasticity of demand for q1, e12 = 1

2

logq
log p




 = 0 + 0.3.1 = 0.3 > 0

Demand function of the second good is :  0.5 0.6
2 1 2q p p

 log q2 = 0.5 log p1 – 0.6 log p2

 Cross elasticity of demand for q2, e21 = 
2

1

logq
log p


 = 0.5 – 0 = 0.5 > 0

As the cross price elasticities of the two goods are positive, the two goods are substitutes
of each other.

Let us consider some more examples on price and income elasticities of demand.

Example 2.13 : A consumer’s demand curve is : p = 100 – q . Calculate price elasticity
of demand if q = 1600.
Solution : When q = 1600, p =100 1600 = 100 – 40 = 60

Further, we have, p = 
1
2100 q 100 q  

 
1 1
2dp 1 .q

dq 2


  = 
1
21 .q

2


  = 
1

2 q
  dq 2 q 2 1600

dp
    = –2 × 40

Now, d
p dq 60e .
q dp 1600

  (–2 × 40) = –3, or |ed| = 3

Example 2.14 : If the demand law is p = (4 – 5x)2, for what value of x is the elasticity
of demand unity?
Solution : We have, p = (4 – 5x)2

 
dp
dx = 2(4 – 5x)(–5) = –10(4 – 5x)  dx

dp
= 

1
10(4 5x)




Now, price elasticity of demand, 
2

d
p dx (4 5x) 1e .
x dp x 10(4 5x)

 
  


= 




4 5x
10x

.

Now, we are given that |ed| = 1

 
4 5x 1
10x


 or, 10x = 4 – 5x  15x = 4  x = 
4

15 (Ans.)

Example 2.15 : Demand function : q = 
26M M

P
 . Show that 1 < eM < 2. Also consider

the range of ed.
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Solution : We have, q = 6M2 M
P



 
q 12M 12M P1
M P P
 

  


Now, income elasticity of demand, M
M qe .
q M





 = 

 
 
 

M 12M P
q P

= 212M MP
P

 × 
2

P
6M MP

(as q = 


 
2 26M 6M MPM

P P
)

= 
  

 
  

2

2

12M MP M(12M P) 12M P
6M MP M(6M P) 6M P  = 


  

  
6M P 6M 6M1
6M P 6M P 6M P

As 0 < 


6M 1
6M P ,

 eM will be greater than 1 but less than 2, i.e., 1 < eM < 2 (proved).

Similarly, |ep| = 





p q.
q p

Now, 
2

2

q 6M
p P


 
  |ep| = 

2

2

p 6M
q P
 

  
 

= 
2 2

2

6M 6M
pq 6M MPp

P


 
 
 

 = 
2

2

6M 6M
6M MP 6M P


 

As  


6M0 1
6M p

, 0 < |ep| < 1.

2.5.2To Determine Marginal Values

We have mentioned how the concept of marginal is very much important in various
economic decision making. Now, this marginal concept can be known just from the

concept of derivative. If y = f(x), then 
dy
dx  or f(x) is the change in y due to a very small
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change in x. Now, if x changes by one unit, then 
dy
dx  or f(x) gives us the change in y

due to one unit change in x. Then 
dy
dx  gives us the marginal value of x.

Consider some examples from Economics. We may assume that total revenue (R) of

a seller depends on the volume of sales (q) i.e., R = f(q). Then 
dR
dq  or f(q) is the

marginal revenue of selling one additional unit of output. For example, let the inverse
demand function be : p = a – bq. This is actually the AR (average revenue) curve. This

is because, we know, total revenue, R  p × q. So, averge revenue,   
TR pqAR p
q q

.

Thus, average revenue is identical with price. Thus, p  AR = a – bq is the AR curve.

Then total revenue, R  p × q  AR × q = (a – bq)q = aq – bq2. Then MR = dR
dq

= a – 2bq.

Thus, if AR curve is linear, MR curve will also be linear. Further, if q = 0, then AR = a
and also MR = a. Thus, both AR and MR curves will have same vertical intercept (= a).
So they will start from the same point on the vertical axis. Further, slope of AR =
dAR
dq = – b while slope of MR curve = dMR

dq
= –2b = 2(– b). Thus, slope of MR curve

will be twice of that of AR curve. Further, MR = a – 2bq = (a – bq) – bq = AR – bq.
So, MR – AR = – bq < 0 MR < AR.
Thus, if AR is falling i.e., if AR curve is downward sloping, then MR curve will lie

below the AR curve.
Similarly, from the derivative of total cost function, we can get marginal cost (MC).

We may assume that total cost (C) of a firm depends on the size of output(q) i.e., C =

f(q). Then marginal cost or MC = 
dC
dq  or f(q). For example, let the total cost function

be given by : C = a0 + a1q + a2q2 + a3q3. If q = 0, C = a0. So, a0 represents total fixed cost
and TVC = a1q + a2q2 + a3q3.

Now, MC = 
dC dTVC
dq dq = a1 + 2a2q + 3a3q2.

In general, we write, C = TFC + TVC

Now,   
dC dTVCMC 0
dq dq (as TFC is constant and derivative of a constant is zero).
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Thus, MC = 
dC dTVC
dq dq  i.e., MC is the change in total cost or change in total

variable cost due to one unit change in output (as TFC component of total cost is fixed).
Similarly, by taking derivative of total utility function, we get marginal utility (MU) of
a commodity. If the total utility function is : U = f(q), then marginal utility is given by
dU
dq  or f(q). Similarly, by differentiating total product function with respect to a particular

input, we get marginal product of that input. For example, let the total product (q)

function be : q = f(L). Then marginal product of labour is given by 
dq
dL  or f(L). If we

take a total product function of more general form : q = f(L, K), then its partial derivatives
q
L



 (or fL) and 
q
K



 (or fK) will give us marginal products of labour (L) and capital (K)

respectively.

2.5.3To Determine Profit-Maximising and Cost-Minimising Output

The concept of derivative is also useful to determine profit maximising output and cost
minimising output. Consider first the case of profit. We know that total profit () is the
difference between total revenue(R) and total cost(C). Again, both total revenue and
total cost may be assumed to be functions of the level of output. Thus, total profit,  =
R – C = R(q) – C(q). So,  = f(q) i.e., total profit is a function of output. Now, to
determine the level of output at which profit is maximum, we have to fulfil two

conditions : (i) 
d
dq


 or f(q) = 0 and 
d d
dq dq

 
 
 

 or 
2

2

d
dq


 or f(q) < 0. Thus, to determine

profit-maximising output, we have to consider the first derivative of the profit function
and then the derivative of the first derivative i.e., the second derivative of the profit
function.

Consider now the case of cost. Let the total cost function be : C = f(q) where q is the

level of output. Then average cost,  
C f (q)AC
q q

. Thus, AC is also a function of

output (q) i.e., AC = (q) .

Now, to minimise AC, two conditions are to be fulfilled : (i) 
dAC
dq  or h(q) = 0 and
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(ii) 
d dAC
dq dq

 
 
 

 or 
2

2

d AC
dq  or, h(q) > 0. Thus, to determine AC-minimising output, we

have to apply the concept of derivative.
The issues of maximisation and minimisation have been considered in details in the

next unit.

2.5.4To Determine Slope and Curvature of Indifference Curve, Isoquant,
etc.

To determine the slope and curvature of indifference curve, isoquant, etc. we need the
help of derivation. First we consider the case of an indifference curve. Let the utility
function be : U = f(q1, q2) where q1 and q2 are the quantities of two goods, Q1 and Q2,
respectively. Now, taking total derivative of the utility function,

we get, 1 2
1 2

f fdU .dq .dq
q q
 

 
 

Using alternative notation, 
1

f
q

 = f1(=MU1) and 

2

f
q

 = f2(= MU2), we get,

dU = f1dq1 + f2dq2.
Now, along a given indifference curve, utility level is constant, say, U0. So, the equation

of a particular indifference curve is : U0 = f(q1, q2). As U is fixed at U0 along an
indifference curve, dU = 0, So, we have,

f1dq1 + f2dq2 = 0 or, f2dq2 = – f1dq1

 
2 1 1

1 2 2

dq f MU
dq f MU

    .

Under the assumption that MU1(= f1) > 0 and MU2(= f2) > 0,   2 1

1 2

dq f 0
dq f

.

Now, 
2

1

dq
dq  is the slope of an indifference curve. Hence, an indifference curve will be

negatively sloped. The expression, 2

1

dq
dq

  is called the marginal rate of substitution

(MRS). Thus, MRS = 2

1

dq
dq

  = 1 1

2 2

f MU
f MU
 .
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To know the curvature of the indifference curve, we have to take further derivative

of 
2

1

dq
dq  i.e., 

2

1 1

dqd
dq dq

 
 
 

 or 
2

2
2
1

d q
dq  and to consider its sign.

We have, 
2

1

dq
dq = 

1

2

f
f

 . We shall keep in mind that in indifference curve analysis,

utility functions are interdependent. So, MU1 (or f1) and MU2(or f2) both will depend
on q1 and q2 i.e., f1 = f1(q1, q2) and f2 = f2(q1, q2).

Thus, 
2 1 1 1 2

1 2 2 1 2

dq f f (q ,q )
dq f f (q ,q )

   

Now we differentiate 
2

1

dq
dq  with respect to q1.

Then, 
2

2 2
2

1 1 1

dq d qd
dq dq dq

 
 

 
= 

2
2

1
f

 2 2
11 2 12 2 21 1 22 1

1 1

dq dqf f f .f f f f .f
dq dq

 
   

 

= 
2
2

1
f

 1 1
11 2 12 2 21 1 22 1

2 2

f ff f f .f f f f .f
f f

    
        

    

= 
2

1
11 2 12 1 21 1 222

2 2

f1 f f f f f f f .
f f
 

    
 

=      
2 2

11 2 12 1 2 21 1 2 22 13
2

1 f f f f f f f f f f
f

Now, from Young’s theorem we know that cross partial derivatives are equal i.e., f12
= f21. So, we get,

2
2

2
1

d q
dq

 = 2 2
11 2 12 1 2 22 13

2

1 f f 2f f f f f
f
    

Now, if we assume that MRS is diminishing, then it implies that 
2

2
2
1

d q
dq

 > 0. Then the

braketed portion of the RHS is negative. In this case, the indifference curve will be

strictly convex to the origin. If 
2

2
2
1

d q
dq

 < 0, then MRS is increasing and the IC will be
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strictly concave to the origin. Again, if 
2

2
2
1

d q
dq

 = 0, then the indifference curve will be

linear.
In the same manner we may consider the slope and curvature of an iso-quant. Let the

production function be = Y = f(x1, x2) whose x1 and x2 are the quantities of two inputs,
X1 and X2 respectively. In that case, if Y is fixed at Y0 the equation of a given isoquant

is : Y0 = f(x1, x2). Now proceeding in the earlier manner, we can deduce that 
2 1

1 2

dx f
dx f

 

where f1 and f2 are the marginal productivities of two inputs, X1 and X2 respectively,

i.e., f1 = 
1

f
x



= MP1 and f2 = 
2

f
x



 = MP2. The expression – 2

1

dx
dx

is called the marginal

rate of technical substitution (MRTS) between the two inputs. Thus, MRTS = – 2

1

dx
dx

=

1

2

f
f

 = 1

2

MP
MP

. We see that 2

1

dx
dx

= – 1

2

f
f

 = – 1

2

MP
MP

< 0 as MP1(or f1) and MP2(or f2) are

positive. Thus, the slope of the isoquant is negative or the iso-quant is negatively sloped.

To know the curvature of the isoquant, we have to differentiate 2

1

dx
dx

 further with

respect to x1 i.e., we have to know the value of 
2

1 1

dxd
dx dx

 
 
 

 or 
2

2
2
1

d x
dx . Proceeding in the

same manner as in the case of indifference curve, we get, 
2

2
2
1

d x
dx

= 3
2

1
f

 (f111f2
2– 2f12 +

f22f1
2) assuming f1 = f1(x1, x2) and f2 = f2(x1, x2) and putting f12 = f21.

Now, if we assume that MRTS is diminishing, then 
2

2
2
1

d x
dx

 > 0. In that case, the iso-quant

will be strictly convex. If 
2

2
2
1

d x
dx

= 0, the isoquant will be linear. If 
2

2
2
1

d x
dx

 < 0, the isoquant

will be concave to the origin. Thus, to know the slope and curvature of an indifference
curve or of an isoquant or of any curve, we have to use the concept of derivative.
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2.6 Relat ion between Pr ice Elast i ci ty of  Demand and Total
Expenditure or  Total Revenue

What is total expenditure (TE) to the buyer is total revenue (TR) to the seller. They are,
by difinition, equal to each other. TE or TR = p × q where p = price per unit of a
commodity and q is the amount of the commodity bought or sold. We know that quantity
demanded (q) is a function of price (p). So, total expenditure, TE = p.f(p) = E(p). Thus,
if p changes, TE may change. If p falls, then from the law of demand we know that q

will rise 
dq 0
dp

 
 

 
. So, TE (= p × q) may rise, remain constant or fall. That depends on

the relative rates of change in demand and change in price. In other words, whether TE
will rise or not due to change in p, depends on the value of price elasticity of demand.

We know that d
p dqe .
q dp

 . As 
dq 0
dp

 , d
p dqe . 0
q do

  . So, the absolute value of ed,

|ed| = 
p dq.
q dp

 .

Let us see what happens to TE or simply, E due to change in p. That can be known by

differentiating E(= p × q) with respect to p. So, we get, 
dE dqq p.
dp dp

  .

Now if TE remains the same due to change in p, then 
dE
dp = 0

So, q + p. dq
dp

 = 0, or p. dq
dp

 = – q or, p dq. 1
q dp

        or, |ed| = 1

Its converse is also true, i.e., if |ed| = 1, then total expenditure of the buyer will
remain the same due to change in price.

In the same manner, it can be proved that if total expenditure rises as price falls, or if
total expenditure falls as price rises, then |ed| > 1 i.e., demand is elastic. Its converse is
also true i.e., if demand is elastic, then total expenditure will rise with fall in price and
will fall with the rise in price.

Similary, consider the opposite case. If total expenditure falls with the fall in price or
rises with the rise in price, then |ed| < 1 i.e., demand is inelastic. Its converse is also true
i.e., if demand is inelastic, then total expenditure will fall with the fall in price and will
rise with the rise in price.
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2.6.1Case of Constant Expenditure or  Outlay Curve

We know that total expenditure, E = p × q where q = f(p). If expenditure remains the

same due to change in p, then 
dE
dp  = 0

So, q + p.
dq
dp

 = 0 or, p.
dq
dp  = – q or, |ed| = 1

Thus, if expenditure of the buyer remains the same, then |ed| = 1 i.e., demand is unit
elastic. We like to know the shape of this unit elastic demand curve or constant
expenditure (or outlay) curve. Consider the diagram 2.1 in which we have drawn a
demand curve dd1. We take any point A on this demand curve. At this point, p = op0 and
q = oq0. So, TE of the consumer = pq = op0 × oq0 =  op0Aq0.

Thus, total expenditure at any point on the demand curve is given by the area of the
rectangle obtained by drawing two perpendiculars on
the two axes. Similarly, total expenditure of the buyer
at B = p × q = op1 × oq1 =  op1Bq1. Now, we know
that if |ed| = 1, then TE remains the same i.e., TE is
constant. That is, in our figure, Area of  op0Aq0 =
Area of  op1Bq1. And this will hold for any point on
the demand curve, dd1. Thus, our demand curve in this
case will be such that the area of all the rectangles under
this curve is the same or constant. Such a curve is called
a rectangular hyperbola. Thus, if |ed| = 1, the demand
curve will be a rectangular hyperbola. In our figure,
dd1

 is a rectangular hyperbola. On this curve, |ed| = 1 and expenditure is constant. Hence
it is called unit elastic demand curve or constant expenditure (outlay) curve. This curve
will asymptote to the axes but will never meet the axes. Such a curve is also called an
asymptotic curve. As expenditure on this curve is constant, its equation will be : pq = k

or, q = 
k
p  or, q = kp–1 where k is a constant.

2.7 Relation among AR, MR and Pr ice Elasticity of Demand

There is a standard relation among AR, MR and price elasticity of demand. To deduce
that relation, we have to use the concept of derivative. Let us consider it.

We know that total revenue, TR = p × q where p = price and q = quantity sold. We
know from inverse demand function, p = f(q). So, R = p × q = f(q) × q. So, total revenue
R is function of q. Now, in order to deduce the relation among AR, MR and price
elasticity of demand (ed), let us define them first. AR or average revenue is the revenue

d1

p

o q

(Fig. 2.1)

q0 q1

A

B

p0

p1

d

pr
ic

e

demand
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per unit of output sold. If R is the total revenue from sales of q unit of output, then

average revenue, 
total revenueAR

units of output sold


R p q
q q


   p. Average revenue is thus

identical with price (AR  p). Marginal revenue (MR) is the change in total revenue if

sales change by one unit. In terms of calculus, MR = 
dR
dq . Thus, MR can be obtained

from first derivative of the total revenue function with respect to q. Price elasticity of
demand (ed) is the percentage change in quantity demanded due to one percent change
in price, ceteris paribus. Thus,

 d
percentage change in quantity demandede

percentage change in price
  = 


  



dq 100
dq p p dqq .dp q dp q dp100

p

.

Now, the law of demand states an inverse relation between price and quantity

demanded. So, 
dq
dp  < 0.

Hence, ed = 
p dq.
q dp  < 0. So, the absolute value of ed is given by, |ed| = 

p dq.
q dp

 .

Let us deduce the standard relation among AR, MR and ed. We have, total revenue,
R = p × q where p = f(q). Now differentiating both sides with respect to q, we get,

dR
dq = p + q.

dp
dq  = 

q dpp 1 .
p dq

 
 

 
or, MR = 

1p 1
p dq.
q dp

 
 
 
  
 

 = 
d

1p 1
| e |

 
 

 

 MR = 
d

1p 1
| e |

 
 

 
 = AR

d

11
| e |

 
 

 
 as AR  p.

This is our standard relation among AR( p), MR and price elasticity of demand (ed).
We have obtained this relation by using derivative of R with respect to q.

From this relation we can determine the value of one variable if the values of other
two are given. From the relation, we can determine MR if AR(or p) and |ed| are given.

Again, we can write, AR or p = d

d

| e |
| e | 1

. MR. Again, |ed| = 
AR MR

AR


.



72

2.7.1Relation among TR, MR and Pr ice Elasticity of Demand

There is a standard relation among AR, MR and ed or price elasticity of demand. The

relation is : MR = AR
d d

1 11 p 1
| e | | e |

   
     

   
. From this relation, we can easily

mention the relation among TR, MR and price elasticity of demand. We know that MR
is the addition to total revenue. So, when MR > 0, TR will rise. Similarly, so long MR
< 0, TR will fall. If MR = 0, TR will remain constant. Now, from the above relation
among AR, MR and |ed|, we see that above relation among AR, MR and |ed|, we see that
MR  0 according as |ed|   1. From this we can say the following : When |ed|  1, MR > 0
and TR will rise with the rise in q or fall in p.

If |ed| 1, MR < 0 and TR will fall with the rise in q or fall in p.
If |ed|  1, MR = 0, and so TR will remain the same due to rise or fall in p or q.
Thus, we can make the following statements :
1. If demand is elastic (|ed| 1), a fall in price or a rise in q will lead to a rise in total

revenue, while a rise in price or fall in q will lead to fall in TR.
2. If demand is inelastic (|ed| 1), a fall in price or a rise in demand leads to a fall in

TR, while a rise in price or a fall in q will lead to a rise in TR.
3. If demand is unitary elastic (|ed| 1), TR will remain unchanged for a change in

price or quantity.

2.8 Elasticity of Factor  Substitution and Shape of Isoquant

We know that elasticity is a measure of the percentage change in one variable in respect
of a percentage change in another variable. If y = f(x), then elasticity of y with respect to

x is given by, x

dy 100
percentage change in y x dyye .

dxpercentage change in x y dx100
x


  


.

We see that to measure elasticity, we have to know 
dy
dx  i.e., the derivative of y with

respect to x. Hence to measure elasticity of factor substitution also, we have to apply the
concept of derivative.

Let us try to clarify first the concept of elasticity of factor substitution. Let the
production function be : q = F(K.L) where q = quantity of output and K and L are the
amounts of capital and labour, respectively. Along a particular iso-quant, output(q) is
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fixed, say, at q0. So, the equation of a particular isoquant is q0 = F(K, L). On this isoquant,
the firm will be in equilibrium where its cost to produce that output is minimum. This is

attained at the points where 
L L

K K

MP p
MP p

  i.e., MRTS = 
L

K

p
p .

Now, this factor combination will change if the relative factor price of the inputs
changes. The elasticity of factor substitution measures the responsiveness of the optimal
factor-combination to a change in the relative prices of the two inputs. In other words,
we may say that K/L = f(pL/pk). The input ratio (K/L) will change if the relative factor
price of the two inputs (pL/pk) changes. Hence, the elasticity of factor substitution may
be expressed as,

L K

percentage change in K/L
percentage change in p / p

 

where K/L is the optimal capital-labour ratio and pL and pK are the prices of labour
and capital, respectively.

Now, in equilibrium factor combination, L L

K K

MP p
MP p

 = MRTS.

So, the elasticity of substitution can be expressed as,
percentage change in K/L

percentage change in MRTS
 

Thus, elasticity of factor substitution measures the percentage change in factor
proportion due to one percent change in the marginal rate of technical substitution
(MRTS). Now, putting MRTS = MPL/MPK, we have,

 
L K

L K

d(K / L)
K / L

d(MP / MP )
MP / MP

 = 
L K

d log(K / L)
d log(MP / MP )

 = L K

L K

(MP / MP ) d(K / L).
K / L d(MP / MP )

Thus, to know elasticity of factor substitution, we have to apply the concept of derivative.

Alternatively, d log(K / L)
d log(MRTS)

 

In general,  is finite implying convexity of isoquants. Higher value of  implies
higher degree of substitution between the two inputs i.e., less will be the convexity of
isoquants, and vise versa.

In one extreme, if  = , there is infine possibility of substitution and isoquants will
be linear. For a linear isoquant, its slope is constant and hence (MPL/MPK) is constant
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i.e., d(MPL/MPK) = 0 and hence (MPL/MPK) is constant i.e., d(MPL/MPK) = 0 and so 
= . In another extreme,  = 0 i.e., there is no possibility of factor substitution. In this
case, iso-quants are L-shaped or right angled. The firm will employ two inputs in a
given ratio. Then (K/L) is constant i.e., d(K/L) = 0 and hence  = 0. The same discussion
is applicable to the case of indifference curve also.

2.9 Homogeneous Production Function

Let our production function be q = F(K, L) where q = quantity of output and K and L
are amounts of capital and labour, respectively. Now, we know that a function is said to
be homogeneous of degree n if multiplication of each independent variable by a constant
 will change the value of the dependent variable by the proportion n. The value of n is
called the degree of homogeneity.

So, in our context, the production function q = F(K, L) is said to be homogeneous of
degree n if F(K, L) = n.q. A homogeneous production function possesses some
important properties. We consider some of those properties below.

2.9.1Homogeneous Production Function and its Proper ties

Property 1 : If the production function is homogeneous of degree n, then the marginal
productivities of the inputs will be homogeneous of degree (n – 1).

Proof : Let our production function be : q = F(K, L). We assume that this function is
homogeneous of degree n. So, by definition, n.q = F(K, L)

Putting 
1
L

  , we get, 
n1 K.q F ,1

L L
      
   

 q = Ln.f(K/L) ... (1) where f(K/L) = F(K/L, 1).

Now, marginal productivity of capital and labour are given by 
q
k



(= fk) and 
q
L



(= fL), respectively. We first calculate 
q
k



 or MPk from (1)

MPk = 
q
K



= Ln.f
K
L

 
 
 

.
d K

dk L
 
 
 

or, MPk = Ln. f
k
L

 
 
 

. 
1
L  = Ln–1.f

 
 
 

K
L ... (2)

Similarly we can calculate MPL or 
q
L



.
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MPL = 
q
L



 = n.Ln–1.f
K
L

 
 
 

 + Ln.f
K
L

 
 
 

.
d K

dL L
 
 
 

=  nLn–1.f
K
L

 
 
 

 + Ln.f
K
L

 
 
  2

K
L

  
 

 MP2 = nLn–1.f
 
 
 

K
L  – Ln–1.f

 
 
 

K
L

 
 
 

K
L

or, MPL = Ln–1 K K Kn.f .f
L L L

            
... (3)

Let us consider the degree of homogeneity of MPk and MPL. To do this, we increase
both K and L and by  times and see how the values of MPK and MPL change. We have

MPK = Ln–1.f 
K
L

 
 
 

. When K and L both are increased by  times, the new value of

MPK, say, MPK* = (L)n–1. f 
K
L

 
  

or, MPK* = n–1.
n 1 KL .f

L
      

or, MPK* = n–1.MPK.

Similarly, we have, MPL = Ln–1
K K Knf .f
L L L

            
When both K and L are increased by  times, the new value of MPL, say, MPK*

becomes,

MPL* = (L)n–1
K K Knf f
L L L

                
 = n–1.Ln–1

K K Knf f
L L L

            

or, MPL* = n–1, MPL
Thus we see that if we change both K and L by  times, MPK and MPL will change by

n–1 times. So MPK and MPL are homogeneous of degree (n – 1) if the original production
function q = F(K, L) is homogeneous of degree n.

We may get an important corollary of this property. If the degree of homogeneity of
the production function is one (n = 1), then the marginal productivity of its inputs will
be homogeneous of degree zero (n – 1 = 1 – 1 = 0). In other words, if the production
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function is homogeneous of degree 1 and if the inputs are increased or decreased by a
certain rate, their marginal productivities will remain unchanged. In fact, in this case,
marginal productivities of the inputs will depend on the input ratio. When both the
inputs are changed by  times, the value of input  ratio remains unchanged and hence
marginal productivities remain unchanged. We have considered this in the next property.
Property 2 : If the production function is homogeneous of degree 1, then its marginal
productivities will be homogeneous of degree zero, or the marginal productivities will
depend only on input ratio.
Proof : Let our production function q = f(K, L) be homogeneous of degree 1. So by
definition of homogeneous function, we can write,

1q = F(K, L). Thus, q = F(K, L).
When n = 1, the production function is also called linearly homogeneous.

We now put 1
L

  .

So, 
q KF ,1
L L

   
 

or, q = L.f
K
L

 
 
 

 where KF ,1
L

 
 
 

 = f K
L

 
 
 

Now, MPK = 
q K d KL.f .
K L dK L
            

 = L. K 1f .
L L

  
 

= Kf
L

  
 

MPL = 
                  
q K K d Kf L.f .
L L L dL L  = 2

K K Kf L.f
L L L

         
    

or, MPL = K K Kf .f
L L L

      
   

We see that both MPK and MPL are functions of or depend on 
K
L  i.e., on input ratio.

Now, if both K and L are changed by  times, the value of input ratio i.e., value of
K
L will remain unchanged. Hence the values of MPK and MPL will remain unchanged

or mathematically, they will change by 0 times. In other words, marginal productivities
will be homogeneous of degree zero in this case. Let us formally show it.

Our MPK = 
Kf
L

  
 

 and MPL = 
K K Kf .f
L L L

      
   

. When K and L are changed by 
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times, the new value of MPK, say, MPK* = 
Kf
L

   
 = 

Kf
L

  
 

 = MPK = 0.MPK.

Similarly, the new value of MPL, say MPL* is given by :

MPL* = K K Kf .f
L L L

             
 = 

K K Kf .f
L L L

      
   

 = MPL = 0.MPL.

Thus, if the production function is homogeneous of degree 1 or linearly homogeneous,
then its marginal productivities will be homogeneous of degree zero or its marginal
productivities will then depend only on the input ration.
Property 3 : If the production function q = F(K, L) is homogeneous of degree 1, then
FLL.L + FLK.K = 0, and FKL.L + FKKK = 0

Proof : Our production function q = F(K, L) is homogeneous of degree 1 (or linearly
homogeneous). Now, from Euler’s theorem we know that if a function Z = f(x, y), then

x. f fy.
x y
 


 

 = 1.z = z. i.e., x.fx + yfy = z. (see section 1.11 of unit 1)

So, applying this Euler’s theorem we can write, K.FK + L.FL = q where K
qF
K





 or

F
K



 and L
qF
K





 or 
F
L



 i.e., FK and FL  are marginal productivities of K and L,

respectively. Now, differentiating this function partially with respect to K, we get,

FK.1 + K.FKK + L.FLK = 
q
K



= FK

 K. FKK + L.FLK = 0 (proved)
Similarly, differentiating with respect to L,

K.FKL + FL.1 + L.FLL = L
q FL
 
 or, K.FKL + L.FLL = 0 (proved)

2.9.2Homogeneous Production Function and Returns to Scale

The concept of  homogeneous production function may be used to show different concepts
of returns to scale. In order to show this, we first explain the concept of returns to scale.
A changed in the scale of production means that the amounts of all inputs or factors are
changed in the same proportion. Returns to scale refers to changes in output level as a
result of changes in scale. Now the law of returns to scale may be of three types :
(i) constant returns to scale, (ii) increasing returns to scale and (iii) decreasing returns to
scale.
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If the level of output rises in the same proportion in which inputs are increased, there
will be constant returns to scale (CRS). If output level rises at a greater rate than inputs
or at a greater rate than the change in scale, there will be increasing returns to scale
(IRS). Again, there will be decreasing returns to scale (DRS) if output level rises at a
lower rate than inputs or than the change in scale.

The concepts of three types of returns to scale can be explained with the help of
homogeneous production function. The production function q = F(K, L) is said to be
homogeneous of degree n if F(K, L) = n.Y. This means that when K and L are
increased by  times, total output will increase by n times. The constant n is called the
degree of homogeneity. Now, if n = 1, then Y = F(K, L). This means that if both the
inputs K and L are increased by  times, output level will increase by  times. This
implies that there are constant returns to scale (CRS). Thus, if the degree of homogeneity
of a production function is unity, the function will exhibit constant returns to scale
(CRS). This is also known as homogeneous production function of degree 1 or linearly
homogeneous production function. Thus, if the production function is homogeneous of
degree one (n = 1) or linearly homogeneous, there will be CRS. If n > 1, i.e., the degree
of homogeneity is greater than one, there will be IRS. Similarly, if n < 1, there will be
DRS. Thus, all three types of returns to scale can be expressed by the degree of
homogeneity of a homogeneous production function.

Let us consider some examples.

Example 2.16 : Let the production function be : q = 3K + 4L. Determine the type of
returns to scale of this production function,

Solution : Here we have, q = 3K + 4L.
Now we increase both K and L by  times. The new level of output = q*(say) =

3(K) + 4(L) = (3K + 4L) = .q = 1.q.
Thus the given production function is homogeneous of degree 1 (linearly homogeneous).

As the degree of homogeneity is equal to one, the given function displays constant
returns to scale (CRS).

Example 2.17 : Determine the type of returns to scale of the production function,

Y = 
1 1
4 4
1 2x x .

Solution : We have, Y = 
1 1
4 4
1 2x x .

Now, if we increase x1 and x2 by  times. The new level of output, say, Y* =
1 1
4 41 2( x ) ( x )   = 

1 11 1 1
4 44 4 21 2.x x .Y

    Thus, the given production function is homogeneous
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of degree 1
2 . Here, as the degree of homogeneity is less than 1, the given function

displays decreasing returns to scale.

Example 2.18. Determine the degree of homogeneity of the production function,
z = x2 + y2 and interpret your result.

Solution : We have, z = x2 + y2

Now, we increase both x and y by  times. The new output level, say, z* = (x)2 +
(y)2 = 2(x2 + y2) = 2.z

So, the degree of homogeneity = 2. As the degree of homogeneity is greater than one,
the given production function exhibits increasing returns to scale (IRS).

Example 2.19 : Examine the type of returns to scale if the production function is :
q = 30KL1–(0 <  < 1).
Solution : The given production function is : q = 30K L1–. Now we increase both K and
L by  times. The new output level, say, q* = 30(K)(L)1– = +1– 30KL1– = 1.q.

Thus, the given production function is homogeneous of degree 1 or linearly
homogeneous. So the given production function displays constant returns to scale (CRS).

Example 2.20 : What type of returns to scale will operate if the production function is : q
= 10 K 20 L ?

Solution : The given production function is : q = 10 K 20 L . We now increase both
K and L by  times. The new output level,

q* (say) = 10 K 20 L (20 K 20 L)       = 1
2q .

Here the degree of homogeneity is 1
2 which is less than one. So, the given production

function is subject to decreasing returns to scale (DRS).

Example 2.21 : Determine the degree of homogeneity of the production function :
q = AKL and indicate the type of returns to scale exhibited by this function.

Solution : Our production function is : q = AKL.
In order to determine the degree of homogeneity of this function, we increase both K

and L by times. The new value of q, say, q* = A(K)(L) = +.AKL = +q.
So the given production function is homogeneous of degree ( + ).
If ( + ) = 1, it will display constant returns to scale.
If ( + ) > 1, it will display increasing returns to scale.
If ( + ) < 1, it will display decreasing returns to scale.
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2.9.3Homogeneous Production Function and Product Exhaustion Theorem

The product exhaustion theorem states that if the production function is homogeneous
of degree 1 (or subject to CRS) and if the factors are paid according to their marginal
productivities, then total product will just be exhausted. There will neither be any surplus
nor any deficit. This product exhaustion theorem is a corollary of Euler’s theorem.  This
is an application of Euler’s theorem in section 1.11. in Unit 1. Let us try to remember it.
The Euler’s theorem states that if a function z = F(x, y) is homogeneous of degree n,

then f f.x .y nzx y
  
 

Or using simpler notation, fx.x + fyy = nz
We apply this theorem in the case of production where the production function is, q

= F(K, L) where q = output, K = capital and L = Labour. If this production function is

homogeneous of degree n, then by Euler’s theorem, F F.K .L nqK L
  
  .

Let us consider what happens if n = 1 i.e., degree of homogeneity is equal to one or

the production function is subject to CRS. Then we have, F F.K .L qK L
  
 

Now, K
F MPK
 
  and L

F MPL
 


So, we can write, MPK.K + MPL.L = q
Now, if the factors of production are paid according to their marginal productivities,

then MPK = pK and MPL = pL. So, we get, pK.K + pL.L = q. Here, pK.K is the payment to
capital while pL.L is the payment to labour. Thus, the LHS of the equation is total factor
payment while the R.H.S. is the total output. Thus the equation implies that if the production
function is homogeneous of degree 1 (or subject to CRS) and if the factors are paid
according to their marginal productivities, then the total product will just be exhausted.
There will neither be any surplus of total product nor there will be any deficit. This is
known as product exhaustion theorem or adding up problem. This theorem actually
follows from the Euler’s theorem and hence it may be regarded as a corollary of the
Euler’s theorem.

Let us prove the product exhaustion theorem. We have the production function,
q = F(K, L). It is assumed that this function is homogeneous of degree one or subject to
constant returns to scale. As the production function is homogeneous of degree 1, we
can write, q = F(K, L)

Putting  = 1
L , we get,  q KF ,1L L
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or, q = L.  KF ,1L = L.  Kf L  where  KF ,1L
=  Kf L .

Thus, we have, q = L.  Kf L ...(1)

Now, differentiating equation (1) with respect to K, we get,

   K
q K 1 Kf L.f . fK L L L
    


Multiplying both sides by K, we get,  q KK. K.fK L
 
 ... (2)

Again, differentiating equation (1) with respect to L,

we get,      L 2
q K K Kf 1.f L, fL L L L
    


Multiplying both sides by L, we get,    q K KL. L.f K.fL L L
  
 ...(3)

Adding (2) and (3), we get,  q q K.K .L L.fK L L
  
   = q [from (1)]

Or, using different notations, fK.K + fL.L = q
This is our product exhaustion theorem.

We should note one thing. Our general theorem is : q qK. L. n.q
K L
 

 
 

 if the

production function is homogeneous of degree n. Now if n > 1, more output than q will
be sequired to make payments to the factors according to their marginal productivities.
Thus, if there are increasing returns to scale (n > 1) and if the factors are paid according
to their marginal productivities, then there will be a dificit in total output to pay those
factors. On the other hand, if n < 1, i.e., if there are decreasing returns to scale, total
output will not be fully utilised to pay the factors according to their marginal
productivities. In that case, there will be a surplus of total output.

Let us cite some examples on product exhaustion theorem.

Example 2.22 : The production function is : q = 2K2 + 3L2. What will happen to total
product if factors are paid according to their marginal productivities?

Solution : We have, q = 2K2 + 3L2

 K
qMP 4K
K


 


and MPL = 





q 6L
L

Now, if factors are paid according to their marginal productivities, then total payment
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to capital and labour is given by= K.  


 
q qL
K L

 = K.4K + L.6L

= 4K2 + 6L2 = 2(2K2 + 3L2) = 2q.
Thus, it shows that twice of total product would be necessary to pay the factors

according to their marginal productivities. In other words, there would be a deficit in
total output.

In fact, the given production function q = 2K2 + 3L2 is homogeneous of degree 2
(i.e., n = 2) or subject to IRS. So, as per Euler’s theorem, amount of total factor payment
would be = 2q (= nq) and hence there will be a deficit in total output.

Example 2.23 :  The production function is q = 30
1 3
4 4K L . What will happen to total

product if capital (K) and labour (L) are paid according to their marginal productivities?

Solution : We have, q = 30
1 3
4 4K L

Now, MPK = 
1 31
4 4q 1 30K L

K 4


 


 and MPL = 
1 3 1
4 4q 3 30K L

K 4


 


So, K L
q qK. L. K.MP L.MP
K L
 

  
 

= 
1 3 1 31 1
4 4 4 41 3K 30K L L 30K L

4 4
 

      = 
1 3 1 3
4 4 4 41 330K L 30K L

4 4
  

= 
      
 

1 3 1 3q q q
4 4 4 4  = q = TP..

Thus, if factors are paid according to their marginal productivities, then total product
will just be exhausted.

In fact, the given production function is homogeneous of degree one (please check
it) or subject to constant returns to scale. Hence, as per Euler’s theorem, total product
will just be exhausted if factors are paid according to their marginal productivities.

Example 2.24 : The production function is 
1 1
4 4q K L . Will total product be just

exhausted if factors are paid according to their marginal productivities?

Solution : We have, 
1 1
4 4q K L .

Now, 
1 11
4 4

K
q 1MP K .L
K 4


 


 and 
1 1 1
4 4

L
q 1MP .K L
L 4


 

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So, total payment to capital and labour = q qK. L.
K L
 


 

= 
1 1 1 11 1
4 4 4 41 1K K L L K L

4 4
 

    = 
1 1 1 1
4 4 4 41 1K L K L

4 4


= 
1 1 1 1
4 4 4 41 12 K L K L

4 2
   = 

1
2 .q

Thus, in this case, 
1
2  of total output is rqquired to make payments to factors as per

their marginal productivities. So, there will be a surplus of total output.
Actually, in this case, the given production function is homogeneous of degree

1
2  or subject to DRS 

1n 1
2

   
 

. Hence, as per Euler’s theorem, total output required

to make factor payment = nq = 
1
2 q. Thus there is surplus of total output.

2.10 Cobb-Douglas Production Function and its Proper ties

The Cobb-Douglas Production function is a particular functional form of the production
function. It represents the relationship between two or more inputs–typically physical
capital and labour–and the units of output that can be produced. It is based on the empirical
study of the American manufacturing industry made by Charles W. Cobb and Paul H.
Douglas. This function has some nice properties and hence is widely used in the analyses
of economics and econometrics. The general form of the Cobb-Douglas production
function is : q = AKL where A, a and  are positive paramenters. Here q is output, K
and L are inputs of capital and labour, respectively. The equation tells us that output (q)
depends directly on K and L, and that part of output which cannot be explained by K
and L is explained by A. Here A is the residual factor which stands for technical change.

Now, if we assume that  +  = 1 so that  = 1 – , we can get a simpler form of the
Cobb-Douglas production function. The function then takes the specific form :

q = AKL1–, (0 <  < 1)
Taking this simple, specific form of the Cobb-Douglas production function, we shall

now consider the major properties of this function.
Property 1 : There will be no output if both the inputs are not employed. That is, q

= 0 if either K = 0 or L = 0. This means that both the inputs are necessary to have any
output. There will be no output if only one input is used, no matter however large it is.



84

Property 2 : The simple and specific form of the Cobb-Douglas production function
exhibits constant returns to scale (CRS) or it is homogeneous of degree 1.

Proof : We have the simple form of the Cobb-Douglas production function : q = AKL1–

Now, to examine its degree of homogeneity, we increase both K and L by  times.
The new value of output, say, q* = A(K)(L)1– = +1–. AKL1–= 1.q = q

Thus, the given function is homogeneous of degree 1. If we increase K and L by 
times, output also increases by  times. Thus, the simple form of Cobb-Douglas
production function exhibits CRS.

Property 3 : If the Cobb-Douglas production function is of the form, q = AKL1–

(0 <  < 1), then APK, APL, MPK, MPL will be diminishing or their slopes will be negative.
Proof : We have, q = AKL1 –(0 <  < 1)
Now to consider the slopes of APK, APL, MPK and MPL, we first derive their equations.

1

K
Total output q AK LAP

K K K

 

   = AK–1L1–

1

L
Total output q AK LAP

L L L

 

   = AKL–

K
qMP
K





= AK–1 L1–, and

MPL  
q
L



= (1 – )AKL1––1 = (1 – )AK L–

Now, slope of APK = KAP
K




 = ( – 1) AK–2 L1– < 0 as 0 <  < 1

Similarly, slope of L
L

APAP
L





= –AK L––1 < 0 as 0 <  < 1

Now, slope of K
K

MPMP
K





= ( – 1)AK–2 L1– < 0 as  < 1

and slope of 





L
L

MPMP
L = (1 – )AK L––1 < 0 as 0 <  < 1

Thus, if q = AKL1–, then APK, APL, MPK, MPL all are negatively sloped or they are
diminishing.

Property 4 : Under Cobb-Douglas production function, marginal productivities of
inputs will depend only on input ratio or will be homogeneous of degree zero.
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Proof : We have, q = AKL1–, 0 <  < 1

Now, K
qMP
K





 or fK = .AK–1L1– = .A
1

K
K Kf
L L


      
   

.

Similarly, L
qMP
L





 or fL = (1 – )AKL– = (1 – )A L
K Kf
L L


      
   

Thus, both MPK and MPL depend on input ratio. Hence if we increase both K and L

by a certian proportion the input-ratio
K
L  will remain unchanged. Then MPK and MPL

will remain unchanged. In other words, MPK and MPL are homogeneous of degree zero
in K and L. Formally, we can show this. Suppose we increase K and L by times. Then

the new value of MPK, say, 
1

*
K

KMP .A.
L


     

0.A
1K

L


 
 
 

= 0.MPK = MPK

Similarly, the new value of MPL, say, *
LMP  is :

*
L

KMP (1 )A
L


     

= 0 K(1 )A
L


    
 

= 0.MPL = MPL

Thus, both MPK and MPL are homogeneous of degree zero. We know that if the
production function is homogeneous of degree n, then the marginal productivities will
be homogeneous of degree (n – 1). In our simple Cobb-Douglas form, the production
function is homogeneous of degree 1 (n = 1), Naturally, the marginal productivities are
homogeneous of degree zero (n – 1 = 1 – 1 = 0).

Property 5 : If the Cobb-Douglas production function is of the form q = AKL1– ,
then  and (1 – ) represent elasticities of output with respect to K and L, respectively.

Proof : Elasticity of output (q) with respect to capital (K) is given by,

K

q
q K K qqe .

K q K q K
K


 

   
  

. Similarly, 


 

   
  L

q
q L L qqe .L q L q L

L

.

Now, we have, q = AKL1–

 
q
K



= .AK–1L1– = 
1.AK L q.

K K

 
 
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 
K q.
q K


 =  i.e., eK = .

Similarly, 
q
L



= (1 – )AKL1– = (1 – ).
q
L

 
L q.
q L


 = (1 – ) or, eL = (1 – )

Thus, elasticity of output with respect to K is  and elasticity of output with respect
to L is (1 – ).

We can prove this in a slightly different manner.

We know, K
K

K

q
MPK q Ke qq K AP

K


   


Now, putting the values of MPK and APK obtained in property 3, we get

eK = 
1 1

K
1 1

K

MP .AK L
AP AK .L

 

 


 = 

Similarly, L
L

L

q
MPL q Le . qq L AP

L


   


Now putting the values of MPL and APL from property 3,

we get, L
(1 )AK Le

AK L

 

 


 = (1 – ).

We can also prove our property by using log-definition of elasticity. We know that
elasticity of q with respect to K,

K
logqe
logK



 and elasticity of q with respect to L, L

logqe
log L





Now, we have, q = AKL1–

Taking log of both sides, we get,
log q = log A +  log K + (1 – )log L

Now, K
log qe
logK





= 0 + .1 + 0 = 
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Similarly, L
logqe
log L





= 0 + 0 + (1 – ).1 = (1 – )

Property 6 : If q = AKL1–, then  and (1 – ) represent respective input shares if
factors are paid according to their marginal productivities.

Proof : We have, q = AKL1–

 K
qMP
K





= AK–1L1– = .
1AK L q.

K K

 

 

Similarly, 
q
L



= (1 – )AKL1––1 = (1 – )
1AK L q(1 )

L L

 

 

We have been told that PK = MPK and PL = MPL

Now, share of K in total output = 


   K K

q. .KP .K MP .K K
q q q

Similarly, share of L in total output = L

q(1 ). .LP .L L (1 )
q q


   .

Thus,  and (1 – ) represent respective shares of capital and labour in total output.
Property 7 : Under Cobb-Douglas production function of the form q = AKL1–,

total product will just be exhausted if factors are paid according to their marginal
productivities. In other words, if q = AKL1–, then Euler’s theorem will hold.

Proof : Our production function is : q = AKL1–.

Now, K
qMP
K





= .AK–1.L1– = 
1.AK L q.

K K

 
  .

Similarly, L
qMP
L





 = (1 – ).AKL1––1 = (1 – ).
  1.AK L

L
= (1 – ).

q
L

We are also given that PK = MPK and PL = MPL.
Now, total payment to factors, K and L,

= PK.K + PL.L = MPK.K + MPL.L = .
q
K

.K + (1 – ). q .L
L

= q + (1 – )q = q( + 1 – ) = q = Total output.
Thus, total output or total product (TP) will be exhausted if factors are paid according

to their marginal productivities. This is known as product exhaustion theorem. This is
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also called Euler’s theorem. The product exhaustion theorem is actually a corollary of
Euler’s theorem. In our earlier section (section 2.9.3) we have considered this corollary
which states that if the function q = f(K, L) is homogeneous of degree 1,

then q qK. L.
k L
 


 

 = 1.q = q

Thus, the case of product exhaustion under Cobb-Douglas production function is
just an application of the corollary of Euler’s theorem. Hence, the product exhaustion
theorem is loosely called Euler’s theorem.

Property 8 : Under Cobb-Douglas production function, elasticity of substitution is
equal to unity.

Proof : Elasticity of substitution, 

d(K / L)
K / L

d(MRTS)
MRTS

 

or, L K

L K L K

L K

d(K / L)
MP / MPd(K / L)K / L .

d(MP / MP ) K / L d(MP MP )
MP / MP

  

Now, from our Cobb-Douglas production function q = AKL1–, we have obtained,

L
q qMP (1 ).
L L


  


 and, K
q qMP .
K K


  


.

So, L

K

MP (1 ).q / L 1 K.
MP .q / K L

 
 

 

 L

K

MP 1 Kd .d
MP L

          
Putting these values in the expression of elasticity of substitution, we get,

L K

L K

MP / MPd(K / L)
K / L d(MP / MP )

   = 

  
 
  

  
   

K 1 Kd .L L.K 1 K.d
L L

 = 1 (proved)
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Alternative proof : In terms of log-definition, the elasticity of substitution is given

by, 

 
 
  

 
 
 

L

K

Kd log
L

MPd log
MP

Now, L

K

MP (1 ).q / L 1 K.
MP .q / K L

 
 

 

Taking log of both sides, we get,

log
               

L

K

MP 1 Klog log
MP L

or,                
L

K

MPK 1log log log
L MP

Now, elasticity of substitution,  
L K

d log(K / L)
d log(MP / MP )

 = 1 – 0 = 1 (proved)

Property 9 : Under Cobb-Douglas production function, the expansion path is a straight
line passing through the origin, provided input prices are fixed.

Proof : An expansion path of a firm is the locus of successive tangency points between
the isoquants and the parallel iso-cost lines. Hence, at each point on an expansion path,

slope of isoquant = slope of iso-cost line i.e., L

K

MP
MP

  = L

K

P
P

  or, , L

K

MP
MP

 = L

K

P
P

.

This is the equation of an expansion path. Now, when q = AKL1–, we have,

MPK = q
K



= 
q.
K

  and MPL = 
q q(1 )
L L


 


.

Putting these values of MPK and MPL in the equation of expansion path, we get,

L

K

q(1 ). PL
q P.
K





, or L

K

P1 K.
L P





 or, , L

K

PK . .L
1 P





.

This is an equation of a straight line passing through the origin. Hence, under Cobb-
Douglas production function, the expansion path will be a straight line passing through
the origin.
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Property 10 : Under Cobb-Douglas production function, isoquants will be downward
sloping and convex to the origin.
Solution : We have the Cobb-Douglas production function, q = AKL1–. This
function has 3 variables : q, K and L. So, to plot this function, we require a three-
dimenstinal diagram. To avoid it, we assume q as fixed at a certain value, say, q0. This
q0 amount of output may be produced by different combinations of K and L. The locus
of all such combinations of K and L which can produce a certain q0 level of output form
an isoquant or an equal product curve. So, the equation of an iso-quant under Cobb-
Douglas production function is : q0 = AKL1–. It now involves two variables : K and L.
We may plot it on a two dimensional diagram measuring K along the vertical axis and L
along the horizontal axis. In other words, we may plot it as K = f(L). So, we express the
isoquant q0 = AKL1– as K = f(L).

We have, AKL1– = q0

or, 10qK L
A

    
 

, or, 
1

1
0qK .L

A


    

 
 , (0 <  < 1)

Now, slope of the iso-quant = 
1

0qdK 1
dL A

         
. 





1 1

L  < 0.

Here dK 0
dL

  as  < 1. Thus an isoquant under Cobb-Douglas production function

will be negatively sloped. To know its curvature, we have to differentiate 
dK
dL further

with respect to L. That will give us the change in slope of the isoquant.

The change in slope = 
d dK

dL dL
 
 
 

 = 
1

2
0

2

qd K 1 11
dL A

              
.


 


1 1 1

L

= 
1

1 20q1 1 .L
A

 
         

 = 
1

1 20q1 1. . .L 0
A

 
       

 as 0 <  < 1

This implies that the slope of the isoquant rises. But its slope was originally negative.
So, it implies that the absolute slope of the isoquant falls. This will happen if the isoquant
is convex to the origin. Thus, under Cobb-Douglas production function, the isoquant
will be convex to the origin (proved)

The general form of the Cobb-Douglas production function as we have mentioned,
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is : q = AKL,  +   1. Its major properties are mentioned below. We are not deducing
the proofs of those properties; they are being left to the students as an exercise.

Property 1 : The Cobb-Douglas production function of the form  q = AKL is
homogeneous of degree ( + ). If  +  > 1, it will display IRS. If  +  = 1, it will
show CRS. If  +  < 1, it will imply DRS. Thus, the general form of the Cobb-Douglas
production function can exhibit all three types of returns to scale.

Property 2 : Under Cobb-Douglas production function q = AKL, a and  represent
elasticities of output with respect to capital(K) and labour(L), respectively.

Property 3 : In the production function q = AKL,  and  represent the share of
capital and labour in total output, respectively, if factors are paid according to their
marginal productivities.

Property 4 : If the Cobb-Douglas production function is of the form q = AKL,
then marginal productivities will be homogeneous of degree ( +  – 1).

Property 5 : Under Cobb-Douglas production function q = AKL, the elasticity of
factor substitution is unity.

Property 6 : The Cobb-Douglas production function q = AKL can be represented
by downward sloping convex isoquants.

Property 7 : Under Cobb-Douglas production function q = AKL, the expansion
path will be a straight line passing through the origin, provided input prices are fixed.
Let us consider some examples related to the Cobb-Douglas production function.

Example 2.25 : The production function is : 
1 4
5 5q 80K L . What will be the shapes of

APK, MPK, APL and MPL curves?

Solution : We have, 
1 4
5 5q 80K L

Now, APK = 

1 4
5 5q 80K L

K K
 = 


4 4
5 580K L , and

MPK = 





1 41
5 5q 1 80K L

K 5
= 


4 4
5 516K L

Now, slope of 
4 41K 5 5

K
AP 4AP 80.K .L
K 5

 
   


=


 

9 4
5 564K L 0

Similarly, slope  of MPK = 
2

K 2

q q(MP )
K K K K
          
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= 
4 41
5 54 16.K .L

5
 

  = 


 
9 4
5 564 K L 0

5
We see that slopes of APK and MPK curves are negative. Thus, APK and MPK are

diminishing, if more of K is used. Similarly we can show that APL and MPL will be
diminishing if more of L is used.

Example 2.16 : The production function is q = 30K2L3. Derive the expansion path of
the firm if PK = 10 and PL = 20.

Solution : Along an expansion path, 
L L

K K

MP P
MP P

 .

Now, we have, q = 30K2L3


    


2 1 3 3
K

qMP 2 30K L 2 30KL
K


    


2 3 1 2 2
L

qMP 2 30K L 3 30K L
L

Further, we are given that PL = 20 and PK = 10
Putting, these values we get the equation of the expansion path.

L L

K K

MP P
MP P

 or, 
2 2

3

3 30.K L 20
2 30.KL 10





or, 
3 K. 2
2 L



or, 
2 2K .L

3


 or, K = 
4 L
3 . This is our desired expansion path which is here a

straight line passing through the origin.

Example 2.17 : Let the production function be : Y = 
1 3
4 412K L

Calculate the elasticity of substitution.
Solution : The elasticity of substitution is given by the formula,

L KL K

L K L K

MP / MPd(K / L)d(MP / MP )d(K / L)
K / L MP / MP K / L d(MP / MP )

   

Now, we have, 
1 3
4 4Y 12K L

MPK = 
1 31
4 4Y 1 12.K L

K 4


 


= 


3 3
4 43.K L
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MPL = 
 

  


1 3 1 11
4 4 4 4Y 3 12.K L 9.K L

L 4
= 

3 3
4 43.K L



So, 
 

 
  

1 1 1 3
4 4 4 4

L
3 3 3 1

K 4 4 4 4

MP 9.K L K K3. 3.
MP L3.K L L


      

  
L

K

MP Kd 3.d
MP L

.

Putting the values of 
L

K

MP
MP  and L

K

MPd
MP

 
 
 

 in the formula of , we get,

 = 
d(K / L)

K / L × 
3.(K / L)
3.d(K / L)  = 1 (Ans.)

Alternative method : The formula of elasticity of substitution can be written as,

 = 
L K

d log(K / L)
d log(MP / MP )

Now, we have got, L

K

MP K3
MP L



Taking log of both sides, we get, log L

K

MP
MP

 
 
 

 = log 3 + log K
L

 
 
 

or, log K
L

 
 
 

 = log L

K

MP
MP

 
 
 

 – log 3

Now, elasticity of substitution () = 
L K

d log(K / L)
d log(MP / MP ) = 1– 0 = 1 (Ans.)

2.11 CES Production Function and its Proper ties

The CES production function is a neoclassical production function that displays constant
elasticity of substitution. In other words, the production function or the production
technology has a constant percentage change in factor (e.g., capital and labour) proportions
due to a percentage change in marginal rate of technical substitution (MRTS). This
function has been developed by Arrow, Chenery, Minhas and Solow in a celebrated
paper in 1961. The formal equation of the CES (constant elasticity of substitution)
production function is :
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       
1

q A K (1 )L  where q = output,

K = capital, L = Labour (A > 0, 0 <  < 1, 0   > –1). This function has three
parameters : A,  and . A indicates the state of technology and organisational aspetcs
of production. Hence A is called technological parameter. determines the relative
factor shares in the total output and so  is called the distribution parameter. The value
of  determines the elasticity of substitution between inputs. Hence  is called the factor
substitution parameter.

The CES production function has some important properties. We consider its major
properties one by one :

Property 1 : The CES production function is homogeneous of degree one or exhibits
constant returns to scale.

Proof : We have the CES production function, 
1

q A K (1 )L
        .

Now we increase both K and L by  times in order to see the degree of homogeneity
of this function.

The new output level, say, q* is then

q* = 
1

A ( K) (1 )( L)
        

= 
        

1 1

.A K (1 )L  = 1.q = q

So the given CES production function is homogeneous of degree one. Hence the
function displays constant returns to scale (CRS). We see that if we increase both K and
L by  times, output (q) also changes by  times.

Property 2 : Under CES production function, MPK and MPL are homogeneous of
degree zero.

Proof : We have,        
1

q A K (1 )L

Now, K
qMP K



or, 
            

1 1 1
K

1f .A K (1 )L . ( )K

= 


         

(1 )
(1 ).A K (1 )L .K

Similarly,                
 

1 1 (1 )
L L

q 1MP f A K (1 )L (1 )( ).LL
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=  
     

     
(1 )1

(1 )A(1 ). . K (1 )L .L
A .

In order to determine the degree of homogeneity of MPK and MPL we increase both
K and L by  times. The new MPK, say,

 


           
(1 )

* (1 )
KMP A ( K) (1 )( L) .( K)

= 
              

1
(1 ) (1 ). . A ( K) (1 )L K–(1+) = 0.MPK = MPK

Thus, MPK is homogeneous of degree zero.
Similarly, the new MPL, say,

[ ]
r

r r rra a l a l l
+-- - - += - + -

(1 )
* (1 )
LMP (1 )A ( K) (1 )( L) .( L)

=  


             
(1 )

(1 ) (1 ) (1 ). .(1 )A K (1 )L .L  = 0.MPL = MPL.

Thus, MPL is also homogeneous of degree zero. If both K and L are changed by 
proportion, their marginal productivities remain unaffected.

Property 3 : Under CES production function, if the factors are paid according to
their marginal productivities, then total product will be exhausted. In other words, product
exhaustion theorem or Euler’s theorem will hold under CES production function.

Proof : Here we have to prove that q qK. L. qK L
  
 

 i.e., K.MPK + L.MPL = q

or, using a different notation, we have to prove,
KfK + L.fL = q ...(1)

Now, we have,        
1

q K (1 )L .

Now,                
 

1 1 1
K K

q 1MP f A K (1 )L .(1 )KK

This can be written as, 
 

   


       

(1 )1 (1 )
K

Af . K (1 )L K
A

= 


  
    
 

11

1
q q. . KA K A .

Similarly,               
 

1 1 1
L L

q 1MP f A K (1 )L (1 )( )LL
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 
    

      
(1 )1

(1 )A(1 ). . K (1 )L .L
A

= 


  

       
 

11

1
q (1 ) q1 . . LA L A .

Now, putting the values of MPK and MPL in the LHS of equation(1),

we get, K.fK + LfL = 
 

 

        
   

1 1q (1 ) qK. . L. .K LA A

=  


 
    

1q K (1 )LA

=          
1( )1q .A K (1 )L

= q1+.q– = q1+– = q = R.H.S of equation (1)
Atternatively, we have,

 


 
     

1

K L
qK.f L.f K (1 )LA

Now, our production function is :

       
1

q A K (1 )L

or,        
1q K (1 )LA

 


        
 

q K (1 )LA .

Putting this value we get,

K.fK + L.fL = 
1 1q q q. qAA A

 

 
    
 

 = Total product (Proved)

Thus, we see that if factors are paid according to their marginal productivities under
CES production function, then total payment to the factors = K.fK + L.fL = q. In other
words, total product (= q) is just exhausted. In other words, Euler’s theorem or product
exhaustion theorem holds under CES.

Property 4 : Under CES production function, marginal productivities of inputs are
positive but diminishing.

Proof : We have, 
1

q A K (1 )L
         .
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Now,              
 

1 1 1
K K

q 1MP f A K (1 )L . .( ).KK

= 
(1 )

(1 ) (1 ).A . K (1 )L .K
A

 
    


      

= 
11

1
q q. 0KA K A



  
    
 

Similarly, 
1 1 1

L L
q 1MP f A K (1 )L (1 )( ).LL

                 

= 
(1 )

(1 ) (1 )1 .A . K (1 )L .L
A

 
    


       

= 
1(1 )

1
q q1 1. . 0LA L A



  
      
 

Now, slope of 
2

K KK 2
q qMP fK K K
        

= K
2

f .K qq(1 ) KA K




           

Now, from Euler’s theorem we know that fK.K + fL.L = q
So, fK.K – q = –fL.L < 0 as fL > 0, So, slope of MPK i.e., fKK under CES production

function < 0, i.e., MPK or fK is diminishing.

Similarly, slope of         

2

L LL 2
q qMP fL L L

 = 

            
L

2

f .L qq1 (1 ) LA L

Again, from Euler’s theorem, we have, fKK + fLL = q
or, fLL – q = –fKK < 0 as fK > 0.

So, slope of MPL i.e., fLL under CES production function < 0. i.e., MPL or fL is
diminising.

Thus, under CES production function, MPK and MPL are positive but diminising.
Property 5 : Under CES production function, the expansion path of the firm is a

straight line passing through the origin, provided input prices are fixed.
Proof : We know that along an expansion path, slope of isoquant = slope of iso-cost
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line, i.e,   L L

K K

MP P
MP P

or L L

K K

MP P
MP P .

Now, under CES, we have got,
1

L
q1MP . LA




    
 

 and 
1

K
qMP . KA




   
 

Putting these values we get, 

1

1

q1 . LA
q.
KA









  
 
 

 
 
 

= 
L

KP


 or, , 
1

L

K

P1 K
L P


      

or, 
1

L

K

PK .
L 1 P


     

or, 

1
1

L

K

PK .
L 1 P

 
   

 K = 

1
1

L

K

P. .L
1 P

 
  

This is the equation of the expansion path under CES production function. Clearly,
this is a straight line passing through the origin. Hence, under CES production function,
the expansion path will be a straight line passing through the origin.

Property 6 : Under CES production function, isoquants will be downward sloping
and convex to the origin.

Proof : We know that if the production function is : q = f(K, L) then the equation of
a particular isoquant representing a particular level of output (say, q0) is, q0 = f(K, L).

Taking total derivative of this function, we get, 0
q qdq .dK .dL
K L
 

 
 

= MPK.dK + MPL.dL
Or, using a different notation, dq0 = fKdK + fLdL.
Now, along a particular isoquant, q0, the level of output is fixed i.e., dq0 = 0. So, we

have, fK.dk + fLdL = 0. If K is plotted vertically and L is plotted horizontally while

drawing an isoquant, then the slope of the isoquant is 
dK
dL . Thus, we have,

fK.dK + fL.dL = 0 or, fK.dK = –fL.dL

So, 
dK
dL  or slope of the isoquant =   L L

K K

f MP
f MP

Now, in the context of CES production function, we have obtained,
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MPL = fL = 
11 q

A L





  
 
 

and MPK = fK = 
1q

A K





  
 
 

So, 
1 1

L

K

fdK 1 q q.
dL f A L A K

 

 

           
   

 = 
11 K. 0

L


      

Thus, slope of an isoquant obtained from the CES production function is negative
i.e., the isoquant will be downward sloping.

To know the curvature of the isoquant we have to know the change in slope due to

change in L, i.e., we have to know the sign of 
d dK

dL dL
 
 
 

 or 
2

2

d K
dL

.

So, change in slope = 
2

2

d K
dL

=
d

dL
dK
dL

 
 
 

.

= 
2

dK .L K.11 K dL.(1 )
L L


            
 

= 

1

2

(1 ) K. L K
1 K L(1 )

L L





                  
 
 

= 





                   
 
 

1

2

(1 ) K L K
1 K L(1 ) 0

L L

This implies that slope of the isoquant will increase or the absolute slope (= MRTS)
will be diminishing. This again implies that the isoquant obtained from the CES
production function will be convex to the origin.

Property 7 : Under CES production function, the elasticity of factor substitution is

a constant and is given by 
1

1 . [That is why the function has been named as CES or
constant elasticity of substitution production function]
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Proof : We know that elasticity of factor substituion, say,

L K

d log(K / L) d log(K / L)
d log(MRTS) d log(MP / MP )

   .

Now, under CES production function we have,

M PL = 
11 q

A L





  
 
 

and MPK = 
1q

A K





  
 
 

Hence, 

1

1
L

1
K

1 q
MP 1 KA L .
MP Lq

A K









  
            
 
 

Now taking log of both sides, we have,

log
L

K

MP
MP

 
 
 

 = log 1 K(1 ) log
L

       

or, (1 + ) log
K
L

 
 
 

= log
L

K

MP
MP

 
 
 

– log
1 
  

 log
K
L

 
 
 

 = 
1

1 .log
L

K

MP
MP

 
 
 

– 
1

1 .log
1 
  

Now, elasticity of factor substitution,

 = 
L

K

Kd log
1 1L .1 0

1 1MPd log
MP

 
 
    

  
 
 

Thus, the elasticity of factor substitution under CES production function is a constant

and is equal to 
1

1
.

Its magnitude will depend on the value of the parameter  as follows :
(i) If –1 <  < 1, then  > 1
(ii) If  = 0, the  = 1 i.e., elasticity of factor substitution = 1. This happens under

Cobb-Douglas production function where  = 1.
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(iii) If 0 <  < , the  < 1.
In fact, CES production function is a general case of Cobb-Douglas type production

function. All the major properties of Cobb-Douglas production function holds in the
case of CES production function except in the case of elasticity of factor substitution. In
the case of Cobb-Douglas production function, the elasticity of factor substitution = 1.
while in the case of CES production function, the elasticity of factor substitution =

1
1 . We may note that this value will tend to 1 as . Thus, Cobb-Douglas

production function is a special case of CES production function when the parameter
.

Let us consider some examples on different properties of CES and Cobb-Douglas
type production functions.

Example 2.28 : Examine whether product exhaustion theorem will hold if factors are
paid according to their marginal productivities and the production function is :

q = 



 
   

1

a b
L K

. Also determine the elasticity of factor substitution.

Solution : We have the production function, q = 



 
   

1

a b
L K

. It can be rewritten as :

q = 
1

aL bK
     . Thus the given production function is of standard CES form. So

in this case, Euler’s theorem or product exhaustion theorem will hold. Further, in this
case, elasticity of factor substitution will be equal to unity. (Prove yourself)

Example 2.29 : Production function is given as 
1 1q 10
K L

   . Determine elasticity

of factor substitution().

Solution : We have, 
1 1q 10
K L

   . We know that elasticity of factor substitution,

 = L

K

Kd log
L

MPd log
MP

 
 
 

 
 
 

.
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Now, L 2

q 1MP
L L


 


 and K 2

q 1MP
K K


 


 
222

L
2

K
2

1
MP K KL

1MP L L
K

     
 

Taking log of both sides, we get,

log L

K

MP
MP

 
 
 

 = 2 log
K
L

 
 
 

or, log
K
L

 
 
 

 = 
1
2 .log

L

K

MP
MP

 
 
 

.

Now, elasticity of factor substitution = 
L

K

Kd log
1L
2MPd log

MP

 
 
   

 
 
 

.

So, elasticity of factor substitution in this case in equal to half.

Example 2.30 : Will product exahaustion theorem hold if 2 2q L K   and factors
are paid according to their marginal productivities?

Solution : We have, q =  
1

2 2 2L K  .

Now, 

1
2 2 2

L 2 2 2 2

1 ( L K ) (2 ).Lq .qL2MP
L L K L K

   
  
    

Similarly, K 2 2

q qKMP
K L K
 

 
  

Now, total payment made to L and K is = L.MPL + K.MPK

= 
2 2

2 2 2 2

qL qL
L K L K
 


   

 = 
2 2 2 2

2 2 2 2

qL qK q( L K )
L K ( L K )

   


   
 = q = TP..

So, total product is exhausted if the factors are paid according to their marginal

productivities when the production function is 2 2q L K   . In fact, here the given
production function is homogeneous of degree 1 (please check) and hence total product
exhausts.
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2.12 Summary

1. AVERAGE AND MARGINAL FUNCTIONS AND THEIR USES
In Economics, we very often use the concept of function. For example, we have demand
function, supply function, production function, cost function, revenue function, profit
function, consumption function, saving function, investment function and so on. If y =

f(x), then y
x

 is called the average function. That is, average function gives us value of

the dependent variable (y) per unit of the independent variable(x). On the other hand,
marginal function is the first order derivative of the function y = f(x) i.e., marginal

function of y = f(x) is 
dy
dx or f(x). It gives us the change in the value of dependent

variable due to one unit change in the independent variable. There are various uses of
average and marginal functions in Economics. In particular, concepts of average and
marginal functions may be used to know the elasticity of dependent variable with
respect to its independent variable. For example, using the concepts of marginal and
average functions we can know the price elasticity of demand, income elasticity of
demand, cross (price) elasticity of demand, elasticity of cost and so on.

2.  MAJOR APPLICATIONS OF DERIVATIVES IN ECONOMICS

If y = f(x), then its first derivative is given by 
dy
dx  or f(x). This derivative has so many

uses in Economics. It is used to determine different types of elasticities. More importantly,
the derivative helps us to know the marginal value of a variable which is so important in
economic decision-making like profit maximisation, cost minimisation, etc. Further,
derivative helps us to know the slope and curvature of a function.

3. RELATION BETWEEN PRICE ELASTICITY OF DEMAND AND TOTAL
EXPENDITURE OR TOTAL REVENUE

Total expenditure of the buyer or total revenue of the seller is price × quantity of output
bought or sold i.e., TE or TR = p × q. If p falls, q rises if the law of demand holds. But
TR or TE may rise, fall or remain the same. That depends on the value of price elasticity
of demand.

4. CONSTANT EXPENDITURE OR OUTLAY CURVE

As the very name suggests, constant expenditure or outlay curve is such a curve that
expenditure or outlay of the consumer on this curve is constant. In this case, the demand
curve is a rectangular hyperbola. Such a curve is also called unit-elastic demand curve.
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It is so called because the value of price elasticity of demand at every point on this
curve is unity.

5. RELATION AMONG AR, MR AND PRICE ELASTICITY OF DEMAND

There is a standard relation among AR, MR and price elasticity of demand (ed). It is :

MR = AR
d

11
| e |

 
 

 
 = p

d

11
| e |

 
 

 
 as p is always equal to AR (i.e., p  AR).

6. RELATION AMONG TR, MR AND PRICE ELASTICITY OF DEMAND

The relation may be expressed by 3 statements :
(i) When |ed| > 1, MR > 0 and TR will rise with the rise in q or fall in p.
(ii) If |ed| < 1, MR < 0 and TR will fall with the rise in q or fall in p.
(iii) If |ed| = 1, MR = 0, and so TR will remain the same due to rise or fall in price or

quantity.

7. ELASTICITY OF FACTOR SUBSTITUTION

The elasticity of factor substitution measures the percentage change in factor proportion
due to one percent change in the marginal rate of technical substitution (MRTS).

8. HOMOGENEOUS PRODUCTION FUNCTION AND ITS PROPERTIES

A production function Y = f(K. L) is said to be homogeneous of degree n if f(K, L) = n.Y.
The constant n is called the degree of homogeneity. A homogeneous production function
has some important properties. First, if the production function is homogeneous of
degree n, then the marginal productivities of its inputs will be homogeneous of degree
(n – 1). Second, if the production function is homogeneous of degree 1, then its marginal
productivities will be homogeneous of degree zero, or the marginal productivities will
depend only on input ratio.

9. HOMOGENEOUS PRODUCTION FUNCTION AND RETURNS TO SCALE

The concept of homogeneous production function may be used to show different types
of returns to scale. If the production function is homogeneous of degree 1, it will display
constant returns to scale. If the degree of homogeneity is greater than one, it implies
increasing returns to scale. If the degree of homogeneity is less than one, it implies
decreasing returns to scale.
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10. HOM OGENEOUS PRODUCTI ON FUNCTI ON AND PRODUCT
EXHAUSTION THEOREM

If the production function is homogeneous of degree one and if the factors of production
are paid according to their marginal productivities, then total product will be exhausted.
This is known as Euler’s theorem or product exhaustion theorem.

11. COBB-DOUGLAS PRODUCTION FUNCTION AND ITS PROPERTIES

The specific form of the Cobb-Douglas production function is : q = AKL1–, 0 <  < 1,
where q = output, K = capital, L = Labour, A stands for technology (A > 0). This function
has the following important properties :

(i) This function is homogeneous of degree one or subject to constant returns to scale.
(ii) APK, APL, MPK and MPL all are diminishing.
(iii) MPK and MPL are homogeneous of degree zero or they depend only on input

ratio.
(iv) The expansion path under this curve is a straight line passing through the origin.
(v) The elasticity of factor substitution is equal to unity.
(vi) Isoquants under Cobb-Douglas production function will be downward sloping

and convex to the origin.
The general form of the Cobb-Douglas production function is : q = AKL,

 +    1. This function is homogeneous of degree ( + ). There will be IRS, CRS or
DRS according as ( + )   1.

12. CES PRODUCTION FUNCTION AND ITS PROPERTIES

The CES production function can be written as, q = 
1

A K (1 )L
       , 0 <  < 1,

A > 0, 0  > –1.
This function has the following characteristics :
(i) It displays CRS or it is homogeneous of degree one.
(ii) MPK and MPL are homogeneous of degree zero.
(iii) Total product will be exhausted if factors are paid according to their marginal

productivities.
(iv) Marginal productivities are positive but diminishing.
(v) Isoquants will be downward sloping convex .
(vi) Elasticity of factor substitution is constant.
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2.13 Exercises

2.13.1 Shor t Answer  Type Questions (Each of 2.5 marks)
1. Define average and marginal functions.
2. Express price elasticity of demand in terms of average and marginal functions.
3. Show that elasticity of cost = MC/AC.
4. Define income elasticity of demand in terms of average and marginal functions.
5. Show that elasticity of consumption with respect to income is the ratio of MPC and

APC.
6. What is the shape of a unit elastic demand curve?
7. Give the log-definition of price elasticity of demand.
8. Define income elasticity in terms of logarithms.
9. State the relation among AR, MR and price elasticity of demand.
10. Define elasticity of factor substitution.
11. What is homogeneous production function?
12. What is linearly homogeneous production function?
13. Give the specific form of Cobb-Douglas production function exhibiting CRS.
14. Give the general form of the Cobb-Douglas production function.
15. What is Euler’s theorem?
16. State the product exhaustion theorem.
17. What is the value of elasticity of factor substitution under Cobb-Douglas production

function?
18. Give the expression of CES production function.
19. Who are the contributors of CES production function?
20. Why is the CES production function so named?
21. What is the value of elasticity of factor substitution under CES production function?
22. What are the parameters in CES production function?
23. What do the parameters of the CES production function represent?
24. Determine the degree of homogeneity in the following cases :

(i) q = K3 + 3K2L + 3KL2 + L3 Ans. 3

(ii)
2 2

2 2

K Lq
L K

  Ans. 0
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(iii) 2 2q K KL L    Ans. 1

(iv) Y = 2

K
L Ans. –1

(v) q = 3 2K L Ans. 1

(vi)
2 2ax 2hxy byq

cx dy
 




Ans. 1

(vii)
1

e e eq ( K L )
    Ans. 1

(viii) q = K L  Ans. 
1
2

(ix) 3 2 3
1 1 2 3z x 4x x 2x   Ans. 3

(x) 0.3 0.7
1 2q x x Ans. 1

(xi) q = 20K1.5 L0.5 Ans. 2
(xii) 1

1 2z Ax x  Ans. 1
(xiii) q = AK L Ans.  + 
(xiv) 1

1 2 1 2Y x x bx ax    Ans. 1

(xv)
1
2
2

axz
bx

 Ans. –1

25. What is the degree of homogeneity of the demand function, q = AP– M?
Ans.  – 

26. What is the value of MR if AR = 30 and |ed| = 2? Ans. 15
27. What is the value of |ed| if AR = 100 and MR = 75? Ans. 4
28. What is the value of AR if MR = 100 and |ed| = 5? Ans. 125
29. What is the value of p if MR = 200 and |ed| = 5? Ans. 250
30. What is the value of |ed| if p = 30 and MR = 0? Ans. 1

B. Medium Answer Type Questions (Each of 5 marks)

1. Define average and marginal functions. How can they be used to determine elasticity?
Give examples.

2. The demand function is : q = ap–. Determine price elasticity of demand.  (Ans. )
3. The demand function is : D = 74 – 2p – p2. Calculate price elasticity of demand

when D = 50. (Ans. – 0.8)
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4. The demand function is : q = Ap–M (where q = amount of demand, p = price,
M = Income and A, a and  are constants). Determine price and income elasticities
of demand. (Ans. –, )

5. Calculate price elasticity of demand in the following cases :

(i) 2

150p
x

 (ii) 2

60x
p

 (iii) px = 120 Ans. (i) 
1
2

 , (ii) –2, (iii) –1

6. Calculate price elasticity of demand if the demand function is x = 5
2

200

p
. Ans. 

5
2



7. Let the demand function be : aq + bp – k = 0
If MR = 0, what is the value of ed? Ans. ed = – 1

8. The demand function is : 
26yq y

p
   where y = income, show that 1 < ey < 2.

9. Deduce the relation among AR, MR and |ed|.
10. Determine the slope of an indifference curve from a given utility function and define

MRS.
11. How can you derive the slope of an isoquant from the production function? Define

MRTS.
12. Prove that if a production function is homogeneous of degree n, then the marginal

productivities of inputs will be homogeneous of degree (n – 1).
13. Show that if the production function is homogeneous of degree 1, then marginal

productivities of its inputs will be homogeneous of degree zero, (or the marginal
productivities of its inputs will depend only on input ratio).

14. How is the concept of homogeneous production function related to the concept of
returns to scale?

15. Prove that under Cobb-Douglas production function the elasticity of factor
substitution is equal to unity.

16. Show that under Cobb-Douglas production function, isoquants will be downward
sloping and convex to the origin.

17. Let q = AK L1–. Show that APK, MPK, APL, MPL will all be diminishing.

18. If the production function is 1
1 2Y x x  , then prove that total product Y will be just

exhausted if factors are paid according to their marginal productivities.
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19. Let the production function be a b
1 2Z Ax x . What do a and b represent?

20. Show that the degree of homogeneity under CES production function is equal to
unity.

21. Prove that under CES production function, the elasticity of factor substitution is a
constant.

22. The production function is x = K0.75 L0.25. Show that product exhaustion theorem
holds in this case.

23. Show that under Cobb-Douglas production function, the expansion path of a firm
will be a straight line passing through the origin provided input prices are fixed.

24. Let q = AKL. Deduce the expansion path of the firm taking given prices of K and L.

25. Determine the elasticity of factor substitution for the function : z = 1 2cx x  where x1
and x2 are the amounts of two factors, X1 and X2, respectively.

C. Long Answer Type Questions (Each of 10 marks)

1. Show that under diminishing MRS, an indifference curve will be strictly convex.
2. Examine the relation between price elasticity of demand and total expenditure of a

buyer.
3. Write a short note on constant expenditure or outlay curve.
4. Show that under the assumption of diminishing MRTS an isoquant will be convex

to the origin.
5. What is a homogeneous production function? State and prove its two major properties.
6. State and prove the product exhaustion theorem.
7. Prove that under Cobb-Douglas production function, (i) expansion path will be a

straight line passing through the origin, and (ii) elasticity of factor substitution will
be equal to unity.

8. State and prove two major properties of the CES production function.
9. Show that under CES production function, the elasticity of factor substitution will

be a constant.
10. Prove that under CES production function, (i) expansion path will be a straight line

passing through the origin, and (ii) isoquants will be downward sloping and convex
to the origin.

11. Prove that under CES production function the product exhaustion theorem will hold.
12. Prove that under CES production function, marginal productivities of inputs are

positive but diminishing.
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3.1 Objectives

After studying the unit, the reader will be able to know
 the maximum and minimum values of a function
 how the maximum and the minimum points can be determined
 the conditions for maximisation and minimisation of a function
 some applications of maxima and minima in Economics

3.2 Introduction

In Economics, we come across so many problems concerned with the target of
achieving maximimum or minimum value of a variable. For example, firms, in general,
want to maximise their profit. Sometimes a firm wants to maximise sales subject to a
minimum profit. Consumers want to maximise their utility subject to a given budget.
Similarly, a firm may seek to maximise its output, given the level of cost. In another
situation, it may want to produce a given level of output at the minimum possible cost.
Planners may want to ‘optimise’ pollution level, government may want to optimise tax
revenue, and so on. Hence we should know how the maximum value or the minimum
value of any function can be determined. We should also know the conditions for
maximisation and minimisation of an economic variable. This unit seeks to throw light
on these issues.

3.3 Concepts of Maxima and Minima of a Single Var iable Function

Before considering the concepts of maxima and minima (togetherly called extrema),
we should first explain the concepts of increasing and decreasing functions. The function

y = f(x) is said to be an increasing function of x if 
dy
dx  or f(x) > 0. On the other hand,

the function y = g(x) is called a decreasing function of x if 
dy
dx < 0 or g(x) < 0. For

example, in supply function S = S(P), supply(S) is generally an increasing function of
price(p). In the simple linear case, we may write, S =  + p, (,  are constants and

 > 0). Hence 
dS
dp

=  > 0. So, supply(S) is an increasing function of price(p). Taking an

example from macroeconomics, we may say that consumption (C) is an increasing
function of income (Y). That is, C = C(Y) such that in its linear form, C = a + bY,
(a > 0, 0 < b < 1). On the other hand, in the demand function, D = D(P), demand (D) is
a decreasing function of price (P). In its linear form, we may write, D = a – bp, (a > 0,
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b > 0). Here, 
dD
dp

= – b < 0. So, demand(D) is a

decreasing function of price(P), provided the law of
demand holds.

Again, a U-shaped curve is first decreasing up to a
certain value of the independent variable and then an
increasing function beyond that value. For example, a
U-shaped AC(y) curve (average cost curve) is first
decreasing up to certain level of output (x) and then an increasing function beyond that
level of output. In Fig. 3.1, we have given an example.

Example 3.1 : Let y = 40 – 6x + x2 be the equation of an AC curve. Examine whether
the function is an increasing or decreasing function at x = 2 and at x = 4.

Solution : We have, y = 40 – 6x + x2

 
dy 2x 6
dx

  .

When x = 2, 
dy
dx  = 4 – 6 = –2 < 0

Again, when x = 4, 
dy
dx = 8 – 6 = +2 > 0.

Thus, at x = 2, the AC function is a decreasing function and at x = 4, the AC function
is an increasing function.

It may be noted that if 
dy
dx = 0, then we have, 2x – 6 = 0 or, x = 3. So, at x = 3, the AC

function is neither increasing nor decreasing. At this point the AC function comes to a
standstill momentarily. This point is called stationary point and the value of the function
at this point is called stationary value. At x = 3, the stationary value of y (= AC) =
40 – 6 × 3 + 32 = 49 – 18 = 31. We shall take up the issue of stationary point when we
shall consider the issue of maxima or minima of a function.

We have mentioned that a u-shaped curve is first decreasing and then increasing
after some point. Similarly, an inverted u-shaped curve is first increasing and then
decreasing. For example, an inverted APL curve (y curve) is first increasing up to a
certain level of labour employment (x) and then a decreasing function beyond that level
of employment. Let us give an example.
Example 3.2 : Let our average productivity of labour (APL) curve be : y = 40 + 6x – x2

where y = APL and x = amount of the variable factor, labour. Examine whether the
function is an increasing function or a decreasing function at x = 2 and at x = 4.

(Fig. 3.1)
0 2 3 4 x

y(AC)
AC

1
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Solution : We have, y = 40 + 6x – x2

 
dy
dx = 6 – 2x

When x = 2, 
dy
dx = 6 – 2 × 2 = 2 > 0

So, at x = 2, the APL function is an increasing
function.

When x = 4, 
dy
dx  = 6 – 2 × 4 = –2 < 0.

Hence, at x = 4, the APL function is a decreasing function.

Like our previous function and the related figure, in this case also we see that if 
dy
dx =

0, we have 6 – 2x = 0 so that x = 3. Thus, at x = 3, the APL function is neigher increasing
nor decreasing. At x = 3, the point on the APL curve is the stationary point. The value of
APL when x = 3 is : y = 40 + 6x – x2 = 40 + 6 × 3 – 32 = 49. This value of APL is called
the stationary value of APL (= y).

Let us consider the concepts of maxima and minima of a function of one variable.
Let  y = f(x) is a smooth function i.e.,  it
differentiable everywhere. Its grphical form is given
in figure 3.3. From this figure, we see that function
y = f(x) has a maximum value at A and a minimum
value at B. The maximum and minimum values of
a function is called the extreme values y or extrema
of the function.

We see from the figure that when x = x2, the
value of the function f(x) reaches its maximum
value, say, y1. On the other hand, when x = x2, the

value of f(x)
reaches its minimum. Then the value of y or f(x) is
minimum, say, y2. If the domain (i.e., simply speaking,
feasible range of a variable) of the independent
variable is quite large, other maximum and minimum
values may occur at other points. In our figure 3.4,
there are two maximum points, A and C, and two
minimum points, B and D. Since point C is the highest
maximum point, it is called a global maximum point.
The other maximum point A is called local maximum.

y

y1

y2

0 x1 x2 x

B

y = f(x)A

(Fig. 3.3)
y

x

y = f(x)

0
B

A

C

D

(Fig. 3.4)

(Fig. 3.2)

0 2 3 4 x

y(= APL)

APL

Labour
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Similarly, point D is called a local minimum point and point B is called a global
mimumum point.

It should be noted that at all maximum and minimum points, slope of the function,

y = f(x) is zero, i.e, 
dy
dx  or f(x) = 0. Thus, all maximum and minimum points are

stationary points. However the converse of this statement is not true i.e., all stationary
points will not ncecessarily by maximum or minimum points. That will be clear when
we shall consider the concept of point of inflexion in section 3.5.

3.4 Identification of Maxima and Minima : First and Second Order
Conditions (or  Necessary and Sufficient Conditions)

In the previous section we have given some idea about maximum value and minimum
value of a function. Let us consider the criteria for the identification of an extremum,
i.e., for the maximum or for the minimum. We here mention two alternative criteria for
this identification of the type of extremum. The simplest method of identification of the
maximum or the minimum value of a function is to observe the pattern of change of the
slope of the function.

Consider figure 3.5 and figure 3.6. We see that the function y = f(x) is maximum at A
in the first figure while y = f(x) is minimum at B in the second figure. However, in both

cases, 
dy
dx = f(x) = 0. So this is necessary condition for a function to be either maximum

or minimum i.e., to be an extremum. This condition is, however, not sufficient, since
dy
dx  or f(x) = 0 is the condition for maximum or minimum value of the function.

y

x

y = f(x)

0
(Fig. 3.5)

A

x0

  

y

x

y = f(x)

0
(Fig. 3.6)

B

Hence a sufficient condition is required for the identification of maximum or minimum
value. In order to find out this sufficient condition, we have to observe, as we have
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already mentioned, the pattern of change of the slope of the function. In the figure 3.5,
we see that as we move from point O to x0, the slope of the curve y = f(x) gradually falls

and ultimately becomes zero i.e., 
dy
dx = f(x) = 0 at x = x0. As the slope gradually falls,

we can say that change in slope is negative, i.e., 
d dy
dx dx

 
 
 

 or 
2

2

d y
dx

 or f(x) < 0. This is

the sufficient condition for maximisation.
Now, consider the sufficient condition for minimisation. In out figure 3.6, the curve

y = f(x) is first a decreasing function up to x = x0. So within the range 0 to x0, 
dy
dx  or

f(x) is negative. Now as we move from point 0 to x0, the tangents drawn on the curve
becomes flatter and flatter. So, their absolute slopes fall. But the slopes are negative and
hence we shall say that slopes with negative sign are increasing. Hence, for minimisation,
the second condition is that the change in slope of the function y = f(x) should be

positive i.e., 
d dy
dx dx

 
 
 

or 
2

2

d y
dx

or f(x) > 0. This is the sufficient condition for function y

= f(x) to be minimum. Thus, to summarise our results, for a function y = f(x),

Necessary condition : (i) for maximum : 
dy
dx = f(x) = 0

(ii) for minimisation : 
dy
dx f (x) = 0

Sufficient condition : (i) for maximum : 
2

2

d y
dx

= f(x) < 0

(ii) for minimum : 
2

2

d y
dx

= f (x) > 0.

The necessary condition, 
dy
dx = f(x) = 0 is usually called the first order conditon

since it is based on the first order derivative of the function y = f(x). The sufficient

condition 
2

2

d y
dx

= f(x)  0 is called the second order condtion.

To clarify the identification or calculation of maximum or minumum value, we give
an example.
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Example 3.3 : Find the maximum and minimum values of the expression x3 – 3x2 – 9x + 30

Solution : Let y = x3 – 3x2 – 9x + 30

For maximum and minimum value of y, the first order or necessary condition is : 
dy
dx = 0

or, 3x2 – 6x – 9 = 0
or, x2 – 2x – 3 = 0
or, x2 – 3x + x – 3 = 0
or, x(x – 3) + (x – 3) = 0
or, (x – 3)(x + 1) = 0
 x = either – 1 or 3

At these points, 
dy
dx = 0. So these are, so far, stationary values. To identify whether

they are extrema (i.e., maximum or minimum value of the function), we have to apply

the second order or sufficient condition. That is, we have to consider the sign of 
2

2

d y
dx

.

Here, 
2

2

d y
dx

= 6x – 6. For maximisation, the condition is : 
2

2

d y
dx

 < 0, and for

minimisation, the condition is : 
2

2

d y 0
dx



Now, if x = –1, then 
2

2

d y
dx

= 6x – 6 = – 6 – 6 = –12 < 0.

So, x = –1 gives the maximum value of the given expression.
Hence maximum y = (–1)3 – 3(–1)2 – 9(–1) + 30 = –1 – 3 + 9 + 30 = 39 – 4 = 35

Again, if x = 3, then 
2

2

d y
dx

 = 6 × (3) – 6 = 18 – 6 = 12 > 0

So, x = 3 gives a minimum value of the given expression.
The minimum value of y = (3)3 – 3(3)2 – 9(3) + 30 = 27 – 27 – 27 + 30 = 3

3.5 Point of Inflexion

In terms of a graph or diagram, a point of inflexion on a curve is the point at which the
curve changes its curvature. This is a definition in simple terms. We may offer a technical
definition of point of inflexion on y = f(x). A point is said to be inflexional if at that
point, f(x) = 0 and f(x)  0. Thus, on the point of inflexion, f(x) = 0 or f(x)  0. It
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does not impose any restriction on the sign of f(x). If f(x) = 0, f(x) = 0 and f(x)  0
at any point on y = f(x), then the point is said to be stationary and inflexional. On the
other hand, if f(x)  0, f(x) = 0 and f(x)  0, at any point on y = f(x), then the value
of the function at this point is non-stationary and inflexional. Again, we know that any

point on the function y = f(x) at which 
dy
dx = 0, is called a stationary point or a critical

point. Thus, a point of inflexion may also be a critical point, but a critical point may not
be a point of inflexion. In our figures 3.7 and 3.8, point p is the point of inflexion while
in figure 3.7, point S is the critical point or stationary point. There is no critical or
stationary point in figure 3.8.

Let us give an example on point of inflexion.

0 x

P

y = f(x)
S

(Fig. 3.7)

y = f(x)

           

0 x

P

y = f(x)

(Fig. 3.8)

y = f(x)

Example 3.4 : Determine the point of inflexion of the function y = f(x) = 4 21 x 3x
2



Solution : We have, 4 21y x 3x
2

 

Here 
dy
dx  = 2x3 – 6x and 

2

2

d y
dx

 = 6x2 – 6.

Now, at the point of inflexion, 
2

2

d y
dx

= 0 but 
3

3

d y
dx

 0

We put, 
2

2

d y
dx

= 0, So, 6x2 – 6 = 0 or, 6(x2 – 1) = 0   x2 = 1 or, x = ± 1.

We see that 
3

3

d y
dx

= 12x  0. So, x = ± 1 give the points of inflexion

When x = +1, y = 4 21 1 5(1) 3(1) 3
2 2 2

    
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When x = –1, y = 4 21 1 5(1) 3(1) 3
2 2 2

    

So, the points of inflexion are 
51,
2

   
 

 and 
51,
2

  
 

3.6 Optimisation of Multivar iate Function

The word optimum means the best situation or state of affairs. To achieve an optimum
is to optimise, i.e., to maximise or to minimise. So, optimisation is a process or an
attempt to achieve or to reach an optimum situation. Economic agents always try to
achieve this situation. For example, a consumer tries to maximise (optimise) utility. A
firm wants to minimise (optimise) cost or maximise profit. Now, we know that a
multivariate function is a function which has more than one independent variable. A
special case of a multivariate function means maximisation or minimisation of a function
involving two or more independent variables. In this section we shall consider the
conditions of maximisation or minimisation of a bivariate function having two
independent variables – a special case of multivariate function.

We shall consider the problem of optimisation (i.e., maximisation or minimisation)
under two situations : unconstrained optimisation and constrained optimisation. Those
techniques have been discussed in the next sections.

3.7 Unconstrained Optimisation  or Optimisation without Constraints

In this case, the explanatory variables are independent. Let the bivariate function be

y = f(x1, x2). This function has the maximum value if (i) 1
1

y f 0
x


 


 and 2
2

y f 0
x


 
 .

These are necessary or first order conditions. The second order or sufficient conditions are :

(ii) 
2

112
1

y f 0
x


 


, 
2

222
1

y f 0
x


 


 and 
22 2 2

2 2
1 2 1 2

y y y.
x x x x

   
      

or, f11.f22 > (f12)2

For minimisation of the function, the necessary conditions or first order conditions are :

(i) 1
1

y f 0
x


 


 and 2
2

y f 0
x


 


. The second order or sufficient conditions are :
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(ii) 
2

2
1

y
x



  f111 > 0, 

2

2
2

y
x

 = f22 > 0 and 

22 2 2

2 2
1 2 1 2

y y y.
x x x x

   
      

 or, f111.f22 > (f12)2

Let us consider the case when f11 f22 < (f12)2.
We know that when f1 = 0 and f2 = 0 it implies a stationary point of a bivariate

function. Under this situation, if
(i) f11f22 < 2

12f  and f111 and f22 have different signs, the function will have a saddle
point at that situation.

(ii) f11f22 < 2
12f  and f111 and f22 have the same sign, the function will have an inflexion

point.

If 
22 2 2

2 2
1 2 1 2

y y y.
x x x y

   
      

i.e., if f111f22 = 2
12f , the test becomes inconclusive. We cannot

say anything definitely.
Consider the following examples.

Example 3.5 : Find the maximum or minimum of the function,
z = 3x2 + 2y2 – xy – 4xy – 7y + 12

Solution : We have, z = 3x2 + 2y2 – xy – 4x – 7y + 12 = f(x, y).

We have, 
z
x



 fx = 6x – y – 4 and 
z
y

  = fy = 4y – x – 7

Putting 
z
x



 or fx = 0 and 
z
y

  = fy = 0, we get, 6x – y = 4, 4y – x = 7

Solving them, we get, x = 1, y = 2.
Thus, (1, 2) is a stationary point or a critical point. It is a point at which there is a

possibility of a maximum or a minimum. To know that difinitely, the second order or
sufficient condition is to be checked.

Here we have, 
2

2

z
x



= fxx = 6 > 0, 
2

2

z
y

  = fyy = 4 > 0, 

2y
x y

   = –1

So we can write, 
2 2

2 2

y z.
x y

    
       

 > 
22z

x. y
 
   

 [6 × 4 > (–1)2]

So, there is a minimum of the function at the point (1, 2). The minimum value of z is,
z = 3x2 + 2y2 – xy – 4x – 7y + 12
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= 3(1)2 + 2.(2)2 – 1 × 2 – 4 × 1 – 7 × 2 + 12
= 3 + 8 – 2 – 4 – 14 + 12 = 23 – 20 = 3

Example 3.6. : Check for the maximum or minimum for the function :
z = 4x2 – xy + y2 – x3.

Solution : For maximum or minimum of z, our first order conditions are :

z
x



 = 0, or, 8x – y – 3x2 = 0, and 
z
y

 = 0, or –x + 2y = 0

or, x = 2y.
Putting this value in the earlier condition, we get,
8(2y) – y – 3(2y)2 = 0
or, 16y – y – 12y2 = 0
or, 12y2 – 15y = 0 or, 3y(4y – 5) = 0

 y = 0 and y = 
5
4

Now, x = 2y  x = 0 or x = 
10 5
4 2
 respectively..

Thus, we have, (x = 0 and y = 0) and 
5 5x ,y
2 4

   
 

.

Thus, we have two stationary or critical points.

Again, 
2

2

z 8 6x
x


 


, 
2

2

z 2
y





 and 
2z 1

x. y


 
 

.

At the point (0, 0), 
2

2

z 8 0
x


 


, 
2

2

z 2 0
y


 


 and

22 2 2

2 2

z z z.
x y x. y

   
      

 [as, 8 × 2 > (–1)2]

So, z is minimum at the point (0, 0).
The minimum value of z = 4x2 – xy + y2 – x3 = 0.

Let us consider the situation at the point
5 5,
2 4

 
 
 

.

We have, 
2

2

z
x



= 8 – 6x = 8 – 6 × 
5
2  = 8 – 15 = –7 < 0,
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2

2

z
y

 = 2 > 0, and 

2z
x. y

  = –1

so, 
22 2 2

2 2

z z z
x y x. y

      
           

 [as –7 × 2 < (–1)2]

This implies that there is neither a maximum nor a minimum at the point 
5 5,
2 4

 
 
 

,

i.e., it is a saddle point. At this point, the value of z is :

z = 4x2 – xy + y2 – x3 = 
2 2 35 5 5 5 54

2 2 4 4 2
             
     

= 25 – 
25 25 125
8 16 8
   = 

400 25 50 250
16

  
= 

125
16  = 7.8125

3.8 Constrained Optimisation

Constrained optimisation means the maximisation or minimisation of an objective
function where the choice variables are subject to some constraint. In this case, the
choice variables are not independent– there is some relation among them.

Examples of constrained optimisation are : utility maximisation subject to a budget
constraint, output maximisation subject to a cost constraint, cost minimisation subject
to an output constraint, etc.

There are two ways of solving a constrained optimisation problem :
(i) Method of substitution
(ii) Method Lagrange multiplier

The method of substitution can be applied if the objective function which is to be
optimised, can be expressed as a function of only one variable by eliminating other
variables. Here, elimination is done by using the constraint. If this elimination cannot
be done, we have to optimise the objective function by applying Lagrange multiplier
method. We shall consider these two methods one by one.

3.8.1Method of Substitution

The method of substitution is a technique of optimisation under constrained optimisation.
This technique is simple to apply and easy to understand. In this method, the objective
function is first reduced to a function of single variable by elimination method. After
that, the optimisation technique of single variable is applied. The elimination process
involves two steps. The first step is to express one of the variables in the constraint
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explicity in terms of the other variable. The second step is to substitute the value of this
variable in the objective function which is to be optimised (i.e., to be maximised or
minimised). Then the objective function becomes a function of one variable. It is then
simple to optimise this function, as it is done in the case of any single variable function.

We express our argument in mathematical notations. Suppose we want to maximise
the function  Z = F(x, y) subject to the condition that y = f(x). Then, by substitution we
can write, Z = F[x, f(x)] = h(x). Thus, z becomes a function of x only. Now, we have to
optimise (maximise or minimise) Z. If Z is to be maximised, we have to apply the first

order condition, 
dZ
dx = 0 and second order condition, 

2

2

Z
x



< 0. If Z is to be minimised,

we have to apply the first order or necessary condition, 


Z
x = 0  and the second order

condition, 
2

2

Z
x



> 0.

Let us give an example.

Example 3.7. : Optimise z = x2 + y2 subject to the condition that 2x – y – 5 = 0

Solution : From the constraint or the condition 2x – y – 5 = 0, we have, y = 2x – 5. This
is the first step. Next we substitute this value of y in the objective function, z = x2 + y2

= x2 + (2x – 5)2 = x2 + 4x2 – 20x + 25 or, z = 5x2 – 20x + 25 = f(x)

Now, to optimise z, the first order condition or necessary condition is : 
dz
dx = 0,

or, 10x – 20 = 0 or, x = 2. The second derivative, 
2

2

z
x



= 10 > 0. So, in this case, z is

minimum at x = 2. Then the minimum value of z = 5x2 – 20x + 125
= 5(2)2 – 20 × 2 + 25 = 20 – 40 + 25 = 5
Alternatively, z = x2 + y2 = (2)2 + (–1)2 = 4 + 1 = 5
We consider another example.

Example 3.8 : Optimise z = 60y – 2x2 + 150 subject to the constraint : x – y = 5

Solution : From the constraint, we get, x = y + 5.
We put this value of x in our objective function z.
So, z = 60y – 2(y + 5)2 + 150
= 60y – 2(y2 + 10y + 25) + 150 = 60y – 2y2 – 20y – 50 + 150
 z = 40y – 2y2 + 100. Thus, z is a function of y only.
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Now, we optimise z. The first order condition or necessary condition is : 
dz
dy

= 0

or, 40 – 4y = 0 or, 4y = 40  y = 10

Here the second derivative of z is : 
2

2

z d dz
y dy dy

 
    

 = – 4 < 0

So, in this case, z is maximum at y = 10
Then x = y + 5 = 10 + 5 = 15
Now, we can easily find out the maximum value of z.
Maximum z = 40y – 2y2 + 100 = 40 × 10 – 2(10)2 + 100 = 400 + 100 – 200 = 300
Alternatively, we have, z  = 60y – x2 + 150.
Putting x = 15 and y = 10, we get,
z = 60 × 10 – 2 × (15)2 + 150 = 600 – 450 + 150  = 150 + 150 = 300

3.8.2Lagrange Multiplier  Method

In the case of constrained maximisation or minimisation of a function, we cannot apply
the simple technique of necessary and sufficient conditions. Here we have to maximise
or minimise a function (called objective function) subject to certain restriction(s) called
constraint(s). Hence the problem is called the problem of constrained maximisation or
the problem of constrained minimisation. In this case, an alternative technique is used.
Either we shall incorporate the constraint into the objective function, or we shall follow
a different technique called Lagrange technique. The former is called the substitution
method which we have discussed in the previous section. We shall now consider the
second method which is formally called Lagrange multiplier method.

The Langrange multiplier method is an optimisation technique where we have to
optimise (maximise or minimise) an objective function subject to a given constraint.
Here the variables of the constraint are so related that one cannot be explicitly expressed
in terms of other(s). Let us discuss the lagrange multiplier method in details.

Suppose we have to optimise a bivariate function y = f(x1, x2). This is our objective
function. We have to maintain a restriction which is called constraint. We assume that
the constraint involves two variables and it is given in an implict from : h(x1, x2) = k
where k is a constant. So, our problem stands as :

Optimise y = f(x1, x2) subject to h(x1, x2) = k. To solve this problem by Lagrange
method, we first construct an auxiliary objective function. This auxiliary objective
function is obtained by adding the original objective function with a Lagrange
multiplier() multiplied with the constraint in the form of zero. Thus, the auxiliary
Lagrange function, say, V is given by the following expression,

V = f(x1, x2) + [k – h(x1, x2)]



125

Here the objective function V becomes a function of three variables, namely, x1, x2
and . Now the problem of constrained optimisation has become a problem of
unconstrained optimisation. So, to maximise V, the first order or necessary conditions
require,

1

V 0
x





,  or, f1 – h1 = 0

2

V 0
x





,  or, f2 – h2 = 0

V 0



,  or, k – h(x1, x2) = 0

We should note that the third equation is actually the given constraint. It implies that
in our optimisation process, we are obeying the restriction put by the constraint. Now,

from the first two equations, we get, 1

1

f
h

   and 
2

2

f
h

 

So, 1 2

1 2

f f
h h

   .

The new objective function V is optimised at the point where this condition is satisfied.
Again, if the constraint is satisfied i.e., h(x1, x2) = k or, k – h(x1, x2) = 0, then optimisation

of V implies optimisation of y. Thus, where the condition 1 2

1 2

f f
h h

   is  satistified, the

objective function y = f(x1, x2) is automatically optimised.
We give two illustrations below. We take same earlier two problems solved by the

substitution method. Now we shall solve those optimisation problems by following
Lagrange multiplier method. We shall see that both methods give the same result.

Examples 3.9 : Following Lagrange multiplier method, optimise z = x2 + y2 subject to
the condition that 2x – y – 5 = 0

[This is our earlier problem No. 3.7.]
Solution : To solve this problem by Lagrange method we construct the Lagrange
expression, say, V. Our problem is to optimise z = x2 + y2 subject to 2x – y – 5 = 0. So,
the Lagrangian function (V) is :

V = x2 + y2 + (2x – y – 5) where  is the Lagrange multiplier. Here V = V(x, y, ).
So, to optimise V, first order conditions require.
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V
x




 or VVx = 0 or, 2x + 2 = 0 ...(a)

V
y


  or VVy = 0 or, 2y –  = 0 ...(b)

V


 or VV = 0 or, 2x – 2y – 5 = 0 ...(c)

We have three equations and three unknows, namely, x, y and .
So, we can solve for them. From (a) we get,  = –x and from (b) we get,  = 2y.
Comparing them, we get, –x = 2y or, x = –2y
Putting this value of x in (c) we get, 2(–2y) – y – 5 = 0 or, –5y = 5 or, y = –1
 x = –2(–1) = 2 and  = 2y = 2(–1) = –2
So the optimum value of z = x2 + y2 = (2)2 + (–1)2 = 4 + 1 = 5.

In example 3.7, we obtained the same optimum value of z. We, however, here assume
that second order conditions are fulfilled.

We now consider the example given in 3.8.

Example 3.10 : Applying Lagrange technique optimise z = 60y – 2x2 + 150 subject to
the constraint : x – y = 5

Solution : Here our problem is to optimise z = 60y – 2x2 + 150 subject to x – y = 5 or x
– y – 5 = 0. So it is a problem of constrained optimisation. We form the Lagrange
expression.

v = 60y – 2x2 + 150 + (x– y – 5)
First order conditions or necessary conditions require,

v 0
x





 or, – 4x +  = 0 ... (a)

v 0
y





 or, 60 –  = 0 ... (b)

v 0



 or, 60 –  = 0 ... (c)

Solving these 3 equations, we shall get the values of 3 variables, namely, x, y and .
From (a) we get,  = 4x and from (b) we get  = 60
 4x = 60 or, x =15.
Putting this value in (c), we get, 15 – y – 5 = 0 or, y = 10
So, the optimum value of z = 60y – 2x2 + 150



127

= 60 × 10 – 2(15)2 + 150 = 600 +  150 – 450 = 300
We got the same optimum value in example 3.8. We assume that the second order

conditions of optimisation have been fulfilled.
It may be noted that in the last two examples adopting Lagrange technique we have

obtained the extrema of the given function. We could not say whether these values are
maxima or minima. This is because, in the above two examples we have applied first
order or necessary conditions for optimisation. They are not sufficient for maximisation
or minimisation. The sufficient condition can be obtained from the second order
conditions.

3.9 Sufficient Condition for  Constrained Optimisation

Consider a bivariate function : y = f(x1, x2). If there is no constraint or restriction i.e., if
the optimisation problem is unconstrained, we have a simple problem of optimisation.
In that case, our second order or sufficient condition for optimisation is = d2y < 0 for a
maximum and d2y > 0 for a minimum.

Consider now the case of a constrained optimisation. Suppose we want to optimise a
function y = f(x1, x2) subject to the restriction or constraint : h(x1, x2) = k where k is a
constant. In this case of constrained optimisation, the case is not so simple. In the case
of an unconstrained optimisation, the constraint is absent. Hence we can consider changes
is x1 and x2 (i.e., dx1 and dx2) as arbritrary changes. But in the case of constrained
optimisation, both dx1 and dx2 can be taken as arbitrary changes. Here, either we have
to assume that x1 depends on x2, or the other way round i.e., x2 depends on x1. Thus, if
we consider dx1 as an arbitrary change, dx2 must be assumed to be dependent on dx1.
Similarly, if we take dx2 as an arbitrary change, dx1 must be assumed to be dependent
on dx2.

Under constrained optimisation, our constraint is given as : h(x1, x2) = k where k is
a constant. Then by total derivative and putting dk = 0, we get, h1dx1 + h2dx2 = 0. In this
case, the sufficiency condition for having a maximum or minimum will be changed. An
extremum will be a point of maximum if d2y < 0 subject to the restriction dh = 0 and it
will be a point of minimum if d2y > 0 subject to the restriction that dg = 0. The ultimate
expressions of these conditions for maximisation and minimisation can be conveniently
represented in terms of determinant, or more specifically, in terms of a Hessian Bordered
determinant. We have considered these concepts in unit 5.

3.10 Applications of Maxima and Minima in Economics

The concepts of Maxima and Minima have so many applications in Economics. We
mention below some major such applications.
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3.10.1 Rleation between Average Product and Marginal Product of a Variable
Factor

Let the total product function be q = f(L) where q = total output and L = labour. So,

average product of labour = APL = 
q f(L)
L L
 . Marginal product of labour (MPL) is, in

terms of calculus, the first derivative of the total product function i.e., L
dqMP f (L)
dL

  .

There is a standard relation between APL and MPL. Let us try to derive that relation
between.

We know, L
q f (L)AP (L)
L L

    .

Now, slope of APL curve = L
2

dq .L qdAP dL
dL L




Thus, slope of APL curve   0 according as dq L
dL

  q

or, according as 
dq
dL


q
L

or, according as MPL
APL.

Thus, slope of APL curve > 0 i.e., APL rises when MPL > APL.
Again, slope of APL curve = 0 i.e., APL is constant or maximum when MPL = APL.

Similarly, slope of APL curve < 0 i.e. APL falls when MPL < APL.
This is the standard relation between AP and MP.
The relation can also be established in an alternative manner. We may write, TP =

APL × L, i.e., q = APL × L. Now, both q and APL are functions of L, so, differentiating
both sides with respect to L, we get,

L
L

dAPdq AP 1 L.
dL dL

   or, MPL = APL + L × (slope of APL curve)

Now, when APL rises, slope of APL curve or LdAP
dL > 0. So, MPL > APL.

When APL falls, slope of APL curve or LdAP
dL < 0. So, MPL < APL. When APL is

maximum or constant slope of APL curve or LdAP
dL = 0. Then MPL = APL.
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3.10.2 Relation between Average Cost and Marginal Cost

Let the total cost function of the firm be C = f(q) where C = total cost and q = output.

Now, average cost. (AC) is the cost per untit of output, i.e., AC = C f(q)
q q
 = g(q). On

the other hand, marginal cost is the first order derivative of the total cost function, i.e.,

MC = 
dC
dq = C(q).

Now there is a standard relation between AC and MC. Let us try to derive this relation.
We may write, total cost, C = q × AC.
Both C and AC are functions of q(output). So, we can differentiate both sides with

respect to q. Then we get,   
dC dACAC 1 q.
dq dq

i.e., MC = AC + q × (slope of AC curve).

Now, when AC rises, dAC 0
dq

 , or slope of AC curve > 0. Then MC > AC.

When AC falls, dAC 0
dq

 , or, slope of AC curve < 0.

Then MC < AC.

When AC is minimum or remains constant, 
dAC 0
dq

 or, slope of AC curve = 0.

Then MC = AC.
We may prove this relation between AC and MC in an alternative manner. We may

write, AC = 
total cost

output
 i.e., AC = C C(q)

q q
 .

Now, differentiating both sides with respect to q, we get,

dAC
dq = 2

dC .q C 1
dq

q

 
 = 2

dC .q C
dq

q



So, 
dAC
dq

 or slope of AC curve  0 according as 
dC .q
dq

  C

or, according as, dC
dq


C
q

 or, according as, MC AC.
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Thus, dAC
dq

 or slope of AC curve > 0 i.e., AC rises when MC   AC.

Similarly, dAC
dq

 or slope of AC curve < 0 i.e., AC falls when MC < AC.

Again, dAC
dq

 or slope of AC curve = 0, i.e., AC is stationary or AC is minimum or

constant when MC = AC.

3.10.3 Profit Maximisation by a Firm

We first consider the conditions for profit-maximising employment of a firm. We assume
that total output(q) is a function of labour-employment(L) only, i.e., q = f(L). Let the
money wage rate per unit of labour be  and price per unit or output be p. Now, total
profit,  = total revenue(R)– total cost (C). or,  = R – C. Here, total revenue, R = p.q
and total cost, C = TVC + TFC = .L + F where F = TFC.

So,  = R – C = p.q – L – F = p.f(L) – L – F.
Here, p,  and F are constants. So the whole expression on the RHS is a function of

L only. Thus, we get,  = (L) i.e., total profit is a function of labour only. Now to
maximise , the first order condition or the necessary condition is :

(i)
d 0
dL


 . The second order condition or the sufficient condition is : 
2

2

d 0
dL




Now, d dqp. .1 0
dL dL


    = 
dqp.
dL



Putting d 0
dL


 , we have, 
dqp.
dL

  = 0

or, dqp.
dL

  or, p × MPL = 

or, value of the marginal product (VMP) = money wage rate ().

It can be rewritten as, 
dq
dL p


  i.e., marginal physical product of labour should be

equal to real wage rate.
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The second order condition or the sufficient condition for profit maximisation requires,
2

2

d 0
dL


 .

Here, 
2 2

2 2

d d qp. 0
dL dL


  .

As p > 0, the second order condition for profit-maximising employment requires,
2

2

d q 0
dL

 or, 
d dq 0

dL dL
   
 

or, , Ld(MP ) 0
dL

 or, slope of MPL curve < 0 i.e., MPL should be

diminishing.
Thus, for profit maximisation, employment should be made at the point where the

following two conditions are fulfilled :
(i) First-order  condition or  necessary condition : MPL = real wage rate or, value

of marginal product of labour = money wage rate.
(ii) Second-order  condition or  sufficient condition : MPL should be diminishing

or the MPL curve should be downward sloping.

Example 3.11 : The short run production function is : q = – 0.1L3 + 6L2 + 12L. If wage
rate is ` 360 and pq = ` 30, how much labour(L) will be employed and how much output
(q) will be produced in order to maximise profit?

Solution : Profit will be maximum when (i) MPL = 


 and (ii) slope of MPL curve < 0.

Now, we have, q = – 0.113 + 6L2 + 12L

 L
dqMP
dL

  = – 0.3L2 + 12L + 12. Further,, 


= 
360
30  = 12.

So, putting MPL = 


, we get, – 0.3L2 + 12L + 12 = 12

or, – 0.3L2 + 12L = 0 or, 0.3L2 + 12L = 0 or, L(0.3L – 12) = 0

 Either L = 0, or, 0.3L – 12 = 0 or, L = 
12 1012
0.3 3

   = 40

Thus, from the first order or necessary condition, we get L = 0, 40.
Let us consider the second order or the sufficient condition. It requires that the slope

of the MPL curve should be negative.
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Now, slope of MPL curve = 
2

2

d dq d q
dL dL dL

   
 

= – 0.6L + 12.

If L = 0, slope of MPL curve = 
2

2

d q
dL

= – 0.6 × 0 + 12 = 12 > 0.

If L = 40, slope of MPL curve = 
2

2

d q
dL

= – 0.6 × 40 + 12 = –24 + 12 = –12 < 0.

So, profit will be maximimum if L = 40
Then the amount of profit-maximising output is :
q = – 0.1L3 + 6L2 + 12L = – 0.1 × (40)3 + 6 × (40)2 + 12 × (40)
= – 6400 + 9600 + 480 = 3200 + 480 = 3680
Let us suppose that instead of one input, the firm has two variable inputs, namely,

capital (K) and labour (L). The output(q) is being sold in a perfectly competitive market
so that price of output (p) is fixed. We also assume that price of K(pK) and price of
labour (pL) are also fixed. So total profit of the firm is given by the expression,

 = R – C = p × q – pKK – pLL. Here q = f(K, L)
So,  = pf(K, L) – pKK – pLL. Thus,  depends on K and L i.e.,  = (K, L). This is

a bivariate function without any constraint. We know the conditions of maximisation of
this function.

First order or necessary conditions to maximise  are :

K



 = K = 0, or, p.fK – pK = 0 or, p.fK = pK ...(a)

L



 = L = 0, or, p.fL – pL = 0 or, p.fL = pL ...(b)

Condition (a) states that the value of the margianl product of capital should be equal
to the price of capital. Similarly, condition(b) states that the value of the marginal product
of labour should be equal to the price of labour.

Second order conditions to maximise  require, 
2

2K
 


= fKK < 0, 
2

2L
 


= fLL < 0 and

22 2 2

2 2.
K L L K

      
      

 or, in alternative symbol, fKK.fLL > (fLK)2.

We consider an example.
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Example 3.12 : Let the production function of the firm is q = 
1 112
K L

   and pK = 4,

pL = 1 and pq = 9.
Determine the profit-maximising input conbination and also the amount of profit.

Solution : Total profit,  = R – C = pq.q – (pKK + pLL)

  = 1 19 12 4K L
K L

     
 

 =  108 – 9 9 4K L
K L
  

Here  depends on K and L i.e.,  = (K, L).
The first order conditions to maximise  require,

K 0
K


  


, or, 2

9 4 0
K

  ...(a)

L 0
L


  


, or, 2

9 1 0
L

  ...(b)

From (a) we get, 2

9 4
K

 , or, K2 = 
9
4   K = 

3
2

From (b) we get, 2

9 1
L

 , or, L2 = 9  L = 3

The second order conditions to maximise  require,
2

KK 2 0
K
 

  


, 
2

LL 2 0
L

 
  


and KK.LL > (KL)2.

Here, KK = 
3

18 2 2 2 1618
K 3 3 3 3

         < 0

LL = 3

18 18 2
L 3 3 3 3


   

 
 < 0

Further, KL or LK = 0

Now, KK.LK = 16
3

 × 
2
3

  = 32 0
9


i.e., KK.LL > (KL)2 or, KKLL > (KL)2 (as KL = LK by Young’s theorem).
So, second order conditions are fulfilled.
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 K = 
3
2 , L = 3.

 = 2 9 3108 9 4 3
3 3 2

       = 108 – 6 – 3 – 6 – 3 = 108 – 18 = 90 (Ans.)

Let us consider the conditions for profit-maximising sales of a firm. Profit() = total
revenue (R) - total cost(C) i.e.,  = R – C. Now, R = p × q where p = price of output, q
= quantity of output. We assume that p is fixed, i.e., firm is selling its output in a perfectly
compet itive market . Further, total cost is a funct ion of output(q) i.e.,
C = C(q). So, we have,  = R – C = p.q – C(q) = (q) i.e.,  is a function of output (q).

To maximise , the first order condition or the necessary condition is : 
d 0
dq


 ,

i.e., p.1 – 
dC 0
dq

  or, p = 
dC
dq

.

dC
dq

is the marginal cost (MC). So, the first order condition for profit maximisation is :

p = MC.

Again, when p is fixed, we have, from R = p.q, 
dR p
dq

  i.e., MR = p. So, the first

order condition for profit maximisation under perfect competition can also be written
as, MR = MC.

The second order condition or the sufficient condition to maximise  requires,
2

2

d 0
dq

  i.e., 0 – 

2

2

d C 0
dq

  or, , 
2

2

d C 0
dq



Now, 
2

2

d C d dC
dq dq dq

 
  

 
 = 

d(MC)
dq  = slope of MC curve.

So, the second order condition for profit maximisation under perfect competition
requires that slope of MC curve should be positive i.e., MC curve should be upward
rising.

Example 3.12 : A perfectly competitive firm is selling its product at price of ` 5 per
unit. Its total cost curve is : C = q3 – 10q2 + 17q + 60 where 60 = TFC or total fixed cost.
Determine the equilibrium output and the amount of maximum profit.
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Solution : We have C = q3 – 10q2 + 17q + 60.

 MC = 
dC
dq

 = 3q2 – 20q + 17.  Futher, p = 5.

Now, the first order condtion for profit maximisation under perfect competition
requires, p = MC.

So, we can write, 3q2 – 20q + 17 = 5
or, 3q2 – 20q + 12 = 0
or, 3q2 – 18q – 2q + 12 = 0
or, 3q(q – 6) – 2(q – 6) = 0
or, (q – 6)(3q – 2) = 0

So, either (q – 6) = 0 or (3q – 2) = 0. So, q = 6 or 2
3

.

The second order condition under perfect competition requires that

slope of MC curve > 0 or, 
dMC 0
dq

 . Here, 
dMC
dq

= 6q – 20

If q = 2
3

, we get, 
dMC
dq

= 26
3

 – 20 = 4 – 20 = –16 < 0

If q = 6, we get, 
dMC
dq

= 6 × 6 – 20 = 36 –20 = +16 > 0

So, profit is maximum if q = 6.
Amount of maximum  = R – C = p × q – C
If q = 6, total revenue, R = p × q = 5 × 6 = 30
Total cost = C = q3 – 10q2 + 17q + 60

= (6)3 – 10(6)2 + 17 × 6 + 60
= 216 – 360 + 102 + 60
= 378 – 360 = 18

So, the amount of profit = R – C = 30 – 18 = 12
Alternative method

We may solve the problem in an alternative manner.
We have, p = 5. So, R = pq = 5q. Further, C = q3 – 10q2 + 17q + 60.
Now, total profit,  = R – C = 5q – q3 + 10q2 – 17q – 60 = (q) i.e., total profit is a

function of output (q).

To maximise  the first order condition or necessary condition is : d 0
dq


 .
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Here, d
dq
 = –3q2 + 20q – 12

Putting d 0
dq


 , –3q2 + 20q – 12 = 0

or, 3q2 – 20q + 12 = 0
or, 3q2 – 18q – 2q + 12 = 0
or, 3q(q – 6) – 2(q – 6) = 0
or, (q – 6)(3q – 2) = 0
So, either (q – 6) = 0, or, 3q – 2 = 0.

Then, either q = 6 or, q = 
2
3

The second order condition or sufficient condition requires,
2

2

d
dq


< 0. Here, 
2

2

d
dq


 = – 6q + 20

If q = 
2
3

, 
2

2

d
dq


 = – 6q + 20 = 
26 20
3

    = 20 – 4 = 16 > 0

If q = 6, 
2

2

d
dq


 = – 6q + 20 = –6 × 6 + 20 = –36 + 16 = –16 < 0

So,  is maximum if q = 6
The amount of maximum profit =
 = – q3 + 10q2 – 12q – 60

= (–6)2 + 10(6)2 – 12 × 6 – 60 = –216 + 360 – 72 – 60
= 360 – 216 – 72 – 60 = 360 – 348 = 12

Let us consider the conditions for profit maximising sales of a firm when price of
output is not fixed. That is, the firm is selling its output in an imperfectly competitive
market or the firm is a manopolist. Here,  = R – C = p × q – C. Here p = f(q) is the
inverse demand function faced by the monopolist or by any imperfectly competitive
firm. So, R = p.q = f(q).q = R(q). We know that total cost(C) depends the level of output
i.e., C = C(q) . So,  = R(q) – C(q) = (q) i.e.,  is a function of output(q).

To maximise , the first order or the necessary condition requires,

d
dq


= 0, or 
dR dC 0
dq dq

  , or dR dC
dq dq


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Now, dR
dq

is MR while 
dC
dq

= MC. So, the first order condition for profit maximisation

requires, MR = MC.
We can deduce this condition in a slightly different manner.
We have,  = R – C = p(q).q – C(q).

Now, putting 
d
dq


= 0, we get,   
dp dC.q p 0
dq dq

or, 
dp q dCp 1 .
dq p dq

 
  

 
 or, 

1 dCp 1 p dq dq.
q dp

 
 
  
  
 

, or, 
d

1p 1
| e |

 
 

 
= 

dC
dq

Now, we know that MR =
d

1p 1
| e |

 
 

 
. So our first order condition becomes,

MR = MC.

The second order condition to maximise  requires, 
2

2

d
dq


< 0, i.e., 
2 2

2 2

d R d C
dq dq

 < 0,

or, 
2 2

2 2

d C d R
dq dq

  i.e. slope of MC curve > slope of MR curve.

In other words, the MC curve should cut the MR curve from below.

Example 3.14 : The demand function faced by a monopolist or by any imperfectly
competitive firm is : p = 80 – 0.2q and the cost function is : C = 50 + 0.05 q2. Find
profit-maximising output, price and profit.

Solution : We have, p = 80 – 0.2q  R = pq = 80q – 0.2q2

So, MR = 
dR
dq  = 80 – 0.4q

Again, C = 50 + 0.05q2   MC = 
dC
dq

 = 0.1q.

Now the first order condition or necessary condition requires, MR = MC

or, 80 – 0.4q = 0.1q or, 0.5q = 80  q = 80 160
0.5


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Here, slope of MC curve = 
dMC
dq = 0.1 and slope of MR curve = 

dMR
dq = – 0.4.

The second order condition for profit maximisation requires,
slope of MC curve > slope of MR curve.
As 0.1 > – 0.4, the second order condition is fulfilled.
 q = 160. Then p = 80 – 0.2q = 80 – 0.2 × 160 = 80 – 32 = 48
Total revenue, R = p × q = 48 × 160 = 7680.
Total cost, C = 50 + 0.05 q2 = 50 + 0.05 × 160 × 160
= 50 + 8 × 160 = 50 + 1280 = 1330.
So  = R – C = 7680 – 1330 = 6350. This is the amount of maximum profit.
Alternative method :
We may solve this problem also by following our alternative method.
We have, R = p.q = (80 – 0.2q)q = 80q – 0.2q2 and C = 50 + 0.05q2.
Now, total profit,  = R – C = 80q – 0.2q2 – 50 – 0.05q2

or,  = 80q – 0.25q2 – 50.
Thus,  depends on or is a function of output(q). So, the first order condition or the

necessary condition is, 
d
dq


= 0

Here, 
d
dq


= 80 – 0.5q. Putting 
d
dq


= 0, we get, 80 – 0.5q = 0

or, 0.5q = 80  q = 
80
0.5 = 160

The second order condition or the sufficient condition requires, 
2

2

d
dq


< 0.

Here, 
2

2

d
dq


= – 0.5 < 0. So, the second order condition is fulfilled. Hence, profit is

maximum if q = 160. Then price, p = 80 – 0.2q = 80 – 0.2 × 160 = 80 – 32 = 48
Then total profit,  = 80q – 0.25q2 – 50

= 80 × 160 – 0.25 × 160 × 160 – 50
= 12800 – 6400 – 50
= 12800 – 6450 = 6350
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3.10.4 Utility Maximisation with Budget Constraint

Suppose we have a bivariate utility function U = f(q1, q2). We have to maximise
utility(U) subject to the constraint, M = p1q1 + p2q2. So, it is a case of constrained
maximisation. We can do this by two alternative methods. One is the substitution method
and the other is the Lagrangean method. We shall first consider the method of substitution.

Substitution method

In this method, we express one of the variables in the constraint explicitly in terms of
the other variable. Then we substitute the value of this variable in the objective function
(i.e., our utility function) which is to be maximised in this case.

Now, one constraint is , p1q1 + p2q2 = M. It can be rewritten as, p2q2 = M – p1q1

or, q2 = 1 1

2

M p q
p


. We incorporate this value of q2 into the utility function. Then we

get, U = f(q1, q2) = f 1 1
1

2

M p qq ,
p

 
 
 

. Thus, U becomes a function of q1 alone.

The first order condition or the necessary condition to maximise U requires, 
1

dU 0
dq



Now, 1
1 2

1 2

pdU f f
dq p

 
   

 
... (1)

So, f1 + f2
1

2

p
p

 
 
 

 = 0 or, f1 = f2. 1

2

p
p

or, 
1 1

2 2

f p
f p


Now, f1 = 1
1

U MU
q





 and f2 = 2
2

U MU
q





.

So, 1

2

f
f

= 1

2

MU
MU

 = Absolute slope of the indifference curve.

This can be shown in the following manner.
We have, U = f(q1, q2)

Taking total derivative, we get, dU = 
1

U
q



.dq1 + 
2

U
q



.dq2.
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Using different notation, dU = f1dq1 + f2 dq2 where 
1

1

Uf
q





= MU1 and 
2

2

Uf
q





=

MU2. Thus, we get, dU = MU1dq1 + MU2dq2.
Now, along a given indifference curve, utility is fixed i.e., dU = 0
MU1.dq1 + MU2dq2 = 0
or, MU2 dq2 = – MU1dq1

 
2 1 1

1 2 2

dq MU f
dq MU f

     < 0.

Thus, slope of the indifference curve 
2

1

dq
dq

 
 
 

 is negative. Its absolute slope is

2 1 1

1 2 2

dq MU f
dq MU f

    . It is called marginal rate of substitution. Thus, MRS = 1

2

MU
MU

.

On the other hand, our budget constraint is :
p1q1 + p2q2 = M  or, p2q2 = –p1q1 + M

or, q2 = 1
1

2 2

p M.q
p p

 

This shows that the slope of the budget line is 
1

2

p
p

 
 
 

. So, the absolute slope of the

budget line is 1

2

p
p

. Thus, our first order condition for utility maximisation states that,

 
  

 
1 1 1 1

2 2 2 2

MU p f por,
MU p f p

 i.e., MRS = 1

2

p
p

or, slope of indifference curve = slope of budget line.

The second order condition to maximise U requires, 
2

2
1

d U
dq

 < 0.

We differentiate equation (1) with respect to q1 and apply the condition

i.e., 
2

2
1

d U
dq  = f111 + f12. 2

1

dq
dq  + f21

1

2

p
p

 
 
 

+ f22
2

1

dq
dq

1

2

p
p

 
 
 

 < 0
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or, f11 – f12
1

2

p
p

 
 
 

 – f21
1

2

p
p

 
 
 

 + f22

2

1

2

p
p

 
 
 

 < 0

Multiplying both sides by 2
2p , a positive number and putting f21 = f12(by Young’ss

theorem), we get,
2 2

11 2 12 1 2 22 1f p 2f p p f p 0   ...(a)

Let us see the implication of this second order condition. We have, 2 1

1 2

dq f
dq f

 

or, 2 1

1 2

dq f
dq f

  . Here f1 (= MU1) and f2(= MU2) both depend on q1 and q2.

So, 
2 1 1 2

1 2 1 2

dq f (q ,q )
dq f (q ,q )

  . By further differentiation of it with respect to q1, we get the

rate of change of slope of IC.

Now, 
2

2
2
1

d q
dq

= 2 2
11 2 12 2 21 1 22 12

2 1 1

dq dq1 f f f .f f .f f . .f
f dq dq
 

    
 

Putting 2 1

1 2

dq f
dq f

  , we get,

2
2

2
1

d q
dq

= 
2

1
11 2 12 1 21 1 222

2 2

f1 f f f f f f f
f f

 
    

 

= 2 2
11 2 12 1 2 22 13

2

1 f f 2f f f f f
f
    

Again, we have, 
1 1

2 2

f p
f p
 or, f1 = 1

2

p
p

.f2.

Putting this value, we get, 
2

2
2 3
1 2

d q 1
dq f

 
2

2 2 21 1
11 2 12 2 22 2 2

2 2

p pf f 2f f f f .
p p

 
  

 

= 2
2 2

1
f .p

 2 2
11 2 12 1 2 22 1f p 2f p p f p   
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Inequality (a) shows that the bracketed portion is negative. So, 
2

2
2
1

d q
dq > 0, i.e., the

indifference curves are convex from below. Hence inequality (a) implies convexity of
indifference curve. Thus, utility maximisation subject to a budget constraint requires
fulfilment of two conditions : (i) slope of indifference curve = slope of budget line.
(ii) Indifference curve should be convex to the origin.

Example 3.15 : The utility function is : U = q1q2 and p1 = 2, p2 = 5, M = 100. Determine
the optimum values of q1 and q2 so that utility is maximum.

Solution : Here the budget constraint is : 2q1 + 5q2 = 100. Expressing q2 as a function

of q1, we get, 5q2 = 100 – 2q1 or, q2 = 20 – 
2
5 q1

Substituting this into the utility function, U = q1q2 = q1 1
220 q
5

  
 

 = 2
1 1

220q q
5



To maximise U, the first order or the necessary condition is, 
1

dU 0
dq

 ,

or, 1
420 q 0
5

  , or, 1
4 q 20
5

  1
5q 20 25
4

  

Then, from the budget constraint, q2 = 
1

220 q
5



 q2 = 20 – 2 25
5
 = 20 – 10 = 10

The second order or the sufficient condition for maximisation of U requires,
2

2
1

d U 0
dq

 . Here, 
2

2
1

d U 4 0
dq 5

   .

So the second order condition is fulfilled. Here, q1 = 25, q2 = 10. Then U = q1q2 =
25 × 10 = 250.

Lagrangean method

Suppose we want to maximise U = f(q1, q2) subject to a budget constraint
M = p1q1 + p2q2. So, it is a problem of constrained maximisation. We form the Lagrangean
expression,

V = f(q1, q2) + (M – p1q1 – p2q2) where  is the Lagrange multiplier.
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It should be noted that here maximisation of U implies maximisation of V as
(M – p1q1 – p2q2) = 0. Further, here V = V(q1, q2, ), i.e., V depends on q1, q2 and . To
maximise V, the first order conditions require,

1

V 0
q





, or, f1 – p1 = 0 or, f1 = p1 ...(a)

2

V 0
q





, or, f2 – p2 = 0 or, f2 = p2 ...(b)

V 0



, or, M – p1q1 – p2q2 = 0

Dividing (a) by (b) we get, 
1 1

2 2

f p
f p
  or, 

1 1

2 2

MU p
MU p

  i.e., slope of indifference curve =

slope of budget line. The second order condition or the sufficient condition requires that
the Hessian Bordered Determinant | H | should be positive. [For the concept of Hessian
Bordered Determinant, please see Unit 5, section 5].

i.e., 
11 12 1

21 22 2

1 2

f f p
[H | f f p 0

p p 0


  
 

Expanding the determinant, we get, 2
11 2 12 1 2 1 21 2 22 1f p f p p p ( f p f p ) 0     

or, 2 2
11 2 12 1 2 21 1 2 22 1f p f p p f p p f p 0    

or, 2 2
11 2 12 1 2 22 1f p 2f p p f p 0    (as f12 = f21).

It implies that 
2

2
2
1

d q
0

dq
 . This again implies that indifference curves are convex to

the origin.

Example 3.16 : Maximise U = q1q2 where p1 = 2, p2 = 5 and M = 100.

Solution : We have solved this problem by the method of substitution. Now we shall
solve the same problem by Lagrangean method. Here our budget equation is : M = p1q1
+ p2q2 or, 100 = 2q1 + 5q2. So, we have to maximise U = q1q2 subject to 100 = 2q1 + 5q2.

We form the Lagrange expression.
V = q1q2 + (100 – 2q1 – 5q2). Here, V = V(q1, q2, ) and maximisation of V implies
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maximisation of U as (100 – 2q1 – 5q2) = 0. First order conditions to maximise V
require,

1

V 0
q





 or, q2 – 2 = 0 or, q2 = 2 ...(a)

2

V 0
q





 or, q1 – 5 = 0 or, q1 = 5 ...(b)

V 0



, or, 100 – 2q1 – 5q2 = 0 or, 2q1 + 5q2 = 100 ...(c)

Dividing (a) by (b), we get, 2

1

q 2
q 5

  or, 2q1 = 5q2. Putting this in (c), we get,

2q1 + 2q1 = 100 or, 4q = 100
 q1 = 25, so, 5q2 = 2 × 25  q2 = 10
The second order condition or the sufficient condition requires that the Hessian

Bordered Determinant | H |  > 0.

Here, 
0 1 2

| H | 1 0 5
2 5 0


 
 

 = (–1)(–10) –2(–5) = 10 + 10 = 20 > 0.

So, the second order condition is fulfilled.
q1 = 25, q2 = 10 and U = 25 × 10 = 250

3.10.5  Output Maximisation with Cost Constraint

Let the production function be q = f(x1, x2). If r1 and r2 are the prices of two inputs X1
and X2 respectively then total cost, C = r1x1 + r2x2. We assume that C is fixed at C0.
Then our problem is to maximise q = f(x1, x2) subject to the cost constraint C0 = r1x1 +
r2x2. We form the Lagrange expression, V = f(x1, x2) + (C0 – r1x1 – r2x2) where  is the
Lagrange multiplier. Here maximisation of V implies maximisation of q = f(x1, x2) as
(C0 – r1x1 – r2x2) = 0. Further, V is now a function of x1, x2 and , i.e., V = V(x1, x2, ).
To maximise V, first order conditions are :

1

V 0
x





 or, f1 – r1 = 0 or, f1 = r1 ...(a)

2

V 0
x





 or, f2 – r2 = 0 or, f2 = r2 ...(b)
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V 0



, or,C0 – r1x1 – r2x2 = 0 or, C0 = r1x1 + r2x2 ...(c)

Dividing (a) by (b), we get, 
1 1

2 2

f r
f r
  or, 

1 1

2 2

MPx r
MPx r

  i.e., slope of isoquant = slope of

isocost line. This is our first order condition for output maximisation. The second order
condition requires that the Hessian Bordered Determinant | H |  should be positive, i.e.,

11 12 1

21 22 2

1 2

f f r
| H | f f r 0

r r 0


  
 

.

Expanding the determinant, we get, 2
11 2 12 1 2 1 21 2 22 1f r f r r r ( f r f r ) 0     

or, 2 2
11 2 12 1 2 22 1f r 2f r r f r 0    (putting f21 = f12).

The second order condition may be used to demonstrate that the rate of change of

slope of isoquant should be positive, i.e., 
2

2
2
1

d x
dx

> 0. This again implies that the isoquant

should be convex to the origin. Thus, for output maximisation subject to the cost
constraint the conditions are as follows :

(i) First order  or  necessary condition : slope of isoquant = slope of isocost line.
(ii) Second order  or  sufficient condition : isoquant should be convex to the origin.

Example 3.17 : Maximise q = 
1 1
2 2
1 2x x when 

1xp 2 , 
2xp 4 and c = 400.

Solution : Here we have to maximise q = 
1 1
2 2
1 2x x  subject to the cost constraint,

400 = 2x1 + 4x2. So, it is a problem of constrained maximisation. We follow the Lagrange
multiplier method. The Lagrange expression is given by :

V = 
1 1
2 2
1 2x x  + (400 – 2x1 – 4x2) where  is the Lagrange multiplier. Here, V = V(x1, x2, ).

First order conditions to maximise V require,

1
1

VV 0
x


 


 or, 
1 1
2 2

1 2
1 .x x 2 0
2


   , or, , 

1 1
2 2

1 2
1 .x x 2
2


  ...(a)

2
2

VV 0
x


 


 or, 
1 1
2 2

1 2
1 .x x 4 0
2


   , or, , 

1 1
2 2

1 2
1 .x x 4
2


  ...(b)
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3
VV 0

 


 or, 400 – 2x1 – 4x2 = 0, or, 2x1 + 4x2 = 400 ...(c)

Dividing (a) by (b) we get, 

1 1
2 2

1 2

1 1
2 2
1 2

1 x x 2 12
4 21 x x

2






 



or, =2

1

x 1
x 2

or, x1 = 2x2

Putting this value in equation(c) which is our cost constraint, we get, 2x1 + 4x2 = 400
or, 8x2 = 400,  x2 = 50. Then x1 = 2x2 = 100.

Then output, q = 
1 1
2 2
1 2x x  = 100 50 50 2  . The second order condition requires

that the Hessian Bordered Determinant, | H |  should be positive. That is, | H |  > 0.

Here 
11 12 13

21 22 23

31 32 33

V V V
| H | V V V 0

V V V
 

This condition implies that the iso-quant should be convex to the origin. We assume
that the second order condition is fulfilled.

3.10.6 Cost Minimisation with Output Constraint

We shall now try to find out the conditions for cost minimisation subject to a given
output. In fact, output maximisation subject a given cost and cost minimisation subject
to a given output are just the two sides of the same coin– one implies the other. Hence
in both cases, our conditions are same. Let us consider it. Let the production function be
q = f(x1, x2). Suppose our output is fixed at q0. So, q0 = f(x1, x2). This is our output
constraint. The cost equation of the firm is, C = r1x1 + r2x2. We have to minimise this
(objective function) subject to the condition that q0 = f(x1, x2). So, it is a problem of
constrained minimisation. We follow the Lagrange technique and form the Lagrange
expression : Z = r1x1 + r2x2 + [q0 – f(x1, x2)] where  = Lagrange multiplier. Here,
Z = Z(x1, x2, ).

First order conditions to minimise Z require,

1

Z 0
x





, or, r1 – f1 = 0, or, r1 = f1 ...(a)



147

2

Z 0
x





, or, r2 – f2 = 0, or, r2 = f2 ...(b)

Z 0



, or, q0 – f(x1, x2) = 0, or, f(x1, x2) = q0 ...(c)

Now, dividing (a) by (b), we get, 1 1

2 2

f r
f r


i.e., 1 1

2 2

MPx r
MPx r

or, slope of isoquant = slope of iso-cost line.

The second order condition to minimise Z requires that the Hessian Bordered

Determinant should be negative, i.e., | H | < 0.

So, 
11 12 1

21 22 2

1 2

f f f
| H | f f f 0

f f 0

  
    

 

. Putting, 1
1

rf 


 and 2
2

rf 


 from first order

conditions (a & b), we get, 

1
11 12

2
21 22

1 2

rf f

rf f 0

r r 0

  


   




 

. Multiplying the first two columns

by 1



, we get, 

1
11 12

2 1
21 22

1 2
2 2

rf f

rf f 0

r r 0




  



 

 or, , 
11 12 1

21 22 2

1 2

f f r
1 f f r 0

r r 0


  

 
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Since  > 0, the second order condit ion for cost minimisation is,

11 12 1

21 22 2

1 2

f f r
f f r 0
r r 0


 

 
. It implies that the iso-quant should be convex to the origin.

Let us give an example. To show that cost minimisation with output constraint implies
output maximisation with cost constraint, we shall take the previous example. We shall
just transform the previous example of output maximisation into a case of cost
minimsation with output constraint.

Example 3.18 : The cost equation of the firm is : C = 2x1 + 4x2 and the production

function is : q = 
1 1
2 2
1 2x x . Minimise cost in order to produce 50 2 units of output.

Solution : Here we have to minimise cost C = 2x1 + 4x2 (objective function) subject to

the condition, 50 2 = 
1 1
2 2
1 2x x  (output constraint). The constraint may be written in an

alternative form as,    2 2

1 250 2 x x or, 5000 = x1x2. This will simplify our

differentiation. Thus, our problem formally becomes, Minimise C = 2x1 + 4x2 subject
to the constraint, 5000 = x1x2. Hence, the Lagrangean expression in this case is : Z = 2x1
+ 4x2 + (5000 – x1x2) where  is the Lagrange multiplier. Here Z = Z(x1, x2, ).

First order conditions to minimise Z requires.

1
1

Z Z 0
x


 


, or, 2 – x2 = 0, or, x2 = 2 ...(a)

2
2

Z Z 0
x


 


, or, 4 – x1 = 0, or, x1 = 4 ...(b)

3
Z Z 0
 


, or 5000 – x1x2 = 0, or, x1x2 = 5000 ...(c)

Dividing (a) by (b) we get, 
2

1

x 2
x 4




 or, 2

1

x 1
x 2

 or, x1 = 2x2.

Putting this value of x1 in equation (c), we get, x1x2 = 5000, or, 2x2.x2 = 5000,
or, 2

2x = 2500, or x2 = 50.
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Then x1 = 2x2 = 2 × 50 = 100. Then 
2

2 2 1
x 50 25

    .

Second order condition to minimise Z requires that the Hessian Bordered Determinant

should be negative, i.e., | H |  < 0.

Here, 
11 12 13

21 22 23

31 32 33

Z Z Z
| H | Z Z Z

Z Z Z


Putting the values of the elements of | H | , we get, 
2

1

2 1

0 x
| H | 0 x

x x 0

 
  
 

Expanding, we get, | H | = (–x1x2) – x2(x1)
= –x1x2 – x1x2 = –2x1x2

= 
1 50 100
25

    = –200 < 0.

Thus, the second order condition is fulfilled.

So, x1 = 50, x2 = 100, and the minimum cost to produce 50 2 units of output is :
C = 2x1 + 4x2 = 2(100) + 4(50) = 400

We should note that in the previous example, the maximum value of output was

50 2 when C = 400.

3.10.7 Sign of Coefficients of a Cubic Cost Function

Let the cubic cost function be : C = a0 + a1q + a2q2 + a3q3. The question is what restrictions
should be imposed on the signs of a0, a1, a2 and a3 so that we can get normal AVC, AC
and MC curves. Here, if q = 0, C = a0, So, a0 = TFC. Hence, a0 > 0. Again, we know that
the shapes of MC, AVC and AC are determined by the nature of TVC. Here, TVC = a1q
+ a2q2 + a3q3

So, AVC = 
TVC

q = a1 + a2q + a3q2

To minimise AVC, the first order condition requires,
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dTVC
dq = 0, or, a2 + 2q3q = 0 or, 2

3

aq
2a

  .

The second order condition to minimise AVC requires, 
2

2

d AVC 0
dq

 .

Here, 
2

2

d AVC
dq  = 2a3.

So, 
2

2

d AVC
dq

 > 0, i.e., the second order condition will be fulfilled if a3 > 0.

Again, the AVC-minimising output must be positive. i.e., 
2

3

a 0
2a

  . As a3 > 0, a2 < 0.

Let us consider the minimum value of AVC. We know that AVC is minimum when

q = – 2

3

a
2a

. So putting this value in the equation of AVC, we get minimum

AVC = a1 + a2q + a3q2

= a1 + a2

2

2 2
3

3 3

a aa
2a 2a

   
     
   

= 
2 2
2 2

1
3 3

a aa
2a 4a

   = a1 – 
2
2

3

a
4a

 = 
2

1 3 2

3

4a a a
4a


So, minimum AVC will be positive if 4a1a3 – a2
2 > 0 or, if 4a1a3 > 2

2a , i.e., 4a1a3 > 0.
As a3 > 0, a1 > 0. Thus to get normal U-shaped AVC curve, the restrictions are :
(i) a0 > 0, (ii) a1 > 0, (iii) a2 < 0, (iv) a3 > 0 and (v) 4a1a3 > 2

2a . If AVC is u-shaped, then
MC and AC will also be u shaped.

We may get similar restrictions on the signs of coeffients taking normal u-shaped
MC curve. In that case only the restriction no. (v) will be : 3a1a3 > 2

2a . Readers are
requested to check it.
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3.11 Summary

1. CONCEPTS OF MAXIMA AND MINIMA OF A SINGLE VARIABLE FUNCTION

When a function attains its highest value it is called maximum value and when it attains
its lowest value, it is called minimum value. Separately each one is called extremum
and together they are called extrema (extrema is the plural word of extremum). Both
maxima and minima are of two types : global and local.

2. IDENTIFICATION OF MAXIMA AND MINIMA

If y = f(x), then its maximisation requires fulfilment of two conditions :  (i) First order

or necessary condition : 
dy
dx = f(x) = 0. (ii) Second order or sufficient condition : 

2

2

d y
dx

=

f(x) < 0.
Similarly, for minimisation of the function, we require fulfilment of two conditions :

(i) First order or necessary condition : 
dy
dx = f(x) = 0

(ii) Second-order or sufficient condition : 
2

2

d y
dx

= f(x) > 0

3. POINT OF INFLEXION

Simply speaking, point of inflexion on a curve or function is the point where the curve
changes its curvature. If y = f(x), then it will have a point of inflexion if

2

2

d y
dx

= f(x) = 0 and 
3

3

d y
dx

f(x)  0.

4. OPTIMISATION OF MULTIVARIATE FUNCTION

Optimisation is a process or an attempt to achieve an optimum (i.e., maximum or
minimum) situation. There may be basically two types of optimisation : unconstrained
optimisation and constrained optimisation.

5. UNCONSTRAINED OPTIMISATION

Unconstrained optimisation refers to the process of optimisation of a variable where
there is no constraint or condition. If a bivariate function y = f(x1, x2) is such that
explanatory variables x1 and x2 are independent, then we apply unconstrained
optimisation, i.e., unconstrained maximisation or unconstrained minimisation of y.
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6. CONSTRAINED OPTIMISATION

Constrained optimisation means the maximisation or minimisation of an objective
function where the choice variables are not independent : they are subject to some
constraint or somehow related to each other. There are two methods of solving a
constrained optimisation problem : (i) Method of substitution and (ii) Method of Lagrange
multiplier.

7. APPLICATION OF MAXIMA AND MINIMA IN ECONOMICS

The concepts of maxima and minima have numerous applications in Economics. In
particular, we may mention the cases of profit maximisation, cost minimisation, output
maximisation subject to a given cost, utility maximisation subject to a given budget,
etc. They are also used to determine the maximum points of average and marginal product
functions, minimum points of marginal cost, average variable cost and average cost
functions. In a word, the concepts of maxima and minima are used to determine the
optimum level of any decision variable.

3.12 Exercises

A. Short Answer Type Questions (Each of 2.5 marks)
1. What do you mean by maxima of a single variable function?
2. What is meant by minima of a single variable function?
3. What is an increasing function?
4. What is a decreasing function?
5. What do you mean by a stationary value of a function?
6. What are the conditions for maximisation of a single variable function?
7. State the conditions for minimisation of a single variable function.
8. Mention the necessary and sufficient conditions for maximisation of a function.
9. What are the necessary and sufficient conditions for minimisation of a function?
10. What is meant by point of inflexion of a function?
11. What are the conditions of point of inflexion of a univariate function?
12. What is meant by optimisation of a function?
13. What is unconstrained optimisation?
14. What is meant by constrained optimisation?
15. What are the two methods of solving a constrained optimisation problem?
16. State the relation between AP and MP.
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17. State the relation between AC and MC.
18. Let U = f(q1, q2). Deduce the slope of an indifference curve.
19. What are the conditions of maximisation of a bivariate function?
20. What are the conditions of minimisation of a bivariate function?
21. When can we apply substitution method in the case of constrained optimisation?
22. When do we apply Lagrangean method in the case of constrained optimisation?

B. Medium Answer Type Questions (Each of 5 marks)

1. Discuss the concepts of maxima and minima of a single variable function.
2. What is global maximum and what is global minimum of a function?
3. Describe the concepts of local maximum and local minimum of a function.
4. How will you identify the maximum and minimum points of a single variable

function?
5. Write a short note on the concept of point of inflexion of a single variable function.
6. What are the conditions of unconstrained optimisation of a bivariate function?
7. Discuss the method of substitution in the case of constrained optimisation.
8. Write a short note on sufficient condition for constrained optimisation of a bivariate

function.
9. State and mathematically proved the relation between AP and MP.
10. Mathematically prove the relation between AC and MC.
11. How will you determine profit maximising level of employment of labour of a single-

product firm?
12. Discuss the conditions for determining profit-maximising sales of a firm under perfect

competition.
13. What are the conditions of profit maximising output of a firm in an imperfectly

competitive market?

14. The cost-function of the firm is C = 1
3

q3 – 3q2 + 9q. Determine AC-minimising output.

Show that at this value of output, MC = AC. [Ans. q = 
9
2 , Min AC = MC = 

9
4 ].

15. Let C = x3 – 6x2 + 15x be the total cost function. Show that when AC is minimum,
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AC = MC.
16. The total cost of the firm is : C = a0 + a1q – a2q2 + a3q3. Determine the output when

MC is minimum. What is the amount of minimum MC? [Ans. 2

3

a1q
3 a

 ]

17. Let the utility function be : 1 2 1 2U q q q q     . Determine MRS.

Ans. 
a g
b g

+
+

1 2 2

1 2 2

2 q q q
2 q q q

18. The utility function is : U = log[(q1 + a)(q2 + b)]. Determine MRS between q1 and q2.

Ans. 2

1

q b.
q a


 

19. Let the production function be : q KL . Show that MRTS between L and K is

given by 
K
L .

20. C = 100 + 2x + 
2x

90
. Calculate minimum AC. Ans. 

26
3

21. Find minimum AC when AC = 10 – 4x3 + 3x4. Ans. 9

22. Total cost, C = 3 21 x 5x 75x 10
3

   . Find minimum MC. Ans. 50

C. Long Answer Type Questions (Each of 10 marks)
1. Discuss the Lagrange multiplier method of constrained maximisation of a bivariate

function.
2. Briefly describe the Lagrangean technique of constrained minimisation of a bivariate

function.
3. Discuss the conditions of profit maximisation of a firm.
4. How will a firm maximise its output subject to a cost constraint? Mention both

necessary and sufficient conditions.
5. Discuss the conditions of utility maximisation subject to the budget constraint of a

consumer following substitution method.
6. Analyse how a consumer will maximise utility subject to the budget constraint.

Analyse the problem following Lagrangean multiplier method.
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7. Deduce the conditions of cost minimisation of a firm subject to an output constraint.
Mention both first and second-order conditions.

8. The cost function of the firm is : C = a0 + a1x – a2x2 + a3x3 where x = output, a0, a1,
a2 and a3 are positive constants. Determine the value of x at which AVC is minimum.

Prove that at this value of x, MC = AVC. Ans. 2

3

ax
2a



9. Minimise C = 2K + 8L subject to 
1 1
2 2K L 8 . Ans. K = 16, L = 4, C = 64

10. Maximise U = x + 2y + xy + 1 subject to 4x + 6y = 130
Ans. x = 16, y = 11, U = 215

11. Taking the cost function, C = a0 + a1q – a2q2 + a3q3. Show that first MC reaches
minimum, then AVC and at last AC.

12. p = 1200 – 2q and C = q3 – 61.25q2 + 1528.5q + 2000. Determine profit-maximising
p and q and also maximum profit. Ans. p = 1127, q = 36.5,  = 16318.44
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4.1. Objectives

After studying the unit, the readers will be able to know
 the concept of integration and its types
 rules of integration
 various applications of integration in Economics

4.2 Introduction

Integration is a very important tool in mathematical economics. This mathematical
concept or tool has so many uses in Economics. In a word, the technique of integration
helps us know any total function if its marginal function is given. Further, by applying
integration, we can determine the demand function if the value of price elasticity is
given, the supply function from the value of elasticity of supply, etc. We can also measure
the amounts of consumer’s surplus and producer’s surplus by using the technique of
integration. Hence we discuss about the concept of integration, its types, rules and
applications of integration, etc. in this Unit.

4.3 Concept of Integration

The concept of integration may be defined in two alternative ways. First, integraion is
a process of reverse differentiation. In the process of differentiation, we first take primary
function and by differentiation, we reach the derivative function. If we go in the opposite
or reverse direction, we go from derivative function to the primary or original function.
This reverse process is called integration, or more specifically, indefinite integration
and the result obtained through this process is called indefinite integral. In the second
or alternative sense, integration describes a process of summation. If we want to measure
an area enclosed by a curve or a set of curves, we may think of the area consisting of
infinite narrow stripes. Summing those stripes we may get the whole area. This process
of summation is also called integration, or more specifically, the definite integration
and the result obtained through this process of summation is called in definite integral.
The process of integration is denoted by the symbol .

4.4 Indefinite Integral

Let us try to define indefinite integral formally. We have said that integration is the
reverse process of differentiation and is denoted by the symol . If differentiation of a
given function g(x) gives the derivative f(x), we can integrate f(x) to find g(x). Thus, if
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g(x) is a function of x such that 
d [g(x)]
dx = f(x), then the indefinite integral of f(x) with

respect to x is the function g(x). In notation, f(x)dx g(x) . The function f(x) is called
the integrand and the function g(x) is called an integral (or, anti-derivative) of the function

f(x). For example, since 2d (x) 2x
dx

 , 22x dx x .

4.5 Rules of Integration

We now mention some major rules of integration.

Rule 1. Power rule : n n 11x dx .x C
n 1

 
 where c is constant, (n  –1).

Some illustrations :

(i) 
4 1

4 xx dx c
4 1



 
 = 

5x c
5


(ii)
1 1xx dx c

1 1



 
 = 

2x c
2

(iii) 
0 1

0 xdx 1.dx x dx c
0 1



   
    = x + c

Rule 2. Exponential rule : x xe dx e c   since xd (e )
dx  = ex

(2a) f (x ) f (x )f (x)f (x) e dx e c
f (x)


  
  = ef(x) + c since

f (x) f (x )1e dx e c
f (x)

 


Rule 3. Logar ithmic rule : 
1 dxdx
x x

  = log x + c, (x > 0) since 
d
dx (log x) = 

1
x

3(a). f (x) dx
f(x)


 = log f(x) + c

Rule 4. Integral of a multiple : kf(x)dx k f(x)dx  where k is a multiplicative
constant. (Note that a variable term cannot be factored out in this fashion).

I llustration : 
3

2 2 5x5x dx 5 x dx c
3

   
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Rule 5. Rule of the integral of a sum : [f(x) g(x)]dx = f(x)dx g(x)dx  . This
can be generalised for any number of sums.

Some I llustrations :

(i)
3

2 2 2
1 2

xx(x x)dx x dx xdx c c
3 2

          = 
3 2x x c

3 2
 

where c(= c1 + c2) is a constant.

(ii) 3 3(x 7x 5)dx x dx 7 xdx 5 dx       

= 
4 2

1 2 3
x 7xc c 5x c
4 2
    

= 
4 2x 7x 5x c

4 2
    where c = c1 + c2 + c3

Rule 6. Rule of substitution : The integral of f(u). 
du
dx  with respect to the variable x

is the integral of f(u) with respect to the variable u. In symbols or notations, 
duf(u) .dx
dx =

f(u)du g(x) c  .

I llustration : 22x(x 1)dx = 3(2x 2x)dx = 
4 22x 2x c

4 2
  = 

4
2x x c

2
  . Let us

integrate the same expression 2x(x2 + 1) by the rule of substitution.

Let u = x2 + 1. Then 
du
dx = 2x

 
du
2x  = dx

Now, 22x(x 1)dx = 
du2x.u.
2x =

2

1
uu du c
2

  = 2 2
1

1 (x 1) c
2

 

= 
4

2
1

x 1x c
2 2
   = 

4
2x x c

2
   where c = 1

1 c
2
 .

We may integrate in an alternative manner. We have 22x(x 1)dx
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= +ò 2du(x 1)dx
dx [Putting x2 + 1 = 4 and 

du 2x
dx

 ]

= u du = 
2

1
u c
2
 = 

4
2

1
x 1x c
2 2
    = 

4
2x x c

2
   where c = 1

1 c
2


Rule 7 : Rule of integration by par ts : The integral of v with respect to u is equal to
uv less the integral of u with respect to v.

In notation, v du uv u dv  
Let us check it. We know, d(uv) = v du + u dv.

 d(uv) vdu u dv     uv vdu udv   . So, vdu uv udv  
4.6. Definite Integral

The concept of definite integral may be interpreted either as an area or as the limit of a
sum. The area enclosed by the curve y = f(x) and the x-axis over a specified domain of
x is called the definite integral for the function over this domain. Suppose y = f(x) is a

function such that f(x)dx g(x) . The definite integral 
b

a

f(x)dx is defined by

b
b
a

a

f(x)dx [g(x)] = g(b) – g(a)

where a and b are two real numbers, and are called the lower and upper limits of the
integral, respectively. We give some simple illustrations.

I llustrations : (i) Evaluate 
b

a

1.dx

Ans. 01.dx x .dx x  

So, 
b

b
a

a

1.du [x] b a  

(ii)  Evaluate 
5

3

1

4x dx

Ans. 
55 4

2 4 5
1

1 1

4x3x dx [x ]
4

 
  
 

  = 54 – 14 = 625 – 1 = 624
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(iii) Evaluate 
b

x

a

ke dx

Ans. 
b

x

a

ke dx = x b
a[ke ] = keb – kea = k(eb – ea)

4.7 Proper ties of Definite Integral

Before mentioning the properties of definite integral, we should mention that all functions
are not integrable. There are some theorems which specify the conditions under which
a function f(x) is integrable. In this connection we may mention the fundamental theorem
of calculus. This theorem states that a function y = f(x) is integrable in the interval [a, b]
if it is continuous in that interval. The function is then called Reimann integrable.

Having stated the fundamental theorem of calculus, let us mention some important
properties of definite integral.

Property 1 : 
b a

a b

f(x)dx f(x)dx  

For, 
b

a

f(x)dx = g(b) – g(a) = –[g(a) – g(b)] = 
a

b

f(x)dx
Property 2 : A definite integral has a value equal to zero when the two limits of the

integration are identical, i.e., 
a

a

f (x)dx = g(a) – g(a) = 0

This property can be explained in a very simple manner. Under the ‘area’ interpretation
of definite integral, this means that the area (under a curve)above a single point in the
domain is nil. This is quite obvious. On the top of a point on the x-axis, we can draw
only a(one dimensional) line, never a (two dimensional) area. The area of a line does
not exist.

Property 3 : 
d b c d

a a b c

f (x)dx f (x)dx f (x)dx f (x)dx      . This result is also quite

obvious. Area under a curve in the interval [a, d] = Area under the curve in the interval
[a, b] + area under the interval (b, c) + area under the interval [c, d]. This property is
known as the property of additivity. This property can be extended to n sub-intervals.
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Property 4 : 
b b

a a

f(x)dx f(x)dx   

Property 5 : 
b b

a a

kf(x)dx k f(x)dx 

Property 6 : 
b b b

a a a

[f(x) h(x)]dx f(x)dx h(x)dx    
Property 7 : Integration by parts. Suppose there are two functions of x, say, u = u(x)

and  = (x).

Then, 
x b x b

x b
x a

x a x a

d [u ] u.d
 




 

      

4.8 Definite integral as an Area under  a Curve

We know that the concept of definite integral can be interpreted as an area. The area
enclosed by the curve y = f(x) and the x-axis within an
interval of x is called the definite integral for this function
over this interval. The idea may be clarified with the help
of a diagram. In our figure 4.1 beside we have drawn a
continuous function y = f(x). We have also taken two values
of x, say, a and b. These are the two limits of x. Here b is
the upper limit of x while a is the lower limit of x. Now,
definite integral of the function y = f(x) within the interval

[a, b] of x = 
b

a

f(x)dx = g(b) – g(a) = Area under the curve y = f(x) up to x = b minus area

under the curve up to x = a. Thus the definite integral may be regarded as an area under
a curve. We consider a simple example below.
Example 4.1 : Find the area enclosed by the line y = x, the x-
axis and the ordinate at x = 5.

Solution : Here, y = f(x) = x. We have to find out the area of
the shaded region shown in figure 4.2. Here the interval of x
is [0, 5]. So, we have to calculate definite integral of  y =
f(x) = x within the interval of [0, 5] of x. Hence, formally,

o x

y = f(x)

(Fig. 4.1)

a b

y = f(x)

o x

y

(Fig. 4.2)

45º

5

y = x

5
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the required area is represented by 
5

0

f(x)dx . Putting f(x) = x, we have the area =
55 2

0 0

xxdx
2

 
  
 

 = 5 5 0
2


  = 
25
2 = 12.5.

In this example we have taken y as a linear function of x. Let us take a non-linear

function, say, y = 21 x
2

. Consider the following example.

Example 4.2 : Find the area enclosed by the curve 21 x
2

, the

x-axis and the ordinate at x = 3.
Ans. Here the required area has been shown by the

shaded region in figure 4.3. It is given by :
3

2

0

1x dx
2 = 

33

0

x 3 3 3 90
2 3 2 3 2
   

     

4.9. Application of Integration in Economics

There are many uses of integration in Economics. We know that integration is the reverse
process of differentiation. By differentiating a total function, we can get the marginal
function. Hence, by integrating any marginal function we can get the corresponding
total function. Thus, we may get the total product (TP) function from the marginal
product (MP) function, total revenue (TR) function from the marginal revenue (MR)
function, total cost (TC) function from the marginal cost (MC) function, etc. just by
applying the technique of integration. We may also derive the demand function from
the elasticity of demand, measure the amout of consumer’s surphus, volume of producers
surplus, etc. by means of integration.We shall consider some of these cases one by one
in this section. We first try to find out total functions from the given marginal functions.

4.9.1Finding out Total Functions from Marginal Functions

Case (i) : Total product (TP) function from marginal product (MP) function.
Let the total product (TP) function be : y = f(L) where y = total product and L = labour.

Now, we know that the marginal product of labour is the change in total product due to

one unit change in labour employment, ceteris paribus. In terms of calculus, 
dTP MP
dL



So, dTP = MP × dL

o
x

y

(Fig. 4.3)
3

y = 1
2 x2
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Integrating both sides, we get, dTP MP.dL   or, TP = MP.dL
Thus, integrating the MP function, we may get the TPfunction. Let us give an example.

Example 4.3 : The production function Y = f(L) is such that 
dY Y3.
dL L

 . Determine the

production function.

Solution : We have, 
dY Y3.
dL L

   or, 
dY dL3.
Y L



Integrating both sides, we get, dY dL3
Y L

 
or, log Y = 3 log L + log a whose log a is the constant of integration.
or, log Y = log L3 + log a
or, log Y = log (aL3)
or, Y = aL3

This is the desired production function in this case.

Case (ii) Total cost (TC) function from marginal cost (MC) function.

Let the total cost function be, C = f(q) where C = total cost and q = output. Then

MC = 
dC
dq . So, dC = MC.dq. Integrating we get, dC MCdq   or, C = MC.dq .

Thus, by applying the technique of integration, we can get the total cost(C) function
from the marginal cost (MC) function. Consider the following example.

Example 4.4 : MC = 500 – 8q + q2. If TFC = 6000, determine the total cost (C) function.

Solution : We have, MC = 500 – 8q + q2 or, 2dC 500 8q q
dq

  

dC = (500 – 8q + q2)dq

Integrating, 2dC (500 8q q )dq     = 2500 dq 8 qdq q dq   

= 500q – 
2 3q q8 k

2 3
   where k is the constant of integration.

So, C = 500q – 4q2 + 
3q k

3
 .

Now, we are given that TFC = 6000 i.e., if q = 0, C = 6000. Putting q = 0 in our total
cost (C) function, we get, k = TFC = 6000. Hence the desired total cost function is :
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C = 500q – 4q2 + 
3q 6000

3
 .

Here 6000 represents the positive vertical intercept of the short run total cost function.

Case (iii) : Total revenue (TR) function from marginal revenue (MR) function.

Let the total revenue (R) function be : R = f(q) where q is the amount of sales of

output. So, MR = 
dR
dq  or, dR = MR × dq.

Integrating we get, dR MR.dq   or, R MR.dq 
Thus, by integrating the marginal revenue function, we get the total revenue function.

Let us give an example.

Example 4.5 : If MR = 30 – 4q – q2, find the TR function.

Solution : We know that total revenue (R) is a function of q, i.e., R = R(q)

Now, 
dRMR
dq

  dR = MR dq

Integrating, dR MR dq   = 2(30 4q q )dq   = 230 dq 4 qdq q dq   

or, R = 30q – 4 × 
2 3q q k

2 3
   where k is a constant.

So, R = 30q – 2q2 – 
3q k

3


Now, we know that if q = 0, R = 0k = 0

Hence the total revenue function in this case is : R = 30q – 2q2 – 
3q

3
Here R = 0 if q = 0. This total revenue function(R) will start from the origin.

Case (iv) : Consumption function from the marginal propensity to consume (MPC).

We assume that consumption(C) is a function of income (Y) i.e., C = f(Y). Then the

marginal propensity to consume (MPC) is defined as 
dC
dY . Thus, MPC is the first-order

derivative of the consumption function with respect to income, or, MPC is the slope of
the consumption function.
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Thus, dCMPC
dY

  dC = MPC × dY

Hence, dC MPC.dY  or, C = MPC.dY
Thus, integrating the MPC function, we can get the consumption function.
Let us give an example

Example 4.6 : Deduce the consumption function if the marginal propensity to consume

(MPC) is 
4
5 and autonomous cousumption is 1000.

Solution : We are given that MPC = 
4
5  or, 

dC 4
dY 5

 .  4dC dY
5



Integrating both sides, we get, 4 4dC dy dY
5 5

    .  C = 
4 Y k
5



where k is the constant of integration.
Now, it is given that autonomous consumption is 1000, i.e., C = 1000 if Y = 0. Again,

from our consumption function, we get, C = k if Y = 0. So, k = 1000. Putting this value

of k, we get the desired consumption function : C = 
4 Y 1000
5 . Here 1000 represents

the positive vertical intercept (i.e., autonomous consumption) of the consumption
function.

Case (v) : Saving function from the marginal propensity to save (MPS) function.

We assume that the amount of saving(S) depends on the level of income (Y), i.e.,

S = S(Y). Then marginal propersity to save is defined as : MPS = 
dS
dY

, i.e., MPS is the

first order derivative of the saving function.

Now, MPS = 
dS
dY or, dS = MPS.dY

Integrating we get, dS MPS.dY   or, S MPS.dY 
Thus, integrating the MPS function with respect to Y (income), we shall get the

saving function.
Consider the following example.
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Example 4.7 : 
1
2MPS 0.2 0.3Y


   and when Y = 100, S = 0. Find the saving function.

Solution : We know that if S = S(Y), then dSMPS
dY



 dS = MPS.dY

Integrating,  dS MPS.dY

or, S = 



1
2(0.2 0.3Y )dY = 

1
20.2 dY 0.3 y .dY


 

= 0.2Y – 0.3

1
2Y

1
2

+ a where a is the constant of integration.

Thus, S = 
1
20.2Y 0.6Y a  .

Now, we are given that S = 0 if Y = 100.
So putting Y = 100, we get, 0.2 100 0.6 100 a 0   
or, 20 – 6 + a = 0  a = – 14

So, our desired saving function is : S = 
1
20.2Y 0.6Y 14 

Here a = –14 is the negative vertical intercept of the saving function.

4.9.2Demand Function from the Elasticity of Demand

Let the demand function be : q = f(p) where q = quantity demanded and p = price. From

the law of demand we know that 
dq
dp  or f (p) < 0 i.e., there is an inverse relation between

p and q, ceteris paribus. Now, price elasticity of demand may be defined as the
proportional change in quantity demanded divided by the proportionate change in price,

ceteris paribus. Thus, price elasticity of demand, d

dq
p dqqe .

dp q dp
p

  .

If the law of demand holds 
dq 0
dp

  and so, ed < 0. The absolute value of price elasticity
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of demand, d

dq
q| e |

dp
p

  .

Now, if ep is given, we can get a relation between dq
q

and dp
p

. Then, by applying the

technique of integration, we may get a relation between q(quantity demanded) and p
(price). This relation gives us the demand function.

Alternatively, d
d log q| e |
d log p

   as d log q = dq
p

 and d log p = dp
p

. It is the alternative

formula of elasticity of demand (ed) in terms of logarithms. Now, if |ed| or ed is given,
we can get a relation between d log q and d log p. Then by applying the technique of
integration, we may get the relation between q and p. That relation gives us the desired
demand function.

We consider two examples showing these two techniques.

Example 4.8 : If |ed| = 1, deduce the demand function.

Solution : |ed| = 1 or 

dq
q 1
dp
p

    or, 
dq
q = 

dp
p

 .

Integrating, we have, 
dq dp
q p
  

or, log q = –log p + log c where log c is the constant of integration.

Now, log q = log
c
p

 
 
 

or, q = c
p

 is our demand function or, alternatively, we may write,

log q + log p = log c or, log(pq) = log c
 pq = c = constant. This is our demand function. In this case, expenditure of the

buyer (pq) is constant and we get a constant outlay curve. Here,the demand curve is a
rectangular hyperbola.
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Alternative method : We can deduce the same demand function by following a slightly
different use of the technique of integration. We are given that |ed| = 1. Using the

log-definition of ed, we can write, d log q 1
d log p

    or, d log q = – d log p

Now, integrating, d log q d log p  
or, log q = – log p + log c where log c is a constant.

or, log(pq) = log c  pq = c or, q = c
p

 is our desired demand function.

We consider another example where the value of price elasticity of demand is a
constant not necessarily equal to unity.

Example 4.9 : If the absolute value of price elasticity of demand is , a constant, deduce
the demand function.

Solution : We have, |ed| =  or, 

dq
q
dp
p

     or, dq dp
q p
  .

Integrating,   
dq dp
q p

.

or, log q = –log p + log a where log a is a constant
 log q = log(ap–)  q = ap–. This is our desired demand function.

Alternatively, |ed| = or, d logq
d log p

  

or, d log q = – d log p.
Integrating log q = – log p + log a where log a = constant.
or, log q = log (ap–)
 q = ap– is the demand function.
Similarly, we can deduce the income-demand function or the Engel function by

applying the technique of integration if the value of income elasticity of demand is
given. Let the income-demand function or the Engel function be : q = f(M) where q =
quantity demanded and M = money income of the buyer. Then the income elasticity of
demand is the percentage change in quantity demanded due to one per cent change in
money income, ceteris paribus. In symbols,
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eM = 

dq dq100
M dqq q .dM dM q dM100

M M


 



Now, if eM is given then we get a relation between dq
q

 and dM
M

. Then applying the

technique of integration, we shall get a relation between q and M. That relation is nothing
but the income-demand function or Engel function.

Alternatively, using the log-definition, we have, M
d logqe
d log M

 .

Again, if eM is known, we shall have a relation between d log q and d log M. Now,
using the technique of integration, we shall get a relation between log q and log M, i.e.,
between q and M. That relation is our Engel function or the income-demand function.

We consider an example below.

Example 4.10 : If income elasticity of demand, eM = 1 at all points on the income-
demand curve or Engel function, deduce the income-demand curve or the Engel function.

Solution : We have, eM = 1 or, 
dq / q 1

dM / M


or, dq dM
q M
 . Now, integrating we get, dq dM

q M
   or, log q = log M + log k where

log k = constant.
or, log q = log(kM)  q = kM
This is our income-demand curve or Engel curve which is, in this case, an upward

rising straight line passing through the origin.
In this case also, we may follow the alternative method as followed in the case of

price elasticity. We first apply the log-definition of elasticity and then use the technique
of integration to get the income-demand curve.

We have, eM = 1

or, 
d logq 1
d log M

 or, d log q = d log M

Integrating, d log q d log M 
or, log q = log M + log k where log k = constant or, log q = log(kM)
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 q = kM is our desired income-demand curve or the Engel curve.
In the same manner we can deduce the income-demand curve if the value of income

elasticity is given.

Let eM = , a constant. So, 
dq / q

dM / M
 

or, dq
q

 = . dM
M

. Now, integrating we get, log q =  log M + log k = log(kM)

 q = kM is our income-demand curve or Engel curve.
Following our alternative method of using log-definition of elasticity, we have, eM =



or, d logq
d log M

    d log q = .d log M

Integrating, d log q d log M  
or, log q =  log M + log k = log(kM)
 q = kM  is our income-demand function or Engel function.

4.9.3 Indifference Curve from MRS

By using the technique of integration, we can deduce the equation of the indifference
curve if the value of marginal rate of substitution (or the absolute slope of the indifference
curve) is given. Let us show it.

Let the utility function of the consumer is : U = f(q1, q2). Along an indifference curve
(IC), utility level is constant, say, U0. So, the equation of the IC is : U0 = f(q1, q2). To
know the slope of an indifference curve, we take total derivative of the utility function.

Thus, dU = 1 2
1 2

U U.dq .dq
q q
 


 

 = MU1.dq1 + MU2dq2

Now, along a given indifference curve, utility is constant, So, dU = 0. Then we get,
MU1dq1 + MU2dq2 = 0
or, MU2dq2 = –MU1dq1

or, 2

1

dq
dq

= slope of an indifference curve = 1

2

MU
MU

 .
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Under the assumption, MU1 > 0, MU2 > 0, 2

1

dq 0
dq

  i.e., slope of the indifference

curve is negative. The absolute slope of the indifference curve is called the marginal

rate of substitution (MRS). Thus, MRS = 2 1 1

1 2 2

dq MU U / q
dq MU U / q

 
  

 
.

If this MRS or the absolute slope of the indifference curve is given we can deduce
the equation of IC with the help of the technique of integration. We consider an example.

Example 4.11 : The slope of the indifference curve is everywhere equal to 2

1

q
q

 
 
 

.

Deduce the equation of the indifference curve.

Solution : Slope of the indifference curve = 2

1

dq
dq

= 2

1

q
q

  or, , 2

2

dq
q

= 1

1

dq
q



Integrating, 2 1

2 1

dq dq
q q

   or, log q2 = –log q1 + logU where log U is a constant.

 log q2 = 
1

Ulog
q

 
 
 

. So, q2 = 
1

U
q or, U = q1q2

This is the equation of the indifference curve.

4.9.4 Isoquant from MRTS

By means of the technique of integration we can deduce the isoquant if MRTS is given.
Let the equation of the production function be = q = f(K, L) where K and L are the
amounts of capital and labour respectively. Along an isoquant, output is fixed, say, q0,
To know the slope of the iso-quant, we take total derivative of the production function.

We get, dq = 
f f.dK .dL
K L
 


 

 = MPKdK + MPL.dL.

Now, along an iso-quant, output is fixed, say, at q0. So, dq0 = 0. Then we have,
MPKdK + MPLdL = 0

or, MPKdK = –MPLdL

So, slope of the isoquant = L

K

MPdK
dL MP

  .
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Under the assumption that MPK > 0, MPL > 0, slope of the isoquant = 
dK
dL < 0.

Marginal rate of technical substitution (MRTS) is the absolute slope of the isoquant.

Thus, MRTS = – L

K

MPdK
dL MP

 .

Now, if this slope of isoquant or MRTS is given, we can deduce the equation of the
isoquant by means of the technique of integration. Consider an example.

Example 4.12 : If MRTS of K and L is given by K b.
L a

 
 

, deduce the equation of the
isoquant.

Solution : We have, MRTS = dK K b.
dL L a

 
 

 

or, 1. .dK
K b




 = 
1 .dL

L a




Integrating we get,   
  
1 1.dK .dL

K b L a
or, .log(K + b) = – log (L + a) + log q  where log q = constant.
or,  log(K + b) +  log(L + a) = log q
or, log(K + b) + log(L + a) = log q
 log[(K + b).(L + a)] = log q
So, q = (K + b)(L + a)
This is the equation of our desired isoquant.

4.9.5Measurement of Consumer’s Surplus

The concept of consumer’s surplus has been given by Alfred Marshall. Prof. J. R. Hicks
has given a simple but workable definition of consumer’s
surplus. According to him, consumer’s surplus is the
difference between the two prices– the price which the
consumer is willing to pay rather than go without the thing
and the price which he actually pays. In other words,
consumer’s surplus is the difference between demand price
and actual price. We have tried to clarify the concept in figure
4.4. Let our inverse demand function be : p = f(q). Now, at
price p0, the consumer purchases Oq0 amount of the
commodity. So the consumer actually pays = Op0 × Oq0 =
Op0 Bq0. However, the consumer was willing to pay for Oq0 units = area OABq0. So,

p = f(q)

q0 qO

p0

A

p

B

(Fig. 4.4)
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consumer’s surplus = area OABq0 – area Op0Bq0. Hence the triangular are Ap0B

represents consumer’s surplus. Thus, formally consumer’s surplus = 
0q

0 0
0

f(q).dq p q .

Thus, by applying the technique of integration, we may determine the size of consumer
surplus.

Let us give an example on consumer’s surplus.

Example 4.13 : Given the inverse demand function, p = 80 – 2q, determine consumer’s
surplus if p = 30.

Solution : Here p = 80 – 2q = f(q)
If p = 30, then 80 – 2q = 30 or 2q = 80 – 30 = 50  q = 25
Thus, p0 = 30, q0 = 25.

Now, consumer’s surplus = 
0q

0 0
0

f (q)dq p q  = 
25

0

(80 2q)dq 30 25  

= 2 25
0[80q q ] 750  = 80 × 25 – (25)2 – 750

= 2000 – 625 – 750 = 2000 – 1325 = 675

4.9.6Measurement of Producer’s Surplus

Producer’s surplus is the difference between two prices : price the producer actually
receives and the price without which the producer would
not sell the commodity. In other words, producer’s surplus
is the difference between actual price and the minimum
supply price. The concept is explained in the figure 4.5.

In this figure we have drawn the inverse supply curve p =
h(q). Now, at price is p0,  suppose the amount of sale = Oq0.
So, the seller or the producer receives = Op0 ×Oq0 = area
Op0Dq0. However, the producer was willing to supply Oq0
amount of output if he would get the amount = area OCDq0.
Thus, producer’s surplus = area Op0Dq0 – OCDq0. Hence
the triangular area Cp0D respresents producer’s surplus. Thus formally producer’s surplus

= p0q0 – 
0q

0

h(q)dq
We see that by applying the technique of integration, we can determine the amount

of producer’s surplus.
Consider the following example.

q0 qO

D

p

p0

p = h(q)

C

(Fig. 4.5)
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Example 4.14 : Given the inverse supply function p = 30 + 2q, determine producer’s
surplus if p = 50.
Solution : We have, p = 30 + 2q

If p = 50, we get, 30 + 2q = 50
or, 2q = 50 – 30 = 20   q = 10
Thus, we have, p0 = 50, q0 = 10
Now, producer’s surplus is given by the expression,

= p0q0 –
0q

0

h(q)dq  = 50 × 10 – 
10

0

(30 2q)dq  = 500 – [30q + q2]0
10

= 500 – 30 × 10 – 102 = 500 – 300 – 100 = 100

4.9.7Miscellaneous Examples on Application of Integration in Economics

Example 4.15 : MR = a – 4bq. Deduce the demand function.

Solution : We know, MR = dR
dq

 where R = total revenue. Differentiating total revenue

function with respect to q, we get MR function, Hence, integrating MR with respect to
q, we shall get total revenue(R) function as integration is the reverse process of
differentiation. From this total revenue function, we shall get the average revenue (AR)
function or the demand function.

We have, MR = 
dR
dq  dR = MR.dq

Integrating, dR MR.dq 

or, R = 
24bq(a 4bq)dq aq k

2
     where k is the constant of integration.

Thus, R = aq – 2bq2 + k
Now, we know that if q = 0, R = 0. So, here k = 0. Hence our total revenue function is  :

R = aq – 2bq2

Now, R  pq   AR  
R
q
 

p q p
q


 .

So, in our case, AR  p  
R
q

= 
2aq 2bq

q


 = a – 2bq

This is our desired demand function or AR function.
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Example 4.16 : If MR = 81 – x2, find maximum TR. Also deduce the demand function.

Solution : As MR = dTR
dx

, we can get TR by integrating the MR function.

So, TR = 2MR dx (81 x )dx   = 81x –
3x k

3
  where k is a constant.

Now, we know that TR = 0 if x(sales of output) is zero.  k = 0. So, TR = 81x –
3x

3
.

So, AR = TR
x

 = 81 – 
2x

3
.

Again, TR  p × x,  TR pxAR p
x x

  

So, the demand function is : p (= AR) = 81 – 
2x

3
Now we shall determine the maximum value of TR by applying the technique of

integration. We know that integration of MR gives us TR. So, TR will be maximum
when MR = 0. So, we put MR = 0

or, 81 – x2 = 0, or x2 = 81  x = ± 9
As x  0, x = 9
So, when x = 9, TR will be maximum.
Hence we shall integrate MR function with respect to x in the interval [0, 9].

Thus, maximum TR = 
9

0

MRdx  = 
9

2

0

(81 x )dx  = 
93

0

x81x
3

 
 

 

= 81 × 9 – 9 9 9
3

   = 81 × 9 – 9 × 9 × 3 = 729 – 243 = 486

We can check our result by applying the technique of differentiation. We have,

TR = 
3x81x

3
 . Now, TR will be maximum if (i) dTR 0

dx
  and (ii) 

2

2

d TR 0
dx



Here, from (i), 
dTR
dx = 81 – x2.

Putting dTR 0
dx

 , we get 81 – x2 = 0   x = ± 9
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Now, 
2

2

d TR 12x
dx

 

If x = –9, 
2

2

d TR 18 0
dx

  . If x = 9, 
2

2

d TR 18 0
dx

  

So, TR is maximum when x = 9

Now, putting x = 9, maximum TR = 
3x81x

3
 = 81 × 9 – 

39
3

= 486.

Example 4.17 : Given MC = 500 – 6q + q2, deduce the total cost(TC) function if TFC
= 7000 (q = output).

Solution : We know that MC = 
dTC
dq

  dTC = MC dq. So, TC = MCdq
Putting the equation of MC, we get,

TC =   2(500 6q q )dq

= 500q –
2 36q q

2 3
  + k where k = constant

= 500q – 3q2 + 
3q k

3


Now, if q = 0, TC = TFC = k, So, k = 7000
Hence the equation of the desired total cost function is :

TC = 500q – 3q2 + 
3q

3
+ 7000

Example 4.18 : Deduce the demand function if MR = 2

ab c
(q b)




(a, b and c are

constants and q = amount of sale of output).
Solution : We shall first deduce the TR function and then from TR function, we shall
get AR function or the demand function.

Now, we know that TR = MRdq

= 
 

  
 2

ab c dq
(q b)  = 

1ab(q b) cq k
1


 


 (k = constant)
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= 
ab cq k

q b
  


Further, if q = 0, TR = 0

 – ab k 0
b
  or, k = a

So, TR = 
ab cq a

q b
  

  = a – 
ab cq

a b



 = 

aq ab ab cq
q b
 




 TR = aq cq
q b




.

This is our desired TR function.

Now, TR  p × q  AR  
p q p

q




 p( AR) = 
TR a c
q q b

 


This is our desired demand function or the AR function.
Example 4.19 : If MC = AC for all levels of output (q), then prove that total cost(C) is
a multiple of q.

Solution : We are given that MC = AC i.e., 
dC C
dq q

  or, 
dC dq
C q



Integrating, dC dq
C q

 
 log C = log q + log m where log m = constant or, log C = log(mq)
So, C = mq i.e., total cost (C) is a multiple (m) of q. In this case, the total cost

function is a straight line passing through the origin, and AC = C
q

= m and MC dC m
dq

  .

So, AC = MC = m will be a horizontal straight line and they will coincide.
Example 4.20 : If the elasticity of factor substitution () = 1, deduce the production
function.
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Solution : We are given that the elasiticity of substitution,

 = 1, =
L K

L K

d(K / L)
K / L

d(MP / MP )
MP / MP

In terms of logarithms,the formula of elasticity of substitution,  = 
L K

d log(K / L)
d log(MP / MP )

Now,  = 1. So, d log (K/L) = d log(MPL/MPK)
Integrating both sides, we get,

log(K/L) = log(MPL/MPK) + log(/) where log (/) = constant

or, log (K/L) = log
L

K

MP.
MP

 
  

 or, 
L

K

MPK .
L MP





Now, 
L

K

MP
MP  is the absolute slope of the isoquant, i.e., L

K

MP
MP

 = – dK
dL

. Putting this

value, we get, K
L

= dK
dL





 or, , dL dK. .
L K

  

Again integrating, we get, .log L = – log K + log
q
A

 
 
 

or .log L +  log K = log
q
A

 
 
 

 or, log(KL) = log
q
A

 
 
 

 where log 
q
A

 
 
 

 is a

constant.

So, 
q
A = (KL), or, q = AKL

This is our desired production function. In this case, our production function is Cobb-
Douglas type. We know that in the case of Cobb-Douglas production function, the
elasticity of substitution is equal to unity.
Example 4.21 : Given the demand function p = 20 – 3x, find consumer’s surplus
assuming that market equilibrium is attained at p0 = 5, x0 = 5.

Solution : Consumer’s surplus =  
5

0 0
0

(20 3x) dx p x
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= 
52

0

3x20x 5 5
2

 
   

 
 = 20 × 5 – 3 5 5 25

2
 



= 
75100 25
2

  = 
200 75 50

2
 

= 
75
2  = 37.5

Example 4.22 : The demand law for a commodity is : p = 20 – 2D – D2. Find consumer’s
surplus when demand (D) is 3.
Solution : When D = 3, p = 20 – 2D – D2 = 20 – 2 × 3 – 32 = 20 – 15 = 5.

So, p0 = 5 and D0 = 3

Now, consumer’s surplus = 
0D

0 0
0

f (D)dD p D  =   
3

2
0 0

0

(20 2D D ) dD p D

= 
33

2

0

D20D D 3 5
3

 
    

 
 = 20 × 3 –32 – 

33 15
3


= 60 – 9 – 9 – 15 = 60 – 33 = 27
Example 4.23 : Demand function for a commodity is : p = 20 – 3D. The supply function
on this market is : p = 2D. Find consumer’s surplus at equilibrium price. Also find
producer’s surplus at the equilibrium point.

Putting demand price = supply price, we get, 2D = 20 – 3D, or 5D = 20 D = 4,
Then p = 2D = 2 × 4 = 8. Thus, p0 = 8, D0 = 4.

Now, consumer’s surplus = 
4

0 0
0

(20 3D)dD p D 

= 
4

2

0

320D D 8 4
2

     
 = 20 × 4 – 23 4 32

2
  = 80 – 3 × 8 – 32 = 80 – 56 = 24

Producer’s surplus will be obtained by utilising the supply function. Here, producer’s
suplus at the equilibrium combination p0 = 8 and D0 = 4,

= p0D0 – 
4

0

2DdD  = 8 × 4 – 
42

0

D2.
2

 
 
 

 = 8 × 4 – 
42

0
D    = 8 × 4 – 4 × 4 = 16

Example 4.24 : Given the demand function, pd = 4 – x2 and the supply function ps =
x + 2, find consumer’s surplus and producer’s surplus assuming perfect competition.
Solution : Putting pd = ps, we get, 4 – x2 = x + 2

or, x2 + x – 2 = 0 or, (x + 2)(x – 1) = 0
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 x = –2, 1. As x  0, x = 1
Then p = x + 2 = 1 + 2 = 3. Thus, p0 = 3, x0 = 1

Now, consumer’s surplus = 
1

2
0 0

0

(4 x )dx p x  = 
13

0

x4x 3 1
3

 
   

 

= 4 – 1
3

– 3 = 12 1 9 2
3 3
 



Producer’s surplus = 
1

0 0
0

p x (x 2)dx 

= 3 × 1 – 
12

0

x 2x
2

 
 

 
= 13 2

2
   = 6 1 4 1

2 2
 



It may be noted that to determine consumer’s surplus, we have used the demand
function i.e., the equation of demand price (pd) while, to determine producer’s surplus,
we have used the supply function i.e., the equation of the supply price (ps).

Example 4.25 : The demand function is : 25 pD
4 8

   while the supply function is p =

5 + D. Determine consumer’s surplus and producer’s suplus at equilibrium price.

Solution : To determine equilibrium price, we first put the value of D from the demand
function into the supply function.

Thus p = 5 + D = 
25 p5
4 8

 

or, p + p
8

 = 255
4

  or, , 9p 45
8 4
    p = 

45 8 10
4 9
 

Now, p = 5 + D  D = p – 5 = 10 – 5 = 5
Thus, equilibrium price = p0 = 10 and equilibrium quantity = D0 = 5.

Again, our demand function is : 25 pD
4 8

 

Writing it in inverse form (i.e., p as a function of D) we get, p
8

 = 
25 D
4


or, p = 50 – 8D.
This is the inverse demand function.
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Now, consumer’s surplus at equilibrium price and quantity,

= 
5

0 0
0

(50 8D)dD p D  = 
5

2

0

850D D 10 5
2

     
= 50 × 5 – 4 × 52 – 10 × 5 = 250 – 100 – 50 = 100
Now, producer’s surplus at p0 = 10 and D0 = 5 will be obtained by utilising the

supply function. Here the supply function is given as the inverse supply function i.e.,
price as the function of supply.

Now, producer’s surplus = 
5

0 0
0

p D (5 D)dD 

= 
52

0 0
0

Dp D 5D
2

 
  
 

 = 10 × 5 – 5 × 5 – 
5 5

2


= 50 – 25 – 25
2

=
100 50 25

2
 

 = 
25
2 = 12.5

4.10 Summary

1. Concept of Integration : The mathematical technique of integration has two meanings.
First, integration means a process of reverse differentiation. It is more specifically called
indifinite integration. In the second or alternative meaning, integration means a process
of summation. More specifically, it is called definite integration. The result of integration
is called integral. The function or which the technique of integration is applied, is called
integrand. The process of integration is denoted by the symbol . There are some rules
of integration.

2. Indefinite Integral : If g(x) is a function of x such that
d [g(x)] f(x)
dx

 , then the

infinite integral of f(x) with respect to x is the function g(x). In notation, f(x)dx g(x) .

3. Definite Integral : Definite integral may be regarded either as an area or as the limit
of a sum. The area enclosed by the curve y = f(x) and the x-axis over an interval of x is
called the definite integral for the function over that interval. Definite integral has some
important properties.

4. Application of Integration in Economics : There are many uses of integration in
Economics. As a reverse process of differentiation, integration helps us to know the
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total function from its marginal function. Thus, by applying the technique of integration,
we can get the total pruduct function from the marginal product function, total revenue
function from the marginal revenue function, total cost function from the marginal cost
function, indifference curve from its slope or marginal rate of substitution (MRS),
isoquant from its slope or marginal rate of technical substitution (MRTS), etc. We can
also derive the demand function by means of integration if the elasticity of demand is
given. Again, as a measure of area under a curve, integration may be used to measure
consumer’s surplus, producer’s surplus, etc.

4.11 Exercises

A. Short Answer Type Questions (Each of 2.5 marks)
1. What is integration?
2. Define definite integral.
3. What do you mean by indefinite integral?
4. State the power rule of integration and give an example.

5. Evaluate 45x dx
6. Evaluate dx
7. State the exponential rule of integration.
8. State the logarithmic rule of integration.
9. What is the rule of integral of a multiple?
10. State the rule of the integral of a sum.

11. Evaluate 3(x 3x 5) dx 
12. Evaluate 2(5x 7x 8) dx 
13. State the rule of substitution used in integration.

14. Evaluate 
3

2

1

7x dx

15. Evaluate 
d

c

1.dx
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16. Evaluate 
q

x

p

7e dx

17. State the fundamental theorem of calculus.
18. Define consumer’s surplus in terms of integration.
19. Define producer’s surplus using the concept of integration.
20. If income elasticity of demand, eM = 1 at all points on the income demand function,

then deduce the income-demand function or the Engel function.
B. Medium Answer Type Questions (Each of 5 marks)
1. Distinguish between definite integral and indefinite integral.
2. State the rule of integration by parts.
3. Illustrate the rule of substitution with a suitable example.
4. Illucidate the concept of integration as an area.
5. How can you get TR function from MR function and TC function from MC function?
6. How will you get the demand function by the application of integration, from the

elasticity demand?
7. If the absolute value of price elasticity of demand is , then deduce the demand

function.

8. The slope of indifference curve
dy
dx

 
 
 

 is everywhere equl to
y
x

  
 

. Deduce the

equation of the indifference curve.

9. 5MC 2 3 q
q

   . Find TC if f(1) = 21 Ans. 
3 1
2 2TC 2q 2.q 10q 7   

8. MC = 25 + 30q – 9q2 and TFC = 100. Find TC, TVC, AC and AVC.
Ans. TC = 25q + 15q2 – 3q3 + 100, etc.

9. MPC = 4/5 and C = 100 when Y = 0. Deduce the consumption function.

Ans. C = 100 + 
4 Y
5

10. p = 45 – 
q
2  is the demand function. Find consumer’s surplus if p = 32.5.

Ans. 156.25
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11. pa = 4 – q2 and ps = q + 2. Determine consumer’s surplus and producer’s surplus

under perfect competition. Ans. 
2 1,
3 2

12. pd = 16 – q2 and ps = 2q2 + 4. Determine consumer’s surplus and producer’s surplus

in equilibrium. Ans. 
16 32,
3 3

C. Long Answer Type Questions (Each of 10 marks)
1. State the rules of integration with suitable illustrations.
2. State the basic properties of definite integral.
3. Mention some major applications of integration in Economics.
4. (a) MR = 15 – 2q – q2. Find maximum TR. Ans. 27.

(b) MR = a – 2bq. Derive TR and AR functions. Ans. TR = aq – bq2, AR = a – bq
5. (a) MC = 2 + 3eq. Find TC if TFC = 500. Ans. TC = 2q + 3eq + 497

(b) If MC = a + bq, deduce AC function. Ans. AC = a + bq K
2 q


6. (a) MPC = 
0.4

Y  and C = 80 when Y = 0. Deduce the consumption function .

Ans. C = 80 + 0.8 Y

(b) MPS = 
1
20.3 0.1Y


 and S = 0 when Y = 81. Find the saving function.

Ans. S = 0.3Y – 0.2 Y 22.5

7. MRS = 
1

2

q a
q b

 . Show that one form of the utility function is :

U = (q1 – a)2 + (q2 – b)2

8. Let MRS = 2

1

q b.
q a


 
. Show that one form of the utility function is :

U = (q1 + a)(q2 + b).
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5.1 Objective

After studying the unit, the reader will be able to know
 Matrix and its different types
 Matrix operations
 Determinant and its properties
 Matrix inversion and its application to solve simultaneous equations
 Concepts of Hessian Determinant and Hessian Bordered Determinant
 Applications of matrix and determinant in Economics

5.2 Introduction

In economic models, we have, in many cases, a set of simultaneous equations. We are
required to solve those simultaneous equations. Matrices and determinants greatly help
us in this regard. Further, matrices are often used to simplify notation when dealing
with a large number of simultaneous equations. Hence we shall consider in this unit the
concepts of matrices and determinants and their uses in solving simultaneous equations
very often used in economic models.

5.3 Definition and Concept of a Matr ix

Any rectangular array of numbers is called a matrix. A matrix with m rows and n columns
is of the order (m × n). An (m × 1) matrix is called a column vector and a(1 × m) matrix
is a row vector. The terms ‘array’ and matrix are used interchangeably. If A denotes the
array or the matrix of order (m × n) then the matrix A may be written as,

11 12 1n

21 22 2n

m1 m2 mn

a a ... a
a a ... a

A
... ... ... ...

a a ... a

 
 
 
 
 
 

 or,  

11 12 1n

21 22 2n

m1 m2 mn

a a ... a
a a ... a

A
... ... ... ...

a a ... a

 
 
 
 
 
 

Thus, a matrix is denoted by the symbol [ ] or ( ). The elements of the matrix A of
order (m × n) are the coefficients aij(i = 1, 2, ..., m, j = 1, 2, ..., n) where the first subsctipt
is the row index and the second subscript is the column index. Thus, aij is the element of
matrix A in i-th row and j-th column. For example, a37 is the element of a matrix or of an
array in its third row and seventh column.
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5.4 Matr ix Operations

We have said that a matrix is any rectangular array of numbers (real or complex). To
deal with matrices, we have to know matrix operations. We here mention below some
basic matrix operations.

(i) Addition of matr ices : To add two or more matrices, they should be comfortable
for addition. Two or more matrices are said to be comfortable for addition, if and only
if, they are of the same order. Then, if A = (Aij)m×n and B = (bij)m×n, then the sum of these
two matrices, A + B is defined by the matrix C = (cij) where cij = aij + bij. Thus, by
adding the corresponding elements of two or more matrices, we can get the sum of
those two or more matrices. We give an example.

Example 5.1. : 
3 7

A
9 4
 

  
 

 and
5 3

B
2 6
 

  
 

. Find A + B.

Solution : Let C = A + B. So, 
3 7 5 3

C
9 4 2 6
   

    
   

 = 
3 5 7 3 8 10
9 2 4 6 11 10
    

       
This addition operation of matrices will hold for any number of matrices, provided

they are comfortable for addition.

(ii) Subtraction of matr ices : Subraction is also one kind of addition and hence the
operation of subtraction of matrices is exactly similar to that of addition. Now, two or
more matrices are comfortable for subtraction if they are of the same order. If A =
(ai)m×n and B = (bi)m×n, then the difference A – B is defined to be the sum of A + (–B). If
this difference is defined by the matrix C, then C = (cij) where cij = aij – bij. Thus, simply
by subtracting the corresponding elements of two matrices, we may get their difference.
We cite an example.

Example 5.2. : If A = 
10 5 8
7 9 2

 
 
 

 and 
6 7 9

B
5 3 6
 

  
 

Solution : Let C = A – B

Then C = A – B = 
10 5 8
7 9 2

 
 
 

 – 
6 7 9
5 3 6
 
 
 

 = 
10 6 5 7 8 9
7 5 9 3 2 6
   

    

= 
4 2 1
2 6 4

  
  
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(iii) Product of matr ices : Multiplication of two matrices is possible if the two
matrices are comfortable for the product. When the number of columns of a matrix A is
the same as the number of rows of another matrix B, then A is said to be comfortable for
the product AB. We then say that the product AB is defined and it is denoted by A.B or
AB.

Suppose, A = (aij); where i = 1, 2, ... m, j = 1, 2, ..., n, i.e., A is a matrix of order
(m × n). Further, B = (bjk) where j = 1, 2, ..., n, k = 1, 2, ..., p, i.e., B is a matrix of order
(n × p). Here, the number of columns in A = the number of rows in B = n. So, the
product AB is defined and it will be a matrix of order (m × p). Let the product be the

matrix C. Then, C = (cik) where cik = ailb1k + ai2b2k + ... + ainbnk = 
n

ij jk
j 1

a b

 .

Here C is a matrix of order (m × p). Let us give an example.

Example 5.3 : Given 1 2 3
A

0 4 5
 

  
 

, 
1 0

B 2 2
3 4

 
   
  

Find AB. Also finf BA; if possible.
Solution : Here A is a (2 × 3) matrix and B is a (3 × 2) matrix. So, the number of
columns of matrix A = the number of rows of matrix B = 3. So, the product AB is
defined or A is comfortable for the product AB. Here AB will be of order (2 × 2).

Here, 
1 0

1 2 3
AB 2 2

0 4 5
3 4

 
           

 = 
1 1 2 2 3 3 1 0 2 4 3 4
0 1 4 2 5 3 0 0 2 4 4 5
          

           

                                 = 
14 20
23 28
 
 
 

Let us consider BA. We have, B = 
2 3

3 2

1 0
1 2 3

2 2 A
0 4 5

3 4 


 
          

Here B is of order (3 × 2) while A is of order(2 × 3). Thus, the number of columns of
matrix B = number of rows of matrix A = 2, So, we can find BA or B is comfortable for
the product BA. Here the product BA will be of order(3 × 3)
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Here BA = C = 

1 0
1 2 3

2 2
0 4 5

3 4

 
  
      

 =

1 1 0 0 1 2 0 4 1 3 0 5
2 1 2 0 2 2 2 4 2 3 2 5
3 1 4 0 3 2 4 4 3 3 4 5

         
          
          

                                                   = 

1 2 3
2 10 16
3 22 29

 
 
 
  

We see that BA is of the order (3 × 3). It may be noted that in this case, AB  BA.

5.5 Different Types of Matr ices

There are different types of matrices. We here mention some major types.

(i) Column matr ix : We have said that a vector is a special type matrix with a single
row or single column. Thus, a matrix with a single column is called a column matrix or

a column vector. Its order is (m × 1). For example, A = 

1

2

3

m

a
a
a
...
a

 
 
 
 
 
 
  

 is a column matrix  or a

column vector of order (m × 1). Taking a specific numerical example, A = 

3
7
4
1

 
 
 
 
 
 

 is a

column matrix or column vector of order (4 × 1). In both cases, the number of column
is one.

2. Row matr ix : A matrix having a single row is called a row matrix or a now
vector. Its order is (1 × n). Thus, A = [a1 a2 ... an] is a row matrix or ros vector of order
(1 × n). Taking numerical example, A = [3  0  7  5  –2] is a row matrix or row vector of
order (1 × 5). In both examples, the number of row is one.

3. Transposed matr ix : If rows and columns of a matrix are interchanged, then the
new matrix thus obtained is called transposed matrix of the original matrix. If A is the
original matrix, then the transpose of matrix A is denoted by A or AT.
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Thus, if A = (aij) of order (m × n), then transpose of A, denoted by, A or AT = ij(a )  of
order (n × m) = (aji) of order (n × m).

For example, if  A = 
11 12 13

21 22 23 2 3

a a a
a a a



 
 
 

, then AA or AT = 

11 21

12 22

13 23 3 2

a a
a a
a a



 
 
 
  

Taking a numerical example, if A = 
2 3

1 2 3
4 5 6 

 
 
 

, then AA or AT = 

3 2

1 4
2 5
3 6



 
 
 
  

We have some properties of transpose of a matrix.
Property 1 : Transpose of transpose of a matrix is the original matrix, i.e., (A) = A

Example : Let 
1 5

A
2 6
 

  
 

. Then AA = 1 2
5 6
 
 
 

Now, (A) = 
1 2
5 6

 
 
 

= 
1 5

A
2 6
 

 
 

Property 2 : Transpose of the sum (or difference of matrices is the sum (or difference)
of the transposes of the individual matrices, i.e., (A ± B) = A ± B.

Example : Let A = 
3 5
4 6
 
 
 

 and B = 
1 3
3 5
 
 
 

Then, A + B = 
4 8
7 11
 
 
 

 and (A + B) =
4 7
8 11
 
 
 

Again, A = 
3 4
5 6
 
 
 

 and B = 
1 3
3 5
 
 
 

. Then AA + B = 
4 7
8 11
 
 
 

 = (A + B).

Similarly it can be checked that (A – B) = A – B.

In our example, (A – B) = 
2 2
1 1
 
 
 

 and (A – B) = 
2 1
2 1
 
 
 
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Again, we have, A = 
3 4
5 6
 
 
 

 and B = 
1 3
3 5
 
 
 

 A – B = 
2 1
2 1
 
 
 

 = (A – B)

(iv) Square matr ix : A matrix having equal number of rows and columns is called a
square matrix.

Thus, 

11 12 1n

21 22 2n

n1 n2 nn

a a ... a
a a ... a

A
... ... ... ...
a a ... a

 
 
 
 
 
 

 is a square matrix of order n. If A = 
11 12

21 22

a a
a a
 
 
 

, then

A is a square matrix of order 2. Similarly, B = 
11 12 13

21 22 23

31 32 33

a a a
a a a
a a a

 
 
 
  

 is a square matrix of

order 3. In our example 5.1, all 3 matrices A, B and C were square matrices of order 2,
but in example 5.2, none of the 3 matrices A, B and C was a square matrix.

(v) Symmetr ic matr ix : A square matrix (aij) for which ij = ji for all i and all j is
called a symmetric matrix. Fow example, suppose A = (aij) where i = 1, 2, 3 and j = 1, 2,

3. Thus, A = 
11 12 13

21 22 23

31 22 33

a a a
a a a
a a a

 
 
 
  

. Now, A will be called a symmetric matrix if a12 = a21, a23

= a32 and a13 = a31. We give an example putting values for aij’s.

Let A =

a b c
b d e
c e f

 
 
 
  

 .

Then if we interchange aij’s for aji’s, i.e., if we take the transpose of A, then

A = 

a b c
b d e
c e f

 
 
 
  

= A.



194

Hence, A is a symmetric matrix. Thus, in case of a symmetric matrix, A = A.
Thus the see that transpose of a symmetric matrix is the original matrix itself, i.e., if

A is a symmetric matrix, then A = A. The converse is also true. i.e., if A = A, then A is
a symmetric matrix.

(vi) Diagonal matr ix : A diagonal matrix is a square matrix with all its non-diagonal
elements equal to zero. Thus,

A = 

11

22

nn

a 0 0 0
0 a 0 0
... ... ... ...
0 0 0 a

 
 
 
 
 
 

 is a diagonal matrix of order n. Taking a numerical

example, 
1 0 0

A 0 5 0
0 0 4

 
   
  

 is a diagonal matrix of order 3. If may be noted that a diagonla

matrix is a symmetric matrix also i.e.,  A = A for a diagonal matrix.

(vii) Identity matr ix or  unit matr ix : It is a special case of a diagonal matrix. If all
the diagonal elements of a diagonal matrix are equal to 1, then the matrix is called a unit

matrix or an identity matrix. It is generally denoted by the symbol I. Thus I = 
1 0
0 1
 
 
 

 is

an identity matrix of order 2, I = 
1 0 0
0 1 0
0 0 1

 
 
 
  

 is an identity matrix of order 3, and so on.

It may be noted that for an identity matrix, I = I. Pre-multiplying or post-multiplying
any comfortable matrix A by it gives the same matrix. For example, if A and I are
comfortable, and I and A are also comfortable, then AI = IA. This will happen when A
and I are square matrices.

(viii) Or thogonal matr ix : A square matrix A is said to be an orthogonal matrix if
AA = AA = I.
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(ix) Null matr ix : A matrix with all elements equal to zero is called a null matrix. A

null matrix is denoted by 0. Thus, 0 0
0

0 0
 

  
 

 or 
0 0 0

0 0 0 0
0 0 0

 
   
  

, etc. are examples of

null matrices. A null matrix is also called a zero matrix. Clearly, for null matrices, we
have, p q q r p r0 A 0   and p q p q p qA 0 A    .

(x) Idempotent matrix : An idempotent matrix is a symmetric matrix which produces
itself when it is multiplied by itself. Thus, a symmetric matrix A will be termed as
idempotent if AA = A.

It may be noted that the identity matrix I is an idempotent matrix i.e., II = I. Let us

check it. We have, I = 
1 0
0 1
 
 
 

. Now, II = 
1 0
0 1
 
 
 

1 0
0 1
 
 
 

=
1 0
0 1
 
 
 

 = I

Thus, I is an idempotent matrix.
We should also note that as I is symmetric, I = I.

5.7 Determinant of a Matr ix and its Associated Concepts

In general, a determinant is a square array of numbers. It is so called as it is used in the
determination of the solution of a system of simultaneous equations.To every square
matrix A = (aij) of order n, there corresponds a number known as the determinant of

matrix A. It is denoted by |A| or  or 

11 12 1n

21 22 2n

n1 n2 nn

a a ... a
a a ... a
... ... ... ...
a a ... a

. The order of a determinant is

the number of its rows (or its columns since the array is square). In our above example,
the given determinant is of order n.

Let us see how determinants help in the determination of the solution of a system of
simultaneous equations. We take the simplest case where we have a system with two
equations in two unknowns, x and y.

a1x + b1y = k1
a2x + b2y = k2

where a1, a2, b1, b2, k1 and k2 are known constants. By the process of elimination we
can very simply solve this system for x and y. This process gives,
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x = 1 2 2 1

1 2 2 1

k b k b
a b a b




 and y = 2 1 1 2

1 2 2 1

k a k a
a b a b




.

It may be noted that the denominator is the same in both expressions and its is
computed from products of the co-efficients of x and y. We may write the coefficients in

an array
a1 b1

b2
a2

 = a1b1 – a2b1

From this, it is obvious that the denominator can be obtained by taking the product
indicated by the downward sloping arrow (a1b2) and then subtracting from it the product
indicated by the upward sloping arrow (a2b1). Similarly, we may write the numerators
as arrays of coefficients as follows :

For x , 

k1 b1

b2
k2

 = k1b2 – k2b1, and for y, 

a1 k1

k2
a2

 = a1k2 – a2k1

Thus, the solution of above system may be written in the form of following arrays :

1 1

2 2

1 1

2 2

k b
k b

x
a b
a b


 
and

  

1 1

2 2

1 1

2 2

a k
a k

y
a b
a b



We refer to arrays of this kind as determinants, since they help in the determination
of the solution of a system of simultaneous equations.

In this connection, we like to mention that a determinant is, by definition, a scalar.
However, a matrix does not have a numerical value. In other words, a determinant is
reducible to a number, however a matrix is, in contrast, a whole block of numbers.
Further, a determinant is defined only for a square matrix while a matrix as such need
not be square.

Expansion of a determinant : Let us see how we can expand a determinant.
Expansion of a determinant is the computation of its value. Suppose we have the
following determinant of order n.

11 12 13 1n

21 22 23 2n

n1 n2 n3 nn

a a a ... a
a a a ... a
... ... ... ... ...
a a a ... a
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Here, any element aij is the element in the ith row and the jth column of the determinant
(i, j = 1, 2, 3, ..., n). Thus a34 is the element in the third row and fourth cloumn. Let us
see how we can expand this determinant or compute its value. Before doing that, we
give the following essential definitions.

Principal diagonal : The principal diagonal of a determinant consists of the elements
in the determinant which lie in  a straight line from upper left-hand corner to the lower
right-hand corner. In our above determinant of order n, the elements of its principal
diagonal are a11, a22, ..., a33, ..., ann.

Minor  : The minor of an element belonging to a determinant of order n is the
determinant of order (n – 1) obtained by deleting the row and column which contain the
particular element. For example, in the following fourth order determinant, the minor
of the element a23 can be obtained by removing the row and column containing this
element, i.e., by removing the second row and the third column of the original
determinant.

Original determinant = 

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

a a a a
a a a a
a a a a
a a a a

The minor of a23 = 
11 12 14

31 32 34

41 42 44

a a a
a a a
a a a

 and it is of order (4 – 1) = order 3. Generally, the

minor of an element is denoted by a capital letter with the same subscrips of the given
element. Thus, in symbol, the minor of a23 = A23.

Cofactor  : The cofactor of an element belonging to a determinant is its minor preceded
by a ‘+’ or ‘–’ sign according as the sum of the subscripts of the element is even or odd.
For example, the cofactor of the element a23 = –A23 as 2 + 3 = 5, an odd number.
Similarly, cofactor of a33 = +A33 as 3 + 3 = 6, an even number.

The value or the expansion of a determinant may be obtained by using the cofactors
(pre-signed minors) of its elements. The steps are given below :

Step 1 : Choose any row (or column). (To avoid any confusion students are advised
to choose always the first row).

Step 2 : Multiply each element in the chosen row (or column) by its cofactor.
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Step 3 : Add algebraically the products obtained in step 2.

For example, expanding the determinant, 
11 12 13

21 22 23

31 32 33

a a a
a a a
a a a

  , we get,

22 23
11

32 33

a a
a

a a
   – 21 23 21 22

12 13
31 33 31 32

a a a a
a a

a a a a
 = a111A111 + a12(–1)A12 + a13A13

For example, let us expand the determinant,

3 4 7
2 1 3
7 1 2

   = 
1 3 2 3 2 1

3 4( 1) 7
1 2 7 2 7 1

    = 3(2 – 3) – 4(4 – 21) + 7(2 – 7)

= 3(–1) – 4(–17) + 7(–5) = –3 + 68 – 35 = 68 – 38 = 30
Similarly, values of higher order determinants can be obtained. Expansion

(or determination of value) of a determinant of higher order becomes increasingly
complicated as the order of a determinant increases.

5.7 Proper ties of Determinants

We here merely state the properties of determinants. Students are advised to check them
taking arbitrary numerical examples.

Property 1 : If the rows and columns of a determinant are interchanged, the value of
the determinant will be unaffected.

Thus, 
1 1 1 1 2 3

2 2 2 1 2 3

3 3 3 1 2 3

a b c a a a
a b c b b b
a b c c c c



Property 2 : If all the elements in a row (or column) are zero, the value of the

determinant is zero. That is, 
1 1 1

3 3 3

a b c
0 0 0 0
a b c

 . Again, 
1 3

1 3

1 3

a 0 a
b 0 b 0
c 0 c
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Property 3 : If any two rows (or columns) are identical, the value of the determinant

is zero. That is, 
1 1 1

1 1 1

3 3 3

a b c
a b c 0
a b c

 , Again, 
1 1 1

2 2 2

3 3 3

a a c
a a c 0
a a c



More generally, if a row (or column) is a multiple of another row (or column), the
value of the determinant is zero.

Property 4 : If any two rows (or columns) of a determinant are interchanged, the
determinant changes its sign only and not the numerical value.

That is, 
1 1 1 2 2 2

2 2 2 1 1 1

3 3 3 3 3 3

a b c a b c
a b c a b c
a b c a b c

   . Again, 
1 1 1 1 1 1

2 2 2 2 2 2

3 3 3 3 3 3

a b c b a c
a b c b a c
a b c b a c

 

Property 5 : If all the elements in a row (or column) of a determinant are multiplied
by the same number k, the value of the determinant is multiplied by k. Stated alternatively,
if any row (or column) of a determinant has a common factor k to all its elements, then
this common factor may be taken out and the value of the determinant will be k times
the new one.

That is , 
1 1 1 1 1 1

2 2 2 2 2 2

3 3 3 3 3 3

a kb c a b c
a kb c k a b c
a kb c a b c

 . Again, 
1 1 1 1 1 1

2 2 2 2 2 2

3 3 3 3 3 3

a b c a b c
ka kb kc k a b c
a b c a b c



Property 6 : If to all the elements of a row (or column) we add a constant multiple of
any other row (or column), the value of the determinant remains unaffected.

That is, 
1 1 1 1 1 1 1

2 2 2 2 2 2 2

3 3 3 3 3 3 3

a b c a b ka c
a b c a b ka c
a b c a b ka c


 



Again, 
1 1 1 1 1 1

2 2 2 2 1 2 1 2 1

3 3 3 3 3 3

a b c a b c
a b c a ka b kb c kc
a b c a b c

   

Property 7 : If all the elements of a row (or column) of a determinant are expressed
as the sum of two (or more) terms, the determinant can be expressed as the sum of two
(or more) determinants.
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That is, 
1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3 3 3

a k b c a b c k b c
a k b c a b c k b c
a k b c a b c k b c


  


5.8 Inverse of a Matr ix

A square matrix A of order n with |A|  0 is called a non-singular matrix. If |A| = 0, A is
called a singular matrix. A non-singular matrix has a corresponding inverse matrix.

Let A =  

 
 
 
 
 
 

11 12 1n

21 22 2n

n1 n2 nn

a a ... a
a a ... a
... ... ... ...
a a ... a

 and |A|  0.

Then the inverse of the matrix A is given by, 1 1A
| A |

   Adj.  A where

Adj A = Transpose of the matrix of co-factors of A. We give an example.

Example 5.4 : Obtain inverse of matrix A = 
3 4
1 2
 
 
 

Solution : Here |A| = 
3 4
1 2 = 3 × 2 – 1 × 4 = 2. Since |A|  0, matrix A is non-singular

and hence its inverse exists. 1 1A
| A |

  . Adj. A where Adj A = Transpose of the matrix

of cofactors of A.

Now, matrix of cofactors of 
2 1

A
4 3

 
   

Transpose of the matrix of cofactors of A = Adj 
 

   

2 4
A

1 3

 1 1A
| A |

  . Adj A = 
-é ù

ê ú-ë û

2 41
2 1 3  = 

1 2
1 3
2 2

 
 
 
 

.
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Two useful properties of inverse matrices are :

(i) 1 1| A |
| A |

  . From our result, we see that 1 1 1| A |
2 | A |

   .

(ii) If matrix A is symmetric, then its inverse is also symmetric. Further, AA–1 = A–1A
= I (identity matrix). We may check it with our result.

Check : 1
1 23 4

AA 1 31 2
2 2


           

=

1 33 1 4 3 2 4
2 2
1 31 1 2 1 2 2
2 2

       
 
        

= 
3 2 6 6 1 0

I
1 1 2 3 0 1
     

         

Again, 1
1 2 3 4

A A 1 3 1 2
2 2


          

 = 
1 3 2 1 1 4 2 2
1 3 1 33 1 4 2
2 2 2 2

      
 
        
 

= 

3 2 4 4
3 3 2 3
2 2

  
 
    
 

 = 
1 0

I
0 1
 

 
 

5.9 Solution of Simultaneous Equations by Matr ix Inversion Method

Suppose we have a system of n simultaneous linear equations as given below :
a11x1 + a12x2 + ... + a1nxn = k1
a21x1 + a22x2 + ... + a2nxn = k2
................................................
am1x1 + am2x2 + ... + amnxn = kn
Here aij(i = 1, 2, ... m and j = 1, 2, ..., n) and ki (i = 1, 2, ..., n) are constants. In matrix-

vector form, the above system of equations can be written as

11 12 1n 1 1

21 22 2n 2 2

m1 m2 mn n n

a a ... a x k
a a ... a x k
... ... ... ... ... ...

a a ... a x k

     
     
     
     
     
     
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In matrix notation, AX = B or, X = A–1B = 
1

| A |  Adj. A.B

When B is a null vector, the system is called a homogeneous system. If B is non-null,
the system is called non-homogeneous.

Now, consider the case when m = n. In that case, A is a square matrix. Also suppose
that the system is non-homogeneous, i.e., B is non-null. We also assume that |A|  0.
Then, AX = B

or, X = A–1B = 
1

| A | . Adj.A.B.

We have the previous result. The only difference is that in this case, m = n i.e., A is a
square matrix. Our solution for X is known as Cramer’s rule for solving linear equations.
As an example, consider a system of two linear equations considered in section 5.7. We
have,

a1x + b1y = k1
a2x + b2y = k2

In this case, we have seen that the solutions are as under :

1 1

2 2

1 1

2 2

k b
k b

x
a b
a b

  and  

1 1

2 2

1 1

2 2

a k
a k

y
a b
a b



We have noted that the determinant of the coefficients 
1 1

2 2

a b
a b  comes as denominator

in both the solutions. Let it be denoted by . Thus, 1 1

2 2

a b
a b

   is called the determinant

of the system as it determines the solutions of the system. To get any meaningful value

of x and y, the condition is, 1 1

2 2

a b
a b

    0. The solutions then by Cramer’s rule be

written as, 
1 1 1 1

2 2 2 2

x y
k b a k
k b a k

  = 
1 1

2 2

1 1
a b
a b



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Using notations, we may write, x = 1


 and y = 2


 where 1 1
1

2 2

k b
k b

  ,

1 1
2

2 2

a k
a k

   and 1 1

2 2

a b
a b

   .

Consider now the solution of the system by matrix inversion method. The system of
equations is :

a1x + b1y = k1
a2x + b2y = k2

In matrix-vecor notations, it can be written as, 11 1

2 2 2

ka b x
a b y k

    
     

    
Using matrix-vector notations, we may write, AX = B

or, X = A–1B = 
1

| A | .Adj.A.B.

We give an example.

Example 5. : Solve for x and y for the system,

2x + 3y = 7
4x + 2y = 10

Solution : By Cramer’s rule, the solutions are as follows : here a1 = 2, b1 = 3, a2 = 4,
b2 = 2, k1 = 7, k2 = 10

Now, 

1 1

2 2

1 1

2 2

k b 7 3
k b 10 2

x
2 3a b
4 3a b

   = 
16
8




 = 2;

1 1

2 2

1 1

2 2

a k 2 7
a k 4 10

y
2 3a b
4 2a b

  = 8
8




 = 1

So, x = 2, y = 1
Let us solve the system of equations by matrix inversion method. In matrix-vector

notation, the system can be written as,
2 3 x
4 2 y
   
   
   

 = 
7
10
 
 
 

 i.e., AX = B

 X = A–1 B = 
1

| A | . Adj A.B.



204

We have the coefficient matrix A = 
2 3
4 2
 
 
 

 and 
2 3

| A |
4 2

 = 4 – 12 = – 8

Now A–1 = 
1

| A | . Adj A = 
1

| A | . Transpose of cofactor matrix of A.A.

= 1
| A |

 
  

T2 4
3 2

 = 
2 31
4 28

 
   

 = 

1 3
4 8

1 1
2 4

  
 
   

 X = A–1B = 

1 3
74 8
101 1

2 4

    
   

    

or, X = 

1 37 10
4 8

1 17 10
2 4

     
 
     

= 

15 7
4 4
7 5
2 2

  
 
   

 = 

8
24

2 1
2

 
   

   
  

  

Thus, we have, X = 
x 2
y 1
   

   
   

 i.e., x = 2, y = 1

Thus, we get the same result in Cramer’s rule method and also in matrix inversion
method.

We now give an example of a system of three linear equations involving three
unknowns. Let us have the following system involving three unknons : x, y and z.

a11x + a12y + a13z = k1
a21x + a22y + a23z = k2
a31x + a32y + a33z = k3

The determinant of the coefficients of the unknowns is : 
11 12 13

21 22 23

31 32 33

a a a
a a a
a a a

 

The Cramer’s rule method to solve a system of linear equations may be described as
follows : First, the denominator in the solutions of the unknowns is the determinant of



205

the coeficients of the unknowns. Second, the numerator in the solution for each unknown
is the same as the determinant of the coefficients, with the exception that the column of
coefficients of the particular unknown is replaced by the column of constants on the
right hand side of the system of the equations.

Thus, the solution of the above system is : 

1 12 13

2 22 23

3 23 33

k a a
k a a
k a a


, y = 

11 1 13

21 2 23

31 3 33

a k a
a k a
a k a


,

11 12 1

21 22 2

31 32 3

a a k
a a k
a a k

z 


. Following this rule, we can solve a system of n simultaneous  linear

equations in n unknowns.
In the case of matrix inversion method, the procedure remains the same as before. In

matrix-vector notation, the above system may be written as, A3×3X3×1 = B3×1 so that

X = A–1 B = 
1

| A | . Adj. A.B.

5.10 Hessian Determinant and Hessian Bordered Determinant

Suppose we want to optimise a bivariate function Z = f(x1, x2). Also suppose that the
two first order conditions Z1 = Z2 = 0 are met. Then, to optimise Z, two second order or
sufficient conditions should also be met. They are as follows :

(i) Z11 > 0, Z22 > 0 for a minimum and Z11 < 0, Z22 < 0 for a maximum.
(ii) Z11.Z22 > (z12)2.
A convenient test for the second order condition is the Hessian matrix or, simply, the

Hessian (named after the 19th century German mathematician Ludwig Otto Hesse). A
Hessian |H| is a determinant composed of all the second order partial derivatives, with
the second order direct partial derivatives on the principal diagonal and the second
order cross partial derivatives off the principal diagonal. Thus, for our given bivariate

function, |H| = 
11 12

21 22

Z Z
Z Z  where Z12 = Z21.

Now, if the first element on the principal diagonal, the first principal minor |H1| =
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Z11 > 0 and if the second principal minor

|H2| = 
11 12

21 22

Z Z
Z Z  = Z111Z22 – (Z12)2 > 0, the second order conditions for a minimum

are met. When |H1| > 0, |H2| > 0, the Hessian is called positive definite. A positive
definite Hessian fulfils the second order conditions for a minimum of an objective
function.

On the other hand, if the first peincipal minor |H1| = Z11 < 0 and the second principal

minor |H2| = 
11 12

21 22

Z Z
Z Z  = Z111Z22 – (Z12)2 > 0, the Hessian is negative definite. A negative

definite Hessian fulfils the second order conditions for a maximum of the objective
function.

Third Order  Hessian : Suppose we have to optimise the multivariate function

Z = f(x1, x2, x3). In this case the third order Hessian is, |H| = 
11 12 13

21 22 23

31 32 33

Z Z Z
Z Z Z
Z Z Z

. Then, if

= >1 11| H | Z 0 , 11 12
2

21 22

Z Z
| H | 0

Z Z
   and |H3| = |H| > 0 where |H3| is the third principal

minor, the Hessian |H| is positive definite. A positive definite Hessian fulfills the second
order conditions for a minimum of the objective function. On the other hand, if |H1| < 0,
|H2| > 0 and |H3| = |H| < 0, the Hessian |H| is negative definite. A negative definite
Hessian fulfils the second order conditions for a maximum of the objective function. In
short, if the principal minors are all positive, |H|  is positive definite and the second
order conditions for a relative minimum are met. On the other hand, if the principal
minors alternate sign between negative and positive (starting with negative sign), |H| is
negative definite and the second order conditions for a relative maximum are met.

THE BORDERED HESSIAN FOR CONSTRAINED OPTIMISATION

Suppose we want to optimise f(x1, x2) subject to the constraint g(x1, x2). In that case, we
form a Lagrange expression : F(x1, x2, ) = f(x1, x2) + g(x1, x2) where  is the Lagrange
multiplier. The first order or necessary conditions to optimise F(x1, x2, ) require : F1 =
F2 = F3 = 0. We assume that the first order conditions are met. Then the second order
conditions or sufficient conditions are to be met. The second order conditions can be
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expressed in terms of a bordered Hessian, | H | , in either of the following two ways :

11 12 1

21 22 2

1 2

F F g
| H | F F g

g g 0
  or 

1 2

1 11 12

2 21 22

0 g g
g F F
g F F

The bordered Hessian determinant is simply the plain Hessian determinant 
11 12

21 22

F F
F F

boardered by the first derivatives of the constraint with zero on the principal diagonal.
The order of a bordered principal minor is determined by the order of the principal

minor which is being bordered. Hence | H |  above represents a second order bordered

principal minor 2| H | , because the principal minor which is being bordered is (2 × 2).
Let us consider the second order conditions for optimisation of a multivariate function

in n variables f(x1, x2, ..., xn) subject to the constraint g(x1, x2, ..., xn). In this case, the

bordered Hessian, | H |  can again be expressed as either of the two following ways :

11 12 1n 1

21 22 2n 2

n1 n2 nn n

1 2 n

F F ... F g
F F ... F g

| H | ... ... ... ... ...
F F ... F g
g g ... g 0

 or 

1 2 n

1 11 12 1n

2 21 22 2n

n n1 n2 nn

0 g g ... g
g F F ... F
g F F ... F
... ... ... ... ...
g F F ... F

where = n| H | | H | , because of the (n × n) principal minor being bordered.

Now, if 2 3| H | ,| H | , ..., n| H |  < 0, the bordered Hessian is positive definite, which is

a sufficient condition for a minimum. It should be noted that  the test starts with 2| H | ,

and not 1| H | .

On the other hand, if 2| H |  > 0, 3| H | < 0, 4| H |  > 0, etc., the bordered Hessian is
negative definite, which is a sufficient condition for a maximum. Thus, if a given Hessian

bordered determinant | H |  meets the above mentioned criteria, we are assured of a
minimum or a maximum of our objective function. But if those criteria are not met,
further tests are required, since the given criteria represent sufficient conditions, and
not necessary conditions.
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5.11 Applications of Matr ix and Determinant Operations in Economics

Matrix and determinant operations have so many applications in Economics. We shall
here consider their applications in the context of derivation of Slutsky equation, Leontief
static open model and solving IS-LM model. Let us consider them one by one.

5.11.1 Der ivation of Slutsky Equation

We know that if price of a commodity falls, ceteris paribus, its quantity demanded
rises, and vice versa. This is known as price effect. Indifference curve theorists like
Hicks, Slutsky, Allen et. al. argue that this price effect can be decomposed into an income
effect and a substitution effect. As the price of a commodity falls, it becomes relatively
cheap than its substitutes. So, the consumer purchases more of the commodity, giving
up some amounts of its substitutes. This is substitution effect which measures the effect
of change in relative price of a commodity, real income remaining the same. On the
other hand, as the price of a commodity falls, real income or purchasing power of the
consumer rises. Then also demand for the commodity changes. This is income effect
which measures the effect of change in real income of the consumer, relative price of
the commodities remaining the same. Price effect is the sum of income effect and
substitution effect (price effect = substitution effect + income effect). The Slutsky equation
(named after Russian mathematician Eugene Slutsky) shows the relationship among
the price effect, income effect and substitution effect mathematically. The equation states
that price effect = substitution effect  + income effect. Mathematically,

       
            

1 1 1
1

1 1 prices constantU constant

q q qq
p p y

Let us try to deduce this equation. Suppose the consumer wants to maximise utility
(U) by consuming two goods, Q1 and Q2. Their respective quantities are q1 and q2 and
prices are p1 and p2. Let the given money income of the consumer be y. Thus, formally
our problem is to maximise U = f(q1, q2) subject to the income constraint or budget
constraint : y = p1q1 + p2q2. So it is a problem of constrained maximisation. We form the
following Lagrange expression :

V = f(q1, q2) + (y – p1q2 – p2q2) where  = Lagrange multiplier.
The first order conditions to maximise V require,

1

V 0
q





, or, f1 – p1 = 0 ...(1)



209

2

V 0
q





, or, f2 – p2 = 0 ...(2)

V


 = 0, or, y – p1q1 – p2q2 = 0 ...(3)

Taking total derivative of them and re-arranging, we get,
f1dq1 + f12dq2 – p1d = dp1 ...(4)
f21dq1 + f22dq2 – p2d = dp2 ...(5)
–p1dq1 – p2dq2 = – dy + q1dp1 + q2dp2 ...(6)
In matrix-vector form, the above system of equations can be written as,

111 12 1 1

21 22 2 2 2

1 2 1 1 2 2

dqf f p dp
f f p dq dp
p p 0 dy q dp q dpd

     
          
            

We can solve these three equations for dq1, dq2 and d by Cramer’s rule. Then the
terms on the R.H.S must be treated as constants. Let D represent the determinant of the
coefficient matrix. Let Dij represent the cofactor of the element in the ith row and jth
column. Then

1 11 2 21 1 1 2 2 31
1

dp D dp D ( dy q dp q dp )Ddq
D

      
 ...(7)

1 12 2 22 1 1 2 2 32
2

dp D dp D ( dy q dp q dp )Ddq
D

      
 ...(8)

We now consider equation (7). We suppose that p1 and p2 do not change and only y
(income) changes. Then, dp1 = dp2 = 0.

So, 
  

    
31 1

1
prices
constant

y.D qq :
D y

= 31D
D

 ...(9)

This equation shows the effect of change in income on the quantity demanded of Q1,
prices remaining the same. This gives us the income effect.

We now consider the substitution effect. In the Hicksian measure of substitution
effect, total utility of the consumer remains the same, i.e., dU = 0.

Now, we have the utility function : U = f(q1, q2)
So, dU = f1dq1 + f2dq2

Putting dU = 0, we get, 
2 1

1 2

dq f
dq f

   or, MRS = 1

2

f
f

.
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Again, from (1) and (2), 1 1

2 2

f p
f p
 .

Thus, in equilibrium, 2 1 1

1 2 2

dq f p
dq f p

  

So, p1dq1 + p2dq2 = 0
Hence, from (6), – dy + q1dp1 + q2dp2 = 0
Again, as p2 is unchanged, dp2 = 0. Then from (7), we get,

1
1 11

pdq .D
D


 , or, 

1

1 U constant

q
p

 
  

= 11D
D


...(10)

This equation gives us the substitution effect of the fall in price of Q1
On the other hand, if price of Q1 only changes while price of Q2 and income remaining

the same, we get the price effect. In this case, dp2 = 0 and dy = 0.

Then from (7), we get, 11 1 1 1 31
1

D p q p Dq
D

   
 

or, 1 311 11

1

q Dq D
p D D
 

 


...(11)

Now combining (9), (10) and (11) we get,



     
        

1 1 1
1

1 1 prices constantU constant

q q qq
p p y

...(12)

This equation is known as Slutsky equation. The L.H.S. of this euqation represents
price effect. The first term of the R.H.S. represents the substitution effect while the
second term represents the income effect. Thus, the Slutsky equation shows that the
price effect is the resultant of the substitution effect and the income effect.

We now consider the direction of these effects. We know that our second order
condition of utility maximisation requires that D > 0. Further, Lagrange multiplier,

 = MUm > 0. Now, the substitution effect = 11D
D


.

But 22 2 2
11 2

2

f p
D p 0

p 0


   


. Thus, the substitution effect as always is negative
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as > 0, D > 0. The income effect = – q1
311

1
prices
constant

Dq q
y D

 
  

.

Now, 12 1
31

22 2

f p
D

f p





 = (–p2f12 + p1f22)  0.

Thus the sign of income effect is indetermenate. Income effect with respect to price
is negative for a normal good but positive for an interior good. Thus, if Q1 is a normal
good, both the substitution effect and the income effect in equation (12) have negative

signs so that, 1

1

q 0
p





, and the demand curve is downward sloping. But in the case of

inferior goods, the first term on the R.H.S. of equation (12) is negative while the second

term is positive. Hence, 1

1

q
p



 may be positive or negative. If the second term is positive

and stronger than the first term, 1

1

q 0
p





 and the demand curve is upward rising. This is

the case of Giffen goods where the income  effect is negative and stronger than the
substitution effect.

In the similar manner, we can analyse the effect of change in p2 on Q2 from equation
(8).

5.11.2 Leontief Static Open Model

Wasilly Leontief has done an input-output analysis which shows interdependence among
different sectors of an economy. We know that output of one sector goes to the other
sector as input. Hence, there should be a balance of demand and supply made by different
industries. Leontief has shown this in terms of a model. Here we shall consider Leontief
static open model (LSOM). A static model is concerned with the determination of output
at a particular period of time. Again, in an open model, some of the relevant variables
are exogeneous while others are endogeneous. Our simplified model is based on the
following assumptions :

(1) There are two industries or sectors in the economy. The product of one industry is
used as input in the production of other, i.e., there is interdependence between them.

(2) Total demand for each product is equal to its gross output or supply.
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(3) Total demand for each product has to components : intermediate demand and
final demand.

(4) There is only one factor of production, labour.
(5) Input co-efficients are technologically fixed.
(6) Each sector produces only one commodity and there is no joint product.
In the model, we use the following notations :
xj = output in the jth sector (j = 1, 2)
xij = part of output of the i-th secotr used as input in the j-th sector (i, j = 1, 2).
Cj = consumption demand or final demand for the j-th product (j = 1, 2).
L = supply of labour (only primary factor)

aij = ij

j

x
x

= input coefficient representing the amount of i-th commodity required as

input for unit production of the j-th commodity.

aoj = j

j

L
X

= labour coefficient representing the amount of labour required to produce

one unit of the j-th commodity.
Let us discuss the Leontief open static model (LSOM). Using supply-demand equality

for sector 1, we get,
X1 = X11 + X12 + C1, or X1 = a11X1 + a12X2 + C1 ...(1)
Similarly, for sector 2,
X2 = X21 + X22 + C2, or X2 = a21X1 + a22X2 + C2 ...(2)
For equilibrium in the labour market, supply of labour = demand for labour,
i.e., L = L1 + L2
or, L = a01L1 + a02L2 ...(3)
We may write equation (1) and (2) in matrix-vector form,

1 1 111 12

21 222 2 2

X X Ca a
a aX X C

      
       
      

Using matrix-vector notations : X = AX + C.

or, (I–A)X = C where I = 
1 0
0 1
 
 
 



213

or, X = (I – A)–1.C, or, X = 
1

| I A |
. Adj.(I – A).C

So, to get X, we have to find out (I – A)–1.
We first determine |I – A|.

|I – A| =  11 12

21 22

a a1 0
a a0 1  = 

 
 

 
11 12 11 12

21 22 21 22

a a 1 a a1 0
a a a 1 a0 1

|I – A| = (1 – a11)(1 – a22) – a21a12 = (say). We assume   0.
Now, Adj (I – A) = Transpose of matrix of cofactors of (I – A)

Matrix of cofactors of (I – A) = 
22 21

12 11

1 a a
a 1 a
 

  

 Adj(I – A) 
T

22 21

12 11

1 a a
a 1 a
-é ù

= ê ú-ë û
 = 

22 12

21 11

1 a a
a 1 a
 

  

Now, X = 
1

| I A |
. Adj(I – A).C

or, 1 122 12

21 112 2

X C1 a a1
a 1 aX C
    

         

X1 = 
1


[(1 – a22) C1 + a12C2], and X2 = 
1


[a21C1 + (1 – a11) C2]

Total demand for labour = a01X1 + a02X2 = L = Labour supply.

HAWKINS-SIMON CONDITION

In Leontief open static model, we have, 1X (I A) C 

or, X = 
1

| I A |
. Adj.(I – A).C.

So, to have positive output, |I – A| = (say) must be positive,
i.e.,  = (1 – a11)(1 – a22) – a21a12 > 0 and (1 – a11) > 0, (1 – a22) > 0.
All these are known as Hawkins-Simon condition. Let us see the economic implication

of these conditions. One condition is : 1 – a11 > 0, or, a11 < 1. It implies that the amount
of first commodity required to produce one unit of the first commodity should be less
than one. Otherwise there will be no justification of production. Same interpretation
may be given for (1 – a22) > 0. Let us consider the third contion : (1 – a11)(1 – a22) >
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a22a12 or, (1 – a11) > a21a12 or, a11 + a21a12 < 1. Now, a21.a12 is the indirect requirement of
the first commodity for unit production of the first commodity. The condition
(a11 + a21a12) < 1 then states that the direct (a11) and indirect requirements of the first
commodity for unit production of the first commodity should be less than one unit of
that commodity. Otherwise there is no logic or justification of production.

Example 5.5 : An economy uses coal and steel to produce coal and steel. Suppose, 0.4
tonne of steel 0.7 tonne of coal are required to produce on tonne of steel. Similarly, 0.1
tonne of steel and 0.6 tonne of coal are required to produce one tonne of coal. Is the
system viable?

Again, 2 and 5 labour days are needed to produce one unit of coal and steel respectively.
If the economy requires 100 tonnes of coal and 50 tonnes of steel for consumption,
calculate gross output and required labour.
Solution : We denote steel industry as sector 1 and coal industry as sector 2 and summarise
the given infomation below. We also denote output levels of steel and coal as X1 and X2
respectively and their final consumptions as C1 and C2 respectively.

11 12 1

21 22 2

01 02

Steel Coal Final demand
Steel 0.4(a ) 0.1(a ) 50(C )
Coal 0.7(a ) 0.6(a ) 100(C )

Labour 5(a ) 2(a ) 

Applying the equality condition between supply and demand, we get,
X1 = a11X1 + a12X2 + C1 ...(1)
X2 = a21X1 + a22X2 + C2 ...(2)
L = a01X1 + a02X2 ...(3)
Equations (1) and (2) can be written in matrix form as :

1 1 111 12

21 222 2 2

X X Ca a
a aX X C

      
       
      

 or 
1 1 1

2 2 2

X X C0.4 0.1
X 0.7 0.6 X C
      

       
      

or X = AX + C or, (I – A)X = C
 X = 1(I A) C

or, X = 
1

| I A |
Adj. (I – A).C
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Here, I = 
1 0
0 1
 
 
 

 and A = 
0.4 0.1
0.7 0.6
 
 
 

 (I – A) = 
1 0
0 1
 
 
 

 – 
0.4 0.1
0.7 0.6
 
 
 

 = 
0.6 0.1
0.7 0.4

 
  

Further, |I – A| = 
0.6 0.1
0.7 0.6


  = 0.24 – 0.07 = 0.17

Here (i) the diagonal elements of |I – A| are all positive.
(ii) The determinant |I – A| is positive. So the system is viable.
Let us solve the system for X1, X2 and L. To do that, we have to determine (I – A)–1.

For that, we first determine cofactor matrix of (I – A)

The cofactor matrix of (I – A) = 
0.4 0.7
0.1 0.6
 
 
 

Now, Adj.(I – A) = transpose of cofactor matrix of (I – A) = 
0.4 0.1
0.7 0.6
 
 
 

Now, X = 1(I A) C  or, X = 
1

| I A |
. Adj (I – A).C

or, 1

2

X 0.4 0.1 501
X 0.17 0.7 0.6 100
     

     
    

X1 = 
1

0.17 (0.4 × 50 + 0.1 × 100) = 
30

0.17  = 176.5

X2 = 
1

0.17 (0.7 × 50 + 0.6 × 100) = 
95

0.17  = 558.8

Total demand for labour = L = a01X1 + a02X2 = 5 × 176.5 + 2 × 558.8 = 2000 (approx)

5.11.3 Cramer’s Rule for  Solving Problems in IS-LM Model

In the IS-LM model, the equilibrium rate of interest (r) and the equilibrium level of
income(Y) are simultaneously determined by intersection point between IS and LM
curves. The IS curve is the investment-saving (I-S) equality curve. In the simple case,
we assume that I = I(r) such that I(r) < 0 and S = S(Y) such that 0 < S(Y) < 1. So the
equation of the IS curve is : I(r) = S(Y), or, I(r) – S(Y) = 0. On the other hand, the LM
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curve is the curve representing the equality between money demand (L) and money
supply (M). Money demand has two components : demand for active balance or
transaction-precautionary demand for money (L1) and demand for idle balance or
speculative demand for money (L2). It is assumed that L1 = L1(Y) such that L1(Y) > 0
and L2 = L2(r) such that L2(r) < 0. Money supply is assumed to be autonomously given
at M0. So, the equation of the LM curve is : L2 + L1 = M0, or L2(r) + L1(Y) = M0. Thus,
we get a system of two simultaneous equations involving two unknowns : r and Y. The
equations are :

I(r) – S(Y) = 0
L2(r) + L1(Y) = M0

We assume that all the functions involved in the system are linear. Now, applying
Cramer’s rule, we can easily solve the system for r and Y and thus determine the
equilibrium rate of interest and the equilibrium level of income.

Let us give an algebraic example.
Suppose, our investment function is : I(r) =  – ir and the saving function is : S(Y) =

–a + sY. Putting I(r) = S(Y), we get,  – ir = – a + sY [(, i, a, s) > 0]
or, ir + sy = a +  = A where A = a +  = total autonomous expenditure. This is our IS

curve.
Let us consider the equation of the LM curve.
Let the demand for active balance be, L1 = l1Y and the demand for idle balance be, L2

= M1 – l2r. Now, putting L2 + L1 = M0 (given money supply), we get,
M1

 – l2r + l1Y = M0 (Here l1, l2, M1, M0 > 0 and M0 > M1)
or, l2r – l1Y = M1 – M0 = – (M0 – M1) = –M(say) where M0 – M1 is denoted by M.
Thus, we have two simultaneous linear equations in two unknowns. They are :

ir + sY = A
l2r – l1Y = –M

Now applying Cramer’s rule, we can solve them for r and Y.

1

2 1

A s
M l

r
i s
l l

 




 = 1

1 2

Al sM
il sl

 
 

 and 2 2

1 2

2 1

i A
l M iM Al

Y
i s il sl
l l

  
 

 


Alternatively, we may solve the system by matrix-inversion method. In matrix-vector
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form, the system can be written as :
2 1

i s r A
l l Y M
     

          
Using symbols, BX = C   X = B–1.C
Let us solve the system by Cramer’s rule. We give a numerical example.

Example 5.6 : Suppose we have,
S = –90 + 0.375Y
I = 150 – 100r
L1 = 0.25Y,
L2 = 50 – 200r
M0 = 180
Determine the equilibrium rate of interest and the equilibrium level of income.

Solution : Putting I = S, we get, 150 – 100r = –90 + 0.375Y
or, 100r + 0.375Y = 240. This is our IS curve.
Let us deduce the LM curve. On the LM curve, L = M
or, L1 + L2 = M
So, 0.25Y + 50 – 200r = 180
or, 200r – 0.25Y = –130. This is our LM curve.
Thus, we have,
100r + 0.375Y = 240 ... (IS curve)
200r – 0.25 Y = –130 ... (LM curve)

By Cramer’s rule, r = 

240 0.375
130 0.25

100 0.375
200 0.25

 

 

 = 
240 0.25 130 0.375
100 0.25 200 0.375

  
    = 

60 48.75
25.75

 


= 
11.25
100




= 0.1125 = 11.25%

Y = 

100 240
200 130
100 0.375
200 0.25





 = 
100 130 200 240

25 75
  

 
 = 

13000 48000
100

 


= 
61000

100



= 610
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5.12 Summary

1. Definition and Concept of a Matr ix

Any rectangular array of numbers is called a matrix. A matrix with a single row is
called a row matrix or a row vector. Similarly, a matrix with single column is called a
column matrix or a column vector. There are some specific rules for the operations of
matrices, i.e., for addition, subtraction, multiplication, etc.

2. Different Types of Matr ices

Some of the major types of matrices are : column matrix, row matrix, transposed matrix,
square matrix, symmetric matrix, diagonal matrix, identity or unit matrix, orthogonal
matrix, idempotent matrix, etc.

3. Determinant of a Matr ix and its Associated Concepts

A determinant is simply described as a square array of numbers. It is so called as it is
used in the determination of the solution of a system of simultaneous equations. To
every square matrix, there corresponds a number known as the determinant of that matrix.
Some associated concepts used to make operations with determinants are : principal
diagonal, minor, cofactor, etc. There are some properties of determinants which are
very helpful especially for evaluating determinants.

4. Inverse of a Matr ix

A square matrix A with |A|  0 is called a non-singular matrix. A non-singular matrix
has a corresponding inverse matrix. The concept of inverse matrix is useful to solve a
system of linear simultaneous equations. An alternative method of solving a system of
linear equations is Cramer’s rule method.

5. Applications of Matr ix and Determinant Operations in Economics

In Economics, there are numerous applications of matrices and determinants. In fact, in
any economic or econometric model, whenever we use some simultaneous equations
and/or some notations, use of matrices and determinants is very much helpful to deal
with them. In the present unit, we have considered three applications of matrix and
determinant operations, namely, derivation of Slutsky equation, Leontief static open
model (LSOM) and solution of IS-LM model.
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5.13 Excercises

A. Short Answer Type Questions (Each of 2.5 marks)

1. Define matrix.
2. What is column matrix and what is row matrix?
3. What is column vector and what is row vector?
4. What is a square matrix?
5. What is a symmetric matrix?
6. Define a diagonal matrix.
7. What is an identity matrix?
8. Define a unit matrix.
9. What is null matrix?
10. What is an idempotent matrix?
11. What is a determinant?
12. What is principal diagonal of a determinant?
13. What is minor in the context of a determinant?
14. What is cofactor in relation to a determinant?
15. In the context of Leontief input-output analysis, what is a static model?
16. Why is Leontief static open model called ‘open’?
B. Medium Answer Type Questions (Each of 5 marks)
1. Explain the concept of a matrix.
2. Show the addition operation of a matrix, taking a simple example.
3. What is transposed matrix? Give example.
4. Prove that (AB) = BA
5. Illustrate the concept of a square matrix.
6. Explain the concept of symmetric matrix.
7. Illustrate the concept of diagonal matrix.
8. Briefly explain the concept of identity matrix.
9. Explain the concepts of minor and cofactor of a determinant.
10. Briefly discuss the implications of Hawking-Simon condition in the context of

Leontief static open model (LSOM).
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11. Distinguish between a matrix and a determinant.

12. Find Adj. A of the matrix A = 
2 3
4 5
 
 
 

13. Taking any two matrices of order (2 × 2), show that AB  BA.

14. If A = 
2 3
4 11

 
  

, find AA–1.

15. 2x + 5y = 24 and 3x + 8y = 38. Solve by matrix inversion method.
Ans. x = 2, y = 4

C. Long Answer Type Questions (Each of 10 marks)
1. Explain with a suitable example the multiplication of two matrices.
2. Show with a suitable example that transpose of transpose of a matrix is the original

matrix. Also prove that (A ± B) = A ± B.
3. State the major properties of a determinant.
4. Write a short note on expansion of a determinant.
5. Explain how can you find out the inverse of a matrix. Show how the matrix inversion

method can be used to solve a system of simultaneous equations.
6. Briefly explain the Cramer’s rule method to solve a system of simultaneous equations

involving two variables.
7. Write a short note on Hessian determinant and Bordered Hessian determinant.
8. What is Slutsky equation? Derive the equation and interprete its various terms.
9. Briefly discuss the Leontief static open model stating clearly its assumptions.
10. Explain how Cramer’s rule may be used to solve for the variables in an IS-LM

model.
11. Solve the following system by matrix inversion method :

x + y + z = 3
x + 2y + 3z = 4
x + 4y + 9z = 6

Ans. x = 2, y = 1, z = 0
12. Solve the following system by Cramer’s rule method :

2x – y + 2z = 6
x – 2y + 3z = 6
3x – 3y – z = – 6

Ans. x = 1, y = 2, z = 3
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13. Solve the matrix equation AX = B where

1 2 1
A 3 1 2

2 2 3

 
   
  

, X = 

x
y
z

 
 
 
  

, B = 
3
2
1

 
 
 
  

Ans. x = –1, y = 4, z = 4
14. Calculate output in the two sectors on the basis of following data to meet final

demand of 200 and 800 units of Agriculture and industry, respectively.

Purchasing sector
Sectors Agriculture Industry Current demand
Agriculture 300 600 100
Industry 400 1,200 400

Ans. Agricultural output = 2,000, Industrial output = 4,000.
15. Find total output for each industry if the new final demands are 180 and 440 units

respectively

Input to
Industry Industry 1 Industry 2 Final demand
1 160 200 40
2 80 400 320

Ans. Output of industry 1 = 800, Output of industry 2 = 1,416
16. Our equations in commodity and money markets, respectively are :

200r + 0.36Y = 380
200r – 0.40Y = –380

Determine equilibrium r and Y both by matrix inversion method and Cramer’s rule
method.

Ans. r = 0.10, Y = 1,000
17. The IS-LM model is :

S(Y) = I(r) + G
L1(Y) + L2(r) = M

Find 
dY
dG , 

dr
dG , 

dY
dM  and 

dr
dM .
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18.Solve the national income model :
Y = C + I0 + G0 and C = a + bY
using Cramer’s rule and also by matrix-inversion method.

19. Consider the following model.
C = a + bY
I = d + eY
Y = C + I
Solve for the endogeneous variables using matrix form and also using Cramer’s rule.

20. C = 0.75Y + 2,000, I = 0.15Y + 3,000
Determine the equilibrium level of income both by Cramer’s rule and by matrix
inversion method. Ans. Y = 50,000
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6.1 Objectives

After studying the unit, the reader will be able to know
 First and second order difference equations and their solutions
 Application of difference equations in Economics
 Solution of a first order differential equation
 Application of differential equation in Economics

5.2 Introduction

There are two basic approaches to examine the course of a system of economic variables
through time. One is the static analysis and the other is the dynamic analysis. In the
static analysis, all the variables involved refer to the same point of time or the same
period of time. A variant of the static analysis is known as comparative static analysis in
which we compare the values of relevant variables in two or more static situations.
Thus, comparative static analysis is also basically a static analysis. On the other hand, if
the economic variables involved refer to different points of time or, different periods of
time, then the analysis is called dynamic analysis. In static analysis, all the variables
involved refer to the same period of time. Further, the time element is not considered in
the process of determining the equilibrium values of the variables. Static analysis
considers the determination of an equilibrium position. It is not concerned with the time
required to achieve that equilibrium position. It does not also consider the path by which
the variables approach their equilibrium values. All these are considered in dynamic
analysis. In this analysis, all the variables are dated. Hence we can know the time path
of an economic variable in this case.

For example, suppose we assume that demand for any commodity in any period of
time is a function of current price while its supply depends on the price of the previous
period i.e., Dt = D(pt) while St = S(pt–1) and it represents a dynamic relationship since it
shows a relation between prices in two successive periods of time. Such an equation is
called a difference equation. Solving it we can get the time path of price (p). The time
path of p represents the path along which price movement will take place over a period
of time. Thus, from the dynamic analysis, we can know the pattern of movement of an
economic variable from one equilibrium situation to another.

In particular, dynamic analysis is necessary for three reasons. First, adjustment of
one variable to bring change in other takes time. Hence there are lags in many functions.
The presence of these lags necessitates the use of dynamic analysis. Secondly, there are
certain variables which depend, among other things, on the rate of change of some other
variables. For example, demand for any commodity may depend on the rate of change
of price of that commodity. Such problems involving rates of growth requires dynamic
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analysis. Thirdly, dynamic analysis is also necessary for considering the stability of
equilibrium. An equilibrium is said to be stable if, after some disturbance or change, it
reaches to an equilibrium position. Whether the system moves towards equilibrium or
not, depends on the time path of relevant variable. And this time path can only be
determined from dynamic analysis.

6.3 Use of Difference Equation

We have mentioned that in dynamic analysis, the variables involved refer to different
points of time, or different periods of time. A dynamic model is concerned with the
change in relevant variables over time. This model can be formulated in two alternative
ways : in period terms or in continuous terms. In period analysis, the flow of time is
divided into successive discrete periods of finite constant length taken as units of time.
For example, a variable price is written as pt for periods t = 0, 1, 2, 3, etc. In this case,
various relations and conditions of a dynamic model are expressed in  terms of difference
equations. On the other hand, in continuous analysis, time flows continuously in an
endless manner. Each variable is then taken as a continuous and differentiable function
of time. Naturally, in continuous analysis, a dynamic model uses differntial equations,
rather than a difference equation. The choice of the specific analysis is mainly a matter
of mathematical convenience. We shall consider the solution of difference equation
which takes time as a discrete variable. We shall first illustrate the solution of a first
order diffence equation, and then the solution of a second order difference equation.
After that, we shall consider the solution of a differential equation which considers time
as a continuous variable.

6.3.1 Solution of a First Order  Difference Equation

The general form of a linear non-homogeneous difference equation of n-th order is :
a0Yt + a1Yt–1 + a2Yt–2 + ... + anYt–n + C= 0
If C = 0, it is called linear homogeneous difference equation of order n. The form of

a first order linear non-homogeneous difference equation is :
a0Yt + a1Yt–1 + C = 0
We shall consider its solution. We shall first follow the general method and then a

relatively rudimentary method, called iterative method. The solution of such an equation
has two parts : general solution = homogeneous solution and particular solution , i.e., Yt
= Yc + Yp.

Let the simple form of the difference equation be,
Yt+1 – aYt = C
For homogeneous solution, we consider the homogeneous part i.e., we take, C = 0.
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The homogeneous solution is also called complementary solution (Yc). Then,
Yt+1 + aYt = 0.
Let Y1 = Hbt be the complementary solution. Then putting
Yt = Hbt, we get, Hbt+1 + aHbt = 0
or, bt+1 + abt = 0, (H  0). Then b + a = 0, (bt  0)
Then, b = – a
So, the complementary solution is : Yt = Hbt = H(–a)t.
We now consider the particular solution, Yp.
Let Yt = K(a constant) be the particular solution. As K is a constant, Y = K will hold

for all t.

Yt+1 + aYt = C  K + aK = C or, K = 
C

1 a

Then, our particular solution is : p
CY

1 a



, (a  –1).

Now, the general solution is :

Yt = Yc + Yp = H(–a)t + 
C

1 a , (a  –1)

The value of H is to be determined from the initial condition, i.e., by putting t = 0.

Then we have, 0
CY H

1 a
 


  0

CH Y
1 a

 


Thus our final solution is, t
t

CY H( a)
1 a

  


or, Yt = 0
CY

1 a
   

(–a)t + 
C

1 a , (a  –1)

If a = –1, then we shall try the particular solution, Yt = Kt, instead of Yt = K.
Then Yt+1 + aYt = C
 K(t + 1) + aKt = C
 Kt + K + aKt = C
or, K = C as a = –1
So, Yp = Ct is our particular solution.
Then our final solution is : Yt = YC + Yp
or, Yt = H(–a)t + C.t where the value of H is to be determined from the initial condition,

i.e., putting t = 0. Then, Y0 = H
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So, Yt = Y0 + Ct
This is our total solution in the case of a = –1.

Example 6.1 : Solve Yt = 2Yt–1 + 3

Solution : This is a first order non-homogeneous difference equation. Its total solution is :
Yt = YC + YP.
For solution of the homogeneous part, we take, Yt = 2Yt–1.
Let Yt = Hbt be a solution. Then Hbt = 2Hbt–1

 b = 2. So, YC = Hbt = H2t

Now we consider the particular solution.
Let Yt = K be the particular solution. Then it will hold for all t, i.e., Yt = Yt–1 = K.
Now we have, Yt = 2Yt–1 + 3
 K = 2K + 3 or, K = –3
So, Yp = –3 is the particular solution.
Hence, general solution, Yt = H2t – 3 where the value of H is to be determined from

the initial condition.
Putting t = 0, Y0 = H – 3 H = Y0 + 3
So the final solution is : Yt = [Y0 + 3]2t – 3

Example 6.2 : Solve Yt+1 = Yt + 1 when Y0 = 10

Solution : We first consider the solution of the homogeneous part, i.e., Yt+1 = Yt
Let Yt = Hbt+1 = Hbt

b = 1, (H  0)
So, Yt = H(1)t = H.
Thus, YC = H is the complementary solution.
Now, we consider the particular solution, Yp.
Here Yt = K(a constant) cannot be a solution.
For, then Yt+1 = Yt = K. So, K = K + 1 i.e., 1 = 0 which is absurd. So we try another

solution.
Let Yt = K.t be a solution,
Then, K(t + 1) = Kt + 1   K = 1
Thus, our particular solution is : Yp = K.t = t
So, general solution is : Yt = YC + Yp = H + t
where the value of H is to be determined from the initial condition (i.e., by putting t = 0)
 Y0 = H
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So, our solution is : Yt = Y0 + t. But it is given that
Y0 = 10

 Yt = 10 + t is our solution.
In our figure 6.1, we have drawn the time path of  Y. It is

an upward rising straight line with a slope equal to 1(= tan
45º) and a positive vertical intercept equal to 10 when plotted
against t.

Example 6.3. : Given Yt + 1 = Yt – . Find the time path
of Y.
Solution : We first consider the complementary solution : Yt+1 = Yt

Let Yt = Hbt be a solution.
Then Hbt+1 = Hbt  b = , (bt  0, H  0)
So, Yt = Hbt is our solution for the homogeneous part, i.e., Yc = Ht.
Let us consider particular solution (Yp).
Let Yt = K (a constant) be the particular solution.
As K is a constant, it holds for all t.
Now, Yt+1 = Yt – 

 K = K –  K = – 1



So, general solution, Yt = YC + Yp or, t
tY H

1


  


The value of H is to be determined from the initial condition, i.e., by putting t = 0.

Then, Y0 = H –
1



 H = Y0 + 
1



. Putting this value of H, we get final solution,

Yt = 
t

0Y
1 1
       

This is our time path of Y.

SOLUTION OF DIFFERENCE EQUATION BY ITERATIVE METHOD

A first order difference equation describes the pattern of change of a variable Y between
two consecutive periods only. So, once such pattern is specified and once we are given
the initial value Y0, we can find Y1 from the equation. Now, once Y1 is known, we can
determine Y2 from the given pattern of equation just by putting the expression of Y1 and

0
(Fig. 6.1)

45º 10
t

Y = 10 + t

t 

Yt
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so on. Thus, we can get the value of Y for any time period (t) just by repeated application
(iteration) of the pattern of change specified in the difference equation. Hence the method
is known as iterative method.

Example 6.4 : We take the example 6.1 considered in general method.

Solve Yt = 2Yt–1 + 3 by iterative method.
Solution : We have, Yt = 2Yt–1 + 3

Putting t = 1, Y1 = 2Y0 + 3
Now, putting t = 2, we get,
Y2 = 2Y1 + 3 = 2(2Y0 + 3) + 3 = 22Y0 + 22.3 – 3 = 22(Y0 + 3) – 3
When t = 3, Y3 = 2Y2 + 3 = 2[22(Y0 + 3) – 3] + 3 = 23(Y0 + 3) – 2 × 3 + 3

= 23(Y0 + 3) – 3
Proceeding in this manner, we get, Yt = (Y0 + 3)2t – 3.
This is our time path of Y. We got the same result in example 6.1 by following the

general method.

Example 6.4. : Solve Yt+1 = Yt+1 by iterative method when Y0 = 10.

Solution : We have : Yt+1 = Yt+1. From this, we can write, Yt = Yt–1 + 1.
Now, putting t = 1, 2, 3, ..., we get,
If t = 1, Y1 = Y0 + 1
If t = 2, Y2 = Y1 + 1 = (Y0 + 1) + 1 = Y0 + 2
If t = 3, Y3 = Y2 + 1 = (Y0 + 2) + 1 = Y0 + 3
Thus, we get, Yt = Y0 + t. Given that Y0 = 10. So, our time path is : Yt = 10 + t, the

same result obtained in example 6.2. through general method.
Example 6.5 : Solve the difference equation Yt+1 = 0.5 Yt by iterative method.

Solution : We have, Yt+1 = 0.5 Yt. This is a first order homogeneous difference equation.
Now putting t = 0, 1, 2, 3, ... etc. we get,

Y1 = 0.5 Y0
Y2 = 0.5 Y1 = (0.5)2. Y0
Y3 = 0.5 Y2 = 0.5(0.5)2 Y0 = (0.5)3. Y0
Thus, we get, Yt = Y0(0.5)t. This is our desired solution.

Example 6.6 : Given It = v(Yt – Yt–1) and St = sYt–1. Determine the equilibrium growth
path of Y (income) where I = investment and S = saving.

Solution : In equilibrium, It = St or, v(Yt – Yt–1) = sYt–1
or, Yt = Yt–1 + sYt–1 = ( + s)Yt–1

 Yt = t 1
s1 Y 

   
. This is a first order homogeneous difference equation in Y. The



230

solution of this equation will give us the time path of Y (income).
We have, Yt = (1 + s/)Yt–1
If t = 1, we get, Y1 = (1 + s/)Y0
If t = 2, we get, Y2 = (1 + s/)Y1 = (1 + s/)(1 + s/)Y0 = (1 + s/)2 Y0
If t = 3, we get, Y3 = (1 + s/)Y2 = (1 + s/)(1 + s/)2. Y0 = (1 + s/)3 Y0
Proceeding in this manner, we finally get, Yt = Y0(1 + s/)t.
This is our time path of Y. We may do the same thing in an alternative manner.
When t = 1, Y1 = (1 + s/)Y0
When t = 2, Y2 = (1 + s/)Y1
When t = 3, Y3 = (1 + s/)Y2
Putting t, Yt = (1 + s/) Yt–1

Multiplying both sides, we get, Y1.Y2.Y3 ...Yt = 
ts1   
. YY0.Y1.Y2....Yt–1. Cancelling

Y1, Y2, ..., Yt–1 from both sides, we get, Yt = Y0

ts1   
. This is our time path of Y..

The rate of growth of Y = 
t t 1

t 1

Y Y
Y






= 

t t 1
0 0

t 1
0

Y (1 s / ) Y (1 s / )
Y (1 s / )





    
 

= 
t 1

0
t 1

0

Y (1 s / ) (1 s / 1)
s /

Y (1 s / )





    
 

 

We may get the same result from our equilibrium condition, It = St
or, (Yt – Yt–1) = s.Yt–1

or, t t 1

t 1

(Y Y ) s /
Y






  i.e., the rate of growth of Y = s/.

When a sum p grows by the rate r, the amount after t years is : A = p(1 + r)t. Hence,

when Y rises by the rate 
s


, the value of Y after t years = YYt = Y0

ts1   
 which is our

time path of Y. [In our example, equations have been taken from Harrod’s model of

economic growth. There, 
s


 is called the warranted rate of growth]

6.3.2 Dynamic Stability of Equilibr ium

The equilibrium is dynamically stable if the complementary function tends to zero as t .
Now, in a first order difference equation, the complementary solution is : Yc = Hbt. We
first consider the significance of b, ignoring the coefficient H(by assuming H = 1). For
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analytical purpose, we can divide the range of possible values of b into 7 regions.

Region Value of Value of Value of bt in different time periods

b bt t = 0 t = 1 t = 2 t =3 t = 4

I b > 1 (|b| > 1), e.g., 2t 1 2 4 8 16

II b = 1 (|b| = 1), i.e., 1t 1 1 1 1 1

III 0 < b < 1 (|b| < 1), e.g., 
t1

2
 
 
 

1
1
2

1
4

1
8

1
16

IV b = 0 (|b| = 0), e.g., (0)t 0 0 0 0 0

V –1 < b < 0 (|b| < 1), e.g., 
t1

2
  
 

1
1
2


1
4

1
8


1

16

VI b = –1 (|b| = 1) i.e. (–1)t 0 –1 1 –1 1

VII b < –1 (|b| > 1) e.g., (–2)t 1 –2 4 –8 16

The time path corresponding to different values of b are shown below :

0 x

(I)
1 2 3 4

bt

b > 1

0 t
(II)

bt

b = 1

0 t

(III)
1 2 3 4

bt

0 < b < 1

0 t(IV)

bt

b = 0 0 t

(V)

bt

–1 < b < 0
1

0 t

(VI)

bt

1
b = –1
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0 t

(VII)

bt

b < –1

The essence of these figures can be summed up in the following statement :
The time path of bt will be non-oscillatory if b > 0 and oscillatory if b < 0. On the

other hand, it will be divergent if |b| > 1 and convergent if |b| < 1.
We give some examples.

Example 6.7 : What kind of time path is represented by Yt = 
t42 9

5
   
 

?

Solution : If t = 0, Y0 = 9. This is the equilibrium level of Y. Since b = 4 0
5

  , the

oscillatory. But since |b| = 
4
5 < 1, the oscillation is damped, and the time path converges

to the equilibrium level of 9.

Example 6.8 : Examine the nature of time path of Yt = 3(2)t + 4?

Solution : At t = 0, Y0 = 4 = initial or equilibrium value of Y. Since b = 2 > 0, no
oscillation will occur. But since |b| = 2 > 1, the time path will diverge from the equilibrium
level of 4.

6.3.3 Solution of a Second Order  Difference Equation

We shall consider the solution of a second order difference equation with constant term
and constant coefficients. The second order non-homogeneous difference equation is :
aYt + bYt–1 + cYt–2 + d = 0

We first consider the solution of the homogeneous part, i.e., complementary solution
(Yc). Then our equation is :

aYt + bYt–1 + cYt–2 = 0
Let Yt = xt be a solution.



233

Then, axt + bxt–1 + cxt–2 = 0
 ax2 + bx + c = 0 (assuming xt–2  0)
Let us solve this equation. Multiplying both sides by 4a,
we get, 4a2x2 + 4abx + 4ac = 0
or, (2ax)2 + 2.2ax .b + b2 – b2 + 4ac = 0
or, (2ax + b)2 = b2 – 4ac

or, 2ax + b = 2b 4ac 

x = 
2b b 4ac

2a
  

Thus the roots of our quadratic equation are : (x1, x2) = 
2b b 4ac

2a
  

So, the solutions are t
1x and t

2x . In this case, t t
t 1 1 2 2Y K x K x  is the solution. TheThe

values of K1 and K2 are to be determined from initial conditions. Two initial conditions
are needed in the second-order case. Let, when t = 0, Y = Y0 and when t = 1, Y = Y1.
Then, 0 0

1 1 2 2 0K x K x Y  , i.e., K1 + K2 = YY0 (given).
As x1 and x2 are already known, we can solve for K1 and K2. Thus, the complementary

solution is : = +t t
C 1 1 2 2Y K x K x  where x1 and x2 are the two roots of the quadratic,

ax2 + bx + c = 0 i.e., (x1, x2) = 
2b b 4ac

2a
  

.

If b2 – 4ac  0, or, b2  4ac, roots will be real. If b2 < 4ac, or, b2 – 4ac < 0, roots will
be complex. Then the solution involves the trigonometric functions sine and cosine. We
here just state the solutions. We introduce the following notations :

1
b
2a

    and 
2

2
b 4ac

2a


   , R = 2 2
1 2  

Then we have to find the angle z, the sine of which is 2
2 2
1 2



  
 and the cosine of

which is 1
2 2
1 2



  
.

Then the solution is :
Yt = Rt [w1 sin(tz) + w2 cos(tz)]



234

where w1 and w2 are constants determined from the two initial conditions (i.e., for t = 0
and t = 1).

Let us consider the particular solution (Yp).
Let Yt = K (constant) be a solution. So, aK + bK + cK + d = 0

 K = 
d

a b c


 
 provided (a + b + c)  0.

Then the general solution or the complete solution is,

t t
t 1 1 2 2

dY K x K x
a b c


  
 

 provided (a + b + c)  0.

If (a + b + c) = 0, we assume Yt = Kt as the solution.
Then aKt + bK(t – 1) + cK(t – 2) + d = 0
or, aKt + bKt + cKt – bK – 2cK + d = 0
or, Kt(a + b + c) – bK – 2cK + d = 0
or, K(–b – 2c) = – d (as a + b + c = 0)

 K = 
d

b 2c


 
, provided (–b – 2c)  0.

Then the solution is, = + +t t
t 1 1 2 2Y K x K x Kt , provided (–b – 2c)  0.

If (–b – 2c) = 0, we should take Yt = Kt2 as the particular solution and proceed in the
same manner. In the first order case, we see that either Yt = K or, Yt = Kt leads to correct
particular solution. In the second order case, either Yt = K, or Yt = Kt, or Yt = Kt2 leads
to the correct particular solution.

6.4 Differential Equation

We know that in static analysis, time is not considered as a separate variable. But in
dynamic analysis, time is considered as a separate variable and the change in various
variables is considered over time. Now, time may be treated as a discrete variable or as
a continuous variable. If time is taken as a discrete variable, we use difference equation
to deduce the time path of any variable. On the other hand, if time is considered as
continuous, then to deduce the time path of any variable, we use differential equation.
In a differential equation, a variable is taken as a continuously differentiable function of
time.

6.4.1 Solution of a First Order  Differential Equation

We shall consider the first order linear differential equation with constant coefficient
and constant term. The general form of a first order differential equation is :
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dy u(t)y w(t)
dt

   where u and w are two functions of t(time), as is y. If u is a constant

and w is a constant additive term, we get a first order linear differential equation with

constant coefficient and constant term. Let u = a and w = b. Then we have, 
dy ay b
dt

  .

It is a first order non-homogeneous differential equation. Again, if b = 0, we have,
dy ay 0
dt

  . Then the function is homogeneous and if b  0, the function is said to be

non-homogeneous.

Solution in homogeneous case

The equation of a linear homogeneous differential equation is : dy ay 0
dt

  .

We shall consider the solution of this equation, or, more specifically, we shall try to
derive the time path of y.

From the above equation, we can write, dy ay
dt

  , or 
1 dy a
y dt

 

or, dy a dt
y
  .

Integrating we get, dy a dt
y
  

or, logey = –at + c where c = constant of integration.
 y = e–at+c = ec.e–at

or, y = H e–at where H = ec.
Thus, y(t) = H e–at is the general solution of the given differential equation. The value

of H is to be determined from initial condition i.e., by putting t = 0. Then y(0) = H.
Thus, the definite solution is : y(t) = y(0)e–at.

Two things should be noted about the solution of a differential equation :
(i) The solution is not a numerical value here, but a function of t. If t is time, we get

a time path.
(ii) The solution y(t) is free of any derivative or differential expression. Hence, as

soon as a specific value of t is substituted into it, a corresponding value of y can be
calculated directly.
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Solution in non-homogeneous case

The general form of a non-homogeneous linear differential equation is : 
dy ay b
dt

  .

Here the general solution will have two parts :
(i) Homogeneous solution or complementary solution (yc)
(ii) Particular solution (yp)

i.e., y(t) = yc + yp.
For the homogeneous solution, we take the equation in homogeneous form :

dy ay 0
dt

 

Then we have seen that the homogeneous solution is : yc = H e–at

Let us consider particular solution. For particular solution, we assume, y = k,

(k = constant). Then 
dy 0
dt



So, 0 + ay = b, or, ak = b  k = 
b
a . Thus, yp = b

a
, (a  0).

Thus, the general solution or complete solution is :

y(t) = yc + yp = H e–at + 
b
a , (a  0).

The value of H is to be determined from the initial condition, i.e., by putting t = 0.

Then, y(0) = H + 
b
a , or, H = y(0) – b

a
Hence the definite or final solution is :

y(t) = atb by(0) e
a a

    
, (a  0).

Example 6.9 : Given 
dy 2y 6
dt

   with the initial condition y(0) = 10. Solve the equation

or deduce the time path of y.

Solution : Here a = 2, b = 6 in the equation, dy ay b
dt

  .

In this case, the solution is, y(t) = 
atb by(0) e

a a
    

.
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Putting the value in this formula, we get, 2t6 6y(t) 10 e
2 2

     
or, y(t) = 7e–2t + 3 (Ans.)

Solution without formula

Our given differential equation is : dy 2y 6
dt

 

It is a first order non-homogeneous difference equation. First we consider the solution
of the homogeneous part.

Then, dy 2y 0
dt

  .

or, 
dy 2y
dt

  , or, 
dy 2dt
y
 

Integrating, we get, logey = –2t + c where c = constant
or, y = e–2t+c = ec.e–2t

 y = He–2t where H = ec. This is the solution for the homogenous part (yc).
We now consider the particular solution, yp.

Let y = k, a constant, be the particular solution. Then 
dy 0
dt

 .

So, from the given equation, 
dy 2y 6
dt

  , we get, 0 + 2y = 6  y = 3, or, k = 3.

This is our particular solution (yp) i.e., yp = 3.
So, general solution, y(t) = yc + yp = He–2t + 3 where the value of H is to be determined

from the intial condition i.e., by putting t = 0.
 y(0) = He0 + 3 = H + 3  H = y(0) – 3
We are given that y(0) = 10.   H = y(0) – 3 = 10 – 3 = 7
Hence the final solution is : y(t) = 7e–2t + 3  (Ans.)

Example 6.10 : Solve the equation 
dy 4y 0
dt

   with the initial condition y(0) = 1.

Solution : For a linear homogeneous differential equation 
dy ay 0
dt

  , the solution is
: y(t) = y(0)e–at
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Here, in our given problem, a = 4 and y(0) = 1.
Putting these values in our formula, we get, y(t) = 1.e–4t or, y(t) = e–4t (Ans.)

Solution without applying formula

We have, 
dy 4y
dt

    
dy 4dt
y
 

Integrating, logey = –4t + c where c = constant of integration
 y(t) = e–4t+c

or, y(t) = ec.e–4t = He–4t where H = ec.
The value of H is to be determined from the initial condition, i.e., by putting t = 0.
 y(0) = He0 = H.
So, H = y(0) = 1 (given in the problem).
So, y(t) = He–4t = e–4t is the required solution.

Example 6.11 : Solve the equation dy b
dt



Solution : we have, dy b
dt

   dy = b.dt

Integrating, y(t) = bt + c where c is a constant. Its value will be known from the initial
condition, i.e., t = 0.

Then y(0) = b × 0 + c   c = y(0).
Therefore, the solution is : y(t) = y(0) + bt (Ans.)
Alternative method : The general form of a first order differential equation is :

dy ay b
dt

  .

In our given problem, 
dy b
dt

   a = 0. In this case, the complementary solution (yc)

is : y(t) = He–at.
It t = 0, y(0) = Heº = H where H is an arbitrary constant.
Let us consider the particular solution, yp.

Let y = K, a constant, be a solution. Then, 
dy 0
dt

 .

But we are given that 
dy b
dt

 . So, we should try another particular solution.
Let y = Kt be a solution.
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Then 
dy K
dt

 . But we are given that 
dy b
dt



 K = b. So, our particular solution is : yp = Kt = bt.
Hence, the general solution is : y(t) = yc + yp = H + bt
Where the value of H is to be determined from the initial condition, i.e., by putting t = 0.

So, y(0) = H.
Hence the definite or total solution is : y(t) = y(0) + bt

Example 6.12 : Solve the equation 
dy 2
dt

  with the initial condition y(0) = 5.

Solution by formula : We know that for differential equation dy b
dt

 , the solution is :

y(t) = y(0) + bt (we have seen it in our previous example).
In our given problem, b = 2 and y(0) = 5.
So, the required solution is : y(t) = 5 + 2t (Ans.)
[or we may follow the alternative method as shown in the preveious example].

6.5. Application of Difference Equation in Economics

Difference equation has many applications in economics. It is used to determine the
time path of an economic variable, to examine the stability of an equilibrium over time
to determine the value of a variable after some given periods, etc. In the present section,
we shall consider the application of difference equation in three particular cases :
(i) in the context of Keynesian dynamic multiplier, (ii) price stability in a cobweb model
and (iii) interaction between multiplier and accelerator as a possible explanation of the
emergence of trade cycles.

Let us consider them one by one.

6.5.1Keynesian Dynamic Multiplier

We introduce dynamic element into the simple Keynesian model. We assume that
consumption expenditure in period t is a linear function of income of the previous
period i.e., Ct = f(Yt–1). In particular, we assume that Ct = bYt–1 + a, 0 < b < 1, a > 0. That
is, there is one period lag in consumption function.

Investment is assumed to be autonomously given, i.e., It = A where A > 0. The condition
of equilibrium in the commodity market is : Aggregate supply in period t = aggregate
demand in period t. We assume a closed economy with no economic activities on the
part of the government. So, aggregate demand will have two components : Ct and It.
Thus, our equilibrium condition is : Yt = Ct + It.
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Hence, in our simple Keynesian model, we have the following equations :
(1) Ct = a + b Yt–1 , 0 < b < 1, a > 0 (autonomous consumption)
(2) It = A (autonomous investment)
(3) Yt = Ct + It (Equilibrium condition)
Putting the values of Ct and It into the equilibrium condition, we get,
Yt = bYt–1 + (a + A).
or, (4)Yt

 = bYt–1 + z where z = a + A = aggregate autonomous expenditure.
Equation (4) is a first order non-homogeneous difference equation. In order to solve

this equation, we first consider the complementary solution (Yc). To do this we take the
homogeneous part : Yt = bYt–1. Let Yt = Hxt be a solution for this equation. Hence, from
the homogeneous part Yt = b Yt–1, we get, Hxt = bHxt–1

 x = b, (assuming H  0 and xt–1  0).
So, Yc = Hbt is our complementary solution.
Let Yt = K, a constant, be the particular solution.
Then this value of Y will hold for all t. So, we get, putting Yt = Yt–1 = K,
Yt = bYt–1 + z

or, K = bK + z  K = 
z

1 b , (b  1)

So, Yp = 
z

1 b  is the particular solution. This is actually equilibrium value of Y..

Now, the general solution is : Yt = Yc + Yp

or, Yt = Hbt + 
z

1 b , (b  1)

The value of H is to be determined from the initial condition, i.e., by putting t = 0.

Then we get, 
0

zY H
1 b

 


  H = 0
zY

1 b



.

Hence, our definite solution is : Yt = Hbt + 
z

1 b

or, t
t 0

z zY Y b
1 b 1 b

      
This is our time path of Y(income). Given 0 < b < 1, as t , bt  0.

So, t
zY

1 b



. That is, YYt tends to the equilibrium value. Thus our equilibrium is

stable if 0 < b < 1. We have shown it in our figures 6.2 and 6.3 below. If the value of Y
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is less than the equilibrium value, then aggregate demand (Ct + It) > aggregate supply
i.e., there is excess demand. So, the levle of output (Yt) will rise.

0 y

C + I

(Fig. 6.2)

45º

C + I

Y = e 

z
1 – b

0 y

Yt

(Fig. 6.3)

Y = e 

z
1 – b

If the value of Y is greater than the equilibrium value then aggregate demand (Ct + It)
< aggregate supply i.e., there will be excess supply. So, the level of output (Yt) will fall.
Thus, our equilibrium is stable provided 0 < b < 1.

This is shown in our two figures.
If b = 1, Yt = Yt–1 + z. Here, as before, Yc = Hbt = H (as b = 1)
Let us consider particular solution. Let Yt = K be the particular solution. So, this

value will hold for all t. Hence we get, K = K + z, or, z = 0. But, we know that z  0.
Hence, Yt = K will not be the particular solution. Hence we try another. Let Yt = Kt be
the particular solution. Then we have, Kt = K(t – 1) + z. or, K = z. So, the particular
solution, Yp = Kt = zt. Thus, total solution, Yt = Yc + Yp = H + zt. The value of H will be
determined from the initial condition (i.e., by putting t = 0). If t = 0, H = Y0. So, we
have, Yt = Y0 + zt = Y0 + (a + A). This means that the level of income (Y) will go on
increasing by the amount of aggregate autonomous
expenditure (z = a + A) every time if b = 1. In static

multiplier, 
1

1 b =  if b = 1. Then, as autonomous

investment rises, Y immediately jumps to infinity.
This is absurd. This absurdity can be easily explained
by dynamic analysis. Here we say that when b = 1, Y
does not jump to inifinity immediately. Rather, here
Y rises everytime by z (= a + A). So, when t µ , YY
tends to infinity. This is shown in the figure 6.4.

Again, if b > 1, the static multiplier is negative. 
1 0

1 b
   

. This means that as

0 Y

(Fig. 6.4)

z z
zz

z =
 a + A 45º z z

Y1 Y2 Y3

C + I
C + I
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autonomous expenditure rises, equilibrium level
of income falls. This is again absurd. This
absurdity can be removed by dynamic analysis. If
b > 1, the C + I curve is steeper than the 45º line
and the equilibrium level of income is negative.
Thus, here the equilibrium does not exist. For any
positive output, aggregate demand (Ct + It) >
aggregate supply (Yt). So, the level of income (Y)
goes on increasing indefinitely. This is shown in
the figure 6.5 where we get an explosive situation.

6.5.2Cobweb Model

Let Dt =  –  pt, S = – + pt–1, (, , ,  > 0).
In equilibrium, demand = supply i.e., Dt = St.
 – pt = – + pt–1
or, pt + pt–1 =  + 

or, tp 



. pt–1 = 


 or, pt+1 + 


pt = 


This is a first order non-homogeneous difference equation of the form : Yt+1 + aYt = c.

In this case, the time path is : Yt
t

0
c cY ( a)

1 a 1 a
       .

Here Y = p, a = 



 and c = 
 


 
c

1 a 1



 


 =      
 

     

So, pt = 
t

0p        
          

 where p0 represents the initial price. Further,,

the particular solution is obtained by putting pt+1 = pt = p (say).

Then, p .p   
 
 

 or, p 1
    
    

  or, , p
     

   
.

0 Y

(Fig. 6.5)

Y1 Y2 Y3

45ºY

C + I
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So, p      
  

    
.

This particular solution 
 
   is the equilibrium price. We denote it by p . So the

time path of p is : pt = (p0 – p )
t

p 
   

The nature of time path of price will depend on the sign and value of 
 
  

. As 

and  are positive,
 
  

 < 0. Hence, 
t

 
  

 will be negative when t is odd and it is

positive when t is even. So, our time path will be oscillatory. The oscillation will be
explosive, uniform or damped according as  . These cases are shown in the figures.
In the figure 6.6, we have shown the oscillation when  > . In this case, there is explosive
oscillation in price.

In the figure 6.7, we have shown the case where  = . In this case, the price will
have constant oscillation.

In the figure 6.8, we have shown the case when  < . In this case, p will have a
damped oscillation.

0 P

D, S

(Fig. 6.6)

  > S

D
P0P

  
0 P

D, S

(Fig. 6.7)

  = S

D
P0P

    
0 P

D, S

(Fig. 6.8)

  < 
S

D
P0P

In this case, p will ultimately converge to the equilibrium value (however, technically
that value will be reached only after infinity period). We shall say that the equilibrium is
stable in the sense that the actual price will gradually move towards the equilibrium
value.
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6.5.3Multiplier-Accelerator  Model of Trade Cycle
(Samuelson’s Model of Business Cycle)

There are so many theories to explain business cycles. They may be divided into two
groups–non monetary theories and monetary theories. Schumpeter has given a
non-monetary theory of trade cycle in terms of innovations while Pigou has given a
psychological theory. Another non-monetary theory is the climatic theory of Jevons.
Among the monetary theories, the most important is the Hawtrey theory which seeks to
explain business cycle in terms of expansion or contraction in bank credit.

Samuelson has given a non-monetary theory of trade cycle. He argues that trade
cycles are created due to the interaction between the multiplier and the accelerator.
Later, Hicks further developed this theory. We shall briefly discuss Samuelson’s Multiplier
– Accelerator theory.

From the multiplier theory, we know that when there is an increase in autonomous
expenditure, the equilibrium level of income rises by a multiplier effect. Again, from
the Acceleration Principle, we know that a change in the level of income will bring a
change induced investment. This will again lead to a change in the level of income
through multiplier process. Thus, there is an interaction between the multiplier and the
accelerator.

According to Samuelson, the interaction between multiplier and accelerator creates
cyclical fluctuations in income. To show it, we consider a model which is based on the
following assumptions :

(1) There are two groups in the economy – households and firms. So, aggregate
demand = Ct + It.

(2) The consumption function is assumed to be linear. There is one period lag in the
consumption function. Ct = bYt–1 (0 < b < 1)

(3) The investment function is given by the acceleration principle. There is one period
lag in the investment function. So, It = v(Yt–1 – Yt–2) where v is the accelerator.

Now, equilibrium requires, aggregate supply of goods and services = aggregate demand
for goods and services, i.e., Yt = Ct + It

or, Yt = bYt–1 + v(Yt–1 – Yt–2)
or, Yt – (b + v)Yt–1 + vYt–2 = 0
Putting b (= MPC) = 1 – s i.e., 1 – MPS, we get, Yt – (1 – s + v)Yt–1 + vYt–2 = 0
This is a second order homogeneous difference equation. The solution of this equation

gives us the time path of income.
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Let Yt = xt be a solution. Then, we may write, xt – (1 – s + v)xt–1 + vxt–2 = 0
or, x2 – (1 – s + v)x + v = 0, (assuming xt–2  0).
This is a quadratic equation in x. Let x1 and x2 be the roots of this equation. Then,

2

1 2
(1 s v) (1 s v) 4v

(x , x )
2

     
 .

The solution of the difference equation can be written as,   t t
t 1 1 2 2Y x x

where 1 and 2 are two arbitrary constants to be determined from the initial condition.
The nature of the time path of income depends on the nature of the roots x1 and x2.

The sum of the roots, x1 + x2 = 1 – s + v > 0.
The product of the roots, x1x2 = v > 0
So, both the roots are positive.
Now, roots will be real if (1 – s + v)  4v
or, (1 – s + v)  2 v , or, (1 2 v v) s  

So, (i) 2 2(1 v) ( s)  and (ii) 2 2( v 1) ( s) 

From (i), we get, (1 v) s   or, v 1 s   or, , 2v (1 s) 

From (ii), ( v 1) s   or, v 1 s   or 2v (1 s) 

Case (i) : When 2v (1 s)  , i.e., v is less than unity, both x1 and x2 are less than

unity. Then t
1x 0  and t

2x 0  as t . Thus, there will be steady decline in the level
of income.

Case (ii) : When 2v (1 s)  , i.e., v > 1, then at least one of the roots is greater than

unity. So, either t
1x  or t

2x  or both will tend to  as t . In this case, as time passes on,
there will be steady growth in income.

Roots will be complex if (1 – s + v)2 < 4v. Proceeding as before, we get the following
condition : 2 2(1 s) v (1 s)    .

Here we get 3 cases.

Case (iii) : 2(1 s) v 1   . Here v is less than unity. In this case, there will be
fluctuations in the level of income and the fluctuations will be damped.

Case (iv) : 21 v (1 s)   . Here v is greater than unity. There will be fluctuations
in the level of income and fluctuations will be explosive.
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Case (v) : v = 1. In this case, there will be regular fluctuations in income.
Thus we get different types of time path of income depending on the values of the

parameters – s and v. In short, we can put our main results in the following table :

Range of v Path of output or income

2v (1 s)  steady decline

2(1 s) v 1   damped oscillations

v = 1 regular oscillations

21 v (1 s)   explosive oscillations

2v (1 s)  steady growth

The different cases can also be represented in the following way.
CBAO

1 (1 +   s)2(1 –   s)2

Suppose the length OB = 1 unit. OA represents 2(1 s)  and OC represents 2(1 s) .
Thus, if the value of v lies in the range OA, there will be steady decline and if v lies to

the right of C, there will be steady growth. There will be
oscillations if v lies in the range AC. The oscillations will
be damped in the range AB and explosive in the range BC
and regular at B.

Thus, we see that time path of income depends on the
values of s and v. For some combinations of values, there
will be steady growth; for some combinations there will
be steady decline; for some combinations there will be
oscillations, etc. The various regions are shown in the
figure 6.9 where we plot v on the vertical axis and s

horizontal axis.

We have plotted three functions : 2v (1 s)  , v = 1 and 2v (1 s)  . In region A,A,

we have 2v (1 s)  . In this region, there will be steady decline. In region D, we have
2v (1 s)  . In this region, there will be steady growth. In reagion B, we have

21 v (1 s)   and there will be damped oscillations. In region C, we have

0 s

v

(Fig. 6.9)

1
C

v = 1

A B
v = (1 –   s)2

v = (1 +   s)2

D
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21 v (1 s)   and there will be explosive oscillations. On the line v = 1, there will be
oscillations with constant amplitude. The oscillations take place in regions B and C

where v lies between 2(1 s) and 2(1 s) , that is, in cases (iii) and (iv) where the
roots x1 and x2 are imaginary.

The above model cannot be, however, used as a satisfactory model of trade cycle. In
the real world, trade cycles are more or less regular. But in Samuelson’s model, cycles
are regular if v = 1 which is a special case.

Secondly, in Samuelson’s models, trade cycles will be symmetric. But such a symmetry
is absent in the real world where depressions are generally shorter than booms.

However, this theory can be used as a useful ingredient of trade cycle theory. Several
models have been built up on the basis of this model. Hence it occupies an important
place in the theory of trade cycle. For example, Hicks has developed a more satisfactory
theory of trade cycle on the basis of this multiplier-accelerator model.

6.6 Application of Differential Equation in Economics

We know that differential equations are used in any economic model using time as a
continuous variable. In economics, we are interested to know the rate of change of
various economic variables over time like price, output, investment, etc. Such rates of
change can be known by applying differential equation. Hence there are so many
applications of differential equations in Economics. In this section we shall consider
two important applications of differential equation in the context of (i) Domar model of
economic growth and (ii) Price dynamics in a competitive model. Let us discuss them
one by one.

6.6.1Domar Model of Economic Growth

Domar has tried to find out the condition for steady state growth in a free capitalist
economy. He argues that investment has two roles. On the one hand, it raises aggregate
demand. On the other hand, it raises productive capacity i.e., potential output. To have
balance between demand and supply, investment should grow at a particular rate. Then
there will be steady state growth in the economy. Otherwise, the economy will deviate
from that steady state or equilibrium growth path. Let us consider the Domar model of
economic growth.

Domar mentions that investment has two effects. First, investment raises aggregate

demand through multiplier effect i.e., 
dY 1 dI.
dt s dt

 . We get this in the following way..

Equilibrium requires equality between planned saving and planned investment,
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i.e., S = I. It is assumed that S = s.Y, (0 < s < 1). So, we get, sY = I or, 
1Y .I
s

 .

It is assumed that S, I and Y all are functions of time(t). So, differentiating both sides

of our equation, we get, 
dY 1 dI.
dt s dt

 . This is our multiplier effect. Secondlyy, investment

raises or adds to productive capacity of an economy. Let P be the potential output and 

be the capacity capital-output ratio, i.e., 
P
K
   or, P = K. Assuming P and K as functions

of time (t), we can get dP dK. .I
dt dt

    . So, I adds to productive capacity..

Now, in equilibrium, productive capacity of the economy is to be fully utilised i.e.,
Y = P. We assume that initially there is equilibrium in the economy. So, Y = P. Now, this

equilibrium will be maintained in the next periods if dY dP
dt dt



or, 
1 dI. I
s dt

  . or, 
1 dI. s
I dt

  , i.e., if investment grows at the rate, s�.

We can find out the time path of investment. Here, 
dI s I
dt

  , or, dI s I 0
dt
   .

This is a first order linear homogeneous differential equation. Its solution is :
I(t) = I(0) e–(–s)t = I(0)est, where I(0) is the initial investment.
Clearly, the rate of growth of investment required for equilibrium is s.

This is actually warranted rate of growth (s/v) of Harrod : s = 
Y s ss.
K K / Y v

  .

Now, what happens if the actual rate of growth(r) is different from s? If the actual
rate of growth is r, then I(t) = I(0)e r t

Then, 
dI(t)

dt  = r.I(0)e r t

So, dY 1 dI r.
dt s dt s

  .I(0)e r t. This is the rate of change of demand for output.

Again, from capacity or supply side.
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dP
dt = I(t) = I(0)e r t  

r t

r t

r .I(0)edY / dt rs
dP / dt .I(0)e s

 
 

If r > s i.e., 
r 1

s


 , then 
dY dP
dt dt

 .

That is, demand rises at a greater rate than the productive capacity. So, there will be
excess demand and producers will further raise the actual rate of investment (r). Then r
will further diverge from s.

Similarly, if r < s, 
r 1

s



 and 

dY dP
dt dt

  i.e., there will be excess capacity. So the

producers will reduce the actual rate of investment(r). Then, again, r will diverge from
s. The producers are making the wrong kind of adjustment. This is, in Harrodian jargon,
known as knife edge instability. To maintain equilibrium, investment should grow only
at the rate r = s. Any deviation from such a razor’s edge will lead to either excess
capacity or excess demand. Then the economy will deviate farther and farther from the
equilibrium growth path. Hence the problem is popularly called the knife-edge problem.

6.6.2 Pr ice Dynamics in a Competitive Model

In a competitive market, price is determined by the interplay of demand and supply.
Let quantity demanded,

qd =  – p (,  > 0) ...(1)
and quantity supplied be
qs = – + p (,  > 0) ...(2)

Further, 
dp
dt = (qd – qs), ( > 0) ...(3)

Equation (3) implies that the rate of change of price over time is directly proportional
to the excess demand. We have to find out the equilibrium price and time path of price(p).

The equilibrium price (p) can be obtained from demand - supply equality, i.e. putting
qs = qd

or, – +  p  = –  p . or, ( + ) p  =  + 

 p  =  
 

...(4)

This is our equilibrium price.
Let us consider the time path of price. Substituting (1) and (2) in (3), we get,
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dp
dt = [( – p) – (– + p)]

 
dp
dt = [( + ) – ( + )p]

Now, from equilibrium price given by equation (4),

 +  = ( + ) p    
dp
dt = [( + ) p  – ( + )p]

or, 
dp
dt = ( + )( p  – p)

or, 
dp
dt + ( + )p = ( + ) p .

Putting ( + ) = k, some constant, we get,
dp
dt + kp = k p .

This is of the standard differential equation of the form : 
dy ay b
dt

 

Then the time path of y is : yt = yc + yp

or, y(t) = atb by(0) e
a a

    

So, in our context, ktkp kpp(t) p(0) e
k k

     
 as a = k and b = k p .

Thus, we get, p(t) = [p(0) – p ]e–kt + p  or, p(t) = [p(0) – p ]e–(+)t + p .
This is our desired time path of price. The first term on the R.H.S. is the complementary

solution and the second term is the particular solution.
As t , e–( + )t  0. Hence p(t)  p . This ( p ) is
the longrun equilibrium price. If p(0) > p , the time
path of p will approach p from above (fig. 6.10). If
p(0) < p , the time path of p will approach p from below..
This is shown in the figure. Here our equilibrium is
stable, as p approaches long run equilibrium price.

We should note that here particular solution gives
0 t

p(t)

(Fig. 6.10)

p(0)

p

p(0)
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the equilibrium price and the complementary solution gives the deviations from
equilibrium price.

We give below an example on price dynamics in a competitive model.

Example 6.13 : Demand and supply functions are given by xd = 100 – p +
dp
dt  and

xs = –50 + 2p + 10
dp
dt . Find the time path of p for dynamic equilibrium if initial price is

given to be ` 20. What will be the price at time t = 10?

Solution : From the demand-supply equality, we get,  –50 + 2p + 10
dp
dt  = 100 – p + 

dp
dt

or, 9
dp
dt  + 3p = 150  or, 

dp
dt  + 

1
3 p = 

50
3

.

This is a first order differential equation of the standard from : 
dy ay b
dt

  .

The solution of this equation is :

y(t) = atb by(0) e
a a

    

In our context, a = 
1
3 , b = 

50
3

.

p(t) = 
t /350 / 3 50 / 3p(0) e

1 / 3 1 / 3
    

 p(t) = [20 – 50]e–t/3 + 50 as p(0) = 20
 p(t) = 50 – 30e–t/3 is our time path of price.
As t , e–t/3  0. So, p(t)  50
This is the long run equilibrium price.
Now, if t = 10, p(10) = 50 – 30 e–10/3 (Ans.)

6.7 Some Problems on Dynamic Analysis with Solutions

Example 6.14 : Examine whether the market is stable if Dt = 30 – 5pt and St = 20 – pt–1.
Solution : Equating Dt = St, we get, 30 – 5pt = 20 – pt–1

or, 5pt = pt–1 + 10  pt = 
1
5 .pt–1 + 2.
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This is a first order non-homogeneous difference equation.

Its solution is : pt = (p0 – p )
t1 p

5
   
 

 where p  is the equilibrium price.

Setting pt = pt–1 = p , we get, 5 p  = p  + 10 or, 4, 4 p  = 10  p  = 2.5

So, the solution is : pt = (p0 – 2.5)
t1 2.5

5
   
 

As t , 
t1 0

5
   
 

. So, pt  2.5

Thus the equilibrium is stable. This can be shown mathematically.

Putting Dt = St, pt = 
1
5 pt–1 + 2

This is a first order non-homogeneous difference equation. To get its solution, we

first consider the homogeneous part : pt = 
1
5 pt–1.

Let pt = xt be a solution. Then xt = 
1
5 .xt–1

 x = 
1
5  (assuming xt–1  0)

 pt = 
t1

5
 
 
 

is the solution of the homogeneous part.

Then pt = H
t1

5
 
 
 

 is also a solution where the value of H is to be determined from the

initial condition (putting t = 0).
For getting particular solution, we put, pt = pt–1 = p .

Then we have, 1p p 2
5

    
4 p 2
5

  
2 5 5p 2.5

4 2


   .

So, we have 
t

t
1 5p H
5 2

   
 

.
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Putting t = 0, we get, p0 = H + 
5
2  H = p0 – 2.5

So, time path of p is : pt = (p0 – 2.5)
t1

5
 
 
 

+ 2.5

As t  , pt  2.5. If initial price p0 is less than 2.5,
it will gradually rise to 2.5. If initial price p0 is greater
than 2.5, it will gradually come down to 2.5.

This is shown in our figure 6.11.

Example 6.15 : Consider the stability of equilibrium in
the following dynamic model :

(i) Qd = 100 – 10p
(ii)  Qs = 25 + 15p

(iii) 
dp
dt = 0.10 (Qd – Qs)

Solution : Substituting (i) and (ii) into equation (iii),

we get, 
dp
dt = 0.10(100 – 10p – 25 – 15p) = 0.10(75 – 25p)

 
dp
dt + 2.5p = 7.5.

This is a first order non-homogeneous differential equation of the standard form :

dy
dt + ay = b. The solution of this equation is : y(t) = 

atb by(0) e
a a

    
.

In our context, a = 2.5, b = 7.5. So, b
a

= 7.5 3
2.5



Hence the solution of the given system is : p(t) = [p(0) – p ]e–2.5t + p

Here p  = b
a

= 3.

Alternatively, p  is the equilibrium price obtained by setting Qd = Qs, i.e., 100 – 10 p
= 25 + 15 p .

or, 25 p  = 100 – 25 = 75   p  = 3.

0 t

pt

(Fig. 6.11)

2.5

p0

p0

p 2.5



254

Or, setting 
dp
dt = 0, we get equilibrium p.

i.e., 2.5p = 7.5  Equilibrium p = p  = 
7.5 3
2.5



Thus, the time path of price is :
p(t) = [p(0) – 3] e–2.5t + 3
As t , e–2.5t  0   p(t) = 3
Our equilibrium is stable. Figure 6.10 represents similar idea.

Example 6.16 : Given Y(t) = bK(t), S(t) = s.Y(t).
Find the equilibrium time path of Y.

Solution : Y(t) = bK(t) K(t) = 
1 Y(t)
b

So, I(t) = 
dK(t) 1 dY(t).

dt b dt


Again, in equilibrium, S(t) = I(t) sY(t) = 
1 dY(t).
b dt

or, 

dY(t)
dt

Y(t)
= sb or, 

dY(t)
Y(t) = sbdt

Integrating we get, logY(t) = sbt + log c where log c = constant.

or, log 
Y(t)

c
 
 
 

= log esbt  Y(t)
c

= esbt  Y(t) = c.esbt

When t = 0, Y(0) = c
So, Y(t) = Y(0)esbt

This is the time path of Y.
Example 6.17 : Given that d

tQ = 120 – 0.5 pt, 
s
tQ = –30 + 0.3 pt and

pt+1 = pt – 0.2  s d
t tQ Q  and p0 = 200. Find the time path of price (p).

Ans. pt = 12.5(0.84)t + 187.5
Example 6.18 : Examine the dynamic stability of the equation :

Yt+2 – 11Yt+1 + 10Yt + 27 = 0.
Solution : We have, Yt+2 – 11Yt+1 + 10Yt + 27 = 0. This is a second-order non-
homogeneous difference equation. We first consider the particular solution. Here
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Yt+2 = Yt+1 = Yt = Y  will not yield any particular solution. So we try YYt = Y .t as a
particular solution. Hence, Y (t + 2) – 111 Y (t + 1) + 10 Y t + 27 = 0

or, Y t + 2 Y  – 111 Y t – 111 Y + 10 Y t + 27 = 0

or, –9 Y + 27 = 0, or, 9 Y = 27 or, , Y = 
27
9 = 3 is the particular solution.

We now consider the solution of the homogeneous part. Let Yt = Hbt be the trial
solution.

So, Hbt+2 – 11Hbt+1 + 10Hbt = 0
 b2 – 11b + 10 = 0, (assuming H  0 and bt  0)
or, b2 – 10b – b + 10 = 0
or, b(b – 10) – (b – 10) = 0
or, (b – 10)(b – 1) = 0
 b = 1, 10 i.e., (b1, b2) = 1, 10
The solution of the homogeneous part is : t t

t 1 1 2 2Y b b    where b1 and b2 are the
two roots of the quadratic b2 – 11b + 10 = 0 and the values of 1 and 2 are determined
from the initial condition. So, the time path of Y is : Yt = 1(1)t + 2(10)t + Y

or, Yt = 1 + 2(10)t + 3.
As t , Yt . So the time path is unstable.

Example 6.19 : Find the solution of the equation Yt = 10Yt–1 – 16Yt–2 + 14, given

Y0 = 10 and Y1 = 36.

Solution : The given equation Yt = 10Yt–1 – 16Yt–2 + 14 is a second order linear
non-homogeneous difference equation. Let the particular solution be :

Yt = Yt–1 = Yt–2 = Y    Y = 10 Y – 16 Y  + 14  or, 17 Y – 10 Y  = 14

or, 7 Y = 14   14Y
7

 = 2.

Now we consider the solution of the homogeneous part : Yt = 10Yt–1 – 16Yt–2.
Let Yt = Hbt be the trial solution.
Hbt – 10Hbt–1 + 16Hbt–2 = 0
or, b2 – 10b + 16 = 0 (assuming H  0 and bt–2  0)
or, b2 – 2b – 8b + 16 = 0
or, b(b – 2) – 8(b – 2) = 0, or, (b – 2)(b – 8) = 0
 b = 2, 8, i.e., (b1, b2) = (2, 8).
So, the complete solution is :
Yt = 1(2)t + 2(8)t + 2
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The values of 1 and 2 will be known from the initial conditions. Putting t = 0, we
have, 1 + 2 + 2 = Y0 = 10 given

 1 + 2 = 8.
Again, if t = 1, 21 + 82 + 2 = Y1 = 36 or, 21 + 82 = 34
 1 + 42 = 17
Solving these two equations we get, 1 = 5 and 2 = 3.
So the time path of Y is : Yt = 1(2)t + 2(8)t + 2
or, Yt = 5(2)t + 3(8)t + 2
As t , Yt . So, the time path is unstable.

Example 6.20 : Dt = 19 – 6pt and St = –5 + 6pt–1. Find the equilibrium price and the time
path of price. Is the equilibrium stable 2?

Solution :  Putting Dt = St, we have, 19 – 6pt = –5 + 6pt–1. or 6pt + 6pt–1 = 24,
or, pt + pt+1 = 4. This is a first order linear non-homogeneous difference equation. Solving
it, we shall get the time path of p.

Putting pt = pt–1 = p , we get the equilibrium price or the particular solution. Thus
p + p  = 4.  p = 2

We now consider the solution of the homogeneous part : pt + pt–1 = 0, or, pt = – pt–1.
Let pt = Hbt be the trial solution. Then, Hbt = –Hbt–1

 b = –1(assuming H  0 and bt–1  0).
Hence, complete solution is : pt = H(–1)t + 2. Putting t = 0, we get the value of H.

Thus, p0 = H + 2  H = p0 – 2. Thus, total solution is : pt = (p0 – 2)(–1)t + 2.
If t is odd, (–1)t < 0. If t is even, (–1)t > 0. So the time path will have oscillations.

Further, |–1| = 1.
So, there will  be constant oscillations. (Readers may refer to the figure 6.7 in which

we have shown constant oscillations of price).

6.8 A Note on Dynamic Optimisation

Optimum means the best situation or state of affairs. To achieve an optimum is to optimise
and a situation which is an optimum, is said to be optimal. So, optimisation means the
process or technique of achieving an optimal situation. When we optimise something,
we want to maximise or minimise something. For example, a consumer wants to
maximise utility; a firm wants to maximise profit or to minimise cost, etc.  In unit 3, we
have considered the problem of maximisation or minimisation of a variable without
constraint. Next we have analysed the problem of optimisation (i.e., maximisation or
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minimisation) with constraint. For example, we have deduced the conditions of utility
maximisation subject to budget constraint, or cost minimisation subject to an output
constraint, etc.

But those treatments were static optimisation. There we tried to find out a single
value for each choice variable, such that a stated objective function was maximised or
minimised. Such a process has no time dimension. In contrast, we introduce time
explicitly in a dynamic optimisation problem. In such a problem, we have planning
period from an initial time t = 0 to a terminal time t = T. Here we try to find the best
course of action during that entire period. Thus, the solution for any variable takes the
form of not a single value, but a complete time path.

The classical approach to dynamic optimisation is called the calculus of variation.
Later, a more powerful approach gradually developed. It is now known as optimal control
theory which replaced the calculus of variation. It uses the maximum principle to achieve
dynamic optimisation.

We may present a standard form of optimum control theory of dynamic optimisation.
Suppose we want to maximise profit over a time period. At any point of time t, we have
to choose the value of some control variable, u(t). It will then affect the value of some
state variable, y(t), via a so-called equation of motion.

In turn, y(t) will determine the profit (t). Our objective is to maximise the profit
over the entire period (0 – T). Hence the objective function should take the form of a
definite integral of  from t = 0 to t = T. The problem also specifies the initial value of
the state variable y, say, y(0) and the terminal value of y, say, y(T). In other words, the
model specifies the range of values which y(T) is allowed to take.

Now we may state the simplest problem of optimal control as follows :

Maximise 
T

0

F(t,y,u)dt ...(1)

subject to 
dy
dt ( y) = f(t, y, u) ...(2)

y(0) = A y(T) free ...(3)
and u(t) U for all t (0, T) [ implies belongs to] ...(4)
Equation (1) is our objective function. It shows how the choice of control variable u

at time t, along with the resulting y at time t, determines our object of maximisation at
t. Equation(2) is the equation of motion for the state variable y. It provides the mechanism
by which our choice of control variable u can be translated into a specific pattern of
movement of the state variable y. Equation(3) states that in the initial state, the value of
y at t = 0, is a constant A, but the terminal state Y(T) is left unrestricted. Finally, our
equation (4) states that the permissible choices of u are limited to a control region U.



258

However, it may also happen that u(t) is not restricted.

6.9 Summary

1. Use of Difference Equation : Difference equation is used when time is taken as
discrete variable. This equation gives us the equilibrium value of a variable and also the
rate of change of the variable over time.

2. Solution of a Difference Equation : Solution of a difference equation has two
components : complementary solution and particualr solution. The complementary
solution gives the nature of time path of a variable while the particular solution gives
the equilibrium value of variable.

3. Differential Equation : Differential equation is used when time is treated as a
continuous variable. The solution of a differential equation has also two parts :
complementary solution and particular solution. White the particular solution gives the
long run equilibrium value of a variable, the complementary solution informs us ablut
the nature of time path of the variable.

4. Application Difference Equation in Economics : Difference Equation has many
uses in Economics. In particular, with the help of difference equation, we may dicuss
Keynesion dynamic multiplier, cobweb model of price variations and multiplier
accelerator model of trade cycle.

5. Application of Differential Equation in Economics : Differential equation has also
many applications. In particular, with the help of differential equation, we may discuss
Domar model of economic growth and price dynamics in a competitive model.

6.1 Excercises

A. Short Answer Type Questions (Each of 2.5 marks)
1. What is static analysis?
2. What do you mean by comparative static analysis?
3. What is dynamic analysis?
4. Give the general form of a linear non-homogeneous difference equation.
5. What is linear homogeneous difference equation?
6. Give the general form of a first order linear non-homogeneous difference equation.
7. Write down a first order linear homogeneous difference equation.
8. What are the components of total solution of a difference equation?
9. What is the nature of time path of Y if Yt = 4(2.5)t + 10?
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10. What kind of time path is represented by Yt = 4(–0.5)t + 20?
11. State the nature of time path of Y if Yt = 5(–1)t + 30.
12. What is differential equation?
13. When is a differential equation used in a dynamic analysis?
14. When is a difference equation used in a dynamic analysis?
15. What is a cobweb model?
B. Medium Answer Type Questions (Each of 5 marks)

1. Distinguish among static analysis, comparative analysis and dynamic analysis.
2. Why is dynamic analysis necessary?
3. What is iterative method of solving a difference equation?
4. How can dynamic analysis deal with the Keynesian static multiplier when b = 1?

5. How will you treat the Keynesian static multiplier 
1

1 b
   

 when b > 1?

6. Mention some limitations of multiplier-accelerator model of trade cycle.
7. Solve the difference equation, Yt = 0.5Yt, given Y = Y0 when t = 0.

Ans. Yt = Y0(1.5)t

8. Solve the difference equation Yt – Yt–1
 = 3Yt–1, given Yt = Y0 when t = 0

Ans. Yt = Y0(4)t

9. Yt = Yt–1 + 6, given initial income = Y0. Solve the equation.
Ans. Yt = Y0 + 6t

10. At t = 0, Yt = Y0. Now solve the difference equation Yt – Yt–1 = 0
Ans. Yt = Y0

11. If Y = Y0 at t = 0, the deduce the time path of Y of the equation Yt – 2Yt–1 = 0
Ans. Yt = Y0(2)t

12. Given Ct = 200 + 0.75 Yt–1, It = 50 + 0.15Yt–1 and Y0 = 3000, find time path of Y. Is
the equilibrium stable?

13. Write a short note on dynamic optimisation.
C. Long Answer Type Questions (Each of 10 marks)

1. Describe the process of solution of a first order linear difference equation.
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2. Describle with suitable examples the process of solution of difference equations by
iterative method.

3. Consider the problem of dynamic stability of equilibrium of the time path
Yt = Abt + Y0 taking different values of b. (A = constant).

4. Describe the process of solution of a second order non-homogeneous difference
equation.

5. How will you solve a first order linear differential equation?
6. Explain how Keynesian multiplier theory can be dynamised and its inconsistencies

can be tackled when b  1.
7. Describle the cobweb model of price fluctuation taking first order difference equations

of demand and supply functions.
8. Explain the multiplier accelerator model of trade cycle as formulated by Samuelson.
9. Analyse the Domar Model of economic growth in order to explain the concept of

knife edge instability.
10. Using differential equations, describe the process of price dynamics in a competitive

model.
11. Dt = 18 – 3pt, St = –3 + 4pt–1. Is the equilibrium stable?
12. Consider the following multiplier-accelerator model : Ct = Yt–1, It = (Ct – Ct–1)

and Yt = Ct + It. Here,  = 0.9 and  = 0.5. Find the time path of income (Y) and
examine the nature of the time path.

6.11 References

1. Allen, R.G.D. (1953) : Mathematical Economics, St. Martin’s Press.
2. Chiang, Alpha C. (1984) : Fundamental Methods of Mathematical Economics,

McGraw Hill Book Company.
3. Chiang, Alpha C. and Kevin Wainwright (2003) : Fundamental Methods of

Mathematical Economics, McGraw Hill Education.
4. Mehta, B.C. & G.M.K. Madnani (1997) : Mathematics for Economists, Sultan Chand

and Sons.
5. Chiang, Alpha C. (1992) : Elements of Dynamic Optimisation, McGraw Hill, New

York.

—————




	Cover_Mail4
	1-6
	7-49
	50-110
	111-155
	156-186
	187-222
	223-260
	Cover_Mail1

