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Unit 1 Open sets of reals, continuous functions,
Functions of bounded Variation

(Algebraic and order properties of real number system 1 Supremum and infimum of sel of reals;
Completeness of R; Interior point and limiting point of a set of reals; Open sets and closed seig in
I, Structure of an open scl a5 a Countable Union of disjoint open intervals, Contimity and Uniform

Continuity of a real-valued function of a real variable. Monatone functions, points of discontinuity

af # monetone (unction, functions ol bounded variation, Representation of 4 lunction of bounded
variation by monolone [unctions. ) )

§ 1.1 Let R denote the set of all real numbers.

Algebraic propertics of R : There are two binary operations namely arithmetie (i)
addition, denoted by + and (ii) 'nulliplication, denoted by, respectively in R such
that (I, +) is a commutative gioup and (R, ) Is commutative semi-group with
multiplicative identity = | € R such that non-zero numbers of R have multiplicable
inverses and following disteibutive Laws hold in (R, +, ).

(D) For any three members @ b and ¢ in R where a. (b + ¢) = ab + a.c and
(@ + ble=ac + be

Properties listed above under (1), (i1) and (D) taken all together are field axioms
in abstract algebra, and we say that R is a field.

Notations : Tet (a) N denotz the sel of all natural numbers e, N = (1, 2, 3,
s M AM )

(b) Z denate the set of all integers (whole numbers) +ve, —ve and zero ie.,
2= ova =3y =2y = 05 172, 335)

¢y members of R written as © where a. b £ Z with b=0 be identified as
b

rational numbers, and Q denote the set of all such rational numbers ve, —ve and
Zero,

The numbers of R/Q) arc said to be irrational numbers, meaning that they are not

ratios of integers, There are many irrational numbers like 7 —5./7., Ingl% , @ elc,




§ Order properties of R :

Definition 1.1.1 Given two members a, b R, we say a < b if and only if b -

@ is non negative and < delines an order relation in R. For example, by Induction, .

cvery natural number »n satisfies n > (.

Theorem 1.1.1 If a ¢ R satislies Q< a<g for every |+ ve g, then ¢ = @

: . _ I
Proof : Assume the contrary, and let o be +ve, Take & = 3 Then 0 < & 24 So
it is not true that ¢ <¢  for cvery + ve &£, The conclusion is ¢ — 1.

Remark 1 Product of two + ve numbers is +ve. However posilivity of the product

i two numbers does not imply that each factor is +ve. There if ab=0, then either

a>Gand hb=0ora=0and H =0

2. If ab < 0, then g and b must possess opposite signs each being non-zero. )

aif a= 0
Absolute Value ; For g ¢ B, let] = 0 ‘,f a=0
—aif g= 0

Theorem 1.1.2 (Triangle inequality) if o, h € R, la+b|<|a|+ b

Proof: Here —|a|sa<|a| and —|h|<b=|b|. So
a Fhslal+|b] {l]
From az—la| we have —a<la| and similarly —b<|h| giving

—(a+h)<|al+]b| &)
From (1) and (2) 4 (a + b)<|al +[b|. That is to say |a+b|<|al+B],
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Corollary ; For, a. b € R, ||f:|—|h||5§é:—-#;§,
Because lal=|a—b +bl<|a—h|+|b|
or f la|—b]=|e-b| | (1)
Interchanging « and b we have

\bi-lal<|b-al = la b @)
(1) and (2) give 4(|¢| -Ih_l}ﬁlﬂ—bh and hence |lal-|b]|<|a-bl

Definition 1.1.2 For a non-empty subset A of R,

(a) A issaid to be bounded above if there is a fixed number K £ R such thal a<y

[or all @ €A, and then K is said to be an upper bound for A.

(b) A is said to be bounded below if there is a lixed number k £R such that k<a

for all g €A, and in (his case k is said to be a lower bound for A.
(¢) A is said to be bounded if it is hounded above plus bounded below.

(d) A is said o be unbounded if it is not bounded.

Definition 1.1.3 (a) il A is bounded above, then the number M ¢ I is said to be
the least upper bound (Lu.b.) or supremum (sup) of A if (i) M is an upper bound
of A and (ii) glven any Vo &, there is a member a €A (depending on &) such
that a =M-+. -

(b) If A is bounded belaw then the number m & K15 said to be the greatest lower
bound (g.L.b.) or Infimum (Inf) of A if (i) m 's a lower hound for A and (ii) given

any +ve &, there is a member @ cA (depending on &) such that g =m+e.

Theorem 1.1.3 I'A and B are two non-empty subsets of R such that a<h for all
a e A and Tor all b € B, then
Sup A < Inf T3




Proof : Let be B, then a<b forall @ eA. So b is an upper hound for A, and hence
Sup A < b,

ie b=Sup A

This inequalily stands for all b ¢ B; thus Sup A is a lower bound for B, and hepce
Inf B=SupA, or SupA >Inf B,

§ 1.2 Intervals in R

Order relation < in R invites a natural family of subsets of R called intervals, Tf
and a.b eR g < b, then the subset { xc R : g < x<b} 1s called an open interval,
denoled by (g, b) with a as the left-hand and point and b as the right-hand end paint,

II"end points are adjoined lo open interval, what resulls in is the closed interval
denoted by [, b] = {x €R:azx<h}. Similarly onc has left- -open and right-open
miervals like (g, b7 and [a, D).

Fach of these intervals is a Bounded set of reals and its length = b —a.

Sets of the fom {x eR : x > a} = (a,%) and {x eR:x <a} = (—=a) are called open
hall-rays or infinile open intervals. Hmulml}r we have infinite closed intervaly like
|at, =) and (-, &], There is a caution, + = are not numbers e 4 =gR; They are
symbols of some limits.

Example 1.LL If f: [0]]2 R and g |0)]]2 R are two lunctions oiven by
fix) = x* and g(x) = x for O<x<l. Then (a) SUP [(x)< SUF' g(x)

(b) \HF f(x)= Lllfgrrj Which one is rue? Give reasons.
1)

Solution. Kore x?<x in Dexel
or, f(x)za(x) in [0,1]

12




Therefore, (a) Ii:ﬁl[]f'{x}-gxi}l[{: £09; In fact, LH.S. = RIIS = 1

Ilere (b) is not true. Because, f{x) < Hﬁﬂ for all x,ye|o, 1] for instance, taking x=1

=00 0 T fom 1]
and y =5 we find /(1) = 1;:2 —g[z :

Completencss of R : Lvery non-empty sel ol reals that has an upper bound
possesses 1S supremum.

This property of R also called as supremum property is the property of completencss
of R. The analogous property for infimum may be obtained as ollows :

Suppose B is a non-empty set that is bounded below. Then A = {-b:bcB}is a
non-cmpty sel that is bounded above, and by supremum property A has the supremum,
say =i €R. It is easy to check that — u=Inf B.

Remark, In view of compleleness property R is also called a complete ordered
field.

Archimedean property of R : If a is any real number, there is a natural number
n N such that » = a.

I,

1 1
An application : If E= 1 ,E.,;} then In[ E = 0.

s3] =

Solution : L is a sct that is bounded below and Inf E exists; say = v Also y=0
(0 is a lower bound of ). Let &>0 be arbitrary. Archimedean property shows

1 | .
that there is a natural number n €N such that #> e —<g, and 0z v <— <£. As
n i

e=() is arbitary, we have u = (L

Density of rationals in R : Between only two real numbers there ar¢ many
rationals.

Corollary If x and y are real numbers with x <y, here is an irrational z in
between ¥ and

13




Because by Densily property of rationals we find a rational » such that

¥
S LLLA {}1{i

V2 2

S0z = J2r is an irrational number with x <z < .

Example 1.1.2 Let /7 [a,b] = R and g:|a.h] = B be two bounded lunclions, then

(1) Sup { F(x) + g (x)ia <x < b} <sup {f(x)a<xz<b) + sup {g (x)a < x < h)

and
(1) Inf { f(x):a<x<b} +1nf {g(x)acx=h}

<inf { f(x) 1 g (x)q < x < b).

Solation : Let My= Sup { [(x):a < x < b} and Let Mg = sup {g(x) 1@ < x < b},
Now f(x) = Myand g(x) < Mg for a < x < b; Then the f(x) + g(x) < M £+ Mg right-
hand side is independent ol x in [a,] : So we have sup sup{ f"(x} +e(x)} = M M,
for all x in [a, b] and therefore (i) follows. Similarly (ii) Holds.

Fxample 1.1.3 If A and B are two non-empty bounded sets, and
A+B=[a+bae A and be B|. Show that Sup (A + B) = Sup A + Sup B.

and, Inf(A + B) = InfA + InfD3.

Solution : Since A and B are non-empty bounded sets in R, We have g < Sup A

and /< Sup B whenever ac A and be B. So g+ b < Sup B,

Thus sup fa+ b c A and be A} =Sup {A +B} < Sup A+ Sup B. (1)
- A
Given a | veg, there is a member ¢y €A such that a; > SupA — 5 (2)
£
und there is a member by e B such that by> Sup B — 5 - Therelore

14



ag+ bg > Sup (A) (B) — &, where (a,+ byt € A+B. Now coupled with (1) we
have Sup (A + B) = SupA + SupB. Similarly one gets Inl (A + B) = Inl A + Inf B,

§ 1.2

We study sets of points on the real linc-geometric continuum corresponding to
arithmetic continuum of all real numbers. When we say that point x ltm on right of
the point y we arc guided by order of reals to have in mind that x

Definition 1.2.1 A poinl x; of a set A of reals is said to be an interior point of
A il there is an open interval (a,b) with x, € (a,b) = A
Thus an interior point of A is a member of A.

51
For Example if A= (0, 1) U {3 =7 [ then every clement l the open interval

(0.1) is an interior point of A, but none of 3, =7 and Zof A is so. Also a finite
subset ol reals has no interior point; Also the set Q of all rationals 1s devoid of any
interior point. '

Definition 1, 2. 2. A xuhwt G of R is called an open set if all its points are
interior points,

For example if G = (=1, + 1) U (2, 3}, then G is an open Set withoul being an
open interval; A closed interval [a, b| is not an open set hecause its cnd points
although being points of the closed interval arc not interior points of the closed
interval.

Definition 1.2.3  Given a non-empty set L of reals a number 1 ¢ R is said to
be a limit point of L if every open interval containing u shall meet L at a poinl other

than .

Explanation : Il w £ R is a limit point of B+ ). then open intervals like (1 —
5, 1+ 8), 5> 0 (5 may be as small us one pleuses) shall cut E at a point other than
- in faet, (=5, v ﬁ}ﬂL containg many members of E other than u. Geometrically,
i is not away from L. It is as close Lo Li as one imagines 3 but i is not necessarily
4 member of E. Also il u is nof a limit point ol I, then we find @i open interval like
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(- By, 1+ &) Sasty such that (u ~0y, u+8,)E is either emply or equals to
singleton {u}

Theorem 1.2.1 A real number i (eR) is a limit point of a non-empiy sel I if

andonly if there is a sequence {x”} ol distinel members in E such that limax, =«
n

Proof : Necessary part of the condition is not obvious and we need proving i,
Let u be a limit of E. So open interval (xg—L, x; + 1) attracts points of E otfer
than

| ; . 1 |
lake one such and call it ¥y : Now take a point Xy € (Eﬁ[m— = r;+—j;-]] other than

1 1)
uand x, : and at nth stage of this process take 1, E [Eﬁ["—;- H#+ ;D different

from u, x; x| Xy - Then continuing this process we obtain a desired sequence

I 3
(x4 in L satislying |4 —x |<——085 20 That means ";“ ¥n= g,
Fy

Corollary : A non-emply finite sel of reals has gol no limil point, In Ihjs'-i
connection we may quote following theorem.

Theorem 1.2.2 (Bolzano-Weirstrass Theorem) Every bounded infinite set @
i

reals has a limil point.

Remark : An unbounded infinite set of reals may not have a limit point, Ft%f
- example, the set N of all natural numbers supports this contention,

Definition 1.2.4 - A subsct G of R is said {o be closed if all limit points of G
belong to G.

1

el | : e
l'or example. the set {l.;.? ..... —.,..D} 15 a closed sef; because only limil point

ol the set is zero and that is a member of the set. Also every finite set of reals is
a closed sel.




Theorem 1.2.3. Every open set of rcals is a countable union of disjoint open

intervals in B.

Proof : Let G be an open set and x ¢G. So x is an interior point of G, and attracts
an open interval 1 = ( ah) with x € (b)) G Put A = lae R (a,x] = G} and let
h=Tnl A _:If-=<) then Lg G by the pmpea:l}r of Infimum. A may be —.

In a like manner taking H_ = {be R:[x,b)c G}, and pu= Sup H_, we find
W g G and p may be + o Identify this largest open interval 1 = (&, |t ) with x with
property x el =(A, n)c G in the sense that A, pdo not belong to G,

Clearly then the family {L}.. 5 ol open intervals satisfies G=1__‘:’GJ*'. Now we

show that if w,v e G with uzy, then either I =1 or L, ~ 1, = ¢.

Suppose zel AL, s IFT, =(A, W) and I = {h,s 1), we have A, <z<p and
h,< z <, Now we show that &, =4, : otherwise either (i) &, <A, or (i) A, < X, ;
In case (i) &, el = (&, B, )C G — a contradiction that end point A ¢ G.Similarly

(ii) leads o a similar contradiction. Hence & <7, and in exactly similar manner one

checks that p, = p,; thatis L Al #¢ means T =1,

Remaining part of the proof rests on showing that the family {L, } .5 of non-
overlapping open intervals is in fact a countable family of disjoint members. Let an
enumeration of the set Q of all rationals be Q = (ry 75 ooty o). Clearly each 1,
attracts member of Q. Choose the member of Q in T with smallest index » in the
cnumeration as stated above, If n(x) is the smallest index n identify 1. with T,.n. In
(his way, collection of distinct open intervals [, as x € G is putin I I correspondence

with a subset of N. So the family is countable, and the prool is complete.

Theorem 1.2.4 A subsct G of R is open if and only if its complement (R\G) is

closed.
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Proof : Let G be an open set in R, and F = R\G, and « be a limit point of F: If » eF.
then u ¢ G, and u is an interior point of G, because G is open. So there is on an open
interval, say (u— 8, u + 8), 8> 0 such that (u-8, u +8) € G. Clearly, (w—8, u + 8),
~F=$—a contradiction that u is'a limit point of I. Thus we show u ¢ F and [

is closed.

Coversely, suppose (R\G) = F is closed, and take Xy €G, and hence x; ¢ F. So X
is not a limit point of I' because F is closed. Thus one can find an open interval, say,
(xg — 8, xy—d ), 80 such that (x; — 8, x; — 8 )1 is either emply or a singleton {x.ﬂ},
As xq g F, we have (x; — 8, x5 + 8 )~ F = ¢ showing that (g — 0, x5 +8) € (R\F)=G
» thal means x, is an interior point of G. As Xy is any arbitrary member of G, it follows

that G is open.

Remark : The words “open’ and ‘closed’ may be interchanged without making Theorem
1.2.4 false.

Theorem 1.2.5 Any Union of open sets in R is an open set,

Proof : Let {G_} ., be a family of open sets in R and G =G, and take x G,
oed k
Then x G, for some oA ; As G is open, x is an interior point of G, and there is

an open inlerval, say, (v -8, x+ 8 ), 8 >0 such that (x — &, x1 § h € G,cVGa=G
xed

[lence x is an interior point ol G ; and G is shown as open.
Theorem 1.2.6  1I Gy and G, are two open sets, then Gy N G, is an open set.

Proof : If (iy 1 G, = ¢, then we take emply set as both open and closed, G, n G,
is open. Suppose w (G G,), and then u is an interior point of G| and G, Thus we lind
open intervals, say, (-8, u + 8§, ) c Gy, and (v —8, utd,)c (5, (8, 20). Taking
o as 0 <=8 <min (8,5,), it follows that (-8, u + 8) ¢ (G m Gy). So uis an interior

point ol (G M ;). Tlence G| 1 G, is an open set.
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Remark 1 By induclion intersection of a finite number of open sets 1s a open set,

Remark 2 Intersection of an infinite number of open sets may not be an open set
in R.

|
For example, take 1, = an open interval = [—;;] for n=1,2....... Here ¢ach

L, is also an open set and m I, = {0} = a singleton and it is not an open set. In fact,
n=1

each singleton is a closed sel. Further there may be a set in R without being open
and closed. The setl Q of all rationals in R is neither open nor closed. Also there are
sets in R that are both open and closed. In fact, we show later that emply set ¢ and

sel R itself are only sets in R that are each closed and open (clo-open).

By a straight application of De-Morgan’s rule we have Theorems analogues to
those of Theorem 1.2.5 and 1.2.6 as under.

Theorem 1.2.7
(a) lntersection ol any number of closed sets in R is a closed sel.

(b) Union of a finite number of closed sets in R is a closed set.

Remark Arbitrary Union of closed sets may not be a closed sel. For example,

"
n+1

let us take F = [ﬂ~ } Then each F, is a closed set (being a closed interval);

Here UF”— [0L1) which is not a closed set.
=1

Definition 1.2.3 A set £ of reals is said Lo presses Heine-Borel property if every
open cover for E has a finite sub-cover.

Note : Notions ol open cover and compaciness have been given and discussed
in some details in Metric spaces (sce UNIT 8 §4.1), Taking R as a metric space with

usual metric all results in a metric space in relation to compactness shall apply in R.

Theorem 1.2.6 (a) The closed interval [a,b] (a<b) 1s compacl.
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Proof : Let [« /] be nol compact ; we seek a contradiction. Then there is an open

cover. Say & = {G,, }oea of |a, h] that admits of no finite sub-cover for |er.b].| Then at

- . a+ i g .
least one of the closed sub intervals [ﬂ', :Eb]and [ﬂ;éjﬁ]say-_

[.::]J}E][él — = djis not covered by a [inile sub-family ol £ We continue this

process to construct a decreasing sequence {|a b ]} such that

: A b—a
(i) [ayby] 2[a5.b5]2...0]a,,b, 1= with By =ia= —EH n=1,2,.. and (ii) None of

closed sub-intervals |a b, | is covered by a finite sub-family of £ By Cantors

"

interection 'heorem we have ﬂ [a,, b,|= asingleton, say, = {u}. Now we|a,b] invites

[TE |
a member, say, G, of § with ueG, and hence we have an open interval (u—
dur + 8),6 =0 so that (v —6.u + 8),c G,. Now choosc n appropriatcly so large

.'.'5—53

thal < Oand that wela,, byle (v 8,4 + 8),c G,. That means, for such p, la,.b.]

wt

has a finite sub-cover oul ol &~ a contradiction as desired. The proofl is complete.

Theorem 1.2.7 A subset I of reals is compact if and only if it is closed and
bounded.

Proof : Lel E the compact, and take ue(R\E) and keep u fixed. For each v €E,
we have uz Vv, we can find two open intervals say (1 - 8,u + 8) and (v — 8, v + 8).(8 =0),

such that these two open intervals are disjoinl.

Now consider the family {(v - 8,» + &)}, ,: of all such open intervals (v - &.v + 8);

As an open interval 15 an open set, this family is an open cover for L. By compactness

. of E there is a finite sub-cover ol this family to cover Ej say (v, =6, vy H &),

(v — By +85) Ay, =B, v, + 8,). That is fo say,

20



L
BEc i
,U'[‘“r' 8;,v; + )
i=1
‘Then corresponding open intervals (u —9; u + &;) with mid point # give an open

interval (H—Er:f.-i' 5] where (< § < min |81 10 8]

Clearly [:;—E_:H E)E (u—b;, u+d) fori=1, 2, .... nand thercfore
(r:—t;n, u+5)t_ (v LRI Eur.} =i h-.-:cguse

(-8, ut ﬁr-}ﬁ{'l"r'_ﬁi v +8) =1

l'rom (1) we have (r.r—g, 0+ S) ~E=0

or, (u —d,u+ E) A (R\E) ; thercby # becomes an inlerior point of
(R\E); and (R/F) is open and hence L is closed.
To show that E is bounded, we know that R = U (—nm): So ECR =R- U

n=| n=1

(— mn). Thus {{ m tn)},— o 1S an open cover for E; Since L is compact, we have

a finile sub-cover, say (—m; & #) (=15 o F g, (g b o ywhere we assume
nﬁ”z{'"{nﬂ' Thus E = U':_”J ) = (=nygn ¢). Ience L is bounded.
i=1

Conversely, Let E be a bounded and closeld set of reals, and Let EC[a,b]. Suppose
1G, 1, I5 @0 Open cover for E. Since R\E is open, we find that the family
G}, A U(RAE)] is an open cover for |4, b] and by Theorem 1.2.6(a) it is compact.
Thus onc gets a finite sub-cover say G, Gy,..., G, and possibly (R/E) for [ah],

Clearly Gy, Gyyery G, forms an open sub-cover for E. Hence E is shown to be

compuct.

21




Example 1.2.1 Let A and B be two non-empty bounded sets of reals. Then A = B
implies mf B<InfA < supA < supB.

Solution. Now InfBzbh forallbe B
S0  InfB<a ila e B (because A<B).

This gives Inf B <InfA and rest of incquality chain follows from Definitions.
So one has Inf B <Inf A < supA <supB.

-Example 1.2.2. For a bounded set A of reals if T' = {|x — y|:x,ycA}, show that Sup
A-InfA=Sup T.

Solution : Since A is bounded we have the sel T as a bounded set,
If x,yeA we have x—p<|x—9|<Sup T
or, x<supl +y

Il'y remains lixed this ineqality shows that SupA <y + SupT or, SupA — SupT<y,
Letting y free we get SupA — SupT<InfA

or, SupA — TnFAiSupT (1)
Again SupA = x for all xeA, and InfA < y for all yeA.
So SupA —InfA > x—y for all x,yeA.

Interchange of x and y does not change I..11.S.; So we have supA-inf Bzy - x for
all x,y €A,

Combining them we have SupA —InfA >i(x - y) of all x, yEA
ie. SupA —TnfA z|x—y| of all xyeA
This inequality pives  SupA - InfA > SupT (2)

From (1) and (2) we get SupA — InfA = SupT.
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5 13
Let |@ b |(a < b) be a closed interval and £ :[a,b]+R be a function-and let g<e<h.

Definition 1.3.1 {is said to be continuous at x = ¢ if corresponding to =0, there

is a = ved such that | /(x) - f(c)|<c whenever | x-c|<d. ie. ¢ - &<x<c+ 8.
If ¢ is an end point like @ or b, the incquality has to be tailored accordingly.

fis said to be a continuous function over [a,b] if £ is continuous at each point

ol |a,b].

Note : lreatment has been made for properties continuous functions in some
details in metric spaces. See UNIT 7, §3,1 R is also a metric space with usual metric
and all those results for continuous functions shall apply irrespect of real-valued

continuous functions of a real variable,

Definition @ 1.3.2 f:|a,b] R is said to pe uniformly continuous if’ corresponding
to a + ve'e there is @ + ve 8 such that | f(x;) — (x;)| <€ whenever v, —x,/<& as x;
x4 €|a,b].
From the Definition it is a outine exercise to see that il /s a uniformlly continuous
function, then fis a continuous function over [a ,b] but converse is not true. Because
fix) = x| over open interval (0,1) is a continuous function without being unilormly
continuous there. -
Every uniformly continuous function over [a,b] sends a cauchy sequence in [a,b]
into a similar such sequence.
Proof : Let {x,} be a cauchy sequence in [, 5], let e=0 be given in advance. By
uniform continuity there is a + ve 8 so that | f(x) = f(#)|<c whenever |x — u[<6. Since
{x,} is cauchy, uurra..:spnndi_ng to this + ve & we lind an index N such that |xﬁ—xm|“:.iﬁ

whenever mm = N.
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Now by choice of 8, we find f (x,) — [(x,)|<e whenever !ﬁ —i-;| <8 form,m=N. That
means the sequence { f(x,)} is cauchy.
Remark : The word ‘uniformly” can not be removed from Theorem 1.3.1. Bec:ﬁuse,

=3 :
consider the continuous function £(x) =—over open mterval (0,1) Here ftransforms
X

cauchy sequence {;} mto a non-cauchy sequence {n}in R.
§ 14

Delinition 1.4.1. A lunction /:|a.h]—R is said to be monotone increasing (1) if

f(x)) = fx;) whenever gz Xj<xs<h.
It 15 said to be strictly monotone increasing if f(x)= f(x,) whenevr a SX <X5<h,
IL 15 said to be monotone decreasing (1) if [ (xy)= f {xzj whenever ¢g< X< x,5<h,

Remark 1 11 f:[a,b]=R is 1, then [is |, and vice-versa. This permitls us to

consider only 1 [unctions in many problems.
Remark 2 11 7:[a,b]~ R is |(or) | then is a bounded function.
Theorem 1.4.1 Tet £:ab|=R be an | function, and a<c<h: Then
. him f ; e e ~ ;
(i) AR (Lelt-hand limit of 7 at ¢) = Sup { f(x): g<x=<e)
lim [ . i a . i
(h) = 2 (right-hand limit of fat ¢) = Inl {f(x): a<x<h}.

Proof : (a) Il a<x<c, we have f(x) < f(c) because fis 1.
Now the set { f(x):a < x<c} has therefore an upper bound = fle).

S0 supif (x):a<x<=c} = L (say) exists. Let £ > 0 be given. So we find X, with x_<¢

with f(x.)>L —&. Now if 0=8, = ¢ — x; \and c-5_<x<c we have L- e<f(x )</ (x) < L,
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This gives, | f(x) L= & whenever ¢ — d.<x<¢.That means lﬂ"}: J (x)=L=Sup {[{x)a

<x< ¢}. The proof for (b) will be similar.

Corollary : Let f:[a.h] *Risan | function, and a<c¢= b. Then lollowing statements
arc equivalent.

(1) f is continuous al x = .

(ii) Sl.l}‘.l [ f(xha<x<c} = in;n_ f=f(c) = Inf={f(x):c<x<b}

Remark : It is an easy exercise lo show that [is cmnl.inuaus at lefl-hand end point
x = g ifand only if [ (a) = Inf{f(x):a<x<h}: or equivalently if and unl}f'iff(a)—‘:i[l :
 Similar conditions shall apply at right-hand and point x = b.

Definition 1.4.2 If f:[a.b]»R is an | function, and g<c<h, then Jump of f at

X =¥+ H—pe— "

=20 dennlt:d by Wy (e) = lim - lim f

Explanation : 0 <wg(c) = J‘_}"?_} s I‘i:fl_ f.

= Inf { f(x)e<x<b]-Sup{ [(x):a<x<e|.

Fx =i we define w(a) = x]il?+ f— f{a)

and if x = h, we dcfine wr(b} =f(h) lim

x-vb—
From the corollary above it is now clear that for an 1 lunction [ in [a,b] and
a<c<h, fis continuous at x=¢ if and only if w(c) = 0.
Writing [ (¢ + 0) = }Lﬂ fxyand f(c—0) = LT_ f(x), we have the jump

W (&)= F(e+0) - f(e=0).

25




Theorm 1.4.3 Let /;[a,b]~R be an | function,

and x, =u <X <k, <h = X,..q then

(fa +0) - f(a)) + i{f{xk T0) = (o = 0+ (fF(h)— /(b - 0)) <f (b) ~f(@)...(*).
|

Proof : Take x;< V=X (k= 0,1,2,....n); Then we have

FOt 0 = (6=0) < f—fy_) k=12,..n

fla+0)f(a) < [(y)) =1 (a), and

f(b)—f(h-0) < f(b)~ f(p,). On adding all the above (*) follows.

Theorem 1.4.4  Let f:[a,h]=R be an | function. For >0, the sel
= e, blwy(x)>a} is a finite set,

Proof: If x; x, ..., x, are members of G, using (*) we find n.a< f(b) - f{a) or
Hﬁ& (f(b)—f(a)). So n must be finite.

Theorem 1.4.5 Let f:[ab|-R be an | function. Then the set of points of

discontinues of /is a countable set.
Ly . :
Proof: Put G, = fxala,b]:mf(x) }—] for any +ve integer n: when the required set
"

of points of discontinuity of fis equal to UG". Theorem 1.4.4 says that each GH

n=1 .

i5 a finite set, and U(-'" is a countable set.

n=l
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§ 1.5. functions of bounded variation :

Let f:[a.h]~ R be a function and let

P : xy =a<x;<X,<.. <X, ;<x,— . be a partition of [a.h],
-l
Put V.= Z | Fxg ) =yl Clearly V=0 always,
P=0 P

Definition 1.5.1 Lu.b. or Sup [VF for all Partitions P = [xg, xy,..., x,] of [a.b]} is

b
called the Total variation of fover [a b], denoted by V £
FI i d - -
IV + oo, then fis called a [unction of bounded variation in [a,b].
ol

Example 1.5.1 A monotone | (or! ) function over[a.5] is a function of bounded

variation.
Solution : Let P = {x, —=a<x;<x,..<x,=b} be a partition of [a,b], and then

V, =1 Gey) £l HH £ ) = F et H ) = Gy )

)= F G 7 5g) — (i)t £3) £ (x, ) in ase when fis e | function
giving £ ()2 £0, ) 112500 1.

— #(x,) = f(xg) = £ (B) - £(a), which is independent of the partition P of [4,b]. So-
V7= 1) -f@ <.

The same will the conclusion in case fis a lfunction.
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Example 1.5.2 Let f:|a,h]~R be a differentiable function such that | /' (x)|<K fm
some K in g<x<b, then fis a function of bounded variation in [a, b].

Solution : Let P = {x, = a<x;<x,<..<x, =5} be a partition ol [4,b]. Then by Mean-
valuc Theorem of Dillerential caleulus we have

£~ () = -
(=12

xXpq) [ () Tor seme u; between x,, and x

est). Thus [ £0e) =7 (e )l = | x

X% 17 ()l <K= x, ) fori=1, 2.,

ivaily

Thus V, —-§I F6) 1 (xp) < KZ,U- 0i1)= K (r.~ 15) = KXb— ) whichins

fi
independent of Partition P of [a,b], and therefore V £= sup{V_}<K{b ) < e Hence
i

f is a function of bounded variation in [a,b]

Remark : By an arpument as in Example 1.5.2 one can show that ever i Llpuutﬁan
function in [a.b] is of bounded variation in [&,b]

Remark : We have seen in Example 1.5

.1 that a monotone [unction (may he
discontinuous) is a function of bounded variation in [&,5]. A continuous function

may not be a function of bounded variation as shown is Example 1.5.3

Example 1.5.3. Lel /:[0,]] *R be defined as

f{x)

xsin-ﬂ?, if D=x=l
*
= it »=0

!
Show that ‘[{ = |

Solution : For a natural number » take the parlition E of |0,1] as
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2 2 e
p”=tﬂ<_ “ I ';":T{]] Then we have
& 2

2+l 2n43
Aaca G- G)
‘fﬂ}“ f(%]lf(zfﬂ +ﬂ)+...+[%+%}|% |

Vo ~f(-2n%)_f (GJ\ "

So Sup {V, b = +oa, although fis continuous in [0.1].
i

Theorem 1.5.2 If f:[abh]=R 15 a _ﬁmctiou of bounded wvariation, then _f s a
bounded function.

Proof : Let {Tci w0, and P =(a,— xy<x;=x<x,=b) be a Partition of |a.b].
b
Then V}.sv( f)
b
or | f(x) - f(a)iH] f(b]'—f'{x}lﬂf{f}
b ' '
Clearly | f(x) f(H]IEL-f'I-5<‘;’tf}- So | f(x)= f(x) - fla) 1t f(a)

i
<| £(x) =)+ (@)<Y (£) + |f (a)| which is independent of x.
So fis bounded in [a,5].

Example 1.5.4 If [q,h]-R is continuous, and F(x)= J fdr;asxsb; ghow that
i
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?F{i + @ and estimate "E’(F}.

Solution : Since fis continuous in [a,b] we know that F is differentiate in [a,b]
with £ (x) —f(x) n a<x<b ; and further by continuity of fit follows that F' becomes
bounded in [a,b]; So I possesses a bounded derivative in |a,b] and hence F is a
function of bounded variation in [a,b]. Now to obtain value of "E" (F) let
Pla = xy=x <. <x;, <., <x,=b) be a partition of [a,h]. and we have Vy, (in respect

of l':l ;2| F'[ka] = F(x.'f ]i

k=1)

By Mean-value Theorem of calculus we have F(x,. ) - F(xk}:{xk-l—xk}

F'{Hk}={xk,| - %) [ (uy) where xp=<u<x;.,.

i n :
Thus V, —ZIF(le} —1"{).:;‘}{—- ;Z[.{XHI =) S ()l R 1S, representing a
k=0 =

Reimann sum (Corresponding to P) for | f| over [a,b]. Considering all partitions P

of [a b] including the case of norm ol P going to zero, above shows that
b
¢(1:) = _[lﬂﬁ'?-
¥ a

Theorem 1.5.3. The sum, difference and Product of two funclions of bounded

variations are functions of bounded variation.

Proof : Letfg:[a b]+ R be two functions or bounded variation in [a, b|. The proof

for sum and dilference f+g as functions of bounded variation in [a,b] is casy and

left out. Let p(x) = f(x)a(x) in a<x<b. Take M ='§‘:£ TG0 and K _-:E:E&J a(x)]. If
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P = (0 = xp<xy xS SXy K S X, = b) be a partition of [a,b], we have

|P{3'f,q-+|) = P(H;’Lﬂ fxg, e ) =1 (xpelxy, P (e gbeg) — f'(xk}gka}l
=180 N 7Gxy, )= f(xk)HI ffx_a[}ltg(ﬂﬂ] glele K] f (xgsq) —f'(xk]l

+M | 8(¥psy) — g(x)| 3 This inequality leads to
[ h
& p=KV[f+M {J @
i i o

Theorem 1.5.4 Let {?’(;"] < e, g<c<h, show that ‘Ef'{f} - "E'(f) | {'J{_f},

Proof ¢ Let yy —a<y; <. <y, ~ ¢ and z, = c<z;<..<z,= b.

w—]

—1
and let "'l.n"ﬁ%lf-(]{;“ (=10l Vz'—Z]'f{zm) _f{z-k}l'
Now yﬂ_—a{yl{_”};m—g=zn{zl{,,,"—:Zn=b becomes a

Partition P of [a,h], and V = V| +V,. Clearly V| + V; = Vl,s.{"{f]

£ [
This leads to "::{f'} b {;’(f} g:f(f) : (1)

Apain take a Partition Pla = xy<x;<... <x,=Cc<¥xp, | <. <x,=h) being careful to
take x—¢ as a point of division, denote ¢ = x,,.
|

m-l =1
This partition gives V, Zﬂ]f{xhl] 1@y +k_2|;f'(xk+l} ()
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or V=V (P) + V,(P)
e L]

<NEPHY ()

Then R.H.S. being independent of P we have

P T i LI

Vn<Vn+ Vi Ne)
fr ¢ A

From (1) and (2) we have V (1 )=V (/) + V(7).

i ' ]
Theorem 1.5.5 (Jordan Theoram) : If V /< + o« then /= Difference of two |

[unctions in |a,b].

Proof: If a<x<b, then i}f'i s, Put m(x) — {r{ ), and n(ag) = 0. We show that
I s i

n|eb|=R is an | function.

] x & fi
Theorem 1.5.2 says that  V(/) + V()= V() : and hence n(x) is an |
a X & .
function in, |a,b]. Now put y(x) = n(x) — f{x) in asx<h

Here il a<x=<p<b we have y(y) = n(y) = f(y) = i"( =1
X ¥ 6 :
YO+ VD) -0y =5+ V() - 1)
Hence y(y) —v (x) = n(x) +‘f{ 1) =1 y)—mx) +f(x)
-F -
:YU} (F0) - f(x)
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Since f(y) - f(x) = ‘if{ {). above gives y(¥) —y(x) = 0

or Y(1)<Y0)

So v is an | function in [a,b] and we have f (x) = n(x) —y(x) for a<x<h.

b
Corollary 1 If V ( f) < +eo, the set points of discontinuity of is countable.
o

[
Corollary 2 If V () <+, then fis Riemann-integrable over [a.b]
o
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Unit 2 Lebesgue Measure of Sets, Algebra of
Measurable Sets and Measurable Functions,
convergence in Measure

(Lebesgue measure of a bounded open set and closed set: Lebesgue Exterior and
Interior measure of a bounded set; sub-additive properties; Measurable sets; algebra
ol measurable sets; measure of limit set of an increasing sequence and decreasing
sequence of bounded measurable sels; Measurable functions and their al gebra, limit
¢l a sequence of measurable functions; convergence in measure.)

§ 2.1

Lebesgue measure of bounded interval (open or closed or open at one end point
and closed al other) is equal 1o its length. So measure of an open interval (a, b)
(a=Db) is denoted by m (a.b)=b-a.

Definition 2.1.1 Measure ﬂi'_e}. bounded open set G, denoled by m(G) is equal to

zm[ﬁ]whcrc G= Ijl Oy, and {5, } is a countable family of disjoint open intervals.

] % n=l

Explanation : Since G is assumed to be bounded we have 2, 7(8x) < +eo As
n=1
measure ol an open interval is +ve, we have m(G)>0 always unless G is empty in
which case we put m(G) = 0,

Theorem 2.1.1 If a bounded set G = EG,,, where each G is open,

n=1
then m(G)= Z‘W{G**}.
=l

Proof : Ilere G is a bounded open set because each G, is open and

Let G= iUI Ak where {Ag} is a countable family of pairwise disjoint open intervals,

and similarly let G”=&|:|[ 8% whierc {EEHJ}BIE pairwise disjoint open intervals for




eachn =1, 2, .... Now m(G) = Zm{ﬁ‘-*}  Let €0 be given arbitrary, There 1s an index
b=l

N 1o satisfy Zm(&”{ £

=M+l
N
So that we have, m(G) <y m(Ap)+E M
=
For cach k = 1.2, ... N take an open interval 1, = closure L= 7,CA;

£
such that mmk]{mﬂk} ifF E (2)

M
Then from (1) we have, m(G) < Zmﬂ&)+2E ' 3)
k=l

"
Clearly finite-union U I is a bounded closed set and hence is compact.
k=l

U]G,,- = L{pﬁk That means { s } o forms an open cover fm'
= a=l k=1 -

Again Ulk =
=l

N _

BET by compactness of U Li. Let E-”’ 82, .., Off bea [inite sub-family of

N - ol 1 n 1,
{5?}},5 ;2 to cover IU1 Le. Clearly U‘“"CU“’ C(EIL”UE:E?}U...UE&:)-
Ll i B k=1 k=1

Since T, °s are disjoint, we find, Zmﬂ#]—"{UIé]{m( )-I- +m( )

=1 k=1

As SE“}cumm'. from G, we have,

N =
Zmu;,}me{G") @)

k=1 =l




Combining (3) and (4) we find m(G) S X m(Gu)+2e.

.'F=[
As € >0 is arbitrary letting £ = 0, we obtain
m{U]Zm{Gu}.
=l

Definition 2,1.2 Measure of a bounded closed sct F is cqual to m(F) = B-A—m(I¢),

where [A, B| is the smallest closed interval containing F and Fé= complement of I s [A,
B].

Fxplanation: F¢ is a bounded open sel; because it is a complement al closed set F

(in | A, B] and we know how to find m(F®). Tf T is empty, since empty set is also taken

as open sct and we have assigned its measure = 0, Further m(I') is always non-negative.
Example 2.1.1 [a, b] (a < b) is closed interval then m lab] = b —a.

Solution : Tlere I — [4,h] is a bounded set such that the smallest interval containing
I is = [eb] and hence F = |, So we have mla,b] = b - a-m(by=b — a

Example 2.1.2 Tet [a).5,], [a5.85]...., la,.r, ] be a finite number of pairwise disjoint

" i

tlosed intervals, and let I'= {UIJ:M’-E’& I then m(I') = E(fﬁﬁ —da).
: L e

Solution : Take closed intervals in order of increasing values of left end points: then

E{ ﬁl (k=1,2,..., n—1). In that case [ay.b,] is the smallest closed interval to contain Ii;

and complement

e = {Iﬁ' | 1{‘;?}U(h2-\aﬂ.}ﬁ_"nnautbarhI ,ﬂ”_ i

-1

So we have m(F) = b —a, - Z(r‘i’x-n —b)= Z{h — ).
=] le=] ¥
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Example 2.1.3 1 G is bounded open sct and F is a closed subset of (i then () <m(G).

Take a closed interval [a.h)> G. Then wrile |a.b]| = GuJF“: So b - a = m(G) +m(I'%).
Hence h-a-m(F¢)<m(Gi.e.,m(F)<m(G).

Theorem 2.1.2 If G is a bounded open set, then
m(G) = Sup{m(F) : I is a closed set = G},
Proofl : Il F is a closed subset of G, we have (See Example 2.1.3)

m(l)=m(G). _ (1)

LetG= UB# where §,'s are mutually disjoint open intervals, and so m(() Um{ﬁ;,-).
b=l k=1

Tet £ > 0 be given arbitrary. We find an index N such that

T

m{ﬁ;.}}m{ﬁ}—ﬁﬂ'lz (2)

£

; £ '
Now choose intervals |a,, b ]-8, satislying by ag > m(d,) - N for k=1,2,.....M.

M
Put F= El[dhfﬂb] : Then F is a closed subset of G such that,

N M E
b=l =1 2 .
E & ;
=m(G)— 5_ . from (2).




=m{G) - &

This inequality along with (1) shows that m(G) = Sup{m(F): I’ is a closed subset of
Gl.

Theorem 2,1.3 1 F is a bounded closed set,
then m(F) = Inf{m(G): G is bounded open set > F}.

Proof: Take A to be an open interval > F. So complement FS(=A/F) is a bounded
open set. Given a + ve €, Theorem 2.22 says that there is a closed subset HeJe®

such
that, m{H>=m(F°) —&.

Put P — (AIL) then P is a bounded open set contaiming I' such that,

() = mA —m(H)<m(A) — m(E®) + & =m(F) + &.

T'hat means we have completed the proof,

Theorem 2.1.4 II'F; and I5 are two bounded closed sets with F(nF; = ¢, then

m(E uF )=m(F ) +m(F,).

Proof: Let £ > 0 be given arbitrary. Now choose two bounded c_-peﬁ sets (3, and
(__L;. satistying G; 2 F, and m(G,)=<m(l’ }+ (i =1, 2) (See theorem 2.1.3).

Now take G = G,uG,. Then G is a bounded open set > (Fyul,) such that

m(F uFy) < m(G) = m(Gy) + m(G,) < m[F.Ij +m(l,) +e.

Since &£ > 0 is arbitrary, we have

m(FuFy) < m(F) + m(F;) (1)

Now by property of real number with usual metric we find two disjoint open sets B,
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and B, such that B, > I; (i= 1, 2). Again corresponding to a pre-assigned + ve g, we
find open set G such that G = (F,uliy) and m(G) < m(l’,uF,) + &. '

Clearly then B;nG and B,nG are disjoint bounded open sets containing F, and F,
respectively; and we have,

m(F') + m(F,) <« m(B{nG) + m(B,y N @) = m(B,nG) u (B,nG))

< mG=m(FuF,) + & (Since (B n G) v (B,nG) = () This gives

m(F )+ m(Fy)zm (FuFy)ase >() is arbitrary. Combining (1) and (3) we have

m (F u Fy)=m(E ) m(lis). : (2)

Corollary : If Fy, F,, ..., F,, are bounded closed sets that are mutually disjoints then
i

m(l’ UFu..UF ) :E "(EL).

§ 2.2. Let E be a bounded set of reals.

Definition 2.2.1 Lebesgue exterior measure of E denoted by m#(L) is defined as,
ms(E) = Inf{m(G) : G is a bounded open set containing E(G 2 E)}.

So, we always have 0<m#(E)<+e.

Definition 2.2.2 Lebesgue Interior measure of E denoted by m#(E) is defined as
m#(E) = Sup{m(F) : I is a closed subset of E}

So. here again 0zm*(E) < e,

Theorem 2.2.1 m* (L) <m™(L).

Proof : Take G to be a bounded open set containing E. Then for a closed subsel of
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F of E we have F ¢ E = G and hence m(F)=m(G); also m+(E)<m(G). This being true
for any bounded open set G 2 E, we find

m(L)<Inf{m(G) : G is a bounded open set} = m+(L3),

o

Theorem 2.2.1 If a bounded set E= E] Eg» then m*(E)= Zm* (E).
=] k=]

Proof : II"E:f"?“’-*U*:*{']I diverges, we have finished. Now let Em*(E@):: +ea, Tuke
k=l k=1

€ > 0 arbitrary, We find a bounded open set Gy = E, such that,
L] * E
m(Gy) = m*(Ey) 1 27(!'::= 1.2 5

If A is an interval o F, Then Ec A HUG,{-; S0 we have
k=1

m*(E}Em[ﬂﬁ lj G'.r,]zm[ U(A ﬂG;.)J < Em{ﬁﬁﬁ,&]ﬂ Zm{'G,{-)EZm*(E}}+E
#=l b k= k=1 k=1
As &> 0 is arbitrary we have proved the theorem.

Theorem 2.2.2 If a bounded set F= El E, where Ey’s are pairwisc disjoint,

then m*(E)= i me (5.
k=1

Proof : Given an arbitrary + ve & we find for a fixed index n, a closed subsel

E
Iy = B satisfying m(l) =ma(LE,) P (k- 1,2,....,n). Now F, 's are pairwise disjoint

because L's are so. So we have _{Sea Theorem 2.1.4)
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M‘(E)EVW[ZI‘,{-] ml[Fé]::-Zrm(Lﬂ £
k=1

As >0 is arbitrary we have rm{E]zZ’”‘fE”-
k=1

Now lel n be free, so that m*{F,}>z me(Lig).
. k=1

Theorem 2.2.3 Let A be an open interval containing E, then

mHEY + mo(A/E) = m(A).

Proof : Let £ 0 be given in advance. Then we lind a closed set F < (A/L) with
m(F)=m*(A/L) — &, Now the set G = (A/F) is a bounded open set containing E such
that, '

m*(E) < (G) = m(A) — m(F) — m(A) — m«(AE) + &

As £ >0 is arbitrary we have m’(E) + m*(A/L) < m(A) (1)

Again assume & > 0 is arbitrary, and find a bounded open sct G, such that G=E

with m(Gg)<m*(E) + %

Let us write A (as given) = (A, B) and choosc an open interval (a.h) — A such

£ R
that, A <a<Al 3 and B — i{h{B. Now put G = (AnG,}u(A,a)u(b,B)
So G is a bounded open set o E having property m(G)<m*(E) + &

Further, A/G = |a, b1n(G) (Complement of G = G

and hence (A/G) is closed, and since F=(A/E) we find,
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me(AL) 2 m(F) = m(A) —m(G) > m(A) ~ m*(E) —=.
As g > 0 is arbitrary we have
ms(ALE) 2 m(A) — m™(E)
or, m*(E) + mo(ALE) = m(A) (2)
From (1) and (2) we obtain m*(E) + m.(A/E) = m(A).

§ 2.3 Let E be a bounded set of reals.

Definition 2.3.1 E is said to be Lebesgue measurable if m.(E) = m«(E). and this
common value is called Lebesgue measure or simply measure of I denoted by m(E).

Theorem 2.3.1 If a bounded sct E = Ej E4 where each EFf is a measurable set and

Fy's are pairwise disjoint, then E is measurable and m(E) ‘—E m(Eg)

Proof : The proof rests on following chain of inequalities

im{ﬁ,{,} = i m=(Ep) <m(E) <m* (B) < imf' (Ei)= im(E;—).
k=1 k=1 k=1 =1 :

Remark : The property of Lebesgue measure as in Theorem 2.3.1 is also known
(called) as countable additivity property.

Theorem 2.3.2 Union of two bounded measurable sets is a measurable set. (Sets
may or may not be disjoint).

Proof : Let E, and E, be two bounded measurable sets and Let E=E,uli,. Given
a tve & we find closed sets I}, F, and bounded open sct (3, and G, satisfying
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£ e = :
[cEeG; with m(G }fim*{Eﬂ b= =m(E)+ 7 and m(F,) =ms(Ey) — ;7 = m(E, }-E_
Therefore, m(G ) — m(F)<e/2 ¢ '1111:1 similarly an{Gz} m(LF,) <ef2. Now put G =G uG,

_ and F=I'|uF,. Then F is closed and G is a bounded open such that FcEcG such that,

m(F)zm (Ey=m*(E)=m(G) (1)

Now G/I is open (we may write GnF') and it is bounded. Hence G/F is measurable.
Write G=(G/F)u F, where members on r.h.s are disjoint. So we have,

m(G) = m(G/F) + m(F).
ie., m(GIF) = m(G)— miL).
Tn a like manner we have m(G/F) = m(Gy) — m(Fp), k=12

We now cheeck out G/F=(G /F;)u(G,/F 5), 85 every member is hounded and open
we have,

ar, m(G/Fy=m(G la"Fl) + m{sz' F2] <g

or, m(G) — m(F)<e and from (1). We deduce m*(E) — m (E) <e. Ase> 0 is arbitrary
we have m*(E) = m*(L).

Corollary 1. Union of finite number of bounded measurable sets is measurable.

Corollary 2. Intersection of a finite number of bounded measurable sets is a
measurable set.

- Corollary 3. Difference ol two bounded measurable sets is a measurable set.
Because if E dncl E, arc two bounded measur able sets and E = E/Li,, we write,

[ =EnE, where Ey is complement of E, in an open interval conlaining both
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E, and EE

Theorem 2.3.3 I a bounded set E = H Lt where each I 3 18 measurable, then E

is measurable.

Proof ; Here write B, = l_-LI
B, = F.EU_'LI

B,=E;\E (WU uE ()

Clearly, E = {U[ Bi, where B ¢ 8 arc measurable and are pairwise disjoint, and so

Theorem 2.3.1 applies to complete the proof.

Theorem 2.3.4 Tntersection of a countable number of bounded measurable sets
is a measurable sel. :

Proof : Let L~ nﬂy where each E, is a bounded measurable sot clearly E is
k=1

a bounded set. If E = ¢, we have finished. So let E#¢, Now let A be an open interval
2L, and put A, = ANE, (k= 1.2,...).

Then E = AnE = ﬁr{ﬂ[&] n(ﬁﬁhk:' ﬂ Ek. Thus (A\E) = U(ﬂ\ﬁk] So

Theorem 2.3.3 applies to show that (A\E) to be mcaxurablr: and hence E is measurable,

Theorem 2.3.5 Let {E,} be an increasing sequence of measurahle sets, such that

U Ei=E is bounded. Then E is measurable and m(E) = | I”—“ m{L,,]l
k=]

Proof: We write | = EJUEEU...
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= Bju(E\E Ju(Eg\Ey)u....

Where members on 1.h.s. are measurable sets that are mutually disjoint. Then we have
Eto be measurable, and further,

m(l_"l,j =m(E;) + m(EL\E ) + m(E{\E,) +-

=m(E, )+ (m(E,) - m(E})) + (m(Eq) — (Ly))t--

That is to say, m(L) = hm {m{:Ei}-ﬁ-Z(JH(F&H}—JH{E,{:}}}

=l

= lim m{l""}

i —
Theorem 2.3.6 Let {Li,} be a decreasing scquence of measurable sets with E,

bounded and E = DIEL Then E is measurable and m(E) = jl’nl m(En).

Proof : The proof is done on complementation method and on appi}rmg Theorem
2.3.5. Let A be an open 111tcnfal >E;. We then have {(A\E,)} as an increasing
sequence of measurable sets, and (é. \ E}=(£ﬂ M E,g) U (AN F,{-] with (A\L)

J=l k=1
as bounded. So Theorem 2.3.5 applics here, and we have,

m(A\L) = lim m(A N Ly ).

fi—rea
That is to say, m(A) —m(E) = lim (m(A)—m(Ex))
[ b i

= m(A)— lim m(Liy)

-y
That is what is wanted.
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Example 2.3.1 If [ is a bounded measurable set show that there is a subset 'k such
that F is a countable union ol closed sets with m(F) = m(L). (F is called a Borel set like
F).

o

Solution : Corresponding to —I-(n = a natural number) we find a closed subset F cE
n

such that m(F,)=m(L) l

i

Put F= U F,. Then F5F, and hence m{F]am[F"}ﬁm(E)—%

|
laking y — < , we have m(l')z m(E) (1)
On the other hand FoL gives
m(E)<m(E) (2)
(1) and (2) gives m(l*) = m(E).

Example 2.3.2 If E is a bounded measurable set show that there is a set TSE such
that T is a countable intersection of open sets with m(T) = m(E). (T is called a Borel set
like F,).

Solution : Given a natural number n, we find a bounded open set T, containing E':‘i'ﬁ..
|
T,~L satistying m(T, ) < m(E) + -
S !
Set 1= L Then T<T, gives m(T) <m(T,) < m(E) +;.

Taking »# — =, we have,
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m(Ty=m(E) - (1)
Again ToE gives
m(T)=m(E) . (2)
(T) and (2) give
m(T) = m(E)
Tet E be any unbounded set of reals.

Definition 2.3.2 E is said to be Lebesgue measurable if for each +ve integer a1, the
bounded set E, = [-nn|n K is measurable.

If E is measurable, then m(E) is defined as m(L) = ?ﬂ’im(ﬁn]-

Explanation : Since all sets E, are measurable (Assuming L to be measurable), we
see {Li, } forms an 7 sequence of hounded measurable sets; and hence the sequence
(m(E,)} is an | sequence ol non-negative reals, and that has a limit finite or +e.. Hence
m(E) is either a finite non-negative real or + ..

Example 2.2.3 Show that the set R ol all reals is measurable and find m(R).
Solution : Here L, = [- n,+n]NR
= [-m,n] is a closed interval (n being atve mnteger) = a bounded

measurable set with m(E,) = 2H —3y oo A5 H — . S0 (1) R= Ut i, and is therefore
4 H=

measurable, and (ii) its measure m{R)= tim Liy({Ex })is an T sequence of measureable
e

sets) = +oo.

Remark Lvery open set of reals is measurable. Because il' G is any open set, then
for each +ve integer 1, put G, = [-n.n|nG.
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= | I
Then G = QI{(—H—?H +EJHG}; all members on rh.s. are bounded open sets,

and are measurable ; So each G » 1s measurable. We can in like manner show that
every closed sel of reals is also measurable.

Example 2.3.4 Il m*(E) = 0, then E is measurable and m(E) = 0.

Solution : We have 0<m(E)<m*(E)=0. That means my(E) = m*(E), showing
that E is measurable, and m(E) = 0.

Examjﬂe 2.3.5 Every countable set of reals is measurable and i5 of measure
LET,

Solution : Tet E= (% X2 %q,..X,...) be a countable set of reals and let €0 be
given arbitrary. Take an open Tnterval I, withx, €1 and m(I”)f-:_E__

H

Then [julyu.ul u..= G is an open set Sk,

: — - <ry -
“Therefore m*(E)< m(G)s Y. m(ln)sey, 5, =& As £>0 is arbitrary, e haye
=1 T

m*(E) = 0. That means E is measurable and m( E)=10.

Application : The set Q of all rationals is measurable and m(Q)=0. Because Q
is a countable set,

7 1 B .
Example 2.3.6 Let L= U(n-—,ﬂ+—];l'mdm(h}_

=2 n H
. i = : : 2
Solution : Here, il ), =|#——,n+ - |, then each E,, is measurable with m(E, ) = o
n n

Therelore E = U2 Ly is measurable with
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:ﬂE):im(Eu}:Z——EZ =2. lim Zl

=2 n= 2 "= 1 N=per n=1 i

Example 2.3.7 Let E= [j (rz—i,n+%), Find m(E).
=1 n #t

1 l
Solution : ere if Fn = (H— % ,ﬂ+;] then each I is measurable with

1
m(E }— i= T and m(E) = Zm(Fu) 22

=l

Remark : There are non-measurable scts of reals.

§ 2.4 Let E be a measurable set and f:E~R be a function,

Definition 2.4.1 /:E-R is said to be a measurable function if for every real number
o, the set {xeE: f(x)=a} is measurable.

Notations : The set {xeLl: f(x)=a} may shortly be put up in the form E( f>w).
Similarly, sets E( f=a). E(f=a), E(f =a), E( fzo) and E(a< f<h) bear usual
meanings.

Example 2.4.1 Every function {: E-R is measurable if E is measurable and
m{E) =

Here the set L f>w) is a subset of E and consequently, F( f>a) has measurc
zero, because m(L) = 0.

Definition 2.4.2 Two functions £ g: E~+R arc said to be cquivalent if m
E(f+g =0 Iffand g are ::quivalem' functions over E, we use notation [~ g.

Expl:m':tmn If f ~g over [, the subset A of E where A = {x eE, f(x) 22(x)}
has measure zero ie, f(x) = gx) for xe(E\A) where m(E\A) = m(L). We say that
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fand g agree almost everywhere in T,

Definition 2.4.3 If a property P holds for all points in E except for points of a subset
iy, oI E with m(Eq) = 0, it is said that P holds almost cverywhere or simple g.¢._

For example, it is an casy exercise to sce that if /: E~R isa measurable function and
f~ gover L, then g : E-R is also measurahle,

Theorem 2.4.1 If /:E~R is measurable function then for every real number o, the set
L( /> o) is measurable.

. O 1
Proof : write B( f>a) = [ E(,f >0 —; ] then each member in r.has. is measurable,
H=

and hence ih.s. 15 measurable,

Corollary : For any real w, [( /= o), E(f <) and E( f< @) are measurable.

Remark : If one of sets E( f2a), I( /<o) and E( /< a) is measurable for every
real w, then [ is a measurable function.

Example 2.4.2 A bounded set E of reals is measurable i and only if its
characteristic lunction Xg Is a measurable function:

Solution : Let Ec[ab); Then Kelo) =1 il xel

=0 if xe([a,b\E)
Suppose, Characteristic function Xp:[a.b]=R is measurable.
Then E = {x €[a b]: Xp(¥) =0}, which is measurablec.

Conversely, if L' is measurable, we have for any real o
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& it ozl

The set {xc|a bl:Xg(x)=a} = {Eﬂ :F gi%{l

where cach member on 1.h.s. is a measurable set.

So Xpisa measurable function.

Theorem 2.4.2 If fand g : E~R are two measurable functions then E( /2 g) and
F( [ = g) arc measurable. '

Proof : Write E( f=8) = B(/(¥) # g(x) = E(/(x) = glx))UE(f(x) = g(x)).

I we represent all rationals as ry.rg, i,

Then we have E(f(x)= gl(x)) =EI{E( f(x)=r)n E(g(x) <)) since each member

on th.s. is measurable it follows that Lh.s. is measurable.

Similarly, we show that B( [(x) < g(x)) is measurable, and hence E( f = g) is
measurable; Finally, that L( f= g) is measurable is ‘clear,

Theorem 2.4.3 1f f:E~R is a measurable function; then

() f+ k (k is any real constant) (ii) k f (k any real constant)

1
(iii) | (| and [ 2 and (iv) — (when f(x)20 over E) are all measurable functions

f

over E.
Proof : Let oo be any real number.
(i) Write E(f + k=)

= F( f>ua k), ths set is measurable because [ is s0.
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(i) Itk = 0, (any conslant function is measurable), the statement is O.K. for k » 0,

o
El f=—|if K=
['f K)I

write E (k /=) o

Bl f=—|if K<0
[f K]]
Thus kf'1s measurable.

{iiilElilf'I:*Ci}= E it <D
' E(f>o)UR(f<—w) if a=0

Hence | £ is measurable.

; 3 E i @<
and [ f }(I}:{E(Lfl}ﬁ} il oz0

So /2 is measurable.

(iv) for f(x)# 0, we write,

E(/ >0) if w=90
F[L}{x]=JE{f}ﬂ}ﬁE(f{l] il @=0
i o

L{fbﬂ}ﬁ[ﬁ{fﬂﬂjﬁﬂ[f‘ﬂé]]; it @>0

L

1
This way measurability ol f follows.

Example 2.4.3 Every continuous function fi[a,b]=R is a measurablé function.
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Solution : Let o be a real number and then (o) is an open set and because ['is
continuous, /! (=) is an open set. That is, the set E=f1(cL)
={x e|a,b]: f(x)>a} is an
open sel and thercfore is a measurable set, Ilence [ is a measurable lunction.

Example 2,4.4 If F* exists in [¢,b] then F'1s a measurable [unction in [a,b],

Solution : Tet F(x) = I(h) for x = b. So thal we write,

l{x+ l]—F(x]
I'(x)= lim — % — = lim n[F[

fr—he2 By

H

x +lJ—F{x)] = lim §aulx)

n

where @,,{_1-):;;(F[x+lj_1?{x}] in a<x<b. By continuity of F each ¢, is
s

- v . M a it z - & 3
continuous. and henee is a measurable function in [a,5] Thus F as point wise limit
of {&,} is measurable function in [a,b].

Theorem 2.4.4 (Algchra of measurable functions)

If £ ¢ : E~R are measurable [unctions, then (a) f+2(b)feand (c) f/g (g=l) are
measurable functions.

Proof : (a) for any real @, g + a is measurable. So B(f =g + a) is measurable (see
Theorem 2.4.2) : Now write B( [/ g=a)— E( f>g + a) and that settles measurability
of s f—g Forfi g write f | g — [ (—g) and result [ollows,

L i .
(b) Write £ (x)g(x) = {(£ () + 8(x)%) — € /(x) £ (D)}
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So Theorem 2.4.3 applies and fg is measurable over E.

(c) Write for g(x)=0, j; x) f (¢ ) = ) — and apply Theorem 2.4.3. The proof is now

complete.

Theorem 2.4.5 Let { f:E~R} be a sequence of measurable functions and let

f(x)= hm fu(x) as xeE. Then f:E=R is measurable.

e ]

Proof : Let o be a real number and keep it fixed to consider

AL = [ﬁ. S0+ L
T

) and BYY = ﬂ Al
. k=

When m and & are natural numbers,
Clearly, abjove sets so constructed are all measurable sets. We show that

L{ f'}[],} = U BE}T]

=1

Let x, €E( f>w); so that f (xy) = a, and then we [ind a natural number m such that

|
[(xy) = o+ —- As { f(xp)} converges to [(x,). we can find an n such that for k 2

1
we have filxi) > DH‘;-

That means x, € ALY for k2n; then x; egland hence x, ¢ U 1Bm Thus
HH=

Ef>m)c U BY (1)

TR e |
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Converscly. take a member u e | BY andlet« eBY for some m and n,
Y,

m.r=l

That is to say, u € Al¥) for k =n.

1
Thal means, [, (4)> a+—fork=n
m

Passing on limit as k—c, we produce [(u) = []Hl , Clearly then f(u)>wie.,
T

we B/ =a). So we have shown that,

e

(B cE(f > ) : @)

=\

. z ~ {1
Combining (1) and (2) we havc_lj[ f=a)= ﬂHW}= and the proof 15 complete.

wr =l

Deflnition 2.4.3 A sequence { /,} of measurable [unctions over E is said to

converge to f in measure in E if for every +ve <ag, "h_}ni mﬂ(lﬁ, =ifl= U}zﬂ-
Theorem 2.4.6 (Lebesgue Theorem on Convergence in Measure).

Let {f,} be a sequence of measurable functions over E and Let J‘_l:l fn(;;c] = fiix)

for each xeE. Then {f,} converges to f in measure in E.

Proof : Take a +ve o arbitrary, and put for each tve intiger k,

Ek[(ﬂ - ]i{[lfk—fi >c); and R"(G.] f'él:ﬁuﬁk{ﬂ} and H:_-QIRHEG}I
Clearly all sets appearing above are measurable. Since {R (o)} satislies
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R (0)2R, () Ry(o)=ie {R (o)} is | and hcnccﬁhjrm m(R () = m(II). The proof is

aimed to arrive at H = ¢. Let ¥, eH. We seek a contradiction. Now X € ﬂ!Rn(U};
H=
S0, xp e R (o) forn=1, 2, ...

ie X, € F] La(o) forn=1,2, ...
k=n

That is to say, x, E ) (o) for k, for alln=12... (1)

Again x, €Ll gives Jfl [ (Xg) = I'(x)- So there is an index n such that

s

| £, () — F(xg)|<a = for k 2 n

‘T'hat means, X & Ep(o)fork =n (2)
Thus (1) and (2) are contradictory and the proof is complete.

Remark : Converse of Theorem 2.4.6 is not true.

There arc cxamples in support of this Remark. Reader may see Natanson-Vol-1 book
‘P96 in this respect.

Theorem 2,47 If { f,} is a sequence of measurable functions converging in measure
to fover F, then { f, } converges in measure to every function g equivalent to fin E.

Proof : l'or +ve o one has to observe only that
F( f,— glzo)=E( fz g)uli(] [, [|>0); since mE( f2g) =0

We conclude that m(E(| f - gl>0))<m(E(| /.~ /|2 0)). Hence proof is complete.
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Fxercise
Short-answer Type

If F and F are two hounded measurable sets with m(E) = m(F), Is it true that E
= F? (mve reasons.

Obtain the measure of the set of all irrationals in |, b].

If G is an open set <|a b]. and m(G)=0, then G = ¢. Examine truth of the
statement with reason. Also examine the casc if ward “open’ 1s replaced hy
‘closed’.

Every finile set of reals is measurable. Verify it; and determine its measure,
Show that every step funclion in [a,b] 1s a measurable function.

Examine the statement “cvery measurable function is a continuous tunction,”

Show that every non-cmpty open sel has measure +ve.

. . T ;
Show that the set of all zeros of f(x)=sm—, v+ 0 is a measurable sel, and
X

obtain its mecasure.
1S and 1 are bounded sets with 85T, show that m*(S)=m' (1),

Broad guestions
For every bounded set E there are two sets G and 11 such that (i) G is ‘Fg
(a countable union of closed scts) and H is Gy (a countable infersection of
open sets) and (if) GeEcll and (iii) m(G) = my(E) and m(H) = m*(E). Prove
it.

Il £, and E, arc measurable scts in [0.0] with m(L,) = 1, show that

m{]_:.]r‘ullg} = m(E,).
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4.

10.

.

show that measure of a bounded closed set F is Inf, of measures of all bounded
open sels each containing F.

M= J&UIEAI where J_':.In:]-_",zc—]_l',:g c...and E is bﬂuﬂdﬂd,
show that in_l;‘l m*(E.) = m*(F).

IF{G,} isa | sequence il open sets, and G = U G, for every € > (), show that

=1

there is an n = n(c) satisfying m(G) < m(G,) +e.
For a bounded set S show thal,
m*(3) = Inf{m(T): § = T, for all bounded measurable sets T}

If G and T1 are bounded measurahle scts, show that (S\T) u (T\S) is also a
bounded measurable set.

Prove that a necessary and sufficient condition that a bounded set E is
measurable is that for any arbitrary bounded set A

mE(A) = m*(ANE) + m*(AnL), E denoting complement of E.
Show that (i) every step function over [g,b] is measurable,
(ii) every monotone function over | en,b] is measurable.

If { f,} converges in measure o f and 18,} converges in measure to g over
a bounded measurable set L, prove that { f,t &, converges in measure (o
[+ g over L.

If J) and I, are open intervals of reals, and £:]a, A1 R is bounded measurable
function show that /~1(J,ul,) is a mcasurable set in [a,5].
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Unit 3 0 Lebesgue Integral and Summable Functions

[Lebesgue Tntegral (of bounded measurable function). Fundamental properties,
like additivity, Law of Mean, Passage lo limit under Integral sign. Lebesgue Theorem.
Comparison of Riemann and Lebesgue Intergrals, Summable functions with non-
negative signs and summable functions with arbitrary signs.)

§ 3.1

By Lchesgue integration it has been made possible to enlarge the class of Riemann
integrable (R-integrable) functions in the sense that every R-integrable function is
Tebesgue integrable, but there are Lebesgue integrable functions without being .
R-integrable over an interval |, b]. Let E be a bounded measurable sel and /' E-R
be a bounded measurable function.

Let A< [(x) <B whenever xeLl and lake a partition
P(yy= A <V <¥p<..< ¥, = B) of [A,B] and define

h= E(y, < f{}ﬂkﬂl kF=01,.(n=1)

Then partition P-sets {¢,} satisfy the fallowings :—

(3.1.1.) 0;’s are pairwise disjoint 7,e. differenl ¢;'s are separated (¢ 1 &~ dfor
fzk")

(3.1.2) 1;’s are measurable subsets of E.

n=l

(3.1.3) m(E)= 2, 7Lk
k=0
Then two sums sp and Sy as
H=—

1
8= yom(l) + yym(ly) +t y”_im(ﬂn_lrg, yp ).
0
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u=1
and Sp, =y m(ly) + yom(ly) +-4 Jr”m{tfu_])—zJ';,.m”‘f}'
x b=0) :

are called lower and upper Lebesgue Sums corresponding to partition P of |A.B]. If we

= k<p—1

desighate 3 —  tmax (P.m_yk}

we obtain, 0=85p—s5p = Am(E). (1)

Theorem 3.1.1 If /:E=R is a bounded measurable function than fis Lebesgue integrable
over E,

1o prove Theorem 3.1.1 we depend on following T.emmas.

Lemma 3.1.1 Let §, and Sp be the lower and upper T.ebesgue sum in respect of
Partition P and let a new point of division be added, then corresponding sums §" and
S satisfy yp<5'<S'<8),

Proof : Let new pomt of division y le between y, and Vi

where P=(yy = A<y <yiShu <3, 1<y~ B).

Thus in new partition [y, #y,,;) is replaced by two half-open intervals v 7 )y
| 7. ¥isy), and the rest of intervals with corresponding auxiliary sets {}’s remain as
before, The sel €, is divided into two sets, say,

I =By« f<3) and U= E(y< f <),

Clearly, e, = ejuel= with Uint= ¢.

So that m(l;) = m(t") + m(l'). Further New lower sum s’ is obtained from old 5
by replacement of yam(l) by ym(f.) + 7m(07]). Therefore,

b tis
52 .‘rP,
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Other part Sp=5" follows through a similar argument.
llence upon combining these incqualilics one gets §p < §'<8'<85p.

Remark : By inviting new point of division in Partition lower sum does not
decrease, and upper sum docs not increase.

Corollary : None of lower sums is larger than any of upper sum.
Proof : Take any two partitions P, and P, of the range if i.e., [AB].

Let lower and upper sums for P, and P, be .’S‘P] szland .':?,;.er L‘:}JE respectively.

Construct a partition, say Py ol [A.B] by taking division points as those of of P,

pluy those ol P,. By Lemma 3.1.1,

We find Spy ey ESH;SM {.':F_} and SP] correspond to partiion P5). Thus we

have 5p, <.-'Sp2, and this is what was wanted.

Proof of Theorem 3.1.1 Take an upper Sum, say Sp {cmreapnndlng to a partition

P, of [A. B|. Then corollary above says that for any 1{}W{:I sum &, we must have
sp <Spy-
. 1) = sup{sp:P is any Partition of |_h,]3]}_<’.SPﬂ

Above when put as Sy 2U, where we let Py free and remembering that r.h.s. is
independent of Partition P of [A,B] we lind y

V = Inf{5p} >U.
Clearly for any partition P of [A,B] we deduce that

spzll=V <5p,
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Since Sp— s pzAm(E), it follows that
0=V U<im(E).

As we may take A as small as we like it follows that
=Y

This common value is called the Lebesgue Integral of fover E, and we say [ is
Lebesgue (L) integrable over E and

wrile I_._[E fdx = U(V). The proof is complete,

Theorem 3.1.2. (Law of Mean) Let a bounded measurable function /E~R satisfy

a< f(x)zb lor all xell, Then mn(E}‘:LIfdxdmvfﬂ]
I<

Proof : Take » as a natural number, and put A = a—l— and [ = &1-1
" H

. Clearly
then A < f(x) < B for all xcE.

It P{yu—A{yi =Yg ==y, <y = B) is a Partition of [AB],

R

| =1
yem(Ly) < EZm(fH

) n=|
Wi have AZ’”{E*]i:
#=1 =0 =l

(symbols having usual meaning) and this inequality-chain gives

Am(E)<sp<Bm(E).

Proceeding Lo limit as max (Vg =) = A=0 we arrive at

[,, —i]m{l:‘.} <L —! fdx < [& + i]m{E}.

62




As n is arbitrary taking n— .., we gel

am(L)<1. Jf dx = hm(E).
E
Corollary 1, Il /= @ constant function, say, = [L
Then '[,J- ﬁ:;‘:*c — JJJH{E}.
E
Corollary 2. For all bounded measurable functions fover L

where m(E) =0, J Jel. =0
F

Theorem 3.1.3 (Countable additivity) If /:E-R is a bounded measurable function and

H= U Lywhere E, 's are pairwise disjoinl measurable subsets of E,
=1

Proof : Let E=EUE" with L'UE" = ¢. and let A< [(x) <B for all xeL.
Suppose A=y <<, VB and put f, = E(y, < f‘{yk”} :
I =FEly < Vi) and ﬂ;= L < f <9paq) s

Then €, = ﬂ'*u[?:t with E'km!;= .

n—l 1—] =1
And we have Z b miLe) = Zn m( %) + an{fﬁ
=0 k=0 =0
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S0 proceeding lo the limit as A = max(y,., —p,) ~ 0 we have
[ fito = | fibe+ | fite.
E E !
Now by Induction the result stands O.K. for a [inite number of sunmlands.

Finally, take E= UI:';-, where m(E) = Zm{L.r,} Et's. being pairwise disjoint
4=l k=1
measurable.

So remainder after n terms Efﬂ(EH —0as n—eo.
be=n1

Put ZF;. =Ry As the case for a finite number of summands has been resolved,
dr=k+1

we are ready to write J-f"’t Z .[ et J.f&

k=lpg Ry

Now applying Law of Mean (Theorem 3.1.2) we have

Am(Ra) < [ flbe <B.m(R).
R

As m(R, )~ 0 when n—=, we sec from above ,}l,n:, J s

From (*) we sct _[ﬁir Z Jﬁi“

=g

Corollary Tf two bounded measurable functions [ and g are cquivalent over
E ie. :
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if B( f# g} is of measure zero, then .[ Yol =-|- i
E

E

Here if A = {xell: f(x) = g(x)} when m(A)=10

Now by Theorem 3.1.3 jfafx :j gl + jﬁi&c
F A

(EfA)

=Lﬂx+ jgcfx

{EiA)

= [gde  asm(A)=0
(EfA)

= Igcir.+ jg.rfx since m(A)=0
A {E/fA)

= Jgdfr+ jg.a"x.

A BEAY B

In particular if / is equivalent to zero function over L, we have I fidx = 0. However
E

converse 15 not frue.

" if x=20

Example 3.1.1 Take f{x]:{ f‘ )
=1 il =<

] 1 .
Then I fax= J-fﬂr+_|-j‘iit=—1+1=ﬂ_

[—La1] —I 0

But here f is not equivalent to zero function in [-1,1].
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Theorem 3.1.4 If [ :E~R is a non-negative bounded measurable function such that

j fd =0, then f1s equivalent to zero function.
B

Proof : Consider the set E( £=0) which we write as
. 3 1
B(f>0)=JE| f>—|
n=1 #
Suppose fis not equivalent to zero function. Then we find Hy

such that m[ﬁ[ > LU = >0,

nn

Put A= I-'[f = L] B=(E/A); clearly we have J-,a'% = Ln:, and Ijﬂx =0
Hn 1y
A B

'l L
So _E[ Jax = Jﬁi‘f : _lf“{" = b % _ a contradiction of h:,fpulhusis-J Jdx=0. Here proof
: A E

is complete.

Theorem 3.1.5 If /,g:E~R are two bounded measurable functions
Then f(f+g)dx=]_;‘£ir+fg¢£r.
L"I K E

Proof : Ilere (/+ g) : E~R is also a bounded measurable function because fand

£ are 30, S0 J(f+g}a’x exists.
k

Let a<f (x)=b and e<g(x)=<d for all. xcE and take Partitions of [a,b] and of [e.d]
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as d = Yy S Sy, I-:iy” b and ¢ = Yo=Y < <Y <Y, =d and let

m—1
ﬂk—'E{}Jk < <, i k=0l el
E=E(Y;= g £¥e =0 L

Putting Hy = Eindy  (i= 0.L,...(m-1), k=0,1,..., n=1).

Here L= Z Hie,and 11, 's are pairwise disjo int. So J-{f + glelx = z j( f +g)dx
ik E Lk Wik

Over H; ; we have Vit Y < F(x) + 8)=yg Yo

So Law of Mean gives (v +Y Jm(H;)< .I-{fﬁ'g}cﬂxii_wm + Yis1 ) X m( i)
] Hik

Summing up the inequalities

zt}rk-i-‘fr,}m(Hrk){z "- (f"f" g}ﬂix{zt‘}'.ﬁ—l+Yr+1}m(H-h@} o (1}
ik T

Now Z”m{ﬂxﬂ Z}k[z,mﬂ]:k})

=0 =0
H— H'_I.
[UH&]—SM [Utﬂmﬂk}] zyﬁn{nnulz]
I.'=U i=(1 E=0 =1

n—1 =l

= Ehm(u nE)= ):},kmm}

S0 first term on 1.H.8. represents lower sum s;, and in a similar way compuling
rest of terms on both sides we obtain
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sptig < J{ [+ g)dx =Sy +8; where symbols have usual meanings. So passing on
E

limit as max. of lengths of partition sub-intervals ~0 (by increasing number of points of
dhvision) we arrive al

jf:ix +J-ga'fx = j{f+ 2 )x.
E E B

Theorem 3.1.6 For a bounded measurable function fover E and Aa constant
[ Mt = M| fie
E E

The proof is a routine exercise and left out.

Theorem 3.1.7 If £:L~R is a bounded measurable function then

| fi

L]

< [1F |

Proof : Let P = E(f20); then we have I ﬁix:_[ Jeb + J SJeloe
E P

/P

[1flde= [ | £1de. Also [ 1 e =] | £+ [ 1 £ds; on comparison
P b

E i E/P

| i

E

< [ | flas

Example 3.1.2 Let f:[a,h]~ R be measurable.

Then fis Lebesgue integrable over [4.b] if and only if | / | is Lebesgue integreble
aver |a,b|.

Solution : Put /" = max( f,0) and f~=max(- £.,0)

(" and [~ are called pnsil.ive and negative parts of f).
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Forx fixed in [a b, if £(x)=0, we have f " (x)} = f(x) and [ (x) = 0.

If f(x) <0, then we have ['(x) = 0 and f~(x) =~ f(x).
If fix) = 0, then fiay=F =10,
Out of these observations we have f=f*—f~and |f|=/"+ [~ (*)

Now if fis measurable, then both /™ and [ are measurable.

i .
If L— I felx exists Theorem 3.1.7 says | f| is T~integrable over [a,b]. On the other

i

hand, if'| f] is L-integrable, since 0 < [ H(x)<| f(x)] in a<x<b, it follows that £ 7 is L-

integrable ; Similarly /~ is L-integrable over | @ b] and therefore from (*) fis L-integrable
over |a,b].

: {
Example 3.1.3. If flab]-Risa hounded measurable function, and J[f]d;. = (), show

il

that fis equivalent to vero function in [a,b].

Solution : Iere | f| is a non-negative bounded measurable function over |a.b] and
Theorem 3.1.4 applies and | /| is equivalent to Zero function, and So isf.

3.2. Passage to the limit under sign of Integration :

Let {f:E~R} be a sequence of hounded measurable functions and J (x)= ‘ﬂ";‘dﬂ-ﬂ

for - E. We want fo resolve the question whether JI; fhaks £ ,}_LE'if K= ,ll_l,]l .1[ fudks.
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Fxample 3.2.1 Define f:[0,1]= R as under ;

A= 9 i Gxees

s

= 0 elsewhere in [0,1].
Then we have each /) is a step function in [0,1] and is a bounded measurable

r— 1 < h 5
function over [0,1]. Further j”ﬂj (=0 In 0<xsl So fo(x) means
H

| " |
folx)=0 in 0<x<1, L‘Ieur!y,l1erﬂj_ﬁ;dm-=jﬁ.zir+_[ﬁ,a{r= | for n=12,...
]

0
#

and_l-jﬁaiw.-ﬂ that is to say, lun_[f.ri;. =1# D= I!J_[hm [ el
0

Thus Example 3.2.1 shows that in pencral Passage to limit under integral sign is
nol valid.

Theorem 3.2.1 Let { f :E-R} be a sequence of bounded measurable functions
converging in measure to 1':E~R where F is a bounded measurable function. If there
is a constant K > 0 such that | £,(x) |<K for all n and for all xeE.

Then lim If,;.ﬂfx jFa{r

.-.r—}e:-
E

(Theorem 3.2.1 is due to Lebesgue and is ofteri named as, Lebesgue Theorem).

Proof : It is possible to oblain a sub-sequence { } of {f"} such that
limt, (x)=F(x) almost EVEI'}TW]'IEI’E in L, ie, llmf,,,p(x] F(x) for all xcE except

over a subsel ol E having zero measure (applying R_IESZ Theorem) ; and this is why,
we obtain lrom,
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|1, 1(x) |= K for all » and for all xeE, the inequality :- [F(x)| < K almost everywhere
in L,

For a+ve o pul A (o) = E(| £, - Flz0), and B, (o) = E(| f, - F| > o).

S0 <[|f -—F1::a‘.r=LHl:n}I famFldet [ | fo—Fld

E

Jﬁ;.ri'-c —J Fdy:

E 1=

Now | f,, (x) — F(x)| <| [ 0OFFE)| <2 K almost everywhere in B,

(and hence almost everywhere in A (o). So Law of Mean gives us
jAnm}lf" 3 F|“{x =2K. m(An(0) = (1)

Since a set of zero measure has no effect on Value of Lebesgue integral, inequality
in (1) stands alright. Again by Law of Mean we have

Lum}|ﬁ,—l—"|ffxic. m(B, (o)) =o. m(E) (2)

From (1) and (2) we find

U: ﬁ;dx—jlfdrlilEK, m(An(6))+0. m(E) R

-

: i : 1
Given an arbitrary +ve €, choose a+ve o so that o, #(E) ‘_-'-EE;_

For this tve o convergence in measure says that m(A, (a))=0 as n—e;
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1
50 we [ind an index N such that 2K. m(A (o)) < s for n > N.

< & whenever n >N,

Therefore U Jnde— J Felx
Ji E
Remark : Since convergence in measure is more general than pointwise convergence,

Theorem 3.2.1 remains true if one assumes lim fi(x)= L'(x) almost everywhere in E.

W pod

Inequality U ﬁ;{x}‘ <K for all n and for all xcE is very strict. Often said { ;‘;J} is

uniformly bounded over E; and Dominance by +ve scalar K has been exploited in the
proof. That is why, ‘Theorem 3.2.1 is sometimes designated as a version of Lebesgue
Dominated convergence Theorem. :

§ 3.3. Let f:[a,b]=R be a bounded function and xe[a,b].

For a tve & let my(x ) = Inf  {f(x)}

T L e e

and Ma(_rD] — dub {f {x}}

Ko—b=x<xo 46
(Tfx,, is one of end points of [a,5] the mequalities have accordingly to be tailored).

So mg(xe)s f(xp)<Mg(xg); Let 810,, Then my(xy) T and My(rg)!.

Thus m mig(xy) = m(x,); (say) and ﬁlfﬁ M (xg)=M(xg) (say) with

04
mixg)= [ (xp)=M(xp).
In this way functions m(x) and M(x) called lower and upper Baire functions of farc

defined in [a,b] such thil m(x)<M(x) is azx<b.
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In clementary analysis we know that £is continuous at x, il'm(xg) = f(xp) = M(x). We
are ready to establish following theorcm.

5o b ; b
Theorem 3.3.1 If J fikx is Riemann-integrable "j fdxexists, then L. —J [fix exits
L HIAEN W

b b : h
and L —L [l = RL fdx. The proof rests on supporting Lemma and observations,

Lemma 3.3.1 Let P;(a x¥) < xi"} i xf,f.}' = E:) be a chain of Partitions (i =1,2,,..)

of |a,b] with A, = rnu:'{(:a«::;t_';II —xm]—) (b asi—>o0. Let mi’} = { f(x )}dnd

g

dilx) = mi_” lor xe (xr\",xi:_i)
Oi= for x = Division points ,.E i) {J}_“xm}_
Then lim ¢i(x)=m(x) for x €[a,b] i{xi"]}_
I

(We may say, lim d;=m almost everywhere in [a.5]).

I—poa

Proof : Choose an arbitrary i, and fix it, Let xiﬂ <x<x "3'+1.

For appropriately small +ved, (x — 8. x—l—a}c[xh, E;}”]

‘Therefore miﬂ < mig(x)

or Oix)=mslx)
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Taking §-+0,, we have () < mlx) (1)

It h<m(x), choose + ved, such that ng(x)=h.

Now take i, so large that for =iy we have f:;},xi:;‘,r ]:: (x—8,x+3), choice iy is

O.K. because A.~0. So we have ml "2m (%)= h
or, g x)=h, (2)
From (1) and (2) we produce hdp(x)<m(x).
That means b, (x)*m(x) as i-o=, and Lemma is proved.
Corallary 1. Iunctions m and M are measurable.

Because lim ¢,(x)=m(x) almos! everywhete in [a,6] and because being step function
each ¢, is measurable. By a similar argument M is also measurable.

Corollary 2, L— j&q:jafx' - .- J“mrfx, a8 i —peo,

Sinee [is bounded, if |f{x)<K | then |¢;‘ (x)| <K and |m(x)|<K, Thus these functions
arc L-integrable. Now apply Lchu.'k:gue Theorem on passage to limit under the inlegral
sign, i

mi=|

We observe that L_Jfrt:,dx-_ z_[:fj”(b el

Hf = ; 5
=Zm}:}(xﬂ1 ”) i + where S5 15 the Lower sum for P;.-Th partition and
=0

Corollary 2 means that for i= e
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b
spl-[mde 3
: b
Similarly, upper sum S, approaches L—LM;.{:C
L)
te, S L[ Ma @

f
Thus [ is R-integrable over [a,b] ie, R—L fdx exists if and only it

SJ- —S,--'[I as oo,

f £
That is to say, R— L fde exists if and only if L-[ (M-m)dx=0 (from ) (3) and

(4) As M > m we have M and m arc equivalent functions in |ablie, m(x)=M(x)
almost everywhere in |a,b] [a.blie., [ is conlinuous almost everywhere in [a,5].

Finally, f being equivalent to m which 1s measurable, it follows that /is measurable

b
ie, fis a bounded measurable function over [a,h] and therefore L—I Jdx exils.
i
oyt . b b
I'rom R-integrability of / over [a,b], we have .-:f-'_l' fidx. Because .-;F,-*L—Ima{x (sce)
il T
& b
(3)). We at last see thal R—Lﬁr’x;l_;—jmafr
a
Example 3.3.1 Dirichlet’s function y :[0,1]=R given by
w(x)=1  if x is rational in [0.1]
=0 if x is irvational in [O,1].
is equivalent to zero function in [0,1]. So y is a bounded measurable funetion in

1 E 1
|0,1] and L—Lqm’x exists and further L—_Lwéxfx=ﬂ. But we know that y is nowhere
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|
continuous in [0,1], and T{—L Jedx does not exist.

34 Letf:Li—+R be a measurahle non-negative function, For a natural number i, Let
f:E-R be defined as

M) = £(x) i Ocf(Den
= 8 if [(x)=n.

Thus "f= Min( £n).

|
Example 3.4.1 Let f(x) = EWPS in0<xx<l |

=0 alx = 0.
Find 4f

Soluti Here /'(x)<4 gives 1*54 >
L 5 i o ke - S e | = T
olution : Here f(x giv e orx =
. L L= b i

Thus 4f(x)—f{x--3£ in s
4 B e
i : =X

=1 if x=10

Thus given an unbounded non-negative measurable [unction fE~R, for each n, e

is a bounded non-negative measurable function and so L—J‘E n A% exists,
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Also {L _J " j_gfx} in an 1 sequence of reals and hence il either converges or diverges
E

to = ==,

Definitions 3.4.1 Let /:E~R, be a non-negative unbounded measurable function.

Then lim L— j " J,rﬂ{"f is called Lebesgue integral of fon E and is denoted as L. —_[ .

b [

J‘ filx = lim T. —J r.af:iw:

H—e

If L —J-fdx is finite, then T is called summable on E.

1
Fxample 3.42 If f (x)= ﬁ indD=<xzl

=) al x=10
Examine L- J-E:ﬁ:'x

| 1 :
Solution : We scc that L—J- ﬁix=R—J nrdx (because "f is bounded and R-

3 rrﬁfx+J " dfx j3 mafx'+j| 3
e

integrable.) = )5,

| 3 " 1 i J 3
2 gl limL—| " fie=1 i =
Lo e i [ =i (5222
11
Remark : We know that R—_[ J_“' an improper Riemann integral. In evalualing
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A T s '
the integral in Lebespue sense ie, in L - -L%._."_ there is nothing ‘improper’, 1t is a
X

Lk

Lebesgue integral with II—L]%T; =3/ 2.

In order to define L—j felx for an unbounded measurable function taking +ve and -
E

ve signs, we first of all check that such a function may be written as the difference of two
non-ncgative-valued measurable functions.

Given any /:E—~R as unbounded | bounded measurable [unction over a bounded
mecasurable sct L, put

ST =max( £0)

and f =max( [0).

That is to say, as xcE, il £(x)>0, pu_'l [T(x)=/(x), and £ (x)=0; and il ¥ (x)=0,
then put /' (x) =0 and [~ (x)=—f(x). I f(x) =0, put fF(x)= /~(x)=0.

Remark : (i) f—Ff"—f

0 il s
Example 3.4.3 Let f(x)=x2-1 i -2 <xed.
| liind [ |
Solution : Here /7 (x) = [(x) in 2<xyz<-1
=0 in-1<xz<l
= [(x) in2x=sx<d
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Definition 3.4.2 Let £:E=R be an unbounded measurable function. If hoth £

and f~ are L-intergrable over L, then fis said to be I.—integrable over E, and in that
case

],j_ﬁzx:Laj;f'dx—L—jf dx.

Theorem 3.4.1 Let /:E—+R be a summable function and g is equivalent to fover

5, then L J fibe=T.— [ g,
£ E

Proof ; We have f(x)=g(x) almost everywhere in E.

Tet cach of f and g be non-negative, then for any natural n, np = fo(x) almost
cverywhere in L.

. H
That is to say "f and "g are cquivalent over E and hence L—j Jde = L—Lgxir
b

Passing on limit as n—*=, we have L—If‘ir: L—_[.Effx-
E E

Now Let f and g have arbitrary signs. Then f *{x) = g"(x) almost everywherc
in E. '

Thercfore L.—j f'+s£r =L~ ..-3+ dx. Similarly, L_.I.f- de=L~— .[ E+dx'
E

Therefore, T [ fibe=T.[ £ de~T.] £ ds =L- [ flde—L[ fde=T-gde.
5 [ E 38 E
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Theorem 3.4.2 Let /:E~R be a summable function. Then for 4 given +ve g, there

15 @ +ve § such that for every measurable subset e<E with mle) <, <g

[ e

(4

— o

Proof : First Lel us suppose f'to be non-negative. Then we have ,} i .l "f ds :'“-.I- [ dx.
E

Thus given atvee, we find a natural number N such that jfd"' :_[ N fde<el2
E E

0 PN <e /2
E

(1)
Take a4+ ve & -::%. Now if ¢ is a measurable subset of E with mie) < 8,
N
Wehave [ k<[ N (Nf<Nalways)
[ [
= N.m(e)
<N&<g/f2 (2)

From (1) and (2) We have J-ﬁ’r=j(f—”f]aﬁc+f}afx{£!2+£f2=e;

<

For the case when fis ol arbitrary sipns, we write f=f *—f; when each of f* and
[~ is of non-negative sign over L. So by first part of the proof given £>0, we find
a + ved; such that lor every measurable subset e of E with mie) <8,

We have J-f-i-afxc:efz (3)
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Simitlarly, there is @ +ved, such that for every measurable subset e of E with m(e)<d,

~we have

_Ij‘—a{rc:e /2 @

If 0 < & < min(8,8,), for every measurable subsel e of E with m(e) < & we have

\j‘ﬁfx < j1f|dx=j(f*'+f'];ﬂx =jf+afr+jf_d'x{ e from (3) and (4).

The proof is now complete.
Exercise

Short Answer Type

: 1
L M1 () =log, in0<x <1, find 2

2 PO il 4 7 -; + gin x in 0 £ x <2m,
Find (i) £* and (ii) /.

3. Iff:E-Ris L-integrable over a bounded measurable set E with m (E) =0,
show that j fdx =10,
s

4 IfX is the characteristic function of the set of all irrationals in [0,1] evaluate
L—j "Xt
o

5. IfE is a measurable subset of [«,b] show that

jﬁ’{x =m(L) when f = 1.
B
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6. Iff()=x2-1 in —2<x<2
Find -,
Broad Question

I. If:|ab]=R is bounded and L—ntegrable, and E, and E, are measurable subsets
c[a,b]. show that

Jﬁv+]ﬁix: Iﬁfx+ Jﬁix

EywEq liyrEa

b
2
2. Iff:[ab]=R is a bounded measurable function and L—_[ fde=0 show that fis

i
equivalenl to zero function in [4,5].

3. IFf:[ab]~R is a bounded measurable function such that f (x)=0 almt:-st everywhere

in fez, b], and if L- f Jdx =0, Show that £(x)=0 almost everywhere in [a,b].

4 Let f:(0,1]-R be taken as

241 l
: for  2a(n+1) -
1@ =12n  §
{’* s F <% «:—2"“ (n=1,2.3,...)
n+l 2n(n+1) :

Verify that /s not summable over (0,1].

: Hint: J[_ﬂdx J |If];ufx=2—ﬁ=+m
n=l 1 n=1"
i+l

g2




1 Tl
Iff (x) =5 in 0 <x<1; for p <1, show that L- | fibo=——.

X
If [:[a,b]~ R is bounded and L-integrable over [a, b| and F(x}=jﬁf£ in a<x<bh,
. : :
Show that F is conlinuous in |a,b].

X
If f:[a.b]7R is summable and ifF{:-:)=Iﬁft in a<x<h, verify that F'(x) = f(x)
i
almost everywhere in [a,b].

83



Unit 4 0 Riemann Sticeltjas Integral, Fourier Series

(Riemann-Stieltjes Integral (R.S. integral), Existence of R.S. integral, Fundamentals
propertics including additive property, Itergration by parts, Law of Mean. Passage to
the limit under R.S. integral sign. Fourier series for a function, Riemany-1 cbesgue,
Dirichlet's Integral, Convergence ol Fourier Series),

3.1 Sticltijes Integral is an important generalisation of Reimann Integral. .
Lel f, g:[ar, bR be two bounded functions over a closed interval [a,h] and p be
monotonically I,

If Pla = xg=x < xy<e x < x, << x =h) be a parlition of |a,b],

Let UCP, £.g) = M (e(xy) - 80x0)) + (@)~ 21,)) -+ M, (g(x,) — eCx, )+t
M, (g(x,=b) - glx,.1)).

;iMr(B(IJ-} —alx,1))  elx,) = glx,.) because p is!

o

b
and similarly, L(P, / g)=2 iy {g{xr) —g(x,. 1)); where

r=1

Mrz sup {f(x:l} and "= Inf’ {f'[x}}, r= |_,2,,_.,H.

A=l =xsxr o e

Sums U(T, £.g) and L(P, £.g) arc respectively called an upper and a lower Riemann— -
Sticljes (R—S) sum of [ with respect to (wrt)g corresponding Lo partition P of [a,b].

If M= sup {f(x)} andm= Inf {f(<)}, we have

asx=h

mig(h) — gla)) <L(P, fg)<U(P, £ g)=M(g(b).— g(a)).
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This chain of inequality shows that lower and upper R-S Sums are always
bounded. We are in a posilion to define the Upper and Lower R-8 integral ol fw.rt

in [¢.6] as Inf {U(I’,_f.g]} =3 J-jj.ffg and Sup {L{Pﬁf.g}}=j_tﬂ£

Where Inf and Sup are taken over all partitions P of [a,h] with Flfg{[xr - xy-1) = 0.
et

Definition 4.1.1 When upper and lower R-5 integrals are equal ie., when

—h ~h
I felg '—'L [, this common value is called the Riemann-Sticltjes integral (on Simply
3
Sticltjes integral. In that case R-S integral is written as J fdz.

- Remark ; When g{x)=x in a<x<b, then Riemann-integral R—J:fa‘x becomes a
special case R-S integral jjgﬁg.
Properties of R-5 Sums
1. For any partition P of [a,b]
L(P. fg)<U(P. 1)

ILIfP, isa given Partition of [ab)] and P, is another with more division points
e PPy plus added division points (P called a refinement ol P,), then

U(P,, fg)<U(P, f,g) and L(Pyfg)=L(P.18)
That is to say, upper R.S. Sums | and Lower R-5 Sumsl.,
1L I Py and P, are any two partitions of [a.h] (independent of cach other),

LR £ = U(P08).
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‘Thus any lower R-S Sum does not exceed any upper R-8 Sum. And this at once gives
rise

[" g [ sig

Theorem 4.1.1 fis R-8 integrable w.rt g in [a,b] iff corresponding to any +vee, there
1$ @ partition P of |a,h] such that

U(P, fg) - L(P, fg)=<e. (1)

Proof : For every partition P of |4,5] we have

(P, fig)s I b fdg = ]*ﬁg U, f,g)

In case (1) holds for some P we deduce above chain of inequality

{]*_i__[& g~ [ b flg <.

Since £>0 is arbitary, we have J-éf:::’g: J*ﬁg
a

2
So fis R-S integrable wirt g in [a,5].

Conversely, Let fbe R-S integrable w.rt g in [a,6], and let & >0 be given, So we find
Partitions P and P, of [a,b] such that,
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b £
Uy, fig)-R -S[ fg <>

]
and RS [ flg (P, fig)<el2
i

by an appeal to Inf. and Sup. properly. Consider the refinement P = P uP,as a
Partition of [a,#] with added division points than either of P, and P,; wherein
following chain holds.

i b
U(E, f2)<U(P,, f;g){ﬁﬁ% <L(P2, f.g)+e<L(P, f,g) +e

This gives U(P, f,g) — 1(P, fig)=<e.

Following is a list of fundamental properties: of R-5 integral

@  [(fi+p)e [ fidg+ [ e

(b) ﬁﬁ(m ro) - [ e

) )
(c) For any constants A and | L{lf'}d{j,ig] = luj: fdg (Tf r-hs. members exist, so
does Lh.s. — in (a), (b) and ().

(d) If a<c<b and all integrals exist, then
] ‘ b
dg = + .
[ g = flg+ ] flg
b
Remark : 1f I [y exists. it is a routine exercise lo show that both integrals
i .
; b '
j fdg andj filz exist (a<e<b). However, converse is not true.
; : . .
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Example 4.1.1 Let f¢:|-1,1]-R be taken as
f(x)=0in —1<x<0 and g(x)=0 in —1<x<0

=1 in D=x<] = 1 in Q=zx=<1.

Then ﬂ fdg and .J:}%{g cxist ; but _[_ll [fdgdoes not exist.

A

[ ;
Solufion : It is easy to checlk thal L Jdg exist ; In fact any R-S Sum is equal to zero

I. |
and so is the case with L/‘c{gr In respect of j_lﬁig, take a partition P of [-1,+1] taking

care to exclude 0 as a point division in P, then corresponding)

n—1 =
R-S Sum = 2, M, (g(x,,)—g(x,)) (P(-1=xp<x <oy gy <oy, =1)).
b=0 !

shall be either 0 or 1. So J-_II fdz does not exist,

3
Example 4.1.2 Show that _L x*d[x]=14, where |x] is the largest integer not larger
than x.

Solation : Write _[:= J.l:‘l'f"‘f

each integral on rh,s. exist and to evaluate jr:x*d [#]
We take any Partition (0= xy<x;<x,<-<x_,<x =1) of [0,1] wherein R-S sunm
2 M (o) - g(x,.,)) (gG)=Ix]). becomes = 12(1—0)=1. In fact all sums coincide

r=l
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L]
2

and Ju]xlal'{ﬂ:l In a similar argument fx?d]x]=2*(z_n=4and [ #dx=3"3-2)=9.

Hence required integral Exzdl'x] =1+4+9=14.

]
Theorem 4.1.2 The integral j fdz exists if [ is conlinuous in [¢.5] and g is of
hounded variation in [a,b].

Proof : We know that a function of bounded varition in |a,b] is represented as
the difference of two T functions in [a,b]. We may thercfore assume g to be anlfunction
in [a,h]. Let P(a=xy<x;<x,<-<x,=b) be a Partition of [a,#)] and corresponding R-

n-1
'S lower and upper sums be s = m(g(x,)—e(x,)

&0

w—1
and 8= ZMé(g(XHI}—g{'x&D- Then 5<8S.
=0

It is a routine exercise to check that lower sums do not decrease and upper Sums

do no increase upon addition of new points of division in P. Also none of sums ¥
surpasses any of sums 5.

Put 1=Sup{s}, sup being taken in respect of all partitions including those with

max{xy —x—1)—= 0"
1=rzn [

Now s<l=8,

Let £20 be given arbitrary, Since fis continuous in [a.5], there is atve & such that
| £(u) = F(v)|<e whenever |u—v[<5.
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1 Max

o (Ir_-*r-l} is taken smaller than &, we find Mk-mkie for k= 0.1 yeees(P=1),

i
Thal means, S- 5 <e(g(b) - 2(a)); So Theorem 4.1.1 says that _l- Jdg exists,

Theorem 4.1.3 (Integration by parts)

It fand g are | in [eb] and [is continuous in [, B],

b b
then L fdg = {(b)g(h) - fa)g(a) - Lfﬂjf

Proof: For a parlition l—‘[a=xu'—fxi*:,.. =x,=b) of |u,b]; take f; with i1 =4 <xand |
0~ & fhep = then Q (4, £t ,)) is another partition of |a,b].

Now let 8(P, /, g) = Flri)el)—(xi1))
i=1

p+l

—fOb)~ [@Dg@)~ Y. g DFC) - Fr.0)
F |

=f(b)gb)— f(a)g(a)—S(Q.g, [fore, <x., <,

Thus if max (x,-x,_,) (in respect of P) -0, then max(1;,,~1;) (in respect of Q)=+ 0,

5
Now we know under max(x.x, ,)(in respect of P)-0 S(P, 1, g~ .Lf"if In
consequence, S(Q, g, /)~ _L gdf under max(f;,;—f;) (in respect of Q) 0. Proceeding
b b
to ahove limit we obtain, j [®)g8)= F(6)~ f(a)g(a)~ gdf .
i £ i
Theorem 4.1.4 (Mean-Value Theorem)., I £ ; la,b]= R is continuous and

glab]7 R is T Then there is a point ¢ between a and b such that
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I:ﬁi.ﬂ’ = fle)(g(b)—g(a)).

Proof: Put M= 52 {ftx)}, m= N0, {f(n)}; thus we have m<f(x) < Min [a, b]

and mj:’1 e sj’ g '-‘_:MJ:I. dg orm(g(b)~ g@) < || flg M(g(6)~ £(a)

h
So there is a number @ between m and M such that _L fdg = p(g(b)— gla)).

By intermediate value property of continuous function fover [a,f], we get one point,

b .
say, ¢ between « and b such that /' (c)= p. So we have _L fdg = f(e)g(b)— g(a)).
4.2. Passage to limit under R-S integral sign.

Theorem 4.2.1 If /:|a,b] ~ R is continuous and g:[a,b]~ R is of bounded variation
then

“ ﬂbﬁfg\‘—:m'ﬂ’(g}- where iurng {x}1.

Proof : For any Partition (@=x; <x{<.. =%, =X, | = =X,= by and x <& .2 X4y

=
S FE e - g0

E=0

we have

£M§|g[xm)—g{x,@)l
k=t)

<M {,7(5.’}

[} ® i - . - E 3 + mﬂx_ . T
This inequality gives rise in the process of limit as | % (x, - x,.;) (in respect of

J:fdgl‘i Mi’(z)-

Partition) ~ 0 the incguality as desired namely
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Theorem 4.2.2. Let { f, :(a,b)~ R} be a sequence of continuous functions converging

uniformly to fin [a,b] and g:[a 5]~ R be a function of finite variation, then

lim _[j fudg = j:lf}.il;]l Sudg =_[f fie

-

Proof : Put M, = A% [/ () fix)]; By uniform convergence of {f } the limit

AEx=h

funetion f is continuous in [a,54]. So M,, exit as a finite non-negative real. Now,

“:aﬁ“fg g j:ﬁ.ﬂ' ‘=“j(f n— f g

<M, V(f)

(See Theorem 4.1.1). Now apply unif-limit f,,= I'to check that M 0 as.pn —e
E .. i

[lence we get as wanted; namely, lim J f,!gfg:-[ fele.
P Wil o

: ) 3 2
Example 4.2.1 Apply Integration by parts formula fo show that jnx d([x]- x) =

when [x] denotes the largest integer not larger than x.

Solution.: here £ (x)=x in [0,3] is continuous and is of bounded variation in [0.3]
(infact it is [ is [0,3]). And g(x) - [x]-x is of bounded variation in [0,3]. So we
apply Integration by parts formula to have :

J-;JL d(|x]-x) = fxlx]-x}% —_E[[x]—x}afr
1 2 3

5 U_UH"'L +Jz ]

i —j[:'[—xjrfx _-I-IE (1- x}dx—ﬁ[i — %)

2 2 2
BT B o H S
2 & 2 2

Id [y b [
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Example 4.2.2 Let f:|ab]~R be taken as

f(x)=1 at x=£ elab]
=0 at x # E in [a:h).

If ¢ is monotone 1 in [4,b] with € as a point of continuity,
b

Show that j fdg =0
i

Solution :- Let P(a = xp <x; < ..<x, <€<x, ;| <..<x, =b) be a Partition of

, b]. By continuity of g at &, given a +ve g, thesc is a +ve & such that

lg(x) - (&) <& whenever - &| < 8.

Now |g(x,) - g(x,)I=alx,) - gE)relh)-glx, Wl
<lgx,) — g(8) | + | gl&)-8(x,1)|
<¢ + g=2¢ whenever 02X (x —x )<8

]

in respect of Partition P.

Accordingly, S(P, /, g)

=z_!,f (r)(ex,) — g(xr ) with x, < £, < x,

=0ifr, =&

= g(xf,-} —glx,. ) when f = £,
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This gives |S(P, f,g)| <2& whenever norm of Partition

y — MAXy,.
I IS:rErJ('r-" xf'-f} <&

b
Proceeding to limit we arrive J _f [ deg =0,

§ 43
: £ |-, w]— R he a bounded R- -integrable function with period = 2%. Then

1
a Trigonometric series of the form o 0 Zin:,, coshx + b, sin nx), where

n=1

e,
=~ | S ® cosnt dt; n=0,12,.
) S @ cosnr it n = 0,12,

1 ¢n
and b= EJ'__“fﬁ}sinm di; n=12,.

is said to be the Fourier series generated by fin [-m, n].

The constant Coefficients da,a . and b are known as Fourier Coeffi

cients for £
Generally we write

1
rf' Edu +Z|:ﬂ'n- COsHx + h‘ Slm]

=1

Remark : There is a caution. Symbol ~ is not = (equal to).

1
It is too early to ascertain whether infinite serics 270 =5 Z{‘ﬂw cosnx |+ b, sinpx)
n=1

of variable terms is at all convergent or not : and if convergent at some x, whether

sum = (ffx).
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Example 4.3.1 Tet f[x)=0in-mwzx=<0

=1lin0=zx=m

(Obtain the louricr series {or [

1 pn
Solution ; Here a, = Ej-"f (x) cosnx dx

1l =
= jﬁﬂﬁxir ;and hence g, = 1, and g, = 0 lor n = 1,2,...; Also
i

| —conn
nit

1l = X | e,
==\ fi(x)si de =— | sinmdx=
b” = J nf (x)sinmx dx II:-L

2
Thus b, = e (n = 1,3,5...) and b, = 0(n = 2/4.,6,...)

So lourier series generated by [is given as f~ —+—

2 my 1 3 5

1
Here we sce at x — 0, the rhs. series hay the sum = 7 which is net equal to

f (o) = 1 (given).

Some preliminaries :- Let [ :[-m, n]— R be a bounded integrable function.
(1) [ is called an even function if /' (-x) = f(x) in —w< x < w

For example, [ (x) = cos x is an even [unction.

a5

1 2 (smx % ain 3a 2 sin Sx +)



(2) fis called an odd funetion if f (—x) = —f(x) in —mzx=zm

For example, f(x) = sin x is an odd function.

(3) For an cven function /, j‘_ﬂm Sy = EI: el .

(4) lor an odd function [ fﬂf‘s{r =0

1 e )
[5} “.: E.{!ﬂ. T E {{*!N COS#Hy + Ei'“ sin }‘Ix},
=1

Then (i) b;=h;.... =0 in case fis an even function.
(ii) uy = a; = a, =...0 in case f is an odd function.
Theorem 4.5.1 (Riemann -Lebesgue theorem)
If f:|a,6]— R is bounded and R-integrabic then
v ! dl . “
(i) lim J S (x) sin mx olx = 0

H—ye S
n I' j'{l-‘

m ; =

(i) m Hf (x) cos nx dx = 0

Proof : (i) Since /is R-integrable in [4,b], given e=0, there is a Partition P of [a,b]

E
such that U(p,f)-L(P, f}iiisymhc-]s have usual meanings). Lel

P = (a=xp= ¥ =% % <X, X, <. 5%, =h).
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=t

£ L = x2 = X . :
Now L [ (x)sinax dx= L“ J (x)sinmx dx +J-I1 £ (x)sinnx dx +... +‘Lu = S (x)sinnx dx

=3 feaen|” sinme+ Y [[(FG) - £ o)sinme d
r=1 & r—| s

Thercfore

<Y flx1)

r=l1

ljhf{x.}ﬂiﬂ”xd‘f J-xr sinmx dy
L Xr-1

| () ==/, 1))sinnx dx]
=1

Now xelx, . %] implies |ﬁ_~¢}_f(xr| NeM=m,

Therefore |(f{x)-flx, y)sin nx]<M, m,, and

1

F

UxF sin rrm"x| < {[ms nx | cos x| I} <

-]

xilt‘-l

Therefore,

J:f(x}smnxciﬂ < Ei‘|_,|"‘(,1r:,»_1}|+i'lfi\fh — e Mxp —2-1)
B =y r=l

2 .
i ;ZUE (—1)+€/ 2 (from above argument).

r=1

Now with this partition P, we find an index N such that

2%
{Tzif{x"”“ﬁm for n=N.

g =1

b :
Therelore, Mﬁf{x)sm nxdx| <el/2+€/2=¢ for n=N.
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i b d 15 ' - .
That means, lim _L S (x) sin nx dx=(), and similarly one obtains
n—ro

. f
lim L f cos nx dx=0.

e

Important properties :

I'Let f:[-, n]— R be bounded and R-integrable and / be periodic with period

=27. Then J'_I:I fle)de = _[_m“ flt+a)dt for any real a.
Proof : Ilcre J-irf (¢t +a)dr = j“:; [la)else
=[] fa e+ [" F(eyde+ [ e
= | flus2m)du (by periodicity of £) + j F@yde+ [ F(eye

- [ P+ [ s [

~mEn+dn

- J: S @)+ J_nﬂf ()ett + J;:m;f[r)a’; = .E; Fle)ds

IL If f:[-m,m]~ R be a bounded and R-inteprable and fis periodic with period =2m;

sin st

and if fis T in (a,00): N<o=a, then lim J:f{f}

—¥o

dt. %f (+).

£
Proof: Since fis | in a right-interval (0,c.)(0<oi<a), we know that f(0+) exits.  We
assume {(0+) = {(0).
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Now lake g(t) = f{t)—f{0+) in 0<h<o. By second Mean-Value Theorem we find h
h, between 0 and h such that

[ }Eﬂ.‘_m_ ] Smi‘d PON *“—.;f“ " .

uh2 Sl

_g“}‘}j —= .r‘iI

mhl

e Gl E

Now. fo — “dtis converpent, and there is a tve K. such that

v sind
. o | K lor large . (1)

[Tere taking # sufficiently large, we have

jmﬁl aint
nhl

uﬁramx_ s J-HM sint d,‘{ e

(2)
As g(h)=0as h—0,, we find g + ved so that |g(h) < & when 0<h=0.
fi sin nt .
Thus |[, 400>~ d#|<2Ke when 0<h<b (from (1) ).~ @A)
sinnt sin nt sinnt
Now _[ EU— == j g(f‘J—-— _[ g(t)

() .
As g_!_ is integrable in [8.a], the last integral = 0 as i~ =.
Therefore in view of (3) we obtain

Smmdf:{]

I}g}rﬂ;@(f)
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' sin nf
lim ! =0
i ’J o )
Siten I j'rfSlFiJﬂ oo J'.u:i sinu . ﬂ” E{u__
H—roa fa (e ] _2
sin n
We obtain from (4), Ilmf fit) i ys “mj‘ fmu"m"r
W=
T
= I[ﬂ+ —
f0+) ;
T
= —J1(0%).
>/ O1)

(111) Let / be as in 1T above, and 0 < o < =, then

. smm
lim i t=— {0+
n—;mJ‘UI( i sin¢ f{ )
innt ; ¢ sinmt
Proof ; Write f'[FJ - = f(t)— A
s : RN s

t m
We know that —is +ve and [in (00] [ﬂ = —J,
Sy 2
i : : : t
So if fis [in (0,c0), We have f(1). iy S bounded integrable and | in (0,ex],
t
we have [ (1). iy S bounded integrable and [ in (0,0t].

So, a8 (= 0%, 7N~ (0+) implies f{r}.ﬁ—*{{ﬂﬂ.

sin m!

Therefore, lim [+/(6) %2 de = lim [ /()= 0" 4

H—po n# L smis 5§

= (04, %.(Sﬂc 1),
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Remark : In case fis |, then -fis ! and then

lim j I}f{r}ﬁul££¢ =(- 1)~f[ﬁ+.’1%

H—3oa

4.6 Convergence Theorem.

Theorem 4.6.1 Let [ :[-m,x|~ R be bounded and there be a Partition P in [—m,n]
so that f is monotonic in each of finite number of open sub-intervals (due to P) of
[-mt.n], the sum of lourier series generated by fin |-m.m] is given by

—},ﬁﬂ+i(aﬂc05nx+bﬂsimm}=é{_f{x—ﬂ]+ﬂx+£}]} if x € (=7, 1) .

n=I

1
= = { £l 0y f bl it o =

Proof : We assume that f is periodic with period = 2m; so f (x + 2m) = [ (x)
outside [—m, 7t|. By monotonic character of f we know that 7 (x = 0) exist, for xe(

L7 !

]. I
ot (an cosmx + b Sulmc)— . j fe)ds +2 j fit) cos n(z — x)dt,

=

MNow qm zr

e m :
- E-L‘ ¥ {t][l + EE cos (s — x}}dl

__-_ J' f{;+x}{1+22 Lubur}dr (using property 1),

n=l
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Hll][??ﬂ"i‘ T ]
E elt,

= j fl+x)——=2
Sl[l
"-'l_[-in _f(23+x}3in{2_m+1}: o
I8 —2 S E
1 v
=_jzf( Db ]Sm{ff::—]}rcﬁr+%jui_’f{2r+x}%wt&,,, (*)

= ]Ef':x"ﬂngrE-f(x‘Fﬂ}.g as m—» o by property I11.
1
= (£ (=0) + £ (+0))

|
Therelore, we have 5 g +Z (an GOS8 ¢ + by sin )
n=|

|
= { [(x-0)+ [ (x+0)} if x e(-m, w)
=]5 { f (n=0) + [ (=)} iF x =27,

(f(n+0) = f (=n+0)), and ( f (-7-0) = [ (n-0)).

Remark. From (*) above il is evident that @ necessary and sufficient condition
for convergence of the Fourier series at x is that -

sin(Zn+ 1)t
lim Jz if (x=20) + f(x+20} —*—-:—a’r exits as a finite quantity which shall be

]

the sum ol Fourier series at x The above integral, that is,

sin(2n-+ 1)t
J {flx=—204+ F(= -1-2{]}&,}):{{ is popularly known as Dirichlets integral.
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Remark 2. At a point x where [ is continuous, we have

1
S(f@0) + £ (60) = £ () (wy7)

So in addition to stipulation as in ‘Theorem 4.6.1 if /is continuous at all points of (-
m.m), its Fourier series converges with its sum —f (x) at all points x. At a point x of

1
discontinuity of [ however the sum = E(j'(x—{]) + f (x+0)) as shown above.

Theorem 4.6.2 If £ [-nx] is bounded and integrable and is T in (~o,0) and in

1 = fO)+(04)
(ﬂ,ﬁ,‘,} for D<o <m Then Eau +zﬂn = f

=1

Proof : As fis T in (—..0) and in (0,0) (0<u<mx), therefore x]_ig.ll f(x) exists i.e.,

£(04) and similarly f (0-) exist [inilely.

n=l1

Now édﬂ+im—— _[ fr)dt+— J f{r)[stm]
n=]

o |
_—J f(:][l+2icnsm] r—-——j £). [ +2)_rdr,

n=l sin—¢

sin(2m+ I}r
sin¢

- —j-’- f(25) —

sin(2m + l)r
sint

5].[1(2m+|)£
ins

J'if( 24, = ff(z )
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1 Gl | bl
—=—. [(0-)=+— f(0+).—as m— oo
i 1 }2 n:f{ }2 "

1
= 5 (/0 + £ (011,

Lxample 4.6.1 If f: [-n,n|=R is bounded and R-integrable, and {a,1.{b,} are

Fourier coefficients of the Fouricr series corresponding to /; ll1en2(an3+h”.?] PR

m=|

Solution : We have
i m 2
J-_]_I" ’ (r}—z(a,; cos i +£-,,sinm}] dt 20 glways.
h=I

LHE — fmf?ff}rff—Ei{%fm_f(r}cosnr eir}—zi {&nfmf(r}sin e sz}
=1

n=lI

T 2
+Jl__ﬂ {2 ay cosnt + by sin nt)} de

;rmfz(;}d{ = zz-:ilm% = 2:112&;3 +ﬂir¢§ + ni&f
Hn= MN= = H=

- JEE F2(e)dt — *n:i (43 +Iy£]

n=1

(We have used J-rE an pt cosqr dt =0 if p =g,
~n

qu Cos pt cosgr di =0 if p# g

=nifp=yg

104




and r sin ptsingl df = 0 ifp#q

—mifp=q)

L

1 ;
This gives Z( * ":’i) = Efnf 2(¢ )t < oo R

#=1
R.H.S being independent of m, it follows that 2[“ +b ]"‘: e
=1

Note : The inequality (*) is known as Bessels inequality.

Corollary : If {a,} and {b,} arc Fouricr coefficients of a fourier series, then lim

i —% e

a, =0 li[ﬂ b,, independent of the Fourier scries being convergent or not.
n e

COs ¥
Example 4.6.2 Show that 2 i is not Fourier serics.

H—

uu.l.
Solution ; Here u —:Jr': and b= 0 and Z( n) :Z_

n=l n=1"

cosux
which is a divergent series. [lence Z S is not a Fourier serics corresponding o

any admissible function.

Example 4.6.3 Obtain the Fourier series of sines and cosines of multiple of x for
ffx) given by '

fix) =x -min —w<x =0
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—mxinl<x<m

2

i T I 1
Hence Verify that ey I +3—1+ e

1 - :
Solution : Here if _fw;:zn s Z (atn COS 7 + by 510 1)

=l

1

| 0 n
we have Efnf{f}m“”r dt= EU_E(: —T)cosnt dt +Iﬂ (m—¢)cosnt a’r}

| 2 ¢n
:_J.T:"t —M+T—1)cosnl df = - —Jtmsm-dr
T [ T =0

2 {:sin n ::GH;:I}E :

ol » 2 0

2 =)
¥ nz

ol = M A

2 e
iy (for n=10) = = “m.': =—T.

; 0
Again b, = :;fnfsinrrrdt =%[J'_m(z.~ — T0)sin nt dr +Jum{n—r]sinma’::|

I — =1
2 ljﬂ(“+l+ﬂ—t}ﬂi11ns e e
T

H

Thus Fouricr series corresponding to fis
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i
b {{Zm —cnS(Em—l]lx+2— T 31“(2’”_1)3‘} (%)

2 E =
because 1 being even, n = 2n gives | —( [y2m =0
n being odd, n = 2m 1 gives 1- (-1)" =2

We see further that f is monotone in (—&,0) and in (0,e) O<e<m and hence
£(0-) and £ (0+) exist; and Convergence Theorem says that Fourier series (*) has the
SLm

l [ /(0=) + [ {04)] —_[—?I tm) = 0. So putting x = 0 in (*) we oblain

M

- 4= 1
+ et o
2 I(ﬂm—l)z

HJ'_

= 1 _n?

((2m— 1)2 8

M=

Theorem 4.6.3 If the Trigonometric scries

]
—ap + z{a., cosnx + by sinnx)(a
it |
[~m,7t] then it is a Fourier SETIes.

b, & are scalars) is uniformly convergent in

| = . .
Proof : Let 5 ay + Z{”n cosnx + b, sinzx) be uniformly convergent
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l - i
and let 5 % + (4, cosme+ b sinnx)_ f(x) in [-mx].

=l

1 C ; ; :
Then E £l COSTIX - Z {ﬂn cosnx + 6 ., Sin X ) COSTX COnverges unlfurmly to / (x)cosmx
: n=|

(m =0,1,2,..) in [-r.7]. Now term by term integration gives

T 1 n
J dy COSTX X =—J ay cosmx dx = ma, when m=0
0 2 d-n il

|
piving a, = T _[_EH el

undj_nm [ deasm dy = Jﬂ; a [%ﬁﬂi ] e

= when m=1.2,...

1 rm
giving o, ~ E-LT f(x)cosmx dx. (m = L2

Similarly, _E;f{x}sin X dx = f“,:,m[ 1 _mzssz;ﬁc] b,

|
giuing bm =E-|-j?1: f{x} COS i dv, (= |,2, ey :I

So given Trigonometric series is a Fourier serics.

o BN Y
Example 4.6.4 Verily that Z 2 1s a Fourier series
n=|

. o sinax :
Solution : Here, by M-tesl we see that the Herie.sz 2 is uniformly convergent
=l
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sinnx| 1 _ i_! .
i for all x e[—m,n] and L. is convergent, Thercfore given
=} "2

in [—m,m] since
. ‘[rigonometric series is a Fourier serics.

Fourier series for even and odd functions

Let { be an even function in [-m,w], then / (-1) = f () in |-m,7].

So here f(f) cosal bccomes an cven functions and f (/) sinnf becomes an odd funetion

1 &
in [-m.n]. So that b, = EJ_EJ“(E] sin nt df = 0 for m = 1,2,...

2

| e i A
and ””__-‘.rt Jl_nf("-)'fmm dit = E—[ﬂf“}lﬂsm dt, for n= R

Similarly if /is an odd function in |-m,x], then f{)cosnt becomes an odd funetion and
fft)sinnt becomes an even function in [-m,n|; so that

1 rm
n“_T—ELEf{r]cnsm dt= (), n=12,...

Lo 2w |
and b = ﬂzj_nf (t)eosnt dt = Ej-ﬂ fe)sinnt At s

Example 4.6.5 : Obtain Fourier series generaled by £(x) =l in | in [ -,7]. Is the
serics convergent at x = 07 If so, compute the sum at x = 0.

Solution : [lere [(x)=—x in pex<0

ZSxin e x<m

The function fis monotonie in (—m,0) and in (0,7). Also it is an even function in [
n.x]; therefore its Fourier serics consists of cosine terms only.
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2 _ L2
and H“=EJU ¥ cosnx dx = F{cm nn—1).

il

{ 0. ilnis cven

nn? if » is odd

Therefore the Fourier series for [is

m 4/ cosy cosdx +_=_:_(;+_s Sx_
e e )
Since f is monotone in (—m,0) and in (0,1) we have f(0-) = 0 = £(0+). Thus by

convergence Theorem Fourier series [or f converges to 5 [0+ 7(0H)] =0 at

x =0. Hence putting x = 0 in (*) we [ind the sum of the series = 0.

Exereise

Short answer type questions;

1. If {15 an add funection show that _I-_EK fie=0
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3. Examine il Z{smm: +00871x) ig a Fourier series in [-m,7] with reasons.
=]

4, Obtain Fourier series for f(x) = 0 in —n<x<m.

5. Show by Definition thatR-S integral Jn_x‘?a’ [x|=5. where [x] denoles the largest

integer not larger than x.
6. 1f fand g are R-8 integrable over [a,b] wrl o Then [+ g are R-S integrable over

[et, bwrien. Prove it

7. Show that R—S I{:d [s1=[| for any real  where [x] denotes the largest integer not

larger than x.
8. If ['is continuous in [a,h)], and gfx) — 0 at x=a and g(x) = 1 when x>a, show that

R-S [/ fle - )z (b)-g()

Broad Questions

1. If fix) — x when x is an irrational

= () when x is a rational,

and g(x) = 0 when x<0

whenx =0

| —

= 1 when x>0,

1
Show that fis R-S integrable over [—1,+1] w.r:f g and R-Sj-_[ fag =0
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Is f Riemann integrable over [-1+] ? Give reasons,

2. If fis continuous in [a,f] and g is a function of bounded variation in [a,b], show

that the Function Fix) —jxﬁfg 15 a function of bounded variation in [a, h).
3. Il'[x] is the largest integer not larger than x,
d
(i) Show that [ xd ([x]-x) = 2.

5
| +e=

(ii) L' d(e?) =
4. 1l fis continuous in [a,b] and g:[a,h] — R has a g’ which is R-integrable over [a,5),
prove thal R-S ij de =R - Jj fg'ds
3. lind the Fourier series for fin |- ] Given that
fix) = x  m—m=x=<(
= 71— in O=x<m.
Examine sum of the series at x = 0 and n with reasons.

6. Show that Fourier series for f{x) = x + x2 in [—m.m]
2 e «

| COSHx  Sinax

o —+4Y (—1y = ———--)

L HZ]’ ) ( n 2

What shall be the sum of the series at x = + 7 Give reasons. Deduce that

jTj—l+i-l- --+i+
6 e T

7. Obtain the Fourier series for cosK ¥ in [—m,n] and deduce therefrom

| 2K 2k
n cotK = K.+K1—11+K2—~

57 T+ (K # an integer),
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Unit 5 O Metric Space, Opensets, Closed Sets and
Algebra, Closure, Interior and Boundary of Sets

(Metric spaces, cxamples, open balls, closed balls, open sels, metric topology,
neighbourhoods of a point. Hausdorff properly, limit point of a set, closed sct,
algebra of open and closed sets, closure, Interior and boundary of a sef)

§ 1.1

Let X be a non-cmpty sel. Then Cartesian product of X with itsell, denoted by
N % X is also a non-empty set consisting of all ordered pairs (x,) of points as

x,veX. lor example 1f X = fa.bel,

Then X % X = {(a,a),(a.b).(ac)(b. u},{b.c},[c.a}{c.h],{!:, b) and (¢¢)}. Here ordered

pair (a,b) is not equal to ordered pair (b,4) unless a = b.

Tn the Cartesian product X * X two members (x)) and (xy) are equal ie,

(x,y) = (w,v) il and only if x = wand y=w

Example 1.1.1 Let R denote the set of all real numbers, then RxR = {(c;r.h] :
a,heR}: and gecometrically RxR represents Euclidean plane R? where each point is

represented by an ordered pair (a,b) ie, by a member ol R x R and vice-versa.

Definition 1.1.1 A function d : X x X = R is called a metric or a-dislance
function over X if it satisfies following conditions, known as metric or distance

axioms :

(M.1) d@x,p) = 0 for all x,yeX, and d(x,y) = 0 il and only il x = y. (Property of
non-negativity). '

(M. 2) d(x.y) = d(yx) for all x,y € X (Property ol symmetry),

and (M. 3) d(x,2) <d(x.y)y+(;2) for all xy and z e X (property of triangle incquality).
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Il is a metric on X, the pair (X, d) is called a mefric space. Indefinite article ‘4’ tells
us that X may invite many metrics, and accordingly with same X, one may have many
metric spaces (X, o) as o chanpes. For example, given a metric space (X, d) one may

q

d
replace a' hy | oblains metric spaces (X,?E ) for natural number k =2

Example 1.1.2 The set R of all reals is a metric space (R, d) where d(x,y) = i
¥, a8 xy e R,

Solution : Here property of absolute value x|, of real number x gives (M. 1} and for
(M.2) we have dyx) =ly=| = [(=D(x-p)| = [(-1)x)| = l-y| = d(xy) and tianple-
inequality of d is a consequence of similar property of [x| for any real x. So, (R,d)is a
niectric space. '

Example 1.1.3 11X is any non-empty sct, there is always a metric d, called the trivial
metric over X, so that (X.d) is a metric space where we take,

Lifx# yin X
) =0t =yinX,

Example 1.1.4 The set  of all complex number z = x + ) (x, ¥ are reals and
i = -1) is a melric space (q, d) where d(zz') = |z—2'| as, 2,7 eq.

Example 1.1.5 The Cartesian product RxR.. %R (n times) = R” of the set R of
all reals with itself, called the Luclidean n-space is a melric space (R".d) where

HI [T{JZJ(xl _}'I)2+{x2_y2]2++( .:}IIH}E L (xp ‘1-2; iy .t”)

and J = s Vor o ¥,) ordered n-typles of reals are any lwo members of R
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Solution : Here (M.1) is easy to check; remembering that 2{" _-.Pla =0 if and
=l

only il'x, =y, for i = 1.2....,n. Symmetry property (M.2) is clear. To derive trianpular
lnELIUdhl}-' (M 3) we cmploy following important inequality, known as Cauchy-Schwarz
inequality (C-8 inequality).

C-S inequality : For any two sets (aj @y .., a,)and (by, by, ..y b)) of i veals,

[ga;ﬁj 5§ Za

This C-S ineguality gives [E{rx&}zj [ ] {i!’x ]
i=l

=1

known as -Minkowski inequality as a special case.

Now let X= (x}, ¥, coos Xh L= 05 Vg woes ) nd £= (24, 25, .., Z,) € RE

Put a,=x; ¥, —b; = ¥ % (i = 1,2,.... n). We apply Minkowski inequality in a form
as above and obtain.

KH x_z}i ‘jiix J’:}E \/i(}r'_zi'};'
i=1 (=]

That means, d'( ,z){d(x Jr]ﬂff[‘v’ ] and this is (M.3).

Remark ¢ For p = 1, one can show thal {R”,cfp] are all metric spaces where
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A b i :a:u x
dﬁ[i{]z[zhi _'F'llj] ) {x|‘x2!"" Iu} and _-}l_._' UJI’J'JE""’}'H} eR”. Tor

=1

p = 2, the corresponding metric for R" as in Example 1.1.6 is called the usual or
Luclidean Metrie lor R”,

Sequence spaces (p (p>1), Hilbert space [,; Holder’s and Minkowski’s
inequality.

Ptq

1 1 _
Let p be a real number > 1, and take g to satisfy, —+— =L 80, ¢>/ je, =]
p g rq
|

-1
other. Thus y — ¥P~! implies x = y4-1.

or, (p—1)g 1)=1or =¢-I. Then p and ¢ are called conjugate indices to each

|
The Collection r?]}= Eﬁ = {ﬁpf}y.-.}}, &, arercal / complex wh‘h[2|EI.|¢J‘]Jci < eais

=l
1

known as real/complex sequence space with metric p(éj}]= [Z|E_,I.— }rf]PJﬁ,
: : =1

s T=UEE)

and T]'—[T]|..T'I;5, wtel,. We show at present that £, is a metrie
space. For p = 2 sequence space f,is known as a Hilbert space. For this purpose

we need applying [I6lder’s and Minkowski’s inequality,

=4
Hilder inequality : Lel Li= (E1 £2...) and E = (1,n2) el be members of £,

and fq respectively (p and ¢ are conjugate indices). Then
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1 1
it&,-n,wz{itw]”[ilniw]q. Rt
i=1 =l =l L

Proof : If g und b are two + ve reals, then
ab equals to area of a rectangle OACB (See
fig), and we see at once thal Arca OACRH
< arca OAPO (as bounded by y = x? /| x-
axis ote,) + area OPQCBO (as bounded by x O
— 4! Y-axis ete.)

. B at b
or, abh J-“x‘p lf‘{"“"J‘an l‘ffz?"'? (1)

no o0

First Let Z|E.;;-|‘ﬂ == ZU‘I;V“ : lTaking [£;"] and n;’| for a and b respectively in (1)

=1 i—1

Kool "F ¥ 1 ¥ - '.‘ ¢ 1 < ’ l < LA Ty
we have |61 = ;|E”.]P+ Eln?l? and hence, ' [E/m < — > [E][ 4 2 (since rhs,
=l =1 =
series arc convergent.) = l+l:1 by assumption,
A
or, D&M=
i=l

Now take E—- (EsEareen) Efpﬁ“dr', ) l[m-, e,

(2)

- i e —and
oy 5= (S
’ N
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So that, Zli;iﬁ ol Z|Tﬁ|“ and from (2) we have,

=l =l

|
1

: o Ll
o iz = Pl
z|€;!1j|£[z!ﬁj1|1] ,[Zh]iﬁ‘] (3)
=l =1 =\

This is Holder’s inequality.

Corollary : Cauchy-Schwarz (C-8) Inequality :

glf;,-n,-lz‘jggii.w

This follows from (3) by taking p = 2 (hence ¢ = 2).

Minkowski’s inequality : II’E = (E.&5;,... ) and ,]]= (M}s Nase..) are two members

1 1 !
of [, then [i[ﬁf-+ni|p]f’ 5{i|§f|P]F +[i|ﬁfiF]P-
. =1 i=1

=l

Proof : i|‘t=;+"'l;| '-'ili,—“‘"],-llﬁ,-ﬂhl‘"_'
i=1

i=|

< SIENE, #1027 + 3 I lIE, +7,07
i=1 i=1

! [ 1

ﬂ[ili,-i*]-[i!&,-+n,-|”*”*‘]q +(i|n.-|ﬁ]‘°-[i|é,-+n,-|*ﬁ4*#]“
=l i=l i e
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by holder's inequality.

| 1 1

(S| (Serf (e
i=l =1 i=l

i 1 :
. [il&.ﬁ+n,-|P)"' [il&ﬂf’]‘” +[Zm,-!f}?
=1 =l i=l

| |

or, [glﬁ.,- + n;lf‘]]_; 5[?;;?]} +[§mﬂ]}
o (S [ (S

Example 1.1.6. '%equence-space | o (P2 1) is a melric space with respect to metric p

wherep[ ] [Elﬁ "ﬂi‘n) =.(EL,E_,2,...),E;-(.nl,ﬂz,....)eEﬁ.
1

Solution : Herc if {:\ C‘Epawe have D( ) LZ]EJ —M; |‘B) =0 always, and

[}[;‘;' E) = () if and only if &n; for all i ie., PE,E. Thus (M.1) axiom is verified.
Property of symmetry ie., (M.2) iz also clear. For triangle inequality (M.3) we may

assume p > 1) because for p = 1 the inequality is trivially clear. 1f E-—’ (EysEarerss
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n

(- (S50

[
= A e and E= (£1:€5y...) are three members of EP we have

1

U
r [il‘; _l],.' . TL- _E_.,'lp]p E[ilg, _T]jf‘p]+[i| Tl,- _‘g,'l‘ﬂ]ﬂ
i=1 i=l

=]

by Minkowski inequality

Example 1.1.7 The collection Cp [a,5] of all real-valued continuous functions

over a closed interval [a,b] forms a melric space with metric p called supmetric

- SLL " 4
where p(fg) = " |/(x) — g, £ g € Cy |a,b].

Solution : We know that sum (and dilTerence) of two real-valued conlinuous
functions over |, 6] is again a continuous lunction over [a 6], and so is the case in
respect of taking | /| for a member f e Cg [a.b]. Also by property of a continuous
function over [a.h] we have, p(fg) cxixis as a finite > 0 number and further

p(fg) = 0if and only if /=g in CR.I'L{, h], Because, say p(/,g)—0.

Sa, ﬁi:].gﬂ_;“l:x} — g(x)] = 0: giving ﬂ’x) _gfx) = 0 for all ¥ in [,5] and hence )
—gfx)ina<x<borf=g;
and (M.1) is veritied. (M.2) is also clear. For (M.3), take £, g and h as any . !

members of Cp [a.b] We have if g < x < b,
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= hIG) = |f () —h(x)| = | fix) — g(x) + g(x) )| < | ) — gl lg(x) — hx)|

o D | f(x) — g(x)| + S lex) — hix)| = p(fg) + ple ) R.H.S. being independent

T asksh asx=h

of ¥ in [a,b] we obtain by taking sup on [.H.5. as a<xzh,
p(fh) < p(fig) 1 p(eh), and verification of M(3) is complete.
Theorem 1.1.1 In metric space (X,cﬂ if x, 0z € X; then |dfx.z) —dfy.z)| < d(x,y).
Proof : By triangle inequality we have d(x,z) < dix,y) | divz), -
So, dix.z) — dvz) = d(xy) : ¢l13)
Tnterchanging x and p we gel,
dfy.z) — dix,z) < divx) = dxy)
or, —(d(x.z) — dfyz) <dxy) (1.1.4)
Combining (1.1.3) and (1.1.4) we gel ic!’(x_,z) — dfv,z)| = dixy).

Theorem 1.1.2 The Certesian product X = X, xX, where (X, d|) and (X, dy)
are metric spaces is a metric space (X.d) where d(x,)) =d,(x;.3;) + d; (x5 ¥;). where

x = (x; X3 ¥ = (ypyy) are any two members of X = X, *X,.

Proof : (M.1) axiom for d follows from that of , and d,. Symmetry axiom (M.2)
is also clear in respect of d.

lor triangle inequality let x = (x,x;), ¥ = (¥pysh 2 = (2,25) be any three
elements of X: Then we have, dfx.z) —d;(xpz,) +dy(x2;) < d(xv;)

L (2 ,}+d2.|’x2,y2,]+dgjr2. z,) because metrics d, and d, satisly triangle inequality.

or, d(x,z) = {“’,r':x,f-}"g} +_ dg(’—rzul’:{:l} L {d]{}"pz}} + dy (Vs 2y )}
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=d(xy) v d(nz) which is (M.3).

and the prool'is complete.

d
Example 1.1.7 I (X,d) is a metric space, show that [3{: ll-_u‘J is & metric space.

dlx, y)
Solution : Put p{x,y) — 1+ ds, ) for x, y e X. Metric axioms (M.T) and (M.2)

in

favour of p follow from corresponding axioms for d. For triangle incquality for
s X i i
p let us consider a function [ : [0,=] = Reals where fiu) Tl 3420 Then f
+u

i

15 a diflerentiable function with derivative ff) = ——— —=-——=() for
l+u (I+u)”  (1+0)? .

all =0, ) '

That means that fis a monotone increasing [unetion in [0,20]. Take X, ¥ and z as
any three elements in X, then by triangle inequality property of o we have,

dfx,z) < dfx,y) + diz) and since fis increasing,

We have f(d(x,z)) < f{d(x,p) + diy.z))

dfvz) _ dfs,y)+diy2)

r PRI L

" 1+dlnz) " L+ dix y) + diy2)

dxy) N d(y.z)
I+al phvdinz) 1+ zf(x,_}r) + ey, z)

dfx, y) i zfrjf,z)_
Cltdy) 1+d@z)

or, p(x.z) < plxy) + plxz).
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Example 1.1.9 Let X be a non-cmpty set and p @ XxX — Reals be defined as (i)
plxy) = 0 if and only if x =y, and

(i) p(xy) = p(x.z) + p(y.z) for any three elements x, y and z in X. Show that

(X.,p) is a melric space.
Solution : For (M.1) axiom put x = y in (i1) we get
0 < plx,z) +plxz) = 2p(x,z)

i.e., plx.z) < 0 and since x and z are arbitrary elements in X, non-negativity of p
is clear, and by (f) (M.1) axiom is verified, For Symmetry put x = z in (ii) to have

p(x,y) <0 | p(ux,) and interchanging x and y gives,

o(x) < plx,y); Thus we get pxy) = p(x) which is (M.2). Finally, triangle

inequality for p follows from given condition (i1) plus axion of Symmetry,
Example 1.1.10 Let p:R%;R—'R be defined by,
pfx.y) = min|Ly—x| if x = v,
==if] if x=y
Examine if p is a metric over the set R of all reals.

Solution : Here p is non-negative and p(x,x) = 0 for all reals x; but pfxy) — 0

does

not imply ¥ = y;-because p(3.1) = 0 by definition. Hence (M. 1) akiom fails. Thus

p is not a metric.
§ 1.2 Let (X.d) be a metric space, and vy €X and r be a +ve real.

Definition 1.2.1 The subset {x € X : dx x}=<r} ol X, denoted by 8 (x;) is called

an open ball in X centred at x, with radius = »
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Clearly, B Axy) 15 not empty because d(xp.x,) =0 < rand Xg € 'B,_{x“).
Example 1.2.1 An open ball B A¥y) in R with usual metric o
= {x e Kedxyx)<r}
={xe Rijpe—xg| <r)
= {xeRx; —r<x<x,+r}
~ ~ anopen interval (x, - rix + ) with mid-point x, and length = 2,

Similarly, in the metric space Q of all complex numbers with usual metric we sce that

B, (24) looks as an open eiveular disc with centre at zy € Q having radius = »,

Definition 1.2.2 The subset {x e Xed(xyx) < r} of X is called a closed ball with

centre —x, and with radius = r.

The subset {x e X‘a’(xn,.r) =r} of X is called a sphere centred at X, having the
radius = » It is also called boundary (Bdr) of open (or closed) ball B,(xp); Note that

centre of a sphere is not a member of the sphere. ) -

Example 1.2.2 Tf X is non-empty and (X.d) is a metric space with the trivial

metric d, describe all open balls centred at a point of X,
Solution : Let x, € X and r be a +ve real, then an open ball B, (x,) of
X = {x & Xed(xy, x)sr}. Now,
B.(xg) = {5y}, if 0 < < 1
S R e S
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So open balls centred a point of X are either singleton ={x,} or the whole

space X,

Definition 1.2.3 Given a non-empty subset of G of (X.d), an element u € G is

called an interior point of G, if there is an open ball B, (w) (= () such that B.(u) = G.

For example, in the sub-set G = ((0,HU2) of reals with usual metric every member
of open interval ( 0,1) is an interior point of G, but 2 € G is nol an interior point of

G.

Definition 1,2.4 A subset G in (X.d) is called an open set if every point of G

is an interior point of G.

For example, the subset (—11) v (2,3) of reals with usual metric 15 an open set
without being an open interval in R. In (X,d) every open ball 1s an open sel, and
abuve statement shows converse is not true. However we have following Theorem

in this connection.

Theorem 1.2.1 11" a subset G of (X.d) is open, then G is a Union of open balls

in (X,d).

Proof : Without loss ol gencrality we take G to be a non-emply open sct in (X.dl)
and 1 & G. Then u being an interior point of G we find an open ball B (1) such that
B,(u) = G. Thus we write {}EJ_GE;-{H} o G, The reverse melusion G o Ul;:_JGBr{u} is

always true, and on combining we deduce G = Ul'i,;Br(u}. The prool is complete.
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Theorem 1.2.2 Any union of open sets in (X.d) is an open set in (X,d).

Proof @ Let {G,},_, with A as an index set be a family of open sets in (X.d)
and

G =HGH, Take ueG, Then u is a member of Grﬂ] lor some g €A, Since.(;‘uﬂ
is open we find an open ball B, (u) centred at u with B()cG,,c IHLG.I = (3. This
shows thal u is an interior point of G, So G is an open set in (X.d), -

Theorem 1.2,3 If G and (1, are open sels in (X.d), then GynG,is an open set
in (X.d),

Proof: Let G, and G, two open sets in (X.d) and G = G, (5. Suppose G # ¢
and take x € G. Then x € G and x € G,; G| being open we find an open ball Hr|':'ﬂ
such that,

H,.I (x) = Gy (1.2.1)

Similarly, let Bj.z{r] c (3, and take a tve r < min (#1sr9). Then the open ball
B(x)= G, (x) G; for i = 1, 2; and hence B(x)c {GI N Gy) <« G
Thus x is an interior point of G and x being an arbitrary element of G, G is shown

as an open sel.

Corollary : An intersection of a finite number of open sets is an open sel in

(X.d)..

Example 1.2.3 An inlersection of an infinite number of open sets in a metrie
space may nol be an open set.
Solution : For cach natural number n take the open interval | e (_5’;) in real

number space R with usual metric. Then each L, is an open ball, and hence an open

o e 1 I :
scl in R. Now ﬂln = n[__1_)= {0} is nol an open sct in R,

n=l =l el
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Definition 1.2.5 Given a subset G in (X.d) Interior of G, denoted by Int G is the set

ol all interior points of G.
Remark 1 In a metric space we assume ¢ (empty set) as an open set.

Remark 2 Int G is the largest open subset of G in the souse that if K is an open subset

ol G, then K < Tnt G

Remark 3 Tn a metric space (X.d) il £ , denotes the collection of all open subsets of
(X.d) then we have (i) §. X e, (ii) Any union of members of € ; is member of £, and
(iil) Intersection of a finite number of members of £ ;is a member of €. For this reason
£ is said form a Topology on ¥, called the metric Topology corresponding to given

metric o on X,

Theorem 1.2.4 Tn a metric space (X d) given two distinct points ¢ and v in X, there

are disjoint open sets G and IT containing v and v rexp&tivcly,

alfu,w)
5

Then open Balls B (1) and B,(v) centred at u and v are disjoint; If not, take

Proof : Let v € X with us v. Then d (1,v) > 0. Let us take a +ve real p <

¥ (B (u)nB (V). Then x eBJ(u) gives dx)<r and, siﬁu'larl}r, divxj=<r Then

duv)=dux) + dxv)<r +r = 2r < dfu, v), which is impossible.
Henee B (1)nB,(v) = .

Remark : This properly of a pair of distinet points in a metric space (X.d)
attracting a pair of disjoint gpen balls (and hence open scts) is called Hausdorff

property of the space.
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Definition 1.2.6 A subset N of a metric space (X,d) is called a neighbourhood of a

point x X il there is an open set O in X such that x € O = N,

: . ’ ; ] 1
For example, in the spacc of R of reals with usual metric an open interval [-‘f MU i ]
" H

15 a nighbourhood of x £ R for each natural number n. There are in general, many
neighbourhoods of a point in a metric space. II' N denotes the collection of al
neighbourhoods of ¥ € X in metric space (X.d), then we have following theorem.

Theorem 1.2.5 A subset G in a melric space in open if and only if G is a neighbourhood
‘of each of its points. =0

Proof : The proof is easy and left out.

Theorem 1.2.6 In a metric spﬂ.cc (X.d) if x € X then
(a) any member of N, is always non-empty.

(b) II'N- eN, and N =TI, then He N,

(¢) TENy, N, e N, Then Ny nNyeN,,

(d) I'N eN,, thete is a member N* eN_ with N* =N
such that N e N, for every member v e N*,

Proof : Prools for (a)-(c) are easy and left out. For (d)lct N e N ¢ Then we find an
open sel O, containing x such that, °

DI = N
Now put N* = O, which is a neighbourhood of each of its points:

Further N* =N gives N eN,, for every member y e N¥,
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& 1.3

~ Definition 1.3.1 An element u e X is called a limit point of a non-empty subset A of
metric space (X,d), il every neighbourhood N of u meets A at some point other than
u. By notation, if A n (N\{u)) = ¢ .

11 |
For example, O is a limit point of set A = [15 5,;] in space R of reals with

usual metric, but any non-zero real is not a limit point of A.

Definition 1.3.2 A subsct F in a metric space (X,d) is called a closed set if A contains

all its limit limits.

Example 1.3.1 The set N of all natural numbers in real number space with usual metric
is a closed set, but an open interval of reals is not a closed set in metric space of reals

with usual metric.

Theorem 1.3.1 A subset I in a metric space (X« is closed if and only if its complement
(X\F) in X is an open set in (X,d).

Proof : Suppose I' is a closed set in (X,d) and G =(X\F); If' x €G, then x ¢ F and
x is not a limit point of F because F is closed. So we find an open ball B,(x) such
that,

B nF = ¢ or, B, (x)c(X\F)=G

That means, x is an interior point of G. So G is open.

Conversely. assume (X\F) to be open and take u as a limit point of F, and if
possible, let ug I ie, ue(X\F) Since (X\F) is open we find an open ball
B (u) = (X\F), showing B (u) n F = ¢ and hence B, \{u})nF=b-a contradiction
that u is limit point of F. The proof is now complete.

Remark : Words ‘closed’ and ‘open’ as appeared in Theorem 1.3.1 may be
interchanged without making Theorem false.
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Theorem 1.3.2 In a metric space (X.d) intersection of any number of closed sets is

closed.
; i ! - = B
Proof : Let {F_} ., be a family of closed sets in X, and put F = h o (Ais an
& e

index set). Taking complement in X, we have X\F = X\ qb&
e

= [JX\E)

Hed

hy De-Morgan'’s rule. From Theorem 1.3.1 it follows that each X\F,, is an open set

in X and r.h.s, is an open set; Thus X\F becomes an open sel, giving F as a closed set
in X.

Theorem 1.3.3 Tn a metric space Union of a finite number of closed sets in a closed

set.
Proof : The proof is done using De-Morgan’s rule as above.

Remark : In a metric space Union of an infinite number of closed set may not be a

n
__l_ for o= 1, 2.3, ... Than

closed set. Take closed interval L= [ﬂ‘: "
#

5 H
L= U[u*;_]'][ﬂ,l} which is not a closed set in R with usual metric,

=] n=]

Theorem 1.3.4 The only non-empty subset of reals with used metric that is both

open and closed is the set R of all reals.

We shall take up this result by employing notion of connectedness of space of

reals later on,

Definition 1.3.3 Given a subset A in a metric space (X.d) its closure denoted
by A Is defined as 3 = AUA’, where A’ is called the derived set of A = set of all
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limit points of A.

For example (i) closure of an open interval (a,b) of reals with usual metric is equal

to the closed interval [a, b].

(ii) Closure of the set Q) of all rationals in space R of all reals with usual metric is equal
to R.

Remark : Closure A is a closed set.

Theorem 1.3.5 In a metric space (X.d) for any subsct A, (i) Int A= K\L(X /A, and
(i) A= X\Int(X\A).

Proof : Now 3 /A 18 closed; so X"-.(}{a" A ] is open. Further, X\A < (5{_}’-;), and

taking complement, A = X‘x(ﬁfi).

So, }G(X IA) is an open subset of A and thercfore,

X\(X/A) < IntA o= 1 (1.3.1)
If G is any open subset of A, we have

(X\A) © (X\G)
So, (X/A) e (X7G) = (X\G) which is closed.

Taking complement, G = X\(X/ A and this is true for any open subset G ol A we
p

have TntAcX\(X/A) (132)

Combining (1.3.1) and (1.3.2) we have (i) The other relation (ii) follows from (i) if we
teplace A by (X\A) and take complement.
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Definition 1.3.4 Given a subset A in a metric space, Boundary of A denoted by
Bdr(A) is defined as '

Bdr(A) = A \ Int(A).
Note that Bdr(A) = A \ int(A)

= A N (X\IntA)
= A N (XMA) (by Theorem 1.3.5)
So Bdr(A) is a closed set.

Example 1.3.3 In a metric space (X,d) let G be an open set. For any subset A of X
show that GnA = ¢ if and only if Gnx = ¢.

Solution : Here Gnp =¢ = GnA = ¢ always. Let GnA= . If possible, let
Gna #¢ and take v e(Gnp ). Thus u € 4 but weg A, So u is a limil point of A,

G is open and contains u. Clearly, G is a neighbourhood of u, and therefore GnA = bh—
a confradiction. Hence GnA =¢— Gny = ¢,

Definition 1.3.5 (a) A subsct H in a metric space (X.,d) is said to be dense
(everywhere dense) in X if j = X,

(b) A subsct B in (X.d) is said to be no-where dense in X if Int (E) = .

l'or example (a) the set Q of all rationals in R of reals with usual metric is dense
mRie, 6=R.

(b) The set N of all natural numbers in R with usual metric is a no-where dense
in R, and so is a finile subset of R.

Definition 1.3.6 A metnc space (X.d) is said to be separable if there is a countable
dense set Cin X fe, ¢o=X.
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For example, the real space R with usual metric is separable, because the sct Q of all
rationals in R is dense in R, and so is the case with Enclidean n-space R where the

subset consisting of those points of R” with rational co-ordinates is dense in R”,

Definition 1.3.7 A metric spac:: (X.d) is said to be discrete if every subset in X is both

open and closed (clopen).

For example, the metric space (X.d) with trivial metric d is discrele; because every
subsel including singletons is clopzn. But there are discrete mefric spaces with non-trivial
metric. Consider N of all natural aumbers as a metric space with usual metric of reals.

This melric is non-trivial, neverthsless N is a discrete metric space.

§ 1.4 Sub-spaces
Tet (X.d) be a metric space andl Y be a non-empty subset ol X. They dy = restriction
ol d to Y*Y is also a metric on Y; because d(u,v) as (u,v) e(YxY) satisfies all metric
axioms (M.1)-(M.3). So (Y.dy) is a metr@c space, called a subspace of (X.d).
Theorem 1.4.1 Let (Y,dy) be a sub.wspaue of (X.d). Then a subset G of Y is open
in (Y.dy) and il and only if G = YO, where O is an open set in (X.d).

Proof : First we note that if’ Bf.r{y), y €Y and r=0 is an open ball in (Y,dy), then we

have, |
B,.}'{y} = ¥YrB f_‘j"{ J;'J, where Bl,.xfy) is an open ball in (X ).
Now suppose G is an open sel in (Y.dy),
then G is Union of some open balls (Y.dy), say

G = UB,.F:’M where y €Y and 10
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= u(YnB, X (1)) where y €Y and >0 X
=Yn{uB Xy)} where peY and r=0
= YO where O is an open set in (X,d).

Conversely, Let G = YnO where O 15 open X and let y G,
then y €O and y is an interior point of O relative to (X.d), and
we find an open ball B,X() (+>0) such that B, X(y) c O; Now
put B,"()) = YnB,X3)=YNO = G Where B,Y(3) is an open ball centred at yeG
relative to (Yo y). Henee y(eG) isan interior point of G relative to (¥, dy). So G is open
in'Y.

Remark I Theorem 1.4.1 vemains valid if the words ‘open’ are replaced by ‘closed’.

Remark 2 There may an open set in (Y.dy,) without being open in (X,d). For example,
consider the sub-space as an interval (0,1) =Y of the space R of reals with usual metric.

1
Then [;J:I is an open set in sub-space Y without being open in R.

Theorem 1.4.2 Any sub-spacc of a separable metric space is separable.

Proof : Let (Y,dy) be a sub-space of I{X,aﬂl and (X,d) be separable. Take A =
{¥ X%, }, & countable set in X such that A is dense in X i.e,, A = X. So for each

B
y €Y, and each natural number m, the open ball l{“}'}attr_acta elements of A, and say

m

B X
X, r—:[ﬁ‘ﬁﬂ 1 }]. That means 2 n) 0 T #0 (because y is there),

L
m

i put A = {(mm):Y ﬂBl{xn) 2O Clearly A # ¢ . Now for cach member (12,m) eA

m
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Yﬁﬂl(x”)

m

take a-member, say =V, ., E[ ] Then B = {y,,, : (mm) €A} becomes a

countable set in Y. We now check that B is dense in Y. Take y €Y, for each +ve r, choose

a natural number m to satisfy —<r/2, As stated above, there is an integer n such that
» "

anHi (v). So (n,m) is a member of A by choice, and we deduce that

mr

Ll
‘-'5{_}.-{_]'"’ _ynm} - "ill:_}"a xm}+ d(‘_xﬂ!’ _}'nm} = ;+;

< 1, showing that y, . € BY ()
That means y €Y -closure (B) and proof is complete.

Chapter-1
Exercise (A)

Short answer type questions

| In Buclidean plane R? draw open unit ball B, (9) centred al 9= (0,0) e R2

with respect to (i) usual metric T[i f ) i J(x1 = )+ (%= 3507 (i1) melric

o . £,
P(~ {) = max(x;—¥|s [¥o-¥,| and (iii) metric U[,_ f ] = x| + 0=

X
where . = (x.%), {=U’|= Va) eR?.

2. . Lixamine if X = (a,b,c) and d: XxX— Reals piven by,
dia,a) = d(b,b) = dfc.c) = (ab) = dfba) = 0, d(b,c) = dch) = 5 and

die,a) = dfa,c) = 6 is a metric on X, where a, b, ¢ are different.
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10.

A finite set GG n a melric space (X.d) is closed because (a) G has no limit point,

(b) every point of (3 is limit point of G. Which one is-correct? Give reason.
A metric space is discrete if every subset in it is both open and closed. Give an

example with justification a discrete metric space (X,d) with a non-trivial metric
i,

In each of following cases give an example in support of a set G in a metric

~ space (X.d) such that derived set G' satisfies,

()G =G (i) Ge G (iii) neither (i) nor (ii).

The closed interval [a,h] (a<b) of the metric space R |of all reals with
usual metrie is a complete metric space because (a) |ab] is bounded (h)
|, 5] is not open (c) [a,b] is a closed set of R. Which one is correct? Give

TEds011.

HG= { T +F} where m and # are natural numbers obtain (i) derived set

G" of G, and (ii) derived set (G")' of G'.

I'or two subscts A and B in a metric space if derived set A" = derived set

B', does if follow that A = B? Give reasons for answer.

A subset F is a closed set in a metric space if (i) F © derived set F' (ii)

derived set F' < . Which one is [alse? Give reasons.

In the metric space Cp[0,]] with sup metric p obtain a second degree
polynomial p, such that p(p,0) = L.
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Exercise (B)

If (X.d) is a metric space, and x;%,....,x, arc members of X, then show that
dfx,.x,) <d(x;xy) 1+ dxpxg) +o dx, 1 ¥,).

Tn a metric space (X.d) if x € X, and N, denotes the family ol all neighbourhoods
of x in X, Show that n{N : N e¥,_} = {x}.

If (X,d) is a metric space, verify that (X, min(1,¢)} is a metric space.

If (X,.dp)s (Xpds), o (X,.d,) are n metric spaces, and

X=X XXEK,,.XK”, show that (X.d) is a metric space when

g ’ fI ; x!‘-}f oy F
(i) d(i 1) = Z],d,-(xf, ¥)s (if) “{—u _,) max 4 (¥ %) for any two members

I=i<n

)f_ = (XX Xy ) and 1{ = (0 Ya-oYy! of X.

If X= ¢, and e:X*X — Reals in a function to satisfy (i) efx,y) = 0 il and
only if x = y in X, and (ii) efx,z)zefx,y) + e(yz) forall x, 3 z € X, Examine
il (X,e) 1s a melric space.

CIrR is the set of all reals, examine'if (R, o) is a metric space when o (x,))

= |xy}® for all x,y € R

If X+ ¢ and (X.d,) is a metric space for k = 1,2,... such that for any two
distinet members x,y in X, d(xy)=0 for some k. Let p 1 X % X— Reals be

1 af}(u,::)

defined as PU&Y) = Ez e for all u, v in X.

Show that (X,p) is a metric space.

Let A be a subset of a metric space (X.d).

Show that (i) Bdr A = An(X/A)

= X/(A% (X/A)Y), bar denoting the closure and 0 indicating Interior.
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1.

11.

1Z.

(i) A =A"UBdr A, and

X =A%XA) UBdr A,
(iii) Obtain Bdr A where A = {(x,)sR2:y = o).
@IF A and B are two subsets in a metric space (X.d), prove that
(h w E) =An E,_ =bar denoting closure.
(b)Give an example of subsets A, B of reals with usual metric with
(AnB)#ANB.
(¢) Il two subscts A and B in a metric space satisfy Bdr AnBdr B =, then
prove (hat (Aﬁ) =AnB)and = (AU B =A'wB"

Give an example of a melric space where closure of an open ball B,x,) is not
equal to the closed ball B, ().

In Euclidean 2-space R? if PR 0 0)) = By |+ ey, | forall g 1i%3),
(V).y2) € R?, show that (R%,p) is a metric space, and describe all open balls

- B,(0,0) (r=0) centred at (0,0) of R2,

Verify that collection Cp[0,1] of all real-valued continuous functions over the

closed interval [0,1] is a metric space with metric pifel =j Lf =€l gopall /;
0

g € Cg[0.1]. Find a second degree polynomial p e Cgl0.1] satisfying p(0.p) =
1. '

Let Y be a sub-space of a metric space (X.d); For AcY, show that Y-closure
(A) = YnX -closure (A),

In a metric space (X,d) iff AcX, show

that Closure (A) = n{G: G is a closed set in X conlaining A},
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15. Let X denote collection of all sequences of reals having-almost one non-zero
term, and let the zero sequence be denoted by O. Further let the member of X
having non-zero mth term x be marked as x|" (n = 1.2,..). Define p : XxX—Reals
by. '

Pex|™ pI™) — min [1,Jx—y|] if x<y
=1 if x>y
Lor m = n, Let pix|", [¥|") = 1.

Show that p satisfies all metric axioms except that of symmetry.
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Unit 6 1 Complete Metric Spaces, Examples,
Castors Theurem, Baire Theorem and
Equivalent Metrics

(Convergent scquence, cauchy sequence in a mefric space; Complete metric space, examples of
complete metric spaces @ R", ﬁp{ l=p <e=) Cplabl; Incomplete metric space. Bounded sels,

Diameter of a sel, Cantor’s Intersection Theorem. Baire Category Theorem; Equivalent melrics:)
§ 2.1 Let (Fd) be a metric space, and {x,} be a sequence in X.
Definition 2.1.1. {x } is said to be a convergenl sequence in (X.e) if there is a

member y € X such that li_}m d(u,x,) = 0 or equivalently, given a + ve e there is
‘ H—hoo -

an index N satisfying dfux, ) <& when n > N,

Remark : If {x } is a converpent sequence in (X,d) with 1 e X and ]l?'l (u,x, ) =0,

u is called the limit ol {x }; We write as lIm*, =¥
i
Theorem 2.1.1. ﬁl}n = # € A, then u is unigue.
P~ o

Proof : Let {x,} converge to u and to v aswell (u,v € X) where u# v Then
] diu, )= ; Since (X.d) is Hausdorff we find two open balls 3 () and BE{P} centered
1
al w and v respectively with 0 <g < Ei{(y,v) such that
B_(u)nB_(v) = ¢ : (2.1.1)
Since lim*, = #and lim ¥, = #= v, corresponding to this 1ve &, we find an index

n "

M such that

diux,) <c and dfvx ) <e forn> N
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or, x, e B_(u) and x, eB_(v) form=N

This contradids (2.1.1) and Theorem is proved.

Definition 2.1.2. A sequence {x,/ is said to be a cauchy sequence in (X,d ifd(x,;cm] - )
as n,m— =, or equivalently if given @ + ve €, there is an index N satislying dix x _)<g

whenever i, m=>N.

Theorem 2.1.2. Any convergent sequence is a cauchy sequence, bul converse is false

in a metric space.

Proof-: Let {x,} be a convergent sequence in (X.o) with 'm*a— y € X Given
"

a+ve e, we find an index N satisfying
dfux, )=ef2 whenever n > N, (2.1.2)

Suppose n,m = N, then dix, . x, ) < d{‘xn.u} i dru,xm){aﬂ + g2 =& from(2.1.2)

nm

So {x,} is a cauchy sequence in (X.d).
The converse is not true. Take a metric space as (0,1] and a sequence {x,} in
(0,1yas x, =— (n = 1.2,..), Then with usual metric for reals we have
H

NS )l -
dix x J=1x=x ]—.'ﬂ*; <—+——0as nm— . So {x,} is a cauchy sequence
n

it n i T

1
i (0,1], and {xn = E} fails to converge to any member of (0,1].

Theorem 2.1.3. If a cauchy sequence has a convergent sub-sequence in (X, d), then

the cauchy sequence is convergent in (X,d).
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Proof : Suppose {x,} is a cauchy sequence in (X,d), and {x,;} be a subsequence
ol [x,} such that {x,} is convergentin (X,d). Let u = 'T" e X, Givena | ve g,

there are indices N and L. such that

dix_.x )< €/2 whenever nmzN = .. (2.1.3)

metn

because {x,} is cauchy, and
dfx,.x,. )< €2 whenever k> L (2.1.4)

1 = H.
hecause h;” g

Take M = max (N,L) : Then for m=M (and hence n > m > M) from (2.1,3) and
(2.1.4) we have

dlux, ) < d’fﬁ,xnm}+:z'(xﬂm i)

<gf2 | &/2 = ¢, showing lim¥, =%
Definition 2,1.3. (X.d) is said to be a complete metric space if every caucﬁy
sequence in (X,d) 15 a convergent sequence in (X,d).

Remark : The interval (0,1] = {x:0 < x < 1} is a metric space with usual metric
of reals and it is not a complete metric space. However we have

Theorem 2.1.4. The space R of all reals with usual metric is a complete metric
spacc. '

Proof : The proof is exactly that of cauchy’s General Principle of convergence
in R.

Example 2.1.1 The Buclideon n-space R" of all ordered n-tuples of reals

f‘i-—(x;, XpXp ) (x; is real) is a complete metric space with usual metric
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i - 172
d[i‘{)=[21x,-—}“,-|2] when f = (XX %] and { =(¥p¥z--y,) are any two
7=

members of R,

Proof : We know that with  as given (R".d) is a metric space. Let {jj "} be a

cauchy sequence in R". So given £> 0, we find and index N salisfying

X
a’{ :} < E when mr =N

m

Taking _:"" = (xllur]‘xz[m':_m_,_."im'll) = (n fixed),

L

K
: . f
above gives (ZIJ:;M — %

IV
J <€ when mrz N. (2.1.5%)
i=1

r‘f-',-( i) _ x:_{r)

2 1]
; " 2
Now each i=1.2,...n gives |x.'{ ¥ _""im[ 2y, <€ when m,r > N.
=

or. |:>rff""jl —.-:c:.*r’*J <g when myr= N,

So, Cauchy’s general Principle convergence says lor each i = 1,2,....n the sequence

{ xﬂ_lrr)} (a sequence of reals with running index m) of reals is convergent and put

¥, & A 1
lim %7 =% x¥ e R, 2.1.6)

F—hEs

Clearly n-tuple (Jﬁ_,'rﬂ'JI 2 X zt’ﬂ) re .,x,,fm ) = ,fﬂ (say) & R” and from (2.1 .5) on passage
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1
- . ¢ 2 |2
to limit as » — = and using (2.1.6) we deduce that (Z{]xﬂr""“:I —:r:;.m) 1 ] =g when
i=t
mz N,

2 ) X X =
I'hat means, ("‘m “'f)] = 0asm— oo Thus cauchy sequence {j } as piven is a
m

convergent sequence in R". So (R".d) is a complete metric space.

Example 2.1.2 The sequence space (1<P<«) consisting of all real sequences
I

x . = £ . : /
~ =% XX, wilh [E|r ; |‘n ] < == 1s a complete metric space with respect to

=l

1

. (e[ 2 |
the metric p(i{)=[2|xr.—yf1‘n] for® = (e 05,00, {=(yf’y2*"')Efp'
i=l

Solution : We have seen that the sequence 0 is a metric space with p as a metric

defined above. Now suppose {f

n

} be a cauchy sequence in L, where

f Z(XI(HJJxIﬁJ.“__) E fp(n: Lzl}

So p(,. o ]—}U as mm— =, and given >0, we find an index N such that

W

P[f‘ = ){ € when nm=N.

o

= 2\
or. [Z|xf”) —xr-*”"‘*'l ] <& when nm = N 210y
=!
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Then for each i = 1.2....

|x;'f"} 2 x{_[’m}"'p < ilx!ﬁr) _xifrmi'l'a <Ep when mm = N
=l ‘

o |xi_l'ru" _xrf-‘”z" =g when mm=N (2.1.8)

Now cauchy’s general Principle of convergence says from (2.1.8) that for each

i=1.2,... the real sequence {xl-'r"‘*} } (m as running index) is convergenl and let

T L)
T jH;{:w,l _xf:’ )
m—hea

. (say), xft“}E .

Put :: ':[:r,m} .xzmj 1-1-); we check that jﬂ is a member of . For each +ve

integer k£ we have from (2.1.7)

Tl - <3

i-l i=l

) — . () r

<€” \when mn = N. (2.1.9)

: S g 7 0y}#
Passing on limit as m—» eoin (2.1.9) we deduce that i x,-” -x;-{ }l < e’ when
a i i=f
nzN.
This is true for each +ve intéger k and hence
S [, »
le;'{ : _"";U”| <& when n >N, (2.1.10)

=i

1 1 : |
R TR R )

i=1 i=1 {

=l
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by Minkowski incquality; and in view of (2.1.10) r.h.s, is a finite + ve quantity for large
I

n. That means [i[xr-“”w]ﬁ <o and fﬂ -—.(x][":’._xzm},,.,]e ¢

i=|

»

- ;
Finally, from (2.1.10) we have {Zl"}'{“} —xj-'[ml'u] =& when n = N and this shows
i=]

o, AN A
lim~ =~ € £y
Fi—ps s

Thus the given cauchy sequence {j

i

} in L, is a convergent sequence in ﬂp and

EP complete,

Example 2.1.3 The metric space Cy fa.h/ consisting of all real-valued continuous
functions over the closed interval [a,h] with sup metric is a complete metric space,

Solution . We know that C/a,h] is a metric space with respect to the sup metric

G[,I'r.'g) = sup {fﬂﬁ]lﬁf)—g{ﬂl for }':Il',"' = CR[ﬂ,Ilj.

sk

Suppose { f,} is a cauchy sequence of elements £, in (Cgla.bl,). Then we have
o(fy ) 2 0as mm e,

So given a +ve & we find an index N satisfying o(f,, £, )<& when mmzN.

. or sLUp lﬁ;(r*j_f:uﬂ)l{c when a,m > N.
asrEh £

For each ( in fa,h] we have |f,(1) - [ (0|3 S;:Eblf,,r’r)—ﬁ,,:’d[{s ey
' et

or [f,(8) f,, ()]<& when nm > Ny and a <1 < h e (2.1.11)
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Inequality in (2.1.11) confirms that the sequence {/,(1)} of real-valued continuous
functions converges uniformly to some lunction, say = f, (1) in [fa,b], and we know
that this uniform limit function f; is continuous in [a.b]. So f, €Cpla.b] and in
(2.1,-1 1) we pass on to limit as m — co. We have | f;T{f]' Iy (0] <& when n =N and

a==1=<h
So S 7,(1) ~ fy(0l< & when 1 2N.

or, a( f,, fy) =& when nz=N.

That means '!1_111 f,,= Iy € Cglab] and proof is complete.

Example 2.1.4 Open interval (0,1) of reals with usual metric is an incomplete metric

space.

11 1

Solution : Here {E ; Ew EPRERE } is a sequence in (0,1). which is cauchy without being
7

convergent in (0, 1).

Example 2.1.5 If (@ [0,1] denotes the collection of all real polynomials in [0,1], show

that ([0,1] is a metric space with respect Lo sup mefric and it is incomplete.

Solution : @ [0.]] is a sub-space of C,[0.1] and becomes a metric space with sup

metric of C[0,1]. Consider a scquence {p, of members (polynomials) of g2 |0.1]
2 "

where P.()=leitaet b WE Giatal Nin=i<l
d o2t Al
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I = m we have

fﬂ'H-l E"'H-Z d,lg ]. .I l
ff“ﬁ,-ﬁ”}: sup A — 1 Stk
pere [ +1)E - (m+2)! all (m+1)! (m+2)! 7l

. : Iy ol
Now k5. goes to 0 as m = = by convergence of exponential series 14—+ —+._.

21
Hence {P,} is a cauchy sequence in 2|0,1], but there is no real polynomial

& 9[0.1] to which {P,}} converges in sup metric. Infact, lim % ="y rognieq of

sup meiric where ¢ is not a polynomial. So g [0,1] is incomplete.

§ 2.2.

Let A be a non-empty subset of a metric space (X,d).

Definition 2.2.1 (a) ‘The set A is called bounded if sup [d(xx')} <o
: XA

(b) Diameter of A, denoled by Diam (A) is defined as Diam (A) |
sup ld(xx')} <

xxEf

Clearly, A is bounded if and only if Diam (A) has a finite value (20).

Example 2.2.1 Any fnite subsct A of a metric space 15 bounded and Diam (A)

cqual to distance between a pair of elements in A that are at maximum distance

aparl,

Fxample 2.2,2
(a) An open ball of radius  in Luclidean 2-space R? which is an open circular
disc in R? is bounded with its Diametral value = 2 (This is true if word *open’ is

replaced by ‘closed’.)
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(b) The set A = {(x)) € R2: 2x — 3y — 5 = 0} that represents the line of equation
2x - 3y—5=0 is an unbounded set in R? with Diam (A) = +=,

Theorem 2.2.1 A non-empty set A in a mefric space {X.d) has Diam (A) =0 if
and only il A is a singleton,

Proof : If A is a singleton and = {u} say. then Diam (A) = duu) = 0.

Conversely il Diam (A) = 0, and x,y are two clements in A, we have

d(x ¥) < sup [d(u,v)}= Diam (A) =0; Since dfx,y) 20; always; we have d(x,y)=0: so

TR =

xX=19
That means A is a singleton.

Theorem 2.2.2 lior any set G in (x,d), Diam (G) = Diam (@),

Proof : Since GG, we have sup @)= sup d(ww)
{=y)el (nujel

or, Diam (G) < Diam (ﬁ) = (1)

If Diam (G) = +e, then Diam (G) = +oo, So we take Diam (G) < .

Let £ = 0 be arbitrary and #,v 2 . Then we find x,p € G such that d(ux) = % and
£ £ €
divy) «‘:--2 . Thus diu,v) < dix) | dixy) +dvv) {E—i_i + dx.y)

or diuv) <& + dfxy) <+ Diam G. So sup 4w, v e+ Diam (G)
r’r.r,u)El-fT

or Diam (ﬁ) <g+ Diam (G); As e >0 is arbitrary,
That means Diam (E) = Diam (G)
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Combining (1) and (2) we have Diam (G) = Diam (5) . The proofis complete.

Remark Diam (A) — Diam (B) close nol imply that A=B. For example (i) The
sct Q of all rationals has Diam (Q) =« = Diam (R), bul Q <R, the set of all real;
and (fi) The set {1,2,3} has ils Diam—value = 2 = Diam[0.2], and 11.2.3) #[0.2].

Theorem 2.2.3 If A and B are two sets in (X} with ArB# ¢,
then Diam (AuB) < Diam (A) + Diam (B).

Proof : If any of A and B is nubounded then AuB is unbounded, and we are
done. So let us suppose Diam (A)<e and Diam (B) <=. If yv e (AuB), then
laking w e(AnB), we have diu,v) < diu,o) + dim,v) < Diam (A) + Diam (B) < =,

and

sup  d(wv) < Diam (A) + Diam (B). That is to say,
te0o ALR)

Diam (AuB) < Diam (A) + Diam (B). 1
Remark The condition AnB+# ¢ can not be dropped for validity of Theorem
above. For example, let us take A = the closed interval |0,1] and B = closed interval

[2,5]. Then we have Diam (AuB) = Diam ([0,1]w[2.5])

f
=5 <4 =143 = Diam (0,1| + Diam [2,5] = Diam (A) + Diam (B). Here AnB =0

Example 2.2.3 Every cauchy sequence in (X.d) is bounded but converse is not

lrue.

Solution : Let {x,} bc a cauchy sequence in (Xc); Taking € = |, we find an index
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N such that d(x”.xm,i' <1 for n;m = N; and put A = }g?%r(d{x"’xﬂl))’ So that Lisa
finite non-negative number such that d(x; x;) < & + 1 for all i,j i,e, Diam {x,} < +es,

and the sequence {x,} is bounded.

M
However taking {x” ={—1}“}, a real sequence in R with usual metric we find
d(x,,x, ) =2 lor all 7 and hence {x“} is not a cauchy sequence. Nevertheless it is

a bounded sequence of reals. -

Remark : Every convergent sequence in (x,d) is bounded butl converse is not

true,

"Theorem 2.2.4 (Cantor’s intersection Theorem) A metric space (X,d) is complete
if and only if every decreasing sequence of non-empty closed set {F } with Diam
(F,) = 0 as n —= has ﬂl"u as a singleton.

pred

Proof : Let (X,d) be a complete metric space and let {F, } be a decreasing
scquence of non-empty closed sets with Diam (F,) = 0 as n — =. Take u, e I,
m=12,...). Since F; 5 F, 5.5 F, oF, 2. form>nu,eF cF, and therefore
dfd . ) < Diam (F,) (because u

[T |

dfu

oty € F ). and hence as n — ==, (and m — =), -

|1 " 1 q
i,/ 0 since Diam (F,) —0 as n = =,

Since role of m and » may be interchanged, we have dfu, 4, )—0 as mn = =,

so {u,} is cauchy sequence in (X,d) which is complete, and Let |E” =i € Xl Now
H—rca

Upip € l'mpc

B, (P=1.2,.); As F 18 closed, ;‘_?l t,,, = weF, This is true for

ntp

allpand u & ﬂl;,;. I ve ﬂl."n, Then u,v € I, for all n and d(u,v) < Diam (I, )=0

n=] =1

b L e e
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Thus # = v and ﬂl"” is shown as a singleton,

=1

Conversely, Suppose condition of Theorem is true. Take {x,} as a cauchy sequence
in (X,d).

Now put H_ = {x",x" X r....}; Then {H, } is g decreasing sequence of non-emply
sets in X, and hence {HH} is s0. Given €>0, as {x,} is cauchy, we [ind an index

N satisfying d(x,,x,, ) < € when nm > N, This gives Diam (H . < € when > N,

or Diam {H,}= Diam (IT) < & when 5 > N.
n

That means il_f)ll diam {ﬁn} =0 s0 {I_L;} lorms a decreasing sequence of non-

emply closed sets with Diameters tending to zero, and hence we have [-]IL, consists

n=l

of a single elemenl = u, (say) eX. As x, e H ~f, and gy e H, we have
d(ug, x,,) = Diam (Hu)—'ﬂ as fi—+e=. Hence {x,} is convergent in (X,d) i.e., (X.d)
is complete and proof is complete.

Remark
(1) The condition that Diam (F,)=*0 as n—=s can not be dropped in order to make

Theorem 2.2.3 stand. For example, take F, = [n=] as a closed sct of reals with

usual metric, where 1Y, > Fo o, and T, » . but Diam ()= ik lere nF" =0
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(2) Neither the condition that the scts I, are closed can be dispensed with. For

by s

1
example, take F, = (B’ ] for n=1,2,...; then F,, are not closed, and Diam () =

l (==l
— =1 and Fl = EE o0 Hers ﬂFn =9.

n =1

Definition 2.2.2 A subset B of (X, is said (o be nowhere dense if Int (closure
(B)) = ¢; or equivalently given any open ball in X, inside which there 15 another
open ball which free from points of B. For example (1) any linite set of reals with
usual metric is a nowhere dense set, and (2) The set N of all natural numbers is a
nowhere dense sel in space reals with usual metric.

Definition 2.2.3 A subsct in @ metric space is called a set of first category if it
is ¢ countable union of nowhere dense set.

A subsel in ¢ metric space is called a set of second category il it 18 nol a set of
first calegory.

Example 2.2.4 The set of all rationals in real number space with usual metric is
a set of first category. Because we know that the sel of all rationals is a countable

sct, say, equal to {y,. 75 ¥,-f = 11U {2} U ...{y,} U ..., which is countable union
of singletons that arc nowhere dense sefs.

Example 2.2.5 The sct R of all reals with usual mefric is a second category. This
statement is a special case of Theorem 2.2.4,

Fxample 2.2.6
(a) Lvery set of second category is everywhere dense in X.

(b) The complement of a sel of first category in a complete melric space is & set
of second category.

(¢) Every subset ol sct of first category is « set of first category in a metric
space.

(d) Every set containing « set ol second category is a set of second category in
a melric space,
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Theorem 2.2.4 Every complete metric space is ol second catagory.

Proof : Since I is nowhere dense, we find an open ball say B, (x)) such that Since
B"| (x;) n I, = ¢. Since F, is nowhere dense there is an open ball ‘élr

B, el g

@
= I .
1 (ii) r, EE and (iii) B, , (x,) NF, = ¢. b 1
Similarly as I, is nowhere dense there is an open ball B, : (x;) satisiying

,(¥3) satisfying (i)

: = B.rz - i) -
(1) B,z (x3) i{xjjl, (i) r; =5 07 and (iii) B 4(x5) N Fy=¢. . X2

K
We continuc this process to construct a sequence of open balls = 2 <

5
7" -2'5 satisfying

o 1
() Hrn{xn}cﬂl_r |{x" (o (1) };?551‘ L=
2”_

and (iii) B,” (x,)nF =

1
From (1), (2) and (3) it is clear that for any positive integer p, d{x,,+ 2 Kﬁ) < EJ;, which

— 0 as n— oo, . (4)

we show that {x,} is cauchy in X by completeness of which let lim %, =#&X.

==
'I .
I'rom (4) we take p — o0, and we have dfux, )= > <., and that shows ug
B, (xu] forn=1,2,. As Bﬁrfxﬂ) is disjoint with F, for n = 1,2... we sce ue

(I'yulfyu...) = X, which is not true. And proof is complete.

The [ollowing is an equivalent stalement of Barie’s category Theorem,
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Theorem 1.2..5 If {G,,} is @ countable family of open and cverywhere dense sets in

a complele metric space (X, d), then n(}n is everywhere dense in X e, ﬂ{jn =X,

w=1 n=l

(Hint) Take I, = (F1G,). Then F, is closed and since G, is everywhere dense, F .

becomes nowhere dense for n = 1.2,... I ﬂ{]m then (X/G) = ULX /G, )= UF,,

=l n=l1 =1

which is a set of first category in X, Theorem 2.2.4, says X is of second category
in X and X = Gu(X/G) shows that G is of second category in X, and therefore G

is everywhere dense.

The readers now Lry converse part.

Theorem 2.2.5 Let (X.d) be a complete metric space and Y<X. The subspace
(Y.dy) is complete if and only if Y is a closed subset of (X.d).

Proof : First let Y be .a closed subsel of [K,d) which is complete metric space.
With relativised metric dy (Y, dy) is a meiric space and fake {y | as a cauchy
sequence in (Y. dy). Then {y,} becomes a cauchy sequence in (X.d) and by
completeness of (X.d), Let lim v = )€ X. Since Y is closed in (X.d) it follows
that y € Y. Hence l]:lin.l"u =yeY, aﬁd (Y. dy) is complete.

Conversely, Let (Y,dy) be complete and let {y,} = Y be a sequence with ﬁrlr“' L

Clearly {y,} is cauchy in (Y.dy) by completeness of which 1131 ¥, =€y or yeX. g,

Y is closed in (X.d)
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§ 2.3

Definition 2.3.1. Two metrics ¢; and d, over same X are called equivalent if T~

(i.e., if metric Topologics Tﬂ'l and Tﬂ'z generated respectively by dy and d, are the same),

Explanation : We know that all open balls in metric space (X,d ;) constitute a base
of the metric Topology T,,. Hence Yay = Ta,if given any x € X, any d ; open ball centred
at x contains a d, -open ball centred at x and vice-versa,

Theorem 2.3.1. If two metrics d; and d, over X satisfy

aely (x,p) < dy () < b d; (x,) Torall x,y e X where g and b are fixed +ve reals,
then o and d, are equivalent metrics,

Proof : Let x; € X. We show that ¢ d, -open ball centred at Xy © a d, -open ball
centred al x,, and vice-versa.

For a + ve real r we have following inclusion relations -

d,-B, (Xg) < *""2 — B, Bix,) and dg---Br(x”J (= cz’j—HW(x”J

Therefore anj and T,,,rz shall be equal and proof is complele,

Example 2.3.1 If d; and d, are two metrics in Euclidean 2-space R2 are given
by :

d; = usual metric for R?

and d, [f_‘{ ]= Maxﬂxl =0

ey = 3 } as f=(x.:x;1}'f=(f.,y2}€ R?,

Then d; and d, are equivalent metrics in R?,
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Solution : We have lxl -—J.I!F 5!"1 _J'||2 +lx1 _},2.2
and lxz —h]l é‘x, —yllz +lx2 —__}-'2]1
So d; [if) = max{l, | f; Al J{\*’i ‘J“rlg +Hv —J'z]l} = di[i’}') (1)

Againd* (i*{] = 1x| - |2 +]x2 - yz‘z

< E(Maxﬂxl -5 Hr" g -”1‘})2

= 2d,2 ("f_* % )

or, d Lif] .‘—: ﬁ‘.fz(x"yj

Pt e

Combining (1) and (2) we have dz["f{ ] éd,[’f:f’_ )Eﬁc@[’fjf ) forall 7 e R2.

So Theorem 2.3.1 applies for desired conclusion.

Theorem 2.3.2 Given any metric space (X,d), There is a metric e on X with

e(xy) = 1 for all () e(X.X) such that d and e arc equivalent.

Proof : Put efx,y) = min[ldxy)| for all xyeX. It is a routine excercise to
verify that (X,e) is a metric space. Clearly efx,y) <1 for all xy e X.

Now given x, € X, if r = 0, then we have following inclusion relations :
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e Hf, g'f'.c” Jee  Buxy)
and e-By(x,) « d-B, (xp) Where § — Min[1,r],
Ihus £, = £, and the metrics o and e are equivalent,

d
Example 2.3.2 If (X.a) is a metric space show that [Xﬁ ﬂ,) 1s @ metric space

and two metrics are eguivalent.

d
Solution : It had shown before that [Xsm} 15 a_melric space. We need

showing £, = £, » Vor this take an element YpeX, and r @ + ve real. Put

!+ 52" We have the following

d - Br (xp) = € - HJ:IH-J" (xg)

Because_u € o B, (x;) if (if" and only if)
d(x, ) il
dxp.u) <r if I+ d(s,u)  14r
-
i.e., iff e(xp,u) < .I |'_J
A wweeB . (%)

d
Thus &= €, = €., and melrics d and 1og Me© equivalent,
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Chapter 11
IT':xi:rci:w (A)
Short answer type Questions
1. If {x, }is a cauchy sequence in a meiric space show that J}E}Tl dfx,x, . 1)=0.
Is the converse true?
2. In a metric space Diam (A) = Diam (B) for two subsets A and B. Is it true that

A = B? Give reason for answer.

for mn e X,

11
3. If X denotes the set of all positive integers and p(m,n) = ‘—— )
wmoon

show that (X.p) is a metric space and it is incomplete.

4. 1f O is an open sel in a metric space, and @ denotes its closure, show that

0|0 1is & nowhere densc set.

5. Il each of I}, F,,... is a set ol [irst catcgory in (X,d), show that F = UF,. 18

=l

a sel of first category in (X.d).

6. Show that an isometric image of a complete metric space is complete.

7.1f {xn} and {yﬂ}m-e two cauchy sequences in a metric space {-X*ﬂ’ ), show that

real sequence {d(x,,p,)} is convergent.

8. Let (X.d) be a metric space and x;e X and 0 <r < R. Show that the set
fx € X1r < dfxx,) <R} is an open set in (X.d).

9. 1f d; and d, are two metrics on X # ¢, verily that 2d, + 3d, is also a melric
on X.
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Excercise (B)

1 |
I. Show that the sequence {x” =1+ﬁ+'2!+---+g} 15 a cauchy sequence in

metric space of reals with usual metric and examine its convergence.

n
2. Show that {{t +;] } is a convergent sequence in real number space with

2n
usual metric, and hence obtain lim [1"‘_)
i

Moo

3. Show that a closed set I' in a melric space (X.d) is a nowhere dense set if and
only if (X/F) is an everywhere dense set in (X,d).

4 Mafxy) = |i'an ! x—tan~! _}rl for all reals x,y e R, show thal (R,o) is a metric
space and it is not complete.

. - I
5. Obtain the closure of the set {(xzy)i_F:SLﬂ—_ﬂ“d D<x= 1} in R2 with usual
z \

metric,

6. If R" 15 Enclidean a-space with two metrics d, and d, where

dy [Jf_ f] = Max ﬂx‘,- =351 }s and

I=izn

d, [ffj=21xrf,—

i=l

dﬂ(ff]gdt(f{)iﬂ 'du('ff_{} Hence verify that t;d’u =E:.u:'1

x_{ ". ¥
1o T W Xasee X)) and H__(J"p_]"zv-*fn}ERn: Show thﬂt
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I two metric p and p* on X(# ¢) are equivalent, show that « cauchy sequence
in (X.p) is @ cauchy sequence in (X.p") and vice-versa.

et X denote the collection ol all real sequences Jf = (¥y.%5,7), ;R with only

: - 2
4 linite number of terms of * being non-zero, and let p("‘;‘ E’j = [Z!x; -y }

=]

where * = (x}.%9,), f—(yl,yz,---}e)(. shbw that (X,p) is @ metric space and

examine if'it is complete.
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Unit 7 11 Continuous Functions over Metric Spaces,
Unitorm Continuity, Contraction Theorem,
Werstrom approximation Theorem

(Continuous functions over metric spaces, uniform continuity, Banach Contrac-
tion prineiple. lts application as Picards Theorem in O.D.E.. Distance of a point
from a set, its properties, distance between two sets, Normality, Completion of a
metric space, Weirstrass approximation Theorem,)

§ 3.1 Let (X,d) and (Y,p) be two metric spaces,

Definition 3.1.1 A function [ (X.d)=(Y.p) is said to be continuous at a point of

xgeX 1l given a +ve €, there is a 1ve & such that
plF(x). (xy))=e whenever d(x,x)<8.

Explanation : In Definition 3.1.1 & depends on x, and e. And p( (x), Fxg))=e
whenever d(x,xﬂ}{a may be restated as f(x)eB( ,r“{xu}} in (Y,p) as ¥eBe(x,), where
Bs(x,) denotes open ball centred at xg with radius =& in (X,d). or, equivalently,
f(Bylxg))e B f[xu}}. or equivalently Hﬁ{xn}:_f‘t(BE{ f(xg))). Further il fis a real-
valued function of real variable i e, 1l fiR+R where R is the metric space of reals
with usual metrie, then usual (£,8) Definition of Continuity of fat xqaeR i, | flx)—
f(xg)| <& whenever v — x| <8 is in agreement with Definition 3.1.1 above. Also if
(X.d) is a discrete metric space then any function /:(X.d)~(Y,p) becomes continuous

at any point of X,

Definition 3.1.2 A function f:(X.d)=(Y,p) is said to be continuous function (over

the whole space X) if /is continuous at each point ol X,

Theorem 3.1.1 A function f :(X.d)~(Y.p) is continuous if and only if inverse
image of an open set (a closed set) in (Y,p) under fis an open set (a closed set) in

(X,d)
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Proof : Tet [« (X.d)=(Y.p) be a continuous funiction, and take G to be an open set
in (Y.p) and take u € FHG)e=X: So f(1) £G and since G is open in Y, we [ind an open

ball, say B_( f(u)) in (Y.p) with Bg(u) in (X,d) such that

f(Bs()=B ([ (1))=G

or, B(u)=f G

That means u is an interior point of £ ~((G); and therefore f 'l['_f.i) is open in X because

1 is an arbitrary member of it.

Conversely, Let / '(an open set in Y) be an open set in X. [I'x,cX, and f(xy)eY:
Given a +ve g, consider the open ball B_( f'(:rU}]l which is also an open set in (Y,p),
and by Euppqseﬂ condition f"'{BE{ [(xq))) is an open sel in (X,d) with xge f~

l|[]3El: I {xu}}]. Thus there is an open ball say, BS{:];U) in X satisfying,
Balxg)e (1B f(xp)))
ar, [(Bylxg))=B( f(xq)).

That means [ is continuous at xy, and choice of x in X being arbitrary [ is a

continuous function over X,

Finally, note that il F is a closed sel in (Y.p) then Y/F is an open set in Y, and

we have for continuous [unction [
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F YY) isanopensetin X  or. X\/YF) isan open set X
o, £ YF)  is an closed set in X: and
Converse holds as a routine exercise, So Theorem is proved completely.

Theorem 3.1.2 A function f:(X.d}~ (Y.p) is continuous al a point ¥geX if and only if
{ f(x,)} is convergent with limf(x,) =1 (xq) in (Y,p) whenever {x,1 15 a convergent
i .

sequence in (X.d) with llJlfI'lx'” =X

The proof is easy and lell 1o readers.

Theorem 3.1.3 10 £:(X d)+(Y.p) is a continuous function, when following statements
are equivalent :

(a) [ is continuous

(b) f G) is an open set in (X.d) for any open set G in (Y.p)

(c) [ '(F)is aclosed set in (X.d) for any closed set T in (Y,p).

(d) fT{B'}c_ J.';'"{ﬁ}, for any subset B of (Y,p)

(e) [(A)c F(A), lor any subset A of (X.d), bar denoting the closure,

Prool ; Parts (a), (b) and (c) arc cquivalent. Suppose (¢) holds; Take any subset B

of (Y.p): Then B is a closed set in (Y,p) and by (¢) we have /~'(B) is a closed sel in
(X.d): Since BeB, we have [~'(B)e £(B)

This gives fT(B) ['(B)= [~(B) because f~(B) is closed, This is part (d).
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Now assume (d), and suppose A is a subset of (X.d). Let us put [{A) = B. So
A= [~(B) and hence A= f+(B)cf '(B) (by (d)). That means Hh}n:ﬁ = F(A)
which is (). Finally assume (e) and take G as a closed set in (Y,p). So /~1(G)cX.
From (d) f(f_—Jl(-l}) C.Ew =10 =6 because G i3 closed. So, f“"{('}_] c f-YG):

That means [~1(G) 1s a closed set in X e, inverse image of a closed sel in (Y.p)

under fis a closed set in (X.d). So fis continuous and the cycle of implication is

complete,

Example 3.]._] Let f and g:(X.d)~*(Y.p) be conlinuous fﬁnctim‘.ts, then the set
CeeX: f(x)2e(e)) is an open sel in X,

Solution © Let G = {xeX: f(x)#g(x)} where [and g are continuous functions :
XY, If ueG, we find 7 (u)# g() in (Y,p) which is a Hutlsﬁ{ari'!'spﬁcc, S0 there are
open scts P and Q in (Y.p) containing [(u) and g(u) respectively such (hat

PaQ = 6 (1)

Clearly, we [ '(P)ng 1(Q) where 7 '(P) and g~}(Q) arc open sets in (X.d) by
continuity of fand g. Now f"‘(P}Hg“{Q} is an open sel containing u in (X.d) and
hence we find an open ball, say, B, ()= f~'(P)ng '(Q); Further v © B (u) implies [
(el and g(v)eQ and [rom (1) we see f(v)#g(v); Hence B (#)=G ie, u is an
interior point of G. Thus G is shown as an open set in X.

Remark 1 The set {x € X:f (x) — g(x)} is a closed sel in (X.d),

Definition 3.1.3 A function [ :(X.d)~ (Y,p) is said to be a homeomorphism if fis

| 1 and onto (bijective) and that [ and f ! are continuous.
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IF £ :(X.d)= (Y.p) is @ homeomorphism, then metric spaces (X.d) and (Y.p) are said to

he homeomorphic.

Example 3.1.2 Let X = [0,]] and Y=[a.b](a<b) be closed intervals of reals with usual

metric ¢ of reals, then (X.d) and (Y.d) are homeomorphic.
Solation : Let f:X—=Y be a function where
flix)=a+x(b-a) O=x=<1.

Then by routine check up we sce that [is bijective and that f and ! are both
continuous; /! being piven by [~ (x) — (x-a)(b-a); a<x<h. Thus fis a homeo-

morphism; So (X.d) and (Y.d) homeomorphic.

Definition 3.1.4 A function ¢:(X,d)=(Y.p) is said to be an Isometry if
pld(u), o (v)) = d(u,v) for all wveX.

If :(X.d)~(Y,p) is an Isometry, then metric spaces (X.d) and (Y,p) are called
isometric.

Remark : An isometry is a homeomorphism.

Example 3.1.3. A homeomorphic image of a complete metric space may not he
a complele melrie space. :

Take X = {1,2,3,:-,n,~} and Y—{L 5 ,-u,—,...}as metric spaces with usual

H

Ld | =

bd | =

1
metric of reals. Here f: X=Y piven by [ (#) =25 B 1,2+ is homeomorphism; and

X being a closed set of reals is complete; bul Y is not so.
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Remark 2 If two continuous functions :(X.d)=(Y,p) agree over a dense set in

(X.d). then they become identical.

§ 3.2

Definition 3.2.1 A function [ (X.d)=(Y,p) is said lo be uniformly continuous il
given a +ve €, we find a +ve & such that p( /(x), f(x"))<e whencver ¢ (x, x') < 8,

. xe=(X.d)

Explanation : [n case of uniform continuity of a function +ve & depends only on
¢. Uniform continuity of £ implics its continuity. Because if xjeX, taking x' = xe X,
Definition of continuity of f at x, follows from Delinition 3.2.1, namely
pl f(x). [ (x,)) <& whenever d(x,x,) < 6. However, converse is false. Take f:(0, [].Q({].m}
as (x) = j; in 0<x < 1. This lunction fis a continuous function without being
unilotmly continuous therein; Because, Suppose the contrary and take & = 1; if there

is a +ve & as wanted in Uniform continuity, choose natural number » so large

1 5 1 1
that— —<8/2. Taki - Sl e d o
i i) < aking x , and xt =5 we find x.x" in (0,1] such that

2 :
v x= <&, and | f{x)  Ax)=n — (n+2)>1= & contradiction. Hence [ fails
n(n+2)

to be uniformly continuous in (0,1].

Theorem 3.2.1 Every uniformly continuous function transforms a Cauchy se-
quence into a Cauchy sequence.

Proof : Lel (X.d) and (Y,p) be melric spaces and F‘.X—-Y be a uniformly continu-
ous function, and Let {x,} be cauchy sequence in (X.d). Given £>0, there is a
positive & such that p( [(x), f(x) <€ whenever d(x,x") < & by unilort continity of

f By cauchyness of {x,} we find an index K satisfying
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dix,.x, )< & whenever nmzK.
And therefore p( f (x )0 M (x, N=e for mm=K,
That means { f{x”)} 15 Cauchy in (Y,p):

Remark : (a) Every uniformly continuous function sends a convergent sequence into
a convergent sequence. '

Because every uniformly continuous function fis a continuous finetion and sequential
continuily property ol fgives the result,

(b) A continuous lunction may however fail to transform a Cauchy sequence into a
similar such sequence.

For example, take X = (0, I] and /:(0, 1|~ Reals with associated metric as usual metric

1 .
of reals, such that /()= as0 < x < 1. Then fis a continuous [unction without being
&

! 1
uniformly continuous, and f (— for n=1,2,-; Here {—} 15 a cauchy sequence in X
n
i

I ¥
whereas { # (—) = n} is. not a cauchy sequence of reals.
n {
§ 3.3 Let A be a non-empty subset of (X,d) and xeX.
Definition 3.3.1 Distance of x from A, denoted by dist(x, A) = inf {d(x.a)aeAl,

Here. (0 < dist(x, A) = o,

Remark : Since infimum is taken over a sel of non-negative reals, inf, value exists;

X may or may not be a member of A.

Theorem 3.3.1 For any subset AcX and xeX dist(x,A) = dist (x,A ), bar denoting
the closure,

Proof : Since Ac A . we have
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mf{d(x, a)ac A} <inf{d(x.a)acA}  or dist(x, A )=dist (x, A)

I Lel & be an arbitrary 1ve number: if e A, we find ue A satisfying d(u,a)<s.
Now dist (x,A) = inl {d (x,w): weA}=d(xu)
<d(x,u) + dlau) < & + dixa)

ie., disf(xA)<et d(x,a), where a is any member of A, and hence we have
dist (x,A)ze 1 dist (x,A), where c=0 is arbitrary positive. This gives

dist (x.A)<dist(x. A ) @
Combining (1) and (2) we have dist(r,A) = dist(x,A ).
Theorem 3.3.2 Given A(# ¢)c X, dist(x,A) is a continuous function of x & X,
I'roof : Tet x,yc X. Given £>0, we find acA such that,
dly,a)=dist (y A)+&.

Now, dist{x, A)zd(x,a)=d(xy) + diya) <dixy) + & + dist(p,A)
or, dist(x, A)= dist (n4) + dlx )+«
Here £ >0 is arbitrary, and this implies,

dist (x.A)=dist(y A d(x.))
or, dist (x.A) —dist(yA)=d(x ) (1)
Interchanging x and y we similarly obtain -

dist (pA) — dist (x, A)=zd(yx) = d(xy) (2)
Combining (1) and (2) we gel

[dist (wA) — dist (p A)|=d(x.y)

This incquality shows if {x,} is a sequence in (X.d) with ﬁ:j“ ¥,= x then taking
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v, in place of p, we have 11:11 dist(x,,A) = dist (x,A). The proof is now complete.
Theorem 3.3.3 Given Ac X, we A if and only if dist (u.A) = 0.

Proof : Let dist (1,A) = 0; if ueA, then ue A and we are done, Suppose ue A. Given
a +ve £, we find a member ae A such that (v, a)=& or, acB =)

or, B (u)nA #¢.

That means u is a limit point of A and ue A . Converse part lollows by a similar
arpument.

Theorem 3.3.4 If A and B are two disjoint closed sets in a metric Space (X.d),
there is a continuous function [:(X.d)~[0.1] satis(ying

Ty =10 for all aeA and /(b)) =0 for all hel3,

Proof : Tet f (X,d)~[0]] be defined by

i dist (x;,A)
) dist{x. A)+dist(x,3)

lor xe X,
Since A and B are closed disjoint seis in X, we have denominator

dist (x,A) | dist (x,13) > 0 for all x € X. Further ['is continuous with 0< f(x)<| for
v & X, Now if xe A, we have dist(x,A) = 0, while dist(x.B)>0. So f(x)=0and if xeB,
dist (x.B) — 0 while dist (x,A)=0; So f(x) = |. Thus /°(x)=0 for all xe A and f (x)=l1
lor all xeB3.

Remark : This properly of a metric space as in Theorem says that a metric space
is a Normal space.

Definition 3.3.2 Distance between two sets A and B, denoted by .
dist{AB)= inf {d{a,b):ac A, beB} in a metrie space (X.d).

Clearly. dist (A.B) = dist (B,A)=z0.
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Remark @ (a) TF ﬁr\.H-ﬁ.tIJ; then dist(A,B) = 0

(b) If AnB = ¢, then dist(A,B) may or may not be zero. For example, lake
A=(01)and B =(1,2) as two disjoint open intervals; here dist(A,B) = 0, the metric

heing taken as that ol reals.

Again taking A = (0,1) and B = (2,3) as lwo digjoint open intervals with usual

metric of reals, we have dist{A,13) > 0.

Theorem 3.3.5 [T A and B are two subsets of (X.d), then dist(A,B)= dis(A.B),

bar denoting the closure.
Proof : We have Ac A and BB, So that
infld(uv): e A, ve B} <inf{d(a b):ac AbcB).
or, disi(A ,B)=dist(A,B) (1)
Let £>0 be given. There are members weA and v € B
satisfying d(u,v) <dist(A,B) + /2 (2)
Again we [ind a €A and hcB such that

d(u,a) < /4 and o (vh) <e/d4. So that

d(a,bh) = diaa)+d(uy) + divb) <duv) te4 + /4

= dist(A,B)+e/2+5/2 = dist(A,B)+e. (by (2)).
Now dist(A,B) <d(a,h)
<dist (A,B) + &

Since £>0 is arbitrary, we have
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dist(A,B)dist( A, B) )
Combining (1) and (3) we have dist(A,B) - dist(A,B).
Corollary : If ArB# 9, then dist(A,B) =)

Because A nNB#* 0, implies disf(ﬁ,ﬁ) = 0 and Theorem 3.3.5 applies to pive dist
(ALY = 0, : '

[lowever converse is not ,’_.’-'

irue. .-"}I
v I=¢ o

Example 3.3.1 Take A ! e
and B as subsets of R? as - ,.-J{,;'ff
A= {xy)y=e), e Nt

. N

B={(xyrr=0}. Here = _,." _; N A il T R A Pl AT
each A and B is a closed Eanl - v v
set in R? and )
AnB=A r'1ﬁ=¢ :

But

dist(AB)s (= ()2 +(0—e") = e = ;=13 0. 88 1~ and honoe dist
(A.B)=0

§ 3.4

Definition 3.4.1 Let (X.d) be a metric space. A function 1T:X~itself is said to be a
contraction 1l there is a real « such that d(1T(e), T(¥) ad(x,y) and 0<a=<l, for all X,
peX. '

Example 3.4.1 A lunction /:R~R, where R is the metric space of reals with usual

1
metric defined hy £ (x) =5 for all xeR. is a contraction.
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Theoerem 3.4.1 Every contraction in a metric space is a uniformly continuous
function.

Proof : Let T:(X.d)~itself be a contraction, and & > () be given. Lel us take a +ve

£ y 3
& o satisfy 8<_—: Now if d(x, ¥) <8,
20

we have o (L(x), 1) =ad(x,y)<ad<z/2<e. Henee 1 is uniformly continuous over

(X.d).
Corollary : Every contraction in a melric space is a continuous lunction.
Theorem 3.4.2 (Banach contraction Prineiple)

Tet T be a contraction in a complete metric space (X.d). Then there is a unique

element weX, such that T{u) = u.

Proof : Let a contraction T:(X.d)~ itself satisty @(T(x), T(y)) s od(x,p), for O<o <1
and for all x, y e X. Take any point, say, x,cX. and Let the sequence {x } with
£, =1(x, ) for # = 1.2, be defined by induction. We show {x,} to be a cauchy

sequence in (X.d). We have d(xs,x)) = d(T(x), T(xg))< ceed(xy x )=od(T(xg)xp).
and dx455) = d(T(x,) Tl 2 dlxy,xp) < (Txg)xg).
and, in general dix; . x)zod(xpx,_ )< o d(xy %))
gor- <ty ). 34 ). (1)

Let mn be | ve intepers with m>n. We have

dlx

Xz <X, 0 ¥y I] .d{‘rm— 1+ ¥im-2) +'h+'c’:{‘rm+l' Ju:”].
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E{mef-]+{ifi?—2 +"'+(1"}dfT{Iﬂ),.\‘n} from (1)

= [Irr{{xm.u-l |_'}.H:-n-14 et l}éf{'f{xu},xu]

al—a’{ (x0)xu)—u as ow—0 a5 n—eo_

hecanse ot is a +ve fraction.

In case n=m, by similar argument the same conclusion is reached, and therefore

d(x,,%, )0 as m, n oo, Thus {x }-is a cauchy sequence in (X,d) which is complete.

So {x,} is convergent in (Xid); Let ”:” *n= ueX. By continuity of T we have,

hm T(x, )= T or, lil“ Y+l =T(u) or, &= T{u).
For uniquencss of-u. let veX be such that T(v) = v.

Then d{uv) = d(T(u).T(v))<{uv); As O<o<l, we have d(uv)=0 ie. w = v and
proof is complete.

Remark 1 Because T{w)=u with u as a unique element of X, shows thal u is a
umigue lixed point under T. and also for cach +ve integral index K. T is a contrac-
tion in (X.d) with same unique fixed point as that of T,

Remark 2 Proof of Theorem 3.4.2 describes existence, determination and unique-
ness ol lixed point of a contraction in (X.d).

Theorem 3.4.3 Tet T be a continuous function of a complete metric space (X ,d)
into itself and for some 1 ve integer K, T® be contraction, Then ‘I’ has unique fixed
point weX.

Proof : By Theorem 3.4.3 TR has a unique fixed point u in X with ii:" (TK)"
(xy)=u. ¥p€ X being any member.

So. u =lm K (T(x,))
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. ]iln TTm (xy)

= 'I'(lim('r“)"{x”)] by continuity of 'I.

= "Hea:

And unigueness of u follows from the fact that each fixed point of T 1s also a fixed
point of T,

Theorem 3.4.4 (Picard’s Theorem on the existence of solution of ordinary
Differential Equation).

Let D be an open sct in R? with (xpyp)eD). Let f be a real-valued continuous
function in D, and satisty a Lipbschitz condition :

| ﬁ"".]'l}}_f {"}”E}lamlfl_yzl W]-]EH {.x[! }Il)! {IE!}IE}FD
Then there exists a ¢ = 0, and a function ¢ continuous and differentiable in the
closed

interval [x, £ ] such that (i) ¢(xy) = vy, and (ii) ¥ = ¢(x) satisfies the Dif-
ferential Equation,

dy . .

—= [(x.») for x elxy— 8 xq + 1]

el

Proof: It suffices (o show ¢ continuous in [x;—1, x5! ] satisfies

t}}'[.'l:]='|rﬂ | J-:ﬂ f{u. il e) Yedue (xu —FE x5y +1) with

flx.d(x))—cD {_r“.rs'_t_c.rﬂH).

Let 1J denote a closed circular dise centred at

: i D
(x%gsyg). with radius +ve, and U=D.
: 8]
S ol . 5 .
letm= . HE”UE () since [ is continuous

and 17 15 a closed and bounded, mr is finite.

Now choose ¢ and & such thal

1
(1) O<te M and
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(ii) The closed reetangle {(x.y)lx xpl<ely - ypi<6} is contained in U; and
() mf=d.

We know that the collection Cp[x,— 1, x; + ] of all real-valued continuous functions
over the closed-interval [x,— 1, x5 1¢] is a complete metric space wilh respect lo.sup

mctrie.

Denote L= { e Cplxg — L g9 xg— 1, xg t 117 (y5—0.y+8) is continuous}. Then
it is easy to check that E is a closed set in C [x,—1, xy1 f], and henec E is a complete

mietric space with sup metrie.

Deline a function T over E by saying T(¢) = y for ¢ €C where,

\P["'} =¥ +'[;I f{ﬂ,f{}[g}}d‘u'

Then y is continuous in [x5 —f x, +f] such that

W)=y |S  Sup l_ﬂu.wunU;;ﬂ <mt<8 by choice of 5.

X _r.'&.‘x”+l'

Hence T Transforms members of E into themselves, ie. T : E—=2L; Further, we

verify that T is a contraction.

Let ¢ .05€E with w, = T(¢,) and y,="T($,) . So,

=M. sup
E[.ro b Q4]

v 5 e L) = o D} 000000\ [

<t Md($.0,), where o denotes sup metric.
Taking sup in LIS, we sel

) E‘tl"p"ng‘” Mf"{q’]aq}ﬂ

or, d (104 ). T(b5)) <t M( .05, D=1 M=1
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[Mence verilication is done to show that T is a contraction on E,

By Contraction Principle there is member ¢eE with T(¢) = ¢ e,
Glx) = }s“+Lﬂ fl[zr.q:r[u}}ffu in xg—f<u<xgtL.

Fxample 3.4.2 Let X—{x eRixz1} and finction X=X be delined as; '1'{1}—-'_:-4-1
. 4 X

for xcX. Show that T is a contraction and obtain the [ixed poinl under T.

Solution ; Here X is a complete metric space with usual metric of reals.

. x 1 3 1 l 1.2
el x, yeX ; Then |T(x)-T(y) :E+;_§__}' = E(x— )=l —
) 3
1 1 * | 1
_E{x—}'}--x}{-‘.—}fj = {x—.}'][i—g} m‘g—;!x—_ﬂ, As x21 and ys1,

1 - 1 |
we have — = 1; So — lies cither between 0 and 5 or hetween E and | and in each
Xy xy 2 .

1

1 l 1
of these cases E‘;{ EE Lence |T(x) = T{y)= Elx -yl So T is a contraction and

Banach Contraction Principle says that T has a unique fixed point y given by uw =

[
1L or =2 0r =2
ha Y]

Example 3.4.3 Let [ab] be a closed interval and Q :|a.b]—[a,b] be a function
with derivative Q'(x) satisfying | Q'(x)|<w<l in asx<b. (derivative at end points to
be taken umilateral derivative), show that Q(x)—x = 0 has exactly one rool in
|erh). .

Solution : llere [a.h] is a complete metric space with usual metric of reals. IF
XX e | with x < x, we have by Mean-Value Theorem of Differential Calculus,

Qlxy) — Qx) = (x5 x) Q' () for some u between v and x5 Hence
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1Q0x)) = Qxy)| = 1Q (lI(x— x|z ctfe; - x,| where O<a<l. So Q is a contraction and
Banach Contraction Principle says that there is exactly one member ucla.b] satisfying
Q) = w or Q(u) — w= 0 or Q(x)—x = 0 has exactly one root in [a.6].

Definitions 3.4.2 A complele metric space (X5 " } 18 said to be a completion

of a given metric space (X.d) il (X.d) is isometric to a dense sub-space of (X, d")
Theorem 3.4.5 Every metric space has a completion.

Proot : Let (X.d) be a given metric space. If it is complete it is its own comple-
tion. So assume (X.d) Lo be incomplete, We define a binary relation of ‘being
equivalent’ among family £ of all cauchy sequences in (X.d). Two cauchy sequences

{x,t and {.x'“} i X are said to be cquivalent if

limd(x ' )=0

This binary relation on £ is an equivalence relation which partitions £, into
disjoint equivalent classes of cauchy sequences in X. Il X denotes the set of all
representative members, say, x*.p", - of equivalent classes of cauchy scquences in
(X.d). we are now ready to define a metric 4 * on X* where d *{x*~y*}=1i3;“ ax,,y,)
where {x, }ex", {y”}r:y'. To this end we must be satisfied that (i) r.h.s. limit exists
and (i1) it is independent of choice of member sequence {x, 140,

(i) Here E.I’{.‘L'",_}' JJ') Ed{‘tn’xm} i d{xm'—y mj i d{\]’m*y u}

or dix,y,) —d(x,.y,)<dx,x,) + dy,») - e R
mterchanging n and m we have

dix,. ym]—d{x”,yu}s;d[xm,xn} j d{yﬂ’ynr} w2
From (1) and (2) we get

ld(x,,, v,) — d(x,, yn}lsd[-xﬂ,xm) bd(y, )

—) a5 m—es,
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That means real sequence {d(x.y )} is a cauchy sequence of reals, and by
cauchy general principle of convergence we have

lim gn v ot
: dfx,,y,) exists.

(i1) Part is a routine exercisc and left out, Now that d" is a metric on X follows
upon verification of metric aixoms (M.1)—(M.3). We now show that (X°.d “} is g
complele metric space. Take {_.J.:*l..‘f;,....x,:],"'} be a cauchy sequence in (X",d"), Out

: v 4 " :
of the equivalent class represented by x, take a cauchy sequence {J.:l'[”:',xzﬁ”]'.-'--] al
(X.d); We can find a +ve index K, so that

() ) e l r{}]' me= K
d |x Tl " En |

7
L L

(4)

Now consider the sequence {xmKJ o IR T ,...},'l'his is a cauchy sequence.

For xe X, constant sequence {x.x.x, -} is obviously a cauchy sequence, and belongs
. . L]
o a certain cquivalenl class represented by a member ol X .

Also d'(x" ") = d(x,y) when {x.x -)ex” and {pp.} ey (4)

For each natural number », constant sequence {xkfﬂ}, xxtﬂ]'.n-}i;x;({::]* .

of i N (n) ()Y 1
Thus o [J. o X 3 ]—%EL&[X e 3 ‘—:; (5)
Suppose ¢>0 is piven. Since {x} is cauchy choose ng
ok ; 11
So that d*(x,.x,, ) <€/3 and also = cach <&/3 (6)

From (4), (5) and (6) we find for mm<n,

d (xie®, xic)=a" (", 2 (*

1L
* ] ¥ & ¥ _# ¥ g ¥ * & P
<d (xKE::} *In) hd (3:”, xm ) +d ("‘m':"-"“::} sd (.r”. X ) +n+ -

m

So, { xict ), x5 e e ---}is cauchy and therefore belongs to an equivalence

class represented by a member x eX’, We (inally show that, ¥ = li;’" .r;.
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Now a"(:rlq;[j;}'. ,‘r[{*::]) <g/2 lor pn=N; because {II{E::} } is cauchy in (X.d). (7)
From (5) and (7) taking =N, we have

a(s ey sd (") +d' ()", 57)

"
<eft (-Jr*. .1:1<,t”}$) + l
n 1
Llim gy (x[{“’}. _thn}) + g
= (4 A i
) g, !
<gf2 + 'ﬁ; which 15 < lor large values of n.

3 - L] Bl
Thal means, “_’r“x” = e

It remains to check that X is isometric to a sub-space of X which is dense in
X" Let 'T:'r denote the collection of all constant sequences (x.x....) as xeX. Then
J{F.,I_}f : And there is 1-1 correspondence between members ol X;, and those of X,
with property d(x"y" )= d(x) as (xx.-)ex” and (yy ey’ when xpeX.

Ihus X, and X become isometric. Lastly, take x X", cauchy sequence
¥ X5 fEx. Let £ >0 be given then there is an index 5 such that

d(x, %)< e if n=n (8)

'

+
Demote by X, €X, to represent constant sequence {x", xn?----}, From (8) we have
i e gl 0 1T S
d'(x", IE) e (x,. % )<
. i k.
Hence X, is everywhere dense in X,
The weirstrass approximation Theorem

Before we take up the Theorem let us consider a polynomial p(x) = a, +
ayx o-+a ¢ with coefficients a; as reals over a closed interval |ab](a < b). We
know that every such polynomial 15 a continuous funetion over [abh]; and 1l 15 also
well-known that limit of any uniformly convergent sequence of such polynomials
becomes a continuous function in |a.b| Weirstrass theorem says that converse is also

| true.

180




Theorem 3.4,6 Given a continuous function fin [«,b] and &0, there is a real poly-

nomial p satisfying |/ (x) — p(x)i<e for all x in [a,h]

Prool : 1t suffices to prove this Theorem in the closed unit interval [0.1] because; of
reasons that x = x(b @) + ¢ gives a continuous transformation of [0.1] onto [a.b]; so that
o taken as g(x') - f(x'(b - a) + a) is continuous n | 0.1}, Theorem if proved for [(0,1] shall

give 2 polynomial p'in [0.1] satislying | g(x") - p'(x=e for all '] 0.1}, and in terms of x,

' Wil
fle)—p (;;

purpose is done,

one ohtains

PN A x—a
J| <€ forall x in [a,b] ; thus putting A(x)=p [f ] e
! A

Binomial ~coefficients "C, (given a bve integer # and an integer & with
n!

O<A<n)=7, —T}F i shortened as (”;(}

- F i I {k
Put H,,{J:}-Z( ”-')""&r“ —x) ;fl;]?- these are called
b0

Rernstein polynomials associated with £ We need following identilies —

N

Z{“,{-}r"‘{l—.\'}={x+(]‘-"}}”=I (1)

gl
Differentiating w.r.l x we gel

i [”,{-)(ie:.;* V1 - %) = (= B)xE (1 — )8! ) = Iz,(".t-).'c:‘c" W1 =)t k=) =0

k1) k=0

 Now multiply both sides by x(l=x) and get,

i{”b}.‘»’k“—x}“_"l{'{’_ﬂx}:ﬂ (2]

=l

Differcntiating w.r.t x and taking <f(1= x]"“r‘ as a factor to apply product rule one .
obtains
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LS

Z{”,&}{—-r;x’l"l[l—x}” b= )Rl — a2y = - (3)
=0 g

o

Applying (1) to (3) we have

kr

2{“#}3”""{1—1‘}“ N — )t =

=)
multiplying throughout by x(l-x) we have

i

¥ (M) (1 =yt (k= nx)? = m(1- x)

=0

and division by n? vields

’ P i

$: (e t—syri{ sk ) < 2= ;
k=t 2 "

i j ,4_’
Using (1) we find f{x) B, (x)= Z("J&)x*(l —x}”“"[f{;,—]_f[_]]__

=0} i

g |
So that | /(x)-B, ()] < 2, ("e)<* =2 #,7(x) - f[f]

k=D )
Since ( is uniformly continuous in [0.1] there is a | ve & such that |x— * <0
n

implies

re- (%)

where ¥ 15 the sum of those terms for which

£ i T '
{E' I.et us split the sum in (5) in two parts say by ¥ and ¥/,

e —

<& stands ok, and where ¥’ is
n

' E
the sum of those left-over. Clearly E{E. The proof is completed by showing ¥’

- .
made smaller than 3 independent of x for sui]l'wi::nliy large n. As f is bounded we

find a 1 ve K so that | /(x) |« K In all x£[0,1], Thus we have
P<2K Y (" )kl - x )k,
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Where the sum on ., say, 5 1s laken for all k such that

v — 1= §. Now it suffices

1
to show Y smaller than &/4K independent of x by taking n appropriately large. Identity
(4) pives

l=x
F.z < x(1 x) s ¥ < x( )

i 0'n

Now t?:!ié{x“ —x)=1/4; and hence y"= At

, K e B T
So taking n= 5ic we have }' {ﬁ’ and hence }''< 5 and consequently | £ (x) - B, (x)l<e

for all xe[0.1]. The prool is now complete,

Example 3.4.4 A necessary and sullicient condition that a funetion f1s continuous in

|e1,h] is that converponding to & = 0, there is a pelynmﬁial pon [a b] such that | f(x) —
p(x)|<e for all xcla,b].

Solution : Condition is necessary : Let / be a continuous function in [¢,b] and
Weirstrass Theorem Lakes care of this part.

Condition is sufficient: Tet [ be a function [a,b] and given £ > (), there is a
polynomial p in [a b] such that

| £(x) p(.t}[{§ for all xe|a,b] ; (1)

Take x = ¢ any point in [a b], since polynomial p is continuous at x = ¢, we (ind
a bve & such that

. =
| p(x) —p(c}ifg whenever ¢ —d<x<¢ + & (2)
Taking x = ¢ in (1) we have

2 ' ' _
() ple)l< ©)
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Now | F(x) flells] Fx) = plx)] +| plx) = ple)+ple) — £ (e)]

<— +_+t—=¢& whenever [x - ¢|<35 from (1), and (2) and (3).

et !l m

£ -E
3 3

That means / is continuous at ¥ = ¢. Hence conclusion follows.

Excercise-(A)

Short answer type questions

I. IfAand B are bounded sets in a meiric sﬁacc show that AnB is a bounded set.
2. Which of the following sets in R with usual metric is bounded 7
(a) Thesel E of all irrationals

(b) open interval (a.h)

| I
{C} {L .E.;‘}

(i) The closed interval [E,J'ru{E +'%},n SR

[ | e

3. Show that [0,m) is an unbounded closed sef in R with usual metric.

4. Show that for a continuous function £;R~R with usual metric of reals, and for
U=r<R, the set {xeR : r<|f{x)] <R} is an open set,

3. Showthat a constant function from one metric space into another is a continuous
fumction.

6. Let [X.d] and | Y,p] be two metric space and [X,d] is discrete. Show that any
lunction /:X-Y is a continuous function.
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[

6.

Fxcercise-(B)
Show that £ :[0.0]+[a.b] given by [{x) =a + (b — a)x : 0< x <1 is a homeomorphism,
Giive an example o 1llustrate that a homeomorphic image of a complete metric
space may not be complete.

' i 1 : ;
Obtain the closure of the set Jl{x'"]f}:'y =gin—0=x= l} in R2 with usual melric,
X

Let fi(X,d)~Reals be a function such that for any rational o, sets {x cX: f(x)<a}
and {v €X: flx) >a} are open. Show that [ is a continuous [unction,

If |x,} and [y, | are two cauchy sequences in (X.d), show thal real sequence
ld(x,.y.)} is convergenl,

II' T is a contraction in a complete metric space X and xcX, show that
limipat ¢ y=limipn+1 ¢y
T(lim (g))=limrnst g,

Show that Cp,[0,1] = Collection of all real-valued continuous functions on the
closed interval [0.1] is a metric space with respeet a metric

: :
i .F.'g}——_“f'{.r] — a(n)ldt, where fg € Cx[0,1].
{l

Lxamine 1l {CH[D,H,E} is a complete metric space.

(Llint : Take f, : [0,]]-Reals as
) ,l
f(0=1 if ﬂzhz

- 15T S
= ] e, Rl
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9.

11
- i ==
=) if 2+2ﬂ_¢_|,

and show that { 7} is cauchy without being convergent in metric space (CRl01]8).

Let (X.¢f) be a complete metric space, and for cach +ve integer n lunction T, X=X

15 a contraction with same contraction parameter, Such that T(x) = l‘ml'ﬂ{xj lor
"

XCXIE sy, are fixed points of 1. 1.1, ... respectively. show that i = li:“ U,
? i

Examine if /(x) = x* is a uniformly continuous function over the space R ol all
reals with usual metric.

I {x,} and {y,} arc two convergent sequences in a metric space (X.d), show
limn ‘ o lim, lim
that M (d(e y 3} = d((timy, limy, ),

Give an example ol a [imetion fol R into R (R = space of reals with usual metric) -
such that the set {x: f(x)20} is not equal to the closure of the set {xif (x)=01},

Let {G,},cq be a family of closed sets in (X, ¢f) with F.LP such that for some

B S 2 6. #6.

eA, A} t. Show that n it

oy i, Compac - | ok

It A and B are two subsets in (X.d) and B is compact, show that dist (AB) =
0 il and only if AnB# 6.

If'a continuous function f: R~+R (The space R of all reals having usual metric)
satisfies the property ((x | y) = f(x) + f(3) for all xycR. Show that flx)=
(1) for all xeR.

Let (X, d) +(Y. p) be a function. Let A and B be two closed subsets of X with

X = AubB, If restrictions [/A and /B arc conlinuous function over A and B
respectively, show that /is a continuous function.
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Unit 8 7 Compactness and Connectedness in Metric
Spaces and Applications

(Open cover in o metric space. compactness, compact sets are bounded closed
sets, Finite Intersection property. e—nets, tolal boundedness, sequential compaciness,
continuous image of compact space, separated sets, connectedness, properties of
connected sets, connected sets of reals, continuous image of connected meltric space.

Local connectedness.)

§ 4.

Definition 4.1.1 (a) A family @ {A,},., of open sets A, in a metric space (X,d)
is said to he an open cover for X if every element of X belongs to al least one

member A, of @: That is, if X= L—ihf'
=

(b) A sub-family of an open cover for (X.d) which 1s by ilsell an open cover for
X is called sub-cover for X. '

(c) (X.d) is called a compact metric space if every open cover for X has a finite
subecover for X,

Fxample : By a [inile sub-cover we mean the sub-cover consisting of a finite
number of members only. The [amily ©= {(-#,#)} where n is a natural number, i5
a family of open intervals (and hence open sets) of reals that covers R = space ol

(=]
all real numbers; becanse R — U_{_”'”'}* So ¢ is an open cover [or R, Similarly,

n=l
the family g = {(r —1,x+1)} where x is any real number is an open cover for R.
But neither of these open covers has got g finite sub-cover for R. 'That is why, real

space R wilh usual mefric is not a compacl melric space.

Definition 4.1.2 If G is @ subset of ¢ metric space (X,d) then G is said to be

compact if as @ sub-space with relativised metric becomes compacl as per
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Definition 4.1.1
§ 4.1.1

lor example. we know that R with usual metric fails to be a compact space: i[ B is
a finite subsct of R, then B becomes compact,

Theorem 4.1.1 A compact subset of a metric space is bounded and closed.

Proof : Supposc G is ¢ compact set in g metric space (X d). If Xy G consider
the family of open balls {B, (x,)} all centred ai xg having radius —p (n =1.2.3...).
Then il is easy to see that the family {B,(¥g)} =1 25, 18 an open cover for G,
i G 13

I

i

I

w(Xg): By compuciness of G, we obtain a linite sub-family, say,

_Ilij“I{x"J,B”Ij{x"j.... L’.”k{r[]}] to cover (7.

As these open balls are concentric. there 15 one among them with maximum
radius = N say, so that G=By(x,). Hence G is bounded.

For G lo be shown as closed tale x,e(X\(), consider the closed coneentric balls
oy

13 . . 4
"(xy) all centred at x; having decreasing radius =—, n =12....; Then the family
" :

XA B, (%)

K

of open sets as n — 1.2.... becomes an open cover for G; and by

compaciess ol G we obtain ¢ finite sub-cover, say X\ BL{xﬂ} ey AN BLU"’H )i
" Hy,

: ;
Ir N is the radius of the smallest closed ball associated with these & members, we

GNB | (xy) || GEB, (x)
M N
point of G: As @ xy is any member of (X\G) we have shown G 1o be closed.
Remark : Converse of Theorem 4.1.1 is not true, Because the closed unit ball
in metric space like Cpla.b] (with sup metric) or the sequence space (, is not compact,

have =0 That means ¥y 18 neither in G nor a limit
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Theorem 4.1.2 A closed subset of ¢ compact metric space is compact.

Proof * ‘Take F to be a closed subset of (X.d) which is compact. Assume that 3t
is an open cover for F. Then Since (XAF) is open, we sce that RU(XVF) is an open
cover for the whole space X. Since (X,d) is compacl, This family has a finite sub-
cover, say 3, for X possibly with (X\F) as @ member. Thus E]'fﬂ minus (X\[) be-
comes still g finite sub-family of 3 Lo serve as a cover for F, So F is compacl,

Theorem 4.1.3 A compacl metric space.is scparable.
Proof : Let (X.d) be ¢ compact melric space. For each +ve integer 1 Lhe family

B
of open balls | (x) centred at x as xeX is an open cover for X. So there is g finite

[}

- ..‘iub‘c{ﬂ\"'l'-'r- Hﬂl"r' BE{-xhr}"Hi{xEH} B {x“m Il‘ﬂr K P“t G“ﬂI‘-HEX : i_l.l..,,

L] ] L

min) =1, 2, ..].

So G is ¢ countable sct in X. Let B (x) be an open ball centred at reX with

: e 1 -
radius — 1. Choose +ve integer n o large that — < r. As x coters into one of members
H

of open cover, we find some k with L<kzm(n) such that ¥ B (xg,):
"
So. X.ﬂ.'rr e (x)C B (x)
"

That is to say that G is dense in X,

Definition 4.1.2 A family 3 of subsets in @ melric space is said to have finite
intersection property (FLP) if and only if every finite sub-family of’ it has a non-
emply intersection,

For example, every decreasing sequence of non-cmpty bounded closed subsets

—| |
like {i,, =y 5;} of closed intervals of rca!s with usual metric has I.LP.
H

Theorem 4.1.4 (X.d) is a compact metric space if and only il each F:lmll}f of
closed sets in X with FLP has non-empty intersection.
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Prool : Let (X.d) be a compact metric space and ;i be a family of closed sets in X

with FLP. If possible, Let ﬂ I'=9: 0 by De-Morgan's rule U[K \F) =X, Therefore
Fesi * Fe=tR

family {(X\F):Fe 3} is an open cover for X. By compaciness of (X.d) we obtain ¢ finite
sub-family. say = {(X\).0X0 ), (XAF )} of this Family to cover X. Thal is to say

U{X VF)=X and hence ﬂF i = ®—4 contradiction that {M} has F.LP.
: i=l

N
30 we have m F+0.
et
Conversely, let the condition hold in (X.d) but (X.d) be not compact, Then there
is an open cover say — 9 of open sets G for X but 9 has  no finite sub-cover for
X. Thus every finite sub-family of g fails o cover X. ie, every finite sub-family

of & ' consisting of closed sets (X\G) as Ge9 has nen-emply intersection. Clearly

\G
the family Y ° of closed sets has I'L.P and by assumption Qg(}{ )72

UL“&X' a contradietion that 9 is an open cover Tor X. Ilence (X.d) is
Gen

compacl, The prool s complele,

Definition 4.1.3 A melric space (X.d) is called sequentially cumpiete if every
sequence 1n X has a convergent sub-sequence in X,

Theorem 4.1.5 A compact melric space is scquentially compact.

Proof : Let (X.d) be a compact metric space and {x, } is any sequence in X. Put
G, =i Then the family {En}n=l,2:... of closed sets is ¢ decreasing chain
ol closed sets in (X.d) which is compact. Now by decreasing property every finite

sub-family of [ G, } has non-cmpty intersection, and by compactness of the space

this family {G,} has F.LP. and hence ﬂGu#{p; Take uEnﬁn' Given £>0 as

=1 n=|

s {‘}” for every n, we have a member Xt with m = in G, satisfying d(ux,, )<E;
i I
That means l'fl.‘cm”—m-' el

Hence {x,} has a convergent subsequence in X.
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f.e., (X.d) is scquentially compact.

Remark : The converse ol Theorem 4.1.5 is true. To prove the same we have to

incorporate some new Delimilions.

Definition 4.1.4

(a) Give a+ ve &, u [linitc subset A = {al,nz,---,u”}of (X.,e) is said to be a linile

g-net for X [ X = UBEM:‘]-

i—l
(h) (X.d) is called totally bounded if there ia @ finite e-net for X for every +ve &

Explanation : Tl (X.d) has @ finile c-net (e=0), it means there is @ finile cover
ol open balls for X. A subset G of (X.d) is lotally bounded if G as a metrie sub-
space of (X.d) becomes totally bounded.

Theorem 4.1.6 If G is a totally bounded subset of (X.d), then G is bounded.

Proof: Let €20 be given, then there is g finite s-net, say, A=(a.05.....a,) for G,

Clearly Diam(A)<= because A is a linite sct. Further G& Uu‘r (). Take w,vel, we

i=1
find two corresponding members, say, ¢; and a; from A such thal ueB (a;) and
veB (a) (g, may be equal to a;). So we have d(u,a;)<¢ and. d(v, t)=6; Now
d(u,v) =d(n,a) +dla.a) +a’{aj.v}<: 2 €1 Daim.(A) ; Taking sup on L.H.S over all
uv oG, we obtain Diam((3)=2e + Diam(A) < | = The prool is now complete.
However converse of Theorem 4.1.6 is not true, consider an example in support.
Example 4.1.4 Take (X.d) as the sequence space [, consisting of all real se-
quences
1 1

fLe] 2 . o E
x = (], ¥pe ) with [ZII”F] < o= with metric d[‘i,{):[ihr. —_P.'IE] as
=1

=1
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. X
"_.*}::I.:,: and lake @ subset G = ‘{x;»"‘gv--x,,--n}uf t, where __' =(1,0,0,--),

ﬁ: (0.1.0....)..... so that f’_t__f-,x__j.}{f:t.r'} = +1 =42 (1)
~ and hence G is @ bounded set, because Diam(G)< /2 .

We now check that G is not totally bounded.

4

I 3 ;
Take & as [lc::.:f.:j V2. If possible, let (H H.---Ei] be a finite gnet for G in I
Fa ~f =4 . -

i =
Ihat 15. G& ZBE{:IE]'

=]

i
i {x.x..‘c-..-}C UBE(H).
i | -2 =n Fidl i

Since L.H.S. 15 not a finite set, there are two distinet members, say, X €G

o enter the same open ball  say, Ht_{&ij of R.H.S. This gives [Hdﬁ. j{fl andl

=,
rr'[ . .r_J < So. a’( . x] < n’(u. ¥ ) + .fe!'[ i X ] <2e<+2-a contradiction of (1),

£ o = = % i
Henee our assertion stands.

Theorem 4.1.7 Lvery sequentially compact metric space is totally bounded and
complete.

Proof: Let (X.d) be sequentially compaet, and Let £ 0 be given. Take any
member, say. a;cX and the open ball B (a)). X = B, (). then fay) serves a
finite g-net for X: Il nol, take a member, say, > X'B(a ). Clearly diery ay)=s. 1f
t1).t5} serves as an e-net for X, we are done ; or clse continue this process to obtain
a member @ & X\ {B_(«,)WB_(4,)}: So that d(a;.a;)2¢, i = 1.2,. Unless this pro-
cess lerminates al some nth stage when we arrive at a desired £ - net for X, we
construet inductively a sequence {a } in X satisfying diaya, yze lor i =120 1)

for every n, Now such a sequence 1,1 In (X.d) does not have a convergent sub-
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sequence in X— a contradiction that (X.d) is sequentially compact. So (X.d) is totally-
‘bounded. Finally, if {x } is cauchy sequence in X, then by sequential compactness
{x,} has a convergent subsequence. and therefore { x, } is itself convergent. So (X.d)

15 complete.
Theorem 4.1.8 Every totally bounded and complete metric space is compact,
For the proof the reader is referred to Brown & page *Functional Analysis’
Proof : Let (X.d) be totally bounded and complete metrie space withoutl being
compact. So there is an open cover say, 4 of X that has no finitc sub-cover, We
construct a sequence {x } in X such that for cach n

1 {xrr-}

1 ;
(i) ca’{x”,_n;n_1]=i§“_1 ; and (i1) the open hall o can not be covered by a
finite sub-family of A .

Now (X.d) is totally bounded ; So taking £ = 1, there is a finite 1-net in X : call

5
it (1g.2500). So that X = L_J[B1(x;.) ; As A fails to produce a finite sub-cover for
J=

X; So one ol the open balls on r.h.s can not be covered by a finite sub-lamily of A;
say By(x;) is one such with / minimum. We re-name x; as x. I'hen condition (ii) is
satisfied for this x| and (1) is vacuously satisfied. Suppose ¥ x,....,x, have been so
chosen. Since the whole space (X.d) is totally bounded so is every open ball of (X.d)
B v

x 1
= " for which say a finite — nel is
EJ‘J"—

and in particular so is cpen ball n

m

(¥ yaVgarnil,) BE, B (x)c U'EL{I“;'L and by an argument as above, we find f
oL 1 =1 M

B, (e, ' . .
with minimum value so that - " 7 fails to be covered by a finite sub-family of A4,

2??

Put x,,, = such av;. llere stipulations (i) and (it) are ok in favour of B (x,)

llence sequence {x, } is delermined inductively.
Now if m = n, we have
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‘ﬂr{'1"-.a.|4"']‘-r;-:| ﬂd{rm‘ ¥ -I] : d{xm I+ % _'.-1)+“~+{.|’I:J|:”_|_1_, X"J

| | 1

|
— = —
ferbe S = —0asp— e

gzm 2 +":|nr 3
(lhence m—=),

Thus {x,} is a cauchy sequence in (X,d) which is complete. Let hf‘n *n=weX, Now

w enters into some member A of A and A is open, we get an open ball B (w)cA. Now

1 | yeB | (xy)
i " I ns P —p : | I /8
choose N such that o(x " W 2; and S < 2? lor n=N. So if Nt We

have diyw)<d(pxg) 1 dirgw).
I 1 1 1
?N_I+—?‘{ - E]'-_?'.

In other words, we verify that B_ | )eBw)ca

] a contradiction of (ii)
M=

above. The proof is complete.
Now Theorem 4.1.7 and 4.1.8 give following Theorem immediately,
Theorem 4.1.9 Every sequencially compact melric space is compact.
Theorem 4.4.10. Continuous image of a compacl metric space is compact.
Proof : Let f:(X.d)+(Y.p) be continuous and (X,d) is compact.
[et 5=(B,_ ), ., be an open cover for f(X) in (Y. p). :
Put B/ (X)nH,, where IT_ is an open set in (Y, p) lor each agA.B, continuity

of fwe have / (I1) is an open set in X and we have /(X) © U B, = | Jf(X)nH,)
(=0 EA

and Xc f [[ U{f(){)ﬂ Hu)]= U(Xﬂf_]{nu:')

aed [e1=4i)
So the lamily {,J"_J{Hu}} 15 an open cover for X ; Since (X.d) is compact, we find
a finite sub-cover, say { f7(H,), F71(H,),... f(IL )} for X. i.e.,

xe )ftm,)
=1

| G




N

” reoeln, =U(reoni,) =B,
k=1 k=1 k=1

Hence given open cover has a finite sub-cover lor [ (X).

So f(X) is compacl,

Corollary : Every real valued continuous function fover a closed interval [a,b] (with

usual netric of reals) is bounded and attains its bounds in [a,b].

Because closed interval [er, 5] being a bounded closed set of reals is compact and if
{:[a.b]~Reals is continuous. then f[a, 4| is a compact set of reals. and it is a bounded
closed set, Uhus f becomes a bounded function and by closure property of /'|a,b] we
see thal fatlains its bounds (upper and lower bonds) in | a,b].

4.5

Definition 4.5.1 (a) A metric space (X.d) is called connected if X is never a Union
of two nonempty disjoint open or clsoed sets in X,

(b) IF there is such a decomposition of X, then (X.d) is called disconnected.

(¢) A subset G of X is said to be connected or disconnected if G as a metric sub-space
of (X.d) becomes connected or disconnected.

Explanation ; Connectedness in a metric space (X.d) means that gand X arc its only
subsets that are both open and closed. If (X, ) is not connected. then there is subsel
other than ¢ and X i.e., a non-emply and proper subset in X which 15 clo-open (Closed
and open); and corresponding to cach such clo-open set we have a decomposition of X
as a disconneetion.

Example 4.5.1 The set Q of all rationals in R with usual metric ol reals is disconnected
sel

Solution * Lel us ¢ as an irrational number, Then we have

Q) = {(==c)nQ}uf(etm=)nQ} ; Since r.h.s sels are cach non-emply open subsets
of Q and are disjoint, So above partition of Q is a disconnection for Q.
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Since ¢ can be taken in many ways, Q) has many disconnections.

Theorem 4.5.1 A subset ol reals with usual metrie 1% connected if and only if it is an

interval.

Prool : Suppose G is g connected sel of reals with usual metric without being an
interval, So there are reals 4, b and ¢ with a<b=e¢, and ¢,crG and b2 G. Now we can
write G — {{—=.b) G ui(bs=)nGG); then rhus 15 a disconnection of G-a contradiction that

G is taken as connected.
Conversely, Let T be an interval of reals suppose | has a disconnection, as

J = AuB where A and B are non-empty disjoint closed subscts. Take xeA and zeR;
Since AnB = ¢, x#z; Without loss of penerality let x<z Since J is an interval containg
x and z(x<=z), we have the closed interval [x,z|<J. thus each point of |x 2] is cither in A
or in B.

Pul y — sup{[x.z]nA}, Hence x<y<z, and ye]; and since A is closed,

we have ye A (1)

: i : 1
Thus y=z ; given & =0, by sup-Definition; for large +ve integer i we have y=<y + —=z
n

1 : |
and (Jf"f n]rB; Finally, since B is closed we have ]1111(}'+—)f_—]3
f i

"
or yeB e (2)
Now (1) and (2) give AnB# ¢—a contradiction. So prool’is complete.
Corollary : The space R with usual metric is connected,

Definition 4.5.2 Two non-emply disjoint subsets A and B of (X,d) are said lo be
separated if and only if AnB = ¢ and AnB = ¢.
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For example disjoint open intervals (0,1) and (2,3) of reals with usual metric are
separated; because (0,1)1(2,3) = [0,1]n(2.3) = ¢ and (0.HN(23) = (0.Dn[2.3] = ¢.
Also there are disjoint sets without being scparable. Let () be the sel of all rationals;

‘[hen Q and its complement (R\Q) are disjoint; As () = set R ol all reals, we have
0N (RWQ)# ¢ and hence Q and (R\Q) are not separated.

‘Theorem 4.5.2 Tet A and B be separated sets in (X.d) and C is & connected set in
(X.d) with Cc(ALB). Then cither C< A or CB.

Prool : Now i Y = AuB, then have

AUY = An(AUB)y(ANA)U(ANB) = Aug = A ; That means A is a closed sel in
subspace Y. Similarly, B is also o closed sel in Y = (AuB). As A=(AUB)\D) and B
= (AuB)\ A ; So A and B are open scts in (AuB). Since C is « connected subset of

(AuB). and now CnA and CnB arc both open and closed in C, either CniA =C in
that case CcA or CnB =C in that case C=B.

Theorem 4.5.3 1f {G_},., is a family of connected sets in (X,d), such that
ﬂﬁu # . Then UGLx is conneccted,

ot el
Proof @ Lel UG'I be not connected, and let U{Jﬂ =Aul} be a disconnection
ped [ T=rut
where A and I are non-empty disjoint clo-open sct. So A and B arc scparated. Now

each G_ is connecled, and G& UGu c(AUB) So Theorem 4.5.2 applies. Either
med '

G, <A or G,cB.

Since ﬂ(ID! 7. Take ue n{]ﬂ . Then either ue A or ueB, say, ueA ; clearly

Ge e
e ey 0 L ;
ue G, for cvery aEd, we have G,=A for aeA : That means o - A—a contradie-
e

tion, The proof is now complete.

Theorem 4.5.4 1f A is a connected set in (X,d); then its closure A is connected.
Proof : Let A be a connectled set in (X.d), and lel A be not conneeted, Supbuse
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A = BuC be a disconnection where B and C are non-empty disjoint clo-open sets, and
hence separated. Now Ac A = BuC. So Theorem 4.5.2 applics. Suppose, for instance
AcB; Then Ac B =B ; consequently AnC = ¢: Since B and C are separated. that
means C = ¢— a contradiction. So prool is complete.

Theorem 4.5.5 A continuous image if & connected metric space is conneeted.

Proof: Let 1 :(X.d) = (X,p) be & continuous function and (X.¢)) be a connected metric
space. 1l possible, let £(X) be not connected in metric space (V. p), and let

f(X) = GuH be ¢ disconnection where G and H are non-empty disjoint open sets in
(XY,

Put G = £(X)nA and 11 = f{X)nB where A and B are open sets in (Y, p). By continuity
of fwe have £~1(A) and [ '{B] are each open sets in (X.d) and we have

[(X) = (£ (XM FXDNB)
and X (Xnl (AN X ~(BY)

e, X=fAwf B, giving a disconnection of X— a contradiction, Tlence proof
is complete.

Corollary : Any real-valued continuous function over an interval possesses an inter-
mediale-value properly.

Because such a function sends an interval into ¢ connected set i, similar such set

ie., an interval ; So if f:[a, b~ Reals is continuous, then /|, h] is an interval containing

[ Fla) (b))

Example 4.5.2 If {G,} is a sequence ol connected sels in @ metric space with
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G,nG,# ¢ for all n, show that UG’n is connecled. -

n=1

Solution Suppose G = U{"rrlb not connected, and let G = AuB be a disconnec-

n=1
tion, where A and B arc non-cmpty disjoint open sets (closed sels).

Now for each n we have G, cG=AuUB ; Since G, is connected, and A and B are
separated, we have cither G JoA or G,<B ; say G,=A ; now for same reason either
G,q=A or G“Hr_]:i. 1f'('j”+!:_!j. we sce, G,nG (CANB = 0. ¢ contradiction. Tence

Ly

(3, A That is say, G,,f-r’i:?fi e (A and this is truc for all ». That means U & M=

ret1
or, GeA, leaving B = 9, again @ contradiction. So we have shown that G is con-
nected.

1
Example 4.5.3 Show that the subset {(x,y): ¥=0, y = sin —}uH where H = {(0,)):
X

ley< | 1} of R? is connceted.

Solution : Here consider a [unction [ :(0,%)=R2 given hy f(x) :[x.sinlj as 0
S ' *

Then [ is a continuous function over (0,%) and (0,) is ¢ connccted set of Reals
with usual metric and since continuous image of connected set is connected, it
follows that [(0,=) is connected sel in R2 with usual metric of R%, Now f(0.=) =
{(x,): x>0,y — sin —} and closure of f(0,=) becomes a connected sel ol R2: That
is to say the given HLt {(x,):x =0 = sin }u 1(0,y) : — L<y<l} being the closure
of f(0.=) is a connected set in R?,

Definition 4.5.2 A metric space (X.d) is called locally connecled if x is any point
of X. and G any neighbourhood of x, then G contams a connected neighbourhood
of x. .

Explanation : Equivalent to statement in Definition 4.5.2 is that each point of
(X.d) has a neighbourhood base whose members are connected. For example, the

real number space R with usual metric is Locally connected, because each point of
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R has & neighbourhood base consisting of open intervals containing the point, and they are
connected sets. Of course R is also a connected metric space. But one should have a
caution. Notions of connectedness and Local connectedness are independent in the SCHsE
that Local connectedness neither implies nor is implied by connectedness.

Example 4.5,3 (a) Let X = (0.1)0(2,3) be a metric with usual metric of reals, Then
X 1s not connected because taking any number o between 1 and 2(1 <o= 2) one finds
¢t disconnection of X as }{={{—w,cﬂr1){}u{{c-:.m)ﬁ){}. However X is Locally con-
nected, becawse every member of X has g nei ghbourhood base consisting of apen inter-
vals containing the member and contained in X, and they are connected.

Example 4.5.3 (b) Tuke example 4.5.3 where we sce that the metric space with usual
: 5 . ! ; I
metric of R= is connected without being Locally connected: because a pomt like (Dj 5]
lails to attract ¢ connected neighbourhood,

Example 4.5.3 () Continuous image of @ Locally connected Space may not be

Locally connected.,

I
Solution ; Take X = {0.1,2.--} and Y={ﬂ,l.;

,é .} wnere X 1s @ discrele melric
space and Y is a metric space cach with usual metric of reals relativised,

Then metric Topology on X is the diserete lopology where every set is clo-open,
and that on Y makes cach singleton {ﬂ = 1.2;+ open without making {0} an
open set.

i
Now the lunction f: X+ Y where flO)=0and f(n)=—(n=12,) isa bijective

Fi)
continuous [unction ; Here X is locally connected. but Y = f(X) is not Locally

connected, because member OcY docs not possess a connected nei ghbourhood in Y,

' Example 4.54 |If (G),G,, .G, are compacl sets in g metric space (X,d), show

"
that U'Uf' 15 ¢ compacl set of (X,d). Can you extend the result over an inlinite

number of such set in (X,d) ?

Selution : If G, and G, are compacl sets, we show lhat G U3, is also compact
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in a metric space (X.d). Let A = {A_} ., bc an open cover for G uG,. Thus
iz

(G uGsy)= U‘A‘u' So G (GuG,)= UAH Henee A4 become an open cover for G
; A . med 1

which is compact. so we obtain a finite sub-cover, say (A A; A Jof A for G,

Similarly, we find « finite cover, say, (A].A},...,A!) of A for G,.

Mow {Gla_,{}ﬂ:{ﬁ];JAELJ...uﬂ”}Lr{h;.A’?.....Afﬂ} : Thus, there is a lnite sub-cover
lfé‘irﬁll~i-'~hn~h;"d"; ..... A’} of A Tor (GjuG,), Henee G uG, 1s a compact set in

]
(X.d) and by induction we have UGJ as a compact set in (X,d) when G,G5.-G,
i=1 :

are so.

It is not possible to extend the result over a countable infinite number of compact
sets. For example, we know that cach of the closed intervals [, 1],[-2.+2]..-[-
ntnl,- s A compact sel of reals with usual metric. [Towever [-1, HT]O[-2 420 -u]-
n. i) which equals to the whole space R of reals and R is notl a compact melric
space with usual metric.

Example 4.5.5 Let A be a compact sct in a metric space (X.d) and x, e(X\A),
show that there is a member ae/A such that {x& a) = dist{xq.A).

Solution : Here ['pr' a lixed x,e(X\A), d(xqx) becomes a real-valued continuous

[unction of ¥ in A which is compaet; and we know that such a [unction assumes its

iﬂff{xns’f} as a minimum valuc at some point of A, say=a €A, Thus
e

d{xga) = inf dx,.x)= dist (xg,A).
$EA

We have scen that uniform continuily of a function over a metric space implies
its continuity, but converse is Talse. However we have following theorem.

Theorem 4.5.6 Let [ :(X.d)=(Y,p) be a continuous function where (X.d) 15 a
compact metric space and (Y., p) is any metric space, then fis unilormly continuous.

Proof : Let & >0 be given, If xeX, by continuily ol fat xeX we lind a +ve &(x)
such that :
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s : 1
di [(x), Fly)= 5 e when ye Bamf-"} _ (1)

3

Consider the family 121 1_]':"'} of open balls in X.

751

2 xEX

Clearly it is an open cover for X by compactness of which one linds a finite open sub-

cover. say = 154 (x).B, (%9 )i, By (¥, )i for X.
- zﬁi.\l_l jﬁ{.rg'l Zﬁ{.\-H}

.1
Choose a +ve & such that & = ]Iél_lél{gailﬂ}- Now il u,veX with d(i,v)<8. So,
=t et

B e, .
¢ :_aw,{f"} say. for some & with | <kzn Thus d{.rh..u}ﬂigﬁ{rﬁ} and

1 |
{erf.l'_#,1!}5{]’{'.1‘#.I!Hd{lf,‘ll]iz-a{_\:jr:l +5£55ka} + %E{xk} = 5(-"]’;:' by choice of 8,
herefore from (1) we obtain d{ /'(u), £())

. : ! 1
<d (FQud [(e)) +d (F ) f(0)) = Ged et
That means we have shown that [ is uniformly continuous over (X.el).

Corollary : If {15 a real-valued continuous function over a closed interval ler ]

then f 15 uniformly continuous.

Because a closed interval [a,b] is a closed and bounded set of reals with usual
metric. and it is compact. So Theorem 4.5.6 applics here. We know that ifa sequence
{ /3 of real-valued continuous functions converges uniformly over an interval, then
the umlorm limit function is rendered continuous: but converse is false. However

we have following theorem that we present to close the text.

Theorem 4.5.7 { { :(X.d)+Reals) be a sequence of continuous functions where

(X,d) is a compact metric space and { f,} 18 monotone increasing ie, )= fp (%)
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fot all ¥eX and 7 =12+, Let ﬂ‘;( f) = fx) for xe X where f:(X.d)~Reals is eontinu-
ous. Then H:;n f,~ 1 isuniform (equivalently, { f,} converges Lo funiformly over (X.d)),

Proof : Put g, (x) = f(x) f(x) for xeX and n=12,...

Then we have O<g, , (¥)<g,(x) for xcX; And cach g, is continuous because hy
assumplion fis so over X,

Let £ =0 be given: and et X ={xeX ! g lx)<e} for n = 1.2,--; By continuity of g

we have each X, is open in (X.d) and further X = U Xy Clearly {X} is an open cover
ni=l

lor (X.d) which is compact. So there is a finite sub-cover say {X”l R N } for
(X.d). Also O=g, , (x)<g,(x) for all xeX, gives X X, ., and hence taking N =
max(i iy, 0, ), we have X Xog and X=X uX - uX Xy

Le., X=Xy

So 0<g (x)<& for n =N and lor all xeX. Hence for n =N, we have

sup|j'(x}— .ﬁ,{x}| <E,

rEN
ien| f(x) = [(o)l<e n=N and forall veX. That means { f,} converges to funiformly

over X and proof is complete.

Lxcercise-(A)
Short answer type questions,

. Inametric space (X.d) if “;“_\:f x, show that {x ;%5 %, ... Jufx} is com-
pact.

2. Give an example of a subsel in a metric space that is bounded without being
compact.

3. Show that a singleton in a metric space is connected.

4. Let A be a compact set in (X.d) and x;£(X\A). Show that dist (xp,A) = d(xy ap)
for some a,e A '
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7

3.

f.

Bl

(Llint : consider a lunction /A~ Reals (with usual melric) where [ (x) = a’{xn x)

as ve A, Then fis a continuous function over a compacl set A and hCI'ILE S 1,51 f(x)

i5 altained al some point ageA. So f(ag)— Ti [(x) or d(xy.a,) = n:,t'-. [ (xq)
- d:s[{xﬂ..ﬂt]}.

Let A and B be two disjoint compact sets in (X,d). Show that there arc two
disjoint open sets G and G, such that A=G; and BcG,,.

Give an example with reasons of a continuous function fover non-compact
metric space such that f1s not bounded.

(rive an example ol an 1-leontinuous function from a meltric space (X.d) onto
{Y,p) such that /= is not continuous.

Excercises (B)

Lel f:(X.d)=(¥p) be a continuous function where (X,d) is compact, show
that f(A)= j{AJ for every subset A of X.

Suppose f :(X.,d) +(Y.p) be a continuous surjection ; and if {A } is decreas-

ing sequence of mn-mam sets in (X.d), show that [ ‘[mﬁ'ng ﬂf (A,

n=| n=1

Show that Hilbert cube consisting of all those sequence ~— (1, X2 0 )

l
satisfying |,r“!{;{n = 1.2,...) 1s a compacel set in

In Education p-space R with usual metric d, show that notions of boundedness
and total boundedness concide.
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10,

B

12,

Qliow that a confinuous injection of (0,1) to Reals is a monotone (unction.

Let A and BB be two disjoint sets in a melric space (X.) such that A is compact
and I3 is closed. Show that dist (A.B)=0. Also examine the result if A and 13 are
only closed sels.

Show that no two of the intervals (a.h),[er &) and [a,h](h=a) arc homeomorphic.

Let f he a function on a compact metric space (X,d) into itsell satisfying
d( £ (). [(<d(xy) for all x,y with x#y in X, Show that /" has a unique fixed

point in X. (Hint : consider the function ¢:X~ Reals where @(x)=d(x,f(x)) for
reX).

Let £7:[0.1]~ R be a bounded function with metric associated as usual metrie

of reals such that the set {{x/(x)):x c|0.1]} is closed n R% . Show thatl fis
continuous, Also show by an example that the condition of [ being bounded
can not be dropped in order to make the conclusion stand.

Lel [be a real-valued continuous [unction on a compact metric space (X, d);
show that there are point x,, ¥;6X such that f(x, )</ (x)< [(x,) for all x e X.

Let f:(X.d)+(¥p) be an 1-1 and onto continuous function, where (X.d) is
compact, Show that £ ~': Y=X is contlinuous.

Verify that f:R=R where concerned metrics are usual metric of reals and
fix)= 2 lor x € R is continuous but not uniformly continuous.
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Unit : 1 O Complex Numbers

1.1 Introduction : ,

There is no real number x which satisfies the polynomial equation x* + | = 0.
To permit solutions of this an' similar equations, the set of complex numbers is
introduced. From a strictly logial point of view it is desirable to define a complex
number as an ordered pair (a, b1 of real numbers a and b subject to certain operational
definitions. These definitions :re as follows.

(i) (a, b) + (¢, d) = (@ + ¢ b + d),
(ii) (a, b).(c, d) = (ac - bd, ad + bc),
(iii) (@, b) = (¢, d) iff a=c & b = 4,
(iv) mia, b) = (ma, mb). | |
Also we denote by ‘i the ordered pair (0, 1) and we identify the real number
'‘a’ with the ordered pair (a,0).
Now from the above definition we see that |
(x; y) = (x. 0) + (0, y)
=x(1, 0) + y0, 1)
= x + iy.
Further we see that-
it =1(0,1).0 1)=(1,0=-1
1.2 Fundamental Operations with Complex Numbers :
(i) Addition : (a + ib) + (¢ + id) = (a + ¢) + b + d).
(ii) Subtraction: (a + ib) — (¢ + id) = (@ — ¢) + i(b - d).
(iii) Multiplication : ' (a + ib) (¢ + id) = (ac — bd) + i(ad + be).

a+ib _ (atib)(c—id) _ ac+bd+l.bc—ad
c+id ~ (c+idYc—id) ¢24+d? " ci4+d?’

{iv) Division :

From the above we can prove that if z;, 2, z; belong to the set S of complex
numbers, theén
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(11)
(iii)
(iv)

(v)
(vi)

(vii)

(vii)

(1x)

Z) + 2» and z;z; belong to S Closure law

3+ =1+ Commutative law of addition

O+ (@ +23) =@ +2)+ Associative law of addition

2120 = 292y} Commutative law of multiplication
u(az) = @2 Associative law of multiplication
2)(zy + 73) = 2120 + 7123, Distributive law.

21 +0=0+z =2, 1L.z; = 2.1 = z;, 0 is called the identity with respect
lo addition, | is called the identity with respect to multiplication,

For any complex number z, there is a unique number z in § such that 7 + Zi=0zis
called the inverse of z; with respect to addition and is denoted by -z,.

For any z,#0 there is a unique number z_in S such that z;z = zz, = 1; z is called

the inverse of z; with respect to multiplication and is denoted by z;! or oL
)

In general any set, such as §, whose members satisfy the above is called a field.

1.3 Complex Plane or Argand Plane :

Let us consider two mutually perpendicular axes X’OX and Y'OY called x-axis and
y-axis on a plane. Since a complex number z = x + iy can be considered as an ordered
pair of real numbers, we can represent such members by points in the xy-plane, called
the complex plane or Argand Plane. To each complex number z = x + iy there corresponds
one and only one complex number z = x + iy, Because of this we often referred to the
complex number z, as the point z. Sometimes we referred to x and y as the real and
imaginary parts of z = x + iy respectively and so the x-axis and y-axis are sometimes
called the real and imaginary axis respectively. The

complex plane is generally denoted by C and is often i
called the z-plane.

The nonnegative number | z |, called modulus or =55
absolute value of z = (x, y) is the distance of the complex
number = from the origin, and hence |z| = /22 + y2 ol 9
(see Fig. 1.1). 5
The distance between two points z; = x; + {yy, and O x

I3 = &y + iy in the complex plane is given by
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|2y = 2z = N0 = x3)2 + (3 = 2 )2

We shall frequently use the following simple inequalitics,
x<lx1</x2+ y? = Re(z) S1Re(2) <] z 1.
y<ly. x4+ y2 =Im(z) <l Im(z) 1< 2]

Conjugate
If z = x + iy is any complex number, then its complex conjugate denoted by z is

Z=x—iy or Z=(x,—y). Obviously z is the mirror image of the complex point z into

real axis. This indicates that z = Z & z is purely a real number. Also =z
The following are the easy consequences of the above definition,

{” z|i22=aia-

(i) 512=2 23

Giiy 2+ T = 2 Re(@).

(iv) z - z = 2i Im(2).

(v) zZ is real and positive unless z = 0.

sl |

Another entirely equivalent way of representing a complex number z =x + iy is (o
use the vector @P joining the origin O of the complex plane to the point P = (x, y),
instead of using the point P itself. We discuss the sum and difference of two complex
numbers as follows :

(i) Sum : Since a complex number z = (x, y) can be represented by a vector in xy-
plane, the sum of two complex numbers may be given by a vector which is diagonal of
the parallelogram whose sides are represented by these vectors. (See Fig. 1.2).

(ii) Difference : Similarly, the difference of two complex numbers z,, 2 is the vector

2| — 7, joining z; to 2, as illustrated in Fig. 1.3.

¥ ¥
Z|=&n
Iz
2 W 22 A
: =L7 x
D\'\/
; Zy = 21—21
O - Fig 12 : Fig. 1.3



1.4 Polar ['urrﬁ of Complex Numbers :

If P is the point in the.complex plane corresponding to te complex number z
= x + Iy, then we see from Fig. 1.4 that v

x=rcosf & y = rsinf

where r = J}ﬁ? is called the P(x.y)

madulus or magnitude or absolute value of

z=x + iy, denoted by | z | and 8, called the

amplitude or argument of z = x + fy, denoted r

by arg z, is the angle which the line OP
makes with the positive x-axis, That is

argz_:ﬂ:mn"{-. B2

Fig. 1.4
If we restrict the angle €in 0 £ 8 <

2m, then it is called the principal argument of z. Now it follows from Fig. 1.4 that
z=x+ Iy =rcosf + ir sinf

which is called the polar from of the complex number and r and & are called
the polar coordinates.

HRoots of a Complex Number

A number @ is called an nth root of a complex number z if @" = z, and we
write @ = 2!, If n is a positive integer, then

2" = [r(cos@ + i sing)}!n
ruxn[cus(ﬂ+:k:’r)+isin(E+:kﬂ')]_ w0 13 o

from which it follows that there are n different values for z', i.e. n different
nth roots of z, provided z # 0. ;

]

fl

Euler's Formula
By assuming that the infinite series expansion

5
| X
v rhe — ——— e

el= ] 4 x+ 3 -+ 3!+

of elementary calculus holds when x = if/, we can arive at
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el = cos@ + isinf, e = 2.71828 (11

which is called Euler's formula. It is more convenient, however, simply to take (1.1)
as a definition of e'?, In general, we define

gt = ¢ = ¢fel = ef(cosy + isin yi.
The nth Roots of Unity

The solutions of the equation z" = | where n is a positive integer are called
the nth roots of unity and are given by

T mi
2k . 2km i
z=cos—— 4+ isin—— =e " . k=0 1,2 - n- 1L
n I
25
2n NPT =
If we let @ = cos== +isin== = e n . the n rools are 1, @, w?, -, @

| Geomelrically they represent the n vertices of a regular polygon of n sides inscribed
in a circle of radius one with centre at the origin. This circle has the equation |z | = |
and is often called the unit circle.

Point at Infinity

By means of the transformation w = lz the point z = 0 (i.e. the origin) is mapped

into @= oo, called the point at infinity in the a»-plane. Similarly we denote by z = == the
point at infinity in the z-plane. To consider the behaviour of f{z) at z = ==, it suffices lo

letz = ﬁ and examine the behaviour of f (é) at w= 0.

1.5 Extended Complex Plane :
By the extended complex number system, we shall mean the complex plane C along
with oo, the point at infinity, which satisfy the following properties :

(i) If 2 € C, then we have z + es= 7 — o= sa, = =

iy If z € C, and z # 0, then zeo = o0 — % S
{ﬁi) og 4 o0 = Eo oo = 0O

(iv) ? = o0 (2 # o9).

The set € U ==} is called extended complex plane.

The nature of the Argand plane at the point at infinity is made much clear by the
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use of Riemann's spherical representation of complex numbers, which depends on
Stereographic Projection.

Stereographic Projection

Let C be the complex plane and
consider a unit sphere § (radius one)
tangent to C at z = 0. The diameter NS
is perpendicular to C and we call the
points N and S the north and south poles
of § respectively. Corresponding to any
point A on C we can construct the line
NA intersecting § at a point A”. Thus to

each point of the complex plane C there
corresponds one and only one point of

the sphere § and we can represent any
complex number by a point on the sphere. Fig. 1.3
For completeness we say that the point N itself corresponds to the point at infinity of

the complex plane. The set of all points of the complex plane including the point at infinity
is called the entire complex planc or the entire z-plane or the extended complex plane.

The above method for mapping the plane on to the sphere is called stereographic
projection. The sphere is sometimes called the Riemann sphere.

Example 1.1. Find all the values of z for which z% = <32 and locate these values
in the complex plane,

Solutlon : 25 = — 32 = 32 [cos(Zk+D)mr + | sin(2k+1)m, k=0, =1, £2, -

e z= 2[¢05'M +isinM

3 5 }.k:ﬂ.l,lﬁ,d.

If k 1= = 2(cus%+isin£).

5

n
L=

Ifk= 15 8= 5= 2(4_:@5 5 + i 8in S )
2(c055£+isin ]

It & s 5
b/

[l
L
£l

]
o

i

If k

]
Lk
=

I

7y = z(cm-‘%+fsinT}.



If k = 4,

gz o) cab%ﬂmng;r}

These are the only roots of the
- given equation. These five roots are
called the fifth roots of =32 and are
collectively denoted by (=32)'.

The values of z are indicated in Fig.
|.6. Note that they are equally spaced
along the circumference of a circle with
centre at the origin and radius 2, Another
way of saying this is that the roots are
represented by the vertices of a regular

polygon.

l—

(~2v3 - 2i)

Solution ¢ —2v3 - 2i =

I ]

4 [ms(?k:r+?—ﬂ~ +rsm (2kr+?’r)]

Fig. 1.6

Example 1.2. Find each of the indicated roots and locate them graphically,

6 6

X n Tz
b (—2\5—25}3 =44 [cns[.zi:_ﬁ_]ﬂsin[gutr—ﬁ]].

k=012 %
k=0, 2 = J-(cns——ﬂsm-"—ﬂ
24
197  ...197
k=1 2= ..E(ms =4 Hisin 24)
31;: iz
_lfk=2.-!3= ( +15in 24)+
43?: 43
Ifk=3.z.4= ( +isin 24},
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These are represented graphically in Fig, 1.7

Fig. 1.7
Example 1.3, Establish the relation

-l
2T sin "—”), nz2.
zrr--l il n
Solution : Let 1, w,, &, ..., @,., be the n roots of unity, where

2k
y=e" k=012 -« n=1,

Then, 2! = 1 = (z— 1) (z - @) (z - @s) = (2 — ayy).
Dividing both sides by z — | and letting z — 1, we get
= (- ) (l - a) (1 -w,_)

and hence  n = (]-E,) (I—Eg) (l-_annl).

H-1

Thus, * gt = F = &-’*](E—EJ&)
k=]



2]
"1_[ 4 sinz(k—?r]
k=1 ft

e nt =411 sin (ki)
k=1 fl

" -l . (k_?f)
2"_] = j!._=I1 51n o n=2,
taking non-negative square root of both sides.

Example 1.4. Find all the roots of (1 + z)° = (1 - 2)*

le.

Solution : Let w= E— . Then the given equation becomes

@’ =1 = cos 2km + { sin2kmw

ic. = cos2Z 4 i sin2E k=0, 1,234
2kri
= £ 3
o 142 to o=l
Again from @ = T we oblain z = P
2k
¢ =1
HENCE Fa semmmem—s R0, ], 20 O\
e_-';‘_-i-] :

Example 1.5. If f(2) = agz" + a2 +... + a,.12 + a, is a polynomial in a complex

variable z with real coefficients ag, ay, ..., a, then show that f(z)= f(z).
Solution : We have ”

f(z) = apz" +a " +ota,zta,

1

= @'+ qz"" 4 =+ G2 + ap

=a 2" +a 7" + o daz +a,

[ ay ajy .., a, are real]

L ] t
= ﬂ'ﬂ(?..}ﬂ + ﬂI(z}” L S S ol <

= f(z).
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Example 1.6. For any two non-zero complex numbers z, and z, prove that

22
20z 1+ Z(lzy+z9] |
Iz 1+1zz )2 (17 32}]l1| lZgl‘
Proof. We have, |z +22|’ Lk
1z | !Zgl

=l + | | talalaln]
= [ |{21|Z.|zz|;i|31|22}|
< B2l 4o
- Bl )

|21 + 23]

= |z—lzz'|"*2 |ZLZQJ = 213| +Zgl. I
This proves the inequality. \
1.6 Equation of a Straight Line in a Complex Plane :

We now consider the equation of a straight line in a complex plane taking the
real and imaginary axes as the axes of coordinates.
The equation of any straight line can be written as
ax + by + ¢ = 0 . (1.2)
where a, b, ¢ are real numbers and a, b are not s:muitanenusl_v Zero, Let z=
(xy), T= (x —¥). Then we can write z =x + iy and 2z = )

7+7

Putting x = o and y = T in (1.2) we get
2tz Tt oo
a2 )+b( - }+c 0

Le. a(z+z)=ib(z=2)+2¢=0
ie. (a—ib)e+(atib)z+2c=0
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ie. az+ez+e=0,
where @ = a — ib and ¢, = 2c.
Conversely, let us consider an equation of the form
Bz + Pz + k=0 . (1.3)
where £ is an arbitrary non-zero complex number and k is real. Now if g =
(a, b) and z = (xy), then
Bz + Bz + k=0
= (a+ib)y (x + iy +(@a-ib) (x-iy) + k=0
0
0
where a’= 2a, b'= —2b and ¢'= k. Hence equation (1.3) represents a straight line
in the complex plane.

Equation of a straight line through two given points represented by complex
numbers z; and 2.
Let P(z) be any point on the line AB

= 2ax — 2by + k

il

= ax+ by +¢

- 47
so that from Fig. 1.8 we have ™
=iy
ar =Qorax
> -2 Q\.“_D
and hence —— is purely real.
L =i
Ayl
i = et L
S«:nfz"'.—--z z‘,thﬁnz*:z*, s
L~ : .
Fig. 1.8
; Z=f TR
i.e. = :

=73 L&z
e (z- z)(@—22) = (@ - ) (E-7)
ie. 2(zi—22)-z{z - z)=-uz +2)2
e z(z1-22)-2(z — 22) +(z122 - 222) =0.
Above represents the required equation of the line.

1.7 Equation of a Circle :
Let the complex number a represent the centre C of the circle in the Argand’s plane

and r be its radius, If P(z) be any point on its circumference then CP=z - a.
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Therefore, ' cP ’ =lz—al=r

[ =r?

LE. |;—,-_1 2

L6 (z - a)(z=a) ='r

ie. (z - a)(z—a) = P

i.e. zz—az—ar+aa =2

i ZE—aE—&z+(ia[2—r2] =,

which represents the equation of the circle where g is a complex constant and

|2 = is real.

|a :
Equation of a circle through three given points,

Let A(z)), B(za), C(z3) be the three points
through which the circle passes anu P(z) be any
other point on the circumference of the circle. 2@

Then 2~ APBR = ~ ACE

e : . AZ)
as shown in Fig, 1.9. If P be taken in
between A and B then
"Z APB — ZACB = 1. :
Thus, ZAPB - ZACB = 0 or 7, in any Clzy)
case,
_ 2 e B(z,)
e Arg =4 S8 O
i s ' Fig. 1.9.
- (z=z)(z3-2)
Lo AR ——— sesemil) ol 2
- (2= 22z —2)
Hence (2=5)(z-2) 1s purly real and so

(z=2z)(z3—12)

(e—a)(z-a) _ (2-a)(z-2)

{z— Zz]fza =t El) i (2—-2)(z3— )
This is the equation of the desired circle.

Note 1.1. If we replace z by z4 in (1.4), then we obtain

e (1.4)

(24 - 2)(z—22) _(z—u)(z-2)
(zd —zz}fzg 5 Z]] (24— lu-7)
which is the condition for four points to be coneyelic.
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Exﬁmplu 1.7. Prove that

=
%ﬁ\ = constant and amp

orthogonal circles.

Proof. Gwen‘ \ A (constant)
a=1%iy]
Oh |33 1+iy|”

(I_1)2+:P1 ;‘LE

or, =
l['_.:r+1j2+;,r2
or, A1+x3+2’12+1 x+1=0
This is of the form
2y +2ex+1=0 (1.5)

which represents a circle.

.,—l);_ constant
241

. or, émp (x — 1 +iy) —amp (x + | + iy) = constant

y ¥

or, tan~' —— — tan~!—— = constant
= X+1
a2y
Therefore, tan - = constant
% +y =
2y
or, 3 = i (sa
I'+}'2-|] J (say)
o, X+y+2-1=0 . (1.6)
where = — % , which also represents a circle.

|

—| = Cconstant are
24 1)

Clearly the circles represented by (1.5) and (1.6) are orthogonal, because with the

usual notation the condition of orthogonality 2g,g, + 2f\f; = ¢ + 3 18 satisfied.

Example 1.8. If ¢ is real, b = p + iq, z = x + iy, then show that the equation b(z

+ 7)4 b(z-2)+ ¢ =0 represents two straight lines in the xy-plane and find the angle
between them.

Solution : We know that every linear equation in x and y with real coefficients

represent a straight line in the xy-plane.
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- circle joining the points z;, and z, as diameter.

Now, blz + 2)+ b(Z-2)+c=0
= (p +ig)2x + (p — ig) (-2iy) +¢c =0
= (2px - 2gy + ¢) + i(2gx - 2py) = 0
Equating the real and imaginary part we get
2ox — 2y + ¢ =0 sk lazoy
2gx — 2py = 0 alCl8)
There represents two straight lines in xy-plane.

If @be the angle between the straight lines (1.7) and (1.8), then

2o
A
tanf=+-91 L _ P 9"
(2.4 2pq
q p

Hence the required angle is

; - R )
9= t[w_q_]
2pq

~ Example 1.9. If the sum and product of two complex numbers are both real, then
the two numbers must be either real or conjugate.
Solution : Let z; = x, + iy, and z, = Xy + ivs
Then z; + z; = (x; + x3) + i(y; + ¥2)
and 223 = (X3 — Yv2) + ilxys + x9).
By the given condition we have
v+ y;=0and x;y; + 339, =0
This gives y, = - y; and x, = x| provided y, # 0.
Hence the result follows,
Example 1.10. Find the equation of the

Solution : Let P(z) be any point on'the
circumference of the circle. (see Fig. 1.10). Then Alz))

the angle between the lines AP and BP is % y
Hence
=4 _ T,
arg z-z;=§+ Fig. 1.10




This means £_ %L is purely imaginary.
L=

fig; Lokl +==z’3']=n
2 i3 =73

e (z=z)(z-%)+(z=2)(z-7)=0

e 22-2'-.—Z{Eq+Ez)“E(E|+Zg}+Z|Eg+ZIE|=ﬂ,
which is the required equation.

) Example 1.11 : Find the equation for an ellipse with major axis of length 10 and
foci at (=3,0) and (3,0).

Solution ; From the given condition the sum of the distances from any point z on
the ellipse to the foci must be equal to 10.

Hence the required equation is |z + 3| + [z - 3| = 10..
Example 1.12. I z;, z; and z; are three complex numbers salisfying
:I|2 + 331 + Ej"]' e e Vo W [ R 0.
then show that |z — 21| = lza—z | =2 — z2 ).
Solution : We have -
W+t + -t -y —n=0
Le: (Zj= LY = (51—7) (23 — )
ie | @ - 2P| = - 2) (&3 - 2) |
ie. |lzg— 2P =lo-2l|lz-nl
Similarly, we obtain
|z - ul =1z -2l lz3 - 2|
and | z-2/ P = |21~ 22| |22~ )
Hence. Az =~z +2|a-nl+2an-4 P
=2dun-zlla-ul + du-nlla-zl+2a-2ullz-2ul
ie. (|21 -zl-|a-aP+(2-l-|la-2)
+(a-ul-lz-2)?=0
This gives | zj -z | =lza—z|=lz—-z | as
|z) =2 | | 22— 23| and |23~z | are reals.
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Exercise - 1

l. Show that /m(iz) = Re(z) and Re(iz) = - Im(z) = |z Im(z").

el -

1.
i
§31

14.
15,

6.

. Solve the equation: |z| =z =2 + |,
. If 2, 22, 2y be nonzero complex numbers such that z; # z, |z| = a, |za] = B,
|z3] = ¢. f & + B* + &3 = 3abe, show that
S z
2 arg N = arg. —,
L3 =& iz

Let 2y, z;, 23 be the vertices of a triangle on the complex plane, If

i the triangle is equilateral, then show that
:pz + 22] + 232 = Lo+ iy LEn
i, the u'i_anglc is isosceles and right angled at z;, then show that
7 + 5 + 257 = 2z + )
Find the area of a triangle in the complex plane whose vertices are Z1, 22 and z;.
Find all the roots of (- 8 —8+/3 )" and exhibit them geometrically,
Find all the 5th roots of unity,
Solve ; 6% — 2522 + 32224+ 32 - 10 = 0.
If p + ig is a root of ag" + a2 + = + a,z + ap-= where dp # 0, a,,
a,, a, p and g are real, then prove that p — ig is also a root,
Find each of the indicated roots and locate them graphically (-1 + '3,

Find an equation of a circle of radius 2 with centre at (-3, 4).

Find two, complex numbers whose sum is 4 and product is 8.
Prove that for any integar m > 1,
T 2 oI, bR
col m cot 3 cmm oot e 1.

Find that point on the line joining points z; and z; which divides it in the ratio p ; g,
Find all the roots of the equation

#-(-2=0
Show that the equaiton zZ+b% + bz +c represents a circle when ¢ is real number and
| ] > ¢; show further that the centre represents complex number.— b and radius is

B =c,

. Let the roots z;, za, 2y of the equation =+ 3ax® + 4bx +¢ = 0, in which a. b, ¢ are

complex numbers, corespond to the points A, B, C in the Argand plane. Show that
it will be equilateral if a* = b. :
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Unit : 2 0O Functions, Limits and {ontinuity

2.1 Introduction :

Students are very well conversant with the definitions of limits and continuity for
functions of a real variable. In this unit we shall deal with corresponding definitions for
functions of a complex variable and these definitions are analogous to the definition we
are already familiar with,

2.2 Some definitions :
Definition 2.1. Point Set

Any collection of points in the complex plane is called a point set and each point
is called an element of the set,
Definition 2.2. Neighbourhood of a point

A neighbourhood of a point z € C is the set of all point z such that lz—z3l <
where r is some positive number, i.e. the set of all points lying in the disc with centre
zp and radius r.
Definition 2.3, Deleted neighbourhood of a point

A deleted neighbourhood of a point z; € C is a nelghhﬂurhaud of zo in which the
point z; itself is omitted, ie. 0< [z — 2| < r.
Definition 2.4. Neighbourhood of the point at infinity

The set of all points z such that | z| > k where k is any positive real number is called
a neighbourhood of the point of infinity.
Definition 2.5. Limit Point.

A point z is called a limit point of a set § in the complex plane if every deleted
neighbourhood of z; contains at least one point of 5. A limit point may or may not belong
to the set.

- We consider the set of points defined by | z| < r. Evidently all points on the circle
| z| = r are the limit points of this set and they do not belong to the set. Again all points
within the circle | z | = r are also limit points of the set defined by | z | < rand they belong
to the set.

Definition 2.6. Interior, Exterior and Boundary Points

A point z, €5 is called an interior point of the set S if 3 a neighbourhood of 2
contained entirely within §.
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The point zp will be an exterior point of § if 3 a neighbourhood of z;, which contains
no point of §.

Moreover, the point z; is called a boundary point of a set S if every neighbourhood
of z contains at least one point of § and at least one point not of §. The collection of
all boundary points of a set § is called the boundary of §.

Definition 2.7. Open and closed set
A set § in the complex plane is said to be apen if it consists only of interior points,

A set § is called closed if its complement is open. Equivalently a set § is said to
be closed if every limit point of § belongs to . or if § has no limit point.

The open dise | z— z, | < r is an open set and the closed disc | z— z4 | < ris a closed
set, There exist sets which are neither open nor closed : the set consisting of the point
z = | and all points for which'| z| < 1 is a set which is neither open nor closed.

Definition 2.8. Bounded, Unbounded and Compact Sets.

A set of points § is said to be bounded if there exists a positive number M such
that | z| < M V z € 5. If there exists no such number M, the set is said to be unbounded.

A set which is bounded and closed is called compact.
Definition 2.9. Derived set and closure of a set

The set of all limit points of a set § is called the derived set of § and is denoted
by &,

The union of a set 5 and its derived set §” is called the closure of § am:l 15 denoted
by S or cl(S). Thus

Sorcl§) =8Su¥.

Definition 2,10 Connected Set

A set § is called connected if any two of its points can be join by a polygon all of
whose points belong to the set,

‘Definition 2.11 Open and closed Domain or Regions

An open connected set is called a domain or an open region, If however the boundary
points are also included then it is called a closed domain.

Definition 2.12  Jordan Curve

The equation z = z(f) = x(1) + iy(¢) where x(¢) and y(¢) are real continuous function
of real.vanable 1, defined in the interval g < ¢ < b, determines a set of points in the complex
plane which we call a continuous arc. The equaiton

z = z(r) = x(1) + i)

determines a simple arc if 1| # 6, = z(t)) # z(r).
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The equation z = z{t) = x(f) + {y(r) delermines a simple closed curve if f; <
tyand z(1) = z2(t) = 4 = a and [, = b,

Simple arcs and simple closed curves are often called Jordan arcs or Jordan
curves respectively.

A simple example of a Jordan arc is the polygonal arc which consists of a finite
number of line segments joint end to end.

Jardan Curve Theorem

A Jordan curve divides the plane into two regions having the curve as common
boundary. That region which is bounded is called the interior of the curve, while
the other region is called the exterior of the curve.

Bolzano-Weierstrass Theorem

If a set is bounded and contains infinitely many points then it possessess at least
one limit point.

Definition 2.13 Variables and Functions

A symbol, such as z, which can stand for any one of a set of complex numbers
is called a complex variable.

If to each value which a complex variable z can assume there corresponds one
or more values of a complex variable @, we say that @ is a function of z and write
@ = f(z). The variable z is sometimes called an independent variable, while w is
called a dependent variable. The value of a function at z = a is often wrilten as f(a).
Thus if f(z) = 2%, then f(3) = (3i)* = 8L

Definition 2.14 Single and Multiple valued Functions

If only one value of @ corresponds to each value of z, we say that wis a single-
valued function of z or that f(z) is single-valued. If more then one value of @
corresponds to each value of z, we say that @ is a multiple-valued or many-valued
function of z.

A multiple-valued function can be considered as a collection of single-valued
functions, each member of which is called a branch of the function. It is customary
to consider one particular member as a principal branch of the multiple-valued
function and the value of the function corresponding to this branch as the principal
value,

Example 2.1, If @ = 72, then to each value of z there is only one value ol w.
Hence @ = f(z) = z* is a single-valued function of z.
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Example 2.2. If @ = z' then to each value of z there are two values of w.
Hence @ = f(z) = z'? is a multiple-valued function of z.

Definition 2.15 Inverse Function

If @ = f(z), then we can also consider z as a fynction of , written z = p(w)
= J~'(@). The function f=! is often called the inverse function corresponding
to f. Thus @ = f(z) and @ = f~'(z) are inverse functions of each other.

2.3 The Elementary Functions :
1. Polynomial Functions
Polynomial functions are defined by
@=ag" + a7 + - + a2+ a, = P2) |

where a; # 0, ay, -, a,_,, a, are complex constants and # is a positive integer called '
the degree of the polynomial P(z).

Z. Ratlonal Functions
Rational functions are defined by

_Pz)
Y=o

where P(z) and ((z) are polynomials.

3. Exponential Functions
Exponential functions are defined by
W= e = e = e¥cos y + i sin y)
where ¢ = 2.71828 ... is the natural base of logarithms.

If a is real and positive, we difine
at = g-loga

where log @ is the natural logarithm of a,
Complex exponential functions have properties similar to those of real exponential
functions. For example,
i
gl glt = gty , =——= P b
ol
4. Trigonometric Functions

We define trigonometric functions sinz, cosz etc., in terms of exponential
functions as follows : :

Er': _e--i':_ EF: + E—r‘z

sinz="—. cosz = 7
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=2 cosec o
cosz ete = 5ing et —eF

eCz =

o

cosz _ ile* +e™)

sing et —e™®

lan z = . :
¢ cosz iled +e™?)

cotz=

Many of the proporties familiar in the case of real trignometric functions also hold
for the complex trigonometric functions. For example, we have

sin?z + cos?z = | 1 +tan’z = sec’z | +cot’z = cosec?z

sin(-z)=—sinz cos(—z)=co5z tan (—z) =—1an z

sin(z; + z;) = sin z; €Os Z; & CO$ 7;8in 2, ;

c08(z) + 7,) = €OS z; €os Z; F sin z; Sinz,

tar z; L tan 2
17 tan z; tan 2,

tan(z, £ z3) =

5. Hyperbolic Functions

Hyperbolic functions are defined as follows :

1 gt Epad
sin hz=-€2—f _ COS hz=%
| 2 1 2
SEC.&Z = e = = =
Coshz e“+e’ GoNGE 1z sinhz e*—e*t
sin h = cos h t 4 o=t
tan hz = RoC 8 cot hz = b g te

.cos hz = el +et
The following properties hold :
cos h?z — sin h’z = | 1 —tan h?z = sec h’z cot h?z — 1 = cosec h’z
sin h{=z) = — sin hz cos h(—z) = cos hz tan fi(-z) = — lan hz

sin h(z, = z;) = sin hz) cos hz; * cos hz) sin hz;

cos h(z, £ z;) = cos hz; cos hz; + sin hzy sin hzp

tan h zy 2 tan h 2
I+tan h 2 tan A 22

tan h(z; £2;) =

The following relations exist between the trigonometric functions and the hyperbolic
functions !
sin(iz) =isinhz cos(iz) = cos hze tan(iz) =ftan h 2

sin h(iz) = i sin 2 .cos fi{iz) = cos 2 tan Aliz) = { lan z.
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6. Logarithmic Functions

If z=¢® then we write @ = log z, called the natural logarithm of z. Thus the natural

logarithmic functions is the inverse of the exponential function and can be defined by
=logz=logr+ i(@+2km, k=0, %1, +2,

where z = re® = relé+ 20 Note that log z is a multiple-valued (in this case
infinitely many-valued) function. The principal-value or princ.pal branch of log z is
sometimes defined as log r + i@ where 0 < 8 < 27 However, any other interval
of length 27 can also be used, e.g. -m< @< 7. elc,

The logarithmic function can be defined for real bases other than e. Thus if z
= a% then @ = log,z where a > 0 and a # 0, 1. In this case z = %8 g,
7. Inverse Trigonometric Functions

If z = sin @, then @w= sin~'z is called the inverse sine of z or arc sine of z.
Similarly we define other inverse trigonometirc functions cos~'z, tan~!z, etc. These
functions, which are multiple-valued, can be expressed in terms of natural logarithms
as follows. In all cases we omit an additive constant 2km, k = 0, %1, #2, - in the
logarithm,

: -
Si"-lz=%lng(i"'+ 1_32] coseclz = 'l-lug(ﬁ z ])

2
' Y
cos ™! z=%lng(z+\l'z?—l) SE"E‘llUE[L}:-L)

2 1 {14z
tan |Z=alﬂg m)
8. Inverse Hyperbolic Functions
If z =sin h @then = sin h~'z is called the inverse hyperbolic sine of z. Similarly
we define other inverse hyperbolic functions cos h~'z, tan iz, etc. These functions,
which are multiple-valued, can be expressed in terms of natural logarithms as follows.
In all cases we omit an additive constant 2k, k=0, +1, £2, ..., in the logarithm,

R ——"

z+l]

& 1
cot zhzlﬁg( 7

g
Cﬂﬁﬁ"|2=|ﬂg(z+‘f]zi—-l) smh“lz=lng(]‘Li_.i.]

e 1+z | SO & [z_ﬂ)
tan h lng( ) cot ™'z 2I(:ug =] ¢
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9. The functions z% where & may be complex, is defined as e®'°¢2, Similarly if f(z)

~ and g(z) are two given functions of z, we can define (f(z))82 = e¥28 S, i peneral

such functions are multiple-valued.
10. Algebraic and Transcendental Functions
If @ is a solution of the polynomial equation
Py)@" + P2)@w™ + = + P, (D@ + Py2) = 0 o )

where Py(z) # 0, Pi(2), ... Pyi(2), Py(2) are polynomials in z and n is a posilive
integer, then @ = f(z) is called an algebraic function of z,

Any function which cannot be expressed as a solution of (2.1) is called a transcendental
function.

The function @= z""2 is a solution of the equation @?— z = 0 and so is an algebraic
function of z. The logarithmic, trigonometric and hyperbolic functions and their corresponding
inverses are examples of transcendental functions,

2.4 Limits :
Definition 2.16
Let = f(z) be defined in a domain D except perhaps at the point zo of D. A complex

number [ is said to be the limit of fas z = 7y, symbolically { = lim f(z), if for given
I=+iy .

g>0 3 ad>0 such that
|ftz) — 1] < & whenever 0 < |z — z| < &.

If no such number / exists we say that lim f(z) does not exist. Note that z is
=iy

allowed to approach z, in an arbitrary manner, not just from some particular direction,
The limit is clearly independent of the path by which z approaches z,.

Geometrically, if z is a point in the complex plane, then lim f{z)=/ if the difference

T
in absolute value between f(z) and / can be made as small as we wish by choosing points
z sufficiently close to z; (excluding z = 2y itself).
Theorem 2.1. A necessary and sufficient condition that the function f(z) = u + iv
may tend to | = @ + ifas z = x + iy tends to 7o = a + ib is that

u(x,y) — @ and vix,y) — G as (xy) = (ab).
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Proof. We first suppose that _ lim f(z)= L Then for givene >0, 3 §> 0 such
that Sy
|f(z) — | < & whenever 0 < |z — ;| < &
i.e. ulxy) + ivixy) - @ - ifi| < & whenever 0 < [(x+iy) — (a+ib)| < &

ie. [(uGny) - &) + ivxy) - B)| < & whenever 0 < V(x—a) +(y—b)! <

ie. lulxy) — @] < €and |v(x,y) ~ B] < &€ whenever 0 <4/ (x—a)? Hy—bP s
as |Re(z)| < |z] and |Im(z)| < |z].
This implies that

lim ux,y) = @ and lim vixy) = fi
L, v = o) (x, ¥} —>{a,b)

This proves the necessary part.
Nex! we suppose that lim u(x,y) = e and lim vix,v) = B Then
{x, v — (et ) [ R T

for given £ (> 0), we can “ind 2 &(> 0) such that

lutxy) — a| < % and |vxy) —~ Bl = .g

whenever 0 < V(x—a)? +(y=b? < §

So for 0 < V(x—=aP +(y=b)2 < §ie. for 0 < |z = 2] < & we get
1) =] = [(ulxy) = @) + i(vixy) - B)]
< lulxy) — a| + |v{x.y] |

€ € _
< 5t5 =&

This implies that lim f(z)= (. This proves the sufficient part and hence the theorem.

ey £
2.5 More definitions of limits :

(1) Let/be defined in a domain D except perhsps al the point zy € D. The function
J1s said to tend to infinity as z lends to z; if for any real number & (>0), however
large, there is a 6(>0) such that | f(z)| > k whenever 0 < |z - 20| < &

In symbol we write lim Flz)= ee.

|
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(ii) Let f be defined for | z| > k where k > 0. Then the function f is said to tend
to a finite limit { as z tends to infinity, symbolically lim f(z) = [ if for any

T

£(>0) 3 a number ky(> 0) such that |f(z) — I| < £ whenever | z| > k.

(iii) We say that lim f(z) = e if for each number k(> 0), 3 a number ky(> 0)

1—e0
such that |f(z)| > k whenever |z| > k.
Theorem 2.2

Suppose that lim f(z) =/ and lim g(z) = m, Then

| =%
(M lim [flz2) £g(z)] =1 £m;

F=h2)

(i) lim ¢f(z) = el

=43y

@iy lim f(z) g(z) = Im,

=k

£@) 1

{iv) lim = it m =0,

T=4 i) glzy
Example 2.3. Using the definition of limit, show that

lim (az® + bz + ¢) = az® + bzy + ¢,

where a, b, ¢ are complex constants.
Solution : To verify this limit we have to find a 6> 0, for given £> 0 such that
0<|z-12|<d= | + bz +¢) - (az® + byy + )| < &
Now. |(az? + bz + ¢) = (azg® + bzg + ©)| = | a(z®- 2?) + bz~ 7)) |
= | (2~ o) (alz +29) + b) |
<lz-z| (allz+z0) + B . (22)
From (2.2), we note that |(az2 + bz + ¢) — (azp? + bzy + )| < £ holds true if we
assume
lz—z| (lal]z+ 2| + b)) <&
Restricting |z —2¢| < 1, we observe
la] |z + 2ol + b | = lal |z = 2o + 22| + [
< |al (|z -zl + 2lz0]) + 1]
< lal (1 + 2|z} + |&].
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If we choose

oo £
o= mm{l'laltl+2!zu1)+lbl}'

then (2.1) holds.
2.6 Continuity :

Let f(z) be a complex ffunction defined in some neighbourhood of z; (including
the point), The function is said to be continuous at zy if, for every £ > 0 there
corresponds a & > 0 such that

| f(z) — flzp) | < & whenever |z - 25| < &
Symbolically, we write

lim f(z) = flzg)

12
This means that for continuity at a point, the limiting value and functional value

al the point have the same value.

A function f(z) is continuous on a set § if it is contimuous at every point of 5.
If a function is not continuous at z, then we say that the function is discontinuous
at zp or zy is a point of discontinuity.

Remark 2.1

If the function f(z) is continuous, so are | f(z)[, f(z) and f(z).
Remark 2.2

Suppose that f and g are continuous functions at the point z. Then the following
functions are continuous at z :

(i) The sum f(z) + g(2):
(i) The differerice f(z) — g(z) ;
(iiy Their product f(z) g(z);
(iv) Their quotient f(z) | g(z), provided g(z) # 0.
Example 2.4. Test the continuity of the function
Test the continuity of the function

P24+t +(2+i)z+2 "
z—f

flz) =

t == F
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Solution ¢ The function is uqdeﬁned al z = i, but

D 4+(1+D22+(2+1)z+2

lim f(z) = lim ;
= f{ s ) =1
_l 1 ] ..
= X (z=0)(z +2|.z+ z+ 2i) T
T3 =1
Hence if we define
DA +Dz2+(24D)z+2 ;
fa) = ( }z—-r'{ ] Tl
=-343i, z=i

then the function f(z) is continuous at z = i.

Example 2.5. Prove that the function arg : C\[0} — (-m, ] is not a continuous
function,

Solution : Let z, = -1 + (1)" ;l; » obviously, (z,) € C - (0} and z, = =1 as.n —» o=}

but arg g, = #— aIc lunhl— and arg #x,, = — 7 + arc lan

{k
Thus {arg z,} is not a convergent sequence and hence ‘arg’ as a function is not
combnuous,

1
2k+1"

Theorem 2.3
A continuous function of a continuous function is continuous,

Proof. Let f(z) be a continuous function at zp. Then f(z) is defined in some
neighbouthood of z,. Suppose that g(w) is a function which is defined on f-image of this
neighbourhood. Given that g(w) is continuous at @y = f(zy). Then, for given £> 0, 3
a >0 such that .

| g(f(z)) = g(f(zp)) | < & whenever |Az) = flzo)| < ¥ (230
Now, f(2) is continuous at z. Hence, for this y> 0,3ad>0
such that

|f(z) — f(zo) | < ¥ whenever |z = z| < &. (2.4)
combining (2.3) and (2.4) we have

(e (@) - (g (20) | < & whenever |z — 2| < &
Hence the composite function gf is continuous at .
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Theorem 2.4

If f{z) is continuous in a region, then the real and imaginary parts of f(z) are
also continuous in the region.

Proof. The proof of the theorem is for the readers.

Theorem 2.5
If a function is continuous in a closed region, it is bounded in the region.
Proof. The proof of the theorem is left as an exercise,

Theorem 2.6

If a function f{z) is continuous on a bounded and closed set § c C, thcn minimum
and maximum of | f{z) | exist on S.

Proof. Given that f{z) = w(x, y) + iv(x,y) is continuous on §. This implies that the
component function u(x, y) and v(x, y) are continuous on S, Hence

1) ] = (e y) + (ux )

s @ rcal valued continuous function on the bounded and closed set S, Hence by real
caleulus, | fz) | attains its maximum and minimum on §. This completes the proof.

Note 2.1 The examine the continuity of a function f{z) at z = o, replace z by é

and examine the continuity of
g( &) =f(%] at ¢ = 0.

2.7 Uniform Cﬂl‘lﬁl‘l“il}’ -

A function f{z) is said to be uniformly continuous on a set § if, for given £> 03
a &> 0 such that | fiz;) — fizs) | < & whenever |2y — z;| < 8 ¥ z, z,, € .

Here, the choice of d is independent of z; and z; in §.
Theorem 2.7

Let fiz) be a continuous function on a closed and bounded set § in the complex plane.
Then itis uniformly continuous on §.

Proof. Suppose that f is not uniformly continuous on S. Then 3 an £> 0 and two
sequences {p, ] and {g,} corresponding lo p and ¢ in § such that for every n,

ln =l <=+ f )= flanl2e. (25)
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Since § is closed and bounded, every sequence (p,} contains a subsequence

{ Pw, } converging to zp €S.

Lel {Gl'ul } he the corresponding subsequence of {g,}. Then, g, — 2y as k — oo,

This is obvicus by the triangle inequality
o =] <[, =P ]2, 0]

Hence for subsequences {Fu.} and {q‘u, } , (2.5) implies

]-Pn,: —q"*|~:i, f(jﬂnt }_'f{q"* }125 4 A Lo (2.6)

for every k. Since f(z) is continuous at z;, we have

f{qﬂ;}-—} f{nzu}- f{prrl)_}fl:zu:] as k—oo.
This contradicts (2.6). Therefore f(z) is uniformly continuous.

Example 2.6, Show that f (z) = z2 is uniformly continuous " th' region | z| <1,
but the function g(z) = % is not uniformly continuous in this regioi.
Solution : Let z and z, be any two points in | z| < | such that | 2~z | < & Then
|2 -z ]=]z-2) z+ )| < Uzl + 20D |z-2| <2|z-2].

Thus if we choose d= —;— we obtain | 22 — zp? | < & This shows that f(z) = £ is

uniformly continuous in | z|< 1.
For the second case, if possible, we assume that g(z) = % is uniformly continuous

in | 2| < 1. Then for given £> 0 we can find a §> 0, say between 0 and 1, such that
| f(z) = flzg) | < & whenever | z—zg | < & for all z and z; in the given region. Fix =48
and =, = 8/(1+&). Clearly = and zy are in | z| < | and

1:—z‘,!=\5—-‘5—=—*"—5{5_

l+&l 1+&
However, (A0 B8 “‘"I—Eﬁ =£ S psince0<d< !,
. &l ) &
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Thus we reach at a contradiction and therefore the function g(z) = L cannot be
=

uniformly continuous in the region.

Exercise - 2
1. Using the definition of limit, verify that
lim e+ i(x+y)] =2+ 115
22400

2. Using the definition of limit, verify that

lim(z2+2) = 1.

==+
3. If lim f(z) =/, Prove that the limit is unique.
=gy
4. 1f | z,| = |zg| and Arg z, = Arg z;, prove that z, — 2,

5. If a function f is continuous in a domain D, prove that |f(z)| is also continuous in
the domain.

6. Is the function

24+(2-Nz-2i

et |
continuous at z = 7 ? If not, can it be made continuous by redefining at z = i ?
: 2
7. Prove that f(z) = zzg - é is continuous and bounded in the region |z| < 2.

8. Prove that the function f(z) = ';3 is not uniformly continuous in the region |z |< I,

but it is uniformly continuous in the region %'-_CI 3| =1
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Unit : 3 O Analytic Functions

3.1 Complex Differentiation :

The differentiation of a function of a complex variable is defined in the same way
as in the case of a function of a real variable.

In contrast with real analysis, here differentiability at a point and differentiability in the
neighbourhood of a point are not the same, The latter is more powerful condition, which
gives rise to a different class of functions called analytic functions. Actually, to study the
theory of functions of a complex variable (or several variables), is to learn the behaviour
and properties of such functions.

Definition 3.1.

Let f (z) be a single-valued function defined in a domain D of the complex plane C.
If zp € D and if

lim £ S(zp)
I i d ||

ik l)

exists, we denote this limit by /7 (zp) and call it the derivative of f(z) at the point z,
If f* (zy) exists then f(z) is said to be differentiable at zo. Equivalently we can write
Pz = tim LR S@) gy S A= fl0)
h—0 h Az—0 4z
If f(z) is differentiable at each point of D, we say that f(2) is differentiable in D.

We stress once again that the limit (3.1) exists means that the limit exists and is same
along whatever path z approaches zp.

Theorem 3.1
If f(z) is differentiable at zg, then it is continuous at zo.
Proof. Since f(z) is differentiable at zp, we get

g =tim L@=1G0)

1+ Z—dp

Now lim [f() - fz)] = lim %ﬁ@u—zﬂ)

=g hig
= lim M.[im {z— zp)
iy <~ % i~y
=f!{z[|} ®» 0 =0
iLe. lim f(z) = f(z).

=
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This proves that f(z) is continuous at z,.

The following example shows that the converse of the above theorem is not necessarily
rue, f

Example 3.1. Show that the function f(z) = 2 is continuous at a point z = z,, but
the derivative does not exist at z;

* Solution : The function f(z) = z is clearly continuous at z = Z

N S S ARy = F{ e}
By definition, i flz) = ]ﬂ:rrl. e
if this limit exists independent nf the manner in which Az = Ax + iAy approaches
zero, Then _
ooy o fim 2EM=E _eT_; _ lim Ax-ily
(z] asd B apso AT T apun Ackily
Ay
Ax
IfAy =10, I.hf: required limit is lim — = |,
Av—0 A X
If Ax = 0, the required limit is lim — m_y =— 1,
Ay—n 1Ay

Since the limit depends on the manner in which Az — 0, the derivative does not exist.

3.2 Geometric Interpretation of the Derivative :
Let zo [Fig. 3.1] be a point P in the z-plane and let w, [Fig. 3.2] be its image P’
in the @-plane under the transformation @ = f(z).

We suppose that f (z) is single-valued. Then the point z; maps into only one point &,

v 8
y : Q" =z
0
\‘bﬁﬁ § ‘l."-%}"‘
i . U}'Q \.A_? X
\'b-{“ =}
9 W N 5
x P & e
’I.p "F P
: I 4
;ptf
X u
Fig. 3.1 Fig. 3.2
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If we give g, an increment Az we obtain the point © [Fig. 3.1]. This point has image
@ in the ¢-plane. Thus from Fig. 3.2 we see that P'Q" represents the complex number
Aw= f(z + Az) = f (zo). It follows that the derivative at zg (if it exists) is given by

lim flp+Bn)—flzg) . QF
H=—l Az QP QP

i e. the limit of the ratio &P’ to QP as point Q approaches point P. The above
interpretation clearly holds when z, is replaced by any point z.

Differentials
Let Az = dz be an increment given to z. Then
Aw= f(z + Az) - f(2)

is called the increment in @ = f(z). If f(2) is continuous and has a continuous first
derivative in a region, then

Aw = ' (2) Az + €Az = f'(z) dz + edz
where £— 0 as Az — 0. The expression
dw = f'(z) dz

is called the differential of @ or f(z). Note that Aw # d@ in general. We call dz
the differential of z. Hence we write ;

%—:f’{z} = him f[z.l-ﬁz]-_f{Z} = lim 4w

Bz &-z & =—0 Az’ ."(3.2}

It is emphasized that dz and de are not the limits of Az and Aw as Az — 0, since
these limits are zero whereas dz and dw are not necessarily zero. Instead, given dz we

determine defrom (3.2), i.e. dwis a dependent variable determined from the independent
variable dz for a given z, '

It is usedul to think of diz as being an operator which when operating on @ = f(z)
dw _ e
leads to 7 Fz)L

3.3 Rules for Differentiation :

It f(z), g (z) and h (z) are analytic functions of z, the following differentiation rules
(identical with those of elementary calculus) arc valid,

¢ 4 {4 g} =4 FE 5 8= (DE8Q).
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(i) diz{cﬁz)}=r:-§;f{z>=cf'tz:-.

where ¢ i5 a constant.

(i) diz{f{z}g{z}} = ffﬂgdz'g':”*gm%fm

= f(2)g'(2)+g(2)f'(2).
| ﬂ.{ﬂz}}_HIZJdizf{z]—f(szizstzJ
(iv) az | g(2) .' .[g(z]]z
_2(2)f(z)- fz{z}g’(z}l if g(z) 0.
[g(2)]"
(v) If w=f({) where {'= g(z) then
do _dw df _ ,‘:d{_ ’ ’
& de @ e s e, -(3.3)
Similarly, if @ = f(¢) where £'= g(n) and 1 = h(z), then
do _dw d¢ dn
dz ~ dl dn dz i)
The results (3.3) and (3.4) are often called chain rules for differentiation of
composite functions,
i) If @ = f(2), then z = f~'(w); and ‘;—2’ and j_—; are related by % = —'d’z__.
diw

(vii) If z = f(2) and @ = g(r) where t is a parameter, then

de _dwldt _ g'(1)
dz dzldr  f(n)’
Similar rules can be formulated for differentials.
3.4 Analytic Function : :

A function f(z) defined in a domain D is said to be an analytic function in D if f(z)
has a derivative at each point of D. The terms regular and holomorphic are also used
in state of analytic.

A Tunction f (z) is said to be analytic at a point z, if it is analytic in a neighbourhood
of z i.e. if there exist a neighbourhood of z;, at all points of which f(z) exists.

If / (z) is not analytic at a point zy, then z, is called a singular point or a singularity
of f(z).
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Example 3.2. Show that the function f(z) = zz is differentiable only at origin.

ool e Szt AZ)- f(2)
Solution : E;f (z) = Eiu e

= lim -(Z+53}(Z+M)—ZE
Az Az

lim z &2 4 lim Zz + lim Az,
Ars0 Az Azl Az—0

Since lim 2% - |, when Az approaches zero along real axis and lim L
Az—0 Az Az—0 Az

when Az approches zero along imaginary axis, lim o Az goes not exist.
Az %

Therefore the given function is differentiable only at the origin.

Example 3.3. If @ = f(z) = 22 —22% find (a) Aw, (b) da (c) Aw - dw.
Solution :

(@) Aw = f(z + Az) - f(2)
= ((z + A2)* - 2z + A2)?) - (2 - 22%)
= (32 —4z) Az + (3z - 2) (Az)* + (Az)’.

(b) dw = principal part of Aw = (322 — 4z) Az = (32% — 4z)dz
since by definition Az = dz. Note that

F(2) = 32 = 4z and do = (32 - 42) dz, ie. ‘L—T Y. S
(c) From (a) and (b) we obtain

Aw - do = (32 — 2) (Az)? + (Az)® = eAz

where £= (3z - 2) Az + (Az)%

Note that e—=0 as Az—0, i.e. ﬁm_;g_’ 0 as Az—0.

It follows that A@ — de is an infinitesimal of higher order than Az.
xy*(x+iy)
B y ! z#0
= 0z =1l

Example 3.4. If f(2) =

prove that ﬂ_z}_;f{ﬂl —» 0 as z — 0 along any straight line but f'(0) does not

exist.
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xy*(x+iy)

2 4
Solution : For y = mx, ’Fm VL = lim iy
z—m Z ()00 X+

= lim "i‘j'
(5,¥)}—(00) X2+ y

I i S
x—p 1+ mix?
: f(z} f(0) _ xy? (x+iy)
F = w4, lin lim
L e :.]-m (x.y)—=(0,0) (x?+ y*) (x+iy)
= lim Lz—l
(r)—00) X2 +y* 2 :

This shows that £°(0) does not exist,

Cauchy-Riemann Equations (C-R equation)
Theorem 3.2

A necessary condition for w=f(z) = u(x,y] + fv(x,y) to be differentiable at the point
Zy <= Xy + fyg is that

(X, yo) = wlxg, Yo) and uy(xg, o) = — vilxg, Yo).
I"roof. Suppose that f* (z) exists. Then

1

; . J(2) - f(z0)
fz) = h_'f}, e
: {u(x, ) —u(xg, yo)} +i{v(x, ) - vixg, o)}
= |
tﬂ?r—r{;u_yu} (x—xp)+i(y—= o) k3

Since f'(z;) exists, (3.5) must exists for all modes of approach of the point (x,y)
(0 (xp, yp) and all the limiting values must be same.

Let z — z; along a line parallel to real axis. Then y = yq and x = x,.
So from (3.5) we obtain

fllzy) =lim {ulx, yo) = ulxo, yo)} +i{v(x, yo) = v(xq, ¥o)}

Y= X=Xy
= lim B2 "M%, 50) | e VO Vo) = V(Xo. )
A=y A= Xy by =X
= i (xg ¥o) + fvdxg vl .(3,6)
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Now letting z — z; along a line parallel to the imaginary axis Le. x =xgand v — v
we obtain from (3.5)

i H{IUT:P)—H{X::-_P:J} % im VUm}'F“(-ﬁ;Jﬂ
by i(y=ya) [y 1y~ ¥o)
— fuXo, Yo) + vy(xo, Yo)

ST
Comparing (3.6) and (3.7) and equating the real and imaginary parts we obtain

uxg, yo) = Wxo, o) and wy(xg, yo) = — vilxp Yol
The proves the theorem.

S z)

]

Note 3.1. The differential equations u, = v, and u, = — v, are known as Cauchy-
Riemann equations.

Example 3.5, Find the nature of C-R equations for the function fzy=|z
Solution: f(z) = |z[* = & + y%

Hence ulx,y) = x4 ¥, wxy) = 0.

Therefore u, = 2x, uy = 2y, v, = 0 = v,

Thus C—R equations are not satisfied unless x = y = 0, and hence f(z) does not
exist at any point z # 0. :

Example 3.6, If u — v = (x — y) (X2 + 4xy + y*) and f(2) = u + iv is an analytic
function of z = x + {y, find f(z) in terms of z.

Solution : Now f(z) = u + iv so that { f(z) = iu-v

(1 4+ 0f(2)=@-v)+ilu+v)=U+ iV, say

Here U =u-v = (x—y (& + dxy + y).
5o 9V - du _ov
@ dx  dx ox

I

x4 dxy + yE+ (x = y) (2x + 4y)
3x2 + 6xy — 3y°

qoU _ 9u_ov
and 3y T 9y oy
= - (a2 + dyy + ) + (x - y) (4x + 2y)
= 322 - 6xy — I
Lze:t'Eﬂ

T ¢y (x,y) and %—E = gilxy).
Then (1 + Df (@) = [[#(2.0)-iga(z,0)]dz+c
. = I(Szz—fiizz}dz+c={1—i}z3+c.
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l=i 5, ¢
L v SRR e
R4 1+i ¢ 1+

or, f(z) = - iz* + f. where = ﬁ

X - y? 3
=02=20

Show that though C-R equation are satisfied at (0, 0), [’ (U] does not exist,

+3
Yo 2#0
o

Example. 3.7, Let f(z) =

Solution : Here u(x, y) = —:;—i— if (xy) # (0,0)
=10 lf{,\'}'}={'ﬂn).

3

and v(x,y) = '{i':?

= { if {x,y} = (D0,
4A0,0) = lim u(x,0)-u(0,0) . x

x—0 X =0 X

y 0, y)=u(0,0 _—
0 (0,0) = 2_“:}} u( .‘r':'yu( ) = I;E}}T =TT,

v,(0,0) = Hmw wir

x=0 X

if (xy) = (0,0)

I

3
|
I

o V09 -v(0,0)
v(0,0) = E-Tu ) y = L.
Since u, = v, and u, = — v,, C-R equations are satisfied at origin.
PR TR 4 4 L (1))
Now f(0) = 11_+n"l] .
i (2 =y i +5%)
yto00) (X4 y7) (x+iy)

On y = nix,
£0) = (2 =)+ i+ mP )
=0 (X% +m2x?) (x+imx)
_ (=m?)+i(l+m?)
(1+m?) (1 +im) °
Since the value of the limits depends on m, f(0) does not exist.
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Example 3.8, Let f(z) = e, 2% 0
o= {] .=
'ihuw that though C-R equation are satisfied at ('D 0), f* {ﬂ} does not exist.

Solution : f(z) = et 220
L T 0
Now —z* = =l = - {xrin
(x4t~ (2 y?)
_ ety =BT yR) !.4xytx2*y’)
(x*+y2)* (x2+ y2)*
= A + iB.

So, u(xy) = etcos B, v(xy) = e'sin B when (xy) # (0,0).

_”‘ q =
Now #,(0,0) = lim u(x,0) - u(0,0) = figrtte=y
=D x=0 x=al X
. 1 2 |
= lim ——= = lim
o ﬂ'
_ o u(0,y)-u(0,0)
0,0 = lim A=
_ 1
= lyl_n":._l “}'E”" = (), as above.
v(0.0) ‘= lim YRDVO0) _ 4
sl - x=0
U}.I:ﬂ.ﬂ} = him Mﬂ = 0.
y—=0 y
Since #, = v, and u, = — v,, C-R equations are satisfied at origin,
g
—m =0 z

i
We choose z — 0 along the path z = re4 . Then
HA=zrielf=—rt '
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‘0) = lim &¥— = lim &
f{ﬂ} ) £ r—0 X
red
: L = o R
- tim [t e e ] -
red

This shows that f(0) does not exist,

Examples 3.7 and 3.8 shows that the validity of C-R equations at a point is not
sufficient to ensure the existance of the derivative at that poinl.

Sufficient Condition for Analyticity.

Theorem 3.3

A single valued continuous function @ =f(z) = u(x,y) + fv(x.y) is differentiable in
a damain D if the four partial derivatives u,, u,, v, v, exist, are continuous and satisfy
C-R equations at each point of D.

=

Proof. We are to show that f'(z) = Em X é_g?, exits at each point of D, Let z =

x+iy be any point of D. Since u,, u,, v,, v, exists and continuous at (x, y),
w(x,y) and v(x,y) are differentiable at (x, y).
Therefore,
Au = ulx + Ax,.y + Ay) — ulxy)
= Ax + u, Ay + gAx + gly,
where &, & — 0 as (Ax, Ay) — (0,0).
Av =vix + Ax, ¥y + Ay) — vixy)
= v, Ax + vy Ay + 1y Ax + 1 Ay,
where 1, M — 0 as (Ax, Ay) — (0,0).
Now Aw = Au + iAv
= uAx + iAy) + v(iAx = Ay) + AX(& + in)) + Ay(g + iTp)
= (U, + iv,) Bz + (& + in)dx + (& + M)Ay 43.8)
[-.- C-R equations are satisfied]

Form (3.8) we obtain

AW _ : Ax . By
i + v, + (& + """]ﬁz + (& + inq) o ..(3.9)
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; ; A
Now ‘(E] +”’?|)%;‘ = “'5'1'1'”?””&_3
<lg |+ [ni | = 0 as (Ax, Ay) — (0,0) i.e. as Az—0.

Similarly |(&, +in;)|

%\aﬂas&z—}ﬂ.

Therefore proceding to the limit as Az — 0 we get from (3.9)

; A
lim =— = + v
Az BT & '*
i.e. 1 '(z) exist and is equal to u, + v, Since z is any point of D we thus conclude
that fis differentiable in D.

: This proves the theorem.

Example 3.9. Show that the function f(z) = Z is non-analytic everywhere.

Solution : See Example 3.1.

Example 3.10. For what values of z do the functions. @ defined by the fnlln::-wmg
equations cease to be analytic?

(i) z=logp + i¢ where w= p (cosg + i sing),

(i) z = sinh wcosv + icos h usinv, where @= u + .

Solution :

(i) We have

dz _ ol __= sl Y
i (cos ¢ :smr,a‘.'} (cos @ —isin¢) >

duw g 3 2z

of, ——=—"~"——= + =@m.
P R pleosd +ising) =@ (*)
Therfore in order that @ may be an analytic function of z, we conclude from (¥)

that & should be finite, Now @ will be finite so long as p is finite i.e. so long as
» is finite. Hence @ is an analytic function of z in any finite domain.

(ii) We know that Az ﬂ—n::a:mszl'n icosv+isinhusiny.

dw  du

Now z2 =sinh? ucos? v—cosh? usin? v+ 2isinh ucosh usin vecosv

— (cosh? u—1)cos? v —(1+sinh?u)sin?v+ 2isinhucoshusinvcosy

(coshu cos v+ isinhusin v)2—1= [E’Z—] -1,
de
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Thus A= (E } 0or, & _L_ﬁ.?

Hence @ will not be analytic when 72 + | = 0, ie, when 7z = +
Harmonic Function,
Definition 3.2.

A function u(x,y) of two real variables x and y is said to be harmonic on 3 domain
D if the partial derivatives

exist and are continuous on D and if at any point of D, u(x,y) satisfies the partial
differential equation

d?u | d*u
b= g + _——a = ﬂ 4
dx?  gy?
known as Laplace's equation,
Definition 3.3.

Let u(xy) and v(x,y) be two harmonic functions on a domain D satisfying the
C-R equations

Uy = Vyo Uy = -V,
in D, Then u(x,y) and v(x,y) are said to be conjugate harmonic functions on D and
each of the functions u(x,y), v(x,y) are said to be harmonic conjugate of the other.

There is an intimate relation between harmonic functions and analytic functions as
shown in the following theorem. - e
Theorem 3.4. (Statement only)

A necesary and sufficient condition for a function f (z) = u(x.y) + ivix,y) to be analytic
ona domain D is that its real part u(x,y) and imaginary part v(x,y) be conjugate harmonic
functions on D, '

Example 3.11. The function e* = ¥ = e%(cosy + isin ¥)

= e'cosy + ie'siny
is analytic in the whole complex plane and hence its real and imaginary part
u(x,y) = e‘cosy, vix,y) = e'siny
are harmonic in the whole complex plane.

Example 3.12. Prove that the function u = &~%(x siny - ycos y) is harmonic and find
its harmonic conjugate and the correspending analytic function,
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Solution : Here u = e(x siny — y cosy).
ou

o e~ *sin y— xe ¥ sin y+ ye ™  cos y.
Qu _
dx?
du _

¥ xe~%cos y+ ye*siny—e " cosy,

2e*sin y+ xe *sin y— ye " cOS y.

u _ _
dy?
Adding (3.10) and (3.11) we obtain
2 2
du 0% _g.

a2 dy?

Hence u is harmonic.

xe*sin y+2e*sin y+ ye *cosy,

«(3.10)

w30 11)

Let v be the harmonic conjugate of u. Then from the Cauchy-Riemann equations,

@E:a'_”— =-X gy =X g1 =X
3y Eb:_e sin y —xe ™  $in y+ ye " CO5 y,

dv _ _du

= Y = A - —-X Yo =X gy
¥l v cos y—xe ¥ cos y— ye~*sin y,

Integrating (3.12) w.r.t. y, keeping x constant we obtain
p==e~* cos y+ xe~F cos y +e~*(ysin y+cos y) + F(x)
= ye % sin y+ xe™* cos y + F(x)

where F(x) is an orbitrary real function of x.
Substituting (3.14) into (3.13) we obtain

—ye~*sin y+e~* cos y — xe™*cos y+ F'(x)
= e *cos y—xe % cos y— ye *siny
ie. Fiix) =0

i.e. F(x) = ¢, a conslant.
Then from (3.14) we get

= e =(ysin y+xcos y)+c
Thus f(z) = u+iv

= ¢~*(xsin y— ycos y) +ie~*(ysin y +xcos y) +ic.
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Example 3.13, If u=(x — 1) - 3.ry + 3y?, determine v so that u+iv is a regular
function of x + iy.

it du _ P mmoc i
Solution : Here 0y s 3x - 1)* — 3y* and e 6xy + 6y

By Cauchy-Riemann equations, we have

v _ __ o
dx  dy 6xy—6y.

Integrating with respect to x, we get that
v = 3xly - 6yx + f(y) (3.15)
d ’
a; 3x2— 6x + £ (), (3.16)
_a_'lv’_ aH T

Also a}: ax 3(-]:_ l} : ..(3]?}

* From (3.16) and (3.17), we obtain that
—6x+f'(y) = 3x?=6x +.3 -3y
or, f'(y) = 3-32
Integrating, () = 3y — 3 + ¢,
Substituting this value of f(y) in (3.15), we get that
v=3xy - 6yx + 3y -y + e
Example 3.14. If f(z) is analytic, prove that

2 2
[a%ﬁ—z] lF@F =alf @

Solution : Let ¢(xy) = |f(2) > = u? + 2

where f(z) = u + iv. Since f(z) is analytic, v and v are harmonic conjugate
functions and hence

2 '
Pu, du_, . (3.18)

ax? a}‘
and gif+ﬂ 0. (3.19)

Now o 2y +vv,).
dx

d*g
dx?

= Uttty " 1,7 F vy ).

[l
L
[«




%E = uuy, +vvy).
y . .

%
dy?

= Quugy +uy® +vyd +vny),

2
So, [aa* aa- ] I =202 +v.2+u,? +v,?), using (3.18) and (3.19)

= 4(u,2 +v,2) [ w, vsatisfy C-R equation]

=4|f" ()
Example 3.15. Show that the function f (z) = xy + iy is everywhere continuous but
15 not analytic.
Solution : Here u =xy and v = y. Continuity of f(z) follows from continuity uf ]
and v.

Now du _ du _ . ov dv

ox 29y T ox = dy o
: du _, dv du , _dv
Since a—ia—y and Ely 3

f(z) is not an analytic function.

Example 3.16. Let f(z) = u + iv be analytic in a-domain D and | f(z)] is equal
to constant in D. Then show that f(z) is constant in D,

Solution : |f(z) | ='constant = ¢, say
e, ut + v =c
Differentiating w.r.t. x and y we obtain

u, + v, =0 +(3.20)
and uu, + v, = 0, (3.21)
(3.21) implies —uv, + vu, =0 [ we =, & uy =~ | +(3.22)

From (3.20) and (3.22) we oblain
(i + viu, = 0.
If 2 + v& = 0, then u = 0 = v, that means f (z) = 0 = a constant function, Hence
u, = 0. Similarly from (3.20) and (3.22) we obtain v, = 0.

Hence uy = Vy = ity = Wy = 0.
Thus du = uyd, + uyd, =0

i.e. u = constant, _
Similarly, v = constant and so [ (z) is constant.
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Example 3.17. Prove that in polar form the Cauchy-Riemann equation can be

written as

Elu

Solution : We have

dv 1 du

1v
roé or raf

= r cosf, y = r sind Then

ro= 1f'x1+}'2 and 8 = lan"(%).

ou
Now S ie

du _
dy

dv

Similarly, 5% =

du dr  ou 28

OF dx " 98 Dx

=a—u X +ﬂ —_'}:_
dr Ex2+_}r2 a0\ x? + y?

_du 1d
=5 =—cusf —— a;mnﬂ {23

du &r+ du 46
ar dy 96 dy

“ouf ¥ | Ouf x
dr Ex2+},z 8\ x? + y2

_du | du
= sinf +— 38

v dr, v 2
dr dx df dx
dv i dv

=—cos0 -

dr rof

=—=Cos8d, .(3.24)

=—5inf, (R3] |

% sin@+% g—; cosd, -+(3.26)

du

From the Cauchy-Ri:mgnn equation i g—; we have, using (3.23) and (3.26),

du | dv

o1}

hef —) cos - (Ei'r+l Ju sin@=0. +(3.27)

or r d@
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Prove that the function u =

. . d
From the Cauchy-Riemann equation a—: T %‘E we have, using (3.24) and (3.25),
du _1 E‘V) (ﬂv 10u .
(ar L9 sing+(SE+ aa) cos @ =0. (3.28)
Multiplying (3.27) by cos6, (3.28) by siné and adding we obtain
du_1 v
ar r o8’
Again multiplying (3.27) by —siné, (3.28) by cos@ and adding we obtain
dv__ | du
ar r o8’

Exercise - 3

_ Show that the function f(z) = x>+ iy* is not analytic anywhere,

. Verify that the Cauchy-Ricmann equations are satisfied for the functions e’ and cos 2z,

CIf @ = i - 4z + 3, find (a) Aw, (b) dw, (¢) Aw — da at thr "oint 7 = 24,

.!ff{z}:-——.;—l.zatﬂ

then prove that M —30 as z — 0 along any radius vector, but not as z =0

in any other manner.

, Let f(2) = \“-‘}'1, Show that f’(0) does not exist but the C-R equations are satisfied

al the origin.

_ Prove that the function u = 2x(1 — y) is harmonic. Find its harmonic conjugate and

the corresponding analytic function,

%lﬂg(ﬂ + y%) is harmonic. Find its harmonic conjugute

and corresponding analytic function f(z) in terms of z.

. Prove that f(z) = |z|* is differentiable but not analytic al z = 0.
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1,

Lt @=Flr) =

. If f(z) = 0 in a region R, Prove that f(z) must be a constant in R,

Let f=u + iv be analytic in a domain D. Show that f is constant in D if nn}r- one
of the following conditions hold-:

(i) Real {f(z)] = constant in D
(ii) Im {f(z)} = constant in D
(iii) arg f(z) = constant in D.

If w and v are harmonic in & domain D, Prove that

du _dv), fou v
ay ﬂx]+'(3x+3}')

s analytic in D.

. Give an example of a function which is continuous everywhere on C but is differentiable

nowhere on C.

Give an example of a function which is differentiable only at a single point.

f—

+z

- What can you say about the differentiability of the function?

1
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Unit : 4 O Complex Integration

4.1 Introduction :

In order to develop the subject of the theory of function of a complex variable further,
it is necessary to consider the definition of the integral of a function of a complex variable
along a plane curve. In the theory of real variables, the integration is considered from two
points of view; viz. the indefinite integration as an operation inverse to that of differentiation
and the definite integration as the limit of a sum,

Historically, Euler was the first to obtain the value of a definite integral- by replacing
a real variable by a complex variable, where as P.S. Laplace (1749-1827) is believed
to have been the first to use a line integral in the complex plane.

It is interesting to note that the concept of indefinite integral as the process of inverse
differentiation in case of a function of a real variable is extended to a function of a complex
variable if the complex function f (z) is analytic. It means that if f(z) is an analytic function

of a complex variable z, and if Jf{z]dz = F(z), then the differential of F(z) is equal
to f(z); ie, F'lz) = f(2). '

However, the concept of definite integral of a function of a real variable does nol

extended out, rightly to the domain of complex variables. For example, in the case of
]

real variable, the path of integration of L f(x)dx is always along the real axis from x

— atox = b. But in the case of a complex function f (z), the path of the definite integral

b
_[ f(z)dz may be along any curve joining the points z = a and z = b; so that its value

depends upon the path (curve of intggration). However, we shall see that this variation .
in the value of definite integral will disappear in some special eircumstances. For instance,
the variation in values can be made to disappear if the different paths (curves) joining z =4
to z = b are regular paths (curves).

 Now we will state some basic definitions.
4.2 Some Basic Definitions :
Rectifiable Arcs.
Let: I = 2(1), a <t < b, be any Jordan arc. By a partition of [a, b] we mean
a set of points P={rg, fi, fz, **, by} Sasfymg a=g <n <t < <t, =b-
The collection of all possible partitions of [a,b] will be denoted by Pla,b]. Lel
P=la=tg. tj b Iy = .{;}- be a partition of [«, b]. We write z, = 2(1,) lo get the points

T Zpr <oy Iy On /&
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Construct the sum
i

SF' = E Izr e zr-ll.
r=1

Clearly S denotes the length of the polygon inscribed which is obtained by drawing
straight lines from z; to z), 2, to z; and so on, Taking into account all possible partitions

of [a,b] we get aggregate {Sp}. The curve I~ is said to be rectifiable if the set (Sp)
is bounded for all partitions P of [a,b]. If the curve I is rectifiable, then the Lub of
the set {Sp} is defined to be the length of the curve I, If the set {Sp) is unbounded,
then [ is called non-reclifiable. .
Regular Curves (Arcs)

A simple curve (arc) defined by

=2z2(f) = x(r) + iy(1), a st < b,

is called a regular curve (arc) if the derivatives ¥ (r) and ¥ (r) exists, continuous and
do not vanish simultaneously over [a,5].

A regular arc is rectifiable and its length L is given by

b
L=["|30)dr.
)
Contour.
A simple curve is called a contour if it consists of a finite number of regular arcs.
A contour is rectifiable,
Closed Contour
A simple closed curve is called a closed contour if it consists of a finite number of
regular arcs, ,
z(f) =cost+isinf=¢", 0 St <2mis an example of a closed contour,
Simply and Multiply Connected Regions or Domains

A domain or a region R is called simply connected if any simple closed curve which
lies in R.can be shrunk to a point without leaving R. Alternatively a region R is said to
be simply connected if every closed curve lying within it encloses only points of the region.

A region R which is not simply connected is called multiply connected.
For example, suppose R is the region defined by | z | < 2 shown in Fig. 4.1. If I°

is any simple closed curve lying in R, we see that it can be shrunk 10 a point which lies
in R, and thus does not leave R, so that R is simply connected.

On the otherhand if R is the region defined by 1 < |z | < 2, shown in Fig. 4.2, then
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there is a simple closed curve I” lying in R which cannot possibly be shrunk to a point
without leaving R, so that R is multiply connected.

¥

¥ -

|z=2

e ~

Fig. 4.1 ' Fig. 4.2

4.3 Complex Line Integral :

Let f (z) be continuous at all points of a rectifiable curve [7. Divide [” into n parts
by means of points ), 22, = Tu-is
chosen arbitrarily, and call a=2zy, ¥
b=z,

On each arc joining z;, 1o
z(k =1, 2, .., n) choose a point &. r
Construct the sum

Sy = é-lf[‘:k }{Zk = Z&-—I},

Let the number of subdivisions n
increase in such a way that the largest
of the chord lengths |z;— 24|
approaches zero, Then §, approaches a limit which does not depend on the mode of
subdivision and we denote this limit by

Fig. 4.3

j‘:f{z}dz or Ir f(2)dz

called the complex line integral or briefly line integral of f(z) along curve [, or the
definite integral of f(z) from a to b along curve [, In such case f(z) is said to be
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integrable along ['. Note that if f(z) is analytic at all points of a region R and if /" is
a curve lying in R, then f(z) is certainly integrable along /.

4.4 Connection between Real and Complex Line Integrals :

If f(2) = u(x.y) + iv(x,y) = u + iv, the complex line integral can be expressed in
terms of real line integral as

jr f(zmz=‘[r (4 +iv) {dlr+fdy}

= _[r uex ~ vey +i L_ vex +udy |
Example 4.1. If I" is a rectifiable arc joining the points a and b, prove that
s X o
| wde=502-a?).

Solution ; Here f(z) = z and so the integral exist as the integrand is continuous on

{". Divide [ into smaller arcs by the points a = zg, 2, z2, ...y Zyets Zpr w1y T, =b and
formed the sum

) =EI G (2 —24y) =n>:t§k (2 =z44),
where &, is a point on /" between z;_; and z.
We take ¢, = z and & = z;_, and obtain the sums

L] i
8 = E_: % {2k —z4-y) and S5 = E e {2k = Ty ) -

Since _[f(z}dz exist, taking | P || = max |z -z |, im S, lim §,and lim §,
EPll—=0  IPl=D |Pf=stt

all exists and tends to the same limit J' flz2)dz .
i
Therefore

sz{z}rfz— 2lim § = lim )+ lim $,= lim (5, +8)
| Ffl—=0 |PE—0 [P = [|Pi—

= lim X(z2*-2zf,) =2 - 2= b? - &,

[P0 k=1

ie. [f(2)dz= %(bﬂ ~ a?).
i
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4.5 Some Elementary Properties of Integrals :

If f (z) and g (z) are continuous functions over a rectifiable curve I” then

0 [{f@2e@}de= [ f(2)dzt [ g(a)de.
r r

I

(i) ka{z}dz = kjf,(z)r:fz_ k is a constant,

& r

(iii) If =" denotes the arc " described in the opposite sense then

[ f2ydz= - f(2)dz.
=P F

(iv) If I" is a rectifiable arc consisting of a finite number of rectifiable arcs [y, [,
vy Die. F'= T+ N+ .+ [, then

mt

If(z}dz: 5 jf{z}dz..
r k

=
Change of variables

Let z= g (£) be a continuous function of a complex variable {'= u + iv. Suppose
that curve [ in the z-plane corresponds to curve /7, in the ¢-plane and that the derivative
g’({) is continuous on 17, Then

[ £z = [ F{(Y &' ©)dL .
n s

These conditions are certainly satisfied if g is analytic in a region containing curve /
4.6 Convention Regarding Traversal of a closed Path :

The boundary C of a region is said to be traversed in the positive sense or direction
if an observer travelling in this direction (and perpendicular to the plane) has the region
to the left. This convention leads to the directions indicated by the arrows in Figures 4.1
and 4.2. We-use the special symbol

§ f(2)dz
C

to denote integration of f(z) around the boundary € in the positive sense. In case of a
circle the positive direction is the counterclockwise direction. The integral around C is often
called a contour integral.
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An inequality for Complex Integrals
Theorem 4.1 (M-L Formula)

If a function f(z) is continuous on a contour [~ of length L and if there exists a positive
number M such that |f(z) | < M Yz on I, then

=ML,

’jj‘{:)dz
2
Proof. By definition we have

f—oa =]

Iftzidz = lim 3 f(&) (% - z) (4.1)
r
Now élf{éuk}(zk = Z§-1) Sé LF &)z — 2z

] ]
< ME.H lze =2k < ML (4.2)

where we have used the facts that | f(z)| € M ¥z on [and that f lzi = 24
k=l

represents the sum of all chord lengths joining points z;,_, and z,, k = 1, 2, -+, n. and
that this sum is not greater than the length of /", Taking the limit of both sides 0f(4.2)
and using (4,1) we obtain the required result.

Example 4.2. Evalute _[ zdz where C is the upper half of the circle | z | = 1 from
z==-1lto==1. €
Solution : Let z = ¢, w2 820

Then dz = ie'%d 8

: 0
Therefore, I zdr = J'e,-m 1e'%8 = — i, -1 O I
& T Fig. 4.4

Example 4.3. Evaluate J zdz from z = 0 1o z = 4+2i along the curve C given by
i c

i) z="r+it
(i) the line from z = 0 to z = 2/ and then the line fromz =2 w0z =4+ 2/,
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Solution !

(i) The given integral equals

I{x-iy}{dxﬁdy} = Ixcix+ydy+;‘ dey-yd:r

© [od c
The parametric equations of C are x = 2, y=1tfromt=0101=2 Then
the line integral equals

2 2
[ @)y + @)@ +i [ G- (@) @)
=0 =0
2 2 ;
= j (203 +1)dr—i I t2dt = 10 = ﬂ,
=0 =0 3
(i) The line from z = 0 to z = 2i is same as the line from (0,0) to (0,2) for which
x = 0 and the line integral equals i

2

I ydy=2.

y=0 :
Again the line from z = 2i to z = 4 + 2i is the same as the line from (0,2) to
(4,2) for which y = 2 and the line integral equals

4 4
I xdx +i I (=2)dx =B - Bi
=0} x=0
Then the required value = 2 + 8 — 8/ = 10 — 8i.

Example 4.4. Evaluate J @ _l T dz , where L1y the directed line segment from
z=14+itoz=3+ 2L
Solution : Consider the path of integration joining the points (1, 1) and (3, 2) as
a curve made of
(i) a line parallel to real axis from the point (1,1) to the point (3,1) and
(ii) a line parallel to the imaginary axis from the point (3,1) to the point (3,2).

For (i) we have z = x + i, ay = 0 and x goes from 1 to 3. Hence

R
(z=1P ~ 4 (x=1+iP 2| (x=140)* ],

(AR} |
| L 2014

= 22202+ T 3+4i
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For (ii) we have z = 3 + iy, dx = 0 and y goes from | to 2. Therefore
{3.2]

J' g ; J‘ A | [ N | }
ay G0 Tl @rpy T 2[@h v
_ 2M4=-T
= 400
T4 21+i)  24-7i _ i-8
e i =8
s J (z-1F =~ 3+4i ' 400 16 °

i

L 5430
Example 4.5, Evaluate the integral I_ o 2°dz .

Selution : Since f(z) = 2* is an analytic function for all finite values of 2, SO ils
integration along a curve joining two fixed points will be the same, whatever be the path,
Here we have to integrate z* between two points (-2, 1) and (5, 3). Let us consider
the path of integration joining these points be along the curve made up of
(1) a line parallel to the real axis from the point (-2, 1) to the point (5, 1).
On this line : z = x + i, dz = dx and x goes from -2 to 5.
(ii) followed by a line parallel to the imaginary axis from the point (5,1) to the point
(5, 3). On this line :
z=235 +.iy, dz = idy and y goes from | to 3.
5430 5 3
Henee dz = J‘_I{x+ i)Y dx+ fl (5+iy)’idy along the chosen path

=2+

B: (x+:'}4]: +[§(5+iy}4f

%{{SH}“-(—2+:‘}4]+%[(5+3r‘]“—{5+r‘)“].

I

Example 4.6. Let /(z) = zLi and /" be the straight line joining the points i and
i + 2. Show that :

[ r@az| <2 (0,1) @1
o : ’ [

i+2

I
1 3 ] l
Solution : On I, |f(2)| = |ziz= x2 4 y?

) |
T 14+ a2

=sl=M,

Here L = 2. Fig. 4.5
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Hence by using ML formula we obtain

< ML=12.

I f(z)dz

4,7 Cauchy’s Fundamental Theorem :

It is one of the most important results in the theory of functions of a mmplcx variables.
[t has a far riching implication in the sense that almost every thing to follow will depend
in one way or another on it.

Theorem 4.2
If f (z) is analytic in a region R and on its boundary C, then

§ f(2)dz=0
C

Note. This fundamental theorem is valid for both simply and multiply connected
regions, It was first proved by use of Green’s theorem with
the added restriction that f’(z) be continuous in R. However,
Goursal gave a proof which removed this restriction, For this
reason the theorem is sometimes called the Cauchy-Goursat
theorem.

Proof. We first prove the theorem taking C to be a
triangle. Consider any triangle DEF, denoted briefly by A. Joint )
the midpoints X, ¥ and Z of sides DE, DF and EF respectively Fig. 448
to form four triangles indicated briefly by Ay, Ay, Ay and Ay,

If f (z) is analytic inside and on triangle DEF we have, omitting the integrand on the

right,
[l

¢ f(2)dz

DEFD YbX XEZ

e bl e e gt
[+ [ ]

¥YDXY KEZX ZFYZ  ¥XE :I"’

gfrf{z} dz+ 5 £(2) dz+§ f@ dz+5& f(2ydz -

& Ay
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Then

< + + +

§ f(2)dz

LY

gcff{z}dz

By

gf* fz)dz

Ay

(4.3)

tj:;f(z}dz

Iﬁ'lI

§ fle)dz

A

Let A be the triangle corresponding to that term on the right of (4.3) having largest
value, Then

<4|§ f(2dz

LY

§ 1 (2)dz
fi

By joining midpoints of the sides of triangle A}, we obtain similarly a triangle A, such
that

§ f(2dz| < 4| f(2)de
&y Ay

so that @f(z}da < 42 #rf{ﬂdﬂ
A Ay

After n steps we obtain a triangle A, such that

< 41

§ £(2)dz $ (e (4.4)
A iy

Now A, Ay, A, ... is a sequence of triangles each of which contained in the preceding
(i.e. a sequence of nested triangles) and there exists a point 29 which lies in each triangle
of the sequence. Since f(z) is analytic at Zy, We have

S12) = [(z0) + f(z0) (2~20) + N(z—2) .(4.5)
where for any £ > 0 we can find &'such that | n | < £ whenever [z —z| < &

Thus by integration of both sides of (4,5) and using the results

#rdz =0 and év zdz=0 we pget ﬁ#’ f(z)dz =§» 1z~ zo)dlz ..(4.6)
iy

Ay & Ay

Now if P be the perimeter of A, then the perimeter of A, is P, = Pf2". If z is any
point on A,, then as seen from Fig. 4.7 we must have |z—z;| < P/2" < &,
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Hence from (4.6) and using ML-formula we obtain

_ . PP _eP? zg N

#’f{l} dZ = tj:r??{'z Zu}dz EE 2!1 2"_ 4;1 2 .

Ay Ay >
Then (4.4) becomes Fig. 4.7

2

#’f{Z}dZ 54!1..{-4“: =£P2,

A
Since £ can be made arbitrarily small it follows that,

$ f(2)dz=0.

&

- Now we assume C as any closed Polygon.

We consider a simple closed polygon ABCDEFA such as indicated in Fig. 4.8, By
constructing the lines BF, CF and DF the polygon
is subdivided into triangles. So by above

¢ flode= ¢ flde + § f(D)dz

ABCDEFA - ABFA HCFB

+ § f@de + § f@Ddz=0

CDFC DEFD
where we suppose that f(z) is analytic inside D
and on the polygon. Fig. 4.8

Note 4.1. It should be noted that we have proved the result for simple pmlygﬁns
whose sides do not cross. A proof can also be given for any polygon which intersects
itself, For the proof of this theorem for any simple closed curyve as well as for any
multiply-connected regions, the readers can see any reference books.

4.8 Consequences of Cauchy’s Fundamental Theorem :

Theorem 4.3
Let f be analytic in a simply connected region R and let & and f be any two

points in R. Then J”ﬂ f(2) dz is independent of the path in R joining ¢ and ,&-
o

Proof. Let us join the points A(a) and B(f) by two curves Cy and C,. Then we
get a simple closed rectifiable curve ACBDA. Since f is analytic in R, by Cauchy's
fundamental theorem we get
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[ rdz=0

ACEDA
=5 _[ flz)dz+ I f(2)dz=0
ACH " BDA

= $r@d- §r)de=0
(o G

= §fdz=§rdz.
B e (a Fig. 4.9

So Iﬂ f(z) dz is independent of the path in R joining @ and A
o

Theorem 4.4
Let f(z) be analytic in a simply connected region R and let a and 7 be points

in R. Then F(z) = j: flae)dew is analytic in R and F'(z) = f(z).
Proof. We have

F AsY= F . Az 2
(z+ ;3 (2) - fl2) = ﬂlzl J _f(m)da:—‘[f{w}dm = Filx)
| 44z
s [ f@)- f(dw. (4.7)

T

By Cauchy's fundamental theorem, the last integral is independent of the path joining
zand ¢ + Az so long as the path is in R. In particular we can choose as path the straight
line segment joining z and z + Az provided we choose | Az | small enough so that this
path lies in R.
¥

Fig, 4.10
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Now by the continuity of f(z) we have for all points @ on this straight line path

| f(@) - f(z)| < & whenever | @ z| < & which will a.::ertainly be true if |Az| < &
Again we have :

[ @~ f@))do|<erz,

So from (4.7) we obtain

F(z+ag)—F(z) _
‘ Az /@)

1 iz
- 2 [ U @-r@ldo| < for | ac) <5
This, however, amounts to saying that
F(z+Az)-F(z) _

l.lmu e f(2), i.e. F(z) is analytic and F'(z) = f(z).
Theorem 4.5
Let C; and C, be two simple closed curves, C, lieing holly within C,. If fis analytic
in the close annulus determine by C, and C;, then C
‘](rfizl dz=f£ff{z}a‘z Cy
o s
Proof. We introduce two cuts AB and DE joining
C, and C,. Since f is analytic in the annular region p B
determined by C, and C,, we have

I f(z)dz=0 and J' f(2)dz=0.

ABCDEFA EDHBAGE
From first one we obtain H
Fig. 4.11
[fyde+ [ 1@de+ [ fyde+ | fl2)de=0. (48)
AB HCD DE EFA
From second one we obtain .
[ f@de+ | f@de+ | fdet | f(2)dz=0. (49)
ED DHB BA AGE

From {4.8) and (4.9) we obtain
[ fyde+ [ ryde+ | f@ydet | f2)dz=0

BCD DHE EFA AGE
ie. §f(2de+§ f2)dz=0
G -3
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ie. § = f(2)de.
€ s

This proves the theorem.
The following theorem is a generalization of Theorem 4.5
Theorem 4.6

If Cy, Gy, -+, C, are simple closed curves no two of which have common point
and if C is any simple closed curve which contains C,, C5; +-, C, in its interior then

&
tfv,f'[z}:z =2 SE'f(zJ dz.
c el
Proof. The proof of the theorem is left out as an exercise.

Example 4.7, Evaluate ¢ -—"9'—3—1 where C is any simple closed curve and z = a is
Z G
C
(i) outside €, (i) inside C.

~ Solution :

(i) If @ is outside C, then f(z) = z—l—ﬂ is analytic

everywhere inside and on C. Hence by Cauchy's
fundamental theorem .

dz
Ef_'— = 0. Fig. 4.12

C
(i) Suppose a is inside C and let /™ be a circle of radius r with centre at z = a
so that /™ is inside C. Since f (z) is analytic in the closed annulus bounded by

C and 7, we have

$ f(2)de=§ f(2) de.
G /e

Now on /7, z-a = ret? 0 < @< 27 Hence

dz dz (27 ire'®d8 .
ol iSar = S 27,
c <= d " FA 0 re!

which 1s the required value.

4.9 Cauchy’s Integral Formula ;
Theorem 4.7
Let / be analytic within and on a simple closed contour C and let @ be any point

inside C. Then
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Proof. Let /" denote the circle | z— @&| = r, r is taken so small that I” lies entirely

within C, The function ‘Ei is clearly analytic in the closed

annulus bounded by C and [.
Hence I

16 g, _ § LD 4 | @

z o s
J C
f{z} f{cr}d A @_firx)

‘"E“h

E[,J{z} “mduzmﬂa}. Fig. 4.13
l f(z) f{*) flfr}
Ths | 5 @hadz—ﬂcx} = |5 <j5 (4.10)

Since f is continuous at z = o, given & (> 0), there exist a 0 (> 0) such that | f(z)
~ fla)| < e whenever |z — &| < & We choose r < , so that |f(z) - fle) | '< ez
on: I, ' ;

Hence on 7

- r
Thus from (4.10) using ML-furm.uIa we obtain

(](J Jilz) dz fla) <

| &
__.--.2 =
o Ar=c,

Since & (> 0) is orbitrary, it follows that.

T gf; Lﬂ,dz—f{rrhﬂ

2mi -
o

55 f(z]

ie. fla) = E:n

This proves the 1henr::m
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Note 4.2, Cauchy's Integral Formula is remarkable in the sense that it EXPresses
the value of an analytic function at a point within a closed contour in terms of its
values on the contour.

‘Gauss’ Mean Value Theorem

Theorem 4.8

If / (z) 1s analytic within and on a circle C with centre at o and radius r, then f ()
is the mean of the values of f(z) on C, i.e.,

fla) = j fla+re?) do
Proof. By Cauchy's mtegral formula,

fla) = 2m @If—ﬂdz (d11)

Here the equation of Cis |z - | =r or z = a + re®,
Thus (4.11) becomes

1 (27 fla+re?)ire® | pin ,
ST I al® df = E-‘lﬂ f(cx+,.e:a]d&

fle) =

which is the required resull.
Cauchy’s Integral Formula for multiply connected region
Theorem 4.9 :

If f (z) is analytic in the closed annulus bounded by two closed contours C, and C,
(C5 lying entirely within C)) and if @ is any point in this annular region then

1 f(z} 35‘ f(z}

271 iy rx Zm
0

fla) =

Proof. Let ;| z- &| = r, where r is chusen
so small that [~ lies entirely within the annulus. The

sz{i is analytic in the region bounded

by Cy, C; and I". Therefore

function

f(z) f{z)
2mi {j; '. 2T gs
1 f(2)
S f L (4.12)
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I— 27

Now - 4. FACO TN 95 -’rw ﬂa]dﬁf{a} { @———z‘ix =2m‘]
il r

gc_,f(z} f@ . (413)

Zm

Since f(z) is continuous at z = &, for £> 0,3 a &> 0 such that | f(2) - f(a) |

< £ whenever |z - @| < 8. We take r < 50 that | f(z) - f(@)| < €¥ zon I.
Hence

f-fla|_ e

I—o r

So using ML-formula we obtain from (4.13)

a‘;“” dz- ()| € Loomr = &

#’ f{z)

2?1’: T2

Since &> 0 is orbitrary, we have

gc(' f(z] ] ‘f-' f(z)

T2 -
7l 2 (44

fle) = Zm dz.
This completes the pru-::-f.
Cauchy’s integral Formula for Derivatives
Theorem 4.10
Let fbe analytic within and on a simple closed contour C. If eis any point interior
to C, then

I ] fz)
B = i i:.' z-a)p

Proof. Let d be the lower bound of the distances of
the point ¢ from the contour C. If i denote a complex
number such that | 4 | < d, then the point &+ A also lies
within C. Therefore by Cauchy’s Integral Formula,

#»J%dz

f{cx} = -f,ﬁ P o= Fig. 4.15
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and  fla+ h) = 2:{{@» z_{ézihdz.
c

flath - fla) f(z)

Do h zm 4)(2 a}{z—a~thz'
fle+h)- f(a)
HIEE h Zm 95{;_ a)t dz

1 ; 1 1
Tmi’ﬂz}[(z-ﬁ)(z—a—hi 5 (z—a) } gz

_ I

T 27

[(z)
‘ﬁ‘ {z-—d}g[z—ﬂr—h}dz‘ ..(4.14)

Since fis continuous on C, it is bounded on C, So there exist a positive number
M such that | f(z) | <M on C. Alsa by the definition of d it follows that for allzon C

|z - af? = 2
andlz—a—h'|2fz~a’l-—fh]ld—].ﬂ.
S0 on C,

‘ f(z) e M

(z—aY(z—a-h)|" dXd-\h))

Hence using ML-formula we get from (4.14)

fl@+h)-f(@)_ ﬁ f2) zl{ihl Mi
2mi

i Gl _??E'_—_—dz(d—lhl_}ﬂash_}ﬂ'

where [ is the length of C.

o lim J@HR) - fla) | _f@)
Hence ll_% W = io =gy dz.

‘ ’ A f{z:‘
ke e = 37 é- =R dz,

This proves the theorem,
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Theorem 4.11
Let f (z) be analytic within and on a simple closed contour C. Then for any point
& interior to C

" f(z)
-’H / (@) = 2?!!'#{3 a]uH

Proof. We prove the thmrr:,m by mathematical induction, First we note that {4 15)
is true for n = 0, 1. We suppose that (4.15) is true for n = m. Then

dz,n=0,1,2. (4.15)

flm:l(ﬂ- +h}_flm}(a} Ll m! 4') f(z) i’ !{Z}
I " k27| —c— hy % ﬂr)"‘”"
i hl zi:r: $l(z~a—-ny " —(z-a)y ™ | f(2) dz

c
l m! 1 - k =(m+1} M
h z?ﬂi’{z_a']mﬂ {(! z—cr] I} f(2)dz

1 m! ! h
e Efr[z e [l+(m+l}—z_a

(m+i)m+2) K?
21 T }ff’ldf

Taking limit as h — 0 we get

i L@ )= fm ) {m+n'¢, f(2)

h—0 h - 2mi (z—a)™ 2 %

(met g fa)
20T % {z-.-a_'}{HHI:IH
Therefore by mathematical induction -.15) is true for n = 0, 1,2,
This proves the theorem. :
Theorem 4.12

Let f(z) be analytic in a domain D. Then all the derivatives of f(z) exist and
are analytic functions in D.

e fiml(g) = dz .

Proof. Let z; € D and let € be a circle with centre at 2y contained in D. Then
forn=20,1,2, - '

o Rt fLz)
f{ :'{ﬂ'} = ;i #’ {z_a}rm dz
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for all o interior o C.

Thus f (z) has aderivative of all order in a neighbourhood
of zy. Since 7y is any point in D, the theorem is proved.

Note 4.3. The situation is completely different in the 0
case of a real function, There exist functions which have i
a first derivative but no second derivative. As for example C
we consider the function
x*sinl, x#0 -
flx) = {u = o Fig. 4.16

where x is real, Then f (x) has a first derivative in [0, 1] but no second derivative
in [0, 1.

4.10 Winding Number or Index of a Curve:

Suppose that /" is a closed eurve in C. Let a be a given point in C\ /", Then, there
ts a useful formula that measures how often /7 winds around a. For example if /7: 7 (1)

= |z:2-a=re'¥ 0< < 2kn}, then I” encircles the point a k times (counterclockwise),
Further,
2k | g

| = [ L a6 =2knmi

= re

/ 0

L "-I—, 4z k.
2rid z—a
=,

From this we also observe that if I” encircles the point a k-times in the clockwise
direction, then

| iz

i) z—a
r

In either case, ﬁ 92 s an integer, Here is the analytic definition of the winding
idz—a
r

number of @, which captures the intuitive notion of “the number of times /~ wraps around
a in the counterclockwise direction” (see Fig, 4.17). '

Definition
Let [ be a closed contour in € that avoids a point @ € C. The index or winding
number of / about a, denoted by n( I} a) is given by the integral

1 !
I 8 s o ﬁ
I
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n(lMa)=1 n(l:a)=—1 b
(i 6)=0 (M b)=0 n(lha)=1
n(l b)y=0
i ey =2
Fig. 4.17

Some Properties of the index n(/":a)

(i) For every closed contour Cin Cand @ eC\C, n(l7; a) is an integer.

(i) If [is a closed contour in C, then the mapping @ — #(/7; a) is a continuous
function of a at any point a € [,

(i) We have n(/7; a) = 0 in the unbounded component of the closed contour .

(iv) If Iconsists of finitely many closed contours R, I3, Iy in C, then for every
el (E =1, Zemiky
W a) = n(ly; a) + n(l; 5 a) +  + n(ly] a).

Morera’s Theorem

Theorem 4.13
If f(z) is continuous in a simply connected domain D and if

[ f(2)dz=0
!

for every closed curve [Min D, then f(z) is analytic in D,
Proof, Let @ be a fixed point and z be a variable point in

T
D. Then the value of the integral I f(w)dwis independent of the
i
path so long as the path lies in D. We define
Fig. 4.18

z

42 = | f)do.

{
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Let z + h be a point in the neighbourhood of 7. Now

24h z+h

oz + h) -9 = [ f@do-[f@)do= | fw)do.

o

r+h |

Therofore | £250-00 _ 1| H J r@yo-r@)

: _
< mllf@-f@1do| (4.16)

Since f(z) is continuous at z, for £> 0, 3 a § > 0 such that |f(@) - f2)| <
£ whenever | - z | < & We choose | k| < & Then for every point @ on the straight
line joining z to z+h, we have |f(w) -f(2)] < &

Hence from (4.16) we obtain by using ML-formula

9’{—:#@—.{{1} < l-:]—|~£-| hl=e.

This gives
lim 22+ h)-¢(2)

fi=0) h
ie. ¢z = f(z2).

Therefore @(z) is analytic in D. Since f fz} is the derivative of an analytic function,
it follows that f (z) itself is analytic in D, This proves the theorem.

= f(z)

8L if zeA\ 0
0 ifz=0

where A denotes the circle |z | = 1. Then

[f@dz=0,
A

However f(z) is not analytic in A, since f(2) is not continuous at z = 0. Here
Morera’s theorem is not applicable since the continuity requirement is not satisfied,
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4.11 Cauchy’s inequality :
If f(z) is analytic within and on a circle C with centre & and radius r and if
|f(z)| < M on C, M being a positive constant, then

| foNa)| < h{,;ﬂ! forn=201,2,

Proof, Since f(z) is analytic within and on C and e is an interior point of C
- we have '

(n) = -'F':z] - : '
fﬂ [aj 2:!!: (f'(z a}n-irl dz' R ﬂ' 1. 2-
OnC, |z- cx| = r, Therefore by ML-formula we get

f(2) n! M M.n!
gﬁ{z cr}"“ S 2 e G i r"n v =012,

|flﬂ]'(g}1_

This praves the theorem.

Liouville’s Theorem
Theorem 4.14

Suppose that for all z in the entire complex plane, f (z) is analytic and bounded. Then
f(z) must be a constant.

Proof, Let a be any point in the open complex plane and C denote the circle
|z - a| = r. Let | f(z) | < M for some constant M for all z on C, no matter how large
the radius r is. The function f is analytic within and on C and @ is a point within C. So
by Cauchy integral formula for derivatives we get

(z)
ST zm Et{zf fx]? -

Therefore by using ML-formula we obtain

LMy E

lf(a”_ﬂ = 2 r? r

§L D

Letting r — oo we have f(e) = 0. Since @ is any point it follows that fi@=0

v z. Hence f(z) is a constant.
This proves the theorem.
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Fundamental Theorem of Classical Algebra
Theorem 4.15
If f(z) is a polynomial of degree n(=1) with real or complex coefficient then
the equation f(z) = 0 has at least one root.
Proof. Let f(z) = a;z" + a2 + ... + éiz + dg, a, #+ 0. be a polynomial of
degree n, If possible, suppose that £(z) = 0 has no root. Since S (z) is a polynomial, it
1

is analytic for all z. Also since f(z) # 0 for any z, ¢(z) = 7@ is analytic for all z.

Now for z = 0,

. 7l a . a

_ffzj = Err{qn-FTl'f"--‘l'zn—l_l'Fz—EJ
and so :

= [ an-| | Aan
£ = el oy + 8 gy Sy 0]
P a
2 | zJ”[Im.I—' S :j'} s o] o

Therefore | ¢(z) | = 0 asl| 2| — eo. Hence ¢ (z) is bounded, Thus @(z). being a
bounded analytic function, is constant by Liouville's theorem. So [f(z) is also constant,
a contradiction. Therefore f(z) = 0 has at leas' one root. This proves the theorem.

Example 4.8.

sinz? +cosmz

(z—1i{z2-2)

o=
Evaluate gfr dz, where C is a circle | z| = 3.

C

Solution :

{ﬁsin Tz* +cosmzt de :SE.sin 7wz’ +cosmz? dz—q?rs‘i“ Tz’ +cosmz? "
c

(2=1)(z=2) =2 z=1
=A - B, say.
Since sin/r 7% + cosrz* is analytic inside C and z = 1, z = 2 lies inside C, by Cadch}f’s :
integral formula we have
A = 2x (sindx + cosdm) = 24 and B =2 (sinw + cosm = — 2mi,
So the required integral has the value 2m - (- 27i) = 4m.,

2
Example 4.9, Evaluate 9(: L dz, where C is the circle |z| = 3,

I (z+1)!
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Solution : Let f(z) = ¢** and & = — | in the formula

e = Z?Tr tj: {z{{z]:LH _ AT

If n =3, then f*(z)= Be® and ["(-1) = 8e?,

Hencc. (4,17) becomes

z+1)* 3
Example 4.10
dz it ; -
Evaluate cf_»—-—— where C is the circle | z| = 4 traversed once
eS(z-1)?

counterclockwise.

Solution : Let f(z) = ~|—, Then f(z) is analytic within and on the circle =
ot
4, Taking =1, by Cauch}f’s integral formula for derivative we get

: @
£ = l,m g5 o

Le. gg (f_(zi?: =-21i. f’{l}:-yii

&

Exampl{: 4.11. Evaluate, using Cauchy's integral formula

() f

cfz where C is the circle [z - 1| = 3.

(1) J' {lﬂ_g]?! dz where C is the circle [z - 1| = %

Solution : (i) The centre of the circle C: |z — 1| =3 is z= 1 and its radius is

3. Clearly, ’3:1}2 is riot analytic at z = -1. However z = —1 lies within the circle C.

By Cauchy’s integral formula for the derivative, we have
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e |
fi=1) = Z—mj o +1}2 dz , where f(z) = ¢

=]- es d
27i y (241 .

ie. el=

i-e. j. £ +1)2 dz = 2rmie”!
C

(ii) Here, the centre of the circle C: |z~ 1| = % is z = 1 and its radius is

log 33 is not analytic at z = 1, However z = | lies within the circle C.

(z—=1)

I
7" Clearly,

By Cauchy's integral formula for the double derivative, we have

logz

[ = zm 2 iz Ge=lps. X Jie=ose

. d? ] 1 log z
fe, |—lop:z =— | —2—==dp
|: ZI & =1 i c EZ_US

: | ] 1 logz
el = et
v [ 2l @ L (-1

-
| S—
e
i~
I
fa
o
Lad

Example 4.12. If C is a closed contour containing the origin inside it, prove
that '

a’ 1 et
E 2_ J' zn+| dz )
C
Solution : By Cauchy's generalised integral formula
We pet that :
f(2)

Z
(z=z0)"™!

Finiz) = Zm J'

rf+I

im0y = E%TFTJ. af_l.{.é_a'z
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Let us take f(z) = €% so that fU)(z;) = a"e™,
Thus we obtain that

eﬂl

_ n!
£00) = a" = Ml e

i 1
o, -_T=2_I u+l
C

Exercise - 4

2=f A
. Evaluate L (3xy+iy?)dz (a) along the siraight line joining z=i and z=2-

(b} along the curve x=21-2, y=1+1-r.

. Evaluate J'E?dz+zidi along the curve C defined by z2+2z7 +22=(2 -2i)z+
c
(2 +20)7 from the point z=1 to 2=2+2i

. Evaluate z—af'i around (a) the circle |z — z| = 4, (b) the circle |z-1| = 5,

. Evaluate where C is the circle |z| =

§'{9—21}{z+r]

. Evaluate I Egidz. where C is a positively oriented closed curve around the origin.
z
c

. By evaluating J e*dz around the circle |z| =
c

2
Show that _[;"emﬂcus(e+sin9}da=ﬂ= jn”emﬁ'sin(msin 8)de.

. Show directly that _[ {ﬁz +8iz) dz has the same value along the following paths C

joining the points 3 + 4r and 4 — 3i : (a) a straight line, (b) the straight lines form 3
+ 4f 10 4 + 4i and then from 4 + 4i to 4 — 3i, (c) the circle | z| = 5. Determine thw

value.
. Use the definition of an integral to prove that along any arbitrary path joining points
a and b.

. i b
@ [ dz=b-a, G [ kdz=k(b-a).
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b ind
9. Find the value of (a) ¢ ——2dz, (b) ¢ —S2_dz if C is the circle | 2| = 1.
! z-7nf6 éfz—m"ﬁ?

10. Evaluate Ef- dz if C is (a) the circle |z-1| = 4, (b) the ellipse [z-2|+|2+2| =6,
c

=i
dz T 142cos@ ,._
11. Evaluate @I e and deduce that 5 —_5+4cns£id3'0'

lzl=
: 141
12. Evaluate the integral fu zhdz.
13, Use Cauchy‘5 integral formula to calculate :

Iw—:;;ﬁd:. where C is |z| = 4.
Sl

b4F
14, Evaluate the integral Jlu r{x— v +ix?)dz

{a) along the straight line from z =0z =1 + {

(b) along the real axis from z = 0 10 z = 1 and then along a line parallel to the imaginary
axis fromz=1toz=1 % [
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Unit : 5 O Infinite Series : Taylor’s and Laurent’s
Series

5.1 Sequence of Functions :
Let fi(z), folz)s s fol2)s ..., denoted briefly by {/,(2)], be asequence of single-valued
functions of z defined in some region of the z-plane. We call f(z) the limit of f,(z) as 0 — oo,

and write lim f,(z) = f(z), if given any positive number £ we can find a number N

n-tes

{depending in general on-both £ and z) such that
Ifild = f@| <e¥n>N
In such case we say that the sequence converges or Is convergent to f(z),

If a seqence converges for all values of z in a region R, we call R the region ol
convergence of the sequence. A sequence which is not convergent at some point z is called
divergent at z.

5.2 Series of Functions :
From the sequence of functions (f,(z)} let us form a new sequence [{S,(z)} defined by
5||:C} = ﬂ':{’}
5s(z) = filz) + fal2)

S.(z) = file) + Kol + o + fi(2) -

where ,(z), called the nth partial sum, is the suny of the first n terms of the sequence

{filz) ). E‘_ f,,(z) 1s called an infinite series, If lim §,(z) = §(z), the serics is called

=1 n—pes

convergent and S(z) is its sum; otherwise the series is called divergent,

If a series converges for all values of z in a region R, we call R the region of
convergence of the series.

5.3 Absolute Convergence :
A scries ¥ f,(z)is called absolutely convergent if the series of absolute values, i.e.
n=|

¥ | fulz)|, converges.

=l

If Ef,,[‘,} converges but E |J' (z)| does not converge, we call % f,(z)
n=l n=| =l
conditionally convergent.
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5.4 Uniform Convergence of Sequence and Series

In the definition of limit of a sequence of functions it was pointed out that the number
N depends in general on £and the particular value of z. It may happen, however, that we
can find a number N such that | f(z) - f(z) | < € ¥ n > N, where the same number N
holds for all z in a region R (i.e. N depends only on £and not on the particular value of

z in the region). In such case we say that f(z) converges uniformly, or is uniformly
convergent to f(z) for all z in R.

Similarly if the sequence of partial sums {S5,(z)} converges uniformly to §(z) in a

region, we say that the infinite series ¥, f,(z) converges uniformly, or is uniformly
n=|

convergent, to §(z) in the region.
If we call R,(2) = fo1(2) + fi42(2) + ... = 8(2) — §,(2) the remainder of the infinite

series 3, f,(z) after n terms, we can say that the series is uniformly convergent to S(z)

n=l

in & if given £ > 0 we can find a number N such that for all z in R.
| Ry(z) | = | S(z2) - S,(z) | < €Y n > N.
5.5 Power Series :

A series of the form

ag + ay(z — 29) + axz - )* + = % an(z=2)" (5.1)
is called a power series in z — 2, 3

Clearly the power series (5.1) converges for z = z,, and this may indeed be the only
point for which it converges. In general, however, the series converges for other points as
well. In such case we can show that there exists a positive number R such that (5.1)

~ converges for | z - z | < R and diverges for | z— z | > R, while for | z— z, | = R it may

Or may not converge.

Geometrically if ["is a circle of radius R with centre at z = z,, then the series (5.1)
converges at all points inside /"and diverges at all points outside 7, while it may or may

not converge on /. We can consider the special cases R = 0 and R = o respectively to
be the cases where (5.1) converges only at z = z;, or converges for all finite values of z,
R is often called the radius of convergence of (5.1) and the corresponding circle is called
the circle of'convergence.

5.6 Some Important Theorems :

For reference purposes we list here some important theorems involving sequences and
series, Many of these will be familiar from their analogs for real variables.
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Theorem 5.1

If a sequence has a limit, the limit is unique.
Theorem 5.2

Let f, = a, + ib,, n =1, 2, 3, -, where a, and b, are real. Then a necessary and
sufficient condition that {f,} converge is that {a,] and {b,} converge.
Theorem 5.3

A necessary and sufficient condition that (f,(z)) converges is that given any £> 0, we
can find a number N such that |f,—fol<e¥ p> N, g>N.

This result, which has the advantage that the limit itself is not present, is called
Cauchy's convergence crilerion,
Theorem 5.4

A necessary condition that ¥, f,(z) converge is that lim f,(z)=0. However, the
condition is not sufficient. i
Theorem 5.5

Multiplication of each term of a series by a constant different from zero does not affect

the convergence or divergence. Removal (or addition) of a finite number of terms from (or
to) a series does not affect the convergence or divergence.

Theorem 5.6

If E | £,(z)| converges, then E‘,fn{z} converges.

n=l n=l

Theorem 5.7

The terms of an absolutely convergent series can be rearranged in any order and all
such rearranged series converge to the same sum. Also the sum, difference and product
of absolutely convergent series is absolutely convergent,

Theorem 5.8 (Comparison Tests)
(a) If ¥| g, | converges and | f, | £| g, |, then X f,, converges absolutely.

() If 3| g, | diverges and |, | 2| g, | then X |f,| diverges but 3 f, may or may
nol converge. '
Theorem 5.9 (Ratio Test)

If lim

n—om

If L = 1 the test fails.

=L, then ¥, f, converges (absolutely) if L < 1 and diverges if L> 1,

Sont
J
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Theorem 5.10 (Cauchy’s Root Test)
If lim | 7, Y" =, then ¥ f, converges (absolutely) if L < | and diverges if

L>1.If L =1, the test fails.
Theorem 5.11 (Raabe's Test)
Sust
o
if L<1.If L =1, the test fails.
Theorem 5.12 (Gauss’ Test)

Junt
S

if L > | and diverges or converges cnnditicné]ly ifL=1.

: Tl—3 o

If lim n( I

J = L,then ¥ f, converges (absolutely) if L > | and diverges

If

= 1—% +:’;—’; where | ¢, | <M ¥V n> N, then ¥, f, converges (absolutely)

Theorem 5.13 (Principle of uniform convergence)
- A sequence of functions (f,(z)}, defined on a bounded closed domain R, converges

uniformly in R iff given any £> 0, 3 a + ve integer N depending only on &such that | frap(2)
-filz)| < ¥ n = Nand p = + ve integer, z €R.
Theorem 5.14

A convergent series f(z) = X f,(z) (z €R) is uniformly convergent on R iff given

n=1

£> 0, 3 a positive integer N = N(&) such thal
|Sz) —f@)| < eforn=Nand ¥ z €R.

Proof. If the series E f(2) is uniformly convergent on R, then for given £>0, 3
a positive integer N = NE:']} such that
| Suepl2) = Sul2) | < % forn>N,p=1,23, - and for all z R,
Now taking limit as p — == we get
| f(z) - 82 | < %-:: eforn= N & for all z eR,
Thus the condition is satisfied.
Conversely, if for given £> 0, 3 a positive integer N = N(£) such that
| 8.(2) = f(2) ] < % forn=N&Y zeR.
Thenwe getfornzN, p=1,2, ... n& VYV zeR
| $,040) = $2) | 1 Saep) =D |+ 18,6 - f@D) | < S+ 5=
288



Hence E f.(z) is uniformly convergent on R.
n=l

Theorem 5.15 (Weierstrass M-test)
If inaregion R, | f, (z) | <M, n=1,2,3, -, where M, are positive constants such

that ¥ M, converges, then ¥, f, (z) is uniformly (and absolutely) convergent in R.
=l
Proof. Since Y, M, convervges, for given £> 0, 3 a positive integer Ny = N, (&)
- =l )

such that
| Myyp+ Mygpy+ o+ My | < efornzNy,p=1,23,

Then forn= N, p=1,2,3, ..,and V z ER we gel
ism-p(Z} — 3y(2) | = I.f![-l-p{z:l + fn+p—l(3} 3 b +fn+l{3}|
= Ifn+p(z) I 7 |f:1+p—|{2}| + .t lﬁl+I{Z}1
E Mo+ Mugpg £+ M < £
So E fa(z) is uniformly convergent in R. The absolute convergence follows at once

.=l
from the comparison test.

Theorem 35,16
The sum of a uniformly convergent series of continuous functions is continuous, i.e. if

f(z) is continuous in R and f (z) = E': f.(z) is uniformly convergent in R, then f(z) is
n=l

continuous in K.
Proof. Let z and z; are any two points in R. Then

|f (@) —f (o) | £1f (@) = Su@) | + | u2) = Sulzo) | +] 5,(2) = f (20) | ...(5:2)

Since ¥ f,(z) converges uniformly to f(z) in R, for given £> 0, 3 a positive integer
=1 -

N = N(&) such that
| S.(2) = f(D) ] < % forn=N&Y zeR.
If ng is any integer = N, it follows form (5.2) that
1@ ~F @) | < | Suy (D)= Suaza)[+22 e (5.3)

Since §,,(z), being the sum of a finite number of continuous functions at zg, 18
continuous at zp € R, we can choose d= 4(&) > 0 such that

|-$'n.,(z]—5;m{2u)| < % .fUTIE—Eﬁl"f-Ei
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Hence from (5.3) we get for [z - 25| < 6,
| f(2) - fz)| < &

Thus f(z) is continuous at z,. Since z, is arbitrary it follows that £ (z) is continuous
inR.
Theorem 5.17 (Tenm by Term Integration)

If {f,(2)} are continuous in R, f(z) = 3, £, (2) is uniformly convergent in R and C

=l
is a curve in R, then

_[f(z] dz = E jfn(_z]'dz-
c =l
Proof. Since each term of §1 f,(z) is continuous on C, f (z) is also continuous on C.

Since 2 fu(z) converges uniformly to f(z) on C, given £> 0, I a positive interger
N= N{E} such that

| 5,(z) —fl2) | < % forn = Nand V z on C, | is the length of C. Then for n 2 N,
we oblain by ML-formula

3 [ f@d-| fde| =] T f@de-[ e
k=1 c C k= C

C

£,
= |, = £

I

I (8:(2)= f(2))dz

fl—»ea

This shows that lim Z_: Ifk(?.}dz ff(z) dz

i.e. E Iﬁ,[z)dz=_[f{z}dz.
g c

This proves the theorem.
Weierstrass theorem on uniform convergence on compact sets
Theorem 5.18 (Statement only)

A series f (z) = 3 f»(2) which is convergent on a domain G, is uniformly convergent

ne=j

on every compact subset of G iff given any point z; € G, 3 a neighbourhood N(zp) cG
in which the series is uniformly convergent,
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Weierstrass Theorem on Uniformly Convergent Series of Analytic Functions
Theorem 5.19 (Statement only)

If the series f(z) = ¥ f,(z) is uniformly convergent on every compact subset

w=l
of a domain G and if every term f,(z) is analytic on G then the sum f(z) of the series
is also analytic on G. Moreover, the series can be differentiated term by term any
number of times i.e.

f®(z) = S By, k=1,2 &Y zeG

n=|
and each differentiated series is uniformly convergent on every compact subset of G,
Cauchy-Hadamard Theorem
Theorem 5.20
For a power series ';:j.] a,(z—25)", let R = :Ii- where A =Jl_::l sup | a, |"'r" and let
Mbe the circle |z — 2 | 5 R with interior /(/") and exterior £(/"). Then there are three
possibilities ;
(i) If R = 0, then the series diverges for all z 2.
(i) If 0 < R < oo, then the series converges absolutely for all z € /(") and diverges
for all z e E([).
(ii) If R = oo, then the series is absolutely convergent for all z.

Proof. We examine each of three possibilities separately. It is to be noted that in each
case the series is absolutely convergent for z = 2.

(i) Let R =0, Then A = ==, So,

Ifn - 1

| 2=z
So for any z # z; we can find an infinite sequence {n; ] of positive integers such
that

|ay, (z=20)"| > 1 for k = 1, 2, 3, =,

A=lim sup|a, | for any z # z.
i =po

This contradicts the necessary condition lim a,(z— zo)" =0 for the convergence

e
of the given power series for any z +# zu.“Henﬂe the series diverges for all z  z,.

2
(i) LetD <R <eo, ThenO< A< [fz E I{F}.thcnwccanwritﬂ|z—zul=%-

where 0 <« @ < 1. Then
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A<==
g lz—zl
ie. lim supla,|"" < 0
fi—¥e= &= Fil ]} |

Le. | ﬂfr{:'- = zﬁ:‘" I < @
for all large values of n.
Since the geometric series 3, 07, (0 < @ < 1) is covergent, by comparison test,
n=0
the given power series converges absolutely.

We now assume that z e E(/"). Then

1

!"- i Z[]| >R = A
ie. A= lim sup|a,,]”" > i 1 |
f-=pma — 2

Then proceeing in a similar way as the case R = 0 we can say that the power
series diverges. '

(i) Let K = e=.Then A = 0. Hence

A ot forany z # 75,0 < 6 < |,

|2 =z
Then for all large values of n we have
| au{z = zﬂ'}nl < "

Since the geomelric series Y £" is convergenl, the given power series converges
=0 '
absolutely for any finite z. This proves the theorem.
Theorem 5.21

Let /7: | z— 25 | = R be the circle of convergence of the power series ¥ a, (2 - 2p)".
. n=l

Then the series is uniformly convergent on every compact subset of /().

Proof. Since any compact subset of /(1”) is contained in some closed disc | 2z |
< r<R. if ris sufficiently closed to R, we need only to prove that the series is uniformly
convergent on every such closed disc.

Thus given a closed disc |z - 75| < r < K, let ¢ be a point such that r <
(-2l =p<Rk
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Since the given power series converges absolutely for z = £, the series

E lﬂn l ||:,:_ ZU!"= iﬂ] Iy 1 o

n=0

converges. Therefu.c by Weierstrass M-Test the series ¥ a,(z—2)" converges
n=l
uniformly on the disc |z — zg| < r because | a,(z - zo)"| < | @, [2* V 2 in the disc.

This proves the theorem.
Remark 5.1.

The power series i a,(z— zg)" need not converge uniformly on /() itself. In fact,

n=0
the geomeiric series Y, z" , which is a power series with radius of convergence 1, is not

n=0
uniformly convergent on the unit disc | z| < 1 but only on every compact subset of the
unit dise.

Example 5.1. Prove that 3 + L+ e 1 converges for any constant p > 1.
I.'!;I EP H=| !‘Ip
Solution : We have
ol =
| L U
-1_+ 1 < i L = l

47 §° 62 q? 47  4F 47 4r 4P—|
etc., where we consider 1, 2, 4, 8, ... terms of the series. It follows that the sum
of any finite number of terms of the given series is less than the geomelric series

L0 1 1 1
.il;....+—__+-——— =
R S e e T
. =5
which converges for p > 1. 'Iius 0 g Ml s a0 o d “led th- o series, cONVErges.
: - - AL e
Example 5.2. Find the region ¢l conve y~ .. 1 b w703 y = :
n=1 { oy L
+)™ +2)"
Solution ; Let u, = (z }3 ~. Then u,y) (z 3} —=
(n+1y 4 (n+2) 4

Hence excluding z = — 2 for which the given series converges, we have
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tim | 4201 | 2 i | 242 (n+1)? | _|z+2]
n—yes |y fi—¥ee 4 {ﬂ + 2}3 4
: lz+2|
Then the series converges (absolutely) for —— < 1.
ie. |z + 2| < 4. The point z =~ 2 is included in |z + 2| < 4.
If |z + 2| = 4, the ratio test fails. In this case
@el Ly
m+1)°4" |  am+1)? T A

and since ¥ L3 converges, the given series converges absolutely.
M

It follows that the given series converges (absolutely) for | z + 2 | =4, Geometrically
this is the set of all points inside and on the circle of radius 4 with centre at z = -2,
called the circle of convergence. The radius of convergence is equal to 4,

Example 5.3. Find the region of convergence of the series

- (_ l}n-—lzzn-l
E, (Zn—1)!
{_Un-—Ezln-l 2 (_”nzlnH
Solution : If H, = {En-l}! . then By = W
Hence excluding z = 0 for which the given series converges, we have
2 2
o lian] 2R @n=TI lzhit
il Rl M b e S e L eyt

for all finite z. Thus the series converges (absolutely) for all z, and we say that the

series converges for | z | < ee. We can equivalently say that the circle of convergence is

infinite or that the radius of convergence is infinite.
Example 5.4. Find the radii of convergence of the following power series :

i T@+40)m ", (ii) ; %{z—-m‘}“
Soloution :
(i) Here a, = (3 + 4i)", so that Hmlaﬂ[]*'r” = lim |3+4i|=5.

Hence R = %

(i) Here the centre of the circle of convergence is at z = 2i and the radius of
convergence R is given by
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Ifn

1 : Iin ; (=1)* 1 : ;
—=lim|a,|"” =lm|——| = lim——=I i =
R n—:ml i =¥ ] n=ea H I/a Ll *I;Ell 2 ] ;i
Hence R = L.

b(b
Example 5.5. Prove ‘that Hﬁ +%§—n z?+-++ has unit radius of

CONVETEENCE.

ala+D(a+2)---(a+n=Dbb+1)---(b+n-1)
1.23--nclc+1)(c+n=1)

ala+)---(a+n=1)(a+n)b(b+1)---(b+n=1)(b+n)

Solution : Here a, =

and g, = 1.2.3---n(n+1}c,{c+l}---(c+n—t] {(c+n)
Example 5.6, Show that the radius'of convergence of the series
§z+ 1.3 +'2§§z3+--- is %
Solution : Here g, = %jﬂ—?ﬁ

1.3.5--(2n—1) (2n+1)
258 (3n=1) 3n+2)

i In+2 _3
Hence R = him =lim=s——==,
faw Auel  n—es 2n+1 2

and oy =

fn

Example 5.7. Find the domains of convergence of the following series :

0 Zn (z +|)‘()2135 (Zn-l](l—)

=l n! i
Solution :
(i) Put 22 = &
Then the series in £is Tn?- (£+1)"
(1+i)"
n? (n+1)?
Now a, = a+ and a,, = ™
= M = 1+i|=|1+il=
Hence R = lim T lim it nzi i|=1+i|=v2

Thus the radius of the circle of convergence for & is J2 and centre is -1, so
that the domain of convergence is given by
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|E+1| <2 or, |22+1|<¥2.

(i) Put —=¢&, so that the series becomes

1.3:5- {En ]}{‘: .

l.3.5---[2n—|} 1.3.5:--(2n=1) (2n+1)
n! and g, = 1)1

' n#l

N1-—

X

Hence a, =

a, 1
Lo 2=
Therefore the domain of convergence is given by

; 1
g-11<1

ie, |——I <t e |l—z|2-r:é!z[z_

2
ie. (I-2) (1-7) < llf‘ﬁ

Thus R = lim

fi—pe=

e dzz-4(z+ 7)) +4 <0
ie. zf—i(z+f}+i¢:ﬂ

ie zz——[z+z}+ “5

(Y4

u:u[.h

. 4 4
LE. IZ Ch < )
! 2
ie. [Z-=|< 3

Example 5.8. Test the uniform convergence in the indicated region

Elcc}:nz lz| £ 1.

Solution : If z = x + iy, we have

COS Nz gine 4 g=inz gfte=ny | a=inxtny
= =
n? 2n? 2n’
e~ (cos nx +isin nx) A e" (cosnx—isinnx) .
2n? 2n?
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The series E e cosnedisingx) g E‘, e™ (cos mx —isin nx)
e 2n’ Sl 2n?

converge for y < 0 and y > 0 respectively [since in these cases the nth term does not
approach zero]. Hence the series does not converge for all z such that [z | = 1, and so
cannot possibly be uniformly mnvergent in this region.

The series does converge for y=0,ie. if zisreal. In thiscase z=x and the series

l

w

cannot

= €D .
becomes 2, EQRILE - Singe

1 < and
n=l fl

La converges, it follows from the
| 1

cos nx ‘
n

T3

weierstrass M-test (with M, = :_:137) that the given series converges uniformly in any interval

on the real axis.

Example 5.9, Prove that both the power series E a,z" and the corresponding series
n={

of derivatives ¥, na,z"™' have the same radius of convergence.
n=l}

Solution : From the definition of radius of convergence

L~ Jim|g,["" and 2 = lim na,|!"

fi—yee e

In order to prove R = R’ we have to establish that lim n¥/" = 1.

Now by Cauchy theorem on limits we have R

a
lim a, " = lim ==L

R—hea n—ye= Ly

Therefore lim n'/? = lim ntl 1. Hence R = R'.
f—pem n—== 1

Example 5.10. For what values of z does the series E E o

converges and
n= { 7 +l]

find its sum,

n+|

Solution ; Clearly lim 7

H—oa

1—be ZI+1\=1;2+“‘

Hence the series converges if | 21 <lor|z2+1]|>1.

+1|

Let S,(z) be the sum of first n terms of the given series.
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I 1
+
par
il SRR T o i A)
T2+ L ligR 201\ |
Z Pt z (z2+1)

2 +1

Then S.(z) =

5 + - n terms

If 5(z) be the sum of the given series then

=7H PR L e SO P ¢
Sz) = lim §,(z) = Lim zz[l {zhl]”} =g |2+ 1> 1,

Example 5.11. For the following series, find a number R such that the series
converges for |z | < R ‘and diverges for | z| > R.

y {cosin} 2"

n=0
Solution : _f!i.'- = lim|a,,!“"= lim |cosin|""
f1—dem A—yem
P11 = Vn
= lim (B < g (—n——f" "|+|""|)
fi—pem Hi—boa 2
1 = _p [Lfn In
< 3 Jim{le " +]er")
1, 1) €241
s 2(“"*.9)' 2
= i 2e
e, R = Y

Taylor’s Theorem
Theorem 5.22

Let f be analytic in the interior of a circle C with centre e and radius r. Then at
each point z interior to C

= mn
f@2) = X a.(z—-a)" where a, = M,a—}.
n=0 LU
Proof. Let 7 be an arbitrary but fixed point within C and let | zp— | = R. We now
choose a positive number p such that R < o < r. Let C, denote the circle | z— e| = p.
Then C, lies gntirely within Cand z is an interior point of €. Hence by Cauchy’s Integral
formula we get :
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- -1 it C
S o) = Zm"f" 2= 2y i

L
| 1.f.y f(z)
27i | (z=a)—(z2-a)

| f{Z} it Zu—a
T 2mi é' (z—a)(1-1) U= -

dz

e f(z) 1- .'"+r"
= :Zm i’ dz

7=

- ,ﬁz_ kg f@ Fig. 5.1

. _D Z:n 4; Err 4:’;:-.t:r = :d'
"' f(z) fz) (zo—a)
= Zm‘ﬁ o) (p-a)f det 5 {'f'{z ay -7 %

I g

o &) #

where f*)(a) = Zm i’{zf(af]]“‘ z

B f(2) (w-a)
and R, = 27 ¥ -y it dz.

Since f is analytic within and on C,, fis bounded on C,. Hence there exist a positive
number M such that | f(z) | <M ¥V z €C,. Also
lz-%| = |G- - (w-a)| 2 |z-a|-|z-a|=p-R V z €C,
Therefore by ML-formula

f(2)(z—a) o) MR

A M e
(z—ﬂll"[z )| T 27 p"(p-R) i

” _-Zm

= Mp
p-
Hence from (5.4) it follows that

oa [n}(a}
flz) = Eﬂ L n!

e

(20— )",
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Since zg is an arbitrary point within C, we have for every z within C

o (m)
=g L2
a=l ”

(z& rx}”

(m}
= 2 a,(z-a)", where a, = IHEH}.
"=l n:

This proves the theorem.
Note 5.1. The power series representing f is called the Taylor's series of [ about
the point z = ¢. The Taylor’s series for f shows that if fis analytic in a neighbourhood

of e then f can be represented in that neighbourhood by a power series in 7 — o with
a positive radius of convergence.

Note 5.2. Let f be analytic at @ Then there exist a circle C tz— rx|' = rsuch
that f is analytic within C. Then for each point z within C

F@ = Ya—ay.

n=l

The radius of the preatest circle within which the power series E‘, a,(z — )" converges
=.u
to f(z) is the distance of the point & from the singular point nfr}'whi—::h is nearest 1o o.
Lauvrent’s Theorem
Theorem 5.23

If f(2) is analytic inside and on the boundary of the ring-shaped region R bounded
by two concentric circles C, and C, with centre at a and respective radii #, and
“ry(ry > ry), then for all z in R,

fz)= 2 ay(z—a) + Eb (z—-a)™

n=k n=|

f(z) =
where a, 2m s{} - ::x}"‘” n =i L T

e f(2) R
El'ld bﬂ‘ — Zﬂ'f. f (E_a}_ﬂq_l dz, H — [‘ 2‘ 3,
1

Proof. Let z; be an arbitrary point of R. Then by Cau::h_v’é integral formula we have

L ) e X
f@) = 5= e sz’ < (5.5)

300



Fig. 5.2

We consider the first integral in (5.5). We have

y i l[l_zf;—a"]'1
I— X i ¥ 4 z-_cx

O (7 N ¢ [Z{]‘ﬂ)“. |
z-@ (g-af | (z-@y == =a (56)
So that
g flo o _ L g w2 § f(2)
Em'i' z—zudzd Zﬂiiz-adz 27 it{z_a}l
-+ {m_a‘]n*l 1) dz+U,
£ c'r(z‘fx)"
= ag+ayz— )+ +a (20— )" + Uy (5.7)
~ where ag = 75 fj[.'f(ﬂ dz , a_|-= 2:'.':'1- #9(:{3}1&1
= f(z) L Jerd a\' flz)
-l = S (ﬁ{z —a) —dz and U, Em‘%(z—a) Z-zudz

Now we consider the second integral in (5.5). We have on interchanging z and Zo

in (5.6),
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; =1
e [l— zua]
-2y m-al zp-a

-1 :
S R +("'_ﬂfJ’I ]

20-@ (g-af (-0 \0-&) n-z
So that
@) , f(zJ =a)f() ,
ngs Eﬁtﬁ Emg} (20— 0)?
=1
zﬁjfz _";},, F(2dz +V,
) by ki
“w-a e may T i)

where b = 51 @ S @z, b= {Io(z—ﬂ}f(z)dz.

21:.{ ﬁ{‘ @)™ f(z)dz and V, = SE'[ - )" [(2)dz

27 f'c_! n—-®%) zp-~-z°
From (5.5), (5.7) and (5.8) we have
f(z0) = {ao+ay(zg— )+ +a, (z- &)}
h . b
+ Fo——E—
{zr'ﬂ' (z0—@)? (z0 - )"
The required result follows if we can show that hm U,=0and hm V, = 0. Since
z is on C), we have
-
-
where r is a constant. Also we have |f(z) | < M where M is a constant, and
lz-zn|=|G-0) - (w-a)| 2 r-|z-al
where ry is the radius of C). Hence using ML-formula we get
A

n-ay) f(z)
?:’[z—a’) = dz 2?“1 izu-ﬂ' 28
]
—iﬂasn—im[','r-c:'l].
Thus lim U7, = 0,

f—pem

}+ U, +V,.

=r<]:

1
'Unl_ 'E
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To prove lim V, = 0, since z is an C,, we have
o

2=G i:k{l
p—o

where k is a constant. Also we have |f(z) | < N where N is a constant and
lzg—z| = [ (zg— @) = (z= @)| 2| zo— x| - 1
where r, is the radius of C,. Hence using ML-formula we get

|z S| 1 k"N
|1,;”[_. I ?(Zﬂ“a) 7012 zﬁ!zﬂ_a|_i’} EHPI
1
- 0Dasn—ree [ k=ell]
Thus lim V, = 0. This completes the proof of the theorem.
H=—pan
Note 5.3. Choosing n to —n in a, we find that
renl] f(z) o
9n = mi i}{z—rxr"ﬂ oL O
Hence, the Laurent's series expansion of f can be written as
f@= ¥ aGz-a\n<li-al <n
n==—ao
1 (z) : ]
where a, = o= % 7 J_FH}M dz,n=0,+1,%2, - and C is any circle with centre
aand lying in R.
Note 5.4, If f(z) is analytic in | z— &| =.r, then the function
f(z) » _ el
{Z—ﬂ'}_‘"“ _f':Z] {E a)ﬂ _
is analytic within and on C for n = 1, 2, 3, - . So by Cauchy’s fundamental theorem

1 flz)

b= T f[z—-af]"‘*‘ dz=0 forn=1, 2, 3, -~ and the Laurent’s series reduces

to Taylor’s series.
5.7 Uniquencess of analytic function in a region :

Given a function f (z), analytic in a domain D, it is known from Cauchy's integral
formula that the values of the function f(z) can be determined at any point of the domain
D in terms of the specified values of the function on the boundary /"of the domain D. In
this article it will be observed that if a function took a constant value in the neighbourhod
of a point lying in its region of analyticity then the function coincides with that constant value
throughout the region.
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Theorem 5.24 (Uniqueness Theorem)

Let the functions f(z) and g (z) be analytic in a domain D. If there is a sequence
21 23, ... of distinct points in D, converging to ¢'belonging to D such that f (z,) = g(z;)
for all k = 1, 2, -+, then f(z) coincides identically with g (z) throughout in D.

Proof. Let S denotes the sequence of points {z,}, n =1, 2, . Then the function

@(z) = f (z) - g (2) is analytic in D and vanishes on the set of points S, We shall have to
show that ¢(z) is identically zero in D.

We first assume D to be a circle with its centre at ¢, the limit point of S,

Since ¢ (z) is analytic in D, ¢(z) can be expanded in a Taylor series in some
neighbourhood of ¢ as

P(2) = ag + ay(z - §) + apz — £ + -~
Since ¢ (z) =0 fork =1, 2, - we have

atan -0 +an -8R +=0.fork=1,2, -
Letting k — == we abtain ag = 0. So

a +afz— O +aslz— 0P+ =0 [+ z# (]
Applying the limit successively we find that

g =aj=---=ﬂk="*=ﬂ.
Hence ¢ (z) equals to zero identically.

Now we assume that D is any arbitrary domain. Let C be a circle with centre at ¢
lying entirely within D and ¢ (z) vanishes identically in C. If ¢(z) is not identically zero in
D, there exist a point &in D, lying outside C such that ¢ (c) # 0. Let L be any curve lying
in D with initial and final points at z = {'and z = azrespectively. Let 4 be the minimum
distance from the curve L to the boundary of the domain D, We partition the curve L by

the points ¢ = &y, &)s €24 v Gpiy Gt = & $0 that
w|¢i=¢ja]<d.

Now we draw circles Cy, C), Cy, ..., Cy each with radius d taking centres at &, ¢},
{3, -, {y respectively. Inside the circle Cp with centre at & = ¢ ¢(z) = 0 by hypothesis.
Again the circle C, contains ¢£;, which is also a limit point of the set on which ¢(z) = 0
and hence ¢ (z) =0 in the circle C,. Continuing in this way it can be proved that ¢(z) =0
in C; with centre at z = . Therefore ¢ (z) vanishes throughout in D,

Example 5.12, Expand f(z) = sin z in a Taylor series about z = % and determine

the region of convergence of this series,
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Solution : f(z) = sin z.

o _J""{Z] = €05 £, IH(Z} = —5inz, f‘”{z} = — CO5 2, -

I R

.
Hence f(z) :A:,ﬂ @y {E_I] , where a, = =T

2 3
ay + m(z—%) + ﬂz(z—%] & a:,‘(z_.‘}:.) e

T

- 5 et a4 -4
e | e Sl = i [
TR\ T4) T n\ el Tea Tl T
This is the Taylor series expansion of sin z.

Since the singularity of sinz nearest to L s at infinity, the above series

]

converges for all finite values of z, ie. | z| < <.

Example 5.13. Find Laurent series about the indicated singularity for each of the
following functions. Determine the region of convergence of each series,

) 2 s 1, () Dain-ls wr=-7 (i) —L— afea

(z=1) 7+2 22 (z-3)

Solution :
(i) Let z — 1 = u. Then

EI: EI

= T
@1 W«
e’ (2u)® | u)* . Qu)!
=u—3[!+2u+ 21 + 3 + 21 +oee
2 2 2 2
el 2e 2e?  de? e o

S G 2l 33

The series converges for all values of z# 1.

305



(ii) Let z + 2 = u. Then

(z-3) sin—L— = (u - 5) sin-‘l;

i+2

A Ayl o Le o UNE

= 5}(:: e 50

S ] T 0

o 3?3 St

e i D o 1 a2 5

_ z+2 6(z+2)*  6(z+2) 120(z+2)4
The series converges for all values of z# -2

(iii) Let z = 3 = u, Then

23(z-3)2 2 (e +3)2 9u? 3

=L[lhz_u ﬁ_itﬂ,,irzi_...]
Ou? 37 F %W
= -T2
1 2,1 4=-3) SG-3t

S0z-32 21z-3) 21 243 729

The series converges for all values of z such that 0 < |z - 3| < 3.

Example 5.14. Expand f(z) = %2 in a Laurent series about z = 2, Determine
the region of convergence of the series.

Solution : Let z = 2 = u. Then

=e{l+ 2 + . e +-*)

2-2" (z-2)? 3(z-2)

306



The region of convergence of the series is

E ceo i |ul>0 ie|z-2|>0.

Example 5.15. Expand [ (z) = {_zT)EIzI?T} in a Laurent series valid for

(Wlzl<1l, Gi)l< |z| < 3. (i) |z|>3. (iv0<|z+1|<2
Solution : Resolving into partial fraction, we have

= | = otigs Hagn)
f.mul‘.zH}{HB} 2z 41y ~2z+3)"

(i) Let |z ]| < 1. Then
2 Do st Ul 28
f{z)a2(1+z] ﬁ(1+3)
Ly; Moo o
=i(l-z+zz-z3+--~]-g(l——i+— : +)

13
27

hcn'

2 _ 40

81

4
5 z
T

(ii) Let 1 <|z]| < 3

)

2z z 722 2} S T )
NIt O 40 Sk ) l(_lh_i L‘_]
x 6(' CRICTIE YA A PR

(iii) Let|z|> 3. Then

)

2\ z ¢ 2 2zt 2\ oz 22 P
| 4 13 40
= — ——+—_———+“u

22 23 ¢ B



(iv) Letﬂ¢:|z+l|~:2.Thcn

3 1
f@)= 2(z+l} TV

_1fy 24\
2z +D) 4(” 2 )

1L 1)zl @) @D
2[z+l} 4 2 4 8 ;
Example 5.16. Expand f(z) = T 0 RS powers of z

(2 =2~2)z
(i) within the unit circle about the origin

(ii) within the annulus between the concentric circles about the origin having radu 1
and 2 respectively,

(ili) the exterior to the circle with centre as origin and radius 2 i.e., for |z]>2.
- 5 z+3 \
Solution : Let f(z)= (@-2-2z @+D(z=D)’ _ |
Hence rcm!vmg into partial fractions,
a ___ 1 |
T&= = 3 5
(i) For 0 < |z]<:i, we have

f“'}"_*a““)_ 12(l ;)

:—zi+-[l 2+ -2+ ]--[1+ +& 33+---}

2 22 2
Sand N [ 2 B
= 2:,%[3“) :2(2]]3-

(i) For 1 <|z|<2, we have

ro=gpralied) -4

S 3 ) s Do g2t 2 ]
= 2z+3 +[l z+z2 z3+ } 12[1+2+21+23+
_j_ 2 Sl 5 & (_z"

L A Em L



(iii) For | z| > 2, we get
D HPeR A _g]"
st lirg) sgi=d)

o i 1 U W ] [ e R e
¥ Ez+3z[| T2 z3+ :l+ﬁz[]+ +3+33+ :]

3 S ] (E)J'r
=—= g S
2z 3 .?:n{ ! oz Eﬂ z

743
Example 5.17. For the function f(z) = zj :] , find (i) a Taylor series valid in

the neighbourhood of the point z = i,
(ii) a Laurent’s series valid within the annulus of which centre is the origin.
Solution :

1

(i) We have f(z)= Z{z—l}+ ok o

We write fi(z) = 2(z = 1), fo(2) = - Jale) = z+1

Tﬁylur’s expansion for fi(z) about z = { is given by
(r)

fi@ =2 - =0+ 3 LBa-1y

Now fi(i) = 2(i = 1), £i(i) = 2 and f;"(i) = 0 for n = 2
Hence fi(z) = 2(i = 1) + 2(z - i).

Again Taylor's expansion for f3(z) = ]E about z =i is given by

w gl
=piiy + 3 B iy

- 1
fAz) = 2 Z

Now fz{f] = % and fztﬂJ{zJ = (-1) n

zrr-l-l

_1 ] 1
s0 that f00(i) = * ;.L"

b 3 C o= £ Se-in
i = =0 |

s

Hence fi(z) =
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Similarly, we can show that

{z=i)

f2) = E{ .

Thus the Taylur s expansion for f'(z) is given by

{_l}ﬂ {-]}" 'i
sint] '“'l" ]ui-l J

(i) For|z|< I, Laurent's series for f(z) is given by

f(zJ-Zh—l}+2(z+ﬂ+ E[ (z - i,

T ) % + (142!

=zu—u+%+(L¢+ﬂ—ﬂ+q

Exercise - §

= n
. Prove that n};“,l s

. Find the radii of convergence of the following power series.

converges (absolutely) for |z| < 1.

H - n! n o - Z" BEE b lﬂ'! i
WEFZ{MEFHUMEHﬂz

ri=]
. Find the region of convergence of the following series :
e 22 +1Y = (z+0)" e e

b o i e T Ian
® 2 ) W Zgmnmen G0 E e

. For what values of z does the series

i (=1 (2" + z#*1) converge and find its sum.
n=0

. Discuss the uniform convergence of the following series :

) =a {z+2)ﬂ—t . = z" -
: < 1.
(W EI (n+1)14n (i) n§| A i+l 2|

. For the following power series, find a number R such that the series converges for
|z] < R and diverges for |z]| > R.

3

F2n
3 g R
=0 B- TN
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10.

11.

12

13

14.

. Investigate the (a) absolute and (b) uniform convergence of the series

7 t3=z) 2@3=2)F 2@egh .

st t—m 5
Investigate the region of absolute convergence of
[ [_]}nn(z_”u

,?_‘.‘. gnin? + 132 7

Expand each of the following functions in'a Taylor series about the indicated points
and determine the region of convergence.

i I 2t 10 o Dok 2 R
() cosz 2= 3 (ii) e 1 (iii) T 2
7 Rt e _.gz ' e A - 1 sin z . =

{iv) ef-}-l'"_ﬂ (v) E{Z_H,Z-m (vi) i 0
Expand f(z) = m in a Laurent series valid for :

() |z] <1, @)1 <|z] <2 (GiD)]z]>2, (v) lz-1]l> 1, (VO<|z=2]|<].
Expand each of the following function in a Laurent series about z = 0.

2? =
Gy £ iy 1282 iy g2
Find an expansion of f(z) = ;H valid for |z-3]| > 2.

Show that if tan z is expanded into a Laurent series about z = %, (a) the principal part

2E;

is — . (b) the series converges for D{iz—%l{% o) z= > is a simple pole.

=3

Show that the function ¢'/¢ actually takes every value excepl zero an infinite number
of times in the neighbourhood of z = 0.
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Unit-6 O Classification of Singularities

6.1 Introduction :

; ; I : 1
Consider the functions —, xsin—, . Then we see that the point x

x X .1;:2{.1:2 +2)
= 0 is a singular point for each, of these functions in the sense that the function is
defined in a deleted neighbourhood of zero. The problem of classifying singularities
is not satisfactory for functions defined only on R. On the otherhand the situation is
quite different for functions defined on domains in C.

6.2 Definitions
Definition 6.1

A point o is called a regular point or an ordinary point of a function fif fis
analytic at o, otherwise a is called a singular point of f
Definition 6.2

Let f be an analytic function with a singular point at z = . If there exist a .
neighbourhood of o which contains no other singular point of f except o, then a is
called an isolated singular point or an isolated singularity of the function F
Definition 6.3 :

Suppose that o 1s an isolated singularity of the function f Then fcan be expanded
in a Laurent's series of the form

- -]
f@=Y a,(z~a)' + Y b, (z-0)"
n=0 =1
in a domain 0 < |z - a| < r, where 7 is the distance of a from the nearest singularity
of f other than a itself.

o
The portion of the series involving negative powers of (z — o) i.e. Zf’n{Z -a)™

el

is called the principal part of f at a, while the series of non-negative powers of (z —

) ie. 2, 8(2=0)" is called the regular part of f at a.
n=0

Now we discuss the following three cases separately.

Case 1. Suppose that all the coefficients b, in the principal part are zero, We then
call z = @ is a removable singularity of f because we can make f regular in |z — o]
< r by suitably defining its value at a.

312



Case 2. Suppose that the principal part of f at o contains a finite number of terms
only. Then f is said to have a pole at z = a. If b, (m >1) is the last non-vanishing
coefficient in the principal part then i

f{Z]Ziﬂ"{z—D‘.]n+ bl -} bz T bm

o 20 (z-a)*  (z-@)™’
and the pole is said to be of order m. If m = 1, then we call the pole is a simple pole
and if m = 2, then we call the poles as double pole.

Case 3. Suppose that the prigcipal part of fat z = o contains infinitely many non-
zero terms, The point z = a is then called an essential singularity of f. In this case

O<lz—aol<r,

flz)= Zan{;—a}"+zbn{z—a}'",ﬂ{|-z~—{1l~ﬁ r, where the last series does
n=A) n=] .

not terminate but is convergent.

An alternate definition of Removable singularity, Pole and Essential
Singularity.

Removable Singularity

The singular point zy is called a removable singularity of f(z) if zll,m“ I(2) exists.
Pole

The singular point z is called a pole of f{z) of order or multiplicity n if

' ergu(z—zn)"f{z)ﬂ#ﬂ. If n = 1, zo is called a simple pole.
Essential Singularity
The singular point z, is called an essential singularity if there exists no finite

value of n such that lim(z—z)" f(z)=A#0
1z

sin
Example 6.1, Let [ tz}=‘Tz if z#0

=0ifz=0.

The function is analytic everywhere except at z = 0. The Laurent's expansion
about z = 0 has the form

sin 2

fi) =

£



2 4

= |-£+: o=
L

Since no negative power of z appears, the poinl z = 0-is a removable singularity
of f If we define

fizi=1,at =0,
the modified function becomes analytic at ; =

2 -22+5

Example 6.2. The function f(2)=— 5

= 2+{z_2}+i Wz 12}
z-2
has a simple pole at z =

Example 6.3. The function f(z) =t

I B |
= etk
z 2%z
has an essential singularity at z = 0.

Note 6.1. By definition a pole is an isolated singularity. If a mngulanty IS non-
isolated then also we call it an essential singularity.

Theorem 6.1. The function f has a pole of order m at a if and only if f can be
expressed in the form

¥iz)

(z-a)"

flz)=

in some neighbourhood of a, where y is analytic at a and y(a) = 0.

Proof. Let a be a pole of f of order m. Then in some nelghbaurhood of a. fhas
Laurent's expansion of the form

=Y a,z-a)"+ ) b(z-a)"

n={ =]

Putting ®(z) =) a,(z-a)" we get
n=il

b. : b) bn
(2)=Dlz)+ ——+- 4.4 :
f z-a (z-a) (z—a)”
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(% a]“’¢{z}+b}(z U—:'ml D, =_‘-l_‘{_g}

o) (z=a)""
where W(z)=(z—o)"®(z) +b(z—0)™" +..+b, is analytic z = a and
Y(a)=b, #9.
Next we suppose that in some neighbourhood of a ,
‘P‘{z}
f{?} = {1}"'

where v is analytic at z = o and y(a) # 0. Then we can expand y in the Taylor's
series around o to get

W(z) =Y a,(z—a)"

n=0

o
2 1
=gy +a(z—a)+ax(z—a) Foita, (z—a)" + Z a,(z—a)"

A=

where «y ="¥P(o)#0. Therefore

¥z} do a -1
For)= s el 2 e T N e il
Y denae

which is the Laurent's expansion of f about a. Since ay # 0, clearly a is a pole of
f of order m. This completes the proof of the theorem.

Theorem 6.2. Let z, be a pole of f(z). Then there exists a neighbourhood of z,
which contains no other pole of f(z), that is, poles are isolated. :

Proof. Recall that if f(z) has a pole of order m at zy, then there exists a deleted
neighbourhood 0 < |z — 2| < p of z in which f(z) is analytic and has Laurent's
expansion of the form

F)=Y az-2)" + Y b= 2)"

n=0 n=l

Thus in the neighbourhood of 0<lz—z,1<p, fiz) contains no other pole. Hence

poles are isolated.
Definition 6.4. If o is a regular point of an analytic function f and if fla) =
then a is called a zero of f

315




Definition 6.5. The point z = « is called a zero of f of order m if in some
neighbour of a, f can be expanded in a Taylor series of the form

f(2)= 2 a,(z-0)", where a, #0.

=
Theorem 6.3. The point « is a zero of f of order m, if and only if f can be
expressed in the form f(z)=(z—a)™¥(z), where y is analytic at o and o) = 0
and this representation is valid in some neighbourhood of a.

Proof. Let o is a zero of f of order m. Then in some neighbourhood of o we can
expand f as

f‘:z): Z G"{Z'GJH + Where a, # 0.

H=m

Then f(z)=(z-a)" Z (e —a)y ™

FI™=FT

L {Z'_G}MZAF{Z_“-}F . where m + n = p and Ap = Ay

pe=0

= (z—a)"P(z),

where ¥(z)= ZAP(Z—-{],}P is analytic at o and ¥(a) =4y =a, #0.
p=0
Next we suppose that in some neighbourhood of &0, f£(z) = (z —a)™¥(z), where

\ is analytic at a. and (o) # 0. Then we expand v in a Taylor series around o to
obtain

W(z)=) a,(z-a)"

n=0

where a; = ‘P(d)#ﬂ. S0 in some neighbourhood of o, we get

fD=G-a)"Y a,(z=a)" = D a,(z—a)™"
n={0

n=0

= Z Bp{z'“)p » where n + m = p and B, = a, ,, Since B,, = a; 0,
p=m

z = o is a zero of f of order m. This proves the theorem,
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Theorem 6.4. The zeros of an analytic function are isolated points.
Proof, Let o be a zero of f of order m. Then fiz) = (z — @) ¢(2) in some
1
neighbourhood of «, ¢ is analytic at o and $(o) = 0. Let €= EW(WF} 0. Since ¢

is continuous at o there exist a positive number & such that

twn—ﬂuuﬂs=§¢mufmwz_ama.
1
Therefore, |¢(ct) — |d(2)] < [§(2) - P(o)] < E]‘i‘(ﬂ]l for |z — af < &.

1
ie., E]q:{aji < |d(2)| for |z — al < &.
So, ¢(z) # 0 in |z - a] < & Hence f cannot vanish in 0 < |z — o < 8. Thus o is
" an isolated zero of f Therefore the zeros of an analytic function are isolated points.
Relation between zeros and poles

Theorem 6.5. A point a is a pole of order m of a function f if and only if itis
1
a zero of order m of the function ?

Proof. Let f has a pole of order m at z = o.. Then in some neighbourhood of o.

¥(z)
(z)=
I oy
where ¥ is analytic at o and ¥(a) # 0.

1 |
— =(r—gY" ] = . 3 =
Therefore, 7@ (z=a)"$(z) where $(2) ¥ analytic at z = o and ()
1
# 0. So, a is a zero of ? of order m.

Conversely let z = o is a zero of — of order m. Then in some neighbourhood

f

of o

1 m
o =(z—a)" g(z), where g(z) is analytic at z = a and g(a) # 0.
h(z)

|
Then f(2)= =) where h(z}=m is analytic at o. and h(a) # 0. Hence

o is a pole of f of order m.
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; ; 1
Theorem 6.6. If a function [ has an essential singularity at o, then ‘; has also

an essential singularity at o

l 1
Proof. If possible, let o be a regular point of - and a be not a zero of — . Then

/ 1

o is a regular point of / which contradicts the nature of a.

I 1
Let a be a regular point of — and a zero of = of order m. Then a is a pole

i !

of order m of f which contradicts the nature of a.

1
I possible, let o be a pole of order m of 7. Then o is a zero of f of order m

f

contradicting the nature of a. Hence the only possibility that remains for o is to be
' l

an essential singularity of ;-

Behaviour of a function near a pole
Theorem 6.7, If @ is a pole of the function f then | f(z)l—> e a5 z 5 a.

Proof. Let o be a pole of f of order m. Then in some neighbourhood of o

. d ! 1
where ¢ is analytic at o and ¢(a) # 0. Since ¢ is continuous at a, for g = 3 |dta)]
= (), we can find a & > 0 such that
1
|b(z) — dla)] < & = 3 |d(et)| for |z — o) < &.
Therefore,

Ld(z) =1 d(z) =dpla) +dla)l 21 dla) | =1d(z)—dlo)l
>l¢{a}|-%l¢{a]! =%I¢(u)l for |z — o] < 6.

1 1ol

Im 2,

Hence for |z - a| < 8, | f(2)1>
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Let G be a positive number however large, Then |f(2)| > G
L)l

if =
|z =™

and |z - o < &,
Id(a)l .
ie, if !z—uld[—-ﬁ] and lz-al<8,

%
ie if | z—al< 8, where 5, =min{[!Mj ,5}.
: 2G

This shows that | f(z)|—=« as z—»o and the theorem is proved.
Limit points of zeros and poles ;

Theorem 6.8. The limit point of the zeros of an analytic function is an essential
singularity of the function, unless the function is identically Eem.

Proof. Let a be a limit point of the zeros of a function £ Then an infinity of zeros
of f lies in every deleted neighbourhood of a. If possible, let a be a regular point of
f. Then fis continuous at o.. So for givene >0, 3 ad > Osuch that | f(z)- f(a)l<e
for |z - a| < &.

Since there is an infinity of zeros of fin 0 < |z — af < &, for all these zeros we
have |fla)| < &. Since € > O is arbitrary, we get fla) = 0. .

Hence a is a zero of f which is impossible unless fis identically zero. Hence o
is not a regular point of f and so o« must be a singularity of f

Let « be a pole of £ Then given any positive number G we ¢an find a number
n > 0 such that | f(z)I>G wzin0< |z - al < n.

This is ‘impossible as the deleted neighbourhoed 0 < |z — & < 1 contains an

infinity of zeros of f Hence o. can not be a pole of f. Therefore a is an essential
singularity of f unless f is identically zero. This proves the theorem.

Theorem 6.9. The limit point of poles of an analytic function fis a non-isolated
essential singularity of f

Proof. Let o be a limit point of the poles of /. Since every neighbourhood of o
contains an infinity of poles of f, o can not be a regular point of f Hence o is a
singularity of f which is non-isolated. Since a pole is an isolated singularity, o can
not be a pole of f. Therefore a is 2 non-isolated essential singularity of f. This proves
the theorem.
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Riemann's Theorem

Theorem 6.10. If a function f is bounded and analytic throughout a domain
O<|z — a| < & then either f is analytic at o or else o is a removable singularity {:-ff

Proof. Under the given hypothesis, f can be represented in the Laurent series in
the given domain about o in the form

(@)=Y a,(z—a)" + ) b, (z—a)™"
n=(} n=1

Let C denotes the circle |z — af = r (<8). Then putting z-a = re®, 0<p<2r.
we obtain

f(z) " B
e + ] - I--. 21. AT
Zm‘[(z o) 4 2n lf{ﬂ REx A " 2

Since f is bounded there exist a positive number M such that | f(z)|< M vz in
the given domain. Hence

n
j fla+re™) e™dn

FT

Ib,,I— <2—2IM Mr forn=1,2, 3.

Since r can he chosen arbitraryly small.
b,=0forn =1, 2, 3, .... Thus Laurent series for f reduces to

f@)=Y a.(2-0)" in 0<dz-0l<B.
H=0

This shows that either f is analytic at « or else o is a removable singularity of
f This completes the proof of the theorem.
Theorem of Weierstrass and Casorati

Theorem 6.11. If o is an isolated essential singularity of an analytic function f;

then given any positive number r and € and any finite complex number ¢, there is
a point zin 0 < |z — a| < r at which |f{z) - ¢| < &.

If ¢ = o , then E‘;f(zn}:m for a sequence (z,) tending to a.

Proof. Let ¢ = «. We note that there is not a single neighbourhood of & in which
fis bounded. For, otherwise, the point o, by Riemann Theorem would be a removable
singularity, This means that for each positive integer n there is a point z, in the
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annulus [}clzu»‘:f.l{-]— Such that | f(z,)I>n, That is z, > @ and f(z,)—> o as
= .
n—w,

Let ¢ co. If possible let us suppose that the theorem is not true. Then there is
a positive number & and a positive number ry such that

| f(z)-clzgp Wz in O<lz=al<y . e Caey
|
Let g{z)= e s e (6.2)
M= e
From (6.1) and (6.2) we get
1
| |=——— £ — ; -
2(z) -2 5y in 0<lz-al<r,.

Since o is an isolated singular point of £; it is an isolated singular point of g also.
Again g is bounded in 0 < |z — a| < ry and so by Riemann theorem, z = a is a

removable singularity of g Clearly o cannot be an essential singularity of é because

otherwise o becomes an essential singularity of g which is not the case.
From (6.2) we have

1
_f(z}—t"f'g{?]

and this shows that o i$ not an essential singularity of f; a contradiction. This proves
the theorem,
Rational Function

A function fiz) is called a rational function of z if it is of the form
®(z)

f{Z}‘;m

where @(z) and W(z) are polynomials.
Entire function

A function which is analytic everywhere in the finite complex plane (i.e.
everywhere except at o) is called an entire function or integral function. The functions
sinz, cosz, € are entire functions.

An entire function can bé represented by a Taylor series which has an infinite
radius of convergence, Conversely if a power series has an infinite radius of
convergence, it represents an entire function,
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Meromorphic Function

A function which is analytic everywhere in the finite complex plane except at a
finite number of poles is called a meromorphic function.

Example 6.4, The function f(z)= e e which is analytic
Z-2)z+3) ytic everywhere

in the finite complex plane except at the poles z = 2 (simple pole) and 7 = -3 (pole
of order 2) is a meromorphic function.

Singularities at infinity

The behavour of a function f(z) at z = w is considered by making the substitution

= % and examine the nature of I[;—L] atw=0.

Clearly f(z) is regular or has a pole or has an essential singularity at 7 = w if

f[%] has the same property at w = (.

Example 6.5. The function f{z) = z* hias a pole of order 3 at z = . The function

v v + L
Mz) = ¢ has an essential singularity at z = oo, since f(ljne“’ has an essential
W

singularity at w = 0.

Theorem 6.12. A function which is analytic everywhere including the point at
infinity is constant.

Proof. Since f is analytic for all finite z, by Taylor's theorem

f(z}=ia,,z"

=t}
where the series converges for all finite z. Then

1 Gy iy

=i | =y e e L
f[w) ) W WI

|
Since f[;] is regular at w =0, @, = 0 for n = 1, 2, .... . Hence f(z) =ay =

constant. This proves the theorem,

Branch poinis and Branch Lines

A point z = 75 is called a branch point of the multiple-valued function fiz) if the
branches of flz) are interchanged when z describes a closed path about g
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Suppose that we are given the function w= 2 Suppose further that we allow
» to make a complete circuit (counterclockwise) around the origin starting from point

||1.I| #11) "_“.l
re * =—re®

Thus we have not achieved the same value of w with which we started. By making

1)
= Jre? and we

After a complete circuit back to A, 8 =8, + 2nwand |, _
a second complete circuit back to A, i.e., 8=0, +4xn, = [, Ho
then obtain the same value of w with which we staried,

We can describe the above by stating that if 0<6 <2nx we are on one branch of

the multiple-valued function z%, while if Z-Plane
2n<B<4n we are on the other branch of the
function.
It is clear that each branch of the function is = 6=6 5B
single-valued. In order to keep the function single- /
valued, we set up an arlificial barrier such as OB

where B is at infinity (although any other line from
O can be used). This barrier is called a branch line
or branch cut, and point O is called a branch point. Here z = 0 is the only finite
branch point since a circuit around any point other that z = 0 does not lead to
different values.

Fig. 6.1

Example 6.6. The function f(z)=(z-3)" has a branch point at z = 3.

Example 6.7, The function fiz) = log(z* + z — 2) has branch points
where 2 + z-2=0;ie. at z=1 and z = -2,

Example 6.8, Examine the singularity of the function

f(z)= smLﬁsm—_lﬁ

woc ] .
Solution. Zeros of sm;_'—] are given by z-1 =}11_;.;' n =0.%1, 2, ..

The limit point of the zeros is the point z = 1, So z = 1 is an essential singularity

1
of sm—-_—1

! 1
; o ; e 3
Again zeros of sin—- are given by z+ i 0,11, 52
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The limit points of the zeros is the point z = ~1. So z = =1 is an essential

: 2 el it o
singularity of SiN—— . Hence z = 1, —1 are two essential singularities of f{z).

2440

'Exnmp]e 6.9. Locate and name all the singularities of J(2)= PR
(z—-1)'(3z+2)

Solution, The singularities in the finite z-plane are located at 7 = 1 and z = —%;

z=1is a pole of order 3 and 2z =-—% is pole of order 2.

: " . |
To determine whether there is a singularity at 7 = oo, lel z=—. Then

(1)_ L w® 20

W) W d-w) B+ 2w)?

Since w = 0 is a pole of order 3 for the function f (TL) , it follows that z = o is

a pole of order 3 for the function f(z). Thus the given function has three singularities

: a pole of order 3 at z = 1, a pole of order 2 at z——-—A and a pole of order 3 at

z=m,
Example 6.10. Prove that the function 1 z}___e;’f’ has no singularities.

LY

Solution. f {z}=£:}i1 ==y

£

Poles of flz) are given by E)i’ = 0. But this is not possible for any value of z,
real or complex and hence f{z) has no poles. '

Again zeros of f{z) are given by e:}:’ =0, i.e. z = 0 (twice). Thus z = 0 is a zero
of order two and as such there is no limit of zeros and hence no singularity. Therefore
fiz) has no singularity. '

Example 6.11. Locate and name all the singularities of f(z)= SE[;% in the finite

z-plane and determine whether they are isolated singularities or not.
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Solution. Since sec

ra] =

cosd’
T

2

the singularities occur where cosi=0, je,,

| i =
-z—:I:ZH"l'l}E or £ (2”""1}7{' where n = 0, %1, i'l, i3, ,

defined at z = 0, it follows that z = 0 is also a singularity.

Now by L. Hospital's rule

lim
7 —

(Zn+lin

2
Thus the singularities Z = Cniba "= 0, &1, £2, ... are simple poles. Note that

these poles are located on the real axis at z = i%. x I

2

{z'tzmnn}ﬁ”

lim —=E
_I
= Enn 983
lim e
Z-—-}-—un_ﬂ,m 510 = {‘E—z}
B X
(Zn+hn 4(=-1"

sin(2n + 1]% i (2n+ I}z'az2

2 2
T S

infinitely many in a finite interval which includes 0.

Since we can surround each of these by a circle of radius & which contains no

other singularity, it follows that they are
isolated singularities. It should be noted
that the & required is smaller the closer
the singularity is to the origin.

Since we cannot find any positive

#0

... Also, since fiz) is not

,£—, ... and that there are

integer n such that Iin?'[z ~-0)'Rz)=A+#
I— ;

0. it follows that z = 0 is an essential
singularity, Also since every circle of
radius & with centre at z = 0 contains

singular points other than z = 0, no matter how small we take 5, we see that z =0

is a non-isolated singularity.
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Exerclses-6

. For each of the following functions locate and name the singularities in lhe
finite z-plane,

v ptedy o sin z COS5 Z z-2 i
O 2izerr @ den—2F W ey @ 7075

&=l

(v) sin™ (1) (vi) tan 1.

(-3 o ; i
5 has double poles at z =1 + 2/ and a simple

Show that f(z}=—2-——
(z"=2z+5)

pole at infinity.
. Show that f{z}=e:: has an essential singularity at infinity.

. Locate and name all the singularities of each of the following functions.

2

(i) Sae {n} Cﬂbh( ) {111]

. Let f(z)y=(z*+1y2, Show that z = +i are branch points of f{z).
. Show that the point at infinity is a simple zero of

__1:3_

2 +3z+4

f(z)=

326



Unit-7 O Calculus of Residues and Contour
Integration

7.1 Introduction :

If f is analytic at a point z = «, then there exists a neighbourhood N of « inside
which f is analytic. Let C be a positively oriented closed contour contained in N.

Then Cauchy thnorr.:m tells us that jf (z)dz =0, If, however, f fails to be analytic at
c

finitely many isolated singularities inside C, then the above argument fails; which
means each of these singularities contribute a specified value to the value of the
integral. This motivates us to generalize the Cauchy theorem to functions which have
isolated singularities. This generalization results in the Residue theorem, This result
is one of the most important and often used, tools that applied scientists need, from
the theory of complex functions. '

7.2. Residue at a Finite Point

Let a function f has an isolated singularity at z = o # 0o, with Laurent's expansion

fl2)=) a,(z-a)" + VA

= 2
n=0 Gl T

valid in some neighbourhood 0 <|z~-al<r, then the coefficient of

i.e. by in
-

the Laurent's expansion is called the residue of f at the singularity o« and is usually
denoted by Res (f; a).

|
Thus b =5 g‘;f(:}dz
where C is any circle given by €:lz—al=p < r. The residue at the isolated singularity
o may also be defined as
| !
h=5= i'f (2)dz

where C is any simple closed contour in the domain 0<lz-oal<r which enclose o
and no other singularity of f.

In the next theorem we see that how can residue be calculated for a function f
having a pole of order m at z = . '
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Theorem 7.1. If f has a pole of order m at z = &, then

I m=|

- Res(f; a)= [_I_-!lm dm l(z—0)" f(2)],

Proof. Since « is a pole of fof nrder m, in some deleted neighbourhood of o we
can write

= ‘bi bZ bm
f(2)=8(2)+ =t T +...+{z o

‘where ¢(z) is analytic at z = o and b, # 0. So,

(2=)" f(2)=(z=)"§(D)+bh(z=)"" +by(z- )" 2 +..+b. .

m—| =1

Thus, %[{z -o)" f(2)]= ; —[(z=a)" §()]+ B m~1
z F

=1

—[(z—2)"$(z)] =0, we obtain

Since lim
Ia g

-1

Res(f:0)= b,—LL ‘f,,,,[{z -a)" f@)].

This proves the theorem.
Note : If o is a simple pole of f then

Res(fia)= li_ﬂ(z—ulf(z}.

Theorem 7.2. Suppose ¢ is analytic at o. with ¢(c) # 0 and ¥ has a simple zero

$(2) _a]_ b(0)

at o. Then Res(

Y@ ) Yia)
Proof. Let f{Z)=M Si i i
roof. P(z) - Since o is a simple pole of f;
N B G(z)
RBS(}'-{!]—!I_I"E{Z o) f(z) = llm(z ) s V(7 }
$(z) _ 9(a)
= Y-V V()
z—0

This proves the result.
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3 :
Example 7.1. Find the residues of f(z)= 2 at its singularities,

zlz—

1y’
Solution. f has a simple pole at z = 0 and a pole of order 3 at z = 1. Now.

2 145
CRestE el gt

5 ==5
=0 H(z-1) -0 (z 1)

B 2 +5
il =r=lim =iz ~ ) —————
o i 2 lmdz [l: v z[?*i}}

e d5 0 4.8 e m]
=—lim—|z"+— | ==lim| 2+—
212]2-1 {k‘z (Z 2] 2 :]‘IH[ 23

1
3 at its singularities.

(2} =D(z+1)

Solution. Clearly f has a double pole at z = —1 and simple poles at z = 1, w, w?,
where w is a cube root of unity.

6.

Example 7.2. Find the residues of f(2)=

Now, Res (fi-1) = LL lim —l{z +1* f(2)]

Res (f:1) .

Il

li_r:'}{z-l}f(z]

| |

lim :
=l (z 41 (1+z+2°) 12

Res(f; w) =1im (z-w) f(z)

T

| ‘1
li =—.
e (41 =z —w2) 3
| 1

wh)= i 5 3
R S iD= 3
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Example 7.3. Find the residue of f{z) = cotz at z = 0.
cosz _ (z)

Solution. f(z)=cotz= e m, say,

Clearly ¢(z) is analytic at z = 0 and ¢(0) = 0. Again ‘¥(z) is analytic at z = 0 and
) =0, ¥(0) 2 0, .

y(z)
7.3. Residue at an essential singularity

Hence Res(cotz; 0) = [M} =1.
=l

In this case one usually has to resort to the Laurent's series expansion if it can

be found. For example z = 0 is an essential singularity of f(z)= ¢ and the Laurent's
expansion is equal o

So, ‘Res(e”; 0)=—1.
Residue at the point at infinity

Let the point z = w0 be an isolated singularity of the analytic function S Then the
residue of fal z = o0 is defined as follows :

Res(f3%0) = 51 & f(2)de
C

1
=== f(2)dz,
L

where the contour C is an arbitrary closed contour outside of which the function
[ is analytic and does not have any singularity other than the point at infinity,

Example 7.4. Determine the singularities of s.esc% and find residues at its pole.

|
cosl
[

Solution. Let f(z) =sec

] —

The poles of f{z) occurs at the zeros of cosl.

e e
Now cusi—ﬂzaz—(zrwn%, I S o . e
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z = () is a non-isolated essential singularity of f{z) because z = 0 is a pole of f{z).

d | 1 | 1
Now, [dz (cr.}rs -:—]15 1 #0, Hence z WA is a simple pole of f{z).
“iantny

[ | lm 1 |
f [2n+]}/ {ZHHJV cos L

VT +m’

= lim

H{zu:n (_Si" {](_ﬂ’_)

i
=z
I

W

iz

Example 7.5. Find the residues of the function f(z)=
points.

= at its singular

Tz

Solution. f{z) has simple poles at z = *i.

iz -1
Now, Res(f:i)=

Res(f:—-i)= l:m(z+l)f{z} = lim S gt
e 2i

7.5, Residue Theorem

The effectiveness of the residue theorem depends, of course, on how effectively
we can evaluate residues at various singularities, However, caution must be exercised
to avoid a hasty conclusion based on appearances. Having identified the type of
singularities, we have to choose a proper contour. Most often the following theorem
will be applied in the next chapter to evaluate different types of mtcgrals
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Cauchy's Residue Theorem

Theorem 7.3. Let [ be a single valued analytic function within and on a simple
closed contour C, except at a finite number of isolated singular points Zs 225 vy 2
with C. Then 3

$ F(2)dz=2niY Res(f: ).
C k=l

Proof. Let C), G;, ..., C, be n circles with centres at z;, z,, ..., z, and radii so
small that they lie entirely within C and do not overlap. Then f is analytic in the
region bounded by C and the circles C,, Cy, ..., C,. So by Cauchy's fundamental
theorem

Cff(z]dz=i G LDz iiriricon (7.1)
&

ku] c*

. 1
Since RBS{fiZkJ":"EE 'f-f'f;.lldz. k=12 ..
C]

n, it follows from (7.1) that

(f.‘f{z] dz =2m’iR&s{f 1 Ze)

£ " k=l
This proves the theorem. s Fig. 7.1

Theorem 7.4, Let the function f be analytic in the extended complex plane with
the exception of a finite number of isolated singular points z, 25, ..., Zy_|, zy including
the point at infinity (say, zy = o). Then

N
D Res(fiz)=0
C k=l :
Proof. Consider the closed contour C containing all N — 1 singularities z,, 23, ...,
zu located at a finite distance from the point z = 0. So by Cauchy's Residue
Theorem

N-|
ﬁ Ef-f(z] dz=ZRES(f:z;,). B A (7.2)
C K=l
Also, Res(fi zx) = Res(f: ) =_.-21?‘_ i e T . (73)
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From (7.2) and (7.3), it follows that

N-1
ZRES[I: zi)=—Res(fizy),
K<l

N
Thus, »_ Res(f:2,)=0. This proves the theorem.

K=l
Example 7.6. Evaluate fj[» > dz.
2 2020
Solution. Let f(z)= : :
2(z— 1)

The curve of integration is a circle with centre at origin and radius 2. Clearly, fiz)

has a simple pole at z = 0 and a double pole at z = | within the curve of integration.
Hence by Cauchy's Residue Theorem

:f- (Eh = z=2mni[Res(f;0)+Res( 1],
=2 LT

-

e
2(z=1)?

Now, Res(f;0)=limz. =],
2 =4l)

- =L 4 (P T o Jei
Res(f:1) Iblzlmdz[(z 1) z(z—l}!:] =lim 7 =0

E:
So, dz=2mni,
i’z 2(z-1)°
Example 7.7. Evaluate tﬁ idz :
w2 2 1

Solution. Let f(z)=— -
z —

The curve of integration is a circle with centre at origin and redius 2. Clearly, flz)

has simple poles at z = +1 and z = #i, all lies within the curve of integration |zl =
2. Hence by Cauchy's Residue Theorem

‘;II’ .42 .n'z=Eni[Res{f;l]+Res{f;—l)+Res{f;i)+Rcs{f;—i}]_
=22 T :
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Now, Res(f;l)=lim(z—1)—*—=
2l z —

B—

Res(f;=1)= lim(z+1)——=
il z =]

N

: |
R =1 o o
es(f:f) Im:lj-:::c 1]24_1 3

Z

z"—l

Res(fi—i)= lim (z+1i)

| —

So, § = dz=0.

=2 T

3
Z

-Dz-2z=3) *2=12 3and

Example 7.8 Evaluate the residues of

infinity and show that their sum is zero.

1
Z

Solution, f(z)= Z=Dz=-2(z=3) has simple poles at z = 1, 2 and 3.

The residue at z =1 is

3 3
7 o z
Z=DZ-20=3) M 3 =3)

lim(z-1)f(z) =lim(z~1) e

z—| g=+ 2
ot . 27 )

Similarly the residues of fiz) at z =2 and z = 3 are —8 and ) respectively.

To find the residue of f(z) at the point at infinity, we expand f(z) in the
neighbourhood of z = e as follows ;

) | el
1 2 3
f[z}:[[—;] (]_EJ [IHE] £t t+g + higher powers of %

Hence the residue of Mz) at the point at infinity is —6, Therefore the sum of

residues of fiz) at z = 1, 2, 3 and at the point at infinity is l-l.‘i-’~1~E—i.‘.‘-=' 0.

2 2
" Deduction. Obtain Cauchy's Integral Formula from Cauchy's Residue Theorem.
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Solution. Let the function f{z) be ﬁnalytic in a domain -2 with boundary T

Let fiz) be continuous on I" and a be any point within I'. Let g(z)= f{n_
Then g(z) has a simple pole at z = a in D and
Res(g o) = lim(z—a)g(z) = f ().
Z=pil
Hence applying Cauchy's Residue Theorem on g(z) we get
(jv g(z)dz=2ni.f(a),
g

!
Thus, f(@)= Sni @ f(z }dz which is the Cauchy's Integral Formula.
r

The Argument Theorem.

Here we shall establish that the residue theorem can be applied to find the
difference of number of zeros and poles of a meromorphic function.

Theorem 7.5. Let fiz) be analytic inside and on a simple closed contour C except
for a finite number of poles within C and let fiz) + 0 anywhere on C. Then

f(z) (z]
Emtﬁ' f{z}

where N and P are respectively the number of zeros and poles of f{z) within C, a zero
or pole of order m being counted m times.

Proof. Let &y, ¢y, ..., oy and Py, Ba, ... Py be the respective poles and zeros of flz)
within C and suppose their multiplicities are py ps, ... p; and ny, ny, ..., . We enclose
each pole and zeros by non-overlapping circles Cy, Cy, --- C;and I'y, Ty, ..., Ty This
can always be done since the poles and zeros are isolated.

Since fiz) has a pole of order p; at z = o, we have

ftz}=—¢{L, O B i (7.4)

(z _ﬂj}pI

where d(z) is analytic and different from zero inside and on C;. Then taking logarithms
in (7.4) and differentiating, we find

f'z) _ 9@ __p
flz) $z) z—-oy’




f{z) ¢(z] y dz 4
Thus Em{ﬁ _Hz} Emgt’ ¢(z} zm a, Pl=l2, L (7.5)

Again, since fiz) has a zero of order n, at z = B,, we have

fl)=(z-B)"¥()ir=12 .. K,
where W(z) is analytic and different from zero inside and on I, Then by logarithmic
differentiation, we get

) [ R L
f{fi} 3 E“Ij, i3 iz} v r=l 2, G K

f{Z} "F{z] n, di =
Ef'f(z;} Em(f' ‘Pm Zm'fz—ﬁ, =, r=L2..K . (16)

r

Then using {T,S} and (7.6) we obtain

f'@, 3| L@, il
Zm f(:, ZIETI:I f{z} gt, f(z]
-
“Sn-Yn=N-P
r=| =l

This proves the theorem,
Remark 7.1. We note that

|
2ni I i:‘l;:z; " 2 [log f(2)lc

e
=onliogl f(z)I+iarg £(2)]c

l
= E[ﬂrg flz)le

since log|fiz)| returns to its original value as we go once around C.

Remark 7.2. If fiz) is analytic within and on C and f{z) # O on C, then the
number of zeros of flz) within C is given by

|
N = 5=llog f(2)lc.
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Rouche's Theorem

Theorem 7.6. If f and g are analytic within and on a simple closed contour € and

if | g(2)] < |fiz)| for any z on C, then fiz) and fiz) + g(z) have the same number of zeros
within C,

Prool. We, first show that none of fand f + g can vanish on C.
Suppose that fla) = 0 for some o on C. Then |g(a)] < |[fla)] = 0,
a contradiction, We now suppose that i) + g(a) = 0 for some o on C, Then

Ro) = - gla) ie [fo)] = |gla)l;
a contradiction,
Let M) and N, be the number of zeros of f and f + g respectively within C. Then
by Argument Principle

l
Ny =5-larg (e, Ny == arg( () + ()l

o 2@
Now, N, = h[mg{f{z](ﬁﬂz])ﬂc

1 : 2(2)
= o [arg ()] + 5= “’g(”ﬂzﬁﬂ

s i Mg[ 2(2))
L2 f(2)) - (1.7)

L
LT

| f
Let w{zl=l+§-%i—; ¢ g O |w{z}"ll=% <t Wy on @

This shows that as z describes the closed curve C, the corresponding poinl w

describes the curve [ lying entirely within the circle |w(z) —1| = 1. Hence the origin
(w = 0) lies outside the curve I'. So,
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: |
arg wiz) =arg[1 o+ f_"if;}
returns to its original value as z describes the curve C. 0 w=1
: r
g(z)
Thus [arg(Hm}H:U.
. Fig. 7.2

So from (7.7) we have N, = N;. This proves the theorem,

Example 7.9. Show that if |a| > e, the equation az" - ¢ = 0 has n roots inside
the circle |z] = 1.

Solution. Let f(z)=az" & glz)=—-¢".

Onlzl=1, | f(2)=laz"I=lallzI"=lal

and | g(2)|=l-e" I=le® 1< =e.

So,on lzl=1, lg(2)lse<lal=]f(z)]. :

So by Rouche's theorem f{z) and fiz) + g(z) have the same number of -zems within
|z = 1. Since fiz) has n zeros within |z| = 1, f(2)+g(z)=az" —¢° =0 has i rools
within |2] = 1.

Example 7.10. How many zeros of F(z)=3z"-82"+2z*+2'+1 lie in the
annulus 1<lz|l<27?

Solution. Let N, & N, be the number of zeros of F(z) inside |z| = 1 and |z| =2 -
respectively. To find N;, we take

flz) =88 and g(z)=32"+220 + 22 +1.
On |z| = I, [flz)] = 8 and [g(z)] < 7.
Thus on |z] = 1, [g(2)| < [R2)]. So by Rouche's theorem we have fiz) and fiz) +

g(z) has the same number of zeros within |z| = 1. Hence N, = 6.
To find N, we consider '
f2)=3 and g(z) = — 828+ 225 + 2 + L.

On |z] = 2. [Az)] = 1536 and |g(z)] < 585.

So on |z| = 2, |g(2)] < [iz)]. So by Rouche’s theorem flz) and f(z) + g(z) have the
same number of zeros within |z| = 2. Hence Ny = 9.

Therefore F(z) = 0 has 3 roots in the annulus | < [z] < 2.
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Example 7.11. If K > 1, then show that the equation z'eX~* = 1 has n roots within
lz] = L.
Solution. 272 =0
i.e. zef — e -
Let fiz) = 2" and g(2) = - €%
On |z| = 1, [fD)] = |"e¥| = |e¥] > e (2 K >1)
and |g(2)] = |-¢i| S el = e.
Hence on |7 = 1, 1 g(z)1<e<!| f(2)l.

So, by Rouche's theorem f{z) and fiz) + g(z) have the same number of zeros
within |z] = 1. '

Since f{z) = z"¢" has n zeros within |z| = 1, so z'eX — et = 0 has n zeros within
Jz] = 1. Thus the equation 7'ef-t = | has n roots within |z| = 1.

Example 7.12. Prove that all the roots of 2’ - 5z* + 12 = 0 lie between the circles
|z = 1 and |z] = 2. ; .

Solution. Let C,, C; denote respectively the circles [z| = 1 and lz| = 2. We write
f(z) = 12 and g(z) = 2’ - 52%. Then on C,, flz) and g(z) are analytic and as |z| = 1
on C, we have

|2(2)
|f(2)

|27 =52 _tal +1-52°1 12l 4512P _1+5 1
|12 12 IS e g

8@ | e 1g(2)1<I £(2)] on C).

Th
" 1F@

Hence by Rouche's theorem, f(z)+g(z)=z’ —52° +12 has the same number of
zeros inside C, as fiz) = 12. But fiz) = 12 has no zeros inside C5. It follows that

71— 523 + 12 has no zeros inside C;.

We next consider the circle C,. We write F(z) = 7! and ¢(z) = 12 - 5z°. Evidently
F(z) and ¢(z) are analytic within and on C,. Further we have on G,

d(z)

S -5 12+512P _12452° _ 52
f(2)

=% s1,a5lzl=2 on Cy
Izl 1z o 128
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Thus 1¢(z) 1< F(z)| on C,. Hence by Rouche's Theorem F(z) + ¢(z) = 77 — 53
+ |2 has the same number of zeros as F{zj =7 inside C;. But all the seven zeros

of 77 lie msrde |2| = 2 since they are all located at the origin. Tt follows that a]l seven
zeros of ;7 _ 5,3 412 lie inside 1z1=2.

Thus we have shown that the equation z' — 527 + 12 = 0 has no roots inside
|z] = 1 but has all the seven roots inside |z| = 2. It follows that all the roots of this
equation lie between the circles |z| = 1 and |z] = 2 as required.

Example 7.13. Use Rouche's theorem to show that the equation 23 4 157 4+ | =

() has one root in the disc Izla’% and four roots in the annulus ;{l zl<?.
Solution. Let f(z)=z" and g(z)=15z+1. On the circle lzl=2, we have

| fiz)l=12zP=2"=132 and | g(z2)|=115z+11<150 21 +1=15x2+1=3].
Thus lg(z) <! f(z)}! on the circle 1z1=2.

If follows by Rouche's theorem that the function f(z)+ g(2)=2" +15z+1 has as

many zeros in | z|<2 as the function f(z)=z’. Since the latter function has a zero

of order 5 at z = 0, it follows that all the five roots of 75 + 15z + | = 0 must lie in
the disc |z]| < 2.

On the other hand, since for |z| =%.

24
F5 +!E{|zlj+1—3—;+l = =|15zl,

3
the function z* + 15z + 1 has as many zeros in | zl< 7 as the function 15z, that is,
it has exactly one zero there. Consequently four of the zeros of z° + 15z + 1 must
: w3 :

lie in the ring 5% lz1<2 as required.

Fundamental Theorem of Classical Algebra _
Theorem 7.7. Every polynomial of degree n has n zeros in the complex plane.
Proof. Let ¢(z) = ay +ayz+...+a,2" (a, #+0) be a polynomial of degree n.
Let f(z)=a,z" and g(z)=ap+aiz+..+a, 2" Then §(z) = flz)+g(2)

Let C denote the circle |¢| = R, B > 1. Then we see that f has n zeros within C,
all the zeros being af the origin.
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Now on C,
| fz)=la,llzI"=la, | R"
and |H{E}|"’lHﬁ+ﬂ1z+...+u,,_|zﬂ_]1
<lag l+lay | R+, | R"

<R Mag | +bay 1+ . la, 1), (2 R>1),

So,on C, lg(z)|<l f(z)l if R"_lﬂani-t—lal l+..+la,_ D<la, | R"

Iﬂul+|ﬂ]1+..-+|ﬂ"_1|

e il R
la, |

ware L0

Hence by Rouche's theorem flz) and f(z)+ g(z) = iz) have the same number
of zeros within a circle having centre at origin and radius R satisfying (7.8). Thus §(z)
has n zeros within such a circle and as such &(z) has also n zeros in the entire
complex plane.

This proves the theorem.
Maximum Modulus Theorem

Theorem 7.8. If f{z) is analytic inside and on a simple closed curve C and is not
identically equal to a constant, then the maximum value of [f(z)| occurs on C.

Proof. Since fiz) is analytic and hence continuous inside and on C, it follows that
Ifiz)| does have a maximum value M
for at least one value of z inside or on
C. Suppose that this maximum value is
_ attained at an interior point &, i.e. [{a)]
= M. Let C; be a circle inside C with
centre at g. If we exclude fiz) from being
a constant inside C;, then there -must
be a point inside C,, say b, such that
| fibyl<M, ie. | f(B)I=M—e,e>0,

Now by the continuity of | f(z)! at

b, we see that for any >0,3 a §>0
such that

I F()I=1 FB)]| < ye

whenever |z-bl<b wree U1.)

Fig. 7.3



. l
L.E. Jff:)l«:if{bJHEE:MuEa. ware b 1L R0

for all points interior to a circle C, with centre at b and radiug &, 45 shown shaded
in the figure.

We construct a circle Cy with centre at g passing through b, On part of this circle .

[namely that part PQ included in C;] we have from (7.10), | f(z)l<M _EE On the

_remaining part of the circle we have | f(2)|<M .
We measure 0 counterclockwise from OP and let ZPOQ =g and r = = al.

) f - 1”
Then f(a)l= o jf{u +rg’H}dH+2—ln J'f{que‘ﬂ )do

o

e | fla)l= 5 ﬁ j[a+re'u}ldﬁ+—uflf[a+r€'u}|de

E—ZHI[{M 5 }de+—j'MdE

a ! M
EZ_T.[(M_E ] 5 E:?.ﬂ' a)

i 5.0 58 -
e |l fla)l=M <M T a contradiction,

Hence we conclude that [f(z)| cannot attain its maximum at any interior pmnl of
€ and so must attain its maximum on C.

Minimum Modulus Theorem (statement only)

Theorem 7.9. If f{z) is analytic inside and on a simple closed curve C and fiz)
# 0 inside C, then |flz)| assumes its minimum value on C.

Problem 7.1. Give an example 1o show that if f{z) is analytic inside and on a
_ simple closed curve € and fz) = 0 at some point inside C, then |fiz)] need not assume
Its minimum value on C,

Solution. Let fiz) = z for |z| < |, so thal € is a circle with centre at the origin
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and radius one. We have fiz) = 0 at z = 0, If z = re'?, then |Rz)| = r and it is clear

that the minimum value of |f{z)| does not occur on C but occurs inside C where r =
0, ie atz=0

7.7. Contour Integration

A variety of real definite integrals can be evaluated with the help of Cauchy's
residue theorem. Here we illustrate the methods together with a suitable function f
and a suitable closed contour C; the choice, nevertheless, depends on the problem,

7.8. Integration around the unit circle

An integral of the form

In
j £ (sin ©,cos 0)d0

svvenn SRR L)
0

where the integrand is a rational function of sin@ and cosb, can be evaluated by
writing z = &%,

il -8 2] -8
—e v +e
: and cosf=

I

[fl2)dz
(i

; : .
Since sinB=

, the integral (7.11) takes the form

where f is a rational function of z and C i§ the unit circle |z] = 1.

2

Example 7.14. Show that dB=
i {‘!‘l—iacusﬂ+a1 l-a

tR cos 20
Solution. Let /= ]’- —..d0

9 1-2acos0+a’

Let z=¢€". Then

Sin'B:L, z—--—l- ICﬂsﬁzl z+l and dz=iemdﬂ.
Zl' il 2 7

i20 , _-i20 '
+ 1 1
Hence cos20=5—" = -—( 2+ -—]




3 +5) dz

Therefore, [ = o
I:I=11*a(z+{_}+a2 =

o _L j- 34 +1
2 2 2 (z—a)1-az)
z" +1
2 (z-a)l-az)

|
“ey J' f(z)dz, where f(z)=
lzl=1
Now, fhas simple poles at z =g, and a double pole at z = 0, of which the poles

at z = 0 and z = a lie within the circle |z| =

_z4+] at +1
Res(f; a}—l:m[z a)f(z) =lim =— :
i=a 7% (l—-gz) a (l—azjl

Res(£;0)=lim [ /()] = lim ”’{ 22d ] et

rs0dz | (z—a)(l-az) a*

Therefore by Cauchy's Residue Theorem we obtain

2 2
J=9mi. 0 1) S| I__+a :2:1:1 .
2| a* (I—a ) a’ |-a?

7.9. Integral around a semicircle

To evaluate j S(x)dx, we consider J' f(2)dz where C is the contour consisting
—o0 C .

of the semicircle Cy :1z1=R(Im(z) 20) together with the diameter that encloses it.

Supposing that f has no smgu!ar points on the real axis, we have by the Residue
Theorem

R’
j' f(2)dz+ j f{x}dx=2niZRﬂS(f:a).

Finally making R — c0, we find the value of If(x)dx provided If{z}dz —}{]

R
as R— o,
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Example 7.15. Evaluate J m
2fx i

Solution. We consider

2

Z
—__d = 'd BENE o A
i{z%n(z?m) z if{z) 2, say (7.12)

where C is the contour consisting of the semicircle Cy, of radius R together with the
part of the real axis from -R to R.

The function f{z) has simple poles at z =
+i, z = +2i of which z = i and z = 2i lie inside
C. Now,

Res(f;i) = {i_rpr!{z-f'}f(z)

2
= ]im—iz— =_l_ ' R
i (g+i)z+4) O
Res(f:i2i)= lir%(z—zf} f(z)
I=¥
: zz 1
= 1I!Ti —"2— = -
=420 (2% + 1)z +20) 3
Thus 2mi[Res(f:i)+Res(f; 2i)]=%. it A3
From (7.12) and (7.13), by Cauchy's Residue Theorem
i T
[ fydz+ [ fx)dx= 5 e (oL
Cy -R
| z? Fik

On C, |f(2)l=
Lo A 422 114+2%1 Az =Dz -4)

R® wely, o, wlL Al
(R* ~1)(R*-4) RI(I—#)(]-;"‘;
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So, by ML formula,

1

e -2)0-)

ie. ;E*I_TG{I flz)dz=0,
.

=

JR—= 0 as R — oo,

| flz)de
Ca

So, form (7.14) we get making R — o

- = il

X n
7 dy=—.
‘I.r:x2+1]|:x‘+4] 3

e

7.10. Integration around rectanpular contour

« fiis
Example 7.16. Evaluate E—jdx,[}{a <l.
o L
}I
h
e
Solution, Consider J E = I f(z)dz, (=R, 2m)
- E-' L]
< & ¢ T<—B(R, 2m)

where C is the rectangle ABCD with vertices Y A
at (R.0), (R2m), (-R.2n), (=R,0), R being D = A
positive, (=R, 0) 07 (R O0)

flz) has simple poles given by Fig. 7.5

e+ 1=0iez=02n+ I}, n =0, +1, +2, ...
The only pole inside the rectangle ABCD is z = ni,
Then by Cauchy’s residue theorem
[fdz=2xiRestfimd, L (7.15)
: :
ax ani :
Now, Res(f;mi)= lim 7 : e

I =4 T (1 +E':} Eﬂf'
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So from (7.15) we havé

‘[f (2)dz = —2mie™
¢

i.e.

[ e+ [ fl2)dz+ [ flaxde+ | fladz=2mie™
Al ac c DA

On AB, z=R+iy,0s y<2rn. So

o (7.16)

al R+iv)

- l o EHR

‘|+f:

I f(z)]

e B :
‘lﬂ.'"ir ”i 2t )

So, by ML formula,
iR

< [
R
e —

[ 1

In—+0asR—amand0<a<l.
AR I

OnCD,z=-R+ iy, 2nzy=z0. So,

| ()=t = Caisis T s
] 4 1+e'”*""|— — 41
So by ML-formula,
—af
“f(::)dz{sie _R+2u—bﬂasR—hmundﬂ-=:a{ ¥,
lco HLE

Letting R — = we get from (7.16)

— eﬂ'{,\'ﬂ!l‘ll ol Eux 1
— dx + _[ dx ==2mi "

1+ xeidn 1+ X

ol £ e

fiiy
e, (1-62) [ S—dx=2mi e

EE
o ]-D ™ dx i & 2ni T
| = F = e .
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Jordan Inequality

%
For 0282 — , we have —fﬂsinﬂiﬂ.

3| A

The above inequality is known as Jordan Inequality,
7.11. Indenting the contour having poles on the real axis

Example 7.17. Evaluate J'E:ﬁ‘rd,_.
0 i c CR
Solution, We consider the integral
C,
JE—T d.-:=ffl’:ldz
ol C
where C is a contour consisting of the > 5\
following : -R =1 0] r R
1) the real axis from r to R, Fig. 7.6

1) the upper half of the circle Cy : |z| = R
1) the real axis from — R 10 - r,
iv) the upper half of the circle C, : |z = »

Since f has no singularity inside C (its only singularity being a simple pole at =
= 0, which is outside the contour C), we get by Cauchy fundamental theorem

[f(2dz =
( "
B - :
18 j'f{x}ﬂ'x+ J flzydz+ J [f(x)dx+ J flz)dz=0 e (117
g Cy -R Lz
1 Elmﬂe"" ) g .
Now, j fl2)d:z =J—T.5R¢"Hdﬂ. putting - =g 0<0<n
Cy fl
=7 ]Prmﬁ’[tﬂﬁﬂﬂ".in “’dB :
i}
Since fffm‘“ﬂhﬂﬂs'in!!:l= (MR0s —mRsinBf _ —mRsin0
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we have

R
< ﬂgfrﬂﬁicmﬂﬁsinﬁ} 46
i}

n
: jEmlR lr.'l'?\s B+i 5in ﬁ}de

jf(z}cfz

Cr

0

E=mRsinEdE = zTe—mHsianB
=

bl |

;S
< 21‘9_%&6{13. by Jordan's inequality.
0

7 m [ -MBT
= e "
2Rm H

o T
Rm

Also z = 0 is a simple pole of f{z), Hence near z = 0, f{z) has a Laurent expansion
of the form

(l-g‘”‘“] 30 as R = o,

flz)= Ez:-+ h(z),
where ¢(z) is analytic at z = 0 and

= i e bl = i'm:__
a=Res(f;0) !I.E‘ljaﬂzl il_ﬂm]e =¥

| —

Hence jf(z}dz = I dz+ j $z)dz
c C, [

On C,, ;=pe™ w=020. Then

]

f f(2)dz =jde!+ J' $(z)dz = —in+ _[ d(z)dz ,
C, e :

n C

Since ¢ is analytic at-the origin, 3 a positive number M such that in Ixnm;
neighbourhood of the origin |¢(z)|1< M. We take r so small that C, lies entirely in
this neighbourhood. Hence 1¢(z)| €M on C,. Therefore by ML formula
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=M. nr—0 asr— 0

[ ot2)dz

C,

1 g7y = —f
So, 1.__:-’.‘1]{[ f(2)dz =—in

Hence proceeding to the limit as r — 0 and R — w, we get form (7.17)

uj-f[x)cir =in

= e

i.e. Jex dx=im

—0

CGSH'II-FI'S]TI.TJM
1 ——lx _HI
1.E. Y

—a)

Equating the imaginary part in both sides we gel

oz v
sin my
J dr=T1
-y
Ismmx R
T
]

7.12 Other types
Example 7.18. Show by the method of contour integration

2

.

~[%)

o o
Isin xdx = qus ¥dx =
0 ]

Solution. Let f(z)=¢77.

We integrate f round a closed contour C

consisting of E S
, . o : 0 i A
(i) the line segment L :z=x,0<x<R; Fig. 7.7

(ii) the circular arc Cpg ! z=Ré' .ﬂSBSE,
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(iii) the line segment 7, ., = xe't yRZx20-

Since f is analytic within and on the closed contour C, by Cauchy's fundamental
theorem we gel

= If{z}dz =je‘:ldz+ I e‘z!dz+_[e“‘1dz
c L Cy L

_j “dx + I _zzdz'+ji E_fg}é £Pdx
R

.lT

R R
Jetane [ a- s

Now, on Cg, z=Re", ﬂ‘iﬁfz

y e
So, je " iRe®d0
4]

e

Wi %o
< R”e—ﬂ {cnsEElﬂ.-.mEEI]‘ 40 =Rr£hﬂnm$2ﬂd‘ﬂ,
Cy

1]

-
dzl =
|

Putting ¢-=;—ZH we get

‘ I e_:zdz

| % Risi
5—&_({ e,
2
a8 0

For 0<¢ < 5+ We get by Jordan's inequality
2¢ .
T =sing

, . op iy
LE, E"R!51"¢£E RS
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2
Now we consider the integral _Il.?"r dx .
0

Putting x* = t we gel

B

ST
T e e
;[e dr-l-le I gt = e

Proceeding to the limit as R — o we get from (7.18).

el If_“:rix = %

i T o e _\IGE
ie. (cos—g-ﬂs:n%)g(cnbx ~isinx )dlx-T

ie. jn +i)(cos x* —isinx?)dx = J-;_
0
Equating real and imaginary part we obtain
T | 2 : bl T ":'
J-[me A }dx=\/; and j{cusxl—sinx;}cir-——[}.
0

o

Adding and subtracting above two results we obtain the solution of the problem.
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10.

_ Find the residues of f(2)=

Exercises-7

2t -2z

{z+1)2 (zg +4) at all-its poles in the finite plane.

3 1

sin— at its singular poims.

2=l

Find the residue of the function f(zi=2

. Evaluate the following integral.

@ sin z .
(2D ("+9)

Prove that the roots of the equation z*+az+1=0 lie within lz|=r if

1
lal<rt=—.
e

Show that the equation 72 +iz+1=0 has a root in each of the first, second and
fourth quadrants.

. How many zeros have the complex polynomial 2% +32% + z +1in the right half

plane?
n -
cos 26 n 2
: = , @ =1,
 SKOEES {l—!acoslﬂ+a2 a’(a*-1) {_ )
2% .46 _m
. Show that ‘{[m—-.
Show that [ =T,
axf+1 3
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I1. Show that “f‘“dx ne ™, a>0.

el e o
12. Show that ﬁi’r-—=£.a:-ﬂ.
ox'+a'  da
13. Prove thar IMﬁ=xlng2.
X4l

; %
14, Prove that flﬂgsinxdr=_rlugcusx d}.=—%lug2.

6
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Unit-8 @ Bilinear Transformation

8.1 Definition

If a, b, ¢, d are cui, plex constants then the transformation

w=w(z)=— S

a b

where d-= ad —bc #0 s called a Bilinear Transformation of a linear fractional

7
transformation or a Mobius Transformation. The expression ab — be is called the
determinant of the transformation.

Remark 8.1. When ¢ = 0, (8.1) represents simply a linear transformation, When
¢ # 0, (8.1) can be wrilten as

_aztb  “leztd)-%+b g ad-be |

w= = 3
cz+d cz+d i [ cr+d

If ad = be = 0, then w =~:— = constant,

Thus the condition ad — bc # 0 imply that the furiction w is non-constan.
8.2. Properties of B.T
i) The inverse of a B.T is also a B.T.

Proof. Let (8.1) is a B.T. Solving for z we get

i | e (82)
cw—a
-d b
where =ad —bcz0,
C —il

The transformation (2) is the inverse of the B.T (8.1) which is also a B.T.
Conformal Mapping

A mapping or transformation which preserves angles in magnitude and sense
between every pair of curves through a point is said to be conformal at the point.

335



Theorem 8.1. At each point where a function f is analytic and f'(z)=0, the
mapping w = f{z) is conformal.

ii) A bilinear transformation is a conformal mapping of the extended z-plane
onto the extended w-plane

+ b
Proof, Let w=w(z )— & T ab — be # 0 be a bilinear transformation. Then
- ad ~bc
wiz)= +
(@) (cz+d)?

and so w = w(z) is a conformal mapping.
iii) The composition of two B.T is again a B.T.

_azth o '
FProof, Let = e A G <Beyd - L e (8.3)
and w= L+ d;" aydy —bycy # 10 veens (8.4)

be two bilinear transformations. Substituting we get

G E Li:+q’| bz I:ﬂzﬁﬁ +h1|‘.:| )z + ':‘1251 + b‘zﬂl|

cgia‘-::i}+dz (ac, +f|d1]'3+(biﬂ'1+dldz}_

_az+bh
cz+d

e (RN
wherea = aya, + by, b=ay)by +byd,, ¢c=ac, +cdy, d =be, +dd,.

=ﬂ|b|ﬂzbz¢u

Again ad —be =
¢ dille; d,

a b
c d

Thus the composition of two B.T is again a B.T
iv) The identity mapping'w = z is a B.T.

l.e+0
Oz+1"

v) The associative law for composition of B.T holds.

Proof. w=z= which is obviously a B.T.
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H!Z‘l'b!

Proof. Let T : [:=c|z+a’,' ayd, =bey, =0,
S R
T'_l_ . W Er‘;-i—dz 1 ﬂzdz bj_C-z #0,

+b
and T; : ?-.=g:::ﬁi. aqydy~bycy #0,

be three bilinear transformations. Then it is easily verified that
Ty (1) = (1T
and so the associative property holds for the composition of B.T.
In view of the above properties the next theorem follows
Theorem 8.2. The set of all B.T forms a group with respect to the composition,
8.3. Fixed Points or Invariant Points of a Transformation,

The points which coincide with their transformations are called fixed or invariant
points of the transformation.

fltzbea fixed point of the transformation T, then T(z) = z. As for example, the
fixed or invariant points of the transformation w = z* are solutions of 2 =z,
1e. z=0,1.

8.4. Cross Ratio
If 2, 22, 73, 24 are distinct points taken in the order in which they are written then
the cross ratio of these points is defined as
(7 —z3)(25 — 24)
(23— a2y —7)
Note 8.1. The cross ratio will change if the order of the factors is changed.

(2):23:23.24) =

Since four letter z;, 23, 23, 24 can be arranged in 4! = 24 ways, there will be 24
cross ratios but as matter of fact there will be only six distinct cross ratios. The six
distinct cross ratios are

(21 220 T3 Za)s (21 20 Za Za)s (20 230 220 Z4)s (21 210 L85 Zah (21 24 T30 33
(zh Lgp L3 fz:“
Theorem 8.3. A bilinear transformation leaves a cross ratio invariant.

Proof. Let w= ﬂ—zﬂ. ad—bec+0 e (8.6)
cz+d
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be a bilinear transformation. Let Wy, Wy, W3, Wy be the images of the four points 1
Za, 23, 44 under the B.T (8.6). We have to show that

{“JI" H'Ilz" W3| w-l} e (z'l_l ZL 331 -iju

(wy = wy )(wy —wy)
(wy —wy)(wy —wy)

Now (W), wy, W, Wy) =

N (_ad -be)(z —z,)
ez +d)czy +d)’

WI = WI

_{ad =be)(z; — ;)
" (czy +d)ezy +d)’

My =1y

i _ (ad —be)(z3 - z4)
T T ez +d)(czy +d)

(ad —be)(zy — 2))

and Wy =) = (czy +d)cz +d)’

(zl = 31:'(23 - 24}
(23 — 3024 — 2)

Theorem 8.4, Prove that in general there are two values of z for which w = z but
there is only one if (@ — d)* + 4bc = 0,

Hence (W, Wy, Wy, wy) =

=(2,22,23, %) -

Show that if there are distinct invariant puinls p and g the transformation may
be put in the form

u:g[uj
w=4q i—q

and that if there is only one invariant point p, the transformation may be put in the
form

azr+b
Proof. Letw = i

v ad —be#() v (8.7)

be a bilinear transformation, For fixed points we have w = z,
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ie.ct—(a-dz-b=0, R

In general (B.8) gives two values of z and hence two fixed points. In case of
(a = d)? + 4be = 0, there will be only one fixed point,

Let p and g be two fixed points. Then from (8.8) we have

c‘pz—npz'b—pd}

and cq° —ag=b-gd e (8:9)
_(a-cp)z+(b—dp) (a—cp)z—p)
Now w=—p = o = e , by (8.9).
i _l(a-cq)z—gq)
Similarly, W-q"_—_f:z+d :
w-p (a=-cp)z-p) [E—P] a-cp
2 = =K =
weq (a-cq)z—9) e , where K =
If there is only one fixed point then
+ —-d
P=q=~‘?ﬂl.-3=ﬂ?. by (8.9). e (8.10)
o emd _ cz+a-2cp
"W-p la-pz-p) (a-copyz-py+ Y &10
c(z—p)+ila-cp) 1 €
s =K —
(a—co)z—p) +:_p,wher: K ey

This proves the theorem.
Note 8.2.

e

i) A bilinear transformation w=—
cz+d

parabolie transformation and as shown above the wransformation is of the form

1 1

PR [ int.
w—p z-p , where p is the fixed poin
az+b

cr +d

having only one fixed point is called a

it) A bilinear transformation w = , ad —be+0 having two fixed points p

and g can be put in the form

=
w-g i~q )
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If |K| = 1, then it is called elliptic and if K is real then it is called hyperbulic.

o) : az +b L :
1i1) A bilinear transformation w:m.ad = be # 0 which is neither hyperbolie

nor elliptic nor parabolic is called loxodromic.
8.5. Inverse Point

Let C be a circle of radius R with centre al z;. Two points P and Q are said to
be inverse points with respect to the circle C if they are collinear with the centre and

lie on the same side of it and the product of their distances from the centre is equal
o R, :

v C

: Fig. 8.1
Clearly @ is exterior to C if and only if P is interior to C. If Qison C, then 0
coimncides with P,
Note 8.3. z = 0 and z = « are consider as a pair of inverse points.

2

] R®
Thus if p=gz, +pe”'. then g =2 +F£"l.

If z is any point on C, then z= zﬁ+Rt:'m,ﬂ'5 0< 2.

z=p|_ REIB__pEiA\
1=q| |Re"- £ P
p

p
fore, ==
_There ore %

This is a new form of the equation of a circle,
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Conservely, it can be shown that
z—p
=g
represents a circle in the z-plane with respect to which p and g are inverse points.

In the particular case when K = 1, z is equidistant from the points p and g, and hence
lies on the perpendicular bisectors of the line joining them.

=K(=l)

Theorem 8.5. A B.T transforms a circle into a c_ircle and inverse points into
inverse points. In the particular case in which the circle becomes a straight line,
inverse points becomes points symmetric about the line.

o

Proof. Let PI = K be a circle (or a straight line for K = 1) with p and q as

inverse points (or symmetric points).

“

az+b
Let W-m".ﬂdfbfiﬂ e (8.11)
be a B.T. Solving for z we get
—dw+b
z= -
cw—a

Then the circle is transformed into

| =dwtb _
cw—a P =
—dw-+b -q

oW —da

—dw+b-—1~pw+ﬂp[=K

Ve \Tdw+b—cqw+ag|

ap+b

W= , .

7 cp+d _K cq+d
i T

cq+d
. W= gt
1.8: -WTB =K,

_ap+b ' aq+bh e I_cq+dt
where o=~ ——., ﬂ__-cq+r.f and P




<= p
z—q

Thus the map of the circle

|=K under the B.T. (8,11) is a circle or a

e =
straight line =0

points which are respectively the images of p and g, This proves the theorem.

= K" with respect to which a and P are inverse points or symmetric

Example 8.1, Show that the B.T. which carries the points z = i, 0, - into
w =0, =1, o respectively maps
i) the real axis'Im(z) = 0 on |w| = 1,
ii) the upper half plane Im(z) > 0 on |u] < 1,
i) the lower half plane Im(z) < 0 on |w| > 1.
Solution. Let w= j:j L ad — be# 0 e (8.12)
be the required B.T,
Now, i— 0 = f::j =0
ie ai + b =0, et (8,13)
0—=-1 = f-:; = =]
ie. b+d=10. -(8.14)
iy SHitD
—ci+d
e —ci+d=0 . (8.15)
From (8.12), (8.13), (8.14) and (8.15) we gel
W= %. which is the required B.T.

Now we consider following three cases separately.

Case 1. Any point on the real axis can be taken as z = x,

=1.

vy - Xi= X
Then its image is w=-—. Thus |lwl=|—
X+ x+i

362



Case 2. Any point on the upper half plane can be taken as
i e 0.
Then its image is

_x+i(y-1)
by_.x+1[y+|}'

_Jf+y1—2y+1

bx+i(y—1)
Thus |wl= ‘T+T{:}'_+-ﬂ

— <1, (ry>0
x4yt e2y+1 Cey)

So the image of the upper half plane Im(z) > 0 is-the region |w| < 1.
Case 3. Inthiscase z=x + iy, y < 0.
Then its image 1s
x+i(y=1)
T o e
x+i(y+1)

2 .

X4y =2y+1

and |wl= —H—zi—- >1. (ry<0)
xT+y +2y+1

Thus the image of the lower half plane Im(z) < 0 is the region |w| > 1.

Example 8.2. Show that the transformation w=2:_+43

maps the circle
x? + y* —4x = 0 onto the line 4u + 3 =0.
Colution. Given transformation is clearly a B.T. The inverse transformation is
given by
_Aw+3
T
The equation of the circle can be written as

x2+yl—4x=0
ie. 1zI*-4RI(z)=0
e, 2@-2z+7)=0. e o)
Substituting for z and 7 from (8.16) in (8.17), '
4w +3 4_ﬁ:+'3__2[4w+3+4ﬁ+§_]=n
w-2" w-2 w=2 w=12
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e, (4w+3) (40 +3) - 2{(dw+3)(H-2)+ (4 + 13){}-.:—- 2)}=0
ie. 2(w+w)+3=0
ie. 4u+3=0 [ w=un+iv]
- which is the required line.
Example 8.3. Let f{z) be a bilinear transformation suci that fleo) = 1, fiiy =i and

Ai-) = - i. Find the image of the unit disc {Z ec:lzl<1] under f2).

az+b

Solution, Let w= A ad — be # 0 O (B.18)

be the required bilinear transformation.

a
Now @w—=l=—=|
e

= Ll o TR A R (8,.19)
ik ,‘:}ai-r-b_!.
s ci+d
=(a—-d)i+(b+c)=0. oresres Nl
e —ai+b
L Y i
= (a—d)i-(b+¢)=0. ann (8210

From (8.19), (8.20) and (8.21) we obtain
a=c=d=-b

Thus w=f{:::=f—-l

ok Let - /0, Then

re'® —1 (rcos®-1) +irsin® rl =t 3 2r
w= 7 = r, = .
re®+1 (reosO+D+irsin® 24 9,c06041  r%+2rcosO+1
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The map of a point lying on |z] = | lies on the imaginary axis in the w-plane because
for r=1, Re(w) =0.1f r < |, then Re(w) < 0, i.e. the image of a point lying inside the
unit circle |z] = 1 lies in the left half plane of w-plane. (See Fig. 8.2 and 8.3),

/
0 ’/ 0
Fig. 8.2 Fig. 8.3
j iz+2 e :
Example 8.4. Show that the ransformation w= e maps the real axis in the

z-plane into a circle in the w-plane. Find the centre and the radius of the circle and

the point in the z-plane which is mapped on the centre of the circle.
. ; S, . 2—iw
Solution, The inverse transformation is 2
Now the equation of the real axis in the z-plane is 7z -7 =0.

Hence the transformation curve is given by

e, Bw+2i—diww+w—=8Bw+ 2 —divw-w=0

Le, Siww+ T{w— 'ﬁrj —4i=0
e, Biul+ v )+ 14iv—4i=0

7 1
i.e, I12+V2.+EV—§=H
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. 7
which is a circle in the w-plane whose centre is [U-“E] (ES w:-%f and

radius = E+l =?

64 2 B

The point in the z-plane corresponding to the centre w = —%i of the transformed

circle is given by

224=21) 9 .
a(-2i)-i “Z360 4

z:

; e
Example 8.5. Prove that tlic transformation w = “ITE transforms the circle |z|=1

onto the real axis of w-plane and the interior of the circle |z| < 1 into the upper half
of the w-plane.

Solution. The inverse transformation is

P—w

&= .
1+w

Under the transformation, the circular disc [¢| < 1 is transformed into the region

i—w
i+ w

i-w\( =i
Le: {Fﬁ)[—n w] 2

e, I+ (w—w)i+wiw sl —(w—w)i+wmw

ie. 2iw—w)<0
Le. 212iv<0
1e. 4y<0

ie. v=0.

Thus the boundary of the circle |z} = 1 is transformed into the real axis v = 0 and
the interior |z] < 1 is transformed into v > 0 i.e., into the upper half plane as required.
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Also it is evident that the exterior |z| > | is transformed into the lower half plane
defined by v < 0.

Exercises-8

|. Find the bilinear transformation which maps z;= i, 2 = 1, z3 = e into wi= ~j,
w2=m. ]"r"a:'-llr o
—z4(2i+1)
z=1 i
2. Find a bilinear transformation which maps points z = 0, —i, -1 into w = §,1,0.

ﬂn& W= _l[z_i_lJr
z—1

Ans.

3. Find a bilinear transformation which maps the points 1, i, —! in the z-plane intg

the points 0, 1, =0 in & w-plane. Show that by means of this transformation the
area of the circle |z] = 1 is represented in the w-plane by the half plane above

the real axis.

4. Find the fixed or invariant points of the transformation w = 2

. =1z .
5. Show that the transformation W=—— maps |z] = r where + < 1, into a cir

in the w-plane, whose centre is on the imaginary axis.

& transforms the circle lzl=1 i
dz-2

circle of unit radius in the w-plane and find the centre of the circle.
Anms. [—'x’:: 0)

7. 1f = b are the two fixed points of the bilinear transformation, show that it
be written in the form

W—a z—a
w—b_K[z-b)
wEere K is a constant.

8 If u = b in problem 7, show that the transformation can be written in the form

1 1

w=g I—4a

6. Show that the transformation w=

+ K

!!
~ Where K s a constant.
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10,

Bow e

Prove 'fh_ﬂt the most geperal bilinear transformation which m
|WI =1 18 P8

W= t" [Z FJ
z—1

where P is a complex nymber.

Show that the transformation of Problem O
if [p] < 1 and (b) |w] > 1 i |p] > 1.

lz] = 1 onto

maps |z <1 ong (3) w| < |
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