I

NETAJI SUBHAS OPEN UNIVERSITY

|||uu"u|||\\

STUDY MATERIAL

MATHEMATICS
POST GRADUATE

PG (MT) 04
GROUPS A & B

« Nurnerical Analysis

» Computer Programming
and its application to
Numerical Analysis

..:_.”r.l__p

il

PREFACE

In the cutricular structure introduced by this University for students of Post Graduate
degree programme, the opportunity to pursue Post Graduate course in a subject is
introduced by this University is equally available to all learners. Instead of being guided
by any presumption about ability level, it would perhaps stand to reason if receptivity of
a learner is judged in the course of the leaming process. That would be entirely in keeping
with the objectives of open education which does not believe in artificial differentiation.

Keeping this in view, study materials of the Post Graduate level in different subjects
are being prepared on the basis of a well laid-out syllabus. The course structure combines
the best elements in the approved syllabi of Central and State Universities in respective
subjects. It has been so designed as to be upgradable with the addition of new information
as well as resulis of fresh thinking and analysis.

The accepted methodology of distance education has been followed in the preparation
of these study materials. Cooperation in every form of experienced schiolars is indispensable
for a work of this kind, We, therefore, owe an enormous debt of gratitude to everyone
whose tireless efforts went into the writing, editing and devising of a proper lay-out of the
materials. Practically speaking, their role amounts to an invelvement in ‘invisible teaching’.
For, whoever makes use of these study materials would virtually derive the benefit of
learning under their collective care without each being seen by the other.

The more a leamer would seriously pursue these study materials the easier it will be
for him or her to reach out to larger horizons of a subject. Care has also been taken to
make the language lucid and presentation attractive so that they may be rated as quality
self-leaming materials. If anything remains stili obscure or difficult to follow, arrangements
are there to come to terms with them through the counselling sessions regularly available
at the network of study centres set up by the University.

Needless to add, a great deal of these efforts is still experimental—in fact, pioneening

' in certain arcas. Naturally, there is every possibility of some lapse or deficiency here and

there. However, these do admit of rectification and further improvement in due course.

On the whole, therefore, these study materials are expected to evoke wider appreciation
the more they receive serious attention of all concemned.

Prof, (Dr.) Subha Sankar Sarkar
Vice-Chancellor

Sixth Reprint : October, 2017

Printed in accordance with the regulations of the Distance Education Bureau of
the University Grants Commission.

Subject : Mathematics Post Graduate

Paper : PG (MT) 04 : Group A

Writer : E{Iilﬁr-
. Prof, Debasis Sarkar ' Prof. Subhas Ch. Bose

Revised by Prof. Madhumangal Pal
Paper : PG (MT) 04 : Group B (Revised Syllabus)

Writer Editor
Prof. Madhumangal Pal Prof. Kajal De

Notification
All rights reserved. No part of this Book may be reproduced in any form without
permission in writing from Netaji Subhas Open University. '

Mohan Kumar Chattopadhyay
Repistrar

o

STY

NETAJISUBHAS | PG (MT)-04

o OPEN UNIVERSITY Numerical Analysis,

Computer Programming and
its application to
Numerical Analysis
Group
A |
Numerical Analysis
Unit 1 O Introduction e
Unit 2 0O Solving System of Linear Algebric
i Equations in n unknowns 17-46
Unit 3 0 Figen Values and Eigen Vectors of n X n
Numerical Matrix : feh) 47-57
Unit 4 0O Solutions of Non-linear Equations 58-87
Unit 35 O Polynomial Interpolation 88-102
Unit 6 = O Approximation - 103-114
Unit 7 O Numerical Integration 1152132
Unit 8 0O Numerical Sblu!;iﬂn of Ordinary Differential
' ‘Equations : Initial Value Problems 133-159
Unit 9. O Two-Point Boundary Value Problems. of
Ordinary Differential Equations 160-166
Unit 10 O Elements of Finite Difference Method of

Numerical Solution of Partial Differential Equations 167-183

- Group
B

Computer Programming and its
application to Numerical Analysis

Unit 1 0 Algorithms and Flowcharts 185-201
Unit2 0O Programming with C 202-380
381-414

Unit3 O Problems on Numerical Analysis
Unit 4 QO Data Structures ;

. 415-444

Unit 1 O Introduction

On Errors @

The basic objective of mimerical analysis is to provide an approximate solution
of a mathematical problem where exact solution is not easily available: In the process
of approximation or nuimerical compulation, we usually express numbers in some
representations, such as, binary, decimal, octal, etc., depending upon the methods or
machines available for computations,

& Ohbjectives
After going though this unit you will be able to learn about—

® FErrors in numerical computation
® Round-off errors and instability
® Control of round-off errors.

Let, x be a real number, positive or negative. Then, in decimal system x can be
represented uniquely as,

x| = a0 + a; 1071 4+ o+ @10 agl0 4 a0+ dl)
and (1) may be concisely written .as ' |

£ =% (a8 . 00y 8 G) el 1Y)
~ where a;# 0 and all a,'s € (0, 1, 2, ..., O k=i i=1 o LO =1 i

It x is a rational number, (1) is either teminates or recurs; if x is irrational, (1)
is non-recurring and non-terminating. The leftest digit a; is the most significant digit
of |x| and the significance of a;’s decrease as it advances towards right.

Now, instead-of using exact value of the number x, we use an approximate of x,
say £ and-an error occurs. Then irrespective of the nature of the etror, one can define
an absolute and & relative error. The absolute error is defined by € =|x - | and the

relative ervor is defined by ﬁzlf—‘-:i , provided |x|# 0.

Example 1. Suppose we use instead of two numbers x = 8:5250, y = 3.1415 thmr
approximates £ = 8:5000 and § = 3:1400. '

Then absolute errors in two cases are,

7

|x ~ & = 8.5250 ~ 8:5000 = -0250 and

ly=3 = 3.1415 - 3-1400. = -0015.
While relative errors are,

x=x 0250 i : :
e (-] ﬁ 3
= i 8.5250 0029326 (corrected to 7 decimal places) and
ly=3|_ 0015 _ ‘
y | 31415 - 0004775 (comeet to 7 decimal P!més}

- And these two types of errors differ not too much, But if we consider a third case
where exact number z = 1,0000 and approximate number £ = 9999, then,

absolute error = 10000 - 9999 = | while,

eelative error =]—ﬂ%@ = 0001, and they differ considerably,

Now to classify the errors in numerical computations it might be fruitful.to study
the sources of the errors and the growth of the individual errors. The sources of errors
are usually static, while the growth takes place dynamically. Essentially the following
three types of erors are of fundamental importance.

(1) Initial errors, (i) truncation ermrs,_{iii}.round-off errors.

The initial errors are errvors in initial data. An.cxample of it is, when data are
collected from a physical or chemical apparatus. Truncation errors arise when an
infinite process is replaced by a finite one or when the process is finite but large
enough and is replaced by smaller number of terms or steps. Well-known examples
-are computation of a definite integral through approximation with a sum or integration
of an ordinary or partial differential equation by some difference method. Round-off
errors depend on the fact that each number in a numerical computation must be
sounded to a certain number of digits. We now briefly describe the rounding rules to
approxirtate numbers, 1

Let us require a number x as represented in (1) to approximate upto m-th decimal
point. Then the rules of rounding x are :

(DI a_gpeqy2 5 and at least one of a_,, , ap @ _ 4 3 - 81 NOL equal o zero
then take, :

=4 (g 1004 .+ a10" + a5+ a,107 +
+ (a_ 4 1). 10°7)

(i) If a_ o 1y = 5 and all a_ (5 2 G_ i 4 3 - A€ Equal to zero, then take,

=3 (g 1004 o +ap+a 107+ o+ (a 1) 107 L (3)
when, a_-m is an odd digit and .

=4 la 100+ . +ag+a 107 + .. +a 100" vorns ()
when a_,, is an even digit
(iii) If @, 4 1y < 5, then take,

s+ (g 10+ .. +al0 + gp+a 10"+ .. +a_, 1}""1 . (5)

Sometimes the rule (i) designated as rule of an even dlgll

* Since, in place of x, we are considﬁring a round approximate value X of x, an

error occurs in the process of rounding. This error x — X is usuali}r known as round-
off error in approximating a number x.

While in truncation a number x to-m-th decimal place, the digits h-eyund a._
are simply dropped to get % ie,

=4 @10+ .. +aql0 +a5+a,107 +.. +a 100"
and the commesponding error is known as fruncation error.

Briefly, the relative merits of the two methods to size a number are that truncation
is less expensive whereas rnumlmg pmduces better accuracy.

It is clear from the rounding rule that. if € = x = X, then [g| < l.m i

Now, any tounded number can be written in the standard form, + (b. b .
b_, » 10"), where n is an integer, either positive, ot negative or zero and & is a
pnsrtwe integer and b_, # 0 , Then we call the rounded number is correct to k
significant digits or figures and b_ |, b_, ..., b_ ; are respectively the 1st, 2nd, .
th significant digit of the number. This form of a number is called the floating pmnt
representation of the number, the fraction <b_j .. b_4 called its mantissa and tha
mt:rgn:r n as its exponent.

~ Example 2. Round-off the numbers, 13.7839, 1.5615, 02342, 314.5 upto 3
decimal places and also upto 3 significant figures.

Ans, : Upto 3 decimal places rounding-off
13784, 1-562, 023, 324-500.

While upto 3 significant figure rounding-off :
13-8, 1-56, -0234, 314.

§ Round-off Errors and Instability : Inherent and Induced :

In the process of serious numerical computations we use machines, such as,
calculators or computers. These machines or devices have limited storage capacity of
numbers which varies from devices to devices. For example, a-machine may have
capacity that it can store numbers about then significant digits at most, So, if we
require higher accuracy in significant digits, it cannot provide us accurately beyond
its capacity. It readily causes an error in rounding a number and store the number
with an error in its significant digits. This type of ervor may be referred as an inherent
error. So we must enter the numbers in machines as inputs with rounding within the
storage capacities of the devices. Now apart from the inherent round-off error, there
are some other types of errors caused due to some arithmetic operations such as,
addition, multiplication, etc., or, some further operations. These may be referred as
induced or generated round-off errors,

[Note : We omit some details reganding propagated errors due to arithmelic operations, some other
related faces as they are the part af undergroduate courses, rather we concentrare here on some hgsic:
facts with illustrations which are also relevani in our courser)

Let us consider two numbers x = 4429:3 and y = -0023495, to store in a machine
. with capacity upto 4 significant digits. i.e., the device will store them as & = 4429 x
10% and y = 2350 x 10 ~%. We want to calculate the sum, i.e. the value of x + .
Then, by machine, we have X + § = 4429 x 10" = % , where as, x + y = 4429.3023495.
So the sum of a larger number (obviously, this largeness varies from device to device)
with a relatively small number, is the larger number in this case. We may call such
an addition as negligible addition. Again, if we multiply a large number with a
relatively small number, or, divide by a small number, we may observe propagated.
round-off error, which is referred as error magnification.

One of the most important round-off error is commonly known as loss of sig_niﬁcam

10

digits. It is generally caused in subtracting nearly two equal numbers. Consider, for
example, x = 342355 and y = -342346213. Then, with 4’ significant digit storing '

capacity machine, £ = 3424 and § = -3423.
Therefore, 5 — 9 = 0001 = -1000 x 10~ *, whereas, x - y = -B787 x 1073,

It is sometimes known as catastrophic cancellation, Such loss can often be avoided

by anticipating its occurrence. Consider the problem of finding the roots of the
quadratic equation, :

a +bx+ec=0) e)

~btb’ ~dac : :
The roots are, x = 2 5 i b A P S I S (8)
= ;

Let us assume that b2 —-dac > 0 and b > 0 and we wish to find the smaller in
absolute value of the two roots by using (8):

—b++b* -4ac

P s K9

e, x; =

If 4qc is small compared with b2, then, Jb* —dac will agree with b to several
significant digits. Therefore, the calculated root by using (9), will be accurate to

fewer places than were used during the calculation. More specifically, let us consider
the example,)

A 11110+ 1-2121 ={} (10)

Using (9) and five decimal digi't floating point :hﬂbped arithmetic, we have,
B = 12,345 ; |
b~ 4ac = 12,340

Jb?t —4ac =111.09
then, x, = -0-01000,

while infact, x; = -0-010910 is correct root upto the number of digits shown. Here,
we may avoid the loss of significance by using an alternative formula for (9),

-2¢
B X = m i ChL)
ﬁsing'{l 1) we have with five decimal digit arithmetic,
= -0:010910, which is accurate to five digits.
Anmher cxample of error avoidance is the evaluation of the function,
flx) =1 = €0$ X, in SikjdEEIMﬂi—ﬁlg!t'ﬂTIthIﬂEIIC.

Since cos x is nearly equal to | if x is near to zero, there will be a loss of
significant digits if we calculate £(x) for x near 'zcrn by evaluating first cos x and then
by subtracting from |. But, if we use the formula,

Pt)
1-cos’x sinx
l+cosx J+cosx

Jx) = L~cos x=

or, by Tnyinr serics expansion for f(x), i.e.,

"-' -I
Xt o S
ﬂ = 2 4!
The computed value of f(x) for x near zero, agrees with f(,rj to at least six significant
digits for a considerable numbcr of x's near zero.

Now in denling_whh errors we sometimes investigate two related concepts, such
as, condition and instability. A problem is designated as ill-conditioned, if smali
changes in its initial data causes a large deviation in final result, There is a formal
way to designate condition of & function f at x. It is ysually measured by the maximum
relative change in the function value f(x) caused by a unit relutwc change in the
argument. x. In other words, conditions of f at x

= max {ﬂx}(x{ I]E P |- &is 5mall}
ERCD)
S(x)

where £ is the approximate to the exact value x.
Larger the condition, more ill-conditioned the function is said to be. As for

12

xf’(x] e

ol B
example, if we want 1o calculate f(x)= \/x, then, o -1 > !=-£.1.e., taking

square root is a well-conditioned process. But, if we consider the function
3.11

(L=
e _ 3.r)l |

S e l—.r

i.e., when x is near 1, the condition number is quite large. Hence the function may
be called as ill-conditioned.

" f@) = ==, then, f o) =
.Z'

Therefore

Now the com:ept of mslabll;ty describes the scnsnmty of numerical cumputatmn
of a function f{x) from x due to the crrors that arise from the finite precision arithmetic.
It is hard to measure the precise effect of these errors unless we compare the exact
result with the resuli of calculations by using finite precision arithmetic. However it
s possible to estimate these effects by considering the round-off errors one at a time,
- Consider, for example, the evaluation of f(x) = Jx+l - Jx, for large x, say, with

] |
ek (Jx+l -3:_-):
:
o ot 1 P : i
= — —. for large x, which is faicly good. In icular, if we calculate .
2T=x{x+1}=2 rg %Y . Y B i part
J(5942) in six decimal ariihmetk:. then we have,
F(5942) = /5943 — /5942 = 77.090855 - 77.084309
. = (006486,

where as f(5942) = -006486 accurate upto six decimal places. So, in this case error
is not too much, Now, we enalyze our computaional scheme :

xf'(x)
flx)

order 10°. The condition number of f(x) at x is

Step I @ Take the value 5942,
Step2 : Compute 5942 + 1,
Step3 : Calculate 5943,

13

Stepd4 : Caleulate +/5942.
Step5 : Calculate /5043 — /5043
Consider another function $(v} which describes how we reach step 5 from step 4,
Let (y) = /5943 ~ y, then its condition at y is approximately,
ol | = | M
‘ oy | V593~ 5| T [Vsea3)
This number is usually near 1 for large y except-when y is near /5543, In our

case, y = /5942 = 77.08, whereas /5943 — y = .0064 i.e., cnnditi'{m 15 = 12043,
which is a very large number. Hence, we conclude that the way we haye calculated
is as unstable way to evaluate f(x). However, if we calculate fix) by the formula,

flx).= W then we may avoid such instability in computation,
x4+ :

Thus we are facing several types of problems in approximate comptations. There
are several types of errors and sometimes it is really difficult to control all the errors.
For example, one may think that inherent error may be controlled by increasing the

‘accuracy level, But it cannot be possible if the initial data itself contains an inherent

error. Sufficient precision in computation must be taken to. avoid inherent error. -
Sometimes propagation of error is completely random in nawre and it may grow like

a rolling snow ball. Also, sources of errors are not always known to us and sometitties
their nature is like parasites, Now we describe hneﬂy some of the control measures
for round-off errors,

Control of Round-off errors : :

Rule I : To minimize inherent errors, we must input real data using the device :
which can store as many as significant digits.

Rule 2 : To minimize the overflow or underflow (i.e., the error caused due 1o the
fact that the machines are unable to store the numbers), we must try to keep all our
intermediate calculations-which also keep the characteristic close to zero.

Rule 3 : To minimize propagated round-off error, we must try to keep mathernatical
expressions in a form which require fewest arithmetie operations. For example, in
claculating values from a polynomial ayt* + a,x* + ... + a,, we may calculate in the

14

nested form, Le, (({tgx + @) . X+ a,.)x + ay}.x + ay, eic., or. use some algorithm
which perhaps help us to check worse round-off ervors.

Rule 4-: We must inroduce such algorithm which tries to avoid any anticipated
loss of significance-that might occur from subtraclion, division, €i¢,

For example, sometimes re-arrangement of -functions avoid loss of significance,
In calculation sum of a series, particular form of series representation of functions,
;such as, Maclaurin’s form, etc., help us to avoid loss of significance.

In sume cases statistical analysis of error pm!';mgmiﬂn may help us to estimate
round-off errors, There are several stochasitc models on propagation of round-off
errors taking local errors as random variables. They are usually follow some distribution
such as, uniform, normal, etc., from where the siatistical analysis with the terms,
such as, standard: deviation, variance, moments, etc., help us to estimate accumulated
round-of errors. These types of analyses have some advantages that we may aware.
of the facts about the error bounds and spreads and try to control the propagation of
errors with suitable measures.

§ Summary 3

" In this unit, different type of errors and their effects are discussad with examples.
Role of round-off errors and truncation crrors are explained with suitable examples.
The outlines to control round-off errors are also provided.

EXERCISES

1. For the following numbers x and £, how many significant digits are there
in X with rf:f.pﬁct to x7

(i) & = 241-023, . ox = 24101
(ii) ¥ = - 042223, x =~ 04228
(iii) ¥ = 44.3213, r = 44.3604

2. Find absolute error, relative error, Mso determine the m:muer of sngml“ cant
digits in the approximation.

(i) x = 2718281, % =278
(ii) x = 85450, % = 85000
(iii) x = 000023, £ = 00002

15

decimal point and § decimal point floating point representations.
(i) 47-318295, (ii) 0222718, (iii) 300537.12059 ;
4. Find a way to cvaluate following functions to avoid loss of significance.
(i) flx) =In (x+ 1) - In(x) for large x e

'3, Find round-off error and truncation error of the following numberg using 3

l4+cosx
2

(iii) " flx)= x—yal-g forx »»a -
{iv) flx) = sin x — x. for x near 0
5. Find the condition number of

M S =Vet+1 -x
(i)} fl=e

X

i) f() = -

X

(i) flx) =

forx=n

(iv) fi(x) = x sin x, and comment on each case,

6. Use appropriate formula for computing roots of the following quadmtit:‘
equations. : 35

(i) 4% - 10000lx + 1 =0
(ii) 22 ~ 10000-0001x + | =0 |
- 7. Use Taylor series approximations to avoid loss of significance in the
following computations,

e* g

(i) fix)=—
lug{i ~x)4 xe*'?
2t '

i) fe =

16

UthD Sulvmg System of Linaar Algebram
Egquations in » Unknowns

A system of linear algebraic equations occurs in many areas of science of
technology. Finding solution of a large system of such equations is a very complicated
tack Several direct and iterative methods are available to solve a system of linear
cquatwns Some of them are discussed in this unit,

§ {)hjecuves

After going through this unit you will be able to learn about—
® LU decomposition method
® Gaussian elimination method
® Pivutmg'énd scaling
@ Least squares method to solve an ow.:r ~determined lmcar system.
®- Solution uf tri-diagonal system of equations
Let us consider a system of n lincar equations in # unknowns :
apXy t Appfy + e ¥ Oy = by
QX + Ga¥y o+ o + Gy X, = By
txl + aﬂxz +a,.x =5,
where x, Xy, -y X, arc n unknowns and a;, i, j= 1(Dn, by i = 1(1)n are known real
constants, In vector-matrix notation, we can write (1) as :
AX = b, ; R
where A = (@), 0, j = 1(Dm, X = (3 %, o %)% b = (by, by .y BT (T indicates
ITAnspose). L

The matrix 4 is called the co-efficient matrix and is assumed to be non-singulac
50 that (2) admits a unique solution vector X = (x,, %3 oo X,)7 . The marrix A may

[&8yt)

: @yytyg.-- Aoyl
combined with b to form the augmented matrix [A, b] =

.\a,,la,,l,..ﬂ,,,b,,;
17

It is convenient to work directly with the augmented matriz when using
eliminations. ;

There are two classes of methods for solving system of linear equations in »
unknowns possessing a unique solution. Direct methods find the solution in a finite
number of steps by reducing or transforming the given problem to an equivalent one
which can be more readily solved, Indirect or iterative methods starts with an arbitrary
first approximation to the solution and then try to improve the estimate in an infinite
but convergent sequence of steps, Direct methods have some other advantages over -
solving a system of linear equations, like finding values of determinates, matrix
inversions, etc. We now briefly describe some of the direct methods for solving a
system of linear equations of the type (1).

§ Gauss Elimination Method :

The first step eliminates'the variable x, from the 2nd, 3rd,, n-th equations of

(1). This is achieved by subtracting multiples m;, = 2L of row 1 for { = 2(1)n, where,
)

we have assumed ay, # 0 and call it as the first pivotal element. [We shall discuss later
to find pivotal elements).

{Note : For notaional convenience elements of initial (or first) augmented matrix will be
marked with superscript (1) and the elements of Jj-th (reduced) augumented matrix will be
marked with superseript (), j = 2(1)n. For example, we write a,'.[j“ for a,;, j = 1(1)n and "
for by, i = 1(1)n,} ' '

Thus we find all elements of the augumented matrix [A, b] as follows :

writting, aj’ = ay, i, j = 1(n
1} :
bV = b, i= 1(1)n

(Jl]'
B

we define,

(2)

aj; (= 2)n, j = W(1)n

i
=
=
E
.

b = bV ~ myb", i = 21)n -

Then, _{his process leaves first row of [4, b] unchanged but reduces all elements

of the first column below af)' to zero.

Therefore, under the above operation, AX = b changes to the equivalent system
(An equivalent system is one which has the same solution as the original one) which

J 40) m' ro P
I“I] iy - Gy &J b:-

() (2) 7
0 ap s | | X2 b§ :
looks like 1 | -+

(1]

asvidB)

|0 a4 if EAREL]
Call it APX = b denoting equation (2) as AVX = bih,

Next or second step eliminates x, from 3rd, 4th, ..., n-th equations by subtracting
(2) '

multiples iy = % of row 2 for i = 3(1)n, where we have assumed a33’ # 0 and
433 '

denote it as second pivotal element.
) ' a{'!}
ie, seing, my = E'fﬂ-, i= {ljn
2 _
we.cief'iﬁﬂ. aif':' .— U ~ My aﬁ}, .!' =3(n, j=21)n

B = b — mapi?, i = 3(1)n

which leaves first two rows and first column of system (3) unchanged and reduces

(2)

all elements of second column below ay,’ to zero.

_ Then we have an equivalent system of equations (say, A X = bﬂ“} of the original
one and it Jooks like : ,

19

1] (1)] { (7])]
ﬂn a; 93 Gy | |5 by
25 _(2) (2 (2)
0 a3y ay - a9 || R b,
: 3| (3
0. 0 E g X3 b
33 - %3 E -
= s (4)
o 0 a® . a@lla] [0

We continue the process. A general step & is as follows. Step k eliminates x, from
(&)
A ﬂ-k
(k + D)th, ..., neth equations by subtracting multiples m;, = a‘—"i“ of k-th vow for

1=k + I(I)n where again we have assumed aiX % 0 and denote it as k-th pivotal

element.
u{k}
ie. setting My = =, i =k + L(n
. Ay

(k+h

we define a;*" = ol

i mgal =k Wn j =k (Dn
: bf“” B EI}“-‘-' 1 b:”, i=k+ WDn
which leaves all the earlier rows (from first row to k-th row) and coloumnns from first

to (k — 1)-th .ée_luumns unchanged but reduces all elements of k-th column below ay!
to zero, Therefore we have an equivalent system of equations, say A%+ iy - plk+ 1)

which looks like :

=

[ty i

h T [i
ay apy aj, X b
e v b SO vee SR ai xy b
k) (3) X)
0 0 0 ay G e aj, k by
{k+l) (k+1) (k1) [
0 0 0 I.} aﬁ'l-lﬁi-l ak-i-ln Xia) bi'i-l]
L ﬂ ﬂ (} U’ Hitit’ e ﬂﬂ“}_ L *a A _b_ih'ﬂj

wers (5)

Continuing in this way we ultimately get the equivalent system A™IX = 5% which
when written explicitly, is the system, :

e

F o)) (1) A
) 9 D G | T X - b,m]
(2} A b S :
0 LT B - it iy A7 ; f?;”
e | . (6)
H= s =
0 ﬂ i 8o nel. .aﬂ--l" L1 biil
(m)
g e 0 a JlAHI] L&Y

The solution of this upper traingular system is found by solving the Jast equation
for x,. then the (n — 1) equation for x,_;, and continuing in this way [i.e., by backward
substitution] until x; is found.

Hence x;'s, i = n(=1)1 are calculated by,

f b:ﬂ‘]‘
nT (A
_ann
e o4y iy :
Ko | = i [0 0T)
n=ln—1

..

1
$p= {b‘:“ L am .xj} =n- 1(-1) 1

J=k+l

which completes the process of Gaussian elimination, Now, if we form a unit lower

[R |
_ my 1 el
triangular matrix with the identification, L = |my; my 1 .0 0

Clmy omg oMy

and U = A", then we have, A = LU, i.e., we have also reached a triangular factorization
scheme through the process of Gaussian elimination under the assumptions made in
-the steps, Decomposing A into LU in which L is a unit lower traingular matrix is
sometimes called Doolittle’s method. '

[Note : A triangular matrix with 1's on its diagonal, i.¢., unit diagonal elements is called unit
lower traingular if the matrix is lower traingular and called unit upper traingular if the matrix
is upper traingular.] '

Example L. Solve the foi!nwmg system of equations using Gaussian elimination
scheme.

Wy +x3=3
4x; + 3%y + 2%3 =35
3x,+412+21:3=5

21

221 3
Solution : The angmented matrix [A, 6] = |4 3 2 5| =AW, ph {m},}
< (. Bt 2.

Therefere, ﬂﬁ = aﬂ ~myay =4-22=0,
g =ay - myaf =3-22=-1,
ﬂgi—ﬂn_“m:]ﬂ]g-z 2]:-{}

i - .
ol = ol -y af) =3-152=0,

agil = ai‘f — My aly =4-152=1,
gy =) ~myal) =2-151 =8,
BD = b —my B 2523 ;*1,
B = bV - 'm] b{”‘- e e
So, aﬂer first step we have the equivalent system, AQ X = b‘m which looks like,

2.2 = : 3
0 «1-0lle =]
0 I '5 ,.xa_ "5

Again af =~ 1 # 0; so we have,
h
a 1
My = e 5 — =-l,
ﬂn "'I

o = o) -mpall =1~ (1)) =0

= &2 -myad) =5 - ()0 =5,

and b;'-"'l‘ e b;i) _'m]zb;ll S - D=1 .= -5,

22

Hence, the equivalent system A®X= ' is

Sl M A e 3
0 =1 0||x|=]~
00 S5ltx ~5

Therefore, by backward substitution, we have the solution,
e, :
= — =],
).'3 ‘5
Xy= !i f= 1 =0=11] =1,

and Xy

]

l
- [3-21-1-1)}=1
3 B-21-16D)
And the corresponding decomposition of A = LU is :
32 1 4 o o)z 2
4 3 2i=F2 Yt 0@ =k @
34 2 15 =1 1j{0 O 5
Here one can check that the value of the deferminant of the. matrix A is eq'ual to
a6 -aly = 26)05 =~ 1.

Exaraple 2, Show that Gaussian elimination scheme may be used to find inverse
of a matrix.

1 :
Solution ; Consider the matrix A = 2 | used in the above example and
2

(5 -
£ a2

Z 21 1
form the augumented matrix [A, [] = |4 3 2 i
342 £ 00
Now we apply Gaussian elimination scheme for the matrix A and instead of
taking a colamn matrix b, we consider here the idemify matrix I
From above cxample we have after step-1 A = A'D) changes to AR =
2 2 1
0 =1 0} ang correspondingly I changes to
g 0 5
] 23

. as follows :

§= -G 28
I'={ -2 1 0
~1.5 o 1| [ie. apply operations of step-1 for each column of f as in

the above example we have applied for b = (3 5 5)7]

P e
Again, in step-2 we have AP = |0 -1 0| and correspondingly
g 05
T
FchangestoI"=| =2 1 0
-3.5 1 1

Now we find solutions for each column of r by backward substitution, They are

For column 1, the sofutions are, (we use the notation Xy1r X310 X3, for column 1,
X1z Xy X35 fOF column 2, ete., as solutions)

Xy = :li =[-2-0(-7] =2

For column 2,

il
il
b

=[] - 0.2} = -1

X3

R oy
P (=]
I I
Ml'-' i}._. .,_',,il

=10 -2.-1) ~ 1.2)] =

For column 3, xy; =

=[0-02]=0

]

0-20-121=-1

24

2 S
Now we construct the matrix (x)=|2 -1 0
=7 2 2]
- U B T S T B R)
It is easy to cheek, [2 -1 0]]4 3 2/={0 1 0
o0 e L 0 VO U 5 GO | |
_ 2 e -l
Hence the inverse of A=A~ ' =(x}=|2 -1 O
: T

& Crout's Reduction or Simply LU Factorizaion :

It is a modification of the elimination method in which the coefficient matrix A
is wansformed into LU, where L is lower triangular matrix and U is a unit upper
traingular matrix. Here the basic scheme is as follows :

(i) First decompose the coefficient matrix A of the system of aquations (1) as
A = LU, where L is a lower triangular matrix and [/ is a unit upper triangular matrix.
We assume that this decomposition is possible, This is possible if the leading sub

a3

- matrices of the matrix A are non-singular, i.e., if ay; # 0, L' gl 0, ... |A] = 0.
i %

(i) Then find the solution X as follows ; -
AX = b= LUK =b '

Let U/X = C. Then LC = b, which gives C using forward substitution. Backward
substitution is then used to calculate X from UX = C as in the Gaussian elimination.

The explicit details of the scheme are as follows :

Step 1 : Let us first assume that ayy = 0, call it first pivotal element and denote
it b:f Iu. i.—ﬂ-. fn =y - .

Then we divide each element of the first row of the augmented matrix [A, b]
by Uy,

25

Set, U= 1_1. le = "E:, “-” = E'Lli aing HI"I& and 'b.i = h"..
n) ay ay
and Iy = @y, by = @y 0, Iy = a4y
Step 2': Assume Iy # 0, where ly; = ag, ~ Iy, . w2 call it 20d pivotal element,
then set fn = gy = H'.Hli" o Iﬂ'& s =~ f";.ﬂu,

' 1
And gy =1, ugg = — (g - Lt} oy g, =

' Iy
o]
We continue the process ag above. The step £ is as follows ¥
Step k : Assume [, » 0 where,

Iﬂ: L au = “ﬂ Ij:] wur Iﬂ_ l} {Huuu FERE Hi (it ulr., Ca]! it -k"“l Pi‘f‘ﬂln] Elﬁl‘ﬂﬂﬂt, s
Then set, '

v = = Dyonn lew gz Beo v il Dy g e 80 _ 07,

i
Z; (92— byuy g,

[By = Iy 0'1)

EEERAR AR R T T AR SN B R e e AR B R R R R AR A

RARAAFwFa B gy B iR p b A Raa R R R R L L L T I It]

b= B = Uinlog o g o o} Tty o w07,
and uy = 1,

Mag o = 7= (Gp o 1= [Ba oo Jn o] Bogp o by g oee Mgy o117
kk :

PR AN as R b mnn e AR

B e L T T I P e

I
Wy = }; (O - Uirdia™ i | ["rv":n it "“I:-lﬂlr}

1 L = 8 G
bl = }__ Ebt . [IH fu wa IH 5 'F] [b |b Faea bi o IIT};
L&

Procecding ns above we reach step n and find
A = LU whete L and U7 are given by,

2

#f[] 0 {} ﬂ ﬁ'l 2 -

by b 0 0 0 L Wy Hy Uy |

TR i i A 0wy e i,
Lemecbilo e e e e and 7= {oe e v

-Jﬂi j‘rﬂ :!n_i .Iﬂ"r__ LD' T et S ()

and find b’ = [b") b'y .. DT I transforms the sg,_ré.:em AX = b into equivalent system
X =-b. :
 Now we find the solution X. by backward substraction,
B

AEwbmrdgrradh

X = b,,— Eu,,, X k=n-1(DL

. jakad
Eiample 3. Find solution of the system of ,equaﬁcms in example 1 by Crout’s
reduction. A
2 2 1
Solution : We have, A = |4 3 2| b=[35 51"
3 4 2
. Step 1 : Here ay; = 2 # 0. Therefore, first pivotal :lcn'ﬂmt, Ly = 2.
Then,wehave.u”-l uﬂmjﬁs%=l uu-%:-— -5:’ .5, b'tﬁﬁl; g% :

=1, by =gy =4 by =gy =3,
Siepz R ulz-B -4l =-1=0 Endpwmal element.
Sﬁ, - fn—ﬂ;:‘l3l+ﬂiz—4 31 1]

gy = 1, Uy = I_ (a3 = Tothr}
22

i};z 4 %8} =0

b'1=,!-£‘; (by = Iy 0 = L (5 - 415} =L,

27

Step 3 2 1337 = ay; - [y Ig) {uyquags)T

=2-[3 11507 =3 # 0, 3rd pivotal element. As the order of
the matrix is 3, we are in the last step. Set uy; = |, b’y

1
= I 183 = s 1) 18, b))

1
=35 B5-B s Ty
=]
K 6" 012 b8
Hence, A = LU where L= [, ¢, 0|=[4 -1 0
|_f3| by Iy a ey
Loy [l L :
and U= |0 | u,; =0 1 06 =[h Db, blj]'r=“'5 1 -1
g 5 -} 0 0 |
Therefore the solution X is,

] :b;ji‘.—lp

X =0 - U
=1-0(1)=1
j 3
X =h - ?:,“u";
Jud

=13 = ugy = upxy
= 1.5 = L.l = -5(-1)

=1
i-e.;_x = [xlxlelr = [1 } - llr.

§ General LU-Factorization Scheme :

The basic methodology is to decompose the matrix A-into product of two parts
L and U where L is » lower traingular matrix and U is a upper triangular matrix,

28

(g, ap - 4y fhy 0 0... 0]
B T e Wiy by Ip 0 .0 O
Bt A = | e ci s s | pis | s

Lanl @y .arm_' Iﬂl "'.nz L

My Uy “u‘l

0 Hp Uy,

U = ¥
| T IR T

Then the basic steps are aj follows :
Step LiSet ;=0 forj>i
; and wy; =0, for j< i, i, j = HD)n.
Step 2 : For k = 1, find elements of column 1 of L by Lu,, =a, i = I{I)n, and
elements of row 1 of u by, Iju; = @, j = (I,
- Step 3 =For 2 < k < n, find _
. elements of column k of L b}t,

and elements of row k of U by, ;

. ﬁl‘lui‘j g !ﬂ-_ 1 g IJ} + .Ituﬂk; '_ﬂu‘.j =k(l}m
In shm't, LU = A= y

= Z L Hyy
Y T

o ii,,uﬁ. j<is 1(n,
k=1

" -
cand ay ’-'-Eiﬁ"hi' i<j=2Dn
]

Clearly, if we set u; = 1, i = 1(1)n, then we have Crout's decomposition mthod.
In this case, step 3 reduces to :

L ' 29

k-1

For elements of column k of L, [, =a,, - zf.]!l;;. i =k(1)n, and for elements of
r j-'r i

Ak i=]

| k=]
row k of U; iy = r [ﬂw _zlir';‘#]l j - k(])ﬂ

If we set fy=1,i= 1(1)n in the general scheme, we have the Doolittle's method
for decomposing A and if we set §; = u, i-= 1(I)n, then we have Cholesky's
decomposition. In Cholesky's decomposition, the diagonal-elements of L and U are

k-1 - '
given by 4, = i, = laﬂ, ~ 2 lyty. k= 1(Dn, and for other elements of L and ¢/
=l :]

we have,
1 k=]
b =g = o Lay =3 by | i> k= 1(In — 1,
f-tk Y | :

Cholesky’s method generally is used in the case when A is symfn':trip ‘Also for
positive definite symmetric matrix, it is really an useful technique. It actually

decompose A as : A =-LL7, where L is a lower triangular marix.

From all the methods described above, as off shoot wé find some other results
of interest, such as, determinant of the matrix A, inverse of A, etc. (Aciually we have
assumed implicitly in all cases A ia a non-singular matrix).

Result 1. det (A) = |A] = |L)|Ju]
' = gl ol . “ft::" in Gﬁussian elimination, (Here |7} = 1)
=4y by e Ly in Crout’s decomposition, (Here /] = 1)
= My Uz . Uy i Doolittle’s decomposition, (Here | Li = 1)
Resul 2 A=LU=4"'= U 7 L,

As U and L are respu&et_ii‘rely upper and lower traingular matrices, therefore U-!
and L~ ! are aslo upper and lower traingular matrices.:

- _u;ll ul;i WY H;n FI;’ ﬂ Say ﬂ'--
0wy .o oul, o AT
o Lt O b e e | et
£ R i St g 'Il;:n'..

30

Then by snlvmg system of equations, with the identifications LL~'= I, U1/~ !

= [, we find L~ ! an.d U= by forward and backward substitutions respectively and
thenA-'= -0 L1,

Operations count for Gaussian Algorithm ;.
(i) Total number of mu]tiplina;tcms and divisions for LI/ decomposition
2 n(n® = l} n
3 3
Total number of additions and substractions for LU decomposition
3
ol n{n=1)2n~1) ol
6 3
(ii) Modification of b to b":
Total number of multiplications and divisions
n(n~1)
= :
s

O

. e
Total number of additions and substractions = ELHE-“}:.
(iii) Solution UX = &',
: “m(n+l)
2

{n=1)
5

No. of multiplications and divisions =

No. of additions and subsiractions =

Hence for solutions of the system AX = b,

3
i L e n a1
Total no. of multiplications and divisions = —- + n® = 373 n

An-DEn+s) 1

~and total no, of additions and substractions = p w2 .

2
Therefore, for large n, total count = '3 n.
For inversion of A, if we count only multiplicminn‘s and divisi-:ms we fimi it is

‘

‘approximately 4. ? L.e,, takes more steps than to find solutions for AX = b by
(Gaussian algorithm.

31

Pivoting snd Scﬂing -

In all the processes discussed above, it is assumed that either a 0, o,
e # 0, or, ug # 0, as the case may be. Thase assumptions may be remaved if we
find at each step a non-zero key or pivotal element by interchanging ail the remaining
rows. If we fails to find a pivotal element at and intermediate step, then we erminate
our process and conclude that the matrix we have considered, is singular, Obviously,
if the matrix A of the system of equations AX = b, is smgu!nr. then there does not
exist an unique solution for that system. Again, for a non- smgula: ‘matrix, to find
pivotal elements, it may be necessary (o inferchange rows. This is actually equivalent
with the multiplication of A by a permutation matrix 2. Let, A’ = PA. We decompose,

A'= LU and {ind the solution of the system AX = b by considering the equivalent
system A'X = Pb.

Now we shall describe the necessity of pivoting and scalting. In all the processes
described above, we have used arithmetic operations, which may not be carried out
exactly, to complete the processes. So, there are always chances of propagating
round-of errors in each stage. To control such propagation of errors, we geaerally
consider the pivoting strategies. There arc two types of pivoling : {1} pamal pivoting
and (ii) complete pivoting.

(i) Partial pivoting : Consider Gaussian scheme. At each stage k when | s k<

max
kSisn

¢y is altained. If i > k, then we interchange row k with row iy in the comesponding
augnmmed matrix. [t is then easy fo check that all the multipliers satisfy the inequaliry,

n =1, we find ¢, = ln“"l Let iy & k be the smallest row index for which

| < L, for i = k + 1(1)n. It prevents growth of elements in A®) which ulumataiy
reduces loss of significance,

(i) Complete pivoting : At stage & of Gaussian algorithm, we define,

s max | 04
kgl fEn VE

Then we switch rows of AW and 5%, and eolumns of A® to bring out the element

¢, a5 pivotal element. In this change the order of unknown variable are interchanged

but as far as solution of the sysiem of equations AX = b is concemned, there is no -
harm. Only at the time of back substitution process we must arrange them in order,

This pivoting also slows down the propagdlion of ervor in Gaussiun scheme.

32

‘Scaling : If the elements of the coefficient matrix A vary largely in 'size-. then it
is likely that large loss of significance will ocour and it will canse worse propagation
. of round-off errors. To avoid such problems, we usualiy enter the process of scaling.

Let us consider scaling in the Gaussian scheme,

- MAx 4 Lo
ot i 1S j4n lﬂul pas l{l}.ln‘..

wd by ==L, i, j = 1(Dn,

5

5““““15;<n|%

Now we find 4 matrix A = (b;) and a diagonal matrix Dy = (d;) = (s). Then we
have,

'[:Lf=1ﬂm

HIE =.A
Therefore, AX = &
or, AX = Db, where D7 is also diagonal.

It may affect.in the chéice of pivotal clement. Again, ai stage k of Gausgian
scheme, we further use some implicit scaling. Let us define,

LY ; g
- ;.T ;]a“ and then interchange rows éoms;rcndingly. Tt will ultimately
cause less propagation of errors.
§ Error Analysls : |

Let us denote by I} as the norm function. Let us assume that our sysiem of linear
equations AX = b is uniquely solvable. Now consider the solution of perturbed system,

AX = b+ r, where X =[%, 12-“35-1] be a column of unknowns and r is called -
Aa residual vector. :
Set, e= X - X
' Then, Ae=AX ~AX =b+r=b=r

= e = A r [As we have assumed Al exists].

33

Now taking norm on both sides of Ae'= rand e = A~ r, we have,

[l = llAe] s fA].|el
wi o] <[4 |aL]|

: [i TR EEWL 11 &

Theretore, 471 del 1oz]
IATEXHE X1~ - 1X]

Again, from AX = b and X = A~'b, we have,

I5] = |ax| < Ja1x)
and | x | = || <4 fe |-
1 M !r]l : Eel HH"'M:‘H
Therefore, 71— Twl
AT] " Talied " ix] " Tx]|

1AHA D
el
I

- Let us define the condition number of & matrix A by cond (A) =€_ :', Aj-p AT,

Then from the above inequality, we have,

L drh Jel gl
cund{ﬁ]'[['b_'ﬂ < EXE_S cond (4) - “;-
e}
1 B '
or, cond(A) s L{J < cond (A),
&

Again, form the relation A A = I, we have,
1<l =_"A"AH <UATE 1A} = cond (4),

Hence, if we find cond (A) of a matrix A is near to |, then small perturbation in
b will lead to small perturbation in the solution and if cond (A) is large, it may be
sometimes catastrophic. Then we call the matrix is ill-conditioned or the system of
linear equations is ill-conditioned as the solution X is unstable with the small
perturbation in b,

34

B ey el
¥ 3 %

For example, the Hilbert matrix H, = |... ..

1
L
|
i+

-

BN A
is an exnmple' of ill-conditioned matrix where thr, cond (H) increases as n increases.
Example 4. Find solution of the following system of equations.
3x, + Xy + By =2
2y + x5 + 3z, =17
X kXX = 4

: 31 & 2 -
Solution ¢ Here the coefficient mattix A = |2 1 3} b=|7jand X = | X
: ' : B G RS -

Then Gaussian elimination with pivoting yields,

™1 6-2]. [31 6 2
2 13 7{=0 § -1 Fimy =20 my=1/
i1 34 PR

10 &7 .
5|0 .21 1| my, =12 The pivotal elements are encircled. In step 2, 2nd
1o 0 A4

and 3rd rows are interchanged for pivoting. Therefore the permutation matrix u.';éd is,

TR 6 £
P=lo 0 1}.S0,PA=|1 I 1|and
T B R
I 0 0 T4
PA=LUgives, L=} 1 0L U=[0 § ~I
2 4 1 o0 0 -}

Hence the solution is given by, ;= -8, x, =~ T.a; = 19..

35

~ Example 5. Appiymg Crout's method. dccﬁmpose the following matrix sand find
inverse, correct upto three decimal places.

33 1-2 1.4 05
15 42 13 2.5
2:2 35 51 32
3:2-25 125 72

A=

3.3 0 AR
1.5 365 0 0
Solution : Check L= (2.2 2.700 3.676 . 0
3-2 1:336 --350 5.007

11:0 364 424 152

0 1000 -182 622

ad U=]0 0 1.000 323
: s 0 1-000

303 0 B D
~124 274 0 0
—090 -208 272 0
—.139 -.073 016 16T

Therefore, by A~ = U5 L=\, we have, L~ =

354 —-041 -.094 082]
~-030 351 --058 —.094 e
<048 =97 6] -0 | STTRENID I ikecioicp i

~139 ~073 016 &7

= A l=

36

Example 6. Consider the following system of equations,
10x, + 7x, + 8x, + Tx= 32
T2y + 5x, + 6xy + Sx=23
Bx, 4+ 6x,) + 10x, 4.914“ 33
Txl + 5xy 4+ Oxy + 10x,= 31

Putting x, = 6, x2=~?2 %y = 29 and x, m-ﬂl we found left hand sides are
equal to 321, 229, 329 and 31+ 1 From the smallutss of residues it appears that the
assumed solution is near to the exact solution. However, if we set x; = 15 x, =18,
%y = 119, x, = .89 we obtain left-hand sides are equal to 3201, 22:99, 32499 and
31 {01, The exact solution of the equations is ¥, = x, =¥, =x, = 1. We conclude this

system as an ill-conditioned sys!cm Actuaﬂyﬁ AX = band A¥ = b+r= ALE =X
=rlfX= X , then the restdm v is small, but if 7 ls “mall then one cannof alway&

. assert that X = X. This is the s:lunlmn what we earlier called ill-conditioned sysiems,
Sometimes they are called hmﬁmntty unstable systems. In this example we bave
faced that situation.

Example 7, Consider the system,

005 10007 [x x 500

1-000. 1-000] [y] [1-000
The exact solution is x = 503, y = 497, Now we use Gaussian elimination process.
If we take the first pivotal element @, = 005 we find the equivalent system,

2 el

So that, x = 1000 and y = 495,
Again if we take the first pivotal element as a,,= 1, then we find the equivalent

system, [1 : :g] E]_ [‘:’]

= y = -5, x = 5 which is near to the exact solution,
So, we may cﬂnciude that pivoting is essermal 1o aveid round-off errors.

£

37

§ Least Squares Solutions of Over'-detnrmined Linear System :

Given a system of N linear equations AX = 4 in n unknowns, X, i=1(n < N,
it is impossible, in general, to find a vector X = [z xH}" that will exactly satisfy
all the equations. We, therefore first define the residual vector AX) = AX — d and then
define the solution of AX = 4 10 be vector X* that minimizes the {,-norm of the

resiual, that is,

: r 2
X0 =% 0] =¥ [Eiﬁ-fk’f]

=l
X* is then called the least-squares solution of the over-determined systern, AX =
d. We denote AX = d + r as the error EQUAonE, .o 0 e (1)
where A = (a]y , o X = 5%, .. x)7, d = (d,d, .. dy]T and
AX)=r=[nr .0

Let us assume that A has maximal rank, i.e., n. So all the columns of A are
linearly independent. We have 1o determine unknowns A k=1(1)n by the |east-
square principle; i.e., sum of squares of residuals r; is to be minimal, The method has
some advantages : (i) It is easy to develop, (ii) statisticsdly, it is a preferable method.

Now, rfr = (AX - d&)T (AX - d)

= (XTAT- d") (AX - &)

= XTAT AX - XTATd — dTAX + d'd,

= F(X), say, a quadratic in n unknowns x,, x, .. x. raras Y
Let us denote C = ATA and b = ATd : S

Then C is a symmetric n X n matrix and as A has maximal rank, C is positive
definite. It follows directly from the relation.

O(X), a quadratic = X'CX = XTATAX = (AX)" AX 2 0, ¥X eR", and
CX)=0=4X=0=X=0,

So our problem reduces to,
Minimize F(X) = r'r = XTCX - XD~ bX +d™d . (4)
A necessary condition to minimize F(X) at a vector X is, gradient VF(X) must
vanish at the point that minimizes F(X). Explicitly, the i-th component of VF(X) is,

38

f

OFX) _ 23 Cuxe=2b i = 1(Dn.
ax; k=l
or, 0 = Z,mex =b. i = {(i)n : srie A 3)
k=1 :

Le., we have a system of linear equations,

|||||

for n unknowns X, , X, ... X,

We call’ (6) as normal, equations, corresponding to the ewor equation (1). As the
matrix C is positive definite, there exists unique solution of (6). We find it by
Cholesky's decomposition method on C, of the form LLT where L stands for a lower
triangular matrix. Y

The whole scheme:is as follows :
(i) Find C = ATA and b = ATd,
i, ¢; = ala;and b, = ald, i, j = 1(Dn,
where a, is a column vector of matrix A.
(iiy Form the normal equations CX = b,
(ii) Then find-Cholesky’s decomposition of € as € = LLT.
(iv) Consider LY ~ b = 0 and LTX - ¥ = 0, and find solutions using forward and.
backward substitution. _ s
(v) La_s'd)r'. compute residuals r = AX =
The method of finding normal equalions may suffer when the condition number

of the matrix C is quite lasge. To avoid this, some safer method or numerical procedure
such as QR-decomposition, singular value decomposition, etc., may be used. '

Example 8. Fit a guadratic function in ¢ by the method of least squares for the
following data, R

.] ooa | 032 | 051 | 073 |103 | 142 | 160
. | 263 | 118 |16 | 154|265 | 541 | 767

Solution : Let 2(1) = G + ot + a,* Where &g, oy, @, are arbitrary constants.
Then the i-th error equations is, &g + ayf; + ott ~z = E= KD,

39

Therefore the system of eTor equations without residuals are :

Op cy(2) sy ;z) ()
! 04 0016 2.63
! 32 1024 S 118
1 5P 2600 | 116
g 73 5329 1-54
1 b e | ges
: 142 20164, 5-41
= 1-60 25600 | - 767

First ‘thres cu!umns then corresponds to the matrix A and fourth cnlumn
cmspnnding 1o the vector d.

The notmai equitions are given by (upto six significant ﬁ'gﬁres}

oy . o ; oy ! |
700000 565000 653430 22:2400
5-65000 653430 8:60652 248823
653430. | 860652 12:1071 346027

- Cholesky’s dmumpnsiﬁnn with forward and backward substitution vields,

2:64575 + 0-00000 000000 ALEIAE
L= |2-13550 1-40497 0-00000 o= —3:95501
2:46973 2.37187 '_ﬁl-?sﬁ? 5*60?4_5_’

which gives, (1) = 274928 — 5.95501¢ + 56074512 with residual vector,

re [~ 1099 -2379 -0107 - 1497 - 0854 1901 — ~{5936}’"_mrmct to 4 decimal
places.

8 Sul_utlun of Tri-diagonal System of Equations
If the system of equatioris is of the form

b!x; =+ C‘|II2 =¢f|
ﬂixl + ngz;l-' {'zp’:] == d?
ﬂ}.xz +b,_.'(3 +('3,J:‘ Eda

ﬂ‘ri-"';n-i +bnxn ':d-n
then the coefficient matriz is

Fhes et 00 0 :

ety s oy B B0 LR DI O d,

G R R R d

At "13’? i ol o e)

o 0 0 R i i B Cast ",dh

0 0 0 0 .. 0.0 a B&j

It may be noted that the' main diagonal and the adjacent coefficients on either
side of it consist of only non-zero elements and all other slements are zero,
_ The matrix is called tri-diagonal matrix and the s gystem of equations is called a
tri-diagonal system. These type of matrices oecur frequently in the solution: of .
ordinary and partial dlff‘cmntm! equations by difference method.

A tri- magunal systam can be sulw:d usmg LU decomposttmn mathod
Let A= LU where

Fy '8 8 .. B 09 Gl
R O 0 ﬂ

and U =

41

" ne, 0 0 0 0
A afvy, (T4 I 0
0 &2y 3+ ¢ 0 i
| LU = | I 25+
0 0 O -8 B it

Now comparing mawix LU with 4 and obiain the non-zers elements of L and
U as : : ;

n=ba ne=e o, uf:';f'r i= {n -1
; i)

ﬂ:- =d, i =2(l)n
Vi =b o B = "'-“l-&-“"'" t= 2
1 Yia
Thus the elements of L and U are given by the following relations.
ol . :
ac,
pi=b-— L w3
Yi-) _
B=a, i=2n e (4)
€

.II[- l{nﬂ— I
The solution of the equation (1) ie., Ax =d where d = (dy, d,, ..., d) can be
obtained by solving L2 = d using forward substitution and then solving Ux = z using
back substitutions, The solution of Lz = 4 is given by

sall, g hz%ua ooy s A5)
& i
The solution of the equation Ux = 3 s

T Ty X/ SL QX S '“%'xm y i = (1 = DD | s B)

a2

Example. Solve the following tri-diagonal system of equations
Xrx=3 X 2, X, =6, 3 +2x = .

Solutlon, Here b, = ¢, = l. ay = b= e,=10,=3 b =24d =3
d, = 6, dy = 12.

Therefore,

Hh=b=l
Gy

4l

=k, —a =23 =]
¥y =Ey ;I.?,:_ 3
z}zﬂz'} Zy dz:‘..lzz_i :31 =§3—-:—?3—z-2-=3
by Y2 '3

y = e !
xXy=2 =3 &=h"?ﬁ=2,ﬁ=ﬁ‘#ﬁ=!
: 2 “rl

Hence the required solution is x, = 1, x, = 2, X; = 3.

§ Summary :

The Gauss-elimination method is described to solve a system of linear equations.
It is shown that the number of arithmetic operations used in this method is

approximately -3-"1. where 1 is the number of unknowns. Also it is explained and

illustrated that this method is useful to find out the inverse of a square non-singular
matrix, Due 1o the rounding/trancation error, this method fails: for some malrices.
The concept of pivoting is incorporated with the Gauss-climination method, and this
modified method is applicable to determined the inverse of any mamix.

Another method known as LU decomposition is described to solve a system of
lincar algebraic equations. ftmay sometimes happen that the exact solution of & system
does not exist. In this cases. one can determine the approximate solution with least error.
Such solution can be obtained by least square method, which is discussed in this unit,

An efficient method to solve a linear ri-diagonal system of equations is also
discussed along with an example.

43

A

EXERCISES

. (1) Solve by Gaussian elimination method ihe following systems., Check al
e - * 5‘0
A= LY and ﬁnd_de_:t (A}, where A represents the coefficient matrix, ;

(D 2y +x, +4x, =12
&x, _.3:1'1 + 25, =20
dx, + 11x, %, = 33
(i) 2+ 3, -5x, +10=0
i 4%, + 8x, ~ 3%, + 19 = 0
- .-ﬁxl+x1.,+4x3~h.1'lzﬁ
(iti) x+y+z=6
2+ 3y +z=1
el S

"

JAus, : x, =3, x, =2, =1
[Ams. =2, 1= = 3, x, =1}

iAns. t x==8,y= 15, 2= 129]

(2) Show by any method af LU/ decomposition A= is the inverse of the matrix

=3 5 4]
fA=|2 - 12

I -2 2]

=% P S
(iDA=]<1 0 1

1. -1 -5

2 3 %
{iil)d =]y 2 3

2 B8

-

-9

Alel 3 g8 &

~0:3 0.25 -2
Ege g T
Al=j-4 9 -5
-7 'y
2 & =3
e
R S]

(3) Using pivoting solve the following system of equations.

(i) x+y+z=6
x-y+z=3
Ixdly-z1=4

{_i] XX+ 2oy =~
Loy =X 4 2y = - 4

ﬁxi+x=+4,t3-.-2

(4) Find the triangular factorization A = LU for the following matrices with
partial pivoting.

e) 2R [1.2 6
MHA=2 <1 1 (i) A=}4 B ~I
K22 o

(5) Use Court’s decomposition to solve the following system,
@ 2% —6x,+ 8% =0
Sx; 4 4x; - 3x; = 55
g +x + 2xy=3
Giy x +% =3
i“.x, — X, # 5, =~9
Bxy = 4x, + 20, = 19
2x3.+ fx, = 2 .
(6) Find the dtmm of the following matrix by (i) Gaussian elimination
process, (i) Crout’s décomposition method, comrect to three significant figures,

596 497 263
4.07 3:21 1-39
297 402 516

(7) A matrix A = (4, , , i said to be diagonally dominant iff |a,| }EI ay |,

k=l
k=l

= (I,

Show that the choices of successive pivotal elements along the diagonal (e,
Imgcmal strategy) is feasible for the solution of & aystem of linear equations whose
soefficient matrix A is diagonally dominant, :

(8) Show that a real symmeuric matrix A, , , 18 pusitwe definite iff Gaussian
elimingtion with diagonal strategy is feasible w&ﬂ:'l n positive_ pivotal elements.

43

(9) Show that if a real matrix is non singular, then there exists a pivotal element
in the k-th column for the k-th step of the process of inversion.

(10) Show that the following sysiems dre ill-conditioned.
() Tx, +10x,=1 '
3x + Txy =7
(i) -24x, + 36x; + +12x, = -84
12x) + -16x, + 24x, = -52
- 15x + 21x; + 25x; = 64
(i) 10x, + Tx, + 8x, + 7x, = 32
Txl. + 5xy + 6x; + Sx, = 23
8x, + 6x, + 10x; + 9x, =33
Tx) + 5x, + 9xy + 10x, = 31
(iv) 1-00x, + 99x, = 1.99
99x, + 98x, = 1.97.

(1) Fit a quadratic function in ¢ correct to four significant figures by the
method least-squares for the following data.

t 0 S| 1o} 15]20 |30 |50 | 80 [100

X 3-85 293§ 263 | 233 [224 | 2.05 1-82 1-80 | 1-75

(12). Solve the following (tri-diagonal system of equations :
(@ x +2x, =35
X, + 3, +x, =8
2, 4 Xy =1
(b) ¥ty e
X+ Lxy = xy=3
5x, = 3xy = 2

46

Unit 3 0 Eig_ﬂn Values and Eigen Vectors of n x n
Numerical Matrix | |

§ Objectives

After going through this unit you will be sble to leam about-—

@ What is eigenvalues and eigenvectors? _

® Power method to determine largest (in magnitude) eigen value

® Method to determine least (in magnitude) eigenvalue,
§ Preliminaries :

Let A = (@), x » be 8 matrix where the elements ay, i j = 1(1)m, of A may be
real or complex.

Then a scaler A (real or complex) is said to be an eigenvalue of A if and only
* if there ‘is a non-zero vector X such that AX = AX : | s By

The non-zero vector X is called the eigenvector corresponding to the eigen value
A of A. The pair (A, X) is called an eigen-pair of 4.
Since, AX =AX g
= AleX) = cAX
, = cAX = AeX), where ¢ i3 a non-zero constant. Therefore, the
eigenvalue corresponding to an eigenvector is unique but the ¢ verse is not true. The

gigenvector corresponding to an eigenvalue is arbitrary to the extent of a multiplicative
constant.

Now equation (1) can be written in the form, (A ~ ADX = 0, where [is the -
n x n identity matrix, or, alternatively we may write.

(A -~ A)X =0 s LY
‘Since X is a non-zero vector, :
Therefore, (A - A)X =0 :
= det (A - A)=0 S i | BN |) (3)

~ The last equation when written in the form of a polynomical equation (of degree
n) in A, is called the characteristic equation of A and the corresponding polynomial

47

is known as characteristic polynomical of A. Aitm-natwely. the roots of this
characteristic equation is known as characteristic roots of eigen vaiues of A. From
linear algebra we have-an important result for square mistrices due (o Cayiey-Hm;[um

Theorem (Cayley-Hamilton) : Every square matrix satisfies its characteristic
equation, .

Another important related result is the following,

- Theoremm : Eigen-vectors, corresponding 1o distinct eigen values are linearly
mdepcndant

Clearly, if 2 n % n matrix has n linearly mdapcndcnt cigen-vectors, then they
form g basis for n- -dimensional vecior space.

Now we discuss an iterative method for fi mnding dominant eigen pair of a real
matrix A, i.e., e cigen pair of A which containg the numerically largest eigenvalue
of the matrix A.

Power Mcthod : .
Let us first assume that the eigen values A, i = 1(1)n of an n X n real hatrix A
are indexed in decrensing order, ie., [A[2 Ay 2 .. 2 iu and let Fay X1y oy X

be the cnrrcapmdmg eigenvectors. Now, the power method'is a useful tcchmque 10
compute the numerically largest eigen value of & real matrix, Thc scheme for power
method is as follows :

Let us assvrae further that,
DM} = "Ay ! 2 0] o 2 (A, L 50 that 4, real,
(il) X}, %30 v %, fOUM @ basis for an a-dimensional veelor space, L.e.,
. &= 1(k)n are linearly independent vectors, :
SINGE, Xy, X3, vy X, form a basis, therefore, any n-vector x in space can be
expresscd as linear combination of x), Xy,ouie X, 160 We may write,
X=X+ Xy + .. X, where @, dy, ., &, are scalars, ... ()
We assume that x has a companent in the direction of x;, i.e.we assume @ # 0,
Now multiplying both sides of (4) by A and considering the fact that x), x,,
~wiens Xy AFE Eigenvectors corresponding to the eigenvalues A, Ay, .o v Ay We
have,

Ar = Aleyxg + o + .+ ax)
= ap X+ By + o @A,

48

X , _
o, Axs A(a,.xt +%ﬂgxz +...+l—"uﬂx,,) ey 13}
| 1

Again multiplying both side by A we have,
Al = A(AX) = & 4%%, + eyl + .. @Atk

' 2 z
: . Tk ?..

Repeating the above process, after k-times operating A we have,

. A k 3 &
Alx = 1.4 {alxl +(ﬁ] e ot ++(?.._:) an.'xn].
k K I3
1 Tk A
o, {—A |x = ax +| =% * o B]
[k;) i (A] 4 [;.] i

k
Since, all [i) qﬂask—pu{ H{Ifmaﬂlu!{l}n]
L Ay

[since 4, is numerically largest eigenvalue, therefore, 4, # 0, aﬂm’wm all eigenvalues
of A are zero, i.e. the matrix is similar to null matrm] :

Therefore, {i ,q)ﬁx = X + [h]* [7% 0% TP [-?fiT ax, —» ax;as k — oo,
A Ay A ; o
which is also an eigenvector of A corresponding 10 the eigenvalue 4,.
Hence, if we set a numerical procedure as follows :
Set v, as the initial choice vector for X as in (4), ie., Vo= ax; + . + K,
Then the sequence {v,) of vectors generated recursively by,

- 1 ¥
we=Avand y = ——p, k=012 .. e (6)
= : : A+ SN

where @, , = '“,‘;’ l(yi], |, (7)), denotes the r-th component of the vector
r=1()n. |) ' '

49

Converges to the dominant eignvector x, and cerrespﬂndiag'!}" the sequence [a,}
converges to the eigenvalue 4. Actually, from the relation

o 3 2 A N
Sty WU SN, 5 0 N i ¥ =]
e

a,a a, A : A g
we have, A=l vy = o + S et + (2] oax, {0
A M) Al L _
[M J‘Hf'n == ﬂﬂi'!., A. 'I-'u = Afﬂ = ﬂlﬁ‘r’[Bay = ﬂzﬂﬂ"b i Aki’ﬂ= aknt-l Sy GIV*]
So from (7} we find, hm V= hm —-El-i—'-i—-— Xy eee (B)
T gy

i.e.. the limiting vector v, as constructed a,bqw converges to the eignvector
corresponding to the dominant eigenvalue 4;. Now if we require both x, and v, are
scaled vector so that largest component is 1 then must have,

TR
}ﬂ e Uk] i A
e ML :

So, scaling in each step, reduces to the fact that, m , = 5. s (10)
" Now, replacing k by k = 1 in (9) we have

“hed i
i LM _ L)
L M. FPRE ! 3

Therefore by (9) and (119, we have

dim. M = lim {at‘l_.}*(a*a"f‘ ﬂ‘_) =l=1
1

k- ‘a_k i—i:n (ﬂ. li'k]I(ﬂ* o ﬂi]

Hm we ﬁnd the wa.mm {a;} ‘as congtructed above also converges to the
dominant, mgmvn]ue AE of 4, i.e., the pair {ai, v,) converges 1o the dominant c;genpanr'
{-"1[: 11)

Cb:ariy* the rate of convergence is determined by the quuhem

’ﬂ.‘illls
i

A0

B

greater than all the other quotients

A ' X
41- i =3, 4. ... n. Smaller the valuse of ’}1
Ay ; A

!
larger the cmve:geme rate,

In short, the numerical pr&n:edure for power method to find dominant mgen pair
is as follows :

Choose an initial guess v, for x,. Then find, Avy = ¥y = a,v;, where a, is the
numerically largest component of v Now apply again A on v, and find, Ay, =y, =
ayvy, where ¢, is the numerically largest component of y;,

i.e., we have, A%y = Ay = @AV, = ay, = @,aVy, where a; = "* |(y), | -
Repeal the process, After k steps, find |

Yioy = Avp) = g, where g = "0 |y, |
i.e., we have, Atvy = (@, ap _ ;...)V

The process stops if two consecutive values of ay, say a, _, and a, do not differ
much, i.c., differcnce is within our desired tolerance level and then we declare that
a, is the numerically largest eigen value with eigen vector v; of the matrix A. This
method is sometimes called the scaled power method. Now the choice of the initial
veotor v, may sometimes prove 10 be troublesome, If the vector v, lies in the orthogonal
subspace corresponding 1o the eigenvector x, then &, = (and the directions of the
sequence of vector [Akx} will converge to the direction of x; instead of x,. Therefore,
if in the process of iteration, the values a, oscillate, then the choice of vy must be
changed immediarely. At lzast choose a veclor vy Dﬂhﬂgﬂml 1o vy, It may not always
avercome the dif“ﬁc.ultj?.

I -1 0
Example 1. Consider the matrix A= |-1 23
: 3 T

 True eigenvalues are, A, = 470156, 4, = ~ 170156, and 4, = 1.00000, conect
to six significant figures.

Now we employ power method. to find the largest eigenpair. Let us take as an
initial guess v, = [1. 1, 1]".

51

Then after 15 iterations we have the following table :

Mo of jwerstion

[."'r':__ 1!' = -"rl-l

¥ ,'T

L

1

10, 4, 4]

[~ |. & ‘jr

[- 12, 45, 38)7

[- 126, 475, 383)7

- 1:265, 4683, 3-806]"

[1270, 4709, 38137

[~ 12697, 46948, 3.6097)7

- 1:27022, 470256, Y84078]7

[~ 127011, 470243, 3-810781]7

[~ 1270095, 4701241, 381038217

[12701616, 47016784, 381050561
[~ 12701307, £70152005, 3.81045645]"
[- 127015746, 470157736, 3-81047330)

T ey

127015560, #TUISSEEE, 3-81046700)7

— ey
| I

M G L

), -BY

a6, 1, 83

265, 1, 80617

270, 1, 8131

2697, 1, 8097

27022, 1, R1078)"
23011, 1, MOIB1T

. 270095, 1., 81038217
2701616, 1, 8103056)F
2701507, 1, 81045645)"
21015746, 1, 910473301
I015360, 1, B1046T00]7

127015634, 1, -B1046524)7

27015613, L B104684317

4
5
46
475
4,683
4709
46988
470236
470245
4701241
47016784
470152008 |
470157736
470155660

270156406

27015634, 470156406, 3810469241

The numerically largest cigenvalue of the given matrix after 15 iterations is
found to be 4-70156 (correct upto six significant figure) and the corresponding eigen
vector is, [~ - 2?ﬂ156 1:00000, 810468]".

4 4 0

Example 2. Consider the matrix A = |4 4 0|. Truc eigenvalues are 4, = 8,

0 0 8

Ay =8, A4y=0, Huw we employ power method with initial guess ve= [0, 1, 217. We
find the following results :

52

No of iteration [{Av,. FLEE L v |

| (4, 4, 16]T (23, 25 11" 16
2 2, 2, 8} [-2s, -25 117 8
e C e ps st o8

So, after two' iterations we find the dominant eigenvalue. However if we start
with untml guess vy = [1, =1, D}T then afier one iteration we find,

(Avg)” = [0, 0, 0F. So the process terminates. We are unable to progress further,
Actually, the vector vy is orthogonal to the subspace generated by the eigenvectors
corresponding to the dominant eigenvalue 8. Here it is also interesting to note that
both the non zero cigenvalues are 8, ie., dominant, /

Least Elgenpalr :

The power method is also useful to find least eigenpair, i.e., numerically smallest {
é;genwiuc_ with ew.gcmreﬁtor. of a non-singular matrix A. Clearly, for a singular matrix,
zero is the numerically smallest eignvalue, Now, to show, how the power method

works to find numerically least eigen value of a non-singular matrix, A, we stai. the
: follnwing theorem from linear algebra. :

Theorem : If (4 ¥) is an eigenpair of a nunsmguiar matrix A, then (1) is an

eigenpair of the matrix A~ ' and vice-versa. i
Now, consider the dominant eigenvalue of A~ say A,. Then, claarly. reciprocal

_of A, i.e, % is the least c@mvalu of A.
: i

Therefore, to find least eigenpair of a non singular matnx A, we have 1o find
dominant (numerically) or greatest mgenpaur of the matrix A-! by the power method.
So the scheme to find numerically lowest mgemalua of a nonsingular matrix A is us
follows &

(i) Check det (4) # 0.
(i) Find A~ L

iily Use power method to find numﬁrmally greatest eigenvalue of A~ Let it
be 4.

53

- (iv) Declare g is the numerically lowest eignvalue of A. This method is sometimes

called as inverse power method.

301
Example 3. Consider the matrix A = [0 -3 0

| I 0 3
True eigen values are 4, =4, 1, =2, ;= -
I
Now,A"'=[0. -{ o0
-§ 0 3
Using power method with initial guess vy= [0, 1, 2}7 we find after 5 iterations
the coefficients @; for the matrix A~ as follows :

_g PRI pe 17 3
S T R e T e

; 1 : :
Which converges towards 7’ the reciprocal of the least eigenvalue 2 of A.

Shifted Elgenvalues
Let ¢ be any scalar {real or complex) and (4, v} be an eigenpair ot' A matrix A.
Then, :
Ave v A-civ=Av-cv= (A - A1)
i.e., if (4, v) is an eigenpair of A, then (4 - ¢, v) is an eigenpair of A ~ ¢f and vice-
versa,
Let A, be the eigenvalue of A nearest to ¢ and let v. be the corresponding
cigenvector Then (4.~ ¢, v,) is the least eigenpair of A — d implies
" (A= ¢, v,) is the dominant eigenpair (A — cf)™'. Therefore, we may find A,
by the following computational scheme : iR
. { :

= I, i (14
A dominant eigenvalue of (A —cf)™ ' ut

This procedure of finding eigenpair (4, v.) of a matrix A is known as Shifted-
Power method. :

54

; Faofin 1 .
Example 4. Consider the matrix A = |0 -3 0| of the above example. Witn

I 0 3
0 Q.
shift ¢ = 3, we have, A -3 =10 -6 0
s I
To. 011 : : :
Therefore, (A =30 ~'=|0 -} 0| True eigenvalues are 4, = |, =iy
| T '

b : b — '
== le, || = [hy 1= 1. However, considering the initial guess vy = [1, 1, 1]7

we find by power method, the numerically dominant eigen value of (4 ~ 3I) Vig
1 with eigenvector approaching to [1, 0, 1],

: 1+2° 2 3
Example 5. Consider another matrix A =| 2 3+2 4 | The resulting
: 3 4 5+2

matrix with shift 2 is A - 2I = which is singular. Hence we are unable

Li b3 =
oW B
n A L

to find (A — 20 =" and '{hére is no scope of finding any eigenvalue (if exists) of A
near 2 by shifted power method. However, the true eigenvalues of A are 4, = 2,
13+ /105
2'2 - ; 2 X
0, s0, A must have an eigenvalue 2.

A= *3*1" 105 tearly, A — 21 singular means it has an eigenvalue

§ Summary :

The eigenvalues of a square matrix can be determined from its characteristic
equation. But, the solution of the characteristic equation is very difficult for large
matrices. Some suitable numerical methods are used to determined eigenvalues of a
matrix. In this unit, the power method is discussed to findout the numerically largest
eigenvalue of any square matrix. Also, an outline is provided to determine the least
(in magnitude) eigenvalue.

55

EXERCISES

{1) (i) Prove that if A is an eigenvalue uf 4 square matrix A, then a}l +bis

an eigenvalue of

the matrix a4 + bl

(i) Prove that if A is an mgenvalun of a square matrix. A, then for any
polynomial p(x), p(2) is an eigenvalue of the matrix p(A).

(i) Prove that if A(= 0) in an eigenvalue of a non-singular matrix A, then
Y is an eigenvalue of A -1,

(2) - Use power method to find dominant cigenpair of the following matrices. -

- T4 =3
) A= . start with v = [1, =117,

{i) 2 5} o = (1, -1}

(i) A= " |, start with vy = [-1, 1],
-3 5
(9 10 8

(i) A = ‘: SI 4], start with vy = [1, 1, 1]7,
1 240 -

(ivi A=12 1 0|, start with vy = [1, 2, 37, correct to 3 decimal places.
0 0 -1 -
g, O ¥

(v) A=11 21| start with yor choice,
1 2 ' |
(4 1 0] e

(vi) A=]1 2 |1/, start with your choice, correct to 3 decimal places.
0 1 1]
[1g1° '8
3 S8A :

 (vii) A = 8 610 9f with initial ve-.j:tur vo=[1, 1,1, I]T.. cortect 1o 5

17 5 9 10

decimal places,

56

(3) Use Power method to find numerically least eigenpair of the following
matrices. : '
(i) All the matrices of exerciese 2 with your initial choice vector, correct to
3 decimal places.

4 5 6 ;
(ii)A =15 6 7| with your initial choice, correct to 2 decimal p!acé,s.'
T 89
I 6 ~3|
(i) A=|-12 -20 24| withvy=[1, 1, 1]7 correct to 3 decimal places.
-6 =12 16 ; '

(4}' (i) Use shifted power method with shift 3-01 to find eigenvalue of the

1 2 0
matrix A = [2 1 0|, correct to 4 decimal places, Start with initial vector
0 0 -1 -

vu = [11 11 11T|
(ii) Compute eigenvalue of the following matrix near to 4 using shift—

power method.
4 7 6 9
A—? e ﬁcmmt:’ﬁdec‘ | places
=|l¢ 4 g 7 o 5 decimal places.
9 & 71 15

- (iii) Use shift power method to find the eigenpairs of the following matrices.

0 11 -5
(@) A =|-2 17 =7 | with shift 4-2, correct io 5 decimal places.
' -4 26 -10 -
12 =72 -59 ‘
M A=| 2 29 23| withshift 3, correct to 5 decimal places.
ol el i =8

57

_Unit 4 o Solutions of Non-linear Equations

§ Objectives

After going through this unit you will be able to learn about—

Location of root of non-linear single equation

Bisection method

Regula-falsi method

Fixed point interation method

Newton-Raphson method

Convergence of a method)

.Roots of a polynomial equation by Bairstow's method

Roots of a system of non-linear equations by Newton's method

§ Single Equation : |

¢ @& & 9 o 9 & @

Here we shall restrict ourselves to the numerical solutions of equations of single
- unknown variable x (real or complex), of the form fix) = 0,

- We further assume that fix) is continuous in the domain of the required solution.
Sometimes we may also assume the continuity or differentiability of higher order
derivatives of f(x) is required.

Now a point x = x; is said to be a zero of f{x) or a root of the equation fix) =0,
if and only if fix,) = 0; e.g., the equation x? - 5x + 6 = 0 has two real roots x = 2
and x = 3, equivalently, x = 2 and x = 3 are the zeros of the function fx) = x* - 5x
+ 6, An equation may have also complex roots. The simplest example of an equation
containing complex roots is x* + 1 = 0. It has two complex roots (conjugate to each
other), x = 7 and x = - i, where ;. /7, Further, a root x = x, of the equation
Jix) = 0 is said 1o be of multiplicity » if and only if for all non-negative integers -
k <r, we have, :

fim AL
X=axy |y - X5 r"

- Here we recall a theorem from calculus:

58

Theoremm : A point X = X, i3 said to be a zero of at least multiplicity #, for some
integer, of the function flx) which is r times continuously differentiable at x = x; if
and only if fixg) =f’{xu} = e = f17 V) = 0, : :

If the multiplicity is exactly r, then, of course, f17(x,) = 0. Also if fix) is r+ 1
times continuously differentiable at x = x; and if X, is a zero of multiplicity r of flx).
then f(xy)#0. - '

Example 1. Let f(x}:{x~—a]28".1'h¢nx=aisarmf-t of the equation f{x) = 0 with
multiplicity 2. The function f(x) 1is differentiable continuously = any
times. We have, f'(x)=2(x~a)e’ +(x—aYe fi(x)=2¢" +d(x-a)e” +(x-a)e’,
fla)=f'(a)=0, but f(a)=0.

§ Locating Roots : Isolation or Bracketing of a Root :

Now our task is to find a root of the equation flx) = 0, if possible exactly, or
" otherwise, to some desired degree of accuracy. For that, we first need to locate roots
of flx) =0 in separate small intervals, The process is known as isolation or separation
or bracketing of roots. 1t helps us to find roots within our desired accuracy very

quickly. A root x = x4 €fa.b] of the equation flx) = 0 is said to be seporated if the

equation flx) = 0 has no other roots except x, in [a. b). Now we first describe a
method called graphical method.

Graphical Method :
Let y = fix) be a function of x as shown in Fig. 1. The figure shows, it has two

7T
y = fx)

ola/ . St Uy oS
Ty M

Fig. 1

roots at x = x; and x = x,, one between x = g and x = b, other between x = ¢ and
x = d. There are no other roots of fix) = 0 on the intervals [a. b] and [e. d]. Now
it may be the case that the curve y = fix) is not easy to construct graphically bul the

59

equation f{x) = 0 may be written in the form £(x) = h(x), where g(x) and h(x) are two
functions which we may represent graphically. -

We can locate roots of flx) = 0, by representing fix) = 0 first as g(x) = h(x) and
then by observing the points of intersection of y = hx) and y = g(x), like, x = Xy
between x = ¢ and x = b, in Fig,. 2, '

¥ Yeglih
ﬁ<}r: hx)

i —+ x
0 a M i

.--#‘

Flg. 2

For example, Jet us consider the function y = fix) =x < Inx ~ 1. It is in generally
not easy to plot fix) graphically. But we may draw y=x-1and y=Inx in much
better way than y = f{x). In the interval [1 - & | + €] where £> 0 is a small quantity,
we find x = 1 is a point of intersection of both the functions y=x-landy=/nyx
and hence a root of the equation x ~ lnx ~ 1 = 0.

Here we should remember some properties of functions having roots of different
multiplicities. For example, for roots with multiplicity 2, the graph will touch X-RKIS,
For roots with multiplicity 3, it is a pniﬁt of inflection. Now graphical method for
looating roots is not a method of great precision, It only help us to determine roughly
the interval where a root is located. Thercfore, to achieve better result, we need some
better methods. We further describe some analytic properties of functions which will
help us fo locate roots of an equation, :

Theorem : If a function f{x) is continuous for x €[a,b)] and takes opposite sig_ﬁS'
at end points ¥ = ¢ and x = b, Le., fla)fib) = 0, then there exists at least one real root
of fix) = 0 between x = g and x = b. [clearly, the root is of odd multiplicity].

Theorem : If a function f(x) is continuous and monotonic on [a, b] and takes
opposite signs at x = a and x = b, then there is exactly one root of the equation f{x)
= 0, in the interval [a, &]. :

[Clearly, the root is simple root].

60

Theorem : Let a function f{x) be continuous on [a, b] and takes opposite signs
at x = a and x = b. Further, f'(x) exist and retain its sign on [a, b] (i.e., either
fix) > 0, or f(x) < 0, on [a, b]). Then, fix) has exactly one zero on [a, b].

Now we recall somé notions tegarding some analytic properties of functions.

The set of all x for which a function f{x) is defined, is called the domain of
" definition of fx). The funetion fx) is called monotonic increasing on _[a,' b] if and
_only if for all x, 2 x; in [a, b], fix;)"2 fix;) and it is called monotonic decreasing if
and only if for all x, x, in [g, b), flx,) £ flxy) holds. If the function fix) is continuous
on [a, b] and ‘its derivative exist at all points on (g, b), then the necessary and
sufficient condition for monotonicity of f{(x) on [a, b] are, f(x) = 0 for monotonic
increasing and f'(x) £ 0 for monotonic decreasing, Also if flx) is continuous on {a,b],
f(x) exist on (a,b) and has steady sign, then, '
(i) flx) increases on [a, b, if f(x) > 0 on (a. &), and
(i) fix) decreases on [a, b}, if f(x) < 0 on (a, b).
If further, f{a) and f(b) are of opposite signs, then fx) must cut x-axis at a point,
say, x=xy€(a,b). _
Again, if a function f[.f} has second order derivative on (a, b) which retains its
sign, then :
() the graph of flx) is convex downwards on [a, bl, if f'x) > 0, and
(ii) the graph of flx) is convex upwards on [a, b], if F(x) < 0.
The fmints where fi(x) = 0, or does not exist, are called critical points,
Therefore, for continuous functions an useful technique to locate root on an
interval [a, b] is to check whether fla). fib) < 0 or not.

~ Next we describe two further useful algorithms for bracketing roots with higher
degree of accuracy.

Method of Blsection :
Have we first assume that flx) is continuous on [a, b] and fla)fib) < 0. Then there

; a+b S
i at least one real root of flx) = 0 between x'=a andx=b Letc= T We divide

[a, b] into two parts [a, ¢] and [c, b] and compute fic). Then we check whether, (q;f
fla)fic) <0 or, (i) Ae)fib) <O or, (iil) fle) = 0. If (iii) occurs, then x = ¢ is the exact
root and the process is terminated.” Now, if fix) has only one root in [a, b] then one

61

of three conditions (i)-(iii) must be satisfied. Suppose, either (i) or (ii) is satisfied.
- Then we call the interval [a, €] or [c, b] as [a;, b,] and divide [a,, b,] into two

gk ; :
L1 As before we now compute f(c,) and

parts [a, ¢|] and [¢), b], where ¢, =

study the same procudum as in (i)-(iii) for the mtenra! [a), b,]. We continue the

a,+b, A
process unit the value of fic,), where ¢, = 5y known as n-th iterate of ¢,

reaches zero of f{x), to our desired accuracy. Sn‘ if x = xp, is the only zero of flx) on
{a, b] then, we must have the following relations between a, b, for { =1, 2, ...,
4S8 S B0, S0 SH S e Sb S h R S Sl
Now we discuss convergence of the above procedure. We first mention the,=
following theorem. '
Theorem : If fix) is cummuous on [a, b] and fla)f(b) < 0, then there is a number
x5 € (a, b) such that fxy) =

Thcreﬁ::re, if we consider {f:n} asa saquer_me of numbers genamted by the bisection

b~))
method, then 1, —c, |“’52+i,furn—[] 1, 2, oy where € =e =77 and the

e Ll
seqqcnce converges (0 x = x;, i.e. 1M € =Xo,

Proof. Since both the root x, and the number ¢, lie in the interval [a,b,],
therefore, |x, — ¢, | is less than or equal to the half of the length of the interval [a,.
b forany n=0, 1,2, ... e, :

T L e

i Lby_y =y | = 1byy =y | :=(‘b =a)
n n 2 - 22 . ; A
LB, = ~a,|_(b-a)

Therefore, 1 x, -¢, 15 - Vn=01...

5 gnel !

62

Again, for any non-negative integers n, m, we have,
e, =t =1 Xg — €y = (X9 —)|

Llxg=cy l+1xg—c,!

(b-a) (b-a) _ b-.a[H, 1]

2m+i 2n+1 Il zmq-l Iﬂ—m
< g, if we take n, m (n > m) sufficiently large for given € > Q.
i.e., (c,) is a Cauchy sequence in [a, b] and hence it is convergent. The above
relation clearly indicates that ¢, converges 10 xg i.e. JL’E‘:"—‘" =X,

' Example 2. Find the root of the equation fix) = cosxcoshx + 1 = 0, by
 bisection method correct to eighit decimal places where the root lies between 1-8 and
19, '
" Solution : Here it is given that the initial interval [ay, bo) is [1-8, 1-9]. After 24
iterations we have the following table. : :

K a by : Ck : fley)

0 1.8 1.9 I +ve
I {85 19 1.875 +ve
2 1-B75 19 1-8875 —ve

3 1-875 1-8875 1.88125 —ve:
2 1875104060 | 1-875104072 1-875104066 | +ve
2 | 1875104066 | 1875104072 1875104069

The required root is 1-87510407, correct to €ight decimal places.
Method of false position or Regula-falsi method :

Here again we assume that flx) is continuous on [a, b) and fla). fib) < 0. Now
instead of considering the first approximation to the root as the mid-point of [a,6].

63

it may be sometimes better to take the first approximation to the root x = Xy of fix)

_bf(a)-af (b) ag-J@Nb-a)

=0as % = @) fb) o 8S X = f(b} f{ a)’ where (x;, 0) is the point

where the chord joining the points (a, fla)) :md (b, fib)) cuts the .t:-mus. Here also,
as in the bisection method, three [JOSSIbI.lH:ES will arise ;

©fix)) =0, in which case x, is the root;
: (ii} Aa) fx,) < 0; in which case the root lies between a and Xy, and
(i) Ax) L) < 0, in which case the root lies between x, and b,

¥

: ;
By "‘Mf L
: _Lﬁi;/ r

Fig. 3

If case (i) occurs, the process is terminated; if either case (ii) or case (ii1) occurs,
then the above process continues until the root is obtained to the desired accuracy,
Therefore, for second iteration x, of the root x = x;, we call the new interval as
[a;, by] where either the condition (i) or (iii) occurs, and x; is given by the formula,

g L@ ~a)
TR fa)
Hence, the (n + 1)-th iterate is given by,
fla,)b, ~a,) }
el ﬂ‘,, fﬂ? } f[ﬂ] .

It is easy to prove that this method converges and the rate of convergence is
faster than the bisection method. Here we must be careful about the differences
b, - a,, it may not converge to zero. For example, if we consider f{x) = x sin x—l
Then it has a zero in the interval [0, 2] but b, -~ a, = 0,

G4

An estimate of error in regula-falsi method is given by,

| 8 e
| &4 ISE-H;{b,, ~a,) &, |, where ¢, is the error in the n-th stage, k =77 f"(x)| and

m:':rlf'{.r]i.

_ Example 3, Determine the root of the equation in° Example 2 by regula-falsi
method, correct to eight decimal places. -

_ Solution : The following table gives the details of the computations by regula-
falsi method,

k ﬂ.; by " fx)

0 1.8 19 | 1873697942 5.8127 x 107
1| 1873697942 19 | 1875078665 1.0512 x 104
2 | 1875078665 19 | 1875103600 | 19021 x 10
3 | 1875103609 19 | 1875104061 | 3-190 x 10°*
4 1875104061 | 19 1-875104068 29 x 107

Therefore the root is 1-87510407, correct to eight decimal places. i

Now it should be noted here that if roots have multiplicity more than one, then
the processes described above are not quicker enough. In the neighbourhoods of the

roots, the processes slow down, In actual computation there are always some error

occur due to round-off or instability in the computations. We usually call a root :
finding method is well-conditioned, if in the neighbourhood of the root fix} = 0, is
steep enough so that it is easy to obtain a solution with a great number of significant
digits, Otherwise, we call the problem as ill conditioned. At the neighbourhoods of
multiple rools it occurs. : : : X

Next we describe a general iterative scheme for finding roots of a equation fx)
= 0. J
Iterative Method (Fixed point iteration) !

 Consider an equation f{x) = 0 with one unknown variable x. Now to find a root
in a certain interval of the equation, we first recast the equation in the following
manner. :

x =) e bR
' 65

s0 that if o is a root of the equation f{x) = 0, thea it satisfies the relation o) = o
Clearly, then « is a fixed point of the fudction ¢. For this reason, the method is
known as fixed point iteration process. Here we recall the famous Banach fixed point
theorem,

Theorem : Let (X, d) be a complete metric space and T : X — X be a contraction
map. Then, T has a unique fixed point in X, i.e., there exists a unique x; € X such
that T[xﬂ} = Xp.

The scheme for fixed point iteration process is as follows :

Let x, be an initial gﬁess for the root of the equation fix) = 0, or, équivalently
x = ¢(x). Then we calculate successive approximates x;, as follows :

X =¢(x,),

.............

Xpep = 00(x) et BRI i re s Sl A : (2}

||||||||||||||

- To examine the usefulness of the above algorithm, we first analyse the following
questions. '

(i) Does the sﬁque:n-;: Xgo Xy seeear Xy oo CONVETEE 1O 8 point, say,
(iiy Is the limit @ a fixed point of ¢ or not?

: To answer the above questions we make some assumptions about the nature of
the function ¢(x) :

(1) ¢ must be a self map on an interval [a, &) where we want to find the raot -
of the equation, i.e., ¢(x)ela,bl, Vxela,b]. ,

2) ¢is continuous on [a, bl.

b6

(3) ¢ is differentiable on (a,b) and 3 a non-negative constant K < 1, such that
i{ﬁ'_(‘x].l <K, Yxela,b].

Clearly, assumption {3}-imp]ies assumption (2). Msﬁ. assumptions (1) and (2)
imply, ¢ has a fixed point in [, b].

Proof. Let h(x) = ¢(x) — x. Then h(x) is also continuous on [g,'H] by assumﬁtian
(2). Now, h(a) = ¢(a) — a and h(b) = ¢(b) — b. Since, by assumption (1), a S ¢a)
< b and a < ¢(b) < b, therefore, ¢(a) — a 2 0 and g(b) - b < 0.

If ¢{a) = a and ¢(b) b, then a, b are fixed points of ¢, ‘hence, both of them are

roots of the equation fix) = 0. Let ¢(a) # a and ¢(b) # b. Then ﬁaj ~a > 0 and ¢(b)
l -b<0.

Therefore, h{a) h(b) < 0, ie, h eh_ariges its sign on [a, b].

So, 3a zero x = @ of h on [a, b}, (by intermediate value theorem) such that
o) =0, ie. o= ¢a), is a fixed point.

© Next, we shall show that the SEQUENCE Xg, X ey Xypeiror CONVETEES 10 @ unique
fixed point & of ¢ on [a, b].

Proof. Since « is a fixed point of ¢ on [a,b],
therefore, ga) = .

. Let, y,=@a-x, Yn=012,..

or B =¢(ﬂ)—¢{x"_1)

= (@ — x,_;) $/(£,), by M.V.T. of differential calculus, where £, is a

point in between & and X, _ ;.
Therefore, 1y, 1< K la@—x,., |, by assumption 3)
Qr, |yﬂ1£K’i_‘}’ﬂ_} I
Similarly, 1y, 1S K1y, 3 1SK* 1y 3]
So, Iy, IS KLy, (1K 1y, 1S <K"lyyl=K"la-xp|

. Since, Bsﬁ'e:l K® =0 as n—500.

67

. Therefore, [y, 1= 0 as na-;m. Clearly, it does not depend on' choice of Xg in
[a, b). :
Hence x, 2a as n—w.
Proof of uniqueness of « is left as an exercise to the reader.

- Here we must take care of fact that if [¢#'(x)|> |, Vx &[a,b], then the scheme
will not converge to. ¢, the fixed point of ¢ on [a, b]. _
The above theorem tells us about the error bound in this scheme.
Since x,, is the n-th approximate to &, therefore, by the above theorem we have,
la=x, 1SK" la~x,|, ¥n=1.

Also, i_a-xﬂl=iav-x|+.r|-.rutsla—xEI+E.r|«-.r,;,IﬂKiav.rnHr.r,-—xgl

1
o, |£I-x|31$l

V) ~xq
I% 0
i

: K :
Therefore, ia—;,lir—k—ix. -xp L Vn21, which gives us a computable

estimate of error in this scheme.
Let e, = error in the n-th approximate,
= iy - _r" s
Then, we have le,, I=la~x,, I=1da)-d(x)|
=la-x, ¢,
=le |, @(a), for large n.
Because, if the itaration.pmcess converges, then &, = a, for large, n, hence, we
have, _ ' ;
lejlzle | ¢a).

The constant &'{a} is known as asymptotic .convcrgcnce factor. Figures below
now show the path of convergences or divergences of the iteration process for different
values of ¢'(a);

Now let us assume that,

gla) =@ (@) ==¢" (a) =0 but ¢ (a)=0.
i.e; ¢(x) is an iterative function defining an iterative process of order r.

68

y y=x L
74 T b
T y = 8(x) A TE vkt

=
,-91 o TR} ¥ o B X X il
0<@'(a) < | -l < ¢(@ ‘:.ﬂ
e y=o) »=x o AYERR y=x
a”‘,?/xs Iu Tyt et ;
._ 47_ : e X3 fo Xy el
gies | o(a) < - | -
Fig. 4

Then, X,,,—& =@(x,)-¢la)
= dla + x, ~-a) ~¢la)
= =20 (¢, by Taylor's sries expansion, where ¢, Ties
between x, and o

or, €, =(=1) %’-‘;&‘”{4’,) {As we have defined e, =a-x,]

. K -
or, - ley, 1S=Fle, ', where K. = max 147 (x)l.
r! xefm.bl :

This gives an estimate of error in the process.
Again, if the iteration process converges, then the above relation we have,

: () - '
. le | a)l . :
lim |2t =M)__ =0, as & will also converges to @ Wwith n—w.
n-w| g r! : :

Thus, generally, we say that the order of cbnve:rgenc:r of the iteration process is

(rl | _
r with asymptotic error constant M. If r = 1, we call convergence is linear,
: ol _ : .

if r = 2, we call convergence is quadratic, etc,
62

Example 4. D‘ete,fmine the root of the equation 5x* — 20x + 3 = 0, lying in the
interval [0, 1] by iterative scheme correct to 4 decimal places.

5x3 43

Solution : Let us take, ¢(x)= 50

[

pat = g .
Then, |dfl"1JCH==T":I on [0, 1).

Now considering xo = -75, we obtain hY the iterative s::hame Xoyr = 52;3 the
fﬁilﬂng table, _ :
£ X)

0 ' 0-75 025547

1 02555 0154144
2 : o ARl 0-151413
NS 01514 0-151361
4 015136 0151361

Thmfnrc. the root is 0 1514 Correct to 4 decimal places,

Method of Tangent / Newton-Rephson Method ;

Here we first assume that fix), f(x), f"(x) are mntmuous near a root & of the
equation f{x) = 0. Then we have a fixed point iteration scheme which is faster than
the usual bisection'method, regula-falsi method for estimating the root e Actually,
the convergence is quadratic for simple roots in this method. Let x, be the n-th iterate
of the root @ and &, = & - x, be the corresponding error term. Then, by Taylor'’s

expansion, 0= f(a) = f(x, + & = x,) = f(x, +£&,)

5 il ‘ W 1
=fx)+e,f (xu)??-‘_:f {€s): where £, is a point lies between
@ and x,.
Now, assuming x, is close enaugii to &, we may neglect £ as a very small
quantity. Then, we have an approximation to &, say, h, such that,

—f{x,)

h, ?{;&" prmrldcd Filx)#0.

10

&—ﬂ={}12

Xq f{

Lel, Xp4q =X, +H, =X , where xp is the initial choice
for a. .

Then, we call x,, 4as (n + 1)-th interate to the root & and the procedure of finding
successive iterates by this scheme is known as Newton- -Raphson method.

Geometrically, consider the pcmt (x.. fix,)) on the curve y = flx). Then draw a
tangent at Ilhls point. It cuts the x-axis, say, at the point (x, , ;. 0). We call x, ., as

Jx,)

the next approximate o o C‘.earl;-,r Xt =Xp ™ e and for this reason the method
o
is also known as method of tangent. k

It is easy to show that Newton-Raphson method is & fixed pmnt ueratmn method

with the i_teratinn function ¢, defined b}f. Plx) = I*}—({-)i Since, ¢ is the root of
x) = 0, therefore, Pla)= a——-— =g e = 18, Q18 8 ﬁxed_ int of ¢
g ! f T Pt
i3 | /y-fm
' (X JG5a2),
\q_ﬁ*
L . P X
o _.-"'/&- sy Fnsl il
Fig.. 5

Hence, the convergence criteria for Newton-Raphson scheme is, 14'(x)1 < 1, where

« &[a.b], which brackets the sole root &of ﬂx] =0, i, [a.b] is a small ncighbourhood
of dcuntammg no other roots of flx) =

U@ - fr @]
d=
@)

LF @)
o TrP

o ftx)f“(xnc[f'(x;]i for xefa,b).
T

0

Now, to estimate the error accurring in this method, we have,

NN 1
Kt = Ky f'{x]*
f{x!l)
Xpoy SO =X, +-
Of, @~ 1 f(.r)
) Jla—-¢)
or, ol
EJH‘I E +f{ﬂ £]
f@) =&, f(e)+ 262 f(a)+ .. |
=g, + 2 , by Taylor's expansion,

fe)-g,f"(a)+ %aﬁf"m) ¥

-5, 1'(@)+ ~62(@) ¥ ...
=g + ' ~ 2 l . .85 flle)=0,
f’(rx}—r,,f'{a}+553f'{a}+,..,.

2 fe)
f[) cunsldenng ¢, <<1, provided f(a)=0.

||, 1}S"(@)
2|7 2| @
Hence, Newton-Raphson method is a second order (i.e., convergence is quadratic)
S (a)
2f ()|

i.e., 845 n— o,

iteration process with asymptotic error constant

provided f'(a) = 0, ie.,

the root is simple and ie < %Eel
m

n-l-ll

where M = max | £°(x}), m=min| f'(x)1, x ela,b]
When @ is a muluple root of order r, then

n+! "ﬂx .] ﬂﬂ}

Mﬁ“(é), where &, is a point lies in between @ and x,

o g =";+,-I¢‘”t¢,>|

k | |
S=L1g, 'y where k, = max 14"(x)1.
r. y ke

12

It is then found for Newton-Raphson method, if @ is a multiple root of order -
r=> 1, for large n,

1€, [P e = IE,, l, i.e., convergence is linear.

in such cases, the usual Newton-Raphson method is modified in such a manner that
the quadratic convergence is again restored. The method is known as Modified /
Accelerated Newton-Raphson method.

Suppose, @ is a root of the -:quatmn ﬁx} = 0 of order r > 1, Then the (n + 1)-

1 (x,)
f'x)’

th iterate x, , , to & is given by X, =x,-
quadratically.
Some polnts to note :

Firstly, in any calculation, division by zero should be avmded carefully. Secondly,
we should check, whether f{x) has real roots or not. If it has complex roots, the iteration
may not converge. Again, if initial approximation x;, is not considered carefully, then
the iteration process may lead to another root. So the initial choice should be taken with
care and check the convergence criteria repeatedly. There may also be the case of
cycling, i.e., iteration process is cycled near the root but not converges to the root,
Here, also the initial choice is important and convergence criteria should be revisited.

which converges to «

Example 5. Consider the function ﬂ‘:-c}'-_= cos x cosh x + | = 0 of Example 2. We
obtain the root by Newton-Raphson method correct to 8 significant figures as follows :

Here, f'(x) = cosx sinh x — sin x cosh x.
Table :

k| X Sflx _ Flx) Rxp) 0
0| 18 | 2939755852 x 10°' | -3.694673552 | 795674046 x 1072
1| 1879567405 | -1.8530467 x 102 | —4.165295668 | -4-44877590 x 10

2 | 1-875118629 —6:0253 x10% | -4.138222447 | -1-4560116 x 107
3 | 1:875104069 -1-0 x 107 —4-138133987 | ~2-4165 x 10°1°
4 | 1-875104069 i

Hence the root is 1-8751041 correct to 8 significant figures.

73

Example 6. Consider the equation f(x)= x* ~3x+2=0. It has a double root at
x ='1. We use the Modified Newton-Raphson scheme, '

zf{x‘_.} I*+3xk"4
f{xk] 3-1‘-';c -3

Xpot = X —

Starting with x, = 1-2, we have the following table.

ok X . Kp1 = X & = 1 ~xy
0 12 - 0-1)3939394 ~ 0:200000000
1 1006060606 - 0006054519 ~ 0-006060606
2 1-000006087 ~ 0-000006087 - 0-000006087
3 1:000000000 0:000000000 | 0000000000

§ Rnuts of a Polynomial Lquatiﬂn mth Real Numerical
Cn-efﬁrjents' :

Let P,(x) = dox" +ax"" +...+a, =0, 1 e

ﬁ*here ay#0, and g,,i=0,1,..,n are real,

be a polynomial equation of degree n. As a polynomial of degree n, P,(x) has exactly
n roots, real or complex. Here we-should kaep in mind that if F‘*'\E is a root of

the polynomial equation (1) then p—.fq 1s so also and if & + if is a root, then o
~ ifis also a root, Therefore, an odd degree polynomial equation with real coefficients
has at least one real root. Now, maximum how many real roots, a polynomial equation
of the type (1) can have, can be convéniently guessed, using Descartes’ rule of signs :
The number of positive roots (counting multiplicities) of the polynomial equation
P,(x) = 0 with real coefficients, is either equal to the number of sign changes in the
sequence of coefficients ay, @y, ay, ..., a, of the equation, or, is less than that number
by an even integer. Similarly, the maximum number of negative real roots of the
equation (1) is either equal to the number of sign changes in the sequence of coefficients
of the equation, P,(-x) = 0 or, is less than that number by an even integer. A more

_complete way to determining the numbet of real roots of a polynomial equation in

a given interval is the Sturm's method. Now, before going to state the theorem, we
first describe the evolution of Sturm's system. Let, in some way, we know that all

74

roots of P,(x) = O lie in the interval [a.b], a < b, Now, we calculate /', (x} and divide
P,(x) by P',(x). Let R(x) be the remainder with opposite sign. Then we divide P’,(x)
by R,(x) and call the remainder with opposite sign 25 Ry(x). Again we divide R,(x)
by Ry(x) and find R;,{x}'in a similar fashion. Since we are dealing with polynomials
of finite degree, this process terminates whenever Ry(x) is constant for some k. The
sequence, P(¥). PCe), Ry, Ryl s Ry(x) (= constant), is usually known as
Strum's system. Now, wé substitute a and brespectively in place of x and calculate
the number of sign changes in the Sturm's sequence. Let, W(a) and W(b) be the
respective numbers. Then we have the following theorem :

Theorem (Sturm’s theorem) : If a. b (a < b) are not reots of a polynomial
equation P,(x) = 0 and P (x) does not have multiple roots, then W(a) 2 W(b) and
" W(a) — W(b) is the number of real roots of the polynomial equation in the interval
(enb). :

In Netwon-Raphson method we observe that, it is necessary to evaluate the
function and its derivative to find a root; Therefore, if we use that method for the
polynomial function P, (x), we must evaluate values of P, (x) and its derivative for a
prescribe value of x. There is algorithm developed for division with linear factor,
which is as follows :

Let, for a given point p, we write,

P(x) = (x = p)F(x)+ R Sy SRR A (2)
Let, the quotient polynomial .F:,_l{xfl be:
Polbymie ek by L o e (3
Now, we take b, = R and by (1), (2) and (3) we have,
' a;nx" " a,x"". F ot @y = (= P)bgx™ Hut b,)+ B,
* Compairing coefficients of both sides we have,
b=y
Cby=a; by =12 . o Y
and R=b, '

'Thére!’mc; the value of the polynomial P;{x} at x = p is given by the division
algorithm, i.e., R = P,(p) i sxnns)

15

Again, from (2) we h's_we. :
Pi(x)= B, i (x)+(x=p)P.,(x) |
This implies, Fi(p)=P,.,(p) i G T

e, the value of the first - denvatwe of P(x)at x =p is given by the quotient
polynomial P,_,(x) at x = p, :

Now, ﬁ}llow:_ng {2) we can write,
Foei(x) = (x = p)B, »(x)+ R, _ roenen (B)
where, Byi(x) . X" " e e,
and R, =C,.s SAY.

Then we have, R =P, (p)=c, ,
co=by, oo A0
ep=b;+peyy, j=L2, 01 .

So, B, (p) =P, 5(p) and by (6) we have,

_ {xJ 2Ey (X} +(x~ =B (x) : s (10)
which implies, P'(p)= 2P, \(p)=2P, ,(p) . e e
Proceeding as above, we obtain

B™(P) =m!P (p) m=12,sn L e (12)

where P[, =dy.

The qua.nuncs generated as above may be found easily by Horner's scheme :
Coefficients of R e AN et a

n
Phe B e pb,.2 pb,_
Coefficients of £, , o by & by .o by | b, = P(p)
o — PCy _
Coefficients of P, _, 5 € € ' € i €43 Cpo) = PLp)
... i bt e S
el IR e A F e e iR et

Now, if we know a zero p, of the polynomial P,(x), then dividing P, (x) by (x - p)
we remove a zero from P,(x) and get a quotient polynomial P, _ (x). Again, if we
know another zero p,, then we divide P, _ (x) by (x = py) to remove this zero from
P, _ {x). This process of successive deflation of zeros from P (x) have some hazards
as we actually approximates in every steps the roots and obtain the successive quotient

* polynomials by division algorithm, in both cases rounding ctrors inevitably occur.

However, simple care may be taken for stable computation. In dividing off a root,
the coefficients of deflated or quotient polynomial P, _,(x) = b~ + +by
may be comiputed either in the order by, by......, b, or, in the reverse order. First
one-is known as forward deflation and later is backward deflation. The former is
numerically stable if the roots are eliminated in incrcas_iﬁg order of magnitudes,

Example 7, Let us compute a zero of the pnlynuméal, Pi(x) = 2 =5x waxs1,
for which the approximate value x, = 2 is known.

The Homner scheme gives,

P Sk TS« RS . R 4 1

2 % 2 4 = 0

TRNRE R SRl S 1 = Py(7)
2 x : 2 8 14 24 _

RS e s Sl 12 4 =Py

With these values we obtain first iterate x, to the root by Newton-Raphson method,
which is,

x =z-2]—4- 195833

¥V repeat the process again, The Horner scheme for x, yields.

95833 x 195833 383506 - 228134 - 4-46762 - 0915754
Py = 1 195833 - 1.16494 - 2:28134 - 046762 | 0:084246
195833 x 195833 767011 127393 20-4802

P, = 1 391666 650517 104580 | 200126

17

Then we find second iterate x, as,
- Xy = 195833~ 00420965 =195412.

Proceeding as above we obtain xy = 1:95408, rounding upto six significant figures.
At this stage, we find, P4(1-:95408) = 0-000008.

§ Bairstow’s Method :

. In this section. we are going to describe a method of finding roots (even if
complex) of polynomials with real coefficients by means of Newton's technique. The
implicit idea is as follawﬁ since mmp!ex roots appear in pair, therefore, if ¢ + (g
be & pair of roots, then x* -2ax+a® + #° is 4 quadratic factor of the corresponding
polynomial, say, P,(x), where suffix n (2 2) designates the degree of the polynomial,
So, if we somehow, find a quadratic factor of a polynomial, then from this factor,
separation of roots (whether real or complex) is almost an easy task for anyone.
Bairstow’s method is such a method which is used to find a quadratic factor of a
polynomial. Therefore, if we are able to find a quadratic factor, then dividing the
polynomial by this factor we obtain another polynomial of degree lower by 2 and
repeat the process'if the resulting factor has degree greater than 2. Since the method
we are going to discuss is an approximate method in the sense that the quadratic
factors we obtain are approximates to the actual factors, inherent rounding errors .

occur. Therefore, if roots are not well-separaied, hazards will occur. Let us now
 describe the method systematically :

Let, P (x)=agx" +ax"" +..... +a,, where 2, #0 and a, @y s Gy are real,
Consider a quadratic expression 2 - px—gq where p, q are real. We dmde P,(x) by
x? —px ¢ and 'M‘Ite

P(x) = (x* = px =)P, () + b, (x=)+ b, " agn(Hl)

where ﬂ_ﬂx}:b{,x"'?+b,x"‘3+.,..+£:ﬂ_2, say.

Then, comparing coefficients of x/, j = 0, |, ..., n, in(13) we have,

do = by,
a = by — phy, _
@ =by-ph-gby, g\ ¢ e (14)

||||||||||||||||||||||||||||

a; = bj - Pb‘jq -qb_;_;. FEL I

78

Therefore, we qbfain the coefficients of P,_,(x) and remainder Ry(x)=b,_;(x— p)+ b,

by the following recursive scheme,

by = ag
by =ay + pby ;
b; =.al'2+pﬁl+qbﬂ _ T

LTl LL L T IR E R)

bj = ﬂj 4+ Fbj__l.'l' qu-‘_z,‘f =21, 3,,,ﬂ

Now, x? -~ px — g will be a factor of P,(x) if and only if R,(x) is exactly zero,
i.e., if and only if b, ;= b, = 0. Since, for given P,(x), coefficient of P,_,(x) and
R (x) are uniquely determined, therefore, we shall consider all b,'s as functions of

two variables p and g, i.e., the problem of finding a quadratic u:iwmc-r of P,(x) 1sj
" reduced to finding unknowns p, g such that,

bet(pr@) =0 =b,(p.q) | ' i (16)

This is equivalent to find roots of two simultaneous equations given by (16). We
compute them by Newton's method. Now, for arbitrary p, g, the relation (16) is not
satisfied in general. Therefore, we find corrections p + Ap, ¢ + Aq to p,.q such that,

n_|(p+ap.q+ﬁqJ 0=b,(p+4p,q+4q) i = L (17)

Expanding (17) in Taylor’s series and neglecting second and lughnr order terms
in \p, Ag, we have,

.)+ Ly Lol pg g
Ny n:—l(.p q) ap ﬁp a{i‘ q=

and b (p,q)+——.ﬂ.p+a%’&q =0

which implies,

19

b.rr- abﬂ_! _'bu—l "?-'L 1
el ey
ob,., ob, b, o6,

op dg - 3g op

| - S
and Ap= £ 2

ob,_, ob, _0b,_, ob,
o oq o &p . |
ob,., 6b, b, b,

iians] SErSit il Sl #ﬂ‘

dp & dq op
Now, from the recursion relations (15), we have for j =2, 3, .. n

ob; b, 8b.,

provided the Jacobian,

r

~L=b +p—Ll 02
g ! 5 dp) op
:) S)
ob s P ob;_
"E"'zbj-—ﬁ pa_j..j_..'.q_i 2.
dq dg dq
P s
Also, we have, %%"—=ﬂ= i‘? and E‘E‘=bur ‘6%30, (21)
Let, ¢4 = (?p y JEOL 2000
Then, from (20) and (21) we have,
=0, ¢ =by, ¢y =b + pey
ﬂnﬂ C}__,I = bf‘l + P{:}_z + q‘:‘;_:; j =.3.4. |---g H.
Therefpre, we can find ¢;'s by he recursive scheme,
¢o =by
eysdpiige L LR e Y (22)

............................

c.j - bj + pcj—i +ch—z‘j :2, 3‘ .."-...ﬂ“]

80 .

Again, from (20) and {21) we have,

db : cb

-—-'J—=.b__ +P'—{"‘+Q"—Ji|j=213v-"1nt
i T :
aby

Therefore, by (22) we have,
o,
e SR \
% by | 0

ab,
cAab 4 peg=C
o =hEPa™h

ob,
% = by +poy +qcp =
og

.. ‘ i Le)
A . s
,..__.;bj_1+pf;j_‘3+q{:1_¢;cj4, _;=4.5....,H—2_
oq

and é?_r_l_ _?!?ﬂ. @j.’?r:,l.

=Ch2 T t
op gq &g

- Also, we have, f&-i i :

=C4-)

. Hence, teplacing partial derivatives on (19) by ¢;’s we have,

Ap n-*"i-a" =16 -2
Cn-2 T CoiCu-3
av (24)

and Ag ='?l!r1,€n:l.-'".!.’.ufﬂ‘.2

_f{§~z ~ €yt Cn3 .
Therefore, improved values of p and g are 10 be found by (24) provided the
denominator which is equal 1o the Jacobian must.not vanish. 1f it vanishes initiaily,
we shift p, g randomly. This process of finding b's and ¢’s are to be repeated untit
Ap — 0 and Ag — 0, or. in other words b, ;— 0, b, = 0, by considering new p,
‘g as p + Ap, g + Ap respectively. i

81

There is an implicit restriction Pﬁ +4g =0 on the choice of p, g, However, for
initial choice of p. ¢ we use two special choices : (i) for large roots,

a € - : :

Do === 4y =~=% and (i) for small voots, if a,_; =0,
i, a, '

Po A do = - | Otherwise, we may starl with arbitrary inuial
Uy Bne3

choice of po and g,

Hence, in short, the basic steps in finding a quadeatic factor x* - px - ¢ of a
polynomial P,(x) by Bairstow’s method sre as follows :. ;

(1) Assuming approximate p, ¢, we compute b;'s and ¢;'s by recursive schemes.

(2) If Jacobian is non-zero, we find next iterates of p, ¢ namely, p + Ap,
¢ + Aq by the formula (24),

(3) The iteration is stopped if b, _y, b, or, &p, Ay are sufficiently small in
accordance with our tolerance level, ' \

(4) Then we find zeros of quadratic x* ~ px - ¢

(5) Next we divide P,(x) by x* - px - g, i.e., deflation by two zeros P (x) is

~ petformed. The coefficients of the quotient polynomial are found by the

formula (13). :

It is to be noted here that Bairstow’s method has order of convergence two as
it uses the method of Newton-Raphson for system of two non-linear equations. 'I‘h&
quantities b;'s and ¢;'s may be found by double rounded Homer's schemc.

For n = 6, we have,

a

A s ay ay as ag
4By aby aby qb; qbs
pby by ph pby by by
Mo b by b, b by
gcy qcy qcs qcs
pey PGy By = ol ¢4
£y < o €y €y e

82

Example 8, Using Bairstow's method for the polynomial equation x* — 6.1, +
9.83x% 4+ 13-755x — 90-405 = 0, we find after five iterations, Ap = - 0-00000, Ag =
- 0-00000. Then we find quadratic factors (x* +.2-1x + 8-82) and (x* + 4.0x — 10.25),

as the degree of the polynomial.is 4. The roots are - 21000, 4.2000, 2-0000 + ¢
1.2500, correct to fnur decimal places.

§ Nonlinear Systems s

Newton’s Metheod :
Let us first illustrate Newton’s methud for two unknowns. The genera!:zatmn s
obvious. ,
Let, fixf}') -0 R P N A = DS T (25)

be a system of 1wo non-linear equations with two unknowns x, y. We assume that
both f and g has first order continuous partial derivatives. Let (x5, yy) be an
approximation to the actual solution (x, y) (an isolated root of (25)). Let (x,, y,) and

£, be the values of the k-th approximation and error terms resp:ctively{

;lhcn. x=x, +&

v £26)

Y=yt |

If (x, ¥, is a sufficiently good a:pprnximatinn to (x y), then we may neglect

squares and higher powers of .‘f;,,,rjlrJt as small guantities. Then, by Taylor. series
expansion, we have, |

Flay)=Flx 4.y +n0,)=0

i 15}
= f{L.‘r’} f(xk,vk} + &y = J + *ai =0 an
L¥eade) eSS
- : 8 d
and similarly, g(x,y)= S‘f-"wl’thﬁk—% “?k'é'i" e, {28)
TR

':ji 1."“‘ } h

Thus we have a system of linear equations (27) and (28) in &, 1, . In matrix

form, we can write,

83

1
o | (1)

& ox
P
(m] &_sl o &
Ox =)

i,

¥

LET R B

—#_L“_(fgr'gﬂ)
IJIH ‘:xl'}'l} Efx-fg: HI(I“!Pi} e (2'9:]

where fi =f{xt,,ykj, 8 = 8(x;,), provided the Jacobian 1J by, ,# t_‘;‘

i.e. {J’;g}r “‘f}‘gx }ut (x, 1}1}.%{]‘;

Therefore, (k + 1) iterates to the solution (x, y) can be found as follows :

r'kﬂ—_xk..'_g‘::xt.’.gfr__'ﬁgi")
fzgrq};gx Uk by o)
] veeee (30)
d Yeer =Dt =y ""_f&"__'r_
i : 5:8y = h8ely iy .
for k=0, 1.2 i

The generalization of above process to several unknown is obvious, Now to
siudy the camr_efgenca of the procedure, we mention the following theorem.

Theorem ¢ Let Jxy)y g(x y) be two three times continuously differentiable
funictions within a domain D that 'contains the solution of the system of equations
flny) =0 = glx, y), in its interior and the Jacobian | J| is non- vanishing. Them
Newton's method has order of convergence at least two,

Now, Newton's method has some advantages as well as disadvantages s compared
with the other methods, Main advantages are, it is simple, flexible and good order
of convergence, But one of the disadvantages is that three are other methods which
are less expensive as far as computational complexity is concemed. One such method
is quasi-Mewton method.

Quasi-Newton Method @

A simplified approach may. be taken, if instead of calculating Jacobian | J| at
each stage, we use a constant Jacobian | /| at (x. yg) with good initial approximation

84

(X Yo). Then (k + 1)-th iterale (x; , 4, ¥4) can be evaluated by the relation (30),
just replacing the Jacobian at (x,, y,) by the Jacobian at (xg,)g). Clearly, in case of
several unknowns, this will reduce computational cnmpléxit}r, The speed of
convergence is however slower than the previous one but the actual computation
time of this modified method is often much less. This procedure is usﬁally known
as quasi-Newton method, :

Example 9, Consider the system of equations,
flxy)=x"+y" +06y-016=0

and g(x.§)=x2~y? +x-16y-014=0,

Then, fx =2x, f, =2y+06, g, =2x+1, g, =-2y-16,

-th the initial guess of the solution of the system be, x; =06, y; =025, Then

by Newton's method we construct the following table.

k K N €y : LIS _emor

0 | -6000000000 | -2500000000 | - 2:54960 x 10-' | - 968623 x 1072 | 3531 » i.v!
1| 3450404858 | 1531376518 | - 675094 » 1072 | - 3.06747 x 102 | 8050 x 107?
2 | 2775310855 -1214629;2? ~ 564594 % 103 | - 2.79860 x 107 | 6347 x 1073
3 -2713351103. 1196643843 | - 406023 x 1078 | - 2:10056 x 102 | 4572 x 1073
4 | 2718445085 | 1196493787 | - 21579 % 10% | - 11043 x 100 | 2460 x 10
5 2718845063 | 1196433776

- i.e., the solution is (27188451,

Example 10. Solve the above problem by quasi-Newton Method.

-11964338) correct to eight significant figures.

Solution : We choose the better initial approximation x, = -3, yp = -1. Then the

Jacobian at (-3, -1) is 1J |y =

16

quasi-Newton method.

-18

85

and we obtain the following table by using

k X Yi £y Mg error

0 | -3000000000 | -1000000000 |~ 271186 % 107] 2.03390 x 1070 | 3.433 x 10}
| | 2728813559 | 1203389831 |- 985495 » 107 | - 6:97248 x 10 | 1.249 x 10
2 | 2718958608 | 1196417355 |- 481441 % 10°° | 2.92648 » 10* | 5.938 x 10
3 1 2718477167 | -1196446620 | - 303256 x 105 | - 1.25483 x 10® | 3.458 x |0~
4 | 2718446841 | 1196434072 |- 167246 x 107 | - 264407 x (0% | 1.802 x 107
5 | 2718445169 | 1196433808 | - 99322 % 10 | - 30508 % 10 | 1107 x 10
6 | 2718445070 | 1196433777 | - 61017 x 1070 | = 42373 % 10°"! | 707 x 10-%0
T | 2718445064 | 1196433777 '

Clearly, the process is slower than the above method.

§ Summary ;

In this unit, a non-linear equation of the form fix) = 0 is considered. Different
methods, viz., bisection, regula falsi, fixed point iteration and Newton-Raphson are
used to solve such equation, The rate of convergence and condition of convergence
of these methods are studied. These methods are generally used to determined a
single root of the equation, To find all the roots of a polynomial equation, several
methods are available. Here Bairstow's method is discussed to find all the roots of
a polynomial equation. Also, Newton's method is discussed tp solve a system of non-
linear equations. '

EXERCISES
1. Using bisection and regula-falsi methods find the roots of the following
equations correct to five significant figures.
(i) e* -sinx -2 = 0 in the interval (0, 1)
(i) x+Inx =2 in the interval (1, 2)
(iii) x —-2sinx -5 = 0 in the interval (-5, 1).

2. Find smallest positive roots of the following equations corvect to six significant
figures by (i) fixed point iteration, (ii) Newton-Raphson and (iii) regula-falsi method.

{a) Zx—~sinx~-5=0

86

() tanx -tanhx =10
(€ tanx—x-4x=0
(d) e*-e-2=0 : !
3. Show thai modified Newton-Raphson method converges quadratically, ﬂsing

this method find a double root close to zero of the equation X° — 7Tx* + 10x3 + 10x°
~Tx+1=0, '

4. Use Bairstow's method to find zéms of the polynomials correct to four
significant figures.
(i) x5 - 2x% + 3 = 1242 + 18x - 12
(i) @2 1Y+ 14.;2 + 24x - 1
(iii) »* — 9:00,% + 29.08x% - 39.52x + 18.82
(iv) 25 = 523 + dx + 1.
5. Solve the following system of equations by Newton's method correct to six
significant figures.) ;
e+t y-12=0 :
x2 + 32 + x = .55 = 0, near (0-6, 0-5),
Then solve it by using quasi-Newton method with better initial choice (-4, -25).
6. Solve the fﬁlinwing systems by Newton's or quasi-Newton's method.
(i) 472 sin 2x = 3:14e¥ - 493 = 0,
361 cos 3x + siny ~ 402 = 0, near (1-5, ~4.6)
(i) x—sinhy=20
2y = {:qshx = 0 near (-6, -6).
7. Find an iterative scheme to compute J’j—j correct to $ix signiﬁcant digit.

X, {x& + 3a)

, is a third order method to compute

8. Show that the scheme X, =

\G‘ﬂ}ﬂ-.

3xl +a

87

Unit 5 O Polynomial Interpolation

§ Objectives
After finishing this unit you will be able to learn about—

[nterpolation

Uniqueness of interpolation polynomial
Central difference interpolation due to Gauss
Piecewise polynomial interpolation

Cubic splines interpolation

@ & & & B &

Invesse interpolation

Before going to any specific method we first mention two theorems about
polynomial interpolation.

Let (x;,y;),i=0,1,2,....,n be (n + 1) arbitrary points where each ¥ is a value
of a function flx) at x, ie.,, f(x;)=y,Vi=0,1,2,..,n. Then we have the following
theorem.

Theorem : Given (n + 1) distinct points xy, X,, x, and (1 + 1) ordinates y,,
Fis wena Yy there is a unique polynomial P(x) that interpolates y; at x; ¥i=0,2,....n
B (" P(x} »¥i=0,1,....n) whose degree is at most n.

Proof. Existence : Such a polynomial exists that can be shown by umng
Lagrange's polynomials L(x) which are defined by

Li(x) = H

J=0 5 j
Jei

C!ea’rly; Li(x;)=6,.

Vi=012...n

{I}EZJ’:&(I) is a pr::-lyncrmmi of degree at most » and F,(x;) =
]

i n .
Zy;L;{xj) =% ¥6;=y;,¥j=0,1,..,n. That completes the proof of existence.
i=l : i=l !

Uniqueness : Suppose g¢,(x) is a second polynomial of degree < n, with the

property that ¢,(x;) =y; Vi=0,L...a.

88

Now P =P, —q, isa polynomial of degree < and ﬁ;,(xj) =0 % =0,1,2 it
However, by the fundamental theorem of algebra, a polynomial of degree n has at

most n rools unless-it is identically zero, ie., f’“ (x)=0.

Hence, F, =4q,.

Next theorem is about the error estimate in polynomial intérpolation,

Theorem ': Let f(x}e(!"“[a.b] be a rea_l-va!ued function #nd P,,('x) be the -
ihterpolaiiun polynomial for fix) w.rt, (n + 1) distinct points x; €[a,bl,i=0(n.
Then for each x e [a,b]. there exists a point & = £(x) in the gpen interval mr_'l“[ih-t:' =

g <max(x;x) such'that,

0= P.(3)= Ry () = 0, () F 0O/ (4 DY,

where @,(x) = (x~xg) (x =X)eess (x—x,).

Proof + Consider the function g(x) defined by

a(x)

8(x) =f(x]—Fn{;)-mif{f}-P,{f}L welab] | T e GG (1)

~ where ¢ is an arbitrarily fixed point of {a, b] other than the lntérfmlaﬂon points x,,
i=0n Sl

Cleaﬂy. glx) e C””[a, b] and g()=0=g(x,),i= O(n. ie., g(x)=0, for
x € {Ky, Xy Xail)s asran)
By repeated application of Rolle's theorem we find that there is some point £in
(a, b), i.e., in the open interval [=(m,M)c(a.b) at which _
S!H-i—]](‘j,']__"ﬂ N 4 T R A {3}
where 71 = Min{Xg, Xyyeeesrs Xasl 1y M= MAX (X0 Xpy e Xpat} s
Since P,(x) is polynomial of degree n and @(x) is a monic polynomial (ie. a
polynomial in which the coefficient of the highest degree term is-unity) of degree
n+ 1, the last equation, i.e., g"*"(£) =0 implies that,
(n+1)!

_ plneleey mo g

89

Iw{r}f[n-l- E}{gj :

18, f(D=P1)= (n+ 1!

Therefore, as 1 e (a, b] is arbitrary, changing to x we have,

() f"*)
Rn+|('r)=f{x}*Pn(‘r}=Wr LR (4}

Vxe[a, b] and xsx,, i=0(1)n, where &=&(x)¢(a,b).

Note ; Aimaugh it was assumed that 1 € [xg, X, X, |, (4) is valid for Vx e [a, b],
-because R, (x,)=0 and & for these x5 may be picked up arbitrarily.

: Now we discuss some specific methods of finding interpolating polynomial.

§ Central Difference Interpolation Formulas - Gauss :

Suppose v = fix) is an well-defined given function and y; = fix;), x; = x, + ih,
f=0,21, %2, .., £n, where 4 is a positive constant and is called the argument

- spacing or step- length

We have to construct-a polynomial P(x) of degree at most 2n which interpolates
the values y; of f{x) at the knots or nodal points x;, i.e., subject to the conditions,
Plx)=y,¥i=0%1,..,%tn. (3)

rrrrrr

Therefore, Ay; = y;y) =y = P(x;,y) = P(x;) = AP(x;).

A is called the forward difference operator and Ay, is called the first order forward
difference at x,.

: 1;--“7"'“""lﬂ?'ti‘:’- A%y, =ABY) =AY, - 3) =48y =AY,
C =N N
is the second order forward difference. at x,. and so on. Thc k-th order forward
difference at Ai is,
A* =4 "'}r,-ﬂ —»ﬁ.*"y.-. where k is an interger 2 1.

Now consider P(x) as follows

P(x) = ag + a)(x = xg) + ay(x = xg}x'= X)) + ay{x = x_)(x = xp)x - x;} + a;lx
=~ X)X = ag)(x = 2)x = x) + @50x = X_3)(x = 2y)x — X)X = X HE = X9) + e + a3y,
06 = Xy)X =X skadr=aplalx =, =y 0 (6)
where g, { = 0, 1, ..., 2n are the cocfficients we want to find under constraints (5),

90

Clearly, P(x,)= Yy = ay,
Plx))=y=dy +ay(x; — xg) =gy + ha,,
P(x_y) = y.y =Gy +a(x) = Xo) +ay(x_y = Xg) ¥y = X))
= ay —ha, +2h*a, .
P(xy) = y» =@, +2ha, +2h*a, +6h’a, .

ArassdFR AR AR E R Ry

Then, we have. - g =)

_8%
| i h ¥
_ﬁz;'lt.l
T
bk : ok
3h
*54.3’-7,
T
5 : ﬁl"FlJ"-m-t]
ek g i
ﬁz"}‘
and £ =] s
T e

Defining, u by, u= f:E'ES'- i.e. by x = xy + hu, we have,

u(ue—=1) (w+Duu=1)

P(x) = yo+uby, + =7 Ay + 5 Ay,
=D gy
4!
=Dadu=n+1) 5.-
e (=))ﬁzn by in

(2Zn-1}!

o1

¥

(+n=1)..(u=n) ;.
* Il A Yea

H uj 4 H+1y 4 u+ly 4
=Yt : ‘5-3’0"'2&}’.-1"' 3 Ay, + A AYatont

u+n=1\) 4., u+n-1y ,
&N ._ £ + . d” i
(2:1-1) Fe-) [20] T R @)

The formula (7) is known as Gauss® forward interpolation formula without the
remainder. The central differences Ay, A%y, .
a difference table to follows :

.+ etc,, may be found by constructing

X v Ay Ay Aly Aly
Xon Yo g .
Ay_,
L= Yeta-ny By,
J: AY_ a1y Ay,
Toin-2) Vetn-7 8% n. i} . L AN
3 : ! : |
X2)
; Ay,
X 1 .P- 1 : - ﬁz}‘- 2
Ay, Ay ,
. 9 A5 L
\\i. d}rﬂ .ﬁ"';.’, \ a]}?-]
Xy » Ay, Ay, : i
Xy ¥ ol : :
: : : Y,
E &3}‘1! =1
Lol Yoz Iﬂz.?‘|'||-~1
ﬂ'}'n =1,
T Yn

92

Again taking,
P(x) = ag+ ay(x - Xg) + aylx - x)(% = x_y) + @afx = X Hx = xMx - x))
¥ puossi F gy & = Xy pheX = g (X = X,) _
+ogx = X)X =Kol = Kayg) e (8)
and proceeding as above we get,

s | LY s w1 -3. u+2Y. 4
P(x) =Yotuly,+ 5 Ayt 3 ATy q + 4 Ay,

The formula (9) is known as Gauss’ backward interpolation formula. Differences
can also be found by constructing a difference table as shown above.

" The remainder term of the two formulas is as follows : -

u+n + na ! . ; . .
R{x}=[2n+l.)hh Jiia 1-@‘}',w.rhlar':: ack«<h et (1m

[a, b} is the domain of the function where we are interested to find the interpolating
pnlynumml for fix), i.e., take a = mmix x.,. %) and b=max{x,x X+ Xn ¥

Both the formulas are quwn]ent if we consider the nodes Xp, Xyqr Xgge e Xgpe
But. if We have (he n0des xq, Xyqs Xugs - Xany Xney - then forward formula is preferable
and in case of the nodes X, Zajy X120 Xins Xotarty the backward formula is
preferable. 1n the first case, better result is expected if we calculate value of flx) at
x between x, and x; and for the Jater case, belween x_; and x,. The formulas are not
of frequent use but useful for deriving other formulas.

§ Piecewise Polynomial Interpolation :
Let A% [a =X < X; <. < X, =b) be a partition of the interval [a, b] and ¥'s,
= 0¢1)n. the values of a function flx), given at the nodes Xg, Xy e K e,y =
gh i= O : :
Then a real function S(x) is said to I:n: a piecewise polynomial of de.grnc k on A
if in each subinterval {x; _ ;, xJ it iy 4 k-th degree polynomial, say. 8(x), = O(1)n.
The function S(x) is called piecewise interpolating polynomial for flx) on lab], if .

S[x}wy,n, Vi=0,1, ... ic. in piecewise polynomial interpolation, in each subinterval
x] of [a, b], we fil o polynomial §(x) of certain degree and the interpolation

.]r f

93

polynomial S(x) consists of polynomials 5(x), i = 0(1)n, picced together at 1he'knms
- % £ = 0(D)n. Splines are examples of most useful piecewise interpolating polynomials,
Here we consider only cubic splines.

§ Cubic Splines :

Definition : A Cubic spline S(x) on A is a real-valued function from [a, b] = R
with the properties :

() §eC*a,b) ie. S is twice continuously differentiable function on {a, b],

(i) S(x) coincides with a polynomial of degree 3 on each subinterval
[, x5 L i=0()n,

And, § is called a cubic spline interpolant to fif it also satisfies S{if} =y; = flx),
i =0(n :

More specifically, §(x) is an interpolating cubic spline for fix) on (a, b] if and
only if

(i} each S(x) is a cubic polynomial in x on the subinterval [x, _,, x;] of [a, b],
for i = 0(1)n. :

(ii) S(x;) =y, for i = 0(1)n.

(i) S;0x)=5;,(x), for i = 1(1)a - |, i.e. continuous at each nodalpoints x5

(iv) Si(x)=58,,(x), for i = 1(1)n ~ I, i.e., splines are smooth functions.

(v) Sx)=57,,(x), for i = 1{1)n = 1, i.e., second derivatives at each Nypanrs
X, . | are continuous.

An interpolating cubic spline S(x) as defined involves 4n parameters, 4 for each
of n cubic polynomials S(x) and so S(x) cannot be uniquely determined by the
4n - 2 conditions mentioned in (i) - (v). We need two more additional conditions.
One of the following conditions known as end conditions/side cﬂndiﬁunx!ﬁuundary
conditions, is most commonly used :

() S§'a) =y, S'() = yy,. for given number yj, v/ .
(I) 5"a)=5"(b)=0. e (W)
”H} 5";']{(;}= S’*“)] with ¥ =J"ﬂ.-k =0,1,2.

94

Conditions (i)-(v) together with one of the three end conditions (vi) determine §
uniquely on [a, b]. ;

Thé Cubic splitie § determined under side condition

() is called clamped cubic spline,

(1) is-called nawral cubic spline,

(I11) is called periodic spline.

Construgtion of Cubic spline function :

Let us cnnaidér,

S0 =ax-x P +hx—x) +ex=x)+d; fori=1 2 wum
(as S{x), i = 1, 2, ..., n are cubic polynomials), where a,, b, c, doi=12, .
nare 4n constants that we have to find under the above mentioned conditions (i)-(vi).
Let us denote, M, = 8°(x), i=0(Dn and b =x =%, i=1Dn)
My are usuall:;r referred to as the mument§ of 5(x). |
Now, conditions (ii), i.e., S{x;] =y, { = 0(1)n, imp'}.ies,
S.‘{*.xi--1}=}'f-l =d,i= i(l}_"rl

and S wadlshhivehedmy,) o (3)
Condition (iii) i.e.. 8 ;(x)=8(x)i= li_I!}n—l, i!lnplie's.

d., =ah] b vohy+d =y i=1n~1 L)
Again, by (1), S{{x) =3ﬂ,-{x—.x,-_li,'rz +2b(x~x_ e i=Un.
Therefore, by condition (iv), i..e_:.. SiHx) =8 G xhi=K)n-1,
We have, 3a,h2 + 2Bk +¢; = ¢, i =1n-1, s (5)

Next Sffr)=ﬁai(r~x;-1')+ﬁb,=,i=lmn and condition (v) implies,
Si(x;) = Gahy +2b = S;+_,(_-:;} =2, i =1(n— |'_

;_]"Ebiq-l _b.'*}

ie, &= ,
;]] 61_‘,

Ji=1(hn-1

95

Now, by (2), M; =5/, ,(x;).i =0(1)n -1

ek e R R S S e L L e {7)
ﬁnd ‘wu-z ng{xnlu
so that, M;=2b._, i=0(Dn-1,
and M" = ﬁﬂ'"hn' + 2!.;-’". i.e., a, = M"ﬁ; zbﬂ) T (S} y
;]
Hence, by (3), (4), (6) and (8), we have,
Sl il e T 3l
a; = '_Ej;!__t =1()n,)
| :
bfziMj-_;.IE-l“}ﬂ. ' + s (9)

I ! '
cr -] ﬁ-_ {yl'm-}"i'—i}_..ﬁ.hi-(MI-FZM!'I)' "E l{')nl

df=_}’f_1.f=](1}ﬂ !

Thus § has been characterized by its moments M. Therefore using (9), we have
from (5), a set of n — 1 linear equations with n + 1 unknowns, My, M,, M., which
are as follows ; :

1 I l 1
i e ‘H';"Ehi'ﬂ{MiH +2Mf}=F(J_".'_J'.i-|}—Eh;(MI- +2M;_|}

B4y

(M, =M, _, |
+3hf_‘tT‘+2k,.-iM;_., for i = 1(1)n - 1,

h 2l +hy)k 1 I |
or —éM‘-_,+ o M, + ‘6* M;,,i=E-:-{J’.-+|*?.:)-E(y;*y;,|}.

or, M, , "‘2”1.-_ +h OM 4 by, 1My

nhi-(}'“,-—y.;]—-:{y;—j;_l}.l'=§{1)ﬂ—l e (10)
i+ 1 i

i ¥
Two additional equations can ba obtained separately from each of the end
conditions (I), (IT) and (I11) of equation (vi).
Case I. Clamped cubic spline :
Here we specify the values §'(a)=y; and S'(b)=y,.
Therefore,

T l 1 b
AL i g E’(J’l “)= Eﬁt(ﬂff. +2M,)

96

6 .

w11
and y =S8'(b)=5,(x,)= 3.{1"!:5 +2bh, +e,
l it

= h;{yu _-.}.n--l}"' E{IMH +Mn-l}

: s
0T, jtn-""'fu;nl +2hnMu =ﬁ}j:r_'jl'_ U"‘n"}‘n—l} (12}
Case I, Natural cubic spline : Here we have, $'(n)=0=5%b),
i.ﬂ., Mﬂ Eﬁ":Mj.' ; HES [13}

Similarly for Case II1 of (vi), i.e., periodic spline we get two other relations
except (10).

Now, for clamped cubic splines we have a system of (n + 1) linear equations
with (7 + 1) unknowns, M, { =0(1)n. In matrix form, we may write (10) together

Wil and (2 @AM =D, . LR T G (14)
28, y 0 B 0
W20 hy) By b T "B

| AR 2y +hy) By 0O 0

where, A=/ . i
T 6 O o By Ol K
0 0 0 IR | R h, 2,

...... (15)

and M =[MgMMy....M,}"

6 o e 5
D =[3;I—(y. *:-'n)-ﬁymﬁf_m “JﬁJ-Ei;ﬂ-J'u}w--;'i.v.r}:.-.i

6

T
Sk .
_‘;;_U'Fn 17 ¥ —2}-- 6.}'5 "_FT:(}'H -jn—til '

-1
[T represents matrix transposition],

The symmetric matrix A is diagonally dominant and hence non-singluar, Therefore,
(he system AM = D is uniquely solvable.

Note that 4 is a tridiagonal matrix and hance AM = D can be solved efficiently.

97

Example 1. Find the clamped cubic spline that passes through (0, 0), {{) 3, 0-5),
(1.0, 1.5) and (1-5, 2:0) with 5'(0) = 0:5 and $(1.5) = -1.

Solutlon : Here, &, = hy; = A; = 0-53, Therefore, matrix

1. % 0 -4
‘5 2 '5 a T
A= ,M_={M0M|M1M3]
2 3
5 1

and [-—-{5 ~0)-6.05, < {15 5}-—-—(5 {l] {2—15}

P T r
~Sas-s6-n- S - 1-51]

=[3 6 -6 -12] -

For the system AM = D we use Gaussin algorithm which yields, Mﬂ = 16, M,
= 2:8, M3 = - -8, M_-, = —~11+6. Hende, the requird cubic spline is :

8,(x)=04x* +08x* + 05x,05 x < 05,
S(x) = { 85(x) =—L2x~5) +14(x~ 52 +19(x-5)+05,05sx<1,
S3(x) = ~36(x ~1)° = 04(x ~1)* ~01(x ~ 1)+ 15,1 S x < 15

Example 2. Find a natural cubic soline for the above example, i.e., piven,
§"(0)=0=5"05). |
Solution : By equation (10), for i = 1, 2, we have,
SMy + 2M, + -5M, = 6,

i
and ﬁMl'i'Mz‘i' SM-’_:—E

Also, by 5%(0) = 57(1:5)=0, we have M, =0=2M;.
Therefore, 2M, + -5M, =6 -

and SM, + 2M; = -6,

=] M1 = Mz = -4,

98

Hence, the natural cubic spling is :

_ S,{x):%x:‘+[}.x’+§~.r. 0sxs.5,

Sx) =1 §(x)= _gu- 8 +2(x -5 + %(:—45} +35, S<xs1,

_ S,(x}=%(.r-!}3-2{x-l}1+;{x—l]+l-5. 1€xs1S5
§ Inverse Interpolation |

In interpolation, for a given set of values of x and y, the value of y is determined
for a given value of x. Bul the inverse inlerpolation is the process which finds the

value of x for a given y. Commonly used inverse interpolation formulae are based on
successive iteration.

In the following the inverse interpolation based on Lagranga's formula is discussed.
Inverse interpolation based on Lagrange's formula

The Lagrange's interpolation formula of y on x is

B

y= Z w(x)y,

1 (X = 2)w'(x;) -
When x and y are interchanged then the above relation changes to

n W{_\f].t'[.l
Xm) — = (y)x;
im0 =y)w'(y;) ELT i

where

Lipy=—D =YY= W)y = Y adY = Yia)Y = ¥)
: (y =y IW(y,) l:.!"i"' Yo X0 = ¥ 0¥ = ¥)0 = Y 30y =)

- This formula gives the value of x for given value of y and thr. formula is known
as Lagrange's inverse interpolation formula.

Example 1. Given y = f{x) in the following table.
' & 3 400 15007
O R TRt A

Find the values of x when y = 10 and y = 5.

Solution. Hers, inverse Lagrange's interpolation formula is used in the following
form

9y =2 Liyx

fmi}

The Lagrangian functions

Lo(y) = U= =y). (=D~ ¥ -18y+77
Go—nXpo=y) G-73-11) 32

Liyy=-2ZY0 =Y _(=3y-1) _ ¥’ -14y+33
B =y ~y) (T-3)T-1D) 716

_ O=»ly=n) _ (- 3)(}' 7 Y =10y +21
and £0) (J’z—}’ﬁlt}a*}'.} a1-31-7 32

Then

14y +33 ikt
16

. 2
E(D?‘ + 70y -3y]
Hence, £(10) = §(10) = 2= (137+700-300) = 16.78125

and x(5)=¢(5) = 355(13? +350 - 75) = 12.87500

& Summary :

The concept of polynomial interpolation and its existence and uniqueness are
introduced here. One central difference polynomial interpolation formula due to Gauss
is described. It is well known that the degres of the interpolating polynomial ts one
less than the number of given points, and hence it is difficult to evaluate the polynomial
for a given value of x. This difficulty has been removed in cubic splines interpolation,

100

The degree of this polynomial is almost three, In interpolation conventionally, the
value of v is determined for a given value of x. Some times it is required to dutermine
the value of x when y is given. This can be done by inverse interpolation, discussed
in this unit.

EXERCISES
I. Prove that the polynomial of degree € n which inferpolates a polynomial f{x)
of degree < n, at n + 1 distinct point is fix) itself.

2. Calculate the value f1-0) using the following data by (i) Gauss’s forward
formula, (i) Gauss' backward formula.

X 05 0-7 9 1-1 1-3 1-5 L7

flx) 1.47943) 1.64422 1 178333 | 1.89121] 1.96356 |1-99749 | 199166

3. Calcutate the values f{1:41) and f(1-49) by Gauss’ forward and backward '
formula respectively, using the following data. :

X 1.1 12 1-3 1-4 -3 1.6 {7 1.8
fley | 69121 | 73204 | 76356 78545 | -79749 | 79957 | -79166 | 77385

4. Show that given X, X, X, such that x, <x, < x, and givén ag. 6y, a5 and by,
by bs, there exists a unique polynomial P(x) of degree four or less such that Plx)
= ag Plx;) = ay, Plxy) = g P'(xp) = by P(x;) = by, F'{xzj'= by, Find, P(xy) in the
Case X, — X = X ~ X = A

5. Find the unique polynomal P(x) of degree four or less such that PO = I,
P)=-2.P)=0PO)=2,P(1)=13 and P2} = 2,

6. Find a polynomial P(x) of degree < 2 that satisfies Plxg) = Yo Pixg) =y
Plxy) = ¥, '

9. Determine the natural cubic spline function for the function fxy= 1 +1x1 in
the interval [-5, 5] using '
(i) six equidistant nodes x; = = -2k hwl. N, 0 B
(i) 11 equidistant nodes x; = -5 + k k=01, . 10
Also find the ervor bounds for the two cases. |

101

8. Find cubic spline function for the following data.
“] _ {"" 2, - S]! ({]1 ﬂ)- {1, I}r {2. B}» S'T_" 2} i ’21 S"{z} = 12, !

G (0, 0) (1, 1), (4, 2), 9, 3), (16, 4), $X0) = 20, S16) = -é
9. Show that the following function is not a cubic spline.
Sx = [-2+ 18~ 1 ~4x-1%08x< 1
~ 160 + 144x - 422 £ 43, 1 € x < 2.

10. Use inverse interpolation to find the value of x when y = 37 from the given
table :

X ! 2 3 8 i1 14.
y . 35 85 101 130 151

102

Unit 6 0 Approximation

§ Objecﬁves
After poing thmugh this unit you will be able to learn the I‘uiluwmg:-_.

@ Least square approximation of discrete data
® Approximation of function using Chebyshev polynomials
® FEconomization of power serics evaluation

fn this unit we shall consider approximations of functions by some suitable
approximating polynomials. Before going to any specific methods, we first mention
two important theorems which are essential for our discussion, :

(i) Welerstrass theorem : Let flx) be a continuous function defined on [a, b].
Then for each € > 0, there exists an integer n =n(e) and a polynﬂmm] pix) of degree
at most a such that

| f(x) - py(x)l<e, Vxelab].
(ii) Taylor's theorem : Let ﬁx} be a (n + 1) times continuously: differentiable

* function defined on [a, b} and let x, Xy € [a, b]. Then, it is possible to express,

FOO= py(a) + Ry (),
Whﬂl'e.,. pn{x) f{xﬂ] + ..Lfﬁﬂf {:{]] R _{_‘x_.:ﬁ_iffﬂ}{xu}'

(x _103

P f l”“(;‘} for surnc £ lies hetw:cn x and Xp

and R, (x)=

§ Least Squares Approximation to Discrete Data :

Let § = [¥g ¥ps sios Y] b€ @ s&t of given function values of function fx) in the
interval [a, &) at the points xg, Xy, .oy ¥, 1.8, Y ® fxp i =001 o i

Then our task is to fit & polynomial of degree say. P (x}= Ea x', such that
=0
the sum,

1 =Y [B(x)- fe)T | it
=0

103

n
2 i - L
?Z[%J'ﬂtxr‘*ﬂz»‘fr o+ 8% =310 is minimum.
r=0

i.e., we have to find ay, @,, a, such that the sum / is minimum, For that, we set

ar :
;e 0.i=0(Dn and get normal equations that are satisfied by the optimum values of
/

m
L] ® T v "
9o A1y ooy By 53Y, Go*, A%, ..., @, *. Now, P(x)=Y ajx/, minimizes the sum /.

of the squares of the residuals at the nodes X; folloW¥ from the fact that I can be
made arbitrarily large by selecting a/'s suitably. Clearly, the normal equations are,

L 5] ‘ n H
2 o
neg*+a*) x; +a, 5 A ta, Ayl = >,
i=0 © =l =0 i=0

ﬂu"ilﬁﬂ.*ixfh ----- +ﬂn“'ix?“—"—ir;r.-, (3)
i=0 1

i=0 J!i=[| i=0

N d R R e D o AR A Ak 8 6 e e B

..

n H :] n
" | 2n i
a* D x +at Y i Fonhd Ry e N gy
i=0 f=l) fal) =0

These are a set of n + | linear equations with # + 1 unknowns ag*. ay% i ak
Existence and uniqueness of solution of the methods, for finding a solution, have
already been discussed while treating - mear systems. Now instead of taking an
approximating polynomial P, (x), we may also approximate the function JUx) by an

] 2
expression Zﬂxﬁiﬂ . where ¢(x),i=0)n, are n + 1 appropriately chosen linearly
i=0

independent functions and our P,(x) is then a particular case, if we take dh(x) = 1,
P (x) = x, ..., @,(x) = ¥ Then our task is to minimize.

L]
i=l

2 -)
I =z[fgx;;-zaj¢ju,-}] 4)
. g

Again, if we have more nodal points than the degree of the polynomials or number

of functions @, say, we have N.+ | points, where n < N, then we usually minimize
an weighted squared sum,

104

' 2
N n ,
I =2ﬂ1{x;)[ﬂ1;]‘§:ﬂj¢j{xﬂ] sissa k)
i=0

j=0
The corresponding normal equations are known as weighted normal equations.
H
We then also calculate the residual function, R(x)= f(x) =Y _a;¢,(x) , for determining
i=l
the error.
Example 1. Consider the following data.

X 205 32,7 51.0 e T8 05.7
y 765 826 873 942 - 10

Then, 3 x, = 2731, Y x? =1860727,) y, = 4438, " x,y, = 2549325 The least
square straight line that fits the above data is, ' .
y = 3-395x + 7022 .
§ Chebyshev Polynomials of the 1st Kind :

Now we shall describe a method of approximating functions by a system of
orthogonal polynomials, viz., Chebyshev polynomials. Let feC **1a,b] be a given

function. Then is it possible to choose nodes x/'s € [a, b}, i = 0(1)n, for which
i Xg)(x = %) . (X=X, | s minimum so that the error estimate corresponding
to Lagrange interpolation polynomial would be also a minimum? Let us first restrict
ourselves to the interval [1, 1], then by a suitable transformation we would be able

to generalize the following discussion to any interval [a, b). The Chebyshev's

polynomials T,(x).n >0 on [~ 1, 1] are defined by the formula.

T, (x)=cos (n.an:_t:os_x‘,l, PR

or recurisvely by,

Tolx) = 1,
T.[Jl'] =X
T) = 2T (=T ()= 1.2, e

105

The last relation follows from the trigonomeltric identity
cos (n+ 1)@ = 2cos g cos ng —cos (n—1)g by setting @ =arc cosx. T, (x) may also
be found as solutions of the following differntial equation,
(l.-xz}}.a"-xy'+n2y=[}.
Some of the Chebyshev polynomials are as follows :
Toujx}'= 1, '
Ti(x) = x, :
Ty(x) = 222 = 1,
Ty(x) = 4x°- 3x,
Ty(x) = 8x* - 8% + |,
Ty(x) = 16x° - 2003 + 5x,

|||

Some prnpertiu of Chebyshev polynomials.
Property 1. The definition of Chebyshev polynomails clearly indicates t.hnt.

IT,(x)1<], for xe[-11},n=0,1,... (8)

Property 2: It is evident from definition and the recurrence relation that for an
even (odd) n, the polynomial T,(x) contains only even (odd) powers of x, i.e., it is
an even (odd) function, so that,

Ty (=%) =Ty (%) and Ty iy (=2) =Ty 1 (%),
Ym=0,1,2,... 9)

Property 3. Leading coefficient of T,(x), i.e., of x" is 2~ !, for n 2 1.
Proof. Forn =1, Tltx) Edt-byigx

For n = 2, T,(x)=2xT}(x)-Ty(x) = Zx —1=2%1% 1.

Let us assume that coefficient of x™ in T, (x) is 2"~ for all m uptn m = k, say.
Then by recurrence relation,

T.l:+l(vr] =2ka(I}—T;-_1(I}

106

we have, leading coefficient of Ty, (x), ie. x**' is 2.2k=" = 2% = 2%V s leading

cm:fﬁciem of T,(x), i.e., of x* is 27! and that of x*”' in T (x) js 252,
- Hence by induction, T,(x) has leading coefficient 2"~ ',
Property 4. T, (x) has n real roots on the interval [-1, 1] and we may express
them by the formula.

1) QRi+x . . »
x,--casT,a-ﬂ(I}n it I e T Ll L (10)

They are usually known as Chebyshev abscissas or nodes.

(2i+ 1)«

Clearly, T, tx-) = ¢os (n arc cos X;) =cos 3

=0,i=0()n~1,

Pmpertys max tT[x)|=

Proof : Since T,,(x,)=(=1)" for x, =cmf§.m=u(1}n
and as IT(x}ISi Vxel-1,1]

therefore, BI04, IT(x)l=1
Property E Among all n-th degree polynomials with Il:admg coefficients unity,
i.e., of all monic polynomials of degree n, the polynomials T, T (x)= 21""’3“ (x), nz1
has the least maximum modulus value on the interval [-1, 1], i.e., there is no
polynomial P,(x) of degree n with leading coefficient | such that,

max 1P, (x)< max | 1T, (x)1=2"" BT (12)

Proof : Suppose P,) (X) =G + A+ i+ By X n1 4 4" be a monic polynomial

that satisfies the inquality (12). Then, T, " (x)=P,(x) is a polynomial of degree at
‘most n—1 and P,(x) satisfies strict inequality (12) therefore, T (x)- - P,(x) is not

identically zero. So, for al the points X, =cus[f:-‘f-],m =0y, T.(5)—P,(x) are

non-zero with alternating signs. i.e. T (x)-P,(x) must vanish at least at n points.

But as it is a polynomial of degree at most n ~ 1, it leads to a contradiction. Hence
the proof.

This pmpen:f of Chebyshev polynomials T,(x) are called pﬂlynnm:als least
deviating from zero.

107

Mow, consider a function fix) which we want to approximate by the Lagrange
interpolation polynomial L,(x) on [-1, 1], using Chebyshev nodss

X; = mg[f :]2 ;r), i = 0(l)n , which are roots of Chebyshev polynomial T, . (x).
H i

{ M,
Then we have, ax |f{x) L(x)1< (“W, e CIR)
where, M, ,, = max | " "(x)l
xe[=1. 1]
i.¢., the interpolation points are optimal for the estimate of error in [~1, 1]. We
cannot improve it further.

If instead of the interval [~1, 1], we consider the interval [a, b], then a linear
transformation of independent variable given hy

g ar+fitf
Sk 2 ;
Sy e b L L e (14)
ar, t=———"—Lasxsh -1515]

will map [a. b] onto [~ 1, [].

Since the roots of T, (1) in [-1, 1] are,

2i +
I; = cos (2; 2}*‘ i =0(Dn therefore, the corresponding roots in [a, b] are,

'xi=5{{.&-a};as[;j;r]ub?a)}.e'=m1}n+_ . sy

: ' : M,;q.i (b"'ﬂ}r_!“-!. :
In this case, XIEELU(I}*F_,,(XHE il et 1 bk

where M, ., =max | f"*V(x)

' xeldb| ‘ _

Property 7. Chebyshev polynomials form a sequence of orthogonal polynomials

on [-1, 1] with respect to the weight function w(x}'= I .

l_xl
LT (T
[0 0 10
=1 RS ;
=2, ifi=j=0 o 19)
ll;jrif i=j=0

108

The discrete version of orthogonality property is as follows. -

2i+1 o
If x; -mszn+2:r. i=0(n, then,

Y Ti(x) Ty(xg) =0, for i#j
k=0

=5;—i. e is0 ' T

ﬂ .
.and ZTQ{I;;)TI:':I&) =n+l,

: Chebjshev approximation : The Chebyshev appruxlmatmg polynomial P (x) of
degree < n for fix) in [-1, 1] may be written as,

P,(x)= Zc,-:_e‘}{x] '

i=l
where ¢;'s are the constants.given by,

Zf{foTu(x}—h——Zf{x))
=l =6 :

and € Zf (xX)T;(x;) p e (20)

i-uﬂl

H I-l Zf{].’f] 08 [J{n }]-.f“lil)ﬂ ¥

Example 2, The Chcbyshcv polynomial P;(x) which approximates the function
fixy =" on [-l 1] is given by;
Py(x) = 1:26607 Ty(x) + 1:13032 T,(x) +0:27145 T,(x) + 0:04379 T3{x}
= 099462 + 0-99893x + 0-54290x* + 0:17518x", where calculations are

2k+1.
8

made correct to five decimal placeg amd the nodes X, =cos 7 k=0123 are

given by,

1 Z?‘ .
o= E,&:ufﬂ To(x,) = 1:26607
| 23 5 '
Y k.ﬂe (%) = 113032

109

3
Cr=5 D €*Ty(x,)=027145
k=0

3_ .
and €= ; D e Ty(x,) = 004379
k=0

§. Economized Power Series Approximation of Functions :

Suppose, a polynomial approximation to fx) is already available. We want a
more efficient approximation to fix).

Let, f(x)= ax' +E,(x), ' w2
=} :
where it is known that, | E, (x)I< &' and xe([-1,1] | el A2T)

¢' is a small quantity which is smaller than our preseribed tolerance level, say, &

(14
. o E
but |a,| + £ is not a tolerable error so that the approximation Zﬂﬁ is not a safe one.
Vi ; fui} !

L s . :
Now, expanding Za,-x‘ in terms of Chebyshev polynomiials,

I f=(}
i.e., let,

D ax =ZC|‘ Y, S S R et b (23)
i-_ﬂ =il

OF, Gy + @k + .. a,x" = C, T, (1) 4 Co T,y () + .+ Ty ().

Then using the relations,

Tg(x)=éi"(x;~£x:"2+....}.iél e (Y= '
and Ty(x)=1,
We have,
C,2""'=q,
G 2P Ear b Ll R e U (25)

n=3 _ f
Gz 27 =0, 0+ 4y,

110

which implies

||

Clearly, for large n, coefficient of TN T i) ono (33 4ims C/'s are
relatively small as compared witi the coe.fﬁclcnts of " x" 7 ...x"™*! in(21) for

n
some m and therefore, we may able to make (Y. IC;l+¢€" |<£, our desired
i=n—m+l

approximation to fix). Again, as IT(x)I<1, Vi and xe[-1,1], thercfore we may

n : .
neglect last m terms from the approximation ZC;T;{X}‘ i.e., we may consider

=0
n—ifl

Z C;T;(x) as approximate to flx) so that our original approximation Eﬁ x" is reducecd
to the smallest possible number of terms that will supply our desired accuracy within
the prescribed tolerance level. This process of approximation is known as
economization of power series by Lanczos, which minimizes the number of numerical

. calculations, The transformation of [-1, 1] to any interval [q, b] includes approximation
of functions defined on any interval (a, b]. We now list the successive inversion of -
elements 1, x, X%, ..., 1o Ty(x), T\(x), ... etc., for some cases as follows :

Ty(x) =1, 1=1,

T(x)=x. x=T;(x)

Ty(x)=2x* -1, x1=%{T +1,)

Tl(x).=4x3—3.x.. %{3?, +T3)

T,(x) =8x* —8x* #1, é(ﬂ“ﬁ} +4T, +Ty)
1

T,(x)=16x* =202 +5x, X = ¢ (0T, + 5T+ T5)

..

Example 3. Let the function * be appmximutcd by the 5-th degree Maclaurin's

T SR
polynomial. i.c., ¢* -Ps(-r}-1+x+ ;| £ “;T
: ; I
Now we want to find a fourth degree economized pulynomial for ¢* gn [~ 3 ;}

-

Since, [a,#] > lu ; : ;] , therefore, the transflormation, x =a+ 1 (b—alr +1)= é t

Jds required for —1<¢<1.

Let g5(0) = Ps[ﬂ

4

et

8 48 384" 3840°
Then, g5(f) = 1063477 Ty + 0:515788 T; +0.063802 T + 0005290 7,

:I+£+ '_IEJ"-E:]-

+0000326 T, + 0000052 7; .
Therefore, dropping T we get economized, '

gs(6) = 1063477 1 +0-515788 T, +0.063802 7 +0-005290 7,
+0000326 7, .
=1+0-4999186¢ + 1250007 + 02115897 + 0-00260417¢°

Again, transferring 1 = 2x. we have,
emnnmiud-p{x} = economized ()

= 1 + -999837x + 5000002 + -169271x* 4 04166724,
For accuracy we have,
l

| pelx) - e::nm::-nuzed plxi] < -000052, so that for _"j

Nl-—-

| ¢ - economized p(x)| < 88 x 10 4,
§ Swomary : -

This unit is devoled to approximation of discrete daia and approximation of
function using some standard polynomials, Here, least square method is discussed to

112

approxamile discrete data. The chebyshev polynomials are used to approximate a
function and economized the power series evaluation, These are discussed carefully
with appropriate examples.

EXERCISES -
1. Find the polynomial of degree two or less which gives an approximate to ¢*
in [0, 1] by the method of least squares. :

2. Using the following data find least square polynomials of degrce one and
two, 355 '

o S L B S I o e
fp Lo tras | zan | 260 1255 13300

o e e e W I S 3
fx) 10 0 ~4

W x| -2] 0 T T
OB fividr e

3. Fmd the least square polynomial of degree one 1o approximate the functian
fx) =Inxon (1, 2]

4, Findthe Chehyshev's approximating polynomial for the following functions :
) fu=+x on(o,] forn=223 4
() fl=e™ on[0, 1] forn=23
(1i1) j{x}zcosx on [2] forn =3, k, where £ is a pt}sﬂwe integer.
(iv) fix) = In(x + 2) on [-1, 1] for n =2, 3, 4.
(V) f(x}=siﬂ[g~x} on {—l; 1] forn= 3,5, 7.

5. Find maximum and minimum values of Chebyshey polynomisl T(x} for n
=2 3.4

113

6, Find error bounds in all cases of exercise 4.
7. Convert 1 + x + x* + x* + x* by Cheyshev polynomials.

8. Use Chebyshev economization to approximate the following approximate
polynomials on [~ 1, 1].

M e'xm.p4{x}:]—x+;—j—';—::+-5.
(ii) msxmj:,(x):l-u;—,:f-i—:...

(iit) .sin X pa(x) =x - -'-g-:-ih-;—:

(iv) in(l+x}up;,(.r}=x'—§+%i—{i,

9. Discuss the accuracy level in all the cases of Excerise 8.

114

Unit 7 O Numerical Integration

In this unit we shall consider the methods for computation of non-singular definite
integrals approximately. The methods involve the approximation of the integrand f{x),
defined on a closed interval [a, &) by suitable interpolating polynomials.

§ Objectives _
I.ﬁ'.t‘lcr going through this unit you will be able 1o learn the folowings—
® Newton-Cotes quadrature formulae .
@ Romberg's integration formula
‘& Gaussian quadrature
§ Newton-Cotes Quadrature Formulas :
Let us consider the integral,

T L

where f{x) is a continuous, real-valued function defined on [a.5], a finite interval, Let,
Koy Xy ey X, e @ given set of distinct valués of x. Without Toss of generality, let us
assume that, vl

ASXg <X S B, SH

Now, corresponding to the support points x;, k = 0(1)n, and the ordinates f; = f(x,),

k= 0(1)n, there exists a unique imcrp-uiati'im polynomial P, (x) of degree at most n. -
Therefore, using Lagrange's interpolation polynomals Ly(x), it has the form,

P =3 FiL(x) e e A

feal}

Hence the approximation of [is given by,

ixg, = [Bmi=) 1, E’Q{x}dx

k=)
=(b-a)) fioy s kAR
k0 |
it =ﬁj: L (x)dx, k= O(n , oo

115

which depends on x;, x;,, x, and (b - a). @,'s are called inu:gratiun'wf:ighmnf
the quadrature formula (3) corresponding to the nodes x,. Any quadrature formula of
the form (3) is called an interpolatory quadrature formula. It is clear that the valye
of @, is exact if / is evaluated for an integrand f{x) which is a polynomial of degree
of at most n. Otherwise, 0, is not exact and the error occurs, say,

E(f)=1-0,= [f(x) dx-(b-a)Y oy e (5)

kal
Now to discuss about thc accuracy of a quadrature formula we introduce some basic
notions.
Definition : A c[uad'rature formula has the degree of precision mre ., if it
integrates all polynomials of degrees < m exactly and if m is the largest integer with
that property.

Therefore, as error function E,,(,f} is a linear function, the quadrature formula (3)
has the degree of precision m if and only if we have E(¢) = 0, for j = O(1)m and
E(m™*') % 0. We then have the following theorem.

Theorem. LetaSxy<x; ... < X, & b be arbitrarily given n + 1 pairwise different
nodes x;, Then here is a uniqun:ly determined interpolatory quadrature formula.

0, =(6=2) Y. o\ f(x) with wt——j L (x)dx, k= 0(1)n, whose

k=0
degree of precision is at least equal 1o n.
Next we present a class of quadrature formulas with equidistant nodes in the

interval [a,b] so that we have x.- =a+ih. i=0()n, ie, h =E-;—ﬂ- Since the nodes

include the end points, they are known as Newton-Cotes closed type quadrature
formulae and corresponding @),’s are called Cotes coefficients.

- I ¢k X=X
{ @, =—f kgl
Since, @) ¢ B .t i
2k

: nt--l 3
-I n e N e (6)

116

if we selx = @ + (b — a), Le.. dx = (b - a)ds, then we have some properties for a)’s ;
(D) &y =@, 4,

nr:'

because &h = j H

ullt

-
itk

1 =1 1

Forn=1, iy = u—;—l'-df=-f
- i
£ 5.{51{]‘{_:}".

Therefore, O, =E;—€{fu +) s%(fwf‘} , where f; = f(x;), 3yl (7

is known as trapezoidal rule,
Now, Ey(x)= j:x a2 a+h)=0

; S s
E(2}) = j’ R ,__..._{ 2_+b’}=§_h.§,ﬁ_....[b ...f’_:’_":_g_.lt‘_‘_l

So, degree of precision of the t:apcza:;idnl formula is 1.
For n =2, we have,
l @-D@-2, 1
“hT DD 6

Ilirtir I)d, 2
) s

o)
Therofore, @ =228 +4f+ =7 o+ 44 f) e ®

117

. i
known as Simpson's = rule,

3

H 3 L b-a 1 fa+b : 3
ere, E,(x)=L.r dx——ﬁ- a +4 = +b” |=0,

but Ey(x*) 0.
So, the degree of precision is 3.
For n = 3, we find,
3h b~
Q]=?(fl'}+3fl +f3].h=Ta_ Pl e (9)

3
known as Simpson's I} rule.

It is also easy to check that Ey(x*)#0 but Ey(x)=0, ie., degree of precision

is 3. _
2h b-a :
For n = 4, Qs =75 (Tfo +32f, +12£, +32f3 + 1), h=-4— (10
known as Boole's rule, :
Forn = 5, Q, ='iséf:ﬁ(lgfh+15'ﬁ +5[}f= +.5ﬁﬁ+?5f,,+l§f5}. {n

Both the formulas 0, and @y have the degree of precision 5,

- Now it can be shown that Newton-Cotes quadrature formulas have degree of
precision m = n + 1 for n even and m = a for n odd. For this reason, Newton-Cotes
formula is more advantageous for even n, i.e., with odd number of nodes, Also, it
may be taken into account that for n 2 10 some @), become negative and also the
interpolation polynomials of high degree oscillate a lot near the end points of the
interval, It is advisable that Newton-Cotes quadrature formula may be used for n < 8.

Ervor Analysls : y '
Let fix) be n + 1 times continously differentiable function defined on [a, b]. Then
Newton-Cotes formula for » + | nodes.has the error,

1 8 ;
E,_(f]:mfﬂf(!}{,;}#“{;}dr, e (12)

where ¢,(x)= H(x—x;) and £ depends on x.
=) ;

118

Theorem : If # is even and flx) is n + 2 times continuously differnetiable on
[a,b], then the error of closed type Newton-Cotes formula is given by,

koo i b i
E(f)= EETI_)!IK Dgha<g <b k= jﬂ_x;ﬁ,.{x}d.r e $13)

Theorem : if n is odd and f{x) is n + | times continuously differentiable furu:tion
defined on [a, b}, then the eror of closed type Newton-Cotes formula is given by,
kn {n+l b

E) =gy TG a<g <bky = [() e (1)

Forn=1, k= f{x~xg)(x-1;}dx=.E(x-a)(x*b]dx

_{b—-af' =_h3

6 6

=

3
Therefore, E, =—% (9
Forn =2 k= [(x=xp)tx=x)(x=xs)ds

4
AL

| 15
Therefore, E, = - §tﬁ A ()

g .
Forn=3, ks =—ﬁ-h5. which implies,

By =‘§35 W9,

' : -8h" 6
For n = 4, we find, E, w—(ﬁﬁ“f_ (4),

and for n = 5, Es ;%h” f‘“(;-}.....-.:
‘Sometimes to get better approximate, we partitioned the interval [a, b] into some
smaller subintervals and then in each of these subiniervals we use Newton-Coles
formula. Adding these estimates we get the estimate of the intergral for the whole
interval. This leads to the composite Newton-Cotes formula and the corresponding
error term is the sum of the error terms for the separate subintervals. '

19

§ Open type Newton-Cotes Quadrature Formulas :

This type of formulas use nodes that are equidistantly distributed iﬁ the interior
a+h |

of the interval [a b]. If only one point, say, the mid-point is chosen, call Ny =

then the interpolation polynomial Po(x) is taken as constant and equals to flx,). In this
- Way we obtain the mid-point rule,

Q" = (b-a)f(x). xy =22 oy L R (15)
The degree of precision is obviously | and error term is given by,
't {
ES(Nrggb=aPfig) acg<h, - o0 (16)

: ; b~
If we 5updividt [a, b] into 3 subintervals of equal length h = —3-{1 . then we have the

quadrature rule,
3h
O = 5-(fi + f,), where f, = f(x) = f(a+h)
L=fx)=flas2ly .. (17

Again, it has only the degree of precision m = | and the error term is given by,

108
Similarly, for 4 subintervals,

0 =F@hi~fi+ 2 =222, s avin,

It has degree of precision #i = 3 and error is given by,

E'(f= ggﬁ.—g{b-a}’f“‘{f;’}, a<¢<b _ e (20)

...

E'N) = -0 S Qacgcs (18)

Since the upper limit and lower limit does not involved i the formulae, these
formulae are used 1o evaluate improper integrals,

!
: 4 ;
Example 1. For the integral /= -[1 5dx, we have by simple' Newton-Cotes
. : altx
closed type formula,
1
O, = 31333, E; =00826, h= 27

120

0, ~ 313846 , E, ~ 003131, h:.;‘._
0, =3142118, E, = 000525, h:i—,

and Q= 3141878, E; = -000286, h =%
But, if we use compostiec Newton-Cotes formula, then we have, for composile

Simpson’s rule, i.e., using Q5 and also for composite @y, for n number of subintervals,
the following table; which yeilds better result.

n Composite (0, Error .~ Composite g, Error

2 3-1415686275 0000240261 | 3:1415940941 -~ 0000014405
3 | 31415917809 - 0000008727 3:1415926976 ~ 0000000440
4 1 3.1415925025 0000001511 | 3:1415926611 - 0000000076
6 3:1415926403 -mﬂmmua' 31415926543 | - 0000000007

§ Romberg’s Integration Formula :

Suppose the error lerm in approximating the integral [= f f(x)dx can be
expressed in the form, E(f)=ch’ f'(&). where ¢ is independent of A, r is a positive
integer and & e(a,b). Let us calculate the value of ! for two different step length h;
and hy. Then the errors (truncation) in approximations are,

7 T M
E =1-1 .ch; .f_ (&)] S T N s
Ey=l-l=chy [7(5)
where [, I, are the computed values of / and £, & e(a,b). Now, if we consider
FEyand gy are nearly equal, then we have an extrapolation formula,

v L=k hgf bt
r 2 R
W w AT e
h
In particular, if we take ::; =72, then we have,
I#f: +£3-'-—L
2" -1

121

This process is usually known as Richardson extrapolation and it is very effectiva if
S does not fluctuate very rapidly in [a,b]. If we use trapezoidal rule then r = 2, Now
to make it more useful we generalize this procedure. For that we first describe the
error associated with trapezoidal rule: We have the following thearem,

Theorem (Euler-Maclaurin formula) :
Let fix) be a 2m + 2 times continuously differentiable function defined on [a,b]

for some m = O and suppose h= é—;ﬂ. x;=a+jh j=0nnz1. Then the error
term for trapezoidal rule s,

E@-LMM:@ﬁnmumwmn

J=1
-iiWﬂWmW%nW”mm ﬁ“m
o {2 j! q]| 2+
for some &(h).a<&<bh, ' {24)

where B,, i = 1, 2, ... are Bemoulli's numbers defined by the expansion,

gk T E J'J.l / vissin N2 D)
J‘
Some B SUB s pashapad
ome.;sare.Bo By=—g By = g By = mgn Be = o, ete.
For all odd integers, j = 3, B; = 0.
In short, we can write (24) as :
h!mﬂ (imed
4
E,(f)=ch? + b’ + vt b - (b ~a)- G 2}132,,,,,,; MENEY el 28)
where ¢/s are independent of h.
b~
Let us denote /j, p as the trapezoidal apprnxlmatmn to with spacing A =—-sz.

Then, the first _Rlchardscm extrapolate, based on 1, o and [, o, Say [y, i5 given
o =Tio _ 221y 0= o
32 o
I, defined by equation (27) is also called the first Romberg extrapolate.

b?' fk-#l.'- = Ii’i'!:.ﬂ + Lt {ZT}

122

Now form (27) we have,

o A e T Tl Lo R e b I MR e 1) (28)

where ¢'j, ',, are the coefficients in the error formula and are independent of k&,

Clearly, using Richardson extrapolation, i.e., from [, o to /., and improvement

in accuracy level is observed, Earlier, i.e., in (26) it started with &%, but in (28) we
find error term starts with j,°.

Again, using [, ; and [y, ; we get the next Richardson extrapolate (i.e., second
Romberg extrapolate) '

Ik-il:.] defined h:fi

2L =1y,
f & = — 2,9
k4,2 2 1 (29)
Iy, 7 is a sixth order approximation to /.
Proceeding ds above, we have,
L SO)
;.ir-&l.m e b+, m=| .Ln'l 1 = I,Z.... e (30)

4" -1
and the corresponding error term starts with s, >"*%.

~ Hence, by this process of recursion we have a triangular array of approximation
to the integral I

oo

o ha

Iy0 I Iy

o I3, hy, Iys

“The successive elements in the first column are approximated by trapezoidal rule

123

b—a

with hk= 2*

vk=0,1,... The above table is constructed row by row, A new

trapezoidal rule estimate I, g is affixed to the lower end of the first column and the
previously computed values on the (k ~ 1)-th row are used to extend the k-th row by
calculating Iy ;. [y 5, ... £, in turn, Now it can be easily verified (left as an exercise)

that second column is nothing but the formula for Simpson’s % rule, third column

. 3 :
Simpson's vﬂ-‘th rule, fourth column Boole’s rule, etc. The above process of
approximationg an integral / through the triangular array, i.e., through /; . is known

as Romberg's integration procedure. Sometimes the table for Romberg’s integration
procedure written as follows :

110

Iy, Iy

5.0 i Tg,2

Iy.y Iy Iy 153

L IR
Whﬁml fﬂrk =5 ﬂ.*dlk . 1!‘”'2.4‘1 !‘ﬂzzk . T {3]}

The step lenghts corresponding to I, , and I, , are just half in [, , from that
of I, . And the terms /, o, /5 Iy 5 ... are known as Romberg's successive
approximation to [Assuming the function flx), i.e.. the integrand is sufficiently
smooth, or, in other words infinitely differentiable, each column in the Romberg's
procedure converges more rapidly than the previous one and each column itself
converges (o the integral I. Therefore, the diagonal approximation with the desired
accuracy level is the most preferred one.

1 t
Example 2. For the integral / =L %ﬂogz =09314718, we have by the

Romberg's integration procedure the following table, correct to eight decimal
places.

124

Ay Iy o Iy 1 I 4 Iy 3 5 4
1.0000 | 75000000
5000 | 70833333 | 69444444
/2500 | 69702381 | .69325397 | 69317460
1250 | 69412185 | -69315453 | 69314790 | 69314748
0625 | 69339120 | 69314765 |-69314718 | 69314718 |.69314718

§ Gaussian Quadrature Rule :
We now describe an interpolatory quadrature formula in which the nodes x, and

the wights @, are so chosen that it attains maximal degree of precision.

Let us first formaolate our quadraturr: formula, say, Q, in the interval [~] 1]. The

gennrahzutmn to arbitrary interval [a, b) is obvious.

Suppose, I f{x}duZ«af{xME{f}

theorem.

kwil

=0y +E(f) x e[-11), k=01,
are n + 1 nodes and @, k = O(1)n are n + 1 weights, Then we have the following

e 530

Theorem : The deégree of precision of a guadrature formula of the type (32)
cannot exceed 2n + |

Proof : Consider the function,

Clearly, f(x)20, Vxe[-1,1] and consequently

But, @ = Y & f(5)=0, a5 £(x,)=0,Vk=0,1,...,
k=l

foo=1]ix-x0,

k=0

f#jjij‘(x}dx>ﬂ.

vrel-11].

125

.

Hence, E,(f)#0, which implies that the degree of precision of (32) must be
less than 2n + 2.
Next we have the following theorem.

Theorem : There exists a quadrature formula @ = Zﬂ-‘&f (Ik} with # + | nodes
k=0
- X €[=1,1] and has maximal degree of precision 2n + 1. The nodes x, are the zeros

of the (n + 1)-th Legendre polynomial P, , (x) and weights are defined by,
B E E | i | :
e i
a, = dx >0, k=0(n
: L’J]f‘:[o[-“t“ﬁ) ;
Fek :

Proof : We first prove the existence of the desired quadrature formula and then
find weight formulas for it and prove the uniqueness of the quadrature formula.

Existence

Our aim is to show a quadrature formula with degree of precision 2n + 1. For
t]us purpose, we use the fact that in the interior of [-1, 1], the Legendre polynomial
P, . (x) has n + 1 simple zeros, say, Xgo Xps ooy X, Considering these as n nodes, we
have always an interpolatory quadrature formula with degree of precision at least x.
Now, let us consider an arbitrary polynomal p(x) whose degree is at most equal
to 2n + 1. Since P, , ((x) is polynomial of degmr: n + 1, therefore, by division
algorithm, we can write p(x) as :
px) = g(x)P, , (x) + r(x), where degree of g(x) < n and dﬁgree of rix) < n.
Again, Legendre polynomials form an orthogonal systems on [-1, 1] with weight
function axx) = 1. .
Therefore, P, -, |(x) is orthogonal to each of the Legendre polynomials of lower
degree, viz., Po(x), £1(x), ... P,(x) and hence it is orthogonal to g(x), as g(x) has
degree at most n and it is always possible to write g(x) as_a,linear combination of ;
Py(x). Py(x), .iis Po(x). So, using the above fact, we have,

J_il p{x) dx 3 I_'I[q[x}ﬁ, 1l +r(x)] d;

=0+ Elr‘{x} dx = ﬁli'{.r]dx

126

Now, taking nodes x,,.k = 0(1)n, we have,

Zwkp{xﬂ ka[q{x;) as1 (X)+ r(x)]

k=0

=0+ ;}&w{xﬂ as x,'s, for k = [}{l}n are zeros of P, , (x),

Ie -P I':-’-'J:J D Yk = GH]H

Since the degree of precision of an interpolatory quadrature formula is at least
n and degree of r(x) S n, therefore,

Y ayrx) = [roya

k=0

=J._Ilp{.r] dx

Hence, we have, thF(xk} Jj plx)dx
k=0

As, plx) is an arbitrary pnlynomm] of degree € 2n + 1, therefore, the quadrature

formula @ = waf(x;} where x,, is a zero of P, (x) for each k = 0(1)n, is of
e

maximal degree of precision, i.e.,, 2n + |.
Now, we have to find the formula for calculating

 Let, Li(x)=]‘](

j=u
Jk

a] k=0(1)n, be the Lagrange polynomials of degree n |
; :

with nodes x,, x;,, X,

Then, it is easy to check that Ly(x;) = 6, for k. j=0()a,

2
e X=X
and L,’ {I}zn[! } has degree 2n,
K
Since the quadrature formula has deg,rea of precision 2n + 1, therefore L,2(x)
yields exact value for each £ = 0, 1,, n. Thus we have,

127

'ch L (x) dx = J' H[Ik_xj]z

J2k

_Zm L (x,) =@ k=0(n 4 Liix,)=6,,.
el ¢

L e
Hence, @ =I_IH[—LJ dx >0, Yk=0()n,
PG St

Next, we shall show that our quadrature formula is unique. For this purpose, let
us assume that there is another quadrature formula,

Q = kaf{x*) x, # X Wk j, which has degree of precision 2n + |
k=0

and all the weights e, >0, for k = 0(1)n. Again, let us consider,

L;{x};l‘[[“—lﬂ_] and h(x) = Li(x)P,. ().
ut) e Ky
J=k

Then, & (x) is a pc:-lynomml of degree 2n + 1. So, by assumption about degree
of prr.cmmn of (', we have, for each k = 0, Loy s

[_I.L;.u:x)ﬁ,+1(,r}=ﬁ, [as L'y(x) has degree n and P, , (x) has degree

n + 1, therefore, lhc_y are orthogonal]

ie., | noodx=0

"t [4
or, 0 =3 hx,)a), =Y @ Li(x,)P, (x,)
u=0 .

gl

"
= Zﬂ’;gﬁk,upni-][‘li} =miﬁ}+i{-’fi}

=t
Since, ay >0 for each k = O(1)n, therefore the above relation implies
Poilx) =0, for each k = 0(1)n. ke

128

i.e., x; are the zeros of P, , ,{(x). Hence apart from a permutation of x, x,,
, the nodes x7, &k = ﬂ{l]ﬂ coincide with the nodes x., k = 0(1)n. So wmghts are
unzquciy‘ determined for the quadrature formula.

The quadrature formula (based on zeros of Legendre polynomials) is known as
Gaussian (or, Gauss-Legendre) quadrature formula. It is the formula with maximal
degree of precision. The nodes x; are pairwise symmetric with respect to the origin
‘and the formula of e, implies that they are equal for every symmetric pair of nodes.
We now discuss a computational procedure to find nodes x; and hence «}. For the
purpose, we have the following theorem.

Theorem. The n + 1-th Legendre polynomial P, , (x) of order n +.1, n 2 0, is
equal to the determinant,

o, R) LR e N 01

b{} d X b] 0 i iva 0
0 b ax b 0 ..o . ki 0
'F:u * !{I} o
CER A (34}
0 0 bﬂ—! bn'-l
{]‘ 0 {]' &n,_| a,,.l‘
whicre de s it ST O

P) T

With the use of the above result, it can be easily verified that the nodes x, are
the eigenvalues of the symmeiric, fridiagonal matrix,

G T R WERES IO A

B R
| Ok B e e
Jpa1 =] =
RS
0 L e e (W ek e

129

k+1

where [, = Jk=0(n~1,
Jﬂkﬂu: J4ﬂ:+1] =1

An efficient a]gont_hm can be useful to find x;. We now construct a table for
nodes and weights of Gaussian quadrature formuls for some values of n.

n=1 —Xg =X = % =:5773502692 ay =ay =1
=72 —Xg = x.i = J—;— = -?'?45965&92. iy = ahy = 9- = '5555555556
8
=0 [=3
n=3 - Xy = Xy = -B611363116 o = @y = 3478548451
-X| =X = -339931543{3_ ay = ay = 6521451549
n=4 - Xy = x; = 9061798459 ay = ey =-2369268851
- X, = X3 = -5384693101 o, = w, = 4786286705
X =0 a, = 5688888889

For the integral of the type f S(e) di, if we want to use Gaussian quadrature
formula, then we change thie variable as follows :

b- b
r=-—2—ﬂx+‘%. 50 that we have,

l= f'fmdr [f [o EE]dx R
The quadrature fﬂnnula is then of lhe form,
b- b- b
Q, = Za E%I[Taﬂ +E-:£-—]- o Zmif{ri]'

wherne I = b;a X, + 2 ;b o I TeiAl {37)
The error term for the Gaussian quadrature formula is given by,
b-a" (4 DY ae)
E,(f)= On 0 f (ff:' cxoss A OHY
where a< & <b,

5
In particular, E(f)= 135[;d) f{au{g}.

130

; l b-a ! (6}
Ez[f}=m[‘2—) SUHE

I (b-aY
st = el e L
Es(f) = 34?2315[i] (6).

It may be noted that Gaussian quadrature formula is also useful for improper
integrals. '

Example 3. Compute the integrals by Gaussian quadrature formula.

P 4 £
(i h =ju*“‘fdx. (i) 45 =_|'; xcosx dx, for different values of n.

14+ x

Ans. Clearly exact values of [, =x and [, :%— 1. The fnilaw-i.ng table is the
calculated values of /;, I; by Gaussian quadrature formula.
1 h
n Q, E, @, E,
3-1475400836 - 0-0059483300 | 0-563562244208 0-007234082587
31410681400 0-0005245136 | 0570851127976 - (-000054801181
3.1416119052 - 0:0000192517 | 0-570796127158 0-000000199637
3.1415926399 00000000138 | 0570796327221 - 0000000000426
31415926112 0.0000000424 | 0-570796326794 0-000000000001
31415926563 - 0:0000000027 | 0-570796326796 - 0-000000000001

o oLh B o R =~

§ Summary :

In this unit, Newton-Cotes quadrature formulae for closed type and open type are
described, From closed type formula, the trapezoidal, Simphson 1/3 rule, eic. are derived.
Romber's integration is discussed here. The Gaussian quadrature, particularly Gauss-
Legendre is extensively studied, The merit of this method is illustrated by example.

EXERCISES

I. Find the coefficients that make the quaﬂrature formula

ﬁf{x]dx % ¢ f(=1)+ ¢, f(0) + 3 f(2) + ¢4 f(4), such that it is exact flﬂr cﬁhic

polynomials.,

131

3

. ez ok ,
- 2. Veriry whether Simpson’s = rule is exact for f(x)=x" on [0, 2] or not.

3

3. Use Newton-Cotes quadrature formulae forn =1, 2, 3, 4, 5 for the following
integrals correct to that decimal places permitted by the comresponding formulae :

o : i 2 . dx
0 i3] @ [Fe, @ bmm

. b e 2 dx ;
(iv), 072 4 0% WM) 353 O

Vlsx?
4. Use Romberg procedufe to find the values of the following integrals correct
six significant figures,

() _[\ (i) ,,I cos(xsing) dé, for x = 1, 3 and 5.

- dx
(i) .£{1+ﬁiniﬂﬂx}d.h (iv) E\de (v) J}:ﬁ.

5. Compute the nodes x, and the weights @, of the Gaussian quadrature formulae
forn=4, 35, 7, 9 by means of a suitable matrix algorithm.

6. Use Gauss quadrature rule to approximate the following integral.

'Ee"”zdx. for n = 3, (ii) j_llf"”z sin2x dx, for n = 4.

cosxdx, forn =13,

R 54 k o i ;
‘[;.-';-I—Z—}dr. forn = 4, (vi) flﬂg[ESI“EJd", for n = 5.

7. Determine the abscissas and weights in the Gauss formula.

[reotopde=aftx) + asfia).

8. Compare the results obtained in the problems of exercise 3 by using n-point
Gauss quadrature formula for n = 2, 3, 4, 5. :

132

Unit 8 01 Numerical Solution of Ordinary Differential
Eguations : Initial Value Problems

§ Objectives
After going through this unit you will be able 1o learn about—

Taylor series method to solve ODE
Euler’s and modified Euler's methods
Runge-Kutta methods :
Adams-Bashforth-Moulton method
Milne's method

Analysis of stability

@ @ & » ¢ @

Let us first consider the initial value problem for a first order ordinary differential
equation.

-_Lz = f(x y) with initial condition y(x) =¥, ... (1

where the function f(x, y) is continuous in a domain D of xy plane and (x, y)
is a point on that domain. Now, we say that y(x) is a solution of the differential
equation (1) on [a, b), if for all x € [a, b,

() (x y () €D
(i) y(x) = yp
and (iif) y'(¥) exist and y(x) = fix, ¥(x)), hold.
To ensure the solution to the problem (1) be unique, we consider the stability of

the solution near the point (x,, y,). There is a powerful condition which ensures the
stability of the solution. We present it in the manner of a theorem.

Theorem. Let f(x, y) be a continuous function of x, y in domain D and let
{x,, »,) be an interior point of D, Let us assume that f(x, y) satisfies Lipsa_:hilzf
condition i.e.,

| F(xy) = £ (e 32| Sk 3, = 2| for all (x,). (x, ;) € D and for some
constant & = 0 (known as Lipschitz constant). Then for a suitably chosen interval
[x, =&, x, + &), there is a unigue solution y(x) to the problem (1).

133

Before going into any specific numerical technique to solve the initial value
problem (1), ie., to find some approximate solution within our desired accuracy
level, we first classify the techniques. Usually, we compute explicit or implicit solutions
y;= y(x) at some equi-spaced discrete points x'jm: x4+ jh j=0,1,2, -.. in the domain
D, where h is a suitable step-length. The points x, are known as grid or mesh points
- and y, is used to denote the estimate of y(x). Now, if we compute y, | using a specific
technique where we need only the previous approximate ¥, we call this specific
technique or method, a single step method. If instead, we need multiple approximates,
S8y Y, ¥,_p - €l , to compute y. . then the method is called a multi-step method.
Both the above methods are explicit in the sense that they do not require any
approximate beyond y _ ,, including y, , , in those methods. If, we require further the
approximates y . ¥, - €I€., 1o compute ¥, then the methods are called implicit.
In all the techniques, we must aware of the fact that apart from the truncation error,
the accumulated round-off errors arose from each step.

§ Single-Step Methods :
(I) Taylor series approximation :-

A general single-step method for estimating y(x,), ¥(x,), etc., in the small
neighbourhood of the initial point (x, y.). is the method of the Taylor series with

remainder term R,

= I .
20 =509 + EHR e+ ST ey o

(x - x0)”
+ -_;!——,v’”{xn) + R.i T (2)

(x - x3)P* '
where R | = _Q__-{pﬂ}* Wiz o+ Gh), 0<B<1,

and, h = the step length
=I‘_+“'xl, Y k=ﬂ+ 11 5
Replacing, x, by x, and x by x, , , the (k+ 1)-th approximate y, , ,, is given by,
i .

: R iy h?
y1+!=y.t+'l"!y1+E_Fyl+'f'+_;fwit """ 3

134

~assuming that y(x) has sufficient smoothness (i.e., has continuous higher order
derivatives) and R, , is negligible with respect to our desired accuracy level. The
computations of y’, ¥" ..., elc., can be made by the following procedure (which can
be at times messy),

y' = flx)

A L R e

o el B
dr dy ox 4

...

There is another useful way to compute y-values by Taylor series method. Let
" us write the solution to the problem (1) in the form,

Yx) = ylx) + o fx = x) + c(x - L B i (4)

- where ¢'s are constants which we 'curnpulé recursively, We illustrate this ?mendure:
through an example. -

~ Example 1. Consider the initial value problem,

dy :
— = 2, W0y = |,
d y, W0

Expanding y(x) = y(x, + x— x,) about x, we get,

Yo) =+ clx=x) o~ F o o= n)+ i P

(i)
where ¢, = I)
it
We substitute this series in the differential equation, % = — 2xy? and compute

the coefficients of the like powers of homx~ x, on both sides, i.e.,
e+ 200 4 3o + A B Hoiin

= =2 (x4 h) (v # ch+ ot +ch + L)

135

Comparing after some simple manipulations, we have,
. 2
L s lrk}r* g
e Oy + 2e,5)y,

€, = — ey, + 2x, (¢’ + 2cy)13,

%
c,= '*(5'5-1 +eoaye o loes +caye)),

Clearly, ¢'s as described above, are computed recursively. Now, we ﬁndr
approximate y, = at x, = x+ h, through the expression,
Yoiy = Wotchde, W doe W
The results with & = 0-1 and the corresponding error terms e, = y(x)~y for k
=1, 2, 3,4, 5 are given in the following table where we have considered
upto 4-th order. :

T (R . & & €y €y €

derivatives

00
{1

02
03
04
05

1-0000000
0-9901000
0-9615455
09174459
0-8620892
0-8000218

0-0000000
~0-1960596
~0:3698279
~0-5050242
~0-5945582
~0-6400348

-1-0000000
~0-9414743
7823272
~0:3637076
~0-3331480
0-1279930

0-0000000

0:3805494
0:6565037
0:7736352
07423249
0-6144390

10000000
0-8567973
0-4997400
0:0913102

02247569

-0-3891673

-0-0000010
—0-0000071
~0-0000147
-0-0000202
-0-0000218

Taylor series method in some cases gives excellent approximation but it has the
disadvantage that the set of recursion formulas are different for different diffc.rcnlial
equations. So we have to find out in each time a new set of recursion formulas for
a new initial value problem.

(I Euler’s Methed :-
- "Let us consider again the problem (1), i.e.,
e N . fo 218 . : 5
given, Ex}: = f(x, ¥) \ffith wix) =y, we have.m find out approximates y at.

x,= x, + jh for suitable step length h. Atx= x,, the slope of the tangent to the desired

136

curve y = y(x) that satisfies the differential equation, is y'{xigé- flxy ¥,). The 'simplest
method of finding an approximation to the solution y(x) is by its tangents on different

 points, i.e., through linearization. For, X =x, +kh k=0,1,2, .. we find y, the

estimates of the exact solution y(x,) by the following formula,

}'Hl:}’g"i'flr':xr ¥ k=0, A e M L e &)

which is obtained either by truncating the R.H.S. of (3) after second term or by

il = Vi
h

replacing y'(x,) by its forward difference approximate in the formula y'(x))

= f (x, ¥(x,)). This method is known as Euler’s method. It is useful for obtaining the
starting solutions for other methods, From the geometrical point of view it is also
known as polygonal method. We illustrate the use of the method by estimating the
values of y' = — 2xy?, y(0) = 1 at mesh points, x, for h = 01 and 0-01, In Euler's
method unless the step lengths are very small, truncation error will be large and the
estimates y,'s are inaccurate.

h =01 ; h =001
X, yix,) Y | IE* % 5
o0 | 100000 | 100000 | - 1.00000 &
0-1 095010 1-00000 —0-00990 0.99107 -0:00097

02 | 096154 | 098000 | 001846 | 096330 000176

03 | 091743 | 094158 | 002415 | 091969 _0.00226
04 | 086207 | 088839 002632 | 086448 | -000242
os | osoooo | os2sas | -oo2s25 | osoz20 | -000229

Therefore, with the increase of step-length, the error grows up.
(LIT) Modified Euler Method :~

Another useful method for starting solutions is the modified Euler method.
The name indicates, it is obtained by some improvement or modification of the

~ Euler’s method. Let y, be the k-th estimate of y(x) at x = x, with step length h and

; h
¥,, be 2k-th estimate of y(x) at x = x, with step-length 3 by the Euler’s method. Then

137

we have, approximately,
y, = y(x) +ch + O(h?)

: h ,
and Y, ® J’(-’Q} + cl'z' + ﬂ[h?]‘
whi_:re ¢, is a constant,
- Now, using the Richardson extrapolation, we find the extrapolate ¥ by the formula,
Fx) = 2y, - y, % ylx) + 00,
which is relative to y(x), is of second order.
Therefore, if we write,

Yk =y, B, v,

then with the step-length g we have,
(2 h
Yerrrz =¥+ 'Ef(xp P*}.

: (2) h h @
and _-.:,‘3.; = ymz g f{xﬁ 1“”*%]‘
s that by Richardson extrapolation for y,'%) and Yi+; we have the estimate Y1 by
the formula,

ST L e
Y et ka-t'l o

; h
ad 2y, + hf(x, y) + hf[-’-'.& "'E'}’t{ﬂ!!] =¥, = hf (%,)

e
CEmy b (M"‘Erh"‘&‘f{xk.?&}]-

In a more compact form, wé can write,
k1 if(-‘-’p .}'1] :

h 1 :
k1=f(.x* I+5"}lk+5hk1) | - - {6}

and yi+!=yl+hkl

This procedure is known as improved or modified Euler method. Here in a
single-step we require two evaluation of the function f(x, ¥).

138

Now we shall discuss about the errors occurred in the methods and corresponding -
order of convergence's.

For any single-step method, we can write the general scheme as follows :
Yoo =N + he (x, ¥y, h), k= 5 | o R s i . R s S 1] (7}
where the function @x,, y. h) describes how the new estimate y, can be

computed from the information (x, y) with step-length h. For example, in Euler’s
method.

e ﬁx*! }'&1 h) =f(xk’ }rl:'t v
which does not depend on k. Again for Taylor series algorithm we find,
Bx, v B) =+ e h e H
where coefficients ¢, depend on the differential equation concerned, i.e., on f(x, y)

and the point (x,, y,). Next, we call a single-step method as consistent by the following
definition. ;

Definition. A single-step method is called consistent with the differential equation

'ii.:".'.'.—

=l if and only if ¢ (x, y, 0) = f(x .

thﬁrly, Euler's method is consistent.

Now, if we ne.glmct the rounding etrors, then we can define the following,

Definition. The local discretization error d,, atx,,, is defined by the expression,

dy oy = Y0 a0) = Y(xy) — hlxg, y(x;).h) : e OB

Local discretization error d, _, indicates how well the exact solution fulfilled by
the formula (7). In case of Euler’s method and also in Taylor series method, d, , , is
just the difference between the exact value y(x, ,) and the computed approximate
¥, , Where we assumed that at x, we have the exact value y(x,). Since in almost all
step we use the approximates to the exact value, therefore we require the total error
between computed value and the exact value.

Definition. The global discertization error g, at x, is defined by,
g=Yx)-n G R o, L IS (9)

To estimate g, the function ¢(x,, Yo 1) should satisfy the Lipschitz condition
with respect to the variable y in a suitably chosen domain B, i.e., "

139

|6t R =dCx v W< Kly=y*}, . .. (10)
for (x. v, B, (x y* h) eBand0< K < oo,

For Euler's method this is just the condition that f(x, y) is Lipschitz continuous,
i.e., the condition for existence and uniqueness of the solution to the problem.

Nﬂw,.ﬁum (8) and (9) we have,
By 1 = 8 + hIA(, YOx, h) = 6(x, yp, W + 4, .
Hence, by (10),
lgear| < 1ge] + 1 [0k Y00 b= 0y) + |dica
< |g| + K [¥x) =3l + ||
=(14hk)| gz | +1diir |
Therefore, if we assume,

=) |d,‘] < A, then we have,

13H—|I£{l+hx)]gk |.+ 'ﬁ'! v k= ﬁl _11 21 rray : - '“I]'

and the following theorem, "
Theorem. The global discretization error g, at the point x, = x, + nk is bounded

Af onk e Nt
by, |gnl < M(e“ —!)ﬂﬁc” _ e

For Euler's method,

“ - l 2 * s 1 2
ifA= max hlldhl-ls. zh J’é"?:iiy &) = 1M,

then, Lgr,,|$f2I X%} 5o that as h = ---—n———- -3 0, y - ¥x) at.x

We say that the convergence is lmcar and Euler's method is of order one.

Definition. A single-step method is said to be of oﬂerp. if its local discretization
error d, satisfies the relation,

s aX \g.| < A = const. B** ' = O(f*"), so that the glﬂhal dlscrcttzatwn erTor
g, is bounded by, :
. 140

constant

AR e .hP = O(). | SR i gt & e (13)

For Taylor series method we have,

hp+|
Lhd e

and for modified Eulet’s method,

yer(x 4+ n),0<8<l, e (14)

d =Xx) }’(It] - hf(x, + W2, y(x,) + = f(xp ¥x))

P i 3 4
= [4f3+ﬁ‘ﬂ-]h + O(h*),

where G =f,_ + 2ff_ + ff and F=f +f,
Thus the modified Euler method is of second order.

| § Runge-Kutta method for Differential Equahnns of Higher Orders
and Systems :

In this section we shall describe the generalization of Runge-Kutta method for
* differential equations of higher orders and for systems with first order simultaneous-
efjuations. We restrict ourselves to second order differential equations and systems
consist of two simitaneous equations. The generalization is straight-forward.

Consider initial value problem,
y" = f(x, y, ¥') with initial conditions,
Y(xg) = ¥g ¥'(xg) = ¥y in a domain D. .. (15)
If we put y' = 7, then we have the following system of twu first order equations,
yEe
'=f(x. v 2
with initial conditions, y(x,) = y,, 2lxy) = ¥, = 7, (say).
This is a special case of system of two first order equations,

dy
7 =yl v, 2]

141

% =2 =0(x ¥ 2) : (17

with initial conditions y(x) = y, . 20xg) = 2z,

The generalization of the 4-th order Runge-Kutta method for the initial value
problem (17) is as follows : :

Let X =X R R § N B SR Then find, '
kl = hFD-}» _}}r zj]‘ IE= h'G(I, -}Ij' Zj‘}r
h k ! k k |
Sl e S L e e
h k ! : h I'
ky= hF (xj.+-2~.yj ++§.zj+§), L=hG (1j+5.yi+%~,zj+ 2).

ky= hF ij + Iy + kg 4 L), ly= hG[x}. oy k4),
k=gl 42 +2kstk), I=g(+2h+2h 4L L.a8)

The new values at x; | are then,
yjH=}*j+k.zj,1=zf+latxj+,-=xj+-h e (19)

~ (18) and (19) are the scheme for numerical solutions of the initial value problem
(17), hence also for (15) by 4-th order Runge-Kutta method. Clearly, the generalizations
to the higher order and systems consist of more than two equations are straightforward.

The scheme has the local discretization error,

d j+ || = O(h®) where ||| is the Euclidean norm.

Example 2. Solve y” = 5x ~ 3xy’' ~ 4x%y with initial conditions
30) = 1, y'(0) = 1. Use step-length h = 0-1.
Solution : Put y' = z = F(x, y,. 7), therefore,
7' =5y 3az - 4xty = Gy, 3, 2),
and y(0) = 1, 2(0) = 1. -

142

Using the following computational table,

x y z G, y2) | k=hF |l =hG
e i y Gl = =) ky l
h 4 I
G+s | ot s 5+ 3 Gl = =) ky L,
h k Nk ;
sre | —ma g4 Gl=) ks I,
x;+ h ¥+ ky Z+ 1y Gl=, =, =) k; 1
I 1 :
Yot Pise i (k, + 2k, + 2k, + k_.,),. Ty =2+ E“' + 20+ 2, + 1)

We find the vlaues of y and z at five different values of x :

o Yy Z
0-00 ~ 1:00000 1.00000
010 1-10030 1-00850
0-20 1-20203 | 1-02683
0-30 1:30557 1.04220
0-40 1-40990 1.04043
050 . 1-51262 1-00766

§ Multi-Step Methods :

Now we consider a more general approach for solving numerically an initial
value problem of the type (1). We call a method is a linear m-step method, if we
include m previous approximates ¥y, ¥, .y o Yy - m o | 10 determine y, , , at x, , ;.
For the equidistant support abscissa x, ;=x, —jh,j=0,1,....k=0, 1,.., a general
linear multi-step method is defined through the formula,

" T =
Zaﬁ;u = h ijf(-t;+jr}';+j}u mz2 e (20)
J=0 Juil . e
where 5 = k — m + 1, and we must have a, * 0. Without loss of generality we set
a, = 1. When the coefficients a;, b, are not allowed to vanish simulianeously, we

143

define the method (20) as a real m-step method. If & = 0, the method is an cxﬁ!icit
- method, otherwise it is an implicit m-step method. To determine the parameters of
(20) we first define the following.

Definition, The linear multi- -step method (20) is called of order p if in the
expansion of the local discretization ervor d, | i into a power series in h at an arbitary
abscissa x, the following holds,

d, , Z[ﬂif”(x&ﬁ} hb; f{xsﬂr}'[xn_f})]
: v,

- rﬂy(x] + ¢ hy'(x) + ... + cphf'ywi:x) + 0y b0 by + Dy 4
e

In other words, the local discretization error is of the order O(H° * 1. The definition
(21) does not specify x precisely, It can be proved that p does not depend on x from
which the power series is formed and the coefficient €, 4 1 18 independent of x. With
a suitable choice of x we may rr_:preseml the cmfﬁcm_rﬂs ¢, as simple functions of the
parameters a;, b;. If we choose x = x,, then we have by using Taylor series expansion
for y(x, , ;) and y'(x, . ;) with lmphc:t assumption that y(x) is sufficiently smooth, i.e..
has sufficient number of higher order continuous derivatives, :

q_ ¢
:"(x:-u} = ylx, + jh) = Z%?FT“} (x,) + Rq+ v

1=
: : R (22)
y [
i ; . (jh) e =
y {I:.'ff} - J’{-‘}'*"Ih) = ‘éT}rl e ('x_r]'+ R‘i"
Comparing (21) and (22) we have,
Co=ay+a + .. +a,
cp=a +2a,+ ..+ma, —(by+ b +..+b) 1
:
ey =5 (@ + a4y + ... + m'a,) (b + 2y + .. +mb)
::ZZZ:ZZZ:lIZZZIZZZZZIZZZZf:::::E:11::::::if:::::I:II::::I::11;::I:Z:IZ:L:ZZZZ.’TZZZZ',.':::IZZ:ZIZ',! P e |
. 2 .+ mig) —1——{1': + 20-1b, %
CI_E" (a, + 2a, + .. mla) = a-D! 2

+mi-1 b)forl =23 ..,a4q 4

144

For a given m, we seek the parameters a JE:- in such a way that the order is maximal,
It varies with the structure of multi-step m:tlm:ls The investigation of multistep methods
are further associated with the following two characteristic polynomials, '

" i {
i f)
B Domz oot JPEIE 0 T (24)

j:ﬂ j"u
We call a multi-step method (20) is consistent if its order p is at least one, The

. i . I
method is said to be convergent if j _:-1: 0 Yo my) =YXy 1)- A necessary condition
for cﬂnvergcnca is that the zeros z; of pz) are such that [z,4<l and all zeros on the

unit circle are simple. This conditjon is usually known as stability condition, If this
condition is not fulfilled, we call the method as strongly unstable, Now we shall
describe three methods based on intergration. :

Adams-Bashforth Method. |

If we intergrate the different equation, % = f(x, y) between x; and x, , ,, then
we have an integral equation,
e
Y5) = ¥x) + L: L fCx, y(x)dx . (25)
- with (1 + 1) equidistant points X, _ ., X, ., 1y o X lﬁl us mlerpulatﬂfl.’x ¥(x))
by the formula, :
Sl Y s L)+ R, (0) veree (26)
where L, (x) is the interoplation polynomial and R, ((x} is the remainder.
Using Newton's backward formula for LX), 4

Efu+j—1
L (x) = Z[.] Vip. o OB
=ox J
and setling ;= _[[:[utf#l]du.j: 0, 1,n+ 1, where u = Z=2& we have,
¥
. s .
J’a+|=}’;+r‘lzu“;'i"’ﬂ+ﬂ'h,, ,,,,, (28)
: o
'dk+t n+]h"+2-"‘"+7}{¢)‘xk n<§{x#+ll. f e (29;'

which is obtained by intergrating R, _ | (x) from x, to x, , ,, using divided
| difference form of R, _ | (x), i.e.,

145

dy = J x =) e (=2)Y 06 Xy e .x,‘]cfx

n+l

ek + :
= p 2 yn 4D (8 J:Lu ")du (30)

Thus we have the (k + I)-th estimate of y(x, , ;) by the following formula,

yk+‘=}’i+ﬁ§u‘j?jﬁ,k2n, weee (31)

which is known as (n + 1) step Adams-Bashforth formula, Clearly, it is an
explicit formula of order (n + 1) where the local truncation error is given by (30).
For n = 0, the formula leads to Euler's method. '

Some computed values of a;'s are given by the following table ;
Table for o, : '

i 0 N 1 4 5 iy
| e e :
% AR SR EE RN RN
So, we can write [31] as follows :
Voo =W+ h [11 +=Vf, +~~'~?’f;r v’fk] + i (32)

If we rewrite explicitly the four-step Adams-Bashfunh formula by the ordinates,
then we have, SE%

' |
Yee1 = _'Eh (35f, - 596 4+ L of _ %)

25I
5,050 & |
and dy, = oo B+ OR) R (33|

For smﬂmg values we may use any single-step method described carhcr
Example 3. Given the differential equation,
dy M with initial condition y(0) = 0, we find by Ta:,rlur series
dy x“+y +4 -
‘method using str.-,p -length h = 0-1, the first three values atx = 0-1, 02,03 as folluws
= 0:046959, y, = 0093671, y, = 0:139850.

146

The following is the difference table to ¢dmpute approxiamaes y; by the 4-step

Adams-Bashforth method.

wl' x Yu 5 af, A, A,
0 | 000 | 0000000 | 0470060
_ ~0-000259 _
1 | 010 | 0046959 | 0469741 —0-000517 :
I S S -0-000776 : -0-000028
2 4 020 | 0093671 | 0468965 ~0.000545
0001321 | | 0000137
31 030 | 0139890 | 0467644 -0-000408
: ~0:001729 0-000006
4 | 040 | 0185664 | 0465915 ~0-:000402
© {-o002131 | 0-000054
5§ 050 | 0232158 | 0463784 | : —0-000348
0002479 0-000058
6 | 060 | 0278413 | 0461305 _ ~0-000290
: -0002769
7 | 070 | 0324407 | 0458536
8 | 080 | 0370112

Adams-Moulton Method.

Here we consider the integral equation (25) again, but we take (n + 1) equidistant
POINIS X, _ ., (s Xy _ 420 e %o Xy, ¢ 85 the interpolating points, i.e., we have included
the estimate y, , , in the interpolating polynomial. Thus, if we write,

fon, y(x)) = L(x) + R, , (x) and intergrating between x, and x, , |, we have,

A

Yiun T, I;M L,(x)dx+dy,, e (34)
where, d, | , is given by,
diiy T :m Ry ()
= xm{?_f'xk-ml} oo (X =2 YO Ky gy e By O

147

At .
:}I" {g\‘l J"IE—"-I. |x 1 x.**‘lj J“. {I_x#-ﬂ"li}ln

(x-x x4 <& <x |
Since (x — x, _ . ,).« (x —x, ;) does not change sign in [x,, x; _], therefore,

= Xy

it x
setting u = , we have,

n+l

ifv+n=1 y
d = pn+ zy{nd} (& I [_}iv IO ERE T T (35)

where x, , . <é'<x,pv-1=u
Now using backward interpolation formula,

LT o O
Ln(x}'—'Z[.]?Jfkm we have,

o
yhl—yﬁhiﬂﬂ?mwdh. LR
Jl'i
o fi= ' '
where '@; 3 Ji(v J'] dv, j=0, L, .,n+ |
b J
and dﬁ + 1 = "+ h“ i 2}r{n+2} {‘;I} v (37}

Therefore, we have an n- sr.ep lmphclt furmu]a for estimate y,; i e

-.:"’k+t=yk+ h Zﬂjv in:+]|. : fneey {38}
e s

which is known as Adams-Moulton formula of order (n + 1) with local
discretization error d, , | given by (37). '

Table for g, s

Fob e 1 2 3 4 e
ar | e 3
B, I =R R e (R
_ 2 12 24 720 160

Explicitly we can write (38) as .
!

"i??fm _iv f.‘h-l] e E39}

5 4 o h {-Jﬁwt ?fh-l

148

For 3-step Adams-Moulton method, if we transfer (39) into ordinate form, then
we have,

!
Yes1 =Nt a4 G R R b T AR

Since, the formula (40) is an in‘iplicit formula, therefore for computation we use
a predictor-corrector formula with Adams-Bashforth formula (33) as predictor and
(40) as corrector. i.e., we use a predictor-corrector scheme,
' i U T g A
s> Yt % hIS3, = 39 Ly + 3Ty Ly %% _sh
1 s (A1)
Yewi= Nt " Boi9fx . o 0)+ 19550 +£_ 5]

The error estimate for 4-th order Adams-Moulton predictor-corrector scheme is
given by, : :

=
Chorde mabippee W) s (42)

'Example 4. Consider the problem of Example 3. Here again we take h = 0-1 and
first three approximates y;, y,, ¥; by Taylor series method. The computational table

for Adams-Moulton predictor-corrector method (41} is as follows :

n Xy Y —h Af, Ay, &Y,
0| 000| 0000000 | 0470000
0000259 |
1 | 010 | 0046959 | 0-469741 -0.000517|
0000776 | ~0.000028
2 | 020 | 0093671 | 0468965 -0-000545 |
-0.001321 | 0-000137
3 { 030] 0139890 | 0467644 ~0-000408
~0:001729 1 0000186
4 | 040 | 0185664 | 0465915 0000359
e ~0-001680
0-186571 | 0465964 _0-000080
0186573 | 0-465964 -0:000439
—0-002119 ~0:000197

149

0:50 | 0233077 | 0-463845 | —0-000556
' ~0-002236 0000081
0233067 | 0463728 -0:000440 '
! ~0:002120 |
0-233063 | 0-463844 -0-000349 | 0.000091
-0:002469 0-000092
060 | 0279320 | 0461375 —0:000348
' ~0-002468 0.000057
0279326 | 0-461376 | ~0.000291
; ~0-00275% -0-000059
070 | 0325329 | 0458617 -0:000232
0325328 | 0458617 '
_ -0:002991
080 | 0371042 | 0-455626
0371042 | 0455626

Milne's Method :

Here the integral equation is formed by integrating the dlﬁercntml equation %
= f(x, y) over the interval [xt 1 X » il 1e.y

Yo = :"'k— ik L f{x.y{x}}dr : ; | e (43?

We evaluate this mtegral by Simpson’s 3

i o410 Le.,

L rule with tnmrpolatmg points x, _ . X,

; :
:f“:=}'x_|+-§(&h.‘+4ﬁ+ﬂﬂ-+.}+d“.. (44)

. .
whm:ll',,+1=—-ga DEw < f<x.

If 5 (x) does not vary strongly on [x, _ . X, + 1. then we approximate d, _ | by
the following formula,

150

h .
dki-l*"'ﬁG&-2-4fkql+ﬁﬂ-4ﬂ+|+ﬁ*1} coree (45)

Since, the formula (44) is an implicit formula, we use a predictor-corrector
scheme for practical computation. For the predictor formula, we intergrate the

d
differential equation *ﬁ = f(x, y) over [x; _4 X, ,] and find (k + 1) th estimate y, -

.1 of y(x, , ;) as follows :
Ve = Yooy + [10 y0dx 4 i (46)

Using 3-point open type Newton-Cotes quadrature formula with interpolating
points x, _,, X, _ .,/ X, we have,

4h

L T gy {Zf;-z"'ﬂ |"‘2ft]'+dh| . s (47)
wh : 14 5 15) :
gre, dy oo lSh (50, % soden s (48)

" Thus, we have the Milne’s predictor-corrector scheme,

.'J"hl--"'k 3+ {Ifk g =Seo1 + 2

..... (49)
and i, =t gffg- i+ A+ fx 0 P))
The error estimate is given by,
: 1 :
Fyy1 ¥ = el in yiu) . (50)

Example 5. Consider again the prﬂhlam of Examplﬂ 3. The estimates for x = 04,
0.5, 0-6, 0-7, 0-8 are found by Milne's method as follows!

A ¥
040 0187460
' 0-187461
050 0233957

0233957

151

0-60 7 0280229 |
0-280228
0-70 0-326238
0-326238
0-80 0371961
0371962

§ Analysis of Stahi}iéy :

Stability analysis is an important part in the study of the numerical methods to
solve differential equations. Most of the methods used to solve differential equation
are based on difference equation. To study the stability, the model differential and
difference equations are defined in the following. ;

Model differential problem

For convenience and feasibility of analytical treatment and without loss of
generality, stability analysis will be performed on the mode} Initial value differential
eguation ;]

Y'=ay 0=y, ' e (D)

where A is a constant and it may be a real or a complex number. The solution
of this problems is

y=ey, ' {83 |
In our treatment, let consider A=Ay +id;, where A, and A, represent .
respectively the real and imaginary part of 4 and A, 50

Model difference problem

Similar to the differential problem, let us consider the single first order linear
model initial value difference problem.

Ym0 n=00,9, o0 SRR (53)

where y, is given and o is, in general, a complex number. The solution of this
problem is

152

Ya=0"Y o (54)

It may be noted that the solution remains bounded only if lol<1

The connection between the exact solution and the difference solution is evident
if we evaluate the exact solution at £, = nh, for n = 0,1, ... where & > 0 and

Yo =€y =y, =0y, .. (55)

where o = gA*

T L

....................................

= Re(XN)
£

Stability region
of exact solution

Fig. 1. Suability region of exact solution

If the exact solution is bounded then |o|=le*"1<1. This is possible if
Re(Ah)= Agh <0,

That is, in the Re(Ah) = Im(Ah) plane, the region of stability of the exact solution
is that left half-plane as shown in Figure 1,

The single-step method is called absolutely stable if loi<!| and relatively
stable if | 1< e™. If A is pure imaginary and & | =1, then the absolute stability is
called the peroidic stability (P-stability).

153

Stability of Eunler's method
The solution scheme of (51) by Euler's method is

Yos1 = Yu + F XY = ¥t Ahy, = (1 + AR)y,. ... {56)
The solution of this difference equation is
y, =1+ Ah)" yy ="y, . (57

where o=1+Ah
The numerical method is stable if Ie:rl*-’-l
Now, the difi‘érant cases are discussed for different nature of A.

(i) Real A: I1+A&kl<l or -2<Ah<0.
(ii) Pure imaginary A: Let i =iw. w is real.
Then |1+ iwh|=+1+w?h® >1 That is, the method is not stable when 4 is

pure imaginary.
(iii) Complex A1: Let 21=2.+i4,- Then

Lol =11+ Ak =11+ Agh +idh) = (1 + Agh) + (3 1) S 1.

It means A4 lies inside the unit circle, -
That is, only a small pnmoq of the left half-plane is the region of stability for
the Buler's method, This region is mmd-: the circle (1+ A4, * +{/i‘,£..!:)2 =1, which is

shqwn in Flg_urc 2. Tmiah)

|

o /f/ / };F 5= ! lf:{.hh } .

Stahjlity
region

© Fig. 2. Stability region of Euler's method

154

For any value of Ak in the left half-plane and outside this circle, the numerical
solution blows-up while the exact solution decays. Thus the numerical method is
conditionally stable.

To get a stable numerical snlutmn the step size h must be reduced so that A
falls within the circle. If A is real and negative then the maximum step size for
stability is 0 £ h £ 2/]4). The circle is only tangent to the imaginary axis. If A is real
and the numerical solution is unstable, then |I + 44| > 1, which means that (1 + AA)
is negative with magnitude greater than 1. Since y, = (I + AhY'y,, the numerical
solutions exhibits oscillations with changes of sign at every step. This behavior of the
numerical solutions is a good indicator of instability.

The numerical stability does not imply accuracy. A method can be stable even
if it gives inaccurate result. From the stability point of view, our objective is to use
the maximum step size h to reach the final destination at x = x,. If / is large then
number of function evaluations is low and needs low computational cost. This may
not be the optimum h for acceptable accuracy, but, it is optimum for stability.

Stability of Runge-Kutts methods -

Let us consider the aacund-mder Runge-Kutta method for the model equation
¥ = Ay. Then,

kl = hf{xn‘ yn} = ’J"hyn
kz i h.‘f(xn + ht ¥4 + k}) e }-h(}rn + k'l) = -l?.-&(}'" * j.hyn}
= 2h(L+ ARy,

and

. Vsl =¥p t ""(kl"'kl) Y [‘“‘ {A:})n

P A2 '
=(!+ﬂ.h+ > }}'“ wee (38)

This expression confirms that the method is of second order accuracy. For stability
" |o] £ 1 where

i 242
_1+,m+4_2‘1. (59)

155

Now, the stability is discussed for different cases of A.

) 212
(i) Real A: l+ih+%;

(if) Pure imaginary 1: Let A=iw. Then lol= I+ Lw*h* > 1. That is, the
method is unstable, . :

£l or —2<4h<0.

Ll At
(iii) Complex 2: Let |+ A+

the polynomial for different values of £ Note that |o] = 1 fur all values of 6.

= ¢ and find the complex roots. Ak, of

The resulting stability rﬁgmn is shown in Figure 3.
When fourth-order Runge-Kut!a method is appl:e:d to the model equation y' = 1y

then, k, = Ahy,
o).
)

Ahi [: Ak 4+ -43&1]

i

k-z = ih(}'n +

k,
2
o —-iﬁ[:.' +£§-

ky = Ah(y, + k) = Ah[l +Ah+ 3 Akt & &l“h’)y,,

Im{Ak)

Second order f 2v2
K meathod i i

T
FiE
2
e

e
i T
HH

A T

e

Fourth order
RK method

=23

Fig. 3. Swbility region of Runge-Kutta methods

156

Therefore

I ;

g 1 P - T A
{l+¢lfi+i{ih] +§!-H.ﬁ} +E{ih}- }}m ; o {60)

which confirms the fourth-order accuracy of the method,

For different A, the stability of fourth-order Runge-Kutta method is discussed in
the following :

(i) Real i: 2785 Ah <0

(i) Pure imaginary 1: 0<idhl< 242,

(iti) Complex 1: In this case, the stability region is obtained by finding the
roots of the fourth-order polynomial complex coefficients :

o] LS T
1+£.&+E(Ah] +31{«L&} +E{Ah} =

The region of stability is shown in Figure 3. It shows a significant improvement
over the second-order Runge-Kutta scheme, In particular, it has a large stability
region on the imaginary axis,

§ Summar_y :

In this unit, the numerical methods 1o solve first order differential equations are
discussed. These methods are divided into two categories, viz.. single-step and multi
step methods. The Taylor's series approximation method and three single-step
methods—Euler's, modified Euler's and Runge-Kutta are discribed to solve first-
order ODE. Two multi-step ‘metheds—Adams-Bashforth-Moulton and Milne are
discussed here. The stability analysis of Euler's and Runge-Kutta methods are also
incorporated. -' :

157

EXERCISES

1. Determine the exact solution of the initial valué problem y' = g; + 1, 0)
land compute the approximate solutions in [0, 1}, 5
(i) by Euler's method with step size h = 0:1, '[)1}1
(1) by Tay!or series method with & = 0-1 and h = 0-05.
(iii) by Modified Euler’s method with h = 0-2, 01, 0.05.
- Verify the orders of convergences in each case.

2. Solve the following systems of differential equations of Runge-Kutta method.

dx Xy
) — = 12y - x* -
“ dt x+0:2°
AT -y, with iﬁitial conditions x(0) = | ~[D};{l-?5 and the ste
d x+03 | P ik
size h = 0-1 in the interval [0, 1.
von . Y |
= e e)

{n]xdx 5
£22 Dyw s = 0, with initial conditions,

dx: 2

wW0) =0, z0) = 1 and step size.h = 0-1 in the interval [0, 1].
3. Solve the following second order equations by Eunge-l{urta method.

(i) y"+1-2y"+ 2y =0 with initial conditions y(0) = 1, y(0) = 0 and step size
h = 0-1 in the interval [0, 1].
(i) y'.' =Xy + l—lT with initial conditions y(0) = 0, ¥'(0) = 1, and step size
+y°

A = 01 in the interval [0, 1].

4. Solve the following initial value problems by Adamas-Bashforth, Adams-
Moulton and Milne’s method and compare the results obtained. For starting values
use any suitable single step method.

158

(i) y = -.-.L.E. ~ By% y(0) = 0 in the interval [0, 1] with step size 4 =

4+ 4x
01, 0-2.
. gkl e
(i) y'= —="2, %0) =0, in [0, 1] with step size & = 0.1.
1+ x" +xy !

a y 0 asth]
LE t . ¥ =L, in [0, 1 ith g =

(i ¥= e S0 =k (0] w 4= zro0n
k=0,1,2 3, 4,5 and step size h = 0-1.

5. Find an explicit three-step method of maximal order, GoYy_ 2+, pHagyy,
* gy, = by Sy g+ b Sy + Byfy such thatag=a, = 0 and a, = 1, _

6. Consider the approximate method for an initial value problem y' = f(x, v,
Yixp) = yo :

Vaet =W -3 =B k21,
Determine its order,
7. Derive an implicit four-step method other than the described methods.

8. Prepare a report on stability analysis by consulting different reference books.

159

Unit 90 Two-Point Boundary Value Problems of
Ordinary Differential Equaions

§ Objectives

After going through this unit you will be able to learn about—

® Finite difference scheme
@ Solution of second order boundary value problem by finite difference method

Given a second order ordinary differential equation,
Flx, o pu s, - ; el
by a two-point boundary value problem we mean :

Find a function y = y(x) inside the interval [g, b], which satisfies the equation (1)
and the boundary conditions, -

@@ y(@) =0]
Gv(b), y'(b) = 0 i

If both the equations (1) and {2) are linear, we call such a problem as]mear
boundary value problem. Such a problem can be written as :

U T J T S L6 T 0 T TR (3)
_ with boundary conditions, | .
a[,.y{a] + ayla) = a]
Bovb) + fy'(by = B
where f(x), g(x), g(x) are known functions of x on the interval [a,], ag, @y, B
B, @, p are constants such that | &g [+] e, | # 0 and | By | +] 81| = 0.

~ When & = =0, the boundary conditions (4) are called uniform. Now to get the
- approximate solutions of the problem (3), (4), we consider the finite difference methods.

§ Finite Difference Methods :
Let x, = @, x, = b and x, = xg + ki, k = 1(1)n - 1, be a system of equally spaced

points with spacing i = E:—‘E. The points, x,, for k = 1 (1) n — 1 are called interior
f

160

mesh or grid points and if we deal with some points outside the interval [a. b], then
we call such points as exierior mesh poinis.

Now to solve the boundary value problem (3), (4) by the method of finite
differences, we replace every derivatives appearing in the equation (3) and in the
boundary conditions (4), by appropriate difference approximations. We usually prefer
central differences, because they lead to greater accuracy. Due to non-availability of
exterior mesh points, in boundary conditions, somerimes we approximate derivatives
by forward and backward differences. We shall first discuss such a method,

Consider the finite difference approxiamates of y" and y' in (3) by central
differences as follows :

= Yeas . =3 + ¥
i » 152y o B,

3 vk = 1(1)n = 1, ... (5)
where y; is the approxiamie value of y at x; j = O(1)n. Then by (3), we have the
following difference equation, :

Yirs 22X + iy
h!

+ flxp) fi-lf“-l + gy = alx),

k= Hn = L. (6)
Now multiplying both side of (6) by K? and writting f(x) = fi 80%) = g, and’
q(x) = g WE gel,

h
Yeoi—2¥ Ve t 2 {}'t+1‘ﬂk—llfk+hzgh}rt=hz‘?i't wk=1(n-1

| h
or, [IH%fk}J’k- paile ok kg)y, + (1.+lif“)]'k+ = qy, :
| k= 11 = F e)

For the boundary conditions (4), we use forward difference z%'t“— in place of

y'(xg) and backward differeﬁce fﬁ_h—y"*‘— in place of yx,). Then the corresponding

relations for (4) are as follows :

Ao + a!fl';}'l] 4 aand_ﬁ}yﬂ + B, .-.!r.*!:'}:.:f.ﬂ.-_l. =0,

161

or. = (agh — ay)yg + ey, = ah

sy Blev B, - ®
Therefore, (7) and (8) constitutes a system of n + 1 linear equations with i + |
unknowns ¥o, ¥, .., ¥, In matrix notation, we can write,
b 2o e N R U e O T (R Qe d (9)
where Y.= [yo, ¥1u o 2,07, B = [ah, gy, ..., WPq, _, B,
aid A = "aﬂhma, oy 0 e S
| U Tl 2 A R e R ¥ o
| 0 L UM e s B2 e s -5 £ ~2+}|!1||§ﬁ_|I l+§f.,..,
N 0 RS MY T e =1 Boh+ B,
B (10)

This system of linear equations can be solved by any suitable LU decomposition
method. The accuracy of the solution is of the order of k. To get the accuracy of the |

order h? everywhere, we must replace ¥ixg) and y'(x,) by central differences A%l ; :‘

and 200" Yn-1 where we also use the approximates at the exterior mesh points |

x,,and x, . respectively. One pnssxbie way to eliminate y_ | and y,, +1 15 to extend
syﬂtem of equations (7) to the cases k = 0 and & = n.

Now we shall describe a slight modijfied method to the earlier one, known as
“passage method”. In this method we replace the second boundary condition of (4)
by the central finite difference apporximate, Then the finite difference scheme for the
problem (3), (4) by the passage method is as follows :

Yol = 2 + Vicy + f, Vi1 = V-

Lw g = g ko= H(n — 1,

h? 3 k .Zh
Gp'p + & E‘E& = a
and By, + B “yﬂt’-z'—fﬂ = f. woee CEDY
The first n ~ 1 equations of (11) can be written in the form,
Yio 1t O + dy Yy o = W : B i

162

2"123*"4 o 2 - hf, thqt

. where ¢, = f ——=% and wh=1{lm=1
3 + hf, il 2+ hf; L 2+ hf, { }_
s LIR)
N : Y=Y
ow usmg ﬂn}"ﬂ + EI] h = 0
a,y, ~ah
or, }Iﬁ = i
-agh
we get for k=1 on (12),
}'l = LI(Ml = }rZ}!
where L, = 9 e and M, =y, +d,. L0
cila =~ agh)+oyd, a, - ayh
2h? ah
=20 pg —— | (14
2+ hf| @y =agh

Again, by (14) and putting k = 2 on (12) we get,
Ya= Ly (M, = ¥3)
, 1 _
where, [, = ——— and M, = - doLiM
ere, L et ar S) = Y- dlly M,
. 2h'q

2

= dy LM, v (LY

Proceeding as above we get a recursion relation,
Y=L M=y o k=12 yn=1 were (16)
where L,, M, is given by (14) and L*. M, for k = 2, .., n— 1 is given by the
following recursion relation,

- : = =d
L T My = w—ddy. My
2hiqk Tl
= gl Mol Es - Y e (17
2+ W, g1 My)

Then we find the values of ¥g, ¥j. «e Y, by the following two stages.

163

Stage 1. Find ¢}, d; and y, by the formula (13) for k = 1(1)n — 1. Then compute
L, M, by (14) and successively L;, M, k = 2(1)n — 1 by (17).

Stage 2. From second boundary condition, ie., from
ﬁﬁ'ﬂ + Mﬂ"’""" = B,

using the last equation of (16), i.e, y,_, =L, _ (M, _; - ,) and extending the
relation (16) for k = n, ie., y,= L, (M, -y, .) we get,

2ph - f(M, ~ L, \M,_))

: ' LB
2Bk + ﬂ,(L,,_ -—]

Yn T

i.e., we find y, using the numbers L, M., L, _,, M.

n-1* i \ /
Then we find y, fork =n~1,n -2, ..., 1 by the recurrence formula (16). Lastly
we find yg, by the relation :

ay —ah .
Yo = ——’ 4 ah which we have obtained from first boundary condition:

Example 1. Solve y"-xy'+ 23; = x + 1 with buundary conditions ¥(0-9) ~ 0-5y'(0-9)

=2 and y(1:2) = | by finite difference method with an accuracy 0-001 and step length
h =01,

Answer : We divide tl*_:r.t interval [-9, 1:2] with the step length A = 0:1. The mesh
points are x5 = 09, x; = 1.0, x; = 11, and x; = 1-2. Now using finite difference
scheme (7) we have, ;

[1{_21:‘}]?&" +(=2+2h%)y, +[l_%x*]h+| =(x, +Dh*, k=12, as here,

q& = .tk +.I., gk =2.D, fl‘ = --xk.k = 1,2.
Also, from buuﬁc!ary conditions (8) we ha_w:

(h+3)yg =5y, =2k,

164

Therefore, we have the following system of equations,

12y = 3 ; =4
2-1yq — 3:96y, + 19y, = 04
111y, = 396y, + 1-89y, = 42

. Iy = 1000

Solving we have, y, = 1-406, y; = 1287, y; = 1-149, y; = 1-000,
Find desired accuracy check the results with step length h = 0-05 and compare.

Example 2. Using passage method, find the solution of the equation y” + 2xy'
+ 2y = 4x correct to two decimal point, with boundary conditions ¥0) = 1 and »(-5)
= 1-279 and step length h = -1
Answer : He:re:ﬁ.r] =2x gx)=2 gx)=dx, =1, = ﬂ. a=1, ﬁg =1,
B, =0, f=1.279. :

‘By passage method we have the fnilnwmg table,

k Xp Cy dy s Ly M, Y

P @ ~1:960| 0980 | 0004 | -0510| -0976| 1089
5 | o2 | —1ear| o961 | 0008 | -0689| - 0470| 1:160
3 03 | -1992| 0942 | 0012 | -0786| -0293| 1214
¢ | o4 | -1904] 0923 | o015 |- o848 |-0197| 125
5| B | o : 1279

Hence, the values of y',. 5. Y3, ¥4 COITECt to two decimal point are y, = 1.09,
y; = 116, y; = 1:21 and y, = 1:25,

§ Summary :

In this unit, a ﬁmte difference scheme is device for second order ordinary
derivatives and this scheme is used to solve second order boundary value problem.

EXERCISES

I. Solve the following boundAry value problem correct to three decimal places
by a finite difference scheme.

H yrey=i (0) = 0, (1) = 1, for x = 0:0(0:1) 1.0.

165

(i) - %" + 3y’ = 4, ¥1)=3=y2), for h =01 and k = 0-2.
(i) y'=x'+ 1, ¥(0) = 15, y(1) = -5, for h = 0.1,
) 3= ay sy =1, WSy = 1, p(2) =2, for h=01.
V) Yy +2y+2y=e ¥(0) = 0, w(1) = 1, for h = 0-05 and o=t
2. Solve the following boundary value prublems by passage method wiih step
lengths i = +1 and h = -05.

(i) y'+x5inx.y"+y—1—;{ur y 0 =0,y)=1,

Giy ¥ +2x y'+(1-x}y=—i-1-,y(ﬂ)+ﬂt}}=l.y{i}=ﬂ.
24x

(iii) y"+xy'+cosaxry=x"+ 4x, y(0) =01,
y(1) = 1.0, for a = 1.1, 12, 13, 1-4 and 1.5,
(v) y'+e ™ y=x? +1, 5(0)=0,y(1) = 10.

166

Umt 10 O Elements of Finite Difference Method |
of Numerical Solution of Partial
 Differential Equations

{58 Objectives
After going through this unit you will be able to learn about—

Finite difference scheme for partial derivatives

Solution of Poisson equation by finite difference method
Solution of parabolic equation by finite difference method
Solution of parabolic equation by Crank-Nicolson method
Solution of hyperbolic equation

e @ @ ® ®

The subject matter of this unit is to find a function of two variables u(.x. ¥) in
~ agiven region G < R? that satisfies a second- order linear partial differential equation,

A+ 280+ Cioy v Di+ By e Fu= . &)

The given coefficients A, B, C, D, E, F, H, ean be piecewise continuous fun :tions
of x and y. The classification of this equation in the region G is made in the following
manner : :

Let us assume A2 + B2+ C% 2 0, then, (1) is called,
(a) elliptic, if AC—82>0forall (x,) €G,
(b) hyperbolic, if AC ~ B’< 0 forall (x. y) € G,
and (c) parabolic, if AC - B%=20 forall (x, y) € C.

Now, we further assume that the region G has a boundary [consists of three.
disjoint parts I, £3, [3 such that '= [} Y I, U [I'may admit all the three parts
or it may have lesser parts. Therefore, we may classify the boundary conditions on
(1) as follows : -

(i) u=¢g on [, (Dirichlet condition),

(i) %:— =A on [(Neumann condition),

167

- [iii) % + au = fon [(Cauchy condition),

where ¢, 4, @, fare given functions on the corresponding bnundar_v parts and -;;
denotes the partial derivative along the normal.

§ Poisson Equation on a Rectangular Region :

In this section we shall discuss numerical solution of an elliptic type equation,

viz., Poisson equation, by finite difference scheme. The canonical form uf a Poisson
‘equation in two dimension is,

2 2 :
g %;— = flx, y) ol A

where (x, y) € G, a given region in R, enclosed by a boundary [We seek the
solution of (2) inside . Let us restrict ourselves to the case of rectangular region.

let Ge((ny:a<x<bec<y<d) and
s !(x.y}:.r=a.f:Eyiﬂ;x:b.cs:.-sd;aﬂxﬁb,‘
: : y=casxsh y=d)
 Let u(x, y) satisfies the following boundary cnnditilcms,
wx y) =gy, x=a 'r:sys d, |
=y x=bcxysd
=glx),asxsh y=c
=h(), a$x<by=d
with gc) = gla), ¢d) = h(a), Wc) = gb), Wd) = hb)
i.e., satisfies Dirichlet type boundary conditions.

Now, for the finite difference scheme, we first divide the whole region G with
boundary " into rectangular nets of size hk square unit, where h is the step-length
in x-direction and k is the step-length in y-direction.

168

(a, d) : (b, d)

s -
_ —>
(@ o) AR (b, ©)
We want to find thc approximate values of u al grid points. Lei us first use some .
b-
notational convention, Let xi=a+ih h= na‘ =01, .. nand Y = ¢+ jk, k

S ap Jj=0 1, .. n We may consider different number of subintervals in x-

direction and.y-d:re,ctian. Let us denote the approximate value of u at (x;, y) by

5 ;
J. For the finite difference scheme, we then approximate u,, = g;‘: and u,, = —g by
the following discretization procedure,

Ujsy,) =2+ Wiy

Uy (X ¥ = B
| -2 +H. i)
U ;U

.Thercfure. mm‘:rtmg the above appmxlmates on equation (2), we have the following
difference equation for u,

Higy, j = 2U; j+U 5 i js — 2, j + U j-
h? S

=f[{r:'! »)
= f; (say), Vi j = 1(1)n - L. (5)
h? i it _ '
or, u"+1.jf"i-lij+‘_2‘u:‘.j+l+_2“"‘i-j—~i‘2 l+—mi—- uf.j=h1fﬁt
o X k
or, ui+|.j+.“|'—l.j+'lui.j+l""J“t,j.'t—z“+F‘1)H;_j=hafﬁ,

vi, j = 1(I)a = 1 where r = —E i A

169

And from boundary conditions we have,

uy ;= P = ¢ (say), Jj = 0(n,)
U = YY) = W f=0(n,
0= 8x) =8, i=0(1)n, : L o C1)
w; = hlx) = hy, 4= 0()n, | ;
with gy = go @ = g | Wo = & Yo =Pn

Equat jons (6) and (7) are called finite difference scheme for Poisson equation in
a rectangular region, which yields a system of linear cquations, that can be solved
using any suitable matrix method. The scheme for Laplace equation is the same, just
replace f(x, y) = 0 on (2). Therefore, the finite difference equation for Laplace
~ equation in the rectangular region is, '

T N e e T
i+ o i o v
Vi j=10n =1 .. ®)

The local discretization eror of the above five-point difference scheme is O(h%)
for r =1, i.e.. A = k. We should take care of the fact that the error of the approximate
solution obtained by the difference scheme occur due to the following three facts,

(i) due to the replacement of pa:ﬁal derivatives by finite differences,
(ii) approximating the boundary conditions, _ :
and (iii) solving the system of equﬁtians by any approximate method.
Therefore, error in the above scheme changes if the boundary conditions varies,

Example 1. Solve the Laplace’s equation,

3w d'u]
el oy S0 0sxs L 0syE]
oxt 6y2 %
with initial and boundary conditions,

ux, 0= 0 = u(l, y),

ux, O)= 30y, u(x, 1) =30(1 -3),0sx<1,05ys1,

¥

-

by finite difference scheme with spacing h = k=

= 1, h = —. Therefore n = 3.

L | —

Solution ¢ Here r =

170

The finite difference equation inside the domain is,
Uigp jtMoy gt ety =4, vij=1(1)2
Explicitly,
My \+ g | + Uy o+ iy o= 4u
My y+ iy iy g gy = du, |
Uy g+ Ug g+ My 3+ iy g = 4y
Hy 2+ My 3+ g .3 + Uy =iy 4
From initial and boundary conditions, we have,
i Uy 0= 0 F Uy | = Uy 9= Uy
uy =10, wy 5 = 20, uy 3 = 30,
y 3= 20, 4 3 =10, 43 3= 0.
Therefore, we have to solve a syﬁtem of linear equatibns.
4 =1 =1 Q) [y, 10
=F & 0 =1l 40
-4 0 4 e e
0 -1 -1 4)\m,) 10

. By Gaussian elimination scheme we obtain the solutions,

20 40
ul. 1 = ? “|1= ? -
H = —"'tn i --I 2_{?_

R et 3 ; 2.1 3 4

§ Parabolic Equation in One-Space Dimension :
Consider the parabolic partial differential equation,

Ou zalu X

— =¢'—5 + BRI, ekl

ot ¢ dx’ .g{x) ®)
inadomain D= {(x,):a<x<h 0<r< 'Ti with initial condition.

wlx,) =f(x),asx=b, - [.1(}}

171

and the boundary conditions,
wa, =@, ub.O=pn, 051 T W 5

Sometimes it is called as the heat conduction equation in a rectangle [= {(x.
H:a<x<h 0515 T} Itisamixed, ie. Cauchy type boundary value problem
where first order partial derivatives with respect to x may also be present at the
boundary conditions (11).

For the finite difference scheme the grid points on [are given by :

: b~a .
x;=a+ih h=—i=0,1..m
i

! T I A .
and 1 = jk. k= --—, - 15 B T : e AL

So that xo = @, X, = b, T'= nk.

Again we denote the approximate of u(x;,) by u; ;. Then the pmblem is to find
u;,; in the grid points. In the domain D, we replace the partial den\.ratwe with respect
to ¢ by the forward difference,

W=
it 1) m L - 4 (D)

and the second derivative, with respect to x by the second difference,

Biat, = 2\”:_:"'"; L)

UpXp 1) i o (14)
(13) and (14) yields the following difference equation for (9),
S P . Mgy i =20 ;+Ui-1 #
e e (15)

- where g; = g(x; 1), i = 1,2, w,.m-=lL j=1, 2; n-1

Rewriting the above expression we have,

. H‘-rj,,

: k
1=r'u;_u+(l—_Zr}uitf+rul-+llj+kgﬁ Wherﬂ!3=? t;’z,
vi=l{lm=-1,j= l(l)_;t .
The initial condition (10) yields, .
weo=fi=) i =01, ym _ B
and the boundary conditions (11) yields,

172

wg, ;= @) = ¢, S ;
Uy = U’{!j} = w o o 3 et T GEBER QSR ot L TR B (18)
Since, the initial values of wu, ; are known for i = 0, 1, ..., m, therefore, the
formulae (16) and (18) allow us to compute the approximations, Hogepi=12, ..,
m, for fixed index j from the values u; j in an explicit manner. Therefore, it is
possible to find successively the approximate solutions with increasing j. This finite
difference scheme applied to the parabolic differential equation is known as
Richardson’s explicit method. Pictorially we have the following explicit diagram.

B4 = (j + 1)-th level
-k
5= h :
Hi_yg Wi Uiy, — j-th level

For ¢ = |, expanding with respect to the solution we obtam the local discretization
error from {Iﬁ] as follows,

dijv1 = _1' i (x, 1) = 11_2 KhPtd o (5) + e

=0 (k) + 0 (kn?) vt 49

The global discretization error of this method is of the order, 0 (k) + 0 (#) ie.,

loses a factor k in comparison to the local error d; |, ;. To study the absolute stability,
we rewrite the system (16) in matrix notation, :

- -, i ; _
M = Aupt by, j=10, 1,2 wens (20)
where, ;:} = [y gty p v s ¥ 117 (T stands for matrix transpose)

b, = @ column matrix formed by the elements gu and the constants
appearing from (17) and (18), i.e., known constants = [by, by, e by (17 (s2y),

i e T S N | SR 0)
I [S we, 0
o R SRR e (21)
05 B e M=
o e el r 1-2r)

173

The matrix A is tridiagonal and depﬂnds only on r. The absolute stability holds
if and only if the eigen values of the matrix A have moduli smaller than one, For
¢ = 1, we find e ¢condition of the absolute stability as,

Jb—

t or k € —h*
2

rE

o]

" Example 2. Using the above method to the problem,

bl !
ou =.§Ji‘.,n-“<1,r:al}.
ar - gx J

ulx, 0) =x%'-% 05 x<1,
w0, N =0,u(l,n=1120,

We find the following table for u; ; with h = 0-1 and & = 0-002. Note that here
gl N =0,¢c=1, () = %" ¢y =0, y)= 1. ' - '

Table for "

«/y | 0000 0002 0004 0006 0008 0010

00 | 00000 (00000 00000 00000 00000 0.0000
01 00246 00326 00385 00431 00470 00503
02 | 0080 00946 04002 ' 01055 01104 0.1149
03 01812 01849 0-1886 0.1923 01961 0.1998
04 02015 02936 02957 02979 03002 03025
05 04122 04130 04139 04149 04159 04170
0:6 0.5371. 05370 05369 05369 05369 0:5370
0.7 06614 06606 06398 = 06591 06584 0-6578
08 | 07817 07803 07790 07778 07767 07757
09 | 08952 08935 08921 08911 08902 (0-8895
10 | 10000 10000 10000 10000 1.0000 10000

174

§ Parabolic Equations : Implicit Method.
Crank-Nicolson Method,

In this finite difference scheme we again replace the partial derivative i, of (9)
by the forward difference, -

My i — W ¢
G 1) e ==) S (22)

but the partial derivative u,, replaced by a six-point difference formula,
]
e (X5 [) = “zﬁz_[ﬂxﬂ,n 1 W ey, LJ

. "I 2-”"_ j "l"' H‘: =].‘j].nn {23}
1., uy, is approximated at the mid-point M of the pictorial representation,

Tl bl G, j+ 1) (i+1,4+1)
= (j + 1)-th level
* M
) = — j-th level
G-1,)) ()] G+ L7

The relations (22) and (23) after substituting on (9) yields the following difference
equation,

Wijar — Wy l '
¥l Tl R
i e [“hl,jf]'z”:'.jfi L T Y T &ir

Vi 21,2 com=1j=1,2 0 n=1,.. 024
Rewritting (24) we have, |
=Ty e @I =l
=mh;.j+{2-2r}u;lj +ru“,1j+2kgu1,
=12, .om=1j=1,2 ..n-1...1(25)

In this cqu&tinn, the 'L.H.5. contains three unknown pivotal values of u at
(J + 1)-th level, whereas R.H.S. contains values of u at j-th level which are supposed
to be known. Now at each j-th level, j = 0, 1, ..., n, we have a total of (m + 1) grid

175

points of which m — 1 are internal grid points. Now if we start with j = 0, all the
elements of R.H.S. are known by initial and boundary conditions (17) and (18). And
then we have a system of (m — 1) linear equations with (m - 1) unknowns,

Wy gr By pp g 1

In matrix notation, we have,

- P A b G
A‘I H}_‘_! = Al Hj"t‘ﬂ Whﬂfﬁ. uj =[u11j.""uﬂ!"h j]

oot g TR | S L S S
- 242r -r 0
AI"-]
0 5 -r 2%2r ~-r
a2 SN AT 1 0 ~-r 242r
IR R 0)
P 2-2r r 0
Agml b i S ey .« (26)
: 0 Z e G o 2= r
¢ 0 R LB 250

and B'is a column marix formed by the elements g;; and the constants appeating due
to initial and boundary conditions (17) and (18), i.e., all are known constants, say,
Ibll, *2_. - brm.u t]T - v

Since at each step we have to solve this system of equations, therefore the Crank-
Nicolson method is implicit. The coefficient matrix found is tridiagonal. The matrix
A, is diagonally dominant since r > 0 and hence nonsingular. It is then easy to
caici._ulatc that all eigen values have moduli smaller than one. Hence the Crank-
Nicolson scheme is absolutely stable as r is not subject to any restrictions concering
stability. The local discretization error d; ; , , of this method is of the order
0(k%) + O(kh?) and the global discretization error is of the order O(k%) + O(A%).

176

Example 3. Consider the initial 'bqudary value problem,
Q<x<l,t>0,
ulx, 0) =0 0<xsl,

u(0,) = sin{m), ull,p=0,120.

By using implicit Crank-Nicolson method with & = 01, k = 0-1, r = 10. we have
the following table for u;.

i, = U..

L Uy, i Uy, j g, i Wy Uy, j Uy,
0| o0 0 R 0 N 0
01{ 1 | 0309 01983 01274 00818 00527 00073
02| 2 | 05878 04641 03540 02637 01934 0:0459
03| 3 | 08090 06632 05436 04422 0-3565 © 0-1344
04 | 4 | 09511 08246 07040 05975 0:5064 02594
05| 5 | 10000 08969 08022 07132 ' 06320 .. 0-3946
10 | 10 0 01498 02701 03672 04440 ... " 06179
§ 'Hyperbo.lic Equation in One-Space Dimension :
Curlsider the hypetbiolic partial diffetentinl equiion,
w2 O ' e 2D
o o - Y

in a domain D = {(x, D : 0 <x <a 0 <t < T} with initial conditions, _
W (x, 0) = fx), u, (x,0) = g(x), 0 xS a s (28)

177

and the boundary conditions,
w0 =gy e el Uslsy o L Sl N (29)

This is actually known as wave equation in a region D = ((x,)1 0<x<q D
<t < T). It is also a mixed boundary value problem, i.e., Cauchy type.

For the finite difference scheme, the grid points on D are given by :

xp=ih h=o 020,10, m
T | o (30)
f'i “:jkik 5“;1'|.f=ﬂ|| l!""ln:
so that xy = 0, x,, = a, T = nk.
Now to find the approximates &, ; in the grid points, we replace both the partial
derivatives 1y, U, by the central difference formulae,
u; j+ll- AT T
P

Hu{xf'fj) +

L]

...... (31)
—2u; huy
M (X505) e ‘;L’ i 5
: k
Substituing (31) on (27) we have the following difference equation,
uh f*‘l = 21‘;.1 + Hl‘;_f'l 2 le & I'.l[. 1"1‘-"_{4" u'r "I-J'
e ;
k? o
of, Mg =@-20N Ut W e) e (32)

kl . i .
where a*s—h—z-. fori=1,2 wym=1j=1 2 un-1

The system (32) is known stable for & < | with ¢ = 1.'To find an approximate
‘at the (j + 1)-th level, we require values at earlier two levels. Pictorially, we may
represent i,

| Gj+ D -5 (j + 1)-th leve]
(- Lp I (f, j) U+l ~» j-th level
th) 5 (j = 1)-th level.

The local discretization error d, ;, | is of the order 0 (k) + 0 (h?).
178

The initial and boundary conditions (28), (29), except the second initial conditiion
yields, '

M= f[x.i} = f:tl I{}u L., «
”ﬂ.j = [nij-‘ J =ﬂ, I, AR Ay o [N s) L S B P e L e N A A {33]

Uy =¥ J=0Lin

Now, depending upon the finite difference approximate to the second initial
condition, we have three different methods to solve the system (32},

First Method. The second initial condition is replaced by the following difference
scheme,

My = U = k-g (x;) = kg,
Then by (33), w, =fi+ kg i=L .m-1 . (34)
The ervor estimate for the values of &, is of the order O(h).

Second Method. We replace the second initial condition-with the central difference
formula, i.e., by,

L e

Al = g i=0,1,. - i (35)

where we require the values of u at j = -1 level. Now, considering the {!lffcrencc
equation is also va]:d at the level j = 0, we have,

g = (2= 20"y pre (4 41,0 t¥p10) = Wi
Rewritting the al}uve relation, using the first equalmn of (33); we have,

o =Q=2aVraM v f) -y (36)
Replacing it on (35) we have,, '

iy a:%{lkg“ +@-200)f v @3 o o)) fori=1, .,m~ L,
rerss LAWY

The error estimate for the values u,, is of the order O(k?).

Third Method, Here we assume that the functiion f{x) has finite second order
derivative, then we find the values of u;, by the Taylor's formula,

179

kz
uj‘t = u[rn' + k“l (J:J'i ﬂ} + Tu" {.I‘.,ﬂ]

Using equation (27) and the initial conditions (28), we have,
u".u = f}'l "; [-xl"r D} = gif u"(x'jt {]} = C‘zunl:.t;. ﬂ}= fzf; "|

Substituting (39) on (38) we have,

‘.'2
= Ji + kg, +‘2"+fz.ﬁ"
Now replacing f." by finite difference approximate,

f!+|_2ﬂ+.ﬂ-!
B

=

;4 = f; +i:gln+£;-(_ﬂ-+| -2f +ff-!)' fori=1,....m-1,

v we have,

The error estimate for the values u;, is of the order O(k>).
Example 4. Consider the following problem,

a‘u_4a=u

et

u(x,0)=(x" + Dsinrx,0Sx< 1, _
i (x, 0)=0

(0. N=0u(l,)=0,r20

Dex<l, >0,

werse (38)

e (39)

... (40)

We obtain the finite difference approximates u, ; with h = 0.1 and ¢ = -05 as

follows : .
X/ 0-00 005 0-10 015 . 020 025
00 0 o 0 0 0 0
01 01801 01752 01619 01434 01232 0.1039
02 03213 -~ 03167 03029 02802 02498 02143
03 04257 04213 04083 03864 03556 03160
04 0-4954 04911 04783 - 04569 04263 0-3860

180

0-5 05312 0-5268 0-5135 04909 04584 04153

5 ol [R el e e S e S R
5 U (R PRt e R R S e SR e P R e e
1 gl PRI SN S L A R bl W e L CL T A ME T S

5 R W R S s et S snsiiiniy
1-0 0 0 0 0 0 0

§ Summary :

In this unit, the second order partial derivatives are discretized by finite dlfference
method. Three standard partial differential equations—parabolic, hyperbolic and elliptic
are solved by finite difference method.

~ EXERCISES
1. Solve the following Laplace’s equations by finite difference method.

u 0%
: prit =t —_{] O=x, vsl,
® art 9y’ 4

u(0, y) =cos (zy), u(l, y) = e” cos(ry),

3 1
u(x, 0)=e ™, u(x, 1) =™, with step size h=k= T

: . u Bu
1 — —--{} Osxysl
(ii) axz ay-z Y
w(0, y) =y, u(l, y) = cos fiz,
XE . 4 1
u(x, 0) = 0, ulx, 1) = cos _—j—.wnh step size h = k = i

2. Solve the following Poisson's equation by finite difference method.
U, v, ==, 085x ys 1,

¥ n = 'l.'l' ¥
i & (1.}

181

Ou
u(x, 1) = 0, Z GN+20,y) =1,

with step size h=k = 1.
3. Solve the fnllnwmg parabolic equations by explicit finite dlfference scheme.
(i) m=u .+ 1L, 0<x<1, >0
wlx, =0, 0=x=1,

u, (0, 1) — -;-u(ﬂ. D=0, u(l,) +02u(l,t) =0, fort 20,
with step size h = 0:1 and h = 0.05
{it) w=u,0<x<1,0<t <002,

ulx, 0) = (2 + sinnx, 05 x< 1,

tg(ﬂ, =0, u(l,t=e!sin %I 0<t<002,

with step size h = 01,

4. Solve along with the exercises of 3, the following pambellc equatmn hy
implicit Crank-Nicolson scheme.

w=u, +2x+t,0<xx >0
u(x.0) = 2x? sin (nx), 0 S x 5 1,
- w(0,)) = 0 =u(l,g), 1 2 0, with step size k = 0-002 and h = 0:1.
5. Solve the following hyperbolic equations by finite difference method.
u ﬁz

i O0<x<lt>0,
® _ar’ ax?

u(x,0)=2x(1=x)sinwx, 4, (x,0=0,0<xs1,

0,0 =u(l,n)=0,r 20, with step size h = k = (-1,

2
(ii) E—;‘“é+x+tﬂ{xﬂlr>ﬂ
at oaxt

with spacing £ = k = 0.1 and initial boundary conditons,
wix0) = (G2 + 1) sinmx, 4,(x0) =055, 05 x< 1, w0,) =u(l, 1) =0,

182

9,

10.
11.

" REFERENCES

F. B. Hildebrand, Introduction to Numerical Analysis, Tata Mc-Graw Hill Publ,,
Co.. 1982, NY. :

D. M. Young and R. T. Gregory. A survey of Numerical Mathemancs. Duvcr
Publ., Inc., New York, 1973,

S. D. Conte and C. de Boor, Elementary Numerical Analysis, Mc Graw-Hill
Inc., 1981. '

A. Gupta and S. C, Bcse. Introduction to Numerical Ana]}rm Academic Publ,,
1989.

C. E. Froberg, Introduction to Numerical Analysis, Addison-Wesley Publ. Co,,
Reading, 1979.

K. E. Atkinson, An introduction to Numerical Analysis, John Wi]ey and Sons,
New York, 1989,

A Ralston and P. Rabinowitz, A First Course in Numerical Analws, Me.
Graw-Hill, New York, 1978,

J. H. Mathews, Numerical Methods for Mathematics, Science am:l Engineering,
Prentice-Hall India, 2001.

M. J. Maron, Numerical Analysis, Macmillan Publ. Co., Inc., New York, 1982,
H. R. Schwarz, Numerical Analysis, John Wiley and Sons, 1989.

1. Stoer and R. Bulirsch, Introduction to Numerical Analysis, Springer-Verlag,
New York, 1993. ' : '

183

I 4
1 ' =¥‘.'- 1
c : = / oty I
. | . Pt it o]
e) e L " = g ’
w .II. i gt "
ey o 1 |
- A .
= ' e .]
i s B - i - o - k =z
T RS
J o } i - {4 AL ! iy |
. ; | - Al a U e =1
4 i ¥ DR e
* T
o . . - Moo o |
i i W -

LS
¥ ;‘:‘, i
e (s
i o
B e S J
& s th
W T $eY.
R T AR R A s
: < i Tkl e
2 : 5 sl s 7
o LI

UNIT 1 O ALGORITHMS AND
FLOWCHARTS

1.1 Algorithms

The cehtral concept in Computer Science is algorithm, The word ‘algorithm’
originates from the Persian word ‘algorism'. The meaning of algorithm is "any
special method of solving a certain kind- of problem’.

An algorithm is a finite sequence of steps/instructions to "-I»(ﬂ.\ ¢ a pmh'mm
The possible steps are :

(a) Input,
{b) Computation and decision

(i) assignment. (1i) decision, and (i) iteration or repetition
(¢) Output

1.2 Objectives

After going through this unit will be able to learn ahout:
(i) What is algorithm?
(i) How one can design an algorithm?
(iil) Analysis of algorithm
(iv) What is flowchart?
{v) Symbols tised to draw a flowchart

1.3 Definition and Examples of Algurithmé

An algorithm should follow the following eriteria:

(i) Input : An algorithm has precise inputs which are exterually supplicd.
(i) Definiteness : Each step nust be clear, complete and unmnbiguons.
(iii) Finiteness: An algorithm should terminate after a finite number of steps.
(iv) Effectivencss : All the steps specified in an algorithm should be executed

in a finite amount of time. ' :

(v) Gmem!ny An slgorithm should be designed in such & way that it can
solve any problem of a particular type for which it is designed.

(vi) Qutput : It has at least one output.

185

An algorithm can be described in many ways. A natural language such as
English may be used to design an slgorithm. but we must be careful that it is
concise and satisfies all the conditions-of the properties of algorithm and this
code is known as pseudo code. There sre no definite rules for describing
algorithm but the main objective iy that it should be easily understandable and
the logic put in it should he able to solve the pmbIem The algorithm is
independent of any programming langnage.

It the following we have considered two simple probleéms and deslgned 'E.h&lf
algorithms,
Example 1.3.1 Write an algorithm to find the area of a triangle whose three sides
a, b, ¢ are given.

Step 1: Read the sides as a. b, ¢

Step 2: Compute s = (a + b + ¢)/2.

Step 3: Compute ares = Js{s—a}[s-b‘.l(.f—)
Step 4: Print area.
. Step 5: Stop.

Example 1.3.2 Write an algorithm to find the maximum among three numnbers
a, b, ¢

Step 1: Read the. numbers as a, b, ¢
Step 2: Set Big =
Step 3: If Big < b then set Big = b.
Step 4: If Big < c¢ then set Big = ¢

~ Step 5: Print the maximum number Big.
Step 6: Stop.

‘1.4 Flowchart

The pictorial representation of an algorithm is called a flowchart. In a
flowchart each processing step is placed in a box and arrows are uged to indicate
the next step. Boxes of different shapes are used to indicate different operations.

There are many symbols used in drawing & flowchart, but many of them are
not useful. Here we illustrate some of them, which arve sufficient to draw the
flowchart of any algorithm.

186

1. Start/Stop box : This is flat-oval or elliptic in shape and is used to indicate
the beginning or end of an algorithm. One of the following words BEGIN,
START, STOP, EXIT, END, RETURN, etc., is written within the box.

@E_G@ @ﬁﬂ‘) (stor) (ExiT) (EnD) (RETURN) |

Figure 1.1: Start/Stop box

+ 2. Input / Output box : Usually a parallelogram is used to indicate the input
or output of an algorithm,

Sl LR

* Figure 1.2: Input/Qutput box

3. Assignment / Computation box : Generally a rectangle is used to indicate
the assignment of a new value or the value or result of some previous computation.

Beta=4 o] [z—y| |s=y+2

Figure 1.3: Assignment box

4. Flow indicator : The arrow is used to indicate the flow/order in which the
steps of the algorithm are to proceed.

LF

- Figure 1.4: Assignment / Flow indicator symbol

5. Decision box : A diamond shaped box is used to indicate a decision
~ position. A logical expression is written within the diamond box. Depending on
its value the direction of the flow is considered and is indicated by an arrow.

No

Figure 1.5: Decision box

187

6. Loop representatien box : The hexugmml box is used to indicate the

beginning of a loop.

Figure 1.6: Loop representation box

7. Connectlon box : The circle is used as a connection box., When it is
inconvenient or impossible to draw a flow chart within a single page, e.g., when
a flow chart is so large that it requires more than one page to be drawn, then
this symbol is used. The numbers are written within the eircles which corresponds
the continuation of flow,

00-6 077
Figure 1.7: Counection hox

8. Sub-procedure box : A sub-procedure is represented in a flowchart by a
double lined rectangle. The name of sub-procedure iy written within the box and
the details of this sub-procedure are specified else where.

3
- MATADD
1

Figure 1.8: Sub-procedure box

9. Apnotation box : It Is used to add comment in a fllowchart. It is symbolised
by an open-sided rectangle and is connected to the flow chart by a dotted line.

Jeomputing
ares

Figure 1.9: Annotation box
Example 1.4.1 Write an algorithm and draw a flowchart to find the values of

j,-=«.,,‘] +x2 for 2 = 0 to 2 step .2.

188

Algorithm :
Step 1: Set o = 0,

Step 2: Compute y = f] 4,2

Step 3: Print . :
Step 4: Add 2 with z (i.e, 2 = r + 0.2). -
Step 5: If = < 2 then goto Step 2.

Step 6: Stop.

Figure 1.10 : Computation of a function
While writing an algorithm the following two important points are to be noted
carcfully. - :

(i) The time required by the alsorithin (time complexity) should be as
mininwum as possible ' ,

(ii) The total space required by the algorithm (space complexity) should also
be as minimum as possible. _ g

An algorithm is said to be efficient if it. takes lesy time and space.

In the following, two algorithms MAXA and MAXB are designed for the
same problem, viz., to find the maximum among n numbers and the better onis
is noted, _ ;

Algorithia MAXA :

Step 1: Read n (number of elements) and z,, &, x, (the clements),

Step 2: Set muz = 3,

Step 3: for 1 = 2 to n do ;

If max < u; then mar = z, endif;
endfor;

Step 4: Print mar

Step b: Stop.

Algorithm MAXB

Step 1t Read n {(number of clements).

Step 2; Read z :

Step 3: Set maz =

18y

‘ Step 4: for 1 = 2 to n do
I

read T :
if mar < z then mar = z endif:
endfor;
Step 5 : Print maz
Step 6 : Stop. :
The variables used in algorithm MAXA are n, m, @, . . . , an, mag, i, i.e.,

the total number of variables is n + 3 and the variables used in algorithm
MAXB are n, 7, mag, 4, i.e, only four variables. Thus algorithm MAXB is
better than the algorithm MAXA in respect of spare complexity.

1.5 Worked out Examples

 Example 1.5.1 Write an algorithm to read three lengths a, b, ¢ and check whether

o, b, ¢ forms a triangle. If they forms a triangle then check whether it is
(i) equilateral trinngle, (ii) isosceles triangle, (iii) right angled triangle,
(iv) scalene triangle. ' '

 Algorithm Triangle-test,
Step 1: Read a, b, ¢
Step 2: Arrange ¢, b, ¢ such that a > b > ¢ as
(i} if @ < b then swap(a, b)
(it) if @ < ¢ then swap(a, ¢)
(iif) if b < ¢ then swap(b, c).
/* swap(a, b) interchanges the values between a and b */
Step 3: If b 4 ¢ > a then
(i) Print 'the sides a, b, ¢ forms a triangle’
else -
(i) Print 'the sides a, b, ¢ does not form & triangle’
(i1) Stop
endif;
Step 4: If e = b = ¢ then)
(i) Print 'the triangle is equilateral’
(i) Stop
endif;
Step S: aw band b= ¢ and ¢ # ¢ then
(i) Print 'the triangle is scalene’
endif; :
Step6: If a= bor b= cor ¢ = athen
(1) Print 'the triangle is isosceles’
endif;

190

Step T: If of = & + ¢ then _
(i) Print 'the triangle is right angled’
(il) Stop
endif;
Step 8: End.
Note : Comments or heading may be put within / * */ in an algorithm.

Example 1.5.2 The Fibonacel sequence is defined as follows

The first and second tefms of the sequence are 0 and 1. The third and
subsequent terms of the sequence is the sum of the two terms just preceding
ityde, tg=0,4 =1, ¢ =t +1t, n22 Write an algorithm and draw a
flowchart to obtain all numbers in the Fibonacci sequence less than a fixed
number, say 300. :

Algorithm Fibonaccl.
Step 1: Set FO =.0 and F1 = 1.
Step 2: Compute F2 =.F0 + FI.
step 3:'If F2 < 300 then
(i) Print F2.
(ii) Set FO = Fl, F1 = F2.
(ili) Goto Step 2,

Endif;
Step 4: End. (ST AHT)-
FO«0
Fle-1
F2+F0+F1

F2<300 7 >
s {EDD;’_,.-
/ vrintF2 S
FOo—F1 .
Fle=F2

Figure 1.11 2]:::__.._..

191

Example 1.5.3 Write an algorithin and draw a flowchart to convert a decimal
number (integer and fraction) to its binaiy equivalent.

The followitg slgorithmm convert a decimal number whose intéger part is m
and fraction part is n to its binary equivalent. Step 2 to Step 6 converts m to
its binary equivalent while Step 7 to Step 10 converts # to its binary equivalent,

Algorithm B2D-
Step 1. Read integer part us m and fraction part as n.
Step 2: Set i = 1.
Step 3: Dw:de m by 2. Let q and r be the quotient and remainder,
e.. g = integer purt of (m/2) and r = m - g x 2.
Step 4: Set hi= R and i = { + 1, (b is the least significant digit)
Step 5: If ¢ = 0 then - :
: goto Step 6
else)
(i) Set m = q
(i) goto Step 3
endif;
Step G: Set [= 4 (! is the total numbctr of bits in the integer pa.t)
Step 7: Set i =1
Step 8: Multiply n by 2. Let I, r be the integer and
[raction parts of this product, ie.,
I = integer patt of (n x 2) and r=n x'2 - I
Step 9: Set f = T, i=i+ L
Step 10: If r = 0 then

goto Step 11
else :
(i) Set n = r
(ii) goto Step 8
endif;
Step 11:. Print b, i = [,] - 1 . 1 and j}, T B B ok
(the binary Equwalent is L-b“ B A S
Step 12: End. -

Example 1.5.4 Write an algorithm and draw a flowchart to rend a set of n
integers and calculate the sum of odd integers and even integers separately.
Algorithm _

Step 1: Read n and the numbers m, #=1, 2, n.

Step 2: Set osum = 0 and esumn = {]

192

Stépﬁ: For' i1 =1 ton do

i (ind(m/2) * 2 = m) then // int(m,/2) gives the integer
esum = esurm + 1, [/part when m, is divided by 2
elso

osumn = osum + m,
endif;
~ endfor;
Step 4: Print sum of odd integers osum and sum of even integers esum.

Step 5 End.
START

Rnﬂdln,mi
i=12....n

Set osum «— 0: esum «— 0

<fﬂr'f=ltnn >----~..h_

I

i

{

i

e is No I

ind(m;/2) * 2=m, : i

“""'-‘._'.-""'.. |

ESUIMe= ' : . ek
/ osume—osuvm+m; |
esum+my /- - o, |
s } :

{

i A L bt

Figure 1.12

193

Example 1.5.5 Write an algorithm and draw a flowchart to find the value of nCr.

We know : ' .
T {t! = nin—D(n-—-2)..(n=r—1}n-r)!
ri(n-r)! rin-n)!
_aln=D.{n-r-1) : ;
r(r=1)..2.1 _
e
Algorithm NGR
Step 1: Read n, n ' r-<fﬂrit=ﬂ.r-1>
‘Step 2: Set p = 1 (initial value 2
of NCR) | | pepxi=h
Step 3 Fork=0tor-1do - :
p=»x () e
endfor; / Print p_ /
Step 4: Print p. : :
Step 5: End.
Figure 1.13:

Example 1.5.8 Write an algorithm and draw a flowchart' to compute

2__ o
Vi “i;‘;"‘M for k=1,2, .., 10
e SOE -

Algorithm Sum-Finite-Series
For k = 1 to 10 do
(i) Set g, = 0 :
(ii) For # = 0 to k do

2
Compute y, =y, + E_%}.;_iﬁ
endfor;
(iil) Print y;, &
endfor;

End.
194

for k=1 to 10

-

< forz= [}tok_>—

4
_ﬂ!!=t§ |

Yie = Yk + £+8 i I
|

|

4

|

I

I

|

|

|

I

|

: :
| Benins,
L

1]
I

r

| ;

/ Prmt Yk ke /

3

Figure 1.14:

Example 1.5.7 Write an algorithm and dvaw 4. flowchart to find the sum of the
following_ series (zero-th order Bessel function):
: ' 4 6
b X X" X
e TR P TE TR TR TR
To calculate the sum of an infinite series, calculate a term for a ghren z and
check whether it is less than a specified small number & (called the erfor
tolerance). If the value of the term is not small then add it with the sum and
calculate next term. Repeat this process until the term is smaller than &
The nth and (n+ 1)th terma_uf the series are respectively

n . 2n+d

¢ o n X _{ }I'H-I X

» =l 22" pigt na 222 (e L Y + 1))

F 2 : 2

!'l'i_"L= - X I =q.---.:-.:'__..._t =

t, 4{!’1-!-'1.}2 or fnsl 4(H+1}1 n,nzlandf;=1
2

» the previous term.

- That is, the next term —.*' a0+ D

195

Algorithm JOX
Step I: Read z and error tolerance & b

Step 2: Set ferm = 1, sum = 1 and n = 0 (the initial term and sum).
. 2 :
Step 3 : Compute termn =-

- = X term.
4(n+1)
Step 4: If {term| < & then goto Step 7.
Step 5: Compute (i) sum = sum + term;
(i) n=n+ L
Step 6: Goto Step 3. '
Step 7: Print sum and =
Step 8: End.

/Rﬁac; TE S

term w—n E,_sﬁm —]

t

term +— X term

7 n-l-'l

Yés

sum — sum -+ term int

i e it s 47/

I i
Flgure 1.15:

Example 1.5.8 Write an algorithm and draw a flowchart to find the roots of a
quadratic equation.
Let az? -+ bz + ¢ = 0 be the quadratic equation, where 4 # 0. The roots of this

equation are
L £ b ~dac _ ~b , Jb* ~dac

2a 2a 2a
-b -.,_fldl
Let n:i = - doc and p = e and g =--2-'—-.
a

If d > 0 then the roots are p + ¢ and p - ¢, if d = 0 then the roots are p,
p and if d < 0 then the roots are p + iq and p - 4

Algorithm Quadratic
Step 1: Read the coefficients as a, b, e

196

Step 2: Calculate d = B - 4ac.

Step 3: Calculate p = ~ b/(2a) and ¢ = fid1/(2a) -
Step 4: If d > 0 then

Print 'the roats are real and distinct and they are', p 4 ¢, p - ¢,
elseif d = 0 then

Print 'the roots are real and equal and they are’, p, p.
else

Print 'the roots are imaginary and they are’, p + ig, p - fg.
endif;
Step 5 End.
START

/ Reada,be /

d = h* = dac
p - —b/(2a),q — +/Idi/(2a).

d=0

: rint ‘roots are Print 'roots are real
imaginary' p &g and distinet’ p£ ¢

Print ‘roota are ot
real and equal’ p, p
N

(Eud)

Figure 1.16:

Example 1.5.9 Write a program to arrange n numbers in ascending order.

Solution, Sorting of numbers is a very important problem in Computer Science.
Different sorting techniques are available. Here we present straight selection sort

algorithm and the program to do it. The idea of this sorting technique is very -

simple. In the first step, the first element is compared with the remaining
elements and the minimum element is placed in the first position. In the second
. step, the second element is compared with the remaining elements, except the
first one, and the minimum one is placed in the second position. This process
is continued until the last but one element is compared with the last element.
The algorithm is given below.

197

Algorithm SSORT
/* sorting the array a of size 7 in non-decressing order g |
Read m, 0,i=1,2 .. n
fori=1ton-1do
forjz i+.1tondo
if (a, > aJ) then /* interchange 4, and a; */

t = a;
e a’ ;
endif; 4
~ endfor;
endfor;
Print o, i=1,9 .. ,
end SSORT
Sta:t-
. Read n,n;

<fort-1t0n Idﬂ

4
|*@Tfﬂi+1f0:ﬂdﬂ>

e —

——]

--—-—p-u-_——-n-——-u-.-_-.q—_—p—-._

- —

[
E&BD

Figure 1.17: Flowchart of sorting

198

Example 1.5.10 Write an a.lgonthm and draw a flowchart to mmputa G.C.D and
L.C.M of two given integers.

Algorithm GED:LCM

Step 1:
Step 2:
Step 3:
Step 4:
Step 5:

Step 6:
Step T:
Step &:

Read the numbers as m and n.
Calculate the product p = m x n.
Compute g (quotient) = integer part of (m/n).
Compute g (remainder) = m -~ n x g,
If 7 = 0 then

goto Step 6
else

(i) Set m = n

and n = 7

(it) goto Btep 3.
endif; _ :
Compute ! (the L.C.M) = p/n.
Print n (the G.C.D) and i (the L.C.M).
End. '

START
Read m,n

i

e
g + Int(m/n)
Fi=m=nXxqg

No ‘g Yes
|memner | (gep/n]|

:]
Brint n (GCD) & q (LCM)/

Figure 1,18

199

1.6

Summary

Here the definition of algorithm is given, Its basic characteristics and design
technique are also discussed. The definition of flowchart, different symbols used
to draw it and drawing method are provided along with a large number of
worked out examples. This unit ends with a good exercige.

10.

Exercise 1

- Define the term algorithm. What are the basic critéria of an good algorithm?

What do you mean by a flowchart? Draw the different symbols vsed to
draw a flowchart,

Write an algorithm and draw a flowchart to find ‘the largest among four
given numbers.]

Write an algorithm and draw & flowchart to find the maximum and
minimum among n given numbers.

Given a set-of n integers, Write an algorithm and draw a flowchart to find
(i} total number of even integers, : '
(if) sum and product of the even integers.

Write an algorithm and draw a flowchart to read 50 pairs of length and
breadth of rectangles, and find (1) the area and perimeter of each rectangle,
(ii) all the rectangles whose area is greater then ity perimeter, (ili) the
average area of the rectangles,

Write an algorithm and draw a flowchart to read two sides and the angle
between them of & triangle and find the area of the triangle.

Write an algorithm and draw a flowchart to read the radii of 50 circles
and find the ares and circumference of each,

Write algorithms and draw flowcharts to find the sum of the following
series:

100
() 2% 1xis]
r=l1

1 4

= X A X
W

Write an algorithm and draw a flowchart to test whether an integer is (i)
prime, (ii) perfect square, (iii) even or odd, and (iv) divisible by 7. [In
each case separate elgorithm and flowchart are required]

200

1,

12,
13.
14,
15,

16,
17,

18.

18,

20,

Write amalgorithm and draw a flowchart to generate all prime numbers
between two given integers. _

Write an algorithm and draw a flowchart to-compute the value of n!.
Write an algorithm and draw o flowchart to split a number into digits,
Write an algorithm and draw a flowchart to find the value of "Pr.
Write an algorithm and draw a flowchart to list all three digited numbers

. which are ecjua_ﬂ. to the sum of the cubes of the digits. [Such numbers are

called Armstrong numbers]
Write an algorithm to convert a binary number to.its decimal equivalent.
Write an algorithm and draw a flowechart to solve the following equations
ar + by = ¢
a7 + by = o, .
Write an algorithm and draw a flowchart to compute the value of the
funection ;

P ifxs]
xcosx if x>1

f(x)={

for z = 0.1, 0.2, ... , 1.5.
‘Write an algorithm and draw a flowchart to compute the sum of

(1) §=1% 422 4 ... + 100 (ii) 8= 13425 + ... +N® (where Nis a
given integer):

Write an algorithm and draw a flowchart to obtain the scalar product of
two vectors X = (5, &, . .., z,) and Y = (y, ¥... , ¥,) given by

n
scalar product = ZI;}’;

ia]

201

UNIT 2.0 PROGRAMMING WITH C.

2.1 Introduction to C Programming-

The C programming language was originally designed for and implemented
on the UNIX operating system by Dennis Ritchie at AT & T Bell Laboratory,
USA around 1972. C is a general-purpose programming language with features
emnamy of expredsion, modern flow control and data structures, and a rich set
of operators. C is not a “very high level”. language, nor a “big" one, and is not
specialized to any particular area of application. But its absence of restrictions
and its generality make it more convenient and effective for many tasks than
other more powerful languages, The operating system, the C compiler, and
essentially all UNIX applications programs are written in C.)

During the 1970's, C has undergone many changes for making it reliable and
efficient and acceptable by many users working in:different areas. During these
period a lot of different features and facilities are developed by different people
across the world. These different forms of the language become machine dependent.
To remove the machine dependence of -the language the American National
Standard Institute (ANSI) constitute 8 committee to standardize the language.
This resulted in ANSI C and it is machine independent and also operating
system independent. Thus, C is not tied to.any particular hardware: or system,
however, and it is easy to write programs that will run without change on‘any
machine that supporte C. ' '

This book will help the reader learn how to program in C,

2.2 Objectives

After going through this unit you will be able to learn about-
(i) “C constant and variables
(ii) Operators and expresions
(iii) Input/output statements of C
(iv) Control statements if, do, do-while, for, etc.
(v) Array and its used :
(vi} Functions of C
(vii) Pointers, structures and unions

202

(viii) Character and string processing
(ix) Usa of files in C
(x) Macro and preprocessor.

2.3 Constants and Variables

T6 solve a problem by computer, the programmer should supply the program
and data to the computer; These data may be of numeric type or alphabetic
type. The numeric data are also of different types, such as, whole number or
fraction. Again, these supplied data are stored et some locations of memory am}}
theae stored values are referred by names of variables. The value of a variable
at any instant; during the execution of a program, i the value stored at the
location identified by the. variable name. The variables are also of different
types. In this section, we discuss in detail, different types of constants and
variables,

2.3.1 Character Set

A computer key board conteins many symbols (characters), some of them are
used to write a program in C. '

The C character set is shown in Table 2.1.

Some characters produce blank space (horizontal or vertical) during printing
are called whitespace. In C they are blank space, horizontal tab, carriage return,

~ newline, form feed, etc.

‘The digits combined with the letters are called a]phanumer!n characters, and
the remaining symbols are termed as special characters. In C language, upper
case letter and lower case letter are different, e.g., N and n are different."That
' 18, C is a case sensitive language. A program in C must be written using only
the defined set of characters.

2.3.2 Constant Data

Any entry which remains unchanged during the execution of a program is
defined as a constant. It may be of numeric, character or logical type. Like other
programming languages, C also supports several different types of constants,
each of which is represented di[’ferentiy in terms:of the computer memory
allocation.

Mainly three types of constants are available in C, viz., integer {(int), floating
point (£loat) and character (char). These data types also have some extended
forms.

203

A-Z Alphabets - 8-z Alphabets

(Upper case) (Lower case)
0-3 Digits ¥ blank space
; comima i period
: semicolon : : colan
? question mark 5 single quotation
'y double quotation ! exclamation mark
| vertical bar / slash .
\ backslash i~ tilde
- - underscore § dollar
% percent sign & ampersand
A caret : ¥ asterisk
- minus sign + plus sign
> greater than sign < less than sign
(lefc parenthesis) right parenthesis
[left hracket | right bracket
{ left brace } right brace
7 hass. sign = equals sign

Table 2.1: The C characters set

The memory requirement. of each numerical constant determines the permissible
range of values it can take. The memory requirements of different types of
constants vary with computers.

Numeric type
Any string of digits preceded by a single algebraic sign (+ or -) is called a
numeric constant, which may also contain a decimal point.

Numeric type constants are further subdivided as integer and real (floating
point) | ;

Integer constent

An integer constant is a whole number that is written as a string of decimal
digits without a decimal point or an exponent symbol, It can be either positive
or negative. It is also called a fixed point constant. The integer constant is of
three types-short int, int and long int, in both signed and unsigned forms.
The long and unsigned integers are used to increase the range of values,

204

C constant

|

Numeric constant Character constant
:]
" Real]
b constant
Integer canstant Single characteCharacter string

ﬂont double ﬂc-.at

| |] E |= l

short int ubsigned integer unsigned int long int upsigned
short int long int

Figure 2.1 T}'PEE of consiants

Some valid integer constunts :

45 2 -66 434223
Note 2.3.1 For a positive integer '+’ sign is optional, The range of the integer
constants vary from computer to computer.

C languages also support octal and hexadecimal integers. An octal constant
begins with zero (0) and a hexadecimal constant begins with Ox or 0X. For
example, the decimal integer 15 is written in octal system in the form 017 and
in hexadecimal system it is of the form 0xf or 0XF.

The valid range for integer depends on the word-length of the computer, For
@ 16-bit word-length computer, the allowable range of integer constant is 219
to 218 — 1 (i.e from -32,768 to 32,767). It may be noted that, in computer
arithmetic set of integers is finite but, in algebru it is infinite. Before storing an
integer in a computer, it should be converted to an equivalent binary number.

C also supports other types of integers called short integer, long integer;
unsigned integer, etc. The qualifiers u, 1 and ul {or'U, L, UL) are used to
represent unsigned integer, long integer and unsigned long integer. For example,
34580, -98308766L, 89288339UL represent unsigned integer, long integer and
unsigned long integer respectively. In unsigned integer, all 16 bits are used to
store the magnitude of the number, Thus for a 16-bit computer the range of
unsigned integer is 0 to 2'9 - 1. A long integer constant uses 32-bit to store its
value and the range of the values is -2% to 23! - 1, i.e. from -2147483648 to
2147483647. However, the range of unsigned long integer is from 0 to 2%2 - 1,
i.e, from O to 4294967296, and needs 32 bits to store it. On the other hand, short

205

integer takes on 16 bits to store its valua and its range is — 2% to 25 ~ 1 which
js same as int, but some machine takes 8 bits to store short int.

Note 2.3.2 All the ranges of values for different type of integers are depend on
the machine used.

Real or floating point constant

A signed or an uosigned: whole number contalmng a decimal point or an
exponent or both, is called a real or floating polnt constant. The extended form
of real constant is double. Real constants are of two forms (i) fixed point form,
and (ii) exponent form. In many mathematical caleulations, high accuracy is
required, in this case floating point data is not sufficient, the double type
constant can do shis task efficiently. A double type constant uses 8 bytes as a
storage space. These type of constant is known -as double preclsion constant,
Double and floating point constants are of similar, but double precision constant
gives more precision. Double precision numbers may also be defined as long
float.

(i) Real constant of fizxed point form
- A real constant of fixed point form is a constant with a decimal polnt and
may have a fractional part.
Some valid real constants :
3.432, 0.34, -0.678, 0.000023, /324, 2

(ii) Real constant of exponent form

Often vety large or very small numbers are involved in scientific computations,
It is not possible to represent these numbers using fixed point form. Thess
numbers can be represented by a form known as exponent form. A real constant
of the éxponent form have & format contdining a' mantissa and an exponent. The
mantigsa must have at least one digit and & decimal point. It may have a sign.

The mantissa is followed by the letter E and an exponent. The exponent must
be an integer (without a decimal point) and must have at least one digit. A sign
of the exponent is optional.

Some examples of real constants of exponent forin are given below:

Scientific form C floating ;_::-';int form -
6.23 x 10% 6.23E23 or 6.23E + 23
000345 = .345 x 107 345E-3 :

1014 : 1.0E-14

206

Some valid real constants : _
344.€02, 456.0E3, 678.e+5, 450.E+06, 34.1E4, 3467.E5, -.210E-4, 678.234E+14,
02341 E03,

-The Table 2.2 shows the size and range of constants of d:fferem types for the
computers having 16-bits as word length. :

The memory requirement of each numerical constant determines the permissible
range of values it can take. The memory requirements of different types of
constants vary with computers. The readers are requested to-chéck the valid
range of data in your computer. :

Types of constant | Number of - Range of valiés’
bytes used G D

short int 2 Qb o-218-1 - 1 |- 32768 fo 32767
unsigned short 2 0to 2% -1 0 to 65535
E T 2 -218-1 g0 Q16-1 _ 1 | _39768 to 32767
unsigned: ing 2 0 to 218 -] 0 to 65535
long int 4 31 g 231] | -2, 147, 483, 648

_ : to 2,147,483,647
unsigned long int 4 0to 2% -1 0 to 42949672965
float 4 8.43 x 109

4 : to 3.37 « 10M

chatactsg : i : -128 to 127
double or . e 1 2.225074 x 10308

long float to 1.797693 x 10308

Table 2.2: Memory allocation for constants

Character constant

A character- constant is & single character written within single quotations
(apostrophes). For example, 'a’ 'z' 6" '8’ ' ' etc. are the valid character constants.
But, '12’ (more than two characters), "a” (double quotations) are not valid
character constants. Each character constant has unique integer value for a
given computer. This code may vary from one computer to another. The integer
value corresponding to a character is called ASCII (American Standard Code
for Information Interchange) code-(most of the computer uses ASCII character
set). In ASCIX code, each character is.coded using 7.bits, and hence 27 = 128

207

different characters can be coded using ASCI1I code. It may be noted that one
~ byte space is required to store a character type constant.

Since each character has a unique integer value, it is possible to perform
arithmetic operations on character set. For example, the ASCII values of '3’ and
's! are regpectively 51 and 122, The the value of the expression '3'-'z'= 51-122

‘= -71. The value of '3-2= 51 - 2 = 40.

String constant

A string constant is a string of characters (alphabets, digits or special
characters) enclosed in double quotation marks,

The following are valid string constants :
'l"lxI — 12‘“ 11INDIA¥‘I‘ 11B.Ec!1 'IIC - A + B”
"VIDYASAGAR” "Fina! Examination” "Sum ="

It may be remembered that the constants "A” and 'A’ are different. 'A’
represents a character constent and it has an integer value 65, whila "A"
vepresents a string constant and it does not have any value.

Escape Sequencéa

C provides some more characters other than character constants and string
constants, which are normally used during printing of output. These non-
primtable characters are called escape sequences or backslash characters. An
escape sequence always begins with a backslash and is followed by one or more
apecial characters. For example, a line feed (LF, ASCII code 10) is used as a
newline, which is denoted as \n. Escape sequence represents a single character,
even though it is written as a combination of two or more characters.

Some commonly used escape sequences are listed in Table 2.3.)

The null character \0 has a particular use. This charactet is-used to indicate
~ the end of a string and it may be noted that null character \0 is not equivalent
to the character constant ‘0.

2.3.3 C Variables

A quantity that varies during prﬁgram execution is called a variable. Each
C variable has a specific storage location in memory where its velue is stored.
The following rules must be followed by every C variable.

208

Escape sequence Character /use ASCII value

Aa “bell (alert) o007
\b hackspace 008
\E horizontal tab 009
Yn newline (line feed) 010
‘v ; vertical tab 011
\E form feed (new page) 012
\r carringe return 013
\~ double quotation 034
Xt single quotation . - 039
\? question mark 063
\ backslash 092
\O ' : null 000

Table 2.3: Escape sequences

(i) The first character must be an alphabet. However, some systems allow
underscote (~) as the first character.

(i) The variable’ name can have at most 31 characters, in ANSI C. If a
variable name contains more than 31 characters, the first 31 characters
are to be recognized by the cnmpﬂer and the remanning characters will
be ignored, Some compilers recognize only the first'8 characters and some
other compilers support arbitriry number of characters.

(iii) The variable name should not contain any special character other than
underscore (~). Blank spaces are not allowed as va.hd characters in va.na.bie
name,

(iv) No C keywords (which have some standard, pr&defined meaning/action
in C, these keywords can be used only for their Intended purpdse) are
allowed as variable name. A list of keywords are given in Table 2.4,

(v) Both upper case and lower case dlphabets are used as variable name. But,
they are used for naming two different variables names. For example, N

" and n are two different names. Slmllarly, PNB pnb Pnb, pNB, pnB, etc.
are all distinct variable names; _
Some compilers may also support the following keywords.
ada, far, near, asm, fortran, pascal, entry, huge

209

auto break Case char

const. . continue default do
double elae ETUm _ extern
float for goto if

int long registrar return
short signed sizeof static
struct switch typedef union

unsigned void volatile while

Table 2.4: C keywords

- The C language provides different types of variables like constants, viz.,
(2) integer, (b) real, (¢) character, and (iv) string.

Array

Sometimes, it i3 necessary to represent a group of values by a common
variable name. For example, the roll number of 100 students of & class may be
represented by a variuble, say roll and tha variables £o11{0], roll[1] A
rol1[99]) represent the rolls of first student, sacond student, ..., 100ph student,
A set of data with similar properties and which are stored in consecutive
memory locations under a common variable name: is called an array or a
subscripted variable. Here roll is an array, it is also called the subseripted
variable with a subscript. Each element of an array is identified by using
subscript (or subscripts) within square brackets after the common variable
names (i.e: by the array name). The individual itemns are called the array
elements, For example, roll[4] is the fifth element of the array roll. An BETAY
‘I8 called by the array name, : i

There are several types of arrays such as integer array, floating point array,
character exray, and also one-dimensional array, two-dimensional array, ete. The
one-dimensional character array is known as string. Here we concentrate-only
on gtring, i.e. on one-dimensional character array, ! '

If an erray contains n elefnqnts. the subseript will be an integer quantity
whose values are 0, 1, ..., n - 1. But, an n-character string contains (n + 1)’
elements, because of the null character (\0) automatically be placed at the end
of the string, _

To explain the behaviours of string, let us consider the string “India”.
Suppose this string is stored into & one-dimensional array x. The string “India”
contains § characters, so the size of the array x is 6. The value of each array
element of x is shown below. :

210

Element no. Subscript .= Array element String character

1 4] ®x{0]j I
2 1 xi1] n
3 2 x{2] d
4 K] x(3) i
5 4 x[4] a
i 5 x[5] 0

Thus the third element of the character string % is the alphabet d.
2.3.4 Variable Declarations

It is required to declare the type of the variable before it is used in a program.
All variables must be declared before the first executable statement, It is
better to declare all the variables at the beginning of each function/program.
A declaration consists of a data type followed by one or more variable names
(separated by comma(s), if there are more than one variables) and terminates
by a semicolon (;). The array variable must be followed by a pair of square .
brackets, and within the bracket there is a positive integer mentloning the size
of the array, The syntax for declaration of variable a; 4y, « « . G, 8BS variables
is : :
data type &;, 8, i 8y
- Buppose we consider two variables roll and marks. If théy are integer variables,
then the declaration statement . ls
int rall, marks;
- or it can also be declared as '
int roll;
int marks;
ar as
ink roll; int marks;
It may be noted that, comma (,) represents the separation between the
variables and semicolon (;) represents the end of the declaration, _
If roll is an integer variable and marks is a veal variable, then the declaration
statement may be of the following form.
int roll; float marks;
or
int roll:
float marks;

211

Suppose name is an array which represents the name of a country and
assumed that the maximum number of characters required to naming the
country is 25, then the appmprmte declaration is

char name[26];

Thus, the variable name ean take 26 characters at a time as its value, But,

if we declare
char name;
then the variable name will take unl:,r one character as its va.iue

Initialization of Variable During Declaration

Tim initial values of the variables can also be assigned durmg type declaration,
This declaration must contain a data type, followed by a variable name, an
“equal sign and an appropriate constant value. The syntax of this declaration is

data_type variable name = constant:
The following are the valld declarations.

int 1-{! i

float x=10.5, y=2.5, p=8.54;
char n="x"; !

char country[]=*India":

- Note that the declaration char country(]="India* In this declaration, -
country is a character arrayfstrmg containing 6 elemeénts. The firat 5 elements
represent the alphabet of the word “India” and the 6th element represents the
null character (\0). Noted that the size of the array is not mentioned here,
computer will automatically determine the size of the array. If we would like
to mention the size of the array, then it must be accurate, otherwise the array
will store incorrect information. :

For example, the declaration char country[3]=*India; gives error; whereas
the declaration char duuntry[lﬁ]_:'!ndi'g*:' will store the word “India" and
the null character into the first 6 array elements country[0] to country(5], the
remaining elements may be aas:gnad zeros or they may be filled by some other
arbitrary characters.

2.3.5 Symbolic Constants

Sometimes it happened that a constant, say x, may be used in many places
within a program. The value of & is an irrational number and its value correct
.up to 5 decimal places is 3.14159; and correct up to 8 decimal. places is
3.14159265.

212

Suppose we calculated the value of some expressions (used in the program)
using 7= 3.14159. Later we observed that we need more accurate values of the
expressions and we éﬂnsiﬂer_rr = 3.14159265. If. x occurs in many places in the
program, then we have to update the value of # in all these places, but this
process takes time and there is a chance to overlock one or more positions of
x In this situation, we may use a symbolic name for 7, say PI. A symbolie
constant is a name that substitutes for a sequence of charactere. The characters
mey be a numeric constant, & character constant or a string of characters.
-During compilation of the program, all the symbolic names are replaced by the
corresponding chardcter sequence. The symbolic constants are generally defined
at the beginning of » program.

The syntax of this declaration ia

#define symbolic_name value of_constant
symbolic.name represents a symbolic name, which follow the rules for a variable
name, snd usually written in upper case letters, to distinguished between
symbolic constant and identifier. v&lue_of_constant represents the sequence
‘of characters for the symbolic name. symbolic_names are also known as constant
identifiers.
~ Some valid symbolic constants are :

fdefine PI 3.14159
tdefine f(x) XEHFEI* 45,2
#define TRUE 1 :
ddefine COUNTRY “India”

The following points keep in mind during declaration of a symbolic constant.
@ No blank space between the sign # and the keyword define is allowed.
@ The first character of the line must be #, R

@ Blank spaces are required in between §define and symbolic_name and in
between the symbolic_name and thé value of constant.

The declaration must not be end with a semicolon, because during
compilation symbolic name is replaced by the constant and the semicolon
will appear in the wrong position. For example, if IV is declared as

: #define N 10;

and the statement M=N+5; ia in the program, then this statement becomes
M=10;+5; and it is obviously incorrect.

213

& The value of the aymbolic constant cannot be altered, For .axample, if the
value of the symbolic constant TRUE is defined as 1 then the ssignment
TRUE=2 or TRUE=2*TRUE, etc. are illegal,

® No separate declaration for data types is required, its data type depends
on the value assigned to the symbolic name, j

® f#define statements may appear in any place of the program, but usually
it-is placed at the beginning of the program.

Note 2.3.3 It may be noted that the value of a variable can be changed, but
the value of & symbolic name cannot be changed. The symbolic name is the
representative of some constant, character, string or an expression also. During
compilation the value of the symbolic name is replaced by its value. But,
variable always stored a single value,

Exercise 2.3

1. Write C characters get.

2. What is the difference between a variable and & constant? What are the
rules for naming & C variable?

What are the advantages of using double variables?

Expiai-n different types of constants used in C. _

What do you mean by a variable? Explain C variables.
Write short notes on fixed point and floating point’ viriables,

NS oo s ow

Which of the followings are not valid variable names in C? State reasons,
(i) total-a (if) end (1) d.a. (it) 5 number (v) x5 (vi) x + y
8. Write the type declaration statements. to declare
(4) roll, marks, subcode as integer variables.
(%) name, add as string variables each of length 30 characters.
(1) found, valid, x2 as double variables.

9. What do you mean by symbolic name? What is difference between symbolic
name and variable.

214

2.4 Operators and Expressions

In C, an expression is & combination of variables, constants, operators and
functions (to be discussed later on). An algebralc expression can not be entered
to the computer directly. Before entering an algebraic expression in the computer
it should be converted to a C expression. The algebraic and C expressions differs
only at their syntax. Any algebraic expression can be converted to a C expression
by using certain specific rules. At the time of execution of an expression the
values of the variables (stored in memory) are used, to perform necessary
ﬂper'ﬁtic-nu. C provides three major types of expression namely (i) arithmetic
expression, (ii) logical expression and (iii) character/string expression.

2.4,1 Arithmetic Operators

The following are the symbols for binary operators in C corresponding to
different arithmeti¢ operators.

Arithmetic operators C operators
Addition (+) +
Subtraction (=) =
Multiplication (x) y
Division (+) /
Modulo division . 9%

The operator % gives the remainder when an integer is divided by another
integer. The remainder operator (%) requires that both the operands must be -
ihtegers and second operand is nonzero. Similarly, in division (/) the second
operand should be nonzero. The division of an integer by another integer is
called integer division and the result of this division is an integer.

It may be noted that like FORTRAN, BASIC, etc., C does not provide any
operator for exponentiation. However, the library function (pow) is used to
carried out exponentiation.

2.4.2 Arithmetic Expressions

Three types of erithmetic expressions are defined in C nam&iy (1) mte-fer
expression, (ii) real expression and (iii) mixed mﬂde expression.

215

Integer expression

The mathematical expression obtained by: combining. integer ~n;rariables and
integer constants with the help. of arithmetic operators, is known as: integer
expression. : i
Rules far.uﬁ:z‘ny an inleger erpression: .

(i) A signed or unsigned integer variable or an integer constant is an integer

expression, : :

(ii) Au integer expression connected by an arithmetic operator to an unsigned

integer constant is an integer expression,
(lif) An expression enclosed in pa.i-ehthesea is an integer expression.

(iv) Two integer expressions connected by an arithmetic opethator is an intbger
expression. ' '

(v) Two arithmetic operators should not occur in succession in an integer
expression.

Note on integer division

When an integer Is divi{{ed by an another integer then the msult'may contain
afractional part. But in C, the fractional part is discarded during ealeulation,
8.g., the value of 5/4 is 1 and not 1.25, 4/5 is 0 and not .8.

The value of the expression 32/5%548/9 is calculated as follows :
32/5%5+8/9 = 6*5+0 = 3040 = 30
Resl expression
The mathematical expression obtajned by combining real constants and rea! 1
variables with the help of atithmetic operators, is known as & real expression,
Rules for writing a real expression :
(i} A signed or unsigned real variable or & real constant is & real expression,

(if) A real expression connected by an arithmetic operator to an unsigned real
variable name or an unsigned real constant is & real expression. '

(ii) A real expression enclosed in parentheses 18 a real ‘expression.

(iv) Two real expressions connected by an arithmetic -operator is a real
expression, i

(v) Two arithmetic ﬁperat;drs should not aceur in successioh in a real expression,

A real expression may be exponentiated by an Integer expression to form
a real expression.

Note 2.4.1 The expression is scanned from left to right, to complete the execution
of all divisions and multiplications in the order of their appearance. Finally, all
additions and subtractions are performed again from the left of the expression.
If-there is any parentheses within the expression then the expression within the
parentheses is evaluated first using the above rules. The following expression is
evaluated according to the above rules.

e, 40 » a - b/(c+ 6.7)

= 4.0 * a - b/e, where e, = ¢ + 6.7

" =g, -~ e, where g, = ti[] * aand Fﬂ = bfe,

=¢, where e, = ¢, - ¢,

At first the value of ¢ + 6.7 (within parentheses) is evaluated and stored in
e,. In second step all multiplications and divisions afe done from left to right.
The v_a,}ues of 4.0 a and b/e, are stored in e, and e, respectively. Finally,
addition and subtraction are performed from left to right. :

Mixed mode expression

An expression, formed by integer, real or character constants or variables is
called a mixed mode expression. Modern computers execute mixed mode
expresaions. Suppose we have to compute the value of A/B. If A is an integer
variable and B ia real variable then before division A must be converted to real
and then A is divided by B and finally the result is stored as a real number.

Ezamples on arithmelic expression

a+b

T -9y

2. 239 x 10%m? + fo/4d.
In C it becomes 23.9E-2*m* viv+*g/(4.%d)

A translation of this expression into C is (a+b)/(x - y;y}.

Muda of anthmatin expression

A real variable may be set uqual to mn integer expression and vice-versa. If
a real variable is set equal to an integer expression then the value of the integer
expression is converted to real mode before it is stored as a real variable.

207

eg.ifj =4,k =2and a = j/k then a = 2.0,
Ifj“3&ﬂdk“2thenu‘“lﬂ
If an integer variable or expression is set équal to a real expression then the

value of the real expression is ‘truncated’ and stored as an integer varml::le e.g.,
if 1=3./2. then I=1if k=2./4. then k=0

Hierarchy of arithmetic operators

In general, an arithmetic expression contains nimeric constants, numeric
variables (integer, real and character), arithmetic operators (addition, subtraction, -
multiplication, division and modulo division) and parentheses. At the time of
execution of an expression only one arithmetic operation is executed at a time,
The hierarchy of operators Is the order in which the arithmetic operations are
executed. The hierarchy of arithmetic operators is shown in Table 2.5,

operator : : : hierarchy
multiplication (*), division (/} and modulo division (%) first
addition (+) and subtractior (-), : second

Table 2.5: Hierarchy of arithmetic operators

Example 2.4.1 Evaluate the following arithmetic expression, if a = 2.5, b = 7.2,
¢c= 2A b~ 5 =32
(i) a*b + c/fj™, (ii) i/j + b*c + i*a
where i, j are integer and a, b, c are real variables.
Solution. (i) a®b + ¢/j*i = 2.5%7.2 + 2.4/2%5
= 18.0 + 2.4/2%5 = 18.0 + 1.2%5 = 18.0 + 6.0
=24.0
{ii) i/} + b*c + i*a
= 5/2 + 7.2%2.4 + 5*2.5 = 2 + 7.2*2.4 + 5*25
=2+ 17.28 + 5%2.5 = 2 + 17.28 + 125
=20 4+ 17.28 + 125 = 19.28 + 12,5
= 31.78

2.4.3 Library Functions

There are certain mathematical funr.:tibns such as {rigonometric, exponential,
logarithmic, etc. which are frequently used in programs, especially to solve

218

scientific problems. These functions are generally referred as library functions,
built-in functions or intrinsic functions, The general form of these functions is

function_name ({argument(s))

The argument of a function can be a valid varizble name or an expression,
It can also be a real number, an integer or a character. The argument should
be written within parentheses. If a function has more than one argument then
they are separated by commas.

A library function is used simply by writing the function name followed by
necessary arguments, which are the input of the function. The parentheses must
be present after the function name, even if there are no arguments. A function
generally returns & value. This is called the output of the function. If there is

‘1o output of the function, then the word vmd is used to indicate that it does
not give any output.

To use the library function in & program, certain specific information-is fo
beincluded in the program. The information is generally stored in some special
files, those are available with the software. Such file names are included the
‘beginning of each program using the following preprocessor statement,

#include <filenames
where filename represents the actual name of a specific file,- Sevﬂral such files
are available in any C compiler.

Some commonly used files are stdio.h, math. h stdlib.h, string.h, etc.
The file extension ‘h' designated a ‘header’ file. Some frequently used library
functions are given in Table 2.6, :

sl :
Note 2.4.2 A straight forward translation of the expression z* -y inC is -

pow(x,2/3)- pnw{y,-E]

But this expression is mmrrect as in the term pow(x,2/3), the division 2/’
3 is an integer division of 2 by 3.'In integer expression evaluation the result can
only be an integer. Thus 2/3 gives an integer value 0 (zero). The correct
tramlatmn of the expression is pow(x,2.0/3. Dj-pwﬂy.—?]' or pow(x,2.0/
3.0)-1./{y*y)

- The following three header files with their functions are frequently used in
several programa.

stdio.h (standard 1/O header file)

219

Mathematical (Mode of M1lode of
function equivalent | input output
Power (a?) powla,b) | doubledouble double
Power (10%) ' powl0O(a) | double double
Exponential (e}) exp(x) double double
Logarithm (log.z) log{x) double (x>0) double

{log,,7) 1ogl0{x) | double (z>0) - | double
Square root {J;} sqrt (x) double (z > 0) double
Sine (sin z) sinf{x) double (z in radian) | double
Cosine (cos) 1 cosix}. double {z in radian) | double
Tangent (tan z) ' | tan(x) double (z in radian) | double
Hyperbalic sine (sinh z) sinh(x) | double double
Hyperbolic cosine (cosh z) cosh(x) double double
Hyperbolic tangent (tanh z)| tanhix) double double
Arc sine (sin"'x) asin(x) double (-1 £ £ 1) | double
Arc cosine (cos™'z) acos (x) double (-1 £ 2 1) | double
Arc tangent (tan™'z) atan(x) dauble _ double
Absolute value (l2]) abs (%) int int

- fabs (x) double ! double |

Table 2.6: Some library functions .

Function name Use

gets Reading & string

puts Printing a string

getchar Reading a character
_putchar Printing a character

scanf Reading multiple variables of different types
printf Printing multiple variables of different types

string.h (string manipulation header file)

Function name Use

strcat Concatenation of two strings
stremp Compare two strings :
strepy Copied & string to another string

_ strlen Determines the length of the string

220

ctype.h {ch&mcl;er type header file)
Function name Use

toascii - Returns the ASCIIwode of a character
tolower Converts a character into lower case character
toupper Converts a character into upper case character

Example 2.4.2 Write the following expressions in C equivalent:
cos(awt + ¢) +sin" (a + b)
[13 ;a + o’

(ii) log, Jy__z +log,, | = |

D
(iii) _‘izT +rcosd

(iv) y= (a+b*+ab)® /a+b+1

i i
I[‘u':] ETHI k J.'.'“ B Ik'l

{1
Solution,
(i) alpha* cos{omega®t+phi) / sqrt{alpha*alpha + omega*omega) + asin{a+h]
(i) logisqre(x/(y*z))) + logl0(fabs (x))
(i) (1.0-exp{-alpha*sqrt(x)))/ (1.0+x*exp(-fabs(x))}+ eta* cos(theta)
(iv) y = pow({a+b*b+a*b),5)/sqre (ath+l.0) :
(v) x = (x+a/pow(x, (k=1)))/k

2.4.4 Upary Opar&tors

C supports different ‘types of unary operators. The negative npemtﬂr
(=) is the most common operator, which is used both as binary and unary
upera.tcrs The other unary operators are +,++,- -, etc. In unary aper&tion
only .one operand is required.

Generally, unary operators precede their opera.nds, but some unary operators,
are written after their operands. C provides two new unary operators called
increment (++) and decrement (- ~) operators.

The increment operator, increases the value of the operand b}r 1, whereas
decrement operator decreases the value of the operand by 1,

Suppose the value of the variables = and i are respectively 5.234 and 4. The
expressions + + x and + + i are equivalent to z =z +1 and i = i + 1. After
execution of these expressions the values of z and { become 6.234 and 5

221

respectively. Similarly, if z = 5.234 and i = 4, then after execution of the
expressions - ~ z and - =4 the values of zand i change to 4.234 and 3 Tespectively,

The increment and- decrement operators can also be used in another way.
These operators may be used after the operand (postfix form). The use of the
forms ++1and i+ + have same effect. In both cases, the value of i will increase
by 1. But, if we use these expressions in another way the prefix (+ + @) and
postiix (i++) operators give different results. For example, we consider Jo= 4t
ond k= i+, and the value of i is 5. The value of i in both cases is equal to
6. After execution of j = ++i, the values of j and i are 6 and 6. Again, if 1 =
5 then after execution of k = i+, the values of k and i are k = 5 and i = 6.
In the expression j = ++4i, the operator ++ is applied on i-first and then assign
the incremented value of i to j In this case, the values of i and j are same.
Whereas in the expression k = i+, the value of i is assign to k first and then
increment the value of i by 1. In this case, the value of k is 1 less than .

Another unary aperator available in C which ie sizeof. This operator gives
the size of its operand in bytes. The operand may be a variable or an expression
or cast (the data type). : :

To illustrate the use of sizeof operator, the following declarations are
considered.
short int i;
int j;
long int k;
float a;
double b;
_ long double c; 5!
The values of the expression sizeof i; sizeof 4; sizeof k; sizeof a:
Sizeof b; sizeof «¢; are 2, 2, 4, 4, 8, 10 respectively.
This operator is also used to find out the number of characters in a string.
For example, we consider.the following string declaration o
_ char "al]="India*;
The value of the variable n in the statement n = sizeof a is 5.
The statement sizeof (int]; sizeof (float); sizeof (char) gives the
output 2, 4, 1 respectively. ' !
It is very important to note that the precedence of unary operator ia higher
than the binary oﬁemtﬁr&.. The associativily of unery operator is right-to-lefi.
There are some other unary operators available in C, which are discussed
latter. - :

222

2.4.5 Relational and Logical Operators

Often we need the comparison of two arithmetic numbers or expressions.
These type of operators which are not arithmetical are called relational
operators. The relational operators and their C equivalent are given bellow.

Algebraic form e > b o2b a<b as<sbh - a=b a#h
C form a>ba>=ba<h a<=b ag==0 g=!b

The operators < . <=\ >= fa,il in a same precedence group whereas =
and =! fall into another precedence group called equality operators. The
* associativity of these operators is left-to-right.

The precedence of relational operators is lower than unary and arithmetic
(binary) operators. Again, the precedence of équality operators is lower than the
relational operators. An expression containing these six operators, operands and
their combination is called relational expressions. For example, a > ¢,
% >= 4.5 are the relational expressions. The value of the relational expression
is either frue or false. The resulting expression is of type integer, since true and
false are represented by integer value 1 and 0 respectively.

Ezamples:

Let ¢ and d be logical variables.

(1) (5/2 > 3.5%2 - 7) (value of this expression is true)

(it) (a > &) ;

(ili) e ={a > b) <= (b >= 5.2)

Logical Operators

Two or more relational expressions can be combined by two or more operators:
and and or. Also, the negation of a relational expression is done by another
operator called not. These operators are called logleal operators. The symbols
for logical and, or and not opemmrs are &&, || and ! respectively.

Logical and (&&)

The syntax of this operator is
a ik b
where a and b are two relational variables/expressions. The value of the entire
expression ¢ = a && b Is obtained according to the rule given below.

a b logical value of ¢ integer value of ¢
true true true 1
true false false 0
false true false 0
false false false 0

223

Logical or (|])
The syntax of this operator is
: a || b
where a and b are two relational varlahieafexpressmns If both the values of a

and b are false then the value of this expression is false, otherwise it is equal
to true. The value of the expression c=a || b is obtained as per following rule,

A b logical -value of ¢ integer value of ¢
true . true: true 1
true false true 1
false true true 1
false false false 0

Logical not (1)
If a is a logical variable, then the expression
: i
gives the opposite (negation) value of a. That iy; if a is true, then la is false and

if a is false la is true. It may be noted that the logical not operator is a unary
operator.

The precedence of logical operators are ! Ez& Al

Let us consider the following logical expression

(e =="2)j[fp >="5))&&((i < 5)&&(v! = 5)) where the vaiues of B, 1,
v and ¢ are respectively 6, 4, 5 and ',
" The ahove expression is evaluated as follows !

l(true||true)écde (truedcdefalse) [since the priority uf the relational operator is
higher than logical opérator]

= ltruebzffalse

= false&&false [since priority of unary operator (1) is higher]
= false.

2.4.6 Assignment Operators
The asstgnment operator is essential in every program. This operator assigns
a new value to a variable. Its general form is
- variable =exp;
where variable is a variable and exp may be a constant, another variable or

an expression to which a value has been a.amgned previously or a formula which
can be evaluated by the mmputer

224

Both variable and exp should be of same t}rpé, i.e., both should be either
numeric or character, etc. This statement assigns the valie of exp to variable.
The new value replaces the earlier value, if any, associated with variable.

Some arithmetic assignment statements are x=5.9, z=a, z=a+b"c.

In algebra. the equations £ = 2 and 2 = z both are same, but in C, 2 = 7
is an invalid statement, because the value of z can not be stored in 2 as it is
a constant quantity. Similarly, the assignment b + ¢ = a is also invalid because
the value of u can not be stored in an expression.

It may be noted that the assignment operator = and the equality operator

= are two different operators. The assignment operator, assigns a value to a
va.ri.ﬂ.ble whereas the equality operator is used to check whether two expressions
huave the same value, The entire expression containing variable, assignment
" operator and righthand side expression is aleo known as assignment statement,

If two operators in an assignment statement are of different data types, then
the value of the right hand side expression will automatically be converted to
the type of the left hand variable, For example, if i is an integer varigble and
the assignment statement is i = 4.5; then 4 is assigned as the value of &

The following points are to be noted during automatic type conversion.

® A floating point value may be truncated if it is assigned to an integer

variable.

@ A double precision value may be truncated if it is ascigned to a floating

point (single precision) variable.

Multiple assignments are also permissible in C. That is

asb=x=z22,5;
is a valid statement in C. For this statement tha value of the variables a, b, =
and z become 2.5. :

The associativity of multiple assignment is right-to-left. This means, in above
example, 2.5 is assigned to 2 first, then the value of z is sssigned to gz, then the
value of z is assigned to b, and so on. One interesting situation is illustrated
below.

Suppose 1 and a are integer and floating point variables respectively. The
multiple assignment statement

iza=3.4;
~assigns the value 3.4 to a and the truncated value of a, which is 3 is assigned
to 4, l.e. @ = 3.400000 and i = 3 are the final values of a and 1, whereas the
assignment statement a=i=3.4, assigns the truncated value 3.4, i.e. 3 to i and
then the value of i is assigned to a, i.e. i = 3 and a = 3.000000.

235

It is very interesting that C supports five more assignment operators, viz.,

+ =, ~=,* =, [= and % =. These operators are basically shortened form of the
operators +, -, #, / and %. The use of these operators are shown in Table 2.7.

Expressibn Equivalent expression
i+=6 i=i+b
i-= i=i-5
i*=4 . i=i*d
if=1 _ 1=1/7
i%=8 1=i%8
Table 2.7:

The precedence of these operators is

=+ ==, =, /=% = and the associativity is righi-to-left. The precedence
. of th&sl;: operators among all the operators discussed so far is lowest,

2.4.7 Conditional Operator

‘The only ternary operator (needs three operands) in C-is ? :, combination
of B question mark and a colon. The general syntax of this operator is '
expressionl ? expression2 : expressiond;

At the time of execution of this expression, the value of the expressionl is
evaluated first. If the value of expressionl is true, then expression2 is performed
otherwise expressiond is performed. The evaluated value is the final value of
the conditional expression. It may be noted that exactly oné expression, either
expression2 or expression3 is performed during the execution of this statement,

Suppose ¢ and j are two integer variables and j = 5. We consider the following
conditional expression

k={1>5) 27 s j=e

If the condition 1 > 5 is true then jis assign to k and then jis incrementﬂd
by 1, i.e. the value of k and j are respectively k = 5, j = 6. Otherwise, the value
of jis assign to k.(k = 5) and then j is decremented by 1.

Exercise 2.4

1. Write down the hierarchy of unary, arithmetic, relational, logical and
assignment operators.

226

2. Write short notes on (i) assignment operator, (ii) logical operator, (iii)
-relational operators, (iv) ternary operator, (v) unary opetators, (vi) library -
function.

. What do you mean by (i} integer, (ii) real, and (iii}'mixed mode expressions.
. What are the differences between algebraic and C expressions.

& o L

. Write the assignment statements in C for the following algebraic statements.

(i) Assign the value of ,,HI 4+ 3 to p (i) Assign the area of a triangle ﬂf
base a and height h to AREA.
Express the following algebraic expressions into their equivalent C expreeaiﬂna.

=

(&) orea = :}ab siné
(b) £ + oy

[} [sin T+l 2)’” 2

Vaddd

@ %

£y

Je

{e) a4+ 2b-

1+

L -t

7. Indicate whether the following statements are valid in C and if not, why? .
(i) v=a(b+c)d/5+b/-3,
(i) r=-a/24+b*5-sqrt(-3)+pow(x,-2),
(i) x/y=2 .

~ (iv) & = 4(b+pow(c,~.5))

8. Write the Ioilﬂ';ving_ relations as C relational/logical expressions:
() 1s2<25 ()t + W >vlc)a/b+ ¢/d>ixn,(d) J; < 10
or J— + 51 > 10, (e) J—!ﬂgey{ 1/2 and cosy < 1/2.

9. Find the values of i and a where
(i) i=3/pow(2,2)*2+43/8*34-pow(3,2)/2, (ii) a—ﬂeDZ!puw{a! 0,0.5)* 2.0+ ¢/
8.0*3.0+ pow(3.0,2)/2 (where c=0.8)

10. Find the value of n calculated for the following statement:’
{i) n=pow(j,2)+k*2/5-pow(j,3)/8+(j++) (if =2, k=5)
(i) n=1/2.045/a+3%*a~-b (il a=4.0, b=2.5).

227

2.5 Input and Output Statements

Every program should take at least one input and must produce some
outputs. To solve a problem, it is necessary to transfer the data from the input
device to the memory of the computer, This task is performed by the input
statement. There are several input devices available with & computer. In this

section, we assumed that the data is entered to the mmputer through the
sta.ndnrd input device, such as keyboard.

Using the output statement, the results of the computation are to be transferred
from the memory of the computer to the output device.
~ Several input/output (I/O) statements are available in C.)anguage, viz.,
getchar, putchar, scanf, princf, etc. All the I/O Yunctions are available
in the header file stdio.h. -

2.5.1 Reading a Character

‘The function getchar reads a single character from the standard input device
followed by a carriage return. This function is a part of standard [/O library,
Noted that this function does not take any argument, though a pair of parentheses
must be given with the function.

The syntax of this function is
char_variable=getchari};
where char_variable is a pre-defined character type variable.

The function getchar reads only one character at a time, but by using
repeatedly one can read a string of characters.

2.5.2 Output a Single Character

The putchar function is used to print a single character on the screen. This
function is also a part of standard C 1/O library. This function must need an
a.rgumenl; enclosed within parentheses. The value of this argumem will display
on the screen.

The syntax of this function is
putchar {char_variable);
where char_variable is some pre-defined character variable.

 The function putchar(’\n*) will print a carriage return, i.e. cursor move to
the beginning of the next line.

Let us consider the following statements .

228

char ch;

ch=getchar();

putchar (¢h) ;

The first statement declares ch as a character variable. The second statement

reads a character from the keyboard and store it to the variable ch. The last
statement will print the character ch cn the monitor screen.

2.5.3 Input/Output of String

The function getchar and putchar are used to read and print a single
character. The functions gets and puts are used to read and print a string of
characters including whitespace, tab, etc, The general form of gets function is

gets (string_namel;
and that of puts is

puks (string name);
where string_name is a variable of type string (an array of characters). This
function reads all characters from keyboard until a newline character is
encountered. At end, the function gets adds a null character (1 10°) to the end
of the string. Note that the newline character is not added to the string.

The puts function will display the string string_namé on the screen as it is
stored in the memory.

Note that the use of getchar and gets functions. The function getchar does
not take any arguments, it reads a character and returns it a character, which
can be assigned to a variable, The function gets takes a parameter (of type
string), reads a string and assigned to the parameter.

Let us consider the following example.

#include<stdio.h>
void main()

{ :
char. name[30];
gets(name)
putsiname) ;

I

The input/output of this program is shown below.
Netaji Subhas Chandra Bose
Metaji Subhas Chandra Bose

229

2.5.4 The scanf function

.The most powerful input statement of C language is scanf. This function is
used to read any types of data, viz. integer, character, float, string, ete,

The syntax of scanf function is

scanf (*control string”, ‘arql, arg2, ..., argn);

where the control string specifies a string containing some formatting
information and argl, arg2, . . ., argn represent the address of locations
of individual date items. It may be noted that the contral string and arguments
are separated by commas. ;

The control string is a complicated group of characters, For each argumaent
there is one group of characters of the form

 %up :

It has three parts, the conversion character %, deta type (or type specifier)
character p and w, represents the width of the input value, which is optional,

The character groups in control sting may be contiguous or they are separated
by blank spaces, tabs, newline characters or any specified characters, If thege
characters are used in the control string, they are read by the computer but
ignored. The commonly used type specifiers 'are given in Table 2.8

Format specifier Meaning

Ko - Read a single character

td or %D " Read a decimal integer

14 Read a floating-point number _

$e or LE Read a floating-point number of exponent form
g or %G Read & floating-point number -

%h _Read a short integer

i or %I Read a decimal, hexadecimal or octal integer
%0 or %0 Read an octal Integer

s , Read a string of characters

%u or SU Read ‘an unsigned decimal integer

ix or X Read a hexadecimal integer

) Read a string of characters or words -

Table 2.8; Format specifiers for input

It is very important to note that the variables or arrays should match with
the corresponding character group in control string. Each character group must

230

"be begins with the symbol %. Each argument is the combination of ampersand
{&) sign and the variable name, That Is, the arguments are basically pointers
which represent the addresses of the computer where the values of the variables
are stored.

Suppose a,b and x are integer, floating point and character variables. Then
the values of these variables can be read using the following input statement.
scanf (“%d¥f%c”, &a, &b, &x) ;

In this statement, $d%£%c is the control string or called format specifiers, it
containg three character groups. The first group %d indicates that a variable is
to be read which is an decimal integer, the second character group %f Indicates
the type of the variablé must be floating-point and the thlrd group %c indicates
tnat this format will read a character.

It may be noted .that the data items must correspundmg to the arguments
in the scanf funcetion in number, in type and in order with the control string,
The values to be assigned to the variables (for the above example they are a,
b and x) are typed on succession in a line starting from any position. The leading
blank spaces are skipped. The values are typed in the same order as in the list
and they are separated by blank spaces {other non-standard separators are also
available in C, those are discussed latter). If some values are not typed on a
line, then they may be typed on the next line. Note that a single value should
not be typed on two or more lines.

If the values of the variables a.b and x are reapectwei:.r 58, 67.253 and M,
and the statement being

scanf (*%d%£3c”, &a, &b, &x);
then they should be typed as
- : 58 67.253 M

If the values of all the variables are not found on a single line then the lines
following it are read until values are assigned to all the variables.

The scanf function is a versatile input function. It contains several facilities
- using which we can specify the rules to read the data. The scanf function,
during its execution, scans a series of input fields, one character at a time, then
converts each field according to the format specifier, which is supplied within
control string. The format specifiers direct the scanf function to read and
convert characters from the input field into specific types of values. This
converted input is stored at an address passed as an srgument (argl, arg2,

.. argn). It may be remembered that, there must be one format specifier

and address for each input field,

231

Some invalid input statements

Here we assumed that ab are floating point variables. 1,5,k are integer
variables and p is a character variable,

scanf ("%d%d", &i,&5) (+ missing at the end)

scanf {(“%d" ,&(i+3)); (expression is not allowed)

scanf (“%4%d%d” , &i, &],5); {constant § is not allowed)

scanf ("$d%d%d”,i,3.k); (missing address operators (&:}]

scanf ($d%f8f &1, &2, &b} (quotations missing in control string)

scanf |’ %d%f8d’ ,&i,8a,&7); (control string must be enclosed by
: deuble quotation)

scanf ("¥d¥%d%f, 61,47, &a") ;' {arguments must not be written within

control string)
scanf (“%d%d\n”, &i,&j); {white space is not allowed)
scanf (*A=%fB=%f", ka, &b); (only format specifier are allowed within

iy g : control string)
2.5.8 The printf function

The mast powerful output statement in C is printf function. This function
is used to print any types of data. such as mumeric valnes single cha.ra::ter and
strings.

The printf function will display the values of the variable to the standard
output device such as monitor screen.

R general form of printf function is

printf(“control string",argl, argZ, . . ., argn);
where control string is a string that contains formatting information and -
argl, arg2, ., . ., argn are n variables, constants, array names or expressions.
* The function calls may also be allowed. It may be noted that the arguments of
printf function do not represent memory ﬂddrmes and hence no ampersand
. signs Are required.

These three types of items may not be present together within a control
string, cven arguments may be omitted. In the simplest form of control string
contains only format specifiers. L.e. its consists of individual groups of characters,
.with one character group for each argument. Each cha.racter group begins with
% (similar to scanf function),

Let us consider the following example, Suppose a = 58 and b = 25 652 and
the otitput statement is -

printfi{ra=%d b=%fin".a.b);

2432

Here %d and $f are format specifier a= and b= are the other characters, they
will display as it is and *\n' is the escape sequence.

The output of this statement is’ :

_ a=58 b=25.652000

Here the characters a= and b= are printed as they are appear within the
control string. The value of a is printed in place of %d. One blank space is
inserted in between %d and b within the control string, so one blank space is
printed after the value of a. The velue of b (=25.652) is printed as 25.652000,
because the default precision is 6 (every floating point variable will print its
decimal part with 6 decimal places, if it is not mentioned).

After printing this output the cursor move to the first column of the pext
line, due to the escape saquence ‘\n'.

The commonly used format specifiers for printf are listed in Table 2.9.

“Format specifier - Meaning

%c Print a single character

%d or %D Print a decimal integer

% Print a floating-point number without exponent

%e or %E Print a floating-point number of exponent form

tg or %G Print a floating-point number either e-format or
f-format conversion, depending on the magnitude
of the value

%i or %I Print a slgned decimal integer

%o or %0 Print an octal integer, without leading zero

¥ Print a string of characters

%u or %U ~ Print an unsigned decimal integer

%% or %X . Print a hexadecimal integer, without .leading 0x

Table 2.9: Format specifiers for output

To print the short integer, long integer and long double the character conversion
characters h, 1 and L are used with the above conversion characters.

Note 2.5.1 The infinite floating point members are printed as +INF and -INF.

Now, from the ongoing discussions we have sufficient resources to write a
- complete program in C,

233

2.5.6 Complete Programs -

A C program (the main functions) has four parts, viz. inclusion of header
files, dchara,tiol_l of main function, declaration of vaeriables and body of the
program/main function. The following example illustrates these parts,

Example 2.5.1 Write a program to find Fahrenheit temperature from the
corresponding Centigrade temperature.

Solution, The relation between Fahrenheit (f) and Centigrade (c) temperature
is

¢ f=32 _9c+5x32
ol & e e

Inclusion e

of héader ¥include<stdio.h>

file e

beginning fpt

of main void main()

beginning of {

program/main

declaration [

of variables | int i

bodpel kT ﬁrinttl“Enter the value of C"}:

the program scanf ("%£".c); '

/main : f={9%c+160.0)/5.0;

: : L__ printf(*ce$f f=8(",c,f);

end of

the program

/main

A sample of input Joutput:
38

¢=39.000000 £=102,200000

2.5.7 Format Specifiers for Tnput .

The very simplest case of scanf function is discussed in previous ae.ttrinp.
Now. details and variations of different format specifications are discussed here.

-

234

tc format specifier

This format specification reads a single character from keyboard. If the
control string contains more than one character groups, without white space
. characters, then c-type conversion gives different results.

To explain this, let us consider the following program segment,
char a, 'b, c;
scanf(*3c %c $c”;&a, &b, kc);
If the input is
Xy z
then the value of x, y and z are assigned as e = 2, b= yand ¢ = z
In this case, the blank spaces are used as separator between the nharn,ctrars
For the scanf statement
' scanf (“%che¥c”, ba, &b, ko) ;
with the same input string, the values are assigned as a = 7, b= F.c=y
The blank space between z and y in the input data is taken as the value of

b. Since no blank separators are used within the control string, the consecutive
" characters are taken as input characters.

The other form of %c is %we, where w indicates the length of the input string.
Thet is, using this specifier a string of characters can be read at most w
characters including blank space. The reading will terminate when a newline
character is encounter,

Let us consider the statements

: char a,b,c,p(10];
scanf (“%clcchllc’, &a, &b, &c,p)
and the input string
- - xyzMy India
The value of the variables are assigned as a=x, b=y, c=z and p=My India

¥s format specifier

This specifier is used to read a stnng The general form of this upemﬁer is
bws

where w represents the length of the string. But, this specification terminates
reading ot the encounter of o blank space or newline, whereas %wc will not
- terminates when a blank space is encountered.

235

Let us consider the following example.
char s1[20],s2(20];
scanf (“%20s8",51);

3 scanf ("%20s57,82);

The input strings are '

My India is great
My_India_is_great

The value stored at s1 and s2 are
si=My and s2=My_India_is_great.
The first scanf terminates at the first blank space (after My). Thus only My
is stored to s1. In the second string no blank spaces are included, so entire string
is assigned to s2. '

%d format specifier

This format specification is used to read a decimal integer data, The genera)

form of this specification is
: - Swd

where w represents the field width of the data item. Using this specification one
can read an integer data at most w digits. The data item may contain fewer than
w digits, but it cannot exceed w digits.

If any white space character is enconnter in the input. then terminates the -
reading for that variable, even its length is less than w.

Let us consider the following statements

int L.3.K:
scanf (*$4d $3a $2d7, ki, &kj, &Kk);
with the input data
- 123 45 11
The values of i, j and k are i = 123, j = 45 and k = 31 :
Note that the reading of values of i and j arc terminates at the blank spaces.
These blank spaces are used as separators of the data item.

For the input statement
seanf (*24d%3d%24", &1, &) . &K) :
with input data
' 12456783456
the values of 4, j and k are stored as i = 1245, j = 678 and k = 34.

236

Note that the last two digity 5 and 6 are jgnored. ;
In C. the standard separator is blank spaces. But, other separators may also’
be used. These separators must be specified within the control string.
Let us consider the following example,
int i.5.k;
scanf {"$d, ¥d, 34", &1, &5, &k);
Suppose the input data is
123,45,875
then i, j. k are stored as i = 123, j = 45 and k = 875,
When separators are used in control string, then the input data must be
separated by the same separator. otherwise incorrect assignment will encountered,

%f format sp_eciﬁer

This format specification is used to read floating point.data. Its general form
is
; Bwt _

where w represents the width of the data (including sign and decimal point). The
w characters will read from input data and it will convert as floating point data
before storing it in the memory.

For example, the input statement

float a,b,rc;
scanf ("¥5f%3£%4f" ,&a, &b, &c};
reads the values of a, b, ¢ from the input data
12.345.678.9

as o = 12.34, b =56, ¢ = T8.9.

If the input data is . _

123458903
then g = 12345, b = 890, c = 3
and If it is
; 12345890357837

then n = 12345, b = 890, ¢ = 3578 und the digits 3 and 7 are ignored.

If the input data is

2.3e45.678.3

then ¢ = 2.3ed = 2.3 x 10%, b = 5.6 and ¢ = 78.3.

Note that the constant 2.3ed is written using e specification, though it is
entered using £ specification.

237

The double type data, can be read using %1f specification instead of &f
specification.

Fur example, the gtatement

long int i;
double x:
scanf (*$1d %1f". &1, &x);

will read the long int and double variables i and X,

The format specifiers %e, %, %g and %G all are used to read.ﬁoéting point
values.. These format specially significant in case of output statement. _

Reading mixed data

It is mentioned earlier that vsing scanf function one can read mixed mode
data, i.e, using a single scanf function different type of data can be read. A
careshould be taken to specify format specification and order of variable names.
If the, value of a variable does not match with its expected format specification

{which ia supplied through the control string), the scanf function does not read
further, ') '

The statements

int i;
char name(15);
scanf ("%$3d%15¢c”, ki, nama) ;
will read the data
125Aniket Pal
correctly as 1=125 and name=Aniket Ppal

%(...] end ¥[*...) format specifiers

C provides a very flexible method to read s string. The format specification
%(...] is used to read & string which i& defined in & particular domain. Suppose,
we would like to read a string which contains only lower case alphabets, then
the appropriate input statement is

scanf("%[a-z]",8);

The reading will terminate at the first occurrence of the other characters
(other than lower case alphabets mentioned as a-z).

If the string _

: my india

218

is enter as input for the above input statement, then only my will store at s,
since the blank space is not included within the format specification %(a-2]. If
we enter the string My India then no character will store to 8, because the first
character (M) ie an upper case alphabet, which is not included within the format
specification, To read lower and upper case alphabets, digits and blank space,
the following-specification is required. '
%la-zA-20-9°] -
This specification is also use to read s specific group of characters. For example,

char ch;]
printf("Do you want to continue (Y/N)2%);
gcanf (*$[¥YN]*,ch) ;

In this program segment, if the input data is either ‘Y’ or ‘N', then ch will
store one of them, otherwise, no character will store sgainst ch.

The other format specification is %[~ .. I

One or more character may be written after circumflex (l.e. 7). When the
. program is executed, successive characters will read from the keyboard as long
a8 each input character does not match one of the charactors written within the
square brackets, :

Thus the specification ["...] works opposite to [...] specification. Also,
using this specification one can read multiline inpu¢ and input will terminate
when an input character match with any one of the characters written in {~...]
If the format [*\n...] is used to read a string, it will read all the characters
until a newline character is encounter.

The statements

char name(30];
int roll;
scanf ("%3d%[*\n]", &roll,name) ;

will read the input
: 250A. K, Sarma
correctly as roll=250 and name=A. K. Sarma. _ '

The octal and hexadecimal min.bers are read using %o and %x format specifiers.
Every octal and hexadecimal number begins with 0 (zero) and 0x respectively.
These prefixes indicate that the integers are either octal or. hexadecimal, An
octal and hexadecimal number can be printed directly in other types of numbers,
such as decimal, hexadecimal and octal.

239

2.5.8 Format Specifiers for Output

All most all format specifiers are used to print an output, But, output format
specifiers- are more useful. rather than input format specifiers.

%d format specifier

This.specifier is used to pass the values of integer variables from the computer

to the output field. The general form is
fwd

where w is the width of the integer number including sign, If the number of digits
of an integer is more than w, then the full integer will print out, overridden the
specification. If the number of digits are less than w, then blank spaces are to
be added at the beginning to make w width. The leading blank spaces may also
be filled up by 0. Normally, the numeric numbers are printed in right justified
form. But, left justification can also be possible by using flags,

The use of %d is illustrated in the following examples. Suppose i — 185.

Print statement Qutput Remark .
printf(*%d~,i) gi5 7

princf (%54~ ,1)
princf("s2d-, i)

5| | right justified

overridden format specifier
printf(*§-5d",i) 18/ 5 [| force to left justified
printf (*$05d-, i) [0] 1[8]5] leading blanks filled by 0
printf(*$+5d7,1) +[1] §5] + fag is used
printf (“$+5d*, ~i) -1 1/8]5] + fag is used

In the above examples three a.ddii_;ir:una.I characters minus (-), plus (+) and
zero (0) have been used, they are known as flags.

o I
=
BE

fw.pf format specifier

This format specifier is used to print floating point number without exponent,
If the number is very large this specification cannot print the number correctly.
The general form of this format is
Yw.pf
where w is the filed width indicating the t¢ :al number of characters in the field
including sign and decimal point, and p is the number of digits to the right of
decimal point called precision.

240

It should be noted that the width (w) must exceed the number of decimal
places by at least three, to make room for a sign and for at least one digit to -
the left of the decimal point. The output is right justified, p digits will be printed
to the right of the decimal point, If the number of digits in the fractional part
is less than p, then the remaining posjtions to the right are filled will zeros, If
the fractional part has more than p-digits it will be rounded off. Congidering
the fractional part in this manner, if we see that the format specification %w.pf
cannaot provide enough number of columns for the number then the full number
will be printed, overridden the format specification:. The default precision is 6.
The leading blanks may be replaced by 0 and printing with left justification is
also possible by using minus (-) flag. To demonstrate the feature of %w.pf
specification, we assume a=167.2358 and b=-785.3854.

Print statement Qutput Remark
printf ("%8.4£f,a) 16|7. 31518
printf(*$8.2£",a) 1{6 204 right justified
printf(*%-B.2£,a) 116/ 7|. left justified

=3
=t

mo =1 fea fes [~ e
g :
oy §

princf(“%4.4£".a) 1 8 overridden width
printf ("808,2£",a) olot1]s]7].12(4 filled by 0
printf(*$6.1£7,b) [-|7(8]5]. |4

printf(~%8.0f",a) : 1167 decimal paft vanigh
printft“%ﬂ,l'rfi'.a} 116|7].|2]3l6 note that w is 0

%e or 8E format specifier

' This format specification is used to print a large number like 6.23 x 1023.
This type of number is called floating point number with exponent form. The
number 6.23 x 1023 represented in computer as 6.23E + 23. It has two parts:
the left hand side of E called mantissa and the right hand side of E is called
exponent. The mantissa, in general is a floating point constant and exponent
is an integer constant. The general form of this format is

%w.pe or %w.pE e |
wheére w ig the field width that indicates the total number of characters in the
field, indicating sign, decimal point and the exponent symbol. p represents the
number of digits after the decimal point in the mantissa.

These two format are same. If e(E) is u:.‘ed in the format then e (respectively *
E) will print in the output.

During printing, p-significant digits are printed to the r1ghL of the demmal
point and if the number contains more than p-digits. then the fraction will be

241

rounded. It should be noted that width w must exceeds the number of deciinal
places p by at least seven to make room for a sign, ut least one digit to the left
of the decimal point, the decimal point, the exponent symbol, sign of exponent
and the two digits exponent, '

Let @ = 6.2346 x 10% = 6.2346F + 30,

Print statement _ Output

printf{*%10.4e",a) -18).12|314]6le|+ 3]0
printf{"%10.4E*,a) - 161.12]314|6]E|+ 310
printf("%E",a) 6(.12/3/4/6/0|0|E|+|3]0
print£{"%10.2e*,a) 6] .]2]3|e{+| 3|0
printf(*%-10.2e",a) 8].12]3]e|+/3]0
print£{*%010.0e",a) 0{0jolol0]6lei+l 3|0
printf(“a=%8.2e" a) lal=|6| .{2[3|e|+| 3]0

%c format specifier

This format is used to print a single character. The general form is
$we

where w represents the width of the display field. The character will be displayed
as right justified. The left justification can be done by using minus flag,

§s format specifier

The general form of this format specification is
0] tw.ds

This format will print first d characters of the string in a display field of
length w characters. The default justification is right. The minus (-) flag is used
to print left justified data.

Here p is optional. If p is not present in the specifier then the whole string
will print within w field width, If w is less than the length of the entire string,
then also full string will display as left justified form.

To explain the different forms of this format, let us consider the string
“Netaji 5 O University”. i

242

Print statement Qutput
is Nielt{alj|i] |S O [Uln]ilvie]rs

slift]yl.
%21s ; Nlelt|alj|i O Wlinlijvie|r|s]i|tiy
%2558 ; Nlettlalj|it 15: (O Uln|i|vielr|s]i|tly
$25.8s Nie|tlaij| i} |S
3.10s Neltla[i]i] [S] [O
$10s - |Nlejtiafj|i SPUuiveraity

A list of flags commonly used in output statements is given in Table 2.10.

Flag Meanin 5_

Output is left justified. the leading field will be filled by
blank spaces, if there be any.

+ The sign (+ or -) of the number must be printed.
0. The leadmg_bla.nk will be filled by 0.
(o or x) The octal and hexadecimal numbers will print with the

prefixes 0 and 0x respectively.
(e, £ or g) Decimal point must be place to print a floating point
! number, even if it is whole number. Also, prevents the
truncation of trailing zeros in g format.

Table 2.10: Flags used in print statement

We have discussed how different types of values can be printed on the output
device. The output can also be printed with more readable form using appropriate
number of blank spaces, newline (*\n*) and tab ('\t") characters. Also. some
string of characters may be included w:thln control string to clear understanding
of the output.

The following example is consider to illustrate the use of other features of
printf function. :

Example 2.5.2 Write a program to find the surface ares and volume of a
rectangular parallelepiped the length of whose. sides are o, b and e

Solution. The surface area and volume of o rectangular parallelepiped are
respectively 2(ab + bc + ca) and abe. :

243

/* Volume and surface area of a rectangular parallelepiped */
#include<stdio.h> '
main()
{
float a,b,c;
float surface,vol;
printf (*Enter three sides\n"}:
scanf ("SR E%LY, ka, &b, ko),
‘surface=2.%[a*b+b*c+cra);
vol=a*b*c;
printf("Surface area is $8.4f and\nVolume is %8.4£", surface,vol);
) LG
A _sample of input/output;
Enter three sides
23 45 1.6
Surface area is 124.0600.and
Volume is 78.6600

9.5.9 Worked Qut Examples

Example 2.5.3 Indicate the printed form of the output of the following statement.
printE:“%E.Zf\n\n\n%la.Eeilﬂ.ZE\n%ﬂ.Hin%dd';x.y.z.p.il:
where £ = 23.2, y = 10.02, z= 0.01, p = 0.81, ¢ = -50.

Solution. The output is
Col. no. 12345678901234567890

Line no. 1 23 .20

Line no. 2

Line no. 3

Line no. 4 1.00e+01 ~-1.00E-~02
Line no. 5 0.8100

Line no. 6 -50

Example 2.5.4 Write a program to find the area and circumference of a circle
whose radius is .

Solution. The srea and circumference of a circle whose radius r are e and

244

/* Program to find the area and circumference of a circle */
#include<stdio.h>

main()

{

float r,area,peri;

scanf{*&f*, &x);

area=J),14159%*r*r;

peri=2,0%3.14159%x;

printf{*The area is %f\n", area);

printf("The circumference is $f\n*,peri);

The area is 36.316784
The circumference is 21.362812

Look at the first line. This line begins with /4" and ends with 's/, which
contains some information. The entire line is called the comment. The comment
lines are used to identify or explain the various parts of a large program. A
comment may be written in any place and any number of lines within the
progrem, but it must begins with '/ and ends with '»/". The comment lines
are not compiled to produce object code. Thus, we can write any thing as
comment. It is optional. :

Example 2.5.5 Write a program to find the avea of ﬁ triangle the coordinates
of whose vertices are (7, ¥) (%, %) (5 W)

Solution. The area of a triangle is given as 3 [z, (v, -vy)+ % (vs 1) +23(y,).
/* The area of a triangle whose vertices are given */
#inclide<stdio.h>
main()

{ :
float x1,yl,x2,y2,x3.y3;
float area;
printf(*Enter three coordinates\n®); _
geanf ("SESERERERERET, &x1, &yl ka2, &y2,&x3, &y3);
area=(x1*(y2-y3}+x2* (y3-yl)+x3* (yl-y2))/2.0;
printf("The area is %8.3f",area);

245

A sample of input/output;
Enter three coordinates

244.56.7,3.2,1.2.6.8
The area is 4,345

Example 2.5.6 Assuming &b, # a,b, the solution of the linear equations
4T+ by = ¢, ax + by = ¢, Is given by

» =29 7ho y = A% 7%

4l ~ab ' T o ~ab
Write a program to read the values of @, by, ¢, and a,, by, ¢, and to print the
values of z and y. : '

/* Solution of a pair of equations containing two variables */
$include<stdio.h>

main{)
S :
float al,bl,cl,a2,b2,c2,%,y;

printf(“Enter the coefficients of first equation\n*};
scanf (“SEREREY, sal, &bl, kcl); :
printf(“Enter the coefficients of second equation\n®);
scanf ("RERERE", ka2, eb2, &c2) ; : ;

x= {b2%el-bl*c2) / {al*b2-a2+bl) ;
y={al®*c2-a2*cl})/(al*b2-a2*hl);

printf{*The solution is x=%6.3f, y=86.3f",x,y);

: .

A sample of input/output:

Enter the coefficients of first equation

234

Enter the coefficients of second ﬂqunti?n

432 :

The solution is x=-1.000, y= 2.000

Example 2.5.7 Write a program to read the Basic Pay (BP) of an employee and
calculate his/her D.A. (DA), H.R.A. (HRA), Tax, Gross Pay (GP) and Net Pay
(NP) and print them, where DA = 43% of BP, HRA = 15% of BP, Tax = 20%
of BP, GP = BP + DA 4 HRA, NP = GP - Tax. :

246

/* Program to calculate payment of an employee */
#include<stdio h> -
main()
{ !
float np,bp.da, hra, tax, gp;
printf{*Enter basic pay"-.ﬁ')_:
scanf (*$£°,&bp) ; -
da=bp*0.43;
hra=bp*0.15;
 tax=bp*0.20;
gpsbp+da+hra;
npsgp-tax;
printf (“Basic pay=%6.0f\nD.A,=%6.0E\nH.R.A.=%8.2f\n", bp,
; i ' da, hza) ;
printf(*Tax deducted=48.2f\nGross -Pay=%6.0f\nNet Pay=%6.0f",
tax,gp.npl;
)
Enter basic pay 50890
Basic pay= 50890
D.A.= 21BB3
H.R.A.= 7633.50
Tax deducted=10178.00
Gross Pay= BOAODK |
Net Pay=T70228

Exercise 2.5

1. Write short notes on scanf and printf functions.
2. Exlﬁlain the format specifiers c,d,e,£,9,0,8,% and Foabe 1)
3. Write C statements to perform the following:
(i) Read the values for X, Y, 7 from keyboard.
(ii) Read the values of A, B, C from first line and M, N from second line.

247

4: If the input line is
: 20.5 10
then determine the output of the following program segments

{1} scanf("%£%d", &a,&m);
© printf(*M= %¥d A=%f",m,a):
n=m*m+2;
x=a*a; -
printE(*%f %d",x.n);

{ii) scanf{*%f%d", ka, &m); ;
printf(*%f %4 %f",a,m,a+m):

5. Identify the errors, if any, in the following programs.

(i) int by float a;
scanf (*%f%d”,a,b);
printf("%f %f %£*,A,B,A+B};
printf{*%L",a*n);

(i1) int a, b,e
scanf(a);
b=a*2;
printf{%d %d %d,a,b,c);

(ii1) float x.y;
gcanf ("$EY, &x);
y/4=x*x+5;
printf(*%f %d4".x,y);

{iv; £loat a, b;
gcanf (*$f %d*,6a,5):
b=a+5;
printf({*a= b=*,a,b):

248

6. Write a program to find the
(a) . area, perimeter and diagona! of & rectangle whose two adjacent sides
are g and b,
{(b) area and diagonal of a square whose each side is a.
(¢) area of a triangle whose two sides are a, b and the angle between them
is '@ (area = ;ab sinf). '
7. Write the programs to find

(a) the volume and surface area of a sphere of radius r. [vol= m,
surface area = 4ar) |
(b) the volume and surface area of a right circular cylinder of radius r and
height h. [vol.=mr?h and surface arca=2a7h|
(¢) the volume of a right circular cone of height h and radius of the base
s 7. [vol.= mrH, : =
8. Write a program to read two vectors g = (g, ;. 0g) and § = (by; by By).
(a) Find the scalar product (&.b) and vector product (@ xb). [@8.b =
agby + ayby + Gyby & xb = (ayby - agby, by - arby Gy - arby)).
9. (i) A person deposits Rs. P in a bank. The rate of interest (simple) is GRs.
R% per annum. Write & program to determine the total interest (I) and
amount (A) at the end of T years. [I=PRT/100, A=P+1] (ii) A person .
deposits Rs. P in a bank. The bank gives compound interest @Rs. r%
compounded n times in a year. Write a program to determine the amount

(A) at the end of ¢ years. (4 = P(1 + et i |

10. Write a program to read three numbers a, b,.c, compute their sum and
average and print them, - '

2.6 Control Statements

Normally, the statements in a C program are executed in the order in which
they appear in the program and this is known as normal flow of control. But
to solve a problem sometime the sequence of execution of statements are
ehanged under certain conditions. To obtain the solution to a problem decisions,
repetitions, branchigg etc. are sometimes .performed. The statements which
control the sequence of execution of statements are called control statements.
C supports several control statements such as goto, while, do-while, switch,
for, etc.

249

false s true
logical
_EXp

st atemeﬁts
!

¥

Figure 2.2: Flowchart of if statement

2.6.1 The if Statement

This statement is very powerful and essential in any programming language
and this is of four types, (i) if, (ii) block if, (iii) nested if, and (iv) multi-
alternative if.

The simple if Statement

Its general form is
' if ({logical expression)
{ .
statements;
)
where logical_expression is a logical expression and statements are executable
C statements. This statement is also known as logical if statement.

If the logical expreasioq logical_expression is true then the statements
are executed and after that the next statement will be executed. But, if the
expression is false (value 0) then the statements are skipped and the statement
just after ti’le if statement is executed. The flow chart of the if statement is
shown in Fig. 2.2. : ;

If the number of statement in statements is one then there is no need of
opening ({) and closing (}) braces.

Example 2.6.1 The value of y is given by

C12x+35 iftx=<2h
= 7 2
25 =15 ifz>25

250

The if statoments to determine y for a given z are
if(x <= 2.5} y=2.0*x+3.5;
if(x > 2.5) y=2,0%*x-1.5;
Now, if the problem is to find the value of] and print it for a given z, then
the above logical statements are changed to
if{x <= 2.5)
{
y=2.0%%+3.5;
printf(*y=%f*,y);
} :
if{x » 2.5}
{
y=2.0*x*x-1.5;
printf(“y=%£",y);
} '
Here two logical if statements are used to determine the value of 7, but it

can be done by using only one if statement called block if statement discussed
in the following.

Block if-statement

The general form of this statement is
if{logical _expression)
{
statement_1;
)
alse
{
gstatement_2;

}
where statement_1 and statement_2 are any valid C statements. This staternent
is also known as if_else statement. The statements: statement_1 and
statement 2 are called if block and élse block respectively. If the value of
logical _expression.is true, then statement_l will be executed and else block
will be skipped. If logical expression is false, then if block will be skipped
and statement_2 of the else block will be executed. If there is no statements
in the else block then the keyword else is not required and in this case block

251

if statement becomes a simple if statement. If there is only one statement in
any block then the braces are not required.

Example 2.6.2 The block if statement for the function

2r+35 ifzs2h

™ Vos <1m isas

is written below.

ifix <= 2.5)
{
y=2%%+3,5;
}
else

{
yE2ou -1 5
}
This statement can also be written as
 iflx == 2.5
y=2*x+3.5;
else
y=2*x*%-1.5;
Mested if statement

In block if statement, the statements statement 1 and statement_2 can be
some other block if statement or simple if statement. If there is any block if
statement within the initial block if statement in if block or in else block or
in. both the blocks, then the resulting structure is called a nested block if
statement or structure. '

Multi-alternative if statement

In block if statement there are only two alternatives, one is if blor.:k {to be
executed when the logical _expression is true) and other is else block (to be
executed when logical expression is false), Thus, the function flz) defined by

22 +5 ifz<0
flz) =<2z, if0sz=<l
le=1, Hfrzl

252

can not easily be implemented using block if statement. A modification of this
block if statement is necessary for the implementation of this type of function.
This modified if statement is known as multhalternative i{f statement and is
of the form .

1£(exph) {
5y
) |
else if(expl) {
8y
}

else if(expl) {

.............

where expl,, exply, ..., expl, , are logical expressions and 8,, 8,, ..., S, are blocks
of C statements.

Here all else if are part of 1£ block. The above function flz) is lmplemented_
using multi-alternative if statement as follows:

if (x<0.0)
Fasxxe s,
else if((0, El<x} && Ix<1 01)
Ex=2,0%x;
elee
fx=x-1.0;

2.8.2 The goto Statement

The goto statement is usi:d for jumping from one position within the function
to ather plam in the same function. The general form of this statement is
goto label;

233

where label is an valid C identifier and it is the statement Iabel of an executable

statement (called target siatement) in the ssme function to which the control

is transferred and from that label normal sequential execution continues.
The general form of target statement is

label : statement;

Note that a colon must be given affer label. A label can be used against only
one statement, i.e. no two statements can have the same label,

Most of the programming languages support goto statement, though the use
of this statement is discouraging. The goto statement mainly used in:

2.0.3 The_ ‘while _Stat'ement

Using if statement, repeated execution of a group of statements can he
performed. Another useful statement which used to perform such type of execution
is while statement. It is a structured statement. The repetition of the loop is
defined only on a logical expression. The general form is

¥

while (logical expression)
{
Btatement (a);
(:
where logical _expression is a logical expression. If the logical expression
logical_expressicon Is true then the statements between braces will execute,
The. loop will continue when logical_expression is true. If
logical_expression Is false then the control goes to the next statement of the
while loop. '

Example 2.6.3 Write a program to evaluate a", where n is a positive integer and
z is any real number. ' '

#include<stdio.h>
main{)
{
int n,isl1;
. float prod=1.0,x;
“geant (“$£%d”, kx, kn) ;
while(i<=n)

254

{
prod*=x;
it
}
printf (“x=%f n=%d Value=%f\n* x,n,prod}:
}
210
x=2,000000 n=10 valug=1ﬂ24.ﬂﬂﬂﬂﬂﬂ

Example 2.6.4 Write & program to test whether n'given integer is a..palir':drome
- or not, by reversing the digits of the number.

Selution. An integer is said to be a palindrome if it is same with its reverse
integer, i.e., first digit is equal to last digit, second digit equals to last but one
digit and 80 on, For example, the integer 1234321 is a palindrome but 1234561
is not a palindrome. The following program tests whether an integer is a
palindrome or not and also prints its reverse integer.

#include<stdio.h>
main()
{
long int -n,m, revers;
printf{“*Enter an integer\n”);
scanf ("%d*, &n) ;
m=n;
revers=[,
while(n!=0)
¢
revers=10*revers+n$l0;
n={int]n.r‘1l3: /* integer pa._rl: aft‘.er division by 10 */
} :
princf("The reserve number is %d\n ‘,revers},
if (m==revers) '
printf(*%d is a palmdrmn\n Moml;
glse
printf(*$d is not a palindrom\n®,m);

233

A_sample of input/output;

Enter an integer 23432

The reserve number is 23432
23432 is a palindrome

Enter an integer 23451

The reserve number is 15432
23451 is not a palindrome

2.6.4 The do-while Statement .

Another type of loop is available in G, which is known as do-while staternent.
This statement ls similar to-while statement, but one difference is that the

logical condition appears in this statement tested at the end of the loop. For
this causes this loop is executed at least once.

The gefieral form of this statement is
do
R
statement (5);
}
while({logical_expression);
where logical_expression is an logical expression.

The loop will repeat when llogical_expression. [the condition) is true. The
loop will terminate when logical expression is false.

Example 2.6.5 Write a program to find the sum of some mtegera until sum of
the integers just greater than or-equal to 500.

/* sum of integers */
#include«stdio.h>
main() -
{
int amn=u,countt0,rh;
do
{ .
scanf (*$d" , &m) ;
Sum+=m;

256

count++; _
} whilefsum<B00);
printf("Sum=%d count=%d”", sum, count) ;

EEEEE

Sm'n-ﬁ'?!'.! L‘m.ntmt

It may be noted thet the lﬂglcal condition is tested at thﬂ end of Lha]urup
The execution is terminated when the logical expression i8 false and the loop
is repeated when the condition Is true, Also, this loop is executed for at least
one time since the condition is tested at the end of the loop.

2.6.5 The break Statement

This staterient is used to terminate loops. It is generu.liy'used in while, do-
while, for and switch statement. 't ' '
The general form is
: break:
it may be noted that no condition is required to execute this statement. ‘This
statemient is frequently used in switch statement; and when the break statement

is executed within a switch statement then control goes outside of the switch
statement.

The break statement ls illustrated in the folluwlng program.

Example 2.6.8 Write a program to read s sequence of at most 100 integers and
count the number of positive integers up to the ﬁrst. occurrence ni' negatives
integer. - . '
#include<stdio.h>
main()
{ ;
int count=0,x;
" de

257

{
scanf ("&d”, &x) ;
if(x<0} break;
count++;
eIk
~ while{count<100);
printf(“Number of positive integers entered is'%d'.c:;unt:-:
I

The do-while loop repeats for 100 times if all the integers are positive or
zero, but if there be any negative integer the loop will terminate and then the
value of count will be printed.

2.6.6 The continue Statement

The continue statement is generally used within a loop (while, do-while,
for, switch. etc) to bypass & portion of the loop. When the contimue
statement is encounter the control goes to the beginning of the loop and execute
the statement within it. Recall that, when break statement s encounter within
a loop, the control goes to the outside of the loop.

The general form of the continue statement is-
: continue; -
The following example is consider to illustrate the continue statement.

- Example 2.6.7 Given a set of n real numbers. Find the sum of only positive
numbers. ' - : -

#include<stdio.h>
main{)
|
int n, i=0;
float x, sum=0;
printf ("Enter number of date *);
scanf(“%d",&n);
dof
scanf ("%£*, &x) ;
i4+; , :
if (x<0) continue; /* read next data */
sum+=x; :

. 258

Jwhile(i<n);
printf{"The sum of positive numbers is %£",sum);
) .

Look at the continue statement. If z is negative then the statement aum#=x
s not executed, the control directly goes to the beginning of the do-while loop.
Reads the next number and again check for its sign. -

The break and continue statements are frequently used in switch statement,
. which is discussed below. :

2.6.7 The switch Statement

This statemeant is mainly used when a particular statement is to be selected
from & group of statements, based on the value of an identifier /expression. The
general form of this statement is -

switch ({expression)
(:
case expressionl:
statement(s);
break;
case expression2:
gtatement (8);
break:

case expressionn:
statement(s);
~ break; -
default:
" statement{s);
) -,

Here expression is an integer variable or integer expression. 1t may be noted
that ‘all these expressions can also b of character type as each individual
character has an equivalent integer value: '

The expressionl, expression2, . . ., expressionn are generally integer
or character constants. The expression is either simple or compléx.

259

The values of expressionl, expression?, ..., axpresaionh all are distinet
(i.e. deferent alternatives) and they are referred as case labels, These case
labels identify different groups of statements and they are unique within a
switch statement. The default label is optional. The switch statement is
executed as follows:

At first the value of expression is determine. If the value of it is equal to
expressionl then the control goes to the case expressionl, the statements
following it are executed and then the control goes to the outside of the switch
statement (due to the presence of break statement), If the value of expression
is equal to expression? then the control directly goes to the case expressinné,
execute the statement(s) of this group (i.e. the statements between second and
third cases) and the control goes to the outside the switch statement and so
on. If the value of expression does not match with any one of expressioni,
expression?, .., expressionn then the statements under default label will
be executed, if it is there. If default label is absent and the value of expression
does not match with any one of expressionl, expression2, ..., expressionn
then the switch statement do nothing,

Here we consider an examble where the switch Atatement is appropriately used.

Example 2.6.8 Write a program to compute the value of the Legendre polynomial
P (z) of degree n delined by

Plr)i= ¢

Pidi = 232 5 1)

Pya) = 3(523 - 3a)

Piz) = %{35&* ~ 302% + 3) for given n(= 1, 2, 3, 4) and .z,

#include<stdio.h>
main()
{
int n;
float x.p; ,
printf(“Enter the wvalue of '\ and x ");
scanf {“%d%£", &n, &x) ;
switch (n)
{
case 1.
B
break;

260

cage 2:. .

pel{3.0*x*%x~1.0)/2.0;
break:

caze 3:
p=(5.0*x*x*x-3.0%x) /2,0;
break;

cape 4:
p={35*pow (x,4)-30"x*x+3.0) /8.0;
break; '

}

printf ("\nP=3f for x=%f",p.x);
y ;

Enter the wvalue of n and x 3.5
p=-0,437500 for x=0.500000

If the value of n is 3 then the control directly goes to the label case 3 and
the value of p is evaluated from the expression Py(z) (from the block of case
3) and then exit.from the switch statement. Finally, the value of p is printed
by the printf statement. :

9.6.8 The for Loop

The most useful loop is for loop, it is very powerful statement in C. The
simple form of for loop is

for (expl; ' expl; expd)
{
statement(s):
}
where expl assigns the initial value of the control variable, exp2 generally
represents & condition. If this condition is valid then the statements within the
for loop execute. expd is used to update the value of the control variable.
Generally, expl is an assignment statement, exp? is a logical expression and
exp3 is & wnary expression or an sgsignment statement. Notice that expl, exp?
and exp3 -are separated by semicolons, this means they are three different
statements/expressions. ;
During the execition of for loop, the value of control variable initialized its
valué by executing expl. Then exp? is evaluated and checked exp2 is true or
false. If exp2 is true then all the statement(s) within the for loop are executad,

261

otherwise the control goes to the outside of the for loop. After execution of all
statements of for loop (this is called one pass of the loop) the exp3 is evaluated.

exp3 updates the value of control variable and then execute axp2 and check its
validity. Repeat this process until ‘expl is true.

The flow chart of for lbop is shown in Fig. 2.3.

| expl
] ' :
] : for loop
VN -] true
body of for loop
! =
expd
4 ; T

Figure 2.3: Flow chart of for loop

If the pumber of statements within for lﬂob-is one then there Is no need to
use braces. , Bt '

Now, we consider an use of for loop. Let us determine the sum of 10 numbers
using for leap, : '

main()
{
float sumsQ, x:
int i; ;
for(i=1;i<s10;i++)
{
scanf(*%f =, &x);
Sum+=x; :
}

printf(*Sum of 10 numbers is %£*,sum);

Here i is the control variable which is initialized as‘1 (since expl is i = 1),
The exp2 is i<= 10, a logical expression, The value of iis known (i = 1). Thus
the expression | <= 10 is true. Then the for loop reads a number as z. Add

262

it to the variable sum. Then the value of 7 is incremented by 1, since expd is
i++ (an unary operator). Therefore, the value of i now becomes 2. This value
satisfies the condition i <= 10. The loop repeats until the condition i <= 10
remains true.

It may be easy to observed that the loop is repeated for 10 times. It may
be noted that there is no semicolon (;) at the end of for loop. If there is a
semicolon at the end of for statement, then this is also o valid for statement
and this loop repeats until exp2 is true, but it does not execute any statement.

Example 2.8.9 Write a program to find the maximum and minimum among N

-~ numbers;

/* Computation of maximum and minimum among n numbers .*/
#include<stdio.h>
main()
{ :
©oint nd;
float max,min,x:
printf(*How many nurbers\n®};
scanf {*%d4*,&n) ;
printf(*Enter the numbers\n°®};
scanf ("%£", &%)
max=i; ’
minesx;
for{i=2;i<=n;is+)
{
scanf (*¥f", &x) ;
if {max<x) maxs=x;
if (min>x) mins=y;
} .
printf (*Maximum=%¢, Minimum=%£\n",max,min};
)
How many numbers
8
Enter the numbers

(=23 B 56 12 34

Eaxinmm-ﬂ_& 000000, Minimum=-23.000000

263

In this program the first number is read as ¥ and it is stored in max and min,
Since one number is given as input so n is reduced by one. The for loop i
repeated forn - 1 times: Each time the loop reads a number as x, it is compared
with max and min, If it is greater than max (less than min}, then we set max=x

(min=x) and control passes to the statement at the end of for loop. If x is not -
greater than max then the statement max=x is not executed.

Ei_nmple.i.ﬁ.lﬂ An approximate formula to find nl is 1! = .Jz_,-;:mﬂc*ﬂ (Stirling's
formula). Write a program to compute nl exactly and by Stirling formuls for
n=-1,2, .., 10 and estimate the percentage error in each case, j
/* Computation of Ffactorial using direct method
-and using stirling's formula */
#include<stdio.h>
#include<math, h>
main() .
{
long int factd:
float facts,error;

int i,n;
printf{“=======================;=¢===££¢\n*};
printf("n Exact by Stirling Percent\n”);
printf(* wvalue formula error\n®);
printf{“==========;:E:::::::::x::::::::w\n'];
forin=l;n<=10;n++)
{

/* factorial by direct method */

factd=1;

for(i=l;i<=n;i++)

factd*=i;

/* factorial by Stirling's formula ¢/
facts=sqrt(2*3.141592653%n) *pow(n,n) ‘expl-n);
error=fabs{factd-facts)*100.0/ (float}factd;

printf (*%d\t$la\t%-9.2£\t%E\n", 0, factd, facts,error);
} |

: printf{‘=======nz==u======nt======:=====hn'];

}

264

Output:

1 Exart by Stirling Percent
value formula ; error

1 1 0.92 5 . 7.786298
2 2 1.92 4.049784
3 6 5,84 2.729837
4 24 23,51 2.057600
5 130 ¢ 118.02 1.650696
6 720 710,08 1.378030
7 5040 4980 .40 . 1.182619
8 40320 39902.39 1.035728
9 362880 . 359536.88 0.921276
10 3628800 3598695.50 0.829599

2.6.0 Nested for Statement

" A for loop (outer for loop) may contain one or more £or loops (inner loops)
within its range. for loops occurring in this fashion are c¢alled nested for loops.
When one for loop is nested inside another, the inner for loop must be
entirely contained within the range of the outer for loop. There must be no
over-lapping of statements dnd each loop must have its own unique control
variable. However, the loops may have the same terminal statement. The
following are valid nested for loops.

(i) A for loop may be contained completely within another for loop.

-for slatement 1

............ 3

............

............

: ond of oz statement 1

This is the complete nesting of loops.
(if) Two or more for loops may be contained within another for loop.

265

- p————— for statement 1

............

- for statement 2

_____ — end of statement 2

——— for statement 3

............

(iii) Two or more for loops starting at different position may end at the same
position. '

for stalement 1

............

and of for statement 1,23

(iv) Transfer of control from any position within for Joops to inside and to
uut_'.ai.de of its domain are allowed.

!:I.’m: statemnent 1

ECY

| e -

e

:] end of for stn&mgﬁt 1

————> | for statement 1

E for at.ata!gent 2

end of for statement 2

E: for ptatement 3
unﬂ of for statement 3
en 1

of for slatement

Some examples of hnvalid for loops

(i) Thq domain of one for loop must not intersect the domain of another for
loop. '

tor statement 1

aaaaaa

Loesarmas = oo
.....

end of for statement 1
end of for statement 2

266

(ii) A transfer of control from outside to-within the:domain-of a for loap
is not allowed,

(ili) The transfer of control from one for !nnp to another for lﬂop is not
- valid,

The comma operator

We have mentioned that expl, exp? and exp3 each of these expresaiun-sf
statements contains single expression/ statement. But, in general, each of them

contains more than one statement/ expressmn and they are separated by the
comma operator {,). For example,

for{i=0,j=10; i<=10, 3I>=5; i++, j==)
¢ ;
gtatementl;
statement?;

statementn:
}

This statement initialize i = 0 and j = 10. Then check the validity of the
expressions i <= i0 and j >= 5. If they are valid then execute all the statements
statementl, statementl, ... statementn. Then the values of ¢ (increment)
and j (decrement) are updated.

Ii may be noted that the for loop repeats when all the conditions under exp?2
are true. If at least one condition is false then the for loop terminates. In the
above example, the loop repeats for 6 times, because the condition. § »= 5},
becomes false after 6-times though i <= 10 remains true.

267

2.6.10 Worked Out Examples

Example 2.6.11 Write a program to find the maximum among three numbers.

Solution. The following program is designed to find maximum among three
numbers using. if statements.

/* Program to find the maximum among 3 numbers */
#include<stdio.h>
main()

{

float a,b,c,big:

printf (*Enter three numbers\n®);

scanf (“$£8£4E°, &a, &b, &C) ;,

big=a;

if({big<b) big=b;

if{blg<c) big=c;

printf(“The largest number is 8f\n", big);

: ;
A_sample of input/output;
Enter three numbers

23.08 45.7 12.8
The largest number is 45.700000

Example 2.6.12 Write s program to test whether & given tnteger is even or odd.

Solution. Let NV be an integer. If the remainder (when N is divided by 2) is 0
then MV is even otherwise N is odd. The remainder of N is determined by the
expression N%2.

/* Program to test whether an integer {g even or odd */
#include<stdio.h>
main{}
{

int n;

princf("Enter an integer\n®);

scanf (“%d",&n);

if (n%2==0)

printf("$d is even\n*,n);

- 268

else
printf(*%d is odd\n",n};
}
A sample of input/output:
Enter an integer
207 _
567 18 odd:

Example 2,6.13 Write & program to test whether & given integer is perfect
square or not. :

Solution. A number I is a perfect Squat‘e if the square of the integer part of
its square root is equal to M. That i if intf(N) x int(J§) = N then the
~ number is a perfect square otherwise the number is not a perfact square.

/* Program to test whethar an integer is perfect square: *
#includexstdio. >
#include<math.h>
main[}l
{
int n.m;
printf(*Enter an integer\n”};
scanf ("$d",&n);
m={int) (sqrtin));
if (m*m=n)
printf (“%d is perfect square\n”,n);
else E
printf(*%d is not perfect sguare\n’,n);
}:
Enter an integer
224
224 is not perfect square

Example 2.6.14 Write a program to test whether an integer is Armﬁtrcmg number,

Solution. An integer N is sald to be an Armstrong number if the sum of cube
of its digits is equal to the number itself, For example, the number 153 is an
Armstrong number as 18 + 5° + 3° = 1853,

269

/* Program to test whether an integer is Armstrong number */
Finclude<stdio.h> :

#include<math.h»

tiain{)
{
int n.m,rem, sum=0;
printf("Enter an integer\n”);
scanf ("%d",&n);

M=ry;

/* Finding sum of-cube of the digits */
whﬂetnl-ﬂf -
{

rem=n&lld; /* finding remainder #/
sumt=pow(rem,3); /* sum of cube uf digits */

n=n/10;
}
if (m™sum)
printf("The integer 9d is an Amstrong number”,m) ;
else] _
printf{®The integer %4 is not an Armstrong number”,m);
e _ :

The int'egé:: 225 18 not an amuﬁrnng mimber
Exarnple 2.6.15 Write a program to compute the value of f{z) for s given z where

z=1, forz<l
flz) ={1-z, forlsz<?
2-2%, forz22

/* Program to find the valus of a function */
#include<stdio.h>
main()
{ .

floac x,fx;

printf (*Enter the value of x\n"};

scanf (*%E~, &x);

if{x<1.0)

270

fx=x-1.0;

else if((l.<=x) && (x<2.0))
fx=1.0-x; ;

else
Ex=2.0-2"x;

printf(~£(x}=%f at x=%£\n", fx,x);

f{x)=-4,250000 at x=2.500000

Example 2. 6.16 Write a program to identify the nature of the roots only of a
quadratic equation. '

Solution. The discriminant’ d of the equation az® + bz + ¢ = 0 is b* - dac. If

d < 0 then the roots are complex; if-d = 0 then the roots are real an:i equal; .
candifd>0 then the roots are real and distinct.

/* Program to find the nature of the roots of a guadratic equatian i
finclude<stdio.h
#include<math.h>
main() =
{ :
float a,b,c,d;
printf("Enter the values of a, b, c¢\n"):
scanf ("$ESE%E", &a, &b, &) ; .
d=b*b-4*a*c;
if(d<0)
printf(*Roots are comples\n”};
else if (d==0)
‘printf(*Roots are real and aqual\n'l.
else
printf("Roots are real and unequal\n®);
B
A_sample of input/output:
1712 '
floots are real and unequal

27

Example 2.8.17 Write a program to find the roots of a quadratic equation,

Solution. Let the quadratic eguation be a2® + bx + c = 0. Its roots are

=biv¥ —dac g4 4. b - dac and P__ S vid|

1 el
o 2" . g = % . Af d < 0 then

roots are p+ig, if d = 0 then the roots are p, p and if d > 0 then the roots
are ptg

=

/* Program to find the roots of a quadratic eguation */
#include<stdio.h>
#includesmath, h»
main(}

{
float a,b,c,d,p.q:
printf(“Enter the values of a, b, c\n"):
geanf (*RE%E%LY, &a, &b, Ec}. :
d=hb*b=d*a*c;
p=-bi(a+a);
g=sqre (faba(d)) /(a+a);
if{d=<0) ;

printf{*Roots are (%f,%f) and (%£,%f)\n",p.q.p.-q):
else if (d==0) :

printf(“Roots are %f and $f\n",p. Plr
elge

printf(“Roots are %f and %f\n*,p+qg.p-q);

} ' _
! twial ¢/ .
Enter the values of a, b, ¢
123

Roots are (-1.000000,1.414214) and (-1.000000,-1,414214)

¥ . " :
Example 2.6.18 Write a program to read N real numbers and count the negative,
zero and positive numbers among them.

/* Counting of positive, negative and zero */
. #include<stdio. h>
main{)

272

int n, i,neg=0,pos=0,zero=0;
float a;
printf{“Enter number of numbersi\n®});
scanf ("%$d",&n); -
printf (*Enter the numbers\n®};
forf{i=l;i<=n;i++}
{
scanf (*$£", ka);
if(a<0) negr+;
else if (a>0) pos++;
glge zerot+;
) :
printf ("Negative no.=%d, Positive no.=%d, Zero=%d\n” ,neg,
i pos, zero};
}’ =
A _sample of input/outpul:
Enter number of numbers
I 7
Enter the numbers
12 -89 0 23 -12 0 =27

Negative no.=3, Positive no.=2, Zero=2

‘Example £.6.19 Write a program to find the sum of the series

I .
1+r_1_+-m—+£—+.....+—
2! 3! “nl
for given x and n.
- E“. IlH‘i
T, F—— t =
Solution. Here ¢ - and b (n+ 1)1

' t
L (n+1 z0 n+l

H it s
g FRE e,)
Thus, ¢ .- el

/% Program ‘to find the sum of ¢ finite sm:‘_[u# "
#include<stdic.h>

273

#include<math.h>
main()
{
int n, i:
float x,sum=l,term=1; :
printf ("Enter the values of x and n\n");
scanf ("$£%d", kx, k1) ; '
for{i=1l;i<=n;i++)
{
term*=x/1i;
sums=term;
}]
printf(“Sum of the series = %f at x=%5.2f and n=%d\n*,sum,x,n);
)

Enter the values of x and n
1220 _
Sum of the series = 3.320117 at x= 1.20 and n=20

Exnmple 2.6.20 Write a program to compute

z° ! T
Jo(z)=1- + - +
e 2212 313! _
for a given z by direct summation of successive terms up to and including the
firat term that has a magnitude greater than 109,

Solution. Here the nth term of the series is

:L""
to=(-1)"- n=0,12.
& 28 (1)
B (1}" 1 gin+d
Therefore ¢ . =(-1)""
2 2 {(n + 1)I)
¢ 2 : 2
i (558 BE _......._I t -}
No 1 f.“ 4{1‘1+1}2 1_:!1' n+l 4{ﬂ+1}1]
That is, if & term Is known then the next term of the series is obtain-by
; y _
e ®-termi
a(n +1)°

where term means nth term. :
274

/* Program te evaluate Bessel's series */
#include<stdio.h>
#include<math.h>
main()
{
float x,sum, term, epsz] ,0e~B;
int n,m;
printf (“Enter- the wvalue of x\n");
scanf ("%£", &x) ;|
/* initialization of sum, term, B %
term=1,0;
sum=1,0;
n=0;
while (fabs(term)>eps)
{ ;
term=-x*x*term/ (4. *(n+l.)*(n+l.));
C sum+=Carm; :
Ni++]
}
printf(*J0(%5.3f)= SE\n", %, sum) ;

Enter the: \'ralua of x
S28
J0(0. 5251= 0.932018

Example 2.6.21 Write & program to compute Greatest Common Divisor {GCD}
and Lowest Common Multiple (LCM) of two given integers.

The method to calculate GCD and LCM is describeq in Unit 1.

J* Program to dattmine GCD and LCM of twe u -egers
prod, rem represent respectively product wid remainder */
#inelude<stdio.h> =
main()
{ - '
int n,m, prod,rem,ged, lom;
. printf(*Enter two integers\n”);
scanf {*&3%d”, &m, &n) ; ¢

275

printf({*m=%d n=%d\n",m,n};
prod=m*n;
while(n!=0}
{
rem=m%n;
if(rem== 0} break;
m=n;
n=rem;
}
lem=prod/n;
gedsn;
printf("LCM= %d and GCD= %d\n",lcm,ged);
}

A_sample of input/outputs
Enter two integers

g 60

m=8 n=60
LCH= 120 and GCD= 4

Example 2,8.22 Write a program to generate first N terms of the Fibonacci
sequence. j

Solution. The Fibonacei sequence is 0, 1, 1, 2, 3, 5, 8, 13, It may be noted
that the suin of two preceding terms is the next term. Mathematically, £, =
F.i+ F, where £, = 0, F, = 1. F, is the nth term of the sequence. The
following program generates first IV terms of this sequence for a given N.

[* Generation of Fibonacci sequence */
#include<stdio.h> i
mainf)
{ o
int’' £0=0,f1=1.f.n.1:
printf{*How many numbers\n®);
scanf (“%d”,&n) ;
printf("0 1 “);
for(i=2;i<n;i++}
{
E=£0+£1;

276

. f0=£1;
fl=£;
printf{*%44*,1);
}
}
A_sample of input/outputs
How many numbers
0 1 L A % 5 8 13 21 36 85 99
Example 2.6.23 Write a program to find the prime numbers between two given
integers.

/* Program to generate prime numbers between two given integers+*/
finclude<stdio.h>

finclude<math. h>
mainf)
[:
int i,9.k,n,m, flag=1; -
printf("Enter two positive integers m and .n (m<n)\n");
gcanf [“§d%d*, &m,&n) ;
for{i=m;i<=n;i++)
{
flag=1:
k=(int)aqre (i), :
/* checking i for prime */
for(j=2;:je=zk;j++)
{
PE((i%9)=s0){
flag=0; break;
} ' :
)
if(flag==]l) /* { is prime */
printE(*%dd ™, i);
)
)
Enter two positive integers m and n (m<n)
40 80 _
1 4% 4F 5% 8890 61 BT WE - gE s

77

Exercise 2.8

1. Write short notes on (i) goto statement, (ii) i: sta.taméht. (iii) block if
statement, (iv) nested:if statement, (v) multi-alternative if statement.

2. Write short notes on (i) for lmp, (ii) do loop, (ili} dﬂ—whila loop, (iv)
~ continue statement, (v) bre&k statement.

3. Draw flowcharts of [;} gata statement, (ii) if statement (ili) block 1if
statement, (iv) nested if statement, (v) multi-alternative if statement.

4. Compare continue and break staternents.

5. Indicate the errors, if any ‘m:the following C statements,
(i) goto next
(il) goto pi;
(i) go to 156
(iv) if(xsy) ye5
(v) if(x<=y) maxssy;
(vi) ifix<y) z=xey;
(vii) 1f(x<y) then-z=x+y;
6. Assume that at the beginning of each of the following program segment

=9 and N=15. What will be the final vnlueu of N and M. aftcr the
execution of each segment ?

(i) ifimen) n=n+5;

n+=3;
(ii) 1ifi(2*m ==n) goto 150;
: n++ i
goto 120;
150: n=m;
120: n+=5;

T. Wr'ite.a program to find only the real and unequal roots, if any, of a
quadratic equation, with appropriate message. -

278

8, Write a program to check the nature (real and equel, real and distinet or
imaginary) of the roots of & quadratic equation aa® + bz + ¢ = 0.

9. Write a program to find the sum of the following series, correct up to 5
significant digits.

3) T

(a) sinz =z - :-;-?+ i_l -% + e (when z given in degree,fmdiaﬁ}.
e k-
(b) cos z=1 - StEn (when z given in degree/radian).
T
(c) . & = 1+z + '%T"'%"’ %— E RRTTPTIIPTY (for any)

10. Writé a program to read N rea.l numbars and count the negatwe. zero and
pnmtlve numbérs among them.

.“il, Wnte 8 program to test whether an integer is (i) divisible by 2, (ii) divlnible
by 3, (iii) divisible b;,' 7 and (iv) divisible by 5.

12. A university gives first class degree if the average marks in an examination
iz 80% or above, secand class if the marks 40% or above and the candidate
fails if his/her marks is below 40%. Write a program to find the grade of
N (=10 say) students.

13. A nationalized bank has a fixed deposit scheme and the rate of interest for
different periods are given below :

duration rate of interest
3 yrd or more 10%
2yrs to less than 3 yrs | 9%
1 yr to less than 2 ym 8.5%
less than 1 yr - ; 7.5%

The interest is compounded quarterly. Write a program to find the total
amount to be returned by the bank, on a fixed cepital, at the end of & fixed
period. ;

[total return A = P(1 + 7=)"

279

14, Indicate the errors, if any, in thﬂ_fs}]lﬁWing for statements.
(1) for{i=1,i<=8,++i)7
(ii) for(i=0;i=5;++i};
(iil) for(i=0;i<=10);"
(iv) for{i=1l;i<=5:i+=2)
(v) for(j=i;je=10;i++);

‘15. Write programs to find
(i) minimum among n numbers.
(i) maximum among n numbers.
(3if) maximum and minimum among n numbers

16. Given a set of n integers. Wnte programs to’ find the
(i) total number of even integers.
(i) total number of odd integers. ; :
(iil) sum and product of even'integers.

17, The Fibonacci sequence is defined as follows: The first and second terms
of the sequence are) and 1. The third and subsequent terms of the sequence
are the sum of just preceding two terms. That is, {, = 0, &, = 1, and l, =
fp)+ t, g0 02 2. Write & progran to find the first N (=100, say) numhers
Df the sequence.

18, Write a program to find the sum and average of n numbers.

19. Write the following segment, vsing for loop.
counta(;
i=l;
next: scanf(*¥f" ga);
if(a30) count++;
f44
if(i<=250) goto next;
20, Rew'rne the following program segment without using for loops.

Eorli=l;i<=4;i++)
for{i=1;j<=20;F++).
printf(*%dtd” &i,&j);

280

21, Find the output. of each of the fullﬂwiﬁg program segments:

R e -

is2;
325
forik=1;ke=5;k++]
v
e
i=j%2;
- J+=k;
1
: printf(*sd %d %d*.i,3.k);
(if) ' '
m=10{();
n=0;
1=0;
count=0;
forljsl;j<=5;j++)
for (k=4;k>=0:k-=2)
{
i+=2;
for{l=l;les2;1++)
{
n+=d:
B
. }
Counk ++;
\ ;
printf(*%d. %d %4",m.n, count);
2.7 Arrays

. Sometimes, it is necessary to tepresent a group of values by a common
variable narne. For example, the marks obtained by 200 students in an examination-
may be represented by a variable, ssy MARK, and the variables MARKI1],
MARK][2], ..., MARK[200] represent the marks of the first student, second
student, ..., 200th student respectively. A method should be used for numbering

281

the students. A set of data with similar pmperhes (homogeneous) and which
are stored in consecutive memory locations under a common variable name is
called an array or subscripted variable. Here MARK is an array. It is also called
the subscripted variable with one subscript. An individual item is called the
element of the array. Each element of an array is identified by using subscript
(or subscripts) within parentheses after the common variable name (i.e., by the
array name). An array is called by the name of the variable part. In C, an array
cun hiave one, two or three subscripts, If there is only one subscript, the array
is called one dimensional. If there occurs two (three) subscripts, then the array’
is called two (three) dimensional. Some computers allow even more than three
subscripts. -
The general form of a suhsc;‘iptdd-v&ri&bia or array is
name(i], name(i][]] _

where nane is a valid C variable and i, j are subscripts. The use of an appropriate
type statement a variable name can be declared as real, integer, character, ete.
The following rules should be [ollowed when using a subscript.

(i) A subscript may be a valid integer (constant or variable).

(i1} The velue of a subscript may be zero or positive.

(iii) A subscript must pot be a subscripted variable.

(iv) If a variable is used to represent an array, then it should not be used as
an ordinary variable, i.e., if x denotes an array then x should not be used
as an ordinary varmble

A subscripted variable should be declared prior to its use.

2.7.1 Declaration of One Dimensional Array

In C, an array is declared as the same way as ordinary variable. Only new
thing is that the size of the array must be specified within the square brackets
after the BITAY nAMme, The general form of definition of one-dimensional arcray is
: data_type . array_name[expl;

. where data_type is the type of data (i.e. int, float, ete.), array _name ie the
valid variable name in C, and exp is a positive integer constant or v&ria.hle,
which represents the size of the array.

Exmplﬁ 2.7.1 Some nna—dlmensmnal array declaration is shown below.

int x[20);
float alld];
char namef20];

282

In the first declaration, the array name is x and its size is 20. For this
declaration a memory is allocated for x to store 20 integers, 1.e. x can store only
20 integer values to the variables x{0], x([1}, =(2], ={19].

Similarly, in ‘second declaration a is an array of size 10 and it can store nu»nl;.r
ten values to the variables a0}, afl)., al2),.. & ., a(9], whereas third
declaration indicates name is an array of size 20. It may be noted that the
memory ia allocated for an array during its declaration.

The array size may also be defined by a symbolic name rather than a fixed
integer constant. This makes easier to change the array in future. By changing
the value of symbolic constant the size of array can be changed. The value of
symbolic constant may defined by using #defined statement as follows.

¥define MAX 10
The following declaration
int x[HARj ;
declares an integer array of size MAX, ie. of size 10. The constant MAX may be
used within the program but. its vaiue remains 10.

Initlalization of ¢ne dimensional array

Like ordinary variable, an array can alsu be initialized during its declaration.
The general form is
data_type array name{exp]={valuel, value.'!, .. «, valuen);
where data_type, array_name and exp are same as in provious declaration. The .
valuel is the value of the first element, value2 Is the second element of the
array and so on. exp is the optional in this declaration. :
Example 2.7.2 The following declaratmns imtml:ze the three arrays roll,
vowel and weight, ;
ink rull{ﬁ]'-'[lﬂ ZG 15,20, ﬁﬂdﬂh
char wvowel[5]={'e’,'i’',’'0’','a’','u');
float weight[3]=(40.5,50.8,30.9});
These declarations initialize three arrays roll, vowel and weight. The value
“of individual elements are shown below. :
roll{0)=10 vowel[0l='e' weight[0]=40,5
roll[1]=20 vowel[1]='1' welght[1]=50.8
roll(2]=15 vowel(2]='0' welght(2]=30.3
roll(3)=20 vowel[3)s'a’
roll{4]=60 wvowel{d]='u’
roll[5]=30

283

A variation of this declaration is also available in C. If the values of some
array elements are not spetified within braces, then the initial values of these
elements are automatically assign to 0. Consider the following declaration.

“int roll[6]=(10,15,20};
float "weight[3)={40.5,2.0);

For these declaration the'values of ind]viduni elements are migned.as follows.

roll{0}=10 welghtfﬂl-ﬁﬂ 5,
roll[1]=15 weight[1]=2.0
roll[2]=20 weight[2]=0.0
roll{3]=0
roll{4]=0
roll(5]=0

Note'2.7.1 Comparison, assignment, etc. operations between two similar arrays
can not be done with s single statement. These operations are performed
element wise with the help &f a loop statement such as for loop. For example,
the array a can be assigned to the array b by the following statement

for{is0; i<n; i++)
Blil=alil;
hlputfﬂutput of one-dimenslanal array

There is no single statement to read an array in C. But, loops (for, whﬂe,
etc.) are used to read/write an array. Usually the scanf/printf functions are
used to read/write an array.

Suppose a is a floating point array of size 50. This array can be read by the
following statements.

for{i=0; 1<50; 1++)
scanf{ §E". kalil);

Sumlarty. this array cen be printed by the following statements,

for(i=0; 1<50; i++)
printf (“%£*,ali]);

Let name be an array of characters containing 20 characters. This array can
be read as follows :

284

for{i=0; i<20; _i-H'l
name(i}=getchar();
or this array may be.;gad 88
Ke0;
do
i
name [k) =getchar () ;
k+w:

}whileikciﬂi:

“To print the array of characters, putchar function msmad of getchar function
is used. :

Examplﬁ 2.7.3 Write a program to find the sum and average of N numbers using
ATTRY,

Solution. Let g, i = 1, 2 .. i be an array of size n. The sum i 49 is cnmput.ed
: i)

in the following prﬂgrnm

/* Computation .of the sum and average of n numbara L
#include<stdio,h>

main(}
t | |
float a(50],sum=0, ave;
int n,i;
printf(*Enter the wvalue of mn'}.
scanf ("%d”,&n); .

printf("Enter the numbers\n”);
forli=l;icen;i++){ '
scanf (*$£”, ga[i));
sum+=alil;
}
ave=sum/n;
printf("Sum=%f Average=%£\n*,sum,ave);
}

285

Enter the wvalue of n

g

Enter the numbers _
100.45°345.32 879.2% 89.45 76.20 784

Bum=1569.049927 Average=261.508331 |

2.7.2 Multidimensional Arrays

In multidimensional arrays the number of subscripts is more than one, For
example, a,is a two-dimensional array containing two subscripts i and j usually
used to handel matrices, Similarly, a. ik 16 8 three-dimensional array with throe
indices 4, j and k. The declaration of two or more dimensional arrays is similar
to one-dimensional array, except that a pair of square brackets is needed for
each subscript. That is, for k-dimensional array, k pairs of square brackets are
neadad The general form of declaration of multidimensional array is

data_type array_namelexpl]lexp2)... lexpk];
where exp!.. exp2, ..., expk are k positive valued integer constants or
variables, these indicate the number of elements associated to each wbscript

The following statement '

float x{4](5)
de::lm that x Is a two-dimensional array with the first subscript ranging from
0 through 3 and second subscript ranging from 0 through 4, i.e. it declares the

following elements.

x[0)[0] x[0] (1) =[0)[2] x([01(3] x(0]([4}

x(1110] =(1](1] =[1)(2) =[1](3] x(1](4]

x[(21[0) x«[2] (1] =x[2])42]) =x[2}([3] «x[2](4)

x(31101 =x{3)[1) =[31(2)} %[3)03] =(3)(4)

Thus the size of this array is 20. It may be noted that the elements of a
twodimensional array are store in memory according to the above order (row -
wise). - {

In two-dimensional array first and second subseripts are generally referred
88 row and column respectively,
A three-dimensional array can be deflned as

float a(l0]([5)(4);

double records{T][R](C]:

286

The first declaration defines a three-dimensional array a whose first subseript
ranging from 0 to 9, second subscript ranging from 0 to 4 and the third one is
ranging from 0 to 3. That is, the array a can store 10 % 5 x 4 = 200 elements.
Similarly, in second declaration, the array records can store T'x R x Celements,
where T,H and C are symbolic constants,

Initialization of multidimensional array

Like one-dimensional array, the multidimensional array can also be initialized.
A two-dimensional array initialize row w:se For example, the array af3] (4] is
initinlized in the following order.
al01(0] afo)(1] a[ojf2] alo}(3]
afl][0] a[1][1] a{1)[2] a(1](3]
af2][0] af2](1] al2](2], al2](3]
That is, keeping the first subscript fixed, the second subscript is varying fmm
0 to the last value of it, then Increase the value.of the first subscript by one
and repeat all values of second auhscnpt and so on, Consider the following
inltiallzation.
- int mark(2] E]}-[EE,EHJG,W.EG.BDI:
The values of all’ elements of the array mark for this initialization ls shown
below. :
mark[0)(0]=50 marki0](1]=20 mark([0][2)=30
mark(1] (0]=40 mark(1](1]=60 mark{1][2]=80
If the number of elements within the braces is less than the array size, then the
remaining elements set to zero. For example, the declaration
int mark[2](3]=(50,20,30,40};
imtmhzea the elementa as
mark (0] [0)=50 mark[0](1)=20 mark(0][2)=30
mark(1]{0]=40 mark[1] [1}=0 mark(1][2]=0
A two-dimensionel array can also.be initialized as a group of elements. The
above array mark is initialized a3 follows. -
int mark(2][3]={ :
{50,20,30)
{40, 60,80}
il
- or !
int mark(2)(3)={{50,20,30}),(40,60,80});

287

In this initialization, the numbers of the set {50, 20, 30} are assigned to the
elements mark{0] [j] for j = 0. 1, 2 and the number of second set- {40, 60, 80}
- are assigned to the clements mark(1](j] for 3=:0,1,2

If the number of values within braces are less than the number of elomants
of the array, then the remaining elements set to zero.

The input/output statements for multidimensional arrays are similar for -
onedimensional array. For example, the input statement to read the floating
point array a[i][j}, where i = 1,2, ... mand j= 1, 2,..., nis

. fnr{i=ﬂ;i<m;1++] ' '

for(j=0;j<n;je+)
scant ("8£¢,&al1)(31);

Similarly, its output statement is

for{i=0;ism;i++)
tor (=0 j<nijé+)
printf("$f ", ati)(j)):

To print this array row wise the following statements are used.

for(is0;i<m;i++}
e
for(j=0;j<n;je+)
printf(=%f *,a[i]l[i)};
printf{*\n");
) ;
An example of two-dimensional array is given below.

Exemple 2.7.4 Write a pmgmm to find the tmnspuse of a matrix of order mxn.

Eulﬁtiorn Let A= |a,], . bea ‘matrix and its tra.nspmle be 8 = {b where

i } o
f J Lt
a., UI i 1! 2’ FEnE ”I1- J 1 2

/* Program to find transpose of a matrix */
#include<stdio,h>
main()
{

int i.3j.,m.n;

float a[10][10), b{10}(10];

printf(*Enter the order of the matrix a\n"};

scanf ("$d8d”, &m, &n};

288

printf{*Enter the elements of the matrix a\n®);
forii=0;i<m;i++)
for(j=0:j<n;j++)
scanf (“4f", &ali)[3));
for(i=0;i<m;i++}
for (3=0;j<n;j++)
bijll{il=ali} (i)
printf(*The transpose of a is \n");
forlisOiien;i++)(
for (j=0;j<m;j++)
printf(*¥5,2f “.bi){I));
printf(™"\n");
)
}
Enter the order of the matrix a
34
Enter the elements of the matrix a
23486
1884
1234
The transpose of a is
2.00 7.00 1.00
3,00 8,00 2.00
4.00 9,00 3.00
6.00 0.00 4.00

2.7.3 Worked Out Examples
Example 2,1_'.5 (Sine series) Write a program to cumpute'

R
L 1 R |
to three significant d:glts for z = 30°, 50° and 73° b}' direct sunmation of
successive terms and print the values of z; number of terms used in the series
to obtain the accuracy and value of the series in tabular form as

1 No. of terms Value of the series

289

Solution. Here the series is the sine series and the nth term of the series is,

=1
1“ ={_l]"-] 32 N ﬂ = 1. 21 rEd

(2n = 1)!
1 1:i'lm-l
L] e
Therefore ¢, {) e |
S - L
NUW1 f." {2?1*‘1]!:211]1 or, “mn+l 23{211_*1}:"‘ fn = 1, 2‘

7
. ezl ' s ;
That is, the newterm = on2n +1) oldterm, where initially oldterm=first

ferm=x

f* Prugrnm to find the sum of the sine series *f
‘#include<stdio.h> :

#include<math.h»

" main()

{
float x,termysum,al4],eps=1.0e-5;
int n,i:
printf ("Enter three values in degree\n®);
scanf (“SERERE” ka(l),&al2],&al3));
printf("x(in deg) No. of Value of \n*) ;
printf(* terms the series\n');
for{i=l;i<s3;i++)
i
x=a[i])*3.14159/180.; /* change to radian */
term=x; .
sum=x;
n=l:
do
{
term=-~x*x*term/ [{2.*n)*{2*n+1))
sum+=term;
ﬁ++;
Jwhile(fabs(term)>eps);
printf(*%5.2£NL85d\L89.3 6 \n" afi], n, sum) ;

290

A_sample of input/output:

Enter three values in degree

S0 50 73

%(in deg) No. of Value of
terms the series

30.00 4 0.500
50.00 5 0.766
73.00 6 0.956

Example 2.7.6 (Horner method for polynomial evaluation) Write a program to
find the value of a polynomial by Horner's method.

Solution. Let the polynomial of degree n be
82" + a, 2" + a, a2 + + 0%+ q
This can be written as
(@, + a,.)" + 0,2 + .. 4 g + g
= ((az + a")z + a"N)a"? 4 .. + az + _a
= e =L {(n".'!:'-_*i- G)T+ 8,)T + i 4 @)1 + a
The computation begins from the inner parentheses, i.¢., from (o.x+ a,)z,
and terminates when n = 1. It may be noted that to find the value of each inner
loop, one addition and one multiplication is required. 8o, to compute the value

of a polynomial of degree n we have to compute only n additions and n
multiplications. '

/* COMPUTATION OF FOLYNOMIAL USING HORNER METHOD */
#include<stdio.h> ' ;
_main()
Sl 5 :
tloat af20],sum=0.,x;
int i,n:. ; .
printf("Enter the degree of the polynomial *};
gcanf (*%d",&n) ;- ;
printf("Enter the coeffn. from highest degree\n”);
for{isn;ir=0;i-~) e
scanf ("$£" &ali});
printf(“Coefficients of the polynomial are\n*);
forii=n;i>=0;i--)
printf("%6.3f *,ali]):
printE("\nEnter the value of x *}:

291

scanf ("%f", &x);
/* Evaluation of polypomial */
forl(i=n;i»>=1;1i=)

sum= {sum+afi]) *x;
sum+=a[0];

printf(“\nVALUE OF THE PDLYHGI&IP.L AT %6. 3f IS %9.4f~, x,sum);
}

A_sample of input/output;

Enter the degree of thexpolynumial_

4 :

‘Enter the coeffn. from highest degree
1234568158

Coefficients of the polynomial are

1.200 3.400 5.800 B,100 5,000

Enter the value of x

m'ﬂ

VARLUE OF THE PQLmﬂMIﬂL AT 1.500 IS 'ﬁ? 3000

Example 2.7.7 Wiite a program to split a number into digsts and find the
(1). sum of the digits,-
(ii) product of the digits,
(iii) the largest digit in the number with its position of occurrence and print
~ the digits in reverse order with single spacing.

Solution. Let N be the given number. First, of all we divide N by 10. Then the
remainder is the right most: digit of the given number. Let it be D[1]. The
quotient is taken as-N. Again we divide N by 10, The remainder is taken as D[2]
and the quotient as N. This process is repeated until the remainder becomes
0. Let k be the total number of digits of the given number. Then D[k, D[k-1],
., D[1] are the digits of the given number in succession. Next, from the array
D we compute the largest digit with its position and the éum of the digits. The
digits in reverse order are uhtzﬁned by printing the array D as D{i] Dl
« D4 i}
f* Program to split a number into digits and to find
the sum, the product of digits, maximum digit within the
number with position and printing of digits in reverse order.
*‘;
#include<stdio.h»
main{)

292

int d{101, n,m,k=0,1i,sum=0,prod=1,max, pos;
printf{*Enter an integer ")
scanf ("%d",&n);
do
{
m=n/10;
kt+r
dik]=n%10; /* remainder */
n=m;
}while(n!=0};
printf{"The digits are \n");.
foriisk;is=1;i-—)
printf(“¥3d~,d[i]):
/* sum and product of digits */
fori{i=l;i<=k;i++)
{
sum+=d (i) 5
prod*=d[i] ;-
} _ - !
printf(*\nSum of the digits = %4d and product=%5d\n",sum,prod);
/* Computation of maximum digit with position */
max=d[1l]:
pog=l;
for{i=2;i<=k;i++)
iE(d[i)>max)
pos=i;
max=dA[i];

} : ;
printf("Maximum digits is %d at position $2d\n" ,max, k-pos+1) ;
printf(*Digits in reverse order\n”"}; '
for{i=l:i<sk;i++) '

printf{"%2d4”,d[il};
return:

Enter an integer

2873

293

The digits are

R ol _
Sum of the digits = 20 and product= 336
‘Maximum digits is 8 at pesition 2
Digits in reverse order

= s o I

Example 2.7.8 {Searehmg) Write a program to search an element. within a list
of elements.

Solution. Searching is & process which checks whether an element is in a 2 list of
elements or not. The element which is to be genrched is culled ‘key’ element.
If the key is available in the list then the search is called successful, otherwise -
it is called unsuccessful search. In searching method every. element is compared
with the key element and if they are equel, then the search is succeasful.

/¢ Program to search an element within a list of n elements */
#include<stdio.h»
main()
{ :
int i.n,flag=0;
float a[100].key;
printf ("Enter .number of elements in the liut\n ¥i
scanf ("%4", kn) ;
printf(*Enter the elements\n®);
for(i=1;i<snii++)
scanf (%€ Ralil):
printf (*Enter the key element\n®);
gcanf (*$£", skey) ;
for{i=l;i<sn;is++) -
if (a[i]==key)
{
flag=i;
break;
)
if(flag!=0)
printf (*Number %$6.2f is in the list at posi\:mn ¥d\n", key. Elagl :
else
printf{‘ﬂu:raaer $6.2f is not in the list\n”* key):

294

return;

)
A sample of input/ottput:

Enter number of elements in the list
7 ;
Enter the elements

10 345 60 239 10 90 =50

Enter the key element '

0 .
Number 70.00 is in the list at position §

Example 2.7.9 (Sorting in ascending -order) Write a program to arrange n
numbers in adscending order.

Solution. Sorting of numbers is a very important problem in Computer Science.
Different sorting techniques are available. Here we present straight selection sort
algorithm and the program to do it. The iden of this sorting technique is very
simple. In the first step, the first element, is compared with the remaining
clements and the minimum element is placed in the first position. In the second
step, the second element is compared with the remaining elements, except the
first one, and the minimum one is placed in the second position. This process

_ is continued until the last but one e]emnt is compared with the last element.

The algorithm is given below.

/* Program to arrange a set of n elements in ascending order */
#include<stdio.h> '
main{)
¢
int 4.3i,n:
float all00],temp;
printf("Enter number of 'elements- in the 1list\n");
scanf (“%d*, &n);
printf(*Enter the elements\n"):
for{i=l;i<sn;i++)
scanf (“%£",&ali));
for{iel;ic=n-1;1i++)
for(j=i+l;j<=n;j++)
{ j
if(afil<alj]) continue;

295

temp=a(i];
ajil=alj):
alj]=temp;
}
printf("Sorted list is\n");
for{i=1;i<=n;i++)
printf(*%7.3f ",a[i]):
return;
}
Pnter number of elements in the list
6 :
Enter the elements
456 183 89 0 12 67.3
Sorted list is _ :
-78.300 0.000 12,000 = 45.600 67.300 89,000

Note 2.7.2 To sort n clements in descending order, the above program may be
used by replacing < by > in the if statement.

Example 2.7.10 (Trace ofa matrix) Write a program to find the trace of a square
matrix of order n'x n. '

Enlutlnm The trar,e of a square matrix is the sum of its diagonal elements, i.e., .

if 4 = [a,),., then trace is Zﬂ,,

bl

/* Program to find the trace of a matrix ‘J
#include<stdio.h>
main()
{
I o
" float afi0][l0], sum—ﬂ'.
‘printf(*Enter the order of the square matrix \n®);
scanf (*%d”*, &n);
printf("Enter the elements of the matrix \n” }.
for(i=0;i<n;i++)
for{i=0;j<n;j++)

296

gcanf (*$E° kali) [31):
for(i=0;i<n;i++)
o sumssalil (i)
printf(“The trace of the matrix is %£6.2\n”,sum);

Enter the order of the square matrix
4
Enter the elements of the matrix

3486

8901

4 25 =61

9012

'Thé trace of the matrix is
B.00

Example 2.7.11 (Sum of matrices) Write a program to find the sum of two
matrices of order m X n. . :

Solution. We know that the addition between two matrices is posaihle if they
are of the same order. Let A = [o,] and B= [b;] be two matrices of order mxn.
Let C = {r.: }be the sum of 4 and B, where ey =a;+ bpi=1, 2.
P
i Program to find the sum of two matrices "/
$include<stdio.h>
main ()
{

int i,j,mn,p.4q

float al101[10], b[10](10],c[10](10];

printf (“Enter the order of the matrix A\n'l;

gcanf (*&dsd”, &m,&n) ;

printf(*Enter the elements of the matrix A\n®);

for (i=0; 1_<m,1+4-1=

for(j=0:3<nij++)
scanf (*%€* &a(i] i)}
printf(*Enter the order of the matrix Bin"}):
scant ("%dsd”, &kp, &q);

297

iftimi=p) || f(nt=q)) (
printf(*Order is not compatible! hﬁdltinn is not posslble\n”}.
. exit(0):
}
printf(*Enter the elements of the matrix B\n');
for(i=0;i<m;i++)
for(j=0;j<n;Jj++) -
geanf (“S£*,&b[1][1));
. /* finding sum */
for(i=0;i<m;i++)
for(j=0;j<n;j++)
eli] (] a[i][j]+b[i3[}].
/* printing of matrix */
for(i=0;i<m;iv+}{
for (§=0;j<nij++)
printf("%6.3f ",clil(i)):
printf(®\n*);
)

return;
o 1o
A _sample of input/output:
Enter the order of the matrix A
24 :
Enter the elemgntu of the matrix A
436
16835
Enter the order of the matrix B
24
Enter the elements of the matrix B
45 6.7 8
21:=3
8.500 11 700 14,000
g.000 7.000. 6.500
Example 2.7.12 (Product of matrices) Write a program to fi nd the pmdm:t of
two matrices of order m x nand n x L

Solution. The product A B of two matrices A and B is pusaibla if the number of
columns of A is equal to the number of rows of B. Let 4 = [g,],.n 80d

298

‘B (b |, be two given matrices. If the product AB is equal to C then

Cii =§F¢% i g, T bl Sanih
/* Program to find .the product of two matrices */
#include<stdio.h>
maint)
{ %
int i,j.k.mm,p,q;
-float a[10)(10}, b[10)([10],c{10)(10];
printf(“Enter the order of the matrix A\n");
scanf ("%d%d", &m, &n) ; '
printf(*Enter the elements of the matrix A\n*);
for(i=0;i<m;it+)
for(j=0;j<nij++)
scanf (*%£*, 6alilli]);
printf{*Enter the order of the matrix B\n*);
scanf (*%d¥d” , &p. &kq) ;
if(nl=p) | ;
printf (*Matrix product is not possible\n”);
exitc(0); ;
)
printf(“Enter the elements of the matrix B\n®);
for{i=0;i<p;i++) . '
' for (=03 i<qii++)
 scanf ("“%£",&b[i][]]);
for(i=0;icm;i++):
for(=0;9<qij++)
{ e
cli](§1=0.0;
for(k=0;k<n;k++)
eli] [J1+=ali] [k]*blk](3];
y .
printf{"Product of the matrices\n®);
for(i=0;i<m;i++) (

299

for{f=0;j<q;j++)

printf(*%6.3f *,cli)[il}:

printf(*\n*};

)

_ return;

' i3
Enter the order of the matrix A
2l
Enter the elements of the matrix A
244
543 _
Enter the order of the matrix B
43 :

Enter the elements of the matrix B
4951

231

201

Product of the matrices

22.000 19,000 5.000

38.000 37.000 2.000

Exerdise 2.0

1. What is an array 7 Explain how an array variable is different from an
- ordinary variable 7

2. Explain the salient features of an array and its uses,
3. How are the individual elements accessed and processed in an array 7

4, What is a multidimensional array and how is it different from an
onedimensional array 7

5, Describe how we can read to and print from an erray in C.
6. Write short notes on (i) subscripted variable, (ii) array declaration.

7. Suppose an array a is declared as float a{100). What ha.ppen if we want -
to store (i) 40 elements, (i} 150 elements in a.

8. Wiite a program to read an integer array z;, 4 =1, 2, . . ., n, and find
the sum of even and odd integers in it separately.

300

9. Write a program to read n integers M, i = 1, 2, ... 0, and find the
product of the even integers only.

10. Write a program to arrange n real (or integer) numbers in descending/
ascending order. .

11. Write a program to test whether a square matrix is orthogonal. [A matrix 4
of order nxn is said to be orthogonal if AA! = I, where A'is the transpose
of A and I is the unit matrix of order n x n.

12. Write a program to find the value of a determinant of order 3.

13. Write & program to find the minimum (maximum) among the elentents of
a specified row {or column) of a matrix of order m X n.

14. Pascal's trisngle is a set of numbers having the following properties. Fach
row begins and énds with 1's and each number between two 1's i3 the sum
of the numbers on either gide of it in the above row. The first six rows of
Pascal’s triangle is shown below,

s S M e ¢
RS G R
bl A0 e bl

Write a program to compute and print the first 15 rows of this triangle.

15. Write a program to read a set of numbers Ty, T, Ty and & number..l:‘
and check whether the number k is present in the array. If it is in the array
print out how many times the number k is repeated in the array.

16. "Write a program to read a two dimensional array and find the sum of the
elements In each row and column separately and display them.

2.8 Functions

In C, every problem is decomposed into functions. The concept of function
is the most powerful and convenient way to solve a large problem, The programmer
can divide a large problem into severnl smaller subprograms, which when
reassembled constitutes the complete C program. A function is an self-contained

301

program segment and it can be developed and tested separately, The use of
function reduces the complexity and the size of source code of the main program
significantly. Also, the same variable names ¢an be used in several functions.
Every C program contains one or more functions, One such function has a
special name main. The execution of a C program begins from this function. The
other functions are called from main function. or another function, A function
can be called from any position of the main function or from another function.

The functions in C are broadly of two types - library functions or builg-
infunctions and user-defined functions. The libraty functions such as abs,
sqrt, sin, ete. are already mentioned, In this section only user defined functions
are discussed. .

In C, there are two major steps to use an user defined functions. The first
step is declaration of function in calling (main) function (A function is said to
be calling function if another function is called from this function). The second
step is the definition of the function at outside of the calling function.

2.8,1 Definition of Function
The general structure of a function definition in C s

data_type function_name(argl, arg2,..., argn}

{.
declarations of local variables;
body of the functions;
raturn (expression);

=)

where data_type represents the type of the value which is returned by the
function, function_name is the name of the function (which is user supplied
valid C variable), and argl, arg2,.;., argn are called the formal arguments
or formal parameters. Only the variables are used as formal arguments. The
formal arguments allow information to be transferred from the calling portion
of the program to the function. The variables used as formal arguments are
‘local’ in the sense that they are not identified outside of the function, i.e. these
variables may be used as other variables outside the function. It may be noted
that the formal arguments are scparated by commas and enclosed by a pairs
of parentheses. If the function does not required any arguments then only a pair
of parentheses or void enclosed by the parentheses must be written after the
function name,

302

The data_type may be umltted if the function returns an integer or a character
(a character value is l‘i‘pr&iﬂllh.(l as an integer value) value. If the function due.u
not return any value then the keyword void is written as data_type.
 To uge a function in a calling program . (function reference). write its name
with a list of actual arguments replacing the formal arguments, at the point in
an expression where the value of the function is required. The actual arguments
are also known as actual parameters or simply arguments. The actual arguments
and formal arguments must correspond in order, number and type. An actual
argument may be a constant, an array or an ordinary variable, an arithmetic
or logical expression, another function.

The main part of a function is known as body of the function. It contains some
statemnents which are required to evaluate the function. The formal arguments
are used in these statements. It can access other functions. Also, it can access
the function itself (this process is known as recursion, to be discussed latter).

The value obtain in a function is transferred to the calling program using the

- yeturn statement. The return statement also causes control to be returned to
the point from which tlie function was called. The general form is
return exp: retiurn(exp);

The exp may be constant, variable or any expression. If exp represents an
expression, then exp must be written within a pair of parentheses. The value -
of exp is veturned to the calling function, The exp is optional, i.e. return
statement may be written without it. If exp is absence then the function does
not return any value to the calling function, just control goes to return back
to the calling function. Only one exp can bé included in the return statement.
Thus, a function returns only one value to the cailmg function. But, return
statement may be written in different positions with different expressions if the
function contains multiple branches.

The flow between the calling function and a function is shown in Fig. 2.4.

Suppose a function sum is called from the main function then a portion of
memory is allocated to store all the identifiers used in the function main and
the necessary stack, etc. After completion of execution of the function {sum}
the necessary value is returned to the calling function (main) and the memory
allocated for the function (sum) becomés free.

Use of a function

Once a function is defined it can be used in several times within a program.
It is colled or accessed by specifying its, name, followed by a list of actual
arguments enclosed in parentheses. The arguments must be separated by commas.

303

/* main function or calling function */

qqqqqqqqq

vesum(a,b) ; /* junp to the function sum i
--------- /* back to calling function */

}
/* function definition »/ -
float sum(float a, float b) /* ;ump from calling functmn o7

.........

- return exp; /* return back to the calling function */

Figure 2:4: The flow between funciion and calling function.

If & function does not require any arguments, & pair of emply parentheses must
be included after function name. The actual srguments may be constant,
variable or expression, Each actual argument must be of same data type as its
corresponding formal argument.

When a single value is passed to a function through an actual argument, the
value of actual argument is copied into the corresponding formal argument for
the function. Therefore, the value of the formal argument can be changed within
the function, but the value of actual arguments remains same within the calling
function. This procedure for passing the value of an argument to a function is
known as passing by value.

The following program computes the value of *C, by calling a functmn fact -
{which determines factorial) for three times,

Example 2.8.1 (Computation of "C,) Write a program to find the .vaiue of
*C. for given n and r usihg function. -

Solution. The value of "C, is

: nl

: ri{n —r)! : :
where 0! '= 1 and n! = nn - 1)(n - 2) ... 2.1. nand r are positive integers.
To compute the value of “Cr, we have to compute the values of uf, 7! and

(m-1)Y, i.¢., sume computations are required for different values, such as n, rand . |
n-r. Thus, use of function is appropriate to compute the value of "Cr. A function

304

fact{m) is written w1th argumﬂnt m and it is called three times for m = n, r
and n - r.
[* Computation of n-c-r using function */
#include<stdio.h>
main{}
£,
int n,r;ner;
int fact{int m); /* declaration of function fact
as integer with integer argument */
printf({"Enter the values of n and r\n");
secanf (*%dsd” , &n, kr);
ner=fact{n) /{factir)*factin-xr}); /* calling of function fact.
: _ with actual arguments n,z.n-r*/
printf("N=%d R=%d NCR=%d\n",n.r ner);
return;
1/* end of main function */
/¥ definition of functicon fact */
int fact({int m) /* heading of the function fact with
formal argument m */
{ :
int i,mp=1; /* declaration of local variables */
if((m= u} || {m==1))

. mp=1l
else
for{i=2;i<sm;i++)
mp* =i ;
return mp; -
}/* end of function fact */
A_sample of input/output;
Enter the values of n and r

13
N=7 R=3 NCR=35

In this program, the value of ncr is obtained by ealling the function fact for
first time with the actual argument 2. The function is executed by tuking mi
= n and return the value of mp (the value of n!) to the main function. Again,
the function fact is called for the argument r. The function is evaluated for m
= rand returned its value to the main function. Lastly, the function fact is

305

called for the argument n - 7. Thus, the same func_:tlon fact is called for three
times with three different arguments and-the value of ncr is evaluated using the
expression fact(n)/(fact(r)*factin-r});. '

2.8.2 Passing Arrays to a Function

Like ordinary variables, an array can also be passed to a function. To pass
an array to & function, it is sufficient to list the name of arrays without any
subseripts or brackets as an actual argument. The corresponding formal arguments
are written in the same order und then must be declared as array within the
formal argument declarations. During declaration of array as a formal argument,
the array name is written with a pair of empty square brackets. The size of the
array is not specified within the square bracket in the formal argument declaration.

Suppose x is an integer array of size 50. If we calculate the maximum -nmﬂﬁg
n integers using a function, the declaration of function and’ array in main
function is as follows. .

main()
{
int n; /* declaration of variable */
float max; /* declaration of variable */
int x[50]; /* declaration of array */
- int maximum{int(],int); /* declaration of function */
....'-..v.--,_-'.....+;.-..q.....
max=maximuf{x,n}; /* calling of function with actual arguments
'I‘F . < -

| T O ST e "

The definition of the function maximum is shown helcw._
int maximum(y,m} /* function definition */

int m; /* definition of formal argument */
int vyl I: #* definition of formal argument (array) */
{

306

From the main function the function maximum is called with two actual
arguments x and n. Observed that x appears as an ordinary variable. In the
definition of function, it is observed that two formal arguments v and m are used.,
The formal arguments y and m are declared as integer array and integerfvariable.
Thus, there is a correspondence between the formal and actual ﬂrguments

The formal arguments can also be declared in the first line of the function
definition, For the function maximum, the first line may be written as

int maximum{int y{], int m)
{

}

It is mentioned earlier that the arguments are passed to & function by value
when the formal arguments are ordinary variables. But, when an array is passed
to a function, the values of the array elements are not passed to the fum:tmn
directly.

In this case, the address of the first array element is passed to the cu;r&ﬁpﬂndmg
formal argument. That is, rather than passing the actual values of the array
elements, a reference (called pointer) is passed to the function. Passing of
argument in this way is called passed by reference rather than by value,

When the pointer of an array is passed to the function, the values of all
elements of the array can be accessed by some memory management procedure.

Example 2.8.2 Write a program to find the maximum and minimum values
AMONg n numbers,

Solution. Let x be a floating point array aud n be the number of elements from
which the maximum and minimum are to be determined. Two functions masximum
and maximum are defined to fihd the maximum and minimum values of the
array x. ;
/* Computation of maximum and minimum from an array .
#include<stdio.h»
main{)
{

int i.n;

float x{100],max,min; /* declaration of array */

float maximum(float(],int); /* declaration of function

with type ‘of arguments */

307

float minimum(float(],int);
printf("Enter array size\n"};
~scanf ("¥d7,&n);
printf({"Enter the elements of the array\n");
for(i=0;i<n;i++) -scanf(“%£",&x[i]):
maxsmaximumix.n); /* calling of function */
min=minimum(x,n); /* calling of function */
printf(*The maximum is %$£\n",max):
printf(*The minimum is %£\n",min);.
returm; :
}/* end of main function */
/* definition of the function maximum */
float maximum(float ‘al), int m) /* definition of function
with two formal arguments */

{ : _
int i; /* declaration of local variable */
float max: :
max=al0};
for(i=l;i<m;i+s)
if (max=alil)) max=alil;
return max;

MW end of the functicn maximem */

"~ /* definition of the function minimum */ -
float minimum(float al), int m)

{ .
int i; /* declaration of local variable */
float min;
minzall);
for(i=1;i<m;i++)

if(min>af{i]) min=2{i};
return min;
}/* end of the functicn minimum #/

A_sample of input/output;
Enter array size
7 .

Enter the elements of the array

308

20 12 34 56 78 802 7
The maximum is 892.000000

The minimum is -90,000000
2.8.3 Recursion

We have seen that a function is ealled from main function and also mentioned
that from any function one can call snother function. Now, if o function is called
from the same function, then the procedure is called recursion. A few high level '
langunges support this facility, In recursion, a function calls ‘itself repeatedly,
until some termination condition has been satisfied. :

This. process reduces the effort to writea program to solve a problem.

The very common problem to illustrate the recursion is determination of nl,
Normally, the value of n! is determined by n x (n ~1) x ... x 2 x 1. But, its
recursive form ls n x (n - 1)l That is; the value of nl depends on the value
of (n - 1)!, and the value of (n - 1)! depends on (n - 2)! and so on, That is,
when the value of (n - 1)! is known, then one can caleulate the value of nl. Also,

‘we know that 1! = 1, This is the termination condition for thia problem. -

The following program computes the value of n! for a given n.

Example 2.8.3 (n! using recwssion) Caleulate facterinl of a positive integer n
using recursion. , '
/* Computation of n! using recursion */
tinclude<stdio.h>
main() '
{
int n;
long int fact(int n); /* function declaratim_'t %y,
printf (*Enter an .integer ");
scanf (*%d”,&n) ;
printf(*n!=%1d\n”, fact(n)); /* calling of function fact */
} :
/* function definition #*/
long int fact{int n) ,
fo
long int E:
if(n<=1)
return 1;

309

alse
f=n*fact(n-1); /* function fact is called with arg. n-1*/

fin ks
Enter an integer
10
ni=31628800

Here the function fact is declared as long int, because the value of factorial
ie large even for small value of n, :

It is observed that the function fact is called from main for a single time and
it is called for (n-1) times from itsell. In each call the value of actual argument
of the function fact is reduces by 1. The repetition terminates when the
srgument becomes 1. The body of the function is not simple like other functions.
To illustrate the mechanism of this function, we assume that n = 4,

Since 'n # 1, the statement £ ==1'1"ff:vu::t{n-11I will be executed with n = 4, That
is, the value uf fis

_ f=4*fact{3);
and £ dépends on the value ¢f fact(3). The value of fact{3) will be evaluated
using the formula
i f=3*fact{2);

Heve also fact(2) is dot L.:own. Again, the function fact is called for n = 2.
In this case,
' ; f=2*fact (1);

Again, the function foct is called for n = 1. In this case, termination
condition has been satisficd and fact returns 1. All the intermediate values of
n(= 3, 2,1) are stored on a dats structure called stack! until the termination
condition has heen saticfied. After reaching the termination condition, the
actual values will be returned according to the f{:-ilowmg reverse order.

fact{l)=1 :

fact (2) =2*fact (1) =2x1=2
fact(3)=3%fack(2)=3x2=6

fact (4)=4*fact (3) =4x6=24 :

If a recursive functior contains one or more local variables (the variables
declared within the recuscive funetion), then in each call a different set of local

V The stack is an ordur list of data alrructure in which all insertion and deletion are made in one .
- cnd called top.

310

variables is created. The names of the local variables. remuin same (as they
declared) within the function, but their values form different set in each call.
Esch set of values will store on the stack and they will be used in appropriate
reversed call. .

The variables used in & C program are broadly categorized, depending on the
place of their declaration. as local {or internal) or global (or external). The
local variables are those which are declared within a particular function. while
external variables are declared outside of any function. The local variables ure_
accessed within the function only where it is declared, where as the global
variables can be accessed from_ any function within the program.

The use of local and global variables are illustrated in the following program.

Example 2.8.4 Write a program to find the sum and average of n numbers,
without passing the array to the-function. '

/* Computation of sum and average using global variable */
tinclude<stdio.hs ° :
float x[100]; /* declaration of global array, before main{) *y
float sum{int); /* declaration of .global functionm */
main() '
(
int i,n;

float average(int); /* declaration of local function */
printf("Enter array size\n®);
scant {“%d",&n) ; : 2214
printf(*Enter the elements of the array\n®);
‘for(i=0;i<n;i++) scanf(“8f" &x[i});
printf("The sum of the elements is $£\n*,sum(n));
printf{“The average is %f\n", average(n]):
return;
}/* end of main function */
/* definition of the function sum */
Eloat sum{int n}
{
int i; : .
float ==0; /* i,s ar: local. variables */
fcr'ii=ﬂ:i<n;i_++!

r

anl

s+ex[i]ly /* use of global wvariable */
return s;
}e* end of cthe funchkion sum =

i* definition. ¢f the function average */
float averageiint n)
:
float ave;
avexgumin) /n; /* calling of global function sum */
return ave;
}/* end of the function average '/
Enter array size
1

Enter the elements of the array

10 205 67.4 90.2 :87.3 45 23

The sum of the elements is 171.8G0003
The average is 24, 542858

2.8.4 Storage Classes

Recall that when a function is called from main or any other functions. the
space is allocated for the variables declared within the fanction. The values of
the variables are stored within the ullocared space for this function and when
the function returned a value to the main or other calling functions. then the
allonated space becomes free and as # result all the variables declared within
the function loss their values. But. the valuds of the variabies of main (or other
calling function) do not alter during exerition of the enlled function. Thus we
observed that some variables are active and some are not. This leads lo the
concept of scope and longevity of the variables, while using function in n
program. The scope of variable means for what portion of ‘the program a
variable is available for nse i.c. the variable is active: The longevity or lifetime
means the period for which a varinble retains its value during execntion of a
program,. i.c. the. variable g alive. To indieate the scope. and longevity of
variable we have to mention the storage class of it Thus, each C varinble has
a data type and a storage class. .

Theve are four differenl storage erwu in . They are automstic, external,

312

static and register. They are mentioned by the keywords auto extern, static
and register respectively.

All the C variables are broadly ciuaszﬁpd intp two categories depending on
their place of declaration. These are local (internal) or global (external).

The local variables are created and used in & particular function and they are
useful only within the function where they are defined. Whereas global variables
are creafed outside any function and they can be used by any function with the
program. The value of global variables can be changed from any place of the
- program. but, the value of a local variable can only be altered within the
* function where it. is defined.

Some variable declurations with storage class are shown below..
auto ink x,¥;
static int z;
extern char ¢
register float a, b;

Example 2.8.5 (Swapping) Write a program to interchenge two values using
funetion eall.

Solution. Let r and y be two numbers, We have to interchange their values. ie,
v gots y value and y gets z value, A third variable temp is used to do this. The
"basic idea is that, temp will store the value of z and & will copy the va]ug of
y and finally the value of temp will assign to y. :

#include<stdio.h>
float x,y: /* global declaration */
main()

{ ; . : -
void swap(); /* the function does not return any value */
'printf[“Enter two numbers \n®);
scanf (“RERE", &x, &yl
printf(*Before call =R y-%ﬂn’ X ¥
swap():
printf(*After call x=%f y=%£\n",x.y);
return;

)

volid swapl}

¢
float temp;
temp=x;

313

Ent;ef_twn nunbers

6785 984

Before call x=6785,000000 y=984.000000
After call x=984.000000 y=6785.000000

~ The swap interchanges two values and it returns two values iﬁiﬁliﬁtiy with
the help of global variables.

2.8.5 Worked Out Examples
Example 2.8.6 Write a function to compute the value of f{z) defined as

I

e, =0
flzx)={sing. 0<z<l
log = wxrzl

Then use this function in the main segment to compute and print f(z) for =
= -1 to 2 with spacing 0.5 in tabular forin.

}* Bvaluation of function using function */
#include<stdio. . h> ' :
#include<math, h>
main()
{
float x; =W
float f(float x);
o1 o S SR B Ll
printf(* x : - Elxl\n")
SRR e S CeadaE T e IS e
for(x=-1.0;x<=2.0;x4=0,5) :
printf(* $4.1f %8.3f\n" %, £(x}};
pEIREEE. L e R b i TN e B
L :
/* Definition of the function f£{x) */
" float f(float x) '

314

float f£x;
if (x<0)
Ex=exp(x); .
else if((0<=x} && (x<1})
Ex=sin(x);
else
fx=log(x);
return £x;

}
Qutput:

X Eix)

-1.0 0,368
0.5 0.607
0.0 0.000
0.5 0.479
1.0 0.000
1.5 0.405
2.0 0.693

Example 2.8.7 Write a function subprogram to find the sum of three numbers
and use it to compute the sum of nine” numbers.

Solution. Let SUM3 (x,y,2) computes the sum of the numbers z, y, 2z Using it
four times we can compute the sum of nine numbers.

/* Sum of nine numbers using function */

#includacStdiﬂ.h5

main(} .

{

float al,aZ.ad.ad,ab,ab a’,aB, ad;
float u,v,w;
float sumd(floac, float, float);
printf(*Enter nine wvalues\n");

313

scanf ("$EYFREEESELERERERE", &kal, ka2,
sa3, &ad,&as,&a6, &a’, kad, kad);

u=suml (al,a2,al);

v=gum3 (ad,a5,a6);

w=sum3 (a7,a8, a9} ; .

print £ ("Sum=¥f\n*, sum3(u,v.w));

]_ "

/* Definition of the function sum3() */
float sumd(float x, float y, [loat.z}
{

yeturn (x+y+z);

=
A.sample of juput/outputs

Enter nine values
251030 15 1048 14
Sun=18, 000000

Example 2.8.8 Write a statement function'lo compute the vilue of a determinant
of order 2 and use it to find the vilue of » determinant of order 3.

Solution, Let the determinant be

Dzl 8 ¢
ity by

Tty value is
b, ¢

b, e,

fy by

4y G
; a, i’:s

D=a = e
s %3

=q, .J‘JET‘E{&_,.‘;:_}_J::!.r:H’J - hl.l.’}E'TEfa:.t:_.,tu:!,ﬂﬁ} 0 .DET'Z{_IAI.bQ.ﬂa,bx)

a b
where DET2(a.b.e.d) = L J =t = hie
_ : Co

316

/* Evaluation of determinant of order 3 using function */
#include<stdio.h>
main()
{ .
float al,bl,cl,a2,b2,c2,a3,bl, c3,detd;
float det2(float, float,float,float);
ptint!i'ﬂ'ﬂ'_ﬁ_ﬂ THE E_LEHEHTB OF THE DETERMINANT ROW WISE\n”®);
goanf ("RELESESESERERERERE", Kal, &bl,&c), ka2, kb2, ko2, kald, kb3, ked);
detd=al*det2 (b2,c2;b3, c3) -bl*det2(a2,c2,a3,c3) +cl*det2 (a2, b2, a3, b3) ;
_printf{*The value of the determinant = $f\n",det3);
s - |
* float det2(float a, float b, float ¢, float d)
{
returni{a*d-b*c);
}
Enter the elements -of the determinant row wise
3458914934

The ‘value of the determinant = -442.000000

Exercise 2.8

1. What is t'um.tmn'i' List out the advantsges and d:bad\ramagea of using
function,

. How function is declared within a program?
3. What is the purpose of return statement?
4. What do you mean by urgurnvnts of function (actual and formal arp;ume:m:}’
5. What are the diffmnncm hf-h-.v-:-n built-in funrtmn and um'r-dvﬂnml function?

G. How a glnlml mnuhleﬁ_ i declared in C?

3T

10.

Write a function to find the pmductzﬁ{i}ﬂ(i} of two vectors A({) and

=]

B(i),i=1, 2,, n, and use it to find the value of

R =3 [AG)BGE) + BECH) + CHE)A)]
i=l

Write a function to find the sum {product) of four numbers and use it to
find the sum (product) of sixteen numbers.
Write a function to find the maximum (minimum) among three numbers .
and use it to find the maximum (minimum) among nine numbers,
Write a function to test whether a matrix is null (symmetric). If it is null
(symmetric) then the value of the function will be 1, otherwise, the value
will be 0, Complete the program to test the matrix,

L]
11. Write a function sump to find the -vnlue of the expression Zx" with the

12.

(i) Sl=i;.l, [u] m=—i ,.{m} 32= Zm

A=l

array z, and p (a pm:tne integer) as dummy n.rguments Use it ﬁnd the
value oi'

1=]

(iv) 3= ZT. , (iv) S“‘Z(I =5
im] R jmj
Write a function GCD(i, j) to find the greatest common divisor of two
integers 4, j. Use this function to find the G.C.D among & finite set of -
integers (say 50). [The following relation may be used: if n =GCD(m,,m,,
- my) then GCD{m,.my,., m,-.,mh,,]
= GCD(nm,,,).]

. 2.9 Pointers

It is well known that every variable occupies one or more memory locations
(cells) to store its value. A single cell can store one byte of information. A single
character needs one byte space, so it can store in a single memory cell. An
integer needs two bytes space, to store it two contiguous memory cells are
required. A floating point number needs four contiguous cells. Each memory cell

318

is recognized by a number associated with it called address of the memory cell.
The addresses of cells ate usually done by hexadecimal numbers starting from
0. The compiler assigns the memory cells for all variables used in the program,
without knowledge of the user nnd forms a table containing variable names and
their address, called hash table. Thus during the execution of a program
computer will determine the address of a variable from hash table and then finds
the value of the variable from the located address. Therefore, with each variable
two quantities are associated ~ one is the value of the varisble and gther is the
address of the memory cell where the value is stored. If a variable needs ane
or more cells to store it, then the address'of the variable means the address of
the first cell. The value stored in a cell called its content. In C, one can easily
determines the address of o variable. The techrique and related topica regarding
the address of a variable are discussed in the next section,

2.9.1 Address Dpe_:ratur

Suppose vis a variable. The address of this variable is obtained by the expression
' ; : &v
~where & is a unary operator, called the address operator and read as addresa
of. The address of a variable can store to another variable. For example, the
statement - :
PV = &V; _]
stores the address of the variable v to the variable pv. This variable pv is called
& pointer to v, as it points to the location where v is stored. The variable pv
is called pointer variable. It may be noted that pv stores its address not its
value. The content of a memory cell, i.e. the value (of v) stores in a memory
cell is obtained by the expression
Coxpv

where * is a unary operator, called the indirection operation. Thus, if pv is a
pointer variable then pv gwbs the address of & variable and *pv gives the value
stored it in.

The ful!uwing program illustrates the use of address operator.
¥include<stdio.h>
void main()
{
int i=100;
float a=7.5;

319

char c¢='b’;

printf(“Address of i=%x and its value =%d\n”,&i,i);
‘printf (*Address of a=%x and its value =%f\n",&a,a);
printf(“Address of c=%x and its value =%c\n",&c,c):
}

The output of this program is

Address of i=fff4 and its value =100
Address of a=fff0 and its value =7,500000
Address nf'_cwffef and its value =b

Note that the addresses of the variables i, a and ¢ may be changed for other
computer and different instances. Because, the addresses printed above are
available for a particular moment for a particular computer. The free addresses
depend on many factors, such as, size of operating system, other programs
stored in the memory, the data and program sizes of current program, ete. The
values 100, 7.500000, b are the contents of the memory address E£fd, EE£0,
ifef respectively. The contents and addresses are shown in Fig. 2.5.

variables ¢ 4 ¢

Content =~ - [100{7.5| b 2
aidd:ess*fffdr fif0 ffef

Figure 2.5: Addresses and contents of variables,

2.9.2 Pointer -Declaration

.Like other variables, each pointer variable must be declared before its use.
The rules for declaration of a pointer variable are similar to ordinary variable.
The difference is that, when a pointer variable is declared, the variable name
must be preceded by an asterisk (¥). The asterisk makes the difference hetween
the ordinary variahle and the pointer variable, The gener&l form of pointer
declaration is

data_type *ptvar;
where ptvar is the name of the pointer variable and data_type is any one of
the C data types like int, long, char, float, ctc. Note that ptvar is the
pointer, its value is the address of certain memory location and it is 8 hexadecimal

320

number. Whereas *ptvar is the value stored at the nddress ptvar. So the value
of *ptvar is either an int or long or char and so on, which is sawe as dara_
type.

Let us consider the following program to illustrate the use of pointer variable.

#include<stdio, h>

main()
{.
int *ptva;r; /* pointer declaration */
int uw, v
u=10;
v=50);

printf(*value of ptvars$X\n” ptuar}. :
ptvar=&u; /* address of u is assa.gned to the peinter ptvar */
printf{*Value of ptvar=%X and itg ci:_nntentﬂd\n",ptvar,*ptﬂ.rar‘.t: ;
ptvar=kv; /* address of v is assi’gn'ed to the peinter prvar. */
prmtf[‘Value of . prvars =§¥ and its concent=%d\n",ptvar, *ptvar):
ptvare500; / 500 is assigned as content of ptvar */

printf{*Value of ptvars=%Y and its content=%d\n", ptvar, *ptvar);

} '

The output of this program is

Value . of ptvar=3C2

Value of ptvar:F'_:“-Fﬂ ‘and its content=10
Value of ptvar=FFF2 and its content=50
Value of ptvar=FFF2 and its poncent=500

Initially, the value of b and v are 10 and 50 reapectweiy and the values of u

_ and v are stored in some mummy locations. The value of ptvar is 3C2 (in the
: current execution, it may be changed in another execution).. The statement

ptvar=&u copied the address of u to the pointer variable ptvar and it is changed
to FFF4. And the subsequent pr:mtf function prints the content of the address
FFF4, i.e. the value of u. The statement ptvar=&v assigns the address of v to
the pointer variable ptvar and hence the printf function prints the contents
of ptvar (FFF2) which is 50. The statement *ptvar=500 assigns the numeric

.\ralue 500 to the content of ptvar, does not change the value of ptvar, The value
- of ptvar remaims same (FFF2), see the last print statement.

321

The pointer variables and ordinary vanahlea can be declared together, i.e. the
following statements are valid,]

int a, b, *pv, *pu;
float *a, *b, X, Vi
Note that the initialization of pointer is a very sensitivé task. Arbitrary
initialization may cause the serious error in the program, as the value of a
pointer variable is unpredictable. it depends on computer, execution instant,
«¢te. However, we can a.'ss‘ign null pointer as
#define NULL 0
float ‘*ptvarsNULL;:

The variable ptvar is initially assigned a value 0 to indicate some special task.
The arithmeétic operations can also be done on pointer variables,

fnt *pv, wv=10, -u=5;
pv=&v; /* address of v is asaigned to pv,

thus the value of *pv becomes 10 */
pv+=2; / the value of *pv changed to 10+42=12 */ -
‘veu* *py; /* the value of va5+12=60 */
v=tpy * B; /* y=480 */ "

The value of *pv after second line becomes 10 (=v). In third line the content
of pv, i.e. the value of *pv changed to 12. The value of v (in the fourth line)
is 5 % 12 = 60. That is, the content of &v is also changed to 60. Thus, the content
of pv is changed to 60. That is, the value of *pv is now 60 (not 12). Therefore,
the statement v=*pv*8 changes the value of v to 480.

2.8.3 Void pointer

It is scen that a poifiter variable can hold the address of same type of data.
That is, an integer pointer varisble-can hold only the address of an integer
variable, it does not hold the address of any other type of variables. This fact
ig illustrated in the following.

int *ipv;
float x;
ipv=g&x; /* .illegal .assignment */

The assignment ipv=&x is not valid ay ipv is an integer pointer -.ra.rm;hle
wherens x is a floating point variable. To store the value of x needs four bytes
space, while two bytes space is allocated for ipv.

b
Far

The void pointer eliminates this restriction. If a pointer variable is declared
as void, then any type of pointer mssignment can be done with this variable.
For example." :
void *yptr;
int if
char ¢;
float f;
vptr=&1i;
vptr=&o;
vpEr=&E;

All these assignments are valid. But, when arithmetic operations are dane on
the contents of pointer- varmblea it must be suitably type cast to the required
data type.

2.9.4 Passing Pointers to a Functlon

Like ordinary variables, pointers can also be passed to a function as arguments,
i.e. an address is passed ns arguments. This process is referred as passing
arguments by reference or by address. When an argument is passed by value
to a function, then the actual argument is copied to the formal argument. If the
values of this formal argument is changed within the function it does not alter
the velue of the actual argument as formal arguments are local within the
function. But, when an argument is passed by reference, then the address of the
variable is passed to the function, Since the address of a memory location is
unique, so the content of the passing address can be accessed from any place
(from the function and also from the calling function); Thus, any change in the
content of an address can be identified from any place, i.e. the content of an
data item are changed globally.

In formal pointer arguments declaration, each argument must be preceded by
an asterisk. It is obvious that the actual argumemts are the addresses of the
variables.

The following example illustrates the use of transfer of arguments by reference.

Example 2.9.1 Write a program to interchange the values of two variables using
pointers,

Solution. A function in C can not return more than one value. But, to interchange
the values of two variables using function we have to return two values, it Is
not possible by passing velues. This can be done by passing reference, shown
below.

33

{* Program to interchange two values using pointer */
#include<stdio, h>
main()
{
float a,b;
vold swap(flcat *, float*); /* declaration of function */
printf(“Enter two values\n”); ;
scanf (*VE%E", &a, &b); _
printf(*The given values of a=%f b=%f\n*,a,b);
swap (&a, &b) ;
printf(*The changed values are a=%f b=%f\n”,a,b);
Teturn;
Yoo
void swap(float *u, float *v)
{
float - *temp;
*tampn*u:'
*u=ry;
ry=*Lemp;
}

The input/output of this program is shown below.
Erter two walues

The given values of a=89.449990 b=45;5.320003
The changed values are a=456.320000 b=89.449930

- In the function swap all.the wvariables u, v and. temp are pointer. The
addresses of a and b ‘are passed to swap snd they are copled as u and v
respectively. Then the contents of u and v are mterchanged Then autoratically
the values of a and.b are changed.

Passing array to a function

It is already discussed how an array can be transferred co a function. Since
the array name of an array itself a pointer, the array hsme is gufficient, to use
as actual argument, no ampersand sign is required preceding array name, Thus,
if a iy an array of size n, then this array can be transferced to the function sum
by the statement '

324

sumlal ;
In this call the address of the base element, i.e. address of the element a(0] is
passed as reference to the function, and the entire array is passed to the
function. The first line of the function definition must be of the form
float sum(float *x);

Also, one can pass a portion of an array, rather entire array to a function by
passing the address of appropriate array element. Suppose a is an array of size
50 and if we pass a[20] to a[40) (last element) to the function sum, then the
following call is necessary. :

: : sum{&a[20]); :
" In this call the elements a{20] to a[49] are available for the function sum.
Here noted that the address of the element a{30] is passed to the funetion,

A function can also return a pointer. This can be done by appropriate finction

declaration. '

2.9.5 Pointers and One-Dimensional Array

Now, we extent the idea of arithmetic on pointers to array. Recall that the
address of the firat eleméent of an array is the address of the entire array. Thus,
if & is an integer Array (one-dimension), then the address of the first element -
is given by either Ea[0} or by simply & The address of the second element is
obtain by &a[1] or by a+1. In general, the address of the i+1th element of the
array a can be.determined either from the expression &ali] or from the
expression a+i, i is called the offset. i

One important point is that the array elements are always stored in contiguous
memory locations irrespective of the size of the array. That is, if the address
of a[0] (s is an integer array) is FFFQ, then the address of the element af1]
is FFF2, that ofa[2] is FFF4, and so on. In genersl, a pointer when incremepted,
always points toa Jocation after-skipping the number of bytes required for the.
data type pointed to by it. : :

The following program illustrates the above fact.

¥include<stdio, h»
_main()
{
int a()={10,12,8,5}:
int i, *pa:
pa=&al0}; /* address of the array is assigned to pa */
ford{i=0;i<d;i++)

325

{
printf("%X %d %X \n®.pa,*pa,a+i);
pat++; /* pointer incremented %/
y .
}

The output of this program is

FFEE 10 FFEE
FFF0 12 FFF0
FFF2 8 FFF2
FFF4 5 FFP4

Note that the output. The first and third columns are identical, This means, |
the address of an array element can be obtained by incrementing pointer
variable and also by simple addition of the position (i.e. subscript) of the array
element with array name. The status of the memeory, its c-::vmenl;a and array
elements are shown in Frg 2.6.

L]

Address FFEE FFF0 FFF2 FFF4
Content [--..-- | 10 | 12 | & | 5 [......]
Varisble afol alil a[21 al3]

Figure 2.6: The array elements, corresponding address and the contents.

It is very interesting that, if the address of the first element of the array a
is FFFO (say), then the value of the expression a+2 is not neceasarily FFF2, it
may be FFF4 or FFF8 or something else depends on the data type of the array
a. The value of the expression a+i will automatically determined by the C
compiler, without the knowledge of user regm‘dmg the number of memory cells
required for different data types.

Thus &a[i) and (a+i) both represent the same memory address for the 1+1th
element of the array a, and a[i] and *(a+i) both represent the contents (i.e.
the value of the i + 1th element) of the same address. These two terms are.
interchangeable.

The following program illustrates the telatmnsmp between the array elements
and their address.

: #includem tdio.h>
main()

326

int al5)={10,12,20,25,30);

int i;
for(i=0;i<5;1i++)
{
e printing of values */
printf("a[kd]=%qd *{aﬂd}ﬂd',i*a[i};i,‘{a*i}]:
/% printing of address */
printf(*&a(%d]s%X (a+bd)=%2\n",i,6a[i], i {a+i));
pa++; /* pointer incremented */
], :
o
The output of the above program is shown below.
al0j=10 *(a+0)=10 = &a[0]=FFEC (a+0) =FFEC
all]=12 *{asl)=12 ka[l]=FFEE {a+1)=FFEE
af2]=30 *(a+2)=20 ka[2]=FFED {a+2}=FFED
af3)=25 *(a+3}=25 &a[3]=FFE2 (a+3) =FFE2
al4]=30 *(a+4)=30 gald)=FFEL (a+d) =FFE4

From this output it is observed that a[i] and &a[i)] are different, first one
represent the value and second one represent the address of the i + 1th element.
Similarly, * (a+i) and (a+i) are also different, *(a+i) represents the value and
a+i represents the address of the § + 1th element. Thua, afi). and *{a+i) are

same and &ka[i] and (a+i) are same,

It is sometimes necessary to assign an address to a variable, but, it is not
possible to assign an arbitrary address to an array name or to an array element.
Also, the address of one array element cannot be assigned to some other array
element, i.e. the statement &al2]=kall] is not valid.

Example 2.9.1 Write & progra.m to add two arrays using pointer.

Solution, Let a and b be two array of size 10. We add these two arrays and store
it to the array c.

/* AMdition of two arrays using pointers */
#include<stdio. h>
void main()

327

int all?].k[10).c(10]):
ine: a.n:
void sumlint®,int*,int*,int);
printf(“Enter array size\n”);
scanf (“%d",&n};
' printf(“Enter elements of the first array\n"):
for(i=0;i<n;i++) scanf("%d".&alil);
printf{*Enter elements of the second array\n’);
for{i=0;i<n;i++) scanf{"$d",&bli]);
sum{a,b,c,n);
printf(*The sum of two arraysin']
for{i=0:i<n;i++) printf{*sd °*,.c[i)});
)
void sum{int *a,int *b,int *e¢, int n)
{ : _ ;
 int i;
for{i=0;i<n;i++) :
*lesll=*la+il+ *(b+i}; /* agdition of pointers */-
}

A sample of input/output;

Enter array size

5 ;

Enter. elements of the first array
218 1.2) _
Enter elements of the second array
426:29

The sum of two arrays -1 9 15 1015
In the function sum no formal array subscript is used to find the sum of ‘two
elements. The contents of the addresses of the elements are added.

298 Dynamic Memory Allocation

In conventional array declaration, the gize of an array must be mentioned: Fof
this declaration a fixed amount of memory is reserved for this array, For
example, for the declaration '

3 int a[l0];:
total (10 x2 =) 20 bytes memory space is reserved for the array a, Also, &t most
10 values can be stored against a, Suppose in a program the array size is

328

declared as large enough say 100 and only 40 elements are used in an execution.
In this case, the space for remaining (100 - 40 =) 60 elements is unnecessary
occupied. This is the wastage of memory. _

'These two draw backs to use array ace removed in dynamic memory allocation.
In dynamic allocation an array is define as a pointer variable. When an array
is define’as a pointer variable, then the space for the array is not fixed, it can
be changed as per requirement. A special declaration is required to allocate the
space for the array. This is called dynamic. memdry allocation. The library
function malloc is generally used for this purpose. :

Suppose a is a one-dimensional integer array containing 15 elements. The
conventional method to define a as an array is

int afl5);
But a can be defined as a pointer variable as
' int *a;

This type of deciamtmn does not mean a is an array, it look likes an nrdmary
integer pointer variable. Therefore, this statement does not allocate a memory
block for 15 e}eﬁlents, To assign appropriate memory for a, the following
statement is necessary.

a={int *} malloc (15*sizecf{int)}:

The function malloc allocates a block of memory for 15 integers and the
allocated space is+(15 x 2 =) 30 bytes (if the size of an integer iz 2). This
function returns a pointer which points to the first element of the array a (i.e.
the address of a[0]). The cast operator (int *) is required, because this pointer
points to an integer array.

If a is an foating point array then the above statement must be of the
following form. /

a={float *) malloc (15*sizecf(float)); ;

If the mallec function returns 0, i.e, NULL pointer, then memory allocation
is failed. This happens when the sufficient amount of space is not available in.
the memory. _

If an initialization is required for an array, then the array must be defined as
an ordihary array rather than a pointer variable,

Example 2.9.3 Write a program to read s string of characters (only alphabets
and blank spaces) and count the number of blank spaces, vowels and consonants
in the string. ! ! '

Solution, Suppose x is an array containing n characters. The array is defined as '
a pointer variable, The space for this character array is allocated by the function
malloc.

319

/* Use of pointer in a string of characters */
f#include<stdio, h>
void main()
{
char 'x.o¢:
_int n,i,vcount=0, bcaunl:-ﬂ ccount=0;
printf{*Enter string aize\n");
‘scanf (“%4”,&n) ;
x=(char *) malloc {n*slzeaf{char}} £ allﬂcntiﬂn of mmc:-nr*f
printf|{*Enter the string\n* i
for{i=0:i<=n;i++}
*{x+i)=getchar();
printf(“Given string is\n”*); :
for(i=l;i<=n;i++) printf(*%c®, *(x+i));
for(is1;d<=n;i++)
{ _ :
c=toupper (* (x+1)); /* converted to upper. case g
Cdifleea’ ') boounbtss;
if(c=="'A" ﬂc:-'E*{ lc-—*ﬁ'i!C“ﬂ‘U'l|c“= I') vcount+s;
}
c:nuntm-vcaunt-hcount. _
printf ("\nBlank space =%d vml:td Cnnsnnentztd‘-.n’
beount, veount, cecount) ;
}
E 7 y I E . "I E I I'
Enter string size :
18 - : :
Enter the string
I {in class |
Given string is

‘I read in class iv
‘Blank space=4 Vowel=6 Consonént=8

The space for the array x of size n is allocated by
%=(char *) malloc (n*sizeof(char));
A character is read by getchar () and it stores at the address (x+1). To check
the type of a character, first it is converted to the upper case letter by the
function toupper. Then this character is checked for vowel and blank apa.ce

330

The memory allocated for a pointer array can be destrayed (if it is. not
required in future) by the function free. The occupied memory becommes free
and this free space may be used within the same progrem,’if needed. Let x be
a pointer array, The following statement will free the space occupied for the

array X.
free(x);
Exercise 2.9
1. What is meant by ‘the address of a memory cell'? How are addresses

10.

11
_ point humbere. Demonstrate this function by calling this functmn from

usually numbered?

. What kind of information is represented by a pointer variable?
.. What is the relationship between the address -of a variable v a.nd the

corresponding pmnter variable pu?

How many memory cells are required to store a single character" An
integer? A long integer? A Roating-point number?

. How is a variable's address determine?
. How is a pointer variable declared? What is the purpose of the data typa

included in the declaration?

What is the relationship between an array name and a pointer? How is an
array name interpreted when it appears as an argnment to a function?

In what way can the assignment of an initial value be included in the '
declaration of a pointer varisble?

. What is the purpose of the indirection operator? To what type of operand

must the indirection operator be applied?
Explain the meaning of each of the following declarations.
(a) int. *p:
(b) float a,b:
float *pa,*pb;
(¢) float a=1.45;
float *pa=&a;

Write & function which will :nterchauge the values between two floating

main, Pointer may be used.

331

2.10 Btring Manipulatica

Mampuiatiﬂn of strings is & very common problem in any pmgra.mmmg
language. Different techniques and functions are used in manipulation of strings.
C provides several functions which are used to manipulation of strings. The
common string manipulation functions are listed below,

Function ' Action
strlen(strl) determines the length of the string strl

' gtreat{strl,str2) - concatenates (joins) two strings strl and str2
stromp(stel, stri) compares two strings strl and 8tr2
stropy(strl,str2) copies the string str2 over the string strl

The details of the string manipulation functions are explain helow.

strlen()

- This function determines the length of a string, i.e. counts the number of
characters presents in the string excluding null character. The general form of
this function is
strlenistrl); :

where etrl is & string constant or a string variable. This function returns an
non-negative integer. For example, let strl="Good" and str2="Good". Then
the output of the execution of the functions strlen(strl) and strlen(str2) are
respectively 4 and 5.

atrcat{}

This function concatenates two strings. The general form of this function is
' streat (strl, str2); '

where strl and stx2 are two strings. This function joins the string str2 to the
end of the string strl. This function removes the null character from the end
of the string strl and str2 is added to strl from this point. The string strl
remains unchanged. To illustrate the use of this function, consider the following
strings

stri="Good"

str2="Day"

stri="Good"

332 o

The strings after execution of the function
strcab(strl, stri);
are strl*"Gar:rdIJay and str2="Day" and the strings after execution of the
function
strecag(strd, stri);
Are str3 *Good Day* and. strl="Day".

stromp(i

This function compares two strings and returns an integer value. If the two
strings are identical it returns (), otherwise returns a non-zero integer value, Its
general form is

strempistrl,str);
where strl and str2 are two string variables or constants.
- Two strings are compared with respect to the ASCII values of the individual
characters of the strings. Since the ASCII values of upper case and lower case
alphabets are different. therefore the sirings strl="aBc” and strZ="abec" are
different. The ASCII value of a is 97 and that of B and b are respectively 66
and 98, In these strings, the ASCII codes of first characters viz. a are same, but
the ASCII codes of second characters are 66 and 98. Then “aBc* comes before
*abc” in dictionary order. It may be noted that the value of the function
stremp(“aBe”, "abe”) is 66 - 98 = -32, Thus the negative value of the function
gtremp (strl, str2) indicates that the string strl comes befnre str2 with
respect to dictionary order.

atrcp:.r{)

This function is used to assign a string (constant or variable or expressmn] to
another strmg Its general form is :

strepy(strl,str2); :
where strl is a string variable and str2 is a string constant, variable or an
expression, The value of str2 is assigned to the string strl. :

That is, if strl and str2 are “Ram” and “India” respectively. then the

execution of the function

strepylistrl, str2);
results strl="India” and str2="India”. It may be noted that strl=*India”
is not & valid assignment statement. If any string constant. or variable or

~ expression is to be asa;gn to another string variable, then the function strepy
must be used.

313

Example 2.10.1 Write a program to arrange the nemes of some students in
alphabetic order.

/* Sorting of names inm alphabetic order ¢/
#include<stdio, h»
#include<string.h>
void mainf)
{ .
char name[10] [25), temp[25]:
int ithn.:' . R
printf{“Enter number of students\n*};
gcanf (*3d",&n) ;
printf ("Enter names line by line \n"};
for{i=zl;i<=n;i++) /* reading of names */
scanf (*$[*\n]*,name(i}]);
/* sorting begins */
for{i=l;i<=n-1;i+4)
for(j=i+l;ji<=n;j++)
{
if {stremp(name[i], name(3])>0)
{ /* interchange between the strings */
strcpy(temp,name(i]});
strepy (damefi] , name[§]):
strepy (name[§], temp) ;
} ;

} /* end of sorting */
printf(*\nSorting list is\n");
for(i=l;ic=n:i++)

printf{“%s\n*,name(i]);

) . AT
A sample of input/output;
Enter number of students
g

Enter names line by’ line

Baja

Eratik
Kajal

334

Sorcing list is
Aniket

Kajal

Moni

Pratik

Raja

Rani

Counting the number of words in a string

The following program reads a string of characters (up to Eﬂ} as st and counts
thh number of words in it. A word is a sequence of consecutive characters
{cnntammg alphabets, digits or any special character) without blank space.

#include<scdio. h>
void main()
{
. char st[30];
int k=1,1.1;
printf(*Enter the string\n®);
gets(st)
l=gtrlen(st}; /* determines length of the atring *f
for (i=lpicl;is+) &
if(at{i-1}==' * && Bt{i] !=* ') kese;
{f(st[0)==" *) k-=; f* if leading blank */
printf{"No. of words in the string’is %d *,k);
)

A sample of input/output:

Enter the string

L am g very good student

No. of words in the string is 6

Hewrite the name In short form

The following program reads the full name (up to 50 characters) of a person
in the usual form (i.e. in the form GURU PRASANNA BHATTACHARJEE)
and rewrite it in short form (i.e. in the form G.P.BHATTACHARIJEE).

335

#include<stdio. h>
#include<string, h»
void main()
{.
char-st(50], t(40); /* st is the given string, t is the short Eozm */
int k=0,i,1,m=0;
printf{"Enter the string\n*);
geta(st);
i=gtrlen(st): _
t{0])=st{0]; /* first character puts to t*/
for(i=l;i<=1;i++) /* finds other blank position */
if{stli-1)=s* ' &k st{i] t=' ')
{
k+=2d
tlk=1]=*,";
t[k)=st[i]);
m=i; /* m is the last blank position within the string */
F :
/* finds surname */
if (m==0) k=0;
for{i=m+l;ic=l;i++)
tl#+k]=st[1];
printf{*The short name iz\n"};
puts(t);
} :
~ Enter the string
_'The short name is J
G.P.Bhattacharjee

Rewrite the name with their surname first

The following program reads the name of a person (e.g. Nltya. Lal Saha) and
-then prints its surname first and the other parts of the name:at the ﬂ‘ndr i.8.
in the form Saha N:tga Lal.

#in_clude-:stdzo-. h>
#includé<string.h>

336

void main()
{
char st{501;
~int k=0,1,1;
printf("Enter the string\n*);
gets{st): :
l=strlen{st);
/* determines last blank position */
for(isl;ic=1;i+4) :
if(st[i-1)==" * && stl[i] t=' *} k=i;
printf{*The change name is\n");
if {k==0)
printf("%s”,st};
" else
! _
forli=k:i<=l;i++} pnm;fi $c”,st{i]); /* priris surname */
for (i=0;i<k;i++} printf{*%ec”, st(i]); /* print: other parts*/

Enter the string
Nitya Lal Saha
The change name. is
Saha Nitya Lal
2.11 Structures and Unions
The structure is a very important and useful topic in C language. A group of
data are binding together to form a single data with the help of structure. A
single structure may contains dlfferenl'. types of data, viz., int, float, char,
ete. Other types of data such ss array, pointer even another structure can also
be included in a single structure. With the help of structure one'can define a
new type of data and their associated functions. The individual elements are
-called members of the structure.’ :

The union also contains multiple members and it is closely associated with
the atructure: The members of union share the same memory location, even they

are in: different by type. The advantage of union is that it can store d][farent
data items in same partmn of the memory in different instances.

337

2.11.1 Definition of Structure

Several data items of different types are grouped into a structure. The general
form to define a structure is :

struct struct_name

{ .

- data_type memberl ;
dnta_t_ype member? :
data_type membern;

bi _

Here struct is the keyword to declare a structure, struct_name is the name
of the str_i.mture ca{lied the tag (this is user defined), memberl, member2, ...,
merkezn are n different members (variables) called members of the struct_name.

It may be remembered that definition and declaration of structure are same.
Note that the semicolon (;) after closing brace (}).

The membars of a structure may be ordinary variables (of type int, char,
float, etc.) arrays; peinters and also other structures. But, storage class can
not be assigned to an individual member and no member can be initialize within

o structure. If & structure includes another structure, its name must be dlstmct o
but member name may be same.

Shppose a class contains, say, 100 students and an mst.ttub& would like to
process the student records. For simplicity, we assume that the institute will
store only roll number, name, sex and height of each student for their record.
A structure for-these fields can be deﬁned a8

- struct studem.

1 : : /
int ruli_,na: © /* irteger variable */

" char name[30]; {* an array of char */
char sex; /* a character variable /*
float height /* a floating point variable */

}
Here the structure name is student snd the members are roll_no, name (30-

element array), sex and height. The diagrammatic representation is shown in
Yig. 2.7. :

338

student | (Structure) ' .n
[- Sl e
| S s ST s 30 bytes

1l height
roll.no nam‘:.a | sex | | heigh iy 1' ;
(members) Roap Eﬂgbymm

Figure 2.7: Memory allocation for structure variable

By thm declaration, the structure student becomes a new type of data angd
one can define variables of type student. The following statement declares two
variables rajesh and arpan of type student.

struct student rajesh, arpan

Note that the keyword struct must be present during the dec]arntinn and
‘rajesh and arpan become two structure type varisbles.

The general form to declare structure type variables is

storage_class struct struct_name varl,var2, ..., varn;
~ where stnrage_g:'lnsn represents storage class specifier and it is optionsl, struct
is & keyword, varl, var2,..., varn are n variables of type struct name.

The declaration Gf structure type vmables and the definition of structure are
written together as - :

‘storege_class struct struct_name
¢ : : :

_ data_type memberl;

data_type .mérr&:er?;
data_type membern;

} warl,varl,...,varm;

In this declaration, the m variables varl; wvar2, ,.., varm are declared
togethier and their type is struct_name, i.e. each variable contains n data items
memberl, member2, ..., membern. The m variables are separated by commas
and the declaration enda with semicolon. The storage_class is optional. “Also,

struct_name is optional for this type declaration.

339

Thus the variables rajesh and arpan can be declared as

-struct student
{
int roll_no;
char name(30];
char sex;
float height:
} rajesh,arpan;

When a structure variables declare, a portion of memory is allocated for it and
its size is equal to the sum of the bytes needed for all members of the variable.
For example, 37 bytes (2 bytes for roll_no, 30 bytes for name, 1 byte for sex
and 4 bytes for height) memory space will-allocate for the variable arpan and
another 37 bytes is also allocate for rajesh.

2.11.2 Accessing a Structure

Though a structure grouped a numher of data together even tlmn an mdwldnai
element can be nccessed separately, i.e, an individual element can be read, write,
update, etc. separately. An individual member of a structure is access by .

variable.member ;
where variable is a structure type variable (not structure name) and member
is a. member which is defined within the structure, The dot(.) separates the
* variable name and the member name. This is un operator in C, its precedence
is high and associativity is left-to-right.

Now, consider the previous structure student. The member roll no of the
variable arpan is written as ‘arpan.roll_no, -

Similarly, arpan.name represents the name of arpan, ete. The input and
output of a structure variable can be done by reading and writing all members
individually. For example, the Eolluwmg pmgram segment is used to read the
(structure) variable arpan.
scanf {%d%s%c%E”, Larpan.roll_no, arpan name, &arpan.sex, karpan.height) ;

Similarly, the necessary output statements to print the (structure) variable
Arpan are '

printf ("The record for arpan \n"};
p';-intf{“'Roll No. is : \#d\n *,arpan.roll_no};

printf ("Name is 1.\$s\n *,arpan.name);
printf("Sex is ' : \%c\n *,arpan.sex);

printf{“Height is : 486.2f\n *, arpan.height);

340

Notice. thut the expressions &arpan.roll_no and &larpan.roll_no) are
identical, Becuuse, the precedence of dot(.) is higher compare to the unary
operators and arithmetic, relational, logical and assignment” operators. Thus,
- the value of the expressions ++arpan. rull _no and ++{arpan.roll_no) are
same, First the valne of arpan.roll _no is determine and then it will be
incremented, This is a meaningful expression. Obviously, ++arpan dues not give
any value as arpan is a group of data and it is an errgneous. expression, A
particular clement, say 5th, of the member name (it is an array) can be accessed

as arpan.name[5]. It gives the ffth r:haru.cu*l of the member name of the
strieture mnahle arpan.

2.11.3 Nested Structure

A structure can be defined within another structure. This process is called
nesting of structure.

Now.. we add the date of birth af the students to the structure student.
A date has three parts-day, month and year, and a structure for it can hu defined as

struct date

[:
int day;
int month;
int year;

); :

Now we include this structure to the struciure student. The uecessary,
declaration iy

" atruct student
{ AR
int roll_no:
'+ char name[30];

char sex;

float - height; :

struct date date_of_birth;

b

Here the structure date is nested within the structure student. The structute

student contain another structure date and this new structur_e.cﬂﬂta&ns more
information than the old one.

341

If arpan is a variable of this new structure student, then the three individual
members of date_of birth can be accessed by writing

arpan.date_of_birth. day,arpan.date_of_birth.month,
F arpan.date_of_birth.year
These members behave as ordinary variables and one can apply any unary,

binary or any other operations as required. The memory allocation for the
stfucture variable arpan is shown in Fig. 2.8,

kg

=y

roll.no
2

RS
M) bytes
1
ybe
beight < | “FPAR
& 4 bytss

Ny
date_of birth E‘ﬁfﬁ
[] g
- & bytsa

A

Figure 2.8: Memory sllocation for the variable arpan. .

In general, & member of nested structure can be accessed as
: variable,outer_memebr,inner_member

where variable is a structure type variable, outer_merebr is the direct member

of the structure and inner_member is the member of the structure defined
within the structure,

The above nested structure can also be defined as

struct student
{
int roil no;
char name[30];
char sex;
struct date
{
~ Ant day;

342

int month;
int year;
} dob;
o

2.11.4. Initialization of Structure Variable

Like ordinary variables, the members of a structure verisble can also be
initialized, The general form is

storege_class struct stiuck_name

varia‘;:le={va1ue1, “yalue?, ..., wvaluen};
where variable is a va-.riahl:e of type struct_name. The quantities valuel,
value2, ..., valuen are the values of the first, second, and so on members

of the variable, The initial values of (valuel, value2,..., valuen) must
appear in the order in which they are declared within the stencture. A structure
variable can be initialize only if its storage class is either external. or statie.

Suppose arpan ia a variable of the modified structure student (containing the

structure variable data.,__nf_b:.rth] The assignment of initial value can be done
by the statement

static struct student arpan={777,“Arpan Pal”®,’'m’, ﬂﬂ,ﬁ 7. 2001);
This declaration initializes the members as follow., :

arpan.roll no=%17;

: ;rpan-;namat*irpgn Pal”®;
arpan. gex='m’;
arpan.height=48;
arpan. date_of_birth.day=6;
arpan.date_of birth.month=7;
‘arpan.date_of_birth.year=2001;

That is the date of birth is 6 July 2001, The above statements can alsone
used to initialize the \rariable arpan.

2.11.5 Array of Structure

Since structure variable is a new type (user deﬂne} of data, like mteger BITAY
one can define array of structure variable. Each element of the array is &
structure. The general form to declare such array is

struct student - ce_studenkt[50];

343

In thiy declaration cs_student is an array of 50 elements and each elcment
is a structure of type student. This array cun also be defined as

struct date - struct student
I g {
int day;. int roll_nao:
int month; char name([30];
int year; char sex;
¥ float height;

_struct date date_of_birth;
. Jes studant{!":ﬂ].

The date of (i + I}th ¢s_student can be accessed as

ce_student[i].roll_no,
cg_student [i].name,
cs_studanf{i} -1
ce_student[i].height,
cs_student [1].date_of_birth.day,
¢s_student[i] .date_of_birth.month,
cg studentll‘_t .date _of_birth. year,
These represent reape: tivelv the roll_na, name, sex, hmght and date of

birth (day, month, year}. A purticular character, sty Hth, of the member name
of the 10th student is obtained from the cxpression

cg_student (9] .name(4d];
Initialization of array of structure

An wiray of structures can be initinlize in the same way as a single structure.
The process is very simple and illustrated by the following example.

struct date struct student
(A g
int day; int roll_no;
int month; char name[30] ;
int year; char sex; :
}i : float height;
: struct date dob;
}es_student [50];

344

The following statoment initializes the records of 5 students.

struct student ¢s_student[S]=

{
777, "Aniket Pal”,‘'m’,48,6,7,2001,
555, "Sanjay Roy”,'m‘.50,7.2,2002,
333, "Sonia Gandhi®,‘£’.58,15.3,2001,
333, "Asha Khan*,‘f',78,12,12,2003,
222,"R,K.Sharma*, 'm*,57,10,5, 2002

I

Here cs_student is an'array of 5 elements of data typie studeat, ¢s_student {0}
will be assigned the first set of values, cs_student [1) the second set of values
and so on. Here the 5 sets of data are written in five different lines for clear
understanding, butf, these values can be written as a single line also. Again,
values for a member can be enclosed within braces. This representation is more
better than other forms. That is, the above initialization can be rewritten as

struct student . cs_student([5]s=
{ .
(777, "Aniket Pal”,‘m’,48,6,7,2001},
{555, "Sanjay FRoy”",'m',50,7,2,2002},
{333, "Sonia ‘Gandhi”,’f’,58,15,3,2001),
{333, "Agha Khan®, '£',78,132,12,2003},
{222, "R.K.Sharma”, ‘m’,57,10,5,2002).
| 2

_Now, we consider an example to explain the advantage of structure data.

Example 2.11.1 (Sorting of record) Suppose the roll number, name and tots)
marks of some students are known. Write a program to read the roll number,
name and mark of all students and prepare a merit list for them (i.e. sort the
records in descending order of marks).

£ 59rt1nﬂ of r,eunrd w.r.t. to &ascehding.urder of marks ¢/
#include<stdio.h» ER) .
void main()

{
struct student

ook
int roll no;

345

char name[15];
int mark;
Y
struct student cs_student[40]}, temp;
int i,3.n;
printf(*How many students \n®);

. scanf (“%d",&n) ;

)

/* reading of records */
printf ("Enter the records\n®):
for(i=0;ien;it+)
= :
scanf ("%d*, kes_student (1] .xoll_ne};
acanfj“%s',cs_ﬂtudent{i].name};
gcanf (*%d”, kes_student (1] .mark);
/* sorting of records */
for (i=0;i<=n-2;i++) -
for {J=i+l;i<=n-1;j++)
{ ; :
if{cs_student[i] .mark<cs_student(3j] .mark)
{ =
' /% interchange between two records */
tqmp=cs_studant[il; ;
. es_student [i]=cs_student(j];
¢s_student(]]=temp;
). . :
}
/* printing of records */
printf(*Sorted record is\n"):
for(i=0:i<n;iss) = :
printf(*%4d %-15s %5d\n",cs_student[i].roll no,
cs_student (1] .name,ca_student [1] .mark) ;

How many students

i

Enter the records

11 Aniket 90

346

22 Rahul 34

J4d Saniib Hi

44 Tapan 60

95 Kalvani 38

fi6 Monoranjan 47

Sorted record is
11 Aniket 90
44 Tapan &0
33 BSanjib . . .50
66 MHonoranjan . 47
5% Kalyani 35
22. Rahul 34

A structure named student is define having three data members roll number,
name and mark. An array cs_student of size 40 is declared whose type is
student. The records for all students are read by scanf functions. The sorting
of records with respect to mark is done by exchange sorting technique. The new
thing is that the interchange between two_records. The statement
cs_student [1]=cs_student[i] copies all the members of the (j + 1)th element
of the array cs student to the corresponding members of the (i + 1)th element
of the same array, i.e. entire structure is copied by this single statament This
-statement is equivalent to the following three statements
cs_student{i).roll_nosca_studént([j}.roll_no;
cs_student(i] .namescs_student(j].name;
~ es_student (1] ,maek=ca_student(j) .mark;
Instead of these three statements only one statement is used to copied a
structure and this is the main advantage to use structure.

2.11.6 User Defined Data Types

Using the concept of structure we have seen that a mew data type can be
defined in C. But, to declare a variable of structure type the keyword struct
is written before the structure name. This can be removed by using the keyword
typedef. Using this keyword a new data type ean be defined that are equivalent
to the standard data type. Once a new data fype is defined, the ordinary
variables, arrays, pointers, ete. can be declared like standard data type.

The general form to define new data type is

typedef data_type new_data_type;

347

where data_type is either a standard data type or other user defined data type,
new_data_type is the name of new data type and typedef is the required
keyword,

For example,

typedef int mark;
defines n new data type mark which is basically an integer. Now. one can declare
the va.rmblus of type mark as follows:
mark phy_mark, chem_mark; s
Thus like integer (or any other standard) variable one can define variables of

type mark. Here phy_mark and chem_mark are two variables of tvpe mark, these
are actually of type integer because type of mark is int.

" The following declaration is interesting. :
typedef char string[50];
string name, address; :
The first line defines a-data type string which is a 50-element array. The
second line declares two variables name and address of type string. Since
‘string is a-50-clement array of type char, therefore name and address are also

arrays of length 50 of trpe char. Thl! type of data are useful in some pa;rb:uﬂar
applications.

Tlie ubove definition is cquivalent to the I'clluwmg one.
' typedef char string;
AL string name{50), address(50];
The feature of typedef is significant when it is used in stricture. A new data

type which contains multiple members can be defined wn;h the hetp of typedef
and -structure.

The following syntax is used to define a new. data type whose base is &
structure
typedef struct.
i

: .} new_data_type;
where new_data_type (this is supplied by user) is the user defined data type.
Rementber that this is not the name of the variable.
Now. the variable of new_data_type is declared as same as nl:andard data
type.

348

" Let us consider the following structure.
‘typedef struct
{
int roll_no;
char name{30];
char sex;
float height;
' : -} etudent;
The variables of type student is declared as
studeﬁt es_student, me_student,ee_student(4]:
Note that the kwwurd struct is not required to tieclared & variable. but the
keyword typedef Is used to define structure.
The more complicated data 1ype cun be defined by rﬂpeatui use of typedef.
For example,
typedef struct
o
int day:
int month;
int year;
}date;
typedef struct:
{ :
int roll_no;
char name(30};
char Bex;
float height;
date date_of_birth;
} student;

Here date and student are user defined data type. The data type date is used i
‘to define the data type student.

2 11.7 Structures and Pointers
' Like integer and other standard poiuter variables, structure type pmnt.er

~ varinbles can also be declared. i
If var is & structure type variable, then kvar represents the starting address

349

of that variable. A pointer for a structure type variable can be declared as
data_type *pv;
where data_type is the type of data. In this case, It is of type structure. *pv
represents the name of the pointer variable,
To illustrate the structure type pointer variable, let us mns:der the following
structure,
typedef struct’
{
int roll_no:
char name(30];
char sex;
float height;
}student ;
student cs_student, *pa; -

Here ca_student is a variable of type student, but, ps is a pointer variable
which points to student’ [atructure data type).

It is obvious that when the variable cs_student is declured of type student, -
& space ia allocated for this variable and the amnunt of the space is calculated

as follows:

Variable name Required space (bytes)

roll_no 2
name : 30
Eex ¥
height i
Total : : 37

Thus for the variable cs studﬁant 37 bytes is allocated in computer memur}'
Now, when the statement .
pv=kes_student;
is executed, then the beginmnﬁ address of the a.llot:a.ted space for cs_student
is assigned to pv.
The above declaration [the definition nf structure as typadaf and declaration
of variable of type student) may be written as

struct

{
int roll_no;

350

char name[30];
char sex;
float height;
} ecs_student, *pvi
- A care is to-be taken to access the inidividual structure member. An individual
member Is accessed with the help bf the operator. ~> {cumpuutiﬁn of minus
operator and greater than sign). If pv is a structure type pmm&r variable then
a member can be accessed by the expression
prv-mmher.
Note that > is comparable to dot (,) operator and this expression is equivalent
to
: structure_variable,member;
Let us consider the following structure to illuatr;tta the use of Individual
member, ;
typedef struct
int day;
int month;
int year;
) date: '
typedef struct
{ .
int roll_no;
char name([30]);
char sex;
float height;
date date_of_birth;
} student;
Now, we vonsider ;
' . student cs_student, *pv;”
and the address of cs_student is assign to pv as
pv-&cs_student.
By this statement pv points to cs_student.
The roll_no of the cs_student. can be accessed by an:,r one of the following
statements _
cs_student.roll_no; {hem pointer is not used]
pv->roll_no; ' (pointer pv is used)
{(*pv) .roll_no; '

3351

In the last expression parentheses are required as the precedence of dot s
higher than parentheses, If.parentheses ave-not used then dot operator is applied
first. i.e. the computer will try to deteninine the value of pv roll -ne, but it
does not mean anything, so an error will occur.

The name of cs_student can be accessed by any one of the fulluwmg LJ(DI'ESHIDI'L'J

‘¢g_student.name pv-rname l*pv} name

Let as mnszder the following program to usie the pointer variable as qtructur«

'm:emher

#include<stdio.h>
main{)
{
int r=45;
char nam{]="Aniket*;
char s='m’; '
float h=48;
int d=6,m=7,y=2001;
typedef struct
i
int day;
int month;
int year;
} date; .
typedef struct
T h
int *roll_no;
char *name;
char *sex;
flpat *height;
date dob;
} student;
student *pv, cs_student;
cs_student.roll_no=&r; .
cE_student .nameé=nam;
cs_student . sex=&ks;
cs_student.height=&h;
ca_student .dob.day=d;
cs_student . dob.month=m;

352

cs_student . dob.year=y;

pv=kcs_student; /* pv points to cs_student */

printf(*%d ¥s %c &f 'DO‘B:%d.%d.%d\.n*, *cs_student.roll_no,
¢s_student.name, *cs_student. SEX,
*es_student, height, cs_student.dob.day, cs_student . dob. month,
ce_ptudent.dob.year); ;

printf("td %3 %c $F DOB=3d.%d.%d\n*, *pv.roll no,
pv.name, “pv,sex, *];w.haight,pv.dnbday.pv.dnb.manth,
pv.dob;year); ' :

b /% main */

The output of this program iu

45 Aniket m 48 DOB=6,7.2001
45 Aniket m 48 DOB=§,7.2001

Note that the assignment statement roll N0 iy & pointer variahle, so
cé_student.roll no iy a pointer variable und & operator is nsed to assign the
value of r to cs_student.roll_no. In this case the addrens is assigned, nam is
Al array, so0 it points to a string and to assign it to £s,_student.name no &
operator is neoded. cs’___student.dohl.day; cs_studenc.dob.month and
- es_student.dob.year are ordinury variables. su & operator is not viunired ut
these ansigiinent. \

Agnin, since cs_student . roll_no is # poiuter, therefore ¥cs_student.roll_no
represents its content. Note that is not required to print a siring of characters.
Agnin, since -cs_student ., dob. day is an ordinucy varisble, no » is required to
print its value,)

Observe that second print statement. pr->roll_no, pv->sex, pv~>height
represent pointer, to print, their contents # is required. Note that to access the
content of pv->roll_no. we use the expression *pv->roll_no not pv-»*roll_no,
The latter one is 'inmrrgct. dob.day. dob.month, dob.year are ordinary variables.
Therefore, no asterisk is required to print the values of these variables. But, the
operator -> is used to indicate that dob.day is a member of pv. 4

Note that the precedence of the operator - > is high, i.e. the precedence of
both the eperator ~> and . (dot) are same. Also, their associativity is left to
right. Moreover, the precedence of the operator --> is higher than any unary
operator, arithmetic, relational and logical or assignmcent operators, Thus. a
care should be taken while using this operator,

353

' 2.11.8 Passing Structure to Function

Like ordinary variable, structure type variable can also be passed to a function.
There are several ways to pass a structure type variable to a function or return
a structure type result from a function. The simplest way to pass a structure
type data is passing of individual member values (like ordinary variable), and
the value of only one member can be returned through return statement. In
other way a complete structure can be pa.saed as argument,

Let us consider the.following program to illusirate the transformation of
individusl arguments. PR :

#include<stdio . h>
void main()
o
typedef struct
A :
int roll_no;
char name[30}; _
int - ph_mark, chem_mark, math_mark, total mark;
} student;
student ankit;
int ctotal;
int calgulate_total (int,int,int};
ankit.roll_no=100; :
ankit,.name="Ankit Sarkar*;
ankit.ph_mark=50;
ankit.chem mark=60;
ankit.math_mark=70; : -
ankit.total mark=calculate_total (ankit.ph_mark,
ankit.chem mark,ankit.math_mark};.
printf (“Total marks of $s is %d\n*,ankit.name,ankit.total_mark);
) :
/* definition of function */
int calculate_total{int p, int ¢, int mj}’
{
return{p+cem);
} =
In this program a portion.of structure (the fields ph_mark, chem_mark and
math_mark) ankit is transferred to the function calculate_total and the single
value, sum of these marks is returned to the main function.

354

An -entire structure can be transferred to a function by passing a pointer
rargument which points to a structure type variable. This logic is similar to
passing an array to & function, This process (argument passed by pointer) is
called passed by reference rather by value.

2.11.9 Union

In a program all the variables occupied different memory locations to store
their values, Also, the values of all the members of & structure are stored In
different memory locations. But; sometimes we observed that a variable or an
array is used for the first part (or & portion) of the program and ancther variable
or array is used in the next part (other portion) of the program. To minimize
the space one can assign these two or more variables or arrays into the same
memory location. This cari be done with the help of union. That is, the members
within a union share the same storage area., This is useful when a program
involves multiple dats and the values need not be assigned to all of the members
simultaneously. Only one memory of a union is active at any particular time
instent. A mechanism i8 required to manage the space and to activated a
particular member. All these are done by compiler automatically, however, the
use must keep track of what type of lnt‘nrmatmn is activated at any given time.

The declaration of a union is similar to structure. The general form is

union union_name
N i
data_type memberl:
data_type member2;
data_type membern;
; X
where union is the required keyword, data_type is the data type of each member

memberl, member2, ..., membern. union name is the name of union, it is also
called tag. '

The variable of union type is declared as

storage class union union name variablel, variable?, ..., variablem

where varisblel, variable2,..., variablem are the variables of type

union_name, storagé_class is aptmnal it specifies storage class of union_name.
. The above two declaration may also be combined as

‘storage_class union union_name

355

: data_type memberl;
data_type memberl;
datﬁ_type membern;
} wariablel, wvariable2,..., variablem;
The union_name is optional for this type of declaration.
Since all the members of a union share same memory space, the compiler will
allocate sufficient space for the variables of union to accommodate the largest

member in the union. Qther members also use the same space.
Define & union -named ep with a variable var and a pointer *pu.

union emp
{ :
int emp_id;
_ char name[30];
HEHE '
union emp wvar, *pu:
The above declaration may be combined as

union emp
T .
int emp_id;
char name[30];
} var, *pu;

Here union is defined along with a variable var and a pointer variable *pu.
In this case, 30 bytes of memory space is sllocated for the variable var.
The members of union can be accessed as'in similar way of structure, i.e. they
can be accessed by either dot or - > operator.
Let us consider the above structure emp and the following deciara.tmn
union emp el, *eZ;
e2=5el;
- The mdmdu&] members can be accessed by the following statements
; el.emp_id; /* dccess the emp id *!
el .name; :
e?-remp_1id;
e2-»name; /% access the name */

356

Agsignments are also similar to assignment of structure.

MNote 2.11.1

(i) A union variable can be assigned to another union variable, provided both
the variables have thﬂ same compogition.

(ii) The address of & union variable can be determined by the operator &,
(iii) A union variable can pass to a function as an argument.
(iv) A function can accept and returns a union or a pointer to a union.

(v) The arithmetic and logical operators on a union variable (as whole) are
not allowed. '

Exercise 2.11

1. What is a structure? How does a structure differ from an array?

2. What is a structure member? Whet is the relationship between a structure
member snd a structure? '

3. How can structure variables be declared? How do -ii:ructure varizble
declarations differ from structure type declarations?

4. Describe -the syntax for defining the composition of a structure. Can
individual membess be initialized within a structure type declaration?

5. Can a structute variable be defined as a membet of another structure?
Can an array be included as a member of a structure? Can an arrey have
structure.as elements? Explain.

6. How is an array of structures initialized?

7. How is a structure member accessed? How can a structure member be
processed?

B. How can the size of a structure be determined? In what units is the size
reported? j

8. What is the purpose of the typedef fﬁa.f_llre? How is this feature used in
conjunction with structures?

357

10, How can an entire structure be passed to a function? How can an entire
structure be returned from a function?

11. What is union? How does & union differ from a structure? -

12, How is a union accessed? How can a union member be processed? How
is & member of a union variable assigned an initial value?

13. In what wey does the initialization of a union variable differ from the
initialization of a structure variable?

14, Write a program that reads several different namer and addresses into the
computer, rearranges the names into alphabetical order, and then writes
out the alphabetized list. A structure may ha defined whu:h includes natne
and address of each people. &l

2.12 File Processing

In the programs of previous sections it is assumed that- the input is supplied
_ from the keyboard (the standard input device) and output is displayed on the
monitor (the standard output device). But, when the size of input or output is
large, then it is time consuming to enter data or to read output from the display
terminal (monitor) at a time. Many business and scientific applications require
large amount of data to be entered and saved for latter use. Instead of reading
(or writing) data from keybosard {on monitor) one can read (or write) from (to)
" a unit called data file or simply file. The file primary reside in primarily memory
and when it is saved it will stored in secondary memory. Thus data files allow
us to store information permaneul‘.ly and one can access and modified whenever
necessary.

Depending on the storing te{:hmque, the data file are classified into two
categories~ stream-oriented (or standard or ASCII) files and system-oriented
(or low-level or binary) files. The stream-oriented.files are readable and opened
in any. text editor and so easy to work with these types of files. These files are
commonly used. On the other hand, system-m'lented (binary) files are not

readable by any arbitrary text editor. To store an mfarma,twn in ASCII file
needs more space then binary file.

The binary file generally used to. design and dwe]opment of a complex
database or to read and write a binary information. The binary file is more

 accurate because it stores the exact internal representation of & value. There
dre no conversion errors or round off errors, Storing data in binary form takes
less time as there is no conversion is required during storing data to a file, But,

358

binary data file cannot easily be transferred from one computer to another due
of variations In the internal representation of the data in the computer, On the
uth_er hand the text file can easily be transferred from one computer to another.

2.12.1 File Pointer, Gpeﬁing and Closing a File

A computer cannot read or write data dlrectl},r from (or to) the file which
reside in secondary storage. During reading from a data file, the information is
transferred from data file to & special portion of primary meniory called buffer
area, and then it is used in program. The use of bulfer area speed up the reading
from or writing to the data file,

To use data file, at first we have to declare a special pointer of type FILE (all
characters must be upper case) which points to the beginning of the buffer ares.
FILE i & structure defined in the header file stdio.h. A pointer uf type FILE
is declare as :

FILE *fp:

The pointer fp referred to as a stream pointer or simply a 3trenm This
pointer is very important during use of data. file.

After declaration of file pointer, a file must be defined for use (reading or
writing or both for reading and wntmg} The function fopen is used to open
a file. The generél form is

fp=fopen(file name, fi le_t:.fpe }i
where file_neme and file_type are two strings (constants or variables). they
represent the name of the data file and the manner in which it must be opened
(reading, writing, both reading and writing, appending, overwriting, ete.). The
file_name is a valid name of a file which is allowed by the operating system,
For ASCII file, the file_type must be one of the strings shown in Table 2.11.

. The topen function returns a pointer which points to & buffer. If fopen returns
a NULL pointer, then it indicates tha.t the file associated in fopen functmn is
not ‘opened succesafully. :

The two statements

FILE *fp; ;
fp=fopen{"sample.dat”, *r*);
can be written as
FILE *fp=fopen("sample.dat”, "r"}

‘In the first declaration, fp is declared as a file pointer and second statement
opens a file named sample.dat for reading. While in the second declaration, the
file pointer fp is declared as well as the function fopen is assigned to it.

359

_file_type Use

"y : Open an existing file for reading only

Apar Open an existing file for both reading and writing
" Open a new file for writing only. If a file with the file:

name file_nama exists, it will be destroyed and then a
new file will be created with name file name. :

W Cpen a new file for both reading and writing. If the file
having name file_name exists, it will be destrayed and
a new file will be created for both reading and’ writing. .

a Open an existing file for appending. That is, for adding
new data at the end of file. If no such file exists, t.hen a
new file will be created.

“as" . Open an existing file for both reading and appendmg Ir
_ne such file exists, then a new file will be created.
Table 2.11;
ifa ﬁIu is ppened, it must be closed. This can be done by the following statement -
Ecloselfp);

whem fp is the file pointer associated to the file which is opened for use. When
8 file is closed, then the buffer created for it, will be destroyed and the memory
allocated for buffer becomes free, If the ﬁle is not closed, the compiler wiil
satomaticlly closes the file at the end of the program. Some times it may

‘happen that if the data file'is not properly closed, then all the data sre erased
from the file. So it is-good pmcl:me to close a file explicitly using the functmn
fclose.

2.12.2 File Handling Functions

Some functions sre specially defined to handel data file. These are discussed
in the following.

(a) fopen
The general form of this function is -
; fopen{file_name,file_type);
This_function returns a nointer file name is & character string represents
name of the file to be opened. If the file does not exist in the working folder,

the full path name is required. The double backslash (for DOS) or a simple slash
(for UNIX) are to be given in the path name. For exampie, if the data file

360

test.dat reside in the folder cprog of d. drive, then the file_name will he
- d:\leprogiitest.dat (for DOS) or d:/cprog/test.dat (for UNIX).

The file_type represents the mode in which a file is to be opened. These
values are r, w, r+, w+, a, a+ If the file is being opened or created as a
text-mode (ASCII) file, the character t (for text) mey be write at the end of
above mentioned modes. For example, rt, wk, ret, etc. The use of t is optional
for text fila. If the file is open as binary file, then the character b must be added
at the end of above modes. For example, rb, wh, r+b, ete, If neither t nor b
is used with the modes, then the file will open as text mode.

(b} fclose
The general form of this function is

fclose(file_pointer);

‘where file_pointer is a pointer of type FILE. This function releases the hufl‘er
associated with this pointer and closes the file. The standard file pointers stdin,
stdout, ete. can-also be closed using the function fclose. This function returns
an integer 0 on success and EOF on error. ;

{c) fgetc or gete

These two functions have same utility. fa is the function version of gete, The
general form are

getc(file_pointer);
fgetc{file_pointer);

Theee functions read a character from the file which is associated to the
pointer file_pointer. On success these functions returns a character and on
end-of-file or error return EQF. '

(d) fpute or putc .

These two functions also have the same use. fputc is the function version of
putc. The general form are
pute(ch, file pointer);
fputcich, file_pointer}:
These two functions write the character ch to the file associated to the file

pointer £ile pointer. On success these functions retum the character ch and
on error they return EQF.

3ol

(e) fscant

This. function is similar to scanf function, except that the file pointer must
be specified as first argument. Its general form is
: tacanf (file_pointer, character_stream);

This function reads the values of the variables specified in character_stream

from the file astociated to the painter file_pointer. Themeaningof
character_stream iz same as that of scanf function.

(f) fprincE

‘_This funiction is similer to printf function, except that the first argument

must be the file pointer. Its general form is
fprintf (file_pointer, character_stream);

~ The file_pointer is the pointer which is associated to a file. The meaning
of character_stream is same as that of printf function. :

If stdin, stdout, etc. are used as file pointer the effect will be the same as
-using printf or scanf function. The fscant and fprintf functions are used
to read and write formatted data file (the file contains different type of data,
_vm.,_mt, ‘float, char, etc., ina particular order).

2.12.3 Writing to a File

A data file can be created into two different ways. The first method is, one
cah create the file directly by using any text editor (for example, C editor). The
process 1s same as creating a program file, The second method is read the data
from the keyboard using the functions getchar, gets, scanf and write them
to a specified file using the functions fpute, fputs and fprintf. The last three
functions are similar to putchar, puts and printf, except that the functions
fputc, fputs and fprintf a.ccept & pointer to the FILE structure as the first’
parameter.

The following pmgram reads the roll number, name and sex of some students
and write them to a file named student. dat.

#include<stdio.h>
main)
L .
int rell,i;
char name(15];
char sex;

362

FILE *fp; /* declaration of file pointer o
fp=fopen ("student.dat”,"w"); /* opens the fila student.dat

2%) as writing mode »/
for(i=0;1<5;1++)

{ ’
printf (“Enter record of stodent-%d",i+l);
sex=getchar(); '
scanf ("%4* ,&roll);
gets (name);

{* writing to the file */
fprintf{fp, “%d %s %c”,roll.name,sex);
o ;
felose(fp);
i
If the input for this program are
10 Rahul
20 Sachin
27 Sumita
27 Monojit
62 Nitu

H 9 8 8

then the content of the file atudent,dat is

10 Rahul i
20 Sachin m
27 Sumita £
21 Monojit m
62 Nitu m

The file student .dat can be viewed in many different ways. The file can be
viewed by opening it by C editor or by DOS command type or print or by
UNIX command cat. :)

2.12.4 Reading From a File

The standard input functions are getchar, gets, scanf..To read data from
a-file, the functions gete, fgets and fscanf are used. The first argument of
these functions is file pointer, otherwise these functions are similar to above
functions. ik

363

Example 2.12.1 Suppose a fils triangle. in contains three sides of some triangles,
say n. The first line of: the file triangle.in contains the value of n and next
* each line contains the value of three sides. Write a program to read the sides
of the triangles and display three sides and corresponding ares on tha aeree.n
#include<stdio. h>
#include<math.h>
main()
{
float a,b,c.s,t,area;
-int n.i;
FILE *fp; /* file pointer #/
fp=fopen(“triangle.in”,"c"};
" /* checking for existence of a file */ ;
if(fp==NULL} /* if error, terminates the program */
(. : o
- printf(“Error-opening file\n"):
exit(l);
iy
“facanf (*%d",&n) ;
fart_i'sﬂ;i-m:iﬂl ;
i
fscanf (“SERESE”, ka, &b, ko) ;
g=(arh+e) f2;
t=s*(8-a)*(a-b)*(g-c);
if (£>0)
()
area=sqrt(a) :
‘printf(*%0.2f %0.2f %0. 2£ %€ \n",a,b,c,area);
|
elae
printf(*The sides do not form a triangle\n”};
; ; .
© fcloselfp): «
return;

304

Let the content of the file triangle.in be

= B B L
Bl Lax A
(FER RS -]

The output of this program is
4.00 5.00 6.00 9.921567

2.000 3,00 4.00 2.904737.
The aidea do not form a 'triangle-

Example 2.12.2 Write 4 program to read a text file (ASCII) and display its
content on the monitor, ;

#include<stdio. h>
- main()
{ .
 char ch, fname[13):
FILE *ifile; :
printf(*Enter file name \n");
scanf (*%s8", fname);
‘ifile=fopén(fname, "r");
/* checking the existence of the file ,*.n"
1f(ifile==NULL) :
1
pnntf:“ﬂu such file exists!i\n” !-.

exit (1) s
} (i S : ; :
/* readi‘ﬂg a character from a file and printing it on screen*/
while(!feof (ifile)) /* while not end of file ifile */

{ : : '
ch=fgetc(ifile); /* reads a character from ifile *f
putchar (ch); /* prim:n on the screen */

}

feclose(ifile);
return; '

} i ;
The above program reads all the characters from a file. The file name supplied
externally. The characters are displayed on the monitor screen,

365

Th&l two lines

ch=fgatc(ifile);
putchar (ch);

can. be written together as putchar(fgetc(ifile));

The above program reads a file and displayed ita content to the screeq, Using
this program (with & minor extenslon) one can save a ﬁle to another f‘ le. The
detaiis are given in the fulluwmg program,-

Example 2.12.3 Write a program which wﬂi save & text file to another i‘le The
file names are to be supplied externally.

tinclude<stdio.hs

#include<io h>

main{)

{

char ch, ifname[13], ofname(13];
PILE *ifile,*cfile;
int count=0;

' /* Boutce file */

prmtf{ Enter source file name \n*)
acanft"%s' . 1fname) ; g Rt
ifile=fopen (ifname,"r* ¥i /* open for reading */
/* checking the existence of the file */
if{ifile==NULL)

{ .

printf("Error - No such file existat\n®);
- exit(l):

)

/% target file */

printf{"Enter target file name \n*):
scanf(“%s”, ofname);

ofile=fopen{ofname, "w*): /* open for writing */
/* checking the existence of the file */

if (ofile=sNULL) /* error checking */

{ ' :
printf("Error in file creation I\n®);
exic(0); :

)

366

A reading-a character from a file and writing it to another file
*/ Zmferd : .
while(!feof(ifile)) /* while not end of file source file */
{ ; : ' :
ch=fgetc(ifile); /* reads a character from ifile */
COUnL++; :
fputc{ch,ofile); /* prints on the screep */
i ;
fclose(ifile);
feloselofile);
princf(*The number of characters in the source file
is %d”, count);

return;
}

This program reads two files'- one is source (the file from which the data are
to be transferred) and other is target (the file to which the data are to be
written). A cheracter is read out from the source file whose file pointer is ifile
and it is written to the target file whose file pointer is ofile. This process is
repeated until the source file reaches end-of-file condition. The variable count
determines the number of characters in the source (also in target) file.

- Example 2.12.4 Write a program to merge two files into a single file.

Solution. Suppose sourcel and source? are the given files which are to be
merged and the new file target is created. At first sourcel is to be copied to
target and then source2. is appended to target. The program is shown below.

#include<stdio.h>
void -main()

{ :
char ch,sourcel(13],souxce2[13), target{13];
FILE *ifile,*ofile;

printf (*Enter first source file ‘n*):
scanf{"%s*, sourcel}; ;
printf(*Enter second source file \n*);
scanf ("%s", source2);

printf (*Enter target file name \n®);
scanf (“$s”, target);

367

i‘fila‘:fopan{sourcei.'r'J.: /* open for reading */
ofile=fopen(target, "w"); /* open for writing */
while(!feof (ifile)) /* while not end of file ifile /-
fputc(fgetc{ifile),ofile}; /* reading a character fram source
; file and writing it to targer */
fclose(ifile); /* sourcel is closed now e :
ifile=fopen(source?, “r"): /* open second file for reading #/
while(lfeof{ifile)) /* while not end of file ifile ¥/
fpute (fgetc(ifile) ofile);
felogelatile)
felose(ofile);
2,12.5 Operations on Data Files

Assume that the records (roll_no and name) of some students are stored in
‘the file stu.dat. Let the key value of the record to be searched, be read as
s_roll (the roll number). Now, a record from the file stu.dat is read and the
‘key (roll_no).of the current record is compared with the search key (s _roll).
If they are equal-then the record is printed and the scarch is terminated, If the
search key s_roll does not mateh with any record then a message ‘Record does
not exist' is printed and the program is halted there after.

‘#include<stdio.h>
void main()
{ : : :
char namel2%], fname[13]:
" int roll no,s_roll;
FILE *fp; ; .
printf (“Enter file name' \n"):
scanf(“%s",fname); /* input of record file */
fp=fopen(fname,*r*);
printf("Enter roll -number to be searched\r”):
scanf ("%d*,&s_roll); _ :
while(!feof (fp)) /* while not end of file */
{ : :
£scanf (fp, *$d%[*\n})*, &roll_no,name) ;
if (roll_no==s_roll)
{

368

printf(*Record found\n’);
printf(*%d %s\n*.roll_no,name};
fclose(fp);
exit(l);
: }
}
princf(*Record does not exist\n");
}

Assumed that the file stu.dat containg the following iﬁf-_::-rma.tiun.

125 ANU

333 ANIKET PAL
401 SUMITA BERA
504 PARTHA SAHR

The mputg'—::-utput of the abm'e program is
Enter file nane
“sla.dat
Enter roll number to be searched

RS & 1

Record- found &
333 ‘ANIKET FAL

Updating a file

Suppose roll_no and nane of some students are stored in the file stu.dat,
The following program will read roll_no and name of each student from the file
stu.dat and marks of four subjects from keyboard. Then the total mark,
percentage of marks and class obtained are computed and the result are stored
into a new file stunew.dat. The class is computed ar.curdmg to the following rule.

% of marks Class
60 and above 1
45 to below 60 11
30 to below 45 III
below 30 FAIL

~Finally, the name, roll no. marks of four subjects, total mark, imyc.entage of
marks and the class of each student are printed.

369

/* Updating a file +#/
finclude<stdio, h>
void main()
{
char name[20],remark([4);
int roll_no,markl, mark2, markd,mark4, tutal_mmrk
float percent;
FILE *fpi,*fpo;
fpiafopen({®stu.dat”, *r*);
fpo=fopen|“atunegw.dat”, "w*);
while(/feof(fpi))
{ 3
fscanf (£pl, “¥d%(~\n]", &kroll_no,name) ;
printf(*Enter marks of four subjects of %d ¥s\n*, :
roll_no,name);
geanf (*%d%d%d%d°, smarkl, &mark?, &mark3, kmarkd) ;
tutu1_mark=mark1+mark2+marki$marki
percent=total_mark/4.0;
/* calculation of class */
if {percent>=60)
strepy (remark, “1%);
else if((percent>=45) && (percent<60j)
. strcpy (remark, *11%);
else if(({percent»>=30} && (percent<d5))
strepy(remark, “III*f;
elee
cBErepy (remark, “FAILY) ¢
fprintf(fpo,"%d %= %d %d %d %4 %d %0.2f %a\n°,
.roll_no,name,markl,mark2,markd,markd,
total_mark, percent, remarkl !
} /* end of while */
felose(fpi);
‘fclose (fpo) ;
) ;
Suppme the records of the file stu.dat are

125 ANU
333 ANIKET PAL
401 SUMITA BERA
504 PARTHA SAHA

370

Enter marks of four subjects of 125 ANU

_:h-h:du

a0 20 .30 40 ;
Enter marks of four subjects of 333 ANIKET PAL
40 60 90 87 '
Enter marks of four subjects of 401 SUMITA BERA
10 20 30 40 :]
Enter marks of four subjects of 504 BARTHA SAHA
45 35 50 47 s :
Finally, the file stunew.dat updated as :
125 ANU 50 20 30 40 140 35.00 11X
.333 ANIKET PAL 40 60 90 87 277 69.25 I
401 SUMITA BERA 10 20 30 40 100 25.00 FAIL
504 PARTHA SAHA 45 35 56 47 183 45.75 1II
Exercise 2,12
1., Explain the merits and demerits of ae:quentlal file and random access files

processing,

. Explain the.terms: sequential file, random access file.

. Write .shart notes on : opening a file, clﬁallig 8 ﬂle.hppending a file.
. Explain the functions: rewind, ftell, fseek. o ,
. Suppose the file TRIANGLE.DAT contains the three sides of some triangles.

Write a program to read the sides of each triangle from the -file
TRIANGLE.DAT and calculate perimeter and area of the triangle and

- store them along with three sides, to the file TRIANGLE. G_U_T

. Suppose a file ABC.DAT has 1000 numbers, 10 numbers pt-ar'line. Write
-a program to read these members and sort them and store the sorted -

! nufnberﬂ in the file XYZ DAT.

. Write a program to read a file and to display the contents uf the file on

the screen with line number.

. Write program to merge two files into one file.
.- Write a program to open a sequential file named STD,DAT at unit 20 ami :

read the roll number, name and total marks obtained by 100 students from

~ keyboard and store them into the file STD. DAT.

371

10. Write a program to create a sequential file EMP. DAT and read the empeode,
name and salary of employees of an organization from keyboard and store
them in EMP.DAT. Also introduce the scope of checking of error in the
input. If there is error on the input then again read that record,

11. Suppose & file SEM1 contains the roll number, name and total marks (out

" of 400) of some students of Semester-I Examination. Another file SEM2
contains the roll number, name of those Stude:_itﬁ in the same order as in
the file SEM1 with marks of four papers PAPERS5, PAPERG, PAPER?,
PAPERS of Semester-II Examination. Write a program to prepare the
rvesult which to be stored in the file RESULT of this examination containing
roll number, name, marks in Semester-I, total percentage of marks and
class, The grade will be determined as

% of marks 2 90% = Ex
80% € % of marks < 90% —» A
0% = % of marks < 80% — B
60% < % of marks < 70% — C
. 50% £ % of marks < 60% — D
% of marks < 50% — FAIL

2.13 Macro and Preprocessor

The C languege provides some special features which are not available in any
other high level programming language. Here some more advanced features are
presented. We have already used the #define statement. This statement is used
to defined -(in earlier sections) a symbolic constant within a program. The
advantage to use this.statement is that, before compilation of the program, all
symbolic constents are replaced by their equivalent expressions. For example,
let us consider the following statement

#define MAX 100

Now, if the constant MAX contains in five places in the program, then ’bet‘ore
compilation MAX is replaced by 100 in such five places.

'The #define statement can also be used in many purposes. It can be used
ta define macros, i.e. a single variable is used to define a constant, an expression,

'& complete statement or a group of statements. More precisely, using a single
identifier one can define a function, Other thun #define statement there are
more such statéments. For example, #if, #else, #elif, #endif, #ifdef, elc.

These are called preprocessors. The preprocessor is a program that processes

I

the source code before passing it to the compiler. It is a collection of special
statements called directives or preprocessors command line.

All the preprocessor directives are placed in the program before the main
function. Before the source code passes through the compiler, it is examined by
the preprocessor. After examined by the preprocessor and their appropriate
action, the source code Is submitted for compilation.

It is mentioned that using the concept of macro we define some constants by
some symbolic name and the values of the symbolic names are replaced by the
- constants. The macro substitution is very important feature in C programming
~language and we can use a macro to define many things.

A macro is defined by the preprocessor directive #define. The general form is

‘#define identifier string
where identifier is a symbolic name (valid C variable) and string may be
a constant, an expression of any type (int, float, char, etc). The three terms

are separated by blank spaces, Note that no semicolon is used at the end of this
statement, :)

Some examples of macros are
#define PI 3.1415926

#define country "INDIA® :
#define email *mmaplvu@gmail.com”
fdefine NULL 0O '

#define begin [

#define EQ ==

Usually, in macro definition the identifiers are written in upper case alphabets
to distingnished between symbolic name and other identifiers, but both upper
case and lower case alphabets may be used.
Let us consider the following example
#include<stdio. h>
#define MAX 10
#define NAME “ARJUN"
main()
{
int alMAX],.i:
printf ("Name=%a", NAME) ;

373

for (1=0;1<MAK;i++)
scanf ("%d”, &afi]);
} : -)
In this program two macros MAX and NAME are defined. During preprocessing

the value of NAME and MAX are replaced by ARJUN and 10 respectively. The
_preprodessed program thus becomes

#include<stdio.h>
main{) '
{ i
int a(10],i;
printf {*Name=%$s", "ARJUN") ;
for(i=0;i<10;i++)
scanf (*%d*,&afi]) ;
}

Note that NAME outside the double quotations (in printf) mark is replaced
by "ARJUN® and within quotations it is unaffected by macro substitution.

Macro definitions are placed at the beginning of the program, befors any
‘function declaration, even main function. The scope of macro definition is over

the whole program. It may be remembered that & macro defined in one file is
not recognized within another file,

In the above program, some constants are defined as macros. But, a single
statement, multiple statements, operators, function and -any other valid string
may be defined as macro.

The following are valid declarations.
fdefine BEGIN (:
_#define END }
fdefine AND &&
tdefine OR ||
#define SPACE
But, some care should be taken to define macro. For example, macros X and
Y are defined as : '
' : #define X a+b
| #define Y e-d
and Z=X/Y is a statement in the program. When macros are substituted the .

expression for Z becomes a + b/c - d and obviously it is not correct expression.
The following definition resolved this drawback.

374

#define X (a+b)
#define ¥ (o-d)
Multiline macros can also be defined by placing a backward slash (\) at the

end of each line except the last line. That means, a single macro can define g
group of statements and other things. :

This feature is explained by the following example,

kinclude<stdio h»
#define READ scanf(“$d",&n): b
for(i=0;i<n;is+){ \
scanf (“%d",&alil);
printf("%d *,afil); \

}
#define SUM sum=0; \
for{i=0;ien;is++)
sum+=ali];

#define PRINT printf("Sum=%d\n",sum);

main()
{
int n, al10],i,sum;
RERD
suM
PRINT
) .

This program contains three multiline macros and using these macros the
main function becomes shortened. Note that no semicolon is needed at the end
of three macros READ, SUM and PRINT (within main), because in these macros
the semicolons are already given.

The preprocessed form of the above program is given below.

#include<stdio. h>
main(}
{
int n, all0],i,sum;
scanf{"%d”, &n);
for (1=0;i<n;i++)

375

{
scanf ("%d".8afi]);
printf("%d ",ali]};
)
gum=0 ;
for(i=0:i<n:i++)
sumt=ali];
printf {(*Sum=%d\n*, sum) ;
) j

Macros with Arguments

$0 macros to define functions use arguments, The general form of such macro is
$define identifier(argl,arg2, .., ,argn) string
where identifier is a valid C variable which is also used as function name. -
argl, arg2, ..., argn are the formal arguments without their data type and
- string is the expression for this function. .
Let us consider the following simple example.
#defin f(x) x*x+2%%+5.0
Suppose the following statements are included in the program.

+ vall=f£(2.5);
" val2s=f{2+3) ;
- a={;
valldz=f{a++);
- During preprocessing these three statements transferred to
vall = 2.5 % 2.5+ 2 » 2.5 + 5.0 = 16.25
Val2 =2+ 3%2+3+2%24+3+50=24+6+3+443+50=230
vald = (a++) * (a++) + 2 % (a44) + 50 =4, 5 + 2 6.+ 5.0 =37.0,
Look at these three values vall, val2 and val3. There is no problem in
vall, this is absolutely correct. When val2 is evaluated, = is replaced by the
expression 2+3 in straight forward way, shown in the expression of val2 and
gives incorrect result. This error can be removed by defining the function f{z) as -
: #define £(x) (x)*(x)+2*(x)+5.0
But, the third case is very serious. When £ (a ++) for a = 4 is called, the
value of x is replaced by 4 (=a) and after replacement a is incremented to 5,
this incremented value replaces x. Again, a is incremented to 6 and this is used
in third places of x. : %

Macros are also used in place of functions. A function needs some arguments,

9%

The use of macro in place of function reduces the running time of the program.
Because, when macro is used, during preprocessing the function (defined in
macro) is substituted in all places where it appears within the program and then °
it is compiled. That is, in this process no functions are called during program
execution. Thus, if a macro is substituted in many places, then the object code
becomes long. The use of macro becomes economic where there are relatively
few function calls within a loop.

* Example 2.13.1 Write a program to find the value of f{z) and g(z) for z = 0,

0.2, 0.4...., 1.0 where flz) = \/1+ ¢ and g{z) = sin z. Use macros for f{z) and
alz). ; : '
finclude<stdio.h>
#include<math.h>
define £(x) sgrtil+(x))
#define g(x) sin{(x))
void main{)
{
float x; 4
printf{* £{x) \t o gix)\n"); .
for({x=0.0;x<=1.0:x+=0.2)
printf (*$7.4E\t%7.46\n", £ (x}.g(x});
| . . :

The output of the above program is Shnwn beluw

£(x) g(x)

1.0000 0.0000
1.0954 0,1987
1.1832 0.3894
1.2649 0.5646
1.3416 . 0.7174
1.4142 0.8415

2.13.2 The C Preprocessor

The statements #include and #define discussed earlier are preprocessor
directives. The other preprocessor directives are #if, #elif, ¥else, #endif,
$ifdef, #ifndef, #line and #undef. The more preprocessor directives are -
#pragma, #error, # and ##. Among them the directives #if, #elif #else
and #andxf are used frequently,

377

The preprocessor directives generally appear at the beginning of the 'piogram.
but this is not mandatory. A preprocessor can be defined any where in the
program. The directive will be active from the place of its appearance to the
end of the program.

#ifdef, #ifndef preprocessors

These directives along with #else, #elif and #endif directives are frequently
used as preprocessors. These are used in conditional compilation of the source
program, depending on the value of test condition. '

Let us consider the following example. A vector is & one-dimensional array
and its number of rows and columns are denoted by 1 and COLUMNS (> 1). If
number of rows becomes greater than one, then it is considered as a matrix.
Thus, the number of rows and columns in a matrix are denoted by Rows and
COLUMNS, where ROWS (> 1) and COLUMNS (> 1}. Also. assumed that the ohjects
(0BJECT) vector and matrix are denoted by VECTOR and MATRIX respectively.
Now, we would like to define the size of vector or matrix by preprocess directives.

¥if defined (ROWS)
#define COLUMNS 5
" #endif

" The preprocessor #if defined() ix vquivalent to #ifdef. Thus the above
statements ere equivalent to '

#ifdef ROWS
¥define COLUMNS 5
#endif

Thus, if ROWS is already defined, then 5 is assigned to the symbolic constant -
COLUMNS. The #else directive can also be used within ¥ifdef directive, illustrated
below.] ; ; ;

#ifdef ROWS i* if_ ROWS ia defined */
#define COLUMNS 5 . '
¥else
#define ROWS 2
#define COLUMNS 5
#endif :
These statements check whether ROWS is defined or not. If ROWS is defined

378

then COLUMNS is set to 5, otherwise the symbolic constants ROWS and CoLUMNS
are set to 2 and 5 respectively.

In the directives #if, #ifdef, #ifndef the last directive must be #endlf
Thus, the general form of #ifdef, #ifndef and #if are

#if (or #ifdef or #ifndef) symbolic_constant

kelse

||||||||||||||

#endif

If the symbolic_. constant is true, then the statements. between #if and

f#else will execute, otherwise the statements bstween #else and #endif will
execute.

The following preprocessors directives illustrate the use of #if.

#if- OBIBCT=sVECTOR
" #define ROWS 1
#define COLUMNS 5
#else '
fidefine ROWS 2
#define COLUMNS 5
#endif

That is, if the object is-defined as vector then the number of rows and columns
are set to 1 and 5 respectively, otherwise (the object is matrix) the number of
rows and columns are set to 2 and 5 respectively. :

In C, the #if statement checks only one condition. But, if we have to check
multi-condition, then else if statement is used. Like C’s control statement else
if there is a similar preprocessor directive #elif. With #if directive, any
number of #elif directives can be useéd, but only one #else directive is used.
The #else directive is optional, depends on the program logic. -

#if ROWS==1

#define COLUMNS 5
#elif ROWS==2

fdefine COLUMNS 10

379

#elif ROWS==3

#define COLUMNS 12
#else

¥define COLUMNS 14
#endif

In the above examples we have use #define to defined some symbolic constants
+ within #if, #elif and #endif blocks. :

Exercise 2.13

1. What is macro? Summarize the similarities and differences between macros
and functions. _

2. How is a multiline macro defined?
3. Describe the use of arguments within a macro.

4. What is the main advantage in the use of macro rather than a function?
What is the main disadvantage of it?

5. What is the scope of & preprocessor directive within a program file?

. 2.14 Summary

This is the largest unit of this module, In this unit, a brief overview of C
programming language is given. The basic elements of a programming language,
viz. constants, variables, expressions, arrays, input/output functions, control
statements are discussed and illustrated by several examples. The use of function
is a very special feature, and it is discussed here. The use of pointers, structures
and unions are very important features of C, these make easier to writing a
program. These features are incorporated with simple examples. The use of data
files is discussed in this module. Some advanced topics of C language are also
briefly introduced with examples. '

380

UNIT 3 0 PROBLEMS ON NUMERICAL
ANALYSIS

In this unit, some fundamental problems of numerical analysis have been |
considered. The algorithms and programs to solve such problems are designed.

3.1 Objectives

After going through this unit you will be able to learn about-
(i) Design of algorithms to solve numerical problems
(ii) Development of C programs for some basic problems of numerical analysis,

3.2 Solution of Algebraic and Transcendental Equations
3.2.1 Bisection Method £ AT

Let & be & root of the equation flz) = 0 lies in the interval [a, 6], i.e., f{a).f(b)
< 0, and (b - a} is not sufficiently small, The interval [e, b is divided into two

equal intervals |a, ¢] and [e, b), each of length b;“ and ¢ = QE*LP. If fle) =0,

then ¢ is an exact root.

Now, if flc) # 0, then the root lies either in the interval [a, ¢] or in the interval
[c, 8. If fa).f (¢) < O then the interval [a, ¢ is taken as new interval, otherwise
[c, b] is taken as the next interval. Let the new interval be ley, b)) and use the
same process to select the next new interval. In the next step, let the new
interval be [ag, by]. The process of bisection is continued until either the
midpoint of the interval is a root, or the length (b, - a,) of the interval [a,, b,)
(at nth step) is sufficiently small, The number an and bn are the approximate

: : b - .
roots of the equation f{z) = 0. Finally, I = ! ; = is taken as the approximate
value of the root &. _

An algorithm of bisection method is presented below,

Algorithm 3.1 (Bisection method). This algorithm finds a real root of the
equation f{z) = 0 which lies in [a, b). :

- Algorithm Bisection

Input function f{z);

381

/[Assume that flz) is continuous within [a, b) and a root hes on [a, b.//

Read & //tolerance for width of the interval//
Read a_ b . //input of the interval//
Compute fa = fla); f = flb); /[compute the function values//

if sign(fa) = sign(fb) then

/[#ign(fa) gives the sign of the value of fa.//
Print ‘fla) - f{b) > [] 30 there is no guarantee for a root within [a, b";
Stop;

endif;

do _ '

Compute ¢ = (a + b)/2:
Compute fe = flc);

Af fe = 0 or [fe| < € then

=cand b= ¢
else if sign(fd) = sign(fc) then
b= ¢ fbo = fc
else
e = ¢ fa= fo
endif;

while (|0 - a| > &);
Print ‘the desired root I8’ ¢
end Bisection

- /* Program Bisection
Program to find a root uf the aquatmn x*x*x-!x-l-ﬂ by
bisection method.
Assume that a root lies between a and b. %/
#include<stdio. h>
#include<math. h>
#include<stdlib, h>
#define f(x) x*x*x-2%*x~1 /* definition of the functiun fix). */
void main()
{
float a,b,fa,fb,c, fe;
float eps=le=5; /* error _tolera.nce *i
prin_tfi"‘-.nEnter the value of a and b “);
scanf ("%f %f", &a,&b);
fa=f(a); fb=f(b);
if (fa*fb>0) .

382

{ o
printf (*There is no guarantee for a root within [a,bl*);
exit (0} ;

}

“do
{

c={a+h) /2.

fe=flc);

if((fc==0) || (fabs(fc)<eps))
{ :

a=c¢;b=c;
}

else if(fb*fec>0)

{
b=c; fb=fe;

el=a

{
“a=¢; fa=fc;
}
Jwhile(fabs(b-a)>eps) ; _
printf("\nThe desired root iz %8.5f e o I
} /* main */. T :
‘Enter the value.of a and b 0 2
The desired root is 1.61803

4.2.2 Iteration Method or Fixed Point Iteration

The iteration method or the method of successive approximations, is one
of the most important methods in numerical mathematics. This method is also
known as fixed-point teration. '

Let flz) be a function continuous on the interval [a, 0] and the equation fz)
= 0 has at least one root on 4, b]. The equation f{z) = 0 can be written in the

form

T = d(z). ; ' (3.1)
- Suppose 7 € [a, b] be an initial guess to the desired root E. Then &{z) is
evaluated and this value is denoted by 7. It is the first approximation of the
root €. Again, z; is substituted for zto the right side of (3.1) and obtained a new

383

va.lua.'rn; = $({x;). This process is continued to generate the sequence of numbers
Tg; L1y Ty eevey Bys «oon those are defined by the following relation:

Tr = HE), n=01,2 ... : (3.2)
This successive iterations are repeated till the approximate numbers zn's

converges to the root with desired accuracy, i.e., |24~ %] < & where gis a
sufficiently small number. The function ¢(z) is called the iteration function,

/* Program Fixed-Point Iteration _
Program to find a root of the eguation x*x*x-3x+1=0
by fixed point iteration method. phi(x) is obtained

by rewrite f{x)=0 as x-phi{x}. which is to be aupplied =/
#inciude<stdio. h>

#include<math.h>
" #includecgtdlib, h>
#define phi(x) (3*x-1)/(%"x)
/*definition of the function phi(x) and it to be

changed accordingly *.f
void main()
{ :

int k=0; /* counts number of iterations */
float x1,x0; 7* initial guess */

float ‘eps=le-5; /* error tolerance */
printf{"\nEnter the initial guess x0 *);
scanf (“$£", &x0) ;

®l=x0;

do

g

k++;

x0=x1:

xl=phi{x0);

jwhile({fabs (x1-x0)>eps);

printf ("One ruut is %8.5 ubta.:.ned at %d th ltﬁration noxlik):
} /% main */

Enter the initial jueu x0 1
One root is 1.53209 obtained at 37th iteration

384

3.2.3 Newton-Raphson Method or Method of ‘Tangent

Let 10 be an approximate root of the equation fz) = 0. Suppose 7, = x, +h
be the exact root of the equation, where A is the correction of the root (error).

Using Taylor’s series, f{z;) = flzy + h) is expanded in the following form

? &
Hao) + b (@) + 3= 1'(8y) #1020
Neglecting the second and higher order derivatives the above equation réduces to

f[':ru}'i'hff(ﬁn} =0 or, h= —.{.{,ﬁl

(=)

| f(z,)
Hence, =+ h= m.u -IT?:F—}

* To compute the value of b, the second and higher powers of i are negiectéd

s0 the value of h = —ﬂﬂl is not exact, it is an approximate value. So, g,

obtained from (3.3) is not a root of the equation, but it is & better approximation
of z than x, '

In general,
f(z,)
: 2':1':1-] £ Iﬂ i }u(_;i‘j \ {34)
This expression generates a sequence of approximate values R T
each successive term of which is closer to the exact value of the root £ than its
predecessor. The method will terminate when [x,,; - z,| becomes very small.
In Newton-Raphson method the arc of the curve y = f{2) is replaced by &
tangent to the curve, hence, this method is sometimes called the method o
tangents. '

/* Program Newton-Raphson
Program to find a, root of the eguation x*x*x-3x+1=0 by Newcon-
Raphson method. f(x) and its derivative fd(x) are to be supplied, */
#include<stdio.h»
#include<math.h>
#include<stdlib. h>

385

void maint)
fro
int k=0; /* counts number of iterations */
float x1,x0; /* x0 is the initial quess */
float eps= =le-5; /* error tolerance L7
float f(float x);
float fd{fleat =x):
“printf (*\nEnter the initial gﬁeéé x0)
geanf{"8£", &x0) ;
xLe=x0; '
do
{
K4
x0=x1;
- x1l=x0-f{x0)/£d(x0);
}while(fabs (x1-x0)>eps) ; :
printf("One root is %8.5f obtained at %d th iteration *,x1,k);
} /% omain */
/* definition of the function £(x) */

© float E£(float x)

{
return{x*x*x-3*x+1};
) : ;
/* definition of the function fd(x) */
float fd(float x)

(.

return{3*x®*x-3};
}

' Enter the initial - guess x0 1.1

One ruut is 1.53209 obtained at 7 th iteration

3.3 Snlut.inn of System of Linear Equations

Generally, two types of methods are used to solve a.ﬁ:,ratam of linear equati{ms,
viz,, direct and iteration. If the system of equations has a large mumber of
variables, then the direct methods are not much suitable. In this case, the
approximate numerical methods are used to determine the varlables of the system.

386

The approximate methods for solving system of linear equationy ‘make it
possible to obtain the values of the roots of the system with the ‘specified
sccuracy ns the limit of the sequence of some vectors, The process of constructing
such & sequence is known as the iterative process. T

The efficiency of the application of approximate methods depends on the
choice of the initial vector and the rate of convergence of the process,

Here two iteration methods - Jacobi's iteration and Gauss-Seidal's iteration
are discussed along with the direct method LU-decomposition. '

8.3.1 Jacobi’s Iteration Method

Let us consider a system of n linear equations containing n variables:
e + 01 + + Gty = b 3
anZy + opn + + Wy, = by (3.5)
G+ 0ym + o Gy = by

‘Also, we assume that the quantities asi are pivot elements.

The ebove equations can he written ag:

Biie ;
B o= o (b - agm - Gy - ~0).,)
dy ;
E i i
) "'-:9_[5& ~ Gl - ey - .- o) "13:6)

LR T O

T = (b Gl - G- - G Tag)-

tin _ :
Let 2{%, 2,2 be the initial guess to the variables By By ...y Tn EBpectively

(initial guess may be taken as zeros). Substituting these values in the right hand
side of (3.6), which yields the first approximation as follows.

RS U e i
= L0 -gl? - ¥~ 0,50
1 |

(1

AL
b s

1 . ' '
) 0 ~ @i = apya? - ... ~ 0y, 2%) (5.7)
2 : el

L R N R R T AERFRARAEE a

. 1 oty]
1'2} = _[bu Tl “nlmlm} i “u‘:xgﬂ} e unn—lxﬂ!l

. 387

Again, substituting z{",z{",._ 2 in the right hand side of (3.6) and obtain

the second approximation Im n:f’". -,xm.

In general, it a{",4,. .,sz} be the kth approximate roots then the next
approximate roots are given by

-zf*+1=-¢—1—{b1-a, W — gzl - - ayez?)
m]_ {h_-, o T -aﬂxﬂk}----fﬂzﬂfﬁ}_ (3-8)
{hl] {15“ '“'ﬂl 1]'_,;;“2:,3*} o 11'1:”[]
k= ﬂ vk

The iteration prucﬁa is continued until all the roots converge to the required
number of significant figures. This iteration meth{ld is ca]led Jacobi’s iteration
or simply the method of iteration.

. The Jacobi's iteration method surely converges if the coefficient matrix is
dlagonally dominant.

Algorithm 3.2 (Ganss-Jacobi’s). This a.'lgorithm finds the solution of a system

of linear equations by Gauss-Jacobi's iteration method. The method will terminate

when |2~ 218 | < ¢ where £ is the supplied error tolerance, for all i.

Algorithm Gauss Jacobi '

Step 1. Read the coefficients a;, 4, 3 = 1, 2,..., n and the right hand vector
by i =1, 2,..., n of the system of equations and error tolerance &

Step 2. Rearrange the given equations, if possible, such that the system becomes
_diagonally dominant,

Step 3. Rewrite the ith equation as

b, ~ Za
S o, (=l) for 3= 1,2,

i
Step 4, Set the initial solution as
: J:,-='U,£=1,2.3,".,n
Step 6. Calculate the new \ralues zn; of z; as

a ; .
il ;.; (EGJ) Em‘i--],2, ey T
1] J=i ;

388

Step 6. If |z, - 2n, [< & (£is an error tolerance) for all 4, then goto Step 7 else _

set x; = zn; for all § and goto Step 5.
Step 7. Print m. i =1, 2, ..., n as solution.
end Gauss Jacobi

/*Program Gauss_Jacabi _
Solution of a 'system of linear equations by Gauss-Jacobi's iteration
method, Testing of diagonal dominance iz
also incorporated.*/
#include<stdio,h>
#include<math.h>-
#include<stdlib. hs
void maini}
float al10][10],b(10],x[10],xn{10],epp=0.00001, sum;
int 'i,j,n, flag;] o :
printf(“Enter number of wvariables %);
scanf (*%d", &kn) ;
printf{"\nEnter the g¢oafficients rowwise *|:
for{i=1;i<cen;ivs) e :
for(j=1ij<=n;j++) scanf{*%f" &ali][]);
printf ("\nEnter right hand vector *);
for(i=1;icen;i++)
geanf ("$£¢,&b(1i]); ;
for{i=l;i<=n;i++) x[il=0; /* initialize */

/* checking for row dominance */
flag=0;
for(i=l;i<=n;i++)

{

gum=0; ;

for(J=1;je=n;j++) :

if{il=j)} sum+=fabs{alillil);:

if(sum>fabs(alil [i])) flag=1;
], 5
f* checking for column dominanee */
“if (flag==1)

389

flag=0;
for{j=l:;j<=n;j++)
{
sum=0;
for{i=l;i<=n;i++)
if(it'=1) sums+=fabs{ali] EJ]] .
if (sum»fabs(alil[§))) £lag=1;
1
)
if(flag==1)
{ ' ; :
printf(*The coefficlent matrix is not diagonally dominant\n®);

© printf(*The Gauss-Jacobi method duea not converge surely?);
axit{ﬂ]

} -
fprti=1:i<=n;i++:- printf(* x[%d] *.i};printf(*\n"};
do ' ; ' :
{
forlisl;i<an;ie+)
o
~ sumeb[i];

for(i=1;f<=n;j++)
if(jt=1) BUMFIEIL][J}*XEj],
xn[il=sum/fafi) [i];

)
for(i=lji<sn;i+s) printf(*88.5f *,xnli]):printf(*\n);
flag=0; /* indicates |x[i)-xn{il]{<epp for all i */
for(isl;i<sn;i++) if(fabs(x[i]-xali])>epp) flag=l;
if(flag==1) for(i=l;ic=n;i++) xlil=xn(i): /* reset x[i] */
Jwhile(flag==1);

printf("Solution is \n®);

for(i=l;i<=n;i++) printf("%8.5f “,xnii]],
) /* main ¥/ _
Enter number of variables 3
Enter the coefficients rowwise

390

1

4

30 :
right hand wvector
=15

x(1)] x[2] x[3]

sl =t

t

By
kh

2.22222 0.60000 ~1.50000
2.75556 0.97778 -1.70444
2.76247 1.00622 =1.66000
2.73640 0.98775 -1,65000
2.73606 0.98636 -1.65218
2.73733 0.98727 -1.65267
2.73735 0.98733 ~1.65256
2.73729 0.98729 -1,65254
2.73729 0.98729 -1 .65354

Selution is_ _
2.73729 0.9872%9 =1,.65254

3.3.2 Gouss-Seidal’s Iteration Method

A simple modification of Jacobi's iteration sometimes give faster convergence.
-The modified method is known as Gauss-Seidal’s iteration method.
- Let us consider & system of n linear equations with n variables,

andy + ey + + 012, = b
o+ ey + + Gny = by (3.9)
Gy + Gy + + an%, = by,

Assume that the diagonal coefficients Gy i =1,2 .. n are diagonally
dominant. If this is not the case then the above system of eéquations are re-
arrauged in such a way that the above condition holds.

The equations (3.9) are: rewritten in the following form ;

ﬂ=;%h~wm-mm—uﬁ%a}
1 : :

1 ; .
%=Ejh-%ﬁ*%ﬁ~m-mm (3.10)

=
By = p== [’bﬁ T 0T < Gely - . - aﬂn-l.mn-!}
Orn

391

To solve these equations an initial approximation =",z ” oo 20 “for the
variables =, @, ..., &, respectively is considered. Substltut-mg these values to

the above system and get the first approximate value of ,, denoted by ("
Now, substituting z{" for z; and 2i".a{",.... 2" for 2, 7y, respectively and
we find ..4,” from second equaticn of (3.10), the first approximate value of @,

Then substituting 2" “} (lth A0

TiEpr

I o8 B, Bhes Bb Borty orey s o the
ith equation of {3.1!}} respectively am:i obtain z!", and 6 on.

If zf“, i=1,2, .., nbe the kth approximate value of g, then the (k + 1)th

approximate va!ue of 2y, =, ..., , are given by

k l} k -ll k
“{ i {bl '“a"r{ } '“m"’"{ R z)
a]
het) _ 1 o bel} k) s (& ;
™ = 0, - 02— gyl - -, 1) (@d.11)
sy
fkat) _ 1 (k+1) : Tkt ik Ly
= e a. (b'l- .ﬂilzl fl et Il-lml-': :! i ﬂ“_ﬂ-ﬂ”:: ELe ﬂll_l'l—lrf'l—}f
Wi o 3
k) B k+1) _ k+1 ksl
ﬁlI['i i = *{&“ __ " lm:: : n!zg' ?j == uﬂ-—l 'fl"] }J
k=0,1,2,
Thﬂt iﬂ+ .
S ;
ke) 1 k1! 28 e
x}]-;,_{bi—jzjaﬁz.(f*] E u’j i]' i=i; 21 ieny ﬂ'mdk=ﬂ‘ 1, 2.
1 . = 4 Jmi+l

The':ﬁetlmd is repeated until [2f* < ol® {< s for all i = 1, 2,..., n, where

& > 0 is any pre-ass;gned number called the error tolerance. This method is
colled Gause-Seidal’s iteration method.

Algorithm 3.3 {Gaus&-ﬂeida]‘s_]. This algorithm finds the solution of a system
of linear equations by Gauss-Seidal’s iteration method. The method will terminate

when | 2" =2 | < ¢, where & is the supplied error tolerance, for all i

392

Algorithm Gauss Seidal :

Step 1. Read the coefficients ay, 1, j = 1, 2, ..., n and the right hand vector
b, i=1, 2, ..., nof the system of Equatinns and error tolerance g

Step 2. Rearrange t_he given equations, if possible, such that the system becomes
diagonally dominant.

Step 3. Rewrite the ith equation as

z, =—~{ Z“.ﬁ;‘z“u ,J ol e e e |

ﬂ'u jei Ji
Step 4. Set the initial solution as
=01=123...,n

Step 5. Calculate the new values zn; of z; as

e _h(b Zaijmj zal_} _il] for i = 1 2

! By Jxi J=i
Step 6. If |z, - zn] < £ (& is an error tolerance) for all i then goto Step 7 else
set z; = xn; for all i and goto Step 5.
Step 7. Print any, ¢ = 1, 2, ...; n as Solution.
end Gauss Seidal

/* Program Gauss-Seidal
Solution of a system of linear equations by Gauss-Seidal's
iteration method. Assume that the coefficient matrix
satisfies the condition of convergence. */
#include<stdio.h>
binclude<math: he
void main()
{ : ;
float a[10)[10).b[10],%(10],xn(10]),epp=0.00001, sum;
int i,j,n,flag:;
printf{*Enter number of variables *};
scanf (“%d*,&n) ;
printf(“\nEnter the caeffmients rowwise ");
- for(i=l;i<=n;i++) :
for(j=1l;:j<=n;j++) scanf(*%f',&a[i]{j}}:
printf(*\nEnter right hand wvector "};
for(izl:i<=n;i++)
scanf (*%£",&b(i]); :
for(i=slii<=n;i++] x[i1=0; /* initialize */
/* testing of diagonal dominance may be included here
" from the program of Gauss-Jacobi’s methed */

193

dao
il
for{i=1;i<=n;i++)
{
sum=b{i];
for(j=1;j<sn;j++)
if (4<i)
sum-=a[i] [§]1*xm{i];
else if(j»i)
- sum-=a{i)[)*x(3]; |
an[i)=sum/a(i)(L);
}- '
flag=0; /= "indicates |x[i]-xn[i)|<epp for all i */
forli=1;i<=m;ie+) if(fabsix{i)-an{i))»epp) flag=1;
if(flag==1) for(i=l;i<=n;i++) x{i)=m[il; /* reset x[i] */-
) i i el
while(flag=el);
- printf(*Solution is.\n"); _
for(izlji<=n;i++) printf(“$8.5¢ *,xn{i]);
} /* main */ : Tt
Enter number of variables 3
Enter the coefficients rowwise
31 -1
256 2
246

Enter right hand vector
198 :
Solution is

2.00000 . 1.00000 0.00000

3.3.3 LU Decomposition Method

This method is also known as factorization or Crout’s reduction method.
-Let the system of linear equations be X
Ax = b : (3112]

394

where A, x, b are respecti

slde vector,

vely coefficient matrix, variable vector and right hand

The matrix A can be factorized into the form.A = LU, where L and U are

the lower and upper triangular matrices res
A are non-singqular, then this factorizati

The matrices L and U are of the form

4,

0

-

-1

pectively. If the principal minors af
on is possible and it is unique,

W Sy Wy e e B
b L, 0 0 0 1w, u, Yon
/S S s 0 ' 0 0 , .
L=5“f‘?--5 andUs=|; . ?J, » (3.13)
vfnl lr;‘l IIn-'i e Irm_l L 0 0 0 j 'h‘."nd .

The equation Ax = b becomes LUx = b, Let Ux = 3 then Lz = b, where g
= (#, @, ..., ;)" i8 an intermediate variable vector. The value of & i.e., z, 2,
.-y zy can be determined by forward substitution in the following equationa, L,

h%

ha + by
b2 + bz + bazy

(3.14)

il

il
e

Ini.zl + hoz + '.-n.'!-'a:! + ..+ banza = by,

After determination of . one can compute the value of x 1.8, &y, 2,..., 2, from
the equation Ux = 2 ie., from the following equations by the backward
substitution. ; _
Uy + vy + uads + o+ oud, = g
Uty + UnZy - + Huln = 2

Ugay + UpTy o+ Uy, =

LR R T T e

(3.15)

U ay Ty + Uy-tnn = 2.}
Upyly = 3n L .
When u; = 1, for i =1, 2, ..., n, then the 'met-had is ‘known a® Crout’s

decomposition method, .

-Procedure to compute L and U .

Here, we assume that uy; = 1fori= 1, 2,..., n. From the relation LU = A,
i.e., from . :

395

byt hytag : e gty
B TR TUTR A VR R P e gty + bythg,
My g ke 'LJlul'..'f.: gty vl bty + g Uy, by,

..I.’" bty + by bty + Lgtigy ";Inﬂ '_I'fl“ln +hoty, + -+ 1,

Gy thy Mg v gy

o M TR R T
; o | By Buz Guy o Oy
we obtalin

a, .
Iﬂ. - ai.'ﬂ i= ll .21' L l'ﬂ' ﬂ'nd H‘J ="'1i| j= 21 31'!!!1 nq
1

The second column of L and the second row of U are determined from the
relations :
iy = o - by, fori= 2,8, .

= bty
-——fur =3, 4,
Up; B j

Next, third column of L and third row of U are determined in a similar WAY.
In general, I;and u,; are given by

e .
=y l‘ttﬁukj y 12] (3.16)
=1
=1 .
yym—tl—, i (3.17)

L]
ui=1, =0, j>iand uy= 0,4 > j.

Alternatively, the vectors = and x can be determined from the equations
- z = Lib: ' (3.18)
and x = Uz (3.19)
It may be noted that the computation of inverse of a triangular matrix is

casier than an arbitrary matrix, -

The inverse of A can also be determined fram the relation 2
L A = UL, : © (3.20)

396

Algorithm 3.4 (LU decomposition). This algorithm finds the solution of 4
system of linear equations using LU decomposition method. Assume that the
principal minors of all order are non-zero.

Algorithm LU-der:nmpusitmn

Let Ax = b be the systems of equnhona and A = [a;]. b = (b by, ..., b)),

x = (z, 2y .., Ty ' :

/{Assume that the principal minors of all arder Bre non- zert} I/

//Determine the matrices L and U.//

Step 1. Read the matrix A = [a;], 4, j= 1. 2, ..., n and the right hand vector
b= (b, by .., b)

Step'z, i,-1=n,1fnri=12 ,ﬂ,ulj—!—fﬂl'j“'?:} . m
11 :
i u,,—lfur:—l? .

Step3d, Fori, i=12,3, ... n cumpute the following

et e EL&%, §E

LII
zid‘uh 0
P -

Step 4. / jSulve the system Lz = b by forward substitution. /f
B Pl‘-_ £ '_[b Ziuz:r] for i = 2, 3,
E1] !1':'

Jml
Step 5. //Solve the a;vstem Ux = g by backwa.rd substitution.//
' Set o= 2"

T =3~ Z “We fori=n-1,n-2 .., L

J=isl
Print =, x, ..., %, a8 solution.
end LU- decumpnaitmn

/* Program LU-decomposition. Solution of a system of
equations by LU decomposition method, Assume that all
order principal minors are non-zero. */
#include<stdio, h» -
void main{)
{ i ¥ :
float a[10)[10],1(10](10],u{10](10},2(10},x[10],b[10];
int i,5.k.n;

397

printf(*\nEnter the size of the coefficient matrix il [
scanf (*%d”,&n);
printf("Enter the elements rowwise ");
for(i=1;i<=n;i++) for{j=1;j<=n;j++) scanf{"%£",8ali](i]1);
printf(“Enter the right hand vector il o2
Eort;-l i<=n;i++)} scanf(*%f",sb[i]};
/* computations of L and U matrices */
for(i=1;i<=n;i++) 1{11[11=a{i][11
for(j=2;je=n;j++) uil}{31=afl){(31/212)11);
for(i=1;i<=n; i++) ufi](i)=1;
for(i=2;i<en;i++)
for(j=2;j<an;j+e)
if(1i>=3)
(
(i) (§)=ali) [];
for (k=l:k<aj-1;ke+). 1141 13)-=1(4] k) *ulk) (§];

else
{
ulil(jl=afil[j1;
for(k=1;k<=i-1;k++) wli] [j1-=1[1] [k}*ulk] [§];
uiilIJ]f il 14);
}

printf(*\nThe lower triangular matrix L\n'}
for(i=1; ti<=n;iss)

(.
for{j=l;J<=i;i++) printf['%f SUAVG)
printf(™\n"};

i

printf(® \nThe upper triangular matrix Uln‘l
for(i=1;i<=n;i++)

{
for(j=l:;3<i;3j++) princf(» =);
for(j=i;j<=n;j++) printf("8f *, u(i](j});
printf(*\n");
¥ E
/* solve Lzsb by forward substitution *!
z[1)=b[1)/1(1)[1);
for(is2;i<=n;i++)

398

{ .

. zfi)abli]; .
for(j=1;d<=i-1;3*+) z[i)-=1{i)[{)*z[4);
z2[1)/=1[1i][i); ;

S ,

{* solve Ux=z by backward substitution */
x[n]=z(n];
for{i=n-1l:i»=1;i--)

{
¥[i}=2{i);
for{j=itl;d<=n;j++) x{il-=ulil[i)*x[]];
} :
printf{*The soclution iz *):
for{i=l;i<=n;i++) printf(*%f =,x{i]);

} /% main */

A sample of input/output:

Enter the size of the coefficient matrix 3

Enter the elements rowwise

4 21

25 -2

.1 =27

 Eriter the right hand vector
345 :

The lower triangular matrix L
4.000000 :

2.000000 4.000000

1.000000 -2.500000 5.187500

The upper triangular maerix U
1.000000 0.500000 0.250000
I.ﬁﬂﬂﬂﬂﬂ =0, 625000
1.000000
The solution is 'ﬂ 192771 1. 3253U1 1 125432

3.4 Integration

At first we deduce the general integra.tmn formula based on Newton's forward
interpolation formula. The Newton's forward interpolation formula for the
equispaced points &, i =0, 1, ..., n, 5, = @ + ih is

399

u{uz—!- 1) ﬁgyu i wlu = 1){u—-2)

#z) = yy + udyy + = Ay + oy (3.21)

where &t = y = %‘l h is the spacing:

Let the interval [a, b] be divided into n equal subintervals such that ¢ = z
<% <{ <. <ay=b Then

= L’ flz)dz = f #{(z)dz

. 12_ ﬂ__a 2 .
—I lvo +ubyy + ‘21“ 2 “—;ﬂeﬂﬁy{.%w}dz

Since & = 5y + uh, dr = hdu, when £ = 5 then u = 0 and when z = 7, then
u=n :

Thus,
: 1 9
-3 b
I = j:[yn +ﬂﬂyn + 4 l':l?y“ + 3 ;E ot

21!
A 32 g o ﬂ i
B [p i Mulw e Beliglae g
{""‘” y”{ﬂL gty 2 Ll 4 T R

- _an . n —d4n? +4n ; -
= n} UL T A S L v L
*[Fn S g+ My~ Al (3.22)

From this formula, one can generate different integration formulae by
substituting n = 1, 2, 3,

3.4.1 Trapezuidal Rule

Substituting n = 1 in the equation (3.22). In this case all differences higher
than the first difference become zero. Then

= _ o :)
f° flaria = {3 + 5 00| = A w0 + 0 = 0)) = & +) (3:23)
The formula (3.23) is known a3 the trapezoidal rule. :
In this formula, the interval [a, b] is considered as a single interval, and it
gives a very rough answer. But, if the interval [a, b is dividéd' into' several
subintervals and this formula is applied to each of these subintervals then a

better approximate result may be obtained. This formula is known as composite
formula, deduced below.

400

Composite trapezoidal rule -
Let the interval [a, b] be divided into n equal suhmtervals bg.r the points
a= Ty T, Tpy oy L, = b, where ; = oy + th, i = 1, 2, , :
Applying the tr&pezo:cml rule to each of the aubintervals. one can find the
composite formula as :

[£z = [faddo + [*)z s [flalte

lw+mh—M+%HHM+mH §m4+mi

»a

t~:1::r

=¥ +ﬂm+h+ +mﬂ+mi | {am)

Algurithm 3.5 (Trapezoidal). Thls a.!gurithm finds the value of j f (.ﬂdr based
oni the tabulated values (z, ¥), yi= fiz), =0, 1,2, ..., n, using trapezoidal rule,

Algorithm Trapezoidal
Input function flz);
Read a, b, n; //the lower and upper limits and number of subintervals.//
Compute h = (b - a)/n;
Set sum = - [J'[a} + fla + nh)j;
f{)r1=1'tﬂﬂ-1dﬂ
Compute sum = sum + fla + ih);
endfor; S L
Compute result = sum » f;
Print resulf; -
end Trapezoidal

/* This program finds the value of integration of a function
by trapezoidal rule. Here we assume that f(x)=x*3, */
#include<stdio.h>
void main()
(-
float a,b,h,sum; int n,i:
float f{float):
printf("Enter the values of a, b ");

401

scanf ("%f %Y, &a,&b);

printf({*Enter the value of n “}; °
scanf ("%d”, &n) ;

h=(b-a) /n;

sum={(f {a) +£ (a+n*h)) /2.; ;
for(isl;i<=n-1;i++) sume=f(a+i*h);
sum=sum*h; ,

printf("The value of the integration is %8.5f *,sum);
} L
/* definition of the function f(x} */
float f£(float x) :

{

return(x*x*x}); -

] :
Enter the walues of a, b 0 1
Enter the valye of n 100
The value .of the integration is 0.25002

3.4.2 Simpson's 1/3 rule

In this formula the interval [a, 8] is divided into two equal subintervals by
the points 2, %,.2, where h = (b -~ 6)/2, o, = % + hand 3 = 5 + h.

*This rule is obtained by putting n = 2 in (3.22). In this case, the third and
higher order differences do not exist. . :

The equation (3.22) is simplified as

J* fte) = 20 + Ay + £ 8%] = 201+~ o) + 15 =201 + 1) |

- %[Fn +dyi+yy ' . (azs)
The above rule is known as Simpson's H 3 rule or simply Simpson’s rule.

Composite Simpson's 1/3 rule

Let the interval .[a. b be divided into n (an ever number) equal subintervals
by the points 7y, =, @, .., Tn, where &, =y = th, i= 1, 2, .., n.

402

Then

[oz = [* floks + f f@dz - +{" f(a)de

k s h
L E{yu +_4¥| 1l *.5[9‘2 + 4y + ln_} A Ely'n—*z + 4y, +y,]

h - . '
=H{Fﬂ+q{y| +!i’3+"'+¥u-:)+2{5’2+!f4 ”'+yl:-2)+ynl {32ﬁ] :

This formula is knrJWn as Simpson's 1/3 composite rule for numerical
integration,

Algorithm 3.6 {Sunpsun’a 1/3). This algorithm determines the value of J' J(z)dz b
using Simpson’s 1/3 rule. .

! Algorithm Smpaun One_ Third
Input function f{z);
" Read a, b, n; //the lower and upper limits and numher of aubmtervn;'ls I/
Compute h = (b - a)/n;
Set sum = [fla) - fla + nh)};
.fnr;_lton—lstepzdn
Compute sum = sum + 4 » ,I{a-}- th) + 2 » f{a+ (i + 1)h);
endfor; .
Compute resuit = sum * h/3;
Print resulf; :
end Simpson_ One_ Third,

/* Program Simpsnn 5 1/3
Program to find the value of :.ntegratmn of a function
f{x) using Simpdon's 1/3 rule. Here we assume that f(x)=x"3.%/
hnclude-::stﬁio h» ;
void main{)
s) i
- float f(float);
float a,b.h,sum;
int i,n; ;
printf({*\nEnter the values of a, b *);
scanf (*$f %f* &a,&b);
printf(*Enter the value of subintervals n *);

403

scanf (*%4", &n) ;
1f(n%21=0) |
printf("Number of subdivision should be even®);
exic (0] ; ' ' ;
}
h= (b~a) /n;
gum=f (a) - {a+n*h) ;
. for(isl;i<=n=1;i+=2)
gum+=d* £ (a+1¥h) +2*F (ar (1+41) %0} ¢
 sum*=h/3.; ; ;
printf(*Value of the integration is %f ", swh);
} /* main */
/* definition of the function E(x) */
float f(float x),
return{x*x*x);
o

Enter the values of a, b 0 1 _
Enter the value ‘of subintervals n 100
Value of the integration is 3,750000

3.5 Ordinary Differential Equations

3.5.1 Buler's Method

This is the most simple but crude D;let-hﬂd to solve differential equation of
the form i 3 e]

L= fow) vz =t . (3.27)
Let ; = @y + h, where h is small. Then by Taylor’s series

e - gg] ';ﬁ[d’)
= y(m + h) m*h[dm | 4% ﬁn,
where ¢ lies between 1z and z

=t + M (g, 0p) + f'l.;‘y'{ﬂi} | g (3.28)

404

Ii the step size h is chosen small enough, ‘then the second-order term ma}r
be neglefted and hence y; is given by

%=t + hfz, w)- ! (3.29)
Similarly, : _
2= + bfin, u) (3.30)
W=+ hfm,) (3.31}

: and so on.

In general, _
Yarr = Yo + Wiz, 9) n =0, 1, 2, : {&32}

" This method is very slow. To get a reasonable accuracy with Euler's methods,
the value of h should be taken as small.

Algorithm 3.7 (Buler's method), This algorithm finds the solution of the equation
¥ = flz, v) with y{m) = 1 over the interval [z, z,,]', by Euler’s method
Yie1 = ¥ + hj{ﬂ., y,'], P o= ﬂ, 1, 2, vey =1,
Algorithm Euler
Input function flz, ¥)
Read 7, 1, 2o b //%, 1 BTE the initial values and z, is the last value of z//
; //where the process will terminate; h is the atep size//
for z = nq,tom,.stephdu
y =1+ h* fz, 10);
Print z,
o= W
endfor;
end Euler
f* Program Euler
Solution of a differential eguation of the form v'=f(x.¥),
y(x0}=y0 by Euler's methud *F
#include<stdio.h» ¢
#include<math.h>
void main()
{
float x0,y0.xn.h,x,¥; .
float f(float x, float y):

405

printf("Enter the initial (x0) and final (xn) values of x b I
scanf (*$f S%E£", &x0,&xn);

printf(“Enter initjal value of y *);

scanf [“%£",&y0) ; _

printf(“Enter step length h *);

gscanf (“%£*, &h) ;

printf(* x-value y-value\n*);
. for (x=x0;x<xn;x+=h)

{
y=yO+h*£{x, y0); i
printf(“8£ %£ \n*, x+h,v);
y0=y;] '
e :
} /* main */
/* definition of the function ‘f{x,y) */
float f(float x, float y) i
ks it

return(x*x+x*y+2) ;
}

Fnter the initial (x0) and final (xn) values of x
0.2 '
. Enter initial -values of v 1
Enter atep length h .05
x-~value y—imlua
0.050000 1.100000 -
0.100000 1.202875
0.150000 1.3092389
‘0.200000 1.420335

3.5.2 Runge-Kutta Methods

The Euler's method is less efficient in practical problems because if & is not
sulficiently small then this method gives inaccurate result.

- The Runge-Kutta methods give more accurate result. One ﬂdvantage-at‘ this

method is it requires only the value of the function at some selected points on
the subinterval and it is stable, and easy to program.

-406

The Runge-Kutta methods perform several function evaluations at each step
and avoid the computation of higher order derivatives. These methods can be
constructed for any order, i.e., second, third, fourth, fifth, ete. The fourth-order
Runge- Kutta method is more popular.
Eemnd-fnrder Runge-Kutta method
The second- ﬂrder Runge-Kutta formula is-

. =1+ 3k + k) . (3.33)
where '

k = hf{zy, w) and
by = hflm + how + Mx, w)) = Wm + h g + k).
The local truncatmn error nf this formula is of O(R%).
Fourth-order Runge Kutta Methnd
The fourth-order Runge-Kutta method is
; o= gk 2k o+ 2+ k) (3.34)
where = JE] '
k.= hflz, w)
ky = hflzg + b2, yo + k/2)
-‘-’a‘—' Wiz + M2, 10 + kaf2).
= hflzg + h, 3o + ko).

Starting with the initml point (zy, y). one can genera.te the sequence of
solutions at =, z, using the formula .

or = g+ L 200 4 20 K (3.95)

where.
KO = hf(e, 1)
Y = hf(z 4 h) 20+ ki"’f:e;
B = b, +h /%y + K IEJ

k) = hf(z, + b,y + K)

407

Algorithm 3.8 (Fourth-order Runge-Kutta method). This algorithm finds the
solution of the differential equation y* = flz, y) with y{z) = y, using fourth-
~order Runge-Kutta method, i.e., using the formula

Yirr = Ui + E[kl 2k + ko) + k]
within the interval [z, z,] at step &

Algorithm RK4
Input function f{z, y);

Read 2, 2, %, M Ulmtlai and final value of z, initial value of y and step

size.//

SEt ¥ = Wi

for z = 7 to «, step h.do
Compute k = h* flz, y);
Compute k, = hx flz + h/2, y + k/2);
Compute ks = h* flz + h/2, y + &/2);
Compute ky = h* iz + b, y + ky);
Compute y = y + [k + 2(k + k) + ky)/6;

_ Print z, ¥i

endfor;

end R4

/* Program Fourth_Order_Runge-Kutta
- Bolution of a differential equation of the form y! =f{-x,y],
yi{x0)=y0 by fourth order Runge-XKutta methed. */
#include<stdio. h»
#include<math.h>
void main()
(
float x0,y0,xn,h.x,y,k1,k2,k3,kd;
. float f(float x, float vi;
printf({“*Enter the initial values of x and y *);
scanf (*8f ¥f",&x0,&y0); '
prmtﬂ Enter -last value of x "},
scanf (“%£7, kxn) ;
printf(*Enter step length h '},
scanf (*%E£",kh) ;
y=y0;
printf(* x-value y-value\n"):
for (x=x0;x<xn;x+=h)

408

kl=h*f(x,v);
k2=h*f (x+h/2,y+k1/2);
ki=h*f (x+h/2,y+k2/2):
ki=h*f {x+h,y+k3);
yey+ (k1+42* (k2+k3) +kd) /6;
printf("%f %f\n*,x+h,y);
Tk 20

} /% main */

/* definition of the function fix,y), */

float f{float x, float y)

{ .
return(x*x-y*y+y};
) :

Enter the initial values of x and y 0 2
Enter last wvalue of x 0.5
Enter - step length h 0.1

x-value y-value

0.100000 1.826528

0.200000 1.695464

0.300000 1.595978

0.400000 1.521567

0.500000 1.468221

3.6 Fitting of a Straight Line

Let : .
y=o0+ bz ; (3.36)
be the equation of a straight line, where o and & are two parameters whose
values are to be determined. Let.(z, 4), i =1, 2, ... , n, be a given sample of
size n. : :
Here S is given by

5= i{m ~Y)f= i{?i - a-bz,)’

im] iwl

409

The normal equations are

85

=2 ~a-br}=
au Z{yl i T }
o8
— e T
ahi Z’:&h a~= bz, }m_ 0

which give en simplification,
Dyi=na+by u, ;
Yryi=ay T +by al ' (3.37)

The sclution of these equations is

nizy. - Lz Ly 1
b= ——i] —L and a==~ =0y o), %
nEa? - (31, Al 2] o

But, when the sample size is large or the data are large then there is a chance
for data overflow while computing Zry,, Lz’ and (£z,*. Then the suggested

expression for b is

JBe~Flly=B) . >
; Yo gy o oee &= ;I;an V= %}:r.- (3.39)
‘ (s 4
Let this solution be denoted by a = a*, b= b* Then the fitted straight line is
© oy = a* 4+ b'2 (3.40)

Algorithm 3.9 (Straight line ﬁt} This algorithm fits a straight line for the gwen
- data points (z; ¢, 1 = 1. 2, ..., n, by least squares method.

Algorithm Straight _Line
Step 1. Read (z. y), i= 1. 2.
Step 2. //Computation of z and y//
Set st =0, sy = 0.
for i='1to n do
5T = .-m'+:t:,andsy- sy + ¥,
endfor;
) . Compute £ = sz/nand. j = syfn
Step 3. Set szy =0, 822 = 0
R R
szy = szy + (& -)y - v)i
82 = 512 # (g = T)H
endfor; :
Step 4. Compute b = szy/522; and a = y - bz,

410

Step 5. Print ‘The fitted line 8 y=".a, "+, b, ‘',
end Straight Line _
/* Program Straight Line Fit
Program to fit a straight line for the given data points
Cx[i).yli)), i=1, 2,-. . ., n, by least squares method.*/
¥include<stdio, h>
dinclude<math.h»
void m&in[} .
{ &
int n,i: float x[50], y[50), .sx=0,sy=0,sxy=0,sx2=0,xb,yb,a,b;
char sign; : :
printf(*Enter the sample size and the sample (x(il.y[i]) *};
scanf (“%d”, &n}; il
for(i=l;i<=n;i++) scanf{"$f S, &xlil.&ylil):
for(isl;icen;i++){ :
“ex+=x([i]; sy+=y[i]:
1 .
xb=su/n; yb=sy/n;
for(i=l;i<an;i++){
sxy+e(x{i]-xbl*{y[il-yb);
‘8x2+=(x[4] ~xb) * (x[i]~xb);
} N
b=sxy/sx2; a=yb-ht¥xb;
sign=(b<0)? '~ i'+’; ' :
printf{"\nThe fitted line is y = %f %¢ %f x",a,sign,fabs(b));
} /* main */ _
Enter the sample gize and the sample (x(i],y(i]} 5
1 12 !

q 13
6 10
i R
100 3

The fitted line is'y = 15.097345 - 1.053097 x

411

3.7 Summary

The algorithms and programs are designed to solve the following problems
of numerical analysis. Finding of roots of an equation by bisection, fixed point
iteration and Newton-Raphson method, solution of a system of linear algebraic

_equations by Jacobi’s, Gauss-Seidal iterations methods and LU&decnmpomtion

method, integration by trapezoidal and Simpson 1/3 rules, solution of an
‘ordinary differential equation by Euler's and Runge- Kutta methods, and f ttmg
of a straight line based on a bivariate data.

Exercise 3

1, Write a program to find a root of the equation fiz) = 0 by bisection method.
Use your program to find a root from each of the fullnwmg equations.
(@) B +22 -2+ 7=0,(b) @ -42-9 =0, (c) cosz = 3z - 1.

2. Write a program to find a root of the equation f{z) = 0 by it;eration method.
Use your program to find a root from each of the following equations.
(a) 2 - 5.2¢% - 174z + 21.6 = 0, (b) & + 282* — 480 = 0,

) {z-1){z-2{e-3)=0,(d) 2 ~cosz=0, (&) 2+ log == 2.
3. Write & program to find a root of the equation fiz) = 0 by Newton-

Raphson method. Use your program to find & root from each of the
following equations.

(a) 22 ~cosz -1 =0, (b) P+ 32 -1=0, (¢) 2 -2 =0,
4. Write a program to find the value of §f; using Newton-Raphson method. -

5. Write a program to solve a system of linear equations using Jacobi's
iteration method. Test your program for the following equations
(a) 92+ 2y + 42 = 20
a4+ 10y + dz=6
2z -4y 4+ 10z = -15,

(b) Sz-y+ 2z=10
-2z 4+ 10y + 4z2=8
z -3y + Bz=12.

412

. Write a program to solve a s:;stein of linear equations using Gauss-Seidal's
iteration method. Test your program for the following equations
(a) -9z +2y+22=75
r+ 10y -4z2=17
z - By+ 12z = 8.
(b) Tx-y+2=19
3z + By+ 2z2=9
2z - 4y - 4z = 10.

. Write a program. to eva.luate an mtegmtmn by trapezoidal ruie Use this
program to find the fullﬂwmg mtegratmns

(a) _[u (1 + e sindz)dz taking n = 100
(b) Lfe*f{ix, taking h = 0,01.

A r-% R

Iﬂ:r: e dzx, taking n = 60,

. Write a program to evaluate an integration by Simpson 1/3 rule. Use this
program to find the following integrations.

/2 dx :
(a) taking n = 100.
f sin?z +2cos?z |

(b) I;e“'dz:, taking n = 200.

18 g* 4 ¢7*
(c)

M A ta.lunghwﬂf}ﬁ

. Write a program to solve the following differentml equations by Euler’s
method.

(a) 5—3=3$2+H: y(0) = 4 for the range 0.1 $ z £ 0.5, by taking -
h=0.1. | :
(b) y'=2*+4*, p(0) = 0.5, find yat z = 0.1 and 0.2.

413

10.

11,

{e)

L

Write a program to solve the following diﬂ'erentla] equations b}r fourth
order Runge-Kutta's method.

(a) 5% =22 447, #(0) = 1, find y in the interval 0 € = < 0.4, taking
h=0.1.
(b) iﬁ =2y +y? . given that y(0) = 1. Taking h = 0.2, find yat z= 0.2,

0.4. D.6. : T
(¢) ¥ =2+ p ¥(0) = 1 within the interval [0,0.1] taking h = 0.02.

Write a program to fit & straight line from the following data.

- R L - Bl

ffe |
y : 1013 25 23 33

(b) z : 1951 19611971 1981 1991
y : 33 43 60 78 96

Find y when z = 2001.

e : 2 4 6 ? 9
y : 6 10 8 15 20

414

UNIT 4 O DATA STRUCTUBES

Dat,a structure is the main part to develup an a]gnrll;hm An efficient uigﬂrlthm
cannot be demgned without appropriate use of data structure. Different kinds

of data structures are available to design an algorithm and each data structure
has a special feature. So we have to learnt all the commonly used data structures

before development of an efficient algorithm. In this book commonly used data
structures, viz., arrays, stacks, queues and linked lists are studied.

4.1 Ob_]ectwes

After going through this unit you will be ah]e to learn
(i) What is data structire?

(ii) Asyrmptotic notations

(i) The data structure array

(iv) Stack and its spplications

(v) Queue and its applications

{vi) Linked list its applications.

4.2 Asymptotic Notations

To analysis the performance of an algorithm there are several kinds of-
mathematical notations are used. Some of them are presented here. -
Def. 4.2.1 O-notation {b'ig-uh] To represent asymptotic upper bound the
O-notation is used. For a given function g(n), we denote by O(g(n)) the set of
SJunctions
O(g{n}} {j{n] : there exist positive constants ¢ and ny .
© such that 0 < fin) < cg(n) for all n 2 ny}. 4N
In other words, fin) = Og¢{n)) 1ff
f(n)

im —= = g non-zero constant.
a=w g{n)

Thus O-nolation is used fo f'epr'eamts an upper bound of a functwn. to within
" a constant factor.

The O-notation is used to express an upper bound, we might also wish to
determine a function which is a lower bound.

415 -

v

]
1
I
]
1
Mo

Figure 4.1: fin) = Olg(n)).
Some properties of (-notation ;
(i) ILA(n) = an* + ... + o,n + g, then A(n) = O(n*), k is independent of n,
(i) OUfm) + O(g(m) = Olmax{f(n), o(m)})

(i) OUi(m) + O(fn) + .. + O(i(m) = O(max {f(n), A(n),:... fWD),
k is independent of n. ; |

(iv) ¢ O(fin)) = O(fin)). c is independent of n.

(v) O(fin)) x Ofg(n)) = O(fin) x g(n)).

(vi) n* x ﬂ(f{ﬂ}} O(n*fn)). kis indepondent of n.

(vii) O(n¥) x O(nf) = O(n**), k and I arc independent of n,
Def. 4.2.2 Q-notaiion. The f2-nolalion provides an asymptotic lower bound. For
a yiven furiction g(n), we. denote by fXg(n)) the set of functions
~ Qgln)) = {f(n) : there exist positive constants ¢ and ng
such that 0 £ cg(n) < fin) for all n 2 ng}. (4.2)

Def. 4.2.3 ¬ation {tlght bound). For a given fuﬂchﬂﬂ g(n), we denote by
& g(n)) the set of functions

.ﬂg{n]} {fn) : there exist positive constants ¢;, ¢, and ny,
" such that 0 < eg{n) € fin) & cg(n) for alln 2 ngh. (4.3)
In other words, for all n = ny, the function f{n) is equal to g(n) to within &

 constant factor. We say that g(n) is an asymptotically tight bound for Nn).

- 416

Figure 4.3 : fin) = 8(g(n)).

Def. 4.2.4 o-notation (little-ok). The o-notation is used to denote an upper bound
that s not asymptotically tight. We define o{g(n)) as the set
o(g(n)) = {An) : for any positive constants ¢ > 0, there exists a constant ny> 0
such that 0 < f{n) < cg(n) for all n 2 ng}. (4.4)
For example, 2n = o(n?), but 2n? » o(n?). ‘
The definitions of O-notation and o-notation are similar. The main difference
is that in fin) = O(g(n)}, the bound 0 £ fin) £ cg(n) holds for some constants

¢ > 0 but in f{n) = o(g(n)), the bound 0 < f{n) < cg(n) holds for all constants
c >0 ie,’

i 201 _ |)

a=u g(n)

Del. 4.2.5 @-notation. Similar to O-notation and o-notation, w-notation is
defined in contrast of f2notation. The w-notation is used to denote 4 lower
bound that is not asymptotically fight, ! -

417

One way to define it is by

fin) e wig{n)) iff g(n) & o{fn)).

Formally, ; -
w(g(n))= {f{n) : for any positive constants ¢ = 0, there exisls a constant vy 0
such’ that 0 £ cg(n) < fin) for all n 2 ny}. (4.6)

For example, n?/2 = w(n) but n*/2 » m{n.?) Tlm relation fin) = w(y(n))
implies that '

i 20
Tepit g[n.:l _
Different kind of logarithms are used to analysis the algorithms. They are
defined in the following.
lg n = logyn (binary logarithm)
Inn = log, n (natural logarithm)
Igfn = (lg n)* (exponentiation)
1g¥n = g Ig n = lg(lg n) (composition)
'lgmn—mm{s 20:lgn s 1}

4.3 Time and Space Complexities

The time complexity of an algorithm is given by & function T(n) which is
the maximum over all input of size n, of the sum of the time required by each
instruction executed. For a problem of size n, the maximuni time required to
solve the problem over all input sequences of that size is called the worst case
time complexity. The space complexity of an algorithm is the numnber of memory
units used. The space required by an algorithm is, therefore, the maximum
number of memory required at any t.tme during the course of execution of the
algorithm. -

If T(n) isa polynomial function of n then the a.lgor:thm is snid to ta.ke a
polynomial time (space). If T{n) is a polynomial of degree one then we say ‘that
the algorithm takes linear timé (space).

An algorithm i considered to be efficient if it takes a time which is a =
polynomial function of the problem size. The problems for which such algorithms
exist belong to the class P. Problems for which such algorithms do not seem to
exist form the class of NP-complete problemns.

418

4.4 Data Structure

Before presenting the definition of data structure we mnﬂider an example of
& data structure, ‘natural number’.

Suppose we want to define the data structure Naturel Number (abbreviated
by NatNo) where NatNo= {0, 1, 2, ...,} with the four operations being a test
for zero, addition, equality and successor. The following notations can be used
Structure NatNo
~ declare

ZERO() — NatNo

ISZERO(NatNo) -~ boolean

SUCC(NatNo) — NatNo

ADD{NatNo,NatNo) — NatNo

EQ(NatNo,NatNo) =+ boolean
for all z, y € NatNo let

ISZERO(ZERQ)::=true; ISZERO(SUCC(x))::=false;

ADD(ZEROQ,y)::=y; ADD(SUCC(z),)::=SUCC(ADD(z, ¥));

: EQ(z,ZERO)::=if ISZERO(z) then true else false;
10 EQ(ZERO,SUCC(y)):=false; EQ(SUCC(z) bUUC[y}} =EQ(z, y);

11 Endfor;

End NatNo. 2

In the declaration section five functions are defined by giving their names,
inputs and outputs. ZERQ is a constant function which means it takes no input
arguments and its result is the natural number zero, written as ZERQ. ISZERO
is 8 boolean function whose result is either true or false. SUCC stands for
successor. Using the functions ZERO and SUCC we can define all of the natural
numbers 88 ;: _

ZERO, 1=SUCC(ZEROQ), 2=SUCC(SUCC(ZERQ)), and so on.

The rules on line 8 tell us exactly how addition operation works e.g., if we
want to add two and three we would get the following sequence of expressions :
ADD(SUCC(SUCC(ZERQ)), SUCC{SUCC(ZERO))) which, by line 8 equals
SUCC(ADD(SUCC(ZERO}, SUCC(SUCC(SUCC(ZERQ))) which by line 8 equals
SUCC(SUCC(SUCC(SUCC(SUCC(ZERQ))))) of course, this is not the way to-
implement addition. In practice we use bit string which is a data structure that
is usually provided on our computers. But, however the ADD operation is

o =] £h &n s S o

o=

- implemented, it must obey these rules. Hopefully, this motivates the following

definition of dats structure.

419

Def. 4.4.1 A data structure is a set of domains D, o designation. domain d e
D, u set of functions F and e sct of arioms A. The triplets (D, F.A) denotes
the data structure d and it will usually be abbreviated by writing d.
In previous example,

d = N.;ltNu, _

D {NatNé, boolean},

F = {ZERO, ISZERO, SUCC, ADD},

A = {lines 7 through 10 of the structure NatNo}.

There are different kind of data structures are used to solve problems with

the help of computer. The most useful data structures are array (one and two
dimensions), stack, queue, linked lists, ete,

Il

4.5 Arrays

One of the simplest generalizations of a linear list is a two-dimensional or
higher dimensional arrays of information, e.g., consider the case of an m x n
NEtTix !

ALY A2 - ALl

' e (4.7)
A1) Ajm2) - Am.n}

In this two-dimensional array, each node A[j, ¥ belongs to two linear lists:
the ‘row j list Aly, 1],A[j 2], ..., A[j, n] and the ‘column &' list A[1, &,4(2. K,...,
A{m, K. These orthogonal row and column lists essentially account for the two-
dimensional structure of a matrix. Similar, remarks apply to higher dimensional
arrays of information, '

Sequential allocation

When an array is stored in sequential memory locations, storage is usually
allocated so that,

LOCLAL, K) = ay + af + ok (48)
where ay, ¢, g, are constants and LOC{A[j,) represents the location of the
element Alj, K in the memory. Let us consider a more general case. Suppose

420

we have a four dimensional array with one word elements Qi, j, k, [for 0 £4
22, 0<724,0= k=10, 0= 122 weshould like to allocate storage so that

CLOCQl, 5 kb)) =0y + o+ oayd + gk + ayl (4.9)
This means that a change in i, j, k or | leads to a readily calculated change in
the location of Q[i; j. k.. The most natural (and most commonly nsed) way
to allucate storage is to be the array applied in memory in the ‘lexicographic
order’ of its indices, sometime called ‘row major ﬂrdﬁr’_
The elements of the array @ are
Q0. 6, 0, 6}, Q[0, 0, 0, 1], Q[0, 0, 0, 2], Qfﬂ 0, 1, 0], Q[ﬂ]
Q[0, 0. 10, 2], Q[0, 1, 0,0, ..., Q0, 4.10, 2, Q[1, 0, 0,0], ..., QI2, 4, 10, 2],
It is easy to see that this rJrc!er nntiaﬁes the reguirements of {-fl.QL and we have
- LOCLQY, 4, k 1)) = LOC(QI0, 0, 0, 0]) + 165i + 33j + 3k + L (4.10)
In general, given a k-dimensional array with c-word elements Als), 1, ..., i
for0sisd,054,54d,054.5 d,., we can store it in memory as
LOCI A4, &, .y :d} = LGG{A{D 0, .., 0]) + eldy + 1) ... (d, + 1)4
+ o+ oeld + 1) + g

= LOCLA]0, 0, 0, ..., 0)) + Z“r*} 1)

1srsk

where a, =c¢ || (4, +1)

rEask

We want to store the triangular matrix Alj, K for say 0 £ k< 7 < o (column
- major order)

[.4{0;&5
A1,0]

A2,0] A1) A2 i

An.0) Ani1] - fﬂn.ﬂ]J

We may know that all other entries are zero, or that Alj, K| = Ak, 7, so only
half of the values need to be stored. If we want to store the lower triangular matrix
‘of the form (4.12) we need only %(n + 1}(n + 2) consecutive memory positions.
We are forced to give up the possibility of linear allocation as in equation (4.8),
but we can now ask instead for an allocation arrungenment of the form

LOCYAG M) = oy + [} + LK) (4.13)

421

_ where f; and f, are functions of ore variable.

In turns out that lexicographic condition (4.13) and ﬁsumiﬁg one-word
entries we have in fact the rather simple formula

 LOC(AL k) =LOG(A[0,0]) + i{iﬁiﬂ T AT (4.14)

If we store the matrix A in the array B then the element Alj, R is stored
in Blp], where ; . '

p.mc(,{[u.u]);j—ﬂﬂh-k for given jand & (4.18)

There is & far better way to store two triangular matrices if we are fortunate
enough to have two of them with the same size. If A[j, k| and Blj, K] are both
to be stored for 0S k<j < n we can fit them both into a single matrix (3, j]
for0£§<n0<k<n+ 1 using the convention

_ Alj, § = Clj, K,Blj, § = Clk, j + 1). {4.16)

Thus '

Cop. Coy .+ Cons1. Ap By By e By

Cyo Cn v Cyn e Ay By - By

Cao Gnl LS Ay A’ﬂ] A o A

‘The two triangular matrices are packed together tightly within the space of
{n+1)(n+2) locations and we have linear addressing as in (4.16). The
gendralization of triangular matrices to higher dimensions is called a tetrahedral
array. '

4.6 Stacks

A stack is an ordered list in which all insertions and deletions are made at
one end, called the top. The stacks are sometimes referred to as Last In First
Out (LIFO) lists. : _

Usually the following operations are performed in the stack.

create(S) which creates §-as an empty stack. :

push(i,s) which Inserts the elements i onto the stack S and returns the
. modified stack. ' ' ; ' 0

pop{S) which removes the top elements of stack $ and returns the modified
stack. :

422

top(S) which returns the top element of stack S

isempty(5) which returns true if S is empty else false. :

These five functions constitute a working definition of a stack. However, we
choose to represents a stack, it must be possible to build these operations.

The simplest way to represent a stack is by using a one-dimensional array,
say STACK(1 : n), where n is the maximum number of allowable entries. The
first or bottom element in the stack will be stored at STACK(1), the second
at STACK(2) and ith at STACK(i), -

Associated with the array there will be a variable ‘top’, which points to the

top element in the stack, With this assumption, the functions used in stack are
implemented below. ;

create{) declare the atray STACK(1 : n) and set top « 0

isempty (STACK) = true (if top=0) false otherwise.
top(STACK) = error (if top=0) STACK(top) otherwise.

The algorithms for the functions push and pop are presented in the following,

Procedure push(z, §)

//Inserts an object z into the stack S of maximum size n; *top’ is the number

of elements currently in the stack S.// '

if top 2 n then

print ‘stack full’; stop;

else kit
top « top+l;
S(top) « =

endif; '

end push.

Procedure pop(S) ' i
//Removes the top element from the stack S and stores it in = unless stack §
is empty.// ' ;
if top £ 0 then
print ‘stack empty'; stop;
else
x4 S(top);
top &~ top-l1;
endif;
end pop.

423

One ideal example of application of staclk is presented in the next scetion.

Operators Priority
A 3 -
+ / 9
- ; 1

() 0
Table 4.1: Priority of operators

4.7 Evaluation of Expression

An expression is - made up of operands and operators. The expression A/B
AC+ D * E - A C has five operands A,B,C,D.E. Though these are all one
letter variables, operands can he any legal variable name or constant in any
programming language. In any expression the values that variables take must
be consistent with the operations performed on them. These operations are
described by the operators. There are the five basic arithmetic operators viz.,
plus (+), minus (), times {*), divide (/) and exponent (A). '

‘The first problem with understanding the meaning of an expression is to
decide in what order the operations are carried out.

To fix the order of evaluation. we assign to each operator a priority. Then
within any pair of parentheses we understand that operators with the highest
priority will be evaluated first. Operators (+,-, % /. A) the following is the erder
of precedence (highest to lowest): ' ' '

Compiler can’t proceed the mathematical expression or logical expression
which is written in conventional way. Before evaluation of an expression the
given (conventional) form is converted into another expression called postiix
expression. If E is an expression with operators and operands, the conventional
way of writing E is called infix, because the operators come in-betwéen the
operands. The postfix (prefix) form of an expression calls for each aperator to
appear after (before) its operands, e.g., the infix expression A * B/Chas postfix
form AB = C/, '

If we study the postfix form of A + B/C we see that the multiplication comes
immediately after its two operands A and B. Now, imagine that A= Bis computed
and stored in T. Then we have the division operator /, coming imme_dial_;ely
after its two arguments T and C. That is,

(A * B)/C = T/U where T = AB »
: = TOy :
= AB*» C/f

424

Consider another expression
(4 4+ B)» C

T+ Cwhere T= AR e
TC »
= AB + (%

I

Example 4.7.1 Convert the following infix expression to postfix expression:
' A/BAC+ D+ E-AxC

Solution. In this expression a has highest priority, so B »C is computed first
and stored it into T, as T, == BC A. That is,
A/BAC+ BsE-As(C

= AT+ BxE- A« where T, = BC a

=T+ T; - T, T, = ATy/. T} = BEx, Ty = AC»
='T5 - Ty T, = T, T3+

= TsTr J '

= TzTﬂ + T|

= AT\/BE + +AC » -
= ABC A /BE x +AC + -
Some more examples:

Infix Postlix
A+B AB+

A+ B -C AB 4+ C -
(A + B} » (C -D) AB + CD -

Aan B+ C-D+ E/FAG + H) ABA Cx D - EF/GH 4+ /+
((A+B)* C-(D-E)A(F+ Q) AB+ C» DE - - FG + A
A -BAC* DA E) ABCDE »/ -

It may be noted that the parenthéseﬂ presented in the infix expression are
removed from the postfix expression. That is, the length (number of characters)
of the postfix expression is less than the corresponding infix expression.

4.7.1 Evaluation of a postfix expression

Each operator in & postfix string refers to the previous two operands in the
string. Obviously, one of these two operands may itself be the result of applying
a previous operator. Suppose that each time we read an operand we push it onto
a stack. When we reach an operator, its operands will be the top two elernents

425

on the stack. We can then pop these two elements, perform the indicated
operation on them, and push’ the result on the stack so that it will be available
for use as an operand of the next operator. The fullawing algorithm emluates
an expremon in postfix usmg this met}md

Aigor_:t.hm Eval-Postfix

J/The array ‘postfix(]’ is the postfix axpressmn and ‘opstack’ is-the stack of
operands. // .

Initially upsta.ck-—empty, :)
for i = 1 to N //where N is the length of the array postfix[}//
symb=postfix[f;
"if(symb=operand)
push{symb opstack);
else //symb=operator//
'/ [removes top element from the stack opsmck and stores in"opnd2//
opnd2=pop(opstack);
//removes next element from the stack opstack and stores in opndl/ f
opndl-pup{opstnck}
value=result of &pp]].rmg aymb to opndl and opnd2;
//value = (opnd1) symb (opnd2) //
‘push(value, opstack); //value placed on the top of the stack//
end //else//
endif;
endfor;
value.of expression = pnp{upstack}
end Eval-postfix.
Limitations of the algorithm Eval-Postfiz .
Each character of postfix string is assumed to be either an operator or an
operand. Thus, if the expression contains a variable whose length is more than

'one, then this algorithm does not work. Also, this algorithm fails when the
expression consists any functions.

4.7.2 Conversion of an infix expresaiun to a postfix expression

It is well known that expressions within innermost parentheses must first be
converted to postfix so that they can then be treated as single operands. In this
_ fashion parentheses can he successively eliminated until the entire expression

426

i¥ converted. The last pair of parentheses to be opened within a group of
parentheses encloses the first expression within that group to he transformed.
This last-in, first-out behavior should immediately suggest the use of a stack,

Since priority of operators plays an important role in transforming infix to
postfix, let us assume the existence of a function P(op), where ‘op’ is a character
representing operator.

Here we define the function. P as.follows,

P((')=P())=0
P(+)=P()=1
P(*)=P(/[)=2
P('A")=3.
Algorithm Infix2Postfix
[/Converts an infix expression to a postfix expression. //
Initially top=0; i = 0; g = 0; //'top’ is the top of the stack//
N = Jength(infix[]);
while (i < N) do
i=i+ 1;
case infix[i] of
letter : ¢ = g + 1; postfix|g)=infix[s);
//puts infix character directly to postfix expression//
‘(' : push(’(’stack); //puts left parenthesis directly to the stack//
)"+ z=pop(stack); _ . -
while z # (' do //removes elements from stack and put’ them to,

the postfix expression until z is a closing
parenthesis//.

g = ¢ + 1; postfix[gj=x// adds to the postfix expression//
r=pop(stack);/ /removes top element from the stack//
endwhile;

operator : while {P(infix[i]) £ P(stack(top))} and {top > 0) do
x =pop(stack);//removes top element from the stack//
¢ = g + 1; postfix|gl=z // puts to the postfix expression//
endwhile; I :
push(infix(d], stack); //inserts to the stack//

427

endease;
endwhile:

while top > 0 do //puts remaining eiements to posthix Expm&amnj /
r=pop(stack):
g = g + L; postfix[q=
endwhile;

end Infix2Postfix.
4.8 Queues

A queue is an ordered list in which all insertions take place at one end. the
rear, while all deletions take place at the other end, the front.

A minimal set of useful operations on a queue includes the following :

createq(Q) which creates @ as empty queue;

addgli, Q) which adds the element { to the rear of the gueue ¢} and retums |
the new gueue;

‘deleteq(Q) which removes the front element from the gqueue) and returns
the resulting queue;

front () which returns the front element of @;

isempty(Q) which returns true if €} is empty else false.

The representation of a finite queue in sequential locations is somewhat more
difficult than a stack. In addition to a one dimensional array (X1 : 1), we need
two more variables, front and rear. The conventions we shall adopt for these two
variables are the front is always 1 less than the actual front of the queue and
rear always points to the last element in the queue, Thus, front = rear iff there
are no elements in the queue. The initial condition then is front = rear =0.

The following implementation of the createq, isemptyq and front opera.tmm
results for a queue with capacity n.

createqlQ) declares thel array Q(1 : n) and sets front « rear « 0;
isempty (Q) is true if ({front = rear) false otherwise;

front (Q) gives error if (isempty(Q)) is true else it will return Q{front-i-l}
The following algorithms for addg and deleteq result :

function adﬂq{m Q)

/ /Inserts an object zinto the queue @ represented by Q(1 : n) whme capacity n;
rear is the pointer at the end of the queue.//

if (rear=n) then
print ‘queue-full’; ston;
else
' 428

rear «— rear+-1;
Q(rear) «
endif;
end addgq.

function deleteq(Q) _
//Deletes an element from the queue € represented by (1 : n): rear and front
are respectively the pointers at the end and front of the queue.//’
if (rear = front) then

print ‘queue-empty’; stop;
else J

Jront « front4-1:

T Qfront);
endif; i
end deleteq. -

‘With this setup, notice that unless the front regularly catches up with the
vear and both pointers are reset to zero, then the queue-full signal does not
necessarily imply that there are n elements in the queue. :

A more efficient queue representation is obtnined by regarding the array
61 : n) as circular. It now becomes more convenient to declare the array as
@0 i n - 1). When rear = n - 1, the next element is entered at @0) in case
that spot is free. front will always point one position counter-clockwise from the
first clement in the queve. Again, front = rear iff the queue is empty. Initially,
we have front = rear = (). Figure 4.4 illustrates some of the possible conbigurations
for a circular queue containing the four elements 4.5, C,D with n > 4.

In order to add an element, it ‘will be necessary to move rear one position
clockwise, i.e.,
if rear = n - 1 then rear & 0 else rear « rear + 1.]

Using the modulo operator which computes remainders, that is just

. rear « (rear + 1) mod n. '

Similarly, it will be necessary to move front one position clockwise vach time
a deletion is made. Again, using the modulo eperation. this can be accomplished
by '

s Jront « (front + 1) mod n.

An examination of the algorithms indicates that addition and delation can

now be carried out in a fixed amount of time or O(1).

function addeg(x, Q)
//Inserts an item x in the circular queue stored in Q(0 : n - 1) of size n; rear

479

2 ne2 2 AT,
1 i) n-1 @1 "!’g

. 0 (0
fromi=vear 20 . penee 1,front =1 rear = 1 = front
il ma) (after add) (after delete)

2 .

3, \j
2(B)
1%
0y 0 n : 0
fron =1[} front ==nnl ~ 4 front =1 (not empty)
rear = 4 rear =0 - rear =10 :

Figure 4.4: Circular representation of queue.

points to the last item and front is one position counterclockwise from the first
item in Q.// ' :
regr 4~ (rear + 1) mod n //advance rear clockwise
if front = rear then :

print ‘queune-full’; stop;
else :

Qrear) « z;
endif;
end addog.
function deletecq(@) ;
//Removes the front element of the queue Q0 : n - 1).//
if front = rear then _ '

print ‘queue-emipty*; stop;
elae) :
Jront « (front + 1) mod n //advance front clockwise
z & Qfront); [/save front of queue as z for further use
endif; '
end deletecq. :

One surprising point in the two algorithms is that the test for queue full in

addeq and the test for queue empty in deletecq are the same. In the case of

430

addeqg, however, when front = rear there is actually one space free. i.e., Q(rear),
.since the first element in the queue is not at ((front) but is one position
clockwise from this point. However, if we insert an item here, then we will not
be able to distinguish between the cases full and empty, since this insertion
would leave front = rear, To avoid this, we signal queue-full, thus permitting
8 maximum of n - 1 rather than n elements to be in the queue at any time,

4.9 Linked Lists

One major drawback of stack and queue in array implementation is that a
fixed amount of storage remains allocated to the stack or queue even when the
structure is actually using a smaller amount or possibly no storage at sll,
Further, no more than that fixed amount of storage may be allocated, thus
introgucing the possibility of overflow, s P : i

In & sequential representation, the items of a stack or queue are implicitly
ordered by the sequential order of storage. Thus, if item|1] represents an element
of & queue, the next element will be item[2+1]. Suppose that the items of a stack
or a queue were explicitly ordered, that is, each item contained within itself the
address of the next item. Such an explicit ordering gives rise to a data structure,
which is known as a linear linked list, Each item in the list is called a node and
containg two fields, an data field and a link field (address of the next node) (see
Figure 4.5). The data field holds the actual element on the list.

¥ 4
Data field Link field

Figure 4.5: A nade

The link field contdins the address of the next node in the list. Such an
address, which is used to access & particular node, is known as a poloter. The
entire linked list is accessed from an external pointer lst, which points to
(contains the address of) the first node in the list. The link field of the last node
in the list contains a special value, known as null or nil or 0, which is not a valid
address. This null pointer is used to signal the end of s Jist. The list with no
nodes on it is called the empty list or the null list. The value of the external -
pointer list to such a list is the null pointer. Thus a list can be initialized to
the empty list by .the operation fist = null i

431

It is conventionally to draw linked lists as an ordered sequence of nodes with
links being represented by arrows (see Figure 4.6).

—{ 40 50 | +—1 10 e ln!

Figure 4.6: A portion of a list.

Notice that we do not explicitly put in the values of the pointers but simply
draw arrows to indicate they are there. This is so that we reinforce in our own
mind the facts that (i) the nodes do not actually reside in sequential locations,
and that (i) the locations of nodes may change on different runs. Therefore,
when we write a program which works with lists, we almost never look for &
specific address except when we test for null or 0.

 Let us now see why it is easier to make arbitrary insertions and deletions
using a linked list rather than a sequential list. To insert the data item 60
between 50 and 10 the following steps sre needed. '

(i) get a node which is currently unused, let its address be X.
(ii) set the data field of this node to 60. :
(i) set the link field of X to poeint to the node after 50 which contains 10,

u..—- 40 E 5,{" 160 e A EEAY i a 1

Figure 4.7: The list after insertion of the node X after the node containing 50.

. The Figure 4.7 shows how we can draw the insertion using our arrow
notation. The new arrows are.dotted. The important thing to notice is that
when we insert 60 we do not have to move any other elements which are already
in the list, We have overcome the need to move data at the expense of storage
needed for the second field link, But, we will see that this is not too severe a
penalty.

432

Now, suppose we want to delete 60 from the list. All we need to do is find
the clement which immediately precedes 60, which is 50, Again. there i% no need
to move the data around. Even though the link feld of 60 still contains a pointer
to 10, 60 is no longer in the list.

e 4[} 5[} Y '/j Gﬂ i lﬂ e — S |:

Figure 4.8: List after deletion of the node containing 60.

From our brief discussion of linked lists we see that the following capabilities
- are needed to muke linked representations possible: !
(i) A mecharism for dividing memory into nodes each having at least one
link field.
(i) A mechanism to determine which nodes are in use and which are free.
(iii) A mechanisin to transfer nodes from the reserved pool to the free pool
and vice-versa.
Though data and link ook like conventional one dimensional arrays, it is not
‘necessary to implement linked lists using them. For the time being let us assume
that all free nodes are kept in a ‘black box’ called the storage pool and that
there exist subalgorithms: .

(i) GETNODE(X) which provides in X a pointer to a free node but if no node
is free, it prints an error message and stops;

 (ii) RET(X) which returns node X to the storage pool.

Example 4.9.1 Let T be a pointer to the first node to a linked list. T = 0 if
the list has no nodes. Let X be a pointer to some arbitrary node in the list T
The following algorithins inserts a node with data field Z following the node
pointed at by X.

Procedure inseri,m[T,X]. [finserts Z after the node X in the list T
call GETNODE(); :
data(l) « Z; [/data(]) is the data field of the node [
it T=0 (oull) then

433

T « I, [/inserts into an empty list

link{) « 0; //link(I) is the link field of the node I
else

link{I) & link(X);

link(X) « I, //inserts after X
_endif;
end insertm.

z ﬂ 3 —— B0 — .':.f:*' ’ -o---h- --r-t ﬂ
I LR .)

=
g
~
o
g
o

Figure 4.9: Insertion of a node into the list T.

The fuilﬂwing algorithm inserts an element at the beginning of the list T,

Procedure inserth(T)
{/insert Z at the beginning of the list.//
call GETNODE(]);
data(l} + Z;
link(D) « T
T« I '
end insertb. '
The following algorithin inserts an element Z at the end of the list T, where §
X is the last element of the list.
Procedure inserte(T,X)

//inserts Z at the end of the list Tj PR
call GETNGDEI_’I}.

I)
z AT A

Figure 4'.1lj: Insertion at the beginning of the list.

434

data(l) « Z;
link{X) « I
link{l) « O;
end inserte.
I X _ I

S E | Z |0

 Figure 4.11: Insertion at the end -of the list,

Example 4.9.2 Let X be a pointer to some node in a linked list T. Le;t Y be the
node preceding X. ¥ = 0 if X is the first node in T (i.e.. if X = T). The following
glgorithm deletes node X from T.

Procedure delete(X, Y, 1)
if ¥ =0 then
T « link({T); //removes the first node

elseif ' : '

 link(X) = 0 then link(Y) « 0; //removes last node
else 3 '
link(Y) « link(X); //removes an interior node
endif: _)
call RET(X); //returns node to storage poll.
end delete. :

- e T N] —— & .D Lo D

e ——r Wb @ /j__ B]

Figure 4.12: Deletion of the node from the list T,

435

First node Last node

e N Cs

Figure 4.13: A cimuIar list with first and Iast node-s
4.9.1 Clrcul&r lists,

Given a pointer p to amnode in a linear list, we cannot reach any of the nodes
that precede node(p), If a list is traversed, the external pmnter to the list must
be preserved to be able to reference the list again.

Suppose that a small change is made to the structure of a linear list, so that
the next field in the last node contains a pointer back to the first node rather
than the null pointer. Such s list is called a circular list.

From any point in such a list it is possible to reach any other point in the
list. If we begin at a given node and traverse the entire list, we ultimately end

up at the starting point. A circular list does not have a natural ‘first! or ‘last’
nodes,

4.9.2 Applications of linked lists

Example 4.9.3 Write an algorithm to create a single non-circular linked list
containing n elements z;, =, ..., &, and find the maximum among them.
Sclution.

Algorithm MAX

//Creates a linked list of size n and finds maximum among them.//

[[creates the head node//
geinode(p); // p is a node

cread I
data(p) = =
link(p) = 0;

head = p; //'head’ is the head node of the list :
prev = p; [/ ‘prev’ is the previous node of the node p
for 1 = 2 to ndo

getnode(p);
read I
data(p) = z
link{p) = 0;-

436

link{prev) = p;
prev = p;
endfor;
//end of creation of the list.
" p = heud; :
maz = data(p); //max represents the maximum value of the data
P = link(p): //moves to the next node
for i = 2 to n do
if data(p) > maz then max = daota(p);
p = link(p);
endfor;
end MAX,

Example 4.9.4 Write an algorithm for performing linear search over a linked list
with one link field in each node.

Solution. We assumed that the linked list is already created containing certain
data. Let head is the head node of the list.

Algorithm Search-Linedr
/{head is the head node of the list.//
Input: a Jinked list and & key.
Output: true or false; - i
[/ if the key contain in the list then we set found={rue otherwise Jound=false;
found is a boolean variable.//
found = false,
P = head;
pos = 0;//pos represents the position of the node contains key in the list and
p s the address of the node containing key//
while p # 0 do - :
nos = pos 4 1:
if data(p) = key then found = true and exit;
p = link(p); -
endwhile;
if found then write ‘key is in the list at poys position of the list’
end Search-Linear.

Example 4.9.5 Write an algorithm for insertion sort using single linked list (non-
circular). ; :

437

Solation. The basic step in this method is to insert a record R into a sequence
of ordered records in such a way that the resulting sequence is also ordered. Here
we sorting the data in ascending order. - :

* In insertion sort we always insert a node to the list in such a way that the
resulting list becomes a sorted sequence. Insertions are made in two wayy, If the
data of the head node is less than the input value z (at a particular instant)
then we insert a new node containing z, before the head node and this new node
becomes the head of the appended list, otherwise we search the appropriate
position for the input value and we insert s new node containing this value,

Algorithm Insort - _ , e
{[Sorts the data in ascending order by insertion sort using linked list, Ll
getnode(p); ' - :
read(z); /{z is the input value//
head = p; //create 8 new head uode//
data(p) = = '
link(p) = 0;
prev =. p; ;
for i = 2 to n do //insert remaining n - 1 data//
p = head; ;
read(z); '
if data(p) = z then //insert a node before the head node//
getnode(p);
data(p) = =,
link(p) = head;
head = p;
else :
while (data(p) < z) and (p = 0) do '
prev = p: //search appropriate position for z
p = link(p); =,
- endwhile; '
geinode(q);
date(g) = n;
link(prev) = g
link(q) = p;
endif;
endfor;
end Insort.

For illustration, let us consider the data 15, 10, 25, 20.

438

At the initial stage the list is s follows:
15 1 {
When 2 = 10 then a new node is inserted at the begmmng of the list as

follows :
10 ——;-I 15 0

When x = 25 then a new node containing = = 25 is inserted at the end of
the list.

10 15 25 |0

When z = 20 then a new node whose data field 20 & maerl,tc’i between the
nodes containing 15 and 25 as follows:

‘.
i

Observed that the list is sorted sequence at each instant.

10 15— 20 25 |0

- Time coraplexity of Insort (using linked list)

At any- instant, assume that i elements are in the list. To insert a new item
to this sorted list takes at most O(f) time (while loop in else block). So for a
fixed i the for loop takes Ofi) time. Hence the overall time complexity is

3206) = 03 1) = 0%,

imd . im2

4.9.3 Addition of two polynomials

The manipulation -of symbolic polynomial has becomes a classical example
of the use of list pmcessing. In geneml we want to represent the polynomial
P{I} = 8 2™ 4 By FELW.1 b AR a;:r"'
where the a, are non-zero coefficients with exponents ei such tImt Cpp 2 By g
. > & > € 2 0. Each term will be represented by a node. A node will he

of fixed size having three fields which represent the coefficient and exponent of
a term plus a pointer to the next term as shown below:

439

COEF | EXP | LINK

For instance, the polynomial P(z) = 32'% - 428 + 3 would be stered as
0 (-1 4 3 1150

Head node = P . Ly
|
i *_—i:—-i B S 310

while Q(2) = 21420 - 32180 ¢ 455 . 9 would look like
Head node = @

[ﬂ -1 21 1200 o{~3]150 -———-+4 :;H-—-‘—‘g {}T

It may be noted that for each head node the dummy coefficient 0 snd
exponent ~ 1 are initialized.

Here two polynomials P and @ are added and replaced the value in the
polynomial P,

"Addition of polynomials without third list

In order to add two polynomials together we examine their terms starting
at the nodes after head nodes pointed by P and Q. Two pointers r and y are
used to move along the nodes of P and Q. If the exponents of two terms are
equal, then the coeflicients are added and replace it to the node of P and
- pointers = and y are advanced to the next terms, If the exponent of the current
term in P is less than the exponent of the current term of @, then a duplicate
term of @ is created and attached to P before the curvent term of P. The pointer
y is advanced to the current term of P, The pointer y is advanced to the next
term, If the exponent of current term of P is greater than the exponent of the
current term of @, then advance the pointer x to the next term.

Step 1 : (exp(z) < exp(y))

i !
]—-ﬂ—l 21 |200} 1 3 [180] -+~ -4 8 3|0
Q | .
I—ou ~1{ = 21200| +—{ -3{150 4+ 4 | & -%—-ng 0

440

Step 2 : (exp(x) = eaply))

P
= SR 21 {200 0 150 -4| 8 3|0
— 1
= ﬂ =1 ili'zﬂﬂ —3 15‘3 d 5 —4 ﬂ —]
Step 3: (ep(z) > exp(y))
R : :]
ru ~1 |4~ 21|200| 4= 0 [160| 4~ 4| 8 310
, Q
[-| o t-1l4-d o1 long ~al180 415 |44 -9l 0
B e PR E !

Step 4: (exp(z) < emp(y))

ru =114 21{200| -+ 0 (150 14| 8 [+~ 4[5 |+ 3| 0 1

l:n —1{ = 21 {200} +—~—31150 +—~f 4| &5 | t~{=9 uT-—I.
1 §

Step 5: (ezp{z) = eap(y))
P :
~ 0 |—1} 121|200} 4= O [150] 7—{—4| 8 |1 4|5 | +={—6] 0 | -

oLk |

Y
0 |=1]-+— 21 |200| 4= =3/150] -+~ 4 | 5 |+~ —9] O ~~]

The sum of the polynomials P and. @ is given by
P(z) = 21272 + 0.21%0 . 4% 4 475 - 6.

44]

Algorithm Addpoly (P« P + Q) ;
//Addition of two pnlynmmah P and @; result stored in P, uhmg circular
linked list: P and @ are the heads of twe lists.//
X = link{ P); prez = P;

Y = link(Q): prey = @,
while ¥ = Q do
case exp(X) = exp(Y):
coef(X) = coeflX) + coeflY);
if coeflX) = 0 then delete X from the hﬁt o
prex = X, prey= Y
X = link(X); = link{ Y);
casé exp(X) < exp(Y]:
getnode(u);
exp(u) = exp(Y)i coeflu) = coeflY);
link{u) = X; link({prez). =
prex = u; prey = Y; ¥ = .i'mk(}’];
case exp(X) > exp(Y):
prez = X; X = link{ X);
endwhile;
- end AddPoly

Polynomial addition without destroy.i.ug hput data, l.e., using third list’

To add two polynomials together we examine their terms starting at the
nodes pointed to by Pand @ Two pointers z and y are used to move along the
terms of Pand Q. Let B be the new list. If the exponents of two terms are equal,
then the coefficients are added and a new term is created to the list R, If the
expouent of the current term in P is less than the exponent of the current term
of . then a duplicate of the term of @ is created and attached to R. The pointer
y is advanced to the next term. Similar action is taken on P if ezp(z) > exp(y).
Each time a new node is generated its coef and exp fields are set and it is
‘appended to the end of the list R. In order to avoid having to search for the
last node in R each time & new node is added, we keep a pointer d which points
to the current last node in R. The complete addition algorithm is specified by
the procedure PADD. PADD makes use of a subroutine JOIN which creates a new
node ahd appends it to the end of R, To make things work out neatly, K is
initially given a single node with no values which is deleted at the end of the
- algorithm.

442

Procedure JOIN(C,E, d)
//Create a new term with coef = C and ezp = F and attach it to the node
. pointed at by d.//
getnode(z);
exp(z) « E;
coeflz) — Ci
link(d) « 2
de z
end JOIN

Algorithm BADD(P, Q,R)
/{Polynomials P and @ represented as single linked lists are summed
the new list named R.//
T 4=~ P, y e @ //z y points to next terms of P,Q//
getnade(R): d + R; [/initial node for R//
‘while z # 0 and y # 0 do //while there are more terms in P and Qﬁ
case erp(z) = exp(y) :
t « coeflx) + coefly);
if t# 0 then JOIN(t, exp(x}, d);
T« link(z); y « link(y) //advance to next terms;’j
case eap(z) < exp(y) ;
JOIN(coefly), exp(y), d);
y - link(y); //advanced to next term of Q/ ;'
case exp(xz) > exp(y) :
JOIN{coeflz), exp(z), d);
z « link(z); //advanced to next term of FH
endcase;
endwhile;
while = # 0 do //copying remaining terms of P//
JOIN(coef(z), ezp(z), d);
T 4= link{z);
endwhile; ;
while ¥ # 0 do //copying remaining terms of Q// -
JOIN(coef(y), exp(y), d);
y « link(y);
endwhile; .
link{d) ¢ 0: z & R;R « link(R) //delete extra initial node.//
RET(z);
end PADD

443

4.10 Summary

Some fundamental notations used to analysis of an alporithm and a data
structure are introduced in this unit. Time and space compiexities of an algorithm
are defined. The commonly used data structures, viz. arrays, stacks, queues and
linked lists are discussed along with very simple examples. Evaluation of postfix
expression and conversion of infix expression to postfix expression are discussed
with examples. The data structure stack is vsed to solve these two problems.
Determination of maximum element from a list, insertion sort and addition of
polynomials are performed by linked lists/circular linked lists.

=T B
B e

o0 =1

10.

1.

12.
13.

Exercise 4

. Explain the following terms: (i} O (big oh), (ii) &, (iii) 2, (iv) @, (v) @

(little oh}, (vi) time complexity, (vii) space complexity.

. Write an algorithm to store a set of real numbers into a stack and find
‘their sum.

. Define infix, prefix and postfix expressions. Convert the following infix

expressions into prefix and postfix expressions:
(a) A+ B> C-(D+ E)+ C
(b A» ((B+ C) + GAD + A)) -

. Write an algerithm to evaluate a postfix expression.

Write an algorithm to convert an infix expression to postfix expression.
Write an algorithm to create a queue. Also, write algorithms for insertion

and deletion operations on queue.
. Discuss about the implementation of queue as a circular array.
. What do you mean by a linked list? Write algorithms to insert a node

to the linked list and to remove a node from the linked list.

. Write an algorithm to-create a linked list containing » numbers and find

maximum among them.

Suppose two linked lists L; and L, are given. Wnta an aigﬂnthm ‘to
concatenate these two lists.

Suppose a linked list is given, Write a procedure Lo add a node containing
the value, say, X after a given node.

Write an algorithm to add two polynomials without using a third list.
Write an algorithm to add two polynomials using a third list.

444

REFERENCES

. E.Balagurusamy, Programming in ANSI C, {e, The McGraw-Hill

Companies, New Delhi (2009).

B.Gottfried, Programming with C, Schauin's Qutlines, The McGraw-
Hill Edition, New Delhi (2001).

- K.R.Venugopal and S.R.Prasad, Programmsing wﬂﬁ ¢, The McGraw-

Hill Companies, New Delhi (2005).

- B.W.Kernighan and D.M.Ritchie, The C Programming Languége,

Prentice-Hall, (1977).

. Horowitz and Sahani, Fundamental of Computer Algorithms, -
-Galgotia, New Delhi (1995).
- Horowitz and Sshani, Fundamental of Data Structure, G&lgoti_a,

New Delhi (1995).

-~ M.Pal, Numerical Analysis for Scientists and Engineers, Narosa,

New Delhi (2007).

445

Notes
446

