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PREFACE

In the curmcular struchue introduced by this University [or students of
Post-Graduale (lz:gree programme, the opportunity i pursue Posi—Gradoale course
in a subject as introduced by his Liniversity is equally available 1o all learners.
Instead of being guided by any presumption about ability level, it would perhaps
standd o reason if receptivity of a learner iy judged in the course of the learnine
process. That would be entirely in keeping with the objeciives of apen education
which does not believe in artificial differentiation. :

Keeping this in view, study materialy of the Post-Graduoate level in different
subjects are being prepared on the basis of a well laid-out syllabus. The course
siructure combines the besl elements in the appraved syllabi of Ceniral and State
Universitics in respective subjects, 11 has been so designed as o be upgradable
with the addition of new mformation as well as vesull of fresh thinking and
analysis,

The accepted methodology of distance education has been followed m ihe
preparation of these study materials, Co-operation in every form of experienced
scholars 15 indispensable for o work of this kind, We, therelore, owe an
enoripous debt of gratitude 1o everyvone whose treless. efforts went inta  the
writing, cditing, and devising ol a proper lay-out of the materials. Practieally
speaking, their role amounts © an involvement in  invisible feaching. For,
whoever makes use of these study malerials would virtnally derive the benefit of
learning under their collective care withoul each being seen by the other,

The more a learner would seriously pursoe these study materials the easier it
will be for him or her to reach out to larger horizons of a subject. Care has also
been taken to make the Tanguage lucid amd presentation attractive so that they
may be rated as quality self-learning materialy. 16 anything remains still obscure
or difficull 1o follow, arrangements are there (o come to terms with them through
the counselling sessions regulaly available at the network ol study centres set up
by the University.

Needless to add, a great deal of these efforts is still experimental—in fact,
pioneering in certain arcas. Naturally. there is every possibility ol some lapsc or
deficiency heve and there. However, these do admit of rectification and further
improvement in due course. On the whole, therefore, these study materials are
expected to evoke wider appreciation the more they receive serious attention of
all concerned. ?
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Unit : I O Preliminaries

1.1 A resume of Newion's faws : Newton's three laws of motion dute back
1o 1686, the year they were first proposed in Principia. They may be stated as follows :

. Everybody continues in its state of rest, or.of uniform motion in a straight line,
except in so far as it be compelled by external forces to change that state.

1L The rate of change of momentum is proportional to the impressed force and
takes place in the direction in which the force ucts,

T11. To every action there is an equal and opposite reaction,

Newton's first law picks out a class of special frames which are unaccelerated :
cach one of them moves with a constant velocily with respect to any other onc. It is
difficult to give a gencral and broad definition of an inertial frame. A commaonly
accepted one (but somewhat unpractical) goes as follows : a frame that is fixed relative
to the average position of a fixed star or that is moving with a constant velocity (and
without any rotation relative to it) is called an inertial frame.

A frame which is not inertial is a non-inertial frame. Thus rotating frames or
frames undergoing accelerations are'to be treated as non-inertial frames. For short
scales (distance and time) the planet Earth serves 4s an approximate intertial frame,
However, strictly speaking, any reference frame attached to Earth has Lo be rotating
(about an axis passing through the geographical poles) and hence ceases to be inertial.
We shall later learn that such rotating frames generate fictitious or pseudo forces'(eg.,
the Coriolis force) and that we need to carefully include such forces for using
Newton's laws in a non-interial frame.

It is important to realize that Newton's Laws are invariant under transformation
V() = () = V(1) - ¥ (L.1)
where ¥ is any constant velocity. (1.1) is called the Galilean law of addition of
velocities or simply Galilean transformation. In particular, if ¥(1) is constant then so
is ¥’ () implying that Law I (which states that a body moves at a constant velocity if

not acted upon by external forces) is unaffected under the replacement (L 1). Law Lis
also called the law of inertia.




Turning to Law TI, it states that the force is given by

-}
F= r;:-fTv = ma (1. 2)

where m is the particle mass assumed constant and & is the acceleration,
Subjecting (L. 2) to the Galilean transformation (1.1)
we find
=y V)
£l = —ﬂ,‘r—

(71 -9)

S ey Ll 4
%{_. (since v is constant)

i

=7

Thus Law II, like Law 1, is unaffected by (1.1). In this connection it needs to be
emphasized that Newton's second law is postulated relative to an inertial frame whose
existence is presupposed by the first law.

Law I11, which states that actions and reactions are equal and opposite, is also
unaffected by change of observers because forces are invariant under a Galilean
transformation as just noted ubove,

Apart from Galilean invariance, Newtonian space and time are homogeneous. [t
means that every point in the universe is equivalent to every other point and that every
moment of time is as good as any other moment, Newtonian Spﬂll:ﬂ is additionally
isotropic, there being no preferential direction. Note that, non-homogeneity in space
and time and non-isotropy in space can arise if we are in some accelerating frame.
However, as we have alrzady said, Newton's laws are not valid in such a frame.

In classical mechanicy the process of obtaining a solution to a given problem
involves, in the main, two steps : :

(i) choosing an appropriste coordinate S}rs{em and

(i1) setting up the differential equation as guided by (1.2).

The curtesian systerm is one of the simplest refezence frames to work with. If T
=0
F,, F, are components of along the x, y, z direction respectively then we have,
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according to the second law of Newton, F,= mx, F, = my, F, = mi. However it
should be kept in mind that when we switch over to an arbitrary reference frame the
transparency of the force-acceleratoin relationships, as provided by the cartesian
system, may be lost. As a specific example, we may think of the plane polar co-
ordinates (r, 8). The forms of the velocity and acceleration turn out to be v = 7 +
r0 8, i = (i* - er]F + ['r§+ Za‘rﬂ)é. where 7,8 are the unit vetors along the
directions of ¥ and 6. We at once see that m7 # F, and m Fy, F., Fy being
respectively the component of the external force in the radial and 6-direction,

" However, this does not mean that the use of other co-ordinate systems is
discouraged. On the contrary there is a class of problems, for instance the central
force, which affords a great deal of simplification if (r, @) co-ordinates are employed.
Some well known examples of the central force are the Newton's inverse square law

of gravitation and Coulomb’s electrostatic force between (wo charges. It needs to be

pointed out that in a central force problem the underlying force acts in a direction that is

.y
towards or away form a fixed point called the *force centre’. As such the torque r X F

on the parlicle about the force centre vanishes resulling in the constancy of the angular
momentum [ = 7 X (m#).

Sometimes depending upon the nature of a problem, a spherical polar system with
co-ordinates (r, 8, ¢) or a cylindrical system with co-ordinates (€, 0, z) proves
convenient. These are related to (x, y, z) as

x=rsin 6 cos ¢, y=rsinBsind, z=rcosB
x={ cos ¢, y=Lsind, 2=z
There also exist other co-ordinate systems such as a parabolic one given by (&, 1,
). In terms of (x, v, z) these are x = En cos ¢, y = Ensing, z= % [E,z - 112]

Problem : Show that the kinetic energy of a particle of mass m in spherical,
eylindrical and parabolic system is given by

T 1
T

im(#"I + 7267 + r? sin® Hd‘.lzl [spherical]

Lo {4 £%% + 7*)  [eylindrical]
2 .

T= %[(E,z + n?)[g'1 + i) + ln%i] [parabolic]



To set up the differential equation as dictated by (1.2) the procedure involves
identifying the gniding forces and muking sure that the conditions prescribed in the
given problem are the appropriate ones for the Newton's Laws (o be applicable, We
have already referred to the consideration of an inertial frame, Others are (i} magnitude
of the masses of the sysiem and time-distance scales involved should be neither too
small (say, those which are comparable to the dimensions of the atomic particles ; here
the rules of quantum mechanics apply) nor too big (say, that of the solar sysiem or &
galaxy whose dynamics is supposed to be governed by Einstein's general theory of
relativity), (i) magnitu{jc of the velocity must be small compared! 1o the veloeity of
light c. It is well known that for object moving with high velocities of the order of -
the formulas of special theory of relativity come in operation. |

1.2 Conservative forces : Conservative forces have a natural occurrence in
classical mechanics. Typically, conservative forces are such that the work done by
them, as the system moves from one configuration to another, depends only upon the
initial and final coordinates of the particles. Conservative forces may be distinguished
by any one of the following equivalent features :

(i) The work done by the force is path independent,

(ii) Around any closed path the work done is zero.

_,
(ii1) If (Fy, F,, F.) are the cartesian components of the force F, then F, dx + F 2
dy + F, dz is an exact differential. :

P -+ =
(iv) F is only a function of position and V x F = 0,
(v) A potential energy function V exists that has a definite value at every point.

(vi) T + V = constant where T is the kinetic energy.

1 Ll " " _’ .
it may be noted that the criterion (iv) enables one to write F as the gradient of
some scalar function, Since the gradient points towards the direction of increasing
potential and forces cause the system o move towards the lower potential, a negative

- %
sign is chosen to express F = — V V : in other words, the force is the negative
gradient of some potential function V. In one dimension we have simply

__4v
Fy=-5L




Between the points a and & it gives
[’y = [ av
7 * e i

So work done is W= —[V(b) - V(a)l = AV~
We therefore have the following principle ¢ work done on the system {positive

work) increases potential energy and that work donc by the system (negative work)
decreases potential energy.

We learnt previously about the constancy of the angular momentum in the central
force problem. The orbital plane [f. R {l] is the one on which the motion lies and
.whith is normal to [ . We assume ‘Il =+ (), If (r; 0) are the co-ordinates of the particle
in the orbital plane with respect 1o a fixed origin then Newton's second law reads

.-n(.i"- - :'EFZ] = F
??I(J'é + ZH?) =0 , (L.3)
while the second equation gives: S EIF (mrzﬁ] 0 pointing to the constancy of the

angular momentum | = mrt@ with respect to time, the first equation, on writing F(r)

o %1;_1 and eliminating 8, yields

mr = _H_[-J:Lf + V(r}] (1.4)

(1.4) looks like a typical one dimensional motion (but on the half-line 0 < r < =)
influenced by an effective potential

2
Uuﬂ=5ﬁj+vqr (L5)

The first term in the right-hand-side (rhs) can be looked upon as coming from a
2 .

—centrifugal force whose magnitude is Li
il

The total energy that is constant is time is given by
E= -}T:n!ﬂ? + V(r)

1 L
= w5 M F

i + U, r) (1.6)

Some implications of (1.5) and (I.6) will be discussed in Unit TIT,
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Problem : In the gravitational force problem the energy equation is given by

1 i _ GMm
E=<m + — - L
2 I | Em:z r

for two bodies of masses m and M. Using r = -—I—z—%, integrate the above -
mr

‘quation to arive at an orbit equation in the form of a conic % = 1+ ecos(0 - 6,)

2o, .. 5 [ 2PE
where A= T 15 the semi-latus-rectum and e = (1 + w is the eccentricity,

i
Analyse the various cases of the orbit,
1.3 Conservation Laws : This subsection is addessed to the concervation
laws for a system of interacting particles,
(@) Conservation of linear momentum :
Separating out the forces acting on, say, the i-th particle (FI-} nto two parts, one

due to the external forces and the remaining due to other particles of the system, we
can wrile the equation of motion as

=3 =) T

U e Wl (L7)
=i :

where ;"i""""“ represents the external force and the second term in the rhs takes care

of the force on the i-th particle due to the J-th particle, ; j# i implies that self-
interactions are ignored.

Summing (L.7) over all the particles in the system we obtain.

Em r~—zF””+EEr”

i J#i
_,’
6 (1.8)
where we have made use of Newton’s third law ¢ F” = F” and ﬂ is lﬂlﬂl

external force acting upon the particles,
If the particles are mtn:mcung only among themsleves (i.e. not being dictated by the

external agcncy}then ES = 0 and (1.8) integrates to ¥ my; v; a constant vector where
V= ?E' i the i-th velocity, We conclude that for a closed system ( S vanishing) the
vector sum of the linear momentum of a system of particles is constant in time.

12




(b) Consevation of angular momentum : Denoting by G the resultant
angular momentum uf 4 system of particles we can express it as

= > Fp X m; v, (1.9)
i :
where we have summed over the angular momentum of all the particles

_}
Considering now the total time-derivative of €1 we have from (1.9)

dﬂ El >(m1: + Er XT{rrrv)

= ZF;)(F.‘ (1.10)
i
where we have used (1.2)

- s
For a closed system F; may be replaced by 3 Fi and so (1.10) becomes

i#f
45 ZrKZF” L1

_f?'l'
Clearly the rhs involves typical terms like 7| x F'* + 7, x I2! which, because of
Newtons’s third law, acquires the form (7 — 7, ) x Fy5. Now since F j2 acts along

the line joining the particles 1 and 2, the vectors product (7, — 7, ) % Fy, has to '

s 4
vanish. We are thus led to the result that i{? vanishes for a closed system implying
conservation of angular momentum for such systems,

(c) Conservation of emergy : the criterion (vi) for the classification of
conservative forces follows easily from Newton's second law !

_[.r.rw %dr II-I_*". Vdt

IF‘JIF
_j[ﬁv]-dﬁ
~ [av

13



where Vis the potential energy function. Indeed we are led to the conservation of
encigy :

3m| ¥ [ +V = constant (1.12)

Equation (1.12) is readily generalizable to a system of n particles. Consider two
particles first. Let us assume that the mutually interacting forces are derivable from a
common potential V:

— V = =
Fo ool 14

o= oy = ===

'f}.irl 2l a’f‘z

Then Inewton's second law for these paiticles reads
~dyy av ﬂr‘r‘ aVv

Mg g T =
As aresult
- dv v v dr  ov dr
sy ‘T:t?l"""‘l‘“! ¥ {E = or T

o %ﬂﬁ - i),
sinee Fyg =~ Foq and Fyy acts along the line joining particles 1 and 2.
On integrating we have
-%-m, % Iz + % my |V |2 + V(|F1 ~ Fy D = constant
(1.13) is a generalization of (I.12) for the two-particle system.
To deal with n puniﬂlcs we exprcss Eq (1.8) in the form

o d Xl int _‘E,L
Em vpo—L = ZI: F;(V +V ) ":fil

where the superscripts (ext) and {int) on V indicate the assumplions that the
external forces and forces for the interacting particles are conservative. A simple
integration produces the conservation of energy for the n-particle system

T+ VY o VI = congtant
where T stands for the total kinetic energy for the n particles :

"
= E —é— m,-lF,F
i=1
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1.4 Period qf oscillatiens : Consider the conservation of energy

| One-
dimension
2
%—m fﬂ%-) +V(x)=E
It can be expressed in the foim
r:Ji,{t- B e 1143
.J..[,\‘,'E_ V(ix) i (114}

For a moving particle its kinetic energy is always a positive definite quantity and as
such there is the constraint V(x) < E. This has the following implication.

Vix) /

i i > X

0 iy “o

Fig I.1

In Figure L1, given some profile of ¥(x), the motion is restricted in the region PQ
or in the region to the right of R. The turning pomts are obtained by solving the
equation V(x) = E which prescribe the limits of the motion. It is'easy (o realize, for the
motion confined to the portion PQ (i.e,, & finite region), that the particle moves back
and forth between the -points Xp and Xg (it. oscillatory). The period T of the
oscillation is given by the time that the particle takes to travel from Xp to X and back.
By symmetry this is twice the time from X to Xg and so from (1.14)

- o dx :
T= MJXFW (L.15)

where Xp, Xp are the roots of the equation V(x) = E assumint & Lo be given,

15



As a specific application of (1.15) consider V(x) = A|x|", where A is a positive

constant. We get,

L EAN
T=2+2m I{in'ﬂ dx

VE - Ax"

=2 f.@ﬂ[f&)"mr dz
E LA 0 = Z“
2 gr_:f{,:ﬁ_}”" p—
“aVE\A o L i
¢ (1=

- Ifn ;
where we have first put x = (-%) z and then ¢ = z". Since the Bela funcuon is

1
: e o C(x)I(y) .
given by B(x, y) = Ir‘ ti:] — 1) 'dt and B(x, y)= , it emerges that
; T(x+Yy)

1 ]
T=2 Elrm{ﬁlu" F(H
- mN E F(—I-+ _1")
no 2

A
Thus T can be calculated for various values of n = 0,
Problems :

1. Find the period of oscillation for the potential V = - Vy sech? otx

where — Vg <E < 0. |iAnsw::r: U=

Zm-
VIE |
2m ]
VE+V, |

=1E]

2. Fid the period of oscillation for the potential

V = Vg tan? 0, x | [Answm‘: e

B

-
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Unit: 11 (O Constraints, generalized coordinates
and D’Alembert’s principle

11.1 Constraints and genevalized coordinates : In uny ﬁhysiﬂnl system the
particles usually have their coordinates restricted in one way o the other. For exanple,
in the case of a simple pendulum, the position of the bob obeys equations of the type
124 72 = 2, y = 0 where 1 is the length of the string and the motion is confined to the
vertical xz-plane. As another example, one may consider the sliding of a block aleng
the line of greatest slope on the sorface whose equation is y = ux + ¢ 'The rigid body,
for which the distancs between any two pacticles is always lixed, provides one more
exaniple. We thus see that the constiziuls dictate the availability ol freedom to a
system. The “degree of freedom’™ is defined as the number of independent coordinates
(not including time) required to specify compielely the pmilfnn and configuration of
the system, In the three examples cited above, the degree of freedom for the plane
pendulum and the sliding of the block on a sarface is one while for a rigtd body it is
six.

Let us consider a system composed of N particles. Newton's law may be wrilten -
as '
migy =By, i=1,2, .. N (IL.1)
Since each particle may be specified by thiee co-ordinates, we have at hand 3N
coordinates which may be subjected to, say, k (£ 3N) equutions of constraints. The
nurnber of degrees of freedom is then gﬁrcn by n=3N--£L
A consiraint is some kind ol restriction on the motion of a particle and the forces
responsible for (he restriction are called the forces of constraint. The forces of
constraint are initially unknown and are required to be solved for. For instance, the
tension.of the string in the plane pendulum problem is the force of constraint which is
to be determined by solviag the equation of motion, 1f the forces other than the forces
" of constraint are designated as applied forces then I appearing in (IL.1) may be split
up in the manner

mpy = FOO 4 FfO,i=1,2,... N | (11.2)



=} o v By

where Fi'% are the applied forces and F i are the constraint forces.

Generally, a constraint is of the form

=+ — ,

JI'[;.J‘ vj'r IJ:{]I _]:11 2';1-1N {11.3}
e LR nr ry \

where v ;=) are the velocities. In the absence of velocities, (I1.3) is called a

finite or geometric constraint :
Roei o il J J
;‘[rﬂ,. :):u.-j= L% N (T1.4)

Otherwise, (IL3) is a differential or kinematical constraint,

A particular class of differential constraints is the linear form
Ny
ZH;'P’.,-+D=E 4 (11.5)
j=l

_} i ‘ - " -
where a; are not all vanishing and D i$ a scalar function of 7 and r.

In the stationary case, -Ea"ll—fr =0 in {-II.4} while in (I1.5) D = 0 and ;:- are functions

of position only, A system is called scleronomic if only stationary constraints are
present ; otherwise it is called rheonomic,

Apart from the type (1. 3) which are called bilateral constraints, there can also be
unilateral constraints which appear as ineqnalities.

f(;_; Vi, r) >0 ' (IL6)
As an example of (IL6), one can think of a volume of g;-a': confined in a box-of
lengths a, b and ¢. Then the motion of the gas penticles is restricted by 0 S x<q,0<y
sh0=zzze
Constraints may be further distringuished into two classes : the ones that can be
expressed as an algetraic equation involving the co-ordinates. Such constraints are
holonomic constraints. The corresponding system is a holonomic system. On the other
hand, there exists a larger class of constraints which are non-integrable in nature
and certainly not expressible as an algebraic equation involving the coordinates. Such
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constraints are classified as non-holonomic constraints and the system subjected o
them is a non-holonomic system.
Some examples given below will help us to clasify the above issues.
- Ex. 1. For the simple plane pendulum the eguations of constraints are 12 + 7% =
2, y = 0 where [ is the length of the string and the penduium bob i restricted to swing:
in the xz-plane.
Here the constraint is holonemic and scleronomic. If however the lengih of the
pendulum changes with time due to seasonal effects then we have a time-dependent
(rheonomic) constraint.
Ex. 2. Let a rod of length | connect two particles ona plane which move in such
a manner that the vrelocity of the cenire of the rod is in the direction of the rod,
According to the problem the constrain r:u.;unﬁnns are, apart from z; = zz = ),
(x1 —x2)% + (y) —y2)2 = 12
X _ht+9
Ml IR Sl
where (x1, y1), (x2, va) refer to the coordinates of the end points of the rod. Here
we run into a non-integrable differential constraint (see the last form) implying that the

system under consideration is a non-holonomic one.
Ex. 3. We remarked earlier that the volume of a gas confined in a box of lengths
a, b, ¢ is subjected to the unilateral constraints 0 <x =, 0<y= b, 0 <z = ¢, Here the

constraints are obviously non-holonomic.
!

¥x, 4. Constraints may be deceptive such as the following onc :
(yryz—-Di+(x+xz-1)y+xz=0
We observe that we can actually integrate the above forn and obtain an algebraic
equation involving the coordinates :
(L+xy=x+y+ec ;
where ¢ is an arbitrary constant. The constraint is thercefort to be looked upon as i

holonomic, scleronomic constraint,

Once the constraint equations have been correctly identified it proves useful to
set up a set of n independent variables g; (i=1,2, ... n), called the gencralized
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coordinates, to desoribe the configuration of a physical system. These generalized
coordinates, whose total number equals the number of degrees of freedom available
for the system, are quite general in character and need not always conform to any of
the special types like the cartesian or the polar or say, the parabolic coordinates.

For the plane pendulum problem, see =
Fig IL.1, where the origin O is taken at o h—
the point of suspension, the constraints '
are x2 + z2 = {2 y = 0, Here any one of x

or z or ¢ (the angle which the string

makes with the vertical) may serve as the

generalized coordinate. Fip. 11 1

AN In the case of a block sliding on an
inclined plane, see Fig I1.2, the distance s
from the top down the plane is a good
candidate for the generalized coordinate,

The relationships between the cartesion

= 5 coordinates (x, y) and s are given by
Fig. 1. 2 x=scoso,y=h-s sinc.

It may be mentioned here that there is no general rule for the adoptation of a .
particular set of generalized coordinates, Which one 1o be employed depends a great
deal upon an educated guess and also upon the conditions of a problem.

In the following section let us derive an expression for the kinetic energy in terms
of the generalized coordinates q,, 45, ... g,

I1.2 Kinetic energy of a holonemic system :
By definition, the kinetic énergy is given by

N 2
= %Z i
=l

-
s

i j= .In., 2, v N [II.?)

20



where r j 18

It follows that

ar d

3 r r

el PRy S L e

i >, o, gi + 7 _ (11.8)

Substituting the expression (ILB) into (I1. 7) we are led to the following form
for T

" I* " - ' &
Sagdia+ Yagta, (11.9)
i k=1 i=l

b fome

where the coefficients a;, a;, ug are
-_"
i a } ‘
M
i 3
jml aq*

ar.- 3F
a; = ﬁmj—"— ‘_a-l't

=1 a"f!
2
-
N
a =% 3 m| 5 (I1.10)

=1
and i, k=1, 2,.

An interesting off-short of (IL.9) is that, in tﬁe scleronomic case, both the
coefficients a; and ag drop out and we are left with a homogeneous function of the
second degree of the generalized velocities for the kinctic energy {unction :

n
T= % Y ay 4 4 = Ty(say) (I1, 11)
fok=l :

“Actually T can be shown to be always degenerate ;

det (ay ); 4 #0 | (IL 12)
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For if the above delerminant were to vanish we would hc faced with a set of

homogeneous linear equations

Eﬂm Xy :-{.J', = 1,2,....’! “I].?l}
k=l !
which has a non-zero real solution, Now multiplying the let-hand-side (lhs) of
(1L.13) by x; and summing over { we obtain,

_,

N

i k= oy i e a’?r

where (11.10) has been used, Therefore we conclude that

_;
i
0, j=1,2,...N 11.14
g, q‘ (IL.14)
Since ;; = (x;-, Yis z_-;.), (IL.14) reflects that the columns of the following
Jacobian matrix are linearly dependent :
(2 96 9 |
a‘ﬂ a'&'z - aQI;[
a9 M
o dq; ' dg,
du 9 9
dq; dg, ' g,
V] = aﬁf: a:;: . aﬁ:f
a".\"] 9‘2 Hq"
aYy d¥y a¥y
dg; g U 9y,
dZy 92y dZy
L dgp  dgy T E}T

In other words the rank € of [J] is less than n. That is, of the 3N coordinates
specified by (xi, y1. 21 (x2, y23 22} .. (Xn, ¥y, Zy) there can be only §
independent quantities in terms of which the remaining ones can be expressed, Thus
we atrive at a contradiction since according to the definition of generalized co-ordinates
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we have n degrees of freedom and { < n. Hence (II. 12) holds. Purther T = 0 since
T; stands for the Kinetic energy in the stationary situation. Actually 75 > 0 : the
equality occurring when ¢; = 0 (i=1,2, ... n)

IL.3 Virtual work and D’Alembert’s principle : Before embarking upon
the concept of virtual work, let us consider typical situations when the forces of
constraint do work.

First consider the case of simple plane pendulum whose length [ is constant. It is
obvious that as it swings, the bob traces out an arc of a circle in the xz-plane due to the
constraint x2 + z2 = [2, The displacement of the bob is normal to the direction of the
force of censtraint namely the tension 7 which acts along the length fo the string.
Hence work done by the force of constraint is zero,

Next consider the sliding of the block along a frictionless inclined plane. The
applied force is the force of gravity while the normul reuction N is the force of

constraint. Here too, the force of constraint acts perpendicular to the direction towards
which the block slides, Accordingly the force of constraint does no work.

Now take the case of a rigid body. Work done by the i-th particle of the rigid body
18 o

W, = Er d'r (i) (1. 15)

— i '
where d r; stands for the displacement and F; represents the constraint force on
the i-th paricle due to the j-th particle. Note that in (1. 15) we have ignored self-forces.

Considering all the particles in the rigid body, we sum over i in (I1.15) to get for
the total work done

W=3IW=YYFdr . (11.16)
i i
Interchanging i and j in (11.16) and explaiting Newton's third law,
Fi=- .%, we arrive at
w:%zz‘ﬁ;-(dﬁ-dﬂ A1.17)
T
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For a rigid body since the distance between any two particles is fixed we have

Ti=2jl = constant Le., |r—r; |° = constant. On differentiation it yields
- = - " : ; i T, = 3
V=15 || drg—d er = 0. From Newton’'s third law, Fj; acts closing el

which is the direction along the line joining the particles { and j. Tt is thus implied from
(11, 17) that W= El and so the total work done by the forces of constraint in a rigzld
body is zero, '

In all the above examples we found that the total work done by the force (5) of
constraint is zero.

However, we run inte a difficulty in the time-changing scenarios, Only one
example will suffice, Consider the case of the simple pendulum whose length [ is
changing with time : [ = [(1). Here it is obvious that the bob traces oul a different rotte
than the usual eircular are. The displacement of the bob is therefore not normal to the
direction of T, the force of constraint. So the work done by T is non-zero. We thus see
that the forces of constraint can do work if the constraint is time- -dependent.

How to treat to time-independent as well as the time- varymg constraints in a
consistent framework 7 Fortunately we have a way out. We invoke the concept of
“virtual® displacement, the word *virtual® has the underlying meaning that no passage
of "real’ time 1s involved during the displacements taken, In other words, we ‘freeze’
the system at a certain point of time and think of virtual displacements & ;: (i=1,2
) that are consistent with the, conditions of the constraint instead of the real ones

=3 1 ; / : : , . =¥
d r;. Some arbitrariness is, of course, involved in the choice of the direction of & r;.
This is exploited by the principle of virtual work stated below :

The total work done by the forces of bilateral constraint in a virtual displacement is
2270

N
SWe =Y FF-8r =0 (11,18)
i=l -
So from the cquutions motion (1L 2} we are led Lo
zm: Sr_ZF“ 5r+2ﬁc'5.::-

i=l
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which because of (IL. 18) rduces to
S iy ) O 20 | (L. 19)
i=]

(IL. 19) is the D’ Alembert’s principle, It asserts that the work done by the applied
forces along with the work done by the inertial forces in a virtual displacement is zero,
Note that in the principle of virtual work the constraint forces are not associated with
frictional forces. Perhaps the biggest success of D' Alembert’s principle is its ability to
get rid of the constraint foces. However, unlike the Newtonian equations of motion,
this principle offers a single equation whose nature can be very complicated.

As an application of D'Alembert’s principle let us again focus attention on the
plane pendulum problem. The generalized coordinate is chosen as 8. So the work
done b;-,r' the applied force mg is (— mg sin 0)(I & 0) where 86 is the virtual
displacement that 6 undergoes. Also the acceleration of the bob is (6. We thus have
from (11.19)

(— mg)(158 sin B) — mlB(150) = 0 (11.20)
B ! E < . g 3
or @= ( i jsm 0 T8
for small 0, This is the usual equation of the simple harmonic motion.

Next suppose that the length of the string is changing with time. Here the only
change from (I1. 20) is that the pendulum bob has a component of acceleration
[I§+2f£§l} in the ©-direction. Hence the work done by the inertial force is —

m(16 + 216)156. So (11.20) is modified to the form
(- mg)(180 sin 0) ~ m(i6 + 206160 =0
yielding
4 (1n18) = - mgl sin 6 - ar2)

- The lhs of (IL21) is the rate of change of the angular momentum of the bob about
the point of support which, in the absence of gravity, remains constant even when the
length of the pendulum is changing with time.
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Unit : JIT O Lagrangian Mechanics

HL1 Lagrange’s equations of motion : A close inspection of Néwton's
.second law reveals that the number of available equations are fewer than the number of
unknowns, the constraint forces being not known beforehand. In this unit, we are
going to set up Lagrange's equations ofmotion (or the generalized equations of
motion) a great advantage of which is that the number of unknowns equals the number
of degrees of freedom. This is achieved by invoking D’ Alembert's principle so that
constraint forces are automatically dispensed with, Lagrangian approach opens up a
new procedure of handling particle dynamics : the main difference with its Newtonian
counterpart lies in the fact that the energies of the system are addressed to rather than
the forees themselves.
Rccall D’ Alembert’s principle (I1.19) which states that in a virtual displacement

(: = 1,2, ... N} the work done by the applied forces
N - -
W = $ Fu g7 : (TML.2)
exactly balance the work done by the inertial forces

; N z
switin) — Z[—-m;- }:J . 5:: (IH.3}
i=]

Consider a holonomic N-particle system possessing n degrees of freedom. Then
the 3N partmle cordinates can be expressed in terms of n generalized coordinates gilj =
1,2, ...n) _

— - : '
ry =1 ':q}l oy oty f} (Iu"q')
wherei=1,2, ... N, In a virtual displacement time is to be treated as ‘frozen’. As

r » . -} ] - . Ll
a result the virtual dzsp]acemeut & r; has the following variation

I e I 111.5)
E aq} i I (T11.5)
Plugging (TI1.5) into (HI. 2) SWAD acquires the form
wte) = igj‘aqj : (I11.6)
j=
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where

N aml.l
Q= Y, F' -a;f‘f : (11L.7)
J

i=|
(1T1.2) and (111.6) are two equivlent versions of 6Wia), Since in the rhs of (T11.6),
(); appears attached to 8g; which are virtual displacements for generalized co-ordinates,

Q; may be defined to be the ‘generalized force’, However, unlike the vectorial
character of the conventional force, it is scalar in character.

P _’ "
If the system under consideration is conservative, F; may be expressed in terms

— — - =3 =3
of a potential functionie. F;=-V, Vand V = V(rh s r]. Consequently
(I11.7) implies
dV
j=— 111.8
g=-5 (IT1.8)

In other words (;'s one also derivable from the same potential function :
V=Vigi g2, qui 1)
We now turn to W) given by (TT1. 3), We see that it can be written as

i N o _’
T T
j=li=l 9g; :

on using (111.5). To handle the rhs of (I1L.9) more ci:fcctivcly we proceed as
follows. First we prove two lemmas :

Lemma 1 : If T be the kinetic energy given by (11, 7) then

i =3
ar S ar :
— = 3 W I A S et (111, 1Y
Proof : 1t is straightforward to deduce from (11, 8) that
Ar
r; r
a_{;:;.. = ﬁq_j | (L. 1D
Moreover,
o _ \
o _ &, 2dn -
a{ij = :‘E:I ?Hj r,- aq; E {III. 12)

Combining (1L 113 and (II1. 12), (ITI. 10) follows.
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Lemma 2 : The operators % -and % are commutative in the sense
J.
dlan J |d
dr; r :
$(%])-3(4)
Proof : Lhs of (11 13) is
o 0o 32 ;: , a,i 3
m=| Imq o Jt aqu"
i = —
d | §9r ar
= +
aqh; ”:Y-_'_dl i Jr'“ ar
s P
d i J
= == = Rhs of (II. 13)
da; | dt
q; X

"Next we combine {H_I. 10) and (H1L. 11) to get

d | dT 4 7 - 4 a_:\'
E(EJ =i=l _m G Eﬁ e rf d‘[ﬁ }
‘-‘grﬂ.f-%+% [g%n& ?;1 B a. 14y

where we have also used (II1, 13).
Finally we substitute (111,14) in (111.9) to arive at

w9l _d o )ls, | -
awi ”_E]laqj d:[aqjﬂﬁ‘ff _ (II1. 15)
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The representations (ITI. 6) and (ITI. 15) enable us to restate D*Alembert's
principle (1I. 19) in the following form :

; R :
Jg]i / aqj dt [aq’j ]] /

The quantities dg; being arbitrary and independent, it transpires from (111, 16) that
the coefficients of the each 8g; must vanish separately.

In consequence it must be time that

d| aT '/ s
E[a—fh)—-ﬁq—j—ﬂj, I=l 2000 (LIL17)

A moment's throught would revel that (IH. 17) actually describes a set of n second-
order differential equations involving n generalized quantities and their velocities,

For a conservative system when (I11.-8) holds, (II. 17) can be expressed in the

form
d | dL dL _
;}F[ma‘j'jJ_ 2 __U (111.18) |

where L = T— V and V is indepdnent of the velocities ¢;, ¢y, ... Gy L is called the
Lagrangian and (II. 17), (1L 18) are referred to as Lagrange's equations of motion.

It is to be stressed that the unknown forces of constraint are absent from the
Lagrange’s equations. Further, unlike Newton's equations of motion, there is no
- direct reference to quantities like force or acceleration. In contrast, only a knowledge
of kinetic and potential enerties are required to set up (II1. 18), However, the
- appearance of the generalized force @; in the rhs of Eq (IIL 17), which in turn is

=¥ ;
related to the applied forces F;® as given by (11L7), signals that the kinetic energy T
-k
needs to be evaluated in an inertial frame. The reason is that F ;“ have their origins in
Newton's Laws which are valid in inertial frames only.

The form (II. 18) admits of the addition of a total derviative term to £, without
affecting the equations of motion. For if we construct a new Lagrangian L~ from L
according (o -

LJ{QJ- “i‘_;l ) =L(QJ1 q’_“f] + %1j= | Py A
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whete A is any differentiable function of position and time, then it is trivial to

check that —= :M. gives a vanishing contribution to the equations of motion :

d| o [dv)|. d (dh - '
dt [Bc;rj ( dt ]i] = E}.;.-J. ( a*,] (I1L. 19)
To prove (III. 19) we simply have to note that =~ “H' E i+ %ﬂ; and the

result immediately follows, We therfore conclude that both L and L~ ]ead to the same
equations of motion.

Sometimes, depending upon the nature of the problem, a more peneral

representation of J; than the one given in (ITI. 8) is called for. Suppose a velocity
dependent poteniial exists namely U(g;, 4;, ) such that (; is derivable from it in the

TTAnner
~_|4d|dUu|_aUu]| .. |
Q= [d![arjj] afI_lrjI'J_l’E“”" (1, 20}

then a similar set of equations as (III. 18) follows from (III. 17) if L is defined
according to L =T - . In unit IV we shall see that a velocity dependent potential has
relevance in setting up of a Lagrangian for rotating frames.

II. 2 Lagrange’s: equations for some simple systems :
(i) Plane pendulum : Referred to Fig, IL1, if 8 be the generalized coordinate,
. then the kinetic and poterrtial energies are
T= %mizéz. V=-mglcos 0
As aresull the Lagrangian is
Lesl—Vi= -%nn‘zéj + mgl cos @

g%=—mgisinﬁ :

dL
20

1t yields

= mi*@
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From (III. 18), the equation of metion turns out-to be
mi*6 = —mgl'sin 6

For small 8, it can be replaced by |
PO 4
t = 7o
Note that while g—g— stands for the angular momentum of the mass about the point

of support, oL represents the torque.

a6
Remark : 8 is not the only generalized coordinate we can enmploy. However, as it

happens, any other choice leads to a more complex form of the equation of motion.

For instance, if we use the horizontal displacement x(= [ sin 8) as the generalized

2.2 e
f.}'f £ — and V =—mg1? - x2,
- %

coordinate, then the forms of Tand Vare T = %m

-2 =

With L = T'- V, the equation of motion reads ¥ = — an-"'—f - %" wj!‘ + x* which is
-X

mote complicated lo solve than the one for 0,

(ii) Spherical pendulum : Here the bob of the pendulum cun swing in any
direction. As a result m traces out a sphere of constant length /. Using the polar co-
ordinates 6 and ¢ and noting that in spherical polar co-ordinates the form for the

kinetic energy is T'= flm(i'z + 7207 4 r®sin? @ n;bi] we find for the present problem -
T= -é—m!z [E'iz + ¢ sin’ E]
=—niglcos B

where V is the same as in the place pendulum problem.

Here the number of generalized coordinates is two, 8 and .
The Lagrangian L=T-V gives

= mil® sin O cos § ¢* ~ mg Isin @

ool Qo
m-it-* f_n['i‘"'

= mi*d
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| A
900

g_f.'b = ﬂli'.:'i sin® ‘9".3

The equations of motion are

@ = sin Bcos 0 ¢° —%sinﬂ'
%{miz sin” 6 rp] =0

The second equation implies that the angnlar momentum in the vertical direction is

a constant of motion, We have ¢ = -2—‘4,2-—, A is a constant. The 8-equation of
ml© sin” 6
rotion tams out to be
I 2 9 '
& =-.-‘41:—2cut2 0+8cos0+ B
m=l l
where 7 is a constant.

(iif) Binary star system : Consider a binary star consisting of two masses m
and M. If O denotes the fixed origin and N the centre of mass then according to the
fignee 111 1 :

T s PO ™ S
r1'=R+r| . r2=R+r‘1

o o ] =2
where R is the centre of mass :
3 —¥
E _mntMr 3
m-+ M. !
The kinetic and potential energies are
radulef 41 M, i g
= = mir, = Mlr
2 [ T2 Fig. 101 1
Ve M
1 —%
r| -_— 1"2

The Lagrangian can be written in the form

2 )
L:i[m *[’]I_f_ﬂj]
Jf1— F
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- o . T E}L
where r = r—rq =1’ —r;". We find as a consequence 'FF = 0, the
d R_

coordinate .ﬁ not appearing explicitly in L. So (n + M}ﬁ = copstant implying that the
kinetic energy of the sysiem as a whole (see the first term in the Lagrangian) reinaing
constant. This term is of no consequence while studying the internal mation of the
system.

We now solw: some problems.

1.3 Some solved problems :

1. For a system having four degrees of freedom the Lagrangian is given by

L=m|g; -4f -4} - q.}]’”} ci Ay
=l
where A’s are functions of coordinates alone and m, ¢ are constants.

Show that the equations of motion can be put in the form
: 0A; 94
mdr( ')_EZ[T"&:; )qk._,r—IEB

oy o,
m%“""“}ﬂé[#‘ﬁ}q

- =1
where A2= (42 - 4f -4} - 43)
Answer : For l'uc coordinates gj, j = 1, 2, 3 we have
g%_ = —mgy(ai —af -4 - f.*z) +.ed;

=~ mA q; + eA;
L 4 dA, .

=g q
dg E’.a‘fj g
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Using Lagrange’s equation of motion we get

d : d
}E (— HI&-Q’} + L’ﬂj) =g 'éﬂ‘ 'f?p

p=I

4
Writing ﬂ,t Za qk.A,r being functions of position only, the result
follows.

For g4, we have

oL
A
aqr,; =m A gy + edy
oL _ 4 9
oqy E 3*?4
Writing % = i gﬁi gy and using Lagrange’s equation of motion for ¢y the
p=1"1y ;

result follows.
2. Study the problem of damped oscillator described by the Lagrangian
L= ET‘{%,;,;,@? - %qu) '

where ¥, m, k are positive constants by considering the different cases. Justify the
choice of the Lagrangian,

Answer : For the Lagrangian the equation of motion is

4+ yq+ % g =0 (damped oscillator) (i)

Trying a solution of the type g - ™ from the linearlity of the equation, we find
that the constant ¢t is resticted by :

—I:tb b= J‘I
Hl
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There cases may arise

; B LS
(1}%{\% sg=e 2

where A, B are constants and 3 = — ib so that [} is real,

.Y
(11) % = ;i— : .-q = qp¢ * whereg=gpatr=0
y — ¥i
o i = ] -
(iii) >y P 4TE (Ce™ + De-ot)

where C, D are constants and & is real. Since b > % =0

we have to set € =0 to avoid an explosive tern.

i)

: o O
It is easy to be observed that should we set g= ¢ *sthen g = (» - f}i }e  and

' 2y e 0 W )
g = [.1. -~ g + 1}—]& 2 and g = (a - 5y + lﬁ—Je J';_ So (1) is transformed fo §

2
+ @?s =0 where @* = ﬁ - !-:4‘ 1t resembles the form of a simple harmonie motion
for L < JE .
2 m
Note that it is not possibie to obtain the form (i) for the equation of the damped
oscillator simply by adding to the Lagarangian of the simple harmonic motion, namely

Lspm = —%—mr}z - %mmzqz. a potential term corrcqunding to the damping force

(- png) ie. -~ yngq. The resulting Lagrangian L'= %mc}rz - %mmzqz — pngq
yields § + w’q = 0 instead of (i). The additional team — pmgq is actually a total
derivative -‘%?-. M= -% g, It is therefore not ssurprising that both Ly and L'
iead to the same equation of motion. The correct Lagrangian for the damped oscillator
must contain an explicit time dependence in the form of an overall exponential factor as

given in our problem.




3. Show that for a conservative, sclcmnam:c system the quantity Zq i g ~Lis

a constant and that if the kinetic energy is a homogeneous quadrauc function of
velocities, the total energy is constant as well.
Answer ! Since the system is conservative and scleronomic,

oL OL . oL
l:ij 9 L} EI}IJ d4; *4 dr[aq H

=]

=0
where we have exploited Lagranges’ equations %—[%J g-‘{—‘ and noted that
i 9

for a scleronomic system -3% =0

it
. oL
q; =+ — L = constant
2%
Next,

[ il

. oL . T

§ e L = P . T_. V
'Eiq" 94 Eiqj 04 ¢ )

( g% = 0 for a consevative syst::m)
=2T-(T-V) (by Euler's theorem)
=T+V
Combining this with the previous result we arrive at the conclusion that T+ V=
total energy = constant,

IIL. 4 Central force and orbits : As already noted in Unit I1, the central force
is a two-dimensional problem. In pinnc polar co-ordinates (r, 0) the Lagrangian is
given by :

L= %—m(r’z -+ rzié:) - V(r) (111, 2.1.}
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The resulting equations of motion are

mi = mrg® - V(r) . (IT1, 22)
-gzi- [mrzé) =0 (111, 23)

where V/(r) = %1’,—{ The second equation is a statement of the constancy of areal

velocity -.:l_.frzé and also points to the conservation of the angular momentum mr28,

f -+ dl

From Fig. 111.2 it actually follows that the radins
vector sweeps oul, in time df, a differential area dA

= %[r}{r de) = ;E—{r)[ré)df. r+dr

In other words

i:'_;‘:_ = .%. r’@ = constant = rz—i-; say (III. 24) o

Fig. 111 2
Thus the motion of the particle along its orbit is such that the radius vector sweeps
out equal areas in equal times. This is Kepler's second law. Note that we have not

used ary specific form for V(r) so the property of the constancy of areal velocity is

true for a general central force problem.

Integrating (I1L 22) and uwsing (111.23) and (111. 24)

we. get
mi =~ S (111, 25)
here U(l £ v d earl 5). Recall that —L- h
! s = + £ 1er i .5, that is t
where U, r) st (r) noted earlier in (I.5), Reca a S is the

centrifugal term V.. For the Newlonian inverse square law, V(r) = — % (which is

negative for an attractive force, 11 >0), a graphical description of U{/, ) and Vyis
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illustrated in Fig 111.3. We see that while Ver goes as —If V(r) is always negative, As
r

a result, U(J, r) can descend to a minimum having a finite negative value,

“
H
E
;
i
t
i
]
Vo
| =
i. ................................. R r ot
'-‘I,. s
uir) -7
-+ V(r)
Fa
!
P
3
J
| Fig. I1L. 3

Nat only the inverse but the entire cluss ot power-law potentials can be described
by the form

V(J")='—‘rlv-= _r_?-i}:‘rf

(I11,26)
whera A = % (v — 2). The above potential are atlractive for v 0 but repulsive for
v <0, Corresponding to (111, 26) we can define

e 1.4
Uyl r) = 5 — I, 27
.7l 2mr®  p¥ : }
. R i | 1 -
ie. U,(p)= e (Ef - ETJ (1. 28)
where p = ’E It a is determined from the condition Up(l, a)=0
then a turns out tobe
Wv=2}
Uyl a)=0: a= (%’2’—?) (IT1. 28)
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Further V(r) assumes the form
II a -2

W)y (I, 30)

We speak of a bounded motion if 7 = ryip and 7 = rygax exist where 7 = 0, From
(1.6), obviously E = U(J, r) = %— mi* > 0 for all r, we have the condition U(l, ) < B
for a physical mation, In Fig ITL3, the curve, (], ) reaches a minimum with a finite
negative value implying a range of bounded oibits.

We now make some remarks on the circular orbits which are, from the
mathematical point of view, the simplest ones to handle. It is clear from (1.3) that there
will be a cireular orbit of radius & if

F(R) + mR &> =0

: I

e FR)+ =0 111 31

ie (R) por ( )
This also follows from ,‘fﬂ}it_’"} s = 0 and pulting F = - % (TIT, 31} is just

a re-interpretation of the criterion that a particle in a circular orbit has a constant

2 ]
acceleration v4/R towards the centre and so -m.,‘::i- =—F(R) [F(R) < 0,v= RA].
" Writing (111, 25) as

: .
i = mjf%[r— R) = - U’(l, 7) (111.32)

where U'({,r) = d—”;.%_—'—.-]- we expand the rhs as

Ul r) = UL R) 4 (r — RYU(LR)
e (r=R)U"(LR)
Thus

e -dif% (r = R) = =(r - RYU”(I, R) (111.33)

and we conclude that the circular orbit would be stable if U/(,R) > 0. Eq.
(IIL.33) has the form X = — @*x, Fora positive U"(!, 1) we can hence estimate the
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angular frequency of small oscillations about a stable circular orbit : _
e \’v’_’(}{} + BIZ{JHF
= \’T - = — (111, 34)
Because of (111.31), we can eliminate | to derive

W= \/FII-[V"(R} + %"Fl} (111.35)

The period is T = 2n/o.

Problem : Find the stability of circular orbits for the power law potentials

v(r) == £ Vel 70

e
Answer : The force corresponding to V{r) must be attractive i.e.

F=-4V g
dr i

It gives — vyr=v=1 < 0. So we must have vy> 0,

The condition of stability is U"(l, R) > 0 ie. V"(R)+ H:é_ﬂl_}ﬂ

[see (ITL.35)]. we get
~Yv+ DR-V-24 ()R V' 50
or, =yVv[{v+1)-3]>0
or, —Yyv(v-2)>0
Since yv > O we are led to v < 2.
IIL5. Ignorable co-ordinates : It often happens that for a system with n

degrees of freedom, a set of generalized coordinates, say qi, gz, ..., ¢z, are not

explicitly present in the Lagrangian althengh L contains the corresponding velocities
G1+49, ... 4. Such coordinates are then called ignorable (or eyelic) coordinates.

We have already encountered ignorable coordinates in some of the problems we haye
come across : for example, in the central force problem 0 is the ignorable coordinate
while in the spherical pendulum ¢ is absent fum the Lagrangian and as such it is
ignorable. It should be clear that corresponding to any ignorable coordinate,
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Lagmn'gh’s equation reveals an associated constant of motion. Out task here would be

to set up a modified Lagrangian addressing to the remaining coordinates
Qis1s g2 -+, from which the equations of motion can be derived. Such a modified

Lagrangian is called the Routhian.
We first of all observe that for the ignorable coordinates qy, 43, ... g, Lagrange's

equations are
d| oL | _ N
i [B@’r] =0 pre=b 2k

oL
%,

ie. =P, r=1,2,..k (111.36)

where f4, Ba, ... fi are the constants of intergration.
Define now the quantity

Rel- Eqr:,ar (1IL.37)

r
called the Routhian. Since because of (II1.36) we can always express ¢, ¢5,... 4
in terms of the coordinates gy 4 1, Gk + 20 ++. Gns the velocities gy, graay o0 g, and
the quantities 8y, B2, Bi. we can wrile R as

R=RIGk+ 1 Gk a2s oo« Gn s Grars Qg @ s B Bay o P ] {T11.38)
To proceed further we caleulate the increment of both sides of (111.37) i.e.,

dR=8|L -
|: E-f!r d.
Now L being L = L(qr 4 1 E*i--rz-- s G G2s - f?m <Gyi 1) it gives
E.'IK oL
L AL 5, + i
J'=k-|-laE; '

r=| q" r=k+|

:1 (111.39)

where ¢ is treated as forezen because of the virtual vanation. Also,

ﬁ[ﬁ:@,gg] 2.56& +Eqraﬁ,

r=l r=1 r=|
So (I11.39) becomes
L oL 3 _
sR= Y ILg; 84, - 34,58, (111.40)
r-—§+i a'lj',. : rnzk-’I-! E(;._r A E & ﬂ
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Now &R itself is because of (111,38)

SR= D gqiﬂqr y aR&?ﬁE

r=k+1 r=k+l ral

SO (T11.41)

Comparing (1i1.40) and (111 4I} and noting that the variations are arbltrm:j,r and
independent we deduce

9oL . oR rek+ 1L k+2, ...0

dq, 9, _
ab. . o .. .o ;
?.}E:_ﬁf;r1 r=k+ 1, k+2,...n . (111.42)

. ot
= W 7 R
4=,
The first two equations of (111.42) give

%(%F gj’ r=k+1,k+2, .0 (I11.43)

F

while the last one implies
g = | E?g OR e, r=1,2, . (111.44)
f

The message of the set of Equﬂ{inns (1L 43Yis that, knowing R, g4 4+ 1, q;;;..g,

gy, can be determined in terms of 1. Having gol this, thc remaining coordinates are -
obtained from (I11. 44)

Ex. 1. In a dynamical system the kinetic and potential energies are
| :2 o 2
wpa s 741 V=c+dg;

Determine g1(f) and g(f) by Routh's process of ignoration of coordinates.
Answer :
The Lagrangian is

'fi'l
+ba;

2 2

L= +%fi’z—¢"§f¢h

1
2 a

AL _ &
=3 ;
afﬂ a + qu =P
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where g is the ignorable coordinate. The Routhian is

involving gz and g, only.
Fqguation (111.43) gives

ia + (2d + bp* gy =0
solving,

g A siu[('lz.’ + bﬁz)]ﬂr-l- EJ

where A and € are constanis of integration, The coordinate g; is obtaned from
(111.44) :

g, = —Ig%fﬂ

=P [ (a+ byj )i

Substituting the above solution of g2 we get

bA® 1 1z .
gi= [ﬁq 4 ,mmﬁ)r s 4(Mﬁ+ Rl sm[[zd + BB )" 1+ E} +B

where B is a constant of integration.

Ex. 2. Solve the planetary problem by Routh’s process of ignoration of co-
ordinates.

Answer
Here T=%(i‘1 *.‘-riﬁl?z)
Pt
r
- R o e - L O
Li=T=V= *’—Z-I—(r + r g )+?
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Since L does not contain &, it is an ignorable co-ordinate :

oL
00

or, mi*@ = |

= constant = [ (say)

This equation expresses the conservation of angular momentum. We now set up
the Routhan

R=L- 6oL
ad

gfaa i)

meor
Noie that R contains r and # only. We then get from (I11.43)

2
mi = '"L:T - H'z-
mre r
Its first integral gives the conservation of total energy E :
L1 o -
mr- + 5~ +V =constant = E i)
2 2 mr (

as we have laready seen in connection with the central force problem,
On the other hand, Eq. (I11.44) gives

= | %% dt
i
£ mrl[f} L
where 6y is the initial value of 6. Note (hat (i) can be written in the form
r
1= | . (iii)

172
,ﬂ[g[g_ V__sl_J]’
i 2mr?

where rg is the initial value of r, From (1), (ii), (iii) we can indentify four constants
of integration [, E, ry and .

Liouville’s class of Lagragians : The Liouville's class of Langrangians is
the one for which the kinetic and potential energies are in the form

7= g [u(a) + o) ...+ () [ ()2 o+ va 2 )3+ 4, ()]
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| P [W] {‘?IJ + 11’2(‘]2 ]+--- -I-W" (ffri }]/lui (gl) + ta (q‘z }-1-” : +u” ({J'H )]
where u,, v,, w, arc functions of g, only, r=1, 2, ... n for a system having n
degrees of freedom and the forces are conservative in nature. A great advantage with

the problems of Liouville's type is that these admit separation of variables and hence
can be solved completely,

: A . ] A
Letusset OF = v(0))df, OF = vy(9:)df,.... OF = v, (q,)d2
which in turn imply

dQr= 4, (4, )-"'j‘i'r

Integrating, @, is obtained as a function of qealone, r=1,2, ..., n.

As a result we can transform w,(g,) to U,(Q,) and wq,) to WAQ,). Thus T and V
acquire the forms

where U= 3. 0U,(0,) and W= $'W,(g,).
r=}

r=|

In terms of Q,, ¥ = 1, 2, ..., n, which are the new generalized coordinates,
Lagrange's equations read

43 )% --%
30,

£

1 .i ] - .l_ a " ad I = =
i.e. dr(UQ,.] ?F%[EQ, = g_QL, ) VN .
Muthplying both sides by U0, we get
A1) _ro U 4 yp. V. .
$(3vet)-ro, 20, U350~ =0 (A%
We have already noted that for a conservative, scleronomic system, if the Kinetic

energy is a homogeneous quadratic function of velocities then the total energy is
constant : T+ V=h, h is a constant.
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As such (111,45) can be put in the form

4(3v70?)- Qf["ﬁg'“ag {UVJ}

: W awl_ .
e, g(3002)- [I 90, a_g}‘”
o, f_f—(zugﬁ) [hgg %g] Oy r=1,2, .

Since 0, -E% = ?L;L and 0, T-— = ﬂ? we arrive at the constants of motion

%UEQ, ~hU, +W,=C,, r=1,2..n (11L.46)
where C,'s are the constants of integration,
Denoting :
| ¢=c+hu W,
the equations of motion = U 0 = d translate to

%u v, g =d, (q,)

in terms of the old variables. In consequence we have

TS e L47)
d{q,,}d'r"_ ;| S0 i e (11L.47)

More explicilty

f 2({5&] }- \z(q':])dqz_l_ﬁl = —J—ldq,,i—ﬁ" l

(111.48)

In this way the variables become seperated, Multiplying (II1. 48) by uy, Uy o1 Uy
for each rcspactivc value of r= 1, 2, ... n and adding we get

1‘ dg, = -\.I"'_—-—*'-df+c
r=| L]
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where ¢ is the constant of integration, (ITL.48) and (111.49) provide the complete
solution to Liouville's problem. Note that the complete solution is subiect (o Cy+Cay+
-» €y = 0. This can be seen very easily Irom (I11.46) which can be written s

)
é w?v, (4, )4 = Cr— wilg,) + & 1#,{q,). Summing up we get %u 2 Tfr,f- .3 v.(q,)4t =
3 r=]

11

(i n
X Co = > w,. + kY .. Inother words, 5.C, = u(T + V — h) = 0.

r=l r=1 r=1
Ex. 1. Show that the dynamical system for which 27 = ry rg(r‘.z + r%} and V =

}l— + ;1- can be expressed as one of Liouville’s Lypes,
i
Answer: Putri=qy+qrand =g - go. T and V because
- TN, 1 SR
7= (qi - a3)(df +43)
ey
Viom: oSy
q — 4
and the problem can be recognized to be of Liouville's type.
Ex.2. A particle moves in a plane under the action of two Newtonian centres of

.
attraction at the points (¢, 0) and (~ ¢, 0) the attractions being -I'!'-f and %
r r

respectively ; r, r”being the distances from (¢, 0) and (- ¢, 0) respectively. Show (hat
the problem is of Liouville’s type.,

Answer : Here

) 4 fL-
R fo-c}2+f -J{x+c}2+y2

Put»’=¢q + gy and r = gy — g3. Tand V can be seen in the forms

22 =2
N 0 % 41 qz
T=3{d qz)[ 2+02—q;]

t‘ﬂi o

2+m—uﬁ—£L7]

Ve [+ )2
_[( a - a3 qai - 43

So the problem is the Lionville's type.
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Ex3 T = %—(qf + q%)(qf + q%) and V = &‘lz “:‘i]‘i"1 solve the problem

completely using Liouville's approach.

Answer : One can easily identify

(g ) = gt (@) =a3, wla) =1L vala) =1 wlg)=1 wig)=0
From (111.48)

I '1:17& _[ —z{‘q—z)‘dffz*'ﬁ

di(q)) = € + huy(a) - wy(q) = G +haf 1
dy(@) = C; + huy(45) - “’z(fh} =~C+ha) (C1+Cr=0)

I‘\’£‘|+h2 g =] -tc:,+.¢1“!‘]r1 il
os™ ! il - cos™! = constant = 7t — Cyp (say)
fl_"_EL G _
h h

We thus arrive at the form

where

azqf + biqg + 2ab qyq, c0s Cy = sin? Cy

- (_h._“ i
where a= =0 and b = \];1

The other equation can be similarly solved from (11.49).
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Unit : IV 0 Rotating Frames

1V.1 Basic equations : In this unit we shall discuss the motion of a particle
relative to a rotating frame of reference, As mentionsd earlier, a rotating frarme is non-

inertial in character and pseudo-Torces generated oul of it are o be carefully accounted
for.

Consider two othogonal co-ordinate frames of reference (sce Fig IV, | and Fig
IV.2) namely S : OXYZ with unit axial vectors i, j, kand 87 O'X"Y"Z" of which § is
attached to a rigid body R and 5 is held

R

Fig IV.] : Rotating coorrdinate system . Fig V.2 ¢ Inertinl Corrdinate system
fixed in the npgid body B. system fixed in spuce.
" L ; - g - P " Kl - v _‘
fixed in space, Now if the rigid body is rotating with and angular velocity @ about
=)
a fixed axis through O then it is obvious that for a vector & fixed in K,. an observer

positioned at @ will see no change in the components (&, &, &) of _5 relative to OX,

OY, OZ. However to an inertial observer at O, the time-rate of change of _gwill
appear as :

: dé. =
—Hfz [dﬁ +’a§ll+d k)"'ej.r +€1.'fi{L+‘§z_ﬂ';_

4727 dF 2. dk
where e i 7 =WX i, ——-wx k are the induced velogities

due to the angular velocity of the frame § relauw:. s’
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It therefore follows that _
' =
(4] 2=(8] 2vart )
ined not
¢l

where ( E] is to be identified with the time-rate as measured from the rolating
not

frame §. Indeed Eq. (IV. 1) furnishes the typical motion of a rigid body being
described by a combination of translation and rotation. The suffixed 'fixed’ and *rot’
indicate the roles of a fixed observer in § and someone moving with the ri gid body
respectively.

In the following our aim would be to set up the governing equations of motion of a
particie mnving.relativc (o & rotating frame. For concreteness, let us imagine the
coordinate frame $” as set up in a fixed star thercby constituting an inertial frame and
the rigid body to be our Earth itself. We neglect the orbital motion of Earth around the

Sun and assume the Earth to be a perfect sphere. Now, the vector g can be Lypically

- =
assigned the roles of the distance veetor r and velocity v of the particle as observed
from the surface of the Earth (i.e. measued from the coordinate frame S ). Let P be the
e =3 s . =
position of a particle at time twith O P = ¢ and O'P=1r". ¥ 0’0 = a then it is
clear '

¥

Fig, V.3

' - - :
from Fig IV. 3 that ' = r+ a. As such the veloeily of the particle at P as
measured from Q" would be

(#)2-(#) 2

lixed

321

(IV.2)
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To estirate [gi) ? we use the relationship (TV. 1) between a fixed and 2

fined
rotating frame. In consequence we get from (1V.2) _
Y = <+ = da
L= %{—. + @x r+ -ar;f- _ {IV.3)
ot

where we have replaced Z’ by 7. The first term in the thy of (1V.3) gives the
velocity of the particle relative to the rotating frame &, the second term is the velotity
due to the rotation of the OXYZ coordinate system and the third term i ihe so-cailsd
drag velocity. The drag velocity can be ignored if the distance vecior berwaen the
points O and O does not change with tine.

To derive an expression for the accelzration of the particls at P ae measured from
0", we write from (1V. 3).

d)—’ _[d?]—} _(d] dr ,(-:!) [%. ] dta

Ll =121 ¢ == £ 4+ @ r |+

[d‘ xed NG Jixed N Jpsaa| : \ 1 Jiized et
. [11]

IV 4)

s
Using (IV.1), with E replaced successively by the vectors [%{L) and ?,
tLeld
it follows that

d dr . £r| .2 |ar
i - . ar
(Hf)med[ i ]l‘ﬂl [ # ]mt. i X{ df ]mt
(4)_(8x7)= [g?(ax;‘j]mgsx[ax?)_ av.s)

Substituting (IV.5)in (IV.4) we obtain

du| _|d*7 a2 (2N |da] 2
s fixed fined ok

i s
42 @ % {‘*‘ : ] + [‘%{—] (1V.6)
1ol ok
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Note that the first three terms in the right-hand-side of (TV.6) survive even when P

is stationary relative to the rotating frame

-4 g =
S| =Ll g
L dr*

rot ol

-3

2 —h
Ignoring the %Fq- term by sksuming that the distance 0O’ is not changing with
time and observing that in an inertial frame Newton's second law implies that

= — =
m(%J = F, F representing the vector sum of the forces acting on the particle,
fined

we have from (1V.6).

- : )
m[%{-) — F=- Zm[&;x?J—max[f:_u'h(?]—ma;x v (Iv.7)
[ixed

- = i 27? =
where we have set v = %IL iar;"— = [ﬂl—f—J and @ = & . The
ot ol ol

non-vanishing of the right-hand-side of (1V 7) is due to the presence of three types of

T -4 —b ! . = e T
forces namely, the coriolis force Em[ VX m], the centrifugal force m o x ( Fow m]

5 . -} =3
and the due to non-uniform rotation' — m @ % r. The latter can be neglected for a

I ;
uniform rotation : i‘ﬁ@ = (. Note that the form of the Coriolis term implies that it is

always perpendicular to the direction of velocity and so it can never change the speed
of a particle (except, of course, for its direction), It is also referred to as a deflecting

force. Obviously the Coriolis force does not contribute to the energy equation.

32




- Consider a typical three-dimensional motion with rotation about the z-axis (see Fig

V.a):
IV.4) A

&L

a y
¢ :
x Q
Fig. IV. 4
@ = ¢I:} = q}v(co&ﬂé,—-sinﬂéﬂ)
O=¢%k = tﬁ(cmﬂé,—sin&éﬂ)

L3 el " = 3 - _h _} * - ¥ L
where e,y are 1"ie unit basis vectors in the » and @ directions respectively.
Note that the azimuthal plane OZ( is essentially two-dimensional,

Ini the rotating frame we can directly express

_l: = ."'Er + (ff})éﬂ ,
v =(#—rb2)s + 1 4(,29)z, (IV.8)
-3 i i " " B
WX r = tp(cnsﬁe, ~ sin Heﬁ.}x ré, = rsin @ e,

where &, is the unit basis vector in the ¢-direction. As a result, we have
= =+ Al 5 -
WXV = qﬁ[r 8in @ — rf cos H]ea (IV.9)

0 X (E: X ?J = —rsin E(si_n 6 &, + cos Hia]éz (IV.10)
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: s T
Further since 1 = vX @ ¥ 7, we also have

Up=r, g = ), g = rsin 8¢ (Iv.11)

Substituting (IV.8), (IV.9), (IV.10), (IV.11) in (IV.6) which in terms of & and
—%

¢ read

di _dy 2.2 2 (2 ) > o
?F:T:'F+2mx”+mx OXr |+@X r (IV.12)
?—Jl

where d—};f— term has been ignored and suffixes *fixed’ and ‘rot’ have been
ar=
dropped, we get the following expressions of the various componenis of the
acceleration for a non-inertial rotating frame :

radial component of acceleration f.= 7 — r8?% - r sin 0 @?

cross-radial component of acceleration fip = -}-% (rzé] — ra* sin 0 cos @

azimuthal component of acceleration f = T's'i]n_ﬁ ?;'.{F [rzm sin? Ei) (IV.13)

1V.2 Some remarks on the Coriolis force : From (IV.7) the Coriolis force

. . bt J =P =} a i z "
term is ~ 2m @ X v where v = r. Congider a flat rotating disc. For a particle

moving {(See Fiv IV, 5a)

‘/"

Fig. IV. 5a ' Fig. 1V 5b |
across a dise under no forces, an inertial observer (i.e. the one who is in a fixed frame)
wil see it moving across a straight line according to Newton’s law. However, in view
of the fact that the disc is rolating, an observer stationed on the dize will view the
particle taking a curved track due to the Coriolis force operating in a direction
perpendicalar to the motion of the particle (See Fig IV 5b). Note that the effect of the
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Coriolis force is to bend the path of the particle to the right in the Northern
Hemisphere and to the left in the Sourthern Hemisphere.

2 -F
Assuming @ to be constant and neglecting the 5‘;-55‘— term we can re-write Eq.
€

(IV.6) as

pie), (&
ar dr*
[ized .

=¥ &’_r:. h mhru e
+2mx I +Fwx|mxr (TW.14)
SR ral

For a parlicle moving under gravilation (i.c. the attractive torce guided by

1 a - - - . . ] _} .
Newton's law of gravitation) and also subjected o an additional force F, the equation
of motion is

42 P Tigy oy
m = =mg+ F (IV.15)
fixed

- Thus from (IV.14) and (IV.15) we find

3 ' ~#
d? e, - =+ |dr v g SRS
m=—| =mg+F-2max —maOX|OXr Iv.16
rot o
In the Jaboratoiy when we measure the acceleralion due to gravity what we
—3
determine is actually g, the effective gravitationul accleration given by
T — =
g*:g—mx[mx r} (IV. 17)
The right-hund-side of (IV.17) is 8 combination of gravitational and centrifugal
—¥ - “
forces. Note that the horizontal and vertical components of g* are. gy, = @*r sin 9
cos B and g, =g — @ sin20,

Al the pole g* = g while on the equater g* = g - @#r.

— —
Substituting (IV.17) in (1V.16) and writing g in place of g* we get,

37 % 2 -
" %{— = m g+ P 2m o % -‘%}L | (IV.18)

where the suffix 'rot’ has been dropped.
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=} )
The components of w being (0, @ sin 0, @ cos 8), where 8 is the angle between
-3
the direction of earth’s axis and g * we find the Coriolis force to be given by

e R = e ; oo
2m @ ik 2ma(ycos 0 - Zsin 0, —x cos 8, x sin @)

3
d oy _

where S = (£, 9,2) : (IV.19)

IV.3 Foucault’s pendulum : A useful device for observing the effects of the
Coriolis force is the so called Foucault's pendulum, Tt is perfectly symmeirie and

designed to swing freely in any dircction, Because of its symmetric nature, the periods
of oscillation of a Foucault’s pendulum in all directions are equal.

Neglecting the vertical component of the Coriolis force for it is very small
compared (o g, the equations of motion in the x and y directions are

e {; X+ 2wy cos @ ' : (V. 20

y = —-‘-?—y— 2 wx cox 0

where we have used (IV.18) and (IV,19). One can sce that the right-hand-sides of
Eq, (1V.20) carry the contributions from the Coriolis acceleratoin in addition to the
usual ones of the simple harmonic motion. In writing down (IV.,20) we have also
assumed that for small amplitude, the motion is nearly horizontal ie. 7 = 0.

A straighforward way to solve (IV.20) is to set r == + iy resulting in
P 20k P+ gr =0 (Va1

where k=@ cos 0, @j = g/l. Forr = AeM where A and A are constants we find
A2 + 2ikA + @F = 0 whose solutions are

A=—iktiaw
where @2 = @g + k*. The solution of (1V.21) can thus be written as

r= G e F=00y o ikt . (1V.22)
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An interesting particular case of (IV.22) corresponds to the choice of the
1

integration constants Cy =Cy = 5!
r=ae ™ cos @'t
fe x=acosktcos @7, y=—asinkfcos @ (IV.23)

Therinterprctatiun of (IV.23) is that initially (i.e. at t = 0} the oscillation is in the x-
direction. However, with passage of time, the amplitude of the y-coordinate grows at
the expense of the x-coordinate that dampens. Overall the solution depicts an
oscillation (of amplitude a) in a plane that is rotating with an angular velocity — k.

IV.4 The Lagrangian and velocity-dependent potential : If ﬁ be the

i —
velocity of a particle relative to the inertial frame C" and v = [%] then from
ot
(I1V.3) we have
e T
U=v+axr

(IV.24)
where the drag velocity has been omitted.

To set up a Lagrangian we need to ensure that the kinetic energy is measured
relative to an inertial frame so that if V(r) is the underlying potential then

P
i

L= -%—m - V(r)

=%

2
%m v ax ?} - Vir)

¥
¥

i

= m

2
2 2
+(3x7) :*[aﬁ*ﬂ vy

Exercise : Show that the equation of motion following from L is

_’
??;%ri-F_V)V:-—Zm(ax j]-mﬁx(fﬁﬁ?) (IV.26)

where @has been assumed constant.
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- Comparing (1V.26) with (IV.7) we find the two equations to be consistent {or the .

,'_, .
potential force F' = — V V. We therefore conclude that an observer in a non-inertisl
rotating frame will feel the influence of a velocity-dependent potential U given by
] T # e i s e
U= V(r)—% mx ~my.|@xr (IV.27)

IV.5 Nonrpotential force : We now consider a situation in which the system
15 acted upon by non-polential forces apart from the potential forces :

Qi =@ (a-gst) (1v.28)

where J, k =1, 2, ... n. It is clear that the non-potential forces are to depend on
generalized velocities for otherwise they can be identified with the potentic! forces
defined by (II1.8), Indeed in the presence of (1V.28). (IIL8) is to be madified to

QJ - Tr?; + Q} (IV.29)
Assuch the Lagrange’s equations of motion (111,17) take the form

{

ﬁ;[%} B(E B—+Qj S (IV.30)

We next look at the total energy £=T+ V. T'being T'= T(g;, ¢;, 1) we have

dr _ ¥ 9T ; o AT ar
[ quq] I

—dx T . < 3T a7
= d 23 9 *’@['a?i di ("a—)]‘ﬁ + L |

=“f,21§;§fh+z[§{- Q}_;+-a— (1V.31)
where we have used (IV.30)

Noting that the form of the kinetic encrgy T as given by (11.9) can be split up as
T=Tg+ T+ T3 (1V.32)
where Ty, T are quadratic and linear in generalized velocities respectively while

Ty is independent of it, we have by Euler's theoremn of calculus

1] T
% S =21
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Slg e (1V.33)

As aresult (TV.31) becoines

T _d 4y g av oo )
{Tﬂ':?i?(zri“"m*'i(‘;ﬁ‘@]‘fi'"ﬁ;}t

i)
_ndl _d v, 0T . dV 3V <
g YRV AV, 90
where we have used “p- = j=|3‘i"1 9+ or and also a—% =

(IV.34) implies

1] ;
o g ! d i !
%AEQ‘,-:;}+E—I[T,+2F{,}-%{F—V] (1V.35)
For a scleronomic system T) = Ty = 0and a _ 0. If the pnteﬁtial cnergy too is
it &

n &
not explicitly dependent upon time then dE _ 0’ q.. The latter is called the power
P ¢t i 4j 2 P
j=1

of the non-potential forces.

. 1]

Non-potential forces are called gyroscopic if the power iszero: » Q' j4;=0
J i
and digsipative if the power is negative ¥ Q j@; <0.1In the former case we have
=l '

systems for which the nonpotential forces do not consume power while for the latter

case we have systems experiencing dissipative forces which consume power. In

dissipative systems, dissipative forces like friction are included, even through they

sometimes do not do any work. The energy is generally lost through heat, sound ete.
On the other hand, for a scleronomic system, the Coriolis force isa gymsc:'ﬂpiﬁ

force. Form the from (IV.19) it is clear that for the Coriolis force.

_j
= L P =5 =k o4 - 3 %
Ejer = =2m; mxTzi = - 2mf X vj}weh;_iw.-_eE;Fj”',vj =),
J‘:

We therefore conclude that the Coriolis forces of inerlia are gyroscopic forces.
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IV. 6 Examples :

L. Find the deflection of a freely falling body from the vertical caused by earth’s
rotation

It a particle is dropped from rest fum a height h to above the ground then the
motion is described by

x=ﬁ,y=ﬂ,z=h—;‘gﬂ

where the effect of the Coriolis foree is neglected.

To find the effect of the Coriolis force-to first order in @, we subsiitute for %-"— in
(IV.18) the zero-order expressions namely
x=0, j==ﬂ, Z=—gt
Then using (TV.19), (TV.18) reads componentwise
mx = 2megisin 8, mj = 0, mi = — gt
We thus find that the particle will hit the ground z = 0 (i.e, f = 2’* from z = h —

% £1%) in the eastern direction at a distance of

x= fﬂg% sin E(%)

gnt )
e x= %m(—-‘;—) sin 8

where we have integrated the above expression for ¥ and used x = 0, x=0att=
0. We conclude that there will be an eusterly deviation from the vertical c-f amount

| ||E.’:
7@ sin 91'. 2

2. A bead of mass m a.hde.s freely along a smooth circular wire-which is ratating

with an angular velocity o about i its fixed vertical diameter. Derive and discuss the

energy conservation equation. Take a to be the radius of the wire and set o= -.,ﬂj-

where x is a parameter.

32
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As shown in Fig 1V.6, we have

ﬂ -
M=dae, Az
=m(-—ci:s€§,.+sin 0 &) @
The cenirifugal force has the A
magnitude '
A
——
= mw? NF'_I )

= mar g sin 6

= o BN
and acts horizontally outwatds
——
along NP, .
Obviously this force has a A

relevance in rotating frames only.

s TEEES

From the second relation .of

(IV.13), the cross-radial equation Fig. IV. 6
of motion reads
Vodf 22 : 1
m- Tl (a H] =— g sin 8 + (mmz i sin 8)cos O

or, ab =- g sin €+ ng sin B cos 0

where we have put a@” = ng. Integration gives
-]I.umzéz + %‘Eﬁil — 1 ¢os 8)2 = constant

This is essentially the energy conservation equation in a rotating frame with
—%—muzéz representing the'kinetic energy and the potential energy is given by

mea
n

Vin, 0) = (1-ncosB)

We also get

=8
==

= mg a sin (1 —n cos 9)

9

=mg a[cos O(1 — n cos ) + n sin? 0]

3
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Therefore g-g = (} at & = 0 (namely, the lowest point A) and also at cos 0 = :lr for
n> 1. Now a minimum of V corresponds Lo the position of relative siable equilibrium
and a maximum of V corresponds to the position of relative unstable equilibrium,

Case1:0=0

We pet
1 = ¥

%;; =myga(l —n)>0Hn<]

=» B=0 for n < | is a miniraum for V,

Hence 0 = 0 is a position of relative stable equilibrium if n°< 1. If however n > 1,
then © = 0 is a maximum for V and so 8 = 0 is a position of relative unstable
equilibriom.

Case 2 : cos 8 = }I; (n=>1)

Here
2
a2y . n[l - %] =0
: n-,

Therefore cos 8 = rl_: is a position of relative stable equilibrium. We conciude that
new stable solutions are creaied at cos € = r_l: as 1t exceeds beyond the critical value of
n = 1. Such a phenomenm is called bifuication in the language of differential
equations.

1V.7 : Noholenomic Constraints : Nonholonomic constraints are charac-
terized by inequalities or non-integrable equations, Most velocity dependent forces are -
nonholonomic.

d _’ i - -
Consider the rolling of a sphere on a plane. Let V'be the translational velocity and '

@ be the angular velocity of rotation. The velocity of the point of contact may be |

obtained from
- -

-
V= Vi oxr
=+ 4 A .
Putting r = —a#, a is the radius of the sphere and fi is the unit vector along the

normal to the sphere, The condition for no sliding at the point of contract is

— o A
Veawxn =0
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which connot be integrated. The reason is that Ei is not generally expresible as the
time derivative of a coordinate. The above constraint is nonholonormic.

As another example consider
the motion _of a coin which is
vertical and rolling on the xy-plane.
Its orientation is given by the two
angles 0 and ¢ (see figure IV.7).
These correspond to the two
degrees of freedom of the coin
whose radius is say r.

Let the coordinate of the centre
of the coin, namely C, when
projected on the xy-plane be (x, ¥}
which is the point of contact of the
coin with the xy-plane. The
rﬂl-::wm equations are

V= r¢

X=-vcos @

y=-—vsin Fig. I1V.7
In differential terms these are '

dx=—rcos 8dp

dy=—rsin 0 dj

That these are non-integrable follows from the fact that for integrability we would
have

dx +rcos 8dp=dfix, 6 ¢) = %dx+¥dﬂ+§£d¢

2
In particular Bi 0, 3% = rcos 6 implying 56 gﬂ'b E?p g -

which is not true for any smooth function: So f does not exist,

Similarly for the other differential equation, We conc]ude that the above problem is.
nonholonomic in nature.
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Unit ; V 0 Hamiltonian and Poisson Bracket

V.1 : The Hamiltonian : Consider the total time rate of change in the
Lagrangian L[q,—.@,—,r}, P=1,2, .0

AL 4q; 31,
E aq‘ Z g @t
Since the second term in the ths can be written as
I
JL K ql _ L |
= [F La)- {53
we have
__%|aL _ d(3L)l. aL
ar[an q,—-.’_.:|- E[:}:ﬂ dt [a‘q L T)

If the eoordinates g;'s obey Lagrangian equations of motion then the above
equation boils down to

[E B'q J = _%% (v.h)

We now define the generalized momentum p; associated with the generalized co-
ordinate g; to be

=§&L. b e (V.2)
i

Note that since the kinetic energy in terms of the contesian velocities is T = Elm
(.i*z + y* 4 22 ) the components of the linear ynomentum in terms of T are simply

T BT ..q oT iy ; o OT : -
o5 3 and 3 It is therefore appropriate to view 9 as a kind of generalized

memontum which when the potential is a function of pesition only represents -gf as
i

in (V.2). Thus (V.1) reads

-ﬁ,—(g pi i = ] =-9L (V.3)

r




The construction of the Hamiltonian from a given Lagrangian relies upon a
Legendre transformation from g; 1o p;. In other words we introduce a function H

defined in the manner

it
H= S pig—L V.4)

so that from (V.3)
i - _dL (V.5)

The function H is known as Hamilton's function or more precisely the
Hamiltonian, It is at once implied from (V. 5) that if t does nof appear explicity in L
then H is reduced to a constant in time.

We have aheady noted in Unit (11T} that for a conservative, scleronomic system the

4 '
quantity ¥, g; % _ L is a constant and that if the kinetic energy is 4 homogeneous
i=l ¢
quadratic function of the velocities, the toial energy is constant as well. In
mathematical language this means L= T~ V and

it il
E%-aaf_L. G = 2, Pidi

=l

= i (T — V) .
oo
1

= aT

-

= 2T

where we have employed Euler's theorem in the last step. As such
H=2T—-(T-V)
=T+V

= total energy
H can also be interpreted as “generalized energy™.
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V.2 : Hamilton’s Canonical Equations : Just as we wrote down
Lagrange’s equations of motion for a dynamical system with n degrees of freedom,
similarly we can. generate Hamilton’s canonical equations of motion from the définition
of the Hamiltonian. First of all, taking differential of (V.4) we get

dH = E[‘ji dp; + (Pi =~ %‘]déi & aa'é';dii's] = %—E‘dﬁ

i=l i _
1
= E(rh dp; —%ﬁq;)—%’?dr (V.6)
il :
where we have exploited (V.2).

Next, looking upon H as a function of g;, p;and 1 ie. H = Higupi),i=1,2,
-y 1, dH produces

dH = g(%gdq;+gﬁdpfj+a§dr V.7

Comparing (V.6) and (V.7) yields

@i:%ﬁ

ﬁ. ~- -_a—'r“'= =t -afi
" dg; dq;

¥y o

The equations of the 2n variables (g;, p;) are thus subject lo

. dg _ 9H
) |
SO ) V3

Equations (V.9) are called Haniilton's canonical eguations of motion. The name
‘canonical equations’ anises from the fact that the investigation of motions subjected to
the influence of a potential is being reduced to the examination of differential equations

of the form (V.9). Interestingly the set of equations (V.9) is invariant under the
replacements g; — p; and p; = - g
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Notice that using (V. 9} I:-ccmnes

g 3 (8 ) 2

_ 9H
T

Implying that if H does not depend upon 1 explicitly then it is a scopstant of
motion.

Finally we note that in Lagrangian formalism we are required o solve n second-
order differential equations for a system with n degrees of freedom, However, in
Hamiltonian dynamics we have at hand Z# first-order differential equations where the
unknown funciions are g; and p; as functions of the time /. The almost symuasirical
appearance of g and p, as already noted above, facilitates development of {ormal
theories such as conical transfonmations, sclion-angle variables eic. to which we shall
come later. We refer to (g;, pj) 25 the set of capical variables. The coondnates (g4, 42,

.. §y) and the momenta (p, p3, ... pr;) constitule) a 2n-dimensional spa-::a.;. called the
phase space. The Hamilton's equations describie the evolution of such a phase spuce.
The Lagrangian L(g), g2, ... §u i @1, 42:... 4, + 1), on the other hand is interprected in
the configuration space with g; and ¢§; denoting respectively the coordinates and
velocities at a specific point at time i

Remark : For the kinetic energy function homogeneous in the second degree of
the peneralized velocities as given by (11.11), the Lagranpian reads

L= *%jifm 4 q — Vig)
where ¢ = (g1, g2, --- ¢a) and gy = a;. Lagrange's equations are
ﬁff[g“ﬂf@i] " %i g%f*?r Ul 1&‘0
Invarting the equalmns pj = r E"ﬁ ~.‘[|r;r:u:,lr_r we have
q; = “E Pj (in general uE' s [qﬂ)'-l)
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where cz;;.l are the elements of the matrix A-1 ;
L= —é f;l'T}""l. ¢ — V(q), T — transpose

and we have suppressed the summation sign. Lagrange’s equation can thus be
expressed us

T day ¢ v

no= i—(ﬂi‘] P")Tﬂ;ﬁ (ﬂj": p}n] o8 _a'a
=L Tyt 04 o1 9V
Ll EGkA P~ 34
o T A~ Jv

3P 3G P Ay
Thus the Hamiltonian can be defined as
Hiq, p) = Ji'p?ﬂ'_lp +V

e R
Pk""‘aqkr‘fk—aﬂ

Ex. 1. Solve the plane pendulum problem using the Hamiltonian approach,
Here the Lagrangian is (see*unit I1T)

with

L= % ml*6* + mgl cos 6

pg = g—g = mi*8

So the Hamiltonian is

H= pﬂe'—L=-é-mF 0% — mgl cos 6

But H needs to be defined in terms of proper variables 8 and pg Consequently we
re-write H as

H=2—'t:fl—§!-—mgt'ct}33 :
using pg=mi? @, Hamilton's equation are

do _ M _ Py

dt  dpg  ml?

dpg .

ipg _ _OH
dt ~— 26

= —mglsin @
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We see that f does not appear explicitly in H. So H is a constant of motion ;

2
E= Z—ﬁ;’;—ff — mglcos 8

where the cnergy E is the constant value of the Hamiltonian.

Ex. 2. Examine the motion of a particle sliding on a parabolic wire.

Consider the sliding of a parlicle on a wire bent to a form of a parabola. The
particle is acted upon by gravity only. We ignore friction.

Let x be the generalized coordinate and the parabola be given by the from y =

1
The Lagragian is 1INy
T 1 VR =i 22
_im[x + ¥ )—m,r;}l P=o
Lo L e mp g 15
= 2m{|+_1. }.1. =5
-P=g—i'==m(l+x2]5: = > x

So H=T+ V= P 4+ 8,
Em(l-!—xli 2

It implics
2

X= N R + m
m(1+x2 & -mil+x2) ¢

Noethatp#mzx.

Ex. 3. The Lagrangian for a free particle in terms of paraboloidal coordinates

(G ) is
1 & G y -
L= m(éz + nz)(fz + 1]1) + %— mEn*p?
Set up the Hamiltonian, i

The paraboloidal coordinates havre already been defined in Unit T,
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Heare

P = -g—‘é-‘- a m(éjz + J}z)i_‘;

Py = ijé- = m((’,’1 + 1 )
Py = -g—‘;f = mé*n*¢

Hence ,
H= p, E+pyftpap—L

1 | pe +Pn o Py
T

Ex, 4. Solve the planetary problem,
Here T= air.ur{r"z + rzﬂz) [we put m =1]

Ve B
r.
o L= T = V= %m(i‘z . rzéz]-*- %
Assuch

Py = %% = m#
Py = % = mrzf.:i

Hence the Hamiltonian is

So we deduce

aH _ 1 __9H _ Pg 1
i VT T T e 2
s« Py
2 Elitnsd 5= = =y
dpg  mrt ¢




Now py =0 implies

}% (mrzf;') = ()

or, mrs = constant = { (say}
Eliminating p,, pgand & from the above eauanons we arrive at the form
mi = e
use consequence of which have bzen discussed in Unit U in conpegiion with
Routh's procedure of ignoration of coordinates.
Ex. 5. If all the coordinates of a system are cyclic prove that the cuordinates may

be found vut by integration. Prove further that if the system be scleronomous then the
coordinates are linear functions of time,

Since the coordinates are cyclic

H-H(p,n, =t [ AR
: JdH :
- —==={, i=L2..n
. Py 8:;-,—
So
pi = constant = f§; (say)
Further

. _aH
q". =t ﬁ p— {pi(F||..u:|n-Pn;:) {Sﬂ}r}

= 9;(B . Bavee-Bus 1)
i :jqﬁl’(ﬁlTﬁE""ﬂrr; I}d" + fxf

where ¢'s are constams of integration, Thus the coordinates may be found out by

integration.

For a scleronomous system ¢ does not appear in ¢; and o0

gi= OBy Base B+ s i= 1200 nt

which are linear in time.
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Ex, 6. Write down Hamilton's equations in spherical polar coordinates for

s "
L=Ltm r2+£.kacnnstant.
2 r

Here A=m 1 and A-! = m | Conscquently

O T T
H‘Z'”A p+V—2mp r

In spherical polar coordinates
A= %n:[!‘z +r2 0% +rtsin’ @ ¢2) + %

So the matrices A and A~ ! and given by

il 0 ]
b = | mr:" 0
0 0 mrlsinte

|
§] 0 e ———
mr” §in” #

The Haniltonian reads

cooll Yoo o b ) [
H-z”‘(pr+r1pﬂ+risinzﬂp) r

Hamilton's equations p, = —%‘r—, Pg = —%%, Py = _.%%I
translate to
e k d T aY cos 6 <
P = —= = —, mreg B i P =0
mr t‘f?' H}'( ] mr’ sin® 9 Py 9
2
&

where A% = p,% + and p, = mr, py = mr*8, Py = mr® sin® 8 ¢ from

Py r
29| = f‘{*’?]-
Po ¢

sin’
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Problems :
(1) If the Hamiltanian of a dynamical system is given by H=pq)~ pags - aq,z +

= b
bg; where a,'b are constants, show that -Ezq—(il = constant.
|

(2) If H = gp? — pg + bp.-Find g and p as functions of ¢. Here b is a constant.
(3) The Lagrangian for the motion of a particle in a rotating frame is

"-:ﬁ--.. - . i
L= %m g -% mn.‘.-z(x? ¥ x%) it mm(.rlx;_ o xgxl)

Find the Hamiltonian,

V. 3 Poisson bracket : Consider some function f(g, p, 1) of the canonical
vatiables gjand p;. Then fori=1,2,...n

d (O da, ¥ dn) Y
di = 24\ g, dr T dp; dr ) 9

n(of oH of dH), @
:?;1[})&3};‘ pf?ﬁ]*‘air- (V.10)

We next introdure a gquantity {u, v} inolving the functions u = u(qis ppy 1) and v =
v(g;, pi, ) and defined by

o du dv _ du dv
{”'”}’E[aq.- J; 'EIEHQ.-] Fa

Then (V.10) acquires the from
d d
I (romy+d (V.12)

It states that if f is a constant of maotion then %é+ {f, H) = 0. Furthermore, if f

does not involve r exXplicitly then (f, H} =0

We also have
_ | dq; 9H dg; I
[‘?” H} _ P;.[ q; 9p;  9p; 'Eq_.]

J Jd
= s OH _OH _ o V.13
£ H:E af’.‘ 'fﬂ_ { ﬂ)




Similarly
Wi H) = py (V.13b)
So Hamilton's equations assume the form

% ={a. 1)

dp; .
7‘%_.-: {pi, 1} (V.14)
wherei=1,2".... n. The quantity {u, v} defined by (V.11) is called the Poisson

bracket of two dynamical variables ulgi, i, O and vigi, pi 1) and plays an important
role in Hamiltonian mechanics. A trivial consequence of (V. 11) is the result

(g pj} = &
V.4 Properties, of Poison bracket : Poisson bracket satisfics several
interesting properties, We give below a few of these with proofs.
L., Lipearity : {u) + iy, v} = {uy, vl + (1, v}
{Cu, v] = Clu, v}, C aconstant
2, Antisymmetry : {4, vl =—[v, u}
3. Product rule : {u, ww) = [y, viw 4 vlu, w)

4. Jacobi identity : (u, (v, Wi+ (v fw, w)) + [w, (1 vil=0
Proofs :

M (4,0} = 3 [a_(ﬂ’a; e - JT‘” - BE%?J

Sl 9w av (o oty \ Ay
i ;z (FGT + }?;)H_: : (E.-‘p; 4 op; ) dg;
d




< (du dv  du dv
@) (wv) = ~ Op; Og;
(2) (u, v} I.Z:_l[‘cﬁﬁp_,- op; 3@:)

_ %[ 0v ou _dv du
=~ &4\ % % ~ 99 %,

=— v ul
G T o). 5 z[j;; ). o S

&t d die [ & Bl
E[am (rwsve)-2uf2n, *“‘a—”ﬂ

v du dv _ du dv v du dw  du dw
E(af}; a'P. F.'i’.! H)‘u+1;(a i op; o aﬁ":‘)
= {u, viw + v{n wj

4y {u, {v, w}) + {v, [w. u})
{u, v, wl} = (v, {1, w}}

=X + Y (say)
where we have used the product rule and defined X, ¥ as

_all awlaw. awl 2 auldw . dwl 2
o= e 8- g} {36 32 2o )]
a .
_ | v d dwl dv  du | dw dw | du
s };': H{" 3‘}1:} {"' 5‘:;}95 9q; {v' aps}+{v' m}ﬁ?]
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where we have used the results

aq fvh = { }q.-}+{§§?'v}
{u-v} { aﬁv}J'{t%v}

which can be proved easily,

We next show that ¥ = 0. Tndeed it is strmghifurwmd lo see on expanding the
Poisson brackets that

¥ = ZZ 3w [ du du  du du 02 azw E!u au Ei‘.u av '
9p; 9p;\ 9g; 9g; ~ I Oq;

Y 34;9m | "0, 9p; Y 3g 3, |+

J 4

9w [- dv ou . du Elu) &w ( Bu du av du J:I

On interchanging the indices { and j the first and second terms vanish due to anti-

symmetry while the third term becomes equal to the fouth term except for a sign. We
therefore conclude that ¥ = 0.

Hence
(e, [vi w)} + {v, {w, u}) =X = [{u, v), w)

whence Jacobi identity follows.
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V.5 Poisson Theorem : If corresponding to a given holonomic system u and v
are two constants of motion then their Poisson bracket is also a constant of motion.

Proof : Using (V.12) we may unite
d 0
vt = 5 {u. v} + {{u. v}, H}

Using the product rule and Jacobi identity we oblein on rearrangement

{u v} { E}u} {a“ } {{v H} }u[{H,u},v}
{a”—t-{u H} } {H.%;:--i-{v.H}}

du , dy
{dr’ }J’{" m}

=0
du dv _ . . :
since s 0, 1y 0, u and v being constants of motion.

Hence the theoremn which is also known as Jacobi-Poisson theorem. Poisson
theorem is useful in uncovering new constants of motion.

V. 6 Angular momentum ; If .!',F, Ly, .!'z_ are the components of the angular

_,
momentum vector [ then Poisson bracket of [, and I, may be obtained as
{tety} = {ype—2py 20~}
= (ypo 2ps) = (Y2 xp:} = (2py 2ps} + {2py xp4)

= ylp. 2lpx + xlz, polpy
the other terms vanishing. Hence

{IJD ‘r}'} = I:
Sililarly

Uy 1) = 1y

[ Iy} = I_v

It I, and I, are constants of motion then from Poisson's theorem it follows that
their Poisson bracket namely /, is also a constant of motion.
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We summarize other results on the Poisson brackets involving I L, 1,
fx, L} =0, ([xh)=z {x, L} =y
(y.le} ==z, [y 4)=0 (v ] =x
le, b=y, lah)=-x lak}=0

— = g b r i
fn=uni+n j+n, kbeanabitrary constant vector then -

e -5 =
{x,f_;.n}:n\.z—n:y-—-(nk r]
X
=} = - —
{y.L,-u}zﬂzx.—-nI:=(nxr)
7

=3 =l - =3
{zf L. n} = Ny - Byx = [nx r)
2

The above results imply that

{}'. L. }?} =X T (V.15)
Similarly wé can derive
{3, Ji. E’} =nxp (V.16)

The transition from (V.15) to (V.16) involves two compensatory sign changes :

_’ =
changing » and E:': produces a chunge of sing not only in the difinition of the Poisson
bracket but also in the definition of the angular momentum.
Froblems :

(1) Show that {ri. E.-ﬁ}:u {p!. 1’.-71'} =0
(2) Show that {}';};. I .}}"} -0

- -1 — - -3
(NIF X isdefined as X = € n+ G p+ G| rx p) where Cj, Cy, Cy are

. e e | ¥ 4%
arbitrary constants then show that {X . L u} =nxX.
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tix. A paritcle of mass m is ucted upon by u constant force
- lechniques of Poisson bracket show that x and P are in the forms

X=x ‘”QHr!rr
0 m T

p=po+Fr
which conform to the standard expressions
Let g be a function of the canonical variables (g, pi

A Taylor series expunsion gives the representation
o o f’cﬂ‘;‘; fz
A8 TRl B ol I O I [ A
K &0 (f}i J{i l it p 21

where g 15 the initial value of g Now

T

ar = e H)

g s gyl (e ) m
dr? de }_H”"F}‘ J

and so on, As such

‘.2
g=go+ {go. H}t + {20, #}, H} g7+

Now for the given problem: we con write the underlying Hamiltonian as

For g = we can iimmediately unite

2
: 1
(x, H) = {x'i%;; i ”] = ziin Pt = minel= &

Using the

{{x H}, F } {}% —2%1- } L {; 7, . } = ﬁ a constant.

So the series for ¢ = x terminates beyond {{1 H), H} and we have
e #n LE .2
X =xp+ m.'l-Jmf
similarly ehoosing g = p we would find p = py + Fr.
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Problem : Find the position x and momentum p at time r for the motion of a
2
particle given by the Hamiltonian H = e é— m’xt,

Answer : x:xg[i - % @'t +) + }—Eﬂ{&-(m: - -31-; o't +)

= xo cos @t + -9 sin wt

p == o Xg Sin @ + po COS (X
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Unit : VI O Action Principles

VI. 1 The Principle of stationary action : Consider a physical system with
n degrees of freedom. Its configuration is described by the n generalized coordinates
41x q2, ... g, representing the point P, P is called the representalive point of the
system. We can think of two points of view, the passive point and the uctive.
passive point of view there-are two observers sitiing in the unprimed
frames respectively [see Figures VI. Ia and VI 1b].

In the
and primed
[ Hine

- C = r-.-..

(g, 1), (g’ 1) (1) g ———= fgi1)

Q- — dpace
Fig VLIa: Passive view Fig VL. 1b : Active view

Each has his coordinate frame and assigns to the same physical point the
coordinates (g, 1) or (g, 1) depending whethet he is in the unprimed or primed frame.
Itis clear that the description of the trajectory C amounts to just a change of variables
and nothing else. On the other hand, in the active view, the position of the observer is
unchanged. So as the system evolves the points (g, ) are shifted to (g7, 1) resulting in
the system paths C moving over to new €,

What happens to the representative point P 7

As the system evolves, the coordinates g1, 42, .. g, change with time and P
moves, As shown in figure V1.2

Fig V1.2 Representative points Py and P,
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let £ be the actual path betweeen Py and Py which are points at times = f5 and 1
- respectively. The actual path js distinguished from the neighbouring ones, say €~ in

that along C cquations of motion are always

satisfied ; Cis a dynamically allowed path. But =~ ,

paths such as C°, which may even lie g g
infinitesimally close to C, are handicapped in .,_E, 5
that these aré.only geometrically possible and § .~:-€
dvnanically impossible, P

We have already encountered the motion of
virtual displacements &g; which are consistent

with the conditions of the constraints (sec
figure VI.3). Let us now imagine surrounding
the actual path C by a family of. neighbouring

Fig. VI. 3 : Actua! and vinual paths

virtual paths C* (see fig VI.2). Note that in a wrtual displacement 1o passage of real
iime in involved.

To enquire into the rate of change of &g; we see that

i
£-(8g) = d,(r;fﬁﬁff,) i

The rhs corresponds to the difference between the generalized velocity of the
virtual path and generalized velocity on the actual path, In other words, it is the change

in velocity as one steps from the actual path to the corresponding point on the
neighbouring virtual (i.e, geometrically possible) curve. Thus

dq; .

- The joint action of the actual displacement d and the virtual one & is thus
commutative dd = &,

We now look into the consequences of (V1.1) in the change in the Lagrangian, We
find
T ltgéa-*-—a-‘g‘—ﬁ‘]
:'g dg; I_q' dd; %
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_ g[g%,g(%ﬂag rg43 s,

wlhere we have used Lagrange's equations of motion which hold on the acuial
trajectory. The apperance of total time derivative in the rhs of (1V.2) implies that if we
integrate from an initial time 1y to a later (final) one say 1 then

[ SLdt = }; ] (V1.3

Now writing
i

Slai) = | Llss, Gz, )t (V1.4)

fo
we immediately notice that &5 corresponds to the Ihs of (V1.3). This is becauss
due to (VL1) we can write 85 = [8Ldt + [ L58(dr) = [ SLdr + fLagan =
I SL-dt for a virtual variation (61 = 0).

S{qil. which is a functional, is calied the action of the path {1t is the time iategral
of the Lagrangian belween terminal values g and ¢, along a particular path g(1). We
can represent (V1.3) as

Ul

h5 = i!?s dq; (VLS5)
i=1 (o
Now if both the actual and virtual paths conicide at fg and ty which are initial and
. final times (see figure V1.2) respectively, the virtual displacements &g; vanish at f and
f)-implying from (VL.5)

as=0 (V8L6)
We are thus in a position to state the principle of stationary action (Hamilton's
principle) which says that the actual path chosen by a physical system, between end
points Po(qo, fo) and Pi{qy, t;), is such that alnng:it the action (VI.4) is staticnary as
compared with neighbouring virtual paths (i.e. which are geometrically possible)

having the same terminal points (namely Py and Plj as the actual trajectory,
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We have so far exploited Lagrange's equations of motion to arive at Hamilton's
principle of stationary action (V1.6) The converse also works : that is since
n fy
i “ dL dL
88 = ;I SLdt = ;j Z[T - EF(‘ H&;, dr
0 o ¢ fi

and &g; are arbitraty independent variatious, &5 = 0 provides Lagrange’s equations

of motion
d [ dL dl. =
d:’[aﬁ,] 3?.":_ 0, L dos.n

oy equating to zero the coefhicient of each dg,.

The principle of stationary action is of fundamental importance in classical
mechanics, It containly has an axiomatic status ; as we have just observed, I_,ugrunge's
equations and the principle of stationary action are equivalent from an infapmation
content point of view for a phvsical system,

f

h
Problem : Show that J Lig,q,t)ar and ”L[q. g,1) + E,";—]dr
Iy fy

lead to the same cqualiﬂm of motion,.

[Lq q, r}+ﬁrF d

!

= | Lottt + [ (1) = (o)

fpn

887 = 85+ OF(1) - Flr)]

It is obvious that the second term in the rhs ought to vanish. Hence by the
principle of stationary action 85" = &5 = 0 and we are led to similar set of equations of
motion.

We conclude this section by making a few remarks an the passive and active points
of view. In the passive point of view, if’ € represents the path of an actual motion then
the observer in the uuprimed relerence frame will write his action as

s{cl= [ L q. gkt Ja
I
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On the other hand, the observer in the primed reference frame will write his action
as

s[c] = jL’( o ]m

Sine dt”is not expected to be equal to dy, i.e. -‘ﬂ # 1, the functional form of L

and L would, in general, be different. Ilnwcver. the form of the Laprange’s
equations, obtained from the stationary character of S[C], one for the unprimed system
and one for the primed system, would be similar. This is known as covariance :

d(aL)_aL

di\dg ) dg

_.'Ei.. §_§: —a_'[‘: _.,_:-qu’
7 ) "3 1%

In the active point uf view, for the actual path C, S[C] is
S[C] = j L(q, 5 ]dr

It is to be statidnary in comparison with other nei ghbouring paths. From Figure
VI.2. C”is also an actual path. If we think of transformations which carry actual paths

to actual paths, namely from C to C*, then such transformations are called invariance
tranformations. Thus for invaniance the action for C*,

.
' . dq
s[c’] = fL[q o ot }rr
fo
should be stationary as compared with neighbouring paths to C”,
Here L remains the same.

V1.2 Corollaries :

(a) Hamilton’s principle form D’Alembert’s principle : The integral
f

_[ (T — V)di is stationary for an actual trajectory in comparision with neighbouring
fa

paths having coordinates of the end points fixed along with the terminal time instants.
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Proof : From (11.19) D' Alembert’s principle can be written as
N =
}_,[F-v-m r] ﬁr = 0
i=1

Since ?‘f? (5 E) = g % [;:) = 8 ;: it can be also expressed in the from

N e S 4 5 N =
: ;% H!‘-{-‘%(FF ; 5 ?'I') =T . a I;} = rg‘i F
- -:} ' A
Using (I11.2), (I11.6), JILE) and noling that Em{q : 51_*:) = d E% m*{;:lj

we are led to the result

el a2)
ﬁ(T—‘."}z—ﬁE ém;[:,.dr,—

Inteprating between iy and ¢y and since coordinates of the end points are fixed at fy

! ]
and 7, we get Ej (L= V)dt =0 i.e. Sj Ldt =0,
iy o
(b) Hamilton’s canonical equations form the principie of stationary
action :
. We can wnite

Jil‘-'i!.un'.r IEE(;}, q; - H)dt

ty 1g1=1
using. the dﬂﬁmlmn of the Hamiltonian, Taking the variation

jaf__,m j}j,[p,esq +[qi %:"i]ap, g;iaq,]d

But &§; = (Jq ) and so
r, f
j{p,- 8q, )t = ip\; gf (6g; )t = -] Py - Og; dt
fy o fo

since og; vanishns il lhf: terminal time points fg and £, Hence

ﬁj'Ldn [Eerr# _[E[ [aq +p,)8qf (q;—g—g)ﬁp;]dr

In g i=!
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The equatities 8g; and &p; being arhitrary and. independent, the principle or
: .
stationary action ﬁj Ldt=0gives
o

Hamilton’s canonical equations »

N e
“= o BT,

Ex. From Hamilton’s principle write down the equations of the motion in
spherical polar coordinates.

The Hamilton’s principle is

5]1' [T — V]dr =

fiy

where in spherical polar coordinates the kinetic energy 7 reads

T ?]1‘.[;-1 + 0% 4 Psin® @ d}z), (m = 1 has been sat)

j[ [ ? 4 1 sin Eqbz) }u’f‘—-f]

Assuming V= V(r, 8, ¢) we get on taking the b variation inside the integral

I
j[{ﬁ&i— + r0%5r + 2050 + rsin® 0§°6r + ¢” sin 0 cos 686 + * sin? e.{w&]

( a+%‘i+%3 )];r;=n

fi - I i I
But jfﬁfdr = - f FSr dt, Jl 1?0 56dt = - f 4(+20)60 dr
Ty

ig s 1y

‘}rzsinz ef;}-{?‘*}_wmd: = -]E‘f?(rﬂ sin’ 9:;5]5& di ( 5p = f}f} 6::'_)

i)

I[(r—rﬁz ~ rsin” 0 % + %—E]ﬁr

L]

i

ﬁn_

29 — % sin @ cos 09* + 3——}59 + {g'f (rz sin® E}qb] a:;}ﬁib]df =0
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Since, dr, 60 and 8¢ are arbitrary and independent variations we get the equations
of motion

F—r8® = 2 sin? 943 %— —f—( 1i.‘i')—rslnnEI"nc:at}s[}‘f,ah =—%%,

1
©
2g ] !

1
rsin @ Efr {r i T rsing "&'rf

VI.3 Extended point fransformation and A variation : There are certain
physical sifuations in which moving boundaries are relevant. This is in contrast to the

case of Hamilton’s principle where the varied path shares with the actual path the same
end pionts which are {ixed in the sense dg(rp) = &g(1)) = 0 [see figure V1.2].

Curves with variable boundary points can appear as a result of an extended point
transformation

Q" =qg 0, t"=1'(q 0

involving both g and . We restiict ourselves to the infinitesimal case
q"=q+Aq(q, 1)
=t Alg, t) (VI.7)

where Ag and At are infinitesimal small changes. Note that A is to be distinguished
from & in that we use & for a virtual (time-frozen) change.

In the active point of view there is a single observer who observes the evolution of

the system paths Cto C” (see figure VI.1b). To him the difference in the action for two
neghbouring paths appear as

AS = S[C*] - 8[C]

Iy
= | [L(q» r:;q“ ]d;*._L(q,%-.:)]dr (VI.8)

Iy

where (47 1) are infintesimally different from (g, 1) as in (V1.7).

It is to be emphasized that in the active view the observer remains unchanged. So,
according to his coordinate frame of reference, system points (g, £) are observed to
move to new positions (g7, ¢7). This is why integration is done w.r.t. the { variable in
(VI.8) between chosen terminal time points fy and fy of the active observer,
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(VL.7) can be writlen as

dq = dg+ (%ﬁl)ﬁr
dt” = dt + (—‘f.—‘ﬁ-f—]dr (VL9)
wherL a-

= 6‘ as usual, Consequently

dqg . dig
dg’ [d!' dt ]dr

[y, dAeY'(dg , dig
"(1+ dr) (E* dt

(%ﬁ E%E?,)(i — ﬂc?i) ("." Atis infinitesimal)
_( % d{if]? + diq (. Ag is infinitestimal)
We therefore obitain the nen-trivial resualt

dy' _dg , dbdq
dit et dl

(VL.10)

i.e.. change in the generalized velocities 1s not the same as the time derivative of
the change in the generalized coordinate.

Using (V1.9) and (VI1.10), L( .%?r. r’) can be.expanded as

kot

dAg d At
il i r+ﬁr:1(1+—d—]

- dq . [dAqg da: dm
= L[Q+ﬁq. +{_Ff ( e et i 7 f'+' f!..' 1+T

» dg aL . [dAq d aL. d At
_[L(q,'ar ]"I'd'_':.faq {d:‘ T } + At = 11-5———)

dq dt
= 1. Gf.0)+ e ag+ (4t - a4t )+ G SR
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where we have kept only lirst order quantitics in Ag, At and used Tayio EXPaNsIon

¢n{x+£x.y+ﬁy,z+”‘." ..]:¢[x.y.a....j+(.ﬁ.ﬂ.$ +.ri*-.}:a +:ﬁ.‘,=}§-+ )

Bx Y. 2, ) # e
Thus (V1.8) becomes

Iy e

i dl. ai.| ddg o d Al il ;m;

AS = F{[_a’i’ Ag + % LT’r < e J + 57 AL+ L=
i .

Since on integration by parls we can write

oL d fxq N HL ol
IHQ dt ar_.r ' Jn’f (T]ﬂg fit
aL ,d bt oL aL,

aq Tﬂ’f q&I_J‘EﬂtC} {?Jﬁfﬂ'f

gy - ol
JLTJ.* = Lﬂ.r—j S At

the rhs can be rearranged as

i

xS'—:]Jm{aza oL _d (oL ALy o g — O3 Vel
i L q9-49 ."} dif df aq l,} i = -i.r,rq At

where we expressed the difference 2% ak %L dL

dar 99
For the actual path Lagrange’s equations are satisfied and so the above reduces to
_[aL _ L, ) :
-—{'aéﬁ{?"i-[[. Ej‘t_’f ﬂl.f:'u Vl.]l)

Another way of displaying (VI.11) is to invoke the :1f:,ﬁ1utmn of the Hamiltonian
and the canonical momentum p namely

AS=[pdq- HAr i::l (VL12)

For n number of particles, (VI.12) can be written g

1
‘= f}.J'Ldr=i[p, Ag; —-Hﬁr]::l' (V1.13)
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Let us restrict ourselves (o the following propositions :
(i) H does not depend explicitly o ¢ and so H is conserved.
{ii) H is conserved not only on the actual path but also on the varied path.

(iit) Varied paths are constrained such that Ag; (i=1,72, ... n) vanish at the end
points but not A,

Under the above prescriptions (VI,13) simphifies to

'1 h
g},ssaj Ldt = ~H(A —Afy) (VL14)
g .

Now, the action integral reads

Ui g fi
[ Ldr= I[Eu‘ p; d; — H]dr = [ Zp; gy dt - H(p — 1) (V1.15)
in ht! ta
Taking A variation of (VI.15) we have
Ul hog
AfLde=A[Y p;d;dt—H(Ay = Arp) (VI.16)
In Ig i=|
Comprision with (V1.14) yields
r n
A j):,p; g; dt =0 (VL17)
fufﬂl

The integral in (VI.17) is generally referred in old books as the action or the action
integral and (V1.17) as the principle of Least action, In recent limes it is more
customary to refer to the integral in Hamilton's principle as the actoin. Recali
Hamilton's principle is the variational principle that states that the physical trejectory is
the one for which the action is stationary.

fL=T-Vand H=T+ Vthen
n
gin g =H+L
=T+V-(T-V)
=2T
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Hence another from of (VI.17) is
fy 7 )
A [2Tdr =0 (VLI8)
)

A and & variations : If the terminal time points be fg and f; then we already
know that 8(1p) = 8(1;) = 0. Consider a function f{1).

Then
File+ A~ f() = f1(0) + AL f, - (1)
= [f10) = f() + Ar
- Ef + iif f]
Wriling f| = £+ Af we therefore obtain
Af=8f+ At f (VL1
where obviously Af = 8f if At =0, Differcnlhting (VLI19) w.r.t 1 we have
() = 4 (8) + L)+ ()
=g+ nd (7)]+ %{m]f

= of + & (a0)f | (V1.20)
where we have used &f = &f + At f analogous to (VL.19),
We thus arrive at the peneral formula
(&) = o7 + L ang (VI21)

showing that —;,i and A do not commute -—{31) # A -3-

Parametric form of (V1. 18) ;
]
Writing A= _[ZT dt  we have

i

A= jleﬁ«ﬁf dt = f\/ﬁf = v)J'E m(%}i]zm
1] o

02




y
= I -,'.l'.?_{.ff —__T;’_j-l.fz m ds*
fo

Y s Is o [ ds V
= [\2(H=V) || m H) da
0

where A is an arbiteary parameter. Thus A is in the form

,.I‘
A= [1dA (V1.22)
Py :

where  T=+2(H - V)4|X m(j—;)z
da

SR ; . dgy dg A
which is a function of (¢, 42, ..., g,) and ['.:fiﬂj' d—; " ,—IL] Le. (g1, g3, -

F [ # ) d
ga) and (g, g5,...q5). q; = ?—%— rail 2,

Proposition :

d (a1 _ ar
#()- 2

* wherer=1,2,... n

Proof : From (V1. 18) i.e. AA = 0 we have using (VI.19) and (V1.22)

0= 5![ Idd (. Iisindependent of f)

F
S ail " .
] E[a”‘q, ks q,]d.l (V1.24)

pyr=l1
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Subtituting the above resuli in (VE24) we gel
al. af
? i[a‘c}: H(W]Jﬂr},dl = ()
PD"=1
Since Og, are arbitrary and independent, (V1.23) follows,

Problem 1 A patticle of unit mass is projected so that its total energy is & in a
field of force whose potential is $(r) at distance r from the origin. Deduce the
differentinl cquation of the path fo be

Cllrr: + (ﬁ%)*] = h - ptr))
E
where O 15 a constunt.

Here V=- %. dif =drl +r2dt?, H=h, U=0(r)

Iy
A= [2rdt

L[]

- [
Tﬁu“( d

where A is a parameter other than £.

1= 3= PN + P07

dr _d8 y o :
wharc o= 7T 8= T Now @ is 1gn§mblc and so

afl Y _ :
ﬁ(ﬁ] = 0 from (V1.23)
Il _ constant = J2e (say)

ar

AR o =
«f?[h ~9) m = 2C

On some reanangement we get
2
Cl[.!'2 (ﬁ&) ] [ & rJ]
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Unit : VII U *Symmetries and Constants of
Motion

¥Iil.1 Noether's thearem : In classical mechupics, Noether's theorem

occupies a promiment position because according to this theorem if a symmetry is
found to exist in a dynamical problem then there is a corresponding constant of
motion,

Consider a rotation & about the z-axiz. The x and y coordinates itransform
according to

¥

5 =xcosf - ysinéd

¢

y = ycos @+ xsin

If @ be infinitesimal x* = x - yd8, y' = y + x 68, Accoridngly the Lagrangian
L=L{x,y,z; x,3,%,1) changes as

L'= L(x— 960,y + x860,z; -y 50, y+ x80,%; 1)

Lo[(+F ) (s v )

where higher order termis are ignored. Defining the canonical momentum
components to be

poedeon o p e

Lagrange’s equations iﬁ1p]y (—?pr = gi' i py = gi- anidd. 2 d L by = %ﬁ.

Thus L~ can be wrilten as
’ ]
L= L+F‘}E[.xpy-}!px)55

Invariance of the Lagrangian L~ = L leads to

d
d.r[*‘Pr e = =

. e
where [; is the z-component of the angular momentum vector [ . Similarly
performing rotations about the x and y-axis and seeking invariance of the Lagrangian
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.* - *
yields constancy of the x and ¥ components of [ Considering all the throe
components together we eonclide
i1
5:],—; = 0 <= rotational invariance of L.

i
-

— — -
where [ = (r'x mr J 15 the total angular momentum.

VIL 2 Condition of invariance : It is interesting to define a reversible point
transformation |

@G =g @142 o quity (VILI)
with g; forming the Lagrangian L’(¢', ¢’, 1) which is
g’ d'0)= Lgla' 1) q'(d, 4'01),1] C(VIL2)

Equations of motions are said (o be invariant when these are same for the old and
new variables coressponding to some suitable transformations of coordinates and
velocities, Such transformations are called invariance transformations

For instane, as ulready noted by us in Unit 11, same equatons of motion are
obtained if L’ differs from L by a toral time derivative, say %ﬂl. where A depends an
¢ and1;

. G
L'(a.q 1) =L(q".q 1)+ i d{i'r} (VIIL3)

The reason is that fi!—";‘- gives a vanishing contribution in Lagrangies eqanons of

[ o [da@] . 3 [dA(dr)
dt\ag |7 T oy dt
- d[a[a_;u_., E}AJ]= d_dA

motion |

dr(3g\og” " " or )| T 3¢ dr
or, A(2AY_ 3 dA
*di\dg’ ) T g

which is consistent.

(VIL2) 1s the condition of invartance {or the transformation defined by (VIL L)
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At the infinitesimal level we have, on combining (VIL2} and (VIL3) and keeping
first order terms in &g and &4,

L{g.4.t) = L{q-+ 64,4 + di.t)+ 5 Lm]

L(g, 1) + ﬁ‘,[gﬁ'— 5+ &};1 + 4. (84)

e, 3 & (3 oa )43 Jou ]« G001 =0

Rearranging

$[2 -4 (3 e 432 00 0a] -0

where the first term may be dropped due to Lagranges’ equation of motion leaving

E 6:;,- + 84 = constant of motion (VH4)

|‘=|
Thus associated with an infinitesimal invaniance transformation there is a constant
of motion.
Indeed the constancy of angular momentum from the rotational invariance of the
Lagrangian may be readily derived from (VI1.4) for the general setting of a physical
system with N particles. Now the lhs of (VIL4); for the rotation about z-axis, is

§[ 2% (- 00)+ & (s 00)|

i=l
N L) L)
= E[m"(— ¥ .1"' + I" }’;)53] = L_.-SH
where we have considered the Lugrungian
N 5% |
L= ?-%-:.1’ m, - 2 EVU [Ir, rj

~—F
Fi
i, j=1

for a closed system of N interacting particles guided by the potential Vj; between
i-th and jih particle. Similarly we can consider infinitesimal rotations about the x and y-

axis.
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When we consider all the three components togeii:

—*

= =

A =8 F = 58xr implying
= . -4

aL Er =ﬁmi-;:.a?j>’r:

=1 A i=
- —
=1.860
- N =
where [ = 3 r;x a1y is the total angular momentom of the system.
i=l
Problem : Show that the constant of motion associated with the infinitesimal
transformation for the spatial displacement leads to the constant of motion of the linear
momentaim,

Problem : Show that angular momentum is conserved for
e T T S 4

= r+r.rdrt

g b b
r =0 8xr

b

3 =3
antd r=80xr
e 575 L G0

ar dr

)
=0 [using the identity :: ['gbr _;] =k [?x :z’):l
Ex. Is L invariant under translation ?
Tx. Consider the free particle problem described by the Lagrangian

L= %Hﬁ'i

< (2747): (80 7)a (P27 (53x7)

How does L transform under x ~ x + a(1). Since hem
x'=x+al) and ¥’ = x + a.
Lokat, 2 1) & -%m{j" = d}z

= Lly’ +.¢)~ mad ++ ma‘!
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If the transformation is an invariance then, as we know, there exists some function
A(x’ ) such that

L'(x", &' 1) = L(x", &', 1) + %‘r’:‘-

from (VIL3). Hence comparing
A _ 1

%7 = — i, —F = -z—mr}I
Le. @ =0. solving

A= —mCx" + -% mCat

where C) and C; are-arbitrary constants. Henee x” is of the form x "= x + €, +
€2t which is a combination of spatial dispiacement (€3 = 0) and Gulilean
transformation (C7 # 0). We also observe that a transformation fo a uniformly
accelerating frume is not an invariance wansformation,

Remark : Concerning invaniance under time displacement we have already
considered the problem of moving boundary in connection with A variation in Unit VI,
There we note that (VIL.4) involves changes in the corodinate variables ¢ which are
dependent on the independnet variabic 1,

VIL3 ""r'iria_l theorem : For a N-particle system at rest as a whole we define a
quantity G as '

—r

G= ) p.

i
i=|

—h
T

-
where r; denotes the position of a particle (i) with respect to a fixed origin,

Clearly G is restricted to be finite since a material particle has neither an infinite
momentum nor can it be infinitely away from the origin.

; ; =) ;
Translation of the origin by a finite amount say ry transforms G according to
P A
G =2 b\ ri-ro

-...}

“_ a
N oy
2=y 21Pi
I=
=G
9y




from the conservation of linear momentum. Thus & is invariant under a shift of the
origin.
The time rate of change of G is given by
e T
G = ZI (Pn it P r )
I=
._}

N
=2T+ ) Fp.r;

i=l
=2T+ W

where T is the kinetic energy and W is the virial of the system. Like G, W=

e ; : ; "
3. F;. r; too is independent of the choice of origin for the system at rest,
i=1

What is the time average of 2T + W 7 We have
T
A=<2T+Ws= lim +[Gdr
f—re T 5
= lim &0 =-G(0)
= ﬂ :
since G(t) — G(O) is ﬂIwa}rs finite, Hence
= ‘?j W
This is the virial thearem.
Consider the particular case of the two-particle system :

T T B -3 . =
W=fu*fz“‘*fal-"l=f11-(1"1'3'1)

_}
where fu. i, j=1, 2, are the interparticle forces and we have used Newton's third

law, If Vi, = __: — is the interparticle potential (y a constant) then ?12 is
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So

-3 - _
flz-[":a" *'|J=“ i

h=hn

As such W represents the total potential energy V (= Via) of the system leading 1o

Fe-lWwaoly
T = ZW- 5V

From the conservation of total encrgy we write the above result as

W S
E= =5V

VILd Brachistochrone problem : This problem is concerned with finding a
plane curve that joins two points such that the time required for a particle faling under
gravity along it, from an upper point to the
lower, is a minimum. zA

Let x-axis be horizontal and z-axis be
vertically upwards. P and Q are initial and final P

positions of the particle respectively. If the 0
velocity and height at P is (v, z) and the same at
@ is (vp, 29 then ; z
r
Total energy at P = L mgz _
2 3 o = x
Total encrgy at Q= % mv} + gz, Fig. VIL ! Brachistochrone curve

By conservation of energy these are equal so that

v =y} 4 Zg{zf - z)

Now v = %}5 for an element of arc ds of PQ in time dr. Hence the above equalion

can be expressed as
o 7
fi= jd&'[‘h’} + 23(2}' =z E)] .
P
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; 2942

3 [1 + () ]

=) 7
[uf + ?g L= z)]

where Wwe have put ds = Vdx® + dz?

(VIL4) has the same form of an action with x playing (he role of “generalized
coordinate”, z that of “time" and the integrand that of the “Lagrangian L" :

(8T
[ 2l

N
e (I-{-xz)y "—-9!11

[p} s Zg[zf b, z]]hﬁ K

=Lx 22, x'= &

dz {(VIL4)

L=

MNote x is ignorable.

Brachistochrone is the path of minimum time obtainable from

I
§ [ L{x,x"2)dz =0
I

This yiﬁlds
(aL] 0
dz\ ox' 'E.‘i"
from which
g-f‘—’- = constant
i.e.

L

{1+Jr."2 [u}+23:1~ z)]lﬂ

ar, x'z[l 4 .r‘-z)u [v} +Eg(zf - z)]—[ = c?

= C (say)
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This gives

2 T
3 l-C [V_r +'Zg(z__,- -;:)]
o {;z[u} + Ig(z‘,- - z)]

L |

i.e (d“')z = ﬁ-—-‘
=t g a+z
where a = [1 - C‘zv} - Engzj)/igC‘z and b = (u} 28 zf)/tlg. Setting 7 =~

(____a E b) = £T+ ‘&] cos O facilitates integration since we have

ﬁ=]ﬁt£§:g a;&sinﬂ)dﬂ

[mplying

= %‘é (8 - sin 6) + constang

Thus we get the curve for minimum time, the “brachistochrone”, in parametric
form with x and z appearing as functions of 8. Tt is a cycloid,

VILS, Other examples

(o) Law of reflection : Consider a o0 o) Fitx,
ray of light taavelling from the point Py to P
through the point of reflection at (x, 0) on a
mirror M. The time taken is (see Fig VII.2)

1= 4y - %) + 58 b aqf(n -2 + 58

¢ being the velocity of light. To minimize

ﬁliﬂ: .

\\\\\\\\}\l}:\\\\\\\w M

Fig. (VI). 2 Reftecti
fwcraquim%:ﬂ, 1g: (VID). 2 Reflection

It gives
(x - x)  (y-x)
J o -Tn)z + )t ‘\((xl = "‘"}1 8 i
Le. sin ¢, = sin &y
= o =¢ (Law of reflection)

s
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(b) Law of yefraction : Consider iwo mediums Sy and 8§y eparacienized by
 tndex of refraction np and index of refraction .

‘or the light travelling from Py to P through the Fof¥p yo!

agint (x, 0) the iime taken is (See Fig. VIL.3) .\

G — !-El 1!(.1’ ™= h.'t'ﬂ)? + _;;?J: N -!'E_L 'Ji.":! = I'}Z At ;1;

" Umimization ol ¢ requries —'3—; = 0 which gives

1

iy sin by = 1y sin
1 uis 1s Snell’s Iaw of refraction.

(c) Show that the shortest distance between
two points in a plane is a straight line

% - . Plf-.l’l._}'”
Sinee ds = -\;'dxz + dy” we have

Fig. VIIL 3 Refraction
£ 3
§ = J 1+ (%J dx

Ay

X
= f L{y, ¥, x)dx

A

. if2
where ¥ = -f% and L = [! + }-'I}f It is in a typics! “scuon” witn x playing the

role of time. Lagrange's cquation reads

ALY L _q
de\dy' ) dy

since y is ignorable. So
4 = constres
le. ¥’ =constant,
lutagrating we get the equation of the straight linc y = mx + ¢, m and ¢ are
constants.

{d) Show that the shortest distance h=tween two puiﬁts on the surface of a sphera
iz a greaf circle.
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a being the radius of the sphere.
& 2112
L= [aft+sin? o(9)' ] do
ty

@
where ¢’ = gf-g- Again it is of the form 5= J! L(¢, ¢, 9)d0 with @ playing the
by

role of time, The associated Lagrange’s equation gives
d [dL ) _dL _ 4
de\d¢’ ) 9¢

2
¢ being ignorable and L = a[i + sin® H(q&’]z'] . We therefore have

w7 r
480709 jz = constant = A (say)
[l +5in* 0 ¢a]
dp = C(a? sin® @ — CZ sin? )~ 249
Integrating :
f+p=C I 4 . i1 & constant

’!ni sin® 8 — ¢t sin @
Puti=Cecot® or, df=-cosec?df. We get
~sin® @dt
sin E'«!az sin? @ - C*
=-C!—— zsmﬂdl
Va? sin? @ — 2
dt

. I-J(az ~ Cz) = i

=5'in'l—£-, bt =a?— 2

¢p+u=C|

"o € cot 8= b sin(d 4 p)
or, C.cos 0= b sin @sin ¢ cos jt + b sin @ cos ¢sin 1
This is in the form z = px + gy, p = sin jt and g = cos y, which is the equation of a
plane passing through the origin.
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() Find the equation of the curve which makes the surface area of revolution
generated by rotating the curve y = y(x) around the x-axis,

Arca zlement of sutface of revoution is (ses Fig, VIL4)
dA = 2ny dy

= Zn}'JI +(%)‘dr

Fig. VII. 4 Surface area of revolutiu,

2
where L = 2myqfl + {%) with x playing the role of time. Note that x is absent
from the Lagrangi:n implying that the associated Hamiltonian
ST | S A ¢y
H= F_‘? y=-L, ¥= 5
== constant
As such

2 -
Zn'y%-— 23 - 2::3:1,‘1 + 3" = constant
1.|i1 4 y’z

ie. Z21) . . constant
I+ y?

Let ¢ = C, a constant. It corresponds to the minimum value of y where
;,il +y'2

X
dy _ | :
Z=gir-¢
which yields the equation of the catenary on integration
y = Ceoshf(x - %0)/C]
where xg is a constant,
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Unit : VIIT U The Theory of Canonical
Transformations

VI Introduction : Le us begin by asking the question whether a trans-
formation from the canonical variables (4. p) to a new sct (2, P) is feasible such that
Hamilton's f.:qual.inn s in the form

K 5 oK
=5, P= ?E (VIIL1)

hold where K = K(Q, P) = H{q(Q, P), p(Q. 7)) is the transformed & in terms of
the new variables O and P, It is obvious that this will not be generally so except for
some special cases. Such restricted transformations for which (VIIL 1) holds are called

canomical transformations implying that the new variables (Q, P) too form a canenical
set.

Wriling Q@ = U(q. p), P = P(q, p) it is thus clear that these oughl to satisfy
Hamilton's canonical equations namely

dU =0, }{‘”‘l d0 90 aH

dg dp  dp dq -
= _ 9P JH 9P dH
f ={P H} = Sy (VIIE2)

Further

ol _dK d 4 9K oP
Bq =00 3q F0p

%{f_ %E %{{ %ﬂ TTL3)

Substituting (VIIL3) in (VIIL2) we find
?Q ‘JQ EJK &KEIP aQ[aKa + 9K 9P
a0 oP dg

K (HQ L a0 ap)

EF’H (e[7] ap a'p ‘]q
= 9K
o P{Q*P}WM
1 K P,
v 0 L% (VIIL4)
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(VI11.4) suggesis that (Q, P) satisty Hamiiton's canonical equations provide
Q. Py, py is a constant, Taking the constant to be unity without any loss of genarally,
the canonical transformation may be defined to be 2 transformation for which

(2 Plg py=! (VIIL8)
Formally the condition for the canonical transformation (g, p) = (Q. P)is given

by
{QJ. Qf}

o = ABD =0 {e ) =6 v

- For the one-dimensional space, the Poisson bracket (QP}(q, py is essentially equal
to the Jacohian determinant ;

(0.7}, , =20 30w

dg 9p  Op og
3 %{% (VIIL 10}
Conversely
: g, Q. AT -1
(9:Pho.n = G5 = 5207 - lio.p,.,o ]| vy

Consider the one-dimensional phase space (g, p) and D a region in it bounded bya
closed curve A. For a canonical trﬂnsfnmwtmn '

J' dQ dP = L Jq dp

— J}{Q. P}w,,,,dq dp

= _[ dq ar'p
D
f(pdg - PdQ) =0 s
A "
Here the quantity (p dg - pdQ) must be a perfect differential, Indeed EXPICasily

pdg—F£dQ=pdg- P(%%dqf-aF




the condition for a perfect diffm“'zlial is
d HQ _p BQ)
W\~ F EE ap
which works out to_ {0, F}{m gy =1

Putting pdg — PdQ =dG;, we call G; tc be the generating function of the
transformation (g, p) — (@, P). It is a function of q and 2 [i.e. G} = G(g. 0)] and we
have straightforwardly

7 _ oG
p= 3%1-, P=-54 (VIIL12)
Ex. : Consider the transformation (g, p) = (¢, P) given by

2

g= P “7 5in @, p=+ZmwP cos 9

Inverting -

Since }'}_ E.'En_ %f- mdayqg it follows that {Q P}w =T H::nr:e the

transformation is canonical,

Next we check whether pdq - Pd@ is a perfect differential For the generating
function Gy, g and Q are mdapﬂndent variables, Exprcssmg p and P in terms of these
namely p=magcot 6, P = ~mnlg1 cosec? § we see that

pdq ~ pdQ = d(f mag’ cot E)

which is indeed an cxact differential. Hence G for this problem is Gi(g, @) =
—mmqi cot 8.
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Applving the above transformation to the specific case of the harmonic oscillator

described by the Hamiltonian H = -ﬁ P+ -%-mcu""q'i, it is elear from the above form

of Pthat H — K =Pw The accompanying Hamilton’s equations are

C=%p=¢
LK _
P= 20 0

Solving for 0 and P we find () = @i + 1y, P = b where Ip and b are constants of
integration. Switching to the onginal variables we get

7% \}% sin(ax + t5)
p = \2mab tﬁs(fﬂf +1o)

which conform to the standard forms.

The above example serves to illustrate the utility of canonieal transformatoin in that
it is often possible to adopt new set of canonical variables which simplifies the basic

equations a greut deal thus Facilitating generation of the solutions which are otherwise
very complicated to determine,

Problems : (1) Show that @ = - p, P =g + Ap? is a canonical transformatoin
where A is a constant,

(2) Show that Q=qgcos0- -ﬁ%s'in 8, P = mawq sin 8 4+ p cos O is a canonical
transformation,

VIII.2. Types of Canonical transfromations :

As we have already noted in Unit V, the Lagrangian-——Hamiltonian relationship for. '

a system with n degrees of freedom, is provided by the Legendre transformation

L= ; ‘I._H ] 1:
EF{‘I (g. pst)

Indecd it results in the cononical equations § = %‘E. p= —%%- It is therefore

suggestive that to generate a similar set of equations, namely (VIIL1), under the
canonical transformation (g, p) — (0, P), the quantity that is relevant for the new
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Lagrangian should be i, P; (3 - K(Q, P, t). However, we have also fearnt in Unit I
i=l

that the addition of a total derivative term to a Lagrangian does not affect the equations

of motion. So we define a canonical iransformation (g, p) —» (O, P) as the one puided

by the following restriction ¢
Y pg-H= }fﬁf?,—--ﬁ’w'-‘—f?? (VIIL13)
i=1 i=1

G being the generating function of the transformation. The above form is
equivalent to

ilpj dg; ~ H dt = ng 40, - K dt + dG, (VIIL14)

with G! e G|{q1 Q, f}

Of the 4n variables (g;, p;) and (Q;, ), validity of (VIIL1) ensures that only 2n of

them are independent. A few different types of canonical transformations are focussed
below.

Type 1 Canonlcal transformstion : Type 1 canonical teansformation
corresponds to treating ¢; and (J; as independent, Naturally

Gy = g{%%dqf +%§}dpﬁ)+%‘§ml

Putﬁﬂg this rcpmsﬂnmtign Af A, in T 14N wia Aadiics

aG G, (4. Q,
pi= DE_L(q.Q,rL P = _-._I%‘b‘_ﬁ“l - (VIIL15)

which are identical to (VIIIL.12) along with
K=H+ 9% (VIIL16)
The first of (VIIL 15) gives @; in terms of ¢; and p; which when substituted in the

9*
second of (VIILLS) vields P; (of course we assume dﬁlﬁ_q 0 # 0). K is the new
1 asl; j

Hamiltonian.
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Type 2 Canonical transformsation :

In Type 2 canonical transformation the independent variables are taken to be (g,

‘P, This case presents no problem to deal with since we can express

_f:lﬁdﬁ = d(ﬁtm)-’ _‘_.ilca-dﬂ

resulting in
S pda+ 3.0 dP — Hds = d[ﬁﬂg—}- K dr + dG
iml i=l

I'k‘-ﬁning the accompanying generating function to be G we have

Gy=Gy+ Y PO
=l

Viewed as function of ¢, P and ¢ we wiite

dGy(q, P. 1) =§[%in + %%JF;) + %—ildi

implying from (VIIL.17)

_3Gla.p.t) , 3Gy(q, P1)
Pr— afi‘; 1 'Ql af’}

along with

K=H+%€l

(VIILITY

(VIIL18)

(VIIL19)

(VII1.20)

Here the first of (VIIL19) gives Py in terms of g; and p; which whén substituted in
the second of (VIIL18) yields @; (we assume detl%g?;} # 0). K as given by

i

(VIIL20) is the new Hamiltonian.

The other types of cancnical transformations are the Type 3 canonical

Gi(p, 0.0 =Gi- Saim,

12

transformation and Type 4 canonical transformation, In Type 3 canonical
transformation the underlying generating function Gy is a function of the indepéndent
variables p;, @; and ¢ and defined as

mn-.m




It leads to

q;=_%%,ﬂ;--%%.,ﬁzﬁ+§% - (VIIL22)
In the Type 4 canonical transfromation the generating function is given by

Galp, P iy= G + I,'Z:IQ;P Er.r i (VIT1,23)
in which p; and P; are treated as independent vanables, We then have

= v%ﬁﬂ o = 32’: . K=H+ 354 (VL 24)

Note that the relationships (VITLZ22) and (VILL.24) ace suisjected to

G, | | #¢
det m{f?m «# 0 and det!wf; 20

Eix. 1. Consider the transformation
Q=-p, P=q+ X"

where A is a constant. By the Poisson bracket test namely [Q, P, = | we

conclude thal the transformation is a canonical transformation.

The Type | gemaraling function 1s obtained by showing that pdg — PdQ 15 a perfect

differential

pdg — PdQ = (~ Q)dq ~ (g+ AQY)dQ
=dt-4@-73 3A0%
Thus
Gi(9.Q) = -4Q ~ 5 40"
Ol the other hand the Type 2 generating function is obtained by treating ¢ and P as

independent variabies,

From (VIII.18) we have
Galq, p) = Gy + PQ
=—q0- 320 + (g + 20%)0
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walba Lk
= e
m'|..H

T,
“JL‘E;%’
\.__-f"f"_“-

5
o
e
|
=
3

Checle that

iz _
(P - =
g0 =

[ 1] F(P Q=0
which are as required,
Exi 2‘1

The transformation

= N TR LW
(J=¢gcosB mmsmﬂ

|

ol
Q

P =max;sin 8 + p cos O
is easily seen to be canonical due to [Q, Pl » = 1. We also find

p= mm[qmtﬂ—ﬁ-@]

Es m{n( sin @

- Qcot ﬁ)

Hence the quantity pdg — PdQ can be expressed as
pdg — PdQ = d[% mfﬂ[qﬁ + Qz) cot @ = mwgQ cosec H]

The Type 1 generating function Gy(g, Q) may therefore be identified as
G;(q, Q] = %mw{qi + Q"‘} cot 8 — ma g0 cosect

The Type 2 generating function can be obtained from Gy = Gy + PQ. We gel
Gy = % mm[(f" - Qg}r;nt ]

To assign the right variable dependence on G namely g and P we note that

—?g—mtanﬂ
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by eliminating p. Substituting above G, turps at to be
=gl 2 __EL)
Ga(g, P) = —=p 3 mo| g+ e tan @

Verify that

(%l) =ca{: —mgtan 0 = p
. r

afy ) e "
(37) = ko mpmo =0

Ex. 3. We consider the harmonic oseillator where the transformed Hamiltonian &
in terms of the variables 0 and P can be enforced to be vanishing leading to the result
that @ and P are constant in time, To this end we consider the Hamiltonian

2
= I 2.2
H= ﬁ + 5 mia - q
Under the set of canonical transformations considered in example 2
we have already seen

Gyg. P) = ngﬁg - % mm(q’ + E%IJ tan 6
- Further H(g, p) turns art to be invariant in that
H(g, p) = i p* + 5 ma’g?
- o P2 4 Q" = H(Q, P)
~ Also

(), [ ol g Juos

- (-ﬂ—;f;z—m+ %mmﬂz)é
=-H(Q, P)Z
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Therefore

K(Q Pi)= (l - %]H{Q,p)

which vanishes for 0 = w ie. § = ws. As a consequence Q = %‘% = 0.

R |,
=asas 0 50 2 and P are constants namely

Q=0 P=PFy

Reveriing to the old coordinates we get
qr) = Q cos ¥+~ sin @
p(t) = — mw G, sin wf + Fy cos @f

where Qp and Py stand for ﬂ-}c initial values of g and p respeicetively,
Vifl, 3 Hamilton-Jacobi equation :

Taking cue from Ex. 3. just considered we look, more generally, for canonical
tranformation, namely (g, p) — (B, @), that restricts f and ¢ to be constants in time.
Alternatively, we are looking for a situation in which the transformed Hamiltonian
emerges as a vanishing quantity. In this regard the Type 2 generating function Ga(q i
@, 1) proves suilable ; .

Lo
p=92 p= _;IL (VII.25)

It is clear that while the first equation in (VIIL25) gives g as a function of f, & and
1, substituting it in the second equation of (VIII,25) gives p as a function of §, arand 1:
g=glB o p=hif ain (VII1.26)

Further since we required f and o to be consfants in time, X has to satisfy
according to (VHL 1) '

% F‘ =0 (VIIL27)
with k=M S

ot

16



(VIIL27) signals K to be at most a function of time. Choosing the generating
function in such a way that ¥ vanishes we find from (VI11.28)

Gy ), 96, _. '
H[@ B :J =l =0 (VIIL,28)

Acutally (G is the new genreating function G, for which K = 0 holds ; we have
dropped the star without indulging in any loss of generality. (VIIL.28) is the time-
dependent Jacobi equation. It iz a first-order differential equation involing the »n
coordinates g;'s and 1. Associated with the (n + 1) variables we expect (n + 1)
constanis of motion namely @y, @, ..., 0, @y + . However we notice one curious
thing in (VII1.28) that G5 iseif doss not appesr in it : only its pantial derivatives do. So
one of the constants has no bearing on the solution i.c. the solution has an additive
constant. Disregarding such an irrelevant additive constant we write the complete
integral of (VII1,28) in the form

§=5(q1, 92, - Gn s Oy 02y 00 Oy 3 0) (VI11.29)
where it is ensured that none of the s is of additive nature to the solution,

Let us clarify the above issue by considering the problem of a fiee particle. The
Hamilton-Jacobi equation is obviously

.
1 {ds a5 _
2—»?(33] g
1t can be solved to obtain
S(q, E,t) = N2mE q - B

which is the complete integral and E is as non-additive constant playing the role of
a. Furiher from (VIHL,25)

3= Ea% = C (say)
. SE o o5 _ 5eh
Le. O=. %‘?—’ = g = J—E{I+C}a.ndp=m;= 2mE.
Next, let us consider the harmonic oscillator problem :
g .
= "ZTE(FE + mzmg'q )
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p= ES gwm.

2
_ ﬁ-{(%) + mzmzqz] + %%_: 0

We try for a solution adopting separation of variables :
S(g;a;)=Wq:o)-ou
Here o is a pon-additive constant.

2
L_| [ W 2.2 | —
m[(aq] +m2£ﬂq ]-{I

which gives

W = 1|'2mﬂ'.l[ dtﬁ‘l - ﬂ#

f= %givﬁs
p= FI -t

ﬁm ¢
Integrating

2
t+f = —c‘lﬁﬁin" q{‘—z—"":;

from which we get

We pet

20 .
q= ﬁzsmm(l+ﬁ)

p= g-g = %I:_ = +[2me; — moy2g? = [2mat cos (1 + f))

A few remarks on the time-independent Hamilton-Jacobi equation. In this case we
have from (VIIL. 29).

H{q, a%) + E’% -0 (VIIL30)
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We solve (VII1.30) by means of separation of variables by writing

Gy(g, 1) = W(g)+T(1) (VIIL31)
Then (VIIL30) reduces 1o the combination
oW _p dT _
H(q, F}?) it G AR E (VIIL32)

The first of (VIIL.32) is called the time-independent Hamilton JTacobi equation,
MNote that the constant E has to belong to the set of n non-additive &'s {og, o, ...
a, ). If this set does not include E then it must be a function oif the ¢'s namely E =
E(ay, 05, ... 04). Note that % represents the total constant energy. We can then write

Gy =W(q1, 92, ... qn 00, O, ... Oy) = E(0ny, O, ... Gt
with the canonical transformation

o BW(%; @) po ai;gx;_ﬂl _ H?Eg_ﬁ.ﬂ , (VIIL33)

(VIIL.33) may be intertreted as a transformation irom (g, p) to (@, P) where
Q=p+ % I P=a

Since E = E(ay, o, ... o) = E(a) = E(P), the transformed Hamiltonian is E(P).
In other words the new coordinates are cyclic.

Let us consider the motion of a particle which is subject to the influence of a
potential V(x). From (VIIL32)

2
T&E[%?] +V(x) = B
18 W= j.JZm[E - V{x]] d.,t

Taking E to be the new mormentum ¢, (VIIT1.33) gives
p= %r— = \2m(E - V(x))

_aW _ |m dx
Pt == \,;I .JZm{E— Vix))

The integration is straightforward for V(x) = %maﬂxi.
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T
Pulting x= l-—?—" — & ) 'We ¢blain
B \ mar® ¢

= ﬁ-}. (@ + sin ¢ cos ¢)

Moreaver
p= %EE = +[2mE cos ¢

Bei=GE =G

Vill.4 Action-angle variabies :

We now consider a bounded motion in a finile-dimensional space, If the procedure
of separation of variables is suceessfully implemented then W can be expanded in

terms of components each one corresponding Lo the separated variable, In other words
we can write.

Wg: )= i Wi(q: @) ' (VIIL34)
i=1

where of cowrse @ = (@), 0, ... &,). Actoall we can identify each component of
o with the separation constants. Note that we are dealing with a system possessing n
degrees of freedom and that the components of ¢ stand for the new momenta which
arc constanes,

MNow

_ dW
Pi=ga

dWilg; a
._._IE_L bed. 2 n (VIIL35)

from (VIIL.34), Integrating
Wi= [ pila@)dg, i=1,2 .0

If we take the trajectory of the coordinate ¢; around a closed path, with other
coordinates remaining spectators, then the change of W; is given by

AW, = § p; dg;. _ (VIIL36)
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The integrand reflects an area in the (g;, p;) phase plane enclosed by the trajectory.
Denofing AW; = 2ai; we can also express (VII1.36) as
Iy = 5§ piday " (VIIL3T)
Clearly J; = I{e) = F{oy, ¢, ... o). It is called the action variable for the i-th
degres of freedom.
- It is possible to express W in terms of g and I3, By, ... I, by inverting o's in {erms
of the I's. In such a casz Jacobi complete integral is given by

Wia: D=3 Wilg: b ko 4,) - (VIIL38)

=1

The coordinate ¢ uunjugam to I; is called the action variable and given by

g = i , ) (VIINL39)

The dimensioon of [; is that of the ‘actien’ and W(g ; I} is, in efect, the generating
function of the canonical transformation (g, p) — (¢, {).
Ex. The potential of a two-dimensional oscillator is given by
_ Wx,y)z-%mmf-:--%mmgyz |
The Hamilton-Jacobi equation reads from (VILL32)

' z 2
%—[(%J + [%%) ]+ %mmfxz + :lznxmif

=E= @, + @&, (say)
Trying the solution W = X(x) + ¥(y) we can solve the above eguation to get
W = J-Jlm o, — miwi x? de + j\}';m oy ~ m2al y? dy

Subsequently -
p, = 3‘-’-?’ = y2may, ~ m'ol ¥, p, = ‘: = \!Zmﬂy - may y'

From (VIIL, 3‘}'} the action variables are

I, = 2—-{-.]1:1:{1’ -m &}Exz dx, I, = _-2—§\’2mﬂ - m ﬂ)zyzdy
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2m o
Substituting x = Jf:’—z%'sin 9, y= ;"1'5} sin 8 we easily obtain
x ¥

¥

1 2mox T _ 74
I, = HW ﬁ{1+€{}52¢]d¢ =_—£}T
@y
=%,

II_; = mx -‘{tl ﬂ}l B my .Ifjl

So we can express Win terms of I, and J :

W = j lJZm o fnzﬂg—:\_j" dx + J \‘Zm myff = m2m; y:e dy

The angle variables are

_ W _ dx W dy
B G R o
ma, ma, |~ y

|| ' 21,
Putting x = %&t sin € and y = ﬁ;; sin & we get ¢ and ¢y,
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Unit : 1 1 Special Theory of Relativity

1.1. INTERTIAL FRAME

In physical science we generally study the temporal and spatial behaviour of the
physical systems, and consequently the laws are expressed in respect of space and
tiie. Any such a deseription requires some frame of reference, as for an example, a
cartesian corrdinate systen in tiree dimensions, Astronomy is considered (o be one of
the oldest branch of science, in which the [rame of reference plays the pivotal role.
Before Copernicus (1475-1543) the earth was considered to be at the centre of the
universe, and the heavenly bodies including the sun were negarded as to be moving
around the earth, This geocentric reference frame was replaced by Copernicus and also
by Galileo by the heliocentric frame of reference in which the sun received the central
position (the origin of the conrdinate system) with all the planets moving around it as
the satellites. Later, Newton's description of the law of physics in regrards to this
helioentric frame of reference gaves its profound feundation. In fact, Mechanics, one
of the branch of physics required frame of reference most. Of these frames of
references, the inertial frame is the important one in which we may gel laws of nature
in their simpler forms. _

Before Newton, it was believed that the earth and the natural state of things on
it were at rest, that is, any object remained in the state of rest as long as no outside
force acted on it. In Newton's formulation both the state of rest and the uniform
motion in a straight line got equal importance, In fact, Newton's first law states : a
body is either at rest or in uniform motion in a striaght line if no external force acts on
it. the inertial frame is the one in which this law of Newton holds good. In the absence
of gravitational or other force fields, we can have an inertial frame in which if the
particle is set in motion it will move with steady speed in a straight line. One the other
hand, if the particle under no force does not remain at rest or in uniform maotion in a
straight, the farme is not inertial, As an example, the frame of refernece fixed in the
stars is an inertial frame, But a ceordinate frame fixed in the earth is not an inertial
frame because of the fact the eusth is spining about its axis as will as in moving around
the sun.
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1.2. GALILEAN TRASFORMATION

Galilian transformation is the transformation which relates the two inertial frames,
Let (x; y, ) be the coordinates in the first intertial frume and t represents the time
measured by the clocks attached in this frarne. We call the set (x, y, 2, t) the unprimecd
set, For the second inertial frame the primed set (x7, y°, z°, t*) represents the
corresponding coordinates and time. Let us suppns'c that these two sets of coordinates
system are parallel to each other, that is, the x° axis is paraliel to x axis, the ¥’ axis to
the y axis and the z” axis (o the z axis. Then the following transformation

vl

4
*
r

o T =

(1.2.1)

¥

=X —
y
FA
L

-

i5 the Galilean transformtion, This represents the motion of the primed frame in the
direction of x axis with respet to the unprimed frame. v is the velocity, and it is
supposed that the origins of the two sets of coordinates coincide at t = t* = 0.

The more geneal Galilean transformation between two frames representing
uniform translatory motion relative to each other is given by

i = Mot
y'= :fr_vyl

b
z'=2z-V,t ( 2)

Here, Vx, Vy, and V, are the components of the veloeity of the primed frame
relative to the unprimed frame, We have chosen here aiso that their corresponding axes
are paralled to each wither, and their origing coincide at t = t"= 0, The two inertial
frames may be conneated by the following transformation which is also a Galilean
transformation : :

x'= apx +apy + 232 + 0
Y= agX +agny + gz +
7' = ayX ok Ay + Az + Y
"=t

(1.2.3)
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Here, (o, B, 7) are the coordinates of the origin c:f the unprimed frame with
resp.ect to the primed [rame. The constan(s a;; are the cosines of the angles beiween the
axes of the unprimed and primed frames. Note that the first law of Newton, the law of
inertial, 1s expressed in the foliowing mathematical form :

ewmfl, Y=, F=0 @ .. (1.2.4)

{the notation

i A s 4%
T i deEz)

=" respresnets ‘derivative’ with respeet Lo the time, 1e.,

The first integral of (1.2.4) expresses the law of ifertial in its usual form which is

X=ug, ¥Y=Vg Z=W, e & e

where the constants up, Vo, Wo represnt the initial values of the components of
velocities along the three axes. These constant may by zero. Thus, if initially the body
is at rest then if remains always at rest under no external force. On the contrary, if the
body is in motion initially its velocily remains the same always, Clearly, it moves in a
straight line. Also it is apparent that the law of inertia (1.2.4) is covariant with respect
to the Galilean transformations (1.2.2) and (1.2.3). '

Now, form the Galilean transformation (1.2.2) we can have, on differentiation
with respect to time

Lo e

-|II - vx
BNy (1.2.6)
=

=
]
¥

Z

1l

Thus, the velocity vector v = (%, y,2) and ¥ = (x",y".2") of the two inertial

frames are connected by

-

=N (1.2.7)
w;ha:m (Vi Vyu V)
Ag:nin. by differentiation with respect to time (remembering that 1 = 1) we have
from (1.2.7) i -

%:% or, a'=a ... (1.2.8)



that is, the acceleration remains invariant under Galilean tiansformation. It is to bhe
noted that the time measuned in the inertial frame has the same value, that is, the
operation of clocks is independent of the speed of the inertial frames with respect 1o
one another, But we shall see later that a distinction must arise in the measurements of
time in any two inertial frames for the ease of the special theory of relativity where the
Lorentz transformation will replace the Galilean trans{formation.

Example 1.2.1. The water in a river moves west at the speed of 6 mph and a
boat heads north at 8 mph with respect to the water. Find out the direction and velocity
of the boat with respect to the ground.

Solution : We take west as the positive x direction (ses fig 1.2.1)
1

—— W

Koo |
V= 6 mph
Fig. 1.2.1

and north as the postive y axis. Then the motion of the boat relative to the primed
frame (fixed in the water) is given by

V'=28j (mph)
The motion of water with respect to the ground is given by
v'=6i (mph)

Here, | and j represenl the unit vectors along the directions of x and y axes
‘respectively. Then, motion of the boat with respect to the ground can be found by
using (1.2.7). It is given as

V=4V
(6j + 8j) mph
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Therefore, the speed with respect to the ground is \Ej + 82 = 10 mph, and the

14

dircetion is lan-’% = tan- 7= 53° north of west,

Exercise 1.2.1. After going a kilometer upstream in a motor boat, a man
accidentally drops an oar overboard. He proceed upstream for 10 minutes after he
missed the oar. He then turns round and retrieves the oar at the point from where he
started initially. If the boat travels at constant speed with respect to the water, what is
the speed of the current 7 Work the problem twice, in the frame fixed in the bank, and
in the frame fixed in the stream. [Ans. 3 Kmph]

1.3. VELOCITY OF LIGHT

As the speed of light is very large, the measurement of it requires either long paths
or devices for measuring very short time intervals, Thus, an astronomical
measurement of the velocity of light came first in 1675 by a Danish astronomer-
Roemer (1644 — 1710). He observed that a larger time elapsed between the eclipses of
one of Jupiters moons during the period the earth is receding from Jupiter, the position

Ay, in the figure 1.3.1, than during the period the earth is approaching Jupiter,
position Ag.

Ay
Fig. 1.3.1

This discrpancy was interpreted as due 1o the finite speed of light because light travelled
larger distnee between eclipses the earth’s receding period than that of the earth's
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approgehing Jupiter, Roemer ealeuiated the speed of light to be about 2:3 x 108 im/sec.
as light took 22 minutes 1o cross the =arth's orbil, a distance of about 3 » 108 km, This
value of the velocity of light ¢ is close to the presently acepted value of it {within 25%
of the present value 3 % 100 emisea), Galileo also attempted the measurement of
speed of light. Much later, Fizeau (1319-1896) medificd the procedure of
measurement employed by Galileo, At the time a preferred medium for light was
assumed, and velative to this medium the velocity of light was taken as to be "¢’. This
medivm called as the “ether” iilling the infinite space, which is perfectly transparent to
light and nonresistant to the passages of all heavenly bodies. Now the question arises
whether by a Galilean transformation one can get the velocity of light with respect to
seme other frame, say, with respect to the earih. In fact, the speed of the carth’s orbital
mation is about 3 % 10% em/sec, and sensitive experiments might be performed to
show that the speed of light with respect to the earth would depend on the direction of
light travelled with respeet to the earth’s motion through the either, in accordance to the
Galilean transformation, Such an experiment was conducted by Michelson and Morley
in 1887 in order to determine the motion of the earth through the ether, or alternatively,
to test the applicability of the Galilean transformation fo the motion of light.

In the experiment of Michelson
B I : and Morley, the parallel and
perpendicular transit limes were
directly compared by using light
“waves aus their own means of

| 4 measuring time. Lel us congider that
| / Bt gy the parallel and perpoendicular rods
* are sel up as in Fig. 1.3.2. Then a

4

:* 4, . E beam of light from a source is split
s ; into twa by a lightly silvered mirror,

ey A half the light moving down the rod B

Fig, 1.3.2 and the other halt down rod A. On

reflection the light retumms down the
rods and can be inspected by an observer looking through the same mirror at the
direction of 90° to the source of light. As the light is 2 wave motion, the two beams
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start out in phase, or in step. If the beams return in step. then the tine required for die
two trips is the same. On the other hand, if they return out of step the time difference
between the two trips is the time for half an oscillation. For the former case the
observer notes a bright view, whereas for (he latier case it is found to be dark.

It is to be noted that this set ui:: of apparatus might have the necessary precision,
For example, yellow light has a period of 2 X 109 see., that is, the time for half an
oscillation is about 10-13 sce. An interferometer in which the leagth of each section is
ahbout 15m yields an elapsed time of 10-7 see. for the return wip. Tharefore, a tie
easurement to half the period of oscillation of a light wave could measure the tranui
time to 10-15/10-7, or to | part in 10%, as required. In the actual experiment the path
length employed was ilm.

Actually there was no independent way of determining that the length of the two
pmh-s was identical, The instrument was first adjusted lo yield a bright view to the
observer and then was rotated by 90° to detect any difference between the paraliel and
perpendicular transit times. Although the instrument was capable of detecting the time
differences predicted by the Galilean rransformation, no shift in the appearance of the
field of view was detected that might be attributed to motion through the ether. This
Michelson-Morley experiment was repeated many times in different laboratoties using
apparatus constructed of different materials. But each lime the negative resull was
obtained. This failure of the experiment to find an ether questioned the validity of the
Galilean transformation, and the special theory of relativity was proposed by Albert
Einstein (1879-1959) in 1905 to resolve the issue. This theory asserts thal no
physical experiment can detect the absolute motion of an inertial reference frame,

1.4. SPECIAL: THEORY OF RELATIVITY

The consequence of the results of the Micheloson-Morley experiment is that the
Galilean transformation is not valid, and that velocities do not add vectorially at high
speeds, Since no physical experiment can delect the absolute motion of an inertial
reference frame there is no purpose in postulating the existence of an ether. Also, there
is no purpose in speaking of a velocity of light except with respect to the observer
who measures it. No observer is supposed to be a pmfc_rrcd one, that is, superior to-all
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athers. The velocity of light should have the same value to the observers of all inertial
frames. The fundamental postulate of the theory of relativity is tha “Physical law must
have the same meaning in all inertial frames”. This postulate is known as the postulate
of covariance of physical law. Thus, the speed of light is the same in éver}r inertial
frame. Then the speed of light is the same in all direction and does not depend on the
earlh's motion in space.

L5, LORENTZ TRANSFORMATION

We have seen that the Galilean transformtion is not valid at high speed but it is true
in ordinary experience where one deals with low speeds. Therefore, in view of special
theory of relativety a new (ransformation between two inertial frames is required. This
transformation should satisty the following conditions

(i) The transformation must be linear ; that is, any single event in one inertial frame
st trapstorm'to a single event in another frame, with a single set of coordinates,

(i1} In the limit of low speeds compared 1o the velocity ¢ of light the transformation
must approach the Galilean transformation.

(iii) The velocity of light must have the saime value ¢ in every inertial frame,

A flash of light (wave) spreads out as a growing sphere like circle ripples in the
water of a pond.

The radius of this sphere grows at speed ¢, and the equation of the sphere is given
by '

x2+yi+z2=022 (1.5.1)

Similarly, in the primed inertial frame it is also spreading sphere. If the flash of
light takes place when t = t* = 0 and when the origins of the two frames coincide, then
the equation of the sphere of light is given by

X2y 24 72=cY?2

The coordiante transformtion which satisfies these requirements is known as
Lorentz transformation. :
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If the axes of two inertial frames are parallel and the origins of these frames
coiricide at t =" = 0, then Lorentz transformation between these frames is given by

x"= y(x —vt)
il
z'=1z (L53)
e __1?_{_
V=1, C?]J
where "f=—il— ...... {1.5.4)

Here, it is taken as that the primed frame is moving with spged v in the positive |
direction with respect to the unprimed frame. The inverse transformation of ( 1.5.3),

which is also a Lorentz transformation is

= yix'+V’)

y=y
A (L.5.5)
] V.‘.’W
=9 1"+ =5
L IT[ e )

In this case the unprimed {rame is moving with speed v in the negative x° direction
with h:spcct to the primed frame. Clearly, the Lorentz transformations (1.5.3) and
(1.5.5) sutif}' dbove conditions, These are linear transforamtions, and for v << g,
¥ = L, these transformutions become the Galilean transformations, Thus, in the limit of

low velocities the Lorentz transformation yields the results of ordinary experience.

Exercise 1.5.1, Show that the Lorentz trﬁnsfﬂrmatinn (1.5.3) satisfies the
requirement (1.5.2) il (1.5.1) is taken into account.
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Unit : 2 [J Simultaneity and Time Sequence

2.1. SIMULTANEITY AND TIME SEQUENCE

We have seen that the Lorentz transformation fulfills the condition (iii), that is, the
velocity of light is the same in al} inertial frames, In each frame a light sphere spreads
out from the origin of the frame with speed c. Let us now examine some implications
of the Lorentz transformations. Let the two events, | and 2, be simultaneous in the
unprimed (inertial) frame. In order to ensure simulianeity of two events occurring at
different places the obsevers must have synchronized identical clocks. Also, the
observers should have access to identical meter sticks for measuring the position
coordinates, In fact, each event is described by at least a set of fc_sur coordinates the
three position coordinates and the time. If the measurement of simultaneity of these
two events s established, say at the time t; = t; where (%, y1. 21, t;) and (X2, ¥2. 22,
) are the four-coordinates of the 1st and 2nd events respectively, then from the
Lorentz transformation (1.5.3) we have

t =1{z, —%‘-J and 5 =1{12 f"é‘;} ...... (2.1.1)

Therefore, t5 —tj =7 E‘%{x, — X3) ORI U e

From this relation we see that the two enents will be simultaneous, ic., by = tf if
they occur at the same point, ic., al x; = X,. The second event may be observed in the

primed frame earlier or later than the first depending on their postiens in the unprimed
frame.

Let us suppose that t; < tp, that is the first event precceds the second in the
unprimed frame, Then we have

tz—t|=T[{lz —_51)—%{}{2'—?13}] ....-.(2.1.3)

If RH.S. of (2.1.3) is equal to zero, then ] = t4, that is, the Lwo evéuts are
simultaneous in the primed frame. On the other hand, if it is less than zero, then the
events are observed in reverse order in the two frame. This will eceur if

2
Xp=x1 > (b —y)<elty -t .. (2.1.4)
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I'his corresponds to the case of the two enents happening at such a distance apart
that a ray of light leaving the first event could not have reached to the place of second
event i time to cause that event.

Thus, we see that the time sequence of two events can only be reversed if they are
not “causally connected”, that is, one event can ot cause the other by sending a signal
at the speed e. As no signal can travel faster than light, therefore no signal can bridge
the interval between the two events separated by the relation (2.1.4). Cnnsaquently,
one event cannot have the knowledge of the prior occurrent of the other.

2.2 TIME DILATION

Let us suppose that a clock is al rest in the primed (inertial) frame. Such a frame is
called the proper frame of the clock, This frame is suppused to be moving with speed
v in the positive x-direction with respect to the unprimed frame, say, the laboratory.
Therefore, the clock is aiso moving with speed v in the +x ~direction. By application
of the Lorentz transformation (15.5) we have

33 i "rr?\'u.'f = 3 "KI
(&) = + - = 4 r—
1 r[ll E-E ]1 l_; }'[12 cz ] ...... {2.2.1}

where (x{, y{ z{) is the fixed position of the clock in the primed frame, and t{, 14 are

the two beats of the clock in that frame. The observed times in the unprimed frame
corresponding to these beats are ty and t7 respectively. Therefore, the time ditference
in the unprimed trame is given by
L=ly=yt =) - e (2.2.2)

1

I
(-5)
c?

consequently, th—t; > t5 — tf

MNow, ¥ = =1 for Ogsveze e 7

Thus, the time interval in the proper frame of clock will be smailer than the
observed time interval in the laboratory frame. That is, the clock which is moving with
respect to the laboratory runs slow. A proper time interval is dilated or expanded when
measured from some inertial frame other than the proper frame itself.
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Example 2.2.1. The subatomic particles, mesons, decay at an exponential rate
such that !/, of the original number remains after 2.6 > 10-% sec. in a coordinate frame
in which the mesons are at rest, Beams of n—mesons produced in an accelerator move
at a specd of 99% ol the velocity of light. Find the decay time of mesons in the
laboratory [rame. Calculate the average distance traversed by the meson beam before
dropping to !/; of its initial intensity.

Solution : Y =0:99, 7= SR
{1-(0-99}?
decay time of mesons in the laboratory
=2:6 % 10-8x 7-18 = 1-87 x 107 sec.
meson beam moves with a speed 0-99 x 2.998 x 10® m/fsec
In decay time the beam moves a distance 1.87 % 10-7 ¥ 0-99 % 2.998 x 108 m

=36m

¥xercise 2.2.1. A particle with a mean proper lifetme of 10-5 sec. moves
through the laboratory at 2-7 x 1010 em/sec. (a) What is its lifetime, as measured hy-
observers in the laboratory ? (b) Calculate the average distance traversed by the particle
in (he laboratory before disintegrating. (c) Repeat the calculation of the preceding part
without taking relativity into account.

[ﬁns. (a) 2:3 % 1070 sec. (b) 6:2 % 10 em (c) 2:7 % 104 cm])

Exercise 2.2.2. By taking differentials of the Lorentz transformation equations
show that the quantity ds transforms to ds” where ds? = ¢2di2 — dx2 — dy? - dz? and
ds™2 = ¢2dt? —dx 2 —dy 2 - dz"2, '

4.3, LORENTZ CONTRATION

Let us find the length of a rod in the laboratory (unprimed) frame by placing it at
rest along the x-axis. The difference in the X-coordinates of the ends of the rod gives
the length'| of it. Now, with respect to an inertial frame (primed) moving along
negative x-axis with speed v, the rod will appear to move along positive x"-axis with

134




speed v. If (x, 0, 0) and {xy, 0, 0) are the end points of the rod in the laboratory, then
by I orentz transformation we have

Xq = P(x5 — '), % = Y(x{ —vt)  .....(2.3.1)
whr:,rc the end pl‘!ll‘ttb (x{,0,0) and (x4,0,0) are measured by synchronized
clocks at time t” in the primea neme, 1f 1” is the length of rod in this frame, we have
l=xs—x1=79(x5 -x{)=9W ... (2.3.2)
The unprimed frame (laboratory) is the proper frame for the rod, and since y> 1
we see that '
1* < | = proper length R (2.3.3)

Thus, the length of the moving rod (as appearing inthe pnimed fraine) is<ess than
the proper length. This effect is called Lonentz contraction.

Exercise 2.3.1. A rod has a length of 80 cm. When it is moving with a speed
of 0-75 ¢ along the direction of its length, find the length of the rod with respect to an
observer at rest (Ans. 53 cm)

2.4 VELOCITY TRANSFORMATIONS

In order to find the Lorentz transformations of the velocities we take differentials
of (1.5.3) and (1.5.5) to get

dx’ = y(dx - vdt)
dz’ = dz ovvnew R T)

dt’ = T[dl - V%J

dx = y(dx"+vdt’
dy = dy’
and drssdyl 0 A T e (2.4.2)

vdx'
dl="f[dt = ]




#

and ), = ar e the x componen! and X -component of

Now u, = d—}: and  uf
velocity of Iha particle in the unprimed and primed {rames respectively. Similarly, Uy,
; are the other components of the velocity in the respective frames. Then,

u,. and uj,
it is casy to find the following Loremz transformation for the velocities
RSN o By

w, =V u
u, =4 ) = : yui =
| My ¥ i U,V ¥l 1 u,v
. Wt =
= ol c?
and
u) + v uy W,
= — WU A, = — s (2.4.4)
u y u’lv ui v
| 4 A~ gt L o
;e 2

[t is to he noted that the primed frame is moving in the +x direction with respect (o
Also, in the noneelativistic limit v << ¢ or, f = -

the unprimed friune with veloeity
<< L ihe above equation reduce to the Galilean velocity transformation (1.2.7)
Now il the moving particle is u phowon winch is moving in the primed frame with

e K2

tvelocity © then is veloeiy in the unprimed frane is

tor any value of v, even il v = c. Thus, we sec that the velocity of light is the saine

in all inertial frames,
Exercies 2.4.1. Two particle come toward each other, each with speed 09¢
with respect lo the luboratory. What is their relative speed 7 (Ans. 0-995¢)
2.5. TRANSFORMATION OF ACCELERATION )
Taking differentials of the velocity transformation equations (2.4.4) we huve
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i ,
du, = ﬂﬁh——— bl - dut
X "n"i.l' ‘l.u'u’ ¥ Cz X
1+—E3 . [I 2:«:]
c.
3 ¥ #
T dus, N uy, e
Gy, = P R
vl 1+ x vig )7 € fe
¥ 2 T+ o P oo {2.5.1)
'du = duj U Y du’
e vu g eR =
i Y 5

We shall consider the case where the particle is instantaneously at rest in the proper
frame. that is

o=l = = (2.3.2

But the instantaneous -lLCElﬂrﬂlIL'rﬂ is not necessarily zero in the proper frame. In
this case we have from (2.5

2
duy = du;(l — %] = y~2du

duy = y7'du, du, = y~'du

sverl2i8)

L

Now, from Lorentz transformation we have

o P XX
= 22)

By taking differential we get

— ’ __"f_,_[_{ii = L __l ]
dt = ydt (l 3 dl'] Yt (I L_qu)

=ydt” (since uj=0 in the present case) ....., (2.5.4)

Dividing each of equations (2.5.3) by (2.5.4) we get the following ransformation
equations for the accelefation as
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a, = dt ="l'3_dF-=

ay i iDiD)

The above equations can be written without specific reference to an axis system,
We may replace the subscript x by one which indicates that we are considering a
component parallel to the motion of the particle as observed from the laboratory frame.
Similary, the subscripts y, z are rcplaceﬂ by a subscript indicating the commonen:
perpendicular to the motion. One can then wrile

ay = yafy
AL L RS (2.5.6)
4, =Y ray

2.6. MOMENTUM AND FORCE

In the nonrelativistic case the momentum of a particle of mass m moving with the
velocity Vis given as

I o R S i (2.6.1)

In the relativity theory the momentum of a particle in an inertial frame should be
defined in such a way that in the nonrelativistic region | ¥ | << ¢, B — 0 or ¢ — =,

the momentum must be given as in (2.6.1). It is, in fact, given by
P = myv = "Ly oo (2.6.2)

Clearly, fE=———y] a5 o kel

Thus, the relation (2.6.2) corresponds to (2.6.1) of the nonrelativistic case.

MNow, we can interprete ym as the mass of the particle which is moving with the
velocity v in an inertial frame. Then the usual definition (2.6.1) holds good far the

relativistic case. In an inertial frame which is moving with velocity v with respect (o
the former one the particle must be at rest, and consequently y= 1. Thus, m is the
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mass of the particle at rest in an inertial frame (the later one). This frame is called the

rest frame of the particle, and m is its rest mass. The mass of the particle which is
moving with velocity v is given as

my = N v=|$| veenne(2.6.3)

The momentum p and force F are related by Newton's second law, In fact, we
know that

o dﬁ :
s ar ..L..,{'Z.ﬁ.‘i}

In the nonrelativisitic limit the momentum is given by (2.6.1).

Therefore,

Ra (mv) = m dv (for constant mass m)
dt dt
= ma

But for the relativity theory we have to use the relation (2.6.2) for momentum and
consequertly one has
=

d( - dv, -d
Fef(m@)=myFrmosl L (2.6.5)

The second term of R.H.S. in (2.6.5) is in the direction of the velocity vector, The
first term is the derivative of the velocity vector with respect to time. This deritative
may be in any direction. So we resolve it into a component perpendicular to the

velocity and a component parailel to the velocity, Writing the perpendicular component
as the perpendicular component of the acceleration, that is, writing

dv J
(%)
welind F| = mya;
To find the component of the force parallel to the veloeity we first compute %}1
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v2
<
o SR (_i) L dv®) | L d(v?)
-2 3 2 3
dt 2\ e ViV di 2c Py dt
5T I=a
Now, v = v? :
2y d{v2 =
Therefore, d{';; ) (dt ) =12V, g—: =72v.a= ‘Zv[ﬁ|cus 7]
where 0 is the angle between v and a. Thus, |ﬁ cos B is the componcni of the
T _ d(v?
acceleration in the direction of the veloeity, that is a;;. Then = Zvay,
d | | v
Hence HT— =32 T 2va = = + dy
v2 )2 yENE
1 - a3 | - =z
Consequently, F); = mv E:Ef —l-a—ia“ + mya,
JiNE
-5
2
=id11 n:; l : =
w2 \2 “2\z
e T2
2 3
= ,_ﬂ._ﬁ{z_z T :2}
[
it
a2
= a4 L = m"f3ﬂ“ s R )
vz \2
Il i
,:2]



Equations (2.6.6) and (2.6.7) give respectively the components of force,
perpendicular and parallel to the direction of motion. The mass my? is called
longitudinal mass..whereas my is the transverse mass, The difference in these two
masses implies that at high speed (that is, in the relativistic region) the scoelerating
vector is not parallel to the force vector,

2.7. ENERGY OF A PARTICLE

: — . &
The work, dW, done by a force Fmoved through a small displacement d3 is

siven by
dW=F.d§d ... (2.7.1)
We note that d5 = v dt
,,,,,, 2.T.2
and F = -Eiﬂ = Ed— myv) ; }
Therefore dW = “( (A (2.7.3)

Then the work done in replacing the particle from rest “at position s = 0" to 4 final
velocity v “at position 8 is given by
& - 5 B d o o
W= _l Hods = im—(m}fv}. vt

myv). v = [ {my(dv). v + (dy)mV. v}

G"-—-ﬁ{
b —

Now, dy = ds >=~—]2-——-1—-3-'G.dff

i
(-5)] " (-%)
Y5 o
| o= e

Therefare, W = I {myw.dv 4+ = —TV"__ 3 gyl

3
0 5 _ﬁ i
9 * cz




4
- : : T o, dy
U | v 2 | vi T
" X

oy 9
= m;: ,I ] d(v—J] {Simc v.dv = l;fﬁi L. %dvz
2 : =
O (4~ 1"2_]1
S

On integration, we find

W = I'I'I-IE2

2
= - me
£ g i v
by Jr—s
I C
0
or, - W =myc? - me?

The second term on R.H.S. of (2.7.4) containg no velocity and we call it the rest

energy or mass energy of the paraticle. We say that the particle o1 mass m has the
encrgy E when it is moving with velocity v and this energy 1s glven as

E = myc?

The kinetic encrgy T is the energy acquired by the particle as a result of the work
done on il in raising its speed from O to v. This kinctic encrgy is the difference

between the encrgy E and the rest energy me?. Thus, the kinetic energy T of a particle
of mass m moving with velocily v is given by
T =E - me? = me(y-1)

Now, we can find the relation between energy and momentum.
Since, E=my? and p=myv
E2 - 'ﬁ!c!

we have

i

anTIc4 = rnl-rzci ﬁ-'-'.

n]?uz ITICI 2 ?ﬁvz }
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2
= mE-ﬁ@“(l 2 %‘:.2_]

= mic4
or, E2=p%c24+m%ed¢ . (2.7.7)

Example 2.7.1. In the limit of low velocitics show that the usual expression for
kinetic energy can be obtained from the relativistic expression of it,

Solution : For v << ¢, we have

3 |
; 2N T
T=(1"—‘ETJ =1+
1 vi |

g |'l'||'.,":1I:"l‘|Ir - ” = m(_:2 .E..F = Emvl

P
nml-_«:m
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3.1, DEFORMATION OF A CONTINUUM

Any material body is composed of a Jarge number of discrete molecules separated
from one another by emply space comparable with the molecular size. The avai‘age
spacing of molecules differs in the physical states of matter, that s, in solid, liquid and
pas. In solids these molecules are more closely packed than those in Liquids and gases,
Aithough these materials are essentially discontinuous and consist of sulficiently large
number of discreate molecules, the distance beiween two neighbouring molecules are
very small compared to the dimension of the body. Conscquently, the average
behaviour of the whole body made up of such large number of molecules is important,
and we can disregard the actual discreie structure of it. We, thus, can have a
continunm structure or a “continnum’ which is a continuously distributed matter
completely filled up in a negion of space.

A material point of a “continuum™ or a particle is the matter contamed in an
infinitesimally small volume whose phyéicai dimensions are so small that one can
regard it to be a spatial point. Thus, any material point can be associated to a spatial
~ point. The physical properties like density, displacement, velocity ete. are uniquely
assigned for these material points of the continunm. Obviously, these physical
properties are expressed as continuous {unctions of position and, of course, of time.

Let us consider the configuration the body, which is the complete specification of
the positions of all material points of it at a given time. This specification is the rc'giﬂn
of space of certain velume having a boundary surface. This region contains the
continuous body at a given time. Let us suppose that at t = U the region of space By
having its surface Sg and volume Vg is the configuration of the continuuin, Due to the
application of external forces this configuration may change 1o (B, 8, V) (say) at a
subsequent time L. As the consequence the positions of all material poinis of the body
are changed. This change of configuration of the body is called “deformaiion.
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3.2, LAGRANGIAN AND EULERIAN METHODS OF DESCRIBING
DEFORMATIONS

In Lagrangian or malerial method of deformation is described by “following'' the
motion of material points. Each material point of the continvum iz identified by the
rectangular carlesian coordinates (X, X5, X4) ol its position n iis initial undefornied
state. In this desription the physical properties sre assigned to these uiterial points
labelled by these co-ordinates at ihe initial configuration, Consequently, aii these
physical properties must be function of these co-ordinates wid the time 1 The pasition
of the malerial point in the deforined siate al the time L given by the rectanguicr

cartesian co-ordinates {x,, x5, X3), must also be functions of X, Xq. X3 and 1, that 18,
Ki:xi [Xl,K?, X:‘r' ‘,} fis= ;_"_1_13 -1{“} I:.r

The co-ordinaies (X, X;, X3) which are independent co-ordinales are calizd
g ian (or materinly co-ordinates. On the other hand, the ndent co-vrdinates
Lagrangian (or material) co-ordinates. On the other hand, the dependent dinat
(X1: X3, ®3) are called spatial co-ordinates

In the Eulerian or spatial method the fixed spatial points replace the moving
material points of Lagrangian method in describing the deformation. Each spatial point
in the Eulerian method is occupicd by different muiterial points at different limes, and
one can observe the changes of various properties at the spatial point. In other words,
the spatial points are endowed with physical propertics, and the waterial points
occupying a spatial point in different times acquire these physical propertics of that
point, Thus, the physical properties are functions of the reclangular cartesian co-
ordinates (X, X1, X4) of the spatial point and of the time 1, In puriteulur, we have

X; = :":.i (Kh .Kz, ?{31 l} i= 1,2. 3 ...[?2}
and vy = v (X, Xq, X3, 1) =, 2:3 BIRPRE (P

where the material point which was at the position (X, X;, X4} in the
undeformed state at t = 0, passes the spafial position (x|, X,, x3) with the velocity (vy.
Vg, V3) at the time 1 (in the deformed state). In is to be noted that in Eulerian methogd
the initial co-ordinates (X, Xy, X3) are irrelevant, and the spatial or Eulerian co-
ordinates (X, X3: X3) where the material points resides at time t serve the purpose,
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For a fixed time t we have from equations (2.1) and (2.2)

X =% (X1, X3,X3)
and X, =X, {x_,,xz‘x:,,], i=1,2,3

These equations relate initial configuration to a subsequent conliguratoin, and
thus, the deformation is characlerized by these equations. If in a deformation there ure
no changes in the relative positions of constituent material points of the continuum
body, that is, the length of any line joining any twn material points remains
unchangcd, then the deformation is a combination of translation and 4 rotation about an
axis at any point causing no change in shape of the body, Such a.defomation is known
as rigid-body deformation, and the body is called a rigid body. On the contrary, the
deformation which causes a change in the shape of the body, that is, the relative
positions of material points of it change, is called a “strain deformation”, and the body
is said o be “deformable”. Such deformation is possible in the case of occurrence of
relative displﬁccmcm of points in the continuum with respect to each other, that is in
the case of changes of the length and orentation of any-line joining any two ponils.

The displacement v of the malerial point [K|. K, X3) from its initial (1 = 0)
undeformed state (o the position (x;, X5, X3) in the deformed state at time t is defined
by '

y=x—-X; i=1,2,3 . {2.5}

In should be noted that in the Lagrangian method u; and x; are functions of X
X5, X5 and time t, Therefore

L {Xh K;, X.:"H [} = Xj {Xli Xz, XJ, ﬂ - Ki ...... {2.{:}

On the other hand, in the Gulerian description , u; and X; are functions of X, %5,
X3 and t, Thus,

ui(X ), X, X35 1) = X5 — X (%), X5, B (2.7)

3.3. MEASURES OF FINITE STRAIN DEFORMATION IN
LAGRANGIAN METHOD :

We consider the finite strain deformation from the initial undeformed configuration
(By, S, V) to the deformed configuration (B, 8, V). Let Py and Q, be two
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nciéhbuurillg material points (sec fig. 1) in the undeformed configuration, and di be
the leéngth of the line element PyQy which is oriented in the direction (N, Ny, Ny).
The cururdinates.'nf‘l:'n and (J, are given l‘ﬁspeﬂliﬁcl}' as (X, Xa, Xy) and (X + dX,,
X4 +dX,, X5 + dX3) with respect to an orthogonal sel of co-ordinale axes fixed in
space. In the deformed state the positions of these two points will be P and @ in the
region B at time t. Let dl be the Jcngtﬁ of the line element PQ oriented in the direction
(ny, 0y, n3), and the co-ordinates of P and Q are (x, x,, x4) and (x; + dx, x, + dxs,
X4 + dx5) respectively with respect to the same set of co-ordinate axes.

Fig. 1
Therefore, we have

3
dps= (dXiJZ = dXdX;  (using summation convention)
i=l

=5'|_1 d}{i de (3”

where &; is the Kronecker delta defined as

ﬁi- =] i. = j
.I L ]
={],i:tj} ] 3
dX,;
Also, we have N;= -dT:L S (&l (3
Again, diZ = §; dxj dx; ... (3.4)

and ni=9a"ll,i=1,z,3' o (3.5)
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Now, (2, 1) characterizes the deformation, we have form this equation,

ox;

dx; = E}X

~odX; .. (36)

Substituting this relation into (3.4) we have

ox dx; ax: 0%,
S |
di% = 8 Sl dX ek b gx, = o KX e @a.7)
. ax; ox;
Consequently, dI*-dL?= &D{k BX1 dX;dX, - §;dX;dX;
(.f;k g}’;l dX dX,; — 84X, dX,
ax -:':'lx
- ZIdekdX! ...... {33)
- L[ 9% 9%
where I'H = 3 (axk ax' - ﬁ“ {3‘9}
We can also write
; 2_412 dX, dX,
ﬂ—&i:—- 20 ol = 20NN e, (3.10)

It v; be the displacement of the material point from its positiﬂanu to P, then
_ Uj = %= X; Tt o I g
Similarly, the dispacement w; + du; of the material point Qj to the point Q is given
by
uj + duy = (% + dxg) = O5G+4dX) L .(3.12)
Therefore, using (3.11),
—Xi+du=x - X, +dx; —dX;

ory L!Ki = du; + dx] ...... (3.1 3}
a"‘ EELX“J; : e (3.132)
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Therefore, from (3.9) it follows that

au du;
Fpy = {[axjk +5 ](ax TEHJ UH}

al.tl aﬂk ﬂu; aui' _
{a_{ 4 X, + axk axl} ...... (3.14)

Again, the change in the angle between two line elements due Lo the deformation
can be ealculated. Let © be the angle between the line elements PaQy and PR, in the
undeformed state. In the deformed state these line elments are PQ and PR respectively
and 8 is the angle between them, Let the lengths of PyRy and PR be 6L and 81
respectively, and let the co-ordinates of Ry and R be respectively (X + 0X,y, X, +
8X g, X5 + 6X4q) and (x; + 8xy, Xy + D%y, X3 + 8%3)

Then coat= %}5% ...... (3.15)

8%,

Note that M, = 51 (i=1, 2, 3) represent the direction PyRg The line PR 15

. . S ox
oriented in the direction (my, my, my) where m; = 3

Then cos 0= Er%- ...... (3.16)
Now, &x, = g}i
812 — 512 _ . OX; X
Therefore, =P = 21y St el = 2 MM
di? - dL.?
. and T*ErleiNj S (31]'?)
Also, dx;dx; — dX8X; = dx,bx; — dX;8X;

o axk axk

(gh a"k de 5X,

= Zr,idX,EXJ
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dx; Bx; _ dX; 8X; _, dX; X,
dL "L "L B 2% AL L

dx; ox; di 3l dX; 8X; . dX; 8X;

or,

°h 1 ® LA T dL BL = 2NidL 0
or, by using (3.15) and (3.16),
;Ijli fi cos 0 —cos @ = 2 N; M (3.18)

When rj =0, we see from (3.10) and (3.17) that dl = dL and &1 = §L.
Consequently, from (3.18) we have 8 = ©.

Thus, the length of the line element and the angle belween two line elements
remain unchanged during the deformation, that is, it is a rigid body deformation, The
recessary and sufficient condition for a rigid body deformation at each point is, thus,
rij = 0. A nonzero tensor r;; represents strain deformation and rjj is known as strain
tensor, a finite strain tensor, It is apparent that 1jj is symmetrie, i.e., rj; = Tjie

3.1. MEASURES OF FINITE STRAIN DEFORMATION IN EULERIAN
METHOD
We. now, consider deformation in Eulerian method in which the sfmtiai co-
ordinates (x;, Xy, x3) and time t are regarded as independent variables. Also the
deformation is given by
xk # Xk {:{l! xﬂ_'ﬂ xj'r t]

a%,
"aT-(]KJ e {4.”

i
aTde}[ dxj

Therefore, dX, =

dL2 = dXy dX, = ax

and  dI? = &; dx; dx;
dI? — di.?

Consequently, Tt = 210 veeees (4.2)
- _[| EXE an ;
where Thj =) [ﬁu = —-'-axi _—an SRR L
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Since dXjy = dxji — dug, we have

aX oy,
_a_h__ = By — E_' and therefore

! L du du
o= -(o- 3o ]}

i L Sy 5 Eu
_ 1 ]9y a“l _ duy duy 4.4)
=2 ax E}x dx; dx; dmr A
Again dx; 8x; — dX; 6X; = &y dx; Oxj - Xy Xy —5 dgdn;

Hx-, d ,I.
dx; 8x;  dXy 0X; dL 8L Xy
Qr, d_jl EI‘! d.L E‘L dl EI 21].] d.l F_ET]'Jn1n]J

or, cos @ - -:1] %11‘ cos @ = 21;n;m;

;@9

Now, if 1 = 0, dL = dl, 8L = &1, and hence 8 = ©. This corresponds to rigid
body deformation, Thus, the necessary and sufficient ceondition for rigid deformation
at cach point is 1);; = 0. The non-zero tensor T gives rise (o strain deformation, and it
can be regarded as the measure of this strain deformatoin. It is casy Lo see that 1 =
T)ji, that is, 75 is a S}rmmetrlc tensor of rank two. It is called Eolerian finite strain
tensor.

3.5, INFINITESIMAL STRAIN TENSOR :

In the case of smail deformation one can oblain infinitesimal strain tensors from
the finite strain tensors of Lagrangian and Eulerian methods through approximations.
Let E;j and ej be the Lagrangian and Bulerian linear strain tensors respectively defined
by

i 1 aui(xl.xg.xg au (xu-xbx'!)]
By —E{ il SIS (5.1)

151




and

e = _El_{a“i{ﬁi-xz«xﬂ 3 du;j (x4, %7, %)

Ix; . oK, —} ...... (5.2)

In fact, if we assame that all displacement gradients % (nj=1,2 3y are
j

numerically small compared to unity,

ie., <<l (G.j=1,2.3) ... (5.3)

du
ekt

such that their squares and products can he neglected, then to the first order in the
displacement gradients

F]j(Xl.Kz,Kj): E-ij(X],lex3) ...... {5.4}
: e, OIE=dTF
Alse, we have T2 *—EEHNENJ PP e B
a L2 ooch  cos®= 2B NN 5.6
HWE L 51 SORU —cosB = 2EGNIN; ... (5.6)
i |9y N
Similarly, for b <<l (Lj=1,2,3) ... (57
i .
we can have Hij =€jj  oveer (5.8)
2 2
-d _
'(_H‘_EH—?L-:'Eﬁuﬂiﬂj sesnas I:Sg)
cos 0 - %Lr-%-r:ns@—'-icunimj ...... (5.100

For small deformation, the displacements w; are small, and the product terms like
o :
|

t; X, can be neglected. Consequently, we have, since X = X; +uy,
: WXy, X2, X3) = (X +uy, X, + uz, X3 + uy)
= ui(Kt.Kz,X3}+'uj él;-?- +..0.v0 (by Taylor expansion)
i
=0 (X}, X5, X;)
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e O (X X, X5)  duy(x.%0,%5)
[herefore, —--———axj = E}Xj

- aLH(E] v &7, I3] a"‘k
- a'.’il HXJ

Taui(x,,xth) 5 +E'.ﬂ5.
i B.‘{E ki E.'XJ

By neglecting the product term we have

alti{_}{l,}iz,xj) i E}ui(x;x;.x;)a
=i ey

k|

_ ui(x), %55 %4)
= e (5.11)

Therefore, we have

E'Ij_ = _é[ﬂui[){l,}{g.xj} % &uj[}{l .Xz, Xq)}

o%, oX,

& l{a“tfxlrﬂzr’lﬁ} auj(}‘l-xz-xi}]
5 ¥

ij ﬂxi

Thus, we see that the Lagrangian and Eulerian lincar strain tensors are identical,
component by component, for small deformation when both the displacements
gradients are small quantities such that their squares and products can be neglected.
Therefore we da not require any distinction between the infinitesimal strain tensors in
the two methods of deseription, and simply call it infinitesimal or small strain tensor.

Ex, 5.1. If the equations characterizing the defoimation are given by
xz=X7_~EK¢ +E}{3

53‘:}{]—-6){2
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determine the Lagragian and Eulerian finite strain tensors. Also find infinitesimal strain
tensor when € is a small parameter,

Ans, Uy L”X'-'}{i:EXE, uzzxz—}{z:—e}{, +Gx_1
UB;'--EXE

1 du, :]uk oy | M oy 0 e
MEST 2&:’{1 X, X, 'f[‘””"( €) +D]" A

e du, auk du | g
LA ) axz axX, |~ 21

0+ & +0+ (—e]z] =

| %]

_ 1|, 9uy  du, duy w2 &%
™= 7|29, T X, %%, 2':“”*'5*“]‘1

t[ du,  Buy r]l.hM ouy
Iy =% +
12 2 _HXI EXI 3':(. axi

%[E—E+ﬂ+ﬂ'+_ﬂ}=ﬂ

e [ 9u, . duy . du, duy,
W= | 9%, T, o, 3%,

]=%[E—E+ﬂ+ﬂ+ﬂ]:ﬂ

S 1 haLla 3111 . aIJL Ehlk
31 72| 9%, T oK, ' 9X, 9%,

} 2[(}+'.’J+[}+{; e) e+ 0]

2/2 0 HEIIIZ
Therefore, (rij]= & 0

= ?/2 [:- ezfz

2
n auz r duy du, ¢ ']uk] 1[ E (-e) € (— = }
e dx;  dxy dxg rEzet  dadet (1 +2 -EE)E

e Al

(1 fzé] [1+2 EZ]
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3 3 3
L E o + S —0

¢ @+25ﬂ2 @+zeﬂ2 p+2£f

) g a3
1'131=é|ia-u" uj a“kau“} =5 =t i[ )

___._.I- —_— e mma || D — -
dxy  O9xy 09X d%; | 2| |42 143 &2 (H.geﬁ)z

TR
(1+2f52)2 {1+ze"-]2

- ——-—I——-—-f[—z E2(|+2E2)+E4+E2 +e4]

1(1 +2 EE)
e e
-EU+2eﬂ2[ZE + 21+2€)
Therefore,

ez 0 —Ezfl
=] S £8
—e*fo 0 eth
For small €, the infinitesimal strain tensor is #ero (to the first order of &), This
corresponds to rigid deformation.
Ex.5.2, If the equations characterizing the deformation are given by
X =X, +eX,
Xy=Xs+eX;
Xy= X3+ €X,, wheree is small,
determine the infinitesimal strain tensor.
Ans. u=x-X =X,
W =% - Xy =X,y

W=xX3-Xs=eX,

L)
Ky



Now, solving for X, X;, X5 we have
-xl(i+ EZJ— € X9+ e’ X3
1+2 €%
L EXpFXe—E X
X, = 1 22 a
14+ 2¢
¢ %4 (1%
X1=E X+ € X9 £ )Xq
: 1+2¢*
E1 K|+E12-E2 Xq
Therefore, uy=x;-X,; = 3
: 1+2¢€
2e’ xyg=EX+EX
u1=x2—X1= 12 It 3
1+2€

Ay

'E2 Xa—= Ez Kj— E Xq
U3=xa*-x:.!= 3
1+2 ¢ :

1 :l-zaul_a“ka“k mills € ._. e? \2_( o ]2_ _._iz._
U720 Toxy  oxy ax 142 e? ]+2E1J 1+2¢€* l+2¢€*

i

L f2e2(1+2€?)-2¢% <2}

1y e _ 2é g? =
271426 (14262} (142e2) | 2142e2))
N, 1 2 | 4] _ &

2(1.+2e2]2 (e 21426
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_”1_[ 59U _;‘_Fl“!*] B8 hm gt NSRS
2= 2] 73%, "%, 9%, | 2| 42 (1+2€) (1+26%) (142&)
N de’(1+2&° —2&1—45“=——~——1~-& 2e’+4e’
2(1+2E22{ ( ) jz{nz.:.’-)z{ }

L

“H¥2e

= =l[zau3 duy auk} Us e® et et
¥ 2| Tdxy dxadxy | 2| T1+2€f (I-l—'ZEE)E (H—EEE)E (l+'ZE'*!)z

3 —1—-3_{2 & (1+2€2)-2¢t —51}

2(1+2¢€)
il I 2 S
ofie2&) <) A1+2¢€%)
1] a9y Eluz _dugduy || c e et
M2 =35 dx; Hx, T 0x, 0%y 3

“2|1+2&% 1428 (1+253):1

_e)e Ez) C<)-¢)

(v2e] (w2e)

" N s i Sy
2(].5.252)2[ € +2r_. E] 0
0 €2 0
Therefore  (E;)= (e iJ)_[E,Jz 0 5]
=

3.6. GEOMETRIC INTERPRETATION OF STRAIN COMPONENTS

We shall follow the Lagrangian description for deformation in order to give
geometric interpretation of strain components. We have alieady considered the change

157



of length dL. of a material linc clement PyOy (oriented in the direction of (M, No, NLY)
in the undeformed state into the length dl of the line element PO of orientation in the
direction (ny, ny, ny) in the deformed state. It is given by

E .

, T
or, o =(1+2E;N;N;) E14 5 2B NN+ o,

=%
=

If the strain components are so small, such that one can neglect their squares and
products, then we have

dl '
E = i + EU Ni Nj
diadl
Qar,: “Tﬂ:__- E’J NINJ ...... {62}
dl = dL.

Now, = is the extension per unit original length of the line element

oriented in the direction (N, Ny, Nq). 1t is called small extensional strain, and is
denoted by Ey. Therefore,

Epy=EijNiNj ... (6.3)

Now, if the line element was inilihlly parallel to X, axis, thatis Ny = 1, N; =Ny =
0, we get E¢y = Eyy. Thus, E;, is the extension per unit original length of a line
element initially oriented in the direction parallel to X axis. Similarly, E,; and Eyy
represent, respectively, the exlensions of the line elements per unit original length,
which are initially parallel to X, and X, axes. E;, Eqy, By are called normal or
extensional strain.
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Now, if the material lines PyQp and PyR, are orthogonal to each other in the
undeformed state, that is €& = /2, then we have from (5.6).

.{%.%‘-cnsﬂﬂC(}s%=2EijN[MJ (6.4)

2B NM, .
)—W (6:3)

dL 8L

« 9T
or, sin (72- — 6

The right angle between the two orthogonal material lines in the undeformed state
15, thus, decrcased by an angle %— 8, which is called shear along the lwo lines. Let

Yinmy be this shear along two orthogonal line elements initially oriented in the

direction (N, Ny, N3y) and (M, M,, M;), that is, Y = %—E.

: 2E;N;M; i
Therefore, sin%y :—il_fi__I_" e (6.6)
dL 8L
If E) and E, are the exlensions of PyQ, and PyR, respectively then we have
dl —dL, dl '
———=H of,5-=1+E
dL, 1 gl I
aluaL EI_ ....ap{ﬁ.?}

5. = Eq o, s =14 E,

Therefore from (6.6) and (6.7) we have
2E N M,
L+ E;)(1+E,)

sy (nmy = (

For small deformation, sin gy = ¥(my and we have

e Dy = 2B N; My(1 + E; +E; + EBE,)™
TfNM}_I+E|+Eg+E]E2_ ij N v 1+ Byt By,

If the pair of orthogonal line elements initially parallel to X, and X axes
respectively, then N; =0, Ny, = 1, N3y = 0, and My =0,M; =0, My = L.
Consequently, Y(23) = 2E;; or, Ep =%T{13J.
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Eq represent, thus, one-half of the shear between two line elements initially
parallel to X,y and X5 axes. Similar interpretation holds for By and By, Ejy, Esp, Es
are called shearing strains, Ejj thus denoie increase in length of a line element per unit
original length or decrease in vight angle between two line elements. For rigid
deformation E; = 0.

3.7. CHANGE IN VOLUME DUE TO DEFORMATION

Let us consider an elementary rectangular parallelopiped at the piont Po(X I‘, X5,
X3), in the endeformed state, having edges of lengths dX, dX,, d¥X, parallel to the
co-ordinates axes. The volume element of this parallelopiped with one of its vertices al
P s given a8

AV = dX dX, dX,; (7.1)
The pesition vector of Py is X= (Xy, X5, X4) and it moves to the point P in the

deformed state. Let the position vector of P be X ={x i+ %2, X3). In the deformed state.
the position vectors of the other vertices of the parallelopiped are

X+dT D, Rbd 2, 4@
The volume element of the parallelopiped in the deformed state then will be

dv=dR'!, [d?“’ % d?”’] (7.2)

or, we can write
dv = e dxDdx® a, @ (7.3)
where &, the altemating symbol, is defined by
€j="0, if any two of i, j, k are equal

=1, if i, j, k are even permutation of 1,23} (7.4)
=~Lif 1, j, k are odd permutation of 1,2.3

In Lagrangian description of deformation

xi = XX, X5 X3) (7.5)
_ 9% :
dx; = 'aTjdx ; _ (7.6)
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Since the material line elements dX;, dX,, dX; of the undeformed state become
the line elements dx;'", dx; ¥, dx;'* in the deformed state, we have

% ‘
Al o i
dx1 E}Xl {1}{!
ox;
= i -
dx** = X, dX.; (171
ox:
S .

Subsitituting (7.7) into (7.3), we get

= Ix; 9% dxy _|oxg
where: 3= SR 0%, o (0%
dx;  Ox; dx3
ax, oX, X
_ 9% 0%y O3 _ a(x,,xz.xg) (1.8)

E!XE BXE EXE g al ¥ : X, X
ax| E}){E al"..g ( ; E 3] .
oX, 0X; 0X;

ol i-a(Xl + 1;
=K

Jx;
dX;

e

Again, 1= a—xj-

= du; : o
= |+ ax; for small strain
=1 +E1| -+ Eﬂ+E»23

Therefore, By, + By +Bpy=l-1= ;J _1=d‘\|’—d‘f’u
L4

Thus, for small strain deformation Ejy + Egy + sy represents the change in
volume per unit original volume, and is called dilatation or volumetric strain. 3
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Unit : 4 (1 Analysis of Strain

4.1. RELATIVE DISPLACEMENT
If the two neighbouring material points Po(X, X3, X1) and le{_XI +dXy, X7 +
dXs, X3 + dX3) of the undeformed state experience displacements U = (u;, u,, uz)
and 1+ di = (u; + duy, ug + duy, uz + dus) respectively, then du is the relative
displacement of the material point Qp with respect to the material point Py, In the
Lagrangian description, v must be funetions of X, X3, X3, that is,
;= (X, X2, X3)
Thus, u; + du; = H(X; + dXa, X3 + dXs, X3 + dX3)

of; daf; af;
.._f(Xl Xz X3]+ dX, ax dX1+aX

dX, +

Since the points Py and Qg are neighbouring points very closed to each other, dX;
must be small. Therefore, neglecting the higher powers of dX; in the above Taylor’s
expansion, we have

u; +duy =605, X, %) + TL{IXI + rﬂf dX, + T'—afi dX4
du;
= 1 =t E"x—{lx.
or, du =-=dX, e
i ‘a_—xj j
We can write
du;
a—xll_= Rij + Eij ...... {1.3)

du '
with Ej = [_E}ru‘_ rj] Eji, which is the symmetric

small strain tensor of order 2,
duy | oy .
7 = —
and Ry = (axi + _LEX-,] B e e o e (1.4)
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Here, Ry is a skew symmetric tensor of order 2.
Therefore, from (1.2) and (1.3) we get
dy=RydX;+Ejdxy . {1.5)
We form a vector R; by setting
Ri= €k Ri;
€ijk Ri = €ijk €ipq Rap = (8jp) 8kq — Bjg Sup)Rqp
=Ry =R =2Ry (. R =— Ry)
% € ijk R
which ig the inverse relation of (1.6).

Now, R;; dX; = % Eyji Ry dX;  (using (1.7))
|

Therefore, Ry =

=§(Rxd}{]t ...... (1.8)

- s
where R = I:R| " R-z, Rq] and dX = P‘]Qu =_{d}{1. dXE. dX3}

; S [ du allj X au allj .
Now, Ry =ey Ryj =~ [axkj axk] [ il ax Sk 9K,

o auk a'l.l l a'l.]k duy,
=75 Sijk ax; Eikj BX 3 | Sijk a—xj'+ Sijk X,

d . _
= Gk a‘% = (rot u); where U = (uy,u,y,14)

= ol
Thatis, R = rot u

Therefore, the st term of the R.H.S. of (1.5) represents a relative displacement
mvu]vmg small rigid body mtatmn of the neighbourhood elemcnt of P through an
angle 72- R=41 5 Tot u. The vector- R is called small rotation vector and the tensor RH
i5 the small mlatmu tenser, This first term of R.H.S. of (1.5) can not make any slrain

deformation which is caused only by the second term in the relation of the relative
displacement given in (8.5),
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Thus, if the deformation consists of strain deformation only (that is, there is no
rigid body deformation), then the relative displacement is given by

(|Lli=E;j dJ{} .1(1”]}

Now, the material line element PoQg in the undeformed state changes (o the line

element PQ, Also PoQq = (dX,, dXy, dX3) and PQ = (dxy, dxy, dxs). We know
that

dx; =du; +dX; or, di =di+dX

The strain vector at Pp can be defined by

—_— —
BN - PQ_“_];HQD AL
PoQp
sl -l T a R
' :ii'{’{ e
or, B - 9 .;dei - i‘l’j cereni(1.12)
Bigky
Sl o (using (1.10))
=EEN 3 s e (1.13)

This gives a relation between strain vector and strain tensor at Pp. Normal
component of strain vector EXN) in the direction (N, Ny, Na) is given by

E{M N, =EjNiN; = Eqy)
=EjpwhenN;j=1, Na=0=N;
=Eps when Ny =1, Ny =0=N;j
=EjswhenN3=1, Ni=0=N,

For this reason extensional strain Ey), E33, E4a are also called normal strain.
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4.2. STRAIN QUADRIC
We consider a geometric treatment in order o understand the state of deformaion

in the neighbourhood of a point in the underformed state of a continuum body,

Xg, E;??

X

Fig. 2

Let Py(X |, X4, X3) be a point in the undeformed state of the conlinum body. The
axes OXj, OXg, OX5 are lixed in space. Let Ej be the small strain tensor at Py,
Taking Py as origin we can also take o local system of axes Poly, Pofa, Pofs being
parallel to the axes OX,, OX;, OXj respectively. Then quadric surface with its centre
at Pp given by

B fy=1 S e (2.1)
is called the “stramn quadric”.
Now, let us draw any line PoQq through the centre Py to intersect the quadric

surface (2.1) at the point Qp, Let L be the length of PyQg and (N, N», N3) be the
direction cosines of PaQq, Also let (€, £, E3) be the coordinates of Qq, and By, be

the extension of the line element PyQp in the direction of PyQy. Then we know that

By = By NiNj e e
Also, N;= % '
Therefore, we have

Ei&i&;

Eay=—1—
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Since Op lies on the strain quadric, (€, &5, E3) must satisfy (2.1). Consequently
we have

I
EEN}: F ......

That is, the extension of any line element through the centre of strain quadric along
is direction is equal to the inverse of the square of its length.,
Now, let t; be the displacement of the material point at Qg relative to the Py due to
strain deformation only, Then from (1.10) we have
u; = B & vy
since (Eq, Ea, £3) are the relative coordinates of Qg with respect to Py,
Wrting  Ey&i€=26(5. 628 = 000 i {(2.6)
we can now have the equation of strain quadric (2.1) as
2G(E, £y, Eq) = | s e )
From (2.6), we have
—E—(zca~ 2 -(EgSxde) = Ekr(agk g%: ]
= Ekrfakiﬁw + 8564 ) = E&y + By
= EE; + E&; = Bygj + By = 2E;;
% = Byf; =T, (using (2.5)) e

Since gg are direction ratios of the normal o the quadric surface (2.7) at the
i

point Qg, it follows from (2.8) that the relative displcement at any point on the siain

quadric to that af the centre 15 directed along the normal to the quadric at that point.

4.3, PRINCIPAL STRAIN

If the direction of a line element at a given point of 4 continuum body remains
unchanged by strain deformation then this direction is known as the principal direction
of strain or principal axis of strain. The cxtension occuring along the principal
direction is called principal strain, .
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Let Pp(X), X3, X3) and Qu(X; + dX;, X3 + dXp, X3 + dX3) be two
neighbouring malerial points (see Fig. 1). Let the line element PyQo be of length dL
oriented in the direction (N, N2, Na}, Then

Ni =% I B M e (3.1)
Nj Ni=_i

In the deformed state Pg and Qp move to the points P(xy, X2, X3} and Q(x; + dx,,
Xz + dxp, x3 + dxa) respectively, Also u; and vy + duj (i = 1, 2, 3) are the
displacements of Py and Qg respectively. Let Ejj be the strain tensor at Py,

Mow, if the line element is the principal direetion of strain at Py then its direction
must remain unchanged due to strain deformation, that is, PQ must be parallel to
PpQq. For this, we must have

duy; oo dX; i=1,2,3
. s v . __-._.‘
(that is, the relative displacement vector is proportional to PgQgq )
or, we can write
du; = EdX; where E is the constant of proportionality

du; dx; —dX;
or, E= - =—1 L (using (3.13) of unit 3
X = ax (sing (13) )

= extension of the component dX; per unit length, that is, the extension of the
line element PpQg in the direction of PgQq.

E is, thus, the principal strain.

_ﬂ_dui Xm ._dei
9L TaX, dL T AL

= EN; (using (3.1)) ......(3.2)

Again slrain vector E‘:r'm

Also, we know that
M

EN, -——qu Nj NP 2
or, E Eij Nj = Ejj N;
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or, (Ej-8EWN;=0 i=1,23 ... .34

That ]I.RJ (E” =t E‘.:}Nl bz EI?N2 + E]}NJ =)
EE[N| + {EEJ = E}Nz i 2 E23N3 ={] SR s
E‘”N] + E‘gzNz + {E}]. = E}Nq_l =}

This is a set of three homogeneous equations for Ny, Na, Ny which satisfy the
condition (3.1), i¢, N;2 + N2 4 Ni? = 1. The trivial solution Ny = N; = Ni=0of
(3.5) does nol satisf ¥y (3.1), hence should he rejected. The condition for exisience of
nontrival non zero solution of (3.5) is that the determinant

Epn-E By Ejy
EEI E?l i E Ez'q = 'D ...... (3.6}
By By .Ey-E

This is a cubic equation for E, (e prineipal strain, Thus equ

ition is known as the
characteristic equation. The roots of this equation are B, E

2, B3 which one the three
principai strains. With each of these rools one can solue (3.5) using (3.1 to find the

corresponding principal axis of strain, ie,, the direction cosines (N1, Na, N3) of
principal axis,

Exampie 3.1. Show that all principal strains are real,
Proof : Let us suppose that one root of the equation (3.6), say Ej, is complex,

Then the complex conjugate E; of Ey must also be a root of this equation. Trom (3.3)
we have

*

E; N}'J =B NP (i=1,2 3 3.7

where NE” (i =1, 2,3) represent the direction cosines of the cortesponding
principal axis. Since E

ij are real, we have from the above equation by taking its
complex conjugate,

Ey N;'D = Ef NIOD itrt3B)
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Multiplying the equaticns (3.7) and (3.8) by N?“J and NE” respectively, and

summing over 1 we have

* * 2
E; Ng”Ni‘” = E, NI Nim Y E]E‘ Nﬁ”\ .
i
* " L N 2
and ]Z.u Hj”} Ng” = E'I Nil” NE” = Ellw Nt”‘
i

Now, E; NV Ni = E; N NG (interchanging dummy suffixes)

= Ej; N%” N;“} (Since Ej; is symmetric)

Therefore, from (3.9) we gel

o N[ = B[N
i i

1
i

2
Since EI N'E”' ‘ # 0 unless all N&” (i=1,2,3) are zero, we must have E| =
i

Ej, that is E; is real.
Example 3.2. Show that the three principal direction of strain are mutually

perpendiculur if the corresponding three principal strains are distinct.

Proof : Let By, Es, Eg be three distinct roots of the cubic equation (3.6). These
are the principal strains, and the direction cosines of the correspnding principal axes
are given by N{, NE® NI (i = 1, 2, 3). We have, from (3.3),

Ey NP = BN (1=1,2,3) .. (3.10)
By NET-* =B, Ni¥ (i=1,2,3) BRI 1
By N =EsN{Y (=1,23) ... (3.12)

Multiplying the equations (3.10) and (3.11) by NEE} and NE” respectively, and
summniing over i we have

1) == {1 (2}
By N Ni%) = B Ni'' N
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and NEE} N = B, N@ N
Ejj NE%E} NE” =By me NE” (interchanging the dummy suffixes)
= E; HE” N (since Ej; = BEy)
Therefore, E, NE” NEE} = B, N2 N'im
or, (E;- EE}NE“ Ngl) =
Since E; # B, we must have
NID N2 =

This shows that the directions NV and NO@! are orthogonal for the case of
i i &

E) # Ey. Similar results can be obtained for other set of pair of roots. Hence we have
that the principal directions of strain corresponding o distinet principal strains are
orthogonal to each other..

4.4, STRAIN INVARIANTS
Expanding the determinant in (3.6) we have the following tubic equation for
principal strain E ;
| E}-E0 +E8-03=0 ... (4.1)
If Ey, By, Ey are the roots of this equation then we must have
'B = El a5 E: -+ E—3
Bz - EiEZ + 5253 + E3El ...... {42]
'B3 = E|E2E3
B1, B2, 83 are also obtained from the expansion of the determinant in (3.6), and
they are given by
H=E||+E32+E33 weeeea(#.30)
0; = BBy + EgyBy; + Ey3B)| - Ef, - B}, - B,
Eyy Ejp| By Ey| |Ey Ey

i + + v e (430
By Ep| |Byy Ey| By By -
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0y = E5E,; + E§Eyy + ELEgy — EyEgpbay — 2EjpEnEy

E;y Bz B
= Bay Bag Banll L e (4.3¢)
Eq E3p Eg

Now Ej, Ea, By are the principal strains which have a geometrical meaning
independent of the choice of coordinate system. Therefore, 8, 63, 05 which are given
in terms of By, Ba, By are also independent of the choice of coordinate system, Hence
B8, 84, B3 as given in (4.3a), (4.3b), (4.3c) are nvanants with respect to pithogonal
transformations of coordinates. They are respectively called first, second and third

strain invariants.

Example 4.1. The strain tensor al a poinl 18 given by

a b 0
=8 26

Find principal directions of strain and corresponding direction ralios of principal

strains.
Solution ¢ The principal strains ave the roots of the equation

g—F b 0
b e D
0 0 =R

or, BE{E2 —(a2+1b2)} =0
1 m
Therefore, the roots are By =0, By = (a? + b2)2,E; = —(a® + b?)2 which are
the principal strains, The principal directions are given by

(a — E)N; + bN, = 0
== EN]_ =}
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tor E; =1, let N (i = 1, 2, 3) be the direction ratios of the principal axis. Then,
we have

aN{"” + bNG? = 0
bNj" — aN§! = 0

and 0. N%” = ()
The solutions of these equations for NE D) are given by

N =0, N =0, N{V =1
For E, = (a% + b? }% » the equations for the direction ratios of the coitespanding

principal axis are given by
(2~ Va2 + 52 ) N2 4 BN = 0
bN{*! — (a; + m.hf] N =
m: ij 2} _ g

From these equations one can have the solutions as

N{? = a+1..l'ab1 +lﬁ‘ (2)

Ny =1, NiP=g

1
Similarly, for E; = ~(a2 + b2)Z, we can have

G s x(?-—hﬁ-t NP =1, N =0
Exampie 4.2. The displacement in an e]astic solid is given by
up = a(X; + 2Xs + 3Xq)
up = a(-2X; + Xq)
uz = a(X) + 4X, + 2X3)

where a is a small quantity. Find dilatation, rotation vector, shear, principal strair
and corresponding principal axes.
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Solution : We know that

1 du du 1
E;, = E —————'—+-—2]=—-2-—2 =0
12 =5y 2[3}{2 X, 5 (2a - 2a)
ifou,  du;) |
Es3 =Ep == s+ -2 | =2 (0 +4a
23 32 2[ Kﬂ- aXIJ 2': )=
1 [ du am] 1
Eyy=Eh=5|s-+=—"|==(3a4+a)=2
31 13 2(3}(3 axl 2(;1 } i
I 0 2
(Eij)=d{} I 2
2R 2

Dilatation=0=E|; + Exy+Enn=a+a+2a=4a
i j Kk
Jil~id d d
210X, dX, dX,
(85 Us uy

e duy  duy du duy  dup
{[axz axﬁ) (E‘L‘ a_JJ’k[axi axzj}

= 2ai + aj - 2ak

Rotalion vector R = Zl u=

Shear : from (Eij) above we see that
about x; axis by an angle 2E,, = 4a,
about x3 axis by an angle 2E3 =
Principal strains are the roots of the equation

a—kE 0 2a
0 a—-E 24 =0
2a 2a 2a—-E
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or, B} —4aE? —3a%E + 627 =0
or, (E-a) (E2- 3aE —6a?) =
a(3+ r)

Therefore, the roots are Ey=a, E; =

)
and Ez=
Let N{” (i=1,2,3)be lhe direction ratios of the principal axis corresponding to
the strain Ej = a. Then we have the following equations for N“]'
(a-EBpN? +2anN{ =0
(a—EDNY +2aNiP = 0
2aN{ 4 2aNED + (20 - BN = 0
or, 2aN{’=0 and 2aN{" +2aN{) +an{? = 0
N =0 and NV = _NID = | (say)

Therefore, the direction ratios of the principal axis corresponding to By = a are 1,

-1, 0. Similarly, for the direction ratios of the other principal axes are (].l --wg——]

@ O
and Ll.—L =
w|"33 + 1

4.5, COMPATIBILITY RELEI 10NS

For given strain compenents E;; as functions of coordinates, the three unknown
displacement 1; may be determined fli'mn the following equations :

du; du;
Ey (a;: *axji]=§(ui.1+“j,1} R 6 0

where W = %1_

Since Ej; is symmelric we have six equations in (5.1) for determination of three
unknowns. Thus, these equations nvay not, in geneal, have single-valued solutions uj
for an arbitrarily pmscnhed villues of strain components Ey. That is, one has to put
additional restrictions or conditions on the strain compoments to ensure the existence
of single-valued displacement solutions. In other words, the strain components must
be compatible. We shall now find these compatibility relations for straits compoments
Ejj as an additional set of partial differential equations to be satisfied by them. Fl:rr this
we (ry to eliminate displacement w; from (5.1).
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From (5.1), we have

l555] k= dizgx %‘(Ui_j“ + Uj,ikf) ..... 15.2)
¢
Again, Ei; = ';lg'(ul-:.r + um{)
Egeij = %’(”k.r‘fij + “r.kii) ol ed)
From (5.2) and (5.3) we have
Eijxe + Bgejj = %{Ui.jkr + Uik F Wk g+ Yr k) e (54)

Interchanging j and k in (5.4) we get
1
ELL,JP + E_‘I"J]\ - ‘:—}.'(ui‘kjf + uk-i',-l"-' + Lljiﬁ'k . ufljik) (55}
NUW, since u‘i.jkf = u]-‘kj-,u.uf.hij = uf,_iil:. ;
uj.ih‘.f = Lljr“ik and uk.ﬁj = L]k.ijF
- we have from (5.4) and (5.3)
Egee + Buij = Bikje + Ejnix
or, Eij.k" + Ekr",ij = Eik.jf = E'jlr.ik = {] ...... [56}

These are Saint Venant's compatibility relations for strain compoments, and are the
necessary conditions for the existénce of single-valued displacements. The equations
in (5.6) form a set of 3* = 81 equations. Out of them only six cquations are
algebraically independent, that is, none of them can be derived algebraically from other
equations, because of the fact that these equations are symmetric with respect to
suffixes i, j and k £. These six compatibility equations are

Q=0
where Q) = (L—,z 1+ Eagm

i

Qp = (Eu 1t By, 13)

Qs =(E||22+E:ezn) EEu.—. : i
Q3 =Qy = Enza—{ Eu|+[3312+5123] |
Qs = Qi3 =By - (EESJ =By 5 + Elz,s)- 2
Qiz = Qa1 = Esgi2 — (Eaa + Enyz - EII.&)*E_

(50
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Unit : 5 [ Analysis of Siress

5.1 BODY AND SURFACE FORCES

Two types of forces, numely (i) external and (ii) internal, a¢t on a continum body.
External forces are exerted by the external agents to the body wheneas internal forces
are the bounding forces of interaction among the constituent particles of the continum,
The external forces are responsible for deformation of the body, and are (i) body
forces (or volume forces) and (ii) surface forces. Surlace forees are short range forces
and arise from the action of one body on another through the surface of contact if they

actually are in contact, For the same continum body one part of it can extert surfice
force on the other part through the bounding surface of latter. As this force acts on the
surface element, the force must be proportional to the area of the surface element,
Therelore, these forces are specificed as the forces per unit area,

The body forces are, on the other hand, long-range forces which arise from the
action of one body on another while they are at a distance {rom each other. These
forces act equally on all the matter within an element of volume, and one thus specified
as force per unit 1nass. For example, gravitational and magnetic forces are the body
forces. The examples of surface force are hydrostatic pressure of liquid or pressure of
one solid bedy on another in contact,

3.2 STRESS VECTOR

Let us consider a deformed continum body every part of which is held in
equilibrium under the action of external forces, Also, let us imagine that this body is
divided into two parts I and IT by a surface ¥ within the body (see Fig, 3).

Fig. 3
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Now, the part I of the body is in equilibrium under the action of external forces
acting on this part and the internal bounding forces of interaction transmitted by the
paiticles of the matter of part IT on the particles of matter of part I across the surface ¥,
Actually, these internal forces acting at the points of 2 are now external surface forces
relative to the part I of the body. Let P (x|, %3, x3) be any point on 2, and 8% be an

infinitesimal element of surface X of arbitrary size and shape surrounding the point P
=}
with outward unit normal n at P direcled from part T to part 11, Then the surface

forces distributed over the surface element 82 can be resolved into a single resioring

(1) —in)
= . . i i v . P ¥
force 8 F acling at P alomg a definite direction together with a single comple 8 G

'y
- = . ‘ . » 4 s [l
Now, as 82, tends to zero always containing the pomnt P within i, the ratio DS

oL
i}
tends to a definite limit T (xy, X2, X3) being force per unit arca at P, and is called
- -5:“” —yin)
o s e 86 et
stress vector. Also, the ratio e tends to a limit M which is called couple
’ . — i)
stress vector. For most malerials this comple stress vector M = 0 and these
continum bodies arc called nonpolar. We shall confine ourselves to this type of

; —5lin)
miaterial. Obviously, the stress vector T depends on the positional coordinates (%,

x3, X3) and on the orientation of the particular surface element 82, through P, whose

— ol
exterior unit normal is n . T is taken to be positive if it is directed on the same side

. Ils gy =] i
of the surface element as in the possitive normal n and it tends 1o restore the malerial,

: : .

This vector can be resolved into two component : the normal component along n
called “normal stress™ denoted by NV and the tungential component along the tangent
to the surface element, called tangential stress denoted by S, This tangential stress is

also called shearing stress. N is positive if its sense coincides with the sense of

—l=n) .
outward normal to the surface element al a given point. If T represents the reaclion

of pari 1 on part IT transmitted through the same surface element at (xq, x2, %3), theh
by Newton's law of action and reaction.

? nj(x],.‘izi KJ] == —?l.n}(?{l.xz,"(3)
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That is, the stress vector acting on the opposite sides of the same surface element
at any giver point are equal in magnitude but opposite in sign.

—lnd
_? -
In a continum body one can associate a stress vector T  acting on g plane

clement at any given point with the unit normal veetor n . Since infinite number of
planes can be drawn through that point, one has to know all the stress vectors 4Cross
all the planes for complete specification of the stress at the point, But we can prove that
the stress vector at a point on any arbitrary plane surface is a linear function of three
stress vectors across any three mutually perpendicular plances through that point.

Aj

Aj
Fig. 4
~ Let P(xy, %3, x3) be a point of the deformed continum body. Let a small
tetraliedron PAy AsAj having three orthogonal faces PAzAz, PA Ay, PA | As paralle] 1o
the coordinate plane be an isolated part of the medjum. the oblique plane AyA;As with

unit normal 1 is the arhitrary plane which is at a distance d from P. Let us consider
the motion of the specific portion of the continum which occupies the tetrahedron at
time t. Let p be the density of this portion of continum, Also, lel APAs A4 = 88,
ﬁPﬁuﬁLj = 55-3, :‘i‘.Pﬁ],.ﬁLg = 553 and ﬂﬁjﬁgﬁq = 85, -

Then &8; = n; 88 {i=1,2,3) (2.1)

Where ?1;: (ny, na, n3)

Also, fet 8V be the volume of the tetrahedron PAA2A;. :

Then 8V = +.d.58 (2.2)

The motion of the tetrahedren is governed by the body lorces and the stress
vectors across the four boundary planes due to the material outside of it. Now, let
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- = . = =
j;‘{n}, ;[“{l}, %[2]. {:{3} be the average stress vectors across the faces AjAqA,,

PAg Ay, PAjA;, PAA; respectively. But the stress vectors acting across the plane
faces PAyA3, PA Ay, PAIAy by the material ocutside of the tetrahedron will be

— —3 -3 4 :
- .?_ (1), - ’l: (2} = ? (3) respectively because the exterior normals to these planes are
directed oppositely to the positive directions of the axes. Therefore, the cquation of
maotion for the mass of the telrahedron is

s — Fss, - 058, — TGS, + F psV = pbv 7

-3
where F is the body force per unit mass acting on the material inside the
| ]

tetrahedron having mass p8V. f is the acceleration of the material inside the

tetrahedron per unit mass. Using (2.1} and (2:2) we have from above cqualion
T3S — T 88 — T2, 88 - T3, 38 + 5 Fpdss = Lpd.8s ¥

Dividing by 85 and taking the limit as d — 0 we have

in) 01 _(2) 3
T "'T I]I—TI HE—T. !11:(}

._1{ nj . ._;ﬁ}
where T and T (i=1, 2, 3) ure the stress veetors al P transmitied across the
_; i i
aribitrary plane with normal n being parallel to the face A AsAy and across the tee

mutnally perpendicular planes parallel to the coordinate planes respectively, Thus, we
have

-..,.fﬂ} _r“'i ._;{2.] _3.{3} _1[!J ,
T =T m+T n4+T n; =T n; (2.3)
=
Thus, the'stess vector at a point across the plane with normal n is a linear
combination of the stress veclors acting on the three orthogonal planes through that
point.
5.3. STRESS TENSOR

The side of the planc PAyA; (see Fig. 4) towards which the positive direction of
X axis points is called the positive side and other side is called the negative side of the
plane. The same convention is full{_mwcd for the other planes PA1 A and PA | Ay, Then
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b
the stress vector T exerts across the plane PAA4 by the material on the positive

side of this plane on the material on the negative side of it. This vector can be resolved
into the normal stress component along the positive x; axis and the shearing stress
component, The normal stress is denoted by Ty The shearing stress which acts in
the plane PA; A5 can further be resolved into two components : along the positive x;
and »3 axes and are denoted by Tya, Ty respectively. Thus,

i1}

- - - 3
=TyetTipeat Tiyey =T e _ ' (3.1)
=) =% — i : o
whene e, €4, e are unil vectors along the coordinate axes. Similarly, the stress
{2y (3

vectors T |, T acting at'P across the planes PA3 A, and PA A respectively can be
resolved, We have, lherelore, the relations

—312}' CORRE T 3 -3
13} LS — - =
anl T = T:” € + T."!-l =) + T.ﬂ Gy = 1131 L= {33}

We can write, from (3.1), (3.2) and (3.3),

i) =
T =Tye (3.4)
" " rd : it Ei} -
Thus, Tj; is the j th component of the stress vector '[l at P acting across a plane

—ylnd . s
normal to x; axis. Now, T  is the stress vector at P across a plane normal to n=

("h IIIE;, “3:’ .
=¥
Then, T =T n {from (2.3))
— A
= Tye;ny = c_}[Tijni)
_} . -
=g (T jilt 3) (interchanging dummy suffixes)
-3 —F = (m)
or, T Mg = ei(Tji nj) whene TE“} arc components of T

‘ n)
Ve Ti _le l'lj.
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- . _> ; :
Thus, the stress vector at P across any arbitrary plane normal to n is a linear

combination of nine stress compbnent Tj; acting across three mutually perpendicular

planes at the point parallel to the coordinate planes, That is, the stress at any point of

the continum is completely specified by nine components T ij NOw, nj is an arbitrany

{n}
5
vector, and also Tj; n; represents the compenents of 4 vector T .Then from the

quoticat law of tensor it follows that T;; form a tensor of second order, and is called
the stress tensor at P. The components Ty, Tas, Ta3 are called normal stresses, and
Tya, Taz, Ty, Tag, Taz, T3 are called shearing stresses. The normal stress on any
=¥
arbitracy plane normal o 1 is given by
Ném) = TiMp, = Tjingn; = Tynny {3.6)
If $™ be the magnitude of the shearing stress, then we have
2 2 2 2 2
(Tizn}) + (T_A{n}] 4 (Tjtni] = (Ntui} o+ (stﬂlf
2 2 2
o, {5{11})2 = (Tq{"}) +[T2{n}] +(T3tnl) " (an})i
2 b 2 :
B (TJI llj) +(T_|?_ I'lJ) +(Tj3 n;: ] (T ['II il]} (3?)

5.4 STRESS EQUATIONS OF EQUILIBRIUM AND MOTION

Let us use Lagrangian method. Consider a spécific portion of the undeformed
continuum occupying initially (at t = 0) an arbitrary volume V. Let py = pXy, X3,
X3) be the density at the point Py(X . Xa, X3). Therefore, the total mass of the
continuum in Vp at t = 0 is given by _[” pydV, where dVy is the element of volume

Vo

at Py,

Al the subsequent time t > 0, the material in Vg moves in such manner that they
will be in some other voiume V in the deformed state, Let the particle at Pp att=0

occupy the position P(x), x2, x3) in V at t. Then the equations charatcrmng the motion

in Lagrangian method are
X =xi(_X1,X3,X3,l) @
and p=p(){|,}{z,}(3.t) st
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where p is the density of the continuom at P.

Therefore, the total matter in V at t

= J[] pav

v
By the principle of censervation of mass, we must have

[ podvy = IH GOREY i o sl TEE S ) (4.2}
Vi
i B(}q xl,:h,
Sinte - AV =3V = ot gy, (4.3
nce { 0 T Ef}{—j }
dx; ox; dxy
where =1 dX, oX, dX,

ﬂ“hﬁzr“}} 0% dxy  dxy

X%, X X X, F‘xz dX,
r( : & j] d:’{i ax-z a}".j
dXy dX; dXy

a(x]'xl K"r)
b v 4
we have j;:[;[ PdV, .m P (xl,le }{3) 0

or, J;Jr:_]l'[p[, _pﬂ%’%‘j:i%] dV, =0

Since the volume Vg is arbitrary, it follows that the integrand must vanish at every

point of the continam, that iy,

a(K1 1 K7y x3]

— ena(d4)
a[xl_.xz,x,) (%4

Po=p

This is the equation of continuity in Lagrangian method.

We can find the equation of centinuity in Eulerian method. Here, the principle of

coiiservation of mass 15 expressed as the rate of increase of mass of the continum
within any fixed closed surface being equated to the rate of net mass flow across the
boundary surfuce within it. Let 8 be the any fixed closed surface enclosing a volume V
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lying entirely in & region through which continum moves. Let P{xy, X2, X3) be any
point in it and p be the density at P at time t, So that

p=p (%1, %2, X3, 1)

The total mass in V is j_” pdv  Therefore, the net local rate of the increass of this
Y

e LIRS : ]_ ap e
mass in V is 7y JH pd“‘v’) = f” = dV, since V is a fixed region of space, and the
v v
2 :
coordinates Xy, X3, X3 are independent of . Now, let v be the velocity of the particle

. -3
al a point Q on the surface 8. Let n be the outward drawn normal to the surface

=) —3
element at Q. Therefore, p n. vdS is the mass of the continuum leaving volume V

with the flow across dS per unit time, Thus, the mass of the continuuim entering into V
¥
through d5 per unit time is —p n. v dS. Then the rate of net mass flow across the total

boundary sunface § is —m p n.vdsS.B y the principle of conservation of mass we
§

hiave

cccccc

MNow, by Gauss's divergence theorem we have

,”ii'?'l}.-';ds = ” :iiv,(p?]d‘w"

5 v

Therefore, from (4.5) we get

j{j%% i ;jy div(p?] 0
or, '[g[j [%{1 + dw[p;’n dv =0
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since V is an arbitrary volume, the integrand must vanish at every point of the
continuum. Therefore,

ap . o =5N -
a—t'l‘l’jl"-'[p W ) i R L SR SR R e E‘i.f}}

This is the equation of continuily in Eulerian method.

Exercise 4.1. Prove that the two forms of equations of continuity onc
equivalent,

Proof, Let us starl [rom the equation of continuity in Lagrangian method, which is
(X}, X2, X3)

pl = p, where the Jacobian I = (X, X5, X,)

- Taking lotal derivative of this

equation with respeet to t, we get

d =
a P =0
. dp dl _. :
or, —rl+ Par =0 ceeen (47)
9 9%y 9y
JX; X, X,
N“W ﬁ - d .a{xlt}(E‘ij e E a.‘{} axz 'ax]
i E'E fj{Xl.Xz,x3} di a}{z 3}{2 (jXE
di;  dxy  dxq
X, X, 9%,
dfox) 9% x| | ox ﬁ.{?ﬂ] 9%3
at\ 3%, ) X, oX,| |9%, @l9x,) X,
= ir E'f‘x! ) Eh:z 333 . + Hx, d .E.].i 813
S dt{eX, | aX, 9X, |T|9X, dt|axX2) 9X,
d 9% ) Iy ox dx, i(gﬂ_] d%3
dt{ dX5 | dX; 0X, dXy dt{dX; ) 9X,
a_xl axz o ra.‘(!
X, 9K, d|o%,
ax axz ¢l '{ax‘-,
i = ;i]; —axz akﬂrxz ..... A4 g:'l
B'x| E.lx; d faxj}




15t determinant on the R,H.S. of (4.8)

dx dx, ox d d ox
o, (] (R 3 Vi Xa 3
.5}”{1 [ ) dX; X, X, oX, dX,
- a dl] 3:{2 ﬂx3 a"l"| axz E-‘x3
| aX, X, 09X, oX, oX, dX,

9 (dx; ) dx; dx; dv)  dxy 9%

X, \ i | 9X, oX; | |9%X; dX5 9K,

where (vy, vz, va) are velocily components of the particle instantaneously
occuping the point (xy, Xz, X3). Then the above term

ot d(vy, X5, X3) =E}{v1,x1.x3}_ d(X), Xg, X3)
E}{}{J,Xz.}{_q} a{X|.K2.K3} EH’X;.X;,X;}

gil.{}[}
ox,

2
ax 1
v
ax3

=
=

1 0

I
(i

=%
=

01

Similarly, the second and third terms of the R.H.S. of (4.8) are respectively

a"l"n a
and J -—L - Therefore, from (4.8
g—‘" 3%, (4.8)

%% E J(H‘n e a“'ﬁ] =J div ¥ . (4.9)

31[ a}(-z Eb{;_ llllll
Substituting (4.9) into (4.7) we have

dp! +pldivy =0

dt
or, %+pdiva=ﬂ
ap B‘ dx;

of, At —L +pdivv=0

ap ap

of; b vi+pdwv—I;l

185



or, —?ﬁ + div(pv) = 0 [Since div(pv) = v.grad p + p div ¥

= v, Ti% + peliv v]
which is the equation of continuity in Bulerian method.

Now we use the principle of balance of linear momentum to derive the equation of
motion, This principle states that the time race of chunge of total linear momentum of a
specific portion of the continuum is ﬂqudl to the resultant external foree acting on this
portion.

Fig, §

Let the specific portion of the deformed continuum occupy an orbitary volume V
bounded by the closed surface S at time 1. Let Py, X2, %3, ) and v(xy, x5, %x3) be the

density field and velocity field of the continuum, The linear momentum B( t) of this
specific portion of the continuum within V at time t is given by

f"('t]=mpir‘dv crea(4.10)
i :

Let _I-?{xl, X2, ¥3, t) be the field of body force per unit mass, and 'ﬁ“’{x I %2y X3
£) be the field of surface force per unit area of the surface, This surface force is the
stress vector acting across the surface element with outward unit normal vector f
exerted by the surrounding material of the portion V (Fig. 5). The resultant external

force E[[} acting on the portion of the continuum in V at time t is given by

R = [[[pFav+fftihas . @10
¥ 5
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By the principle of balance of linear momentum we have
c‘f—{{m pv d‘,’) = [[[p Fav + [[ Tmas
: : ;
or, H PaT *“"‘"JH g (PdV) = fﬂpﬁd‘f’ [[Tgs L (4.12)
g
Now, < (pdV) = p dV +p 5t (@V) = Lav+p 8 Gavy)

= -&IE dV + pdVy d] {:II dV -+ pdVl div Vv (using (4.9))

{j“ dV +pdivvdV

= [?% + pdivﬁ]d‘v"

d -
=(~§?+r{w{pv]]d\f:{} S | R B

- (by using the equation of continuity (4.6)

Therefore from (4.12) we have

mP VgV = ijrd\u”r{nrds

or, jjjp LdV = mpF dV+jij"?us e 14)

Again, we use Gauss’s divergence theorem to obtain

HTE“:’dS = H'rj,-nj dS:jﬂTiid V. La415)
Iﬂp V- ot [l EyzeV
or, J{I(p!ﬂ- + Tji = p¥ Jav =0
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Since V is arbitrary volume, we have at every point of the continuum the fol lowing
equation of motion :

pEj ~ Ty o=pp=0" g (4.16)

I wi(xy, X9, X3, t) is the displacement field, then v; = 4; and the above equation of

motion takes the following form :
F'Fi +Tji.}'_pi’i| =0 . 4.17)

If the continuum is in static equilibrium, the acceleration ¥; vanishes, and we have

the following equation of equilibrium :

pF.-' H= T_1|=j = g el (4.18)

5.5, SYMMETRY OF STRESS TENSOR

We use the principle of balance of angular momentum to establish the symmetry of
stress tensor, This principle states that the time rate of change of total angular
momentum of a specific portion of the continuum about an arbitrary pbillt is equal o
the resultant moment about the same point of the external force acting on this portion,

Let ﬁ{t) be the total angular mementuum about the origin of coordinates of the
portior of the continuum in V at time  (see Fig. 5). Then

H = [[[Gxwpdy ... (5.1)
v

or ifs ith component

Hi() = [[[eg x5pvav L (5.2)
v

where,

Eijk= Qif any two of i, j, k iare Equﬂl
= Lif i, j, k are even permutationof 1,2,3 } ...... (5.3)
= —1if i, j, k are odd permutation of 1,2, 3
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If Mi(1) is ith component of the moment of external force acting on the portion in V
about the origin at time , then

M; (t) = _[{j Gk X PFedV + [[ e x TS ......(5.3)
s
Therefore, by the principle of balance of angular momentum we have
%[I{JEM X PV dv]: j{je,-jk X pFy dV +ijEijk X TEVAS ...(5.4)
LHS. of (54) = j{jeuk &, pvydv)
- jy e B & (pdv) + j{rj e S(xvicJpav

= [ff e kv + Xjiy Jpdv [sincc £ (pdV) = 0 by (4. 13})
L'

Now, x; = ¥; 4+ uj, u; being displacement field, and then X = 0 = vi. With
this, the L.H.8. of (5.4) becomes

J-jj Eijk "-"J_ Vi pd"v" s J]I Eijl: XJ ";"k pd"v"
v v

Now, ey ViV = €y vy v; (interchanging dummy suffixes)

== g ViV (since Eijk'r— - Ejkj}
2e k-¥i ¥k = 0 _
Consequently, the LH.S, of (54) = [[[ ey x; ¥y pdV ... (5.5)
v

hgﬂin. II Eijk KJ TL""'EIS — IJ- Eijk' }(j Tfk I ds
& 5

- _[” di""(Eijk Xj Trh] dV  (using Gauss's theorem)
v

= Jf] € [-‘i j Tﬂ;] ,dV (ejj are constants)
v "
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= lf Eijlf-("‘i.f Toy + X Trk.*’)dv
v
- = Jjf i [aj, T +%; T )V
v
= J” Eiik(T}k + X Tfk,r)d‘-’ ...... (5.6)
v

Using (5.5) and (5.6) we have [rom (5.4)

jjI Eij'ic Kj ";.’1_: p(IV = jjj E-Ijﬁ XJ- I-]F]{. dVv + ”]‘ Eijk (T'ik + K} Tr‘.‘k.r‘]dv
W LY v

S .[.” Eijk T.Ik dV = J-.U Eijk ("‘rkp [ F"Fjr = Tfk,;]x} dy
u A v

=0 {by using the equation of motion (4,16})
ek Tk =0 at every point of the continuum since the volome V is arbitrary
Let i= 1, then we have from above
€k Tik=0o0r €13 Taa+ €132 T3 =0
of, T33-=Ta2=0 or, Taa=Ta
Similarly taking i = 2, we have Ty = T3, and taking i = 3, we have T); = Ty

Thus, the stress tensor is symmelric, and the stress at any point of the continuum
is completely specified by the six components (instead of nine components) of the
stress tenser,

With this symmetry of stress tensor the equation of motion (4.17) can be wrilten

pFi ot Tﬂuj = I:"I'll =1 P'I:I'i ...... (5?]

5.6 STRESS QUADRIC

With the origiin at P(x, X2, X3) in the deformed continuum let us, introduce a lecal
coordinate system P&y, PEa, PE3 parallel to OXy, OX,, OX; respectively. Then for a
given set of stress tensor Tj; the quadric surface with its centie at P given by
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Tgbely =k T s (6.1)
is called “'stress quadric”

Exercise 6.1. Prove that the normal stress across any plane through the centre
of stress quadric is équal to the inverse of the square of the central radius vector of the
quadric normal to the plane,

Proof : Let Q be a point on the stress quadric (6.1)

x& ‘ &-']n

QLEy, £ E3)

=

_'____,_,_,-d' _'-1:1-“:"

e |

l‘.l-

&i

l Fig, 6

Let us consider a plane element through P normal to PQ (Fig. 6). Let 11 = (ny, n3,
n3), 0y, oz, n3 being direction cosines of PQ, and r is the length of PQ, Then the
stress vector across that plane element is given by

TE"} = T'.] I'lj
The normal stress at P across the plane normal to 1 is given by
Also, also coordinates (&), &, E1) of Q are given as

E=m or, n= -z:-;_j-

Therefore, N = _’_J.E'ﬂ o
¢

=z (proved)
(since Q lies on the stress quadric)
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5.7 PRINCIPAL STRESS

When the stress vector is along the direction perpendicular to the element of plane
on which it acts, it is called principal stress, The element of plane on which principal
stress is acting is called principal plane, and the direction of principal stress is known
as principal axis of stress or principal direction of stress.

Let P(xy, X3, xa) be any point in the continuum, Let 7 = (ny, nz, na) be the wnit
hree f
normal vector to an element of plane through the point P, Also let T be the siress

" p _, 3 . i -
vector acting across this element of plane. If T is a principal stress, it must be ilong
the normal [, that is

TP =Ty O b

’ =¥
where T is the magnitude of T(n)

Also,we know that

T=Teny - . ©  he (7.2)
Then from {T-. 1) and (7.2) we have .
Tynj=Tn = Tn,
o, (Ty-THim=0 - L. (7.3)

u:;r. expanding in detail
(Tyy. = T)ny + Typny + Tyzng = 0
Toiny + (Tag — T)ng + Tyang = 0 | ... (7.4)
Tyymy + Typny + (T — Ty =

Alsowe havenin=1 . 3 s )

The equations (7.4) for ny, na, n3 have the trivial solution ny = ny = ny = 0, which
is not compatible with the equation (7.5). For existence of nontrivial solution of (7.4)
we must have

Ty =T Tis T3
T2| ‘T:_j?_ -T sz — 3 0 [y N {?.ﬁ}
Ty Ty Ty-T
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which is the characteristic equation for the determination of principal stresses. The
cubic equation in T possesses three roots Ty, Ty, T3, the principal stresses.
Substituting for cach of the principal stresses in (7.4) and using (7.5), one can find the
three sets of solutions of ny, nz, ny giving rise to the direction cosines for three
principal axes of stresses,

Exercise 7.1. Prove that roots of the characteristic equation determining
principal stresses are real. Prove also that the directions cotresponding to the prineipal
stresses T, T, T3 are mulually perpendicular,

Hints : Proofs are same as that in the case of principal sirains.

MNow the cubic eqution (7.6) can be writlen as

TI-@T?+0,T-0,=0 ... (7.7)
where © =Ty + Tas + Tsa

B Ll T Toad boa

8= 1l Rt [P A 3 3
CTia Tagl |Toy Tag| [Ty Ty |

TH T|-3 Tu Faibesias f?g}
@3 =Ty T Txn

Ty Ty Ty

Also, the roots Ty, T4, T3 of the cubic equation (7.7) are related to the coetficient

@, 05, &by the following relations
® =T +Ty+T;
O, =TTy +ToTa+T5Ty ¢ s (7.9)
©; =T T,T,

The principal stresses Ty, T3, Ty at a point do not depend on the choice of
coordinate system, and therefore, @, &5, ©4 given in (7.8) are invariant under an
orthogonal transformalion of coordinate axes, These are called, respectively, the first,
second and third invariants.

Example 7.1, The stress tensor at P is.given by

7 g I
(Tg)=[10 2
1 2 ¢
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Determine principal stresses and principal directions.

Ans, The characteristic equation is

3-=T 1 1
1 -T 2|=0
1 2 =T

or, TI-3T2-6T+8&=0

of, (T—D(T2-2T-8)=0

244132
2

T=1,T= =1+3=4,2

i G 38 T e B e

For Ty = 1 the principal direction is given by the solution of the following
equations.

"B=Dni4+n+ny=0 or, 2m4+nr+ni=0

-|1|—ng+2n3=!},- n+2na-m=0

nf +n3 +n3 =1

3my +3n3=0 or, ny=-n3, .\ 2ny+np-n =0, or, ny=-ng

|
B = =
Ty ﬁ

Also, we have n? +nf +nf =1, .. 3nf =

| 1

= = =
“1—;7“5- iy = ﬁ-ﬂa i

Similarly, we can find the directions of other principal stresses as 725— ;{% ) ;}E

1 |
and 0, —,-—
oA
Example 7.2. The state of stress at a point is given by

T aT bT
(Tg)=[aT T o1
bT T T

194



where a, b, ¢ are constants and T is some siress vaive, Determine the constants a, b, ¢

so that the strress vector on a plane normal to [ j e Lj‘] vanishes.
Ans, T[“} T iy = Tyng, 5 T :;?]
Tiil'l] = T!ihi =

(T +aT + I)T]—F =

T{“} Tain, = (aT + T+LT}?

T4 = Tyn; = (bT +¢T 4 T}——lu =

V3

_’ -+ Al
if the stress vector T) on a plane normal to n vanishes,

l+a+h=0
a+1+c=0 - (T#0)
b+ec+1=10

Adding 2Aa+b+ci+3=0
or, a+h+c=—%

Sicnea+b + 1'={}Wﬂhﬂ‘ﬂﬂc=ﬁ%.5ilniiufl}'.H.:h:—% .

Example 7.3, Determine the Cauchy's stress quadric at I for a state of stress
a 00
ol e
where a, b, ¢ are all of same sign.
Ans. Cauchy’s stress quadric is Ty £; &5 =1
or, Ty &f + Tpb] + Tsks = |
or, a&f + bk + ¢kl = |

oL i3 72“5+1_L“

which is an ellipsoid
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Example 7.4. The principal stresses at a point are Ty = 1, T, = -1,

T3 = 3. If stress at a point is given by

Ty 0 O
(Tg)=| 0 1 2
@ 2 T

Find the value of Ty and Ty,
Ans, Stress invariants are

@ =T 4+Tn+T3=T)+Ty+Ti3=1-14+3=3

Ty Ty Ty T T3z Ty :
0,= L : U3 Ty 4 T+ THT
Tya Ty Ty Tas Ty Ty it A A
IR
| Ty, Ty Ty
E‘]j: T2| T-_;z T'Ij- =T|T2T3 =—-—3
Ty Taz Ty
or, Ty +1+T3=3 or, T)1 +Ty=2 ceriuk )
B ) R T
E’?“I o 1|72 T_HH 8 Tyll=
or, Tij+Taz-44+TuTH==1
or, T“+T33+T”T33=3 4.....(1'.}}
@i=| 0 1 2|=-3 or, T (Tsz-4)=-3
6 2 ms
or, Tylgg=#p==3 " e (c)

* From (2) and (b), 24+ T Ts3=3 or, Tyls=|

Then from (¢), | —4T);=-3 o, 4T =4, .\, Ty =
HIIE,_I Tg} =
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Example 7.5. Given the following stress distribution

Xq —K3 0
(le) =il Ky 0 —Xa
0 kgt

find T such that stress distribution is in equilibrium with the body force
F-!:. gﬂ.‘{_ .
Ans. The equation of eguilibrium are givcn by
pE + Ty =
. = A
In this case F = —pgg,
Fy=0,F2=0 and F3=—g
The equations of equilibrium are, then,
T]j.j =1, Tz_].}=ﬂ and — pg +Ty,;=0
or, these equations are

! axl 333 =[} : I
9Ty | dTy | 0Ty
S 5‘12 i et
dT aT
Ty dly  dTy
_'f-]g"' E] i E}xz ?{3 =0

Obviously, for the given stress distribution the first two equations are identically
satisfied. From the third equation we have

. d(=x;) IT ;
pE+ 0+ o5 +E-'x3 0
OF _

or, E-—I'P‘I}g

Integrating we have, T = (1 + pg)xy +f(x;, x2)

where f(xy, x3) is an arbitrary function of %y, xa.
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Exercise 7.2 In the absence of body forces, do the stress compoements.

)

K11 )1
- Taa = m}{xli + 121]

T|2 = —EﬂUH|K2.T23 = Tﬂ =0

. [ 4
l” = U..l?'.g_‘ 2 U(Klz

T_u = U.[J{]:! + 1](32?'

satisfy the equations of equilibrium 7
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Unit : 6 U Generalized Hooke’s Law

6.1. STRAIN ENERGY

The work done in straining an elastic body from its unstrained state to the
deformed or strained state by the surface force is transformed completely into the
potential energy stored in that body. This potential energy which is due to deformation
or strain only is called the strain energy or stress potential. We shall now discuss its
exisience.

From the first law of thermodynamics we have

p%‘?=Tijﬂu—qi.-.+;)h g &)

where e = internal encrgy per unit mass

ko O |
oy = 2(3}” +_:__jxl vk bie)
q; = influx of heat by conduction per unil area per unit time.

h = rate per unit mass at which the heat energy by radiation is produced from
internal sources.

We shall here consider the case of linear elastic solid for which only small change
of shape can occur when it is subjected to forces of reasonable magnitude. In this case
every stress component is a lienar function of all strain conponents. For such linear
elastic solid one can neglect the heat conduction, and consequently the heat encrgy is
produced from the internal sources only. : '

Therefore, we have from (1.])
de

por = Tiydy +ph s CL3)
Also, for small strains we have -
di; = ¢y
Consequently we have _
Ti1é1j=¥’("3"h}=ﬁ(f‘--a) )
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R ]
where h= T {1.5)

Q being the quantity of heat per unit mass produced by internal sources at time 1.
Let us write

pﬂc::Lj and pqﬁzQ ...... (1.6)

Here, U is the internal energy per unit volume of the unstrained body and Q is the

quantity of heat produced from inlernal sources per unit volume of the unstrained
state. Then, from (1.4),

TijéiJ':%(U_Q] (L7)

E}xl

o _dvy  Axxexs) o l9x
MNow = — det Ein

p Po dy H(X,.KZ,Kg}_

=detfu; ; + 8 =14u; ; (for small displacements)

Also, for small v ;, that is, for small displacement gradients we have £ = ;

Le., p = py Therefore, the equation (1.7) becomes,

Tgdg==0 = " L S (1.8)
Again, from the second law of thermodynamics we have
%?» 198 AT (1.9)

where T is the temperature per unit volume and S is the eniropy. Now, we can
identify two processes. The first one is the adiabatic process for which the change of
state [rom one configuration to another tukes place so r'tpldl:,r that there is no time for
the heat generated to be dissipated. For this we must have

Q=0 v 1.10)

and therefore Ty éy = U or, Tydey=dU ... (1.11)
That is, the L.H.8, of (1.11) is an exact differential,
We canwrite T; deyy = dW R i
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where W is the internal energy of the body. The other process is the isothermal
process in which the change of state is sufficiently slow such that the heat generated
has enough time for dissipation main_tainiug a constant temperature of the elastic solid,
In this case the body remains in continued equilibrivm of temperature with its
surroundings. Therefore, for this case we have

e

T=5=0 . (1.13)
From (1.9), we have

et Jdl' _ o

Q= F_Ht +S_&t _E{TS] ...... (1.14)

Using this equation we have from (1.8)

Téy = U~ (15) = & (U - 15)
=F ! veeneal(1,15)
where F = U - TS is the Helinholiz's free encrgy.
Thus, we have for isothermal process

Tdej = dF e R (1.16)

which shows the L.H.S. of this equation is an exact differential, Therefore, there
exist a function W such that

Here, W represents the Helmholtz's free energy per unit volume of the elastie
medium.

Let us introdoce the following notation ;
Ty =Ty, Ty =Ty Taz=Ts Taa=Ta =Ty
Ty =Tiy=Ts Tip=Ty +Ts

and 1= ET, g = €3, B33 = L4, 21313 - 2&31 = 34, 2["-31 = 2_1'.'-!3 = E35; 2&|g =
232] = g,
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With these notatoins for stresses and strains we can have from (1.12Yand (117 a
relation

Tyde; = Tide; =dW  (i=1,2,..,6) ... (L.18)

for both the adiabatic and isothermal processes, As T,de; represents the wark

done per unit volume at & point by all surface forces, dW must be the work done per

unit velume. From (1. 18) we have

aw

T; de; = de;
1 1 a{:i 1
Therefore, TF%-? BRSO e (1.12)

i

Thus, for both the processes there exists a function. W given by (1.19), This
fuention W is called the stress potential or steain energy function per unitl volume of
the elastic body, as it is the potential energy per unit volume stored up in the clastic

body by strain. The stress comonents are obtained as the partial derivatives of W with
respeet lo the corresponding strain components.

6.2. GENERALIZED HOGKE'S LAW

For lincar elastic solid every stress component is a linear function of all strain
components. It is expressed by the following relation,

Ty = by +ap ey
The body is unstrained under no stresses, and therefore ejj = 0 when Tj; = 0.
Consequently, we have bj; = 0, Therefore we have
Ti=ajuead . k1=12,3) .. {21

This relation between stress and strain is known as generalized Hooke’s law for
lingar elastic solid. The cocfficients ajyy are called elastic constants or elastic moduli of

the elastic solid. They chataclerize the elastic properties of the body. The elastic solid

is said to be inhomogeneous if these elastic moduli vary point to point of that body.
But if these elastic moduli are unchanged throughout the medium then it will be called
elasticaly homogeneous,
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6.3, ISOTROPIC ELASTIC SOLID

A linearly elastic solid is known as to be isotropic if it has the'symmetry of elastic
properties in all directions. It means that the strain energy W is an invariant under all
otthagonal transformations of co-ordinate axes, That is, W is independent of the
orientation of coordinate axes and hence the symmelry in respect of all directions is
maintained.

Let us write the elastic constants dj as the sum

Ak = b F G e (3.1
where bijkl = %(ﬂ]jkl - ’-'ijlk) - _bi}ik. ...... (3.2)
K d == l . — '1!. 3
arn ikt = 7 | i + Bijik | = Cijik SRRy

With these we have from generalized Hooke's law (2.1)
Ty = B B + i Bx wvies(3.4)
Now, byey = byuey  (interchanging dummy suffixes)
== by Cy {using (2.2) and remembering that 2y is symmetric)
by 2y =0
Consequently, from (3.4) we have
Tji = Cijx Skt e (3.5)

T;j and gy are second order tensor, and therefore ¢y form a tensor of order 4,
For isotropic clastic medium the elastic constants ¢y remain the same under all

orthogonal transformation of coordinate axes, Thus, for isotropic body cjjy) must be
an isotropic tenser of order four, That is, we can write.

Co = M8y By + 18y By + vy, 38
where A, 1L, v are constants, Using (3.3) we have
B8y o uBy By + VB8, = ABigdy + 1Bdy + VOB
or, (1 — (88— 8ydj) =0
This relation is true for all values of the suffixes i, j, k, L
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Wemay puti= [, k=1,j=2,1=2 in the above relation to get (1 — v)(, &
B12851) =0

e
or, H-v=0, ie, u=v
Therefore, from (3.6) we get .
Cijia = ABijBy + H(Eskajl + ﬁllajk] coeees(3.7)
Using this relation we have from (3.5)
Ty = {lﬁijakl + (88 + a.ilﬁjk)}ﬂkl
= A8y ey + pfeyd; + ey )
= Adij exk + faley; + &)
or, Ty=20&;+ 2pe;;
where 8 = ey is the first strain invariant.

(3.8) are the constitutive equations or stress-strain relation for an isotropic linearly
elastic body. We see that for such an elastic medium the number of clastic constants is
. only two, namely, X and . The strain energy W is given by

T }Cij = '21-;'»32 + I.I.Eijﬂij . {3.9}

Ex. 3.1. Show that the principal directions of strain at each point of a linearly
elastic isotropic body are coincident with the principle directions of stress,

Proof : We take the principal directions of strain at a point of the medium as the
co-ordinate axes. Then ey = ey =24, =0, )

From the stress-strain relation for the linearly elastic isotropic medium we have
Tij = A 0 8ij + 21 e
Tiz=2pe;3=0, Tp3=2ey3=0, Ty =2e; =0
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Therefore, the co-ordinate axes are along the principal directions of stress. Thus,
the principal directions of strain are coineident with the principal directions of stress
for an isotropic elastic body.

6.4. ELASTIC MODULI FOR ISOTROPIC MEDIA .

The two elastic constants A and 4 in the constitutive equation (3.8) are known as
Lame's constants, From (3.8) it follows that

Tii = A08;; + 2pe;; = 300 + 2p6

= (3 +21)0
Since T;;=©, we have © = (3A + 21)8
] p (&)
or, B= 3 T2 (4.1)

Therefore, from (3.8) we get

.-
T = £y &y + 2jtey;
T AOG;;
T ——— (4.2)

ZH 2p(3% +2p)
Puatting i=1,j=1, we have

W L :TH{ =l }_?'“(TH'FTSR)
C o2 2u(3h+2p) 2 Sh+2n ] 2u(3n +2p)

=T : :'u'l"j.l. = L (
A2 2p(3h + 2p)

Let us now suppose Ty =T, Tyy = T3y = Ty3 = Ty, = T|5 = 0. This state of
stress is possible in an elastic right circular cylinder the axis of which is parallel to x,
axis and subjected to an uniform longitudinal axial tensile loading to both of its ends.
Also, the above state of stress statisfies the equilibrium equations in absence of body
forces at every point in the interior of the cylindrical elastic medium and also satisfies
the stress-free boundary condition on its lateral surface.
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Then, from (4.2) and (4.3),

T L R .| A
g = Tm_i_ zl-l}l'l' vy =g — zu{jl -+ 'li.l} ...... (44}
Gy = €3 =€y =1 i

We see that the ratio of tensile stress Ty to the longitudinal exiension ey, that is,

Pii AN+ 241 _
iLhy S im =-§-—{— __,_‘".i‘__.f = constanl. This constant is called Young's modiulus or

f.'-“ f.'-“ :‘Iv.'i‘ji
modulus of elasticity, and is denoted by by E. Thus,-
{37+ 2p)
E= 7 R B A L (4.5)

Again, the ratio of lateral contraction to longitudinal extension, that is,
— Can }L,

e = = gonstant.
i 2(h+p)

This constant is called Poisson’s ratio, arid is denoted by &. Thus,

A

G= 2(_3-'1'—{-15 v e (4.6)

From (4.5) and (4.6) it is easy to see that

A= )
(1 +o)(1-20)
B

H=5T+a)

Next we consider the state of stress given by

TH =5 Ci}hstﬂﬂ{. T” = T:z = T33 = T]i = T31 =1 .

This state of stress is possible in a deformed long rectangular parallelopiped of
square cross-section OABC (Fig. 7). which is sheared in the plane containing OA and
OC by a shearing siress of magnitude 8 acting per unit avea on the side CB, The stress
S will tend to slide the planes of the material originally perpendicular to OC, the X;-
axis, in a direction parallel 1o OA, the x,-axis such that the right angle OBC is
diminished by an angle ¢. '
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The above state of stress satisfies (he equations of equilibrium in absence of body
force at each point in the interior and with the boundary condition at the surface. We
have, from (4.2) and (4.8),

X3 h
C ki ol 0
¢
1" —r ¥,
0 A :
Fig. 7
I‘[i'z3 S
¢23= Tﬁ_=ﬁ‘ (_‘,” =E‘.2-1 ='ﬂ}3=ﬂll =ﬂ12 =[}. ...... (49}

Also, we know that 2e,, =10

a5
2!.323

%"_" .—_j_{

This ratio is known as shear modulus or modulus of rigidity, and it is identical
with the Lame's constant 1,

Let us constder now an elastic body subjected to & hydrostatic stress p distributed
over its surface, Due to this hydrostatic stress the volume of the body is diminished.
The state of stress possible in such a deforingd body is given by

T” = Tzn = T:}g = —p = constant, }
Ty =Ty =Ty =0

The state of stress statisfies the equations of equilibrium in the interior of body
with the boundary condition on its surface, Actually, if T'i"":' (i=1, 2, 3) represent the
stress vector acting on the surface with normal n, then TE“J =—pn(i=1,2 3) or
- Tjj nj = — pn; at each point on the surface. This condition on the boundary is satisfied
by the state of stress given in (4.10). From (4.2) and (4.10) we have
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= = = "_—E 3}1‘1} p
B =6 =033 F gt pTTTEY oy YT R ¥ Y T SO (4.11)
f12 = e =6y =0

Now, 6 = cubical dilatation. Therelore, the decrease in voluine per unit volume

=—B=—'Ci[=—(3“ +E22-+ E_‘;])

We see that the ratio of the hydrostatic stress to the decrease in vntumr: per unit
volume, that is,

_—Eﬁ 3 + 2“’ = A+ %-E = constant

This constant is known as bulk modulus or modulus of comptession, and is
denoted by K, Thus,

K=1+%# (4.12)

It 15 easy to see that

sk
K mey - = (4.13)

For positive K and E we must have 0 < ¢ < -% Also, we see that X >0, p>0
{from (4.7))

From (4.5) and (4.6) we can have

L B e A
E ~2j E 7 2u(3h +2p)

Then the strain-stress relation (4.2) becomes.
Ci] = 'I'-{-E—G'ru -%Bﬁ:} . -..-.;(4.[4_}
From this relation we gel

s L Y 365_l+o o
Q= = _—TT“ E—B——E—B—FB
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= l:.El‘I 2 I@'K (using (4.13)) |

©
or, T

R L (4.15)
6.5. BELTRAMI-MICHELL COMPATIBILITY EQUATIONS

The equations of compatibility for strains are given in the previous chapter (unit).
They are given by ;

Skl te Gy Lk =0 (5.1)
From these equations it follows that (setting | = k and summing over k)
ﬂij. Kk + Ekk, §iE ui:!':,jk — Ejk. ik = 0 (5.2]

From (4.14) we have
_l+c
ei]. —‘"_'E_(T.J 1+UGE ..,...{5.3)

Substitating (3.3) into (5.2) we pet

~8;0 j — & jl:a.’rk)

2 g 2 3o )
or, ?T,J+E).,j l+uﬁve l'i‘ﬂ-'ﬁ +1+GB +1+ﬂ@’ﬂ

= Tik, jk * Tk,

of, VT + =0y = 725,90 = Ty jy + Tje (5.4

From the equations of equilibrium we have
Tig,x +pF; =0

Therefore, Ty 5 =-pF;;

Similarly, weget Ty ; =—-pFj,

‘Therefore, from (5.4),

L
VT + 35 @i T GEHW@ = —p(F ' Fi-"] e O

209




Setting j =i and summing over i we have from (5.5)

2 2 30
V El+l+ﬂ‘»? G_l+{3v U—~2pdwF

1 — ;
or, T:%VZB = —2]] dt‘-"F
or, Ve = - 2{+GpdwF

Substituting {5‘6] into (5.5) we have
VAT e J 59 =~ 7228 pdiv F - p(Fi j + F, o} i (5.7)

These six independent equations are known as Bultmml Michell compatibility
equations for stresses.
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Unit : 7 O Fluid Media

7.1. TLUID AND ITS BEHAVIOUR

If a very small applied exlernal force to a matenal medinm can cause g cotdinuous
shear deformation of relatve sliding such that ils constituent particles become freely
mobile, then the medium is called “fluid”, and the coatinuous shear deformation of |
is knowr as the flow of fluid. Urlike the sohid elastic medm, flnid has no stress-free
state to which it eventually returns if the external foree is withdrawn, Consequently,
avery configuration can be regarded as the reference configuration. The continuous
flow of floid changes the shape of the (luid. It has no definite shape, but tokes the
shape of the containgr into which it is placed.

The fluid in motion exerts on any adjacent Iayer moving with different velocity
some kind of frictional resistance to alizrnations of form in the form of shearing stress
in the tangentiai plane in addition to the norvis! stress in order to accelerales or dissipate
its state of relative motion. For Huid st rest these shearing stresses have no role 1o
play. The relative motion of Nuid Yayers gives risc to these shearing stresses, and these
stresses vanish when the rate of deformation or the rate of change of strain is zero,
This property of the “fluid in motion” to exert shearing stiess on the adjocent layers in
resisting their sliding motion under the action of very small shearing force 1s the
viscosity of the fluid, and the fluid having this propenty is called viscous [luid. If the
stress exerted by a viscous fluid is a linear function of the rate of change of strain such
that this stress is zero when the raie of strain is zevo, then the fluid is known as
Newtonian Viscous {luid or linearly Viscous fluid. On the other hand, if the fluid is
incapable of exerting any shearing stresses on the adjacent layers in its contact to resist
its shearing movement under a very small shearing force then it is called a perfect
fluid.

7.2. LAGRANGIAN AN AND EULERJIAN METHODS OF DESCRIP-
TIONS :

We have discussed Lagrangian and Eulerian methods of description in Unit 3, In
Bulerian method of description for fluid motion we consider the velocity of the
material point, ¥ = ('-.f,,vz, v3) is the velocity of the material point occupying the
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spatial point (x,, Xp, x3) at time L. It is given by
Vi i Xy X SLZ3. e (2.1)

On the other hand, in the Lagrangian method the motion of each individual
material point of fixed identity is described for all time by following its motion
thronghout the course. The imtial position (X, X, X;) may be taken as the fixed
identification of the material point. One can now transit from the Eulerian method to

the Lagrangian method by wriling EJJ%‘- for v; in the equation (2.1) to obtain

%‘=fi(“|-ﬁz-xa=l] (=123 ... (2.2)

If we integrate the above three equations then three constants of integration will
appear. One can take these three constants to be the three co-ordinates X, X,, X4
which identify the material point in the Lagrangian method of description, Thus, as the
solutions of (2.2) we can have

% = Fi(X). X5, X5,1) (i=1,2,3) v (28)

Obviously, these equations specify the motion in the Lagrangian method.

7.3, STREAM LINE :

A stream line is & curve drawn in the fluid medium at any given instant of time
such that the tangent at each point of it is coincident with the instantaneous direction of
the veloeity of the material point at that point, Lel v = {vi, Vo, v_-.,) be the velocity of

the particle (material point) at any point P(x, X,, X3) on the stream line at time t (Fig
3.1). Let T be the position vector of P,

P(xy, X2, X1)

Qfxy +dxy, %3 + dxg, x5 + dxa)

oF

Siream line

Fig. 3.1
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IFQ(xy +dxy, X3+ dxy, X3+ dx3) is a neighbouring point of P on the stream line
then the straight line PQ will be the tangent to the stream line when Q is very closed to

P. That is, dx; (i= 1, 2, 3) are infinitesimal quantities, If T + d 7 is the position
vector of Q, then FT(S =dT = (dx,, dx,, dx;). Since ¥ is in the direction of d T at
the instant t, we must have V =kd T where k is a constant.

C::msaqueutly, we have, at the instant (,

dx; dxq = dxy
VJ{X!,XE,J‘L_-hl) v'z(xr.ﬁ;!,xg.t} ‘—’:g{:xjpxg.x]rl)

(3.1

This equation is the differential equation of the stream line at a given instant t. The.
velocity components v; = (i = 1, 2, 3) are evaluated at the instait of time t, and thus t,
here, plays the role of a parameter whereas the velocity remains the function of the
position coordintes. Obviously, the siream lines are changed from instant to instant.

The stream line is different from the path line of a particle. If fact, a path line of a
particle is the curve in the fluid followed by it during its entire motion. If v is the
velocity of the particle al any point (x,, x,, X3) whose position vector is T, then we

—3
have V = d?ﬂi As the point T = (x,, x,, X3) lies on the path line at time t we must
have
vi =35 G199 (3.2)
| T WS ks S
dx; = dx, dxy

il Vi [XI,KZ,K},[} = v:(x,,xl,x;},t} o V;.;(m,xé.::;,ﬁ) ¥

di (3.3)

as the differential equation of the path line. Here, Vilxys X9 x5, ) (i = 1, 2, 3) are
functions of space coordinates and time, If'(X 1+ Kgy X3) ure the initial coordinates of
the particle, that is, at ( = 0, identifying the material point then the integral curve of

A B
(3.3) must passes through it. For steady motion, that is, when %li =0 or, V=

Tf[xh X3, X3) the path line coincides with the stream line, as it is evident from (3.1)
and (3.3).
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74, ROTATIOMNAL AND IRROTATIONAL MOTION : VELOCITY
POTENTIAL

1.2t us consider {wo neighbouring particles in "fluid in motion™ at the positions
P and O having position vectors ¥ and T +dr respectively, where T = (X4 %a,
X3) and T +d7T = (%) + dxi. X5 +dxy, x5+ dxy). Lel the velocities of the particles al
P and Q be respectively ¥ and vV +d ¥,

~ Then in the Eulerian method we have
-+ =3
v = ¥(X), Xo X3, 1) OF, Vi = Vi(Xy, X5 X3, 1)

—3 ey s
Vv +dv = vixy +dxp, xg, + dx,, X3 4 dxs, 1)
or, vi+dvi=v(x; +dx;, ¥ +dxa, % +dx;, 1)

i=1,2,3 o W il B (4.1)

§ : dv;
Now, we have v; +dv; = vi(X;,Xq9,%3,1) "E—}ILLII' Fonien
J

(by Taylor's expansion)
Therctore,
B TS |
dv; = axj- dxj =¥ g dxj ...... (4.2)
(neglecting the ferms containing squares and higher powers of the smail
differentials dx;)

or, ‘We cin write

dv; = dydx; + wydx; = d_'.f_i“} wdvi (4.3)

with dvi'" = d;; dx; e (4.4)

and (hri%l} =wydxy s (4.5)
where

dy = 3(vij+vis)=dy e (4.6)

= symmelri¢ strain-rate tensor of order 2
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and
Wij =%("i.; _"j.i)= Wi L edas (4.7)
= skewsymmetric tensor of order 2.
One can form a vector w; by setting
Wi -==E-:jk A o o A AR I e (4.8)
where €y, is defined as
€, = 0 if any two of i, j, k are equal
=+ | ifi, j, k are even permutation of 1, 2, 3
= 11if 1, j, k are odd pennutationof 1,2, 3
Then

Eijk Wi = Eijk Sipg Wap
= (E'JIJ Byp — ﬁjuakﬂ)wqu
= Wi = Wi = 2wy (sin wy == wy)
Therefore, wy; = % B W w0 0 s (4.9)
Then, form (4.5) we have
dvi ' = wyg dx; = % Eijk Wz-dxj (using (4.9)) ...... (4.10)
‘or, in vector notation
Hale{ ATFE)
where d7F = ﬁa
Again, from (4.7) and (4.8) we get
Wi =Sk Whi = % Eijk [Vk.-j = ‘-’j,k)

= ‘ZI*(Eijk Vi i~ €ikj ""k.j) (jntechangingldmmny suffixes)

|
E(Eijk H’klj+ Eijk vk.j]injk ""'k,j -
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That is,

| A
w=rotV = curl? = ai! Hi?_ E‘i; ...... (4.12)
L L & L £
Consequently,
dv¥= %curl R, [ R L S L (4.13)

4

The vector w = curl ¥ is known as vorticity vector and the tensor wi; is called
spin tensor. Thus, we see that the velocily of Q, that is, the velocity of the
neighbourhood of P is given by

v; +dv; = v; +dvi'P + dv;® erenn(4.14)
Obviously, if it comprising of three parts, namely, (i) translational motion with the
' e X
velocity v, the same as that of P,

(i) motion that is causing a rate of change in relative position, given by dj; dx;.

and {iii) a rigid body rotational motion with angular velocity :,lz-l:url v.

Now, if the state of motion in the neighbourhood of any particle in the fluid

continuum is such that the rotational part of the motion vanishes, that curl V = 0 at
cvery point of the continuum, then the motion is said to be “irrotational”. On the

contrary, if the state of motion has the rotational part, that is, the vorticily vector W=
curl ¥V is non-zero, then the motion is “rotational” or “vortex motion”.

Now, there may exist a scalar function ¢ such that the velocity components can be
expressible as

v, =—-§?¢ =23 e (4.15)

- i
or, the velocity as
v =— grad q;s—?q;

For this case, we call the function ¢ the “vector potential,”
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1f this function ¢ exists such that (4.15) or (4.16) helds good then we have

i i k
curl v =—curl grad ¢ = - % % Ef‘:— =0
. 1 2 3
L
ax; axz ax3

that s, the motion is irrotational, Conversely, we can show that if the motion is
irrotational then the velocity potential ¢ must exist. To show this, we use Stokes’

e | .
theorem which states that if F is a continuously differentiable vector point function
and S be an open two-sided surface bounded by a simple closed curve I' then

I'ﬁ’.cur]ﬁds=§ﬁ.d? ...... (4.17)
3 I

where T is the unit outward-drawn normal vector on the surface element dS of §
and d T is the directed element of the curve. This theorem holds good for the simply-
connecled negion for which the curve I' and the surface S entirely lie within-it.

Now, let us consider a closed curve I and a surface X having the curve T as its
rim, the boundary curve, entirely within the fluid continuum (Fig. 4.1).

Fig. 4.1

Let ¥ be the velocity, and d T be the directed element of the curve I" which is
PRQSP, Then by Stokes' theorem (4.17) we have

i?.d? = £ﬁ curl V cvaverkde E8)
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Now, if the fiuid motion is irrotational then curl v = 0, and consequently we have
q ¥

j‘:?.d? = ‘f?.d?=ﬁ
] B PROSP

or, §?.d?+ u{:?.d?:ﬂ

FRQ (s
or, VdT- §V.dT=0 or, §V.d?= §¥.d7
PRQ PiQ PRO TSQ

This shows that the values of lhe integrals along the curves PRQ and PSQ {rom
the point P to the point Q are the same, In other words, the value of the integral does
not depend on the path of integration from P 1o Q, and consequently it depends anly
on the end points P and Q. Now, if P is a fixed point then the integral will depend on
the position of Q only, Therefore, there must be a function ¢ such that

Q
V.47 = [VdT ==t = = ... (4.19)
FRC} P

Now, let Q° be a neighbouring point of Q, and the point G° lies on a curve joining
- P and Q. Then we have

Qf
[¥.47 =-(Q") e (4.20)
'P

Therefore, from (4.19) and (4.20),

Q o
[V.07- [7.47=0(0)- 0@
3

or, = |[V.d7 = [d¢
Q Q

Consequently, we have
v.dT = —d at every point in the continuum,
or, wehave v.d 7 =—-Vi.d7 = -gmdtp.d?
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f = ; A/
Since the element d r is arbizary we must have v =—grad ¢

ensuring the existence of the velocity potential. Thus, the necessary and sufficient
condition for the existence of the velocity potential is that the motion musi be
irrotational. Therefore, the motion characterized by the velocity potential and the
irrotational motion are the same. _

For the rotational or vortex motion, & curve drawn in the fluid medium at any
given instant of time such that the tangent at every point of it gives the instantaneous

gt gL =) o '
direction of the verticity vector w at that point 1s called the vortex line. If dx, dx.,
X =) a

dx, are the components of the directed element < r of the curve at any point then

—3 = " . §ogmn . .
w = kdT, and consequently, we have the following differential equation of the
vortex line at an instant of time t:

dx) _dxy _ dxy

I'r"r"i Wz 1\1,‘,!'_* was ..-,.{4.2!}
i j ke ‘
aH : =¥ i / - = {‘} a E}
Since w=courl v = T P Ak
.\F] ‘.I'g \.'3

we have, from (4.21).

dx; o oails o8 e
av} a‘-"z % a\"| a\f?‘ 3 a"lfz Ehf,

3?2_ B a.‘ig, _ mi_}_ N ET_ E}Xl 6‘:{1

R | '

Ex. 4.1. Find the stream line and path line of a continuum particle for the
velocity field given by
o X
L4 t*

¥y vy = xg, vy =0
Solution : The differential equation of the stream line at a given instant t of time

d . ]
J dxy _ dxy = —-g-l with L being a fixed parameter
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Integrating we have {(keeping in mind that t is a constant)
- (l + t?)al— +C, = -:-;L und x5 = Cy where Cy and C, are constants of
1 2
integration, Then the stream line is given by

(1+12)xll -% € x=

#

The differential equation for path line is

dx-
EL, = ;.!x_ - —S—‘ =dt whete | is now a variable

Xi_ X3
14t _
el cht fix
sl [P _2. = s
or, . t anddxs=0
Xt I+t x2 :

or, integrating, — diL +C;5 = tan™ , Cy - L} =t and x4 = Cs
I X

where Cy, Cy and Cy are constants of integration. Eliminating t we have the
following equation for the path lipe :

tﬂn[C3 _Elj-) =C, —;Iz—. Xy =Cs

Ex. 4.2, For the velocity field given by vy = kxs, vy = kx3, v3 = k(X; + x3)
show that the motion is irrotational. Find the velocity potential and the stream line.

Solation :

I o[+ x2)] - o (kx;_]}
curl v = ai. ﬂkaz ai, { kx"‘) a [k(xl+xz)]]

kg kxy kixg+x) 4 {%[kh} 3%(1:::_-,)}

=i{k=k} +ijlk=k}+k .0
=0

", the motion is irrotatienal.
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If § is the velocity potential

2 . .
_5}%:“:](13. _'a'g;vf{:kxl"_%:k(x]_‘"xz)
di

-9 &)
i = axl d}ﬁl e 3‘;;&3{2 H 813 dxy

= —kxg dx) — kxadxg = k(x; + x;)dx;
=— R{x3dx; 4 %,dxy + x3d Xy + x5dx,}
= — k{d(x3%}) + d(x3X3)]} =— kd{x3x| + x3%5)
o= —K(X3X| + X3¥%3) + A | (A = constant)
==kxa(X; + %) + A
Stream line is given by

dyy _dxy  dxy
kg kxa k(xi EH ?‘z)

X3dxy = (x; + %5)dx; and dx; = dx,
Integrating we have x| = x, + Cy, C, is a constant

Also, Xadxg = (x| + x| = Cy)dx; = (2%, — Cy)dx,
1

7l 1; = .K]E — C,x, + L'z, C‘E 1% 2 constant
. eqn. of stream line : xy = X, = C,, x'; =I5~ 2Cx; +2C;

fie _ax _ 2ax, _ 3ax; f
Ex. 4.3. For the velocity field v; = TR et v —I—_ﬁ,dctr:.rmm_e
the stream lines and path lines.

Solation : stream ling is given by the differential equation

dxl dxz dxg_ X ;
ax, ~ Zaxg - Jaxy where t is a fixed parameter

1+t TH+E€ Tat

Integrating with have log x; = %lug X4 + constant, and

log x; = %lug X3 + constant
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X; =€) x,'* = C,x3¥ is the stream line where ) and C, are constants,

Puth line is given hy

dx; dx, dx, g ey i
W =t ?EEA = —3-3-5{;- = dt where t is now @ variable.
I+t 141t +1

dzy. _ adi dxy; _ 2adt dxy  3adi

x! _I+|‘ K: _'[+[' 3(3_F|'|'t

Integrating we have
log x; =alog(l +t) + const,, log = 2z log(1 + t) + constant
log x3 = 3a log(1 + t) + constant
Ky =G+ 0%, Xy =Cyll + 0%, xy = Cy(l + )
where Cs, C; and Cs are constants of integratoin, We can eliminate t as follows -

2 7
A 20X X I A1
— =+t ===, === [l4| = =a=
: L) Cs' 3 1) Cs
S ¢

or, x*= o X xf’ = ﬁi- Xy gives the equation of the path line. Note that

I

stream line and the path line are identical in this case.
s I} - 12 3%x 3xx-
Ex. 4.4. For the velocity field vy === v, = 2022 o Z8IRS
e e Is
T e Gl S LR
where % = x,z + X3 + X3, show that the motion is irrotational. Find the velocity
potential,

i ] k ‘
o 5 e 7 I R
Solution : curl v = ax, 35 35:3
Vi M2 Wy
a‘l'j av, 5y ar 57 dr
i (e O
or o { 2. % 3 'ﬁ} i 21Xy £
Now, 3 X+ x5+ %3 = =t
dx,  dxy [ ) 2(x$+x%+x§r r




Similarly, E{; -

vy dv 5

E_:xi = = T ARk o XiKgXy = 0
Similarly, %‘l = ?ﬂ =1 and ail = E’.E.F_ =0

X3 oy F}xl ax?

Therefore, curl V =0, and the motion is irrotaional,

Let & be the velocity potential. Then

d d J
df = ?]J%dx] + :}-iq;-dxz +F¢:dx3 = —vdx; — vadxy — vadx,

Yyt <ir? 3xx Ixixg
_='[_r5— 1+'-r-“§ifz AL

[

=— 'r—]{{gl I(I?h +3lezd?{1 +311K;dﬂ1 ==l d—Kl
i

%
1 | 3x s S 1 | 3x 3
= T‘_{T!d(xl + X5 +x3]—-1 dxl}=~r—:?.{—2'-d(r )—12{1}:,
_ ?IXI 2 .!'.. Hd‘i';' 3?:1_ Ky
- (Gel) - on = B Bar=a(y
=—x-t—=———-—-—i-——-—n—x e
b=3 T 2

Ex.4.5. Show that for the velocily field given by v = ax; — bxy, vy = bx; = cx4,
V3 = CXy — ax, the motion is rotational.

Find the vortex lines,

av"{ av: d\"'] Ev3 a_‘u"-z .a_vL
Solution : Curl ¥ (H % Ehr.j ]+ [ax3 5, +k a—xr iz ra

or, curl V =i(c+c)+jla+a)+kb+b)
= 2(ci +uj +bk) £ 0 '
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Therefore the motion is rotational.

Vortex lines are given by the differential equations
dx | - dxz dx';
3v3 a‘-"z = a\"] a‘-’_’.!- dv aV
e Lt T
axz ﬂx3 833 E’H ax| 3]’{?

R el 1 for fixed time ¢

ar,

Integrating we have x; = % Xy +C; (Cy & C, being constants of integration)
X = g-x; + C,

Thus, the straight lines x| = %xz +C) = %x3 + C, are the vortex lines.

Ex.4.6. Show that the velocity ficld given by v| = @xy, V) = 0X|, v3 =0
represents rotalional motion.

u : = a'fq, a'i."' a'"i"' E‘v3 a?z a‘d"
Solution : Curl v = [d = ah] [gi- El—) (H‘x, S k
= (0 - 0)i + (0 - 0)j + (0 + a)k = 20k # 0

‘. the motion is rotational,

7.5, INCOMPRESSIBLE FLUID : EQUATION OF CONTINUITY :

In unit-5 we have deduced the equation of continuity from the principle of
conservation of mass both in the Lagrangian and the Eulerian methods :it'des-::rip!iun_.
Also it is shown there that the two forms of the equation of continuity in these two
methods of description are equivalent. Tn the Bulerian method, the equation of
conlinuity is given by '

dap = 21

= + dnr[p v) =0 i (5.1a)
d =

_']IE+p._;1w, Va0 O B s (5.1b)

Now, if any change in the stress applied Lo a quantity of fluid can not produce any
change in the volume of it, that is, il can not be compressed by any amount of stress,
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then the fluid is called “imcompressible’” fluid. On the other hand, if change m the
volume of the fluid can oceur due fo the application of an amount of stress then the
fluid is said to be “‘compressible” fuid, Gases are compressible fuds whereus liguids

= : . b : . IR . o
are imcompressible. The condition for a fluid to be incompressible is == = G. This

& . - = i .
follow from (5.1b) since div. v = V. v epresents the time raie of increase of yolime
per unit volume which must be zero for the incompressible (luid.

7.6. CONSTITUTIVE EQUATIONS : PERFECT FLUID :

We have already stated that a pecfect {lid is characierized by the fact-that it is
incapable of exerting any shearing stress on the adjacent layers in its confact in
resisting the shearing movement under a very small shearing force. Theretore, the
siress vector excried by a perfect flurd must be normal to the suriace. This normal
stress which is always compressive is known as tie pressure. IE T (1= 1, 2, 3) are
the components of the stress vector scting across # planc whose normal unit vecton is

T, and p is the pressure on that plane, then we have
1 o

Tillljz_Pni [E: I.,,:l; 3} .|.|||(ﬁ'.l}

where m; (i = 1, 2, 3) are components of .
Since the stress tensor Tj; is given by

Ti*“]' = Tij By
we find that

Tjn; =T ™ =—pn; (using (6.1))

Therefore, Ty =~ p & caersul .2
These equations are the constifutive equations of perfect fluid,

For perfect fluid the existence of compressive normal stress or the pressure leads
to the following theorem :

‘Theorem : The pressure at any peint in a perfect fluid has the same magnitude in
every direction.
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Let dS and dS° be any two arbitrary surface elements passing through a point P,
having normals B = (0, ny, ny) and 1’ = (n{, n, nf ) respectively. If p and p” are
the pressures, that is, the compressive normal stresses at P oacting across surface
elements dS and dS” respectively, then we have

Ti™ = pny, T =—p’ nf
Ty 0y = -pn;, Tynj=-p'nj
where 'Ty; is the stress tensor at the fluid point P, and Ti“” and Ti“"} are

respectively the stress vectors acting at P across the elements of surface dS and dS*
From (6.4)

We have Tjn;n{ = —pnnj }
we have

and  Tynin =—-pnin;
Now, Tjnin; = Tynfn; (interchanging dummy suffixes)
= T;nin; (since Tj; = T}; because the stress tensor is symimnetric)
Therefore, from (6.5) we have
pnin{ = p‘nyn
or, (p-p'imni=0

Since nj and n{ represent arbitrary directions, we must have p—p“ =0 or, p=
p’. Hence the theorem.

It should be noted that since the viscous fluid-can exert shearing stress when it is
in motion the above theorem does not remain valid. In fact, the notion of fluid
pressure as the compressive normal stress, that is, in the sense of hydrostalic pressure
may not hold good. Still one can define the pressure p at a point in a viscous fluid in
motion as the average normal compressive stress at the point, that is, by the following
relation :

1
P ‘i{Trl + Ty + Ty3) = —%Tii ------ (6.6)

OF eourse, as the viscous Muid al rest can not exert shear stress the hydrostatic
pressure pp at a point has the same magnitude in every direction, and the stress tensor
is given by Tjj = — pody Ty
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7.7 CONSTITUTIVE EQUATIONS : VISCOUS FLUID

The stress cxerted by a viscous fluid is'dependent on (he rate of change of strain,
and the stress vanishes when this strain rale or rate of deformation is zero. For
Newtonian viscous fluid or lincarly viscous fluid the stress is a linear function of
strain rate. Thus, for such linearly viscous [Tuid in motion one can have

Tij = Bij + Gijia diy

when dg =75 (Vi1 + v, k) et o

is the rate of strain, ¥ = (vy, Vo, va) being the velocity of the fluid.

Now, the equation (7.1) for fluid in motion must be reduced to the equution (6.7)
when the fluid is at rest for which case the pressure p as given in (6.6) must be equal
to pp and the strain rate dy = 0. Therefore, when p = po,

and di; = 0 we must have (for fluid at rest)

Tjj = Bij = — pody = = pd;j
Therefore, the equation (7.1) becomes
Tij=- poi+ Cijadie e (7.3)
for linearly viscous fluid in motion. It is to be noted that Cyjy 1s symunietric with
respect to the first two indices as well as last two indices because both T and &; are
symmelric tensors. If we consider an isotropic homogencous lincarly viscous fluid
whose physical properties are the same at all points and are identical in respect of
every directions from any point, then Cuk! must be an isotropic tensor of order four,
This tensor can be written us :
Cijki = lﬁﬁﬁu + uaih_ajl + Uﬁuﬁjk ...... (7.4)
where A, 1, © are constants. Now, since
Cijit = Gijg (as it is symmetric w.r. o the last two indices)
we have
lﬁ;jﬁm + j.ta',};ﬁj[ + Uaﬂﬁjk = ?Laijalk o j.!_E-uﬁjk + \}ﬁikﬁﬂ

or, PO — 8y - v(8udj— b =0 (.7 Bk = diw)

or, (jt =) (Bixdy - dydjx) = 0

As this equation is true for all values of 1, j, K, I, we put

i=1,k=1,j=2,1=2in this equation to get
(1t = 0)(811822 — 812821) = 0
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or; H-u=0 of W=v (7.5)
Consequently, we have from (7.4)
Cijwr = ABidp) + Wby + dud) ... (7.6)
Using (7.6) we have from (7.3)
Tij = — pdij + Miydadig + 1(Bixdy + 8,y dy
or,  Tjj = —pdy + ADG;; + 2pud; T O
where D=dy=vy=divv=V.y
. These are the constitutive equations for isotropic homogeneous linearly viscous

fluid. The constants A and [ are the viscosily coefficients. For incompressibie fluid
dp

we have . 0 or, div v = 0, and therefore, the constitutive equations for isotropic

homogeneous hinearly viscous incompressible fluid are given by

Tjj = - pﬁij o Ei.ldij ...... {7.9)
Again, from (7.7) we have
Ti', = —pﬁﬁ + lDE;l + Eﬂdﬁ
=—3p+3AD +2uD (using (7.8))
or, since Tj; = —3p (from (6.6)), we have
-3p=-3p 4+ (3A+21)D
ar, @A+2LD=0
For compressible fluid D £ 0, then we have
24
AIA+20=0 m‘,l:——3~ il =STF O e (7.10)
Using (7.10) we have from (7.7) _
- 2
I‘,j = —pﬁij = H'_}EDEU c 2|,1du
2 a
= _[p+—§‘-n)oﬁ+zmlﬂ eeniis

These are the constitutive equations for isotropic homogeneous linearly viscous
compressible fluid.
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Unit : 8 (1 Equations of Motion of Fluid

3.1. EULER’S DYNAMICAL EQUATIONS OF MOTION

In unit-5, we have deduced the equations of motion of the continuum from the
principle of balance of linear momentum, which states that the time rate of change of
total lincar momentum of any specific portion of the continuum is equal to the resultant
external foree acting on this portion.

These equations are

[“,“-ip'ri'i:p-m—"- | (1.1)

where Tjj is the stress tensor. Fj the body farce per unit mass, and v; the velocity
of the continuum.

Now, for perfect fuid we use the constiiutive eguation (6.2) of unit-7, and
substitute this expression for the stress tensor into (1,1) to obiain

: ( '35] +pFi'"p1:I1

v,
or, P-}Eij""PF.:{'—'HI"
ot ‘lvizavi+(§v)v.~F_L ! 1.2
A= )i =E—2p, (1.2)

(=1, 2,:3)
These are Euler's equalions of motion for a perfect fluid in Eulerizn methad. These
ﬂquatiuns can be wrilien in the following form in the vector notation :

%E-}'( ?)v-ﬁ-—ﬁvp : (13:'
(Vp = grad p)
8.2. LAGRANGE’S EQUATIONS OF MOTION

We can obtain the equations of motion in Lagrangian method by following the
motion of the fluid particle (the material point) identified by its initial coordinates
(X1, X2,Xa) at e t = 0. As this particle occupies a position (X, X2, x3) at time L, the
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it : . argi . .
acceleration components of this fluid particle at that time ( are s QB (e

di#

Consequently, the equations of motion (1.2) become
7%, | dp
i R 2.1
a - i pax, 2.1)
(i=152,3)
Let us now convert the partial derivatives with respeet to x; (1 = 1, 2, 3) into those
with respect to the independent variables X; = (i = 1, 2, 3) of the Lagrangian method.

: dx; . :
For this, we multiply equations (2.1) by -a-% and sum over i Lo oblain
k

o 9% o 9% 1 dp 9%
: at‘l axk 5 "E]Kk (8] a}(i a’xk
Bzxiw a}ii = 1 ap
o {Fi ~0 X, T 0%, (%:2)
(k= L3

These are the equations of motion of perfect fluid in Lagrangian method of
description,

8.5, INTEGRALS OF EULER’S EQUATIONS OF MOTION
We have four equations, three of which are the Euler's equations of motion (1.2)
and the uther is the equation of continuity

E!L%?_+ div.v = 0 (3.1)

for determination of five unknown quantities v; (i = 1, 2, 3), p and p which are
functions of the independent variables x; = (i=1, 2, 3) and 1. These {ive unknown

guantities may be reduced to four unknown quantities if one assumes a relationship
between the pressure poand the density p . Assuming such a relationship between p

d : : : g
and p so that J-EP exists, we introduce a pressure potential P given as

p= [
gp (3.2)
or, dP= F
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From this, it follows that

P . L R e %[Hx_ dx. +§Edt) [s:nm P and p are ]

ox; ot T functions of x, and t
Therefore, g—ﬂ = 9 (equating the coelficients of dx;)
X pd i
or, grad P = ﬁ; grad p
or, é grad p = grad (J' %E] (3.3)
For conservative external body forces which are derivable from a potential .U
(say), that is s
_}
F = —grad U (3.4)

we have from Euler's equations (1.3) and (3.3)

O e Wi L : dp
57t (v.V)¥ = —grad U -~ ) grad p = —grad U — grad UF]

= grad (U + | %3] (3.5)

Now, we use the following vector identity

v ®eurly = %gmcl (V) - (Tr.?r]ﬁ

or, (v?]v =--gmd[ ]—ﬁxcurl?

Substituting the expression for (V. V) ¥ from this identity into (3.5), we have

—

a—:—vx::uri V = — grad (U+_[ ]—%gmd (?2]

——gml(z +U+I ]=—gradH_ (3.6)
_1ls dp aay
where H—Ev1+U+JF (3.7
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which represents the total specific cnergy being the sum of kinetic, potential and
pressure encrgies per unit mass. The equation (3.6) is the Euler's equation of motion
when the body forees are conservative and the pressure is function of density alone,

Now, we shall discuss few cases for which the Buler's equation {3.6) have
integrals.

Case 1. If the uid motion is irrotational, that is, curl v = 0 at every point of the
continuwm, then the velocity potential ¢ exists, that is

Vv =— grad ¢

Consequenily, we have from (3.0)

_.aa_r(_grnd :P} = —grad [g—?] = —grad H

or, grad (%‘,‘L‘ = H] =0
Integrating we lmve

%—T — H = a function of t oaly = F(t) (say)

Ve

0 d
or, g ~u-Y - [ =F( (3.8)

Thus, {3.8) is the infegral of Euler's equation of motion for this case of imotational
Mow of fiuid, This integral is the Generalised Bernoulli’s equation or pressure
squation.

Case II. Fluid motion is supposed to be rotational but steady. For this

av 5 - \
we have E = () Qr, ¥ = "P'(J[i.]lg, X3} {3.9}

TI_}-:n, we lave from (3.6) :

vxeurl V= grad H (3.10)°

or, V. {Vxcusl ¥)=7¥, grad H (3.11)

Since the vector ¥ is perpendicular to ¥ % curl ¥ we have the L.H.S of (3.11) iz
equal to zerc, and therefore

v.grad H=10
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That is, grad H is perpendicalar to v. For steady motion ¥ is tangential (o the
stream line, and consequently the vector grad H must be normal te the stream line.
Therefore, the component of grad H along the stream line is zero. That |s,

dH _
£ MR 0 (3.13)

where ds represents the element of arc of the stream line.

Integrating we have

H=¥ L u4 J? = constant = C (say) (3.13)

where the “constant” C remains constant at every point of the stream line but it .
differs, in general, lrom one streaim hine (o another, (3.13) is the integral of Euler's
cquation of motion for steady rotational flow. This is known as Bernoulli’s equation .
along a stream line.

For uniform steady motion v = constant, that us, curl ¥ = 0, and we have

grad H = 0 or, H = constant independent of x; and 1.
: e L D
or, U+ _F —P-— constant — s cc?mmm (3.14)

Again, from (3.10) we get '
cutl V. (V x curl ¥) = curl ¥, grad H
or, curl V.grad H=0 (since cutl ¥ iy perpendiculal to
the vector vV ¥ curl v )
Therefore, grad H is perpendicular to the vector curl ¥. Now, as the vorticity

veclor curl ¥ is langential to the vortex line, grad H must be normal to the vortex ling,
and consequently its component along the vortex line will be zero. Hence,

dil _

o
where ds” is the arc element of the vortex line. Thus, on integration,
_ 2 dp _ o gt
H= 5 + U+ IF = constant = C {hﬂjn’) (3.13)
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where C* remains constant at every point along the voriex line but it differs, in
general from one vortex line to another, The equation (3.15) is the integral of Euler's
equation of motion for steady rotational flow, and is called Bernoulli's equation along
a vortex line.

Since H remains constant both along a strean line and a vortex line, it must remain
constant over a surface containing both these lines, This surface is known as Lamb

surface.
Case II1. Let us now suppose that the fluid motion is steady and irrotational.,

Thus, we have %‘{- = () and curl v= 0.

Then, from (3.6) we have grad H = 0, and on integration we gel
H= % v+ U+ J % = constant independent of x; and (.
=C"" (say) (3.10)

C" remains constant throughout the fuid flow at all times. This integral (3.16) of
the Euler's equation of motion is the Bernoulli-Euler integral or Bernoulli’s equation
for steady irrotational flow,

Exercise 3.1, For the steady {luid motion if the stream lines and vortex lines are

paraliel show that the sum of potential energy, kinetic enerpy and pressure energy per
unit mass is an absolute constant.

Hints. For steady motion % = 0, If stream lines and vortex lines are parallel,
v x el ¥ = 0. Then use (3.6). -

Exercise 3.2, For homogeneous incompressible fluid moving steadily under the
action of gravity only, find the Bernoulli’s equation along a stream line.

Hints For incompressible fluid . 0. The polential U is given by

dt
- %I- = — g il x5 axis is directed vertically upwards,
3

or, U=gx;3
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Then use (3.6) and _f —if E (as p = constant)

v ;
[Ans: x E - 5’— = constant along a stream line)

8.4. KELVINE'S THEOREM ON MINIMUM KINETIC ENERGY

Kelvine’s theorem on minimum kinetic energy states that the irrotational motion of
an incompressible perfect fluid occupying a simply connected regioun has less kinetic
energy than any other motion of the fluid having on its bou ndary the same normal
velocity as in the irrotational motion.

Thus, the irrotational motion has the minimum kinetic energy.
Proof of the theorem :

Let us suppose that an incompressible perfeet fluid is occupying a region V
bounded by a closed surface X. Let p be the density of the fluid and T the kinetic
enerpy of the fluid moving irrotationally. Let ¥ (vy, v, v3) be the fluid velocity.
Then we have

p [¥ (4.1)
v

| e

Since the fluid motion is irrotational, a velocity potential ¢ exists such that

Vi =~ 5]_(11 (i= 1, 2, 3) at every point in the region V. (4.2)
1
Also, since the fluid is incompressible we have div v = 0 (4.3)

at every interior point.

Now, let T* be the kinelic energy of any other possible state of fluid motion, and
Vo= (v{. vh, v4) is the corresponding fluid velocity, Then we have

T =4p [ dv (4.4)
Y
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The velocity ¥° must satisfy the equation of continuity for incompressible find,
that is,

div ¥ = 0 (4.5)

Now, since these two motions have the same normal velocity on ¥ then we must
have
AV =0V, or i(V-¥)=0 (4.6)
where n = (ny, ny, ny) is unit normal vector at a point on Y. From (4.1) and
(4.4) we have '

T -T =

b | =

p [(¥2-¥2)av
v
= % i I{(viz - vF)+ (v‘f - \.%J +(v§3 : v%)} av
v
I (U;—V’)z"f‘z‘l’t(\fi -VI)'-F(V-E_'— V2)2+2V2(v§-v3)
=P J- ' " dv
v +(v;‘._—v3] -va;(vg—VJ)
=1p I{(‘-’? =i} + (Ve = va)" (V5 - vy) } dy
v
+ pj{v,(v{ =Yy )+ Va(Vh = vg) + va (V4 — va ) JdV
¥
= I + I, (say) (4.7)
where [ = %pf{(vi.—-v,)z + (v — vg)z +(v§ - va)z}d“u’
\

|

2
%p£ (1.‘:*-- ?I] dv  (4.8)
and I, =p Hvl(v; = V1) v Vs = va )+ vV - v.g)};l‘».r'
Y
Now, I, = pf vi{vi = v )dV = —pf%‘-}—{v; ~v;)dV  [using (4.2)]
v v
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== [{ 100 - vl (v - i) av

=-pf div{:.p(*?-— ?]}dv + pjlpd-.'u[?- T,-‘]dv
v Y
::_—péti:.l_f.(?’—T’sznf-piip{divfﬁ—div?}tw (4.9)

(using Gauss’s diveigence theorem for the first integral)

From (4.6), it is found that the surface integral on the R.H.S. of (4.9) vanishes,
Also, due to the conditions in (4.3) and (4.5), the second term, that is, the vohin
integral on the R.H.S. vanishes. Therefore, we have I, = 0, and hence

2
T'-T=l,= %pj[;}— ?] dV = a positive quantity
v

Consequently, we have T"-T >0
or, P

Henee the theorem.

8.5. CONSTANCY OF CIRCULATION
Let us consider the circulation I round 4 closed curve (closed circuit) C in the fluid

flow. Let V = (Vs Y. ¥3) be the veloeity., The circulation I” is given as

F=§¥.d7 = [ v d; (5.1)
L [

where A T = (dx,, dx,, dx4) is the directed element of the curve,

Therefore, %1:_ = iélt—{vi dx;) (since the region of the integration is a definite

portion of the fluid, that is , on the cireuil C)

ch dv;
or., $at o ,+5€ vi g (dx;) (5.2)
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d - ' =Y & :
Now, Eg(dxl) =dv; (since a-l-[dxj} represents the time rate of the relative

-[msitinn of a Muid particle w.r. to its neighbour, therefore, it is the relative velocity of
the fluid particle w.r. to its neighbour)

d _dv;
or, ‘ﬁ(dxi} - Ej-dx-i
Using this, we have, from (5.2),

dr _ dv‘d +§v dx;
.1

T (5.3)

i

MNow, we use Buler’s equation of motion for perfect fluid, given by

v
For the conservative body force, that is, if F; are given as F; = —-3% =.—Uli,

where U is a potential function, we ‘have the Euler's equation for incompressible
perfect floid as

dv; I e E)
T— U pp,]— [U+p.h

'Consaquemly. the equation [5.3]- becomes

__§d(m ] ,ﬁaax (vi Jax;
= - f(ue ) 3gald) i
gt -v-g)-o

since C is u closed curye and -i—vi —v-Risa single-valued function,

p
Therefore,
I' = constant
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Thus, the circulation around any closed curve of fluid particles moving ait:ng with
the fluid remains constant throughout the motion if the external body forces acting on

perfect incompressible fluid are conservative. This is Kelvine's theorem on the
constancy of circulation.

8.6. MOTION IN TWO DIMENSIONS : SOURCES, SINKS AND
DOUBLETS

If the velocity V = (v,, v,, v3) of the fluid motion is such that vy = v(x, X5, 1),
Va = Vo(Xy, Xq, 1), V5 = 0, then the motion takes place in the layers parallel to XXg-
plane, that is, the motion is the same in each of these plane layers, Such fluid motion is
the motion in two dimensions.

For the two-dimensional motion the differcntial equation of the stream line is given
by

dx dx
V]{Kh-':[g.[j: vz(xl.iz._tj (&)

or, Vodx;—vdx;=0.

The L.ILS. of this equation will be a perfect differential if a function w exists such
that

S A
M= axz 3Nt axi {6-2}

Therefore, dy = o dx, + gﬁ-ﬁ- dxy =0
5

31]
or, Y = constant ‘ (6.3)
(6.3) represents the stream line ; and v/ is the stream function,
i j k
The vorticity vector W = curl V = _33_1 % E-a:

x.
Vi Vz 0

ar, W=k ov, 3y
=k -Eiz—‘"f e i) (using (6.2))
axi a'x%

239




Therefore, for irretational motion we have

-

ﬂ+a;\f=ﬂ (6.4)
Cgxy  Ox5

Also, for an irrotational motion a velocily potentiad ¢ exisis such that

__ 9% __ % -

"T'__ﬁ:{;" Vg——';rx; (6.5)

% iy At l}'-r| av-, e, PR
For imcompressible {luid we have T s 0. Jodiv V=0 and
Ry g
congequently from (6.5) it tollows that

%, &%

— = =] 6.6

axi  9x3 1ol

The curve ¢ = constant is lhe curve of equal velocity potential. From (6.2) and

follows that 20 = Q¥ g Wy
(6.5) il follows that I O% and e - o, (6.7)

These relations remain unaltered if one writes —  for ¢, and ¢ for
Consequently, if we tuke the cutves y = constant as the equipotential curves, and ¢ =
constant as the stream line we have another possible case of irrotional motion,

Now, the fundamental solution of (6.6) is of the form | ¢ = C log r where r is the
distance from 4 fixed point (say, the origin), that is 2 = x,l + JL%. This is the cuse of

two-dimensional source if C=— "EIIPE*
or, $=- 4 logr (6.8)
A T _m
and if C = o 06 ¢ = 2-,-;1“3" (6.9)

it represents a two-dimensional sink, The constant m is the ‘steength’ of the source
as it is the outward Aux across a circle surrounding the pomt (soruce}, that is,

—%?--21{1*::11 (6.10)
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The source is, thus, a point from which the fluid flows out unifermly in all
direction. Obviously, a sink can be looked as a negative source. The existence of 4

source or a sink implies a continual creation or annihilation of fluid at the point under
consideration.

A combination of the equal and opposite sources that is, a source and a sink of
strengths m and -m respectively, situated at a distance 65 apart such that in the fimit 55
— 0 and m = o<, the product m8S remains finite and is equal o | (say), is called a
double source or doublet. p is the strength, and the line 85 drawn from the sink of

strengh -m to the source of strength +m is called the axis of the doublet.

Now, the velocity potential at P for a doublet with “sink™ -m and “scurce” m
situated at A and B, that is, the axis being AB = §s, can be found by the addition of the
velocity potentials for the sink and source (see fig. 6.1)

F‘{xj. Xa)
-
/ !
- ll
i
Ak, 227) B(x;" 4 lj8s, x3° + 1,08)
Fig. 6.1

Let (x;, X5) be the co-ordinates of P. If 1}, 1; are the direction cosines of the axis
os of the doublet, then the coordinates of A and B can be taken as (xi.x';) and

(xi + 1;Bs, x5 + lzﬁs] respectively. Then the velecity potential for the doublet at the
point P is given by '

th= %Iﬂgf - %Iﬂgr’ = ——zmﬁ(lngr% Ingr} R | I ]
where r= AP and ' = BP.

Letlog r= f(x{,x3). then log " = f(x{ + €8s, x5 + £,55)
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Then, logr —logr= f(x; + £,Bs, x5 + e‘gﬁs}— f(x;. xi)

- (2 + 02 o2 ot we)os

= {[ £, -'r}_i’_’ + £, ﬁ}%—)lng r}(ﬁs}

Therefore, ¢ =— rgi‘{[fi a‘?{ + £, aa )lugr

Now, since mds = |t in the limit m — =, 85 — 0, it being the strength of the
doublet, we have

L %o —=WE Xy — X5 ; 2 ;
= errr{f; ] - Ly g, 22 : -3-} (since 2= (x; - x’})" +(x, —KE)E

¢ = K| X3 = X5 G 1
Since X1 & s 2 £ are the direction cosines of AP, then
X — % X3 — K3 A e
£ —1———r + ty . = cos8 where 8 is the angle between the
increasing r and the axis of the doublet, Then

b= cnqﬁ ...... (6.12)

Example 6.1 Find thc stream function for a two-dimensional source given by the
velocity potential ¢ = 2 = log r where r is the distance from the source point.

Solution : x| =r cos 0, X, = rsin 8 if we take the source is at the origin. Now,

o 20 %
k] aX| -3_‘3_
or, Vvi= 21;:{ — (Since r? = xt +x3)
Similarly, va= = %
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dx] dx?
— = = I, =
Vi V2 |

Stream line is given by

Integrating we have log x; = log X, + constant
X i
or, =% =constanl or, E‘"'—nﬂ = constaiil
- Xy rcos O
Therefore, 0 = constant is the stream line. Consequently, stream function y = C0
Wy
Y. we have

tan G = constant
i
g%; ' 2T o
; o o X
] [ tan g = -=

or,
]

where C is a constant. Now, since v
¥y = mx,z = -i-(ﬂ{}} =t —C..i(lun" L
2mr X3 oy A o
A
- fl s EM 2_:_,:1_
el Lz] Af -+ X5 r
|
m
G
Consequently, the stream funclion yf is given by
LI (6.13)

Now, we have seen above that if we write — y for ¢, and & for y, then ¢ =

constant and \f = constant represent, repectively, the stream line and the equipotential
curve for another possible fluid motion. Therefore, in this case of fluid motion, the

velocity potential ¢ and stream function W~ are, respectively, given by

e DL
e A4, (6.14)
Y= +ﬁlng T
This is the case of simple vortex. The velocity ﬁémmpuncnts are Vg =
i1 V= —%%- =1
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14

2 =} -3 T, 2N ; - ot ;
Thurcfc-n:.]"—§v,ds _§vﬂrdﬁ— L dd =m
0 0
Thus, m, here, represents the circulation round the vortex,

8.7. VISCOUS FLOW ; NAVIER STOKES EQUATION
In unit — 7, section 7.7, we have found the constitutive equations for isotropie

homogeneous linearly viscous fluid as

Fipes [p 2k n]a,.j Fopdy (7.1)
where D=div Vv = V.V (7.2)
and  dy = *é‘(‘!'i.j + "j.i] (7.3)

Here, 1 is the coefficient of Viscosity.

Also, we have the equation of motion of continunm as
Ty; +PF, =p dd"; (7.4)

From (7.1), we got

2 -
Ti}lj = —P,jaij = -jliﬁ,-j[).j + 1L(1.r1-1jj + "'j.ij) (using (7.3)

2 “
or, Tj;=-p;- TIJ'DJ + Ve + P("’j.j)ri

e U0 ‘Z'ED +|.1V2v +UD;  (since v = divV = D)

o, Ty;=-p;+5D;+uvl  @.5)
Now, for i-nmmpressibk: fluid D = 0, and therefore, we have
Ty =—pi + V3 (1.6)
Substituting (7.6) into (7.4) we obtain

- E?—+;1‘F2vi + pF; “prt-lfl
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{j. 7 i a3
or, _{I%': F; —é—%+v?“vi (7.7}
|

where v = ,% is the kinematical coefficient of viscosity.

‘The equation (7.7) can be written in the vector notation as
a gt 25
T =k pblﬂdp+\-‘?‘k’

v

A5 (7.8)
ek (v.V)v = F-

or, [—i—gr:‘ut p + vV

This is Navier Stokes equation of motion for incompressible viscous fluid.

For compressible viscous fluid, we have from (7.4) and (7.5)

dv J
P =PF;~ E‘% b %U-i IV,

Y g L0 oy
S 3

ar =
bopdx; L

D;+vwW;  (7.9)

or, in vector notalion

-
%{'“_..;.[T,rﬂ?)? = ﬁ—fligrmlp+ %gmd{div?)+v?2?. (7.10)

This equation is Navier Stokes equation of motion for compressible viscous fluid,

8.8, CIRCULATION IN VISCOUS FLOW

The circulation T' round a closed circuit C in a moving viscous fluid with velocity
Vo= (V{, V3, ¥3) 15 given by

F=§v.d7 = fvx (8.1)
C C
dl” _ d d

(since C is a definite portion of the uid)




dv; d s
—d‘llll d?{i+§'¥’ié—it{dxi):i%dﬁi'f'i\’id‘r'i [ “éii(dxi)=d\fi]

I
iy

o
dav; ( )
~fa dx, +§ (8.2)
. S : ol :
Now, for conservative body forces, given by F, A where U is the

i
potential, the Novier Stokes equation of motion (7.9) becomes.

4y, oU 190 vp. pyyiy,

qt ~Tox pox, T3 B3

if the pressure p is a function of density p alone, then the pressure potential P is

found to be given as

_d ap 1 dp
dP = r Uﬂgﬁ-d“i p}}—xiv.dx,
That is, 1J—1 %a—

Therefore, from (8.3) we have

dv; . @ [v 2 :
e {~3—D—U~P}+V? Y

Then, from (8.2) and (8.4) we get :
di”- _ ¢t ¢ Jv 2 |
e TFHE?{?D -1- P}dxi + iv’i’ vidx; + id(i vivi]

- faf§p-u-r}e vfvves (3 vv)

or, {:.i_r_ e { D-=1- P+~é—vivi}+v§?1'vidxi

§'i? vidx; (since ED U- 11'+l v;v; is a single-valued
C

function, and the integration is “round a closed circuit”)

or, % = *.FV2§ v;dx;
=y Vir (8.5)
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it is to be noted that for uniform viscous incompressible fluid we get D=0, and
%% = 3%: [g) Consequently we arrive at the same relation {8.5) for ‘1—:1—11;—"

For perfect fluid v.= 0, and therefore %—IE- =0, that is, T" = constant in time. This

was established earlier, and it is Kelvine's theorem on the constancy of circulation of
perfect fluid.
8.9. FLOW BETWEEN PARALLEL PLATES

We consider here a steady two-dimensional laminar flow of an incompressible
viscous fluid between (wo paralle] planes, We tuke the direction of flow as the x,-axis

(Fig 9.1)
o 4

v
L ey

o

Let x; = 0 and x, = h be the equations of the planes between which the fluid flows
under no body forces except the pressure. As the motion is two-dimensional in Xy
plane, it is the same in each of the layers parallel to X{,Xy. For this laminar flow we

.E'xl

Fig. 9.1

can have
Yi =V-|[TX],2(2}, szﬂ—‘-—-‘fa {9.1)
and p = p(x), ;) (9.2)

Since we are considering incompressible fluid, we must have

D=divV =0 or %— =0, that is, v; is independent of x,.
1

Therefore, v; = v (x,) (9.3)
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Now, the Navier Stokes equation of motion for incompressible viscous fluid is

E}a:r [v '\7"] ﬁ——l-gmdp+v"?275

which for the present case beecomes

dvi | idp 3 L dp
I\'1{=}E— axl+u‘? v|—PJa2 (9.4)

=

where i, j are unit vectors along x| and x, axes respectively. (since for steady
=

—
motion - 0, and also there is no body force F. Also, we have used (9.1), (9.2)
and {Q,fﬂl

From (9.4) it follows that

dvy | _E)_E 2 ]
Yi a_?(] == ﬁ ax[ + vV Vi [9.5.1:'
T (9.5b)
'p f]:‘:-: * '
From (9.5h), we see that aﬂp =0, that is, p is independent of x4. Thus, from
(9.2) we have
p = pix)) (9.6)
From (9.5a) we get
0=-= %§i+ VW2,  (because of (9.3))
LT
or, b > pyV =y
dp 2 az""l ( : 5—'-]
e | i R R o= 9.7
D dxl p’ | l'l' axz p { )

Now, the L.H.S. of (9.7) is a function of x, alnna,‘ whereas the R.H.S. of it is a
function of X, ulone. Therefore, each side must be a constant. Also, since the fluid is

moving in the positive x, direction, the presswe pshould decrease as x; increases
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that is, dp o negative constant. Therefore,

@

dx, .E}xé R r.ix —C(say) (C=0) (9.8)
({6 o
ot dis ™R
Cx3
Integrating, we have v; =— 2_“2 +Cyxy +Cy .9)

where C; and C, are constants of integration, and may be determined from the
boundary conditions, We lake the boundary conditions as follows

Case 1. vy = 0 at the planes x, = 0 and X, = h.

These houndary conditions lead to

0=0C,
nl
0 =— C;:l +{:Jh+{:2
Salvi ; _ Ch 5
olving we have C, = TS Cy=0

Therefore, from (9.9) we get v, as

X ;
V) =- 2_“.4.. 2“_ x:'. = 2”- xE(h - J{.z) {91[.'!]

which is a parabola in x;X;-plane. Such a laminar flow is called plane poiseuille
ﬂm'.' The maximum velocity (V). can be obtained from the condition that this

dv,
maximum velocity oceurs where el 0,te,h-2x,=0o0r x i
2

]

C h h\ _ Ch?

Consequently, (vi) == Eﬁ?(h o i) =S
MNow, the Eangantini stress at (x;, %,) is given by

le—udx 2(n 2x,) (9.11)

Therefore, the drag per unit area on the lower plane (x, =0) = %—h
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Case-2. Let us now consider a boundary condition that the lower plane is fixed,
that is, v; = 0 at x, = 0, but the uper upper is in uaiform motion with velocity V in x,

direction, that is, vy = V at x; = h. Therefore, C, =0and V=— EIJ—+ Cih

2u
Ch
or, C,= 7% -+- T
Cx
-CGIISEE]T.IEHU}’, V= — —EEZ- + 12(V gﬁ:) S L

Here also, the velocity profile of this flow is a parabola,

This laminar flow between two parallel planes one of which is at rest aind othe:
moving uniformly parailel to the fixed plane is known as generalized Couelte flow,

The maximum velocily occur at g—:;— =0, or,~ C— +. (V Ch ) 0

T 2n
or, % =d,M¥
2
e O ) h , BV V  Ch
Widie == 27 z’“ﬁi‘] +['2‘ Ch]( +2u)
2 2
s BV Vi s
P s pa (9.13)

: d
When the pressure remains constant as X, Increases £ =0,

i [ix| =
Therefore, C =0 (from (9.8)). Then, we have from (9,12)
vy = % Xy (9.14)

In this case, the motion of fluid in x,-direction is entirely due to the viscous force,
Such flow is known as simple Couette flow or plane Couette flow,

Ex.9.1. For generalized Couette flow between two parallel planes find the total

flow per unit breadth across a plane perpendicular to xy-axis, the direction of flow.
Also, find the drag per unit area on both the upper and lower planes.
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Hints : The total flow per unil breadth across a plane perpendicular to x,-

direction is

1
vl{x—‘,_')dxz where x, = 0 and x, = h are the equations of the planes,

o ey,

Pultmg vi(%q) in this integral it is calculated. Ans, 5 ‘u’h +13 C:: where V is the

veloeity of the upper plane.

d y
Ty = 1 E_:];' drag, at lower plane = u%

Xa =|-']'

d‘n"!
drag. al the upper plane = ji ey

z Ky=h

Ans. y'—-b- -Ch and HJ ~Leh rcspeclwely

ot
oh
o




Unit : 9 1 Cartesian Tensors

9.1. TRANSFORMATION OF COORDINATES

We consider two scts of rectangular cartesian axes (Ox), Oxa3, Ox3) and
(Ox{, Ox5, Ox3) having the same origin. The coordinates of a point P with respect t
these sets of axes are respectively (x;, X2, X3) and (X{.%5,%5) . These coordinates

are related by the equations

xr= “ij +1'121':':.2 +33jx]

i
A=
:Eaijxi ...... l:ll.}
i=1
(j=1.2,3)

where agj is the cosine of (he angle between the dircctions of Xj and X increasing,

The inverse relations which expresses the coordinates (X, X3, X3) in tering of
(%, x5, x4) are

3
i=l .

(i=1,2,3)

e (12)

The relations (1.1) and (1.2) are the equations expréssi ng the transformation of
coordinates. These transformation of coordinates can be written with the use of
“summation convention”, In this convention the summation sign will be automatically
understood whenever a suffix is repeated. That is, if a suffix is repeated (ie., appears
twice) it is given all its possible values, and the terms are to he added all, With this
convention the transformations of coordinates (1.1) and (1.2) are written as.
respectively '

xj = aii x,- L]‘ = ].2,3} ......“.3}
and. xp=apxt . (L.4)
(i=1,2,3)
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9.2 TENSORS

Lel (uy, ug, u3) be a set of three quantities related 1o the unprimed coordinate
system (Oxy, Oxg, Oxa). IT (uj, E uﬁ) is the corresponding set of quantities related
to the primed coordinate system ((}xg,ﬂxg,{]xj} such that the transformation

between these two sets are the same as that between the coordinates with respect to the
unprimed and primed coordinate systems, then this set of three quantities is called 3
tensor of the first order or a vector, Thus, the transformations between ui(i=1,2 3)

and uj (j = 1, 2, 3) are given by
wi=miw (=1,2,3) P 20 7

and u;= fjj 1 (1= 1.2-3)

The individual uy, uz, uy are called the components of the tensor.
It we multiply u; and uf by the same quantity k then we get a vector or tensor of

order one, because

kuj = aj(ku) and ku; = agjlk ug)

By addition or subtraction of two vectors uj and v; we get another vector since

‘i.lj-r t "'-"j =ﬂiJ{“iivi}

Now, we can multiply two vectors or tensors of order one to get a set of nine
quantities ujvj (i=1,2,3;j =1, 2, 3). Since cach of the vectors u; and v; satisfies
(2.1) and (2.2) we must have

LI] vy = {ajj u; A, 0) = a aglmvy)  a(2.3)
Thus, a set of nine quantites u; vy with respect to the unprimed coordinate system
is related to the corresponding nine guantics uj v, with respecttot he primed

coordinate system through the transformation property given by (2.3). In general if :
set of nine quantites wy referred to the unprimed system is connected with the
corresponding set of nine quantites wjy referred to the primed set through the trans

formation ;
mjk = Hij a“: mi! ......[2.4}
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then this set of quantites yy is called a tanser of second order. Thus, the product
of two veclors u; vi is a lensor of second order. It is to be noted that the coordinates of
a .pninl (%1, X3, x3) form a vector, and the product of coordinates x; and y; of two
points, that is x;y, forms a tensor of second order. We can similarly y construct and
define tensors of third, fourth, and higher orders. In fact, the tensors of third and
fourth orders {ransform like the products of three vectors u; v; @y and four vectors u;
v 0y ﬁ. respectively. That is, the tensors of third and fourth orders, @i and @;;
transform as follows !

mijk = A Ay Ayie Oy ] s
mijkl = B E‘lﬁ] Ry il mmﬂ?ﬁ

In this way, ihe tensors_of higher order can be defined. Tn the relations (2.1)—
(2.5) the suffixes which are repeated are called “dummy suffixes”. These suffixes ave
to be given all possible values and then added all. Therefore, it is unimportant whether
one assigns suffix i or j or k. Consequenly, one can interchange any two dummy
suffixes in a relation. For example, we can interchange the dummy suffixes i and 1 in
(2.4) o obtain

Fl —— e "
Wi = 5 Ay W) = 8y ay Oy voenen(2.0)

Therefore, wy; transforms according to the same rule as ;. Consequently, @j; 18
another tensor of second order. Again, @y * @y are tensors of second order as these

are obtained by addition and subtraction of lwo tensors of second order. Also, we see
that

wy = %[m“ +mn)""g!j(m1: - o)

...... (2-1)

= Ujj + vy
where Uy = %{ﬂ}ﬂ + {I}"} =y - _(213}
and Vil = ‘%‘{mil — ) = =V crenasl2:9)

The tensor uj is a symmetric tensor of second order, and vy is an antisymmetric or
skew-syinmetric tensor of second order, Thus, a tensor of second order can be wrilten
as the sum of two tensors, one symmetric and the other antisymmetric.
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9.3, CONTRACTION AND INNER PRODUCT OF TENSORS

We can make two suffixes in a tensor of any order equal, and consequently add
the terms arising out from these repeated suffixes. This opeation is known as
contraction. For example, the contraction for the tensor of third order., Wjjx, gives

Wijie = W] 1k + W2y + W33 P 5
which is a tensor of first order, that is, a vector, To prove this, we recall the
transformation property of wjj, which is
mi’jk = Ay g Ay Ojpe
Therefore , ©fy = ajq aj; ayy O = Agy (ay, dj,,- Wisjeie )
Now, aj; are the direction consines of the axis of x; with respect to the x{, and

ay; are these of x with respect x{, Therefore, aj; ay,; is the consine of the angle
between x;, and x;, and is equal to 1 if the axes are identical and to O if they are

perpendicular. Thus

B =8 L (3.2)
where EiT is the Kronecker delta, given by
g =1 I X f } e
=0 il =

with this, we have from above
Wf = “k'k('ﬁi'j' mi'j'k’] = Ay Dirjeges
that is, ;4 has the transformation property of a vector.

In general, on contraction from a tensor we gel a new lensor whose order 1s less
by two than that of the original tensor.

Exercise 9.3.1. Prove the above assertion,

By contraction of the tensor u; vj, we gel the scalar product of the vectors u; and
vj, that is, '

UiVi = Uy + UaVa + u3va = aesi3A)
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The praducts of tensors like  vj, u; Vj O X), 1 Vi, Ok Oy ELC which gives
rise to new tensors, are called the "outer product” of the teasors. I we make
contraction on these tensors obtained by outer products, we get the inner product of
the tensors. For example, the outer product of two tensors qy and @y, 18 Wijk Wings

and on contraction we get the inner product of these 1ensor as
Oijk Wka = Vijn Ve - T oams {__3.5}
In general, inner product of two tensors of any order is given as

{I]ijk..r,., [I}E_FL. s ‘ij__....j'k'-...- ' ,.....[E.ﬁ}

9.4, QUOTIENT LAW

Let ay; be u sct of nine quantities. We make inner product of oy; with any vector u;
to obtain wj; v; = vj (say). If vj is o veelor then we can prove thitt @ is a tensor of
second order. In general, if the inner uroduct of a set of 3% quantities ®;; ;- with
any vector u; gives a tensor of (n =1} i order, then @, 5 18 @ fensor ol n-th order.

This is known as quoticnt liw,

Proof : Since wi, . W =, is 4 tensor of (n - Lith order, we have
v =, b yoa Vi
RS P P15 AU A [ ERRERE I
"‘ n ’ - o, 8 2 h A . £ -
Of,, Wiy, .i, Ui, =& iy eadty g W oty b1y

Since u; is a vector we must huve
I
u-'l. = i,‘-ﬁll.li
Multiplying by a;; and summing over Iy we have
# e F e anin |
Agif = AU = Oj by (using (3.2))

— L]_]-I (43}
Therefore, from (4. 1) and (4.2) we have

£ L T i e Lo 1« .
Wiiia..odi UE, T 05y Bbevniit e Wil e Vi )
or w! LT Fi s L ; }u-’ =)
¢ LT e T1 Tt L Tt P Dy [T !
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Since uy is any vector, we mus have
e o i = ) I & 8 ] i
hoi RN Hilildfl"l = ﬂ.lu‘u y \y.ll.]:' W “I" |:431'l

jlil =lp

Therelore, w 4330, 15 @ lensor of n-th order.

8.5. SPECIAL TYPES OF TENSORS

In the above sections we have introduced symmetric and skew-symmetric 1ensors,
Also, we have introduced Kronecker delta, and an important relation {3.2). Actually,
by using the relation (3.2) one can arrive at the inverse relation (1.4) from the co-
ordinate transformation (1.3), If we multiply both the sides of (1.3) by dy; and sum

over j, we get
i]k_!;‘{.j = “}cj ﬂili'xl' = Ski X I:Uf'illi'llg {3;’”
. = =of,
~ Therefore, x, = Ak
which is the inverse transformation formula, [Lis casy to see (hat Kronecker delia

&jj is a tensor of second order. In fact,

ﬂi_i-r Hij.l ﬁi_i == ali:(ﬂli- 51-'] = ﬂjir ::Ii:i-' ES. Ij

Now, . are the direction cosines of the axis i, with respeet to the axis X, and
4y are those of Xjs, with respect x;. Therefore, Ay a5 s the cosine of the angle
between x{, and Xj. It is, thus, equal to 1if i’ =" and to 0 IE17 3 7, that is if the axes

dre perpendicular, Therefore

aji" aij' == airjr {52}

Using (5.2), we have, from (5.1),

ﬁifj; =i Elj:r 511, f53}

Thus, 8; has the transformation property of a tensor of second arder. The
Kronecker delta is, therefore, a tensor of sccond order, Also, it is to be noted that the
component, of this tensor retain the same value in the transformation of coordinate
axes, that is, whenever the axes are rotated. Such tensors arc.called isolropic tensors.
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We now define a st of quantities €, with the condition that if any two ol i, k. m
are equal the corresponding component is 0 : the-components will be + Lor— il i K,
m are unequal ard their order is cyelic or not cyclic respectively. We cun examine
whether &, 15 a tensor of third order. 10U such tensor then we must have

.-’J . a "
b [ dﬂ“klinuueww
— “]j Uap dgg B ﬂzj“'iiﬁm He :.ﬁjﬂﬂuﬁn
— dyj iy 3y — Baj B3y Hp — NP3 (5.4)

Obviously, if any lwao of j, 1, n, are equal, then R.HS. of (5.4) is zero, and thus
Ejm = (3, If i, I, n are all unequai, we have
Pi.l f2j 3

i &y Az By

L
jln

tn fin “]p
=1 il j,hn are in cyclic order
= 1 ‘f j,l,n are nol in cyclic order

F (5.5)

= Fﬂu

Thus, the set of gquantties g5, I8 transformed into itself by the rule for

transformation of a tensor of third order, and therefore it is i fensor of order 3., This
tnesor 15 known as alternating tensor. This 1s also isatropic,
'ﬂ.u ﬂzi d:ﬂ
Ex.9.5.1, Prove that the determinant |ay; a5 @y | is equal to 1 if j, L n are
Al 4z f3p
in cyclic order, and to ~ Lif ), 1 n are nol in cyclic order.
: Ay Ay 4y
Hints. Use the relations (3.2) and (5.2) to prove that |aj; tg ity = L
dyq dp3 A3
Then, the result follows bhecause the sipn of the determinant is reversed if we
interchange any (wo rows of it. As such interchange makes the change in the order of
j. 1. n from eyelic to non-cyclic, i.¢., from cven permutation to odd permutation of the

suffixes, then the value of the determinant which is + 1 for even permutation changes
to— | for odd permutation
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Now the inner product of the tensors €y and Uiy 15 G U = Wi {say) which is
a tensor of second order. The components of w;, arc

Wiz =Cjam Um =123 U3 ™= U3 Wa| =€2)n Um =E213 U3 =~

Wiy =€ Y = 0, and so on.

Therefore, writing these components as the elements of the matrix {w-u} we have

ﬂ I.l] = llz
{-.-.rﬁ} S0 — (5.6)
u: — Ll-t {:l

The antisymielsic ensor wyj is, thus, associated with the vector u, and this
antisymmetric tensor appears as the inner product of the alternating tensor with that
vector.

Ix. 9.5.2. Prove that
Eiks CEmps™ t.'imali;. = ﬁi;rE'lcm (3.7}

Hints. €5 Emps 18 the inner product of two tensors of third order, and therefore
it is a tensor of fourth order.

Ifi =k, the L.H.S. of (5,7) 15 zero

If m=p, itisalsozero

fi=mandk=p,then s =Emps=F 1 (1K) thercfore the component is + |

But if i = mand k # p, it is zero

Similurl’y,' if i = p and k =m, the component = - 1,itis zeroifk# m.

The above resulls are also true for 1h_n: R.H.S. of (5.7). Hence the proof.
Ex.9,5.3. Prove that €, €mke= 20

Hints : Use (5.7)

Now, let us sec the transformation property of the operator ﬁa_ (i=1, 2, 3) under
]

co-ordinate transformation.

2 _ 3 9
wehave - 57 = 9x; %,

From (1.4), we have x; = ajix;

(5.8)

Ix;
Therefore, E% =y (5.9)
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Putting this into (5.8) we get

j’—: " a—}— (5.10)

Thus, the operators —3-?{— form of tensor of first order or vector. Let ¢ be a scalar
; :
(scalar 1s-a quantity which remains invariant under co-ordinate transformation), Then,

the gradient is _5"¢

dib
e and we sec from (5.10) that == e is a tensor of first order or g
Xj

|
vector.

It is to be noted that on contraction we get a scalar from a tensor of second order
that is, |

Wij = Wiy + Waa + Way is a scalar

; - du,
Mow, if u; i5 a vector, than a—‘-

: %
product of two vectors % and u;. On contraction, we gel
i

154 tensor of second order, becavse it is the

duj _ duy | duy au1
'ET-L dx; a:-:z" Gkt

which is the divergence of ;. Note thut by forming the product of two vectors

and vj and then on contraction we get the sealar produet of u; and vj, that is,

L'!i "h'i = Wy +'l|2".l"2 +U3‘h"3
We have seen earlier that a tensor of 2nd order can be written as the sum of lwo
tensors of 2nd order, one of which is symmetric and the other is skew-symmelric.

du .
Therefore, the second order tensor -ax—' can be wrilten as
|

du; _ | (.du;  duy du;  ou;
-3 s (B on
du

du
The tensor of 2nd order, —-— ] (which is skew-symmetric), is known us
ax i EXi 4 Y }

“eurl” or “rotation” of u;.
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