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PREFACE

In the curricular structure introduced by this University for students of Post-Graduate
depree programme, the opportunity to pursue Post-Graduate course in a Subjects as -
introduced by this University is equally available to all learners. Instead of being
guided by any presumption about ability level, it would perhaps stand to reason if
receptivity of a learner is judged in the course of the learning process. That would be
entirely in keeping with the objectives of open education which does not believe in
artificial differentiation. _

Keeping this in view, study materials of the Post-Graduate level in different
subjects are being prepared on the basis of a well laid-out syllabus. The course
structure combines the best elements in the approved syllabi of Central and State
Universities in respective subjects. It has been so designed as to be upgradable with
the addll.mn of new information as well as results of fresh thinking and analysis,

The accepted methodology of distance education has been followed in the
preparation of these study materials, Co-operation in every form of experienced
scholars is indispensable for a work of this kind. We, therefore, owe an enormous
debt of gratitude to everyone whose tireless efforts went into the writing, editing and
devising of a proper lay-out of the materials. Practically speaking, their role amount
to an involvement in invisible teaching. For whoever makes use of these study
materials would virtually derive the benefit of learning under their collective care
without each being seen by the other.

The more a learner would seriously pursue these study materials the easier it
will be for him or her to reach out to larget horizons of a subject. Care has also been
taken to make the language lucid and presentation attractive so that they may be
rated as quality self-learning materials, If anything remains still obscure or difficult
to follow, arrangements are there to come to terms with them through the counselling
sessions regularly available at the network of study centres set up by the University.

Needless to add, a great deal of these efforts is still experimental-in fact,
pioneering in certain areas. Naturally, there is every possibility of some lapse or
deficiency here and there. However, these do admit of rectification and further
improvement in due course. On the whole, therefore, these study materials are
expected to evoke wider appreciation the more they receive serious attention of all

- concerned.

" Professor (Dr.) Subha Sankar Sarkar
Vice-Chancellor
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~Unit 1 O Topological Spaces

(Topological spaces, Examples, Comparison of Topologies, Base for a
Topology, its properties, Sub-base of a Topology, neighbourhood of a point,
Neighbourhood system at a point, neighbourhood base, limit point if a set,
closed sets, derived sets, closure of a set, Kuratowski closure operator,

Interior, boundary of a set, Sub-space Topology, first and second Countable
 spaces). ;

§1. Let X be a non-empty set. Then the family p(X) of all subsets of
X, including the empty set is called the Power set of X,

For example if X = {a, b, c}, then its power set p(X) = {¢, X, {a}, {b},
{e}, {8, b}, {b, c} {c, a}}, contains 8 members. In General, if X consists of
n (distinct) members, then its Power set p(X) consists of 2" member. This result
is due to cantor.

Definition 1.1. A sub-family © of p(X) is called a Topology on X if
(T o, Xex; i .

(T.2) Union of any number of members of © is a member of t; and
(T.3) Intersection of any two members of t is a member of t.

If © is a Topology on X, the pair (X, ) is called a Topological space.

Explanation : For any non-empty set X, the power p(X) satisfies all
conditions (T.1) — (T.3) and forms a Topology on X ; This Topology is called
the Discrete Topology on X. Similarly, the sub-family of p(X) consisting
of ¢ and X only also forms a Topology on X called Indiscrete Topology
on X. But any sub-family of p(X) does not form a Topology on X. For
example, the sub-family ‘comprising of empty set only does not form a
Topology on X.

Example 1.1. Let X = {a, b, ¢} and 1= {$, X, {a} }. Then tis a Tnpnlng}r'
on X.

Definition 1.2. If (), ©) is a Topological space, members of t are called
open sets in X.

Explanation : In a Topological space (X, 1) qualification for a subset -
to be on open set is exclusively its membership in 7. 'The more numerous is
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T in members the more open sets are thete in X, Thus in discrete topology every
subset, including singletons, is an open set; but open sets are secarce in
Indiscrete Topology in X.

§2. Comparison of Topologies :

If 7, and 7, are two topologies on X, then t1 Is said to be weaker than ty
(or, T2 stronger than t; or, 1; is courser than T2 Of, T3 i8 finer than ) if every
member of ty is a member of <,

or, in symbol 13 < 3.

 So Indiscrete Topology is the weakest and Discrete topology the strongest
Topology on X, and any other Topology © on X satisfies Indiscrete Topology
&1 < Discrete Topology.

Example 2.1. Cofinite Topology on X,
- Let X be an infinite set and © consists of empty set ¢ and those subscts
A of X such that X\A is a finite set. Then (T.1) axiom is satisfied. Let D taea
be a Tamily of members of t, and A = UAq; Then XMA = X\|JA,=

er ey

- NXVAD e (XVA,) for every o, and r h s is a finite set; So X\A is a finite set.

o Eh :

Thus A et. Thus (T.2) condition is satisfied. Finally, Let Ay, A; e, then
KA N Ag) = (X\A ) w (X\A;) = a Union of two finite sets = a finite set. Hence
Ay M A, is a member of t. Hence t is a Topology on X. This Topology is called
Co-finite Topology on X.

Theorems 2.1. Intersection of any number of Topologies on X is a
Topology on X.

Proof : Let {tg}qea be a collection of Topologies on X and put t = 7.

mEd

Clearly (T.1) axion is O.K, for t: and so is the case with (T.2). For (T.3) take
U and V as two members of 1, and then they are members of each 1, for o €A,
Since 1, is a Topology on X, we have U n V belongs to 1, for every member
o of A; and hence U m V is a member of © = ﬂ[;]ﬁr“. S0, T i1s a Topology

on X.

Remark : Theorem 2.1 is not true if word “intersection” is replaced by
“Union”. Following example supports this contention.

10




Example 2.2. : Take X = (a, b, ¢) and 1y = {¢, X, (a), (a, b)} and
1y = {§, X, (¢), (b, €)}. Then 1y and =, are topologies on X such that t; U 1,
= {$, X, (a), (¢), (a, b), (b, c)}. As (a) U (c) = (a, c) is not a member of
71 \J T2 we find 1y \J 19 is not a Topology on X i.e. Union of Two topologies
may not be a Topology. To solve a problem in a Topological space (X, 1)
sometimes it suffices to know and use a part of © called a base for Topology
¢ that we presently define. ;

Definition 2.1, : A family @ of member of 7 in a Topological space
(X, 7) is called a base of the Topelogy t if and only if every member of t©
is a Union of some members of @o.

Members of g are called basic open sets.

For example, the family of all singletons is a base of the discrete
Topology on X.

Theorem 2.2. : In a Topological space (X, 1) a sub- famﬂ}r fooftisa
base of t if and only if for any open set G in 1, and for any member u € G,
there is a member B € g to satisfy v eB < G. :

Proof : Condition is necessary : Suppose @ is a base for 7 and G is
‘a member of t. So G.is a Union of .some members of g, say, G =

G= Li{B :By €0} 1y €G, there is a member, say B, , for some ol €A such
23

“that u eB e fo; clearly u €B,, & G.

Conditmn is sufficient : Suppnbe condition as Stlpuld[ﬂd holds. Take
a member G in t. Then for every p e G, we find a member, say, B, from @

such that p € B, < G. So we can write G ¢ |UB, and, of course, converse
pel

is true ie. U B, cG. Combining them we have G = UB = a Union of

?ﬂl

members of . Thus ¢ is a basis of . e

Remark : A Given Topology on X may have Different bases. Also there .
is a caution. Not any family of subsets of X is a base for a Topology. For
example, take X = (a, b, c) and then the family ¢ consisting of (a, b), (b, ¢),

11



X and empty set ¢ fails to fdrm'a base for a Topology on X. Because if P
is a base for some topology on X, Unions of members of ¢ shall constitute
a Topology on X, and this is not the case here. Intf:nectmn pmperty is failing
here (a, b) n (b, £) & o).

We have following Theorem in this connection.

Theorem 2.3. A family g of subsets of X forms a baxe for some topology
on X if and only if :

(i) e (ii) X is a union of members of f and (iii) Given any two
members B, and By in g, and x €(B; m By), there is a member By e ¢ such
that X €B; < (B; N By).

Proof : Necessary part follows from the Definition 2.1 and Theorem 2.2,
For sufficient pzﬁ‘t suppose the fo satisfies the stated conditions. and let © be
_ the family of all posible unions (finite or infinite) of members of . We check
that 7 is a Topology on X. For that purpose we atonce see that (T.1) is O.K.;
and (T.2) is also clear in favour of t. For (T.3) take two members C and D in
T If x €(C m D), since C is a union of members of §, we find U € @ such
that

xelUcC. e k1)
Similarly find a member V € g such that
e lial) S = . (2)

From (1) and (2) and by hypothesis, we find a member W e g satisfying
x € W({UnmnV)c (Cn D). That means, we can write C n D as a Union of
members of g showing that (C m D) er. Hence tis a topolﬂgy on X and g
is a base of 1. The proof is complete. :

Example 2.3. The family of all open intervals along with ¢ forms a
‘base for a Topology on the set R of reals known as usual or Euclidean
Topology of R.

Solution : We assume ¢ as a member of this family, Take n = 1, 2, ... we

see that the union (—1', DUE,2)v..ulnnuU.. = E:ji(—n.n} is equal

12



to R; Further if (a, b) and (c, d) are two open intervals and x €(a, b) N

(¢, d), then open intervals intersect. Making n appropriately large, we make

open interval (x—*}{, X+ !)\ﬂ wmall that [x—-lﬁ X+ )c(a by and ;x-nL x+i)

e, dyde (}L—%1 x+-3‘;] < (a, b) mi{c. d). Hencc all conditions of Theorem
2.3 are fulfilled. '

Theorem 2.4. A Topology T with a base o is stronger than a mpnle Ty
1, with a base g2 if and only if forp € X and for V, € goawith p eV, there
is a member Vy & 2, such (hat p eV, < Vy.' :

Proof : The condition is sufficient : Let G be any member of 13 and
p €G. By base property we find a member V; € g5 with p eV, < G. By stated
condition we find a member V; e ¢ such that
peV,cG

So we can write G = U{V1 € (: V= GJ. Ha,n::e G e 1. Thus 15 < 14
i.e. Ty is stronger than T3.

The condition is necessary : Let 1o < t;; So every member V; of @3
being a member of 7, is a member of T whose base is . 50 for p eVa, we
find a member V; € g such that ; ' :

1= Vi Va

Example 2.4. All left-open (and right closed) intervals like (a, b] (a,
b R and a < b) along with ¢ form a base for a Topology called the upper
limit Topology of R which is stronger than usual topology of R.

~ Solution : Here {j]i{—n,n] equals to R. If (a, b] and (c, d] are two such
intervals and u e(a, b] M (c, d], then left-open intervals do intersect. Then
taking n appropriately large, we make left-open interval (u — % u] so small
that (u — % u} < (a, b] N (c, d]; and therefore Theorem 2.3 applies. Further
if (a, b) is an interval as a base member of usual Topology, and p e(a, b);.we

13



find a base member (a, ¢] of upper limit Topology such that p e(a, ¢]  (a, b).
So Theorem 2.4 applies for de.mred conclusion.

Example 2.5. All right-open intervals like [a, b) a < b, together with ¢
form a base for a Topology called the lower limit Topology of R which is

: stronger than usual Topology of R.

Solution : Similar to that of Example 2.4,

Definition 2.2, A family S g of subsets of X is said to form a sub-base
for a TOpOIﬂL,}-’ t of X, if and only if the family g of all finite intersections
of subsects in S forms a base for .

Members of S are called sub-basic open sets.

~ Example 2.5. Let Sp consists of all half rays like (-0, a) and
(a, ) as a eR. Show that S forms a sub-base for a Tapnlogy of R(whlch
Topology?).

Theorem 2.5. A Collection § g of subsects of X is a sub-base for a
Topology on X if and only if (a) ¢ S g2 and (b) X is the Union of some
members of S go.

Proof : If S g is a sub-base for a Topulogy then ofcourse (a) and (b) huld

' Cﬂnversely let a family S o of subsets of X obeys (a) and (b), and let g denote

the family of all finite intersections of members of S . Then we have ¢ e p
and X is a Union of members of g. Further, if Bl, By are any two members
of p,letBy=U; nU; ... 1 L, whcruU ;:Sga and By = V; n Vo .

L IEE N whercV eSp.

lfx €(B; M By); Putting By = By N By, we find Bj as a finite intersection
of members from S gp; and By e p, satisfying x €B; < (B e Bj;). Then
Theorem 2.3 applies to complete the proof.

Remark : The Topology T referred to in Theorem 2.5 is the smallest
Topology on X containing members of § @, in the sense that t is weaker than
every Topology on X containing members of S p.

14




§3. Neighbourhood of a point, Neighbourhood system.
Let (X, ©) be a Topological space and x €X.
Definition 3.1. A subset N, of X is called a neighbourbood (or mrnply Nbd )

- of x 11' there is an open set O, in T such that
x € O, c N,.

An open set O containing x can also be rk:gufde_d as a nbd of x.

Explanation : A nbd, Ny of x is always non-empty becausc x € N,. Also
whole set X is a nbd. of each if its points. If X is infinite, then X is the only
nbd. of a given point x in X when t is Indiscrete Topology, while there are
many nbds. of x in X when 1 is the discrete Topology. In the real number space
R with usual topology a point x has neighbourhoods like open intervals
_containing X. ;

Theorem 3.1. A subset O of X is an open set if and only if O is a nbd.
“of each if its points. '

Proof : Let O be an open set in (X, 1) ie. O er,and x € O, PltIN,‘ =)
and we find x € O Nx. that confirms N, as a nbd. of x

Conversely, let a subset G enjoy the. property as stated; and if x € G,

we find a nbd. G of x : So, there exists an open set, say, Ox € t such that
X € C} c G. Then we write,

G= U0

Jilf-l
= a Union of some members of 1, and hence G is an open setl.

Notation : If x e X, let 45 denote the family of all nbds of X in (X,
t). ei is also termed as meighbourhood system at x.

Properties of .
(a) If N, ec/y, then N, # ¢; _
(b) If N; eod; and Ny < H, then H ecdy (H is a member of o4y);

gk



(c) Intersection of two members of @y is a member of wy:

(d) If Ny eadg, there is 4 member N* e 1% such that Ny ea i, for every
member u e N*.
Properties (a) - (c) are Very much evident. We .need not give proof,
For (d), since Ny is a nbd, of x there is an open set. say. G satisfying
| xeGacN, (1)
Since G is open, Theorem 3.1 says that G is a nbd. of each of its points -

ie. G end] for every member u €G and by (1) it follows that N, eat; for
u €G (here G = N#),

Definition 3.2. A sub-family o, of o1 is said to be a nbd. base of x
if for every nbd. N, of x, there is a member By € g4 such that
B.c N,

Explanation : A Given point of a Topological space (X, t) may have more
than one nhd base. For example, in the space R of reals with usual topology
a point x has a nbd. base consisting of all open intervals like (x — Lox+ 1),
n =1, 2, ... also corresponding closed intervals constitute a nbd. base at x. In
Euclidean 2-space R* with usual Topology, we find that every point (x, y) e R?
has a nbd. base consisting of all open oriented rectangles centred at (x, y). Also
all open circular discs centred at (x, y) shall form a nbd. base at (x. ¥).

Topology from neighbourhood axioms :

Given X # ¢ if each point x in X is associated with a family of subsets
under constraints of so called nbd. axioms, one can then derived a Topology
on X. Following is a Theorem in this connection.

Theorem 3.2. Let cach x in X be associated with a non-empty family
o4y of subsets N, of X satisfying

(a) Ny # ¢, and x €N, for every member N, e/l
(b) if N, eay satisfies N, = W. then W cody,
16




©) if N2, N& eady, then (N ~ N endy

(d) if N, ecf, there is.a member N* ec{ such that N, ea ] for every
member u € N*,

For the proof which is lengthy, any standard book may be consulted.

84. Limit point of a set. Closed sets.
Let A be a non-empty set in a Topological space (X, ©).

Definition 4.1. An element (point) p of X is called a limit point of
A # ¢ if every nbd N, of p meets A at a point other than p. Equivalently if
Np M (A\(p)) # ¢.

If p is not a limit uf A, then p is said to be an Isolated prmt of A. In
that case we find a nbd. N, of p such that N, n (A\{p}) # ¢ or equivalently
N, M A is either ¢ or {p}. :

Eﬁplanatinn : A limit point A may or may not be a point of A, It attracts
every nbd. to intersect A at a point other than p. Naturally, the more are nbds.
of p, the less is the chance of p to be a limit point of A and the less are nbds.
of p, the more is the chance of p to be a limit point of A, Thus in (X, t) with
t as discrete topology, a given non-empty sct A possesses no limit point in
X, because open sets are too numerous; If t is the Indiscrete Topology, the
subset A atiracts every member of X as its limit point; Here only non-empty
open set is X only. :

Example 4.1. Obtain limit points (if any) of following sets of reals in
the space R of reals with 'umzﬂ Topology. '

(a) A = (L, 2 22* ,,1, ...}, (b) The set Q of all rationals in R. (¢) The set N
of all antural numbers and (d) A finite subset of reals.

Definition.4.2. The set of all limit points of A in (X, 1) is called the
~derived set of A; it is denoted by A

Explanation : The set A’ may be empty; for example, take a finite subset
A of reals with usual topology. Here A has no limit points at all i.e. A" = §.

17
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A’ may be 'dis}nint with A. A" may be a part of A; for example take A = the
closed unit interval [0, 1] of reals with usual Topology. Here A' = A. The set
A’ may be strictly larger than A. For example take A as the set of al] rationals
in real number space R with usual topology. There A’ = R which is strictly
larger than A.

Definition 4.3. A subset F in topological space (X, 1) is said to be a closed
set if F' c F ie. if every limit point of F is a point of F.

For example, every closed interval, every finite subset of reals and the set
N of all natural numbers are each a closed set in R with usual Topology.

Theorem 4.1. A subset F in (X, 1) is closed if and only if X/F
(Complement of F in X) is an open set in X i.e. if and only if O0\F) er.

Proof : The condition is necessary : Let F be a closed set in (X, )

If F is empty, then its complement X is of course an npe:n-sc:t €t1. Let F he
. non-empty and u €(X\F). Then u is not a limit point of F and we find a
nbd, and hence an open 11bd (say) N, of u such that N, M F = ¢; this shows
that N, < (X\F), and (30\F) is rendered a nbd. of u: Thus (X\F) becomes a nbd.
of each of its points, and so (X\F) is an open set in X.

The conditien is sufficient : Suppose X\F is an open set in X and x is a

limit point of F. It possible, let x ¢ E So x &(X\F). Thus (X\F) is a nbd, of
X such that

(X\F) N F = .

That contradicts the assumption that u is a limit point of F. Hence the proof
is complete. )

Notation : In {X., 1) denote the family of all closed sets in X by <%
Remark : By De-Mongan’s Laws following statements are evident,
(HX, ¢ ecF '

;[2) Intersection of any number of members of ¢#is a member of ¢
(3) Union of two members of <# is Ia member of <& |

18




E b
However, union of an infinite number of members of .# may nol he a
member of & For example, in the real number space R with usual wpology
let us take the closed intervals. :

1 ='[J‘_], 1] asn =1, 2, ... Then cach L, is a closed set of R such that

U T =(0.1] which is not a closed set in R.

§5. Closure of a set in (X, 7).
‘Given a subset A of X, its closure denoted by A is defined as
AsmiBEc X FlaaclﬂsedsctinX:JA}

The R.H.S. being intersection of a number of closed ‘iEEb in (X, 1) is always

a closed set in X. Thus A is always a closed set Lu_nt_ammg A, and it is the
smallest closed set to contain A.

Explanation : Closure of A = A is a closed set no matter if A is closed
or not. For example, if A = open unit interval (0,:1) of reals with usual topology
we find its closure A = closed interval [0, 1] which is a closed set: but A =

(0, 1) is not a closed set. Clearly if A is it self closed, then A = A and converse
is also true.

Theorem 5.1. A = A U A,
Proof : Here A ¢ A; So A’ ¢ &7 C A because A is closed. Heﬁce
| AUA)c A 465 1)

Again if x € A, then every nbd. of x meets A. non-vaculously. For, if
x € A then there is an open nbd. Np = X\A of x which does not meet A.

Thus x is either in A or a limit point of A,

Accordingly, x € A U A, ;

Hence A .(A u A" 3 2y

Combining (1) and (2) we get A = A W A’

‘Definition 5.1. (a) A subset G in (X, 1) is said-to be everywhere dense
or simply dense in X if G = X. |
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(b) Topological space (X, 1) is said to be separable if there is a countable
dense subset in X. ' _
For example, the set Q of all rationals in R is dense in R with respect to

usual Topology of R, because of the fact that between any two reals there ape
many rationals.

Example 5.1. Let X be an uncountable set, and 1 is a family of subsets
of X consisting of ¢, and complements of finite subsets of X. Show that
(X, 1) is a Topological space where every infinite subset of X is dense.

Proof : By a routine exercise one checks that axioms of Topology T.1 -
T.3 are satisfied and (X, 1) is a Topological space. Let A be an infinite set. If
- xe X and N, be a nbd. of x » We may assume N, to be open. If N, ~ (A ixh
= ¢, then we have (A\{x}) < (X\N,) or A = (X\N,) U {x}, rh.s. bcilig a finite
set it implies-that A is a finite set which is not so. Therefore, N, ~ (A\ {xh
# 0, that means x is a limit point of A ie. A = X.

Kuratowski closure operator :

An operator that assigns to each subset A of X another subset of X denoted
by A® is called a Kuratouski closure operator if following four axioms known
as Kuratowski closure axioms hold :

(K1) ¢° = ¢ _

(K.2) For any subset A of X, A < A® _

(K.3) For any two subsets A and B of X (A U B)* = A® U B¢

and (K.4) For any subset A, (A%)° = A®

Theorem 5.2. Let ¢ be a Kuratowski closure opérator on « non-empty set:
X, andlLet < be the family of all subsets A of X for which A* = A; and 1 =
[G c X : (X\G) € .#}. Then 1 is a Topology on X such _thﬁt A" = t-closure
of A for every subset A of X.

Proof : ¢ and X bclon;, to T because their f.n:nmplenmnh X and ¢ are
respectively members ni Lt 1Ga Yeen be an arbitrary sub- tanuly of T and
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put G = |J G, . Then XAG=X\ U Gq = ((X\Gy) < (X\Gy). Then (X\G)* <
ed WEA med :

(K\Gg)® = (X\Gg) because (X\G) is a member of .Z This is true for every index
a € A, and thereferc (X\G)° ¢ ((X\G,) =X\ ]G, = X\G. That means

oed - el -
_(X\G)" = X\G and it is a member of & and hence G € 1. By a similar reasoning
“intersection of any two members of T is member of 1. So 7 is a topology on .

X. It remains to show that for every subset A of X A® equals to A (= 1-closure
of A). '

Now E'z_ Intersection of all 1-closed sets each containing A
= Intersection of members o.f ¥ each containing A.
and, therefore, A is a member of J with A c A,
Uﬁing Kuratowski closure axiom, A*"c (A=A .. (1)
Again by Kuratowski axiom (A%)" = A® D A.
That means, A® is a member of & with A®* D A.
This gives, A ¢ A® ol
Combining (1) and (2) we have A = A" and the proof is complete.

Definition 5.2. (a) Given a non-empty set A of (X, T) a point x € A is
said to be an Interior point of A if there is an open set O in T such that .
xe O cA.

(b) Interior of A or simply Int A = {x € A : x is an interior point of A}.
Example 52.If A = Open inte_nrai (T A T e e S R | R
Find Int A (w.r.t. usual topology of reals).

Solution : Here every member of open unit interval (0, 1) is an interior point
of A and none of its points like 2, 3, ... is an interior point; because member
i A e individually do not attract a whole open interval containing it, but
contained in A. So Int A = (0, 1).

. Example 5.3. In (X, 1) if G is an open set and A is any subset of X, then
GNnA= ¢ if and only if G K = (bar denoting closure).

Solution : f G n A = ¢, then G N A = ¢ because A < A.
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Conversely, let GNA=¢and G~ & = . Take a member u e (G ~ &),
Clearly n ¢ A; Souis a limit point of A. Since u € G and G js open; G is

anbd. of u such that G N A = ¢ — that is not true. So conclusion remains valid
as wanted.

Remark : Int A c A < closure A where Int A is the largest open subset

of A and closure A is the smallest closed (so called) superset of A to safisfy
the inclusion.

Theorem 5.3. For any non-empty subset A of (X, 1).
(a) Int A Is an open set

(b) A’is open if and only if A " Int A.

(c) If A < B, then Int A < Int B.

(dj.lm A = X\(X1A).

Proof : The proofs for (a) — (c) are easy and left out. For (d) X\A is a

closed set containing (X\A): So complement X\(X\A) is an npen subset of A,
and therefore we have -

XMXVA) Int (A) L

Again, A O Int A gives (X\A) < X\Int A, which is a closed set containing
(X‘tﬁ), and theretcre,

(X\A) < (Xﬂnt A]
So, X\{X\LAJ D Int A (Taicmg Complement) b 2y
Cambmmg (1) and (2) we pmduce
Int A = X\(X\A)

Allied to closure and Interior of a set A in (X, 1), there is another operator
called Boundary of “A, denoted by Bdr (A) that we presently define.

Definition 5.3. Bdr (A) = closure (ANInt (A).
(=A -4, A denoting Int A).
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For example, in Enclidean 2-space R? with usual topology i+ A is laken
an open circular disc given by

2-{1_2}

| A=y +y
 Then A = the closed circular disc = ((x.y): x> +y> €'} and A=A
and therefore
Bdr A = A\A
= A\A
=y X+ y? = 1%}, namely it represents the circle with radius r
'cenmed at (0, 0). ;

_ Definition 5.4. A subset G in (X, 1) is said to be nowhere dense in X if
Int (Closure G) = ¢

(ie. (G) = )
For Example, evmy finite *-.ubs-;,t of reals w.r.t. usual mpcﬂmg}r i5 a nowhere
dense set. An infinite subset of reals may or may not be a nowhere dense set.
The set N of all natural numbers is, of course, nowhere dense. And the set

Q of all rationals, an infinite set of reals is not nowhere dense set; becausc
- Q = whole space R of reals with usual topology.

* §6. Sub-space of (X, T).

Let A be a 511bxct of a topalogmal space (X, 7). Let us put T = d m A
:u eT). :

Then it is a routine exercise to check that the colléction T of a.ubxetq of

A forms a Topology on A as per Deﬂmtmn 1.1. The pair (A, Tp) is: called a
sub-space of (X, T).

We have the following Theorem in this cnnneclmn

Theorem 6.1. Let (A, T,) be a sub-space of (X, ©). Then (a) if B is a base
of T, then By = (B DA BE‘E}IS&bﬂLEGfTﬁ :

(b) A bubHEI Hisa ne.l:,hbourhmd (nbd) of a point x € A it and only if
H=A Ny where N, is a nbd. of x in (X, 1).
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(c) A subset C is closed in (A, 15) if and only if C = A ~ G, where G iz
a closed set in (X, 7). _

Proof : (a) Take x € A, since 3 is a base of 1, we find a member B e %
such that x € B; Thus x (B n A), where (B m A) e B, Suppose Vy, V,
€ By and x € (V| N V,); Then Vi=B,n A, and V2 = By A, where B,,
B, € B. Since B is a base of T, and x € (B; M By), by property .of hasc there
is a member By € B (o satisfy x e By © (B} n By); Therefore x e Vs i
- (V) n'V3) where V5 = (Bs nA) e Q?_,-.L;. Therefore B, is a base of Ta.

(b) Let H be a nbd. of x in (A, To). Thus there is a2 member V € Ty Lo satisfy
XeVcH ButV="UnA for some U e t. Put Ny=(UUH).LSoxeUc
Ny, wherefrom we find N, is a nbd. of x in (X.7)and also H = A A N,: The
converse goes by a similar argument.

(¢) Let C be a closed set in (A, T4). Then A\C is open in (A, T,) i.e. (A\C)
€ Ta and take (A\C) = A 1 O where O e 1. Then G = (300) is closed in
(X, 1), such that A n G = A (XY0) = AMA n 0) = A(A\Q) = C.

Conversely, let C = A n G where G is a closed set in (X, T). Then
(X\G) is open in (X, T), and therefore A ~ (X\G) € 14. Now A (X\G) =
AVA N G) = A\C; showing that (A\C) e 1, and therefore C is closed in
LA Tk :

Example 6.1. Let G be 3 closed set in {x,"r}, then a subset of G is closed
in (X, 7) if and only if it is closed in (G, 1).

Solution : We know that a subset D of G given to be closed in (X, 1) is
closed in (G, 15) if and only if D = G n H where H is closed in (X, T RHS.
sel 1s intersection of two closed sets, and is closed in (X, 1) ; So LHS is a closed
set in (X, 1). : ; |

Conversely, let a subset D of G is closed in (X, 7). Then D = G i D is
closed in (G, 15).

Example 6.2. Let A be an mpaﬁ set in (X, 7). Then a subset of A is open
in (A, 14) if and only if it is open in (X, 1).
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Solution : Given A as open set in (X, 7). let a subset B of A be open in
(X, Ta): So let B =A N O where O is ﬂpén in (X. 7). Now r.h.s. = Intersection
of two open sets in (X, 7). and hence is an open set in (X, 7); Thus Lhs = B
is open in (X, T).

Conversely, let B be a subset of A and B be an open sel in (X, 7). As B
= A m B.so B is open in (A, Ta). '
&7. First and Second Countable spaces :

Definition 7.1. A Topological space (X. d) is said to be a Second countable
space if there is a countable base of the topology T of X.

Example 7.1. The rcal number space R with usual topology T is second
countable. '

Solution : Consider the family B, of all open intervals with-end points
: r P ' P

as rational numbers. Since the set of all rationals is countable, so is the family

B,. As every open interval is a member of T, we have

B.CT

Let x € R, and G is an open set &1 with x € G, we find an open interval,
~say (a, b) (a, b are reals) such that

xefa,b)cG
~ Since the set of all rational numbers is everywhere dense in R, we find two
rationals u, v satisfying ' ;
a<u<x<yeh

Clearly, (u, v) is an open interval with rational end points and is a member
of B, such that x €(u, v) € (a, b) € G. Hence B, is a countable base for T,
and (R, 1) is second countable. :

Theorem 7.1. Every second countable Topological space is separable.

Proof : Let (X, 1) be a second countable space and let {By, By, ... By, ey
be a countable open base of T.
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Take b;e B, i=1,2, ... and put B = (by, bs, ... -.): Then B is a countable

subset of X, and we show that B is dense in X iLe. B = X' Take a member x

e (X\B), and G is an open set containing x. By base property we find a member
B; such that

xeB cG

So X # b;. Thus G intersects B at a point other than x. That is o say, x is
a limit point of B. So'a point of X is cither a point of B or a limit point of
B S50 B =X, '

Remark : The Converse of Theorem 7.1. is false. Example 7.2 SUPPOIts
the statement, :

Example 7.2. The real number space R with ]{JWLI'. limit Topology

gbncrated by & and all right-open micwah like [a,b), a<b is separable without
being second countable,

Solution : Let Q be the set of all rationals. The Q is Luuumhlc Because
between any two reals there are many rationals, basic open sets like intervals
[a, b), a < b includes members of Q, and hence Q is dense in R m_rh lower
limit Topology. But this topology is not second cnuntahle

If possible, let [a;, by), i =1, 2, ... be a countable I:-a'-'.e for this topology (u;
< by Let u be a real = 8 (i=1,2, .)and v > u: and then [u, v) is an open
set'of lower iimit Topology such that n-:ma of [a;, b;) satisfies u e [a;. b)) < [u,-
v). Because otherwise u £ a, < P gives a =u whmh 15 nol the case, Hence
concluamn as demcd is valid in Example 7.2.

It is time-to say when a Topological space is first countable.

Definition 7.2. A Topological space is said to be first countable i the nbd,
system if each of its pumh has a countable base.

Explanation, Concerned Delinitions tell us that if 2 Topological space
(X, 1) is second countahle, then it is first countable, But converse is not
true. Because let X be uncountable, and 1 is the discrete Topology. Then
(X, 1) is first countable. For if X eX, smgle nbd {x} constilutes nbd, base
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of the nbd. system .4, in (X, 1). But (X, 1) is not second countable. Because

{x)yex = a family of open sets in T possesses no countable sub-family whose
union is X.

Example 7.3. The real number space R with lower limit Topology (See
Example 7.2) is a first countable space.

Solution : Let x € R, and put B, = {[x, ) : r € Q which is the set of all
rationals}. Here x < r. Then B, is a countable sub-family of the nbd. system
- at x in (R, 1), T, denoting the lower limit topology on R. B, is a nbd. base
at x; because if Ny is any nbd. of X relative o T, there is a right-open interval
like [a, b) such that : _ '

X €la, E] vt
- Clearly a £ x < b. Take a rational r such that x <r < b; Then [x, 1) €3,
- such that x e[x, r) © Ny. Our argument is over and Example 7.2 stands,

Exercise - A
Short an:swer type Questions
1. Given a non- empty set X any two Topologies are Comparable. Either pmve it
or give a counter: example _
2. Ef A=(L -2-, 5' F’ ..} obtain limit points, i_f any, .-:::-f Aif A s given (1) the

discrete Topology (ii) the indiscrete Topology and (iii) the usual topology of reals.

o Ina pou]ﬂgica} space if for any two open sets U and V we have U M Vo=,
show that U n V. = U i V = ¢, bar denoting closure, '

4. Show that if X is infinite and T is the co-finite Topology of X, any two non-empty
open sets have a non~empt},r intersection,

5. In a Topological space (X, 1) if A < X, show that Bdr m] =¢if and only if A
is clo-open. :

6. Find two subsets A and B of reals w:th usual Topulc-gy such that Int (A) W
(B) # Int (A w B).
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Exercise - B

Let X be an infinite set with xy € X. If ¢ is the family consisting of all sets that
do not contain x; and all sets (X\F) where F is a finite subset of X Show that
(X, @) is a Topological space where every singleton other that {x,} is clo-open.
Also show that '{x”} is closed but not upcﬁ. :

Show that Interior operator in a Topological space (X, 1) is subject 1o following
conditions : ; .

(i) Int (X) = X (i) Int (A) = A (iif) Int (A " B) = Int (A) A Int (B)
(iv) Int (Int (A)) = Int (A) for any subsets A and B of X. ;

In a Topological space (X, 1) of A — X, show that

(a) Int-A = A\Bdr(A) (b} A = A U Bdr l_[A}, bar denoting the closure and

(c) Int A m Bdr A = ¢.
Let X be an infinite set, and for any subset A of X, Jet
A= A when A is a finite subset of X,
= X when A is an iﬁfinitc subset of X.

Verify that A® satisfies Kuratowski closure axioms, and the.resuhing topology is
the co-finite Topology on X, ;

Ina Tapulu'gy space (X, 1) show that (a) if G and H are open sets in X, then Int
(GnH) =Int (G w H), bar denoting the closure. (b) if G is-open and H is dense,
then GAH = G, bar denoting the closure.

IF X # ¢, show that for any collection T. opologies for X there is a unique largest

Topology which is smaller than each member of the collection, and a unique

smallest Topology which is larger than each member of the collection.’

For any A c X, prove that (a) (A)° = Int (A%) and (b) (Int AY = Ar, where “¢”
indicates complementation,
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Unit 2 O Continuous Functions Over Tﬁimlqgical
Spaces '

(Continuous function over Topological space, Hnmemnnrphmm Their
Characterisations, Continuity of Characteristic function, Nets, Filters,
Their convergence, Mutual implications, Product spaces, Projection
fumtmns, Their properties; Open functions, Closed functions, Quotient
spaces). :

81. Let (X, 1), (Y, U) denote Topological spaces.

Deﬁmtwn 1.1. A function f : (X, ©) = (Y, U) is said to be mnnmlous
if for every open set u € U in ¥, f~\(u) is an open set & T in X.

Definition 1.1(a). If x = xge X, then f : (X, ©) — (¥, U) is said to be
continuous at xg if corresponding to any nbd. W of f(xy) € ¥, there is a nbd.
V of xq in X such that fiV) ¢ W. _

If f is continuous at every point of X, then f is said to be continuous over
X, or smiply £ : (X, T) — (¥, U) is continuous,

Definition 1.2. A function {: (X, )Y, U} is said to be an open fnmtiun
if it sénds open sets into open sets Le. if O e, f(D) e L.

It is called a closed function if it sends closed sets into {:lﬂsﬂd sets ie.
if F is a closed sét in X, then f(F) is a closed sct in Y.

Definition 1.3. A 1-1 and onto (bijective) function [ : (X, 1) = { Y, )
is said to be a Homeomorphism if £ and £~ are each continuous,

Explanatmn Let (X, 1) be a discrete space, then any function f : (X, 1)

— (Y, U) becomes 2 continuous, because given any v €U, { “lu) is always
an open sct in discrete Tapningy on X. If 7, and 1y are two topologies on X
such that T; is stronger than 7,. Then identity function I : (X. ;) — (X%, T2)
i.e. I(x) = x for x € X is a continuous function. If fisa real-valued function
of a real variable ie, f : R — R then taking R with usual topology of
reals and remembering that open intervals form a base if the Topology we
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get from Definition above that f is continuous al a point x, € R if Corres-
ponding to € > 0 there is a +ve 0 such that f(xy) - € < f(x) < fxg) + e
ie. | fix) - f(xg) | < € whenever Xp= 0 <X <xg+die lx= x50 <8 Thus
definition of continuity of a function f as above is in agreement with (e - §).

Definition of continuity of f-in classical analysis.

Example 1.1 : Let R be taken with usual topology and f : R — R he taken
as

fix)=0ifx <0
C=xif0xgI
=litxz1.
Then { is a closed function without being open.

Theorem 1.1. Let [ : (X, 1) = (Y, U). Then following statements- are
equivalent (That is to say, each implies the other).

(a) I is continuous.
() If F is a closed set in Y, then f~Y(F) is closed in X,
(c) If 58 be a sub-base for U in Y, and Ge $B, then fY(G)e1,

(d) for each nhd. W of f(x) in Y as xe X_ there is a nbd. V of x in X such
that fiV) ¢ W, '

(e) f(A)cf(A), for every subset A of X, bar denoting closure.
() B e (B) for every subset B of X, bar denoting closure.
{ngmucncmwﬁmnmﬂwqmmNCMY

Proof : (a) = (b); so ! (an open set in Y) is an open set in X. For (b}
Let F be a closed set inY; then (Y\F) is open in Y, and by (a), T (Y\F) is open
in X i.e. X\™'(F) is open in X, and hence £4(F) is closed i X, |

{b]'=> {c); Let G be a sub-basic open set in Y, then (X\G) is a closed set
in'Y; by (b) f"'{Y‘l.G} = X"uf‘"{G) 1s a closed set in X and therefore ity complement
4Gy is an open set in X. So (c) holds.
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(¢)= (d); Letx e X and Let W be a nbd. of f(x), and U e U sucl. that f(x) &

U o W. Without loss of gencrality take U as a basic open set in'Y and therefore
U =W, nW>n .. N W;as a finite intersection of sub-basic open sets W,

Wa, ..., Wy is 5B LLI fx) e W, U c W. Now 7' (W;) is an open set in X'
by (;,) wnh i f (‘W] Put V = ‘I(W y which is a nbd. of x such that (V)
=W, ¢ W. 5o {d) holds.

(d) = (e); Let A be any subset of }{ and ve f(A). Take u € A so that [{u}
— v: If u e A we have v = f(u) € f(A) c f(A) and we have finished. S0 assume
u ¢ A butuisa limit point of A; Let W be a nbd. of flu) in Y, by (d) there
ix a nhd. V of u such that f{(V) c W. Now V cuts A, as u is a Hmit point of
A, nonvacuously and so, V. v (AMul} # . '

- Now (V. (Au ) = d.or (V)M fCAVul) :é.:b and hence W m (FLAN(UY)
i ¢ since f{V) o W.

That means., f(u) is a limit point of 1{A).
or. v = f(u} is a limit point of [{A)

ie v e T(A) _
Therefore, we sec f(A) < f(A). So (e) holds. -
(¢) = (f); Let B Y, Put A = f~!(B) € X; So, f(A) = B by (¢)
_ f(A) © T(A) or, f[ﬁﬂj}&:ﬁ
fe. (B 1(B); So ([) holds.
() = (g); Take C c Y.
“Then we have [ (ot C) = £7{Y (Y\C)} iby relation between closure and
Interior);
= XA (YAT)
C XA (Y NE) from (H
XA
= Int {7 (C).
Thus (g) holds.

Sk Wi



(g) = (a); Lot G be an open set in Y: Then Int G = G. and by (g) ()
= ! (Int G) = Int f“]{_G}. That means, £=1(G) is an open set in X: and hence
f is continuous. The proof is comnplete.

Theorem 1.2. For a bijective (1-1 and onto) continuous function f -
(X. 1) = (Y, U) following statements are equivalent;
(i) I is a homeomorphism
(i) £ is closed
(1ii) f is open,
Proof : The proof is a routine verification based on the fact that for cvery
subset A of X, (f"')! (A) = f(A): details are’left out.
Example 1.2. In every Topological space (X, 1). the identity function I :
X —= X where I{x) = x, x € X is a homeomorphism. ;
Example 1.3. If the space R of reals is taken with usual Topology then
for a > 0, the function £ : R — R where f{(x)=ax, x e Risa homeomorphism.
; Deﬁnitiﬁp 1.4. Topological spaces (X, T) and (Y, U) are called homeomorphic
if there is a homeomorphism h : (X, T) = (Y, U).

Explanation : Suppose (X, 1) and (Y, U) are homeomorphic spaces. A
homeomorphism h : (X, 1) — (Y, U) establishes 1-1 correspondence between
elements of X and Y and between open sets of the two.spaces. Thus a property
of a Topological space X defined by means of open sets is transferred to the
space Y that is homeomorphic to X. Examination of these properties. called
Toplogical properties is essentially the subject of “TOPOLOGY”.

Example 1.4, Let A be a non-empty proper subset of a Topological space
(X, 1) and be R be the space of reals with usual Topology; then characteristic
function ¥4 : X — R is continuous if and only if A is clo-open in X.

Solution : Let x4 be the characteristic function of A X, and so

YA =1 - ifx€A
=] if xe A
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Suppose (s is continuous and take an open set G < R, then

LG = X : it G contains O and 1, o e LR
=A - if G contains 1 but not 0. i (i)
=k XA if G contains 0 butmot 1, {111}
= if G contains none of O and 1. ... (iv)

Since ¥ (G) 1s always open in X il follows from (i) — (iv) that A is clo--
open in X. The converse is also true,

82, Nets and Filters :

Definition 2.1, A binary relation denoted hy > is said to direct a non-empty
set D if

- Hm, n and p are members of D such that m 2 nand n 2 p, then m 2 p
( = is transitive) ' '
(ii) m € D, then m =z m (2 is reflexive) :
(i) m and n are members of D, then there is a member p in D such that
P zmand p 2 n.
= directs D, [hen the pair (D, 2) is_sai;ﬁ to be a directed set,

For example the set I of all natural numbers is a directed set with usual
order of reals. '

Explanatmn : A very commoa example of a directed set is the set N of
all natural number with usual arithmetic ordering. So (N, 2) is a dix ected set.
[f(X,T)1sa Topc:lﬂﬂlcal space and .4y is the family of all ncwhbmuhonda of
apointxe Xisa directed set directed by set inclusion relation < (being a subset
of). Note that a directed set need not be a partially oi dured set, muce Delinition
© 2.1 does not invite antisymmetry.

Definition 2.2. If5 : (D, 2) » X isa function where (D, 2)isa ql:reutul
set and X is a non-empty set, then S is called a net in X;

or, equivalently, S,(= 5(n)) € X asne D
or, in sgmbcl, anet {S,;ne D, 2}isinX,
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A net {S, : n € D, 2} is said to be eventually in X if and mﬂ}, if lhue
is a member N & D such that S, € X if n 2 N.

A net {S,, »ne D, 2} is said to be Frequently in X if and only if for each
me D, there is a member n € D such that n = m and 5. € X,

Remark : A Sequence {Xq} is a met with I as a directed set,

Explanatiﬂn If anet {S;;ne D, 2} 1s Frequently in X, Let E= {ne D :
S, € X}; Then for each member m € D, we find a member p € E with p >
n. Such a subset E of D is called cofinal. Cofinal subsets of a divected set
are used in theory of subsets of a net.

Definition 2.3. : A net {S, ne D, =} ina Topological space (X, 1) is
said to converge to an element u € X, if and only if the net {Sp:nebD,z}
is eventually in every neighbourhood of u in X. :

For example; if (X, 1) is a discrete space (1 is the discrets Topology), then
_ anet{S;, ne D, c} coverges to a point u iff {S;. n € D. ) is eventual in
{u}: That is to say, from some point on S,’s are all-equal 10 u. On the other
extreme case if (X, 1) is indiscrete, (only open sets are q)'und X), then every -
“net {S,, n & D, c} converges to every point of X. Cousequently a given net
' may converge to several distinct points. :

Theorem 2.1. In a Topological space (X, 7) (i) A point u in X is a limit
point of a subset A of X, if and only if there is a net in A\{u} such that the
et converges to u. '

(u) A point u belongs to closure of a non empty set A ie.ue A if and
only if there is a net in A converging to u,

- (iii) A subs_e:t A in X is closed if and only if no net in A et;mferges to a
member of (X0\A).

Proof : (i) Let u & X be a limit point of a subset A if X. Then ever y nbd.
N, of u cuts A in a point other than u;

ie N, n (M{u}} # ¢; Take xy, € N, n (f-k\{u]).
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We know that the family ./, of all nbds. N, of u forms a directed set with
_ respect to set inclusion relation c.

Then { Xy -V —} is a net in A\{u] such that if N, and N are nbds. of
u with N’ < .&, then by construction Xy. e N, < N,. Hence the net
{ Ky, » 3 {:} is eventually in every nbd of u, implying that the net converges
to u. s

The converse is obviously straight forward.

(ii) A = closure of A = A U derived set' A’ _(m‘m. For each meniber v €
A’, there is a net (by preceding part) in A converging to u; For each member
ue A,anynet{S,, neD, 2} SuchthatS,=u forall n'e D becomes cmwcrg{:ﬁt
net converging to u. Therefore, each point in A attracts.a netin A that converges
at that point,

- (1ii) This part 13 now clear because a set is closed if and only if A=A,

Theorem 2.2. A function f : (X, T) = (Y, LI} is c::-ntmunus at ce X if
and only if every net {S,,neD, >} in X that converges to c, the net {f(5,))
- n e D, 2} converges to f(c) in ¥ '

In symbol, f[th ]=iimt‘LS ).

Proof : The condition is necessary : Suppose f is continucus.atx =c € X,
Let {Sy, neD, 2} be a net in X that converges to c. So it is eventually in every
nhd. of ¢ in X. Take Ny be a nbd. of f(c) in Y. By connnumty if f at ¢, we
have I~ (Ng) is a nbd. of ¢ in X. So {S,.neD, 2} is evenwally in £~/ (Npg).

That is to say, (f(S,), neD, 2} Is eventually in N!fL}I: and the net [f(S,). ne D, z|
converges to f(¢) in Y.

The condition is sufficient : Let the condition hold. If possible, let f be
not continuous at ¢ in X. We seek a contradiction.

- Failure of cdntinuity of [ at ¢ invites a nbd. (say) Ny of f(¢) in Y such
that £ (Ny) is not a nbd. ‘of ¢. - '
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Thus for every member N of nbd. system .4 uf c in X we find a point

Xy, (say) € N. such that Xy, €f° {NH“}
; i.c. f(xN ]ENrml e ()
Put D = Collection of all such ordered pairs
= {(xno NOJ Ne €l

Then consider the Directed set D = Xy, Noo Ne € g, <)

Define 5(xy, ., _N.E‘,l = Xn,; Then the net {S, D. <} has the property that
it is eventually in every nbd. N, of ¢; ie. it converges to ¢ in X. but the

image net {f(S), D, <} becomes such that f(S(xy . N, 1) =X V&N,
(From *).

i.e. the net is not eventually in N ficy = @ nbd. of f(c) in Y. So {he image not

{£(S), D, <} does not converge to f(c), although the net {S, D, <} converges

to ¢ in X—a contradiction. The proof is complete.

Definition 2. 4. A filterina Topological xmf.,e (X, 1:} is a family 7of subsets
of X satislying

(F1) fAeZandA C B, then B e &
(F2) If A, Ay €7 then (A; M Ay) € 7
(F3) ¢¢.7%

For example, the nbd. system . if a point x in X is a Filter. Because above
conditions (F.1 — E3) are all O.K. in favour of the lamxly 4. That is why .1
is often termed as nbd. Filter.

Definition 2.5. A Filier 7 is said o converge to a poini x & X, if and on ly
if each nbd Ny of x is a member of F{lhdi 15, the nbd system .1, at x is a sub-
family of F). '

‘Theorem 2.3. A function f - (X, 1) = (Y. U) is cnniinuou*; X =c eX

. if and DnIy if for every Filter 4 on X llmt meergea to ¢, the image Filter [(57)

converges to f{c¢) in Y.
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Proof : The condition is necessary : Let { he continuous at X = ¢ € X,
and let & be a filter in X converging to ¢. Then the nbd. system ..k at X
= ¢ is a sub-family of F ie. .4 c % We show that image Filter f(.#) in

Y converges to f(c); That is to show the nbd. system .f) at f(c) as a sub-
family of f(%) or ;

il © (). 1% B (1)

Let Nﬂ” be a nbd. of f(c) in Y. i.e. Ny € ). By continuity of fatx
¢, we {ind that 5! (Nj(y) is a nbd. of ¢ in X and hence b},r assumption {~ (Nm.}}
e 4 That means Ny € f(:#) and (1) is verified.

The condition is sufficient; Suppose the condition holds. and f is not
cuntmunus at x = ¢. We derive a contradiction. We find a nbd Ny of f(c) in
Y such that no nbd N, of ¢ in X satisfies N, < f~ (Nm}}

i.e. no f(N;) © Ny, showing that Ny, € feAe).

Therefore image Filter f(.4;) does not cbnverg_c to f(c) in Y, though nbd. filter

.. coverge to ¢ in X—a contradiction. The proof is now complete.

Theorem 2.4. A point x is a limit point of a subset A of X, if and only
if A\{x} is a member of some Filler converging to X.

Proof : Let x be a limit point of A c X, Then if Ny € /& we have N,
N (A x] # 6.

Ifweput = (G X: Nyn(A\(x)) < G, N, € .k}, then it is not difficult
ot cheek that % is a Filter generated by members Ny M (A‘h {x}), Ny € .45. Further
A C 6, and, hence %is a filter converging to x in X. Of course, by wnst.ructmn,
A\{x] € .
 Conversely, Let A\{x] be a member of a filter (say) # thal converges o
x in X; That is, to say, s
AM(x) € %. el
- Also the nbd, system .# at x C H : That is to say, every nbd, Ny of x is
a member of % 4
or, N, e # A
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Since % is Filter, we deduce from (1) and (2)
Ny M (A\[x)) #.6.
That means x is a limit point of A.

Nets and Filters Lead to essentially equivalent theories. Grounds for this
suspicion rest in following Theorem.

Theorem 2.5. In a Topological space (X, 1), If {Sp, n € D, 2} is a
net converging to u € X, they there is a Fﬂter in X mnvergmg to u; and
VILB—‘L’G['SII

Proof : Let the net {S,, n € D, 2} converge to u e X.

For each.n e D, put A, = {8,,, m € D; m 2 n}. Since Intersection of
any two such members contains another such member {A,} generate a Filter
# in X. Now given any nbd. N, of u, we know that the net is eventual
“in Ny; That is to say A, c N, for some n. That means Ny is also a member

of & ie. the nbd. system .4 at u satisties .4, = .#; Hence .ﬂ'cnm'erges
tou e X '

Conversely, Let & be a Filter converging to u € X. Put D; = {(x, F) :
x € F and F € #). Then Dy is a directed set with order > by agreeing to
(Y, G) 2 (X, F) if and only if G ¢ E Consider the net {f(x, F).; (x, F) e D, 2},

Where f(x, F) = x. Then it is a routine excercise to check that this net is
eventual in every nbd N, of u, and hence the net converges to u € X,

§3. Product spaces.

There is a technique to construct a new Topological space out of a given
number of Topological spaces. That leads to the concept of product spaces.
+ Let (X4, ©) and (X3, V) be given Topological spaces, and let X = X; x X,.
Consider a family 5B of all subsets of X; x X, = X like Gy x X5 and X x
G, where G € T and G, € V. Then it is a routine exercise to see that SBis-
a sub-base for a Topology on the Cartesian Product X whose base B consisits
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of all members of the form G x Gy, and the Topology generaic. by the base
"B [dr by sub-base 5B) on X is called the Product Topology on X. Then a subset

V of Xj x X5 = X shall be an open set in the Product Topology if and only
if to each member (x;, Xz) € W there Lmreapund open nbds U; of x; in X,
and U, of x; in X5 such that

Uy x U, e W,

The given spaces X, and X, are often called co-ordinate spau:a and two -

functions p,, and p,, that carry a member (x4, X3) of X x X, into M and into
X2 l‘CHpLC[WﬂW

e p, X X }{1 — X and p,, : X x Xy — Xy where

Py, (X1, X7) = x; and pn (X1, X3) = Xa respectively are called projections into
Co- ordinate bpal.'.:t‘b

Projection functions p, and p;, arc here continuous functions. Be:.mne if
Uy is an open set in X we see pfll (Uy) = U, x Y, and that is an open set in
X = X| b4 Xj, . .

Now suppose T is a Topology for X; x X that make projection functions
continuous. Then if U is open in Xl and V'is open in X,, then U x V is open
‘relative to T, because U x V = py (U) ~ pY(V), and this set is open relative
to T because p.'s are continuous. Therefore T is stronger than the pmduu

topology, and we conclude that the pmdzuct topology 1s the weakest Topology
on X to make projections continuous. ;

1t is now a routine matter to emend tim Definition of Product lprlogv
for the cartesian product X = X; % X2 x ... x X, where each co- mdnmte
X; is a given Topological space (X, Tj). Thus a base for the Product Topology
on X consists of all members of the from U; x Uy x ... x U, where each
U; in open in (X, Tis i{ =1, .. n In paricular, the real number space R
with usual topélogy gives rise {o the product space R" = R x R x i PR
(n times) with Product topology; and R" is more commonly known as the

z
Euclidean n-space.
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Here we see that each member of R is an ordered n- ~tuple of reals like (x,,

R ) x. € R. We look at it as a real function x on the set [ S n) where
value at i as x; (= x(i)).

Supposn: we have an arbitrary family of Topological spaces (X To) L& ;_{—
an Index sét'. Then the cartesian product X = X{Xy 0 e A) nay be looked
as the set of all functions x on A such that Xg € X for each index ¢ e A, In
that case X, is o-th Co-ordinate space and corresponding projection function
Pr, 1 X = Xy is given by p, (x € X) = %o € X

Consider the family {pL]{'U} where U is an open set is (X, 1)} It
is easy to check that this family of subsets of X is a sub-base for a Topology
on X, and it is the smallest Topology on X to make cach projection function
continuous. This Topology on X is called the Product Topology and X is
the Product space U.f given Topology spaces (Ko Ta) 05 0 A

Theorem 3.1. Let {(Xq, o) }eep be a family of Topological spaces and
X = X{Xy: o € A} be the product space with Product Tepn]cng,y Then each

projection function p,, : X — X,, is an open function i.c. it sends open sets into
open sets.

Proof : Let p, : X — X, be a projection function. Let G be an open set
in X. If x € G, we find a member of defining open base member, say. D of
the product Topology such that x € D' & G. Then we have

P lX) € prufD} = P ) T b
We know that D I{Jﬂkk like

D =X{Ge: e A}, where Gy, is open in X,, and G = X for all o except
a finite number of o’s (say) = «, O, .., O,

- Now, if o = one such oy, we find
P, (D)= {F*r“k (y):yeDl= et N o 126, b2y
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And if o is none of o, O, ..., Oy we know |

P.(D) = X Now (2) and (3) tell us p,,(D) is an open set and from (1)
we conclude that p, (G) is open.

Remgrk : A projection function may not send a closed set into a closed
set. For exa'mpli:., in B2, the closed set {(x, v) e RZ; xy = 1} has a non-closed

Projection on each Co-ordinate space.

Theorem 3.2. Let (Y, V) a topological space and { (X, Tg) ) ge s be a family
of Topological space; function f : ¥ — X = X{X, : o € A} is continuous if
and only if the composition function puf : Y — X is continuous for each

e,
Proof : Let f ;'Y — X be a continuous function. Since X is the product
space with product topology and we know that each projection function p,,

on X is continuous, it follows that the composition p,f is a continuous

function.

Comferse]}n suppose the condition holds i.e. p.f is continuous for each 0.
then for each open set U of X, we have (puf)(U) = f“i{p;'{U}} and this
is an open set by assumption; and product topology of X says that pal(U) is
a member of sub-base for the product topology. This inverse image under f of
a (any) member of defining sub-base member of the product Topology becomes

an open set. That means, f is continuous.
§4. Quotient spaces.
Let (X‘ T)bea Tnpulogical.&.;pace, and Let f: (X, 1:} —Y be an onto function.
Let % = {U c Y : £4U) e 1}.
Then % forms a Topology on Y. Because
MY €U |
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(1)) It {Gplucn i a ml%ldmliy of %, then G= U G, c Y such that

weh

FHG)="( U G, )= U f11G, 1e 1, because each i (G eT SoGe w:
| aEA WEA - v 3

(iii) Let G, H € . and we have { (G n H) = £HG) N £ (H) which
is a member of T became £~'(G) and t='(H) are so. Thus G m H is a member
of . :

Thus (Y, ) is a Topological space, called quoticnt space.

Theorem 4.1. The quotient Topology on'Y is the largest topology such Lhdl
f: (X, 7) =Y is continuous,

Proof : Let Vbe a Tﬁp(‘aiﬂgj;.-' on ¥ such that I': (X, 1) = (Y. V) is continuous,
Take G € V, then by continuily of f we have i(G) is open in X ie. ""[G}
€ T, and by definition of qumwnl Topology G is a member of the quuln,nt'

TD[_‘rOiDL}f on Y. Hence V < Quumnt Topology. The proof is complete.

D{:hmtmn 4.1. A function f from one topological space into another is said

to be a closed function' if f sends each closed set into a closed set.

Theorem 4.2, If f - (X, ) = (Y, %) is continuous and onto such that f
is either open or closed function, then £ is the guotient Topology on ¥,

Proof : Lei (X, 1) — (Y, %) be continucus and onte, and U be a subset
of Y such that f JUE.J} is open. Hert: EE= i {F'{U] 1s open (f is open) in #.
SG every open set in quotient Topology is open in #. If f is continuous and
open, since quotient Topology is the largest Topology on Y for which f is

continuous, % becomes the quotient Topology on ¥,

If £ is a closed fuﬁctian, we need (o replace ‘open’ by ‘closed’ in argument
above for desiréd conclusion.

Example 4.1. Let X = {(x,y) e R%:x=0o0ry=0} Show tha Drﬂjﬂlml!
function P(x, y) = x for (x, y) € X is leed but not open.

Solution : Take any closed subset of X: it is mapped h},' P into sm“ictan
{0} which is n:lm,ed but not open.
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Let (X, 1) be a given Topological space, and let R be an equivalence, relation
on X. Then X is partitioned into disjoint equivalent classes; denote the set
formed by these classes as X/R, called quotient set.

If a € X, let D, denote the ‘equivalent’ class containing a. Thus Dy, = Dy,

if and only if a and b enter the same ‘equivalent’ class i.e. if and only if
(a, b) € R(a R b).

Now define h : X — (X/R) where h(x) = Dy, x € X. Then h is onto. Also
construct a family Tg of subsets of (X/R) by the rule :-
= {Kc _{Xﬁ{) : h~'(K) is an open set in X}
 That is to say, g = {K c (XR) : hFY(K) e 1.
Then we verify that Tg is, indeed, a Topology on (X/R). -
Because (i) ¢, (X\R) € Tx. :

(i) If (Kq)eea be a sub-family of 1x, and K= UK, .

weh

Then h™'(K) = h™' (UK, = U h™'(K,) & 1 since each member h~! (K, )&t

oen aed

which is a Topology on X. That shows K & Tg.

(iii) Similarly we can show thal'intw:écﬁnn of two members of Ty 15 a
member of Tg.

This tupclogy T on quotient set (X/R) is called the quotient Topology and
Topological space (X\R) is said to be the guotient space. '

Theorem 4.3, If © denote projectién of (X, 1) onto the quotient space
(X\R), then following statements are equivalent,

_ (a) T is an open function and (b) If G is open in X, R[G] is open.
Proof. For each subset A of X, we have R[A] = _"'{n[h]}.l

(a) = (b); Let m be open. If G is open in X, by cenli:iuit.y of -
projection function m. We have mYn[G]) is open i:e. R[G] is open. Thus
(b) holds. ‘ '
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(b) = (a); Let (b) hold, If R[G] = ' (xn[G]) is open, then, by Definition

of the quotient Topology, n[G] is open, and so = is open.

b2

Exercise - A
Short answer type questions

In i9{is the set of all natural numbers, construct a co-finite Topology 1,y on 9,

Is Ty a filter? Give reasons.

~ Show that a sequence [x,} is a net.

.~ Give an example of a Projection.function that is open, but not closed,

LetP=a=xp<x; < .ogx, = b} be a Partition of a closed interval [a, b].

Let & denote the fdl‘ﬂﬂy’ of complements of all partitions of [a, b]. Show that -E_,

is a Dlrcr:tcd set.

Let I and J be two non-degenerate intervals of real$ with usual topology. Show

that any homeomorphism h : 1 = J is monotonic.

If (X, 7) is a Topological space, and f: X — R of reals with usual topology,

is continuous, show that the set {x e X : -1 < f(x) < +1} is an gnep e
in. X,

- If @2 (=1, 1) — Reals with usual Topology is given by

X
P) =T as =l < x < +1,

Examine if ¢ is a Homeomorphism,

Exercise - B

In a Topological space (X, 1) a subset G is open if and only if G is a member

if every Filter that converges to a point of G,

Show that all limit points of a net in a Topological space form a closed set.
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In a Topological space X let @, denote the collection of all Filters sach of which

converges to X € X ; Show that A{F . Fed,) is equal to the nbd. system

o atx

{X ) — (Y, 1=’} be a cmmnuous functmn If A ¢ X, show that restriction

i f;,; is- a continuous function on ,A Is the converse true? Give reasons,

If (X, ©) and (Y, V) are Topological spaces show that a bijective {1-1 and onto)
function f: X - Y is a homeomorphism if and cm!;»,r if f(A)= fLA) for every
subset A of X, bar denutmg the closure.

Show that the family of all subsets of a non-empty set X each of which contains

a giw:n element xq € X is a Filter on X. Examine its maximality.
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Unit 3 U Separation Axioms in Topological Spaces

(Separation axioms T, Ty, T, T3, T4 in Topological spaces, Their implications
and characterisations, Produet of T,-space, Regular spaces, Normal spaces,
Completely regular spaces, Tychonoff spaces, Urysohns Lemma in Normal
space, Tietze extension T heorem, Embedding in cube, Embedding Lemma
and Theorem, Mefrization Urysohn’s metrization Lemma).

§1. If there are too many or 0o few open sets in a Topological space (X, 1),
analysis thereupon may not be interesting and useful, For example, every
function over (X, t) with T as discrete Topology becomes continuous. There
arise several separation axioms in (X, 1) in terms of availability of open sets
in X. These axioms are presented below in graded style : which one is weaker .
or stronger than the other. Let (X, 1) be a Topological space.

Definition 1.1. (X, 1) is called a To-space if given two distinct points in
X, there is an open set containing any one but not the other

For example, real number space R with usual topology ey
is a Tg-space; because given x, y € R with x = y, one can
find an open interval containing X leaving y outside. Also
there is 4 Topological space like (X, t) where X = (a, b, ¢) (a, b and ¢ are distinct)
'_mid T ='{¢, X, (a), (b, ©)}, such that (X, 1) is not Ty; because distinct points
b and ¢ have no Ty-separation i.e. we do not find any open set in X to contain
one without containing the other, |

Definition 1.2, (X, 1) is called a Ty-space if given any two distinet.
elements in X, there is an open set to contain each one of them without
containing the other,

Explanation : There are many T-spaces; for example, “

space R of reals with usual Topology. Consider a Topological
space (X, 1) where X = (a, b, ¢), a, b are ¢ are distinct, and © = [, X, (a),

(a, b)}. Here a and b have no attracting open sets in T as per T;-stipulation.

50 (X, 1) is not T;. Definitions above have been so framed that Ty = Ty
i.e. every Ty-space is a Ty-space; opposite implication is however false.
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Example 1.1. The space (X, 1) where X = {a, b}, a # b; ana T = {¢, X,
(a}} is Ty without being T;. -

Solution : Here for distinct elements a and b we have an open set (a)
containg a without containing b; and this pair does not have a T~ separation;
because only open set to cover b is (a, b) that cuts {a}.

- Definition 1.3. (X, 1) is called a T,-space or a Hausdorff space if given
any two distinct members X and y in X, there are open sets U and V xuch that
xeUyeVandUnV=4¢

Explanatlﬂn : Here T, = Ty; and if (X, 1) is a Topological space where

= {a, b} a=b;and T = {0, x,(a), (0)}. Then (X, 1) is T5. Example 1.2 shows
there is a space (X, 7) that is T, without being T). n

Example 1.2. Let X be an infinite set and let the collection % of subsets
of X be as % = {G c X : (X\G) is a finite set (may be empty)}. Then
we verify that % is a Tnpningy on X, very often named as co-finite Topology :
on X. This Topological space (X, %) is T, without being T;. Take two
members u, v € X with u # v. Then U = X\{v} and V = X\Mu]} are two
‘members of % containing u and v respectively such that v is outside U and
u is not in V. Hence (X, %) is Ty. If possible, let any two distinct points
x, y in X have T, separation. So we find two open sets H and K in X

such that x € H, y € K and H K = ¢, Clearly (X\H) and (X\K) are each
finite subsets of X; and so.

(OH) U (XAK) -~ is a finite set in X,
ie. X\(H N K) is a finite set in X,
O LS is a finite set, because H n K = ¢.

This is a contradiction. Hence our assertion stands.

Theorem 1.1. If (X, 1) is Ty, then closures of distinct points in X are
distinct. :

Proof : Let (X, 1:} be a Ty-space; and let x, y € X with x #y. We show

that either x & {y) ory & {x}, bar denoting the closure. By Tg-separation we
obtain an open set U containing (say) x without containing Y. That is to say,

xeUandyeU;
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Thus a nbd. of x does not cut the singleton {y}; So x is not a dimit point :
of (y}. As X #y, we ha e x e{y}. Of course x €{x}. That means {x}#{y}.
Theorem 1.2. (X, )is Ty if and only if every singleton is closed.

Proof : Let (X, 7 oe Ty and x e X. If ye X and y # x. h}; T -separation
we find an open st U such that

xeUandyeU,
Clearly then y is not a limit point of {x} i.e. ye{x} (derived set of {x})
Of course x ¢ {x}’. That means no member of X is a member of {x}’. Hence
x}"=6; So
{xj = U x) =ix}
i, {Xx] is closed, '

Conversely, suppose every singleton in (X, 1) is closed. Take x, y € X with
X # ¥. So singleton {x} is closed, and hence X\{x} is an open set containing
y (without containing x); and similarly X\{y} is an open set Luntammg X
(without containing y). Thus (X, 1) is T,.

Theorem 1.3. (X, 1) is T if and only if ev{:r}' net in the space converges
to alinost one point in X.

Proof : The condition is necessary. Let (X, 1) be T, (Hausdroff). 1f x and
y are twb distinct points in X, they auract disjoint neighbourhoods U and V
confaining x and y respectively by T, separation. Since a net can not be
eventually in each of two disjoint sets at the same time it follows that no net
in X converges to both x and y simultaneously.

The condition is sufficient. Here assume that the condition holds. If
possible let (X, 1) be not a Ty-space, and let us suppose a and b are two distinct
. members of X such that every nbd. of a intersects every nbd. of b, Now nbd.
syslem .4 at a is a directed set and so is the nbd. system .1y, at b, Let us order
their product (Cartesian) .1 x .4, by agreeing that (T, U)_E (V, W) if and only
if T<Vand Uc W, For each member (T, U) e.4; x .4, we have T n U #
¢. Take a point xr yy € (T ™ U). Thus if (V, W) = (T, U), then Xvwy E

(V. W} < (T n U), and in cnnbequence the net {x{rm, (. U4, x g 2}
: converges to both a and b simultaneously—a contradiction.
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Theqrem 1.4. A pro_duét of T-spaces is a Ty-space.

Proof : If x and y are two distinct points in product X{X, : 0. € A}, then
Xg # Ya for some o in A, If each co-ordinate space 1§ Ta, we find disjoint open
nbds U and V of £, and yq respectively, and Pr_ f (U} and P'r': (V) become disjoint
open nbds of x and y respectively in the product space X{Xq: e A} with
~ product Topology. ' ;

Definition L.4(a). (¢, T) is said to be a regular space if given any closed
set Fin X, and an mﬂsidchpcsint x in X (g F), there are open sets Uand V in
X such that ' '

yeUad FcVwithUnV=d

(b) A regular space which is also T, 18 called a Ty-space. _

Explanation : Take X = (a, b, ¢) and a Topology T = {¢, X. (), (b, ¢}}
in X. Here only closed sets are X, ¢, (b, ¢) and (a). We verify that (X, 1) is
a regular space, and this regular space is not T,: because singleton (¢) is not
a closed set in (X, T). '

Further T3 = T (and hence = T; = Ty).

As singletons are closed sets in T,-space, we have Ty = T,

Definition 1.5(a). (X, 1) is called a Normal space if given a pair of disjoint
closed sets F and G in X, there are disjoint open sets U and V such that F <
Uand Gc V. ' % : :

(b) A normal space which is also T; is said to be a Ty-space.

Explanation : Take X = (a, b, c. d, e, ) and T = (¢, X, (e), (D), (e, f). (a.
b, €). (c, d, b, (a, b, &, D). (¢, d, e, D}; Then (X, 1) s a normal space. There
“are only four paits of disjoint non-empty closed sets : they are ((a, b), (¢, d}),
((a, b), (c, d, ). ((a, b, &), (c, d)) and ((a, b, &), {c. d, H). Each pair is separated
- by pair of disjoint open sets ((a, b, ¢), (¢, d, ©)).

This normal space (X, T) is not regular; Because (x4, b} is a closed set ip
X with ¢ €(a, b); there 15 no disjoint pait of open scls in X to separaie then

Further T; = T3. Because if F is a closed set, and x is a point ¢ F in a Ty
space (X, T), we see that singleton {x} is aclosed set in X. So by normality
of (X, 1) desired separation is immediate. So (X, 1) is a Ts-space.
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Definition 1.6(a). (X, 1) is said to be completely regular if given any
closed set F and a point x ¢F, there is a continuous function f : }{ — [0, 1]
such that t{x}l 0 and f{u} |l forueE

(b) A completely regular space which is also Ty is ¢alled g Tychonoff
space often designated as T j1-Space,

Theorem 1.4. A space (X, 1) is Normal if and only it for every closed
set F and open set H containing F there is an open set G such that

FcGecGecH,

(Pushing a pair of upen and closed sets (G, G) in between a given pair
of closed and open sets (F, H).

Proof : The condition is necessary : Let (X, 1:) be a normal space and
Let F and H be a pair of closed and open sets in X such that

FcH,

Then complement of H = H® is a closed set with F n HE = ¢ By norma]:ty
axiom we get a pair of disjoint open sets G and M '\ﬂll'@f}!mg

FcGand H*cMand G n M = ¢,
" Thus G = MC; and HY M gives M° < (HY° = H. As M is a closed set,
we get
_FchﬁcM“cH.
That is, Fc GG cH. |

The condition is sufticient. Suppose the cﬂnditmn holds. Let Fy and F, be
a’ pair of disjoint closed sets in X.

Then we have F; < F,° which is open.
Hence by the condition assumed we find an ﬂj;:-en set.G such that
FicGeGcF,",
Now G cF,°® gives F, ¢ G*, and, of course, G G. So,
: . : =)

Thus Fy € G and F, ¢ G* where G and G+ is a pair of disjoint open sets
in X. Hence (X, 1) is normal.

-30



Theorem 1.5. (Urysohn’s Lemma) : In a normal sﬁace X if A and B are
disjoint closed sets in X, there is a continuous function [ : X — [0, 1] such
that f(x) = 0 if x € A and f(x) = 1 if x € B.

Proof : Let (X, T) be normal, and A, B be a pair of disjoint closed
sets ie. A N B = ¢; So A < B° which is open, B® denoting the complement
of B. So Theorem 1.4. applies and we get an open set (say) = G, such .
that :

ﬁC61C§1CBc' : (1}
1 i :
Now pair (A, G;) is a pair of closed and open set with A € G,, and, as

before, calls for an open set, say = G, such that
. 4
Jd’t'(._..Gl Cﬁ-_;h ':Gl (2a)
i 4 4 2
and by a similar reasoning there is an open sct (say) = G, such that
4
G cG

CG;
3

w3 —

L (2b) -
So (2a) and (2b) give '
AcG,; cG, cG

4

1
4 5

cG

o

G CE, —B* 2)

Tt =
£
+I|

We continue this chain and for each dyadic rational of the form ~2m—n (n=
1;2,...andm=1,2, .., 2°=1yin [0, 1], we designate an open set Gy with property
that for any two.dyadic rationals /; and /5 in [0, 1], [y < I, gives
AcG, cG, <G, =G, =B*.
We know that collection of all such dyadic rationals in [0, 1] is dense in
[0, 1]. : '
' Let us define f : X — [0, 1] by the rule :
f(x) = 0 if x € every member G;
= sup 1 x e Gyl
So 0 < f(x) < 1 for x € X; Further from definition above we have f(x)
~0if x e A, and if u €B; as G, =G, cB*, we see that u ¢ G for every
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I. By dense property of the sel of all I's we deduce from f(y) = sup {1 ;
u¢G = 1. : :
It remains to work that f is continuous: Since intervals like [0. a) and (b,
1] where 0 < a, b < | form sub-basic open sets in [0, 1] with usual Topology
of reals. it suffices to show that £! [0, a) and ' [b, 1) are open sets in X. Now
we can cheek _
00, a)= {x e X : 0 < f(x) < a)
=[x e X : x € Gy form some ! < a}
= ,.U G; which is an open set in X.
il
Also (b, )= {x € X : b < f(x) < 1}
= {x e G¢ for some [ > b,
='ILLE;‘, a union of open sets = an open set.
=
The proof is now complete.

Corollary 1.1. Let X be a normal space, and let A and B be a pair of disjoint
closed sets in X. Then there is a continuous function 2: X — [a, b] such that
g(x)=afor x € A and g(x) = b for x B,

Take g = (b - a)f + a as f appearing in Urysohn’s Lemma, :
Example 1.3. In (X, 1) if for any pair of disjoint closed sets A and B there
is a continuous function f : X — [0, 1] such that fix) = 0 if x € A and fix)
= 1 if x € B, then (X, 1) is Normal, :
Solution ; Under the given hypothesis. put
I

'~.G={Kex : f{x}ﬂ%}:f"‘ [u-;-) and H={xEX -. f(x}:»j}=i‘_"- [; 1].

Since [Gi %) and G l] are open sets m [0, 1] with usual topology of reals,
and since f is continuous it follows that G and H are a pair of disjoint open
sets in X satisfying
AcGand BcH. -
So (X, 1) is normal.
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Theorem 1.6. A product of Tychonoff spaces is a Tychonolf space.

Proof : Given a Topological space (X, 1), and a continuous function f :
X — [0, 1] with usual topology of reals, let us make a conventicrn —

If x e X, and U is’a nbd. of x, we say that [ is for a pair (x. U) if f{x} =
0 and f(u) = 1 if u E(XIU}

Then if f, {3, ..., f,, are functions for (x, Uy), ... (x, U“} (n = a +ve integer),

and if g(x} Sup{r {x}} x € X, we see atonce that g is for the pair [?L {E!U; ]
l=i=n o

Therefore, the space (}i, 1) is completely regular if for each x and for'each nbd.
IJ of x (one may take U as a sub-basic member of 1), there is a function for
the pair (x, U).

Suppose X = the product X {X,,: ot e A} of Tychcnﬂ[f spaces X, and take
x € X Let U, be a nbd. of x, in X If fis a function for (xg, Ug), then P,
- (P, =ath Projection function) is a function for (x Pt (U u}] Now family of
sets like P! (Uy) constitute a sub-base for the pmduct Topology ; and therefore
the pmduct space is completely regular. Since product of T)-spaces 1s again a
T,-space, we have proved Theorem.

Theorem 1.7. (Tietze Extension Thearem} Let (X, 1) be a normal space,
and F be a closed sub-space of X, and let £ : F — [a, b] be a continuous function.
Then f has an extension h over X with values in [a, b].

Proof : Invoking corollary 1.1, we may assume that a = — 1 and b = 1.
Put fo=fand Ay ={xeF: fu(x)ii—%},-Bﬁ ={x :'Fu(x‘l«*~r So Ag and By

are a pair of non-empty disjoint closed subsets in F, and hence are also closed
in X. because F is closed. Now apply again corollary 1.1 to find a continuous

function g X = [-%fé]auch that go (Ag)= {-*} and gn{Bﬂ}-—{ }

Define f; = fy — g0 on F: then |f, {x}[i% for all x e F.

CIf A1={x:f1{xjif—%)(%)}, and
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n-frnen()3)

Then. by reasoning as above, there is a continuous function

02
Bl -

(1Y 2) (12 () e
el et Ko A= . i3 - ot

[[ 3J(3)’(3J(3)]“"Chth“g‘{ A 3 ‘md"’{_ﬁ” 13 1J

Next, definefonFby f, =fi —81 =fy —(go +g, ), and aecihaufa (x ,H[%]'

We continue this prncew to obtain a sequence {f, b dehnect on F

n
such- that |f, (x)| 2[5) and a sequence {gg, g, =5 dcfmed on X such
: e i 2 n : 5 i g
that [g. (x)|= -3—(5) with  property that on F we  have
I"I'I =:!:-u ‘-(g” +g| + e +,gj'|-t _}1 Dﬂﬁnﬂ 'S‘“ = gu + g! + A + gn._l, WE [I'f?ﬂt Sn 3!5
n-th partial sum of an infinite series of functions (real-valued) over X. We know

that the space C(X, R) of all real-valued continuous functions with sup norm

- becomes complete ;

G : - 1f2}\" : .
As an'{x}iig(-i) and since ) J(—) =1, We conclude that {8}

n={ 3
converges uniformly to a bounded continuous h such that | h(x ) I<1 over X,

We may conclude our proof by the observation that | o (x)] 5[ } and {8}

f.ult«.-

converges uniformly over F to f; which is equal to f, and that h equals to f over

'F, and h is a continuous extension of f over whole space X which has the desired

property.

Remark : Theorem 1.7 is not true if we remove assumption that F is
closed. For example, take X to be the closed Unit interval [0, 1], and take F

c X as F = (0, 1]. Then look at f : F — [~1."1] where f(x) = sini. Then f
is continuous, but f does not admit a continuous extension over [0, [].
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§2 Embedding in Cube.

The Cartesian product of clnsed unit intervals Q = [0, 1] w1t11 product
.tﬁpnlﬁgy is called a cube. '

So we look upon a cube as tha set Q™ of all functions on A to Q. Suppose
E is a family of functions such that each [ € F acts on a Topological space X
to a space Y (Y may be different for different f € F). Put X{Y;: { € F}. There
‘s a function e : X — the Product, often named as evaluation function where
e(x € X)p = f(x). It is seen that if members of F are cantinﬁﬂum then evaluation
{unction e is continuous. F is said to distinguish points of X, if given X, y € X
with x # y, there is a member f € F such that f(x) = f(y). F is said to dmmguhh
~ points and closed sets if for each closed set A in X and x &(X\A), we find a
member f & F, such that f(x) ¢ i{ﬁ}-

 Theorem 2.1. (Embedding Lemma). Suppose F is a family of continuous

functions f: X - Y (}.(,LY-[ are Topological spaces): then

(a) Evaluation function e : X — X {Yy: f € F) is continuous.

(b) e is an open function of X onto e[X] it F diétilxguiﬂhes peints and closed
sets. - . d

(c) eis 1 -1 if and cnl'}f if F distinguishes points. :

Pmn}f (a) we see that composition of evaluation function e with pmmstmn
function by, 1€ Pr.€ is equal to f; and here we know that'p,o e 1$ continuous,
because [prpe){x}ﬂ{x]. Consequently ¢ is continuous, by Theorem 3.2
~ (Unit 1I). :

(b) Tt suffices to show that image under ¢ of an open nbd. U of x contains
e[X]m anbd. of e(x) in product. Take a member f & F such that f(x) ¢ closure
of f(X/U). The set of all y in the product such that y, f(X \ U) is open, and
its intersection with e[x] is a subset of e[U]. So, ¢ is an open function of X
onto e[X]. Now (c) 18 clear.
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Theorem 2.2. (Embedding Theorem). (X, 1) is a Tychonoff space if and
only if it is homeomorphic to a sub-space of a cube, i

Proof : It is a routine verification that the closed unit interval with usual
topology of reals is a completely regular space and it is also Ty So it is
a Tychonoff sp'uce.-Aa product if Tychonoff spaces is a Tychonoff space.
S0 a cube is a tychonoff space. Each su'b-spar:e' of a cube is therefore g
Tychonoff space. We now observe that if X is a Tychonoff space and F is
is the collection of all continuous functions on X to closed unit interval,
then by Embedding Lemma Evaluation function is a homeomorphism of X
into the cube Q7

$3. Metrization :

Metrization problem in Topology deals with obtaining necessary and
- sufficient conditions for a Topological Space to be metrizable. A partial answer
to the problem had been given by Urysohn as early as 1924 through a
Theorem, better known as Urysohn's Lemma that we present below. We know
that the sequence space 1 of all real sequences x = {Xj. X2, ... X, ...} such

that Exnz <e» IS a metric space with a metric d given by dix. v)
n=l1

= i
=[Z(?_¢n =¥ }3] » Where x = (x), xa. ..), y = (¥i» ¥2, ...} € 5. This
n=|

sequence space I, is a known as a real Hilbert space,

Theorem 3.1. (Urysohn’s Metrization Lemma)

If (X, 7) is a secon countable normal T)-space, then it is homeomorphic onto
a subspace of I, and hence is metrizable, .

Proof : Without loss of generality assume that X is infinite. Since (X, 1)
is second countable, it has a countable open base, say B = (G, Ga, ..., Gy, ...),
each G; being different from ¢ and X, If p € Gy, since X is Normal and Ty
we find a member G; (say) of ® such that

pel, =6, c G, - (1)
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Put Q= {(G;,Gy 1:G; <Gy ). clearly Q is countable.

and let us write Q = {Dy, Dy, ...},

For each ordered pair Dy, = (G;, Gy), (say) with G, < G« we find the pair
{E; G } (*c’ meaning complement) as a pair of disjoint closed sets in normial
space (X, 1), and hence it invites a continuous function f, : X — [0, ] such
that

£, (G )={0) and £, (G{Y=(1} - I
Define a function f(x) on X by

'f{x}=Jli’] f_f{},ifg {x},...ﬁlf,, {1},...}.
T 2 i

For each natural number n. we have 0<f,(x)<1, and hence

5
fo(x1Y 1 L -
( n. 5 ] <—-, and we know that the series E—;- e
2t n=f N7

oo 2 .
Therefore Z( o {x}] <es as X € X. So f(x) is a member in I,
n 3

n=|
ie f: X — l,. Now f has following properties :-

(a) fis 1-1. Let x, y.€ X with x # y. By T;-separation we find (,rk € B such
that x € Gy am:l'},r ¢ Gy. Then from (1) we find G; € B such that

3EG;CEiCGk. ;

From (2} f,(x) = 0, xe€G;and f(y) = 1; That is to say, nth term of the

sequence f(x) = 0, but nth term of the sequence f(y) shall be 1 Thus f(x) #
n

f(y). Hence f is 1-1.

(b) f is continuous. Let x, € X, and € > 0 be given. Take y € X with y
# Xp. Then

4 1 1
=B L e Ty
) { (a3 (P (9) }
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and'f(xull {f!{x[,} —=f11xp ). l £, (xy ]l}
11 :
Since value of f, lie in [0, 1], we have

lfll (}r'}“fli E.;(IHJ )Ez - i :
f% | narssons : : e )

Since E‘—‘ <. we find an lnle“cl n, (mdepanduat of y and xy), such that .
n=| :

% l b s ;
)i % | _ (4)

n=ny +1 n

By continuity of f; at xy, for n =1, 2, ..., ny we take open sets V,, conlaining

Xp such that
[fo (¥)=fa (x0)]°

n 2ny

whenever y € V,, Sk (5)

Taking V = ﬂv we see V as an open set containing xu such that for

n=1

Efrnm £, (k)|

yEV d(f(y)f(x0))’ =

n=l

‘:"ilfn (¥)—-fa (x0)]°

I
: 2

e’ from (3) and (4)

n=1I n

{i:““ +EZ~ by (5)
= el
So, d-(f(y} — f(xg)) < € whenever y € V.
Hence f is continuous of X |

() £ : £(X) = X is continuous.

Take xp € X. There is G; € B such that x, € G,,c G, € G, by (1). Let

= pair {G;, Gy). Choose e such that l}f:e-c:—l-

zﬂ{. :
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Then d(f(y), f(xp)) < €.means

bl

= f-:n _fu ]2 | 5
ZI (¥)="Ta (x0)] {[ | ]

= n* 2ng

. . e e 1O
and hence {Ta, ()=, (X" <
Since x4 € G; ,I',1-;, (xg )=0, and hence [, (J’)‘i%-

Since f,, (G{ )={1}, We see at once that y ¢ G; . Hence y € Gy. Therefore -

d(f(y), f(xp)) < € implies y € Gy. So f~! is continuous at f(x,) € f(X). From

properties (a), (b) and (c) it is shown that f is a homeomorphism of X Dntd a |

sub-space of 5 i.e. X is homeomorphic to a sub-space of metric space /. The

pﬁ:-cnf is now complete.

ot R R

Exercise - A
short answer type guestions

Give an example with reason of a Topological space on which each real-valued
continuous function is constant.

Show that each normal Ty-space is a Tychonoff space.
Show that every Ti-space is a Ts-space.

Show that a compact (see unit IV) subset of T;-space is closed.

Show that a finite Topological space that is T, has discrete Topology.
In a Hausdorff space X if x € X, show thar

ﬂ{ﬁh: N, € ;I;} ={x}, bar d-:nr:-.ting the élnsure, and ..y denoting the nbd.
system at X.

Exercise - B
If X is an infinite set, Show that smallest T;-Topelogy in X is its Co-finite
Topology. i '

Let f, g : X — Y be continuous function where X is a Topological space and Y
is Hausdorff, Show that the subset = {x & X : f(x) = g(x)} is a closed set in X.
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Let X be a Topological sapce. Prove that following statements are
equivalent —

(a) X is T

(b) Every singleton of X is closed.

(c) Every finite subset of X is closed.

(dy If x e X, n{N.: N, .} = {x}].

Show that every metric space ts Normal.

._Lv:!' X be a HausdorfT space and f : X — X be a continuous function. Show
that the set {x € X : f(x) # x) is an open set in X. '

Show that a Compact (see unit IV) Tg—s;pac'e. is metrizable i it is seconc -
countable.

Show that a homeomorphic image of a Hausdorff space is Hausdortf.
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Unit 4 ) Compactness in Topological Spaces

{Uben cover, Sub-cover, Compactness, Countable open cover, Lindelofl
space, Lindeléff Theorem, Properties of compact sets, Finite intersection
property, Iis relation with compactness, Tychonoff Theorem on Product of
Compact spaces, Continuous image of a compact space, Locally compact
spaces, I-point cumpac'tiﬁcu{inn].

§1. Heine-Borel Theorem is a wellknown phenomenon in real analysis. The
essence of this lies in Compactness in a Topological space (X. 7).

‘Definition 1.1(a). A family % = {Gglaea of open sets Gy in X 15 said
to be an open Cover for X il X = UhGu
s

(b) A sub-family # < %is said to be an open sub-cover for X if 7 is itself
an open cover for X.

~ For example, the family 0 of all open intervals like (a, b), a, bar reals with
" a<b forms an open cover for the space R of reals with usual topology ; because
each oper interval (a, b) is an open set, and the sub-family 8 of 6 consisting
- of all members like (-1, n), n = 1, 2, ... also forms an open cover for R, and
' F]u is a sub-cover for R.

Definition 1. 2. (X, T) is suid to be compact if each open cover for X
has a finite open sub-cover.for X, '

Explanation : The real number space R with usual topology is not
mmpnct. Because open cover consisting of all open intervals (-n, n) does not
have a finite open sub-cover for R. Ofcourse, there are many compact spaces ;
for instance every finite Topological space is compact.

Example 1.1. Let X be an'infinite set and T be the Co-finite Topology for
X ; Then (X, T) 18 compact.

Solution : Let % be an open cover for X and fix a member ch of . Then
{X_\.G&“} is a finite set, say, = (X1, X2, ..y Xm) in X. Since % is an open cover
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for X i.e. X = U{G : ot € A}; there are members Gﬁt, Gul, Gﬂtm of % such
that x; € Gg,. 1= 1, 2, ..., m. Then Gy Gy o + G, phus Gm all together

form a finite sub-family cf % such that X = G, W Gy U .. U (10“ Gy

Hence (X, T) is compact.

- Definition 1.2. A subset E of (X, 1) is said to be compact if as a sub- apm.e
with relativised Tcpnlngy E becomes a compact space.

Definition 1.3, (X, 1) is called a Lmdc]ﬂfl space if every open cover of |

X has a countable open sub-cover.

For meple it follows from Definitions that every compact space is a -
Lindelsff space.

Theorem 1.1. Every second countable space (X. T) is Lindeltft.

Proof : Let (X, “E:j be a second couniable space with (Wi, Wo, W, )
as a countable open base for 7. Now take G = {Ggjyea be an open cover for
_X. Corresponding to any x € X, there exists some oL A such that x e Gy we
find a base member, W such that x e W < G,. The corrésponding base members
{W} form a part of {W, W,, .., W,,, ...} and is a countable sub-family of (W,
Wi, ...}, say, {W,”. Wiy, s Wiy .} 3 Now each Wy, © Gi—some member
) i R T {GE, Go, ...} is a countable sub-family of @ to 'u':t a8
a sub-cover for X; and (X, 1) 15 a Lindelsff space.

Corollary 1.1. The space R of all reals is a second countable space and
is therefore a Lindeldff space, without being compact, with usual [cpbingg with
basis consisting of intervals (a, b), a and b rationals, Thus a Lindelsff space
need not be a compact space,
 Remark : Theorem 1.1. is often named as Lindelff Theorem.

Example 1.2, Continuous image of a Lindeloff space is a Lindelifl space.

Solution : Let f : (X, T) — (Y, V) be a continuous function where (X. )
is Lindeldft, and (Y, V) is any Topological space. We show that {(X) is a

Lindeldff sub-space of (Y, V).
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Take {Gy) e a be an open cover for f(X); put Gg = f(X) M Hy, where H
is open in (Y, V) for each O € A. By continuity of  we have =" (He) is open’
in X for each ol € A,

Nﬂw fX)= U G,c U (Hy,):

[y i=ni WEA

aeh ned

So }{cf-l( U He ]: U f-' (Hy ).

That is to s:ay,i: U £-' (Hg ) Hence the family {f~' (H, 1} forms an

wEd
open cover for X. As (X, T) 1s Lindeloff, there is a countable open sub-cover
for X, say,

X = Hyw T H) vt H )

So, £(X)=UH,.
n=l

Thus f(X}:f(}{)ﬁ[ElH ] UfX)nH, = UG :
n=l

n=1

So, {G,} becomes a countable sub-family of {Gu } ., to cover f(X).
Hence f(X) is a Lindeldf sub-space of (Y, V).

Theorem 1.2. Every closed set in a compact space is compact,
Proof : Let (X, 1) 1:-1: a compact space and E be a closed subset in X.

So its complement (X\E) is open in X. Suppose {Gu },eq be an open cover

for Eie. Ec U G ,»each Gy being ﬂpen in X. So the family {G. }“ﬁ and

HEM

(XAE) form an open cover for X, by compactness of which we find a finite a.uh-
family of this enlarged family as an open sub cover for X. Let G:xt G_Gz.,
Gﬂ'n and possibly (X\E) form a finite open suh_-cnvcr for X, and hence from
a finite open sub-cover for E. Clearly {Gg . Gg,, - Ga, } is a finite open sub-
cover for E, and E is compact.
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Remark : Coverse of Theorem 1.2 is not frue. For example, take

= a, b with topology T = {¢, X, (a)} Then the subset (a) is not closed in
(X T). However it is compact m (X, 1).

Theorem 1.3. Every compact subset of a Ty-space is closed.

Proof : Let (X, 'ﬁ} be afl‘g—sp'ace and E be a compact subset of X. It suffices
to show that [X\E} is open in X; without loss of generality take (X\E) , and
x € (X\E). If'y € E, we have x # y, and by T,-separation we find two disjoint
open sets Vy, and Wy such that x € Vy and y € W, with Vy "Wy, = ¢ ; So

Vy C (X\Wy) o s S

Now Ec UJ W, ; showing that the family (W, } _is an open cover for E,
yeE ek

by compactness of which we obtain a finite number of members, say,
WFL’ WF:‘ v W, out of this family such that
bt 1

Ec 0w, e L

Look at the corresponding open sets Vy , Vy ki ‘v.’yn each containing X,
and put :

G=Ve. OV, Bl e 3)
Clearly G 1s an open set containing x such that (from (1) and {3})'
G (XA\Wy, )n(X\W,, Jn..a(xvw,, )
= X(W,, UW,, u.LUW, )
< (X\E) by (2).

Thus for each x € (X\E), we find an open set G céntaining x such that G
€ (X\E); Hence (X\E) is open in X,

Theorem 1.4, Show that a subset E of reals with usual Topology is compact
if and only if E is closed and hﬂunﬁed

Proof : Let E be a bounded and closed set of reals in respect of usual
Topology of reals. Suppose [a, b] (a < b) be a closed interval such that
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E  [a, b], since E is bounded. We appeal to Heine-Borel Theorem to say
that [a, b] is compact ; and Now Theorem 1.2 applies to conclude that E
is compact. ' '

Conversely, suppose E is a écmpacc set of reals with usual topology which
is Ty; we apply Theorem 1.3 to see that E is closed. Finally. we see that

Ec U(-n.n); So the family {(=n, n)}, = 1, 2, .. 15 an open cover for E, by

n=l :
compactness of which we find a finite number of members (-nj, ny), .. -

k hy
(—y, ng) with nyp < np < .. < Ok such that Ec U (=n; .,n; )=(-ny ,ny ) and

i=l

hence E is shown to be bounded.

§2. Definition 2.1. A family # of subsets (Fo),,, in 2 topological space
(X, 1) is said to have the finite intersection property (ELP) if every finite

subafam.ily {F,, +Fa, .,.,.,Fu“ } of & has non-empty intersection i

_'_rﬁlFu.: i

For example, every decreasing sequence {A,) of non-empty subsets Ay, of
X has ELP. ; because every finite sub-family of {A,} has the smallest member
(# 0) as its intersection.

Theorem 2.1. A topological space (X, 1) is compact if and only if each
family F = {Fg} _, of closed sets with FLP has a non-empty intersection.

Proof : Let (X, T) be compact .and F = {Fﬂ"}ue , be a family of closed
sets with ELP. If possible, Let ) Fy =¢. That means X = U (XIF ) where

ed HEd
‘each (X\Fy) is open ; and hence the family {(X\Fy) : EgeF} 1s an open
cover for X. By compactness of (X, 1), there is a finite family, say,
(X\Fy). (X\Fa), .., (XAFy) of this family to cover X.

Sa we have X o CJ{'X‘I.Fi), and taking the ccmplemem, we duduce that

e} :
E= =¢-a contradiction that F has ELP.

=1
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Conversely, suppose the stated condition holds without (X, 1) being
compact. We seek a contradiction. Let % = {Gi}m be an open cover of X that

has no finite sub-cover for X. Now X = G, : king Fj = (X\G;) we see that
b= (XVG; ) hence the family 5 consisiing of closed sets b = (X\Gj) as
iea _ ;

J € A is such that ¢ =ﬁ{FJ:Fj- = .-ﬁ}—-—u contradiction; however by assumption
F does have FLP. Thercfore, there is a finite sub-family say Fy, F3, ... F, of
. F such that fjl Fi =6 je. ."izlL:le[XlFt ;1=ng, » that means % admirs of 4 finite
sub-cover for X, and (X, 1) is compact.
Theorem '."2 (Tychonoft Theorem on Product) The Cartesian product

i any number of compact spaces is compact w.r.t product Topology.

* Proof Let (Xq, 1) be compact spaces and © Let X = X{X,,  ge A} We
show that with product topology X is compact, |

Put 5% = {p;: (Wy bug 1, :ae.ﬁ.} Then the family S% forms a sub-base
for the product topology for X, Pr, denoting the projection function : X — L
as o€ A now X will be compact if each sub-family @ of 8 such that no finite
sub-collection of @ forms a covering of X, fails o form a covering of X.

For each o.€ A, Let 8, denote the family of all those open set ug,E T, for
which p;:{uajeap. Then no finite sub-family of &, forms a covering for
Xg 1 and hence ashole family can not form a covering of X, since (X T
is compact. So there is a point ( say) Xg€ Xg which is missing in any open set
Uy € By. Then the point xe X with oth co-ordinate Xg does not belong to any
member of ¢—meaning that ¢ does not form a cover tor X.

Corollary : Each cube as the product of closed unit intervals is compact.
‘Definition 2.2. A subset H in (X, 1) is said to be nowhere dense in X
if Int (H)=¢, bar denoting the closure.
For exaﬁ!ple every finite subset of reals with isual Topology is a nowhere
dense set of reals. i
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Theorem 2.2(a). If an infinite number of Co-ordinate spaces are not
compact, then each compact set in their product with product Topology is
no-where dense.

Proof : Let (Xq To) be Topological spaces for each o, of an infinite index
set A be Xo= X{Xq : oA} with the product Topology. '
~ Take G be a compact set in the product space X. Suppose U is an interior
point of G. Take N as a nbd. of u with N < G : Without loss of generality take
N s a member of the defining base. Thus N is of a form :-

N= |“|{ p ,' [Va'] el } where F is a finite subset of A, and V; is open
in Xg. If BE (AVF), then py(G) = Xp, and X being continuous image of compact.
space shall be compact. Theretore all but a finite number of co-ordinate spaces
~ are compact. i ' '

Theorem 2.3. Continuous image of 4 compact space is compact.

Proof : Let (X, 1) be a compact space and (Y, V) be a topological space,
and £: X —> Y be a continuous function. We show that f(X) is compact in ¥
Take % = {Gal,_, be an open cover for f(X). So

f(X)culG,:G, €%}

Therefore ch"‘('u(}ﬁ]zuf-’ (Gy) (1)

; oEA aEl
By continuity of cach t7'(C,) is open in X, and (1) shows that the family
{f-1(Gg)),_, Is an open cover for (X, T) by cor-pactness of which it follows
that there are a finite number of members, say, T~ '{G, Yok i(Gg‘_:-, t‘l{Gn] such
that

X c 716U (G Vf T (G ) = f_l(c";ﬁi)

1 .
So HX]C[;LJEG-L],

So given open cover G for f(X) bas a finite sub-cover for flX.
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Thus f(X) is- compact.

Corollary (1) If f is continuous function of a compact space onto g

 topological space Y, then Y is compact.

(2) A homenmnrphic image of a compact space is compact.

{3) A real-valued continuous function on a compact space is bounded _
and attains its bounds.

Because, Let f : (X, 1) — Reals be continuous where (X, T) is compnu
So f(X) is a compact set of reals with usunal topology, and therefore f(X) is
bounded and closed.

Theorem 2.4. A 1-1 continuous function of a compact space onto a T-
space is a homeomorphism, _

Proof : Let £: (X, 1) = (Y, V) be a continuous function that is 1-1, where
(X, 1) is compact and (Y, V) is Ty. It suffices to show that [ is an open function
or equivalently, we show that if F is a closed set in X_ the image £(F) is closed
in Y. We know that every closed set in compact space is compact.; So F is a
compast set in X, and f sends F to a compact set i.e, f(F) is a compact set in
Y-which is T5. Hence f(F) is closed in Y.

Theorem 2.5. IfAisa compact set of a Ty-space (X, 1) and x e (xm}, _
there are open sets V and W such thatx € VandAcWand (U W) = ¢,

Proof : Let A be a compact set in X which is Ty, and take x e(X\A).
If y € A, then x # y, and by Ty-separation there are opon sets V, and Wy
such that x € Vy, y € Wy and Vy MW, = ¢; and, therefore, x & W NDW
the family {W, yEA} bemmex an open cover for A which is compact.
S0 there are a finite number of members (say) W}'-u WVZ, W}, such thal

AcCW, UW, U . LUW, L PutW= Uwy. ThenWmanupen\EtauLh

=l

that ACWandx e Wy, (i=1,2, ..,n)and hence x¢ W W. Take V = X\ W.
Then V and W are open sets to satisfy x e VVAcC W and V W) = ¢.

Corollary each cdmpacr set in a Ty-space is closed.
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Theorem 2.6 Let A and B be two compact sets in a To-space X such
that A M B = ¢. Then there are two open sel Vv and W such that A < V and
B c W with VN W =4¢.

(Comequently, a campdut T,-space is Normal).

Proof : For each x € A, we have B is a compact in X withx ¢ Bie. {X&B]
Theorem 2.5 says therc are open sets V,.and W, satisfying x € Vy and
B W, with Vx M Wy = ¢. Also BNV, =6, Now family [Vy:xe A} of
open sels is an open Cover for A which is compact. So there are a finite
number of members Vi, Vi, o Yy of this family to cover A Pt Y =
Wi AN U A Vg, Then A € V and BNV, =6 (i= 1, 2, .. n) gives
Br V=0, Let us take W = (X\V). Then V and W are open sets in X such
that A © V and B € W with V. W = §.

(Consequential statement is-clear).

§3. Locally .Cﬂmpact Spaces :

- Definition 3.1. A topological space (X, 7) is said to be locally compact
if each point in X has a compact neighbourhood (nbd).

Explanatmn - If (3, 1) is compact, then of course it is locally compact
one may take X itself as a compact. nbd. of each of its pmm:. If 7 is discrete
and X is infinite then (X, 7} is Locally compact without bcmg compact ;
be-:::m«.c for each xe X, the singleton {x} Is a compact nbd. of x. However,

family of all singletons is an open cover for X that has no finite sub-cover
for X.

Example 3.1. The real number space R with usual topology is not compact,
it is Locally Compact,

Solution : R being ot bounded, it is not compact. However if x& R, then
a Cleﬂ{i interval like [x — 8, x +8),8>01isa nbd. of x which is a closed and

bounded set of reals and hence it is compact.
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Theorem 3.1. Let (X, T} be Locally compact Ta-space then the family of
~all closed compact nbds of a pﬂfm. In X is a nbd. base there.
~ Proof : Let (X, 1) be Locally compact adn a T-space. Take x e X. Let
G be a compact nbd. of X suppose U is any nbd. if x.

Put W = It (U ).

Then W is a compact Ty-sub-space of X So W contains a closed compact
set V which is a nbd. of x in W : but V i8 also a nbd. of X in W (relative to
- lopology in W}..and is therefore a nbd. of x i X.

Theorem 3.2, Every closed sub-space of 1 Locally compact space is
locally compact, : '

Proof : Let E be a closed set of (X, ©) which is Locally compact. We show
that (E, 1) (where T is the relativised topology of T on E) is Locally compact.
Take x € E. Since X is Locally compact. we find a compact nbd,, suy. G of
xin X, Put M =G N E, So M is a-nbd, of x in E. Ag M is a closed set in
compact space G. we see that M is a compact subset of G ie. M is a compagt
abd, of x in (E; 1g). Hence (E, 15) is Locally compact
§4. One point compactification : _

Let (X. ) be a Locally compact Ts-space,«and !;l is an element outside X
(w e X). Put X, = X U {u). Define 1 Topology T, on X, as —

(i) All open sets in X as subsets of X, are in {

(i1} All complements in Xy of compact sets in X are m T, and

(i1i) X, € 1,

We now check that above prescribed family is indeed a Topélng’y in X,
From (i) t < 7. and by (iii) X, € 1,

FOR UNION : It is O.K. in respect of members of T (i),

-Consider a family - {((X \A) : Ay 18 a compact set in X which is Ta}gea _
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Hence Ay is clcnf-.ed in X, and hence A, is compact in X, and we
el

have U(X“fﬁu) L /ﬂ A“J and by {nJ we have the union 1s a member

mEd

of 1, Also if G € T and (X\H) € 1:LI as in (1) where H is a Lﬂi"ﬁlp’!i.t set
in X, then
Gu(X,/H)=X, \t(X‘\G}ﬁH}
Since (X\G) is closed in X, and H is compact in X. Then,ture (X\G) N H
is compact in X, and from (ii) rh.s. set is a member of T,.

FOR INTERSECTION : Itis OK. in respect of (i). Tauke two members
{X,\Dj and (X,\C}) where C and 1) are compact sels in X as members from (i I
Then we have (X D) N (X,\C) = (X MC WU D)). Where 2 D is also compact
in X. Hence r.h.s member € T, as in (ii). Also if, A € 1, as in (1) and (X \B),
B is compact in X as in (ii), then B is also closed in X ber.al.he X Bk
Therefore (X“‘aB}\{u} is open in X.

Now & M (X VB
= A N {XNBMu)}, and hence is a member ot T as in (i)

Our verification is complete, and (X, Ty) | is a Topological space. [t remains
to show that T is actually equal to relativised Topology of T, on X.

I Gert then G e 1, and G =G M X, Thus
1 < relativised Topology T, on X e h

Let H be an open in relatised Topology T, in X. S0 we write H = X M A
for some member A € Ty.

In case A is of type as in (i) we haw. H as a member of T.

In case A is of type as in (i), put H = X 0 (X,\B) for some u:-mp«lci set
B in X. Because X is T», we find B as a closed set m X. So (X\B) is a member
~ of 1. Therefore from above

H = X A XAB) = X A (X\B), and so, H € 7. Therefore
 relativised topology Ty in X © 1. Lokt (2)
Combining (1) and (2) prool is complete. '
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Theorem 4.1. (X,, 7,) is a compact T-space.

Proof : Take x, y € X, with x # y. If x, y are members of X, we have
finished. So let us suppose one of them equals u, say u =y, Now (X, 1) is Locally
compact, so, there is a compact nbd. N, of x in X. As X is Ty we take N, to
be closed. Then :

Int (Nx) N (Xu\Ny) = 9, where Int (N,) and X,\N, are open sets in X,
containing x and u respectively, So (Xu» Ty) is T,

To show tﬁat (Xy. Tu) 18 compact, suppose {Gg}yep be an'ﬂpen cover of
Xy Letue G, for some o € A, and therefore G, i8 such that G, = (X,\D)

where D is a compact set in X,

ie. (Xy\Gg) = D : G ey
Now (Xy\Gg) € X = | /G4, giving

=4,

(Xu\Gy) € | J(XnGy);

neh

This shows that the family (X N G,): ae A} is an open cover for (XUIGH;]}.
(*) says that (XUHG%) is a compact set in X, and hence there is a finite sub-
cover of this open cover for {X;;&G%J say (X M Gal}, (XM Guzj, I 5 e Gu“).

Thus (Xu\Go)) © X N Gg,) W (X Go,) U .. U (X N G, )
S L. (XHHG%J = Gu! U Gy, U . U Gq,

S0 X, = G, W (X\Gg,)

| cﬁ%uﬁqluauzu;..ugan, |
That means Given open cover admits of a finite sub-cover for X, and (X,

Ty) 18 compact,

Remark : Compact Ty-space (X, 1,) arising out of a given Locally
compact Tg-sphce (X, 1) in the manner described above is called “One point
compactification” of X, and external point u is designated as the point at
© infinity. ;
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Exercise - A
Short answer type questions
Show that a finite Topological space (X, T) is compact.
Show that no open interval of reals with usual topology is compact.
Which one of followings aubsers of reals with usual topology is compact?
(a) [1, 2] U [3, 4]
(b) The set N of all natural numbers. Give n;asmm.

In a Topological space (X, 1) any set E consisting of points of a convergent
sequence together with its converging limit is compact. Prove it.

Show that union of a finite number of compact sets is o compact set in a
Topological space. Is the union of an infinite number of compact sets a compact
set? Give reasons,

In a compact Ty-space families of closed sets and compact sets afe identical, Prcwc
it by quoting relevani Theorems.

Show that an infinite diSCI‘E'Le space is Locally compact without bemg
mmpact

Exercise - B
Show that every regular Lindelsff space is normal.
Show that a compact Ts-space is T, '

Show that a sub-space of a compact space need not be compact, and verity that

- every closed sub-space of a compact space is compact,

Show that every real-valued continuous function on a compact space X there are

- points x and y in X such that f(x) = supf and f(y) = Inff.
X X

Show that intersection of two compact sets in a Topological space X may not be
compact. If A is a closed set and B is a compact set in X, show that A n B is
compact,

Show that a continuous image of a locally compact space need not be Locally
compact.
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Unit 5 3 Connectedness

(Connected spaces, Separated sels, Disconnection of a space. Union of
connected sets, Closure of a connected set, Connected sets ol reals,
Continuous image of a connected space, Topological product of connected
spaces, Components, Their properties, Totally disconnected spaces, Locally
connected spaces). :

§1. A Connecied Topological space (X, 1), ronghly speaking. is such a
strong piece of objects that it dees nof allow its partifion into two
non-empty disjoint open (or closed) subsets. To be more precise we
present the tollowing definitions.

Let (X, 1) denowe a Topological space.

Definition 1.1. Two subsets A and B of X are said to be separated il
AnB=¢ and AnB=¢.

Explanation : Without 10ss of gencrality, assume A = ¢, B # ¢. Subsets
A and B when separated are. ol course disjoint. But there are more things to
iook at. Neither A nor B contains a Jimit point of other. In relarive topolog
for AUB, both A and B are regarded as closed in (AW B); or equivalently,
A or B is taken as (each) open and hence each has status of a clo-open set |
in (AUB). Take for example. open intervals (0, 1) and (1, 2) of reals with -
usual topology. They are disjoint subsets. But they are not separated as per
Definition 1.1 above because number | belongs to closure of each.

Theorem 1.1. If A and B are subsets if (X, 1), and'both A and B are closed
{or both are open), then (A\B) and (B\A) are separated.

" Proof : Let A and B be closed subscts in X Then relative w0 (AUB). A
and B are closed. and therefore (A\B) = (AU B)\B)) and (B\A) are open in
(AVB)W(BAA) and since they are complements relative 1o ({(A\B)U (BVA)),
both become closéd in ((A\B)W(BVA)). Hence (AVB) and (BA\A) are
separated. ' ;

In case A and B are both open, proof is done by a similar dual argu-
ments. '
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Definition 1.2(a). (X, 1) is sais (o be connected if X is not a union of
two non-empty disjoint open sets in X.

or equivalently, if X is not a union of two non-empty disjoint closed sets
in X a5 1

(b} A subject Y of X is said to be connccted if Y as a sub-space ﬁf
- (X, T) with relatvised topology becomes connected.

or equivalently, Y is not a union of two non-empty disjoini open subsets
(closed subsets) of Y in relativised topology on Y,

{2) (X, 1) is said 1o be disconnecied if it is not connecred e it X admirs
of a decomposition like : '
: X=GuUH,

Where G and H are a pair of non-empty disjoint open (or closed) subsets
of X. Such a decompuosition of X is called a di:-;conne_-.:led of X.

Explanation : Definitions say that (X, 1) is connected if and only it only
clo-open sets are ¢ and X. A subset Y of (X, T) is disconnected if Y has o partition
like Y = Pu Q where P 2 ¢, Q # ¢, and P and Q are disjoint open subsets of
Y.Sowe put P=GAY and Q = HN 'Y where G and H are open sets in X.
Therefore, Y = ( GhY)u (HMY) where rhs. membery are na}nnem]ﬁy and
disjoint. : :

Cc-riversaly fY = (GnY)u(HA Y where G and H ure open sets in
(X, i‘} whose intersections with Y are non-empty and disjoint, then Y is not
connected, : |

Example 1.1. The subset Q of all rationals in real number space with usual
topology is disconnected.

Solution : If x, ye Q with x < ¥ take an irrational number o such that
X<y, ' '

Then we write Q= {t~e, ) Q} U {(0, %) Q}

Where rh.s. members are each open sets relative o sub-space Q such that
each is non-empty because x g (=e, ®)NQ and ye (o, )nQ and they are
disjoint. Hence Q is disconnected. '
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Remark 1. : Above decomposition of Q is a disconnection for Q. By a
different choice of o one gets another disconnection for Q. As the choices are

many, there are many disconnections for Q,
Remark 2. : By a similar reasoning one sees that the set E of all irrationals
in the real number spece R with usual topology is also disconnected, and there

are many disconnections for E.

Remark 3. : We shall presently see that the real number space R with usual
topology is a connected space. Thus we at once conclude that Union of two
disconnected sets may be a connected set.

Theorem 1.2. If A and B are two non-empty separated sets in (X, 1),
then Aw B is disconnecied.
Proof : Let A and B be a pair of separated sets (non-empty) in (X, 1).
Then we have AnB=0¢=AnB. PutG={XH_ﬁ} and H=(X\A)..
" Then G and H are disjoint open sets of X such that
AUB=((AUB)NG)U((AUB)nH), which is a disconnection for
(AU B). '

Theorem 1.3. A Subset Y of (X, 1) is disconnected if and only il Y is a
union of two non-empty separated sets.

Proof : The condition is sufficient : This part follows from Theorem 1.2,

The condition is necessary : Let Y be a dis connected subset of (3, 7). So
Y admits of a partition like

Y =(YNnG)u(Y H) ! (]

Where G and H are open sets in X such that their interscctions with

Y are non-empty and disjoint. We check that members in rh.s. of (*) are

separated sets. It suffices only to verify that neither (Y m G) nor (Y H)

contains a limit point of the others. We use method of contradiction and let
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u be a limit point of (YN G) and ue(Y ~ H). Smcc H 1s an open set
containing u, so

HA((YG)\{u)) = o © e
Bul(YnG)nH=(YNG)N(Y nH)=¢. by hypothesis : R (05
Now (1) and (2) are contradictory, and Theorem is proved.

Example 1.2. The Union (0, 1) w (3, 4) is not a connected set of reals with
usual topology. .
Solution : Take a real number « such that | < ¢ < 3..
It E = (0, 1)U (3, 4), we may write
E =((=es,a)mE)U((q, o) N E)
Where r.h.s. members are each non-empty open sets in E (with relativised

topology) and they are disjoint. Hence E is disconnected.

Remark : We shall soon sec that every interval of reals is a coninected
set of reals with usual topology: and Example 1.2 says that Union of two

connected sets may not be connected. However, we have the following
Theorem.

Theorem 1.4, In (X, 1) if {Agl be a family of connected sets such

el
that ﬂr’ta # 0, then their Unjon = L’iﬂmﬁt is connected.
oE A TE A
Proof : Let us assume the contrary and let A = Uﬁa be disconnected. We

MEA
seek a contradiction. Suppose A has a disconnection :

A —'(AnG}u{Aﬁ H),
- Where G and H are two open sets in X such that each of (A " G) and (A ~ H)

is non-empty and {AHG)U (AnH) = ¢. Since A= | JAe, we have

oEA

Now A, lies entirely either in G or in H: . . . (*) otherwise. (A NG =0,
(AgnH)# ¢ and Ay =(Ag NG)U(Ay nH) gives rise to a disconnection of
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Ay Thus statement in (*) is valid for each member A,. Further, if

; ﬁacGandABcH with o # 3, we see thatua ﬂﬂmc[AUﬁAE}:{Gmm

{)fcourac ueA. Hence ue An(GnH) = {Aﬁb}ﬁ{AﬂH}—» which is a
contradiction. Therefore, members A, enblock lie elthcl in G or in H, and hence

| JAa = A lies either in G or in H—agam a mntmdlctmn a desired. W:: have
AEA

completed the proof.
Example 1.1. Let X = {a, b, ¢; d) and t = {0, X, {a}, {a, b, c}. {a, b}}.
Show that topological space (X, 1) is connected. '

Solution : Here, the family of closed sets is {X, ¢, {d}, {c, d}, (b, c, d})
and we check that only clo-open sets are ¢ and X. Therefore (X, 1) is
connected. '

Example 1.2. Let (X, 7) be a topological space where X = {a, b, ¢} and
T = {d, X, {a}, {b, c}}. Examine if {;X, 1) 1§ connecied.

Solution : Here X = {a} W {b, ¢} which is a disconnection for X, and hence

(X, ©) is disconnected. 4

Theorem 1.5. In a topological space (X, 1) let A be a connected set in
X and B be a subset in X satisfying AcBc A, then B is connected.

Proof : Assume the contrary. Let B have a disconnection like
B=(BnGu(BNH) : ~~-(H

Where G and H are open sets in X such that (B m G) and (B ™ H) are non-
empty and
(BNG)n(BrH)=¢ : ]
Now A c B: from (1) we see that Ac (Gw H). _
Now AnG#¢ and AnH=¢ give a disconnection of A as
A=(AnG) U (A N H) —making A disconnected. Hence A lies entirely either
in G or in H. Suppose, A H = ¢. Because H is open, we have AnH = ¢. That
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means B H = ¢ which is again a conuadiciion. We thus have reached the

desired contradiction and the proof is complete.

Corollary 1.1. : Closure of a connected set is connected in a Topological
space.

Theorem 1.6. A Topological space (X, 1) is connected il and only il
given any two distinct points in X there is a connected sub-space of X
containing both. '

Proof : The condition is necessary : Let (X, T) be connected. Given any

two distinet points in X, the space X itself takes care ol them as desired.

_ The condition is sufficient : Suppose the condition holds. but X s
disconnected. We derive a contradiction.

Let X = Cu D be a disconnections of X, where C and D are a pair of ron-
empty disjoint open sets in X, Take c € C and d € D; s0 ¢ #d in X, By hypothesis
there is a connected subspace G of X containing ¢ and d, Ciem‘]y X =
CuwD ; Because G is connected, either G C or G D, Let G C; then
c.d e GcC and so de(Cn D) = ¢. This is absurd. Hence we have proved
theorem. '

§2. Consider the real number space R with usual topoiogy. Here intervals are
of varicrus;_'typcs'likc (a.b)={xeR:a<x<b). [a.b)={xeR :a=zx<h].
Similarly (a, b], (—=e. a) = {xeR : X < a}: (a. =) = {x e R; x > a}, and similarly
(=e=, a], [a, =) and (=es, =) = {x : xR} = R. An interval I of R may be
characterised by the property :—

| a, be 1 means the closed interval [a, b] < 1.
Theorem 2.1. A subset of R with usual topology is connected if and only
if it is an interval. |
Proof : The condition is necessary : Suppose E is a connected subset if
R without being an interval. Then we find a pair of distinct members a, be E
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such that [a, b] @ E. Thus there is a member u such thata <u < b and ugE..
Then write, E=({(—e,u)nE)u((u,=)~E) and that is a disconnection for E
—a contradiction. Hence necessary part is proved.

The condition is sufficient : Let T be an interval of reals. If possible, let
I have a disconnection

I=AUB,
where A and B are a pair of non-empty disjoint closed sets in I.

Take xe A and z£ B; since A B = ¢ we have x # z, and without loss of
generality, assume X < z. Because I is an interval we have the closed interval
[x, z] = 1. Thus
' [, 2] = (AUB)

Put y = sup([x, z] m A). Then x<y<z; so yel. Since A is closed in I, we
have

y EA S (.l)

Therefore, y # z and we have y < z.

By property of supremum, for large natural numbers n, all numbers y+%
belong to B; and since B is closed, passing on limit as n— e, we have

I_iln (y+?1{}= yeB; this contradicts (1) because A B = ¢. The proof is now
) e 1]

complete.

Corollary : 1. The real number space R wiiiz usual topology is connected.

2. The only non-empty clo-open set in R is R itself,

§3. Theorem 3.1. Continuous image of a connected space is connected.

Proof : Let (%, T) be a connected space and f:(X, 1) — (Y, 1) be a continuous
function where (Y, 1) is topological space. We show that f(x) is connected in
Y. If possible; let f(X) be disconnected and let

£(X) = (G AT U HA X))
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‘Where G and H are open sets in Y such that G f(X) and H £(X) are
a pair of non-empty disjoint open sets in f(X).

But continuity of { we know that f ~Y(G) and £~'(H) are open sets in X, and
from (1) we find '

- X=f(Guf T (H),
Where members on rh.s. are non-empty and disjoint. That means X is

disconnected —a contradiction that X is. connected. The proof is now
~ complete.

Corollary : 3.1. Let (X, 1) and (Y, %) be two Homeomorphic spaces. It
¥ is connected, then Y is connected,

3.2. Any real valued continuous function over a closed interval [a, b] of reals
possesses Intermediate-value property.

Because, [a, b] = image of [a, b] under f is connected, and hence it is an
interval of reals, by theorem 2, f(a), f(b) € f [a, b]; and if f(a) < f(b), we have
the closed inverval [f(a), f(b)] < f[a, b].

Now if f(a) < [t < f(b), there is a member ¢ between' a and b such that p

= f(e).

Remark : In Corollary 3.2 domain of the continuous function is taken 10
be a closed interval. Statement is valid in respect of any interval.

Let us consider a topological space consisting of two mambers 0 and 1 with
discrete topology. This discrete two pointic space {0, 1} is disconnected,
because {0, 1} = {0} w {1} is a disconuection. One can characlerise a
disconnected space with the help of this discrete space {0, 1}.

Theorem 3.2. A space (X, 1) is disconnected if and only 1f lhl:le is a
continuous function f ; (X, 1) — {0, 1}, which is onto,

Proof : The condition is necessary : Let (X, T) be disconnected. X admits
of a decomposition like X = G H, whers G and H are non-empty disjoint open
sets in X,
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Definef : X —>'{{_J, 1} by the rule :—
f(x) =0if xeG
- and =1if xeH.

Clearly f is an onio functmn To check continuity of f we see that ¢,
(0, 1}, {0} and {1} are the only open sets in the discrete space {0. 1} and that
17Y0) is always an open set in X, 0 being any open set in {0, 1}.

- The condition is sufficient : Suppose the condition holds. Ther X must
be disconnected; because continuous image of a connected space is connected
and here the discrete space {0, 1] is disconnected.

Theorem 3.3, Topological product of two connected spaces is connected
and conversely.

Proof : Let (X, 1) and (Y, v) be two topological spaces, and let Z =
X xY denote the topological product of X and Y with product topology. Suppose
Z is connected. Then consider the projection functions Pr, L = X and
P, * Z — Y that are each continuous; and Pr, (Z) = X and pr (Z) =Y. Since
continuous images of connected spaces ae r:unnected it foiluwa that each of X
- and Y is connected.

Conversely, assume that X and Y are connected spaces. Take a fixed
memeber yoe 'Y, and put X:r = Xx{vo}. Then X and X_,, are hommmorphtc
Since X is connected it fﬂl]ﬂws that X is c_onnected If xeX, put Y,
{x} x Y. By a similar reasoning Y, is connected, because Y is connected. As
(X1Y0) € X}f{, MY, it follows that Xyﬂqu is connected by Theorem 1.4. Finally,

we write X xY = Jt[Ej}é}{ yo WYy ) and observe that X},ﬂc (Xy, W Yy) for every
member X £ X, and bécause every individual member of rths. is connected we
finally see that X x Y is connected.

Remark : Theorem 3.3 remains valid for an arbitrary number of connected
spaces.
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Definition 3.1. A connected set C of (X, 7) is said to be a component in
X if it is a maximal connected sub set; that is, C is not properly contained
in any other connected ‘set of X.

For example, in a cnnnected space (X, 1), X is itself a component.

Example 3.1. Let (X, 7) be a topological space where}{ {a, b, ¢, d, e}
and T = {0, X, {a], [c, d}, {a, c. d}, {b, ¢, d, e} }. Find all the components

g |, T

Solution : Here X is not connected; because X = {a} U {b,c,d, e} isa
disconnection of X. However, there are connected sets in X. For example {a}
is a connected set; and we find (a} and {b, c, d, e} are the only components
in X. ; _

Theorem 3.4. Let (X, 1) be a Topological space. Then—

(a) Each point of X is contained in'a component of X.

(b) The components of X determine a partition for X.

(¢) Each connected set in X is contained in a component of X.

(d) A connected set in X that is both open and closed is a component
of X. _

(e} Each component of X i closed.

Proof : (a) Let xeX. Put G, = (G G is a connected set in X
containing x}. Because x & C; for every i, it follows that C, is a connected set.
We now show that C, is maximal. Let C; ¢ D where D is a connected set
containing x in X. By construction of Cy we have D < C,; and therefore,
C, = D. Hence Cy is a component in X containing x. : I
(b) For each x & X, construct Cy as in (a). Put { = {Cy: xeX}. We now

verify that { becomes a partition of X. By construction, X = | Jcx. Now
' ' xeX

suppose Cy N Cy # ¢. Take pe Cx N Cy, then we have C, < C,, and C, < C,,
Now C and Cy are each connected sct containing p, by maxlmahty {}f Cp we
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have C, = C, = Cy. Therefore any two members of { are either disjoint or
coincident. Hence (b) follows.

(c) Let A be connected set in X and take x € A; by construction of C, we
find A ¢ C,.

(d) Let E be a connected set in X an& let E be both open and ::i{-med, Now
by (c) there is a component C of X such that E = C, Suppose E is a proper
subset of C. Then we write C = (C 1 E) u {C Ry 2 dCIlO[lIlH coplement
of E. Because E is assumed to be clo-open, this decomposition is a disconnection
of C— a contradiction, for a component C is connected. ‘Hence result is
E = C = a component,

(¢) Let C be a component of X without being closed and C is strictly
larger than C; Now C < C shows that C is connected because C is so—
by corollary 1.1 that contradicts maximality of C whmh 1s a component. Hence
- C is closed.

Example 3.2. Give an exﬂmple of a Topological space where components
are not open. :

Solution : Consider the sub-space Q of all rationals in real number space
R with relativised topology in respect of usual topology on R, Here each
component in Q is a singleton and this is not an open set in Q.

84. Definition 4.1, : A topological space (X, T) is said to be totally
disconnected if for each pair of distinct points x and y in X X has a
disconnection X = GUH with xe G and y ¢ H.

- Explanation : A totally disconnected space (X, ) is a To-space; because
each pair of distinct points of X attracts a disjoint pair of open sets containing
them individually. Ofcourse, a totally dncmmacled space is disconnected.,

Exam{!ﬂe 4.1. The real number space R with upper limit Topology is totally
disconnected.

84



Solution : We know that upper limit Topology for R 1s generated by left-
-open intervals like (a, b], a. beR witha <b. Let x, yeR with x # y, x <y
then we write B

R = (—o0, X] W (X, o2),

where sets in r.h.s. are a pair of disjoint open sets in upper limit Topology
containing x and y respectively. So R is totally disconnected.

Remark @ With respect to usual topology R is a connected space.

Theorem 4.1. The components of a totally disconnected space are its
singletons, '

" Proof : Let X be a totally disconnected space and let C be a component
in X. We show that C does not have moré than one point. Let x, y e C with
x#y;as X is tumliy disconnected, X has a disconnection like X =G U H where I
G, H are non-empty opcﬁ disjoint sets with xe G -and y € H.

We write C= C N X
=C G UH s CaG)wE n H),
showin.g that C is disconnected which is not the case. Hence theorem is
proved. : '
Theorem 4.2. The product of totally disconnected spaces as totally
disconnected in product topology.

Proof : Let {(X;.7{)};,, be a family of totally disconnected spaces alidl
let X = X{X; : ie A} be the product space with product topology. Take two
distinct points x = '(xi), and y = (y;) in X, Therefore, for some index i = ipe4,
we have xj, # ¥j, in co-ordinate space Xj, which is assumed to be totally
disconnected. There we find two disjoint open sets (say) G;, and Hj; in X, such
that x;;, & Gy, and y;, € Hy, and X, = Gj; v Hj,. Take G = X{G; : where
G; = X for all i except iy in A} and H = X{H; : where H; = X; for all i except
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ipinA}. Then we see thatx € G, ye Hwith G H = &, and G and H are vendered |
open sets of X in product topology such that

X=GuUH

.~ That means X is tOEﬂ]l};’ disconnected,

§5. Locally'-cn_hnected_ spaces :

Definition 5.1. (a) A topological space (X, 1) is said to be locally connected
at xe X, if every nbd. of x contains a open connected nbd. of x

or equivalently, if open mnnected nbds of x form a base fur the nhd
system at x.

(b)) (X, ) is smd to be locally connected if it is locally connected at each
point of X

a

Explanation : Unlike the relaucrmhxp of compactness and local compactness
of a space, local connectedness neither implies connectedness nor is implied
by connectedness of the space. we have fﬂﬂowmg examples in support of our
Cﬂmﬁﬂtmn

Example 5.1. If X = (0, 1) U (2, 3) is taken as a topological space -

with usual topology of reals, then X is locally connected without being -
connected.

Solution : Taking a real number o with 1 < o < 2, we write

= ((=oo, ) M X) U (0, @) M X), and this 15 a dlscmmectmn for X, 8o X
is not connected,

.On the other hand if ug X, say, 0 < u < 1, and given any nbd. Ny of u
in X, we can find on open inteﬁai like (u — &, u~+ §), & > 0 such that
(u=3,u+8) <Ny as an open interval of reals is connected, if follows that
N, contains an open connected nbd. of u, and X is locally connected at u.
Ifl<ucx 2, then also similar conclusion holds.
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Example 5.2. Take X = A U B as a sub-space of the Eudidean 2-space

with usual topology where
¢
- . T — e
A= {[x,}f} ‘0<x<1; and y =sin x}’

and  B={(0,y):—-12y=<1}

Then X is connected without being locally connected.
Solution : Consider a functionf: (0, 11— R* where f(x) = (x, sin 1;] 0D<xgl

Then f is continnous, and hence the image A = f(0, 1] is connecled, because
the interval (0, 1] is connected. Now we check that X = A and therefore X is
connected because A is so. :

However, X is not locally connected at (0, 1) e X. Because open circular
disc centred at (0, 1) with radius, say, =% does not contain any connected open
sei containing the point (0, 1).

Theorem 5.1. (X, 1) is locally mnnccted if and -;mly if components of each
open subspace of X are openin X.

Proof : The condition is necessary : Lel {X 1) bc: locally connected, and
let Y be an open sub- -space of X. Suppose C is a component of Y. Take x & C.
Since X is locally connected at X, there is an open cunnected set U in X such
that - xeUc Y. Now xeC n' U where U and C are connected; therefore
C U U is connected and € w U < Y. Since C is a component, by maximality
of C, we have {C' withy=C or U < C. That is x g U < C; as x is an arbitrary
member of C, we conclude that C is open.

The condition is sufficient ; Suppose the condition holds. Let x&X,
and let N, be an open nbd. of x in X, Take C as a component such that
x £ C = N,. By assumed condition C is open; this shows that there is an open
comnected nbd. C of x such that C < Ny, Thus X is locally connected at xi
otherwords, X is locally connected.
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Example 5.3. Continuous image of a locally connected space may not
be locally connected.

S{ilution : Take X = {0, v TR T discrete topologies and
Y {G, ]; % ];} as a sub~3pm:e of reals with usual topology. Consider 2
function ' : ;

¢ : X = Y where ¢(0) =0, and om =1 n=1

;Pu.l"

The function ¢ is an 11 and onto continuoiis function. such that X is locally
connected; but Y = f(x) is not locally connected, because induced topol%v on
Y is not discrete, but singletons in Y are connected,

EXERCISE - A
~ Short answer type Questions

I. Show that a topological space (X, ©) with indiscrete topology T is connected.

2. If X has more. than two members, show that (X, 1) with discrete topology T is
~ disconnected,

3. Give. an example to show that mnnectcdneas is not a hereditary property.
4. Examine if the real number space R with 1ow~=:r limit mpnlngy is connected.

5. Show that the sct of all irrational numbers with topology of reals is a disconnecied
set.

6. Give an example of a topological spece with a non-discrete topology whére each :
smg!etcm is a component, '

{Hint : Take the sub-space Q.of all rationals with usual topology of reals).

EXERCISE - B

1. If a Hausdorff space (X, t) has an open base whose members are closed, show
that X is totally disconnected,
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b2

Give an example to show that product space of an arbitrary number of locally

connected spaces may not be locally connected.

Show that image of a locally connected space X under a éomimmus function which
1s an open function is locally connecied. .

Show that a compact loc:ﬂly connected space huas a finite number of cnmpo;
nents, |

Show that components of a totally djﬁt-:commcted space X are singletons of X,

Given a topological space (X, 1), a binary relation p in X is defined by xp y (x,
y € X) holds if and only if x and y belong to a connected set in X, Sh_:}w that p

is an equivalence relation on X and verify that p-equivalent classes are all the
components of X,
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Unit 6 O Uniform Spaces

(Symmietric sets and composition of sets in XxX; uniformity 2£in X, base,
sub-base for 94 uniform space (X, @£), uniform topology T4 for X,
T,-property of Tg; Interior and closure of A in terms of member of %,
uniformiy continuous function, Product Uniformity, Uniform continuty of
a metric in (X, 49).

§1. Let X be a non-empty set. So XxX # 0. Il‘ﬂ < (XxX), then A~ is defined
as Al = = {(y, x) : (x, y) € A}. So that {h"'} = A. If A and B are two subsets
of XxX, then their composition A B = {(x, z) & (XxX) ! (X, y} eB and (y, z)e A
for some yeX}.

Now A,B may not be the same as B,A; however, composition is associative
e AUB,C = (AB),C and also (AB)! = B! A7, The set of all pairs
(x, x) as xeX is called the Diagonal, often denoted by 4, of XxX. Also if
U o (XxX) and K <X, the set UK] = {yeX : (x, y)e U for some xeK}.

In particular, if K is a singleton, say = {x} in X, we have

Ukl = {yeX : (x, y)eU)
~ With these preliminaries we are ready to proceed further.

Definition 1.1. A subset U of XxX is said to be symmetric if U = U“'.

Explanatmn Let X = The set R of all reals, and U = {(x, y) e RxR :
_|x y|<1}; then U = U™, hence U is symmetric because if a pair (x, y)
satisfies [x—y| <1, then |y-x|=|-(x-y)|=|x~-y|<l; So (x, y)e U it and only
if (x, y)e U™\, However, if

H={(x,y)eRxR:y—x <1}
={(x,y)eﬂ1 Ly <X+ |}

Then H is no symmetric; for (0, 2)eH, but (-2, 'D}EH although
(=2, MHeH . I Geomelrically, H denotes the lower halilspm,e of R bounded
above by the line y = x + 1; and
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H™!={(x,y)zR? (Y, K)EH]
:{{J{,}’)ERZ :xf:_ﬁ-l} :
{{x,yJERz - I}
upper haif -space bounded below by the line y = x — 1.

I

H

And further

Hrl™! = {{x,}r}a R2:x—] <y« x+1}
‘= {{x,}f}lﬁRz :]x é-:,rle; i}-:
=5 Dpen strip in R? bounded -h_\,f the linesy=x-1andy = x +1.
Theorem 1.1, If U and V are two subsets of XxX such that U is symmetric:
then VolUseV =U{V[x]x V[y]}:(x,y)eU.

Proof : Here, VoUoV = the set of all pairs (u, v} such that (u, x)e V,
(%, ¥)eU and (y, v)e V for some x and some y. Since V is symmetric; this
is the collection of all (v, v) such thatu € V[x] and v & V[y] for some (x. y) & U.
Butue V{x] and ve V[y] if and only if (u, v) & Vix] x V[y], and hence VoUeV
= {(u, v} ({u, v)e V[x] x.'V[y} for some (x,y)e U}
=U{VIx]x V[yl:(x,y)e U}
Definition 1.2. A Ummrmlt;-,r 9% on X is a non- -empty family of subsets
of XxX saluf}'mg the following Ci}[](llt!ﬂ]lb known as axioms of Uniformity ;
(u.1) Each member of % contains the d:agoml A;
(uZ} If ue %, then u™'e 92
(w.3) If ug % there is a member V g % such that VoV < U:
(ud4) If u and v are two members of %, then (UnV)e 2 and
(u.5) If ue %% and Uc V c XxX, then ve %
If %9 is a Uniformity on X, then the fmir (X, 90 is called a Uniform

space.
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Definition 1.3. (a) A sub-family &2 of a Uniformity % on X is called a
base for «if and only if each member of % contains a member of .

{(b) A sub-family 5% of %/is said to be a sub-base for % if and only if the
family of all finite intersections of members of S# forms a base for %4

Exa'nlple 1.1. Every melric space is a Uniform space.

Solution :'Lel (X, d) be a metric space. For each +ve r let

Ve = {(x, Y E(XxX) : d(x, y) <1} -

Then we note that V31 = Vg Vg, N Vg =Vayu where u = min[r, tJ; and
Vd,r e Va,r € Va,20- : : |

Now it is a routine exercise 10 verify that the family of all sets of form Vg,
forms a base for a uniformity for X; and X becomes a Uniform space.

Analogous to base and sub-base for a Tﬁpnlogy in X, we have the following
Theorem that is easy to prove and the proof is left out as such.

Theorem 1.2. A family 28 of subsets of XxX is a base for a Uniformity
for X if and only if

(a) Each member of 29 contains A;

(b) If Be &, then B~ contains a member of 5, ;

(c) If Be @, there is a member C in 2% such that CoC = B; and

(dy If By, Boe &, then there is a member Bsg 4 such that
B3 (BiM By). i

Proof : Let (X, %) be a Uniform space.

Define 1 = (G X : for each x£G, there is a member Ue %£ such that
Ulx] < G}. We now verify that T is, indeed, a Topology in X. Definition says
that union of members of T is a member of 1. Let G, H be two membets of
; and let x £ (G n H). So, there are members U and V in % such that Ux]c G-
and V[x] = H. Therefore, (U V)[x] c (G~ H); since (Un V) is a member
of 4 it follows that G M H is a member of 7, and (X, 1) is a Topological space,

~ This topology T is rather abbreviated as T, since it is being induced by the
uniformity % and very often named as a Uniform Topology on X. '
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Theorem 1.3. Let (X, 49 be a Uniform space with uniform Topology
Tq induced by @£ If A < X, then

Ta-INtA = {x € A : there is a member Ug 2 s:ch that Ulx] € A} (or,
simply, we write Int A instead T,—IntAj.

Proof : Let B = {x € A : U[x] < A for some member U'e #}. We show
that B € Ty. Take x & B. then we find a ‘member U € w such that
Ulx] < A; Also we find a member V € wsuch that VyV < U, If u € V([x] and
y € V[u], we have (u. y) € V and (x, u) € V; Thcrﬂfm'-:'_. (x, yle VogVie. y
e VyVixl. _ '

or, V[u] < VoV[x] < Ulx] < A.

Therefore uw € B. In otherword, V{x].< B. Hence B is open. Further, B
contains every open subset of A, and consequently 1t is the Largest open subset
of Aie B =Int A _ 3

Remark 1. If U e %, U[x] is a nbd. of x in (X, 1.,).

‘2, The family of all set U[x] as U comes from “#/is a base for the nbd. system
at x. 7

- Theorem 1.4. Let (X. %4 be a Uniform space with a Uniformity # and
14 be the Uniform Topology on X induced by #. If A < X. then T ,-closure
of A (of simply Closurc of A)

Proof : A point x & A (Closure of A w.r.t. ©,) if and oniy if for each

U € 4, Ui*{] cuts A non-vacuously. Now U[x] intersects A non- m-:,uuu*-,ly if and
only if x eUT'[A]

Because, Ulx] m A # ¢ iff p eU[x] m A:
ie iff peUx] and p €A;
ie. iff (x. p) el and p e A;
ie it (p, x5 = U™ and pEA;
ie iff x e UYA]
Since each member of %/ contains a symmetric member € #4
93



We conclude, x € A iff x e U[A] for each U e %

The proof is now complete.

Given a uniformity %/ in X, the uniform Topology T.,, may be used to
construct the product Topology for X x X. Members of % have an intimate
relation with this product Topology. We shall presently see that the family of

all open s}rmmutr:c members of %£1s a base for To that end, we nead the
following Lemma :

Lemma 1.1. If U € % there is a symmetric member V & % such that
VeV e T
~and (i) VeVoV = U{V[x] x V[y] : (x. y) € V}:
Proof : (i) By axion of Uniformity xire find a member H e 2 such that
HeHc U s WL
Take W=HNnHsoWisa symmetric member of % such that
WeWcHeH c U from (1).

Taking W in place of U, we obtain a symmetric member V & % such that
VoV W, therefore Vo Ve Vo VaWoWand Ve Ve VeVoVeVaoV o
c WeW < U from above, :

Theorem 1.1. now applies; we take U = V in Theorem 1.1 and find atonce
that Vo VeV = U{V[x] x V[y] : (x, y) € V).

This is (1i), and the proof of the Lemma is complete.

Theorem 1.5. If U e % then Int (U) € % and thc farmiy of all open
symmetric members of 9/ is a base for %/

Proof : If E c X x X, we have Int E = {(x, y) : U[x] x V[y] ¢ E for some
U, V e #). By axion of University (U N V) e % so _
Int E = {(x, v): V[)ﬁ]_ x V[y] ¢ E for some V e %/. Now Lemma 1.1 says that
there is a symmetric member V edsuchthat VeVeV < U, and .
VeVoV=U{V[x]xV[yl:(x. y) €V} Hence every point of V e Int U i.e.
V c Int U, and by Uniformity axiom Int U € %, and in consequence the family
of all open symmetric members of % is a base for %
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By Theorem 1.4 for X € X we have Tg-closure {x} = n {U[x] : U e 2.
S0 (X, T4 is T, (Hansdorff) if and only if n {U : U € 44} is equal to Diagonal
A. In that case (X, T4 is also said to be separated.

§2. Let (X, 1.5 and (Y, T,) be two uniform spaces with uniform topologies
Ty and (X. T,) respectively induced by given uniformities # and ¥, and let

Fi (X, .0 — (Y. Ty be a function.

Definition 2.1, f* X — Y is said w0 be uniformly continoous if and only
if for cach member V € ¥ the set {(x, v) € X x X : (f(x). l{y)) e V] is a member '
of 2 :

The above statement may be re-phrased like :-

It S4(-¥) is a subbase for ¥ then f is said to be uniformly continuous iff
£y (V) e ‘% for each memiber V e 8#( %), where fa(x, y) = (f(x), fy)).

Explanation : Let X = R, and for each +ve rlet V. = {(x, y) € R x R:
| x = y | < r}; Then the family {V,};.q of subsets of R x R forms a base
for a Uniformity % known as usual uniformity for reals. So, the induced .
uniform topology T4, shall consist of members like I, = V[x] = { .y_ R :
X, eV, ={yeR:lx-—yicr={yeR :x-r<y<x+r}.
= an open interval (x — r, X + r) as x €R; These members act as basic open
set in T, — confirming that 1.5, is the usual tﬂpnlﬁgical'nf reals. So, as per
Definition 2.1 above, a real-valued function f of a real variable is uniférmiy
continuous if given a €> 0, there is a +ve 8 such that | £(x) - f{y) |'< € whenever
fx -yl <8 This is in agreement with isual and familiar notion of uniform
continuity. of f. We also know that uniform continuity of f implies its continuity.
The same is also true in a general uniform space. ' ' '

Theorem 2.1. Lgt (X, %) and (Y, 7) be two uniform spaces with induced
‘uniform topology T4 and T, respectively, then every uniformly continuous
function : X —» Y is continuous relative to uniform Topology.

Proof : Let f : (X, 29 — (Y, ¥ be a uniformly continuous function ;
Take H to be a nbd. of f(x) in (Y, T4), x €X. So we find a member V
€ ¥ such that ' ;
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V] < H,
and fH{VIf(0)1)

={y eX : [{y) e VI{(x)]}

= {y e X : (f(x), f(y) eV}
f57(V) [x] where f(x. y) = (f(x), f(y))
a nbd. of x in (X, T4).

That means f‘l{i{l becomes a nbd. of x, and { is rendered continuous at

x € X, Since x is any arbitrary member of X, we have proved Theorem,

§3. Suppose for cach member o in an Index set A, (Xo. %) is a uniform space ;
then the product Uniformity for X{X, : « € A} is the smallest Uniformity
such that projection functions from the Product X{'Xu : 0L € A} into each
co-ordinate space (X4, ®4,) are uniformly continuous.

The family of sets of the form {(x, y) : (X Yo €U}, for e Aand U
€ %, forms a sub-base for the product Uniformity. If x e X{Xy : o € A}, then
sub-basic members of the nbd system at X (with respect to the Product Uniform
Topology}, shall be obtained fron: the sub-basic members for the Product

- uniformity. Thus the family of all sets like {y : (Xq. Y) €U} becomes a sub-

base for the Nbd. System at X. Clearly, a base for the Nbd. system at x with
respect to induced topology from the product Uniformity is the family of all |
finite intersections of sets of the form {Y : ¥, e U[X,]} for o e Aand U e ¥,
But this family is also a base for the Nbd. system at x with respect to the product
Topology; and therefore the product topology is the lopology ol the product
Uniformity. |

Theorem 3.1. A function f on a Uniform space to a product of Uniform
spaces is uniformly continuous if and only if composition of f with each
projection function into a Co-ordinate space is uniformly continuous.

Proof : If { is a uniformly continuous function with values in the product
X{Xy e .&},'then each projection function Pe,, is uniformly continuous, and
we know that composition Pr,p [ is again uniformly continuous.



Conversely, i cach pr o f is uniformly continuous for cach « e A, and
if U is a member of ‘%, in X4 ten {(u, v) : (g ), Pr.y f(v)) € U} is a
member of the uniformity % of domain f. Now we write this set as
£ [{(X, ¥) : (Xe» Yo) €U]}L. So, inverse under f; of each member of a sub-
base for the product Uniformity is a member of ¥ and thercfore f becomes
upiformly continuous. :

Theorem 3.2. Let (X, %) be a Uniform space and let d be a metric for
X.d: X x X - R is uniformly continuous if and only if {(x, y) : d(x, y) <
r} is a member of 9 for each r > 0.

Proof : For each r > 0, take V3, = {(x. y) : d(x, y) < r}. It suffices to show
that Vy, € ‘%if and only if d is uniformly continuous. Let U €% then sets
{(x, ¥) (u, v)) + (x, u) €U} and [((x, ¥}, (0, v)) : (y, v) €U} belong to
the product uniformity, and we find that the family of sets ‘of form
{((x, ¥), (u; v)) : (x, u) €U and (y, ¥) eU} is a base for the product Uniformity.
If d is uniformly continuous, then for each r > 0, there is U &% such that if
(x, u) and (y, v) belong to U, then ld(x, y) — d(u, v) | < r. Say, in particular
(u, v) = (y, ¥), then it follows that if (x, §y) e U, then d(x, y) < r. -Hence
U < V4, and therefore Vg, e |

For converse part, if both. (x, u) and [}r, v) belong to V., then
{dix, v) — d(u, v)| < 2r because d[x y) = dix, u) + d{u, v) + dy, v) and
d(u, v) £ d(x, u) + d(x, y) + d(y. v). It follows that if Vdr e'% for each +ve
r, then d is’ uniformly contmuuus '

Theorem 3.2. Dp::ns the gate to develop relation between Uniformities
and metries (or pseudometrics). The reader may see the Literature as in
Kelley’s book in Chapter of Uniform spaces.

EXERCISE - A
Short answer type questions
1. Construct a Uniformity % for the spdcc R of reals to induce the usual topology
for R.
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r2

Show that a metric space is a uniform space.

Over a non-empty set X obtain (a) the largest uniformity and (b) the smallest
uniformity for X, :

EXERCISE - B

Show that the family of closed symmetric members of a Uniformity #/is a base
far s :

Describe the product Uniformity in the product X{X, : o eA} where each (X,
7)) as o €A is a uniform space.

- Prove that a continuous function of a compact Uniform space into a Uniform space

is uniformly continuous.
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UNIT 1

(Contents : Metric spaces, metric Topology, convergent and Cauchy sequences,
completeness, metric space of all real sequences, complete metric spaces I, Cla,b];
Metric sub-spaces, separable metric space, continuous functions, IIume@mmpmsm
Isometry, Compar;t metric spaces, Sequential compactness, Arzela- Aﬂmh Theﬂrem)

§ L1 ML[‘RIC SPACES :
Let X be a non-empty set; so the Cartesian pmduct XX of all ordered pairs (x, y)
of elements x, y € X is also non-empty.

Definition 1.1.1. A function d : X, X — R (reals) is called a metric or a distance
funiction over X if it satisfies following conditions, known as metric or distance
axioms :

(M.1) d(x, )2 0for all x, y € X, and d(x, ) = 0 if and only if x = y. (Property
: of non-negativity),
(M.2) d(x, y) = d(y, x) for all x, y € X. (Propeity of symmetry).

(M.3) ey, 2) S d(x, y) +d(, z) for all x, y and z € X (Property of tuang]e
inequality).

If d is a metric on X, then the pair (X, d) is called a metric space. In a metric
space (X, d) if x,€ Xandrisa tve real, we have

Definition 1.1.2. The subset {xe X :d(x,, x) <7} of X denoted by B(xp) is
called an open ball in X, centred at x, with radius = r.

For example, if d(x, ¥) = |x — y] for any two reals x, y € R, then (H d} is a metric
space and for x, € R and r any +ve r, open ball B/(x,) = {x € R: |x - Xgl < r}

={xeR:x-r<x<x;trj

: = an open interval (x, — 7 x + ) with
mid point x, and length = 2r.

Similarly, in the metric space ¢ of all complex numbers with usual metric we

find an open ball 5 (z,) looks like an open circular disc with cenire at z, € ¢ having
radius = £

Definition 1.1.3. The subset {x e X :d(x,, x) =7} of a metric space (X, d) is
called a closed ball centred at x; with radius = r.

The subset {xe X :d(x,, x)=r} of X is called a sphere centred at x, with
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radius = r. Tt is also called boundary (Bdr) of open (closed) ball centred at X, having
radius = r.

The open balls in a metric space (X, d) form a base for a Topology, called metric
Topology 7, (induced by the metric d) on X. So every metric space (X, d) is a
topological space with metric topology T, This metric topology T, is Hausdorff (T,).

Definition 1.1.4. A sequence { X,} in (X ) is said to be a convergent sequence
if there is a member w € X ‘such that, jl_ﬂ d(u,x,) =0
Or, equivalently, giw:q any tve g, there is an index N such that dlu, x) < g
when 1t = N.
| If {x,} is a convergent sequen.ce in (X, d) withu € X and j}i_ﬂ d(u,x,) =0 we
write limx, =ue X, and « is a unique member of X, because metric space is
IHau&du?ﬂ'.

Definition 1.1.5. A sequence {x } is said to be a Cauchy sequence in X d) if
d{xn:l-rm] -0 A58 BB — 00

Or, equivalently, given any +ve &, there is an index N satisfying d(x,.x.) <&
whenever », m = N. ;

It is an casy exercise to see that in a metric space EVEry convergent sequence is
cauchy, but converse is false, ;

Definition 1.1.6. A metric space (X, d) is said to be complete if every Cauchy
sequence in (X, d) is convergent in X,

For example, real number space R with usual metric d(x,y)=|x-y|; x, yelt

is a complete metric space. This is what is known as Cauchy’s General Principle of
convergence; and essentially by same reason the Euclidean n-space R consisting of

all n tuples of reals like x= (5.%,...%,),x. R is also a complete metric space

with usual/Buclidean metric o where d’(x, ;f}

:Zf‘r.‘ —Ji fzﬁ o (xi? xl!"""rﬂ}’ 'l;:(yh_]"i:“"!yn}{_? R :
I=1 5
Example 1.1.1. The collection § of all sequences of reals is a complete metric

o1 1&-n
space with metric 2% ) = 3 ——=2L Ul whete x=(2 B0

o 1+ | & = |' ......
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Y= (,7,....) €5 . The th.s. series is convergent because each term is domoninated
by a corresponding term of a convergent geometric series. Here is a routine exercise
to see that metric axioms are all satisfied. For completeness part we remark on

: s :
passing that if @, ,, = 0, then a, ,, — 0 if and only if -—;& —>0 asn,m = w,
. ¥ B . - .a

H.
Take {x,}as a Cauchy sequence of elements in §
L R e e L
Corresponding to @ + ve & we find an index N such that
2x,.x,)<¢e forall n,m =N
o (m
okl
or; =
= S P AR A

<€ forall mm = N

As individual term in series above is 2 0, we appeal to the remark made earlicr
to say that |£"~£( |50 as n,m - And hence for each co-ordinate i by
Cauchy’s General Principle of Convergence, {£,"} is convergent.

2

3 3 mivan

; 0
it lim 2P =g, o
H—¥on i
: o gy e T M T :
Taking Xy —(g"‘”; ) ) we find ye§ and passing-on limit as m a0 in
(1.1.7) we have

a0 (i}
0 L
=120 14167 -0

=€ formz= N.

That means, AI_I;EJ pl:-lf” s.fﬁ} =0 :

or limx, =x;8
R 5
So the sequence space § becomes a complete metric space, :
Remark . The convergence of sequence of elements in § as shown above is
known as co-ordinatewise convergence; that is to say, lim x, =x, in 5,
i ¥ H—poi
i - 3] -, ({13] a s .
where x, =14 and X, =& ¢, if and only if lim

H—rol

" 0y -
‘.—f:'{ }:é-‘i': ),
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fori=1, 2, 3, .....; The convergence is not necessarily uniform,
Example 1.1.2. The sequence space [, (1 = p = <) consisting of all sequences

X =188 ke OF TR8ls With Z|<f;- |p=+m i a complete metric space with
: i=]

A
o ri :
metric p(&g){Zl«i—mlp] ,for x=(£,8,.). y = (.. ) €1,
- i=1 i

Example 1.1.3. The function space C[a, 5] consisting of all real valued continuous
functions over the closed interval [a, b] is a complete metric space with sup metric

P, 8)= mp | f©) - gD}, as f,g<Cla,b]
The last i'wu examples appear in Book PGMT 2A, They are referred to there.
§ 1.2 SUB-SPACES : :

Let ¥ be a non-empty subset of a metric space (X, ). There is a natural metric,
namely the restriction dy of d to ¥ x y. :

Definition 1.2.1. The metric space (¥, dy) is callcd a sub -space of (X, d).

Theorem 1.2.1. A subset 4 in ¥ is.open‘in (¥, dy} if and only if there is a subset
A, in X that is open in (X, d) suchthat A =V n 4,.

Proof : Let x € X and y € ¥ and r be a +ve number # and let B (x, r) and’
Ry, r) denote open balls centred at x and at y respectwcly with radius = r in (X, d) -
and in {¥, dy).

Then we have By(y,r)=Y B, {}»,r} for all yeV , and p=0 o (1.2.1)

' Take 4 as an open set in (¥, dy), then we know that 4 i3 a Union of some open balls
of (¥, dy), say of {B,(y,r)} asye A andr> 0.
Thus 4 = UBy(y.7) |
=U{Y By (y,+)} by (1.2.1)
=¥ ~{UBy (1,1}
=Yrd4 (say)
~ where A, is a union of open balls in (X, &) and 4, is an open set in (X, d).
C(mw_.re_rscli.r, let A=Y A4, where 4, is an open set in (X, d). Fory € A, there is
an open ball By(y,r)c 4, and hence By(y,r)=YnBy(y.rlc(YnA)=4 So

106



every member of A attracts an open ball in (£ dy) ie. A is an open set in (¥, dy).
The proof is complete.

Corollary : A is closed in (¥, dy) if and only if there is a subset 4, of X that is

closed in (X, o) such that A=Y 4. (If A=Y 4, we havc Y\A= Yﬁ{X‘n--AI),
and now pmceed)

Definition 1.2.2. A metric space (X, d) is.said to be separable if and only if
there is a countable subset [2 of X such that D is dense in (X, d) (or equivalently, 5
(closure of 1) = X).

For example, real number space R with usual metric i separable, becauﬂe the .
set () of all rationals if R is dense in R, where we know that {J is couniable.

Theorem 1.2.2. A sub-space of a separable metric ﬂpﬂC{: is separable.

Proof : Let (¥, dy) be a sub-space of (X, d) which is a qebarable metric space.
Let A={x,%y,.....%,,...} bea countable set in X such that 4 = x.

If yé ¥, then for each +ve integer m the open ball B {J’;E?‘) ‘meets A at some

; point, say = .x,,.

Thus X, € {A ~B [J”? %)}

'~ So, Open ball B[J’Cm}-l;)ﬁ}"iﬁ .
Put ,fi».={{n,m}:ﬂ{x“,#)m}’;cgﬁ}_ Thus flﬁ.;ﬁrjﬁ. For each {;ﬂ,m)eﬁ, take a

member y,,.,,,f—'{B(xﬂ,;];)ﬁY}, and put B:{ynlm:(n,r}:]eﬁ}. Therefore B is a

countable subset of ¥ because A is so. We now verify that B is dense in (¥, dy).

Take yct andr = 0; choose +ve integer m so that —l— = ér As said above there is
l

an integer n such that %, € 2] (,1«',—): Then (n,m)e ﬁ., and we have

ol
HT{_]-’ y”ﬂi){du'ﬁ .rr)+d{x.rnynm}{m+;_m{r1

That means, ¥,,, € B(»,r). Therefore yc B in (¥ dy), or, B is densein (¥ dy).
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§ 1.3 CONTINUOUS FUNCTIONS :
Let (X, d) and (I p) be two metric spaces. :
Definition 1.3.1. A function £ ; (X,d) - (¥, p) is said to be continuous at a
point ce X, if and only if given a +ve &, there is a +ve & (depending on € and ¢)
such that e( f (x), f©)=e whenever d(x,c)=>§ .

or equivalently, f(B(e,8)) = B(f(c).€).

J 1s said to be a continuous function if / remains continuous each point of X

Further details on continuous functions over metric spaces may be seen in
Book PGMT 2A.

Homeomorphism, Isometry :

Definition 1.3.1. A function ' :(X,d) = (¥, p) is said to be a homeomorphism
if fis 1-1, onto (bijective) and both f and T ! are continuous functions,

If there is a homeomorphism between (X, o) and (1 ), then two metric spaces
(X, d) and (), p) are called homeomorphic,

Explanation : If f is a homeomorphism of X onto ¥ then e ' is so between ¥
and X. Also it is a foutine matter to see that composition of two homeomorphisms is
again a homeomorphism; thus in the family of all metric spaces the binary relation
‘of being homeomorphic’ is an equivalence relation,

Example 1.3.1. Consider the metric space R of reals with usual metric and a
function T: R — R given by T(x) = x +a, where a is a fixed real number, and x e R.
Then this translation function (equals to ldentity function when g = 0) is a
homeomerphism; here 77! g — R is given by T Mx)=x-a;xe R Similarly one

shows that for any non-zero real A, multiplication function M 1:R—> R given by

M, (x)=Ax,xe R is a homeomorphism, where M, =M o

We know that family of all open sets in (X, d) forms a Topology, called metric
topology 7, on X induced by d. Any property in a metric space (X, d) that can be
formulated entirely in terms of members of r, (open sets) is known as a Topological
property. ' '

. Consequently, homeomorphic metric spaces have the same topological properties
like convergence of sequences in the space and continuity of functions over the
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space. Following example shows completness is not a topological property in a
metric space. '

Example 1.3.1. Take X:{_l,_z, 3.} and Yr{l,%,%;....}'. Regarded as a

subspace of the space R of reals with usual metric we find that spaces X and ¥ are
discrete metric spaces (every subset being both open and closed); thus the function

B X =Y where h(n)=n"" is a homeomorphism of X onto ¥ Since X'is a closed

subset of R which is a complete metric space, the space X is complete. On the other
hand ¥ is not complete.

Definition 1.3.2. A function f:¥ — Y that is onto (surjective) is said to be an

| Isometry if ﬂ(f(x},f(y})=d(x,y] forall x,ye X.

Explanation : ldentity function on X is an Isometry of X onto itself. Also a
transformation of rotation like x'=xcosf +ysingt, y'=—xsind + ycosd is an

Isometry of Eudidean 2-space R onto itself with usual metric. Also an Isometry is a
homeomorphism. Thus two metric spaces that are isometric are indistinguishable n
respect of their metric properties.

Example 1.3.2. In metric space (X, d) take x; € X .
For xc X, Let f,:x—R (space of reals with usual metric) be given as
£0)=d,)-d(y,%) for yeX.
Then show that x —» /, is an isometry of X into C(X) where C(X) is metric space of

all real valued continuous functions over X with sup metric

| f —gll=sup| f(P)-g(¥) <.
reEX

As distance function a’ is continuous, it follows that f, is continuous for all xe X.
Solution : Take v, v € X, so we have

fn{y}zd{yzﬂ)_d(.}}!xﬂ} ! }
and f,(p)=d(y.,v)-d(y,x) foral yeX

So, | £,(3) = £,0N=d(y,u)~d(p,v)|<d(u,v) which is independent of y € X,

taking the sup over L.H.8. we obtain
% yeX
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sup| £,00) ~ £,0) 1< d(w,)
yeX

or' L= =8 v) .. 1.3.2)
Putting y = u in (1.3.1) we have,

Ju)=~d(y,x,) and f,(w)=d(,v)-d(p,x,)
So, | fl)~ fiw)l=d(u,v) |
Now  sup| £ 1)~z L@ = £ =AY i (1.3.3)
_ ; |

from (1:3.2) and (1.3.3) we obtain
| S = £ ll=d(u,v).
Thus x — f, invites an Isometry of X into C(X).

' §1.4 COMPACT METRIC SPACES :

Some important properties of reals as we encounter in real analysis had motivated
_more important concepts in a metric space like completeness and compactness,
Cauchy’s General Principle of Convergence is the driving force behind completeness
in a metric space. Essence of Heine-Borel Theorem could be found in concept of
compactness in a metric space, :

In consequence, it had been an inevitable task with urgency to identify compact
subsets in a metric space. Russian Mathematicians like Alexandrov and Urysohn
had been responsible to put forward notion of compactness via ‘open cover’ in the
space; on the other hand close to Bolzano-Weirstrass property is classical analysis
concept of sequential compactness owed to Frethet in a metric space. And now we
know for certain that these two routes are equivalent in describing compactness in a
metric space. For details in this context sec the book PGMT 2A.

Tt has been possible to discover that a subset in Euclidean #-space R” with usual
metric is compact if and only if the subset is a bounded and closed set in R

Given a metric space X it is often hard to decide which subsets of X are compact,
and which are not. Our present task is the job of wentifying compact subsets of a
very important and useful function space of some continuous functions that we
presently discuss below. The concerned target theorem in this connection is Ascoli-
Arzela Theorem. :
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Definition 1.4.1. Let (X, d) denote a metric space.

‘(a) A family O = {4, };.» of open scts A;in (X, d) is said to be an open cover for
X if every element of X belongs to at least onc member 4, of the family (. That is to

say, X U4,
. Jl'=.|".'|.

{b) A sub-family of an open cover for X which by 1tsc1t is an open cover for X
is called sub-cover for X.

(¢) (X, d) is said to be a compact metric space if every open cover for X has a
finite sub-cover for X.

Explanation ; By a finite sub-cover we mean that the sub-cover consists of a
finite number of members only. Consider a family {(-n, M)}y (W = set of all

natural numbers). 1ts members are open intervals, and hence open sets n the metric
space R of reals with usual metric. It is an open cover for R; because K= ;:—i 1(—”? n) .

Cleatly, this open cover possesses no finite sub-cover for R. That is why, R is not
compact.

Definition 1.4.2. A suhsr:,t G of (X, a’) is said to be compact if as a sub-space of
(X, d) it is compact under definition 1.4.1.

For example, although R is not compact with usual metric any finite subset of K
becomes compact.

Definition 1.4.3. (X, d) is said to be ‘%E'-E[UCHUEI“}-' compact if every sequence in
X has a convergent sub-sequence in X, :

It is a bit lengthy exercise to conclude that a metric space is compact if and only
if it is a sequentially compact. See book PGMT 2A.

The function space C[a, b] of all real-vaheed continuous funciions over a
closed interval [a, b].

We know that l’“[a h]is a cumpletc metric spaae with respect to sub metric
ol f g)=sup | f(O)-g®)], [.geClab] But Cla, b] is not compact with respect
azizh

to sub metric, because C[a,b] is not bounded; for all constant functions like f,(f) =#

for g<<hsatisfy p(f,,0)=n—>w as p—» . However there are compact sets in
Cla, b]. In scarching then we need some Definitions, -
Definition 1.4.1. (a) A subset M of Cla, b] is said to be umlﬂrrmljr bounded lf
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there is a +ve constant K such that | x()| < K forall fin 4 <¢ < p and for all members
xeM. _

(b) Subset M is said to be equi-continuous if given any +ve €, there is g +ve 3
{depending on & only) such that | x(f)) ~ x(£; )| <& whenever |f —t, |< S (4,15 e[a.b])
for all members x € M. : -

Lxample 1.4.1. Show that the subset {f,}c C[0,1] is equibounded where
Ly =1+L0s051.

Solution : Here | £, (¢)|=] l+i|£1+| §|£I+%£2 for all # and for all 7 in
0=¢=1. S0 the conclusion stands.

Theorem 1.4.1 (Arzela-Ascoli Theorem) : A subset M of C [a,b] is compact if
and only if M is uniformly bounded and equi continuous.

Proof : The condition is necessary : Let M be a compact subset of (fa,b]
(w.rt. sup metric). Then M is bounded, because a compact set in a metric space is

bounded and closed. Thus we find a closed ball say B, (x,) centred at Xy € Cla, b]
with radius = # such that :
M L'._B_r(.xn]
; =—x,(5)|=r
Thus SUP [ () -x%@)|ss
Now  x(f) = x(2) - x,3(£) + x4 (£) and

sup [x(7)| < sup [x(1)=x,@)| + sup |x3(1)| <r+k, say,
asr=h asi=h sk

1

where k= sup |x,(0)].
azish ;

_ That means | x(f)|=(r+R)=K (say) for all  in g<z<p and for all xéM.
Hence M is uniformly bounded.

For equi-continuity take a +ve &. :

Since M is compact, we-find an £—net :{ x(t), x:(3), ..., x“(_::}} for M-

Since every real-valued continuous function over a elosed interval is uniformly

continuous. So here each of the members x,x,...x, of Clab] is uniformly
continuous in [a,b] .
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So, for each x,(1) we find a +ve &, such that
| x; (1)~ x, (1) <5 whenever |f ~1; |< &, !5 ela.b].

Now take a +ve & = %’21& {d;} . Then we have
L, (1) —x,; (15} | {% whenever |1, —1, |< 6, 1.1, €[a,b] foralli=12... .k
Now for every member x e M, we find a member, say, x; from %—net, such that

px,x;) {%‘ (o= sup-metric of C[a,b]).

If 1.f1 t, €[a,b] and |1, —1, |< 5 we have
| x(6)—x(12) | = x (%) - x4 0) =X () | +16(5) = x(1)]
< sup | x(t) - ()] +] (x () —x )+ Hup | %;(1)- x{f)l

azizh
< p(x, %)+ -‘;5+p(x, x:.) T

This inequality holds for all 1.1, e[a,b], with | -1, | < & and for all members

yeM . So M is equi-continuous.

The condition is sufficient : Suppose M is uniformly bounded and equi-
continuous : we show that M is compact. Because Cla,b] is complete and so is M, 1t
%ufﬁcea to show that every sequence in M has a Cauchy subseguence, Let D= (1, 15,

_..) be a countable dense set of reals in [a, hY.

Suppose S, =(fi1> fizs iz} be any sequence of elements in M. By uniform
boundedness property of M. We find a +ve K such that
| fin}= K for all ¢ in g<t=h and forall feM. ... B T (1.4.6)

et us examine real sequence

i), TFi2(z), fialta)so.. f}m{fﬂ -
From (1.4.6) it is clear that this is a bounded sequence of reals and has a -
convergent subsequence.

Let Ss=(fops da9: Joyine) be & sub-sequence of 5, above such that

L), fatn)s Taills )i } converges.
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Now examine real sequence {f21[!3},f22{2‘3),f23{13},.....}, and by similar

: ~ reasoning as above, we have

83 ={ /a1, 2> f33.....} as a subsequence of S, such that

{Hilt ) f32 (), f33(853),....} is convergent,
We continue this chain to construct 5, S;, 55, ... of sequences of functions like -

i Sl:{.ﬁ]!.filn.ﬂﬁn ----- }
Sy ={fa1s Joas Foaseon}
Sy = {.f_:l.hfzz:fsa,-----}

where S, constitutes a subsequence of S, (m =2,3,...) with the property that
LAt Fa(@) fialt,), ...} is a convergent sequence of reals.

Now.put f,=f, (n=2,3,4,.) then {f, /5. fs,...} is the diagonal
subsequence of 5. From mode of construction

x,el) and {f(z), Jolty)s s fi(8y),..} 18 & convergent real sequence,
If i > k, consider | f,(z,)~ fix(,)] for 7 > & > »n and knowing that both

Jilty), fi:(1,) are members of convergent real sequence

(i) Fual) alt). o)
We have | f,(t,)~ f.(,)|=> 0 as i,k —» 0. Thus {j}{r,,}_, Blt,) A is A
Cauchy sequence of reals. ' :

: Finally, take any +ve €. Since M is equi-continous and S §, c M, we find a
+ve 8 such that | f, {O = it *:% whenever |1 ~{'|< 4, 1, I‘IE_ [a,b] for all members
fies

N.r.)w consider the family {#, ~ &, ¢, + &)} of open intervals with mid point 7, € D.

It i routine verification with dense property of D in [ab] that this family of
open intervals becomes an open cover for [a,b]. By compactness of [a,h] we obtain
a finite sub-over, say

[a,b] = ,EE‘FD“H ~d. 1, +8) and 2shn=m,
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Again {£(1,), fo(%,),.....} is Cauchy; thus a +ve integer K, is there such that

i.fr‘(fn)_.f.k(‘rn}[{% for all 2<n<n,

If 7 is any position of [a, b], we find # with 2 <w<n, so that 1,—8 <1<t +&

and for i, K = K; we have

FAGRF GRS FAG T AUSIRAFACYES A (S
+L.fk{r-,.]—mr1|{%+§+§:g

That means supb.{_f,.(r}—_,&(r)[f;g for i,k = k,
q;

ast
o, o fi fi)se for ik = ky -
or, S ={r. fz.,....} is a Cauchy subéequc_nce of X
The proot is now complete.
EXERCISE A

Short-answer type questions : :
1. Show that compactness is not a heriditary property in a metric space,

2. Give an example to show that a closed bounded set in a metric space may not be

compact.

3. Showthat fix) =x + @ or = -x + a where a is a fixed real is an Isometry on
the space R of reals with usual metric.

4. Prove that any bounded sequence of reals has a convergent subsequence.

5. In a metric space (X, d) if limx, =xe X show that {x, }{x} is copact.

=y

EXERCISE B

Broad questions

1. Show that the closed ball & =[x:§;.1% | x(e) _il} of ([0, 1] with supmetric is not
bt g

compact.
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Prove that only Isometries of the space R of reals with usual metric are
fix)=x +taand f(x)=-x+a where ais a real number.
Give an example of a Homeomorphism that is not an lsometry.

Let f be a real-valued function on a compact metric space (X, d), show that f
assumes its maximum and minimum on X

Verify that closed Unit ball in sequence space /, is bounded without being totally
bounded. '

Let X denote the metric space of all real polynomials p(7) in 0<s<|; show
that X 1s not a complete metric space with respect to sup metric.
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UNIT2

(Contents : Linear spaces, Dimension of a linear space, Normed linear space (NLS),
Banach space, C[a,b] as a Banach space, Quotient space of a NLS, Convex sets,
their algebra, Bounded linear operator; its continuity, Unbounded linear operator,
Norm ||T|| of a bounded linear operator T, Formulae for ||T]|.)

§ 2.1 LINEAR SPACES

Definition 2.1.1. Let R (g) denote the field of reals (complex numbers) that arc
also called scalars, A linear space (Vector space) V is a collection of objects called
vectors satisfying following conditions :

I. Vis additively an Abelian (commutative) Group, the identity element of which
is called the Zero vector denoted by 0.

II. For every pair (o v), o being a scalar and v € I there is a'vectﬁr, denoted by
oL.v (not vor), called a scalar multiple of v such that

(@) lLv=v forallve K

(b) e (u+v)=cu+ay for all scalars & and for all vectors w,vel’.

() (a+ v =av+ By for all scalars o and £ and for all vectors ye ]’ .

(d) a.(Br)=(a.B)v for all scalars zzand Band for all ye) .

Example 2.1.1. Let R" be the collection of all # tuples of reals like
i:(rl,xz,___x,,}; x, being reals. Then R" becomes a linear space with real scalar
field where addition of vectors and scalar multiplication of vectors are defined as

X+ Y =X, X9, %) F (Vo V) = (5 F 00, Xy H 0,0, %, 1 ),) and
cax=alx,xy,. . x,) = (ax,axs,...ax,); x,yeR" and o any real scalar.

Here 1" is also called Euclidean s-space with the zero vector g'i_- (0,0,...,0) (all
co-ordinates are zero), and it is a real Linear space.

_ Example 2.1.2, Let Cla.b] denote the collection of all real valued continuous
functions over a closed interval [a./4]. Then ([a,b] is a real lincar space (associated
scalar field being.that of reals) where vector sum and scalar multiplication are defined
as under : :

(f+8)0)=fO+8W); azi<b, and f,geClab]
and () =af({); a<t<h and o any real scalar. :
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As we know that sum of two continuous functions is a continuous function and
so 1s a scalar multiple of a continuous function, we see that Stg and of are members
of C[a,b] where f, g € C[a,b] and o is any scalar. Here the zero vector equals to the
zero function (ﬂ(r} =Qast= .-5} over the closed interval [a,b].

* There are many other linear spaces like the sequence spaces (1< p<ow),

polynomial space p[a, b], function space L,[a,b], that we encounter in our discussion
to follow. : :

Definition 2,1.2. (a) If 4 and B are subsets of a linear space V then
A+B=fa+b.acAandbeB}. '
(b) For any scalar A,
Ad={Aa ae A} .
The subset 4—B=A+(-1)B; and taking A - zero scalar we find 04 ={0}.
Further we see that A + B = B+ 4, because vector addition is commutative, However

A-B = B- 4. Taking A and B as singleton and 4 = {(1,0)}, B = {(0, 0} in Euclidean
2-space R, we find A—B={(1,0)} and B-A={(~1,0)}.

Further for any scalar o we have od = {aa:ac 4} .
Hete is a caution. In general, 4+ 4 #24.
Because take 4 ={(1,0), (0,1)}: Then we have
24={(2,0),(0,2)} which is not equal to 4+4
where A4+ 4= {(2,0), (0,2), (1D}
Given a fixed member gel, the subset a+B={a+b:beB} is called a
translate of B. 2%

§ 2.2. Let X denote a linear space over reals/complex scalars. Given X, %9,...,X, in

X, and &y,a,...,a, as scalars, the vector a@yx, +a,x, +ota,x, of X is called a

linear combination of x;,X,,.....,x,, .
A subset [+ of X is said to span (gene_rate} Aif and only if every member of X is
a linear combination of some elements of F. '

Elements x,,x,,....,x, of £ are said to be linearly dependent if and only if there
are corresponding number of scalars a;,a%,....,a, not all zero such that

ax +aX; +. L tax, =0
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A finite number of elements X, x,,...,x; of X are said to be linearly independent
if they are not linearly dependent. This amounts to say that if

k

Za’,x =0 implies a‘l ay=..=a, =0,
=1

An arbitrary system of clements of X is called llnﬂﬂ.ﬂ}-' independent if every
finite subset of the given system becomes linearly independent.

Observe that if a set of vectors in X contains a linearly dependent subset, whole
set becomes linearly dependent. Also note that a linearly independent set of vccmrs
does not contain the zero vector.

Definition 2.2.1. A non-empty sub-set L of a linear space X is called a sub-
space of X if x + y is in L whenever x and y are both in I, and also o is in [,
whenever x is in L and o is any scalar. :

Example 2.2.1. Let § be any non-empty subset of X. Let L = the set of all linear
combinations of elements of . Then I. is sub-space of X, called the sub-space spanned
(zenerated) by S.

The subset = {0} is a sub-space, called the Null—spaﬂc. s

Theorem 2.2.1. Let x;,x,,....,x, be a set of vectors of X with x, # 0. This set
is linearly dcpcnd:—ml- if and only if some one of vectors X,,...,x,, say x; is in the
sub-space generated by X, X5,..,%;_;. i '

Proof : Suppose the given set of vectors is linearly dependent, There is a smallest
k with 2<k=pn such that x,x,,..x, is linearly dependent; and we have
QX F Xy ot Xy =0 with not all «'s are zero scalars, Necessarily, we have
ay # 0 otherwise Xx,Xy,...,x,; would form a lingarly dependent set.

I Lo Gy G 2y
1 consequence X = —E—I! —&—xz S iy -a—x,,._“l :
: I k k

That means x; is in the sub-space generated by X X3, X3y
Conversely, if one assumes that some x; is in the sub-space generated by
X, X5,..., X3 ; then we have

xp = Bixy + Boxy + ot B X
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That means ¥,%,,.,%, are linearly dependent, and in turn we have the set
(%, %5,..,x;) as linearly dependent.

Definition 2.2.2. In a linear space X suppose there is a +ve integer » such that X
contains a set of # vectors that are linearly ihdtpcndcnt while every set of n + 1
vectors in X is linearly dependent, then X is called finite dimensional and n is
called dimension of X {Dim(X)}.

The Null-space is finite dimensional of dimension 0.
If X is not finite dimensional it is called infinite dimensional.

Definition 2.2.3. A finite set B in linear space X is called a basis of X if B is
linearly independent, and / the sub-space spanned (generated) by B is all of X,

Explanation : If x,x,,..,x, is a basis for X, every member y& ¥ can be
expressed as x = rxi'xl +a,X, +...+a,x, where scalar coefficients @;’s are uniquely
determined; so x does not have a different linear combination of basis members.

Suppose Dim(X')=# (n=1). Then X has a basis consisting of » members; For,
X certainly contains vectors X1, X000 Xy that form a linearly independent set. Now
for any member x < ¥, the set of vectors X, %y, X, plus x w of n + 1 vectors must

be linearly dependent. Now Theorem 2.2.1 applies to conclude that x is in the sub-
space generated by x;,x;,...,x,. Hence x;,x;,...,x, form a basis of .X.

B 1 8
§ 2.3 NORMED LINEAR SPACES :

Definition 2.3.1. A linear space X is called a Normed Linear Space (NLS) if
‘there is a non-negative real valued function denoted by || ||, called a norm on X °
whose value at x € X denoted by || x || satisfies f‘ﬂllowmg r.:undltmns (N.1) - (N.3),
~ called norm axioms —

(N.)  [x[i=0, and [[x]|=0 if and only'if x=0.
(N2} |oex|=|all x|j for any scalar o and for any xec X,
(N3)  |Ix+yli=]lx][+] p]| for any two members x and y in X.

If || || is a norm on X, the ordered pair (X, |i ||) is designated as a NLS. If norm
changes, NL§ also chan__g,es.

Tn a NLS (X, |1 11) one can define a metric p by the rule © p(x, v) || x— ¥ || for all
x,pe X . Tt is an easy task to check that p satisfies all metric axioms; and (X.p)
becomes a metric space with the metric fopology called Norm Topology because
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of its induction from norm || ||. We write Ei_rfl."’-“ Y in X off ii_}ﬂjoﬁ X, = x||= 0. this
convergence in NLS§ X is known as convergence in Norm. Similarly, we define a
Cauchy sequence in NLS X '

A subset B in a NLS X is said to be bounded if there is a +ve K such that

Nlx|l=K forall xe B

Let X, X', and take a +ve number # Then in NLS X the set
{xeX:[|x-xp[l<r} is called an open ball denoted by B.(x,) centred at Xy having

radius = r. Similarly, we have a closed ball B, (x;)={xec x:[|x-x,(|<r}: and in
agreement with usual open sphere we encounter in Co-ordinate Geometry we have a
sphere S,.(xy)={xe X :[[x~x,||=r centred at x, with radius =

Definition 2.3.2. A NLS (X, || |1) is said to be a Banach space if it is a complete
metric space with metric induced from the norm function || || on X,

Example 2.3.1. The space Cla,b] of all real-valued continuous functions over

closed interval [a,b] is a Banach space with supnorm || £ || = sup | /() L feCla,b].
azrsh

* Solution : It is routine exercise to see that ([a,5] is a real linear space in respect
of usual addition and scalar multiplication of continuous functions.

Now put.|| /|| = sup | f(¢)| for feCla,b] wherein we recall that | £] is also
1 asizh _
continuous function over closed .interval [a,b] with a finite sup value = fllz0.

Also || f]|=0 if and only / equals to the zero function. So (N.1) axiom is satisfied:
For (N.2) take o any scalar (real), then we have for f e ([a, h],

lefll= sup | @/)0) 1= sup | f(O)|=le| sup | 7@ =[x £

Also, if f, gé(.‘[a,b] we have ||/ +8 Hzfﬁ?&' (f +£)D]
= sup [ f()+gO)|< sup | 7))+ sup | g@) =11/ | +]1g1].

Thus C[a,b] is a NLS; Now take {f,} as a Cauchy sequence in Cla,b]; So
Nfy=Full—0 as, p,m— . Give a g0, we find an index N satisfying

| £, = fon || <& whenever #,m=N.
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Ehatis. sup | H{0) - L) € 8 bitisiiaisian

azish

Thus for a<i/<b, we have | £,(1)~ £,()1% sup | £,()~ /(1) | <& whenever
sh

. a5t
n,m =N . Above inequality shows that the sequence {f} of continuous functions

over the closed interval [a,b] converges uniformly to a function say f over [a,h] and
also f becomes a continuous function over [a,5]. So fe Cla,b]. Taking m — o in
(2.3.1) we find =

| O -F(@)|=e whenevef nzN and forall rin asr<b,
This gives fﬁfﬁ | £, ) — (Y| <& whenever nz N .
o = fleefocnz
That means, lm f, =/ € Cla,b] . Thus Cla,b] ils a Banach space.
Theorem 2.3.1. Let X be a NLS with norm || ||. Then
i) 1]|gc]|—';|y ||t <||x-y| for any two members x,ye X,

(b) || ||: X — Reals is a continuous function.
Proof : (a) We write [|x[[=]|x~y+yll<llx—yll+] ]

<3 ol 153 | 22y o [ S| Lo O Ll N Tt s (23.1)
Interchanging x and y we have '
Eel=lxl=l =l ==l s e (2.3.2)

From (2.3.1) and (2.3.2) we write
Elxli=llyD=lx-pl
or, lxli=llyll<lx-yl
(b) Let {x,) be a sequence of elements in X’ converge to x;

So ||x, —x3]| =0 as x — 0. By (a) we have

o, 1= 1120 ] €116, =% 1|0 a8 71— 0.
That means, Aﬂ [l %, [ =1l % |l . Hence norm function || || is continuous at x,; As

x, may be taken as any point in X, (b) follows.
Remark : If lim x, =x; and lim ¥, =y in NLS X, then
H—Fol ol
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{a) ,]ri_ﬂ(xn i}{,,} =X * M
(b) ,EI_EL (Ax,)=Ax, for any scalar A.

Definition 2.3.3. Two norms || ||, and || ||, in a linear space X are said to be
equivalent if there two +ve constants & and b such that

allx|; £lx]l, < bl x|, forall ze X.

anmple 2.3.2. COI‘ISIdEI‘ NL S - (Euclidean 2-space) with two norms ]| ll; and

I Il defined by ||, J’l!;—u'l‘ *J—’ and ||x, yll;= mﬁx(lxl,l}’l} for (x,y)eRr®.
: Show that two norms are equivalent. A%

Solution : We have for (x, e 1%, | x[ £tx12+|_},l-i2 and |y =[x ]* +] p)

Thus | (x, ) = max( _x|,|y!)<_:J| P+ yP =52+ 2 =l
; Dl':, H(x:.}’)“zin(xaf}||j (231) .
Again_||(x,)" =% + 2 =l x [ 4]y <2fmax(| x|y DY =2]1 (e )

on | SN2l el 232
Combining (2.3.1) and (2.3.2) we produce

1 ) s 0 G ) e <215 )
Therefore two norms as given are equivalent in NLS = R
Explanation : If two norms || ||, and || |}, are equivalent in a NLS X, then
_ identify function : (X, || ||}) > (X,]| ]l,) 15 a hnmeﬂmc-rphmm (In fact, it is a linear
hameumorph:sm}
§ 2.4 QUOTIENT SPACE :

Let (X, || ) be a NLS and F be a linear sub-space c-fX

If xeX.,let x+F={x+y: yelF}

These subsets x + F'as x¢ X are éo&ets of Fin X

Put X;‘F {x+F xe X}.
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One observes that /' =0+F, x+F =x,+F ifand only if x, ~x, e I, and as a
result, for each pair x.x, € X, either (x, + F)(x, + F) =D
. or, X, +F =x, + I :
Further, if X, X, ¥, € X, and (x,—x,)e F, (), —y,) e F, then _
(X, + M)~ (X, + p,) € F, and for any scalar o (eex, —ex,) € F because F is
Linear sub-space. :
We define two operations in X\F by the following rule -
(i) (X\F x(X\F) = (X|F) '
where (x+F, y+ F) > (x4 F)+(y+ F) = (x+ )+ F
and (if) R(¢)x(X\F)—>(X|F)
where (o, x+ F) s a(x+F)=ax+ F

for all x,ye X' and o any scalar,

~ Tt is now a routine exercise to verify that (X\F) is a linear sﬁace in respect of
above ‘addition’ and ‘scalar multiplication’. Note that zero vector of this Linear
space (X|F) equals to I :
Definition 2.4.1. The linear space X\L where L is a linear subspace of NLS X
is called the quotient space (or quotient space of X modulo L),

; : : 2
Example 2.4.1. Geometrically describe the quotient space R /L where R® = the
Buclidean 2-space and L is the sub-space represented by a line through origin
(0,0)e R%. :

Solution : Giver a sub-space 1.
as represented by a line through
(0,0)e R®. X is any position of R
then x+/. geometrically represents

a straight line through x parallel to

the line represented by L that 15 say

that x+ L 15 a translate of L through



¥. Further if y is any other position of R, then by Law of parallelogram we obtain
the position x + y and here (x+L)+(y+/1L)=(x+y)+L is re-presented by the
straight line through x 1 y and it is parallel to L; that is—it is the translate of L
through (x + ) in R*

Example 2;4.2. Obtain the quotient space C[(},'% where C[0,1] is the linear
space of all real valued continuous functions over the closed interval [0,1] and L
consists of those members f e (C[0,1] with f{1) =0, i.e. vanishing at # = 1,

Solution : If f,ge L, then 1) = g(1) = 0; Now (f +g)1)=f(1)+g(1)=0;
So f+gel (note that sum of two continuous functions over [0,1] is again a

continuous functions over [0,1]), and for any scalar « we have a¢f € L. when fel .
Therefore /. is a sub-space of C[0,1].

Let us look at members of C[0,1]\L. Take feC[0,1] where f(l)=a (say).
Then for any other member g € C[0,1] sharing the value g at 1 = 1, /. e.. 2(1) = a; we
note that (g - f) € C[0,1] such that (g - F)1) e g()- f(1)=ag-a=0; showing that
(g—f)eL ie ge f+L. So these members g plus f all belong to f + L.
Now if e C[0,1] with he(f +1) : _ (2.4.1)
So, h—fel '
e, hand [ differ at £ = 1.
ie. )y f()=a

We similarly construct a member (4 + L) of C\L, where

(h+Lyn(f+L)=¢ . (2.4.2
or else, we find a member ¢ in both implying
p—hel and ¢~ fel
therefore @(1)-A(1)=0 and @(1)- f()=0
ie. o()=h1) ~ and p()=f()
ie. k(D)= f(1) :
that means he (f_-l-'f.) , which is not the case by (2.4.1).
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Theorem 2.4.1. Let L be a closed linear sub-space of NL.S X, and let
ix+L|=mf{llx+yll:yel}, for all y e X, then above is a norm function ﬁﬁ the
quotient space (X \.L). Further if X is Banach space, so will be (XEL}_ .

Proof : For any member x + L of X\/L, from definition we have

|[x+L||=0 forany xc X . :
Nuw assume that || x+ L||=0 for somexe X
IE-’ Ir;f{|Lx+yH:y-E L}=0
As yel if and -::r'nl},i.r if —yel, we have
Infillx-yll:yel}=0.
Singe £, is closed, x¢< I (distance of x from L is zero);

That means y+ J* = }- = the zero vector of the quotient space X /L .
For verilication (N.2) take o. any non-zero scalar, Then
o x+L)||=|lax+L]

=Iﬁ;f{l|arx+y|[:yEL}

—inf {lecxe+2) |-y e L}

=la|mf{llx+(Dyl:yeL}

=|a |H.J.t'+LH , because L is a linear sub-space of X.
For triangle inequality (N.3) take x, ye L

Then || (x+)+(y+L)||=][(x+ )+ L] (L is a linear sub-space).
=Infillx+y+u|:uel}

| :=h:5f{i|x+_p+-*i’-4_—3j‘~||:uEL}'
shf{llx+ 51+l y+5liiue L
shafillx+5ll:we L} +nf ||yt 5] ine L}
=Infillx+hl:ueli+inf|ly+K|:Kel}; Lisa sub-space.

=[x+ Ljj+ ]| y+L] -
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_Thus quotient space X\L is a NLS.
Now suppose X is a Banach space. We show that the quotient space X /L is so.
Let {x,+ 1} be a Cauchy sequence in (X/L). So corresponding to each +ve integer
k we find an index NV, such that :

| 3, = Xy + L < = ~whenever m,nz N, (2.4.0)
We define by Induction a subsequence {r,,j_} of {x,} such that
i 1
HxH* _xFi_;-” *L“‘_:Ek“

Take m =N, and suppose 7,n,..,7; have been so defincd that
mowhy<..<moand Nysn; (G=1.2,..k).

Let 1, = max{N,,, m +1}. This enables one to obtain an increasing sequence
{m,} and (*) ﬁ:rllnws from (2.4.1)

Put Vi =X, Then by induction we define a sequence {z,} in L such that
,,ke{yi + L) and Nzp — 24 Il < ;,. ﬁc = e

Choose z &(y +1), suppose z;,...,z have been 50 chosen to satisfy above
condition. Then y, +L =2z, +L and by (2.-4_1} we have 12k = Ve + ] {"2']}"3 By
definition of norm in (x\L)

we find z;,; € (Vg +L) such that 1125 + 2 12 25 = Y +L|]+%.

2k + 2y 1< oy
Then I 2F T Sk 1= kel a8 wanted,
That means 2| Z —Zxn Il is convergent, and hence > (2 ~ 74y is convergent.
i i i
- . .
But Z{zk- T )= (31 _22)"‘{32 =3 Z_;] i ""__i'(zm i zm+l} = T &
=
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So, {z,} is convergent; Put ,,}i_ﬂzk =2, since z; € (), +1L)

we have |[[(z+L)-(y +L)l=llz=p +L||£||z-2, ||.

That means ;!im Wy +Ly=2z+L. Thus given Cauchy sequence {x_ +L} has a
—pi0

convergent subsequence { X, +F}.

Hence {x, +L} is convergent in (X\L). This proves that (X HL) is a Banach

space.
§ 2.5 CONVEX SETS IN NLS :

Let (X || [[) be a NLS, and C be a non-empty subset of X

Definition 2.5.1. C is said to be a convex set if for any real scalar o in 0z <l,
and any two members X, %, € C we have gx, +(1-a)x, is a member of C.

Or, equivalently, for a].l}f two reals o, § with Oza, f21 g+f8=1,
(ax, + Bx,)eC. .

Or, equivalently, the segment consisting of members £, + (1 —x, (0=¢<]) isa
part of (. (

For example, in an Euclidean space like R”, cubes, ball. sub-spaces are all
examples of convex sets in R,

Theorem 2.5.1. Intersection of any number of convex sets in a NLS is a convex
sef, but their union may not be so,

Proof : Suppose {C,},., be a family of convex set in NLS (X, I} 1) and put
C=nC,; Let C#¢ andlet x,yeC take 0@ <1. Now ¥ye 0 Co 5o for
every o, x and y are members of ', which is convex, thus, (ax+(l-a)yel,.
Therefore ax+(1-a)y is a member of every C, and hence is a member of
Qﬂ(;_:(? . Thus C is shown to be a convex set in X

Union of two convex sets may not be a convex set. Every triangular region in

Euclidean plane is a convex set but the figure X as a union of two such convex sets
fails to be a convex set.

Theorem 2.5.2. A subset C in a VLS is convex if and only if sC +/C = [s+t}[,
for all +ve scalars s and 1.
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Proof : For all scalars s and f we have
I T 0 R AR MO e s (2.5.1)
If C is convex and s, 7 are +ve scalars we have :

el g P A 0
T

TR T T o RN S S PRl s 70 (2.52)
Combining (2.5.1) and {Z.S.Q]IWE have -
sC+1C =(s+0)C :
Conversely, suppose (s+£)C =sC+(C holds for all +ve scalars; If 0z <1,
take s=a and {=1—¢ and then we find aC+(1-a)C < C. So C is convex:
Theorem 2.5.3. A ball te_pen or closed) of a NLS is a convex set.
Proof : B(x,,r) be a closed ball in a NLS (Xl ).

Let x,yeB(t,r); So |x—xllsr and |y-xpllsr. If 0<£<1, and
u = pe+(1-1)y, we have ' '

=g | =l 5+ (1= )y = (g + QA= Axp) [| = | 16 =)+ A =D = ) |
<tlx-x | +Q-Dlly-Yoll<tr+Q-0r=r.
That shnm%s e B(x,,r). So, B(xy,r) is shown to be convex. The proof for an

open ball shall be similar.

Example 2.5.1.Tf (X, || ||) is a Banach space and L is a closed sub-space of X,
show that L is a Banach space.

Solution : If /. is a closed sub-space of X, then L becomes a closed set of a
complete metric space X, the metric being induced from the norm || |I. And we know
that every closed sub-space of a complete metric space is a complete metric sub-
space and hence here L is a Banach space. (as a sub-space of X).

§ 2.6 BOUNDED LINEAR OPERATORS OVER A NLS (X, || [}) :

Let (X, || ) and (%, || [[) be two NLS with same scalar field. (Here, same notation
|| || has been used for norm function; it is to be noted that norm functions in X and ¥
- are, in general, different). i

129
PGIMTI06 (G A & B9



Definition 2.6.1. A function (or mapping or transformation) (function, map,
mapping, transformation are synonyms of the same mathematical object) 7: X — ¥

is called a linear operator if (1) I (x5 +x,)=T(x)+7(x,) for any two members %
and x, in X, and

(2) T(ax)=aT'(x) for any scalar o and for any member nelX.

Explanation : For a linear operator T: X - ¥ cundltmn (1) in Definition 2.6.1

1s termed as linearity condition which says Image of the sum is equal to sum of the
images. Condition (2) is known as that homogeneity. For example, if y _y_ p=

the space of reals with usual norm (Euclidean norm) and T 'R — R is given by

' T{x} ax where xe R and o is a fixed real (zero or non-zero), we verify that T is
- a linear operator; and we shall presently see that any linear operator : R _y R shall
be of the form T'(x)=ax for some fixed scalar o for all ye R,

Definition 2.6.2. The operator 7": X — ¥ def‘ ned i:-g,r T'(x)=0 in ¥ For all X
is called the zero operator, denoted by 0.

Remark : (a) The zero operator : : X' — ¥ is a Linear operator.

(b) The identity operator, / : X — X where J(x) = x for all xe ¥ s a linear
operator.

Theorem 2.6.1. Lf:t T:X - ¥Ybe alinear aperatnr If T is continuous at one
point of X, then T'is continuous at every other point of X,

Proof : Suppose I is continuous at x, € X ; so given g0, there is a +ve §
such that [|7(x)-T(x,)||<& whenever [ (x)—(xy) || <& . Suppose x(#x,) be
another point of X. Then if || x~x, ||< &, we write ||x—x ||=|| Xp—(x—x +x) .

Thus |[(x~x +x,)||<d shall give by virtue of continuity of T at x,,

1 70e=x+30)~TGx) [l <& |
or, | 7(x)~T(x)+T(x)~1(x;)|| <& because 7'is linear,
o, [|T(x)-T(x)|<e. Therefore T"is continuous at x = x;,

Corollary : A linear operator over a NLS X is continuous either everywhere or
nowhere in X.
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Definition 2.6.3. A linear operator 7': X — Y is called bounded if there is a +ve
constant M such that

TG | <M || x| for all x€ X .
17O

or e.quwaienﬂ}r ] <M for all non-zero numbers xe X .

Theorem 2.6.2. Let T: X = ¥ be a linear operator, Then T is continuous if and
only if T is bounded. -

Proof : Let T: X — ¥ be a continuous linear operator; if possible let 7" be not
bounded. So for every +ve integer n we find a member x, € X such that

[EAE Y| 5 | | e PR e (2.6.1)
Nﬂw x,, is non-zero vector in X, put ¥ i =8 ” “
1 1
clearly 1%, “—_ T, "—;_3’0 as m—>o0. SO We see i'_?:u“ =0 in X; By

continuity of 7' we have ;li—ﬂT (,)=T(0=0in¥ (T(0)=0,because T is 1inear);

Therefore we have [|7(u,)[|—>0 as n—> o M

T(u,)|=
On the other hand, || T(,)1[= HH*’»H “

, because T 1s linear

—T(x
nllell "

]
= I T[x)llblby{zm)
n|lx, |

Now || T(w,)||>1 and (*) are contradictory.

So, we have shown that T: X — ¥ is bounded.

Conversely, suppose linear operator 7: X =¥ is bounded. Then we find a +ve
- scalar such that :

I TG =M [|x]l5
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So given > 0, there is a +ve & = -2—:% (here), such that

IT(x)[|<& whenever || x| <&

ie. || T(x)~T(0)|| <& whenever [|x—0|<& because T(0)=0 in ¥ That means,
Tis continuous at x=0 in X, and therefore Theorem 2.6.1 says that T is continuous
at every non-zero position of X. The proof is now complete,
Examples of bounded and unbounded linear operators.
~.Example 2.6.1. Consider a transformation T of rotation in Euclidean 2- -space R
given by T'(x,y)— (x,y") where

x'=xcosf+ ysiné }
y'=—xsin@ + ycos@

58]

Now it is easy to verify that 7. g2 _y p2, under (*) is a linear operator in respect
which rotation takes place around origin (0,0} with axes of co-ordinates being rotated
through angle @ to give new axes of co-ordinates.

In NLS R* with usual norm || (x, )| = x*+ »%, We see that
IlT{x NI —Il{x,y ) =x?+y? = (xcosf + ysin0) + (- xsmﬂ+ymsf4)

=24y = I

Thus || T(x, ¥)||= ||(x »l; and this is true for all pmnts (x, ¥) in R2 and we
conclude that T is a bounded linear operator.

Example 2.6.2. Consider the Banach space C[0,1,] of all real-valued continuous
functions over the closed interval [0,1] with respect to sup norm :

| /1= sup [ fQ@)]; f €C[0,1]
a=zr=l

Let K(s,7) be a real-valued continuous function over the square
{0<s<f; 011},
Now define T :C[0,1] — C[0,1] by the rule : let T(f)=F

where F(s)= [, k(s,0f ()dt; as f ClO,1].
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It is a routine exercise to check that F¥ is continuous over [0,1] and 7 is a linear
operator.

| : 1 _
Now, urt.ﬂu=||Fn=§uglnf'{s)t:gupl|jk(s,r>fmdst
. LA 52l §

< sup j | k(s,0)|| ft)|dt -:Mﬂ F()|dt where M= sup |k(s,0)];

O=xsl ﬂ' 0=z S],Dgil

<M.sup | £(D)] j di=M.|| f . This is true for every member f e C[0,1].
el

Therefore, T is shown to be bounded.

Example 2.6.3. Let '1[0,1,] denote the class of real-valued continuous functions
that are continuously - differentiable over [0,1]. Then (0,17 is a sub-space of
([0,1] which is Banach space with sup norm. Cunmdcr the Differential operator

D:¢c®[0,11-> C[0,1] when D(f)=¢; fCV[0,]] and d!f(t} e in0<r<1.
We can easily verify that D is a linear.operator, presentl},r we see that D is not
bounded.

. Let us take £, eCY[0,1] where f,(z)=sinnxzt in 0<¢<]. Then we have
Df, = p,, where @,()= %(sin_mrr}: ncosnmt in 0<(<1.

Therefore, I/ Il= sup |sin nrt|=1 4nd

1D | =1 @, || = sup | ar cosnmt | = nr
=<t

Here “I(ﬂ’}llzﬂ—}m ﬂS.H.—}DO

I £l 1
That means D can not be bc)uncle.d

Definition 2.6.4. Let T: X — ¥ be a bounded (or equivalently, currtmuous)
linear operator. Then the norm of T, denoted by || T || is defined as

Tl = Iof (M > 0:|| T() || <M || x| for all xe X}
(A set of +ve reals has always Jnf. value).
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Theorem 2.6.3. Let 7' X —-¥ be a bounded linear operator. Then
@) (T =[IT][[| x| for all xe X}

T ||=sup{|| T
(b) _|| I "SJE{” (Co11iee

(©) |ITH=|T;1lilfl{liT(x}lt}

(d) |1T|1_3up{|1 II(J”}

_ Proof : (a) From definition of operator norm we see that for any +ve & we have
IT)|= (T | +&)]| x|l for all xeXx.

Taking £ — 0, we have || T(x)||<||T||]|x||
B IF ||x]|sl,xe X, we have || T(x)||<|| T |||l x| ]| T]

Therefore ﬂgﬂ‘i” T |<IT| 1 (]}

From Definition of operator norm || T'||, given any +ve €, we find x, € X such
that || T(x,) || > (I T [| ~&) [l x I

X,
Tﬂkﬁ i ll X H WE 5Ee |I'H£. [|=1 such that
” T(“E)H Il ” |[T{xa)”} ” ” (” T“ E}” e |I_ ” j'"”_g
As  |lu, ||=1, this gives sup || T(x)||=|| T(us)[l::-ll".-"||—£_ﬁs £>0 is
11|51 ;
_arbitrary we produce sup || 7() 2] Tl | @)
- It

From (1) and (2) we have (b), namely, sup ||T(x)||=|IT||
b [ldi<t

(c) - the proof shall be like that of (b).
(d) we have [[T(x)|[< (|7 [|]| x|l for all xe X .
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So, HE{’:‘{H{HT” for xe X with x=0.

Since r.h.s does not depend on non-zero xe X, We have

17N 7y

w0 M=l ®
Again given a +ve € (0 <& 4|T|) we find a member x. € X such that

TG 1> (1T =8 1 x, |1 clearly x, %0

e
Thus ”xs ” }” H
T
Therefore SUP LT, LZ G >\ 1|
lxll I x, [I
Now taking g0, we find
LG

o FT T L - @

Combining (3) and (4) we have bup I | x| {x}u =\TI.
EXERCISE A

Short answer type questions :
1. Ina linear space X if x € X show:that — (—x) = x.

2 1f a finite set of vectors in a linear space contains the zero vector show that it is
a linearly dependent set.

3. Tn Buclidean 2-spw:e R describe geometricaly open ball centred at (0,0) with
radius = 1 in respect of (2) [ x [,=x’ +x @) | xl=I% |+ 2, and

(c) || x|ly= max{| x |,| x, [} where x=(x.%)e R

4 Obtain a condition such that function suit and sin A¢ are linearly independent in
the space C[0,2m].

5 Construct a basis of Euclidean 3-space R3 containing (1,0 ﬂ} and (1,1,0).
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EXERCISE B

Broad asnwer type questions

1.

If Cfa,b] is the linear space of all real-valued continuous functions over the
closed interval [a,], show that ([a,b] is a Normed Linear space with respect to

b
17 1I= _“ Tt 1 eCla,b]. Examine if Cfa,b] is a Banach space with this norm,
el : :

Ina NLS X verify that for a fixed member g ¢ Y, the function f: X=X

givenby f(x)=x+a; xe ) isa homeomorphism. Hence deduce that translate
of an open set'in X is an open set.

Examine if the sub-space p[0,1] of all real polynomials over the closed interval
[0,1] is a closed sub-space of the Banach space (0,1] with sup norm.

Prove that in a NLS the closure of the open unit ball is the closed unit ball.
Let (X, [[ [[) and (¥, || [[) be two NLS over the same scalars and 7@ X — ¥ be a

linear operator that sends a convergent sequence in X to a bounded sequence in
Y. Prove that T is a bounded linear operator,

- Let T': C[0,1] — itself, where C’10,1] is the Banach space of all real-valued

continuous functions over the closed unit interval with sup norm such that
I(x) = y where '

Jite F
YO)= [x()du; xeC[o1] and o< <j
i

. Find the range of 7, and obtain 7! ‘(range T) — C[0,1].

Examine if -1 is linear and bounded.
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UNIT 3

(Contents : Every Finite Dimensional VLS is a Banach space, Equivalent norms,
Riesz Lemma, Finite Dimensionality of NS by compact unit ball, Linear operators
over finite Dimensional NLY and matrix representation; Isomorphism, Boundedness
of lingar operators over finit Dimensional NLT space Bd£(X,Y) of bounded Imcar
operators, and its mmpieteness)

§ 3.1 FINITE DIMENSIONAL NLS

Theorem 3.1.1. Bvery finite dimensional NLS iS a Banach space. To prove this
Theorem we need a Lemma.

Lemma 3.1.1. Let (x;, x5, ..., x,,) be a set of linearly mdependent vectors in a
NLS (X | then there is a +ve |3 such that
i|atx1 +apXy +.t e, |2 Bllay | +lep |+ 4 ey, ) for every set DfSﬂﬂ]drS

ay, oy o,

H.
Proof : Put §= thx, |. Without loss of generality we take § = 0. -
i1 :

Then above inequality is changed into

| B + By +..+ Bx,, || = B, where B, = % 2 . *)
and YIB1=1,
=l

. i : H
If suffices to establish (*) for any set of scalars B, 5,,..., 5, with > | §,|=1.
: i=1

We apply method of contradiction. Suppose there is a sequence {y } with

}’mzﬁl{mjxl+ﬁ2{m}x2+ +ﬁu{m} n’and Zl'g( ji_l form=1,2, ..
: i=]

such that ||y, [|->0 as m— e

i "
(m) ) (o)) _q
Now | B 1521 B2
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Hence for a fixed / the sequence {g™}={g® g® .} is bounded. So
Bolzano-Weirstrass Theorem says that {£,"} has a sub-sequence that converges to

(say) f;.

Let {3 ,} denote the corresponding subsequence of {y,,}. By the s:ame argument'
Vit shall give a sub-sequence, say {,,,} for which the corresponding subsequence
of scalars {8,"")} converges to S, (say). We continue this process. At nth stage we
produce a subsequence {Iy,,,m} = {Vu1> Yuao-} of {3} whose term

N

"
Yom = 'Zi\,gi(m}xi ; Zl:l 5{(“"} =1
i= i=

such that '}ii_fﬂu ﬁa{mj = B, Hence we see

H M z
Tim 3, = Y. b=y (say) when 2| Bi|=1_ That means all B,’s are not
=l i=l

zero. Since X, X,,.., X, are linearly independent it follows that y=0.

lim y, . =¥ gives

o e e

Y Now
Tim | =121

Since {¥,m} is a sub-sequence of {y } and ||»,]|—=0 as 50, SO

| ¥umll—0 as m-—>o0 and so || y||=0 giving y=0, a contradiction. Therefore
Lemma is proved.

Proof of Theorem 3.1.1. Suppose {y,} be a Cauchy sequence in a finite

dimensional NLS (X, || []). Let Dim(X) = n, and (e, e,, ..., €,) forms a basis in X. So
edch y,, has a unique representation, ;

Yo =05 4™y + .. 4o, Me,
Give a +ve £ as {y,,} is Cauchy, we find an index N' such that
| Y=Y ll<e for mrzN.
H :
Now &>V =2, 12112 @™ = )e |

i=l
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n
=8> cx,-{“"'_’ ~a| by Lemma 3.1.1
i=]

whenever m, r > N . Therefore

. :
lmi{m} “ixf{r} I£Z|al{ m | ":“E for mr>N
: i=1
Therefore, each of the # sequences

&} (i =1,2,...,n) becomes a Cauchy sequence of scalars.(reaisfmmplex), and

by Cauchy’s General Principle of convergence becomes a convergent sequence with,
54y, :

3 :
lim cx,( ™ = { / (say),i=12, ..n

HI—#c0
Put y=g u:'e] +:x2m}ez i 52

(o)

so ye X

n’

Further, hm cx': }—ﬂ! fori=1,2, ..., n gives,

1 0 i [i]
17w =Y 1= @™ -2 12 Y 1™ - P [l |5 0 a5 m— o0
i=1 i=1

ie. Mﬂ Ym=Y€X . So given Cauchy sequence {y,,} in X is convergent
i X; and (X, || ||) is Banach space.

Theorem 3.2.1. Any two norms in a finite dimensional NLS X are equivalent, -

Proof : Let Dim'(X) = n and (¢, e,, ...., ¢,) form a basis for X. If ¥ e X, we
write x = ot e, + oe, + ... + e, uniquely. :
- Applying Lemma 3.1.1 we find a +ve 8 such that

lIxlh 2 B(lay | +|ag | +.+]a, )

If #=max|l¢ ll,; Then we have

llxlly < ZrafineuwZJml{ (B30

=]

or, B llx|l, <llxl;, the other half of desired inequality comes by
mnterchanging norms || ||; and || ||,. The proof is now complete.
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Theorem 3.1.3. A NLS (X, || ||) is finite Dimensional if and only if the closed unit
ball (centred at Q) is compact.

To prove this theorem we need support of another result popularly known as
Riesz Lemma.

Lemma 3.1.2 (Riesz Lemma). Let L (# X} be a ciosed_sub—s;nace of a NLS
(X, 1|ID. Given a +ve € (0 <& < 1) there is a member J’E(‘f) with || ¥||=1 such
that || y—x||>1-¢ forall xe [ . |

- :
Pmuf Take Yo E( ) and put d =dist(y,,L)

' =fﬂ{||yn—xll,

- Since /. is closed and y, is outside L, we have d > 0. Given a +ve & choose .
7= 0 such that :

7
d+n

< &

 So we find a member X, = /. such that

d < || yp — Xy ||*‘f'5f_"’i'?II

Take i ¥y %) then l¥]|=1, and we have

H.v - Xg ||

j’n =xp+| Mo —xy || y. Since y, is outside L, we ﬁﬂd}’ also outside L i.e. E[%)

g - Yo —Xp
ah Lot S sl | et e
If y& I, we have |y —x| Vo —Xo | ”
-l ]lJ’u —x[lyo—xl[= —"*H Yo=*'|| (sa )
Il Yo = Xo |l 1 ye—xl y

where x"=xy+|| ¥y — % || x; clearly x’ < I. because x,,xe L.

|24 -=1--1

The..refcln‘e, JEy_xI|} _d‘l'i':.l ! -m"—'l—g.

1
a+ n ” Yo—
The proof is now complete. .
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Proof of Theorem 3.1.3. First suppose that closed unit ball
Bi(0)={xe X :||x||<1} ina NLS (X, || ||) is compact and hence is sequentially
compact. We show that Dim (X) < 0.

Suppose no. take x, € X with ||x ||=1 and L, as the sub-space spanned by
'x,l{:& 0). Then L, is a closed sub-space of X without being equal to X. So we apply

Riesz Lemma (Lemma 3.1.2) when we take €= % Then we find x, E{X \IL;) with

H el i 1
%, l|=1 and f13% -, 1> .

Take 1., as the sub-space spanned by x, and x,. By the argument same as above
~we find L, as a proper closed sub-space of X and attracts Riesz Lemma. Thus there

: : o | i
is ¥y €(X\Ly) with ||x;]/=1 and || %3 - x 175 I —x 1> 5.
We continue this process to obtain a sequence {x, } with lx|[=1ie x,eB(0)

such that || x, - X, [1::- for n#m. That means {x} does not adrmt if any

convergent subsequence : a centradlctmn that B,. (0) is sequentially compact. Hence
we have shown that Dim(X) <. '

C{}nversc]}'.lct (X, | |) be finite dimensional. Then it is a well known property
~ that a subset'in )X is norm-compact if and only if that subset is bounded and closed.

Here the closed unit ball B (0) is buunded and hence it must be compact. The
proof is now complete. _
- §32 LINEAR {}PERATGRS OVER FINITE DIMENSIONAL SPACES :

Let R” denote the Euclidean n-space. Then an mxn real matrix
Ty e

L

% | defines a Linear operator T:R" 5> R™ where T(x)=
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‘rz{f[,‘fz:----:‘fu] an-d' .}_P: (I?E:??z,-----: r-r") guc-h that

1]
Y= i=12,...m

S=l
Verification is an easy exercise and is left out.

Conversely, given a linear operator 7: R" — R™ . We show that it is represented

by an (mxn) real matrix. Let us take (e, e,,...,e,) as a basis in R” where

a=(--12), i = 12, n And let £=(,00..0), £,=(01,00,.0),

m places

Let I'(e;)=a; € R"

o =apfitagfttayl, ) (=12, .0
In general, if x=(&,&,,..£)eR” andif T(x)=yeR"
we have MA+ml+ A0 fu=y and

y=T(x)= T(i fﬁj} = iff?'(ej) = igi‘ji
: =l f=l J=1 .

Or, imﬂ=i[iaﬁ f],ﬁ gives r?.—=_2la5,-§-;i=|,_g, i T
: | 4 4

Therefore,. T is represented by the matrix ((ﬂ-’ _,-,-)

T
Remark : Given a linear operator 7': g" — R™, there is an (mx#) matrix to
represent T Entries (reals) in this matrix depend upon the choice of basis in underlying
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spaces. If basis changes co-efficients entering representative matrix change; However
order of the matrix does not change.

Example 3.2.1. Let p;[0,1] denote the linear space of all real polynomials over
the closed interval [0,1] with degree <3. Let D: 3;[0,1] — p,[0,1] be the differential
operator. Show that D is a linear operator and obtain a representative matrix for D.

Solution : Here 2[0,1] {and similarly 0,[0,1]) 1s a real linear space with
Dim 0;[0,1]1 =4 (Dim( p,[0,1]=3). Let us take (pys P> P2, P3) A5 2 basis for p4[0,1] -
where p,(f)=1, p()=1, p, ()=t and py(f)=¢ in 0<r<1.

Then we have D(py)=0, D(p)=1, D(p,)=2t and D(ps)=31%; and we
write . . '

0=0p;+0p +0p,

1 = 1p, +0p, +0p,

2t = Opy +2p, +0py
and 3t* = Opy +0p; +3p,

And therefore répresenfative matrix ((a*'-")]s .4 for D is given by

i S
sk
G- 0 0 3

3xd

Remark : Representative matrix for linear operator changes if basis is changed.

Example 3.2.2. Let p;[0,1] denote the linear space of all real polynomials over
the closed interval [0,1] with degree <3.

Let T: p4[0,1] = p5[0,1] be a linear operator given by
_ T(ay +alx.+ ax’ +asx’) =ag + cﬁ (x+ D)+ ay(x+1) .+a3{;'r+1]3 for every
member a; + a,x+azx_2-+a31_3 € p[0,1]; obtain representative matrix for 7' relative
to basis (i) (1, x, x%, »*) and (1) (1,14 x,1+ x>, 14+ x*) of p3[0.1]
Solution : Here Dim 25[0,1] = 4; So required matrix for linear operator T is of
order 4 % 4; where T : p5[0,1] = 5[0,1].
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Now (i) (1, x, x*, x') forms a basis for p,[0,1]. |
Now we have,
=1 MNx)y={(x+1) T(x)—{x!rl} and 7(x)* “‘(x+1) So we

write with respect to basis above

=1 =1.1+0x+0x*+0x
M) =1+x = L1+1lx+0x+0x
T =0+1P = 11+2x+12+0x°
) =@x+1) = 1.1+3x+3°+1%
Therefore representative matrix for 7T in this case shall be
| e Lo (R
10 LR
AR L
1 L |

(ii) Here basis is (1, 1+x,1+x°, 1+ x*) of py[0,1]
We have T(1) =1, T(1+x) =1+ (1 + ¥), T(1+2) =1 + (14x)> and
T(+S) = 1+ (1+x)°
Therefore relative to basis (1,1+x,1+ xz, 1+ x°) we write
) =1 =11+ 0(1+x) + 0(1+2) + 0.(1+)
T(14x) =2+¢ = 1.1 + L(1+x) + 0(1+%) + 0.(1+H)
Alk)= 1+t =11 + Z(4x) + 1(1F) + 0.0+
T(+xY) = 14143637 0 = =51 + 3.(1+x) + 3.(1+2) + 1.1+
Therefore representative matrix for T in this case shall be :

o

S A el
et
—t
ek

- Note : Basis taken and treated above should be termed as ordered basis. In
ordered basis order of arrangement of vectors is basis in important. For example, in
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Euclidean 3-space R we know (e, 5, €;) is a basis in R, where e = =(1,0. 0), e, =
(0,1,0) and e; = (0,0,1). Then each of (e, e,, &;), (e,, €,, €;) and {et, €, ez} is an
ordered basis and they are different ordered basis for R”.

§ 3.2(A) ISOMORPHIC LINEAR SPACES :

Definition 3.2.1. Two linear spaces X and ¥ over the same scalars are said to be
isomorphic (or, linearly isomorphic) if there is a linear operator 7" ; X — ¥ that is
1-1 (injective) and onto (surjective). The operator 7' is called an Isomorphism.

Theorem 3.2.1. Linear isomorphism between linear spaces over same scalars
on the class I”, of all such spaces is an equivalence relation.

Proof : If X € I", the identity operator / : X — X is an isomorphism. So the
binary relation of being isomorphic is reflexive; let X, ¥ € /~ such that X is isomorphic

to ¥ with ¢ : X — ¥ as an isomorphism; Then .;;:r1 - ¥ —» X is also an isomorphism.
Thus ¥ is isomorphic to X. Hence relation of isomorphism is symmetric. Finally, if

f:X—> Yand g: Y — Z are isomorphism, then (g. f) : X — Z is also an isomorphism,
Therefore, the relation of isomorphism is transitive. Thus it is an equivalence relation,

Theorem 3.2.2. Every real linear space X with dim(X) = n is isomorphic to the
Euclidean n-space 1.

Proof : Let (1, #5,...., #,) form a basis in X. So ifu € X we write
u=&u +Euy .+ 8, uniﬁuely.

Define an operator T: ¥ -—» R” by the rule :

T)= (&6, 08, ) € R Where u =&y +&puy + .. +&Eu, € X

H

Then it is easﬂy verified that T is a linear operator. Furhter, if ¥ = Z‘:ﬂ " and
; =

H
V= 1l with 4=y are members of X, then we have
i

(61,6255 60) # (s Thysy 1) OF 1) = T(u);
thus 7'is 1-1. Finally, for (¢, a0, @, )e R"

k; 1 1
We have fo:—”f €X' such that T[Zﬂ}”f) =@, @, &,) |
i=1 i=1 :
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So T'is onto. Therefere Xis lsnmc-rphlc to R,
Notation : If two linear space X and Y are isomorphic we use the syrnbul X0or.
Corollary : Any two real linear spaces of same finite dimension are isomorphic

Because if X and ¥ are finite dimensional real linear spaces with Dim(X) = Dim(¥),
we apply Theorem 3.2.2. to say y R": and hence y 0 v. g

Theorem 3.2.3. Every linear operator over a finite dimensional NLS i3 bounded
(hence continuous).

Proof : Let (X, || ) and (¥, || ||) be two NLS over same scalars and D1m(X} o
say, being equal to », and let (), e;, ..., ¢,) be a basis for X. Then each member .
x € X has a unique representative as x = &¢, +&,e, +....+ &8, where £ s are scalars.
Let us define a norm || x| by the formula :

lell’.=illffal.

It is an easy task to check that || x| is indeed a norm in X. Since X is finite
dimensional, we know that any two norms in X are equivalent.
Therefore there is a +ve M satisfying

x|'<M| x|l forall xeX

ie. SI&I<Mx]

i=]

If T: X — ¥ isa linear operator and x= Z‘;’!e e X, we have
i=l

I7Col=1 T{z«;e,) =124l

i=1
éﬁlta,wn 7(e)|
< max(| T(e) LI 7l - 11 TCe) D M [ x|

(from (*)) =L|x|l, (say). /
This being true for all x € X, we conclude that T is bounded.

146



§ 3.3 SPACE OF ALL BOUNDED LINEAR OPERATORS Bd.Z(X, ¥)

Let (X || [[) and (F || ||) be two NLS with same scalar field. Then zero- operator
O : X — ¥ where O(x)=0€Y as xe X is a bounded linear operator. Therefore

BdL(X,Y)+¢. It is a.routine exercise to check that Bd.£(.X,Y) becomes a linear
space with respect to addition and scalar multiplication as given by

(T, + 1) (x) =T (x)+T5(x) forall xe ¥ ;and 7,7, € Bd£(X,¥) and
(AT))(x) = AZ(x) for all xe ¥ and for all scalars A and T; € Bd£(X,Y)

Theorem 3.3.1. Bd £ (X, }) is a Normed Linear space, and it is a Banach space
when Y is so.

Proof : Let us take the norm in linear space Bd.# tX 1) as operator norm ||71]
as Te BdL(X,Y). We verity that all norm axioms are satisfied here.

For (N.1) it is obvious that |7 |20 always for any member T e Bd.£(X,Y):
zero operator (J has the norm |0 ||=0

Suppose || T||=0 ie.. sl.llp IT(x)]|=0. Soif || x| <1, we have .
e .

I TxE|£s:1,|p I =0 gives TGOS0 woiiieiimineimnsians (1)
lldi<t
If || x]| =1, then put .y=ﬁ ;Thus Hyll:”ﬁ“ﬁh so as got above

IET{y)II—G or 0= 'r.:y)u—H (i) rcon sving

|]T{x}||={} ..... S @)

So (1) and (2) say that T(x)=0 forall xc X ie T equals to the zero operator.
For (N.2) take A to be any scalar.

Then || AT']|= lﬁ;{g [ (AT)(x) |
- =sup | AT(x) || = sup{| || T(x) I} |
llfi=t lixfi=1
=|Alsup [T | =] A 7).
x| =1
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So (N.2.) 15 satisfied.
For triangle inequality, if T}, T, are members of Bd.Z(X,Y) we have for
xe X, 1L+ B I=NH@+ BN T+ ) |

SR NCON+IT M x = AT +I75 D1 x )5 this is true for all xe
Therefore || 7] + 75 || || 7} || +]| 75 ||, and that is the triangle inequality,

Therefore Bd.£(X,Y) is a Normed Linear space (NLS) with respect to operator
norm. :

Now suppose that ¥ is a Banach space. We show that g4 o Rl is so. Take -
{T,} as a Cauchy sequence in Bd£(X.Y) ie |1, ~T || >0, as n.m >0

1if xe X, we have |Iﬂ:(x)_?:rr{x)“:” U;f _T.:u)(x]” :

shf=, Il x|l->0 as n,m >0, That means, {7 (x)} is a Cauchy sequence
in (¥, || ||) which is complete.

Let limZ,(x)=ye¥
Let us define 7: X — ¥ by the rule
T(x)= Jim 7,(x) a5 xe X .

Now it is easy to see that T is a linear operator.

Further, |17, 1=l1T, /1[I 5, -7, >0 as n,m —>o0.

That means {{|Z, ||} is a sequence of non-negative reals and this is Cauchy
sequence and therefore is bounded. So we find a +ve K satisfying

|7, ]l K for all n
So, IT@I=Il lim 7,,(x) 1= lim ||, ()|
< lim | T, 1l x| S K | %] by above inequality.

This being true for all xe X | we find 7: X—> ¥ as a bounded linear operator
ie. TeBdL(X,Y).
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}, given a tve g We have

Finally, from Cauchyness. of {T,
' | e U || <& for nzny and p=1.2,......

Take [|x[| <1 in X, S0 17, () 1] (T, =T

| S I xS Ly p — Ll <& for n2mg

Let us pass on limit as p —> oo, then we have
|7 () =T, (%) || =& whenever 1=y

This is the case whenever || x]| £ 1; taking sup we have

I sup || T(x) - T(x)l=e whenever o=y

[ladi=2k
Now | 7' =1, 1= lsgllg T =T ]
= sup | (1) -1,
<]

e_ig whenever 1= Hy

So we obtain lim T,=TeBd £(X.,Y) in operatot norm.

The proof is now complee.

Example 3.3.1. Show Bd £(R",R") is finite dimensional with dimension 71”.

corem we know that every member

T e BdL(R",R") has a representativ order n X 1 {l.e. a square matrix-of
size 1). With respect 1o a fixed basis in R, we also see that Bd£(R",R") and the

is finite dimensional with Dim (#,,0,) =t

Solution : By matrix representation th
e matrix of

linear space M.,
Therefore Dim{ﬁ&.ﬁ (R",R"N= n? :
Example 3.3.2. A NLS (X, || | is a Banach s

is complete.

Solution : Suppose (X, || [Disa Banach space;
ot of X, and hence is complete.

pace if and only if {x & X xll=1

then the given set {xe X :||x]I=1}

is a closed subs
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Conversely, suppose § ={xe X :[|x||=1} is complete. Now let {x, } be a Cauchy
sequence in X, so ||x, —x,, || =0 as n,m—> o

Therefore [I[x,, =1l x, |[|~=_:,J|-x,, =Xy |0 as n,m — 0. Thus scalar sequence
{Il %, 11} is Cauchy, and by Cauchy General Principle of convergence {||x, ||} is
convergent, put j"}i ¥ ll=2 1f o = 0 we see {x,} to be convergent in X and we
have finished. Or else o > 0. Without loss of generality we assume that o = 1. Let us
xjj 0] . v i n -
put Yy =m making ||y, [|=1 ie y, eS8 . If possible, let {¥,1be not Cauchy.
L) i

Then there is a +ve g, (say) and there are indices m (= k), my (= k) such that

”.}"rn* _ym.,r ”:—:’54}, k=1, B s

Xn, Xm, X, ! Xon,
Or, & = 1| [E3 | it | s | BT
P I I g, T e o %, 1
S TE ] S et TP B i
ST B | e’ ”xm,, I a8  k-—»eo; arriving at

contradiction that &, is +ve. Therefore we conclude that {¥n}is Cauchy in § by

completeness of which let ;&ﬂ Yn=Yo€S. That is Ai_}rxgo X = j:_r& Ii X, || Yo =¥

Hence {x,} is convergent in X and X is shown as a Banach space.

EXERCISE A
Short answer type questions

1. Let X'be the linear space spanned by f and g where Sfx) = sinx and g(x) = cos x.

For any real & let f,(x) = sin(x+8) and £1(x) = cos(x+8&). Show that J\ and g are
members of X, and they are linearly independent.

2. Let A and B be two subsets of a NLS Xand let A+B={a+b:ac dandbe B).
Show that if A .or B is open then 4 + B is open.

: \ - 1 -1
3. Let m,,, be the lincar space of all real 2 x 2 matrics and E = ['D ) ] :
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{ § i '-”'Eﬂ —> M, 18 taken as T(A) = EA for Aen,,,, show that 7'is-a linear
operator. '

If C is a convex subset of a NLS X and x; € X, and o is a non-zero scalar, show
that x; + C and aC are convex sets.

Show that 7' : Cla,b] — R (real space with usual norm) defined by the rule :

Tof)= J'j if@dt;  feClab). : : ;
‘Show that T is a bounded linear operator.
EXERCISE B

Let A and B be two subsets of a NLS X, and let A+B={a+b acdandbe B}:
"If A and B are compact, show that 4 + B is compact. RN
Let M be a closed linear sub-space of a NLS (X, || D), and X/M be the quotient
space, and 1. X —» X /M where T(x)=x+M for xe X .

Show that T is a bounded linear operator with || T [|<1.

Show that the space of all real polynomials of degree < n is the closed interval
[a,h] is isomorphic to the Buclidean (n+1)-space i) :

' Let (X, || [) and ( || [[) be NLS over same scalars and £, T: X — ¥ be bounded
"~ linear operators such that F and T agree over a dense set in X, show that F'= 1.
If X is a finite Dimensional NLS, and Y is a proper sub-space of X, then show
that there is a member ye X with |[x||=1. satisfying dist(x}) = 1.
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UNIT 4

(Canfenrs . Bounded Linear functionals, sub-linear functionals, Hahn-Banach
Theorem; Its applications, Conjugate spaces of a VLS, Canonical mapping, Embedding
of a NLS into its second conjugate space under a linear 1sometry, reflexive Banach
space; Open mapping theorem, Closed Graph Theorem.).

§ 4.1 LINEAR FUNCTIONALS :

Let (X, || [|) be a NLS over reals/complex numbers,

Definition 4.1.1. A Scalar-valued Linear operator f over X is called a Linear
functional.

For example if X = Banach space €10,1] with sup norm, then J i X = Reals

k , 1 v
(with usual norm) is a linear functional when Fln)= J'ﬂ x(f)dt; xeC[0,1].

Explanation : Linear functionals are special kind of Linear operators, and thus
enjoy all the propertics of Linear operators like sending dependent set of the domain
into a similar such elements in range.

Let us consider the collection of all continuous (bounded) linear functionals
over X'i.e. we have the space Bd.£(X,R) whenever X is a real NLS. We have seen
that the space Bd.£(X, R)is always a NLS with operator norm || £|]; /'being a member
of BdL(X,R). We have also seen that the NLS Bd£(X,R) is a Banach space _
because R is so. ' ' : '

Definition 4.1.2. The space Bd.£(X . R) denoted by X* is called first conjugate
space (Dual space) of X.

- Thus first conjugate space or s-imp}}r conjugate space X* of any NLS (X, ) is
always a Banach space irrespective of X being complete or not,

By a similar construction one can produce Bd £(X* R)= the space of all
bounded linear functionals over X*: this Banach space X™* = (X*)* ig called second
conjugate (Dual) space of X and so on. :

‘Most of theory of conjugate spaces rests on one single theorem, known as famous
Hahn-Banach Theorem that asserts that any continuous linear functional on a lingar
subspace of X can be extended to a continuous linear functional over X by keeping
the norm-value of the functional unchanged. The proof of Hahn-Banach Theorem is
lengthy but necessarily indispensable item in Functional Analysis.
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Before we take up Hahn-Banach Theorem in setting of a NLS we pmceed as
under :

Definition 4.1.2. Let X be a real linear space. Then p : X — Reals satniymh (1)

plx+y) S plx) + p(y) forallx, ye X and (i) p(ox) = ap(x) for all =0, x € Xis
called a sub-linear functional.

Note : Condition (i) above is known as condition of sub- dcfdltl\-’lt}-' and mnditmn
(i} above is called positive homogeneity.

1t is not difficult to see that norm ﬁmﬂimn inaNLS Xisa %ub linear functional
over X, L

Theorem 4.1.1. (Hahn-Banach Theorem in a lil_lenr space)

Let M be a subspace of a real linear space X, and p is a sub-linear functional
over X and f is a linear functional on M such that f{x) £ p(x) for all x € M. .

Then there is a linear functional F over X which is an extension of £ (over M)
such that

Fx)<plx) forallx e X _
The proof of this Theorem rests upon following Lemma,
- Lemma 4.1.1. Suppose M is a subspace (# X) of a real linear space X and

¥g € (X\M). Let N be the subspace spanned by M and %o} ie. N=[MuUfx}];
suppose f : M — R is a Linear functional such that
Ax) € p(x) for all x € M, where P X — Ris a sub-linear functional (over X).
Then f can be extended to a linear functional ¥ defined on N such that
F(x) = p(x) forxe N
Proof : Since fix) <,p(x) over M, we have for Y. Y2 € M
FOr=32)=F 00 =1 2) = POY = 12) = PO +50— 15— )
=P %)+ pl=y, - x)

of, —plys = %)= JORYS PON XY= FUA) ovnresissrmmmsmmrensisisonsisiins
(separation of terms involving y, and y,)
Now fix y, and allow Y5 to change over M. From (1) we see that the set of reals
(=P(-y2 %)~ /(3,)} possesses sup.

Put a= sup{ p{ _}-'2 Xo)= f(¥2)}; and in a similar argumem; put

ekl
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b= }}IEL{PU’; +x5)— f())}. The relation (1) says, a<b.

Take .a real ¢, between g and b fe. as¢ b
Thereforc as ye M we have
—p(=y—x3) = F(W) = < py+x)— f(¥) it
Since x, ¢ M , we write X, € N as x'= ) +aX,, and this representation is unique,
Consider F : N — R defined by the mule :
Fiy+axg)= () +ac, as (y+axg)eN {jfEM&  a scalar). Tt is easy to
check that F is a linear functional over /V such that /() = fiy) as yeM N .

In other words F is an extension of f from M to N. We verify further that

F(x) = p(x) for all x € N. To achieve this we are to consider following two
cases : When x € N, we have x = y + ax,, where tt'is a scalar,

Case I. When o > 0; we consider RH.S. of inequality (2) with y replaﬁed by
bl 2ol |
a,thls gives cuip{a+xﬂ] f(aj,

Multiplying throughout by o and using the fact that p is sub-linear we have.
fO)+acy < ply+axy)
of, F(x)< p(x)

Case TI. When o, < 0, we use LH S, of inequality (2) with y replaced by %.
This gives rise to

Ao
or, --p[-g—-—.‘(‘ﬂjicn +.f'[§}.

Multiplying throughout by o and reversing the sign we have,

(—rx}p[—fg—xa]zmu +/)
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Since ~ o >0, we have p(y+ax,) zac, + (1)

or, p(x)zF(x)

or, I (xj < p(x) !
When o = 0, we réadily see F(y)= f(y)- The proof of Lemma is now complete.

Prool of Theﬂrem 4.1.1. To prove the theorem we invite partial ordering in a
set and use Zorn’s Lemma which says that in a partially ordered set if every chain

i

: _has an upper bound, then there is a maximal member in the set.

Here let I" denote the collection of all linear functionals f f} such that each f
is an extension of f such that f (x) < p(x) over domain of f D*

Lemma 4.1.1 tells us that I" is ncrn~f:mpty Let us partially order I" as for fi fz el

wesay, fi < f,

if’ f, is an extension of j, with Dy 5Dy, and f, = f, over Dj.

- We may verify that @ is a partial order relation in I" where we show that every
chain (totally ordered subset) in I" has an upper bound in . To that goal, let 7= { fa}

be a totally- ordered subset of I'. We find some member FeT to act as an upper
bound for #

Construct f whose domain = VD | If xe D, ke is & meniibes ‘'such
that *€ Dy and let f(x)= fy(x)
By routine work we verify that ‘;’D 7. is a sub-space of X taking X, ye€ ‘;;’ﬂ"ﬂ

we find two indices ¢ and @ such that xe D, and Y€ D*
:x]

Since 7 is totally ordered either ﬂ c Dy . ot H 2 D f, » and in cither of

the cases we have
(x+y)e 2Dy and similarly @%€ D) and WD} s a sub-space of X,
Finally we show f is well-defined,

Suppose xe D i and xe D b ;-by definition
a i

J =30 and FO)=f300
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By total ordering of 7 either }a is an extension of }ﬁ or vice-versa,
So fa (x)= j'ﬁ.(x). Thus we have
f(x) < p(x) for ¥€D; and for any member £, of  we have Ff.af . So
f el is an upper bound of = So we apply Zorn’s Lemma to obtain a maximal
member (say) [7in I'. And F is the desired extension of f as a linear functional with
F(x)= p(x) for all xc X , that domain of F' equals to X follows maximality of F;

Otherwise by argument as above one can have an extension of F to some other
functional—a contradiction of maximality of /' The proof of theorem is now complete.

Remark : Theorem 4.1.1 is also true for complex spaces, for which one has to
furnish proof. :

Theorem 4.1.2. (l-lahn-f[ian.ac!l Theorem in a NLS).

Suppose f is a bounded linear functional on a sub-space M of NLS X. There is a
bounded linear functional F which is an extension of f from M to X having the same
norm as that of f. '

Proof : If ycAs we have | f{x)| =l LIl x|l
Define p: X — R by the rule : :

py=lLf x| for xe X..
Then we verify that p is a sub-linear functional over X
Such that f(x) < p(x) for xeM.

Now apply Theorem 4.1.1 (Hahn-Banach Theorem in real space) to get a linear
functional # which 1s an extension of / from M to X such that

JF(x)| = p(x) foral xe X.
ie. | F)|=|| /=)l forall xeX.

This is true for all x = ¥ : So we ccrnciu_dc that I is a bounded linear functional

: weerith HE=0 LI I R i et S R R e ()
Further, over A we have flx) = F(x) : “
So | ()= FG)I <[ Fllllx]| for all xeps. This gives
W B A

Now (1) and (2) together say || 71|=|| F ||
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§ 4.2 SOME CONSEQUENCES OF HAHN-BANACH THEOREM :
Application L Gi‘-;’ﬂt_l a real NLS (X, | |) and a non-zero member x; € X . There is
a bounded lincar functional F over X such that F(x,) =|| x, || with LE || =1.
Proof : C-::rnsidcr the sub-space M of X épamwd by x;:
Then M =[x,]={ax; o any real scalar}
Define [ M — Reals by the rule :
Jlasy)=allx ||; as (axg)eM . X
Then f is a linear ﬁmcti-:_mal over M and | f(x)|=le||lx, || =llax, || for all
 x=axyeM and hence we have || |1 ie fis a bounded linear functional.
Further if u = cxx;, is a member of M with ||u||=1 we have
| FGot=lalll x|l =llax || =|u]=1
~ Szl £ @) =1 giving || £]|=1.

Now an application of Hahn-Banach Theorem gwes a bounded linear functional
F over X satisfying

F(x)=f(x) xeM
and || F =]l 7]=1 _
This gives  F(xy) = /(o) =]l % || and || F||=1.

Corollary : For a non-null NLS {X, Il ). its conjugate space X* is non-null.
(Hints : because F appearing in corollary is non-zero member of AN

Application 1I. For every xe X, j[x”_ sup - |f{ )|
Fl=0el* “ f”
Proof : From Application T we find a non-zero buunded linear functional
ﬁ] € X* such that fy(x)=|x|| and || ;]| =1.

~ If(Jl | fo ()]

J].hereﬁ)“ﬂ, f# E.l" ” f” z i|f1"_'|” "x”
e |f(x)] ; '
be: ~ B T z| x| : e )
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On the other hand, if f is any non-zero member of X*, we have

FACIIIFAIIE]
or %L”I“ r.h.s. being independent of /
mACIIP
we have,. f(iﬂujng* Hf” —” .X'” {2}

From (1) and (2) one has |[x| = sup M
semex || F 1]

Corollary : If f{x) = 0 for every non-zero bounded linear functional ;" € X L
then x=0 in X ;

Applmatmn IT1. Let M be a closed subspace of X and M = X o-f ne { ok M)
and 95 drsf{r.' M)= Irgf || 12 — 12 i|

Then o = 0, and there is a bounded linear functional f'e X' * such that
() fx)=0 for xeM
() flwy=1
and  Gi)) 1/ll=

Proof : Here M is a closed sub-space (#X); so d = 0.

Take N = Linear subspace spanned by M and u

ie. N=[Mufu}]; So every membé_-r of N is ;:)f' the form m + fy where fis a
real scalar, and meM. '

Define g: N — R by the rule :

g(m+a)=t as (m+m)elN.

It is easy to check that g is a linear functional over N such that g vanishes over

M ie g(m)=10 for meM, and g(u) = 1 (taking £ = 1),

[+t || _ || e+ e )
(BRI (R |

Now |g(m+us)]=||=
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_lm+afl | e+
flu-(OI~ @

becanse d =inf |[ju—v||<[u—(-2)].
= 5 L= g

1 ;
= || m+iu||
Lim+m]

This is true for all member (m+#)e N ; and hence g is a bounded linear

functional over N with || gl = %

]
8o, llgll= ol
‘Again from d= L[EIE.- [[#~m||; we find a sequence {m,} in M
such that [|w—m, || —>d as 71—

ie. hmlju—m,|=d - )
Now |g(m, —u)i=lglllm,~u]|
or,  |glm,)-gl)|=|lglllim,—u
or, ]'E}—'ll <|| g |l m, = || ; (g vamshing over M and g(u) = 1).
o, 1slglllim,-ul
Now passing on limit as n—» @ we produce

l<llglld
o 1 j :
. giving, llgllz+ WRER L

Combining (1) and (3) we have [[g]l=.

Finally, Hahn-Banach Theorem says that g has an extension f from N to the |
whole space X as a bounded linear functional with || f||=| g|: As f and g agree
over M — N, we have the result as wanted.

Application IV. Let M be a sub-space of NLS (X, || [D and ps »« x;if we (X \A)
such that dist(u, M) = 0, say = d.
~ Then there is a bounded linear functional ;¢ x *. satisfying
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(i) Fx)=0 overM (forxe M)
(i) Mu)=d
and (iii) || 7| =1.
Proof : Let N = Linear sub-space spanned by M plus w, ie. N =[M wiu}]
Now define f: N — Reals by rule :

fim + 1) = td (d as above), where m + fu is a representative member of
N(m € M, f a scalar).

Clearly fis a linear functional over N, such that for 7 = 0, f vanishes over M and

fay=d@=1).

Also for 10, ||m+au| =] - r[—Tw] || (here _TmeM)

o ;
] 12wz |t)d

So, | f(m+iu)=|t|d =| m+1u||; this inequality stands even for 7 = 0.
That means, [ is a bounded linear functional over N with || || =1.

For =0, we find by Infimum property, a member me M such. that
|| m—ul|<d+e.

Piit: y= ||$ T , making [|v||=1 and ve (becausa, vis the form g 4 'y ).
, 1/0)1= 4 vl cvli=1)

|tm |l d+e d+e

That means, || f|| = % MNow this is true for every +ve g, and takinge— 0,,
=

we find || fll=1.

ie. ||fllz1 S e

Combining (1) and (2) we find || f||=1. Now we apply Hahn-Banach Theorem
to find an extension & of f from & to the whole space X as a bounded linear functional
over X with || /]| =|| /' ||; since [ agrees with / over M, we have the result as desired.
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§ 4.3 CONJUGATE SPACES X*, X**, ... OFA NLS (X, || |} :

Let (X, || |) be a NLS, then X* X** = (X*)*, . are first, second, ...conjugate
space of X. ;

' Theorem 4.3.1. If X* is separable, then so is X.
Proof : Suppose [ is a countable dense subset of X*. Let D, be the subset of D
which is dense in the surface {f e X*:|| f||=1} of the closed unit ball of X*; let us

write Dy ={f, fa: 0 Sus -} with || £ ]|=1 for all # From || £,[|=1, we find a

member say x, with || x,||=1 such that

; 1
l .»f:u (JC,,} | = E
Consider the linear sub-space L of X spanned by {x;, xa, ..., X,,}

ie L= [Jf.l, Xy, ooy Xy ooo) and Put M= T (closure of L). The M is also a linear
sub-space of X.
 Suppose, M=#X ' NG S S

Take x,€(X\M), then d =dist(xy,M) >0 because M is closed.

By application of Hahn-Banach Theorem we obtain a bounded linear functional
F e x#* with || F|]=1 such that F vanishes (I = 0) over M and F(x,)#0.

Clearly F is 2 member of the set {f e X*:|| f||=1} and F(x,)=0 for all 2.
Now ;f,,(x,,) = f,(%,) = F(x,)+ F(x,) gives
| L) 1A 06) = FR) 1+ | F(x,) |
S R

Thus 5 <|Ce) <4~ F %, |

ot %4: i £, = F || for all .H; This contradicts that { f1, Jases fyse-} 18 dense.in
the set - {f e X *:| fll=1}.
So, M =X,
Thatis =X ;
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Now L contains that subset formed by finite linear combinations of x,, x,,.., x

it

with ratifma_l coefficients; and that subset becomes countable dense in X, The proof
is now complete. '

Remark : Converse of Theorem 4.3.1 is not true. The NLS I, consisting

=]

of all those real sequences x=(x,x,..x,,..) such that ZIIH{':‘“ with norm
=1

lxll = i‘. % | is separable but its conjugate space [ consisting of all bounded
sequenc:: of reals is not separable.
'Example 4.3.1. Let (X, [ ][ be a NLS over reals, and let x,,x, € X with & # ;.
Show that there is a bounded linear functional f over X such that f(x) 2 f(x,).
Solution : Here x,,x, e X with x, #x, ie. x —x, 20 in X So an application
of Hahn-Banach Theorem there is a bounded linear functional /e X *( f £ 0) such
that i
Sl —x)=0
or,  f(x)=f(x)=0
or, flxn)#f(x).

- Given a NLS (X, || |[) we show that there is a natural embedding of X in its
second conjugate space X** through a mapping, called the Canonical mapping that
we presently define using X*.

Theorem 4.3.2. Given xe X, let ¥(x*)=x*(x) forall x*= X* Then % isa
bounded linear functional over X*, and the mapping x —» ¥ is a Linear Tsometry of
X into X** : '

Proof : Let xe X, x* x*e X*; tﬁen we have

X0 ¥ +x%) = 00 * 46%)00) =3 * (1) +x5 ¥ () = 300 %) + 505, %),
Also if A is any scalar we have ¥(Ax*)=(Ax*)(x)=Ax *(x) = Ai’(x,l*).
Tﬂereﬁ::-re % is a linear functional over X™*.

Now we show that | x| = sup [|x*(x)|}.
{lx¥=t
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By Hahn-Banach Theorem we find a member x*e X * with || x*||=1
and ||x*(x) | =l x]|-

Therefore || x| = sup {|x* (=)}
(B4l " x"ﬁsll : m .

Again  [lx*Gollsllx*lllx i<l xl| when fx*]|<1
Therefore || x||2|x*(x)| when || x*||<1 :
Thus x|}z sup [x*(x)]. et
T el o) pes @
From (1) and (2) we have
| x| =sup{| x*(x)|: x*e X * with [[x*||=1}.
which is =sup{] X(x*)|: x*e X * with [|x*||<1}
STELD _
It shows that % is a bounded linear functional over X* with || & || =]| x||.
Finally, let x,x,€ X and xte X *, then :
(x + 2 )(x*) = x*(x; +x3)
=x*(x)+x*(x,)
= Ry (o) + 2 (). _
Similarly for any scalar o we have (@) (%) = x *(0'x;)
| " =ax* (%)
= F (x%)

' Therefore the mapping x — % i8 linear; and since || %]|=|| x||, this mapping is
Isometry. ' :

That is, x— & is a Linear Isometry of X onto the linear sub-space {%:xe X*)
of X**,

Definition 4.3.1. Given a NLS (X, || |, Linear Isometry x— & is called the
Canonical mapping of X into its second conjugate space X, 3
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" Definition 4.3.2. A NLS (X, || | is called reflexive if and only if the Carionical
mapping x — % maps X onto X**

Thus a necessary condition for X to be reflexive is that X is a Banach space.
However there are Banach spaces without being reflexive,

§ 4.4 OPEN MAPPING THEOREM AND CLOSED GRAPH THEOREM :

Like a big and important theorem of Hahn-Banach we have another big theorem
known as open mapping theorem in Functional analysis. There one is concerned
with open mappings that send open sets into open sets. Open mapping theorem
Sta.tes conditions under which a bounded linear operator shall be an open mapping.

Definition 4.4.1, Let X and ¥ be two metric spaces. Then a mapping 7: X — ¥
is called an open mapping if G is an open set in X its image under f=AG) is an
open set in ¥

Theorem 4.4.1. Let (X, || [[) and (T, || |[) be two Banach spaces; and T: X — ¥ be
a bounded linear operator which is onto (surjective). Then T is an open mapping,

The proof of the above theorem shall rest on following Lemma that we prove first.
Lemma 4.4.1 Let T': X — ¥ be a bounded linear operator which is onto and let

B'ﬂ = B,(0) be the open unit ball in X, then T(5,) contains an open ball centred at 0
in ¥ -
Proof : We may complete the proof in three stages as under :
(a) 7(B,) (closure of T(B,)) contains an open ball B*.

(b) If B, = open ball ’H {D) in X, then I(B ) shall contain an ﬂpen ball ¥,

centred at 0 in Y.

and (c) T(B,) contains an open ball cenred at 0 inF

(a) Consider open ball B =B, (0)c X If xeX, we find large real £ so that
: 2
x € kB, . Therefore we write '

o
X= o kB, ; Since T is onto and linear, we have

Y=1(xX)=7 (U M},] = A":-:"ikT(Ht} i KT (B taking closure did not add
more points to the Union = ¥ As ¥ is a Banach space, we invite Baire Category
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Theorem to conclude that one component say kT(B;, contains an open ball. That means

T(By {HnI contains an open ball, say, B* = B(y,, ). So we write

B*—yy = B(e, ‘”}Cf{h’l} Yo

(b) We show that B*- yo < T(By) (B,). where By stands as appearing in thﬂl:]'f‘EEl’I
This is accomplished by showing :

T(B))~ Yo © T(By)

Take ye7(B,)~y,; then ( y+y) € T(Bﬂ' and Iﬁmemberm;ﬂ that y, e T'(B))

we find

", = T{w” )& T(B,) such that limu, = y+y,

v, :Ij’-’{z“}e T(B,) such that }:'_,n;'n Yo = X0,

Since w,,z, € B, and Bl is of radius = il; we have

1, =2, IS 1w, 1+ 12, 1< 243 =1, So that G, -2,) € By
From T(w, ~z,)=T(w,)-T(z,) = tt,~ v, =y as n—w.
Therefore, ye rﬂ}). Since yé(m— yu] 15 an arbitrary we have shown
TB-nTB
From B*-y,=B(0,e) c ﬁ:ﬁﬁ— ¥ above we have

BY =R EE B © s (1)

- Take B, = B(0,27")c X. Since T is lincar, we have 7(B,)=2"T(B,);

From (1) one obtains

= B(0, 5’;) c1(B,) 6T A e e 2)

e Finaliy, we show that Vi =B(03 F}C 1 (Hn)..
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Take y EP"] . From (2), for n = 1, we have }71.1: ;T_“(hBT)

Hence _}:Em and we find v e T(B;) such that IEy—vli-::% '

Now v e T(B,) implies veT'(x) for some x, € B;.
“Therefore ly-TGl<S

Using this and {'2) above with n# =2 we see that (y—T(x Nev, Tﬁz}
As before we find x, € B, .Such that || ¥ =T I =T(x) |l < -g-

Hence {y—'j“(xl}—-?'{xz)el@ < T(B;), and so on. In nth step we take x, € B,
such that

W G 3)

”+! :l 3 3

“J" Zf ()] <

Put z, = X, + X%, +.. 4 x,; Since x; € By, we have [1 % | < that means n > m,
o
iz, =2 ur: \2 lxll< Y. 4 which — 0 as m—>o0.

k=m+] =m+l

So {z,} is Cauchy; let hm N 7, = X (X is a Banach space).

Also x € B, since By has radius = 1, an-:i

Zu:qr < k}_‘}ﬁ

As T is continuous, we have rlix_r& 7(z,)=T(x) and (3) shows that T(x) = )

So yel(B;).
Proof of Theroem 4.4.1. If A is an open set in X, we show that 7{4) is open in

Y, by showing that every y e 1'(x) € T(4) attracts an open ball centred at y = T'(x) within
T(A).
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Take y=T(x) e 7(A). As A is open there is an open ball centred at x < 4. Hence

A~ x contains an open ball centred at 0< X . Let radius of that open ball = . Put & =1 of
7 =%. Then k(A — x) contains the open unit ball B(0.1). Now Lemma 4.4.1 says

that T(k(fi x)) =§[T(£}—T{x}] contains an open ball centred at 0, and so does
T(4) — 1{x). Hence T{A) contains an open ball centred at y = T{x). As y is an arbitrary
member of T(4), we have shown that 7{A4) is open.

Corollary : Under open mapping theorem if T is bijective, T is bounded.

Example 4.4.1. Let T : R* = R be defined b}f T(x,y) = x for (x,) € R*. Show
that 7'is an open mapping. Examine if T R2 — R? where Mx, v)=0x 0), (x, M e R’
i3 an open mapping.

Solution : Here T: R* — R given by T{(x, ¥) = x is a projection mapping and we
know that it is a bounded linear operator such that T is onto. So we apply open
mapping theorem to conclude that 7' 1s an open mapping (In fact, 7 sends open
circular disc of R” onto an open interval).

IF 72 K2 — R* is given by 1{x, y) = (x, 0); there Image of an open circular disc
under 7 is not like that. So 7 is not an open mapping.

We know that all linear operators are bounded. For instance, dlﬁerﬁntml operator
is an unbounded linear operator, Closed Linear operators that we introduce presently
behave satisfactorily in this respect. Another important theorem, known as closed
Graph Theorem states suflicient conditions under which a closed linear operator on
a Banach space is bounded. '

Let (X || ) and (¥, || [|) be NLS with same scalars.

Definition 4.4.2. A linear operator 7 X — ¥ is called a closed linear operator
it its graph G(1) = {(x,y) e (X x¥): y=T(x),xe X}is a closed set in NL§ X x¥
with norm [[ (e, ) =llx [ +1pll, (ep)e(XxF). '

Theorem 4.4.2. Let X and ¥ be Banach spaces, and T': X — ¥ be a closed Imear
operator. Then 7'is a bounded linear operator.

Proof : First we verify that X x¥ with norm ||(x, p)[[=[|x||+[|»]| as
{x, y}-&.{X x¥) is also a Banach space.

et fr=ten _}*,})} be a {“auchy sequence in X xY.
Then |12, =2 1=l = % 14113 =Y |
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Thus |[|x,—x,l=llz,—2z,||—=0 as n,m —> o shows that {x, }is Cauchy in X,
and since X is complete,

let limx,=xc X, and similarly let Tim.y,, =ye?,
H kot }H.Do
These together imply that ,!I_];Il;jn Po=r=ik y)r? (X »}¥) .Thus we see that y xy

is a Banach space. Graph G(7) being a closed set:in X x ¥ | it follows that G(71) is
complete (infact, ((7) is a Banach space as a subspace of X x¥ )

Consider a mapping p : G(1) — X given by p(x, T{x)) = x € X. Then p is linear
operator over G(7). p is also bounded, because

| 2 G, TON =[x =[x [|+]| TG} ) = e, T(x)) ]
Further, p is bijective; with p ' given by

p i X - G(1') mapping x - (x, T(x)) as x= X . By applying open mapping
theorem we find p ! to be bounded. Hence there is a +ve K such that -

IT@OM<K ]| for xeX.

Therefore [[TCO| < TC |+l xll =]l e GN | =K |1 x )]
That means 7" is bounded. The proof is complete.

Example 4.4.2. If X and ¥ are Banach spaces over same scalars, and 7': X —>. Y
is a linear operator. Show that Graph G(7) is a subspace of X xV.

Solution : Let (x,7(x)) and (x,,7(x,)) be two members of G(7) as x,,x, € X,
where G(T) = {(x,7(x)): xe X} = (X x¥).

Then (x,7(x))+ (%, T(e)) = (3 + x5, T(x, )+1(xy))
=(x +x, 7(x +x3))  (T'is linear)
e G(T). ; '
If Ais any scalar 4(x,7(x)) = (Ax, AT(x)) = (Ax, Z(Ax)) € G(T).
Therefore G(T) is a sub-space of (X x¥). &
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EXERCISE A

Slmrt answer type questions

Show that a norm in a linear space X'is a sub-hnear functional over .X.

Show that a sub-linear fiunctional p in a linear space X satisfies (a) p(0) =0 and (b)
p=x)=-p(x) for xc X.

Show that non-null NLS X has a non-null conjugate space X*. :
Iffix) = fiy) for every bounded linear functional on a NLS X, show that x = y in X,

., If X and Y are Banach spaces show that the Null space N(T) of a closed linear

operator 1" X — Y is a closed sub-space of X,

If two non-zero linear functionals f;- and £, over a linear space have the same
Null space, then show that f; and f, are proportional. :

EXERCISE B

_ Let Xbea NLS, and xy€ X such that | £(x,)|<c forall fe X * with || £]|=1,

show that ||x; || 2¢.

If X 1s a NLS which is reflexive, show that X* is reflexive.

If X and ¥ are Banach spaces over the same scalars, and T: X — ¥ is a closed
linear operator, then show that (a) if C is compact in X, 7(C) is closed in Y and
(b) if K is compact in ¥, 77 (K) is closed in X

Let £ be a non-zero linear functional in a linear space A, and x, is a fixed element

in [X HN{f]) AN = ﬁull space of [ ={xe X : f(x)=0}), then any member

X in X has a unique representation x =ax, +y where y e N(f). Prove it.

\ [ b
- Show that T : Cla,b] — R defined by T(f)= j fdt, f € Cla,b] is a bounded

linear functional over C[a,d] and find || T||.
Show that f defined over C[-1,1] by the rule :

1) : f’l el - _[; xdt, xeC[-1,1]

is.a bounded linear functional over C[-1,1] and find || £].
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UNIT 5

(Contents : Inner product spaces, Cauchy-Schwarz inequality, L.P. spaces as NLS,
continuity of LP. function, Law of parallelogram, orthogonal (orthonormal) system
of vectors, Projection Theorem in Hilbert space H; Reisz Theorem for a bounded
linear functional over I, Bessel's inequality, Grahm-Smidst orthogonalisation process,
complete orthonormal system in H.)

§ 5.1 INNER PRODUCT SPACE

Tn a Normed Linear space principle operations involved are addition of vectors
and scalar multiplication of vectors by scalars as in elementary vector algebra. Norm
in such a space generalizes elementary idea-of length of a vector. What is still more

missing in an NLS is an analogue if well known dot prpdu_dt alb =ab +ah, +azh,,

and resulting formulas among other things like (i) length | 2| = «Ja.a and (i) relation
of orthogonality a.b = 0. These are important tools in numerous applications.

History of Inner product spaces is older than that of NLS. Theory had been
initiated by Hilbert through his work on integral equations. An inner product space
is a Linear space with an inner-product structure that we presently define.-

Suppose X denotes a complex Linear space.

Definition 5.1.1. X is said to be an Inner Product space or simply LP. space if
there is a scalar-valued function known Inner product function, denoted by, <, =
over X, X satisfying - : :

(AP 1) <x +pz==<xzz+<yz> forallx yz € &
(LP.2) <o, y» = o=<x, y= for all scalars ot and for all x, y € X
(LE 3} < x> = <x,y> forallx, y € X, bar denoting complex conjugate.
(IP. 4) <x, x> >0 forallx € Xanditis=0 ifand only if x=0 in X~
From LP. axioms above one can immediately derive the following :
{a} <x,ay>=a <x,y> forall scalars ot and x, y € X

(b) <Ax+puy.z==A<xz>+p<yz> for all x, y, z € X and for all
scalars A, 1.

(©) exay+Pzr=<axt Pz x>=ag<px>+f<z,x>
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—ax<y,x>+f <Ly>=G<Xy>+ B <x,z> Dbecause
conjugate of a complex scalar is itself
Example 511, Unitary space ¢” —¢x¢x..x¢ whose ¢ is the space of all
complex number is an LP. space with 1P, éiﬁg;::n.n by '
LZW)= oW+ 2 W+, 2, W, ‘where 2=(2,25,...2,) and

W = (W Wy, ) € €7

Solution : Here <z, w>=zW +2,W,+.. + z”w”

=ZpW + ZoWy + . 2, W, S 3w W, L+ T W
=< w,z > and this (LP. 3); rest of axioms are routine
check-ups.
In an 1P space (X, <>)of x € X, let us define Il x|2=<x, x> which is always
a non-negative quantity and is equal to 0 if and only if x =0 in X

Theorem 5.1.1, Every LP. space is an NLS. To prove this Theorem we need
help from following Lemma that is an independent proposition as well.
Lemma 5.1.1 (Cauchy-Schwarz inequality/C-S inequality)
In an LP. space (X, <=)ifx, y € X,
<%y = =[xyl

Proof : Without loss of generality take y #0 in X {lakmg p=0LHS. -—RHb
For any scalar . we have
| x+Ay|’=0
o, <x+Ay,x+Ady>=0
or, =::x,y::-+,ﬂ.;ft:y,_y:=-+i-=:x,y::-+1"«::y,£}2{}
o [IxIP AP pIP+Z <y +ATny 520
)

Let us now choose 1 =-—
: <y, y>

S i
e
Bl
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Then L.H.S. of above inequality

'=||xi| |.'x'y| |‘:x}}:"iz |~=:xy::-| ”x|z_lfx,y:=-t2
(57 G 16 7 i (6 1P
Therefore above inequality assumes the form

xfp -lsm2at
| Iy
o kxyssixliyl

Proof of Theorem 5.1.1. Norm axioms (N.1) and (N.2) follow from (1 P 4)
and the fact |[ax|’= <ax,ax>=ad@ <x,x>=|a || x|

This gives [Jorx|*=|e|]| x|
For triangle inequality (N.3), let x, y € X, then we have
lx+ylP=<x+pyxty>=|xf +<xy>+<yx>+|y]*.
Thus ||x+y|I* <|| x| +[<x,p > +|< yx 3|+ p |
=[x +2|<x,p = + || y I
<lxl® +2llx [l I+1121* by Lemma 5.1.1.

=(xll+ 1 D*.
‘Therefore [|x+yll<[lxl+[ly]l.
The proof is now complete.

Remark Equality sign in C-S inequality holds if and only if | e 0 or

=\l x+Ay| i.e. x ==hy orx + Ay =0 showing that x and y to be linearly dependent

Theorem 5.1.2, In an LP. space (X, <>}, show that 1.P. function is a continuous
function.

Proof :* Let {x,} and { ¥} be two sequences in X such that lim z,, = x and

lim y, =y in norm. That is to say, lim |lx, —x[j=0= lim || y, -y

Now I"':x,,,,l",; :=-—{X,y}|=]~:x,,,y,,}—{x,,,y}+{xn,y}—<x,y}|

=lex, Y~ Y t<x, — X3

172



<X, Yy =¥+l x, —xy >
<l 1LY = U+ 2 T, = x]15
- Since F—E X, =% innorm, {x,} is norm bounded, So there is an M i.;+ve)_ such
that ||x,||<M for all n
Therefore above inéquality assumes the form
M|y, ~yl+lylllx,-*l>0 as n-—w. This shows ' that

1““ <XpyVp==<X%) > and LP. function is continuous at (x, y).

Dcl'mtmn 5,1.2. An LP. space X is said to be a Hilbert space if X is a complete
NLS with norm || || as induced from LP. function.

Thus every Hilbert space is a Banach space. But opposite is not true.

Very often a Hilbert space is denoted by H and an LP. space is termed as a pre-
Hilbert space.

Theorem 5.1.3. If x and y are two members in a Hilbert space H, then

lx+ P + 112y IP=2]1 x| +2]| p|/*. Law of parallclogram).

Proof : Here ||Jc:-|vy|[2 +||x—y||2=-e:x+y,x+y:»+<:x—y,x'—_}f:=-
=[x+ <xy>+<y x> +yIF +llxlP -<xy>-<yxs+] |
=2 x| +2[ » 1> ' '

Remark : In school Geometry it is known that sum of squares raised on sides of
a.parallelogram is equal to the sum of squares raised on its diagonals. This is exactly
what is in Theorem 5.1.3 above. Hence the name is Law of parallelogram.

Example 5.1.2, The sequence space [, of all real sequences x = {f,,‘fz.,_.. B

with Z]:,"", Pz is a real ’H11be:rt space,
ik

Solution : We know that ;15 a n;al linear space where let us define an LP.

function <X,y == Erf,-i-‘?,- , the rh s series is convergent because
: i |

1Em 1 =30E F+im P x=Cuén)r 2=t )R] = L, 20
By routing exercise we check that all LP. axioms are O.K. in /,, and /, is an LP.
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space with real scalars, Further, with respect to the induced norm || x = Z| &P it
i=l
is also known that /; becomes a complete NLS. Hence /, is a Hilbert space.
Example 5.1.3. The sequence space /,(1 < p <) consisting of all real sequences
= N
x=(£,&,,...) with (Zi{,ﬂ | pJ <% is a Banach space without being a Hilbert
i=1
space with T.P. function to induce Banach-space norm. _
Solution : We have already seen that sequence space /,(1 < p > 0) is a Banach
L
: a AP
space with norm || x || 7[2@ | PJ , a8 X=(£,4,,..) €1, . We now show that this
oy - _

norm does not come from an LP, function on / »- Lhis is verified by Shn-wing that

this norm does not satisfy Law of Parallelogram. Take J.‘F(_L I’__blgck)’

st :
y=(1 -\ grogg) from - Then we find ||x||=y|=2/" and Il v+ yl=2
=]l x- Y. Therefore, if p#2 parallelogr am law fails,

§ 5.2 ORTHOGONAL ELEMENTS IN HILBERT SPACE

Let H denote a Hilbert space.

Definition 5.2.1. (a) Two members x and y in a Hilbert space H are called
orthogonal if < x, y= = 0,

We write in this case x | y.
(b) Give_:n a non-empty subsct L of H, an element x € H is said to be orthogonal
" to L, denoted by x L y if <x, == 0 for every member / & .

Theorem 5.2.1. (Pythogorian Law) Ifx, ye Hand x L y, then
@ [lx+pIP=f 2P +1 21
@) ||~ pIP=lx1P 1l 212
Proof : (i) ||x+y|P=<x+y.x+p>=| x|+ <x,p=+ <y x>+ I
=1 xI* +<x,p>+<x,p >+ y[P=|| 2| + || y|* since <x, 3> = 0.
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(i1) the proof is similar to above.

Theorem 5.2.2. Every closed convex subset of a Hilbert space H has a unique
member of smallest norm. ;

Proof : Let ( be a closed convex subset of H, and let d = Inl {|jx || : x eC}. -

Let {x } be a sequence in C such that lim || x, ||=d. for x,,x, eC we have -
H—pal 5 a

%(x”+xm] el because C is convex.
8o, IEEA it ons e Gl TN s oo ndn o niiida (1)
By Law of Parallelogram we have
15, ~ %, [2= 2115, I #2115, 1P =1 %, + 3, |
<2|x, | +2x, I? ~4d>
Since lim [|x, [|=d and similarly [|x, | -> dus SR

m —> oo taking limit », m—» oo in (2) we get

lim || x, —x,||=0; showing that {x,} is Cauchy in C.

M=y .

As C is closed, Let lim x, = xeC. Thus || x|= lim || x, || =4.
: H—pa

Fl—0

Hence x € C has a smallest norm, For uniqueness of x, let '€ C so that || x'|| =d.

By convexity of (¢ we have x-;x e and also ”x—gx ||=d. Again by Law of

Parallelogram we have

cix 2 _IxIP Il Jix-%
I P = +
i 2 2 2

< TP+l lP i ey

=d*; giving I!’”;‘r ll<d—a contradiction of X=X 2 d: as

2
arrived at early, The proof is now complete.

Theorem 5.2.3 (Projection Theorém), Let L be a closed subspace of / and
L+ H ; Then every member x € /1 has a unique representation x = y | z where
yE I,a'nd o] & e : ' :
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Proof : If x is a member of L c H ; we write x=x+0 when 0el [
Let us take xe (A \L), and put ! '

d = E‘;E | x~a ||2: dist(x, L}; Because L is closed we have d > 0,
and there is a sequence {a,} of member a, in L such that .
?Er(}odnzﬂx—a;,”z:d. ............... (1)

Take any non-zero member a in L. As L is a sub-space of H, we have for any
scalar £, (a,+ga)e L and therefore

| x~(a, +ea) |’ = d

o, <Xx—-a,—&d, x—a,-ga=zd
S e : = 2 2
ar, !|x—a,lﬁ —E{I*ﬂ":,ﬂ}—E{ﬂ,x—ﬂn_}'fi&| ”ﬂ” zd.
; <X =i as . :
Now take E:Tﬁ;—;mth such a choice of &, we have
7]
2 |«:x~c:m¢:t_::»|2
gl ee——ara t e
llalP
2 it
o, |<x-a,asP<|alP @,~d)
or, |<x—a,as|<|allfd,~d ; W

Inequality holds for a=0 in L; So for any g I we have

l=a, —a,,,,ﬁ HElca, ~x,axl+lcx-a,a>|

ie.  |<a,-aaz<lall(Jd—d +\d,~d) from (*)

Putting a=a, —-am, we have

|{._Hn = Oy Gy =y }1 w2 il dy =y Il (\;‘dn-_ d+ 'U"dm "d)

ie.  llay=ayl’ <lia, ~a, (&, ~d +d,-d)
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o] | e | = (x,l'dn ~-d + \/f_f,:—g], where r.ﬁ.s, —» 0as n,m — o0 by (1).
That means {a,} is Cauchy in L.
Since L is closed, let }rlr}IDln a =yel

Now in |<x—a,, a>=|=|al|l.d,—d, let us pass on the iﬁgﬁa,,:y and get
(X =yt = :
e <X~y 0>=0; This is true for any member a in L; Therefore
(x—y)LL Letusputz=x-n

Then we have x =y + z where ye L and z L L.

For uniqueness of this representation, let x = y.+z =y'+z where y'e L and
7 Al fhusy, y' come from L and z,z' L L. Clearly, v—y'=2z"—z, and

ly=yIP=<y-y,p-y>=<y-y,2'-z5=0 where |z'~z||LL.
Therefore y = y’ and hence z = z'. The proof is now complete.

Remark : In representation Theorem 5.2.3. where x = y + z, y is called projection
of x on L. It is obvious that collection M of all elements, orthogonal to L forms a
sub-space. M is also closed because of continuity of I.P. function. That is why z is
called projection of x on M which is called orthogonal complement of I.. Further,
Hilbert space H is then sum of two orthogonal sub-spaces L and M. Here we see
orthogonal sum is a special case of the Direct sum, Thus projection Theorem 5.2.3
gives a decomposition of any member in Hilbert space H into its projections onto
two complementary orthogonal sub-spaces,

§ 5.3, Tt 1s important to know that the general form of a bounded Linear functional
acting on a given space. Such formulae in respect of some NLS are known; their
derivations could be much complicated. Situatu}n is, however, surprisingly simple
for a Hilbert space H

Theorem 5.3.1 (Riesz Theorem on representation of functional over H).

Let f'be a bounded linear functional over a Hilbert space H. Then f{x)=<x, ¥ >
for all x € H and for some z € H uniquely determined by f such that || z || = || £||.

Proof : 1If fis the zero functional over H. We take z=0 in H to, do the job.

Sﬁppﬂse that f is a non-zero bounded lmcar functional over H. Consxder the null-
space N(f) of f where
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N(f)=i{xe H: f(x)=0}. Clearly N(f) is a closed linear sub-space of H
without being equal to H.
Take a non-zero z, €L N(f)

Letxe H. Put v= £(x)z,~ f(z9)x
So that f{‘r’} = S (x)zq) - ([ (zp)%) :
= f(x)f{uu) flz5) f(x) :(fis linear)
=10
That means v & N( ), by choice z; is orthogonal to v
So O=<v,zy>=< f(x)zp— flzy)x, 20 >

= fix)<zgzyg>—f{zy)<%,2p>

Nzl FO) - Fz) < ¥z >

Giving S0 =T 28 <20
f[zn]
T
= { x, ¥ > (say), where z= f{zﬂ'g Zy. B ]
: Il 2o Il

This is the répresentative formula for f{x) as wanted.
For ﬁniqueness of z, let f(x)=<x,z >=<x,x, > for all er
Then we have <X, 5 >=<, zz} or, =X,z -2;>=0
put x=2z,—2,; S0 <z -2y, & - 32} 0 or, [[z—2|*=0 or, 2=z,
Finally, We have | f(x)|=]<x,z > <| x| z] ;
' - This gives || /=]l z]| iR
Again taking z = x in (1) we have <z,z>= f(z)
or, ||z <l A1l =l
Con, |zl =] £l T
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Combining (1) and (2) we have || | <] z]|. :
. Converse of Theorem 5.3.1. is true. This is what Example 5.3.1 has to say.
Example 5.3.1, Let z be a fixed member in a Hilbert space H. Show that

f(x)==<x,z> for all x € H is a bounded linear functional over H with
A l=121-
- Solution ; Here f: H —Scalar such that for noxeH
Then f(x+X)=<X+X,2>=<Xx,z>+ < X3, 2 }=f(x,}+f[x’2_}.
And for any scalar @ flax)=<ax,z>=a<x,z>=af(x)
Thus f'is Linear. Further | f(x)|=|<x,z > <||x|||| z]| (by C-S inequality)
This is true for all x € H. Therefore fis a bounded linear functional such that

[FAIES (B

|l i e s R (1)
Taking x = z m f{x) = <x, > we have
' lzlf=<zz>=f) | S 2]l
st Vel (P S e S B TS (2)

(1) plus (2) gives || /[l =]l z]].
Corollary to Theorem 5.3.1. Every Hilbert space H is reflexive.

Because by Theorem 5.3.1. together example put up above says that every
bounded linear functional over /. ie. every member of H* arises out of a member
of 1 and conversely. This correspondence gives rise to an isomorphism between
and H*, and we say that H is self-dual and this in turn implies that here Canonical
mapping between H and H** is a surjection. Hence / is reflexive.

§ 5.4 ORTHONORMAL SYSTEM IN HILBERT SPACE H.

Definition 5.4.1. (a) A non-efnpt}' subset {e,} of Hilbert space H is said to be
an orthonormal system if

(i) i#J, ¢+e; ie anytwo distinct members of {e} are orthogonal.

and (1) [le [|=1 for every i ie any vector of the system is non-zero unit
vector in /.

(b) If an orthonormal system of / is countable, we can enumerate its elements
in 4 sequence say it as an orthonormal sequence.
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For example in Euclidean s-space K" which is a real Hilbert space the fundamental
unit vectors ¢ =(1,0,0,...,0), e =(0,1,0,0,...,0)...... e, =(10,...,0,1) form an
nrlhanormal system of vectors in R".

Example 4.1, Let 1,[0,27] be the real Hilbert space of all square integrable
functions f over [0,2x] with LP. function

5 f
{.flsg}:_[nx.fg-dr; f!gE‘r"z [szﬂ-]

2r
Sl J;f*ds_

Then eﬁ(:‘}:-;é;-,en(f}-- sz_fr {1—1 2,..)and 0=t <2r.
7

form an oﬁhonnrmai sequence in [,[0,27]; because

0 iftm=n

2T 5

-.[D cosmf cosmtdt=4 m iftm=n=12..
2 fm=n=0

Theorem.5.4.1. An orthonormal system in H 1s linearly indepenﬂent.
Proof : Let {e;} be an orthonormal system in /; and let for a finite subset, say,

By B e e, of the system we have

. o tae ot aye, = 0 where @ 's are scalars. Then for 1= j<n we have

0=<0e;> -<Ea;e,, J,> Za e e

=a; <e;,e, ==a;; (other terms being zero because of mutual
orthogonality). So @ =&, =...=a, =0. That means any finite sub-system of the
given system is linearly independent. Hence proof is done.
Definition 5.4.2. Let {¢} be an orthonormal system in ff and xe H; Then
scalars ¢; =< x,¢; > are called Fouries co-efficients of x wir.t the system. \

Theoreni 5.4.2. Suppose {¢,,¢,.€;,.....€,,...} be an orthonormal sequence in H;

180



then for x € H,

o

2 2
Yl<xe =2 <%

i=1
(This inequality is very often termed as Bessei s inequality).

Proof : Let n be a +ve integer. If ¢; are Fouries coefficients of x w.r.t. {ef}, we
have

_icfe,.“z:(x “,x.Zce>
=l -

i [ r L n n
3 ] =
= x|l —<1": > Lf3f>_<§:{’.‘€a'?x>+<§ ;Cf€f7§;9k9ﬁ>
=] = k=

i=l

:||xt|2—i{_,}<:x,e;::—icf{Ef,x}+icjc:ef,i¢kerk>
C e =l i=l =1
b n
=[x ZUH ZLILI+ZZ“Ck =€, 6 >

fu] k=

" H # - : "o
2 2 2 2 2
=[x~ Xl -Ylel +Z|¢:| =[xl Yl e
: i=l i=1 =l i=l

H- - H
Therefore, ZEL‘, P<lx|P or Zl{ x,e = <l x|l

i=l i=1

d el
This is true for any +ve integer n, and thus Z|c:: x,¢ = is convergent and
: il

i[{ X, i3 < Il x|

A

Theorem 5.4.3. In a separable Hilbert qpace H every arthc-m)nnai system is
countable.
Proof : Let E ={e;} be an orthonormal system in H which is separable. If e, 2 €;

we have <¢,¢e; >=0 and ||¢g [|=1=]|e,||.
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Therefore <¢;—e;,¢;~¢; >=|l¢ | — <e, e, >—<ene >+le; [P=0+1+1=2
So, [le Ty ”2 =2
or, |le—e =+2.

By separability of H, we ﬁnd a countable set {y,y5,...0,,...} whmh is dense in
E. So we find two members, say, ¥; and y, such that

V2

",V;'_ﬂ_;' ”{‘T and ||y, e, ]|{%2-
So . V2=lle~¢;ll=lle,~yi+ 3=y +y; e
| lhe=2 1+ 15 =2, 1+, =
.2 2 S
‘:TJ_"“”_}'!_J’; Il

Nz

Showing || y; - y; rl}T. clearly 7= j; This establishes an H correspondence
between members of E with members of a subset of a countable set. Therefore E 13
countable.

Gram-Schmidt Grthugﬂllsntmn Process : Subject is that in a Hilbert space H
one can transform a linearly independent set of elements in H into an orthonormal
system in H by a technique known by above name.

Let xy, x,,... be an independent system of vectors in H (So none is zero vector)
Put ¢ = ” ; and let yz = X, —Cy¢ Where ¢, =< Xy, € >

Next we put e, ” ” ; By verification we see <g,q =1, <e e =1
' Y2
and <e¢,e, >=0.
Now let y;=x3-(cy¢ +cye;) where we choose ¢ = <Xy, € >,
-
Mext we put €3 = H— and as before we have
Y3 :
<eye3==1, <e3,0,>=0 =<ey,¢ >
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We continue this process, if’ e, e,,...,e,_; have been constructed, let us take

k-1
Ye =% —Z%Ef

fus]

where ¢;; = <X, > so that y, is orthogonal to e, €,...€,_1; Define ¢, =

|| Il

Inductively, we construct e, as a linear combination of x;, x,,... and x,. This way we
are led to orthonormal system (e, e,,... €,,...) from (x|, X,... X,,...).

Definition 5.4.3. In a Hilbert space H an orthonormal system E is called a
complete orthonormal system if there is no prthonormal system in / to contain E as
_ a proper subsel.

For example, in Euclidean n-space H“.[a real Hilbert space) the set of all
fundamental unit vectors {e,, e5....¢,} where ¢, = (0 oL | 0),j=1,2...,nisa
= : it ace :

complete orthonormal system in R". gt

Theorem 5.4.4. In a Hilbert space H let {e,, e,,...e,...} be an orthonormal
sequence in H. Then following statements are equivalent (one implies other).

(a) {e;} 1s complete.

{h) <x,¢; >=0 for all 7 implies x=0 in H.

[e'a ]
(c) x=-zf:_ x,e; > ¢ foreach xe H.
=l ?

(d) Zl‘i x.¢ == x|? for every xe H.
=l :

Proof: (a)= (b); Let (a) be true. Suppose (b) is false, Then we find a non-zero
xin [ such that <x,e; >=0 fori=12,..

Put e=—*__ Sothat|el||=1, and <e,e; >=0 for all j,

(8418

Therefore {e;,e,,...,..€,,...}\w{e} becomes an orthonormal system containing

given system properly—a contradiction that {e,, e,,....e,} is complete. Hence (b) is
established.

[h]—:»{c} Let &, —Zc:x e >e;
i=]
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i=1 g

Then } <x, >¢=1lim S, =5 (say)

_[f‘ l=j=n, <xe ;:—c:Hn,ej =

- H
S<X, e 5= ) <xe>e e
p=

=<X,e; =-<Xe >=0

Thus ’*’-Smﬂj >=<xe; >
n 2 5
Now <¥— 2 <Xe¢ sene; >=<x~8,¢,>=<xe >—<8.e>
i=1 et

e rlrl—r}rr}oé"“cj >=<xe; > —JE?Q <8ei>= <K >—<xe >=0

oo
‘That means ¢; L| x> <xe >e | therefore from (b) we have
=l :
3 M o
X— Y <X584=0 je. ¥=Y<xese.
Tal ' =1 i

ol [Ea)
— 2— et
() = (d) . We have ||x|] -~=::x,x:3—c:_z’c:x,ef >€,.§{x,ej >e; =
= F-3

M F
=<lim ) <xe >¢,.<lim» <xe.>e, =
M ronslnd cne e

" H
= lim {Z{xe =g Z*xe-} 2
TP R i iz T
i=l f=l
i

; H
=lim > <x.e > <x,g >=lim Y |<x,¢ >

J—po 4=
i=l

= Zlc: v a
i=1
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(d)=> (a). Let (d) hold and if possible let {e;} be not complete. Then we find
an orthonormal system strictly larger than {e,, ¢,....€,,.....}; say larger system looks
as {e, e, gzﬁ...,e”..._} where, of course, || e || =1 and <e, e¢==0fori= 1,2, ... Now
(d) applies (taking x = e), and we have

==
2 e
lell*=> |<e.e > = 0— a contradiction. So we have proved (a).
=1

Example 5.4.2. Let {x,} be a sequence in Hilbert space H and x € H such that

lim || %, ||=] %], and lim <x,,x>||=<x,x>. Show that lim x, = x.
—ron F—e i fi=»o0
Solution : Given lim ||x,|[=|lx|l and lim <x,,x>=<x,x>= x|
: R H—»oD y

: 2 2
Now ||x:.l_x1| =c:x,,~x,x”—x:>=i|x”ﬂ _'{rrr:'r}_”::xr'rn}-'_ilx“z
2 ; N TR vl
*. ” Xy |i B xmx}+|ixn

>l xIF =l xl* =l x]? +] x|[*=0 as n—oo.

Therefore lim x, =x

H--»oa

Example 5.4.3. In a real Hilbert space H if || x| = || |, show that <x + y
~x—y= = 0. Interpret the result Geometrically if A = Euclidean 2-space R
Solution : Let H be a real Hilbert space and x, y € H that such || x || = || ¥ |.

Now <X+ ), X—yr=<XX>—<XVr+<PX>—<P P>

=|[x‘||2—{x,y>+{x,y}-—|.|y[|2 (because it is a real

Hilbert space, < x, y>==<x,p>)
=0
That means {x+ ) L(x—y).

It Euclidean 2-space 1°, fig is an equilateral parallelogram 7.e. a Rhombus with
adjacent sides represented by x and y with ||x || = || ¥[|; and we know that in a
Rhombus Diagonals cut at right angles.

EXERCISE A
Short answer type gquestions
1. Ifinan 1.P. space <x, &> = <x, v> for all x in the space, show that y = »
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Show that Banach space c[a,b] with sup norm is not a Hilbert space with an 1 P
to induce the sup norm.

If £ 1s a bounded linear functional over Luchdean 3-space R1 th}w that f can be
represented by a dot product

JFx)=xz=&p+&Ep, +&305.

Show that in a Hilbert space H convergence of ZI’ x| 1mphes cmwergence of

J=1
Zx

Tf 5& denotes the Unitary space of all complex numbers If 7. & € ¢, show that
< 2,2y > = 7,2, defines an I.P. function.on ¢.

EXERCISE B

. If x and y are two nen-zero elements in a Hilbert space M, show that
[x+yll=l[x|+]|»|| where equality holds if and only if y = @x for a suitable
scalar o Y

Let ¢ be a convex set in a Hilbert space H, and d = Inf{|lx|:xec}. If {x,} isa
sequence in ¢ such that Iim | x,ll=d ., show that {x,} is a Cauchy sequence.

If {e,} 1s any urthc-nc-nnai sequence in a Hilbert space H and x, ¥ € H, show
thal :

| 2 <xe,><p.e, 21| x|y

H=1
Let {e}, es,... e,,} be an Drthﬂﬂ{)l'ﬂ.’lai set in a Hilbert space // where n is fixed, If

H

x € H be a fixed member, show that for scalars A Sl Eﬂff} Il is
- : i=1

minimum when o =< x,e > i =1..n
. Let {€;} be an orthonormal sequence in a Hilbert space H. For xe H, define

_P'—‘Z“:Xﬂk =€ | show that (x-y) Le, (k=12,.).

k=l

Show that for the sequence space /, (a real Hilbert space) its conjugate space /¥
is isomorphic to b, e
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UNIT 6

(Contents : Adjoint of bounded: linear operator in a Hilbert space H, Algebra of
adjoint operators, proudct of adjoints, self-adjoint operators in H, their algebra, Norm
of self-adjoint operator, space of self-adjoint operators, every bounded linear operator
in H as a sum of :;eit—ad_]{}!nt operators, eigen value and eigen vectors of self-adjoint
operator.)

'§ 6.1 Let H be a complex Hilbert space and let Bda(H,H) denote the space of all
bounded linear operators T': H — H: Take one such ¥': H — H as a bounded linear
operator. Let y € H. : :

Define f, : H — scalars by the rule :

fp(x)=<T(x),y> as xeH S (1)
Nofice that if x;, x, € H, we have _
Syl tx0) =<T(x +X,), ¥y >=<T(x)+T(x;), ¥ > because T is linear
=<T(x),¥y>+<T(x,),y> using property inner pmduﬁt
=fua)+ 1 (x);

Similarly. f,(@x;) =a/f,(x) for any scalar o
That means, 3; is a linear functional over H.
Plus | f,(x)|=]<T(x), y = =[[T(x) [l || by C-§ inequality,
<IT NP U=AT Iy Dilx] for all x € H.
Therefore, , is a bounded linear functional over H, and as we had seen earlier,
Riesz representation Theorem says, there is a unique member, say v* ¢ /. such that
Jyxy=<x, y* > ; SR

where we remember that y* is determined by /. From the text as put up above one
sees that given y e H, there is a unique member y*c H (via 2.

Let us define 7% [ —» 7 by formula : {
T*(y)=y* as described above e

This operator 7* is called adjoint operator to I'in /7 and as explained ahuve they are
~ connected by relation
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<T(x)y>=<xT*@ > from (1), (2) and (3) above for all x, y e H,

Explanation : 7% is well defined over H, Because, suppose that tor allx, ye H
we have simultaneously

<A {x), V> =<2 T2 >
and <T(x),y>=<x1*(y) > for aﬂeth;:-:*r h:H-H
Therefore we see <x,T*())>=<x,T,*(y)> forallx, ye H
rﬁeaning thereby T*())=T,*(y) foif' y € H. ie T*=T*
Theorem 6._1.!. T*:H — H is a bounded linear operator (T*EBda{H,H)},
Proof : Letx, ), z€ H. Then <x,7*(y+2)>=<T(x), y+z>
=<T(x), y>+<T(x),z2>=<x T*(p)>+<x, ?'*{zj}
=<x, T*()+TH*z)>. : '
Therefore, T*(y+z)=T*(y)+T*(2) - s1 )il (1)
Again for a scalar A, <x,T*(Ap)>=<T(x),dy>
—iﬁT{x} Y= A=x, f*{y}::- <x,AT*(y)>.
Therefore, T*(/’ty) AT ' ireranis k)
(1) and (2) together say that 7* is a linear operator,
Again, for yc // we have
IT*O)I* = <T*O).T*(3) > =< TT*(G),y >
ENTTEOS I TINT* Ol 2 |
That means, || 7*(»)[|=[|7[|]| ||, and therefore T* is a bound linear aperator
over i with || T*|| || T||.
Corollary 1. T%* = T _
Now TI* is a bounded linear operator; and from the relation

. <I(x),y>=<x,I*(y)> let us put I* in place of T to get forallx, ye H,

<I'*(x),y>=<x,T**)>
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Interchange x and y to get _
e TH), x> =< . T*¥x) >
Taking conjugates, <7 **(x),y>= ~:: T =Tl ys . e *
Now (*) remains true for all yveH, thereforé we deduce that
TT*(x)=T{(x) and this being true for all xe H we finally obtain 7 %% =7'.
Corollary 2. || T*(|=[IT1.
We do already thave || 7*]|<]|T ||; let us apply this in fmr-::-ur of T* to get
I T**|[ =] T*|]
or, (| T{=lT*|
Therefore, (| T]|=||T*Il
§ 6.2 ALGEBRA OF ADJOINT OPERATORS IN HILBERT SPACE H.

‘Let & and B be two bounded linear operators : H — H ie. 4, Be Bda(H H).
Then 4 + B and o (@ any scalar) are also members of ﬁdar(H H).

Theorem 6.2.1. (a) (4 +B)* = A*+B* and (b) (arA}* =@A* where A* denotes
adjoint of A.

- Proof : (a) For all x, y € H we have «::A[ﬂ,y::-:-:;x,A*{yﬁ: and
< B(x),y>=<x,B*(y)>

Now <ux, (A+B)*y>=<(a+B)x),y>
: =< A(x)+ B(x), y>

i

=< A(x),y=+<B(x),y>
—ax A*(¥)>+<x,B*(y)>
=<x, A*(»)+B*(y) >
'.:c:x,(A*+B*}{y}}
This shows that (4+B)*= A*+B*
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(h} <x, [@A)* () > = < (@A)(x), y >
=<aA(x), y=>
=a < A(x), y=
=a<x, A*(y)>
=< x, @A () >
=< x, (@A"Y =
This being true for all x, y € H, we have (gA)*=GA*.
For 4 and 5 belonging to Bda(H, H), let us define (AB) H’ — H by following

rule of composition; - _
[Ah’}{x) = A(B(x)) for xe H . In this way (BA) : H-—> H is also déﬁned. It is
a routine verification that [AB} : H — H is a linear operator such that for xe & )
ICABYX) [|= [l A(BCO) =N AN BOY <l ANIB | x ]
This is true for all x € H; Therefore (4B) is also a bounded linear operator over
H ie (AB)e Bda(H H).
- Theorem 6.2.2. (AB)*=B*4*
Proof : For x, y € H, we have < A(x),y > = <x, A¥(y) =
and < B(x),y>= -::x,B*(y):; _
Now <(AB)(x),y>=<x,(4B)*( ¥) = which is the same as,
<x,(4B)* (y) > = < (ABY(x), y >
. =< A(B(x)), y >
=By
= <x, B¥(A*(y)>
=<x, (B*A%)y)» .; Therefore we have (AR = RXg %
Theorem 6.2.3. For any 4 Bda(H,H), || 4% =1 Al = 4.

Proof : We always have || 4* 4| <|| 4*|||| 4||=|| 4][]| 4]|=|| 4] because A* i
also a member of Bda(H, H)
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ie.  ||4*A|<] 4] _ AL e
Again || 4] = sup {| A1}
= sup {|< A(x), A(x) ={}
ot
- =sup {|= A*(A(x)), x |}
=1

= sup {] < (A* A)(x), x =]}
[agf=1

ils;:rp; A=Al x]1} form C-$ inequality,
fi= ;

<||A* 4|l
Thatis, |AIR<A*Al. _ kD)
me (1) and (2) we have || A* Al =|| A Now applying this equality to A*
one abtains || A4* || = || (4*)* 4*|| =[| 4%|2 =[| 4*- The proof is now complete,
Corollary : Tf Ae Bda(H,H) is such that A4*=A*A4 (ie. 4 and A*
conunute), then |]A =11 4117

§ 6.3 SELF-ADJOINT OPERATORS OVER HILBERT ‘-‘;PﬁCL H.

Definition 6.3.1. A member 7' Bda(H,H) i.e. T being a bounded linear
‘operator over H is called self-adjoint if T% = T.

Theorem 6.3.1; (a) If T, and T are self-adjoint operators over H, then T; + 73 is
S0 . _

(b) If T, is self-adjoint and ¢ any real scalar, then o) is self-adjoint,

(c) For any member 7' e Bdar(H H ), T*T. TT* and 7+ 1* are self-adjaint

Tz.’ (7yand T, mmmute)
Proof : (a) (T} + T)* = T i e Tl + 715

(b) (afy)* =&l * = &l, =, because & is a real scalar.
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(¢) (I*T)* = I* TT** = T*T, (TT*)* = T**T% = IT*,
aﬁd(T+ﬂ)*=T‘*+T**=T*+T: i By RS
and finally (d) (L)*=T,%1,*=0,T,;. Tharcfme {T'jr'z)* Ty if and only if
LT, =T,

Theorem 6.3.2. The class of all self-adjoint operators forms a closed real sub-
space of Bder(H,H ), and hence it is a Banach space.

Proof : If 0 and / denote the zero operator and identity operator, we have 0 and
I are members of Bda(H,H). Further 0* = 0 and /* = I, Now if 4 and B are self-

adjoint operators with & and 8 two real scalars, we have
(@A + BB)* =GA*+BB* = ad* + IB*
=ad+ B
Showing thereby that a4 + fB is also self-adjoint.

Further if {4,} is a sequence of self-adjoint operators over A such that

lim 4, = 4 in operator norm, ie. || A4, —A|->0 as s> 0. Then we know that A

=i

18 a huundcd linear Dperailor on Hilbert space. So that
A=A < A=A ] A, = A )4, A
__”A_ &‘n ||+|| {AR_A)*”

=l A=A, || +1| 4, ~ 4| >0 as 1>z,
Hence 4 = A* and A is self-adjoint.

Theorem 6.3.3. Let 4 be a bounded linear operator : H — H such that for all -
x, y.€ H <A(x), y> =0, then 4 equals to the zero operator and conversely.

Proof : For the zero operator we always have <0(x),y>=<0,y>=0.
Conversely let for all x, y € H, <A(x),.)> = 0. Let us fix x ¢ H and consider
<A(x), y>=0forall ye H. That means A(x)=0 in H; Now let x be free and we
see A(x)=0 for x € H; showing 4 = 0.

Cﬂmllm'y 1t 4 1s a bounded linear operator : H — H satisfies < A(x), x> =0
for all x € H, then A is the zero operator.
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If x, ye H and o, fare any two scalars we have
0=<(ax+pBy), ax+pfy>
=<aA(x)+ fA(y), ax+fy> (A is Linear)
=l < A(x),x > +aP < Ax),y > + & < A(y),x > +8B < A(y), y =
= aff < A(x),y >+ P& < A(y),x > other terms are zero by given condition.
Let us take fx— 1 and ,3= 1, then we have
<A(x),y=+<A(Y),x>=0 R R T R (1)
Again take =7 and =1, then above gi*.vcs
i<Ax) y=—i<A(y),x==0 i
or, e A(x), yE-<A(y),x>=0 : (2)
Adding (1) and (2) we deﬂuce_ < A(x),y >=0, and now apply Theorem 6.3.3
for desired conclusion.

Theorem 6.3.4. Let 1"e Bda(H,H) (T: H— H is a bounded linear operator).
Then T is self-adjoint if and only if < A(x), x > is a real scalar for all x € H (Hilbert
space). O PR d '

- Proof : Suppose T'is a self-adjoint operator over H, and let x € H: we have

<T(x)x>=<xT(xX)>=<x,T¥(x)>=<T(x),x>
Therefore scalar < 1{x), x = is a real scalar,
Conversely, let < 7(x), x> isreal forall x e H.
- Then <7(x), x>=<T(x), x>=<x,T*(x)>=<T*(x), x>
Thus <¥{x),x>-<T*(x), x>=0
ar, =0y~ T Hx) xan
ar, =l a s =
This being true for all x in A, we conclude that
A zero operator
] A e B
r.e. T is a self-adjoint operator.

193
PGIMTI6 (G A & B)—13



Theorem 6.3.5. If H is a Hilbert space and T e Bda(H,H), such that T'is self-.
adjoint, Then || T'|| = IESITPI [« T(x), x>|
=

Proof : If T is self-adjoint, it is ofcourse a bounded linear operator over H. Then
for any x with || x || =1 in A. :
< T), x> I TC)llx]l by C-S inequality,
[T == N=1T1l.

Therefore, o [« T'(x) x == || T || : ey
= A 4
Let K= sup|<T(x),x>|.
lldi=l e,

- Now we show that [|T'|| =X

If T(u) = 0 for all  with || || =1 in H, then we see that T = 0 (zero operator),
and in that case we have finished.

Otherwise for any z with || z || = 1 such that T(z)#0, put v=.f|[7(z)[.z and

w:u@—;(—zﬂ?{z)' Then |[v|P=|w|P=||T(z)]||. Let us now put y =v+w and

¥, =v—w. Then on straight calculation and using the fact that T is self-adjoint, we
have ' :

<TO, 3 == <TOR), yp > =A< T, w>+<T(w), v>

= 2<T(2), T(2) >+ <TXz), 2>) =4 || T(2) |’ sicenidl)

Now for every y =0, and x=-2—_ we have

B2
y=lyllx and <7(3), y>=]| yIP | T(x), x |

| yI? € sup l«T@)u ==K || |

Hel=1

 Now [«T(y), » >—<T0) 2 2 21<Tn), 3 = 12 T(), 3, 2
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<K(In 1+ 320"
=2K (| v|[* +[w]P)
| =4K || T(2)]
. From here and (2) we get 4| T(2)|P* < 4K || T(2)|
Hence ||T(z)||=K
So taking supremum over all z with norm | one obtains ||7'|| < K
together with K <||T|| from (1) we finally get || T = K

Theorem 6.3.6. Let 7' e Bda(H H), H bemg Hilbert space show that following
statements are equivalent.

(@) T*T=1 (Identity operator)
®) <Tx),T()>=<xy> forall x,yeH
{© NIT]=] x|| forall xeH
- Proof : (a) = (b). Let (a) hold. Then for all x,j:eH , we have
' <T*T(x), y>=<I(x), y>=<xy>
or, <T(x), T(y)>=<x3>, (b) follows,
(b) = (c): suppose (b) is true. Taking y = x in (b).
We have <T(x), 7(x)>=<x,x> |
of, ()| =[x
o, ||[T(x)[l=Il=] |
(€)= (a); Then || T(x) || =[| x| gives ||7(x)|P = x|?
o, =I(x),T{x)>==<xx>
of, «F*T(x)xz=<xx>
o, <T*T(x),x>-<x, I>—ﬂ

9]

b

((r'*T'-I)(x),x)=0; Here we apply corollary of Theorem 6.3.3 to
cancﬁudc that 77 -7'=0 or, T*7'=]. :
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§ 6.4 EIGEN VALUES AND EIGIEN VECTORS OF OPERATOR \DNI
HILBERT SPACE H.

Let T be a bounded Linear operator : H — H i.e. T e Bda(H H).

Definition 6.4.1. A non-zero vector x € H is said to be an eigen vector
corresponding to a scalar A called an f:igen value of 1"if

) T(x) = hx :
or, Tx)-Ax)=0"(J alenutmf, Identity operator on A)
or, (T—-AD(x)=0

Theorem 6.4.1. Let 7': H — H be a sclf'-admini operator. Then (1) all eigen

values of T (if they exist) are real, and (2) Elgen vectors cc:m:spondmg to different
eigen values of T"are orthognonal,

Proof : (a) Let A be an eigen value of 7 and x a corresponding eigen vector.
Then x#0 and T(x) = Ax.

Since T is self-adjoint, we have

/'L{x,.ﬁc}:"::ﬂ,x,x}==:T(x),x:>:c:x, flx)==<x Ax >

=1 <x,x> where < x x==[|x||* is+veas x 0, and this gives
A=7 (since ||x]|>0) and therefore A is real. )

(b) Let 4 and u be two different cigen values of 7, and let x and y be mgen
- vectors (non-zero) corresponding to eigen values A and w4 respectively.

Then we have T(x) = Ax and T(y) = py. Since T is self-adjoint and eigen values
are real, we have '

ic;x,y}:{ix,y:»re:.T(x}?y::;{x, T'(y)=
oo =X P = TR P, it being real,
Since A # u we conclude that <x, y>=0 or, x L y holds.
Theorem 6.4.2. If T'c Bda(H,H) such that 7'#7' = 77 *, then if x is an eigen

-vector of T with eigen value A, then x is also an eigen value of 7* with eigen value
,{ , and conversely.

Proof ;: Consider the operator T ,»U in /. Then
(T~ ADNT = AD)* = (L= AI)(T* - A1) = TT* A1 - R.T*ri|xi

and similarly (77— A1)+ (T = AD) =T*T ~ AT*-AT+| A]* I
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Given T'*T =T*T . Therefore _ ) _
(1= AIXT = ATy = (T~ AI)*(T— AI) puting T— 4/ = §
We have S§%=S5%§,
Thus for xe H, S8*(x)=S5*5(x)
6. ﬁr._, 288 ) e =a 8 S
or, <8 *(x), §*x > = < 8(x), 5(x) =
of  [IS*®IF=lSM|*
on (@ *-An) P=IT-A0)
oL (I =AN[= [ (T* AN |
o, ||T-Ax||=|T*-Ax].
This shows that T(x) = Ax if and only if 7*(x)=Ax.
Example 6.4.1. Let L,[0,1] be the real Hilbert space of all square integrable
functions over the closed interval [0,1] with LP. function e:. R j.ﬂl x(1) y_(r)dr as
xyelyo] |

Show that T :L,[0,1]— /,[0,1] defined by 7'(x)=yeL,]0,]] where
y(t)y=1tx(1) in Q <=1 is a bounded linear operator which is selfladjo'int having no
elgen values, -

Solution : Here 7'1s a linear ctpcrat-:rr because if x, yE LZ[D landif T(x+y)=z
where z(#) =(x+ p)(¥), in 0<y <1, we have

T(x+p)(0) = z(O) =1 (x(1) + p(1)) = (D) + 1y(1)

=T+ in0=zr<l.
" T(x+y)=T{x)+T(y) and similarly for any real scalar o, 7T(ax)=a I'(x).
Further, T(x)()=#{f) in 0=z <1.
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o I 1
TP = [ PP @t .5 gg,g{’z}fu (0

=L|xl*. , _
Thus || 7(x) || =]l x||; that shows that T"is a bounded linear operator in L,[0,1].

T is self-adjoint. Let x, ye [,[0,1], then we have

<%, T() > = [ xOm(o)di = [ ox(t) ey

1 1 :
cand <y, T(x)>= jﬂ W) x()dt = jﬂ be()p()dt
- Therefore < x, T'(y)>=<y, 1(x)>; That shows T as self-adjoint,

If Ais an cigen value of T, and a non-zero xe I,[0,1] is an eigen vector of T
corresponding to the eigen value A , we have
' T(x) = Ax
or, te(f) = Ax(t)  in 0<y<l
or, {—-Ax()=0 mm0=f<1
Since x is non-zero, we have { = Ain 0 <t <1, which is not the case. Thus no
such A is there, i.e. T possesses no eigen value. '

Theorem 6.4.3. Every bounded linear operator 7" on a Hilbert space H is equal
to a sum A + iB where 4 and B are self*adjoint operator in H.

Proof : Let us {it_:ﬁ.ne A and B as follows
I _ L s
A‘_z{! +7%), and B-E{T IRy

1

" Then A*=1{T*+T)=A and B*=—E{?‘*—?]:J-.{T—T*}:B; So each of

A and B is a self-adjoint operator on i such that 4 + 1B = T.

Remark : Representation of T as T'=A4 + iB is unique. Becausc Let T=C+iD
where C and [ are self-adjoint operator on H; then T% = (C + iD)* = C — iD) and
hence T+ ™ =2Cand 7'— 7* = 2iD; Thus C =4 and D = B.
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EXERCISE A

Short answer type guestions

o

¥

. b
Find the eigen values dnd eigen vectors of [_ B a] h=0 and a, b are reals.

a

Examine if zero operator and Identity operator in a [—[ilbn:rt space H are self-
adjoint.

If Tis a :,elf‘-ad_]ﬂmt operator in a Hilbert space H show that fﬂr every natural
number #1, 1" is self-adjoint.

If T'is a self-adjoint operator in a Hilbert space A, and § is any bounded Linear
operator in H, show that $*75 is self-adjoint.

2 03
Show that (ﬂ 1] does not possess any eigen vector.

EXERCISE B

Given a square matrix A:((aﬂ}) having eigen values 4,4,,....4,, show
g HEH

that k4" has eigen values kA,kA,,...kA,; and A% has eigen values
A2 222 Az

Let T:l, — 1, be defined by 1'(§,&5,.-...) =(0,0,61,65,...) 88 (61,65, ) €5
Examine. if 7' is a bounded linear operator in I, and if T is self-adjoint in /.
Show that in a Hilbert space H, T,*1; =F2"‘T2 if and only if | ;(x) || =1 L) |
forall xe H.

In Hif Tis selfuadjumt show that T(x) = 0 inH 1f and only if TT(x} 0.

Let T: H — Hand W : H — H be bounded Linear operators and S = W*TH.

Show that if 7' is self-adjoint and +ve, so will be 5.
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Any system of education which ignores Indian conditions, requirements,
history and sociology is too unscientific to commend itself to any ralional
SO ppOrt,

—Subhas Chandra Bose

Price : Rs. 150.00
(NSOU-37 glagiditns F1TE [Ara7 e 79 )

Published by : Metaji Subhas Open University, D26, Seetor-1, Salt Lake, Kolkara-700 064
and Printed at : SEVA MUDRAN, 43, Kailash Bose Street. Kolkata- 700 006



