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Unit 1 O Topological Spaces

(Topological spaces, Examples, Comparison of Topologies, Base for a
Topology, its properties, Sub-base of a Topology, neighbourhood of a point,
Neighbourhood system at a point, neighbourhood base, limit point if a set,
closed sets, derived sets, closure of a set, Kuratowski closure operator,
Interior, boundary of a set, Sub-space Topology, first and second Countable
spaces).

§1. Let X be a non-empty set. Then the family p(X) of all subsets of
X, including the empty set is called the Power set of X.

For example if X = {a, b, ¢}, then its power set p(X) = {¢, X, {a}, {b},
(c}, {a, b}, {b, ¢} {c, a}}, contains 8 members. In General, if X consists of
n (distinct) members, then its Power set p(X) consists of 2" member. This result
is due to cantor.

Definition 1.1. A sub-family t of p(X) is called a Topology on X if
(TN, X ex; '

(T.2) Union of any number of members of © is a member of t; and
(T.3) Intersection of any two members of t is a member of t.

If © is a Topology on X, the pair (X, 1) is called a Topological space.

Explanation : For any non-empty set X, the power p(X) satisfies all
conditions (T.1) — (T.3) and forms a Topology on X ; This Topology is called
the Discrete Topology on X. Similarly, the sub-family of p(X) consisting
of ¢ and X only also forms a Topology on X called Indiscrete Topology
on X. But any sub-family of p(X) does not form a Topology on X. For
example, the sub-family comprising of empty set only does not form a
Topology on X.

Example 1.1. Let X = {a, b, ¢} and T = {¢, X, {a}}. Then t is a Topology
on X.

Definition 1.2. If (X, 1) is a Topological space, members of t are called
open sets in X.

Explanation : In a Topological space (X, 1) qualification for a subset
to be on open set is exclusively its membership in t. The more numerous is
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T in members the more open sets are there in X. Thus in discrete topology every
subset, including singletons, is an open set; but open sets are scarce in
Indiscrete Topology in X.

§2. Comparison of Topologies :

If t; and 7, are two topologies on X, then 17 is said to be weaker than 1,

(or, T2 stronger than t; or, T1 is courser than 13 or, 17 is finer than t;) if every
member of 1; is a member of t;.

or, in symbol 13 C 13.

So Indiscrete Topology is the weakest and Discrete topology the strongest
Topology on X, and any other Topology T on X satisfies Indiscrete Topology
&t < Discrete Topology.

Example 2.1. Cofinite Topology on X.

Let X be an infinite set and 1 consists of empty set ¢ and those subsets
A of X such that X\A is a finite set. Then (T.1) axiom is satisfied. Let {Ay}qea

be a family of members of 1, and A = LEJAA"‘; Then X\A = X\ JA,=
o aeA
N(X\A.) < (X\A,) for every a, and r h s is a finite set; So X\A is a finite set.

aeh

Thus A et. Thus (T.2) condition is satisfied. Finally, Let A, A, €7, then
X/(A; N A = (X\Ap) U (X\A,) =a Union of two finite sets = a finite set. Hence
A; N A, is a member of T. Hence 7 is a Topology on X. This Topology is called
Co-finite Topology on X.

Theorem 2.1. Intersection of any number of Topologies on X is a
Topology on X.

Proof : Let {14} ca be a collection of Topologies on X and put T = ] 1.

aeh

Clearly (T.1) axion is O.K. for 7; and so is the case with (T.2). For (T.3) take
U and V as two members of 1, and then they are members of each 1, for o €A.
Since 1, is a Topology on X, we have U N V belongs to 1, for every member

o of A; and hence U n V is a member of T = QA T.. S0, T is a Topology
on X.

Remark : Theorem 2.1 is not true if word “intersection” is replaced by
“Union”. Following example supports this contention.

B



Example 2.2. : Take X = (a, b, ¢) and 7; = {¢, X, (a), (a, b)} and
'cj = {9, X, (¢), (b, ¢)}. Then 7 and 1, are topologies on X such that 1; U 15
= {9, X, (a), (c), (a, b), (b, c)}. As (a) U (c) = (a, c) is not a member of
T, U 19 we find 11 U 15 is not a Topology on X i.e. Union of Two topologies
may not be a Topology. To solve a problem in a Topological space (X, 1)
sometimes it suffices to know and use a part of t called a base for Topology
T that we presently define.

Definition 2.1. : A family g of member of T in a Topological space
(X, 1) is called a base of the Topology 7 if and only if every member of 1
is a Union of some members of .

Members of g are called basic open sets.

For example, the family of all singletons is a base of the discrete
Topology on X.

Theorem 2.2. : In a Topological space (X, t) a sub-family g of 1t is a
base of 1 if and only if for any open set G in 1, and for any member u € G,
there is a member B € p to satisfy u eB < G.

Proof : Condition is necessary : Suppose g is a base for v and G is
a member of t. So G.is a Union of .some members of g, say, G =

G= LeJa{Ba By € 50}. If u G, there is a member, say B% for some 0 €A such

thatu €B, € g;clearlyu eB, < G.
Condition is sufficient : Suppose condition as stipulated holds. Take
a member G in t. Then for every p € G, we find a member, say, Bp from @
such that p € B, = G. So we can write G UB13 and, of course, converse
peG

is true ie. UB, =G, Combining them we have G= | JB, = a Union of
pe

members of g. Thus g is a basis of 1. Bel

Remark : A Given Topology on X may have Different bases. Also there
is a caution. Not any family of subsets of X is a base for a Topology. For
example, take X = (a, b, ¢) and then the family ¢ consisting of (a, b), (b, ¢),
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X and empty set ¢ fails to form a base for a Topology on X. Because if ¢
is a base for some topology on X, Unions of members of ¢ shall constitute
a Topology on X, and this is not the case here. Intersection property is failing
here (a, b) N (b, ¢) ¢ ©).

We have following Theorem in this connection.

Theorem 2.3. A family g of subsets of X forms a base for some topology
on X if and only if

(i) ¢ €g (i) X is a union of members of g and (iii) Given any two
members B; and B, in g, and x €(B; n B,), there is a member B3 € g such
that x €B; < (B; N By).

Proof : Necessary part follows from the Definition 2.1 and Theorem 2.2.
For sufficient part suppose the g satisfies the stated conditions, and let T be
the family of all posible unions (finite or infinite) of members of . We check
that t is a Topology on X. For that purpose we atonce see that (T.1) is O.K.;
and (T.2) is also clear in favour of 1. For (T.3) take two members C and D in
1; If x €(C n D), since C is a union of members of g, we find U € ¢ such
that

x eUcC. s 413
Similarly find a member V € g such that
xeUcD. ... (2)

From (1) and (2) and by hypothesis, we find a member W € g satisfying
x € W (U N V) c (Cn D). That means, we can write C N D as a Union of
members of g showing that (C N D) et. Hence 1t is a topology on X and @
is a base of t. The proof is complete.

Example 2.3. The family of all open intervals along with ¢ forms a
base for a Topology on the set R of reals known as usual or Euclidean
Topology of R.

Solution : We assume ¢ as a member of this family. Take n = 1, 2, ... we
see that the union (-1, H U (-2, 2) v ..U (-n,n) U .. = I@](—n,n) is equal
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to R; Further if (a, b) and (c, d) are two open intervals and x e(a, b) N
(c, d), then open intervals intersect. Making n appropriately large, we make

open interval (x—%, x+%) so small that (x—%, x+%) c(a,b)and (x—%, x+%)

c (c, d) i.e. (x—%, x+%)  (a, b) N (c, d). Hence all conditions of Theorem

2.3 are fulfilled.

Theorem 2.4. A Topology t; with a base g is stronger than a Topology
T, with a base ¢, if and only if for p € X and for V, € g, with p €V, there
is a member V| € g such that p eV; < V,.

Proof : The condition is sufficient : Let G be any member of 1, and
p €G. By base property we find a member V, € g, with p eV, < G. By stated
condition we find a member V; € g such that

peV,cG.

So we can write G = U{V; € gp,:V; c G}. Hence G € ;. Thus 15 < 14
i.e. T is stronger than t,.

The condition is necessary : Let 1, = t1; So every member V; of g,
being a member of T, is a member of T; whose base is . So for p eV, we
find a member V; € g such that

pe V<V,

Example 2.4. All left-open (and right closed) intervals like (a, b] (a,
b €R and a < b) along with ¢ form a base for a Topology called the upper
limit Topology of R which is stronger than usual topology of R.

Solution : Here Dl(—n,n] equals to R. If (a, b] and (c, d] are two such
intervals and u e(a, b] N (c, d], then left-open intervals do intersect. Then

taking n appropriately large, we make left-open interval (u — % u] so small

that (u — }l;’ u] < (a, b] N (c, d]; and therefore Theorem 2.3 applies. Further

if (a, b) is an interval as a base member of usual Topology, and p €(a, b); we
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find a base member (a, c] of upper limit Topology such that p (a, c] < (a, b).
So Theorem 2.4 applies for desired conclusion.

Example 2.5. All right-open intervals like [a, b) a < b, together with ¢
form a base for a Topology called the lower limit Topology of R which is
stronger than usual Topology of R.

Solution : Similar to that of Example 2.4.

Definition 2.2. A family S g of subsets of X is said to form a sub-base
for a Topology t of X, if and only if the family g of all finite intersections
of subsects in S ¢ forms a base for t.

Members of S g are called sub-basic open sets.

Example 2.5. Let Sg consists of all half rays like (-, a) and
(a, ) as a €R. Show that S o forms a sub-base for a Topology of R(which
Topology?).

Theorem 2.5. A Collection S g of subsects of X is a sub-base for a
Topology on X if and only if (a) ¢ €Sgp and (b) X is the Union of some
members of S gp.

Proof : If S p is a sub-base for a Topology, then ofcourse (a) and (b) hold.
Conversely, let a family S g of subsets of X obeys (a) and (b), and let g denote
the family of all finite intersections of members of S go. Then we have ¢ € g
and X is a Union of members of g. Further, if B,, B, are any two members
of p,letBj=U;nU;nNn..N UIll where U; eSp and B, =V, nVy N ..
N Vy, where V; €S p.

If x €(B; N By); Putting B; = B; N B,, we find Bj as a finite intersection
of members from S g; and B; € g, satisfying x €B; < (B; n Bj). Then
Theorem 2.3 applies to complete the proof.

Remark : The Topology t referred to in Theorem 2.5 is the smallest
Topology on X containing members of S ¢, in the sense that t is weaker than
every Topology on X containing members of S p.
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§3. Neighbourhood of a point, Neighbourhood system.
Let (X, 1) be a Topological space and x €X.
Definition 3.1. A subset N, of X is called a neighbourbood (or simply Nbd)

of x if there is an open set Oy in t such that
x € O, ¢ N,.
An open set O containing x can also be regarded as a nbd of x.
Explanation : A nbd. Ny of x is always non-empty because x € Ny. Also
whole set X is a nbd. of each if its points. If X is infinite, then X is the only
nbd. of a given point x in X when 7 is Indiscrete Topology, while there are
many nbds. of x in X when 7 is the discrete Topology. In the real number space

R with usual topology a point x has neighbourhoods like open intervals
containing X.
Theorem 3.1. A subset O of X is an open set if and only if O is a nbd.

of each if its points.

Proof : Let O be an open set in (X, 1) i.e. O e t,and x € O. Put Ny, = O
and we find x € O < N,, that confirms N, as a nbd. of x.

Conversely, let a subset G enjoy the property as stated; and if X € G,
we find a nbd. G of x : So, there exists an open set, say, Ox € 1 such that

x € O, < G. Then we write,
G = U Ox
xeG
= a Union of some members of t, and hence G is an open set.

Notation : If x € X, let o4 denote the family of all nbds of x in (X,
1). ef; is also termed as neighbourhood system at x.

Properties of o/,

(a) If N, ec/;, then Ny # ¢;

(b) If N, ec4f and N, < H, then H ecdg (H is a member of o4y);
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(c) Intersection of two members of o4; is a member of o/y;
(d) If N, ecdy, there is a member N* eod such that N, ec/, for every
member u € N*,

Properties (a) — (c) are very much evident. We need not give proof.
For (d), since Ny is a nbd. of x there is an open set, say, G satisfying

x € G < Ny ()

Since G is open, Theorem 3.1 says that G is a nbd. of each of its points
i.e. G e for every member u €G and by (1) it follows that N, ec4 for
u €G (here G = N¥).

Definition 3.2. A sub-family (@ of 244 is said to be a nbd. base of x
if for every nbd. N, of x, there is a member By € gy such that

By © Ny

Explanation : A Given point of a Topological space (X, t) may have more
than one nbd. base. For example, in the space R of reals with usual topology
a point x has a nbd. base consisting of all open intervals like (x — 1, x + 1),
n =1, 2, ...; also corresponding closed intervals constitute a nbd. base at x. In
Euclidean 2-space R? with usual Topology, we find that every point (x, y) € R?
has a nbd. base consisting of all open oriented rectangles centred at (x, y). Also
all open circular discs centred at (x, y) shall form a nbd. base at (x, y).

Topology from neighbourhood axioms :

Given X # ¢ if each point x in X is associated with a family of subsets
under constraints of so called nbd. axioms, one can then derived a Topology
on X. Following is a Theorem in this connection.

Theorem 3.2. Let each x in X be associated with a non-empty family
o/, of subsets N, of X satisfying
(a) Ny # 0, and x eN, for every member N, eof;

(b) if Ny e/ satisfies Ny < W, then W eo/dy
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() if NV, N® ectg, then (NP A NP) ek

(d) if Ny ee/, there is a member N* ec/ such that Ny ec for every
member u € N*,

For the proof which is lengthy, any standard book may be consulted.

§4. Limit point of a set. Closed sets.

Let A be a non-empty set in a Topological space (X, 7).

Definition 4.1. An element (point) p of X is called a limit point of
A = ¢ if every nbd N, of p meets A at a point other than p. Equivalently if
N, n (A\{p}) # ¢.

If p is not a limit of A, then p is said to be an Isolated print of A. In
that case we find a nbd. N;, of p such that N, n (A\{p}) # ¢ or equivalently
N, N A is either ¢ or {p}.

Explanation : A limit point A may or may not be a point of A. It attracts
every nbd. to intersect A at a point other than p. Naturally, the more are nbds.
of p, the less is the chance of p to be a limit point of A and the less are nbds.
of p, the more is the chance of p to be a limit point of A. Thus in (X, 1) with
T as discrete topology, a given non-empty set A possesses no limit point in
X, because open sets are too numerous; If t is the Indiscrete Topology, the
subset A attracts every member of X as its limit point; Here only non-empty
open set is X only.

Example 4.1. Obtain limit points (if any) of following sets of reals in
the space R of reals with usual Topology.

(a) A = (1, % 2% % ...), (b) The set Q of all rationals in R. (c) The set N

of all antural numbers and (d) A finite subset of reals.

Definition .4.2. The set of all limit points of A in (X, 1) is called the
derived set of A; it is denoted by A'.

Explanation : The set A’ may be empty; for example, take a finite subset
A of reals with usual topology. Here A has no limit points at all i.e. A" = ¢.
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A’ may be disjoint with A. A" may be a part of A; for example take A = the
closed unit interval [0, 1] of reals with usual Topology. Here A’ = A. The set
A’ may be strictly larger than A. For example take A as the set of all rationals
in real number space R with usual topology. There A’ = R which is strictly
larger than A.

Definition 4.3. A subset F in topological space (X, 7) is said to be a closed
set if F' — F i.e. if every limit point of F is a point of F.

For example, every closed interval, every finite subset of reals and the set
N of all natural numbers are each a closed set in R with usual Topology.

Theorem 4.1. A subset F in (X, t) is closed if and only if X/F
(Complement of F in X) is an open set in X i.e. if and only if (X\F) er.

Proof : The condition is necessary : Let F be a closed set in (X, 7).
If F is empty, then its complement X is of course an open set et. Let F he
non-empty and u €(X\F). Then u is not a limit point of F and we find a
nbd, and hence an open nbd (say) Ny of u such that N, N F = ¢; this shows
that N, < (X\F), and (X\F) is rendered a nbd. of u; Thus (X\F) becomes a nbd.
of each of its points, and so (X\F) is an open set in X.

The condition is sufficient : Suppose X\F is an open set in X and x is a
limit point of F. It possible, let x ¢ F. So x e (X\F). Thus (X\F) is a nbd. of
x such that

(X\F) A F = ¢.

That contradicts the assumption that u is a limit point of F. Hence the proof
is complete.

Notation : In (X, 1) denote the family of all closed sets in X by <%
Remark : By De-Mongan’s Laws following statements are evident.
X, ¢ ecF

(2) Intersection of any number of members of &#is a member of ¢#

(3) Union of two members of #is a member of c#
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However, union of an infinite number of members of # may not be a
member of % For example, in the real number space R with usual topology
let us take the closed intervals.

I, = [%, 1] as n = 1, 2, .... Then each I, is a closed set of R such that

TCs

]In =(0,1] which is not a closed set in R.

§5. Closure of a set in (X, 1).
Given a subset A of X, its closure denoted by A is defined as
A=nNn{FcX:Fisaclosed set in X D A}.

The R.H.S. being intersection of a number of closed sets in (X, 1) is always
a closed set in X. Thus A is always a closed set containing A, and it is the
smallest closed set to contain A.

Explanation : Closure of A = A is a closed set no matter if A is closed
or not. For example, if A = open unit interval (0, 1) of reals with usual topology
we find its closure A = closed interval [0, 1] which is a closed set; but A =
(0, 1) is not a closed set. Clearly if A is it self closed, then A = A and converse
is also true.

Theorem 5.1. A = A U A.
Proof : Here A A; So A’ c A’ © A because A is closed. Hence
(AUA)c A o i

Again if x €A, then every nbd. of x meets A. non-vaculously. For, if
X € A then there is an open nbd. Ny = X\A of x which does not meet A.

Thus x is either in A or a limit point of A.
Accordingly, x € A U A"
Hence Ac(AuUuA) .. (2)
Combining (1) and (2) we get A = A U A’.
Definition 5.1. (a) A subset G in (X, 1) is said to be everywhere dense
or simply dense in X if G = X.
11



(b) Topological space (X, 7) is said to be separable if there is a countable
dense subset in X.

For example, the set Q of all rationals in R is dense in R with respect to
usual Topology of R, because of the fact that between any two reals there are
many rationals.

Example 5.1. Let X be an uncountable set, and t is a family of subsets
of X consisting of ¢, and complements of finite subsets of X. Show that
(X, 1) is a Topological space where every infinite subset of X is dense.

Proof : By a routine exercise one checks that axioms of Topology T.1 —
T.3 are satisfied and (X, 1) is a Topological space. Let A be an infinite set. If
x € X and N, be a nbd. of x ; We may assume N, to be open. If N, n (A\{x})
= ¢, then we have (A\{x}) c (X\N,) or A < (X\N,) U {x}, r.h.s. being a finite
set it implies that A is a finite set which is not so. Therefore, Ny N (A\{x})
# ¢, that means x is a limit point of A; i.e. A = X.

Kuratowski closure operator :

An operator that assigns to each subset A of X another subset of X denoted
by A® is called a Kuratouski closure operator if following four axioms known
as Kuratowski closure axioms hold :

(K1) ¢ =9

(K.2) For any subset A of X, A c A°

(K.3) For any two subsets A and B of X (A U B) = A U B¢

and (K.4) For any subset A, (A%)" = A",

Theorem 5.2. Let ¢ be a Kuratowski closure operator on a non-empty set
X, and Let & be the family of all subsets A of X for which A=A and 1 =

{G c X : (X\G) € .#}. Then 71 is a Topology on X such that A® = 1-closure
of A for every subset A of X.

Proof : ¢ and X belong to T because their complements X and ¢ are
respectively members of Z Let {Gyl}yea be an arbitrary sub-family of T and
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put G= UG,.Then X\G=X\ UG, = ﬂ§X\GQ)c(X\G¢,). Then (X\G)© <

aeA aEA

(X\Gp)° = (X\G,) because (X\G,) is a member of % This is true for every index
a € A, and therefore (X\G)® c [(X\G,) =X\ |J G, =X\G. That means

aeA aeA
(X\G)" = X\G and it is a member of Fand hence G € 1. By a similar reasoning
intersection of any two members of T is member of 7. So T is a topology on

X. It remains to show that for every subset A of X A® equals to A (= t-closure
of A).

Now A = Intersection of all T-closed sets each containing A
= Intersection of members of # each containing A.
and, therefore, A is a member of & with A c A.
Using Kuratowski closure axiom, A° < (A)" = A . (D
Again by Kuratowski axiom (A)° = A® D A.
That means, A€ is a member of % with A® o A.
This gives, A < A° i (2)
Combining (1) and (2) we have A = A® and the proof is complete.

Definition 5.2. (a) Given a non-empty set A of (X, T) a point x € A is
said to be an Interior point of A if there is an open set O in T such that
xe O cA.

(b) Interior of A or simply Int A = {x € A : X is an interior point of A}.
Example 5.2. If A = Open interval (0, 1) U {2, 3,4, ..., n, ...}
Find Int A (w.r.t. usual topology of reals).

Solution : Here every member of open unit interval (0, 1) is an interior point
of A and none of its points like 2, 3, ... is an interior point; because member
2, 3, ... individually do not attract a whole open interval containing it, but
contained in A. So Int A = (0, 1).

Example 5.3. In (X, 1) if G is an open set and A is any subset of X, then
G N A =¢if and only if G n A = ¢ (bar denoting closure).

Solution : If G N A = ¢, then G N A = ¢ because A C A.
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Conversely, let GN A =¢ and G N A # ¢. Take a member u € (G N A).
Clearly u € A; So u is a limit point of A. Since u € G and G is open; G is
a nbd. of u such that G N A = ¢ — that is not true. So conclusion remains valid
as wanted.

Remark : Int A ¢ A < closure A where Int A is the largest open subset
of A and closure A is the smallest closed (so called) superset of A to satisfy
the inclusion.

Theorem 5.3. For any non-empty subset A of (X, 7).
(a) Int A is an open set

(b) A 1s open if and only if A = Int A.

(¢c) If A < B, then Int A < Int B.

(d) Int A = X\(X\A).

Proof : The proofs for (a) — (c) are easy and left out. For (d) X\A is a
closed set containing (X\A); So complement X\(X\A) is an open subset of A,
and therefore we have

X\(X\A) < Int (A) e ()

Again, A O Int A gives (X\A) < X\Int A, which is a closed set containing
(X\A); and therefore,

(XVA) € (X\Int A)
So, X\(X\A) D Int A (Taking Complement) o k)
Combining (1) and (2) we produce
Int A = X\(X\A).
Allied to closure and Interior of a set A in (X, 1), there is another operator
called Boundary of ‘A, denoted by Bdr (A) that we presently define.
Definition 5.3. Bdr (A) = closure (A)\Int (A).
(= A — A, A denoting Int A).
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For example, in Enclidean 2-space R® with usual topology i: A is taken
an open circular disc given by
A={xy);x*+y <r?).
Then A = the closed circular disc = {(x, y) : x* + y* < r*}. and A = A,
and therefore
Bdr A = A\A
= A\A
= {(X, y) : X2 + y2 — rz], namely it represents the circle with radius r

centred at (0, 0).

Definition 5.4. A subset G in (X, 1) is said to be nowhere dense in X if
Int (Closure G) = ¢

(ie. (G) = ¢).
For Example, every finite subset of reals w.r.t. usual topology is a nowhere
dense set. An infinite subset of reals may or may not be a nowhere dense set.
The set N of all natural numbers is, of course, nowhere dense. And the set

Q of all rationals, an infinite set of reals is not nowhere dense set; because
Q = whole space R of reals with usual topology.

§6. Sub-space of (X, 7).

Let A be a subset of a topological space (X, 7). Let us put 14 = {U N A
SuEeT).

Then it is a routine exercise to check that the collection T, of subsets of
A forms a Topology on A as per Definition 1.1. The pair (A, TA) is called a
sub-space of (X, 1).

We have the following Theorem in this connection.

Theorem 6.1. Let (A, t4) be a sub-space of (X, 1). Then (a) if Bis a base
of 1, then By, = {B N A : B € B} is a base of 1,.

(b) A subset H is a neighbourhood (nbd) of a point x € A if and only if
H = A n N, where N, is a nbd. of x in (X, 7).

15



(c) A subset C is closed in (A, T,) if and only if C = A N G, where G is
a closed set in (X, 1T).

Proof : (a) Take x € A, since B is a base of 1, we find a member B € B
such that x € B; Thus x € (B N A), where (B N A) € B,. Suppose V,, V,
€ Ba and x € (V; N V,); Then V; = B; n A, and V, = B, N A, where By,
B, € B. Since B is a base of 1, and x € (B; n B,), by property of base there
is a member B3 € B to satisfy x € B3 < (B; m Bj); Therefore x € V3 ©
(V1 N V,) where V3 = (Bz N A) € B, Therefore By is a base of T4.

(b) Let H be a nbd. of x in (A, t4). Thus there is a member V € 1, to satisfy
xeVcH. ButV=UnNnAforsome UetT. PuuN,=(UUH). SoxelUC
N,, wherefrom we find N, is a nbd. of x in (X, 1) and also H = A n N,; The
converse goes by a similar argument.

(c) Let C be a closed set in (A, T5). Then A\C is open in (A, Tp) i.e. (A\C)
€ 15 and take (A\C) = A N O where O € 1. Then G = (X\O) is closed in
(X, 1), suchthat AN G =A N (X\O) = A(A n O) = A(A\C) = C.

Conversely, let C = A N G where G is a closed set in (X, 1). Then
(X\G) is open in (X, 1), and therefore A N (X\G) € 1. Now A N (X\G) =
A\MA N G) = A\C; showing that (A\C) € 1o and therefore C is closed in
(A, TA).

Example 6.1. Let G be a closed set in (X, 1), then a subset of G is closed
in (X, 1) if and only if it is closed in (G, tg).

Solution : We know that a subset D of G given to be closed in (X, 1) is
closed in (G, 1) if and only if D = G n H where H is closed in (X, 1). R.H.S.

set is intersection of two closed sets, and is closed in (X, 1) ; So LHS is a closed
set in (X, 1).

Conversely, let a subset D of G is closed in (X, t). Then D =G n D is
closed in (G, 1g).
Example 6.2. Let A be an open set in (X, 7). Then a subset of A is open
in (A, ta) if and only if it is open in (X, 7).
16



Solution : Given A as open set in (X, T), let a subset B of A be open in
(X, 1a); So let B =A m O where O is open in (X, 7). Now r.h.s. = Intersection
of two open sets in (X, T), and hence is an open set in (X, 1); Thus L.h.s = B
is open in (X, 1).

Conversely, let B be a subset of A and B be an open set in (X, 7). As B
=A N B, so B is open in (A, Tp).
§7. First and Second Countable spaces :

Definition 7.1. A Topological space (X, d) is said to be a Second countable
space if there is a countable base of the topology Tt of X.

Example 7.1. The real number space R with usual topology 1 is second
countable.

Solution : Consider the family B, of all open intervals with end points
as rational numbers. Since the set of all rationals is countable, so is the family
B.. As every open interval is a member of T, we have

B T

Let x € R, and G is an open set € T with x € G, we find an open interval,
say (a, b) (a, b are reals) such that

xe(abcgG
Since the set of all rational numbers is everywhere dense in R, we find two
rationals u, v satisfying
R8RS £ S

Clearly, (u, v) is an open interval with rational end points and is a member
of B, such that x e(u, v) < (a, b) ¢ G. Hence B; is a countable base for T,

and (R, 1) is second countable.
Theorem 7.1. Every second countable Topological space is separable.

Proof : Let (X, 1) be a second countable space and let {By, B», ..., B, ...}
be a countable open base of 7.

17



Take b; € B;,i=1, 2, ... and put B =(by, by, ..., by, ...); Then B is a countable
subset of X, and we show that B is dense in X i.e. B = X. Take a member x
€ (X\B), and G is an open set containing x. By base property we find a member
B; such that

xeB, cG.

So x # b;. Thus G intersects B at a point other than x. That is to say, x Is
a limit point of B. So a point of X is either a point of B or a limit point of
B; So B = X.

Remark : The Converse of Theorem 7.1. is false. Example 7.2 supports
the statement.

Example 7.2. The real number space R with lower limit Topology
generated by ¢ and all right-open intervals like [a, b), a < b is separable without
being second countable.

Solution : Let Q be the set of all rationals. The Q is countable ; Because
between any two reals there are many rationals, basic open sets like intervals
[a, b), a < b includes members of Q, and hence Q is dense in R with lower
limit Topology. But this topology is not second countable.

If possible, let [a;, by, 1 = 1, 2, ... be a countable base for this topology (a;
<b);Letubeareal #a; (i=1, 2, ..) and v > u; and then [u, v) is an open
set of lower iimit Topology such that none of [a;, b;) satisfies u € [a;, b;) < [u,
v). Because otherwise u < a; < p gives a; = u which is not the case. Hence
conclusion as desired is valid in Example 7.2.

It is time to say when a Topological space is first countable.

Definition 7.2. A Topological space is said to be first countable if the nbd.
system if each of its points has a countable base.

Explanation. Concerned Definitions tell us that if a Topological space
(X, 1) is second countabie, then it is first countable. But converse is not
true. Because let X be uncountable, and 1 is the discrete Topology. Then
(X, 1) is first countable. For if x € X, single nbd {x} constitutes nbd. base
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of the nbd. system .4, in (X, 7). But (X, 1) is not second countable. Because
{X}xex = a family of open sets in T possesses no countable sub-family whose
union is X.

Example 7.3. The real number space R with lower limit Topology (See
Example 7.2) is a first countable space.

Solution : Let x € R, and put B, = {[x, r) : r € Q which is the set of all
rationals}. Here x < r. Then By is a countable sub-family of the nbd. system
at x in (R, 7¢), T. denoting the lower limit topology on R. B, is a nbd. base
at x; because if N, is any nbd. of x relative to 1., there is a right-open interval
like [a, b) such that

X €]a, B) c N,.

Clearly a < x < b. Take a rational r such that x <r< b; Then [x, r) € B,
such that x €[x, r) © N,. Our argument is over and Example 7.2 stands.

Exercise - A
Short answer type Questions
1. Given a non-empty set X any two Topologies are Comparable. Either prove it
or give a counter example.
2. IfA=(l, % % .., X, ...) obtain limit points, if any, of A if A is given (i) the
n

discrete Topology (ii) the indiscrete Topology and (iii) the usual topology of reals.

3. In a Topological space if for any two open sets U and V we have U NV = ¢,
show that U M V =U N V = ¢, bar denoting closure.

4. Show that if X is infinite and 1 is the co-finite Topology of X, any two non-empty
open sets have a non-empty intersection.

5. In a Topolagical space (X, 1) if A < X, show that Bdr (A) = ¢ if and only if A
is clo-open.

6. Find two subsets A and B of reals with usual Topology such that Int (A) U Tm
(B) # Int (A U B).
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Exercise - B

Let X be an infinite set with xg € X. If @ is the family consisting of all sets that
do not contain xq and all sets (X\F) where F is a finite subset of X. Show that
(X, 9) is a Topological space where every singleton other that {xy} is clo-open.
Also show that {xy} is closed but not open.

Show that Interior operator in a Topological space (X, T) is subject to following
conditions :

) Int (X)=X (i1) Int (A) c A (iii) Int (A N B) = Int (A) N Int (B)
(iv) Int (Int (A)) = Int (A) for any subsets A and B of X.
In a Topological space (X, 1) of A < X, show that
(a) Int A = A\Bdr(A) (b) A = A U Bdr (A), bar denoting the closure and
(¢) Int A n Bdr A = ¢.
Let X be an infinite set, and for any subset A of X, let

A= A when A is a finite subset of X,

= X when A is an infinite subset of X.

Verify that A° satisfies Kuratowski closure axioms, and the resulting topology is
the co-finite Topology on X.

In a Topology space (X, T) show that (a) if G and H are open sets in X, then Int
(GAH) =1Int (G W H), bar denoting the closure. (b) if G is open and H is dense,
then GNH = G, bar denoting the closure.

If X # ¢, show that for any collection Topologies for X there is a unique largest
Topology which is smaller than each member of the collection, and a unique
smallest Topology which is larger than each member of the collection.

For any A < X, prove that (a) (A)° = Int (A®) and (b) (Int A) = A<, where “¢”
indicates complementation.
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Unit 2 [J Continuous Functions Over Topological
Spaces

(Continuous function over Topological space, Homeomorphism, Their
Characterisations, Continuity of Characteristic function, Nets, Filters,
Their convergence, ‘Mutual implications, Product spaces, Projection
functions, Their properties; Open functions, Closed functions, Quotient
spaces).

§1. Let (X, 1), (Y, U) denote Topological spaces.

Definition 1.1. A function f : (X, ©) = (Y, U) is said to be continuous
if for every open set u € U in Y, f~1(u) is an open set €7 in X,

Definition 1.1(a). If x = xpe X, then f : (X, 1) — (Y, U) is said to be
continuous at X if corresponding to any nbd. W of f(x,) €Y, there is a nbd.
V of xq in X such that f(V) c W.

If f is continuous at every point of X, then f is said to be continuous over
X, or smiply f : (X, 1) — (Y, U) is continuous.

Definition 1.2. A function f : (X, ) — (Y, U) is said to be an open function
if it sends open sets into open sets i.e. if O €1, f(0O) e U.

It 1s called a closed function if it sends closed sets into closed sets i.e.
if F is a closed set in X, then f(F) is a closed set in Y.

Definition 1.3. A 1-1 and onto (bijective) function f : (X, 1) — (Y, U)
is said to be a Homeomorphism if f and f~! are each continuous.

Explanation : Let (X, 1) be a discrete space, then any function f : (X, T)
— (Y, U) becomes a continuous, because given any u €U, f~!(u) is always
an open set in discrete Topology on X. If 7; and 1, are two topalogies on X
such that 7y is stronger than T,. Then identity function I : (X, 1) = (X, 13)
i.e. I(x) = x for x € X is a continuous function. If f is a real-valued function
of a real variable i.e., f : R — R then taking R with usual topology of
reals and remembering that open intervals form a base if the Topology we
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get from Definition above that f is continuous at a point xy € R if corres-
ponding to € > 0 there is a +ve 0 such that f(xg) — € < f(x) < f(xg) + €
i.e. | f(x) — f(xg) | < € whenever x5 — 8 < x < Xy + di.e. | x — xgl < 8. Thus
definition of continuity of a function f as above is in agreement with (€ — 9).
Definition of continuity of f in classical analysis.
Example 1.1 : Let R be taken with usual topology and f : R — R be taken
as
f(x)=0ifx<0
=xif0x <1
=1if x = 1.
Then 1 is a closed function without being open.

Theorem 1.1. Let f : (X, 1) — (Y, U). Then following statements are
equivalent (That is to say, each implies the other).

(a) f is continuous.
(b) If F is a closed set in Y, then f~(F) is closed in X.
(c) If SB be a sub-base for U in Y, and Ge $B, then f~1(G)eT.

(d) for each nbd. W of f(x) in Y as xe X, there is a nbd. V of x in X such
that f(V) c W.

(e) f(A)cf(A), for every subset A of X, bar denoting closure.

(f) f'(B) = f-'(B) for every subset B of X, bar denoting closure.

(g) £! (Int (C)) < Int (£(C)) for every subset C of Y.

Proof : (a) = (b); so f~ 1 (an open set in Y) is an open set in X. Foi (b)
Let F be a closed set in Y; then (Y\F) is open in Y, and by (a), f'(Y\F) is open
in X i.e. X\f"'(F) is open in X, and hence f™'(F) is closed in X.

(b) = (c); Let G be a sub-basic open set in Y, then (X\G) 1s a closed set
inY; by (b) ' (Y\G) = X\f~'(G) is a closed set in X and therefore its complement
f"(G) is an open set in X. So (c) holds.
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(c) = (d); Let x e X and Let W be a nbd. of {f(x), and U € U suck that {{x)
U c W. Without loss of generality take U as a basic open set in Y and therefore
U=W; nWynN..N W as a finite intersection of sub-basic open sets W,
Wa, ..., Wy is SB. Let f(x) € W; = U c W. Now £'(W;) is an open set in X
by (c¢) with x € £1(W,); Put V = /(W) which is a nbd. of x such that (V)
= W,; c W. So (d) holds.

(d) = (e); Let A be any subset of X, and v € f(A). Take u € A so that f(u)
=v; If u e A we have v = f(u) € f(A) < f(A) and we have finished. So assume
u ¢ A but u is a limit point of A; Let W be a nbd. of f(u) in Y, by (d) there
is a nbd. V of u such that f(V) < W. Now V cuts A, as u is a limit point of
A, nonvacuously and so, V N (A\{u} # ¢.

Now f(V N (A\{u})) # 0; or (V) N f(A\{u}) # ¢ and hence W N (f(AN(u))
# O, since f(V) c W.

That means, f(u) is a limit point of f(A).
or, v = f(u) is a limit point of f(A)
ie. v e f(A).
Therefore, we see f(A) < f(A). So (e) holds.
(Y= () Let B cY. Pt A= f"(B) c X; So, f(A) = B by (e)
f(A) c f(A) or, f(f'(B))cB
ie., f1(B)cf'(B); So (f) holds.
(f) = (g); Take C C Y.
Then we have £~ (Int C) = £7(Y \ (Y \ ©)) (by relation between closure and
Interior);
=XUFRTNE)
cX\f(Y\C) from (f)
=X\X\f(C)
= Int £7'(C).
Thus (g) holds.



(g) = (a); Let G be an open set in Y; Then Int G = G, and by (g) f71(G)
= {1 (Int G) c Int £1(G). That means, f‘i(G) is an open set in X; and hence
f is continuous. The proof is complete.

Theorem 1.2. For a bijective (1-1 and onto) continuous function f :
(X, 1) — (Y, U) following statements are equivalent;

(i) f is a homeomorphism

(i1) f is closed

(i) f is open.

Proof : The proof is a routine verification based on the fact that for every
subset A of X, (1)1 (A) = f(A); details are left out.

Example 1.2. In every Topological space (X, 1), the identity function I :
X — X where I(x) = x, x € X 1s a homeomorphism.

Example 1.3. If the space R of reals is taken with usual Topology then
for a > 0, the function f : R — R where f(x) = ax, x € R is a homeomorphism.

Definition 1.4. Topological spaces (X, T) and (Y. U) are called homeomorphic
if there is a homeomorphism h : (X, 1) — (Y, U).

Explanation : Suppose (X, 1) and (Y, U) are homeomorphic spaces. A
homeomorphism h : (X, 7) — (Y, U) establishes 1-1 correspondence between
elements of X and Y and between open sets of the two spaces. Thus a property
of a Topological space X defined by means of open sets is transferred to the
space Y that is homeomorphic to X. Examination of these properties, called
Toplogical properties is essentially the subject of ‘TOPOLOGY’.

Example 1.4. Let A be a non-empty proper subset of a Topological space
(X, 1) and be R be the space of reals with usual Topology; then characteristic
function %, : X — R is continuous if and only if A is clo-open in X.

Solution : Let x5 be the characteristic function of A < X, and so
Yalx) =1 ifxe A

=0 if x ¢ A.
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Suppose X 1is continuous and take an open set G < R, then
1A (G)= X if G contains O and 1, reeee (1)
= A if G contains 1 but not 0,
= (X\A) if G contains 0 but not 1,
=0 if G contains none of 0 and 1.
Since x3'(G) is always open in X it follows from (i) — (iv) that A is clo-

open in X. The converse is also true.

§2. Nets and Filters :

Definition 2.1. A binary relation denoted by = is said to direct a non-empty
set D if

(i) m, n and p are members of D such that m 2 nand n =2 p, then m = p
( 2 1is transitive)

(ii)) m € D, then m = m (= is reflexive)

(iii) m and n are members of D, then there is a member p in D such that
p2mand p 2 n.

If > directs D, then the pair (D, 2) is said to be a directed set.

For example the set JA of all natural numbers is a directed set with usual
order of reals.

Explanation : A very common example of a directed set is the set N of
all natural number with usual arithmetic ordering. So (N, 2) is a directed set.
If (X, 1) is a Topological space and .4 is the family of all neighbourhoods of
apoint x € X is a directed set directed by set inclusion relation  (being a subset
of). Note that a directed set need not be a partially ordered set, since Definition
2.1 does not invite antisymmetry.

Definition 2.2. If S : (D, 2) = X is a function where (D, 2) is a directed
set, and X is a non-empty set, then S is called a net in X;

or, equivalently, S, (= S(n)) € X as n € D.
or, in symbol, a net {S,;: n € D, 2} is in X.
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A net {S, : n € D, 2} is said to be eventually in X if and only if there
is a member N € D such that S, € X if n 2 N.

A net {S, : n € D, 2} is said to be Frequently in X if and only if for each
m € D, there is a member n € D such that n 2 m and S, € X.

Remark : A Sequence {x,} is a net with /A as a directed set.

Explanation : If anet {S,; n € D, 2} is Frequently in X, Let E= {ne D :
S, € X}; Then for each member m € D, we find a member p € E with p 2
n. Such a subset E of D is called cofinal. Cofinal subsets of a directed set
are used in theory of subsets of a net.

Definition 2.3. : A net {S,, n € D, 2} in a Topological space (X, 1) is
said to converge to an element u € X, if and only if the net {S,, : n € D, 2}
is eventually in every neighbourhood of u in X.

For example, if (X, 1) is a discrete space (T is the discrete Topology), then
a net {S,, n € D, c} coverges to a point u iff {S,, n € D, c} is eventual in
{u}; That is to say, from some point on S;’s are all equal to u. On the other
extreme case if (X, 1) is indiscrete, (only open sets are ¢ and X), then every
net {S,, n € D, c} converges to every point of X. Cousequently a given net
may converge to several distinct points.

Theorem 2.1. In a Topological space (X, T) (i) A point u in X is a limit
point of a subset A of X, if and only if there is a net in A\{u} such that the
net converges to u.

(ii) A point u belongs to closure of a non empty set A i.e. u € A if and

only if there is a net in A converging to u.

(iii) A subset A in X is closed if and only if no net in A converges to a
member of (X\A).

Proof : (i) Let u € X be a limit point of a subset A if X. Then every nbd.
N, of u cuts A in a point other than u;

i.e. Ny n (A\{u}) # ¢; Take xy, € Ny N (A\{u}).
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We know that the family .4; of all nbds. N, of u forms a directed set with

respect to set inclusion relation .

Then {xXy,, «4; <} is a net in A\{u} such that if N, and Nj, are nbds. of
u with N < .4, then by construction xy. € Nj cN,. Hence the net
{xNu, A C} is eventually in every nbd of u, implying that the net converges

o u.
The converse is obviously straight forward.

(ii) A = closure of A = A U derived set A’ (of A). For each member u
A’, there is a net (by preceding part) in A converging to u; For each member
ue A,anynet {S,, neD, =}. Such that §;, = u for all n € D becomes convergent
net converging to u. Therefore, each point in A attracts a net in A that converges
at that point.

(iii) This part is now clear because a set is closed if and only if A = A.

Theorem 2.2. A function f : (X, T) — (Y, U) is continuous at ¢ € X if
and only if every net {S,, neD, >} in X that converges to c, the net {{(S,)}
:n € D, 2} converges to f(c) in Y.

In symbol, f(lim S, ) = imf(S,).

Proof : The condition is necessary : Suppose f is continuous at x =c € X.
Let {S,, neD, 2} be a net in X that converges to c. So it is eventually in every
nbd. of ¢ in X. Take Ny, be a nbd. of f(c) in Y. By continunity if f at ¢, we
have f~ I(Nf(c}) is a nbd. of ¢ in X. So {S,, neD, 2} is eventually in f~ ](Nf{c-)).
That is to say, {f(S,), n € D, 2} is eventually in Ny, and the net {f(S, ), neD, 2}
converges to f(c) in Y.

The condition is sufficient : Let the condition hold. If possible, let f be

not continuous at ¢ in X. We seek a contradiction.

Failure of continuity of f at ¢ invites a nbd. (say) Ny, of f(c¢) in Y such
that £'(Ny,,)) is not a nbd. of c.
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Thus for every member N, of nbd. system .4, of ¢ in X, we find a point
Xy, (say) € N such that xy_ef™ (N;.,).

L€ f(ch )€ Ng (%)

Put D = Collection of all such ordered pairs

= {(xn.» N0}, N¢ € A

Then consider the Directed set D = {(Xy_, N¢), N¢ € &, c}.

Define S(xy,, N¢) = xn,; Then the net {S, D, c} has the property that
it is eventually in every nbd. N, of c; i.e. it converges to ¢ in X, but the
image net {f(S), D, c} becomes such that f(S(xy, ,N.))=f(xn )&Ngq,
(From *).

i.e. the net is not eventually in N, = a nbd. of f(c) in Y. So the image not

{f(S), D, c} does not converge to f(c), although the net {S, D, c} converges
to ¢ in X—a contradiction. The proof is complete.

Definition 2.4. A filter in a Topological space (X, T) is a family Zof subsets
of X satisfying

(E1) If Ae# and A c B, then B € %

(E2) If Ay, A» € # then (A; N Ay) €F

(F3) ¢e¢Z

For example, the nbd. system .4 if a point x in X is a Filter. Because above

conditions (F.1 — E.3) are all O.K. in favour of the family .4,. That is why .4,
is often termed as nbd. Filter.

Definition 2.5. A Filter % is said to converge to a point x € X, if and only
if each nbd Ny of x is a member of .7 (that is, the nbd system .4; at X is a sub-
family of 7).

Theorem 2.3. A function f : (X, 1) = (Y, U) is continuous at x = ¢ € X
if and only if for every Filter # on X that converges to ¢, the image Filter f(.%)
converges to f(c) in Y.



Proof : The condition is necessary : Let f he continuous at x = ¢ € X,
and let & be a filter in X converging to c. Then the nbd. system .4 at x
= ¢ is a sub-family of F ie. .4 c % We show that image Filter f(#) in
Y converges to f(c); That is to show the nbd. system .45, at f(c) as a sub-
family of f(%) or

M cf(&). 0 (1)
Let Ny be a nbd. of f(c) in Y. i.e. Ngy € F). By continuity of f at x =
¢, we find that £~/(Ny,) is a nbd. of ¢ in X and hence by assumption f~'(Ny))
€ &, That means Ny € f(#) and (1) is verified.
The condition is sufficient; Suppose the condition holds. and f is not
continuous at x = ¢. We derive a contradiction. We find a nbd Ny, of f(c) in
Y such that no nbd N, of ¢ in X satisfies N, < £~ (Ny)).

i.e. no f(N.) < Ngq), showing that Ny, & f(A¢).

Therefore image Filter f(.4.) does not converge to f(c) in Y, though nbd. filter
A coverge to c in X—a contradiction. The proof is now complete.

Theorem 2.4. A point x is a limit point of a subset A of X, if and only

if A\{x} is a member of some Filter converging to x.

Proof : Let x be a limit point of A ¢ X. Then if Ny € .4, we have N,
N (A\{x} # 0.

If we put ¥={G c X : Ny N (A\{x}) © G, Ny € .1}, then it is not difficult
ot cheek that % is a Filter generated by members Ny M (A\{x}), N, € ./4;. Further
N, < %, and, hence, %is a filter converging to x in X. Of course, by construction,
A\{x} € G.

Conversely, Let A\{x} be a member of a filter (say) # that converges to
x in X; That 18, to say,

Ax}e® L. (1)

Also the nbd. system .4 at x < H; That is to say, every nbd. Ny of x is

a member of #.
or, N, € # wivs C2)
29



Since % is Filter, we deduce from (1) and (2)
Ny, N (A\{x}) # ¢.
That means x is a limit point of A.

Nets and Filters Lead to essentially equivalent theories. Grounds for this

suspicion rest in following Theorem.

Theorem 2.5. In a Topological space (X, 7). If {S;, n € D, 2} is a
net converging to u € X, they there is a Filter in X converging to u; and

vice-versa.
Proof : Let the net {S,, n € D, 2} converge to u € X.

For each n € D, put A, = {Sp,, m € D; m > n}. Since Intersection of
any two such members contains another such member {A,} generate a Filter
Z in X. Now given any nbd. N, of u, we know that the net is eventual
in N,; That is to say A, < N, for some n. That means N, is also a member
of # i.e. the nbd. system .4, at u satisfies .4, < %; Hence & converges
to u € X.

Conversely, Let % be a Filter converging to u € X. Put Dz = {(x, F) :
x € F and F € &}. Then D; is a directed set with order 2 by agreeing to
(Y, G) = (X, F) if and only if G c F. Consider the net {f(x, F) ; (x, F) € D, 2}.

Where f(x, F) = x. Then it is a routine excercise to check that this net is

eventual in every nbd N, of u, and hence the net converges to u € X.

§3. Product spaces.

There is a technique to construct a new Topological space out of a given
number of Topological spaces. That leads to the concept of product spaces.
Let (X;, 1) and (X,, V) be given Topological spaces, and let X = X; X X,.
Consider a family $B of all subsets of X; x X, = X like G} x X; and X; x
G, where G; € T and G, € V. Then it is a routine exercise to see that §B is
a sub-base for a Topology on the Cartesian Product X whose base B consisits
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of all members of the form G; x G;, and the Topology generated by the base
B (or by sub-base $B) on X is called the Product Topology on X. Then a subset
W of X; x X, = X shall be an open set in the Product Topology if and only
if to each member (x;, x;) € W there correspond open nbds U; of x; in X
and U, of x, in X, such that

UiXUQCW.

The given spaces X; and X, are often callcd co-ordinate spaces and two
functions p, and p,, that carry a member (X, X;) of X; x X into x; and into
X, respectively

ie.p, Xy X Xy = X and p,, : Xy x X; = X; where

P, (X1, X2) = Xy and p, (Xy, Xp) = X; respectively are called projections into
Co-ordinate spaces.

Projection functions p, and p, are here continuous functions. Because if
U, is an open set in X; we see pgl (Uy) = U; xY, and that is an open set in
X =X x X,.

Now suppose 7 is a Topology for X; x X, that make projection functions
continuous. Then if U is open in X; and V is open in X5, then U x V is open
relative to T, because U x V = p;l (U) N p,, L(V), and this set is open relative
to T because p,’s are continuous. Therefore T is stronger than the product,
topology, and we conclude that the product topology is the weakest Topology
on X to make projections continuous.

It 1s now a routine matter to extend the Definition of Product Topology
for the cartesian product X = X; x X, x ... x X, where each co-ordinate
X; is a given Topological space (Xj, T;). Thus a base for the Produci Topology
on X consists of all members of the from U; x U, x ... x U, where each
U; in open in (Xj, 7)), 1 = 1, ..., n. In particular, the real number space R
with usual topology gives rise to the product space R" = R x R x ... x R
(n times) with Product topology; and R" is more commonly known as the
Euclidean n-space.
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Here we see that each member of R" is an ordered n-tuple of reals like (x;,
Xa, ... Xp); X; € R. We look at it as a real function x on the set (1, 2, ..., n) where
value at 1 as x; (= x(i)).

Suppose we have an arbitrary family of Topological spaces (Xg, Ty), 00 € A-
an Index set. Then the cartesian product X = X{X, : o« € A) may be looked
as the set of all functions x on A such that xy € X, for each index ot € A. In
that case X, is 0-th Co-ordinate space and corresponding projection function
Pr, 1 X = X is given by p,, (x € X) = x4 € X,

Consider the family [p;u](U) : where U is an open set is (Xq, Tg)}). It
1s easy to check that this family of subsets of X is a sub-base for a Topology
on X, and it is the smallest Topology on X to make each projection function
continuous. This Topology on X is called the Product Topology and X is
the Product space of given Topology spaces (X, Tg). as O € A.

Theorem 3.1. Let {(Xy, To)}oea be a family of Topological spaces and
X = X{Xqy: o0 € A} be the product space with Product Topology. Then each
projection function p,, : X — X, is an open function i.e. it sends open sets into

open sets.

Proof : Let p, : X — X, be a projection function. Let G be an open set
in X. If x € G, we find a member of defining open base member, say, D of

the product Topology such that x € D < G. Then we have
pr,(®) € p, D) cp, (G .. (1)
We know that D looks like

D =X{Gq : o € A}, where G is open in X, and G, = X, for all o except

a finite number of o’s (say) = o, O, ..., O,
Now, if o = one such oy, we find
pruk (D) = {pruk (y) :y € D} = {Y(zk : thl € G(IL }: Gllk kv (2)
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And if o is none of oy, ¢, ..., 0f; We know

P (D) = X. Now (2) and (3) tell us p, (D) is an open set and from (1)
we conclude that p, (G) is open.

Remark : A projection function may not send a closed set into a closed
set. For example, in Rz, the closed set {(x,y) € R?: xy = 1} has a non-closed

Projection on each Co-ordinate space.

Theorem 3.2. Let (Y, V) a topological space and {(X,, Tg)}oe 4 be a family
of Topological space; function f : Y — X = X{X, : o« € A} is continuous if
and only if the composition function pf : Y — X, is continuous for each

o e A

Proof : Let f : Y — X be a continuous function. Since X is the product
space with product topology and we know that each projection function p,,
on X is continuous, it follows that the composition p,f is a continuous

function.

Conversely, suppose the condition holds i.e. pf is continuous for each a,
then for each open set U of X, we have (p, £)-'(0) = f”](p,“u](U)) and this
is an open set by assumption; and product topology of X says that p;!(U) is
a member of sub-base for the product topology. This inverse image under f of
a (any) member of defining sub-base member of the product Topology becomes

an open set. That means, f is continuous.
§4. Quotient spaces.
Let (X, 7) be a Topological space, and Let f : (X, T) — Y be an onto function.
Let %#={UcY:flU)en).
Then % forms a Topology on Y. Because
i) ¢, Y e U;



(i1) It {Gglgen 18 @ sub-family of #, then G= U G, Y such that
el

f-1(G)=f""(U G, )= U (G, ) e, because each f1(Gy) € 1. S0 G € %;
aeh QEN

(iii) Let G, H € %, and we have (G n H) = {7(G) n {~'(H) which
is a member of T became f~!(G) and f~!(H) are so. Thus G N H is a member
of .

Thus (Y, %) is a Topological space, called quotient space.

Theorem 4.1. The quotient Topology on'Y is the largest topology such that
f: (X, 1) = Y is continuous.

Proof : Let Vbe a Topology on ¥ such that f : (X, 1) — (Y, V) is continuous.
Take G € V, then by continuity of f we have £'(G) is open in X i.e. f (G)
€ 1, and by definition of quotient Topology G is a member of the quotient
Topology on Y. Hence V < Quotient Topology. The proof is complete.

Definition 4.1. A function f from one topological space into another is said

to be a closed function if f sends each closed set into a closed set.

Theorem 4.2. If f : (X, T) — (Y, %) is continuous and onto such that
is either open or closed function, then % is the quotient Topology on Y.

Proof : Lei (X, 1) = (Y. %) be continuous and onto, and U be a subset
of Y such that {~'(U) is open. Here U = f (f"(U) is open (f is open) in 7.
So every open set in quotient Topology is open in % If f is continuous and
open, since quotient Topology is the largest Topology on Y for which f is
continuous, %/ becomes the quotient Topology on Y.

If f is a closed function, we need to replace ‘open’ by ‘closed’ in argument
above for desired conclusion.

Example 4.1. Let X = {(x, y) € R> : x =0 ory = 0}. Show that projection
function P(x, y) = x for (x, y) € X is closed but not open.

Solution : Take any closed subset of X; it is mapped by P into singleton
{0} which is closed but not open.
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Let (X, 7) be a given Topological space, and let R be an equivalence, relztion
on X. Then X is partitioned into disjoint equivalent classes; denote the set
formed by these classes as X/R, called quotient set.

If a € X, let D, denote the ‘equivalent’ class containing a. Thus D, = Dy,
if and only if a and b enter the same ‘equivalent’ class i.e. if and only if
(a, b) € R(a R b).

Now define h : X — (X/R) where h(x) = D,, x € X. Then h is onto. Also
construct a family tg of subsets of (X/R) by the rule :-

g = {K < (X\R) : h"'}(K) is an open set in X}
That is to say, g = (K < (X\R) : h"{(K) € 7).
Then we verify that T is, indeed, a Topology on (X/R).
Because (i) ¢, (X\R) € 1R.

(ii) If {Kq)oea be a sub-family of 1, and K= [JK,,.

aeA

Then h™(K)=h""(UK,)= U h™'(K,) € 7 since eachmember h-' (K, )et

wed oel

which is a Topology on X. That shows K € 15.

(i1i) Similarly we can show that intersection of two members of Tg is a
member of Tg.

This topology Tr on quotient set (X/R) is called the quotient Topology and
Topological space (X\R) is said to be the quotient space.

Theorem 4.3. If © denote projection of (X, T) onto the quotient space
(X\R), then following statements are equivalent.

(a)  is an open function and (b) If G is open in X, R[G] is open.
Proof. For each subset A of X, we have R[A] = n~'(n[A]).

(a) = (b); Let ® be open. If G is open in X, by contnuity of
projection function 1. We have T (®[G]) is open i.e. R[G] 1s open. Thus
(b) holds.
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(b) = (a); Let (b) hold. If R[G] = n~'(n[G)) is open, then, by Definition
of the quotient Topology, ®[G] is open, and so T is open.

Exercise - A
Short answer type questions

1. InI9(is the set of all natural numbers, construct a co-finite Topology Ty on I,

Is 1yN a filter ? Give reasons.
2. Show that a sequence {x,} is a net.
3. Give an example of a Projection function that is open, but not closed.

4. Let P=(a=xp<Xx<..<X,=Db) be a Partition of a closed interval [a, b].
Let & denote the family of complements of all partitions of [a, b]. Show that &

is a Directed set.

5. Let I and J be two non-degenerate intervals of reals with usual topology. Show

that any homeomorphism h : I — J is monotonic.

6. If (X, 1) is a Topological space, and f : X — R of reals with usual topology,

is continuous, show that the set {x € X : -1 < f(x) < +1} is an gpen set
in X.

7. If ¢ : (-1, 1) = Reals with usual Topology is given by

X
o(x) = T—1xI> -1 <x <+l

Examine if ¢ is a Homeomorphism.

Exercise - B

1. In a Topological space (X, 7) a subset G is open if and only if G is a member

if every Filter that converges to a point of G.

2. Show that all limit points of a net in a Topological space form a closed set.
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In a Topological space X let @, denote the collection of all Filters cach of which
converges to x € X; Show that N {F: F e®d,} is equal to the nbd. system

Ay at x.

Letf: (X, T) = (Y, V) be a continuous function. If A < X, show that restriction

fa is a continuous function on A. Is the converse true? Give reasons.

If (X, 1) and (Y, V) are Topological spaces show that a bijective (1-1 and onto)
function f : X — Y is a homeomorphism if and only if f(A)=f(A) for every
subset A of X, bar denoting the closure.

Show that the family of all subsets of a non-empty set X each of which contains

a given element xg € X is a Filter on X. Examine its maximality.
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Unit 3 (1 Separation Axioms in Topological Spaces

(Separation axioms Ty, Ty, T, T3, T4 in Topological spaces, Their implications
and characterisations, Product of T,-space, Regular spaces, Normal spaces,
Completely regular spaces, Tychonoff spaces, Urysohns Lemma in Normal
space, Tietze extension Theorem, Embedding in cube, Embedding Lemma
and Theorem, Metrization Urysohn’s metrization Lemma).

§1. If there are too many or too few open sets in a Topological space (X, 1),
analysis thereupon may not be interesting and useful. For example, every
function over (X, 1) with T as discrete Topology becomes continuous. There
arise several separation axioms in (X, T) in terms of availability of open sets
in X. These axioms are presented below in graded style : which one is weaker
or stronger than the other. Let (X, 1) be a Topological space.

Definition 1.1. (X, 1) is called a To-space if given two distinct points in
X, there is an open set containing any one but not the other.

For example, real number space R with usual topology o ¥
is a Ty-space ; because given x, y € R with x # y, one can
find an open interval containing x leaving y outside. Also
there is a Topological space like (X, T) where X =(a, b, ¢) (a, b and c are distinct)
and T = {¢, X, (a), (b, ¢)}, such that (X, 1) is not T; because distinct points
b and ¢ have no Ty-separation i.e. we do not find any open set in X to contain
one without containing the other.

Definition 1.2. (X, 1) is called a Ty-space if given any two distinct.
elements in X, there is an open set to contain each one of them without
containing the other.

Explanation : There are many T,-spaces ; for example, .
space R of reals with usual Topology. Consider a Topological
space (X, 1) where X = (a, b, ¢), a, b are ¢ are distinct, and T = {¢, X, (a),
(a, b)}. Here a and b have no attracting open sets in T as per T-stipulation.
So (X, 1) is not T;. Definitions above have been so framed that T, = Ty
i.e. every T-space is a Ty-space; opposite implication is however false.
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Example 1.1. The space (X, 7) where X = {a, b}, a # b; ana 1T = {¢, X,
(a)} is Ty without being T;.

Solution : Here for distinct elements a and b we have an open set (a)
containg a without containing b; and this pair does not have a T;- separation;
because only open set to cover b is (a, b) that cuts (a}.

Definition 1.3. (X, 1) is called a T,-space or a Hausdorff space if given
any two distinct members x and y in X, there are open sets U and V such that
xeUyeVandUNV =¢. |

Explanation : Here T, = T,; and if (X, 1) is a Topological space where
X={a,b}a#b;and 1= {9, x, (a), (b)}. Then (X, 1) is T5. Example 1.2 shows
there is-a space (X, 1) that is T; without being T,.

Example 1.2. Let X be an infinite set and let the collection ¢ of subsets
of X beas ¥={G c X : (X\Q) is a finite set (may be empty)}. Then
we verify that ¢ is a Topology on X, very often named as co-finite Topology
on X. This Topological space (X, ¥) is T without being T,. Take two
members u, v € X with u # v. Then U = X\{v} and V = X\{u} are two
members of ¢ containing u and v respectively such that v is outside U and
u is not in V. Hence (X, %) is T;. If possible, let any two distinct points
X, y in X have T, separation. So we find two open sets H and K in X
such that x € H, y € K and H n K = ¢. Clearly (X\H) and (X\K) are each
finite subsets of X; and so.

(X\H) U (X\K) “is a finite set in X,
te. X\(H n K) is a finite set in X,
e X is a finite set, because H N K = ¢.

This is a contradiction. Hence our assertion stands.

Theorem 1.1. If (X, 1) is Ty, then closures of distinct points in X are
distinct. '

Proof : Let (X, 1) be a Ty-space; and let x, y € X with x # y. We show

that either x ¢ (v} or y ¢ {x}, bar denoting the closure. By Ty-separation we
obtain an open set U containing (say) x without containing y. That is to say,

xeUandy e U,;
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Thus a nbd. of x does not cut the singleton {y}; So x is not a dimit point
of {y}. Asx #v, we ha e x ¢{y}. Of course x € {x}. That means {x} #{y}.
Theorem 1.2. (X. ) is Ty if and only if every singleton is closed.

Proof : Let (X, 7 veT;and x € X. If y € X and y # X, by T,-separation
we find an open s:. U such that

xeUandy e U.

Clearly then y is not a limit point of {x} i.e. y&{x}" (derived set of {x}).
Of course x & {x}’. That means no member of X is a member of {x}’. Hence
{x}" =90; So

{x}={x)ufx) ={x)
ie. {x} is closed.

Conversely, suppose every singleton in (X, 7) is closed. Take x, y € X with
x #y. So singleton {x} is closed, and hence X\{x} is an open set containing
y (without containing x); and similarly X\{y} is an open set containing x
(without containing y). Thus (X, 1) is T;.

Theorem 1.3. (X, 1) is T, if and only if every net in the space converges
to atinost one point in X,

Proof : The condition is necessary. Let (X, 1) be T, (Hausdroff). If x and
y are two distinct points in X, they attract disjoint neighbourhoods U and V
containing x and y respectively by T, separation. Since a net can not be
eventually in each of two disjoint sets at the same time it follows that no net
in X converges to both x and y simultaneously.

The condition is sufficient. Here assume that the condition holds. If
possible let (X, 1) be not a T»-space, and let us suppose a and b are two distinct
members of X such that every nbd. of a intersects every nbd. of b. Now nbd.
system .4; at a is a directed set and so is the nbd. system .44, at b. Let us order
their product (Cartesian) .4, x .44, by agreeing that (T, U) = (V, W) if and only
if T cVand U © W. For each member (T, U) €.4; x .4, we have T N U #
¢. Take a point x(1,yy € (T N U). Thus if (V, W) 2 (T, U), then xyw) €
(VN W) < (T nU), and in consequence the net {xyy, € (T, U) A, X A, 2}
converges to both a and b simultaneously—a contradiction.
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Theorem 1.4. A product of T,-spaces is a T,-space.

Proof : If x and y are two distinct points in product X{X,, : o € A}, then
Xo # Yo for some o in A. If each co-ordinate space is T,, we find disjoint open
nbds U and V of x, and y,, respectively, and P '(U) and P, ' (V) become disjoint
open nbds of x and y respectively in the product space X{X, : o0 € A} with
product Topology.

Definition 1.4(a). (X, 7) is said to be a regular space if given any closed
set F in X, and an outside point x in X (¢ F), there are open sets U and V in
X such that

xeUand FcVwithUnNnV=4¢.

(b) A regular space which is also T; is called a T3-space.

Explanation : Take X = (a, b, ¢) and a Topology T = {0, X, (a). (b, ¢)}
i X. Here only closed sets are X, ¢, (b, c) and (a). We verify that (X, 1) is
a regular space, and this regular space is not T}; because singleton (c) is not
a closed set in (X, 1).

Further T3 = T, (and hence = T; = Ty).

As singletons are closed sets in T-space, we have T3 = T,.

Definition 1.5(a). (X, 1) is called a Normal space if given a pair of disjoint
closed sets F and G in X, there are disjoint open sets U and V such that F
Uand Gc V.

(b) A normal space which is also T; is said to be a T4-space.

Explanation : Take X = (a, b, ¢, d, e, f) and T = (¢, X, (e), (), (e, 1), (a,
b, e), (c, d, I), (a, b, e, 1), (c, d, e, )}; Then (¥, 1) is a normal space. There
are only four pairs of disjoint non-empty closed sets ; they are ((a, b), (c, d)),
((a, b), (c, d, ), ((a, b, e), (¢, d)) and ((a, b, e), {c, d, )). Each pair is separated
by pair of disjoint open sets ((a, b, ¢), (c, d, f)).

This normal space (X, 1) is not regular; Because (a, b) is a closed set in
X with e ¢(a, b); there is no disjoint pair of open sets in X to separate them.

Further T4 = T3. Because if F is a closed set, and x is a point ¢ F in a Ty-
space (X, T), we see that singleton {x} is a closed set in X. So by normality
of (X, 1) desired separation is immediate. So (X, 1) is a Ts-space.
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Definition 1.6(a). (X, 1) is said to be completely regular if given any
closed set F and a point x ¢F, there is a continuous function f : X — [0, 1]
such that f(x) = 0 and f(u) =1 foru e FE

(b) A completely regular space which is also Ty is called a Tychonoff
space often designated as T,,-space.
2

Theorem 1.4. A space (X, 1) is Normal if and only if for every closed
set F and open set H containing F there is an open set G such that

FcGcGCcH.

(Pushing a pair of open and closed sets (G, G) in between a given pair
of closed and open sets (F, H).

Proof : The condition is necessary : Let (X, 1) be a normal space and
Let F and H be a pair of closed and open sets in X such that

F< H.

Then complement of H = H is a closed set with F n H® = ¢. By normality

axiom we get a pair of disjoint open sets G and M satisfying
FcGandH cMand G M = ¢,

Thus G ¢ M*; and H®* ¢ M gives M* < (H)® = H. As M® is a closed set,

we get
FcGcGcM® cH.
That is, FcGc G cH.

The condition is sufficient. Suppose the condition holds. Let F; and F, be
a pair of disjoint closed sets in X.

Then we have F; < F,° which is open.
Hence by the condition assumed we find an open set G such that
F,cGcGch,°,

Now G cF,° gives F, c G, and, of course, GcG. So,

GNG® =¢.
Thus F; € G and F, c G*© where G and G is a pair of disjoint open sets

in X. Hence (X, T) is normal.
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Theorem 1.5. (Urysohn’s Lemma) : In a normal space X if A and B are
disjoint closed sets in X, there is a continuous function f : X — [0, 1] such
that f(x) =0 if x € A and f(x) = 1 if x € B.

Proof : Let (X, 1) be normal, and A, B be a pair of disjoint closed
sets i.e. A N B = ¢; So A < B® which is open, B® denoting the complement
of B. So Theorem 1.4. applies and we get an open set (say) = G 1 such
that

ReGi @ aB® (1)
2 2
Now pair (A, G,) is a pair of closed and open set with A < G, and, as

before, calls for an open set, say = G; such that

ACGL Cﬁl C:Gl (23)
y

4 2

and by a similar reasoning there is an open set (say) = G; such that
4

A 4 4

So (2a) and (2b) give
AcG,cG,cG,cG, cG; G

1 1
4 ) 2 2 4

c B¢ (2)

s

We continue this chain and for each dyadic rational of the form 23“ (h=

1,2,...andm=1,2, ..., 2“"1) in [0, 1], we designate an open set G; with property
that for any two dyadic rationals /; and /; in [0, 1], [} < [, gives
AcG, cG, cG,, <G,, cB-.
We know that collection of all such dyadic rationals in [0, 1] is dense in
[0, 1].
Let us define f : X — [0, 1] by the rule :
f(x) = 0 if x € every member G;
= sup {/: x ¢ G;}.
So 0 < f(x) < 1 for x € X; Further from definition above we have f(x)
=0if x €A, and if u €B; as G, G, cB*, we see that u ¢ G, for every
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[. By dense property of the set of all ’s we deduce from f(u) = sup {/ :
u EGI} = 1.

It remains to work that f is continuous. Since intervals like [0, a) and (b,
1] where 0 < a, b < 1 form sub-basic open sets in [0, 1] with usual Topology
of reals. it suffices to show that f™! [0, a) and ! [b, 1) are open sets in X. Now
we can cheek
1[0, a)= {x e X : 0 < f(x) < a}
= {x € X : X € G, form some / < a}

= }JG, which is an open set in X.
<

Also (b, D= {x eX:b < f(x) < 1}
= {x € G} for some / > b.

= UG¢, a union of open sets = an open set.
b !

The proof is now complete.

Corollary 1.1. Let X be a normal space, and let A and B be a pair of disjoint
closed sets in X. Then there is a continuous function g : X — [a, b] such that
g(x) = a for x € A and g(x) = b for x €B.

Take g = (b — a)f + a as f appearing in Urysohn’s Lemma.

Example 1.3. In (X, 1) if for any pair of disjoint closed sets A and B there
is a continuous function f : X — [0, 1] such that f(x) = 0 if x € A and {(x)
= 1 if x €B, then (X, 1) 1s Normal.

Solution s Under the given hypothesis. put
_ . N _¢a(01) and H= > Plg (L ]
G_{xexlf(x)<2}_f [0,2) and H {xeX.f(x}>2} f (2.] :

Since [0, %) and (% I] are open sets in [0, 1] with usual topology of reals,

and since f is continuous it follows that G and H are a pair of disjoint open
sets in X satisfying
A c Gand B c H.

So (X, 1) is normal.
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Theorem 1.6. A product of Tychonoff spaces is a Tychonoff space.

Proof : Given a Topological space (X, 1), and a continuous function f :
X — [0, 1] with usual topology of reals, let us make a convention : —

If x € X, and U is a nbd. of x, we say that f is for a pair (x, U) if f(x) =
0 and f(u) = 1 if u € (X/U).

Then if fy, f, ..., f, are functions for (x, Uy), ... (x, Uy), (n = a +ve integer),

and if g(x) = Sup {f; (x)}, x € X, we see atonce that g is for the pair [x, Nu; ]
i=1

I=isn

Therefore, the space (X, 1) is completely regular if for each x and for each nbd.
U of x (one may take U as a sub-basic member of 1), there is a function for
the pair (x, U).

Suppose X = the product X {X, : o € A} of Tychonoff spaces X, and take
x € X; Let Uy be a nbd. of x, in Xg,. If f is a function for (x4, Uy), then P,
(P,, = oth Projection function) is a function for (x, Pr“u‘ (U 0t)). Now family of
sets like P! (U) constitute a sub-base for the product Topology ; and therefore
the product space is completely regular. Since product of T-spaces is again a
T,-space, we have proved Theorem.

Theorem 1.7. (Tietze Extension Theorem) Let (X, T) be a normal space,
and F be a closed sub-space of X, and let f : F — [a, b] be a continuous function.
Then f has an extension h over X with values in [a, b].

Proof : Invoking corollary 1.1, we may assume that a = — 1 and b = 1.
’ 1 w17
Put fg =fand A, ={xeF : fo(K)S—g}, By ={x : fo(x}.f_g}. So Ay and By

are a pair of non-empty disjoint closed subsets in F, and hence are also closed
in X, because F is closed. Now apply again corollary 1.1 to find a continuous

function go : X — [—%%J such that go (Ao)x{—%} and go (Bo)={%}.

Define f| = f; — gg on F; then |f, (x)]S% for all x e E

If A, ={x:f| (x)g(—%)(%)}, and
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o=z}

Then by reasoning as above, there is a continuous function g, : X —

[(-3)3)(5)3) s mauss can={(=3)(3 ) mas e0={(3)(5)}

Next, definefonFby f, =f, —g, =, —(go +g, ), and see that|f, (MS(%

We continue this process to obtain a sequence {f,, fj, ...} defined on F

such that |fy (X)|S[%) and a sequence gy, g, ...} defined on X such

that ign(x)lﬁé(%) with property that on F we have

fo =fo —(go +81 +... +84 ). Define S, = gg + g, + ... + gy_;, we treat S;, as
n-th partial sum of an infinite series of functions (real-valued) over X. We know

that the space C(X, R) of all real-valued continuous functions with sup norm

becomes complete ;

. 1 2 n ) o ] 2 n ) )
) ] [t —| = = : E
As |gn t‘x)]_3(3) and since Eo 3(3) I, We conclude that {S,}

converges uniformly to a bounded continuous h such that | h(x)[<1 over X.

I(I R |
We may conclude our proof by the observation that | f,, (x) |SL%) and {S,}

converges uniformly over F to f, which is equal to f, and that h equals to f over

F, and h is a continuous extension of f over whole space X which has the desired
property.

Remark : Theorem 1.7 is not true if we remove assumption that F is
closed. For example, take X to be the closed Unit interval [0, 1], and take F

c X as F= (0, 1]. Then look at f : F — [-1, 1] where f(x) = sini. Then f
is continuous, but f does not admit a continuous extension over [0, 1].
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§2. Embedding in Cube.

The Cartesian product of closed unit intervals Q = [0, 1] with product

topology is called a cube.

So we look upon a cube as the set Q” of all functions on A to Q. Suppose
F is a family of functions such that each f € F acts on a Topological space X
to a space Y (Yy may be different for different f € F). Put X{Yy: f € F}. There
is a function e : X — the Product, often named as evaluation function where
e(x € X)p = f(x). It is seen that if members of F are continuous, then evaluation
function e is continuous. F is said to distinguish points of X, if given x, y € X
with x #y, there is a member f € F sucl) that f(x) # f(y). F is said to distinguish
points and closed sets if for each closed set A in X and x €(X\A), we find a
member f € F, such that f(x) ¢ f(A).

Theorem 2.1. (Embedding Lemma). Suppose F is a family of continuous
functions f : X — Yy (X, Yy are Topological spaces); then

(a) Evaluation function e : X — X {Y¢: f € F} is continuous.

(b) e is an open function of X onto e [X] if F distinguishes points and closed
sets. -

(c) eis 1 — 1 if and only if F distinguishes points.

Proof : (a) we see that composition of evaluation function e with projection
function Pr, ie. Pr.€ is equal to f; and here we know that proe 1s continuous,
because (pr'n e)( x)=f(x). Consequently e is continuous, by Theorem 3.2
(Unit II).

(b) It suffices to show that image under e of an open nbd. U of x contains
e[X]n anbd. of e(x) in product. Take a member f € F such that f(x) ¢ closure
of f(X/U). The set of all y in the product such that y, ¢ f(X \ U) is open, and
its intersection with e[x] is a subset of e¢[U]. So, e is an open function of X
onto e[X]. Now (c) is clear.
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Theorem 2.2. (Embedding Theorem). (X, 1) is a Tychonoff space if and
only if it is homeomorphic to a sub-space of a cube.

Proof : It is a routine verification that the closed unit interval with usual
topology of reals is a completely regular space and it is also T;. So it is
a Tychonoff space. As product if Tychonoff spaces is a Tychonoff space.
So a cube is a tychonoff space. Each sub-space of a cube is therefore a
Tychonoff space. We now observe that if X is a Tychonoff space and F is
is the collection of all continuous functions on X to closed unit interval,
then by Embedding Lemima Evaluation function is a homeomorphism of X
into the cube Q7.

§3. Metrization :

Metrization problem in Topology deals with obtaining necessary and
sufficient conditions for a Topological space to be metrizable. A partial answer
to the problem had been given by Urysohn as early as 1924 through a
Theorem, better known as Urysohn’s Lemma that we present below. We know
that the sequence space 1, of all real sequences x = {Xx;, X3, ... Xp, ...} such

that Ex,,z <o is a metric space with a metric d given by d(x, y)
n=1

oo %
-“-[Z(Xn ~Y¥n )2) » where x = (X1, X3, ...), ¥ = (¥1, V2, ...) € L. This
n=1

sequence space [, is a known as a real Hilbert space.

Theorem 3.1. (Urysohn’s Metrization Lemma)

It (X, 1) is a secon countable normal T;-space, then it 1s homeomorphic onto
a subspace of 1,, and hence is mefrizable.

Proof : Without loss of generality assume that X is infinite. Since (X, 1)
is second countable, it has a countable open base, say B = (G, Gy, ..., Gy, -..),
each G; being different from ¢ and X. If p € Gy, since X is Normal and T,
we find a member G; (say) of B such that

peG; cG; cG,. (1)
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Put Q={(G;,Gy ):G; Gy }, clearly Q is countable.

and let us write Q = {D,, D,, ...}.

For each ordered pair D, = (G, Gy), (say) with G, c G, . we find the pair
(Gi.G{ ), (‘c’ meaning complement) as a pair of disjoint closed sets in normal
space (X, 1), and hence it invites a continuous function f, : X — [0, 1] such
that

fo (Gi)={0) and f, (G )={1} . (2)
Define a function f(x) on X by

f(x)={f1 (X0, (X)yeers 2, (x),...}.
2 n

For each natural number n, we have 0<f,(x)<1, and hence

2
f, (x) 1 e
[ ] 5—2, and we know that the series E—]~<w.
B n n=1 nl

& 2
Therefore Z(M} <o as X € X. So f(x) is a member in I,.

n=1 n

ie. f : X = I,. Now f has following properties :-

(a) fis 1-1. Let x, y € X with x #y. By T;-separation we find Gy € B such
that x € Gy and y ¢ Gy. Then from (1) we find G; € B such that

2e8cGi.cGi .
From (2) f,(x) = 0, x€G;and f,(y) = 1; That is to say, nth term of the
sequence f(x) = 0, but nth term of the sequence f(y) shall be L Thus f(x)
n

f(y). Hence f is 1-1.

(b) f is continuous. Let x, € X, and € > 0 be given. Take y € X with y
# Xo. Then

f(y)={f,(y),ifz (y)....,ifn (y),...}
2 n
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andf(xu)={f|(xo);lfg(xg)””,lfn(xu)vu},
2 n
Since value of f, lie in [0, 1], we have

_f ¢ 2
[fa (y)—fn (x0)] <1

2

(3)

n? ' n
Since Zn—z <, we find an integer n, (independent of y and xg), such that

= 1 1 .,
Z 2 <5 € (4)

n=ny +I n

By continuity of f; at xy, for n =1, 2, ..., np we take open sets V,, containing

Xg such that

£ C3I—1 5 (20 )]
I'lz 211[]

whenever y € V, ‘ % (5)

Taking vV = an we see V as an open set containing xg such that for

n=1
= |fn ()= (x0)|*
y €V, d(f(y)f(x))’ =Z| o))

n=|

< [ fa (y)=1n ( )
21 Dbl 1, from (3) and (4)

nZ

M

) 2

& &

ngy+

< € ) S )
2, 2 by

2
=e",
So, d(f(y) — f(xg)) < € whenever y € V.
Hence f is continuous of x,.

(¢) £~ L, f(X) — X is continucus.

Take Xy € X. There is G; € B such that x, € G,,c G, € G, by (1). Let

D"o = pair (G;, Gi). Choose € such that 0<e< 2
Ny
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Then d(f(y), f(xg)) < € means

2

= |0 (y)—fa (x0)]|° i Y
z <(,2“uJ

o)
n=| n

(2 1

and hence |Tn, (¥)—fn, (X0 )| S
- ; 1
Since x4 €G; ,f,, (xo)=0, and hence fu, (.VKE-

Since f,, (G; )= {1}, We see at once that y ¢ G| . Hence y € Gy. Therefore

d(f(y), f(xg)) < € implies y € Gy. So f~ l'is continuous at f(xg) € f(X). From

properties (a), (b) and (c) it is shown that f is a homeomorphism of X onto a

sub-space of /, i.e. X is homeomorphic to a sub-space of metric space /5. The

proof is now complete.

Pvion g B 3

[S]

Exercise - A
Short answer type questions

Give an example with reason of a Topological space on which each real-valued
continuous function is constant.

Show that each normal T,-space is a Tychonoff space.
Show that every Ts-space is a T;-space.
Show that a compact (see unit IV) subset of T;-space is closed.
Show that a finite Topological space that is T has discrete Topology.
In a Hausdorff space X if x € X, show that
ﬂ{ﬁx: N, € ,,'I-;} = {x}, bar denoting the closure, and .4, denoting the nbd.

system at Xx.

Exercise - B

If X is an infinite set, Show that smalilest T{-Topology in X is its Co-finite
Topology.

Letf, g : X — Y be continuous function where X is a Topological space and Y
is Hausdorff, Show that the subset = {x € X : f(x) = g(x)} is a closed set in X.
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Let X be a Topological sapce. Prove that following statements are

equivalent :—

(a) X is T;.

(b) Every singleton of X is closed.

(c) Every finite subset of X is closed.
(d) If x e X, n{Ny : Ny, € A4} = {x}.
Show that every metric space is Normal.

Let X be a Hausdorff space and f : X — X be a continuous function. Show
that the set {x € X : f(x) # x} is an open set in X.

Show that a Compact (see unit IV) T,-space is metrizable if it is seconc
countable.

Show that a homeomorphic image of a Hausdorff space is Hausdorff.
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Unit 4 [J Compactness in Topological Spaces

(Open cover, Sub-cover, Compactness, Countable open cover, Lindeloff
space, Lindeloff Theorem, Properties of compact sets, Finite intersection
property, Its relation with compactness, Tychonoff Theorem on Product of
Compact spaces, Continuous image of a compact space, Locally compact
spaces, I-point compactification).

§1. Heine-Borel Theorem is a wellknown phenomenon in real analysis. The
essence of this lies in Compaciness in a Topological space (X, T).

Definition 1.1(a). A family ¢ = {Gg}qe o Of open sets Gy in X is said
to be an open Cover for X if X = U G,.

aeA

(b) A sub-family % C % 1is said to be an open sub-cover for X if  is itself
an open cover for X.

For example, the family 0 of all open intervals like (a, b), a, bar reals with
a < b forms an open cover for the space R of reals with usual topology ; because
each open interval (a, b) is an open set, and the sub-family 6, of 6 consisting
of all members like (-n, n), n = 1, 2, ... also forms an open cover for R, and
0y is a sub-cover for R.

Definition 1.2. (X, 7) is said to be compact if each open cover for X
has a finite open sub-cover for X.

Explanation : The real number space R with usual topology is not
compact. Because open cover consisting of all open intervals (-n, n) does not
have a finite open sub-cover for R. Ofcourse, there are many compact spaces ;
for instance every finite Topological space is compact.

Example 1.1. Let X be an infinite set and T be the Co-finite Topology for
X ; Then (X, T) is compact.
Solution : Let % be an open cover for X and fix a member G, of 4. Then
(X\Gan) is a finite set, say, = (X{, X2, ..., Xp) in X. Since % is an open cover
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for X ie. X =U{Gq : o € A}; there are members Gy, G, ... G, of ¢ such
that x; € Gg;. i =1, 2, ..., m. Then Gy, Gy, s Gayy, Phus Gy, all together
form a finite sub-family of @ such that X = Gg, U Gg, U ... U Gg Y G,
Hence (X, T) is compact.

Definition 1.2. A subset E of (X, T) is said to be compact if as a sub-space
with relativised Topology E becomes a compact space.

Definition 1.3. (X, 1) is called a Lindeloft space if every open cover of
X has a countable open sub-cover.

For example, it follows from Definitions that every compact space is a
Lindel6ff space.

Theorem 1.1. Every second countable space (X, T) is Lindeloff.

Proof : Let (X, T) be a second countable space with (W, Wa, ..., Wp, ...)
as a countable open base for T. Now take ¥ = {Gg}yea be an open cover for
X. Corresponding to any x € X, there exists some L€ A such that x € Gy ; we
find a base member, W such that x € W C G,. The corresponding base members
{W} form a part of {W;, W, ..., Wy, ...} and is a countable sub-family of (W,
Wa, ...}, say, {Wn,, Wpy, ..., Wp,, ...} ; Now each Wy, C Gj—some member
of 4,1=1, 2, ... Then {G}, Gy, ...} is a countable sub-family of % to act as
a sub-cover for X; and (X, T) is a Lindeloff space.

Corollary 1.1. The space R of all reals is a second countable space and
is therefore a Lindeloff space, without being compact, with usual topology with
basis consisting of intervals (a, b), a and b rationals. Thus a Lindel6ff space
need not be a compact space.

Remark : Theorem 1.1. is often named as Lindeloff Theorem.
Example 1.2. Continuous image of a Lindeloff space is a Lindeloff space.

Solution : Let f : (X, T) — (Y, V) be a continuous function where (X, T)
is Lindeloff, and (Y, V) is any Topological space. We show that f(X) is a
Lindel6ff sub-space of (Y, V).
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Take {Gg}ge A be an open cover for f(X); put Gy = f(X) N Hy where Hyy
is open in (Y, V) for each o € A. By continuity of f we have f '1(-1-1(:) is open
in X for each a0 € A.

Now f(X)= U G, < U (H,);

oeA aeA

so Xcf [ U H, ): U (Hg).

oeh [+ 1=

That is to say, X= U f~' (H, ); Hence the family {f~' (H, )} forms an

meEA
open cover for X. As (X, T) is Lindeloff, there is a countable open sub-cover

for X, say,
X=f1H)Uf (H,) v..uf ' H,)u...

So, f(X)=UH,.
n=l
Thus f(X)=f(X)n([j Hn} = D f((X)nH, = G &
n=1 n=1 n=1

So, {G, } becomes a countable sub-family of {Ga } _, to cover f(X).

Hence f(X) is a Lindeldf sub-space of (Y, V).

el

Theorem 1.2. Every closed set in a compact space is compact.
Proof : Let (X, 1) be a compact space and E be a closed subset in X.

So its complement (X\E) is open in X. Suppose {Gq }ae 4 be an open cover

forEie. Ec | G, each Gy being open in X. So the family {G¢ }_, and

aeA
(X\E) form an open cover for X, by compactness of which we find a finite sub-

family of this enlarged family as an open sub cover for X. Let G‘IN G%’
G‘Otn and possibly (X\E) form a finite open sub-cover for X, and hence from
a finite open sub-cover for E. Clearly {Ga,» Gaz, --» Gg_} is a finite open sub-

cover for E, and E is compact.

55



Remark : Coverse of Theorem 1.2 is not true. For example, take
X = a, b with topology T = {¢, X, (a)} Then the subset (a) is not closed in
(X, t). However it is compact in (X, T).

Theorem 1.3. Every compact subset of a T,-space is closed.

Proof : Let (X, 1) be a T>-space and E be a compact subset of X. It suffices
to show that (X\E) is open in X; without loss of generality take (X\E) # 0, and
x € (X\E). If 'y € E, we have x #y, and by T,-separation we find two disjoint
open sets Vy and Wy such that x € Vy and y € Wy with Vy A Wy = ¢ : So

Vy C (X\W,) ()

Now Ec U W, ; showing that the family {Wy} . 1s an open cover for E,
yeE ye

by compactness of which we obtain a finite number of members, say,
Wy " Wy pp— Wy out of this family such that
1 2 n

EcUW,, e @

k=1

Look at the corresponding open sets Vy], VY;’ Vyn each containing x,
and put

G=V,, PV PNy . Ce 3)
Clearly G is an open set containing x such that (from (1) and (3))

Go(X\Wy, )n(X\Wy, Jn..n(X\W,, )

= X(Wyi UWF: U...UW),“ )
c (X\E) by (2).

Thus for each x € (X\E), we find an open set G containing x such that G
€ (X\E); Hence (X\E) is open in X.

Theorem 1.4. Show that a subset E of reals with usual Topology is compact
if and only if E is closed and bounded.

Proof : Let E be a bounded and closed set of reals in respect of usual
Topology of reals. Suppose [a, b] (a < b) be a closed interval such that
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E C [a, b], since E is bounded. We appeal to Heine-Borel Theorem to say
that [a, b] is compact ; and Now Theorem 1.2 applies to conclude that E
is compact.

Conversely, suppose E is a compact set of reals with usual topology which
is Tp; we apply Theorem 1.3 to see that E is closed. Finally, we see that

Ec UI (-=n,n); So the family {(-n, n)}, = 1. 2 .. 1S an open cover for E, by
n=
compactness of which we find a finite number of members (-ny, ny), ...,

k
(—ny, ny) with ny < np < ... < ng such that Ec U(-n; ,n; )=(-ny ,n, ) and

i=1

hence E is shown to be bounded.

§2. Definition 2.1. A family % of subsets {F) _, in a topological space
(X, 1) is said to have the finite intersection property (F.I.P) if every finite

sub-family {Fy, .Fy, ,....Fg, } of # has non-empty intersection i.e.

ﬁFu‘. 0.
i=1

For example, every decreasing sequence {A,} of non-empty subsets A, of
X has FL.P. ; because every finite sub-family of { A,} has the smallest member
(# ¢) as its intersection.

Theorem 2.1. A topological space (X, 1) is compact if and only if each
family F = {Fq}__, of closed sets with FLP has a non-empty intersection.

Proof : Let (X, 1) be compact and F = {Fy}_ _, be a family of closed
sets with ELP. If possible, Let N F, =¢. That means X= | (XIF, ) where

oA oA
each (X\Fy) is open ; and hence the family {(X\Fy) : FyeF} is an open
cover for X. By compactness of (X, 7), there is a finite family, say,
(X\Fy), (X\Fp), ..., (X\F,) of this family to cover X.

So we have X Lrj (X\Fi), and taking the complement, we duduce that

i=1
n .
__ﬂl Fi=! =¢—-a contradiction that F has FLP.
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Conversely, suppose the stated condition holds without (X, 1) being
compact. We seek a contradiction. Let ¢ = {G; }jE " be an open cover of X that

has no finite sub-cover for X. Now X = Y G;; taking F; = (X\G;) we see that
e

= n (X\G); hence the family # consisting of closed sets F; = (X\G;j) as
ie ]

j€ Aissuchthat ¢ = m{Fj: F-ed@ } —a contradiction ; however by assumption
F does have F.I.P. Therefore, there is a finite sub-family say Fy, Fa, ..., F, of

n n

n
F such that qu =¢ ie. X=U(XIF)= IGi ; that means ¢ admits of a finite
1=

i=

sub-cover for X, and (X, T) is compact.
Theorem 2.2. (Tychonoff Theorem on Product) The Cartesian product
oi any number of compact spaces is compact w.r.t product Topology.

Proof : Let (X, 7o) be compact spaces and : Let X = X{X,, : a€A}. We
show that with product topology X is compact.

Put B = {p;u' (ug )uy €14 ;00 € A} Then the family $% forms a sub-base

for the product topology for X, p;_ denoting the projection function : X — X¢
as oo € A now X will be compact if each sub-family ¢ of §3 such that no finite
sub-collection of ¢ forms a covering of X, fails to form a covering of X.

For each o € A, Let B, denote the family of all those open set uy€ Ty for
which p:ul(ua)eq). Then no finite sub-family of B, forms a covering for
X ; and hence ashole family can not form a covering of X since (Xg, Tg)
is compact. So there is a point (say) xg€ X, which is missing in any open set
Uy € By Then the point xe X with oith co-ordinate x, does not belong to any
member of ¢—meaning that ¢ does not form a cover for X.

Corollary : Each cube as the product of closed unit intervals is compact.

Definition 2.2. A subset H in (X, 1) is said to be nowhere dense in X
if Int (H)=¢, bar denoting the closure.

For example every finite subset of reals with usual Topology is a nowhere
dense set of reals.
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Theorem 2.2(a). If an infinite number of Co-ordinate spaces are not
compact, then each compact set in their product with product Topology is
no-where dense.

Proof : Let (X, T4) be Topological spaces for each o of an infinite index
set A be X = X{X : ae A} with the product Topology.

Take G be a compact set in the product space X. Suppose u is an interior
point of G. Take N as a nbd. of u with N < G ; Without loss of generality take
N as a member of the defining base. Thus N is of a form :-

N= ﬂ{p: [Vo]:0e F}, where F is a finite subset of A, and V, is open
in Xg. If Be (A\F), then prB(G) = Xp, and Xp being continuous image of compact
space shall be compact. Therefore all but a finite number of co-ordinate spaces
are compact.

Theorem 2.3. Continuous image of a compact space is compact.

Proof : Let (X, 1) be a compact space and (Y, V) be a topological space,
and f : X — Y be a continuous function. We show that f(X) is compact in Y.

Take ¥ = {Gq]} be an open cover for f(X). So

usA

f(X) cU{G,:G, € 9}.

Therefore ch"'(uGﬂ]=uf"(GQ) (1)
oeA aeA

By continuity of f each I~ 1(Gm) is open in X, and (1) shows that the family
[f*l(G,;.,()}oLE 4 18 an open cover for (X, 1) by cor:pactness of which it follows
that there are a finite number of members, say, {~ l(G, ), £ 1(G2), . 1(Gn) such
that

X c £ 4G UEN(G,)U..Uf T (G,,) = f“'(_& G,)

So f(X)c[;)lGi).

So given open cover G for f(X) has a finite sub-cover for f(X).
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Thus f(X) is- compact.

Corollary (1) If f is continuous function of a compact space onto a
topological space Y, then Y is compact.

(2) A homeomorphic image of a compact space is compact.

(3) A real-valued continuous function on a compact space is bounded
and attains its bounds.

Because, Let f : (X, T) — Reals be continuous where (X, T) is compact.
So f(X) is a compact set of reals with usual topology, and therefore f(X) is
bounded and closed.

Theorem 2.4. A 1-1 continuous function of a compact space onto a T»-
space is a homeomorphism.

Proof : Let f: (X, 1) — (Y, V) be a continuous function that is 1-1, where
(X, 1) 1s compact and (Y, V) is T,. It suffices to show that f is an open function
or equivalently, we show that if F is a closed set in X, the image f(F) is closed
in Y. We know that every closed set in compact space is compact ; So F is a
compast set in X, and f sends F to a compact set i.e. f(F) is a compact set in
Y-which is T,. Hence f(F) is closed in Y.

Theorem 2.5. If A is a compact set of a Tr-space (X, 1) and x € (X\A),
there are open sets V and W such that x € Vand A Cc W and (U "'W) = ¢.
Proof : Let A be a compact set in X which is T,, and take x € (X\A).
If y € A, then x # y, and by Tp-separation there are opon sets Vy and Wy
such that x € Vy, y € Wy and Vy N Wy = ¢ ; and, therefore, x ¢ W, . Now
the family {Wy Y€ A} becomes an open cover for A which is compact.

So there are a finite number of members (say) Wy,, Wy, ..., Wy such that

AC Wy, UW,, U..UW,. PutW= W, Then W is an open set such

that ACWandx ¢ Wy, (i=1,2,..,n)and hence x ¢ W= W.Take V= X\ W.
Then V and W are open sets to satisfy x € VVAC Wand VN W) = ¢.

Corollary each compact set in a Tp-space is closed.
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Theorem 2.6 Let A and B be two compact sets in a T-space X such
that A N B = ¢. Then there are two open set V and W such that A C V and
BCWwith VAW = o,

(Consequently, a compact Tp-space is Normal).

Proof : Foreach x € A, we have B is a compact in X with x ¢ B i.e. (X\B);
Theorem 2.5 says there are open sets Vy and Wy satisfying x € Vy and
B c W, with V, " W, = ¢. Also BAV, =¢. Now family [V, : x € A} of
open sets is an open cover for A which is compact. So there are a finite
number of members Vi, Vj, ..., V,, of this family to cover A. Put V =
ViuVoU ..UV, ThenA cVand BNV, =¢ (i=1, 2, .., n) gives
Bm“\7=¢. Let us take W = (X\V). Then V and W are open sets in X such
that ACcVand Bc W with VN W=4¢.

(Consequential statement is clear).

§3. Locally Compact Spaces :

Definition 3.1. A topological space (X, 1) is said to be locally compact
if each point in X has a compact neighbourhood (nbd).

Explanation : If (X, 1) is compact, then of course it is locally compact ;
one may take X itself as a compact nbd. of each of its points. If 7 is discrete
and X is infinite then (X, T) is Locally compact without being compact ;
because for each xe X, the singleton {x} is a compact nbd. of x. However,
family of all singletons is an open cover for X that has no finite sub-cover
for X.

Example 3.1. The real number space R with usual topology is not compact.
It is Locally Compact.

Solution : R being not bounded, it is not compact. However if xe R, then
a closed interval like [x — 8, x + 8], & > 0 is a nbd. of x which is a closed and

bounded set of reals and hence it is compact.
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Theorem 3.1. Let (X, 1) be Locally compact T;-space then the family of

all closed compact nbds of a point in X is a nbd. base there.

Proof : Let (X, 1) be Locally compact adn a T;-space. Take x € X. Let
C be a compact nbd. of x; suppose U is any nbd. if x.
Put W = Int (U N C).

Then W is a compact T,-sub-space of X. So W contains a closed compact
set V which is a2 nbd. of x in W : but V is also a nbd. of x in W (relative to

topology in W), and is therefore a nbd. of x in X.

Theorem 3.2. Every closed sub-space of a Locally compact space is
locally compact.

Proof : Let E be a closed set of (X, t) which is Locally compact. We show
that (E, Tg) (Where 7g is the relativised topology of T on E) is Locally compact.
Take x € E. Since X is Locally compact, we find a compact nbd., say, G of
xin X. PutM =G N E. So Mis anbd. of x in E. As M 1s a closed set in
compact space G, we see that M is a compact subset of G i.e. M is a compact
nbd. of x in (E, 7). Hence (E, Tg) is Locally compact.

§4. One point compactification :

Let (X, 1) be a Locally compact Ty-space,<and u is an element outside X
(u ¢ X). Put X; = X U {u}. Define a Topology 1, on X, as :-

(i) All open sets in X as subsets of X, are in T,.

(ii) All complements in X, of compact sets in X are in T, and

(i) X, € 1.

We now check that above prescribed family is indeed a Topology in X,,.
From (i) T < 71, and by (iii) X, € 1.

FOR UNION : It is O.K. in respect of members of T (i).

Consider a family {(X,\Agy) : Aq 18 a compact set in X which is Tz }gea
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Hence Ay is closed in X, and hence [) A, is compact in X, and we
aeA

have U(Xu/Au)z(Xu/ﬂ Au), and by (ii) we have the union is a member

oEeA oed

of 7,. Also if G € T and (X,\H) € 1, as in (ii) where H is a compact set
in X, then
GuU(X,/H)=X,\(X\G)nH)

Since (X\G) is closed in X, and H is compact in X. Therefore (X\G) N H
is compact in X, and from (i1) r.h.s. set is a member of 1.

FOR INTERSECTION : It is O.K. in respect of (i). Take two members
(X,\D) and (X,,\C) where C and D are compact sets in X as members from (ii).
Then we have (X,\D) N (X,\C) = (X ,\(C U D)). Where C U D is also compact
in X. Hence r.h.s member € 7, as in (i1). Also if, A € 1, as in (i) and (X,\B),
B is compact in_X as in (ii), then B is also closed in X; because X is T»,.
Therefore (X,\B)\(u) is open in X.

Now A N (X,\B)

= A N {(X,\B)\(u)}, and hence is a member of T as in (i).

Our verification is complete, and (X, 1,) is a Topological space. It remains
to show that T is actually equal to relativised Topology of 1, on X.

IfGe 1 then G e 1, and G =G N X. Thus

T C relativised Topology T, on X ... (1)

Let H be an open in relatised Topology T, in X. So we write H =X N A
for some member A € T,,.

In case A 1s of type as in (i) we have H as a member of 1.

In case A is of type as in (ii), put H = X M (X,\B) for some compact set
B in X. Because X is T, we find B as a closed set in X. So (X\B) is a member
of 1. Therefore from above

H=X N (X,\B) = X N (X\B), and so, H € 1. Therefore
relativised topology T, n X ct ... 2)
Combining (1) and (2) proof is complete.
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Theorem 4.1. (X, t,) is a compact T,-space.

Proof : Take x, y € X, with x # y. If x, y are members of X, we have
finished. So let us suppose one of them equals u, say u=-y. Now (X, 1) is Locally
compact, so, there is a compact nbd. N, of x in X. As X is T, we take Ny to
be closed. Then

Int (Ny) N (X,\Ny) = ¢, where Int (Ny) and X,;\Ny are open sets in X,
containing x and u respectively. So (X, T,) is Ts.
To show that (X, T,) is compact, suppose {Gy}qea be an open cover of

Xu- Letu € Gy, for some 0 € A, and therefore G, is such that Gy, = (X,\D)
where D is a compact set in X.

ie. X\Gog)=D . *)

Now (Xy\Gg,) € X = |G, giving

oeA

Xu\Go,) € U (XNGy);

aeA
This shows that the family {(X N Gg) : ove A} is an open cover for (X,\Gg, ).
(*) says that (Xy\Gg,) is a compact set in X, and hence there is a finite sub-
cover of this open cover for (XU\G%) say (XM Gal), (XN GGQ), i K%Y Gan).
Thus (Xy\Ge)) © (X N Gg) U (X N Gg) U ... WX N Gy )
Le. (Xy\Gg) € G, Y G, Y ... U Gg
So Xy = Gg, U (X\Gg,)
C Gg, Y Gy, YU Gy, U ... U Gg.
That means Given open cover admits of a finite sub-cover for X, and (X,
Ty) 18 compact.
Remark : Compact Tp-space (X, T,) arising out of a given Locally

compact Tr-space (X, 7) in the manner described above is called “One point

compactification” of X, and external point u is designated as the point at
infinity.
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Exercise - A
Short answer type questions
Show that a finite Topological space (X, T) is compact.
Show that no open interval of reals with usual topology is compact.
Which one of followings subsets of reals with usual topology is compact?
(@ [1, 2]V [3, 4]
(b) The set N of all natural numbers. Give reasons.

In a Topological space (X, 1) any set E consisting of points of a convergent
sequence together with its converging limit is compact. Prove it.

Show that union of a finite number of compact sets is a compact set in a
Topological space. Is the union of an infinite number of compact sets a compact
set? Give reasons.

In a compact T,-space families of closed sets and compact sets are identical. Prove
it by quoting relevant Theorems.

Show that an infinite discrete space is Locally compact without being
compact.

Exercise - B

Show that every regular Lindel6ff space is normal.
Show that a compact T;-space is Ty.

Show that a sub-space of a compact space need not be compact, and verify that
every closed sub-space of a compact space is compact.

Show that every real-valued continuous function on a compact space X there are

points x and y in X such that f(x) = supf and f(y) = Inf f.
X X

Show that intersection of two compact sets in a Topological space X may not be
compact. If A is a closed set and B is a compact set in X, show that A N B is
compact.

Show that a continuous image of a locally compact space need not be Locally
compact.
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Unit 5 1 Connectedness

(Connected spaces, Separated sets, Disconnection of a space, Union of
connected sets, Closure of a connected set, Connected sets of reals,
Continuous image of a connected space, Topological product of connected
spaces, Components, Their properties, Totally disconnected spaces, Locally
connected spaces).

§1. A Connected Topological space (X, 1), roughly speaking, is such a
strong piece of objects that it does not allow its partition into two
non-empty disjoint open (or closed) subsets. To be more precise we
present the following definitions.

Let (X, 1) denoie a Topological space.

Definition 1.1. Two subsets A and B of X are said to be separated if
AnB=¢ and AnB=0.

Explanation : Without 10ss of generality, assume A # ¢, B # ¢. Subsets
A and B when separated are, of course disjoint. But there are more things to
look at. Neither A nor B contains a limit point of other. In relative topology
for AUB, both A and B are regarded as closed in (AW B); or equivalently,
A or B is taken as (each) open and hence each has status of a clo-open set
in (AU B). Take for example, open intervals (0, 1) and (1, 2) of reals with
usual topology. They are disjoint subsets. But they are not separated as per
Definition 1.1 above because number 1 belongs to closure of each.

Theorem 1.1. If A and B are subsets if (X, T), and both A and B are closed
(or both are open), then (A\B) and (B\ A) are separated.

Proof : Let A and B be closed subsets in X. Then relative to (AUB), A
and B are closed, and therefore (A\B) = ((AwB)\B)) and (B\ A) are open in
(A\B)U(B\ A) and since they are complements relative to ((A\B)U (B\A)),
both become closéd in ((A\B)uU (B\A)). Hence (A\B) and (B\A) are
separated.

In case A and B are both open, proof is done by a similar dual argu-
ments.
66



Definition 1.2(a). (X, 1) is sais to be connected if X is not a union of
two non-empty disjoint open sets in X.

or equivalently, if X is not a union of two non-empty disjoint closed sets
in X.

(b) A subject Y of X is said to be connected if Y as a sub-space of
(X, 1) with relativised topology becomes connected.

or equivalently, Y is not a union of two non-empty disjoint open subsets
(closed subsets) of Y in relativised topology on Y.
(¢) (X, 1) 1s said to be disconnected if it is not connected i.e., if X admits
of a decomposition like
X =GUH,
Where G and H are a pair of non-empty disjoint open (or closed) subsets
of X. Such a decomposition of X is called a disconnected of X.

Explanation : Definitions say that (X, 1) is connected if and only if only
clo-open sets are ¢ and X. A subsetY of (X, 1) is disconnected if Y has a partition
like Y = PUQ where P # ¢, Q # ¢, and P and Q are disjoint open subsets of
Y. Soweput P=GNY and Q = HN'Y where G and H are open sets in X.
Therefore, Y = (GNY)U (HNY) where rh.s. members are non-empty and
disjoint.

Conversely if Y = (GNY)UHNY) where G and H are open sets in
(X, 1) whose intersections with Y are non-empty and disjoint, then Y is not
connected.

Example 1.1. The subset Q of all rationals in real number space with usual
topology is disconnected.

Solution : If x, ye Q with x < y, take an irrational number ¢ such that
x<a<y.

Then we write Q = {{(—eo, )N Q} U {(0t,20)NQ}

Where r.h.s. members are each open sets relative to sub-space Q such that
each is non-empty because x&(—eo,00)NQ and ye(a,)NQ and they are
disjoint. Hence Q is disconnected.
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Remark 1. : Above decomposition of Q is a disconnection for Q. By a
different choice of o one gets another disconnection for Q. As the choices are

many, there are many disconnections for Q.

Remark 2. : By a similar reasoning one sees that the set E of all irrationals
in the real number spece R with usual topology is also disconnected, and there

are many disconnections for E.

Remark 3. : We shall presently see that the real number space R with usual
topology is a connected space. Thus we at once conclude that Union of two
disconnected sets may be a connected set.

Theorem 1.2. If A and B are two non-empty separated sets in (X, 1),
then AU B is disconnected.

Proof : Let A and B be a pair of separated sets (non-empty) in (X, T).

Then we have ANB=¢=ANB. PutG=(X\B)and H=(X\ A).

Then G and H are disjoint open sets of X such that

AUB=((AUB)NG)U((AUB)nH), which is a disconnection for

(AU B).

Theorem 1.3. A Subset Y of (X, 1) is disconnected if and only if Y is a

union of two non-empty separated sets.
Proof : The condition is sufficient : This part follows from Theorem 1.2.

The condition is necessary : Let Y be a dis connected subset of (%, 7). So
Y admits of a partition like

Y=(YNG)u(YnH) £*)

Where G and H are open sets in X such that their intersections with
Y are non-empty and disjoint. We check that members in rh.s. of (*) are
separated sets. It suffices only to verify that neither (Y ™ G) nor (YN H)
contains a limit point of the others. We use method of contradiction and let
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u be a limit point of (YN G) and ue (YN H). Since H is an open set
containing u, S0

HA(YNG)\ {u}) #0 (D
But(YNG)NnH=(YNG)N(YH)=0¢. by hypothesis 2w % )
Now (1) and (2) are contradictory, and Theorem is proved.

Example 1.2. The Union (0, 1) U (3, 4) is not a connected set of reals with
usual topology.

Solution : Take a real number a such that | < a < 3.

If E=(0, 1)u(3, 4), we may write
E =((—,a)NE)U((a, )N E)

Where r.h.s. members are each non-empty open sets in E (with relativised
topology) and they are disjoint. Hence E is disconnected.

Remark : We shall soon see that every interval of reals is a connected
set of reals with usual topology; and Example 1.2 says that Union of two
connected sets may not be connected. However, we have the following
Theorem.

Theorem 1.4. In (X, 1) if { Ao}y De a family of connected sets such

that ﬂAa # ¢, then their Union = Uf’ﬂy‘{,L is connected.
oeA aeh

Proof : Let us assume the contrary and let A = UAa be disconnected. We

T ; oeEA
seek a contradiction. Suppose A has a disconnection :

A=(AnG)U(ANnH),
Where G and H are two open sets in X such that each of (A N G) and (A N H)

1s non-empty and (AN G) U (AN H) = ¢. Since A= UAa, we have
OEA

Ao <(GUH) v mil

Now A, lies entirely either in G or in H; . . . (*) otherwise, (Ayq NG) # ¢,
(Ag"H)#¢ and Ay =(Ag NG)U(Ag NH) gives rise to a disconnection of

69



Ay Thus statement in (*) is valid for each member A,. Further, if
Aq cGand Ag cH with o # B, we see that ue (A € (Ao NApg)=(GNH).
Ofcourse, ue A. Hence ue AN(GNnH) = (A%é)m(AmH)— which is a

contradiction. Therefore, members A, enblock lie either in G or in H, and hence

UA.[;\c = A lies either in G or in H—again a contradiction a desired. We have
oEA

completed the proof.

Example 1.1. Let X = {a, b, ¢, d} and T = {¢, X, {a}, {a, b, c}, {a, b}}.
Show that topological space (X, 1) is connected.

Solution : Here, the family of closed sets is {X, ¢, {d}, {c, d}, {b, ¢, d}}
and we check that only clo-open sets are ¢ and X. Therefore (X, 1) is
connected.

Example 1.2. Let (X, 1) be a topological space where X = {a, b, ¢} and
t=1{¢, X, {a}, {b, c}}. Examine if (X, 1) is connected.

Solution : Here X = {a} U {b, ¢} which is a disconnection for X, and hence
(X, 1) 1s disconnected.

Theorem 1.5. In a topological space (X, 1) let A be a connected set in
X and B be a subset in X satisfying AcBc A, then B is connected.

Proof : Assume the contrary. Let B have a disconnection like
B=(BNnGuU(BNH) i & L)

Where G and H are open sets in X such that (B m G) and (B n H) are non-
empty and
BNGNBMNH)=¢ O, |
Now A cB; from (1) we see that Ac (GuU H).

Now AnG#¢ and AnH=#¢ give a disconnection of A as
A= (AN G)uU (AN H)—making A disconnected. Hence A lies entirely either
in G or in H. Suppose, AN H = ¢. Because H is open, we have A nH = ¢. That
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means BN H = ¢ which is again a contradiction. We thus have reached the
desired contradiction and the proof is complete.

Corollary 1.1. : Closure of a connected set is connected in a Topological
space.

Theorem 1.6. A Topological space (X, 1) is connected if and only if
given any two distinct points in X there is a connected sub-space of X
containing both.

Proof : The condition is necessary : Let (X, T) be connected. Given any

two distinct points in X, the space X itself takes care of them as desired.

The condition is sufficient : Suppose the condition hclds but X is
disconnected. We derive a contradiction.

Let X = Cu D be a disconnections of X, where C and D are a pair of ron-
empty disjoint open sets in X. Take ¢ € C and d € D; so ¢ #d in X. By hypothesis
there is a connected subspace G of X containing ¢ and d. Clearly Gc X =
CuD ; Because G is connected, either G C or G D. Let GcC; then
c,d e GcC and so de (Cn D) = ¢. This is absurd. Hence we have proved
theorem.

§2. Consider the real number space R with usual topoiogy. Here intervals are
of various types like (a, b) = {xeR:a<x < b}, [a,b) = {xeR:a<x<b},
Similarly (a, b], (—e0, a) = {xeR : x < a}; (a, ) = {x € R; x > a}, and similarly
(—oo, a], [a, o) and (—oo, ) = {x : x€R} = R. An interval I of R may be
characterised by the property :—

a, bel means the closed interval [a, b] ¢ L

Theorem 2.1. A subset of R with usual topology is connected if and only
if it is an interval.

Proof : The condition is necessary : Suppose E is a connected subset if
R without being an interval. Then we find a pair of distinct members a, be E
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such that [a, b] @ E. Thus there is a member u such thata<u <b and ugE..
Then write, E =((—e,u)NE)U((u,>e)NE) and that is a disconnection for E
—a contradiction. Hence necessary part is proved.

The condition is sufficient : Let [ be an interval of reals. If possible, let
I have a disconnection

I=AuUB,
where A and B are a pair of non-empty disjoint closed sets in I.
Take x € A and z £ B; since AN'B = ¢ we have x # z, and without loss of

generality, assume x < z. Because ! is an interval we have the closed interval
I%.z] L Thus

[x, z] € (AU B)

Put y = sup([Xx, z] " A). Then x<y<z; soyel. Since A is closed in I, we
have

yeA con (1)

Therefore, y # z and we have y < z.

1
n
belong to B; and since B is closed, passing on limit as n—e, we have

By property of supremum, for large natural numbers n, all numbers y +

lim (y+%)= y€B; this contradicts (1) because AN B = ¢. The proof is now
n—co
complete.

Corollary : 1. The real number space R wiii: usual topology is connecied.

2. The only non-empty clo-open set in R is R itself.

§3. Theorem 3.1. Continuous image of a connected space is connected.

Proof : Let (%, T) be a connected space and f:(X, 1) — (Y, ) be a continuous
function where (Y, W) is topological space. We show that f(x) is connected in
Y. If possible, let f(X) be disconnected and let

f(X)=(GNIfX)vHN(X))
72



Where G and H are open sets in Y such that G f(X) and H n f(X) are
a pair of non-empty disjoint open sets in f(X).

But continuity of f we know that f “1(G) and f~}(H) are open sets in X, and
from (1) we find

X =1 @)~ (H),
Where members on r.h.s. are non-empty and disjoint. That means X is

disconnected —a contradiction that X is connected. The proof is now
complete.

Corollary : 3.1. Let (X, 1) and (Y, %) be two Homeomorphic spaces. If
X is connected, then Y is connected.

3.2. Any real valued continuous function over a closed interval [a, b] of reals
possesses Intermediate-value property.

Because, f[a, b] = image of [a, b] under f is connected, and hence it is an
interval of reals, by theorem 2, f(a), f(b) € f[a, b]; and if f(a) < f(b), we have
the closed inverval [f(a), f(b)] < f[a, b].

Now if f(a) < u < f(b), there is a member ¢ between a and b such that p
= f(c).

Remark : In Corollary 3.2 domain of the continuous function is taken to
be a closed interval. Statement is valid in respect of any interval.

Let us consider a topological space consisting of two mambers 0 and 1 with
discrete topology. This discrete two pointic space {0, 1} is disconnected,
because {0, 1} = {0} u {1} is a disconnection. One can characterise a

disconnected space with the help of this discrete space {0, 1}.

Theorem 3.2. A space (X, 1) is disconnected if and only if there is a
continuous function f : (X, T) — {0, 1}, which is onto.

Proof : The condition is necessary : Let (X, T) be disconnected. X admits
of a decomposition like X = G U H, where G and H are non-empty disjoint open
sets in X,
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Definef : X — {0, 1} by the rule :(—
f(x) =0if xeG
and = 1 if xeH.

Clearly f is an onto function. To check continuity of f we see that ¢,
(0, 1}, {0} and {1} are the only open sets in the discrete space {0, 1} and that
£71(0) is always an open set in X, O being any open set in {0, 1}.

The condition is sufficient : Suppose the condition holds. Then X must
be disconnected; because continuous image of a connected space is connected

and here the discrete space {0, 1} is disconnected.

Theorem 3.3. Topological product of two connected spaces is connected

and conversely.

Proof : iet (X, 1) and (Y, v) be two topo'ogical spaces, and let Z =
X xY denote the topological product of X and Y with product topology. Suppose
Z is connected. Then consider the projection functions Pr, Z — X and
Pr, * Z — Y that are each continuous; and Pr, (Z) = X and Pr, (Z) =Y. Since
continuous images of connected spaces ae connected it follows that each of X
and Y is connected.

Conversely, assume that X and Y are connected spaces. Take a fixed
memeber yg€ Y, and put XYU = X,{yo}. Then X and Xyo are homeomorphic.
Since X is connected it follows that XYO is connected. If xe X, put Yy =
{x} x Y. By a similar reasoning Y, is connected, because Y is connected. As
(X1¥0) € X)’o NY,, it follows that X),0 WY, is connected by Theorem 1.4. Finally,

i = c (X Y,) fi
we write XxY xyx(xw UYy) and observe that XYU ( yo «) for every

member X € X, and bécause every individual member of r.h.s. is connected we
finally see that X x Y is connected.

Remark : Theorem 3.3 remains valid for an arbitrary number of connected
spaces.
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Definition 3.1. A connected set C of (X, 1) is said to be a component in
X if it is a maximal connected sub set; that is, C is not properly contained
in any other connected set of X.

For example, in a connected space (X, 1), X is itself a component.

Example 3.1. Let (X, 1) be a topological space where X = {a, b, c, d, e}
and T = {0, X, {a}, {c, d}, {a, c, d}, {b, ¢, d, e} }. Find all the components
in X.

Solution : Here X is not connected; because X = {a} U {b, c, d, e} is a
disconnection of X. However, there are connected sets in X. For example {a}
is a connected set; and we find {a} and {b, c, d, e} are the only components
in X.

Theorem 3.4. Let (X, 1) be a Topological space. Then—

(a) Eeach point of X is contained in a component of X.
(b) The components of X determine a partition for X.
(c) Each connected set in X is contained in a component of X.

(d) A connected set in X that is both open and closed is a camponent
of X.

(e) Each component of X is closed.

Proof : (a) Let xeX. Put C, = U {C; : C; is a connected set in X
containing x}. Because x € C; for every i, it follows that C, is a connected set.
We now show that C, is maximal. Let C, ¢ D where D is a connected set
containing x in X. By construction of C, we have D < C,; and therefore,
Cx = D. Hence C, is a component in X containing x.

(b) For each x € X, construct Cy as in (a). Put { = {C, : xe X}. We now

verify that { becomes a partition of X. By construction, X = ch- Now
xeX

suppose Cy N Cy # ¢. Take pe C; N Cy, then we have Cy < C, and Cy < C,.
Now Cy and C, are each connected set containing p, by maximality of C, we
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have C, = C = C,. Therefore any two members of C are either disjoint or

coincident. Hence (b) follows.

(c) Let A be connected set in X and take x € A; by construction of C, we
find A < C,.

(d) Let E be a connected set in X and let E be both open and closed. Now
by (c) there is a component C of X such that E < C. Suppose E is a proper
subset of C. Then we write C = (C n E) U (C N E), *“" denoting coplement
of E. Because E is assumed to be clo-open, this decomposition is a disconnection
of C— a contradiction, for a component C is connected. Hence result is
E = C = a component.

(e) Let C be a component of X without being closed and C is strictly
larger than C; Now C < C shows that C is connected because C is so—
by corollary 1.1 that contradicts maximality of C which is a component. Hence
C is closed.

Example 3.2. Give an example of a Topological space where components
are not open.

Solution : Consider the sub-space Q of all rationals in real number space
R with relativised topology in respect of usual topology on R. Here each
component in Q is a singleton and this is not an open set in Q.

§4. Definition 4.1. : A topological space (X, 1) is said to be totally
disconnected if for each pair of distinct points x and y in X, X has a
disconnection X = GUH with xe G and ye H.

Explanation : A totally disconnected space (X, T) is a To-space; because
each pair of distinct points of X attracts a disjoint pair of open sets containing
them individually. Ofcourse, a totally disconnected space is disconnected.

Example 4.1. The real number space R with upper limit Topology is totally
disconnected.
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Solution : We know that upper limit Topology for R is generated by left-
open intervals like (a, b], a, be R with a<b. Let x, yeR with x # y, X < y;
then we write

R = (_M‘ x] (o (X| 00)‘

where sets in r.h.s. are a pair of disjoint open sets in upper limit Topology

containing x and y respectively. So R is totally disconnected.
Remark : With respect to usual topology R is a connected space.

Theorem 4.1. The components of a totally disconnected space are its

singietons.

Proof : Let X be a totally disconnected space and let C be a component
in X. We show that C does not have more than one point. Let x, y € C with
x #y; as X is totally disconnected, X has a disconnection like X = G U H where
G, H are non-empty open disjoint sets with x€ G and y e H.

We writeC=C N X
= M (G wH = n8)wit r B),

showing that C is disconnected which is not the case. Hence theorem is

proved.

Theorem 4.2. The product of totally disconnected spaces as totally
disconnected in product topology.

Proof : Let {(XisTi)kiea
let X = X{X; :ie A} be the product space with product topology. Take two

be a family of totally disconnected spaces and

distinct points x = (x;), and y = (y;) in X. Therefore, for some index i = ig€ A,

we have Xj, # yj, in co-ordinate space X;, which is assumed to be totally

disconnected. There we find two disjoint open sets (say) G;, and H;, in X, such

that xj) € Gj, and y;, & H;, and X;) = G;; U H;,. Take G = X{G; : where

G; = X, for all i except iy in A} and H = X{H; : where H; = X; for all i except
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ipin A}. Then we see that x € G, y € H with G N H = ¢, and G and H are rendered
open sets of X in product topology such that

X=GUH

That means X is totally disconnected.

§5. Locally connected spaces :

Definition 5.1. (a) A topological space (X, 1) is said to be locally connected
at x € X, if every nbd. of x contains a open connected nbd. of x.

or equivalently, if open connected nbds of x form a base for the nbd.

system at Xx.

(b) (X, 1) is said to be locally connected if it is locally connected at each
point of X.

Explanation : Unlike the relationship of compactness and local compactness
of a space, local connectedness neither implies connectedness nor is implied
by connectedness of the space. we have following examples in support of our
contention.

Example S.1. If X = (0, 1) U (2, 3) is taken as a topological space
with usual topology of reals, then X is locally connected without being
connected.

Solution : Taking a real number a with 1 < o < 2, we write
X = ((=o0, ) N X) U ((o, =) N X), and this is a disconnection for X. So X
is not connected.

On the other hand if ue X, say, 0 < u < 1, and given any nbd. N, of u
in X, we can find on open interval like (u — &, u + §), & > 0 such that
(u -8, u + 8) © N; as an open interval of reals is connected, if follows that
N, contains an open connected nbd. of u, and X is locally connected at u.
If 1 <u < 2, then also similar conclusion holds.
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Example 5.2. Take X = A U B as a sub-space of the Eudidean 2-space

with usual topology where
A={(x,y):0< x<l;andy= sin%},

and B={(0,y):-1<y<l1}.

Then X is connected without being locally connected.
Solution : Consider a functionf: (0, 1] — R? where fix)= (x, sin %j O<xsl

Then f is continuous, and hence the image A = f(0, 1] is connected, because
the interval (0, 1] is connected. Now we check that X = A and therefore X is

connected because A is so.

However, X is not locally connected at (0, 1) ¢ X. Because open circular
disc centred at (0, 1) with radius, say, =% does not contain any connected open
set containing the point (0, 1).

Theorem 5.1. (X, 1) is locally connected if and only if components of each
open subspace of X are openin X.

Proof : The condition is necessary : Let (X, 7) be locally connected, and
let Y be an open sub-space of X. Suppose C is a component of Y. Take x £ C.
Since X is locally connected at x, there is an open cunnected set U in X such
that xeUcY. Now xeC n U where U and C are connected; therefore
C v U is connected and C u U c Y. Since C is a component, by maximality
of C, we have (CLU U)=CorUcC. Thatis xeU < C; as x is an arbitrary
member of C, we conclude that C is open.

The condition is sufficient : Suppose the condition holds. Let x & X,
and let Ny be an open nbd. of x in X. Take C as a component such that
x £ C < N,. By assumed condition C is open; this shows that there is an open
connected nbd. C of x such that C Ny. Thus X is locally connected at x;
otherwords, X is locally connected.
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Example 5.3. Continuous image of a locally connected space may not
be locally connected.

Solution : Take X = {0, I, 2, 3, . . .} with discrete topologies and

Y={O, 1,%, %} as a sub-space of reals with usual topology. Consider a

function
¢ : X — Y where ¢(0) =0, and ¢(n) =1, n=1,2,. ..

The function ¢ is an 1-1 and onto continuous function, such that X is locally
connected; but Y = f(x) is not locally connected, because induced topology on

Y is not discrete, but singletons in Y are connected.

EXERCISE - A
Short answer type Questions

1. Show that a topological space (X, t) with indiscrete topology T is connected.

2. If X has more than two members, show that (X, T) with discrete topology T is

disconnected.
3. Give an example to show that connectedness is not a hereditary property.
4. Examine if the real number space R with lower limit topology is connected.

5. Show that the set of all irrational numbers with topology of reals is a disconnected

set.

6. Give an example of a topological spece with a non-discrete topology where each

singleton is a component.

(Hint : Take the sub-space Q of all rationals with usual topology of reals).

EXERCISE - B

1. If a Hausdorff space (X, T) has an open base whose members are closed, show
that X is totally disconnected.
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Give an example to show that product space of an arbitrary number of locally

connected spaces may not be locally connected.

Show that image of a locally connected space X under a continuous function which

is an open function is locally connecied.

Show that a compact locally connected space has a finite number of compo-

nents.
Show that components of a totally disconnected space X are singletons of X.

Given a topological space (X, T), a binary relation p in X is defined by xp y (x,
y € X) holds if and only if x and y belong to a connected set in X. Show that p
is an equivalence relation on X and verify that p-equivalent classes are all the

components of X.
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Unit 6 (1 Uniform Spaces

(Symmetric sets and composition of sets in XxX; uniformity #2in X, base,
sub-base for %4 uniform space (X, %), uniform topology 14 for X,
T,-property of T4; Interior and closure of A in terms of member of %
uniformly continuous function, Product Uniformity, Uniform continuty of
a metric in (X, 49).

§1. Let X be a non-empty set. So XxX # ¢. If A < (XxX), then A~ is defined
as Al = {(y, X) : (x,¥) € A}. So that (A_l)'] = A. If A and B are two subsets
of XxX, then their composition A;B = {(x, z) ¢ (XxX) : (x,y)eB and (y, z) € A
for some ye X}.

Now A, B may not be the same as B,A; however, composition is associative
i.e. Ay(B,C) = (A,B),C and also (A,B)' = B! A!. The set of all pairs
(x, x) as xe€ X is called the Diagonal, often denoted by A, of XxX. Also if
U c (XxX) and K < X, the set U[K] = {yeX : (x, y)eU for some xe K}.

In particular, if K is a singleton, say = {x} in X, we have

Ulx] = {yeX : (x, y) U}
With these preliminaries we are ready to proceed further.

Definition 1.1. A subset U of XxX is said to be symmetric if U = U™,

Explanation : Let X = The set R of all reals, and U = {(x, y) ¢ RxR :
|x—y|<1}; then U = U™, hence U is symmetric because if a pair (X, y)
satisfies [x—y|<1, then |y—x|=|-(x—y)|=|x—y|<1; So (x, y)e U if and only
if (x, y)e U™, However, if

H={(x,y)eRxR:y-x<1}
={(x,y)£R2:y<x+1}
Then H is no symmetric; for (0, 2)e H, but (-2, 0)¢H, although

(<2, 0)e H L. Geometrically, H denotes the lower half-space of R? bounded
above by the line y = x + 1; and
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H-! ={{_x,y)ER2 :(y,x)EH}
={(x,y)£—:R2 :x<y+l}

{(x,y)ER2 :y>x—l}
upper half - space bounded below by the line y =x—1.

Il

And further

HAH™! :{(x,y)8R2 Xx—~l<y <x+l}
:{(::c,y)eR2 x—yl< ]}:U
= Open strip in R2 bounded by the linesy =x—1andy = x +1.
Theorem 1.1. If U and V are two subsets of XxX such that V is symmetric;
then VoUoV =U{V[x]x V[yl}:(x,y)eU.
Proof : Here, VoUosV = the set of all pairs (u, v) such that (u, x)eV,
(x, y)eU and (y, v) €V for some x and some y. Since V is symmetric; this
is the collection of all (u, v) such that ue V[x] and v € V[y] for some (x, y) € U.
Butue V[x] and ve V[y] if and only if (u, v) £ V[x] x V[y], and hence VoUoV
={(u,v):(u,v)e V[x]x V[y] for some (x,y)e U}
=U{VI[x]x V[yl: (x,y)eU}
Definition 1.2. A Uniformity %/ on X is a non-empty family of subsets
of XxX satisfying the following conditions known as axioms of Uniformity :
(u.1) Each member of % contains the diagonal A;
(u.2) If ue %, then u™'e %
(u.3) If ue %, there is a member V & %/ such that VoV c U;
(u.4) If u and v are two members of % then (UN V)€ % and
(u.5) If ue %, and UV < XxX, then ve %

If %2/ 1s a Uniformity on X, then the pair (X, %) is called a Uniform
space.
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Definition 1.3. (a) A sub-family & of a Uniformity %/ on X is called a
base for %2 if and only if each member of % contains a member of .

(b) A sub-family S#% of % is said to be a sub-base for #if and only if the
family of all finite intersections of members of S#% forms a base for %
Example 1.1. Every metric space is a Uniform space.
Solution : Let (X, d) be a metric space. For each +ve r let
Var = {(x, y) e(XxX) : d(x, y) <r}.
Then we note that Vgi, =Va,r;Va,r "Vg,t = Vg u where u = min[r, t]; and
Vd,roVd,r € Vq,2r.
Now it is a routine exercise to verify that the family of all sets of form Vg,
forms a base for a uniformity for X; and X becomes a Uniform space.
Analogous to base and sub-base for a Topology in X, we have the following
Theorem that is easy to prove and the proof is left out as such.
Theorem 1.2. A family & of subsets of XxX is a base for a Uniformity
for X if and only if
(a) Each member of & contains A;
(b) If Be %, then B™' contains a member of %,
(c) If Be %, there is a member C in & such that CoCc B; and
(d) If By, Bye %, then there is a member Bye # such that
B3;c (BN By).
Proof : Let (X, %) be a Uniform space.

Define T = {Gc X : for each x& G, there is a member U g % such that
U[x] < G}. We now verify that 7 is, indeed, a Topology in X. Definition says
that union of members of T is a member of 1. Let G, H be two members of
T; and let x € (G N H). So, there are members U and V in #/such that U[x] c G
and V[x] c H. Therefore, (U V)[x] < (GN H); since (UN V) is a member
of %, it follows that G N H is a member of 7, and (X, 1) is a Topological space.
This topology 7 is rather abbreviated as T4 since it is being induced by the
uniformity %4 and very often named as a Uniform Topology on X.
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Theorem 1.3. Let (X, 24 be a Uniform space with uniform Topology
T4 induced by 2% If A c X, then

To-IntA = {xeg A : there is a member Ueg % su:ch that U[x] < A}. (or,
simply, we write Int A instead 7,—IntA).

Proof : Let B = {x € A : U[x] < A for some member U € #}. We show
that B € t4. Take x € B, then we find a member U € # such that
Ulx] < A; Also we find a member V € #such that VoV < U. If u € V[x] and
y € V[ul, we have (u, y) € V and (x, u) € V; Therefore, (x, y) € Vo3V ie.y
e VoVI[x].

or, V[u] € VoV|[x] < Ulx] c A.

Therefore u €B. In otherword, V{x] < B. Hence B is open. Further. B
contains every open subset of A, and consequently it is the Largest open subset
of Aie. B =Int A.

Remark 1. If U € %4 U[x] is a nbd. of x in (X, T),

2. The family of all set U[x] as U comes from #/is a base for the nbd. system
at Xx.

Theorem 1.4. Let (X, %) be a Uniform space with a Uniformity % and
T be the Uniform Topology on X'induced by % If A X, then 1 ,-closure
of A (or simply Closure of A)

=N {UlA] . U € %4.

Proof : A point x € A (Closure of A w.r.. T4 if and only if for each
U e 2, U[x] cuts A non-vacuously. Now U[x] intersects A non-vacuously if and
only if x e U7'[A].

Because, U[x] N A # ¢ iff p eU[x] n A;

ie. iff p eU[x] and p €A;
iLe. iff (x. p) eU and p € A;
ie. iff (p, xj) U™ and p €A;
ie iff x eU™'[A]L
Since each member of % contains a symmetric member € %/
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We conclude, x € A iff x e U[A] for each U € %

The proof is now complete.

Given a uniformity %/ in X, the uniform Topology T, may be used to
construct the product Topology for X x X. Members of %/ have an intimate
relation with this product Topology. We shall presently see that the family of
all open symmatric members of %/is a base for #. To that end, we need the
following Lemma :

Lemma 1.1. If U € % there is a symmetric member V € %/ such that

(i) VoVoV c U
and (ii) VoVoV = U{V[x] x V[y] : (x, y) € V}.
Proof : (i) By axion of Uniformity we find a member H € % such that
HoHccU .. (1)
Take W = H N H™!; so W is a symmetric member of % such that
WoWcH«H c U from (1).
Taking W in place of U, we obtain a symmetric member V € % such that

VoVcW;therefore VoVoVoVecWeW;andVeVoVcVeVoeVoeV
c WoW c U from above.

Theorem 1.1. now applies; we take U =V in Theorem 1.1 and find atonce
that Vo VoV = U{V[x] x V[y] : (x, y) € V}.

This is (i1), and the proof of the Lemma is complete.

Theorem 1.5. If U € %, then Int (U) € %; and the family of all open
symmetric members of %/ is a base for %

Preof : If E ¢ X x X, we have Int E = {(x, y) : U[x] x V[y]  E for some
U, V € %}. By axion of University (U N V) € %, so
Int E = {(x, v) : V[x] X V[y] C E for some V € %/}. Now Lemma 1.1 says that
there is a symmetric member V € % such that Vo VoV c U, and
VoVeV=U{V[x]x V[y] : (x, y) €eV}. Hence every point of V € Int U i.e.
V < Int U, and by Uniformity axiom Int U € % and in consequence the family
of all open symmetric members of % is a base for %

86



By Theorem 1.4 for x € X we have Tg-closure {x} = N {U[x] : U € #4.
So (X, T4) is T, (Hansdorff) if and only if N {U : U € 44 is equal to Diagonal
A. In that case (X, 1) is also said to be separated.

§2. Let (X, 1) and (Y, T4) be two uniform spaces with uniform topologies
T and (X, 1,) respectively induced by given uniformities %/ and 7, and let
f:(X. t,) = (Y, T,) be a function.

Definition 2.1. f : X = Y is said to be uniformly continuous if and only
if for each member V € 7, the set {(x,y) € X x X : (f(x), f(y)) € V} is a member
of Z.

The above statement may be re-phrased like :-

If s#X( ¥) is a subbase for ¥, then f is said to be uniformly continuous iff
f51(V) e % for each member V € S#(¥), where fy(x, y) = (f(x), f(y)).

Explanation : Let X = R, and for each +ve r let V. = {(», y) € R xR
| x =y | <r}; Then the family {V,};5>q of subsets of R X R forms a base
for a Uniformity % known as usual uniformity for reals. So, the induced
uniform topology T4 shall consist of members like I, = V{[x] = { y €R :
x,y)eVi}={yeR:Ilx-yl<r}={yeR:x-r<y<x+r}
= an open interval (x — r, X + r) as x €R; These members act as basic open
set in T, — confirming that T4 is the usual topological of reals. So, as per
Definition 2.1 above, a real-valued function f of a real variable is uniformly
continuous if given a €> 0, there is a +ve & such that | f(x) — f(y) | < € whenever
[x — yl < 8. This is in agreement with usual and familiar notion of uniform
continuity of f. We also know that uniform continuity of f implies its continuity.
The same is also true in a general uniform space.

Theorem 2.1. Let (X, %) and (Y, %) be two uniform spaces with induced
uniform topology T4 and T, respectively, then every uniformly continuous
function : X — Y is continuous relative to uniform Topology.

Proof : Let f : (X, ) — (Y, ¥) be a uniformly continuous function ;
Take H to be a nbd. of f(x) in (Y, T4), x €X. So we find a member V
€ 7 such thai
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VIf(x)] < H,
and £ {V[f(x)]}
= {y eX : f(y) e V[f(x)]}
= {y eX : (f(x), f(y) eV}
= £, (V) [x] where f5(x, y) = (f(x), f(y))
= a nbd. of x in (X, ).

That means f~'(1{) becomes a nbd. of x, and f is rendered continuous at
x €X. Since x is any arbitrary member of X, we have proved Theorem.

§3. Suppose for each member o in an Index set A, (X, %) is a uniform space ;
then the product Uniformity for X{X, : o0 € A} is the smallest Uniformity
such that projection functions from the Product X{Xy : o € A} into each
co-ordinate space (X, %4, are uniformly continuous.

The family of sets of the form {(x, y) : (Xq. Yo) €U}, forc € Aand U
€ %, forms a sub-base for the product Uniformity. If x e X{X : o0 € A}, then
sub-basic members of the nbd sysiem at x (with respect to the Product Uniform
Topology), shall be obtained from the sub-basic members for the Product
uniformity. Thus the family of all sets like {y : (X, Y) € U} becomes a sub-
base for the Nbd. system at x. Clearly, a base for the Nbd. system at x with
respect to induced topology from the product Uniformity is the family of all
finite intersections of sets of the form {Y : Y, e U[X,]]} for o € A and U € %,,.
But this family is also a base for the Nbd. system at x with respect to the product
Topology; and therefore the product topology is the topology of the product
Uniformity.

Theorem 3.1. A function f on a Uniform space to a product of Uniform
spaces is uniformly continuous if and only if composition of f with each
projection function into a Co-ordinate space is uniformly continuous.

Proof : If f is a uniformly continuous function with values in the product
X{X¢q : ot € A}, then each projection function Pr,, is uniformly continuous, and
we know that composition p o f is again uniformly continuous.
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Conversely, it cach Pr.o f is uniformly continuous for cach u € A, and
if U 1s a member of %, in X, ten {(u, v) : (prp £u), prof(v)) € U} is a
member of the uniformity % of domain f. Now we write this set as
£,7! [{(x, ¥) : (X0 Yo) €U} So, inverse under f; of each member of a sub-
base for the product Uniformity is a member of %, and therefore f becomes
uniformly continuous.

Theorem 3.2. Let (X, %) be a Uniform space and let d be a metric for
X.d: X x X - R is uniformly continuous if and only if {(x, y) : d(x, y) <
r} is a member of %/ for each r > 0.

Proof : For each r > 0, take Vg, = {(x. y) : d(x, y) < r}. It suffices to show
that Vg, € % if and only if d is uniformly continuous. Let U €% then sets
{(x, v), (u, v)) : (x, u) €U} and {((x, y), (u, v)) : (y, v) €U} belong to
the product uniformity, and we find that the family of sets of form
{((x,y), (u,v)) : (x,u) €U and (y, v) €U} is a base for the product Uniformity.
If d is uniformly continuous, then for each r > 0, there is U €% such that if
(x, u) and (y, v) belong to U, then | d(x, y) — d(u, v) | < r. Say, in particular
(u, v) = (v, y), then it follows that if (x, y) € U, then d(x, y) < r. Hence
U c Vg4, and therefore V4, € %

For converse part, if both (x, u) and (y, v) belong to V,, then
1d(x, yv) — d(u, v)| < 2r because d(x, y) < d(x, u) + d(u, v) + d(y, v) and
d(u, v) £ d(x, u) + d(x, y) + d(y, v). It follows that if V4, €% for each +ve
1, then d is uniformly continuous.

Theorem 3.2. Opens the gate to develop relation between Uniformities
and metries (or pseudometrics). The reader may see the Literature as in
Kelley’s book in Chapter of Uniform spaces.

EXERCISE - A
Short answer type questions

1. Construct a Uniformity ‘% for the space R of reals to induce the usual topology
for R.
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Show that a metric space is a uniform space.

Over a non-empty set X obtain (a) the largest uniformity and (b) the smallest
uniformity for X.

EXERCISE - B

Show that the family of closed symmetric members of a Uniformity %/is a base
for U

Describe the product Uniformity in the product X{X, : @ €A} where each (X,

9U,) as a €A is a uniform space.

Prove that a continuous function of a compact Uniform space into a Uniform space

is uniformly continuous.
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By Hahn-Banach Theorem we find a member x*e X * with || x*||=1

and || x*(x)[|=li x|
Therefore || x||< sup {| x*(x)|}
lix"ist
Again  [Ix*(x) || <[ x*[|[|x[[<][x|| when ||x*||<]
Therefore || x||=]|x*(x)| when [[x*||<1
Thus | x[[= sup |x*(x)].
[lesfist
From (1) and (2) we have
| x||=sup{| x*(x)|: x*e X * with || x*||<1}.
which is =sup{|x(x*)|: x*e X * with || x*||<1}

=l £

It shows that % is a bounded linear functional over X* with || x||=|| x||.

Finally, let x,x,€ X and x*e X *, then
(X +x)(x*) =x*(x; +x3)
=x*(x)+x*(xy)

= R(x¥)+ %, (x%) .

Similarly for any scalar @ we have (gux)(x*) = x*(ox)
=ox*(x)

=X, (x*)

Therefore the mapping x — % is linear; and since || x||=|| x||, this mapping is

Isometry.

That is, x — % is a Linear Isometry of X onto the linear sub-space {x:xe X*}

of X**.

Definition 4.3.1. Given a NLS (X, || ||), Linear Isometry x— % is called the

Canonical mapping of X into its second conjugate space X**.
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