PG (MT) 06 : Group B

Functional Analysis
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UNIT 1

{Contents : Metric spaces, metric Topology, convergent and Cauchy sequences,
completeness, metric space of all real sequences, complete metric spaces /,, C[a, 5],
Metric sub-spaces, separable metric space, continuous functions, Homeomorphism,
Isometry, Compact metric spaces, Sequential compactness, Arzela-Ascoli Theorem)

§ 1.1 METRIC SPACES :
Let X be a non-empty set; so the Cartesian product X _X of all ordered pairs (x, )
of elements x, y € X is also non-empty.

Definition 1.1.1. A function d : X X — R (reals) is called a metric or a distance
function over X if it satisties following conditions, known as metric or distance
axioms :

(M.1) dx,y)=0forallx, ye X, and &(x, ) = 0 if and only if x = 3. (Property
of non-negativity),
(M.2) d(x, y) = d(y, x) for all x, y € X. (Property of symmetry).
(M.3) dx, 2) S dlx, y) + &, z) for all x, y and z € X (Property of triangle
inequality).
If d is a metric on X, then the pair (X, &) is called a metric space. In a metric
space (X, d) if x,& X and r is @ +ve real, we have
Definition 1.1.2. The subset {xe X :d(x,, x)<r} of X denoted by B(x,) is
called an open ball in X, centred at x;, with radius = ».

For example, if d(x, y) = |x — y| for any two reals x, y € R, then (R, d) is a metric
space and for x, € R and r any +ve 7, open ball B{x;)) = {x € R : |[x — x| <r}

={xe R :xy—r<x<x,+tr}

= an open interval (x, — 1, x, + ) with
mid point x, and length = 2r.
Similarly, in the metric space ¢ of all complex numbers with usual metric we

find an open ball B(z;) looks like an open circular disc with centre at z, € ¢ having
radius = r

Definition 1.1.3. The subset {xe X :d(x,, x)<r} of a metric space (X, d) is
called a closed ball centred at x, with radius = 7.

The subset {xe X :d(x),x)=r} of X is called a sphere centred at x, with
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radius = 7. It is also called boundary (Bdr) of open (closed) ball centred at x, having
radius = r

The open balls in a metric space (X, d) form a base for a Topology, called metric
Topology 1,4 (induced by the metric d) on X. So every metric space (X, d) is a
topological space with metric topology T4. This metric topology T4 1s Hausdorff (T,).

Definition 1.1.4. A sequence {x,} in (X, d) is said to be a convergent sequence

if there 15 a member # € X such that, i‘_‘;‘; d(u,x,)=0

Or, equivalently, given any +ve €, there is an index N such that d(u, x,) < g
when n =2 N

If {x,} is a convergent sequence in (X, d) with # € X and il_n)l; du,x,)=0 e
write limx, =#< X, and # is a unique member of X, because metric space is
1
HausdorfT

Definition 1.1.5. A sequence {x,} is said to be a Cauchy sequence in (X, d) if
d(x,,x,)—>0 as n,.m >

Or, equivalently, given any +ve &, there is an index N satisfying d{(x,,x,,)<¢
whenever #, m =z N.

It is an easy exercise to see that in a metric space every convergent sequence 1s
cauchy, but converse is false.

Definition 1.1.6. A metric space (X, d) is said to be complete if every Cauchy
sequence in (X, d) is convergent in X

For example, real number space R with usual metric d(x,y)=|x—y|;x,yeR

is a complete metric space. This is what i1s known as Cauchy’s General Principle of
convergence; and essentially by same reason the Euclidean #-space R" consisting of

all # tuples of reals like x=(x,x;,...,x,), x; €R 1s also a complete metric space

with usual/Fuclidean metric d where d 2(%‘, y)

=Y = 3 P x =00, X0 %,), Y=Y Y)ERT
i=1

Example 1.1.1, The collection S of all sequences of reals is a complete metric

- & =i
i ic ALY =2 s—— =
space with metric Y ; 2 14| & -7 where x=(£,&,,....),
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y={,1,....) €S The rh.s. series is convergent because each term is domoninated
by a corresponding term of a convergent geometric series. Here is a routine exercise
to see that metric axioms are all satisfied. For completeness part we remark on

a
passing that if a,,,, = 0, then 4,,,, — 0 if and only if ——— —0 asn, m — .
, aﬂ__m

Take {x,}as a Cauchy sequence of elements in §
where x =(&". &, & ).
Corresponding to a + ve € we find an index N such that

plx,., x, )<¢ forall mm=>=N

o L A )

@0 |§i(ﬁ) _é(m) |
E — <& ~
or, — o 1+|§i(”) —(fi(m)| for all h.omz N (11?)

As individual term in series above is = 0, we appeal to the remark made earlier
to say that | & — £ |50 as n,m—x. And hence for each co-ordinate i by

Cauchy’s General Principle of Convergence, {(j’j(”)} is convergent.

_ 0
Put lim é‘(n) =§i( L= 1,2, ..

H—oD

{1.1.7) we have

) n 0
Zi |‘§i( )_(:ti( )| <
o 1+|§i(n) _ff(O) |

€ forn=N.

That means, ?11_1};10 P(x,,%) =0

or lim x, =x, €S
n—w0
So the sequence space .S becomes a complete metric space.
Remark : The convergence of sequence of elements in S as shown above is

known as co-ordinatewise convergence; that is to say, lim x, =x, in S,
=

where x, = {fi(”)} and X, = {gﬂ(o)}, if and only if lim & =&,

H—ron
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fori=1, 2, 3, ...; The convergence is not necessarily uniform.
Example 1.1.2. The sequence space /, (1 < p < <o) consisting of all sequences

¥=(&,& rE,, ) of reals with 2|41 2 <+ is a complete metric space with

i=1
|

o p
metric 2(X,))}= [Zlé — 7 |PJ ,for Xx=081.62,- ) y=0n. 10, ) €1,
i1

Example 1.1.3. The function space C[a, 2] consisting of all real valued continuous
functions over the closed interval [a, b] is a complete metric space with sup metric

Pf.8)= sup. | f()-g(D)], as f,geCla,b]
The last two examples appear in Book PGMT 2A. They are referred to there.
§ 1.2 SUB-SPACES :

Let ¥ be a non-empty subset of a metric space (X, ). There is a natural metric,
namely the restriction dy of d to ¥ X y.

Definition 1.2.1. The metric space (¥, dy) is called a sub-space of (X, d).

Theorem 1.2.1. A subset A4 in Y is open in (}, dy) if and only if there is a subset
A4, in X that is open in (X, d) such that 4 =Y n 4.

Proof : Let x € X and y € Y and r be a +ve number » and let B (x, ») and
By, ) denote open balls centred at x and at y respectively with radius = 7 in (X, )
and in (¥, dy).

Then we have By(y,r)=Y B (y,r) forall ye¥ and p>0 ........(1.2.1)
Take 4 as an open set in (1, dy), then we know that 4 i1s a Union of some open balls
of (¥, dy); say of {By(y,r)} asye€ Aandr> 0.

Thus A = UBy(y,r)

“UY A Be(vr)} by (121)
=Y ~{UBy (y,7)}
=Y A4 (say)
where 4, is a union of open balls in (X, &) and 4, is an open set in (X, d).

Conversely, let 4 =Y ~ 4, where 4 is an open set in (X, d). For y € 4, there is
an open ball B, (y,r)c A, and hence B, (y,r)=Y By (y,1)c(T ~4)=A4 So
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every member of 4 attracts an open ball in (¥, dy) i.e. 4 is an open set in (¥, dy).
The proof is complete.

Corollary : 4 1s closed in (¥, dy) if and only if there is a subset 4; of X that is
closed in (X, d) such that A=Y ~A4.(If A=Y ~4, wehave Y\ A=Y ~(X\4),
and now proceed).

Definition 1.2.2, A metric space (X, d) i1s said to be separable if and only if
there is a countable subset [ of X such that [J is dense in (X, d) (or equivalently, 5
{closure of D) = X).

For example, real number space R with usual metric is separable, because the
set O of all rationals if R is dense in R, where we know that ( is countable.

Theorem 1.2.2. A sub-space of a separable metric space is separable.

Proof : Let (¥ dy) be a sub-space of (X, ) which is a separable metric space.
Let A={x,%,,...,X,,...} bea countable set in X such that 1= x

If ye¥ , then for each +ve integer m the open ball B (}’,i) meets 4 at some

point, say = x,.
s 5 <2
So, Open ball B (x,,,%)ﬁf =g
Put A= {(n,m):B(x,,,%)mY :tgﬁ}‘ Thus A=¢. For each (n.m)c A, take a

member V, , E{B(xmé)m)’}, and put B ={ym “(n,m)e A}‘ Therefore B is a

countable subset of ¥ because A is so. We now verify that B is dense in (¥, dy).
Take y Y and » > 0; choose +ve integer m so that % < %r . As said above there is
an integer » such that X, € B (}’i) Then (n,m)< A, and we have

1,1_2
d(y’yn,m) Ed(y, xfr)+d(xmyﬁ__m) <E+E - F7e) <r,

That means, ¥, ,, € B(y,7). Therefore ye B in(¥ dy), or, Bis dense in (¥, dy).
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§ 1.3 CONTINUOUS FUNCTIONS :
Let (X, d) and (¥, p) be two metric spaces.
Definition 1.3.1. A function f:(X,d)— (Y, p) 1s said to be continuous at a

point ¢€ X, if and only if given a tve €, there is a +ve & (depending on € and ¢)

such that e{ f(x), f(c)) <& whenever d(x,c)>6.

or equivalently, f(B(c,5))cB(f{(c),€).

£ is said to be a continuous function if f remains continuous each point of X.

Further details on continuous functions over metric spaces may be seen in
Book PGMT 2A.

Homeomorphism, Isometry :
Definition 1.3.1. A function f:(X.d)— (¥, p) 1s said to be a homeomorphism
if fis 1-1, onto (bijective) and both f and f ! are continuous functions.

If there is a homeomorphism between (X, &) and (3, ). then two metric spaces
{X, d) and (v, p) are called homeomorphic.

Explanation : If fis a homeomorphism of X onto ¥, then f !is so between ¥
and X. Also it is a routine matter to see that composition of two homeomorphisms 1s
again a homeomorphism; thus in the family of all metric spaces the binary relation
‘of being homeomorphic’ is an equivalence relation.

Example 1.3.1. Consider the metric space R of reals with usual metric and a
function 7 R — R given by T(x) = x+a, where a is a fixed real number, and xc R
Then this translation function (equals to Identity function when ¢ = 0) is a
homeomorphism; here T77': R — R is given by T'l(x) =x—-a, xe R . Similarly one
shows that for any non-zero real A, multiplication function A, :R— R given by
M ,(x)=Ax,xe R is a homeomorphism, where M/l'l =M ...

We know that family of all open sets in (X, &) forms a Topology, called metric
topology 7, on X induced by d. Any property in a metric space (X, d) that can be
formulated entirely in terms of members of 7; (open sets) is known as a Topological
property.

Consequently, homeomorphic metric spaces have the same topological properties
like convergence of sequences in the space and continuity of functions over the
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space. Following example shows completness is not a topological property in a
metric space.
Example 1.3.1. Take X ={1,2,3,..} and Y:{I%%} Regarded as a

subspace of the space R of reals with usual metric we find that spaces X and ¥ are
discrete metric spaces (every subset being both open and closed); thus the function

h:X =Y where h(n)= n~! is a homeomorphism of X onto ¥ Since X'is a closed

subset of R which 1s a complete metric space, the space X is complete. On the other
hand Y is not complete.

Definition 1.3.2, A function f:¥ — Y that is onto (surjective) is said to be an

Isometry if e{f(x), f(»))=d(x,p) forall x,yeX.

Explanation : Identity function on X is an Isometry of X onto itself. Also a
transformation of rotation like x'=xcosd+ ysingd, y'=-xsinf+ ycosf 1is an

Isometry of Eudidean 2-space R’ onto itself with usual metric. Also an Isometry is a
homeomorphism. Thus two metric spaces that are isometric are indistinguishable in
respect of their metric properties.

Example 1.3.2. In metric space (X, d) take x, € X .
For ye X, Let f,:x— R (space of reals with usual metric) be given as
S)y=d(y,x)-d(y,x,) for ye X,
Then show that x — £, is an isometry of X into (’(X) where ('(X) is metric space of

all real valued continuous functions over X with sup metric

|f —gll=sup| f(¥)-g(¥)|<w.
yeX

As distance function d is continuous, it follows that £, is continuous for all xe X.
Solution : Take #, ve X, so we have

L) =d(y,u)—d(y,x)) }
and 1.(9) = d(y.v)—d(y.xg) forall ye §-r

So, | £, () -F, (¥ |=ld(y,u)-d(y,v)|<d(u,v) which is independent of y € X,

taking the sup over L.H.S. we obtain
yvelX
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sup | £, ()= [ < d (@, v)
ye.

or || f,—/f ||<du,v) ... 132)
Putting y = # in {1.3.1) we have,

j;.f(") = _d(y’ xv) and fv(") = d(u,v)—d(y, xO)
So, | £ @)= f () |=d(u,v)
Now §2£|ﬂ¢(y)—fv(}’)|2|fu(u)—fv(u)|:d(u.»") cererrereierenee. (1.3.3)

from (1.3.2) and (1.3 3) we obtain
| £ = £ l=dl(u.v).

Thus x — £, invites an Isometry of X into C(X).

§ 1.4 COMPACT METRIC SPACES :

Some important properties of reals as we encounter in real analysis had motivated
more important concepts in a metric space like completeness and compactness.
Cauchy’s General Principle of Convergence is the driving force behind completeness
in a metric space. Essence of Heine-Borel Theorem could be found in concept of
compactness in a metric space.

In consequence, it had been an inevitable task with urgency to identify compact
subsets in a metric space. Russian Mathematicians like Alexandrov and Urysohn
had been responsible to put forward notion of compactness via ‘open cover’ in the
space; on the other hand close to Bolzano-Weirstrass property is classical analysis
concept of sequential compactness owed to Frechet in a metric space. And now we
know for certain that these two routes are equivalent in describing compactness in a
metric space. For details in this context see the book PGMT 2A.

It has been possible to discover that a subset in Euclidean #-space R” with usual
metric is compact if and only if the subset is a bounded and closed set in R".

Given a metric space X it is often hard to decide which subsets of X are compact,
and which are not. OQur present task is the job of identifying compact subsets of a
very important and useful function space of some continuous functions that we
presently discuss below. The concerned target theorem in this connection is Ascoli-
Arzela Theorem.
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Definition 1.4.1. Let (X, &) denote a metric space.

(a) A family O ={4,},., of open sets 4, in (X, d) is said to be an open cover for
X if every element of X belongs to at least one member A4, of the family . That is to
say, X cUA; .

ich
(b) A sub-family of an open cover for X which by itself is an open cover for X
is called sub-cover for X.

(¢) (X, d) 1s said to be a compact metric space if every open cover for X has a
finite sub-cover for X

Explanation : By a finite sub-cover we mean that the sub-cover consists of a
(N = set of all
natural numbers). Its members are open intervals, and hence open sets in the metric

finite number of members only. Consider a family {(-n, 1)}, »

space R of reals with usual metric. It is an open cover for R; because & = gl(—"a ny.
Clearly, this open cover possesses no finite sub-cover for R That is why, R 15 not
compact.

Definition 1.4.2. A subset & of (X, d) is said to be compact if as a sub-space of
{X, d) it 1s compact under definition 1.4.1.

For example, although R is not compact with usual metric any finite subset of R
becomes compact.

Definition 1.4.3. (X, d) is said to be sequentially compact if every sequence in
X has a convergent sub-sequence in X,

It is a bit lengthy exercise to conclude that a metric space is compact if and only
if it 1s a sequentially compact. See book PGMT 2A.

The function space Cla, b] of all real-vaheed continuous functions over a
closed interval [a, D).

We know that C[a, 4] is a complete metric space with respect to sub metric
pf,g)=sup | f(H)-g(®)|. f.g<C[a,b]. But C[a, b] is not compact with respect
<t<h

[ et

to sub metric, because C[a,5] is not bounded; for all constant functions like £, (f)=#

for g <t < bsatisfy p(f,,0)=n— o as n— . However there are compact sets in
Cla, #]. In searching then we need some Definitions.
Definition 1.4.1. (a) A subset M of Cla, 5] is said to be uniformly bounded if
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there is a +ve constant K such that | x{(z)}| < K for all7in 4 <¢ < b and for all members
xeM.

(b) Subset A is said to be equi-continuous if given any +ve €, there is a +ve &
(depending on ¢ only) such that | x(,) — x(+,) | <& whenever |4, -1, |< 5(1,,1, €[a,b])
for all members x € M.

Example 1.4.1. Show that the subset {f,} —([0,1] is equibounded where
S =1+L. 0<r<1.

Solution : Here |f,,(r)|=|1+§|gl+|§|gl+$g2 for all # and for all ¢ in

0<¢<1. So the conclusion stands.

Theorem 1.4.1 (Arzela-Ascoli Theorem) : A subset M of C[a,b] is compact if
and only if A is uniformly bounded and equi continuous.

Proof : The condition is necessary : Let A be a compact subset of Cla,b]
(w.r.t. sup metric). Then M is bounded, because a compact set in a metric space is

bounded and closed. Thus we find a closed ball say B, (x,) centred at x,  C[a,5]
with radius = 7 such that

Mc Er(xﬂ)

Thus SUp | x(#)—x,(#)[<r

azrsh

Now  x(#)=x(t) —x, () + x4(#) and

sup [x(z}|< sup [ x(®)—x, (1) |+ sup |xo()}| <r+k, say,
a<i<h asi<h a<i<h
where & = sup | x,{t)|.
asish
That means |x(¥)|<(r+R)=K (say) for all #in g<y<p and for all xcps.
Hence Af is uniformly bounded.
For equi-continuity take a +ve €.
Since M is compact, we find an £- pet = (xl(;), %(3), .., x,,(t)) for M.
Since every real-valued continuous function over a closed interval is uniformly
continuous. So here each of the members x|, x;,..x; of C[a d] is uniformly
continuous in [a,5] .
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So, for each x,(1) we find a +ve J, such that

Now take a +ve & = min ld;} . Then we have
SN
g .
| %;(8) — x;(22) | <3 whenever |4 1, |<, 4,1, €[a,b] foralli =12, £
Now for every member x € M, we find a member, say, x; from %—net, such that

px,%;) <% (0 = sup-metric of Cla,b]).

If 1,t, €[a,b] and |1, -1, |<& we have
| x(f) = x( ] < x(t)) = x; (0 |+ %, () — X, (6) | +] x,(5) - x(5) |

< sup | x(@)—x; @) |+ (i (0) —x;(8) [+ sup | x; ()= x(2) |

<plex)+5+plrx)<é.

This inequality holds for all ¢,,1, €[a,b], with |#, —#,|<S and for all members
xeM . So M is equi-continuous.

The condition is sufficient : Suppose M is uniformly bounded and equi-
continuous ; we show that M is compact. Because Cla,b] is complete and so is A4 It
suffices to show that every sequence in M has a Cauchy subsequence. Let D = (#,, #;,
14, .....) be a countable dense set of reals in [a,5].

Suppose S| =/, fi2, f13.--..) be any sequence of elements in M. By uniform

boundedness property of M. We find a +ve K such that
| f()|<K forall fin g<y<p and forall feM ... (1.4.6)

Let us examine real sequence

{.fll(t2)= le(IZ)? .fl3(t2)="“= flm(IZ)a'“'}

From (1.4.6) it is clear that this 1s a bounded sequence of reals and has a
convergent subsequence.

Let §;=(f, /52, f53,-..} be a sub-sequence of S, above such that
{FH1(6), Holts), Halty), ...} converges.
113



Now examine real sequence {f,(%), f52{t3), fo3(t3),.....}, and by similar
reasoning as above, we have
Sy ={f51, 125 f33.----} @s a subsequence of S, such that

{51(5), fiolt3), fi3(53),.....} 1s convergent.
We continue this chain to construct 5, .55, S, ... of sequences of functions like :

Sl :{fll.»flz.»fm» ----- }
Sy ={hats Foas fozowni}
Sz =1 fos frzoed

where S, constitutes a subsequence of §,,_ (m =2,3,....) with the property that
{Fa(t), Fi2(,) £,3(@,), ...} 1s a convergent sequence of reals.

Now put f,=f, (n=2,3,4,.) then {f,/,f;,...} is the diagonal
subsequence of .S;. From mode of construction

x,eD and {f(¢,), f5(t,), ..., f;(%,), ..} 1s a convergent real sequence.
If i > k, consider | f;(t,)— fu:(2,)| for i > &k > n and knowing that both

St fu(2,) are members of convergent real sequence

{f;rl(trr )’ f;rZ(tn )» (fnS (rn )’ }
We have | £,(¢,)— f.(¢,)|—= 0 as i,k > . Thus {£{£,), />(1,), /,({,),....} Isa
Cauchy sequence of reals.
Finally, take any +ve ¢ Since M is equi-continous and S < .S, — M, we find a

+ve 8 such that | £,{1)— 7, (" <% whenever |7 —¢'| <, 1,1’ €[a,b] for all members
f.es8

Now consider the family {7, — &, ¢, + )} of open intervals with mid point 7, € D.

It 1s routine verification with dense property of D in [@ /] that this family of
open intervals becomes an open cover for [a,b]. By compactness of [a,b] we obtain
a finite sub-over, say

[a,b]:tth(tn—é,tn+5) and 2<n<n,
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Again {f(t,), /(2,)......} 1s Cauchy; thus a +ve integer X, is there such that

|ﬁ(fn)—fk(fn)|<% for all 2<n<n,

If ¢ is any position of [a, b], we find # with 2<n<n, so that 1, -6 <t <t,+6

and for i, K > K, we have
FAGRF AT AU RN AU IR FACH By /0]
LA - hO<S+ S+ T =
That means supb|ﬁ(t)—fk(t)|sg for i,k = k,

or, ol f;, fiyse for i,k 2 k

or, S={f, f5,...} 1s a Cauchy subsequence of §,.

The proof 1s now complete.

EXERCISE A

Short-answer type questions :
1. Show that compactness 1s not a heriditary property in a metric space.

2. Give an example to show that a closed bounded set in a metric space may not be
compact.

3. Showthat fix)=x + a or = —x + a where a is a fixed real is an Isometry on
the space R of reals with usual metric.

4. Prove that any bounded sequence of reals has a convergent subsequence.
5. In a metric space (X, d) if ?!1_1};10 X, =x€X gshow that {x }{x} is copact.

EXERCISE B

Broad questions

1. Show that the closed ball & = [I e | x(2) il] of C[0, 1] with supmetric is not
ity

compact.
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Prove that only Isometries of the space R of reals with usual metric are
fixy=x+aand f(x)=-x+a where ais a real number.
Give an example of a Homeomorphism that is not an Isometry.

Let f be a real-valued function on a compact metric space (X, ), show that f
assumes its maximum and minimum on X.

Verify that closed Unit ball in sequence space /, is bounded without being totally
bounded.

Let X denote the metric space of all real polynomials p(f) in 0<f<1,; show
that X 1s not a complete metric space with respect to sup metric.
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UNIT 2

{Contents : Linear spaces, Dimension of a linear space, Normed linear space (NLS),
Banach space, C[a,b] as a Banach space, Quotient space of a NLS, Convex sets,
their algebra, Bounded linear operator; its continuity, Unbounded linear operator,
Norm ||T|| of a bounded linear operator T, Formulae for ||T||.)

§ 2.1 LINEAR SPACES

Definition 2.1.1. Let R (q) denote the field of reals (complex numbers) that are
also called scalars. A linear space (Vector space) ¥ i1s a collection of objects called
vectors satisfying following conditions :

I Vis additively an Abelian (commutative) Group, the identity element of which
is called the Zero vector denoted by 0.

IL. For every pair (&t v), & being a scalar and v € F] there is a vector, denoted by
oLy (not va), called a scalar multiple of v such that

(@lv=v forallve ¥

(b) ¢ (u+v)=au-+a.v for all scalars « and for all vectors u,vel .

(©) (@+ Bv=av+ pv for all scalars & and S and for all vectors yc} .

(d) a(fv)=(ca.B)v for all scalars xand Fand for all yc}”.

Example 2.1.1. Let R” be the collection of all »# tuples of reals like
x={x],Xy,..X, ), X; being reals. Then R" becomes a linear space with real scalar
field where addition of vectors and scalar multiplication of vectors are defined as

X4y =0, %2, %)+ 01 Y200 V) = (4 + 01, X2 + 3,0, X, + ) and
a.x =a(X),Xy,..., %, ) = (@x],0x5,...xx,) , x,y € R" and o any real scalar.
Here R" is also called Euclidean #-space with the zero vector 0 =(0,0,...,0) (all

co-ordinates are zero), and it is a real Linear space.

Example 2.1.2, Let C[a,b] denote the collection of all real valued continuous
functions over a closed interval [a,#]). Then C[a,5] 1s a real linear space (associated
scalar field being that of reals) where vector sum and scalar multiplication are defined
as under :

(f+2))=f)+g(®); a<r<h, and f,ge(la,b]
and {(af))=af(f) ; a<t<p and & any real scalar.

117



As we know that sum of two continuous functions is a continuous function and
so is a scalar multiple of a continuous function, we see that f+g and ¢«f are members
of Cl[a,b]) where f,g < (l[a,b] and ¢ is any scalar. Here the zero vector equals to the
zero function (O(t) =0 a=st< b) over the closed interval [a,b].

There are many other linear spaces like the sequence spaces /,(1< p <o),

polynomial space pla,b], function space L,[a,b], that we encounter in our discussion
to follow.

Definition 2,1.2, (a) If 4 and B are subsets of a linear space } then
A+B={la+b . acAand bec B}

(b) For any scalar A,

AA={Aa . aec A}

The subset 4—B=A+(—1)B, and taking A = zero scalar we find 04 ={0}.
Further we see that A + B =B + A, because vector addition is commutative, However
A—B = B— A Taking 4 and B as singleton and 4 ={(1,0)}, B ={(0,0} in Euclidean
2-space R°, we find 4—B={(, 0)} and B—A={(-1,0)}.

Further for any scalar & we have ad={aa:.ac A} .

Here is a caution. In general, 4+ 4#24.

Because take 4=1{(1,0),{0,1)}; Then we have

24 =£(2,0),(0,2)} which is not equal to A+A4
where A4+ A=1{(2,0),(0,2),(1,1)}.

Given a fixed member ac)’, the subset a+B={a+b:bcB} is called a
translate of B.

§ 2.2. Let X denote a linear space over reals/complex scalars. Given x,%,,...., X, in
X, and &,@,,...,«, as scalars, the vector aqx +a,x, +.... +a,x, of Xis called a
linear combination of x,%,,....,x,,.

A subset E of X is said to span (generate) X if and only if every member of X is
a linear combination of some elements of F.

Elements x,x,,....,x, of £ are said to be linearly dependent if and only if there
are corresponding number of scalars @;,a,, ...,«, not all zero such that

X + Xy + ...+, x, =0
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A finite number of elements x,x,,...,x; of X are said to be linearly independent

if they are not linearly dependent. This amounts to say that if

k
Y% =0 implies ¢ =, =...=¢a; =0.
=1

An arbitrary system of elements of X is called linearly independent if every
finite subset of the given system becomes linearly independent.

Observe that if a set of vectors in X contains a linearly dependent subset, whole
set becomes linearly dependent. Also note that a linearly independent set of vectors
does not contain the zero vector.

Definition 2.2.1. A non-empty sub-set L of a linear space X 1s called a sub-
space of X if x + y is in L whenever x and y are both in L, and also ox is in ,
whenever x is in L and o is any scalar.

Example 2.2.1. Let .S be any non-empty subset of X. Let L = the set of all linear
combinations of elements of .S. Then L is sub-space of X, called the sub-space spanned
{generated) by §.

The subset = {0} is a sub-space, called the Null-space.

Theorem 2.2.1. Let x;,x,,...,x, be a set of vectors of X with x, = 0. This set
is linearly dependent if and only if some one of vectors x,,..,x,, say x; is in the
sub-space generated by x,X5, ..., X,

Proof : Suppose the given set of vectors is linearly dependent. There is a smallest
k with 2<fk<pn such that x,x,,..,x is linearly dependent, and we have
% X, .. +agx, =0 with not all o’s are zero scalars. Necessarily, we have
a,;, # 0 ; otherwise x,x,,....,x,_; would form a linearly dependent set.

_ Y. & Ky
In consequence x; = ——x ——=X;, —....———X;_,.
243 243 247

That means x; is in the sub-space generated by X,X;,..., % .
Conversely, if one assumes that some x, is in the sub-space generated by
Xi,X,..., X;_1 ; then we have

Xp = B+ Byxy + o+ B X
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That means x,x,,..,x; are linearly dependent, and in turn we have the set
(x;,x5,..,%;) as linearly dependent.

Definition 2.2.2, In a linear space X suppose there is a +ve integer # such that X
contains a set of # vectors that are linearly independent, while every set of # +1
vectors in X 1s linearly dependent, then X is called finite dimensional and »n is
called dimension of X {Dim(X)}.

The Null-space is finite dimensional of dimension 0.

If X 1s not finite dimensional it is called infinite dimensional.

Definition 2.2.3. A finite set B in linear space X is called a basis of X if B is
linearly independent, and £ the sub-space spanned (generated) by B is all of X.

Explanation : If x,x,,..x, is a basis for X, every member x< X can be

n
expressed as x =g x, +a,x, +....+a,x, where scalar coefficients ¢;’s are uniquely
determined; so x does not have a different linear combination of basis members.

Suppose Dim(X)=# (n=1). Then X has a basis consisting of # members; For,
X certainly contains vectors x,x,,...,x, that form a linearly independent set. Now
for any member x < X, the set of vectors x},x,,...,x, plus x # of # + 1 vectors must
be linearly dependent. Now Theorem 2 2.1 applies to conclude that x is in the sub-
space generated by x,x,,...,x,. Hence x,x,,...,x, form a basis of X.

§ 2.3 NORMED LINEAR SPACES :

Definition 2.3.1. A linear space X is called a Normed Linear Space (NLS) if
there is a non-negative real valued function denoted by || ||, called a norm on X
whose value at x € X denoted by || x || satisfies following conditions (N.1) — (N.3),
called norm axioms :—

(N.1)  ||x||20, and ||x||=0 if and only if x=0.
(N.2) |ax]||=|a]|x]|| for any scalar a and for any x<€ X

(N.3)  Jlx+y| <l x|+l ] for any two members x and y in X.

If || || is a norm on X, the ordered pair (X, || ||) is designated as a NLS. If norm
changes, NLS also changes.

In a NLS (X, || ||) one can define a metric p by the rule : p(x,y)=|| x - y| for all
x,ye X It is an easy task to check that p satisfies all metric axioms; and (X,p)
becomes a metric space with the metric topology called Norm Topology because
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of its induction from norm || ||. We write llm x, =x in X off lim || x, - x[l= 0 thjs
ot ot

convergence in NLS X is known as convergence in Norm. Similarly, we define a
Cauchy sequence in NLS X.

A subset B in a NLS X is said to be bounded if there is a +ve K such that
[[x||l<K forall xe B

Let x,€ X, and take a +ve number » Then in NLS X, the set
{xe X :||x—x,||<r} is called an open ball denoted by B,(x,) centred at x, having

radius = . Similarly, we have a closed ball B (x,)={xex:|x—x,|<r}; and in
agreement with usual open sphere we encounter in Co-ordinate Geometry we have a

sphere S,(x;)={xe X :||x—x,||=r centred at x, with radius = r.

Definition 2.3.2. A NLS (X, || ||) is said to be a Banach space if it is a complete
metric space with metric induced from the norm function || || on X.

Example 2.3.1. The space ([a,] of all real-valued continuous functions over

closed interval [a,b] is a Banach space with supnorm || /|| = sup | /(#}|; f €Cla,b].
asrzh

Solution : It 1s routine exercise to see that C[a,b] is a real linear space in respect
of usual addition and scalar multiplication of continuous functions.

Now put || f/||= sup | f(#)| for feC[a,b] wherein we recall that | /| is also
asrzh

continuous function over closed interval [a,b] with a finite sup value =|| f[|=0.
Also || f]|=0 1f and only £ equals to the zero function. So (N.1) axiom is satisfied;
For (N 2) take o any scalar (real), then we have for f < (C[a,b],

IIa'f|I=aitrlgb||(af)(t)lziggbIIa'f(t)IzIalaiggblf(t)lzlalllfll‘
Also, if f,geC[a,b] we have |If+gII=as{l:gbI(f+g)(t)|

= sup If(t)+g(t)lSaitjgblf(t)l+as:£lgb|g(t)lzllf||+llgll‘

ast<h

Thus C[a,b] is a NLS; Now take {f

.1 as a Cauchy sequence in Cl[a,b]; So

|| fy=Full—0 as, n.m > . Givea g>0, we find an index N satisfying

| £, — fn Il <& whenever n,m=2N .
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Thatis, sup | £,(1)= £, () |<&

ast<h

Thus for a<t <b, we have | £, (t)- f,, (1)< sup | f,,(1) - £,,(¥) | <& whenever
a<i<h

nm,m=> N . Above inequality shows that the sequence {f,} of continuous functions

over the closed interval [a,b] converges uniformly to a function say f over [a, 5] and
also f becomes a continuous function over [a,b]. So f € Cla,b]. Taking m — <« in
(2.3.1) we find

| £,(8)— f(1)| <& whenever n>N and forall tin a<¢<bh.

This gives sup | f,{#)— f(¢)|< & whenever n=N
astsh

O,

E

| f,—-fllsefornz=N
That means, ?!1_1};10 J. =1 €Cla,b]l Thus C[a,b] is a Banach space.
Theorem 2.3.1. Let X be a NLS with norm || ||. Then
@ [IxII=llyl|<llx-yl| for any two members x,y € X
(b) || ||: X — Reals i1s a continuous function.
Proof : (a) We write || x||=||x—y+yll<[x—y|+|y]

of, ||x|[=l|¥I|EHx=¥] oo (2.3.1)
Interchanging x and y we have

Hyl=lxl=Ny=xlI=llx=D21 oo (2.3.2)
From (2.3.1) and (2.3.2) we write

E(lx=lyD=llx=pl
or, [IxlI=llyll<llx-yI
(b) Let {x,) be a sequence of elements in X converge to x;

So ||x,—x4|| =0 as x - . By (a) we have

I, =11 <113, — %5 || =0 as 72— o0.
That means, Al_lg;lo | x, I =1l % | . Hence norm function || || is continuous at Xy, As

x, may be taken as any point in X, (b) follows.
Remark : If lim x, =x; and lim y, =¥o in NLS X, then
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(a) Ai_l};(xn iyn) =X # Yo
(b) lim(Ax,)=Ax, for any scalar A.

Definition 2.3.3. Two norms || ||, and || ||, in a linear space X are said to be
equivalent if there two +ve constants ¢ and » such that

all x|, <l|x[; < &/ x||, forall ze X.
Example 2.3.2. Consider NLS = R (Euclidean 2-space) with two norms || ||, and
I ll, defined by ||x,¥ll=y**+»* and [[x,yl,=max(x|Iy])} for (x,y)eR>.
Show that two norms are equivalent.

Solution : We have for (x,y)e R, |x[* <|x[* +|p|" and |y <|x|* +| y|?

Thus || (x, ) = max( x|y D <yl +1y P = 0 =l
of, (x| <llx | 23.1)
Again || (x,y)” =27+ x|y < 2max(xl, |y D} =20 )],

or || (e )y SN2,  (23.2)
Combining (2.3.1) and (2.3.2) we produce

11Ge )2 <1l G )l < N2 (5 0)
Therefore two norms as given are equivalent in NL.S = R

Explanation : If two norms || ||, and || ||, are equivalent in a NLS X, then
identify function : (X, || ||;) = (X, || [l,) is a homeomorphism. (In fact, it is a linear
homeomorphism).

§ 2.4 QUOTIENT SPACE :
Let (X, || |I) be a NLS and F be a linear sub-space of X.
If xeX,let x+F={x+y:yeF}
These subsets x + Fas x < X are cosets of Fin X.

Put X/F={x+F:xeX}.
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One observes that /' =0+/F, x,+ [/ =x,+F ifand only if x, —x, € I, and as a
result, for each pair x,,x, € X, either (x; + F)m(x, + F) =D
or, x; + 1" =x, + I
Further, if x, x,, 3, v, € X, and (x; —x,)e F, (3, —y,) € F, then
(X, +3)—(x,+y,) € F, and for any scalar o (X, —ax,) € I'because I is
Linear sub-space.
We define two operations in X\F by the following rule :-
1) (X\Fx(X\F)— (X|F)
where (x+F,y+F)—>(x+F)+(y+F)=(x+y)+F
and (i) R(¢)x(X\F)— (X|F)
where (o, x+F) > a(x+F)=ax+F

for all x,ye X and o any scalar.

It is now a routine exercise to verify that (X \F ) is a linear space in respect of

above ‘addition’ and ‘scalar multiplication’. Note that zero vector of this Linear
space (X | ) equals to F

Definition 2.4.1. The linear space X\I. where L is a linear subspace of NL§S X
is called the quotient space (or quotient space of X modulo ).

2
Example 2.4.1. Geometrically describe the quotient space R 4 where R = the
Euclidean 2-space and L is the sub-space represented by a line through origin

(0,0) e R*.

Solution : Given a sub-space L @i)ft‘%"

as represented by a line through -

) .. ><)L/"/ et
(0,0)e R, X is any position of RZ, IR 3@?5” L
then x+ L geometrically represents //’/ /1 *

a straight line through x parallel to .

the line represented by L; that is say

that x+ L i1s a translate of L through v’
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x. Further if y 1s any other position of R, then by Law of parallelogram we obtain
the position x + y and here (x+L)+{y+L)={(x+y)+L is re-presented by the
straight line through x + y and it is parallel to L, that is—it 1s the translate of L
through (x + ¥) in R

Example 2.4.2. Obtain the quotient space C[O’% where ([0,1] is the linear

space of all real valued continuous functions over the closed interval [0,1] and L
consists of those members f < (C[0,1] with A1) = 0, 7.e. vanishing at 7 = 1.

Solution : If f g< L, then A1) =g(1) =0; Now (f+g)1)=f()+g(1)=0;
So f+gelL (note that sum of two continuous functions over [0,1] is again a

continuous functions over [0,1]), and for any scalar & we have o f < when fe L.
Therefore L is a sub-space of C[0,1].

Let us look at members of C[0,1]\L. Take f<([0,1] where f(l)=a (say).
Then for any other member g < C[0,1] sharing the value a at 1 = 1, i.e. g(1) = a; we
note that (g - ) e C[0,1] such that (g - f )X e g(1)- f(1)=a-a =0, showing that
(g—f)elL ie ge f+L. So these members g plus £ all belong to f + L.

Now if #e C[0,1] with Ae(f+L) (24.1)

So, h—felL

i.e. hand fdiffer at 1 = 1.

le. h()# f()=a
We similarly construct a member (72 + L) of C\L, where

(h+LYn(f+L)=¢ (242
or else, we find a member ¢ in both implying
o—-hel and ¢— f el

therefore o(1)-A(1)=0 and ¢(1)- f(H=0

ie. o()=h(l) and @(1)= f(1)

le. h(ly=f(1)

that means #<({f + L), which is not the case by (2.4.1).
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Theorem 2.4.1. Let L be a closed linear sub-space of NLS X, and let
[|x+L||=f{||x+y|:yel}, forall xc X, then above is a norm function on the
quotient space (X \L). Further if X is Banach space, so will be (X'\L).

Proof : For any member x + L of X\L, from definition we have

|[x+L|z0 forany xe X .
Now assume that || x+ L] =0 for somexe X .
ie. Inflllx+y|:yel}=0

As ye L if and only if —y < L, we have

ffllx—yll:yeL}=0.

Since L 1s closed, x I (distance of x from L is zero),

That means x+ F = F = the zero vector of the quotient space X/L .
For verification (N.2) take ¢ any non-zero scalar. Then
le(x+ L) [|=[lax+ L]

=Infillax+yll:y<eL}
=Inf{lla(x+ D). ye L}
=la|Inf{llx+ @yl yel}

=|e|||x+L]|| , because L is a linear sub-space of X.

For triangle inequality (N.3) take x,ye L
Then ||[{x+5)+(y+L)||=ll(x+¥)+L]| (L is a linear sub-space).
=Inf{||x+y+ul||:wel}

=Inf{l|x+y+5+5luecl]

shnfillx+ 51+ Ily+5luel;

<Inf{llx+5ucli+Inf |y+5||:uel}
=Infl||x+h|:wel}y+Inf||y+K|: K<L}, L isa sub-space.

=llx+L{|+[[y+L|
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Thus quotient space X\L is a NLS.
Now suppose X is a Banach space. We show that the quotient space X/L is so.
Let {x,+ .} be a Cauchy sequence in (X / L) . So corresponding to each +ve integer

k we find an index &}, such that
%~ % + LI <2 wh >N 2.4.1
n " Xm W enever m,n=>N, (2.4.1)

We define by Induction a subsequence {xm} of {x,} such that

1

|| x, +L||<2—k

w, — X

i

Take n =AN,, and suppose m,,m, .. 1, have been so defined that
m<nm<.<mand N, <n, G=12.._k).

Let m,, = max{N,,,, n, +1}. This enables one to obtain an increasing sequence
{m,} and (*) follows from (2.4.1)

Put Vi =X, . Then by induction we define a sequence {z;} in L such that
|
z,€(y,+L1L) and 1 2; = g ||<2;,.T, k=12 ...
Choose z, €(y,+L), suppose z,,...,z; have been so chosen to satisfy above

1
condition. Then y, +L =z, +L and by (2.4.1) we have lzg =y +F ||<2—k. By

definition of norm in (X\L)
- [ S L L
we find z,,, € (,,; + 1) such that | Zg + Zpa | €2 = Yea + L1+ ok -

1
Then |l Z& + Zga [l < SkeT S wanted.
(=] (=]
|l 2¢ =z |l is convergent, and hence Z(z;.- —Z1) is convergent.
k=l k=l

That means
[=s]

But Z(z;.- ) =2~ )+ (- 2+ H (2, 2 ) = 2 2,
=
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So, {z,,} is convergent; Put ,}1_{{30 Zr = Z;since z; €(y; +L)

we have ||(z+L)—( + D=l z=y + L[]z 24 ||

That means ]‘lim {y; +L}=z+L. Thus given Cauchy sequence {x,+L} has a
—>w

convergent subsequence {X, +/7}.

Hence {x,+L} is convergent in (X \L). This proves that (X \L) is a Banach

space.

§ 2.5 CONVEX SETS IN NLS :
Let (X, || ||) be a NLS, and C be a non-empty subset of X.
Definition 2.5.1. C is said to be a convex set if for any real scalar ain Q< ¢ <1,

and any two members x,,x, € C we have ax +(1-a)x, is a member of C.

Or, equivalently, for any two reals «, f with 0<a, f<1 a+pf=1,
(ax, + Bxy)eC.
Or, equivalently, the segment consisting of members 7x, +(1-1)x, (0<r<1) isa

part of C.

For example, in an Euclidean space like R”, cubes, ball, sub-spaces are all
examples of convex sets in K.

Theorem 2.5.1. Intersection of any number of convex sets in a NLS is a convex
set, but their union may not be so,

Proof : Suppose {C,}, ., be a family of convex set in NLS (X, || ||) and put
C:a(;ACa; Let C#¢ and let x,yeC take 0<a <1. Now xayerACa, so for
every o, x and y are members of C, which is convex, thus, (ax+(1-a)yeC,.
Therefore ax+(1—-a)y i1s a member of every C, and hence is a member of
[ C, =C  Thus C is shown to be a convex set in X.

Union of two convex sets may not be a convex set. Every triangular region in

Euclidean plane is a convex set but the figure X as a union of two such convex sets
fails to be a convex set.

Theorem 2.5.2. A subset C in a NLS is convex if and only if sC +1C =(s+1)C
for all +ve scalars s and 7.
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Proof : For all scalars s and 7 we have
(s+)C CTsCHIC .. (2.501)

If C is convex and s, t are +ve scalars we have

L o+t cec
Ss+1i Ss+1i

Or sCH+tC(s+)C o (2.5.2)
Combining (2.5.1) and (2.5.2) we have
sC+1C =(s+0)C

Conversely, suppose {(s+7)C =sC+#( holds for all +ve scalars, If 0<¢g <1,
take s=¢ and 7y =]1—¢ and then we find oC +{(1-a)C <. So C is convex.
Theorem 2.5.3. A ball (open or closed) of a NLS is a convex set.

Proof : B(x,,r) be a closed ball in a NLS (X]| |)).

Let x,yeB(x,,7); So ||x-x,||<r and || y-x,||<r. If 0<¢<]1, and

u=tx+(1-1)y, we have
e =xp | =l tx +{1=2)y = (xg + (1= D)xp) || = || Hx = xp) + A=)y = o )|
<tllx=x [[+A-0) || y—yollctr+(1-t)r =7.

That shows u < B(x,,7). So, B(x,,r) is shown to be convex The proof for an
open ball shall be similar.

Example 2.5.1. If (X || ||) 1s a Banach space and L is a closed sub-space of X,
show that L is a Banach space.

Solution : If L is a closed sub-space of X, then L becomes a closed set of a
complete metric space X, the metri¢c being induced from the norm || ||. And we know
that every closed sub-space of a complete metric space is a complete metric sub-
space and hence here L is a Banach space. (as a sub-space of X).

§ 2.6 BOUNDED LINEAR OPERATORS OVER A NLS (X, || |} :

Let (X, || ||) and (¥, || ||) be two NLS with same scalar field. (Here, same notation
|| || has been used for norm function, it is to be noted that norm functions in X and }
are, in general, different).
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Definition 2.6.1. A function (or mapping or transformation) (function, map,
mapping, transformation are synonyms of the same mathematical object) 7. X — VY

is called a linear operator if (1) T(x; +x,)=T(x)+7(x,) for any two members x,
and x, in X, and

(2) T(ax))=aT(x;) for any scalar o and for any member x, € X

Explanation : For a linear operator 7: X' — Y condition (1) in Definition 2.6.1

is termed as linearity condition which says Image of the sum is equal to sum of the
images. Condition (2) is known as that homogeneity. For example, if Yy =y = p=

the space of reals with usual norm (Euclidean norm) and 7:R— R is given by
T(x)=ax where xc R and ¢ is a fixed real (zero or non-zero), we verify that 7 is
a linear operator; and we shall presently see that any linear operator . B — R shall

be of the form 7(x)=ax for some fixed scalar o for all xc R.

Definition 2.6.2. The operator 7 X — Y defined by 7(x)=0 in Y. For all X,
is called the zero operator, denoted by 0.
Remark : (a) The zero operator : X — Y is a Linear operator.

(b) The identity operator, / : X — X where /(x) = x for all y< X is a linear
operator.

Theorem 2.6.1. Let 7 : X — ¥ be a linear operator. If T is continuous at one
point of X, then T is continuous at every other point of X.

Proof : Suppose T is continuous at x, € X ; so given g >0, there is a +ve d
such that || 7(x)-T7(x,)||<& whenever ||(x)—(x,)[[<o. Suppose x(#x,) be

another point of X. Then if || x—x ||< &, we write ||x—x [[=] x5 —(x—x +x5)]|.
Thus ||[{(x—x; +x,)|| <6 shall give by virtue of continuity of T at x;,
173 +x0)~TOp) | <
or, [T{x)—T{x)+7T{(xy)—T(x,)| <& because T is linear.

or, ||T(x)-T(x)| <& . Therefore T is continuous at x = x,.

Corollary : A linear operator over a NLS X is continuous either everywhere or
nowhere in X.
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Definition 2.6.3. A linear operator 7. X — Y is called bounded if there is a +ve
constant A such that

| T(x)||<M | x| forall xeX
17

x| <M for all non-zero numbers xe X |

or equivalently

Theorem 2.6.2. Let 7 : X — Y be a linear operator. Then 7 is continuous if and
only if 7' is bounded.

Proof : Let 7 : X — Y be a continuous linear operator, if possible let 7 be not

bounded. So for every +ve integer # we find a member x, € X such that

1T (x,) 1> 7l x,

Now x,, is non-zero vector in X, put ¥
n xn N

1 1 1
nllx, 0 n

clearly 1%, 1= =0 a3 n—>w. So we see llm“ =0 in X; By

continuity of 7 we have AE};{; T(u,)=T(0)=01in Y (T(0)=0, because T is linear),

Therefore we have || T(u,)|| >0 as n - (*)
T ) =T
On the other hand, " n || Xn “
=|———T{x, Tt
A , because T is linear

1
— T(x,)| =1

Now || 7(x,}||>1 and (*) are contradictory.
So, we have shown that 7: X — Y is bounded.

Conversely, suppose linear operator 7: X — ¥ is bounded. Then we find a +ve
scalar such that

17| <M x|l
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So given > 0, there is a tve 0 = % (here), such that

|T(x)||<e whenever ||x|<d

le || T(x)-T(0)||<& whenever || x-0|<Jd because 7(0)=0 in ¥. That means,
T'is continuous at x =0 in X, and therefore Theorem 2.6.1 says that T is continuous
at every non-zero position of X. The proof is now complete.
Examples of bounded and unbounded linear operators.

Example 2.6.1. Consider a transformation 7 of rotation in Euclidean 2-space R
given by 7'(x,y)—>(x’,y") where

¥ =xcosd+ ysiné } *)
V' =—xsin@ + ycosd

Now it is easy to verify that 7. p2 _y R2, under (*)1s a linear operator in respect
which rotation takes place around origin (0,0) with axes of co-ordinates being rotated
through angle g to give new axes of co-ordinates.

In NLS R* with usual norm 1 (x, ¥ || = x? + y%, we see that
[| T(x, ) ||2= I1{(x, ¥ = ¥y y'2 =(xcosf + ysinB) +(—xsin b ercost.‘v")2

=x 4y =l eI’
Thus || 7(x, y)}||=||{x,»)|]; and this is true for all points (x, ¥) in R’ , and we
conclude that 7' is a bounded linear operator.

Example 2.6.2. Consider the Banach space (C[0,1,] of all real-valued continuous
functions over the closed interval [0,1] with respect to sup norm

|/ 1l=sup [ f(0)]; f € C[0,1]

a=f=1
Let K(s,7) be a real-valued continuous function over the square
0<s<t; 011}

Now define T :([0,1] — C[0,1] by the rule : let 7(f)=F

where F(s) = [ k(s.0)/()dt; as f <C[0,1].
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It is a routine exercise to check that /' is continuous over [0,1] and 7 is a linear
operator.

1
Now, IT(/)|=I1F || = sup | F(s)|= sup | [k(s,0)f (1)t
0<s<l 0=s<l

< sup _f|k(5 O f(r)|dr<Mj|f(r)|dt where M =  sup  |k(s,0)|;

0<5<1 0 O<s<l, D=1

<M sup |f(t)|jdt =M || f1. This is true for every member f < (C[0,1].

0<r=]

Therefore, T is shown to be bounded.

Example 2.6.3. Let C'(l)[O, 1,] denote the class of real-valued continuous functions
that are continuously differentiable over [0,1]. Then C“)[O,l] is a sub-space of
C0,1] which is Banach space with sup norm. Consider the Differential operator
D:CcW[0,1] > C[0,1] when D(f)=¢, feCV[0,1] and - f(f) @(tyin g<r<].

We can easily verify that D is a linear operator, presently we see that D is not
bounded.

Let us take £, eC“)[O,I] where f,(f)=sinnrt in 0<¢<1. Then we have

Therefore, ||/ 1= SL:E |sinnzt|=1 504

IDCNI=1l @, \|= sup [z cosnat | =nz
<t<

Hore 1DUDI _ nx
AN

That means D can not be bounded.

Definition 2.6.4. Let 7 : X — ¥ be a bounded (or equivalently, continuous)
linear operator. Then the norm of 7, denoted by || 7'|| is defined as

T | =Inf{M >0:|| T{x)|| <M || x| for all xe X}

(A set of +ve reals has always /nf. value).

> A8 H—> X
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Theorem 2.6.3. Let 7. X — ¥ be a bounded linear operator. Then
@ [[TH<IT ] x]| for all xe.X}

(b) |T||—|8t”1p | 7(x) ([}

() ”TH—SuPlllT(x)H}

[lxll=1

@ |I7]=s0 {|T(x”)||}

Proof : (a) From definition of operator norm we see that for any +ve £ we have
ITGH< T I+ &)l x| forall xe X .

Taking ¢ — 0, we have || T(x)[|<|[T||[|x||
M If |[x][[<sLxe X, we have || TCo || <[ T[|[lx || <|[T]]

Therefore S:P 7)< T )

From Definition of operator norm || 7'||, given any +ve €, we find x_. € X such

that [[T(x.)[|> (T -&) x|

Take U, = we see || #,||=1 such that

IIX I

17 (us) || = 1 7Cxe) || > (TN =& =117

1 1
B B

As  |lu,||=1, this gives sup |[|[T(x)||z|| T )||>||T||-¢. As £ >0 is
llx]<1
arbitrary we produce sup || 7{x)||=||T|| (2)
[I+fl<1

From (1) and (2) we have (b), namely, sup NZEH =T

[lxf]=1
(¢) the proof shall be like that of (b).
(d) we have ||T(x)||<]||T ||| x] forall xe X .
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So, “ﬂ("ﬁ”qﬁ” for xe X with x=0.

Since rh.s does not depend on non-zero x < X, we have

suplr <7 G)

x:tO
Again given a tve € (0<g <||T|[) we find a member x_, € X' such that

I T > ([T ][l x, [|; clearly x, =0.

| 7Cx) |l
—E 5 ||T||-¢

T T(x
Therefore SUPH x )”—“ ( 8)||>||T||_5
| x| [l x|l

Now taking ¢ — 0, we find

1Tl

e 27 @
Combining (3) and (4) we have sup I || (XH)” =|T].
x0
EXERCISE A

Short answer type questions :
1. In a linear space X if x € X show that — (—x) =x.

2. If a fimte set of vectors in a linear space contains the zero vector show that it 1s
a linearly dependent set.

3. In Euclidean 2-space R describe geometricaly open ball centred at (0,0) with
radius = 1 in respect of (a) || x|, = Jx° +x,° () || x|l,=|x |+]x,| and
(¢) || x|l3= max{|x, || x, |} where x=(x,x,)eR%

4. Obtain a condition such that function suit and sin A¢ are linearly independent in
the space C[0,27].
5. Construct a basis of Euclidean 3-space R containing (1,0,0) and (1,1,0).
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EXERCISE B

Broad asnwer type questions

1.

If Cla,b] 1s the linear space of all real-valued continuous functions over the
closed interval [a, 5], show that C[a,b] is a Normed Linear space with respect to

b
1/ l= j| ars f €Cla,b]. Examine if C[a,b] is a Banach space with this norm.
a

In a NLS X. venfy that for a fixed member g X, the function f: X > X

givenby f(x)=x+a; xc X is a homeomorphism. Hence deduce that translate
of an open set in X is an open set.

Examine if the sub-space p[0,1] of all real polynomials over the closed interval
[0,1] is a closed sub-space of the Banach space C[0,1] with sup norm,

Prove that in a NL§ the closure of the open unit ball is the closed unit ball.

Let (X, || ||y and (¥, || ||) be two NLS over the same scalars and 7: X — Ybe a
linear operator that sends a convergent sequence in X to a bounded sequence in
Y. Prove that 7'1s a bounded linear operator.

Let 7 : C[0,1] — itself, where C[0,1] is the Banach space of all real-valued
continuous functions over the closed unit interval with sup norm such that
7(x) = y where

!
y(y=[x@)du; xeCl[o1] and 0 <1 <1
0

Find the range of 7, and obtain 77" : (range 7') — C[0,1]-

Examine if 71 is linear and bounded.
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UNIT 3

{Contents - Every Finite Dimensional NLS is a Banach space, Equivalent norms,
Riesz Lemma, Finite Dimensionality of NLS by compact unit ball, Linear operators
over finite Dimensional NZ§ and matrix representation, Isomorphism, Boundedness
of linear operators over finit Dimensional NLS, space Bd-£(X,Y) of bounded linear
operators, and its completeness).

§ 3.1 FINITE DIMENSIONAL NLS

Theorem 3.1.1. Every finite dimensional NLS is a Banach space. To prove this
Theorem we need a Lemma.

Lemma 3.1.1. Let (x|, x,, ..., x,,) be a set of linearly independent vectors in a
NLS (X, || |]); then there is a +ve B such that

loyx +aox, +..+ax, || = B(lay | +|ay | +.+|a, |} for every set of scalars

A, Q. Q.

#
Proof : Put S = Zl @; | Without loss of generality we take S > 0.

i=1

Then above inequality is changed into

g
| Bixy + Byxs +...+ B,x, |12 B, where 5, = ?' (*)
and ZI Bil=1
p)

Ft
If suffices to establish (*) for any set of scalars £, #,..., 8, with Z| 5=l
i=1

We apply method of contradiction. Suppose there is a sequence {y,} with

H
(n1) ) _
Vv, = ﬁl(m)xl +ﬁ2(m)x2 +”__+ﬁn(m)xﬁ; and Z| B =l form=1,2, ..
=1

such that ||y, ||— 0 as m —> w0

I
(nn) (ne)
Now Vi |SZ|/3:‘m |=1
i=l



Hence for a fixed i the sequence {8} ={g" g¥ .} is bounded. So
Bolzano-Weirstrass Theorem says that {8} has a sub-sequence that converges to
(say) ;.

Let {),,1 denote the corresponding subsequence of {y,,}. By the same argument
{Vi.»1 shall give a sub-sequence, say {ys,,} for which the corresponding subsequence
of scalars { 52(”‘)} converges to S, (say). We continue this process. At nth stage we
produce a subsequence {¥,,,} ={V,1,Vn2. -} of {¥,} whose term

Y =35, 3|5 =1
i=l

i=1

such that }}‘I_I)Tclo 5,-(m) = 3, Hence we see

lim y,,, Zﬂfxf =Y (say) when Z| B;|=1. That means all ;s are not
i=1 i=1

o0
zero. Since X, X,,..., X, are linearly independent it follows that y = 0.
Now nl?l_lg’go Yam =Y gives
B | 3, =1 V11

Since {y,,} is a sub-sequence of {y,} and |[y,|]|>0 as  5x, So
| ¥ |0 as m > and so || y||=0 giving y=0, a contradiction. Therefore
Lemma is proved.

Proof of Theorem 3.1.1. Suppose {y,} be a Cauchy sequence in a finite
dimensional NLS (X, || ||). Let Dim(X) = », and (¢, e, ..., ¢,) forms a basis in X. So
each y,, has a unique representation.

(m (m)

Y = el +a2 (m)e

e+ ta, e,

Give a +ve & as {v,,} is Cauchy, we find an index N such that

Ny, =¥, ll<& for mr=N.

H
(
Now &1 =3, 11 =11 2 (™ =, e, |
i=1



2 A3 |e™ - | by Lemma 3.1.1
P
whenever m, r > N . Therefore

H
(m (» e (r 14
| )_af )|£Z|a;‘( )_af : |<? for mr>N
i=1
Therefore, each of the » sequences

{a,.(m) 1 (i=1,2,. ,n) becomes a Cauchy sequence of scalars (reals/complex), and

by Cauchy’s General Principle of convergence becomes a convergent sequence with,
say,

. )
”l?l_l;rlooa,(n‘) :ar( ) (Say), I: 1’2, s "
Put  y= al(o)el +c:1:2(0)e2 +....+an(0)e”; so ye X,
. 0 ) .
Further, lim o™ =" fori=12, .. »n gives,
=

¥ ¥
0 0
1 ¥m =¥ 1= @™ = e 1D 1™ = [l e, [| = 0 as m—> o0
i=1 i=1

ie. lim y,=yeX. So given Cauchy sequence {y,,} in X is convergent
B—»0

in X; and (X, || ||) 1s Banach space.
Theorem 3.2.1. Any two norms in a finite dimensional NLS X are equivalent.

Proof : Let Dim (X} = » and (e}, ¢,, ..., ,) form a basis for X. If x € X, we
write x = oje; + te; T ... + ¢ ¢, uniquely.
Applying Lemma 3.1.1 we find a +ve £ such that

lxll = By [+ |+ +|a, )

If #=max lle; Il2; Then we have
SIS

#H ¥
M
Ixlh <> |ellle < p> | |£;||x||1
i=1 i=1

of, Gzllxll, <||x|, the other half of desired inequality comes by

interchanging norms || ||; and || ||;. The proof is now complete.
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Theorem 3.1.3. ANLS (X, || ||} 1s fimite Dimensional if and only if the closed unit
ball (centred at 0) is compact.

To prove this theorem we need support of another result popularly known as
Riesz Lemma.

Lemma 3.1.2 (Riesz Lemama). Let L (# X) be a closed sub-space of a NLS

(X, || [|). Given a +ve € (0 <& « 1) there is a member }’E(%) with || y||=1 such
that ||y—x||>1-¢ forall xc[.

Proof : Take Yo € (%) and put d =dist(y,,L)

=Inf||y0—x||_
xel

Since L is closed and y, is outside L, we have d > 0. Given a +ve & choose
n > 0 such that

n
d+r;r<

So we find a member x, € L such that

dlyo-xll<d+n

Take V= (Yo # %)) ; then || ¥||=1, and we have

Yo~ %o

1Yo =X ||
. . . . , X

Yo =%+ ¥o — X, || ». Since v, 1s outside L, we find y also outside L i.e. V€ (f)

X,
If ye I, we have Ily— xll-H“yO—xgH—xH

o —x—xllyo—x Il = 1Yo =x"Il (say)

_||}’0 Xo |l IIy —x ||

where x'=x,+| ¥, —x, || x; clearly y'< [ because x5, xe L.

dzl_n
d+n d+n

Therefore, || y—x|| > ||y0 x|z =l-g.
The proof is now complete.
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Proof of Theorem 3.1.3. First suppose that closed unit ball
Bl(g)z{xe){;nx”sl} in a NLS (X, || |) is compact and hence is sequentially
compact. We show that Dim{X) < cc.

Suppose no. take x € X with ||x ||=1 and L, as the sub-space spanned by
X(=0). Then L, is a closed sub-space of X without being equal to X. So we apply

Riesz Lemma (Lemma 3.1.2) when we take €= % Then we find x, € (X \Ll) with

1
%, 11=1 and [l —x2 >3

Take 7, as the sub-space spanned by x, and x,. By the argument same as above
we find L, as a proper closed sub-space of X and attracts Riesz Lemma. Thus there

. . 1 1
is x3€(X\L,) with |x;]|=1 and ||x3—xl||>§, ||x3—x2||>§_
We continue this process to obtain a sequence {x,} with || x||=1ie x, € E’I(Q)

such that ||x, —x,, ||>% for #»=m. That means {x,} does not admit if any

convergent subsequence : a contradiction that B,(0) is sequentially compact. Hence
we have shown that Dim(X) <.

Conversely let (X, || ||) be finite dimensional. Then it 1s a well known property
that a subset in X is norm-compact if and only if that subset is bounded and closed.

Here the closed unit ball E’f (0) is bounded; and hence it must be compact. The
proof is now complete.
§ 3.2 LINEAR OPERATORS OVER FINITE DIMENSIONAL SPACES :

Let R" denote the Euclidean n-space. Then an mx » real matrix

ay d2 - 4y

Ay Ay ... Q .

21 w2 2n |defines a Linear operator 7:R" —» R™ where T(?f):}j_;
A Az -
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x=(£.%,...,&,) and Y = (4,7 ... 7,) such that

H
LAt =M =12, m
J:

Verification 1s an easy exercise and is left out.
Conversely, given a linear operator 7 - R” — R™ . We show that it is represented

by an (mx#) real matrix. Let us take (e, e,,...,e,) as a basis in R" where

0,0

e =|—1— f = . = 1’0’0’_”0 _

, (ﬂh p]ace)’ ’ 1’2’“-’ n And let ‘fi (\_ l )..’ f2 (07170707---0)3
m places

J,=10,0, .,1) form the analogous basis in R".
Let 7(e;)=a; € R”
=a hray it ta,,f, (say)y G=12, .. m)
In general, if x=(&,&,,..£,)eR” andif T(x)=yeR”

we have MA+mf+. 40,0, =) and

y=T(x)= T(Z ffejj =2.8T(e)=2¢5,
J=1 J=1 J=1

j=l i=l

Therefore, T is represented by the matrix ((a ﬁ)

i
Remark : Given a linear operator 7 : R” — R™, there is an (mxn) matrix to

represent 7 Entries (reals) in this matrix depend upon the choice of basis in underlying
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spaces. If basis changes co-efficients entering representative matrix change, However
order of the matrix does not change.

Example 3.2.1. Let 04[0,1] denote the linear space of all real polynomials over
the closed interval [0,1] with degree <3. Let D: p5[0,1] = 0,[0,1] be the differential
operator. Show that [J is a linear operator and obtain a representative matrix for .

Solution : Here 0,[0,1] (and similarly p,[0,1]) is a real linear space with
Dim p5[0,1] =4 (Dim( p,[0,1]=3). Let us take (p,, p;, Py, P3) as a basis for p05[0,1]
where po() =1, p() =1, p,()=1> and py(1)=7 in 0<r<1.

Then we have D(p,)=0, D(p)=1, D(p,)=2t and D{(p;)=3¢*; and we
write
0=0p,+0p +0p,
1 =1p,+0p +0p,
2t = Opy +2p, +0p,
and 37 = Op, +0p +3p,

And therefore representative matrix ((a,;; ))ax , for D is given by

[ T e B e
i -
D O

0
0
3 3xd

Remark : Representative matrix for linear operator changes if basis is changed.

Example 3.2.2. Let p;[0,1] denote the linear space of all real polynomials over
the closed interval [0,1] with degree <3.

Let T: p3[0,1]1 = 05[0,1] be a linear operator given by

T{a, +a1x+a2x2 +a3x3) =d,+a (x+1)+az(Jur+l)2 +a3(x+1)3 for every

member g, +ax +a,x” +a;x° € p;[0,1]; obtain representative matrix for T relative
to basis (i) (1, x, ¥, x*) and (i) (1,1+x,1+x%,1+x°) of p3[0,1]

Solution : Here Dim 0,[0,1] = 4; So required matrix for linear operator I is of
order 4 x 4; where T: 0;[0,1] > p;[0,1].
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Now (i) (1, x, x*, x*) forms a basis for p;[0,1].

Now we have,
TW=1, T =&=+1), 7)) =&+ 1)’ and 7(x)* = (x + 1)’. So we

write with respect to basis above

11+0x+ 0% +0x°
T(xX)=1+x 11+ 1x+0x°+0x
T(x%) = (x + 1) L1+2x+1xX7 +0x°
T =@x+1y = 11+3x+3°+1x
Therefore representative matrix for 7 in this case shall be

=1

— ) )

1
2
1
0

[ B B
[ T e I

(i) Here basis is (1, 1+ x, 1+ x%, 1+ x°) of 5[0,1]
We have (1) =1, T(1+x) =1 +(1 +x), T(1+x%) =1 + (1+x)* and
T(1+x*y =1 + (1+x)
Therefore relative to basis (1,1+x, 1+ x%, 1+ x°) we write
() =1=011+ 0(1+x) + 0.(1+?) + 0.(1+¢%)
T(1+x) =2+x = 1.1 + 1{1+x) + 0(1+%) + 0.(1+)
T(1+x%)y = 1+1+2x+% =—-1.1 + 2(1+x) + 1.(1+%) + 0.(1+x)
T(1+3) = 1+183x+3x% 3 =51 + 3.(1+x) + 3.(1+5) + L1+
Therefore representative matrix for 7 in this case shall be

1 1 -1 -5
01 2 3
00 1 3
00 0 1

Note : Basis taken and treated above should be termed as ordered basis. In

ordered basis order of arrangement of vectors 1s basis in important. For example, in
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Euclidean 3-space R’ we know (e|, €5, €3) 1s a basis in RS, where ¢, = (1,0,0), e, =
{(0,1,0) and ey = (0,0,1). Then each of (e, ¢,, €3), {e,, |, ¢3) and (e[, e;, e,} is an
ordered basis and they are different ordered basis for K.

§ 3.2(A) ISOMORPHIC LINEAR SPACES :

Definition 3.2.1. Two linear spaces X and } over the same scalars are said to be
isomorphic (or, linearly isomorphic) if there is a linear operator 7 : X — Y that 1s
1-1 (injective) and onto (surjective). The operator T is called an Isomorphism.

Theorem 3.2.1. Linear isomorphism between linear spaces over same scalars
on the class 7, of all such spaces is an equivalence relation.

Proof : If X € I, the identity operator / : X — X is an isomorphism. So the
binary relation of being isomorphic is reflexive; let X, ¥ € I~ such that X is isomorphic

to ¥ with ¢ : X — Y as an isomorphism;, Then (9‘1 ¥ — X is also an isomorphism.

Thus Y is isomorphic to X. Hence relation of isomorphism i1s symmetric. Finally, if
f:X—>Yandg:¥Y— Zare isomorphism, then (g. /) : X — Z is also an isomorphism.
Therefore, the relation of isomorphism is transitive. Thus it 1s an equivalence relation.

Theorem 3.2.2. Every real linear space X with dim(X) = » is isomorphic to the
Euclidean #-space R".

Proof : Let (), u,,...., u,) form a basis in X_ So if # € X we write
=&+ &y .+ &, uniquely.
Define an operator 7: X — R" by the rule :

Tu)=(£,¢55,. &) e R” where u=8u+&u+. +Eu, € X
#
Then it is easily verified that T is a linear operator. Furhter, if # = Zé"i and
i

[

V= Z??;“; with 4 v are members of X, then we have
=1

(éla 52?"'3 ‘fn) + (UI: ??23"'? nn) or T(u) = T(H),

thus 7'is 1-1. Finally, for (o, @>,...,a,)eR"
H H

We have Zai"f €X such that 7 ZIO‘:‘“:‘ =(a, 0,0 )
i1 i=
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So T'is onto. Therefore X is isomorphic to K.
Notation : If two linear space X and ¥ are isomorphic we use the symbol y 0 y.
Corollary : Any two real linear spaces of same finite dimension are isomorphic

Because if X' and Y are finite dimensional real linear spaces with Dim(X} = Dim(Y),
we apply Theorem 3.2.2 tosay y gv;and hence y(y.

Theorem 3.2.3. Every linear operator over a finite dimensional NLS is bounded
{hence continuous).

Proof : Let (X, || ||) and (¥, || ||} be two NLS over same scalars and Dim(X) <o,
say, being equal to », and let (e, e,, ..., ¢,) be a basis for X. Then each member
x € X has a unique representative as x = &je; +&,e, +....+&,e, where &, ’s are scalars.
Let us define a norm || x||' by the formula :

||x||’=il|§f|.

It is an easy task to check that || x| is indeed a norm in X. Since X is finite
dimensional, we know that any two norms in X are equivalent,
Therefore there is a +ve M satisfying

x|l <Milx|| forall xeX

ie. ZI&ISMHXII ........... *)

If 7: X — Yis a linear operator and x =) &e, € X, we have

i=1

1 7(x) || =||T[Zl:ffelel=IIZ§;T(ef)ll
i i1

i;léllli‘"(ef)ll

< max(|| T(e ) I, | T(ex) [l, ..., 1 T (e, Y D- M || x ||
(from (*)) =L|lx|, (say).

This being true for all x € X, we conclude that T is bounded.
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§ 3.3 SPACE OF ALL BOUNDED LINEAR OPERATORS Bd.AX,Y)

Let (X, || ||} and (Y, || ||) be two NLS with same scalar field. Then zero operator
O X — Y where O(x)=0€Y as xe X 1s a bounded linear operator. Therefore

BdL(X,Y)=¢. It is a routine exercise to check that Bd.£(X,Y) becomes a linear
space with respect to addition and scalar multiplication as given by

L+ x)=T(x)+T,(x) forall xe x;and 7,,7, € BdL(X,Y) and
(AT))(x)=AT;(x) for all xe X and for all scalars A and 7, € BdL(X,Y)

Theorem 3.3.1. Bd £ (X, ¥) is a Normed Linear space, and it is a Banach space
when Y 1s so.

Proof : Let us take the norm in linear space Bd.£(X,Y) as operator norm ||7||
as T e BdL(X,Y). We verify that all norm axioms are satisfied here.
For (N.1) it is obvious that ||7|| =0 always for any member 7 e BJ.£(X,Y);

zero operator O has the norm ||O||=0.

Suppose || T||=0 ie sup||T(x}|[=0. Soif || x| <1, we have
[l+f]=1

| Tx || <sup || T(x)]|=0 gives || T(x)||=0 ... (1)
<l
If [| x]| > 1, then put y=||%” . Thus || y||= m =1; so as got above

_ _ _ X 1 o
N TW)|=0 or 0—IIT(y)II—HT(m]“—mllT(x)ll giving

NTCOE O oo (2)

So (1) and (2) say that 7(x)=0 forall xe X ie T equals to the zero operator.
For (N.2) take A to be any scalar.

Then || AT || = sup | (AT)(x) ||
= sup | AT (%) || =”S'1~|lg{l AT

=[Alsup [ TG I=[ AT,
<t
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So (N.2)) is satisfied.
For triangle inequality, if 7|, 7, are members of Bd.£(X,Y) we have for

xe X G+ D)@ I=1 T+ LI HE |+ 1)
UGN+ NT M2 N=(T 1+1 T )1l this is true for all xe X,

Therefore ||7; + 75 || <|| 7} || +]| 75 ||, and that is the triangle inequality.

Therefore Bd.£(X,Y) is a Normed Linear space (NLS) with respect to operator
norm.

Now suppose that ¥ is a Banach space. We show that p7.#(x,7) is so. Take
{T,} as a Cauchy sequence in BdL(X)Y) ie. ||T,-T, | —0,as n,m —> w0

If xe X, we have || 7,(x) -7, ()| = | (Z, = T,)(x) |

W, =7, |l x>0 as #,m — . That means, {7, (x)} is a Cauchy sequence

in (¥, || |) which is complete.
Let Im7.,(x)=ye?¥
Let us define 7: X — ¥ by the rule :
T(x)=lim 7,(x) as xe X -
Now it 1s easy to see that T is a linear operator.
Further, ||I7; |~ 11T, ||| <117, =7, >0 as nm —o0.

That means {||7, ||} is a sequence of non-negative reals and this is Cauchy

sequence and therefore is bounded. So we find a +ve X satistying

|17, ]|= K for all n
So, 1T =]l im 7, (x)[|= lim || 7, (x} ||
< lim || 7, [[ll x[|< K|l x[| by above inequality.

This being true for all xe X | we find 7: X — ¥ as a bounded linear operator
ie. TeBdL(X)Y).
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Finally, from Cauchyness of {7}, given a +ve &, we have

||Tn+p—Tn |<e for nzn, andp=12,...

Take || x|[<1 in X, So [|T,,,(x) =T, (¥ = (T, =T, XX}l
SN Ty ~ TNl X[ <11T,

-T,||. <& for nzn,

+r +r

Let us pass on limit as p — %0, then we have
| T{(x)-T,(x)||< s whenever n2n,
This is the case whenever || x|| <1, taking sup we have

sup || T(x)-T,(x)|| <& whenever n>n,
<l
Now |7 -T, ||=”Sﬂt|lgl|(T—7§,)(x)II

= sup [ (T()-T,(0) |
(|l <1

< ¢ whenever »n2n,
So we obtain lim 7, =T € Bd£(X,Y) in operator norm.
H—»0

The proof is now complete.
Example 3.3.1. Show BJ.Z(R" R") is finite dimensional with dimension "

Solution : By matrix representation theorem we know that every member

T € BdL(R",R") has a representative matrix of order # X # (i.e. a square matrix of
size 77). With respect to a fixed basis in R”, we also see that BdZ£(R",R") and the

linear space m

2

. 15 finite dimensional with Dim(m, ) =»n".

Therefore Dim(Bd£(R",R")) = n*
Example 3.3.2. A NLS (X, || ||) is a Banach space if and only if {xe X :||x||=1}

15 complete,

Solution : Suppose (X, || ||} is a Banach space; then the given set {xe X :||x||=1}

is a closed subset of X, and hence is complete.
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Conversely, suppose S ={x< X :||x||=1} is complete. Now let {x, } be a Cauchy

sequence in X, so ||x,—x,, || >0 as n,;m —>®

Therefore ||| x, || =1 x,, | | <l x, —x,, >0 as n,m — oo. Thus scalar sequence
{|| x, |} 1s Cauchy, and by Cauchy General Principle of convergence {| x, |} is
convergent; put 1M || %, = If o = 0 we see {x,}to be convergent in X and we

have finished. Or else & > 0. Without loss of generality we assume that ¢t = 1. Let us

x}? . .
put Vs :m making ||y, ||=1 ie y,<€S5 . If possible, let {y,}be not Cauchy.
Then there is a +ve &, (say) and there are indices #;,(= k), n1, (= k) such that

| Y, =V 1280, k=1,2, ...

| 5 _ 2 ] |
or, & < - < -x, [+ x, —x, ||+, —
0 M 1 g T T T e e ™o W o T T
1 1
=l x,, 1= 5=|+ 1%, L7 >0 as k— o, arriving at
(el Il X |l

contradiction that g, is +ve. Therefore we conclude that {y,}is Cauchy in S by

completeness of which let AI_I)T; ¥y, =Yo€S. That is !131_1330 X, :;59330 I x, 1| ¥o =g .
Hence {x,} is convergent in X and X is shown as a Banach space.

EXERCISE A

Short answer type questions

1. Let X be the linear space spanned by f and g where f{x) = sin x and g(x) = cos x.
For any real &, let f,(x) = sin{x+8) and g,(x) = cos(x+8&). Show that /] and g,are
members of X, and they are linearly independent.

2. Let A4 and B be two subsets of a NLS X and let A+B={a+b.ac AandbeB}.
Show that if A or B is open then A + B is open.

1 -1
3. Let m,,, be the linear space of all real 2 X 2 matrics and £ = [0 0 }
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If T:m,,—>m,, istaken as T{(4) = EA for Aem,,,, show that T is a linear
operator.

If C is a convex subset of a NL§ X and x, € X', and «/is a non-zero scalar, show

that x, + C and o are convex sets.
Show that 7 : Cla,b] — R (real space with usual norm) defined by the rule :

b
T(f)=| tf()dt;  f<Clab].
Show that 7 is a bounded linear operator.

EXERCISE B

Let A and B be two subsets of a NLS X, and let A+ B={a+b.ac Aand b c B}.
If A and B are compact, show that A4 + B is compact.

Let M be a closed linear sub-space of a NLS (X, || ||), and XAf be the quotient
space, and T X — X/M where T(x)=x+M for xe X .

Show that 7 is a bounded linear operator with || 7'||<1.

Show that the space of all real polynomials of degree < # is the closed interval
Htl

[, 5] 1s 1somorphic to the Euclidean (#+1)-space R .

Let (X, || ||y and (¥, || ||} be NLS over same scalars and £, 7 X — ¥ be bounded
linear operators such that 7 and T agree over a dense set in X, show that F’= T

If X 15 a finite Dimensional NLS, and ¥ 1s a proper sub-space of X, then show
that there is a member x < X with || x| =1. satisfying dist(x,}) = 1.
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UNIT 4

{Contents - Bounded Linear functionals, sub-linear functionals, Hahn-Banach
Theorem, Its applications, Conjugate spaces of a NLS, Canonical mapping, Embedding
of a NLS into its second conjugate space under a hinear isometry, reflexive Banach
space, Open mapping theorem, Closed Graph Theorem.).

§ 4.1 LINEAR FUNCTIONALS :
Let (X, || ||} be a NLS over reals/complex numbers.

Definition 4.1.1. A Scalar-valued Linear operator f over X is called a Linear
functional.

For example if X = Banach space C[0,1] with sup norm, then f : X — Reals
1
(with usual norm) is a linear functional when f(x) :Io x()ydt, xeC[0,1].

Explanation : Linear functionals are special kind of Linear operators, and thus
enjoy all the properties of Linear operators like sending dependent set of the domain
into a similar such elements in range.

Let us consider the collection of all continuous (bounded) linear functionals
over X i.e. we have the space Bd.Z(X,R) whenever X is a real NLS. We have seen
that the space Bd.£ (X, R)is always a NLS with operator norm || f||; / being a member
of Bd£(X,R). We have also seen that the NLS BdZ(X,R) is a Banach space
because R 15 so.

Definition 4.1.2. The space Bd.Z(X,R) denoted by X* is called first conjugate
space (Dual space) of X.

Thus first conjugate space or simply conjugate space X* of any NLS (X, || |) is
always a Banach space irrespective of X" being complete or not.

By a similar construction one can produce Bd.Z(X*,R)= the space of all

bounded linear functionals over X*, this Banach space X** = (X*)* is called second
conjugate (Dual) space of X; and so on.

Most of theory of conjugate spaces rests on one single theorem, known as famous
Hahn-Banach Theorem that asserts that any continuous linear functional on a linear
subspace of X can be extended to a continuous linear functional over X by keeping
the norm-value of the functional unchanged. The proof of Hahn-Banach Theorem is
lengthy but necessarily indispensable item in Functional Analysis.
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Before we take up Hahn-Banach Theorem in setting of a NLS we proceed as
under :

Definition 4.1.2. Let X be a real linear space. Then p : X — Reals satisfying (i)
plx+y)<p(x) + p(y) for all x, y € X and (i) p(cx) = ap(x) forall 20, x € Xis
called a sub-linear functional.

Note : Condition (i) above is known as condition of sub-additivity and condition
(i1) above is called positive homogeneity.

It is not difficult to see that norm function in a NLS X is a sub-linear functional
over X,

Theorem 4.1.1. (Hahn-Banach Theorem in a linear space)

Let M be a subspace of a real linear space X, and p is a sub-linear functional
over X and f is a linear functional on M such that f{x) < p(x) for all x € M.

Then there is a linear functional /" over X which is an extension of f (over M)
such that

F(x) < p(x) forall x e X.
The proof of this Theorem rests upon following Lemma.
Lemma 4.1.1. Suppose M is a subspace (# X) of a real linear space X and

Xg € (X\M) Let N be the subspace spanned by A and {x,} ie. N =[M U{xy}];

suppose f : M — R is a Linear functional such that
f(x) < p(x) for all x € M, where p : X — R is a sub-linear functional (over X).
Then f can be extended to a linear functional /* defined on N such that
F(x) <p(x) forxe N.
Proof : Since f(x) < p(x) over M, we have for y,, y, € M.

JOr=32)=F0)-F W) < pOr =)= pO) + %) — Y2 —Xp)
< p +x0)+ p(=y2— %)

of, —p(=¥,=%)=f () S PV +X0) =S (V) oo

(separation of terms involving y, and y,)

Now fix y, and allow y, to change over M. From (1) we see that the set of reals

{=p(=y2 —x0) = f ()} possesses sup.

Put a= sup {—p(=y, —x,)— f(»,)}; and in a similar argument, put
WeM
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b= Inf {p(y2+x0) = f()1)}. The relation (1) says, a<b.

Take a real ¢y betweena and b ie. a<cy,<b
Therefore as y € M we have
—p=y %)= f»)<co < p(y+x0)— fF(y) v (2)
Since x, ¢ M, we wnite x5 € N as x = y+ax,, and this representation is unique.
Consider F: N — R defined by the rule :
F(y+axy)= f(y)+acy, as (y+axy)e N (yeM & aa scalar). It is easy to
check that 7 is a linear functional over A such that /(y) = f{y) as yeM c N .

In other words F is an extension of f from M to N. We verify further that

F(x) < p(x) for all x € N. To achieve this we are to consider following two
cases : When x € N, we have x = y + ax,, where @ is a scalar.

CaseI. When o > 0; we consider R.H.S. of inequality (2) with y replaced by

Y . . ¥ Y
— - th < = — = |
, this gives ¢, = p( +x0] j[ ]

Multiplying throughout by o and using the fact that p 1s sub-linear we have
J+acy, < p(y+axg)
or, F(x)< p(x)

Case II. When o < 0, we use LH.S. of mnequality (2) with y replaced by ﬁ‘
This gives rise to

g2

of, —p[%—ongco +f[§].

Multiplying throughout by o and reversing the sign we have,

(—a)p(—ﬁ—xojza% + ()
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Since — o0 > 0, we have p(y+axy) zac,+ f(y)
or, p(x)zF(x)
or, F(x)< p(x)
When o = 0, we readily see F(y)= f(y). The proof of Lemma is now complete.

Proof of Theorem 4.1.1. To prove the theorem we invite partial ordering in a
set and use Zorn’s Lemma which says that in a partially ordered set if every chain
has an upper bound, then there is a maximal member in the set.

Here let I denote the collection of all linear functionals § f} such that each f
is an extension of f such that f(x) < p(x) over domain of f = D);‘

Lemma 4.1.1 tells us that I" is non-empty. Let us partially order I as for ;1 , f} el
we say, £, < f,

if f, is an extension of f, with D; oD, and £, = f, over Dz

We may verify that « 1s a partial order relation in I" where we show that every
chain (totally ordered subset) in I" has an upper bound in I'. To that goal, let 7={ ;‘“a}
be a totally ordered subset of I'. We find some member 7 <T to act as an upper
bound for =

Construct f whose domain = YD, . If X&' D~ there is a member ¢ such
that ¥< Dy and let f(x)= f;(x)
By routine work we verify that YD} is a sub-space of X; taking %,y €D,

we find two indices & and @, such that xe D
|

Since 7 is totally ordered either £ A cD iy OF Dfm — Dfa, , and in either of

o9

and yengg )

the cases we have
(x+y)e D, and similarly ®¥ €D, and YD, is a sub-space of X.
Finally we show f is well-defined.

Suppose xe D 5 and xe D)n, ; by definition
@ B

J@)=f(x) and J(0)= f3(x)
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By total ordering of 7 either f °, 15 an extension of f 5 OF vice-versa.
So fa(x) :fﬁ(x). Thus we have
F(x)< p(x) for ¥<D; and for any member 7., of 7, we have f,af . So
} eI is an upper bound of = So we apply Zorn’s Lemma to obtain a maximal
member (say) F in I'. And F'is the desired extension of f as a linear functional with

F(x)< p(x) for all x< X ; that domain of F equals to X follows maximality of F,

Otherwise by argument as above one can have an extension of ¥ to some other
functional—a contradiction of maximality of 7~ The proof of theorem i1s now complete.

Remark : Theorem 4.1.1 is also true for complex spaces, for which one has to
furnish proof.

Theorem 4.1.2, (Hahn-Banach Theorem in a NLS).

Suppose f1s a bounded linear functional on a sub-space Af of NL§ X. There is a
bounded linear functional 7 which is an extension of f from M to X having the same
norm as that of £

Proof : If xcAs we have | f(x}[<|| £ %Il
Define p: X — R by the rule :

py=ll fllllx ]| for xe X .
Then we verify that p is a sub-linear functional over X.

Such that f(x)< p(x) for xeM.

Now apply Theorem 4.1.1 (Hahn-Banach Theorem in real space) to get a linear
functional F which is an extension of f from A to X such that

| F{x)|< p(x) forall xeX.

Le. |F(x)|<||f|ll|x] forall xeX.

This is true for all x = X ; So we conclude that F is a bounded linear functional
over X with || F'||<\, ) L (1)

Further, over M we have f(x) = F{(x)
So | f()|=|F(x)|<||F||||x]| for all x<As . This gives

A= £ e (2)
Now (1) and (2) together say || f||=|| ||
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§ 4.2 SOME CONSEQUENCES OF HAHN-BANACH THEOREM :
Application I. Given a real NLS (X. | || and a non-zero member x, € X . There is
a bounded linear functional F over X such that F(xy) =|| x, || with || F||=1.
Proof : Consider the sub-space M of X spanned by x .
Then M =[x;]={ax,: a any real scalar}
Define f: M — Reals by the rule :
flexy)=allx|l; as (@x)eM.
Then f is a linear functional over Af and | f(x}|=|a|| %, ll=1lax, || for all
x=ax, €M and hence we have || /||<1. i.e. fis a bounded linear functional.
Further if # =ax, 1s a member of Af with ||#]|=1 we have
| f@) [ =|elllxl[=llax, || =]la][=1

S ANzl S =1 giving || f[]=1.
Now an application of Hahn-Banach Theorem gives a bounded linear functional
F over X satisfying

Fix)=f(x) xeM
and || Fl=]]f]=1
This gives  F(x,)= f(x) =% || and || F[|=1.

Corollary : For a non-null NLS (X, || |)), its conjugate space X* is non-null.
(Hints : because F appearing in corollary is non-zero member of X*).

Application IL. For every xc X, ||x||= sup SOl
seoex+ || Sl
Proof : From Application I we find a non-zero bounded linear functional

Joe X * such that fy(x)=|[x|| and || £, ||=1.

/)] 1)

sup > =l x|l
Therefore, =P T = 1Al
X
e, sup Oy (D)
rizoex* || £l
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On the other hand, if f is any non-zero member of X*, we have

FACHES FAIII B
or %_Xﬁl <[[xIl, rh.s. being independent of f
| f(x)]
sup Holl<|x
we have, f(=O}EX”‘ ||f|| H ” ............ (2)

From (1) and (2) one has [|x||= sup LLCOL
roey* || £l

Corollary : If f{x) = 0 for every non-zero bounded linear functional f e X *,
then x=0 in X.

Application IIL Let M be a closed subspace of X and M = X, if w (X \M)
and 4 =distu . M)=Inf |[u—m||.

melf

Then d > 0, and there 1s a bounded linear functional < X * such that

1) fix)=0 for xeM

(i) Sy =1

and  Gib) /1= 5.
Proof : Here M is a closed sub-space (#X); so d > 0.
Take N = Linear subspace spanned by A and u
ie. N =[MUfw}]; So every member of N is of the form m + # where 7 is a
real scalar, and me M.
Define g: N — R by the rule :
g(m+t)=t as (m+t)eN.

It is easy to check that g is a linear functional over A such that g vanishes over

M ie g(m)=0for meM, and g(u) = 1 (taking = 1).

[#|||m+au||  ||m+tul
||+t | |2+ |

Now |g(m+tu)|=|t|=
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_imreu| _|mtau] _
la=CHI d

1
— ||+t
Llm et

because d =inf [|u—v| <[lu—(-Z)|
VEH

This is true for all member (m+fu)c N, and hence g is a bounded linear

functional over N with || g]| < %

1
< =
So, llgll<yz L (1)
Again from d=1nf ||v—m||; we find a sequence {m,} in A/
such that |[#—m, || > d as n—> o
pe. lmlw-mll=d ®
Now |g(mﬁ_u)|£||g”||mﬁ_u”

or, | g(m,)—g@y|<| g | |lm, —u]||

or |0-1]<||g|||lm, —u]|. (g vanishing over M and g(u) = 1).

E

O,

E

1| g [l 7, =2 ]
Now passing on limit as » — o« we produce
I<llglld

.. 1
giving, ||g||23 .......... e (3)

Combining (1) and (3) we have | g| :%_

Finally, Hahn-Banach Theorem says that g has an extension f from N to the
whole space X as a bounded linear functional with || £ || = g||; As f and g agree
over Af — N, we have the result as wanted.

Application IV. Let M be a sub-space of NLS (X, || D and a7 = x; if w (X \M)
such that dist(u, M) > 0, say = d.
Then there is a bounded linear functional g ¢ y * satistying
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(1) F(x)=0 over M (forx € M)
(i) Fluy=d
and (iii) || F||=1.
Proof : Let N = Linear sub-space spanned by A plus #, ie. N =[M w{u}]
Now define f: N — Reals by rule :

Sfm + tu) = td (d as above), where m + 11 18 a representative member of
N(m € M, t a scalar).

Clearly f'is a linear functional over &, such that for r = 0, f vanishes over A and

Awy=d(t=1).

Also for ¢t =0, ||m+tu||=||‘f(‘?‘”)” (here ?EM)

b
A1 -2 u>]1]d

So, | f{m+tuy=|t|d<||m+i||; this inequality stands even for ¢z = 0.

That means, f1s a bounded linear functional over ¥ with || f||<1.

For -0, we find by Infimum property, a member meAf such that
[|m—ul|<d+e.

Put v= I|$_§: T making ||v||=1 and ve N (because, v is the form s + 'y ).
Ao d d__ d ioneloll=
So. | /W)= > Fre= eI e vi=D
That means, || £z df . Now ths is true for every +ve €, and taking € - 0,,
we find || f||21.
ie. || fIz1 (2)

Combining (1) and (2) we find || /|| =1. Now we apply Hahn-Banach Theorem
to find an extension F of f from N to the whole space X as a bounded linear functional
over X with || ¥ || =] f || ; since F agrees with f over M, we have the result as desired.
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§ 4.3 CONJUGATE SPACES X*, X**, ... OFA NLS (X, || |I) :

Let (X, || ||) be a NLS, then X*, X** = (X*)* . are first, second, . .conjugate
space of X.

Theorem 4.3.1. If X* is separable, then so is X.
Proof : Suppose D is a countable dense subset of X*. Let D, be the subset of D
which is dense in the surface {f € X* || f||=1} of the closed unit ball of X*; let us

write Dy ={f, f5,... f,,...} with || £, ]|=1 for all ». From || £, ||=1, we find a

member say x, with ||x, [|[=1 such that

FACAIES]
Consider the linear sub-space L of X spanned by {x, x,, ..., x,,}
ie. L=[x,xy ..,x,..]and Put M= f (closure of L). The M is also a linear
sub-space of X.
Suppose, M=zX .. e (1)

Take x, (X \M), then d =dist(xy,AM)>0 because M is closed.

By application of Hahn-Banach Theorem we obtain a bounded linear functional
F e X * with || F||=1 such that F vanishes (/' = 0) over M and F(x,)#0.

Clearly F is a member of the set {f e X*:|| 7[|=1} and F(x,)=0 for all n.
Now f,(x,)= f,(x,)—F(x,)+F(x,) gives
| La(x )] £,00,) = F(x,) [+ F(x,) |
=(f, = F)x,)

1
Thus §<|fn(xn)lgllj;r_F“”xn||

or, %4 | £, = F |l for all », This contradicts that {f], /5, ..., ...} is dense in

the set {feX*:|| f]=1}.
So, M =X
Thatis I = X ;
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Now L contains that subset formed by finite linear combinations of x|, x5,.., x,,,..
with rational coefficients; and that subset becomes countable dense in X. The proof
is now complete.

Remark : Converse of Theorem 4.3.1 is not true. The NLS§ /| consisting

o
of all those real sequences x=(x,%,..X,,....} such that lei | <% with norm
i1
o

X1l =2 |% is separable but its conjugate space /, consisting of all bounded
i=1
sequences of reals is not separable.

Example 4.3.1. Let (X, || ||) be a NLS over reals, and let x,x, € X with X =X,
Show that there is a bounded linear functional f over X such that f(x)= f(x,).

Solution : Here x;,x, € X with x; #x, 7e. x,—x, #(Q in X So an application
of Hahn-Banach Theorem there is a bounded linear functional f e X *(f =0) such
that

Sl -x)=0
o, f(x)-f(x)=0
o, f(x)=f(x).
Given a NLS (X, || ||) we show that there is a natural embedding of X in its

second conjugate space X** through a mapping, called the Canonical mapping that
we presently define using X*.

Theorem 4.3.2. Given xc X, let x(x*)=x*(x) for all x**c X* Then % is a

bounded linear functional over X*, and the mapping x — % is a Linear Isometry of
X into X**,

Proof : Let xe X, x;* x,*c X *, then we have

(x4 %) = (0 ¥ %)) = 0 ¥ (x) + 0y ¥ () = X F) + 3 ().
Also if A is any scalar we have x(Ax*)=(1x*)}x) = Ax *(x) = Ax(x*).
Therefore % is a linear functional over X*,

Now we show that || x||= sup {| x*(x)|}.
[lx*¥I1<1
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By Hahn-Banach Theorem we find a member x*e X * with || x*||=1

and || x*(x) || =} x|

Therefore || x||< sup{|x*x)|} . ¢))
fixHi=i

Again  [[x*() || <[] x*[[[ x[|<]| x|l when {|x*||<1]

Therefore || x||=|x*(x)| when || x*||<1

Thus | x||> sup |x*(x)]. et )
e

From (1) and (2) we have
|| x]| =sup{| x*(x)|: x*€ X * with || x*||<1}.
which is =sup{|x(x*)|: x*e X * with || x*||<1}
SELD
It shows that % is a bounded linear functional over X* with || X||=]|| x]|.
Finally, let x,x,€ X and x*e X *, then
(3 +X)(x%) =x*(x +x,)
=x*(x)+x*(xy)
=3, (x*) + X, (x%).
Similarly for any scalar & we have (&;l )(x*) = x*(0x;)
=ox*(x)
=X, (x*)

Therefore the mapping x — % is linear; and since || X||=|| x|, this mapping is
Isometry.

That is, x — % is a Linear Isometry of X onto the linear sub-space {x:xe€ X*}
of X**,

Definition 4.3.1. Given a NLS (X, || ||), Linear Isometry x — % is called the
Canonical mapping of X into its second conjugate space X**.
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Definition 4.3.2. A NLS (X, || ||} is called reflexive if and only if the Canonical
mapping x — ¥ maps X onto X**

Thus a necessary condition for X to be reflexive is that X is a Banach space.
However there are Banach spaces without being reflexive.

§ 4.4 OPEN MAPPING THEOREM AND CLOSED GRAPH THEOREM :

Like a big and important theorem of Hahn-Banach we have another big theorem
known as open mapping theorem in Functional analysis. There one is concerned
with open mappings that send open sets into open sets. Open mapping theorem
states conditions under which a bounded linear operator shall be an open mapping.

Definition 4.4.1. Let X and ¥ be two metric spaces. Then a mapping /- X — ¥
15 called an open mapping if G is an open set in X, its image under f = AG) is an
open set in ¥,

Theorem 4.4.1. Let (X, || ||} and (Y, || ||) be two Banach spaces; and 7. X' — Ybe
a bounded linear operator which is onto (surjective). Then 7 is an open mapping.

The proof of the above theorem shall rest on following Lemma that we prove first.
Lemma 4.4.1 Let 7. X — Y be a bounded linear operator which is onto and let

By = B,(0) be the open unit ball in X, then 7(5B;) contains an open ball centred at 0
in ¥
Proof : We may complete the proof in three stages as under

(a) T(B,) (closure of T(B,)) contains an open ball B*.

(b) If B, = open ball B#(Q) in X, then 7(B,) shall contain an open ball V),
centred at 0 in Y.

and (c) T(B,) contains an open ball cenred at 0 in Y.

(a) Consider open ball B, =5,{(0)c X . If xe X, we find large real & so that
2
x € kB,. Therefore we write

o
X= o kB ; Since T is onto and linear, we have

Y=7(X)= T[kgl kBl] = ,‘glkT(Bl) = ,‘EZJIkT(Bl) , taking closure did not add
more points to the Union = ¥ As Y is a Banach space, we invite Baire Category
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Theorem to conclude that one component say 47'(B), contains an open ball. That means

T'(B ) contains an open ball, say, B* = B( Y. ) So we write
B*—y, =B(o,e) CT(B))—yy

(b) We show that B*-y, — T(B,), where B, stands as appearing in theorem.
This is accomplished by showing :

T(B) -y, < T(By)

Take y e T(B))—y,; then (y+y,)e7(B)) and remembering that y, c7(B))
we find

u,=T(w,)eT(B) such that limu, =y+y,

Ve = T(ZH) = T(Bl) such that PIII—IE:IO V, =¥y

. . . 1
Since w,,z, € B, and B is of radius = 5 we have

a= 2, <1, 1 +112, ll<3+1=1; So that (v, -z,) & By .
From T(w,-z,)-T(w,)-T(z,)=u,-v, >y as n—>w.

Therefore, y < 7(B,). Since y € (T(Bl)— yo) is an arbitrary we have shown

T(B) -y, < T(By)

From B*—y, = B(0,e) c T(B,)—y, above we have

B*—y,=B0,5)cT(By) (1)

Take B, =B(0,27"yc X. Since T is linear, we have T(B,)=2""T(B,);

From (1) one obtains

r o £ TR
;”—B(Q_,?)CT(B") ................... (2)
(c) Finally, we show that J; = B(0,1¢) c T(By).
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Take y e, . From (2), for n= 1, we have " CTBO‘

Hence y < 7(B,) and we find v T(B,) such that IIy—VII<%

Now v e T(B,) implies ve T(x,) for some x, € B,.

Therefore || ¥ —T(x}|| < %

Using this and (2) above with 2 =2 we see that (y—T(x))e¥,; < T(B,).
As before we find x, e B, such that || y=TCe)l| =T (r)ll < 5

Hence (y—T{(x))—T(x,)e}; c T(B;). and so on. In nth step we take x, € B,
such that

rr+1 ?

“ ZT(xk)

Put z, =X +X,+..+Xx,; Since x, € B, , we have || %; [ < that means # > m,

[-a]

Z, < Z 1< D 4 & which — 0 as m— 0.

k=m+l —m+l

So {z,} is Cauchy; let lim z, = x (X is a Banach space).
=

Also x e B, since B, has radius = 1, and
o o 1 B
PAEAS ZT— :
k=1 =12
As T is continuous, we have li_1>n 7(z,)=T(x) and (3) shows that 7(x) = y
So yeT(B).
Proof of Theroem 4.4.1. If 4 is an open set in X, we show that 7(A4) is open in

Y, by showing that every y e T(x) e T(A) attracts an open ball centred at y = T(x) within
(4).
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Take y=T(x)eT(A4). As 4 1s open there 1s an open ball centred at x — 4. Hence

A - x contains an open ball centred at 0 € X . Let radius of that open ball = - Put £ = % or

¥ Z%. Then #(4 — x) contains the open unit ball 5(0.1). Now Lemma 4.4.1 says

that 7 (k(A—x)) =k[T(A)-T(x)] contains an open ball centred at 0, and so does
1{A) — T{x). Hence T(A4) contains an open ball centred at y = T(x). As y is an arbitrary
member of 7(4), we have shown that 7{4) is open.

Corollary : Under open mapping theorem if 7 is bijective, T !is bounded.

Example 4.4.1. Let T : R* = R be defined by T{x,y) = x for (x,y) € R, Show
that 7'1s an open mapping. Examine if 7 R® — R® where x, 1)=(x 0),(x,y) e
is an open mapping.

Solution : Here 7: R° — R given by 7(x, y) = x is a projection mapping and we
know that it is a bounded linear operator such that 7 is onto. So we apply open
mapping theorem to conclude that 7 is an open mapping (In fact, T sends open
circular disc of R onto an open interval).

f7: R —>RYis given by T(x, y) = (x, 0); there Image of an open circular disc
under T is not like that. So T is not an open mapping.

We know that all linear operators are bounded. For instance, differential operator
is an unbounded linear operator. Closed Linear operators that we introduce presently
behave satisfactorily in this respect. Another important theorem, known as closed
Graph Theorem states sufficient conditions under which a closed linear operator on
a Banach space is bounded.

Let (X || ||y and (¥, || ||} be NLS with same scalars.

Definition 4.4.2. A linear operator 7 : X — Y is called a closed linear operator
if its graph G(T)={(x,))e (X xY):y=T(x),xc X}1s a closed set in NLS X x¥
with norm || (x, I =l x [+ ¥ I, (x,y) (X xT).

Theorem 4.4.2. Let X and ¥ be Banach spaces, and 7: X — ¥ be a closed linear
operator. Then 7T is a bounded linear operator.

Proof : First we verify that X xY with norm |[(x,y)||=||x|+]y] as
(x,y)e (X xY) is also a Banach space.
Let {z,=(x,,¥,)} be a Cauchy sequence in X xY.

Then ||z, =z, [|=[1x, =%, [|+113 = |

167



Thus ||x,—x, || <] z,—2z,||— 0 as n,n; — o shows that {x,}is Cauchy in X,
and since X is complete,

let li_1>n x,=x€ X, and similarly let flri_l)lgoy,, =yet

These together imply that lim z, =z =(x, y) e (X xY).Thus we see that x «y
n—w0

is a Banach space. Graph G(7) being a closed set in X xV, it follows that G(7) is
complete (infact, G(7) is a Banach space as a subspace of X xV)

Consider a mapping p : G(T) — X given by p(x, 7{x)) = x € X. Then p is linear
operator over G(7). p 1s also bounded, because

12, TER =N x I<[x I+ 11 T (el = (e, TR ]
Further, p is bijective; with p_l given by

p' X - G(T") mapping x —(x,7(x)) as xe X. By applying open mapping

theorem we find p_l to be bounded. Hence there is a +ve K such that
1T <K || x| for xeX.

Therefore ||7(x) | <|IT()[|+]lx[|= | (¢, TGHI<K [l %]
That means 7 is bounded. The proof is complete.

Example 4.4.2, If X and Y are Banach spaces over same scalars, and 7: X - ¥
is a linear operator. Show that Graph G(7T) is a subspace of X xY

Solution : Let (x,7(x;)) and (x,,7(x;)) be two members of G(7) as x,,x, € X,
where G(T)={(x,7(x)) xe X} (X xY).

Then (x,7(x))+(%2,T(x)) = (% + x5, T(x}+T(x))
=(x,+x,, T(x,+x;)) (T is linear)
e (7).
If Ais any scalar A{x,7(x)))=(Ax, AT(x))) = (4%, T(Ax)) e G(T).
Therefore G(7) is a sub-space of (X xY).
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EXERCISE A

Short answer type questions

1.
2.

Show that a norm in a linear space X 1s a sub-linear functional over X.

Show that a sub-linear functional p in a linear space X satisfies (a) p(0)=0 and (b)
p(=x)z-p(x) for xe X .

Show that non-null N5 X has a non-null conjugate space X*.

If f{x) = Ay) for every bounded linear functional on a NLS X, show that x =y in X

If X and Y are Banach spaces show that the Null space N(7) of a closed linear
operator 7 : X — ¥ is a closed sub-space of X.

If two non-zero linear functionals f| and f, over a linear space have the same
Null space, then show that f; and £, are proportional.

EXERCISE B
Let XbeaNLS, and x, € X suchthat | f(x5}|<c forall feX* with| f|=1,

show that || x, || <c.
If X is a NLS which is reflexive, show that X* is reflexive.

If X and Y are Banach spaces over the same scalars, and 7 : X — Y is a closed
linear operator, then show that {(a) if C is compact in X, 7(() is closed in ¥, and
(b) if K is compact in Y, TI(K) is closed in X.

Let f be a non-zero linear functional in a linear space X, and x; is a fixed element

in (X\N(f)), ( N(f)=Null space of f ={xe X : f(x)=0}), then any member

x in X has a unique representation x =ax,+y where y e N(f). Prove it.

b
Show that 7 : C[a,b] — R defined by T(f) :L fdt, f € Cl[a,b] is a bounded
linear functional over C[a,b] and find || 7.
Show that f defined over C[-1,1] by the rule :

f(x)= ﬁ xdt — I; xdt, xeC[-1,1]

is a bounded linear functional over C[-1, 1] and find || 7]|.
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UNIT §

{Contents : Inner product spaces, Cauchy-Schwarz inequality, I P. spaces as NLS,
continuity of LP. function, Law of parallelogram, orthogonal {orthonormal) system
of vectors, Projection Theorem in Hilbert space H; Reisz Theorem for a bounded
linear functional over H, Bessel’s inequality, Grahm-Smidst orthogonalisation process,
complete orthonormal system in H.)

§ 5.1 INNER PRODUCT SPACE

In a Normed Linear space principle operations involved are addition of vectors
and scalar multiplication of vectors by scalars as in elementary vector algebra. Norm
in such a space generalizes elementary idea of length of a vector. What is still more

missing in an NLS is an analogue if well known dot product ab = ab +a,b, +a3b;,

and resulting formulas among other things like (i) length | | = Va.a and (ii) relation
of orthogonality a.5 = 0. These are important tools in numerous applications.

History of Inner product spaces is older than that of NLS. Theory had been
initiated by Hilbert through his work on integral equations. An inner product space
15 a Linear space with an inner-product structure that we presently define.

Suppose X denotes a complex Linear space.

Definition 5.1.1, X is said to be an Inner Product space or simply L.P. space if
there is a scalar-valued function known Inner product function, denoted by, <, >
over X, X satisfying

(IP. 1) <x +y z>==<x, 2>+ <y, z» foralx, y,z € X

(LP. 2) <o, > = a<x, y=> for all scalars ¢ and for all x, y € X,

(ILP 3) <y x>= W for all x, y € X, bar denoting complex conjugate.
(IP 4) <x, x> >0 forallxe Xanditis=01ifand only if x=0 in X
From L.P. axioms above one can immediately derive the following

(a) <x,ay>=a& <x,y> forall scalars ¢ and x, y € X.

(b) <Ax+uy,z>=A<x,z>+u<y,z> for all x, y, z € X and for all
scalars A, .

(€) <xay+ Pz>=<ax+fz,x>=a<y,x>+f<z,x>
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—a<y,x>+f8 <z, y>=a<x,y>+f<xz> because
conjugate of a complex scalar is itself.

Example 5.1.1. Unitary space ¢" =g¢xéx...x¢ whose ¢ is the space of all
¥ copies
complex number is an I.P. space with LP. < > given by

<Z,W)=zW + 2,0, + ..+ 2, W, where z2=(2,25,....2,) and

11) :(‘wla}VZa"“"wH)e ¢n :

Solution : Here < z,w > =z, + z,i, +...+ 2, W,

zlﬁl + 221?2 +..+ zﬁﬁﬁ = El'wl +z_2“"2 +...+Z_n'wn

<w,z>; and this (IP. 3); rest of axioms are routine

check-ups.

In an LP. space (X. <>) of x € X, let us define || x|*= < x, x > which is always
a non-negative quantity and is equal to O if and only if x =0 in X.

Theorem 5.1.1, Every I.P. space is an NLS. To prove this Theorem we need
help from following Lemma that is an independent proposition as well.

Lemma 5.1.1 (Cauchy-Schwarz inequality/C-S inequality)
In an LP. space (X, <>)ifx, y € X,

l<x,y> < [l xll[[ ¥l
Proof : Without loss of generality take y =0 in X. (taking y=0 LH.S.=RHS.
For any scalar A we have

| x+Ay|*=0
o, <x+Ay,x+Ay>=0

Of, <X, y>+AA<y,y>+A<X,y>+A<y,x>20

o, ||x|® +|APIyIP+A<x,y>+A<x,y>>0

<X, y>
<Vy=>

Let us now choose A—-

__<xy>
K&
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Then L.H S. of above inequality

x>l
2
Iyl

2 2 2
o B2l fexy o jexyof
2 2 2
Iyl Iyl Iyl
Therefore above inequality assumes the form

2
[l ]l

exysf
2
Iyl
or l<x,y><|[x||[| ¥

Proof of Theorem 5.1.1. Norm axioms (N.1) and (N.2) follow from (I.P. 4),

2
[l x]]

20

and the fact ||ax|*=<ax,ax>=ad@ <x,x >=|a | x|
This gives || ax|f*=|a || x||
For triangle inequality (N.3), let x, y € X, then we have
||x+y||2=<x+y,x+y>=||x||2+<x,y>+<y,x >+||y||2-
Thus ||x+y | <[ x| +]<x,p >+ < p,x 5 +]|
=[xIP +2l< %y >+ v I
<llx|I* +20 %l ¥l +1/ ¥ by Lemma $.1.1.

=(Ix I+

Therefore ||[x+y ||| x|+l ¥
The proof 1s now complete.
Remark : Equality sign in C-S inequality holds if and only if y = 0 or

O=||x+Ay|?* ie x = —Ay orx + Ay =0 showing that x and y to be linearly dependent.

Theorem 5.1.2. In an L. P. space (X, < >), show that I.P. function is a continuous
function.

Proof : Let {x,} and {v,} be two sequences in X such that lim z, =x and
1)
Xy

lim y, =y in norm. That is to say, ?lii_1>r°10||x,, —x/| =0=?l'i_1>r°10||y,,—y|| .

Now |<x,,y,>—<x,y>=|<x,,V,>— <X, V>+<X,y>—<xy>

=|l<x,, YV, —Y>+<x,—X, >
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S| <Xy Yy — Y 2 F <% — X,y

<l Ly = 1Ly T2, = 015

Since lim x, =x in norm, {x,} is norm bounded; So there is an A{ (+ve) such
Y=

that || x,| <A{ for all n

Therefore above inequality assumes the form

<My, ->l+lx¥llx,-x[—>0 as n-—>w. This shows that
lim <x,.y, >=<¥xy> and LP. function is continuous at (¥, y).

n—w0

Definition 5.1.2, An I.P. space X is said to be a Hilbert space if X is a complete
NLS with norm || || as induced from I P. function.

Thus every Hilbert space is a Banach space. But opposite is not true.

Very often a Hilbert space is denoted by H and an LP. space is termed as a pre-
Hilbert space.

Theorem 5,1.3. If x and y are two members in a Hilbert space A, then

[ x+ [ +llx=pIF=2| x| + 2| | (Law of parallelogram).
Proof : Here ||x+y||2 +||x—y||2=<x+y,x+y >H<X—Y, X—y>
=[[x]* +<xy>+ <y x>+ y[P 1 xIP —<x,y>—<px>+]y|

=2|| x| +2|| ¥ |

Remark : In school Geometry it 1s known that sum of squares raised on sides of
a parallelogram is equal to the sum of squares raised on its diagonals. This 1s exactly
what 1s in Theorem 5.1.3 above. Hence the name is Law of parallelogram.

Example 5.1.2. The sequence space /, of all real sequences x =4{£,&5,....&,,,...}
with Zlé <o is a real Hilbert space.

i=l

Solution : We know that /, is a real linear space where let us define an LP.

o
function <x,y>= Zf,-??,- , the r.h.s series 15 convergent because
- i=l

(Em1<3AE T +n P ((x=Eénn)> Y= 00 )bl =1 20
By routine exercise we check that all LP. axioms are O.K. in /,, and /, is an LP.
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space with real scalars. Further, with respect to the induced norm || = Z| & ?
i=1
is also known that /, becomes a complete NLS. Hence /, is a Hilbert space.
Example 5.1.3. The sequence space /,{1 < p <o) consisting of all real sequences
1/

w© r
x=(£,&,,..) with (Zhﬂ |p} <% is a Banach space without being a Hilbert
=l

space with LP. function to induce Banach-space norm.

Solution : We have already seen that sequence space / »{1< p>) is a Banach
1

space with norm || x| = [ZI &l p} as x=(£,5... . We now show that this
P

norm does not come from an LP. function on /,. This is verified by showing that

. . 0
this norm does not satisfy Law of Parallelogram. Take J£=(1, L M)’

l\d

%
( ) from I,. Then we find ||3£||=||y||=2-"'P and || x+yll=2

=l x- || Therefore, if p =2 parallelogram law fails.

§ 5.2 ORTHOGONAL ELEMENTS IN HILBERT SPACE

Let H denote a Hilbert space.

Definition 5.2.1. (a) Two members x and y in a Hilbert space H are called
orthogonal if <x, y> =

We write in this case x L y.
(b) Given a non-empty subset L of H, an element x € H is said to be orthogonal
to L, denoted by x L y if <x, /> =0 for every member / € L.

Theorem 5.2.1. (Pythogorian Law) Ifx, y € H and x L y, then
@ | x+yP=ll x|+ yI?
(i) || x-ylP=|lx]? +| »]?
Proof : (i) || x+y| =<x+y,x+y>=|x|f +<xy>+<yx>+|y|

=1 xIF +<xy>r<x,y>+||y|P=| x|’ +| y| since <x, y>=0.
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(i) the proof is similar to above.
Theorem 5.2.2. Every closed convex subset of a Hilbert space A has a unique

member of smallest norm.
Proof : Let C be a closed convex subset of H, and let d = Inf {|| x || : x €C}.

Let {x,} be a sequence in  such that lim ||x, ||=d. for x,,x, €C we have
H—ron
%(x,, +x,,) € C, because (' is convex.

X

w T X

el

So, >d or, |x,+x,]|=2d e (1)

By Law of Parallelogram we have
16 = 1= 2110, 1 42113 [ =11, 3, 1
<2||x, I + 2|1 %, |P —4e”
Since Ai_?l” x,||=d and similarly | x,, ||—>das e (2)

m — o0, taking limit 7, m — o0 in (2) we get

lim [[x,-x,[=0; showing that {x,} is Cauchy in C.

HE—r0

As C is closed, Let li_1>n x,=xeC. Thus || x| = lim || x, || =4

Hence x € C has a smallest norm. For uniqueness of x, letx’€ C so that || x’||=4d.

x+x x+x

e(C and also || |=d. Again by Law of

By convexity of ' we have

Parallelogram we have

2 2 2

T bl B W L
2 2 2 2

< 2xP+31¥1P i x=x

x+x x+x

=d*; giving || =5~ ll<d —a contradiction of |

|zd as

arrived at early. The proof 1s now complete.
Theorem 5.2.3 (Projection Theorem). Let L be a closed subspace of / and
L # H ; Then every member x € H has a unique representation x = y + z where
yve Land x| L.
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Proof : If x is a member of L — H ; we write x=x+0 when Ol L.
Let us take x < (H \L), and put
d=Inf|x-a |P=dist(x, L) ; Because L is closed we have d > 0,
and there is a sequence {a,} of member a, in L such that

limd, =||x—a,| =d. e (1)

H—r0
Take any non-zero member « in L. As L is a sub-space of H, we have for any
scalar &, (a,+¢&a)e L and therefore

|x—(a, +sa)|* =d

or, <x-a,-&a, x—a,-sa>zd
2 _ = 201 112

or, |x—a,|” - <x—a,,a>—e<a,x—a,>+|e|||a| =d.

<X—a,,a> . .
Now take S:W; with such a choice of €, we have
a
2 |<x—a,,r,a>|2
lx—a, | ———F—2

2
|l
2 2

of, <x—a,, a>" <||al (d,-d)

or, l<x—a,,a><|al|lJd,—d oo (%)

Inequality holds for =0 in L; So for any g [ we have

<a,—a,,a><|<a,—x a>+|<x-a,,a>|

ie. |< an_amaa>|£”a”(\/dn_d+ dm_d) fI“OITl (*)

Putting a =a, —a,,, we have

|< ady — Ay, — Ay, >|£”an — iy || (\/dn —d+ dm _d)

ie. ||an_am||2 SHan_am ”(\/dn _d+\/dm_d)
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or, la, —a, |l < (\/dn -d +\/dm —d), wherer.h.s. — 0 as n,m — o by (1).
That means {a,} is Cauchy in L.

Since L is closed, let AI_I)T; a,=yel.

Now in |<x—a,, a><| a| Jd,—d, let us pass on the }11_1}30% =y and get
[<«x=-y, a>=0
f.e. <x-y,0>=0; This is true for any member a in L; Therefore
(x—y)LL Letusputz=x-).

Then we have x =y + z where yeL and z L L.

!

For uniqueness of this representation, let x=y+z=y'+z" where y'el and

2’ L L. Thus y, ¥ come from L and z,z" L L. Clearly, y—y'=z"-z, and

|y=y|P=<y-y.y-y >=<y-y,2'-2>=0  where |z'-z||LL.
Therefore y = y" and hence z = z'. The proof is now complete.

Remark : In representation Theorem 5.2.3. where x =y + z, y is called projection
of x on L. It is obvious that collection Af of all elements, orthogonal to L forms a
sub-space. M is also closed because of continuity of IP. function. That is why z is
called projection of x on M which is called orthogonal complement of Z. Further,
Hilbert space A is then sum of two orthogonal sub-spaces I and A{. Here we see
orthogonal sum 1s a special case of the Direct sum. Thus projection Theorem 523
gives a decomposition of any member in Hilbert space H into its projections onto
two complementary orthogonal sub-spaces.

§ 5.3. It is important to know that the general form of a bounded Linear functional
acting on a given space. Such formulae in respect of some NLS are known, their
derivations could be much complicated. Situation is, however, surprisingly simple
for a Hilbert space H.
Theorem 5.3.1 (Riesz Theorem on representation of functional over H).
Let f be a bounded linear functional over a Hilbert space H. Then f(x)=<x,y >
for all x € A and for some z € A uniquely determined by £ such that || z || = || /|-
Proof : If f is the zero functional over H We take z =0 in H to do the job.

Suppose that f is a non-zero bounded linear functional over H. Consider the null-
space M) of f where
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N{f)y={xeH: f(x)=0}. Clearly N(f) is a closed linear sub-space of /7
without being equal to /4.

Take a non-zero z, €L N(f)
Letx € H. Put v= f(x)z;, - f(zy)x
So that f(v)= f(f(x)zg)= f(f(20)x)
= f()f(z) = f(20)f(x) ; (fis linear)
=0
That means v e N(f); by choice z; is orthogonal to v
So O0=<v,zy>=< f(x)zq - f(zp)x, 25 >
= f(x) <zy,25 > —flzo)<x,2y5 >
=z |I* S = flzo)<x.2 >

Sf(zp)
| 2o |l

[ TG
‘<"' Iz | Z°>

=<x, y> (say), where z=

Giving f(¥)=

<X, Zg >

f(Zo|g Z. e (1)

Zo |

This 1s the representative formula for fx) as wanted.
For uniqueness of z, let f(x)=<x,z; >=<x,x,> forall xeH.
Then we have <x,z >=<x,z, > of, <Xx,zj—2z,>=0
put x:Zl—Zz; SO <Zl_223 21_22 >:O Qr, ||Zl—22||2:0 Qr, 21222'
Finally, We have | f(x)|=|<x,z > || x| z]

This gives || f 1<z ]| crererrrenne (1)
Again taking z = x in (1) we have <z, z>= f(z)

o, |zIP<| £z
or, ||[z] =]l e (2)
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Combining (1) and (2) we have || f || <||z]|.

Converse of Theorem 5.3.1. is true. This 1s what Example 5.3.1 has to say.
Example 5.3.1. Let z be a fixed member in a Hilbert space H. Show that

f(x)=<ux,z> for all x € H is a bounded linear functional over /7 with
I/ 1=1=]
Solution : Here f : # —Scalar such that for x, x, € H.
Then f(x +x)=<X+X,2>=<X,Z2>+<Xy,z>= f(x)+ f(x,).
And for any scalar & f(ax)=<ax,z>=a<x,z>=af(x).
Thus £ is Linear. Further | f(x)|=|<x,z >/ | x||||z]] (by C-S inequality)
This is true for all x € H. Therefore f is a bounded linear functional such that

A== (1)
Taking x = z in f{x) = <x, y> we have
I zIP=<zz>= )<l Il 2]
or, |[z||<]l fIl e (2)
(1) plus (2) gives ||/ || <] z]].
Corollary to Theorem 5.3.1. Every Hilbert space H is reflexive,
Because by Theorem 5.3.1. together example put up above says that every
bounded linear functional over H. ie. every member of H* arises out of a member
of H and conversely. This correspondence gives rise to an isomorphism between H

and A*; and we say that A is self-dual and this in turn implies that here Canonical
mapping between A and H** is a surjection. Hence H is reflexive.

§ 5.4 ORTHONORMAL SYSTEM IN HILBERT SPACE H.
Definition 5.4.1. (a) A non-empty subset {e;} of Hilbert space H is said to be

an orthonormal system if

(1) 7#J, ¢,+e, ie anytwo distinct members of {¢;} are orthogonal.

and (ii) ||¢;|[=1 for every / ie. any vector of the system is non-zero unit
vector in H.

(b) If an orthonormal system of f is countable, we can enumerate its elements
in a sequence say it as an orthonormal sequence.
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For example in Euclidean #-space R” which is a real Hilbert space the fundamental
unit vectors ¢ =(1,0,0,...,0), e, =(0,1,0,0,...,0)...... e, =(10,.,0,1) form an
orthonormal system of vectors in R”.

Example 5.4.1. Let 7,[0,27] be the real Hilbert space of all square integrable
functions f over [0,27] with LP. function

<f.g>=[ g,  fgel, [027]

2r
||f||=1};f2dr‘

L o, ()=S0 (=1 2 )and O<r<2r.

Var’ N

form an orthonormal sequence in Z,[0,27]; because

Then ¢,(t)=

0 ifm=#n
2x
Io cosmt cosntdt=< 1 ifm=n=12.

27 ifm=n=0

Theorem 5.4.1. An orthonormal system in A is linearly independent.
Proof : Let {¢;} be an orthonormal system in A; and let for a finite subset, say,
€], €, .o e, of the system we have

o+ ey +....+a,e, =0 where «; s are scalars. Then for 1< j <# we have

0= <Q,ej = <ia’fef,ej>=ia,-,<ef,ej >
i=1 i=1
=a; <e;e; >=a,; (other terms being zero because of mutual
orthogonality). So & =a, =....=¢«, =0. That means any finite sub-system of the
given system is linearly independent. Hence proof is done.
Definition 5.4.2. Let {¢;} be an orthonormal system in /7 and xc H, Then
scalars ¢; =< x,¢; > are called Fouries co-efficients of x w.rt the system.

Theorem 5.4.2. Suppose {¢,¢,,€;3,.....€,,...} be an orthonormal sequence in /7,
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then for x € H,

(=]
lex,e > <lx |
A

(This inequality is very often termed as Bessel’s inequality).
Proof : Let 7 be a +ve integer. If ¢, are Fouries coefficients of x wrt. {¢}, we

have

i i i
2
0<Ix=-2cel = <X_Zcfef.» X‘Zc}eﬁ>
i=l i=1 i=l
5 i i i i
= x|I" ={x. D e ) ={ D e x )+ { D e D e
i=1 i=1 i=l k=l
4] 4] 4] 4]
T =
=||x|| —Zcf <X,e >—Zc§ <e,.,x>+Zcf <ef,chek >
i=1 =1 i=1 k=1

n n H
=% - ZE}C:' _ZCEEI' +ZZ‘,C}'EA— <€, >
=1 =1

i=l k=l
2 N RN RN 2 2 N LR
=lxIF =2l P =2l P+ le P =lxIP -2l
=l i=1 i=1 i=1
H H
Therefore, Z|c§ P <||xI? or Z|<x,e,. SPE < x|
=1 i=1

o
. . 2 .
This is true for any +ve integer », and thus Z|< x,g; >" is convergent and
i=1

H

Mlexe > <|lxIP.

i=1
Theorem 5.4.3. In a separable Hilbert space H every orthonormal system is
countable.
Proof : Let £ = {e;} be an orthonormal system in H which is separable. If ¢, # ¢,

we have <e;'aej >=0 and “e;' ”:1:”‘2; ”
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Therefore <ej—ef,ei—ej>=||e,.||2—<e,.,ef>—<ef,ef>+||ej||2=0+1+1=2
2

So, |le;—e;|"=2

or, “e.i_ej”:\/E‘

By separability of H, we find a countable set {y,,y,...,»,,...} which is dense in
E. So we find two members, say, y; and y; such that

2 2
e, [l < X2 and ||y, e, || < X2
3 3

So \E:”er“e}‘ Il=lle;=yi+y;—y;+y;—e;ll
<lle,=yll+1ly =y, l+lly, -l

242

<T+||yr‘_yj Il
N2
3
between members of £ with members of a subset of a countable set. Therefore £ is

countable.
Gram-Schmidt Orthogolisation Process : Subject is that in a Hilbert space H
one can transform a linearly independent set of elements in H into an orthonormal

system in H by a technique known by above name.
Let x|, x,,... be an independent system of vectors in 4 (So none is zero vector)

Showing ||y, —y,||> -5 clearly /# j; This establishes an H correspondence

*
Put ¢ NN and let y, =x, —¢, ¢ where ¢, =<x,,¢ >.

Yo
|y ]

Next we put e, = ; By verification we see <e,¢ >=1, <e,,e, >=1,
and <e,e, >=0.

Now let yy;=x;-(c3€ +¢30¢;) where we choose ¢ =<x3,¢ >,
032 =<X3,82 >,

Next we put €; = ﬁ, and as before we have
3

<ej,ey>=1, <&3,6,>=0 =<e;.¢ >
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We continue this process, if e,e,,...,¢;,_; have been constructed, let us take

£l
Yie =X _chiei
i=1

Yk

[yl
Inductively, we construct ¢, as a linear combination of x|, x,,... and x,,. This way we

are led to orthonormal system (e, e,,... ,,...) from (x}, X5,... X,,...).

Definition 5.4.3. In a Hilbert space A an orthonormal system £ is called a
complete orthonormal system if there 1s no orthonormal system in / to contain £ as
a proper subset.

For example, in Euclidean #-space R" (a real Hilbert space) the set of all
fundamental unit vectors {e, e,,..¢,} where e, =(0_ 1 0), ;=12 . nisa

. fth place
complete orthonormal system in R”.

where ¢;; = <x;,¢; >, so that y; is orthogonal to ¢ ,e,,....e;_;; Define ¢, =

Theorem S5.4.4. In a Hilbert space H let {¢, e,,...,¢,..} be an orthonormal
sequence in . Then following statements are equivalent (one implies other).

(a) {e;} 1s complete.

(b) <x,e; >=0 for all i implies x=0 in A

(c) x:Z<x,ei >¢; foreach xe H.

i=1

(d) D l<x,¢ > =|lx | forevery xe H.
i1

Proof : (a) = (b); Let (a) be true. Suppose (b) is false. Then we find a non-zero

x in A such that <x,e; >=0 fori=1.2,..

Put e=ﬁ‘ So that || e|| = 1, and <e,e; >=0 for all /,
X
Therefore {e,e,,...,..e,,...}\wi{e} becomes an orthonormal system containing

given system properly—a contradiction that {e,, e,,...,¢,,} is complete. Hence (b) is
established.

Ft
(b)=(c) Let §,=> <x,¢,>¢;
P



Then Y <x,¢ >¢ =lim §, = § (say)
i1 e

If 1<j<n, <x,e;>-<S8,¢e, >

H
=<Xx,€ >—<Z< X, ¢ e, e >
i=1

=<X,¢; >—<X,¢; >=0
Thus <*Sn,e)r >=<x,e, >

I
Now <x—Z¢ X,e; > ¢ >:<x—S,ej »>=<X,€; >—<S,ej >
i=1

;>—lim <.§

=<x,e;>—<lim §,.e;, >=<x,e; -
H—0

e;>=<x,e;>—<x,¢; >=0
H—»0

b L

That means e; L | x— Z< x,¢; > ¢; |; therefore from (b) we have
i=1

H =]
x—Z<x,ei>ej:Q ie. x:Z<x,ei>ej.
i=1 i=1

=] [=s]
(c) = (d). We have ||x||2= <X, X > =<Z<x,ei >ei_2<x,ej >e; >
i=1 f=1

H Ft
=< |lim Z<x,e,- >e;, < lim Z< x,e;>e;>
| H—»0 i1

Fi—y oy s

H n
=AI_I)TC}Q<Z<X,QE >ei,2<x,ej >e; >
=l ]=l

n H
= lim Zé x,e; ><Xx,¢ >=lim Z|4 x,e; >
n—w i o el

. 2
= Z|< x,e; >
i=1
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(d) = (a). Let (d) hold and if possible let {¢;} be not complete. Then we find
an orthonormal system strictly larger than {e|, e,,...,¢,, ... }; say larger system looks
as {e, ¢, @5,....,¢,....} where, of course, |[e||=1and <e¢, e>=0fori=1,2,
{(d) applies (taking x = ¢), and we have

le|P=>|<e.e; >* =0— a contradiction. So we have proved (a).

i=1

Example 5.4.2. Let {x,} be a sequence in Hilbert space # and x € H such that

lim || x, ||=] x|, and lim <x,,x>||=<x,x>. Show that lim x, =x.
H=—¥x0 H=—¥x0 =30
Solution : Given lim || x, |[=] x| and lim <x,,x > =<x,x>=| x|
H—»0 H—»0

Now ||x,,—x||2=<xn—x, Jur,,—x>=||Jurn||2—<Jur,,,x>—<3ur,3urn>+||Jur||2

2 2
=16, 117 = < 2, x> =<, x >+ || x|

2 2 2 2
= x|I” =l x[|" =l x[[" +[[x||"=0 a8 n—<0.

Therefore lim x, =x
n—w0

Example 5.4.3. In a real Hilbert space H if || x|| = ||y ||, show that <x + y,
x—y> = 0. Interpret the result Geometrically if H# = Euclidean 2-space RZ.
Solution : Let A be a real Hilbert space and x, y € H that such || x || = || ¥||.

Now <X+),X—y>=<XX>—<X,y>+<Yy,X>—<),y>

=||x|P —<x,y>+<x,p>—| v (because it is a real

Hilbert space, <x,y>=<x,y>)
=0
That means (x+y) L (x-y).

It Euclidean 2-space R?, fig is an equilateral parallelogram i.e. a Rhombus with
adjacent sides represented by x and y with || x || = || »|. and we know that in a
Rhombus Diagonals cut at right angles.

EXERCISE A

Short answer type questions
1. Ifin an LP. space <x, #> = <x, v> for all x in the space, show that # = »
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Show that Banach space c[a,#] with sup norm is not a Hilbert space with an L.P.
to induce the sup norm.

If £is a bounded linear functional over Buclidean 3-space R®, show that f can be
represented by a dot product

Jx)=xz=§po+&p, +E30s

Show that in a Hilbert space H convergence of |1, || implies convergence of

oo J=!

2%

j=l

If ¢ denotes the Unitary space of all complex numbers. If z|, z, € ¢, show that
<zj,2z, >=2,Z, defines an LP. function on ¢.

EXERCISE B

If x and y are two non-zero elements in a Hilbert space H, show that
lx+ ¥l <]|x]|+]| ¥]|| where equality holds if and only if y = ax for a suitable
scalar «.

Let ¢ be a convex set in a Hilbert space H, and d =Inf{||x|:xec}. If {x,} isa

sequence in ¢ such that lim || x, ||=d, show that {x,} is a Cauchy sequence.
H—0

If {e,} is any orthonormal sequence in a Hilbert space /7 and x, y € H, show
that

o
1> <xe,><ye,><|x]ly|
n=l
Let {e,, e,,...,¢,,} be an orthonormal set in a Hilbert space A where » is fixed. If
n
x € H be a fixed member, show that for scalars ¢, 05,...,4, ||X‘Za’fef | is
i=1
minimum when ¢, =<x,g >,i=1,..n.

Let {e.} be an orthonormal sequence in a Hilbert space H. For x< H, define

}’=Z<x’ek > ¢ ; showthat (x—y)Lle, (k=12,.).
k=1

Show that for the sequence space /, (a real Hilbert space) its conjugate space /,*
is isomorphic to /,.
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UNIT 6

{Contents - Adjoint of bounded linear operator in a Hilbert space H, Algebra of
adjoint operators, proudct of adjoints, self-adjoint operators in H, their algebra, Norm
of self-adjoint operator, space of self-adjoint operators, every bounded linear operator
in H as a sum of self-adjoint operators, eigen value and eigen vectors of self-adjoint
operator.)

§ 6.1 Let A be a complex Hilbert space and let Bda(H,H) denote the space of all
bounded linear operators 7 : H — H. Take one such 7 : H — H as a bounded linear
operator. Let ye H.

Define f,.H — scalars by the rule :

Sy (x)=<T(x),y> as xe H e, (1)
Notice that if x|, x, € H, we have

f},(xl +x,)=<T(x+x;), y>=<T(x)+T(x;), y > because 7 is linear
=<T(x), y>+<T(x,),y > using property inner product
=fo(x)+ £ (%)

Similarly J,(ax))=af,(x) for any scalar .
That means, f, is a linear functional over H.
Plus | f,(x)|=|<T(x), y >[<||T{(x} ||| || by C-S inequality,
<IZ >y N=ATyIDIx] foralxe H.
Therefore, £, is a bounded linear functional over H, and as we had seen earlier,
Riesz representation Theorem says, there is a unique member, say y* e H such that
fix)y=<xy*> e (2)
where we remember that y* is determined by £,. From the text as put up above one
sees that given y < H, there is a unique member y*e H (via f).
Let us define 7*: H — H by formula
T*{y)=y* as described above . (3)
This operator 7* is called adjoint operator to T in H and as explained above they are
connected by relation

187



<T(x),y>=<xT*(y)> from (1), (2) and (3) above for all x, y € H.

Explanation : 7* is well defined over /1. Because, suppose that for all x, y € H,
we have simultaneously

<T{(x),y>=<x,T*(y)>
and <T(x),y>=<x1 *(y)> for another 7. H > H.

Therefore we see <x,7*(y)>=<x,T1*(y)> forallx, ye H.

meaning thereby 7 *(y)=7,*(y) fory e H. je T*=T*

Theorem 6.1.1. 7%- H — H is a bounded linear operator {7* e Bda(H,H)).

Proof : Letx, 3, z€ H Then <x, 7*(y+z2)>=<T(x), y+z>
=<T(x),y>+<T(xX)z>=<x,T*()>+<x, T*(2)>
=<x,I*(y)+T*(z)>.

Therefore, T*(y+z)=T*(W+T*z) ... (1)

Again for a scalar A, <x, T*(Ay)>=<T{x),Ay>

=I<T(x),y>=I<x,T*(y)>=<x,AT*(y)>-
Therefore, T*(Ay)y=AT*(» (2)

(1) and (2) together say that 7* is a linear operator.
Again, for yc H we have

IT*WDIF =<T*O).T*(3) >=<TT*(y)y >
<[ ZT*DMYI=<NTIT* N
That means, ||7*(¥)|| || T |||y, and therefore 7* is a bound linear operator
over H with || T*|<|| T
Corollary 1. T**= T

Now TI* is a bounded linear operator, and from the relation
<T(x),y>=<x,T*(y)> let us put 7* in place of Tto get forallx, y € H,

<T*(x),y>=<x,T**y)>
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Interchange x and y to get
<T*(Y)x>=<y, T**x)>
Taking conjugates, < 7**(x), y>=<x,T*(y)>=<T(x),y> ... (*)
Now (*) remains true for all y € H, therefore we deduce that
TT*(x)=T(x) and this being true for all xc H we finally obtain 7 ** =17
Corollary 2. || T*||=]|T].
We do already thave || 7*| <||T||; let us apply this in favour of T* to get
I T** )< || 7%
or, T </IT*]
Therefore, || T||=|7*|.
§ 6.2 ALGEBRA OF ADJOINT OPERATORS IN HILBERT SPACE H.

Let A and B be two bounded linear operators : H — H ie. A, Be Bda(H,H).
Then A + B and oA (o any scalar) are also members of Bda(H ,H).

Theorem 6.2.1, (a) (A+B)*=A*+B* and (b) (@4d)*=aA*, where 4* denotes
adjoint of A.

Proof : (a) For all x, y € H we have <A(x),y>=<x,4*(y)> and
<B(x),y>=<x,B*(y)>
Now <x,(A+B)*y>=<(a+B)x),y>
=< A(x)+ B(x), y >
=< A(x),y>+<B(x), y >
=<x, A*(y)>+<x,B*(y)>
=<x,A*(y)}+B*(y)>
=<x, (A*+ B*}y) >
This shows that (4+B)*=A*+B*
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(b) <x, (ad)*(y)y>=<(ad)x),y >
=<qA(x), y>
=a < Ax), y>
=@ <x, A*(y)>
=<x,dA*(y)>
= <x, {(@A*)y) >
This being true for all x, y € H, we have (¢dy*=aA4*.
For A and B belonging to Bda(H ,H), let us define (4B) : H — H by following
rule of composition;
(AB)(x) = A(B(x)) for x< [ . In this way (B4) : H — H is also defined. It is
a routine verification that (4B) : H — H is a linear operator such that for x e H,
|| (ABYX) || =1 ABC) <N A B <L AN BN x|
This is true for all x € H; Therefore (4B) is also a bounded linear operator over
H ie (AB)e Bda(H,H).
Theorem 6.2.2. (AB)*=B*A4*
Proof : For x, y € /[, we have < A(x),y>=<x, A*(y) >
and < B(x),y>=<x,B¥*(y)>
Now < (AB)x),y>=<ux,(AB)*(y)> which is the same as,
<x,(AB)*(y) > =<(4AB)Xx),y >
= < A(B()).y >
=< B(x),A*y >
= <x, B*(A*(y))>
= <x,{B* A*) y) > ; Therefore we have (4By*=B*A4*.
Theorem 6.2.3. For any Ac Bda(H,H), ||A*A||=|A|" =| A4*] .

Proof : We always have || 4* A|| <|| A*||1| 4] =] 4|l A||=||A||2 because A* is
also a member of Bdo(H ,H)
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ie. |lA*A< A e (1)

Again || 4[> = sup {|| 4(x)|I*}
[lx]=1

= sup {|< A(x), A(x) >[}

[Ixll=1

= sup {|< A*(A(x)), x>/}

[Ixll=1

= sup {|< (A% A)(x), x>}

[Ixll=1

< sup A A [ x [} form C-S inequality,

<[l 4* Al
Thatis, ||4|*<||4*4). . (2)
From (1) and (2) we have || 4* 4| =| A4 ||2. Now applying this equality to A*
one obtains || A4*||=|| (4%)* A*||=|| A*||* =|| 4|]*. The proof is now complete.
Corollary : If Ac Bda(H,H) 1s such that A4*=4*A4 (ie. A and 4*

commute), then || 4 || =|| 4|*.

§ 6.3 SELF-ADJOINT OPERATORS OVER HILBERT SPACE H.

Definition 6.3.1. A member 7 € Bda(H,H) i.e. T being a bounded linear
operator over H is called self-adjoint if 7* = 7.

Theorem 6.3.1. (a) If 7 and 7, are self-adjoint operators over A, then T, + 7, 1s
$0.

(b) If 7 is self-adjoint and « any real scalar, then of is self-adjoint.
(c) For any member 7 e Bda(H,H), T*T, IT* and 7+ T* are self-adjoint.

(d) If 7, and 7, are self-adjoint, then 7,7, is self-adjoint if and only if 7|7, =
L7, (T, and 7, commute).
Proof : (a) (1) + I5)*=T*+1,* =7+ T,

(b) (af))* =ali* =&l = ol because «is a real scalar.
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(¢) (XD =T TT* =TT, (TT*y* = T**I* = TT*,
and (T+ Dy =T+ T =T*+T=T+T%
and finally (d) (7;7,)*=7,*1*=T,1; Therefore (I;7,)*=T77, if and only if
A

Theorem 6.3.2. The class of all self-adjoint operators forms a closed real sub-
space of Bda(H,H), and hence it is a Banach space.

Proof : If 0 and / denote the zero operator and identity operator, we have 0 and
I are members of Bda(H,H). Further 0* = 0 and I* = I; Now if 4 and B are self-

adjoint operators with a and  two real scalars, we have
(¢ A+ pBBY* =ad*+BB*=qA*+ pB*
=aA+ (B
Showing thereby that ¢4 + 8B is also self-adjoint.

Further if {4} is a sequence of self-adjoint operators over H such that

lim A, = 4 in operator norm, i.e. ||A,—A|—> 0 as n—> . Then we know that 4

H—ron

1s a bounded linear operator on Hilbert space. So that
|| A_A*” = || A_Af: ” +” A'n _An*H +” An *—4* ||

=\ A=A, | +]1(4, - 4|
=l A=A, [ +]| 4, - Al >0 as n—> .

Hence A = A* and A is self-adjoint.

Theorem 6.3.3. Let A be a bounded linear operator : H — H such that for all
x, y € H, <A(x), y> =0, then A equals to the zero operator and conversely.

Proof : For the zero operator we always have <0(x),y>=<0,y>=0.
Conversely let for all x, y € H, <4(x), y> = 0. Let us fix x € H and consider
<A(x),y>=0forall ye H. That means A(x)=0 in /, Now let x be free and we

see A(x)=0 for x € H; showing 4 = 0.

Corollary : If 4 15 a bounded linear operator : H — H satisfies < A(x), x>=10
for all x € H, then 4 is the zero operator.
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If x, y€ Hand @, fare any two scalars we have
O=<(ax+ By), ax+py>
=<aA(x)+ BA(y), ax+pfy> (4 isLinear)
—a@ < A(x),x >+ aff < A(x),y >+ & < A(y).x > +08 < A(y),y >

=aff < A(x),y >+ P& < A(y), x > other terms are zero by given condition.
Let us take or=1 and 5= 1, then we have
<A(x),y>+<Ay),x>=0 . (1)
Again take o =i and =1, then above gives
i<A(x),y>—i<A(y),x>=0
or, <A(x),y>—<Ay),x>=0 (2)
Adding (1) and (2) we deduce < A(x),y >=0, and now apply Theorem 6.3.3
for desired conclusion.

Theorem 6.3.4. Let T ¢ Bda(H,H) (I': H— H is a bounded linear operator).
Then T is self-adjoint if and only if < A(x), x > is a real scalar for all x € A (Hilbert
space).

Proof : Suppose T is a self-adjoint operator over H, and let x € H, we have

<T(xhx>=<x,T(x)>=<x,T*(x)>=<T(x),x >
Therefore scalar < 7{x), x > is a real scalar.
Conversely, let < T(x), x> isreal for all x € A

Then <7(x), x>=<T(x),x>=<x,T*x)>=<T*(x), x>
Thus <T{x),x>—-<T*(x),x>=0
o, <T(x)-T*(x),x>=0
o, <{I-T*)}{x),x>=0
This being true for all x in H, we conclude that
T — T* = zero operator
o, T=T%
ie. Tis a self-adjoint operator.
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Theorem 6.3.5. If // is a Hilbert space and T € Bda(H,H), such that T is self-

adjoint, Then || 7' || = sup |< 7 (x), x >|
[l+f]=1

Proof : If T is self-adjoint, it is ofcourse a bounded linear operator over /. Then
for any x with || x || = 1 in A.

|<T(x), x> <[ T x]l by C-S inequality,
UZ e AL T= 11

Therefore, sup |<7{x), x>|<||T|| oo 1)
[l =1

Let K= sup|<7(x), x>
[l+1s1

Now we show that || T||< K

If 7{(x) = O for all # with || #|| = 1 in A, then we see that 7 = 0 (zero operator),
and in that case we have finished.

Otherwise for any z with ||z || = 1 such that 7(z)#0, put v=./||7(z)|.z and

“":éT(Z). Then ||v|F=|w|?=||T(z)||. Let us now put ¥ =v+w and

I 7))

¥> =v—w. Then on straight calculation and using the fact that 7 is self-adjoint, we

have
<)y >—<T(), Yo >=2(<T(¥), w>+<T(w),v>
=2<T(2), T(2)>+ <TXz), z>)=4||T(D | = e (2)
Now for every y #0, and x :ﬁ, we have

y=llyllx and <T7(y), y>=|| p|* < T(x), x >|

<y I < sup |« TGu), u > = K || y|*.

lleel|=1

Now [<T(y), y >—<T () yo > <IKTO), yy > +I<T (), ¥, >
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<K@ I+ 1)
=2K(IvI +lw i)
=4K || T(2) ||
From here and (2) we get 4(|7(z)| <4K || T(2)||
Hence |[[7(2)||<K
So taking supremum over all z with norm | one obtains ||T||< K
together with K <||T|| from (1) we finally get |7 ||=K.

Theorem 6.3.6. Let T < Bdo(H,H), H being Hilbert space show that following
statements are equivalent.

(a) T*T =17 (Identity operator)
(b) <Tx),TG)>=<x,y> forall x, yeH
© IT()||=|lx]| forall xeH
Proof : (a)= (b). Let () hold. Then for all x, y € H, we have
<T*T(x), y>=<Kx),y>=<x,y>
or, <T(x), T(y)>=<xy>, (b) follows.
{b) = (c); suppose (b) is true. Taking y = x in (b).
We have <T(x), 7T(x)>=<x,x>
or, [|7(x)|I* =|| x|
or, [[TC)I=[lxIl

(¢)=(a); Then || T(x}||=||x|| gives || T(x)|]* =| x|

o, <IT(x),T(x)>=<x,x>

or, <T*{T(x)),x>=<xx>

o, <I*T(x),x>-<x,x>=0

o, ((I'*T-I)x),x)=0; Here we apply corollary of Theorem 6.3.3 to

conclude that 7*T -T =0 or, T*T=1.
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§ 6.4 EIGEN VALUES AND EIGEN VECTORS OF OPERATOR ON
HILBERT SPACE H.

Let 7 be a bounded Linear operator - H - H ie. T e Bda(H H).

Definition 6.4.1. A non-zero vector x € H 1s said to be an eigen vector
corresponding to a scalar A called an eigen value of T if

T(x) = A
or, T(x)- AI(x)=0 (I denoting Identity operator on H)
o, (I-AD(x)=0

Theorem 6.4.1. Let 7 : H — H be a self-adjoint operator. Then (1) all eigen
values of T (if they exist) are real, and (2) Eigen vectors corresponding to different
eigen values of T are orthognonal.

Proof : (a) Let A be an eigen value of 7 and x a corresponding eigen vector.
Then x#0 and T(x)= Ax.

Since T is self-adjoint, we have

A<x,x>=<Ax,x>=<T(x),x>=<x,T(x)>=<x,Ax >

=1 <x,x> where < x x>=|| x||* is *ve as x # 0, and this gives
1 =17 (since || x||>0) and therefore A is real.

(b) Let A and u be two different eigen values of 7, and let x and y be eigen
vectors (non-zero) corresponding to eigen values A and # respectively.

Then we have T(x) = Ax and 7(y) = uy. Since T is self-adjoint and eigen values
are real, we have

A<x,y>=<dx,y>=<T(x)},y>=<xT{y)>
=<x, jgy>=H<x,y>, Mbeing real
Since A # g we conclude that <x, y> =0 or, x¥ 1 y holds.
Theorem 6.4.2. If 7€ Bdor(H,H) such that T*7 =TT *, then if x is an eigen
vector of T with eigen value A, then x is also an eigen value of T* with eigen value
2, and conversely.

Proof : Consider the operator 7 — Al in A. Then
(T— AT = Al =(T - ADT*=A) =TT*—2I - AT*+| x|*,
and similarly (7 - A1)+ (T - A1) =T*T - AT*-AT+| Al* I
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Given 7*T =T*T . Therefore
(T—AINT — AIy* =(T— AD*(T—AI) puting T— Al =S
We have §S*=S§*§,
Thus for xe H, SS*(x)=5*S5(x)
or, <S§*¥(x), x>=<S5*S(x), x>
or, <S¥(x), S*x>=<S5(x), S(x)>
or,  [IS*®) =[S
oL (T*=AD)IF =T = AD() |
o |- |*=I(T* -2 D) |
o, ||T-Ax|=||T*-Tx]|.
This shows that 7(x) = Ax if and only if 7*(x)=1x.
Example 6.4.1. Let Z,[0,1] be the real Hilbert space of all square integrable

1
functions over the closed interval [0,1] with I.P. function <x,y >= _[0 x(t) y(Hdt as

x, ¥y L,[0,1].
Show that 7:7,[0,1]— L,[0,1] defined by I'(x)=yel,[0,1] where

y()=tx(t) m Q0<¢<] 15 a bounded linear operator which is self-adjoint having no
eigen values.

Solution : Here 7 is a linear operator because if x,y € L,[0,1]and if T(x+y)=z

where z(¢#)=t(x+ yXf), in 0<z <1, we have
TG+ y)1) = z(t) = t(x(t) + ¥()) = () + 0(1)
=Tx)O+T(yN) o<l
 T(x+y)=T(x)+T(y) and similarly for any real scalar &, T(ax)=a I'(x).
Further, 7{(x)}f)=t(¢) in 0<t <.
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L NTE P = I;t2x2(t)dt < 322{:2} j; ()t

=1|| x|I*;
Thus || T(x}|| <|| x||; that shows that T is a bounded linear operator in Z,[0,1].

T is self-adjoint. Let x, y e /,[0,1], then we have

<x.T(p) > = [, o0yt = [ () p(0)de

1 1
and <y, T(x)>= | y (00 x(O)di = |, (0 y()dl
Therefore <x, T(y)>=<y, T(x)>; That shows T as self-adjoint.

If A is an eigen value of 7, and a non-zero xe L,[0,1] is an eigen vector of T’
corresponding to the eigen value A , we have
7(x) = Ax
or, t(t) = Ax(#)  in 9<r<l
or, —Dx(H)=0 in 0<t <1
Since x is non-zero, we have 1 = Ain 0 <t <1, which is not the case. Thus no
such A4 is there, ie. T possesses no eigen value.

Theorem 6.4.3. Every bounded linear operator 7 on a Hilbert space H is equal
to a sum A + iB where A and B are self-adjoint operator in /.

Proof : Let us define 4 and B as follows :

_l * :i —T*
A==(T+T%), and B=o(T-T%)

Then A*:%(T*+T):A and B*=—%(T*—T)=%(T—T*)=B; So each of

A and B is a self-adjoint operator on / suchthat A + iB=T.

Remark : Representation of 7'as T=A + iB is unique. Because, Let 7= (C +iD
where C and D are self-adjoint operator on H; then T* = (C + iDy* = C - iD and
hence 7+ 7* =2Cand T - T*=2iD; Thus C=A4 and D = B.
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EXERCISE A

Short answer type questions

a, b
Find the eigen values and eigen vectors of (_ b a} b=0 and a, b are reals.

E

Examine if zero operator and Identity operator in a Hilbert space / are self-
adjoint.

If T is a self-adjoint operator in a Hilbert space H, show that for every natural
number n, 7" is self-adjoint.

If T 1s a self-adjoint operator in a Hilbert space H, and § is any bounded Linear
operator in A, show that S*7S is self-adjoint.

1 1
Show that (0 1] does not possess any eigen vector.

EXERCISE B

Given a square matrix A= ((aﬂ)) having eigen values 4, 4,,...,4,, show
HAH

that k4 has eigen values kA, kA, . kJ,; and 4% has eigen values

PR S

Let 7":1, —» 1, be defined by T(&,&,,.....)=(0,0,£,5,,.....) as (§,&,,...)el,,;
Examine if 7 is a bounded linear operator in /, and if 7 is self-adjoint in /,.
Show that in a Hilbert space H, 7}*T, =T,*7, 1f and only if || 7,(x) || = (| 5 (x)||
forall xe H.

In A if T is self-adjoint show that 7(x)=0 in A if and only if 7 T(x)=0.

Let 7': H— Hand W : H— H be bounded Linear operators and § = W*TW.
Show that if T is self-adjoint and +ve, so will be S.
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