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PREFACE

In the curricular structure introduced by this University for students of
Post-Graduate degrec programme, the opportunity to pursue Post-Graduate
course in any subject introduced by this University is equally available to all
learners. Instead of being guided by any presumption about ability level, it
would perhaps stand Lo reason if receptivity of a learner 15 judged in the course
of the learning process. That would be entirely in keeping with the
objectives of open education which does not believe in artificial differentiation.

Keeping this in view, the study materials of the Post-Graduate level in
different subjects are being prepared on the basis of a well laid-out syllabus.
The course structure combines the best elements in the approved syllabi of
Central and State Universities in respective subjects, It has been so designed '
as (o be upgradable with the addition of new information as well as resulis of
fresh thinking and analysis. '

The accepted methodology of distance education has been followed in
the preparation of these study materials. Co-operation in every form of
experienced scholars is indispensable for a work of this Kind. We, thercfore,
owe an ecnormous debt of gratitude to everyone whose tireless efforts went
into the writing, editing, and devising of a proper lay-out of the materials.
Practically speaking, their role amounts to an involvement in ‘invisible teaching’,
For, whoever makes use of these study materials would virlually derive the

benefit of learning under their collective care withoul cach being scen by the
other.

The more a learner would seriously pursue these study materials, the
casier it will be for him or her to reach out to larger horizons of a subject. Care
has also been taken to make the language lucid and prescntation attractive so
that they may be rated as quality sclf-learning materials. I anything remains
still obscure or difficult to follow, arrangements are there to come to terms
with them through the counselling sessions regularly available at the network
of study centres set up by the University.

Needless to add, a great deal of these efforls 18 still experimental—in fact,
pioneering in certain arcas, Naturally, there is every possibility of some lapse
or deficiency here and there. However, these do admit of rectification and
further improvement in due course. On the whole, therefore, these study
materials are expected to evoke wider appreciation the more they receive
serious attention of all concerned,

Professor (Dr.) Subha Sankar Sarkar
Vice-Chancellor
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UNIT : 1 a TENSORS

§ 1.1 Introduction

The concept of a tensor has its origin in the development of differential geometry
by Gauss, Riemann and christoffel. Ricei and his student Levi-civita developed
“tensor calculus’ also known as the *Absolute Differential Calculus®.

The main aim of “Tensor calculas’ is the study of those objects of a space
endorsed with a co-ordinate system where the components of objects transform
according to a law when we change from one co-ordinate system (o another. As
a result, the *Tensor Calculus® has its application to most branches of theoretical
physics. The word ‘tensor’ comes from the word ‘tension’.

§ 1.2 Transformation of co-ordinates :

A set of n real numbers x'. » where 1,2......, n are not the powers of x
but are the superscripts ol x, is caHed and n-luple nt rcal numbers and is denoted
by (x'......x") Such a set shall be called a point of an p-dimensional space. The
variahlcs are called the coordinates of the point. The set of all such n-tuple of real
numbers shall be denoted by 8. The corresponding co-ordinate system shall be
denoted by (x').

Let (x') be another co-ordinate system in §” which is related to (x') by

Ly *r=glleh un®), 1= T agin

where g'are the single valued continuous functions of x',........., x" and have
continuous partial derivatives of upto any desired order. Equations 1.1) are said to
define a transformation of co-ordinates. In order that the transformation be reversible,

it is necessary and sufficient that the Jacobian determinant formed by the partial
i

derivatives @shnuld not be zero. Under this condition, we can solve 1.1) for the
functions of x ‘and obtain

2).2 = Ml =5 awii® )

We shall refer to a class of co-ordinate tranformations with these properties as
admissible transformations.

Example ; Consider a system of equations specifying the relation between
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the spherical polar co-ordinates x" and the rectangular cartesian co-ordinates 3
in E* (3 dimensional Cuclidean space)

y! = x' sinx? cosx®
¥ = x! vinx? sinx?
¥ x' cosx?

3

il

The Jacabian determinant J formed from the partial derivatives is given by

I = @’N a}ﬂ 6yr
o' o o
&' &' &
& o o

= ') sim?

20ifx >0 0<x¥<xn

Thus x' = /(') + () + (3" e
3
PR o~ z
JOY + PP+

Exercise : Discuss whether x', x%, x* in the ransformation between cylindrical
polar co-ordinates x' and the rectangular cartesian co-ordinates 3 in £° namely

¥ = x! cosy’
y: = x' sinx?
i

yt =



can be expressed in terms of y!, »?, »*

xi= {yl]!+{'yl‘)1 ,Ij }D
Answer: !y’ = tﬂu-*i

% LA
x=y

§ 1.3 Summation Convention :

In writing an expression such as ax' + ax” + ... + a x”

We can use the shorl notation Z a.X'. An even shorter notation to write it as

=1
ax', where we adopt the convention that when ever an indes, appears lwice, once
as a superscripl and once as a subscript, we are to sum over the index form | to
n, unless otherwise stated. This is known as summation convention and the repeated
index is called a dummy index. An index occcuring only once in a given term is
called a free index.

From 1.1) We find that
1 !
%= -—%f il
=1 O
‘which by the Einstein convention can be wrillen as
i

1.3) ax' =ﬂ£aﬁ:”
(1Y

Az

Let us introduce the Kronecker delta, defined by

& = e
L4) &= L, k=
=0, k #j
Since the co-ordinates x' are independent, we can write
o'
1.5) ﬁﬁ:——j
ox



Exercises
1. Show that
i . —i
fx Ov _gh
' ot =

Noté : We shall consider some systems, denoted by e el e,
called the e-systems and defined as follows :

(i) 854’ =4" (i) 8/=n {m)

and e,

(e =en=u, =1, e, =—1 e =0 1=
I I i
e'=eP =0, &7 =1, " fif=12

1.6) i =Em =G = } Others being zero

Cin =8 = =
123 _ B 3
[ =

213 32| 132
4 =E =&

I} ; Uhe;shemg zero

§ 1.4 Contravariant Vector, Covariant Vector :’

A set of n functions 4’ ol the n coordinates (x', ¥, ... x") are said to be the
components of a contravariant vector if they transform according lo the equation

- o
A=A
1.7) P

on change of the co-ordinate system (x')to (¥'). Also, one gels from above.

— ot
18) A'=—4d
o
A set of n funclions 4, of the n coordinates (x', e x") are said to be the

components of a covariant vector if they transform according to the equation



Exercises

a4 -
I. Show that if 4 is a covariant vector, then -517" is notl a tensor,

2. If fis a scalar function of coordinates ('), then show that ' is a contravariant

vector and P is a covariant vector.
3. Prove that the law of transformation for contravariant (or covariant) vectors
is transitive.

4. Prove that there exists no distinction between contravariant and convariant vectors
when we restrict ourselves to transformation ol the type.

X = x"+h
Where b, are n constants which do not nccessarily lorm the components of

a contravariant vector and «) are constants (which do not form a tensor)

such that a)a, =38!

§ 1.5 Invariants:

Any function w of the n coordinates (x', x%, ..... ") is called an invariant
or scalar if
1L11) w=1
Where {i be ils transform on change of the co-ordinate system (x')to (¥).
¥ ¥ ax'
Note that —=————
ote that == o o

which transforms Iike 1.9). Thus P is a covariant vector. Such a vector is somctimes

called the gradient of ¥ and is denoted by grad V.

Example : Considering the equations 1.8) and 1.10), it can be shown easily
that the expression (4"B ) is an invariant.

§ 1.6 Second Order tensors, Higher Order tensors:

A sel of n? functions 4Y of the n co-ordinates (x rorne X") ave said to be the
components of a contravariant tensor of order two or ul type (2.0) if they

11



transform according to the equation.
SN
L1y A= g™
} atnlll axil
on change of the co-ordinate system from (x')to (¥')

From 1.12) on finds that

" - \
— A" =88 A™ by Ex. 1 (iii .
P s i woar }F X (”1} ﬂf§ 13}
Thus
N
: Ar.-r :_.4!:—_.—"—.'
Vil Pl
Similarly, a set of n* functions 4, of the # co-ordinates (x', ..... x") are said

to be the components of a covariani tensor of order 2 or of order (0, 2) if they
transform according to the equation.
aer gt y
afj 'E A

on change of the co-ordinate system from (x')to (¥'). In a similar way, it can
be shown that

1.14) A" =

. e it
1.15) A=A
) i &rl l‘a}.—"
A set of n? functions A;of the n co-ordinates (x', ..... x") arc said to be the

components of a mixed tensor of order two or of order (1,1) if they transform
according to the equation.

_ iﬁl ax”

16 A

L0 A= o o
On change of the co-ordinate system from (x')to (¥7)| In a similar manner, it

can be shown that

12



In general, a sct of n”' function 4} of n co-ordinates (x', ..... x) are said
Frinidy i

to be the components of a mixed tensor of order (p, q) if they transform according
to the equation.

i _—ly > H
1 IE] A’r'i il i _ft“.'v.llnr\2 oy, ﬂfrl o ! la_].nl r'}x i
v iy e dy LT F—" &r’"' 5}{"”'" 'ﬁjl E'JJ‘.:J"'

iy e

On change of the co-ordinatc system from (x')to (¥').

Exercises
Show that the Kronecker delta is a mixed tensor of order two.
2. If all the components of a tensor in one co-ordinate system are zero at a point,
then, show that they are zero at this point in every co-ordinate system.

Note : The result stated in Exercise 2 above, cnables us to define a »ero tensor
as follows :

A tensor, whose components are all zero in every co-ordinate system, is called
a zero tensor.

~§ 1.7 Algebra of tensors:

Ir z.‘f'ji':_':_:_'_"m and Br}i":'f"{:v are components of two tensors of type (p, q), then

A5 f"’%-_l' Bij:j.;_':’f , are the componenis of another tensor of type (p, ). Such a

tensor is called the sum (or difference) of the tensors A 'J',':"-"'“J“ and B J,:,._.::!:r{ and the

algebraic operation by which it is obtained is called the addition (or subtraction) of
the tensors,

If ¢ be a scalar, than ¢4 J: """ i i arc the components of another tensor of type

(p. q). The algebraic operation by which it is obtained is called the multiplication of
the tensor by a scalar. .

If 4 '”J.r;, and 8" are the components of a tensor of type (p, q) in the

same co-ordinate system then they are said to be equal if

A T B Freee il

Vil sty

13



If 4 ":I"':':“{‘ are the components of a tensor of order (p, q), p # 0. g # 0 then

'r‘nl
the quantities obtained by replacing any upper index, say i and any lower index,
say j by the same index i and performing summation over i arc the componenis

of a tensor ol type (p—1. q—l} The operation by which it is obtained is called
contraction.

I A} _:_:’ih and Bfl‘_" :‘: are the components of two tensors ol order (p, q) and

(r, 5) respectively, then A' !v' B "" is a tansor of typc (;:: I 1, g + 8). The

algebraic operation by which it is ul:rtamcd is called the outer multiplication.

By the process ol outer mutltiplication of two tensors followed by a contraction,
we get a new tensor, This new tensor is called the inner pmduct of the given
tensors and the process is called an inner umltiplication.

The alpebraic operations on tensors, namely, (i) addition, (ii) subtraction, (iii)
scalar multiplication, (iv) contraction and (v) outer mulliplication, constitute what is
called the tensor h lgebra on S" i

Note : All the operations defined in this article, relate to ténsors at the same
point only.

Exercises
. Show that the conlracted tersor A" is a scalar,

2. Show that the contraction of a tensor of order (2,3) is a tensor of order (1,

2)

3. Prove that the inner product of two tensors 4 and B/ is a tensor of order

(2.1).

4. Show that the tensor cquation. "8, = [0, where [ is an invariant and 0, arc
the arbitrary vector, demands thatl.

— ﬁ]h’ﬂ

5. 1f 4" and B, are the Components of a contravariant and covariant vector then
show lhdt their outer product is a tensor of order 2, Is the converse true?
Justify your answer.

14



Solution : 2. Let 4,,, be the components of a tensor of order (2, 3) in (x')

system. With respect to change of (x')to (¥') system, the given tensor follows
the following transformation ie.

41— g g o’ o i’ "

mp A et ot ™ " T

To perform the contraction, let us write | = n, then we get

e B o o
iy e ax-'“ arl '.afulll Eb—;.n' aful"

i o ' "
=‘)' —_—

o P by Exercies 1 (i, iii) of § 1.3
iy

This is the transformation of a tensor of order (1,2). This completes the
solution.

Solution : 5. From the definition of a contravariant vector it can be easily
prove that A'B' is a tensor of type (2,0) or, a tensor of order 2.

Converse Part : Lel us corsider two-dimensional Buclidean space B2 In E?
let us take a (2,0) tensor A defined by

Af= 1, il = i
i

Let, if possible, there exist two contravariant vectors (' and [’ such that 4" can
written as an outer product

=0, ifi =

of these two vectors, i.e., 44 = C'D..

Then ¢! = A% = 1limpliesC! =0

cip? = 412 =

@ impliey D* = 0, since €' # 0

Again C*D? = A% = |, but since D* = 0, therefore C*D* must be zero, i.c.,
A% = 0, which is a contradiction,

Hence A? can not be written as the outer product of two contravariant vectors.
This completes the solution,

15



§ 1.8 Symmetric and skew Symmetric tensors:

Il two contravariant or covariant indices of a tensor can be inlerchanged without

altering the tensor, then it is said to be symmetric in every pait of such indices.

Similarly if by interchanging two contravariant or covariant indices of a tensor,

each ol 1ts components is altered in sign but not in magnitude, then the tensor is
said to be skew-symmetric with repect to these indices.

Exercises

Prove that the symmetry (skew symmetry) properly remains unchanged by tensor
law ol transformation,

|
Show that a symmetric tensor of order two has atmost EH{HH} different

components.

|
Show that a skew symmetric tensor of order two has 5’?(?! ~1)| independent

components.

Show that a tensor of order two is expressible as a sum if two tensors one of
which is symmetric and the other is antisymmetrie.

If Uﬁ # () are components of a tensor of type (0, 2) and if the eguation
fu,+ gU, = 0 holds then prove that either f= g and U/, is skew-symmetric o
f= —g and U, is symmetric.

Ir A” is a skew symmetric tensor, prove that
{E_"IS: +8, Enj}Am =0

Il the tensors a, and g, -are symmetric and ', v are components of contravariant
veclors such that '

(a, — kg )u' = 0 ko 2k
(@, — kg =0
the prove that g u'v' = 0; auv' =0

Il a tensor 4 W' is symmetric in the first two indices from the left and

16



skew-symmetric in the second and the fourth indices from the left, show
that AW =1L

9. If4_ is a skew-symmetric tensor and B' is a contravariant vector, then show
that 4 B"B" = 0.

§ 1.9 Quotient Law :

Il the result of taking an inner product of a given set of functions with a
particular type of tensor of arbitraty components is known to be a tensor, then the
given functions will form the components of a tensor,

To explain it, let A (p, g, r) be a set of functions given in the (x') system, such
that the inner product of A(p, g, r) with an arbitrary tensor B is a tensor (.‘:J Thus
A(par) B =C,

Suppose in the (¥')system, the above equation is transformed to
Ay, w)B™ =C"

As B™and C"are given to the components of a tensor, using the transformation
law, we get

T E W&

Al Wi . e e
{h'.'l" W}a et A P ot "
G il ) i
= A(p,q.r)BY — =
(p.q.7)B; PR
from above.
— L 0| = ox' o’ dx”
B 4 A1, v, W).mmme e — A PG, #) — s =0
or B E}-"{ (uvu}aﬂ = I(p_gr] x"}

i

ax
: sty iih
Multiplying wi =

and using Exercisel (i, iiii) of § 1.3 we get
= ax" dx' ax”
IiAg {A{H.v, WJEW_E —A(Pst?sf'}é;:,;} =0

17
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since BY is an arbitrary tensor, we must have

= ax’ ox' ax’

Alu,v,w). —==A(p.q.r

Gty e (Prar)—;
ﬁﬂ af.l' ax.r

or A(t,q,r)= A(u,v,w), A

which is the transformation law of a mixed tensor of order (1, 2).

Exercises

Assume that A(p.g]ﬂw. = i where ﬂw. i5 an arbitrary tensor and & is a
covariant tensor of order two. Show that A(p,q) is a mixed tensor.

1.10 Conjugate Symmetric tensor :

Consider a symmetric covarianl tensor 4, of order (0,2) such that |A,,] #0.

Let us define

cofactoro of Ai"r'n|4j|
[4,]

W

1.19) 4’ =

[Then from the theory of determinants

A A%=1, j=k
={; 1k
i.e. we may write
1.20) 4,4" =8 by 1.4) of § 1.3
Exercises

Show that 47, defined in 1.19), are the components of a symmetric conlravariant
tensor of order (2,0).

18



% IfA-,;.-—'l'.]fnr i#]
# 0, for i =]

then show that A = 0, for i # j, Further,

1

A" = —  (no summation)

W

Note : The tensor AY defined in 1.19) is also known as the conjugate symmetric
tensor of 4 "

§ 1.11 Curvilinear Co-ordinates :
In the beginning of this chapter, we have considered an equation of type 1.1).

Let the co-ordinates x!, x?, x° be related to the rectangular cartesian co-
ordinates 3/, ¥, ¥’ by

=it #% 2N = L 3
Let x' = ¢!, where ¢/, is a constant and let x?, x* be allowed to vary. Then

¥y = d'(c!, ¥, ¥,

19



From above it follows that the point P()’, 3¢, ') will lie on a surface which will
be denoted by '

Similar situation will arise when we ﬁrill consider
x¥* = ¢? ¢’ being constant

and x* = ¢/, ¢’ being constant separately.

Let now x' = ¢!, 7 = ¢4, then.

Y =4, o x),

yl ¢1(c]1c2‘x3}
ie 4y =¢'(c'.c".x")
_}"3 Ej]l[ﬁ‘!,ﬁ'?,xl:l

Which shows that the functions ¢' are [unctions of a single variable and
hence we say that the point P(y', »%, ') lie on a curve. Such a curve, denoted

by

x"= ¢!, ¢' being constant, except for i=3 is called a x* - curve.

Similarly, we can define x’ curve, x| curve. These curves are also called
the co-ordinate curves and x/, x*, x* are called the curvilinear Co-ordinates of
the point P.

Note. The coordinate curves in this system of coordinates are the curved lines
and the name "curvilinear coordinates" is now justified.

~ Example. Spherical polar coordinates and cylindrical coordinates are the curvilinear
coordinates.

20



UNIT : 2 O RIEMANNIAN SPACE

§ 2.1 The Metric Tensor:

In the three dimensional Fuclidean space with Cartesian coordinate system,

the distance between tow neighbouring points, say (f',fz,fj) and

(3 +dx' ¥+ X" +dx’) is given by

ds* =(d')’ +(ax?) +(ax")
= dx'dx’ , say LA R

Such ds is called the lime element with respect ot orthogonal cartesian
coordinatie system.

MNote that the line element ds is an invariant, since the distance between
the two neighbouring points is independent of the coordinate sysiem.

This idea of distance was extended by Riemann, a German Methematician,
to a space of n-dimension. In this case we get

2.1) ds? = g_dx"dx" where

ﬁ‘
2.2_} £ =F§ are (functions of ( x") such that

23)  g=|g.|#0

The quadratic differemtial form g  dx™ dx", which expresses the distance
between two neighbouring points, is called a metric or a Riemannian metric
after Riemann, and g _'s are called the metric tensor or the fundamental

metric temsor. An n-dimensional space characterised by such a metric is called
a Riemannian space.

This is denoted by V". Riemannian geometry is that géﬂmetry which is based
on Riemannian metric.

21



Theorem 2.1: The fundamental tensor is a symmetric covariant tensor of
order- (0, 2).

Proof : Since ds* is an invariant and dx' are the components of an arbitrary
contravariant vector, therefore by quotient law we can at one say that

g, are the components of a covariant tensor of type (0.2).
Clearly,
g. =g, from22

Thus we claim that the fundamental tensor is a symmetric covariant tensor of
order (0, 2).

This completes the proof.

Let us define

cofactor of g, ing
) &y = 2 '

so that g% and g, are conjugate or reciprocal tensors i.e.

2.6) g 8,=0

In the same way, as done in the previous chapter, it can be shown that such
tensor g are the components of a symmetric contravariant tensor of order (2, D).
It is sometimes called the contravariant fundamental tensor.

Exerises

1. If g, denotes the fundamental metric tensor and g/ denotes its reciprocal tensor,
then prove that

glg, = 8

2. Prove that g is a symmetric contravariant tensor of order (2, 0)
3. Find the metric of an Euclidean space referred to

a) eylindrical and b) spherical co-ordinates.

22



Answer : (a) oy’ :{df’ ]2 +(f' )I(m'e’.f‘z)1 +(E' )1 sin® %7 [d‘f)

() ds*=(d@) +(7) (@) +(z') sin® ¥ (@)

Determine the metric tensor and the conjugate metric tensor in a) cylindrical
and b) spherical co-ordinates.

If the metric is given by
ds? = 5(dx'y + 3(dx?)? + 4(dx*)? — 6dx'dx? + ddxidx’

evaluate g and g¥

Answer: g=4,g'' =-2 7 =5,
a* =%, g2 =3 g% =. %,
3
g'=- 2
Show that

(gmg&_gmgm)gm.:{”_ljgm

For a V? in which

o0 gk, 2, = G, prove that

- u_ G iz F
=50 -2, 8= &= = §F =y
. g i

Solution : 3(a) For cylindrical co-ordinates, it is known that
yh=xbpoy x5, P = xVighn x4 P g
Thus,

dy' = dx' cos x* — x!' sin x* dx?

23



dy? = dx' sin x* + x' cos x* dx*
dy] = dxl
Hence from

ds2 =dx' dx', i=1,2 3
one must have
ds? = (dx' + (x')? (de?)? + (i)

Which is the metric of an Euclidean space referred to cylindrical co-ordinates,

§ 2.2 Associated Vectors, Magnitude of Vectors, Angles :

Let A f,:'_:':_:i:" be a given tensor of order (p, q). All tensors obtained from the
given one, by performing inner multiplication with the metric tensor g, and its
conjugate g are called associated tensors of the given tensor.

To explain it, consider a contravariant vector A4’ and a covariant vector B, in
(x') system. Define 4, and B’ as follows ;

2.7) 4,=g, A" and
2.8) B =g'B,

Then the associate to a given contravariant vector A’ is formed by lowering fits
index by the fundamental metric tensor g, and the associate to a given covariant
vector B, is formed by raising its index by the conjugate metric tensor g¥ . Also

29) gt A= At
Conequently, the associate to 4 s A*. Hence if 4 3 is the associate to A/, then, -

A’ 18 the assnciate_ to 4 T Thus, Af. and 4' and mutually associate.

24



Let A and B denote the magnitude or length of the contravariant vector 4| and

the covariant vector B, respectively. We define.
2.10) 4 = g A'A" and
2.11) B*=g*BB,

A vector with unity as magnitude is called a umit vector. In this
case
212) g4l =1= g B B,

A vector, whose magnitude is zero is called a null veetor. In that

Case
2.13) g, 4'4'=0=g"BB,

The angle 6 between two non-null vectors A" and B’ is defined as
follows

g,A'B’
Jg, 44’ \[g,B' B

2.14) Cosb=

Exercises

1. Show that the magnitudes of two associated vectors are same
f v

2. Show that T is a unit contravariant vector.
A

3. Prove that the icngth of a vector is invariant.

4, Prove that the necessary and sufficient condition for two vectors A', B to be
orthogonal is that g A'B' =0

5. If 0 is the angle between two non-null vectors 4' and B' show thal
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(g"-fgﬂ'.l = g.l,rlg_w )ArAJBFBq
(gr'f"'q‘ Alr) (gl.m.r‘ﬂrJ B )

sin‘f=

6. If p' and ¢' are orthogonal unit vectors, show that

(;;;-'m. Bu=FE. g” }ph p.f I?I qﬁr = 1

§ 2.3 Christoffel Symbols :

We now consider two expressionis due {o christoffel involving the derivatives of
the components of the fundamental i=usors g, and g'. The christoffel symbols of the

1% kindand the 2" kind are denoted respectively by [ij, k] and [“ and are defined

a5

: |(Bg; %x @5 ),
215} [;‘p.k]=5(é:§"-+¥f——a;iij l:l]"ld

2.16) {ﬁ} =g" [if.m]

Exercises
1. Show that the christoffel symbols defined in 2.15) and 2.16) are symmetric in
5
2. Prove that the necessary and sulficient condition that all the christoffel symbols
vanish at a point is that g;'s are constant,

3. Déduce that

o [ =2

og, og,
&

b) [, k] +[7: k] ==
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9 Ze——g{,}-g"{l)

d) {L.}:%(Iog.fg_), g#0
4. Evaluate the christoffel symbols of both kinds for spaces where
g, = 0, ifi # )
5. Calculate the christoffel symbols of the 2™ kind in
(a) rectangular  b) cylindrical and  c) Spherical
co-ordinates.
6. Evaluate [11. 2], [12, 2] in cylindrical co-ordinates.
Solution : 4. Since = 0, i # j, we have the lollowing cascs

Case a): i =j = k
o
[n,r]— 2 or

Case b): i =j, i=k [+ £k

Case ¢): i =k i#j k=]

Lo,
[U’:l_ 2 &t’"

Also

{H =g"[ij,m]=g"[ii.k], as g™ =0k#m

I r..
=Q_[U:‘E] as the co-ordinate system is orthogonal.
e ek
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5 1 Bg”

Case a): {n}=2—g_"§
I

Case b): {1}=5— %
= kk

Case ¢): {u}=2;—m%

3. b) The only non-vanishing christoffel symbaols are the following

{In} ==x' and [le} ={]2IJ :J:_q
we note that

= ox' ox'

B Erg o

On differentiating with respeet to ", we find

B, _%,; ox' ' ox &'x' o @'y

a i A + . : : T+ —
afm ax_k Eur ﬁf Ef” g!{ ﬁfal—_m arx—n g.f.l HE'I afmafm

Now from the definition

m: l(a‘_ilm“, + 6gh;n - ag{: ] .
AN ax" O

using the above result, one gets after a few steps

fr=—— Lt qor dd o &’x'  &x
2.1?} [fﬂ!ﬂn}:[Ik‘-j]_a}T'afﬂ 'ﬁm +g|_|r af.fa?m af:;

The existence of the second term on the right hand side of

2..1?) shows that the christoffel symbols of the 1 kind is not a tensor. Apain

g O OB
A~
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Inner nultiplication of both sides of 2.17) by the corresponding sides of the
above equation, we get

"y gy o ot et @t &
218} {!ul} ={:i'} GFT Iﬂf"" 'axq ** ﬂf’ afrlr ' axq
The existence of the second term on the right hand side of

2.18) shows that the christoffel symbols of the 2™ kind is not a tensor.

¥

Inner mulitiplication of 2.18) with — one gets
| A
2.1 9) ﬁ} ﬁm fire ﬁ.&' k aff T Eh._'m 7

§ 2.4 Covariant Differentiation of Vectors and tensors :

From the transformation law of a contravariant vector we know that

k
A = A*ﬂj
o

Differentiating with respect to x/ we get
od" oA ox" ot g O &
' K" o o o' ox" A

using 2.19) we find from above, after a few steps—

A KA T o ;
=afn 'ar! é-‘_{:’"}d E“axﬂ ‘_[f!-f}A

oA o fed - Yot o
or E?+{;}A =[ﬁ+{m]f{']§-,¥
Writing

aAk w ok
220) 4 =2 (3]
one gets from above
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A=A —. -
X" B

Which is the law of transformation of a mixed tensor of order (1, 1). Such a
tensor A’; is defined to be the covariant derivative of the contravariant vector
AL

Exercises

1. If A' is a contravariant vector, prove that

(‘Jllg_‘da)’ & =|g+'r'|

2

9
V’E‘ﬁx*

Such A; is called the divergence of the vector A' and is denoted by div
A", Thus

A =

2.21) div 4" = A,
2. Show that the the covariant derivative of a covariant vector with components
A4, 1s given by
- ax‘_.'ll ax"
Ao = o G T
where

2.22) A, = ;i_j— A}

3. Show that

64 4,
AT

The tensor 4, — 4, of order (0, 2) is defined as the curl of the vector 4, and
is denoted by 4. Thus

2.23) curl 4,= 4, — 4,

30



‘4, Show that the covariant derivative of a mixed tensor with components :4; is

given by

P i il r
A_;Jr:fi“ ox' ox' oOx

'”"_ar” .—&? 7 '_ﬁ*' , where
n

2.24) 4y, ==L+ A4 -4{0)

| or

5. Prove that the covariant derivative of the tensors & & and &' vanish
identically.

MNote : The above result is also known as RICCI’s Theorem.
& . _
6. Show that 'a—x;"{g,-,-ffﬂj] =A,B'+ 4B,

7114, =g, d', show that 4, =g, 4,

In general
aA- Hiisaily
¥ P = Ny SR e e e
225) Ayt =i b o)
g Nl I o e *
A e i Al -r:.rm{m}

§ 2.5 Riemann -christoffel tensor and its properties :
A further covariant differentiation of

A ’
4= 6x‘r ~4, {uf}

yields
(A,), =4,

and is knows as the second covariant derivative of the given covariant vector
4, Thus '
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o, ; :
(Af-;‘]’k = ark; = A, {-‘i'] -4, { ﬂ-‘}

bising 2.22) one gets from above

E}z/ 04 o "". EM,, it ’ .
. "i{u} ‘dlf‘axt {u} ax.-'{""1+ﬂ*{”}{m}

Ar’..f-" =M_ o'
SATRPORETES

It can be shown that

2.26) A ;—Ak=4,R, where

2.27) Rj =%lt§}*%!ﬂ+[ﬂ}{ﬂr}—{E}{'ﬁt],

is called the Rc_emann—chrismffcl tensor of the second kind or the enrvature
tensor of the Riemannian spacc. Applying quotient law, it is evident from

2.27) that R, is a mixed tensor of order (1, 3)

The associated tensor

2‘28} 'Rh_r',l'l' =|EMJR;’
is called the Ricmann-christoffel tensor of the 1* kind.

From 2.27) we find that

By =)= (o) + () - () )

lising Exercise 3(d) of § 2.3,- we find

L)) tee o)

2 '2 9) R::;r = A &\.J

buch a contraction defined by
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2.30) R, =Rl
is called a Ricei tensor,
The sealar eurvature R is defined by

231) R = g R,

A space [or which

2.32) R, = Ag, A being invariant at all points is called an Einstein
space,

Exercises

1. Show that

)  RL=0

i) Ry, =Ry
i) R +RY+RL=0
2. Show that
(Y Ry = = Ry G) By = = RGN R o= R il Rt R+ B

ki bk

0
Prove that the Ricei tensor is symmetric.

4. Show that for an Einstein space of dimension n 2 2

5, Prove that the scalar curvature of an Einsiein space is constanl provided
n>2

33
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UNIT : 3 0 CURVES IN SPACE

§ 3.1 Intrinsic derivative :

In the previous chapter, we have introduced covariant differentiation in a Riemannian
space. Such a concept is regarded as a generalisation of partial differentiation in
Euclidean space with rectangular cartesion co-ordigates, as in this case,

;oA
ot

for {'ﬂ} =0 (see Exericse 5 (a) of § 2.3)

We are now going to introduce another kind of
differentation which may be regarded as a generalisation of
p(t) ordinary differentiation in Euclidean space with rectangular
cartesian co-ordinates.

A space curve C is the totality of points whose co-
ordinates x’ satisfy equations of the form.

31) C: x= 4§ 1)

where ¢' are lunctions of a single parameter t.
The length s of the curye C from a point P |on C to the variable point P one

C, corresponding to the value ¢ and t respectively, is defined as follows.

i {}Tx‘ ﬂ:x"l
D elE

T

IConsider a tensor of order (p, q) with components A:',:;f* ,, say, such that

they are the functions of a single parameter t. Then the intrinsic derivative of such
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13) A

where comma (,) denotes covariant differentiation.

Hence the intrinsic derivative of a tensor of order (1, 0) and (0, 1) along the
curve are defined as respectively as

&4 dxt (a4 dt dAd' gyt
sy St S ) S (A
aAI arAr mdxk
3.5) E_:E_A"“{']__

clt

Exercises

1. Show that the intrinsic derivative of an invariant coincides with its total derivative.

2. Prove that the intrinsic derivative of the fundamental tensors and the kronecker
delta are xero.

3. Show that

df.‘ F
clt

I d i 1]
(1) E{H_,-,-A’AJ) =2g,4

d oA’ . DB
i) —(g,A'B")=g,— B’ +g,4 >—
(“} [,{II (gu } gﬂ- ﬁ; g.!Ir ﬁ.f

4. Tf the intrinsic derivative of a vector A along a curve C vanishes at all points
of C, show that the magnitude of A is constant along C,

§ 3.2 Serret -Frenet formulii :
Let a curve C be given by the equation
Al
where the parameter s measures the are distance along curve. The square of

the length of the elements of are of C is given by
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ds® = g, dx'dx’
lfrom where one gels

dx' dx’

: l=¢, —.——
> &y ds ds

T

showing that d_ is a unit vector.
s

Let P be a given point with co-ordinates ( x') and Q be a neighbouring point

with co-ordinates ( x' + ¢x') on C, corresponding to an incrementi ds in the arc.

Then the vector ({fp% is called the tangent vector and we shall denote it
by A'. Thus Y
dx’
; e
3.7) s
and hence from 3.6) we find that C
4

38) 1 =g MM

Taking the intrinsic derivative of 3.8)
with respect to s, we find
aA/

gﬁ.}.,f ES— = ﬂ

!

oA ; : i
Thus either o vanishes or is orthogonal to A'. Any vector which is orthogonal

to the tangent vector at some point of a curve is said to be a normal vector of
that curve at that point. Hence the condition that a vector p' be normal to C at P

is
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39) g, Mp =0

F

Thus il does not vanish, we dcﬁute the unit

§
; .
vector codirectional with 3 by p' and write it as

185
bl
3.10) p =

where x > 0 is chosen to make p ' a unit vector. The vector determined by

3.10) is called the principal normal vector to the curve C at P and x is called

the curvature of C at the given point.

Since p is a unit vector '

) g, pp=1

Taking its intrinsic derivative we find
Fi

i
3.12) gp a—i:ﬂ

We take the intrinsic derivative of 3.9 and on using 3.10), 3.11) we get

B
e
Using 3.8) we find

X

! a 3 i
gk ('gi‘”j }:ﬂ, since g AN = 1.

(B
Also from 3.9) and 3.12) we find g p [E*‘ﬂ‘j]:ﬂ

& f . :
Thus 5L+I A' is orthogonal to A’ and p' simultaneously Hence we
" A

define a vector y' by
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1( 8p’ ;
=—| —+ XA’
3.13) ¥ T.( o8 ¥ ]

where t is chosen to make v |a unit vector. The sign of 7 is not always positive
but we agree to choose the sign of t in such a way that (A, p, v) form a right
handed system i.e. :

3.14) e, M u' R* =+ 1 where

315) €=vE € E":EE and

121 .
enle " )=ey =, =41
) =€y =€y =0

The vector R is called the binormal of C at P and 1 is called the torsion
of C.

Exercises
1. Show that

D _g'"” &s By
.. R TY
i) T=€, AN _5-.5‘_
i) y= e A i, where A, p_are the associated vectors of A and p!

| 84, 1( 8, ]
¥ = — | = ?l.-
V). By x'ﬁs'ﬁf T(ﬁs A

6t

V) 5, = e M=
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, . Bak )
From Exercise 1 (iii) above, we see that — =—¢&" .;'L-',H';T

A

aat
317 —= —p*
s -

Thus the following three relations

(DA
as '
is £y
a—— =TV — XA
3.18) 5 ™v =X
iR
—=-1l’
@

are know as the serret - Frenet formulii for a space curve.

Exercises
1. Find the curvature and torsion at any point of the
) Curve: Cix!=ad, Xt =1, 2 =0
i) Curve C:x'=a, 2 =i, $hi= gy
where

dy? = (dx')* + (%' (d*)? + (dx)

[Answer : (ii) X= =

T =
g+ o +c
2. Show that the tangent veclor derived in Exercise 1 (ii) above makes a constant
angle with the vector (0, 0, 1).

3. Show that a space curve is a straight line if and only if ils curvature is zero at
all points of it.

4, Prove that a space curve is a plane curve if and only if its torsion is xero at all
points,

Solution : | (i) In cylindrical co-ordinates, it is known that the only non-zero
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christoffel symbols are {]u}=—x' and {'ﬂ]={1 ]=l

2 |
X

i

Now A" R Hence for the given curve C, the components of A

arc g A"A" = 1, we must have,

P

From serret-Frenet formula %‘ =axu’,

: r=12,3 we see that

gl | T .2
xul_ﬁl _dh +[| }lnrﬁr_z_d_?"l_’_{lnlhz%z_l

o ey ds dy e
xp?= 0 s w=0
Also,
gmr lm l" = 1
1 3
l.—=
a’ x
X=—y as k=0
a
A= (=1 0, 0)
Also from
i . op’
v’ — kA =§, r=1,2 3

it can be easily shown that

40
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1 F) 1
TH] —xA' = ﬂ", ™ —x) :_a_;_: THS - xA=40
After a few steps, it can be calculated that

t=0,a=(0,0, 1)

§ 3.3 Parallel Vector Field :

Consider a curve C given by 3.1) and a vector A localised at some point P
of C whose components 4’ are functions of t. If we construct at every point of C,
a veclor equal to a in magnitude and parallel to it in direction,
we obtairi what is known as a parallel field of vectors along
C. We say that the vector A suffers a parallel displacement
PAA along C if

2 A4l

o4
3119) E:{]

Exercises

1. 1f A" and B' are two vectors of constant magnitudes and undergo parallel
displacements along a given curve, then show that they arc inclined at a
constant angle. '

2. If (@l + bpr + cv') forms a parallel vector field along C, prove that

— —xh=0, @+xa—1c=ﬂ, d—c+1b=ﬂ, a,b, ¢ are scalars.
s ds ds
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§ 3.4 Helix:

Let
) £ A= )

il o
7/ be the equation of a curve which makes a constant

e angle o with a fixed direction o', where a'is a unit vector,

/ Thus
< 3.20) cosa = R.-,.-“i Al

Differentiating 3.20) intrinsically with respect to s

we get

' 5/
321) ga'p! =0ask # 0, E':hlj

Thus a'is orthogonal fo p' . But A’ is also orthogonal i . Hence ¢' must lie
in the plane determined by A' and. '. Consequently the angle between a' and v
will be 90° — o . Thus

cos (90° — ) = g a'v/

or 3.22) sino. = g a'v’

Again, differentiating intrinsically, we get from 3.21)
giaT ~ g,axM =0 by) 3.18)

or tsing — x coso = 0 by 3.20), 3.22)

X, .
orf = = faon = constant
T

We are now going to define a space curve called helix as follows :

A space curve is called a helix if the tangent at every point of it makes a
constant angle with a fixed direction.
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Exercises

Show from Frenet's formulii, that when % - constant and the coordinates are

cartesian,
yi’ = C}\j + B,

where C and b' are constant and also that tangent vector makes a constant
angle with a fixed direction.

Solution. In Cartesian coordinate system from Frenet's formulae we get

d_ii =k f .‘E - _-Ez.i_"
ds £ ds
dA' ~k
Therefore, we get y =- = =—a (say)

or, d\' = —adv' which implies v/ = c)A' + b,

1 o
where ¢ =—; and b' is a constant,

: T
Since: o constant = a (say), we get

d_'b’; = -fﬂ’ = -—akp‘ = —-gif-_.j'_f
ds - ds

So, —S('-'f +a4d')=0 which implies v + a)' is a constant vector. We denote
this vector by ¢’

Now ge'N = g (v + aNIN = a = constant,
This shows that A\’ makes a constant angle with a fixed direction £'.

This completes the solution.
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UNIT : 4 0 SURFACES IN SPACE

§ 4.1 Curvilinear Co-ordinates on a surface :

A surface § is defined, in general, due to Gauss, as the set of points whose co-
ordinates are functions of two independent parameters. Thus the equation of a
surface is of the form

4 s x=x" (' v, i=1,2, 3

where u', u7 are parameters, and (x') is the system of
rectangular cartesian co-ordinates.

In the remainder of this chapter, we ‘will study the properlies
of surfaces imbedded in a three dimensional Euclidean Space.
Tt will be shown that certain of these properties can be phrased
independently of the space in which the surface is immersed
and that they are concerned solely with the structure of the
differential quadratic form for the element of are of a curve drawn on the surface.
All such properties of surfaces are termed the intrinsic properties and the geometry
based on the study of this differential quadratic form is called the infrinsic geometry
of the surface.

Any point on a surface is uniquely determined dy u/,
u* and we can therefore call these quantities the coordinates
of a point on the surface.

Let us examine the geometrical significance of (u/,
u’). It w is kept constant and u’ alone varies, then the
point depends upon a single parameter and therefore deseribes
a curve. Such curve lies wholly on the surface and we
see that when we give # a series of constant values, we
obtain a family of curves on the surface. Thus u' curve is characterised by the
equation

4.2) u' curve : u? = constant.

Similarly, we have another family of curves, given by %/ = constant, along which
u® varies. Each of these is called a u? curve and it is characterised by the equation
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4.3) u? curve : u' = constant.

We shall often refer to the u' and v” curves briefly as the parametrie curves

and we shall call u', v?, a system of curvilinear or Gaussian coordinates of the
surface.

Note that the paramelric representation of a surface is not unique and there are

infinitely many curvilinerar coordinate system which can be used (o locate points on
a given surface s.

§

EXERCISES

On the surface of revolution
= ucosd, y = u sind, z = f(u)
what are the parametric curves?
On the right helicoid given by
r = (ucosd, using, c¢)
find the parametric curves for u = constant and ¢ = constants.
Ans, 1) U curve : (ucosk, usink, f(u), k = const.
peurve : (ccosd, csingl, f(c), ¢ = const,
i) (decosd, dsind, c¢) and
(ucosk, usink, ck)

4,2 The element of length and the metric tenson :

Let P and Q be two neighbouring points on a surface S with coordinates u*

and u® + du® respectively. We shall denote by x' and x'+dx!, the cartesian coordinates
of P and Q respectively in space. From (4.1)

o'
o™

44) d' =——au"

If we let ds be the clementary distance between P and Q then
ds* =) dx'dy’
i
and hence from 4.4) we must have

4:5)  dat= a“ndu“duﬂ, say, where
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o o
10 =2 omar

As discussed in § 2.1 we can show in similar way, that, a . 18 @ symmetric
covariant tensor of order two. The experession for ds? given by 4.5) is the square
of the linear element of C lying on the surface S and the right hand member of 4.5)
is called the first fundamental form of the surface.

If we denote the determinant

d,,| by a and define

cofactor of a_ina
4?] a™® = s :

, then
7

4.8) a"ﬂn‘ﬂr =&

and it can be proven that a*" is a contravariant tensor of order two. Note that

Eap™ '”'E':up g =¢, =0
4.9 v D
e™h= |- e
a

Exercises

1. F_*‘irtd ds® for the following surfaces :

) x'= g cos u', xt = aSinu', ' = *
i) x'= u' cos u? ¥ =u'Simd x* =0
i) x'=a cos u' cos u x* = a cos u'Sinu®, ¥* = aSinu'

where x! are Orthogonal cartesian co-ordinates.
Ans. i)ds’=a’(dv?) +(du? )9
i) ds? = a2 (du' ) +(u')’ (du?)’
iii) ds” = a? (du') +a” cos’ u' (du? )"
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§ 4.3 Angle between two intersecting curves on a surface:
p
H Let ¢, and ¢, be two intersecting curves,
intersecting at P on a surface S. I A% and p! be

two vectors in the derection of the tangents to 6.

Ci =
P *lu d : }Vﬂ » dl'l'u ”_l! - duli
and ¢, respectively, then ™y ds,, + Fy3) _“t"'rza
A

where ds |, and dxw' are the square root of the

linear element along w'-curve and v?-curve respectively.

Hence the angle 0 between the two directions is given by

du®  du®

cost = _——
4“-]} f’llll' ﬂﬂT{” d.‘_t'ﬂ]

If in particular, the vectors A%, pP are taken along the parametric curves, then,

for the u'-curve, du' = o, Consequently 4.5) reduces to ds;,, =a,, (du’]l'

and hence the unit vector A7, along u' curve is

du' du’ 1 1
it | L SR LD ot e
N [‘i“"m dsl] ['JE: ] vy
1 .ﬁ“

Similarly, the unit vector M, long wl-curve is Py = (2)
v

Exercises

1. If 8 is the angle between the parametric curves lying on a surface, immersed
in E*, show that

i
\/‘H\ﬂ; , VTP

and hence show that the parametric curves on a surface are orthogonal
if and only ifa,,=0

cosB = sinf =
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2. If A", P are two unit vectors such that the rotation of A%, pP s
positive, show thal, sin0 = € A p? .
3. Prove that the parametric curves on a surface given by x' = a sinu cosv,
x* = aSinu Sinv, x' = a cosu form an orthogonal system.

Hints : Find a,, and prove that a,, = 0.

§ 4.4 Geodesic on a surface

Let C be a curve given by ¢ : p® = p® (1)
and the length of the curve between the two points P and Q on it be given by

du”
4.11) s=| Ja,u o' dt, »®=
) f o YT

We consider all curves through P and Q. Of all such curves there is in general,
one and only one curve whose length from P and Q is less than that of the others,
Such a curve is called the geodesic joining P and Q.

Let ¢ be any curve in the neighbourhood of C joining P and Q and let it be
given by

4.12) C:5* =u"(1)+e0"()

where g is a function of t such that ®" = 0 at P and Q and £ is a number
of infinitesimal order. The are lenpth between P and Q with respect to the curve &
is given hy

= ; —g ==}
§ = J( ﬂl'auﬁu us di,
o

We now consider Euler’s equation for a functional in V7,

Ict = f¢(u“,zr“]cft, where ¢ is a function

and I = fib(zf" +en”, u"” +[:m“] dr, by 4.12)

By Taylor’s theorem

on® o™

ais 1 o
I= fdl(ﬂua“u)df"f‘ﬁjﬁ [mq ﬂ"f‘m" W ] dt, neglecting the other terms
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Thus T=1

o O . )
Ef(m ou” @ on”

= f ™ % dt+g f%fﬂ“ﬁt

Integrating the second integral by parts, we get

=g fm" % dt + a[%m“ ]Q £ [’ﬁ-‘i[ aidl Jm"dl

T ad} d a¢ i
4.13) Hence T~1=ﬂf{auq S dt | since w*(P) = 0*(Q) = 0.
If C is a geodesic, then T =] must be zero for all neighbouring curves through

P and Q i.c. 4.13) must vanish for all arbitrary values of the vector 42| along C.
Thus

f’i’tlﬂ']uﬂ
on*

d —_
4.14) Sl o

1t is called Euler’s or Lagrange’s Equation for function ¢

In our case
b= \Ja, 00" so
Bh _ 1 Oy g
au” 20 ou”
i‘i = l al:ll.lﬁﬂ
o’

substituting in 4.14), we get after a few steps

| : o bdb) -
4.15) ﬂuﬂuﬂ "‘[ﬁ'ﬁ'-“]*"?”l! =$?T‘“ua“ﬂ where we introduce the symbol
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1 aﬂﬂu 5‘3': a

If we define

4.17) {},}=0"[Br.c]
then 4.15) reduces to

u® + {ﬁ,]u”u" = l.ﬂ.uﬁ
2 b di

If we choose the parameter t to be the arc length s of the curve i.e. if we set
5=t
then ¢ = ik =1 and ﬂ =( and hence we must have

dt dt
du® +{ﬁ }d_un du’
ds® ‘" ods T dy
which are the desired equations of a pgeodesic.

4.18)

Auto-parallel curve : An auto-parallel curve is a curve whose tangent
vector field constituted by the tangents at each point of the curve is a parallel
vector field.

Exercises

1. Show that the peodesic are the straight lines when the coofdinates are cartesion.
Prove that a geodesic is an auto parallel curve,

3. Find the differential equations for the geodesic in
(a) Spherical and (b) Cylindrical Co-ordinates.

4. Find the peodesic on the surface
il=u! cosu?, x* = u' simu’, xX* =0

inbedded in E?, the co-ordinates x' are orthogonal cartesian

du' du? Y
Ans. F"‘{zz][? =0

dwt 2 d' du’
3 +—‘. : =0
s u ds ds
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5. Find the differential equations of the peodesic for the line element

ds? = (du)® + (sinu)’ (dv)?

5

A d H—Siﬂi‘.‘ cosu dv]z— 0
nswer : 5 el e

¥

2
—w+2+::t:!tnrd—u.im—J =)
ds’ as dy

§ 4.5 Gaussion Curvature :

On a surface S, where the metric is ds? =a_ du, du; the Riemann Curvature
tensor is given by

0 i o a | d i o o
'@{M}fﬁ?{ﬂw}Jr{ﬁﬁ]lm}_[ﬂﬁ”ﬂﬁ]
hnd the associated tensor is given by

Y i
Reps = 86aR s

We recall that, this tensor is skew symmetric in the first two and last two
indices. Thus

Ry =0= Rﬂﬂw

Ience every non vanishing component fo the Riemann tensor is equal to R

" i ]
or ils negative.

We define a quantity

419) k=R 4
a

ﬂnﬁ

Such a quantity is called the total curvature of the Gaussian Curvature of the
surface. Since only the metric tensor A, and its derivatives are involved in the
expression for K, it is an invariant property of the surface.

MNote that 4.19 ean be written as

4.20) R, =Ke 8,
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Since £, =2, we can also write 4.20) as

1
421) K= ERME“”‘E"E

Therefore, from equation (4.21) we oblain K is an invariant.
Also we know that R = a""‘ﬂ.m:L
= aﬂﬂaul‘-R

hofip
= 2K

EXERCISES

Il the co-ordinate system is orthogonal, then show that

1 a ( I- aﬂn & 1 aﬂ]l]
K:—- ' + T e
2a| ot \Ja ' ) o\ Ja au

If the line clement is of the form

ds* =(r.£u' )2 +a, (Q’HI)E , show that
1 &ay,

Rt 400
oy, (ﬂul)

Calculate the Gaussian Curvature for a surface with the metric

i) ds® = a’ sin’ u' (dﬂz]z +c.r1(a‘fir¢r2 )Z
i) ds’ =(du) +p?(dv)

|
Answer ; i) K e

| &
i) K :———]L-:
W S
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§ 4.6 Developable :

It has already been stated that intrinsic property of a surface depend on the
metric tensor of the surface and its derivatives. But the metric of a surface is a local
property and it may happen that two surfaces have the same metric.

Consider the following two surfaces :
1

I I 2 L s 3 a U
g: y=vcost, y'=usinu’, y =acosh”’—,
a

.0 ¥ =Vvicosv?, ¥ =v'sinv', y'=av’.
Then  ds” =(av') +{a+(v ) } (@)

If we put
3 4
Vl={(tf1)_—'ﬂ2} , Vi=u?,

then the two surfaces have the some metric. Thus we state :

If two surfaces 8, and S, be such that there exists a coordinate system with
respect to which the linear element on S, and §; arc characterised by the same
metric tensor, then, they arc said to be isometric and the transformation of the
parameters is called an isometry.

A surface which is isometric to the Euclidear plane is called a developable
surface or simply a developable.

Exercises

1. Prove the K =0 is necessary and sufficient condition for a surface to be a
developable.
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2. Determine whether the surface with the metric

ds* =(:f2]z(du')z+(u[)z(d:.-z)2| is a developable or not,
3. Show that the surface defined by

e f), R =), 2o
is a developable where f,, f, are differentiable functions.

§ 4.7 Geodesic Curvature :
Let C be a surface curve defined as
¢ :u" = u’(s)
where s is the arc parameter. Then

o ﬂiﬁi—f
® de T dy

: oAl
Following the line of thought as described in § 3.2 we get a,_l,ﬁu"‘a—z 0.
7

i O &l
[From which it follows that either =, orthogonal to 3 or T 0.
A%

o : ) .. OAL :

If 5 # 0, we introduce a unit surface vector 1 codirectional with "E-_._| and write

§ 5

1 A"
N=——

x, os
so that

&
4.24) e -"",,—Tl"

where x_is a suitable scalar. This scalar is called the geodesic eurvature of C.
We choose the sense of 1 such that the rotation (A7,n") is positive i.e.
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4.25) e Ant =+ 1
As

4.26) A= e, and 1 = ey,
we find that

ﬁ o
4.27) %:—xﬁ?ﬁ] by 4.24) and 4.25)

We may refer 4.24) and 4.27) as the Frenet formulae forthe curve C relative
to the surface. It is easy to prove

Theorem : The necessary and sufficient condition for a curve on a surface to be a
geodesic is that its geodesic curvature is zero.

Example : We are going to compute the geodesic curvature for a curve

s
Cint=yl, W= |
acosiy

bn the surface of the sphere

§:x' = a cosu' cosu’®
it = a cosu' Sinu?
x* = a sinu

whose metric is given by
ds* =a* (a‘u‘ )2 +a (cﬂsu’ )2 (r:a':.-l)2

IThen the components of the tangent vector is given by

' du’® 1
lu: = lljlz o £ : = (o,
( ) ( ds ~ ds I=e acosi,
The only non vanishing christoffel symbols are

1 &a .
'l T8 cogu) sinu,
{2]} 24" Bu i
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{’32} = #a;? = tan;.{] ={f.“}

hence from 4.24)

| 1
; = 1
x,n =%=%+{5}1*h‘ =—5tan 0y
xﬂll =i}
But
|
gt =4l am= m';”“

Exercises

I. Consider the surface of the right circular cone

S: 2! =o' con?
x? = u' sinud
_-L-J — -h']

and the curve C whose equation are taken in the form

C:u' =a
&

b 3
U =—, where s is the arc parameter show that

o

X, =

¥l

2. Show that the geodesic curvature of the curve u=c on a surface with metric

: 1 dn
2+t (dv) —_
b pi(dv)” s A
3. Prove that
SA% Sk
TIB v o I
O %= 5 o
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]

't in al
{_]I} kj‘r :En;l ?L- E

4. Deduce that the geodesic curvature x) of the ;' curve and x,”' of the ,?-

curve are given by

Hence show that, when the co-ordinate curves are orthogonal

B0 = 1 .B[IGEH”} K2 1 Ia[lngan}
: 2Ja5, Ay Eﬁ o'

5. . Show that the conditions that the ;!'-curve and the ;?-curve be geodesic are

{f,} =0 and {;2] =0 respectively.

§ 4.8 The tangent vector and the normal vector to a surface :

We are now going to investigate the properties of a surface in its relation to the
surrounding space. Consequently we are dealing with two distinet systems ol co-
ordinates, namely, the three curvilinear co-ordinates for the surrounding space which
we denote by x %% and the two curvilinear co-ordinates of the surface which we
denote by u?(0=1,2).There will now be tensors of the surrounding space and also
tensors of the surface. -
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Let & =% (zrr, HZ)

be the equation of a suface S imbedded in F°. If we take a small displacement

du® on the surface; the corresponding component of the displacement in space are
given by

4.28) dx' E"Tcm"
o

Now du' is a space vector and is surface invariant i.c. its components are
unaltered if the Gaussion co-ordinates alone are transformed. Similarly du is a
surface vector and is also a space invariant. Tence if’ we regard 4.28) first from the
point of view of a transformation of space co-ordinates and then from the point of

i

e

" i

view of a transformation of surface co-ordinates, we see that

| is a contravariant
space vector and also a covariant surface vector, so that, it may be represented by

ﬁxl'

4.29) x. =
} ID‘. 51‘”.

The line element in space is given by
ds’ = g_ dx"dx"

and that on the surface is given by
ds’ = auudu"dyﬁ |

using 4.28) and 4.29) we get

430) =g, xx

From 4.28) we find that

&' du

= — 1le
ds  ou™ dy
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431) A =xA"

This formula tells us that any surface vector 4«can be viewed as a space
vector with components 4' determined by

432) A =x A"

We shall refer to a vector 4 determined by this formula as a tangent vector
to the surface S.

Let A and B be two surface vectors drawn at P on 8 such that the rotation
|A, B is positive. The unit normal vector £ to the surface § is orthogonal Lo both
A and B and is so oriented that (A, B, &) form a right handed system i.e.

4.33) g,=A'BE" =+

_AxB ;ixﬂ_ .
4.34) E’_IAKB_. |AIBIS."HG where 0 is the angle between

them

As the point P(u' u?) is displaced to a new position

Q(”' + ol 4 +a’:r1]1- the vector £ undergoes a change

4.35) fff,.-'-%d”“ =E&du",| say whereas the position
vector r is changed to the amount

4.36) dr= r,duf, say, then
437 didr=E, .!hdu“d‘u']

if we define
|
433) IIETr:ﬁ =_E(E.mr|! +£‘|:|r|1)
khen 4.37) becomes

4.39)  dEdr=bgcdu"du’
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The left hand side, being the scalar product of two vectors, is an invariant.
From the quotient law, hnu is a covariant tensor of order (0,2) and is symmetric
from 4.38)

The quadratic form
4.40) B =b,du"du

introduced by Gauss, is called the second fundamental form of surface. It

plays an important part in the study of surfaces when they are viewed from the
surrounding space,

Exercises

1. Calculate the second fundamental form
1) for the right helicoid given by
. r = (ucosv, u sinv, cv)
ii) for the paraboloid given by
= (u, v, 8- »Y)

- ; 2c
Answer i) B="m
2| ()’ ~(av)']
ii) B=- ; -
(4u” +4v" +1)"

§ 4.9 Tensor Derivative :

Consider a curve C lying on a given surface S, with parameter T, If A’ is

a space vector, defined along C, we can compute the intrinsic derivative of A
namely

EAH dAI dxﬁ'
_—= + 4 A"I =
& dr * Ul dt

where |, [;} refer to the space co-ordinates x' and are formed from the metric
co-efficient g,

Again, if we consider a surface vector 4= defined along C, we can form the

60



intrinsic derivative with respect to the surface variables, namely

d4d®  dA4" du'
=—+r: {;r} A”_
dt dt dr
where “{ﬁr} are formed from the metric co-efficients aul,iassociaiﬂd with the
surface coordinates
A geometric interpretation of these formulas is at hand where A'land 4= are

A o4
such that §—={] and
ot of

=0

In the first case, the vectors 4 form a parallel field with respect to C, considered

as a space curve, whereas in the latter case, the vectors 4« form a parallel field
with respect to C regarded as a surface curve.

Consider next a tensor field I, which is a contravariant vector with respect to
a transformation of spece co-ordinates ' and a covariant vector relative to a
transformation of surface coordinates ,o. If I, is defined along C, with t as a

parameter, then L is a function of . We form an invarant @(r) = L, 4 B*

where A, B" are the parallel vector ficld along C, as explained earlier.

d{p(r) d'ﬂﬂ i d‘ri [ 1 {:h’fj
Then we must have Ty - [? ty {_fr} L, o {u-r} L. 78 A B

By Quotient Law, the terms within the bracket is a tensor. Such a (ensor is

called the intrinsic derivative of L, with respect to t and we write

ﬁL-I' aﬂu ) {fx* [ 'dHT
san) =gt G

oL, & . i’
‘-[%‘FK “’F}EHE_" {ﬂr} LL]T:;_
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T

Since is an arbitraty surface vector, we conclude that

I ] a v} f Pk f i
442} ‘r":q' = ?4_3 {,r&} L:c"r"f Ta {lrr] Lﬁ
is a tensor. We shall call Ly » the tensor derivative of L/, with respeet to T

et us take the tensor derivative of x! | defined in 4.29).

We find that

? ox' 1 Oxd Ay ix’
JL‘I:!H:—' '{1}‘_' _[T }_..
booueu® Vg aut, VP pyt

o o M : S =g
from which it follows that Xap = Xn

i

From the ﬂﬂuaﬂﬂn A = E

We find that

NP

443) gm.lrxm I[:I + Emn® xﬂ-'f =0

.y o
Interchanging o, B, | cyclically, we get

m_.n

4*44) gmxr',’fux;' +gru-'l'xll xﬂff =0

4'45) lEerx':'rrﬁxl: + gmﬂx;nx:.ﬂ = ﬂ

|Adding 4.44) and 4.45) and subtracting 4.43) we pet,

4.46) g, 3" X' =0

o Ty

This result, interpreted geometrically, means that X,y from the point of view of
the space coordinates is a space vector orthogonal to the surface and hence it is

codirectional with the normal vector £'. Consequently there must exist quantities

b,y such that
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447) x,,= boE

The equivalence of this definition, of the tensor buﬁ| that given in 4.38) can be
proved after a brief calculation. '

Such equations are known as Gauss's formula,
Note that

gbe =1

and hence

g@rrE;.fr;E.‘j =0

This equation shows that £, | is orthogoral to the unit normal &'and hence it lies

in the tangent plane of the surface. Accordingly, it can be expressed as

4.48) 1‘5,_'E=cﬂxa
where ¢? 5 are to be determined

As &' is normal to the surface g,&'x; =0
Taking its tensor derivative and using 4.47) and 4.48 we get
umc; + hur, =0
4.49) ¢f =-a"b,
consequently 4.48) reduces to
450) &, = —a“ﬁbunxlg

These equations are known as Weingarten's formula

If we write

451} Cop = g_f.«'E.uj..nEJ;.I?-

we sec that ¢, is symmetric tensor of order (0,2) and we call the quadratic

form
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4.52) C=cydudi®

the third fandamental form of the surface.

Exercises
1. Show that

1 it
e i -z 16 i ik
'bull =8y Xap E.l = E BBy Xap XY

2. If the space coordinates are rectangular Cartesian, show that

1 azxa .
Bt iy
T3 1 2

- Ja " ouou®

3. Tf g™ is the cofactor of b in |b;|, divided by |b.|l show that,
I3 o s i

T p"ﬁE_'"ﬂ
4. Prove that a™x}, =2HE'
where
' |
4.53) H-= Eﬂaﬂ'bul, is called the mean curvature of the surface

5. b, =0 identically, then show that the surface is a plane.

6. Show that a surface is a sphere if and only if the second fundamental form is
a non-zero constant multiple of its first fundamental form.

7. Find the mean curvature of the surface
) e

i) r=(wva’ =)
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§ 4.10The equations of Gauss and Codazzi :

Taking the tensor derivative of the equation 4.47) we get
¥ oy = Dap 8 + B8 .Y
Using 4.50) we get

f - e no i
Xy = Byp:6 —Dapd b X,

i - . = - i e =y il i
xﬂ_ﬂ',.' xn,ﬂ;‘. ('buﬂ,y bu-;.ﬁ)& +buya bpdlxu hrxl‘l-” bpl'lr'rn

= (Bugiy =By )& +(b, 0" b, — bab,, ) X,

IApplying Ricei identity

i 1 __ pd
Yagy = Vo = Ripy¥a

where R7,

is the Reimann Curvature tensor of the surface, then (4.53)
4.53) R:'M::c; = (bﬂﬂ-'f _b"nl‘ ]a‘ +{bura'mhuﬂ "brxr-”wbpr )x;

Multiplying 4.53) by £, and using the fact that

lE.Iiigr = l?x:sa,l = ﬂl

we find from above

4.54) by, —byp=0

These equations are called the Codazzi Equations of the surface.

Again, multiplying 4.53) by g&,xﬂ we get

b

el

R®, = d by @by —a,.b,ea"b,,

oy = po™ iy u‘i}_apu' ift

Therefore,
4.55) R = By — boybup,

[Chese equations are called the Gauss’s Equation of the surface,
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It is known that the only non-zero components of Roop; are R, and its

negative. Thus there are only two independent Codazzi Equations and only one
independent Gauss's equation, namely

4.56) 'E’H.Z_bll.lzﬂ and bn.l_b'z:.z =0
and
4.57) Ry =byby—b"=b where b=[p,|

Hence from 4.19) we see that

b
458) K=-
a

If at every point of a surface
H= l “p =0
4,59} _Ea ofl =

we say the surface is minimal and H is called the mean curvature.

Exercises
I. Show that the right helicoid given by
- V' =u'cos®, y=u'Simi’, ¥ =cu?
fis a minimal surface.
2. Prove that
C-2IIB+KA=0
where the notations have their usual meanings
3. Show that

a"C, =4H* -2K

4. If 3= is a unit vector of the surface, show that

K =2HbA"0F — ¢ A AP
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5. Find the Gaussian Curvature at the point (2, 0, 1) of the surface

(') —(x") =4x’

" ; 1
where x' x* x’ are rectangular Cartesion co-ordinates. [Answer :=——]

6. Show that

'i') gmut:lm g Ml = -cﬂ:ﬂ

i) &gy = —Cg& — 0" b %y

. RS-
i) @™, =—(4H* -2K)E" ~2a “gxﬁ

§ 4.11The Curves on a surface
The equation of a surface is given by
Sex =x(utu®)
and the equation of a curve ¢ lying on S is given by
ciu" =u"(s)
Hence
x' =x' (' (5).4 (5) = x'(5)
iis the equation of ¢ regarded as a space curve
Taking the intrinsic derivative of both sides of 4,31) we get
8% odh .. DAY
._=x1:|:|'!._?i" +x1:r
o8 " ds os

or xu = buﬂ?;‘lﬁl“ +x,%.6"

4.60) xp =:‘Juﬂ?'."lﬂf_“ el
Let © be the angle between the principal normal ' and the surface normal &'
Then cos 0=g&p'
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Hence from 4.60) we find that
'xg.l:fE:p'Jl = huﬂlmlﬂgr'j&:!féi +I,;E.;jg{-,--u§‘
4.61) x cosO=bh A A"

From 4.61) we sec that the quantity b,,A"A"|is the same for all curves of the

surface which have the same tangent vector 3 * and consequently x uns{}| is also the -
same for all such curves. We have therefore

Meusnier's Theorem : For all curves on a surface which have the same

tangent vector, the quantity xcosf has the same value, where 0 is the angle

between the principal normal and the surface normal at a point on the curve
whose curvature is k.

The quantity x cosB is called the normal curvature of the surface in the
‘direction 3* and we write it as

Xim = hu”l"l[‘
s oy
_ b du"du®
ds* .

G i b pedu” du’
104) e - agdu®di®

Exercises

I. Find the normal curvature of the right helicoid.

2. Prove that the normal curvature in the direction of the co-ordinale curves are
by, /a, and by, /a4,

3. It a curve is a geodesic on the surface, prove that, it is either a straight line
or its principal normal is orthogonal to the surface at every point and conversely.
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2edu dv
\/uz +c' {(du}z +{ut+c’ )}

AN X,y =~

§ 4.12Principal Curvatures :

From 4.62) we that the normal curvature at a point depends on the directions
du', du’. We shall now find out the directions du', du* for which x  has the
exireme values. These dircctions are called the principal directiuns] at the given
point and the corresponding values for x , are called the principal curvatures, Let
us denote k by k,, for the principal curvatures.

Now 4.62) can be written as

bdu®du® —k a dud® =0

Differentiating with respect to u* we get for the principal directions

4.63) (b — X0 )" =0

The above set of homogeneous equations will possess non-trivial solutions for
A" if and only if the value of x_ are the roots of the determinant equations.

=0

[buﬁ =K ap

a.b, +ab,-2a.b, b
or ktm!—}ﬁm - “; Hﬂz“‘E:a

4.64) k[p],—sz +K=0

[

We shall denote the two roots of £, by k, and k., and call them the principal
curvatures of the surface and the directions corresponding to k and k, are called
the principal directions on the surface. Thus

4.65) kg +hay =2H

and k{ukm:, =K
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[From 4.63), it follows that the principal directions Ay Ay + 52Y, corresponding
to x,, and x,, respectively are determined by

168 {(bau_xu]“'uﬂ)?‘?n =0
(bna!_ [z;"un)?"?z] =0

Multiplying the first of 4.66) by the A, and the second by A% | and then
subtracting we get

- ol _
(xm Xy ]anﬂ‘]“llh;"tzﬁ =0

A point at which Xy = me is called on umbilic point. Thus at all other points
ﬂun;'“:tn?"{jzl =0
and we state

Theorem : At each non-umbilical point of a surface there exist two multually
orthogonal directions for which the normal curvature attains its extreme values,

A curve on a surface such that the tangent line to it at every point is dirccted
along a principal directions is called a line of curvature.

From 4.63) we pet
bph? = %y, A"
when a=1 bEBlE' =i
when =2 hm?.,ﬂ =X, maznlr'
Thus eliminating Xy e get

byydid® _ byau’
i chd” = dypdut”
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1
4.67) (b,a, —b,ia“){du’) +(by,ayy = byya,, ) du'du’

+( b,y —buay }(‘ml ]2 =0

The above equation is the equation of the lines of curvature of the surface.

Exercises

1. Show that the parametric curves are the lines of curvature if and only if a,, =b,, =0

2. Show that the lines of curvature on a minimal surface form an isometric system.
3. Prove that the lines of curvature on a surface are given by
e%a_b. du"du® =0
y L
A surface is called a surface of positive curvature il at all points, the Gaussian
Curvature K is positive.
A point on a surface is called elliptic if K> 0

A surface is called a surface of megative curvature if at all points, the
(GGaussian curvature K is negative.

A point on a surface is called hyperbolic if K <0
A point on a surface is called parabolic if K=0

Example : The right helicoid is a surface of negative curvature.

The directions on the surface given by the equation b,A"A" =0

are called the asymptotic directiuns] and the curves whose tangents are asymptotic
directions are called asymptotic lines of the surface. -
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Exercises

1. Show that the torsion of an asymptotic line equals 4./ where K is the
Gaussian curvature of the surface.

2. Prove that the parametric curves on a surface are asymptotic lines is and
only if b, =b,; =0 and show that

K=—£ He_tb: & H
a’ a b, K
BOOK FOR REFERENCES
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Unit 1 OGraphs and Digraphs

Structure

1.1 Graph

1.2 Directed Graph

1.3 Worked Out Exercises

1.4 FExercises

1.1 Graph

We define a graph| G (undirected) as a triple (V, E, y), where
(i) V is a finite non-empty set whose elements are called vertices,
(i) E is a finite set (may be empty) whose clements are called edges, and

(iii) y is a function, known as incidence function, which assigns to each edge an
unordered pair {vi, vj} of vertices.

Observe that v; and vj may be the same and when [ is empty, y is empty. Some
authors use the notation (V, L) to denote a graph with the tacit understanding that
every edge is associated with two vertices (may be the same).

Let G = (V, E, ¥) be a graph and y (ex) = {Vi., vj}. Then we say that the edge ex
is associated with the vertices vj, vj and thal vj and vj are adjacent. v, vj arc called
the end points or, end vertices of the edge eg. A vertex vj and an edge ey are said
to be incident with each other il vj is an end point of ey

Geometrical representation of graphs : Generally graphs are represented by
means of a diagram in which the vertices are represented as points or, small circles
and each edge as a line (may not be straight) joining the adjacent vertices.

Example 1.1.1 Consider the graph G = (V, E, y) where V = {Vi. Vo, V3, V4, Vs)s
E = {e, € o €1} and y is defined by y (e1) =y (e7) = {V1, Va}, '
v (82) = ¥ (e10) = Vi va}s ¥ (e3) = {va. va}, v (Ba) = {v4, Vs
v (es) = {va, vs}, ¥ (eg) = {va, val, v (eg) = ¥ (29) = {Va, V2
¥ (en) = {va: Vat.
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This graph may be represented by the following diagram ;

Fig. 1.1.1

Observe that the diagram may be drawn in different ways. The way the diagram is
drawn is not important. In the diagram we.only show the vertices and the edges and the
incidence relation between them,

For a graph G we now define the following terms :

Parallel edges : If two or more edges are associated with the same pair of distinet
vertices, then these edges are called parallel edges. In the graph in fig. 1.1.1, the edges
¢y, &7, and e, ey are parallel edges, since y () = Y (€1) = {v, va} and y (e5) =y (eyg)
= {v. v3}.

Adjacent edges : Two non-parallel edges are said to be adjacent il they are incident
with a common vertex,

[n the graph in fig, 1.1.1, the edges e, and €, are adjacent since they are incident with
the common vertex v,. But e, and e, arc not adjacent since they are parallel edges. Of
course, there are several other adjacent edges in the graph in fig. 1.1.1.

Loop : If ¢; be an edge such that y (¢j) = {vi. vi}, then ¢; is called a loop (or, self-
loop) on the vertex v;. In this case, the edge ¢j has the same vertex as both its end points.

In the graph in fig. 1.1.1, the edges ey, eq, ¢/; are all loops. Both the loops ey, e,
arc on the vertex v, whereas the loop e, || is on the vertex v;.

Isolated Vertex : A vertex is called an isolated vertex if it is not adjacent to any
vertex.
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The graph in fig. 1.1.1 does not contain any isolated vertex.

Simple graph : A graph that does not contain any loop and any parallel edge is called
a simple graph.

Example 1.1.2 Consider the graph G = (V, E, y) where V = {v,, ....., w4},

E = {ey, .. eg} and y (&) = {vi, va}, v (e2) = {vi. va}s 7 (&3) = {va. vu},

¥ (e4) = {v3, v3}. G can be represented as :

€

¥y Va
€7 - &3
¥y Vi
G
Fig. 1.1.2

G does not contain any loop and any parallel edge. Hence it is a simple graph.
Example 1.1.3. Let G = (V, E, y) be a graph, where V = {v{, ...... vg}.

E = {e}, ..., eq} and y (&) = {vy, Va}. ¥ (€2) = {va. va}, ¥ (€3) = {v3, Vu},
¥ (e4) = {v4, vi}. Then G can be represented as in fig. 1.1.3.

Vi - V4
+Vs
€ €1
"V
Va & Vi
G
Fig. 1.1.3

We see that G does not contain any parallel edge or any loop. Also, the vertices vs
and v are nol adjacent to any vertex, Hence G is a simple graph with two isolated vertices
vs and vg.
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Null Graph : [f a graph G = (V, E, ¥) be such that £ = ¢ (empty), then G is called
a null graph.

For example, the following graph in fig. 1.1.4 is a null graph.

V2
@
V) @ . ® V]
@V,
L L]
Vg Vi
Fig. 1.1.4

Observe that in a null graph every vertex 1s an isolated vertex.

Degree of a vertex : Let G be a graph and v;, a vertex of G. The degree of v;,
denoted d(v;), is the number of edges incident with v;, where a loop at v; 15 assumed
to contribute two to the degree of v;.

For example, in the graph 1.1.1, d(v,) = 4, d(‘r’z} 8, d(vs) = 6, d(vs) = 2, d(vs)
= 2. Observe that a vertex v, is an isolated vertex if and only if d(v;) = 0. Thus, the
degree of every verlex in a null graph is 0.

Odd vertex and even vertex : A vertex v; is called an odd degree vertex or,
simply odd vertex if d(v;) is odd and it is called an even vertex if d(v)) is even. In
the graph 1.1.1 all the vertices arc even whereas in the graph 1.1.2, the vertices v;
and v, are odd.

Pendant Vertex (or, end vertex) : Let v; be a verlex of a graph G. v; is called
a pendant vertex or, an end vertex if d(v)) = 1. In the graph 1.1.2 the vertex vy is
a pendant vertex.

Degrec-sequence of a graph : If we list the degrees of all the vertices of a graph
G in non-decreasing order, we get the degree-sequence of G. For example, the graph
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1.1.1 has the degree-sequence (2.2.4,6,8). Different graphs may have the same degree-
sequence. For example, the following two graphs G and G, are different even though they
have the same degree-sequence (2; 2,8, 2,2, 2.,

hd| Vs

4 ¥i . Vi

¥ Va V¥4

V3 () vy 'Gz
Fig. 1.1.5
Regular graph : A graph G is called a regular graph if all ifs vertices are of equal
degree. If the degree of each vertex of G is p, then G is called a p-regular graph. The
following graph in fig. 1.1.6 is a 3-regular graph,

€
i ¥z
=]
€3 =]
S
v V-
4 % k|

Fig. 1.1.6 (3-regular graph)
Basic Properties of a graph : We now consider a few basic properties of a graph
in the form of the following theorems.

Theorem 1.1.1 : The sum of the degrees of all the vertices in any graph G is
twice the number of edges in G.

Proof : Let G be a graph with n edges. If € is a loop on the vertex v;, then il
contributes two to the degree of v;. If e is incident with two distinct vertices v; and
vj, then e contributes two to the degree-sum, one for the d(v;) and one for the d(v;).
Hence, the sum of the degrees of all the vertices in G is 2n i.e., twice the number
of edges in G.

This result is known as the handshaking lemma.
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.Curullary 1.1.1 The sum of the degrees of all the vertices in any graph is an even non-
negative integer.
| Corollary 1.1.2 I G is a p-regular graph with n vertices, then G has %pn edges.
Theorem 1.1.2 In any graph the number of odd vertices is alway even.

Proof : Since degree-sum of all the vertices is an even integer and the sum of odd
number of odd integers is odd, it follows that number of odd vertices in a graph must be
even.

Theorem 1.1.3 4 simple graph with n (= 2) vertices must have at least two
vertices of equal degree.

Proof : Let G be a simple graph with n(= 2) vertices v, .....,v;. Since G is simple,
it has no loop and parallel edges. Henee d(v;)) <n-1, 1 =i, ..., n. If possible, let
all d(v))’s be dillerent. Hence the n vertices of G have the following possible
degrees: 0, 1, 2, ..... ,n—1. Let d(v;) = 0 and d{vj] =n- 1. Then, v; is an 1solated
vertex and v; is adjacent to all other vertices including v;. So, v; cannot be isolated,
This contradiction proves the theorem.

Corollary 1.1.3 There does not exist a simple graph with n = 2 vertices such that
all the vertices are of different degrees.

1.2 Directed Graph

By a directed graph G, briefly called a digraph| we mean a triple (V, E, y) where

(i) V is a non-empty finite set of vertices, |

(ii) E is a finite set (may be empty) of directed edges or, arcs and

(iiiy y : E —» V = V, is a function that assigns to each arc e an ordered pair
(vj, v;) of vertices,

We shall use the term ‘are’ for a directed edge. Observe that v; and v; may be
the same, I y(e) = (v;, v;), then v; is the tail or the starting vertex and v; is the head
or the terminal vertex of the arc ¢. An arc is said to be directed from its tail to ifs
head. A directed praph is represented pictorially in the same manner as an undirected
graph, the only exception being that if y(e) = (vj, v;), we put an arrow on' the edge
e directed from v; to ;.
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Loop : An arc e of a digraph is called a loop if the tail and the head of e are the
same.

Example 1.2.1 Let V = {vy, ..., 4}, E= {e}, ..., g} and y(e)) = (Vs va)s ¥(e5)
= (Vz, VE)' ?{‘33} = T(E-l} = (V'Ir ""'2}' T(ﬂﬁ] = (""r3s 1|IIFI)':- T{’E{,} B l:.v:h Vd): '}’l:_ﬂ-}) = {VZu V.;}.
Then G = (V, E, y) is a digraph which is represented by the following diagram
(Fig. 1.2.1).

B3
Vi 3= Vi
|
cJT €4 W €
e f v,
V2 €7
€
Fig. 1.2,1

In-degree and Out-degree of a vertex in a digraph : Let G be a digraph and
v be a vertex of G The in-degree of v is defined as the number of arcs with v as

the head, denoted d(v). The out-degree of v, denoted d™(v), is the number of arcs
with v as the tail.

For example, -in the digraph 1.2.1, d*(v;) = 3, d*(vy) = 2. d"(vy) = 2, d"(vy)
=0 and d(v;) =1, d(vy) = 3, d"(vy) = 1, d(v4) = 2. Observe that if e be a loop
on the vertex v, then e contributes one in-degree and one out-degree to the vertex
V.

Isolated Vertex : A vertex v of a digraph G is called an isolated vertex if °
d*(v) =d(v) = 0. :

Pendant Vertex : A vertex v of a digraph G is called a pendant vertex if
it is of degree 1, i.e, if d'(v) + d (v) = 1.

Parallel ares : Two arcs ol a digraph are said to be parallel if they have the
same tail and same head. Tn the digraph 1.2.1, the arcs e, ¢y are parallel whereas ¢
and e; are nol.

8l
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Simple digraph : A digraph that has no loop or parallel arcs is called a simple
digraph. The following digraph is simple,

Vi

V2
Fig. 1.2.2

Underlying graph : Let G be a digraph. The underlying graph of G is the graph
obtained by removing all the edge-directions, i.c., removing all the designations of
head and tail from the arcs of G, For example, the graph of fig. 1.2.3 is the underlying
graph of the digraph in fig. 1.2.2.

Vi

€2

Y1

¥a

Fig. 1.2.3

Observe that the digraph in fig. 1.2.2 is simple, but its underlying graph in fig.
1.2.3 is not simple.
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Theorem 1.2.1 In any digraph G the sum of the in-degrees of all the vertices
= the sum of their oul-degrees = the number of arcs in G

Proof : The proof is similar to the proof of theorem 1.1.1. The only difference

is that il'e is a loop on a vertex v, then e contributes one in-degree and one out-degree
to v. Again, if' e be an arc with tail v; and head vj, then ¢ contributes one in-degree
to v; and one oul-degree to v;. The details of the proof is left as an exercise.

Representation of binary relations on finite sets by digraphs : Let Aand B
be two non-empty [inite sets. A binary relation or simply a relation p from A into B
is defined as a subset of A % B. If (a,b) ep, we write a p b and say that a is related
to b by the relation p, and if (a,b) ¢p, we say that a is not related to b by p and
express this fact by a gb. I’ A = B, then we simply say that p is a relation on A.
Throughout this section we shall consider only finite sets.

We now show how a binary relation on a finite set can be represented by a
digraph. Let p be a relation on a finite set A={a,, ......, a,}. We represent cach a; by
a dot or a small circle as a vertex of a digraph. If a; p a; holds, we draw an arc from
the vertex a; to the verlex a;,. We do this for all the related pairs in A. Clearly, the
resulting pictorial representation of p is a digraph without parallel arcs. The converse
is also true, i.c. every digraph wilhout parallel arcs defines a relation on the set of
its vertices. :

FExample 1.2.2 Let A= {2, 3, 5, 7, 9} and p be the relation on A defined as
follows : fora, be A, a p b holds if and only if a < b.

" We now construct a digraph of the relation p.

We I‘Epl‘t:;ﬂenl the five numbers 2, 3, 5, 7, 9 by five dots or small circles and treat
them as vertices of a graph, We observe that p = {(2, 3), (2. 5), (2, 7), (2, 9), (3, 5),
Q.7 (3,9, (5, 1 €5 9, (1, Bk '

Since (2, 3) £ p, we draw an arc from 2 to 3. Similarly, we draw arcs for other

pairs in p. The resulling digraph, as shown in fig. 1.2.4, represents the relation p.
: 3



We can also lind the relation on the set of vertices of a digraph without parallel
arcs. '

Example 1.2.3. We consider the following digraph as shown in fig. 1.2.5,

Qu N b

=
d = c

Fig. 1.2.5

This digraph defines a relation p on the set A = {ab,c,d}. From the arcs in the
digraph we see that the relation p is defined as : |

p = {(a.a), (a,b), (be), (c.b), (d,a), (d,b), (d.c)}

Reflexive digraph : A relation p on a set A is called reflexive if a p|a holds for
all a g A. Clearly, the corresponding digraph representing p will have a loop at every
vertex. This digraph is called a reflexive digraph.

Example 1.24. Let A= {3, 4, 5, 6, 7} and p be the relation on A defined as
follows : for a, b & A, a p b holds i and only if a divides b. Then. p = {(3.3), (3.6),
(4.4), (5.5). (6.6), (7,7)}. The relation p is reflexive and its corresponding reflexive
digraph is the following : (Fig. 1.2.6)




Symmetric digraph : A relation plon a set A is called symmetric if a p b implies
b p a for all a, b & A. Clearly, the corresponding digraph G representing p will be
such that for every arc (a,b) there is also an arc (b,a) where a, b are the vertices of
G. Such a digraph is called a symmetric digraph.

Example 1.2,5, Let A= {1}, 15, 13, 14} be a set of siraight lines and p be the
relation on A defined as follows : for 1;, 1; € A, 1; p 1; holds il 1; is perpendicular
to 1. It is given that 1; L 15, 1, 1 14, 13 L 1. This relation is symmetric and its,
corresponding symmetric digraph is the following : (Fig. 1.2.7)

L
oy

Fig. 1.2.7

Transitive digraph : A relation p on a set A is called tramsitive if for any three
clements a, b, c £ A, a p b and b p ¢ together imply a p ¢. The digraph which
represents a transitive relation is called a transitive digraph. For example, the digraph as
shown in the fig. 1.2.4 for the example 1.2.2 is a transitive digraph.

1.3 Worked Out Exercises

1. Draw a graph having the given properties or, explain why no such graph can
exisl.

(a) Simple graph with degree-sequence (2.2,4.4.4)

(b) Four edges and degree-sequence (2,2,3.3)

(c) Degree-sequence (1,2,2,4.5).

Solution : (a) If pdssil::le, let there be a simple graph G with five vertices vi. . Vs
having respective degrees 2.2.4.4.4. Since G has no loop and no parallel < ges,
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it follows that each of the vertices v, v4, vs (say) must have four adjacent vertices,
Hence v, (also v,) must be an adjacent vertex of vs, v, vs. Consequently, d(v,) must
be at least 3, which contradicts the given condition. Hence there cannot exist any
such graph. :

(b) Sum of the degrees of the vertices = 242+3+3=10, So. there must be five
edges, a contradiction. Hence no such graph can exist.

(c) : | Va

£

‘
Vi : V3

2. Show that the maximum number of edges in a simple graph with n vertices

n(n—-1)

Solution : Let G be a simple graph with n vertices. Let v; be an arbitrary vertex

is

of G. Since G is simple, the maximum number of edges incident with viis n—1.

Hence, max d(v;) = (n — 1). This is true for each of the vertices. Hence, ima}: d(vy)
= n(n — 1). So, twice the maximum number of edges = nin—1). Hem:r.:: Imaxin*mrn
n(n—1)

T

3. Let G = (V, E, y) be a digraph, where V = {1, 2, 3, 4, 5, 6}, E = {e;, ..., &}
and y(E) = {(x,y) : x, y ¢ V, x # y and x divides y}. Find n. Draw this digraph. Ts
it a simple digraph?

number of edges in G =

Solution : 1 divides the remaining five numbers 2,3.4.5,6. Tlence the number of
arcs with tail 1 is five. Similarly, 2 divides 4 and 6. So. the number of arcs with tail
2 is two. 3 divides only 6. Hence there is only one arc with (ail 3. Thus the total
number of arcs in the digraph =n=5+2+1 = 8.
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We draw the digraph as follows :

Since there are no parallel arcs and no loops, the digraph is simple.
4, Draw the digraph for the relation p on the set S = {1, 2, 3, 4}
given by p = {(1,1), (1,2), (14), (4,1), (2,3), (1.3)}.

Solution : We label the four vertices of the digraph as 1,2.3.4. We then join the
vertices by arcs according to the given relation.

The digraph is :

1.4 Exercises

1. State which of the following graphs are simple. Find also the degree of each
veriex of the given graphs :
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(@) (b)

b £y . V2
€3 £
+ v
i ey i
(c) (d)
¥y € ¥
ﬁg g L=F]
¥i : L3 ¥y

V3

2. Drawa graph having the given properties or, explain why no such graph can exist,
(a) Simple graph having degrec-sequence (3,3,3,3,4)

(b) Simple praph with seven edges, nine non-isolated vertices.

(c) Six vertices and four edges, no vertex is isolated.

(d) A graph with degree-sequence (1.2,3,4.5).

(¢) Six edges and with degree-sequence (1,1,2,4,5,5).

(f} A simple graph having degree-sequenec (2,2,2,4.5,5).

(g) A praph with degree-sequence (0.1,2,2,3),

3. How many vertices are there in a 4-regular graph with ten edges?

4. Can there be a simple graph with seven vertices and twenty four edges?
5. Can there be a regular graph with eight vertices and seven edges?

6. Draw two different graphs with the same degree-sequence (3.3.3.3).

7. In a group of seven people, is it possible for each person to shake hands with
. 48 :



exacily three other people? Justify your answer. (Hints : The resulting graph will have the
sum of the degrees of the vertices (Persons) =7 x 3 = 21).

8. In a group of n (>1) people, is it true that there are-at least two people with exactly
the same number of friends? Justify your answer. o :

9, Draw a digraph with the following in-degree and out-degree sequences : in-dcgree

5 (] 5 1,1,]) out-degree : (1, 153 1

10. Let A= {a, b, ¢, d} and p be the rclatmn on A defined as p = {(a,a), (a,b), (b,a),
(a,0), (c.a), (bb), (c.c), (d.d), (hd), (d.b)}. Draw the digraph representing p. Is it
reflexive? Is it symmetric? .

11. Find the relation represented by the following digraph. Is the relation
(i) reflexive, (11) symmetric, (iii) transitive?
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Unit 2 O Subgraphs, Isomorphism of graphs, walks,
paths, cycles

Structure

21 Subgraphs

2.2 TIsomorphism of graphs
2.3 Walks, Paths, Cycles

24 Exercises

2.1 Subgraphs

Let G be a graph. A graph I1 is called a subgraph of G if all the vertices and
edges of H are in G. Throughout we shall denote the vertex-set of a graph G by Vg
and the edge-set of G by Eg. Thus, H is a subgraph of G if Vy = Vi and Ey < Eg.
If H is a subgraph of G, then G is called a supergraph of H.

Proper Subgraph : Let H be a subgraph of G. H is said to be a proper
subgraph of G if Vi = Vg or Enx < Eg. .

Spanning Subgraph : Let G be a graph and H be a subgraph of G. Then, H is
said to be a spanning subgraph of G if Vy = V. Observe that if’ the subgraph H
spans the graph G, then Ey < Eg.

Example 2.1.1 Consider the following graphs :

£5

Vs V2 Vy
w V:]_
€5 €3 €y
Vi "-’3
I’I; HJ, H4
Fig. 2.1.1

The graphs Hy, Ha, Ha, Il4 are subgraphs of G.
0



Observe the following propertics of a subgraph.

(i) Every graph is its own subgraph,

(ii) A single vertex of a graph G forms a subgraph of G.

(iii) A single edge with its end vertices of a graph G forms a subgraph of G.
Example 2.1.2 Consider the following graphs :

Wi ¥l vy
V2 Vs V2 5 Vi \ Vs
¥3 "V Vi* L Y VY3 Ny
Fig. 2.1.2

The graphs Hy and Hj are subgraphs of the graph G. Moreover. Vi, = Vi, = V.
Hence both IT; and Hj are spanning subgraphs ol G.

Induced subgraph : Let G be a graph and 8 € V.

Then the subgraph of G whose vertex-set is § and whose edge-set consists of all
the edges of G having both end points in § is said to be the subgraph induced by
. We denote this subgraph by G(S). Tt is the maximal subgraph of G with vertex-
set S. Two vertices of S are adjacent in G(S) if and only if they are adjacent in G.

Example 2.1.3 Consider the following graphs :

¥y

Va2

Vs

Vi
Vi G L, G(S) by S = {vy, v2, v3}
Fig. 2.1.3

The subgraph G(S) is the induced subgraph of G by the vertex-set 8 = {Vi,

Vis 1""3}'
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Induced subgraph by an cdge-set : T.et G be a graph and A © E;. Then the
subgraph of G whose edge-set is A and whose vertex-set consists of all the vertices
of G that are incident with at least one edge in A is said to be the subgraph induced
by the edge-subset A. We denote this subgraph by G(A).

Example 2.1.4 Consider the following graphs :

€2 9

= \"1
€4 V3
! :d Cs5 ;-'1.
vy €5 vy
G G(A) by A = {ey, ¢3, es}

Fig. 2.1.4

The subgraph G(A) is the subgraph of G induced by the edge-subsel A = {e;,
€3, €5},

Deletion of a vertex from a graph ; Let G be a graph and v be a vertex of G,
Then G-v is the subgraph of G obtained by deleting the vertex v and also from G
deleting all the edges incident with v, Thus, G-v is the subgraph induced by the
vertex-set Vg—{v}. It is the maximal subgraph of G not containing v.

We may generalize the deletion operation for a set of verlices § © V,; by deleting
all the vertices of 8 and associated edges successively from G. Th-: resulting
subgraph is denoted by G-S.

Example 2.1.5 Consider the following two graphs :

(e s

¥a Vi

7] Cy

g
\"2- \u 4 cj

V3

v
a G—\"l

Fig. 2.1.5
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The subgraph G—v, is obtained from G by deleting the vertex v; and the edges
€. €3, € incident on v from G.

Deletion of an edge from a graph : Let G be a graph and e be an edge of
G. Then G—e is the subgraph of G obtained by deleting only the edge e from G.
Thus, Vi = Vg and Ei . = Eg — {e}, G—e is the maximal subgraph of G not
containing e.

- We may generalize the deletion operation for a set of edges A < Eg by deleting

all the edges in A successively from G. The resulting subgraph is denoted by G-A.

Note : Deletion of a vertex v from a graph means deletion of the vertex v as well
as the deletion of edges incident with v, but deletion of an edge from a graph does
not delete its end vertices. -

Example 2.1.6 Consider the following two graphs :

V) ¥
€ €3 &
Vi Vg ¥z ¥
e g4 By By
V3 €4 Wy ¥y : Cy Vi
G G—ﬂI
Fig. 2.1.6

The subgraph G—e, is obtained from G by deleting the edge e, from G.

Addition of a vertex to a graph : Let G be a graph and v be a new vertex
not in Vg. Then the supergraph, denoted G v {v}, is obtained by adding the new
vertex v o the graph G. This supergraph has the vertex-set Vs U {v} and edge-
set Eq.

Addition of an edée to a graph : Let G be a graph and u, v be two vertices ol
G. If we add a new e:fge ¢ ¢ Eg joining u and v, then the resulling supergraph,
denoted G W {e}, is the graph whose vertex-set is V; and edge-sel is E; « {e].
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Example 2.1.7 The following three graphs illustrate the addition operations.

vy Vi -
Va
€ Es ¢ 5
Va Vs Vi Y3
S €y L] =71
v €3 b, L BT V4
G Gytvel
Fig, 2.1.7

Join of a graph and a vertex : Let G be a graph and v be a new vertex nol in
V. If we add the vertex v to G and then join each of the vertices of Vi with v by
a new edge, the resulting graph is called the join of G and v and is denoted by Gtv.

Example 2.1.8 The join operation is illustrated by the following graphs :

Vi

£y Cy

Fig. 2.1.8

2.2 Tsomorphism of graphs

I'wo graphs G and T arc said to be isomorphic if there exist a one-to-onc
correspondence f: V; — Vy; and also a one-to-one correspondence ¢ : E; — F,HI such
that for every e € Eg with end points u, v in Ve, the function maps u and v o the
end points of ¢(e) in V.

We write G = H or, G = H to indicate the fact that G and H are isomorphic, We
then say that G and H are the same graphs. Otherwise, we call them different.
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Example 2.2.1 Consider the following two graphs :

>/

1

G
Fig. 2.2.1

Both the graphs G and H have five vertices, five edges and degree-sequence
(1,2,2,2,3). But the two graphs are not isomorphic. Note that G has a triangle (a cycle
of length 3) while H has no triangle (see the next section for the definition of a cycle).

Definition 2.2.1 Let G and H be two graphs. A one-to-one. correspondence [ :
Vg = Vi 1s said to preserve adjacency if for all u, v & Vi, flu) is adjacent to f(v)
in II if and only if" u is adjacent to v in G. We now slate a few properties of
isomorphic graphs. The proofs can be found in any standard book on graph theory.

Let G and H be two isomorphic graphs. Then,

(1) A leop in G must be mapped to a loop in IL

(ii) Two simple graphs G and H are isomorphic if and only if there exists a one-
to-one correspondence f: Vi — Vi such that f preserves adjacency.

(iii) The relation = (isomorphic to) defined in the set of graphs is an equivalence
relation.

(iv) Let G and II be two isomorphic graphs and f : V; — Vi be a one-to-one
correspondence for the graph isomorphism. Then any vertex u in V; and f(u) have
the same degree.

Example 2.2.2 Consider the following two graphs :

Uy )&y

¢7
=] =1
(153 &5 Ug
5] L=F)
uj Uy
€3
G Fig. 2.2.2
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We define T: Vg = Vi by flu) = v, 1 = 1, ey 5and ¢ : Eg = Ly by
o (e)=c¢5j=1, ..., 7. Then we scc that f and ¢ are one-lo0-one correspondences
such that the incidence relation is preserved. Hence, G and 11 are isomorphic.

We now state a theorem without j)muf' (for proof, see [1]).
Theorem 2.2.1 Let G und Il be two isomorphic graphs. Then G will have a
vertex of degree p if and only if H has a vertex of degree p.

Remark 2.2.1 Observe the following properties of two isomorphic graphs G and
" H.

(i) (V) = n(Vy), where n(V;) denotes the number of vertices in G.

(i1) ﬁ(EG} =n(Ey), where n(E;) denotes the number of edges in G.

(iii) Degree-sequence ol G = degree-sequence of 1.

But the converse is not true, That ié, two graphs may satisly all the above three

conditions, yet they may not be isomorphic, We have shown this in the example
g I8

2.3 Walks, Paths, Cycles

We now define the following terms for a graph.

Walk : Let G be a graph and u, v & V5. A walk in G from u o v is an alternating
sequunée W = (1 = Vs 15 V2, €25 eeees Vi 1s €0 15 Vs €ns Vit = V) OF vertices and edges
of G such that endpoints of ; are the vertices v; and vj;, fori=1, ..., n.

Length of a wall : The length of a walk is the number of occurrences of edges
in the walk sequence.

Subwalk : Let W = (v}, €1, Va, ...c., €5, Vpag) be a wall in a graph G. A subwallk
W, of the walk W is a subsequence of consecutive entrics Wy = (Vi &}, Vitls -oees Sk
Vis) such that L =i <k <n+l,

A subwalk is itsclf a walk.

Note : In a walk, a vertex or an edge may appear more than once. A walk of
length o is just a single vertex v(say), denoted (v).

Closed walk and open walk : A walk W = (u = v, €, o\ w..o. N BN
v) from u to v is called a closed walk if u=v and an open walk if u # v.

Concatenation of two walks : Lel in a graph G, W = (u = vy, e, va, ooy 8
viy, = v) be a walk from u to v and Wy = (v = Vs €kips Vigkas oo Cns Vurl = w) be
another walk from v to w such that W, starts from where W ends. '
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Then the concatenation of two walks W, and W,, denoted W,.W; is defined as
the walk W. W, = (u = vy, €}, V2, cooves By Viee) (5 V)5 Bkls Viads «ooes € Vi) = W)

Example 2.3.1| Consider the following graph G :

v Vo
£y e
Va3 & Vi ¥
ey e
L &4 . V3
Fig. 2.3.1

In G, let Wy = (vy, e}, V2, ey, v3) and Wy = (vi, €3, V4, €4, Vs, €5, Vg, € V7).

Then concatenation of W, and W, is the walk W|.W; = (vy, €}, va, €3, V3, €3, vy,
€4, Vs, €5, Ve, S Vo)

Trail : A walk with no repeated edges i.c. all the edges in the walk are different
is called a trail.

The trail is called closed if the starting and terminal vertices of the trail coincide.

Path : A path is a trail with no repeated vertices, excepl possibly the starting and
terminal vertices,

If starting and terminal vertices of a path coincide, then it is called a closed path.
The length of a path is the number of occurrences of edges in the path.

Trivial walk (or, trail, or, path) : A walk or a trail or a path is said to be trivial
if it has only one vertex and no edge. Otherwise, it is non-trivial.

Cirenit : A non-trivial closed trail is called a circuit. Every loop is a circuit. A
circuit must have non-zero length.

Cyele : A non-trivial closed path is called a cycle.

A cycle is always a circuit, but the converse is not true.

Even and Odd eyeles ¢ A cycle is called even (odd) if its length is even (odd).

A cycle with three edges is called a triangle.
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Distance between two vertices : Let G be a graph and u, v & V. The distance
between u and v, denoted d(u, v), is the length of a shortest walk, if there exists any,
from u to v.

If there does not exist any walk from u to v, we write d(u, v) = m,

Example 2.3.2 Consider the following graph G

V3

€3
]
G
Fig. 2.3.2

In the graph 2.3.2 we consider the following walks :

Wi = (v), €1, Vys €9, Vs) is a walk from v, to vs, Tt is an open walk with length
two. Again, Wy = (v}, €5, vy, €4, V2, €4, V4, €1, V,) is a closed walk from vy to v, whose
length is 4.

W3 = (v}, €5, vy, €3, V3, €3, V4, €, V) is an open trail and
Wy = (va, €15 Vi, 5, Vo, €3, V3, €3, Vy) i a closed trail. It is also a closed path.
WS = (""r:!: €1, V3. Bay V.q,} isa Pﬂth

Wi = (Va, &4, Vy) is a circuit. Wy is also a circuit and a cycle of even length. The
walk W, is a circuit, but not a cycle.

Wy = (v, €5, V2, €5, V4, €5, V) 18 a triangle.
Theorem 2.3.1 [f the degree of each vertex of a graph G is at least two, then

G containy a circuit.
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Proof : Let G be a graph such that the degree of each vertex of G is at least two.
If G consists of'a single vertex v, then there must be at least one loop e at v, since
d(v,) = 2. In that case, (v}, €;, v;) i a circuit. We now assume that G contains more
than one vertices without any loop. We start from an arbitrary vertex vy and follow
along the edges. Since d(v,) = 2, theré are at least two edges incident with v,. Let
one of these edges be between v, and v,. We arrive at v, along this edge. Since d(v;)
= 2, v, must have at least another edge, say, between v, and v;. We can arrive at Vi
along this edge. Therefore, il we arrive at a vertex where we were not previously,
then we can continue. Proceeding in this way, we ultimately arrive at a vertex that
has previously been traversed, thus forming a circuit in G,

Theovem 2.3.2 Let G be a graph and u, v be two distinct vertices of G. If there
is a walk from u to v, then there is a path from u to v.

Proof : Let W= (u= vy, €, V3, .cors €15 Vy = V) be a walk from u to v in G.
If this is not a path, then v; = v; for some i, j(1 =i <] < n). Hence there is a
closed walk from v; to v; (= v;) in W: We delete this closed walk (excluding one v;)

from W and form the new walk W, from u to v. If W, is not a path, we repeat the
above process and ultimately we obtain a path from u to v.

Theorem 2.3.3 Every circuit in a graph contains a cycle.
Proof : Let C be a circuit in a graph G. Among all the non-trivial closed
subwalks of C, let T be a subwalk having minimum length. Since the length of T is

minimum, it has no proper closed subwalks. This implies its only repeated vertices
are the starting vertex and the terminal vertex. Thus, T is a cycle.

2.4 Exercises

1. Determine whether the given walk in the following graph is (a) a trail, (b) a
path, (c) a closed walk, (d) a circuit, (¢) a cycle.

Vi €y Vi

€2

L]

By

Vg =5 Vi
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(D) Wy = (vy. €1, v9)

(ii) Wy = (va, €3, v3, €3, Vy, €4, V3)

(ii1) W5 = (va, €3, Vi, €3, Vi, €4, V3, €2, V3)

(1iv) Wy = (v4, €, Vs, €4 V), €], V2, €3, V3, €3, V4)

{V} W5 = (V"r! €4y V3, €3, Vi, €5, Vo, €1, V1, €4 Vs, By 1"'-1.}

2, Find three proper subgraphs of each of the following graphs :

(a) Es (b)

v

1 €] Va
v
Es 3 €
L= €
v
¥y €3 -
Cy

Find also a spanning subgraph in each of (a) and (b).

3. Find two cycles of different lengths in the following graph. Find also the
length of each of the cycles.

=
Vi V4
€y
€7
€y =]
=
N3 Y3
€
4. Let G be the following graph :
: ‘||,|'-| E[ _"""2 V4
€2 e e
€13 2 :
€ Vi
¥z i
g L=
4 Vi e‘ﬁ 5
€in Vs

0
T ke
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In G, find (a) a walk of length 8 from v, to vg, (b) a trail of Tength 7 from v,
to v4, () a circuit of length 7 from v; to v, (d) a cycle of length 6 from v; to vi.
Does G contain an odd cycle from v, to v,? Find the distances between v; and v;
and between v, and vg.

5. Show that the following two graphs G, and G, are isomorphic.

Vi Vs u
¥y : v
| ; .
]
V7 vy
Vg Ve s
Gy ' ' G,
6. Show that the following two graphs G, and G; are not isomorphic.
Uz Uy Us Yg
¥y
¥s
1y uy Usg ¥ ¥2 Lk
G; GZ

7. For the following graph G, find the induced subgraph G(S) by the vertex-set
8 = {vy, va, i}

Vg ‘:ﬁ.
i

@ & e | %

v

? .:"'"'-1:"35

€y €4

Vi
G
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8. For the following graph G, find the induced subgraph G(A) of G on the-edge-
set A = {e}, e,}.

=11 ¢
Yz
Vi
€ e ey
L
¥4 ¥
G

9. For the following graph G, find G-v,, G—e, where v, is a vertex of G and C
is an edge of G.

s
vy
€ €4
L=
vz \\‘—/ v-‘
=
G
10. For the following graph G, find the join G+v, where v & Ve
vy Vi
V3 Vi
G k
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Unit 3 O Connected graphs, complement of a
graph, bipartite graphs

Structure

3.1 Connected graph

3.2 Complete graph

3.3 Bipartite graphs

3.4 Worked Out Exercises

3.5 Exercises

3.1 Connected graph

Let G be a graph and u, v & Vg We say that the vertex v is reachable from the
verlex u if there is a walk from u to v.

A graph G is said to be connected if for every pair of vertices u and v in G, there
is a walk from u lo v. In otherwords, G is connected il any vertex in G is reachable
from any other verlex. Otherwise, G is said to be disconnected.

A null graph with one vertex is connected whereas a null graph with more than
one vertices is disconnected.

Example 3.1.1 Consider the following graphs G, Gy, Gs.

L]
¥
" Vi Va Vs
I V.q_ V3
. Vg
Vg b
¥z Vi
V3
V3 ‘I.I'4 vﬁ‘ Y

Fig. 3.1.1
The graph G, is connected whereas the graphs G, and G, are disconnected.
Component of a graph : A subgraph I of a graph G is called a component of

G if H is connected and is not properly contained in any connected subgraph of G.
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Let G = (V. E, y) be a graph. We define a relation p, called reachability relation,
on V by p= {(u, v) & V x V| there exists a walk from u to v in G}. Lvidently, p
is an equivalence relation on V., R

Let V, be an equivalence class of p and E; be the set of edges joining the vertices
in.-V,. We take y; = y/E,. Then, G; = (V,, E;, y,) is a subgraph of G which is
connected and is not properly contained in any connected subgraph of G, Thus, G,
is a component of G. In fact, every equivalence class of p is a component of G,
Hence, “every graph can be decomposcd into finite number of components”,
Consequently, “A graph G is connected if and only if G has only one component”.

Theorem 3.1.1 Let G be a graph whose vertex-set is V. G is disconnected if and
only if there exist two non-emply subsets V, and V, such that ViwV,=V, V,nV,
= @ and there is no edge in G whose one end point is in V 1 and Hw other end point
is in V.

Proof : Let G be disconnected and ue V. Let V, = {ve V | there is-a path from
utovinG}and V; =V - V. Then, V=V, U Vyand Vi Vy = §. Also V, =
¢ since u £ V,, Since G is disconnected, V, = V and hence V2 # ¢. If possible,
supposc there is an edge e in G whose one end point u; € V, and the other énd point
uy & Vy. Since u, is joined to u by a path p (say), u, is also joined to u by a path
(p, &, uy). Hence u, € Vi, a contradiction. Hence no verlex in V V| is joined to any in
V, by an edge. The subsets V, and V, form the required partition of V.

Conversely, suppose that such a partition of V exists. We take two vertices u and
v of G such that u & V, and v & V,. If there exists a path between u and v, then there
must have at least one edge whose one end point would be in V, and the other end
point in V. This contradicts the given condition, Herce no path can exist between
u and v and so G is disconnected.

" Theorem 3.1.2 If a graph contains exactly two odd vertices u and v, then there
exists a path between u and v.

Proof : Let G be a graph with exactly two odd vertices u and v, all other vertices
of G being even. If G is connected, the result is obviously true. So, we assume G to
be disconnected. We consider the component G; of G to which u belongs. Now,
G, is a connected subgraph of G. It is known that (cf. theorem 1.1.2) number of
odd-degree vertices in‘any graph is even. Since u and v arc the only odd-degree
vertices in G, v must also belong to G,. Hence u and v must have a path belween
them.
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Theorem 3.1.3 Let G be a simple graph with n-vertices und m components. Then

(7 can have at most

%(n — m)fn —m + 1) edges.

Proof : Tet the m components of G be Gy, ..., G, and let n; = number of
vertices in G; fori=1, ..., m, Then, n; = | and ini =n.
=1
Since G is a simple graph, the maximum number of edges in G; is ;n,-(n,- —1).
Hence the maximum number of edges in G is
il 1 ] i in I
Zrt (n; - —Zn _i )X E;“‘l gl . (1)
Now, for the positive intepers ny, ....., n,, we have,
(ny— 1+ (a3 — 1)+ +(np=1)= 2on— n—Mm aasaaes (2)
1=l
Squaring both sides of (2) we get, (n; — 1)? + - + (ny — 1Y +
20y — 1) (g — 1) +2(n; — 1) (n3 — 1) + - = (n —m).
Hence, (ny — 1) + - F g — 1P <m-m) sincen; - 120,i=1,...,m.

Thatis, > n} =23 n; +m=<(n-m)?,
1=l i=l g

that is, inf

=(n-m)?+2 n—m]. Hence from (1), the maximum

number of edpes in G is i—; {(n—m)242n-m }—én
=%{{n—m)2 +211-m—11}=%{l:11—l‘ﬂ)2 +(n—=m)}

%{n—m){n—mny

Theorem 3.1.4 4 connected graph with n vertices has at least n—1 edges.

Proof : (by induction). The theorem is evidently true for n = 2. Suppose the
theorem is true for any graph with number of verlices < n. Let now G be a connected
graph with n vertices. Let v be an arbitrary vertex of G and let Gy = G-v. Then the
number of vertices of G, is n—1 and by the induction hypothesis its number of edges
is > n-2. Now v is adjacent to at least one vertex of G-v and so the number of edpes
of G = the number of edges of (G-v) + the number of edge(s) incident with v.
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> (n-2) + I

=n-1.

Hence the theorem is proved.

Definitions : Acyelic graph : A graph having no cycle is called an acyclic
graph.

Cycle-edge of a graph : Let G be a graph. An edge e is called » cycle-edge 1l
it is in some cycle of G.

Theorem 3.1.5 4 connected graph G remains connected after removing an edge
e from G if and only if e is a cycle-edge in G, :

Proof : Let G be a connected graph and e be a cycle-edge in G. Since removal
of a loop or a parallel edge from a praph does not change the connectivily of the

graph, we may assume that e is not a loop or a parallel edge. We take a cyele C in
‘G as shown below :

u L= v
Let the cycle-cdge e whose end points arc.u and v in C be deleted from G. We

can reach v from u by travelling along the other edges of C in the graph G-e. Thus,
there is a path between u and v and hence between any pair of vertices. Hence the
graph G-e is also connected,

Conversely, let G-e be connected. Then there is a path P from u to v in G-e.
Then, P+e forms a cycle in G containing e, that is, e is a cycle-edge.

Corollary 3.1.1 Let e be a cycle-edge of a graph G. Then, ¢(G-¢) = c((3), where
¢((G) denotes the number of components of G.

3.2 Complete graph

Complete graph : (or, Universal graph) : A simple graph in which every pair
of vertices is joined by an edpe is called a complete graph,
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A complete graph on n vertices is denoted by K, A complete graph on three
vertices is a triangle.

Example 3.2.1 Complete graphs on one, two, three, four and live verlices are
shown below in fig. 3.2.1.

: K, K,

Fig. 3.2.1

Complement of a graph : Let G be a simple graph with n vertices, The
complement of G, denoted G, is the graph ebtained from the complete graph K, by
removing the edges of G.

Observe that G is also simple and G and G| have the same sct of vertices. But
two vertices are adjacent in G if and only if they, are not adjacent in G.

Note : K, the complement of the complete graph K,, consists of n vertices
and no edges, i.¢., K, is the null graph with n vertices. Again, complement of the
null graph with n vertices is the complete graph K. Evidently, G is isomorphic to
G.

Example 3.2.2 A graph G and its complement G arc shown below in the figures
3.2.2 and 3.2.3.

V1 vy

v
Va Vs 2 ¥a

@

Fig. 3.2.2
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V2
v
vy 3 vy Ak
Vs
Vs
¥4 ¥s Vy ¥g
G G
Fig. 3.2.3

Observe that in fig. 3.2.2 both G and G are connected whereas in fig. 3.2.3
-G is connected and G is disconnected.

Self-complementary graph : A simple graph which is isomorphic to its
complement is called self-complementary.

Example 3.2.3 Let G be the following graph :

1y u;
i o
=41 €
11y € Ty
G
Then, G is given by
=7
¥a &3 V3
e} el
"rr o vz
G
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Wedefine (: Vo= Vs byf(w)=v,1=1, .....
¢:Es—> Ezbyd(e)=¢,i=123

We see that [ and ¢ are one-to-one correspondences such that the incidence
relation is preserved. Hence G and G are isomorphic and so G is self-
complementary.

The problem of Ramsey : A well-known puzzle is as follows : Prove that at any
party with six people it is always possible to find cither three people who know each
other, or, three people among whom no one knows any other. Acquaintance is
assumed to be mutual.

Sulutinn : The situation of the problem may be represented by a simple graph
with six vertices. Each vertex represents a person and an edge in G joins lwo
vertices if the two persons know each other. Then an edge in G|implies that the
persons representing its end points do not know each other. Thus the problem
reduces (o @

“For any simple graph G with six vertices, either G or G| contains a triangle (i.c.
a complete graph with three vertices)”

To prove it, let v be an arbitrary vertex of a simple graph G with six vertices.
Then each of the other five vertices is adjacent to v either in G or in G| We divide
these five vertices into two groups such thal one group contains those verices which
are adjacent to v in G and the other group contains those vertices which are adjacent
to v in G. One of the groups must contain al least three vertices. Withoul any loss
of generality we may assume that there are three vertices vy, v,, v; adjacent to v in
G. If any two of these vertices are adjacent, then they form a triangle whose third
vertex is v. If no two of them are adjacent in G, then v, v;, v; will form a triangle
in G.

Theorem 3.2.1 4 simple graph G and ils complement G can not be both
disconnected.

Proof : If G is connected, there is nothing to prove. So, we assume G with n
vertices to be disconnected. Lel the components of G be Gy, ....., G, m = 2, We
propose to show that G is connected. If n = 2, i.e. if G contains only two vertices
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Vys vy, then there is no edge between vy and v; in G since G is disconnected. Hence,
vy and v, must be joined by an edge in G. So, G is connected.

We now assume that n = 3. Let u, v be two arbitrary vertices of (G and hence of
G. There are two possibilities.

Case I : Letue G, veGui#j,i,j=1,....m Since u, v belong to different
components of G, there is no edge between u and v in G.

Hence, u and v must be joined hj;r an edge in G.

Case 2 :Tetu, ve G,i=1, ...., m. We take a vertex w & Gy, j # 1. Then there
are no edges between u and w and between v and w in G.

&)

c;

Gy G

Hence therec must be an edge e (say) between u and w and an edge ¢, (say)
between v and w in G. Thus, (u, ¢,, W, ey, v) forms a path between u and v in

G.

Thus, in any case, uand v are joined by a path in G. Since u, v are two arbitrary
vertices of G, G is connected,

3.3 Bipartite graphs

A simple graph G is called a bipartite graph if its vertex-set V can be
partitioned into two subsets V; and V, such that each edge in G has one end point
in V, and the other end point in V.

The pair {V;, V5} is called a bipartiton o' G and V; and V; are called the
bipartition subsets.
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Example 3.3.1 The graph shown in fig. 3.3.1 is bipartite.

Vi
Uy b {r
L] V3
Ly Yy
G
Fig. 331

Here the vertex-set V = {uy, ug, w3, vy, Vo, V3, ¥4} and the bipartition subsets are
V; = {uy, uy, ug} and Vy = {v|, v3, v3, v4}. Every edge in G has one end point in
V', and the other end point in V. :

Complete bipartite graph : A bipartite graph G with bipartition subsets V', and
V, is called a complete bipartite graph il every vertex of V, is adjacent lo every
vertex of V,. A complete bipartite graph G having m vertices in one bipartition
subset and n vertices in the other bipartition subset is denoted by K, ,. We then say
that G is a complete bipartite graph on m and n vertices.

Exampie 3.3.2 The complete bipartite graphs K, 4 and Kj; ; are shown below in
fig. 3.3.2.

Fig. 3.3.2
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-Theorem 3.3.1 A simple graph is bipartite if and only if all its cyeles ave even,
(In otherwords, it does not contain any odd cycle).

Proof : Let G be a bipartite graph with bipartition subsets V| and V;.-Let C=
(Vis €15 Vs woees Vis Cks Vi) = Vi) be an arbitrary cycle of length k in G. Sinee v,
and vy are the end points of the edge ¢ for i = 1, ..., k, it follows that if
vi € V|, then visy £ V; fori=1, ..., k. Suppose, v; € V. Then v; € V, il and only
if i is odd. Since vy = vy & Vi, k+1 must be odd; ie., k is even. Hence the cycle
C is even.

IFor the converse part, we simply give an outline of the proof. The detailed proof
can be found in [5] orin [1] or in any standard book on graph theory.

Suppose, every cycle of G is even and components ol G are Gy, ....., G,
(m = 1).

Show : each G is bipartite. For this, let u € V. Define V) € Vi by V, =
{ve Vg : d(uyv) is even} and V, = Vi — V. Then V; and V, form a partition of .
Vg Let e be an edge with endpoints v, w and if possible, let v, w € V. Take the
shortest path p; in G; from u to v and the shortest path p; in G; from u to w. Then, *
p; and p; are of even lengths. Starting from u, let x be the last vertex common to
py and py. Let py*, p;* be the subpaths of p; and p, respectively from u to x. Then,
m*, p.* are of equal lengths. Let p]' be the subpath of p; from x to v and p;{. be the
subpath of p, from x to w. Now, p, and p; are of even lengths implies the icngths
of p|’ and pl} are either both even or both odd, Then the walk W = (x, p}, v, B, W,
pi, x) forms an odd cylce, a contradiction. Hence v, w cannot both belong to V.
Similarly, they can not both belong to V,. Hence G is bipartite which implies G is
bipartite.




3.4 Worked Out Exercises

1. Let G be a connected graph with n = 2 vertices and m edges such that m <
n. Prove that GG has at least one pendant vertex.

. Proof : Since G is connecled, it has no isolated vertex. So, d(v;) = 1 for every
v; & Vg If possible, let G have no vertex of degree 1. Then, d(v;) = 2 for every

K
v; & Vg Since G has n vertices, Y d(v;) = 2n and hence number of edges in G is =

| : : ; A Sk
5 2n = n. That is, m = n. This coniradicts the given condition m < n. Ilence G

contains at least one pendant vertex.

2. Show that the number of vertices of a self-complementary graph must be of
the form 4p or, 4p + 1 where p is a non-negative integer.

Solution : Let G be a sclf-complementlary graph having n vertices and m edges,
Then G is isomorphic to G, its complement. Since the complete graph K, contains

| : =, ; [ i, ===y . :
En{n—l) edges, G contains En(n— 1} - m edges. Since G and G are 1somorphie,

én(n— 1) - m=m, i.e., n{(n-1)=4m ..... (1). If one of n arid n—1 is even, then the
other is odd. Hence (1) can hold only when eithern =4por,n—1 = 4p; ie,n =
4p + 1 where p is 2 non-negative integer.

3. Determine whether the following graph G is bipartite. If it is so, redraw the
graph showing the bipartition subsets. Is the graph a complete bipartite graph? -

¥
] Va
Y3 Vs |
vy
G
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Solution : Let, if possible, G be bipartite with vertex-set V = {v,

cneey V) amd

“bipartition subsets V; and V,. Let v, & V. Then, its adjacent vertices v,, vy, vg & V.
Since v, £ V), its adjacent vertices vy, vs € V). Thus if we take V| = {v|, v4, v} and
V2 = {va, v4 Vg we lind that V ="V, U V; and each edge of G joins a vertex in
V1o a vertex in V;. Ilence G is bipartite.

G is a complete bipartite graph as evident from the redrawn graph.
4. Ts the following 3-regular graph G bipartite? Justify your answer.

Vi

Vi

¥y

Vs

Y1

Ve

%

"

¥3

G

Va

. Solution : The graph contains a cycle (vy, v3, v3, V4, Vs, v1), which is odd. Hence

it can not be hipartite.
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3.5 Exercises

1. Tet G be a complete graph with n verticles. Prove that G contains exactly

én{n—l) edges.
2. Let G be a simple graph with at most 2n vertices. If d(v;) = n for every

vi £ Vg, prove that G is connecled.

3. Prove that a simple graph with n (=2) vertices must be connected if it has
more than %{n—l) (n—2) edges.

4. Draw a connected graph thal becomes disconnecied when any edge is
removed from it. Prove that such a graph must be simple and acyelic.

5. Prove that the following two graphs. are sclf-complementary.

6. Draw the complement of the graph K, ;.
7. How many edges are there in K, and K, 7

8. How many cdges does the complement of a simple graph with n vertices and
m edges have?

9. State which of the following graphs are bipartite. Justify your answer.
(a) (b) (c)

Vi L5 vy Vi V3

Vs ¥a

Va ki, | g 1
Vi V3 ¥z g

€; G, G;



10. Draw a 3-regular bipartite graph.

11. The following graph is known as Petersen graph. Is it bipartite? Justify your
answer.

Petersen graph
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Unit 4 OFulerian and Hamiltonian Graphs

Structure
4.1 FEuler Graphs

4.2 Hamiltonian Graphs
4.3 Worked Out Exercises

4.4 Exercises

4.1 Euler Graph

Euler Trail : An open trail in a graph G is called an Enler trail if it contains
all the edges of G.

Euler Cireuit : A cifcuit in a graph G is called an Euler cireuit il it contains
all the edges ol G.

Il a graph G contains only one vertex v and no edpe we call the walk (v) an Euler
circuit.

Example 4.1.1. Consider the following graph G :

Ch Vs
€5
¥ e Vo
€y . €1
Wyt & V3
G
Fig 4.1.1

Then (vj, €, V3, €3, Vi, €3, Vg, €4, V15 €55 Vs, €5 vy) is an Buler circuit in G.
Example 4.1.2. Consider the following graph G :

C
bt : V4
L] (N =£1
Vi 5 Vi
G
Fig 4.1.2
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G has no Euler circuit, but it has an Euler trail. The open trail (v,, e, v,, €3, Va,
€3, V2, €), V), €4, V4) is an Euler trail in G.

Edge-traceable graph : A graph which has an Euler circuit or an Euler trail is
called an edge-traceable graph. Such a graph has the property that it can be drawn
with a pencil without lifting the pencil from the paper and without tracing any cdge
twice,

Eulerian (or, Euler) graph : A graph G is said lo be an Eulerian graph if it
has an Euler circuit.

The graph given in 4.1.1 is Eulerian. A graph consisting of a single vertex and
1o edge is treated as Eulerian,

Theorem 4.1.1 If o connected graph G is Eulerian, then every vertex af Gis of
even degree.

Proof : Let G be a connected Eulerian graph. IT G consists of only one verlex -
v and no edge, then d(v) = 0 (even). If G contains only one verlex v and a finite
number of loops ai v, then d(v) = even, since every loop contributes 2 to the degree
of v. .

Now, we assume that G contains more than one vertex. Since G is Eulerian, it
has an Euler circuit, say C = (¥1s €12 Vaseens Vi, €, Vie! = Vi) Let u be an arbitrary
vertex of G. Then, u must be an end point of some edge since G is connccted. Since
C contains all the edges, u must belong to C. Then for each appearance of u in C
there are two new edges incident on u, one for entering u and another for exiling
from u since no edges in C are repeated. These two edges contribute 2 to the degree
of w. Thus, d(u) is even. Since u is arbitrary, every vertex of G is of cven degree.

Theorem 4.1.2 : If G is a connected graph and every vertex of (i is of even
degree, then G is Fulerian,

Proof : Let G be a connected graph and every vertex of G be of even degree,
We prove the theorem by induction on the number ol'edges n of G.

Basis step : Let n = 0. Since G is connected and has no edge, G consists of a
single vertex, Hence, by definition, G is Eulerian. Next let n = 1. By the condition
of the theorem, G is a loop at a vertex and so is Eulerian

Inductive Hypothesis : Let n be a positive integer and we assume that any
connected - graph with k (<n) edges in which every vertex is of even degree, is
Eulerian, :

Induction step : Let G be a connected graph with n edges and each verlex of
G be even. Since each vertex is of degree at least two, G contains a circuit (ef :
theorem 2.3.1), C say. If C contains all the edges of G, it becomes an Euler circuit
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and so G is Eulerian. If mﬁt, we remove from G all the edges of C and obtain a
subgraph G' of G. G’ may not be connected, but each of its components will be
connected and will contain fewer than n edges. Now, the removal of the edges of C
either leaves the degrec of a vertex unchanged or reduces the degree by two. Hence,
all the vertices of each component of G' will be of even degree. Therefore, by the
inductive hypothesis each component of G' is Eulerian. Moreover, since G is
connecled, each component of G' must meel the circuit C at least at one vertex. To
show thal G has an Buler circuit, we construct such a circuit in G as follows : We
start at a verlex u (say) of C and traverse C until we meet a vertex v, (say) of one
of the components of G'. We then traverse Euler circuit of that component and return
to the circuit C at the same vertex vy. We then continue along C and traverse each
component of G' as it meets the circuit C. Eventually, we can traverse all the edges
of G exaclly once and come back at u. This produces an Euler cireuit in G. Hence
G is Eulerian. Thus, by the induction principle, any connected graph all of whose
vertices arc of even degree is an Eulerian graph,

Note 1. The process of producing an Euler circuit as given in the proof is
illustrated in the following graph :

x
by ‘\Jiﬁ
X5 .L T 'J'
AAN
[y oS, ¥a Xy (g
—> =
T 1)
—
Fig 4.1.3

In the above graph C is the cycle (u, X;. vy, X2, X3, Vo, Xg, X5, 1),

Note 2. Combining theorems 4.1.1 and 4.1.2 we have the Euler’s theorem as
follows : “A connected graph G is Eulerian if and only if all the vertices of G are
of even degree.”

Fleury’s algorithm : To find an Euler circuit in an Eulerian graph G the
following algorithm, known as fleury’s algorithm, is useful.

Fleury’s algorithm : Step 1. Choose a vertex u of Vg as the starting vertex for
the Euler circuit C:
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Step 2. Traverse any available edge. But do not choose an edge if deleting it
disconnects the remaining graph unless there is no alternative.

Step 3. Afler traversing each edge, remove it from Eg together with any isolated
vertex that results.

Step 4. I no edges remain, stop. The Euler circuit has been obtained. Otherwise,
select another available edge and repeat step 2 until no edges remain in I

Theorem 4.1.3 4 connected graph G has an Euler trail if and only if it has
exacily two odd-degree vertices.

Proof : Let G be a connected graph having an Euler trail. T.et u and v be the
initial and final vertices of the Euler trail, If we add an edge e joining u and v in G
we get a new connected graph G' which will have an Euler circuit. Then every vertex
of G' will be of even degree. In particular, u and v in ' becomes even. But G and
G' have the same set of vertices. If we now obtain G by removing the edge e we find
that u and v are the only vertices of odd degree.

Conversely, let G be connected and have exactly two odd vertices u and v. By
adding an'edge ¢ joining u and v in G we obfain a connected graph G' all of whose
vertices are even. Ilence there exists an Euler circuit in G'. If we now remove the
edge e from this circuit we get an Euler trail in G

Remark 4.1.1 To find an Euler trail in a connected graph with exactly two odd
vertices we must begin the trail at an odd vertex and terminate it a the other odd
verlex.

Kinigsberg Bridge Problem : In the city of Kénigsberg (renamed Kaliningrad
in Russia) two islands in the Pregel river were connected to each other and to the
outer river banks by seven bridges as shown in the following figure 4.1.4. The city
people tried their best to take a walk crossing all the bridges exactly once and return
to the starting point. Bul they failed, They wanted to know whether such a walk is
possible.

Kinigsberg Bridge Problem

Fig 4.1.4
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Ilere A, D are the outer river banks and B, C are the islands. The problem is to
start at any of the land arcas A, B, C or D, walk over cach of the seven bridges
exactly once and return (o the starting point. This seemed to be impossible, but no
one could explain why, Swiss mathematician Leonhard Euler (1707-'83) proved that
such a walk is impossible, and presented the solution in a paper in 1736,

Euler’s model for the problem is a graph with four verlices and seven edges
where the vertices represent the land areas A, B, C, D and the cdges ey, €., &7
represent the seven bridges. Then the configuration is represented by the following

graph G :
A
€2 e
€
B C
G
€3
€y LT
D
[
Fig 4.1.4

Now G is connceted and crossing a bridge corresponds to traversing an edge of
G. Then the problem is reduced to determining whether G is Lulerian. Since G has
vertices of odd degree there is no Euler circuit in G, i.e., G is not Fulerian. Hence
it is impossible to lind a route to walk over all the seven bridges exactly once and
return lo the starting point.

Remark 4.1.2 Al present there are two more bridges on the Pregel river, one
connecting the land areas A and D, and the other comnecling the islands B and C. The
present configuration of the city is represented by the following graph G :




The graph G, is connected and every vertex of G is even. Hence G, has an Euler
circuit. So, it is now possible to find a route to walk over all the nine bridges exactly
once and return to the starting point. An Fuler circuit in G, is :

l:i"'u'_., €7, B, L="'] C, €7: B, Cia E'J L=/ C, Cs. A, By D, (=4 B._ Cs f‘k}

4.2 Hamiltonian Graphs

Hamiltonian Path : A path in a graph G that contains every vertex of G is called
a Hamiltonian Path.

Hamiltonian Cycle : A cycle in a graph G that contains every vertex of G is
called a Hamiltonian cycle. '

Thus, a Hamiltonian cycle in a graph G is a closed walk thal traverses every
vertex of G exactly once, cxcept the starting vertex at which the walk also terminates.
Hence a Hamiltoman cycle in a graph with n vertices consists of exactly n edges. If
we remove any one edge from a Hamiltonian cycle, we get a Hamiltonian path.
Hence the length of a Hamiltonian path in a simple n-vertex graph is n-1.

Hamiltonion Graph : A graph having a Hamiltonian cycle is called a
Hamiltonian graph. Observe that a Hamiltonian graph must be connected.

Example 4.2.1 The following graph G as shown in fig. 4.2.1 is Hamiltonian.
€

¥i Vi
C
2 Cs Cl.n
Vi Va
4 e e | &
V5 €7 Vi ~=.Cll
b ¥/
Vi € V3
G
Fig 4.2.1

The cyele C = (vy, eq, Vg, €5, Vs, €12, Vi, €3, V3, €)1 Ve, €60 Va €10s Vo, €, vy) is
a Hamiltonian cycle.

Remark 4.2.1 Any Hamiltonian cycle in a bipartile graph must have the same
number of verticles in cach bipartition subset, since any edge in a bipartite graph
corresponds to a-move from one bipartition subset to the other.

No clegant characterisation is known for the existence of a Hamiltonian cycle in
a connected graph. This is an unsolved problem in graph theory, although several
necessary or sufficient conditions are known.
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Theorem 4.2.1 Let G be a Hamiltonian graph with vertex set V. For every non-
empty proper subset S of V, ¢ (G-5) < n(S), where c(G) denotes the number of
components of G and n(S) denotes the number of vertices in S,

Proof : Let G be a Hamilionian graph with vertex-set V, K be a Hamiltonian
cycle in G and ¢ # S © V. Now, il we delete the set S of vertices together with the
edges incident with them from G then they will also be deleted from the cycle K,
since K contains all the vertices of G. Consequently, the cycle K will be divided into
at most n(S) pieces, i.e., ¢(K-8) < n(8). But K-S is a subgraph that contains every
vertex of G-S. Hence, G-S cannot have morc components than K-8, ie, ¢(G-8) <
c¢(K-8). Therefore, ¢(G-8) < n(8).

Note : The condition is nol sullicient. However, we can use this condition to
show thal a certain graph is not ITamiltonian.

Theorem 4.2.2 (Dirac, 1952) : Let G be a simple connected graph with n 2 3
verfices. If d{v}k% Jor every vertex v & Vi, then G is Hamiltonian,

Proof : We omit the prool. However, the proof can be found in [1,p 655].
We now state another sufficient condition lor a graph to be Hamiltonian.

Theorem 4.2.3 [Ore, 1960]. Let G be a simple connected n-vertex graph where
n = 3. If for every pair of non-adjacent vertices u, v & Vi, din) + dv) ;1 n, then (G
is Hamiltonian.

Proof : We omil the proof. The proof can be found in [3, p 223

4.3 Worked Out Exercises

‘1. Prove that a complete graph K, is Eulerian il and only if n is odd.

Proof : The complete graph K_ is connceted and contains n verlices. Each vertex of
K, is joined to the remaining n-1 vertices by edges. Since K, is simple, there are no
parallel edges and loops. Hence, d(v;) =n-1 for each vertex v;, i = 1........n. Hence, each
d(v;) will be even if and only if n-1 is even, i.e., il and only if n is odd. Ience, K, will be
Eulerian if and only if n is odd,

2. Let G be a simple connecled graph with n = 3 vertices and m edges. I

m 2_*%{11 1) (n—2)+ 2, show that G is Hamiltonian.
Solution : Let G be a simple connected graph with n = 3 vertices and m edpes

such that m E%[n—l) (n—2)+2. If possible, let G be not Hamiltonian. Then, by
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Theorem 4.2.3, there must exist two non-adjacent vertices u, v in G such that d(u)
+d(v) <n — 1, There are, therefore, at most n — 1 edges in G which arc incident with
either u or v. But in the complete graph K, number ol edges incident with any two
vertices is (n — 1) + (n — 2) = 2n — 3, Hence, the difference between the number of
edges incident with u and v in K and the number of edges incident with u and v in
G is at least

2n -3 — (n— 1) =n — 2. Hence the number of edges in G is at most
n{n—1)
2

That is, m i%(n — 1 )(n—2)+ | which contradicts the given condition.
Hence, G is Hamiltonian.

—(n —2}=%n(n —D=(n—-1D+1= %{u— In—2)+1.

4.4 Exercises

I. For the following three graphs can you trace all the edges with a pencil
without taking the pencil off the paper and without going through any cdge twice? |
Justify your answer.

iy W (i) (i) v

Vi
Vs
v
5 V2 Vs Ve
1
- Va .
V¥ & My
Vi Wy - Wy Vs 4
- F
&

G, G
2. Determine whether each of the following graphs has an Euler circuit. Find an
Euler circuil, if'il exists.
(i) - (ii) - (i) v, (iv)

Vi o9 ¥y &

V) g ¥y

€3 e

i
ey e %10

Cs ViV
Cq i g Cil

€y &y
Vi €5 Vs o V7 By Vi €5

G G
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1. Determine whether each of the following graphs has an Euler trail. Find an

Culer irail, if it exists.

B e (i) vy % v
¥y Va
| €g
€y £; ey g Vs “
es : €10
Wy V3 Vi

=
Gy

(iii) (iv)

v

¥a es Vs

Gy

Yy

4. When is a complete bipartite graph K, , Eulerian? Justify your answer.

5. Prove that a connected graph G is Eulerian if and only if the set of edges can
be partitioned into cycles.

6. Consider the floor plan of the three-room flat with doors as shown below.

=t ]

Room A-l- Room B
1
]

T i
J— Room C
T

| T

L

D (outside)

Each room is connected by doors with every other room and outside as shown
in the plan. Ts it possible to start in a room or outside and take a walk that goes

125



through each door exactly once? If there is such a walk, find it. Can you return to
the starting point through this walk? Justily your answer,

Hints : The corresponding graph is :

A B

There exists Luler trail, but no Fuler circuit.
7. Prove that K, (n = 3) is Hamiltonian.
8. Draw a graph such that it has a Hamiltonian path but no Hamiltonian cycle.

9. Draw a graph such that it has neither a Hamiltonian path nor a Hamiltonian
cycle.

10. Draw the following graphs with the given properties and justify your answer.
(i) Hamiltonian but not Culerian.

(ii) Eulerian but not Hamiltonian.

(iii) Both Fulerian and Ilamiltonian.

(iv) MNeither Eulerian nor Tlamiltonian,

11. Are the following graphs Iamiltonian? Justify your answer.

0] vi @y, s (i)
. RS ¥4
L Vi “
¥a V) 3
Va Vi
Vs Vs V3 V6 Wy
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Unit 5 OTree

Structure

51 Tree

5.2 Spanning Tree

5.3 Rooted Tree

54 DBinary Tree

5.5 Worked OQut Exercises
5.6 Exerciscs

3.1 Tree

A connected graph having no cycle is called a tree. Since a loop or parallel edges

form a cycle, a tree must be a simple graph.

For example, the followimg graph is a tree.

s
SN

Tree

Forest : A graph without any cycle is called a forest. Thus the components of

a forest are trees. For example, the following graph is a forest.

s

Forest
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We now consider a lew properties of a tree in the form of the following
theorems.

Theéorem 5.1.1 Every pair of vertices in a tree is joined by a unique path.

Proof : Let T be a tree and v;, v; be any two vertices of T. Since T is conneeted,
there is al least one path between v; and Vi- If possible, lel there be two distinet paths
p1, and p, between v; and v;. The union of these two paths will contain a cycle in
T, which is a contradiction since 1’ can not contain any cycle. Hence the path joining
v; and v; is unique.

Theorem 5.1.2 Let G be a graph such that it has a unigue path between every
pair of vertices. Then G is a iree.

Proof: Evidently, G is connected. If possible, let G contain a cycle. Then there
exists at least one pair ol vertices v; and v; such that there are two distinct paths
between them, This is a contradiction to the given condition. So G is a tree,

Note : Combining theorems 5.1.1 and 5.1.2 we can say, “A graph G is a tree il
and only if there is a unique path between every pair of vertices in G.”

Theorem 5.1.3 A free with more than one vertex contains at least two pendant
verfices i.e., vertices of degree .

Proof : Let T be a trec and v;, v; be any two verlices of 1. Then there is a unique
path between v;, v;. Let L be the set of all paths in T. Then L. is [initc since the vertex-
set of T is finite. Hence we can find a path P in T with maximal number ol vertices.
Let the path P be from the vertex u to the vertex v. Then, u and v will be pendant
vertices, First we show that u is a pendant vertex. If possible, let d{u) > 1. Then u
has morc than one. adjacent vertices. One of them, say u, must lie on P. Then another
adjacent vertex of u, say u,, can not lie on P. For, in that casc, from u we may go
to u; and then to uy along P and come back to u again along the olher cdge, say e,
joining u and s, thus forming a cycle. Thus, u; is not a member of P. Then the path
(uy, e, P) contains more vertices than that of P which contradicts the defimtion of P.
Hence d(u) = 1, i.e., u is 8 pendant vertex. Similarly we can show thal v is a pendanl
vertex.

Theorem 5.1.4 A (ree with n vertices contains exac tly n — | edges.
Proof : Let I be a tree with n vertices. We apply induction on n,
Basis step : Let n = 1. Then number of edges in I is o, since T has no loop

which is a cycle. Thus the theorem is true when n= 1.
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Induction Hypothesis : We assume that the result is true for any tree with m vertices,
m = L.

Induction Step : Let T be a tree with m + 1 vertices. Then T has a pendant
vertex, say u. We delete u and the edge incident on it from T and let the new praph
be T;. Since T is connected and acyelic, T') is also connected and acyelic. Hence T
is a tree with m vertices and hence by induction hypothesis T, contains exactly
m — | edges and so T contains (m — 1) + 1 = m edges. The result now follows by
induction.

Theorem 5.1.5 A connected n-vertex graph with n — | edges is a (ree,

Proof : Let GG be a connected graph with n vertices and n — 1 edges. Suppose, if
possible, G contains a eycle C. If we remove a cycle-edge from C, the resulling graph will
be a connected graph with n vertices and n — 2 edges. This is a contradiction to the fact
that a connected n-vertex graph contains at least n — | edges (cf. thcorem 3.1.4). Hence
G does not contain any cycle, i.e., G is a tree.

Note : Combining theorems 5.1.4 and 5.1.5 we can say, “A connected n-vertex
eraph is a trec if and only if it contains exactly n— 1 edges.”

Theorem 5.1.6 A forest with n vertices and m components contains exactly
n-m edges.

Proof : Let G be a forest with n vertices and m components G;.............Gy. Let the

i

component (5; contain n; vertices, 1= 1, .......... , m. Then, >0, =n, Each G;is connected
i=l

and acyclic. So, each G; is a tree.

By theorem 5.1.4, e(G;) = n-1,

where ¢(G;) denotes the number of edges in G, 1 =1, ....... .

Now, e(G) = EH{G=}=§:{'I1J - I]=in[ -m=n-m

=1 i=l

Theorem 5.1.7 A graph 1 with n vertices is a tree if and only if T is acyclic and
containy exactly n —1 edoes.

Proof : First we assume that T is a tree with n vertices. Then, by definition, T
is acyelic. By theorem 5.1.4, T contains exactly n — 1 edges.

Conversely, let the graph T with n vertices be acyelic and contain exactly n - 1
edges. Suppose the graph T has m components. Then by theorem 5.1.6, the forest T
contains n —m edges. So, m = 1, i.e., T is connected. Thus, T is a connected acyclic
graph i.e., T is a tree.
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Minimally Connceted Graph : A connected graph G is said (o be minimally
connected if G becomes disconnected when we delete any one edge from G,

Theorem 5.1.8 A graph is a tree if and only if it is minimally connected

Proof : Let T be a tree. Suppose, if possible, T is not minimally connected, Then there
must exist al least one edge e (say) in T such that T — e is also connected, Then,

by theorem 3.1.5 e must be a cycle-edge in T; ie., T has a cycle which contradicts
the fact that T is a trec. Henee T 15 minimally connected.

Conversely, lel T be a minimally connected graph, We claim that T is acyclic.
For, if T contains a cycle, we can delete an edge from the cycle and still T remains
connected so that 1" will not be minimally connected. Thus, T is a tree.

Theorem 5.1.9 A connected graph G is a tree if and only if adding an edge ¢
between any two vertices in (i creates exactly one cycle in G + e.

Proof : Let G be a tree and u, v be any two vertices in G. Then there is exactly
one path between u and v in G. If we add an edge e between u and v, an additional
path 1s created between them and consequently a cycle is created in G + e. Since
there was only one path between u and v before the addition of the edge ¢, there will
be exactly one cycle in G + ¢ alier the addition of c.

Conversely, we assume that adding an edge e between any two vertices u and v .
in (i creates exactly one cyele in G + e. Then, before the addition of ¢, there must
have one and only onc path between v and v in G. Hence G is a trec.

Note : From the previous theorems we can characterize a tree as follows :

Theorem 5.1.10 Let T be a graph with n vertices. Then the following statements
are equivalent.

1.l is a tree.

2. Any two vertices of T are connected by exactly one path.
3. T is connected and has exactly n — | edges.

4.°l is acyclic and has exactly n — 1 edges.

5. T 15 & minimally conmected graph.

6. T is connected and adding an edge ¢ between any two vertices in T creates
exactly one cycle in 1 + ¢.
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5.2 Spanning Tree

Let G be a graph and T be a subgraph of G. T is called a spanming tree of G
il T is a tree which contains all the vertices of G.

Example 5.2.1 Consider the following graphs :

D
D I D
A E
. A E
A C
B i B =
. B
G T, T,
Fig. 5.2.1

In fig. 5.2.1 the subgraphs T, and T; of G are two different spanning trees-of the
araph G.
Note : We define a spanning tree only lor a connceted graph G. Because, il G

is not connected, then there can not be any connected subgraph of G containing all
the verlices of G.

Theorem 5.2.1 Every connected graph has at least one spanming lree.

Proof : Let G be a connected graph. 1f G is acyelic, then it is its own spanning
ree. So, we assume that G contains at least one cycle. Let C be a cycle in G, We
delete an edge from C and the new graph G' will remain connected and will contain
all the vertices of G, If G contains more cycles, we repeat the deletion operation until
an edge from the last eycle in G is removed, The resulting subgraph will be
connected, acyclic and will contain all the vertices of G. Thus the resulting graph is
a spanning trec of G.

Theorem 5.2.2 A graph having a spanning (ree must be connecled

Proof : Let the praph G have a spanning tree T and u, v be any two vertices of
G, Then u, v are also vertices of T, Since T is a tree, there is a unique path P between
wand v in I, But T is a subgraph of G. Hence the path P from u fo v must also be
in G. Hence G is connected.
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Note : Combining theorems 5.2.1 and 5.2.2 we can say, “A graph G has a
spanning tree if and only if G is connected.”

Branch and Chord : Let T be a spanning tree of a graph G. An edge of T is
called a Branch of T. An edge of G that is not included in T is called a chord of
T

Note : Branches and Chords are defined only with respeet to a given spanning
tree of a graph. A branch of a spanning (ree may be a chord of another spanning tree.
Since every tree with n vertices contains exactly n — 1 edges, we can say, “With
respect to any of ifs spanning trees, a graph G with n vertices and m edges has
n— 1 branches and m — n + 1 chords,”

Weighted Graph : A graph G is called a weighted graph if every edge of G
is assigned a number, called its edge-weight.

Weight of a spanning tree in a weighted graph : Let G be a weighted graph
and T be a spanning tree of G, Then the weight of 'I' is defined as the sum of the
weights of all the branches of 'I. Different spanning trees of a weighted graph may
have different weights. Generally, among all the spanning trees of a weighted
graph, the spanning tree with the minimum weight is of practical importance.
However, there may have several spanning irees of a weighted graph with
minimum weight,

Minimal Spanning Tree : Let G be a connected weighted graph., A spanning
tree of G having the smallest weight is called a minimal spanning tree of G,

Application— We give below a problem to show the application of minimal
spanning tree of a weighted graph.

Problem : Suppose that several towns are to be linked through a network of
roads. The cost of building a direct road between a pair of towns is known [or each
possible pair. Now the ‘problem is to find the least expensive network of roads that
connects all the towns.

Solution : Let there be n towns. We label them as vertices v,.......... . voofa
graph G and the direct roads between any two possible towns as the edges of G,
There may be pair of towns between which a direct road cannot be constructed. Tn
otherwords, there may be pair of vertices between which there is no edge. The cost
of building a direct road between two towns is taken as the weight of the edge joining
them. Clearly, the network of roads is a weighted connected graph G. The required
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minimum-cost i.c., minimum-weight network must be a spanning tree of G. Otherwise,
we can remove an edge from a cycle and yet get a conneeted graph whereby the total
cost is reduced. The desired network of roads must be a minimal spanning tree of G.
Thus the problem reduces to : To find a minimal spanning tree of a connected
weighted n-vertex graph.

There are several algorithms for finding a minimal spanning tree of a connected
weighted graph. We describe below Kruskal’s algorithm for such a tree, named after
1. B. Kruskal,

Kruskal’s algorithm for a minimal spanning tree : Let G be a conneeled
weighted n-vertex graph. Kruskal’s algorithm for finding a minimal spanning lree of
G is as follows :

Step 1. List the weights of all the edges of G in non-decreasing order.

Step 2. First choose a minimum-weight edge of G. If there are several edges with
minimum weight, choose any one of them.

Step 3. Select another edge whose weight is minimum among the remaining
edges, provided the selected edge does not form a-cyele with the alrcady selected
edges.

Step 4. Continue the process of selecting until n — 1 edges have been sclected,
because the required tree will contain n — 1 edges. Then stop. All the selected edges
will form the desired minimal spanning tree. We illustrate the algoritham by the
following example.

Example 5.2.1 For the following connected weighted graph G, apply Kruskal’s
algorithm to find a minimal spanning tree of G.

| 3 ‘||.,I'5
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We proceed as [ollows :

Step 1. The weights of all the -::dg{,a of G in non- dccrcaamg order are 3, 5, 5. 6, 6.
188

Step 2. The smallest weight is 3 between v, and vs. So we choose this cdge
vy vs. (We denote the edge joining the vertices v; and v; by v; vi).

Step 3. The next smallest weight among the remaining edges is 5 between cither
vy and vs or, between v| and v,. We choose both the edges vyv, and v,ve as the
chosen edges will not form a cycle. The next smallest weight among the remaining
edges is 6 between either v; and v or, between v, and v4. We cannot choose the edge
between v; and v, as this would create the cycle v, v; vy ve v|. Bul-we can choose
the edge between v, and vy as this will not create a cycle with the already selected

edges.
Vi

Yy
Vs

Step 4. The number of vertices in G is five. So, the desired minimal spanning
tree will have four edges. We have already selected four edges. So we stop. These
four seleeted edges will form the desired minimal spannmg tree of G, the total weight
of the tree being 19 units,

Remark 5.2.1 Kruskal’s algorithm is an example of what is known as Greedy
algorithm. This algorithm is called greedy algorithm because at each step in the
process of selection, the best possible current choice 'is taken and we do not think
how that choice will affect: the future choices.

We can also find a maximum-weight spanning tree for a connected weighted
graph in a similar manner, The only difference is that first we choose the edge with
largest weight and then the second-larpest one and so on, There is another popular
algorithm, known as Prim’s algorithm, for finding a minimal spanning tree ol a
connected weighted graph, This can be found in |1] or [3].
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5.3 Rooted Tree

Direcied Tree : A digraph whose underlying graph is a tree is called a direeted
tree.
Rooted Tree : A directed tree in which one particular vertex is distinguished

from all other vertices, desipnated as the root, such that there is a unique directed
path from the root to any other vertex is called a rooted tree.

We somelimes write T(v,) to indicate a rooted, tree T with the root v,. In
pictorial representation of a rooted trec we generally draw the root at the top of the
graph, unlike our natural trees. Moreover, we omit the arrows from the ares on the
tacit understanding that the direction on the arc is always away from the root.

Example 5.3.1. The following graph is a rooted tree with v, as the root,

T(Vy)
Fig. 5.3.1

Theorem 5.3.1 A directed tree T can be represented as @ rooted tree with roof
v, if and only if v, has in-degree 0 and all other vertices of T have in degree 1.

Proof : Let T be a rooted tree with root v,,. If possible, let there be an arc e
coming from some vertex u to v,. Then the directed path from v, to u together with
e will form a cyele in the underlying graph of . This contradicts the delinition of
T and henee v, has in-degree 0. Since there is a directed path from v, to all othet
vertices, every other vertex musl have in-degree al least one. If possible, lel some
vertex w have in-degree more than one. Then there are at least two distinel vertices
v, and v, as lails of two arcs e, and ¢, respectively with thi same head w. Let Py
and P, be the unique directed paths from the root v, to v and vy respect vely. Then
P, +¢; and P, + e, will be two different directed paths from v, lo W, a contradiction.
Hence every vertex of T, other than the root, must have in-degice I
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Conversely, let v, be a vertex of a directed tree T with in-degree 0 and all other
vertices of T have in-degree 1. Let u be an arbitrary vertex of T, other than v,,. Since
u has in-degree 1, there is a unique vertex v, and an arc ¢, with tail v; and head u.
Similarly, there is a unique vertex v, and an arc ¢, with tail v,| and head v,.
Continuing the process we shall reach the vertex vy = v, and the process stops here
since v, has in-degree 0 and the vertices v; do not repeat as the underlying graph of
T has no cycle. Then P = (v, = vy, €, Viiseo V15 €, 1) Will form a unique directed
path from v, to u. Thus, T is a rooted tree with root v,

Corollary 5.3.1 The root of a rooted tree is unique.

We now give below a few definitions.

Level (or, depth) of a vertex : Let T(v,) be a rooted tree and u be a vertex of
T. The level or depth of u is defined as the distance of u from the root v,; i.c., the
length of the unique path from v, to u. The depth of the root v, 15 0.

Height of a rooted tree : Let T(v,) be a rooted tree: The height of T is defined
as the lenpth of a longest parth from the root, i.e., the greatest depth of 1.

Parent and Child ; Let T(v,) be a rooted tree. 11 a vertex u immediately precedes
another vertex v on the path from the root v, to v, then u is called the parent of v
and v is called a child (or offspring) of u.

Siblings : The children having the same parent are called siblings.
Descendant and Ancestor : Let T(v,) be a rooted tree and u, v be two distinet

vertices of T. The vertex v is called a desecndant of the vertex u if u is on the unique
path from the root v, to v. In this case u is called an ancestor of v..

Subtree of a rooted tree : Let T(v,) be a rooted tree and v £ Vi, the vertex-set
of T, other than v,. Then T(v) is also a rooted tree with v as the rool. We then say that
T(v) is the subtree of Ti(v,) starting at v.

Leaf ; Let T(v,) be a rooted tree. A vertex v of T is called a leaf if it has no child.

Internal Vertex : An internal vertex of a rooted tree is any vertex which is not
a leaf. .

.Standartl plane drawing of a rooted tree : T.et T(v,) bc a rooted tree. If' we
draw the graph T on a plane keeping v, at the top and the vertices at cach level at
the same horizontal lirie, then the drawing is called a standard plane drawing of the
rooted tree, :
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Example 5.3.2 Consider the standard plane drawing of the following rooted tree
in fig. 5.3.2. '

Rooted T'ree T(a)
Fig. 5.3.2

Tn the tree T, a is the root, the vertices b, £, j are in level 1; ¢, d, g, h, i, k, | are
in level 2, and e, m are in level 3. The height of T is 3, a is the parent of the children
b, I, j; b is the parent of the children ¢, d: f is the parent of the children g, h, i; j is
the parcnt of the children k, 1 ; d is the parent ol the child e and 1 is the parent of
the child m. The children (b, £, j), (c, d), (g, h, i), (k, 1) are siblings. The vertices c,
d, e are descendants of b and b is their anceslor. Observe thal there are other
descendants and ancestors in the tree. The vertex a (the root) is the ancestor of all
other vertices. The leaves of T are the vertices ¢, e, g, h, i, k, m. The internal vertices
of Tarea, b, £, j,d, L.

Ordered rooted tree : Let T be a rooted tree. T is called an ordered tree if the
children of each parent in T are assigned a fixed ordering. Thus, if a parent u has
three children, we may order them as the first, second or third child of u.

When we draw an ordered rooted tree on a plane we arrange the vertices at each
level from left to right which agrees with the ordering of the children.

m-tree : Let T be a rooled tree. T is said to be an m-tree (m = 1) il every vertex
of T has at most m children.
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Complete m-tree : Let T be a rooted tree. T is said to be a complete m-tree if
every internal vertex of T has exactly m children and all the leaves have the same
level.

Theorem 5.3.2 An m-tree has at mosi m® vertices at level p.
!

Proof : Let T be an m-tree. We shall prove the result by induction on the
level p.

Basis step : Lel p = 1. Since the root has at most m children, there are al most
m vertices at level 1. Hence the statement is true for p = 1.

Induction hypothesis : We assume that there are m* vertices at level k. for some
k=21,

Induction step : Now. cach of the vertices at level k has at most m children.
Hence there arc at most mm* = m*' children at level k + 1. The theorem now
follows by principle of induction.

3.4 Binary Tree

A binary tree is an ordered 2-tree in which every child is designated as a left
child or a right child.

Complete binary tree : A binary tree T is called complete if every intcrnal
vertex of T has exactly 2 children, and all leaves have the same level.

Example 5.4.1 The following graph is a binary tree.
Vi

A binary tree of height 4
Fig. 5.4.1
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Fxample 5.4.2 The following graph is a complete binary trec.

A complete binary tree of height 3
Fig. 5.4.2

Left subtree and right subtree of a vertex : Let T be a binary tree and v £ V.
The left subtree of v is the binary subtrec with left child of v as the root and
spanning all its descendants. Similarly, the right subtree of v is the binary subtree
with right child of v as the root and spanning all its descendants.

Note : If v has no left (right) child, then its left (right) subtree is empty.

Theorem 5.4.1 Let T be a complete binary tree of height h and with n vertices.
Then, n= 2" — 1.

Proof : We prove the theorem by induction on h.

Basis Step : Let h = 0. Then T has only one verlex. Hencen = l and 1 = il
~1=2—1=1. Thus the result is truc for h = 0.

Induction Hypothesis : We assume that for some m = 0, a complete binary tree

of height m has 2™"' — 1 vertices.

induction step : Let T be a complete binary tree of height m + 1. Let the root
of T have the left child u, and the right child u,. Let T and 1; be the left subtree
and the right subtree with u; and u; as rools respectively, Since T is complete, Ty and
T, must also be complete. Also both the sublrecs T, and T, are of height m. So, by
induction hypothesis, they each contain o™il _ | vertices. Hence the number of
vertices of Tis22™ =)+ 1= 2™2 _ |, Thus, by the principle ol induction, a

139



complete binary tree T of height h contains 2™ - | vertices: i.c., n=2""' — | where n
is the number of vertices in T.

Corollary 5.4.1 Lvery binary tree of height h contains at most 2! — | vertices;
b, g 2o i,
Proof : Since al each level of a binary tree there are al most two children, the

result follows from theorem 54.1.

Note : Observe that the complete binary tree of height 3 given in the Fig, 5.4.2
contains 2! — 1 = 16 — 1 = 15 vertices,

Theorem 5.4.2 Let T be a complete binary tree having p internal vertices, Then T
conlains p + 1 leaves,

Proof ; T being complete, cach internal vertex of T must have two children. Since
there are p internal vefliwes, T has 2p children, Now, the root is the only vertex which is
not a child of any vertex. Hence the total number ol vertices in T is 2p + 1. Consequently,
the number of leaves in Tis Zp+1)—p=p+ L.

Theorem 5.4.3 Let T be a binary tree of height h having k leaves. Then, k < 2",
Proof : We prove the theorem by induction on h.

Basis step : I h = 0, then T has only one vertex. Then k=1 =2° Thus the theorem
holds when h = 0.

Induction Hypothesis : We assume that for some m such that 0 < m < h, a binary
tree of height m having k leaves, k < 2™,

Induction Step : Let T be a binary tree of height m + | and having k leaves. We
consider the following two cases.

Case 1. The root of T has only one child u.

Let T| be a subtree of T with u as rool, The height of 'I'; is m. Since the leaves of
T are those of T, T and T have the same number of leaves, ITence 1 has k leaves. So,
by induction h},fpnthcms k< jmgmtl

Case 2. The root of T has two children, say u; and u,. Tet T, and I'; be the subtrees
of T with u; and u; as roots respectively. Also, let k; and k; be the number of leaves of
Ty and T, respectively.

. Then, k =k, + k; since T and T; have no common leaves.
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The height of both T and T; is £ m, Hence, by induction hypothesis, k, < 2"
and k; < 2™, Hence, k = ky + ky < 2™ + 2™ = 2™,

Therefore, the thcorem follows by the principle of induction,

5.5 Worked Out Exercises

1. Draw a graph having the given pmj::értics or, explain why no such graph can
xSt

(a2) A connected, acyclic graph with 7 vertices and 7 edges.

(b) A tree having degree-sequence (1. 3, 4, 4, 6)

(c) A tree with 13 verlices having four vertices of degree 3, three vertices of
degree 4 and six vertices of degree 1. :

(d) A binary tree with 4 internal vertices and 5 leaves.
(e) A binary tree of height 4 and 17 leaves.
(f) A complete binary tree of height 3 and 12 vertices.

Solution : (a) Such a graph cannot exist. For, the graph is connected and acyelic
implies it is a tree. It has 7 vertices. Hence il must have 7 — 1 = 6 edges.

(b) Such a graph cannot exist. For, the graph is a tree and so it must have at least
two vertices of degree 1.

(¢) There can not be any such tree. Because, the sum ol degrees of the vertices
=4x3+3x4+6x1=12 + 12 + 6 = 30. Hence, number ol edges must be 15.

(d) The required lree can be drawn as follows :
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(e) No such graph can exist. For, the height h = 4. Then, number of leaves k must
be < 2% ie. k < 16, '

(f) Such a tree does not exist. Because, height of the lree h = 3. Hence. number
of vertices n = 2°"' - 1 = 15.

2. Prove that a graph G is a forest if and only if e —n 1 k = 0, where e =
number of edges of (G, n = number of vertices of G and k = number of components
of G. ;

Proof : Let G be a lorest with n vertices, ¢ edpes and k components. Then, by

thcorem 5.1.6, e=n—-kie,e-n+k=10

Conversely, let e — n + k = 0. Let Gy, ......, Gy be the components of G with
Myy...eees My VErtices and € e O cdpes respectively. 1f possible, let al least one of
the components ol G, say G;. contain a cycle. Since G; is connected, ¢; =2 ny 1. Bul
Gj is not a tree and so ¢; # n; — 1. llence, g; = n; — 1; i.e., ¢; = n;. Also, e;2 n; — 1,
j =ilad =1, 1+l k Hence o=y aabey b de oy = e 1) =
Fa + i Filog— 1) ={np+ . o) =k - 1) =n—k+1>n—k Hence, &
n + k> 0, a contradiction. Hence (5, does rot contain a cycle; i.e., G; is a tree. Hence

(i is a forest.

3. The following table shows the distances in km between [ive villages A, B, C,
D, E. The villages arc to be ‘connected by & network of roads, I'ind a minimal

spanning trcc connecting the five villages applying Kruskal’s algorithm,

A B C DB E
A= & @S 4
Ble — 3 & 7
A4 WO - 4 6
D|9 § 4 - 10
El4 7 6 10 -

Solution : We denote the villages as the vertices of a weighted graph G, the
roads connecling any two villages as the edges of G and the distance between any
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two villages as edge-weight. The weights in non-decreasing order are 3, 4. 4, 5, 6,
6,7,7,9, 10. There are [ive verlices. So we must seleet 5 1 = 4 edges for a minimal
spanning tree ol G.

The smallest weight is 3 between B and C. We select the edge joining I3 and C,
The next smallest weight is 4 between either A and L or, between C and T, We can
choosc both the edges since they would not creatc any cyele. The next smallest
weight is 5 between B and D. Bul we cannot choose an edge between B and D as
this would create a cycle BCD, The next smallest weight is 6 between either A and
B or between C and E. We can selecl an edge between any one of these pairs as none
of them would create a cycle with the edges already sclected, Let us choose an edge
between A and B. These four chosen edges will form a minimal spanning tree of G
of total weight 17 km.

4. Let p; denole the number of vertices of a tree T of degree | and g denote
the number of vertices of degree = 3. If I contains at least lwo vertices, prove that

P = q+ 2. Also show that p; = q + 2 when 1" does not contain any vertex of degree
=

Proof : Let py, denote the number of vertices of T having degree k. ‘Then total

number of vertices of T is p; + ps | p; +....... . Since number of edges in any graph
s % (Sum of the degrees of all the vertices), we have, number of edges in

1= %{pl +2p; +3p;y+..... )| Since T is a tree we get.
l
Pi+P2+Pyte = 5(Pr+2pa +3p3+.. )+ L
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Thatis, 2 (p; + pa + p3 + o) = (py + 2p2 + 3p3 + i bt i)
But obviously, p; + 2po+ 3p; +4py + e 2P+ 2p2 F 3 (p3 F py
Using (1) we get, 2(p; +pa + s+ o) 2Py F 2p o 3(ps t Py + ) + 2
Hence, p; 2 (ps + py + -on) F2=qg+2

The equality oceurs, i.c., py = q + 2 exactly il py = ps = ........ = 0.

i.e., if T does not contain a vertax of degree > 3.

5.6 Exercises

1. Which of the following graphs are trees and which are not?

Justify your answer.

(a) (b) (c)

A LA

2. Let G be a connected graph with 8 vertices and 7 edges. Does G contain a

vertex of degree 17 Justily your answer.
3, State whether the following statements are true or false. Justify your answer.
(a) A tree is a graph without cycles,
{b) A trec must be a simple praph.
(c) Every bipartite graph is a tree.
(d) Every tree with more than one vertices is a bipartite graph.

() If any two vertices of a graph G are connected by at least one path, then G
must be a tree.
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(f) Any graph with n vertices and n — 1 edges is a tree.

4. Does there exist a tree with 10 vertices such that the sum of the degrees of
the vertices is 247 Justify your answer.

5. Draw a lorest with 13 vertices, 9 edges and 4 components.

6. Draw a forest with 8 vertices and 5 cdges.

7. Draw a graph having the given pmperli.es or, explain why no such graph can
exist.

(a) Acyclic, four edges, six vertices.

(b) Tree, all vertices arc cven.

(c) Tree, 13 vertices with 9 vertices of degree |, 3 verlices of degree 4, and one
vertex of degree 3.

(d) Tree having degree-sequence (1, 1, 1, 1, 3, 3)

(e) A complete binary tree of height 4 and 31 vertices.
(f) A binary tree of height 5 and 64 vertices.

() A binary tree of height 3 and 10 leaves.

8. Prove that a connected graph with n = 2 vertices is a tree if and only if the
sum of the degrees of the vertices is equal fo 2 (n— 1).

9, Draw two spanning trees of the following graph :

10. The following table shows the distances, in units of 10 km, betwcen six
cities A, B, C, D, E, F. The citics are to be connected by a network of telephone
lines. Find a minimal spanning tree connecling the six cities applying Kruskal’s
algorithm.
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A B C D E F
A 6 10 4 8
Bl 4 - 12 3 2 5
S O 8 6 6
D|10 3 8 = 7 9
E| 4 2 6 T - 8
F| 8 5 6 o § ' -

11. For the following connected weighted graph G, find a minimal spanning tree
of G applying Kruskal’s algorithm :

M
3 )
12
¥z
3 %
8 8
. o 7
1!'], X ¥a
G
12. What is the maximum height lfor :
(a) A tree-on the vertex-set 8 = [V, ¥6)7

(b) A complete binary tree on the vertex-set 8 = {a, b, ¢, d, e, f, g}7
(c) A binary tree on the vertex-set 8 = { Vi, V517
Tustify your answer in each case.

13, For the rooted trees given below, find the following : (i) Rool, (ii) Height,
(iii) Internal vertices, (iv) Teaves, (v) Vertices in the same levels, (vi) Parcnts and
children, (vii) Siblings, (viii) Descendants of parents,
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State also the types ol the trees.

(a)

Vid Vis Y17 Vig

(©) Yo

Vq Vg Voo Vo Vi ¥z Vi3 Vi

Ty

o

14. Let T be a trec with an cven number of edges. Prove that T must contain at

least one vertex having even degree.
Solution : (ITints) Lel T contain m (even) edges. Since T is tree, number of
vertices in T = m + 1 (odd). If all the vertices are of odd degree, the sum of the

degrees of the vertices will be odd, a confradiction.
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Unit 6 OPlanar Graph

Structure
6.1 Planar Graph
6.2  Worked Out Excreises

6.3 Fxercises

6.1 Planar Graph

A graph is said to be plamar if it can be drawn on a plane in such a way that
no two ol ils edges intersect each other excepl possibly at a common verlex,

Imbedding of a graph on a surface : Let G be a graph and S be a surface. G
15 said fo be imbedded on 5 when it is drawn on 5 so that no two edges intersect
except possibly at a common vertex, Such a drawing of G on S 15 called an
imbedding of G on 5.

Thus, a graph is planar if and only if it can be imbedded on a plane. A drawing
of a planar graph G without any erossing is called a plane representation of G.

Example 6.1.1 The following graphs G and G, are planar, whereas the graph
Ks is non-planar.

G, G, K

The praph G, is clearly planar since it has been drawn on the plane such that
none ol its edges cross each other. The graph G is also planar because we can
redraw it on the plane in a different way so that none of its edges cross. For example,
we can redraw Gy as follows :
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However, the graph Ks is not planar, We shall prove it later. Just looking at the
drawing of a particular graph it may not be possible to say whether the graph is
planar or not. At the first glance G, seems to be non-planar since two edges cross
each other: However, it is possible to redraw the graph so that no two edges cross
each other. A redrawing of a graph without crossings is not always possible.

Faces of a planar graph : Let G be a planar graph. Then any plane representation
of G divides the plane into regions. The union of a region and its boundary is called
a face of G. We always consider the outer region, i.e., unbounded region with its
boundary to be a face, called exterior face.

Boundary walk of a face : The boundary walk of a face f of a planar graph
(1 15 a closed walk in G covering the perimeter of the face. Observe thal vertices and
edges may be repeated in a boundary walk.

Size (or, degree) of a face : Let f be a face of a planar graph G.

The size of fis defined as the number of edge-steps-needed in the boundary walk
of .

A face of size n is said to be an n-sided face. Observe that the number of cdge-
steps in a boundary walk of a face may be more than the number of edges on the

face-boundary, because some edges may be repeated in the boundary walk. Hence the
size of a face f may be gréater than the number of edpes on the boundary of f.

Example 6.1.2 Consider the following graphs G, G,, G, G4| given in fig. 6.1.2.
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In Gy, there are three faces f), fy, {3 (exterior facc). Size (I}) = 3, size (£)) = 4,
size (fy) = 5.

In G, there are six faces fy, f3, f3, ), §s, [; (exterior face).

Size (fj) = 2, size (f;) = 3, size (f;) = 3, size (f;) = 5 (Here one edge-step must
lbe repeated as the walk is closed), size (fs) = 1, size (f;) = 8.

G; is a tree and there is only one face, the exterior face f. In fact, a trec has only
one face since it is acyclic. Here size (f) = 8. Observe that for a tree with m edges
with the exterior face f, the size (f) = 2xm, since in the boundary walk of f, every
edge must be repeated once.

In Gy, there arc three faces fi, f,. f; (exterior face), size (f)) = 5, size (f;) = 3,
size (f3) = 6.

Face-size Equation : Theorem 6.1.1 Let G be a planar graph, n, = number of
edges in G and I = the sel of all faces of G. Then, 2n, — Ssize( [).

felr

Proof : If an edge is a common border of two different faces, then the edge will
be counted once in each of the boundary walks of the faces so that it will contribute
2 to the-sum of the face-sizes. If the edge is not a common border of two different
faces, then it occurs twice in the same boundary walk. Thus, every edge of G
contributes 2 to the sum of the face-sizes. Ilence, 2n, = ¥ size(f),

[&F
Note : Observe that in the praph Gy shown in the fig. 6.1.2, n, = 7 and
2.size(f)=5+3+6=14 so that 2n.= ¥ size(f).
[£F feF

This is also true for the other graphs Gy, G,, Gi.

Euler’s Formula (or, Euler polyhedral equation) : Theorem 6.1.2. If G
is a connected. planar graph with n, vertices, n, edges and n; faces, then
=1, +np=2

Proof : We shall prove the theorem by induction on n.

Basis Step : Let ny= 1. Then G has no cyele. Since G is connceted, it must be
a tree. Hence, n, = n, — 1 (cl. theorem 5.1.4) and so n,—n, ! n; = n,—n,+14+1 = 2.
Thus the formula is true when ny= 1.

Induction Hypothesis : We assume that the formula holds for any connected
planar graph with np <k, k = 2, k an intcger.
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Induction Step : Let G be any connected planar graph with n, vertices, n. edges
and n, = k faces, Since k = 2, G is nol a tree and hence must have al least one cycle.
We choose an edge ¢ which is a cycle-edge. Then G — ¢ is a connectled planar graph
with n, vertices, n; — 1 edges and k — 1 faces, since the two faces ol G separated by
e combine together o form one face of G —e.

Therefore, for the graph G — e, by induction hypothesis,

n, —(n,— 1)+ (ng— 1) =2, that is, n, — n, + ny = 2.

The theorem now follows by the principle of mathematical induction.

Theovem 6.1.3 In any simple connected planar graph with n, vertices, n, (>2)
edges and ng faces, the following inequalities hold :

(i) 2n, = 3ng, (1) n. < 3n, — 6

Proof : (i) T.et G be a simple connected planar graph. Since G is simple, each
eyele (if any) has at least three edges. Hence each face is bounded by at least three
edges. Then the total number of oceurrences of the edges that bound the faces is at
least 3n;. Again, each edge cither occurs once in cach of two different face boundary
walks or oceurs twice in the same boundary walk.

Hence, 2n, = 3n;.

(ii) From Euler’s formula we have, n, = n, + ng— 2.

So, from (i) we get ne =n, +%ub—2; i.e. %nc <ny—2.

feans £3n,=6

Corollary : 6.1.1 Let G be a simple connected graph such that n. > 3n, — 6.
Then, G is non-planar.

Corollary : 6.1.2 Let G be a simple connected graph such that 20,/ < 3ng. Then,
G 15 non-planar.

Theorem 6.1.4 Let G be a connected bipartite planar graph with n, vertices and
n, edees. Then, n, = 2n, — 4.

Proof : Since G is a connected biparlite graph, each cycle (if any) in G has at
least four edges. Hence each face is bounded by at least four edges. Then total
number of occurrences of the edges that bound the faces is at least 4ny. Again, each
edge either occurs once in each of two different face boundary walks or occurs twice
in the same boundary walk. Hence, 2n, = 4ng; Le., n, = 2np.

From Fuler’s formula we have,
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1 e
Ny —Ng +51e =12 or, m—%nczz l.e,n.<2n, —4.

Corollary : 6.1.3 Let G be any connected bipartite graph such that n, > 2n, — 4.
Then G is non-planar.

Theorem 6.1.5 The graphs (i) K5 and (ii) K; 3 are non-planar.
. Proof : (i) The complete graph K is a simple connected graph.
The graph K is shown below.

Ks
For K¢, n, = 5¢,=10,n,=5. Then, 3n,—6=15-6 =9 and 10 = n, > 3n, — 6,
Hence, by corollary 6.1.1., Ks is not a planar praph.
(ii) The complete bipartite graph K, is a simple connected graph. The graph
K31 is shown below :

K3

For K33, 0y, =6, n,=3 % 3 =9,

Then, 2n, —4 =12 -4 = 8§,

Hence, 9 = n, > 2n, — 4. Hence, by corollary 6.1.3, K, ; is not a planar graph.

Remark 6.1.1 The two graphs K5 and K;; are known as Kuratowski's graphs,
Ks is Kuratowski’s first graph and K; ; is Kuratowski's second graph.
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K and K5 ; have some common properties aparl from the fact that they are hoth
non-planar. These common properties are as follows :

(i) They are both regular graphs.

(ii) If we remove one vertex or an edge from the graphs, each of them becomes
a planar graph. _

(iii) Both of them are simplest non-planar graphs n the sense that K5 is the non-
planar graph with the smallest number of vertices and K ; is the non-planar graph
with the smallest number of edges.

" Guhdivision of an edge of a graph : Let G be a graph and e be an edge of G
with end points {u, v}. Subdivision of the edge e is an operation that inserts a new
vertex, say w, on the edge between 1 and v and as a resull the edge e is split into
two edges ¢, and e, say, with end points {u, w} and {w, v} respectively.

The subdivision of an edge e of a graph is shown below :

u c v 1} 2 w €3 v
p—— L 3 -
The edge e Subdivision of e

Subdivision of a graph : If we perform a finite sequence of edge-subdivision
operations on a graph G, then the resulting graph is called a subdivision of the
eraph G. -

Graph Homeomorphism : Two graphs G and H are said to be homeomorphic
if there is an isomorphism between a subdivision of G and a subdivision o f H.

Example 6.1.3 Consider the following two graphs G and H as shown below in
fig. 6.1.3.

Fig. 6.1.3

The graphs G and 1T cannot be isomorphic since G contains a cycle of length 4
whereas H contains a cyele of length 3. But G and H are homcomorphic, because if
the edge e in G and the edge ¢ in H are both subdivided, then the resulting
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subdivisions G of G and H, of H arc isomorphic. The subdivisions G, and H, arc
shown below in fig. 6.1.4.

G,
Fig. 6.1.4
We have shown that Kuratowski's graphs Ks and K, 5 are non-planar,

For a long lime it was an unsolved problem lo characterize planar graphs. In
1930 the Polish mathematician Kazimierz Kuratowski (1896-1980) solved this
problem, Fe proved a necessary and sufficient condition for the planarity of a graph.

Theorem 6.1.6 (Kuratowski) : 4 graph iy planar if and only if it does not
contain any subgraph homeomorphic to Ks or, K3

Alternative Statement of Kuratowski’s theorem : A graph is planar if and only
if it does not contain a subdivision of K, or K; ;.

Froof : There are several proofs of this theorem. We omil the proof since it is
too involved. However, a proof can be found in |2, p109-112] or in [3. p314-320].

Theorem 6.1.7 If a graph G contains a non-planar subgraph, then G is non-
planar, .

Proof : If possible, let G be a planar graph and G| be a subgraph of G, Then G,
is obtained from G by deleting some edges and vertices of G. Since G is planar, every
plane drawing of G remains free of cdge-crossings when we delete any sct of edges
and vertices of G. Thus G; is also planar which contradicts the given condition.

Hence, G is non-planar.

Corollary 6.1.4 Every subgraph of a planar graph is planar.

6.3 Worked Out Exercises

1. Three Utilities Problem : Therc are three houses each of which are to be
connecled to three utility service centres : walter, electricity, telephone. Tn order to
maintain the pipelines independently without affecting the others, the pipes must be
laid on a plane surface so that they do not cross each other. Can you find a layout
of the pipes so that none of the nine pipes cross cach other?

154



Solution : We take the three houses and the three utility service centres as the
vertices of a graph, and the pipes connecting a service centre with a house as an edge
of the graph. Then the problesm can be represented by the following graph :

- W E '|i|

H, Iy
H,
The graph is Ki3. The problem then reduces to the question : Is Ky planar?
Since K ; is non-planar, it is impossible to find such a layout of the pipes.
2. Using Kuratowski’s theorem show that Petersen graph is non-planar,

Solution : Petersen graph (Danish mathematician Julius Petersen (1839-1910) is

shown below :
uy

Va

Uy Vi
Petersen graph
We now draw a subdivision of K; 5 as follows :

Uz
iy U3




We see that Petersen graph contains a subdivision of K 5.

Hence, by Kuratowski’s theorem, Petersen graph is non-planar,

6.4 Exercises

1. Let G be a connected planar graph with 9 vertices having degrec sequence
(2,2,2,3,3,3,4.4,5). Find n; and n; for G,

2. Let G be a connected 4-regular planar graph with 8 vertices, Tow many faces
does G have? ;

3. Tor each of the following planar graphs how many faces does the graph have?
Find the size of each face. Verify the face-size equation and Luler’s formula.

(a) (b)

'l':J_

¥

V3 =

4. Let G be a connected simple graph with 8 vertices and more than 18 edges.
Prove that G is non-planar.
5. Show that the complete graph K is non-planar.
6. Let G be a simple connected planar graph. Prove that theie exists'a vertex
v & vg such that d(v) = 5.
7. Let G be a simple connected planar graph with n, vertices, n, edges and ng
= SEY

~ faces. Il every face of G is bounded by m edges, show that Rg = —m{::‘“_z
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Unit 7 00 Matrix Representation of Graphs

Structure
7.1 Matrix Representation of a Graph
7.2 Exercises

7.3 References

7.1 Matrix Representation of a Graph

The geometrical representation of a graph has cerlain disadvantages. They arc
useful only when number ol vertices and edges are relatively small. But such
representations become very cumbersome and sometimes impossible if the number
of vertices and edpes are very large. We now give an alternative method of
representing a graph by means of a matrix. This method has the advantage in the
scnse that matrices can be stored in a computer memory easily and can be
manipulated. The operations of matrix algebra can be used to lind different
characteristics of a graph.

Adjacency Matrix of a graph : Let G be a graph with n vertices and suppose
that the n vertices are ordered as vy, Vo, -....., v,. Then the adjacency matrix of G,
denoted Ag., with respect to the given ordering of Vi; is an (n = n) matrix [a;] such
that _

_ | the number of edges joining v; and v, when i .
i _{thc number of loops at v; ifi = ]

Example 7.1.1 Consider the graph as shown below in fig. 7.1.1

Vi

1Ir2 '\"3
G
Fig. 7.1.1
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Suppose the vertex-set Vi = {vy, va, v3, v4} has been ordered as (v, vy, vs, vy).
Then the adjacency matrix Ay with respect to the given ordering of Vy; is given by
the following 4 * 4 matrix :

Vi Vi V3 Wy
¥y 2 1 0 1

Ag= v 1 0 2 1
Vi 0 2 0 2
vy 1 1 2 1

Il we take the ordering (vq, vy, ¥, Vi), of Vi, then the corresponding adjacency
malrix Ag is given by the following 4 »x 4 malrix :
Vi Vg YV Wy
v fn & .k 2
Ag= vy 1 1 | 2
Vi 1 1 FI
Vi 2 2 0 0

Note : When the ordering of the vertex-set Vy; is implicit from the context, we
need not label the rows and the columns and the adjacency matrix Aglcan be written
as a matrix without any row or coloumn labels.

Remark 7.1.1 When the adjacency matrix A is given we can draw the
corresponding graph :

The matrix Ag is symmetric about the main diagonal. This is true for any
adjacency matrix, because if v; is joined to v; by an edge, then v; is also joined fo
v; by the same edge. Although we get dilferent adjacency matrices lor different
orderings of the vertex-sel, the corresponding praphs will be the same.

Remark 7.1.2 Two praphs will be isomorphic if we can order their respective
vertex-sels so that their adjacency maltrices are identical.

Incidence Matrix of a graph : Let G be a graph with n vertices and m edges.
Suppose that the vertices are ordened as vj......... v, and the edges are ordered as
€ls€py. Then the incidence matrix of G, denoted lg, with respeet to the given

orderings of Vg and Ea, is an (n * m) matrix [I;| in which
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0,if v; is not an end pointofl'e;.
Iy =11, if v; is an end point ol ¢; e; being not a loop,
2, il‘-.:j is a loop at v;.

" Example 7.1.2 Consider the graph as shown below in fip. 7.1.2

:
£7

@ 2 V2
iy = €3
€3
¥4 2 V3
By
Fig, 7.1.2

Supposc the vertex-sel Vi; has been ordered as (vq, va, v3, vy) and the cdge-sel
L has been ordered as (e, e, €3, €4, €5, ¢ 7). Then the incidence matrix I with
respect Lo the given orderings of V5 and L is given by the following 4 * 6 matrix :

¢ & 6 B ©5 B oy

w ot B @@ A a2

k= vw (1 1 0 0 0 0 0
vy A\ 0 1 1 1 0 0 0

we X0 B & @ A @

If we take a dilferent ordering of Vg, say, (va, v4. vy, v3) and a different ordering
of L, say. (e}, €3, €5, &7, €2, €4, &,) then the corresponding incidence matrix 1 will
be given by the following 4 = 6 matrix :

e €3 B € € By &
V3 1 g 0 g I 0o 0
Is= V4 0 1 I 3 0 ] I
Vi 1 0 1 2. 8 b 1
V3 ] | 0 () | l ]

Note : Observe that incidence matrix 15 also depends on the particular orderings
ol V; and Eg. However, when the orderings of the vertex-set and the edge-set are
implicit from the context, we need not label the rows and the columns and I; can be
written as a matrix without any row or column labels.

139



Remark 7.1.3 If we change the orderings ol Vi and Eg, then the rows and

columns of I are simply permuted.

From the definition of incidence matrix it follows that ;

(i) The sum of the entries in any row, say i th row, of an incidence matrix l; is
equal to the degree of the comresponding vertex v;.

(ii) The sum of the entries in any column of an incidence matrix Ty is equal to 2.

7.2 Exercises

I. Find the adjacency maltrix lor each ol the following graphs with respect to the

given ordering of the vertex-set.
(a) Ordering of Vg— (1) (v, v,
{ii} ["'Il:l v-ﬂ?

(b) Ordering of Vg— (i) (v, va
(i) (vy, v,
(C-:l DI‘dt!TiTlg of 1‘."’5— (1) (vyy va,
(ii) (V1. Vs,

Vi, Vq)  (a) O""

Vi, Vl]

Vi, Vi, Vs)

Vi Vss 1"'1}

Vi, Vi, Vs}

Vi, Vi VE)
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Va
¥i
Vi
Q .
¥i
(b)
vy G VjQ
Vi
(c)
Vi Wk
Vi 3



(d) Ordering of Vg— (i) (v}, V2, V3, Vs V5. Vg, V7)

(i1) (v, Vg Vs Vg V3, V2o V1)

(d) v N
Vi

V2 Vs Vq

¥ G

2. Find the incidence matrix for each of the following graphs with respect to the
given orderings of the vertex-sel and the edge-sel,

(a) Ordering of Vg— (1) (v, Vas Vi, Va)

(@) ey ; Ordering of Ei— (i) (e, €3, €3, €4, €5, €4, 7, €, o)
= 4
el vy Va Ordering of Vg— (ii) (vy, Vi V3. V2) _
2 Ordering of Eg- (ii) (g4, €3: €5, €7, €5, €2, €4, S, €5)
Eg =1
25
ﬁ
V4 €7 Vi
=
(b) Ordering of Vg— (v, Va, Vi, Va)
Ul‘ﬁl:[i]lg of EG'_ (ell €3, €3, €4, C5, € E?)
¥ v
{h) € £
e e; ¢y s
€4
Va Vi

€7
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(© v (c) Ordering of Vg (v}, V3, Vi, vy, Vs)

Ordering of Eg— (ey, 4, €3, €4, €5, €4, Cq, €4, €9, Cip)

£ Cy
€y C1n
Bs
=) : 4
=
€7
Vs = vy
() % (d) Ordering of Vg— (v, Vo, Vi, Vi, Vi, Vg, Vo, Vg, Vo)

Ordering of Eg-(ey, ey, ey, ey, €5, €5 €7, &)

vy

€7

Vi
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