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PREFACE

In the curricular structure introduced by this University for students of Post-Graduate
degree programme, the opportunity to pursue Post-Graduate course in Subjects
introduced by this University is equally available.to all learners. Instead of being
guided by any presumption about ability level, it would perhaps stand {o reason if
receptivity of a learner is judged in the course of the learning process. That would
be entirely in keeping with the objectives of open education which does not believe
in artificial differentiation,

Keeping this in view, study materials of the Post-Graduate level in different subjects
are being prepared on (he basis of a well laid-out syllabus. The course structure
combines the best elements in the approved syllabi of Central and State Universities
in respective subjects. It has been so designed as to be upgradable with the addition’
of new information as well as results of fresh thinking and analysis,

The accepted methodology of distance education has been followed in the
preparation of these study materials. Co-operation in every form of experienced scholars
is indispensable for a work of this kind. We, therefore, owe an enormous debt of
gratitude to everyone whose tireless efforts went into the writing, editing and devising
of a proper lay-out of the materials. Practically speaking, their role amounts to an
involvement in invisible teaching. For, whoever makes use of these study materials
would virtually derive the benefit of lcarning under their collective care without each
being seen by the other. :

The more a learner would seriously pursue these study materials the easier it will
be for him or her to reach out to larger horizons of a subjeet. Care has also been taken
to make the language lucid and presentation attractive so that it may be rated as
quality self-learning materials. If anything remains still obscure or difficult to follow,
arrangements are there to come to terms with them through the counselling sessions
regularly available at the network of study centres set up by the University.

Needless to add, a preat part of these efforts is still experimental-in fact, pioneering
in certain areas. Naturally, there is every possibility of some lapse or deficiency here
and there. However, these do admit of rectification and further improvement in due
course, On the whole, therefore, these study materials are expected to evoke wider
appreciation the more they receive serious attention of all concerned.

Professor (Dr.) Subha Sankar Sarkar
Viee-Chancellor
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Unit 1 O Classical Optimization Technigues

T —

Structure

1.1 Introduetion

1.2 Multivariable optimization with no constraints

1.3 Multivariable optimization with equality constraints
1.4 Multivariable optimization with inequality constraints
1.5 Summary

1.6 Assessment Questions

1.2 Multivariable optimization with no constraints

1.1 Introduction

1.2 Multivariable optimization with no constraints

1.1 (Introduction)

The methods of determining relative extrema of functions of several vatiables
using differential caleulus are so old and well-known that they are referred to as
classical. The elassical methods of optimization are used in finding the optimum of
continuous and differentiable functions. Since practical problems involve objective
functions that are not continuous and/or differentiable, the cluysical optimization
techniques have limited people of applications. But these classical techniques forms
a basis for developing most of the numerical techniques of optimization,

In this unil we consider three types of problems viz

(i) Multivariable optimization with no constraints,

(i) Multivariable optimization with equality constraints and

(ii1) Multivariable optimization with inequality constraints

1.2 Multivariable optimization with no constraints

We develop the necessary and sufficient conditions for an n-variable functions
f(x) to have extremt, It is assumed that the first and second partial derivatives of
f(x) are continuous at every x.



Theorem 1.2.1 A necessary condition for x, lo be an extreme point of fix)

dt
is that V f{xy) = 0 i.e. [ﬁ?] =0 foris 1,2 .
Fdxy [

Proof : By Taylor’s theorem we have

&, [ ot 13 0’
v =g+ $0[3] i Sm[ZE] o
i Aye

=1 j=1 i

where ) < B < |,

Since the last term is of order hf. the terms of order h will dominate the higher
order terms for small h, Thus the sign of AX, + i) - fiX,) is decided by the sign

]| ar .
of 2h ['a?} - Let Xy be are extreme point, say miximum point. Then fX, + h)
i ]

of
- fiXy) > 0 for all sufficiently small h. We are to show that [Tx,] =0 ¥i=1,
0

of
& , n. If possible, let ox, | #0.
gt

Let us choose hy = 0 for all i # k, and h sufficiently small. Then the sign

J of.
of fiXy + h) = fAXy) is decided by the sign of hk[g:%:] . Since {E};L# =0,
: 5y

of
let _[ﬂ_.n]_lu:- 0. Then fiXy + h) = fiXy) will be-positive for /i > 0 and negative

for iy < 0. This is a contradiction as xp is a minimum point, Similar contradiction

af af af
oceurs for | G- h < 0. Hence Ox, | # 0 is not possible, .. ox, | = 0. This
X0 1

is true for any k = 1, 2,... n. Hence the theorem.

Theorem 1.2.2 A sufficient condition for a stationery point x, to be an extremum
is that

(i) VAXy) = 0 and the Hessian matrix [H]mispusitive definite when x; is a

minumum point, g



(i) VAiXy) = 0 and the Hessian matrix [H]mis negative definite when x; is a
maximum point,

Prob : By Tayloris theorem we have

f E.lf 1 sl d*
oo +9) = fXp) + 2ol [F] Iz > ”-'"f[ = }
=l e : I ol gy el

Where 0 < 8 < |,
fXo + ) f(Xy) = Qlxy + oh)

i ajf
Where Q (x, + oh) = _fz z b /] [&1 a.;.J
Sy Foh

;IJ#[

T e

Now we have assumed that the second order partial derivative Jrte 8

continuous in the neighbourhord of x,. So far sufficiently small A, the signs of Q(x,

+ oh) and Q(xy) are some. Hence f{X, + h) — fXp) and Q (xpy) have the same
sign.

of
Let J(Xp) be the Hessian matrix [Eh',- X; ] From matrix algebra we know that
i)

i

l f I | 'l
QX,y) = JE; ;z:l il a Eh will be positive (negative) for al h if and only if
Lli]

the Hessian matrix J(Xp) is positive definite (negative definite) at X = X,

Thus for sufficiently small h, the sign of f(X, + h) ~f(X,) is positive (negative)
if J(Xo) is positive definite (negative definite) i.e., X is a relative minimum (maximum)
- ] (Xy) is positive definite (negative definite). Hence the theorem,

Result : Let A = [a;],,, and

fdy  dyy  dyy

Ay = |91 G ap
fyr e Gn

s




Then the matrix A is
(i) positive definite iff A; > 0 for all i = 1,2, .....n
(ii) negative definite iff the sign of !—"si_ is (-i)i for i = 1.2, ....n.

(iii) positive semidefinite iff A, =20 foralli =1, 2, ...... n wih equality holding
for at least one i

(iv) negative semidefinite iff Ai <o foralli= 12, ... n with equality holding
for at least one |

(v) indefinite if it is neither definite nor semidefinite.

Example 1.2.1 Determine the extreme points of the function

Flx, X)) = x4+ x3 +4x2 +2x3 +12

Solution :
Of a2 8F' _imoa
Here L 310+ 8x,, A =3x3 +4dx,

The necessary condition for the existence of an exireme points gives
x; Bx+ 8) =0 and x» Bxy +4) =0
The solutions are {0, 0) (0, =4/3), (=8/3, 0< (-8/3, —4/3). The Hessian matrix
of flxy, x;) is given by

d*f a*f
dxt dxdxy| | 6x +8 0
T x)=| 9% &F || 0 6u+4
33'331] axi"
' J| = (:'-x. + B
6x, + 8 0 _
and Jg = (. 5-1'2+4 = (&I1 + S:' {6—1’3 + 4}

For the point, (0, 0) we have

J,=60+8=8>0and J» = (60 + 8) (60 + 4) = 32 > (
10



“+ Jis positive definite. Hence (0, 0) is a relative minimum point of {{x,, X2}
For the point (0, —4/3) we have
J.:6.[!+8=B:»Um1dh={ﬁ.ﬂ+8} (6473 + 4) = =32 <0

1 18 indefinite. Hence (0, —4.3) is 2 saddle point of f(x;, xa).

For the point (-8/3, 0) we have

I =-I5.8f3+H=—3{Dand12={—ﬁ,8f3+3}{6.[}+4}=—32~:U,
4 1 is indefinite. Hence (-8/3, 0) is a paddle point of f(x;, x,).

For the point (-8/3, —4/3) we have

=683 +8=-8<0and ], = (-6.83 + BN—6.4/3 +4) =325 0

< Jis negalive definite. Hence (~8/3, —4/3) is a relative maximum point of f(x,,

1.3 Multivariable optimization with equality constraints

We shall consider two methods viz

(i) Method of constrained variation and

(if) Method of Lagrange multipliers.

The general multivariable optimization problem with equality constraints is

Minimize [ = f(X)

subject to g (X) =0, i =1, 2, ..., m

Where X = [x), X3, ....xn]", (m < n)

1.3.1 Method of constrained variation

To understand the salient features of the method we consider the simple problem
Minimize f(x,, x5)
subject to glx;, x;) = 0 . _

Let us assume that g (x;, x;) = 0 can be solved to obtain X3 a8 x3 = h (x).

Then the problem reduces to the unconstrained minimization problem

Minimize f (x;, h{x;))
The necessary condition gives

df _

= 1



df 4 of dh _,
or; ox, ol dy,

O Oy, oy dx,

af d
or, ?iidx, +£de 2 | T e

Let (x{,x3) be the minimum point. Then (7, x;) must satisfy the given constraint.
A o R (2)

For admissible variations dx), dx, we have g (x; + dy,x; +dx,) =0

Using Taylor’s theorem we get

A & & ag . a'g

] &g - i ag — £y
-01, {T\:Lﬁﬁ }(l".tl + [E;;]( dx, =0 Ih}' (2]

Sy
Assuming [a?‘T?], ' ]:t{} we gel,
bt II.\‘r..\E
de l
.t_ -\'l’..\';]
dys = — % — 2l ciinenen(3)
&5 e

Thus the admissible variation dx; depends on dxland ) can be chosen arlitravity.

Using (3) in (1) we have for admissible unviations

. g
¥ o
Eg%'a?ﬂ dn =0

L
.u..rg}

12



Since dx, is albitrary we have

df dg 9dg of
ox o, Iy, O, daq =0

This is the necessary condition for (41, x7) to.be an exteme point,
Result : The solution of the problem

Minimize f(x,, x»)

subject to glx,, x;) = 0
is obtained by sloving

o 9 % ¥ _,

ox; ¥y Ony Oxy
and g (v, x3) = 0
The above result can be generalized for general problem in the following theorem.
Theorem 1.3.1. Necessary conditions for (x;, X3eeiii- Xy ) tO be an extreme point
of the function f(x,, xa, ....., x,) 10 exist under the m equality constraints g; (x,, xa,
wdy) =0, = 1, 2 ey m (m < n) are the following (i - m) equations ar satisfied
at (. 2..00x0)

J of of of
T E‘l E " '1""
aq ﬂg EE.L dy

j [f-gifgl ***** 13:.1]

thxz.-.....,x T:- : :
ag, g, 98, %
Eraly Tl R

k=m+1l,m+2 ...n

w

,
i
fa s
05
LR
]
=

dg, g o8

el - 1 I -1

ool -a']'_-'! a"':m

_ 9¢, g g
Whemj(MJ= .:n, an el

A vreenady s R

9, 08, 9%

W o 3,




Note : In the above theorem Xy,p, Xjeosein X, are independent varinble-
Also we note that the dependent variable, x;, X Xm must saishy 1

Example 1.3.1 Using method of constrained variation
Minimize f (x|, x3, x3) = x!+ 243 + x}
subject to 2x; + 4x; + 3x3 + 9
4x; + 8Bxy + 5x3 4+ 17
Solution. .

We are b minimize

f=xt+2x]+x3

1]

subject to gy = 2x) + 4x3 + 35, - 9 =0 ........ (1)
Ey = 4.K'| + ng + 5.1'3 — =0 cnrrrers (2}
We are first to select independent and dependent variable.

Let us consider

dg, Og

J (L’I:Ez] axl ‘g-—":L =|4 8|=ﬂ
Vi 5 98
2 Exll =

Thus x; cannot be chosen as independent variables.
Let us now conisder

dg, dg
,(s_a&] ‘fF.L E?r?_|2 3

X2 ¥y = E‘gi %ﬂ = 4 5|=1D-[2:_2=Fﬂ
dx,  ox,

Thus x5 cannot be chosen as independent variables,

The necessary condition 1s

] ( ftgpg". ]=
Xay Xpa Ny
14



a9 o of
dx, Ox Ox
dg, dg Oy

e E‘-EL D;:- (=@
dg, Jg, dg,
9y, Ox 0x;
4x, 2x 2x,

ot FH Z g
8 4 =

or, 4y, (10 = 12) + 2x) (24 - 20) + 2x1 (16 — 16) = 0
or, - 8x3 4+ 8Bx; + 0 =0
or, X2 = Xypvwsorenn(3)
Using (3) in (1) & (2) we get respectively
6x) + 3x3 9 =0
and 12 + Sxy - 17 = 0
-15+ 45

M S3p-3g 1.
_ Zlos+102 _
M=o =

From (3) we have x, = |
Hence the required solution is n=liom=1,x=1.

1.3.2 Method of Lagrange multipliers

In the Lagrange miltiplier method are additional variable is introduced to.the
problem for each constraint, If the original problem has n variables and m equality
constraints' then we are to add m additional variables to the problem so that the final
number of unknowns becomes n + m. :

We now state the famous theorems of Lagrange.

Theorem 1.3.2 A necessary. condition for a function )y X, .y x,) subject
to the constraints g (xy, X9y ey ) = 0, [ el v m to have a relative minimum

at a point (xj, X3,......x}) is that the First partial derivatives of the Lagrange function
15



I T, W A SO Ay =F+ z}lﬁj with respect to each of its arguments
J.-_..

must be zero.

The sufficient condition for a function subject to equality constranits is given
in the following theorem.

Theorem 1.3.3 A sufficient condition for a function f(x;.x, ...., x,) subject to

the constraints gj(x, ¥s, ... Xp) =-{J,j =1, 2, ..., m to have a relative minimum
(maximum) at a point (X}, x3,.....X,) is that the quadratic Q, defined by
]
= E;EI‘T Axdx; ........ () evalualed at (x], x3,.....x,) must be positive
i=l j=

(negative) definite for all choice of admissible variations dx;.
Theorem (Hanock) 1.3.4 A necessary condition for the guadratic form Q =

i 2 W dxidx; . evaluated at (x{, x3,.....x;) 1o be positive (negative) definite for
i=1 j=1

all admissible variations dx; is that each root of the polynomial defined by the
following determinantal equation, be positive (negative) !

Ly -2Z) Ly Ly, S &y e o 8w
Ly (Ln=2Z) .. Lo, Siz &a v o Suiz
Lul Lr.! LEETIEET { i Z) Bun  8Bam v v Bum
& 82 Eim 0 0O 0
&1 £ weoee Bam 0 0 0
Ewl Bz L T Enmn 0 0 = LI 0 i

J*L
Where Llj = ‘E]?Iax_j v

and gy = [E'IZL*. X" = (X daeendy)
16



Result : If some of the roots of the above determinantal equation are positive
and some are negative then the point x* is not an extreme poitil.

Example 1.3.2 : Using Lagrange multiplier method minimize the function

£, X3 x3) = 9 = BX) — 6wy — 4oty + 2uf + 23 4 22 + 2px, + 2004 subjectto
the consttain x; + x; + 2xy = 3

Solution. Hope f = 9 — 8x) - 61, + dxy + 202 +2x2 4+ 224 2%, + 231
E=X-X+25q-3=0 ;

The Lagrange functionis given by

L (x, x 3, A) = + Ag

= (9= By =642 + dxg + 247 + 203 + 7+ 260%0 + 2xp03) + A (x), Xp, 2x3-3)

The necessary condition are

dL
Eﬂﬂj o =8 4+4x + 204+ Wy +A=0

E'—-=ﬂ ar, =6+ 4y + 2+ A =0
=0 o —ds2u42u+2h=0

-Ex=ﬂ ar, X+ X+ 23 -3 =0

Solving these four equations we have

x; =43, x3 =79, x; =49 and )* = 2/9
We now use sufficient condition to identify this extreme point.
We evaluate Lj; and g; at the pﬁint (4/3, 719, 4/9) = X*

i azL_

d°L
le o Lzl = WL =12
t?_

PG (MT) IX A (IT)}—2



Bix = {3 =2

We now consider the determinautor equation

Ly-z Lj Liz &
Ly Lp-z Ly g -0
L;, Ly Ly—z- g,
&n 812 8 0.
4—-z 2 2 |
2. 4=z B 1 i
or, 2 0 2-z 2|
| 1 2 0
2 21 4=2 2 2 4-z 2 2
o, -ld-z 0 1|+l 2 0 2-z —2‘ 2 4-z 0|=0
0 2-z 2 1 i 2 | I 2

18



or, Z2-6z+9=0

or, 2=3,3

Since the roots are all positive, (4/3, 7/9, 4/9) is a relative. minimum of the
function.

1.4 Multivariable optimization with inequality constraints

The general multivariable optimization problem with inequality constraints is
Minimize f = f (X)
subject to g; (x) = hi. j2=2 e m
where X =[x, X5 reouirens x,1T.

This section is concerned with developing the necessary and sufficient conditions
for identifying the stationery points of the above problem. These conditions are called
Kuhn-Tucker conditions and the development is mainly based on Lagrangian method,

Theorem 1.4.1 (Kuhn-Tucker Necessary Conditions)
Given the problem to minimize |
Feai) = ik b s x5
subject to gj (X) = B kXt X3 e %) 2 by i =1 2 M

the necessary conditions for X, to be a local minimum are that

af dg;
(i) E%+§l!ﬁ}f':n, f=1,2 i
i) A (g0 = b =0, j =L 2, o

(i) g (X) S by = 1,2, wem
(i) A 20, j=12 . s m
are satisfied atl X,

Introducing slack variables the inequality constraints bcomes

g (X)+ 2 =b, j=12 wuym

or, g 0 + .gf -b=0 j=12 ... $BY coninis (1)
19



'In order to obtain’ all stationary points, we form the Lograngian function L
given by

L (X, ,.8) = f00) + 2A (g (%) + 5] = b
L =

Then the stationary points are obtained by polving the equations

g;.;=ﬂ- =12 v m

and g_i;:*j:l.l ...... , m
e %+§%%= R ot )
45 ~b;=0 (3
2.:'Lj5.'f-= ; 4)

Multiplying (4) by é—s Vwe gel,
Asi =0
Using (1) this gives
b -8 00}=0
o, AgX)-5}=0, j= L2 e M nld)
From (5) we have when &; # 0 then g (X) — b; = 0 or, g (X) = b




Using chain rule of differential calculus we huve

ag i dg, ox;
£ 9x; Ob 'a_-

Multiplying both sides by Ak and summing over all values of k we get

] i i a b 7
Eron- (S 35)

4

4s
o, M= ﬁ ?L.rzf - ] ............ (6)

b= iBJ

Again db ggf )

Adding (6) and (7) we get

of dge
ab”‘ Z[., 2}“ .k}db

= () using (2))

Jf
or, b= S it SR T (8)
df
Thus when A; # 0 then we have A = — e i (9)

: d
We now show that Aj > 0, 1f possible let Aj < 0. Then from (9) we have ai >0

This implies that as b; is increased, the objective function increases. Now as
b; optimal value of the objective function clearly cannot increase. This contradicts
our assumption A; > 0. Thus at an optimal solution we have Aj > 0 when A #
0. Hence at the optimal solution we hour Aj = ().

Note : For the problem
Maximize f = f (x|, xs, ...... )

subject 10 g (¥, X, v, X)) by i = 1, 2, o
21



the Kuhn-Tucker necessary conditions for (x;, x3,.....x,) to be a local maximum
are that

0 & +21"’3* el B

(if) )1 [g; - bj] =)k _| R e e [
(iii) g < , i
(iv) JLJ 0k I= L2 .

il
»
3

are satified at (xy, X3,......47)
Sufficency of the Kuhn-Tucker conditions

The Kuhn-Tucker necessary conditions are also sufficient if the objective function
and the solution space satisfy certain conditions regarding convexity anc concairty.
For maximization problem the objective function should be concave and solution
space should be convex sel.

For minimization problem the objective function should be convex and the
solution space should be convex set.

Example 1.4.1. Solve using Kuhn-Tucker conditions
Maximize 2 = 5 + 8x; + 12x; — 4x7 —4x] —4x?
subject to x; + x; < 1

2% + I, £ 6

Here the consirainis are
gr=x5+x=1

and py=20 +35 =6

The Kuhn-Tucker necessary conditions are

-g%-k?h, ai +12%§c}=u, T2

Aj[gg-bl=0 j=1,2
M20, j=1,2
e, 8-8x+ A +20,=20 sl
22




12 -8 0 30 =0 2 - v 2)

-8 =0 : W (3)
Ky odxy Haxy = 1) =007 © 0 s 4)
Ao+ (2% +36,-6) =0 ... (5)
¥pddyeel=@ = = ..(f:-}
2y +3p~-6<0 .. (7)
AEd . L o plE (8)
A 20 R el i )

Four cases may arise.
case 1. A =0, A4 =
case 2. A =0, A # 0
case 3. A # 0, A =0
case 4. A # 0, A # 0
Case I, Here &) = 0, A, = 0
From (1) we get x; = |
From (2) we get x; = 3/2
- This solution does not satisfy (6). So this solution is discarded
Case I. Here A, = 0, A, # 0

From (D)-we get 2n 4 3 cb=0. . 0 10
(1) becomes 8 — 8x; + 24, =0 or, X; = (A; + 4)/4 eI
(2) becomes 12 — 8x3 + 3h: = 0  or, X, = (3A; + 12)/8 w11)

Using (11) and- (12) we get from.(10)
(A + 42 + (ghs + 36)/S -6 =0
o, 4k, + 16 + ghy + 36 - 48 =0
o, 13, =-4
o, 12=-4/13 <0
23
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From (11) we have .r-l — "T?+I=ﬁ
)
From (11) we have x; = —f%+-}%;%

This solution violets (6) and so is discorded.

Case. 3 Here Ay # 0 and A, = 0

From (4) we have xy+ 3 -1=0 . (13)
(1) becomes 8 — 8, + Ay =0 or, x; = (A; + 8) /8 e (14)
(2) becomes 12 - Bxs + Ay =00, xa= (A + 12) /8 ..., (14)
Using (14). (15) in (13) we have

or, Ay =-6

From (14) and (15) we get x; = /4, x; = 3/4

From (3) we get x3 = 0
X = 114, Xr = 3, X = 0
This solution satifies (6) and (7).

Hence this is the optimum solution,

1.5 Summary

This unit is devoted with the classical theory of optimization for locating the
points of muxima and minima of constrained and unconstrained nonlinear problems.
This theory deals with the use of diffrential calculus. The topics introduced includs
th.: development of the necessary and sufficient conditions for locating the extreme
points for unconstrained problems, the treatment of the constrained problem with
equality constraints using Lagrangian methods, and the development of the Kuhn-
Tucker conditions for the general problem with inequality constraints. Though the
classical optimization techniques are not suitable for obtaining real life problems, the
underlying theory gives the basis for devising most of the non-linear programming
algorithms.

: 24




1.6 Assesment Questions

1. Determine the extreme points of the function
f = 8x+27x3 +16a} +18x% +6
2, Determine the extreme points of the function
Z = 121+ 27x} + 64x3 +36x7 +32x2
3. Find the extreme points of the function
= xj +x3 +2x7 +4x7 +20
4. The total profits (z) of a firm depend upon the level of of output (Q) and

the advertising expenditure (A). Find the profit maximizing values of Q (in thousand
units) and A (Rs in thousand) given the following relationship.

Z = 800 - 3Q% - 4Q + 2QA - 5A% 4+ 48A
3. Using method of constrained variation and method of Lagrange multiplier
(i} Minimize f(x) = %[rf +x3 +43)
Subject to x; = Xy
X+ Xy +x =1
(i) Minimize f = 19 —16x, + 6x; - 4x; + 8x] + 213 + 3 — dx;x, +duyx,
subject to 2x; — x; + 2x3 = 3
(iii) Maximize f = 8x; x, x3
subject to x7 +xf +x] =1 |
(iv) Minimize f = 4x] + 2x7 + 9}
subject to 4.1'. - 4x; + 9x; =9
8x; — 8xp + 15x3 = 17
6. Using Kunh-Tucker condition determine the variable values to
Maximize z = x - x3 — x3 +4x, + 6x,
subject to x! + x, € 2
2x; + 3% < 12

25



- 7. Use Kuhn-Tucker conditions of solve the following non-linear programming
problems

(i) Maximize Z = 7 + 6x, + 5x,
subject to x; + 2xy, £ 10
X+ 3In=9
(ii) Maximize Z = 2x - x? 4+ x,
subject 10 2%, + 3x, £ 6
2x +x 54
(iii) Maximize Z = 2x? +12xx, ~ 7x2
subject to 2x; + 5x, < 98
Xp+ x 20
(iv) Maximize Z = 8, + 10x, — xf =2
subject 10 3%, + 2x; £ 6

Xy X3 2 0
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Unit 2 O Revised Simplex Method

Structure
2.1  Introduction
22 Revised Simplex Method
2.3 Standard Form for Revised Simplex Method
24 A Logarithm of Revised Simplex Method
2.5 Comparison of Simplex Method and Revised Simplex Method
2.6 lllustrative Examples
2.7 Summary

2.8  Self Assessment Questions

2.1 Introduction :

The revised simplex method proceeds through the same steps as simplex method
but keeps all important data in a smaller array. The ‘revised’ aspect concerns the
procedure of changing the simplex tables only. The revised simplex method is thus an
efficient computational procedure for solving a linear programming problem with less
time and labour. For large size problem this method is found to be ..... useful as jt reduces

the cost of obtaining the solution.

2.2 Revised Simplex Method :

When a linear programming problem is solved simplex method, successive iterations
are obtained by using suitable row operations so that the objective function reduces its
value in each step if it is a problem of maximization. Also the net evaluations should
remain always non-negative in every step. This method requires storing the entire table,
in the memory of the cbmpulef. For large size problem it may not be feasible. So, it
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requires to device a new method by modifying simplex method to handle LPP will large
number of decision variables and constraints.

In fact, it is found tat it is not necessary to compute the entire simplex table during
each iteration, The only informations needed to pass from one table to the next one are
seen to be

(i) Netevaluations z; ~ ¢; to determine the non-basic variable that enters the basis.

(i) The key column.

(iii) The current basic variables and their values to determine the minimum positive
ratio, and thereby to determine the basic variable that will leave the basis.

Itis sown that all the above informations can be directly obtained from the original
equations of the given LPP by making use of the inverse of the current basis matrix.

If B be the current basis then we have
Xy =Bby =Ba forallj=1,2, ...n
zj_cj=CBB-ldj-cj fG[’DHf=l. 2-,.. ..... i /]
and z = cgxp.

We note that all these necessary informations can be calculated if the current value
of B! is known. Much computational work is needed for transformation of all YpJ =
| e el

But all y ; are not needed to go to next table. As noted above we need only to know
the key column i.e. yi. This will actively save our much labour. At each iteration KR,
zeg B~ and B! are transformed and-not all the y; are transformed, only the key column
Yi is transformed in the revised simplex method, The criteria for selecting the entering
and departing vectors in the revised simplex method precisely the same as that was in
the simplex method. The labour saving point in this method lies in the fact of computing
the inverse of the next basis directly from that of the current basis without actually having
to invert-the next basis.
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2.3 Standard Form for Reévised Simplex Method :

Let the linear programming problem be
Maximize z=cx:
subject to Ar=b

x=0

e (1)

where ¢, xT € R", bT € Rm and A is an m x n real matrix. In the revised simplex
method we consider the objective function equation z = cx also one consiraint, Thus
the new system becomes a (m + 1) simultaneous lines equations in n + 1 variables z,
X1s X23"ssiss Xy, The problem thus becomes to get the solution of this system such that
z is as large as possible. The simultaneous linear system thus becomes
Ax+oz=b
~cx+2=0 (2)

x 2 0, z i5 unrestricted.

Hence the LPP (1) becomes equivalent to the problem of finding the solution of
the system (2) such that z is as large as possible.

In matrix notation (2) becomes

Bt I o

Let B be the initial basis submatrix of A and xz = B-!b be the initial basic feasible
solution to the original LPP (1),

Since the values of the non-basic variables are always zero (2) becomes

Bxg + 0z=b
~Caxg+z=0 | siass A}

B Ollxg|_[5b

DI'-. _CB I. Z 3 ﬂ
o B - o TN 5 s NP e (5)
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where, B = [‘Ea ?].‘is--_- ['rzﬁ] and E:[g] sverre (0)

From (4) we have

el . L g (M

This is the initial basic feasible solution to the reformulated problem (2).

1

- P Q
LetB‘:[R s] ....... (8)

Computation of Inverse of B by partitioning we have B = [_]é ﬂ].
B

Since BB = I, we have

-8, S)[R 8] te

BP+OR BQ+0S7_[I, 0
or, |-CgP+R —CuQ5S [ 1

~ BP =1,
BQ=0
~-CgP+R=0
-CgQ+S=1
Since B! exists, we gel from above
P=RB-!1],=B"
Q=8B-10=0
R = Cg B!
§=1+Cg0=1
Thus from (8) we get

=1
B-I = [Cfﬂdl {I:III] ansmiid {9}
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We note that all the components of B! are known,

Determination of net evaluations, key column and BFS -
_| A
We define A = [_ C]
and § = B-1A

Then §=| ¢ p- ?][—#c]

[-B'A  -OC
=|CsBA ~C

B-1A ]

= |Cp(BA)~C s (10)

we have
A = By
~ y=BlA

W V= }l
. From (10) we have § = [Cn y- C]
A & it J"| J'z """" y
or, PI }F: ------- ?I'I]- [zl _"I zz _El ...... P _",E"]
Thus for j = 1, 2, ......, n we have
aeiT sy — n-
A _[Ef"-'f] e

Hence the net evaluation are the components of C,B-'A- C

ie. CuBT'A-C =[2)~¢] 23~ € vuurn. A o |

Most negative z;— ¢; will determine the key column, Let z; — ¢, be the most negative
zj — ¢;. Then the key column is -
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« Y | Bg
Ve [zijck}_[zk_;k] """" (D

From (7) and (6) we have

2 — | *B =E'IE—-B_I olfel_[ B'& | _| B
BT 2z 1B 1]{0]T1CgB B | By
we note the important fact that all necessar:;r informations can be obtained from the
products B-1A and B-1b.
Also we note that A and b remains same in all steps, only -1 changes in each
step of simplex table depending on the current basis B.

The above discussion enables us now to state the algorithm of revised simplex
method.

2.4 ALogarithin of Revised Simplex Method :

It stepwise procedure of revised simplex method are as follows.

Step 1. Introduce necessary slack and surplus variables. Convert the problem into
a problem of maximization if it is in minimization form. Restate the LPP in the standard

form of revised ‘simplex method ie. in the form [_"ﬂ"c {1]] [‘;} = [g]x 20,218

unrestricted.

Step 2. Begin with the initial basis B = I, and form the auxiliary matrix B =
[_ g-ﬂ ?] and write down

-1 ; o
B-! = [CEB" ?] Form A = [f:] and b = [g]
Also form Xy = [?] =Bb.
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Step 3. Compute the net evaluations z; — ¢y, z3 - €3, ... 7, - ¢, 85 the components
of the product

[CsB' 1] [j‘;}

: ; p o Wiy o
If all z; - ¢; are non-negative, the current basic solution £, = |: zﬂ} =B~ b gives

the optimal BFS and maximum value of the objective funetion,

If at least one z; — ¢; is negative, determine the most negative of them. If Zp — Ck

is the most negalive z; — ¢; then find Ve = Lk “CJ:] = B4, Go 1o step 4. If there is
a tie for the most negative z; ~ ¢;, resolve the tie by any standard method.
Take x; as the new basic variable. Go to step 4.

Step 4. If all yy < 0 there exists an unbounded solution to the given problem,
If at least one y; > 0, consider the current xg and compute the replacement ratios.

Xo.
2By s [}}
{yﬂ: Yik

o X r ' ‘ v .

If 3;‘!— 18 the minimum of all these ratios then the basic variable xy, becomes non-
k

basic variable in the next table, ie. xg, is replaced by x;. Go to step 5.
Step 5. Write down the results obtained in steps 2, 3 and 4 in a able. This table

is known as revised simplex table. This table is of the form

- 2 - j ul i y
Vs B B Y Yy ka0

Step 6. Convert the key element y; of y, into unity and all other elements into
zero by suitable row operations. Same operations are to be applied in the current B!,
These operation will change f-1 to new f-1 for the next table.
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Step 7. Consider new -1 obtained in step 6 as §-1 and go to step 3, Repeat the
procedure until an optimum basic feasible solution is obtained or there is an indication
of an unbounded solution.

Advantageé of revised simplex method :

The advantages of the revised simplex method over the regular simplex method are
(i) fewer calculations are required,

(ii) less storage is needed when computing the problem on a computer,

(iii) -the round off errors can be controlled as table entries are not repeatedly
recalculated.

2.5 Comparison of Simplex Method and Revised Simplex Method ;

Let us consider the LPP
Maximize z = ex

subject to Ax=b, x 20

where A is a matrix of order m x n. If initially artificial variables are not needed
for obtaining the initial basis matrix, then for solving this problem by the simple x method

we have to transfer (n + 1) columns at each iteration. (n columns for A and one column
for xg). Also, at each iteration one variable is introduced into the basis and one is
removed from it, Thus, in total we compute for (n — m + 1) columns. Further more,
for each of these columns, we have to transform (m + 1) elements, For moving from
one iteration to another we also need to calculate minium ratio xg/yu. Hence in all we
have to perform multiplication (m + 1) (n — m + 1) times and addition m (n-m+1)
times,

In the revised simplex method, there are (m + 1) rows and (m + 2) columns. So,
for moving from one iteration to another we have to make (m + 1)? multiplication
operations to get an improved solution in addition to m (n —m) operations for calculating
(g~ gj)'s.
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In the revised simplex method we need to make (m + 1) (m + 2) entries.in each

table while in simplex method there are (m + 1) (n + 1) entries in each table,

If the number of variables n is significantly larger than the number of constraints
m, then the coputational efforts of the revised simplex method is smaller than that of
the simplex method.

Revised simplex method reduces the cumulative round-off error while calculating

(zj — ¢;)'s and updated column y; due 1o the use of original data.

The inverse of the current basis matrix is obtained automatically.

2.6 Hlustrative Examples :

Example 2,6.1. Use revised simplex methed to solve the LPP.
Maximize z = 2x;— 3x;3 + x3
subject to 3Jx; + 6x3 + x3< 6
41 + 2y +x3< 4
Xp=X;+x353
Xis X3, X3 2 0.
Solution : Introducing slack variables x4 = 0, x5 2 0, x4 2 0, the given LPP becomes
in standard form as

Maximize z = 2x; — 3x3 + x3 + Oxy + Oxs + Oxg

subject to Ixp + 6x0 + X3 + Xy = X
4I|+?.Iz + a3 + X5 =4
X —& +x3 +Xx5 =3

X1, X2, X3, X4, X5, % 2 0
or, Maximize z = ex
subjectto Ax =b, x =0
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The net evaluation are the components of

i 6 I é 0 0

- A 2 1 I 0

[C,B-t 1][_{,]:[&{1-:}1] -2 3 -1 00 0/|=[23-1000]
-2 3 -1 00 0

T (ft TR TG LG U0 -, :’-ﬁ‘ca]
Since there are negative net evaluations, the solution obtained is not optimal. The
most negative net evaluation is zy — ¢y = -2, Therefore x; will be the new basic variable.
Now we compute

1 00 013 3

0100/||a 4
— A=l o — *k
n=Bla=14 0 1 of|l1l=] {

000 1|l2] |-

These results are shown in the following initial revised simplex table

Basic variables | Values B-1 y=' | min
| ratio
X4 6 1 0 0 0 2
x5 4 0 0 0 4 l
X 3 0 0 I 8 3
z 0 0 0 1 -2

Here the minimum ratio is Min {%B_* ST [}} = | and the corresponding variable
+ ik

is x5. Therefore, the outgoing basic variable is Xs5. S0 x5 is replaced by x; in the next

table.

3 0
Using elementary row operations 3= ? is converted to [1} and the same
—.2 {}

operations are done for B-I. This gives new f-1 as follows
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1-%{1{1_
1
s |0 & 00
- {}—%lﬂ
l}%l}l

The new BES is given by

3
x.q ] =3 00 6 %
g=|0l=B16={0 1 o0 o|[3]=];
.: o L o 1|0 2
B 2
Xy 3]
xg =[x |=|]l|and E=2
Xy 2]

The net evaluations are given by
. s e L
A = A | 4 2 1
xﬂ—[CBB'I]=[_C]=[B§ 0 1] i i
-2 3 -l

oo
oo
o—c o

i I (s |
_[n4 2(]2[}]

Since there is negative not evaluation, the BES obtained is not optimal. Here the

only negative net evaluation is 23— ¢y =— % S0, x4 is the next incoming basic variable.

Now we compute

3 T 1
1 [3- 0 0 : ?
O = 0 0 -
Lep e 1
}’J_BI‘H: 0 _41 1 0 1 " g
i 20
Lo & O L) =

These results are shown in the following simplex table
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Basic variables | Values B ¥-1 | min
' ratio
3 !
o 6 | —E 0 0 E 12
1 1
x| 1 0 E 0 0 '4—_ 4
%5 2 0 -2 | 0 2| 8
1 1
z 2 0 5 0 1 wil:

Here the minimum ratio is % and is associated with the basic variable xg Therefore,

the outgoing basic variable is xg. So xg is replaced by x5 is the next iferation. Using

elementary row operations §, =

are performed in §-

MNow ﬁ,—l =

oo o S ==

I
oo B Bl

is converied to and the same operations

o i -

|, This gives the new g-1 as follows

73"
ifa
A
o =
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The next BFS is given by

A N e ]
Ry (e 18 3
Xy 0 | 0 6 i}
f = .-‘.'[ =E"|£= .5 3 4 — 3
S > 0 = -2 plfd 8
z 3 3 0 3
o L 2 10
L 3 3 J G
J
3
X,
Xg=|x |= il undz:%
Xy 8
3
The net evaluation are given by
3 & F LY 0
2 [a12 4 2 ¥ o) | 2
[CBE‘][-C]‘[GE‘:?‘] L -1 1 00 | -[”3“%3
-2 3 -1 00 0

Here all net evaluations are non-negative, Hence we have obtained the optImaI'
solution. The optimal solution is X, = %--‘1 = I],'—;- = % and z = qu
Example 2.6.2. Solve by revised simplex method
Maximize . z=5x) + 3y
subject to dxy + 5x; £ 10
Sx1 + 2x; £ 10
dx; + By €12

Solution : Introducing surplus variable 3 2 0, slack variables x4 2 0, x5 = 0 and
artificial variable xg = 0 the standard form of the given LPP is
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Maximize 2z = 5x) + 3xp + Ox3 + Oxg + Oxs — Mxg

subject 1o dx; + Sxz3 — x3 +x5 =10
5x) + 2x3 + X4 = 10
3x; + 8x + X5 =12

X1y KXoy X3, X4, X5, X2 0
or, Maximize z = cx
subjectto Ax=b,x 20
or, Maxmize z = cx

subject o Ax = b, x 20

4 5 -100 1
where A=|5 2 0 | 0 0}e=[53000-Mj
38 0 01 0

10 -
b= |10 .x=[.1:| Xa Ky Xy X .xﬁ]

12
4" 5 =1 4 0 1 10
. OO - O S - NN SR O AN s S i P () o (¢
e Wﬂhavﬂﬁ—[_c]— 3 8 001 0 ,b_[ﬂ]_ 12
=5 =3 00 4 0

1 00
Now CEB-‘=[—M0n][g (l} ?}=[—Mﬂﬂ]
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1 0 0 0
. Bl = - B S T U B
’ =GBt KT 6 0 |8
=M G 0 1
*4 E 90 aeiile 10
% X ool O T O R ¢ S S0 O 8 10 S O R | ¢
a—[z"]“ 2=y 0y oll =] a2
z -M 4 0 1@]j]0 ~-10M
Xq 10
“|xy |=|10}and z=-10M
X 12
The net evaluations are the components of
4 5 =1 00 1
S A o= 5 ° 2 ar 0000
e B ][-c =Ml ¥ e | 60
: -5 -3 0 00 M

=[-4M -5-5M-3 M 0 0 0]
= [zi TE B T6 Um0 0 3G zﬁ‘fﬁl
Since there are negative net evaluations, the solution obtained is not optimal, The
most negative net evaluation is z3 — ¢; = — 5M — 3. Therefore x; will be the new basic

variable.

Now we compute

oo—o
o o
—_mao

1
i i 0
J’z""’ﬁlﬂz= 0

M
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These results are shown in the following initial revised simplex table

Basic variables | Values R-1 yi min
ratio
X6 10 T ¢ 0 0 5 2
X4 10 G 1 0 0 2 5
s 10 0 0 10 8 :
z ~10M | -M 0 0 1 -5M -3

Here the minimum ratio is min { Vi Y > ﬂ} % and the corresponding variable
ik

is x5. Therefore, the outgoing basic variable is xs. So x5 is replaced by x, in the next
table.

5 0
| 0
Using elementary row operations §, - 8 isconvertedto| 1 |and the same
-5M-3 0
operations are done for §-1. This gives new §-1 as follows
! s .
dieif) ? 0
Buie 0 1 —13'- 0
M o 3M+3
i 8 I
The new BFS is given by
1 0 -3 0 i
X ; 10 2
- n 0 1 R 0 1 D T
P Xy =Blh= 4 12 bl é
e i % Ol o SM+9
2 ~5M+
-M 0 M3 o o
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-5M+9

andz = g

Xg
CABE | X, |=
3

The net evaluation are the componentts of

s LFLER F S

- 4 5 =100 1
AT [_ansM+3]l5 2 0 1 0 0
[‘*EB]][-J‘[ M0 == ] A F-0 6 10
it S 00 M

=[igil§nm-:]5“%+3ﬂ]

Since there is negative net evaluation, the BFS obtained is not optimal. Here the

only negative net evaluation is z; — ¢). So x; is the next incoming basic variable,

Now we compule.

|

T al—afu

o S e T -

- L

1
B |
oo EWJM-F-

=31

[See| 5

These results are shown in the following revised simplex table

Basic variables | Values B! y! min
ratio
5 3 17
%4 7 o 1 -3 0 Y 5
3 1 3 3
Xa *f 0 0 E 0 E 9
-5M+ 9 SM+3 =17 M-13]
F 8 -M f) R 1 —'—"E—




Here the minimum ratio is
is replaced by x,
l

is the next iteration, Using elementary row operation ¥

‘T‘g and is associated with the basic variable Xg. S0 x5

is converted

0 . -
| o | and the same operaions are performed in B-! as follows

0
e il
el
83
. Now B! = 17 0 17
3 _ 13
L 17 17
The next BFS is given by
[ 8
% 7"
" Xy -1 _g 1
xﬂ= - -— Lt = s
? ﬁ?”
77 0

20

o o o

—

ES = glw
o oo

e
I~

=)

andz = 134

X 17
3. xB= x" = 123 Z 1?
xz 'ﬁ

The net evaluation are given by

[gkumi][“n

13 31
Fu- 0-13 314

17 M

4
) 3
3
=5
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Since there are negative net evaluation the BFS obtained is not optimal. The most
negative z; —¢; 18 2, —¢; = _% SO X3 is the next incoming basic variable.

Now we compute

[ 8 _35 g 8 |
7 Y Ylren [T
g, =2 T 2
yy=Brges| 3 A =l 2
2o Al 17
A 31
L 17 17 L. W
These results are shown in the following revised simplex table.
Basic variables | Values B y! min
ratio
20 8 5 8
% 17 Vi e 2 7
X4 3 -2 1 0 2 1
18 3 4 3
x2 17 790 P il e
154 31 38
: ™ .| 7 * ‘ 7
Obviously x4 will be replaced by x;.
0
1,
Using elementary row operations ¥, is converted to | 0 | and the same operations
0

are used on f§-1. This gives new p-1 as follows.

g )
gt L
New g1 = 0 -7 =z 0
0 4 = i

! 34 34
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The next BFS is given by

G 2oy e gy
o i 4 L off97 | ¥
coellafar 1S % 101
xB_x‘zEb_{]_iiﬂlz_%
3 34 34 0
185
g 2 9 7
k 34 34 J e 1
28
Ay 17
Al I ll5 andzz—i-%j-
: : 15
: 17
The net evaluations are given by
4 5 =100 1
SALTa3L8 3 S 3 @ 106
[fuB'l[—c]‘[ﬂ'ﬁaat 1] 3 08 0 01 0
' -3 =3 0 00 M

31 5
. [{} dip2t 2 M]
Here all net evaluation are found to be non-negative. Hence wehave obtained the
optimal solution. The optimal solutions is given by

_ 28 15 _ 185

-——

X =770 % = 77 and Zoax = 7

2.7 Summary ;

Revised simplex method is an efficient method and is very useful for large problem,’
Only necessary part of the simplex table is calculated to pass from one table to the next
table, Standard form of the revised simplex method is devised and computational
procedure of revised simplex method is noted and is compared with simplex method,
Finally, the method is used to solve some examples.

47



2.8 Self Assessment Questions :

Use revised simplex method to solve the following LPP
I. Maximize  z=3x +5x,
subjectto  x, =4
X, 56
Ix, +2x, <18
XXy 20
[Ans : x) = 2, xp = 6, Zuu = 36]

2. Maximize  z = 6x, — 2x, + 3x,

subject to 2x, =%, +2x, S 2
X, +4x, 54
Xys Xy 2y 20

[Ans ; xy =4, % =6, x3 =0 g, = 12]

- 3. Maximize Z=x+x

subject to X +2x,27
4x, +x, 26
X%, 20
3 22 o)

ANSIX = F Xy = T Ly =
4, Maxmize  z=2x+x,

subject to 3x, +x, 53
' 48




4x,+3x, 26
X +2x,83
X%y 20

Ans:x, = %1"‘: = %,zﬁ“ = 15-2-]
5. Minimize  z = 4x, + 3x,
subject to 3x; +4x, <12
3x, +3x, 210
2x,+x,54
XX, 20

PG (MT) TX A (11)—4

49



Unit 3 O Dual Simplex Method

Structure
3.1  Introduction
3.2 Comparison Between Simplex Method and Dual Simplex Method
3.3 Applications of the Dual Simplex Method . |

3.4 Criteria for Incoming and Outgoing basic Variable in Dual Simplex Method
3.5 Dual Simplex Algorithm

3.6 Ilustrative Examples

3.7 Modification of Dual Simplex Method

3.8 Illustrative Examples

3.9 Summary

3.10 Self Assessment Questions

3.1 Introduction :

The Dual Simplex Method gives an algorithm in which we start with a basic optimal
solution of the primal in which all zj - ej = 0 but not feasible is some basic solution
are negative. At each iteration the number of negative basic variables are decreased while
maintaining the optimality. An optimal solutionis reached in a finite number of steps.

. The benifit of this procedure lies in the fact that we need not take the help of any artificial

variable and hence it reduces a lot of labour.

3.2 Comparison Between Simplex Method and Dual Simplex
Method :

In simplex method the initial solution is basic feasible and non optimal. In
subsequent tables the value of the objective function gradually increases and
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finéll}r reaches to its obtimal value. In each table the solution is basic i‘casible and non-
optimal.

In dual simplex method the initial solution is basic non-feasible and optimal. In
subsequent tables the value of the objective function gradually decreases and finally

reaches to its optimal value. In each table the solution is basic non-feasible and optimal
(or better than optimal).

Basic non-feasible and better than optimal some X, <0
and all zj - ¢j 20,2, 2 2

mux"

(Dual simplex method)
2 gradually decreases

Basic feasible and optimal
xy20andallzi-¢i20

zﬂ = zn'r.ll

(Simplex method)
z gradually increases

Basic feasible and non optimal
x5 2 0 and some zj — ¢j < 0, z, < 2

LAY

- 3.3 Applications of the Dual Simplex Method :

It the given LPP is optimal and infeasible then only dual simplex method is
applicable for many practical problem the initial table does not satisty these conditions
and as a consequence dual simplex method can not be applied. Simplex method has
no such restnction and is applicable to any LPP: Hence as rule the regular simplexmethod
preferred over the dual simplex method for solving the general LPP, However, there
are instances when the dual simplex method has a distinct advantage over the regular
simplex method, There are problems in which a dual feasible table is readily available
to start the dual simplex method and for such problems the optimal BFS is obtained
easily in comparison to simplex method. Some of the applications of dual simplex

method are :
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(1) Sensitivity analysis when the right hand side vector be changed or when new
constraints are added, :

(i) Paramelric programming.
(iif) Integer programming problem.
(iv) Some non-linear programming problem.

3.4 Criteria for Incoming and Outgoing basic Variable in Dual
Simplex Method :

In the transmafion formula of simplex method if the basic variable xB, is replaced
by the non-basic variable x, then we have

X

i=2z- ,,.; (2, —¢;) o (1)

and (E,--fr.}-(z',--c-‘;]-;—’;{zk ~¢) - 2)

As we want to remove negative besic variables, we choose the most negative besic
variable xB_ (say) as outgoing basic variable from the list of all basic variables.

We know that if for some basic solution (not necessarily feasible) all components
of net evaluations are non-negative then the value of the objective function to this basic
solution is optimal or better than optimal. So we intend to lower down the value of the
objective function to get z__, For this from (1) we should have y, < 0 as xB, < 0 and
z, = ¢, 2 0. This should be one criterion for incoming basic variable. .

In the next table we want the solution to be optimal or better than optimal. So we
should have Z, = ¢€; 2 0 for all j.

.~ From (2) We have

Yy ,
zj—c,—ﬁ(zi—c,}aﬂ for all j

yr'
of Zj—€; = 'E:T{z* - ¢;) for all . (3)
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When yj = 0 then (3) is satisfied as y, < 0 and all zj — ¢j 2 0.

: e s v I O e R G
When yj < 0 then (3) is satisfied if s for all j
}’d Yok

Hence we are b choose k such that
Z;—C -
el A (G
y?j < ﬂ yrj }Irf;

3.5 Dual Simplex Algorithm :

The iterative procedure for dual simplex algorithm are as follows :

Step 1 : Convert the minimizatism LPP into that of maximization if it is in the
minimization form.

Step 2 : Convert the 2 type inequalious, representing the constraints of the given
LPP, if any, into those of = type by multiplying the corresponding constraints by —1.

Step 3 : Introduce slack variables in the constraints of the given LPP and obtain
an initial basic solution. Put this solution in the starting dual simplex table.

Step 4 : Test the nature of the net evaluations zj — ¢j in the starting simplex table.

(i) 1f all zj - ef and xBj are non negative for all  and j, then an optimum basic
- fesible solution has been obtained.

(i) Irvall zj - ¢j are non negative and at least one basic variable, say xB , 15 negative
then go to step 5.

(iit) It at least one zj — ¢j is negative then dual simplex method is not applicable,
In this case we are to apply artificial constraint method.

Step 5 : Select the most negative basic variable, say xB,, as outgoing basic variable.
Step 6 : Test the nature of all y,j, j =1, 2, ..., n.

(i} Itall y,jare non-negative, there does not exist any feasible solution to the given
LPP.
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(i) It at least one y,j is negative, then comute
i
Yu<0d, =119
{},ﬁ Yy } F e B e

_ : Li=e
and choose the maximum of these, If the maximum of these be ———r}, ~ then x, is
kr

the incoming basic variable i.e. B, is replaced by x.
Step 7 : With y, as the key element form the next table, Using elementary row

operation convert the key element (o unity and all other elements of the key column
to zero to get the improoed solution,

Step 8 : Repeat the steps 4 to 7 until either an optimun basic feasible solution is
obtained or there is an indication of no feasible solution.

3.6 Dlustrative Examples :

Example 3.6.1. Solve the following LPP by dual Simplex Method.
Maximize z = 2¢, +x,

Subject to 3x, +x,23
dx, +x, 2 6
X, +2x,23
X, x, 20,
‘Solution : Cnnverting the given LPP into maximization and changing all 2 type

inequations to < type and finally adding slack variables ¥ 20,x,20 520, the
. reformulated LPP in its standard form becomes.

Maximize 2’ =~ 2¢, - x, + ox, + 0x, + 0x,
Subject to — 3x, - x, + x, =3
—-dr, - x, +x, =6

Xyp Xy Xy Xy Xy X, 2 0.
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Solution : The solution of this LPP.by dual simplex method islﬁhﬁ_Wn in the
following tables.

¢ -2 =1 0 0 0
Cy Y X Y ¥y Y3 i Y5
0 Y, -3 | il
0 ¥, -6 -1 0 1 0 |-
0 Y -3 -1 =2 0 0 !
=0 d-¢ | 2 1 0 0 o
& =% 2 1
¥, <0 s sk
¥y W = =
0 J 2 ¢ . -1 1L -2 0
3 1 1
- ¥, 5 I 1 0 =
3 1
0 | =5 [0 2] 0. -1 0 |5
7=-3 g-¢ | 0 5 0 2l
57 N esdvead
¥s Yay <0 'f/( E]"Z‘?
, 12 | -
0 Yy '—.-'ir 0 0 1 7 T
9 2 1
= 3 7 1 0 0 == =
6 1 4
-1 Y, 7 0 1 0 5 3
e A IS 3 2
7 =—- -f- & — cj 0 0 0 0 ‘-f T

In the first table max {- é v = l} £ '—5 and is ascociated with y, . y, is replaced

by y, for the second table.
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In thie second table there is only one ratio — *2.}- and is associated with, y,.

. ¥ is replaced by y, for the third table.

In the third table all xB, are non negative, So.this is optimal table. The optimal

i 9 6 4 POE
solution is X, = 5, x, == and 2[,, Er W R R S,

Example 3.6.2. Solve the following LPP by dual Simplex Method.
Maximize 2z = - 2x, = 2x, - 4x,

Subject to 2x, 4+ 3x, + 5x, < 2
e, +x,+2¢, 23
X +d,+6x, 25
Xy Xyy Xy 20

Solution : ¢ onverting the 2 type inequations into £ type and introducing the slack
variable:. x, 2 C, x; 2 0, x, 2 0 the given LPP can be written in the ginydard form as

Maximize 2z == 2x, = 2x, = dx, + Ox, + Ox, + Ox;

Subject to  2x, + 3x, + 5x, + x, =2
- 3x, = x;, = 2x, + % ==~3
- x, = dx, - 6x, +x, ==35

II, I:] 1',, .ﬁ. x‘ E “-
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The following tables are obtained by using dual simplex method to this LPP.

¢j i il iseile ut wil) 0 0
Cy Yu Xy b Y, s Yy Ys Ye
0 Y4 2 2 3 5 1 0 0
0 ¥s -3 -3 -1 -2 0 1
o ¥y | 5| - -6 0 0 l
220 d-cil 2 2 . @4 o 0 0
Zj'-{-';_ 2 2 4
3y u <0 N = 6
= oz dizzab
i W
7 5 3
0 Vs v 3 0 1 0 4
; 7 11 1 1
0 Xy ~d 7 i 0 ) 0 1 g
5 1 3 I
-2 Y5 4 4 ; 2 : 2= ik
: [ 1
z=—% g-q % 0 ] 0 0 2
3 l
A vl i 11 k! 1y
TR [“1‘] ( 2) ("E)
el LI el
i 2 %
28 3 5 7
0 | =@l B NS SRR ey
7 2 _4 i
2 %l 1| ! o= a5 @ 0 O
12 16 R
2 »| HF| 0 N LN Il
38 8 6 %
2= g-<| O o g 0 s




In the first table x, = ~ 5 is the most negative basic variable and max
{-2. 5 '%‘ = %‘] = —% which is associated with this non basic variable x,. So x, is
replaced by x,. '

In the second table x, = - % Xy = _% are the most negative basic variables, We
choose x, arbitrarily. Here max {*ﬁ. o S 2} = —l—ﬁl which is associated with the
non basic variable x,. So x, is replaced by x,.

In the third table xB, = x, < 0 and all yj 2 0.

~ The given LPP has no feasible solution,

3.7 Modification of Dual Sim_plex Method :

If the initial table of the dual simplex method contains some negative basic variables
and some of the net-evaluations are negtive then the dual simplex method is not
applicable. In such situation dual simplex method is to be modified to from an equivalent
" LPP in which some basic variables are negative but all netevaluations are non-negative,
Hence standard dual simplex method can be applied to that equivalent LPP,

The artificial constraint is one such method. I this method we consider the variables
corresponding to which the net evaluations are negative and the variable corre sponding
to the most negative component of net evaluations is noted, Lt z, — ¢, be the most
negative net evaluation. 8o we consider the corresponding variable X, In this method
we have to consider the antificial constraint,

Yx. M

J

Where Z is extended vwver all j's for which zj — ¢f < 0 and M is a sufficiently large
positive number. Adding slack variable x,, to this constraint we get

S+, =M
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From this we find’ X, a8

x,=M- ("M +Z “".:')

This x, is then subptituted in the orginal objective function and in the set of all
constraints. This new problem together with the new added artificial constraint is
equivalent to the g.éven problem. This equivalent LPP will have all Zj—¢j 2 0. Thus
dual samplex method can be applied.

3.8 Illustrative Examples :

Example 3,8.1 : Use the artificial constraint method to find the initial basic solution
of the following problem and then apply the dual simplex algorithm to solve it

Moximize 2 =-2x, -x, - x,

Subject to 4x, + 6x, + 3x, < 8
~X, B -x, 3
20, +3x,-5x, 24
Xys X35 X, z0

Solution : We first convert the minimization problem to maximization and then
change the inequation of 2 type into < type. Finally adding slack variables x, = 0,
x5 20, x, 2 0 we get the standard form LPP in dual simplex method as

Maximize 2’ = 2x, + x, + x, + ox, + ox, + ox,
Subject to 4x, + 6x, + x, + x, =8
X, =%, +x, + X, ==3
Xy Xy Xy Xy Xy X, 2 0,
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The initial dual simplex table is

¢ 2 1 1 0 0 0
Cy s X Y Ya Y5 Y4 Vs ¥s
[ " A 8 4 6 3 1 0 0
0 ¥e ek B -9 0 i 0
0 Yo -4 -2 -3 5 0 0 l

Z=0 zji-c¢ | -2 5 =] 0 0 0

Here there are negative net evaluation, so standard dual simplex method is not
applicable.
The negative net evaluations are z, - €|, z, - €5, 2, — ¢, & most negative net evaluation
is2,-¢c =-2
-~ The artificial constraint is
X, + X, +x, =M where M is a very large positive number. Adding slack
variable x,, we have
YNt X+x+x, =M
From this we have x, = M - x, - x, — &,
Using this in the LPP and adding the artificial constraint we have.
Maximize ' = 2(M = x, = x; = X)) + X, + ¥, + 0%, + 0x, + 0x,

Subject to 4(M — x, — x, — X)) + 6x, + 3x, + X, =8
(VL =y =Y = O Y + Xg =-3
=AM < =) I St peseng
Xk Xy + X0 Xy =M

£ S P N Rl

or, Maximize 2’ = - 2x,, - x, = x, + ox, + ox, + 2M

Subject to - 4x,, + 2x, - x, + X, =8 -4M
— Xy — 10x, + X =-3-M
2x, — X, + Ty t+x, =-4+2IM
b S O =M

Xyh Kan Ko Ko oy X Mg 20
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The following tables are obtained using simplex method, .

o S R (N Y P
Cq Ya Xy Y Y ¥ b Vs Ys Vs
0 y, | 8-4M 0 2 | 1 0 0
O oo | BV st 5 s =GN 08 sl ) ALY, hprenas g
O} v D AN R Y g e pp el it )
0 Yy M 1 I 1 I 0 0 0
7 =0 2T b E R il s B ke il
et i
575 i
) %<0 5 -l
2 Bl 0 —srmlNLL e
M 2 4 4
0 y»| = |o o I-2] L L 4
0 y| 0o jo o o 2 L o o
g4
0 b 2 0 1 i‘ ‘E :‘:i- 0 0
Z=4-M |g-qfo o 2 4 1 o o
Z.=C.
et ip = .
37 5 G i
-2 Ym M- 3T | 0 0 71 “21 T3 0.
10 sl il S
Bl 11 G o a R O B s T
VR TR RSO S ST
9 (0 & i
O Al .g 9 SRl
z=2M+Gi| G- [0 o o L 1 &0
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Here all basic variable are non-negative. So thes is the optimal table. The optimal

solution is x, = % X, = -!El Xy =0 and z,,,, = (—2 M+ %) +2M = %l Therefore
’ 64 -
Zin = "Zmw = 37

Example 3.8.2, Use the atificial constrant method to dind the initial basic solution
of the following problem and then apply the dual simplex algorithm to solve it :
Maximize 2= 2x, - 3x, - 2x, ' '
Subject to x, - 2x,-3x, =8
2x, + x, S 10
X -2, 24
X, X, X 20,

Solution : We first change the inequation of 2 type into < type. Adding slack
variable x, 2 0, x; = 0 we get the standard form of the LPP in dual simplex method
as

Maximize z = 2x, - 3x, — 2x,
Subject to x, — 2x, - 3x, =8
2x, 4+ x, +x, = 10
X+ +x5=-4

Xy Xpy Xy X X, 2 0

The initial dual simplex table is

¢ 2 -3 L9 0 0

% Xy Y Y2 s Yo s
2 Y, 8 | -2 -3 0
Ya 10 0 2 ] 1

0 y, | 0 -l 2 0 1

z=16 _ zf —¢f 0 . -1 —4 0 0
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Since these are negative net evaluations, standard dual simplex method is not
applicable. The negative net evaluations are 2= ¢, and z, — ¢, and most negative net
evaluation is z, — ¢, = - 4,

+ The artificial constraint is Y, EMwhere Misa very large positive number.
Adding plack variable X, we have

X: + .x:‘ + .!'M =M
From this we have x, = M - Xy =%,

Using this in the LPP and adding the artificial constraint we have the equivalent -
LPP as

Maximize z = 2%y + 2, —x, - 2M

Subject to .3.1:” + X, + x, = 3M + 8a
— Xy tX 4, =—.M+Il}
26, -3x, +2% =-2M-4
T =M

Ko ¥p Xy Xy X, x, 2 0.
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The dual simplex tables are as follows.

¢ 2 2 =] 0 0 0
Cy Xy Xp Y Y Ya Ys Yy Vs
2 y, | 3M+8 | 3 | | 0 0 0
0 v, |-M+ 10| -1 0 1 0 l 0
0 ys |-2M - 4| =2 0 0 0
0 Zy M 0 1 1 0
z=6M+ 16 gi-cf | 4 0 3 0 0
z C
3
7 g | IMER| 2 e g G0 oM
0 oy |2MEEZ 0 0 0 13
2M+ 4 2 1
-1 Yy 3 “j 0 1 ] 0 _.j
M- 4 1 1
0 Y = = 3 0 1 3-_
z=4M + 12 H=icj | 2 0 0 1
-Ej — CJ, 6
¥ <0 i
Yy 4 5
2 Y 2;* 0 1 0 0 -;.i %
9 i 5M; 26| , 5 3 g r %_ 4 _15
24 2 1
2 1 2
0 ¥ 3 0 0 0 1 : :
c=i0M412 | - |0 o o o &
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In this table all basic variables are non-negative, So this is the optimal table, The optimal

soluﬁun ES xl =%ilx! =2—54|1] =%and zm:m = lﬂM;‘].Iz_zM:l_-;g' y

3.9 Summary :

Dual simplex method is found to be very useful is a large class of LPP. It is simple
to handle and sige of the tables are not large as no artificial variables are introduced.
the method is illustrated through examples. The method is then modified to handle more
LPP,

3.10 Self Assessmgnl Questions :

1. Use dual simplex method to solve the LPP
Maximize z = - 2x, - 3x, — x,
Subject to P i P S
Ix+2,+x24

Xps Xy Xy 2 )

[Ans. X, =%, x, =0, x,= %, S

-1
2. Use dual simplex method to solve the LPP
Maximize z= 10x, + 6x, + 2x,
Subject to =X Xt a2l
I +x-x 22
T S o

5

[Ans. x,=%, =3 =0, 7,,=10]

Tmin
3. Solve by dual simplex method the fllowing LPP

Maximize z = 6x, + x,
65
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Subjectto  2x, +.x, >3
n+xz0
x,x,20

lAns. x, =L x, =1, 2,,=T]

4. Solve the following LPP by dual simplex method
Maximize z = - 3x, - 2,
Subject to X +x21

X Fas s
X +2x,210
xs3
Xp X, 2.0
[Ans. x, =4, x,= 3,z x =~ 18]

5. Solve by dual simplex method !
Maximize z = 2;r, + 3
Subject to 2x, + 3x, £ 30

X, +2x,2 10
Xy=x20
X8

X, 20

[Ans. x, = 5, %, = 3, 2., = 3]
6. Solve the following LPP by daul simplex method

Maximize z = X ¥X
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Subject to I kx 22
o T
X, X% 20

[Ans. No feasible solution]

7. Using artificial constraint procedure, solve the follwing problem by dual
simplex method and show that the problem has no feasible solution

Maximize 2 = —x, + x,

Subject to X —4x,25
X, =3x, 5.1
2x, - 5x, 2 1
Xp X, 20

8. Use the artificial constraint method to find the initial basic solution of the
following problem and then apply the dual simplex algorthm to solve it

Maximize z = x, - 3x, - 2x,
Subject to Xp— 2,22
X —4x, - 6x,=8
2, +x,55
Xy X Xy 20

Lo x’=%'4" '13:152" Ia=';'- Imu=i5'5']
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Unit 4 O Post Optimality Analysis

Structure
4.1 Introduction
4.2 Discrete changes In The Cost Vector
4.3  Ilustrative Example
4.4  Discrete Change In The Requirement Vector
4.5 [llustrative Examples
4.6  Addition of a Single Variable
4.7  Illustrative Example
4.8 Deletion of A Variable
4.9  Illustrative Example
4.10 Addition of A New Constraint
4.11 Illustrative Examples
4.12 Summary
4.13 Self Assessment Questions

4.1 Introduction :

In reality the problem accuring are in general large in size and often an error is
discovered in the data after the attainment of an optimal solution to the problem. In such
a situation there are two alternatives, either 1o solve the problem from begining or to
device some method to use the optimal table, Undoubtedly the second one willsave time
and space and is named as post optimality analysis. Also in practical situation the values
of the co-efficient matrix A, the components of the requirement vector and the cost vector
or neither known exactly nor they are constant for all time and or all situations. so it
is important to know how sensitive the optimal solution is to small changes in these
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parameters, By sensitiveness we mean fulfilments of the condition of optimality as well
as determining the limits of variations of these parameters for the solution to remain
upti'mal.

We shall study the following effects of changes in the

(i) co-efficients ¢; of the objective function.

(i) components of the requirement vector to

(ii1) addition of a new variable

“(iv) deletion of a variable
(v) addition of a new constraint

4.2 Discrete Changes In The Cost Vector :

Let Xp be the optimal basic solution of the LPP
~Maximize z = ex
Subjectto Ax=Db
x20
Where ¢, xT € R”, bT € R" and A is mxn an real matrix. Let Ac; be the amount
by which ¢; is changed. So the new value of ¢ is ¢} = ¢, + rlck..
We know that x, = B~' b and so it independent of ¢,
As initially xg was BFS it will remain so'after the change, The optimality condition

is zj— ;2 0 forall j i.e, [cy B~ 1] [i}é 0. It invalues ¢. So change in ¢ will affect
this condition, Thus when ¢y is changed to ¢}, the solution xg may or may not remain
optimal solution though it remains BFES.
Two cases will arise
(i) c; is not in cp
(i) cg is in cp
Case (i). Here ¢y is not in ¢g. The net evaluations are the components ofc, B-1A-¢,
and as x = B~'b was optimal solution we have cgB-'A - ¢ 2 0. i.e. - 20V
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We note that when ¢ is changed to ¢} only kth component of net evaluation will chan ge

Thus forallj=1,2, .. . k=L, k+1,..,nie.forallj# k we have new net evaluations.
zj=¢;=2;-¢; 20 [as z; —c; 20 for all j]
for j = k we have zZ =y =2, — (e, + Ac,) = (g, — c) — Acy
We have z; — ¢; 2 0, Therefor for all Ac, z;.— ¢, Will not remain non negative.

Thus xp will remain optimal solution for the changed LPP if z; - ¢, - Acgz0ie,
if Acy € 73, — ¢}

Case (ii). Here ¢ is one component of cg, Let ¢; = €, and so x; is a basic variable,
Thus y; is a unit vector with its Ath component as 1,

The new value of z; - ¢ is given by

I

- = 2‘,‘t:_ﬁ__'y,‘l.ji + c;.l-—u:';.l =0 [vywm=0Vizd])
i= i
oA

For j # k, new value of z; - ¢; is given by

M
* o - o
Z;~¢; = gcﬂty..’_-rck.yh ¢
i#h

= _};c-ﬂ,yg +ey + ey, ~¢; [ =, ¥ ju |
i

i ig;cﬂiyﬁ tegyy oy -c) [ve = yﬂﬁ]

m

L g‘( Coi¥y t .ﬁf.‘k}'u =it

L)
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. Xxp remains optimal solution
iij#Cjﬂl‘ﬂr.'k}'_y,.jzﬂ Vizk

e if Ay yy2-(g-c) Vj=k

Now for yy; = 0 this condition is fulfilled automatically as z; — ¢; 2 0.

Ly—C;
For yy; > 0 this condition is satisfied if Acy > — -

Yj#k

i—cC
i, if - =Lt

S Ac, Vi #k

¥ B30 }'M

L; =
< We must have max{— J—J'i} < Ac,
J#k

2, =0
3 < U this condition is satistied if Ac, < —Ay—iw * k

. Filf ]
s We must have ﬁck < min {--4—4
J"}J?:I }’.M
'l

These two conditions can be combined as

APl -
mayx {—-—4+—1 S&C*Smirh s
:I"Ju-,}u }I"j m"‘: y;u
Jk J#k

Hence if Acy lies in this range then the solution xp remain optimal and if Acy, falls
outsids this range then at least one z;— ¢; will be negative and the solution will no longer

remain optiral.

It no ¥, >0, then there is no lower bownd of Ac; and if no yaj < 0, then there

is no upper bound of Acy.
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4.3 Illustrative Example :

4.3.1 The optimal solution of the LPP :
Maximize 2z = 6x; — 2x3 + 3x3
Subjectto 2x) —x3 + 203 £ 2

x +4x; 54

Xy X3, X3 2 0.

is contained in the table,

g o g »n ya ¥ ¥y Ys
6 Yi 4, 1 0 4 0 |
-2 ¥a 0 | 6 -1 2
Zj — ¢ A 0 0 ) 2 2

Find the ranges of the cost components when (i) changed one at a time (i) changed
two at a time (iii) changed all three at a time to keep the optimal solution same.
Solution :

(i) When one component is changed at a time :
For change of ¢; = 6 to ¢/ we have the corresponding changed table as

¢j cy -2 3 0 0
cp YB B Y )2 Y3 Ya Vs
C; ¥1 4 1 0 0
-2 Y2 0 1 -1 2

0 0 4&'; =2 2 e =4

This table becomes optimal table
ifd4ef —1220and ¢f —420

ie. if ef 23 and ¢f 2 4

e if ef 2 4
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For change of ¢; = - 2 10 ¢] the table corresponding to the final table becomes.

6 i 3 0 0
¢ Y8 A5 1A Y2 Y3 Y4 ¥s
6 Yi 0 4 0
¢y Y2 6 0 I 6 . | 2
0 0 2+6c; -c; 6+ 2c,
This table becomes the optimal table
y24+2¢;20.and —¢; 20 and 6+ 2¢; 20
i€.if ¢; 24 and ¢3 <0 and ¢} 2 -3
e if-3<¢;<0
For change of ¢3 = 3 to ¢; the modified table is
c -2 Cs 0 0
Cp B Xg ¥ Y2 n Ya ¥s
6 Yi | 0 4 0 |
-2 W2 0 1 6 o | 2
0 0 12 +¢; 2 2

This table remains optimal table
if12-¢320

e ifel <12

(i1) When two components are changed at a time.

For the change of ¢; = 6 and ¢; = — 2 10 ¢} and ¢} the modified table is

g c; 3 0 0
CB VB *B N Y2 Ya Y4 Y5
@ wl & ¥ o 4 0 1
& _m e ot 6 = 2
0 0 4 +6c3-3 -0 c; +2¢3
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This table becomes optimal table if all g - ¢; 2 0

ie.if 4c/ +6c; =320 and ~¢; 20 and ¢] +2¢; 20

1.e. ifc;as—_;ﬂ- and ¢; <0 and c;a—%'

3 — 4{," _I:. - =
i.e. max {ﬂ—’ —f} < ¢; <0 and ¢ any real number.

For the change of ¢; = 6.and ¢ = 3 to ¢] and ¢ respectively the modified table

€, -2 Cy 0 0
cp by xp ¥i Y2 ¥a Ya Y5
& ¥ 4 ! 0 4 0 I
-2 ¥5 6 0 1 6 -1 2

0 0  dg —12¢; - ¢} 2 o —4

This table remains optimal table if all 7 - ¢; > 0
ie.if 4} =12=¢} 20 and ¢ =420
|

*
e, if f 2 S and ¢ 24

L1 c L]
i.e. if € = max {4- 3+ 33 } and ¢; any real number.

For the change of ¢; =~ 2 and ¢3 = 3 to ¢; and ¢ respectively the modified table

6 5 € 0 0
Cy 8] B Y1 J"a; Y3 Ya Y5
6 ¥ 4 ] 0 4 0
¢ Y2 6 0 1 6 -1 2
0 24+46c,-c; -¢; 6+ 2c;
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This table remains optimal table if all Zi-¢20

i€ if 24 + 6c;—¢; 20 and ~ ¢ 20 and 6+2c] 2 0

i.e. if ¢ aﬁﬁ'ﬁ and ¢; <0 and ¢} > -3

i.e. if max {3 4. =3¢ S¢; £0 and ¢! any real number.
i T 2 3

When all the three components are changed together ;

Ite; =6, ¢=-2 ¢3=3 be changed respectively to ¢f, ¢3, £
The modified table obtained from old optimal table is

€ €5 €, 0 0
Cp Y Xn Yi Y2 Y3 ¥4 Ys
¢/ i 4 1 0 4 0
5 ¥ 6 0 | 6 -1 2
0 0 4¢f-6c;-¢c; -3 e + 2¢}

This table becomes an optimal table if all -¢20.
i.e. if 4¢f +6¢; —¢) 20 and —¢;20 and ¢f +2¢; 20

c e o B0t —4e . 5 e/
ie. if ¢ 2 J?—L and ¢; <0 and ¢} > -3

4 .
i.e. if max {Tﬁ_ T} Se¢; S0 and ¢ any real number and ¢, any real

number,

4.4 Discrete Change In The Requirement Vector :

Let xg be the optimal BFS of the LPP
Maximize zZ=cx

subject to Ax=b,x20
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where ¢, xT € R”, bT € R" and A is an max real matrix. We have xg = B~!b and

the net evaluations are the components [cgB~! 1) [f::] From these we see that xg

depends on b but net evaluations are independent of b: So change made in & will not
affect optimality conditions i.e, optimal solution will remain optimal but it will change
the solution xy and it may become negative i.e. infeasible.

Let the component by, of b be changed to b, = b, + Ab,.

So the old solution xg = B-'b becomes

xp = B~ b* where b® = [by, by v by 1, by + Ay, by s oo s BT
by ba .. b,
b!l b’!l L b!m
o 15
b;ul me . bIN'IH'
]
. by
gu glz f:m b:
KTl a0 | |6, + 28,
bml b.-nz bm b.tld-l
i
_ a1 4
bh b z:"' bg (b by by e by, ] 0
; sl 1 I by by o by o By, | L
=] A=l sk 0
e by |+ T 0
!-;- b bu- b.kﬁ"‘l L 2L SiE Q
L il ol i _b:n | _bml bm! 'bmk bm‘i'l_. ..6




b, Ab,

by, Ab,
=B'+]|.. ..
L& Ab,

L)
o | | T | [b, Ab,

Thus | “® |=] *# |+ ba ;M,*
-’f&" x;.m b, Ab,

Xy, = Xp, + bydb, foralli=1,2, .., M

As we have noted this solution is optimal or better than optimal but may not be
feasible shough basic.

Thus vy will be an optimal BFS if x5 2 0 forall i = 1, 2, ..., m
i.e. if Xg, + oAb, 20 foralli=1,2, .., m

i.e. if b, Ab, 'E—xn‘l foralli=1,2 ..,m

For all b, = 0 this condition is satisfied,

X
For alf b, > 0 this condition is satisfied if Ab, 2 =L
ik

X
* We need =7 < Aby for all by, > 0
(1
Xy :
i.e. we need max "Tﬂ":"u >0p s Ab,
X

Again for all by < 0 this condition is satisfied if Ab, < --5‘.’(.

i

x
+ We need Ab, < _}% for all by, < 0
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X
i.e. we need Aby <min {—b—ﬂ’:bm < ﬂ}
ik
Hence %5 will be optimal basefeasible solution if -ﬁhk is selected satisfying the
condition,
Xy X
max -f’_m:b"* >0¢ < Ab, < min l—f”f-:e&»‘.Jli ::-ﬂ']

ik

4.5 INustrative Examples :

Example 4.5.1. Given the LPP
Maximize 2z =- X + 2x3 — X3
Subjectto  3x; + x3—x3 5 10
| X +4x +x326
x3+xns4
Xpy X %320

_ Determine the ranges for discrete changes of the components of b when changed
one at a time, so as to maintain the optimalily of the current optimum solution for the

LPP. :
Solution : Introducing slack variables x4 2 0, xg 2 0, surplus variable x5 2 0 and
artificial variable x; = 0 we have the standard form as follows

- Maximize z == x; + 2xy = X3 + 0X4 + OXs + 0xg — Mxy
Subjectto  3x; + Xy — x3 + X3 =10
=X +dx 43 -—xs + X9 =06

X2+ x3 + Xg =4

Xys X9 X3, Xy, X5, X X7 2 0
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The tables obtained by simplex method are as follows :

g | -1 - S| 0 0 0 -M
‘B B *B J »2 Y3 Y4 Y5 Yo ¥
0 .o | WO 3 ] -1 1 0 0 0
My B 1 =L, BEE - A 0 -l 0 I
0 4 0 1 1 0 0 !
M+l —4M-2 -M+2 0 M 0
AR (| 5 1 I
0 o [ 3 B 0 i s i 28
1 1
2 mlg i B § 0 ¢ o i
I
o w3l © 4 o (g 1 -}
I 3 Ak 1
0y 6 3 0 -2 1 0o -1 o0
2 B 4 0 1 1 0 0 1 0
0 y | 10 1 0 3 0 1 4 -1
1 0 3 0 0 2 M

In this final table the basis in B = [ay a3 as] and in the initial table the basis is I
= [a4 a7 ag)
The inverse of the basis in the final table is given by
1 0 =l by by b,
B1=|0 0 1 |=|b, b, b,
R by, by by

Whenb is changed to by + Ab then the range b Ab) such that the optimality of
the new BFS is not violated is given by

X
max {-%:b& > 0} < Aby € min {-ﬁl‘:bjl t:l]}
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X
S max {‘ ﬁ} < Aby [ v only byy = 1 >0 and there are x negative b;]

or, —-?sab, or. Ab; =-6

S b+ Abypzb -6
of, by Z10-6
or, i 24

When b; is changed to by + Ab; then the range of Ab, such that the optimality
of the new BFS is not violated is given by

T ; {—fﬁ:bq > u}
max { -E;;—-.bﬂ. > [}} = ﬂh_"r_ = min b[z ()

X
s Aby < min {“ﬁ} [ .. only bys = - 1 < 0 und there i$ no positive by |

or, Ab; £ 10

S b+ Ab b+ 10

or, b S6=10

or, b] <16 |

When by is changed to by + Abj thin the ranges of Abjy such that the optimality
of the new BFS is not violated are given by

max {"';,f;'::f’;z > [}} < Aby = min{-%:bu < B}




-10. . |=6
of, mux {*%.—4—} = ﬂ.b:._ = min {_—I}

o, ~3 S Ab <6

- —%Hzﬂ Sh+Ab,26+4b,

or, ~3+4<b; <6+4

o, 35 b5 S10
Example 4.5.2 Consider the LPP
Maximize z = 2xp+ X2+ dx3 - Xy
subjectio  x;+ 2+ x3- Iy < 8
Xad+ X3+ 20450
2%+ Ty = 5x3— 10y 5 21
Xy X9, X3, k42 0

The optimal solution. is it is contained in the following table

2 1 4 ~1 0 0 0

ty B} X8 ¥i Y2 Y3 ¥4 Y5 Yo A
0y 1 | 0 3 1 1 2

1 ¥a 0 0 1 -1 =2 g =l 0

0 ¥ i R 0 -4 2 -2 3 |

y-¢| O 0 | I 2 3 0

For each of the parameter change listed below, make the necessary correction in
the optimal table and solve the resulting problem.

(a) change ¢ to |

(b) changecto [ 123 4]

(c) change bto [ 3 -2 4)T

(d) change b;to 11

(e) How much ¢, be changed without affecting the optimal solution.
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Solution : (a) When ¢y'is changed to 1 the modified form of the optimal table
becomes

¢ 1 1 4 -1 0 0 0
6p e Ap B/ Ya ¥a | ¥a Y5 Yo »7
I wl &8 13 & 3 A °fege g-on
- ml oo o o=t =2 ow.se o0
o il A g G0l s 2 mm oA

-0 0 -2 0 1 1 0

From this table we see that changed solution is not optimal a8 z3 - ¢3 < 0. So we
are to apply simplex method to get the optimal solution

¢ 1 | R (R 0 0
: min
cp b7} X Y Y2 Y3 Ya Y5 Y6 Y1 | ratio
I #mnl & |t B - ol
1 y»| 00O 1 -1 -2 0 -1 0
0 Gt o e Blansig ol sl misiRiee i)
g b T2 N | 1 0
e R I
R PR R
95 | 4 i 0 _2 1
0 T 3 0 0 q 3 3 ;
40 2 2 5 1
A vl It I T N e

Since all zj — ¢; 2 0, this optimality conditions are satisfied. The optimal solution
iS I1=n. x=%| I3=%|. zm“ =E‘3'i-
When ¢ is changed from [2 14 — 1] ta [I 2 3 4] this modified form of the optimal
table becomes
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e 1 2 % & -B5 ‘b B

Cp YB *B Y »2 Y3 Y4 ¥s Y6 yr°
1 ¥ 8 1 0 3 1 1 2 0
2 ¥a 0 0 1 -1 =2 0 -1 0
0 1 5 0 0 -4 2 -2 3 1
zj-=¢ | O 0 -2 =17 i 0 0

‘We see that there are negative gj— ¢;viz 23 - c3=~ 2 and 74— ¢4 = ~ 7. Hence
the solution is not optimal, We apply simplex method to get the optimal solution.

G 1 A A 4 0 0 6 -
Min
‘g ¥p Xp B Y2 Y3 ¥4 Y3 Yo ¥y |ration
1 »n T L 0 3 1 1 2 0 8
2y | © 0 e S (R IR R |
0y 5 0. B ek -2 3 1|3
pices | Bie 0 =i i N R0
11 1 1| 11
Loggop =0 3> 6 2 & -zl
2 5 0 | =5 (1] -2 2 | =
4 -g— g 0 =3 N =4 % .'2- E
g-q| 0 0 -16 0 -6 %F I
11 1 2 ok
3 n o | 8 Y ¥ ¥ 2T TH
2 | % B o ol o S et
a7 | 2 reing T
4 g | & 9 0 X om0 a0
431 16 2 121 19
ti= | a-9lm 90 O 0 5 0 10
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Since all z; — ¢; 2 we have obtained this optimal table. The optimal solution is

.A:l=n.
21
X% 1o
_ 11
%= 10
—- a7
14—m
und z =ﬁ=41—l-

110 0 0 .
..... initial table the basis isl:[g é ?]“[“s g "?]und 50 inverse of the basis

1 2 0
of the final table is given by -1 ={ 0 -1 0 ]
-2 3 1

The new solution when b is changed from [8 0 21)T 10 [3 - 2 4T is given by

: I 2 07 3
xp=Blbr=| 0 -1 0] -2
e

[ 1 A

= 2 |=|x

lEz:s )

This solution is not feasible but optimal. Hence to get the optimal solution we are

1o apply dual simplex method. The following are the modified optimal table and 1ables
obtained by dual simplex method.
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R Yi 5] ¥ ¥a Y3 Ya V4 Yo ¥a
R 1 ¢ 3 1 I 2 0
E w2 N S 0 = 0
0 . % |-=8 0 0 2 =3 3 ]
Z-¢ | 0 0 .1 1 2 3 0
t.j"'{-' 1
}rlu Fﬁf{ﬂ '-'Z - 1
2 m =71t o o § L} U 3
[l ¥a 4 0 l 0 - g %- - 1 -—‘i—
¢ w2 [0 0 1 =g 4 =2 1
- ' 3 3 15
o =
Jj‘—”l’-:yuﬁﬂ 0 = 3‘
0 |- l=2-0: @, -5 g 4 =3
1 sl RO T T X 0 % -%
4" TRENes e Tl 2 0 % 2_1;.
=gl 3 0 1 9 o P 2

We note here that Xz, = =5 <0 but all ¥3; 2 0, Hence this changed problem has
no feasible solution.
When b, changed to 11, the new solution is given by

x, i 2T 30
w=|x |=B1e*=[ 0 =1 of| 11 |=]| 11
x -2 3 1)]21] | 38
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Since Xp, - <o, the solution is not feasible but optimal. So to get optimal solution

we are to apply dual simplex method in the modified optimal table. The dual simplex
tables are as follows :

Cp Y8 3 N Y2 Y3 Ya Ys Y& ¥
27w s |[a 0 3 1 1 )
T ST B T A =
o0 w | ale wl-4 2 =2 .39
Z-¢| 0 0 1 1 2 3 0
L 25T ik
ay i <9 4 2 3
49 1 5 3
2 M 5 1 3 5 0 1 ) 0
11 I S 1
0 ¥7 27 0 | -3 0 -2 2 1
=87 sl L4 3

In this tabl all x5 > 0 and all z;—¢;2 0. So we have reached to the optimal table,

The optimal solution is x; = 4—29.x2 =0,x,=0,x, = 1_2[ and z. = %

(e) When ¢ = 1 is replaced by ¢} the modified form of the optimal table is given
by

(1 1 4 4 -1 0 0 0

Cg Y8 B Y Y2 Y3 ¥4 Vs Y6 Y1
e Y 8 1 0 3 1 2 0
| Vs 0 0 | -1 -2 0 -1 0

0 ¥ 5 0 0 -4 2 -2 3 1
g-¢ | O 0 345 o+l Ui f2a-l




This table remains as optimal tablie if all ;- ¢;2 0

le if3¢f —52and ¢f - 12 0and ¢f 20 and 2¢f -~ 120

ie. if ¢ 2 3 and ¢} 2 and f and ¢} 2 4
Le. if ¢] 2 %

(e) Alternative method using formula :

Since ¢ € cp, the range of Ae for which the optimality of the solution is maintained
is given by

I g :
mzu‘:{J Jf:yu::-wl.'i}sli‘m:lSmm L__L:y.<0
J’U }’[j !

. 2 G Lyt TG L&
i»e. max {- Cd = = = Ac,

N3 Ny s Yis
i.e. max {-%.—'%.-%.—%}'5 Ac,

ie. —% S Acy <ee
c —é—ﬂ ¢ + Ac, <+ o<

1 .
or, 2—§-£c, <o¢

5

0T, -B'ﬂl'.‘l“:“

L Mg 2 % the optimal solution remain optimal.ma
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4.6 Addition Of A Single Variable :

Let the optimal solution of the given LPP
Maximize 2z = ex
subject to Ax = b, x =20

be known. Let X, be added with it and the coefficient vector associated with x,,,.,
be a,, and the cost coefficient for x,;; be ¢,,)-

Since b is not changed the old optimal solution will be feasible solution of the new
LPP but it may not be optimal. Let B be the optimal basis and Cp be the associated

cost vector of the old LPP. Then they are also the same for the new LPP, It is oplimum
for the new LPP if z,,, - C,.,; 2 0.

lu case 7,4y — 14y < 0, x,4) will enter the solution and simplex method is to be
applied to the old optimal table added with (n + 1)th column as y,.; = B! s

4.7 Illustrative Example ;

Example 4.7.1¢ Consider the LPP
Maximize z=x + 2 + x5
subject to 2x; + x9— x3 € 2
26 = X2+ 50356
4x; + X3+ 135 6
Xi» X2, X320

- Let a new variable x, 2 0 be introduced with cost (i) 3 (i) 5 and a; = [2~1 ~
4], Discuss the effect.
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The solution of the LPP is obtained by simplex method. The following are the tables.

C‘j | 2 | -1 0 0
! b X8 ¥ Y2 ¥a Y4 Js 3
0 ¥4 2 L =k 1 0 0
0 ¥s 6 -1 5 0 i 0
0 % | & |4 1 1 0 - ® 1
G~ep|=4 - =2 =1 0 0 0
Y2 2 -1 1 0 0 0
ys | 8 | 4 [4 1 1 0
Y6 4 2 Z =L 8 0 1
Zi-¢c| 3 -3 2 0 0 0
5 1
2 a4 3 1 o ¥ 3z
1 1
1 Y3 2 1 0 1 i i 0
- S |
- Y6 0 0 0 0 -5 3 b
2= 10 g-g|6 o o 1 3 o
X 0
2. The optimal solution is Xg =| X, [=| 4
X3 2

The inverse of the basis in the optimal table is

B-1

=

s 1
i 3
-
7 4
2 =i
e

0

<

3
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2
The added column for _a:; is a;: -1

4 s

The corresponding column in the final table is given by

i 6 g 9
=B RE R
yy=Blai=lg 7 O=5|°LI=37
B 4 ]

2 Ty 4

(i) When c; = 3, we have

=0

==

9

$ :
7y —Cy—Cpy; — €3 =[210] 7 —3=%—3=

(]

7

The optimatity condition is satisfied for the changed problem also. The optimal
solution is xy = 0, xp =4, x5 = 2.

=

(if) When % = ¢3 = cg¥y —¢; =[2 1 0] |

£loal—ao

~ Optimatity condition is not satisfied here,

We shall modify the optimal table of the old problem with added column Y3 =

AOvB— A0



and zy — €3 = -j}: and ey = 5. Then to get the optimal solution we are to-apply simplex
method. The tables obtained are as follows.

eg B | % |Hm B Mm% W B x| mn
2 w| 4|3 1 o T 2 L ol?%¥
L w| 2|t o v }F & % ofs
0o #%| o |lo o 0 -3 -5 1 ]oo
g-g|l 6 0 0o -3 W 7 0
3 m| &8 rLeL prd SF =
TR T CELE S O T
5wl ot o, B e By gt a8
z=10 y-¢| 6 o o o 3 % %

In this table all ¥s, 2 0 and all z;~¢; 2. So the optimatily conditions are satisfied,

The optimal solution is given by x; = 0, x = 4, x3 - 2, x; =0 and Zmyx = 10,

4.8 Deletion of A Variable :

From a LPP if we delete a variable them two cases any arise.

Case 1. If this variable deleted is-non basic then the feasibility and optimality
conditions are not affected. So the optimal solution of the old problem is the optimal
solution of the new problem.

Case 2. If the variable deleted is basic then the conditions of optimality may be
affected and so a new solution is to be obtained. For this new optimal solution, we are
assign a cost — M corresopnding to the basic variable to be deleted and apply simplex
method after modifying the old optimal table.
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4.9 Iustrative Example :

Example 4.9.1 For the LPP
Maximize z=x; + 2x; + x
subject to 26 + X3 - x3 52

Zx;_—xg +5%3 56

A, +x +x35 6

X, X3, X320
the optimal table is
4} Y8 B A »2 ya Y4 Y5 Y&
i L4 daon ook 14 0
o 2 i I 3 1 fl ! 0
o % |o0o|o o o -3 I I
2= 10 =gl 6 0 gt hgw 3 0

Discuss the effect of deletion of the variable (i) x; (ii) x, (iii) X3,

(i) From the optimal table we see that x; is a deleted the optimal solution remains
unaffected. Hence old optimal solution is also the new optimal solution is

x1=0, =4, x352 & 73, = 10

(ii) From the optimal table we see that x; is a basic variable. Hence we make a
new starting table by changing ¢; = 2 by — M, where M is a big positive number, As
M is very large the optimatity conditions are not affected and once it goes out from
the basis it never reappears in the basis in the simplex method,
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The modified table is

Cj 1 -M 1 0 0 0
Cp B B b Y2 ¥ Y4 ¥s Ya min ratio
b 5 1 4
M 4 3 1 0 3 i 0 3
1 |
" w2 b1 e fa " Al 2
o y[o0o|o o o -3 -1
M 1
-M 0 A —%’-4-% 0
Lom gl 3 0 ol
t owm| 3]0 -3 1 -1 1 o
o w|o]|o o o -3 &
_ o T
=2 Zj-cj| O M 0 3 3 0

Tn this table all z;~ ¢; = and all ¥, = 0, 50 we have reached to optimal table. The
optimal solution is

Lana

.xl =-g‘..\'2 e ﬂ.-tj =

and zpg, = 2.

-(iii) From the optimal table we see that x; is a basic variable. Hence we make a
new starting table by changing ¢, = | by — M, where M is a big positive number. As
M is very large the optimality conditions are satisfied, Also once it goes out from the
basis it never reappears in the basis in the simplex method. The modified table and other
simplex tables are as follows: -
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‘g Y8 Xp Yi »2 ki Ya ys Y6 min ratio
3 1 4
2 Yo 4 3 1 0 i i 0 3
1 |
=M ¥ | 2 1 0 1 i 7 0 2
3 1
0 Ya 0 0 0 0 n i "'i |
5SM,5 M.,1.
~M+5 0 0 _T+E i 'I"i- 0
4 | 5 I
L Bz it Sy "0 S T B0 165
7 1 _
¥ g g (39 ey T EEg Mg €G- W
3 1
ﬂ Y& I'J ﬂ ﬂ 0 i 2 ""'i 1
| 1
1 " 1 | ) % 0 0 9
o W e g L2 L ey 0
0 Y 2 0 -1 -2 0 1
2 V2 2 2 1 1 0 0
0 w | 8] 2 o -2 1 o
3
N 0 T et Dl
4 3 0 2 G =3 B

The optimal table is obtained and this optimal solution is x; = 0, x5, = 2, x3 =0
Il.l']d z:mu = 4.“
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4.10 Addition Of A New Constraint :

Addition of a new constraint may or may not affect the current optimal solution,
Two cases will arise.
(i) If the added constraint is satisfied by the old optimal solution then teh old optimal
solution is also the new optimal solution,
(i) If the added constraiant is not satisfied by the old optimal solution, then this
old optimal solution becomes an infeasible solution for the new problem.
To obtain the optimal solution for the changed problem we are first to modify the
fimal table and then apply dual simplex method.
The following three situations will arise depending on the nature of the solution
to the original LPP. :
If original LPP has an optimal solution then the modified LPP may have an optimal
solution or it will give no F.S.
If the original LPP has unbounded solution then the modified L.PP may have optimal
solution or it will have no F.S. or it will have unbounded solution.

If the original LPP has no E.S. then the modified LPP will have also no F.S.q.

4.11 INustrative Examples :

Example 4.11.1 Let us consider the final table of a LPP

8 Y | xs Vi ¥ eNal L e B P o OB
2 ¥ 3 1 0 0 =1 8 &8s 4
4 y, 1 0 1 0 2 L =1 0. =S
1 »n 7 0 0 ! [ =2 5§ a4 9

= | 9 0 0 -1 0 2 1 2

where yg, y7 and yg are slack variables.

If the constraint

2! +32 -+ 24+ 4525

(i) 2! + 322 — 2 4+ 24 + 4x5 < |

is added then find the solution of the changed LPP.
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Solution : ]
From the final table we see that the optimal solution of the old LPP is
x=3x=1xn=Tx=0xx5=0x%=0xx=0x=0

(i) The added constraint is
2+ 3 —x3 + g+ x5S 5

Putting xy =3, %=L, x3 =7, x4 =0, x5 = 0, x5 = 0, x7 = 0, x3 = 0 in this constraint
we have

234+31-7+20+40<5
or, 6+3-7=<5
or, 2< 5.

This is true. So the solution satisfies the added constraint. Hence the old optimal
solution is also optimal solution to the new problem.

The added constraint is
2 +FIa -3+ 2y +dxs= 1
Pu!tingxl=3.xg=l,x3=7.xq=0,x5=ﬂ.x5={1.x;=ﬂ,£3=0inlhiscnnsn'aint
we get '
234+31-7+20+40<1
o, 6+3-251
o, 251

This is not time i.e. the optimal solution to the old problem does not satisfy the added

constraint. To get the solution of the new LPP we introduces the new constraint with
a new slack variable'in the optimal table of the old problem. We then modify this table
to have a unit basis and then apply dual simplex method to it. The following are the
tables.
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s VB B | ¥ b5 B ' Y Ys ¥ X
2 ¥ 311 0 0 -1 0 S5 2 -1 o
4 1 o a1, 9 @2 (e din miiesce 48130
1y 7 | @0—1 -1 =2 5§ -3 2 @
0 (3 8 =1 2 g 0r.s0 it
=<0 0 0 2 n. 2 4 =i 0
2y ]t 8 o e cs a2 ——1 B
4y peliie 4 B 2 1 -1 0 S5 0
" 7, 16 - F =1 =% 8 5 3
0y -1.|l0 o o -3 [E7 7 :-7 25 .1
0o 0 0 2 ) =3 1 2 0

2 W 3|1 0 0 =1 _ @8 , % 9.

4 » 0 |l@ 1 Waed gDyt 65T 3
1y 9 lg o 1 8 0 -9 11 -3 -2
2y e R R | R | e T I U O
0 0 o0 2 0o 2 - 2 0

The second table is obtained by the operation R}, = R,~ 2R,— 3R, + R,. The third
table is obtained by using dual simplex method to the second table and is the the final
table. The optimal solution is x; =3, % =0, x3 =9, x4 =0, x5 = 1.

4.12 Summary

The usefulness of post-optimality analysis is discussed. Then onle by one the
different situations viz discrete changes in the cost vector and requirement vector,
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addition and deletion of a single variable, and addition of a new constraint are discussed,
Each situation is illustrated by examples.

4.13 Self Assessment Questions :

1. For the LPP
Maximize z = 15x; + 45x;
subject to 3% + 2rp < 162
x| + 16x; < 240
X2 <50
X, X320 _
find the optimal solution, Find the range of each cost coefficient (changed one at
a time) to give same optimal solution.
[ Ans : x; =352/13, x5 = 173/13, 2,5 = 1005)
2. Find how much the 7 in the first constraint of the problem
Minimize 2z =x; - 3x;3 + 2x3
subjectto  3x; —x3 + 2x3 7
-2 +dx; <12
—4x; + 35 + 83 S 10
X{s X2, X320
be changed before the basis of the optimal table would change.
3. Find the optimal solution of the LPP and the separate ranges of variations of
by and bj consistent with the optimatity of the solution
Minimize z=-x;+ 2% —x3
subject to Ixy+x3-x3 =10
~ X +4n +x320
Xpt+txsd
Xiy X7, X3 2 0.
Determine also this efficient discrete changes in the components of the cost vector
which correspond to the basic variables,
[Ans ix) =0, x5 =4, x3=0; Aby < 10, - 5/2 £ Aby £ 6, - 2 < Ac3]
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4, Fdl]owing is the optimal table for an LPP

) 2 I vt 2 0
cg B Xg Yi Y2 ¥a Y4 Y5
2 a 3 | 0 -1 3 2
1 > 4 0 1 4 -1 -2

0 0 1 3 2

(1) Find the limitations of this values of ¢3, ¢4, ¢5 (taking one at a time) for which
the current solution will remain optimal.
(ii) Find the optimal solution to the problem, if ¢ is changed to 3.
(iii) Find the limitations of the values of ¢; for which the current solution remains
optimal,
(iv) Find the optimal solution to this problem, if ¢, is changed to 5.
[Ans:()-o<cy3S2,-0<¢ysS5—-0<es52
(@ x=dx3=1x=0,x=0
(iii) 1s¢; =3
(iv) ; =134, =0, x3 = 1, x4 = 0]
5. Find the optimal solution of the IPP
Maximize 2z =4x + 3x
subject to x1+xm=s5
Iy +x3 57
X+ 2210
x5, %20
Show how to find the optimal solution of the problem, if
(i) the first component of the original requirement vector be increased by one unit
and the third ::ampuncnt be decreased by one unit.
(ii) the second component of the original requirement vector be decreased by two
units.
(Ans: (D x) =L xa=4, 2, =16
(ii) X = 0, X; =3, Lo = 15]
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Unit 5 O Quadratic Programming 'Prﬂblemﬁ

Structure
5.1 Introduction

3.2 Kuhn-Tucker Conditions for Quadratic Programming Problem
3.3  Wolfe's Modified Simplex Method

54 Beale's Method -

55 Summary

5.6 Self Assessment Questions

5.1 Introduction :

Quadratic programiing problem is the most well behaved nonlinear programming
problem. Quadratic programming deals with non-linear programming problem of
maximizing (or minimizing) quadratic objective function subject to a set of linear -
inequality constraints. The solution of this problem is based on the Kuhn-Tucker
conditions. The quadratic objective function to be optimized is taken as strictly convex
for minimization and strictly concave for maximization, As the solution space is always
convex, the optimal the solution obtained is global is nature.

Definition 5.1.1 : Let xT and C € R" and Q be a symmetric n X n real matrix
then, the problem quadratic pogamming problem is

Maximize (or minimize) f (x) = cx + -%xTQx

subject to . Ax £ b
x20
where  x =[x}, X3, ..., £,|T
¢ = [e 020 vy €l

b = [by, by, .. by)T
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ay 4ap Ay, €y Oy Con
Awm s i andQ =
aml ﬂm! aﬂm f:rl CuE Cm-

The function xT Qx defines a quadratic form when Q is a symmei.;ic matrix,
The quadratic form xT Qx is said to be positive-definite if xT Qx > for all
x# 0.

The quadratic form xT Qx is said to be positive semi definite if xT Qx > for
at one x # 0.

The quadratic form x¥ Qx is said to be negative definite and negative semi-
definite if — xT Qx is positive definite and positive semi-definite respectively.
In quadratic programming problem x7 Qx is assmed to be negative definite in

the maximization case, and positive definite in the minimization case. These means

that f(x) = cx + -zl-x"' Q xis assumed to be strictly convex function for minimmzation

case and strictly concave fomaximization case,

As the constraints are always assumed to be linear, the solution space of a
quadratic programming problem is always convex.

Thus the solution obtained using Kuhn-Tucker conditions given global optimum
of the quadatic programming problem,

5.2 Kuhn-Tucker Conditions for Quadratic Programming Problem :

Let the quadratic programming problem be
. n l L f
i = X CaX.X
Maximize f (x) _,Z:‘I J ;EBE %

subject to the constraints




and x; 20,j=12,.....,n
where Cjk T_-CH for ﬂ“j and k&,

Introducing slack variables g and r_f the problem reduces to

f lﬂ' L]
Maximize f= Y ¢, x, += CpX X
aximze E; g zz;laﬂ_;i

subject to ;'ﬂ,y-‘} ‘b..-+-‘i'f2=1u. i=12 ...m

The Lagangian function is given by

l'.' {xluxzu--: ,,-l?pqu--uqm,ﬁ;i";:--«.r,,-.?ﬁlilgs---.lm,-llpllp---,I-l_r,.,}

" 1 W 13 1] 2 i <5 :
= ;z-;cjx" +§§§ﬁaxm = ;%(E“ﬂx; = b + g )'E“;(""‘J & )

The Kuhn-Tucher conditions are given by

;{_j_;ll‘aﬁ-uj(—l}=01 Fi=ili 2y i R

&
v
e
L
I
i
=



Letting g? = 5, = 0 these equations becomes

M H

= =] s u “J.
it
;‘Iaﬂ X;=b+s5=0i=12...m

Ms,=0,i=L2,.....om
(2)

px, =0, =12,...n

C A 20,i=12,....,m
M; =0.f=12..n
xIEﬂ,j:I.Z.....,H (3
5;20,i=12,.....n

(1) is a system of m + n linear equations in X Ay 1y and sp.
The solution of these system which will satisfy also (2) and (3) is the required
optimal solution of the quadrative programming problem.

53 Wolfe’s Modified Simplex Method :

To solve the system (1) satisfying the conditions (2) and (3) Wolfe suggested

to introduce the non-negative artificial variables by, 33, ....... [, in the Kuhn-Tucker

conditions (1) and to constract an objective function z = = B} = P - ... = B, and

to consider the following LPP with complementary slackness condition,
Maximize z = - B - B2 = o — Ba

n

5 m L
subject to ;ﬁ'ﬁx*—Zliﬂ,}+|.lj=—cj._f=l,c:,....,n
' =] i=

ll,s_,.x',,ui.uj,ﬁjaﬂ,i=l,2, ..... o =4
and satisfying the complementarhy slackness conditions



The optimum solution of theis LPP gives the optimum solution of the given
QPP.

Note : To maintain the condition A;5; = 0=p j%; all the time we should note

that if A;is in the basic solution with positive value then s; can not be basic with

positive value. Similarly My and x; cannot be in the basic solution (i.e. positive)
simultaneously,

Example 5.3.1 Using Wolfe's method solve the quadratic programming problem
Maximize z = 2x, + x, — x?
subject to 2x,+3x, 56
2t x, 54
XsX 20
Solution : First be write all constraints with ' sign to get the problem as
Maximize z = 2x, +x, - x?

subject to . 2x, +3x, S0

2y, +x,<4
X, =0 _
-x, =0

Introducing slack variable g, g2, ? and 12 we get

Maximize z = 2ux, + x, - x?

subject to 2x, +3x, + ql? =6
2x, 4+ %, + qi =4

-X + it =0

—Xy =0

We now constuct the Largrange function

L [xl'x!'ql'qi'ﬁ'ri'?"l'J"Z‘“‘i'“‘!)
= (2x, + x, - x2) - A(2x, +3x, + ¢f - 6) = Ay(2x, + x, + g; ~4)

(= + 1) =y (~xy +47)
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- The Kuhn-Tucker's necessay and sufficient conditions gives

g;' =0 or, 2-2x - 24, =20, 44, =0

%.—.u or, 1=3A, <A, +4,=0
2

)
a.%lﬂl or, 2x%3x, +q -6=0

g.:" =0 or, 2x, +x,+ql-4= D

xi'x!'ll'?"r“l'ui 20

Taking ¢ =5, and g3 =5, we get

2%, + 20, 1, =2

A +A, -, =1
2x, +3x, +5 - =6
2%, 4%y +5; =6

Mg =0,4,8 =0, px, =0, p,x, =0
XI,.T:JL..I?-.I..I-I',H!. EITE 20

_ With necessary modification we use phase [ of two phase method to solve this
system Introducing artificial variables Bl and B2 the modified LPP become

Maximize 2’ = - B, -

subject 0 2%, +2A, +2h, — b, + B, + =2
_ M +Ay —p, +B, = |

2x, + 3x, : 5, = 6

2x +x, 3 =4

X, = 0, ul‘jl =0, "-"’|3| =0, ?,,152 = 0
x‘""'t!'llfll'ulfujtﬂpﬂ]nﬂu!z = 0
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Initiat talle of Phase=I is
G 1o 0 ,0.x:0 520,508 =t =126 0

Cs BV I|Xp|x x» M X% wm m B B s 57
<t B |2 0 2T e oabele | =
2 BVE e 0l S T el ele e 3600

¢ Sgihs 13 E 0. o -0 0

0 w4 |2 a3 @=tgdie a0 "0 No i

’

e 3 = N 1 A O O S | S 1 )

Accoding to the regular pocedure A enters and B, leave the basis is A > 0
& Bz =0, But 5, = 6 i 2\.:51 # 0.

. M cannot enter the basis,

Next negative z; —e, is associated with A, If A; enters the basis then B, and
B, will: leave the basis is A; > 0.

Since 53 = 4 we have Ay 5; # 0. So A, cannot enter the basis.

Next negative z | ~¢ ; is associated with x. If x, eneris the basis then B, leaves
the basis ie. x; 2 0, This is accepted since pp =0 & py, xy = 0 is satisfied,

The next table is

G b B0 il e Do izl H0F 10
Co BV X | X x M A w wm B B s o
0 G o [ S 1 B 1 =I"0 12 0 o0 O
S Y [ R B T B R S Tl e
0 sl o Blls2a=oie® g, 1@ 1 0
0 sml22 |0 0 =2 <2 Isteial @ 0 1
2= -3 040 =3 = P q a0 4 0

T

Here A, enters and B, leaves the basis ie. Ay > 0, By = 0
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Thiis is not accepted since sy =4 =~ A, s # 0.

If X, enters the basis then x; or B, leaves the basis..
This is not also-accepted since 55 = 2 & so Ay 55 # 0
We select x; to enter the basis. Then s; leaves the basis.
The next table is

= [ T P R e ey
Co BV IXg | x M X wmm B B s s
0 w3 | T 0 B il et s 0
- ‘g1 je o BY 3 0.~ 0.1 0

R |40 1 23 23 3 0 -1 0 1B 0

|23 0 0 4B 43 23 0 23 0 -13 |
Z= -l 0. 0. 53 ol 0t ka0 b

T

Hare A, enters the basis and B, leaves the basis. This is acceptable since )

0 i .:'l.].ﬂ = 0,

The next, table is

(2 o ol e+ S IR i (o ol T
Co BV|Xg|x x» &N A wm W B B 5 n
0 x (23| 1 0 0 23 <12 13 12 <13 0 0
0 MWL O0 0 1 3 0 -13°0 13 0 O
0 x |49 0 0 0 -49 13 =29 -13 29 13 0
0 s (1090 0 0 -89 23 -4/9 -213 49 -13 1
2= 0 00 0 e g L0 ey Bomnall £ 52 0
In this table Py = 0 and B; =.0. So this is the final table,
The optimal solution is
X) =23, % = 1409, Ay = 13, b= 0, 57 = 0, 53= 1009, ji; =0, pp = 0

The complementay stachness conditions
mxp =0, poxa = 0, Aysy = 0 & Aysy = 0 are satisfied.
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» The optimal solution of the given quadratic programming problem is
X = 2..-"3, .ll'g = 14/9
and zya = 2(2/3) | 1419 - 2/3 = 22/9

54 Beale’s Method

Beale suggested another approach to solve quadratic programming problem (QPP)
Let the QPP be of the from
Maximize f(x) = cx + % xTQx

subject to Ax = b, x 20

Where x = [y, X2, e %), € = [c, €, syl A is mxn matrix and Q is
symmetric matrix.

In This method the variables are partitioned into basic and non-basic variables.
At each iteration, the objective function is expressed in terms of te non-basic variables,

The Beale's iteative procedure of solving QPP is stated below :

Step 1. Express the constaints of the given QPP as equations by introducing
slack / surplus variables to get Ax = b,

Step 2. Select arbitrarily m variables as basic and the remaining n—m variables as
non-basic. With this partitioning, ‘the constraint equation Ax = b can be written as

=m0 [o7] <
or, Bxg + Reg = b
Where xg and xp denote the basic and non-basic vectors respectively, Thus we get
Xp = B-'p - B-! RTR
Step 3. Express the basic xg in terms of non-basic xg only, using the given
and additional constraint equations, if any,
Step 4. Express the objective function f{x) in terms of xR only using the given
and additional constraints, if. As xg = 0 we have B-'RxR < E-'b, Thus, any

component of xR can increase only, until 8f/8xg beeomes zero, or one or more

components of xg are reduced to zero.
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Note that we face the possibilit of having moer than m non-zero variables at
any step of teration. This stage comes when the new point generated at some step
occurs were §fféxgp becomes zero. Geometrically, this means that we are no longe
at an extreme point of the convese set formed by the constaints, and thus no longer
have a basic solution with respect to the original constraint set. When this happens,
we simply define a new variables s; as s; = 8f/8xg; and a new constraint 5;i = 0.

Step 5. At this stage, we have m + | non-zero varibles and m + 1 constraints,
which is a basic solution to the extended set of constaints,

Step. Repeat the above procedure until no further improvement of the objective
function may be obtained by increasing one of the non-basic variables,

Example 5.4.1. Using Beale’s method solve the QPP

Maximize z = 5+ 4x +6x, = 2x] - 2x,x, — 2x2
subject to X +2x,50
X%, 20

Solution :

Introducing ‘slacle variable x3 2 0, the given QPP becomes
Maximize z = 5 +.4.!!E + 6x, — 24} —2x,x, — 2x2
subject to X, +2x, +x, =2

X Xnky 20

We choose x; arbitarily as basic variable and express it in terms of & and x3.
Thus

X =2 =20 -x
We now express the objective functions z in terms of xg z = 544 (2-2x; -
X)+60-2 (2-2-x3)2 -2 (22 —x3) X3~ 2x3
0z '
gz-=—ﬁ+ﬁ—4{2—2.\'2‘-13]{—2)—2(2—4::2—.1'3]"—4.‘.‘2

d
At x; = Om x3 = 0 We have EZ=_B+5+|4_4=“]
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This means z will increase if x; is increased from zero.

d
Alsc'aTz!=—4+4[2-2.xg-.t3}+sz

. dz
At.t1=ﬂ,x3={}w¢huw:a;=-4+E=4

We see that the rate of increase of z with respect to x, is more.
Hence incease in x, will give better improvement in the objective function,
To find how much x; should or may increase, we check two quantities.
(i) the value of x, for which 8z/5x, vanishes.
(ii) the largest value of x; attained without deriving the basic variable x| negative.
Then x; will be minimum of these two.
Now 8z/8v, = 0 gives for x3 = 0
-248(2-2x)-2(2-4xp) —4x3=0
or, =2 + 16 - 16x; — 4 + 8x; — 4xp = 0
or, = 12x + 10 = 0
or, x; = 5/6 e
And for x3 = 0, x; < 0 gives 2 = 2x; < 0 or, X3 > |
We have min {5/6, 1) = 5.6, Thus the new basic variable is x;.
Expressing x; is terms of xj and x3 we get
x3=1=xp- X :
We now express z in terms of xj.and x3 as
z=5+4x + 6 - xjp - xp) - 2xF - 2¢ (1 - X2 — X3)
=2 (1 = xyz — x3p)?

i)
MNow a_':: =4 -6 {-”2) = "h'l 2 le {_”2} =2 (1 — - -Tm)

-4 (1 = xjp = x3p) (=112)
= | - 3x; '
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. _
3;33- =6 (1 = 112) = 25 (-12) 4 (1'= g3 = x3p) (=1/2)

dz dz
At x; = 0, = () We have u':h: —landg"'

Ths z increases as x; is increases. So x| can be introduced to incease 2,
To find how much x| should or may increase, we check two quantities.

(i) the value of- xy for which 82/6x; vanishes,

(i) the largest value of x; attained without deriving the basic variable x, negative.
The x; will be minimum of these two.

Fo xy = 0, 8z/8x) = 0 gives 1 - 3x; =0 or x; = 1/3

For xp = 0, xo < 0 gives 1 —x;p <0 or, x; > 2

We have min (1/3, 2} =

Hence we find x| = 1.-"3I and the new basic vaiable is x;.

At x| = % x3=0 wgl have aa—" =0, Efz ==1. Thus thc optimal solution has

been attained & the optimal su!ulmn isx =13, x=1-1/6-0=56,x =0 and
man x =5 + 4/3 + 6 x 5/6 — 2x (1/3)% - 2 (1/3) (5/6) ~ 2x (5/6)* = 5516

5.5 Summary

“Quadratic programming problem is concerned with non linear progamming

problem of maximizing (or minimizing) the quadratic objective function subject to

a set of linear inequality constaints, Wolfe's modified simplex method and Beale's

method are discussed here with examples.
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5.6 Self Assessment Questions

1. Applying wolfe’s method solve the following quadatic pogramming problems
(i) Maximize f = 4x, + 6x, = 257 - 2x,x, — 2x3 | |
subject-tln x+2x,s2
X% 20
(i) Maximize z = 12x, +12x, — 18x] — 12u,x, ~ 8x3
subject to 3x, +4x, S2
XX 20
(iii) Maximize f = 3x, + 2x, ~ 2x
subject to dx, +x, 54
2%, +x,S2
XX, 20
(iv) Maximize z = 10x; + 6x, — 50x]
subject to 5x,+8x, <4
Sx;+4dx, <2
Xisky 20
(iv) Maximize f = —-4x, + x? =2x,x, + 2x2
subject to 2%, +x, <6
X —4x, 50
XX, 20
(iv) Maximize z = 2x, + 3x, - 2x!
subject to X t4x,s4
X +x,52
XX, 20
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2. Use Beale's method of solve the following quadiratic linear programming
problems

(i) Maximize z = 6 - 6x,+ 2x7 = 2x,x, + 2x§
subject 10 X +x,S2
Xk, 20
(ii) Maximize z = 2x, +3x, = x?
subject 1o X +2x,54
X x, 20
(i) Maximize f = 2x, + 3x; - 24
subject to X +dx, 4
XN +x, 52 |
X%, 20
(iv) Maximize f = 12x, + 6x, — 18x] - 6x,x, ~ 2%
subject to 3x,+2x, 52
X%y 20
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Unit 6 O Integer Programming Problem

Structure
. 6,1 Introduction
6.2 Need for Integer Programming
6.3  Gomory's cutting plane method for all IPP
6.3.1 Construction of Gomory's constraints
6.3.2 Gomory's cutting Plane Algorithm
6.4 The Branch and Bound Method
6.4.1 Branch and Bound Algorithm
6.5 Summary

6.6 Self Assessment Questions

6.1 Introduction

Integer Programming Problem (IPP) is a special class of Linear Programming
Problem where all or some of the variables in the optimal solution are restrieted
to the integers. If all the variables are restricted to take integral values the IPP is
termed as pure IPP, On the other hand, if only some variables are restricted to take
only integer values then the problem is called mixed IPP.

In 1956, R. E. Gomory developed a method to solve pure IPP. Later, he extended
the method to solve mixed IPP, Another important approach, called the “branch and

bound” technique was developed for solving both the all integer and he mixed integer
programming problems.

Several algorillms have yet been developed for solving both types of IPP, We
shall discuss only.

(i) Gomory's cutting plane method for pure IPP. and

(i) Branch and bound method.
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6.2 Need for Integer Programming

To solve -an IPP one may think to get the optimal solution just by rounding
down the optimal solution of the corresponding LPP obtained by regular simplex
method. But there is no gaurantee for this. It may or may not happen so. The integer
solution obtaind by rounding down the optimal solution of the corresponding LPP
will not always satisfy all constraints or will not give the actual optimal solution
of the IPP. These are explained by following examples.

Example 6.2.1
Maximize z = 3x, - 2x,
subject to 12x, +7x, £ 28
X X2 0

Xy, X7 ure integers.

Ignoring the integer restriction here the optimal solution is xy = 2 %— X2 = 0 with

max z=T

The solution obtained by rounding down this optimal solution is x| = 2, x3 =
0 this solution is the optimal solution of the given Integer programming problem.

Example 6.2.2
Minimize z =  2x +3x,
subject to 80x, + 31x, > 248

XX, 2 0, x|, Xz are integers.
14 L % L - i . L3 I
Here, ignoring the integer restriction, the optimal solution is x| = S-m. Xy =

0 with min z = ﬁ-}j

Rounding down the solution we get xj; = 3, x; = 0
But this point does not lie in the feasible region since 80 x 3 + 31.0 = 240
< 248.
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Hence just rounding the optimal solution of the corresponding LPP 1o the given
IPP we may not get the optimal solution of the IPP,

Example 6.2.3
Maximize z = 3y, + 4.1,
subject 1o 4%, +6x, <15
XXy 20
X, X3 are integers.

Ignoring the integer-valued restriction The optimal solution of the problem is x,

= 3%. x2 = 0 with max z = 11}

Rounding off this solution we get x, = 3, X3 =of, X1 =4, x5 = 0.
Forxy=3, xo=0wehave z=3x3+4%x0=09

X1 =4, x; = 0 does no satisfy 4y + 6x> < 15, Here the actual solution tothis
IPP is x) = 2, X3 = 1 with max z = 10.

6.3 Gomory’s cutting plane method for all [PP

In this method we first find the optimal solution to the IPP by simplex method
ingoring the integer valued restriction. If in the optimal solution all the variables have
integer values, then it is also the optimum solution of the given IPP. But if not,
then a new constraint, called secondary an Gomory's constraint is introduced to the
problem which slice away non-integer optimal solution exhibited by the extreme point
of the feasitle region of the associated LPP and at the same time leave all feasible
integer solutions untouched, The new related LPP is then solved as usual. If the
new optimal solution obtained does not satisfy the integer requirement, then another
Gomory's constraint is added and the process is repeated iteratively until the required
integer valued optimum solution is obtained. As each introduced Gomory's constraint
cut off a portion of the feasible region of the related LPP, the method is called
Gomory's culting plane method,

6.3.1 Construction of Gomory’s constraints
Ignoring the integer restriction let the optimal solution of the given IPP using
simplex method be xg. Also let this optimal solution has at least one non-integer
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component. If more than one basic variable are fractional, we select that non-integral
variable which involves the largest fractional part.

As xg, corresponds to the rth now of simplex table we consider the rth now
of the final tables as

i‘,y,; =b . (D

Jj=l
Let [y;] denote the greatest integer less than ¥y and fri denote the positive

fractional part of yii- Similarly, let [b,] and f; be resputively the greatest inteper Jess
than b, and the positive fractional part of br,

Then we have y; = [yl + f
and b = [b] + f where 0 < fi; < 1 and 0 < f; < 1.
From (1) we have thus

2[@":4]5"1 t _:iuj:’ s =[b]+ f,

1] =
and fr™ ﬁl-ﬂ; X =[br]_§[}rd]xj (2
J’E . ==
For integer value of x} the RHS of (2) is an integer, So LHS of (2) must be

an integer. Now f; is a proper ffactiun ie. 0<f. <1 and gfdxj is positive thus
@) gives,
(A pmpe:.r fraction) — (positive number) = (integer)
Hence RHS is either zero or negative integes.
So LHS is also either zero or negative integer

ie. LHS < 0

or, ﬁ:-ﬁij =0
J=l

or, ‘ﬁ bk s=f
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Introducing plack variable x, this becomes

i_,ﬁ_,x +x =-f

=l

This is the Gomory's constraints which is to be introduced to the given problem
to form a new LPP to be solved the dual simplex method.

6.3.2 Gomory’s cutting Plane Algorithm

The following are the four steps of solving ull integer IPP by Gomory's cutting
plane method.

Step 1. Using simplex method find the optimal solution of the IPP ignoringthe
integral value restructians.

Step 2. If all the variables have integral values, take this solution as the optimal
solution of the given IPP. : -

If at least one varible in the optimal solution obtained in setp 1 has fractional
value then identify the now involving the largest fractional part. Using this row from
the Gomory's constraint, -

Step 3. Augment the IPP by introducing the Gomory's constraint formed in step
2 and modify the table. Using dual simplex method ﬁnd the new optimal solution
of the augmented LPP.

Step 4. If all variables of the optimal solution obtained in setp 3 are integers,
then this is the required optimal solution of the original IPP. Otherwise go to step
2 and again augment the IPP by a new Gomory's constraint,

Example 6.3.1 Use Gomory’s cutting plane method to find the optimal solution
of the IPP |

Maximize z = x +x,

subject 1o 2x+5x, 216
6x, +5x, <30
XX 20
Xy, X, are integers.

Solution : Ignoring the intergal value restriction we solve itby 51mp!ex method.
Introducing slack variables x3 and x4 the LPP becomes

Maximize z = X+ Xy + 0xy + 0xy
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subject to 2%+ 5x5 + Xy 16

30

I

6x)+ 5%, +  +x,
Xpy X, X3 X3 2 0
Using simplex meéthod the tables are obtained

€] 1 | 0 0
Cp B Xg b4 Y2 3 Y4 |min ratio
0 yi | 16 2 5 | 0 8
0 Y4 30 [“[6] 5 0 It 5=
z=0 ' = 2| 0 0
0 Y3 6 0 s -1/3 | 95 —
I 9 | s I 516 0 1/6 6
z=25 0 ~1/6 0 1/6
1 ya | 955 0 : 10 ~1/10
1 ¥ 12 1 0 -4 14
z = 53/10 0 0 120 320

In this object tible we see that both the variables are fractional and are 9/5 =
1 + 4/5, W2 = 3 + 1/2. The largest fractional -part is 4/5 and is associated with
the first row. The first row written in the form of equation is

X2+ (310) x3 = (1110) x4 ='9/5

Writing 3/10 = 0 + 3/10, =1/10 = -2 + 9/10 and 9/5 = 1 + 4/5 this becomes
Xo 4+ Oxy + (3/10) x3 = 2xg + (9/10) x4y = 1 + 4/5

~ The Gomory’s constraint is
- ;[31'1{1} X3 ~(9/10) x4 — < (4/5)

Introducing plack variable x5 = 0 we get

~ (310) x3 ~(9/10) x4 + x5 = — (4/5)
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Adding this Gomory's constraint to the above optimum table, we ge mudlf'ed
table as follows :

¢ 1 1 0 0 0

Ca Y8 Xg ¥ Y2 Y3 V4 ¥s
! ¥ o | 0 I 310 -1/10 8
| v e I 0 -4 4 0
0 vs | <5 | o 0 910 )
-6 | 0 0 120 W0 |

I ¥z / 0 1 0 -1 |
1 » 256 | 1 0 0 I -5/
0 v | 8 0 0 | 3 03
G-¢ | 0 o 0 0 e

In this optimal table the basic variable x, is fractional (it is u variable of the
original given IPP). It is associated with second row. We consider the second row
and write it as equation to form Gomory's second constraint.

x| + x5 — (5/6) x¢ = 25/6
o, X+ X5+ (=1) x5 + (1/6) x5 =4 + 1/6 .
The Gomory's constraint is
- (1/6) x5 < - (1/6)
o, =X == |
Adding slack variable x5 0 we get
-Xs + Xg=-1
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Adding the Gomory's constraint to the above optimum table and modifying the
table we get

c:J 1 1 0 0 0 0
Cp ¥B Xp i » ¥ Yo ¥ Y6
I 2 1 0 1 0 -1 | 0
1 Y 256 |- 1 0 1. =56 0
¥ 8/3 0 0 | 3 103 0
y6 = 0 0 0 0 1
G -¢ | 0 0 0 0. 6. . @
(& y:") ‘Y <0 %
1 ¥ 0 0 1 0 o |
1 Y Suoo| 1) 0 0 1 0 -5/6
0 3 6 0 0 1 3 0 -1043
Vs I 0 0 0 0 | ]
G -¢ | 0 0 0 0 16

As the original variables are integers this is the final table of the IPP. The optimal
solution is x; = 5, x, = 0 and max z = 5.

6.4 The Branch and Bound Method

The Branch and Bound method is most powerful method and is applicable to
both pure as well as mixed integer programming prolbems. This method was
developed by Landand Doig. The principal idea underlying the branch and bound
method is an follows. First we are to solve the problem ignoring the integer valued
testriction, If the optimal solution has non-integral value, say x;, then there is an
integer k such that k < x; < k + 1. As we want Xj to have integer value, the value
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of x; must satisfy either x; < k or xj 2 k +1 but not noth. Adding these constraints
individually to the constraints of the given problem two subproblems are obtained,
These two subproblems are solved. Repating the branching, the desired optimal
solution is obtained.

6.4.1 ™ranch and Bound Algorithm

The swp by step procedure of branch and bound algorithm is as follows :

Let the IPP be

- Maximize z = ex

subject to Ax = b
xz0
xj is integer for j € |
Where ¢ = [€]. €2, wvees Cale X = [X10 X20 cevens &0)Ts b = [By, D2y ey b ]T

A= [ﬂij]mnn

Ifl={(1,2 ..., n} then it i5 a pure (or all) IPP and if 1 is a proper subset
of (1, 2, ..., n} then it is a mixed IPP,

Step 1. Ignoringthe integer restriction solve the IPP. If the optimal solution be
such that all x;, j € 1 are integers, then this is the required optimal solution. If at
least one x;, J € I be non-integer then go to next step.

Step 2. Among hon-integer X;, j € 1 chope any one, Then there exists integer
k such that

' K<x<k+1

As we want xj to be an integer, the integer solution must satisfy one of the

following
'xjskur.ﬁqak+l

Add these constraints indirectly to the constraints of the current problem and
get two sub-problems. Solve these two sub-problems,

Step 3. If for any of the subproblem integer solution is obtained then that problem
is not further branched.

But if any subproblem involves some non-integer variable, then it is again
branched. This process of branching is continued, until each subproblem either admits
an integer valued solution'or there is eirdence that it cannot yield a better solution
or it gives no feasible’ solution,
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Among all subproblems select that integer valued solution which gives the over
all maximum value of the object function,

Note : Main disadvantage of this method is that it requires the optimal solution
of each subproblem. For large size problem this become very tedions job. Ihs;:-ite
of this drawback it is most effective method for solving IPP. Also the method is
applicable for both all and mixed IPP

Example 6.4.1 Using Branch and Bound technique solve the following IPP

Maximize z = x| + x

subject to I + 2x £ 12 . (LPPI)
X2 =0
X, x 2 0
Xy, Xy are integers.

Solution : Ignoring the integer valued
restriction the solution of the given IPP by Xa
graphical method is x| = 8/3, x; = 2, the value \
of 2 is 4. We call the LPP corresponding 6
to this IPP as LPPI. :
The value of x; is fraction and is 8/3. We Cl B\, 2)
note that 2 < 8/3 < 3. (5
So we from two subproblems with :
additional constraints respectively as x; s 2 ; A X
and x; = 3. : 0 @, 0O\ '
Thus two problems are LPPI .
Maximize 2 = x; + X
subject to Iy + 2 = 12
X9 2 . (LPPL1.1)
X = 2
Xty X2 20
and
Maximize z = x) + X3
subject to Ix) + 2x £ 12
x<2 w  (LPP12)
Xy %3
X, %20
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By graphical method, the optimal solution of the LPP1.1 is Xy =2, xp = 2 with
z = 4 and that of the LPPL.2 is x; =3, x; = 3/2 with z = 9/2

Xz X,
ﬁ\\ N
©, 2} 2\ 2
N\l a. 32
45 \(4. 0)
©, 0) Bom- =N 0 aol N N
LPPI.1 LPP1.2

Since the optimal solution of the LPP1.1 are integers there is no need to branch
this problem further. On the other hand the optimal value of x» is fraction for the
LPP1.2. So branching of the LPP1.2 is to be done. Let the two subproblems obtained
by branching by LPP1.2.1 and LPP1.2.2. ;

They are obtained to follows.

The optimal value of x; for LPP1.2 is 3/2 and | < 3/2 < 2.

. The additional constraints to be introduced are x; = 1 and x; = 2 respectively,
Thus LPP1.2.1 and LPP1.2.2 are given by

Maximize z = x; + X3
subject to 3 + 2x) = 12

=
X 23 - (LPPLZ1)
&

and
Maximize z = x| + X3
subject to Inp + 2 = 12
Xy £ 2 I
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xXi &3 «  (LPP1.2.2)

Ao 22
Xis ;h'z 2 0
Ko X2
o o
ik
2 \\[H}ﬂ, 1) N\
1. w1y
G, 1 \(4. 0, _ \ ;
0 (3. 0) A 0 3 4\ :
LPP1.2.1 LPP1.2.2

Using graphical method the optimal solution of the LPPL2.1 is x; = 10/3, x;

= 1 with the value of z = 13/3 = 4%—. As x) is not an integer and z = 13/3 which

is greater that the optimal value z = 4 of the LPP1.1, we need branching of this
LPP toget LPP1.2.1.1. and LPP1.2.1.2. (Hete we note that instead of z = 13/3 if
the value of z would be less than 4 then no br&nching is nedded)
The LPP1.2.2. has no feasible, so no question of branching,
To get branching of LPP1.2.1. we note that 3 < 10/3 < 4. So that additional constraints
to the LPP.1.2.1 to get sub problem are respectively x; < 3 and x; 2 4.
Thus the subproblems are given by
Maximize z = x; + X,
subject to 3xp + 2x £ 12
Xa £ 2
Xy 23 wi(EPPL2:140)
X3 S i
X =<3
.20
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and

Maximize z = x; + Xp

subject to 3x + 26 = 12
X2 <2
a3 .. (LPP1.2.1.2)
X2 <1
X 2 4
XX 20
Ko X
N >
2 N 2
Sl
1l &0 \ : 1 \{1 5
0 @ o a4\ ! 0 3 X
LPP1.2.1.1 LPP1.2.1.2

Graphical we get the optimal solution of the LPP1.2.11 as xp =3, x5 = 1'with
7 = 4 which is some as the optimal value of z of the LPP1.1. The optimal solution
of the LPP 1.2.1.2, is x) = 4, x, = 0 with z = 4. No further branching is necessary.

The over all maximum value of the objective function is z = 4 and the integer
valued solution are x| = 2 § x| = B xmm=1lix=4x=0

6.5 Summary

Gomory cutting plane method for all IPP and Branch and bound method for
general IPP have been considered and explained with examples, Need forIPP has
been explained in detail with examples.
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6.6 Self Assessment Questions

1. Solve the following IPP using'Gomory's cutting plane method,
(i) Maximize z. = 2x; + 2xy
subject to 3xy + 3x = 8
Xp k2 24
X1y Xz = Cl
X1, X7 are integers
[ﬁns:x|=1,xg=1.maxz=4}
(i) Maximize z = 4x; + 3x,
subject to 3x; +4dx; S 12
4x; + 11.'2 <9
X X220
X1, Xz are integers
[ Ans : %) =1, x3 =2, max z = 10]
(iii) Maximize z = x; - 2%
subject to 4x; + 2x3 £ 15
X, X2 0
Xy, X3 are integers
[Ans : x; =3, x2=0, max z = 3]
2, Using Branch and Bound method solve the following 1PP
(i) Maximize z = 3x; + 4x,
subject to 3x + 2 £ 8
Xy + 4.#-2 =0
XX 20
X1, X are integers
[Ans i x; =1, xp = |, max z = 11)]
(i) Maximize z = Tx; + 9%,
subject to Xy + 3% £ 6
T.J.‘I + x5 35
0< Xy =7
0sx =7
Xy, X7 are integets
[ Ans : x) = 4, x; =3, max z = 55)
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Unit 70 One dimensional minimization method

Structure

7.1 Introduction
7.2  Unimodal Function
7.2.1 Definition _
7.3 Fibonacci Method
7.4  lllustrative Examples
1.5 Golden Section
7.6  Goldern Section Method
7.7  Procedure of Golden Section Method
7.8 Ilustrative Example

7.9  Summary

7.10 Self Assessment Question

7.1 Introduction

Numerical method ofoptimization are used to solve the problems involving
objective function andfor constraints which are two complicated or cannot be
expressed as explicit function.

One dimensional minimization method plays an important role to solve thr:
problems using numerical technique. In numerical methods we are to minimize
fix; + A S) with respect to li- for known values of x; and 5.

This is nothing but aone dimensional minimization problem. Among many one-
dimensional minimization methods Fibonacei method and golden section method are
simple and important. They are discussed in this unit, These two methods are used
for unimodal functions.
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7.2 Unimodal Function

In the process of finding optimal point often lt becomes necessary that the function
has only one optimum point in the domain of search. As in many methods we need
only the values of the function at various points, the functionmay not be contingous
and differentiable. What we need is that it should be unimodal. Unimodality of a
function of one variable is defined as follows

7.2.1. Definition

A real valued function f(x) is said to be unimodal (minimum) is [a, ] if there
is a point x* € [a, b] such that

(i) it a < x; < x3 x* then flx)) > flxy)
(i) it a < x; < xy < b then fixy) > flx)

7.3 Fibonacci Method

Fibonacci method is based on Fibonacci sequence (Fn) defined by

Fop=F =1
Fo+ Foy + Fraon=23 4, ...
Thus _
Fop=1L,Fi=1,F=2F=3F=5F=8F=13F =2l F=
34. Fq = 55, Fm = Bg, F|| = 144, ...

Fibonacci method can be used to find the optimum of a function of one variable.

i Tha functmn must be unimodal, it may ormay not be continuous or differtiable. This

rm:lhod has the following limitations :

(i) The initial interval of uncertainty [a, b], in which the optimum lies, has
to be known

(i) The function to be optimized has to be unimodal in the initial interval of
uncertainty.

(iii) The exact optiﬁ‘:‘um point cannot be located by this method, Only an interval,
known as the final interval of uncertainty can be obtained.
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(iv) The number of function evaluations to be used in the search has to be
specified beforehand.

The final interval of uncertainly can be made as small as we desire by making
the number of function evaluations more,

Procedure : Let L be the length of the initial interval of uncertainty [a, b be
the initial interval of uncertanity. Therefore Ly =b - a.

Let n be the total number of experiments to be conducted. We define
L) EF-
Lz = Tl Lu
n ®

The first two ﬂxperi'ments are placed at the points x; and x» which are located
at a distance 1, from each end of L. The values of the function f at x;, x, are
evaluated as fj = fix|) at f = flxy). Using unimodality assurnption one of the intervals
[a, x|] and [x,, b] is to be discarded, The remaning interval of uncertainty is denoted

by L,
Then Ly = Lo~ L}

— L{j ____FE'_;Z_. Ln
F "F_-pJ
sl L " o
{2
Now Ly - L}
F._, -
= = L — R zL
By T
@
= F_:{F— Fn--z}
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: FF_3 L,

L,~L, F

i = =3 <]
= L-*z Fu—l

be. Ly-1b € I3

Thus in the interval of uncertainty L2 there is one point, either x; or x5, whose
distance from the two ends of L, are L, and Ly~ L%, The smaller of the two
Ly-L; & L is denoted) by. ie L}, L} = L2 - LA

-
Now, L} = Ly-L} = —l_it—niLﬂ_

We now place the third experiment x3 and L, so that the current two experiment
are located at a distance L', from each end of L;. Again by the unimodal property
we can reduce the interval of uncertainty from Lz to Ly given by L; = L, - Ly

Fy-
“Fi’-'u-

n
. The interval of uncertainty at the end of 3rd experiment is given by

P

i g Ny
and this obtained by discarding L = ~>L, continuing in this manner we

have the following result in general.

o Bl
The j th experiment is to ‘be placed at a distance L; = -{':iLu from-one end
2 :

of L;.; and the interval of uncertainty at the end of j th experiment is given by

s

N
Taking j = n we see 'that the nth experiment is to be placed at a distance i
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E

Ly = F—“t‘mm one end of L, and the interval of uncertainty at the end of

I
7|

n th experiment is given by L, = -LLﬂ 'F_

Ftn-nye1 F, 2L
: L s L =g 0
MNow L'I'I-]- = B L F LlI *-'F-"'

n L

Therefore, the last two experiments are located at a distance L) = -EI‘L"_l from

each end of L,_,. So they have the same location. To remove this difficulty we
place the n th experiment very close to the remaining valid experiment in L,,_;. This

enables us to obtain the final interest of uncertainty of length % Loi.=L,= I;:

L,
From L, = 7 we note that we can determine n for given L,
L]

74 lllustrative Examples

2x/3,x53

Example 7.4.1 : Maximize f(x)=
' =T (R

in the interest [1, 4] by Fibonacei- method using n = 6

Solution : Here number it experiment to be performed is n.= 6.
From Fibonacei sequence we have -

Fp=F =1

B =2, Fy= 3 Fy =03, Fs.=8 Fe =13 Fs= 21 sic.

Here Ly =4 - 1 = 3.

B =%’*~Lu=%x3=1-1538
b
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The-first two experiments are placed at the positions x; and x» such that

2:1538

1 + 1:1538

1l

=1 +L.l

& xj=4- L 2:8462

4 - 11538

n

Now f; = fix)) = 33’54=2"—""3']-5~—3§-=1+4359

]

and f; = flxy) = %‘l 2x2.8462 _ 1. ggs

Since fi < f;, u;ing uniondal property we delete the interval (1, x;]. Thus the
reduced interval of uncertainly is [x;, 4] i.e., [1-4359, 4] with x, inside it and near
to Xx|.

The third experiment is placed at the position x3 given by

4 - x3 = Xp — Xy

or, X3 =4 - x5 4 xl
= 4 - 28462 + 2:1538
= 33076

Now fy = flxs) = 5 - x3 = 5 — 3:3076 = 16924
Here f3 < f5. So by unimodaily we delete the interval [xy, 4], The remaining
interval of uncertainly becomes [x, x] with x; inside it and near to the point x;.

The fourth experiment is placed at x; given by
Xy — X = X3 = Xo '
S Xy =X b X3 = Xp = 21538 + 33076 — 2-8462 = 26152

Now, fy = (x4) = 2;* =2 "23"“552 =1.7435

Since Ja < f we delite the interval [xy, x4]. The remaining interval of uncertainly
is [xs, X3) with x, inside it and near to Xy

The fifth experiment is placed of x5 given by

Xy = X5 = X3 — Xy
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O X5 = X3 — X3 + X3 = 33076 ~ 2-8462 + 2:6152 = 3-0766

Now f5 = flxs) = 5 — x5 = 5 — 30766 = 19234

Since fs < f5, using unimodal property we delete the interval [x4, x2). The
remaining interval of uncertainty is [y, x3] with x5 inside it and near x,,

The sixth experiment is placed at x4 given by

Xy =~ Xg = X5 — X3

Or, X5 = X3 — X5 + Xp = 33076 — 30766 + 2-8462 = 30772

Now fs = fixg) = 5 — x5 = 5 - 30772 = 1:9228

since fg < f5, using unimodality ‘we delete the interval [xq, x3). The final interval
of uncertainty is [x3, xg] = [2:8462, 3-0772)

Here we note that if the exact calculation be carried out then we would get
s = Xg In that situation x5 should be selected very close to xs. But here we see
" X5 # Xg. This is due to round off error involved in the calcution. -

7.5 Golden Section

Ancient Greek architects believed that a building having sides b and ¢ satisfying

the relation b—;£=g—='y will be having the most

| pleasing properties. This ratio is called Golden ration.
It is also found in Euclid's geometry that the division
7 of a line segment into unequal parts so that the ration
of the whole to the largest part is equal to the ratio
C | of the large part to the smaller part: This section is
known as the golden section

o

Thus the Golden section

From ‘this we have

AB  BC _ AB _
ABTABTBC ™Y
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o, ¥-y-1=40

= ~=DE YD -4
2.1

_1+45
=

Since ¥ is a positive number we have

7.6 Golden Section Method

Golden section method is similar to the Fibonacei method except for one
difference. The difference is that in Fibonacei method the total number of experiments
to be performed has to be specified before beginning the calculation, whereas, this
is not required in golden section method. In fact when n is very large then Fibonacei
method reduces to golden section method, In Fibonacei method the number of
experiments to be performed is decided at the begining but in golden section method
the total number of experiments are to be decided during the cumputatiuns.'

In the Fibonacei method, the interval of uncertanity at the end of two experiments
E _
is given by L, = 1L,
(/]

In Golden Section method is n is very large this Ly becomes
: Fn-l = o= =1
Ly = Jim Lo = Lo Jim )

Also in Fibona method Ls is given by

B
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~_In Golden section method .L; will be given by

' F

Similary, we get Ly = Lo (iim EE;-J-)

I—pss H

Generalizing these results we have

A P Y
e &Lﬁl " J b
We have the relation

Fo=Fy + Fpa

FE F,
A =]+ #
Fn-l F, Ll |
- - F : a F 2
o g = e g2
1
=1 + lim
H=1
l n=2



]
+

. =1
'!LI'EFH-:
=1 + I
% i
LG oy
lim
- Let y = ﬂ{_l;llp:
1
~ We have 'r=I+-.|;
o, ¥ =g + |

o, ¥ -g-1=0

o ~(=DE -1 = 41(=1)
2 T

or,
1435
2
Since ¥ is a positive real number, we have Y= ‘E;' . 1618, which is nothing

but golden ratio or golden section,

Hence we have in general,

| e (%) Lo = 618} L

* In the Golden section method the interval of uncerfainty at the end of k th
experiment is given by

Ly = (0-618)%1 L,
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7.7 Procedure of Golden Section Method

In the Fibonacci method, the location of the first two experiments are the points
situated at a distance L', from the two ends of the initial interval of uncertainty,
where L', is given by

E [ 4
1% = 'p"—Lu

In Golden section method n is very large. Therefore L is gi.ven by

|

E
.
gy

:ﬂ o

T

I

&
o S

li i
s, I
—— N
— =1
‘*-.i: '}E
(%]
'nii
1
o]

Lo. ("613)* = 0382 L.

< In the Golden section method, the first two experiments are placed at the
points x) and x, which are located at a distance L’ = 0:382 Ly from each end
of Ly. The values of the functions f at X1, X are evaluated as fy = flx;) and f; =
Jx3). Using the assumption of unimedality, one of the two intervals [a, x] and .[.tz.
b] can be discarded, The remaining interval of uncertainty will be L, = 0:618 Ly,
The interval will contain one experiment point. The smaller distance of this experiment
point from the ends of Ly is denoted by LY. The third experiment x, is placed in
L so that the current two experiments are located at a distance L from each end

of Ly, Again using unimodelity we can discard one of the end intervals and the
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- reduced internal of uncertainty at the end of 3rd experiment becomes Ly = (0-618)2
Lo. This process is continued until the desired length of the interval 6f uncertainty
is obtained,

7.8 Iustrative Examples

2::!3. Xs3

Example 7.8.1  Maximize S(x)=
S—-x, x>3

in the interval [1, 4] by Golden selection method up to six experiments;
Solution : We have Ly =4 — 1 = 3

Now Lj = '382 Lo = 382 x 3 = 1146

The first two experiments are placed at the positions X) and xp such that
X =1+1L,=1+ 1164 = 2:146
*2 =4 - L) = 1'146 = 2:854

Now fi = fix;) = 33“—'=3"—23'-1-“—5u1-43{155

fr = fixg) = 3§1=3—’5%J55=1-9ﬂ256

As fi < f> and the problem is of maximization, using unimodal propertly we
Jelete the interval [1, x,]. Thus the reduced interval of uncertainly is [x, 4] with
¥ inside it and near to the point x;. -

'i‘he third experiment is to be placed at x5 given by

4 -x3=x —x
of, X3 =4 —x + X =4 ~ 2854 + 2146 = 3297

Now, f3 = f(x3) = 5 - 3292 = 1708

Here f3 < fy. So by unimodality we delete the interval [x3, 4]. The remaning
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interval of uncertainty becomes [xy, x3] with x5 inside it and near to the point X3
The fourth experiment is placed at x; given by

Xy = X} =%3 ~ X

Of, Xy = x| + X3 -3 = 2146 + 3202 - 2854 = 2584

Now f = fixs) = %:-mﬁ-ma

Hence, f; < f. Using unimodality we delete the interval [x;, x4]). The remaning
interval of uncertainty is [x4, x4] with x; inside it and near to x;.

The fifth experiment is placed at x; given by

Xy = Xg = X3 = X4
Of, Xg = X3 — X2 + X3 = 3292 - 2854 + 2584 = 3022
Now fs = flxs) = 5 — 3:022 = 1.978

Since fs > f;, using unimodal properly we delete the interval [xy, x3]. The
remaining interval of uncertainty is [x;, x4] with x5 inside it and near to x,.

The sixth éxp:riment is placed at x, given by

X3 — Xg = X5 — X3 _
Of, X¢ =X3 — Xg + X = 3292 - 3022 + 2854 = 3124
Now f = flxg) = 5 - 3124 = 1-876

Since f5 < fs, using unimodality we delete the interval [xg, x3]. The final interval
of uncertainty is given by [xy, xg] is [2-854, 3:124]

7.9 Summary

The necessity of numerical methods of optimization is discussed. The inportance
of one-dimensional minimization methods is solving multivariable optimization
problems in described. The concept of unimodal function and its role in the elimination
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methods is presented. Fibonacei method and Golden section methods are discussed
in detail through examples.

7.10 Self Assesment Questions

L.

8-x,x54

Minimize fix) = {x i

in the interval [1, 7] by Fibonacei method using n = 6

Minimize f{x) = | x — 1] in the interval [~1, 5] by Fibonacei method using
no= 5 "
4x /3, x<3

Manimize flx) = {T—x c<3

in the interval [1, 5] by Golden section method Upto six experimenis.

6-x, x<5

Minimize = flx) = {2.1:—9 X<5

in the interval [2, 8] by Golden section method upto five experiments.

. 2/x, x<1
Minimize = flx) = R

in the interval [0, 5] by Golden section method upto six experiments.

Minimize fx) = | x| in the interval [-2, 2] by Golden section method upto
siX experiments.
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Unit 8 O Unconstrained Optimization
Technique

Structure

8.1  Introduction

8.2  General lterative Scheme of Optimization

8.3 . Steepest Descent Method

8.4 lterative Scheme of Steepest Descent Method

8.5 Ilustrative Example

8.6  Quadratically Convergent Method
‘8.7 Newton’s Method

8.8  Davidon-Fletcher-Powell Method (Vatiable Metric Method)
8.9  llustrative Examples

8.10 Summary

8.11 Self Assessment Questians

8.1 Introduction

The solution ofunconstrained optimization problem need ot satisfy any
constraints, Unconstrained optimization technique is important because of the
“following reasons | :
(i) Some of the most powerful and convenient methods of solving constrained
optimization problems involve the transformation of the problem into one
of unconstrained optimization.

(ii) The study of the unconstrained optimization methods provides the basic
understanding necessary for the study of the constrained optimization
met]lods. 142




Several methods are available f{:-r'sulving an unconstrained optimization problem,
These methods are classified into two broad categories viz direct search methods
and descent methods. The different methods of these two categories are shown below,

8.2 General Iterative scheme of optimization

All the unconstrained optimization methods are iterative in nature. Hence they
start from an initial trial solution and proceed towards the optimum point in a sequential
manner. It is importar tc ote that all the unconstrained optimization methods requires .
an initial point x, to start the iterative procedure. One method differs from another
only in the method of generation the new point x;y; from x; and in testing the point
%iyy for optimality. '

If the search (! lion frem x; be s; and the step length for movement along
the search direction s; be A then the next point to %j is obtained as xj,; = x, + Xys;.
Thus the terative scheme becormes,

(i) Start with an initial trial point x;.
(ii) Find a suitable direction i (i = 1 to start with) which points is general
direction of the minimum.

(iii) Find and appropriate step length A} for moverent along the direction si.

(iv) Obtain the new approximation Xiv) @S Xy = X + A 5

(v) Test whether x i+1 is optimum. If X i4) is optimum then stop tl;e procedure,
otherwise set new i = i+l ard repe.at step (ii) onward.

Thus as mentioned before, the efficicncy of an optimization method depends an
the efficiency with which the quantities A; and si are determined to generate the
hew point xj,) as x;+ l}éi. To find we are to minimize Ax; + Ajs) reﬁar_ﬂi_ng it as
a function of A; only.

f(x; +4; s)) = "}j"!ﬂ-"'ﬁ + A

The flow chart for the iterative scheme may thus be shown as follows
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Start with the

initial point x;

$
1
Find the search direction s
4
Find X; which minimizes f(x; +A; si)

4

Generate the new point set i = 4l I

Xiel = Kj + A8

> No

Is Xj,; optimum point
I
Yes

Take Xmim = Xisl

and stop

8.3 Steepest Descent Method

In the steepest descent method of minimize a function f of n variables X, X2,
.y XN We use the gradient of the the function f defined by

Vf = [% a%g-]r

The gradient of f is a n-companent vector and has a very important property
viz if we move along the pradient direction from any point in the n-dimensional
space, then the function value increases at the fastest rate. To prove this properly
we first define directional derivalive,

Definition 8.3.1 Directional Devivative : The directional devivative of f(x) in

the direction of the unit vector y is defined as the following limit
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=] !

im LX) = f(x)

The directional derivative of f(x) in the direction y is thus given by using Taylor's
theorem

limy {£(x) + (1y)VF (x) + terms of higher degreein t} - f(x)

- . ji
= y'Vflx)

* The directional derivative of f(x) in the direction of unit vector ¥y
= y'Vfixy

= rate of change of f(x) in the direction of y.

Theorem 8.3.1 Prove that f(x) increases at the fastest rate in the direction of vr.

Proof : We have that the rate of change of f(x) in the direction of the unit
vector y is y'VAX) .o (1) '

Now the unit vector in the direction of the gradient vector Vfis Vi |Vf]. Therefore,
the rate of change of f{x) in the direction of the gradient vector

r ! 2
. {l%) Vf = {ﬂ%‘m " l]%% = | VF] w2

Since | Vf]| > 0, it follows the f{x) increases in the direction of Vf.

Using cauchy schwarz inequality we have

YV < LIV = [V T 9] = e @)
From (1), (2) and (3) it follows that the rate of change of f{x) in the direction
of Vfis greater than that in the direction of any unit vector ¥. In other words f(x)
increases at the fastest rate in the direction of V.

Note : Since f{x) increases at the fastest rate in the direction of VY, it follows
that f{x) decreases at the fastest rate in the direction of -V, Thus the direction of
Vf and -V are respectively the directions of the steepest ascent and steepest descent.
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8.4 Iterative Scheme of Steepest Descent Method

The steepest descent method uses the properly that a function fix) decreases a
the fastest rate in the direction of —Vf. Thus at x; the function decreases at the fastes

rate along the direction si given by s = [-Vf ],q = -Vf,
The iterative scheme of steepest descent method is given below,
(i) Start with an initial point x;.
(ii) Take the search direction s; at x; (i = 1 to start with) as § = [-‘Ff_],f. an
denote it by -V
(i) Find the step length A; for movement along si which minimizes flx; + A\ s;
(iv) Obtain the new appromimation poimt xj.; as Xiy = X +Als;

(v) Test whether x;,; is optimum, If x;,, is upiimum then stuﬁ the procedure
Otherwise set new i = i+1 and repeat setp (ii) onward,

8.5 lllustrative Examples

Example 8.5.1 Using steepest descent method minimize [ :
X%+ x3 +2gx, + 2y, + ¢ starting from the point

Solution : Here flx), x3) = x? + x2 + 2gx, + 2fy, + ¢

. The gradient of f is given by

V= dx 1 2x,+2¢
I | |2x,+2f
dx,

o
The starting point is x) = I:ﬁ] Using steepest desant method the search directiol

al x; is given by
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s =-Vf ]_r,- = {_2{1 ] 23]

—R-2f

The step length A} is obtained by minimising f{x; + As|) with respect to A;.

S m}”[—m—zg jo=2ha-2hg] Y
Now (% 13*}'[5 '—2|3—2f]_ B-2MB 24, f -[ﬁil

Where ¥ = o + Ay (20 — 2g)
and § = B + A; (2B - 20)

Sof A =+ 2gy + 2B 4+ ¢

For minimum value of f we have d}{ = (), This gives aig— “’i %
or, (2y + 2g) (20 - 2¢) + (25 + 2 (2B - 2H = 0

or e s+ B+ HP+H=0

or, (&t+A(-20-2g)} (ct+g)+ (B+A (2B-20+/] (B~

o, (@+g? -2 (a+gl+PB+N-2,B+N=0

o, (1-2A) [l + g2+ B +N1=0

or, 1 -2 =
or, ;'L] = %

L] 1
. :'“l =5

a] ([2e-2¢] [a-o-g] [~
Now, xy is given by xp = x| +&] 5 = {:ﬁ]+§|i—2|3— 2;‘] 2 L}_ - f]= [—f]

The gradient of [ at x; is given by

2(-g)+2¢ 0
¥/}, = [zt—ﬂ + 21’] % [ﬂ]

147




0
. Zx[" +2x,x, + x7 starting from the point { ]

This shows that x; is the optimum point

-§
- Xop =X2 = -f

Example 8.5.2 Using steepest descent method minimize S x) =5 - x5 +

0

Solution : Here f'= flxy, xy) = x; - xp + 227 + 2x,x, + x3 and the starting point

ooef]

The gradient of f is given by

d
% [ 14 4x, + 2x,
vf=|ZiL | =
_aj__ -1+ 2-1'1 + 2.1'3
dx, i
‘ B

-1
The search direction at x; is given by §; = VA = [ I ]

To find x, we are to find the optimal step length )}. For this we are to minimize
Slxy + Aysy) with respect to A,.

Now x; +}L|31 =—1| —;IL| + 21{—2_1314-1'-: =?,,2|—2JLI

For minimum value of f we have E‘% = (.

From this we have 24, -2 = 0
of, A =1
A =1
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Thus we obtain x,

% Exca i m* ‘m 3 H

The gradient of f at xy is given by

R B I

* Xy is not an optimum point. So we proceed to the next iteration.

The search direction at x, is given by

1
5=-Vf = I:J

To find x3 we find the step length A" by minimizing f(x; + As;) with respect 1o A,.

-1 N 1 -1+ A,
; = + =
Now x; + Ag59 1 2, [+4,
S S+ hsg) = (F1 #2g) (1+29) # 2 (-1 + 4902 +2 (14 Ag) (1 + &)
+ (1 +?1.2]2
=s=ladg—1-Rp 240+ 203 -2+ 2) + 1+ 20 + 13
=—1-2?1.2+5}31_ -

i

To minimize f we set D =0

Form this we have -2 + 10A2 =0 .

ar,lg=+%
. %
S AT

Hence x3 =2 + Nysp = | | e U= 1.2
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The gradient of f at xy is given by
1+ 4(-0-8)+2(1-2) 0-2 0
Vf; = [vf]:: = . = #*
-1+2(-0-8)+2(1:2) -0-2 0

. X3 is not optimum and we proceed (o the next iteration,

The search direction at x3 is given by
-0-2
5. ==V =
3 ==V 0.2

To find x4 we are Lo find the step length A%, by minimizing f{xs +Ays3) with respect
o }l._'a,,

08 -0:2] [-0-8-2,0-2
NOW A5+ [1-2 ]Jrl"[ﬁ-.z ]{ 1-2+:¢,u.2]
S S+ Agsg) = (<08 = 02 Ag) = (12 + 02 Ag) + 2 (~0'8 — 0:243)?
+2(=08-02A3) (12 + 02 A3) + (112 + 02 Ag)?
= 00433 -0 08A; ~1-20

To minimize f we set 4 . 0

dh,s
To gives 2 x 0:04A3 - 008 = 0
o, Ay =1
AN=1

)8 -0.27- [=1-0
chce.'_r4=13+l'353= 1.2 il 0.2 =_1.4

The gradient of f at x4 is given by

o L4410y 20 i) [S0020) 2 '3']
v =1l _[—1+2{—1~n]+2(1-4] _[-ﬂ'iﬂ] [9
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So x; is also not optinum and we are to continue the iterations until we have

0
Vif e [Dil and then x;, is taken has the optimum point.

Convergence Creteria: The following criteria can be used to terminate the iteratice
process.

M lf{‘r’hn }" .f{-".,' }Il
O Fm | 5°

(i1) ‘g—{ <€ foralti=1, 2, ..... ,n

(ii1) 1Ii+| - X | =E

8.6 Quadratically Convergent Method

Example 8.6.1 A minimization method is called quadratically convergent method
if it locates the minimum of general function in no more than a pre-determined number
of operations and if the limitting number of operations is directly related to the number
of variates.

Definition 8.6.2 Let A be an nxn' pymmetric matrix, A set of n vectors sy,
R I , sn is said to be A conjugate directions if .!:,TA si =0 foral i #}j, i, j
I [ T , 0.

Py
Example 8.6.1 Find the conjugate direction for the symmetric matrix {_3 5 }

o

2 3
] and A-conjugate direction be §) = [B} and 59
2

Solution : Let A = [

.E"Tﬁ. i =
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<tonf,

or, ¥ (20t ~ 3B) + 8 (-3ct + 2B) = 0

Leb, a=1L,B=2y=1 . -1@1-32)+8(31+22)=0
or, 4+ 8 (+1) =0
o, d=-4'

: 1 |
Thus the conjugate direction are and
' 2 ~4

We note that for a given matrix there are many conjugate directions,
Matrix representation of quadratic expression ;

Any quadratic expression can be expressed with the help of matrices as

%x"ﬁw +B'x+¢

Where A is asymmetric matrix
€8 3xf +2x7 +4x} + dxyx, ~ xpx; + 330 +3%, = 2x+ xy + 7

can be written as %xTA.r +BTx+¢

6 4 3 3 X
Where A=(4 4 1| B=|-2|C-7 Xx= Xy
3 -1 8 | A

. We state the following important theorem,

Theorem 8.6.1 - If quadratic function Q (x) = %x‘"ﬁu +B"x + ¢ is minimized

sequentially once along each direction of a set of n A-conjugate directions them the
global minimum of Q(x) will be located at a before the n th setp regareless of the starting
point and the order in which the directions are used,
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8.7 Newton’s Method

If the function f{x) is continuously differentiable then the local minimum point

x* is given by [Vf] » = 0. Solving the set of n nonlinear equations Vf = 0 we gel
the optimal point x*,

Newton’s method : To get the minimum point x* of the continuously
differentiable function flx) we are to solve the n nontinear equation Vf = (. To solve
these n nonlinear equations by the Newton's method, we first linearize the set of
equation about the i th appromimations x; to the minimum point x* of f.

Let x* = x; + 5 and Vf = ¢
From [Vf].=0 we have g(x*) =0 or, g (g +5) =0
By Taylor’s series expansion we get

g(xi) + [1].8 + ... = 0 where [7],, is the matrix of second partial devivatives

of f evaluated at the point Negleeting the higher order terms we gel
gx) + [J,s =0

or, g + Jit = 0 where g(x;) = gi and [J] = J;. If J; is non singular, then we

have
S=-Jg

But the higher order terms are not negligible in general. Hence an iterative
procedure has to be used to find the improved approximations. The iterative scheme
i given by

X =Xt s =x-1g

If J is nonsingular then it can be shown that the sequence of points xy, X3, .o
Xjy eveeene CONVErges to the actual solution x* from any initial point x; sufficiently close
to the solution x*, ;

Theorem 8.7.1 If flx) is a quadratics then the minimum point can be obtained
in a single step by Newton's method.
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Proof : Let fix) = 41 Ax+Blx+¢ & the minimum point be x*, Then
[V/].. =0
or, [Ax+B], =0
or, Ax* + B =0
on 2t e s AR,
From flx) = %xTAr + BTx + ¢ we have Vf= Ax + B and ] = matrix of second
partial derivatives of f = A. By Newton's method we have
xa = x=1'g
= x,- A(Ax, + B)
= x; —A7Ax; + A”'B)
= X=X = A
= _A-IB = y#
Y Xy == A"'B = x* for any starting point ;.
Thus the answer is obtained in a single slle.p.

Example 8.7,1 Using Newton’s method
- . -.. ; | ﬂ
minimize flxy, x2) = X — X3 + 24} + 2% + 2x7 with 0 as starting point,

Solution : Here f = x; — xp + 2_1"2 + 23155 + 2.\‘%

d af
— =f+4x +2x U
| 2y axl

e a_xl = -1 + le =+ 2..1‘1

azf.— alf =32 ﬂ:?
oxl ' oxox,; ' oxd

0
The starling point is x; = L]
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' [+0+0 !
"Ff, o= [vf]q o _|+ﬂ+{]}=|i_ljl
e
& Jl=
PR
J_I_l[g —2}_ % _%
4 =
=3 3

ok
1

s

We have x; = xp — J7'Vf,

_ I 1 L g
kA BN )
] il i
r —
Now 9, =[Vr],, = - ”*2(3"2)}-[{}]

1+ 2=-+203/2) | |0

0 [ =1
As Vf, = e is the optimum point,
£ M A 2} R’ =

8.8 Davidon-Fletcher-Powell Method (Variable Metric Method)

Davidon-Fletcher-Powell method is an important quasi-Newton method. This

method is the best general purpose unconstrained optimization technique making use
of the derivatioes,
The iterative procedure of this method is as follows

(i) Start with an initial point x; and a nxn positive definile symmetric matrix |
H,. Usually H, is taken as the identely matrix L. Set iteratio number is i = 1.
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(ii} Compute the . gradient of the function f at the point xy- i.e., compute
Vi -["C’f]“
Take s; = H; Vf; as the search direction at x;.
(iii) Find the optimal step length X; in the direction 5 and set xj; = x, + X5
(iv) Test the new point x;, for optimality. If x;,, is optimal, terminate the iterative
process. Otherwise go to setp (v).
(v) Update H; to ﬁiﬂ as
Hiq = Hi-+ M; + N;
Where M; = (Ms;s7)/(s7Q)
Ni = ~(H; Q) (8 Q)" (QTHQ,)
Qi = Vhu—Vh

(vi) Se_l the new iteration number i = i + 1 and go to step (ii).

8.9 Illustrative Examples

Example 8.9.1 Using Davidon Fletcher-Powell method minimize flx,, x;) =
: 1
2x} +4x3 = 12x, +16x, + 41 with x| = [i] as starting point.

Solution : Here f = 232 + 442 —12x, + 16, + 41

VoV [ﬂf._r'_ a-?:,_ ] ¥ [4.;_,1 - 12]
daf /x| |8x +16

Thus Vf; = [Vf], = [:; :§]= [;:]

o
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o =mwi= T[]

To find the minimizing step length A} along sy,.we minimize
S+ Misy) = f1 + 8, 1 - 24))

2 (1+8A)2 + 4 (1-24A)2 = 12 (1 + 8Ay) + 16 (1 - 24M,)) + 41

2+ 324 + 128)] +4 - 1924 + 2304)2~ 12 — 961, + 16 - 384A, + 41

243202 — 640M, + 51
d)
We set 5~ =0
€ 5¢ dJL]

o 2432 %201 - 640 = 0

_._640 _10 _
orF, ll—m ?‘E 0-1316

:‘.‘; = (01316

" The second approximation is given by

T 8 2.0528
X2 = Xy +?.,'iqi'|= 1 +0-1316 24 = _2‘]534

i v 4%2-0528-12 ~3: 78887 [0
ow Vf, = = ' o
h [f]r; 8x(-2-1584)+16| |-1-2672 : 0

. X is not optimum point
To update the matrix Hy we compute
5 .v-' op o [737888]_[-8]_[ 4-2112
EVATVAE| Ly 0ema] T |2a] T | 252672
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K 4.2112 71
S1Q, =[8 - 24] = 6401024
~25.2672
8 64 -192
5,57 = B —24]=
—24 —192 576

4-2112
M@= Qi =1 _25.2672

42112 _
c (HQHQ)T = [_25 _ 2-:‘5?2] = [42112 —25:2672 |

17-7242  —106- 4052
= 1-106-4052 6384314

_ 4-21
Also Qf (H,Q) =[4-2112 -25.2672] [

12
= 656+ 1656
72

. NI=_(HlQ}}(H|Qi:‘r - 1 177242 -106+ 4052
Qf(H,Q,) 6561656 | _106. 4052 638 4314
0:027 -0-1625
©|-0-1625° 0.973
s Ll ol Iadiadiad I (MALL AR AL
$7Q, 6401024 | 199 576 ~0:0395 01184

' H1+H|+M]+N|
1 0] [-0:0132 -0-0395] [-0.027 0-1625
AP =
01 ~0-0395 01184 0.1625 -0-973
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0:8062 0123
1 0-123  0-1454

: 0.8062 0-1237[-3.7888 3.21
Hence S5 = — Hy Vf; = - =
0-123 0-1454 | | -1-2672 0. 622
To find the minimizing step length along S, we are' to minimize flxa + X385)

=F (3211, ~0-9472, 0:622) - 0:1584) = 2(3-21%, — 0-9472)2 + 4(0-622), - 0-1584)
~ 12'(3:21k; — 0:9474) + 16 (0:622), ~ 0-1584) + 41

We set i’% =0
This gives A2 = 0292

A, = 0292
The third approximation is given by

20287 [3:20] [2:99
= "5y = : + L) =
eSS s 0.622| [-1.98

- [ 4%2:99-12 1 [-0.04 0
W, = = g -
h=1 f].ra (8 (-1-98) + lﬁ:l [ﬂ'lﬁ } I:ﬂ:'

X 2.99
Xy til= le, xy =299, x; =~ 1:98 is the optimum point,
.xz _l. ‘93

8.10 Summary

The unit is devoted to some unconstrained method of optimization viz. sieepes!
descent method, Quadralically convergent method, Newton's method and Dairlon-
Fletches-Powell method, These methods are explained with examples.

159




8.11 Self Assessment Questions

. Using steepest descent method minimize the function flx;, Xz x3) =
X+ x} 4 x} - 6x) —4x; + 3x3 + 9 starting from the point (1, 2, 30),

2. Using steepest descent methiod minimize flx, x2) = 2 — xy + 8x} + dxyxy +
x3 starting from the-point (0, 0).

4
4. Using Davidon Fletcher and Powell method minimize flx), xp) = x) = 2x3 + 2.4}

4 5
3. Find the conjugate directions for the matrix [5 ]

0
+ 4xixg + 4x3 starting from the point [0]

5. Using Davidon-Fletcher Powell method minimize flxy, x9) = 8x7 + 4x3 — 24x,
1/2
+ 16x; + 35 with-[ : ] as the starting point.
6. Using Davidon-Fletcher Powell method minimize fx), x) = 2x + 3x; + .84}

1/2
+12xyx; + 9x3 with [] ; 3] as the starting point,
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Unit 9 O Constrained Optimization Technigues
Structure

9.1 Introduction

9.2  Cutting Plane Methad

9.3 Algorithm of Cutting Plane Method
9.4  Mlustrative Examples

9.5 Summary

0.6  Self Assessment Questions

9.1 Introduction

The constrained optimization problem is
Minimize fx) '
subjectto g, () <0, j=1,2, ... m

There are many techniques to solve a constrained non linear programming
problem. All these methods canbe classified as follows,

Constrained oplimization techniques

Direct methods Indirect methods
(i) Heuristic search methods (i) By the transformation of variables
. (i) Methods of feasiﬁlc directions (i) Penalty function methods
(a) Zoutendijlis method (a) Interior penalty function methods
(b) Gradient projection method (b) Exterior penalty function methods

(ii) Culting plane
In the direct methods, the constraints are handled in an explicit manner whereas

in most of the indirect methods, the constrained problem is solved as a sequence
of unconstrained minimization problems.

In this unit we discuss only cutting plane method.
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9.2 Cutting Plane Method

In the cutting plane method, the nonlinear constraints are linearized by using
Taylor’s series expansion thereby approximating the feasible region by linearized
envelopes, Assuming that the objective function is linear, we can solve the
approximating LPP by this simplex method. If the solution of the LPP is not
sufficiently accurate, we relinearize the binding constraints about the current point
and formulate a new approximating LPP as solve it using the simplex method, We
repeat this pmce-::luré until asufficiently accurate Solution is found. We note that the
approximating linear constraint cut off a portion of the existing feasible region, Hence
the method is called cutting plane method.

To apply cutting plane method it is necessary that the objective function is linear.
If the objective function is non-linear then we can formulate an equivalent optimization
problem with linear objective function as follows.

Let the given problem be
Find (x;, X3, ..oy X)) Which minimize flxy, x3, .oy Xq)
subject to the constraints gj (Xj, X3, v X) S 0, j = 1, 2, coovry 1.

We introduced a new.variable x,,; dnd transform this problem into an ﬁqhivalenl
problem as follows

Find (%), %2, cierss Xy Xet) Which minimize Oxy, Oxz, + ..... + 0x;, + X, Subject
to the cosntraints gj (Xy, X2, ey X)) S0 j = 1, 2, cverer, m and Einel CXle X3y versisrn
Xaal) = LX) %20 coienny Xp) = Tt <0

Thus, without loss of generally, we can assume that the given problem is
Minimize Sx) = fx)y X3 oy X)) = €% = 1) + C3%3 4 st Cpen
subject to the constraints g; (x) = gj O, ¥ ey X) S 0j= 1,2, um

The iterative procedure of cutting plane method can be stated as follows :
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9.3 Algorithm of Cutting Plane Method

(1) Start with an initial point x| and set the iteration number as i = 1, The
point x; need not be feasible

(ﬁ) Linearize the nonlinear constraint functions g; (x) about the point x; as
g ) = g () + Vg )T (x = x), i =1, 2, sy m
(iii) Formulate the approximating linear programming problem as
Minimize fix) = ¢Tx
subject to g; (x) + [Vg ()T (x - x) <0, j=1,2, .., m
(iv) Solve the approximating LPP to obtain the solution vector x;,;.

(v) Evaluate the original constraints at xj,; i.e., find gj (x;) for all j = 1,2,

veeny M.

(vi) If gj (xpq) £ € forall j =1, 2, ... , m where € is a prescribed small
positive tolerance then all the original constaints can be assumed to have
been satisfied.

Hence stop the procedure and take Xop = Xiy

It g (xi41) > for some value of j, find the most violated constranit as
gk (Xig1) = max [g; (X))

Relinearize the constrant gy (x) 0 about the poinl x;,, as

Be(®) = Bk (rie) + [k Ce))T (rexigy) < 0

and add this linear constraint to the previous approximating LPP.

(vii) Set the new iteration number i = i+l and increase the total number of
constraints in thenew approximationg LPP by one and go to step (iv).

Note : To avoid the unbounded solution of the first approximating LPP we may
take the first approximating LPP as

Minimize flx) ¢Tx
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subject.to bxp il 4 =0 20000 B

Where /; and [l; are chosen as lower and upper bounds of x; take theoptimum
solution of (his first approximating LPP as x, in this first step.

9.4 Ilustrative Examples

Example 9.4.1 Using cutting plane method
Maximize flx), x3) = 7 - 2x; — 4x,
subject to  (¥; ~ 4)% + 2(xy - 3)* £ 12 taking € = 0:03
X+ 256
15326
l€£x <6
Solution : We first consider the LPP
Maximize flx), x3) = 7 - 2x; — 4xy
subject to x; + 2x; £ 6
l<x <6
l1£x 26
The extreme point of the feasible region are A (1,1), B (4, 1) and C (1. 5/2).
The value of the objective functions are

Lh=1 G D==-5 (,%)=-5
< The optimal solution of the LPP is (1, 1)

|
. The first approximationg point is x; = [;l

Let g (x), x2) = (x; —4)2 + 2 (g - 3)2 = 12
~ The given non-linear constraint is g (¥, X2) S0

200 -4)]
We gave g (x) = 4(x, - 3)

Nowgx)=g(l, D (1 -4y +2(1~32-12=55¢ =003
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Hence we linearize g (x) about x; as follows to replace

X -1
£(x) 0 as glx;) + [Vex)]T [ ] <0

JL‘:-!

Q

=

X =1
. 5+ [-6, -8) [-’%"’JSG
o, 5+ (-0 (-1 +-8)(x-1)<0
or, -6x; —8x; + 1950
or, 6x; + 8x; 2 19
We now consider the followirig LPP by adding the constraint 6x, + 8x, 2 19 us
Maximize f=7 - 2x; — 4x,y
subjectto x; + 2x; 26
. b+ B2 19
l=x 56
1256
The extreme points of the feasible region are
Ay (1, B), Ay (g, 1), B (4, 1) and C (1, 35,)
The values of the objective function are
S, lg) = =3, Vg, 1) = =23, fi4, 1) = = 5, K1, ) =~ §
Thf: optimal solution of the LPP is .

xp =g xy =1

11/6
s We take the next appromimality point as x, = [ i ]

2
Now g0 = g(es 1) = (g-4) +2 (1 =32 - 12= 22 = 069> € =003

We relinearize g(x) about x, as follows and consider
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g(x) = 0 as glxy) + [Vg(x)]" ] £0

I:"l
% —-11/6
or, %%**["%1-3][] _]sn
.1‘1-1
o, 165x) + 288x; = 599

We add this constraint to: the previous LPP to get the following LPP
Maximize fuw=7 - 2x, — 4%y
subjectto x; + 2x <6

ﬁh + E.tz 219
156x; + 288x, = 599
1Sx <6
15xs6 .

The extreme points of the feasible region are

Ay (1, Y¥g), B (1), 216) and Cy (Mg, 1)
The values of the objective function are

£(L Yg) = -y, £ (Wi, 2Wyg) = = Plip, £ (W15, 1) = = Ty

< The optimum solution is (3117156, 1)

o P

Now glxs) = g (1:994, 1) = (1994 ~ 4)2 + 2.(1 = 3)2 - 12 = 0027 < 0:03 €

Hence, the optimum solution is given by x| = 1994, x; = |
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9.5 Summary

Among all the methods of constrained optimization here we have considered
only the cutting plane method. The method is explained with the help of an example.

9.6 Self Assessment Questions

Using cutting plane method
Maximize f= 7 - 2x; — 4xy
subject to  (x; = 42 + 2(xy i MN-1220
X+ 2 =650 |
12X, 0026
with the tolerance as € = (-3
Using cutting plane method
Maximize f= 1 - 4x; - 2x;
subject to 2 (x; - 2P +(a=-32-1220
2ty +x3-350
0=x, 55
with € = (-2
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