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PREFACE

In the curricular structure introduced by this University for students of Post-
Graduate Degree Programme, the opportunily to pursue Post-Graduate course in any
subject introduced by this University is equally available Lo all learners. Instead of
being guided by any presumption aboutl ability level, it would perhaps stand to
reason if receptivity of a learner is judged in the course of the learning process, That
would be entirely in keeping with the objectives of open education which does not
believe in artificial differentiation.

Keeping this in view, study materials of the Post-Graduate level in different
subjects are being prepared on the basis of a well laid-out syllabus. The course
structure combines the best elements in the approved syllabi of Central and State
Universities in respective subjects. It has been so designed as o be upgradable with
the addition of new information as well as resulls of fresh thinking and analysis.

The accepted methodology of distance education has been followed in the
preparation of these study materials. Co-operation in every form of experienced
scholars is indispensable for a work of this kind. We, therefore, owe an enormous
debt of gratitude to everyone whose tireless efforts went into the writing, editing and
devising of proper lay-out of the materials. Practically speaking, their role amounts
to an involvement in 'invisible teaching'. For, whoever makes use of these study
materials would virtually derive the benefit of learning under their collective care
without each being seen by the other.

The more a learner would seriously pursue these study materials, the easier it
will be for him or her to reach out to larger horizons of a subject. Care has also been
taken to make the language lucid and presentation attractive so that they may be rated
as quality self-learning materials. If anything remains still obscure or difficult to
follow, arrangements are there to come lo lerms with them through the counselling
sessions regularly available at the network of study centres set up by the University,

Needless to add, a great deal of these efforts is still experimental—in facl,
pioneering in certain areas. Naturally, there is every possibility of some lapse or
deficiency here and (here. However, these do admit of rectification and further
improvement it due course. On the whole, therefore, these study materials are

expected o evoke wider appreciation the more they receive serious attention of all
concerned.
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Vice-Chancellor




First Reprint : February, 2020

Printed in accordance with the regulations of the Distance Education Burcau of the
University Grants Commission.



Subject : Mathematics Post Graduate

Paper : PG (MT) IX : B (i)
Special Paper : Pure Mathematics
Advanced Topology

Writer Editor
Professor Pratulananda Das Professor Manabendra Nath Mukherjce

Notification
All rights reserved. No part of this Book may be reproduced in any form
without permission in writing from Netaji Subhas Open University.

Mohan Kumar Chattopadhyay
Registrar




#po=




§ @ Netaji Subhas PG (MT) IX : B (i)
%%3 Open University Advanced Topology
ope

Group
B

Advanced Topology

Unit I Q Compactness 7-22

Nets and filters—subnets, cluster point, filtér, ultrafilter.
Characterization of compactness, Countable, Frechet, Sequential
compactness, inter-relationships, compaciness in metric spaces,
equivalence of the four types of compactness.

Unit IT O Compactification 23-42

Locally compact spaces, properties, compactification, more on
one-point compactification, embedding Lemma, Stone-Cech
compactification, ordering in Hausdorff
compactifications, Wallman’s compactification.

Unit IIIO Paracompactness 43-53

Locally finite family, paracompaciness, basic properties, star
operation, equivalent condition of paracompactness in respect
of star operation, fully normal space, partition of unity.




Unit IV O

Metrization 54-72

Metrization of a topological space, Metrization of the product
space R/, Uryshon’s metrization theorem, Nagata-Smirnoy
metrization theorem, cartesian product of metrizable spaces,
Two important results, namely, Arzela-Ascoli’s theorem, Stone-
Weirstrass theorem

Unit V Q

Uniform Spaces and Proximity Spaces 73-109

Definition of uniform space, basis, sub basis of a uniformity,
lopology induced by uniformity, uniformizable spaces, Metrizable
spaces, uniformly continuous maps, Cauchy nets and filters,
completeness in a uniform space, total boundedness and
compaciness.




Unit-1 0O Compactness

Introduction

In this chapter we mainly deal with the notion of compactness and some of its variants, .
We start with the idea of nets and filters which was in the Topology course in PG-1, and
present some more definitions like cluster points of nets, subnets, ultrafilters etc. Which will
help us to establish some more characterizations of compactness in topological spaces. Next,
the notions of three more types of compactness, namely countable compactness, Frechet
compactness and sequential compaciness are introduced which arise naturally from equivalent
criteria of compactness in Real line with which you are already aware of. In a topological space
all the four types of compactness turn out to be distinct and we establish their interrelationships.

In the remaining part of the chapter, we deal with compaciness in stronger structures,

First, we consider metric spaces and establish equivalent criteria of compactness by showing

that all the four types of compactness are equivalent in metric spaces.

1.1 More on nets and filters

First, recall the following definitions from the earlier course on Topology,

Definition. Let (D, = ) be a directed set and X be a non-empty set. A mapping s : D
— X is called a net in X. It is denoted by {s : n €D} or simply by {5},

A net {s,}, is said to be eventually in 4 € X if 3 n €D such that 8, €A, Wne p with
H 2N,

A net {s }, is said to be frequently in 4 € X if for each m € D, 3 an n €D with n
= m such that s, € 4.

Definition. Let X be a topological space. A net {s, }, is said to converge to x, X if {8}
is eventually in every neighbourhovd of x, and we write lim s = x,, X, is called a limit point

or just a limit of {s } .
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Definition, A point x, in a topological space X is said to be a cluster point of the
net {s,}, if it is frequently in every neighbourhood of x,.

From the definition, it is clear that if a net {s,} is convergent then its limit points

Al
are the only cluster points of the net. But existence of a cluster point does not necessarily
mean that the nct is convergenl. You have already come across such examples. Recall
that taking D = N, we had non-convergent sequences which have convergent

subsequences and the limits of those convergent subsequences are in fact cluster points.
This takes us to the next definition.

Definition. A net {f, : @€ E} is said to be a subnet of the net {s, : ne D} if there
i5 # mapping i : £ — D such that

(a) 1 = s0i, _

(b) for any m € D there is o; € £ with the property that (o) = m for all we E wilh
o= D'.ﬂ

Theorem. Let X be a topological space and {5, : ne D} be a net in X. A point Xt
X' is a cluster point of {s, : #eD} iff some subnet of {5} converges 1o Xy

Proof. Let x; be a cluster point of the net {5, : ne D}, Denote by Nxﬂ the family
of all neighbourhoods of x; and let £ = {(U, n) : neD and UEqu}' For (U, n) and (¥,
p) in E, define (U, n) 2 (V, p) ilf Uc ¥V and n = p in (D, 2). It is easy to verify that
(E, =) is a direcied sel,

Let (L), m) €E. Since x!'] is a cluster point of {5 : neb)} it is frequently in . So

e L. Now define the

there is an element Py gy 0D owith p, 0 = m such that it

mapping:s L E— Dandt: E — X as follows ; (U, m) = Byy, gy And (L, m) = L
Then (s0i) (U, m) = s(i(L), m)) = S - SO L= s0i, Finally let meD. Choose any Ue
Nx, so that (U, m) e £ Now, let (F, n) €E and (V, n) = (U, m). Then i (V, n) = pyje

2 n z m. This shows that {#,, . . (U, m) €k} is a subnet of the net {5, : neD}.

Now let U be any neighbourhood of x,. Choose any meD so as to get an element

(U, meE. Now, for any (V; n) € £ with (V, n) = (I, m), we have v oy = Sewn € Fi=

)
L7 which shows that the net {I{U_ m + (Us m) € E} converges to xg.
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MNext suppose that some subnet {7, : € E} of the net {s : n €D} converges to
xg Then there is a mapping 7 : £ — D satisfying the conditions for a subnet. Let U
be any neighbourhood of x, and me D. Since {1, : e E} converges to x;, 3 o, F such

that t, el Vo z o, ae k. Again by () of the above definition 3 a,e & such that i(cx)

=mvaz o,, aell, Choose o, € £ with o, 2 oy, o, Take 0 with © = tty. Then i(a)
2z m and (, = (s0i) (0) = 5, €U So the net {s @ neD} is frequently in U. Hence x,
is a cluster point of {s : neD}.

Exercise A net {5 : n €D} is called a maximal net (or an ultranet) in X if for any

A C X il is either eventually in A or in 2\, Prove that if x; is a cluster point of a maximal

net {s, ' n €D} then it is convergent to x,.

Solution : Let [V be any neighbourhood of the point x,. Since {s : neD} is maximal,
so either it is eventually in U or eventually in Y\UL I[ possible, suppose that it is eventually
in AU, Then 3 me D such that s eX\U tor all peD), with n = m. But as x; is a cluster
point of {s, : neD}, we can find a p 2 m such thal 5, € U7 which is & contradictlion.
Therefore {5, : ne D} is eventually in U. Since this is true for every neighbourhood U
of x,, so {5, : neD} converges to x,.

We now move to the idea of filters. Recall the basic definitions.

Definition. A nonempty family <7 of subsets of X is called a filter in X if (i) ¢g <%
(iNd, BecF=2dnBed (li)d edf, 4 c B= Bed®

A filter <& is said o converge to x; in a topological space X if every neighbourhood
of x, belongs lo &%

Definition. A point x,X is called a cluster point of a filter & if for every
neighbourhood [/ of x, and FEc# U n F # ¢ or equivalently x.€ F, ¥ FeoF

Definition. A filter ©# in X is said to be an ultrafilter if if is not properly contained
in any other filter in Y.

We will now prove some inleresting results about ultrafilters.

Theorem : Let X be a non-emply set and -z be a family of subsets of X with finite
intersection property. Theén there exists an ultrafilter ™ in X containing -+ .
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Proof : Let C denote the collection of all families of subsets of X with finite
intersection property and containing the family 7. For o, &% in C, Let o, > i

iff <% © oF. It is easy to see that (C, 2) is a partially ordered set.

Let 5 be any totally ordered subset of C. Write o, = U{aF : cFe B}. Clearly .7
C o4 Let {4, 4,,.., 4.} be any finite subfamily of <%, Without loss of generality,
suppose A7 (i = 1, 2, .., n) where <#eB. Since I is totally ordered, Ja peN, < p= 1",
such that d:?i; 2 ¥ wi=1 2, ..,n Then A Ay A"Ecﬂ; and so A,MA,M.. A, # §.
Thus <& also has the finite intersection property and hence a# e, Clearly = is an
upper bound of . Therefore by Zom’s Lemma € has a maximal clement =+ (say).

Clearly ¢ & &%, Lel A, Be o *, If &% = &% U{AnB} then < has fip and contains
e - S0 #eC. But as ¥ is maximal, we must have &, = &* and hence 4  Be -7+,

Again let 4 €c#* and A © B. By similar argument we can show that Be «7*. Therefore
<+ is a filter, '

Finally,.nnt:} that if <& is any filter containing #* then «# C oF *C &' and so
& €C. Since &F* is a maximal element of C so we must have <% = &, This proves
that &#* is an ultrafilter,

Theorem : A filter &7* is an ultrafilter in X iff any subset 4 of X which intersects
every member of &% belongs to 7%,

Proof : First suppose that ¢#* is an ultrafilter in X, Let 4 be a subset of X which
intersects every member of &#%,

Let &, = {C € X : 4 1 B.C C for some B € #*}. Clearly ¢ ¢ o7, F*c o and
AedF, Let C,, C; € &7, Then AnB, © €| and ANB, c C, for B, B, €c#* Then B =
B m By #* and we have CnC, D (A n B) n(d ey By = A (B NnB)=4mB
~which implies €, €, € &, Again if Ce & and C © €' (€ X) then 3 B € o7+ such that
AnBcCandsodn Bc C which implies C'e &%, Therefore =%, is a filter in Y.

Since oF* is an ultrafilter so &% = % and so Ae oF*,

Next suppose that the given cendition holds. Let &% be any filter in X containing
o7, Let 4 €5 If B € 7 then e &Fand so 4 M B # ¢. So by our hypothesis 4 € 7.
This shows that & = ", Hence <% is an ultrafilter.
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Exercise : Let &#* be an ultrafilter in X and 4, B be two subsets of X such that
A w B ed#* Then either 4 €cF* or Be o7%,

Solution : Suppose that A2 c#*. Consider the family & = (C Cc X1 4 U C e ¥},
Then Be o, Since 4 & ¥, ¢ . Let C|, C,ecF,. Then 4 W Cps 4 W G o* and so

A (€N C)=AuwC)ndu ;) e This proves that C\n Cye o, Again
let C & o and C ' Then 4 W C eF* Butsince A w Ccdw , sod et
which then implies C'e &7, So &%, is a filter in X.

Finally as we can see, C € #* = A U Ced#* and so Ce o, Thus =#*cex, But
as @#* is an ultrafiller so & = <F*. Therefore Be 7%,

Exercise : A filter &% in X is an ultrafilter iff for any ACX either A€ &7 or Y\de =%,

Solution. First suppose that = is an ultrafilter. Let 4 C X, Since Xe * and X = 4
U (X)) so either 4 * or X\de &#*, Conversely, suppose that the given condition holds.
Let & be a filter containing <#*, If &F* C =& then we can choose some 4 € o such that
A & &#*. But then by the given condition X\de ¢&#* which implies X\de o#. Then ¢ = A
(X\d) €<# which is a contradiction. Hence <#* = & and so #* must be an ultrafilter,

1.2 Compaciness

We first recall the following definitions and a result from earlier Topology

course.

Definition : A topological space (X, T) is said to be compact if every open covering

of X has a [inile subcovering.

Compactness can be characterised "in terms of *“‘the finite intersection property’* of

closed sets,

Definition : (Finite intersection property) : A collection of subsets {FF, : vea} of
a given sel X (a being an indexing set) is said to possess the finite intersection property,
if every finite sub-collection of {F } has non-empty intersection.

Theorem : A topological space (X, ©, s compact il and only if for every collection
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of closed sets {F, : vea} in (X, 1), possessing the finite interscction property, the
intersection M{#, : vEa} of the entire collection is non-empty.

We now prove the following characterizations of compactness.

Theorem : Let (X, 1) be a topological space. Then the following statements arc
equivalent.

(i} X is compact
(ii) Every filter in X has a cluster point
(iii) Every ultrafilter in X converges.

Proof : (i) = (ii) : Suppose that X is compact. Let =F be any filter in X, Let =%
= {4: Ae &F}. Then <#* is a family of closed sets with finite intersection property. Since
X is compact, so

A AedF) # ¢

Choose a point x;, in M| A : Ae 5F}. Then Xo€ A,¥ A€ & and from definition X,
iz a cluster point of oF.

(ii) = (iii) : Let = be an ultrafilter in X, By (ii), =% has a cluster point x; in X

Let U be any neighbourhood of x;. Then Un F = ¢ ¥ Fe % . But then we must have
Ue o# . This shows that o# converges to x,.

(iii) = (i) : Finally suppose that (iii) holds. Let & be a family of closed sets in

X with finite intersection property. Then there exixts an ultrafilter -+ containing <% By

(iii), & converges to a point x,€X. Then for any neighbourhood {/ of x,, Ue =% , Take

" any Fe o Then Fe = and so UnF # ¢, This shows that X, Is a limit point of F and

so x, € F. Bul since each Fe o is closed, x; € F=F. This is true for any F €< and
50
F: Fedf} #
This proves that X is compact.
We now use the concepl of ultraftlter, developed so far, to prove the following

important theorem due to Tychonoff.
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Theorem (Tychonoff Product Theorem).

Let {X, : aea} be a collection of topological spaces. Then the topological product
space X is compact il each X is so.

Proof : If X is compacl, then clearly each factor space A7, being continuous jmage
of X under the projection map p, : X — X , is compact,

Conversely, let cach space X, be compact. By the above theorem it suffices to show
that any ultrafilter <on X converges in X. For each ae A, 3, = {p (F) : Fe o7} is clearly
a base for a filter &% on X_. We claim that &% is an ultrafilter on X, For this, we need
to show thal for any subset 4 of X, either A€ &% or X \de o . Let us write B = oA,
Since ¥ is an ultrafilter on X, either Be < or X\Be &7 Conscequently, either 4 = pAB)E
B, CF, or (M) % Hence J7, is an ultrafilter in X, for each e A. As each X, is
compact, <# converges to some x €X , for each aeA. Then =F converges to the point

x = (x,),., in X and hence X is compact.

1.3 Countable Compactness

We now look into another type of compactness which is weaker than compactness
but is equivalent to compactness in the real line.

Definition : A topological space (X, 1) is said lo be countably compact, il every
countable open covering of X has a finile subcovering.

We shall obtain several necessary and sufficient conditions for a topological space
to be countably compact. One such condition is given in terms of the concept of cluster
point of a sequence. A point p is called a cluster point of an infinite sequence {x, : n
=1, 2,...} in a topological space (X, 7) if, for any given open set I/, containing p, and

any posilive integer r, there always exists a positive integer m > r, such that x & U\
Theorem : For a topological space (X, 1) the following conditions are equivalent;
(a) (X, T) is countably compact,

(b) Every countable aggregate of closed sets, possessing the finile intersection
property; has a non-empty intersection in (X, T).
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(¢) Every descending chain of non-empty closed sets, £, 5 F, D .., has a non-empty
intersection in (X, 7). (Canlor’s intersection theorem)

(d) Every infinite sequence in X has a cluster point in X.
(¢) Every infinite set § X has an w-accumulation point in X

Proof : (a) = (b) : This is quite similar to the corresponding theorem on
compacimess.

(b) = (¢} : Clearly {F, : n €M} is a countable collection of closed sets with the
o
finite intersection property and hence by (b), (# #b
n=l1

(e) = (d) : Let {x,} be a sequence in X and Lét A = A{x, :m=>n} for each nel.

Clearly { 4 , +n €N} is a descending sequence of nonempty closed sets in X, By (e},

o
there is a point a= ﬂ A, . We claim that a is a cluster point of the given sequence. Indeed,
=1

tor any open neighbourhood U of & and any me M, we have some xed, N Uasacd,,
Then n = m such that x e U.

(d) = (a). If possible, suppose (a) does not hold, Then there is a countable open
covering {IJ , - nEM} of X having no finite sub'nuw:ring. LetC = AU w.ul). Clearly,
{C, : n €M} is a descending sequence of nonempty closed sets in .X. Choose TEL
for each m €M, Then the sequence {x,} has a cluster point x (say) in X (by (d)). Since
{U, : n €N} is a cover of X, 3 meM such that xe U

m*

e C, = x gU . Thus x cannol be a cluster point of {x, : neM}, a contradiction,

Now, m = m = C ot =ix

To complete the proof, il now suffices to prove “(d) & (e)’ which we do as follows:
(d) = (¢) : Given an infinite set § in X, we can always consiruct a sequence ta, }
in § such that @, # a for n # m (1, m =M). By (d), this sequence has a cluster point

p (say) in X. Then erery neighbouthood of p contains infinitely many terms of the sequence,
i.e, contains infinitely many points of §. Hence p is an w-accumulation point of &

(e) = (d) : Let {a,} be a sequence in X and let 4 be the set formed by the values
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taken by the sequence. If 4 is a finile set, then there is an element a such that a, = u
for infinitely many natural numbers »n. Obviously, then a is a cluster point of the
sequence. If A is an infinite set, then by (e), 4 has an w-accumulation point p (say).
Obviously, p is then a cluster point of {a }.

Exercise

(a) A subspace of a countably compact space need not be countably compact,
(b) Every closed subspace of a countably compact space is countably compacl,

{¢) The union of a finite collection of countably compact subspaces of a topological
space is a countably compact subspace.

Solution : (a) The closed unit interval [0, 1] is compacl, by Heine-Borel theorem,
hence it is also countably compact. The subspace (0, 1) of [0, 1], is, however, not
countably compact.

1.4 Sequentially Compact and Frechet Compact spaces

Finally we look into two types of compaciness, one of which is defined by using
sequences and the other defined by using the idea of limit points of sets.

Definition : (Sequentially Compact) : A topological space (X, 1) is said to be
sequentially compact, if every infinite sequence in X contains a convergent subsequence,

Definition : (Frechet Compaet) ¢ A topological space (X, 1) is said to be Frechet
compact (or B-W compact i.c., Bolzano-Weierstrass compact), if evcry infinite subset
of X has an accumulation point.

Theorem : (a) Every closed subspace of a sequentially compact space is sequentially
compact.

(b) Every closed subspace of a Frechet compact space is Frechet compact,

It follows from the following example that ;

(i) a subspace of a sequentially compact space need not be sequentially compact,
and (ii) a subspace of a Frechet compact space need not be Frechet compact.

Example : Let [ be the sel of reals, and v consists of (i) all those subsets of T,
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which do not contain 0, and (ii) the 4 subsets B\{1, 2}, E\{1}, BE\{2}, and IB. Then
(IR, v) is a first countable, Lindeloff space. Any open covering V of R must include at
least one of the sets in (ii) (in order that 0 may be covered). Let & be such a set for
the open covering V' of R, then M\G consists of al most two points 1 & 2, Let J7, &
H, be two members of V, containing the points 1 & 2 respectively. Then (G, H, H}
forms a finite subcovering of V' for B, Hence (R, v) is compact. let § = B\{0}, then Ll;e
subspace (S, v,} is not a Lindeloff space.

As v_is the discrele topology on 8. S is an infinite set having no accumulation point
in 5. Hence the subspace (5, v} is not Frechet Compact. The space (B, v) is also
sequentially compact. In fact, any infinite sequence {v ;i = 1,2 ...} in R is of any one

ol the following: lwo lypes ;

(i} x; # 1 and 2 for all i, except for finitely many values of i and the sequence {x,
0= 1,2 ..} s itself convergent. Converging to the limit 0;

(iiy x, = | or 2 for infinilcly many values of i, and then there exists an infinite
subsequence of {x, : i = 1, 2 ...}, which converges to the limit | ar 2.

1.5 Mutual dependence of different types of compactness

MNow we investigate the interrelationships between the four types of compactness

we have come across,

Theorem : (a) Every compact space is countably compact and also a Lindeloff

space.
(b) A countably compact Lindeloff space is compact,

Proof : (a) Let (X, T) be a compact space. Since for every open covering of X, there
cxists a finite sub-covering, the same is true for every countable open covering. Hence
(X, T) is countably compact. Also, since a finite sub-covering is necessarily a countable

sub-covering, it follows that (X, 1) is also s Lindeloff space.

(b) Let (X, T) be a countably compact, Lindeloff space. Let U/ be any open covering
of X. As (X, t) is a Lindeloff space, there exists a countable subcovering V of U for
X. Again, since (X, 1) is countably compact, for the countable open covering F of X,
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