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Unit 1 0 Introduction

Objectives : The object of this chapter is to present the basic concepts of ecology ulong
with the mathematical modeling of ecological system.

Structure

1.1 Ecology : Basic Concepts

1.2 Ecological Systems : Mathematical Models
1.2.1 Deterministic Models and State variables
1.2.2(a) Modelling in Discrete-time
1.2.2(b) Modelling in Continupus-time

1.2.3 Balance (or Conservation) Equation

1.2.4 Randomness and Stochastic Models

1.2.5 Summary

1.1 3 Ecology : Basic Concepts

Definition ; Envirenment:

The place where a living organism lives with its surrounding form its environment.
Environment consists of two parts ; abiotic and biotic, Soil, water, air and diflerent
minerals form the abiotic (or physical) environment, where as the biotic environment
15 formed of the plants and animals. The living organisms and environment are
interrelated.

Definition : Ecology

The branch of science which deals with the study of interrelationship among the
living organisms in relation with the eavironment is known as ecology. German
biologist E. Haeckel (1968) first introduced the term ‘ccology’, which is derived
from the Greek word ‘Oikos’ meaning dwelling place or house and ‘logy’ meaning
the study of.

Parts of Ecology:

The study of ecology consists of four parts : (i) individual (ii) population (iii)
community (iv) ecosystem. We describe them separately.
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(i) Individual : Tt deals with the study of growth, development, reproduction
and mortality of an individual.

(ii) Population : It deals with the study of the problems ol the different organisms
of the same single species. It studies whether a population will grow or decline, it
studies why some populations are stable over many generations while other show
outbreaks and crashes, it studies the causes of extinction,

(iii) Community ; Tl deals with populations of different species. The problems
to be studied are whether populations of different species co-exist 7 Do the details
of feeding relationship (who eats whom) matter ?

(iv) Ecosystem : Ecosystemn is the fundament unit of ccology. where both biotic
and abiotic components of the environment interplay. An ccosystem consists of several
factors which may be divided into two categories : abiotic and biotic,

Components ol Ecosystem:

Abiotic factors :
(i) Different organic and inorganic components : Calcium, sulpher, magnesium,
potassium, oxygen, nitrogen, carbon dioxide. water, soil, amino-acids ete.
(ii) Physical factors : Light, humidity, temperature, atmospheric .ressure. rainfall
etc.
(iii) Soil factor : Nature of soil, water holding capacity, percolation of water through
- soil ete.
(iv) Topographic factors : Altitude, undulating landscape, amount of light falling
on a place, wind blowing through etc.

Biotic factors:

(i) Producers : Green plants which produce proteins, amino acids, glucose efc. by
the process of photosynthesis in the presence of sun-light,

(ii) Consumers: _
(a) Primary consumers : Plant eaters - minute animals in the upper level of
water constitute zoo plankton e.g. paphia, protozoa. The primary consumers in
the lower level of water are called bottom forms e.g. orthopods, snails, small
fishes, ete. Primary consumers of land are harvivores e.g. grasshopper, rabbits,
monkey, dears, cows efc.

(b) Secondary consumers : Carnivores feeding on primary consumers such as
frogs, toads, spider etc.



(¢) Territory consumers : The animals feeding on the secondary consumers
are called territory consumers e.g. Tiger, Lion, Leopard, whale, hawk, eugle etc.
(iii) Decomposers : (also called microorganisms) Certain bacteria, fungi breakdown
the complex compounds of dead protoplasm, absorb certain decomposed

produced and release certain simple substance for further utilization by the
producers.

Different Types of Ecosystems :

(i) Aquatic Ecosystems : A pond is an example of an aqualic ecosystem. It
comprises of four components ; abiotic factors, producers, consumers and
decomposers,

(ii) Terrestrial Ecosystem : A forest is a typical example. It also comprises of four
components : abiotic substances, producers, consumers and decomposers,

1.2 O Ecological Systems : Mathematical Models

Much of the monograph is devoted to the formulation and analysis of mathematical
models. A mathematical model is a set of assumptions about an ccological system
expressed in mathematical language. Mathematical reasonings or computations may
then be used (o generate predictions about the system.

Definition : Dynamical Model
A dynamical model of a system is a mathematical statement of the rules governing
the changes of the states or conditions of the system with time. A dynamical model

may be deterministic or stochastic, A dynamical model may be discrete-time or a
continuous fime.

1.2.1 Deterministic Models and State varinﬁles

The simplest ecological models, called deterministic models, make assumption that
if we know the present conditions of a system, we can predict its future accurately.
To determine the current state or condition of the system we have to choose some
quantities called state variables. The choice of state variables involve a subtle balance
of biological realism and mathematical complexity. '

(i) State variables for individual are age, sex, development stage, physioldgium
variable such as weight or size. For many cases age and size (or weight) are
sufficient to serve as state variables.

(i) State variables for populations are the number of living organisms the population
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contains. A more general population is a structured population. Structured
populations are of two Lypes : (a) age-structured population which involves
both the number of individuals and their ages as state variables (b) spatially-
structured population which involves the number of individuals along with
their positions or locations at any time,

(i1i) State variables for a community (a group of populations of different species)
are the number of individuals of each dynamically interacting species.

(iv) In ccosystem the species are divided into some functional groups such as primary
producers, herbivores, carnivores having interaction among the groups, Workable
state variables to an ecosystem is a list of the biomasses of cach of the functional
group.

1.2.2a  Modelling in Discrete-time
Let the variable X, denotes the state of the system at time t. The sysiem state al tine
t+ At denoted by X, is a function of X, i.e,

X =HX,) (2.1)
The tunctional form of F depends on the system under consideration, Tf the function
F is explicitly independent of time t the equation (2.1) is called an autonomous
differcnce equation, The difference equation model forecasts the state of the system
at series of equally spaced times. For example, if we know the state at time = 0,
we can caleulate its state at times t = At, 2 At, 3 At ...; Al represents a single number,
say one second, one minule, one year elc. For non-autonomous systems the difference
equation is of the form

Xioar =F(X, 1) (2.2)

1.2.2.h Modelling in Conlinupus—time

Continuous—time models aim to predict the values of the state variables at all future
time, not at integer multiples of some time increment At, To write down the dynamics
of a system we require the rate of change of the state variable X. It can be written
in the form ol the non-autonomous differential equation

For autonomous system the rate of change of the state variable that is, the function
g does not depend explicitly on t. In this case the equation becomes
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dx
T g(X) (2.4)

1.2.3 Balance (or conservation) Equation

Changes in abundance, stock or concentration of any physical or biological entity
oceur only through the operation of an identifiable process..For example, the
concentration of physically and chemically stable material in an enclosed region can
only change because of the import or export across the boundaries of the region, T(
the system is reactive then we must add the possibility of chemical transformation.
Similarly, the population of organisms in an enclosed region can only change because
of reproduction, mortality, export and import of the population across the boundaries,
The dynamical equation which represents the changes in mathematical language is
called the conservation or balance equation.

{Ia} Balance Equation for Chemically Inert Substances

We consider a chemically non-reactive substance located within a region of space,
Let Q, represonts the quantity of the substance within the region at any time 1, Then
the balance eguation 18 given by

Qua=Q + inflow — outflow (2.5)
where the terms ‘inflow’ and ‘outflow’ represent the total inflow and outflow of the
material during the time interval (i, t+ At). The equation (2.5) is an example of
discrete-time balance equation. The analogue equation for continuous time is

dQu) _

. inflow rate — outflow rate (2.6)
L

(b) Balance Equation for Chemically reacting substances

In the above balance equations the stock changes because of transport into and oul
of the region of interest. Most ecologically interesting situations involye chemical
and biological transformation within the region being modeled. For example, the
balance equation for a chemically reacting system is

_.—dQ{l} = inflow rate — outflow rate + formation rate — transformation rate

dt
(2.7
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In conclusion, the deterministic models of ecological systems involves three steps :

(1} Choose the state variables appropriate (o the system under consideration,
(if) Derive the balance (or conservation) equations. The balance equations represent
the model equations for the growth process of the system under consideration,

(iii) For the successful utilization of the model equations we have to make model-
specific assumptions.

1.2.4 Randomness and Stochastic Models

In the deterministic models the state of a system at any future time can be predicted
exactly from its present state. This assumption is of course untenable. Unpredictability
or randomness enter ecological dynamics in two ways. First no environment outsice
the laboratory is truely predictable. For example, the average light intensity measured
each day at place vary randomly. Since light provides the energy for primary production
the dynamics of ecological system will be seriously affected by the variability. Similarly,
the random variation ol humidity, temperature and other factors for an ecosysten can
nol be correctly predicted by deterministic models.

A second important way in which randomness affects ecological dynamics is
that similar organisms do not necessarily respond in the same way fo a given
environment, Genetically identical individuals with identical histories in identical
environment exhibit considerable variability in the timing, amount of reproduction
and mortality. Although randomness is ubiquitous and stochastic models are essential,
deterministic models are appropriate starting point for many ecological systems and
are prerequisite to the formulation, analysis and better understanding of stochastic
models of complex systems under investigation. In this monograph we shall he
concerned mainly with the deterministic dynamical models of ‘ecological systems.

1.2.5. Summary

The chapter consists of two parts:
(i) The first part consists of a brief discussion of ecology and ecological systems,
(i) The second part is concerned with the dynamical modeling of ecological system.
It explains the concepts of state variables, continuous-time and discrete-time
madels of ecological systems The difference between deterministic and stochastic
models of ecological system has been explained.
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Unit 2 O Single-Species Population : Continuous-Time Models

Objectives: The object of this chapter is to present the basic biological and mathemati-
cal postulates necessary for the continuous-time models of single-species populations

together with their mathematical analysis.

Structure

2.1 Introduction : Basic Postulates

2.2  Population Growth : General Model Equation
2.3 Malthus Population Model: Exponential Growth
24  Logistic Population Growth

2.5 Allee Effect

2.6  Gompertz Population Growth

27 Models Equations : Qualitative Analysis

2.8 Harvest Models

2.9  Summary

2.1 0 Introduction : Basic Postulates

For the development of continuous-time models of population we assume the following
three biological and mathematical postulates :

(i) The postulate of Parenthood

This states that every living organism has arisen from at least one parent of like
kind to itself: 1t is often called *the principle of a biogenesis’. For any one who
believes in the initial terrestrial origin of life, the postulate is not universally valid;

but since under present condition spontancous gencration has never-been observed,
we can take it as true enough to use in our investigation,

(ii) The postulate of upper limit |

The second postulate is that in a finite space there is an upper limit to the

~number of living beings that can in some way occupy or.utilize the space under

consideration. The living beings require supply of energy at a certain rate to maintain
their stability; obviously the space can not contain more of su-:h living beings that
utilize the energy input in the space.
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(iii) The postulate of continuity

In addition to the above two biological postulates, it is convenient for
mathematical reasons initially to adopt the convention that the variation of a population
size x behaves as if x is a continuons variable, capable of taking any value, integral,
fractional between the possible upper and lower limits of the population. The
convention, though strictly untrue, is harmless when we are dealing with a sufficiently
large population not having definite breeding or dying seasons, in which reproduction
occurs at random among all members of the appropriate age class, and death occurs
according to some statistically defined pattern not varying with time. When definite
breeding seasons occur, or when mortality is much greater at sometimes of the year
thun at others, finite difference equations are to be used.

2.2 0 Population Growth : General Model Equation

Let x(t) denotes the population size (or density) at any time | and according to the
postulate .(iii) x(1) is assumed to be differentiable every where, that is, a smooth
function of time 1, The general model equation of growth of a single-species population
can be wrilten s

dx .
iy (2.1)
A (x)

where the growth rate oL depends only on the population size (or density). Such an
assumplion appears to be reasonable for simple organisms such as microorganisms.
For more complicated organisms like animals or humans this is an over simplification
as it ignores intra-specics competitions for resources and other factors, including age
structure (the morality rate may depend on age rather than on population size). IT the
function I is sufficiently smooth, we can expand il in Taylor's se;ies,

f{x}:E a x" =a_ +a, X+a, X7 Fag X +. (2.2)

n=o :
The postulate (i) requires flo) = 0 to dismiss the possibility of spontancous generation,
the production of living organisms from inanimate matter. This is equivalent to
dx

- dt

so that we may assume a, = 0 and then

=f(o)=0

A=t

dx 2 9
—=a; X+ay X~ +ag X+

di
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=x(a, +a,y X405 X2 +,.)

=xg{x} aaa {‘2«3‘}
i (1) . : ; =
The quantity l‘;_’:z x{{t}} is called the per capita growth rate i.e, the rate of growth
X x

per member. 1t is also known as intrinsic growth rate and the polynomial g(x) of (2.3)
is, therefore, the intrinsic growth rate of the population. We shall now study several
specitic growth models and study their characteristic behaviours.

2.3 O Malthus Population Model: Exponential Growth

We first look at a population in which all individuals develop independently of one
another. The organisms live in an unrestricted environment, where there is no form
of competition. The rate of change of populations size (or density) can be comptited
il the birth-rate, death-rate and migration rate arc keown. For a closed population
system there is no migration and the population size changes due to changes in births
and deaths. Let b be the per capita birth rate and d be the per capita death rate. Then
the change in population during a small time-internal (t, L + h) is given by

X1+ h) —x(t) =(b—d) x(tt h

of, W ~(b—d) x(t) h

Taking the limit h = (), we have,

ux

E={b—d;1x =1x | (2.4)

where r = (b-d) (2.5)
is the net growth (or reproduction) rate,

The equation (2.4) is the famous Malthus model equation of population growth,
This is the simplest form of the general model equation (2.3) with. coellicients of

£(x) as

8 =r,a; =a3 =....=0 : (2.6)
The equation (2.4) can be solved to give the exponential distribution
N(t) = Npe" (2.7)

where N = N(o), the initial population, For this reason, the population obeying the
equation (2.4) is said to be undergoing exponential growth. This constitutes the
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simplest minimal model ol bacterial growth or indeed growth of any reproductive
population. It was first initiated by Malthus in the year 1798 in human populations
in a treatise that caused sensation in the scientific community of the day, He (Malthus)
claimed that, barring natural disasters, the world’s population would grow exponentially
and thereby eventually outgrow its resources. He concluded that mass starvation
would befall huminity.

The equation (2.4), while very simple, turns up in a number of natural processes.
By reversing the sign of r one obtains a model of a population in which a fraction
r of the individuals is continually removed per unit time, such as by death or migration.
The equation

%:_M (2.8)
with solution N(t)= Nye™ (2.9)

describes a decaying process. This equation is commonly used to describe radicactive
decay.

One can define a population doubling time 1, (for r > 0) or half-life 1, (forr<0)
in the following way. For growing population, seek a time t; such that

Nes)
N

LY

Putting this in equation in (2.7), we obtain

N{t 1} = 2 =e|.-l
Ny
In2
or, In2=r145 017 5 =nT . (2.10)

The doubling time ¢, is thus inversely proportional to the reproductive constant r. In
a similar way we can find the half-life of a decaying population.
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Fig. 2.3a Fig. 2.3b

Malthus law for exponential growth Malthus law for exponential delay
Remark:

The model (2.4) is not accurate for all time. Populations that grow exponentially at
first are commonly observed in nature, However, their growth rates usually tend to
decrease as population size increases. In fact, exponential growth or decay may be
considered typical local behaviour. In other words, populations dynamics can usually
be approximated by this simple model only for a short period of time. The assumption
that the rate of growth of a population is proportional to its size (linear assumption)
is unrealistic on long time scales. In the next section we shall modify this model for
a realistic -population growth. Note that a population that grows exponentially to
infinity violates our basic postulates of finite upper limit.

Example (2.1): Confined Exponential Distribution

In order to prevent the infinitely large population size in Malthus exponential
growth model we veplace it by a confined exponential growth model equation as

dx

— = (x* =), xo)=x

dt :

where x* is the eqguilibrium value f x.

With initial condition x(0) = x, the solution of the equation is

X =x% — (x* = xp) el
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which is a confined exponential function. The confined exponential equation finds
wide applications in physical science, technology and alse in agriculture.

Example (2.2) : Time-dependent Growth Rate

In Malthus model equation (2.4) the growth rate r is assumed to be constant,
However, r may vary with time. For example, if we rake (t) = rue"“ where k is a
posilive constant, we get the equation

dx E,

e Jﬂ}i

dt :
which is known as Gompertz equation and is 10 be discussed independently later on.
If we put £(t) = [r, + r, Sin (wt +4§ )] that is, il we assume a simple harmonic growth
rate, we have the equation

dx :

E =[r, + 1, Sin{wt +§ )]x.

This type of eguation is uscful for the certain types of trees whose mass vary
periodically with a period of one year on the average.

24 0O Logistic Population Model

To correct prediction based on Malthus model or law (that a population grows
indefinitely at an exponential rate), we consider a non-constant intrinsic growth rate
g(x). The logistic model is perhaps the simplest extension of Malthus model equation
(2.4). For a faithful model of population growth, we take more terms in the series for
f(x). We take the intrinsic growth ratec as

g(x}=a1+azx=r(l—£) (2.11)
.E

where 8, =1 k= _[ﬂ_l] (2.12)
2

The growth equation (2.3) then becomes.

d_":”{l_ij : : (2.13)
dt k ’
which is the famous logistic model equation of population growth.
Carrying Capacity :
From cquation (2.13) we see that
dx _
dt

0 when x = k.
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Thus x = k is a steady-state or equilibrium state ol the logistic equation (2.13). We
also note that

E}U, for x<k /
dt (2.14)
ﬁq{}, for x>k
-t

The quantity k represents the carrying capacity of the environment of the species.

Example (2.3) : Solve the equation (2.13) i.c, the equation

dx X
—_ | —— |, %x(0)= {2[3}
0 rx[ k] () =x, :
To solve we write the equation (2,13) i the form
d =rdi

x[i - }(]
k
Rearrange the equation to show that the solution is given by

Xk

M - (2415)

The solution (2.15) shows that for t =, the population size approaches the
carrying capacity k. It is easy to show that when the initial population x, is very
small, the population initially appears to grow exponentially at a rate r.

Fig. (2.4} Logistic growth curve
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Intra-species Competition

The competition among the individuals of a species for limited food, habitat
and other resources compel an increase in the net population mortality under crowded
conditions, Such effects are prominent when there are frequent encounters between
individuals. The equation (2.13) can be written as

—=rx——x (2.16)

The second term depicts a mortality proportional to the rate of paired encounters. The
equation (2.13) is thus a modification of Malthus growth equation (2.4) by

taking a termi (the second term in the rhs of (2.16) ) representing intra-species
interaction which stops the exponential growth.

Behaviour near Equilibria

The logistic equation (2.13) has two equilibria, x* =0 and x* =k,
Near x* =0, x*/k is small compared to x so that

dx
MLy A
at (2.17)

For r = 0, small perturbation about x* =0 grows exponentially; the equilibrium
x* = 0 is unstable. Close to x* =k, we put y =x—k in equation (2.13) to give us

dx L i

For r > (), small perturbation about x* = k decay exponentially, the equilibrium x* =k
is asymptotically stable (for details see section 2.7). For positive r, solutions of the
logistic equation (2.13) are essentially a combination of exponential growth, close to
zero, and of exponential decay, close to the carrying capacity (sce Fig, 2.4),

2.5 O Allee Effect

A further extension of Malthus and logistic model equations’is an assumption of the
form

20



s T 2
glx)=a; +a, x+dsx} (2.17)

with a; >0uand a; <0

When this condition is satisfied we obtain Allee effect, which represents a population
that has a maximal intrinsic growth rate at intermediate density. This effect may stem
from the difficulty of finding mate at very low density. The Fig. (2.5) below is an

example of density dependent form of g(x) that predicts the Allee effect, lis general

characteristic can be summarized by the inequalities
(x) =0, for x <1
g (x) 1 (2-18)
g (x)<0, for x > |

where | is the densily lor optimal reproduction,

Gir)
A

] X

Fig. (2.5) @ In the Allee effect the rate of reproduction is maximal at intermediate density

2.6 0 Gompertz Population Model

In the case of Malthus model the population grows exponentially and becomes
ridiculously large. The exponential model finally becomes meaningless, since really
the population never goes to infinity. In an attempt to construct a growth model more
realistically we device the following Gompertz model : We assume a growth
phenomena in which the growth coefficient is no longer constant, but vary with time
t. Thus, in the case of exponential growth, we commence with the differential eqguation

21



dx _
s
where the growth coefficient r is assumed to change with time according to the
relation ;
dd_i. =—{r (2.20a)
where ¢ is a decaying coefficient of r and we assume ¢ > 0. With the initial condition
r(0) = 1y, the solution of (2.20a) is

rere (2.20b)
So the main feature of Gompertz growth model is the inclusion of an exponentially
decreasing growth coefficient, Substituting (2.20b) in (2.19), we have

X (2.19)

j—: =foe" ' (2.21)
The solution of (2.21) is
x(t)=x exp E‘L {l—e" l)} (2.22)

with initial condition x(o0) = X.
The equation (2.21) is the Gompertz equation and the function (2.22) is the Gompertz
function. From (2.22) we see that as t = oo,

x4 xE K, t:xpv[ :—"] . {2.23)

Substituting this value in (2.22), we have the alternative form of Gompertz function :

x(f)=x*exp [—%ﬂ"‘ '} (2.24)

The quantity x* is the value of x when  becomes very large, that is, it is the
asymptotic value of x. In this sense it is the carrying capacity. Aguin using (2.24) in
(2.21), we have the alternative form of Gompertz equation as

dx

X
— = — I — ;
& 1 x log = _ | (2.25)

We note that the specific growth rate l:li—}: is given by the difference of the logarithms
X

of x* and x. .
A comparison is made of exponential, logistic and Gompertz growth curves in the
Fig. (2.6) below.
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Exponential

[
o

Fig. (2.6) : Compuarison of Exponential, logistic and Gompertz curves,

2.7 1 Model Equations : Qualitative Analysis

Having the dynamical equations for model system in our hand, our next problem is
to solve these equations, There are two approaches to it. First, we can attempt to find
out an analytical solution, that is, a formula relating the value ol the state variable
at i time t to its valoe al some initial time t = 0 (say). When analytical solution is
available, it provides a complete characterization of the dynamics of the given system.
However, except for the simplest models, analytical solutions appear to be impossible,
- In the other case, an explicit solution can be calculated numerically, A numerical
solution of differential equation is more Iricky than that of difference equation.
Numerical solutions are much less useful than analytical solutions, being valid only
for chosen values of the initial state and model parameters, However, they are very
easy lo compute, and for simple system it is possible to obtain considerable insight
by *numerical experiment’. For more complicated models numerical solution is
typically the approach available. Tn reality, vast majority of investigations proves that
it is impossible 0 obtain complete or near complete information about 4 dynamical
system, either by analytic solution or by numerical experiment. For this reason, over
the last century or so-mathematicians have developed methods or techniques of
determining the quaiitat'i ve properties of the solutions of the dynamical equations and
thus answering many questions of ecological interests, without explicitly solving the
model equations concerned.



Equilibrium Point:

We consider an autonomous first-order differential equation of the type
dx
==

in which the r.h.g does not contain time t explicitly, Sometimes for ecological systems

we write this equation in the form,

f(x) ‘ (2.26)

.'i_’t‘. gl 2.27)

where g(x) is the per capita growth rate or intrinsic growth rate,

Delinition |

The point x = x* is an equilibrinm point (or a fixed point or critical point

or rest point or steady-state point) of the model equation (2.26) if T (x*) = 0. If x(t)
is a solution of the differential equation (2.26) that tends to a limit as t = #, then it
15 not difficult to show that its limiting value must be equilibrium pont, In fact, for
a [irst-order dillerential equation every solution must either tend to an equilibrium
point as t = e or be unbounded. However, not every equilibrium is a limit of non-
constant solutions, For example, the only solution of the logistic equation that tends
to zero as t = = i5 the identically zero solution,

Linearization :

In order to describe the behaviour of solution near equilibrium we introduce the
process of linearization, If x* be'an cquilibrium point of the equation (2.26) so that
f (x*) = 0, we make the change of variable u(l) = x(1) — x* representing the deviation
of the solution from the equilibrium value. Putting this in equation (2.26) we have

£ (et

%:f(x*+u(t}]+f{x*}u{t] + 5

where x*<c<x* +ull).
d
Since f(x*)=0, wehave ?‘: = (x®)u(t) +h(u)

£ el (n)

where hiu)= >
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For u () very small we can neglect h(u) so that we have the linear equation,
49 _ o . (2.28)
dt .

The importance of linearization lies in the fact that the behaviour of its solution is

casy to analyse and this behavioyr also describes the behaviour of the solution of the

original equation (2.26) near equilibrium. We have, infact, the theorem :

Theorem 2.1 :

1f all solutions of the linearization (2.28) at equilibrinm x* tends to zero ag | = o,
then all solutions of (2.26) with the initial point x(o) sufficiently close to x*, tends
to the equilibrium point x* as t =2 =,

Stability ;

The process of linearization plays an important role in the study of the stability of
the equilibrium point or state. For this, let us first give a formal definition of stability.

Definition :
An equilibrium point x* is Lyapunov stable if for any arbitrary small € > 0, there
exists a § > 0 (depending on t ) such that, for all initial condition x(0) = x, satisfying
| x,—x*| <8, we have | x(t) - x* | < ¢ for all t >0, In other words, an eqguilibrium
point is stable if stating close (enough) to equilibrium guarantees that you will stay
close to equilibrium, An equilibrium point x* is asymptotically stable if it is stable
and if in addition | x; — x* | <@ implies limx(1) = x* :

g
Remark :
In biological applications, we will ordinarily require asymptotic stability rather than
stability. This is because asymptotic stability can be determined form the linearization,
while stability cannot and again this is because asymptotic stable equilibrium is not
disturbed greatly by a perturbation of the differential equation. In term of asymptotic
stability we may restate the theorem (2.1) as follows :

Theorem 2.2 3

An equilibrium point x* of (2.26) is asymptotically stable, if f(x*)<0 and unstable
if f(x#)=0. '
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Exercises

(1) Investigate the asymptotic stabihity of the equilibrium points of the following
model equations,

4 Sy x[l—i] [ Logistic model ]
dt k g

(i1) L -1 X log X [ Gompertz model ]
di | 2

i (e v

(111) E=m [Smith model|

(2) Show that il r < 0, k < 0, every solution of the logistic equation with x(o)=0
approaches zero as { = oo,

(3) A population is governed by the equation
dx
ey
Find all equilibria and determine their stability,

(4) Discuss the model

b

LE]

x(e?™ =1

where 0 < ko < k. Find all limits of solutions with x(0) > 0 as | = = and find
the set ol initial values corresponding (o each limil,

(5) Show that for every choice of the constant ¢, the [unction
k
=
I4ee

it

15 a solution of the logistic differential equation.
(6) Consider the logistic equation

d—tzr{t}[l -%} x(0)=x,

d
with lime—dependent intrinsic growth rate r(t). Show that the solution is given by
kx
x(th= e
—jr[ajds

X +l;k-x0}c, o
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2.8 03 iiurvesl Models :

We wish to study the effect on a population model of the removal of mumhn:r_s of the
population at a specified rate, If a population modeled by the differential equation

dx _ F(x) (2.29)
dt
is subjected to a harvest at a rate h(t) member per unit time for some given function

h(1), then the harvested population is modeled by the differential equation,

. :
_’: — f(x) —h(t) (2.30)

d
If the numbers are removed at a constant rate H (constant) per unit time, then the
model equation is

dx

dt .
Such type of harvesting is called constant rate or constant yield harvesting. Tt arises
when a quota is specified (for example, through permit as in deer hunting seasons in
muny states or by agreement as sometimes in whaling), 1 the population is governed
by logistic equation, then the harvest model equation is,

= f(x)—H (2.31)

L x(l_l)_n (2.32)
dt k
The equilibrium points are given by
r x[i—i)—ll =0or x? —kx +E =0
r

G e 1{]{— k? —4Hk}nnd %o =-|--{k +-,||k! —ﬁ} (2.33)
2 r ) r

k rk ; :
z0urh ﬂ%if H ::-: hoth roots are complex, x’ (1) < 0 for all x,

et 4
provided k* - =
I

and every solution crashes, hitting zero in finite time. If a sulutqu reaches zero in
finite time, we consider system to have collapsed. If ﬂiH-r.:I_—, there are twao
equilibria : X which increases from 0 to k2 as H increases ll'mnti'} to rk/H and X
which decreases from k to k/2 as H increases. The stability of an equilibrinm x* of
x = F(x) — H requires Fl(x™) < 0, which for logistic model means x* > k/2. Thus X,
is always unstable and x, is always asymptotically stable, When H increases to the
critical value H, = tk/4, there is a discontinuity in the behaviour of the system - the
two equilibria coalesce and annihilate each other. For H < H,, the population size
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tends to an equilibrium size that approaches k/2 as H = H_ (provided the initial
population size is at least x|), but for H > H, the population size reaches zero in
finite time for all initial populations sizes (see Fig, (2.84) below). Such a discontinuity
is called a (mathematical) Catastrope; the biological implications are catastropic to
species being modeled.

For a general model x” = f(x) — H equilibria are given by f(x) — H = 0, that is,
by finding values x* of x [or which the growth curve y = f(x) and the harvest curve
y = H (a horizontal line) intersect. An equilibrivm x* is asymplotically stable if
(F(x)=H)|,_.. =F"(x*) <0, that is, if at such an intersection the growth curve crosses
the haryest curve from above to below as x in increases (sec fig. (2.8b)), From fig
(2.8b) it is clear that if H > max’ f(x) there is no equilibriuvm, and the critical harvest
rate H, al which two equilibria coalesce and disappear is max f(x).

There are other models of harvesting for example, the harvest rate h(t) may be
i linear function of pupul.itmn size : h(t) = Ex and in that case it is known as constant

effort harvesting. Hurvesting plays an important role ia fishery and forestry and has
economic and commercial importances.

2.9 O Summary

(i) We have first stated basic biological and mathematical postulates necessary for
the development for the continuous-time models of populations,

(i1) We have set up a general model equation for single-species populations. We have
studicd some basic single-species population growth models, namely Malthus
growth model Logistic growth model, Allee effect, Gompertz growth model and
Harvest model ete.

(1ii) For the qualitative analysis of the model equations we have discussed a antono-
mous first order differential cquations, its equilirium (or fixed) points and criteria

of local stability of equilibrivm points.

(iv) As illustrative examples, we have discussed some problems related to the model
equations,
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K/,

H<H, H>H,
Fig. (2.84) Fig. (2.8b)
;s
y=f(x)
¥

FIGURE : 2.8b Intersections of the growth curve with the line of constant yield
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Unit 3 0 Single-Species Population Discrete-Time Models

Objectives: The object of this chapter is to develop discrete-time models of
populations growth on the basis of difference equations.

Stucture

3.1 Introduction

3.2 Lincar Non-homogencous Difference Equation

3.3 Differential Vs Difference Equations

3.4  Fixed Point and Stability

3.5 Graphical Solution ol Diflerence Equations

3.6  Density - Independent Growth

3.7 Steady-state and Criteria of Stability

3.8  Second-order Difference Equation and Application
3.9 Rabbit Problem : Fibonacci Sequence

3.10 Summary

3.1 O Introduction

For many organisms, births occur in regular, well-defined ‘breeding scasons’. This
contradicts our earlier assumption that birth occurs continuously. In this chapter we
shall consider populations with a fixed interval between generations or possibly a
lixed interval between measurement. Thus, we shall describe population size by a
sequence {x, }, with x; denoting the initial population size (at initial time tg), X, the
population size al the next generation (at time t, ), X, the population size al the second
generation (at time t,) and so on. The underlying assumption will always be that
population size at cach stage is determined by the popuiation sizes in past gencrations,
but that intermediate population sizes between generations are not needed. Usually
the time interval between generations 1s taken to be a constant.

For example, suppose the population changes only through births and deaths,
so that

Kyey —Xp =(b—d)x, (3.1)
where bxn is the number of births and dxy, is the number of deaths in the time-interyal

s B £l )i band d (assumed constanls) are the birth and death rates vespectively. From
(3.1) we thus have

Xpp = (1 Hb—d)x, =R, X(8,) =X, (3.2)
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which is a first-order linear homogeneous difference equation. The growth rate
r=1+b—dis a parameter of the equation. In general, we can write a first-order
difference equation as

X4 =Fx, ), with x(t, ) =x, (3.3)
In such an equation the new value of x is determined Eﬂlllplct{}]}-’ by the previous
value, In higher-order difference equation we would require information about several
previous values to determine the current value. For example, the Kepler recursion relation

Rnpl = X F 5 (3.4)

15 a second-order difference equation as it requires lwo previous values xp and x|
to find out the exact value of x_,,. Such type of difference equation appears in the
case of over lapping generations as in the case of Snow Geese in Buffin Island. The
function f in (3.3) is called a map or iteration. A map { is linear if f is of the form
fix) = ax, for some constant a Otherwise the equation (3.3) is non-linear
(or density — dependent in biology).

Example (3.1) : Logistic Difference Equation
Let xu be the size of a population of a certain species at time t. Let r be the rate of
growth ol population from generation to generation. Then from (3.2) we have
- F>0 (3.2)
with initial population x(to) = xp.
Then by simple iteration we find that

R e (3.5)
i5 the solution of (3.2). If v > |, the population increases without any bound to
mhnity. Il r= 1, x5 = %, the population stays constant forever. If r<1,lim %, =1, lhe

N+

?‘I'I-II: =Ix

populations eventually becomes extinct.

We observe that for most species the above model is not realistic, the population
increases until it reaches a threshold, Then limited resources would force the members
of the species W Iight and compete with others. This competition is proportional to
the number of squabbles 42 among them. A more realistic model is, therefore,

Xps =N, — by § (3.6)

where b is the proportionality constant of interaction among the members of the
: . b
species. Writing ¥ =?x", we hvae

¥n=i :r}rnfl—}rn} . {3‘?:‘
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The equation (3.7) is the discrete logistic equation and the map Ky) = ry(l — y) is
called the logistic map. It is a reasonably good model in which generations do not
overlap, The logistic equation (3.7) is very important, by varying the value of the
parameter r, this simple and innocent looking equation exhibits somewhat complex behaviours,

3.2 O Linear Non-homogeneous Difference iﬂqua’lian

Consider the first-order linear non-homogeneous difference equation
Xpp =8 X, +b, x(t,) =% o (3.8)
The equation can be solved by successive iterations,
xp=ax,+b
Xy =ax; t+b
=afax, b)+b =:13:t“ +ab +b
By induction, we can show that
Xy =ax, +b=a(a’x, +ab +b) +b
=a’x, +a’b+ab+b
By induction,we can show that

=
X, =a"%, + Y a" b
j=n
=a" gl A=) ey
=atx, 4 = ,ifn # (3.9)

The above formula (3.9) is an important result having many applications. As an
application let us consider the following problem.

Example (3.2) :

A drug is administered every six hours. Let D(n) be the amount of the
drug in the blood system at the nth interval. The body eliminates a certain fraction
p of the drug during each time interval. If the initial blood administered is D, find

D(n) and ,!im Din).

Solution :

The first step is to write down the difference equation that relates the amount of drug
in the patient blood system D(n+1) at the time interval (n + 1) with D(n). The
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resulling equation is
D(n)=(1-p) D(n)+D,,
Using the formula (3.9). We have

D(n)=(1-p)"D, +D{#]

D
:1:[]@"‘&}!_?}“"' cith
P P

; D
Thus lim D(n)= ?”

3.3 O Ditferential Vs Difference Equation

Consider the differential equation

dx
e g(x(t)), x(t,) =X, v (3.10)
For many differential equations such as (3.10), it may not be possible to find a
‘closed form” of solution, In that case, we resort to numerical method to approximate
the solution of (3.10). In Euler algorithm, for example, we start with a discrete set
of points (t,t, ..t,) with h = t ., -t  as the step size. Then for 1, <t <t ,, we
upproximate x(t) by x(t ) and dx/dt by

d_x _ X(ta+1)—x(tn)

dt h
The equation (3.10) then leads to the equation

x{t“-q-]_} - x(ln] +h E(K{lﬂ] }
or in simple form

X,a1 =X, +hg(x,) _ R 2

where x, = x(t,,)
The equation (3.11) is of the form (3.3) with

f(x)=x+hg(x) g A3.12)
Given initial data  x(t;) = x5, we may use the equation (3.11) to genecrate the values

x(ty), %(ty)..... (1, ). These values approximate the solution of the differential equation
(3.10) at the grid points t;,1,........t, provided that h is sufficiently small.
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34_ [ Fixed (or Equilibrium) Point and Stability

When the map f is lincar it is possible to obtain ‘closed form® of solution of the first-
order difference equation (3.3). However, the situation changes drastically when the
map f is non-linear. Since we can not solve all the non-linear difference equations,
it is important to develop qualitative or graphical method of finding the behaviour of
the solutions. OF particular importance is the finding the fixed points or eqguilibrium
points or steady-states.

Definition : A point x* is said to be a fixed point or an equilibrivm poinl of the
differcnce equation x,,, = f(x ) if f (x*) =x*,

One ol the objectives in the theory of dynanucal system 15 the stwdy of the
hc_havimu' of the system, that 13, the behaviour of solutions of a difference equation
near the fixed or equilibrium point, Such a program of investigation is called stability
theory. Let us now explain the concept of stability of a fixed point.

Definition : T.et x* be a fixed (or equilibrium) point of the difference equation

Ko =F0x,), xt, ) =%,

Then
(i) x*is said (o be stable if for any ¢ > 0 there exists § > 0 such that | x,—x* [ =i
implies | x, — x* | < ¢ for all positive integers n and for all x in the domain
of definition. Otherwise the point x* will be unstable.

(if) x* is said to be attracting if there exists | = 0 such that | x5 - x* | < implics

limx, =x
(iii) x* is asymptotically stable (sometimes called a sink) if it is both stable and
attractive, Tf in (i) = o, then x* is said to be globally asymptotic stuble.
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Fig. 3.1 : Stable fixed point 2*
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Fig. 3.2 : Unstable fixed poinl

3h



X+ 4

x(n)

/\
AvETEN
\/V

Fig. 3.3 : Attractive, but vnstable fixed point x
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Fig. 3.4 : Asymptotically stable fixed puint x
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3.5 0 Graphical Solution of Difference Equation

In example (3.2) we have explained the method of solving a first-order linear difference
equation. Let us now describe a graphical method of solving difference equation of
the form x,,, = f(x,) by a graphical method; called “Cobweb diagram”. It is also one
of the effective graphical iteration methods to determine the stability of fixed point.

Cobweb Diagram :

We start with an initial point Xo. Then we move vertically until we hit the graph
y = 1 (x} at the point (xg, T (xy) ). We then travel horizontally to meet the line
y = x at the point (f (x,), T (xy) ). This determines f (xg) = x| on the x-axis. To
find out the next iterated value Xo =T (x)) =L (E(x,)) = l'z{xu}_, we move again
vertically until we strike the graph y = f(x) at the point (f (X l'z{x“)); and then move
horizontally to meet the line y =x at the point {fz{-x“}, fz(xu} ). This determincs
Xy = fz[xu} on the x-axis. Proceeding in this way, we can evaluate all of the iterated
values {x;, x,....X,...]. Let us explain this method with a simple example and show
how it can be used to test the stability of a fixed point. Note that fixed point is the
point of intersection of the curve y = f{x) and the line y = x.

N,

Fig.: 3.5 Geometric growth,
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3.6 1 Density = Independent Growth

Let N, be the size of the population in year (or generation) t. We will census the
population each year at the sume stage of the life cycle, Imagine that each individual
leaves Ro offsprings before dying., We shall call Ro the net reproductive rate. It
fallows that

N, =R,N, (3.13)

The equation (3.13) is linear, first-order, constant - coefficient difference eguation.
The solution is given by (see 3.5)

N, =R's N, (3.14)

The solution is thus one of geometric growth or decay. If Ro > |, each individual
leaves more than one descendant, and the population grows geometically (see Fig,
3.5).

If {}c:R <1 the individuals leave, on average, fewer than one descendant, and the
|}upuml:nru declines peometrically (see Fig. 3.6). These figures resemble those for
exponcntial growth and decay. Individuals cannot leave a negative number of offspring,
However, nothing can prevenl us [rom pondering this possibility mathematically.
For—1 <R, <0, we gel decaying oscillations (Fig. 3.7). For R, <-I, we get growing
oscillation (Fig. 3.8). Figures (3.5) to (3.8) suggest that the solutions approach the
origin if Ro is less than'| in magnitude and that these solution diverge if Ro is greater
than | in magnitude.

Let us now use the method of cobweb diagram to plot the solntion of the
equation (3.13). Fig. (3.9) shows N, plotted as a function of N, for R, >1. The
curve is clearly a straight line. The Fig, (3.9) also contain the 45° dashed line,
N,,; =N,. We may iterate our difference equation by repeatedly (a) moving up (or
down) (o the curve and then (b) bounching off the 45 line (so that we reset N, =N, ).
This approach will be of extremely helpful late in our analysis of non-linear difference
equation. Zero is a fixed (or equilibrium) point of the equation (3.13). The trivial
equilibrium N, = 0 is unstable in Fig. (3.9) where R, > and stable in Fig, (3.10)
where 0<R_<1; in the former case the iterated values moves away from the
equilibrium point N =0 and in the later case the iterated values approaches the
equilibrium point N, = 0, .

A lineat, density-independent difference equation may have a non-zero
equilibrium if we allow for immigration or emigration, For example, the difference
equation

N :% N, +10 sl (3.15)
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has an ‘equilibrium N* = 40, .
We now introduce a new variable x, =N, —40

. 3
Then the equation (3.15) becomes X4 =X

4
3 I
So that %, =xn(1)

L
gt N, =40+(N, —40}[%] (3.16)

The small perturbation about the equilibrium decay; the equilibrium is asymptotically
stable. This stability also comes out in Cobweb analysis [see Fig.(3.9) (3.12)].

N,

5 =t

[B¥]

Fig. : 1.6 Geomelric decay,
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3.7 0 Steady-state : Criteria of Stability

The stability is of fundamental importance in biology. When a steady-state (or-an
equilibrinm state) is unstable, great changes may about to happen @ a population may
crash, homeostasis may be disrupted or else the balance in number of competing
groups may shift in favour of a few. Thus, even if an exact analytical solution is not
easy to come by, qualitative information about whether change is imminent is of
potential importance.

Let us now find out the criteria of stability of a fixed equilibrium point or a
steady-state. We consider the non-linear first-order difference equation of the
lorm (3.3) ¢

Lnel = f{xn] [ {316]
where the [unction f is a non-linear function of its argument (I may be quadratic,
exponential reciprocal, powers of X elc.) Lel x* be the lixed point of the equation
(3.16), We are interested in the stability of the fixed point x*. There are general
criteria of stability for different types of fixed points. We shall, however, consider the
condition of local stability in the neighbourhood of the fixed point x*, Let us write

Xy =X T kXl : w o (3.17)
where x'| is a small quantity termed a perturbation of the steady state x™. Let us
linearise the equation (3.16) about the steady state x*

X =X F4X 4 = Hx*+x])

= F(x*) + x 7 F(x*) 4+ O(x. %)

= x40 (%) +0(x.2)

Neglecting higher-order term g(x_'?), we have
e 1o = (3.148)
L 3.19

where ik (3.19)
Thus, the non-linear equation (3.16) has been reduced to the linear equation (3.18)
that describes what happens close (o the steady-state x*. The solution of the equation
(3.18) is decreasing and tends to the fixed point x* wherever | a | < L.

So we have the condition of stability :
The fixed point or steady-state x* is asymptotically stable if and only if

| Frix*) < (3.20)
Note that whenever | £'(x*) | = 1, then (x4, —x) implying a constant deviation is
unable to decreasex’  to reach the fixed point, More formally, we have the theorem.
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Theorem :

Let x* be a fixed point of the difference equation (3.16). Suppose that f(x) is
continuously differentiable and | ' (x*)|#1. Then, the fixed point x* is asymptotically
stable if[f'(x*}|<1 and unstable if!f'{x“‘}|:=~1.

Example (3.3) :
The growth of a population satisfies the following difference equation
kx,
b+x,

Lnel & ' b'k = U’

Find the steady-state (if any). If so, is that stable ?

Solution : Let x* be the steady-state value of x .

Then x¥=x =X,
&
So that x¥ = i3 , or x*=0k-b
b+x*

The steady-state makes sense only il x*>0ie.,if k> b, since negative population is
biologically meaningless, To study the stability, we consider the equation

¢
n

ol
i dx\b+x

So the steady-state x* = k — b is stuble if

’ Ty
Kpp| =22

df
4 ==
dx

x*=k-h

where

b
k

k
condition of stability reduces to k > b, The study of stability of x* =0 is left as an
EXETCISC,

<. Since both k and b are positive, the

Excercise :
(1) Find the non-negative equilibrium of a population governed by
Appl = _’;’x_ﬁ
iy 2
and check the stability.
(2) A population is governed by the equation
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L |
L

show that all equilibria are unstable.

Example (3.4) :

Logistic Difference Equation Revisited
Consider the following equation
Ky =rx,(0-x_)

Investigate the stability of the steady-state.

Solution : Let x* be the steady-state value of x. Then

Then *=rx*(l-x%
l
So that X =0, Xp¥=1——.
r
Perturbation about x® satislies.
Xpe = 8X,
df
where a=— =r(1-2x|¢ 1=2-1
dx i8 3z= :

l : ;
Thus, Jig‘“=1—; 15 stable whenever |a| <1 which implies|2-r|<lorl <r <3, Then
the stability of the steady-state x*=l—; 1s conditioned on a parameter r. If r is

LA e ! * |
greater or small than certain critical values (here 3 and 1) the sleady-state X; =1-~
r

1 not stable, Such critical parameter values, often called bifurcation values: are
pomnts of demarcation for abrupt behaviour of the equation of the system il models.
There may be multitude of such transilions, so that us imcreasing values of the
parameter are used, one encounters different behaviours. In tact, if we increase the
vilue of r beyond 3 the equation will exhibit the complex behaviour of period
doubling and chaos, This is, however, beyond our discussion,

Example (3.5) :
Density-Dependent Growth

An assumption that growth rate depends on the density of the population leads
us to consider models of the following form
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Ny = f(Ny)
where £ (N)) is some non- linear function of the population density. Quite often,
single-species populations (insects, for example) are described by such equation. We
consider the following model.
Let the single-species population satisfies the equation

i v
Ny = [II_J N: J

where | is the reprodugtive rate, assumed to be greater than |. The equation 1s best
understood in the form

i b
Ny =[ﬂ Nth](" Nl}
|
‘ _— Noof progeny ul generation 1.

L Fraction that survive to generation (t+1).

where o . b, | = 0. Since the [raction of survivors can fiot exceed |, we see that the
pupu!almn must exceed a cerlain size N_ for this model to be biologically applmah]u
The steady-state population size is given by

1
N* = o pREEdT o N :[]'_)h
f It

We write f(N)= [ JN' " then -—‘ =1-b so the stability of the steady-state

I
N*:[l )h requires | 1-b|<lorD<b <2.
[

We note that b = 0 is & situation in which the survivorship is nol density dependent;

. ) : o
then the population grows at the rate [u_] Thus, lower-bound for stabilizing values

of b makes sensc,

Excercise :
(3) : Investigate the stability of the steady-state of the model ‘equation
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s onl(-3)

(4) : Consider the tent map f :

£x) 2xfordsx sl
S50 = ) for e <1
Write down the difference equation corresponding to the map [ defined above. Find

out the fixed points, draw the Cobweb diagram and investigate the stability,
The fixed points are obtained by the equations

Rx=y and 2l —x) =x
50 the lixed points are

2

H*Izﬂ and K*zz—

We observe from the Cobweb diagram (Fig. 3.12) that both the fixed points are
unstable,

B . ek, <l

Fig.: 3.7 Decay oscillations.
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3.8 0 Second-Order Difference Equation and Application

Let us now consider a second-order difference equation of the form

Xae1 = Fxy, Xp—1) (3,200
where the function f is now a function of two immediate preceding values x, and
X,.y- The function f may be linear or non-linear. We shall, however, be confined to

linear functions only. For simplicity, we shall consider a linear, homogeneous second-
order difference equation of the form :

Ay Koap +8) X, F0 %, =0 (3.21)
To solve the equation (3.21) let us take a solution of the form : x =ci®, Putting this
vilue in equation (3.21), we have,

al®+al +a,=0 (3.22)
which is known as the characteristic equation of the equation (3.21). The general
solution of the equation (3.21) is a linear superposition of the basic solutions of the
equation. Let )l | and 1 , be the two solutions of the characteristic equation i.e. the two
eigenvalues. Then the generals solution of the difference equation is given by

xn =.|ét|h lll +ﬂ21 1n . Ty {3-23}

where A and A, are two constants to be determined from two initial values of x.
If the eigenvalues | | and ) 5 are complex conjugates, we can transform the solution
in polar-coordinates. Let h , } 5 =a% i b and write a = r cos §, b = r sin . So that

-1 b
r® =@ b4, 4= tan I;'

Then  a+ib=r(cos) +sin )=re”.
a+ib=r(cosy —sim )=re'.
So the general solution is
A, =A(a+ib)" +A,(a — )" (3.24)
=A 1" (cosn) +ising )+A; r"(cosg —iSinp )
=B, r" cosn{ +iB, r" Sinnj

where By and B, are two constants
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Fig, : 3.8 Grow ing oscillations.

3.9 Rabbit Problem : Fibonacci Sequence

Let us consider the linear second-order hmui;genenus :]iﬂ"ereume equation
Ropg = X TX— = (3.25)
which stems [rom Fibonacei work and the sequence (X ] i5 known as Fibonacci
sequence. Lef us pul x, =cl" in (3.25) to have the characteristic equation
124 41 (3.26)
-5 1+4/5 |

s0 that the eigenvalues are l,=T. ) =

The general solution of the

equation (3.25) is then given by
11

Suppose we start write x =0, x, =1 (initial condition).

SU. Dz.la-l JI- |u +J&.21 29 =hl +Jﬁ|.z
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I=A )l +Aj 5 =ﬁ|[l_£]+ﬁz[l—+-‘ﬁ]

z i
: ! 1
These zive A e A, ==
= 5N 1 1405Y

Then the general solution is x, =—%[%) +-E[ +;r—] v 632

We observe that 1 ,>1, —-14 , <0
Ny ; ! I +4/5 : :

Thus the dominant eigenvalue is | ;= 5 and ils magnitude guarantees that the

Fibonacci numbers {x, } form an increasing sequence. Since the eigenvalue | | 1S
negative, but of magnitude smaller than 1, its only effect s to superimpose 4 slight
oscillation that dies out as n increases. It can be concluded that for large n the effect
of | | is negligible, so that

|
x = —15
n 'J,lg 2
So the ratio of the successive Fibonacel numbers Knriry, Converges Lo
e 1+5
X ‘ 2 :
This limiting value known as Golden mean is, therefore, given by

1445

=1.618033... . (3.28)

"

N,

3
A e e

|

Fig. £ 3.9 Geomefric graw th i I cabw e,
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\

N, N, N,

Fig.: 3.10 Geometric decay & lu cobweb.
Historical Notes :

In 1202 Leonardo of Pisa (1175 — 1250), an Italian mathematician more affectionately
known as Fibonacei (son of good nature), proposed the following problem (known
as Rabbit Problem) : “Suppose that every pair of rahbits can produce only twice,
when they are one and two months old and each time they produce exactly one new
pair of rabbits. Assume that all rabbits survive. How many pairs will there be after
n generation 7" The solution of this problem is a sequence of numbers (0. 1, 1, 2,
3,5, 8, 13,21 ....) — called the Fibonacei sequence. It was Kepler (1571 - 1630) who
first observed that the successive elements of Fibonacci sequence satisfies the recursion
or difference equation (3.25), He also noted that theratio 2 1,3: 2, 5:3, 8:5........
approach the value 1 = 1.618033 ..., (he Golden mean. The manifestation of Golden
mean and Fibonacei sequence appeared in Greek architecture, and in different biological
forms, The regular arrangement of leaves or plant parts along the stem, apex or
flower of a plant known as Phyllotaxis, captures the Fibonacci numbers, A striking
example is the arrangement of seeds on a npening sunflower. Biologists have not yet
agreed conclusively on what causes these geometrical designs and patterns in plants,
although the subject has been persued for over three centuries.
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3.10 Summary

In this chapter we have discussed discrete-time models of populations on the basis of
difference equations, The following are the problems discussed, (i) We have first
discussed first-order linear difference equation with applications. (ii) We have next
discussed the gualitative behaviors such as the stability of equilibrium (or fixed) points
of first-order non-linear difference equations, (iii) We have then discussed the method
of numerical and graphical solution namely Cobweb diagram method of finding the
solution, determination of equilibrium points and their stabilities; (iv) We have next
discussed second order linear difference equations and its application in the overlapping
population growth, in particular ,in the study of Rabbit problem and Fibonacci sequence,

Exereise : A population obeys the following growth equation
Lpe2 _zxnﬂ +2x, =0

Find the population in generation n. Find the steady-state (if it exists). If so, is thal
stable?

M.

L}

l[}ﬂ—l o

&0 — :

60 —

40 —

N,
0 I I | I |
0 20 40 ol R 1] LO0

Fig. 1 3.11 Cobwebbing to 4 stable equilibrivm,
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Both equilibrium points x', = 0 and

2/3 are unstable,
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Unit 4 0 Delay Population Models

Ohbjectives: The object of this chapter is to discuss delay differential equation model of
population to take effect of time delay or time lag in the population growth,

Structure

4.1 Introduction

4.2  Types of Delay-Equations
43  Discrete-Time Delay Models
44  Distributed Delay Models
4.5 Summary

4.1 U Introduction

So far we have assumed (hat the rate al which a population is growing al time 1
depends on the magnitude of the population size (or density) at thal same time. For
example, consider the Malthus (or exponential) growth equation

d '
3D =mx(t),  x(o)=x, (4.1)

MNow what happens if we know that the present growth rate depends, not on the
present magnilude but on the magnitude at an earlier ime? For example, the present
cgrowth rate of a colony of [Mes depends not on the number of Iies right now but
rauther on the number of fhes laying a certain number of eggs 4 week or so ago. In
that case we wrile

dx(t)
dt

where 1, the average incubation period of the eggs, 15 a time delay or lime lag, As
we shall see, this almost trivial change in the differential equation, greatly complicate
the analysis and can produce drastic changes in the linal answer.

=rx(t—1) (4.2)

4.2 U Types of b;:luy_qulu_tii;ns

There are two types of delay equations ; (a) discrete-lime delay eguation and (b)
distributed time delay equations. : '

(a) Discrete-time delay equation -
A meore gencralized delay equation for Malthus growih is

ol



dx(t)
dt
where 1, and r, are constants. This 1s an example of differential - difference equations.
Another important discrete-time delay equation is the logistic delay equation

dn{l] X(t=1)
dt “}[ x* )

where x* is the carrying capacity.

= rX(t) + rx(t=1) (4.3)

(b) Distributed-time delay equation :

For distributed (or continuous) time delay, the logistic equation

dx(t) _ U:{ K{UJ _ :
dt X
becomes
i
dx(t) _ 1 - '
0 _ “;?.[K“_””E )d .. (46)

which is an example of integro-differential equation, the function K(t - x) is the delay
function,

4.3 1 Discrete-time Delay Models

Consider a model equation of the form

dx(t

S =1 gixe-1) . @
An equilibrium point of the equation (4.7) is a value x* such that x* g (x*) = 0) so
that x(t) = x* is a constant solution of the ditferential-difference equation (4.7). The

delay logistic equation (4.4) has two equilibrium points x = 0 and x = x*.

Linearization about an Equilibrium Point:
Let us write u(l) = x(1) - »*,. Putting this in equation (4.7) and using Taylor serics
expansion, we have,

dZ{II} (x *ult) ) gl{x™ +ult ~ 1)
= (X +(0) {g(X") + g0 u(t = 1) + g;; 2(t-1))
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=x ™ g(x*) +g(x*) u(t) +x = g'(x*) u(t 1) +h(u(t), u(t <))
= g(x*) u(t)+xF g (x*) ult —1) +h (u(t), u(t <))
where ¢ lies between x% and x*+u(t—1) and h{u(t), u(t—1) =g (x*) ut) u(t = ) +

x*g—muzu—u is o small gquantiy when u(s) is small for t—1 <s<t. So the

differential-difference equation (4.7) reduces o the linear form
du(t)
dt
abtained by neglecting the light order terms collected in h(u(t), u(t—1) ). We have
then the theorem :

=g(x*)u(t) +x* g (xH)u(t —1) o 14.8)

Theorem 4.1; If all the solutions of the linear equation
duit)
dt
tends to zero as £ —= = then every solution x(1) of the equation (4.7) with | x(1)-x* |
sufficiently small tends to the equilibrium point x* as { = o,

=gx®)u(t)+x* g (x*)ut—1) (4.9)

Asymptotic Stability :
For the differential equation
dx(1) = thx} l:'q-g}
ot
which is the cuse 1 =0 ol the equation (4.7) an equilibrium point x* is asymptotically
stable if and only il

:—xtxg(xj} =(xg(x))] _ =x*g(x") +g(x*) <0 ... (4.10)

So the equilibrium point x* = 0 15 asymptotically stable if g(0) < () and an eguilibrium
point x* > 0 is asymptotically stable if g'(x*) < 0, since g(x*) = 0. The study of
asymptotic stability of the fixed point x* of the differential difference equation (4.7)
15 a hit difficult, Tt requires the condition

(xg(x))], . <0 : D D

This is, however, not sufficient for the delay equation (4.7). For this. another condition
is required and this condition is provided by the theorem of linearization ;

(a) For equilibrium point x* = (), the lincarization is u'(t) = g(o) u(t). Since

(o) = 0 for most models of this type, the equilibrium point x* = 0 is unstable, since
u(t) increases with time L
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(b) For equilibrium point x* > 0, g(x*) = 0 and the linearization is

%}.zbu(t—ﬂ 4.13)
dt

where b =x* g ' (%), In order to determine whether all solutions of the linear differential
difference equation (4.13) tends to zero as t = = we take a solution of the form

uit)y=Ce't, (C is a constant) e (4:14)
Putting this value in {4.13) we have,
L= be® e (415)

This is a transcendental equation for 1 having infinitely many roots, A basic resull,
which we assume without prool] is that il all roots of the characlerislic equation
(4.15) have negative real parts, then all solutions of the differential - difference
cquation (<. 13) tends to zero on 1= =0, This result is analogous to the corresponding
result for differential equation. However; it is very difficull to analyse transcendental
equation (4.15) in the delay case. In the delay case, with 1 = 0, 11 15 possible to show
that the condition that all roots of the characteristic equation (4.15) have negative real
parts i

0-< —by {HE v (416)

The condition (4.16) implies b < 0 and in addition, that the time lag T not to be too
large. Combining the analysis with the above theorem we see that an equilibrium
point x* = 0 of the differential - difference equation

%: x(thg (x(t—1)) s AT
i5 asymptotically stable if
Je—x®gx®h {5/2 (4.18)

‘Example (4.1) : For delay—logistic equation

dx(t) o rx{r}{l _X(1t—1 })

dt 3 i

the stability condition (4.18) becomes.

<rt {I/E

Thus in addition to the stability condition. (xg(x))'|, _,. <0 for ordinury differential

equation, we must have additional requirement that the delay time 1 be sufficiently
small.
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Example (4.2) : Show that the equilibrium point x = K of the delay equation

dnit) =rx(t) lug[—x——]
dt

x(1—1

is asymplotically stable if 0<rr <1/,

4.4 1 Distributed Delay Models :

In the previous section we have studied the discrete-time delay model of the type

dx(t
B 0 g xa-1)
dt
This model equation can be generalized to the form
S =) [ etxti-9) pe)ds st R

L4 L
describing u distributed delay. Here p(s) ds represents the probability of a delay
between s and s + ds, so that

]p[sjds: | - A2
The ;1:e1';1gc delay 15 then, by definition
' T=]a p(s)ds o (42D
I_'J:::fiﬂitiu.::: An equilibrium point of the integro-differential equation
d:i” =::Et]]g[x(r—s}] pls) ds . . (422)
o

15 a value x* such that

X *Ig{x*} pls)ds = xtu(x*) =0

(1]

We see that x* =() 15 an equilibrium point and equilibria x* > () are given by
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gix*)=0 e 633)

Linearization about an equilibrivm point
To linedrize (4.22) about an equilibrium point x¥, we put u(t) = x(1) — X* so that, we
have,
du(t)
dt

=[x *+ufl) ]j{g(x*} +g (x*) u(t —s)+...) p(s)ds

=(x*+ult)) 4 gla™) + g {x*','l-[ ult —s)p(s)ds +.,

Q

=x*p(x®)+glx*)ut) +x* g {x’*’}J- u(t—s)ps)ds +... - (4.24)
; o
As with other types of equations such as differential equations, difference equations,
differential-difference equations, the behaviours ol solution near an equilibrium point
is thus described by the behaviours of solutions of the linearized equation. We are
thus led to study the linear integro-differential equation of the form,

—d’:;i” =au(t)+ hJ u (t —s) p(s)ds iy ACEE3)

L&)

where p(s)z0,for0<s<» and -I-p{s}d; I. To study the behaviour of solution of the
1)
equation (4.25) for a specific kernel p(s). we look for solution

u(t) = Ce"" 1 12:26)
and construct the characteristic equation,
| =ﬂ+hje_1$.p(31dﬁ =a+b L[pi }l o {42?}

where L{p(l )} is the Laplace Transform of the function p(s) evaluated at | . We shall
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consider two specific choices of p. both normalized so that Ip(s] =1 and‘[Sp{s} ds=T

L]
(average delay). We shall make use of the following formulae whenever necessary :

{a}je‘“ “ds=ul.(b} Jsr:* "ds=u—lg. (c) Iszﬂk “ds :ui; .. (4.28)
i 1] o

& \ !
Example (4.3) : Let us take Py (s1= Fc‘%. so that p(o) = 0 and rising to a maximum

al 5 = T/2, then falling exponentially. We have

Lip(h )} = J-ﬂ""“plts}ds

=iz SETU %E]sd“:_'z 7 :
T T +4T +4

4]

The characteristic equation s

PP (T
TH2 +4T +4 "
2 :
o b2 4 Sk=dl 4 +(4_i‘ﬂ‘l) —4{“+b} =10 (4.29)
T# T T

The stability of the equilibrium requires all the roots of the polynomial equation
(4.29) to have negative real parts. By Routh-Hurwitz condition all the roots of the
cubic equation

Vil oy + =0 o (4.30)
have negative real parts i’ and only il
=0y >0 1> w (431)
_4-aT _4-daT d(a +b)
Here # === bo=—g % =2

and the stability conditions are

a+b<0, aT<4and=bT <(2 —aT)? . (432)
Far the equation (4.25), a = a(x*), b = x* g'(x*)
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(i} If the equilibrium is x* =0, then b = x* ' (x*) = 0. The condition of stability
reduces to a = g(x*) < 0 which is satisfied in populition models only if there
is an Allee effect (see Chapler - 11).

(i) If the equilibrium x* > 0 then a = 0. since the equilibrium point satisfies the
condition x* g(x*)=0. Then the stability condition (4.32) redues to
D<—x"g (x*)T <4,

Example (4.4) :

|4,
Take Pz(ﬂ}=$lt‘» it

Then Lp0)} = jﬂ'l pa(s)ds

a
:l‘ll-v:_[%H }di—“-—r—
) AT +1

The characteristic equation is

e =
V1
5 1-aT (a+h)
Or, '\ -F-?—l = Tz_:ﬂ

The stubility condition that both the roots of this quadratic equation have nepative
real parts is

| —aT =0

—{a+b) =0

" From (4.24) we have a = g(x¥), b = x* g(x*),

(i) 1fx* =0, then the stability condition reduces o g(x*) < 0.which is not satisfied.

(it) If x* = 0, the stability condition is Just g'(x*) < 1, since a = 0, We thus see that
for stability there is no requirement that the average delay T not be too large,
Hence, in both the cases the stability criteria are satisfied independently of T. .
From the above example we come to the following conelusion :

“With distributed delay each delay kernel p must be examined in its own right, It
is not true that increasing the average delav always destroys stability,”
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4.5. 0 Summary:

Iu this chapter we have described both the types of discrete-time and continuous time
delay models of populations. We have discussed the process of linearization about
equilibrium and studied the critéria of stability for both the types of delay equations
with illustrative examples.
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Unit 50 Two-Species Models and Qualitative Analysis

Objectives: The object of this chapter is to make a qualitative analysis of two-species
interacting model equations,

Structure

5.1  Introduction

5.2 Two-species Model Equation : Linearization and Stability
5.3 Periodic Solutions and Limit Cyeles

54  Summary

5.1 0O Introduction

The model equations of interacting populations are usually non-lincar. Analytical solu-
tions of these equations are, in general, very difficult. The dynamical behaviors of such
can be studied qualitatively. We can find out the criteria of stability of stationary (or
equilibrium) states, we can find out the eriteria of existence of periodic solutions and
limit cycles without solving the equations exactly.

5.2 0 Two-Species Model Equations Linearization and Stability

We consider a population of two interacting species with population sizes (or densities)
x(1) and y(t). As in the case ol continuous single-species models, we assume that both
x(1) and y(1) are continuously differentiable functions of time t. Let the model equations
tor the interacting system be of the form,

dx

— =F(x, : da
at (X, ¥) (5.1a)
dx .
_=G ¥ aiw 5,]
& (x,¥) (5.1b)

Although in models we neglect many factors of importance of real populations, they
are useful first step and may represent real populations quite well,

Definition :

An equilibrium point (x*, y*) of the system of equations (5.1a) and (5.1b) is
a solution of the equations F(x, y) =0, G(x, ¥) = (). Thus, an equilibrium is a constant
solution of the system of equations (3.1a) and (5.1b) Geometrically, an equilibrium
15 @ point in the phase-spuace that is the orbil of a constant solution.
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Linearization :

One of the main tools in studying continuous models for two interacting
populations is lincarization at equilibria, just as for models for single population.
However, as linearization results can only give, information about the behaviour of
solutions near an equilibrium, they will not enable us to examine such questions as
the existence of periodic orbits. However, for the study of local behaviours about the
equilibrium the linearization is an important tool in dynamical theory.

Let us linearise the sysiem ol equations (5.1) about the equilibrium point
(x®, y*), We write u=x - x* and v = y - y* and transform the system ol equations
(5.1) to the form

du
— =0G(x*4+u, y* +v)
it ( b

dv
—=G(x*+u, y*+v
X ( y*+v)

Using Taylor’s series expansion, we have
F (x* +u, y* +v) =F (x*, y*) + F,. x*, y*) u + F, (x*, y¥) v + hy
G (x* +u, y¥ +v) =G (x*, y%) + G, (&%, y*) u+ Gy (x*, y*) v +hy

where h; and h; are functions that are small for small deviations (or perturbations)
and v in the sense thal

. hytwy) L haluy)
lim =lm =
SN e
i us

0

Neglecting higher-order terms hy(u, v) and h,(u, v), we have the linear system of
gyjuations,

d

B ety u B (et g (520
Ez(}x[x*“,y*} u+G, (x*y")v (5.2b)
di ;

The coefficient matrix of the system (5.2)
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Fo(x*,y*)  E (x*, y*
A:[ S }] (5.3)

G, (x*, y*) Gyf?{*.}'ﬂ
is called the community matrix of the system at equilibrium (2%, y*), Tt deseribes the

effect of the size of each species on the growth rates of itself and the other species
at equilibrium, In matrix form the system of linear equation (5.2) can be wrilten

us
u] [ay, agp |fw
[J y Lzr “21][‘-'} (5:4)

a“:Fx{X*r}’*L aij _Fy{x'g!}'l*)
where a3 =G (x5 "), 4y :G},{J{"'",y*] (5.5

are the elements of the community matriz A,

stability of Equilibrium
Definition : .

An equilibrium point (x*. y*) is said fo be stable if every solution (x(t), ¥(t)
with (x{0), y(0)) sufficiently close to the equilibrium remains closed to the equilibrium
for all t = 0. An equilibrium (x*. y*) 15 asympiotically stable if it is stable and if, in
addition, the solution (x(t), (1)) tends to the equilibrium (x*, y¥) as t = «. These
delinitions are natural extensions of the definitions given earlier for a single-species
population.

Let us now find the explicit form of the criteria of stability. For this, we look
for the solution of the lincarized equations (5.4), The characteristic (or eigenvalue)
equations of the system of linear equations (5.4) is given by

an-t  ap L
dy ap—)
or |2 —(a; +ap) +(a; ag —aja,) =0
or 1?2-p +q=0 (5.6)
where p=a,; +a,, =Tr A, q=(a,) 4,5 —8,; 85;) =Det A .., (5.7)

The stability of the equilibrium point (x*, y""} can be determined from the eigenvalues
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L of the system of equation (5.4) or the community matrix A given by (5.3). Tnfact,
we have the theorem,

Theorem 5.1

The equilibrium (x*, y*) is asymptotically stable if the roots of the characteristic
equation (5.6), that is, the eigenvalues | have negative real parts. According to Routh-
Hurwitz criterion the necessary sufficient conditions for the eigenvalues 1 1o have
negative real parts are

p=TrA <0, q=det A =0 (5.8)
The conditions (5.8) are the sulficient conditions ol asymptotic stability. The trace
and determinant determine the eigenvalues 1. We classify the equilibrium points

corresponding to the dilferent nature of eigenvalues

(1) I the two eigenvalues (i (b ,) are real and negative, the equilibrium is g stable
node,

(i) If the eigenvalues (i i) are real and positive the equilibrium is an unstable
node.

(i) If (I ,1,) are real and of opposite sign, the equilibrium is a saddle point.
(iv) I the eigenvalues are complex with negative real parts, we have a stable locus,

(v} 1f the eigenvalues are complex with positive real parts, we have an unstable:
focus,

(vi) Finally, if the cigenvalues are purely imaginary. the linearised system will have
i center but the original non-linear system will have a center or 4 stable or
unstable locus, depending on the exact nature of the non-linear terms, [sce Fig.

(5.1)]
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Fig. 5.1 Classification of equilibria.

6d




Exercises :
I. The following two-dimensional non-linear differcntial equations have been
proposed as a model of cell differentiation

dx ”

dt #

dx _ 5x2 o
dt  4+x°

(i) Determine the equilibrium points.
(ii) Linearize the sysiem of equations each equilibrium point.

(iii) Determine the local stability of each positive equilibrium point and classify the
equilibrivm points.
2. The following system of equations (in dimensionless form) appear as a model
of plant - harvivore system
dx

—=1-—lkxy(y-I
A y(y =D

dx y]
—=py ==
di }r( X

show that there is only one equilibrium and determine its stability,

5.3 O Periodic Solution and Limit Cycles

In the preceding section we have analysed the behaviour of solutions starting near an
equilibrium point. We now consider the case where the solution does not begin near
the equilibrium; in particular we wanl (0 examine the behaviowr of solutions of
systems that have no asymplotic stable equilibrium, Such system can arise in the
models of predator-prey system. We consider the two-dimensional system

dx

- =F(x,y)

dx

— =G(x,¥).

T (x,¥)
Definition

Let (x(t), y(t)) be a solution that is bounded as t = ==, The positive semi-orbit
C* of this solution is defined to be the set of points (x{t), y(1)) for t = O in the
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(X, y) plane. The limit set L(C") of the semi-orbit is defined to be the set of all puints
(X,y) such that there is a sequence of times t +»  with x(t,) XLylts) § as
n4s . PFor example, if the solution (x(1), y(t)) tends to an equilibrium point
(x*,y*)ast4» , then the limit set consists of the equilibrium point (x*, y*), If (x(t),
y(1)) is a periodic solution so that the semi-orbit C* is a closed curve, then the limit
set L(C") consists of all points of the semi-orbit CF. It is not difficult to show that
the limit sel of a bounded semi-orbit is closed, bounded and a connected set.

Delinition :

An invariant set for the system (5.9) is a set of points in the plane which
contains the positive-scmi orbit through every point of the set. Thus, for example, an
equilibrium is an invariant set, and a closed orbit corresponding to 4 periodic solution
is an invariant set. It is possible to prove, making use ol continuous dependence of
solutions of differential equation on initial conditions, that the limit set of & bounded
semi-orbil s an invariant set,

The results stated above are valid for antonomous differential equations in all
dimensions, but in two dimensions more information on the structure of limit seis 1%
aviilable. The reason for this involves the topological properties of (he plane, especially
the Jordan curve theorem which states that a simple closed curve in the plane divides
the plane into two disjoint regions - which is not valid in more than two dimensions,
The fundamental result on the behaviour in the large of solutions of autonomous
systems in the plane is the Poincare’ — Bendixson theorem,

Theorem 5.2 (Poincare’ - Bendixson ‘Theorem :

If C* is a bounded semi-orbit whose limit set L(C*) containg no equilibrium
points, then either C* is a periodic orbit and L(CY) = CF or L(CH) is a perodic orbit,
called a limit cycle, (which C* approaches spirally, eithcr from inside or fron outside,)
We shall not go to the proof of the theorem. which may be found in many standard

‘buoks on differential equations and dynamical system. We conclude the section by

stating a theorem - due to Bendixson giving a critericn implying that there can not
be a perodic orbil in a given region,

Theorem 5.3 : (Bendixson’s negative criterion) :
Consider the system (5.9), that is

dx dy
—=F i " —:G Xy e
= Ex.ﬂ, o (x.y)
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where F and G are continuously dilTerentiable Tunction of (x, y) defined on some
simply connected domain D¢ R? (by simply connected, we mean that the domain
has no ‘holes’ or disjoint portion.) 1f

dF 4G
o (£

is of one sign in D, there can notl be a closed orbil contained in T,

(5.10)

Proof : The proof is by contradiction . Suppose that we do have a closed orbil C,
with interior || , contained in D that satisfics the equations (5.9). Suppose also that
the right-hand side of equation (5.10) is of one sign. If follows that

”[F’_F Lﬂjdxd}ril] (501

Applying Green's theorem we transform the surfice integrat (5.11) to the form of line
integral, we have then

§{F dy - G dx) 20 | . (5.12)

The last integral may be wrillen as

dy dx]
¢ —] dt
.L[ dt dt : (5.13})

and since C has been assumed o satisfy system (5.9), we may lransform (5.13) to
the form '

§{FG ~GEt= iﬁﬂ.ﬂl =() e 1504)

which contradict (5.12); and so we have been mistaken in assuming the cxistence of
a closed orbit C (contained in D) that satisties the system of equations (5.9). If the
diversence is of one sign, there can not be such an orbit.

Remark ; Since a periodic solution corresponds to o closed orbit and vice-versa, the
above theorem also provides the criterion of existence of a periodic solution of the
system ol equations (3.9).

The French mathematician I, Dulac made the useful observation that the last
system (5.9) is a member of the family of dynamical systems
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dx
T B[xr } F{x1 ,}
dt ! : (5.15) -

Y
4 =By GO6Y)

that share the same phase - portrait. If one can disprove the existence of a closed orbit
for any member of the family, one can disprove the existence of a closed orbit for
every member of the family (5.15), This leads to a minor, but powerful extension of
Bendixson’s negative criterion.

Theorem 5.4 : (Bendixson-Dulae negative criterion) :

Lel B be a smooth function on D¢ R? (with all other assumplions as before). If

; d(BEF) d(BG)
I (F.G _
(F.GF T e SR (T )

is of one sign. then no closed orbit contained within D.
The above theorem does not tell us how to find B(x, y). There is no general
method for constructing B. However, we are lucky enough to find such a function.

Example (5.1) ; Consider the system

(:l_::: x(I-x—y)
-?11:-:5 (x— )y.

ooy NP RO e T LR B ) S

Xy ¥ X ox dy y
The last expression is strictly negative in the interior of the [irst gquadrant of the
{x, y)-plane, Thus, there cannot be i closed orbit that satishies the above system of
equations and that lies entirely within the intenor of the first-quadrant. So, the system
of equation contains no . periodic solution within the first quadrant,

Example (5.2) : Investigate the qualitative behaviour of the solution of the system

(-5
dt 30/ x+10

o o0l
dt ny{l y
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Solution : There are three equilibrium points (x*, y*) = (0, 0}, (30, ), (5, 12.5). The
community matrix at (0, 0) is

S

Since det A < 0, the equilibrium point (0, 0) is unstable. The community matrix at
(30, 0) is

X SO
‘”"[ﬂ —ﬁz)

This equilibrium (30, 0) is also unstable, since det A < (.
The community matrix at (5.12.5) is

s 3
% 0

Here tr A= 0, det A = 0 so0 (5, 12.5) is also unstable. IT we add the two equations
of the model, we obtain

d X |
—(x+yl=x%l-——|—
dtl:- ¥ [ 3{}) 3

Thus (x + y) is decreasing except in the bounded region —3}:{[[—%} In order that
an orbit be unbounded, we must have (x + y) unbounded, However, (his is impossible,
since (x + y) is decreasing whenever (x + y) is large. Thus every orbit of the system
is bounded. Since all equilibria are unstable, the Poineare’-Bendixson theorem implies

that there must be & periodic orbit arround (5, 12.5) to which every orbit tends as
T2,

Exercises :

(1) Determine the behaviour of the solutions in the first quadrant of the system

dx

2 = x(100—4x -2
a A y)
dy

i T ﬁﬂ_.x_

At ¥( y)

(2) Consider the system

ax = x(ax + by}
dt
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‘:I—“" = ylcx +dy)

(i) show that every trajectory with x(0) = 0, y (0) = 0 satisfies x(t) = 0, y(t) =2 0
for all 1 = 0 (Le. rajectories starting in the first quadrant remain in.the first
quadrant foroever

(i1) use Dulac criterion with B(x, y) = I/xy to show that there are no periodic orbits
it ac >0

*Mathematical Note : Routh-Hurwitz Criterion

It 15 difficult or impossible to find explicitly all the roots of the churacteristic
equation ol a multi-dimensional system. There is, however, a general criterion for
determining whether all roots of a polynomial equation have negative real parts. This
criterion known as Routh-Hurwitz criterion gives conditions on the coeflicient of a
polynomial equation

P e PR w1 R =0
under which all roots have negative real parts, For n = 2, the Routh-Iurwitz condition
are

1':’:| = U. HZ }'{]-
which is equivalent to the conditions : r A < (), det A = 0, For n = 3, the conditions
are

a, >0, a; =0, aa,>u
For a polynomial ol degree n, there are n conditions. This eriterion is uselul on
occasions, it is, however, complicated for problem of many dimensions.

5.4 1 Summary:

This chapter consists of two parts;

(i) In the first part we have introduced general model equations of two in-
teracting species, we have found out equilibrivm states and reduced model equations
to the linear form, On the basis of linear equations we have investigated the criteria of
asymptotic stability (local) ol the system.

(ii)  The second part deals with the systems that have no asympmnc
stable equilibria. For such systems we have investigated the criteria‘of existence of
periodic solutions and limit cycles. '
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Umt 6 Twu-Spemes MD['Elb : Lotka-Volterra Systems

Objectives: The chapter consisis of an account of Lotka-Volterra dynamical models of
wnteracting poplations.

Structure

6.1  Introduction
6.2 Predator-Prey Models

6.2.1 Classical Lotka-Volterra Model

6.2.2 Predator-Prey System : A Reulisliu Model
6.3  Competition Models

6.3.1 Lotka-Volterra Classical Ct;mpuhlmn Models
6.4 Mutualistic Models

6.4.1 What iz Mutualism ?

6.4.2 Lotlka-Volterra Model of Mutualism

6.4.3 Co-operative Systems
6.5 Summury

6.1 O Introduction

When two or more species interact the population dynamics of each species is effected.
In general, the 15 # whole web of interacting species, called the tropic web which make
structurally complex communities. The dynamical models of such interacting species
are provided by Lotka-Volterra systems of equations and there are three types of model
equations dealing with interactions. Three models are (1) predator-prey model

(11} competition model and (iii) mutualistic model.

In this chapter we shall study the dynamical processes involved in each type of model
systems.

6.2 O Predator-Prey Models
6.2.1 Classical Lotka-VYolterra Model

Let us consider a prey-predator system. Let x(t) be the number (or density) of prey
and y(1) be the number (or density) of predators. Lotka-Volterra model equations for
the system are
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ek G . Az

i x = bay (6.1a)
d :
?:::—u,y +Cxy weo  COVER)

The first term on the right-hand side of (6.1a) implies that the prey will grow
exponentially in the absence of the predator : the prey are limited by predator. The
second term describes the loss of prey due to predators. This loss is assumed to be
proportional to’ both the numbers of prey and predators, resulting in what is often
described as-a mass-action term. Turning to the right hand side of equation (6.1b),
we see that the loss of prey heads to the production of new predators, and thatl the
predator population decreases exponentially in the absence of prey. The system of
equations (6.1) cannot be solved analytically, but we can obtain some information
about the behaviour ol its solutions by studying the orbits or trajectories of solutions
in the (x, y) plane. Eliminating t from the Lotka-Volterra cquations (6.1), we huave

dy (dt _dy _y(-p +cx)
dxfdt dx x(} —by)

We may solve this cquation by separation of variables

ot 520

of — log x =1 logy +ex +by =h
where h is a constant of intepration. Let us write

Vix,y)=-} logx - log y +ex +by - (6.2)
So that the orbit of the system is given by
Vix,y) =h = 53
= : o dV Y :
The minimum of the function V(x, y) is given by Ezﬂ and a—=ﬂ. that is, by
; :
)
lIL}'J-*[%.E)- This is also the equilibrium position (x*, y*) of the Lotka-Vaolterra
ot 1 *—E x_;l'_
system (0.1), that 15, X*= c,_}r =

So V.

min

=S Vf.‘{,}fﬂh-x" i ]UEE = lngl_ U +A zhn
¥yt (& b

Every orhit of the system is given implicitly by an equation V(x, y) = h for some

s



constant h = ho, which is determined by some initial conditions. We make the change
of variables :

x=x%+u :E+u
(&

A
y=y*ty=—+v
C

Then V(x, y) becomes,

Vix,y)=—} log [E +U}—l lug(h— + v)
¢ b

+c[p +u]+ t{l—+v]:h

¢ b

We observe that

log [-F-l +u.)=1-:ng,E +Iug[l+ﬂ]
c ¢ I

2
If (h - ho) is small, we may use the approximation log (1 + X}~ = X—% s0 that,

we have
' cu  ciu’
Ing[-E+l|]=Iﬂg1-'L+—— 5
U c. U e
I bu bic?

lo (l +vJ=!n e
*lb AT |
Then the orhits V{x. y) = h are approximated by

2
B ey +L “* =l ]ug’l‘] —bwv —|th3 Hl +cu H +hv =h

— log =
c [

ce ). h? !
or, [? u = v1=“+ulﬂg%+l log-==ih =) =h =h, (6.4)

\ .
which represents an ellipse (if b = hy) with equilibrium (x* ,}"*}:(':_ITEJHH ils centre.

This shows that for (h - h,,) small and positive the orbits are closed curves around the
equilibrium point, since the solutions run around closed orbit they must be periodic,
It is easy to see that the maximum prey population comes one quarter of a cycle
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before the maximum predator population (see Fig, 6.1).

Makimum pregator population

P poey poplation

Figiire 6.1

Historical Background :

How did this model (Volterra model) arise 7 In the mid-1920s Umbersto
D’ Ancona, an Italian marine biologist, performed a statistical analysis of the fish that
were sold in the markets of Trieste, Fiume and Venice between 1910 and 1923,
Fishing was largely suspended in (he upper Adriatic during the First World War, from
1914 1o 1978, D' Ancona observed the increase of relative frequency of some species
like Selachians (old name of Sharks and Shark - like tish) during the war years and
decrease with the increase of fishing, The relative abundance of prey, in turn, followed
the opposite pattern. Why did this happen? At that time Umberto was engaged to
Luwisa Volterra an ecologist. Umberto posed this question Lo Vito Volterra, his future
father-in-law and a famous mathematician, Volterra (1%26) constructed a model known
as Lotka-Volterra model (because A. J, Lotka (1925) constructed a similar model in
4 different context about the same time) based on the assumption of that fish and
sharks were in predator-prey relationship,

Example (6.1): Show that the period of Oscillation of prey and predator pofmlmiﬂn
sizes of Lotka-Volterra system is 2z jp
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Solution | Linearing the system of equation (6.1) about the non-trivial equilibrium

(‘:/:l/ﬁ) we have Lhe linear equations

du > _b_”\.r (6.5a)

di C

dy hc : :

Bhas i 6.5

dt b . (0-3k)
It i5 easy to combine both the éguations (6.5a) and (6.5h) 0 give

d*u ,

—=—j|Lu

i H (6.6)

which is the equation of a simple-harmonic Osillator with frequency 2—‘
2.2 Predator-Prey System : A Realistic Model

The Lotka-Volterra mode] represented one of the trivmphs of early atlempts at
mathematical modelling in population biclogy. The dynamics of predator-prey system
modelled by Volterra is interesting, but it is unrcalistic and there are some flaws in
the model. The model is structurally unstable and 1s extremely sensitive to perturbation.
A small change in the initial population size may produce a change to a different
periodic orbit, while the addition of a perturbing term to the system of differential
equation may eliminate the balanced neuntrally stable family of periodic orbils that we
have observed. We, theretore. need fo loolk at other predator-prey models.

We now consider a more realistic model of predator-prey system by assuming
that in the abscence of predators. the prey specics grow logistically

ﬂ::-N[l—E]-uNP (6.7)
dT k

N _ yNP—mP

dT

where N is the prey-population size, P that of predators, we have written time as T
(rather thun t) because we will soon rescale this variable. To ease the analysis, we
non-dimensionalize all the variables step and by step.
We use the first dimensionless variable

N

f =

K

Then the system (6.7) becomes

(6.8)



dx

~Z = x(l - x) —cxP

v rx(l —x) —cx (6.9a)

dpP

— = bkxP —mP

aT m (6.9b)
To simplify (6.9b), we use the dimensionless variable

c

i (6.10)
and eliminate P, to have

d

ﬁ:m{t—x—” (6.114)

dy

— =hkxy - '

5 Xy — my (6.11b)

Finally, we write t = ¢ T (6.12)

K d i El‘ .Ei.—_d _d_—ri

and note that o (6.13)
Then the system of equations (6.1 la) and (6.11b) takes the [orm

4 :

)y —

= il=-x-y) (6. 14a)

dy _ bk [,; _E) |

rREEE e (6.14b)

we wrile T (6.15)

With these, we have the system of equations

d -
d—J:: _}[{1 - X —-j.l'} (ﬁ, I ﬁd}
dx =h(x+ ) - 6.16b
% xe . (6.16b)

The simplified model {6.16) has three equilibria : (x*, y*) = (0, 0), (1. 0}, (0, L =0 ).
These equilibria occur at the intersections of the prey and predator zero growth
isoclines®, [see Fig. (6.2}]
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|
G e - 1 X

Fig, (6.2) ¢ Predutor and Prey zero growth isoclings,

[Zero-growth isoclines are the curves in the (x, y) plane or phase-plane along which
dx

d
I-——Dand d_!::ﬂ' These curves should properly be called nullclines.

The community matrix of the system (6.16) is

[I-Zx—y -x }
A=
b bt )y,

A (x*, y¥) = (0, 0) the community matrix is

p‘—l 0
_[D L) }_ v (6.18)

Eigenvalues } =1,
Let det A=-fs <0.50(0,0) is a saddle point (Fig. €.3), At (x*, y*) = (1, 0), the
community matrix is

= 9
A=[ﬂ O J . (6.19)
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Eigenvalues =—L} (1 )detA s ( ).

Ifo > 1, det A =0 which implies (1, 0) to be a stable node, If1 < 1, det A < 0 which
implies (1, 0) to be a saddle point (Fig. 6.4) At (x*, y*) = (¢, | —1), the community
matrix is

- A )
Al o iy KOE0)
The characteristic equation is '
Vil o (- ) =0 o ITEEED

By Routh-Hurwitz crilerion the equilibrium (1, 1 —u ) 15 stable if ¢ < | end unstable
if 0 = | (Fig. 6.5). The eigenvalues are given by

2 12
e *’ﬂq @= (6.22)

If we examine the discriminant, we see thal we have a node if

f }1-1-45 : . v 16.23)

and a focus if

e 6.23
|4 i)
The model does not show any periodic orbits — in contrast W classical Lotka-

Volterra system. The addition of a small amount of prey-density dependence has
destroyed the family ol periodic orbits that we have observed in the clussical Lotka-
Volterra model. It leads to the conclusion that the classical Lotlka-Volterra system is
structurally unstable,
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Fip: 6.3 Pliase porteant forn =)

b3

(L8]

Fig. b4 Phase porimil fara < 1= 80 1+45

79



Fig. 6.5 Phase portrait fora < 1, a < 4f(1+4)

Example (6.2) : Show that the system of equations (6,16) do not contain any periodic
solution in the first quadrant of (x, y) plane. (see example (5.1), Chapter-V).

Remarks : Predator-Prey system is the most dynamic of all interacting populations.
There are many other things o be discussed. We have discussed the eriterion of
periodic orbit and its significance in the predator - prey model equations. We have
not discussed limit cycles and its ecological significance. What biological factors
create limit cyeles? The inclusion of 4 more realistic functional response is one such
factor. The functional respanse is the rate at which predator captures prey. Heretofore,
the functional response was a linearly increasing function of prey density, However,
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predator may become satiated. They may also be limited by the handling time of
catching and consuming their prey. This limit on the predator’s ability can have a
profound cffect on the dynamics of a predator-prey model, There are four different
functional response curves. Predator - Prey models with functional responses cun
exhibit limit cycles, bifurcation and chaotic behaviour in the dynamics of the systems,
These are. however beyond the introductory course.

Example (6.3) :

Determine the qualitative behaviour of a predator-prey system modelled by

d—x-x[l—j—]— B
dt 30/ x+10
dy [ xy _l)
dt y x+10 3

Solution

We have studied this system in Example (5.2) of Chapter - V and shown that
every orbil approaches a perindic orbit around the (unstable) equilibrium
(5, 12.5). Thus the species co-exist with oscillations.

Exercises :

(1) Determine the equilibrium behaviour of a predator-prey system modelled by
s [ 5 _EJ
gt \x+10 3

dt 13/ x+10
(2) Show that the equilibrivm (x*, y*) with x* =0, y* > () of the predator-prey
model '

dx - fﬂ(l = i)_ ﬂ-&
dt k

a9y _, (i_ aB )
& Tlx+A A4B

is unstable if k > A + 2B and asymptotically stable if B <k < A + 2B.

(3) Investigate the stability of the equilibrium of the chemostat modelled by the
equations
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dt C+A

d ib) J acy
—— T C —————
dt e ) C+A

where y is the number of bacteria and ¢ is the concentration of nutrient in the
chemostat.

6.3 O Competition Models

6.3.1 Lotka-Volterra Classical Competition Model

We consider the classical model of competition due to Lotka and Volterra. The
Lotka-Vollerra competition model is an interference competition model : two species
are assumed to diminish each others per capila growth rate by competition.

We begin with two species, with population sizes X (t) and x,(1) at any time t.
We assume that each species grows logistically in the absence ol the other, The
maodel equatiors are

| dx, X i
PR Sjeeicxd WSS )y e M - ;
x, dt fu[ kK 13 et = L0 250)

| dx Ky
- = "z[] --ki- _—fz'm] . (6.25h)
Each individual of the second species causes @ decrease in the per capita growth of
the first species; and vice versu, To parameterize this effect, we have intraduced a
pair of competition coefTicients o, and 1 ,,, that describe the strength of the effect
of the species 2 on the species | and of specics | on the species 2 respectively, The
system of equations (6.25) can be rewritten as

dx Y
dtl =k_llx|{k| —X| = 2 %3) o (6.26a)
dx; _ 1

Kalks — K = 5y XD 6.26
it kzz':z 2 = a1 % (6.26b)

The complete characterization of the dynamics of the eguations (6.26) revolves around
the orientations of zero-growth isoclines. The x,—zero growth isoclines given by

dxa
—==1), are
dt

X, =0 | )
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HI'I:d KI = k-z e | -z]xl (T {ﬁ.z?b}
|see Fig. (6.6)]. Below the line given by (6.27b), x, increases; above this line, x,

; ; ; - dx
decreases. The x| - zero growth isoclines in turn, given by d_tlz 0, are

X, =0 o (6.28a)
Below the line given by (6.28b), X, increases; above Ihis, x, decreases (see Fig, 6.6)
X, X,
|
K S
K: =1 _:"w.
Biy 1%
\ l TS V==
T : :_ e 7S §
0 el . b 3 X
0 Kiay, - 0 K,

Fig. 6.6 @ Zero-growth isoclines,

One of the isoclines (6.27b) and (6.28b) may be entirely above the other.
Alternatively they may cross each other. There are four classes, depending on the
relative position of x, and x, intercepis of these two zero growth isoclines. Each case
corresponds to a different phase-portrait. Let us consider each one in turn,

Case (1) ; 1t each intercept of the lines given by (6.27b) is greater than the
corresponding intercept of that for (6.28b), so that

k, = LTI > XL
2 k,
k ¥ (6.29)
_1}k ar 'I 2] {_1
gy k)

x, excludes x, [see Fig. 6.7]. Thus, if species 2 has a relatively large effect on species
| and species | has a relatively small effect on species 2, we expect that the species
| will go extinct and the species 2 will approach its carrying capacity.
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Case (2) : If the inequalities (6.29) are reversed
k k
Ao S 213"—?' (6.30)

Ko k)

so that the species 2 has small effect on species 1 and species | has large effect on
species 2, the compelitive outcome is also reversed : species | approaches its carrying
capacity and species 2 goes fo extinction (see Fig. 6.8).
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C 3y« If 0 ::-—k' [ :-v-—kz 6.31
: 12 . 21 ;
ase (3) k, K, (6.31)

In this case both the isoclines cross each other, In this case interspecific effects are
large for both species. Two equilibria (k1, Q) and f'D k} corresponding to the
exclusions of one or the other species, are now both qtable nudea (see Fig. 6.9). One
or the ather of the species will go extinct, depending on the initial conditions. There
is o saddle point that lies between the two nodes,

Case (4) : I 0 “'-h-" "'-k_z 6
ase (4) : 12 k, 2 K, av 4B32)

the equilibria I.'k1. 0) and (0, k,) are unstable saddle points and trajectorics are drawn
towards a stable node n the interior of the first quadrant. (Fig. 6.10).

Example (6.5) : For the competition model (6.26) show that there is no closed orbits
(or periodic solution) within the first quadrant of (x;, x;) - plane.

Solution : Recall Bendixson - Dulac negative crltermn Let B(x,,x5)=—— Since the
divergence Xi%a
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BRSO R 8 . (6.23)
ox, dx, k% kyx,

is strictly negative in the interior of the first quadrant, we can be sure that there are

no closed orbits (or periodic solutions) contained entirely within the first quadrant, -
For three out of the four cases we have considered, ont species successfully

excludes the other, Only in case (4), where interspecific effects were weak relative

to intraspecific effects, did the two species coexist. This is the basis for Gause's

“Principle of Competitive Exclusion™, -The experimental evidence is somewhat

cquivocal and there ts considerable doubt about the universability of the principle,

6.4 Mutunalism Models

6.d.1 What is Mutualismn

Mutualism is aa interaction in which species help ene another, The interaction
may be ;
(i) lacultative meaning that two could survive separalely
or (ii) obligatory, meaning that each species will become extinet without the
assistance of the other,
Again mutualism can be classified into four types :

(1) Seed-dispersal mutualism : A great number of plants rely on amimals to carry
their seeds to favourable siles. Plants frequently produce [ruits and nuts Lo
attract and rewards dispersal agents. Squirells are undoubtedly the most familiar
cispersal agents.

(b) Pollination mutualism : Pollination is the transfer of a plants” pollen grains
before fertilization. In gymnosperms, the transfer is from pollen producing cone
directly to an ovule. In angiosperms, the transfer is from an anther 10 a stigma.
Most gymnosperms are wind pollinated and most angiosperms are animal
pollinated, Angiosperm tlowers often reward pollinators with nectar,

(¢) Digestive mutualism ; The guts of many animals are fille with bacteria, yeast
and protozoa that help to breakdown food, Ofien, the host is unable to digest
the food on its own. Cattle, deer and sheep rely on bacteria to breakdown plant
cellulose and hemi cellulose into digestive sub-unifs. =

(d) Protection mutualism ; In 1874, the famous naturalist, Thomas Belt, des.cuhed
a remarkable mutualism - between ants and acacias, The genus Acacia contains
a large number of trees and shrubs native to warm parts of both hemispheres.
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Many of the plants in this genus house, suppoit and employ ants. The ants
guard the acacia against hervivores predators.

6.4.2 Lotka-Volterra Model of Muotaalism

Let us consider a simple model for a one-to-one facultative mutualism. This will be
followed by obligatory mutualism, These two models are Lotka-Volterra competition
models equation in which the negative competitive interactions has been turned into
positive mutualistic interaction.

Let us consider a system of two species with population sizes (or densities) x,
and X,, Each species grows logistically in the absence of the other. Each species has
per capita growih rate that decreases linearly with size (or density)

e (' _i'] | (6.34a)
Xy (it k. i
| d12 . xS
=pl1- :
X, dt rz[ kzj . 16.34b)

The introduction of mutualism between the specics leads to the equations.

i%%[j_m. 4 n]

X, dt k, {6.35a)
1 dx, (Xy =1 &)

Ay = {— 2 3 el .

x, dt Iz[ K, } 6.35b)

where the parameters 5, and ¢ |, measure the strength of positive effect of species
2 on species | and of species 1 on species 2 respectively. The system of equations
(6.354) and (6.35b) can be written as '

g

dt =k—[x!“‘l =%+l g Xy) ' . (6.364)

E.x—g: -‘lxz{kz = Xa +ll 41 %)

dt ks ¢ o (6.36h)
This is a model of facultative mutualism so far as

n=0>0 k =0k; >0 ne KT

Each species can, in other words, survive without its mutualist.
Let us look at the zero-growth isoclines for this system. The x, - zero growth

dx
isoclines given by i Dare
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Lz =n [ﬁESﬂ}
md X3 =K +44, X, w (6.38b)

[see Fig. (6.11}].

x|
Fig. (6.11): x5 - zero growth isoclines, k, > 0,

Below line (6.38h), Xy increases; above this ling, x, decreases.

The x| - zero growth isoclines given by %:ﬂ, are
|

Xy =0 w  16.39a)
and X, =k, +1 ;5 X, o 16.39b)
(5ee Fig. 6.12)
L5}
: — {
i IJ‘:l g
i f T

Fig. 6:12 : x; zero-growth isoclines; k, = 0.
To the left of line (6.39h), X increases; to the right of this line, x | decreases. The
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zero-growth isoclines (6.38b) and (6.39b) may either converge or divergence. They
converge il

|
— >0 g

f 12

or g g 9> (6.41))
In this case, the two isoclines cross em:'h other and orbits approach a stable node in
the interior of the first quadrant (see Fig. 6.13). Since the slopes of the zero-growth
isoclines are positive. the coordinates of this equilibrium are greater than the carrying
capacity k and k! each specics surpasses ils carrying capacity because of its mutualist,
If o8 |"'~'1 o (6.41)
zero-growth isoclines (6.38b) and (6.39b) diverges. Now, ThE zero-growth isoclines
do not cross and there is no non-trivial equilibrium in the first quadrant. The population
undergo unlimited growih (see Fig. 6.14) in what has been called “an orey of mutual
benefaction™.

]
24 ; -
T T T T T , "
.' 1 I‘ I.‘u \ '\. i ] r » A 1 4 /p— - e o A .-J
b= 'I L FR GO T L R e SR { A& = ¥ F ¢« o
T T T e S T ldqy e = « # 4 & & 4
e = v b v = = o w0 o 4 4 4 A
| - ;
¢ v ¢ AN S I LR A R LI
d & o« o o II‘-' i ¢ ¢ & £ & 84 | .i b
' PR SR A R S I | i ;
05 d £ # & 4 § X > v = $ ¥
05 d4 « o« & 4 4 1 b b W%
£ oduw ot o A N A
. 4 4 0 4 & 4L N v
f o o ot A 1"!;t . . e - .
D - T T 1 T T El E e O o A A B e T
T | T 1
] U ; 4 4 0 05 | 1.5 2
Fig. (6.13) Facultalive mutualism Fig. (6, 14); Facultative mutuatism
for 0 @1 5 <1 for o 2 4, >1

Equations (6,36a) and (6.36b) can be used as a model for obligate mutulism if we

assume that
n<0.n<0.k <0,k <0 v (6.42)
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Neither species can now survive on its own; each species is banking on the other to
save il. Equations (6.38) and (6.39) are still the correct equations for Xy and x, zero-
growth isoclines, However, since kl and k, are negative, the lines (6,38b) and (6.39b)
look rather different [see Fig. 6.15 and 6.16]

Xi {8
-
1
i )‘/,’
]
| ¢
| v
| r.!!
I #
| -
; 4
' !/:z - —
/’ |
- 1
— ,/ 1
T ’ I
: il |
i i |
i !
|
K?
Fig. (6.15) : x5 zero-growth isoclines. Fig. (6.16) : », zero-growth isuclines,
ky <0 . k<@
We are again contronted by two cases, In the first case

|1 J.E 21 ‘:l e (6‘.43}

and the two isoclines (6,38b) and (6.39b) do not intersect in the first quadrant. The
stable node at the origin is now the only equilibrium. Both populations decay to zero
(see Fig, 6.17). the two species rely on one another, but interaction is 0o weak to
rescue either species.
I the interaction is strong .

Fag oz >l we (6.44)

the isoclines (6.38b) and (6.39b) do intersect in the first quadrant (see Fig. 6.18).
There is now a saddle point in the lirst quadrant. Tf mutualist densities are Tow, both
populations go extinet @ the interaction is strong but there are too few mutualists to
rescue cither population. If mutualist densities are high, both species increase in
another “orgy ot mutual benefaction”, Orbit now divergence to infinity

[see Fig.6.18]
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6.4.3 O Cooperative Systems

All orbits of two-species mutualism models that we have discussed appear to tend
to equilibrium or to diverge to infinity. Is there any limit eycles that we hiave missed?
Previously we have used the Bendixson - Dulac negative criterion to prove that
systems do not possess limit cycles. Now we can use the fact that our models are
cooperative.

Definition : The system

dx
EL:r{,;sz} o (6.45a)
dx
d—f=g{xi_xz? .. (6.45b)

defined on . g2, is cooperative il
LETI o (6.46)
o, dx,

for all (x;,x;)¢ D

Example (6.6) :

I,Et f[xl.x2}=;—'xl{k1-xi 40 12}(2} aia {6-4?3}
1

T

g[x,,xz}:k—zx; (kg —%; +15;%)) v (6.47h)
2

an the (invariant®) Hirst quadrant X, (xi, x;) — plane. Since

df n

— = X, 20 : ;

TR X, (6.48a)

B 6.4

ax, 21 K 2= we (6.48b)

those mutualism models are cooperative on this quadrant,

Theorem (6.3) : The orbit of a system that is cooperative either converge to equilibria
or diverge to infinity,

Proof : Let us look at the (X, x;)plane (Fig. 6.19). Each trajectory of a planer system

generates an orbit in this (X, X,) plane. If the planer system that we are looking at
is everywhere cooperative, the first quadrant of the (X}, X,) plane is invariant*. To see
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this, we consider an orbit that attempts lo leave the first quadrant by crossing the
positive X, - axis, In the light of the equation (6.45a) and our definition of cooperative
system,

d (k)= dle = of dﬂ+i dﬂ
dt At dxy dt o 9xy dt (6.49)
of dx dx
=— —250 (since %, =—2L iszeroon X ,—axis
el =il L (6:49b)
on the positive x, - axis. The orbit cannot cross the positive X, - axis; for when the
orbil crosses the positive X, - axis, we musl have %, =?=D so that X; ¢uan not.
i t

increase with time. By a similar argument the orbit can not cross the positive X -
axis. Finally, the orbil cannot cross through the origin, since this would imply that
the original trajectory passes through a rest point. Similar argument also shows that
the third guadeant is also invariant™.

Ultimately fas = =) X, and X, are of constant sign. 11" we start in the first or
third quadrant, we will stay there forever 1 we start from the second or fourth
quadrants, we may either stay in those quadrants or we may enter the first or third
quadrants; which are invariants, Either way, x; and x, are ultimately monotonic
function at time, This precludes limit eyeles and implies that trajectoris either approach
equilibria or diverge to infinity.

I

lnvariant

i
: IV

Inyariant

Fig. (6.19): (X, 5} plane

* A set (a region) is invariant if an orbit starting from this set (or region) will stay
there forever.
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Exercises !
I. Determine the outcome of the competition the system

dx
—=x(100 —4x -
m ( y)

dx
—=y(60—x—y).
5 el=x y)

2, Whal is the outcome of a competition modelled by the system
dx 2
—=x(2-x—-x" —y).
dt e ¥)
dy 2
— = y(16—2x—x"—y)
1 y( y)

3. For the mutualistic system
dx
—=x(=20-x +2
ST y)

dy :
= =y(-504+x—2y),
7 ¥ x—2y)

Find the equilibrivm points and determine their stabilities.

6.5 O Summary

This chapter consists of three parts® !

(i) The first one deals with the classical Lotka-Volterra system and the modification for
a realistic model of predator-prey systems,

(1) The second part deals with Lotka-Volterra model of the competition system,

(i11) The third deals with the Lotka-Volterra model of mutualism or symbiosis. It also
includes the mathematical analysis of co-operative systems.
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7.1 Introduction : Functional Groups

Objectives. The chapter consists of a brief account of dynamical modeling of ecosys-
tems.

Structure:

7.1 Intraduction: Functional groups

7.2 Linear Food-Chain: constant production
7.3 Logistic primary production

7.4 Material eycling: Linear Tropic Interaction
7.2 Summary

Two useful tools of studying a natural system are the laws of conservation of energy
and mass, The study of ecosystem form the point of view of energy-flow (or energeties)
was advocated by Odom and Odum (1975). The early ecosystem models, which used
- energy as the currency were not successful everywhere, Although energy inflows to
many systems can be estimated quite accurately, the outflows are, however, hard to
define and measure precisely, More recent works reveal that the energy flows inside
an ecosystem oceur in the form of chemically bound energy and are thus accompanied
by flows of elemental nutrients. The inflows and outflows of nutrients are more
easier to define and measure than their energetic counterpart. Modern ecosystem
models thus adopl one or more essential elements, usually carbon, nitrogen or
phosphorus, as their ‘currency’. For the study of the flow of nutrient we focus from
populations to functional groups - that is, groups of species which cause the passage
of nutrient from one place to another, For example, in a model of grassland ecosystem
we might skate over wealth of biological details and differentiate only between plants
which are edible by harvivores and those which are not.

7.2 Linear Food-chain : Constant Production

(i) Dne Level system :

We consider an ecosyslem with a single functional group, which we shall call
‘plants’, We take carbon biomass as our currency and write the current carbon biomass
density of plants as P(1) gf;afmz_ We assume that photosynthesis produces new biomass
al a rate o ge/m*/day and that a plant of earbon mass o loses carbon through mortality
and respiration at a rate E 4 gelday. The dynamics of this very simple system is
described by a single equalmn
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dP
e 4 .0 (7.1)

which has the steady-state,

¥

| P

P i (7.2)
Thus the steady-state carbon density of plant (called steady-state standing stock) is

given by the product of the primary production rate P and the average residence lime

of a carbon atom in a plant [%p]. Let P = P* + p, p being the deviation from the
steady-stale value, then the equation (7.1) reduces (o

dp
= e
dt P {7.3)

implying the stable steady-state for p > 0.

(ii) Two-level System : ,

We now add a second functional group (‘hervivores') to our ecosystem. Let
H(1) ge/m?® be the carbon biomass density of these organisms. We assume thal
respiration and mortality remove hervivore carbon at 4 per-capita rate § p/day, that
hervivores feed exclusively on plants, with a linear [unctional response characterized
by an attack rate ¢ j mjfday.fgr:. This implies that in the presence of plant carbon
density P, a hervivore of weight ¢ consumes plant carbon at a rate 0 Py gc/day. The
system dynamics is described by a pair of coupled differential equations

dp

=t P PH Ao (7.4)

% 1 PHH H e s (1.5)
This system has two steady-states :

P*=§—|:.-, H* =5Lh{? + op%) (7.6)

=Ll Hr=0 (1)

Let us interprete the biological significance of the first-steady state (7.6). For a
biologically possible or sensible solution, H* = 0. As a result we have,
p b :
iy il
b, (7.8)
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which implies the decrease of steady-state standing stock of primary production with
the presence of harvivores.

To study the local stability, we put
_ H=H*+h P=P*%+p (7.9)
Putting these values in (7.4) and (7.5) we have the linearised equations,

%T =1 H*P
- : ) (7.10)

Secking the solutions like e shows that the eginevalues | must satisfy the characteristic
equition

1240 , ¢ g HY 14 2PHHY =0 (7.11)

The constant term snd the coefficient of | are both unequivocally positive for
biologically sensible positive) steady-state. For the stability of the steady state (7.6),
the eginevalues, that is, the roots of the characteristic equation (7.11) must have
negative real parts.

The system of linear food-chains can be extended to a three-level system by
Caddition of a lunctioral group of “consumers’™ which eal (only) hervivores,

7.3 Logistic Primary Production

The models discussed in section (7.2) are based on the assumption of constant
primary production. Although these models are acceptable approximations for some
systems, for many other the rate of primary production depends on the stunding stock
of primary producers. To investigate the imphcation of this, we shall modify our
model of linear food-chuin by assuming that in the absence of hervivory, the plant
carbon biomass grow logistically to a carrying capacity k, that is,

dP P] ]
08 02
dt rp[ k Wike)

Two - level System :

We investigate a very simple system, in which the hervivores are the only
additional tropic levels. We retain all other assumptioas of section (7. 2]1 so that the
system dynamics are described by the equations,
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dp p
L S
dt ”:'[ k) th

7.13
B, PHA L H (30
dt
This system is mathematically identical to the predator-prey model with logistic prey

and linear predator functional response. It has two steady-states (K, 0) and (P*, H*)
where

pr_tn H;..zL[] _Pf] (7.14)
1 k g h K

The co-existence stendy-state (P*, H*) is biologically sensible, that is, P* > 0 and

H* = {), provided the required plant carbon biomass is iess than the carrying eapacity,

thal is,

K2 b (7.15)

Small deviations about steady-state (P#, H*) are described by

dp _rP*
P T p-g, P*h
gk (7.16)
dh
— =1 HH‘-
dt h p

and hence a characteristic equation,

- "

H+'i1 £ 2P*HE=0 (7.17)

Since both the constant terms and the coefficient of & in this characteristic equation
(7:17) are positive For all biclogically sensible steady-states, we see that all such
steady-states are necessarily stable. We can extend the model by addition of u consumer
functional group o our logistic primary production model,

With a basic discussion of linear food chain and logistic primary production we
close up the chapter o ecosystem. The models of food-chain and many other ecosystem
problems are similar in both structure and dynamics tv those which we have set out
to describe imteracting groups of unstructured population. We can, therefore, use our
knowledge of such models to inform ouwr view of the likely propnerties of ecosystem
models,
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7.4 O Material Cycling : Linear Tropic Interaction :

In the previous sections we have considered the passage ol elemental malter such as
¢arbon, phosphorus er nitrogen. and resumed the primary production rate either to be
a constant or a logistic function. The primary production is limited by some factors
other than the elements being modelled : for example light. However, in closed
system the elemental matier needed for primary production must be provided through
recycling - by morlality and respiration in the case of carbon, or by mortality and
excretion in the case of phosphorus and nitrogen. Few ecosystems outside the laboratory
are closed to carbor, s0 in this section we explain the dynamic implications of
closure of an elemental nutrient (i.e. nitrogen and phosphorus).

A Nutrient - Plant System :

The system model is very simple, it consists of a nutrient compartment,
containing limiting natrient at density Ni1), and the plant functional group, which we
now characterise by its limiting nutrient density P(1). We assume that the plants have
a lincar response, with slope ap and a mortality excretion rvate ip. The system is
closed, so any nutrient taken up by the plants is lost o the free nutrient pool, and all
nutrient lost by plants due to death and excretion is immediately (or instantaneously)
added to the nutrient pool. With these assumptions, the system dynamics are,

dp

a=ﬂ FN-P—E I-‘P .
v (118

E:ﬁ P4 PN -

dl P P

Equations (7.18) imply that

dN + dP _ E{P'H'-J} =0 F A L)

de  dt ot

In other words, the total quantity of nutrient contained in the system is constant as
it should be for a closed system. Representing the total amount of bound and unbound
nutrient by S, the dynamical equations (6.18) reduce to

dP

o JNP5 P N(H) +P(1) =8 AR 75
Eliminating N, from (7.20), we have,
dP o :
=l S pll——=tp
T B p}[ E } v HT2D)
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Writing =0, sS4 o Xy =—F_ the equation (7.21) reduces o the form of logistic
: .
equation
dP P
d_t= |pP|:[ _K_I.J 3 (7.22)

From (7.22), we can conclude that the model has an unstable steady-state at P = 0
and a globally stable steady state at P:KI1 =(5—4 i f p}.

7.5 0 Summary

In the introduction (section 7.1) we have explained the concept of functional groups for
the modeling of ecosystems, Tn sections(7.2) we have discussed the linear food-chain
model of ecosystem with constant production. Tn section (7.3) we have modified the
constant production model to the logistic primary production model. In section (7.4)
we have discussed the basic concept of material cycling in functioning in ecosystems.
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"For dealing with any natural phenomena-especially one of a vital
nature, with all the complexity of living organism in type and habit—
the mathematician has to simplify the conditions until they reach
the altenualed character which lies in the power of this analysis"

—Kerl Pearson
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Glossary of Ecological Terms

Abiotic : not biological or not relating to living organisms.

Abundance ; large amount or large number of something,

Algae : tiny plants living in water or in moist condition.

Allele : one of two or more alternative forms of a gene; which can imitate each
others form.

Allelopathy : harm caused by one plant to another plant, usually by producing a
chemical substance, :

Anther : part of a stamen which produces pollen.

Biomass : all living organisms in a given area or al a given tropic level expressed
in terms of living or dry weight,

Biome : large ecolog.cal region characterized by similar vegetation and climate (such
as desert, the tundra ete.).

Bion : single living organism in an ecosysten.

Biota : flora and fauna of a region.

Bloom : (a) [lower; the blooms on the orchids have been ruined by frost (b) algae
bloom = mass of algae which develop rapidly in a lake, 2. Verb, to flower. The plant
blooms at night, some cacti only bloom once every soven years.

Carrying Capacity : maximum number of individuals of a species that can be
supported in a given area.

Cellulose : carbohydrate which makes up a large percentage of plant maller.
Community : group of different prganisms which live together in an area, and which
are usually dependent on each other for existence.

Diversily : richness of the number of species in an area.

Ecology : study of relationship among organisms and the relationship between them
and their physical environment.

Deep ecology : extreme (orm ol ecological thinkmg where humans are considered
as only une species among many in the environment.

KEcological balance (or balance of nature) : situation where relative number of
organisms remain more or less constant. :
Ecological succession ; series of communities of organisms which follow on one
after the other, until a climax community is established.

Ecospecies : subspecies ol a plant.

Ecosphere : biosphere, part of the carth and its atmosphere where living organism
exist,
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Ecosystem : system which includes all organisms ol an arca and the environment in
which they live. '
Etholog : study of the behaviour of living organisms.

Evolution : heritage changes in organisms, which take place over along period
involving many gencration.

Genetics : study of the way the characteristics of an organism are inherited through
genes.

Genome ; all the genes in an individual.

Genotype 1 genetic composition of an organism.

Genus : group of closely-related species.

Green house : building made mostly of glass, used to raise and protect plants.
Green house effect : elfect produced by accumulation of carbon dioxide crystals and
water vapour in the upper atmosphere, which insulates the earth and raises the
atmosphere temperature by preventing heat loss.

Habitat: typc of environment in which an organism hves.

Heredity : occurrence of physical or mental characteristics i offspring which are
. inherited from their parents. '

Immune : protected against an infection or allergic disease.

Niche : place in an ecosystem which a species 15 specially adapted to fit,
Ecological Niche : all the characters (chemical, physical and biological) that determine
the position of an organism or species in-an ecosystem, (commenly called the “role”
or “prolession” of an organism e.g. an aquatic predator, a lerrestrial hervivore.
Omnivore ; animal which eats any thing, both vegetation and meat,

Phenotype : physical characteristics ol un organism which its genes produce, such
as brown eye, height ete. compare genotype.

Pisei culture ; fish ftarming; the breeding fish for food in special enclosures.
Terrestrial: referring to land: terrestrial animals : animals which live on dry land,
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