PREFACE

In the curricular structure introduced by this University for students of Post- Graduate
diploma programme, the opportunity to pursue Post-Graduate Diploma course in any
Subject introduced by this University is equally available to all learners. Instead of
being guided by any presumption about ability level, it would perhaps stand to reason
if receptivity of a learner is judged in the course of the learning process. That would
be entirely in keeping with the objectives of open education which does not believe
in artificial differentiation.

Keeping this in view, study materials of the Post-Graduate Diploma level in different
subjects are being prepared on the basis of a well laid-out syllabus. The course structure
combines the best elements in the approved syllabi of Central and State Universities
in respective subjects. It has been so designed as to be upgradable with the addition
of new information as well as results of fresh thinking and analysis.

The accepted methodology of distance education has been followed in the
preparation of these study materials. Cooperation in every form of experienced scholars
is indispensable for a work of this kind. We, therefore, owe an enormous debt of
gratitude to everyone whose tireless efforts went into the writing, editing and devising
of a proper lay-out of the materials. Practically speaking, their role amounts to an
involvement in ‘invisible teaching’. For, whoever makes use of these study materials
would virtually derive the benefit of learning under their collective care without each
being seen by the other.

The more a learner would seriously pursue these study materials, the easier it
will be for him or her to reach out to larger horizons of a subject. Care has also been
taken to make the language lucid and presentation attractive so that they may be rated
as quality self-learning materials. If anything remains still obscure or difficult to
follow, arrangements are there to come to terms with them through the counselling
sessions regularly available at the network of study centres set up by the University.

Needless to add, a great deal of these efforts is still experimental—in fact,
pioneering in certain areas. Naturally, there is every possibility of some lapse or
deficiency here and there. However, these do admit of rectification and further
improvement in due course. On the whole, therefore, these study materials are expected
to evoke wider appreciation the more they receive serious attention of all concerned.
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1.0 Introduction

I this chapter, we consider the two-dimensional irrotitional steady flow of an ideal
incompressible fuid. For plane flow, all dvnamic computations for the hydrodynamic
considerations, we take o layer of unit height cut by two planes parallel to the plane of the
flow, In considering the plane problem, we direct our attention on the Kinetic flow around
i hody fixed in a flow or for the motion of a body in a fuid at rest. We shali restrict our
discussions on cylindrical bodies having circular and elliptic cross-sections.

1.1 Irrotational Motion in Two Dimensions. The Stream
Function

If the motion of a liquid remains the same in all planes parallel to that of 1y and there
is no velocity parallel to the z-axis, i.e. if the velocily components u, v are functions of x.
y only and the component w = {0, then the motion is sad o be two-dimensional and 0 such
a case, we consider the circumstances in the xy-plane. When we speak of the flow across
a curve in this plane. we mean the flow is across a unit length of a cylinder whose trace
on the xy plane is the curve in question, the generators of the evlinder being paralle! to the
axis of z. Here the differemtial equation of the hines of flow is

vilx —udy =0 il
while the equation of continuiy 15
= = -
UL 0 ie M S vy (2)
0xoooy cnooy

This equation shows that the lef hand side of {1} is an exact differential dye, say, Thus

oy iy
vy — udy = dy = —dx+—dy
X £y
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leading to u:-ﬂ'v:—ei {31.1
oy Ox
This function yix, v} is called the stream function or current function. It follows that the
lines of flow are given by w = constant.
Now if the motion of the liquid be immotational. then there exists a velocity potential ¢i{x,

v such that

o 2
== V== (4
% ey
From (3) and (4) we get
op oy b o
Ao = a e T (5)
ox  ay  dy X

50 that
cp G Gy
oxox oy dy
which shows that the families of curves & = constant, W = constant cut orthogorally at all
their points of intersection. These conditions are satisfied if we take & + iy to be a function
-of the complex variable x + iy.

Now let § + iy = f{x + iy). Then

N RN T T .
L_Fx-"la'-‘. =f"(x+iy), -r_};+ta:rl-=|f {x+|}r}=|E;—E£-
- 0 _oy G ow
aving ax oy dy  x

Thus ¢ and y are conjugate functions. If w = & + iw = f(z), then w is called the complex
potential.
Noting that
dw 00 Low % o (6)
de dx ox  dx  dy

we have the magnitude of the velocity at any point .;H' %w
dEol

2 a2 | 2 1
+[ﬂ} } =f'|_|2 4yl }-: =\'f!]ﬂﬂ'i[}". (]

]

{‘:- ]
|8
o e
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1.2 Boundary Conditions

From (51, it follows that

a2y ;527,4, Aty 8 0
+ = — + =
ax?  dy? adxdy  avix
. o L@ 0f . .
where it is assumed the validity of —— = ——. Thus the stream function v must satisfy
axdy  ayox

the Laplace's equation

Vig = 0 (8)

at all points of the liquid. This function y satisfies the following boundary conditions :

{a)

(b}

(c)

L . é cyr N
If the liquid is at rest at infinity, we must have A + and ooa infinity.
ax cy
At any fixed boundary, the normal velocity must be zero, or the boundary must

coincide with a stream line w = constant.

At the boundary of the moving cylinder. the normal component of the velocity of
the liquid must be equal to the normal component of the velocity of the cylinder.

We now express the condition () by a formula for w as follows,

Let a point O of the cross-section of any cylinder be taken as origin. Let U and V
be the velocities parallel to the axis of x and y at O and let the cylinder turn with the angular
velocity . If P(x, y) be any point on the surface of the cylinder, then the velocity
components of P are U — oy and V + @x. If 8 is the inclination of the tangent at P with
Ox, then from the differential calculus, we have

d
msB:%-E- and sinl_?l:d—i {99

Therefore, the outward normal velocity at P

Also the velocity of the liquid in the outward normal 1s — ™

= (U — wy) sinf — (V + ox) cost

dy dx .
=(U-—wy)——(V-ox)-—. 10
(U my)ds (V-ox)— (10}

g
s
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On equating above two expressions for the normal component of velocities in
accordance with condition (¢}, we have

dw dy dy
Uy )= —(Voox) SR
g OOy )TV ey

Integrating this equation along the arc, we get

\F:Vx—Ug.f+im[x3+y2 1+ C (1

“

where C 1s an arbitrary constant.

Let the cylinder move along the x-axis with velocity U without rotation (so that V =
0 and @ = 0). Then (11) reduces to

w = -y + C. (12
Similarly. if the cylinder moves along the y-axis with velocity V without rotation. then (11)
aives

w=Vx + C. (13)

1.3 Motion of a Circular Cylinder

Let a circular cylinder of radius a is moving in an infinite mass of liquid at rest at infinity,
with velocity U in the direction of x-axis. To find the velocity potential § that will satisfy
the given boundary conditions, we have the following conditions :

() ¢ satisfies the Laplace’s equation

Vi =0
at every point of the liquid. In polar co-ordinates (r, €) in two dimensions. V¢ = 0 takes
the form

R I 020
— e —
ori ror r?apl

which has solutions of the form

=1} (14}

" cos nth, " sin nf,

where n 1s any integer, positive or negative. Hence the sum of any number of terms of the
form

A r"cos nf), B "sin nf

is also a solution of { 14},

11



{£i) Normal velocity at any point of the cylinder = Velocity of the liquid at that point
in that direction. 1.e..

'
——=Ucosf whenr=a (15)
or

{1if) Since the Lguid 1s at rest at infinity, velocity must be zero there. Thos,

ar ror

The above considerations suggest that we must assume the following suitable form of ¢.
. B

&= ArcosfB+—cosf. (17
I

From {17}

a

|
), 2
]
|
T,
>
|
R -

-- )cmﬂ'. {]1%)

so that using (15), we get

- 7

09

UcosB = —( A - B ]cos:ﬁ. valid for all values of &.

Hence,

i
i =

U :t A-B j
Again the first condition of (16} gives A = 0. Thus B = Ua®.

Hence (17} reduces 1o
41:24;(:058. (19
r

[t may be noted that (19) also satisfies the second condition given by (16). Hence (19}
gives the required velocity potential. But
£ 5, 2
cr raf e
After integrating, we obtain

2

r
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which gives the stream function of the motion. The complex potential w is given by

Ta 2 T
w-_-L': {uuaﬂ—isinﬁ]:bi

21

where z = re'”.

1.4 Fixed Circular Cylinder in a Uniform Stream

Let a circular cylinder be fixed at the origin and x-axis be chosen in the opposite
direction of the stream U. Let R’ be the region r = a. Now the velocity potential ¢ satisfies
the relation

V2¢=0inR". (22
The boundary conditions are
¢ ~ Ux at infinity,
and
- % = 0 on the boundary of cylinder.
Let us take

&= Urcos 6+ ¢, (23)
where ¢, 1s the contribution due to pressure of the cylinder. '
The boundary conditions give
¢, — 0 at infinity (24}

and

a¢}l )
--MET-_—UCMBDHC:F——-& (25)

Now, since ¢ is harmonic, so ¢, is harmonic and its normal derivative is prescribed
on the boundary.

Now let us assume ¢, to be of the form

¢, =[Ar+-]§)cosﬂ_
. [
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To satisfy the condition (24), we have A = 0 and from (95), we get B = a°U.

Hence
2
¢ = UrcosB + Ua cost, N (26)
Again, we have
Ov __106
o rae’
which gives
Ta 2
W =Ur$.in(-fl—La -5inB . (27
T
Hence. the complex potential 15
Ua? |
W(Z}=UZ+—-';—* in R'. (28)
The equation of stream line is
W = constant
or,
2 '~|
( r— d— J sin 8 = constant
W |
or,
[ aly
Ly —— —TJ = constant. {24
I'q, x “ .+ }II =
Complex velocity is given by
dw a-
(S VN I
dz v ( 22 ] (30)
Then daw = () implies
Z = *a.

Therefore z = a are stagnation points (a point where the velocity is zero is called a
stagnation point. The stream lines are not well-defined thereat; a stream line may divide into
two branches at such a point).
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1.5 Circulation About a Circular Cylinder .

F
1f A and P be any two points in a liguid, then I{ udx + vdy + wdz ) is called the flow
A

along the path from A to P, where u, v, w are velocity components. If the velocity potential
i exisis, i.e. if the motion be irrotanonal, then

and so

ﬂuw:—}[a‘# 5¢_ ZT }

A

The flow round a closed curve C is known as circulation which is usually denoted
by . Thus

I =~ §( udx + vdy + wdz .
C
If the motion is irrotational and the velocity potential ¢ is single-valued, then circulation
round C is zero,
Let k be the constant circulation about the cylinder. Then the suitable form of ¢ in two
dimensions (r. 8) may be obtained by equating to k the circulation round a circle of radius
r. Thus, we have

If—f{g}{zmhk,

L o0
Integrating this we get
__ X6
) b= 2n
Again,
W _ X
ar 1’
which gives
k
_— - 1
v 2 ne



Thus the complex potential duc to the circulation about a circular cylinder is Biven by
W= —E{]n r+it)
in
o,

i .
w=_——Inz, (since z = re'.) {30

2_1(

1.6 Steaming and Circulation About a Fixed Circular Cylinder

We know that the complex potential wy due to the circulation of strength k about the
cylinder 1s given by
W = 2—-—]nz,
n
Also, the complex potential w, for streaming past a fixed circular cylinder of radius a, with
velocity U in the negative direction of x-axis is given by

Ua?
W3 =Uz+—1—.

Thus, the complex potential w due to the combined effects at any point  is given by

W= W 4 W

=L|’[1+"j_ J-,L,:k Inz. (32)
r LT
i.E.¢+i\p:U[fEiﬂ +ijie—i'i3 \+£|.TI{[1‘.'H,'I
r J 2=

Equating real and imaginary pans. we obtain
a= ki
dp=U r+—r—JcmF}—2—rE (33)

ard

T

W ZU{ r- %- ]'.-'-irl E}+§k—]nr.

Since the velocity will be tangential only at the boundary of the cylinder, so

[ o)

i\ pe J= 0 and hence the magnitude of the velocity q is given by

16



| o | k
== =2 Usin® +—|.
| rod 2ma
If there is no circulation, i.e. if k = 0 there would be points of zero velocity on the
cylinder at 8 = 0 and 0 = =, the former being the point at which the incoming stream
divides. However, in the presence of circulation, the stagnation points are given by g =0,

e
sinf=-7 ::Ua
and such poinis exist when
|k|<4aUa. (34)

We now determine the pressure at points of the cylinder. The pressure is given by
Bernoullis equation

P_ g2
o Cit) 54 (35)

Let I1 be the pressure at infinity where the velocity 1s U and so

n_ boos
p—C{n 2Ll :
Then from (35) we obtain
P 1
c=—4+-(U2-q2)
pop 2
or,
p=1’[+--|--pLT3 —I-p'!IrZUr;inBr-!E--— Jz (36)
2 2P 2wat

If X, Y be the components of the thrust on the cylinder, we have

X = _-Iﬂl“ pcos Badd,

Y= -L:' " psinBadb.

Using (36) we get X = 0. Y = pkU, showing that the cylinder experiences an upward il
This effect may be attributed to circulation phenomenon.

17



1.7 Equation of Motion of a Circular Cylinder

Let a circulur cylinder is moving in a liguid at rest at infinity. To calculate the forces
acting on the cylinder owing to the pressure of the fluid, we suppose that U, V are the
components of the velocity of the cylinder when the center of the cross-section O is
(X ¥o)- Then we have

U=xgand V=y,.
Letzp=xg+iygand z — 25 = re' where r denotes the distance from the axis of the
cylinder.
On the surface of the cylinder r = a, we must have, the velocity of the liquid normal
to the cvlinder = normal velocity of the cylinder, i.e.

i
—T¢=Ucosﬁ+¥sinﬂmr=a- (37)

&ar
Since the liquid is at rest at infinity,

o
T =0 as . 38)
E}r A5 [ = 00 {
The conditions (37) and (38) suggest that ¢ is to be taken in the form

¢=[Ar+%]msﬁ+(ﬂr+%)sinﬂ. (39)
Therefore

ﬂ=(ﬁh—lju::u:m;l&'.lw('IC—E]sin.ll'ﬁl.

ar ri r
Using (37) and (38) we get

=L _aA.v=L_c,a=c=0

al a?
Thus we have B = a’U, D = a’V,
Hence from (39), the expression for ¢ is given by

¢=-a'ri(Umsﬁ+VsinB]_ (40)
Noting that
W __%
dr a0

18



and using (40) and then integrating this equation, we obtain
al .
y=—(—-Usin®+Vcos0), (40
r
Hence the complex potential is given by

2 a—ib
W= d+iy =a—i’—{u+iv},

ie.
Cad (U+iVv
w= 2 V) (42)
L=Zp
Now
R ! 3 : 2
ﬁﬁ,_iﬂ_w-__E:M_}.ha_..{Ei?l__ (43)
a o o zZ—-2q (z-2q )2
Equating real parts, we obtain
r S . 1
%=%{Ucnsﬂ+vsinﬂi+t—z[{ﬂl—vl Jeos20+2UVsin28], (44)
The magnitude of the velocity q is given by
2 iv |7 at(u24+v2)
q1=d_W’ _l_g2 U#iV _af(Uuc+ }1 45)
dz (z-z4 )2 r4

Omitting the external forces, the pressure at any point is given by Bernoulli’s equation
as

p ap
—=C(t)4———mq?
5=C(+2-3q2,

which, on using (44) and (45) gives
2. p 2
P 2 C(1)+27 (Ucosd+Vsind )+ 2 [ (U2 —V2 )oos28+2 UVsin20] -+ 2-(U2 ~v2)
P r rt 2r4
(46)
Let p; be the pressure at a point (a, &) on the boundary of the cylinder. Then p, is
given by (46) on putting r = a as
pi =pC(t)+pa( UcosB+Vsin® }+p[ (U2 —V? }E‘CEEE+2UV5:in2EF]—%{ U2 +V2),
(47)
19



Let X and Y be the components of force on the cylinder due to fuid thrusts. Then,
we have

e
X =—_[” ap, cos0do,

Y= "ap, sin0do.
which, with the help of (47), give

X=—pa? ‘[:E'U-CDSI 6do

=-malpl
=-M'U,
where M’ = ma’p = the mass of the liquid displaced by the cylinder of unit length,
Sirulary, _
Y=—ma2pV=-M'V.
Corollary : |
To show that the effect of the pressure of the liguid is 1o reduce the extraneous
SJorces in the ratio
{o—p):(o+ pi

where o, p are the densities of the cvlinder and liquid respectively, we proceed as
follows :

Let M be the mass of the cylinder per unit length and X', Y’ be the components of
the extraneous force on the cylinder if there were no liquid. Also let f, be the acceleration
of the extraneous force in x-direction. Then, due to presence of liquid. the resultant force
in x-direction is

=na‘of, —malpf,

ag—

(ma‘of, )



Qr,

htl T=p i

t‘w|+f\:i' o

i

MU = — -8 TPy
MaA-orTa-p O
Therefore
. i — I:I
MUs ——X '
FTp
Similarly,
- ﬁ —
MY = o Y
o+p
Hence the effect of the pressure of the ligquid is 1o reduce the external force in the ratio

{o—-pl: (o+p

1.8 Two Coaxia! Circular Cylinders

We now deternii.e the velocity potential and the stream function al any point of a
liguid contained between two coaxial circular cylinders of radii a and b(a < b). Let the
cylinders are moved suddenly parallel to themselves in directions at right angles with
velocities U and V respectively

Then if ¢ be the velocity potential and v the stream function at any point (r, @) i the
liguid. then the boundary conditions for the velecity potential ¢ ure

e—— = 1" ¢cos &, when r=a
or

and
cy :
— — =V 5in @, whenr=b. (48}
or
Now ¢ must satisfy the Laplace's equation

d ¢'+!L_¢1. 1 “ -0 (49)



at every point of the liguid.

‘Since (49) has solutions of the form r"cos n@, "sin nB, where n is any positive or
negative integer, the st of any number of terms of the form A | r® cosnB, B_r" sinnd
is also solution of (49). However. a suitable form of ¢ satisfying the given conditions is

L;‘:'r[.ﬂ.r+.-[ri)cmﬂ+((3r+%)sin8. (50)

Using the two boundary conditions (48) we obtain for any values @

A-Bovu,c-L2 -0, maa-B=0,c-B__v,
q e al al
These give
Ua? alh? Vb2 Valb?
As—r e B2 O 2 po- 0D
(b2 -a) (b?=a?) (b?-a?) (b2 -a?)
Thus -
_ Uaz [ b? ___Vb? E_",] .
i {bl—a3}[r+ - JEUSH b —-a'-'}[r+ . sin®. (51)
Since
% _ov
a0
we get by using (51)
__ Ua? b2 Y. Vb2 al
“-m-az'j(“‘F]s'"”+{b=_aﬁ(f"r)“‘““: (52)

1.9 The Milne-Thomson’s Circle Theorem

Statement : Let fiz) be the complex velocity potential for the two-dimensional
frrotational flow of an incompressible inviscid fluid having no rigid boundaries and
such that there are no singularities of flow within the circle 1z1 = a. Then, on
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introducing the solid circular cylinder 12| = a into the flow, the new ¢ aplex
velocity potential is given by w=1f{ z]+f{5. tlz) forlzl 2a

Proof : Since the singularities of f(z) occur in the region | z 1> a, so the singularities
of f(a’/z) lie in | z | < a. Hence the singularities of f{a?/z)alsolieinlzl<a Thus flz)

and f(z} + f (a? /z) both have the same singularities in the region | z | > 0 and, thercfore,
both functions, considered as complex velocity potentials, may be ascribed to the same
hydrodynamical distributions in the region | z | > a.

i3]

Now, on the circle |z | = a, we take z = 2e®, so that a’lz = ae™ and, therefore,

w=f(z)+f(a?/z)=f(aei®)+f(ae By =f(ae®)+f(ac®)

Thus, on the circle | z = a, w is the sum of a complex quantity and its complex conjugate
and is, therefore, w is a real number, i.e. y = Im(w)=0o0n |z | = a. Hence, the circular
boundary is a s:rear line across which no fluid flows. We, therefore, conclude that 1 2 | =
a is a possible boundary for the new flow for which w = f(z) + f(a’lz) is the appropriate
complex velocity potential.

Applications of circle theorem :

Example 1. Uniform flow post a stationary cylinder

We have already seen in Section-1.4 that a uniform stream having velocity <L along
the negative direction of x-axis gives rise to a complex potential Uz. Thus, if we take

f(z)= Uz, then f{allz)= UaZ Thusen introducing the circular section [z | = a into
z

the stream, the complex potential for the region | z | 2 a is given by

w=f{,z}+f{a3|z‘]:[}(z*£‘i_
z J

If z = re" and w = ¢ + iy, then

-

$= UEG&H[.I‘+“—'—}, W = T._lﬁinﬂ[r—i..l.,J
r r

which are the results obtained in Section-—1.4.

Example 2. Uniform stream at incidence with the positive x-axis
The complex potential for such a stream of veiocity U is Uze™, Thus, if we take f(z)

23



. g 2 . . :
= Uze ™, then f(a— ): Ueib .2 Hence, when the cylinder of section |zl = ais
z z

Ly . . az .
introduced, the complex potential in | 212 a becomes w=U { ze ~ +[ - ) e if }

1.10 Theorem of Blasius

Staternent : Suppose that, in a steady two-dimensional irrotational motiom given
by the relation w = fiz), i.e. ¢+ iw = fla + iv), the hydradynamical pressures on the
contour of a fixed cylinder are (X, Y) and a couple N about the origin of coordinates.
Then

and

| dw 'y’
M=Re{--£p§ z[;—{-_—} e!:} (53)

where p is the density and the integrations are taken round any contour surrounding
the cvlinder.

Proofl : Let the normal to'the cylinder at the point P(x, y) make an angle O with the
positive direction of x-axis.

Then, for the action on the arc ds and P, we have
dX =— psin B ds, dY = p cos B ds
i.e. dX = - pdy, dY = pdx
50 that

and, therefore.
X-iY=—i§pldx—idy).
L
where the integrals are round the contour C' of the cylinder.
Since there is no external force and the fluid is moving irrotationally and steadily, so
the pressure equation is given by

24



1
=

= constant = A.

K-N -]
.

Thus

Wow the contour of the cylinder is a stream line, i.e. on O, y = constant. Also
dw=dw.
Therefore
P dw T
X=i1¥=—¢_ (——- ) dz..
2 }L' dz

Now in the plane outside the cylinder, it may be possible to have singularity in the

function ({;—W] if there 15 any physical singularity in the fluid (such as a source or a
z

vortex), Thus, if we take a larger countour C surrounding C' such that there are no
singularities between C and C'; or more generally, if such singularities exist, then the sum

of the residues nf( E:IE )h at all poles between C and C' is zero, then the integrals of this

function have the same value Tor all such contours and we have

o] [dwr‘_
N-iY =" S de,
' z"’fi iz ) &

Again
N= i:.,{ pxdx + pydy )

25



= Real part of §C.P{X+i}f ) (dx—idy)

= Real part of }C,pzdi

= Real part of —%pi‘:,z( ]
= Real part of —%ph,z(?]dﬁ}
(%]

= Real part of -—-p§c,z

_ 1 dw }*
= Real part of _—zp c*z[ﬁ}?) dz],

Considering the same limitation as before regagding singularities in the liquid, the integral
may be taken round any contour C which surrounds the cylinder.

1.11 Transformations or Mapping

The set of equations
u=ulx, ¥ v=vix,y) (54)
defines, in general, a transformation or mapping which establishes a correspondence
between points in the uv- and xy-planes. The equations (54) are called transformation
equations. If to each point of the uv-plane there corresponds one and only one point of
the xy plane and conversely, we speak of a one-to-one transformation or mapping.

Conformal mapping

Suppose that under the transformation (54), the point (xg, vg) of the xy-plane is
mapped into the poirit (ug, Vo) of the uv-plane while curves C, and C, [intersecting at
(Xg, Yo)] are mapped respectively into curves C) and C%. Then, if the transformation is
such that the angle at (xq, ¥g) between C, and C; is equal to the angle at (uy, vg) between
C", and C", both in magnitude and sense, the transformation or mapping is said to be
conformal at (xy, yo). A mapping which preserves the magnitudes of angles but not
necessarily the sense is called isogonal.
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1.12 The Schwarz-Christoffel Transformations

Any simple closed polygon with n vertices in the z-plane (z = x + iy) can be
transformed into the real axis in the £ { = £ + in )-plane, the interior points of the polygon
corresponding to points on one side of the real axis 1 = 0, the transformation-cffective
relation being

) @3 g
& _AG-a)F T (Gmay) e (Gma,) (55)
dg
or, z=Af{r;-al;|'-T'" (quaz}Tz" {r;—a“)_n""' dZ +B (56}

where A and B are constants which may be complex, o, ty, ..., o, are the interior angles
of the polygon and a,, a;, ..., 4, are the points on the real axis nj = 0 that correspond to
the angular points of the polygon in the z-plane.
The following facts should be noted :
1.-  Any three points of a;, a, ..., a, can be chosen at will,
The constants A and B determine the size, orientation and position of the polygon.
It is convenient to choose one point, say a, at infinity in which case the last factor
of (54) and (55) involving a, is not present.
4. Infinite open polygons can be considered as limiting case of closed polygons.

1.13 Elliptic Coordinates

Let
z=ccosh §, where z = x + iy, L = £ + in.

Then x + iy = c cosh(§ + in) = e(cosh £ cos n + i sinh £ sin 1)

so that x = ¢ cosh £ cos n y = ¢ sinh & sin 1. {36)
Obvious X2 AR 57
- =
ly c?cosh? & c?sinh?§ 7
2 2
and LS. A (58)
cicosim c?sin?y
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Thus & = const. and 1) = const. represent confocal e]i:pwa and hyperbolas respectively,
the distance between the focii being 2c.

Let a, b be the semi-axes of the ellipse (37). Then for £ = a,
a=ccosh e, b=csinha,c =a®~b?

and a+h=¢:e“.a—l}=m'“,:1=l]ugi+g.

2
The parameters £, 1 are called elliptic coordinates.

1.14 The Joukowski Transformations

The transiomation

{59)

is one of the simplest and most important transformations of two-dimensional motion. By
means ol this transformation we can map the C-plane on the z-plane, and vice versa. From
(59). it can be shown that when | 21 is large, we have £ = z nearly, so that the distant parts
of the two-planes are unaltered. Thus a uniform stream at infinity in the z-plane will
correspond to & uniform streamn of the same strength and divection in the S-plane.

We now consider the inverse transformation of (539), viz. C = (zt VzT—c? ) or |

confining to positive sign only,

o1 i —
;_:-z-f_f.*r-df—uz} (60)

1 2

It can be readily shown that the region outside the ellipse K; +%- =1 is mapped into
H -

the region outside the circle |£; = -i—{a+ b).

Application. Streaming past a fixed elliptic eylinder
Let us consider the stream whose complex potential is USe™ in the £-plane. Then,

i a + b into the strcam, the new complex potential

I\-JI'—i

on inserting the circular cylinder £ !

is given by circle theorem as
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b
W =U£E‘i“+b{a4+.:_; e (61)

. . . . y | )
Now by Joukowski’s transformation (60}, the region outside the circle (§|= Sla+ b)is

1

1 -
mapped on the region outside the ellipse iﬁ— + —E—; = ]. Hence the complex potential w
a? 2

for the flow past a fixed elliptic cylinder can be obtained from (60) and (61} by eliminatng
£ as

1 — fa+b)? eif J
w==U|e-®(z+4/27 —c? 4 ————— —
2 [ [ ) z++/27 —¢?
Using the transformation z = ¢ cosh ( for elliptic coordinates, we have /2 —¢? =csinh(
and so z++/ 2% —=c? =ces Thus

{a+b)*

5
W= -I-U[e.‘iﬁ B E e — i
2 ce= ]
1 a+ . .
vy == —-b C-ifh -+ = il
2I.! ﬂmh[{a e +(a+b)e ]
Hence on the ellipse £ = a, whence a + b = ce” and a — b = ce™, we get
w=%U{u+h}{tC“'ﬂ‘“ +elip-a) ]
ie w = U{a+ b) cos h( = iff - a). (62)

This is the required complex potential for the sireaming past a fixed elliptic cylinder.
In particular, if the stream were parallel to the real axis, so that f§ = 0, then
w = Ufa + b} cos h{f — a). (63)

As a special case, we impart to the whole system a velocity U inclined at an angle
with the x-axis. Then the stream is reduced to rest and the cylinder moves with velocity
U, so that the complex potential is

Ufa+b)? Uia+h)?2 Ufa+b)? .
wWes——————e il = el = ——— g = C+if
4C 2({z+Jz2 —¢? ) 2c
= E_{_ﬂi:i'_b_} g = arifiea ) {64']
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This is the complex potential for the elliptic cylinder moving in an infinite liquid with velocity
U inclined at an angle [} with the x-axis. In particular, if the elliptic cylinder moves parallel
to the x-axis, so that § = 0, then '

w==U(a+b)e-5me, (65)

1
2

1.15 The Aerofoil

The aerofoil used in modem aeroplanes has a profile of “fish" type, indicated in figure.
Such an aerofoil has a blunt leading edge and a sharp trailing edge. The projection of the
profile on the double tangent, as shown in the diagram, is the chord. The ratio of the span
to the chord is the aspect ratio.

The camber line of a profile is the locus of the point midway between the points in
which an ordinate perpendicular to the chord meets the profile. See figure 2,15

The camber is the ratio of the maximum ordinate of the flow round such an aerofoil
on the following assumptions :

1. That the air behaves as an incompressible inviscid fluid.

2. That the aerofoil is a cylinder whose cross-section is a curve of the above type.

3. That the flow is two-dimensional irrotational cyclic motion.

The above assumptions are of course only approximations to the actual state of affairs,
but by making these simplifications it is possible to arrive at a general understanding of the
principles involved.

It has been found that profiles obtained by conformal transformation of circle by the
simple Joukowski transformation make good wing shapes, and that the lift can be
calculated from the known flow with respect to a circular cylinder.

1.16 The Theorem of Kutta and Joukowski

Statement : [f an aerofoil of any shape be placed in a uniform wind of speed V,
then the resultant thrust on the aerafoil is a lift of magnitude kpv per unit length and
is at right angles to the wind, where k is the circulation round the cylinder.
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Direction of flight
Figure 2.15

&Y

H ] -
| L

Figure 2.16

Proof. Since there is a uniform wind, the velocity at a great distance from the aerofoil
must tend to the wind velocity, and therefore if | z 115 sufficiently large, so that we may wnle

dw A B

==Vele 4 —4—4 ...
de z ot (66)
where @ is the angle of incidence or angle of attack.
Thus
w= Vzeh —A]nx-—E-r
.
and since there is circulation k, we must have
ik
A== (67)
an

for In z increases by 2ni when we go once round the acroforl in the positive sense.
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From (66) and (67) we get,
c R AT s 3 2 . it
[_q}l =Vielm +.1E,Em _k +1'T.:|t1 BVe . (68)
dz . nz dmig?

If we now integrate round a circle whose radius is sufficiently large for the expression
{68) to be valul, the theorem of Blasius gives

}(—i‘l'=(%ip)21ti[ikv:m )

= = ikpVe '
s0 that, changing the sign of i we obtain

[
X +iY = kpve 12",
Comparison with above figure shows that this force has all the properties stated in the
enunciation.

1.17 Motion of an Elliptic cylinder

(i) To determine the velocity potential and stream function when an elfiptic
cvlinder moves in an infinite Dguid with velociry U parallel 1o the axial plane through
the major of a cross-section.

For any cylinder moving with velocities U and V parallel to axes and rotating with an
angular velocity w, we know that on the cylinder

wz\-"x-U}rvh—é-m{xi +¥? ) 4 constant (A, say).

Here
V=0 ow=0
Hence the stream function is given by
y=-Uy+A. (69)
Let the cross-section be the ellipse

5
x? ¥-
—=1.

al +Ez
This is the same as £ = a, if a = ¢ cosh @, b = sinh @ and ¢” = a® - b7, where
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x = ¢ cosh & cos 1, (70)

y = ¢ sinh £ sin n. (71
Using (70) and (71}, (69) becomes
w = — Uc sinh a sin i + A. (723

Since w contains sin i and the liquid is at rest at infinity. w must be of the form
¢ sin 1. We therefore, assume that

b + iy = Be 5+ iW (73)
s0 that

y = — Be™ sin 7). (74)
Then at boundary £ = o, we must have for all values of 1,

A =0, B = Uce" sinh a.

w = — Uce® ™ sinh a sin 1 (75)

is a stream function which will make the boundary of the ellipse a stream line, when the
cylinder moves with velocity U.

But
L3
¢ sinh & = b and e = =[“+E]=. (76)
Using (75) and (76}, (7) can be written in the form
1
w=~Uh({:—E]"c"t sinn. (77)
Also from (75),
L}
¢=Ub(2ig]3 e~ 5 cosT). (78)



Hence we obtlain

e - (5+in), (79)

(i} To determine the velocity potential and the stream function when an elliptic
cylinder moves in an infinite liquid with velocity V parallel to the axial plane through
the minor axis of a cross-section.

Proceeding as in (i), we can obtain

!
¢:Va[ﬂ)2 e~ % cosm. (80)
a=b
1
up:Va(:Lb)z e~ % sinm, (81)
and
I
w:i\-’a(a+b)z e~ 15+im), (82)
a-b

(iii) To determine the complex potential when an elliptic cylinder moves in an
infinite liquid with a velocity v in a direction making an angle 3 with the major axis
of the cross section of the cylinder.

The components of v along coordinate axes are

U=vcosp
and
V=vsinp

Let w, and w, be the complex potentials corresponding to the motion of the cylinder

with velocities U and V respectively. Then from (79) and (82), we obtain

1

W, =Ub(:t:)* e - (E+in)

o |

(=2

+

|

= bvcasﬂ( a

) e-H’;+1"q},
a-—

=3

and
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b |-

o

W oo =iva[u'+ ] g1 &+m]
- a-b

I
=iav5inﬁ{%]2 e (&) |

Hence the complex potential due to velocity v is given by
W= Wy o Wy

1
=cu(:f:)* e~ sinh{ o +ip),

where £ = £ + in, b = ¢ sinh &, a = ¢ cosh a. Thus
w = v(a + b)eS sinh(a + ip), since ¢* = a® - b’

1.18 Liquid Streaming Past a Fixed Elliptic Cylinder

To determine ¢ and w for a liquid streaming past a fixed elliptic cylinder with
velocity U parallel to major axis of the section.

Superimpose a velocity U on the cylinder and on liguid both in the sense opposite to
the velocity of the liquid. This brings the liquid at rest and the cylinder in motion with
velocity U. Hence, some suitable term must be added to each of the expressions for ¢ and
w obtained in (69) of Art. 1.17. When the stream flows from positive x-axis to negative
X-axis, we have

R M__u. (83)

ax oy
Accordingly, we must add a term Ux to ¢ and Uy to w as obtained in Art. L17. Thus,

wie have

1
111'=1.13r.+|._ﬂ::r{%]2 e % cost
a-—

. 1
i -
=U{a? =b2)2 cnshﬁ:nsn+Ub[H)' e~ % cosm, (B4)
and
1
1{;=U}r—l_]b[a+h]3 e~ 5 sinm
a=b
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B | o

=U{a?-l:!1}%5inh§sinq—l.]b(:—tg) e~ 4 sinn. (85)

ihien the complex potential is given by

w = Uz + Ube®"%, ' (86)
Another form for ¢, w and w, we can be obtained as
§ = Uce* cosnjcosh( § —a), (87)
y = Uce = sin nsinh{ E—a ), (B8)
anlh
w=U(a+b)cosh{~a). (89)

v fich is the result (631 obtained in Section—1.16.

1.19 Rotating Elliptic Cylinder

To determine @ and w when an elliptic cylinder is rotating with angular velociry
e i an infinite mass of the liguid at rest at infinity.

For any cylinder moving with velocity U and V parallel to axes and rotating with an
angular velocity @, we know that on the cylinder

1g.r=VJL—U}f+%-01{Iz+'.'|’1}+1:unsmnt,ﬁa}fh, {(90)
Let the cross-section be the ellipse
x2 y? i
a2l p2

This is the same as = @, if a = c cosh e, b = ¢ sinh & and ¢* = a* - b%. The elliptic
coordinates (&, n) are given by

x=ccoshEcosn,
y =csinh&sinm. _ (91)
Here
U=V=0
So using (91), (90) reduces to
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ur:lmﬂ icosh2E+cos2n)+A. (92}

Since, y contains cos 21 and the hquid is at rest at infinity, yw must be taken in the
fonn

yw=DBe-2% cosln (3
and hence

¢=DBe 25 sinh2n. (%)
Then at the boundary £ = a, we obtain for all values of 1

B=-ji-{1:c1ﬂ3"

A=—jimc1 cosh2a,

Thus ¢ and w reduce to

¢=i—m{a+h]1¢-=15in2n, (95
ql'=f1—rm{a+h]? e2%cosldn. LM

Henee the compley potential function is
m=.}iﬂ-‘l(ﬂ+h}3€'”-sinceﬁ=ﬁ+in. (97)

1.20 Motion of a Liquid in Rotating Elliptic Cylinders

Let the elliptic cylinder containing liguid rotate with angular '.T.I;m:it}r @. The strems
function w must satisfy the Laplace's equation

Vig=0
and on the boundary it satisfies the condition
wr-%m[ﬂvyl T+ AL {08
We assume that
yw = B(x" - y9). {90}
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On the boundary of the cylinder, we must have

We also know that the boundary of the cylinder is

x? ¥°
=1.
al +h?
Comparing (100} with (101} we get
1 _a?-b2
E"z a?+b?
s0 that
_1.,a*-b 2 _y2
2747 +b? ‘ v
Then from (99)
B a2 —h2
P TTE h

The magnitude of the velocity § is given by

oo 2) )

= (i} [al ~-b? )[12 +}r1 ]J

al +b?

K.E. of the ligquid contained in rotating cylinder is given by

Tz-%p”-qzdxd}r

_.1 {al_bE}E
STt T

(100)

(101}

{102}

(103)

(104)

(105)

1.21 Flow Past a Plate

If b = 0, our ellipse degenerates into the line joining the foci, namely o = 0, and
therefor a = ¢. Hence for the flow past a plate inclined at angle 8 to the stream, we have
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= Uncosh{{=i0)
The stagnation points still lie on the hyperbolic branches.
n=08,n=n+0.
The speed becomes infinite at the edges of the plate, so that the solution cannol represent
the complete motion past on an actual plate.

Im terms of #, we have

w=U{zcosB—iJz2 —a° sinh).

When the plate is perpendicular to the stream, then § = : . s that

©=-iUJz¥at.

1.22 MHlustrative Solved Examples

Example 1 :

In the case of two dimensional motion of a liguid streaming past a fixed circular disc,
the velocity at infinity is U in a fixed direction, where U is a variable. Show ik the
maximum value of the velocity at any point of the fluid is 2U. Prove that the force necessary

to hold the dise is 2mU . where m is the liquid displaced by disc.
Solution :
The velocity potential for the liquid streaming past a fixed circular disc 15 given by

2
¢=U(r+a—r—Jcnsﬂ. {n
where a is the radius of the disc. This gives

ﬂ= [I—“E-]cmﬂ and i"1—l=—[r+[lz ]sinﬂ
r b

5

or - r
Therefore
z 4 a 3
% I‘:i* ,ﬂ_-z - -‘12 =
dmf = | 4| w—— =U3[!----—] gl 'F:+L|3(I+--—- sin * O
8 [ ar T &o 7t r? ] .
Ayl 4
-u? [I -2 cos20+22 . 2
r r
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which is maximum with respect to 8 when cos 28 = - | i.e. 20 = 7 and then

2 4 1
q-’=U3[E+Mﬂ +34J urq=U[t+y'r]
T T -

Now g is further maximum with respect to r when r is minimum, i.e.. whenr = a.
Hence the required maximum value of g is given by

g = 2U.
By Bemoulli’s equation, the pressure p is given by
P_ob |
—=— = Fit
g a ‘-] +F(t). {3)
Using (1) and (2), (3) reduces to

PoF)-ivU [I—z—a—-c 19+----]+U[ +f’53—]¢m—a_
P 2 r

Putting r = a, the pressure on the boundary of the disc is given by

P F(t)-2U2sin2 8+0.2acos6.
P

Then the resultant pressure on the disc
= [2"(~ pos6)ad = - pa [2"[Ft)-20% sin? 8+2Vacos8]d8, by @)
=-2pa? [:lj:!cns? Bde=-2malplU=—-2mlU since m = ma’p

Hence the desired force necessary to hold the disc is 2m 1.

Example 2 :

A circular cylinder is placed in uniform stream, find the force acting on the cylinder.
Solution :

We know that the complex pﬂtr:ntml for the undisturbed motion in a uniform stream

with velocity components U, V is given by w = (U + iV)z. Using Milne-Thomson’s circle
theorem, the complex potential for the present problem is

w = (U=iViz + (U +iV) (a*/z)
Therefore

% =U =iV = (U +iV) (afz?)
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If the pressure thrusts on the contour of the fixed circular cylinder be represented by
a force (X, Y) and a couple of moment N about the origin of co-ordinates, then by Blasius’

theorem, we have

1. rfde) . 1. . . 2.
X—lT:E;pIC(E;) dzurz—1p‘f{{U—J‘ui']—{U+:‘+"}{a1 fz2)} dz=0

s0 that
X=0 and Y =0-
anxd

1 da }*
N = Real part of _EPL: z[—-—uj dz

dz

1 . W .at]?
=rea]panuf—ipjc z{U—N—{U—N}z—I} dz

= real pannf—%p{—l{ui +V#)a?}2qi=0

Therefore X = Y = N = 0, showing that neither a force nor a couple acts on the

cylinder.
Example 3 :

A circular cylinder is fixed across a stream of velocity U with a circulation k round the
cylinder. Show that the maximum velocity in the liquid is 2U + (k/2mu), where a is the

radius of the cylinder.
Solution :
The velocity potential ¢ for the motion is

_ a? -k
¢—U(r+ - Jmsﬁ P

~where r is measured from the centre of the cross-section of the cylinder.

Then the velocity q is given by
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Joa (i o s
=2 ]-— +=— |+—| 1+— |sinO + ———,
v [ ré cos20 nr iz ) dxir? -
which is maximum with respect to r when r is minimum, i.e. whenr = a.

Thus

' 2Uk . k?
gt =U? {2-2-:m9]+E-—smﬂ+4“2aI

2
=4U2gin? E\!+—-—2 l-']a-EsinEH—]“:
fa 4ria?

k 2
=[zu5ma+i—ﬂ;) (2)

Now q is further maximum with respect to 8 when sin 8 = | i.e. ® = n/2. Thus, from
(2) the desired maximum velocity is given by
kK Y . k
= 2U+— £ q= —
q ( U+2ﬂ] ie. q 2U+Er|:a'
Example 4 :
An infinite elliptic cylinder with semi axes a, b is rotating round its axes with angular
velocity  in an infinite liquid of density p which is at rest at infinity. Show that if the fluid

is under the action of no force, the moment of the fluid pressure on the cylinder round the
center is

1 4 do =a’ +b*
Enpc m where ¢ =a’+
Solution
Using Bernoulli’s equation, pressure p at any point is given by
P 1 ¢
— =C-._- 2
q 54 at (1)

Now for an elliptic cylinder rotating with an angular velocity @ in an infinite fluid,
velocity potential § and complex potential @ are given by

p=T0(atb)? et sin2n 2)
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1

w=1im{a+b}ze4§y (3)
where
z=x+1y=ccosh{ and L=E+in. (4)
Therefore
2
do}? |de 48] _l1. . 1
2 = — = —— = | = bi2 e—2% (=2
d dz df dz |41m|:a+ 2 e }csinhﬁ
@? (a+b)* | g-2ee-tm |
© 4c¢?  |sinh(E+in)!
_mz_f_g+h]4e*‘ﬁx I
- 4c? sinh 2 £ +sin2 n ®)
and
dp 1 4 ntE o do
—_— =2E —_—
a 4{a+bj € :f.anr]dt (6)

Using (1), {5) and (6), the pressure at any point on the boundary of the ellipse
E = a is given by
P w? {a+b)? g-du

| . da
LA Ll h)2 e-2a gin? N
p ¢ 8c? (sinh? |1+s'inr|]|+4{a+ )ie simen dt (7.

Now the pressure on an elementary are ds of elliptic boundary at a point P (of
eccentric angle 1) is pds. Let © be the angle between tangent and radius vector.

Then from calculus, we have
cosf=— 8
s (8)
Now the moment of the fluid pressure on the element ds about the center

= — prds cos @ = — prds, by (8)

=p.%[a*’-' +b2 )sin2 ndn [since, n:l:*=—%l:a1 +b? )sin2 ndn]
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Therefore, the required total moment of the liquid pressure on the clliptic ¢y linder
about the centre is

—E!—l-lh——f psin2 ndn
al—h2 [ix m? {a+h)* pg-du (a+b)? do | .
= e e . da = T ——— -
2 I':' [E 8¢? sinh* o +sin? n FE :_“nznrh 2 ndn
2 _h? srazia+h)? . '
=E—'ih_’l"-' a 1£ l+4 ) e-24 sin? Eﬂ{:i—? dn (other integrals vanish)
(a? =b2)a+b)? e=" ey an .
c* {u+bj-a b dop2al—cosdn |: . s +h7
— - since, ¢ =a? —h2 =
R oy j 5 dn since, ¢* =a hJ
_ef{a?=b?) do_ 1__ ,dw
- 8 Par "8 ™ Tar
Example 5 :
In the two-dimensional irrotational motion of a liquid streaming past a fixed elliptic disc
. : z ' =1, the velocity at infinity being parallel to the major axis and equal to U, prove
that if

x+iy=ccosh(E+in), a’—b*=¢? and a=ccosha, b=csinha,
the velocity at any point is given by

2 U2 a+b.$inh1 (E-a)+sin? n

b a-b sinh? £ +sin? n
. . l’.ﬂ +b}
and that it has maximum value - -— at the end of the minor axis.
a

Solution :
The velocity potential for the case “Liquid streaming past a fixed elliptic cylinder” is
given by
- w = Ula + b) cosh (£ - a) : i
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Mow,

_tdw||aw 9G]

T=1d |7 ag dz |
Now,
=U{H+h] binh!:':"—“j [using (1) and z = ¢ cosh ]
c sinh{
But
isinb({—a) =lsinh(E—a+in)|, asC=E&+in
= sinh{ & - o Jeosnj+icosh( € —a )sinm)
= Hﬂhl (E~a)cos? n+cosh? (E—a)sin?
= Jsinh? (E—~a)+sin? n
Similarly,
'sinh&|= /sinh? E+sinn
Since,
inh? (E— in2 n 1"
e
50 that

5 im 2
R g ] 3"‘"] sinh * {g'_'."‘_:'_"f.s_m n
q v (a-h [

sinh 2 E+sin?
(3) gives the required value of velocity.

To determine the maximum value of q, we rewrite (3) as follows :

q? =Ui[a+h)[]_.5i“hz E+sin? (ﬁ—u]:l

a=-b sinh? E+sin? n
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But sinh £ > sinh( £ — & ). Hence for a given &, (4) shows that g will be maximum

when sin 1 is maximum i.e. N = g Then (3) gives

a+h)l+sinh*fﬁ—u} [a+b)mh?{&-u_:l

———— 2 -
a-b v cosh § ®)

T _qJ2
d ( I+sinh? a-b

U2 [ a+b )[ cosh £ cosh o —sinh £ sina ]z

a-b coshg
=12 [E){mnhu—mnhl‘,sinm]i,- (6)

showing that q will be maximum when tanh £ is minimum i.e. £ is minimum. Since we
have an elliptic cylinder surrounded by liquid, the minimum value of £ is «e. Hence putting
£ = a in (3), the required maximum value of g is given by

b 1 a+h e? —
z=Uz[a"' ] =Uz[_..,_)._._. as a = c cosh a
(9 ma ) a—b Jcosh? o a-b.J a?

3 _ R
=U2(a+hj-“ —b as ¢ = a* — b?
a=-b al

Ufa+b)
W LTCUY

Example 6 :

A source is placed midway between two planes whose distance from one another is
2a. Find the equation of the streamlines when the motion is in two dimensions and show
that those particles which at an infinite distance a/2 from one of the boundaries, issued from
the source in a direction making an angle m/4 with it.

Solution :

The transformation £ = ie™* transforms the strip of breadth 2a in the strip of breadth
2a in the z-plane into the upper half of the plane {-pane, the origin O in the z-pane being
midway between the two walls. The points B, C coincide with (B, C,), { = 0.

When z =0, £ =i, i.e., the point P in the C-plane.
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Thus in the z-pane there 1s a source m at O’ and equal sink at infinite distance, so in
the C-pane there will be a source m at P and a sink (—m) at (B, C) and hence an image
souuce m at the point { = i.

Therefore,
w=-mlog(C—-i)-mlog(C+i)+mlogl
£2 +1

=~-mlog =-—mlog({+L')

= _5E { m nz
=-—m]ﬂﬂ{in!a =je 2a ]:—mlngi[czt —& 2a ]

&L b

-mlﬂg(:ﬁ —-e 2a }—mlﬂgi

Omitting the constant, we take

= m
W=—-mlug[ein - 2a ]

or |

w = —m log(e™ - &), | (1)
where

¢ = nf2a ' (),
50 that
w = —m log (e * ¥ _ gelx + i),
Therefore
¢ +iy =—mlog[ 2coscysinhcx + 2 isincy coshex ]
and s0
W= — mtan ! Esii"fiim___hm':=-|-|-|_[,a|1—l ( tancy ].
2coscysinhcx tanh cx

Streamlines are given by w = constant, i.e., tan cy = K tanh cx,

. Ty X :
. —~ K KL )
i.e 74 tanh 24 [using (2)]
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When x = =, y = a/2. Hence K = |. Therefore streamlines become

Y nx
tan— = Ktanh —-.
anzﬂ an P (3)

Diff. {3} w.ri. x we have

Example 7 :

Use the transformation & = e™ to find the streamlines of the motion in two dimensions. -
due to a source midway between two infinite parallel boundaries (assume the liguid drawn
off equally by sinks at the ends of the region). If the pressure tends to zero at the ends
of the streams, prove that planes are pressed apart with a force which varies inversely as
their distance from each other.

Solution :
We know that the transformation
Q = cl.l'.ﬂ [I}

transform the infinite strip A., B., C.. D in the z-plane with origin at O into the
upper half in the {-plane with origin at (B, C) which coincide with B, C, at { =0.
The point z = aif2 goes to { = e™ = i at the point P in {-plane. There is a source at
0" in the z-plane and equal sink at infinity, therefore in the C-plane there is a source of
strength m at P, sink of strength (—m) at (B, C) and an image source at £ = —1i.

The complex potential is given by
w=-mlog({-i)-mlog({+i)+mlogl=-mlog(L+L"")
=-mlog(e=® +e-=2) . using (1)
=-mlogZ-mlogcosh(nz/a).
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Therelore

w=—mlogcosh{ mz /a), omilting the constant term in .

From (2},
dw mn nz mft
= — = ~—=taph ==, -
q dz . - and g . .
We know that
E-F-—ii]1 ==:4::+nstant==l—¢:_|z [p.=0]
p 2 2 o] a
2m? 2y 2
p 2a?l a al cosh?

Now, any point on the upper boundary is z = x + ia and hence (3) gives

2a1 Y E '
4 mhl(ﬂﬂnj 2a t:oshlﬂf
a

Pa
P

If F be the force with which the planes are pressed apart, then we have

=

& nipm? .. wipm? = m?
F=2!updx= pz j“ : dx = P__" -i[mnhﬁ} =:r.p‘

a cosh 2 X a n a lo a

ad

showing that F o 1 {e. the force varies inversely as the distance between the planes
a

apart.

1.23 Model Questions

Short Questions :
1. Show that the curves of equivelocity potential and stream lines intersect orthogonally.

2.  Define stream function (or current function).
3.  Sute the boundary conditions for the motion of a cylinder in a uniform stream.
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3

6.

7.
8.
gi

Define flow and circulation for fluid motion.

Find the expression for the complex velocity potential in the case of motion of a
fluid with circulation about a circular cylinder.

State Milne-Thomson Circle theorem, Blasius theorem and Kutta-Joukowski
theorem.

What is meant by conformal mapping? When is it said to be isogonal?
Define Schwarz-Christoffel and Joukowski transformations.

What is meant by aerofoil? Define camber stating the assumptions required.

10. Define elliptic coordinates.

Broad Questions

]'

P

Discuss the motion of a circular (or/elliptic) cylinder moving in or infinite mass of
the liquid at rest at infinity with velocity U in the direction of x-axis.

Discuss the motion of a liquid past a fixed circular (or elliptic) cylinder.

Show that if there is a streaming past a fixed circular (or elliptic) cylinder with
velocity U in the negative direction of x-axis and there is a circulation of swength
k. then the cylinder experiences an upward lift amounting pkU, p being the
density of the liquid.

Deduce the equation of motion of a circular cylinder moving in a liquid at rest at
infinity. Hence show that the effect of the presence of the liquid is to reduce the
extraneous force in the ratio (o — p) : (o — p) where o, p are the densities of
the cylinder and liquid respectively,

Determine the velocity potential and the stream function at any point of a liquid
contained between two coaxial circular cylinders.

State and prove Milne-Thomson circle theorem. Apply the theorem to find the
complex potential of (1) a uniform flow with velocity U along negative x-axis past
a fixed circular cylinder and (ii} a uniform stream at incidence P with positive x-
axis.
State and prove Blasius theorem and the theorem of Kutta-Joukowski.
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Determine the complex potential when an elliptic cylinder moves in an infinite
liguid with a velocity v in a direction making an angle B with the major axis of
the cross-section of the cylinder.

Find the complex potential when an elliptic cylinder is rotating with constant
angular velocity in an infinite mass ol liquid at rest at infinity.

Problems :

Show that when a cylinder moves uniformly in a given straight line in an infinite
liquid, the path of any point in the fluid is given by the equations

dz _ Va?  dz'_ Va?

de (z'-veyr'dt o (z-Vi)r'

where v = velocity of cylinder, a its radius, and z, 2" are x + iy, x — iy and x. ¥
are the coordinates measured from the starting point of the axis. along and’
perpendicular to its direction of motion.

If a long circular cylinder of radius a moves in a straight line at right angles
to its length in liquid at rest at infinity, show that when a particle of liquid in
the plane of symmetry, initially at distance b in advance of the axis of the
cylinder has moved through a distance c, then the cylinder has moved through
a distance

A circular eylinder of radius a and infinite length lies on a plane in an infinite depth
of liquid. The velocity of liguid at a great distance from the cylinder 15 U
perpendicular to the generators, and the motion is irmotational and two-dimensional.
WVerify that the stream function is the imaginary part of w = wal coth {ma/z),
where z is a complex variable, zero on the line of contact and real on the plane.
Prove that the pressure at the two ends of the diameter of the cylinder normal to
the plane differs by

(1732)m*pU2,
The space between two infinitely long cylinders of radii a and bia > b)

respectively is filled with homogenous liquid of density p and is suddenly
moved with velocity U perpendicular to the axis, the outer one is being kept
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fixed. Show that the resultant impulsive pressure on a length ! of the inner
cylinder is '

b2 +a?
2
Tpa b 3

= U

Prove that if 2a, 2b are axes of the cross-section of an elliptic cylinder placed
across a stream in which the velocity at infinity is U parallel to the major axis
of the cross-section, the velocity at a point (a cos 1, b sin 1) on the surface
5

Uf{a+b)sinn

(bt cos? n+a?sin? n)"”

and that, in consequence of the motion, the resultant thrust per unit length on that
half of the cylinder on which the stream impinges is diminished by

Eh*pU=[17(3+b)Wium,,A[a-b)”2}

a-b a-b a+h

where p is the density of the liquid.

An elliptic cylinder, the semi-axes of whose mﬁctinns are a and b, is moving
with velocity U paralle] to the major axis of the cross-section, through an infinite
liquid of density p which is at rest at infinity, the pressure there being I1. Prove
that in order that the pressure may everywhere be positive

2a’ll

pUT « e,
2ab+b?2

An elliptic cylinder, semi-axes a and b, is held with its length perpendicular to, and
its major axis making an angle © with the direction of a stream of velocity V.
Prove that the magnitude of the couple per unit length on the cylinder due to the
fluid pressure is

[lp(al -b2 )V:sinbecosh

and determine its sense.
52



8. A rectangle open at infinity in the x-direction has solid boundaries along x = ().
v =0and y = a Fluid of amount 2xm flows into and out of the rectangle at the
corners X =0, y =0 and x =0, y = a respectively. Prove that the motion of the
fluid is given by

w =4 log tanh (nz/2a).

9. Show that the transformation z=(a/m){(§F 1) -sec~1 {}, f=e ™V

where 2 = x + iy, 0 = ¢ + iy, give the flow of a straight river of breadth a, running

with velocity V at right angles to the straight shore of an otherwise unlimited sea
of water into which it flows.

1.24 Summary

In this chapter, two-dimensional irrotational motion of an inviscid liquid past circular
an elliptic cylinder has been considered. In addition, motion of these cylinders in the liquid
has also been taken into account. Due to wide applications, Milne-Thomson circle theorem
and Blasius theorem are discussed. Also a sketch of aerofoil is given.
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2.0 Introduction

We now describe irrotational motion in three dimensions with particular reference to the
motion of a sphere, ellipsoid and solids of revolution in an infinite inviscid incompressible uid.
The stream function and velocity potential are obtained. It is to be noted that the powerful
tool of the theory of complex functions cannot used in three dimensional problems.

2.1 Motion of a Sphere

We propose to study irrotational motion in three-dimensions with reference 1o the
motion of a sphere. We shall consider spherical form of solution of the Laplace’s equation

di¢p o o&°
¢+ d"+ '1}'—-'[]

dx? dy? oz* N
which, in spherical polar co-ordinates (r. 8, w), reduces to
a: a2 a2
i lﬂ_‘_ 1 __E+=:ntﬁ_af+__'_1_‘___¢’_=ﬂl @

Zri rar r2o02  r? 00 risin?0dw?
When there is symmetry about z-axis, ¢ is independent of @ and hence (2) reduces to
979 206 1 97% cotB 0

#mme—
dri rogr r? ooh? r o

Substituting ¢ = f{r) cos B in (3), we see that
(48,20

f(r)  cosf _
e +;-c-]? ]-CDF-'EI-— r':"‘:mﬂ"',z fir)=0,

0. (3)

so that f(r) satisfies
' d2f . df
ri——+2r—=-2f(r)=0
dr? dr (r)
which is a honiogenous ordinary differential equation and the solution of the equation is of
the form ftr,‘l=ﬁr+—B.; .
r -
Hence the solution of the equation (3) can be taken as

¢=f{r}cmﬂ=(hr+£—-)cmﬂ. 4)
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2.1.1 Irrotational motion of liquid in which the sphere is moving :

Let a solid sphere of radius a is moving with velocity U through a homogenoeus liquid
which is at rest at infinity. Let O, the center of the sphere, be taken as the origin, We
choose Oz in the direction of velocity U so that the motion is symmetrical about Oz.
Let P(r, B, @) be any poim, and R' denote the region r 2 a while R is the region r =
a. S(r = a) is the sphere which separates R and R'. If the motion is irrotational then the

velocity can be expressed as q = —Wd ., ¢ being the velocity potential. Thus the equation
of continuity V.g = 0 gives
Vibh=0 in R’
Since there is symmetry about the z-axis, ¢ is independent of @ and so V' = 0
reduces o

az RE
¢+2c3¢ | ¢+-:mﬁ6‘¢r

— =0, inR' 5
“ar? rdr r?abr r? 80 " )
Boundary conditions are as follows :
{i) As the liguid is at rest at infinity, we must have
J?E:[l as r —» oo, (G

or
(ii) and as the normal velocity on the sphere is U cos 8, we must have
_E:F} =Ucos 8 on S(r=a) (T

Since ¢ is harmonic and normal derivative is prescribed at the boundary S(r = a), so
¢ is unique except for an additive constant.

The boundary conditions (i) and (ii) suggest that ¢ must be of the form fl:[] cos 8 and
hence it is assumed as

¢:[ rEE ]Eﬂﬁﬂ. {3}
From (8)
rﬁ=—[ﬁ—ﬂ ]msﬂ. (9
ar ri



Using (6) we get
AcosB@=0 je, A=0 (1)
Using (7} in {9} we get,

Ucosh = %cusﬂ , for all values of @,

a
so that
1
B=12-. ()
Thus
Ua? cosh
= = Jf).;-;.—— {]3]

which determines the velocity potential for the flow.

We now determine the equation of streamlines of the flow. The differential cquation
of the streamlines is

dr _ rdo
dp/dr 64/ rdb
ic.. dr _ rd
Ua?cos® Ua® sin
3 Ird
50 that
s R
dr _ _..:‘cj-g:_.'-.li" 4o
r sin
Integrating.

log r= 2 log{sin 8} + log C  (C is constant)
i.e., r=Csin’ @

which is the equation of streamlines.

2.1.2 Equation of motion of a sphure :

We take the origin at the center of the sphere and the z-axis in the direction of motion.
Let the sphere move with velocity U zlong the z-axis in an infinite mass of liguid at rest
at infinity, The velocity potential of the motion is given by

57



Ua?
=—=——cos0
¢ TER

s that

a0 a3

—-=————cosf.
ar rid
Let P(a, B, @) be the spherical polar co-ordinates of any point on the surface of the
sphere. Then the elementary area ds at P is adf.a sin 8do. Again the value of d};ﬂ atP
r

is given by

o] __Uacos?e
a )., 2 (13

The kinetic energy T of the liguid is

T, =2 ffe30 as.

integrated over the surface of the sphere, p being the density of the liquid. Using (13), we
obtain

ol e UZacos® 0
n=-S (-

7

]-{ a? sinBdBdam )

=l

(14}

3
where, M’ = 3 T4 p is the mass of the liquid displaced by sphere.
Let o be the density of the sphere and M be the mass of the sphere so that

M=f§ncm~‘ (15)

and K.E. of the sphere is T = %MU?, [ 16)
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Let T be the total kinetic energy of the liquid and the sphere. Then

T:é(mﬂiw]m,by(zyandm]. (17)
Let Z be the E!-.tt'lé!‘ﬁal force parallel to the z-axis (i.e., in the direction of motion of
sphere). Then from the principle of energy, we have

Rate of increase of total K.E. = rate at which work is being done

- d l[ 1 J 2 }
ie., dl[l M+2M LA} ZU
ie., (M-.-lm']ui,r:zu_whcm g-9U
2 di
ie. Mﬁ=2—%M'U (18)

Let Z' be the external force on the sphere when no liquid is present. Then from
hydrostatical considerations, there exists a relation between Z and Z' of the form

Z = [(o - pVolZ (19)
From (18} and {19), we have
|

MU+1M'I:I=[{G~—|J‘],J'U}E'
L] 1 " 3 P
ie., (M+EM JU=[(n—puu]3
e, MU = N: G;P !
4 noa ?
. . 3 g=p_,
1.2, MU = Z
v 4noal 14noa’ o
3 2 3
™ MU = i%z ' (20)
n+ip '

Equation (20) shows that the whole effect of the presence of the liquid is to reduce the

external force in the ratio (o - p) : [ u’+%p )
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2.1.3 Fixed sphere in a uniform stream :

Let there be a uniform stream of velocity V in the negative direction of z-axis and the

sphere be kept fixed, R’ (r=a) and R (r<a) are the two n:giﬁns separated by the
sphere S(r = a). The motion is irrotational and the velocity potential satisfies

Vi =0 inR" (21)
Boundary conditions are as follows :
(1) As the sphere is fixed, we have

o4 =0, on Sir=a) (22) -
or
{1i) the infinity condition gives
b~Vz as 1= oo, (23)
The boundary condition (ii) suggesis
b= Vz+ ¢ (24)
where §, = 0 as r - w«
Equation (24) gives
Vi, =0 in R’ (25
and from (24) by using (2) we get
%=vﬂ=*vmﬂi on S. (26)
ar &r

The conditions (25) and (26) suggest that ¢, must be of the form

¢, =[Ar+r£1]cusﬂ (27)
A, B being constants.
Using the conditions (25) and (26) we get,

a*v
zrz-ccmﬂ

'¢'1=

3
q:.=‘||.Frumt:r:z;ié}+%E‘L ‘fcusﬂ.
r

b
-
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i . . . atVv .
Here Vr cos 0 is the velocity potential due to the uniform stream and 2—14::05!&] is
r -

the velocity potential due to the presence of sphere.
Now we determine the lines of flow relative to the sphere.

The streamlines are given by the differential equation

_dr __rd0
ch/ér  Op/rod
. dr rd@
L.E., |l" 3 = >
a a’ r
Vkl-}—s—)cusﬂ —V[H-z—r—}-]smﬁ
T4 2
ie., _gmtc,dﬂ:ir_tLE:(_h _A)d,,
ri—-a' r rd-a’ r

Integrating
~2logsin @ =log (r —a’)—logr-logc
where log c is integration constant. '
3
ie., r?sin? ﬂ(]na—)=c,
r3

On the surface of the sphere

+

1 G 3IVsinf
Qo =| —— =~ =""2
r=a

We note that g = 0 for 8 =0, m and it is minimum for 6 = =/2, 37/2 and the minimum
value is 3—\1
2
Hence 8 = 0, x are the stagnation points on r = a.
2.1.4 Moving ‘concentric spheres :

Let the region between iwo concentric spheres of radii a and b(> a) be filled with
liquid which is homogenous and incompressible, R be the region between two concentric
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spheres ie., R(a <r <b). Impuises f, and fl are applied on the spheres S,(r = a) and
54(r = b} respectively in the z direction so that the two spheres start to move with velocities
U and V respectively in the positive direction of z-axis. We intend to determine the resulting
molion.

Since the motion is imotational and symmetne about z-direction, the velocity potential
¢ satisfies the equation

i X at 7
g ¢+Eﬂ+L b cnlﬂﬂ__n

%% ré 2 EIEIE+ a0 inR:{a=<r<b) (28)
The boundary conditions are
(i - 2 =Ucos® on 5(r=a), (29)
(i) - ?’-}T =Vcos B on Sifr=b) (3
The boundary conditions (i) and (ii) suggest that ¢ must be ol the form
B ;
where A and B are constants.
From (31) we get,
o 2B
_Et:;—(h-—r-]—]cusﬂ. (32)
Using (29) and (30) in (32) we get
Ua? — Vb3 (U-V)a’b?
Az dB:
b —as 2(b* -2 )
Therefore, for the starting motion, the velocity potential is given by
1 a’h’ (U-V)
¢=-bﬂ'_—-I{-[[“3U_b1u]r+ 2c2 }Eﬂﬁa- {33']

In this case, the impulsive pressures on the boundaries when the motion is started from
rest, are p¢ so that these are given by

acos® b3 3b?
o [[“"*?]"‘T"}P o
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beos® | 3a? .  b?
o, =b-”-—a-‘[ 3 Uw(n- +TJV}P on Sa.

The impulsive thrust on the inner boundary is therefore,

I =J: w, cosB.2 ma? sin(dO

4mad . :
- “; P[(au%)u—%v}qhi—an

Similarly, on the outer boundary the impulsive thrust is

Amhl
[, =2 p[hzu-(a—;@hﬂjv}wﬂ—an.

3 2

2.2 Axi-symmetric Motion

A motion is called axi-symmetric if it is symmc.lric'about a line, called the axis. Here
the motion is the same in every plane through the axis and the plane is called the meridian
plane. Now taking the axis of symmetry as z-axis and using the cylindrical coordinate
system, every field variable is a function of @m(= (y* + x%)"?) and z only.

2.2.1 Stokes’ stream function :

Let the axis of symmetry be the axis of z and let @(= (y* + x*)') denote distance

from the axis. Let u, v denote the components of velocity in the direction of the z and w.

Then the equation of continuity is obtained by equating to zero the flow out of the annular
space obtained by revolving a smail rectangle dwdz around the axis. The total flow out

parallel to z is -éa—{ulmd'ﬁiklz and parallel to @, the total flow out 15 E%{v.ﬂﬁmdz}ldm.
i
50 that by equating the sum to zero we get the equation of continuity as

a &
—{um +
. E'z{ ) Filn]

This is, however, the condition that vaodz — vmdw may be an exact differential, and if we
denote this by dy, we get

(v y=10.
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10y 1 dy

wéw @ oz
This function y is called Stokes” stream function.
The streamlines are given by

dz _dw
uoowv

i.e., mw(vdz — udw) = 0,
that is, by dy = 0. Hence the equation y = constant represents stream lines.

A property of Stokes’ stream function is thal 2z times the difference of its values at
two points in the same meridian plune is equal to the flow across the annular surfuce
obtained by the revolution round the axis joining the points. For, if ds be an element of the
curve and 8 its inclination to its axis, the flow outwards across the surface of revolution is

I( vcusﬂ—uaiuﬂ],lnmds=2ﬂ‘[[~g:— dx + gdm]=2ﬂjdw =2R{y,~y,).

: . . 1
We might also define the value of Stokes’ stream function at any point P as T of

the amount of flow across a surface obtained by revolving a curve AP round the axis, A
being a fixed point in the meridian plane through P; for, this makes

P
=1]; "[vcnﬁﬂvusinﬂ}.imds

P
=IA{ viodz —uwdm )

and by varying the position of P, we get as before,
{34)
2.2.2 Irrotational axi-symmetric motion :

Let us consider an irrotational motion for which the velocity potential is ¢. Therefore,

U=, = ——a, (35)



Aguin Stokes’ stream function always exists such that
| dy

g
0= —-—— andv:l—w

. 36
w 0w ® &z (36)

Thus
— (37

From (37)

50 that

L., +———=—=0, (38)

Again from (37)

50 that




| 0 __ 2% 2
e Bt T "om:  m’
i o ) O
e, - -+ ——=0. 39
" R et wow =9

Equations {38) and (39) show that $ and w are not interchangeable in the way that is
applied to the velocity potential and stream function of two-dimensional irrotational
moton.

Now we rewrite (38) and (39) in polar co-ordinates. Let g, and gg be the velocities
in the directions of dr and rd8. Then, since @ = r sin 8 and the velocity from right to left

across ds is —]—ﬂf we gel
@ Js

I N
s wro0  rlsing oo’
19w 1 oy
Qe = 5 r " rsinb ar (40)
Burt in irrotational motion, we know that
b d
. =-—, =—— 41
qr -ﬂr' qE “'Eﬁ E :I
: (U 1 oy 10
d —=—and —_—— 42
And sinee r2 sind 50 ﬂran rsin gr r oo ()
© of 1w 2% af 1 N
g0\ r?sin@ 50 cBdr orl rsin® or
i éry g 1 oy
2 )= | =
e, r 53 +smﬂﬁ'ﬂ[5iﬂﬂﬂﬂ'] 0. (43)
Let u = cos 0 so that
ﬂinﬂim-j—- A4
T it (4

then (43) reduces to



dly al oy
2l X | =
r? S-sin Bﬂp[ﬁu] !'J (45)

Similarly eliminating  from (42), we get

B 80, 1 af. a0
6r[r ﬁr]+5inﬁﬂﬂ[hlnﬂﬂﬁ] 0

- P -2 PN A
ie., a:(r ar]+au[“ u }Eu 0 (46)

which is Laplace's equation and has solution of the forms r"P,(p) and r™ P, (1), Po(W)
being the Legendre polynomial of degree n.

Again from (42), we have

&
ﬂ_t=—r?§=—nr“*'h or {n+l)r"P,_, (47)
By

b aP, aP,
PR . 2 Y - 2 | . — 2 el Tl ——
ax (1-p }3:4 (I-p?)r o or (1-p?)r o (48)

On integration, (48) gives us possible solutions for y as

(1-p?) dP, (1-p?) ¢ aP,
- or —— -

n+l

n+l au noor" gp

(49)

2.2.3 Solids of revolution moving along their axes in an infinite
mass of liquid :

Suppose that a solid moves along Ox with velocity U and let Ox be the axis of
revolution. Since the motion is symmetrical about Ox, Stokes’ stream function exists.

Now the normal velocity of the liquid in contact with the surface at P is —% % On
the boundary, we have

| Oy : .
"o s s velocity of the solid along normal
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ﬂ ow fm
&5

i.::.,wL = Ucosf = U—, where cosb = —
@ ds dis
e, dy == Uwndo
Integrating,
Um?
W= =2 ¢ constant
2
2 gin ?
Le., W= —E-I—-‘;m—ﬂ + constant, where @ = r sin 6 (50
. U(l-p?)

Le., Y=—— Ty + constant, where p = cos 0 (31

which is the boundary condition at P.
Again y must satisfy the equation

, 6y ,. Gty
T'E“.:'I'EI—“']&: =0, Whﬁl‘*‘-‘ﬂﬂcmﬁ (52)
d it is known that (52) has soluti form ——t pant Fa g LR Py
.,- o o et r - :‘_. u‘l" — e —— o ——
and it 15 known that (52) has solutions of the n+l O nre o du

As an example, we consider the case of a sphere of radius a. Then withr=a1n {51},
we must have

=—E;;{I—I-l?]+ﬂ (53)
Taking n = 1 in (49), we have the solution of the form
[—u?
y=A—", (54)

r
then at the boundary we must have

A(l-p?) _ va?,,
== (1-p)+C

k]
for all values of p. This requires that C=0and A = - UTE . Hence putting these values
and noting that u = cos 8, (54) gives
_ Ua3sin? B

2r
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Again we know that

L 60 Oy Uatsin? @

(1-p3) - =—-= ;

ou or 2re
. g Ual
Le. o= 73
op  2r?

Integrting
Ua? Ua®
$ = .ili B= 2[:'?’ cos B, (56)

2.3 Ellipsoidal Coordinate System

Let us consider the equation
2 : 72
X + ¥ L.z
az+8 b?+B c?+0
where 0 is a parameter. This represents a family of confocal central conicoids. The above
equation can be reduced to a cubic equation of 0, given by

F(0)=x2(b? +0)c2 +B8)+y? (a2 +0)(c? +8)+2? (a? +B)W b7 +0}
—(a? +0) b2 +B)Wc?+0)=0. {58)

=l,ah>c (57)

MNow
F(-x)=+ve,F(-a?)=+ve,F(-b?)==ve, F(-c?)=+ve F{ax)=-ve.
Hence we conclude that F(8) has three real roots A, p, v such that
' —atsve-blecpc-ct<i.
Thus through any fixed point (x, y, z), there are three conicoids represented by
A = constant, p = constant, v = constant
It may be noted that
A = constant represents an ellipsoid,
i = constant represents a hyperboloid of one sheet,
and

v = constant represents a hyperboloid of two sheets.
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Mow we write

X2 + Y . 22
53+}L b2 +X e +A

Differentiating with respect to x we get,

f{i)= ~-1=0, (58)

dh 2%
r 1 —_— = :
e }Elx al+ A
! én _ 1 2x
Tax f'(hjyal +r
Similarly
a__1 2y
dy f'(A)b2 4+’
E?: 1 2z

dz f'(a)el+h
Direction cosines of the normal to the surface A = constant are proportional to

dh dh Ok
( E}r“ Py ] Similarly, direction cosines of the normal to the surface p = constant
du 614 oy

g a}r ™ J Now the cosine of the angle between these norrnaln-.

arepmpnrlmaltn[

is proportional to

- 1 4x? _m“jfi_“ml}
Fr(Af () (a2+h a2 +p) (b2 +20)b2 +u)

4

fr{u)f'(p)

which vanishes if f(1) = 0, f(u) = 0. Hence A, p, v give the system of orthogonal curvilinear
coordinates called ellipsoidal co-ordinates. Again A, p, v are the roots of F(8) =0, so that
F(8) can be written as

(FCA)-F(p)) (59)

F(8) = (A - 8) (n-8) (v-8)
70



Let us put 8 = — a%, = b, — ¢* in (35) successively and we get
(a2 +ANa2+p)a?+v)
(a2 —b2 )al —¢?)

(b2 4R)(b2 +p)(b? +v)
(b2 —a? yb?-c2)

2

Iic:2 +11Lc3 +uMc? +u}|
(c?-a?)(c?-b?)
Now if ds is an element then

ds? =h2dA? +hldp? +hdv?

wherne
2 53 2
2 _[ 0x ey bz
vt =(5) +[E (&)
A
h==[a_1]2+r£th+f§£\|:
: au '\ B REFLJ
h1=(§ihri“*+[§z_f
T Aav) Tlev) \av/o
Now it is easy to see that
ap o XL ¥T ozt
' {a? k12 (b2 +012 (e 4a)?
samilarly,
4h2 o XE 13 27
otatap)? (bTap)? (o +p)l
an?=——X1 A .

We can write

(A=0)p- HJH—E}
fifB)=s — T
(&)= {a1+ﬁ]{h1+ﬂl}fc1 JI-IEI‘.t
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& ':l."-."],l“::‘l.—\f}
wf R = - s,
(a2 +AXb2=A)c? <4)
Thus
- A—uldA=vi
4hi'f - { ) .!'.'l..?.{.._.._‘ s
(a2 +A b2+ e +4)
3 iH—:"-HM‘N
4h? = —emm .
(a2 +pu)b?2 +plc? +n)
—A W v=
4h§ — {\r ]{ “:.'..-\..._.--——

(a2 +v)ib? +v)c? +v)

So the Laplace operator in ellipsoidal coordinates is
groe L [ofhahs ) ofhihy ) afhib: 2
hyhahyp bl hy &k ) oul hy duf évi hy dv

2 2 .
=u-v)( K, ) ¢+w—m[x 3] prin-m(K, 2 ) ¢

Yo
where
K, =(a2=A)}b2-A)}c?-A)
K, =(a“® +u b2 +pde? +p)
K,=(a2+v)(b2+v)(c?+v)

Solutions of this Laplace equation are called cllipsoidal harmonics.

2.3.1 Translatory motion of an ellipsoid :

We consider the ellipsoid S : L =0,
x? ¥’
+
a? b?
wivich moves through a liquid in the direction of x-axis with velocity U, Since the motion
is irrotational, the velocity potential ¢ satisfies
V=0 for L2z0.
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2 =0 (60)
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The boundary cond: . ons are

{i' —— = Uicos@ , on L=10

AT

where 8, is‘the angle between the normal and x-axis,

. o ox
ie, —=——==U—, L =0,
b, L

since dn =h ,dA, costl, = . i':: Thus
h, @

dp=-Ux on A=0 (61)

(ii ¢ is regular at infinity '
e, d—=0 as A — o (62)
For solution of the Laplace equation (60) in the ellipsoidal coordinate system, we take

oy

dt .
- . S : 5 3
b Cx!iu: 0K, which tends to 0 as A =» w0 (63)

where C 15 constant.

Using the boundary condition (61} in (62) we get

ax ax [~ dt Cx
gy =2 _ 1 _
E a}bjn (a7 +0K, al.abc' VhereA=0
Again
ox | _X% ., when A =0
ah  2al
therefore,
bell i dr
C=-2= where o, = — ) 64
z—ﬂn oy abc e +t”{r (64)
Thus finally we get
b= abellx I"-' . dt L
2oy i (al +0)¥ (b2 +1)V2 (a2 41} (65)
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and on the ellipsoid we have from (64)

a,xU
¢_1_11-n,‘ : {ﬁﬁ}
The kinetic energy of the liquid is
I X LT
T__ipv[q}ﬂndﬁ-E[EHHDJIxEGSBde

Since cos 0, ds is the projection on the plane x = 0 of the area ds of the surface, and the

last integral gives the volume of the ellipsoid as E—%b'—: we find

Ma,U?

T 2(2-ay)
where M’ is the mass of liquid displaced by ellipsoid.
When the ellipsoid has, in addition, velocity components V, W parallel to y-axis and
z-axis. we get, by superposing the results analogous to (66), the velocity potential to be

abell j"’ dt abeV, j"' dt

- a4 = = ---—+. . —
I=ag Jr (a?+0IK, Z-f,

abcW, p= dt
- _— _|- - - wom o m——
vib?+)K, ?:—';:;,J.«-L:! +1)K,

where e, ¥o are defined by writing b% + 1, ¢ + t for a° + tin (5).

2.4 Source, Sink, Doublet

Source :

Source is a point at which liquid is created and distributed at a uniform rate and the
liquid flows outward symmetrically in all directions from the point. If the rale of emission
of the volume of liquid is 4tm, then m is called the strength of the source. When the rute -
of emission is constant then the source is called steady.

Let us consider a steady irrotational motion due to the source of strength m. The
volume of the liquid flowing oul in a spherical surface of radius r and the source at its center
must be equal to the volume of liguid created per unit time. Let ¢ be the velocity potential
due to a simple source of strength m, and the liquid be at rest at infinity. Then

o

dmm = flux of liquid across the spherical surface = — 3 4mrs
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So,

o= ? + constant
Since constant velocity potential does not change the motion, we may neglect the constant
or may redefine the velocity potential by including the constant in it.

Sink :
A sink is a source of negative strength.
Naote : A source or sink implies creation or annihilation of fluid at a point. Both are points

at which the velocity potential is infinite. A source and sink are purely abstract conception
but they are to be considered due to exigencies of analysis.

Doublet :

A combination of source and sink of equal strength m at a small distance 8s apart,
when the limit of m is infinitely large and 8s is infinitely small, but mds remains finite and
equal to p, then it is called a doublet of strength p and the line &s taken from — mto m
is called the axis of the doublet. Let v denotes the direction of the axis of the doublet.
So,

(L5 UTH r

1 X
[¢], = lim {—m[lj -I-m[i-} = Tim mc‘%*“w-'":.— = fpr- —{H

where the source is at Q and the sink is ar Q. and in the limit both Q and Q' tend o P.
Thus

o1y _H or
W]P_Hﬁlp[r) rd gv
Again, since r = - v cos B
g pcost
[dle ='-rz-31{*vcusﬂj= =



2.5 Images

If in a liquid a surface S can be drawn across which ihere is no flow. then any systems
of sources, sinks and doublets on opposite sides of this surface may be said to be images
of one another with regard to the surface. And if the surface S be regarded as a rigid
boundary and the liquid is removed from one side of it, the motion on the other side will
remain unaltered.

2.5.1 Image of a source with respect to a rigid plane :

Let S(x = 0) be a fixed plane and a source of strength m be placed at Q(a, 0, 0) in
front of § (see figure 1.1.). Let ('1— a, (0, O) be another point which is image point of
with respect to S. Let P be any fixed point and ry, r; be the distances of Q. Q' respectively
from P.

'y

Qr['_aiﬂ!“} Q(n'll}'ll]}

Figure 2.1

Since the motion is irroiauonal on the right of S{x = 0} due to the source at Q. so0
Vi =0inR:x =0 excepl at Q,
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therefore,

¢ ~ M near Q
r

where r; is the distance from Q (r; — ), and also ¢ is regular at infinity. Again, éﬂ =0
. X
on Six = 0).
Now we set

m
¢=E+¢'|

where ¢, is due to the presence of the rigid wall. Then

Vg, 2924,_1;?2(&):@

r

and

r

% 0% af1)__
ax  Ox ex

Now

P =(x-a)?+y2+22, 1] =(x+a)? +y? +22

%——ma[]]—@- on S

ox  ax\n ) 1}

m .
We choose ¢, = —, the reason for this is as follows :

Therefore, on x =0
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Hence

o, == inR.
[
Therefore,
Iy Iy

This shows that the image of a point source with respect to a point is a point source of
same strength at the image point. '

2.5.2 Image of a source in front of a sphere :

Let S(r = a) be a fixed sphere of radius a and a source of strength m be placed on
z-axis at a distance { from the center of the sphere, R{r = a), R'(r = a) are two regions
separated by the sphere S(r = a) (See figure 2.2).

Figure 2.2

Let Q)" be the inverse point of Q with respect to Ihtf sphere then, OQ' = E:-.

Let P be any field point, which is at a distance r) and r; from Q and Q' respectively
and (r, 8, @) be the co-ordinates of P.

The velocity potential ¢ is composed of two parts, one is ¢, which is due to the source
of strength m and another is ¢, which is due to the presence of spherical boundary. The
later part will be the velocity potential of the required system.

78



As the motion is irrolational, the velocity potential $ satisfies Laplace’s equation
V% =0 in R' except at Q.
and the conditions
{i) ¢ ~ rE near ) where r; is the distance from Q,
I
(ii) ¢ is regular at infinity
. . o
{iii) and since S is fixed, i 0.on 5.

Let us set

V%, =0 and %:%—mg—[iJ=—m£[—l--] on S.

r orirn
Mo,
i 1 1 1 i rn
e —— e — ==y — P (c050)
L ri+f?=2rfcos® f 2 fzf“ o
' J-— (%) -z—rfcnsﬂ+l

where P,(cos 8) is Legendre's polynomial.

Agﬂin.r::DQ'rE%:b{n

1 | 1 v be
— = =— ¥ —P_ {cosB).
r; /12 +b2 —2rhcosh fgur““ .

On §,

- s n-1
Oy _ ‘""Z “fa-n.i P, (cos@).

or errs

Let us take

<A
&, =2 r_ﬁill_ P, (cosf)

n=l
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sothat 18 regular al infinity, and on 5,

- 'I " 'I
[Eﬂl L= _Z E“ -~ }AD—T‘ feosi.

OF ay H 2
Jl;“ =L d

Thus. we obtain

S — (n+11A
—I‘HZI 5 P' [:CD.HB}_—Z'E :I":: “P, (cosB).

f=0 n=1
Hence
__mn aznt
" n4] fo+i
Thus
b=y P“{“f.“mw atet By (cos6) & gamt Py (cost)
pn(n+1)fn re f"" rott d(n jfosl  pand

_mx~fa
. 2

=L}

[ ] P{cusﬂ} me  alml P{cusﬂ}

ol Copml g [n+]}fn*l Copnl

Ml

E_.b 5 .._bn_ - < an+l (h} {Cﬂhﬂ'] _ma ~m el
P, (cosB) E{n+|}f|1+| l-rn-] frz ZW . (cosB)

T IZ L P lcos8)

Set,
A== F ' f_’ L p (cosD).
" (rf+y?-2rycosfh)i2 el
Hence
bM ._' bd kol I.n
fﬂ 1"‘[& I,é'r—“:rpn {cosB).
Therefore,



This shows that the required image consists of the source of strength -r!:_-?- at the

inverse point Q" and a line distribution of sink of strength — M per unit length extending
d

from the center to the inverse point.

2.5.3 Image of a doublet in front of sphere :

Let a doublet of strength p be placed at A on the z-axis, where OA = fand OA' =
f + &f so that m&f —» p, where m is the strength of source and sink. Let B and B’ be the
inverse points of A and A’ respectively with respect to the sphere. The image of m at A

is 22 4t B and a line distribution of sink of strength — m per unit length from O o B.
i

The image of —m at A is _?TEF at B, that is —% +£faf_f and a line source of

strength %1- per unit length from 0 o B".

Compounding this image system, we get a doublet of strength ﬂf? BB’ a source

[ 2]

ma of and a sink — ™ BB’, all ultimately at the inverse point. Since OB = A

2 a _f*m

) .
BB = af ?—f so that the source and sink cancel each other and there remains a doublet

2 3 3 '
of strength % : af ff = m?‘ﬁf i, Pﬁ at the inverse point in the opposite direction

to the given doublet.

2.6 Illustrative Solved Examples

Example 1 :

Show that when a sphere of radius a moves with uniform velocity U through a perfect
incompressible infinite fluid, the acceleration of a particle of the fluid at {r, 0) is

a' a°
w55 )
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Soiniion :

Superimpose 4 velocity — U both to the sphere and the liquid. This reduces the sphere
to resi und the velocity potential of the flow is given by {Article "Liquid steaming past a
Tined sphere’)

“3
w0
. &b gl _
r--uﬁr—=—l]' I—I_T cos B (2)
and
1 8 al
rB---ﬁ-U( 3 ]sm[—'.* (3)

Aghin, from (2), we have

. al¥
r=U(1m-—)5m'Elﬂ LF-—-rcnsH
ri r+

(l—;—]smﬁﬂ +3LUI[1 L )msla, by (2).

Clearly for a poiat (r, 0). the velocity is only along the direction of r and hence the
acceleration will also be only along r.
Thus the required acceleration

=t only at (r, 0)

2
_ELUE 1——-—- , from (3) with 8 =8=0
ré r#
al a%
-30(5-55)

Example 2 :

A stream of water of greater depth is flowing with a uniform velocity U over a plane
level bottom. A hemisphere of weight W in water and radius a, rests with its base on the
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bottom. Prove that the average pressure between the base of the hemisphere and the
bottom is less than the fluid pressure at any point of the bottom at a great distance from
the hemisphere if
W
1=
v lrap’

Solution :

Let water be flowing past a fixed hemisphere with velocity U along z-axis and
(r, 8, w) be the spherical polar co-ordinates of a point referred to the center of the
hemisphere as the origin.

The velocity potential is given by

i

b= U(r+.;?]msﬂ. (1

(3). el B)e] o

[‘IF%E],.,.. =[4u[1+ ‘r‘—:]sinﬂL = —%Usinﬁ.

Let q be the velocity at any point of the boundary of the sphere r = a. Then, we have

3 4
g2 = {[_%J +[%%)} =%U1 sin? . (2)

In steady motion in absence of external forces, the pressure at any point by Bernoulli’s
equation is given by

p 2
Bui p =11, g = U at infinity. So (3) gives

I 1
-b-+2-U1=C, . (4)
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Subtracting {4) from (3), we obtain

_ LRI T R .
p _1'[+2pLT zpqi (5)

Using (2), the pressure p’ at any point P on the surface of the sphere r = a is given
by

p' =TI +l1:IU2 —%pljz sin? @, (6)

2
Relation between (x, y, ) and (r, 8, @) are given by
x=rsinBcosw, y=rsinbsinw, z=rcosb, (7N

Direction cosine of OP are (x/r, y/r, /t) where OP = r = a. Using (2), direction cosine

of OP are (sin B cos 8, sin H sin 8, cos 8),

Hence the component of p’ along x-axis is p’ sin 8 cos w..
Taking a sin Bdew, add as an element on the surface of the hemisphere, the total thrust

on the hemisphere due to water along OX

=2

=[" (p'sinBcoswm) (asinBdw.add)

Bal 4 iz —- 12
nf2 1 g - , :
= a*_l' j |: + EpU‘ - Epu1 sin? 'El']:=-m2 Bcoswdbdw [using (1)]

1

-Ea?_l- [1'I+1

pUZ - 'g'PUI sin? B]:?.in?L Bdo

=2a2 " [n+—puz) 9 Uzr(%]r(é)

g 2 (3)

11pU?
=ma?| - .
(n- 27

Since there 15 a weight W on the base, the total thrust on the base

11pU?2
= ma?| IT- W.
m{ o ]+
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Therefore,

base lpU? w
ressure on the base = P = 00 =TI~ +
average p area of the base 32 mal
Hence,
the average pressure < pressure at great distance
if
1pU2  w
N-——+—<Il
2 ma?
e, if
» J2W
Uz .
” 1lpna?
Example 3 :

Incompressible fluid of density p, is contained between two rigid concentric spherical
surfaces, the outer one of mass M, and radius a, the inner one of mass M; and radius b,
A normal blow P is given to the outer surface. Prove that the initial velocities of the two
containing surface (U for the outer and V for the inner) are given by the equations

2mpa’ (2a% +b? 2 npa’h?
{M.+ Tpa (22 ]}U—ﬂ—

V=P
3(a?-b?) al-b?

2npb? (2bY +al) 2apaib?
M Ve ———1]
{ S TPE R a® b

Solution :
As in article *“Moving Concentric Sphere’, we have

V - U)a’b?
L—E%m}cusﬂ (N

¢=a-" [{\'bﬂ—Ua-"]r+

1
—h?

The normal blow P in the outer imparts velocity U to the outer and V to the inner spherical
surface. Let @), @, be the impulsive pressure on an element ds of the boundary surface
r=a and r = b respectively. Then

MU=P-[[m cosBds onr=a 2
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M,U=P- [[®,cos0ds onr=b (3)
On r = a, from (1)

1
al — bt

©) = (ph),, =

. — 3
[[‘fb" ~Uad)a+ wl]me.

2

Hence (2) reduce to
114 s
MU= P—Ju @, cos0.add.2nasin

(V-U)ab?
2

B 2na’
al—pe

[("ii"bJ —Ua3]a+ }x}:cus! f sin BdH

nal 2
=P-—"1 [3Vb? - U(2a? +b3]]x[—§].

Therefore,

2mpad (2a? + b3 2npa’h?
{M|+ npa’ (2a% + }}U_vapl "

3(a? -b3) al —bh?
Again,onr=b

L (V=ath
By = (PPl = ETEF[(W‘ ~Ua? )b+ %}:us f.

Hence (3) reduces to

M,V =-[" @, cos6.ad0. 2nbsin 0

_ 3
_ _2nb? [(Vbi —Ua? }b+£__lﬂa__b]x_[: cos? BsinBdo

al —=b? 2
2nbip X N } [ 2]
- I oUad +—adU-=V1].[| =21
a?‘—h:*[vb Ua -I-za (U ) 3
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Therefore,

I.
ad —hi

bt + 2rpalhs
{M; 2mpb* (2 a: }}‘\-'= npa U

Example 4 :

Prove that if two rigid surface of revolution one of whicii surrounds the other. are
moving along their common axis with velocities Uy, U, and space between them filled with
homogenous liquid, the momentum of the liquid is MaUs - MUy, where M;, M. are the
masses of liquid which either surface would contain.

Solution :

Let x-axis be taken as the axis of revolution. Due to symmetry, the momcat of
momentum of the liquid along the y-axis and z-axis i3 zero. The momentum of the hquid
along x-axis is

J j jpudxdydz, )

If ¢ be the potential at any point P(x, y, z) of the liquid, then u = —E—ai and so (]}
becomes

~IIIp ajdxdydz. 12)

ax . '

the integration extends over the whole volume of the liquid,
Using the Green's theorem (2} can be re-written as

J'J'x—g%ds. - (3

where dn is an element of the outward normal at the element of the bounding surtece 3s.
Hence the momentum of the Irqurd along x-axis is

J-.I....mr =, dbl + F"” x-—dsz

= —pj-[“r lft['i:{j_'i-r +Pj-[.'lu5;:r Ifguzdﬁz 4}
~ where I, and 1, are cosines of the angles which the outer drawn normals ai dsy, ds. make
with x-axis.

87



But [,ds; = dxdy and l>ds; = dydz. So (4) reduces 1o :

The momentum of the liquid along x-axis

- —pjfoldxdy + pjjluzd}"iz

==1J, ijxdxdyw Llizj'J'pxd}rdz

= M;U, - MU,

where M, M, are the masses of the liquids which either surface would contain.

2.7 Model Questions

Short Questions :

Find the solution of Laplace's equation in spherical polar coordinates having axial
symmetry.

Define Stokes' stream function,

Define source, sink and doublet. Hence find the velocity potential for each of
them.

Broad Questions :

I!-

2.

Introducing Stokes® stream function, discuss the imotational axi-symmetric motion
of an ideal liquid.
A solid moves along the axis of revolution OX with velocity U in a non-viscous
liquid the motion of the liquid being symmetrical about OX and irrotational.
Discuss the motion.
Find the expression for the velocity potential and the equation of stream lines
for the irrotational motion of a non-viscous liquid at rest at infinity in which a
sphere is moving with uniform velocity, the motion being symmetrical about
Z-axis.
Deduce the equation of motion of a sphere moving in an incompressible ideal
fluad at rest at infinity with velocity U along the axis of z. Hence show that the
effect of the presence of the liquid is to reduce the external force in the ratio
o—-p): (o+ %p}. o and p being the densities of the sphere and the liquid
respectively.
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7.
8.

Discuss the irrotation motion of an ideal liquid past a fixed sphere in a uniform
stream. Hence find the equation of the lines of flow.

The region between two concentric spheres is filled with a homogeneous
incompressible fluid, the surfaces of the spheres being subjected to given impulses
in the z-direction so that the two spheres start to move with given velocities in the
positive direction at the z-axis. Determine the resulting motion.

Find the image of a source (or sink or doublet) with respect to a ngid planc.

Find the image of a source (or sink or doublet) in front of a sphere.

Problems :

l-F

An infinite ocean of an inmn'npmssiﬁle perfect liquid of density p is streaming past
a fixed spherical obstacle of radius a. The velocity is uniform and equal to U
except in so far as it is disturbed by sphere, and the pressure in the liquid at a
great distance from the obstacles is TT. Show that the thrust on that half of the
sphere on which the liquid impinges is

pU*
1.0m-
ma {T] T3 }

Find the pressure at any point of a liguid, of infinite extent and at rest a great
distance, through which a sphere is moving under no external forces with constant
velocity U, and show that the mean pressure over the sphere is in defect of the

pressure [T at a great distance by  pU?, it being supposed that T is sufficiently
large for the pressure everywhere to be positive, that is, that

5
I1>=pU:=.
>3P

Liquid of density p fills the space between a solid sphere of radius a and density
p’ and a fixed concentric spherical envelope of radius b; prove that the work
done by an impulse which starts the solid sphere with velocity V is

1 , 2a'+b?
311';1'1?][2{} +_h:4 —ﬂ_]'_ ).
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4. The space between two concentric spherical shells of radii a and b{a > b) is filled
with an incompressible fluid of density p and the shells suddenly begin to move
with velocities U, V in the same direction : prove that the resultant impulsive
pressure on the inner shell is

2nph?

m{hm—{ai +2b%) V]

5. A sphere of radius a is made to move in incompressible perfect fluid with non-
uniform velocity u along x-axis. If the pressure at infinity is zero, prove that at a
point x in advance of the center

1 1] (2 ad
p:-_-z—pﬂi{x—z'FU—[x—J—F]}.

2.8 Summary

In this chapter, we have considered the three-dimensional irrotational motion of an

ideal liquid with special reference to a sphere and a solid of revolution. Notion of source,
sink, doublet and their images with respect to a rigid plane and a sphere has also been
introduced.
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Unit 3 O Vortex Motion

Structure
3.0 Introduction
3.1 Vortex lines and Vortex tubes
3,2 Rectilinear Vortex '
3.3 Circular Vortex
3.3.1 Vortex pair
3.3.2  Vortex doublet
3.4 Infinite row of parallel rectilinear vortices
34.1  Single infinite row
3.4.2 Infinite row of parallel rectilinear vortices (Karman Vortex Street)
3.5 Examples
3.6 Model Questions

3.0 Introduction

It is well known that for irrotational motion the velocity vector q = (u,v.w) can be
represented in the form of the gradient of a velocity potential ¢ as

q=grad ¢
or, in other words,
o _% %
u—m,v—ay,w—az. (n
The vorticity is defined to be a vector {2 = curl q, whose components are
0w _dv o Bu_Ow o _Ov_du
ﬂl_ﬂ}r az’n"_ﬂz m!na-ax E-‘}‘ {2]

The above components vanish when the conditions (1) are satisfied. Thus, for an
irrotational motion when q = gradd,
Q =curl grad ¢ = 0. (3)
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E‘:l;:n'.rqars.nalj.-'+ if ©2 = 0, then with the aid of vector analysis, it can be shown that equation
(1) will always hold. Thus, in irrotational motion, a velocity potential certainly exists.

This chapter will consisi of investigation of such motions of a fluid for which the
vorticity vector £ is different from zero at least in some part of the fluid under
consideration. We will call such motions as vortex motions of the fluid.

3.1 Vortex lines and Vortex tubes

A vortex line is a curve in the fluid such that its tangent at any point gives the direction
of the local vorticity. Therefore, the equations of a vortex line have the form

dx _ dy.  de
0, o, o, “

where €y, €3y, €, are the components of the vorticity vector 2. Note that, the above
equations are analogous to the equations for a streamlines. Portions of the fluid bounded
by vortex lines through every point of an infinitely small closed curves are called vortex
filaments, or simply vortices. Vortex lines passing through any closed curve form a wbular
surface, which is called a vortex tube. The fluid contained within such a tube constitutes
what is called a vortex-filament. Let 85, 65; be two sections of a vortex tube and let ny
and nz be the unit normals to these sections drawn outwards from the fluid between them.
Also, let 85 be the curved surface of the vortex tube. Then, AS = 85 + 85; + &5 = total
surface arca of the clement. Let AV be the total volume contained in AS. Then

[ nods=]| divadv=0,

AS A

since div £2 = 0. Thus
j n.ﬂdSzJ nQds+| n.Qis=0.
55, 58 855

At each point of 85, n.02 = 0, since £2 is tangential to the curved surface. Thus
(npL2)85) + (n2.02)852 = 0

approximately to the first order (using the mean value theorem of integral calculus). This
shows that In.C21dS is constant for every section 85 of the vortex tube. Its value is called
the strengeh of the vortex tube. A vortex tube whose strength is unity is called a unir
vortex tube.
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Some properties of vertices :

(1) Vortex lines and tubes move with the fluid.

Let C be any closed curve drawn on the surface of the vortex tube contmmning an
area S of the tube and not embracing the tube. As the vortieity vectors are everywhere
lying on the surface S, it follows that, n.2 = 0. So the circulation I" around C is given

by
L_ q.ds= ‘Fﬁ n. £3dS = 0.

After an interval of time, the same fluid particles form a new surface, say 5",
According to Kelvin's theorem, the circulation around 5’ must also be zero. As thvis is
true for any S, the component of vortieity normal to every element of 5" must vanish,
showing that $' must lie on the surface of the vortex tube. Hence, vortex lines and vortex
tubes move with fluid.

{2} Vortex lines and tubes move with the fluid.
Let C be any closed curve drawn on the surface of the vorlex tube containing an

area S of the tube and not embracing the tube. As the vorticity vectors are everywhere
lying on the surface S, it follows that n.Q2 = 0. So the circulation I" around C is given

by
L g.ds = js n.QdS = 0.

After an interval of time, the same fluid particles form a new surface, say 8'. According
to Kelvin’s theorem, the circulation around §' must also be zero. As this is true for any
S, the component of vorticity normal to every element of §' must vanish, showing that
S' must lie on the surface of the vortex tube. Hence, vortex lines and vortex tubes move
with fluid.

(3) A vortex tube cannot originate or end within the fluid. It must either end
at a solid boundary or form a closed loop (a *vortex ring’).

Suppose § is any closed surface containing a volume V. Then
L n.0dS =L divQdV = 0, (5)

Equation (5) shows that the total strength of vortex tubes emerging from 5 1s equal to
that entering S. This means that vortex lines and rubes cannot originate or terminate
at internal points in a fluid. They can only form closed curves or terminate on
boundaries.
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(4) Strength of a vortex tube remains constant for all time.

If C is a closed curve embracing once the vortex tube and if 3 denotes an area
contained in C, then the circulation I" of the fluid velocity q around the vortex tbe is
defined as

r=§ qds (6)
Then, by Stokes' theoremn
ijs n.qds. )

Equation (7) shows that I is nothing but the strength of vortex tube with surface area
S. Since for an inviseid fluid the circulation around any closed curve in the fluid moving
along with the fluid, remains constant in time, therefore strength of the vortex also remains
constant in time.

The above theorems are known as Helmholiz’s vortex theorems :

‘We shall assume that the fluid is a single-valued function of time only.

3.2 Rectilinear Vortex

Consider a single tube whose cross-section is a circle of radius a and with its axis
parallel to the axis of z surrounded by unbounded fluid. The motion is similar in all planes
parallel to xy and it has no velocity along the axis of z. By making the area contained within
the tube sufficiently small we see that the distribution producing such a flow must be uniform
along the z-axis. Such a distribution along the z-axis is called a uniform rectilinear or line
vortex. Thus if g = (u, v, w) be the velocity, then w = 0 and u, v are independent of z.
If € = (€2, £y, £2,) be the vorticity vector, then

dv  du
n:=ﬂ'nr=ﬂ'ﬂ‘:ad5;‘ (8)
The velocity components u, v are related to the stream function y by
oy v
u= and v = " (9
Use of (9) in (8) gives
diy dlwy
ﬂl:ﬂﬂ +3}'1 . (10)
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Thus, y satisfies

a2y  Bly {!‘:'.,= . on the vortex, an

axz T dy? |0, outside the vortex.

Let P(r, 0) be any point outside the vortex. Since the motion outside the vortex is
irrotational, the velocity potential ¢ exists and

Sy _ 109
T (12)

holds, r, @ being polar coordinates. Since, in the region out side the vortex w is harmonic
50 we get

Oy 10y
e e e
ar? rar

If the motion is symmetric about the origin, y must be independent of 8. Then equation

(13) reduces o
1d| dy)_
rdr[r dr]wﬂ

w = ¢ log r, ¢ = constant. (14)

1 8%y
3 ?a"éz'=n' | (13)

giving

Using the relation of ¢ and w given by (12) we get
' b = — ch. (15)
Thus the complex potential function w is given by
w=p+iy=-ch+iclogr=iclogz (16)
Let k be the circulation in the circuit enclosing the vortex. Then

k =J'j'[-%‘?—£]rdﬂ= 2mc
s0 that

.
pL 3

95



and hence w is given by

_ ik

.w-z_mlngz- (17}

This is the complex potential due to a vortex of strength k placed at the origin. If the vortex
be placed at z; = X + iy, instead of (0, 0), then the complex potential w has the form

ik

in
Let P(z) = Pix, y) be another point in the fluid other than (xg. yg). Then distance ry between
(x, ) and (xg, yp) is given by

W= logiz=1z4). (18)

g =(x=xg)% +(y—yg)?. (19
From (18), we see that the stream function v is given by
k
wzﬂlugrn.
Thus, '
&y g oy 2 1
and

dx érg x mo gl

Thus the magnitude of the velocity q is given by

k
27,

q:[l,]z-j-'\."z}% =

This is the velocity at any point P(x, y) due to presence of a vortex of strength k at
(X0, Yo)-
Note :

If there be any number of vertices of strength k, at 2., s = 1, 2, 3, ..., then the complex
potential at any point z in the fluid is given by
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-0 _
w = ang:k‘ log(z-2, ),

and the velocity components are given by

1 (y-¥,) 1 (x—x;)
EF—EEE:IHT’ Hﬂd‘n’=—2k5 - :

23 = Xg +iys and rf =(x-x,)* +(y-y,)*.
Let (uy, v,) denote the velocity components of the vorlex of strength ke. Then

___'1_ {FI_}I'I} __l_ {xr_xs}
b, =5 ll;,——-——]:;:2 mdv,—znzk,——u-——

where
;—: ={-Rr _xi-}z +{-1‘-'II' _}Is]l'
Note that the expressions 2kou, and Tkgv, will consist of pairs of terms of the forms

kg (x, -x,) and k k, (%, =x;)

" 2n R? Y Rf!

and as such
2kgug = 0 and kv = 0.

Hence, regarding k as a mass, the center of gravity of the voriex sysiem, viz.

X = Zk‘.h y = Ej‘" Vs
E k & Z k 5
remains stationary throughout the motion. Note that if £k, = 0, the center (X, ¥y isat
infinity.

3.3 Circular Vortex

Let there be a single cylindrical vortex tube, whose cross-section is a circle of radius
a, surrounded by unbounded fiuid.
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The section of the vortex by the plane of the motion is a circle and the arrangement
may therefore be referred o as a eircular vortex,

3.3.1 Vortex pair

Consider the case of two vortices of strengths k; and k» at a distance ry apart, Let
A. B he their centers, O, the center of the system. The point O divides AB in the ratio
k : k,. The motion of each vortex as a whole is entirely due to the other, and is therefore
alwavs perpendicular to AB. Hence the two vortices remain ahvays at the same distance
irom one another and rotate with constant angular velocity about O which is fixed. The

k
and —>— . To obtain the
2mry 2rg

velocities at the two vortices at A and B are respectively

angular velocity w of the system, we divide the velocity of the vortex A by the distance
AL, where

Thercfore, the angular velocity is given by

m_v&lﬂcityufthevnrtﬂath_ k, +k,
- AD - 2mrl

If k;. ks be of the same sign, i.e. if the direction of rotation in the two vortices be the same
then O lies between A and B; otherwise O lies in AB or BA, produced. If k, =—k;, O

is at infinity. However, A, B move with equal velocities ;1 ~ at right angles to AB, which
ity

remains fixed in direction. Such a combination of two mqﬁal and opposite vortices may be
called a vortex pair.

3.3.2 Vortex doublet

Consider a vorlex pair, k at ae'* and - k at — a¢™ in the complex Z-plane where z
= x + iy. If we let a — 0 and k — oo so that 2ak = p is a finite constant, we get a vortex
doublet of strength p inclined at an angle « to the x-axis.
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The direction of the doublet is determined from the vortex of negative rotation to that
of positive rotation. The complex potential is

=1 i_k — aph — e
w-iﬂzﬁ{k}g{z ac't ) — log(z + ae }}

a0 270 z 2z z 222 2rnz

The stream function is Wy = — %CGS{&. —a).

If, in particular, we take the vortex doublet to be at the origin and along the axis of vy,

we have y = -Lm-‘j.lfwewt I - Ub?, we obtain y = — Ub~ sin @ which is the
2xr 2n r

stream function for a circular cylinder of radius b moving with velocity U along the x-axis.
Thus the motion due to a circular cylinder is the snme as that due to a suitable vortex
doublet placed at the center, and with its axis perpendicular to the direction of motion.

3.4 Infinite row of parallel rectilinear vortices

3.4.1 Single infinite row

Consider an infinite row of vortices each of strength k at the points 0, £a, £2a, ...,
+na, ... (as shown in figure 3.1).

K (_}_E\ K
2

O O
-2a -a 2a

Figure 3.1
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The complex potential of the (2n + 1) vonlices nearest to the ﬂﬁgin is

w, = ;:tlogz+—z-'£mg{z a) + - +£L':t-lug{z—na]|
+%1ng(z+aj+ ﬂ-%!og[z+na}
-i%lﬂg{z{zz —a?)(z?-2%a?)-(z? -n?a?)}

—iE, mey oz, 2\ f,__ 2 Tk 1ogl® 22 92,2 z:}
_znlng{all a?_)(l 21&2] (] nlal)}+1n]ng{n'a 22a?. .n?a? ;.

The constant term may be omitted, so that we write

ik Tz z? z? z?
W =ﬁlng{?[l—ﬂ—z][]-—zzﬂl]...(l-nja: ]} {20y

Now, sin x can be expressed as an infinite product in the form

X: X2 x2
F'mx_x(l_“_z][]_giﬂi]“{l_nz“g ] @210

Thus letting n — oo in (20), we get by virtue of (21),

_k (2
w = zn_lﬂgsm[ ” J (22)

Consider the vortex at z = (. Since its moton is due to the other vortices, the complex
velocity of the vortex at the origin is given by

d nz ik | ik nz |
- == =-f Rt =21 =0
d?“z logsin =~ 2n ’““},:ﬂ 211:[ e z]m

Thus the vortex at the origin is at rest. Similarly it can be shown that the remaining vortices
are also at rest. Thus the vortex row induces no velocity in itself.

To determine the stream function we note that
wiz)=¢+iy, W(Z)=d—iy
50 that from (22)

2iy = w(2) - () = 2K tog|sin " sin ™ |,

_k 1 2my 2nx
T—4“Iugz[cnsh . cos . ]

100



For large values of %, we'neglect the term Cnglﬂ , for its modulus never exceeds unity,
a

and therefore along the streamlines y = constant. Thus at a great distance from the row
the stream lines are parallel to the row.

Again, if v|, v, are the complex velocities at the points z, Z respectively, we have

-

d |k . MZ d | ik . MZ
V) + ¥, ==—{===logsin-— - —1 = log sin ==
e dz{lﬂ & a}m dz{ln OB J.:ax
. 2WX
ik wz- 1k nZ ik Zsin 5-—
T2 T2a" 7 T2 2y 7
h ==L — cos =™
d

which is purely imaginary and tends to zero when y tends to infinity. Thus the velocities

along the distant streamlines are parallel to the row but in opposite directions,

3.4.2 Infinite row of parallel rectilinear vortices (Karman Vortex
Street)

This consists of two parallel infinite rows of the same spacing, say a, but of opposite
vortex strengths k and - k, so arranged that each vortex of the upper row is directly above

F W
K K C K K K
-2a —-a o - 2a
—
-K - K -K - K
- 3a2 —af2 a2 3a/2
Figure 3.2
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the mid point of the line joining two vortices of the lower row and vice-versa. Taking the
configuration at time t = 0, we take the axes as shown in the figure 3.2, the x-axis being
midway between and paralle] to the rows which are at the distance b apart. At this instant

the vortices in the upper row are at the points ma + %—ib, and those in the lower row at

the points Lm +'EL},1 - %il}, where m =0, =1, £2, ...

The complex potential at the instant t = 0, by the preceding section is given by

LSPGO | S PR 3 (N B )
wrﬂ!ngannaLz 1]+2n1ngsma[z 2+2].
Since neither row induces any velocity in itself, the velocity of vortex at z = % - % will
be given by L
ik 13 ib
R 3
272

Thus the lower row advances with velocily

V= Ltii.l'l]'la'r:—l::,,
2a a

and similarly the upper row advances with the same velocity. The rows will advance the
distance a in time 1t = % and the configuration will be the same after this interval as at the
initial instant.

Note :

In a Karman vortex street, under the influence of some operation, all or certain of the
vortices may experience small displacements. Then it is possible that with the passage of
time the vortices will remain close to the positions which they would have had if they had
not been subject to displacements. We then say that the motion is stable. If, however, the
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displaced vortices tend to move away from the position -::nrre.tpvfmding to umpertut hed
state, the motion will be called unstable. A necessary condition of stability for the karmun’s

vortex strect 1

::m::ns'.‘nE =J2
a

50 that b = 02814

3.5 Ilustrative Solved Examples

Example 1

it
ax — by ay + bx

u= s ¥= 1W=¢{],

investigate the nature of motion of the liquid.

Solution :
Given
UE_E.:'K_—__IE}_" v=_ﬂ_?:-t_bf_, w =10
Ke 4yl x4yl
From (1),
du _a(x? +y?)-2x(ax-by) ay® -ax?+2bxy
o (x2 4+y2)2 (%2 +y2)2
and
dv _a(x? +y?)-2y(ay +bx) _ax? —ay? —2bxy
dy (x7 +y?)2 C o (xT ey
We see that
fu v
- t - — {:I
Ox  dy

{1

and hence the equation of continuity is satisfied by (1). Therefore (|} represents a two-

dimensional motion and hence vorticity components are given by
v du

ﬂ‘ :l}‘ ﬂ‘_ :l:]I| ﬂ;r — f-_‘"‘" —_

’ ox oy
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From (1),
fu_ —b(x?+y?)-2y(ax—by) by? —bx? —2axy

3},."' (x2 +y2)2 o (x2 +y?)?

v _ b(x? +y?)-2x{ay +bx} _ by? = bx? —2axy
ax {x? +y2)2 T (x?+y2)2

so that £, = 0. Thus

showing that the motion is irmotational.

Example 2

Find the necessary and sufficient conditions that vortex lines may be at nght angles 10
the streamlines.

Solution :

Streamlines and vortex lines are given by

d
dx_d_d 0
u v w
and
dx _ dy _ dz
a, a, aq, (2)
respectively. These will be at right angles, if
ul, = v}, = wil,. (3}
But
_bw _&v _du_dw dv  du
Q,=—"--.0, -—— N, .
Ty @Y @ ax* ax ay 4)
Using (4}, (3) may be written as
[au A [a; au] A a*uJ
—_—— ———|+w —=—| =0, (5)
& & & & oy

which is the necessary and sufficient condition that udx + vdy + wdz may be a perfect
differential. S0 we may write
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ndx + vdy+wdz=g.1d¢:=u[%dx +%dg+gdz].

Thus the necessary and sufficient conditions that vortex lines may be at right angles to the
streamlines are
o o

UL S S
Hop VIR W TR

Example 3

When an infinite liquid contains two parallel, equal and opposite rectilinear vortices at
a distance 2b, prove that the streamlines relative to this system are given by the equation
x?+(y=-b)? y

—_— b=,
Dgx?- +{y+b)? +b

the origin being the midpoint of the line joining the two vortices, taken as the y-axis.
Solution :

Let there be two rectilinear vortices of strengths k and — k at P,(0, b} and P40, — b)
respectively. Thus P\P; = 2b, origin being the midpeint of PP, and y-axis being taken
along P,P,. Thus we have a vortex pair which will move with a uniform velocity kf/2nP P
or k/4mb perpendicular to the line Py P; (ie. along the x-axis). To determine the streamlines
relative to the vortices, we must impose a velocity on the given system equal and opposite

to the velocity k/dnb of motion of the voriex pair. Accordingly, we add a term :‘J,EE o
T

the complex potential of the vortex pair. Note that

_ d( ke )
dz\ 4=b )’
. and hence the term added is justified. So, for the case under consideration, the complex
potential is given by
. ik
wW=@p+iy =
iy o

s ihy— K by K2
log{ z—ib) 2ﬂl-':ngl[z+1.l::|;1+4m}.

Equating the imaginary parts, we have . -

-k 2 T LS 3 R L
y=log[x? +(y-b)? ]--log[x2 +(y+b)? |+~
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_k o i +{y—h)? +i
V= gx3+{}'+b}3 b |

Hence the required relative streamlines are given by y = constant, i.e.,

X?+{y-b)* y
B T (yeb)? b

Example 4

If n rectilinear vortices of the same strength k are symmetrically arranged as
generators of a circular cylinder of radius a in an infinite liquid, prove that the vortices
will move round the cylinder uniformly in time 8a%a®/(n — 1)k, and find the velocity of
any part, of the liquid.

Solution :
Let us take the origin as the center of the circle of radius a and the x-axis along the

line @ = 0. Suppose that n rectilinear vortices each of strength k be situated at points
Z, =aexp™™™ m=0,1,2 .. n- | on the circumference of the circle. Then the

complex potential due to these n vortices is given by

. =1
ik

W= m—— ln T—aex 2 min/n
iﬂ..,zﬂ:ﬂ 8( p )

5 n-1 :
ik h ik
.= ﬂ-ﬂ[z—auxpz nim/n }=§—E-I-‘.:rg{z" —an ).

Now the fluid velocity g at any point out of all the n vortices is given by

_|_1i£.l_|,i_!£.,_{“" || k0 zr -
4 | dz 12mzh —an | 2mazn —an |

Again the velocity induced at the point z = a, by the other vortices is given by the complex
potential
.3

w?ﬂ:

b —an e K joa(z—
log{z® —an® ) 2Hlt;:gll_'z a)
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5o that
dw ik

w—E-Hlﬂg(E"" +zfta+ . +zanl +anl ),
Hence
[d_w_‘_] _E{n-1}+{n—2]+--~+2+1_ik{n-l}
dz /., T 2m na " 4ma
or
u, —iv, =|’dw‘J =——.1....__Ik{n_”
Ldz /., 4 wa
n—1|
so that uy = 0 and v = 4o }, If g, and gg be the radial and transverse velocity
, kin-—1)
components of the velocity at z = a, then we have g, =0 and gy = A Due to

symmetry of the problem, it follows that each vortex moves with the same transverse

-

: }. Hence the required time T is given by

.k
velocity 4

2an Briatl

3.6 Model Questions

Short Questions :

1. Define : Vortex (or vortex filament), vortex lines, vortex tubes, rectilinear vortex,
circular vortex, vortex pair, vortex doublet.

2. Prove the following results
{a) Vortex lines and tubes move with the fluid.
(b)  Strength of a vortex tube is constant alongth the length and for all time,
(c) Vortex lines and tubes cannot originate or terminate at internal points in a

fluicl
3. Find the expression for the angular velocity of a pair of vortices.
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4.

Show that the motion due to a circular cylinder is the same as that due to a
suilable vortex doublet placed at the centre, with its axis perpendicular to the
direction of motion.

Broad Questions :

]l!'

Find the complex potential due to n vortices of strengths ky, ks, ..., k. Hence
find the velocity components of the vortex of strength 'ln.:\i (1<s5<n) Also, show
that the centre of gravity of the vortex system remains at rest.

Discuss the motion of an infinite row of veortices, each of strength K situated in a
straight line at equal distance apart. Hence show that, at a great distance from the
row, the stream lines are parallel to the row.

What is meant by Karman Vortex street? Discuss the motion of rectilinear
vortices lying on such a street. Also deduce the condition of stability of Karman
Vortex streel.

Problems :

]1‘
2.

In example 1 find the velocity potential of the system.

If udx + vdy + wdz = dO + Ady, where 8, A, ¥ are function of x, ¥, z. 1,
prove that the the vortex lines at any time are the lines of intersection of the

surfaces
A = constant and y = constant.

If in the solved example-3, the vortices are of the same strength and the spmn s
in same sense both, show that the relative streamlines are given by

log{r* +b* =2b2r? cos28)~(r2/2b)? = constant,
f being measured from the join of the vortices, the origin being its middle point.
Show also that the surfaces of equipressure al any instant are given by
' + b* — 2b’rfc0s20 = A(r' cos 20 + a®).
Three paraliel rectilinear vortices of the same strength K and in the same sense
meet any plane perpendicular to them in an equilateral triangle of side a. Show

that the vortices all move round the same cylinder with uniform speed in time
2 mal
3K
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If (r,, 8}, (r,, 8,)...., be polar coordinates at time t of a system of rectilinear
vortices of strength k, k,, ..., prove that

leu'ii = constant and Zkr3é={”2ﬂ12k,|{1.

An infinite row of equidistant rectilinear vortices are at a distance a apart. The
vortices are of the same numerical strength k but they are alternately of opposite
signs. Find the complex function that determines the velocity potential and the
streamn function. Show also that, if a be the radius of a vortex, the amount of Mow
between two vortex and the next is (k/m) log cot (ma/2a).

An infinite street of linear parallel vortices is given as : x =ra, y = b, strength
ki;x =ra, y = =b, strength = - k, where r is any positive or negative integer or
zero. Prove that if the liquid at infinity is at rest, the street moves as a whole in
the direction of its length with the speed (k/2a) coth {2nb/a).
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Unit 4 O Surface Waves

Structure
4.0  Introduction
4.1 General expression for wave motion

4.2

Wave motion in liguid

4.3 Standing or Stationary Waves
4.4 Surface Waves
4.4.1 Progressive Waves on the surface of water
4.4.2 Progressive Waves on a deep water
4.4.3 Stationary Waves on the surface of water
4.5 The Energy of the progressive waves
4.6 Group Velocity
‘4.7 Rate of transmission of energy in simple harmonic surface waves
4.8 Progressive -waves reduced to a case of steady motion
4.9 Waves at the common surface of two liguids
4.9.1 Waves at the interface of two liguids with upper surface free
4.10 Long waves of small elevation '
4.11 Capillary Waves
4.11.1 Capillary waves in a channel of uniform depth
4.12 Examples
4.13 Model Questions
4.14 Summary
4.0 Introduction

It is a matter of common observation that if a pebble 1s thrown into a pond, then some
disturbance travels radially over the water surface. Such a disturbance 1s known as water
waves. Also, if a piano is played in a room, then sound wave is spread there. The energy
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extracted from the sun is transmitted through waves in ether. All these are examples of
wave motion. Thus we nitice two distinguished features : (a) energy is propagated ar
distant points and (b) the disturbance travels through the medium withowt any
transference of the medium iiself. In fact, these two properties do exist whatever be the
medium which transmits the waves.

4.1 General Expression for Wave Motion

Consider an arbitrary disturbance ¢ moving along the positive x-axis with velocity c.
Thus ¢ is a function of x and t, say ¢ = f(x, t}. The curve when t =0, i.e., ¢ = f(x) is known
as wave profile. If the disturbance moves without changing its shape, then the wave profile
has moved through a distance ct in the positive direction of x-axis at time t. If the distance
measured from the new origin x = ct be denoted by £ so that x — ¢t = £, then the equation
of the wave profile referred to the new origin is ¢ = f(E), in other words, referred to the
original origin, it is

b = fix — ct). (1

Similarly, the equation ¢ = f(x + ct) represents the same disturbances moving in the negative
direction of x-axis with velocity ¢.

4.2 Wave Motion in Liquid

A wave motion of a liquid acted upon by gravity and having a free surface is a motion
in which the elevation of the free surface above some chosen fixed horizontal plane varies.

Taking the axis of x to be horizontal and the axis of y to be vertically upwards, a
motion in which the equation of the vertical section of the free surface at time t is of the
form

¥ = a sin (mx = nt), (2}

where a, m, n are constants, is called a Simple harmonic progressive wave, Since (2) can
be written in the form

= asi _nt
y.—asmm(n m]' (3

this shows that the wave pqﬁﬁle v = a sin mx at t = 0 moves with velocity n/m (= c, say)
in the positive x-direction. c is called the velocity of propagation of the wave. When
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a=0the pfuﬁle of the liguid is y = 0, which is the mean level. The quantity a is called
the amplitude of the wave and measures the maximuam departure of the actual free surface
from the mean level. The points C,, C,, ... of maximum elevation are known as crests and
the points T, T, ... of maximum depression are known as rroughs. The distance between
successive crests is called the wave-lengrh and is denoted by A. Thus

a=2E
m
Again the nature of the free surface (2) remains unchanged by replacing t by t + 2rn/n. The
time T = 2n/n is known as the period of the wave. The reciprocal of the period is known
as the frequency it denotes the number of oscillations per second. The angle mx — nt
is known as phase angle. If the equation of wave motion be y = a sin{mx — nt + €), then
€ is called the phase of the wave.

4.3 Standing or Stationary Waves

Two simple harmonic progressive waves of the same amplitude, wave length and
period travel in opposite directions are given by the surface elevation

uf =-é—asjnl_’m?‘.-l1t}, U :%asinfmx+m I3

By the principle of superposition, the resulting surface elevation is represented by the
egquation

n=mn, +1, =2asinmxcosnt,

A motion of this type is called a stationary or standing wave. An any instant the eguation
represents a sine curve but the amplitude 2a cos nt varies continuously.

The points of intersection of the curve with the x-axis are fixed points called nodes.
‘When a progressive train of waves represented by 1, impinges on a fixed vertical barrier
and is there reflected (1), the resulting disturbance when a steady state is reached consists
of stationary waves.

Such waves can, for example, be generated by tilting slightly a rectangular vessel
containing water and then restoring it fo the level position. The water level at each end
of the vessel then moves up and down the vertical faces which are loops. Conversely
4 progressive wave can be regarded as due to the superposition of two standing
waves.
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C,(1/4,a) Ca(5h/4,a) C3(90/d,a)

T,(=/4,~a) T304, —a) T3(73/4,-2)

Figure 4.1

4.4 Surface Waves

Such waves occur at and near the free surface of an unbounded sheet of liquid where
the depth is considerable compared to the wave length. For these waves the vertical
acceleration is comparable with the horizontal acceleration, and so we consider forces both
in horizontal and vertical directions.

The x-axis is taken in the undisturbed surface in the direction of propagation of the
waves and the y-axis vertically upwards. Taking the motion to be irrotational, incom-
pressible and two-dimensional, the velocity potential ¢ exits such that

Ferlir el 4)



throughout the liquid, and

=0 | )

at a lixed boundary.
The pressure can be obtained from the Bernoulli's equation

P_cp |
e gy =2 +C{L L
™ gy 5 q () _ (6)
The free surface is a surface of equipressure p = constant, hence on the free surface
%?+UFE+V@=H, (N

where u and v are the velocity components on the free surface in x and y directions
respectively. But

o
- -|'I=-_... .
ox Ay (8)

and ut the free surface the relation (7) becomes

e —,,._.:..'-_ =ﬂ_ {9]

Ler the motion be so small that the squares of small quantities may be omitied. Again,
without loss of generality we may include C(t) in ¢ and then substitute the value of p from
(6) in (9) to get

. s W e | ——

ct®  Ox axdt  dy| dydt
Neglecting the second and third terms which are of the same order as q°, we obtain’

a? d
¢+Ej=ﬂ- (11)

ot ? dy

This condition holds at the free surface.

024 0632 w[a% ]:ﬂ_ o

If 1 is the elevation of the free surface at time t above the point whose abscissa is x,
the equation of the free surface is given by

y = n(x, 1) = 0. (12)
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But we know that if
Fix, v )=y -nix, ) =0
is a boundary surface, then we must have

——+u—=v=0. (13)

But :‘ is 1, and gg is the tangent of the slope of the free surface which by

hypothesis is small so that the second term can be neglected and the equation becomes
n=v=—— (14

al the frec surface.

Hence in a wave motion in which the squares of the velocities can be neglected, the
velocity potential must be a solution of Laplace’s equation which makes

at a fixed boundary and satisfies (11) and (14) at the free surface of the liguid.

4.4.1 Progressive waves on the surface of water

Consider the propagation of simple harmonic waves of the type
1 = a sin{mx — nt) (15)
at the surface of water of uniform depth h, either of unlimited extent or contained in a
channel with parallel vertical sides at right angle 1o the ridges and hollows.

If we assume that there is a solution of the form
¢ = fly) cos(mx — nt)
and substitute 1n (4) we aobtain

-m3f=0, (16
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50 Uhat
fiy) = Ae™ + Be™,
and
& = (Ae™ + Be™) cos(mx — nt).

This value of f must be satisfy (15), i.e.
(e
— =) when y = = h.
ay
Hence

C, say,

50 that
$ = C cosh m(y + h) cos(mx — nt). (17
Again if we substitute this value in the surface condition (8) putting y = 0, we get
n’ = gm tanh mh. (18)
Now let ¢ = nfm and A = 2n/m denote velocity of propagation and the wave length
respectively. Then we get

E

¢? = = tanh mh-—-E Zxh
m

t —_—
P anh iy (19}

We now determine the constant C of (17) in terms of the amplitude a of the wave.
Using (15) and (17), the boundary condition {14) gives

= na = — mC sinh mh,

50 that

~ na coshm(y+h) : .
= m  sinhmh cos(mx - nt), (20)

or, using { 18) we obtain

_ gacoshm(y +h) -
¢= n cosh mh cos(mx — nt). (21)

116



The path of the particle

If (x, v) be the coordinates of a particle relative to its mean position, neglecting the

squares of small quantities we may write

dx @  coshm(y+h) .
dt  dx i sinh mh sin(mx = nt),

dy _ % _ sinhm(y + h) cos(mx — nt)

dt dy b ~ sinh mh
Integrating above two equations, we get

coshm(y + h)
x =5 e e - Eﬂg !.T!K - ﬂt 13
sinh mh { )

= 4 ~———————Sin(mx — nt);

so that the particle describes the ellipse

xz yz ....... -

cosh? m(y +h) " s_i:{h?r;]ﬁ:‘ﬁ T sinh2m

about its mean position. For a given particle mx — nt plays the part of the eccentric angle

in the ellipse; so Lhat the eccentric angle increases at a uniform rate, as in an orbit described

under a central force varying as the distance.

4.4.2 Progressive waves on a deep water

If the depth h of the water be sufficiently great in comparison with A for e™™" (o be
neglected, then the constant B = 0 in the above case, so that we have instead of (17)

¢ = Ae™ cos(mx — nt)

and instead of {18}

n°=gm
or,
L
¢ 2n

(22)

(23)

(24)



Aldso if
n = a sin{fmx — nt)
is the free surface we get from (14)
na = mA,

50 that

b = = em cos(mx — nt),
m

qrﬁgl-? ™y cos{ mx — nt). {25)

Following the case 4.4.1 we get in this case for the displacement of a particle from
its mean position

X = de™ cos(mx —nth,
¥ = ae™ sin{ mx — nt},

and the path of the particle is a circle
II + 3,1 = azi::“"f,

I
described with uniform angular velocity n, which in this case is equal to (gm)2 or

I
EJk

4.4.3 Stationary waves on the surface of water

Consider a stationary wave of the type
N = a sin mx cos nt. (27)

The velocity potential for a system of stationary waves can be deduced from 4.4.1 by
regarding the system as the result of the superposition of two such trains of waves as we
have just been considered moving in opposite directions as explained in Section-4.3.

Then we shall have

_ na coshmiy +h)
" m  sinhmh

b

sin mx sinnt, {28)
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=Emﬁhm(}r+h}

%in mx sin nt {207
n cosh mih

b

for ¢ satisfies (4) and (5). and n and ¢ togeiher satisfy (14).
It is not necessary to regard standing waves as a case of superpositon of progressive
waves, We might investigate this form for ¢ independently starting with the assumption
$ = f{y) sin mx sin nL
For standing waves in deep water, 25 in 4.4.2, equations (28} and (29) take the
forms

na . .
b= un-j-em!f sinmxsinnt,

b= E—rt"“}' &11 MNX Sin AL,
n

(300
Path of the particles :

In this case we have

= — i ——————————COs MX sin nt,

ﬂ B coshmiy+h)
% sinh mh

m:"l'lhm{}'*hl

- CO% X 5in nt,
sinh mh

V==
&

s0 that, by integration
_coshm(y + h)

=g ————cos M cos nt,
sinh mh

and

_ g Smhmiy +h) . xcosnt
¥ sinh mh .

i. = tanh m{y + h)tan mx,

and since this is independent of t. the motion of each particle is rectifinear, the Jirection
varying from vertical beneath the crests and troughs I:mi ={n+ é lﬁ]- o hortzontail
beneath the nodes (mx = nx).
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4.5 The Energy of the Progressive Waves

Kineric Energy : The kinctic energy possessed by the liquid {per unit thickness),
stretching between two vertical plane situated at a distance of one wave length apart and
perpendicular to the direction of flow, is known as the kinetic energy of the progressive
W&l\"é.

Considering a train of progressive waves at the surface of water of depth h. given by

1 = a sin(mx = nt) (31}

ancd

gacoshm(y+h)
= e —————— 5[ MX - Nt ). (32)
n cosh mh

Since the motion is irrotational, the kinetic energy is given by

__1 o
T=-2pfé"ds, (33)

8n being normal drawn into the liguid and integration being performed along the profile of
a wave length. In this case, we get kinetic energy

G
T=§pjﬂ[¢-§y—] dx

yail

I a j. ] d
—Epga Jn cos -+ [ mx—nt Jdx

= %pga 4.
Potential Energy :

The potential energy due io the elevated liquid in a wave length (the energy being
calculated relative to the undisturbed state} is known as the potential energy of a
progressive wave,

Let us calculate the potential encrgy of liquid between two vertical planes parallel 1o
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. the direction of propagation at unit distance apart. Then, for a single wave length, the
potential energy is given by

-tofi

= Ili pgalh,
as A = 2m/m.
Total energy per wave length is
=T+ V
=1 paz
= Epga A

Hence it follows that the total energy per wave length is half kinetic energy and potential
Energy.
The energy of the stationary waves :
The energy of stationary waves may be calculated in the same way. Thus if we Lake
T} = a 5in mx cos nt
and

acoshmiy+h
o= E__., —-{}r—]ﬁ.inmxs:innt_

n cosh mh
We find for the potential energy of a wave length

‘h"=]}.ga?plcﬂﬁ3 nt,
and for the kinetic energy
T=Eigazplsin3 nt.

Total energy per wave length at ~n~ time
=T+ V

|
=—ga‘ph.
a gasp
The amounts of kinetic and potential energy change continuously. with the time.
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4.6 Group Velocity

A local disturbance of the surface of still water will give rise to a wave which can be
analyzed into a set of simple harmonic components each of different wave-length. We have
seen that the velocity of propagation depends upon the wave-length and so the waves of
different wave-lengths will be gradually sorted out into groups of waves of approximately
the same wave-length. In the case of water waves, the velocity of the group is, in general,
less than the velocity of the individual waves composing it. What happens in this case is
that the waves in front pass out of the group and new waves enter the group from behind.
The energy within the group remains the same.

We now study the properties of such a group. To this end we examine the disturbance
due to the superposition of two simple harmonic waves of the same amplitude and slightly
different wave lengths,

n; = a sin{mx — nt),
N, =asinf(m+dm)x—(n+dn)t}.
The resulting disturbance will be
Nn=m+mn

= Zacns%! x8m — tdn )sin{ mx —nt )

= A sin{mx — nt) (34)

Aziauﬂsé—f_xﬁm—tﬁn). (33)

Equation (34) shows that the resulting disturbance is a progressive sine wave whose
amplitude A is not constant but is itself varying as a wave of velocity

Cp = - (36)

This velocity is known as the group velocity.

Since the velocity of propagation of a single wave is



we have

dn d de
But 1. =27 5o that
m
dh __2Zm
dm m?’ (38)
Then we get
de di de
= et = C— R — .
Cy -:+mdl g C i (39)

o= g tanh mh . (41
m
From {37) and (40), we have
m de
Ce =E(I+ECI-EJ
—lc[l+—' 2mh ) 41
25U T Sinh 2mh (41)

so that the ratio of the group velocity to the wave velocity is given by

C
£ mh
+

|
¢ 2 sinh 2mh
or,

| [ 2 mh J

C, ==cf I+ .
= = 2°U" 7 sinh 2 mh (42)
When h is small compared with the wave length, this ratio is unity, so that group
velocity for shallow water is equal to the wave velocity, Also as h increases to infinity the

ratio decreases to Jl; or the group v&lnﬁqr for deep sea waves is half the wave velocity.
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4.7 Rate of Transmission of Energy in Simple Harmonic
Surface Waves

In a simple harmonic frain of surfuce waves, energy crosses a fixed vertical
plane perpendicular to the direction of propagation at an average rate egual 1o
group velocity.

Proof :

Consider vertical section of the liquid at right angle to the direction of propagation.
Then the rate of transmission of energy is calculated by determining the rate at which the
pressure on one side of the chosen section is doing work on the liquid on the other side.
Now, the velocity potential is given by

gacoshm{y+h)

z?—mm‘;[ mx —nt }. {qj}

Again neglecting squares of small quantities the variable part of the pressure is given

by

fil
dp=p--. (44)
ot
and the horizontal velocity is
e
u=- . 45
ax | (45)
Hence the work done in unit time or the energy carried across unit width of the section
&
o _ O
W=— ap — d
—[—h P % d
gfalpmsin? (mx—nt) g0
= — cosh? miy+h)d
n cosh 2 mh J-h ’ (y+h)dy
grapmsin? (mx -ty g
_ { [hll‘lhzl‘nh_'_ﬂ)‘ (46)
n cosh 2 mh 4 m 2
and since

n® = gm tanh mh,
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this may be wrillen as

W=%gpnz Ll ]sinﬂ (mx—nt}. (47)

(H 2 mh
m

sinh 2 mh

The mean value of the expression (47) over a complete period or any number of
complete periods, or any interval that is so long compared to a period that the part
corresponding to the fractional part of a period can be neglected in comparison with the
whole, is

1 zﬂ( ﬂ]
We=gepat o o mh ) (48)

But the group velocity ¢, is given by

1 2 mh
“¢ = z“(Hsinhz mh ] (49)

Since —P“T = ¢, then from (48) and (49) we get
w=1{1gpa2 e
=313 Ep ' (50)

Since —%gpa 2 is the whole energy per unit length at any instant. Hence the energy is

transmitted at a rate equal to the group velocity.

4.8 Progressive Waves Reduced to a Case of Steady Motion

In any case in which waves propagate in one direction only without change of shape,
the problem of determining the velocity of propagation can be simplified as follows :
Impose on the whole liquid a velocity equal and opposite 1o the velocity of propagation
of the waves. Then the wave profile having the same relative velocity as before becomes
fixed in space and the problem becomes one of steady motion. We now illustrate this
technique by means of the following two cases :

Case-I : Progressive waves on the surface of water

Let progressive waves move on the surface on the channel of uniform depth h and
having parallel vertical walls. Let the progressive waves move towards the positive
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direction of x-axis with velocity ¢ without change of form. Impose on the whole liquid a
velocity ¢ in the negative direction of x-axis. The wave form having the same relative
velocity as before becomes fixed in space and the problem becomes one of steady motion.
As the problem is a two-dimensional one it only remains to determine suitable expressions
for the velocity potential and stream function so that the free surface and the bottom of the
liquid may satisfy the conditions for stream lines. '

Consider the complex potential
w = ¢z + P cos mz — iQ) sin mz,
or,
o+ iy =r.:{1r.+iy]+Fcoﬁm[x+iy}—iﬂ-sinm{ X+iy ).
It gives

& = cx + ( Pcosh my + Qsinh my )cos mx }

y =cy —( Psinh my +Qcosh my }sinmx . (51)

Since ¢ and w given by (51) satisfy Laplace’s equation, they represent a possible
motion.

For the bottom to be a stream line we must have y is constant when y =—h so that
= P sinh mh + Q cosh mh = 0.

Hence the expressions (51} may be written as -

p=cx+Acoshm(y+h)cosmx,
. . (52)
y=cy—Asinhm(y+h )sinmx.
Let the free surface be a simple curve
] = a sin mx.
Then from (4) the stream line w = 0 produces
ca — A sinh mh = 0. ' (53)

neglecting squares of small quantities.
Again, the formula for pressure is

p Llfeey (e
o8 ) o



Al the free surface

¥y = a sin mx
this becomes
I.-'I - I. 5 H -
-+gasmmx+—2-c— {1 -2 macoth mhsin mx | = constant, (55)
P
neglecting a’,
But p is constanl at the free surface. Hence (55) holds if the coefficient of sin mx
vanishes, 1.e.
g = ¢*m coth mh,
aor,
o
c2 = 5 pn 250 (56)
2n A

Case-11 :-P:l'ugmsr're waves on a deep water
For this case (when h — =) we consider

b =cx + Ae™ cos mx, (57)
and
W =cy — Ae™ sinmx (58)
with a free surface
1 = a sin mx. (39)

The free surface is the stream line w = 0, if
cia = A, (60h

g0 that

= CX + Cae "' Cosmx,
and ¢ . } (61}
Y= Cy —cae ™ 510 mx.

ﬁ]" +[ﬁ]; }=cﬂnﬁtﬂnl
% oy

The formula for the pressure

P 1
E+H+E{[



becomes

E+E},+%¢z {1-2mae™ sinmx+mZalel™ }=constant. (62)

If we neglect the last term on the left, this equation may be written as

§+y{g—mcﬂ )+ mey = constant. %))

This equation not only gives

EEZE (64)
m

at the free surface, but also shows that, if ¢ ? = g , the pressure is constant along cach
m .

stream line. It follows that the solution contained in (56) and (64) can be applied to the
case of any number of liguids of different densities arranged one above the other in
horizontal strata including the case of liquid of continuously varying density since there is
no limit to the thinness of a stream, the only limitations being that the upper surface is free
and the total depth infinite.

4.9 Waves at the Common Surface of Two Liquids

Suppose a liquid of density p" and depth h' to be moving with velocity V' over another
liquid of density p and depth h moving in the same direction with velocity V, the liquids
being bounded above and below by two fixed horizontal planes.

Let ¢ be the velocity of propagation of oscillatory waves at the interface of the two
liguids in the direction in which the liquids are moving. Let the x-axis be in this direction
in the undisturbed interface and y-axis vertically upwards. Let us make the motion steady
by superposing on the whole mass the velocity — ¢ thereby bringing the wave form to rest
In space.

The velocity and stream function for the lower liquid moving with the velocity — (V —c)
in the negative direction of x-axis and given by

p=—(V-cix+Acoshm(y+h Jcmmx,}

Ww=—(V-c)x—Asinhm(y+h)sinmx. (65)
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Similarly expression for upper liquid may be deduced from (65) by replacing V by V'
and h by = h'. Thus we get

'==(V'—c)x+A'coshm(y—h')cosmx,
¢ d } (66)

Ww'=—{V'-c)x—-A'sinhm({y—h')sinmx.

These expression for y and y' clearly make the boundaries y = — h, y = h' stream
lines; and if 1 = a sin mx gives the displacement of the common surface and the liquids
do not separate this must be a stream line for both surfaces. We can satisfy this condition
by taking the stream line to be w = ' = (), which gives

—-(V-¢c)a—Asinhmh =0,
~ —(V'-c)a+A’sinhmh’ =0, ©h
neglecting the squares of small quantities.
From Bemoulli’s equations, we obtain
2 2
—E+g}r+%{[%] +[g] }=constam.
; 32 P32 [ (68)
%+gy+%{[%} +[%——] )=cunstant.
But at the interface
y =1 = a sin mx.
Then (68) gives (neglecting a%)
~E+gasin mx+%(\-"—c}3 {1-2 macoth mhsinmx } = constant,
(69)

P

P—J+gasinmx+%(‘v”-c}3 {1-2 macothmh 'sin mx } = constant.

Since the pressure is continuous across the interface, putting p = p’ in above equations,
subtracting and then equating to zero the coefficient of sin mx, we obtain

glp-p)=(V-c)? mpeothmh+(V'~c)2 mp'cothmh’  (70)
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. : 2
This equation determines the velocity of propagation ¢ of waves of length —;ﬂE at the

common surface of two streams whose velocities are V, and V'; but it may also be
regarded as the condition for stationary waves at the commeon surface of two streams
whose velocities are V-cand V' - c.

It should be noticed that in any such case as the above, even when V and V" are both
zero, the tangential velocities on opposite sides of the surface of separation are different
s0 that this surface constitutes a vortex sheet. :

4.9.1 Waves at the interface of two liquids with upper surface free

Another case of interest is that in which the surface of the upper liquid is free; e.g. a
layer of oil upon water or of fresh water upon salt water.

Let a liquid of density p’ and depth h' lie over another liquid of density p and depth
h and let both the liquids to be at rest save for wave motion. We assume a common
velocity of wave propagation ¢ at the free surface of the upper liquid and at the common
surface and reverse this velocity on the whole mass so that the motion becomes steady.
We may take

W =cy = A sinh m(y + h) sin mx, (1)
in the lower liquid, and
14:’-= ¢y — (B cosh my + C sinh my) sin mx {72)
in the upper liguid. :
From (71), it easily follows that the bottom y = — h is a stream surface y = — ch. Let
the common surface be given by

1) = a sin mx, (73)
it is also the stream surface w = w' =0, if
ca — A sinh mh = 0, (74)
and
ca—B=0. (75)
Also the free surface
y = h" + b sin mx (76}
is a stream surface w' = constant if
¢b — (B cosh mh’ 4 C sinh mh') = 0. (77}

130



From the Bernoulli’s equation for the lower and upper liquids respectively, we have

p i a‘-l-" 2 a‘l-" 2 )
E-I—g}""i{(aj +[a—j) }_mnstant,

# a P 3 # 2
P + gy +—I i + o = constant.
p’ 2 ox ay
Substituting from (71) and (72), using that A, B and C are of order a, neglecting

squares of small quantities and equating the values of p and p' at the common interface,
we get

(78)

ga({p—p )—cm(pAcoshmh-p'C)i=0, (79
and using (74), {75) and (76), this gives

EED—P']=c2m{pmthmh+p‘mthmh'—p'—_tf._.. } (80)
asinhmh '

Then using the fact that p' is constant at the free surface we get
gb = em(B sinh mh' + C cosh mh'), (81}
and from (74}, (75) and (77) we obtain

bsinh mh '’
The elimination of the ratio a : b from (80) and (82) gives the equation for c, viz.

g=c3m(r:ﬂthmh'—;} (82)

c?m? (pcothmheothmh’+p’)—c?mpg(cothmh +cothmh ") +g? (p-p')1=0
(83)
and the ratio of the amplitudes of the waves is given from (82) by

h cim

;:cim:nshmh'—gsinhmh" (84)

From (B3) we see thal there are two possible velocities of propagation for a given
wave length, provided p > p’.
In the particular case in which the lower liquid is deep we put coth mh = I. The roots
of (83) are then =
g g p=p’

c?=— and ¢? =— .
m m(pcothmh' —p’)
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The ratio of the amplitudes of the upper and lower waves in the two cases are

g™’ and —[-E;—I]:"T*’.
P

4.10 Long Waves of Small Elevation

These types of waves arise when the wave length of oscillations is much greater
than the depth of the liquid and the disturbance affects the motion of the whole of the
liguid.

For simplicity, consider the case of waves travelling in a straight canal of depth y,, of
uniform section. Take the x-axis is the direction of the length of the canal and y-axis
vertically upwards and let r) be the elevation of the free surface above the equilibrium level
at the point whose abscissa is x at time t. We shall consider the case when the wave length
A is large so that (yo/A) is very small as well as (n/y,) and (dn/dx).

Then, so far as vertical forces are concemed we may regard the liquid to be in
equilibrium and take the pressure at any point as the statical pressure due to the depth
below the free surface. Thus the pressure p at a point (x, y) is given by

P =Py = Ep(yp + N = Y¥) (85)

where py, supposed constant, is the pressure above the liquid. Hence we have

o _ .o

o EP (86)
which is independent of y. Thus the horizontal acceleration of an element depends on the

. . .0 . . .
difference of pressure at its ends, i.e. Ep dx so that the horizontal acceleration of all points
in the same vertical cross-section remains the same. Consequently, those points which are

once jn a vertical plane always remain there.

We now consider a small horizontal cylinder PP’ of liquid of length dx’ and cross-

én

section a, the difference of pressure at its ends being gp——, dx’. Also, if x be the

x’
abscissa of the vertical plane of particles through P in its equilibrium position and £ be the
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horizontal displacement of this plane of particles, then x" = x + £ so that the horizontal

2
acceleration is “TE;:—i:—h The equation of motion is, therefore,

GRS on

;::dx’— = =ppit ——dx’
. a2

Assuming the motion to be small and squares y small quantities can be neglected, we
have from (87), by putting X' =x + §

el (88)

To form the equation of continuity, we suppose that A is the area of cross-section of
the canal and b is the breadth of the surface. Then, in equilibrium position, the vulum:: of
liquid containing between the planes x and x + dx is Adx. Also, at time t, the distance

between the bounding planes of the liguid is dx + g‘: dx and the area of the cross-section
is A + bn. Thus
(A+ hn}[dx + % dx} = Adx
dx
or, A % + l_:.'rn =0 (89)

where we have neglected product of small quantities. Thus, from (88) we obtain

05 _gA 078
A b ax?
whose solution 15
E=fix—ct)+F(x +ct) (90

where ¢? = gA/b. Equation (90) represents two waves travelling in opposite directions with
: 1
velocity ¢ = (gA/b)z.
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. L
For a canal of rectangular cross-section of depth h, the wave velocity is (80)2 which

is half the depth of the liquid.
The elevation 1 is given by (89) and (90) as

T‘|=—ﬂl”{x—m]—ﬁF'{x+ct} (91)
b b
Also, the particle velocity is

E=—cf'(x=ct)+cF(x+ct) (92)

4.11 Capillary Waves

Let there be an interface between two liquids, like water in contact with air. This the
interface will not be a constant pressure surface unless it is a plane surface. Since free
surface is a curved surface, so waves would be effected due to a surface tension or energy
per unit area due o capillary forces, the difference of the pressure on opposite sides of

the surface 15 given by
(o4
PP

where p and p’ are the principal radii of curvature of the surface.
In the case of two-dimensional waves we have p' = = and, if n denote the

elevation,

I _ "

— e —

p dx?’
neglecting squares of small quantities. So if &p, 8p’ denote the variable parts of the pressure

below and above the surface, we have

d2n .
T+ §p ~8p'=0 (93)

as the surface condition.
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4.11.1 Capillary waves in a channel of uniform depth

Let us use the method of Section-4.9, reducing the problem to one of steady motion
by superposing a velocity —c¢ on the whole mass, where ¢ is the velocity of propagation.
We have

w = cy — A sinh m(y + h) sin mx, (94)
and for the free surface |
1 = a sin mx, (95)
provided
ca -~ A sinh mh =10, (9G]

Using these in the Bernoulli's equation, the variable part of the pressure is given by

&
Fp+gasinm1+%c3 { 1—2 amcoth mh sin mx ) = constant, (97}

where the terms containing a® have been neglected. Now if we suppose that pressure
on the upper side of the interface is constant, then 8p’ = 0in (93) and so (93) reduces
to

d*n

T —

% dx?
= T am® sin mx. | (98)

Substiteting this value in the last equation and equating to zero the coefficient of sin mx, we
et

E T
c? =[m+-g‘3 ]l:mhm.h. (99)

When h is large compared to the wave length this becomes

Tm
P

L':I

_E
,_m+ (100)
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4.12 Tlustrative Solved Examples

Example I

When simple harmonic waves of length A are propagated over the surface of deep
water, prove that, at a point whose depth below the undisturbed surface is h, the pressure
at the instants when the disturbed depth of the point is h + 1) bears to the undisturbed
. pressure at the same point the ratio

T
h

*

atmospheric pressure and surface tension being neglected.

Solution :

For deep water, the velocity potential 15 given by

¢=Eel‘r cos( mx —nt ), (1)
therefore
§=%EMI sin{ mx —nt J. (2)
Also
. n? &
- - nt P = ———,
N = asin(mx - nt) ¢ =z m
So (2) becomes ’
= gne ", (3)

A

Pressure at any point within the water is given by

o™ |
=

+ gy = C (a constant). 4)

o
Wheny=0,p=10, ét-=[}ﬁo



and hence (4) gives

P=P@—EPF
o

p=gpne™ - gpy, by (3), (5)
Therefore disturbed pressure p; when y = - h is given by

pi = pgne™ + pgh
=pgh[l+-:~e-’““ ] (6)
and undisturbed pressure p; at a depth h is given by

P2 = pgh. (7)
Therefore

p.:pzz{l+1&e-mh): ]
=[]+-:-e-1“'"'1 }: I, (since m = 2n/h).

Example 2

Shew that, if the velocity of the wind is just great enough to prevent the propagation
of waves of length A against it, the velocity of propagation of waves with the wind is

]
T 2
c{mcn} ’

where o is the specific gravity of air and c is the wave velocity when no air is present.

Selution :
If V, V' be the velocities of the lower and upper of two liquids of densities p, p" and
depths h, ', then
g(p - p) = m(V = ¢,)* p coth mh + (V' = ¢,)* p' coth mh']. (1
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L]

Given %-— = . Since the seais at rest, V =0 and h and h' both — «=. Hence (1)

reduces (o
g(I-a]=m{cf +{V' =g, )2 cr].

If no wind is present, V' = 0, then

c; = C.
Therefore from (2),

| g(l - o) = m(c? + c’a)
= mc3(1 + g).
When there is no wave, ¢; = 0. From (2),
gl -o)= mV g,

Now from (2),

g{l—u’]=m{cf +\T’1ﬂ+EfG-ZV'E|G}
m"hi"lu'=m{cf+\F’3u+c|1r:—2‘u"c|cl}l, using (4)

cf (l1+6)-2V'c,a=0

¢, (l+a}
Vi ————
2a
Putting this value of V' in (4), we get

ci(l+a)?
g{l—n}=m’——-- T
dgl

OT,

¢l (1+o)?
4o

mc? (l+o)=mo
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or,
do

ey =——c?,
l+a

&0 that
1
_ _a_ )z
€1 ..2::[1_“:] )

If there be two liquids in a straight channel of uniform section, of densities py, p; and
depths I}, I, shew that the velocity ¢ of propagation of long waves is given by the eguation

[gi_l][i_.]ﬂ_u
I|E I g Pz‘

where p; > py, and it is assume that the liquids do not mix.

Example 3

Solution :

Proceeding as in 4.9.1 with p = p,, p’ = py, h = I3, W' = [}, we get from (25), of
4.9.1,

c¢*m¥(p, coth ml, coth mi, + p,) — c’gmp, (coth mi; + coth ml) + g'(p; = p;) = 0.

But for long waves, m is small and so we have

cothmi, = m+
1

approximately. Therefore

C""
- I.:Iul.-.q.plmz,cﬂ _czgpz —I—+i +g2 [pz'"]:-'|}=ﬂ-
i, L 1y

But for long waves,



is small. So neglecting m’, we get

cd N 1 Py
-] —+— |#]l=—
Ii,g? 4 (*{] Iz] P2

Example 4

Prove that

w =Acus%—(z++h—ct]

is the complex potential for the propagation of simple harmonic surface waves of small high
on water of depth h, the origin being in the undisturbed free surface. Express A in terms

of the surface oscillations.
Solution :

We have for the progressive waves on the surface of water

ag coshm({y+h)
= ooshmh cos{ mx—mnt ).
Since
cos m(x + iy) = cos mx cosh my — i sin mx sinh my,
we take
W =%%sim{ mx —nt ).
Therefore

W=+ iy

_ag cos{(mx—nt)+im(y+h)}
T n cosh mh

ag cos(m(x+iy)+imh—nt)
o cosh mh
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cnsm(z+ih—n—t)
ag m

=

n cosh mh

ag r:us-zfizﬂh -t )

n cosh mh
Since
m==2T oM
LT om
Therefore
W= Acns%?{z+ ith—ct)
where

ag ag

——— e e —r———

" ncoshmh mccoshmh’

4.13 Model Questions

Short Questions :

1. Justify, by examples, the statement *waves are means of propagation of energyy

without any conspicuous movement of particles’.

2.  What is meant by wave profile? Find the equation of the wave profile at any

instant of time referred to a given origin.

3. Define : Simple harmonic progressive wave, standing (stationary) wave, surface

wave, group velocity, capillary wave, long wave,

4. Show that a progressive wave can be regarded as due to the superposition of two

standing waves.

5. Deduce the surface condition for capillary wave.

Broad Questions

e

1. Deduce the condition at the free surface of an unbounded sheet of liquid for two-
dimensional irrotational motion. Hence obtain the same if the motion be small.
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10.

11.

12.

13.

Also show that in a wave motion in which the square of the velocities can be
neglected, the velocity potential satisfies Laplace’s equation and its normal
derivative vanishes at a fixed boundary.

Discuss the motion of progressive waves (1) on the surface of water (11} in deep

water, Hence find the path of the particles in each case.

Deduce the expressions for the kinetic and potential energies of the progressive
wave.

Discuss the motion of stationary waves (i) on the surface of water, (ii} in deep
water. Hence find the path of the particles in each case. '

Find the expression for the group velocity for waves on the surface of liquid of
finite depth. Hence show that the group velocity for shallow water is equal to the
wave velocity but that for deep sea waves is half the wave velocity.

Show that in a simple harmonic train of surface waves, energy crosses a fixed
vertical plane perpendicular to the direction of propagation at an average rate
equal to group velocity.

Find the rate of transmission of energy in simple harmonic surface waves.

Consider waves propagating in one direction without change of shape. Show how
the problems of propugation of surface waves (i) on the surface of water and (ji)
in a deep water, can be reduced to the problems of steady motion.

Discuss the motion of oscillatory waves at the interface of two liguids.

Discuss the motion of waves at the interface of two liquids with free upper

surface.

What is meant by long wave? Show that for such waves, the points which lie once
in a vertical plane always remain there.

Deduce the equations of motion and continuity for long waves. Hence find the
solution of the equation of motion and interpret the result. Analyse the results for
a canal of rectangular cross-section of given depth.

Discuss the motion of capillary waves in a channel of uniform depth.
142



Problems :

1.

Let a shallow trough be filled with oil and water, and et the depth of the water
be k and its density p,. and the depth of the oil h and its density p,. Then shew
that if g be gravity, and v the velocity of propagation of long waves.

V2
£

i
_1 1 S 4hkp, |2
—2{h+k}+1{[h ki? + } .

P

Note that there may be slipping between the two fluids.

Two fluids of densities p , p, have a horizontal surface of separation but are
otherwise unbounded. Shew that when waves of small amplitude are propa-
gated at their common surface, the particles of the two fluids describe circles
about their mean positions; and that at any point of the surface of separation

where the elevation is 1, the particles on either side have a relative velocity
4 men

A

If a channel of rectangular section contain a depth h of liquid of density p on

© which is superposed a depth h' of liquid of density p’, the free surface of the latter

being exposed to constant atmospheric pressure, prove that the velocities of
4]
propagation of waves of length 2r/m are given by ¢ = pet where

p(u coth mh = 1) (u coth mh" = 1} = p'(l = u?).

Two-dimensional waves of length 2n/m are produced at the surface of separation
of two liguids which are of densities p, p'(p > p') and depths h, h' confined
between two fixed horizontal planes. Prove that, if the potential energy is
reckoned zero in the position of equilibrium, the total energy of the lower liquid
is to that of the upper in the ratio

p((2p — p'Jcoth mh + p'coth mh') : p'({p — 2p"Jcoth mh’ = pcoth mh).

A channel, of infinite length and rectangular section, is of uniform depth h and
breadth b in one part but changes gradually to uniform depth h' and breath b’ in
another part. An infinite train of simple harmonic waves travelling in one direction
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only is propagated along the channel. Prove that, if a, a’ are the heights and 2n/
m, 2r/m’ the lengths of the waves in the two uniform portions,

m tanh mh = m' tanh mh',
and

alb . _a'"?b’
cosh 2 mhl[smhEml't+21'r||h,‘n——-———-mml_"1 —y

4.14 Summary

The conception of surface waves relating to progressive and standing waves has been
introduced. A sketch of long waves and capillary waves are also noted.

{(sith2m'h’'+2m"h ).
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‘Unit 5 O Viscous Flow

Structure

5.0 Introduction

5.1 Viscous incompressible Mlow : Navier-Stokes” equations

5.1.1
s.1.2
s.1.3
5.14
15

Flow through tube of uniform ﬁrms section

Flow through a pipe of circular cross section

Flow through pipe with annular cross section

F]nw through a pipe with elliptic cross section
Flow through a pipe with rectangular cross section

5.2 Boundary Layer

521
5.2.2
523
524
5.2.5

Concept of boundary layer

Two dimensional boundary layer flow over a plane wall
Boundary ]ﬁyer over a flat plate : (Blasius Solution)
Shearing stress on the plate

Boundary layer thickness

53 Moderl Questions
5.4 Summary

- 5.0 Introduction

So far we have considered the motion of an ideal or non-viscous fluid, that is the fluid
which is incapable of exerting shearing (i.e. tangential) stress on any surface with which it
is in contact. We now proceed to introduce the fluid motion for which the normal and the
shearing stresses will be taken into account. The resulting equations, known as Navier-
Stokes® eguations are of fundamental importance and what else follows will be based on

these equations.
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5.1 Viscous Incompressible Flow : Navier-Stokes’ Equations

It has alr::a::t;-,; been seen (see study Material PG(MT)035 : Group-B, Page-122) that
for incompressible viscous fluid, Navier-Stokes equation of motion is given by

N -y = 12 -
—+v.V]v=F-—=-V¥Vp+vV?
{"u' ]"u' p PV ¥ “]

where ¥ is the velocity vector; F, the external force; p, the fluid density; p, the pressure
and v is the kinematic coefficient of viscosity.
Let us now consider some deductions from the equation (1).
Vorticity transport equation
We rewrite the equation (1) in the form
E#ﬁ'(lvz )+ \T.rxﬁzl_:-lﬁp+v‘? iy
&t Z P

where W = V x v represents the vorticity vector. Assuming conservative nature of external

forces so that F = —ﬁ'x, 4 being potential function, we have from the above equation

E+ﬂxﬁ=-—%[1+-1-v2 +E]+ vWiy,
ot 2 p

Taking curl of both sides, it follows that
%+‘5‘x{ﬁx$}=v‘¢2@ (zj

(VW) VH(V.VIW—(W. V)T

|
==

Now Vx(wxv)=(V.¥)

=(i’r.ﬁ']ﬁr—-{ﬁ.f’}|i’r (Using equation of continuity ¥ ¥ =0
andtheresull ¢ =% Vxv=0)

so that equation (2) reduces to

%%*-{ir VIw—(W.V)V=vW2w
e, 24 (3.V)W=(5.9) T4V 23 ()
. dw - = .
Le., ‘—dTI{W.‘F]‘h'+v? W (3b)



where — = = +v.V. Equation {3a) or (3b} is known as vorticity equation.

Dissipation of energy

We now calculate the energy which is dissipated in a viscous liquid in motion due to
internal friction,

Suppose the liquid is contained within a volume V bounded by a closed surface S. The

forces acting on the liquid are the external force F per unit mass, the normal pressure p
on the boundary and the viscous stress acting over the surface S. Now the rate at which
the work is done by these forces is

[pF;vidv+ [(Tyn )v ds = [| pF,v, +i”,‘j\,|} dv @
v 5 v ox .

i
where T;; is the stress given by

ov, v,
P'E’q ﬂ.t ﬁxi v (see study Material PGIMT)0S :

Group-B, page-122)

u being the viscosity.
Let K be the kinetic energy and E be the intrinsic energy so that

11 == .
K+E= Elpv.vd? +£pm:h .
e being the intrinsic energy per unit mass. Then the rate of increase of this total energy is

d - dv de dvi _ de
~(K+E)= —d Zdv= L= d
dt( +5) {P‘.’ dt v+£Pdt ' ;[P[?' dt +dt} ‘e

so that from (4) and (5) we get by using the principle of energy
Ip du..j PR, v, + =2 (T, v,) |av
Yi : i 511 i

de d-\'
or, _I-{p_+|:'"i: dt - PF; v; _EI_I{T ¥ ]}[h-'—[]'
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Since this is true for arbitrary volume V, we must have

de i ad
PEIﬂFi“L'p"'i di "'Kj':TIj"ri} (6)
Noting that
& av, oT;;
—(Tyv,)=T; —+
E’KJE g\r|} i axj 1'Il EI.J
dv,
=T (e +w;)+v, [T_Fi ]p

(see equation (4.16) in smdy Material PG{MT)05 : Group-B, page 66)

uul.ri'm:rr:fi=£+§.'§',i::--=l i+ﬂ .mdw--:l ﬂ—i and since T
dt &t "2 o2l e, ax, !

1
are symmetric but w;; are skew-symenetric so that T,-J-w-.j. = [, we have

i—'{T-v-}:T--E--+pv- dvi-—F-
E‘Ij v v I di !

Thus from (5), we get

de dv; dv;
pa-t-zpF-,v,--pv-L—+Tije-_j+pvi —=F;

dt dt
v
LS BN CATIAT I I
|r..= Py T,e; po;; +p E‘IJ+E‘!. €j
dv, ov
=—pey; tH 5-"‘}+E Cij
2
- ﬂ"III +I ﬂv! +5v1
T T
de a""'i
. i)
Par ™ Pax,
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2 .

v
wl‘um:tp:l}l{ﬂq. !
Cartesian form

] 15 the dissipation function and is necessarily positive. In

1 2 2
2 oy ox dz oy ox Oz
Obviously, this expression is never negative and is zero only when each of the squared term

vanishes. It is, therefore, evident that energy is always dissipated and reappears in the form
of heat unless liquid moves without any strain, that is as a rigid body.

We now proceed to discuss the steady motion of incompressible viscous liquids
through different tubes and channel.

5.1.1 Flow through tube of uniform cross-section

We consider steady flow of imcompressible viscous flow through a tube of arbitrary
but uniform cross-section. We take the z-axis along the axis of the pipe. We suppose that
only the non-zero velocity component is along the z-axis, soweputu=0,v=0,w=0.

Under this assumption the set of basic equations are

%:_ =( (equation of continuty), (7
?i. =0 (equation of motion along x-direction), (8)
g;i =0 (equation of motion along y-direction), )
0=- -II;EE + v[ %?r- +%!:£ } (equation of mmiq-:-.n along z-direction). (10}

(7) implies that w is a function of x and y only and is independent of 2. (8) and (9) imply

that p is a function of z only. Thus (10) becomes

ow d*w_1dp
éx? gy? pdz

LHS. of (11} is a function of x and y whereas R.H.S. of (11) is a function of z only. So

each must be constant. We wnte

(1)
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l:lp_
5 -

We have considered the negative sign because we expect that pressure P decreases in the
direction of flow. So the equation satisfied by w is

~-P. (12)

a: Alw .
W, otw. _E‘ (13)
ox?  oey? n
This equation is to be solved subject to the boundary condition w = 0 on the surface
of the tube. We simplify the equation by writing

_ 4p
s that
ow _Ov _Px 2*w__ P 0%
dx  8x  2u ax? 2p Ax?
ow_0y Py o2w_ P 0%
ey dy 2p ayr  2p oyr’
Hence,
8w 8w p G*w p drw dily 4y p
+ =——+ -—+ = + -—.
gx?  gy? 2p ox?  2p dy? ox? gyl p
Since
a-w+52w:_g
ox* oy’ B
we obtain
dly adry
q+——=[l. (15)
dx?  dy?

Therefore, y satisfies the two-dimensional Laplace equation with the boundary condition

w=ﬁ(x1+y2,‘l (16)

on the surface of the tube.
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5.1.2 Flow through a pipe of circular cross-section

The equation of the cross-section of the pipe is x* + y* = a%, or r = a. Boundary

. . .. Pa?
condition isxprzﬁaz on r = a. To satisfy this condition we choose w=A = in =
constant. Therefore the velocity w is given by,

P Pa? Pr? P
sy-——(x? +y? )m=—————=——(al -r?2)
W=y 4|4{ ¥ye) TRy 411{ )

""i”=4—ii“z"f”- (17

The form (15) shows that the velocity profile is parabolic, i.e., the plot of w against r from
r=10tor = ais of parabolic shape. The volume rate of flow at any cross section is given
by, .

Q=I:w{r},2n:dr-—..¥:4—i{az -7l jandr:%an:{al —r? yrdr

Prf,; ol _at]_ P

PT:J' '
=—| {a2r=ri)dr= p———— = :
24 o ) 24 2 4 m

d —
It is clear that the pressure gradient o_P2 7P

dz I}
pressures at two sections at a distance [ apart. So the volume rate of flow,

, where p, and p; are the

4 4 d 4
Q_:n:a p ma[_P] ma

T Bp 8u | dz =H(P'_Pi}' (18)

This formula is used to determine the coefficient of viscosity p. Since all other
quantities can be measured experimentally, p can be determined from the formula (16).

5.1.3 Flow through a pipe with annular cross-section

Consider the pipe b <r < a, i.e., the region between two concentric cylindersr=b
2

4u

and r = a. The boundary conditions are y =

PaZ2 linde —_
Ty on the outer cylinder r = a.

on the inner cylinderr=band w =
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An appropriate choice of y satisfying the Laplace equation ina<r<bis y =
A + B In r. By the boundary conditions, we find

) 2
B A+BInb, P22 _ A+Blna.
dp du
Thus
- P (hz . )_ P (b2-a?)
" 4ptllnb—Ina) 4p I(b) ‘
]1. —
a
» .
. 2 —n2
ﬂ_PaE —EIna=PH2 _ i_—{b at) Ina.
4 41 4 l(b]
n
a
Hence

_ Pa? p (b?-al)

W= -1 — +Blnr=22" P (bP-at) "(1]
4 4 ]n[g] dp | d4p Iﬂ[t—}) a
da
so that
P P '
= ——(x2 2 Y= gy - 2
W=y 4u{x +tytl=w 4111"
Hence
P 2 2 2 _qal In{ bfa )
w—du[(a r® y+(b a }Im{rfu} . (19)
The rate of volume flow is given by
(a2 -b2)’

Q=J5u{r}.2nrdr=;—ﬁ a4 =b* = In(%]
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5.1.4 Flow through a pipe with elliptic cross-section
Let the equation of cross section of the pipe be,

3 2
LY

al h?

A suitable solution for the Laplace equation for this case is
y=A(x?-y?!)+B.
To satisfy the boundary condition w = 0 on the surface of the pipe,

w=ﬁ{ﬂ +y?)=A(x*-y*)+B

on the surface of the pipe. This implies that

x4 yio
1E.—B—u+__3_.-1
P P
ap A aut
Comparing (18), (20) we obtain,
PB = I; ]}E =h2
an A oA
B_ P , B
24_];“&_31 4u+A_h3
P 1 i a2 +ht
e (+o7)2(%5 )
_ Pazb?
= T 2p(at4+b?y’
Hence,
P B_P___ Pl _Pf 200 ] F
4p a? 4p 2upu(ar+b?) 4p al+h? 4u
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Hence the velocity distribution w is given by

N 2 ;i[ai'bl
=¥ 4].1{1 ¥ 4ula? +b?

Palb? P
] y2 ypee 2 D F 22
J“ ¥y=)+ Zu(a? +b?) 43,1,“ ¥4

- Pa’t? X2 _¥*
_'zu{az_+hz) al b2 |

The rate of volume flow is give by

M=!J*’*d’“’?‘zuf§”sz }”[ ':—j'i—i)d“‘?-

2
Now we consider the ellipse x = ak cos A, y = hlsmlte.a—+:—z=l3.0n

N . x: ¥? '

this ellipse, the integrand I_u_l_b_z =1=A2 (sin? A+cos? A )=1-A2,

Now the area between this ellipse and the neighbouring ellipse (where & is increased
by & + di) is
= ma(k + dA)b(h + di) - maibk = mab(h + di)? — mabi? = 2mabidi.

Therefore
Palb? alb?
= —A2).2 mabAdi, = 5 A(1-A2 )da
Iu{al+b3]-[“ ) 1 af+b1f { )
_XP adb3
C4pa? +bh?’

Now the rate of volume flow through a pipe of circular cross-section with radius (ab)'"?

N nP 2
having the same cross section as the ellipse 1s M, = ﬂ a’bz,

M _xP_a'hl 8w 1 _ 2ab
M, 4p a?+b? aP a?b? a?4+b?
=M < M,

Thus the flux through a circle is greater than that through an ellipse. The physical reason
is that for a given pressure gradient the rate of flow is diminished by the friction. Now this
friction is minimum on a circle because among all curves with the same enclosed area circle
is the curve of minimum periphery.
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5.1.5 Flow through a pipe with rectangular cross-section

Let the cross section be bounded by the planes x =a, x=—aandy=b, y==b.
We have to solve .

axr eyt (22)
subject to the boundary conditions,
)w=0atx=a,x=-a,
_ {il)w=0aty=b y=-b (23)
One particular solution of (22) satisfying the boundary condition is
P
w1=2—p{ﬂ1—x“}- (24)
If we write, w = w, + w, then,
Iaz"-'l'z g- T
5 Ty (25)

We solve this equation (25) by method of separation of variables where we assume
wa(X, y) = X(x)Y(y) (26)
Substituting (26) in {23) we get,

d2X(x)
dx?

"Yl'}'fl

———Y(y)+ X(x) =0

1 d?Xix) _ 1 d?¥(y)

CX(x) dx? Y(y) dy? =G
d2X(x) _ -, d2Y(y)
a2 CRX(x); ay? CIY(y)

Solutions are
Xix) = A cos(C x) + Bsin[C x), Y(y)=A cos(C y) + B sin(Cy).
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Now, from the symmetry of the cross section with respect to both x and v, it follows
that w must be even function of x and y. Since, from (3) w/ is already even in x, w, must
be even in X, w, must be even in x and y. Hence

B=D=0,
and therefore

wy = ¥ A, cos(C x)cosh(Cy).
n=i

Here,

cw iws =Pz ox)eS

W=W, 4+ W, dn{a x}+§ﬁ,co&{¢hx}|coshicu}f}.
To satisfy the boundary condition w =0 at x = a, x =— a, we have

0+ A, cos(C,a)cosh(C,y)

ne=0
. no. I
=cos(Ca) =0, ie,Cha=(2n+1) 7 e, C, =(2n + ]}-i—

Therefore

P 3 A% Y
w—zu(a X }I+§A“mﬁ{(zn-i-t}za}um.h{{ln+l}la},

By the boundary condition (ii) w =0 at y =b, y =~ b and we have,

=£ 2 _y2 y { ﬂ} { n_b}
0 Iu{a X ‘J+§Ancﬂm (2n+1)5= peoshd (2n+1) 7

P 3 X b
= -—E'E{al —-x1)= éﬂ“ m{{2n+ Ijﬂ}cush{mn - I}ﬂ}'

Multiplying both sides by Cus{{ln +1) %} and integrating between —a and a, we geL,
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_B ﬁ_ 2 Ei}
b J‘_a{a X ]cns{{2n+]}za dx

=A, msh{l’ln + ljl;—:}j; cos? {{'ln + IJE—E:}dx

~_F —I“i—fsin{{znmﬁ}—z—aﬂ sin{[2n+ ”%H
- -a

—

Hence

2p| wi(Zn+1) 2a w2n+1)

P d4a . : X
E[mﬁzn-'r ”L xstn{{zn +1) E}dx}

_Aq ab |
= Tm@h{[ln+ [} Za}-[

2 X
{I +cost(2n+1) Ia}dx

.J“_[.L:uu.--:rs{{zmnvﬁ}+Lsin{{2n+Hﬂ‘l}}a
2u|l wE2n+1) 2a) =m3I(2n+1)? 2a) |,
= 'ﬁ;“ msh{{ﬂnﬂ];—:}.za
_Tiﬁil}i (=1)" =aA cnsh{{ln + I}E}
= A, =_2—Zx§'§~—ﬁ%m&h{{2n+l]g—:}.
w=§%{ﬂz _xz}_}%g%mh{{in;ﬂ%}

xms{(!n+]j%}cosh{{2n+l]:—§}.

157



5.2 Boundary Layer

5.2.1 Concept of boundary layer
The concept of boundary layer was introduced by Prandt] in 1904, He assumed that
for fluid with small viscosity, the flow around a solid body can be divided into two parts

(i) a very thin layer called boundary, adjacent to the boundary layer where viscous
effect is important and

(ii) a region outside the boundary where viscous effect is not important the low may
be taken as potential flow. Within this boundary layer, the Navier-Stokes equation can be
simplified. These are called the boundary layer equations.

5.2.2 Two dimensional boundary layer flow over a plane wall

For motion in the (x, y)-plane, the Navier-Stokes equation and the equalion of
continuity are,

atta T e e oy ) e
L0 O - _I_i'i..h @lv aiv ) (28)
o dx 8y pox | ox? o oay?

du v

—k ==,

ox Oy @)

Here x-axis is taken along the wall and y-axis normal to the wall. Due 1o no slip
condition, u = v = 0 at the wall. Let U(x, t) be the velocity outside the boundary layer.
Then the velocity component u within the boundary layer rises rapidly from its value 0 at
the wall to the value U at a small distance &(x). & is the boundary layer thickness and
& << 1. We now calculate the order of magnitude of viscous terms in the equation of
motion. We take u, x, t are of O(1}), but y = O(5). By the equation of continuity,

v fu
ay X th
s0 that
v = (O8).
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Then from (1),

Su

du v
=0(1), ==0(1), v = .
{ }51 (1), v {}{E}D(

J=G{U,

d2u d2u 1 }
—=0(1), =0 — |.
i 2 ( }53,.1 [52

1
]

Thus in equation (27) we can neglw:thn:[crm%mmpmdmi—zf—ﬁuequaﬁm{m
becomes

du. du du 1Ep . 8u

= tU—+V—=———+ .

& ox oy pox oyl (30)

If each term of this equation is of the same order of magnitude, we note that,
v=0(52), =5=0(JV)

Now we consider equation (28). We see that,

av av BV ey 02V arv _ (1
ot 0(3). u&x 0(3), vﬂyhn{ﬁj' gx 2 =0(3), oy ? _D(E)
Therefore, -
1 &p
———=0(&).
By (31)

Thus the pressure gradient normal to the wall is of the order of 6. Hence integrating (31)
with respect to y from y = 0 to 8, the pressure p may be neglected. Thus within the
boundary layer pressure p may be taken as a function of x only and is given by its value
at the outer edge of the boundary layer. Suppose that the flow outside the boundary layer
is given by U(x, t). Then,

Thus Prandtl’s boundary layer equations are,

fu fu_ éu_@&U .8U 82U
o Vax ay_at+uax”__"5y2' {32a)
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% + % =0, (32b)

Boundary conditions are u = v =0 at ¥y = 0 and u = U(x, t), at y = co. The first
boundary condition is the usual no slip condition.

It may be seen that considerable simplification has been achieved in the above
equations which consist of two equations with two unknowns u and v. However the
equations are still nonlinear, therefore it has been possible to solve the equations directly
only for a limited number of problems, such as flow past a flat plate.

5.2.3 Boundary layer over a flat plate : (Blasius Solution)

The first application of Prandtl’s boundary layer equations was made by H. Blasius
(1908) to determine analytically an expression for thickness of the boundary layer over a
wide semi infinite plate.

Mow consider the steady flow of viscous incompressible fluid past a semi infinite plate
placed in the direction of the uniform stream with velocity 1.

We take the origin at the leading edge of the plate, x-axis along the plate and y-axis
normal to the plate. In this case, the potential flow outside the boundary layer equations
dre,

2
ugf-wg-:—z ‘ZHE [since.%+U%uU=mnsmm}, {33a)
du  ov
——e =)
ox oy (33b)

with the boundary conditionu =v=0aty=0andu=Uat y - .
The equation of continuity can be integrated introducing by the stream function yix, y),

A . J (34)

H=E {?'Jil

The characteristic parameters of this flow are U, x, y and v. i.e., the problem is
determined in terms of these parameters. We may write '

Iz ’
u=UF (n) where n:(%) ¥ [HCI’CE= II% 15 the boundary Ia}'crthickm:ss].

160



Now by the first relation of (33), we get,

172
yr =jud}'=UjF{1‘1}(%] dq:{v:Uj“lfFl{ﬂJdu

=(vxU)}" f(n) [wher&, f{n]:JF(q}dq].

MNow,
-'.31]»‘ ﬂfal'l u /2
u=—=(vkU)" ——=(uxu:+"f(—] frin)=Uf’
By an By vx {n) (n)
and
Sy l af on
- W2 2o -1 - e S
V=T A (vll) 5% Fin)-(vxl) on ox
B 1 v 1Fz P i )[ U 12 y
=-2(*2) rm-(wu) rm}[ (Y =
__Ifvun" | va preos M
_'E[T] f{'q}+5{vxLT} f{nj,;:-.
Hence,
"=l(ﬂ)uz{—ffnl+ﬂf‘w}
2N x )
du 1.
—— f-r el _I_-M X
ox u {ﬂ}ax 2”; (n)
fu . l?rl_ ; u uz_ U ;
S-uvrrmg =) =u( ) erow.
alu_. E-,ll.-'z e @-— (l._l-.)l.l'? e (EJUE_E "
dy? '”[u,l ! {‘”ay‘” ol B Bl (e S Fron.

Substituting all these terms into equation (1) we get,

cu ]



(-3l

, Uy, . Uz,
{—rtn}mrfn}}U[;;] £y =v g ()

1uz 1uz o2
L e, L £ f'—fy= g
= 5 . nf'f +2_}L in ) _:{

=S 2f" " =—nf T "+ (f "= )=22f" +f1f" =0
d3f d2f
:&23-11—-]—-+f—d—1-l—£-=|}.
So the boundary conditions are '

()f=F=0at n=0 (ie,y=0),
() f=1as y—w

(35)

Since the equation (35) is a nonlinear equation, its solution in closed form is not
possible. Blasius solved it by power series expansion of f(n) about n = 0. We assume,

A g Ay
fim)=A, "'J"i-j'ﬂ“"?ﬂ: +?'ﬂ3 + o

By the boundary conditions
((f=0atn=0=A,=0
(ipf'=0atn=0=A,=0
Substituting these in the differential equation (35), we get,

Ay Ay
f'iﬁ}"'i'!-’l'lz +_'3T“J & e

A, A, A As .
W) = R 3.8 sa 106 o5
PO =Agnt—mnf st + o * 120"

" A 2 As 3 Ag 4
f {"'I:':ﬁz""a‘}"l""‘i"fl A MRl R

A A
f"(n)=A, +A4q+T"q2 +T"1-|3 .
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1 2
d7f f85 g

22—+
dn® dn?

A-'l' ‘hﬁ h‘l "6"3-
::«2(&; +.-‘5"|L,|11+T'r|'1 +?r|5" +~-}+(?q1 + 3 nt+ ]

®*| A, +A 1't+ﬂ—" 2.|.J!G.L_5 3-.|.A_'<“' 4 f.a |=0
2 3 zf'l ﬁ""! 14‘1 =

A Al
:’[:Ai +2A,n+An? +Tﬁr|3 +---]+[Tz]qf+[hlfi +A'z:'1' ]113 + v

=2A, +2A,m+(A} +2A;)

n? Ag IAA, 3 _

Since, coefficients of various powers of 1 vanish separately,

Ay=0,A, =0,A, =—-%A§ Ag =0,
2 L, 1A .,
f{n}=-5- _5?“ 4.—1.;\.211 +
1 11 1
ZA’IH {ﬁ[ﬁgjﬂ}z 'Eﬁ{hgln) +£|T_i‘(ha.r3“]ﬂ +“I}=A|2.BF‘:A]2!J“}
where,
1 ¢ 11 5
F:A';lf‘]}=ﬂ(ﬂ;”ﬂ} HE'E_![.AIIHT]) goone

Now by the boundary condition that f* — 1 at  — o0, we get,
= lim [A3°F"(AY"n)]

2
ie,A, = 1
limE'(n)
T
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The value of A; can be obtained numerically. Howarth found that Ay = .332. This
completes the solution which is also known as Blasius solution.

5.2.4 Shearing stress on the plate

The shearing stress on the surface of the plate can be caleulated with the help of the
above solution. The shearing stress is given by

= 1z 1#2
n.=u[%) =}1U(%] f”m)=n.332uu(%]
y=0

5.2.5 Boundary layer thickness

Although the velocity u reaches the potential value U asymptotically, a value which is
very near to U is attained within a small distance 8. A measure of this boundary layer
thickness is introduced by the following relation

UE-——I:{U-u}dy.

The right hand side signifies the decrease in the flow rate due to friction within the
boundary layer and the L.H.S. represents the total potential flow that has been displaced
from the wall. So & represents the distance to which the free stream has been displaced
due to boundary layer. This § is called displaced thickness. From a flat plate this given by

= u
= -5 ldy.
o In ( I u ] y
The upper limit of integration is taken as y = oo, because the integrand becomes zero
outside the boundary layer.

5.3 Model Questions
Short Questions :

1. What is the difference between an ideal (non-viscous) and a real (viscous) fluid?
2. What is meant by dissipation?
3. Discuss the concept of boundary layer.
4. Define boundary layer thickness. What is its significance?
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Broad Questions :

Deduce the vorticity equation for an incompressible viscous fluid.

1.

2.  Show that a viscous liquid cannot move without dissipation of energy by viscosity
unless it moves as if rigid.

3. Discuss the motion of an incompressible viscous fluid through (i) a tube of
circular, annular, elliptic and rectangular cross-section.

4, Deduce the equations of motion for two-dimensional boundary layer over a plane
wall.

5. Fimd the Blasius solution for the two-dimensional boundary layer flow over a flat
plate.

5.4 Summary

In this chapter, some properties of an incompressible viscous fluid are introduced and
the motion of this fluid through tubes of different cross-section has been discussed. The
concept of boundary layer and its property are also outlined.
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