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PREFACE

In the auricular strueture introduced by this University for students of Post- Graduale
degrw programme, the opportunity to pursue Post-Graduate course in Subject introduced by
this University is equally available to all learners. Insiead of being guided by any presumption
about ability level, it would perhaps stand to reason if receptivity of a learner is judged in the
course of the learning process. That would be entirely in keeping with the objectives of open
education which does not believe in artificial differentiation.

Keeping this in view, study materials of the Post-Graduate level in different subjects are
being prepared on the basis of a well laid-out syllabus. The course structure combines the
best elements in the approved syllabi of Central and State Universities in respective subjects.
It has been so designed as to be upgradable with the addition of new information as well as
results of fresh thinking and analysis,

The accepted methoddlogy of distance education has been followed in the preparation
of these study materials. Co-operation in every form of experienced scholars is indispensable
for a work of this kind. We, therefore, owe an enormous debt of gratitude to everyone whose
tireless efforts went into the writing, editing and devising ol a proper lay-oul of the materials.
Practically speaking, their role amounts to an involvement in invisible teaching. For, whoever
makes use of these study materials would virtually derive the benefit of learning under their
collective care without each being seen by the other.

The more a learner would seriously pursue these study materials the easier it will be for
him or her to reach out to larger horizons of a subject. Care has also been taken to make
the language lucid and presentation attractive so mat they may be rated as quality self-
learning materials, If anything remains still obscure or difficult to follow, arrangements are
there to come to terms with them through the counselling sessions regularly available at the
network of study centres set up by the Universily,

Needless to add, a great deal of these efforts is still experimental-in fact, pioneering in
certain areas, Naturally, there is every possibility of some lapse or deficiency here and there.
However, these do admit of rectification and [uriher improvement in due course. On the
whole. therefore, these study materials are expecied to evoke wider appreciation the more
they receive serious attention of all concerned.

Professor (Dr.) Subha Sankar Sarkar
Vice-Chancellor
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UNIT -1

§ 1.1 Calculus on R" :

Let R denote the set of real numbers. For an integer n > 0, let R" be the cartesian product

BB R =R
‘L__—V'__-J

ntimes

of the sel of all urdered n-tuples (xl,--,x") of real numbers. Tndividual n-tuple will be denoted
at times by a single letter, e.g. x = (xl o 27),y= (yl e, y*) and soon.
Co-ordinate functions : Let y=(al, 4%, 2")e R". Then, the functions u; 1 R" — R defined

h:.r Hf.{.!.'l._‘l,'z,- ! -_1;1' i) = _\‘,"
We are now going to define a function to be differentiable of class ¢~ .

A real-valued function f:U CR"—= R, |
U being an open sct of RY, is said to be of class ckif

i) all its partial derivatives of order less than or equal to k exist and ‘
ii) are continuous functions at every point of U. '
By class %, we mean that [ is merely continuous from U to R. By class ¢, we mean that ‘

that partial derivatives of all orders of Fexist and are continuous at every point of U, In this case,
f is said Lo be a smooth function.

Note : By class ¢ on U, we mean that f is real analytic on U ie, expandable I 4 powWer

series about each point on U. A €% function is & ™ function but the converse is not true.

Exercise : 1. Let [:R— R be defined by
il [=
fix)=e &, x#0
=0, x=0
Show that £ is a differentiable function of class By
Solution : Note that
o= F @)= flo)y _ lim &%
I Gj_h-—}ﬂ 5 T h—=0 p
Apply L'Hospital’s Rule, on taking, hi= El we see that j — o EIVES 1t — e
(

7



lim 1
U —p o= 2uet

- lim gt
H—rea 2y

=0

1
Again, £(0)=2x3¢ £, x20

L ) = hiﬂﬂ S0 +I1;—fr[ﬂl and on putting %zar. we et

" I 4(ea
Fiai= = 2 [—]
W —3 oo it oa
Applying L' Hospital rule successively, we find

5 _ lim gg?
A

lim 42
_H—}W gt

_lim 81
=3 o= Qe

lim 4
H—3oa gt

=0



Proceding in this manner, we can show thal.

=0, for n=1, 2, -

Hence f is a function of class .

Amapping f:U =V

of an open set Uc R™ to an open sel V o RO is called & homeomorphisi if
i) fis bijective i.c. one (o one and onto, as well as

i) f, -1 are continuous.

Exercise : 2. Let f:R—= R be such that

fix)=>5x+3

Show that { is a homoeomorphism on R.

3. Let f:R— R be delined by
Fla)=x

Test i) whether f is a dilferentiable function of class ¢ or not

ii] whether [ is a homeomorphism or not. | Ans. : i} f is of class i
ii) f is homeomorphism |
Solution & 2. Note that
flx)=F(y=5x-»
s f(x)=f(y) if and only if x=Y%
Hence f is one one.
Let y=5x+3

y=3
5

X =
and hence ' R— R is delined as

I s,
[ ==

Again, Flf-"y)) =y and [ I( f(x)) =, Thusfis onto.
Consequently fis bijective.




Both f, £-' are continuous functions, (being polynomial functions) fisa

homeomorphism
on K.

Note : (i) If f:UcR" s R™isa mapping, such that
. f{x1r..,1r-'|) — [j"]{'_r"...’_1N}1_...j'w|{x|1.,.._1-m‘jj
where f/(x)=ulef, 1<j<m, u' being co-ordinate functions on R™

R.’P R"I'

we define the Jacobian matrix of fat (x',..-, x"), denoted by 1, as

£

o' o' ot
R
of? ot of?
al 22 o

(ii) In particular, when m=n ie., il f:UcR"— R" isamapping such that,
it f=(f', f2,.-,f") has continuous partial derivatives i.e. if each f! j=1.2.... . has
continuous partial derivatives on U, we say that fis continuously differentiable on {7 = p".
(D IF f=(f -, ") is continuously differentiable on 1/ r" and the Jacobian is non-
zero, then f is one-one on 1,
Exercise : 4, Consider the mapping

0 R*— R?
given by

¢  y =x'coss?

y* = ylginx?

10



Show that ¢ is one-lo-one on a sufficiently small neighbourhood of each point (x',x*) of
R? with x!' #0.

Solution : The given mapping

o =(¢!,0%): R - R? isgivenby ¢' = cosx?, ¢F =x' sinx?

Then, we have

a! 2! 297 2y
i 7 = | P i gl £k o | | o ol
=eosEY, — = —X sinx T —sinx?, 2= x'cosx
! da? todx! dx?

ap' L . : ; ! .
Hence each 33,—, i, j=1,2 is continuous for all values of st and x? inR% Thus ¢ is

continuously differentiable on R,

Again the Jacobian is given by

%

I= | 30 37 — 4120 ifandonly if x! #0 in R%
9> 9o
g ox?

Consequently, ¢ is one-to-one ona sufficiently small neighbourhood of cach point (x* o

of R2 with x! 0.

A mapping

; f:U—=V
of an open set U < R" onto an open set V. R is called a C¥ — diffegmorphism, k =1 if
i) £ is a homeomorphism of U onto V and -

if) £, [ are of class CK.
when fisa ¢~ —diffcomorphism, we simply say dil[comorphism.
Exercise : 5. Lel ¢: R? — R? be defined by

i (1,0) = (ve 1)



Determine whether ¢ is a diffeomorphism or not.
G.Let  ¢:R?— R be defined by
B (aha?)= (e + a2, xlet — 52y
Show that ¢ isa (Eiﬂ"ﬁ:umﬁrphi&m. | Ans. 5. 6 iza diffeomorphism )
_ Rrn :
Fori=L-.n;let y':R" 5 R R
e

be the coordinate functions an R" ie. for cvery pER"

L 1) w'(p)=p' where p=(p!,--, p")

Such wiy are continuous functions from R" — R., We call this n-tuple of functions
of R".

(u' 0?4y the standard co-ordinate svsten

If filic Ry — R

is a mapping defined on U = R then, [ is determined by its co-ordinate functions
(f ey f") where

1.2) fi=wlof , i= L n

and each [, < R" — R are real valued functions, defined on an open subsel U of RT

Thus forevery p e U < RP

FApy=(u' e ) p) =u' (f(p)) where f(p)=q=(g",q")
=uiy'g") =4 by 1.1)

1.3)  consequently F(p)=(f'(p)f2p)if™(p). ¥ pellcRY

The map [ is of class & if cach of its co-ordinate functions Flui=1, -, n Isof class ck,



§ 1.2 Ditférentiable Mainlold :
Let M be a Hausdortt, second countable space. If every point of M has a neighbourhood

homeomorphic to an open set in RY, then :
le

RP
‘ i’
> R
o RN o)

amanifold foreach pe M, there existsa neighbourhood U

M is said to be a manifold. Thus in

of pe M anda homeomorphism ¢ of U onto an open subset of RE. The pair (U,4) iscalled

a charl, _
Each such chart (U ) on M induces a set ol n reul valued functions on U delined by

21) ii=uet i=1,2,-n

where 1 g are defined by (1.1) and it is (o be noted that whatever be the point p and the

neighbourhood U i =1,2, -1 always represent co-ordinate functions. The functions

{xl,x%--- ") are called coordinale nelions or a coordinate system on U and U is called the

domain of the coordinate system. The charl (U,4) is sometimes called an n-coordinate chart.

Let (V,y) be another chartulp, which overlaps the previous chart (U, ), Let (y!, o 0")

be local coordinate system on 'Y of p, s0 that

¢—I.
S
@ /
o(UMV)
M
. _
£



22) yi=ulay, .0=12,--.n
We can construct Iwo composile maps

23) oy g UAVICR? ¢ (UnV)c R
Gy (U AVIER 2w (U AV R
If these maps are of class ¢*, we say that the two charts (U,4) and (Vo) are &-
related. If g e b (L V) and
o UnVIcR" syl nV)c RY
is a mapping defined on an open set in R, we wrile

24) g(@)=y('(q)

Exercise : 1 Find a functional relation between the two local coordinate systems defined
in the overlap region of any point of a manifold M.

Solution : given that
ged (U V),
glg) =(wed')(g) by 2.4)
-Let dlp)=q, where pell V. Then
g(0(p)) = (w0~ )(o(p)) = wip)
or  ul(g(d(p))=u' (W(p)); i=1,2,,n
o gl(e(py)=wip) by L1}
or  gi(x(p)ext(p)= ¥ (p) as
dpy=u'(pip))=0'(p)
) =(01(p)) -+ 4" (p) = (x' (p)y -, x"(p)) and

Yip)=u (W(p)=wi(p) i=12,n.
consequently,

yo=gi(xl, a2, x")
Note : If we consider

g =0 (v (@),
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then one finds x! = g'(y',¥%, . y" ) i=1en

A collection 2 ={(U,.¢;)},i< A, (an index set) of ¢k related charts are said to be maximal

collection if a co-ordinate pair (V, W ), ¢¥ related with every chart is also a member of 0.

A maximal collection of ck-related charts is called a ¢k-atlas, A c* n-dimensional differen-
tiable manifold M is an n-dimensional manifold M together with a chatlas.

Unless otherwise stated, we shall consider a differentia

Examples : 1. R with the usual topology is an example of a differentiable manifold with
respeet to the atlas (U, ¢ ) where U =R™ and ¢ = the identity transformation.

2. Let 8! be the circle in the xy plane R2, centered at the origin and of radius 1. We give
5!, the topoiogy of a subspace of R?. Let

Uy=lp=(xyesly>0]

U,={p=(xy)es|y<0]

U, =(p=_(x3)e sx =0}

U,={p=(x.y)es|x<0}
Then each U, is an open subsct of S and §'=U/ U, i=1,2,3,4
Let 1= (=1, 1) be an open interval of R and we define

$,:1/; = 1R be such that

b (5 ))=x e ¢ () =(xy)y>0

b,: U, — IR be such that

B (xy)=x ie. ql-;,"J (x)=(x ) =<0

¢,:U;— LR be such that

(HESDES Le. ¢y (1) =(x,),x>0

b, U, — ISR be such that

ba(x )=y L. gy ()= ()X <0
Note that each ¢, is 2 homeomorphism on R and thus each (u,,6,) isachartof §° Now

U nU, =6, UnlU;=1" quadnant, U/ nl, =20 quadeant, U, nU, =4" quadrant,
U, U, =3 quadrant,



Then
A={(U,,0,):i=1,2,3,4) is an atlas of s
As Unly#d, let pel, nl,, then
(@ 203" ) y)=0¢,(x,y)=x and
(y=d ' Wx)=dy(x, )=y
Thus each ¢, = 3! and by 207! is of class €. Similarly, it can be shown thal each
gty Gyl @07, Gyod3, b, b7, ty=d3', isofclass C7 and hence s! is an one

dimensional differentiable manifold with an atlas {{U,-,qJ‘-J}r.:! N

lixercise : 2. Let (M", A) be a differentiable manifold witha ¢~ atlus A, Let peM. Then
there exists (U, ¢) € A such that pe U and $(p)=0.
Note : 1. Tt is to be noted that every second countable, Hausdorff Space M admils parti-

tions of unity, Partitions of unity admits Riemannian metric. Our aim is to study a Riemannian
Manifold and for this reason we consider such topological spaces for i manifold,

2. Ttis enough to consider only a topological space for studying mainfold,
§ L3. Differentiable Mapping :

Let M be an n-dimensional and M be an m-dimensional differentiable manifold, A
mapping f: M — N .

15 said o be a differentiable mapping of class ¢, if for every chart (U, ¢ ) containing p of M
and every chart (V, y ) containing f(p) of N

[ 6



i 1 f() < Vand
ii) the mapping wo f o d~1:¢ () = R" — w (V) = R™ is of class c¥,

By a differentiable mapping, we shall mean, unless otherwise stated, a mapping of
class €.

If (x!, e, x™) and (', ---, y™) are respectively the local coordinate systems defined ina
neighbourhood U of p of M and V of f(p) of N, then it can be shown, as done earlier

32} }anfzgj{x].n.rxn}, J"=|,"',H’I'
where g is a differentiable function defined on V = N and

33) s@=(wefod)g) qb ).

Let M and N be two n-dimensional differentiable manifolds. A mapping
fiM—» N
is called a diffeomorphism if
i) fand f~! are differentiable mappings of class C~
i)  fisabijection
In such Eﬂses, M and N are said to be diffeomorphic to each other,

Exercise : 1. Let M and N be two ditferentiable manifolds with M=N=R. Let (1J, ¢ ) and
(V, w ) be two charts on M and N respectively, where

U=R
¢ : U — R be the identity mapping and
V=R
v : V — R be the mapping defined by

yix)=x"

Show that the two structures defined on R are not € -related even though M and N ure
diffeomorphic where

fiM—=N

1,




is defined by
@ =1
Hint : Note that, (yeo fedp™) (x)=x and (p=y ') x)=x"*, Thus poy! is of class
C” but ¢poy! isnotof class C* . Again
(wefod)(x)=x
Also f(y) = f(x) ifand only if ¥ =x. Thus f is one-one. Finally
F Y y)y= 3, sothat

FF1O) =y and fY(f(x))=x. Thusf is a bijection.
Mote : A diffeomorphism f of M onto itself is called a trapsformation of M.

A real-valued function on M : i.e.

f:M =R

is said to be a differentiable functipn of class C™ , if for every chart (U, ¢) containing p of M,
the function

34) fedlip(U)cR"— R

is of class C .

We shall olici denote by F(M), the set of all differentiable functions on M and will
sometimes denote by F(p), the set of functions on M which are differentiable al p of M.

18



It 15 to be noted that such F(M) is
i) an algebra over R
iy aring over R
iif) an associative algebra over R and
iv) a module over R

Where the defining relations are
a) (f +e)p)=f(p)+sip)
b) (fe)(p)=F(pep)

c) (MNp)=2f(p), VYV i.geF(M), LeR, peM.

% 1.4. Differentiable Curve :

We are now in a position to define a curve on a manifold.

A differentiable curve through p in M of class ¢ is a differentiable mapping

:la, bl R— M, numely the restriction of a differentiable mapping of class
¢ of an open interval | ¢, d [ containing [ a, b ].

such that

4.1) alt)=p ,asiysb

Also

42) (5 o) @)=l o) (o(t)) =l ($ (o (1)) =w! (6" (1), 0" (1)) = &' (1)

We write it as
43) x'(ny=o'(r)

The tangent vector fo the curve a(f) at p is a function

13



X,: F{p}—-)_ﬁ'
defined by

4.4) pr=[gd,‘f{¢(r))]'_r =[ lim f{u(rHr}-f{cr{:y}

h—0 h

where p=oalty), fF(p)

It can be shown that it satisfies

45) X, (af +bg)=a(X,f)+h(X,g) ity

4.6) Xp{f3)=£(ﬁ}x of +F(P)X 8 fogeF(p) : Leibnitz Product Rule.

Note : Each function X : F (p) — R, cannot be a fangent vector to some curve at p e M,
unless it is a linear function and satisfies Leibnitz Product Rule.

Exercises : 1. Let a curve ¢ on R" be given by
o =a' +br, i=12,.n
Find the tangent vector to the curve o at the point (a'),

2z, If C is a constant function on M and X is a tangent vector to some curve o at peM,
then X, C=0

[Ans. i) (01,52, b")

ii) use 4.5), 4.6) and the definition

of constant function,
Let us define

47 (X, +Y)f=X,f+Y,f
48) (X,)=bX,f , beR

If we denote the set of tangent vectorstoMatp by T (I'u'[j then from 4.7) and 4.8)

it is easy to verify that T {M} 15 & vector space over R, We are nuw going to determine the basis
of such vector space.

Foreachi=1, ..., n, we define a mapping

357’— F(p)— R

20



by

[
49} [E}TJFI [atiﬂ'}]{;ﬂ

Mote that

elaf +bg)
[%)P{ﬂf +bg) = [%;{ﬁi]“’} by 4.9) , a, bR, [ g=F (p)

:( ’(I]]{F] [ PRI ]EP} by a) of 1.3

[ )EP} (a {r}] by &) of 1.3
(o), /o)

Thus such a mapping satisfies linearity property. It can be shown that
g\ = 08 Lk
(&), wor=sor) 7+10(G) &

Let us define a differentiable curve

g [a.b]lck > M

by
410) o) =o' () +1 , for fixed i
{ D=0, F=1 2l =14 s

then

{i 3 (o(6) doi(r)

o da'(r) dr }l:ﬂu by chain rule

[ﬁ;f '[Ertir}}]rq =

Ul

| 9 :
_(ax! (r]] sttg) fIDT ﬁxﬂd E, b}' (43:]

21



_
axi (1)

(m

=(i] f by (4.9
o), y (4.9)

) a :
Thus we can claim thal each [;] i=12,--,n is a tangent vector (o the curve o
e

defined above, at p=o(r,).

Again from the definition of the tangent vector,

X,f =< f(o®),

by chain rﬁk:

" iaf(ﬂ‘{ﬂ]‘dﬁ"[rj
RO

_&(dxi@)) (o)
‘E( di J 26 (1) by i44)

=iy

_ o ( dxie) 2 N
i=1 dt =iy a_f'l{f} F

We write il as

L. Fi
411) X,,=§ﬁ’(ﬂ][ﬁl where

d i
4.12) 9;‘{.»}{ 'rdf”] » Fe T
=i

Thuseach E' : M — R, i =1,.-, n isa differentiable function and every tangenl vector,

say Kp, to some curve, say off) at p=o(r,) can be expressed as a linear combination of the

d
tangent vector 37 i=1,-,n to the curve ¢ defined in (4.10)
£ axi (1)

22



If possible, for a given linear combination of the form bt F)[}E—_,) , where £l s are
functions on M, let us define a curve o by

g (=c'(t)+E(p),aspy2h

then it can be shown that the tangent vector to this curve is 3 E'( p][é%)p
If we assume that’
zE o) =0

then,

ZEU)[-%} 1k =0 where y¢: M — R, K=12,--n.
i P

: Ak
or 38 {p}('—,.] =0
zf" ax' ),
LoEN(p)=0. for k=1,2,--m.
Thus the set {( a’i;) A=l H} is linearly independent. Hence we state.
"

Theorem 1: 1f (x',---,x") is & local coordinate system in a neighbourhood U of p £ M,
then, the basis of the tangent space Tp(M) is given by

(&)~

Let us define T(M) = , U T, (M). This T(M) is called the tangent space of M.

23



§ 1.5. Vector Ficld :

In elassical notation, if to cach point p of R? or in a domuin U of R?, a vector
o p—>alp)
is specified, then, we say that a vector field is given on R? or in a domain U of R3,

A vector field X on M is a correspondance that associates to cach point peM, a
ve,cmrx_p = TP{M]. In fact, if f & F(M), then Xfis defined to be a real-valued function on M,
defined as follows

5.1) (XA () =X, f

A vector field X is called differentialle if Xfis so forevery f e F (M), Using (4.11) of g 1.4,
a vector field X may be expressed as

5]

50 X=Y1Y 3

where £/ 's are differentiable functions on M.
Let (M) denote the set of all differentiable vector fields on M. We define
5.3) (X +Y)f =Xf +Yf
' { (bX)f =b(XF)
It is easy to verify that y(M) is a vector space over R.

Also, for every fe F(M), fX is defined to be a vector field on M, defined as

54) (50 () =F ()X,
Let us define a mappingas  [,]: F(M) — F (M) as

35 [X Y If=X(YN-YXN vX. Y ex(M)
Such a brackel is known as Lie bracket of X, Y,
Exercises : 1, Show that for every X, Y, Z in % (M), for every f, g in F(M),

) IX Y] ex(M) i) [bX, Y]=[X,bY]=b[X, Y],beR
m [X+Y,Z]=[X, Z] +[Y, Z] V) [X,Y+Z]=[X, Y]+[X, 2]

24



v) [X,X]=6 vi) [X,¥Y]=-[Y,X]
vi)  [X.LY, Z)|+[Y.[Z, X+[Z X, Y]]=# : Jacobi Tdentity

viil) [£X, gY] = (fg) [X, Y] + {f(Xe)}Y — {a(YDX]
a) [X, fY] =1 [X, Y] + (XDY

2. In terms of a local co-ordinate system
: [i _6_} L
1} Sl it

X, Y= Z( '——-Q 54‘3,:] a--whcrr:){ gl_ Y:gi_a_.

A Cn_mpicte [X, Y] where

d __5 = xl_a

N ==Y :
l} ! ot fx?

i) X =xix? %, Y=l
4, Prove that
i) % (M) is a F(M) module
Hints : 1. viii) Note that
(f(Yh)) (p) = f(p) (Yh), by (54) of § L.5)
=f(p Y, ! by (5.1) of § 1.5)
Again, {(fY)} (p) = (Y)(p)h by (5.1)
=f(p) Y,h by (54)
Thus  (f(Yh)}(p) = {(fY)h}(p), Vp
[(Yh) = (fY)h

25
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@. L6. Integral Curve :

In this article, we are going to give the geometrical interpretation of a vector field,

Let Y be a vector field on M. The assignment of the vector Yp

al each point pe Ul = M, is given hy

Yip=> Y, € T, (M)

A curve o is an integral curve of Y il the range of o is contained in U and for cvery

a =iy =b inthe domain [a, b] of o , the tangent vectorto o at o (fp) = p coincides with Ypie.

Yo =You,)

Vol =Yaunf : vf e F(M)
_[4d
_[E{fm){:}] by (4.4) of § 1.4

=iy
Using 4.11) & 1.4 one can write

;ﬂ"fp}[

a
-

chx

)p J o= [% (f o a_‘]l:r]-] where 7' 's are functions on M.,

Si=iy

-x(#9) (2)
_E[ dt ].rr.!I1 3)5‘ Pf
As { % =1, n} are linearly independent, we must have

or llf{c{r}}h!u = (ffii)
feify

or n' (al(r), ﬂz{f}-‘"-“"ff}’ﬂﬂ =[%J
I=ly

Using (4.3) of § 1.4 we get
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rl!

:ixi
(el (1), %2 0e), oee, X1 ()2 =[—--]
1=y E,{I "

Herce they are related by

6.1) 5-:% = [[xl ()2 ty 2" (r}}

I'xercises : 1. Find the integral carve of a zero vector.

2. Find the integral curve of the following vector field

1 i
) X=x'57

iy a% on B2

i) X =e* 3?7 on R

1"} X :§4

(x'F Eii’_ on R?

Solution : 2.i) From (6.1) of 8 1.6, we scc that

Whent =0, if x!

.di] — L d-xi —_ _]:'1
dt Toodt
21 2
o g,
X X
Tntegrating
logx! =t+C  , logx? =1+ D say, where C, D are integrating constant.

=p!, x*=p?, then from

xl = et and x? = De!
we find that
I;}i =, PE =D

Thus ¥ ¢ (p'e".

pe') is the integral curve of X passing through the point (p', p*)
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€. L7 Differential of a mapping :

Let
f:M— N

objects defined ohjects defined

on
)
Trip)

f* = pull back

be a a differentiable mapping of an n-dimensional manifold M to an m-dimensional manifold N,
Let F(p) denote the set of all differentinble fanctions it peMand F(f( pj] denote the set of all

differentiable functions at f(p) e N, Sucha map f, induces a map
I *:F(f(p))— F(p) ,usually called pull back map,
and is defined by
0 f @ =g=f. geF(f(p))
called the pull back of g by f, which salisfies
7.2) [ lag+bh) =a(f g) +b(f"h)
{ Figh)=f*(g)f h) where g.he F(f(p)) and abeRr

The map f, also induces a linear mapping
for T(M)— Tyipy(N)

such that
73 (LXp)e=X,z=1)=X, (1)

called the push forward of X by f, Such f, is also called derived linear map or Yacobian map or
ditferential map of f gn T (M)
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Let us write
7.4)  fo(X ) =(FeX)pm

We can also define push forward of X by f, geometrically, in the following
manner :

Given a differential mapping
f M= N:

the differéntial of fat p e M is the linear mapping
fo: T,(M) = Ty (N)

defined as follows

For each Xp e Ty (M), we choose a curve o(f) in M such that Xp is the tangent

vector to the curve o(f) al p=o(t,). Then fi(X ) is defined lo be the tangent vector to the

curve f (o(r)) at f(p)=f(alty))
Exercises :

1, If f is a differentiable map from a manifold M into another manifold N and g is a differ-
entiable map from N into another manifold L, then, show that

i) (gofla=gsof i) (gof) =f ey
2. If f is a transformation of M and g is a differentiable funetion on M, prove that
0 ful X, ¥]=fo[X,T]
i) fHAX)e)=X(fT)
i) felgX)=(gef N feX)
for all vector fields X, Y on M.

Solution : 1. By definition, f«(X,) is the tangenl vector to the curve f{ﬁ{r]} af

F(p)=f(olt,)) where Xp is the tangent vector to the curve o(f) at p =o(s,). Hence by
(44)of § 1.4
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(f(X,))e = [j—rg{f’(cirj}L“ geP(f(m)

= [g;{g of }[qm}}

1=ty

=X, (gof) byd4)of g 1.4
Hints 3. Givenihat
f:M s M

15 a transformation and hence for every peM, f(p)= g, Say.

Thus, p=f-'(q)
consequently, from 7.3) of § 1.7, we find that

{(rex,)ebs o= {x a0 DY, Wpem

o B ={%, N} @

or  (fu(X))e=(X(gor))f!

Using this relation, one can deduce the three results.

We are now going lo give a matrix representation of the linear mapping ..

Theorem 1 : If f is a mapping from an n-dimensional manifold M to an m-dimensional

manifold N, where (x',---,x") is the local co-ordinate system in a neighbourhood of a point p

of Mand (y',---y™) is the local co-ordinate system in a neighbourhood of f(p) of N, then

2 aafd ((a
f"[ ] r a [_] J_ I|:|
axl/p Eaﬂp L

Proof :  We write
3 & o)
f'( _] = LEJ [ ] v E=nn
)y ja N
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where g/'y are unknown to be determined

i

a _ i} I a_
or {f*(?i}T)}}'k —_E”r' [Ejﬂp}}'l where each y* =eF(f(p)) k=1,..m

i=1

using 7.3) of § 1.7, we find

a] &

1 (gt f)= a;d

[Gx, i ) :Y:'; ;
8

o ()00

ark
or ('—; : ] =af by (49)of § 14
»

D m afj a
)
axl Jp 2 ox . oypd Jtph

J=1

Thus

MNate : 1. The matrix of f., denoted by (f,) is given by

o' o' o
F T I T
gt a' af'

UI=30 3™ o
ﬂ it E,fm ajl‘ur
ox! axt  ax®

Note : 2, The kemel of f, is the set of X, ET;,(M} for which
fn{:(p] :ﬂ

The image of f, is the set of ¥,y €Tpipy (N) for which, there exists X', eT, (M) such

that
folX ) =Yr(m

MNow from a known theorem
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dim (kernel f.) + dim (Range f.) = dim TP@.-"[}.
We wrile it as
7.5) dim (kernel £,) + dim (Range f,) = dim T,(M) for each p « M
The dim (Range f,) is called the rank T,
If rank f, = dim TP{M} we say
i) f is an immersion if dim M < dim N and H(M) is an immersed submanifold of N

ii) f is an imbedding if f is one to one and an immersion and then (M) is an imbedded
submanifold of N

i} f is a submersion if dim M > dim N.
Exercises : 1. Show that
fiR—= R?
given by
f(t) = (& cost, sint)
is an immersion.

2. Find (f.) in the following cases

i) 1 R* — R2 given by f= ((x')? +2(x2)2 3x'x2)
ii) f: R? — R2given by f= (x‘e"i +x%, xte® —xi) at (0, 0)

where (x!,x?) are the local co-ordinates on R2

g. 1.8 f-related vector Ficld :

Let X and Y be fields on M and N respectively.

Then, forpeM, let X ETP{M] and Y ETEPJI:N] and such lha_t

8.1) Sl X p) =Yz

where fiM — N is a differentiable mapping and f, is already defined in the previous
article. In such a case, we say that the two vector fields X, Y are forelated,
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For g e F(f(p)) we see that

{f":xp}}g = rf{j}
Using 7.3) of § 1.7 and (5.1) of § 1.5 we find that
Xo(gef)=(¥g)f(p), vp
Then
82) X(gef)=Wg)f

If iz a transformation on M and
-fl*(xp} = Xf{pJ

we say that, X is f-related to itself or X is invariant under f. We also write it as

8.3) fiX=X

Exercises: 1. Let X; K(i=1, 2) be two f-related vector fields on M and N respectively.
Show that the vector fields [X;, X,] and [Y, Y] are also f-related.

2. Prove that two vector fields X, Y respectively on M and N are f-related if and only if
S X)g)=X{f"g)
where f: M — Nisa C” map.

3. If f is a transformation on M, show that, for every X eX(M), there exists a unique f-
related vector field to X.

Solution : 1. From the definition of the Lic bracket, we see that
[X1,X:)g  F) =Xi(Xa(g 1)) - Xaf Xyl £))
= X,((ae)f)- X2((Mg)f) by (8.2) above
={HLe)}f - (e f by (8.2) above

={hng) -HLM}f
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[X,. XoMge f)={[l,¥a]g}S from the definition of the Lie Bracket. Hence from 8.2),
one claims that X, %5] and [YI, Y,] are f-related.

§- 1.9 One parameter group of transformations on a manifold :

Definitioin
Let a mapping
p:RxM—> M
is defined by

bl p) = ¢, (p)

which satisfy

i) for each t eR, ¢(r, p)=¢,(p) is a transFormation on M and palpi=p
ii)forallt, s, t+s € R

()= 2, )P) =0, (p)

Then the family {:.’p,l: € R} of mappings is called a one-parameter group of transforma-
tions on M,

Exercise : 1. Let {$,It e R} be a one-parameter group of mappings on M. Show that
1) g, =)
it) {d,Ir € R} form an abelion group.
Let us set
9.1) (1) =b,(p)
Then ¥(#) is a differentiable curve on M such that
W(0)=¢o(p)=p by Def. (i) above

Such a curve is called the orbit through p of M. The tangent vectar, say 'Kp to the curve
yi(r) at p_is therefore

9.2) x;,f:[-%;{q:{r})l _ lim ffdn{p}]—f(m_ Yf e F(M)

ip =0 ¥



In this case, we say that {¢, 1t € R} induces the vector field X and X is called the generator
of {¢,}. The ;:urva ¥(t) defined by 9.1) is called the integral curve of X.
Exercises : 2. Show that the mapping
d:RxR*— R

defined by

bt p)=(p! +1, p2 +1, pP +1)

is a one-parameter group of transformations on M and the generator is given by

o.,0,8
ax! o dx?r et

3. Let M=R2and let
b:RxM— M
be defined by

tJP(I‘, (x J’]] = {Iﬂzr L e ) ]

Show that § defines a one-parameter group of transformation on R? and find its generator.

Note : Since every |-parameter group of transformations induces a vector field on M, the
question now arises whether every vector field on M generates one parameter group. of trans-
formations. This question has been answered in the negative.

Example : Let

X =—e* s L

axl | ax?
on M = RZ, Then,
E‘--x' d_'xl—
e W

Thus ¢~*' =t + A, x*=t+B, where A, B are integrating constant.

Let x'=p', x2=p? fort=0Then, A=e-7', B=p’
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Consequently the integral curve of Xis w(r) = [103 o I_p, At pEJ
[

which is not defined for all values of t in R, Thus, if wir)=d,(p), then, X does not

generate one parameter group of transformations.

Prablem 7 leads us to the following definition :
Let I_ be an open interval (- €, €) and U be a nbd of p of M. Let a mapping
il =xU =M
denoted by
Htp)=9,(p)

be such that
i) U is an open set of M

i) foreach t e/_, ¢ (1, p) > ¢, (p) is a transformation of U onto an openset ¢, (/) of M
and ¢y (p)=p

iii) ift, s, t + s are in 7_ and if ¢,(p) = U

b, {‘t’;(!’}] =y, (P)

Suchafamily {¢,I¢ €/_} of mappings is called a local one parameter group of transforma-

tions, definedon [_x /.

We are now going to establish the following theorem

Theorem 1 : Let X be a vector field on a manifold M. Then, X generates a local one-
parameter group of transformations in a neighbourhood of a point of M,

Proof : Let (x',x%,....x") be a local coordinate system in a neighbourhood U of p of M
such that ¢(p)=(0,...0)0 eR", where (U, ) is the chart at p of M. Then
A py=(' =i p)=0, i=1, ...n

Let -

X =3 kixl ....,x"}i
i



be a given vector field on U, the neighbourhood of p & M, where each £l s the components

of X, are differentiable functioins on U of M. Then, for every X on M, we have a ¢ -related

vector field on, §(U)=TU;CR" with ¢ (p)=(0,...,0) e U,CR".

Let n-s be the components of the ¢ -related vector field on Uy of R". Then by the exist-
ence theorem of ordinary differential equations, foreach § (p) e Uy ©RY, there existsa &, >0

and a neighbourhood V of ¢ (p), V; = U, such that, for each g =(g',...q") eV g=a(r),

say, there exists n-tuple of C functions FHLg) f(tq) definedonls < g and mapping

L lg, >V, € Up,i=L.,n which satisfies the system of first order dilferential equations

i
X % =n/(t.6(p), i=1...n
with the initial condition

2) fi0,q)=4¢'

Let us write

3) 8,0g) = (£ (t.@) . F " (1,9))

We arc going to show
0, L.T{Q} = El {B;{qn

Nole that if t, s, t +sareinls andif 8, (q) € V, € U, then each Fir+s,q), f*(t,ﬂ,(q}}

are defined on Iz x U;. Now let us set
(81 (1)seers 8" (1)) = (£ 101 + 8,005 f (4 5.)
For simplicity, we wrile
(gi)=(f'+5.9)
Then each gi(t) is defined on Iz % U, and henece satisfies 1) with the initial condition

4 (g'e))=(f'(%4q))
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Also, let us set

* For simplicity, we write
(B () =(F"(2,0,(q))
then each A'(r) is defined on I , % U, and hence satisfies 1) with the initial condition
(At (@) =(f(0.0,(q)))
=(0.()" by2)
=([(5,q)) by?3)
=(g'(0)) by4)

Hence from the uniqueness we must have

(') =(n'(n)

Using 3) we must have
HH—: [q} = Hf {Hr{qj}'
Thus, we claim that, for every vector field defined in a neighbourhood U, of ¢ (p) of R, .

there exists { b 1t el } as its local 1-parameter group of transformations defined on L5, >U;.

Let us set
V=¢' (V) cU

and define
Wil x¥V oy (VcM

as follows
v (r)=47'(6,9))

Then

i} w(t,ry—y, (r) is a transformation of V onto w, (V) of M
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iy ift, s, t+sarein L and if y (r) < V, then

w, (v, () =47 (8¢, 4w, (1))
=~1(8(t + 5.q)) , after a few steps
=y ru'[rj'

Thus for the given vector field X, defined in a neighbourhood U of p of M, there exists

[w,lt el } asits local 1-parameter group of transformations, defined onT_x V < U of M.
Note that if we define
v =y, =¢"(ba)) a=0()
~ (o), say,
then &~*(a(r)) is the integral curve of X.-
This completes the proof.
Theorem 2 : Let ¢ be a transformation of M. If a vector field X generates ¢, as its local
| -parameter group of transformations, then, the vector field ¢, X will generate ¢, ™" as its
local 1-parameter group of transformations.
Proof : Lell to the reader. _
Exercise : 4. Show that a vector field X on M is invariant undera transformation & onM
if and only if
hod, =¢,° b

where ¢, is the local 1-parameter group of transformations induced by X.

We now give a geometrical inlerpretation of [X, Y1, for every vector field X, Y on M.
Theorme 3 ; If X generates ¢, as its local 1-parameter group of transformations, then, for

every vector field Y on M,

(.11, =, Ly, —(@0)-), } where q=¢,(p) and (¥, =((@0X)(P)
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To prove the theorem, we require some lemmas which are stated below :

Lemma 1 : IT w (t, p) is a function on I, %M, where I is an open interval (— £ €) such
that '

v(0,p)=0, ypeM
then, there exists a function h (t, p) on I . % M such that

tht,p)= w(ip)
Moreover

h {0, p) = w'(0, p), Where ' =%.
Proof : It is sufficient to define

d(ts)

1
Wt p) =] w'tis, p)=7
0

Hence by the fundamental theorem of calculus

|
0

hmm=Ewmwﬂ

S th(t, p) =w(t, p)

Also from above

1
ho,p)=[w'(e.p)ds  =vy'(o, p)[s]h = y'(o, p)
0

Lemma 2 : If [ is a function on M and X is a vector field on M which induces a local
1-parameter group of transformations ¢, then there exists a function g, defined on [ VLV
being the neighbourhood of p of M, where

g (p)=g(t,p)
such that

Flb (p))= F(p)+1g,(p)
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Maorcover,

Xpf = glo.p)=golp)
Symbolically,

Xf = gp on M.

Proof : Let us sct
Fet.py=1(6,(0) = f(do(p), WpeM

Then F(t,p) is a function on 1 _x M such that

Flo.p)= flbo(p))— fbolp))=0, VpeM

Hence by Lemma 1, there exists a function, say, g(t, p)on I, XV, V<M being the
neighbourhood of p of M, such that

1g(t,p)=F(t.p)

- L)~ F(o(p)

4

gt,p

or,  glo.p)="T, % {7 (0o} = £ (@olm)) = X, f
As,

tg(t, )= (b (p)) = F (p)
we find that

fet, =1 +1g,
Proof of the ni:ain theorem :

Let us write
b (p)=yg
p=0;"(g)=b_(q)
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MNow,
{(@)e¥)f Ha) = {Y(f 24 )}(p) = {¥(f +15,)}(p) by Lemma 2

or (X))~ () ¥))g) = (¥ )@) - (YF ) ) — (¥, Wb (a)

lim | i ¥ = {H i
2 [I fﬂ?[rﬂ' —{fﬂlr}*ﬂq}]f =rh—im[1{ 1o [ X =r|l;nf}{Y3r]f¢—:{‘?]}

= ) L@ - )P} - (Yo )a)
= O HO Y@ ~ ()P}~ v, CXF), by Lemmima 2

From the deflinition we [ind that,

Xof =00 1 (4@) - £ @)}

lim 1
or  =X,f=, Jo7if®)-rw@}
Taking f =¥f, we find from above after a few steps

X, 0F) = 00 O Mgy = )}

Thus we write,

[, h_r}“n,l{rq = (% }*?}q}]f = X () =Y, (XF) ={{X.Y1f Ha), after a few steps.

(x.13, =, "0 Ly, — (@), )

Note : We abbreviate the shove result as

(x.v)= "M Ly — (o)}

Corollary : 1. Show that

(60X, ¥1= 1000 210,07 (8,004 1))
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Proof : From the last theorem

. (q}r}_[}r,}f]zr]_i_f;'lﬂ} {{q;x}‘]f—{:b#}g{tj},}*l'}, as (). is alinear mapping

IT{}% {{'113]*}'_{{% 3 ¢fj‘}r}} y from aknown result

Using the definition of local 1-parameter group of transformations, the result follows immedi-
ately. i

Corollary 2 : Show thal

(b ) [X.Y]=

d{{¢|r};}’]
dt e

Proof : Left to the reader

Corollary 3 : Let X, Y generate ¢, and wy, respectively, as its local I-parameter group of
transformations. Then

oy, =wy,° 4,
“if and only if [X, Y1.
Proof:  Let
y oM, =W, o0
Then from Exercise 4, the vector ficld Y is invariant under ¢, . Hence by g 1.8
(9 st =¥

Consequently from Theorem 3, [X, Y] =0

Converse result follows from corollary 2.

A veetor field X on a manifold M is said to be complete if it induces a one paraim-=
eter group of transformations on M.

Theorem 4 : Every veetor field on a compact manifold M 15 complete.

Proof : Let X be a given vector field on M, Then by Theorem [, X induces (¢,) asits
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local 1-parameter group of transformations in a neighbourhood U of pofMand rel_ c R. Ir
p runs over M, then for each p, we get a neighbourhood Ulp) and T _(p), where all such L{(p)
from an open coverings of M. Since M is compacl, every open covering [U(p)] of M has g

finite subcovering (U(p,) : i=1,...,n) say. If we lel
e=min{e(p ), e(p,), ... e(p,)}
then, there is a t such that for |7|< e
P (p)i—ge xM 5 M

is local 1-parameter group of transformations on M, We are left to prove that ¢,(p) is defined
on R X M.

Casen): t=2¢

We write
t=k-S4r Al k being integer
2 2
Then tf:r:tbkg”
z
=¢,.°0,

b b o b -,
2

2 2

k times

Similarly for ¢ <~ e, we can show that

Thus ¢, is a local 1-parameter group of transformations on M.

Combining all the cases, we claim that ¢, is defined on R x M. Hence X induces $, asits

I-parameler group of transformations on a compact manifold M. Thus X is a complete vector
field.
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g 1.10 Cotangent Space :

Mote that 3 (M) is a vector space over the field of real numbers, A mapping
®: % (M) — F(M)
that satisfies
® (X+Y) = (X)+ o (Y)
w(bX)=bw(X), b € Rand forall X, ¥ & X(M),
is a linear mapping over R.

The linear mapping

w: (M) — F(M)
denoted by

!X o o(X)
is called a 1-form on M.

Let
Dy(M)={a, p,..| @:7(M) = F(M)}
be the set of all 1-forms on M. Let us define

(@4 p) (X)=o(X)+p(X)
g {(bm](X} ~ba(X)

It can be shown that D, (M) is a vector space over R, called the dual of (M),
For every p eM, o(X) e F(M) is a mapping

m[:X:]: M — R defined by

102) [o(X)}(p)=w,(x,)
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so that

w,:T,(M)->R
Thus ®, € dual of T,(M). We write the dual of T,(M) by T,(M) and is the gotangent
space of T,(M) . Elements of T (M) are called the covectors at p of M or linear functionals on
T,(M).
For every f € F(M), we denole the total differential of f by df and is defined as
103) (df),(X,)=(XYp)=X,1, ¥p

We also write it as
10.4) (df) (X) = X[

Exercises : 1. Show that for every f e F(M), df is a 1-form on M.

2.1t (x'.xz. iy J;") are coordinate functions defined in a neighbourhood U of p e M,
show that each dxf i=1,....,n i5al-formon U = M,

Solution : 2 Note that
(dx') (X +Y)=(X +Y)d, (10.4) above
= X! 1 Yol
= (dx')(X)+ (@ )(r), by (104)
Similarly it can be shown that
(ax J(BX ) = b{dx?)( X )
Thus each dx’,i=1,,..,n isa |-formon R.

From Exercise 2 above, it is evident that each (dx') p €T (M) fori=l, ..., n We

‘now define
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¥ a :
UL, (dx'}ﬂ(ﬁx_’)p =y
Let @, ET:(M) be such that

5 | :
10.6) mn[ﬁ] =(.i‘,-)# where each (f_f}p €R
il

If possible, let 1, €7, (M) be such that

“,,[?ﬁ—l]ﬂ ={(7), sty 4o (£, (EET] ~(f}), by (105)

Proceeding in this manner we will find that
=g NP S faeat
up[axl ]F =(fi),= m,,(ax,) by (10.6)

Asg { -a%v::' = } are linearly independent, we must have
Hy=00,.

Thus any w, T, (M) can be expressed uniquely as

10.7) o, =2(f),dx),

5T (M) = span { (dx'),,, .., (de"), }
Finally if

2.(f;) p(dx’), =0, then,
i
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) ()

ie. (f;), =0. by (10.5)

Similarly it can be shown that

Thus the set ( fl},, = e shl fn}ﬂ =( is linearly independent and we state

Theorem 1 : If [_x",....x") are local coordinate system in a neighbourhood U of p of M,
then the linear functionals {(dx") b= t,:...,n} on Tp{M] form a basis of T, (M).
Note that
(dX1)(X) =Xx' by 10.4)
= Y62 xi by 52)0f g 1.5
dxd

10.8) (dx!)(X) =&

Thus, one can find

(df ) X) = Xf = 2 & %f = Zg-‘rdx‘l[}{} from above

Hence we write
& i
2 df = ——dx
10.9) +3 o
Forevery o e Dy (M), we define fw tobea | form in M and write

10.10)  (fo)(X)=f(o(X))
Note : Dy(M) is a F(M)-module
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§. L11 r-form, Exterior Product :

An r-form is a skew-symmetric mapping
My MY—= FIM)

such that
i) wis R-linear

ii) if o is a permutation of 1,2......r with

A T 1) = (o(1), o(2), ... a(r)) then
11.1) ﬁ}{x], le.,..".X,}r-r-]—IZ(sgnn] WX gy Xgzys o Xsin) where (sgno) is + 1
-
or—1 according as ¢ is even or odd permutation

If @ is ar-formand p is a s-form, then, the exterior product or wedge product of o and

K denoted by @A @ is a (r+s)-form. defined as

112 {mAI—‘J{XI-XZW-"-XHXrH. ...... Xs?]

1
i3 wx{sgn u‘}mtxum,..., Xn{r}} K fxﬂr‘ﬁ.u, ....... Xﬂ[r+3}}
T
where o ranges over the permutation (1, 2,...... t+8), X; ed(MLi=1,2,....; Pl

For convenience, we write

11.3)  fag=Utg f.gel(M)

It can be shown that, if @ is a r-form

11.4) { (f Ao) Xy X, ) = fo(Xy, Xgy 0, X,
(oA X, X,)= folXy, .., X;)

Again, if wand p are 1-forms, then
11.5) (@A X)=2{e(X)R(X) -0 (X)n(X)}
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The exterior product oheys the following properties :
11.6) WAR==—HAD, maw=0
Jorp=floap)=ma fit
forgn=fgoap , oap=(-1)"pAaw, @ :r-form p :s-form
(O+play=oAy+pnay

Exercises : 1. If w is a |-form and p is a 2-form, show that

{mnp}{X.,Xz,Xg}:% {mixﬂj-lixz=xﬂ-*'-mlfxz]ll-'-(XmX])+fﬁ{xﬂl-lfx1-«’fg}}
2. Compule

i) (2du! +du®) A (dut — du)

1) (6du' Adu? +27du' A du) A(du + du? +du®)
Solution : 2 1) (2du' +du?) A (du' —du?)

=2du' A (du' —du?) +du? A (du' - du®)

=-2du' Adu® +du* ndu' as dui Adu’ =0

=—3du' ndu® by 11.6)

Theorem 1 : In terms of a local coordinate system (x',x2,..., x") in a neighbourhood U

of p of M, an r-form @ can be expressed uniquely as

ILT) o= 3 f, . dxh adeh, ade where f, . are differentiable functions

on M.
Proof ; Let D (M) denote the sel of all diff-e.rantinble t-forms on M, In terms of a local co-

ordinate system (x',x? .. x") in a neighbourhood U of p of M, the set

| dxioaonde i 124 <iy <..<i <0 } form a basis of D (M). Using 11.2) we find

i) (elxh A dxe) {x.,xg....,x,}=ﬁ 2. (sgna) dxi( Xgy) .. dx’f[k'ucr:)

iy <ig <=,
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where o ranges over the permutation (1, 2, ..., r} and each X; ey (M.

Let
i X= Z*‘ék axh

where £ 's are functions, called the components of X,.

Using ii), we get from i)

(@ ) %) = o) b (Zby 55} ek 57

b<iy <..=i
Using (10.5) of g 1.10, we get from above

i) (dxt A Adx) (XX, X)) =0 Yolsmno) Bl ikl <2l
LB ;
Using ii) in (11.1) of § 1.11, , we find

L] (Xl, X:l_...,,xr} Zﬁ Z{Sg[l G’} oy [Zﬁi‘h} %, Ri ZEU[!] i_ﬂ)

As each w is R-linear, we find from above

a o
-—E(sgnn] E ﬁum ﬁﬁ{r}m(mjm a;a)

Changing the dummy indices j, — i, ..., j, —+ i, We get
a a
E{agncs} 2. ﬁum am "’(m*""gb‘:—n)
Iy ey

Using iii) we find from above

= iz' {u‘.x"rA...ndx*’r](X1.X2.,..X,}f;h"i* . Where
|—|r
i.-\:r';<..-{f;

(i)
w (aﬂrlj L axli ) -ﬁ]h
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Thus
(X, X500 X,) = Z - .ff,i:---f: {d_x'"; Py E.Ill_'tir} (Xl s W X! .
by

f<iy <=,

Hence we can write

@= D fig.odxoades A Ade

fly= =i,
This completes the proof.

Exercises : 3, Show that a set of 1-forms {@,@,,...,0,] i$ linearly dependent if and

»

only if
Wy AW, AcAm =0
4. Let { @,0,,...,0,] be k-independent 1-forms on M, If p; be k |-forms satisfying
2o A =0
i
show that
p=2A; ; with A; =4,
Solution : 3. Let the given set of 1-forms be linearly dependent. Hence any one of them,
say, o, _, can be expressed as a lincar combination of the rest i.e.
Wy =bjoy +bywy +--+ by_yo, , +bw,, where each §' e R
Wy A, A A | A
=@ A@g A A +hmg + b B 0y 5 Fho ) Amg
=h@y A, A AD AWk kB Ay A ADY Ay
=0 by 11.6) of this article.
Converse follows easily,

4, As (@, ..., w,]} is aindependent set of of 1-forms, we complete the basis of D; (M)

by taking 1-forms w,,, ..., w,. Thus the basis of Dy (M)is given by [, ...;@ 0, ..., @, ]

Consequently any 1-from p, i=1,...k can be expressed as

32



k H -
i) Hi :Z’qimmm"" zBr'pw.u* e I

ni=1 p=k+l

Given that

2 A =0
f

e, o A@ +Hy Ay ++p, Am, =0

Using 1) and 11.6) one gets after a few steps

2 (A -4 oino; Y Byo am =0
= f=k as;i;
i

As @ s are given to be linearly independent, so we must have
A, —A; =0 and B, =0
i.&. Al;ll- = .r‘l.r-‘

Consequently i) reduces to

M =2 A0, with A, =4,

§. L.12, Exterior Differentiation :

The exterior derivative, denoted by d on D is defined as follows :
i} d EDT} e 'Dr+l

i) for [ e Dy, df is the wtal dilferential
i) if weD,, peDb, then
d{m s p)=donp+(=1)"oady
iv) d=0
From 11.7) of § 1,11 we find that

12.1) do= 3 dfy; AddTAAdeh

n<ip iy
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Exercises : 1. Find the exterior ;:Tiff'ert:ntiui of
) alydy—xlds
i) cos(ay?)dxadz
i)  xdysde+ydzande+zdendy

2. Find the exterior differential of

do s p—madp

A form @ is said to be cloged if
12.2} din=10

If w isar—form and
123dp=m
for some (r—1) form p then, o is said to be an exact form,
Exercise : 3. Test whether o is closed or not where

) m=xydx+(-;~x1—y)dy

i)  ©=e*cosydr+e”sinydy

Theorem 1 : If w is a 1-form, then

do(X|, X,) = %{Xlﬁm{le'}—xz(mfxi}]“mf[xj-xﬂ} .
Proof : Without any loss of generality, one may take an 1-form as
o= de,f,g € F(M)
da( Xy, X} =(df adg)(Xy. X;)
Using 11.5) of g 1.11, we find

do (X1, Xa) = 1) (X1) de (X2) = (dF ) (%) (de) (X))}

54



Using (10.4) of g 1.10, we et

do(X;, X2) =5 {(X N Xap) (X2 K18}

=%{Xl{ﬂngl—f'{Xw:ng}}—Xz[.f{X13}+f{XzEX1H}H on
using (4.6) of § 1.4
Now w(X,) = (fig)(X}) = f(dg(X1), a8 (fo)(X)=F(w(X)
=f(Xg) by (10.4) of g 1.10
by w(X)=f(Xa8)

Thus we get rom above

dw(Xy, X;) =%[X.{m(X3]— Xa(@(X)) = F{X1(X22)— X2 (X2)]]
=%{Xl{‘5°(xz}— Xa(@(X,) - f([X1. X2 18)}

do(X, Xz) =+ { Xi(0(Xy)- Xy(o(X ) -0 X, X)) }

This completes the proof.
Existence and Uniqueness of Exterior Differentiation :

Without any loss of generality we may take an r-form as
w0 =f'r.|,-:m‘ra:x"l Aoannditr, fi . eF(M)

Let us define an R-linear map

d:D—+ Das
12.4) do=dfy; ; dxh A..Adxh
Clearly 1)d(D)c D, and
ii) if @ is a O-form, then dw is the total differential of m .

iii) Let it € D, and it is enough to consider '
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W=g, ;. dehaoadel | £ .5 € F(M)
then d(w A 1) =dffj-1,2 B g X A A dxh A —’\...Ad.rj‘)
Using 12,1 we get

d(wAp)=d(f,

]

(84, @i, i, * Fii 48,1 ) AdXT Avndich A diedi A adds

= g i dfi, i Adxic Adch pondih 4 Fiy i, dgj g oA A oadele adh LA did

Adxd w dvis
Sdoap+(=l)aad

iv) Again using (10.9) of § 1.10in (12.4) we see that

day = -iir"i Adxinm, . ndyle

i drhe

B | e S .
ord d{dm) = ———dxh Adx adxlia elx's
(dw) %? R Ayl adxta, L ady

=0,
If i, =i,  then, guie o gois =0
Thus existence of such d is established,

Tt is easy to establish the uniqueness of d.
Thus there exist a unique exterior differentiation on D.

. 1.13 Pull-back Differential Form :

Let M be an n-dimensional and N be an m-dimensional manifold and

M=o N
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be a differentiable mapping. Let TF{M’_J be the tangent space at p of M where T° rip(N) is its

dual. Let Ty¢py(N) be the tangent space at tip) of N where T‘*HPJ{N} is its dual. If (x',...x")
and (y',....y™ are the local corrdinate system at p of M and at f(p) of N respectively, then, it is

Ty (N) . Consequently {dx': i=1,..n} and {dy': j =1, ..., m} arc the basis of T; (M)
and T° “F}(N ) respectively.

Let @ bea 1-formon N, We define an |-form on M, called the pull-back 1 form of ® on M,
denoted by f*w , as follows

13.1) {ft(mm,}}{x,,}={f‘m)p{xr,}:mm,,(_;;{xp},v p of M.

where f,, f*are already defined in § 1.7

So, we write

13.2) [ (@) =(f'®),

then, by 7.4) of § 1.7, we get from 13.1, on using 13.2)

133) (Flo)p(Xp) =0 (5 X) pip, vpof M

Therefore we may write, for a 1 form ¢ on N and a vector field X on M by
13.4) (f*0)X) = (f1X) |

Theorem 1 : If fis a mapping from an n-dimensional manifold M to an m-dimensional

manifold N, where (x'. x%,....x") is the local coordimate system in a neighbourhood of a point p
( ) ! po

of Mand (y'...y™) is the local coordinate system in a neighbourhoad of f(p) of N, then

Proof : Since [ (dy');(, is a co-vector at P on M, it can be expressed as the linear

combination of the basis co-vectors (dx') patP and we take

f‘(dy}.]_ﬂp: = ;a.'}{dxr}p
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Where g/ 's are unknown s to be determined
ar {f*(dyi) ] o 12 =Y ;I{dj_.r') il
¥ .f(pJ aek P_i‘: I Ak I

usinng 10.5 of g 1.10 we find that

. a - - | i
(_f l[dl"r}_r“:})[‘ax_k) =Hfj ) :ﬂj; for {d},"}ﬁ[%} :ai

Ty I

By (13.1). one reduces to

a o
97) 10 {f *(Ec?),;} =%

using Theorem | of @ 1.7 we find

] ’ af_,— a :
2L ot S\ S

|l Iip

Using (14.5) of § (1.10) we find

Thus we get

L] E‘* af"! i
x id?’}f{p}=L(m—k] (@), |, =ty my fl=yiof
lrJ‘

=1
Note : 1. Using (10.9) of § 1.10, one find from above theorem
ISSJ f‘{dﬂ}lﬂp} = {dfj}.l'“‘j = lyis el

we can also write it as

13.6) [ (dy)) ppp =df/ =d(y/).f)
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3 T @ isa 1-form, then, its pull-back 1-form [’ is given by
137 flo= zmjd_ff , where ® are the components of w
i

(Prove it.)

Exercises : 1 If f:M — R’ be such that

flu,v)={ucosv, usinv,av) where
i e .
' =HeOsV, X =HSINV, X =av
then for a given 1-form @, @ =x'dx' —dx” + xldvion RY compate [w.
2.01f f1M — R? be such that
f[u,u} = (acosu Sinv,a Sinu Sinv,a Cosv) then for a given 1-form w

@ =de' +ady® +dx’ on g, determine f@.

3. Let @ bethe I-formin R? - {o,0} by

y X
w=— dx + dy.
22 4 y2 P

Let U be the set in the plance (r,0) given by
U={r>0;0<8 <2n}
and let £: U— R* be the map f(r,8) = x=r Cos®, compute [ “m
{ y=r Sint
Let us now suppose that @ be ar-form on M. In the same manner, as defined earlier, we

define an r-form on M, called the pull-back r-form on M, denoted by f “m , as follows

13.8) (f‘(mf{p}])(txl]ps = {'X"}F) =@ fipy (f“(xl]pi s f*(x;}p). ¥p
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We also write it as
13.9) (f ") Xy ..., X, ) =0(fs Xooo\ fo X.)
Proposition : 1. Let
FiMn— Nm
be a map, @ and p be r-forms on N and g be a O-form on N, Then
) fHlo+p) ="+
B)  fgw)=rf"(2)f"w

Proof : a) As @ and p are r-forms on N, (e + 1) is also so, Hence

(f*':'-’-f"* “}f{p}){xlrxi oy X ) =@+ ) pen (e Xpyonny fo X,)

=0 (e Xrvosos fo X)) 40 (fo Xy s £ X))
5(f'{'ﬂf{::}}J(Xl----~Xr)+(f“{anB[Xh----Xr] by 13.8)

f’{m'l"'l'}f{p}zf‘(m}fr,pll-'-f‘{“}ffp} ' VI{P}

Hence
fla+tp)=fra+

b) Note that if @ is a r-form and g is a o-form, then g0 is again a r-form. Using (13.8)
one gets :

(£ @®) o X1y X, = (80) ppy (fs Xpufo Xguios fo X,)
= (80 1m) (fr Xi fo Xay oo, fo X))
=((g 2 FUPIO pp ) Fe Xy Xpyoos 5 X,)
= (22 /NP pipy (fe Xyyoes fo X,)

=(£@PXSs @ iy ) fo Xy fo X))
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or  (f*(20) ) =T @PNF @) i)
o (f'(g®), =(f"@)AAS (@), . VP
Hence  f'(go)=f"(£)/ (@)
Exercises : 4. Show that
ffloaw)=ronfp
5, Prove that
(feh)yo=h(f"w)
Note ; From Theorem 1 of § 1.11, we see that, any r-form @ can be expressed as

Sl E ity iy dxh a nodah

iy sty <y

where ;;, i are differentiable functions on N. Then

Fin= E f‘(gl.lrg i dxh A..,.-'\.f.ix"r]

i<y <.l
=¥ f" &, ['dxh A..a Fldx" by the Proposition 1(b) and Exercise 4 above

=5 (g!.---lr uf)_f'd.:'l A T dxle

Using 13.5) of § 1,13 we see that

13.10) flo= ¥ (EJ:I._""" a f):{f‘l A A df e

h=iy<.. <i,

Fxercise + 7. Let M be a circle and M' be R? 5o that
fiM— M
be defined by

x' =rcos@, x?=rsinb
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l

If @ = de' +bdx?® and ]J=de1 +§-de, find f*(w A p)

Solution : In this case,

1 1
W =, 0;=b, 1 =M=y

df ! = cosBdr — r sin0 40
df * =sinBdr +r cos0 40
o= a(cost dr— rsind d0) + b(sin @ dr + rcos8 48)

=(a cost + bsinl)) de + (br cos® — ar 5inl) 40

and f'u = ; (cosO dy — rsinB J0) + %{sinﬂ dr + rcosh d8)

=(-l- cosg 4+ 1 sin® |dr +| LecosB—Lsin@ [do
a b b a

Using Exercise 5, one finds that
[f@ap) = fronfp

= {[:a cosB + b Sinb)dr+ (b rcos® —a rsin B} dEl}

n{(lcusﬂ + J—sinﬂ]dr + [r cost — Lsin E]dﬂ}
a B b a

= (a cos + & sin D}(.-Emsi}—isin 'FJ] dr s dB +

b reosO—a rsin B][%mﬂﬂ+%sin EI] 8 A dr

= r(% - %) dr A dl where dB A dr = —dr » d8.

Theorem 2 : For any form @,

d( o) = f*(dw)
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where the symbols have their usual meanings.
Proof : We shall consider the following cases.
i) w 1% a o-form

i) o isar-form

Case i) ; In this cass, lel @ =h, where # is a differentiable [unction
Then {£"dm}(X) =dh(feX)

= (f+X)h by (10.4) of g 1.10

= X(hof) by (73)of § L.7

= d(he f)(X) by (10.4) of § 1.10

= {d(f"W}(X) by (10.4) of § 1.10

or f*ldh)=d(f"h)
The result is true in this case,

Case ii) : In this case, we assume that the result is true for (r—1) form. Without any loss
of generality, we may take an r-form o as

o= g, dx" A oAt

or ['© :f'(gﬁ_ﬂ‘r dx'i A.:.Air'f)

=f'(3r. i, dxh A,..A-:ix‘r]

=18, @xh A o AdxiA ) A (dx)
or d(f'®)=d {f‘(g,wir dxh AL A dxi } A 7 (dxt ]'}
Using (12.1) of g 1.12 we find that

dCf o) =d {f*(g ., 6 Ao ader) A S i)} +
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=) (g, .y, dx AL A dri Dad (£ (dx))
Note that dx’ 1s a 1-form and hence the theorem is true in this case. Thus

d (f*(dx))= f*(d(dx*))=0 by (12 1) of § 1.12

Hence
a1 e (o, 6 et it
= {d(g.-l....-, dxl A .oAdit '}}Af'{dx"r} , 48

the result is true for (r=1) form
=/ {(dgi..y, ndet A adiia )} A poaiy by (12.1) of § 1.12

= _,r"(dgr.l i s adiele cix“r) by known result

Thus di ffa) = F*(do)
and hence the result is true for r-form also,

Combining we claim that
d(f'e) = f"(do)

i.e. d and f commute each other,
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UNIT -2

%. 2.1 Lie group, Left translation, Right translation :
Let G be a differentiable manifold. If G is a group and if the map
(8):82) = 8182
from G x G to G and the map
B
from G to G are both differentiable, then G is called a Lie group.

Exmaple : Let GL(n, R) denote the set of all nonsingular n ¥ n matrices over real num-
bers. GL(n, R) is a group under matrix multiplication. Define

4’(*‘:\}:{““1&;1---- R PR SRR R 'I"‘;a.lll!ﬂn’.!*"”ﬂrrrt}
then

1 GL(n, R) = R"

is a mapping of class C° . Hence GL(n, R} is a Lie group.
Note : Lie groups are the fundamental building blocks for gauge theories,
For every'a € G, a mapping
L:G—=*G
defined by
2.1) L x=ax, Yxel
is called a Left translation on G.
Similarly, a mapping
R:G»G
defined by
2.2) Rx=xa, YxeG

is called a righl tramslation on G.
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MNote that
Lolyx=L,(hx)=abx and L, x=abx
SoLg Lg=Lap
R, Ryx= R, (bx)=xba and Rx=xba
Y Ry =Ry
LyRyx =L, (xb)=axb and R,L x= R, (ax)=axb
L LRy =RL
Thus
23) L Ly=Ly, R,Ry=R,,, LR, = R L,
Apgain ;
Ly L, x = Ly(ax) = bax # abx # L, L,x, Thus
24) LL.# L, L; , unless G is commutative
Taking h=ga-1 in 2.3) we find
LoLi=L. . by23)
=1

(4

Thus

25) Ly =(L,)"!
It is evident that, for every a € G, each L, and R_ are diffeomorphism on G,

Exercise : 1 Show that the set of all left (right) translation on G form a group.

2. Let ¢ : G, — G, be a homeomorphism of a Lie group G, to another Lie group G,
Show that

i) ¢°La:£o¢{u}°¢’
II)I ¢“%=R¢(ﬁ}°¢n "'i"lﬂ,h in G,
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3. Let ¢ bea l-1 non-identity map from G to G, If
poly=1L, °d
is satisfied forall g e G, thenthereisah = Gsuchthat =R,

Solution : 2. From the definition of group homeomorphism of a Lie group G; to another
Lie group G,

blab) =H(a)p(b), Va,b inG;
]j [¢ A I“G}X = ¢(‘r-‘ax} = d}(ﬂx} = lb{ﬂ}d}{x} 5 ch{ﬂ} 4‘ (I]I 5= {‘[@{a_] L ‘]})x A S in G‘
foo Ly = Lygy o9
Similarly ii) can be proved.

3, AsGisagroup,e € G (identity). Further ¢ isa 1-1 map from G to G, so fore € G, there
ig'h in G such that

dle)=h
Mote that
p(e) # e, because, ¢ is not an identity map.

Nowforg e G,
E=E€

. d(g) =blge)
=b(Lge)
= (o L,)e)

= {Lg e ¢.}{‘:}1 4as given

= Lg(d(e))

= Lgh
= gh
= Rhg

Loh=Ry Vg
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g. 2.2. Invariant Vector Field :

We have already defined a vector ficld (o be invariant under a transformation in g 1.8
Note that, in a Lie group G, for every a, bin G, each L, R, 1s a transformation on G. Thus we
can define invariant vector field under L , Ry,

A vector field X on a Lie group G is called a left invariant vector field on G if

2.6) (Lp)o X = Xpp VP e G , where (La), is the differential of L.

Thus from g 1.7

((Za)e X))

Lip) Xrp

We write it as
27 (L)X =X

Similarly for a right invariant vector field, write
2.8) (R):X =X

From § 1.7) we know that

((L)eX,)e=X,(goL,)

or  ((L)eX,)  g=X,(gol,)

L.ip

I L,(p)=q then p=(L ) lg=1_ .g=alg
Thus the above relation reduces to
29) (LX) g=X,1,(g0L,)

Let g be the sel of all left invariant vector field on G,
ITX,Y, eg a b e R, then

2.10) (Lp)e(aX +bY) =a(L,)s X +b(L,)s¥ = aX + bY, (L, }+ being linear explained in
Unit 1.

211) (L)X Y= [(L)e X, (L) Y], see g 1.7=[X, Y]
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Thus aX +bY eg and | X,¥]€g. Consequently g isa vector space over R and alsa a Lie-

algebra, The Lie algebra formed by the set of all left invariant vector fields on G is called the
Lie algebra of the Lie group G.

Note that every left invariant vector field is a vector ficld i.e.
g u(G)
where %(G) denotes the set of all vector field on G. The converse is not necessarily true.

The converse will be true if a condition is satisfied by a vector field. The following theorem
states such condition.

Theorem 1 1 A vector field X on a Lie group G is left invariant if and only if for every
[ eF(G)

2.12) (Xf)o Ly =X(f L)

Proof : Let X he a left invariant vector field on a Lie group G. Then forevery f e F(G),
we have from (2.6)

{{Lﬂ]* X:-'}-f =Xp.nf
or X, (fely)=(Xf)l(p) by Q 1.7

or  {X(f = L)} p)=(Xf = L)(p) ,'vpec;
KoLy =X (fely)

Conversely let (2.12) be truc. Reversing the steps one gets the desired resull.

Note : i) The behaviour of a Lie group is determined largely by its behaviour in the
neighbourhood of the identity element e of G. The behaviour can be represented by an alge-
braic structure on the tangent space of e, called the Lie algebrl"-nf the group,

ii)  Note that, two vector spaces U and V are said to be isomorphie, if a mapping
firlli= N
is i) linear and ii) has an inverse [ ! B AR

Theorem 2 : As a vectot space, the Lie subalgebra g of the Lie group G is isormorphic to
the tangent space T (G) at the identity elemente = G.
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Proof :  Letus define a mapping
¢p:g =T, (G) by
1) (X} =X,
Note that, forevery X, Ying, X +¥ e g @nd
GX+V)=(X+V), by i)
=X, +¥
= $(X)+ (1)
Alsofor beR, bX eg and
PoX)=(bX), Dby i)
=bX,
=bX by 1)

Thus & is linear.
We choose X, eT,(G) such that
i) (L;)sV,=X,, , Where ¥, e T, (G).
Then (L)eX s, =(L)e(L,;)-V, from above
=(L;o L)V, fromg 1.7
=(Ly14), V. by (23)
=(L, sV,
=X, ,aschosen
or  ((E)eX); iy = Xpwy BYQLT

or  (L)sX=X

Xeg
We define

pHT(G)>g by
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iy (V) =X
Then (64~1V, = (9~ (Vo)) = $(X) =X, ii), where (L)« isthe identity differential on G.
or (Ve =Ve
Further,  (4=19)X =41 (6(X)) =4~1(X,), by 1)
=¢~1((L,)= V) byii

=¢7'(Ve)
=X by iii)

Thus an inverse mapping exists and we claim that
g=T.(G)
Exercises : 1. If, X, Y are left invariant vector fields, show that [X, Y] is also s0.
R If c,fj (i, j, k=1,2,...,n) are structurc constants on a Lie group G with respect to
the basis { X, X3,..., X} of g show that
i) ef =—ck
iy cff ef, +chocl ekl =0
Solution : 1. From Q 1.7), we see that
{(La}s-lx.i’l}f =[X,YI(f oLy)

= X(¥(f o L) = Y(X(f o L), from the definition of Lie Bracket

= x{((r) ) F}=V{((La)e X)F} by § 1.7

= X(Yf) = ¥Y(Xf) by (2.7)

~[X,Y1f from the definition of Lie Bracket
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o (L) XY =1X, YL VS
Using (2.7), we see that [X, Y] is a left invariant vector field,
2, Using problem | ahove, we see that every [X;, XJ,—] Egas X;eg,i=1, ...n
Since {X;, X5,.., X,,} is a basis of g, every [X;, X ;] =g can be expressed uniquely as,
1) [X;, X ;1=cf X, where cf eR
i) Note that if i = j,[X;, X;]1=0

So, let £ # j. Then from a known result,

[Xi X j1=—1X;. X5
Using 1) we find that

(-'5‘ X*— :—L‘j: Xk

As the set {X|,..., X, } is a basis of g and hence linearly independent, we must have
cf =—ck

i) Using Jacobi Identity, we find that
(03, %0, %, J+[0 X0, ]+ [ %, X0 X ] =0
Hence from 1)
cf [Xg, X1+ ek [Xp X[ T+ek [Xp, X;1=0 as [bX, ¥]=B[X,Y],beR
Again applying 1) , we find that
r:,t} che Xy +ch ok X, +ck ¢y X; =9
Asg {Xl, W] J{n} is a basis and hence linearly independent, we must have

k =
.-:,_{,i ol + (.‘i. ey ek el =0

72



. 2.3 Invariant Differential Form :

A differential form @ on a Lie group G is said to be left invariant if

213) L, (@g¢n)=0,. ¥ peC
we wrile il as

2.14) [ o= andcall [ o, the pull-back differential form of .

Similarly, a differential form @ onaLie group G is said to be right invariant if
2.15) Rio=n

A differential form, which is both left and right invariant, is called a biinvariant differential
form.

Exercises : L. IT w, w; arclett invariant differential forms, show that, cach dw,w| A0,

is also so.

% Prove that a differential 1-form @ on a Lie group is left invariant if and only if for
every left invariant vector field X on G, w(X) is a constant function on G.

3, Let ¢ : G — G be such that (a)=a"', Va €G. Show that a form @ is left

invariant if and only if "o is right invariant.

4, Prove that the set of all left invariant forms on G is an algebra over R. Suchasetis
denoted by A, say.

5 If g* denotes the dual space of g, then, prove that
A=gt

where A is the set already defined in Exercise 4 above.

Solution : 1. From Q 1.13, we see that
L, (doy) =d (L; o)
where L o, is the pull-back | form of @,
Using on (2.14) on the right hand side of the above equation, we see that
L, (dwy) =dwm,
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Consequently, dwo is a left invariant differential form.
Tt can be proved easily that w, A w, is a left invariant differential form.

P Let us consider a differential 1-form @ . Then for every a G, L, @ will be

defined as the pull-back differential I-form. Consequently from the definition of pull-back,

(2 0 1,0)(Xp) =01, (L) X,). ¥ peG

Let us consider X to be left invariant. Then on using (2.6) on the right hand side of the
above equation, we gel

D (L onm)X) =om(XLm)

Let us now consider w to be lefl invariant 1-form. Then by (2.13), we get from 1)
mp{xﬂ}=mf-him(xfﬂm]
=mupl:xap]
Taking p=e¢, we sce that

me{.:{z} o ma.e{ xae} =, ( er:r
Consequently, m(X) is a constant function on G.

Conversely, if @(X) iz a constant function on G, then
0, (X ) =g, (Xy,)

Hence 1) reduces Lo
(L; mle,fp‘.l)x.v =w,(Xp)

or Lo =®,  whichis(2.13)

Thus g is aleft invariant differential form.

This completes the proof,
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Theorem 1 : If g is a Lic subalgebra of a Lie group G and g* denotes the set of all left

invariant form on G, then
dm{X,}’}z_%m{[X, Y1) where m eg®, X.V.cg

Note ; Such an equatioin is called Maurer-Carter Equation,

Proof : From theorem 1 of § 1.12, we know that
do(X,Y) = %{X{mm}— Ya(¥)) - X,¥])} forevery vecior field X, ¥

If X, Y arein g then by Exercise 2, o(X), w(¥) are constant functions on G. Hence by
Exercise 2 of § 1.4),
X.a(¥)=0, Y.o(X)=0

Thus the above equation reduces 1o
do(X,¥) =S o((X,Y))

Exercise : 6. Show that

duw! =-—% Ych ol awt =3 ot Aal
ok jik

Solution : If {X;, X,,..., X, } isabasisof gand {w!,..., 0"} is the dual basis of g*, then
1) o (X;)=38
Hence from theorem | above

dol (X 5, X,) == 20l (X}, X, 1)

] i
= —Em’ {Zcﬁ xm] from Exercise 20f Q 2.2

1 : 1 !
=5 o (X,) == %el} 0,
1 ;
== ¢ byl
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Again from g 1.11

i § —l i
i%f”"" (™ A m ’}I{Xj. Xy )= zmz},cm" {mm[xjjmn(‘].{k Y—a™(X, }‘""{Xj}}

=3 et {8781 8¢ 83}

e
=3{eh -}

2%{@_& +t“}a} by i) of Bxercise 1 of § 2.2

=k g
—E'Zf.'}k

=k
= cjk

This dmf(x}_xﬂ:-—-—é e " A0t (X, Xp) Vg, x

1, 8

i do =—% Dochy 0" Aw!

M, n

or Jﬂ)i=—%2"}k w! Ak
Jik

Taked, , k=1,2,3 , then
Sejx 0f Aok =cfy 0l A0 +efy 0! A0 4 ey 0 A0 4l 07 A2
= 4

+eky @3 Aol Hely 0 Aw?
=2cl, 0 Aw?+2¢; 0" Aot +26l; 02 Awd
as ¢t =—cl.

Fk

= E{:;R {l}-‘fﬁwk
J=k
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Thus, we write

dof ==3%, Cfu; @ Amk
jek

Hence

doi =+ cﬂ.k ak Ao,
ok

§. 2.4 Automorphism :
A mapping, denoted by o, forevery a G, 0,: G2 G
defined by
o, (x)=axa!, VxeG
iz said to be an inner automorphism if
i) o,(x)=0,(x)o,(y
ii) o, is injective
ii) @, is sugjective

such o, is written as ada.

Exercise : Show that if G is a Lie group, ki G, then the map
1,:G>G

defined by
L, (k)= hkh-!

8 an automorphism.

An inner automorphism of a Lie group G is defined by
2.16) (ada)(x)=axa™! , ¥xeG
Now, (L,R,i)x=L,(R,-x)=L,(xa™")=axa™! = (ada)(x)

LR, =ada
Using 2.3) we get
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2.17) ada=L,R,_R,:1,
Naote that ada is a diffeomorphism.

Theorem 1 : Every inner automorphism of a Lie group G induces an automorphism of the
Lie algebra g of G.

Proof : Forevery 4 eG let us denote the imner automorphism on G by
i) (ada)(x)=axa™', YxeG

Now forevery G, e G and from § 1.7 such ada ; G — G induces a differential mapping
(), |

(ada)e 1 T,(G) > T, (2 =T.(G)

Such a mapping is a linear mapping and by Theorem 2 of § 2.2, the Lie subalgebra g of a
Lie group G is such that

g=T.(G)

Thus lo show every ada induces an automorphism of the Lie algebra g of G we are to show
it) (ada), is a mapping from g o g
ill) (ada), is a homomorphism i.e.
(ada)s (X +¥)=(ada)s X + (ada)s¥
(ada)(bX ) = blada)s X
(ada)s| X, Y] =[(ada)s X +(ada)s¥] , ¥ X,Y ing
iv) (ada). is injective
v) (ada)s is surjective

1) Let ¥ eG . Then on using 2.17) we get
(ada)e¥ =(Rys o Ly)Y =(Rp2)u(Lu)sY 35 (fog)e=fuogs
= (R )Y
Thus
i) (ada)s =(R,. ),

Again, (Lp)s {{Rﬂ-u ). 1"} = {( L,)s (R,-1), Y} ,forevery peG
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(L, o Ry ),Y
=(ReoLp).Y by 23)
={(Ra1). o(Ls). }¥

= (R (L)Y

=(R).Y asYeg

Consequently, from above, it follows that (R,-1),Y .

Hence (ada). is a mapping from g to g.
iif) From § 1.7) we know that such (ada). is a linear mapping

i.e.
{ada)s (X + ¥)=(ada)s X + (ada)s¥

(uda)u(bX)=b{ada) X, beR
Further, such {ada), satisfics

(ada)s[X,Y]1=|(ada). X, (ada).¥)
Thus (ada), is a homomorphism trom g to g.
) Clearly (ada). is injective, on using vi} and the fact that R, isa translation on G.
V) Forevery a €G, a! eG and we set
(ada=')e X =Y , where ¥ eG
we will show that ¥ e and (ada):¥ = X. Now, for s €@,

(L)WY = (L)elada Yo X = (L)e(Ryo La)e X Dy (2.17)

=(L ) f(R)e (Ly- o} X

=(L)eo(R,)e X
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:{LE 0 Hu}+x :{Rﬂ 'DLI?]‘.X :{R‘]}UX
= (ada 1) X
=¥ as defined.

Thus Yeg
Finally

(ada)s¥ = (L, o R, ),Y by (2.17)
=(L, o R,1),(ada=")e X as defined
=(L; o Ry )[Ry o Lyt ), X by (2.17)
e (L‘r: - Rﬂ‘[ 7 er: La" }: X b}r (1.7)

=(L,)+X by (2.3), where (L,). is the identity differential
=X
'Cnnsequcntly, (ada). is a surjective mapping,
Combining i) — v}, we thus claim
(ada)s:g—+ &
is a Lie algebra automorphism.

This completes the proof,

Note : We also write
(ada)e = Ada |, lorevery acg,
and g-—» Ada

is called the Adjoint representation of G to g.

§. 2.5 One parameter subgroup of a Lie group
Let a mapping
a:R—=>0G

denoted bya £ —* aft)
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be a differentiable curve on G. It forall 5, tin R

a(Bals)=alt+s)
then the family { a(nlreR } is called a one-parameter subgroup of G.

Exercises : 1. Let H ={ a(f)It €R } be a one-parameter subgroup of a Lie group G.
Show that H is a commutative subgroup of G.

2. If X is a left invariant vector field on G, prove that, it is complete
We set

2.18) alt)=a, =4¢,(e)

where { ¢, : €R } is one parameter group of transformations on G, generated by the left
invariant vector field x. ;

Exercises : 3. Let { d, It eR } be a one-parameter group of transformations on G, gener-

atedby X g and ¢,(e) =a(r). M forevery s g,
$yoLy=1L,o0,
show that the set { a(f)If € R } is 4 one-parameter subgroup of G and

¢, =R, holds, forall r &R

4. Let the vector field X be generated by the one parameter group of transformations

{ Ru, lreR ] on G, Show that X is left invariant on G.

Solution : As {d}[ |t ER} is a one-parameter group of transformations on G and

a:f R —»u(1) G is a differentiable mapping, by definition
a(t)-a(s) = Ly (a(s)
=Ly ($,(¢)), as defined in the hypothesis
= ( Liwy® '1’:){3}
= (fp, o Liiny )(E} by the hypothesis
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=4u(Latn™)

=¢,(alt)e)

=, (a(n)

=b,(g,(e)) as defined

= (.9, )(e)

=, (&) is {§ (1)} a one-parameter group of transformations on G

= {e) a8 s+f=r+sinR

=alt+ 1)

Thus the set {a(r) |1 R} is a one-parameter subgroup of G.

Again b, (s)=¢,(se) =, (L,(e)) = (§, o L,)e) = Ly(,(e)) = L,(a,) by (2.18)
=sa,

or Pp(s)=R, (5), WseG

e ¢l‘ = Rn

d

4. From Exercise 3 above
Ra, =¢,
Asitis given that [ﬁrﬂr lteR } generates the vector field X, from § 1.9, we can say that Xs

is the tangent vector to the curve K, and we write

X = "0 H (R, 9)- £}

= So7 (L, (g719))~ £ (Ly)a™'9)}
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il

= L (L Re, (a™0) - (7 = L)}

i
=m0 Lr o L)(R, (@7190) = (F o a9}
i) X J=Xgp,(feLy) fromg1.9
We are left to prove that X =g. Note that, for g g.
L,:G—=G
is a left translation on G and (L)« i T,(G) = Ty () (G) =T, (G) is its differential. Hence

((Lg)s X)f = X, (f o L) by § 1.7, where f €F(G)

or (LX), f=Xp(foly)

L(p)
If Ly(p)=s, then p=L'(5)= Ly (s) by (2.5)
p=q's
Consequently, the above equation reduces to
((Lg)eX) f=Xgu(f o L)=Xof  byd)
(()ex) =X, ¥seG

(L,)s =X, which shows that X is lefl invariant.

Theorem 1: If X,Y g, then

(v, x1=," (Adai!)Y -}

Proof: Every X eg induces {¢,Ir eR} as its 1-parameter group of transformations on
G. Hence by §1.9.

(¥, X1=xY1= "7, (o). Y-}
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Now from § 2.4
(ﬁzz‘a,‘[)Y={ada,‘t]‘Y

=(Rg, oLy ), Y by 2.17)

=(Rq, ). {(La), ¥}
=(Rﬂl)_‘f 88 Y eg

= (#,),Y by Exercise 3.

Consequently, the above question reduces to,

rv.X1=, " L(adar)y - v}

9 2.6 Lie Transformation group (Action of a Lie group on a Manifold)

A Lie group G is a Lie transformation group on a manifold M or G is said lo act
differentiably on M if the following conditions are satisfied -

i) Each a eG induces a transformation on M, denoted by
P pa, WpeM
I (o, p): GeM-— pa &M is a differentiable l'l:l.ap.
i) plab)=(pa)p , Ya,beG, peM.
We say that G acts on M on the right.
Similurly, the action of G on the lefl can heldaﬁned.

Exercise : 1, Let G =GL,(R) and M = R and

BGe=M—-M
be a differentiable mapping defined by

H[(H !fjmp]:ﬂp'!'b- a=l), ﬂ'b e
Show thal ¢ is an action on M,
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Solutiom : In this case, G' {1}) e and

i) H[[:]:t ?]-P] 2L
o 8 Dl Dl )

=a'(ap+b)+b', as defined

=a'ap +a'b+b',

= [(“{;‘ “ibr br], p) as defined
g’ By fa b
=D((n u) [n 1]*‘]

Definition : If G acts on M on the right such that

Thus @ is an action on M.

219y  pa=p, YpeM impliesthat a=e

then, G is said to act effectively on M.
Note : There is no transformation, other than the identity one, which leaves every point

fixed.
If G acts on M on the right such thal

2.20) pa=p, ¥peM,impliesthat g =e¢ forsome pe M then, G is said to act freely on
M.

Note : In this case, it has isolated fixed points.

Theorem 1 : If G acts on M, then the mapping
a:g~» (M)
denoted by
o:A—o(A)=A"
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is a Lie Algebra homomorphism

Note : o(A) is called the fundamental vector field on M corresponding to A eg .
Proof: Forevery peG let
g,:G+M
be a mapping such that
i) opla)=pa
Such a mapping is called the fundamental map corresponding to p e M.
We want to show that
oig— y(M)
is a Lie Algebra homomorphism i.e. we are to prove
i) o(X+Y)=a(X)+a(Y)
i) o(bX)=ho{X),beR
iv) of[X, Y]=[cX, o¥]
It is evident from i) that
v) oy(a)=pa=R,(p)
Let A eg. Then from §2.5, A generates {, I+ €R } as ils 1-parameter group of transfor-
mation on G, such that
a(ti=a, =¢,(e)
In this case, such «(r) is the integral curve of A on G. The map

I:D'F}.t T:.{G:I —F Tﬂp{"}{M} ETF{rMJ

is the differential map of o, and is a linear mapping by definition such that
(o,)e X, €T, (M)
Using the hypothesis of the theorem
vi) (@) Ae={o], ( ={o®)}, = A}
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Mote that for every A, B, in g, A + B is in g and hence

{o(A +B)}, =(0,),(A+B), =(9,).(Ac +Bo) =(0,),Ac +(0,).Bes as (95), islinear

={oA)}, +{o®)},

a(A+B)=oc(A)+c(B}, ¥V pehl
Also for b e R bA €gand hence

{obA)}, =(0,).08). =(0,). (W) =b{s, ). A, =bla(A)),

o(hA) =ba(A)
Thus ¢ is a linear mapping

Now A, is the tangent vector to the curve a(f) =g, at a(D)) = e. Consequently by
@ 1.7, the vector field (-:J 5 )* A e Tupl:c) (M)=T, (M) is defined to be the tangent vector to the

curve ©,(a;)=pa, =R, (p) at o,(a,)=0,(e)=p. consequently, by vi), we see that A7

induce R, p as ils one-parameter group of transformations on M.

Again [o(A), 6(B)], =[A", B],

= I]-TD }{ BY, —((RH_ }_B*)P} by Theorem 3 of §1.9

= 1 (o).~ (Ra) B3} v wher
vii)  p=Rg(q)
i) or g=(R, )" p=R,(p)=pa;’
Thus (R,, ), B = (R, ), B} by vii) above
=(R, ).(© put), Be by v)
=(Rg, ©0 4 ),Be Where R, o0, 1G> M
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Hence for b f;G
(R 0 gt ](b) (c jmr..“”)
=R, (pa;r'b) byi)
= pay 'ba, by definition
=0, (a7! ba,) by i)
=0, (ada;' (b)) by 2.16) of § 2.4
= (o, o ada;")(b)

-1 -1
Ry o0t =0y o ada;

Consequently, {Rn, ]_ B; = (Ra, 9 ) B, reduces to

(R )tB‘? {G Dﬂdﬂf_} )t B, = (dﬂ}t(taduri)'ﬂ") =(5F]-({hdarl}*3“) from the
Note of §2.4
Thus we find

[oa),0®)], =, "Fy Ho,)e B ~(o,),((Adar"),B.)}

={ﬂp)”]il;nﬂ}{ﬂ (Ma, }_ ,} is (“p}. is a linear mapping.
=(o,).[A,B], by § 1.9
= (o] A, B]) p by vi)

o[A, Bl =[a(A), o(B)]
Thus the mapping
a:g— (M)

is a Lie Algebra homomorphism.
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Theorem 2 : If G acts effectively on M, then the map
a:g—» (M)

defined by
g:A—>o(A)=A"

isan isomorphism.

Proof ; From Theorem 1, we know that such map o g — (M) is a Lic Algebra homo-
morphism. Hence we are lett to prove that

i) o isinjective and ii) o is surjective,
i} Let A, B =g and o(A)=o(B) Then
o(A~B)= 8, as o is a linear mapping,
or (A-R)"=6
te.  (A—B)* isthenull vectoron M, Now A-B g and it will generate { y (e)1r =R }

as its 1-parameter group of transformations on G such that (A — B), is the tangent vector to the

curve, sdy

b{t)=b =w(e) al blo)=e

Consequently, the vector field (A —B)" = (u’ FL (A =DB), isthe tangent vector to the curve
o, (b(1) = pb, = R, (p) at & ,(b(0)) =0 ,(e) = pe=p.

Thus (A-B)" = (u’ p}.(A - B), generates {R,,J (pilt e R} as its 1-parameter group of trans-

formations on M. But (A — B)" is the null vector on M. Hence the integral curve of (A—B)"
will reduce to a single point of itself, Thus

Ry(p)=p
or pbh=p
As G acts effectively on M, comparing this with 2.19) we get, b =e, ¥V peM.

Again (Lq}‘_(A—B) —A-Bas(A-Bleg
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“ Lyey, =y, oL, from g 1.9
Thus qr,{q}=1|r,(q~f}=wf'[LqI:erJ) =(yeoL,)(e)= (L, oy Je) =L, (b;)

=qb, =q.=q

Hence from § 1.9

(A-B), f =;E§1{]?l{f{¢":{q}}—ffq}} reduces to

A=), r =" f@-f@}=o0.
Thus A-B=0
i.e, A=B.
Hence o(A) =a(A) implies that A = B, Consequently o is injective.

if) As G acts effectively on M, o is surjective,

Thus the map is a Lie Algebra isomorphism and this completes the proof.

Theorem 3 : If G acts freely on M, then, for every non-zero vector field A e g, the vector

field A* on M can never vanish,

Proof : If possible, let A" be a null vector on M. Then, as done in the previous theorem,

every A e g will generate {w (€)1t R} as its 1-parameter group of transformations on G and

we will have

Wi(g)=g
Consequently from the definition, as given in g 1.9 :

Agf =[§%f{¢;(q}ﬂ

i=0

_lim fly (@) f(q)
T+ i

=0.




Hence A becomes a null vector, contradicting the hypothesis. Thus the vector field A" on

M can never vanish.
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UNIT -3

@ 3.1 Linear Connection :

The concept of linear (affine) connection was first defined by Levi-Civita for Riemannian
manifolds, generalising the notion of parallelism for Eucliden Spaces. This definition is given
in the sense of KOSZIUL.,

A linear connection on a manifold M is a mapping
Vg (M) % (M) = (M)

denoted by
Vi(X,Y) > VxY

satisfying the following conditions :

l] vx{Y+2}=va+vxz
) VeynX=VyX+V,X
i) Vo Y=1fVyY

V) Vx(EY)=(XDY+H VY, ¥YXY,Zey(M), [ eEM)

The vector field VY is called the covariant derivative of Y in the direction of X with
respect to the connection

It P is a tensor [ield of type (o, §) we define

v) VyP=XP, if s=0o

&
Vi) (VxB)Yi. Yo s ¥n) =X (B(Yi, Ygy s Yo )= 2P (Yoo, Vi Yivo, Y, )
Exercise 1 : Let M =R" and X, Y, ex(M) be such that

| [peh el 3
¥= Z b FJ' where ?sz(Xh'}%

Show that ¥ determines a linear connection on M.
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Solution : Let X=a";—'. : Z=ci% with @', ¢l eFM), i=1,...,n

X

Then i) V(Y +2Z)= (X{b" +ef }J , as defined

L0,

Bt
- ; 3 e i 8 8
=(Xb + Xc! }ﬁ-{}(h }§+{Xc:=}—x‘.—
=VxY+VxZ

Similarly it can be shown that

Again, VY =[{fX}b']%={F[Xhi])% as (fY)h= f(Yh)

=fVyY and

?ﬂf‘f}:(}([fb"})aff as =[(Xf}b-‘+f{xb"}}% as X(fi)=(Xf)g+ f(Xg)

o i 9 iy 9
(X2t £ (X012
=(XLIY+ [ VxY

Thus v determines a linear connection on M,

Let (x!,x2,..., x") be a system of co-ordinates in a neighbourhood U of p of M.
We define

_a_
x4

k
3.1) = m % where Ek e F(M)

Vv
E
T

k . ; ‘
Such E are called the christoffel symbols or the connection co-efficients or the compo-
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nents of the connection.

Hence if

i

XK=k —
& o'

, Y=n/ EJ where each £ ni e F(M), i=1,...,n we see that

d
VY=V ( / )
X £ g.’ n ﬂxf

=E?a§f ["I"r a_ﬁ-J by iii)
i)
=&l [zl ﬂ.:f "'LJ'E ]h}r iv)and 3.1)

; K
G

k =k : ; : .
Exercise 2 : Let E and E be the connection co-efficients of the linear connection v

with respect to the local coordinate system (x!,...,x") and (y!,..., y") respectively. Show
that in the intersection of the two coordinate neighbourhoods

gk _udfxl By g Ot G B
E ayiayl  axl ﬂ, ayl ayd ax!
Zolution : In the intersection of the two coordinates
9 _oxt 3
vyl oyl axl
i o _ ﬂw o4 2 _ o
- axs gyl vyl axt T axt

Again, from 3.1) we see that

p 0 _w O
E ayk _dyd

axl @
ayf gx! | from above

Fle
%'|m-=:|
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S L i o o4 il

= = EF AT W e .

ayloyl ax oyl o by iv)
:_a_?xi.,i+£f? n _é?_

ayioyd oxl - gyl %’EET gyl [rom above

Bzl 8 . o ot B
= - B ./ S b
oy oxl T oyl oyl Lk ad O 1Y

P o & ', @

= : - ...+_._[
oviey o "oyl oy ot B 3D

P o 8 o o', 8
a'ey! ax' &t @' &' "ax
Changing s = r
I — s
k=t

_ % ok 8 o axf Ok

T ayiayl axl ayk "oyl dyl ax! ayk from above

(2 ot . o o ay* 91 6

e o T "ol ) o o)y

Since {E % k=1 -u} is i basis of the tangent space and hence linearly independent and
A

the result follows immediately,

3.2 Torsion tensor ficld and curvature lensor field on a linear connection

we define a mapping
T (M) x x(M) = x(M) by

32) T(X,Y)=v -WX-[X,Y]
and another
R (M) xy(M)xy—>x(M)
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3.3) R(X,Y)Z=VyVE-V,VE-VZ

[%.¥]

Then T is a tensor field of type (1,2) and is called the torsion tensor field and R is a tensor
field of type (1, 3), called the curvature tensor field of M.

A linear connection is said to be symmetric if
34) TX, Y)=0

In such case
35) [X¥]=Vf - v}

Exercise : 1. Verify that
i} T(X, Y) =-T(Y, X);

i) T(fX +g¥, Z)= fT(X, Z) + gT(Y,Z);
iti) T(fX, g¥) =/g T(X, Y).
2. If Vi =V} -T(X,Y),show that 7 is a linear connection and T =T

" 3. Show that
iy T(T(X, Y), 2)=T(%, Z)+ T(Z, %¥) - T([X, Y], Z)
i) R(X, X)Y=0;R(X,Y)Z=-R(Y, x}_;; R(X,Y)Z+R(Y,Z)X+R(Z,X)Y =0
i) R(T(X, Y), Z)=R(V.Z)+R(Z,W*)-R([X, Y] Z)
iv) R(X, fY)Z=R(fY, Y)Z=R(X, Y)fZ=1 R(X, Y)Z
Hence Show that
R(fX,gY)hZ=fghR(X,Y)Z

4. Exercise 3 : Prove Ricci Identity

a) for a 1-form w ;
[vxw -y VR -Vix Y])z =-W(R(X, Y)Z)
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by for a 2-form W :

(VxVY ~Vy VY - Vi )2 P) = -W(R(X, Y)Z, P) - W(Z, R(X, Y)P)
5.1f (.1:',---, x“} is a local coordinate system and

8 N awd a eYa .8
= =T R i o =R
aﬂ] U axt [E?x' ayJ]ax* i)

Show that

Tk = F!‘, and r' FE for a symmetric linear connection

i) Rﬁm ﬂxi rjm 5}{3 1m ij h' rim l-'_‘jlt

Solution : 1 1) From the definition

T(Y,X) = VyX = VxY ~[Y,X]
= (VY - VyX ~[X,Y])

=-T(X,Y)

Thus T is skew-symmetric

i) TOX+ Y, Z) = Vix oy Z = V(X + gY) —[FX + gY, Z]

= VyZ+gVyZ~ V2 (IX) -V (eY) - [X, Z] - [gY.Z]

=glY,Z]+(Zg)Y
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=f{"\?xx—"FZX—[X+Z]}+g{?YZu‘FZE’—[Y,Z]}

= IT(X,Z) +gT(Y,2)
Again, using the definition, given in § 3.1 and also from § 1.5 we get

Thus T is a bilinear mapping,

2. Toprovethat i isa linear connection, we have to prove 1), ii), i), iv) of % 3.1. Now
V(Y +2Z)=Vy (Y +Z)-T(X,Y +Z) as defined
=V Y+VxZ-T(X,Y)-T(X,Z)
= ExY+ ﬁxz , 45 defined
similarly, other results can be proved and hence ¥ is a linear connection. Now,
T(X,Y)=VxY+VyX—[X,Y], by definition

=VxY-T(X,Y)-V X+T(Y,X)-[X,Y] , as defined
=T(X,Y)-T(X,Y)-T(X,Y) by Ex 1 (i) above

= -T(X,Y)

T=-T
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3. (iv) From the definition

R(X,IY)Z =VxVeyZ-VyVxZ—Vix rviZ
=Vx (Vv Z) - Vy VxZ~ Vv Z
= (XOWVyZ+ TV Vy Z — [V VR 2~V yyZ— (XT)Vy Z
=£(VxVy —VyZVZ-Vix v)Z)

=[R{X,Y)Z by definition.

5.  From the given condition

(2 )=Ya ()72 2| 2]
k! Ex PRI 5 0% x! dx

Using 3.1) we find

_rk 9 x @
“HigE e
or T*i=[1*'s—rk.]i as defined
& e il e
; d . ! ! :
Since {m tk=1, e, n} is a basis and hence lincarly independent and thus

1) I‘:JE =r;;—r}<1.

If the linear connection is symmetric, then T = 0. consequently, the above equation
reduces to '
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ii) From the definition, we sce that

& BJ i d d d
— | —=V s Vs — -V V. —-=¥ V—
[ﬂx' axl/ pxm A T8 mem MR [i' A ] B

: - dx - — —
Ayl axl axt  axt axl Tyl

a 5} g

K k ! 201
=9 (FJ'" o k] vi[r'"‘ axk] > [aw“axi}
! e

B e a 8 .Y 8 &
_[ﬁrjm] Pw i Y = '(@rim ook T lim orT

Changing the dummy indices t — k,k — ¢ in the 2nd and 4th term we get

d g d g d i} i
k i ke L 1Tk Sk 2 ok
ijm ﬁxk _[axi 1—‘_imj Ox k 1ﬂ,]mI‘lt ﬂxk E:'x-j jm ﬂxk rimrjl 5xk_
. a . : f A ;
Since {g =10 : n} is a basis and hence linearly independent, we pet from above
d 8 rk k K
Rin =§r;“ o7 im + TR =T T

@ 3.2 Covariant Differential of A Tensor Field of type (o, 5)

The covariant differential of a tensor field of type (0, s) is a tensor field of type (0, 5+ 1)
and is defined as

3.6) (VP)(X), Xz, Xan) =( Vi,  P) (X1 X 3000000, Xs)

Exercise : 1 Let 5 be the components of a vector field Y with respecet to a local coordi-
nate system (x!,...,x") ie. Y =3¢ Eii

-5 j be the components of the convariant differential VY, so that Vv X o ¥ ai

ﬂxt
then, show that
o= as—+r‘ 3k
axi
2, Let w beal formand d,l

TF we write



show that

oy,
i ok g T
k. axl h* ki
a4 4 d h d
3 It we write [ ab ] 31 axj Ix™ 1y, axh
Rl = -ZiRb: b RE.Th r s — &
show that S = Ex"' i gm ak \'jra! Ik = J.m.l _;k i mk

Solution : 1. We write

: S 9
20 ('1 o ] o ing =550 7' g

C‘hanging'the -;l_unjlrny indices i — &k, k — i in the 2nd term on the 1. h. § we get

.o B
?_1_'32_ *erkax

ox! ar.

Since {% = .!__....m]» is a basis and hence linearly independent and thus we must

have, "z = é?'—

dx) P
2. As @ isa tensor field of type (0. 1) we have from vi) of £.3.1

[](—}m )l
- o3 -o(ra )

axf-'
d
or, Wy ; g £ (w4) - It oy,
: L0
Thus, @y; = Ef— - 0, Tk
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3, From the definition

AL A
32l

d i d il ¥ a f d it d Kooph 2
= [—* Rw:_]; + Ry T i T Ry = Y. 1"1-; Runr o Vi B 2

= g R e n _d
or Rimxk P _[Eﬂx_“ Rijm 3 +R”'“F1‘ax_"

d J
rk.r Rﬂ.l.lr a}“ r.k.- Rﬂm :_

i

g b BVl i
"FJ;...-RJ: a0 ¢ on changing the dummy indices

h — &, 5 = hinthe 2nd term on the right hand side.

Sinece {E Sh= L.,.,.H} is a basis and hence linearly independent and thus we must

have,

d 1 h !
R:Im = E’]X Rdm + R:fm rﬂc I-]II'I h Rusm rjk R'if: F:m
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UNIT - 4

4.1 Riemannian Metrie, Riemannian Connection :

Let us define a covariant tensor field of order 2 on M i.e. g @ (M) x x(M) — F(M)
Which satisfies

iyg(X, X)=0 : positive definite

i) g(X, X)=0if and only if X =0 : non singular

i g (X, Y)=pglY. X) :symmeiry L X, Y in x(m)

Such g is called a Riemannian metric on M and the differentiable munifold M together
with such g is defined to be a Riemannian Manifold, denoted symbolically by (M, g).

Let {H'. ;Hj, X“}be a co-ordinate system is a ntighbnumund Uolfpe M. We

define
M el )
h ax' ' ax! i

(2 )= ={b1 )
Note If we define 3’ 3 ij ol

d
then the matrix of g relative to the basis {?} is given by

10.....0

Ol:...0
g -

0o....... |

A linear cannéction on a Riemanian manifold (M, g) is suid to be u metric conneciion
if und only if

a1y  Vg=0ie (V.8 (M2)=0, yX, Y, Zinx(M)

The unique metric connection with vanishing torsion is called the Riemannian Connee-
tion or the Levi-Civita Connection. In this case

42) VY-V, X=[XY]
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Theorem 1 : Every Riemannian manifold (M, g} admits a unique Riemannian Connection,

Proof : To prove the existence of such a connection, let us define a mapping
Vi g (M) x 3 (M) — x(M)
denoted by
Vi(X,Y) o VyY
as follows
4.3) 28(VxY\Z) = Xg(Y,Z) + Yg(Z,X) - Zg(X, Y) + g(1X, Y1, 2) + £(X.[Z, Y]) + g(¥,[Z. X])
Clearly, 28(Vx Y +Z), W) - 25(Vx Y, W), 28(V Z, W)
=Xe(Y+Z W) +(Y +Z)p(W. X)~ We(X, Y +2) + g((X, Y+ Z1, W)+ g(X.[W. Y + Z])
+8(Y + Z,[W,X]) - Xg(Z, W) — Y(W,X) + We(X.Z) - g(IX, Y), W) - g(X.IW, Y])
—B(Y,\[W, X1) = Xg(Z, W) - Zg(W, X) + We(X,Z) - g(X, Z], W)
—&(X,IW, Z]) - g(Z,[W. X])
=0
S 2BV (Y4 Z) -V Y-V Z,W)=0, as g 1s linear
Whence
Vx(Y+Z) =V, Y +VyZ
Similarly it can be shown that
Vv Z=VyxZ+VyZ,

Thus such a mapping determines a linear connection on M. Also, from (4.3) it can be
shown that - .
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2Xe(Y,Z)—28(Vy Y, Z) - 2g(Y. Vx2) =0
. or, Vxg(Y.Z)—g(VxY,Z)—g(Y.VxZ)=0 by v)of § i
or, (Vxg)XY.Z) =0, YXY.Z
Thus such a linear connection admits a metric connection. Further, it can be shown that
VY= VyX-[X,Y]=0
Hence such a metric connection admits @ Riemannian connection
To prove the uniqueness, let § be another such connection. Then we must have
Xg(Y,Z) - g(Vx Y. Z) - (Y, VxZ) =0 and VY -V XX, ¥]=0
Xg(Y.Z) - g(VxY,2) -g(Y,VxZ) =0 and VxY - VyX-[X,Y]=0
Subtracting,
B(Vy Y = Vi Y, Z) 4 g(Y.VxZ-VxZ) =0 ¥V X,Y,Z and VxY -Vx¥ =VyX-VyX
where form, we get
VY -VxY=0
VY =ViY
Thus uniquences i3 established, This completes thc.pmnf

Exercise + 1 In terms of a local coordinate system [x!,x2,.--,x" | ina neighbourhood U of p of

a Riemannian Manifold (M, g) show that
i) the components r{ik defined in UNIT 3 is symmetric and

i1) the Riemannian metric is covariantly constant.

9 Let v be a metric connection of a Riemannian manifold (M, g) and ¥ be another
linear connecting given by

Vi Y =VxY +T(X,Y)

where T is the torsion tensor of M. Show that the following condition are equivalent

i) Vg=0 and ii) g(T(X,Y),Z)+g( Y, T(X,Y)) =0

3. Tn terms of a local coordinate system {x',....,x"} the components l"'jk of the Ri-

emannian connection are given by
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' : g, Og
Ein rjllg = l Egm_k_ + gJ:L = ij ]
2\ ox! dx e

Solution : 1. A Riemannian Manifold (M, g) admits a unique Riemannian Connection i.e,
T=0

oV, Y=V, X-[X,Y]=0

[n terms of a local coordinate system {1/, ..., x"], we have
d d

using 3.1},

i
Since {5 k} is o basis and hence linearly independent and thus
%

il
I",-j-‘ = I"J-lf-i.e. symmetric,

By definition, on a Riemannian Manilold (M, g,
(Vxg) (. Z2)=0, v X. Y, Zin (M, g)

I . {alocal o i I n ki x_i Y_iz i.
nterms of alocal co-ordinate system (x', ..., x"}, taking X = Bal VS A T
we find
. )
"f ] ["—.. _] = {}
[ i]i'L] ol Bx*
i (_ﬁ _ﬂ_]_ R [ i T [

O ax! 5 el axk = %E}xll ¥ 5 xd’ E;_:' ox*

using 3.1) we get

] d a]{la a]_[a ,a]
e B — | —. | = r"i e e ] T ]"I e |
Ox! "[axl ax® )T AU R ) T B g, Tk

8] il
x



o, gy, = 0
i.e. Rismannian metric is covariantly constant,
2 Let us assume that i) be true. Then by definition,

Xg (Y,2) - g{vx‘f 2) —g(Y. V4 2Z) =0
Using the condition,

Xe(Y. 2)-g(VxY + T(X, Y), Z) —g(Y. VxZ + T(X, Z)) =0

or (Vxg )(Y, Z) - g(T(X, Y), Z) —g(Y, T(X, 2)) =0
Us'tlng 4.1), one gets
2(T(X, Y), Z) +g(Y, T(X, Z)) =0

Let now the above result be true. Then using the condition

g(VxY - Wiy, z) + gY, Vyz - vxz)

or, 8(VxY. Z) + gY, V52 ) = g(vyY. z} + 8(Y, VyZ)
Using 4.1) on the right hand side we get

g(VxY, Z) + g{"r’. 942 ) = Xg(v, 2)
ur, g(ﬁxY. Z) -+ g(Y, ﬁxz ) =_‘:'_-'7'xg{'f. Z-]
e, (Vxg)(Y. 2) =0V X, V.2

i-ﬂ'H f’g =1

3. Usingiv) weﬁnt:l. Bim = g[a—x]. EF)

P | d
28 Th =2 [r‘ —=, —]
or, “Bim 1 jk = <8 Lyi 3% 9x™

Using 3.1) and 4.3) one gets the desired result ofter a few steps

Theorem 2 : If R is the curyature tensor of the Riemannian Manifold (M, g), then
44} R{X. Y)Z + R(Y, Z)X + R(Z, X)Y = 0: Bianchi's 1st identity

4.5) I:'C"'UR] (X, Y)Z + {'fr"xR} (Y, YZ + {?YR} (U X)Z=0: Blzf_mchi's 2pd identity,
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4.6) g(X,Y)Z,U)=—g(R(X.Y)U,Z)
4.7) g(RXY)Z,U) =—p(R{Z, U)X,Y)
Proof : Using 3.3), 3.5) one gets

RIX.Y)IZ+RIY,ZX +R(Z,X)Y = | X, | Y. Z||+[ Y. [Z.X]]+[Z X, Y]] =0 by Jacohi
identity
4.5) is Left to the reader

Ta prove 4.6), one gets from 4,1)

(VygZ, ) =0,¥X,Z,U
w)Xg(Z,U) = g(VxZ U) +g(Z,VU)
on, Vy (Xp(Z,UN =V {e(VxZ, U} + g(Z,V . 11}
on Y{Xg(ZUD =Ya(VZ,U)+ Yp(Z,VU)
using o) on the right side we get
Y(XE(Z,U) = g(Vy Vi, Z, U) + 2V Z, Vy U) 4 5V y 2.V U) 4 5(Z, Ty Vi U)
Thus, we find
X(Yg(Z, U — Y (Xg(Z,U)) - [X, Y]g(Z,U)

=g (VX VyZ-VyVxZ-VE v U)+ 8(Z TPy U=y Py U -V o))

=p(R{X, Y4, U+ g2, RO YO

Using the definition of [ X, ¥ | f, on the left hand side, one finds
g(R(X,Y)Z,U) + g(Z,R(X, Y)U) =0

Again, R(X,Y)Z+R(Y,Z)X + R(Z.X)Y =0

B(R(X, Y)Z) + g(R(Y,Z)X, U) + 5(R(Z,X)Y,U)=0..... )
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Similarly, we can write
g(R{U,Z)X, )+ p(R(ZX)U, Y) + g(R(X,UZ,Y) =0 ... ¥l
g(R(Y,X)U,2) + g(R(X, UYY,Z) + g(R(U,Y)X,Z) =0 .......5)
g{R(z,UJY.xHgngU.Y)z,xy+g{R{Y.Z)U,>i:}=n ........ E)
Adding o), B), 7). 8), £) and using 4.6) we get
g(R(X, Y)Z.U) + g(R(U, )X, Y) + g(R(Y, X)U, Z) + g(R(Z,U)Y,X) =0
Using Exercise 3(ii) § 3.2 in the second and in the third term of the above equation,
or, g(R(X,Y)ZU) = g(R(Z U)K, Y) - g(R (X, Y)U, 2+ g(R{Z, )Y, X)=0
After a few steps one gels
2e(R(X,Y)Z,U) = 2g(R(Z, U)X, Y)
ie. g(R(X,Y)Z,U)+ g(R(Z, U)X, Y)
Exercise 4. In terms of a local coordinate system (x!,.......x"} in a neighbourhood U of p of
(M, g) show that

i) R +RY, +RE =0

i) R}, o + RO +RE, =0

ijk.amn jmie i

i) Rify e =R 8

iv) REkEhm = _R:;mj,ghj
Solution : i) From ii) of Exercise 5 in § 3.2 and also using the result

FE=I‘£’J‘

the result follows immediately
ii) Left to the reader
ii) using ii) of Exercise 5 in § 3.2, on finds

a i
h =t I st Th
R{jkEhm _(Elx' 1"_-|;c e i + Tl T —ILT lj]

i) LT d
:g(r?kghm) _ij a{'[ﬂllmj = 'é;(r?kghm) rik Eixl Ehim
+T yI3 B TS S
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Using Exercise 3 of § 4.1 we get

1 8 [agmk _I_E}EI-HJ ﬁ'",]k\i aEmh

h e e
RijkBim = 2 axiloaxd  axk ogxm -‘k o

1.2 [ﬁgm. + OBk _ﬁgm) prl B, Loy [?g...;_,rﬂgm _ 8y
2adlaxk o axm k axi 2 axl oot ™

1[- agmt E'“giﬂ__'l":jg'-f.lxt
e T T

Similarly, one can write Rﬂ,nﬂ.hk

Thus, R:}kg!un +R i[}mghk

2 Jk [albhm Ia'ghl agllu) 1 FIIL [aghm " agh] o agmé.\ll

awl .me_axh axl  axm axh

_irl'_l (EE'F_E.F%_EJ,P_I rh [@i_‘_aﬂi_m_%k\l
2 axl o axk axh/ 2 ™ ad gk axb

“ThTingin TR i T Dl +F:m1_';t5u:
.T'husi R:}kghﬂl + R{]‘Imghk = {] or R |J7kghm Rﬂ,,.ghk-

iv) From Exercise iii) above we write

h __Lrn %8mn O i s
Riean ~ Rty =5 o '"Erika': zrgké,{.'.l
+ipn OB 1o, O 1 BB

9 mi axk 3 mi E‘fx“ 2 ml_axj

(agmll ﬂgm agnn]+lrh [agh:i._l_aghk_agjk
z Pk Taxm  axh ) T2 M ok 0 axt

1 1
==z% A imEm + .zr:n:u‘r kBm =0 RiBnm =Ry
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Theorem 3 : If Vand V correspond to the Levi-Civita’' (Riemannian) Conneclion and the
metric connection with non-vanighing torsion T, then

=% 1
4B8) VY-V, Y= ‘2— (TG Y)Y+ T (X, Y)Y, T (Y, X)) where

4.9 g(TZ, X)) =g(T' (X, Y),. Z)
Proof : From 4.1} we ses that

(Vx8) (Y. Z)=0and (V,g)(Y,Z)=0
Thus Xg(Y, Z)=g(Vy Y, Z)+ glY, V4 Z)and
Xe(Y, Z) = g(Vy Y, Z) + g(Y, V, Z)
Subtracling these two, we get
g(U(X, Y), Z) + gY, U(X, 2)) =0 where
a) UK, Y) = VY -V, Y,
U(X, 2) = VyZ - VyZ
Again from 4.2) we pel

(= ﬁx.‘f - ﬁ.,, X —[X, Y] and

T(X, Y) = Ve Y= Vo X=X Y]
Subtracting and using a) above
=T(X, Y) = U(X, Y)- U(Y, X)
or, g(T(X, Y), Z) = g(U(Y, X), 2) - g(U(X, Y), Z)
Agdin, on using 4.9). we find
B(T(X, Y), Z) + (T (X, Y), Z) + g('T’ (Y, X), Z) = g(T(X, Y). )
+8(T(Z. X), Y) + g(T(Z, Y).X)
= g(U(Y, X), Z) = g(U(X, Y), 2) + g(UCX, Z), Y) - g(U(Z, X). Y)
+g(U(Y, Z), X) - g(U(Z, Y), X)
=-2g(U(X, Y), Z) bya)

=—-2g(Vy Y=VUx Y, Z)=2g(V, Y- Vi Y, Z)

= 1 ;
U ?x Y - vx = E {T(X. Y} + T’ {Xr Y}1 T' {Yr K}’
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3.4.2 Riemann Curvature tensor field :
The Riemann Curvature tensor field of 1st kind of M is a tensor field of degree (0, 4),
denoted also by R

Ro:g(M}x (M) = x (M) = (M) — F(M)

and defined by

4.10) R(X,Y,Z,W)=g(R(X,Y)Z,W),X,Y,Z, W in x(M)
Excrcise : 1 Verily that

DR Y, ZW)=—R(Y, X, Z. W)

NRELY,Z, W) =-R(X, Y, W, Z)

M RGL Y, Z, Wi=-R(Z, WX, Y)

VR, Y, Z, W) +R(Y, Z, X, W) + R(Z, X, Y, W) =0

V) (VyRNX, Y, Z,W)+(VZzR)X, Y, W,U) + (VyR)X, Y,U,2) =0

2. Ir RHk and Enm are the components of the curvature tensor and the metric tensor with

respect to a local coordinate system x!,x2,----,x" then the components Rijkm of the Rieman

Curvature tensor are given by

leh:m :Rﬂk Enm

axiaxd axk " axm.
3, A vector field z on (M, g) is called a pradient vector field if
4.11) (7, Y) =df (Y) = YT, f e F(M)
for every vector field Y and M. Show that for such Z
g(VxZ,Y)=g(VyZX) forevery vector ficld X on M.
Solution : From 4.1) we see that
(Vyxe)XY,Z)=0 forall X, Y, Z in (M)
or Xg(Y,Z)—p(Vx Y, L) =g(Y,Vx7)
Using 4.11), one finds
BV ZY)=X(Y/)-g(VxY.Z)
similarly g(VyZ,X)=Y(Xf) - g(VyX,7Z)
5 B(VXZY) — (Vv Z,X) = X(YF) - Y(Xf) +p(Vy X, Z) - g(Vx Y, Z)
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of, g(VxZ,Y) - g(VyZ, X)=[X. Y] f - gV Y -V X, Z)
=[XY]f —elX.¥1.2) by 4.2)
=[X.Y1f —[X.Y]f by 4.11)

=0
Thus

E(VyZ,Y)-g(VyZ,X)
3.4.3 Einstein Manifold :
Let {e;,e5,---e,} be an orthonormal basis of T, (M) Then the Ricci tensor field, de-
noted by S, is the covariant tensor field of degree 2 and is defined by

n
S(Xps Yp) = D R(((e;)  Xe, Yo e)p)
i=1

We write it as

4.12) S(X,Y) = R(e;, X, Y,g)

i=l
Such a tensor field S(X, Y) 1s also called the Ricei Curvature of M.
It there is a constant 3, such that
4.13) S(X,Y) = Ag(X,Y)
then M 15 called on Einstein Manitold.
The function ron M, defined by

r(p)= is ([:“"ijp'{ﬂi }p_)

15 called the sealnr curvatare of M, We wnite it as

4.14) r=2 ()

i=1
Exercise : 1. Show that the Ricei tensor field is symmetric,

Atany peM, we denoted by [1 a plane section i.e., a two dimensional subspace of

T, (M) . The sectional curvature of TT denoted by K( 1) with orthonormal basis X, Y is defined

as
4.15)  K(IT)=g(R(X, Y) Y, X)=R(X, Y, Y, X)
If K( [T ) 15 constant for all plane section and for all points of p M,

i13



Then (M, g) is called a manifold of constant curvature. For such a manifold
416) RX,Y)Z=k{g(Y,Z)X-g(X,2)Y] where k(IT) say
Example : Euclidean space is of Constant Curvature
Exercise ; 1, Show that a Riemannian manifold of constant curvature is an Emstein Manifold.

2. If M is a I-dimensional Einstein Manifold, then, it is a manifold of constant curvamre

Solution : Let {X;,X,,X;) be an orthonormal basis of T,(M) Then, the sectional curvature

with orthonormal basis X,;,X, denoted by K(TT,) is given by
K(Iya) = R(X), X5, X5, X4)
=R(X2. %, X1, X3)
=K(Il)
Thus, K(IT;)) = K(II}), i+ j
Again from4.12)
3
8(X1. %) = ) R(X;, Xy, X0, %)
i=1
=R(X;, X, X5, X))+ R(Xp, X, X5, X ) + R(X3, X, Xg, X3)
=0+ K(TTy) + K(Ila)
= K(ITj5) + K(TTj3)
S(X,,X5)=K(ll;) + K(II;;) and

S(Xq, Xq) = K(II3) + K(TT5)
As it is a 3-dimensional Einstein manifold, so from 4.13)
S K= XD =A

S(X; Xa) =hg(X, X5) =0
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“Thus, SOX . X )+ 80X, X,) - 8(X,. X)) =2K(T1,,)

or, A =2K([1,,)

A
< Kl ,) = 5 = constant,

i K(i].u.} = Constant, i #
~ Thus every 3 deminsional Einstein muniﬂ.\»ld-is a manifold of constant curvature.
g* 4.4 Semi-symmetric Metric Connection
A linear connection is said to be 4 semi-symmetric connection if
4. AT TELY ) = wiYIX —wi{X)Y, forevery 1-form w.
A lineur connection for which
4.18) Vg=0
is called a semi-symmetric metric connection,

Theorem 1 : If ¥ and % comespand to semi-symmetric connection and Levi-Clvita Connec-
tion respectively, then,

VY — ¥, Y = wiY)X < a(X, Yip
Where p is o vector field given by
glX, p) = w(X) "
Proof ; Since W corvespond Lo u semi-symmetric connection, by 4.17)
T(Z, X) = w(X)Z — w(Z)X
B(T(Z. X), Y) = p(w(X)Z - w(Z)X, Y)
= w(X) g(Z. Y) —w(Z) g(X. Y)
Using Theorem 3 of & 4.1 on the |. h. s. we get
20T (X, Y),Z) = w(X) (Y, Z) - g(Z, p) 8(X. Y)
=g(w (X)Y. Z) — g (Z. g(X, Y) p)
= g(wX)Y —g(X, Y)p, Z)
Whenee 12 (X, Y)=w(X)Y - g(X, Yip
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using the above result in 4.8) we get

= 1
VxY - Vy Y =2ATXY) + o(X)Y - gX, Y)p + o(Y)X —g(Y. X)p)
Again using 4.17), one gets

VY - VyY =a(Y)X —gX, Y)p

Exercise 1. If v and § correspond (o & semi-symmetric connection and the Levi-Civita

connection respectively, then for any 1-form
(Vo) = ("Ti"xm) Y —w(X)o(Y) +a(p)g(X,Y), where
B(X,p) = o(X) :

2. Let ¥ be the Levi-Civita Connection and v be .anuther linear connection such that
VY=V Y -a(X)Y where is a 1-form,

Show that v is a semi-symmetric connection for which Vg = 2a0(X)g
Hints : 1. Note that

(Vyo)Y = Xa(Y)— oV Y)

Use Theorem 1 in the second term on the right hand side, one gets the desired result.
2, MNote that

TX,Y)=Vy Y -V X-[X,Y]
=VxY-a(X)Y -V X+ o(Y)X-[X,Y]
=T(X, Y)+w(Y)X - o(X)Y, onusing the hypothesis
o)X -a(X)Y, as T=0.

Again, (VxENY.2) =Xg(Y,2) - g(Vx Y, 2) —8(Y,Vx,2)
=Xe(Y,Z)-g(Vy Y —0(X)Y,Z) - 2(Y,Vx Z— o(X)Z)
= (Vy2)(Y. 2) + 20(X)g( Y, Z), on using the hypothesis

S Vg =2o(X)g, as ﬁg =0,
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@ 4.5 Weyl Conformal Curvature tensor :

The Weyl conformal curvature lensor, denoted by C, is defined on an n-dimensional
Riemannian manifold (M, g) as follows ;

r C(X, Y)Z =R(X, Y)Z +A(Y, Z)X - A(X, DY + BOY, Z)LX — (X, Z)LY
where A is defined by

1 T
; | i St SO Y Yiohpae—— of X, :
4.19) ALK, Y) 15 { Y+ 2'[11 E U'[” - ‘f?di‘ldLi&tht‘lbﬂr field of
type (1, 1) given by

t g(LX, Y)=A(X, Y), for every vector field X, Y, Z on M

Ann-dimensional (n>3) Riemh:"nninn!.mani.fold '%s said to be conformally flatif
420) C(X,Y)Z=0 '
Goldberg’s Result :

Let (M, g) be a Riemannian manifold and A hf: Ihe field of symmetric endomorphism
corresponding to the Ricei tensor S e

4.21) p(AX, Y) = S{X Y) for every vector fi aldq X, Y on M. Then

42N CX Y)Y E=R{X, Y)E~ m {g(Y, Z)AX - g(X, Z}AY +S(Y, 2N -8(X, Z)Y ]

i (&Y, Z)X — g(X, Z)Y)

= D(n=2)
Proof : Note that
gla(Y, Z2)LX, Y) =glY, Z) g(LX, Y) = g(Y, Z) MX, Y) by 4.19)

1 rp(Y, Z)

= i Y, TSI, Y)Y ——E L p(X y 4.
3 8. D }+2f"—1)(ﬂ-2} 8(X, Y) by4.19).
=-—— (Y, Z)g(AX, Y :
— 5 BY: (e }+2{ “D~B £(X, Y) by 4.21)

e 2) o TR(Y. 2)
{n'—2) 2(n = )(n-12)
Using the above result & 4,19) we find

or g(Y, Z)LX = —

5 s Y, 2) !
C(X, Y)Z= R(X, Y)Z - —— S(Y, Z)X + —=+ = = 5 ;
(X, Y) ( ) = ( ) 2{n—l){n-2}x+ R S(X, Z)Y

e DY Y. ZAX | re(Y. Z)X | (X, 2) Av — 18X Z)Y
2(n - ){n - 2) n-2 2n-Dn-2)  n-2 2(n— 1)(n - 2)
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Or, C(X,Y)Z= R(X.Y}Z—ﬁ{g(‘f, Z)AX - g(X, Z)AY +S(Y, Z)X — S(X, Z)Y)

T

+m|E{Y.Z}X—g{x.z)\(l

Exercise : 1If an n(n >3) - dimensional Einstein Manifold is conformally flat than

2, If we write
a & @ a]
S
Ik} ox' axd axk eyl
~ 8 a)a a
Cw-g[‘:@ﬁbﬁﬁ]
g 0
Ri=S{3r50)
show that
|
Cijia =Ry —E{Ejuﬂu = EiRj + Ry _RikEj]}

(g ~ g
(n—=1)(n—2) jheeil ik &l

Hints : 1 Using 4.13) in 4.14, one gets r=4n
Alsing above result, 4.13), one gets from 4.21)

T
Ax=—x
n

Using 4.20) in 4.22) and also the result deduced above, one gets the desired result after a
few steps.

2 Using goldberg's result, one gets from the hypothesis

& a] | a]
Ciny = Dol e
UK E’[C[ax’ axl) oxk T ax!

the desired result.
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4.5 Conformally Symmetric Ricmanninn Manifold :

A Riemannian manifold (M, g) is said to be conformally symmetric if

4.23) vC=0
Where C is the Weyl Conformal Curvature tensor

Theorem 1 : A conformally symmetric manifold is of constant scalar curvature if

(VzSIY, W) =(VyS)Y,Z) forall Y, 2, W
Proof : From 4.22) we see that

C[X.Y.Z.W}=R{X.Y.Z.W}—ﬁ{g{Y,Z}g{A}{.W}—g{X,Z}g{ﬁY,W}+

+8(Y, Z)g(X, W) = 5{X. Z)a(Y, W)} + {

I
U= | i - A
T B A8CLW) (X, Z)e(Y, W))

Taking co-variant derivative on both sides and using (4,23), we get
. | - i
s AVyRIK YL Z W) = ——{g(Y. Z(VyS)a(X, W) - (X, 2V o S)e(Y, W)
HV uSIY, DX, W) — (V uS)X, Z)a(Y, W)

VUI‘
e 1 o Wi— Z ;
(n—="1)n _2}{3{ I3, W) u(X, Z)e(Y, Wi}

It is known from Exercise 1(v) of & 4.2 that

(VuRNX, Y, Z, W)+ (VRUXY, W, U) + (VyRYX, Y, U,Z) =0

Using the result deduced above, and also the hypothesis one gets
Vyurlg(Y, 2)e(X, W) - g(X, Z)g(Y, W) + Vgr(a(Y, Wig(X, U) - g(X, Wig(Y, )]
+VwrHa(Y, (X, 2) - (X, Ue(Y. Z)} =0

Let {¢;:i=1, ) be an orthonormal basis vectors.
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Taking the sum for [<i<n for X=U=¢;, we get on using the result
Vairgle;, z) =Vt
that
g(Y, )V r—g(Y W)V, r+ ng(Y W)V, r - g(Y, W)V, r+ g(Y, )V, r— ng(Y,Z)V, r=0
or g(Y, L)V, r—e(Y W)V, r=0

Finally taking the sum for 1<i<n for y -7z =g;, We get

Var=0, n=1
Thus the manifold is of constant curvature.
Definition : A linear transformation A is symmetric or skew symmetric according as
4.24) (AKX, Y) =g(X,AY)

or
BlAX,Y) =—g(X,AY)

Exercise : 1, Show that for a symmetric linear transformation A and a skew-symmetric linear
transformation R, the new linear transformation T defined by, T=A R=R. A is skew -

symmetric,

Theorem 2 : For a conformally flat n(n > 3) - dimensional Riemannian manifold, the curvature

tensor R 15 of the form

T

R[X.Y}=-l—fﬁXAY+XAﬁY}—— XY
n—2 (n—1in-2)

where X oY denotes the skew - symmetric endomarphism of the tangent space at
every point defined by

(XAY)Z=pg(Y,Z)X -g(X,2)Y
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Proof : Using the hypothesis, we find that
(AX A Y)Z+(X A AY) = g(Y,Z)AX - g(X, Z)AY +S(Y,Z)X - S(X,Z)Y
As the manifold is conformally flat, we get on using the above result and the hypothesis,

R(X,Y)Z= —l—z-{m}m VZ+ (X AAY)Z) - — (X A Y)Z)
—

(n—1)n-2)

T
(n=1}n—2)

ie. R(X,Y)=- : z—{hxa«‘f+}{r\ﬁ.\’)—
n-

Theorem 3 : If in a conformally flat manifold, for a symmetric linear transformation A,
RX, VA=A R(X,Y)
then

[Az —i]:{ AX =0
n—1
Proof : Note that
RX, V) =—R{Y, X)

As A is symmetric, so by Exercise 1 of this article A, R(X, Y) = R(X, Y). A is skew -
symmetric, Thus R(Z, W)A is a skew symmetric linear transformation and from 4.24) we can
write

g((R(Z, WIA)X, X) = - g(X, (R (Z, W) A) X)
or g(R(Z, WAYX, X) =— g(X, R (Z, W) AX)
=— g(R(Z, W) AX, X), as g is symmelric.

s ER(ZWIAK, X) =0

Using 4.7) one gets

g(R (AX, X)Z, W) =0
Whence RAX, X)2=0
ie, R(AX,X)=0

Again (AX A AX)Z =0 ie, AX A AX =0 for every Z.

Using Theorem 2, one gets

HKaAX

1 T
=~ (AX XAAMX)——
R{X,AX) n—ﬂ{ AAK + X A 3 =12
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AS R(AX, X) =-R(X, AX) and R(AX, X) =0, we get from above,
Xﬁhl}{w%}(nﬁ){:ﬂ
n 1
Mote that X A Y 15 skew - symmetric and thus

AthX——L];'LXAX=ﬂ
n_

. (ﬁz—L]XAXﬂJ
n-—1

Definition : A curve o= x(1),a £t <b is called a geodesic on M with a linear connection v if

4.25) VyX=0

Where X is the vector tangent to the integral curve o at x(t), Note that the integral curves of a
left invariant vector fields are geodesic.

4.7 Biinvariant Riemannian metric on a Lic Broup :

A Riemannian metric g on a Lie group is said to be biinvariant if it is both left and right
invariants,

Exercise 1 : If g is a left invariant convariant tensor field of order 2 on G and X, Y are left
invariant vector fields on G, show that g(X, Y) is a constant function,

Theoxem 1 : If G is a Lie group admitting a biinvariant Riemannian fnetric g, then
4.26) g([X, Y], Z) = g(X, [Y, Z])

4.27) R{J{.Y}Z=-%[[K,YI.ZI

4.28) g(R(X,Y)21W}=—%E{IX.Y].[Z.WJJ

Prool : Since X, Y are left invariant vector fields, X + Y is also so and hence from 4.25)

gKH" =0
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Using 4.25, we find from above

1 VY +VyX=0

since M admits a unique Riemannian connection, we must have
VY - VX —[X,Y]=0

i) or ¥ Y :%[X,Y] from i)

Now for a Riemannian Manifold (Vyg)(X,Z2)=0

or, Ye(X.Z) - g(VyX.Y) -g(X,VyZ) =0
Using Exercise 1 of this article and Exercise 2 of £ 1.4 we see that
Y.og(X.Z)=0

Thus from ii) we lind that —-%g{[Y.XJZ}— %g{XT[Y,Z]] =0
or, g(IX, Y], Z) - g(X,[Y,Z])
Again from the definition
R(X,Y)Z=VVyZ-VyVxZ-VE ¢
=%[K,[Y,Z]]*%[Y.ix.Z]]—]E[D{.Y],Z] by using ii)
I 1 |
uz[x,[Y.Z]]+E[Y,[X1Z} —E[LX,YLZI
=—i[2.[X.Yl]—%[1KsY1-Z] by Jacobi Identity
1 !
1
——E[[X,Y].Z]

Again R(X,Y)Z, W) = —ig[[[X.Y],z], W) by 4.27)

1
=-2e((X.Y1.2], [ZW]) by 4.26)
This completes the proof.
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Theorem 2 : If G is a Lie group admitting a biinvariant Riemannian metric g and [ isa plane
section in T, (M) where IT is determined by orthonormal left invariant vector fields X, Y at pon
G, then the sectional curvature at p is zero if and only if [X, Y] =0.

Proof : From4.15)

K(TT) =g(R(X, Y,)Y, X)

=—%g[D{,Y],[Y,X}} by 4.28)

EIXYLIX. YD)

=

The result follows immediately as g is nonsingular,
Theorem 3 ; If G is a Lie group admitting a biinvariant Riemannian metric g, then
for all left invariant vector lields, X, Y, Z, W, P

Proof : From Jacobi's identity

[W, [P, Z]] + [P, [Z, W]] + [Z, [W, P]] =0
Taking P = [X, Y], we get
W, [[X, Y1, Z] + [[X, Y], [Z, W]] + [Z, [W, [ X, Y]I] =0
or [W, [[X, Y], Z]] - [[X, Y], [W. Z]] = [[W, |X, YII, Z]
=[=1 X, [Y. WII - [Y; [W, X]], Z ] by Jacobi Identity
1) W, [LX, Y1, Z]] - [[X, Y1, [W, Z]] = [[X, [W, Y11, Z] + [[W, X1, Y], Z]
Again from the definition

(VwRI(P.Z.X,Y) = ViwR(P,Z,X,Y) - R(VyP,Z.X,Y) - R(P,V\y Z,X, Y) —
~R(P,Z VyX,Y)-R(P,Z,X,VyY)
=0+R(X, Y, ZVyP) +R(X,Y,VyZP) + R(VyX, Y, Z.P)

+P(X, Vi Y, ZP)
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Using 4.28), one gets

(VyROP.ZX,Y) =~ 6((X,YL[ZIW,P]) 5o (W, 71, PLIX. V)

1 '
-se(ltw. x1Y]iz.p)) vi—g[[x,[w,Y].l?..P]}
Using 4.26) successively we get

=—-%ig([[tX,Y],Zi.W],P}+g({fX,Y_},[W.Z}].P}
+([IW,X1,2],P) + g ([0X.0wW, Y1), P1)}

=+ Lg([wi % ¥),2].p) ([0 YW, 21 P)

_%g({[x?[w,Y]],z],P}—-—égf[[lW.XLY]-Z]-P)

= 0 by 1) for all left invariant vector fields X, Z, Y, W, P.

This completes the proof.
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