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PREFACE

In a bid to standardise higher education in the country, the University Grants
Commission (UGC) has introduced Choice Based Credit System (CBCS) based on
five types of courses viz. core, discipline specific generic elective, ability and skill
enhancement for graduate students of all programmes at Honours level. This brings
in the semester pattern, which finds efficacy in sync with credit system, credit
transfer, comprehensive continuous assessments and a graded pattern of evaluation.
The objective is to offer learners ample flexibility to choose from a wide gamut of
courses, as also to provide them lateral mobility between various educational
institutions in the country where they can carry acquired credits. I am happy to note
that the University has been accredited by NAAC with grade ‘A’

UGC (Open and Distance Leaming Programmes and Online Learning Programmes)
Regulations, 2020 have mandated compliance with CBCS for U.G. programmes for
all the HEIs in this mode. Welcoming this paradigm shift in higher education, Netaji
Subhas Open University (NSOU) has resolved to adopt CBCS from the academic
session 2021-22 at the Under Graduate Degree Programme level. The present
syllabus, framed in the spirit of syllabi recommended by UGC, lays due stress on all
aspects envisaged in the curricular framework of the apex body on higher education.
It will be imparted to learners over the six semesters of the Programme.

Self Learning Materials (SLMs) are the mainstay of Student Support Services
(SSS) of an Open University. From a logistic point of view, NSOU has embarked
upon CBCS presently with SLMs in English / Bengali. Eventually, the English
version SLMs will be translated into Bengali too, for the benefit of learners. As
always, all of our teaching faculties contributed in this process. In addition to this we
have also requisitioned the services of best academics in each domain in preparation
of the new SLMs. I am sure they will be of commendable academic support. We look
forward to proactive feedback from all stakeholders who will participate in the
teaching-learning based on these study materials. It has been a very challenging task
well executed, and I congratulate all concerned in the preparation of these SLMs.

I wish the venture a grand success.

Professor (Dr.) Subha Sankar Sarkar
Vice-Chancellor
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Unit-1 0 Complex Numbers

Structure
1.1 Objectives
1.2 Introduction
1.3 Polar or Geometrical representation of a complex number
1.4 Cube roots of unity
1.5 Worked out Examples (I)
1.6 Model Questions (I)
1.7 De Moivre’s Theorem
1.8 n™ roots of unity
1.9 Expansions of cos nf and sin n0
1.10 Worked out Examples (II)
1.11 Summary and Keywords
1.12 Model questions (II)

1.1 Objectives

In this unit, we would be able to know the definition of a complex number and
its conjugate. We shall know the polar representation of a complex number and De
Moivre’s Theorem. We would be able to find the #* roots of unity Here we shall
learn the addition, subtraction, multiplication, division and different types of math-
ematical operations of complex numbers. We would also be able to find the modulus
and amplitude of a complex number with its geometrical representation,

1.1.1 Definition

An expression of the form & + /b, where a and b are both real, is called a
complex number. It is usually denoted by z = a + ib.
A complex number z is also defined as an ordered pair of real numbers ¢ and »
and we write z = (a, b) subject to the following conditions:
(1) Ifz = (a, b) and z,= (¢, d) be two complex numbers, then (a, b) = (¢, d),
if and only if @ = ¢ and b = d.

7
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(i1) An operation ‘addition’ denoted by ‘+° is defined as

(a Dy+( d)y=(@+c b+d)

(i) An operation ‘multiplication’ denoted by ‘. or ‘<’ is defined as

(a, ). (c, d) = (ac— bd, ad + bc).

(iv) If kis a real number, then & (a, &) = (ka, kb).
1.1.2 Remarks

(1)
(ii)

(iii)

(iv)
V)
(vi)

(vii)
(viii)

(ix)
(x)

In general, (a, b) = (b, a).
For the complex number z = (g, b), a 1s called the real part of z, which is
written as Re (z) and b is called the imaginary part of z, which is written
as fm(z).
The complex number (@, 0) represents the real number @ So any real
number can be regarded as a complex number with imaginary part equal
to 0.
The complex number (0, &) represents purely imaginary number ib.
If @ = 0 and # = 0, then the complex number (0, 0) is 0.
If we write the complex number (0, 1) by 4, the imagmnary unit, then the
rule of multiplication gives
F=ii=(0,1). 0, 1)=(1,0)=-1

We see that (@, 0) + (0, 2) = (a, b)1e. a+ib=(a b).
If z = (a, b) be a complex number, then the negative of z is the complex
number (x, y) such that (a, ) + (x, y) = (0, 0). It is denoted by — z. Then,

-z = (—a, -b).
If (@, b)) =0, thena =0, 5

0.

Inverse of z 15 denoted by 1

2]

1.1.3 Theorem

Ifz=a+ib, z,=c+idand z,= e + if be complex numbers, then

i)z +z,=z2, +z {commutative law of addition)

() z,. z, = z,z, {commutative law of multiplication)

() z + (z,+z)=(z+z) +z

, (associative law of addition)

() z.(z,z) = (z,2,). 2, (associative law of multiplication)

V)z.(ztz)=zz2,+z. 2z (distributive law)

1 1 3
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Proof : The proofs of (i), (i) and (iii) are trivial.
Proof for (iv) : We have

2. (z,z) =(a+ib){c+id). (e+if)}=(a, b) (ce-df cf +de)
" =(ace —adf - bef - bde, acf + ade + bee - bdf )
and (z,z).z, ={(a b). (c,d)} (e, f)} = (ac —bd, bc +ad). (e, )
= (ace — bde — bcf — adf, bce + ade + acf — bdf ).

Hence proved.
Proof for (v} - We have

5 (5+z) = (@ B). (e d) +(e.f))
=@b)(cted+f)
={ac + ae — bd - bf, bc + be + ad + af )

and z.ztz .z, =(a b) (¢ d)+(ab) (e f)

=({ac—bd, bc + ad) + (ae — bf, be + af )
=(ac+ae— bd— bf, bc + be + ad + af ).

Hence proved.

1.1.4 Conjugate of a complex number

If two complex numbers are such that their real parts are equal and their
imaginary parts are equal in magnitude but opposite in signs, then these are
said to be conjugate complex numbers. Thus if z = a + i» be a complex number
then a - ib is the comugate of z and is denoted by z and vice versa.

1.1.5 Properties of conjugate complex numbers

If z, and z

()

(i1)
(iii)
(iv)

, be any two complex numbers, then

=Zl

5, +Z= 2Re (z))

5,-2,= 21 Im (z)

zytz, =7 +7,

1 2

5.2, =217

z,Z; = a positive real number unless z= 0
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Verifications of (i)-(iv) are trivial.

Ifz=a+ib z,=c+idand z,= a - ib, Z, =c—id, then

2]

ra

= A(a+ib)(c+id)

~ {ac—bd)+i(bc+ad)

= f(ac — bd) — i (bc + ad)

= {a —1ib). (c —id)

fac — bd) — i (bc + ad) which establishes (v).
Now, 2.2, = {(a + ib). (a—ib)

(?+ b°) +ifab—ab) =&+ b

which is a positive real number, which proves (vi).

l‘II
3
MQI

and

Z_ 2%, _ ((a+ib).(c=id)
Lastly, , - 2,Z. ~ e+id).(c—id)

_ (ac+bd)+f'(bc—ad)]
c+d’

(=]

(ac+bd) . (bc—ad)]
c+d” c+d”

(ac + bd) _ (bc—ad)

o +d’ o +d’
5_a=ib _ (a-ib)(c+id)
and  TTUTd T (e—id)(crid)

(ac+bdy—i(bc—ad)

c+d’
_ (ac+bd) s (bc—ad)
¢ +d’ c+d’

which proves (vii).
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1.2 Introduction

You have earned gradually the knowledge of the system of integers viz. all
positive integers, all negative integers and zero.
From the concept of solving (ie. to find the value of the unknown) a linear

b
equation ax — b =0, (a # 0 and » are integers). The solution is x = ot Thus we have

extended our knowledge to positive and negative fractions. While solving a quadratic
equation of the type x*= 2, we realize that it has no solution of the type discussed
above.

Then for the sake of requirement, we have extended our knowledge and by way
of definition we have divided the numbers into two categories—rational and irrational
numbers. With this idea, whenever 1 ask you to solve the equation
(a) 2x=0,(b)3x - 5=0, (¢) 4x + 1 =0, (d) 4x* = 25 or x*= 3, you will at once

5

1 5
answer these questions (a) x =0, (b)yx = 7, (¢)x = 7 (d) x = iE and x =+3.
a

Now, if you come across to solve an equation of type x*= -1 or x*= - 4, you
would not be able to answer it because you know that square of any number of your
knowledge is never negative. At this stage your answer will be ‘it is not solvable’.
To make this type of equations solvable, we are compelled to extend our knowledge
of the number system. Thus we call the previous numbers as set of real numbers and
the solution of the type of the last equations as imaginary numbers.

To make the above equations solvable, we introduce the symbol /i which is
assumed to be ./_] This i is called the imaginary unit. Thus /# = -1. Therefore
x*=iorx = ti and x* = 47 >or x = +2/. Thus solutions of the above equations are
obtained.

1.3 Polar or Geometrical representation of a complex
number

Argand Diagram : Let us imagine a plane called Argand Plane on which two mutually
perpendicular straight lines XOX" and YOV are taken. We shall call XOX’ as real axis
and YOY' as imaginary axis. On the Argand plane, let us take a point P to represent
the complex number z = ¢ + 7b.
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Y
N
P z=(a+ib)=(a,b)
r
9.4
X & 0 — —> X
0 t
1
i
i
P’ 7 =(a—-ib)
3
Y!

Figure 1 : Argand plane

If b = 0, then z is real and the point lies on the real axis and if @ = 0, then z
is purely imaginary and the point lies on the imaginary axis.

If PM 1s drawn perpendicular on OX, OM = a and MP = b so that (a, b) is the
cartesian co-ordinates of P. Let P’ be the image of P on the real axis. Obviously the
cartesian co-ordinates of P' are (a, — b) which represents the complex number
7 = a —ib, the conjugate of z = a + ib. OP is joined. Let OP = r and LMOP = ¢,
then (7,9 ) is the polar co-ordinates of P whose cartesian co-ordinates are (a, b).

We have a =r cos 0 .. (D

and b=rsin @ .. (2

So r=a+b* and g = tan*%

Therefore z = a + ib = r (cosQ+ i sinQ).

This is called polar form or trigonometric form of representation of the complex
number z.

This is also called De Moivre’s form of z.

Here = OP is called the modulus of z and is denoted by |z| or mod (z) which

is positive. Therefore |z| =r="+Jat +b*.
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The angle g satisfying the equations (1) and (2) simultaneously 1s called argument
or amplitude of z. It is denoted by arg z or amp z. The argument of z is obtained from
the equations

a ) b
cosp = m and sing = ﬁ

Since 2nw +9, for all integers », satisfies these equations, may also be argument
of z. For unique representation of a complex number in modulus-amplitude form, we
have considered — © < § < 7 which we call the principal value of the argument.

1.3.1 Remember
(i) 1 =cos 0 +7sin0
(i) -1 =cosm+ising

1.3.2 Properties of Moduli and Amplitudes of complex number
Let z, and z, be any two complex numbers.

(i) |zl‘z2 =|zl 1z,| and amp (z,. z,) = amp (z,) + amp (z.)

NEIN EAN _amp(z

Gy (2= 52 %0 and amp| 2 | = amp z) - amp )
“2 2 2

(1i1) |z1 +2z, Slzl|+ Z,

(iv) |zl - zzl 2"Zl |_| Zz"

Let z =7 (cosg, +/sin g ) and z,=r, (cosg, + i sin g,)

Then |Z1| =r, |Z|=F, amp (z) = @ and amp (2,) =0, .
(iyz, .z, =r (cos g, +isin g ) r (cos g,+7sin g,)
= rr,{(cos § cos 9, sin §,sin Q,) +i (sin 9, cos §,+ cos §, sin 9,)

=rricos (9, +9,) tisin(g, +o,)}

Therefore |z]_22|= r1r2=|zl|‘ z,|and amp (z,.2,) = 0,10, = amp (z) + amp (2,).
z, 5 {cosB, +isin0,)

(1) Z ~ r,(cosB,+isin®,)

K {008, +75in8,){cosB, —isinb,)
~r, (cos0,+7sin0,)(cosd,—isind,)
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5, (cosB, cos0,+sin0,sinB,)+7(sin O, cosB, —cosH,sinH,)
' cos’ 0, +sin’ 0,

g

_ :—‘ {cos(0,-6,)+isin(6, —0,)}

!
and amp| ——

.
z z |

]291— 0,= amp (z,) — amp (z,).

Therefore

al-h_
A I A P

= |r1 (cos®, +7sinB ) +r, (cosB, +isinb,)

(iii) |z +2,

= |(r1 cosB, +7,¢080,)+7(7sin6, +r,5in0,)

= J(?; cos B, +,cosB,)’ +(#sind, +£,sinH,)°

= \/rf +12+2rr,cos(0,—0,)

< B +r +2rr, since cos(,—0,)<1
ie, < \1(7‘1+’5)2=7‘1+rz=|zll+|22|'

Hence |z1 +zz| £|zl|+|zz|‘This is known as Triangle Inequality.

= |(r‘1 cos0, —r,c080.)+7 (7 sin6, —r, 51nH.)

(iv) |z1 -4

= J(?; cosB, —r,¢0s8,)” +(#sin8, —#,5inH,)

= i7" +1’ =25, cos(8,-6,)

> \/rf +77+2rr(-1), since —cos(®,-90,)2-1

e, 2 Ji-n) =[i-n|

Therefore |z, —z,| 2||Z1| _|z2"'

Exercise : Prove that (i) |z|=[7] (i) z= |z|2_

Solution : Left for the students.
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1.4 Cube roots of unity

Let us solve the equation x* —1= 0 .. (1)

We have ¥’ =1 = (x — 1) {(x* + x +1).

Therefore, equation (1) gives either x — 1 = 0 i.e. x =1 which is a real root of
equation (1) or (x* +x +1) = 0

1V —4.11_ —1+43i
2

2.1
which are two imaginary roots of equation (1).

2
Now, [—12\/5:'] _H1-3-203 225 1B

4 4 2

Therefore, x =

4 4 2

_1_ 3' 2 . , - . . .
Again’[ 2\/_:] 4134243 _ 242431 _—1+3

ie, if ® be one of the imaginary cube roots of 1, then ° is the other.
Therefore cube roots of unity are 1, ® and ®”.
We see that

Ho+to+tl=

3 1B
2 + 2 +1
1+\/_1 -1- \/_1:_3_

1.5 Worked out Examples (I)

Example 1 : Express the following complex numbers in polar form :
(i) 7 (i) —i (iii) 1+ (iv) 17 (v) — 1

Solution :

(i) Let i = # (cosQ+ i sin §). Therefore » cos §= 0 and r sin §= 1.

Therefore » = /0> +12 =1 and since the point (0,1) lies on the y-axis, §= %

Therefore i = 1‘{005»%”5111%}‘

(i) Let — 7/ = » (cos @+ 7 sin @). Therefore ¥ cos §= 0 and » sin g= -1
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Therefore ¥ = 0" + (-1)° =1 and since the point (0, —1) lies on the negative

. T
y-axis, 6= ~5.

Therefore — i = 1.{005(—%)” sin(—%)}l

(i) Let 1+ 7 =# (cos g+ 7 sin §) Therefore ¥ cos §= 1 and 7 sin g=1.

1 1
Therefore » = 4/13+13=\/§ and cos §= ﬁ, sin ezﬁ.

As the point (1, 1) lies in the first quadrant, the unique value of @is %

Therefore 1+ i = \E(cos%+isin%).

(iv) Let 1- i =7 (cos @+ i sin 9). Therefore 7 cosg= 1 and r sin g= —1.
1

1
Therefore » = JMT:JEand cos 9= NoE sing = N3

As the point (1, —1) lies in the fourth quadrant, the unique value of § is —%.
Therefore 1- 7 = ﬁ{cos(—%)ﬁsin(—%)}
(v)Let —1—7i=r(cos g+ isin §).

Therefore ¥ cos = -1 and 7 sin 9 = 1.

1

2 2 L 1
Therefore 7 = (1> +(~1)’) =+/2 and cos@ = 77 s 8-
As the point (-1, —1) lies in the third quadrant and remembering

; n T 3n
-t < arg (-1-7) < o 9:—(7:—Z)=_T_

Therefore — 1 — i :ﬁ{cos(—%)ﬂsin (—%)}
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Example 2 : Express g-_i-g: in the form A + i B where A and B are real
numbers.
Solution : 2131 _ 2F3D B+5) 6-15+i(9+10)
CUIORE -5 T G- G+ 345
_ 9419 _ -9 ;19
34 34 34
o . —9 _19
which is of the form 4 + 7 B where 4 = 34 andB—ﬁ_

Example 3 : Find the value of 7 " where » is zero or any positive integer.
Solution : We have (i)° =1, ())! =7, ()> =-1, (Y= (@) i =—i, (Y= {(iF}=L
Hence, if » = 4m, i " = (7)) = {(i)y*}"= (1)"= 1.
Ifn=dm+l,i"=0E""={@0" O=0)"i=i

If n=4m+2, i * = ()= {@H" ()=Q0)y"(-1)=- 1.

Ifn=dm +3,i"= @ = {0} (Y= 1" =-1

Example 4 : Find |z| and amp z, where z==1+3.
Solution : Let —1 + '3/ = r(cos®+isin®), 7 is |z| and © 1s ampz.

Therefore ¥ cos@= —1 and r sin §= \/5 L p= 1/(_1)2 +(J§ =143 =2,

Therefore cos §= — %ancl sin 9=§. Since z lies in the second quadrant,
g E_2n
0=173=3"

Example 5 : If o be one of the imaginary cube roots of unity, then show that
(1- ) (1- ) (1- ®) (1- ) =9

Solution : We know that @=1and 1 + ® + o’ = 0.
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Therefore @* = @’ ® = ® and ®® = @°. @’ = .
Therefore (1- ) (1- o) (1- ©*) (1- ®) = (1- ®) (1- &) (1- ©) (1- ®*)
={(1- o) (1- @)= {1- (0 + @)+ ’}> = (1+1+1)*=

Example 6 : If z = x + iy be a complex number and ;—J_ri be purely imaginary,

. . . 1 . .o
then show that z lies on the circle whose centre is at 5(—1+ 7} and radius 1s ﬁ

z+1  x+D+iy _ (x+D+iy x-i(y-1)
z—i  x+i(y-1) x+i(y=-1) x-i(y-1)

Solution :

_ XDy - (D -1
X’ +(y— 1) ¥ +{y— 1)°

This will be purely imaginary if x (x +1) + y (y — 1) =0

5 L s 1Y 1V 1
2 42 _y= +=] +|ly—-—=) ==
or, x> +y +x—y=20or, (x 2) (J’ 2) 3

, 1, .1
__+ —_—
),1.e., at , 12 and

=
1D |

which represents a circle with centre at (—

radius =L
\/E .

1.6 Model Questions (I)

1. (a) Give the polar representation of the following complex numbers :

Gy 1+ i 3 (i) 3= (iii) ”“ﬁ_

{b) Express the following in the form A4 + 7 B where 4 and B are real numbers:

Q) (1=) (6 — 81) (i) i ( 1 + i) (2+i) (i L+
[(EN 1

2+ V) 1" cos®+2isin® -

(iv)
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2. Simplify :
(1) i ® (1) 7 (i) 7 3
C s 1+2: 1+i
(iv) W 52 oy L0
oy 2 3 2 f +1 +1
M) 15 T T+ (vill) ST
3. Find the modulus of the following :
(i) i (i) — 7 (i) 1 + 7
. . (l—f) 243 2-3i
(iv) 4 - 3i V) (Vi) 2-3 2+43i

(vil) (1+ 7y (1=F)

19

4. Find the principal amplitude of each of the following complex numbers

() 2i (i) 3/ i) 1- /3
(iv) 1

Z
5. Find the value of arg [ ]where z=2i and z,= -1- i

2 2

2 {5

6. Prove that /m (z)= 0 where z = [

7. If ® be an imaginary cube root of unity, then show that
(1 +o-0)=-128w
(i) (1 — o+ )+ (1+ © — o)’ = 32
1 1
+ — =
(iii) 1+20 240 l1+o

(iv) (1+ ®) (1 + o) (1+ &) (1+ o) =1

X0+ yw+z
M Yoty+zo

(Vi) ¥+ y+2Z7-3z=(x+y+2) (x + yo + z0°) (x + yo’ + zm).
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8. For any two complex numbers z, and z,, show that

1

:}.

9 1If z, and z,be conjugate complex numbers and z, and z, be also conjugate

: +|zl —22|2 = 2{|21|: +

|zl +z,

Zy

™

Z 4
complex numbers, then show that amp (,—1} = amp [z—]

4

10. If @ + " +1=0, examine whether # is divisible by 3.

.oz—i . . . .
11. If the ratio P be purely imaginary, then show that the point z lies on the
circle whose centre is at the origin and whose radius is 1.
12. Prove that the complex numbers z = x + 7y which satisfy the equation

-5
Z+5i

=1, lie on the x-axis.

13. Objective questions : Verify:-
(1) z+ Z =0, if and only if Re {(z) = 0.
(1) z.z =0, 1f and only if z = 0.

(1) amp (bi), (b > 0) is

w23

(iv) amp a, (@ <~ 0)is w.
(Vyargz+arg z=0,1fz=0.

(v1) One square root of 3 + 4i 15 2 + i

(vit) The smallest integer for which (ﬁ) =1,1s 4.

1

(vii) ﬂis purely imaginary and its amplitude is %
1+-
i
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1.6.1 Answers
1. (a) (i) 2 (005_"'35111 ) (i) 2 cos(—%)ﬂ' sin(—%)}

(1m1) \/_(COS—+I Sln—)

b)) A=-2,B=-141) A4A=-3,B=1 (i) A= _%’ B =_%
(iv) A = _Z __4 (V)A _ 1-cos6 B —2sin®

2-2cos8+3sin°8"  2-2cos8+3sin°8’
2 M1 Gy Gy -1 (v~ (Vi (i) 2 (vii) %(3 +44),
01 @1 Gy WS I o) g )2

4 G) 5 @) -7 @) T ) -8 _%’ 10. No.

1.7 De Moivre’s Theorem

If » is an integer, positive or negative, then (cos §+7sin § )" =cosn@+isinng.
If 1 15 a fraction. positive or negative, then (cos n@+ 7 sin #9) 15 one of the
values of (cosg+ 1 sing@). [Qis a real number].

Proof

Case 1: Let n» be a positive integer. We shall use principle of mathematical
induction to prove the proposition.

Forn =1,
{cosg+ising) = (cosgtising)=cos g +isin g=cos(1.g)+7sin{(l.9)
Therefore the theorem is true for » = 1.

Let us assume that the theorem is true for a particular value of n, say 4, (¥ > 1)
1.e., we assume

(cosg+ 7 sin@ ) = cos k@ + 7 sin k0 .. ()
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Multiplying both sides of (i) by (cosp +i sing), we get
(cosg+ i sing)*' =(cos kg + i sin £9) (cos@+ i sin 9)
=(cos kQ cosg—sinkQsing) + 7 (sin k§cos® + cos kQsing)
=cos (k+1)g+ 7 sin (A +1)g.
This shows that it is true for n = & +1,
Thus whenever the theorem is true for n = £, it is true for # = & +1. But the
theorem has been proved to be true for # = 1, so it must be true for £ = 1+1=2 and

as it 1s true for # = 2, it must be true for #» = 2+1=3 and so on. Hence the theorem
is true for all positive integers .

Case II : Let # be a negative integer When # is a negative integer, we take
n =—m, where m is a positive integer.

1
= (cosB+isin0)”

Then (cos@ +7 sing ) = (cosg + i sing) "

by Case 1, m being a positive integer

1
cosmO+isinm0

3 cosmO —isinmo
~ (cosmO+isinmB)(cos md—isinm0)

___cosmB—isinmb
(cosmB)” +(sin mB)*

= cos (-m)Q+ i sin (-m)Q

= cos n@+isin ng, since — ut = A,

=cosmB—isinm0O

Hence the theorem is true for all negative integers ».

. . . P .
Case III : Let » be a fraction, positive or negative. Let # = 7’ where p i1s any

integer positive or negative and ¢ is an integer > 1.

g
Now we have (cos£9+isin£9j :[cosqﬁeﬂsin qﬁej
q q q q

(by De Moivre’s Theorem for positive integral index)
=cos pe+isin pg = (cosg+ 7 sin §)7 . (2)
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Now, extracting the g-th root of both sides of equation (2), we have

cOSs g@ +i sin %9 is one of the g-th roots of {(cosg + 7 sing )¥
i.e., cos Pg+isin£6 is one of the values of (cosp+ i sin9)§

i.e., cos n9+ i sin n@is one of the values of (cos@+7sin®)”, sincen =

<

Thus the proof of De Moivre’s theorem is complete.

Note 1 : When # = 0, (cos@ +i sin@)"= (cos@ + i sing )" =1

and cos (n@) + 7 sin (ng)=cos (0.g) +isin(0.g)=cos O +isin0=1
Therefore De Moivre’s theorem is also true for # = 0.

Corollary : (cos@ —7 sing )" = cos ng — 7 sin ng;

for, (cos@ — 7 sing)* = {cos (-9 ) + 7 sin (—g)}"= {{cos@+ i sing)'}"

= (cos@Q+ 7 sing)” =cos (1) +isin(—ng)

cos @ — i sin nQ .

Note 2 : De Moivre’s theorem holds for all real values of . When # is irrational,
the number of values of {cosg+ 1 sing )’ i1s infinite.

1.7.1. Application of De Moivre’s Theorem

We like to state a very important theorem without proof.

1.7.2 Theorem :

Let § be a rational number. p, g are integers prime to each other where g > 1.

2
Then (cosB+isin8)? has exactly ¢ distinct values which are given by

cos —p(zk:+9)+isin@,fork =012, ...(¢-1).
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1.7.3 Extraction of any assigned root of a complex number

We are to find out all the #-th roots of a complex number z = a + /5. We express
z in its De Moivre’s form or polar form. We have z =g + ib =r (cos 9+ i sin 9),

when 7 cos@=a, r sin 9= b, then r = 42 + 2

z=r(cosg +isin 9)=r {cos (2kn +9) + 7 sin (2kn+0)},

1 1
. . R 2kn+
where X is an integer. Then we see that z" =r" {COSR—G

+isin—2kn+e},
H n

where k=0, 1,2 ..., n-1

1.8 n-th roots of unity

Let us consider the equation x" —1 = 0.

Now x" =1 = cos 0+ 7 sin 0 = cos 2k + 7 sin 2k, where k& 1s zero or any integer.

1
Therefore x = (cos 2kx + i sin 2kq)~

= cos 2':‘;Ttﬂ’sin 2':?5, fork=0,1 2...@(mH-1).

If # be even, the real roots of x"=1 are +1 and the imaginary roots are given by

cos 2}r"—ﬂ"iisin2k—“",vs.rhere)‘c =12, (l"—l)‘
n n 2

If #2 be odd, the real root of x*—1=0 15 1 only and the imaginary roots are given

cos 2k—ﬂiifsinm,where}’c=1, 2., l(n—l).
n n 2

Let us now consider the equation x* +1= 0.

If x*+ 1=0, then x"=—-1=cosg +7sin m =cos (2kn +x) +7sin 2kx+mn),
where & is zero or any integer.

=012 (n-1).

Therefore x = cos (2k: DT 4 jsin GEEDR

R
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1.9 Expansions of cos ng and sin ng, where n is a positive
integer and 9 is real

From De Moivre’s theorem, we get
cos ng+ i sin ng = (cosg+ 7 sing )"

H

cos" §+ (J cos™' g (7 sing) + [;) cos" @ (7 sing )’

+...+t{sng)

H - -
= cos"B—[z]cos”"Bsin‘G+ ...... ]

+i

T
—
<
Q
&

=3
L
L)
w,
=
L)
|
T
[ -
e
L]
Q
&
=
'-JIJ
<
w,
=r 51
<
+
T

Equating real and imaginary parts, § being real, we get

n
oS 1= cos"9-— [J cos" 2 gsin® g+.....

] ]
and sin ng = [1] cos "9 sing- [3] cos" gsin*g+.....

If » is even, the last term of the expansion of cos ng is (_1)% sin” @

w2

and that of sin #g is (—1) 2 ‘(ﬁ_l)cosesin”" 0.

=1

If » 1s odd, the last term of the expansion of cos #gis (—I)T(” )ccosEisin""l 0

-1

a1

and that of sin ngis (—1) 2 sin” 0.

1.9.1 Expansions of cos" § and sin” 9 when # is a positive integer and g is real

Let z = cos@+ 7 sin . Therefore %= z'={(cosgtisin g)'=cosp —isng.

. 1 .
Also z"= cos n@g + i sin #9 and ?=cosn9 — isinno.
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So Z+%= 2 cos@, z" + %= 2 cos np

= 2i sin @, Z"—L,f 2 isin ng.

-
'

and 2-—-

By |-

Now 2"cos"0= (z +

M
=z +

— (2"4‘21_”)"’(?)(2"_2 + ,}_2)+(;)(z”'4+ 23_4)+ ......

by | —
=

1]
2
L]
o]
&
]
[ o]
+
——
—
o—
2
o
(=]
(¥ -]
—
]
|
2
el
a o]
+
—
[P
o—
2
o
(=]
(¥ -]
—_—
=
|
e
e
fanl
+

Therefore
1 " "
cos"g = F{cosn‘EH(, )005(11—2)9+(2)005(11—4)9+ ...... ',

Since » 1s a positive integer, the number of terms on the R H.S is finite.

s

,we can find the value of sin” ¢ .

Similarly, from the equality, (2 7 sing )" =(z—%

1.9.2 Expansion of tan 70, when » is a positive integer and @ is real, can be

sin 70

cosnd’

obtained from the relation tan ng=

1.9.3 Expansion of cos o and sin o in ascending powers of «, when »n is a
positive integer and o is measured in radians

We have cosng = cos”@—(7)cos"0sin*0+(])cos™* Osin*§— ...

= ¢cos"B- n(nz—l_l)cos"'3 Bsin° 0

PG, ('14_! DE=3) o+ 9sin 6

Similarly sin #g= n cos "'gsing — Wcos"'3 @sin’ 0+ ...
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o ] . ]
—, (Bisalsomeasured in radians),

Putting ng= o, fe. n= 9
g(g_l)
we have cosqg=cos g _ 918/ cos "2 gsin’g

2!

5l
+ 010 ?4' 9 cos” *0sin*6—.... .

_ " 0!.(0!.—9) n=2 Sin@ ?
= cos" Q- X cos G(T)

. oc(oc—@)((x;f@)(a—w) cos"-“e(%) _

. . 3
sino = oL cos™ ™' 6. 513 6_oa- 9; I(OC —20) cos™ @ (#) +...

and
Keeping o fixed and making # — + o=, we see that g — 0 and # — 1 and

2 4

therefore, we have cosqg = I—OZL' +%—..‘...
. o o
= Q- ...
and singt= a TR

1.10 Worked out Examples (II)

1
Example 1 : Find all the values of (-1+ 7)5_
Solution : Let —1 + 7 = r (cos@+ i sin ). Therefore r cosg= -1, # sing=1.

1 1
Hence r=/(-1)'+1* =+/2 and cosg= - 77 and sin 9="7.

AT

These equations are simultaneously satisfied with §= 4
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Therefore —1+7= ﬁ(cos%ﬂsin%n) = \/E{COS(%RJrS:TR)Hsin(anJr%)},

where & is zero or any integer.

1 1
Therefore (—1+7)F =219 {cos%(2k7c+%n)+isin%(2kn+3%c)}fork ~0,1,23.4

Example 2. Solve (i) x*-1= 0 () x’+1=0.

Solution : (i) Here x *=1= cos 24kn + 7 sin 2kx, where k is zero or an integer.

Therefore x = (cos 2km +7 sin 2k7c)$= cos Z%n+ i sin % where £=0,12,...,5.

Sox=cos % + isin% = cosan + isink%,wherek =1,2, [imaginary roots]
and x = x 1, [real roots].

(ii) When x’ +1= 0, X’ = -1 = cos (24 +1) n + 7 sin (2k +1)n where & is zero
Or an integer.

2k +1) 2k +1)

Therefore x = cos n+isin77¢, for £ =0,1,2,3.45,6.

Example 3. Apply De Moivre’s theorem to express (1) cos 30 in powers of cos 0
and (ii) sin 50 in powers of sin 8.

Solution : (1) We have
cos 30+ isin 30 =(cos g+ 7sin g)
=cos’9+ 3 cos’g. isin 9+ 3 cosp. 7 sin® 9+ F sin’h
= ¢os’9 - 3 cosgsin’g+ 7 (3 cos’ @ sin §— sin’gQ).
Equating real parts of both sides,

cos 30 = cos*® — 3cos@sin’g = cos’9 — 3 cosf (1 —cos’p)

3
= 4cos 8-3cosO
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(i) We have

cos 59+ 7 sin 5= (cosg+isn gy

cos’Q + Scos*g. isin @ + 10 cos’g. 7 sin® @
+ 10 cos’g.73sin® @ + 5cos@. i *sin*@+ 77 sin’Q
=cos’ § — 10 cos’ g sin’g + 5 cosg sin* @
+i (5 cos’ @ sin g — 10 cos* g sin® g+ sin’ §).
Equating imaginary parts of both sides,
sin 5= 5 cos*@sing — 10cos® g sin*g+ sin’g
=5 (1-sin*g )y sin ¢ — 10 (1 —sin’g) sin*Q+ sin°Q
=5 (1 -2 sin’°g+ sin*g) sing — 10 {1-sin’g ) sin’g + sin*g
= 5 sin §—-20 sin*g+ 16 sin’g.
Example 4. Use De Moivre’s theorem to express sin* § cos*@ in terms of sines
and cosines of multiples of §.

Solution : Let z=cos § + 7 sing, % W= (cos 9+ 7sing)'=cosg—ising.
Therefore Z+l = 2cos6, z" +Ln = 2cosn0.
1 w1
z——=2isInH, 2" ——=2isinmd.
£l _ 7+ ]- _ =2 l *
Therefore (2/ sing)*. (2cosg)* = |z-—=] |z+ g Bl E s

or, 2% sin*g cos'g =2* +4 (Z°) %)HS(. (—21—2)
1

:
o (o2
et

=2 cos 8 — 4.2 cos 49+ 6, [since z" + ZL—Z cos n9]

Therefore sin*g cos*g= % (cos89—4 cos 4913).



Example 5 : Find the value of llmx_—
XK=y X

Solution : lim
x—

sin x

X x
. x—{(x—--+=-..)
x—sﬂlnx = lim 3! ﬂ‘ 51
X x—0 X
1{x x°
- k(-5
. 1 1
- l!i%(i‘ﬁ* ----- J-i-
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, X 18 in radians.

1.11 Summary and Keywords

Summary :

I. Polar representation of a complex number.
If z=x+ iy, (x, y are real numbers) be a complex number, then z = r (cosg +/ sing)

is its polar representation, where x = 7 cosQ, y = 7 sing.

Its modulus = |z| =r=4/x>+)° and its amplitude = amp (z) =9, satisfying

cosB=

X

Jxi+y?

and sinB=

})

Conjugate of z =Z=x — iy = r (cosp — 7 sing).

II. De Moivre’s Theorem.

If 1 be an integer, positive or negative, then {(cos@+/ sing )*=(cos ng+ 7 sinng).

If # be a fraction, positive or negative, then (cos #g+ 7 sin ng) is one of the
values of (cosg+ i sing )"

rz

If 12 15 of the form g then {cosg + 7 sing) 4 has exactly ¢ distinct values which

are given by cos

2RO

8)

np(2k7c+
q

s fork=0,1,2,..., (g -1).
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III. n-th roots of unity.

n-th roots of unity are given by the following » values of cos 2""'—'ﬂ:+r‘sin2}"—1rr‘
H n

fork=0,1,2,...,{n-1).

Keywords : Complex numbers, modulus, amplitude, distinct roots.

1.12 Model Questions (II)

1. If » be a positive integer, prove that

(cos@,+ 7 sing ) (cosp,*+ ising,)..... (cosg, +isin @)
=cos(0,+0,+......... +8,)+isin(0, +0,+.......... 0,).

Hence deduce De Moivre’s Theorem for positive integral indices.
. . .. W, T .
2. Find g for which (cosg+ 7 sin ) (COSEJF-‘SIHE) =i

(cos20+isin 2(—3!)4
(cos®+isin0)’

3. Express in A+i B form where A and B are real.

(sin9+icose)4
(cos@—isine)ﬁ '

4. Find modulus and amplitude of

5. Show that (sin 20+ 7 cos 20 )"= cos » (g—29)+ isinn (%—29), 7 being

an integer.
6. If » be a positive integer, then prove that

1+sin(p+icostp”= (ﬂ_ ) . (ﬂ_ ): . _ R
[1+sin(p—icostp) cos|= nQ |+ isin > nQ|=(sin@+icos@)”

7. Solve : (i) x° — 1= 0 (i) x* +1= 0 (i) ¥* + ¥~ ¥~ 1= 0.

2rm . 2F .
8. If o= cos Tnﬂ SIHTR and » and p be prime to », then prove that

1+ gP+a? + + g =,
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9 Ifa+ %= 2 cos acand b + %= 2¢osf, then show that cos (¢—f) is one of

lfa b
the values of 2(b+a)'

10. Using De Moivre’s theorem, express sin 7¢in terms of sin @ .
11. Using De Moivre’s theorem, find the value of
(a) sin’ ¢ (b) cos’g (c) 2°sin*Q cos’Q.

12. If vand Bare the roots of the equation x*—2x cosg+1= 0, find the equation

whose roots are o” and [3”, where » is a positive integer.

13.If x = cosg+ i sin gand 1+/1—g* = ng, then prove that

1+acosg =%(1+nx)(l+%).

14. If » be a positive integer, prove that (1+7)" + (1 — iy’ = 22" COS%.

15 If cos o+ cos B+ cosy=0 = sin o+ sin B+ sin v, then prove that
{a)y cos 3o+ cos 3+ cos 3y=3 cos (a+PB+v)

{(b) sin 3¢+ sin 3f + sin 3y =3 sin (g +B+7v)

(c) sin® ¢+ sin 3+ sin® ¥ = cos*q + cos P +cos” v=5.

) sinB 2165
16 Find g, when 8 2166
1.12.1 Answers
2, % 3.cos 20+ 7sin20. 41,20,

2gnﬂ'sin 2gn,k=0 to §;

7. (i) cos
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2k +1 2k +1
(i) x = cos ( 8+ )n+isin( 8+ )TC, for k=0 to 7
(iii) cos%nsin%,k: 0.1, 2 34 and
cosmﬂ'sinm,r:& L2

10. 7 sing— 56 sin*9+112 sin*g— 64 sin’Q.
11 (a) %(sinSG—Ssin3@+IOSin9),

(b) 61—4(00379+700359+2100539+350039).

(c) cos 60 — 2cos 40 —cos 20 +2.
12. x>~ 2x cos ng +1= 0.

16. 3° approximately.



Unit-2 3 Functions of Complex Numbers
(Exponential and Trigonometric)

Structure
2.1 Objectives
2.2 Introduction
2.3 Definitions
2.4 Logarithm
2.5 Hyperbolic Function
2,6 Inverse Circular Function
2.7 Worked out Examples
2.8 Summary and Keywords
2.9 Model Questions

2.1 Objectives

After learning this unit, we shall be able to do the following :

e Any complex number can be expressed as an exponential function of the
form » e®,

¢ Circular function of a complex number can be written as an exponential
function and vice-versa.

¢ Logarithm of a complex number can be expressed as a complex number of
the form A+ iB.

2.2 Introduction

In this unit, we shall learn the definitions of exponential functions, circular
functions, hyperbolic functions, logarithmic functions of complex variables. The defi-
nitions of these functions which are known to us for any real variable will follow
when the imaginary part of the complex number is taken to be zero.

As for example, let us consider a complex number z = x + #), where x and y are
any real number. Then the exponential fiinction

34
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€ = et = ¢ ¢ = ¢* (cos y + i sin ).

Now, if we take imaginary part equal to zero, ie., y = 0, we get
e=¢" (cos 0+ i sin0) = ¢ which is the exponential function of a real variable.
Similarly for other functions. We know that, for any real number x, the infinite series

1+x+a+ ‘‘‘‘‘ +W+ _____ is an absolutely convergent series whose sum is denoted

. x’ X
by &, ie, e =1+x+—+. . +—+ ...
y 21 7l

2 4 3

=1-2 42 2
M TRAVY oY
. _ x3 xS R x2n+1
and Smx—x—§+5—!— ““““ +(—l) m ....
2.3 Definition

i

The series 1+z+%+w..+ﬁ+ ..... can be shown to be absolutely convergent

for all complex numbers z and is denoted by exp (z) or £(z). For uniformity, whether
z is real or complex, we write this series as €.

-

Then, if z be a complex number, ¢ = 1+z+‘%+ ...... +

Similarly, for any complex number z, we define sin z and cos z as the sum
function of the absolutely convergent power series given by

3 5 2 )
. z z 1. 2,z
sihz= 2z 3!+ T and cosz=1 —2!+—4! ......

Other trigonometric functions are defined as

sin z L._Cosz

tanz = ,cotz =—"—=, cosecz=.L and secz= .
cosz sin z sin z cosz
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2_.
1! 2!

Corollary 1 : For z = 1,

Corollary 2 : For z = 0, ¢° =1.

Like real index, ¢* obeys the laws of indices. If z, and z, be two complex

1
L2

-
2

numbers, then e =1+z +§+ ““““ and e =1+A2+?+ .....

2 2
2 Z
Now e ezz—[1+zl+—+ ...... ][l+z3+—2 + . J

|
—
+

(z,+2z,) +
2!

Since the infinite series representing o1 and % are known to be absolutely

1+(z,+2,)+

convergent, the product ¢” ¢* is also an absolutely convergent series.

2+,

Hence ¢ e =¢

Corollary 3 : ¢ e | e =e
Corollary 4 : (¢°)" = ¢ ™
Corollary 5 : (e ™) " = (e™)".
Corollary 6 : ¢° ¢ =1.
Corollary 7 : o £p% —pv7%,
We have ¢° = 1+:z +2ﬂ|+33|+ ......
Let z = ix, where x 15 a real number.

GG
21 "3l

Then we have ™ =1+ix+-——
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Therefore e™ = cos x + 7 sin x.

Similarly e™ = cos x — i sin x.

g + -ix . g -ix
and sinx =

From these results, we have cos x = > %

37

These are known as Euler’s exponential values. These values can be extended

to complex variables also, i.e, if z be a complex variable, we can define

e’ =cosz+isinz,

e:’z +e—:’z . e:’z —e =

e =cosz—isinz and hence cosz=——— and sinz =

2.3.1 A few properties of sine and cosine

(i) We have cos (-x)= %(e’['x} + e"{'x}) = %(e'”" + e"") =COos Y,

]
=
o
—
1
by
+
cb|
L
p o
[
|
—
1
by
rQ’I
by
)
e

1 i -
= =4 =1
ghete )
(1v) {a) sec? x =1+ tan*x. (b) cosec’ x = 1 + cot’x.
B . 1 i —ix 1 i =i
(v) sinxcosy + cosxsiny= E(e —-e ).E(e} +e )

i%(e”+e""‘). ! (e" e'i")
= %(e’*Qe*‘y —e™ Ze“")

= %{e"{:x*}’) —e_‘("*"’)} =sin{xxy).
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Similarly we have
{vi) cos (x £ y) = cos x cos y Fsin x sin 3.

(vil) Putting x = y in sin ( x + y ) = sin x cos y + cos x sin y, we get
sin 2x = 2 sin X €OS X.

Similarly

{viil) cos 2x = ¢os® x — sin’ x.

2.3.2 Periodic function

Definition : A function f (x) of a complex variable x is said to be a periodic
function with period £, if f (x+k) = f (x).

Corollary : If i be any integer and £ (x) be a periodic function of x of period
k, then f(x + mk) = f (x).

2.3.3 Theorem

If x be a complex number, then sin x, cos x, tan x, ¢*, e” are periodic functions
of x with period 2nxr, 2nn, nr, 2nni, 2nw respectively, where » is any integer.

Proof :

We know that sin 2nm = 0 and cos 2nx = 1 for all integers ».

We have

sin (2um + x)=sin 20T ¢os X + ¢os 2um sin x = 0. cos x +1. sin x = sin X,
cos 2nm +x)=cos Znm cosx —sin 2um sinx = 1. cos x — 0. sinx = cos$ X,
tan (#m + x) = tan x,

2ami+x 2nmi_x
e

="M e = (cosch+fsin th)ex =e",

i 2nm+s
e;[_mt x}

= cos (2nm+ x)+isin(2nm+ x) = cos x +isinx = &”.

2.4 Logarithm of a complex number

Definition : If there is a complex number ¥ { = 0), corresponding to a complex
number z such that ¢ = N, then z 15 defined to be the logarithm of N.

Since we know ¢*™ = cos2nm+isin2nn= 1, so for all integers n,

2nmi =+ 2nmi

N=¢=¢’l=¢’e™ =e¢
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Therefore, according to the definition, (x + 2nw7) 1s also logarithm of N, i.e.,
logarithm of a complex number is a multiple-valued function, and we write this
as Log NV.

Therefore Log N=z+ 2ngi =log N + 2nni.

log N is called the principal value of logarithm, when » = 0.

If we take the complex number in modulus-amplitude form, we have

z =r(cos@+isinB) = re®, where ¥ = mod (z) and 6 = amp (z).

Then Log z = log r + 7 (§+2n7) = log (mod (2)) + i (amp (z) + 2nm).
Principal value is given by log z = log (mod (z)) + 7 amp (z), taking # = 0.

Properties of logarithms :
For any two non-zero complex numbers x and y,
(i) Log (xy) = Log x + Log y.
Let x = ¢ y=e™. Therefore xy =e® e* =¢""
Since Log x = z, + 2nxi, Log y = z,+ 20w 7 and Log (xy) = z,+ z,+ 21" ni,
where n, #', n” are integers.

Therefore Log x + Logy = z+ z,+ 2(n + ') ni =z + z,+ 2#" 7i = Log (xy),
taking #” = n + #’ as integer.

x x _e S
i = [=Logx—Logy Here —= =e772 efc.
(ii) Log (y} g gy Yo

Similarly, we have
(iii) Log (x*) = y Log x + 2nri, where » is any integer.
(iv) For x > 0, Log (— x) = log x + (2n +1) ni and log (— x) = log x +ni.

(v) For each value of m, Log z is some value of Log z™ but not conversely,
m being a rational number.

2.4.1 Definition of ¢*, where a ( # 0) and z are complex numbers
We define g as @ =e™ %7 =™ ™™ 5 beinganyinteger.

The principal value of a° is e,
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2.5 Hyperbolic functions

For any complex number z, we define hyperbolic functions as under :

Hyperbolic sine - sinh z = € —¢

-z

) . e+ e
Hyperbolic cosine : cosh z =
. sinh z 1
Similarly tanh z = coshz coth z = tanhz >
_ _ 1
cosech z = = , sechz= .
sinh z coshz

Some important formulae :

Let x, y and z be complex numbers.
(1) cosh?’x — sinh? x = 1, sech® x + tanh? x = 1, coth’ x — cosech® x =1.
(1) sinh {(—x) = — sinh x, cosh (-x) = cosh x, tanh (—x) = — tanh x.
() sinh (0) = 0, cosh (0) = 1, tanh (0) = 0.
(iv) sinh (x £ y) = sinh x cosh ¥ * cosh x sinh y.
(v) cosh (x £ y) = cosh x cosh ¥ £ sinh x sinh y.

) tanhx +tanh y
(vi) tanh (x + ) = lttanhxtanhy
s . . ia 2tanh x
(vi1) sinh 2x = 2 sinh x ¢osh x, cosh 2x = cosh’ x + sinh® x, tanh 2x = ————.
1+ tanh*x

(vii) sinh x + sinh y = 2 smh (x +y) cosh (x ¥)
sinh x — sinh y = 2 cosh = (x + y) sinh —(x ¥)
cosh x + cosh y =2 cosh 5 X+ cosh 5 X =)

cosh x — cosh y = 2 smh = (x +y) smh (x ).
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(ix) 2 sinh x coshy = sinh (x + y) + sinh (x — )
2 ¢osh x sinh y = sinh (x + ) — sinh (x - y)
2 cosh x coshy = cosh (x + y) + cosh {(x — y)
2 sinh x sinh y = cosh (x + y) — cosh (x — y).

(x) sinh (2n wi+x) =sinh x, cosh (2nxi + x)= ¢osh x and tanh (s 7/ + x) = tanh x,
where » is any integer.

These formulae can directly be proved from definitions.

2.6 Inverse Circular Functions

For real values of x, y, a and b, if cos (x +iy) = a + ib, then we define (x + /)
as inverse cosine of (a + ih)

For all integers 1, cos (x + iy) =cos 2nn £ (x + 7y)) = a + ib.

Therefore inverse of cosine function of a complex number is a many valued
function and we shall write it as Cos™' (a + ib), i.e.,

Cos™ (a + ib) = 2nn + cos™' (a + ib).

The principal value (p.v.) is obtained by putting # = 0. The real part of the p.v.
lies in (0, ).

Similarly, Sin™! (a + i) = nrn + (-1)" sin”' {a + ib).

The principal value 1s obtained by putting # = 0. The real part of the p.v. lies

(59
111 2

and Tan™ (a + ib) = nw + tan™' (a + ib).

Putting # = 0, the principal value is obtained. The real part of the p.v. lies in

(43
2’ \2 +

Also, Sec™ (a + ib) = 2nrm + sec”! (a + ib)
Cosec™ (a + ib) = nm + (-1)" cosec™ (a + ib)

Cot™ (a + ib) = nm + cot™ (a + ib).
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2.6.1 Some relations between hyperbolic and circular functions

Let z be a complex number ; then

(1) cosh z = cos (iz), i sinh z = sin (iz), i tanh z = tan (iz).
iz =i{iz} -z z
Proof : cos (iz) = te -€ *€ _oshz
2 2
. ei(f'z) _e—:’(f':) e—z _ez . e: _e—z o
sin {iz) = . = — =1 =7sinhz
(iz) 2i 2i 2
_ sin{iz) .
tan (iz) = ;‘):rtanhz.
cos(iz)

(i) cosh (iz) = cos z, sinh (iz) = i sin z, tanh (iz) =/ tan z

Proof :  cosh (iz) = cos (i. iz) = cos (-z) = ¢cos z
. , 1. ... 1. 1. L
sinh (iz) = ;Sll‘l (iiz) = ?sm (-z)=- ;sm (z) =7sin(z)

. sinh(iz) _ .
tanh (iz) = cosh(iz) =rtanz.

(i) We define the inverse of Trigonometric and Hyperbolic functions.
If sinh z = w, then z = sinh™! w, etc.
(1v) sinh™ x = — 7 sin”! (ix)
cosh™ x = -/ cos™! x
tanh™'x = — 7 tan™ (ix).
2.6.2 Gregory’s series
isin©

We have jtan8 =
cosB

1+itan® _ cosO+isinb _ﬁ_em b 4 divi
L T—itan® cos@—isin® e » by compo. and divi.

Considering the principal value of logarithm of both sides, we get

2ig=log (1 +itang) —log (1 -/ tan 9)
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Zi(tane—%tan39+%tan5 0— ... ) ,

Therefore ¢= (tanﬁ—%tan39+%tan59— ...... to inﬁnity), which is expansion

of § in powers of tan 0.

This is known as Gregory’s series.
. . T
It is convergent when |tan8| < 1, ie., when —ZSG <

Putting tan = x, ie, tan' x = g, we get

£ 3
tan”' x = x —%Jr%—m.‘. when |x| <l

2.7 Worked out Examples

Example 1 : If x be a complex number, then from the definition of sin x and
cos x, show that

(i) sin 2x = 2sin x cos x

(i) cos x = cos?E — sint 2
2 2

{1ii) sin 3x = 3 sin x — 4 sin’ x.

erx_e—rx e:’x+erx
27 2

Solution : (1) We have RH.S. = 2 sin x cos x = 2.

2w —2ix
e —

= — =sin2x=LHS,.
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X _ix 2 iX X !
g X _ax_|eive t| [e2-e?
(i) RH.S = cos’ S —sin*3 [ > J ( > J

_ 2o M -20"+e™

4 -4
_ it 2+e T4 24 2% 427
4 4
2
o o, et ey
(i1) RHS. =3 sinx — 4 sin’* x = 3, i @y
_ 3(efx_e—fx) +e3f'.\:_38’_’}_\:_e—:’x+3eix_e—2ix_e—3i.\:
2i 2i
-~ _ix - X oA —ix =3 idx _ -idx
_ 3 -3¢ " +e ;;Je +de " —e™ _ ¢ = =sin3r= LHS.
. i a—ib}= ?abﬂ
Example 2 : Show that sin {1 Oga+ib e
Solution : Let @ = 7 cosg and b = r sing.
Therefore tang = é.
a
Now
. ) -7 . . 6—isin 9) .. e_fe
log 4 rb}z | r{cos _ log &
Sm{I Oga+r‘b S/ Ogr(cos@+r‘sin9) ol e®
=sin {i log e'm}
2 b
. T oA . 2tan® a 2ab
= i(=2i0) ; =sin 20 = — = — = — .
sin{i(=2/0) I+tan’0 | & a'+b’

ra

o
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Example 3 : Prove that Log (-1) = (2n + 1) 7i.
Solution : Log (-1) = log (-1) + 2umwi, for all integers »
=log (cosm + 7 sin{ ) + 2numwi
= log (™) + 2nmi = ix + 2nmi
=(2n + 1) mi.
Example 4 : Find the value of log 7.

. , T . T
Solution : We know i = cos + 7 sin 5

Therefore mod (7) = 1 and amp (i) = %

I_ ;%

Therefore log (/) = log (mod 7} + i (amp i) = log 1 + i2 >

Example 5 : Prove that Log 7> = 2 Log 7, butlog 7> =2 log 7.
Solution : Log i* = Log (-1) = log {(mod (1)) + 7 amp (-1) + 2nm

=log 1 + in + 2nmi = (2n +1) 7, for any integer #.

2 Log i = 2 [log|i|+ i amp (7) + 2kni], for any integer k

=2 [log |i| + 15+ 2kn i]= (4k +1) m
Obviously, 2n + 1 and 44 + 1 are not always equal. Therefore Log # # 2Log i.

Again, log #=log (-1) =imrand 2 log7i =2 (i%): i7. Hence proved.

Example 6 : Find a complex number z, for which ¢ = /.

T, .. m . . _
SHisin 5 = Ji= 3 et for any integer 7.

Solution : ¢ = /i = cos e e

(4 ;
I§+-ﬂﬂl

(Al
So, e =e =e 7.

Hence : =(4n+1)§i,, for » = 0 or any integer.
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Example 7 : Prove that Sin™' /1= nn + (-1 i log (/2 +1), 1 being zero or

any integer.

Solution : Let Sin™' J-1 =8 Therefore sin 9= J-1=i
and cos § = +/1-sin*0 =+, /1-(-1) =+J2.
Now ¢ = cos@+7sind = +2 +7i=+J2 -1

If e® = V2 —1,then i = Log (v2 — 1) = 2kmi + log (V2 = 1),

where & 1s zero or any integer.

So, = 2kw + %log(ﬁ—l):%n—ilog(ﬁ—l)

_ %% = 2k +ilog(v2 +1) )

—ilogﬁ

It ¢® =—/2 -1, then /6 = Log (—/2 —1) = 2mmi + i + log (\/5+ 1)
= (2m +1) 7c1'+log(\5+1),

where m 15 zero or any integer

or 9=(2m+1)rt+%log(x/§+l)=(2m+1)1‘c—ilog(x/§+l) 2

Considering (1) and (2), we have

9=nr+ (-1) log (xE +1), where # 1s zero or any integer.

Example 8 : Prove that cos (log ff) =0.

T .
; Loz Mlogl+i=+2nm] . . T
=™ =e T2 ,smce|1|=1anclamp1=§

Solution : i =¢

= —[%+2rm]
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Therefore log/' = loge_[5+3"n]+i‘0, taking principal value of log ¥’

i
= _|=+2n
( 2" ")'
Therefore cos (logi‘) =cos[- (% + th)] = cos(th + %) = cos% =0

Example 9 : Express (4 + 3/)"" in 4 + iB form.

Solution : We have (4 + 3i)1*' = eI/ Log (43

+1][logS+itan " 24 26w 3 -
(hrflog S g3k ]|:Here|4+3if|=\}4'+32 =5and amp (4+3§)=tan '%]

{log 5—(2kn+mn"i)}+f{|ng 5+2kn+tan‘1~3}
—e 4 ki

=e? where P = log 5 — (2kn+tan‘1 %) and O = log 5 + 2k + tan"%
=e"e® =e"(cosQ+isinQ)=e" cosQ+ie"sinQ
=A + iB, where A = ¢” cos O and B = ¢” sin (.
Example 10 : Deduce from Gregory’s series
T 1 1 1
—=y3l-—=t—=—=—=+ ..
2 ‘/_{ 33 53 713 }
Solution : We know Gregory’s series is given by

5
- it -1 it
tan"'x=x—=—+—__ |¥|/<l and —Z<tan'x <
3 5 Il 4 4

Takin Jc=L we ettan"L=L— L + l___1 +
BET TR BB 3383 sEB 13T

n_ 1 | | |

of, = =—=|l-s—st————+ ...
6 ﬁ[ 33 53 73
a1, 1

or, —\/;[1 3t ooyt ]



48

NSOU « CC-MT-01

2.8 Summary and Keywords

ar

IV,

Summary :

Functions of a complex number.

2 £ "

zm , Z Z
2!+§+ ...... +—+.....

If z be a complex number, then ¢ =1+z+

If z = i@, then ¢9= cosg+ i sing.
. . . 1 ix —fx
Euler’s exponential values of cos x and sin x are given by cos x = 5(6 +¢")and

sin x = %(eix—e_fx)-

Logarithm of a complex number.

Logarithm of a complex number & (2 0) 1s a many valued function. We write
Log N =log N + 2nmi, where log N 1s the principal value of logarithm for # =0,

Definition of « °, where a (# 0) and z are complex numbers.
We define g’ = ¢ 189 = ¢= Qa*2m™  being any integer.

Hyperbolic functions.

If z be a complex number, then sinh z = %(e: —e ), coshz =%(ez+e‘z).

tanhz=w,cotha= 1 ,cosechz=.;,sechz= 1 .
cosh z tanh z sinh z cosh z
Relations among hyperbolic and circular functions.

(1) cosh z = cos (iz) (i) sinh z = —/ sin (iz) (in) tanh z = — tan (iz).
KEYWORDS : Exponential, Logarithm, Inverse, principal value,

2.9 Model Questions

1.

- 2 3
(zloga) +(zloga) i
21 3!

Show that ¢’ =1+ zloga+
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Show that (1) log (- x) =logx+ni. (ii) Log (—i)=%(4n—1) i

. Using the definitions of sine and cosine of complex numbers, show that

(1) sin 2x = 2 sin X ¢cos x.
{icos 2Zr=2¢os* x -1 =1-2sin° x.

ey . ! 1
(iii) sin x + sin y = 2 sma(x‘*' J’)-COSE(X—}’).
{(iv) cos (x —y) = cos x cos ¥ + sin x sin ).

a—ib} 2ab
a+ib] a'-b"

Prove that tan {i log

. x—i -
. Prove that i log <——=m~2tan 'x.

6. Prove that log 7 + log (-1 +1i) = log {7 (-1+ 7)}.

7. If tan log (x + iy) = a + ib, where &® + b* = 1,

10.

I1.

then show that tan log (¥’ +y")= ﬁ

If tan (# + iv) =x +iy, (&, v, x, y are real), then prove that x* + y* + 2x cot 2u =1
—2v 2v
and x°+y° +2y(e_%—+ezvj+l =0,
e —e
Find the general value and the principal value of each of the following:
(i) Log (-2). (ii) Log (—1). (i) Log (1+i). (iv) Log Ji (v) Log (3+4i).
Find the value of
(iy i’ (iiy (-9’ (1) (7) . (iv) (- {v) sin (log 7).
Express the following in 4 + iB form, where x and y are real:
{i) sin {x + iy). (1) cosec (x + iy). (1) tan(x + iy).
(iv) x . (v) e¥™. (v1) Log sin {x + iy). (vi1) cosh (x+iy).

(viii) Cos™ 7. (ix) tan™ (o £ B). (x)
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12,

13.

14.

15.

16.

17.

18.

19.

20.

2.9.1

10.

Show that the ratio of the principal values of (1+7)'7 and (1-§)' is
sin {log 2) + 7 cos (log 2).
Show that the solution of the equation cos x = 2 is given by

x = 2n7 % i log (2 +./3), n being an integer.

Deduce from Gregory’s series %4.%

i3 1
—= —+
8 13

—
—

Prove that Tan™ (1+/) = {(2n+1)7c+tan (- 2)} —logS.
Show that Sin! (ix) = nr + (-1)"7 log (x+1+x%).

If x = log tan (Z %}’) then prove that y = —i Log tan (%+%ix), x and y
being real.

Solve : &° =1+r\/§_

1

Show that the equation tan {? log } = 2 represents the rectangular hyper-

X +iy
bola x*—y* =xy.

If z be a complex number, prove that the equation e?= 0 has no solution and
the general solution of the equation sinh z = 2 is given by

z=nmi + (-1) log (\/§+2).
Answers

(1) log2+(2n+ )i, log2+mi. (i) 2Zn+Dmi, i .

Gy Sog2+(2n+3)m, Log2+ 21 Gy sme )i By

| RN | ., 14
(v) 210g5+(2mr,+tan 3)1, 2log5+1tan 3 -

. - - X ] e 2 ] 1
(@) @5 () (27 (i) (2 ) VS () -
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11.

14.

) %(e}' +e)sinx+ i.%(e}' —e™)cosx.

2sinxcoshy . 2cosxsinhy
1-cos2xcosh2y 1-cos2xcosh 2y’

(i)

2sin2x +i sinh 2y
(i) < osh 2%+ cosh 2 Yy cosh2x+cosh2y

(iv) e {cos(log x)+isin{logx)} (v) e"cosy+ie’siny.

(vi) %log {% (cosh 2y —cos 2x)+i{2nm + tan”'(cot x. tanh y}} .

(vil) cosh x ¢os y + 7 sinh x sin y. (viii) (ZnEi%) Filog(v2+1),

(ix) nw+ tan” (o £ B) +i O {x) e" {cos (log m) + 7 sin (logm)}.
Hint. Put 9=% in Gregory's series and get %=1—%+%—l+ .....
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3.9 Summary and Keywords
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3.1 Objectives

This unit gives us

# the short cut process of division of a polynomial by a binomial or a trinomial,
e general properties of equations

e statement of Fundamental Theorem of classical algebra,

e statement of Descartes’ Rule of signs.

3.2 Introduction

Before going to discuss the general properties of equations, we are to know
about the algebraic expressions. Here under we like to give the definition of a
polynomnal, the idea of division algorithm, remainder theorem. This will help
a lot in solving algebraic equations.

3.3 Polynomials

An expression of the form a x” + ax™' + ax"+ ...+ a_x + a , often denoted
by f(x), where » is a positive integer or zero and the coefficients a, «a,, a,......a

"

52
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(a,# 0), are in general any number (real or complex), is called a polynomial in x of
degree n. ayx” is called the leading term. The algebraic symbol x is called a
variable or an unkown. Henceforth, in all our discussions, we shall use,
a(i=0,1,2,.,n-1, n) as real or rational numbers.

A polynomial will be called a complete polynomial if all the lower degree
terms beginning from the highest are present, otherwise it is an incomplete polynomial.
Thus 3x* + 4x° — 8x? + x — 9 is a complete polynomial where as 4x°-3x° + 5x +10
is an incomplete polynomial.

A polynomial f (x) of degree one, two, three or four is called linear, quadratic,
cubic or quartic (or biquadratic) respectively.

ffx)=ax"+ax™'+ax?+...+a_x+a

and g(x) = bx"+bx™ +bx"+ .+ b x+ b
be two polynomials of degree » and m respectively, then

(1) f(x)and g (x) will be identically equal ifn =m and ¢, = b fori=0,1,2,..

(i) f (x) + g (x) 1s the sum of two polynomials and this is a polynomial of
degree n or m according as # > m or n < m,

(i1} f(x). g (x) 1s the product of two polynomials and this is a polynomial of
degree (n + m).

(iv) If F (x) = f (x). g (x), then f (x) and g (x) are called factors of F (x).

3.3.1 Division Algorithm

Let 7 (x) and g (x) be two polynomials such that the degree of f(x) is greater
than or equal to that of g (x). Then to divide f{x) by g(x) 1s nothing but to find two
unique polynomials ((x) and R(x) such that f(x) = g(x) x O(x) + R(x), where degree
of R(x) is less than the degree of g(x). This is known as division algorithm. The
polynomials ()(x) and R(x) are respectively called the quotient and remainder of this
division.

If R(x) = 0, then f(x) is said to be divisible by g(x) or g(x) is said to be a factor
of f(x).

3.3.2 Synthetic Division
This 1s a short-cut process to divide a polynomial £ (x) by a binomial of the form

(x —h). Let f (x) =ap" +ax" " +ax""+. .. +a,_x+a,a,#0 be divided by (x — /)

to have the quotient Q(x) = bx"" +bx" +b,x"* +....+b_.x+b_, and the remainder
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R which 1s obviously a constant. Then, by division algorithm, we get the identity

fx)=(x-nQok+R
or, @, X" +ax"" +ax"+. .. +a,_x+a,
= (x=RB)bx"" +bx"+b "+ +b_, x+b_)+R
= bx"+ (b —hb)x"" + (b, —hb)x" + .+ (b, —hb, _)x+R—hb, .
Equating the coefficients of like powers of x on both sides, we get
a,=b, a=b-hb, a,=b,—hb,....,a,_=b_-hb _, a =R-hb _
ie, by=a,b =a +hb,b,=a,+hb, .b_=a, +hb_,R=a +hb

H— w-1-

H-27

The coefficients of the quotient polynomial and the remainder can casily be
calculated according to the following scheme :

a?‘i
h b _h
R

hla, a, a, a a
l bh bh  bh b
a(=h) b b, b, .. )

3.3.3 Remainder Theorem
If a polynomial f (x) be divided by a binomial (x— /), then the remainder is (/).

Proof : When f(x) is divided by (x - /), let O(x) be the quotient and R
(independent of x) be the remainder, then f (x) = (x - #) O (x) + R

Putting x =4, f () = 0. Q (h) + R = R. Therefore R = f (h).
Iff(A)=0,ie, R=0,then f(x)=(x— /) O(x) ie, (x—h) is a factor of f(x).
We say f(x) is divisible by (x — 4).

Remark : From above, we see that f (x) is divisible by (x — a), if and only if
f (@) = 0. The value (or values) of x for which the polynomial £ (x) vanishes is (are)
called zeros of the polynomial. When £ (a) = 0, we say x = a 15 a root of the equation

F(x)=0.

3.4 Worked out Examples (I)

Example 1: Use synthetic method of division to find the quotient and the
remainder, when x* + 5x*> + 1 is divided by x + 3.
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Solution : Here f(x) = lx* + 5x*+ 0x + 1 and /2 = 3.
-3 1 5 0 1
!l 3 -6 18

1 2 -6 19

Quotient = x> + 2x — 6 and Remainder = 19.
Example 2 : Find O (x) and R, when 4x* + 2x? — 8x - 5 is divided by 2x - 1.
Solution : Let O (x) be the quotient and R be the remainder.

Hence F(x)=4x + 27 -8x-5=(2x-1) Q0 (v} + R = (x—%)_ 20 (x) + R.

So we first divide f (x) by ¥ -1 as under :

2

1

> 4 2 -8 -5
l 2 2 -3
4 4 6 | -8

Therefore we get 20 (x) = 4x* + 4x — 6 or O (x) = 2x> + 2x -3 and R= -8
Example 3: Express 2x* + 5x° — 4x as a polynomial in x —1. Also find f (x +1).
Solution : We divide 2x° + 5x° — 4x by x -1 using synthetic division in succession.

1 2 0 5 0 -4 0

2 2 7 7 3

2 2 7 7 3 3
2 4 11 18

2 4 11 18 21
2 6 17

2 6 17 35
2 8

2 8 25
2

2 10
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Therefore £ (x) = 2x* + 5x* — 4x

= 2(x—1) + 10 (x—1)* +25 (x=1) "+ 35 (x=1)"+ 21(x-1) + 3.
Also, writing x + 1 for x, we get

Fix+1)=2x"+ 10x* + 25x° + 35x* + 21x + 3.

Example 4 : Find the remainder, when 3x* — 4x* + 2x* — 9x + 1 is divided by
2x +1.

Solution : Let /(x) = 3x* — 4x% + 2x? - 9x + 1. When £ (x) is divided by 2x + 1,

the remainder will be f (— %) Now,

S o

Example 5 : Find the value of m, if 4x* — 3x* + 2x + m is divisible by x + 2.

Solution : Let f(x) = 4x® — 3x* + 2x + m. If f (x) be divided by x +2, then the
remainder is f(-2) =4 (-2 -3 (-2 + 2 (-2) + m

=-32-12-4+m=m- 48
But f (x) is divisible by x + 2, so the remainder must be zero.

Therefore f(-2) = 0 or m — 48 = 0 or m = 48,

3.5 Model Questions (I)

—

2.

LN

If £ (x) = 2x* — 5x* + 4x* — 8, then find (i) £ (0) (i) £ (1) (i) f (-2).
Find the remainder when

(i) x*+ 5x* + 1 is divided by x + 3.

(i) x*+ 5x> — 3x + 2 is divided by x + 2.

(iii) x*+ 2x* + 3x — 4 is divided by 2x — 1.

Show that 2x* — 7x* + 4x + 15 is exactly divisible by x — 3.
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4,
3.
0.

11.
12,

Show that x + 3 is a factor of x* + 5x* —18.

If x* + 2x* — 13x* + ax + 24 is divisible by x + 4, find «a.
Find quotient and remainder, using synthetic division, when
(i) 2x* — x* — S5x + 6 is divided by x — 2.

(i) x¥* + 5x* + 1 is divided by x + 3.

(iii) 2x* — 60 — 9x + 21 is divided by 2x - 3.

Show that that 2x*- 7x°+ 8ax? — 3bx + 17 is divisible by x - 2,
when 32a - 6b - 7 = 0.

. Express

(i) 4 — 3x? + 6x — 5 as a polynomial in (x + 1).

(il 2x* — 4x* + 1 as a polynomial in (x — 3).

CIEf()y =3 -+ 57 - 4x - 9, find f (x + 2).
10.

{a) Find quotient and remainder, when 5x*— 9x* + 6x> + 16x — 13 is divided
by x> — 3x + 2.

(b) Use synthetic division to find remainder, when x* — 1 is divided by x + 2.
Find the polynomials whose zeros are (1) 1, 2, 3 (i) 1,-1, 2, —2.

Find the condition that x* + 3px + ¢ may have a factor of the form (x — a)°.

3.5.1 Answers

10.

(1) (i) -8 (i) 7 (i) —136. 2. (i) 19 (i) 44 (i) —%. 5 a=-14.
(O =2¢+4C+Tx+9, R=24 (O =x"+2x—6 R=19

Lo s 32 9 63 ,_ 21
(i) 0 = ¥ —3x" = 4x -7 R g

() 4G +1P — 15 (x +1)P+ 24 (x +1) — 18,

(i) 2 (x —3)* + 24 (x =3) + 104 (x=3)>+ 192 (x -3) + 127,
3xt + 230+ 7Ixd + 100x + 43,
() O =5+ 6x+ 14, R =46x — 41. (b) R = 15,
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1. @) -62+1lx -6 (i) ¥ — 5 + 4
12. 4 + ¢ = 0.

3.6 General Properties of Equations

3.6.1 Equation and Identity

Let f (x) be a polynomial of degree # > 1. If f (x) = 0 is satisfied for certain
specific value or values of x, then f(x) is called an algebraic equation of degree ».

The values of x for which f(x) = 0 is satisfied are called the roots of the
equation f{x) = 0.

On the other hand, if f (x) = O 1s satisfied for any value of x, then it is called
an identity.

Example : Show that (i) x* — 3x + 2 = 0 is an equation

() 5 (x -2) + (x — 8) — 6 (x — 3) = 0 1s an identity.

3.6.2 Fundamental Theorem of Classical Algebra

Statement : Every algebraic equation has a root, real or imaginary.

3.6.3 Consequences of Fundamental Theorem.
Theorem 1 : Every algebraic equation of degree » has » and exactly # roots.
Proof : Let f (x) = ax"+ax"" +ax" +. .+a_x+a,=0, a,=0 be an
equation of degree n.
By fundamental theorem, f (x) =0 has a root, say o, Therefore f (o) = 0.
Therefore, by remainder theorem, (x — ) is a factor of f (x).

Therefore, if / (x) be divided by x — ¢, the quotient O, (x) will be a polynomial
of degree (1 -1).

Therefore we write f (x) =(x - o). @, (x) = 0.

Now, the equation @, (x) = 0 must have a root, say «, Then

Q,(x) =(x — o) O,(x) =0 and we write f (x) = (x — ) {x — o). ¢, (x) = 0, where
¢, (x) 1s a polynomial of degree (2 -2).
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Proceeding in this way and noticing that after dividing f (x) by each linear factor,
the degree of the quotient polynomial is diminished by one. We will have » linear
factors of the form (x — o), (x — &), ..., (x — & ) and then f (x) can be put in the form

fE=Ex-o)x-o). . x-o0) Q &)

where the degree of @ (x) is # — n = 0. Therefore ¢ (x) must be a constant. Since
the above equation is an identity, equating coeflicient of x” on both sides, we get

g, (x)=a,
So the equation can be put in the form a, (x —o) (x —c.).....(x —a ) =0

Since this is true for any one of the # values of x, viz. o, 01, ... , &, the equation
£ (x) = 0 has » roots.

Now, we shall show that the equation f (x) = 0 cannot have more than » roots.

If possible, let f (x) = O have a root o which is distinct from each of the above
roots o (7 = 1, 2,......, »). Hence x = o will satisfy the equation f (x) = 0.

Therefore f (o) =0
e, a,(x—o)(x—a).... (a—a) =0
But, by assumption, ¢, # 0 and « being distinct from o, ,,...,o , then 0t — o, # 0,

o—a,#0,..., -0 #0and hence f () cannot be zero. So that we arrive
at a contradiction, i.e., & cannot be a root of f (x) = 0.

Therefore we conclude that an algebraic equation of degree » has exactly » roots.

Cor. Two or more roots of the equation f (x) = 0 may be equal. If # number of
roots be equal, we say that f (x) = 0 has a multiple root of multiplicity ».

Note . If /(x) is of degree n and f(x) =0 is satisfied by more than » values of
x, then f(x) = 0 is an identity.

Theorem 2 : In an algebraic equation with rational coefficients, irrational roots
occur in conjugate pairs.

Proof : Let f(x) = 0 be an algebraic equation with rational coefficients of degree
n(=z2) Let  + \@ where o 1s rational and Jﬁi 0 1s irrational be a root of

J (x) = 0. We divide the polynomial by {x—(a+\/ﬁ)}{x—(a—ﬁ)},The quotient

Q (x) will be a polynomial of degree (# — 2) and the remainder will be at most linear.
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So we write f(x)={x—(ct+\P)Hr—(@—-BRO®+ax+b, ..(1)
where a and b of the remainder ax + b are rational.
We have assumed that (o+ ﬁ) is a root of f (x) = O, therefore f(o+ \@) =0.

From equation (1), we have
afo+[By+b=0

of, (a0t+b)+a\/ﬁ =0,

Equating rational and irrational parts to zero, we have
ao. + b=0 .(2)

and a,fB=0. (3

But Jﬁ cannot be 0. Therefore, from equation (3), we get ¢ = 0 and from

equation (2), we get b = 0. Hence equation (1) becomes
[ =te=(@+Px--Bow® ¢4
From equation (4), it is evident that when x=0t—\/ﬁ,f(a—\/ﬁ)=0‘
So a—JEis another root of / {(x) = 0, ie, if @ +Jﬁ 15 a root of f (x) = 0,
then o —Jﬁ 1s also a root of it.

Theorem 3 : An algebraic equation with real coefficients, imaginary roots occur
in conjugate pairs.

Proof : Let f (x) = 0 be an algebraic equation with real coefficients of degree
n(z2) Let o + i, where o and B= O are real, be a root of f (x) = 0. We divide
the polynomial f (x) by {x — (o +iB)} {x — (& — i )}. The quotient O (x) will be
a polynomial of degree (» —2) and the remainder will be at most linear.

Sowe write f(x) ={x—(ax+ip)} {x—(x—-7if)} O(x)+ax+ b (1)

where ¢ and b of the remainder ax + b are real.
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We have assumed that (& + i) is a root of f (x) = 0. Therefore f (xx + i) =0.
From equation (1), we have
aloe+iBy+b=0
or. (ac+bh)y+iap=0.
Equating real and imaginary parts to zero, we have
ag + b=10 .. (2)
and ap =90 .. (3)

But B 0. Therefore, from equation (3), we get @ = 0 and from equation (6),
we get & = 0. Hence equation (1) becomes

f)={x—(@+iB)}Hx - (0 -iB)O(x) G
From equation (4), it is evident that when x = « — iB, f (a0 — i) =0.
So, ox — i 1is another root of £ (x) = 0, ie, if @ + i is a root of £ (x) = 0, then

o — iBis also a root of it.

Example 1 : If one root of the equation x* —3x° — 5x + 9x —2= 0 be 2 — /3,

find the other roots. [Ans. 2 +\/§, 1, -2]

Example 2 : If one root of the equation x* —2x° + 6x* +22x +13 = 0 be
2 + 3/, find the other roots. [Ans. 2 -3/, -1, —1]

3.6.4 Some Important Properties of Algebraic Equations
Property 1 : Let f (x) be a polynomial with real coefficients. If for two numbers
aand B (o <), f(a)and f (B ) are of opposite signs, then there exists at least one

real number v, o < y <B, such that f(y) = 0.

Since a polynomial £ (x) is a continuous function of x, therefore it assumes all
values between f (o) and f (B ) as x changes its value from o to 3. Since f (o) and

S (B) are of opposite signs, for at least one value of y, o¢ < ¥ <[, f(y) =0,
ie, yis aroot of f (x) = 0.
Property 2 : If f (&) and /(3 ) are of opposite signs, then the equation f (x) =0

has an odd number of real roots between ¢ and .
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Property 3 : If f (&) and f ([} ) are of the same sign, then equation f (x) = 0 has
no real root or an even number of real roots between o and 3.
Property 4 : An equation of an odd degree must have at least one real root,

opposite in sign to that of the last term (i.e., constant term), the leading term being
positive.

Property S : An equation of an even degree, whose last term (7.e., the constant
term) is negative, has at least two real roots of opposite signs.

3.6.5 Multiple Roots

Let o (i =1, 2,....., n) be 1 roots of the equation f (x) = 0 of degree », of which
the first 7 roots (» < n) are equal to o . Then we can write

SOy =0 —0) ¢ ),
where ¢ (o) # 0 and we say that o, is a root of f (x) = 0 of multiplicity 7.

Theorem : If o be a root of the equation f (x) = 0 of multiplicity , then o 1s
a root of the equation £’ (x) = 0 of multiplicity » — 1 where f” (x) is the first derived
function of f (x).

3.6.6. Rolle’s Theorem

Between any two consecutive roots of the equation f (x) = 0, there is at least
one real root or an odd number of real roots of the equation f (x) = 0.

3.7 Descartes’ Rule of Signs

This gives us a rule for the determination of the maximum number of real roots

of any polynomial equation with real coeflicients.

When two consecutive coefficients of a polynomial £ (x) (complete or incomplete)
have same signs, we say these two coeflicients present a continuation of signs, but
if they have opposite signs, they present a variation or change of signs.

Let us consider a polynomial

Sx'? 4+ 2xM + 3x1 + 1'% — 8x° — oxF + Tt — 3x° + 4w — 10x — 12
The signs of the coeflicients are
++++ -+ -+ - =
We see that the number of continuations is 5 and the number of variations is 5.
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Statement : A polynomial equation f (x) = 0 cannot have more positive roots
than there are changes of sign in f (x), and cannot have more negative roots than there
are changes of sign in f (—x).

Note. If the number of positive roots of f (x) = 0 be less than the number of
changes of sign in f (x), it will be less than by an even number. Similarly, if the
number of negative roots of f (x) = 0 be less than the number of changes of sign in
f (-x), it will be less than by an even number,

As for example, if the number of changes of sign in 7 (x) be 1, then # (x) = 0
has exactly one positive root. Again, if the number of changes of sign in f (x) be 3,
then f (x) = 0 has 3 or 1 positive real root and so on. Similar argument may be
applied for negative real roots.

Verification : At first, we shall show that if a polynomial f (x) with real
coefficients be multiplied by (x — o) where « is a positive real number, then the
number of variations of signs of the product (x — ). f (x) will be greater than the
number of variations of signs in f (x) by an odd number.

Let the signs of the terms of the polynomial be + + + - — + — — — + — —

The signs of the product (x — o). f (x) are shown below

+ + + - - + - - - 4+ - -
+ -
+ + + - - + - - - 4+ - -
- - - + + - + + 4+ - +
+ £+ £ - ¥ + - T F + - F +

The signs in the product reflect that
{i) each continuation of sign in f (x) 1s replaced by an ambiguity (7.e. + or F)

The sign of ambiguity indicates that the sign may be + or — or the
corresponding term is zero.

{1)) The signs before and after an ambiguity or set of ambiguities are unlike.
{iii) One change of sign is introduced at the end of the product.

From (1) and (ii), it 1s clear that the product has at least as many changes of sign
as f (x), even in the most unfavourable case in which all the ambiguities are continuous.
From (iii), we see that the product has one more change of sign than f (x). We can
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also see that no changes of signs are lost for any term which may be missing from
fx).

Hence the product has at least one more change of sign than f (x).

Nowlet f(x)=Q (x). (x — ) {x — B)...... where ¢, B,...... are the positive roots

of £ (x) = 0. We know that if O (x) be multiplied by x — o, x — B,...... in succession,

at least one change of sign will be introduced by each multiplication. Hence f (x) has
at least as many changes of sign as f (x) = 0 has positive roots.

Corollary : Let # be the degree of £ (x) and let
p = the number of changes of sign in £ (x),
g = the number of changes of sign in f (—x),
¥ = the number of positive roots of f (x) = 0,
s = the number of negative roots of f (x) = 0.

Then (i) if p + g < n, the equation f (x) = 0 has at least » — (p + ¢) imaginary
roots,

(u) if all the roots of f (x) =0 are real, then » = p and s = ¢.

3.7.1 A Few Important Results from Descartes’ Rule of Signs.
From Descartes’ Rule of Signs, we have

(i) If the signs of the terms of an equation be all positive, then it cannot have
a positive root.

(i1) If the signs of the terms of a complete equation be alternately positive or
negative, then it cannot have a negative root.

(iii) If an equation, with all positive signs of its coeflicients, involves only even
powers of x, it cannot have any real root.

(iv) If an equation, with all positive signs of its coefficients, involves only odd
powers of x, then it has the root zero and no other real root.

3.8 Worked out Examples (II)

Example 1: Find the equation whose roots are 1, -2, 3, — 4,

Solution : The required equation is (x — 1) {x = (-2)} (x-3) {x -(-4)} =0

of, (x=D(x+2)(x=3¥x+4)=0, or, x* +2x* = 13x* —14x+24=0.
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Example 2: Solve the equation x*—2x* +6x°+22x+13=0, if 2 + 37 is a root.

Solution: One root of the equation being 2 + 37, another root of it must be
2 - 3i (as all the coefficients of the equation are real).

Now (x=2-3)(x-2+3/) = (x=2Y + 9,ie, x*— 4x + 13 will be a factor of
L.H.S. of the equation. Dividing it by x* —4x+13, we get the quotient x* +2x+1.
So two other roots of the equation will be given by x> 42x+1=0

giving ¥ = —1, —1. Hence the roots are -1, -1, 2+3;.

Example 3: Find an equation of degree four with rational coefficients, if one root

be \3+i2.

Solution: Since surd roots as well as the imaginary roots occur in conjugate
pairs, the roots of the equation will be \/§+;'\/E, \/5— ;'\/_, - \/§+;-\/_, - \/5—;'\/5.

So the required equation 1s
(x=B3=iV2)(x =B +iV2)(x+3 - iN2)(x+3 +iv2) =0

or, x*-2x*+25=0-
Example 4: Apply Descartes’ Rule of Signs regarding the number of real and
imaginary roots of the equation 3x° —4x*+8=0.

Solution: We have f(x)=3x"—4x’+8 and therefore f(-x)=-3x"-4x*+8.

Number of changes of sign in f(x) is 2 and number of changes of sign in f(—x)
is 1.

So the number of positive real roots <2 and the number of negative real root
is exactly 1.

Since the degree of f(x) is 5, it has 5 roots in all.
Therefore possible cases regarding number of roots of f(x) =0 are as under
Number of positive real roots Number of negative real roots Number of imaginary roots
2 1 2
0 1 4
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Conclusion : The equation f(x) =0 has at least two imaginary roots.

Example 5: Solve the equation x*—11x" +44x” — 76x + 48 = 0, which has equal
roots.

Solution: We have f(x)=x"-11x"+44x* - 76x + 48
S fi0)=4x" —33x° +88x - 76

We find the highest common factor of f(x) and f'(x) which is x — 2. Therefore
(x — 2)* is a factor of f(x). Now f(x)=(x—2)'(x’=Tx+12)=(x-2)(x-3)}x—-4).

So the roots are 2, 2, 3 and 4.

3.9 Summary and Keywords

Summary :

I Synthetic division : A short cut process of division of a polynomial by a
binomial.

II. Remainder Theorem : If f(x) be divided by x — a, then the remainder will be
Sla). If f(a) = 0, then x — a is a factor of f(x).

III. Fundamental Theorem of Algebra : Every algebraic equation has a root, real
or imaginary.
IV. Rolle’s Theorem : If x — a be the highest common factor of f(x) and f{x),

where f'(x) s the first derivative of f{x), then (x — a)* 15 a factor of f(x) and
therefore x = ¢ is a root of f(x) = 0 of multiplicity 2.

V. Descartes’ Rule of Signs : An equation f(x) = 0 cannot have more positive
roots than there are changes of sign in f(x), and cannot have more negative
roots than there are changes of sign in f(—x).

Keywords : Polynomial, Fundamental, Real, Imaginary, Remainder, Multiplicity,
Continuation, Variation.

3.10 Model Questions (II)

1. Find the equation whose roots are 1, 2, 3 and 4.

2. Solve the equation x* —16x" +86x* —176x +105 =0, two roots being 1 and 7.
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Find the equation of fourth degree two of whose roots are 1 +7 and 1+42.

4. Find the equation of fourth degree with rational coefficients one root of which

10

11
12

14

is 2 +3i

. Apply Descartes” Rule of Signs to determine the nature of roots of the following

equations :
(i) x*+16x°+7x-10=0
(1) x"-1=0

(i) ¥ -1=0.

. Apply Descartes’ Rule of Signs to show that the equation x” —2x* +3x*-1=0

has at least four imaginary roots.

. Find the exact number of real roots of the equation *— x> 42y —3x—-1=0.

- (a) If o, B,y be the roots of the equation x’+x+1=0, then prove that

(1+oHY(1+PH1+y) =1.
(b) If the roots of the equation x™ -1=0 be 1, o, 0,,......, ¢, then show
that (1-o)1-o,)...(I-a)=n+l.
If a»b>c>0 are all real, then show that the roots of the equation

1+ 1 +1
x—a x-b x-c

= 1 are all real.
X

. Show that the equation x?_2y_5=¢ has no negative real root.

. Find the multiple root, if any, of the equation x’ —3x"—9x+27=0.

. Show that the equation x’—3x+2=0 has a multiple root.

. Use Descartes’ Rule of Signs to show that the equation x” —3y* + 2 —1=0
has at least four imaginary roots.

. {(a) If p, g, ¥ are positive, show that the equation f{x)=x*+px*+gx—r=0
has one positive, one negative and two imaginary roots.

{b) Show that the equation y* — 4x* 4+ 5= has at least two imaginary roots.
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15. Solve the equation x*—6x" +12x* —10x+3 =0, which has equal roots.
2 2 2 2
16. Show that the roots of the equation 4 B, C +..+ L =x-m,
x—a x-b x-c xX—
connot have any imaginary root where a, b, c,......, I, and m are real and
distinct.
3.10.1 Answers :
L x* =100 +35x° =500+ 24 =0
2.1,3,5, 7
3. x4t +5x7-2x-2=0,
4 x*+2x°+25=0.
5. (i) One positive real root, one negative real root and two imaginary roots.
(i1} One positive real root, # — 1 imaginary roots.
{(iil} One positive real root, one negative real root and 8 imaginary roots.
7.2
11. 3 of multiplicity 2.

12. x = 1 of multiplicity 2.

15

1,1, 1 and 3.
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Model Questions (II)

4.1

Objectives

On learning this unit, we will be able to do the following :

® We may use the relations between roots and coefficients in diffierent area of
algebra.

® We would be able to find the values of the expressions of symmetrical forms
of roots.

® By transformation, we can increase or decrease the roots of an equation by
a constant.

® With the help of the transformation, we would be able to form an equation
whose roots are the roots of a given equation with sign changed and many
others.

4,2 Introduction

In Unit-3, we have learnt about the roots and coefficients of a polynomial
equation. In the present unit, we shall discuss interesting relations between the

69
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roots and coefficients of an equation. With the help of these relations, we shall
be able to find the values of several symmetric functions of the roots.

Next we shall learn different types of transformations which will help us to
form equations having specified roots.

4.3 Relations connecting the Roots and Coefficients of an
Equation

Let o, c.,..... , 0. be 1 roots of the equation
a,x" + a]x”_1 + c;,'zx"_2 +....ta_x+ta =0
We have the identity
ax"+ax +a "+ ta,_x+a, =a(x— o) x—o,)(x—0)... . (x—)
or, X'+ z—;x"'l + Z—z X+ %: =x"- (Z o, ) X+ (Z 0,0, ) X"

- LAY oo,
Equating coeflicients of like powers of x from both sides, we get

a a a
Yo, = -1, Y o, =k 0, = (D
0 0 0

Corollary 1 : If o,B,y are the roots of the equation ax* + bx* + cx + d = 0,
then o+B+y=-2, oB+By+yo=< and ofy=-<.
a a a
Corollary 2 : If «,B,v,0 are the roots of the equation
at*+ by tox*+dv+e=0,thenon + B +v +0 =—§,

o +oy+0d+ Py +ps+y8 =5

a E
afy +Pyd + oo+ Soff = —% and ofiyo = %
4.3.1 Symmetric functions of the roots

An expression involving all the roots of a polynomial equation is said to be
symmetric if it remains unaltered when any two roots are interchanged.

For example, affy+ofd+oryd+[yo (also written as Zaﬁ'y) is a symmetric

function of the roots o,f,v,8 of a biquadratic equation.
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4.4 Worked out Examples (I)

Example 1 : Solve the equation x* — 3x*>— 6x + 8 = 0, if the roots are in AP.

Solution : Let the roots be o.—B, ¢, o + .

Therefore sum of the roots = a-B+a+a+p=3

or, 3o0=3, giving ot =1.

Sum of the roots taken two at a time is
(e-PB)o+oa(o+p)+o—Pla+P)=-6

Since o =1, (1-B) + {(1+B) + (I-B)Y{(1+B)=-6

or, 1-B+1+p+1-Bi=-6
or, p>=
Therefore B =3o0r-3

Hence the roots are =2, 1, 4.

Example 2 : If one root of the equation x* + px* + gx + r = 0 be equal to the
sum of other two roots, then prove that p* + 8¢ = 4pq.
Solution : Let the roots of the equation be a, [3, v.

Therefore, by the given condition,

Again,

and

From the relations (1) and (2),
From the relation (3),

or,

Therefore

From the relation (4), we have
o,

Therefore

a=PB+y A
a+B+y=-p, -A2)
of+py+ya=gq -(3)
ofy=-r. D
a=-2
py+aB+v)=¢
By+o’=g¢
By=g-o’ =q—‘%2
ofy=-r

el _pPy__
2_[q 4] ,

p +8r=4pq.
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Example 3 : Solve the equation x* + 3x* — 4x* — 9x + 9 = 0, given that the
product of two of the roots is equal to the product of the other two.

Solution : Let « [3,7,8 be the roots of the given equation.

Therefore o+p+y+06=-3 A1)
Again, of+oy+od+By+pd+yd=-4, .(2)

afy +pyd+vda+0aff=9 (3)
and ofye=9. A4
Also, by the given condition, oaf=vo. .{5)

From the relation (3), we have
af{y+8)+v0 (e +p)=9

As off =70, oaf(o+B+y+8)=9
or, of(-3)=9
Therefore off =-3=70.
From the relation (1), we have Yy+d=-3-(x+p).

Therefore, from the relation (2), we have
oaf+y0+{a+PR)y+8)=-4

or, =3-3+(+P){-3-(0+B)}=—4
or, (O+B)+3@+pP)+2=0
Therefore o+p=—-lor—2.
Taking o+ =-2and oy =-3, we have

0.+_—3=—2

o4

or, o’ +200-3=0
of, (o +3)o-1)=0.
Therefore a=1, -3

When a=1, f=-3 and when oo=-3, f=1.
Taking o+ =-1and off =-3, we have

or, o+ o-3=0
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_—11+12 _ —1+413
or, o= > = 5

_1F13
p==1E3.

and corresponding
Since v+8=-1, —2 according as o+ =-2, —1.Therefore the values of v

—1++/13
==

and § will also be same as above. Hence the roots are 1, —3,

Example 4 : If o B, 7 are the roots of the equation px*+¢gx* +1=0,find the

value of zé

Solution : Since o, P, v are the roots of the equation px* + gx* +1 = 0, then

-4 =0 and ofy=—-1
Yo p,Z(xB and ofy .

1,1 2o o

Therefore Z é S —

o« BTY T opy Byl

Example 5 : If ¢, , v are the roots of the equation x*+ px + g = 0, then find

the value of B+v—-o)y+a—-B)o+B-7).
Solution : We have Za = O,ZU,B = p and offy =—¢. Then

B+y-m(y+o—pByo+p-m= (T o-20)(3 a-28)(3 a-2v)
= (~20)(-2B)~2y) = -SoiBy = 8¢.

Example 6 : Find the sum of the squares of the reciprocals of the roots of the
equation x*— 2x + 1 = 0,
Solution : Let «, B, vy be the roots of the equation x* — 2x +1 = 0.

Therefore » ot=0,> off=-2 and ofy=-1.

We are required to find the value of 013 +L 13 :

B v
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Model Questions (I)

10.
11.

. Solve the equation x* — 3x* — 4x + 12 = 0, if the sum of two roots is zero.

Solve the equation x* — 6x* + 3x + 10 = 0, if the roots are in AP.

. Solve the equation 2x*— x*— 22x — 24 = 0, two of its roots being in the ratio 3 : 4.

If the roots of the equation x* + ax® + bx + ¢ = 0 are in GP., then show that
b = dac.

Solve the equation 2x* — 21x* + 42x — 16 = 0, if the roots are in GP

Solve the equation x* — 5x* —5x* + 25x% + 4x — 20 = 0, whose roots are of the
forma —a b, — b, ¢

If the roots of the equation x* + a x* + a,x + a,= 0 are in A P. find the relation
connecting «, a,, a,

. If «, B, vare the roots of the equation x* — px? + gx — r = 0, find the value of

Zl

o

If a, B, v are the roots of the equation x* + 3x* + 3x —2 = 0, then find the value
of

, .. 10 1 1
(1) 2052 - (i) 2(13_ (iii) 2(1']3. (iv) EE v) ZB‘*'_Y
If a, b, ¢ be the roots of ¥* + gx + » = 0, then show that &* + » + ¢’ = =37,

If o, B, yare the roots of the equation x* + gx + r = 0, then find the value of

B+y—o) +(y+a—p)" +(@+p-v)"
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12. If ¢, B, v are the roots of the equation x* — 2x* + 3x — 4 =0, then find the

value of Z(%"‘g}

13. If &, B, ¥, & are the roots of the equation x*— px* + gx* — rx + s = 0, then find
the value of (i) Z%_ Gy Y op

14. If o,B,v,0 are the roots of the equation x* — 4x + 3 =0, then show that the
value of ) o is (-12).

4.5.1 Answers

3 _ _3 1
1. -2 2 3 2.-1,2, 5. 3. 4 > 2 5. 2,2_,8
6. 1, £2, 5. 7. 9aa, -2a’=27a,. 8. % .
o .. ) 12 q 3
9. ()3 (w6 (u)-15  (iv) 5 (v) e 11. 2 12, 5
. pr—4s .
13. (1) T (n) ¢* - 2pr + 2s.

4.6 Transformation of Equations

Sometimes we require to form a new equation so that the roots of this equation
is related to the roots of a given equation in a definite way. The new equation
so formed is called transformed equation and the method of forming this equation
is known as transformation of equation.

4.6.1. How to do it : Let an equation f (x) =0 be given. We are to form a new
equation g (v) = 0 whose roots are related with the roots of the given equation
by a certain relation ¢ (x,y) = 0. Eliminating x between f (x) = 0 and ¢ (x,y) =0,
we get the transformed equation g () = 0. The equation ¢ (x,y) =0 is known
as equation of transformation.

Let us now discuss a few transformations of equation.
Let ¢, o, .., 0 be n roots of the equation
f=ax+ax ™'+ ax+...ta_x+a=0 (1)
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L

IL.

1.

Formation of equation whose roots are the roots of equation (1) with sign
changed

We are to form an equation whose roots are -, —c,,....., —¢,. Here @, ot,,. .., &,
are the values of x for f(x) =0 and —¢, —¢,,......, —¢t are the values of y for
the new equation g (v) = 0.

So the equation of transformation is y = —x or x = —y. Eliminating x from
equation (1), we get £ (—v) =0, which is the transformed equation.
Multiplication of the roots by a constant s

We are to form an equation whose roots are mo, mo,,....., mo . Here
o, O,......, & are the values of x for / (x) =0 and ma, mex,......, mo are the
values of y for the new equation g () =0.

So the equation of transformation is y = mx or x =%.

Eliminating x from equation (1), we get

" -1 w2
a, (i] +q, (l] +a, [l) +. . ta, [l)+ a,=0
m m “\m m

o, ay'+amy" +amy "+ . +a_my+am'=0,

which 1s the transformed equation.
Note. To transform a given equation to another equation whose roots are those
of the original equation divided by a certain constant m, we just multiply the

. . 1 . . .
roots of the original equation by P Here, equation of transformation will be

X L
Y=, orx=my and the transformed equation is

n=l_ n-1 =2 _ n-2

am”y’ +am”” Yy +a.m Yy T+ L ta,_my+a, =0.

Formation of equation whose roots are reciprocals of the roots of equation (1)

We shall form an equation whose roots will be

. . 1
Therefore equation of transtormation is y = = 0f ¥ ="
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or,

IV.

VL

VIL

Eliminating x from equation (1), we get

1 1 1 1
00}7+01F+a37+ """ +an—1(;)+aﬂ =0
anyn + an—]yn_l +an—2yn_2 +.o. + a3y2 + a|y+ ao - 0

I 1

PEEETRRTY

This 1s the equation having roots oo, o

"

Formation of equation whose roots are the roots of equation (1), each
diminished by 7

We shall form an equation whose roots will be &~ 4, a,—h,....., ¢~ h (h>0).
Therefore equation of transformation is y =x —Aorx =y + h

Eliminating x from equation (1), we get

a,(y+h)" +a(y+h)"" +a,(y+h)"+ . +a,_(y+h)+a, =0.

Formation of equation whose roots are the roots of equation (1), each
increased by 4

To form this equation, as before, the equation of transformation is y = x + A
orx =y—h.

Eliminating x from equation (1), we get

a(y-hm'+a (y-h""+a(y-m"+. +a_(y-M+a,=0.

To find an equation whose roots are the squares of the roots of
equation (1)

We are to form an equation whose roots are ¢ ¢.’,......,0° The equation of
transformation is y = x°.

To get the transformed equation, we take the even power of x on one side and
odd powers of x on another side of equation (1). Squaring both sides, we shall
get an equation containing all even powers of x. The transformed equation will
be obtained by putting y for x*

To form an equation whose roots are the cubes of the roots of equation (1)
We are to form an equation whose roots are &, &’,....., &’ As before, the
equation of transformation is y = x*.

The transformed equation will be obtained by putting x for y3 in equation (1)

and then simplifying after suitable transposing and cubing both sides.
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4.6.2 Removal of a term of an equation
Let the roots of the equation

ax"+ax"" +ax" +. . +a_x+a, =0
be diminished by 4. Then the transformed equation is

a,(y+h) +a(y+h) " +a,(y+h "+ . +a,_(yv+h)+a =0,
On simplifying, we get

ay"+(nah+a)y™ + (%n(n —Da i +(mn-Dah+a, |y +. . +a,=0.

The second term will be removed, if

. a
nah+a, =0, je h=——— a, a >0
na !

a

Similarly, the third term will be removed if # be chosen such that
%n(n - l)aoh3 +(n-Nah+a,=0,
4.6.3.Equation of the squared differences of the roots of a cubic equation
Let o, B, v be the roots of the cubic equation
X +ge+r=0. D
We are to form an equation whose roots are (B-v), {(y— @) and {a—B)*.
Since o, B, v are the roots of the cubic (1), we have ¢ + B + v = 0
aff + By + Yo =g and oafy = —
Let y=(B-v)y =(B+y)y - 4fy

= (-a)* - oY _ 2 par
o o

E

o, o’ —ay+4r=0. {2
Since « is a root of equation (1),
therefore o' +go+r=0. .(3)
Subtracting (2) from (3), we get

(g+y)e—-3r=0.
Therefore 3

o= :
y+q
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3r
y+q

Therefore equation of transformation is x =

Putting this value of x in equation (1),

3
[ 3r J+q‘ 3r +r=0
y+q y+q

or, (+q) +3q(y+q) +27r =0
or, Y +6qy° +9¢°y + (4 +27r%) = 0.
4.7 Worked out Examples (II)

Example 1 : Obtain the equation whose roots are twice the roots of the equation
X437 +4x+5=0.
Solution : Let o,3,7 be the roots of the given equation.

We are to form an equation whose roots are 2¢, 23, 2v.

. . 1
Therefore equation of transformation i1s y = 2x or x =§y‘

Putting this value of x in the given equation, the required equation is

(8] () 5]

or, Y +6y" +16y+40=0.

Example 2 : Find the equation whose roots are the reciprocals of the roots of
the equation 2x* +3x* —8x+5=0.

Solution : Let the roots of the given equation be o ,B,7.

We are to form an equation whose roots are

--:’.l—

11
o’p’

. . 1 _1
Therefore equation of transformation is y = T O x—;.
1

3
So, the required transformed equation is 2[;} +3 (%} —8.($]+5=0

of, 5y° -8y’ +3y+2=0.
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Example 3 : Diminish the roots of the equation 3x> —5x*+3x—2=0 by 3.

Solution : Equation of transformation is y = x -3.
Using method of synthetic division
3 3 -5 3 =2

9 12 45
3 4 15 |43
9 39
3 13 | 54

Therefore the transformed equation is 3y’ +22)° + 54y +43=0.

Alternate method : Putting x = y + 3 in the given equation, we get the required
equation as

3(y+3P -5(y+3)2 +3(y+3)-2=0.

On simplification, 3y°+22y° +54y+43=0.

Example 4 : Increase the roots of the equation x* — 5x* + 6x + 41 =0 by 2.
Solution : Equation of transformation is y = x + 2.

Using method of synthetic division

211 -5 6 4l
2 14 —40
1 -7 20 |1
2 18
1 -9 |38
-2
| 1| -

Therefore the transformed equation is y* —11)* +38y+1=0.

Example 5 : Find the equation whose roots are the squares of the roots of the
equation x* 42y’ —3x*+x+1=0-

Solution : If «,B,7,0 be the roots of the given equation, then

we are to form an equation whose roots are o2, B? y? and 6%
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or,

or,

Therefore equation of transformation is y = x°.
The given equation can be written as, by transposing even and odd powers
of x,

¥ =3 +1=— (2x° + x).

Squaring both sides, (x*—-3x"+1)" = (2x" + x) =4x® +4x* +x".

Putting x* = y, we get the required equation as

(7 =3y+1)Y =4y" +4y* + y
or, P'+9)°+1-6y"-6y+2y =4y’ +4)°+y
or, ¥ -10° +7)° Ty +1=0.
Example 6 : Find the equation whose roots are the cubes of the roots of the
equation x’ _3x-2=0,
Solution : Here the equation of transformation is y = x°.
The given equation can be put as ¥o2=3y.
Cubing both sides, (' =2 =(x) =27x".
Putting x* = y, we get the required equation as

(y-2y =27y

or, Y =3y’ 243y2°-2°=27y
of, Y —6y"—15y—-8=0.

Example 7 : Remove the second term of the equation 2x* + 6x> —x — 3 = 0.

Solution : Let the second term be removed if the roots are increased by /4. Then
equation of transformation is y = x + A. Therefore x = y - A.

Therefore the transformed equation is 2(y —h)’ + 6( y—h)ﬁ—( y—h)-3=0
20 =3y°h+3yh* — 1)+ 6(y —2ph+ 1)~y +h—3=0

2" —6(h— 1)y + (60" — 12— )y — (2K — 6> —h+3)=0.
The second term will be removed if # -1 =0, ie, if # =1.

Therefore the transformed equation is 2)° —7y+2=0.
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Example 8 : Form the equation of squared differences of x° +6x* +9x+4=0.
Solution : First we remove the second term of the given equation.
Let the second term be removed if the roots are diminished by 4.

6
Then A 13

Therefore the equation of transformation i1s y = x + 2.

211 6 9 4
-2 -8 =2
1 4 1 2
-2 -4
1 2 |3
-2
(1 ]o

Therefore the transformed equation is y* —3y+2=0. ..(1)

Since the difference of any two roots remains unaltered by this transformation,
the equation of squared differences of the given equation will be the same as

that of the equation y’-3y+2=0. ..(2)
Let o,B,y be the roots of this equation.
Then a+p+v=0, of+py+yx=-3 offy=-2.

Now we shall form an equation whose roots are (3—v)°,(y —o)’ and (. —B)°.

Let z=B-7Y= @+yy 4Py
= (-o) L I
(# o
or, o —oz+8=0" (3)
Since o is a root of equation (2),
therefore o =3u+2=0. (D)

Subtracting (4) from (3), we get
(B-2)o+6=0
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6
=
or, -3

Putting the value of o in equation (4), we get the required equation as

R
(2_3) 3 ~3 +2=0

or, 2(z -3 —18(z-3)’+216=0

or, 221822 +81z=0-

Example 9 : If o,y are the roots of the equation x*+ px” +gx+r =0, find
B«

the equation whose roots are Bty 7+ 04p

Solution : Since «,f,yare the roots of the equation x*+ px®+gx+r=0,
therefore o+f+y=-p, af+py+yo=gq, ofy=-r.
Let y be a root of the required equation. Then

o _ ] N
B+y o+Pp+y-o -p-o
(expressing in terms of a root of the given equation)
Therefore the equation of transformation is

_x
y_—p—x
of, 2y -xy =x
oL v=_
y+1

Putting this value of x in the given equation, we get the required equation as

3 2
py Dy Dy _
-2 | +p| == | +q| == |[+r=0
( y+1j p[ y+1j q[ y+1j '

or, r(y+ 1Y —pgy(y+1¥ + py (v +)-p’y’ =0
or, r(V +3y° 3y + ) - pgy(Vi + 2y + )+ PPy + PPy - py =0
or, r—pg)y* +Gr-2pg+ p’)y* +(3r - pq)y +r=0.
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4.8

Summary and Keywords

Summary :

1
IL

Relations between roots and coeflicients of an equation.

Transformation of Equations : Solving of an equation is sometimes simplified
by transforming it into another equation whose roots have some assigned relation
to those of the proposed equation. Such transformations are specially useful in
the solution of cubic and biquadratic equations.

Keywords : Equation, Roots, Coefficients, Relation, Transformations.

4.9

Model Questions (II)

1.

% N o b

10.

Find the equation whose roots are

(i) twice the roots of x*+3x+1=0.
(11) %rd of the roots of x> _2y*+x-5=0.

Find the equation whose roots are roots of the following equations with their
signs changed :
() 5x*-3x°+9x-18=0
(i) 3x*—9x* +2x° +5x* - 6x+1=0-
53 8 7

. Remove the fractional coefficients of the equation x*-=x’'-—=x+=-=0.

4 27 81
[Hint. Multiply the roots by 3.]

Increase the roots of the equation 4x*+32x’+83x"+76x+21=0 by 2.
Diminish the roots of the equation x*—3x’+2x"+7x-5=0by 2.
Remove the second term of the equation 3 1 6x? +9x+4=0.

Remove the third term of the equation y* _4x’ —18x" =3x+2=0.
Form the equation whose roots are the reciprocals of the roots of the equation

¥ —4x" - 5% +8x* —8x+15=0.
Find the equation whose roots are the squares of the roots of v _ gv* 1 hx—1=0.

Find the equation whose roots are the cubes of the roots of y* —25x* _3x+1=0.
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11. If «,B,vare the roots of x’+3x+1=0,find the equation whose roots are

o, B B,y Y. o
B Yl_))and+

12. If o,B,y are the roots of x’+gx+7=0,find the equation whose roots are

l-o 1-8
l+o’ 1+[3 1+y

d1 o 1-B 1-v
I+ 1+ 1+v

- Hence find the values of Z

13. If «,B,yare the roots of 2x* +3x*—x—1=0,form the equation whose roots

o B Y
A By’ y+o and a+p

14. If «,,yare the roots of x’+gx+r =0, find the equation whose roots are

1 1 1
d —
Bry—o yro—p  atB-y
15. If «,f3,Y are the roots of x*+¢x+r =0, form the equation whose roots are

1
and hence find the value of ZB-I-'}’_—OL

BBy g X
@ 5 o @ g
B> +y" Y+’ o’ +p°
5 = d =
(1) o B ¥

(iii) BY"‘ 'YOH'E» 043"‘?

16. If «, B, yare the roots of ¥’ —7x+6=0,find the equation whose roots are

@—B)’, B-v) and (y-a)".

17. If o, B, yare the roots of x* + px” + g +r =0 (r #0), form the equation whose

roots are (i) o’ B°, v°. (ii) a—ﬁ B_ﬁ Y_CX_B

18. If o, B, vare the roots of x*—9x + 9 =0, then show that

(@-BB-v(y-a)=%27
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19.

20,

21.

22.

24.

If o,B,7are the roots of x*+2x +3x+1=0, find the equation whose roots are
aB+y), Bly+a), v(a+p).

If o,f,vare the roots of x* —3x*+8x—5=0 form the equation whose roots
are 20+3, 2B+3, 2y +3.

[Hint. First multiply the roots by 2 and then increase the roots by 3]

If o,B,v, O are the roots of x* —3x’ +2x* - 7x+5 =0, find the equation whose
roots are a+1, B+1, v+1, o+1.

If o, B,y are the roots of 2x’ +3x* —x—1=0, find the equation whose roots are
20-3, 28-3, 2y-3.

. Transtorm the equation y* — x> + 5x +12 = 0 into an equation lacking the second

term.
Transform the equation 72y® _54x? +45¢v—7 =0 1nto an equation whose

coefficient of the leading term is unity and other coeflicients are the least
possible integers.

4.9.1 Answers

1.
2.

L

(1) y*+12y+8=0. (i) 27y°—-18y° +3y-5=0.
(1) 5y*+3y°—9y—-18=0. (i) 3y’ +9y* +2y* —5y* —6y—-1=0.
¥ -5y -8y+7=0.

49*-13y°+9=0.

Yy +57 +8)  +11y+9=0.

y =3y+2=0.

V' +8)y°=111y-196=0 or y*' -8y’ +17y—-8=0.

15x" —8x* +8x* —5x" —4x+1=0-

V' +@b-a )y +(B -2a)y-1=0.

V' =23y"-42y+1=0.

Y +3y +30y+54=0.
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12.

13.

14.

15,

16.
17.

19.
20,
21.

22,
23.

24,

(r—g-1)y' +G—-q+3y +{g+3r-y+q+r+1=0;

3—g+3r g+r+l
l+g-r" l+g-r

7y —18y* +6y+4=0.

8ry’ —4qy" —1=0, ;—r

(i) n’+q¢y' —2qy+r =0.

() 7y’ +(3r +2¢°)y +Gr —4¢ )y +r +24° =0.
(i) v’ +q—-r)y" +(1-rY=0.
(y—7)3—21(y—7)2+972=0

O {gr+3)-p ) =tlpgy -+ 3y Hplr+3) -4}
(i) Yy’ +prd+r)y’+q(+r)y+(1+r)=0.

V' -6y"+11y-5=0.

y =15y +95y-217=0.

Yy =7y +17y" =10y -6 =0.

X +12x7 +43x+44=0

X —Tx+6=0.

¥’ =9y"+90y—-168=0.
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5.1 Objectives

Here we shall be able to do the following
® We shall be able to find the roots of a cubic equation by Cardan’s Method.

® We shall be able to find the roots of a biquadratic equation by Euler’s,

Descartes’ and Ferrari’s Method.

5.2 Introduction

In this unit, we shall discuss the methods of solving cubic and biquadratic
equations. Solving of these equations are extremely useful in research work and
in different applications, specially in physics, architecture, etc.

3.3 Cubic Equations

In this section, we like to find the solution of a general cubic equation with

binomial coefficients ax’ +3bx* +3cx+d =0, a #0. In fact, Tartaglia found out

a method of solving the standard form of this equation, which goes by the name
of his student Cardan.

38
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5.3.1.Standard form of a cubic

O,

O,

O,

or,

Let us consider the cubic equation

ac’ +3bx* +3cx+d =0, a#0. (1)

First, we reduce this equation to its standard form in which the second term is
lacking.
To remove the second term, let us increase the roots of equation (1) by 4.

Therefore equation of transformation 18 y=x+h orx=y-h.
Therefore equation (1) becomes

a(y—hy +3b(—hY +3c(y—)+d =0
a(y” =3k + 31y = ) +3b (57 - 2y + W)+ 3c(y—h) ¥ d = 0
ay’ +3(—ah+b)y’ +3(ah’ - 2bh+c)y +(-ak’ +3bh" =3ch+d)= 0.

The second term will be removed if —agh+b=0, je., if h=%.

Therefore the transformed equation becomes

2 2 3 2
ay3+3[a_b2 —22 +c]y+[—a.b—3+3b_b—2—30b +d]= 0
a a a

a
2 3
ay3+3[—?+c]y+[i‘2 —%er]: 0

@y’ +3(ac—bay+(@d -3abc+26)=0 ..(2)
By putting @y = z in equation (2), we further transform the equation to the form
Z+3Hz+G=0, E)
where H = ac — b* and G = a’d - 3abc + 20,
Equation (3) is called the standard form or reduced cubic of Cardan.

If z be a root of equation (3), then V =§ is a root of equation (2)
and hence x=y—h=§—%=%(z—b) is a root of the equation (1).

Therefore the relation between the roots of the general cubic (1) and those of
the standard cubic (3) 158 ax+b==z
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5.3.2 Cardan’s Method of Solution of Standard Cubic

To solve the standard cubic z* +3Hz+G =0 D
according to Cardan, we assume z=m+n

Therefore z° =’ +#° 4+ 3mm(m + 1) = o’ + 1’ +3mnz

o, 2 =3mmz-m - =0 -{(2)
Comparing (1) and (2), we get w*+ #* = -G and mn =-H or m*w'= -
So m’ and #° are the roots of the quadratic equation # + Gf — H* = 0.
Solving this equation, we get two roots

' =1-G+VG +4H") and n3=%(—G—x/GE+4H3).

From these, we get three cube roots as m, m, moy and n, #w, ne¥, where o
and ¥ are imaginary cube roots of unity.

Keeping in mind that m»n = — H, we get only three pairs of values of m and »
viz. (m, »n), (mw, nw’) and (mo?, nw) are to be taken. So the solution of the
equation (1) is given by

m+n, mo+nn’ and mo’ +nw. (3

5.3.3 Nature of the roots of a cubic

(i)

The general cubic equation is ax’ +3bx* +3ex+d =0. (1)
By the transformation, z=ax+5, we get the standard form viz.

Z+3Hz+G=0, -(2)

where H = ac — ¥ and G = &°d — 3abc + 25

Nature of the roots is not changed by substitution. So the nature of the roots
of equation (1) remains the same as the nature of the roots of equation (2).
Again the roots of equation (2) are obtained by using the quadratic equation

F+Gt—H =0 .(3)

The quantity G* + 4H° is the discriminant of equation (3). Hence the nature of
the roots depends upon the value of & + 47°.

We have found that the roots of equation (2) are

m+n, mo+nw and mm” +no. A4

The following three cases arise

If G* + 4H° > 0, the roots of equation (3) are real and distinct. Therefore, from
equation (4), we conclude that, equation (1) has one real root and two imaginary
roots.
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(ii)

(iif)

If G*+4H® =0, the roots of equation (3) are equal, i.e.,, m = n and therefore,

from equation (4), we see that, the roots of equation (1) are 2m, —m, —m (since
1 + o+ »*=0). So all the roots are real and two of them are equal.

If & = H = 0, then all the roots are real and equal.

If 7 + 4H* < 0, the roots of equation (3) are imaginary. m and » cannot be
found by any arithmetical process. This is called irreducible case of Cardan. In
this case, De Moivre’s theorem may be applied to solve the equation.

5.4 Worked out Examples (I)

or,

Example 1 : Reduce the equation »* 4 6x? —12x+ 32 = oto its standard form.

Solution : Comparing this equation with ax® +3bx> +3ex +d = 0, we get
a=1,5b=2,¢c=—-—4and d = 32.

Under the transformation z = ax +# = x + 2, the given equation will be reduced

to the standard form 22 + 3Hz + G =0 where H =ac - b*=-4 -4 =-8 and
G=a'd —3abc+2b° =32+24+16=72.

Therefore the required standard form is > —24-+72=0.

™

Example 2 : Solve x* — 30x + 133 = 0 by Cardan’s method.
Solution : Let x = m + n.

Therefore x° =m’ +#° +3mn(m +n)=m’ + 1’ + 3mnx
¥ =3mux—(m’ +n’)=0.

Comparing this equation with the given one, we get —3mn =-30 and
-+ py=133

or, w + = -133 and mn = 10, ie., pr® =1000.

or, t

Therefore s and #° are the roots of the quadratic
£ +133t +1000=0

1333 a000 -
_ 133+,/(133) 4000= 133i“7=_125_,—8-

2 2
Therefore m* = — 125 and #° = — 8.

Therefore m = -5, -5, —5®* and » = -2, 2w, —20¥,
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or,

O,

where 0 and «° are imaginary cube roots of unity.
Since m =10, we take m = =5, n = =2, m = =5, n = =20, m = -50¥, n =20

Therefore, x=m+n=-5-2, —5m0—-20°, — 50" - 2®

or, x=-7, %(7+3\/§ ), %(7-3\/5 i),

where n= %(—1+ \/51') and ©° = %(—1 - \/51')‘

Example 3 : Solve v 1 9x? +15v—25=0"
Solution : To solve the equation, we are to reduce this equation to its standard
form.

Letusputy=x+horx =y-—h
Therefore the equation becomes (y-#4)' +9(y—hY¥ +15(y-h)-25=0

Coeflicient of y* 1s taken to be zero.
Therefore =342 + 9 = 0 or, i =3.
Therefore y = x + 3.

-3 1 9 15 25
-3 -18 9
1 6 -3 -16
-3 -9
1 3 -12
-3
1 0

Using synthetic division, we get the transformed equation

¥y -12y-16=0 (1)
Let y=m+n

V=o' +0° +3mn(m+n)y=m’ +n’ +3nmy

y =3mny—(m’ +1')=0. (2)
Comparing equations (1) and (2), we get mn = 4 and »* + i =16.
Therefore n® and #* are the roots of 7 —161+64=0

J256 - 4<1x64
;164256 -4x1x64 _¢ o

2x1
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Therefore m*=8 andw =8

Therefore m =2 2m, 200" and n = 2, 2, 20°.

Since mn = 4, we have y=2+2, 20+ 20", 200" + 20, ie., y = 4,-2,-2.
Hence the required roots of the given equation (using x = y — 3) are
4 -3, -2-3 and -2-3, i.e, 1, =5, 5.

Example 4 : Solve the equation x* — 3x +1 = 0 by Cardan’s method.
Solution : The given equation y* _3x4+1=0 (1)

1s already in standard form.

Comparing this with 22 43+ G =0, weget H =—-1and G =1
Now G+ 4 =1-4=-3 <0,

Therefore this is irreducible case of Cardan.

Let x =m + n.

Therefore = 3mux — (m* + 1) = 0. .(2)
Comparing equations (1) and (2), mn =1 and m* + #w* = —1.

Therefore # and »* are roots of # + 1+ 1 = 0.

ciyizd 1, i
2

Therefore t =

2 2
Therefore m’ =—%+% and # = —%—%.
Let m’ =r(cosO+isin®) and #° =r (cosO—isin ).
Therefore # cos 0 = — %and ysin O = %
1 3

r=|=+==1
Therefore s
. _ 1 o B

. cos B = -3 and smG—T‘
Therefore 6= 23_7c _
Therefore #7° =cos 2,’—Tc+ isin %—n and #° = COSzTn—I' $in 2,’—15
J J J

Hence m = cos%(z,,—n+2k1c)+isin1(2n+2k11:), for k=0,12

Hew
2 2 2
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and p= cos%(%+ an‘,)—isin 1 (zn

303 +2k11:) for k=01 2.

Hence x=m+n= 2005;(23n+2kﬂ:) fork=01 2.
Therefore required roots are 2005% 20058% and 2cos 14;,15
3.5 Model Questions (I)
Reduce the equations to the standard form :
L) -3 +12x+16=0- () ¥ 43 +10x+6=0-
2. Solve the following equations by Cardan’s Method :
(1) x’-18x-35=0" (i) ¥’ -9xr+28=0.
(i) x*-15x-126=0- (iv) 8x°-36x+27=0.
(V) ¥’ -12x+65=0" (Vi) ¥’ +6x" —12x+32=0.
(Vil) ¥’ -3x” +12x+16=0. (Vi) x*-6x-4=0-

(1X) ¥*—7x+6=0-

5.5.1, Answers

1 () y’+9y+26=0. (i) y'+7y-2=0.
. 5 1\/‘. .. .
2.() 5,—§i§ 3i, (i) —4,2i\/§1.
(i) 6, —3+ 237 . (iv) 3 —(—1+f 5).
(v) =5, 1-3m, 14+ 30° . (vi) -8, —2m, —2m°

(Vi) —1, — 40, — 4.

(vii) 22 cos— 2\/5005 2x/5 cos”—;_ (ix) 1,2, -3
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5.6 Biquadratic Equations

Let us consider the general biquadratic equations with binomial coefficients
ax’ +4bx* + 6cx’ +4dx+e =0, (a2 0) ... (1)

To reduce this equation to its standard form, we decrease the roots of
equation (1) by # by putting y = x — A

Therefore the transformed equation 1s
aly+m +4b(y+hY +6c(y+h)Y +4d(y + ) +e=0.
The second term will be removed if coefficients of y* =0, je, if dah+4b=0

ie, if h = -2
a

b a 4b 6¢c 4d e
(4]
PR T 3 _ebe _3b* 6bc_dbd
a a a a a a
a 3 ) 2
a 3b 6c— L 4d+3b2 _Ske e—%+—6‘bﬂc—ﬂ
a a a a a a
PR sb_ebe
a a a
2 3
u 25 6C_Sb 4d+861 _12bc
a a a
2
O
a
2
da b 60—&
a
b
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The transformed equation is
ay’ + %(ac —bhyyt+ i(azd —3abc+2b%)y + Ls(ase —4a’hd +6ab’c—3b") =0
a a

Putting H =ac—-5>,G =a’d —3abc+2b° and I = ae—4bd + 3¢*, wehave
a’e - 4a’bd + 6ab’c —3b" = a’(ae —4bd +3¢”) - 3(a’c’ - 2ab’c + b?)
=a’l -3ac-b*Y =a*l-3H"

The transformed equation becomes ay*+ %Hf +%Gy +%(azf -3H%)=0

of, a'yv*+6Ha'y’ +4Gay +(a*l -3H*)=0.
Multiplying the roots of this equation by @ and writing z = ay, we get
P+ 6H + 4Gz + (T -3HH= 0 (2
This is the standard form of the biquadratic.
If z is a root of the equation (2), then the corresponding root of equation (1)

is y=Ll(z
is x-a(a b).

5.6.1 Euler’s Method of Solution of a Biquadratic
Let us solve the biquadratic equation

ax* +4bx* +6cx’ +4dx+e =0, az0 (1)
Reducing it to the standard form
Z*+6HZ* +4Gz +(a’ 1 -3H*) =0, (2)

where H =ac—b*,G =a’d —3abe+2b* and I = ae—4bd +3c”.
To solve equation (2), let =z = \/E+\/§+\/;. .(3)
Squaring both sides, we get z>°= p+g+r+2(\/pg +\/q_?‘+\ff;)

or, zz—(p+q+r)=2(\/p_q+\/q_r+\ff;).

Squaring both sides, we get
z“—2(p+q+r)zg+(p+q+r)2 =4(pq+qr+rp)+8wlpqr(\/§+\/c}+\/;)

of, z'=2(p+q+r)z° = 8pgrz+(p+q+r) —4(pg+qr+rp)=0. (4
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Comparing equations (2) and (4), we get
p+q+r=-3H,

Jpir =16

and (p+g+r)V —4(pg+gr+)=a’l-3H"
From the last relation, we have

Apg+aqr+mp)=(3HY (@’ -3H") =120 -a’'l
So we get p+qg+r=-3H,

pg+qgr+ip=3H" —%azf
and par= 12
17
Therefore p, g, r are the roots of the equation
:3+3Hx2+(332—%a31)x—563 =0, (5

Equation (5) 1s known as Euler’s cubic. Equation (5) can be written as

2
@+ HY 'GTI("' +H)—%(G3 +4H —a*IH) =0

or, (:+H)-“‘—%1(:+H)—%(—a3J)=o,
where J = ace + 2bed - ad® — be — ¢*
or, 4 ¢ +H - T+ H)+a]=0
Now putting ¢+ + H = a? 0, we get
4°0° - Ia® + J = 0. _{6)
This 1s known as the reduced cubic of the biquadratic.
If 8, 6,, 6,, be the roots of the equation (6), then the corresponding roots of

(S)willbe p=a’0,-H, g=0a°9,-H, r=a0, - H and the values of z will be
obtained from equation (3) as
z=+ a0, —H |0, - H + Ja’0, - H .

Since the total number of values of z, 7.e., roots of equation (2) will be only

four, we shall select the signs of \/;, \/E and * in such a way that the
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conditions + PgF = - % G 1s satisfied. After finding out the four values of z, four

roots of the equation (1) will be given by x = % (z-5).
5.6.2 Descartes’ Method of Solution of a Biquadratic
Let the equation be ax+4bx’ +6cx’ +ddx+e=0, a#0 (1)

and the standard form be z*+6Hz’+4Gz+ (@’ I -3H)=0 . (2)

To solve this equation, the L.H S. of the equation is expressed as product of
two quadratic expressions in certain manner,
Let this equation be represented by

Zrmz+my(Z—mz+k)=0 ..(3)
o, P rn+rk—-mz +mk—mz+nk=0. ..(4)
Comparing equations (2) and (4), we get

n+k—m’ =6H, (5)

m{k—n)=4G ..(6)
and nk=a’l -3H*. (7D

From (5) and (6), we get

2k=6H+m3+ﬁ and 2n=6H+m3—4G.
m n

Putting these values in (7), we get

(6H+m+ )( ) Aa’]-3HY
or, 6G = 4(a*] —3HY)
- - 662
or, 36H*+12Hm” +m* — —-4a’I-3H=0
m
or, m®+12Hm* —4(a’1 —-12H " —16G* = 0.

This is a cubic equation in #° and solving this equation, we can find the values
of m* from which & and » can be found out. We then get two quadratic equations

Z+mz+n=0and z*—mz+k =0
The roots of these quadratic equations are the roots of the equation (1).
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5.6.3.Ferrari’s Method of Solution of a Bigquadratic
Let us consider the biquadratic equation

ax® +4bx’ + 6cx’ +4dx+e=0, a#0 D

To solve this equation, the LH.S. of (1) 1s expressed as difference of two
squares.

Let us multiply L.HS. of (1) by a. We then get

a'x* +4abx’ +6acx” +dadx +ae = 0
or, (ax” +2bx +1)° — (2mx +ny’ =0 (say) {2
of, a’x* +4abx’ +(4b% + 2ah — 4m )X + (4bA — dmm)x + (W* - #1') = 0.

Equating coeflicients of like terms, we get

4b* +2a)h —4m? = 6ac or, m’ =%(2b2+a7n.—3ac) 3
4bh — 4mn = dad or, mn =bh —ad .4
and A -n"=ae or,n =A"—ae. - {5)

Eliminating m and » from (3), (4) and (5), we get

%(13 —ae)(ah + 2b° —3ac) = (bh —ad)?

or, A’—=3ch’+(4bd — ae)h+ (Bace —2b%e—2ad*) = 0.
This is a cubic equation in A.

Corresponding to a real root A, we find the values of m°, mn and #* from (3),
{4) and (5) respectively. From these, we get m and ». Hence equation (2) is
known and we have

fax’ +2(b+m)x + A +ni{ax’ +2(b-mx+A-n}=0.
From ax’ +2(b+m)x+Ai+n=0, we get two roots and

from ax’ +2(b—m)x+A—n=0, we get two roots.

These four roots are the roots of equation (1).
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3.7 Worked out Examples (II)

Example 1 : Solve the equation x*—2x”+8x-3=0 by Euler’s method.
Solution : This i1s a biquadratic equation in its standard form.

Let x:\/;+\/c}+\/;
o, X=prq+r+2(/pg+Jar +rp)
or, O ~(p+q+n)y =4 pg+Jar + oy
or, x*=2(p+q+r’+(p+q+r) —Apag+qr+ro+2Jpgr (Jp+Jg+Vr)i=0

or, x'-— 2(p+cjf+r)x2 —f:’»\lpcp".x+(p+q+r)2 —4(pg+qr+p)=0.
Comparing this equation with the given equation, we have
ptg+r=1,

Jpgr =-1

and (p+q+r) —4(pg+qr+rp)=-3
or, 1-4{pg+qr+rp)y=-3
or, pg+qgr+ip=1.

Since p+g+r=1 pg+qr+rp=1and pgr =1, therefore p,¢,r are the roots of

the equation F = 4+t-1=0
or, £i-D+1E-1)=0

or, (F+)E-1)=0.
Therefore t=1 i

Letp=1,g=iand r=—-1i
Therefore \/; =*1.

Si goi=Z 12142 P2 14i)
mce 5 5 > \/E ,

+

i
S
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o
—

and Jr=2

51

Since /pgr = —1, wetake

(@) P=-1 Ja=—zen, Jr=—=(-)
) NP =L Jg=-g= e, Nr=—iiod)
© VP=1 \/E=%(1+i), \/;=—%(l—i)
@ VPt Ja=-p i, Jr=p-n,

Hence the required roots of the given equation are —1 + /2 and 1 + /2.

Example 2 : Solve x*+2x°+56x—187 =0 by Descartes’ method.
Solution : Let the equation be expressed as product of two quadratic expressions

(o +mx+ (X —mx+k)=0 D
or, vk —m +mk—mx+in=0.
Comparing this equation with the given equation, we get

n+k-m =2,

mk—n)=>56
and nk =-187.
Therefore ktn=m*+2
and k—n:&_
m
Solving, 2% =m*+2+8
m
and Im=m?+2-28.
m
Therefore (m2 +2+ &)(mz +2- &) =4 =748
m m
or, (m? +2)} _31326 —_748
m
or, m*+am’ +752-2136 - ¢

2

I
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or, mt+4m* +752m° -3136=0.
By trial, we get m*=4 or m = 2.

Therefore k=%(4+2+28)=17 and ;1:%(4+2_23)=_11_

Therefore equation (1) becomes

(+2x—1D(x"-2x+17)=0.
Therefore

either (x*+2x-11)=0 which gives x = 5

2144-68 \1'4_68:14-41‘
3 Tal.

or, (x*-2x+17)=0 which gives x =

Example 3 : Solve x*_2y%3 _5x2 4+10x—3=0 by Ferrari’s method.
Solution : Let

=217 =58 +10x 3= (X" —x+ 1) —Cmx+n)°* =0 ..(1)
or, =20 + (14 20 —4m™ W +(=2A = 2mm) x + N> —n” = 0.

Comparing coefficients of like terms, we get

1424 —4m*==5 or, m2=%(3.+3)

2A—-4mn=10 or, mn= —%(?L+5)

and AM—-n==3 or, " =A"+3.
Eliminating m and »n, we get

]. 2 - - _l 2
2(7\, +3)(7u+3)—4(7\,+5)
or, (A +3A7 +30+9) = A2 + 101 +25

or, 20 +50 - 4A -7 =0.
By trial, 3 =—1is a root of this equation. Therefore we get

O |
T==(=1+3) =1
m 2( +3)=1
1
mn=-L(-1+5=-2
n=-11+3)

and n=(-1Y+3=4.
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Therefore m=1 n=-2.
So equation (1) becomes

(x*=x-1Y-(2x-2)'=0

or, (xF+x=3)(x*-3x+1)=0.
Therefore ¥ +x-3=0 gives x=%(—1i\/1_3)
2 _ - _1
and x“=3x+1=0 gives x—§(3i\/§)_
3.8 Summary and Keywords
Summary :
L General form of a Cubic equation

ax’ +3bx° +3cx+d =0, a2 0 D
Its Standard form
2 +3H:+G=0- -{(2)

where H = ac — b* and G = &*d - 3abe + 2b°.

II. Nature of the roots of the cubic equation

111

IV.

The nature of the roots of (1) is the same as that of (2).

(i) If G* + 41 > 0, the equation (1) has one real root and two imaginary roots.
(i) If G*+ 4H° < 0, we get irreducible case of Cardan. (1) has two imaginary
roots.

(iii) If G = H = 0, all the roots of (1) are real and equal.

(iv) If G* + 4H* = 0, all the roots of (1) are real, two of them are equal.
General form of Biquadratic equation

ax* +4bx’ +6ex* +4dx+e=0,a = 0.

Its Standard form is z*+6Hz* +4Gz+(a’ I -3H*)=0, ..(3)

where H = ac - b*, G = a&*d - 3abc + 2b° and I = ae — 4bd + 32

Methods of solving the equation (3) by (a) Euler (b) Descartes” and {¢) Ferrari
are discussed in details.

Keywords :

Equation, Roots, Cubic, Biquadratic, Nature, Irreducible.
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3.9

Model Questions (II)

LN

. Solve by Euler’s method :

() x*—2x*+8x-3=0. (1) x*+4x"-6x"+20x+8=0.

(i) x'—3x'—6x-2=0. (iv) x* —6x°+16x—24x+16=0.
Solve by Descartes’ method :

) x*-3x*+1=0.
(i) x*-4x’ +12x° -16x+15=0.
(iii) »*—4x’ —20x* +64x-20=0.

(iv) »*+3x%+2x+12=0.

. Solve by Ferrari’s method

i) x*+12x-5=0.

(i) x*-18x*+32x-15=0.

(i) x*+3x'+x*-2=0.

(iv) x*-2x"-5x"+10x-3=0

Solve x*—6x*—-16x—-15=0 by expressing it in the form

(A +A) =(mx+n) =0.

5.9.1 Answers

1.

() —1£2, 122 (i) 1£+/3;, —3+7.

(iii) —12+7,1+V2. (iv) 2, 2, 1+/3i

() 2(-1£45), Z{1£45) (i) 1427, 142

(i) —1£11, 37 (iv) 1£3i, 121,

(i) 1£2i, —1++/2 . (i) 1, 1, 3, -5.

Gii) —1£+3, %(—11\/51')_ (iv) %(—u\/ﬁ), %(31\/5)‘

1+6, —1+2i
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6.2 Objectives

In mathematics, use of inequalities is very important. Here we shall learn the
relations among Arithmetic Mean, Geometric Mean and Harmonic Mean. We shall
learn proof of Cauchy-Schwartz’s inequality. We shall be acquainted with some other
useful inequalities. These inequalities are widely used in solving many problems.

6.1 Introduction

In this chapter, we shall deal only with the real numbers and # is assumed to be
a positive integer. We recall some known inequalities which are very useful in
mathematics. We use >’ ‘<’ as sign of inequalities.

6.3 Some definitions and important properties

{a) For the real numbers a and b, we say « is less than » if @ — » is negative. Using
sign of inequality, we write @ < 5. On the other hand, « is greater than b if
a — b is positive and we write a > b If a is equal to b, we write a = b, If
is less than or equal to b, we write @ < . Again, if @ is greater than or equal
to b, we write @ = b.

105
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(b) For any two real numbers @ and », we always have either ¢ < b or @ = b
ora>b.

(¢} Square of any real number must be non-negative, i.e., if  be a real number then
@ = 0.

(d)Ifa>band b > ¢ thena > c.

(¢ fa>b thena + k> b+ kand a — &k > b — k, where k is any real number,

() Ifa > b, then ka > kb, it k> 0 and ka < kb, if k < 0. Also %>% and %<%,
according as £ > O or k& < 0.

(g) Let a = 0and = 0. If a > b, then %<%.

(h) If @ >b, a,>b,.....,a,>b, thena +a,+....+a,>b+b,+...+b and
aa,...a, 2 bb,. b (assuming a2 0and b >0,i=1,2,...,n).

(i) fx>0and a > b > 0, then & > &b~
(D)Ifa>landx>y>0 thena*>a”
kK Ifo<g<landx>y>0,thena*<a”

6.4 Worked out Examples (I)

Example 1 : If ¢ > 0 and # > 0, then a;b>\/fg.

Solution : We have (\/E—\/z‘_))3 >0

or, a+b—2\/cg>0
or, a+b>2\/£

Therefore d ; b > \/CE )

Example 2 : If g, 4, ¢, be any three real numbers, then prove that

@ +b*+e* > ab+be+ea.
Solution : we have 4* 1 p’ + ¢ —ab—be—ca

- %(2& +2b% +2¢° — 2ab — 2bc — 2ca)
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= %{(a2 ~2ab+ B+ (B —2be +¢Y) + (¢t —2ca+at)

_ %{(a—b)3+(b—c)3+(c—a)2}

= 0.
Hence &’ +b*+c” 2ab+bc+ca.
Example 3 : Show that (n'y >n * for n =2.
Solution : We have
(n1)? = (). (n")
=123 . r. nxnn-Dn-2).. (n-r+1).321 (1)

Now rin—r+h>n,
if rr—rn+)+n<0
ie., if r—D(r—m<0
ie., if 1< r<n
Therefore, from equation (1), we get
(> nn..n .. .n (nterms), for n > 2
ie., () > ", for n > 2.

Example 4 : If @, b, ¢ are positive and not all equal, then prove that
{a+b+c)(bc+ca+ab)>9abc.

Solution : We have (a+&+c)(bc+ca+ab)—9abe

abe+a’(c+b)+abc+ b (a+c)+abc+c(a+by—9abe

a(c+b)+ba+c)+c(a+b)-6abec
a®d*+c> —2bc)+b{c” +a’ —2ca)+c{a’ +b° —2ab)
= a(b—cY +bc—ay +c(@a-byY >0.

Hence (a+b+c)(bc+ca+ab)>9abc.

6.5 Model Questions (I)

1. Prove that, for all x>0, x+%22 and for x<0, x+%$—2.
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. (a) If @, b, x, y be all positive, then show that

If a, b, ¢ be any three real numbers, show that

2 2 2 2 2 2

b +c Lo ta a +b sa+h+c

b+c c+a a+b

(a+b)xy<ax+by
ay+bx — a+b

(b)Ifa, b, ¢, d are all > 1, then prove that 8(abcd +1) >(a+ Db +1){c +1){d +1).

[Hint : Prove first 2(ab+1)>(a+1)(b+1),etc]
Prove that 11.3'.5'....... 2n —1)! > (n')".

. If a, b, ¢ are any three real numbers, then prove that

b+c c+a a+b 1 1 1

St e

bP+e? tva’ at+bh T a b c

@+00T+3)
3+x

Show that the minimum value of 9.

[Hint : Put 3 +x = y.]

6.6

Inequalities among the Means

Ifa, a,... a ben positive real numbers, then
A=l(a1+a2+ ..... +a,),

n
G = faa,.. .. .a,

n

H=77 I

—+—+..... +—

a,  a, a

are respectively called the arithmetic mean, geometric mean and harmonic
mean of a,, a,,......a

o

6.6.1 Relation among Arithmetic Mean, Geometric Mean and Harmonic Mean

The relation among 4, G and His 4 = G = H, the sign of equality holds only
when g, =a,=.....=qa

Proof : If ¢, and «, be positive, then

(Ja—Ja) =0
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or, a+a,—2jaa, =20

a +a,
or, > = > Jaa, .

The sign of equality holds only when a, = a,
Similarly, if @, and a, be positive, then
a,+a,

>Jaa, .

The sign of equality holds only when a, = a,

2 2
Hence aa.aa, [a1 T4 (414,
B 2 o2

a+a, a,+a, Y
22

or, aa.a.d, S(

4

Fl
_(a+a,+a,+a,
4

14
L]
L]

re., >

The sign of equality holds only when ¢, =a,=a,=aq,.
Proceeding in this way, for 2* = 8 positive numbers a,, a,, ..., a,, we get

8
q+%+%+m+@+%+@+%]

aam,aa,a.a.a0.a, < [ 2

The sign of equality holds only when ¢, =a,=.... =a,

Then, if # be a power of 2, ie., if = 2", m being a positive integer, we get

a+at..+a
aa,...a, s[ S " ) (1)
The sign of equality holds only when a, = a, =.. = a_
If 7 is not a power of 2, let » + p be power of 2, where p is a positive integer.
Now let us consider 7 positive numbers a,, a.,......, a, and p positive integers
each equal to 4, where
a+a, + +

P . e
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From equation (1), we have

ie aa, . ...a A* < '_nA+pA v
€., 16820 - n+p s

since from equation (2) we have a +a,+. ... .+a,=nAd

n+ A" _ g
H+p

Therefore aa,....a,A” S[

ie. a,az......a"SA"=(a‘+a3+ ...... +a")".

7
The sign of equality holds only when q,=a,=... =a,
Therefore - +n- """ LS m
or, Az2G- .(3)
The sign of equality holds only when a, =a,=...... =a,

. ... 1 1
Let us now consider » positive numbers PO
1 2

Using the inequality 4 = G for these numbers, we have

.a] ‘ag e

1
The sign of equality holds only when == ~=--=_7 16, 4=, =....=4,
1 2 n
n 1

or, <(aaq,...a,)"

R .

al a2 an
or, H<G
or, GzH . (4)

Combining (3) and (4), we get A = G = H, the sign of equality holds only when
all the numbers are equal.
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6.6.2 Theorem of Weighted Means
Ifa,a,..,a andx,x, .. x betwo sets of # positive numbers, those in the
second set being rational, then

" A+t 435,

ax tax,+...+tax, - .
n

The sign of equality occurs only when ¢, =a,=..... =a,

Proof : Asx, x,, ..x are positive rational numbers, there exist positive numbers

—_ yl —_ y2 —_ -yn

Vo Voweernnn, .y, and g such that x, ==, x, == X, ==

v ‘g g g
Now we consider

¥, numbers each equal to a,,

¥, numbers each equal to a,,

y, numbers each equal to a
Their A M. = their GM.

1

SO alyl +a2y2 +o +anyn ~ (a yla ¥y a ,v“)y|+y3+. Lty
— 1 2 ““““ ’
Wty oty !
The sign of equality occurs only when o, =a, = ... = a_

Putting y, = x g v, = x,g, .., ¥y = x g on both sides, we get

1
axg+ax.g+. .. . +a xng>(

xg+x.g+. .. +x.g

6.6.3 Extreme Values of Sum and Product.
Theorem : If a, a,, ...... ,a_be n positive variables and c is a constant, then

c .Y
a=a,= ...=a="7,50 that the greatest value of ¢, @, ... a is (E) _
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(i) ifa, @, ... a_= c, the value of @, + a, + ...... + @, is least
1
when a, = a,=... = a_, so that the least value of ¢, + @, + ...+ a is nc".
Proof : (i) Let ¢, a,, ..., a, be n positive numbers such that a+ a+.. .+ a =c.

Using the relation GM < AM., we get

1
— a+ta+.. . +a
(aa,...a,) <= 2 =L
# n
c L
Therefore aa,...da, S(;)
The sign of equality occurs only when @ =a,=....=a,

. e\’ .
Therefore the maximum value of aa,...a,= (;) and it occurs when all the

numbers are equal.

Proof : (ii) Let a, @,,...... , a,be n positive numbers such that ¢ «a,... a = c.
Using the relation AM. = GM., we get

a+a,+. .. .+a i1
1 L2 (aa,. .a) =c"

n
. 1
e, a+a,+..+a, znc”-
The sign of equality occurs only when @ =a,=....=a,

Therefore the minimum value of @ +a,+ .. .+a, =nc” and it occurs when all

the numbers are equal.

Example : Find the minimum value of 4x + 3y for positive values of x and v,

subject to the condition 2x'y” =3.

Solution : We have x’y” = % If A, n are any constants, we have

) () ) () (1) = M’ = S = a constant
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Therefore Ax+Ax+Ax+uy+wy =3Ax + 21y is minimum, when
3 1
5
AX=py = (Eksuz) .
1
Hence the minimum value of 3Ax+2uyis 5(% ?Lﬁf)s _

Putting 3h =4 and 2u =3, ie, A =§ and p= %, we have the minimum value

ot ey aes ) =55

243/ \2

6.7 Cauchy-Schwartz’s Inequality

We shall now state and prove Cauchy-Schwartz Inequality.

Ifa,a,...aand b,b, .. b betwo sets of # real numbers, then

P

(@b +ab,+ . +ab) <(a’+a’+. .. +a )b +b’+. .+b?),

For all real values of x, we have (ax+5) +(ax+b,) + .. +(ax+5) 20.

The sign of equality occurs if and only if gx+b =a,x+b,= ... =ax+b =0
e, when S=%2=  =Za-_1 omerwi
i.e., when b] b2 ------ bn - Utherwise we get

or, Ax*+2Bx+C >0
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: aB_., C
2=x+=>0
or, X+ Ax+ 1 =
o, (x+%) +%>0_
This 1s true if and only if 4C — B* > 0, ie, when B? < AC. Hence we prove

that

(@b +ab,+. . +ab) <(a’+a, + .. +a )b +b "+ .. +b)).

6.8 Other useful inequalities*

6.8.1 Weirstrass Inequalities
Ifa,a, ..,a and b, b, .., b are positive numbers less than 1 whose sum
is denoted by § , then

G =S, <(-a)(1-a,)...(0-a,)<

and (i) 1+5, <(1+a)(+a,). .. (l+a")<ﬁ,

where in the last inequality, it is supposed that §, < 1.

6.8.2 Tchebychef’s Inequality
Ifa,a, ..., a and b, b, .. b be two sets of real numbers such that

afa, <. <a, and b <b <. . <h then

(aq+a,+...+a)b+b+. . +b)<n(ab+ab+. .. +ab).

Example : Prove that \/I+\/§+ \/§+ ..... +r<n nT-i-l

6.8.3.Jensen’s Inequality
Ifa,a, ... a beasetof n positive numbers and 7, s be two positive rational

1
numbers such that » < s, then (¢ +a,+....+a, ) > (@ +a +....+a, )

Example 1: Prove that (o +5’+¢&°) > (a@* +5* + %) .
Example 2 : Show that if in a AABC, b + ¢* = &, then A4 is an acute angle.

* Reference for Advanced students
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6.8.4 Minkowski’s Inequality
Ifa,a, ..,a and b, b, .., b, be two sets of positve numbers and m be any
positive rational number not equal to 0 or 1, then

L 1
(@ +a,"+. .. +a" )" +(B"+b"+. ..+ )"

>or < {{a,+5)" +(a,+b,)" +... +{a
according as m does not or does lie between 0 and 1.

Example : Show that (¢+3) +(b+4)’ +(c+5)’ <343 where a,b,c are all
positive numbers and " +p* +o°=1.

6.8.5 Holder’s Inequality
Ifa,a, .. ,a;b,b, . b, . k,k,. .. k bem setsof positive numbers

1* il

and o,pB, ..., A be m rational numbers such that o« +  +.... + A =1, then
alc'“blI3 ““““ k ll+a3“b23‘..”.k21+ ..... +¢;';'“l:g,,'3”..kﬂﬁL
< (a,tayto..+a) (@ +b+. 45 Lk th R

Example : If @, 4, ¢ and d be positive numbers, then show that
(1+a)Y(1+H0+chH) (1 +dY) 2 (1 + abedy

68.6If a, a, .., a aren positive numbers not all equal to one another, then
ny a™ > or <z ar".z a’
according as x and y have the same or opposite signs.
6.8.7 If @ is any positive number except | and x, ¥ are positive rational numbers, then

a“—1>a-"—l
X

Jaf x>y

6.8.8 If o and b are positive and unequal and x is any rational number except 1, then
xa a-b>a —b > xb"{a-b)
unless 0 < x < 1, in which case,
xa {a-by<a*—b" <x.b"'(a-b).
6.8.9 If # =1 in the second parts of the inequalities stated above, we get
a’ —=l>x(@-1) or a*—1<x(a-1)
according as x does not or does lie between 0 and 1.
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6.8.10 m-th Power Theorem

Ifa, a, .., a ben positive numbers which are not all equal to one another
and m is any rational except 0 or 1, then

according as m does not or does lie between 0 and 1.
Example 1. If ¢ and # be two positive numbers and ¢ + » = 4, then prove that

(a+l)-+(b+l)- =12

1
a b 2

Example 2, Prove that @’ + b’ + ¢ > abe{ab+bc +ca).

6.9

Worked out Examples (II)

Example 1: Prove that (a+b+c)(%+%+%) -9

Solution : Applying AM. > GM. for the numbers a, b, ¢ we have

arbre  srp-

: - ()

1 1.1
a b c 1 (2
3 ” abe @)

Multiplying (1) and (2), the result follows.
Note : The result (2) can be obtained applying AM > HM of the numbers a,b,c.

A+

Example 2 : Prove that a“b® > (a;—b) >a’h’

. . " 1 "
Solution : Consider a quantities each equal to Eand b quatities each equal

1

to 2 Then using the inequality AM. > GM., we get
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(—+1+ ..... toatimes)+(l+l+ ..... tobtimes)
a b b

a+b

e
> [(ll ...... to a factors) (ll ....... to b factors)]a+b
a’a

b'b
1,,1 |
or, m >(L L)E
' a+b a’ B
2 1 =5
ath
o Sl
2 a+b 1
or, (a+b) s
Cl+b a+b
or, a‘p’® >(T) (D

Next consider # quantities each equal to ¢ and ¢ quantities each equal to 5.
Then applying the inequality AM. > GM., we get

1 . .
a+b[(a+a+ ..... to b times)+(d+b+ .. to a times)]

e
>[(aa....to b factors).(bb.. .. to a factors)]*+*

ab+bﬂ - (ab_ba)ﬁ

or, +b
ZGb bra i
or, a+b>(a .b) 5
But atb is the AM. of @ and . Also —2 = 2ab s the HM. of @ and b,
2 1.1 a+d
a b

Since AM. > HM., we get 430, 2ab
2 a+b
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1
a;b - (abba)m

a+b o bpa
or, _— >a’h (2)

Therefore, we have

a+h
Therefore, from (1) and (2), we get a*h*> (#) >a'h

Example 3 : If the sum of the sides of a triangle is given, prove that the area
is greatest when the triangle is equilateral.

Solution : Let @, » and ¢ be the sides of a triangle.

Therefore a+b+c = 2s (given).

The area of a triangle

A= Js(s—a)(s-B)(s—c)
AF= s(s—a)(s—b)(s—c).

or,
Now (s—a)+{s—b)+{s—c)=3s—(a+b+c)y=3s—2s=s5= a constant. Hence
the value of (s—a)(s—-b)(s—c¢)is greatest when all the factors are equal, i.e.,
when s—a=s-b=s-c,ie, when a=h=c,ie, the triangle is equilateral.

Example 4. Find the greatest value of (a+x)’(a—x)*for any real value of x

numerically less than a which is a constant.
Solution : The given expression is greatest when

3 4
d+ X d—Xx1 .
(2] (255 s so.

Sum of the factors = 3.‘@—x+4_a;x =2a, which is constant.

Hence the expression will be maximum when all the factors are equal, ie.,
- a ] . 68

when a;i—x =4 4x or x = —= and the required greatest value is 6?§ a’.

6.10 Summary and Keywords

Summary
I. Basic Inequalities

() Ifx>0anda>b >0, then e > ¥
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() fa>>landx >y >0, &> d
(i) O <ag<1andx>y>0, then & < b"

IO Ifa, a, ..., a be n positive real numbers, then

A=l‘(al+a2+ ..... +a,), G=Yaa,.. .a,
n

and H = are defined as the arithmetic mean, geometric mean

and harmonic mean respectively of a,,a,,.....,a,.
The relations among 4, G and H are 4 = G = H, the sign of equality occurs only
whena =a,=... =a,

I m-th power theorem
If a, a,...., a be n positive real numbers which are not all equal and » be

any rational number except O and 1,

then & T% T ¥4, <(al+a,.+ """ +a”] according as m does not
H n
or does lie between 0 and 1.
IV. Cauchy-Schwartz Inequality
Ifa,a, ..,a and b, b, ... b betwo sets of # real numbers, then

(ab+ab,+. .. +ab) <(a’+a’+ .. .+a’)b’+b +. . .+b7), the sign of

equality holds only when %= %= ...... =%
b,

2 "

V. A few other Inequalities

Keywords : Inequality, Mean, Maximum, Minimum

6.11 Model Questions (IT)

1. Prove that (i) &°b+b’c+ca = 3abe.
(1) (b+c)c+a)a+b)=8abe.

(i1} (ab+xy)(ax +by) > 4abxy .



120

LN

10.

11.

NSOU « CC-MT-01

. Prove that (n+1)" >2"n!.

. If a, b, ¢ are three positive real numbers,

b+c c+a  a+b 2 2 2 9
> + + z .
then show that —=+=—"—=+=" 6 and Gt T arh S avhte

Prove that (#!)’ <n" (nTH) .

. If a, b, ¢ be positive, then show that

ala—-bya—c)+b(db—-c)Yb—a)y+c(c—ay(c-b) =0
and hence deduce that o’ + 5 +¢’ +3abc > a*(b+c)+ b (c+a)+c{a+b).
If @, b, ¢ be in HP, then show that & + ¢*> > 24

If a, b, ¢ be positive and @ + b + ¢ = 1, then show that (é— 1)(%— 1)(%— 1) =38

and (1—a)1-b)1-c) <%.

Ifa, a, .. a benpositive numbers and s=a +a,+.... +a,, then show that

s s s :

+ )
s—a, s—a, s—a, n-—1

1

. (a) Prove that the greatest value of x? y* is %where x and y are connected by

the relation 3x+4y=35.
(b) Prove that the minimum value of 3x + 4y for positive values of x, y subject
to the condition x¥*° = 6 1s 10.

If a,a,...,a,are n positive numbers, then show that

a  a, a. a . a
e e e O = 1)
a, a, a, a a,
If a, b, ¢, d are positive, then show that
3 3 3 3 - 16

b+c+d+c+d+a+d+a+b+a+b+c Ta+tbte+d
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12.

13.

14.

15.

16.

4

Prove that the greatest value of xyz (d — ax - by — c2) 18 ﬁ provided that

all the factors are positive and a,b,c,d are given positive numbers.
If x, y, z be positive and x + y + z =1, then show that

sms(l—x)(l—y)(l—z)s%

{a) Find the greatest value of x*3)* subject to the condition 3x + 2y =1.

(b) Find the least value of 3x + 2y for positive values of x and y subject to the
condition x** = 16.

{c) Find the greatest value of xyz where x, ), z are positive real numbers subject
to the condition xy + yz + zx = 48,

(@)Ifa,a,...,a ben positive rational numbers whose sum is s, then show

that
. a a . a5 ’ Iy
(i—l) (S —1) (i—l] ...... (1—1] <@m-1).
a, a, a a,

[Hint : Consider the set of positive numbers (ai—l) with weight a for

T

i=1, 2,....,n and apply weighted means theorem ]

(b) Show that 8(I'+2°+._._ +#°) >n(n+1y.

If a,a.,. .. a,b,b,. .. b andc¢,c,,.. .,c, be all positive, then show that
(abc +ab.c,+. .. +ahe)

HOR

<a +a +...+a )b +bi+ .+ e+ +e)).

6.11.1 Answers

14.

(2) 62%‘ (b) 7. (c) 64.
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7.1 Objectives

7.2 Intreduction

7.3 Basic Definitions

7.4 Matrix Algebra

7.5 Transpose of a Matrix

7.6 Symmetric and Skew-symmetric Matrix
7.7 Worked out Examples (I)

7.8 Model Questions (I)
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7.1 Objectives

In this unit, we shall know the definition of a Matrix, Determinant of a square
matrix, its different algebraic operations, singular and non-singular matrices etc.
We shall also be able

to find adjoint of a matrix

to find inverse of a matrix
to perform elementary transformations

°
°

e to reduce a matrix to echelon form

e to reduce a matrix to its normal form
°

to find rank of a matrix

122
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7.2 Introduction

Matrices play a very important role in modern mathematics especially in many
branches of science, technology, economics, etc. We are to deal with sets of numbers
representing quantities. Matrices have various applications in every sphere of life.
Since matrix is in general a two-dimensional array of numbers, we use double subscript
to represent any one of its elements or entries. By convention, the first subscript refer
to row and the second to column. Thus &, refers to the element in the i row, j
column. No relation exists between the number of rows and the number of columns.
Any matrix which has the same number of rows and columns is called a square
matrix. Any square matrix with » rows and » columns is called an #* order matrix.

7.3 Basic Definitions

7.3.1 Definition of Matrix

A set of mxn numbers, real or complex, arranged in a rectangular array of m
rows and # columns is called a rectangular matrix or a matrix of order m>n (read as
m by n matrix).

The general form of an m>n matrix is

CII 1 CI] T e (4} In
Ay oy e a4,
aml am? “““ amn

The element in the /-th row and the j-th column of it is denoted by &, and this

matrix is shortly written as (a,f)mx" or [ay-]nfx,‘,f=1,2, ----- moand j = 1,2, .., n

A matrix 1s denoted by A, B, C,......etc. It is to be noted that matrix is nothing but
an operator which is the management of numbers. It should be noted at the very
outset that a matrix has no numerical value,
7.3.2 Square matrix, Determinant
If m = n, then the matrix 1s called a square matrix of order # (or of order m), i.e.,
dy 4 4
dy dy dyp
aSI aSE a33
15 a square matrix of order 3.
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Definition of a Determinant.

Corresponding to every square array of a square matrix 4, we get a determinant.
This is called the determinant of a square matrix 4. This will be denoted by |4| or
det A. Every determinant has a numerical value.

7.3.3 Row matrix

If m =1, it is called a row matrix of order # (it is also called an »#-dimensional
row vector).

Thus 4= [a” s SR a,n] is a row matrix.

7.3.4 Column matrix

If n = 1, it is called a column matrix of order m# (it is also called an m-dimensional
column vector).

all

aﬂ] . .
Thus A=| [ | is a column matrix.

7.3.5 Equality of matrices

and B=(b,) . then 4 = B if and only if a, = b,
foralli=12,...,mandj=1,2, ... , 1.

If the matrices A= (ag.)

AN

7.3.6 Zero matrix

If all the elements of a matrix be zero, it is called a null matrix or a zero matrix.
A null matrix of order m=# is denoted by O .
000 0
Thus O,,,=(0 0 0 0]
00 0 0
If the elements of a matrix are not zero, then it is called a non-zero matrix.
If A = (af}')an

and is denoted by (-4).

is a matrix, then (—ag-)mxn is called the negative of the matrix 4
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7.3.7 Diagonal matrix

Let A= (a,j) _ be a square matrix. If @, # 0 for all i = j and a. =0 for 7# j,

MX

then 4 is a diagonal matrix.

500
Thus A=[0 8 0] is a diagonal matrix.
0 01

7.3.8 Scalar matrix

A scalar matrix is a diagonal matrix with all its diagonal elements equal (=1).

Thus 1s a scalar matrix.

[T e B
o O
[ SR e B e

7.3.9 Identity matrix or unit matrix

A diagonal matrix with all its diagonal elements 1 is called a umt matrix.

1 0 0 0
010 0

Thus 00 1 0 1S a unit matrix.
00 0 1

7.3.10 Triangular matrix

If all the elements of a matrix below the diagonal are 0, i.e., a,=0 for i > j,
it is called an upper triangular matrix. If all the elements of a matrix above the
diagonal are 0, i.e., a= 0 for i <j, it 15 called a lower triangular matrix.

0 0
4 0] is a lower
5 6

[T O

1
Thus [0
0

LR o B

3
5| is an upper triangular matrix and
6

triangular matrix.
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7.3.11 Singular and Non-singular matrix

A square matrix A is said to be singular, if det 4 = 0.
A square matrix A is said to be non-singular, if det 420.

1 2 3 1 1 3
Thus 4=|4 5 6| is a singular matrix as det A = 0 and B=|2 0 1|isa
7 8 9 1 2 1

non-singular matrix as det B#0.

7.4 Matrix Algebra

We have so far defined different types of matrices. In this section, we shall
discuss the conditions under which matrices are conformable for addition, subtraction,
multiplication, etc.

7.4.1 Addition of matrices
If the sizes of two matrices are same, then they are said to be conformable for

addition. If A=(a§)mx”and3=(bg‘)mxn, their sum, 4 + B is defined as

A+B=(a,}+b,.})

mrn

7.4.2 Subtraction of matrices
If the sizes of two matrices are the same, then the matrices are said to be

conformable for subtraction. If A=(ag-) and B =(bg-)mm, we define 4 — B as

AN

A+(=B)=(a,-b,)

mxn

5 2 3 4 B_1123
Examplel:LetA=6 7 9 0 and 1> 4 6 1|

541 241 342 4+3 6 3 5 7
o ]| o s )

6+2 7+4 946 0+4(-1) g 11 15 -1

5-1 2-1 3-2 4-3 4 111
and A-B= = )
6-2 7-4 9-6 0-(-1) 4 3 31
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7.4.3 Multiplication of a matrix by a scalar

Let A= (%)mm be a matrix and ¢ be a scalar, their product is defined as the

matrix ¢.A= (cay-)

nxE

2 3 5 2 3 5 6 9 15
Example : If A= and ¢ = 3, then c4A=3. = :
6 7 9 6 7 9 18 21 27

7.4.4 Multiplication of two matrices
Two matrices A and B are conformable for the product AB if the number of

columns of 4 is equal to the number of rows of B, i.e., if 4=(a, )mxp and B= (bsj)pxn .

wherei=1,2, ... Jms=1,2,.....,.nj=1,2 ... . 1, then the product AB = (cf_j.)m/n,

where ¢, =a,b, +tayb, +...+a,b,.

1
Example : If A4 =(

: 2 3 4

1 2 3
then AB= 13 4 5
14 5 6

42+53+64 43+54+65 44+55+66

20 26 32
47 62 77),,

(1_2+2‘3+3’4 13+24435 1_4+2_5+3_6}
ax3

2 3 4 .
1 2 3
Since B=|3 4 5 and A=(4 5 6] , the product B4 is not defined.
456 2

33
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7.4.5 Idempotent matrix

If A be a matrix such that 4° = A4, then 4 is said to be idempotent. A matrix 4
is said to be mlpotent of index p, if p be the least positive integer for which 47= O
(a null matrix).

7.4.6 Laws of Algebraic operations on matrices
The laws are as follows :
(i) If A and B are matrices of same order, then A+B =B+ A4, ie., matrix
addition is commutative.
(1) If A, B and C are matrices of same order then (A+B)+(C = A+{(B+C)
i.e., matrix addition is associative.
(i) If 4 and B are matrices of same order and ¢ and d be scalars, then
(a) c(AxBy=cAtcB
(b) (ctd)yd=cA*tdA4.
(iv) If A and B are any two matrices, then
(a) AB or BA may not be defined

{(b) if AB be defined, B4 may not be defined and vice versa.

(c) Both AB and BA are defined if and only if the number of rows of 4 =
the number of columns of B and the number of columns of 4 =
the number of rows of B.

{d) In general, matrix multiplication is not commutative.

(e} If A and B are conformable for the product AB, B and C are conformable
for the product BC, then A(BC)=(AB)C, i.e., matrix multiplication is
associative.

(f) If A, B and C be matrices of such orders that products A8 and AC and
the sum B + ¢ exist, then A(B+C)=AB+AC, i.e., matrix
multiplication is distributive over matrix addition.

(g) We also have (A+BY  =AC+BCand AB-C)=AB-AC, if the
algebraic operations are defined.

{(h) For the matrices 4, B and O (null matrix) of suitable orders, AB = O
does not imply either 4 = O or B = O.
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0 5 2 3
For example, let us take 4 = and B = °|. Both 4 and B are
0 6 00
0 52 3} (0 O )
non-null. But AB= = =}, a null matrix.
0 610 0/ \0 O
{i) For matrices A, B and C of suitable orders, AB = AC and 4 £, does
not imply B = C.

7.5 Transpose of a Matrix

If A be a matrix, then the matrix obtained from 4 by changing the rows into
columns and the columns into rows 1s called the transpose of A. It will be denoted

by 47. Soif 4=(a,)  then A" =(a,)
Theorem : If 4 and B are matrices of suitable orders and ¢ be a scalar, then
(i) (4 =4.
(i) (4B =A"+B".
(i) (cA) =cA”.
(iv) (4BY =B"4".
Proof of (iv) : Let order of A be m>n ; then order of B is n x p, so that the

product AB is defined and order of AB is mxp. Therefore order of (AB)"is pxm.
Again order of BT is p x 1 and that of 47 is # x m.

So order of (AB)Y = order of B"A" = pxm .

So it 1s sufficient to prove that for any 7 (=1, 2, ..., p) and any j (=1, 2, ......, m),
the (i, j)-th element of (4B) = the (i, j)th element of B A",
Now the (i, j)-th element of (4B)"
= the (j, i)-th element of AB
= the sum of the products of the elements of the j-th row of 4 with the
corresponding elements of the /-th column of B
= the sum of products of the elements of the j-th column of A7 with the
corresponding elements of the 7-th row of BY
= the sum of products of the elements of the i-th row of B” with the
corresponding elements of the j-th column of A7
= the (i, j)-th element of B74”
This completes the proof

nxer
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Corollary : For three matrices 4, B, C of suitable orders, we have (ABCY=C"B"A"

7.6 Symmetric and Skew-symmetric Matrices

Here we shall define symmetric and skew-symmetric matrices with suitable
examples and their properties will be discussed.

7.6.1 Definition

A square matrix 4=(a,),,, is called symmetric, if 4" =4, ie, if a = a for all
i and j.

Thus 4= 1$ a symmetric matrix,

WA D

5
8
9

B WOowd

A square matrix 4 =(ay-) is called skew-symmetric, if A™= -4, ie., if = g,

HXH I
for all 7 and ;. It is to be noted that for a skew-symmetric matrix 4=(q,),,,, we have
by definition, a,=-a foralls, j=12, ... n

Therefore, in particular, for all i = 1, 2, ... .hoa, =-a_or2a = 0.

Thus all the diagonal elements of a skew-symmetric matrix are zero.

0
-2
-5 -7 0

Therefore is a skew-symmetric matrix.

7.6.2 Theorems on Symmetric and Skew-symmetric matrices
Theorem 1 : Every diagonal matrix is symmetric.

Theorem 2 : For any matrix 4, 447 and 4™ 4 are symmetric.
FOI’, (AAT)T = (AT)TAT = AAT
and (ATA)T=AT(AT)T=ATA-
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Theorem 3 : For a square matrix 4, 4 + A7 is symmetric and 4 — A7 is skew-
symmetric,

For, (A+ A"y =A"+(4"Y =A"+ A=A+ 4
and (A-AY = A" (A7) =A"—A=—(4-A).

Theorem 4 :
(i) If A and B are symmetric, then AB is symmetric if and only if AB = BA.

(i) If 4 and B are skew-symmetric, then AB is skew-symmetric if and only if
AB=— BA.

Theorem 5 :

Every square matrix can be expressed as a sum of a symmetric and a skew-
symmetric matrix uniquely.
Proof : Let A be a square matrix.

Let B=1(4+A4") and C =1(4-4"); then we have 4 =B + .

Now B’ =|}(A+AT):|T =L[A" +(A))=1(A" + A)=B. Therefore B is
symmetric

and (7 =[‘3(A—AT)]T =44 -4 )=3A - =-1(4-4)=-C

Therefore € is skew-symmetric.

7.7 Worked out Examples (I)

1 2 3
Example 1. Show that the matrix 4=| 1 1 1| is non-singular.
-1 15
Solution :
1 2 33 1 2 3
We have det A=|1 1 1f=|0 -1 -2[|R.=R,-R,R =R, +R,
-1 1 5 |10 3 8

is non-singular.
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Example 2. Find, where possible, 4+ 8, A— B, AB and BA, with reasons when

2 3
4 2 -1
A= and B=|-3 0
3 -7 1 '
-1 35

Solution: The order of A 1s 2x3 and that of B is 3x2. Since the orders of 4 and
B are not same, they are not conformable for the sum 4 + B as well as for the
difference 4 - B.

As the number of columns of 4 = the number of rows of B = 3, they are
conformable for the product AB whose order will be 2x2. Again, as the number of
columns of B = the number of rows of 4 = 2, they are conformable for the product
BA whose order will be 3%3.

. 2 3]
4 2 -1 8—6+1 12+0-5] [3 7
AB = -3 0= = and
3 7 1] 7 o ler21-1 9045 |26 14
(2 3 s o o [ 89 4m21 243 [17 417
BA=|-3 0 [ﬂ L || 2re 60 340 =12 -6 3
-1 5| 424415 2235 145 11 =37 6

Example 3. Find a 3x1 non-zero real matrix B such that A8 = O, where

1 3 2
A=(2 1 0]
3 4 2
Solution :
x 1 3 2] «x 0 x+3y+2z 0
Let B=|y|. Given 4B=0Q |2 1 0| y|=|0] or, 2x+y  [=|0]
z 3 4 2|z 0 3x+4y+2z 0

From this matrix equation, we get x+3y+2z=0, 2x+ y=0and 3x+4y+2z=0.

Solving, one non-trivial solution is x=2, y=-4, z=
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2 2¢
sB=|-4|or, B=|-4c |, where ¢ is a non-zero real number.
5 3¢

7.8 Model Questions (I)

1. (a) Find the values of x, ¥, z and # for which the matrices

x-y y-t y-z x-:z
and are equal.
z+t x+z 2+t 3+y

{b) Find the matrix A, so that

A123_—?‘—8—2
45 6|12 4 6/

2. Find two matrices 4 and B so that

-6 -1 3 2 2 -1
24-3B=-1 3 6 |and4A+B=| 2 -1 2
3 -6 -1 -1 2 2
3 2 -6
3. Express O =1 41 asasumofa symmetric and a skew-symmetric matrix.
5 -2 0

-1 2 1 0
4, IfA=[0 1} andB=[_1 2],thenshov&xthat (A+B)2¢A2+2AB+BE‘

1 3 4
5. Bvaluate (A+7,)(4-1,), if A+I;=[-1 1 3| and I, represents the
-2 -3 1

3x3 1dentity matrix.

6. Let A and B be matrices such that AB = O, where O is the null matrix. Does
it imply that A = O or B = O. Give an example in your support.
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10.

11.

12,

13.

4
. IfA:{

2 3

4 2 -
CIf A =[3 7 }andB= =3 0], evaluating AB and BA, show that

-1 5
AB # B4

If A be a skew-symmetric matrix, then show that the matrix 4> is symmetric.

2 0 0
) IJ’ show that (4-21YA-31)= (0 0} , 1 15 the 2x2 unit matrix,

2 -1

Show that the matrix A =( _— J satisfies the equation 4° -44+37=0,

where () is the null matrix and [ is the unit matrix of order 2x2.

01 0 -1
If A= (1 1)ant:lB =(1 0 J be two matrices, then prove that

(A+BYA-B)z A*-B*.

I -1 1
If A=|2 -1 0|, then verify 4>°=1.
1.0 0

0 2B v
(a) If the matrix A=[o P -y | satisfies 44" =7,, then show that
a B ¥

(b) If 4=| 2 L —2|, then show that 44" =1,
2 1
T -3
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14.

15,

16.

17.

18.

19.

20,

1 2
2 30
Verify (4B)T= B'A”, where A=|2 3 |andB= ( }
3 4

1 2 3)
1 1 1]
Show that the matrix 4=|2 -1 3 [ isnot singular,
3 2 -1

Determine the matrices 4 and B when 4 + B = 2B"and 34 + 2B = 13 where
I, represents the 3x3 identity matrix.

1 1 3
Show that the matrix 4= 5 2 6 | is a nilpotent matrix of order 3.
-2 -1 -3
1 =2 1
Find a 3*1 non-zero real matrix 5 such that 4B = O, where A=1 -2 -1]|.
2 4 -5

If 4 and B are symmetric matrices, then prove that AB — BA is a skew-
symmetric matrix.

Show that the matrix A”BA is symmetric or skew-symmetric according as B
is symmetric or skew-symmetric.

7.8.1 Answers

1.

LN

(a) x=4, y=3:z=2,1r=1.

by 4=|} 7
o=y 3)

—_

—_—
-
—_
I
= L=
t—
=)
=
(=
L=
O
LN I_
b)l_.
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-12 -12 9
s | 6 -13 4|
3 -6 -18
16. A=B=11,.
2c
18. B=|¢ |, where ¢ is a non-zero real number.
0

7.9 Adjoint or Adjugate of a Matrix

We suppose that the students are well-equipped with Determinants. Before going
to the definition and properties of adjoint of a matrix, we require the following
results on determinants.

7.9.1 Some Important Results.
If A and B be square matrices of order #, then
(@) |4 =147
(b) |[ABI[=[4]| | B|
(c) |cA|=c"| A |, where ¢ is a scalar.

The cofactor of the element a, of a determinant of order # 1s (1) "/ x determinant
of order n — 1, obtained by omitting the row and the column containing & It is
denoted by Al.jfor hj=12 ... , n.

7.9.2 Definition

Let 4 =(a,j-)"xn be a square matrix and let A4 be the cofactor of o, in det 4 for

ihj=12, ..., n If B be the square matrix (At,r)n/n’ then the transpose of B, i.e.,
BT is called the adjoint or adjugate of A4 and is denoted by Adj A or adj 4.

dy Gy G 4, 4, 4,
Thus if A=|a, a,, a;|thenAdjd=|4, 4, 4|

aS 1 a32 a33 Al 3 A23 A 3
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7.9.3 Properties of Adjoint:

Let A=(a;)  be a square matrix. Then
(a) A(Adj4)=(Adj4).A=]A4][],

(b) Adj(47)=(Adj 4

(c) Adj(cd)=c""(Adj 4)

(d) |Adj 4|=[ 4", | 4]#0.
Proof of (a) :

al 1 al 2 al n Al 1 AEI Anl
a a e 1 A A, e A
21 23 2 . 12 a2 2
We have A=| "land Adj A=]| . =
anl an? o arm Aln A’Bn o Ann

The element in the 7-th row and the j-th column of 4. Adj 4 is

aglAJ1+CI,-2AJ.2+ _____ +a A ={ 0,if i# j

S| A i P=g
|A] 0 ... 0
, 0 |A4] ... ©
Therefore A Adj4=| . =|A|1,
0 0 .. |4]

Similarly it can be proved that (Adj 4). 4 = [A4|. 1.
Proof of (b) :

a, @, ... a, a, @ .. a

al

n2

a”’l In r al"’
Let A= * |, thend” =| -~

anl anZ e ann aln aﬁn e €

i

137
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4, 4,
and AdjAT =" 77

Therefore [Ad) AT = Adj 47

a

a,
Proof of (¢): A=| '

#l

cn—lAll CH_IAAI

n=1 n=1
A, A,

- Adj(cd) = 2

=1 #=1
¢ Aln c AQn

= "(Adj 4).

Proof of (d) : We have A(Adj A)=|A|.,

or, | A(Adj 4)|=||4|1,| =]4]

or, | 4||Adj A|=|A[

or, |Adj 4|=]4]"", since|4|#0.

7.9.4 Reciprocal Matrix

b

CAgain Adj A=

LI=l4l 1=|4

NSOU « CC-MT-01

e

#l

e

M

e

102

it

Adj A4
Let A= [aff]m be a non-singular square matrix. The matrix (de—tJA) is called the

reciprocal matrix of 4.
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a4, 4, 4a; . 4, A, 4,
Thus, if A=|a, a, a, [, then reciprocal of A= et d) A, 4, A4,
a, a, A, A4, A

31 33

7.10 Inverse of a Matrix

Corresponding to any non-zero real number x, there exists a unique real number

1 - 1 a . 1 1. .
. or x™ such that X7 or x.x”' is 1, then we say or x™ is the reciprocal or
inverse of x. With this idea, we can divide a real number y by another real number

})

Xas - ory x™'. We like to investigate whether the operation of division of two

matrices is possible. For this purpose, we require the concept of inverse of a matrix.

7.10.1 Definition

Let 4 be a square matrix of order ». If there exists another square matrix B of
the same order such that AB = BA = I where 7 is the unit matrix of order », then B
is called the inverse of 4 and is denoted by A" and A is said to be invertible.

7.10.2 Properties of Inverse Matrix
(a) The inverse of a matrix, if exists, is unique.

Proof : If possible, let B and C be two inverses of 4. Then AB = BA = I and
AC = CA = I Since matrix multiplication is associative,

therefore ~ C.(AB) = (CA)B
or, CIl=1IRB =(C=R8.
(b) The inverse of a square matrix 4 exists, if and only if 4 is non-singular.

Proof: Let the inverse of a square matrix 4 exist and A= B. Then, by definition,
AB =BA =1

Therefore  |4B|=|4||B|=|I|=1.
Hence |4]#0, ie., is non-singular.

Next, let 4 be non-singular, i.e, |4]|=0.
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Since we know A (adj4)=(adj4).4=|4|],

aj A ad) 4
=——A=1
|41 |4

therefore A

adj 4
[

So, inverse of 4 exists and 47 =

This completes the proof.

Note : The method of finding out the inverse of a non-singular matrix A is to find

ad) A
|JT|, which is nothing but the reciprocal matrix of A.

(¢) If 4 and B are invertible, then {(4AB)y'=5"4".

Proof : We have
(ABXB'A™")y= A(BBHA™'

= A4 = A4 =]
and (B'A™Y(4B)=B(4" 4B
=B IB=B"B=1.

So, by definition, B-'47" is the inverse of 4B, ie., (ABy' = B'47\

(d) If 4 1s invertible, then A~ is also invertible and (47'y' = 4.
Proof : A is an nxn square matrix. Since A4 is invertible, therefore 4" exists.

Again (ANA=A"4A=1
and A(ANY=A447"=1.
Therefore A is the inverse of A~ by definition and so (4™)"'=4.
(e) The operations ‘inverse’ and ‘transpose’ of a matrix are commutative, /.e.,
(A—I)T = (AT)—I .
Proof : We have
(ATYWATY  =(47'4), since (ABY =B"A"
=7/"=]
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Again ANy =447y
=J/'=7.

This shows that the inverse of AT is (A7) ,ie, (47)"'=(4™) .

7.11 Orthogonal Matrix

We have defined transpose and inverse of square matrices. We have proved that
the operations of transposition and inversion are commutative. Now we consider the
square matrices of real numbers for which transpose and inverse coincide.

7.11.1 Definition

A square matrix 4 is said to be orthogonal, if 44" =A4"A=1

1
Thus A= l:o :| is an orthogonal matrix.

7.11.2 Properties of Orthogonal Matrices
{a) Orthogonal matrices are non-singular.
Let 4 be an orthogonal matrix.

Therefore A"A=7 or, |ATA|=|I|=1
of, |AT||A|=1 or, [4] =1, since ‘AT|=|A|‘

Therefore | A|#0.

{b) The value of the determinant of an orthogonal matrix 1s +1 or -1,
From above, we see that |[A]* = 1.

Therefore |4|=+1.

{c) Unit matrix is orthogonal.

For, I'I=II=1.

{d) The product of two orthogonal matrices is orthogonal.

Let A and B be two orthogonal matrices.
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Therefore 47 4=7 and B"B=1.
Now (4B) AB=(B"A"YAB)=B (A" A)B=B"IB=B"B=1.
.. AB 1s orthogonal .

(e) The transpose of an orthogonal matrix is orthogonal.
Let A4 be an orthogonal matrix. Therefore A74 = 1.

We shall show that A7 is orthogonal, i.e., to prove (4") 4" =1.
We have (A A =44 =1"=1.
(f) From above, it is evident that if 4 is an orthogonal matrix, then A7 = A"

(g) The inverse of an orthogonal matrix i1s orthogonal.
Let A be an orthogonal matrix. Therefore A" A=17 We are to establish
AHa'=1.
We have AN AT =AY AT =AY =1 =1
7.11.3 Laws of Indices of Matrices
If s 1s a positive integer, we define
A’ =444 ... to s factors
A =AY =474747. .. to s factors
A® =1
Therefore  (4°)" = (44A......to s factors)™
=A"474" .. tos factors = (47')".

Similarly we have A"4°=A"" (4") = 4", etc

7.12 Rank of a Matrix : Elementary Transformations

To find rank of a matrix, we are to know the minor of a matrix.
A minor of a matrix 4 is the determinant of some smaller square matrix, cut
down from 4 by removing one or more of its rows and columns.
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7.12.1 Definition
A number  is said to be the rank of a non-zero mrxn matrix A4, if
(1) there exists at least one r-th order non-singular minor of 4 and
{11) every minor of order =r+1 is singular.

2

2
Example 1: Let A4 =(1 IJ' Here we see that [4|#0. So the rank of 4 is 2,

1 2
Example 2: Let A=[4 SJ' Here we see that the only second order minor

1 2
{ 4 8] is singular and a first order minor (1) i1s non-singular as |1|=1# 0. Therefore

rank of 4 1s 1.
2 3 40
Example 3: Let 4=(1 5 0 0/ This is a 3x4 matrix. So the maximum
0 0 0 0

order of a square sub-matrix of 4 is 3, which is min (3,4). As all the third order
minors of 4 are singular, its rank is not 3. Then we consider for second order sub-

2 3
matrix. There exists a square sub-matrix [1 5] which 1s non-singular. So rank of

Ais 2.
Note : (1) For an n-th order non-singular square matrix 4, rank of 4 = n.

(i1) Rank of #-th order unit matrix is #.
(1) Rank of a null matrix is zero.
(iv) Rank of the matrix 4 = Rank of the matrix A7,
(v) Rank of a matrix every element of which is non-zero real number ‘@’
is 1.
7.12.2 Determination of Rank by Sweep-out Process

As per definition, the process of finding the rank of a matrix discussed above is
very easy. But when the size of a matrix 1s large and the rank is also large, the
determination of rank becomes laborious and time consuming.
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However, determination of rank is possible easily by transforming the matrix to
echelon matrix which is known as sweep-out process. Here we are going to discuss
the process step-by-step.

7.12.3 Elementary Transformations

By elementary transformation of matrix, we shall understand three transformations
to the rows and three transformations to the columns of a matrix.

(1) Interchange of any two rows or two columns : The interchange of 7-th row

with j-th row will be denoted by R, <> R.. The interchange of /-th column
with j-th column will be denoted by C, <> C .. For example,
1 cl al b

FotFRy
a, b c |——>l|a b c |———>|c, b a

a, b c a, b, ¢ ¢, b, a,

(i1) Multiplication of the i-th row (or j-th column) by ¢ (#0). This will be
denoted by R —¢R, (or C, — ¢C)).

2 1 R—=IR 4 2 U= 20 4 4
For example, 5 4 — 5 4 — s g

(i) Addition of ¢ times j-th row to /-th row, denoted by R, — R +cR . Addition

of ¢ times j-th column to i-th column, denoted by C, = C,+cC, .

12 12y, 5 2
FOI‘ exam le, Ko Ry +2R O = 42
ramp (_3 4} 5 8 21 8

Note: When the elementary operations are applied to rows, they are called row
operations and when applied to column, they are known as column operations.
These operations transform a matrix from one form to another and are known
as elementary transformations.

7.12.4 An important Theorem
The rank of a matrix remains unaltered under the elementary transformations.
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7.12.5 Elementary matrices

A square matrix obtained from a unit matrix by any one of the elementary row
or column operations is called an elementary matrix.

Notations : (i) £_is the matrix obtained from unit matrix by R, <> R,
(1) £ (k) is the matrix obtained from unit matrixby R, — kR, k#0
(1) E, (k) is the matrix obtained from unit matrix by R, = R +kR;

(iv) E,(k) is the transpose of E, (k).

Example :
0 0 1 0 0
(i)010_cr_>€.«_)001
0 0 01 0
0 0 1 00
(ii)010—*‘?ﬂ=—>030
0 0 1 0 0 1
0 0 1 2 0
(iii)010—cﬂ=ﬁi—>01o
0 0 001

Theorem : Every non-singular matrix is a product of elementary matrices.

1 2
Example : Express [3 4} as the product of elementary matrices.

1 21 [1 27
ion : A= ~ b -3R,
Solution : Let [3 4] 0 -2 y R, — R, !

~ by R, = R +R,
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Lo by R, iR,
—~— %_
0 1 Y iy 744
= 1.

Hence we have I, = E ,(DE,(-3)AE,(-%).

L A=[E,)][Em] LIEED]
=E, ()L (-DE(-2).

Thus A is expressed as the product of elementary matrices.

7.12.6 Row Equivalent or Column Equivalent Matrices

If a matrix B 1s obtained from a matrix 4 by applying a finite number of elementary
row operations, then A and B are said to be row equivalent.

On the other hand, if a matrix B is obtained from a matrix 4 by applying a finite
number of elementary column operations, then 4 and B are said to be column
equivalent.

7.13 Echelon form of a Matrix

Here we shall define Echelon form of a matrix with suitable examples and
discuss some theorems on it.

7.13.1 Definition
A matrix 1s said to be in echelon form

(1) if the number of zeros preceding the first non-zero element of a row increases
as we pass from row to row downwards and
(i1) all zero-rows will follow all non-zero rows.

. 21 6 0O
1 0 0V(2 3 O
0 2 5 -1
Example : (0 1 0|0 2 3|, 008 0 etc are echelon form of
0O 0 1 0O 0 4
' 0O 0 0 0O

matrices.
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7.12.2 Theorem 1: A matrix can be made row equivalent (or column equivalent) to
an echelon matrix by elementary operations.

0 02 3 0
Example : Let A=|3 0 2 1 0.
-3 3 2 2 0

A4 can be made row equivalent to an echelon matrix in the following way :

0 0 2 3 0 3 021 0
A=[3 0 2 1 o|—&=f 510 0 2 3 0
-3 3 2 20 -3 3 2 20
30210 30210
—RoRef 410 0 2 3 0|—22R 510 3 4 3 0 |=B(anechelon matrix).
0 3 4 3 0 0O 0 2 3 0

7.13.3 Theorem 2 : Two row equivalent matrices have same rank.

7.13.4 Theorem 3 : The number of non-zero rows of an echelon matrix is its rank.

In the last example, we see that B has three non-zero rows. So rank of B 1s 3 and
since 4 is equivalent to B, rank of 4 is also 3. Thus rank of 4 is easily found out.

7.13.5 Row-reduced echelon matrix

A row-reduced echelon matrix will have 1 as the first non-zero element in a non-
zero row and each column containing that 1 will have all other elements zero. First
few rows in this form will be non-zero and the remaining, if there be any, are all zero
TOWS.

1 2 0 0
oo 10

An example of a row-reduced echelon matrix is 00 0 LI
00 0 0
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In a matrix 4 of this echelon form, if there be » non-zero rows, the rank of the
matrix A 1s r as every square sub-matrix of order (# + 1) contains a zero row. So the
rank of the above matrix is 3.

7.13.6 Normal form

If a non-zero mxn matrix, by elementary transformation, be reduced to an
equivalent matrix in which each of the first # elements along the principal diagonal
is unity and every other element is zero, then this new matrix is said to be in normal
form of the given matrix of order mxn, and the rank of this matrix will be #.

By a series of elementary row and column operations, any matrix can be converted

I O
to the normal form [ O 0}, if its rank be #

Thus the easy way of finding the rank of a matrix 1s to reduce it to its normal
form.

7.14 Worked out Examples (II)

5 3
Example 1: Find the inverse of A=[ 5 2i|.

5 3
Solution : |A‘=‘ ) 2‘ =104+6=16 #0

2 2T [2 -3
and AdjA= 3 s =15, 5|
2 3] L=
_ 1 . 1 - 8 16
A1=—AdA=— =
So s 5] s
8 16
1 1 1

Example 2 : Find the inverse of 4=(2 -3 4
1 6 -2
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1 1 1|1 o o
Solution : det A=|2 -3 4|=]2 -5 2|C}=C,-C,C.=C,-C,
1 6 =2 |1 5 -3

=15-10=5%0

"—3 4‘ 2 4| ‘2 3(T

6 -2 1 =2 [1 6
. 1 1 1 1 1
and Adjd=|- -
6 -2 1 -2 1 6

T O VR A
304 2 4 |2 -3

-18 8 15T [-18 8 7
= 8 —3 —5 = 8 —3 —2
7 =2 -5 15 -5 -5

-18 8 7
- 1 . 1
S Alz—A A== 8 -3 -2
0 L(ag -]
15 -5 =5
(18 8 7]
5 5 5
= &8 3 _2
5 75 5|
3 -1 -1

Example 3: If 4= , then show that 4° —44 -5/ =0 Hence find 4™

[
b o= 2
—_— 3 2
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| —
=D e
_|‘_ o — O
o0 00 O
- e <  ——
|
" Wy .
w0 s nuwn_v_ =
O oo oo | o oo =T =
| —
e = 11 3
Il o oo O g
1
Lot I T o | —
Lo I ot T [T T2 B ] .m.
AN = e - ™ UL E
- [ .
= _ © o !
T 1 T 1 — 1
Lon B o o o0 o O TN T o O O
|
Lot I Y | oo O oD T oo oo [ S s B
[ T |
—_ =1 e _988_ _90000_ _000_
1
1] Il 1l 1l
o 7
5 |
> =
= <t
o |
= =
= L
= 2
€ g
3 g
73] o

520 So A” exists

2=

1

2

Here

=0,

A*—44-51

therefore 4447 —4447 -5147' =0

Since

Al -4 -547"'=0
547 =A-41

of,

of,

2
-3 2
-3

=3 2
2
2

-+ o ©

[ T o
e I B

_— ] )

Therefore A~
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Example 4 : Find 4™, by elementary row operation, where 4=

Solution ;: We have A=14
(-1 -3 3 -1] 1 0 0 0
I -1 0| |01 0 0
or, > 5 2 -3/ |o o1 of
-1 1 1] oo o1
1 3 =3 17 [-1 0 0 0]
1 1 -1 0| |0 100
or, = A by R — (-DR,
2 =5 2 3| 0o 010
-1 1 0 1] |0 0 0 1]
(1 3 -3 1] [-1 0 0 O]
0 -2 2 -1/ |1 10 0 by R, = R, =K,
or, o -11 8 -5/ |2 o1 ol R,— R, - 2K,
0 4 3 2] [-1 0 0 1] Ri— R+ R
1 3 -3 1] [-1 0 00
or, 0 1 -1 &| |- -1 ¢ of O®YR=-IK
o -11 8 s||2 o 1 ol
0 4 =3 2| -1 0 01
10 0 -4 L 2 0 o0 )
o, 00 3 1| [-2 -4 1 0 s > RHLIE,
00 1 of 1 2 o001 R, = R, -4R,
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(10 0 4] [+ § 0 0
e I T T
Oor, = ‘_)__ :
00 1 -% Z oo _1l g ¥ iy R4S
00 1 0 1 2 0 1
e by R, — R, +R
- y _'—) 4.+ ,
of, 0 1 0 % _ < % _L OA R_)R_R3
0 0 1 —% % ]ErL _:‘% 0 <} = 3
000 ] [~ ¢ + 1
(1 00 -4l [+ % 0 O
010 5| [+ % -3 0
= A
or, 001 -¢ T ¥ -1 0 by R, — 6R,
000 1] [-11 2 6
(1 0 0 0O 0 2 1 3 byR —» RA4R
—) =
01001 1 -1 =2 YR: RiR4,
- % _
or, 001 0 1 2 0 1 RA RA iR‘v
- R+
_0 0 01 -1 1 2 6 2 37 64N
0 2 1 3
- e 1 1 -1 =2
ence = | 2 0 nE
-11 2 6
1 2 3

Example 5: Find the rank of the matrix 4=|3 4 5|

4 6 8

Solution : The greatest order of square sub-matrix of 4 is 3.
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Now det 4

1
3
4

o SR O
| ST S

| 3
:3 5 R;=R3_Ra
1 3

=0, since R, and R, are identical.
So the rank of the matrix is not 3.

1 2

3 4:| is such a

Next consider second order of square sub-matrices of 4 and I:

sub-matrix.

The value of

2
4‘=4—6=—2¢0- Hence the rank of 4 is 2.

01 -3 -1
i ) 1 0 1
Example 6 : Find the rank of the matrix 4= 31 0 by sweep-out
1 1 -2 0
operations.
01 -3 -1
1 0 1 1
Solution : A=
31 0 2
1 1 -2 0
1 0 1 1]
01 -3 -1
31 0 2 byR < R,
1 1 2 0
[1 0 1 1]
0= by R R-3R,
o S -l R SR-R
[0 1 -3 -1
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1 0 1 1
00 0 0 R —R-R,
0 0 0 O

Since 4 is an echelon matrix having two non-zero rows, hence the rank of the
matrix is 2.

1 1 -1
Example 7: Reduce the matrix 4=(2 -3 4 | to the normal form and hence
3 -2 3

show that its rank is 2.

1 1 -1} |1 O O

Solution : A=(2 -3 4 |~|2 -5 o6|by(,—=C,-C,C,—=C,+()

3 -2 3 3 -5 6

~12 1 1fbyC,—-1C,, C, = £C,

~[0 1 1|byR, > R,-2R, R, — R,-3R,

~0 1 0|byC,—C,-C,

~lo 1 o|byR, >R -R,
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I, O hich is i I fi
~ ,which is in normal form.
0 0]

. rank of 418 2.

7.15 Summary and Keywords

Summary :
I Different forms of Matrices.

Square Matrix, Row Matrix, Column matrix, Zero Matrix, Diagonal Matrix,
Identity Matrix, Triangular Matrix.

Singular and Non-singular matrices

II. Adjoint of a Matrix, Inverse of a Matrix, Reciprocal Matrix, Orthogonal
Matrix.

II. Rank of a Matrix.

A number 7 is said to be the rank of an mxn matrix A, if

(1) there exists at least one r-th order non-singular minor of 4 and
(i) every minor of order = r+1 is singular.

IV. Echelon form of Matrices

A matrix is said to be in echelon form

(1) 1f the number of zeros preceding the first non-zero element of a row increases
as we pass from row to row downwards and

(11) all zero rows will follow all non-zero rows.

Keywords : Matrix, Square, Determinant, Adjoint, Inverse, Reciprocal, Orthogonal,
Rank, Echelon.

7.16 Model Questions (II)

1. Find the inverse of a unit matrix of order 3.

2. Find the rank of a unit matrix of order 3.
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3. Find the inverse of
3 2 -1 1 1 1 2 1 1
) A=1 1 -1 iy 4=|1 2 3 () A=({1 -1 0
5 1 -1 3 1 -5 27 1 =1
[2 -1 , : :
4 If A= yt then show that 45471, =0, where /, is the 2 x 2 unit
matrix and O 1s the 2x2 null matrix. Hence find 47",
[1 -1 1]
5.1f 4=|2 -1 0], then find 4% and show that 4° = 4"
[—2 3 1
6. Find A, if AdjA=| 6 -8 -2|anddetd =2
-4 7 1
1 0 -1 1 0 0
7. If A={1 0 O |and/=|0 1 O], then show that (47’ +A=1T.
(01 0 0 01
[0 1 -1
8. If A=|2 0 O | and 7 is the 3x3 unit matrix, then find (4> + ) (A+1)™".
1 -1 0
1 2 3 4 5
9. Find the rank of 4= .
2 4 6 8 10
2 0 10
10. Find the rank of A=|-4 2 0
8 0 2
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2 3 -1 4
11. Find the rank of A= 4 6 -2 8
-6 -9 3 -12

12. Find the rank of the following matrices by sweep-out process :

o5 10 2 2 2
W1, 4 16 0 |2 —2 =
6 2 2
0 8 10 2
1 0 2 _
iy |0 1 2 (iv) {9 ¢ _6)‘
2 2 0 09 -9
4 8 4
13. Find the value of x for which the rank of the matrix |4 2 4|is3.
2 0 x
a -1 -1
-1 a -1
14. Find the rank of the matrix 1 -1 al when (1) g= -1 and (ii)) ¢ =—1.
1 1 1
0 2 1 3
] I I T R B
15. Find 4, where A~ = 5 0 1
-1 1 2 6

16. Reduce the matrix 4 to row-reduced echelon form and hence find its rank,

01
where 4 = Lo
31
11
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2 3 -1 -1
. 1 -1 =2 —4 .
17. Reduce the matrix 4= 3 3 . to the normal form and find its
6 3 0 -7

rank.
18. Reduce the matrix 4 to row-reduced echelon form and show that #(4) =2,

1 0 -5 6
e Ao 3 -2 1 2
whete 2705 5 9 14|
4 -2 -4 8
7.16.1 Answers
-1 3 -13 6 1
11, 2.3, 3({A4A'=L6 -8 2| G)d'=-%14 -8 -2
-4 7 1 -5 2 1
1 2 1 ) ].3 1 , 0O 0
(111)A=%1—41 4A=T_12_5A'—0—12
3 0 -3 ' ' -1 1
3 2 1 0O 1 0
6. |11 1| %1 2] 4991 10.3. 11 1.
5 1 -1 -2 1 2

12. ()2 Gi)2 G2 Gv)2. 13 x#2. 14 ()3 (i) 1

-1 -3 3 -1
PR
15. A=, o 5 _5| 16 Rank=2 17 Rank=3



Unit-8 O System of Linear Equations

Structure
8.1 Objectives

8.2 Introduction

8.3 Linear Equations with three unknowns
8.4 General Form

8.5 Homogeneous System

8.6 Worked out Examples

8.7 Summary and Keywords

8.8 Model Questions

8.1 Objectives

Here we shall learn

® to solve non-homogeneous # linear equations with »# unknowns by matrix
method for » = 3

® the condition for existence of unique solution of the system
® when the system has no solution

® when the system has infinitely many solutions.

8.2 Introduction

Equations involving three or more variables can be solved easily by matrix
method. In this unit, we shall deal with the problems of solving a system of non-
homogeneous linear equations using matrices.

We shall consider the system consisting of #» linear equations with »# unknowns
(variables) for » = 3. We shall discuss the consistency of the system of equations.

We shall also discuss to have the solution of the Homogeneous system of
equations,

8.3 Linear Equations with three unknowns

In mathematics, a system of linear equations is a collection of two or more linear
equations involving the same set of variables.

159
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Let us start with three linear equations involving three unknowns x, y, z as under

ax+a,y+a,z=5
ayx+a,y+a,z=5,

a,x+a,y+a,z=>~,
where a (7, j = 1,2,3) and b, b., b, are constants.
if 1 2 3

al? alS
a, @, &, C , )

7= T which is known as the coefficient matrix,
dy dy Ay

x b,

unknown matrix X =|? |and B = b, , then the given system of equations can
z 3

be equivalently written in matrix form as AX = B.
If 4 be non-singular, 4~ exists and we have A™ (AX) = A" B
or, (A 4) X = A7 B, i.e., X=4"' B (since A™' A=I), which gives the solution of the
given system of equations.
For example,
3x+2y—z=1,
2x-2y+4z=-2,
—-2x+y-2z=

is a system of three equations in three unknowns. x, y and z.

3 2 -1 X 1
Here A=|2 -2 4|, X=|y|and B=|-2]|
-2 1 =2 z 0

The given equations are written as a single matrix equation 4X = B.
NowdetA=3(4-4)-2(-4+8)-12-4)=-8+2=-06%0 Therefore
A7 exists and
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0o 3 6
a1 R § R
A= (Adi)=-1 -4 -8 14|
2 -7 -10
x o 3 61][1
|y =A"B=—é_ 4 -8 -14||-2
z 2 -7 -10]| 0
6] [1
1
= Lliz2]=| =2
6
12| |-2

Therefore we get x =1, y = -2, z = -2.

A solution to a linear system is an assignment of values of the unknowns such
that all the equations are simultaneously satisfied. So solution of the above system
isx=1,y=-2and z= -2

8.4 General Form

A general system of m linear equations with #» unknowns can be written as

ax +apx,+....+a,x, =b,
a,x ta,x,+. .ta,x, =b,

a,x+a,x,+. .. +a,x =b
where x,, x,, ... x, are unknowns, @,,, 4,,, ...... , a__are the coefficients of the system
and b, b,, ... b_are the constant terms.

8.4.1 Vector Equations

One extremely helpful view is that each unknown is a weight for a column vector
in a linear combination

@, @, a,, b

dsy oy dy, b,
X, +x,| x| =]

a a a b
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The collection of all possible linear combinations of the vectors on the left hand
side is called their span and the equations have solution just when the right hand
vector is within that span. If every vector within that span has exactly one expression
as a linear combination of the given left hand vectors, then any solution is unique.
In any event, the span has a basis of linearly independent vectors that do guarantee
exactly one expression and the number of vectors in that basis (its dimension) cannot
be larger than # or #, but it can be smaller. This is important because if we have m
independent vectors a solution is guaranteed regardless of the right hand side and
otherwise not guaranteed.

8.4.2. Matrix Equation to General Form
The vector equation is equivalent to a matrix equation of the form
AX = B,
where 4 1s an m < 7 matrix, X is a column vector with # entries and B is a column
vector with m entries. Thus

a, Qn .. a,, X, b,
ay a, X, b,
A= 7 - o X=| |, B=] .
aml am” """ amn Xn bm

The number of vectors in a basis for the span is now expressed as the rank of
the matrix. The solution set for the equations x — y = —1 and 3x + y = 9 is a single
point (2,3). Geometrically, these two equations represent a pair of intersecting lines,
the point of intersection being (2, 3).

A solution of a linear system i1s an assignment of values to the variables
Xp X, o ., x_such that each of the equations is satisfied. The set of all possible
solutions is called the solution set.

A linear system may behave in any one of three possible ways :

(i) The system has infinitely may solutions
(i1)) The system has a single unique solution
(iii) The system has no solution.
Note : In general,

1. a system with fewer equations than unknowns has infinitely many solutions,
but it may have no solution. Such system is known as under determined system.

2. a system with the same number of equations and unknowns has a single
unique solution.
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3. a system with more equations than unknowns has no solution. Such a system
is also known as over determined system.

8.4.3. Independence

The equations of a linear system are independent if one of the equations can be
derived algebraically from the others. When the equations are independent, each
equation contains new information about the variables and removing any one the
equation increases the size of the solution set. For linear equations, logically inde-
pendence is the same as linear independence. For example, 3x + 2y = 6 and
6x + 4y =12 are not independent, they are the same equation when scaled by a factor
of two and they will produce identical graphs. This is an example of equivalence in
a system of linear equations.

8.4.4 Consistency
A linear system is inconsistent if it has no solution and otherwise it is said to be

consistent. Let us consider the equations

ayx, +apx,+otax, =5,

In"n

aX F X+ +d,.x, = sz

" (1)
a.xta  x,+ ... +a,x,=b,
4y dp a4, 4y Gy e a, b
y  dy @, @&y dy ey, bz
Let A = and B, =
aml amﬁ """ amn aml amﬁ """ amn bn

The matrix A is called coefficient matrix and the matrix Baug is called augmented
matrix. We have (a) The system (1) is consistent if and only if
Rank of 4 = Rank ofBang
(b)  The consistent system (1) has a unique solution if and only if
Rank of A = the number of unknowns 7.
(c) The consistent system (1) has many solutions if and only if
Rank of 4 < the number of unknowns ».
The system (1) will be inconsistent when Rank of 4 # Rank of Baug and then the
system will have no solution.
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Here we like to discuss three cases :
Let us consider three sets of non-homogeneous equations with two unknowns ;

5x -2y =8 ’
2x+y=5 -0
x—-y=3 .
2x—2y=6 (1)
2x-y=6 N
4x-2y=-5 -(1ii)

Solving equations (i), we get x =2, y =1, So we have unique solution. The
equations (i1) are reduced to a single equation viz. x — y =3, 7.e., any point on it will
satisfy both these equations. So x =4, y =1 1s a solution. In general, x=3 + ¢, y=c¢
is a solution of these equations. Since ¢ is arbitrary, the number of solutions is
infinite. Lastly we see that the equations (iii} do not give any solution.

So the equations (i) and (ii) are consistent having unique solution or an infinitely
many solutions. But the set of equations (1) is inconsistent. They have no solution.

From Geometrical point of view, the equations (i) represent two intersecting
straight lines, intersecting at the point (2,1). The equations (ii) represent two coincident
straight lines. The co-ordinates of any point on it 1s a solution. Since a straight line
consists of an infinite number of points, it has infinite number of solutions. The
equations (iil) represent two parallel straight lines. They do not meet and hence they
have no common point.

8.4.5 Equivalence

Two system using the same set of variables are equivalent if each of the equa-
tions in the second system can be derived algebraically from the equations in the first
system and vice versa.

8.5 Homogeneous System

A system of linear equations is homogeneous if all of the constant terms are zero:
ax tanx,+.Ltax, =0,

X, + X, + .. +a,x, =0,
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A homogeneous system is equivalent to a matrix equation of the form
AX = 0O
when A (the coefficient matrix) is an m > » matrix, X is a column vector with »
entries and O is a zero vector with m entries.

8.5.1. Solution Set

Every homogeneous system has at least one solution known as the zero solution
(or trivial solution) which is obtained by assigning the value zero to each of the
variables.

If the system has a non-singular matrix (det 4 #0), then it is also the only
solution.

If the system has a singular matrix, then there is a solution set with an infinite
number of solutions.

(i) If # and v are two vectors repesenting solutions to a homogeneous system,
then the vector sum # + v is also a solution of the system.

(ii) If # is a vector representing a solution to a homogeneous system and r 1s any
scalar, then ru is also a solution to the system.

8.5.2 Relation to non-homogeneous systems

There 15 a close relationship between the solution to a linear system and the
solutions to the corresponding homogeneous system
AX = B and AX = O.
Specially, if p is any specific solution to the linear system AX = B, then the entire

solution set can be described as {p+v v isanysolution to AX =0},

8.6 Worked out Examples

Example 1 : Solve the non-homogeneous system of equations

X+2y—-z=06,
3x—y—-2z=3,
dx+3y+z=9
Solution : Let us write the equations in matrix notation as
AX =B
1 2 -1l x
3 -1 -2

re.,

et
I
O N

4 3 1

2]
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1 2 -1 x 6
So the coefficient matrix 4 = |3 -1 2|, X=|y|and B=|3| and
4 3 1 z 9
1 2 -1 6
the augmented matrix B, =3 -1 -2 3
4 3 1 9
[1 2 -1 6
w 7|0 -7 1 15 by R,— R,-3R, and R, — R, — 4R
0 -5 5 15
[1 2 -1 6
o1 L1
7 7 by R2 — ——R,}
0 5 5 -15
1 2 -1 6
~lo 1 -1 L5
7 7 |byR — R, +5R,
30 30
0 o 20 2
i 7 7
(1 2 -1 6
- _1 15 7
O 1 =5 |y R - GR,
00 1 -1

This is in echelon form. Since it has 3 non-zero rows, rank of Baug is 3.
1 2 -1
1
Omitting the last column of Baug_, the echelon form of 4 is |0 1 7| This has
0 0 1
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three non-zero rows. Therefore rank of 4 is 3, i.e., rank of 4 = rank of Baug. So the
equations are consistent. The matrix form of the given equations is now,

12 -], 6
1 15
01 —=|yl=[=2
717177
0 0 1 |LF -1
ie., x+2y—z=06,
1, 15
Y727
z =-1.

Solving, we get v =1, y =2, z = -1
Example 2 : Solve, if consistent, the system of equations

3xty—z=
x+y+z=3,
Tx+3y—z=5.
3 1 -1 X 1 31 -1 1
Solution : Let 4 = |1 1 1 [ X=|¥y|.B=|3[B,=|1 1 1 3
7 3 -1 z 5 7 3 -1 5

31 -1 1
we~|1 1 1 3|byR SR -2R -R
00 0 0
1 1 1 3
~13 1 -1 1 by R < R,
00 0 0 -
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Therefore rank of 4 is 2 and rank of Baug is 2 < 3 (the number of unknowns).
Hence this system of equations has infinitely many solutions.
The given system is equivalent to

11 17x] [3
0 -2 —4|y|=|-8
0 0 olz||o

le.,

X+y+z=3 x+y+z=3
or.
_2})_4&:_8 }’+2a=

Solving, we get x =z -1, y = 4 - 2z,
Putting z = 1, one set of solution is (0, 2, 1). Putting z = & (any non-zero real
number), we get the set of infinite solutions viz. x = k-1, y =4 2k, z =&

8.7 Summary and Keywords

Summary :
I. System of Linear Equations written in matrix form : AX = B, where

b

1
a=[q,] . x="| and B=|"

b

[s EEa m _lp

A linear system gives any one of three possible cases
(i) The system may have a single unique solution
{(i1) The system may have infimtely many solutions

{iii) The system may have no solution.

II. Homogeneous System of Equations
This system is equivalent to a matrix equation of the form AX = O (a null matrix)

Keywords : Linear Equation, Non-Homogeneous, Homogeneous, Solution,
Consistency.
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8.8 Model Questions

1. Solve 2x + y = 5, x — y = 0 by matrix method.
2. Solve x + y + z =4,

v —y+3z=1,

3x + 2y — z = 1 by matrix method.
. Test the consistency of the equations

LN

x=3y+3z=-],
2x—y—z=35,
Sx=Ty+z=2.

4. Test the consistency of the equations and solve if possible
2x+y+4z =4,
x=3y—-z=-5
=3x+2y-2z=],
8x—-3y+8z=2.

5. Solve the following equations :

X+_}’+Z=4, X—}’=3, 2x—y+32=9?
Gy ZY+3ESloGy acadyedz=17, Gy YTTIs4
x+2y-z=1 y+2z=7. 3x+2y+z=10.

6. Find the value of 4 for which the system of equations
x+ty+:z=2 2x+ty+3z=1l, x+3y+2z=3, Ix-2y+z=k
1s solvable and then solve it.
7. Solve the following equations
3x=3y+4z=5,
2x-3y+4z =4,
-y+z=0,
8. If A = —14, then show that the system of equations

Sx+2y—z=1,
2x+3y+4z=7,
4x—-5y+Aiz=A-5
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has a unique solution (0, 1, 1).
2x+4y+6z =0,
(i) 3x+4y+5z=0,
2x+3y+4z=0.

X—y+2:z=0,
(i} 5y 3p42:=0.

2x =3y =0,

9. Solve : (1) Sx+2y=0.

10. Find the values of L, for which the system of equations

Ww+y+z=1

x+w+z=1

X+y+pz=
will have (1) a unique solution, (i) many solutions and (ii1) no solution.
[Hint. Follow Art. 8.4.4. ]

8.8.1 Answers

l‘xzyzg_ 22x=-1,y=3,z=2

3. Inconsistent. 4 Consistent, x =1, y =2,z =0.

5. ()x=-1,y=3z=2 x=-2,y=-1,z=4(m)x=1,y=2,z=3
6. k=2 x=1,y=2z=-1

T x=1y=22z=2.

9. (i) (0, 0) . (i) (0, 0, 0), (1, -2, 1) and many other solutions.

(iii) (0, 0, 0), x = 2¢, ¥y = 4¢, z = ¢, ¢ 18 any non-zero real number.

10. () p#l p#-2. Gi) u=1 (i) p=-2.



Unit-9 O Characteristic Equation of a Matrix

Structure
9.1 Objectives

9.2 Introduction

9.3 Definition : Matrix Polynomial

9.4 Characteristic Equation of a Matrix

9.5 Eigen Values and Eigen Vectors of a Matrix
9.6 Cayley-Hemilton Theorem

9.7 Worked out Examples

9.8 Summary and Keywords

9.9 Model Questions

9.1 Objectives

Here we shall know the following :
e to solve the characteristic equations

e to find the eigen values
e to find the eigen vectors
e to verify every square matrix satisfies its own characteristic equation

e to compute inverse of a matrix using Cayley-Hamilton Theorem.

9.2 Introduction

A problem which arises frequently in application of linear algebra is that of
finding values of a scalar parameter A corresponding to which there exist vectors
x = 0, satisfying Ax = Ax where A is a given »-th order matrix. Such a problem is
called a characteristic value or eigen value problem. Thus characteristic polynomial
of a matrix, characteristic equation of a matrix are defined and we shall discuss their
different properties. We shall find out the eigen values and eigen vectors of a matrix.

Lastly we shall be acquainted with Cayley-Hamilton Theorem.

171
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9.3 Definition : Matrix Polynomial

A matrix polynomial over a field F' of degree m 1s defined to be an expression
of the form F(x)=A, +Ax+ A+ .. +AX"

where A (for i =1, 2,......, m) is a square matrix over the field /' of the same order.
The symbol x is called indeterminate or unknown.

2 012 17 [3 0], [1 0],
Example : | 1"' 30 x+ o o + » ¢|F is a matrix polynomial of

degree 3.
9.3.1 Definition : Equality of Matrix Polynomial

Two matrix polynomials in x over the same field F are said to be equal, if and
only if the coeflicients of the like powers of x are the same.

Every square matrix whose elements are algebraic polynomials in x can be
expressed as a matrix polynomial in x of degree m where m is the highest power of
x in any of the elements of the matrix.

2+3x+x° 3x° 4-5x
- 3 2 _" 3
Example : Let A = i T+ax® 1=3x+2x be a square matrix whose
1+2x 3% 5 2x

elements are polynomials. The highest power of x present in the elements is 3.
Writing the elements of 4 as complete polynomials, we get

243x+1x°+0x° 0+0x+3x°4+0x° 4-5x+0x7+0x°
A=3+0x+0xX"+1x 140x+4x°+0x 1-3x+0x*+2x°
1+42x+0x"=3% 5+0x+0x'+0x° 0+2x+0x*+0x°

2 0 4] [3 0 -5 1 30 0 00
_13 1 1]+|0 0 3|x+|0 4 0|+ 1 0 2|X°
1 50|20 2 0 0 0 -3 0 0|

which 1s a matrix polynomial of A.
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9.4 Characteristic Equation of a Matrix

If 4 = (a) be a square matrix of order » over the field /" and / be the unit

i iy ]

matrix of order #n, then

a, -, a, a,
a a,,—A a
A—M= .21 22 .En ,
a a., o @ —A

al #2 "t

where A is a scalar, is called the characteristic matrix of 4.

The determinant |A — ?\J| which is an ordinary polynomial in A of degree #, with

scalar coeflicients is called the characteristic polynomial of A.

The equation |A—?\J| =01is called the characteristic equation of the matrix A.

The roots of the characteristic equation, if any, are called the eigen values or
latent roots or characteristic roots of the matrix 4.

The roots of the characteristic equation of multiplicity # is called r-fold eigen
value of 4. The set of eigen values of the matrix A is called the spectrum of the
matrix A.

Cor.1 The characteristic roots of a diagonal matrix are the elements of its leading
diagonal.

Cor.2 Zero is an eigen value of the matrix A, if and only if 4 is singular.

9.4.1 Theorem : If A is an eigen value of a non-singular matrix 4, then A ' is an
eigen value of 4!

Cor.1 If A is an eigen value of an orthogonal matrix 4, then % is also an eigen
value of 4.
Cor.2 If A is an eigen value of a non-singular matrix 4, then |%| is an eigen value

of Adj A.

9.4.2 Theorem : If A is an eigen value of a matrix A, then A?is an eigen value of
A
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9.4.3 Theorem : If & is a non-zero scalar, then A is an eigen value of 4, if and only
if kA is an eigen value of £ A.

9.4.4 Theorem : For any square matrix 4, 4 and A7 have the same eigen values.

9.4.5 Theorem : If X and X" be any two eigen vectors corresponding to distinct eigen
values o, [} respectively of a square matrix A, then X and X" are linearly independent.

9.5 Eigen Values and Eigen Vectors of a Matrix

Let 4 be a square matrix of order n over « field F and V, (¥) denote the vector
space of all #-tuples (x, x,, .., x ) where x. € F,fori=1,2 ..., n

Then a non-zero vector X = (x, x,.....x )" is called an eigen vector or characteristic
vector of the matrix 4, if there exists an element A € F such that 4X = AX holds.
That is to say, AX = AX, where A is a scalar

Then, AX -AX)=0
or, A4-1H)X =0 . (1)

Therefore, for any value of A, the null vector X = @ is a solution of equation (1).

A value of A for which equation (1) has a solution X # @, is called an eigen value
of A. The corresponding solutions X # O of equation (1) are called the eigen vectors
of A corresponding to the eigen value A.

9.5.1. Definitions

If A be a root of |4—AI|=0 of multiplicity &, then k is called the algebraic
multiplicity of A and the rank of the characteristic sub-space corresponding to A, i.e.,
the number of linearly independent solution of (4 —AJ) X = 0, is called the geometric
multiplicity of the matrix A.

9.5.2 Theorem :

A is an eigen value of a matrix A4, if and only if there exists a non-zero vector
X such that AX = AX.

Proof : Let A be an eigen value of a square matrix 4 of order »n. Therefore
| A-A | =0, 7.e., the characteristic matrix (4 —Al) is singular. This shows that there
exists a non-zero solution of the system (4 — A) X = 0, or AX = A IX = AX.

Conversely, let there exist a non-zero vector X such that AX = AX. Therefore
there exists a non-zero solution of (4 — AI) X = O = the coeflicient matrix (4 — AJ)
is singular = [4-AZ|= 0

i.e., A is an eigen value of A.
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9.5.3 Theorem :

The eigen value corresponding to an eigen vector of square matrix is unique.

9.5.4 Theorem :

If X is an eigen vector of a square matrix corresponding to an eigen value
A of A4, then for any non-zero scalar &, £X is an eigen vector of 4 corresponding to
the same eigen value A.

Note : For any eigen value A of A,

1 < geometric multiplicity of A < algebraic multiplicity of A.

9.6 Cayley-Hamilton Theorem

Statement : Every square matrix satisfies its own characteristic equation.

[If £ (X) = |A— ?\J| = 0 denotes the characteristic equation of a square matrix A4,
then f (4) = O {a null matnx)].

9.7 Worked out Examples

Example 1 : Find the characteristic equation and eigen values of the matrix

3 2 2
A=|-2 3 =2
2 -2 3

Solution : For a real value of A, we have

3 2 2 A 00
A-M=|-2 3 =2(-|0 A O
2 -2 3 0 0 A

3I-x 2 2
= -2 3-» =2
2 -2 3-i

The characteristic equation is |A—?\J| =0
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3-4 -2 2
-2 3-2 =21=0
or,
2 -2 3-A
3-2 -2 0
or, -2 3-%A 1-Al=0
2 -2 1-x

On simplifying, (1-21)*(7-1)=0
or, A=1 1and 7
Therefore the eigen values are 1, 1 and 7.

1 1
Example 2 : Find the eigen values and eigen vectors of the matrix 4 = [0 J‘

Sol. For real A, we have 4-AJ =(1 1]—[}' 0]=[1_?L : ]

0 1) {0 A 0 1-A
. . . 1 - K 1 — 0
The characteristic equation is | | _,/~
Ora (1 - K)Z = 0

Roots of the characteristic equation are 1, 1.
Therefore 1 is the only eigen value of 4 of multiplicity 2.

X
Let X = X

i

} be the eigen vector corresponding to the eigen value 1.

Therefore X will be given by a non-zero solution of (4 - 1.)X =0

o ofu)o
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which gives x, = 0 and x, = any non-zero real number = ¢ (say).

¢
Therefore X= [0} 15 the eigen vector.

Example 3 : Find the eigen values of 4 =

2
! and verify Cayley-Hamilton
1

— )

0
0
1

theorem.
Solution : We have [4—A/|= (1—?\.)([2—?x.]2 —1])
= (1-M)G-1M)(1-2),
The characteristic equation is (1—A)*(3—A)=0
or, A=113.
Therefore the eigen values are 1, 1, 3.
The characteristic equation can be put as 23— 532 +7A-3=0
i.e., we are to verify

A -54°+74-31= O.

21 0)2 1 0) (5 4 0

Now 4°=[1 2 0 2 0l=[4 5 0
11 101 1 4 4 1
54 0Y(2 1 0) (14 13 0

and A= |4 5 0 2 0|=[13 14 o],
4 4 1)1 1) 13 13 1

14 13 0 25 20 0 14 7 0
Therefore 43-542 +74= |13 14 0]|-{20 25 0|+ 7 14 0
13 13 1 20 20 5 7 7 7



178 NSOU « CC-MT-01

14-25+14 13-20+7 0
=|13-204+7 14-25+14 0
13-20+7 13-20+7 1-5+7

300 1 0 0
=(0 3 0(=3]0 1 0|=3].
0 0 3 0 01

Hence Cayley-Hamilton theorem is verified.

Example 4 : If A be an eigen value of an orthogonal matrix, then show that %

is also an eigen value of it.

Solution : Let 4 be an orthogonal matrix.

Therefore AA"=A"A=1

ie., AT = A4

If A be an eigen value of 4 and X be the corresponding eigen vector, then we
have

AX = AX
or, A14X = 447X,
1 1
Ay = 4 _ 4
Therefore A'X KIX ?\.X

ie., % is an eigen value of 4™ :>% is an eigen value of A7,

But the eigen values of A” and 4 are same as |AT —M|= |A—M|_

Therefore %is an eigen value of A.

Example 5 : Use Cayley-Hamilton theorem to find the inverse of the matrix

1 0 2
A=10 -1 1
0 1 0
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Solution : The characteristic equation of 4 is

|[4-21| =0
1-% 0 2
or, 0 -1-2 1|=0
1 -A
o, (1-DM1+A)-1H=0
of, A-DR>+A-D=0
or, A =-2+1=0.
By Cayley-Hamilton theorem, A will satisfy the equation.
Therefore we get A =24+ 1 = O,(anull matrix). (D
1 0 2
Now det 4 =10 -1 1|=1(0-1)=-1=0.
0O 1 0o
Therefore A~ exists.
Therefore, from equation (1), we get
A7 =244+ 147 = O
or, A (A4 =244+ 4" = O
or, At =21 -4 =2 - A

2 00 1 0 2y1 0 2
=10 2 0/-10 -1 10 -1 1
0 0 2 0 1 00 1 O

1 2 2

o QO -
)
—
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9.8 Summary and Keywords

Summary :

1. Characteristic Equation of a Matrix.

det (4 — Af) = 0 is called characteristic equation of a square matrix A.

The roots of this equation, i.e., values of A are called the eigen values of 4.

Let 4 be a square matrix of order ». Then a non-zero vector X =[x, x,, .., x ]
is called an eigen vector of A, if there exists an element A such that AX = AX holds
i.e., AX = AX, where A is a scalar.

We have (4 - AN X = O. (1)

For any value of A, the null vector X = @ is a solution of this equation.

A value of A for which equation (1) has a solution X # @ is called an eigen value
of A. The solution X # @ of (1) are called the eigen vectors of A corresponding to
the eigen value A

II. Cayley-Hamilton Theorem.

If /(X)) = det (4 —AI)= 0 denotes the characteristic equation of a square
matrix A, then f (4) = O, a null matrix.

KEYWORDS : Characteristic Equation, Eigen value, Eigen vector.

9.9 Model Questions

a h g
1. Obtain the characteristic equation of the matrix [# & f|.
g f ¢

2. Find the eigen values of the following matrices :

0 1
(i) {0 0}

1 -1 0O 3 2 2
(iv) 1 2 -1 (V) 1
3 2 =2 -2 4 -1

1 0

1 0
(i) {0 J (i) [0 2
0 0

w o O
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3. Find the eigen values and the eigen vectors of

3 2 2
N ii 1 4 1
W, (i)
-1 -4 -1
6 -2 2 8 -6 2
(i) | -2 3 -1 vy |-6 7 -4|.
2 -1 3 2 4 3
4. Venfy Cayley-Hamilton theorem for the following matrices and find their
inverses
-1 2 1
2 1 1 0 2
(i) 3 5 g |0 2 1 iy | 1 -1 2],
2 0 3 2 -1 1

31
5If4 = [ J then use Cayley-Hamilton theorem to show that

24° 34"+ A4* — 41 =1384— 4031,

6.If4 =0 -1 . then verify that 4 satisfies its own characteristic equation.

L

Hence find 4% and 47"

7. 1f A is a 3 x 3 matrix over the field of reals, having eigen vectors

and corresponding to the eigen values 1, -2, 4 respectively, find the matrix 4.

1
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8. Use Cayley-Hamilton theorem to express the matrix polynomial

12
24%—74°+747 504127 as a linear polynomial in A, where 4 = [3 4}

9.9.1 Answers

a-x h g
g f =X
2.()0. (1, L () 1,2, 3 Gv) 1,1, -1. (v) 1, 2, 3.
(kY (0 ) o
3.(0) L7, ollx Lk20 (i) 0, 3, 3;| ¢ |, c¢isnon-zero real number.
—
1 -1 2
() 2,2 8 c¢c|2|,¢| 0|, el-1f, c#0
0 2 1

.
(iv) 0, 3, 15, for eigen value 0, eigen vector is &£ | 2|, £ #0.

2
-3 0 2
1 3 5
15 -l -1 L1 o
4. (1) 7.3 2] (1) 2 2 (111} s 3 4 3
2 0 -1 1 3 -1
-1 =24 20 1 -2 =2 2 20
610 =55 34|, 4'=lo 0 1| 712 1 2|
0 34 -21 0o 1 1 0 -2 0

8.8 A4+401L
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10.7 Worked out Examples
10.8 Summary and Keywords
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10.1 Objectives

In this unit, we have defined and discussed the following matters:

e Reflexive Relation
e Symmetric Relation
e Transitive Relation
e Equivalence Relation

e One to One, One to Many, Many to One correspondence between the elements
of two sets.

With this idea, we would be able to apply these relations properly.

10.2 Introduction

Relations and functions are two different words having different meaning
mathematically. In this section, we shall study both these concepts.

Same as the relations which we have in our daily life, a kind of relation also
exists in algebra. In daily life, relations are like brother and sister, friends, students
and teacher and many more. In mathematics also, we see some relations like a line

183
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parallel or perpendicular to another line, 4 divides 12, 10 is greater than 8, etc.
We see that while studying relations, one thing 1s in common which is that it requires
two different objects to different objects via relations.

10.3 Relations

To understand relations, we require basic knowledge of sets.

Definition: A set is a collection of well-defined objects of particular kind.
For example : A set of English alphabets, a set of natural numbers, etc.
If A be the set of all even numbers between 1 and 15, then we write
A=1{2, 4,6, 8 10, 12, 14}.

10.3.1 One to One correspondence and Cardinality of a Set

One to one correspondence is a function between the elements of two sets, where
each element of one set is paired with exactly one element of the other set and each
element of the other set is paired with exactly one element of the first set.

The cardinality of a set is the number of distinct elements of a finite set. If a set
has 3 elements, then the cardinality of the set 1s 3. A cardinal number is a number
1, 5, 7 or 9 that tells us how many things there are in a group but not what order they
are in.

Examples :

(a) The cardinal number of the null set is 0 (zero).

{b) The cardinal number of the set { 1 } is L

(¢} The cardinal number of the set {2, 4, 5, 9, 10} 1s 5.

{d) The cardinal number of the set {1, 1, 2, 2, 2, 2, 3, 3} 1s 3.

(e) The cardinal number of the set { {1, 2}, {5, 8, 9} } is 2.

Two sets A and B are said to be cardinally equivalent, if there exists a mapping
from A to B which is one-to-one and onto. 4 and B are said to be equipotent with

each other. A set, which is cardinally equivalent to the set of natural numbers, is
called denumerable or enumerable set.

A set is countable, if

(1) it is a finite set, or

(i1) 1t can be put in one-one correspondence with the set of natural numbers.
A set, which i1s not countable, is called uncountable set.
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10.3.2 Relation between two sets

If we have two non-void (or null or empty) sets 4 and B, then the relation R from
the set 4 to the set B is represented by R,, or p, where a is the set of elements
belonging to the set 4 while b belongs to the set B.

Relation from a set 4 to a set B is the sub-set of the cartesian product of A and
B, i.e., sub-set of AxB.

Relation, in other way, can also be defined as a collection of ordered pair (a,b)
where ae Aand be B.
Example : Let us consider a set A containing the elements as {1, 2, 3} and a set

B containing the elements as {2, 3, 4}. Then the relation between the set A and the
set B will be the set of any combination from A to B.

A Er B

‘h‘

From the above diagram, we see that relation from A4 to B, i.e., R will be the set
of {(1, 2), (2, 4), (3, 2), (3, 4)}. This relation is a sub-set of the cartesian product of
A and B, i.e., sub-set of AxB.

Let us take another example where 4 = {1, 2, 3} and
B=1{1,2 3,45 6,7, 8,9, 10}. If the relation between A and B is as:
elements of B is the square of the elements of 4, then the relation is written as:

R = {(a, b) : where b is the square of a and a€ Aandbe B},
Here R = {(1, 1), (2, 4), (3, 9)}.

10.3.3 Total number of relations from 4 to B

Let the number of relations from A to B be x. Let A contain m elements and B
contain #n elements, the number of elements in AXB is mxn.

Therefore the number of non-void sub-sets =""C, +"™'C, +....... +™C,  =2""-1.

Thus, for A = {1, 2, 3} and B = {x, ¥}, number of non-void sub-sets or the
number of possible relations = 2° — 1.

In the above definition of relation, if B = A4, then we say R is a binary relation
or a relation on A, i.e., in this case R is a subset of AxA4.

A relation R in a set 4 is said to be the universal relation if R = 4 xA4.
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For example, if A = {1, 2, 3}, then

R = {(L,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3.2), (3,3)} is the universal
relation R in 4.

10.3.4 Different Types of Relations

(a) Reflexive relation :
Let A be a non-empty set and R be the relation defined on A. R is said to be
reflexive, if R holds for each a€ 4.

{b) Symmetric relation :
Let 4 be a non-empty set and R be the relation defined on 4. R is said to be
symmetric, if R holds whenever R, holds, for any two elements a, be 4.

(c) Transitive relation
Let A be a non-empty set and R be the relation defined on A. R is said to be
transitive, if R_holds whenever R, and R hold for any a, b, c€ 4.

{d) Anti-symmetric relation :

Let A be a non-empty set and R be the relation defined on A. R is said to be
anti-symmetric, if R, and R —a=5.

10.3.5 Examples

(1) Consider 4 = {1, 2, 3}. Then the relation
R={(1, 1), (2, 2), (3, 3), (1, 3), (2, 1)} is reflexive on 4.

But R = {(1, 1), (2, 1), (2, 2), (3, 2)} is not a reflexive relation on A,
since (3, 3) does not belong to R,

(i1) Let A = the set of all natural numbers. If a relation R be defined on 4 by
‘x+ y=100", then this is symmetric in 4; for, a+5=100= b+a =100. But
if’ the relation R be defined by ‘is a divisor of”, then R is not symmetric as
R, does not imply R,

(i) If a relation R be defined on {1, 2, 3} given by
R={1, 1), (1, 2), (2, 1), (2, 2), (2, 3), (1, 3)}, then R is transitive,
for, R, and , R = R . But the relation R = {(1, 2), (2, 3), (1,3), (2, 1)} is
not transitive as (1, 1) and (2, 2) are missing.

{iv) The relation R defined by ‘<~ on the set of real numbers is anti-symmetric;
for, a<handb<sa=a=>b.
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10.3.6 Equivalence Relation
A relation R, defined on a non-empty set 4, is said to be an equivalence relation,
if and only if
(i) R 1s reflexive,
(i) R is symmetric and
(iii) R is transitive.

Example : Let 4 be a set of all triangles in a plane. A relation R is defined as

“x 1s similar to y, for all x,y€ A”. Then

(i) R is reflexive, since every triangle is similar to itself.
(i) R is symmetric, since if x is similar to y, then y must be similar to x.
(iii) R is transitive, since if x is similar to ¥ and y is similar to z, then x will be
similar to z.
Hence R is an equivalence relation.

10.3.7 Equivalence Classes
Let R be a relation on a non-empty set 4. Let a be an arbitrary element of A. The
elements x € A which satisfy R_form a sub-set of 4 which is known as an equivalence

class of @ in A with respect to R. This is written as {x . x& 4and R }.

10.4 Functions or Mappings

Function is one of the most important concepts in Mathematics as every situation
in real life 1s solved and analysed first by writing its mathematical equation of
functions. Here we shall discuss various types of functions and their utilities. A
function is like a machine which gives unique output for each input that is fed into
it.

10.4.1 Function : Its Domain and Range

Functions are defined for certain inputs which are called as its domain and the
outputs are called range.

Let 4 and B be two sets and let there exist a rule or manner or correspondence
‘f which associates to each element of 4 to a unique element in B, then f is called
a function or mapping from A to B. It is denoted by the symbol :

f:(4 B) or f:4— Bor A—L— B which reads ‘/is a function from 4 to B’
or ‘fmaps A to B’
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(a) If an element g4 e 4 is associated with an element b € B, then b is called ‘the
Jf-image of @’ or ‘image of a under f or ‘the value of the function f at a’.
Also a is called the pre-image of b under the function f. We write it as
fi(@ab)or fra—borb= f(a).

(b) A is called the domain of f and B is called the co-domain of £,

(c) The set of all f~images of the elements of 4, i.e., f(A4) is called the range of

f. If the range of f is a singleton, say {5}, then fis called a constant mapping.
(d) For any sub-set C of B, the inverse image of C under f, denoted by f7'(C),

defined by the set f'(C)={xe4: f(x)eC}.

10.4.2 Summarisation

A relation f from a set A to a set B is called as the function or the map if it
satisfies the following conditions :

(i) All the elements of 4 should be mapped with the elements of B, i.e.,
Va, (a, f(a)) e f, where ac 4.
(i) The elements of set 4 should be uniquely mapped with the elements of
set B, i.e., if (a,b)e f and (a,c)€ f, then b=c, where ae 4 and b, c € B.
(iii) Two or more than two elements of 4 may have the same image in B.
Note : Every function is a relation but every relation is not necessarily a function.

Relations

Functions

IfA=1{3,4,6}and B={5,7, 8}, then f:x— 2x—1 does not define a mapping
as 6e 4 has no image in B.
10.4.3 Equality of Mappings
Two mappings f and g from the same domain set 4 into the same co-domain set
B are said to be equal, if f(a)=g(a), Vae A. We write f = g.
10.4.4 Types of Mappings
1. A mapping f:A4— B is called an injective mapping or one-one mapping, if
different elements of the set 4 have different f-images in B, i.e., if a,a,€ 4,

then a, #a, = f(a)# f(a,)in B.
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A

= =

Not

Example 1 : f(x)=2x+3, from the set of real numbers R — Ris an
injective. For x=1, f(x)=5; again for y = 5, we only have x = 1.
Sox =y when f(x)=f(y).

Example 2. f(x)=2x+1 from R— Ris not an injective. For
f(2)=f(-2)=9, but 22 -2. Again f(x)=2x">+1 from the set of natural

numbers N — N, IS injective.

. A mapping f:A4— B is called a surjective or onto mapping, if for each

b € B, there exists at least one element a € A such that f(a) =b, i.e., f(A)=B.
Example : The function f(x)=2x from the set of natural numbers N to the
set of even numbers is a surjective function. But f(x)=2x from the set N

to N 1s not surjective, because no member of N can be mapped to 5 by this
function. In fact, domain and co-domain of each set is very important.

. A mapping f:4A— B is called a bijective mapping or a one-to-one

correspondence, if f is injective as well as surjective.
Example : Let (Q be the set of all rational numbers and f:Q— Q be the

mapping given by f(x)=3x-7, forxe Q. Then for all a, b€ Q and
azb= f(a)=3a-7#3b-7= f(b) and therefore f is injective. Again, for

—7=X_ which

+7 +7
any xe€ Q, we have x+7 2 )=3~x

3 3 3

shows that f is onto and hence f is a bijective mapping.
To understand these mappings clearly, we see the following diagram :

B A B A B A B
— <

— <
o——%——"‘

. e <

a function Injective Surjective Bijective

€ Q, such that f(

(4 has many B) (Not surjective) (Not injective)  Injective and Surjective

(B cannot have (Every B has (4 to B perfectly)
many A) some A)
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10.5 Composition of Functions

Composition of functions is the process of combining two functions where one
function is performed first and the result of which is substituted in place of each
variable in the other.

Let us consider three non-empty sets 4, Band Candlet f:4A— Bandg: B—C
be two mappings. The composition of the mappings f and g (or the product of f and
g) 1s the new mapping from A to C written as gof or gf, given by (gof)(a) = g(f(a)),
for each ge 4.

This composition of two mappings will be clear from the following diagram :

A f B g C

gof

Example : Given f(x)=3x+2 and g(x)=5x+3.
We have f(g(x))=f(5x+3)=3.(5x+3)+2=15x+11.
Again g(f(x))=g(Bx+2)=5.G3x+2)+3=15x+13.
Note 1. For the function f:A— Bandg:B— 4, gof : A— A 1is defined.
Note 2. Product of mappings is not, in general, commutative.
Consider the following example :
Let f-R— Randg:R— R given by f(a)=a’ +1and g(a)=4a.
Then (fog)(2)= f(g(2)) = f(8) =8 +1=65 and (gof }(2)=g(f (2))=g(5)=20.
. fog # gof .
10.5.1 Now we shall establish the following results :

Let f:A— Bandg:B— C be two maps; then
(1) If f and g be injective, then gof is injective.
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(i) If f and g be surjective, then gof is surjective.
(iii) If £ and g be bijective, then gof is bijective,

Proof of (1) : Since f is injective, for a, a,€ 4, a,#2a, = f(a)# f(a,). Since g
is injective, f(a)# f(a,)= g(f(a))# g(f(a,)), Le., (gof )a) # (gof )a,)

= gof is injective.

Proof of (i1} : Since g 1s onto, there exists at least one p e B such that g(b)=ceC.
Again since f is onto and b € B, there exists at least one g€ A such that f{a)=5.
So for each ¢ € C, there exists a € A such that ¢ = g(b) = g(f(a)) = (gof) (a¢). Hence
gof 1s onto.

Proof of (u1) follows from (i} and (u).

Theorem : If f:A— B g:B— (C and #:C — D be three mappings defined on
the non-empty sets 4, B, C, D, then ho{gof) = (hog)of .

Proof : As per definition of the composition, functions gof, hog, hofgof) and
(hog)of are defined.

Now for any xe€ A4,
we have [ho(gof)](x) = A(gof Yx) = Hg(f(x))] and
[(og)of 1(x) = (hog)(f(x)}y = Hg(f(x))].

Hence ho(gof) = (hog)of .
This completes the proof

10.5.2 Identity Mapping

An identity function, also called an identity relation or identity map or identity
transformation, is a function that always returns the same value that was used as its
argument. In equation, the function is given by f{x) = x.

If 4 be a non-empty set, then the identity mapping is I, - 4d— 4, ie, [(@)=a

for all ae A.
We have the following :
(i) For every non-empty set 4, I, is a bijective map.
(i) Two sets 4 and B are equal iff 7, = I,
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10.6 Inverse Mapping

Let A and B be non-empty sets. Let f:A4— B be a mapping and an arbitrary
element p e B. Then the inverse of the element b is defined as a set consisting of

those elements of A which has b as their images. It is denoted by ! (b) and read as
‘f inverse b’.

If f be one-one onto, then f(a)=b<« f'(b)=a.
As every element pe B, f~' corresponds to a unique element ge 4 such that

f(a)=b, £ is a map. A map is said to be invertible, if it possesses an inverse.

Inverse mapping will be clearly understood from the following diagrams :

f
4 B B / 4

2x+5

Example : If f(x)= 3 find /.
Solution : Let y = f(x)= 2x3+5 Sx= 3y2—5’ x in terms of y.

) = 3x2—5’ v is changed to x.

10.6.1 Some Theorems on Inverse Mappings

Theorem 1. The necessary and sufficient condition that a mapping be invertible
is that it is one-one and onto.

Proof : First let f:4— B have inverse g. Then fog =/, and gof =1,. We shall
show that f is bijective. In fact a, a, € 4, f(a)= f(a,)= gf(a,)=gf(a,)

i.e., (gof)a)=(gof)a,)=1,(a)=1,a,)=a =a,= f is one-one.
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Again be B= g(b) (=asay) € A, such that
flay= f(gB)) = (fogXb)=I3(b)=b= f, is onto.
Hence f if one-one and onto.
Conversely, let f:A4— B be one-one and onto. Then we have for each
be B, f(a)=5b for some ge 4. f being one-one, only one such a exists.

Now let g:B— A be such a mapping that g(b)=a for p € B. We shall show that
g 1s the inverse of f.

We have (fog)b)= flg(b)]= f(a)=b=1,(). Thus fog =1,
Againx € A= (gof )x) = g(f(x)) = gy =x=1(x), [f(x)=, say].
Thus gof =1,. Hence g is the inverse of f.

Theorem 2, The inverse of a byection is also a bijection.

Proof: We are to prove that if f: 4 — B be one-one onto map, then ™' : B — 4
is also an one-one onto map.

Let b, b, € B Thenf '(h)=a, and f'(b,) = a, where a,,a,€ 4, as fis one-one
onto.

S fB) =)= a =a,= f(a)= f(a,), fbeing one-one = b =b, = [
is one-one.

Now, for any element g€ A, we can find an element » €B where f7(b)=a.
This shows that f~' is an onto map.

Theorem 3. If f be one-one and onto, then the inverse mapping of £ is unique.
Proof : If possible, let f:4— B have two inverses f, andf,. Therefore
fiiB— A and f,:B—A. Let b be an arbitrary element of B and let
fi(B)=a, and f,(b) = a,. Since £ is an inverse of f, f,(B)=a = f(a)=> Similarly
/, being an inverse of f, f,(b)=a,= f(a,)=5. But f is one-one onto mapping,

hence f(a)=>= f(a,) and this implies a =a,= f(b)= f,(b), hence f =1,
i.e., fis unique.
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Theorem 4. The inverse of the inverse of a function is the function itself.

Proof : Let f: 4 — B be invertible. Then there exists a function g= f: B— 4
such that f(a)=b= a= f'(b)= g(b) where a€ 4, be B. Obviously, g is invertible
ie., g~ exists. Now (fog)(d)= flgb)]= flay=b= fog=1,, i.e, fis the inverse
ofg So f=g7=(f)"

Theorem 5. If f:A— Bandg:B— C be two one-one and onto mappings,
then (gof)"'=/f"0g™

Proof : Let ce€C be arbitrary. Then ¢=g(h)wherebecBorb=g"(c).
Letb= fla),ac A4

ca=f®).

We have (gof)(a)=glf(@)]=gb)=c. -.(gof)'(c)=a, since gof is one-one
onto map.

Now (f70 g"Xe)=f"[g"@]=f"B)=a.
Thus for any arbitrary ¢ of C, (gof)'(c)=(f""og ' Xc).

Hence (gof)" = fTo g™
This completes the proof.

10.7 Worked out Examples

Example 1. Show that the mapping f 7/ — [, defined by f(x)=(x+1)’, xe/,

where [ is the set of positive integers, i1s one to one into.

Solution : Here domain is /= {1, 2, 3, 4, 5,..._} and the range set is {4, 9, 16, ..}.
The range set is a sub-set of the co-domain of /. Clearly it maps 7 into /. Since any
two different elements of / map to the different elements of the range set, it is one
to one.

Example 2. If f:R > R be defined by f(x)=x"+2 findf7(6).
Solution : If 77'(6)=1x, f(x)=6 Of, ¥’ +2=6 OI, x’ =4 O, xy=42.
So fl(6)={-2,2}.
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Example 3. Let /R — R be defined by f{x)=2x+3.
If A={x:1<x<2 xeR}, find f(4).

Solution : Let g, bR such that a > b. Since f(a)— f(B)=2(a-5)>0,f isa
strictly increasing function of x. Now (1) =21+ 3 =5 and f(2)=22+3 =7,

s JA=157}
Example 4. If f:R —> R and f(x)=2x+3, xeRandg: R — R and

g(x)=3x-2, xeR, verify that (gof)"' = fo g™

Solution : If y=2v+3, =222 and it y=3v-2,x=222
—'—f_]ZR—)Randf'l(y)=yT_?” 8’11R—>Randg"(y)=y;'2_
Now fog™":R— Rand
o g - L y+2
(fTogh=/"1g"M=f 1[y3 )
2 (y3 _3J=}6 A

and (gof)":R — R and (gof)(x) = g[ F(x)]=g(2x+3)=3. 2x+3)-2=6x+7

.+ gof is one-one and onto, ..(gof YRS R= yT_? .(2)

From (1} and (2), it is verified that (gof)" = fTog™".

10.8 Summary and Keywords

Summary
I. Relations : (a) Reflexive relation (b) Symmetric relation (¢) Transitive
relation
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II. Equivalence Relation

A relation R is said to be an equivalence relation, iff R is reflexive, symmetric
and transitive.

III. Functions

Let A and B be two sets and let there exist a rule or correspondence ‘f~ which
associates to each element of 4 to a unique element in B, then ‘f’ is said to be a
function from A to B.

It is denoted by f:A—> B, Yae A flay=beB. Again f':B— A4, is called
inverse of £.

Every function is a relation but every relation is not necessarily a function,

IV. Composition of Functions

This 1s the process of combining two functions where one function is performed
first and the result of which is substituted in place of each variable in the other.

Let 4, B and C be three non-empty sets. Let f 4— B and g:B— C be two
mappings.

The composition of the mappings fand g is the new mapping from A to C written
as gof or gf, given by

(gof a)=g f(a)eC, foreachac A

Keywords : Relation, Function, Mapping, Inverse, Composition, Enumerable

10.9 Model Questions

1. Write the cardinal number of the following sets :
() {a b, ¢, x ¥z}
{11) {the letters of the word CALCUTTA}.
(iii) {5, 6,6, 7, 8,11, 6, 13, 11, 8}.
2. Give an example of a relation on the set of positive integers which 1s symmetric
and reflexive but not transitive.

LN

Give an example of a relation on the set of positive integers which is reflexive
and transitive but not symmetric.

4. If R is a relation on the set of all integers defined by ‘x — y 1s divisible by
6’, prove that R is an equivalence relation.
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5.

10.

I1.

12,

13.
14.

15.

16.

17.

18.
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Ift4A=1{1,2, 3} and R = {(1, 1), (2, 2), (1, 2), (2, 1)}, prove that R is
symmetric and transitive but not reflexive.

LIEA=41,2, 3 and R = {(1, 1), (2, 2), (1, 2), (2, 3), (3, 3)}, prove that R

is reflexive but neither symmetric nor transitive.

Show that the relation ‘>" on the set of all integers is transitive but neither
reflexive nor symmetric.

A relation p is defined on the set of all integers Z by “ p, if and only if
2a + 3b be divisible by 5, for all a,be Z . Prove that p is an equivalence
relation.

On the set of all real numbers, p, if and only if (& + /) be even. Show that
p is an equivalence relation.

Show that on the set of all integers the relation R, holds if @ — 5 = 10 1s
neither reflexive nor symmetric nor transitive,

Prove that on the set of all integers the relation “ R, holds if ab > 07, is
symmetric and transitive but not reflexive.

Prove that on the set of all rational numbers the relation “ R, holds if
a—b =20 or 57 is reflexive but neither symmetric nor transitive.

Given the relation R = {(1,1), (2, 2), (3, 3)}. Is R symmetric? Transitive?
Show that the mapping f ./ — I, the set of positive integers, defined by
f(x)=2x"—1, is one-one and onto.

If the function f R — R, the set of real numbers, be defined by
f(x)=3x+1, then show that f'(7)=2and f'(-11)=—4.

Show that the mapping f:R— R, the set of real numbers, defined by
f(x)=x’—x is surjective but not injective.

Let A4 = {a, b, ¢} and let f:4—> A, g:A— Abegivenby
fra->bbocc—a; g.a—>a b—c c—b. Show that fog = gof .

If f:ix—>3x, g x>5+2andh:x—2x-3,

show that (i) ho(gof)=(hog)of (1) (gof)'=fog™.
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19. If the function f:R — R, the set of real numbers, be defined by
f(x)=2x" -3, then show that

(i) fa25)={-88} (i) f'()={-v2, +v2}
20. Is the mapping (i) f:x— 10, one-to-one?
(i) f:x—>2x+3, one-to-one?
(i) f:x— e*, one-to-one?
(iv) f:x— cosx, one-to-one?
10.9.1 Answers
1. (i) 6. (ii) 5. () 6
2. Let 4 ={1, 2, 3} and R {(1, 1), (2, 2), (1, 2), (2, 3), (3, 3), (3, 2), (2,1}}.
3.4=141,2,3,4,....}; R="xis afactor of ', x and ye 4

13. Yes, Yes.
20. (i) No. (i1} Yes. (1i1) Yes. {iv) No.
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11.1 Objectives

Here we shall learn the following properties of integers :

Well-ordering property of positive integers,

Division algorithm,

Euclidean algorithm,

Method of finding greatest common divisor,

Congruence relation between integers.

12.2 Introduction

By way of counting, we have come across the numbers 1, 2, 3, ... ..., naturally.
These numbers are called the natural numbers or counting numbers. Gradually, we
had to extend the number system while subtracting one number from another and
dividing one number by another number. Thus we get negative integers and fractions,
besides the positive integers (natural numbers). In real life, the integers play an

199
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important role in calculating our daily activities. If there is a profit in a business we
have positive numbers and if there is a loss we have negative numbers. In this unit,
we shall deal with some basic properties of integers including Well-ordering property,
Division Algorithm, Euclidean Algorithm, etc.

11.3 Fundamental Properties of Integers

We like to recall some fundamental properties of integers including defimtions.
For this purpose, let @, b, ¢ be integers :

(1) Commutative Law of Addition . a + b = b + a

(i1) Commutative Law of Multiplication : a.b = b.a .

(i) Associative Law of Addition . (¢ + b) + ¢ = a + (b +c¢).

{iv) Associative Law of Multiplication : (a.b)c = a.(b.c).

(v) Distributive Law : a. (b + ¢c)=a.b + a.c or (a + b).c = ac + b.c.

{vi) Cancellation Law : If a.b = a.c or b.a = c.a then b = ¢ provided a = 0.
{(vii) If a + 0 = 0 + a = g, then 0 15 said to be the identity element for addition.
{(viil) If @ 1 =l.a =a, then 1 is said to be the identity element of multiplication.

(ix) Additive inverse : If for an integer «, there exists an integer » such that
a + b =0 (the identity element), then & is called the additive inverse of a or
negative of a. It is denoted by — a.

(x) Multiplicative inverse : A multiplicative inverse or reciprocal for a number

a, denoted by a' or % is a number b such that .5 =1 (the multiplicative

. PRI ._a . b .
identity). The multiplicative inverse of a fraction B s It 1s to be noted
that 0 has no multiplicative inverse.

(xi) Law of Trichotomy : If ¢ be any integer, then either ¢ > 0 or ¢ = 0 or
a <0

{xi1) Definition : a is said to be greater than b if @ — b 15 a positive integer. We
denote thisby a > b or b < a.

A few important Theorems :
Let a, b, ¢ be integers. Then
WWb+ta=c+t+a=b=canda+b=a+c=2b=c
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(i) For any integer a, a0 = 0.a = 0.
(iii) If @ and b be two integers such that @.» = 0, then either ¢ = 0 or » = 0.
(iv) For any integer ¢, — (—a) = + a.

V) Ifa>b thena+c>b+ec

R
S

(vi) If @ > b and d be a positive integer, then a.d > b.d,

<

s
s

(vii) If ¢ > b and d be a negative integer, then a.d < b.d,

11.4 Well-ordering Property of Positive Integers

A non-empty sub-set of the set of natural numbers has a least element, i.e., if &
be a non-empty sub-set of the set of natural numbers Iy, then there exists # €5 such

that # < m for all m € §. In this case, ¥ is said to be well-ordered and # is the least

element of N.
Note : 1 is the first element of .

11.5 Divisibility of Integers

Let ¢ ( # 0) and b be two integers. If there exists an integer ¢ such that » = ac,

then a 15 said to divide & or «a is said to be a divisor of b and we writea|b.

11.5.1 Basic Properties of Divisibility

Let a, b, ¢ be integers such that ¢ # 0; then

(i) a|a, l|a and 4l0.
(i) If a|b and b|cthen a|c.
(iii) If a|b andalc,thena| (bp + cq) for any integers p, ¢.

As a|b and a|c, there exist integers m and » such that » = am and ¢ = an.

sobp +eq =amp + ang = a (mp + ng). So by definition a divides bp + ¢cq.
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11.6 Division Algorithm

If @ be any integer and » be a positive integer, then there exist two unique
integers ¢ and r such that ¢ = bg + r, where 0 < r < ». (g is called quotient and »
is called remainder)

Proof : Consider the sub-sets of integers § = {a—br|r € Z and a— bt 20}, Z being
set of all integers. We have b 2 1. . |a|.62|a| So, a+|a|b=a+|a|20.

Taking ¢ = — |a|, we have ¢ — &1 2 0. This shows that § is non-empty with non-

negative integers as elements.

Hence, by Well-ordering Principle, § has a least element. Let it be 7
Then » = ¢ — g for some integer g. So we find that ¢ = bg + r such that 0 < r.

If r 2 b thena — (g + 1y b =(a - bg) - b =r — b 2 0 which shows
thata-{(¢g + 1)b € S ie,r-be S

But # — # < # which is a contradiction (7 is the least element of §).

Hence » < b and we thus establish that there are integers ¢ and » such that
a=bg+r, 0<r<b Now we shall prove the uniqueness of ¢ and ~.

If possible, let there be another pair # and v such that a = bu + v
where 0 Sv<bd - bu+v=a=bg+r orv—r=>5(q—u),ie,bdivides v—r which
is impossible, if v — ¥ < &, unless v — 7 = 0, i.e., v = 1. Consequently, » (g — u) = 0,
but b = 0.

o g—u=0oru=gqg Hence g and r are unique,

11.7 Greatest Common Divisor

Definition : A non-zero integer d 1s said to be a common divisor of two integers
m and n, if d|mand d|n.

A positive integer g is called the greatest common divisor (g.c.d) of two integers
m and n, if

(1) g be a common divisor of m and », and

(i1) every common divisor of m and » is a divisor of g.

The greatest common divisor of m and #» is usually denoted by ged (m,#) or
simply by (m,n) This is also called highest common factor (hef).

Note 1. (m, 1) = (— m, n) = (m, —n) = (-m, —n) = (|m|, ).
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Note 2. If m = 0, n = 0, then ged (m, n) = n.

Note 3. If m = 0, n = 0, then ged (m, n) = 0.

Note 4. If m and » are mutually prime, then ged (m, 1) =1.
11.7.1. Existence of Greatest Common Divisor

Theorem : Let # and » be two integers not both zero. Then (m, #) must exist
and if d = (m, n), then there exist integers s and ¢ such that d = sm + .

Proof: Consider the set § = {m+in|k, € Z and kan+In > 0}.

We have m? + 1* > 0 and hence m* + n* € 8. Thus S is non-empty containing only
positive integers. Hence, by Well-ordering Principle, it contains a least element d
(say) so that d = sm + n for some integers s and 7 and 0 <d < x for any x € §.

By division algorithm, there exist integers ¢ and » such that m = dg + r where

O<r<d (1)
sr=m—dq=m—-{sm+imqg=(1-qgs)m+(—qgi)n
If # > 0, then » will belong to § which contradicts the fact that  is the least

element of . Hence, from (1), we get ¥ =0. .. d|m‘ Similarly we can show that d|n.
We further assume that ¢ belongs to S and c|m and c|n so that c[smand c|tm.

Hence c|(sm + trr), which implies c|d and therefore d = (m, n).

11.8 Euclidean Algorithm (Method of finding G.C.D.)

), therefore we assume both m and # to be positive

Since ged (m, #) = ged (jml.Jn

integers (m > n).

By division algorithm, we have m = ng + r where 0 < r < n A1)
If =0, m = ng and hence # is a divisor of m which is ged of m and ».
sAmny=n .(2)

If » # 0, let 4 = (m, n) and further suppose that &’ = (n, r).
Now d|m and d|n, .. d|(m-nq), ie, d|r, from (1).

Then d is the common divisor of # and r.

~.d|d', as d'=(n,r). Similarly we see that d'|d. .. d = d".
Hence (m, n) = (n, r).
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Again applying division algorithm to » and r, we have n = rq, + 7,
where 0 <7 <r.

If v, = 0, then (n, #) = r.

If 7, # 0, we have as before, (m, n) = (n, r) = (v, r)).

We continue this process so long as the remainder remains non-zero. Thus

m=nqg + r, where 0 <r<n
n=rq +r, where 0 <r <r
F=rgq, tr, where 0 <7 <7
FERG TR, where 0 <r, <r,
F,=rg, T r, where 0 <7 <r,
Since > r > ¢ =1, =¥ >y, > ... and nis a fixed positive integer, this

process must terminate after finite number of steps. Therefore, at one stage, let after
(& +1)* step, the remainder must be zero. So we get the steps as :

Ves = heade H i, where 0 <r _ <7,

b, =F_ q,+F, where 0<r <7
and 1, =14, +0.

Therefore we have rk|rk_1. k=0, B

Thus we have (m, ) = (n, r) = (r, r) =(r, 7)) = ... =(r, . ¥v)=7F,.
Hence ged (m, 1) = r,
Example : Find ged (360, 75).
Solution : 360 = 75 x 4 + 60
75=60x1+15
60=15x4+0
Hence ged (360, 75) = 15,
Note : Here 15=75-60 x 1 =75 — (360 — 75 x 4) x1 = (-1) x 360 + 5 x 75,

11.9 Congruence relation between Integers

In this section, we shall give the definition of congruence relation between integers
and discuss a few basic properties.
11.9.1 Definition

Let m be a positive integer, ¢ and » be integers. We say @ is congruent to
b modulo m when m is a divisor of (@ — ).
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We write ¢ = & (mod m).

If m does not divide {a —b), we say that a is not congruent to b modulo m which
we write a = b (mod m).

Example : As 7 divides 45 — 3, we write 45 = 3 (mod 7) and we say 45 is
congruent to 3 modulo 7. On the other hand, as 7 does not divide 45 — 4, we write
45 4 (mod 7).

11.9.2 Some Important Properties
Let a, b, ¢ be integers and m be a positive integer. Then
(1) a = a (mod m).
(i) If @ = b (mod m), then b = g (mod m).
(iii) If @ = b (mod m) and b = ¢ (mod m), then a = ¢ (mod m).

(iv) If @ = b (mod m), then for any integer ¢, a £ ¢ = (b  ¢) (mod m)
and ac = be (mod m).

11.9.3 Some Important Theorems
Let a, b, c, d be integers and m be a positive integer. Then
(i) If a = b (mod m) and ¢ = d (mod m), then a + ¢ = (b + d) (mod m).
(i)) If @ = b (mod m) and ¢ = d (mod m), then ac = bd (mod m).
(iii) If @ = & (mod m), then " = & (mod m), for any positive integer ».

Proof of (i) : Since ¢ = » (mod m) and ¢ = d (mod m), then m 1s a divisor of
a — b as well as of ¢ — d Hence there must exist two integers, say, £ and ¢ such that
a-b=mkandc—-d=mt

Then(ga—-d)+(c—dy=m(k+ 1)

or,{atc)y—(b+d)=m(k+1t) ie, misa divisor of (¢ + ¢)— (b + d) and
hence a + ¢ = (b + d) (mod m).

Proof of (ii) : we have a — b =mk and ¢ — d = mt. .. ac — bc = mkc and
bc — bd = mtb. So (ac — bc) + (be - bdy = mkc + mth = m (k¢ + 1b)

or, ac — bd = m (kc + tb), i.e., m 1s a divisor of ac — bd. Hence ac = bd (mod m).

Proof of (iii) : The theorem is true for # =1. We assume that it is true for some
positive integer & = 1, i.e., we assume ¢ = & (mod m).

We are given @ = b (mod m). .. a“.a = H.b (mod m) or &' = b (mod m).
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Thus the theorem is true for the positive integer & + 1.
Hence the theorem is true for any positive integer .
Example : We know that 10 = 1 {(mod 3). So 10°= 1° (mod 3),
i.e., 100000 =1 (mod 3).

Note : The converse of this theorem is not true.

For, 6 = 2° (mod 8), but 6 = 2 (mod 8).
Theorem 1. The relation ‘congruence modulo m’ is an equivalence relation in the

set of integers.

Proof : For fixed integer #, a = b (mod m), if m|(a-b).

If @ be an integer, @ — a = 0 and m|0‘ ~.a=a({modm). Therefore the relation

is reflexive.
If & and 2 be integers such that a =5 (mod m),

then m|(a—b): m|—(b—a) = m|(b—a).

b = a (mod m). Therefore the relation is symmetric.
If a,b,c, be positive integers such that ¢ = b (mod m) and b = ¢ (mod m)

then m|(a —b) and m|(b—c)=> m|{{a—b)+(B-c)} = m|(a—c).

s~ a=c(mod m). So the relation is transitive. This completes the proof.

Theorem 2. f(x)=ax"+a, x""'+. .+ax+a,is a polynomial where
a {i=0,1,2.... (n-1),n} are integers. If a = b (mod m), then fa) =f(H) (mod m).

Proof : Given a =b (mod m). .. & = b (mod m), for any positive integer .

s aa’ =ab® (mod nr), where a, € 1.

Putting #=0,1,2, ..... , » and adding the congruence relations, we have

(ao taa+aa’+. .+ ana") =(a,+ab+ab’+ .. +ab")(modn)

ie, flay=s f(by(mod m).

Theorem 3. Let a, b, ¢ be integers and m be a positive integer. Then

o . e _m
() ac = be (mod m), if and only if @ = b (mod —_z1—)

(i) If ac = be (mod m) and ged (c,m) =1, then a = b (mod m).
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Proof of (i) : First suppose that ac = bec (mod m). .. ac — bc = gm, for some
integer q. Let (¢, m) = d. Also let us assume ¢ = dr and m = ds where r and s are
such integers that (r, s) = 1.

gqs

Now adr — bdr = gds, or a - b = " 1)

Since a — b is an integer, r|qs. But (r, 5) =1 . So r|q and hence i:k,k is an

integer. So, from (1), a — b =ks = k.%} ie,a=sbh (modg).

This proves a = b (mOd m].

Conversely, let a = b [mod%} = b(modg)_

Thena - b= k‘%, for some integer k; or, ac — bc = k-gf = km% =kmr (- c=dr).

Hence m divides ac — be, i.e., ac = bc (mod m).
This completes the proof.
Proof of (ii) directly follows from (i).

11.10 Worked out Examples

Example 1 : Prove that ged (50, 40) = 5 % ged (10, 8).
Solution : We have 10 = 1x 8 + 2
8 =4 x2+0. So, ged (10, 8) = 2.
Again 50=1x40+10
40=4x10+0. So, gcd(50,40)=10=5x2=5xgcd(10,8).
Example 2 : Find ged (8470, 945) and find two integers s and # such that
2cd(8470, 945) = 8470.5+ 9451 .

Solution : We have 8470 = 8 x 945 + 910
945 =1 <910 + 35
910 =26 <35+ 0.
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So,

ged (8470, 945) = 35 = 945 — 1 x 910 = 945 — 1 x (8470 — 8 x 945)
= 8470 x (=1) + 945 x 9,

sothat s=-1land 1 =9

Example 3 : Find all integers , such that 9=#’(modn) .

Solution : 9=n’(mod#), then » divides 9 — »*. Hence » divides 9. But given

that >2.
Therefore n = 3, 9.

11.11 Summary and Keywords

Summary

L

118

IV.

Well-ordering property of positive integers.
If § be a non-empty sub-set of the set of natural numbers, then there exists
ne S, such that n<m VYmeS.

Division Algorithm.
If & be any integer and » is a positive integer, there exist two unique integers

g and r such that a=bg+r, where 0 <r < b.
q is called the quotient and r is called the remainder.
Euclidean Algorithm.

This is the method of finding greatest common divisor (gcd) of two positive
integers.

Congruence relation between integers.

Let m7 be a positive integer,  and b are integers. We say ‘a is congruent to
b modulo m’ when m is a divisor of {(a— b).

We write a=b(mod m).

Keywords : Integer, Prime number, Division Algorithm, GC.D., Congruence.

11.12 Model Questions

1
2.

Prove that gcd (80, 60) = 10 x gcd (8, 6).
{1) Find ged(2169, 135) and find s and ¢ such that
ged (2169, 135) = 2169s+135¢.
(i1} Find gecd (792, 385) and express it in the form 792.m + 385.n.
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Find all the integers 53> 3, such that 11=#*(mod#).

Verify © (i) 653 = 5 (mod 8) (i) 35=(~7)mod 6) (iii) 24 =5(mod 6)

. Show that (i) 2* =3(mod 23) (i} 19" = {mod 181).

. Find all integers & if the following be true :

(i) 9=3k(mod 5)  (ii) 3k=k (mod 5).

. Find all the integers s> 2, such that (i) 11=(—4)mod m)

(i) —=5=12(mod m) (i) »° =5m(mod 12), 2 < m<15.
Show that (a+5)" = (a” +5") (mod ), where a, b and # are positive integers.
Show that (s1—1)|(n* —1), where p is a positive integer and > 2.

Prove that (n—1)*|(#” —1), for n > 2 and p is a positive integer such that

{(n-1)|p.

Answers

C(i)ged =9, s=1,¢=-16 (ii))ged =11, m=-17, n=35.
11.

. {1} k=5m+3, m is any integer. (i1) £ = 5m, m is any integer.
o (i) 3,5, 15, (i) 17. (ui) 5, 8, 9, 12.
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12.1 Objectives

We would be able to prove all mathematical statements which hold for all positive
integers #. Also in this unit we shall know the Unique Factorisation Theorem.

12.2 Introduction

|

If we are asked to prove 14+2+3+ . +n= HTH) for all positive integers n, we

can atmost verify its truth for # = 1,2,3,4,.... by putting these values on both sides of
it. But it is impossible to prove it for all positive integers in this manner. To prove
this result for all positive integers #, we follow a method of proof which in known
as ‘Principle of Mathematical Induction’. In this unit, we shall discuss this method.
We consider another problem ‘factorise 36°. We easily get 36 =2.2.3.3, i.e., we write
36 as product of primes. Here we shall state fundamental theorem of arithmetic
which proves that any positive integer greater than I can be written as a product of
primes uniquely.

210
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12.3 Statement of Principle of Mathemtical Induction

This is nothing but a mathematical technique which is used to prove a statement
or a formula or a theorem is true for every natural number. This technique involves
two steps to prove a statement.

Step 1. It proves that a statement 1s true for the initial value,

Step 2. It proves that if a statement is true for the #* iteration then it is also true
for the (» +1)* iteration. In some cases, this happens to be the only method.

How to do it :
Let P (n) be a mathematical statement about non-negative integers » and 7, be
a non-negative integer.

Let P (n) be true for n = n,, i.e., P (n) is true. Assuming P () 1is true, where
m (2 n,) is a particular value of #, if we can prove that P (m +1) is also true, then
P (n) is true for all integers # ( 2 n,).

12.4 Equivalent Statement of Mathematical Induction

There is an equivalent statement of the Principle of Mathematical Induction. This
is called Second Principle of Mathematical Induction which runs as follows :

Let P (#) be a mathematical statement over non-negative integers » and n_ be a
fixed non-negative integer. Suppose P (n ) is true. If, for any integer m p n,,
Pn), P(n+1),P(nr+2),..., P(m)are true implies that P (m +1) is ture, then P()
is true for all n = n,

12.5 Fundamental theorem of Arithmetic (Unique
Factorisation Theorem)

Before going to the main theorem, we require some knowledge of prime numbers
and a few relevant theorems.

Definition : Prime Numbers.

A prime number 1s an integer, greater than 1, which has no factors other than
itself and 1.

An integer > 1 which is not a prime is called composite.
Note : The smallest prime number is 2.
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Theorem 1. If p be a prime and a be a non-zero integer, then (a, p) = 1
or {a, p)=p.

Proof : By definition of prime, only divisors of p are (£ 1), ( £ p ).

So, if p does not divide a, then (@, p) = 1, on the other hand if p divides a,
then (a, p) = p.

Theorem 2. (Euclidean Lemma) : If p be a prime integer and p‘a_b, where ¢ and

b are integers, then either p\a or p‘b_

Proof : If p|a, the theorem is proved. So let p is not a divisor of a.
Let (p, a) =s = s|p and 5| a. Since p is a prime integer, the only positive divisors
of p are 1 and p. Hence either s = 1 or s = p. But s cannot be equal to p, because
p is not a divisor of @ .. s =1. .. (p, @) =1, i.e.,, p and @ are mutually prime.

Hence we have p|ab = p|b.

Corollary : If p be a prime and pla,.a,a. . a, then p|akfor some k&, where
1<ksn

Theorem 3. (Euclid’s Theorem) : The number of primes is infinite.

Proof : If possible, let the number of primes be finite and equal to ». Let them
arrange in increasing order of magnitude as p,, p,, p,.......p0,.

Let p.p,p, ...p, = ¢ and consider the integer (¢ +1). Since none of
p,(i=1,2,3,..., n)is adivisor of (¢ +1), we conclude that either (¢ +1) is a prime
which is greater than p_or (¢ +1) has a prime factor which is greater than p . But this
contradicts our hypothesis that p_ is the greatest prime.

Hence the number of primes is infinite.

12.5.1 Statement of Fundamental Theorem of Arithmetic

Every integer greater than 1 either is a prime number itself or can be represented
as the product of prime numbers and this representation is unique.

Examples :
1. 42 =2 x 3 x 7
2. 7 already a prime number

3. 22=2x11
4 12=2x2x3
It is to be noted that all are of unique combination.
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Proof of the Theorem : The proof uses Euclid’s Lemma : “if a prime p divides
the product of two natural numbers & and 2, then p divides a or divides ».” We need
to show that every integer greater than 1 is either prime or a product of primes. For
the base case, note that 2 is prime, there is nothing to prove. Otherwise, there are
integers ¢ and » where n = ab and 1 < g £ b £ »n. By the induction hypothesis,
a = p.p,ps.....D, and b=¢,.q,q, ...q, are product of primes. But
thenn=ab=p pp, . . .p L I N RO is a product of primes.

Proof of uniqueness :

Assume that s > 1 is the product of prime numbers in two different ways :

We will show m = » and that the ¢, are a rearrangement of p. As p, divides s,
Euclid’s Lemma implies that p, divides one of the q. relabeling the q. if necessary,
say that p, divides ¢,. But ¢, 1s prime. So its only divisors are itself and 1.

M
- pl =ql9 S0 that;=p2‘p3 """ "= qZ'q_’. """" qﬂ'

1

Reasoning in the same way, p, must equal one of the remaining g. Relabeling

again, if necessary, say p, = ¢, Then SPyePm =g g

s
PPy
This can be done for each of the m p’s showing that m < » and every p. is a q.
Applying the same argument with the p ¥ and g reversed, shows n < m.
Hence m = n and every g is a p,

This completes the proof.

Note : This theorem is one of the main reason why 1 is not considered a prime
number. If 1 were prime, then factorisation into primes would not be unique.

For, 6 =3 x 2 x 1
=3x2x1x1x1Ix1=,. . .et

12.6 Worked out Examples

Example 1. Prove that 3” —1 is divisible by 2 for all positive integers ».

Solution : Step 1. Let P(n) be the given statement. For n=13-1=3-1=2
which 1s divisible by 2.
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So P(1) is true.

Step 2. Let us assume that P(n) is true » = m, a particular value of », i.e., we

-

assume P(m) is true, 7.e., 3™ —1 is divisible by 2. We have to prove that P (m+1) is
true, i.e., 371 is divisible by 2. Now 3”'—1=3.3"” —1=2 3" + (3"—1). The first part
is clearly divisible by 2 and the second part is assumed to be divisible by 2 and
therefore 3" -1 is divisible by 2. So it is proved that 37 -1 1s divisible by 2 for all
positive integers #.

Example 2. Prove, by method of induction, that 1+3+5+.. +(2n-1) = »°.
Solution : Stepl. Let P(n) be the given statement 1+3+5+..... + (2n —1) = »~.
Forn=1,LHS. =1 and RH.S =1 =1. .. P (1) is true.

Step 2. Let us assume P(m) is true where m (= 1) is a particular value of », ie.,
we assume 14+3+5+.  + (2m -1) = m*. (1)

Now we shall prove that P (m +1) is true.

Forn=m+ 1, LH.S = 143+5+.... + (2m —1) + 2m +1) = m*+ (2m +1), by (1)
= (m +1).

Hence P (m + 1) is true. Therefore P (#) 1s true for all positive integers .

Example 3. Prove, by method of induction, n#! > 2", for all positive integers
nz4,

Solution : Step 1. Let P (#) be the given statement #! > 27, for all psitive integers
nz4

Forn =4, LHS. = 4! = 1x2x3x4 > [x2x2x4 = 2=RH.S. .. P (4) is true.

Step 2. Let us assume P (#7) 1s true where m (= 4) 1s a particular value of n, i.e.,
we assume m! > 27 (1)

We shall show that P (s +1) 15 true. Now, for n = m +1,

LHS. =(m+ 1)\ =(0n+1). m > (n +1). 27 by (1)

But it is obvious that (m +1) > 2 form = 4. . (m +1)! > (m +1). 27 > 227 =271
Hence P (m + 1) is true. Therefore P (1) is true for all positive integers n = 4,

Example 4. Prove, by mathematical induction, that

12+23+34+.. . +n (ntl) =%.n (n +1) (nt+2), w2l
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Solution : Let P (#) be the statement

1.2+23+34+ . . +n{ntl) Z%_n (r1)(nt2), vzl

Forn=1,LHS. =12=2 RHS. = %‘1‘ (1+1). (1+2) =2. . P (1) is true.

Let P(m) be true where m is a positive integer

Now we have 1.2+23+34+ . +m{m+ 1)+Hm + 1)¥{m+2)

Z%m m+D{m+2y+(m+ 1) (m+2)= %(m + 1){m + 2)(m + 3).
Thus we prove P (m+1) is true. Hence P(n) is true for all integers » = 1.
Example 5. Show that the integer 2213 is prime.

Solution : Let us find all the prime integers whose squares are < 2213, These are
2,3,5 7,11, 13, 17, 19, 23, 29, 31, 37, 41, 43 and 47. Since none of these is a factor
of 2213, it is prime.

Example 6. Show that the integer 2211 is not prime.
Solution : We find all the prime integers whose squares are < 2211.

These are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43 and 47. It is seen that
3 divides it. So 2211 is not a prime integer.

12.7 Summary And Keywords

Summary

I. Principle of Mathematical Induction.

This is a mathematical technique which is used to prove a mathematical statement
is true for every natural number. This involves two steps to prove a statement.

Step 1. It proves that a statement 1s true for the initial value,
Step 2. It proves that if a statement is true for the m™ iteration, then it is also true
for the (m+1)" iteration.

There is an equivalent statement of the Principle of Mathematical Induction
known as second principle of mathematical induction which runs as follows :
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Let P(71) be a mathematical statement about non-negative integers # and #, be a

fixed non-negative integer. Suppose P (n) is true. If, for any integer m zn,,
mzn,, Pn,), P(n, +1), P(n,+2),...,P(m) are true”, it implies that
“P (m+ 1) 1s true’, and then P(n) is true for all # = n,,
II. Fundamental Theorem of Arithmetic.
This 1s unique factorisation theorem.
Statement : Every integer greater than 1 either is a prime number itself or can

be represented as the product of prime numbers and this representation is unique.

KEYWORDS : Induction, Equivalent, Unique.

12.8 Model Questions

1. Prove, by mathematical induction :

iy 124+ 22 4 34 4 o= 2OHDNHD
2
(i) P+ 2 +3+ 4= {@} |
o1 1 | .
—t—t+—+. ...+ —
(iv) 12 23 34 mn+l) n+l’

3.5 .7 2 +1 1
AT AP I _=1- -
M) 727297916 Rl el

. If # ( > 1) be positive integer, then prove that # " > 1.3.5........... (2n —1).

3. If n (= 1) be positive integer, then prove that 2**'< 1 + (n + 1). 22

[

4. If n (= 0) be positive integer, then prove that 2" > n.
5. If » be any positive integer, then prove that » (7 + 1) (7 + 2) is divisible by 6.
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6. Show that the square of an odd integer is of the form 8% +1.
7. For any integer », show that (3# + 1) and (13» + 4) are relatively prime.
8. If two integers x and y be relatively prime, then prove that

xjm and ylm= xy|m.

9. Determine which of the following integers are primes: {a) 729 (b) 379.

10. (a) If # is a positive integer such that 7 +1 is a prime, then prove that # =1.
{b) If p is a prime such that p = »* — 4 for some integer », then show that
p =5

11. Find all the prime divisors of 35!

12. If » is a positive integer, show that #° + 8 is not a prime integer.

3
13. If A=
3. (a) |:1 _1

], then prove that
. |:1+2n —4n
A=

,VneN.
b4 1-2n

1
0 0:|_, then show that (af +bA4)" =a"l +na”'bA,

(b) If A=[0

where [ 1s identity matrix of order 2.

111
14. If A=|1 1 1|, then prove that
111
3?‘!—] 3?‘!—] 3?‘!—]
At =3 3 3| V¥heN
3!?—] 3!?—] 3!?—]

15. Use mathematical induction to prove that
(i) 2.7"+ 3.5" — 5 is divisible by 24 for all ne N

(ii) n(ng—l) is divisible by 24, if » be any odd integer.
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16. Prove, by mathematical induction, that

n!<(%) V>l

12.8.1 Answers
9. (b) 379 1s prime. 11.2, 3,5, 7,11, 13, 17, 19, 23, 29 and 31.

Multiple Choice Questions (MCQ)
1. () If Lo,0,.....,0"" be #n"roots of unity, then

(1-)¥1-w?)... (1-0"") equals to

(a) 0 (b) n ()1 (d)
(11} The value of Z(sing—icosg) 1s
(a) -1 (b) O (c) —7 (d) 7

(i11) The simplest value of (%) s

(a) / (b) 2/ (¢)1-i (dy 1+
1000
1 3.
{iv) The simplest value of [—54‘%’} 1$ —%+§i. It is
(a) True or (b) False.

2z+1
iz+1

(v) If the imaginary part of be —2, then the locus of the point

representing z in the complex plane is
(a) a circle (b) a straight line
(¢) a parabola (d) a hyperbola.

2. (1) Pick up the correct answer for the statement :
logi+log(—1+i)=logi-1+1)
(a) True (b) False



NSOU « CC-MT-01 219

(i) If ®' = 4+iB, then value of 4 is

(a) cos(logm) (b) sin(logm)
(c) 7™ cos(log ) (d) e sin(logm)
(i) The values of i’ form
(a) A.F. (b) GF. (c) HPF {d) none of these.

(iv) If [sin(o+B)| = 47 +4(e" —eP)?, then A is equal to

(a) 1 (b) cos o0 {c) sin o (d) tan o
(v) The sum of the series 1—%+l—%+ ..... s
T i3 R
(a) 1 OF © % @ 3

3. (i) When x’+2x*—3x—4 is divided by 2x — 1, the remainder is

13 3 39

(a) - 4 (b) = © % @ —%
(i1) The roots of the equation y* _7y? +19x—13=( are

(a) all real (b) all imaginary

(c) one real and two imaginary  (d) two real and one imaginary
(iii) The roots of the equation x’ —3x*—9x+27 =0 are

(a) all equal (b) all different

(¢) two of them are equal {d) none of these

(iv) The mumber of imaginary roots of the equation x*+16x"+7x-11=0 is
(a) one (b) two {(c) three (d) four
{v) The equation ¥*—2x — 5 = 0 has

(a) only one negative real root {b) two negative real roots
(¢) three negative real roots {d) no negative real root

4. (1) The roots of the equation y* _9y? 4 23y =15 are in 4 P The mean root is

(a) 1 (b) 2 (c) 3 (d) 5.
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(ii) The roots of the equation x’— px*+gx—r=0 are in G P. The mean

root is

@ » ®) g Ch @ 7

(iii) If the roots of the equation x* —gx* + bx— ¢ = 0 are in harmonic progression,
then the mean root is

@ % o % © 3 @ 3

(iv) If «, B,y be the roots of the equation x’+35x—1=0, then the value of
ol is
(a) =5 (b0 (c) 3 (d) -3

(v) If o,B,7,8 be the roots of the equation x*+2x’+3x+4=0, then the
value of To* is
(a) -12 (b) -8 (¢) 8 (d) 16.
5. (i) The only real root of the equation x*+72x—-1720=0 is
(a) § (b) 8 (c) 10 (d) none of these
(i) If the roots of the equation y*'_12x+8=0 be 4dcosa, 4cos2a and
4cosdo, then the value of o 1s

2n n n T
(@ 3 () o (© 3 d 5
(it} The real roots of the equation x*—-4x’-3x+6=0 are
(@ 1,3 1,2 (€) 2,3 (d)3, 6
(iv) The real roots of the equation x*+2x" +14x+15=0 are
(@1,3 ® 1,5 (©) -1, -5 (dy-1,-3

(v) One imaginary root of the equation x*+12x=5 is
@)1 +i b) 1 -2 ©1-7 )2 +i
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6. (1) If the sum of the sides of a quadrilateral be given, then its area is greatest
when the quadrilateral is

(a) square (b) parallelogram
(c) rectangle {d) rhombus
(i1} The product of » positive numbers is unity. Then their sum is

(a) a positive integer (b) equal to n+%

(¢) never less than » {(d) divisible by »
(ii1) The solution set of the inequality 2% 4+3*> 2 1is

(a) all natural numbers (b) all real numbers
() 0<x < (d) all negative integers

{iv) If x, v, z be three positive real numbers, not all equal, then the value of
{(x+)y+z)z+x) 1s
(a) >8 xyz {b) < 8xyz {c) 8 xyz {d) ¥}z

vy If @ +b°+¢° =1 and ab+bc+ca=x, then

(a) $<x<2 (b) -1<x<2 (¢) —+=x<1l (d) -1=x<1

7. (1) If x be non-zero and the matrix | 2  4-x 1 be singular, then

the value of x is

(a) 1 (b 2 ()3 (d) 4

-1 2|4 1 2 3
() If 3 —1ll3 2 = P 1athenthevaluecofpis

(a) 5 by 7 (c)9 (d) 11
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cos0 -sinBb 0

(iii) If the matrix | sin® cos8 0| be orthogonal, then x is

0 0 x
(a) £1 (b) £2 (c) +3 (d) +4
1 3 -3 x
2 X -4

(iv) If the rank of the matrix be 2, then the value

1 1-x 2x+1 -8-3x

of x is
(a) 2 (b) -2 (c) 3 (d) 4
6 1 3 8
(v) The rank of the matrix |4 2 6 -1]is
10 3 9 7
16 4 12 15
(a) 1 (b) 2 (¢) 3 (d) 4

8. (1) Pick up the correct answer for the statement :

The system of equations x+y+z=9 3x—-2y+4z=3 is consistent
(a) True (b) False

(i1) The value of 4 for which the system of equations
X+y+z=22x+y+3z=1 x+3y+2z=5 and 3x—2y+ z =k 1s solvable,
is
(a) 1 (b) -1 (c) 2 (dy -2

(iii) The value of A, for which the system of equations

Ax+y+z=1 x+Ay+z=1 x+y+Aiz=1 will have an infinite number of
solutions, 1s

(a) -1 (b) 0 ()1 (d) 2



NSOU « CC-MT-01 223

{(iv) The value of p, for which the system of equations
x,+2x,+3x, = px, 35, +x,+2x, = px,, 2x,+3x,+x, = px, has a non-
trivial solution, is
(a) 1 (b 2 ()3 (d) 6
{v) The value of |, for which the system of equations
X, +x,+x, =6, x,+2x,+3x, =10, 2x, + 4x, + 6x, = has no solution, is

(a) 10 (b) #20 (c) 20 () 6

0
9. (i) The statement “The eigen values of the matrix A4 =[

(1}] defined over

the field of real numbers R donot belong to R” is

(a) False (b) Ture
2 01
(i1) The eigen values of the matrix [0 1 0| are
1 0 2
@1, 1,3 ®)0, 1,2 ©122 d) 2,23

-1 3

(i) A°—44°+84"-124°+144" becomes pA+5I, where A4 =[ I 2} and

1 0
1 =[0 1i|; then the value of p is

(a) -4 (b) 4 (c) 3 (d) -1

1
{iv) 1 1s an eigen value of the matrix [0
i

0
] The geometric multiplicity for

1is

(a) O (b) 1 (c) -1 (2
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6 -2 2
{v) 8 is an eigen value of the matrix | -2 3 —1/(. The algebraic multiplicity
2 -1 3
for 8 is
(a) 3 (b) 2 (¢) 1 (d) 0

10. (1) The statement “If R be an equivalence relation in a set 4, then R is also
an equivalence relation™ is

(a) True (b) False

(i) “ p, if and only if |x—y| is of the form 5u for some integer #,
then p is not an equivalence relation.” This statement is

(a) True (b) False

(iii) The number of relations which can be defined on a set with #» elements is
(a) 1 (b) 2 (¢) 27 (d) 2#°

(iv) R is the set of real numbers. A map f:R— R is defined by
f(xy=x>+1 xe R, then f7(10) is

(a) {3} (b) {-3, 3} (¢) {-3} (dy {x: 3<x<3j
(v) Given f:N — N, defined by f(x)=x-1if x=2
= 1 ifx=1
The range of f is
(a) set of real numbers (b) set of all integers
(c) set of all rational numbers (d) set of all positive integers

11. (1) Tick (v) the correct answer :
-75=5 (mod 8)
(a) True (b) False
(i) Tick (v') the correct answer :
512 = 2 mod (13)
(a) True (b) False
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(i) The gcd of 385 and 792 is
(a) 55 (b) 33 {c) 22 {(d) 11

{(iv) The ged of 2274 and 174 is expressed in the form 2274p + 1744, where
p and g are integers. The value p 1s

(a) 14 (b) 15 {c) 14 (d) -16
{v) The sum of the first » + 1 odd integers is
(@) (n -1y (b} (¢} (n+1y (d) (n+2)?

12. (1) Pick the correct answer :
2217 is a prime integer.
(a) True (b) False
(i1) Pick the correct answer

w — n is divisible by 6 for all ne N .

(a) True {(b) False
(i) For all ne N, 10"+3 4™ +5 1s divisible by
(a) 2 (b) 8 (9 (d) 5

(iv) If x+% be an integer, then x” +% is an integer for all ne N.

It 1s
(a) correct {(b) not correct

(v) If un=(3+\/§)n+(3—\/§)n, Vne N, thenu is

(a) never an integer (b) an integer
(¢) a surd {d) multiple of 5
Answers :
L. (i) (b) (1) (d) (iii} (b) (iv) (a) (v} (b)
2. (i) (b) (1) (c) (iii} (b) (iv) (¢) (v} (c)
3. (i) (d) (1) (c) (iii} (¢) (iv) (b} (v} (d)
4. (1) (0) (i) (d) (iii) (a) (v) (©) v) (b)

5.(1) (o) (ii) (a) (iii) (b) (iv) (d) ) (®)
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10.
11.
12,

(i) (a) (ii) (c) (iii) (c) (iv) (a) (V) ©
(i) () (ii) (c) (iii) (a) (iv) (b) ) (®)
(i) (a) (ii) (d) (iii) (c) (iv) (d) ) (®)
(i) () (ii) (a) (iii) (a) (iv) (b) V) (©
(i) (a) (ii) (b) (iii) (c) (iv) (b) V) (d)
(i) (a) (ii) (a) (iii) (d) (iv) () V) (©)
(i) () (ii) (a) (iii) (c) (iv) (a) ) (®)
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