PREFACE

In a bid to standardise higher education in the country, the University Grants
Commuission {(UGC) has introduced Choice Based Credit System (CBCS) based on
five types of courses viz. core, discipline specific generic elective, ability and skill
enhancement for graduate students of all programmes at Honours level. This brings
in the semester pattern, which finds efficacy in sync with credit system, credit
transfer, comprehensive continuous assessments and a graded pattern of evaluation.
The objective is to offer learners ample flexibility to choose from a wide gamut of
courses, as also to provide them lateral mobility between various educational
institutions in the country where they can carry acquired credits. I am happy to note
that the University has been accredited by NAAC with grade ‘A’

UGC (Open and Distance Learning Programmes and Online Learning Programmes)
Regulations, 2020 have mandated compliance with CBCS for U.G. programmes for
all the HEIs in this mode. Welcoming this paradigm shift in higher education, Netaj
Subhas Open University (NSOU) has resolved to adopt CBCS from the academic
session 2021-22 at the Under Graduate Degree Programme level. The present
syllabus, framed in the spint of syllabi recommended by UGC, lays due stress on all
aspects envisaged in the curricular framework of the apex body on higher education.
It will be imparted to learners over the six semesters of the Programme.

Self Learning Materials (SLMs) are the mainstay of Student Support Services
(SSS) of an Open University. From a logistic point of view, NSOU has embarked
upon CBCS presently with SLMs in English / Bengali. Eventually, the English
version SLMs will be translated into Bengali too, for the benefit of learners. As
always, all of our teaching faculties contributed in this process. In addition to this we
have also requisitioned the services of best academics in each domain in preparation
of the new SLMs. I am sure they will be of commendable academic support. We look
forward to proactive feedback from all stakeholders who will participate in the
teaching-learning based on these study materials. It has been a very challenging task
well executed, and I congratulate all concerned in the preparation of these SLMs.

I wish the venture a grand success.

Professor (Dr.) Subha Sankar Sarkar
Vice-Chancellor
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Unit-1 Q Hyperbolic Functions

Structure
1.1 Objectives
1.2 Introduction
1.3 Derivation of Hyperbolic Functions
1.3.1 Infinite Series Expansion of Hyperbolic Functions
1.3.2 Periodicity of Hyperbolic Functions
1.3.3 Some Important Identities
1.4 Inverse Hyperbolic Functions
1.4.1 Logarithmic Interpretation of Inverse Hyperbolic Functions
1.5 Summary
1.6 Exercises

1.7 References

1.1 Objectives

We all know about trigonometric functions. In this lesson we will know about
hyerbolic functions and their relations to the trigonometric functions. After studying
this chapter the learner should be :

o understanding the meaning of hyperbolic functions and inverse hyperbolic
functions.

e able to derive the hyperbolic functions in terms of exponential functions.
e mighty to realize the infinite series expansion of hyperbolic functions.
e aware of some important identities.

e skilled to express the inverse hyperbolic functions in terms of logarithmic
functions.

1.2 Introduction

We have seen the shape of a heavy cable suspended between pylons. Is there any
mathematical function corresponding the shape of the cable ? Yes, there is a finction

7
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named hyperbolic function which has great applications in mathematics, physics and
engineering. The hyperbolic functions have similar names to the trigonometric
functions but they are defined in the forms of exponential functions. In this chapter
we will derive the expressions of hyperbolic functions and express them in logarithmic
forms. The first systematic development of hyperbolic functions was implemented by
Swiss Mathematician Johann Heinrich Lambert (1728-1777).

1.3 Derivation of Hyperbolic Functions

Hyperbolic functions can be derived mathematically in various ways. We will
derive the hyperbolic functions graphically. In this method an analogous relation can
be found between the circular (trigonometric) functions and the hyperbolic functions.
We elaborate this by starting first with the unit circle #* + v = 1. Consider x as an
angle forming a circular sector MOP of area C (see Fig. 1.1). Now the area C of this
circular sector MOP is %x. Then twice C (the area of the circular sector MOP) is
equal to circular angle x in radians.

For the unit circle #* + v* = 1, where OM = 1, we see that sin x = vOM = v,
and cos x = w/OM = u.

We can now develop analogously for the hyperbolic functinos. Suppose that H
is the area of hyperbolic sector MOP (see Fig. 1.2) of the unit rectangular (equilateral)

hyperbola #* —v* =1, or =2 —1.

a8 & -
0 n *‘q;\. 1l u

Fig. 1.1 Fig. 1.2

Then twice H (the area of the hyperbolic sector MOP) is equal to the hyperbolic
angle x in radians. Now, from Fig. 1.2 we see that H (the area of the hyperbolic sector

MOP) is the area of NOP less the area NMP, where area NOP:%uv and area
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NMP = jvdu _ Then we obtain.
1

-
|

2H (twice the area of MOP) = 2{%111’—‘?1’6111}
|:uv - 2]‘ \/ﬁ dui|
i
[uv - u\/uz——l +log (u + \/uz_—lﬂ
[uv —uv+log (u + \/uz_—l)
log (u + \/ﬁ )

From this we have

u+\/u3_—1 =¢" and u—m =e”
(=) = ana (u=fu-1)

x X iy X

From this we get # = % and v= % . These last two expressions are the

familiar formulas “hyperbolic cosine” and “hyperbolic sine” denoted by cosh x and
sinh x respectively. So we have

et +e” et —e™”

coshx— and sinhx =

where x 15 the twice of the area of the hyperbolic sector.

Remark : We need to point out that graphically it is not possible to draw the
hyperbolic angle x in the same way that the circular angle x is drawn, for x has no
such reality. It only exists as a function of the hyperbolic sector area H. It is important
to avoid attempting to interpret x as an angle meeting at a point on the hyperbola.

1.3.1. Infinite Series Expansion of Hyperbolic Functions

Expanding ¢* and e, we get the expansions of cosh x and sinh x as

2 4

xT X
+—+...

2t 4

coshx =1+

3 5
. X
sinhy=x+—+=—+...
315
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1.3.2. Periodicity of Hyperbolic Functions

Using the definition of hyperbolic functions we can easily prove that
sinh (2nri + X) = sinh x, cosh (2nmi + x) = cosh x, tanh (2nm7 + x) = tanh x.
Thus hyperbolic functions are periodic functions of imaginary periods.

1.3.3. Some Important Identities

et e

-

-

(1) cosh® x — sinh® x =[ >

—x

sinhx _e* —e¢

J L=

coshx _e"+e

iy tanh x = = -, cothx== _

(i1) coshxy e +e™ sinhx e —¢™
1 2 1 2

s sechx = = - cosechx = — = -

(iif) coshx e +e sinhx ¢ —¢*
2 _ 2
4 4 2 ef—e”

i sech'x+tanh'x=( ) +

(1v) 5 +e™™ e e

x —x 3 2
(v) cothzx—cosech2x=(ex+e_x) _(e" 2e"‘) =1.

e —e
(vi) cosh (— x) = cosh x. sinh (—x) = — sinh x.
(vil) tanh (- x) = — tanh x, coth (— x) = — coth x.
(viii) sech (- x) = sech x, cosech (- x) = — cosech x.
(ix) cos (ix) = cosh x, sin (ix) = i sinh x.
(x) tan (ix) =i tanh x, cot (ix) = — 7 sinh x.
(xi) cosh 0 =1, sinh 0 = 0, tanh 0 = 0.

Example 1.3.1 Show that cosh (x — y) = cosh x cosh y — sinh x sinh y.

Solution :

From the definition of hyperbolic functions we have

cosh x cosh y — sinh x sinh y
= %{(e" + e"*)(e-" +e"}') - (e* —e"“)(e-" - e'}')}

- %{( e e—(x+,v)) _( oY _ oY | on) oty )}
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Bl

Example 1.3.2 Show the equation sinh ¥ =

NN Lo

Solution ;: sinhx=

et—e™ 3
3 = =
2 4

=25 _3-2¢7=0

= 2™ -3¢ -2=0
:(e-‘-z)(ze-‘+1)=0
—=e =2 or2e"=-1.

But ¢ is always positive, 0 ¢*=2 = x =log2.

1.4 Inverse Hyperbolic Functions

The inverse hyperbolic function sinh™ x, cosh™ x are written as
y=sinh™ x = sinh y = x with x e (—00_,00).
y=cosh” x = coshy=x withx>1and y>0.
y=tanh™ x = tanh y = x with |x|<1and y (-0, ).

1.4.1. Logarithmic Interpretation of Inverse Hyperbolic functions

Suppose

y=sinh™' x
= x=sinhy

e —e
2

= x=
= e _2xe¢’ —1=0
=e’=x+Jx'+las e’ >0

=y =1og(x+ NEeES| )

Thus y=sinh'x= log(x+ x’ +1),
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Similarly we see that
cosh"x:log(x+ xg—l)‘

h—l =ll 1+X
L

1.5 Summary

In this unit we derived hyperbolic functions in terms of exponential functions and
their important identities. We also defined Inverse hyperbolic functions and their
logarithmic expressions. We learned about the relations between hyperbolic functions
and trigonometric functions. We expressed the infinite series expansion of hyperbolic
functions and discussed the periodicity property of this functions.

1.6 Exercises

1. Prove the following identities.

(1) sinh (x + y) = sinh x cosh y + cosh y sinh x
tanh x +tanh y
—tanh x tanh y

(i) tanh (x+y}= 1

i) coshx—cosh y = 2sinh Y ginh =%
(1) y 2 2
(iv) cosh 2x = 1 + 2 sinh® x.

2. Solve the following equations.

() 2 cosh 2¢ + 10 sih 2x =5 (i) sinhx==>
(i) 4 cosh x + sinh x = 4 (iv) tanhx =%
(v) 9 cosh x — 5 sinh x = 15 (vi) 3 cosh’ x + 11 sinh x = 17.

3. Express the followings in logarithmic form

() sinh“i (ii) sech™ x (i) tanh™' x.

1.7 References

1. .G Chakravorty, P.R. Ghosh : Advanced Higher Algebra, UN. Dhar &
Sons Private Limited.

2. W. K. Robinson, Slide Rules with Hyperbolic Function Scales, The Journal
of the Oughtred Society, Vol. 14, No. 1, 2005.




Unit-2 O Higher Order Derivatives

Structure
2.1 Objectives
2.2 Introduction
2.3 Higher Order Derivatives
2.3.1 Notations of Higher Order Derivatives
2.4 Calculation of nth Order Derivatives
2.4.1, " derivative of x*
2.4.2, n™ derivative of .
2.4.3. n'" derivative of sin{ax + b)
2.4.4. n*" derivative of ¢* sin(bx + ¢)
2.5 Leibnitz’s Theorem on Successive Differentiation
2.6 Summary
2.7 Exercises
2.8 References

2.1 Objectives

In this unit the readers will learn the followings.

o The definition of higher order derivatives.
e Leibnitz’s formula.

o The differentiation of power functions.

o The higher order derivatives of product functions and quotient functions.

2.2 Introduction

The derivative is the first of the two main tools of calculus which was discover
independently by Issach Newton and Gottfried Leibniz in the mid 17th century. The
derivative of a function of real variable measures the rate of change of function value
with respect to the change of independent variable. In this chapter we will see how
to compute higher order derivatives and will explore some of their applications.

13
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2.3 Higher Order Derivatives

Successive differentiation is the process of differentiating a function repeatedly
n times and the results of such differentiation are called successive derivatives. The
higher order derivatives have most importance in scientific and engineering
applications.

Let f(x) be a differentiable function and let its first derivative be f'(x). If f'(x)
itself differentiable, we denote the derivate of f'(x) by f“(x) and call f"(x), the
second order derivative of f(x). Continuing in this manner, we obtain the functions
L), £, £, fMx), ... f(x), each of which is the derivative of previous
one. We call f™X(x), the n® derivative of f(x) or the derivative of order » of the

function f(x).

2.3.1. Notations of Higher Order Derivatives

1* order derivative : f'(x) or % or Dy or y, or '
2" order derivative :  f"(x) or f;vy or Dy or y, or

. . # d” ! # s}
n™ order derivative : f’(x) or d—“: or D"y ory, or y”
i

dy _d{d"'y) d&*(dy
Clearly " =E dx"_I =(Jx3 a’x"_g =

and so on.

2.4 Calculation of " Order Derivatives

2.4.1, ' derivative of x*

Let y = x* k being any real number.
Then y, = kx*!
Y, = k(k — 1)x" -2
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vy, =Kk - 1)k -2). . .(k-n+ 1, for all positive integer .
If £ be positive integer, then y, = klk — 1)(k - 2) . . (k- &+ Ny %=k
If & be positive integer but # is positive integer greater than &, then y = 0.
If y = x*, k being positive real number, then
v, = —k(—k —1)(~k—2)..(~k —n+1Dx*", for all positive integer »

=C4ykw+n@€jﬁxk+n-n

(k +n—1)!
-l

=1y

u n!
eg, y=x7, %=anm

. L1
y=x, V.= (xTz)

y=logx (x>0), y=1

Hence y, = nth derivative of log x

= (n — 1)th derivative of %

= (n —nl)!_
R

2.4.2. n'" derivative of e*.

Let y =e™

Theny, = ae™
yz — a.ﬁe(rx
y = a’e”

2.4.3. n™ derivative of sin{ax + b)

Let y = sin(ax + b).

Theny, = a cos(ax + b) = a sin(ax+b+g)
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y,=a cos(ax+b+g) =a’ sin(ax+b+27n)

y,=a" sin(ax+b+%)

Vo, = sin(ax+b + 2?%) = a”"(~1)"sin(ax + b) = (—a")" sin{ax + b) .

Similarly, if y =cos{ax +b),
y,=a" cos(ax+b + %)
V,, = (—a’) cos{ax +b) .

2.4.4. n*" derivative of ¢* sin(bx + ¢)
Let
y=e“sin(bx+c).
vy, =ae” sin{bx + ¢) + be™ cos(bx + ¢)
= e™ [asin(bx +¢)+bcos(bx +¢)]
= e™ [r cosasin(bx +¢)+rsina.cos(bx +c)]

[Putting @ = r cosct, b =rsing]

— re“sin(bx+c+0), where " =a’ +5° tana = %

Similarly,  y, =r’e®sin(bx + ¢ + 2a1)

y, =r"e“sin(bx + c + no.) .
Similarly, if y = e* cos(bx + ¢),
y, = e cos(bx + ¢ + nau).
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Example 2.4.1 If y=— L__ then find ,

x-a’
Solution : Here

y: 1 = 1 =L|: 1 — 1 j|
x—a ((x+adx—a) 2alx—-a x+al

1 » 1 1
y = — (=]¥'n! -
Thl.lS, .}n 2 ( ) n |:(X_a)n+l (x+a)n+1:| .

Example 2.4.2 If y = sin’ x, then find y .
Solution : We know that sin 3x = 3sin ¥ — 4 sin’x. Hence

y=sin’x= %(3sinx—sin3x)
and Y, = %[35in(x+%)—3” sin(3x+%)}

Example 2.4.3 If y = sin 3x cos 2x, then find y .

Solution : y=sin3xcos2x = %(sin Sx+sinx)

Therefore, V.= %[5” sin (Sx + %) +sin (x + %ﬂ .

Example 2.4.4 If y=1/x, then find v,
Solution : Here

ThllS, Y= %X_%

Differentiating continuously, we get

2135..20-3) 1
y — _1 w1 -
-}n ( ) 2n xn—}'z

17
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2.5 Leibnitz’s Theorem on Successive Differentiation

If # and v are two functions of x such that their » # derivatives exist, then the »*
derivative of their product is given by
(), ="Cuv+"Cu, _v+"Cu, v, +.. +"Cu, v +.+"Cuv,
where #_and v_represent r* derivatives of # and v respectively.
Proof :
By differentiating directly, we get
(uv), = uy + uv,
(), =@y tuy)t{uy tu)=uy+2uy +u,
=Cuy +Cuy, +Cuv,
Thus, the theorem is true for # = 1 and # = 2
Now we assume that the theorem is true for a certain positive integer m (m < n),

Then (wv),="Cu v+"Cu, v+ "Cu, v,+..+"Cu_v +.+"C uv,

oM

Differentiating both sides once more, we obtain
m o
(“‘ )m+1 ( O(Hm+1v + “mvl) + ('l(umvl m— V ) *-

mC (”I + um—rvﬁl) +...+ mc‘m(ulvm + HVm+1)

Hi— r+1

="Cat, V+(TCo+"Chu v, +(7C, +7C

m+1 H— 1

+.+("C _+7C ), .V, + ...

H— r+1
nt " "
+( Cm—l + Cm)“lvm + Cmuvmﬂ

"’+1Cu v+”'+1Cu v+ S+ Oy

nr+] v+l

\
(using"C_,+"C_=""C).

Thus, the theorem is true for » = m + 1 if it is true for » = m. Thus, by
Mathematical induction the theorem is true for all positive integers #.

m+l
( m+1 +1

2.5.1. n"™ derivative of ¢~ sin x
Let y = ¢ sin x = uv, where # = ¢**% and v = sin x.

and v, =sin (x + )‘%c)

(u:+b

Then u, = a*e

Thus, by Leibnitz’s rule
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i aeth

y, =ae™ sinx+"Cia"'e™"” sin (x+%) +..+e“sin (x+%)

=e™” {a” sinx + "Ca" "' sin (x + %) +...+sin (x + %t)}
Similarly, if y =e“** cosx, then

y, =™ {a" cosx+"C.a"" cos (x + %) +...+cos (x +n7n)}

2.5.2. n*" derivative of (ax + b)" sin x.
Let y = (ax + b)" sin x = wy, where ¥ = {(ax + b)Y and v = sin x.

_ . n! -k e km
Then ¥, =& (n_k)!(aerb) and v, sm(x+ 2)‘

Thus, by Leibnitz’s theorem, we obtain

Y I
y,= g—;a” sinx + %a*l(ax +b)sin (x + %)

+.. +(ax+ by sin(x+%)

= n!{éa” sinx + %a”"'(atr + b)sin (x + %)

71!

+...+l(ax+b)"sin(x+%c)}.
Similarly, if y = (ax + b) cos x, then

1 n nC n-1 T
¥, n{ma COSX + TR (ax+b)cos(x+2)

o %(ax +b)" cos(x+%)}_

Example 2.5.1 Find the #” derivative of y = x° log x.

Solution : Let # = log x and v = x*,

1381 -1y
Then #, :Lgkl)' andv, =0 for k=4
x
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By Leibnitz’s theorem, we have

(lﬂ’)n = HC‘_-,HHV‘F nClun—lvl + P:C'guﬂ_zv3 + +"Cu v+ + nC v,

Thus, o
¥ =(—1)"'1(H—1)! S )" (n-2)! 3y
" xn X x"_l
+n(n I (-1)" 3(n—3)| n(n 1n— 2) (- (n—4)!
21 ¥ 31 P
=1y » 6(n _4)*

Example 2.5.2 Find the n* derivative of y = x’¢* sin 4x.

Solution : Let # = ¢*sin 4x and v = x°.

Then u, =e*5 sm(4x+ktan" %) and v, =0 for k 2 3.

By Leibnitz’s theorem, we have

(wv), = "Cuv+"Cu, _v+"Cu _v.+.+"Cu,_v +..+"°Cuv_
Thus,

y, :e3x5”sin(4x+ntan g) x* +ne™ s sm(4x+(n )tan™ g) 2x

+w.e3x5” 2sm(4x+(n 2)tan”' g) 2

:e3x5"{x2 Sin(4x+ntan'l g) 2f;xsm(4x+(n Iytan™ 'g)

nn-1)
* 25

sm(4x+(n 2)tan™ i)}

Example 2,53 If y = sin (m sin’'x), then show that

(L—x%)y,., = Qn+ 1)y, + (1" —m*)y,
Also find y (0).

Solution : y = sin (# sin™ x) (25.1)
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=y =—" _cos(msin” x)
= (1-x")y =m’cos’(m sin”' x)
= (1- J\cz)yl2 =m’(1-v%)
= (-x)y +m’y’ =m’.
Differentating w.rt. x, we get
(1- x2)2y]y3 + yf(—Zx) + 1!1*:!32)/),#l =0
= (1— Jurz)y2 —xy,+m’y=0
Using Leibnitz’s theorem, we get
I:ym:(l -x)+"Cly.  (-2x)+ "C:yn(—2)] - (ynﬂx +7Cy,. 1) +m’y =0
= (1 - xg)yn+2 —2nxy,, —n(r-1)y —xy . —ny +my, =0

= (1 _x:)yn+:’, = (2n+1)xyn+1 + (n: _m3)y"_
Putting x = 0 in (2.5.1), (2.52) and (2.5.3), we get
W0y=0, (O =m, and y,(0)=0.
Putting x = 0 in (2.5.4), we have
Yual0) = (7° —=m™)y,(0).
Putting » =1, 2, 3 . . . in the above equation we have
y,(0)=(1" = m*} ,(0)
= (12 - mz)m

Y0 =(2° —m*) p,(0)

(2.5.2)

(2.5.3)

(2.5.4)
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Therefore

0, if » is even

}’,,(O)z{m(lz_mz)(33_mZ)__I((n_z)ﬁ_mz), if n1is odd.

2.6 Summary

After studying this unit we have seen that we can derive a general formula of #th
order derivative of a function without computing intermediate derivatives or by
Leibnitz’s Rule. To derive a general formula of #th order derivative of a function,
it is better to differentiate again and again until it is clear.

2.7 Exercises

1. Find #* order derivative of the following functions :

N . o an X L X7

(1) € sin x sin 2x  (ii) p (1i1) o

.. ad=X . . . . 114X
3 tan” ——,

(1v) P (v) sin x sin 2x sin 3x (vi) —x

2. Use Leibnitz’s formula to find the #” derivative of the following functions :
(i) e'log x (ii) x* tan™ x
(ii)) log(ax + x¥)  (iv) x*sin x,

3. If y = ¢"sin™ x, then show that
(1 - xz)ym -2n+xy,,, - (n2 + mg)yn = 0. Also find y (0).

4. If y = tan™! x, then show that

(1 - xz)yn+2 + 2(” + l)xynﬂ + n(n + l)yn = 0 AlSO fll'ld y”(o)

5. If y = (sin™ x)?, then show that

(1 - xz)ymz _(2}‘1 + l)xyml _ngyn =0. Also find y”(o)
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Unit-3 U Curvature

Structure

3.1 Objectives
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3.1 Objectives

After going through this lesson the readers will learn :
o the definition of curvature.

o to derive the formula of radius of curvature.

o to find out the centre of curvature.

3.2 Introduction

In this chapter we will describe the nature of bending of a curve at a particular
point and its numerical measurement. The curvature measures how fast a curve is
changing direction at a given point.

3.3 Definitions

Suppose the tangents at two points £ and O on a curve make angles y and y +
Ay with positive x-axis. Suppose that are AP = s, arc AQ = s + As so that are PO
= As, 4 being fixed point on the curve from which the length of ares are measured.
We then construct the following definitions.

24
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The angle Ay between the tangents at P and Q is called the total curvature of
the arc PQ. AY

Fig. 3.1

: . A
The mean or average curvature of the arc PQ is defined as the ratio E\V

The curvature (k) at a point P of the curve is defined as the limiting value of
mean curvature when the arc As — 0 : that is

. Ay dy
k)at P=lim—===—~.
Curvature (k) at AT T ds

Thus the curvature is the rate fo change of direction of the curve with respect to
the arc length.

ds

1
Suppose that £ # 0 and P~ 7"~ E Now construct a circle of radius p and a

center ' so that the circle and the curve I" have the same tangent at P. The circle is
drawn in such a way that it lies on the same side of the tangent as the curve. This
circle has the same curvature as the given curve at P. We call this circle as the circle
of curvature at P; its centre C is the center of curvature for the curve at P and its
radius p, normal to curve at P is the radius of curvture of the curve at P. Thus the
reciprocal of the curvature at any point P is called the radius of curvature at P, and

. _1_ds
is denoted by P~ dy’

3.4 Formulae for the Radius of Curvature

3.4.1. For the Intrinsic Equation s = f(y).

The relation between the length of the arc (s) of a given curve, measured from
a given fixed point on the curve and the angle between the tangents at its end ()
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is called the intrinsic equation of the curve and the formula of radius of curvature for

this equation is
_ds

For example, the intrinsic equation of Catenary i1s s = ¢ tan Yy and

P= E =C 8002 Y
3.4.2. For the Cartesian Equation (Explicit Function) y = f(x) or x = f(»).

In a rectangular Cartesian co-ordinates system, we have

tan¥ = a =W
Therefore
_dy_d aﬁ’)_d _d dvys
Y2 dﬁ‘m(w =g ltanw) =g tany).
=sec” . dy ds

Since sec y = (1+tan2 \p)l’: = (1+y,' )% ,we have

3
ds  sec’ Y (1 + yld)z
= — = h - 0
P v Q T where y, = G41)
dx?

Similarly, for the equation x = f{(y),

3

_Q+xy
p= . _,[x2¢0]

d*x )
where x and x, denote E and F respectively.

Note 3.4.1 Since p is always positive the root of numerator will be taken positive
when y, is positive and negative when y, is negative.
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Example 3.4.1 Find the radius of curvature of the parabola y* = 4ax at the point

(a, 2a).

Solution : Here y* = 4ax.

Differentiating w.rt x, we obtain
Zyy = 4a.
Again differentiating we have
2y + 2y, =0.
Thus, at {a, 2a), y, =1 and ), Z—i.
Hence the required radius of curvature at (a, 2a) is
2\3 3
I+y ) _ 2
) e _, e

b= y,  -l/2a

3.4.3. For the Cartesian Equation (Implicit Function) f{x, y) = 0

For the implicit equation, we have

d
F=—7(1,=0)

ie, /4,2 =0,

Differentiating again, we have

f“+2fm"5+f"[ﬂJ +Jﬁd}’ 0 [taking £, = £.]

Putting the value of b in (3.4.2), we get

dx
Ay Sof 2SS AL
at f}3 :
+ 2
Substituting these values of ?_x and ir{ in (3.4.1), we obtain

(41}
JoP =20 S S+ LSS

where denominator is not equal to zero.

p=-

(3.4.2)

(3.4.3)
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Example 3.4.2. Find the radius of curvature of the ellipse 9’ + 4y° = 36x at the
point (2, 3).
Solution : We have f(x, y)=9x"+4y* -36x.

Differentation fx, y) partially w.rt. x, we get f = 18x — 36.
Similarly, we obtain

£,=8y, f =18, f,=8 f,=0
Now at (2, 3),

f.=0, fy =24, f. =18, f”__ =38, fn =0
Thus, using the formula (3.4.3), we get

(£2+£2)

SN

[0+’ 4
T 1824’ -0+0 3
which is the required radius of curvature.

3.4.4. For the Parametric Equation x = f{1), y = ¢(f).
Here

aod @ Y
Therefore
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3
(x+)7)° (3.4.4)

Example 3.4.3 Find the radius of curvature of x = a(@ + sin 0), y = a(1 - cos 0) at
0=20.
Solution : We have

XY =YX £0.

x=a(0+sinB), y=a(l—-cosH).

Differentiating w.r.t. 8, we obtain
¥ =a(l+cos0), V' =asind.

Again differentiating w.r.t. 8, we obtain
x"=-asin®, y'=acosb

Now at 6 = 0, we have
x'=2a, x"=0, y'=0, y'=a
Thus, using the formula (3.4.4), we get the radius of curvature at 6 = 0 as

(7 0)_[ear o]
p= XY —yx"  2aa-0

3.4.5. For the Polar Equation r = f{0).

We know W=0+¢= 0+tan™ n,wherer_de
Thus,
ay 1 -
=1+ -
do 1+r_2 7,
F,
. _f‘2+2r|2—rr
Again r
ds 5
E: f'2+f‘l )
Thus
) 3
rPr’)?
ds _dsdo_ ("+R) .

p= dv dody r“+2r,2—rr
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Corollary 3.4.1 For the polar equation # = £0), where # = %.

] 1
Since ¥ = o we have

dr _ 1 du_ H

i, —2u;
- —————————

== £ 2
' A0 wde w? w

2
where u and u, denote g—g and g—e”: respectively.

Thus

(£

(« +uf)h

St (3.4.6)

p =
Example 3.4.4 Find the radius of curvature of the curve r = a(1 — cos 0) at the point
@ 6).
Solution : We have » = a(l — cos 0).
Differentiating w.rt. 6, we get , = a sin 8. Again differentiating wr.t. 0, we have
r,=acos 6
Thus the radius of curvature is
3 ) 2
(1‘3+f*13)E I:az(l—cose) +a’ sinzfﬂ2
p= _

P42 -, a’(1-cosB) +2a7sin’ 6 - a(l - cosB) acos

3
_a(2-2cosb)” _ Zﬂm

a(3—3cos9) 3

3.4.6. For the Pedal Equation p = f{(r).

We know the pedal equation as p = r sin ¢.
Differentiating w.rt. r, we get

P _g a6 [ _ @]
dr_Sln¢+rCOS¢dr tand)—rdr
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—r 4
=r— 0+9)
dy
=T
Thus
_ds _,dr
dy dp
. . B a'zb3 _ .2 b
Example 3.4.5 Find the radius of curvature of the ellipse » a +o —r
*b? 12
Solution : We have < —=a +bi -1
—2a’h’ = o dr
Differentiating w.rt. p, we get _p dp’
Therefore
dr _ 2b'
p=r
@ P
3.4.7. For the Tangential Polar Equation p = f{y).
We have
dp _dpdrds _dp
dv  dr ds dw Cdr osd)rdp =rcos¢
Thus,
P +[§—$] =r’sin"d+7rcos’p=r".
Differentiating w.r.t. p, we get
dp d* d'pdy _, dr
2p+2— =2r
Preavay @ “dp
Thus,
_,.4p
p_p+d\|12' (3.4.8)
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Example 3.4.6 Find the radius of curvature of the epicycloid p = a sin by.

Solution : We have p = a sin by.
Differentiating w.rt. y, we get
j_{)lf =abcosV, j‘;!pz =—ab’sinby = -b’p.

Thus, the radius of curvature is

2

d ,
p=p+dqf§ =p-bp=p1-5").

3.5 Radius of Curvature : Newton’s Approach

L. If a curve passes through the origin and the axis of x is tangent at the origin, then

x— 2y

=0

gives the radius of curvature at the origin.

IL If a curve passes through the origin and the axis of y is tangent at the origin, then

gives the radius of curvature at the origin.
IIL If a curve passes through the origin and ax + by = 0 be the tangent at the origin,

then
Na +b o, XY

2 :::g ax+by

gives the radius of curvature at the origin,

Example 3.5.1 Find the radius of curvature at the origin for the curve
x> +y -2 +o6y=0.

Solution : Here y = 0, the x-axis is the tangent at the origin. Thus by Netwon’s

2 2
formula, the radius of curvature is given by p= ll_l;l;l ;— ie,2p= llgg’; .

0 =0
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Now dividing the given equation by y and making x — 0 and y — 0, we get
0p+0-4p+6=0.
Therefore

_3
p_zy

which 1s the required radius of curvature.

3.6 Centre of Curvature

The co-ordinates ((¥,y) of centre of curvature at a point P(x, y) of a curve
y = fix) is given by
sV G S SR Gl SN
V2 Y2
Proof : We use the fact that the centre of curvature at P is the limit point of

intersection of the normal at P and the normal at a neighbouring point () when {0 —
P along the curve. The equation of the normal at P is

T = y)p(x)+(X -x) =0, (362)

dy
dx

(3.6.1)

where the slope of the tangent at P(x, ¥)1s ¥, ==-=§x) and X, ¥ are the current

co-ordinate of any point on the normal,
The normal at a neighbouring point Q(x + A4, y + k) is

Y—-y-—bpx+ )+ (X —-x—h=0. (3.6.3)
At their point of intersection, the ordinate is given by,
(Y—y){d)(x+h)—¢(x)}—k¢(x+h)—h:0. (3.6.4)

Dividing by 4 and making # — 0, we get
(y— y){lhimw} {llm }llm¢(x+h) 1=0.

h—>0

or,  (F- () - dx)p(x)-1=0,

(+5)

i

o, V=y+

As (¥,7)is a point in (3.6.2), we get
Y-} +(x-x)}=0
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or, M.}’, +{(x-x)=0
Y

Example 3.6.1 Find the centre of curvature at any point (x, y) on the parabola
y'=4ax.

Solution : Here ) = 4ax. Differentiating w.r.t. x,
2yy, = 4a.

_2a_ |a
yl_y \/:

Again differentiating we get.

Thus,

J’.yz"‘yl::O'
Thus,
yoo- X 1da
b1 3 2x\/;_
Hence
1+ 2 =J§(1+2)=M
.}’1( yl) Y x wx
Thus,
1+ 7
Y:x—wzx+2(x+a):3x+2a
y:y+1+yf:y_2\/;(x+a):_2x\/;
Y2 \/(; \/(;

3.7 Summary

In this chapter we have discussed the curvature of a smooth curve. We have also
derived several formula for determining the radius of curvature for a curve and centre
of curvature.



NSOU » CC-MT-03 35

3.8 Exercises :

1. Find the radius of curvature at any point (s, ¥) on the following curves:

Q) S:Sasinzéw (ii) s=alogtan[%+%]

{(1i1) s=clogsecy {1v) s=a(e”""—1).
2. Find the radius of curvature at any point (x, y) on the following curves :
(i) e =sec(x/a) (i) xy = ¢
73 (iv) x*+ )%= 3axy
(v) y = 4sin x — sin 2x i) Jx+Ja=-a

3. Find the radius of curvature at any point 7 on the following curves :

(i) x*+y"P=a

(i) x=alcost+sing), y=asinf-1cosit)
(i) x =alf +sin 1), y=a(l - cos {)
{(iii) x = a sin 241 + cos 2f), vy = a cos 21 — cos 2¢)
(iv) x = af, y=_2at
{(v) x=ae(sin ¢t — cos 1), y = ae'(sinf+ cos i)
4. Find the radius of curvature at any point (r, 0) on the following curves :
(1) *=a’cos26 (i} p=ge®
(1) plcos20=a’ (iv) r=asinmb.
5. Find the radius of curvature at any point on the following curves :
(i) p = a(l + sin y) (i) p*+ad*cos 2y =0
(iii) p = r sin & (ivy p*=ar
6. Find the radius of curvature at the origin on the following curves :
(i) y=x - 4x> - 18x° (i) 3 +xpy+y"—4dx=0
(iii) ¥ + 6~ +2x —y =10 (iv) x*+y*=6alx +y)
(v) 3¢ =2+ 5x%y + 2xy — 2y + 4x = 0.



36 NSOU « CC-MT- 03

7. Find the centre of curvature of the following curves :

) &y=x° (i) 2y = a(e® + ™)
(i) y=x"+2x+x+1lat(0, 1) (iv) y=sin’x at (0, 0)
(v) ¥ =day (vi) xy=x*+4at(2, 4).

8. Find the radius of curvature of the curve ¥ = at 0 = =,

14+e cosB

9. Find the centre of curvature of the curve x> + 2x* + x + 1 at (0, 1).
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4.1 Objectives

We all have intuitive concepts of concavity and convexity. After reading this
lesson the students will learn :
o the definition of concavity and convexity.

o the criterion for convexity and concavity.
o the meaning of points of inflection.

e to determine the points of inflection.

4.2 Introduction

In this unit we shall discuss about the sense of concavity and convexity at a
special point of a curve y = f{x). This special point is called a point of inflection.

4.3 Concavity and Convexity w.r.t. to a Line and Points of
Inflection

Let P be a point on a plane curve. Let / be a straight line not passing through
P Then the curve 1s

(i) concave at P w.r.t. the line / if a sufficiently small arc containing P lies within
the acute angle formed by / and the tangent to the curve at P.

37
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(i) convex at P w.r.t. the line / if a sufficiently small arc containing P lies outside
the acute angle formed by / and the tangent to the curve at P.

On the other hand, if the curve is concave on one side of P and convex on other
side w.r.t. /, then evidently the curve crosses its tangent at P. This point P is called
a point of inflection.

fzﬁ(ﬂéﬁ

Fig. 4.1

4.4 Criterion of Concavity or Convexity w.r.t. x-axis

Let P (x, y) be a point of a curve y = f(x) and O(x+ Ax, y + Ay)be a neighbouring
point of P. Let PT be the tangent at P, and let the ordinate OM of O intersect PT at
R. The equation of PT is

Y —y=f()(X-x).
Since the abscissa X of R is x + Ax, its ordinate is
RM =Y = y+ Axf'(x).
Also the ordinate of Q is
OM = f(x+ Ax)

2
= £+ A0 + B e 0AY), 0<0 <1,
2!
[Using Taylor’s theorem]

3y

T .
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Therefore

2
OM - RM = % (e +0AY),
If /* (x) does not vanish and is continuous at x, ' (x + BAx) has the same sign

as that of / (x) when |Ax| is sufficiently small. Hence QM — RM has the same sign

as f'(x) for sufficiently small values of |Ax|
Thus, if f{x}) 15 positive, then QM — RM is positive for sufficiently small values
of |Ax| 1.e., the small arc of the curve in a small neighborhood of P will be situated

outside the acute angle formed by the tangent at P to the x-axis if the curve lie in
the upper-side of x-axis.
Again if f(x) 15 negative, then QM — RM is negative for sufficiently small values

of |Ax| 1.e., the small arc of the curve in a small neighborhood of P will be situated

outside the acute angle formed by the tangent at P to the x-axis if the curve lie in
the lower-side of x-axis.

Combining this two situation we can say that the curve is convex at P to the
x-axis if yf'(x) at P is positive.

Analogously, if yf(x) at P is negative, then the curve at P is concave to the x-
axis.

Note 4.4.1. The curve at P is convex or concave w.r.t. the y-axis according as xf"'()’)
is positive or negative at P.

Example 4.4.1 Prove that the curve y = e* is convex to the x-axis at every point.

Solution : Here

dy ix
b P
dx
dzy _ 481\:
&t
Hence
dzy o4
y—=4e" >0, for all values of x.
dx

Thus, the curve is convex to the x-axis at every point.
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4.5 Criterion for Points of Inflection

We have defined a point of inflection on the curve ¥y = f(x) as a point where the
curve crosses its tangent. We have shown that such a point can only exist if fi(x) =
0. The abscissa of the points of inflection are therefore the roots of the equation

fxy=0.

But the converse is not true.

From the previous discussion we see that if f"(x) = 0 and f"(x) = 0.

(&)’
3t

This gives opposite sign for positive and negative value of Ax. Hence in order
that the abscissa x corresponds to a point of inflection.

Sf"(x)=0and f"(x)=0.

OM - RM =2 £7(¢ 1 8AX),

More general form :
Suppose that at P, f"(x)= f"(x)=.. = f"P(x)=0 and f7(x)=0.
Then by Taylors theorem,

OM — RM = %I)"f(")(ﬁea.x)_

If # 1s even, then the curve is convex at P to the the x-axis when yf™(x) at P is
positive and concave at P to the the x-axis when f™(x) at P is negative,
If 7 is odd, then the point of inflection are the roots of the equation f(x) = 0.

Example 4.5.1 Show that the curve y = x* has a point of inflection at x = 0.

Solution : Here % =3x? and % = 6x.

d’y
At x=0—-=0.
x =

_ . d’ . .
When x <= O (sufficiently near to zero) dxy remains negative so that the curve
: : d’y
is concave downwards there. But when x > 0 (sufficiently near to zero) e becomes

positive so that the curve is concave upwards there. Hence x = 0 is a point of
inflection.
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Example 4.5.2 Examine the curve y = sin x regarding its concavity or convexity to
the x-axis, and determine its point of inflection, if any.

Solution : Here =cos x and e ——sinx

el

[}

Hence y f;ry = —sin’ x which is negative for all values of x excepting those which

make sin x = 0, i.e., for x = km, & being any integer.
Thus the curve 1s concave w.r.t. x-axis at every point except at points where the
curve crosses the x-axis.

-

. ) d” ) )
Hence these points given by x = kr, where dxy =0, crosses the x-axis are points

of inflection.

4.6 Summary

After reading this lesson we came to know a very important significance of
second derivatives. It’s change of values determines the concavity, convexity and
point of inflection of a curve at a point.

4.7 Exercises

1. Find the points of inflection, if any on the following curves.

W Y eIy )y =)y

(iii) x=3y* -4y’ +5 (iv) y(x-ay =ax.

2. Prove that the curve y= cos™ x i1s everywhere convex to the y-axis excepting
where it crosses the y-axis.

3. Show that the curve (y — @)’ = &® — 2a’x + ax’, {a > 0) 15 concave to the x-
axis.

4. Show that the curve y = log x is convex everywhere to the y-axis.
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5.1 Objectives

In this chapter the students will learn the followings :

o definition of asymptote.
e type of asymptotes.
o the method for finding asymptotes of a curve.

5.2 Introduction

The concept that a curve may come arbitrary close to a line may introduce the
word ‘Asymptote’ which was introduced by Apollonius of Perga in his work on
conic sections. Asymptotes of a curve are very important to sketch its graph.
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5.3 Definition

A point P with co-ordinate (x, y) on an infinite branch of a curve is said to tend
to infinity (P — <o) along the curve if either x or y or both tend to & oo as P traverses
along the branch of the curve.

5.4 Asymptotes

A straight line is said to be a rectilinear asymptote of an infinite branch of a
curve if as a point P of the curve tends to infinity along the branch, the perpendicular
distance of P from the straight line tends to zero.

2 2
Example 5.4.1 For the hyperbola %—%ZL the straight lines y = + x are two

asymptotes as shown in the Fig. 5.1.

Fig. 5.1

5.5 Asymptotes Parallel to Axes

5.5.1. Asymptotes parallel to y-axis for the curve y = f(x) :
Theorem 5.5.1 A necessary and sufficient condition that the line x = a may be an

asymptote to the curve y = f(x) is that |f(x)| —>wasx—>a+0 orx > a— 0 or
X = a

Proof : First suppose that x — a — 0. Let P(x, y) be a point on an infinite branch

of the curve y = f(x). As |f(x)|—>00, ie, y—>+wor —oforx >a-0,it
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immediately follows that P 5 As x — a — 0, the perpendicular distance P7 of P

from the line x = a is |x—a| which tends to zero. Hence x = a is an asymptote.

Fig. 5.2

Similar arguments follows for the cases x - a + 0 or x — a.
Conversely, let x = a is an asymptote. Now asx > a+0orx >a—-0orx —

0, we must say | f (x)|—>00, otherwise P can not tend to o which is essential for

obtaining the asymptote.
In the same ideas we obtain the following :

5.5.2. Asymptotes parallel to x-axis for the curve x = g(y)
Theorem 5.5.2 A necessary and sufficient condition that the line y = 5 may be an

asymptote to the curve x = g(y) is that |g(y)| —>wasy—>b+0ory—>b-0ory—b.
Example 5.5.1 Find the asymptotes parallel to the axes of the following curves :

£ +1 t*

(i) y=f(x)=%, (i) y:f(x):xe%’ (i) ¥="7 V=
Solution : (i) Here

lim f(x)= lim

x—55+0 X540 X — 5

=+

11m f(x)— 11r5n0x 5=

Hence x = 5 is the asymptote parallel to y-axis of the given curve.
(i1) Here

1

hm f(x)— 11 =+oo.

5040 l
X

Hence the curve has a vertical symptote x = 0.
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(iii) As 7> 1+0,x >0, y >0 and as r—>—1—0,x—>oo,y—>—%_

Hence V= —% is an asymptote parallel to x-axis.

5.5.3. Asymptotes parallel to the axes for the rational algebraic curve fix, y) =0

Let the equation fx, v) = 0, when arranged in descending powers of v be
represented by

S5 )= Y 0u(0)+ V70 () + ¥y Th () +.+$,(x) = 0, (5.5.1)

where ¢,(x), §,(x), §.(x),.....,$,(x) are polynomials in x.
Rearranging (5.5.1), we get

%(x)+%dﬁ(X)+}%¢;(X)+---+%¢,,(x) 0 (5.52)

If now there exists an asymptote parallel to y-axis, say x = A, (a finite real
number), then as x — A, y — <o and so (5.5.2) gives

$o(2) =0 (5.5.3)
ie., A is a root of the equation
$a(x) =0, (55.4)
where ¢ (x) is the coefficient of the highest degree terms in flx, y) = 0.
If it so happens that A, A, . . . are the real roots of ¢(x) = 0, then x = A,
x = A, ... are the asymptotes parallel to y-axis provided the infinite branches of
the curve corresponding to the asymptotes actually exist,
We now from algebra if A, A, . . . . are the real roots of ¢, (x) = 0, then ¢ (x)
=(xr—A)x—A)x~-2%) . ... Hence we have the following rules :

I. The asymptotes parallel to y-axis are determined by equating to zero the real linear
factors in the coefficient of the highest power of y present in the equation fx, y) = 0.

Note 5.5.1 No such vertical asymptotes exist if the coeflicient of the highest power
of y is a constant or not resolvable into real linear factors.

In similar manner we have the following rule :

II. The asymptotes parallel to x-axis are determined by equating to zero the real
linear factors in the coefficient of the highest power of x present in the equation

fx, y) =0
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Note 5.5.2 No such horizontal asymptotes exist if the coefficient of the highest power
of x is a constant or not resolvable into real linear factors.

Example 5.5.2 Find the asymptotes of the curve
Xy —ar (X +yY)-a(x+y)y+at =0,
which are parallel to axes.

Solution : This equation is in algebraic form Here the highest of x is x* and its
coefficient is (3 — ). Hence the asymptotes parallel to x-axis are y =a, y = — a.
Similarly, we see that the asymptotes parallel to y-axis are x = a, x = — a.

Example 5.5.3 Find the asymptotes, if any, parallel to the co-ordinate axes to the
curve x* -2x°y+xp’ +x—-xy+2=0.

Solution : The coeflicient of highest degree of x i.e., of x* is constant. Hence there
is no asymptote parallel to x-axis.

The highest degree term in y is 3~ and its coefficient is x. Hence the asymptote
parallel to y-axis is x = 0.

5.6 Oblique Asymptotes

Theorem 35.6.1 If an infinite branch of a curve possesses an asymptote y = mx + ¢,
(m and ¢ being finite), then

m = lim l', ¢ = lim{y —mx)

[glseo X Pef—re:

and conversely.

Proof Let P(x, y) be a point on an infinite branch of a curve. The perpendicular
distance of P from the line y = mx + ¢ is

_|y—mx—c

Vi+m®

If the line y =mx+c¢ is an asymptote then d should tend to zero as P — «o,

d

y—mx—c

V14w’

e, |[y—mx—c|—0 as [x] > 0.

ie.d= —0 as |x|—>c>o?
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Hence
c= |lilm {y —mx).

Again

lim l-m]: lim(y—mx) imL=co=0

M—»rx\( X L\:|—>r>o(y ) x| X
Therefore

m=lim l‘
[ X

Conversely, if the given condition holds, them y — mx — ¢ — 0 as P — o which
means that d — 0 as P — . Hence y = mx + ¢ is an asymptote.

Example 5.6.1 Examine the asymptotes of the curve YV = x3xl +3x.

Solution : Since

lim y= lim ( 3x +3X):+a0

140 =+ X — 1

lim y= lim( 3x +3x)=—00,
x—1-0 x—1-0 X—l
the curve has a vertical asymptote x = 1.
Moreover for the oblique asymptotes

m=lim 2 = lim(i+3)=3,
ke X seix—1

. . 3x
=] r— ——] - +3y—-3x|=3,
¢ lxll'll(} nx) |xll'll (x—l X .ax) 3

Therefore the straight line y = 3x + 3 is an oblique asymptote.

5.7 Asymptotes Non-parallel to y-axis of the Rational
Algebraic Curve fix, y) = 0

Let the equation of the curve f(x, y) = 0 be arranged in groups of homogeneous
terms as

flx, )= (aux” +ax"'y+a x4+ any”)
+ (l:v]x”'1 +b, X" Py +b X"y bny"")

+ .+l x+ly)+k, =0,
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which may be written as

X" {%)H’H H[%]%-H%[%}%(%]=0, (5.7.1)

where ¢, [%} denotes an algebraic polynomial in [%) of degree r.

Dividing by x” and then make |x| — ==, we suppose that |£|1—IE%= m. We then

obtain

¢, (m) =0,
which gives the slopes of asymptotes correponding to different branches of the curve.
To get ¢ corresponding to m, we put y — mx = &, where & — ¢ as |[x| — oo

Putting % =m +% in (5.7.1) we obtain
X", (m + i) +x", (m + i)
b's X

o X, (m+%)+¢o(m+%)=0‘ (5.7.2)

Expanding Taylor’s expansion, we have
oo +Egsom +Egrm .|

#-1 k ¥ k2 "
+x {d)n_, (m)+ ;d)n_] (m)+ o ¢, (1) + }

=...=0 (5.7.3)
Arranging (5.7.3) we get

X", (m)+x"" {kd)’n(m) +¢,_,(m)}

s L)+ kom0

+...=0 (57.4)
Since ¢, (m)=0, dividing (5.7.4) by x* ' and making |[x| — o, we get

e (m)y+9,_(m) =0, [since k — ¢ as |x| - =] (5.7.5)
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or €= _% provided ¢, (m) = 0. (5.7.6)
Thus y= mx——d;:,; '(g:;)

is the asymptote corresponding to the slope m, provided ¢ (m)=0.

Note 5.7.1 If ¢/ (m)=0but ¢
the slope m.

{m) =0, then there is no asymptote corresponding to

H—

Note 5.7.2 If ¢/ (m)=0=¢, (), then (5.7.5) becomes an identity and then dividing
(5.7.4) by x"~7 and making |x| — =, we have

%¢:(n1) +ed (m)+4, , =0, [since > ¢ as|x| — o] (5.7.7)

which gives two values of ¢, in general, provided ¢ (m)=0. Thus, we have two
parallel asymptotes.

Note 5.7.3 The cases explained in Note 5.7.1 and Note 5.7.2. be treated similar
manner for the next terms in the equation (5.7.4).

Remark 5.7.1 The polynomial ¢ (#) can be obtained by putting x =1 and y = m in
the #™ degree homogeneous polymonial of fx, y).

Example 5.7.1 Find the asymptotes of the curve xy* —y* —x* =0.

Solution : The coeflicient of highest power of y 1s (x — 1). Hence x = 1 is a vertical
asymptote of the curve. The cofficient of highest power of x is constant. Hence there
are no horizontal asymptotes.

Putting x = 1 and y = m in highest degree (third degree) terms (x)” — x°) to get
b, (m)y=m" =1, ¢\ (m)="2m
$,(m)=0 gives m=1-1.

Putting x = | and y = m in the terms of 2nd degree (- ), we have

¢2(m)=—m2.
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¢ _ 1

) =5 Hence y = x+% is an asymptote of the curve.
3

_o=D_ 1

For mM=-lc= e ~3 Hence V= —X—%is another asymptote of the
3

Now for m=1,¢c=—

curve.

Example 5.7.2 Find the asymptotes of the curve x’+x*y—xy* - +x*—y* =2,

Solution : The coefficients of highest power of x and y are constants. Hence there
are no horizontal and vertical asymptotes.

Putting x = 1 and y = m in the highest degree (third degree) terms
(x3+x2y—xy2—y3) to get
) =1+m—m"—m’, §i(m)=1-2m-3m’

$,(m)=0 gives m=1, -1, -1.
Putting x = 1 and y = m in the terms of 2nd degree (x* — )°), we have
b, (m)=1- m’.

¢.(1)

Now for m=1,¢=- ¢I ) =0. Hence y — x is an asymptote of the curve.
3

For m = -1, since ¢,(—1)=0=¢,(-1),the value of ¢ can be obtained from
SR+ D+, (1) =0

or, %_4+c‘2 +0=0.

Thus, ¢ =0, -1

Hence y = —x and y = —x —1 are two parallel asymptotes of the curve.

3.8 An Alternative Method of Finding Asymptotes of
Algebraic Curves

Let the equation of an rational algebraic curve of »* degree be represented by
F,+0,, =0, (5.8.1)



52 NSOU « CC-MT- 03

where P _is homogeneous polynomials in x and y of degree » and | contain the
terms of degree not higher thaan n» - 1.

L Let y — m x be a non-repeated factor of P . Then the equation (5.8 1) can be written
as

(y—mx)F _+0 ,=0, {(582)
where F_ is homogeneous polynomials in x and y of degree n — 1

Clearly m, is a root of ¢,(m)=0. Hence there exist an asymptote y = mx + ¢,

provided we can determine the value of ¢,. Using art. 5.6 and the equation (5.8.2) we
obtain

where to determine the limiting value, we use E\ff}o % =m,. Thus, the asymptote under

this discussion is

y=mx—lim O _
|z} Fn—l

For each non-repeated linear factor of the #* degree homogeneous terms we may
proceed in a similar manner.

IL If the 7" degree homogeneous terms in the equation of the curve contain (y — m x)*
as a factor and (# — 1)" degree homogeneous terms do not contain the factor y — m x,
then there is no asymptote corresponding to the slope .

IIL. On the other hand, we could write the equation of the curve in the form
(y—mx)’F,_, +(y—mx)E,_,+0,,=0, (5.8.3)

where F_, contain the terms of degree not higher than # — 3. Then on similar
arguments as in case I,

. P - . Q -
—_ 2 + $— l H=2 +l L
(y—mx)" +(y—mx) lim ., lim F

will be the pair of parallel asymptotes.

IV. We can proceed exactly in a similar manner if the »™ degree terms contain
(v — mx)* or higher power of (v — m x) as factor.
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V. If in I, we have the factor (ax + by + ¢) instead of (y — m x), then the asymptote
will be

ax+by+c+lim Qs =0,

el -1

where lim Y- -4
|x|—>w X b

Example 5.8.1 Find all the asymptotes of x* —2x’y+xp* +x' —xy+2=0.

Solution : The coefficient of highest power of y is x. Hence the asymptote parallel
to y-axis 1s x = 0.

The coefficient of highest power of x is constant. Hence there i1s no asymptote
parallel to x-axis.

Factorizing the terms of third degree, the given equation becomes

x(y-xy -x(y-x)+2=0

Hence the parallel asymptotes will be given by

(y-xyY-(y- x)llm +11mg:0_,

e X e X

ie, (y-xP-(-0=0,
or, y-x=0, y-x-1=0.
Thus, the three asymptotes are x =0; y-x =0, y-x-1=0.

3.9 Asymptotes by Inspection

If the equation of a curve be of the form
FA+F_, =0,

where £ is a polynomial of degree » and /| _is a polynomial of degree (7 — 2) at
the most and if 7 can be broken up into # distinct linear factors so that when equated
to zero they represent » straight lines, no two of which are parallel, then all the
asymptotes of the curve are given by F, = 0,

2., the hyperbola X2,
e.g., the yperboaad e

’::-|'\-:
o

X
=1 have asymptotes Ei
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5.10 Summary

Throughout this unit we have learnt the meaning of asymptotes of a curve. We
also studied several types of asymptotes and discussed the method to find out the
equation of asymptote of a curve,

5.11 Exercises

Find the asymptotes of the following curves :
(1) v =x'y=-2x" =2x = Txy+3)* + 2x* + 2x + 2y +1=0
(i) 2x°+3x%y 3" - 2y" +3x" -3 +y =3
(i) ¥ +3x°y -4y’ —x+y+3=0
(iv) (x—y+2)2x-3y+4)4x—-5y+6)+5x—6y+7=0
V) ¥y’ =x(a -x%)
(vi) 4x*-3xy -y +2x’ -xy-3°-1=0
(Vi) y(x-y)' -y(x-y)-2=0
(viil) (x* =y )x* =9y*)+3xy-6x-5y+2=0
(ix) (y+x+D(y+2x+ 2y +3x+3)y—x)+x"+y"-8=0
(X} (x+yY(x+2y+2)=x+9p+2.
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Unit-6 O Envelope

Structure

6.1 Objectives

6.2 Introduction

6.3 Family of Curves

6.4 Definitions

6.5 Envelopes of One Parameter Family of Curves
6.6 Envelope of Two Parameter Family of Curves
6.7 Summary

6.8 [Exercises

6.9 References

6.1 Objectives

After going through this unit, the learners will be able to :

o understand the definition of envelopes.

e determine the envelopes of family of curves.

6.2 Introduction

A curve which touches each member of a given family of curves is called
envelope of that family. In this chapter we shall study the idea of envelope and its
determination.

6.3 Family of Curves

Let (x—o)’ +y° =a’, where a and « are fixed in a certain moment, but if we

allow o to take a series of values keeping « fixed, then we have a series of cricles
of equal radii @. A system of curves fromed in this way is called family of curves
and the quantity which takes a series of values is called a parameter. We write the
equation of a one parameter family of curves by a symbol

Jx,y,a)=0.

55
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We may think a two or three or more parameter family of curves. The equation
of a two parameter family of curves is of the form

«f(x’yﬁa’ﬁ) = 03
where & and 3 are arbitrary parameters : e.g., (x—o)’ +(y—B)’ =1is a two parameter

family of circles of radii 1. Also (x-a)®+(y—B)’ =c® gives the three parameter

family of circles with center at any point of the plane and with any radius, i.e., the
family of all circles on the plane.

6.4 Definitions

Definition 6.4.1 A point P(a, b) is a singular point of a curve
fx,y, a) =0 (o is fixed),

if it satisfies the curve as well as the two equations

of of
<=0 and =-=0.
o ay
The point 7 is said to be ordinary point if at least one of the two partial derivatives
£, £, is not zero at (a, b).

Definition 6.4.2 The characteristic points of a family of curves
fx, y, o) = 0 (o0 is arbitrary)
are those points of the family where the two equations

)
feyay=0 and Lx y a)=0
oo
simultaneously hold.

5, .
Note 6.4.1 If f(x, y, &) = 0 and %(X,,V,(I) =0 both hold for a point where 7, = 0
and f = 0 then the point is a singular point and therefore not a characteristic point.
Example 6.4.1 Find the characteristic points of the family of circles

(x—a) +y° =a’ (o is arbitrary).

Solution : Solving the equations

flx, yv,)=(x—a)+y —a =0
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and %('xa ya OC)E—z(X—OL):OJ

we get the points (o, = a). It can be easily shown that these points do not satisfy 7,

=/J, = 0. Hence (o, + a)are the characteristic point of the family.

Definition 6.4.3 The envelope of a family of curves f(x, y, o) = 0 (o is arbitrary) is
the locus of their isolated characteristic points.

N

envelope

Fig. 6.1

Thus, envelope of a family of curves f(x, y, &) =0, (0 being parameter) is a curve
which touches every member of the family i.e., each point on the curve is touched
by some member of the family.

6.5 Envelopes of One Parameter Family of Curves

If there exists an envelope of a family of curves, its equation may be obtained
in either of the following ways :
I. Eliminate o between

f(x,y,0)=0 and %(x, y,0)=0. (6.5.1)

The elimination (an expression in x and y) is the envelope.

II. Solve for x and y in terms of o from the equation (6.5.1). It will give the
parametric representation of the envelope.

III. For an algebraic curve, the equation of envelope obtained by eliminating o
between

f(x,y,0)=0 and %(x, y, o) =0. (6.5.2)
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is exactly the condition that the relation f{x, ¥, &) = 0, considered as an equation in
o, has a repeated root. Thus if

S(x,p,0) = AQx, )’ +B(x, o+ Clx, y) = 0,
then the envelope is given by B> _44C =0

2

Example 6.5.1 Obtain the envelope of the family of ellipses ?JF ( aif oy =la

being the parameter.

Solution : We have

x* ¥
—+ —-=1.
o (@-o) (6.53)

Differentiating w.r.t. o, we obtain

2
2, 2y -=0.
o {a—o)

2

Thus,
xX__ ¥
o (@-a)
Therefore
xz }’2 - x_i }’3 )
o _{a-0) o {a-0) _1 [by (6.5.3)]
o« {a-w) a a
Hence

1 2 1L 2
a=a'x’; (a-a)=a'y’.
Putting this values in (6.5.3), we obtain

2 2
X
N + 'Ey 4 =1
a3y’ a’ yxs

ie. R
This 1s the required envelope.

Example 6.5.2 Find the envelope of the system of parabolas Ax*+A°y =1 being
parameter.
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Solution : Since the equation of family is A°y+Ax"—1=0, the quadratic form of

parameter, the equation of envelope of the family is x*+4y =0

6.6 Envelopes of Two Parameter Family of Curves

Let
Jxy,a,p)=0 (6.6.1)
be the family of curves involving two parameters o and B connected by the relation
oo, B) = 0. (6.6.2)

We can find out the envelope by two methods.

I. First we express [ in terms of o from the equation (6.6.2) and then substituting
it in the equation (6.6.1) to obtain the equation (6.6.1) in one parameter family of
curves. Hence as before the envelope of the family of curves will be determined.

IL. Differentiating both of (6.6.1) and (6.6.2) partially with respect to o (& being
regarded as independent variable whereas [3 is dependent variable) we obtain

i+i@=0 and @+@@=0.

oo Of do oo Of do
Eliminating % from the above equations we get
o Ja_o /%
0/ 20" 813,..-/ &% (6.6.3)

Now eliminating ¢ and B} from (6.6.1), (6.62) and (6.6.3) we get the required
envelope of the family of curves.
2y

Example 6.6.1 Find the envelope of the family of ellipes - +b—;=1, where the

parameters are connected by ¢ + & = ¢, ¢ being constant.

Solution : Let the family of ellipse be

oy
=1, 6.64
a2 b_ 1 ( )

where parameters are connected by the relation

a + b =r¢, c being constant. (6.6.5)
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Differentiating {6.6.4) and (6.6.5) w.r.t. a, we get
20 g3 20 pdb _
x(=2/a )+ y( 2fb)da 0

dab
1+—=0,
and + T

Eliminating %, we obtain

x° :y_2
a3 bS
. x2/a2_y3frb3_xﬁfaﬁ_,’_yZ/bz_l
Le., a - p - b == [from {6.6.4) and (6.6.5)]

Therefore g =(cx?)”* and b =(¢y?)*. Hence from (6.6.5), we get
(@) +ey)* =c

. 2 37 2
le., 0 +y-" =,
which is the required envelope.

Example 6.6.2 Find the envelope of the family of lines %+%=L where the
parameters are connected by a + & = ¢, ¢ being constant.
Solution : Let the family of lines be
x Yy
=+==1
PRI (6.6.6)
where parameters are connected by the relation
a + b = ¢, ¢ being constant. (6.6.7)
From (6.6.7), we get b = ¢ — a. Then the family of curves becomes
x, Y
=+ =1
PRl (6.6.8)

where a 15 only one parameter.
From (6.6.8), we get

xc—a)y+ya-alc—a)=20
of, a&+aly-x-c)+cx=0,
which is a quadratic equation of the parameter @, Hence the required envelope is
(y—x—c) =4cx.
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6.7 Summary

In the unit we discuss the definition of envelope of a family of curves and the
method to work out the equation of envelope of the family of curves.

6.8 Exercises

Find the envelopes of the following families of curves :
(i) y=mx+am’, m being parameter

(i) (x—a)+(y-a) =2a

-

x° : .
. +“;—2= 1, where a® + & = ¢”, ¢ 15 constant
P

(iii)

2 2
a b
=1, where l_3+m2 =1,1, m are constants

V) y=mx+a’m +°

(vi) x cos 0 + y sin o0 = 4.

(iv) >+

o
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7.2  Objectives

After reading this chapter, the learners will be able to :
e draw graph of a curve.
o know various properties of a curve.

7.1 Introduction

In this unit we study the systematic procedure to draw or sketch the graphs of
curves given by the equations which are either in Cartesian Co-ordinates system or
in Polar Co-ordinates system. With the knowledge of tangents, normals, curvature,
asymptotes, singular points, extreme points, symmetry of curves etc., we may obtain

a good idea to trace the shape of a curve.

7.3 Procedure of Curve Tracing in Cartesian Co-ordinate

System

To draw a curve we need the following observations :

I. Symmetry : A curve is symmetric w.r.t.

(1) the x-aas, if its equation contains only even power of y and hence remains

unchanged if y is replaced by —y.

(i1) the y-axis, if its equation contains only even power of x and hence remains

unchanged if x is replaced by —x.

62
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{1ii) the line y =, if its equation remains unchanged when x and y are interchanged.

(iv) the line y = —x, if its equation remains same when (x, ) is replaced by (-,
—X).

(v) the origin, if its equation remains unchanged when (x, v) is replaced by (-
X, =)

IL Intercepts : To obtain the points where the curve intersects the co-ordinate axes
{i) put y = 0 in the equation to get x intercepts.
(i1) put x = 0 in the equation to get y intercepts.

III. Passes through origin : The curve passes through the origin if its equation
satisfy x = 0 and y = 0 simultaneously. If the curve passes through the origin, write
down the equation of tangents at origin. If the origin is singular point, find the nature
of singularity, cusp of various species, node, or isolated. Also check the origin is
whether multiple point of higher order than two or not.

IV. Concavity, convexity or point of inflection : We determine the points where
the curve has concavity, convexity or point of inflection.

V. Extreme points : We determine the points where the curve has extermum. We
also determine the intervals where the curve increases or decreases. In fact, y increases

¥

or decreases for those values of x where e is positive or negative respectively.

VL. Region of existence : By solving the equation of curve for one variable in terms
of other and thereby we can find out the set of values of one variable which make
the imaginary. In this way we can find the region of existence of the concerned curve
to be traced.

VIL Asymptotes : We determine the vertical or horizontal or oblique asymptotes if,
any, to the curves having infinite branches. Also we determine the points where these
meet the curve and the sides of the curves towards which this lie.

VIIL. Periodicity : For trigonometric functions we check it is whether periodic or
not. It will enable us greatly to sketch the graph of the curve.

Example 7.3.1. Trace the curve 3*(x-1)=x"
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Solution : The curve is symmetric with respect to x-axis. The intercepts are x = 0
and y = 0. The curve exists in the range —o < x <0and x >1and for all values of y.

For the branch y=x ﬁ, the point x = 3/2 gives the minimum point.

yAx-1)-*=0

Fig. 7.1

There is no point fo inflection. This branch is convex to the x-axis. The lines x

=1,y= x+l, y= —x—% are asymptotes. The origin is a cusp of first species. y =

2
0 is the cuspidal tangent. Thus, the graph of the given curve is shown in Fig. 7.1.

7.4 Procedure of Curve Tracing in Polar Coordinate System

We also observe the following characteristics in tracing a curve r = f(0) or f(r,
0) = 0.

I. The curve passes through the pole if » = 0 for some values of 6.

IL. If the values of » does not exist or becomes imaginary for some values of 6, say
0., 6, where 6, < 6 <8, then the curve has no portion between the lines 6 = 8, and
0=0,

I If a and b are respectively the minimum and maximum values of », then the
curve lies wholly within the circles » = a and r = b.

IV. Observe the variation of the values of r for increasing and decreasing values of
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. . . . .. ar .
0 from 0° in the anticlockwise and clockwise senses. In fact, if o) >0, ¥ increases

. .. dr .
as 9 increases and if o) >0, 7 decreases as 0 increases.

V. When 0 is replaced by — 0, if it is observed that the equation remains unchanged,
we say that the curve is symmetric about the line 6 = 0. If © is replaced by © - 0,

. . . . . 7
and the equation remains unchanged, the curve is symmetric about the line © = >

Also the curve is symmetric about the pole if the equation of the curve does not
change when 0 is replaced by m + 6.

VL. Let ¢ be the angle between the radius vector and the tangent to the curve at a
point (#, 8). Then we know that
-y ()
tand =7 I
If ¢ = 0 for some values of 8, say 8, then the line 6 = B, is a tangent to curve
at © = 0, and if ¢ = ®/2 for some values of 6, say 0., then at the point 6 = 8,, the
tangent is perpendicular to the line 6 = 9,

Example 7.4.1 Trace the curve » = a sin 39, a > 0 (Rose-petal).

Solution : We observed the followings :

. _o & 2n 41 5m

(I)F—Ofore—o, 3') 3 ')Tc» 3 » 3 LI

Here sin 360 1s periodic function of period 2m, hence we consider only those
values of © ranges from O to 2w, whreas the remaining values of 0 yield no new

branches of the curve.

{(ii)) We also observe that the curve passes through the pole.

(iii) Here tan ¢ = r%: m.

Hence ¢ = 0 for » = 0 and the corresponding values of 6 are 0, % @ T, 4;, 5; -

Thus 6=0, 9=%, 9=23—n, 0=m 0= 471: 0 =5Tn are the tangents to the curve at pole.
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(iv) Replacing 6 by m — 6, it follows that the equation of the curve remains

. . ) T
unchanged and hence the curve is symmetric about the line 6 = 5

(v) As — 1 <sin 30 < 1, the maximum value fo 7 is a. Consequently, the curve

lies wholly within a circle of radius a.

(vi) Table of variation of the values of » and 0 :

.. T _T kg T T
0: 2 3 6 0 6 3 2
v a 0 —-a 0 a 0 —a

Thus r increases from O to a when 6 increases from 0 to 7/6; r then decreases
from a to 0 when 0 increases from 7/6 to 7/3 and 7 increases numerically from O to
a, when 0 increases from /3 to m/2, the portion of which lies in the third quadrant.

The curve being symmetric about the line 6 = w/2, we consider the table of
variations for  as 0 increases from — 7/2 to 7/2.

With all these facts which we trace the curve as given in Fig. 7.2.

Fig. 7.2

Note 7.4.1 The curve r = a sin n9, a > 0, n = an integer (rose-petals), traces is similar
loops as given in Fig. 7.2 lying wholly within a circle of radius a with center at the
origin and are symmetric about the pole. In case » be odd, there are n-loops and if
n be even, the number of loops are 2n.

The order in which loops occurs as 0 increases from O to 2m are mentioned in
the figure by numbers.
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In the following Fig. 7.3 we trace the curve » = a ain 20, a > 0.

Fig. 7.3

Example 7.4.2 Trace the curve > = a* cos 26 (Lemniscate of Bernouli).
Solution : Here the curve satisfies the following conditions :

(1) Replacing 6 by — 6 and ® — O, it is observed that the equation remains

unchanged. Hence the curve is symmetric about the intial line and the line
0 = n/2.

. T 3T 5S¢
- =+ 2% DN

(i) When r =0, © T T 1

(iii) Table of variations fo » and 0 :

. = _zT T =z
0 : 4 6 0 6 4 i
a a

(iv) As maximum of cos 20 is 1, maximum value of 7 is a and the curve lies
wholly within the circle fo radius a with center at the pole.

(v) Here cos 20 is positive for —%<9<% and %<9<% and we get real

values of 7 there at. But for 0 satistying % <B< %, cos 20 becomes negative

and as such » becomes imaginary.

) b T
Also r increases for 1 <0<0 and r decreases for 0<0< e
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Thus the curve has two similar loops and we trace the curve as given in the
Fig. 7.4.

v

0l TN

%

¥

Fig. 7.4

7.5 Some Well Known Curves

1. Cycloid : x = a(0 — sin 0), y = a(1 — cos 0).

Fig. 7.5

2. Astroid : x = a cos’ 0, y = a sin’ 0 (x%+y% :a%).

£33 4 421 w g2

Fig. 7.6
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3. Cardioid : = a(1 — cos 9).

Y

=

r=all ~costl)

Fig. 7.7
4. Follium of Descartes : x> + )° = 3axy.
&Y

N,

\Q X

8’+]’-M

Fig. 7.8

5. Equiangular Spiral : r = ae® “'?,

l’ﬂﬁt"m-

Fig. 7.9



70 NSOU « CC-MT- 03

7.6 Summary

In this unit we discuss the procedure to draw a graph of a given curve in Cartesian
or Polar co-ordinate system. We draw the graph of curves using their properties. We
sketched also some well known curves,

7.7 Exercises

Trace the following curves :

(1) ¥’ +y’ =3axy (Folium of Descartes)
(i) (o +x")y=a’x
(i) x*+)° =5a’x*y
{iv) x=ual(t+sint), y =a(l-cost) (Cycloid)
(v)y r=a+bcos 9, (a <b)

(vi) y = cosh x/c

(vil) ¥ = asin O tan 0.
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8.1 Objectives

After going through this unit, the learners will be able to :
e understand the L ’Hospital’s Rule.

e determine the limits of indeterminate forms.

8.1 Introduction

In this unit we investigated a very important application of mean value theorem.

) lim ¢(x)

X1

lim W)~ Timy(x) if both the limits lim ¢(x) and [im y(¥) are zero then

In the case

we face with the problem like 0/0 which is meaningless. Such a case is known as
Indeterminate form.

Other indeterminate forms are eofeo, ) Xoo oo — oo (°, 1* and «°, For evaluation
of indeterminate forms oo/ec or 0/0 we shall use a particular device known as
L’Hospital’s Rule.

8.3 L’Hospital’s Rule

8.3.1. 0/0 form :

b's
The quotient % of two functions f{x) and g(x) is undefined at x = a if g(a)

= 0. But if fla) = 0 = g(a), then the ratio 1s of the indeterminate form 0/0 and we can

71
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X)

determine the limit of the ratio °
g(x)

this connection we state a basic theorem known as L'Hospital’s Rule.

at x = a by the conception of derivatives. In

* L’ Hospital’s rule : If two functions fx) and g(x) are
(1) continnous in the closed interval [a, a + A],

(i1) derivable in the open interval (o, a + /) and

(iiiy lim f(x)=0= lim g(x), > 0 is a suitably small number,
then,
lim S _ = lim L&)

x—ra+) g(x) x—ra+) gr(x) )
provided the limit of the right hand side exists.

Proof : From Cauchy mean value theorem we obtain

J@0) - fl@) _ [
g(-gla) 0

,a<ec<x<a+h

e, L2=Lus fia)=0=s5ta)

Jx) J©)

Theref: lim = lim .

erelore x>+ g(X) a0 g (c)
Again since g << ¢ << x, ¢ > a + 0 whenx — a + 0, we get

f (x) fe) _ S&)
t—>a+0 g (x) X—l:'l:flo g (C) x_l’l(.'l;lu g (x)

Note 8.3.1 It can be similarly shown that
C DA ()
= lim &=
\:—m 0 g(x) a0 g (X)
limZd ® — i L)
X g(x) X—rd g (x)

(x
Note 8.3.2 If xl_wojgrg ; does not exist, then we should not conclude that xl_ljaT}U Qx;

does not exist.
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Note 8.3.3 L'Hospital’s Rule also holds when a = o
*Generalization of L’Hospital’s Rule : If also lim f'(x) =0 =lim g'(x),
then
m L i LSO S
() v g) o g0

provided the last limit exists.
We continue in this manner until one of the derivative g (a) = 0.

. log(l+
Example 8.3.1 Evaluate the limit lxl_l}g _Og(x x)'

Solution : Here
llmj(x) lim log(1+x) [ f rm]
%30 g(x) %30 X 0
Thus, by L Hospital’s Rule

imd® i L&)
=0 g(x) x>0 g'(x)

= lim——
= 1.

tanx—Xx

Example 8.3.2 Evaluate the limit 11m
-0 ¥ —sinx

Solution : Here

lim<——=
=0 g(X) -0 X—sInXx

S _mianx—x [% form]‘

Thus, by L’Hospital’s Rule
S S

lim<= =lim
0 g(x) 0 g (X)

secx—11[0
_lxl—ml COSX [0 fom]
f 2sec’ x tan x
= lm.—
x50 sint X

=lim2sec’ x

0

=2
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8.3.2. oofcc form :

If two functions f(x) and g(x) are
(1) continnous in the closed interval [a, a + 4],

(i1) derivable in the open interval (¢, ¢ + /) and
(i) lxi_I}}f (x)=co= ltl_lg 8(x), where # > 0 is a suitably small number,

then,

0 S0
e g

provided the limit of the right hand side exists.

luate the imit lim —285—
Example 8.3.3 Evaluate the limit ’!™ logcot’x -

Solution : Here

2
lim J() =lim lng2 [2 form]_
=0 g{x) =0 logcot” x Leoo

Thus, by L'Hospital’s Rule

SO S
Mo "M

1 2x
m - =
¥=0 —4— 2ot X(—Cosec X)

— _|jp SInX COS X [g form]
x—0 X 0

i . i
. COS X —SINn"Xx
=-lim————
x—0 1

= -1
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8.3.3, o — oo from :
Let f(x) and g(x) be two functions such that lim f(x)=cc=limg(x). To find
Lif;l{f’(x)—g(x)}, we take

oy = L8 1 f(x)
Fx)-gx)== T @g)

which is of the form 0/0 and can be evaluated by the method discussed in 8.3.1.

. )1 2
Example 8.3.4 Evaluate the limit kﬂ{;_ e +1)}'

Solution : Here

. 1 2
1 —_— m—mf
xlgg{x x(ex+1)}[ orm]

. -1 [0
= lim——— [—f rm]
xlggx(e*+1) 0

= lime—x sing L’ Hospital’s Rule
=0 2 + 1+ xe” [u & P . ]

b | —

8.3.4. 0 X o form :

Let f{x) and g(x) be two functions such that lim f(x)=0 and lim g(x) =

X—rln

To find l_i_lg{f (x)g(x)}, we take

F@)g) = 1,;;{%,

which is of the form 0/0 and can be evaluated by the method discussed in 8.3.1.
Example 8.3.5 Evaluate lim(1-x)tan -

Solution : Here

lirr]1(1 —x)tan % [0x oo form]
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T Lo 0
= llI‘l;l po— |:6 form]
00t7
_ * _1 E > T
= lim R [by L’ Hospital’s Rule]
2 2

_ 2

=

8.3.5. 0°, =", 1* forms :

The three exponential forms 0%, «°, 1*~are dealt with by taking their logarithms
and each of the forms is reduced to the form O x oo already discussed in 8.3.4.

1
Example 8.3.6 Find the limit 1im(‘a“")*' ‘

x— X

Solution : Here the limit is of the form 1.

log(ta;x) .
liml =lim————* | = fi )
limlog y = lim— [0 orm]

Using L Hospital’s Rule we get

lirrf} log y

¥ Xsec’ x—tanx 1.
x—=sin2x |:0

. tanx’ x° : 2
lim =lim—=— [ = form]
=0 2x x=0 X sin 2x 0

— lim 1-cos2x [

0
- fOf’ITl] 1 * a1t
=0 2 Sif 2x + 252 C08 2% [using L’Hospital’s Rule]

0

. 2sin2x . .
= lim — s s
x=0 28in 2x + dx cos 2x + 4xcos 2x — 4x~ sin 2x [using L"Hospital’s Rule]

= lim— sin 2x — [Q form}
#081n 2x +4xcos2x —2x sin 2x 0
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lim 2cos2x
=0 2¢082x + 4c082x —8xsin 2x — 4xsin 2x — 4x° cos 2x
[using L Hospital’s Rule]

2 _

1
2447 3

G|

Thus, ltl_l‘l’;llog y= % We know that lj_l;lt‘)llog y= log(lxig _}’)- Therefore, log (lxl_lB _}’) =

. . tan x }#
Hence limy= e’ or, llm[ ] ="
i)

x— X

8.4 Summary

In this unit we have learnt a very important technique to evaluate the limits in
the indeterminate forms. We gave some examples to understand the technique.

8.5 Exercises

Evaluate the following limits :

. ix
. . ex _ esm_\: » l e —1
@) lim x—sinx a5 log(1+x)
e i X +logx NENERTIY B
(i) .!cl—>nr]x\—xlogx (1v) L?_‘}}(x sinx)
" ] \enx N LimfX= sin x
(v) mi V) Tanx
i | € —e7 =2log(l+x) o i 1ogd = x)
(vi1) 1:23[ xsinx J (viit) 132}[ cos(mx) |
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9.1 Objectives

After studying this lesson the readers should be able to
o understand the concepts related to business economics and life sciences with
the applications of calculus.

o apply the techniques of differentiation to solve business economics and life
science problems.

9.2 Introduction

Calculus 1s a very important part of our real life. But many of us ask how
calculus help us in real life. In this unit we are going to discuss how it is useful in
our real life. Calculus is used to determine the right time for buying and selling of
products. It helps economists to grow up their business economics.

Biologists also make use of calculus to determine the growth rate of bacteria,
modeling population growth and so on. In medical field calculus is also useful.

Calculus 1s required by architects, engineers to build roads, bridges, tunnels,
building etc. and without the use of calculus our real life is unsafe.

9.3 Definitions Related to Business Economics

Total Cost (TC) : Total cost is the combinations of fixed cost and variable cost of

78
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output. If the production increases, only variable cost will increase in direct proportion
but the fixed cost will remain unchanged within a relevant range.

Total Revenue (TR) : Total revenue is the product of price/ demand functions and
output.

Profit (P) : Profit are defined as the excess total revenue over total cost. Symbolically
it can be expressed as

P=1TR-TIC

The rules for finding a maximum point tell us that P is maximized when the
derivative of the profit function is equal to zero and te second derivative is negtive.
If we denote the derivatives of the total revenue and total cost functions by d7R and
dTC, we have P will be maximum when 7R —d7C = 0.

Hence the derivative of the total revenue function must be equal to the derivative
of the total cost function for profit to be maximized. Hence

d(profit function)

Profit maximizing output = 7

, e .. dP d‘P
Therefore in case of maximization, the conditions are E_O and W{O'
Similarly, we have

d(total cost function)

Cost minimizing output =

(ix L]
and the conditions of minimizing are di;(“ =0 and dc;;(“ >0.

Merginal Cost (MC) : Marginal cost is the extra cost for producing one additional
unit when the total cost at certain level of output i1s known. Hence it is the rate of
change in total cost with respect to the level of output at the point where the total
diC
e

Marginal Production (MP) : Margimal production is the incremental production
1.e., the additional production added to the total production (TP), e,

cost is known. Therefore we have MC =

_dTP
MP =2
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Marginal Revenue (MR) : Marginl revenue is defined as the change in the total
revenue for the sale of an extra unit. Hence it is the rate of change in total revenue
with respect to the quantity demanded at the point where total revenue is known.
Therefore we have

_dIR
MR = g

where total revenue is the function of x, the quantity demanded.

Example 9.3.1 Let the profit function of a company is given by P = fix) = x -
0.00001x°, where x is units sold. Find the optimal sales volume and the amount of
profit to be expected at that volume.

Solution : Here £ = f{x) = x — 0.00001x* The profit will be maximum if dP _ g

a
dapP
— <0
and v
Now
dP
= =1-0.00002x.
& X
Hence
dapP
L
dx
= 1 -000002x =0
= x = 50000 units.
d*pP

Also e =-0.00002 <0. Hence The profit will be optimum for the sales of

50000 units and the profit will be
P = 30000 - 0.00001 .(50000)

= 25000 currency units.

9.4 Applications in Life Sciences

9.4.1. Density Dependent (Logistic) Growth in a Population

Biologists have seen that the growth rate of a population depends not only on the
size of the population but also on how crowded it i1s. Constant growth is not sustainable.
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When individuals have to compete for resources, nesting sites, mates, or food, they
cannot invest time or energy in reproduction, leading to a decline in the rate of
growth of the population. Such population growth is called density depndent growth.

We suppose that the growth rate of the population is G, which depends on the
density of the population, NV as follows :

K-N
Ny=rN|——
Gy =mv(E2)
Here N is the independent variable and G(#) is the function of interest. All other
quantities are constant :

e v > 0 is a constant, called the intrinsic growth rate.

e K > 0 is a constant, called carrying capacity. It represents the population
density that a given environment can sustain.

Example 9.4.1 (i) Find the population density N that leads to the maximal growth
rate G(N).

(i1} Find the value of the maximum growth in terms of » and X,
(iii) For what population size is the growth rate zero ?

Solution : We can rewrite G(N) as

_ (K =NY_ e
G(N)_rN( = ) =L,

from which it 1s apparent that (%) is a polynomial in powers of &, with constant
coefficients » and #/K.

(i) To find critical points of G(N), we find N such that G(¥) = 0, and then test
for maxima :

ANY= 0l N = _K
G(N)=r-24N=0 =N==

Hence ¥ = % is a critical point, but is it a maximum ? We check this as follows :
G'(Ny=-2L<o0.
(Ny=-25<

Thus & =§ is the maximum point. Therefore the population density with the

greatest growth rate is K/2.
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(i) The maximal growth is give by
GK12)=rK/12—rIK(K/2) =%_

(i) To find out the population size at which the growth rate is zero, we solve
the equation

G(N) =rN(KK;N) =rN—%N3 =0,

There are two solution, one 18 N = 0 and other is N = K. The solution ¥ = 0 is
biologically interesting in the sense that life can arise on its own. So no population
arises to logistic growth. The solution N = K means that the population is at its
carrying capacity.

9.4.2 Cell Size for Maximum Nutrient Accumulation Rate

The nutrient absorption and consumption rates, A(r) and C(r), of a simple spherical
cell of radius » are

A =kS =3k, C(ry= kY =3 nk s,
2

for kl, k2> 0 constants,
The net rate of increase of nutrients, which is the difference of the two is

N(r) = A(r) - C(r) = kv’ — %nkf_

This quantity is the function of radius # of the cell

Example 9.4.2 Determine the radius of the cell for which the net rate of increase of
nutrients N(r) 1s largest.
Solution : We know

N()= A() - C(r) = ke’ - ks
Differentiating w.rt. » we get
N'(r) = 8kmr — dnk.r”.
To find the larget nutrients rate the condition of critical points is N'(#) = 0. Hence
5 k
8hyr —4mkr” =0=r =0, 2k_l- To test the critical points for extereme we

differentiate again to have
N"(r) =8k —8nk.r.
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k
Now at = 2]‘71’

N"[zi‘—'] = 8k,7c—87£k3.2;;(—‘ = 8wk, <0,

2 2

. . . k
Hence the net rate of increase of nutrients Nr) is largest for » = 2]{—1‘

2

9.5 Summary

Calculus was invented from the visions of master minds. It took little time to
break through the bridge of theoretical inquiry to practical skills of human activities.
The application of the novel methods of calculus enabled to determine the timing of
buying, selling the products and to help us to know how much units should be sold
to maximize profit. Calculus also determines the activities in our human body.

9.6 Exercises

1. If the total cost y of manufacturing x units of a production is given by
y = 20x + 5000, then

(i) What is the variable cost per unit ?

(i1)) What is the fixed cost ?
(iii)) What is the total cost of manufacturing 4000 units ?
(iv) What is the marginal cost of producing 2000 units ?

2. The total cost of a firm is C=%x3—5x3+28x+10 and market demand is

P = 2530 — 5x, where x is the no. of units of production. Find the profit maximizing
price.
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10.2 Objectives

After going through this chapter, the learners will be able to :
o derive the reduction formula of some standard integral problems.

o understand the technique of integration to derive the reduction formula.

10.1 Introduction

A Reduction formula is one that enables us to solve an integral problem by
reducing it to an easier integral problem, and then reducing that to the more easier
integral problem, and so on Reduction formulae are mostly obtained by the process
of integration by parts.

10.3 Derivation of Reduction Formulae

10.3.1. Reduction Formula for Jx"e""tbc, nbeing a positive integer :

Let

n € w1 e
=x"—-— =—dx  [Int,
= Inx p [Int. by parts]

xﬁeﬂ\: n _
= —-= jx” 'e™dx.
a a

84
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Thus,

MY

Xe M
[ =X¢ 1,
o o

u-1*

Example 10.3.1 Find Jx“e“dx.
Solution : Applying reduction formula, we have

and Inzjxoem:ch,=e _

a
Hence
4 e 3 av 3 ax an ax
14=xe _4xf +12xse _24xf +24e; ve
a a a a a

10.3.2. Reduction Formula for Isin"x dxand |sin“x dx, n being a positive

e ]

integer greater than 1
Here

I = Jsin” xdx= J‘sin""1 ¥ sinx dx
=sin"" x(~cosx)— I (m—1sin"” x cos x(—cos x)dx [Int. by parts]
=—sin" xcosx + (1 — I)I sin™ x(1 —sin® x)dx

=-sin" xcosx+(n-DI_,—(n-1)I_
Simplifying the above we get the reduction formula

M |
sin” xcosx  n-—1
[, =- + Il .
i n
Furthermore, we take
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M| 3
sin”” xcosx -1
=- + I,
H H N

0

Thus, in this case we have the reduction formula as

Jn = ﬂ'}n—:’,'
n

]

Example 10.3.2 Find Isins xdx.

Solution : Applying reduction formula, we have

2
Jo=5d =3,

£

k]

and J, =Isinx dx =—{cosx]t =1.
0

Hence

_42z2,_38
J=gsl=

r

10.3.3. Reduction Formula for Icos"x dx and Icos"x dx, nbeing a positive

integer greater than 1

Taking {, = Icos” dx = Icos"" x. cos x dx and proceeding as in the previous article,

we may find

n-1 :
cos” xsmnxy , n-1
I,= +222 and =

2 _n-1
. ,=leos"xdv=—-J _,.

n

= lL]

10.3.4. Reduction Formula for Isin"’ x cos” x dx, m, n being positive integers

greater than 1
Let

I = Isin”’ xcos” x dx = jcos"'1 x(sin"x cos x)dx

LR

s pit] £ pitl
=cos x HML_X_ j(n —1)cos™~ x(—sinx). 0
m+1 m+1

[Int. by parts, taking # = ¢os™'x, dv = sin”x ¢os x dx]
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fLISs |

_sin”" xcos" x -1
m+1 m+1

cos™ > xsin™ xsin” x dx

3 Htl

_sin xcos”"x+ -1

cos"? xsin” x(l —cos’ x) dx

m+1 i+l
sl w1
_sin” xcos” x n—1 _n-1
m+1 m+l " w4l

Simplifying we obtain

by ot | H—] _
j —Ssin""xcos" x  n 1 10.3.1)

- mp—2-

i m+n W+ R

In the similar manner, if we take

L, = Isin’" xcos" x dx = jsin’”‘1 x(cos” sin x)dx

integrating by parts, taking # = sin”" x, dv = cos” x sin x dx, we obtain

sin”'xcos™ x | m—1 .
1 - + w2 n (10‘32)
m+n m+n "

T

10.3.5. Reduction Formula for jsin’”x cos” xdx, m, n being positive integers
0

greater than 1

Take

J =

HL#H

sin™ xcos” x dx

O ey 3| F

- na=2

[sin”’*'xcos”"JurTJr n-1, _n-1

m+n . mtn ™ m+n

. el N
__[sm’“ xcos"™ x] +m=l _m-1

m+n mn I men M

0
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Therefore

_n-1 _m-1
m+n ™" m+n

S pam (10.3.3)

L

Example 10.3.3 Find Isin" xcos” xdx.

Solution : Applying reduction formula, we have

L) 3 -
{, =M XCOS X 27  [from(103.2)]
6 6%
sinxcos’x _ 1{ sinxcos’x 1 2
—-sinxeos v If_sinveosx Ly | ffrom 10,3 2)
=_sinstOSSX_sinxcosstrl(sinxcosx+lfnn) [from (10.3.1)]
6 3 8 2
Also
Iyy = Isin“xcos“ xdx=x
Therefore
. 3 3 . 3 .
7. = Sinxcos’x sinxcos'x , sinxcosx, x . .
+2 3 8 16 16 °

Example 10.3.4 Find |sin®xcos’ xdx.

= lL]

solution : By (10.3.3), we get

7 53 31
==l === ===, === -=1
L 12°% 12710 % 12°10°8 ** 12'10°8°6 *
45313, _ 753131, __7
121086 4 2° 12100864 2 % 1024
Also
Loo =J sin” xcos” x dv =[x]? =%‘
Therefore

7n
I,.= )
2048
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89

10.3.6. Reduction Formula for Isin"’xcos”x dx, where either m or # or both are

negative integers
Let

I = Isin’" xcos” x dx.

X

We have from (10.3.1),

;- sin”’”xcos’“x_’_ -1
i H+n m+n

Hp-2

Changing # to n + 2,

;- sin”’”xcos””x+ n+l
S m+n+2 m+n+2 "
and transposing,
sl w+l
sin” xcos" x  m+n+2
l,, =- + l, ..(m+1£0)
: n+l n+l ’

Similarly, from (10.3.2), we can find

| n+l
sin” " xcos" x  m+n+2
I = + I

5 +1+0).
it nr+1 m+1 m+2 0 (m )

COS xdx

Example 10.3.5 Find I Sn’x

Solution : Applying (10.3.5), with m = -2, n = 4, we get

(sinx) 'xcos’ x
I,,=

4
. ] +_—1[0,4.

Now applying (10.3.1) with m = 0, n = 4, we obtain

3 H 3
7. =8O8 X [ sinxcos x. 3 .
~4 sinx 4 4 >

3
= —M—sinxcos3x—3(

sinxcosx . 1, )
sinx

2 270
Also

Iy, _I‘S’f’; fa‘x fabr=x

(10.3.4)

(10.3.5)
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Therefore

) 3
Iwmz _Los X _sin X cos’ ¥ — S sin X cos¥— S x+e.
sin” x sinx 2 2

10.3.7. Reduction Formula for Itan"xdx and j tan"xdx, n being a positive
]

integer greater than 1
Let
I = Itan" xdx = J.tan"‘3 xtan® xdx = J.tan"‘3 x(sec” x —1)dx

= ItanH xsec’ xdx—1I

#-1
- ta: lx -1 _, [substituting tan x = z].
Thus,
tan" x
I = o e
" ??—1 n-2 (10 3 6)

Using (10.3.6) and taking =J tan” xdx, we get
0

§ =1 i
J, =J tan” x gy =| 80X -J.
d n-1 |, -

Therefore
J =——J_, (10.3.7)

Example 10.3.6 Find [tanx dx

Solution : Applying (10.3.6), we get

[otax g tan3x_(tanx_[0)

3 : 3 1
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where [, = Jtan“x dx = x.

Therefore
14:m—tanx+x+c.
2
Example 10.3.7 Find | tan’x dx
0
Solution : Applying (10.3.7), we get
-1 ;,_11
J =3 J4—5 3+J2
1 1
=——-=+1-J
5 3 0
% {0 '!4 T
where JOZLtan xdx =[x]; =
Thus
1 1 n_ 13 =
J=c—s+l-2=2_ZL
S5 3774 15 4

10.3.8. Reduction Formula for]cot"x dx and J cot” xdx, n being a positive

integer greater than 1

Proceeding similar as in the art. 10.3.7 and expressing cot”x =cot™?

x(cosec’x —1), we see that

n-1
[ == X 7 andJ =-—1_—J .
) n—1 e n—1 -

10.3.9. Reduction Formula for Isec"xdx, n being a positive integer greater than 1

Let

I = Isec” xdy= J‘sec”"2 xsec” xdx

=sec” xtanx— I(n —2)sec’” xsec x tanxtanxdx [Int. by parts]
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=sec” " xtanx —(n— 2)'|‘sec”"2 x(sec’ x —1)dx
=sec”" xtanx—(n—2)I, —1,_,),

and transposing

"=z
In=sec xtanx+n ZIM.
n—1 n—1 "

10.3.10. Reduction Formula for jcosec" xdx, n being a positive integer greater
than 1

As in art. 10.3.9 we may find

/- cosec”*xcotx pn—2

0

I ..
n-1 n-1 "

Example 10.3.8 Find J.sec‘I xdx.

Solution : Here

] = sec‘xtanx_i_%[3

4 3 3

_ sec*xtanx+g(tanx+0)
3 3V 1

2
sec“xtanx , 2
:T+;tanx+c.
J

10.3.11. Reduction formula for Ix'"(logx)"dx, n being a positive integer
Let

L, = Ix’”(log x)'dx

_ i xm+1 B it l xm+1
=(logx) — In(logx) ‘x'_m+1dx [Int. by parts]

xm+l
m+1

— n _L " -1
=(logx) m+1-‘x (logx)" dx
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xm+1 B 1
m+1 m+1 ™"

= (log x)"

Thus, the reduction formula 1s

[ _ xm+1(10g X)n _ 7
™ m+1 m+1-mr

10.3.12. Reduction formula for Icos’”xsinnx dx, m, n being a positive integer
Let

Im o= Icos”’ xsinnxdx
A

"
cos” XCosHx _ m Ao .
=22 2P " |cos" " xsinxcosnxdx [int by parts]

R H

"t
—_COs xcosnx ﬂjcos’“" ysinnxcosxdy

n n
+m.[cos’“‘1x sin(r2 —1)x dx
n

[since cos mx sin x = sin ax cos x — sin (7 — 1)x]

__cos"xcosmx _m; Mg
- e T a1
n n n

Thus, the reduction formula 1s

L}
j = gos"xcosnx | m
: n+n m+n

m-1.n-1"

10.4 Summary

In this unit we have learnt the reduction formula of several functions. These
fomula give us to find out the integrals easily.



94 NSOU « CC-MT- 03

10.5 Exercises

1. Evaluate the following integrals :

(i) J‘x‘ﬂ‘e"xdx (ii) J‘x‘ﬂ'(logx):dx
(iii) Jsinsxdx (iv) Jsingxcoszxdx
) f%aﬁr (vi) [tan’xdx
(vii) Jsecsxdx (viii) Jcosecsxdx
(ix) [tan’ xdx (x) [cot’2xdr.

2. Find the value of the following ingegrals

: £
) [sin’xax (iiy [sin®xcos® xdx
0 0

L
(iii) [cos* xsin3xdy
]
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11.5 Exercises
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11.1 Objectives

After going through this chapter, the readers will be able to :

e understand the formula of arc length.

e determine the length of an arc of a curve,

11.2 Introduction

In this unit, we use definite integral to find the arc length of a curve.

11.3 Length of an Arc of a Curve

Let the given arc AB of a curve y = f{x) between x = ¢ and x = b be divided into
npartsby points P, P, .., P _, P,..., P _ asshownin the Fig 11.1. Suppose

'I’
that the corredponding abscissae of these points are

X

l’x

X X X

2y s s e Ay

and ordinates are

yl? yzn ' '?.yr—li‘ yr? T yn—l -
We draw chords AP P P, ... P _ P, .., P _Bthrough consecutive points.

=1 F?

Then the sum of lengths of these chords is
AR +FPP+. . +P_ P+ . +P_B.

95
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Lo

Fig. 11.1

When n becomes infinite, the length of each chord tends to zero. Hence the
limiting value of the sum of the length of chords will be the length of the given are
AB.

Now

2
A
length of chord £, 1 = (Ax,)’ +(Ay,) = 14{ A?j Ax.

Now if the curve be continuous and derivable at every point on [a, b], from the
mean value theorem of the differential calculus, there exists at least one point, say

Ay,
x =& on the are P P at which the slope of the tangent, f '(ir) is equal to 2.~

Thus the length of the chord P P becomes 1+{f”(§ )}*Ax, and, consequently,
by the fundamental theorem of integration, the total length (s) of the are AB is

5= }ggﬁ\/u{f'(&,)}zmr = [ I+ (1),

where a, b are respectively the abscissae of 4, B.

I. Therefore the length of the arc of the courve y = f(x) between the points whose
abscissae are a and b is given by

j;w/l+{f’(x)}2dx or j; l+(g—£)2dx.
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IL If the curve be given in the form x = A{y), the length of the arc between two points
(a, ¢) and (b, d), may similarly be given by

I,/1+{f’(y)}3dy or j 1+[%]ddy

IIL If a curve be given in the parametric from x = f{r) and y = ¢(#) and if 7, and ¢,
be the corresponding points of a and & respectively, then the length of the arc of the
curve be derived from 7 as

J ( ) [ ) dt

IV. If the polar equation of the curve be ¥ = £8), then as x = r cos 8 = f(9) cos 0,
y =rsin 8 = f(9) sin O, the length of the arc between two points whose vectorial
angles are 0, and 0, is given by

J JUeF+{r@rde or j s

V. If the pedal equation of a curve be p = f(r), then the length of an arc of the curve
from » = # to r = #, may similarly be given by

I rdr ds = sect = 1 _ 2
dr cosd \/ri_p2

Example 11.3.1 Find the length of the perimeter of the circle x* + y* = 25.

Solution : Using the formula I and Fig. 112, we see that

the perimeter of the circle = 4 x the perimeter of the circle in the first
quadrant

—4] 1+(g]afx

_af__5
= 4‘[0 sr— dx

3
=20 =10
[sm 5] T

0
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Fig. 11.2
Example 11.3.2 Determine the length of one arch of the cycloid
x =a(0 —sinB), y=a(l — cosB).
Solution : Referring to Fig. 11.3 and applying formula III, we see that the length

of on arch of the cycloid

o 2 2
dx dy
= )+ L) a
JO (de) +(de) o
= _[02“2a sin%de = 8a.

Y

X

M D
Fig. 11.3

Example 11.3.3. Determine the perimeter of the cardioid » = a(1 — cos0).
Solution : Referring to Fig. 11.4 and applying formula IV, we see that the
total length of the cardioid

T d]’ 2
_ 2
_2j0,/r +(%) do

= 2aj \/(l—cose)2 +sin’ @ d0
0
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_ T 0 0
= 4aj0 sin 561’9 = 8a.

r = g{l - cos #)

Fig. 11.4

11.4 Summary

In this unit we see that the formula of arc length comes from the approximating
the curve by straight lines connecting successive points on the curve using Pythagorean
theorem. An integral fromula is developed to compute the arc length of a curve.

11.5 Exercises

1. Find the length of the followings :

(1) y = log(1 — x*) between x = 0 and xZ%.
(i) @* = x* from x = 0 to x = Sa.
(i) r =6*, 0 =0and g=1/5.

(iv) x = % sin B, y = ¢° cos; 6 = 0 and 9=%.

(v) the perimeter of the astroid x* + 37 =4

2. Find the length of the loop of the curve 9ay® = (x —2a)(x — 5a)*.

3. Find the length of the arc of the parabola x* = 4y from the vertex to the point where
x =2
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12.1 Objectives

After reading this text, the students should be able to :
o find the volume of solid by revolving a curve around a line.

e determine the area of surface of revolution

12.2 Introduction

In this umit we shall discuss a very important process to find out the volume of
solid and area of surface of revolution. The method of definite integration enabled
us to find these. The process of finding the area of plane figure will be extended to
determine the volume of solid and area of surface.

12.3 Volume of Solid of Revolution

Let V' be the volume formed when an area ABCD in Fig. 12.1, under the curve
y = fix) between A(x = a) and B(x = b) is revolved about the x-axis. We divide the
interval [@, #] into » parts by means of the arbitrary set of points

X Xyyo o 0 X

pelr pr ot

X

n=1"

Let
Ax, Ax,,. JAx . . Ax,

101
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be the length of respective sub-intervals into which [a, 5] is subdivided. As the entire
area about the x-axis being perpendicular to it, a general infinitesimal strip of area
PORS, of base Ax_likewise revolves and generates an infinitesimal disc of volume
AV (say). The entire volume can now be thought of as composed of the set of discs
generated by the revolution of the various strips of the area ABCD.

1

Fig. 12.1

Next let Y, and Z denote respectively the least and greatest value of y = f(x)

in Ax. Then since volume = face area < thickness, we have

1y’ Ax, <AV, < y*Ax

By addition and nothing that »_" ¥, =¥, we have

Zn:ny_for <y < Zn:ny_for.

r=1 r=1
Now if the manner of subdivision of [a, b] be such that the greatest of Ax — 0
as n — oo, both sums approach the same limit. Hence

V= limzn:nyfor = limzn:n{ FED) Ax,
e r=1 e r=1

in which y = f(§) is the ordinate of an arbitrary point x = &, in Ax. Applying the
fundamental theorem to the last sum

Vznfyzdxznl{f(x)}zdx.

I. Thus the volume generated by revolving an area bounded by the curve y = f(x)
between x = a and x = b about the x-axis is expressed by the integral
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b B
V=n|yde=n[{f(0} &
IL If however the curve be expressed by x = f7), v = ¢(1)
b i .
= xf yide = {0} 10,
a f

where £, £, are values of ¢ that correspond to x = @ and x = b respectively.

IIL If again the curve x = ¢{y) bounded by y = ¢ and y = d be revolved about the
y-axis, the volume is given by

V= nI X*dy = ch foonY dv.

Example 12.3.1 Find the volume of a sphere of radius «.

Solution : Let the equation of the circle in Fig. 12.2 be x> + )° = . The center is
at the origin and radius O4 = a. Let the quadrant OAFB be rotated about OX. Then
a hemisphere will be created.

Thus, the volume of sphere will be

o= 2nf yidx

_ [ 'R N S
—211:1[((1 x)dx—311:a.
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2 2

Example 12.3.2 Find the solid formed by the rotation of an ellipse ;3 +;;;2 =1.

Solution :

(i) About the major axis :

Referring to Fig 12.3 and rotating about x-axis, we see that the volume obtained
by the rotation of the upper half of the ellipse

= 2 x volume obtained by the rotation of the quadrant OAB

= 2><]Iny3dx
0

2

= 2n zz (@ - ¥)dx = %mbz‘

Fig. 12.3

(1) About the minor axis :
The rotation being about y-axis, the volume of the whole ellipsoid

Example 12.3.3 Find the volume of the solid generated by revolving one arch of the
cycloid x = a(0 — sin 8), ¥y = a1 — cos 8) about its base.

Solution : Referring to Fig 12.4 and applying Rule II we find the required volume
= 2 x volume generated by half of the arch

=2 [ na’(1-cos®)'d®
#]
=2m36[851n6%d9

=5n'a’.
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Fig. 12.4

Example 12.4 Find the volume of the solid generated by revolving the cardioid
r = a(l — cosB) about the initial line.
Solution : Referring to Fig 12.5 the required volume by rule 1 is 7/ydx.
Now changing the variables from x and y to » and 0, we observed that
x =7 cosB = a(l — cosB) cosh, thereby dx = a(— sinB + 2sin® cosO)dd
y = r sinB = a(l — cosB) sinb.
and the volume becomes

Q
TCJ a’(1—cos8)’ sin’ B.asinB(2cos® —1)dO

1
= ma’ [ (1-2))(1- 2*)(1-22)dz [putting cos® = z]

-1
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12.4 Area of Surface of Revolution

When an arc of a plane curve is revolved about an axis in its plane, a surface of
revolution is generated. The area of such a surface is defined and calculated as
follows.

We can derive the formula of the area of surface from the formula of arc length.
Let’s look at rotating the continuous function y = f(x) in the interval [a, ] about the
X-axis.

Let the generating arc be the portion DC of the curve y = f(x) between x = a and
x = b and let the axis of revolution be the x-axis. We divide the interval [a, /] into
n parts by means of the arbitrary set of points

Xy, Xy X, X0 X,
and let
Ax, Ax,,. . Ax,,.. Ax,
be the length of respective sub-intervals into which [a, b] is subdivided. Let the arc
DC be divided into » parts by means of the arbitrary set of points

PP, PP, P

1o 20 9% po Lot po

the corresponding ordinates being

yl: yza"'nyr—lﬂ yr:"'nyn—lﬂ

Fig. 12.6

We next draw chords through consecutive points
DPE, PP, .,P_ P, P C

141 i L dyg

and consider a typical one P P corresponding to Ax and Ay (=y —y ) revolving
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about the x-axis. This chord generates and infinitesimal frustum of a cone, whose
surface are AS§ (say) is given by
AS =1 x sum of the radii of the two bases < slant height

=y, +y)X PP =1y, + Y, W(AX,) +(4Ay,)

2
—_ yr—l+yr %
= 211:—2 !’1 J{ij Ax

Now if the curve be continuous and has a derivative at every point, then by the
mean value theorem fo the differential calculus, there exists at least one point on the

arc P_ P, at which the slope of the tangent f'(€)) is equal to the slope of the secant

A
ﬁ. Moreover %(yr—l +Y,) is just the average height, or height at the middle point

of the chord P_F and from the continuity of the curve y = f{x), there must exist at

F

least one point between F,_, and P say the point x =n, at which the ordinate is
equal to the average height.

Hence

AS, =27f(n WIH{F'E )} Ax,.

Defining the area of the entire surface to be the limit of the sum of this typical
areas when # — oo in such a way that the length of each chord approaches zero,

we have
§ = lim35, =lim2ry; i1+ {7 €} Ax,
r=1 »=1
b
= 2n[ FO1+{F ()} d
<] dy 2
= 211:“[}» 1+(E] dx
or briefly,

f d
S=2njy£dx,

in which ¥ and ds are to be replaced by their equals in terms of x.
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Cor. 1. In the case of the curve x = f(¢), v = ()

S= 215] yd‘sdt 215] ( ) [ )dt

Cor. 2. When the axis of revolution is the y-axis the corresponding formula will be
(taking y = ¢ and y = &)

S= 21tjx1+( )dy 21:]

Cor. 3. The area may also be found out in terms of polar coordinates when an
equation is given in the polar form by the substitution x = » ¢os0 and y = 7 sing.
Example 12.4.1 Find the surface of a sphere generated by the circle x* + y* = o> about
the x-axis.

Solution : To find out the area of surface of sphere we consider to Fig 12.7 and apply

) . d 3_ 2 2
the result of art. 12.4. Since x*+° =a”, E}g_; and 1+[%) —1+; —;—

[}

Therefore

S = 2 x surface area generated by arc 4B

2><21'EJ y 1+[QJ dx

= 4th ady = 4xa’.
V]

{0, 03[A

Fig. 12.7
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Example 12.4.2 Find the area of the surface generated by revolving about y-axis that
part of the astroid x = a cos’0, y = a sin’0, that lies in the first quadrant.

Solution : Using Cor. 1, of art. 12.4, with

dx _ dy _
70 —3acos’Bsinb, 0 =3asin’HcosO

we have from Fig 12.8,

‘Z“J (el () e

275_[ 3a+/cos* Osin? @+ sin B cos? 6. a cos® 04O
0

w2
I

%
67ca2j sinBcos* 6d0 = gmz
0

Fig. 12.8

Example 12.4.3 What is the area of the entire surface formed when the cardioid
r = a(l + cosB) is revolved about the initial line ?

Solution : Using Cor. 3 of art. 12.4, with

ds _ |2 (dr\ _ [=2 R 6
0\ +(d6) —\/a (1+cosB)” +a”sin 6—2acos2,

we have from Fig. 12.9,

—27‘[J yds de
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= 275_[ a(l+cos0)sin6.2a cos%de
0

0 to=32rs

1emet [ sinenct 8
=16na JO s1n2cos 2 5

L f ]
A roafl + el
Pty
»
$ 2
Oleg=s 2o #m

Fig. 12.9

12.5 Summary

In this unit we have learnt how a solid is formed by revolution of arc of a curve
about a line and determined the formula of volume and the area of surface of that
solid.

12.6 Exercises

1. Find the volume of solid generated by revolving the following curve :
1) y= Jx between the lines x = 1 and x = 4 about x-axis,
(i) y=5x—x”between the lines x = 0 and x = 5 about x-axis,
(iii) y* =4ax between the lines x = 0 and x = 2a about x-axis,

(iv) x*—y* =a® between the lines x = 0 and x = 2a about x-axis,

(v) xy = 2 between the lines y = 1 and y = 4 about y-axis.
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2. Find the volume of the solid generated by the revolution of the upper half of
the loop of the curve y* = x*(2 — x).

3. Find the volume of the solid generated by the revolution of the loop of the
curve y*(a + x) = x*(a — x) about the x-axis.
4. Find the area of surface generated by revolving the following curve :

(i) ¥ = x* between the lines x = 0 and x = V2 about y-axis,

(i1)) » = 2a cos 6 about the initial line,
(iii) an arc of y = sin x about x-axis,

(iv) 2y = x + 1 between the lines x = 1 and x = 3 about x-axis.

5. Find the area of surface generated by revolving the parabola y* = dax bounded
by its latus rectum about x-axis.
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13.1 Objectives

In this unit the readers will learn the followings :

o Definition of vector valued functions of real vanable.
e Limits and continuity of vector valued functions.
o Differentiation and integration of vector valued functions.

e Tangent and normal components of acceleration.

13.2 Introduction

In ordinary Calculus we have learn the concepts of real valued functions of real
variables and their limits, continuity, differentiability and integrability. In this unit we

112
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will discuss about vector valued functions of scalar variables and their limits,
continuity, differentiability and integrability. We shall also study differential geometry
using vector calculus in brief.

13.3 Vector Valued Functions of Scalar Variable

If by some law #, for each value of a scalar variable 7 in some interval [a, 5],
there corresponds a definite unique vector 7, then f is called a single-valued vector

function of the scalar variable 7 and is denoted by 7= f(7).

f(c) denotes the particular vector for some fixed value ¢ of 7.

If {, 7, k be three unit vectors along three mutually perpendicular fixed directions,
then 7(s) can be expressed as f(r) = j;(r);+f2(r)}+f3(t)kn or simply f(r)=

(@), £,(0), £(D), where f(1), £,(¢), £,(2) are the scalar functions of 7 along 7, j, &
respectively.

If in particular the scalar # represents time, then 7 represents the position vector
of any moving point at time / w.r.t. a certain vector origin. Then the velocity and
acceleration of that moving point are also another vector functions of the same scalar
variable f.

13.4 Limits of Vector Functions

A vector function f() is said to tend to the limit 7 when 1 —c, if for any

preassigned positive number €, however small, there corresponds a positive number
& such that

|f(f)—f|48when 0<|t—c|g§
and it will be expressed as lim f/()=1/, provided that such limit exists.

If ()= £V +f0)+ £,k and [ =1@) +L()j +1,(Ok, then when

lim f@)=1, then im /(1) =1, lim £,(5) =1, and lim £,()) =1,
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13.4.1. Some standard results on limits

If 7(;) and () are two vector functions of scalar variable 7 and if lim fo=I

and {T}Q(f)=1?f, then

) tim F(0)£ &) | =T+ iy lim 7030 ]|=1 7
(i) lim[ f#yx gy | =T vy lim|Fo)| =[]
@ m[4()f(©)]= pl. where lim¢()=p.

13.5 Continuity of Vector Functions

A vector function f(;) of a scalar variable 7 is said to be continuous at 7 = ¢, if
for any preassigned positive number €, however small, there corresponds a positive
number & such that

|f(t)—f(c)|<g when 0£|t—c|56

and it will be denoted by lim f{r) = f(c).
f—c

Also a function f’(t) 1s said to be continuous m an interval [a, 5] of £, if 1t 1s
continuous for every value of 7 in [a, b].
In the same way, if f(r) and £(f) are two vector functions of scalar variable 7

are continuous, then the functions expressed in art. 13.4.1 are also continuous.

13.6 Differentiation of Vector Functions

A vector function f(;) of a scalar variable 7 is said to have a derivative at ¢, if

i JC ) - )
A0 h
exists. Then that limiting value 1s said to the derivative of f(t) at 1 = ¢ and is denoted

by f(c) or by % atf=c.
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This process of finding the derivative of functions is known as differentiation or
derivation.

Another definition of differentiation of f(;) is given as

provided that limit exists.

For any differentiable function f(;), we may write
df  an g fE+ Y- f(2)
& =S O=lme—
By writing # = At, we get
df [+ Af H
G _ j- y LEM-FO

A function is said to be denvable in an 1nterval if it is derivable at every point
in that interval.

13.6.1. Higher Order Derivatives

If the vector function f(;) of scalar variable ¢ has a derivative f‘(;) in a given
interval, and f’(r) is itself derivable in some interval, then the second order derivative

of f(¢) is defined by
&f_ d[de 7= tim f’(t+A£—f'(t)_

di*  dt
Similarly, we can define more higher order derivatives of vector functinos.
13.6.2. Differentials

From the definition of derivative, we can write

& _fu+an-fo) _
AL A = f'0)+8,

where § is a vector such that § >0 as Ar — 0.

Then # is said to be differentiable at 7 if we can express

Af = f(t + A0 - F(r) = F(D)Ar + BAL,

where § is a vector such that § 50 as Ar 0.
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The part f(r)Ar is called the diferential of the vector function # and is denoted
by
df = far
Since the above expression is true for every diferentiable vector function f(f),
we may take j? (1) = fi. Then we have Ar = dr. Hence the differential of the vector
function f is
df = f'wd.
If f(t)= f0) + f.(0)] + f(0)k, then
df @)= dfi +df.j +dfk

Theorem 13.6.1 Every derivable function is continuous but the converse may not be
true.

Proof : For any value ¢ of ¢, we may write

Fo-fe =021 g
So

l:im[f(t) —f@] =lim %ij@ —¢)

= j”(c)‘O =0 [since f’ is derivable].
Hence lim f(1)= f(c).
Therefore the function f(t) is continuous at ¢t = c.

Let f(r)=l|f|7, which is continuous for every value of ¢, but it is not derivable
at t+ = 0, because
- Fo-FO A
llmw:hmqi:l or —7,

according as + — 0 from positive side or negative side. So f’(O) does not exist.
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Theorem 13.6.2 If f(r):j;(r); + £,(0)] + fg(t)kA is a derivable function then

@ _dhy i g
i), £.(0), f,() are also derivable functions and 7@ dt == j+ 7 k.

Proof : we can easily see that

df_l f(t+h) f@

ot h—>0
=lmﬁ(r+h)_ﬁ(3); h f(f-l—h) fz(t) h f(t"'h) fs(r)k
_df;

drf 7 ;+ik[smce £, £(D), f(r) are derivable functions].

Theorem 13.6.3 If f(;) and g(z) be two derivable vector functions of scalar variable

( then {702 g0)) = 4, 420

& di
Proof : Let G(r) = ]’(r)ig—'(t)
Then
difo ez 99 N=GO
=lhi$f(t+h) j(£)+1h : (f+h}2—§'(t)
_df), &)
dr T odr

Theorem 13.6.4 If f(;) and Z(r) be two derivable vector functions of scalar
variable ¢, then —[ £ g(t)]—?f t)+f(t).%.

Proof : Let G(r)= f(1).3(r).
Then

%[}(r)g(z)] - % - L@w
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i LM E ) - (@)
b0 h

f(f+h) o

h—)O

g@)ﬂjﬁf”(ﬁh}%

—f(””) 7O g0)+tim e+ 1y lim ECA-EO

h—)O

f g+ jnE

Theorem 13.6.5 If j’(;) and g(7) be two derivable vector functions of scalar

variable ¢, then [ F{)x g(r):l f () x g(1)+ f ()= dg(t)‘

Proof : Let G(t)= f(1)x 3(r).
Then

4l Fy< )|
_dG . G+ -Gl
It =
_ lim'(?(r+h)x§(r+hh)—f(r)xg(t)]

Fr—i)

= lim
Ti—l

fu+ - FO v+ Fore iy B - g(r)}

= Liglwxg(t)_i_lhirgf(t_i_h)xlhignlg(t"'h}:_g(t)

_ O s Gy BB
7 x g{f) + f({H)x e
Theorem 13.6.6 (Differentiation of a function of a function) :
If f(;;) is a differentiable vector function of a scalar variable # and # itself is

df _df du

a differentiable function of another scalar variable ¢, then == =
dr  du dt
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Proof : Since # is a differential function of 7z, we may write

du
Au=SLAr+ont, (13.6.1)

where ¢ =0 as A¥ — 0.

Again since f(;;) is a differentiable function of a scalar variable #, we have

Af = 5{; Av+BAu (13.6.2)

where f —»0 as Aw—0.
Now Putting the value of Au from (13.6.1) in (13.6.2), we get

N df(d“ A;+aAt)+B(d“ At+cmt)

df d d) dh
[dz dt;}AH_( f+[3 "—i—BaJAI (13.6.3)

Since both df and E exist, E. —> 0 as Au = 0 and oo = 0 as A7 = 0, we obtain

¥ = df+[3du+[§0t—>6 as Ar—0.

Using this in (13.6.3), we obtain

7 | df du
Af = {d dJAI+'}'At

where 7 — 0 as Ar — 0.
So we may say that f(t) is a differentiable function of scalar variable 7 and the

differential of 7 is

- (df &
df:[%,ﬁ}ﬁt. (13.6.4)

Since (13.6.4) is true for any differentiable function f(;) of 7, taking # = and
u = t, we get Af = dt and then from (13.6.4), we obtain

df _df du
dr du dt’
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Theorem 13.6.7 If f(;) is a vector function of scalar variable 7 and ¢()is a scalar
- - dr_db s o df
function and they are derivable, then 7 [ ]= 7 f+o 0

Proof : Let G(t)=¢(f)j ().
Then

dy.70] =2

_ i QRS+ ) - 400

hsD h

- 1}?123 [w.j@ +( + h)_W}

- mw.f )+ lim( +1) Lingw

> . d
= % f +¢'c}’_{'
Theorem 13.6.8 If j’(;), &() and E(;) are three vector functions of scalar variable
t, then
ol - o |- 7 e
Proof :



NSOU » CC-MT-03 121

Theorem 13.6.9 If f(y), 3(r) and j(y) are three vector functions of scalar variable
t, then

7@ in=Z 5 dh
dr(fx(gxh)) i (g xhy+ f x [ ]+f [gxdt}
Proof :

A Fu@xh) - @i Fxdaxh

7 x@xh) =Zox(@xhy+ [ xS @xh)

:—? x (Zx )+ f x xh+gxdh
dt dt
fx(gxh)+fx[—xh)+f [gx%}

Theorem 13.6.10 A necessary and sufficient condition that a vector 7 has a constant
dii
length is that #. 7 =0.

Proof : We know that #° =|z7‘2 =i

So
™ =)
ie, 211%=2\ﬁ|%‘
Thus,
0 9 i d df |

The condition is necessary

When 3 is a proper vector of constant length, then |ii | = constant = 0.

Thus,
_di (9]
a9 oo

Therefore the condition 15 necessary.
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The condition is sufficient
_ di A . ) .
If u.FI;:O, then |u|%[:0. But since 7 is proper vector, |#f|=0. Hence

dli] _
T

Note 13.6.1 The derivative of a vector of constant length is perpendicular to that
vector.

0, ie, |1}'|= constant. Thus 3 is a proper vector of constant length.

Theorem 13.6.11 A necessary and sufficient condition that a proper vector j; always

. . oo di g
remains parallel to a fixed line ie., to have a constant direction is # XE=0-

Proof : Let i =|ii|4, where j is the unit vector in the direction of 7.

Now

L di _alao d a1y tela | Al s R
i :|u|uxa(|u|u):|u|ux[Jdt—lu+|u|7?J

=|i[ & x% [since # x4 = 0].

The condition is necessary
When j remains parallel to a fixed direction then j; = constant and hence
i
dt
Thus

=0.

L odu =
= =0
H s

Therefore the condition is necessary.
The condition is sufficient
Since # =0, so the condition
di

_ r
Hx—=0>ux
dt dt

Also since § 1s a proper vector of constant length of unity, we have

=0. (13.6.5)

dit
=0,
dt

.

(13.6.6)
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The conditions of (13.6.5) and (13.6.6) will be simultaneously satisfied if i,—? =0

i.e., # is constant i.e., j is parallel to a fixed line.
Theorem 13.6.12 A necessary and sufficient condition for the vector i{f) to be

. di 3
—— 0
constant is r ,

Proof : The condition is necessary
Let i{f) be a constant vector. Then for an increment At in the scalar variable ¢,

there will be no change in jj, ie, Ajj=0

So L)

So the condition 1s necessary.

The condition is sufficient

di =
_:0
Let i .
Now if #(f) = u (¢} +u(f)] +u,(0)k, then
di _du; Q5 dusp
dt_dtl+dt]+dtk'
So
di 59 _ Gy A
di =0= dt =0, dr =0 dr

Therefore u, = constant, #,= constant, #,= constant, Thus #(¢) = constant. So the
condition 1s sufficient,

Example 13.6.1 If 7=¢% +costj+sin’ t]:f, find the derivative of 7 wurt. f.

Solution : Here 7 =% +cost j+sin’ tk.
Therefore

df _i iy gt w1y
7 —dt(tl+cosg+sm tk)

=21 —sint j +sin 2/k.
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dF
drt’

Example 13.6.2 If 7= (5+30)7 +(3—20)] +(4+1 161}, find

Solution : Here 7= (5+3/) +(3-2)7 + (4 +1-166)k
Therefore

dar  _ d At 1 (23} C1ENNE
< —E{(5+Jl‘)l+(3 2)j+(4+1-16t )k}
=3 -2j+(1-320k
dﬁ—- _i ,:_ ~ _ - _ —
and £ _dt{zn 25+ 32z)k}_ 32k,

Example 13.6.3 If a=¢% -4+ (2r+1)£ and b = (2t—3) +J _;]:f, then show

that (i) %(5.5):—6 atr=1 (i %(ax5)=7j+3ifr atr=1.

. @: '.‘_’1 . d_g_ 7_"
Solution : Here o 261 - j+2k and 7 =2i —k.
@ @b
_ dig, db
B dt'b+a‘dt

= (2 = 42004t =3 + -tk + 1T — G+ (2t + DR (2T — )
= A6t —1-2+27 -2 —1=6t"—10t 2.

d .-
—(aby=-6att=1.
Hence df(a ) at

(i) %(ﬁxg)

_ di g, . db
_dIXb+axdt
R B I P A

2t =1 2|+l — 2t+1
2r-3 1 = (2 O -1
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= =20+ + M —6) ]+ (B = +11 + (" + 41+ 2) ]+ 2k

= (2 =2) + (36> + 81 —4) ] + (6t = 3)k.
Therefore at £ = 1,

%(ﬁxg):7}+3§.
Example 13.6.4 If &:tzf_{}ur(z”l)]:— and ﬁ=(2;_3)f+j_;]:—, then find
i[&x@]at t=2.

dt dt
Solution : Here %2215—}+2£:, i—?z2§—§ andi—?za.
e
= %x%?+&xi—f

A R I PR B
2 -1 2|+l — 2u+1
2 0 -1 o 0o o

= {+(2t+4))+ 2k
Hence at 7 = 2,

i - dB - A ~
dt(ax dt]-r+8]+2k.

13.7 Geometrical and Physical Interpretation of Derivative
of Vector Functions

Let = f(t) be a continuous and single valued vector function of a scalar variable

t. Let 7 and 7 A7 be the position vectors of two neighbouring points P and O

respectively on teh continuous curve 7 = f(;) w.r.t. origin 0. Then

PO=00-0P=F+AF —F = AF.
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So % = % When O — P, At — 0, the chord PQ tends to the tangent P7 to the
curve at P.

— —

. AF _ dr .
Hence lim == ==- represents a vector along the tangent to the curve 7 = f(0)

A0 At dt
at P.
Yi
:, Q
_‘ As
j 2NCar “
)'(xv
‘A P
-4
; ¥ 90y
0 *X
3
Fig. 13.1

—

. . . dr

If 7 represents time then Ay represents displacement during time Ay . Hence a

represents the rate of change of displacement of the point P which is called velocity
vector at P along tangential direction. Thus the velocity vector is

S _di
U—dl.

Similarly if Ay be the increment of j in time Az, then the rate of change of
velocity of the point P which is acceleration of the point P is
L AS_dS_dF
=N T d s aE
13.7.1. Tangential and Normal Components of Velocity and Acceleration

Let ; and j be two unit vectors along two rectangular axes ()Y and Oy

respectively. Let a particle be moving along a plane curve 7 = ](s), where s is the
length of an arc AP of the curve where A be the fixed point from which the length
of the arc be measured and P(7) be the position of the particle on the curve at time
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f. Let O(F +AF) be the positon at time ¢+ A¢ where AQ =s+As
Then

Q0 —OP =F + AF —F = AF
arc AQ—arc AP=5+As—s=As,

PQ
and are PQ

If § be the velocity of the paricle along tangential direction at P, then b =|0le,

where ¢, is the unit vector along tangent at P.
So

| PO chord PQ arc PO As _ds
= l — l l
[0 = flim (= lim =2 PO A1 s Ardr

is the tangential component of the velocity on the curve 7 = f(sr) in the sense of

§ increasing.
Since the particle does not leave the curve, there 1s no displacement in normal
direction and so the velocity along normal direction is zero. Hence we can write

0= |6|é: +08,,

where ¢, is the unit vector along normal direction.

Now
é =cosyi +siny jand & = —sin\y7 +cos\ ;.
So
Lo (~sinyi +cosy j)LL =5 LY
dt di " dt
and

de, ay _ _,dy
= (cosqn sm\p;) R

Now acceleration vector at P will be given by

do _ d (143 A
i = 71;:_.( +Oen)

du

J' - o

d|l)| d_\p

dt dt
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_dldl s s dv ds

= Ter-i-ll) QHE‘E

O Y L ds
- Teﬁ?en[smcp—ﬁ and |U|—E
= aé, +age,

where p is the radius of curvature at P.

Therefore the tangential component of acceleration at P is ¢ =——=

63
normal component at P is a,= LpL

13.8 Integration of Vector Functions

We have already seen in art. 13.6 that for any vector function f(;) of a scalar
variable 1, df = f'(¢)dr.
If f=fi+fj+fk then
df = dfi +df, j +df .

Now if F(r) be the derivative of a vector function f(;) of a scalar variable 7 i.e.,
o om_df o
if F =?{, then Jf(s) = F(r)dt.

In this case f(r) is called the indefinite integral of F(s)and is written as

Iﬁ (t)dt = f (1) where ]‘(;) is called the integral and ﬁ(r) is called the integrand.

As in the case of integration of any scalar function, here we also say that the
derivative of the integral is equal to the integrand or, the integration is the inverse
process of differentiation.

As in the case of integration of a scalar function we may write IF (n)dr = f(1)+¢

where ¢ 1s an arbitrary constant vector of integration and this can be calculated from
some given condition.
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13.8.1. Some Important Formulae of Integration

Let 7(f) and 5(¢) be two vector functions of scalar variable ¢ then

(i) I(%EH?%):FEH:.

(ii) I(Zr —)dt—r +c.

di d°F 4, _(dF :
(iii) I 2h A (E) Te

(iv) I(r x—)dt Fx%+5.

(vii) I(a Xg) dt =axr +¢, a being a constant vector.

(viiy If f()= £V + £ ]+ i)k, then
[ 7 =([ frn)i +([ ) j+([ fre) i+

Example 13.8.1 If 7()=("+1) +(;+1)j_3]€, then find jf‘(r)dr and _[ far.
2

Solution : [Ffoar = | {(;.r2 VI 4 (¢ +1)j—312}d:

P +1de+ [ ¢+ Ve + k[ (-3)de

t3+t r+r j- 3tk +.
3 2
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3_‘ . t3 3 N tz 3 . s
Hence If(ﬂdt = {g”} +f|:5+l'} +»"f-[—31']3
22 T 7
=227, 75 3
=i+ )

2 -
= dé?_: — n an Y
Example 13.8.2 Evaluate I[ X ]df where 7 =17 + 27 +3tk.
2

dr’
. d. dF\_dF dF . dF
Solution : We have dt(rx t)_dtx I+rxdt3

2—-
Therefore I(de r)dt:?‘x£+5.

dr’ t
Now =3¢ +4+3k
dt
ik
- dr | s,
Hence <7 =|" 2 3
32 4 3

=6t +61°] -2tk

3 -
~ dF o . A3
d dt —| —er% 3% At
Therefore _!["X dt‘] I: O6f i +61 j—24 k:L
=307 +114; —130k.
dF dr _ : ap

Example 13.8.3 If * =61i —241°j +4sintk and F =2+ j,?’;:—l—3k

when 7 = 0, then show that 7 = (£ —#+2)7 +(1-2r*) j+ (t— 4sinnk.

d?
dt

=

= 6tf — 24¢°] + 4sint k.

L=
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Integrating w.rt. 7, we get

% =37 - 81'3}' —4cost k + ¢,, where ¢,is a integrating constant.

Since %z -3k whent= 0, we get i 3% =—4£+51i.e., ¢ = itk

Therefore % = (31* —1)i — 81> +(1—4cosi)k.

Integrating again w.rt. f, we obtain
F=@ =0 =20 ] +(1-4sink +&,,
where ¢, is a integrating constant.
Now since F=2§'+j when 7=0, we get c, =2;+j‘

Hence 7=(—¢+2)i +(1-2t")] +(t —dsin)k.

13.9 Summary

In this chapter we have studied about vector valued function of scalar variable
and their limits, continuity, differentiability and integrability. We have also discussed
about geometrical significance of vector differentiation and tangential and normal
components of velocity and acceleration vectors. We also worked out some example
to understand the differentiation and integration of vector functions.

13.10 Exercises

@

1. If F:tf+sint}'+costi:, then find 7

noa g - . - d - 1 d =7
2. If g=3¢% +4 -k and p =sin¢i —2cost j then find E(axb) and E(a'b)'
3. If G=sinti +cost j+ 3k, b =costi —sint j—3k and & =2i +3j—k then find

d = (Fyr _ df= = _
the value of E{ax(b xc)} att=3 and E{a‘(b xc)} at1=0.
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4. Evaluate r(Scostf—?sint})dt.
0
2 —
5. If G=ti —#*j+(t —)kand b = 2% + 6tk then find the value of J abdt and
0

J._E(a'x.!;)dr‘
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