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PREFACE

In a bid to standardise higher education in the country, the University Grants
Commission (UGC) has introduced Choice Based Credit System (CBCS) based on five
types of courses viz. core, discipline specific, generic elective, ability and skill
enhancement for graduate students of all programmes at Honours level. This brings in the
semester pattern, which finds efficacy in sync wath credit system, credit transfer, comprehensive
continuous assessments and a graded pattern of evaluation. The objective is to offer
learners ample flexibility to choose from a wide gamut of courses, as also to provide them
lateral mobility between various educational institutions in the country where they can carry
acquired credits. I am happy to note that the University has been accredited by NAAC
with grade ‘A’

UGC (Open and Distance Learning Programmes and Online Learning Programmes)
Regulations, 2020 have mandated compliance with CBCS for U.G. programmes for all the
HEIs in this mode. Welcoming this paradigm shift in higher education, Netaji Subhas Open
University (NSOU) has resolved to adopt CBCS from the academic session 2021-22 at
the Under Graduate Degree Programme level. The present syllabus, framed in the spirit of
syllabi recommended by UGC, lays due stress on all aspects envisaged in the curricular
framework of the apex body on higher education. It will be imparted to learners over the
six semesters of the Programme.

Self Learning Materials (SLMs) are the mainstay of Student Support Services (SSS)
of an Open University. From a logistic point of view, NSOU has embarked upon CBCS
presently with SLMs in English / Bengali. Eventually, the English version SLMs will be
translated into Bengali too, for the benefit of learners. As always, all of our teaching
faculties contributed in this process. In addition to this we have also requisitioned the
services of best academics in each domain in preparation of the new SLMs. I am sure they
will be of commendable academic support. We look forward to proactive feedback from
all stakeholders who will participate in the teaching-learning based on these study matenals.
It has been a very challenging task well executed, and I congratulate all concerned in the
preparation of these SLMs,

I wish the venture a grand success.

Professor (Dr.) Subha Sankar Sarkar
Vice-Chancellor
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1.0 Objectives

The followings are discussed here:

Concepts of Probability

Classical Definition of Probability

Axiomatic Definition of Probability
Dependent and Independent Events

Idea of Random Variables

1.1 Introduction

In this unit, we will study the theory of probability. The primary purpose of having
mathematical theory of probability is to provide methematical models for experiments
that may arise in different areas of human activity. Such models can then be used for
prediction and dicision making. Use of probability theory makes the inferences
scientifically valid.

1.2 Basic concepts of Probability

The term ‘probability’ is frequently used in our day-to-day life, although the user
may not be aware of its meaning. For instance, people would ask on the eve of a
general election : What is the probability that Mr. A will win? But in so far as
statistics 1s concerned, probability can only be attached to outcomes of those
experiments which can be repeated any number of times under essentially identical
conditions. Thus, in statements like “Mr. A’s winning the election has probability
0.45”, the word probability will only mean a numerical measure of the degree of
belief attached to a statement. There 1s a school of subjective probability that is
critical of the idea that probability can be calculated in an objective manner. In this
chapter, we shall develop only the theory of mathematical probability.

Like any other scientist, a statistician also believes in the maxim that Nature
obeys laws though these laws are not exact like those of, say, a physics. Even in
the physicist world, the discoveries of the recent years (e.g., quantum mechanics,
uncertainty principle, etc.) have emphasized uncertainty and indeterminacy. The
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laws of statistics are not deterministic, either due to the incompleteness of data or
due to the inherent nature of the problem.

Take, for example, the uncertainties in the outcomes of tossing a coin, or in an
individuals’ behaviour in his consumption. The underlying systematic pattern, however,
may not be apparent if only one toss or one individual is studied. But when one considers
a large number of outcomes or aggregate behaviour of a large number of people, the
regular pattern would come to light. The pattern is called ‘statistical regularity’. The
definition of probability is based on this concept of statistical regularity.

To get the idea of statistical regularity, let us consider a coin and toss it a large
number of times. If after each toss we calculate the proportion of accumulated heads
(or tails) upto that point of time, these proportions will be erratic initially. But as the
number of tosses increases, these properties will stabilize and the resulting limiting
value (ratio) will be called the probability of head, or that of tail as the case may
be. If the coin is a perfect (unbiased) one, the limiting ratio will tend to 0.50.

This is called relative frequency approach to probability and has been explained
diagrammatically as shown below :

Consider the outcomes of 200 tosses of a coin and the relative frequencies of heads
as given in the following table :

03

0.7 -—Q\Ll
06 ™

05 W@-{)
04

03

02
01

0 ! Ll 1] I T 1 T L]
0 25 50 75 100 125 150 175 200

t (number of trials)

J7t (relative frequency of heads)

Fig. 6.1 Limitting behaviour of the relative frequency of heads as the total number
of tosses increases, as given is table 6.1
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Table 6.1 : Relative frequency of heads in 200 tosses of a coin

Number of tosses () 25 50 75 100 | 125 | 150 175 200
Accumulated
number of heads (/) 18 33 40 48 |67 78 37 102

Relative frequency f7 0721066 053048054 052 050 [051

Source : Statistics for Social Sciences by Gun & Aich, World Press, Kolkata-700 073.
1.2.1 Classical definition

We formalize the definition of probability by first considering ‘sample space’
associated with a ‘random experiment’. By a random experiment we mean an
experiment satisfying the following conditions :

(a) The experiment can be repeated any number of times under essentially similar
physical conditions.

{b) The possible outcomes of the experiment are known, but the outcome of any
particular trial is unpredictable.

The tossing of a coin, for example, constitutes such a random experiment.

Sample space—The set of all posssible outcomes of a random experiment 15 called
the sample space while the elements of the sample sapce are called elementary events.
A sample space can be finite or infinite depending on the number of elements in it.

Event—Any subset of the sample space is called an event. Clearly, sample space
itself is also an event, called ‘certain event’. Similarly, a null set, being also a subset
of the sample space, is also an event which is called ‘impossible event’.

Difference between null event (A) and P(A)=0 - Null event =P(A) = 0 P(A) =
0 # Null event.

* Exhaustive Events : A set of events is said to be exhaustive, if they constitute
the entire sample space.

¢ Mutually Exclusive (Disjoint) events : Two events are said to be mutually
exclusive if they cannot occur together.
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Exhaustive and mutually exclusive (disjoint) events :—

Example 1.1 A die is thrown once. What is the sample space in this case?
Ans, Note that if a die is thrown once, then any one of the digits 1,
2, 3,4, 5, 6 may turn up. So, the set of all possible outcomes, namely,v
S =1{1,2, 3,4, 5, 6} 1s the sample space which is finite,
In this example, the subsets of S will be the events. Thus, for example, A = {1,
2}, B = {3, 4, 5}, etc. are events. It is to be noted that there are in total 2° subsets
that can be formed out of S. In general, if the number of elementary events in S in
n, then 2" events can be formed out of S that include the impossible event ¢ (null
set) and the certain event S.

Empirical (relative frequency) definition of probability :
If A be an event that may occur as a result of an experiment having S as its sample
space, then the probability of occurrence of A, written P(A), is given by.

number of repetitions resulting in A
total number of repetitions

P(A)=

£, (4
=9 ay)

1

which tends to a fixed value as n tends to infinity as explained earlier. This is called
the ‘relative frequency approach’ to probability.

Classical definition of probability : This definition used the terminology of set
for events and sample space as given earlier. Thus, in this definition, P(4) is given by

N(4) ] ) .

P MFW’ when N(A4) is the number of elementary events in 4, and N(S) is
that in §.

Clearly, P (4) 2 0, as N(4) 2 0

Also, P (A) £ 1, as MA) < N(S).

Thus, P(4) is a number lying between 0 and 1.

In this definition, it is assumed that all elementary events in S are ‘equally likely’

to occur.
This is a drawback (limitation) of the classical defintion as the term ‘equally likely’
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cannot be explained without the concept of probability. In this sense, the classical
definition of probability is circular in nature.

Another drawback of the classical definition is that it allows for probability only

. m _ . . .
numbers that are in the form ’ (m < n), thus rejecting irrational numbers in (0, 1).

These are examples in geometric probability where P(A) can even take values such

1 .
as —, where 1t = 3-14159 (approximately)
Let us now define union, intersection difference and complement of events:

* Given two events A and B, their union is defined as an event AuB which means
occurrence of at least one of them.

o The intersection ANB is the event of joint occurrence.

s Difference A - B is the event of occurrence of A only.

o Complement of A is the part of the sample space excluding A and written as A°,
1.2.2 Axiomatic definition

In this approach instead of defining probability explicitly, some conditions are
postulated to be satisfied by probability.

Let 4, 45, ..., 4, be the events belonging to the collection of events, namely,
Q. This non-empty class of events ( is closed under finite unions and complementation,

and is termed as the ‘field” or ‘algebra’ of events.

In this approach to probability, probability is defined as a finite real-valued
function P() defined on the field of events Q satisfying he following conditions.

(A) P(A) =z for any A € O,
(B) P (5) = 1, § being the sample space,

k k
(C) P[UA,—J:ZP(A,-), where A;e(Q(i=1,2,..k) and are all disjoint.
i=1 i=1

The above result will have a natural extension to the case where k is infinity, and
the corresponding O will be termed as o-field (or c-algebra).

We now state and prove the addition and multiplication theorems of probability :
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Theorem 1. Let 4 and B be two events which are not disjoint, i.e., they can occur together.

Then the probability that either A, or B, or both will occur is given by
P4 v B) = P(4) + P(B) - P(4 N B),
where P (A M B) is the probability of their joint occurrence.

Proof : Here, A and B are not disjoint. We represent the set A U BbyA4 UB=(4
N B U (4 N B) U (BN A°), where AN B, A N B, and B n AC are disjoint events.

Then by the axioms on probability, A B
we have,

ANB° B AC
P(A U B)= P4 N BY) + P(A N B) + P(B N A°) ™" AnB

=P(A N B+ PAnNB)+PBNAY +P(ANB)-PAnNB)
=PANBYUANB P (BNA®Y) uANB)-P(ANnB)
=PA) + P(B)-P (4 nB)
cANBYUANB =4, (BN A U (4 nB)=B)
Thus, P4 v B)=P(A) + P(B) - P(A N B).
Note : If 4 and B are disjoint (also called mutually exclusive events), we have
AN B = ¢ null set.
In this case, P (A " B)=P(¢) =0, and P (4 U B) =P (4) + P(B)

In general, let 4y, A5, ..... , A, are events belonging to the field of events O,

say,

If the events A/’s are all disjoint, then
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P[iglAij:éP(Ai)

(Define conditional probability)

Theorem 2 : Let A4 and B two events belonging to the field of events O, say,
then the probability of their joint occurence is given by

P (A n B) = P(A)P(B/A) = P(B)P(A/B), when P(B/A)
P(A/B) are conditional probabilities.
Here, it is assumed that P(B/A), P(A/B) > 0

Proof : Let N(A4), N(B), and N(S) denote the number of elementary events in A4,
B, and S, where § is the sample space which is assumed to be finite.

Then, by the classical definition of probability,
N(AnB)
N(S)

N(AnB) N(A) ANB
= N(A) NGO = P(B/A)-P(A),

we have P (4 N B) =

N(AnB)
N(4)
probability that B has occurred, given that event 4 has already occurred.

Similarly, P(4 n B) = P(B).P(4/B).

where P(B/4) = is the

In general, if 4,, 4,,....., A, are events belonging to the field of events Q, then
PA N4, N A;n.nd)
= P(4)) P(4,/4)) P(A5/4, n4,) ... PAJA, " A, nA; 0 ..n A ).
Statistically independent events :

Two events A, B are said to be independent statistically if P(4A N B) — P(4). P(B).

i.e., the probability of the joint occurrence is equal to the product of their individual
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OCCUITENCCS.

Thus, if 4,, 4,,....., 4, are statistfically independent events, then

P[J_EIA;'}QP(A,-)_

Example (a) : Let a die be thrown once. Define the events A and B as follows :
A = occurrence of points < 4.
B = occurence of even points,

Then, A = {1, 2, 3, 4},
B=1{2 4,6},

and § = sample space

={1,2,3,4,5 6, AnB = {2 4}

4 2 3 1

So, P(A)—g—g, P(B)—E—E
PAIB) = %, P(BIA) = 2= 7

Note that by using formulae,
P(AnB) 2 6 2
PUIB) = g =one=

2 6
and P(BfA) = EXZ:

P | -

Example (b) : Take four identical marbles. On the first, write symbols 4,4,4,.
On each of the other three, write 4;, 4, and 4, respectively. Put the
four marbles in an urn and draw one at random. Let £ denote the event
that the symbol A.(i = 1, 2, 3) appears on the drawn marble.

Then, P(E])=%=P(Ez)=P(EB)f
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1
P(E1Ep) e P(E1E3)=P(EaE3).

1
also, P(EIEZEC’)):Z

Thus, P(E\ELE,) # P(E)) P(E,) P(E),
So that the events £, £,, £, are not independent.

But P(E, E,) % = P(E)) - P(E,)

Similarly, P(E\E,) = P(EDP(E), P(ELE;) = P(E)P(E)),
showing that they are pairwise independent.
Mutual independence of events :

In general, (> 2) events A, 4, ..., A, are said to be mutually independent if
the following equations are satisfied :

PA; n4)=PA) P4), 1=i<j<r,

PA, 04, nA)=PA) PA) PA), 1 = i<j<ksr

PA A,y .. A)=PA) PA,) ... PA4)

Thus, there are in total 27 — » — 1 (# > 2) such equations for » events.

Thus, for the mutual independence of » events, it is not enough that events are
pairwise independent only. Rather, all the equations are to be satistied.

Theorem 3. Let us consider a partition of the sample space § into the event B,
B,, ..., B, such that

k
|JB;=$, and B, N BJ. = ¢ null set, 7 # j.
i=1

Then, for any event A, and assuming P(B.) > 0, for such /, we have P(A)

= ;P (B)P(A|B).
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Proof : Consider the events 4 N B,, 4 N B,, ..., A N B,_for which
(A N B)NA N Bj) =ANB N Bj
=4 N ¢= ¢ null set.

then, A =4 NS @ S

k Sample space
An| B
i=1

|
Y

(AnBj)

i=1

-

so that P (4) ZP[ (AmB,-)]

i=1

k

= 2P (A“Bi), since A N B, s are disjoint or mutually exclusive.
i=1

k
= Y P(B;)P(A/B;) , by multiplication theorem.
i=1

This theorem is called the theorem of total probability.
Theorem 4. (Bayes’ theorem)

Let B,, B,, ....., B, be exhaustive and mutually exclusive events belong
to the field of events O such that P(B;) > 0 for each i. Also, let A be
another event in (. Then

P(B./ 4) = kp(Bi)P(A/Bi)

2. P(Bi)P(A/B)

i=1

, for P(4) > 0,
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k
Proof : By the theorem of total probability, we have P (A) = 2. P(Bi)P(A/B;)
i=1

Also, P(4 A B) = P(A)P (B, /A) = P(B)) P (A/B)

- P(B,] 4) :%

P(B;)P(A/By) i =

ip(s,-)p(A;B,-)'
i=1

Importance of Bayes’ theorem : Bayes’ theorem has a wide sigmficance in
statistical inference. In fact, a separate School of Statistics, called Bayesian School,
is founded on this theorem. Here, B, B,, ..., B, may be looked upon as “causes”
while A can be treated as ‘effect’. So, here we discuss probability of a cause (or
parameter) given the effect (or data). In this approach, parameters are treated as random
variables having some probability distributions.

Example (c) : Let there be three urns numbered U}, U,, U, having marbles (2
white, 3 black), (3 white, 2 black) and (4 white, 5 black), respectively.
An urn 1s chosen at random, and a marble i1s drawn from it. Let it be
white what is the probability that U, was chosen?

Solution : Let 4 = event that a white ball 1s drawn.

2 3 4
Then P(AIU])=§, P(A|U2)=g, P(A|U3)=§

Also, P(U,) = P(U,) = P(U,) = %

Then, by Bayes’ theorem,

P{u2)P(Alug)
P(uz14) = P(UI)P(A|u1)+P(u§)P(AIuj)+P(u3)P(A|u3)
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27
18 +27 +20

27

= = 0415

Note that P(U, | 4)>P(U,) which means that the information or knowledge of

the occurrence of 4 has improved the probability, i.e., reduced the margin of
uncertainty about U,.

Theorem 5 : The probability function P(-) is monotone, i.e., if 4 and B are events
in the field of events O and 4 < B, then P(4) < P(B).
Proof : Let us units B as
B=A4vU (B-4)
So that A and (B — A) are disjoint.
Then, P(B) = P (4 U (B — A)) @ 5
= P(A) + P(B - A)
> P(A), as P(B - A4) > 0.

B-A

= P(A) £ P(B).
Hence, A ¢ B = P(A) < P(B), showing that P(-) is monotone.

A simple proof of P(4 U B) = P(4) + P(B) — P(A N B) can be obtained from the
classical definition of probability, as shown below :

Let A, B be the two events in some field of events O, and S be the sample space
which is assumed to be finite. Also let N(4), N(B) and N(S) be the number of
elementary events in A, B and S, respectively.
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A B
Then, P(AUB):NE\I?(LS))B) >
N(A)+N(B)-N(AnB)
N N(S) ANB

N(A n B) being the number of elementary events in the set 4 N B.

N(A4AY N(BY N(4A~B
Thus, P(4 U B) = Ngsg +NES§_ gV(S))

= P(4) + P(B) — P(4 N B)
Corollary : Put B = A€, then A UB=A4A U A =S, AnB=4n A€ = ¢.
This gives 1 = P(A U A€)
= P(4) + P(AC) = 0
o P(AC) = 1 — P(4).

Example (d) : Suppose n objects numbered 1, 2, 3, ..., n are distributed at
random among » cells also numbered 1, 2, 3,...., n. What is then the
probability that there will be no matching of the numbered objects with
the cells?

Solution : We say that there is a matching if the ih object goes to the i cell.
Let A, denote the event that ith object goes to the i cell (i =1, 2, ......,

n), and 4¢ denotes the complementary event of no matching . We went

n
to obtain the probability P{ﬂ A J
=1

By De Morgan’s rule, we have
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o

=1 i=l

A s

[ZP(A,) SY P4 )+ Y>> P(4 A A)

i<j i <j<k

bt TPy 4)] )

-1 1 _
Note that, P(Aj)=n =;,P(A.0A,)= -2 __ 1

IE i J Iﬂ n(n—l)
and, finally, P(A; N A, ... N Ay =é
So, from (1),
n ol I l
[m ] A e e W e A
T )
_ PR

n
For large value of 7 , the above probability can be approximated by P{ﬂ Af J =el
=1

1.2.3 Random variable

In many situations, the outcomes of a random experiment are in the form of
qualitative characters. For example, in tossing of a coin once the sample space is .§
= {H, T}, where ‘A’ and ‘T stand respectively for a head and tail. Similarly, if we
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want to record the sex of each new born child in the maternity ward of a city hospital
on a particular day, then also the sample space cannot be described numerically, rather
as & ={Male, Female}. It would be mathematically simpler if we could quantify the
sample space. This is achieved by defining a real-valued function on the sample space.
This function is called a random wvariable (r.v).

Thus, for example, in a coin-tossing experiment, when the coin is tossed once,
we define on § a function X (.) such that

XHY=1XT)=0

In mathematical terms, we write X : S — {1, 0}, i.e, X is a mapping of § into
{1, 0},

Other examples of a random variable are the number of heads obtained in tossing
a coin trice, the number of boys or girls in families of a locality in the city, and so on.

The difference between a random variable and a usual mathematical variable is
that while the occurrence of a random variable depends on chance, the latter type of
variable will either occur or will not occur. It is to be noted that random variable plays
the most important role in statistical analysis.

1.3 Empirical and Theoretical Distribution

1.3.1 Concepts

Let X, XS, ... , X, be a random sample from some distribution. Then, calculate
the ratio

numberof X; which are< x

Sy(x) = »

where x is a pre-assigned fixed number.
Note that §,(x) simply gives the proportion of observations in the sample which

, , , 0 1 ,
are less than or equal to x. It is a random variable taking values s . 1. This

S,(x) is termed as the empirical distribution function.
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The function § (x) satisfies the following conditions :

(1)§,(x) is non-decreasing, and continuous from the left,

(2)S(-<)=0,5(+e<)=1

(3) §,(x) is a step-function with discontinuities at #-points.
Theoretical distribution function :

The theoretical distribution function /{x) of a random variable X is defined as

F(x) = P(X < x), when x is a pre-assigned

constant,

F(x) satisfies the following conditions—

(1) F( - o) =0, F (<) = L.

(2) F is non-decreasing

(3) F is continuous at least from the left.

{4) The set of points of discontinuity of £ is at most countable.

1.3.2 Probability mass function and probability density function

Probability mass function (p.m.f) :

Let X be a discrete random variable taking values in a set S say, of non-negative
integers. Then, the probability

MHEy=P (X =k), keS
is the pobability that X takes a particular value 4. Then p(%) with be the probability
mass function (p.m.f) of X

Clearly, p(k) satisfies the following conditions—

> plk)=1
M p# 20, (2) & ‘
Probability density function (p.d.f) :

In the continuous case, the probability distribution assigns a probability to every
interval in which x may he. Thus, the probability that X lies in an interval centred
at x of length dx (where ‘dx’ is very small), is given by
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P{x—%dxi)ﬁ' £x+%dx]=f(x)dx

The function f{x) will be termed as the probability density function {p.d.f) of the
continuous random variable X.
The following are some important properties of f{x) :

X

(1) Fx)= [ 7 when F (x) is the distribution function (also called

—a0

‘cumulative distribution function’) of X

(2) fix) = F'(x) =%(l) provided F'(x) exists.

In other words, given £(x) we can calculate f(x) by differentiation, and given f{x)
we can obtain F{x) by integration as given above,

1.3.3 Mathematical expectation and variance

The quantities ‘expectation’ and ‘variance’ of a random variable X measure turns
important characteristics of its probability distribution. While the first measures
the ‘centre’ of the distribution, the second measures the ‘spread’ of the distribution
about the centrally located value.

Suppose X is discrete with pmf (x). Then the expectation of X, written E(x), 1s
given by

E(x)= pr(x) . when 5 is the set of all possible values of X, provided the sum

XES

exists.

The variance of X, written V(x), 15 given by

V(x)= E(X -p), when u = E(x)

2,
_ 2wyt ®)  which is essentially positive

XES

In case X is continuous, we have
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EX) = T xf(x)dx (provided it exists)

and Xy = | (x-w7 f(x)dx>0
On simplification, V' {X)= E(X )-( E( X)) )

which implies £(X?)>(E(X))"
Two results are worth noting :
(1) E(a + bX) = a + bE(X),
(2) Vla + bX)= P I(X) , a & b being constant.

Example 1.2.1 Suppose a fair coin is tossed twice. Let X denote the number of
heads obtained. Write down the probability distribution of X Also,
calculate £(X) and F(X).

Solution : Since the coin is tossed twice in succession, the sample space is
S ={HH, HT TH, TT}

Define X such that X(tHH) =2, X(HT) = 1, X(TH) = 1, X(TT) = 0
Then the probability distribution of X is given by

X 0o 1 2
1 2 1
x)= PlX=x)|=- = =

Here, E(X)= ixp(x)

= O‘l+l‘z+2‘l
4 4 4
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|
I
+
I

2 | w2

Finally, V(X):E(Xz)—(E(X))2= %—l = %

The positive square root of the variance is called standard deviation {s.d.) which
is given by

sd. = YV (X) =% =c, (say)

Example 1.2.2 Let X be a continuous randon variable with pdf.

Ge'e‘r, ¥x>00>0

f(x)z{o ,x<0

Find F(x), £(X) and V(X).
Solution : By defintion,
F(x)=P(X £x), (x> 0)

0

— I Fx)dx +]Ef(x)dx

—i&0
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X
0+ j PO dr
0

= (1)

EX) = Ix;f'(x)dx = ije_e'”dx
0 0

Pl g _ _T(p)
0

{using the gamma integral I PRE afe >0, p>0)

0
{The above integral can also be calculated by integration by pats)

1
As T(2)=1, we have E(X)=6.

[ra]

Again, E(X?) = ¥ f(x)dx

0

@

= Bj x2e Mgy
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1.3.4 Conditional expectation and co-variance

We explain the idea of conditional expectation (or mean) by considering the joint
distribution F(x,y) of two continuous random variable X and Y given by

Flxy) = j i fluvyduy,

for all pairs (x, y) €R? , two-dimensional real-line.

& F (x,)
oxdy

In this case, we have the result that exist and equal to f{x, y), the joint

pdf of X and Y.
Also, let

g(x)= I F(x.y)dy> marginal pdf of X,

—

and h(y)= I f(x.y)dx, marginal pdf of ¥

-0

We also define the conditional distributions of X and Y as follow :

J(xy) x .
The conditional pdf of X, given ¥ =y 15 n(y) =fx [;] say and conditional cdf

of X, given Y =y is
o[ £)- ] L
y) 5 h)

Similarly, for the conditional distribution of ¥, given X = x. Thus,

The conditional pdf of ¥, given X = x is
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f(x,9)
fﬁ(£J=‘ .
el e

and the conditional ¢df of ¥, given X = x, 13
3V v
vy_ 7 [(xy)
Fl=|= dy.
! (t] _{0 g(x)
We now prove two useful properties of expectation :
(@) E(X+Y)=EX) + KY).

Let f{x, y) be the joint p.d.f of X and ¥.

Then E(X + ¥) = I I (x+v) f(x,v)dxdy

= | [ o teyasdve | [ yf e v)ady

]? x[ T f(x,y)dy}dx + T y[ ]? f(x,y)dx]dy

e R )

[ xgte)de+ | yh(y)dy
= EX) + K()).
Note that g(x) and g(y) are the marginal pdf’s of X and ¥, respectively.
(b) E(XY)=E(X)E(Y), if X and Y are independent.

As in the previous case, let f{x,y) be the joint pdf of X and Y. Then
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E(XY) = T T xyf (x, y)dxdy

s ]

[ | o gtonyyddy

-0 =0

(since f(x,y) = g(x) h{y) for independence of X and ¥)

j (xg(x)[ I )"h(y)dy)dtJ

@

[ xg()ET )dx

—

E(Y) j xg{(x)dx

-0

= E(DEX).

The conditional mean of Y, given x, if it exists is given by

E(Y/x))= T ydFy (y/x)

—E

J(xp) y
- I g(x)

The conditional variance of Y, given x, is given by
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[ (v-E@/v) % dPy (v/x)

o ey o2 L)
= [(-E@my =t

-

Theorem 1.2.1 If E(Y/x) exists for almost all x, then E(Y)=FE(Y/X)

J(x,p)
Proof : We have E(Y/x) = I J’mdy-

S EE(Y /x)= j( S, v)d)]g(l)dx

j { [ fex. v)dx]

= T Yh(y)dy

= E(Y), which proves the result.
Thus, E(Y) = FE(Y/X)
Similarly it can be proved that
WN=EV(YIX)y*VE(Y/X), assuming the existence of relevant

quantities.

Co-variance between X and Y : This is an extension of the concept of variance
to the case of two random variables. We define co-variance between X and Y,
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written Cov(X,Y) as
Cov (X, ¥)= E(X-E(X) (Y-E(T)
= E{XT-XE(Y) - E(QOY + E(DED)}
= E(XY) —E(DEX) - E(XDET) + EX)E(Y)
(- £ (XED)=EDEWX),
as E(Y) is a number and E(x.b) = b E(x)))
= E(XY) — E(QOED).
The following are inportant properties of Cov (X)) :

(1} [Cow X, 1)} <V (X)W (Y)

(2) Cov (@ + bX, ¢ + dF) = bd Cov(X)Y)
(3) V(X £¥)=V(X)+V(¥) £2Cow(X.T)

(4) For four variables X)Y, {7 and V, CowW(X+Y, U+F) = Cov(X,lJ) +Cov
X, V) + Cov(Y,U) + Cov (1.})

(5) Cov(X.X) = 1X)
Example 1.2.3 Let X and ¥ be two random variables. Then find Cov (X+}, X-T)
Solution, By the property of the co-variance, we have
Cov (X +F, X - T) = Cov(X X} + Cov(X, -1) + Cov(¥ X)+Cov(Y,-Y)
= Cov(X, X) — Cov (X, T) +Cov(Y X) + Cov (¥, -1)
= X) - (I). (- Cov (X Y)=Cov(Y.X)

1.4 Moments and moment generating function (mgf).

1.4.1 Concepts

The study of the probability distributions of a random variable 1s essentially the

study of some numerical characteristics associated with them. These so-called

parameters of the distribution play a key role in mathematical statistics. One such
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example of parameters is moment and its functions.

Discrete case :
Let X be a discrete random variable with pmf p, ={X =k},k=0,12..
.o}
with 7,20 and 2P, =!
k=0
Then, the r™ raw moment of X is given by
=)
W= EX) =2 ¥ p(x). r=0,12...
x=0}
The r'h central moment of X is similarly defined

as p, =E(X-EX))’

EX-p)) . (- EX)=pi = > ap(x))
x=0

> (x-m) pix)

x=0
Note that 1, = E(X —pj)® = variance of X
On simplification,
i f2
H2 =H2 =1

Thus, the first order raw moment 1s the mean and second order central moment
is the variance of a distribution.

AJSO, |.L0=l and Ky =0
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Continuous case:

The above has a natural extension to the case of continuous random variable,
Thus, let f{x) be the pdf of a continuous random variable, with

[ far=1 and F(x)20.

—0
The ™ raw and central moment of X are then given by

= T x" f(x)dx,

-0

and M- = I (x —np)” f(x)dx,

-0

where r = 0,12, ...
Note that pj =0, then the raw and central moments are identical.

Moment generating function {mgf) :
The mgf of a random variable X (about zero) is defined as

M(t) = E(e™), (t is a parameter)

while the mgf about mean pj is defined as

Note that M (1) =E (e’"",e"“l)

= e—fl.li E(QIX)

= ¢~M(y)

It should be noted that there are distributions for which mgf does not exist.
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1.4.2. Properties of mgf

Below we show that M(t) generates raw moments while 3 ; (¢) generates central

moments :

We have AM(t) = E(e'X)

OD(LX')}’
_ F
ey

[

{
EE(X"), (since expectation is additive)

r

. . "o
so that u) can be obtained as the coefficient of Ir in M (t).

Again, My; ()= E(et(“"_”l))

(X - )’
iheay

>0 "
= S L Ex -
r=0k

\‘Dr?’

= ZEHr,

=0
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: : i
so that pu, can be obtained as the coefficient of I n M (1),

aMw|
It can be also be shown that i I ars
¢ =0
My 0|
and T =R,
t=0

Two other important properties of mgf are given below :
. The mgf of a linear function ¥ = a + &X, ‘@’ and ‘b’ being constant.
Let M*(t) be the mgf of Y= a + bX. Then,
M'(t) = E(ef3+hX)) = F(edt bX)
= et F (ehtX)
= e*M(bt), when
M(t) = E(e™), mgf of X,

. Let X| and X; be two vandom variables which are assumed to be independent,
Then the mgf of

Y=X+X is
M) =E ()
_ E(e.f(X1+X2))

= E (efz\'l ‘ELYZ )

E( ep\])‘E(e""l), (- X, and X are independent)

= N a2 (1)
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This shows that the mgf of the sum of two independent random variables in the
product of their mgfs. In general, the mgf of the sum of a fixed number of
independent random variables for which the mgf exists is the product of the
mgf’s of the summands.

1.4.3 mgf of some distributions

1 _si2
Example (a) : Let X have the pdf given by 7(x)=17° ¥z,

0. otherwise

x>0

Then,  M()= E(e‘f\')

1 T

=2 1(1_2;) , {(Provided 1- 2t > 0)
2

— (1 -1 sl
(1 2t),r<2‘

Example (b) : Let X be discrete with pmf given by
Pxy=0,x=1, 0<o<l
=1-6,x=0
Note that p(1) + p(0) = a+(1-6)=1
and p(l)> 0, p(o) > 0
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The mgf of X about zero is given by

E (e"y ) =t 1p(:’) +e"? p(o)

= P’ +(1-8)
= 1+8¢" -1)
Also, note that
o dEET)
mean is #l T g
1=0

[0 + t@(e‘ir - 0)}

=0
=4

Similarly, variance of X can be obtained by usig

wy = 15— i

. dEE)
Here , #2 =
t=0

di?

= [ee"lzo

=9
i =6-62

= 6(1-9), giving the vaniance
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The distribution of X given in this example is called Bernoulli distribution.

Example (c¢) : Let X be a continuous random variable with the pdf
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1 1
f(x)=;-m, —o0 < x <00

This is called the Cauchy distribution which has the property that the mgf does
not exist for this distribution. In other words,

T e ax]

X |
Ee)y=— | — -
ﬁ-{c T2 does not exist

Consequently, the mean of the distribution does not exist, while the median 1s
at x = 0.

One very useful property of mgf is that the mgf uniquely determines a
distribution function {(d.f) and, conversely, if the mgf exists, it 1s unique.

1.5 Markov Chain, Chebyshev’s Inequality

1.5.1 Markov chain—Concept

Markov chain generalizes the notion of statistical independence. Let the random
variables X, (n = 0,1,2,...) be defined as follows :

X, =], ifevent E; (j = 1,2,....) 1s the outcome of the nth trial.

The trials are said to be independent statistically if

P(Xn = ilXo =igs Xy =i )=P(Xn = /) for all n (%)

=1

In Markov chain, it is assumed that the outcome of each new trial depends on
the outcome of the directly preceding trial but is independent of the outcomes
of all former trials.

Thus, the sequence {Y,} constitutes a Markov chain if for all values of n and

also for all values of X, X;, X5 ..... the condition

P(Xn =j |X(_) =ig, A1 =1 X :'iir—l)

= P(Xn = len—l = "‘n—l) = (*%)
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In this case, {i,} is called a Markov chain of order one.

Thus, the notion of Markov chain is arrived at by assuming that the outcome
of each new trial depends on the outcome of the directly preceeding trial but
is independent of the outcomes of all former trials.

Clearly, (**) is an extension of (*} to the case of one-step dependence.

As an illustration of a Markov chain, imagine a particle moving back and forth
along the real line in discrete steps Imagine also that the particle begins its
motion at the point O and that it can move only one unit of distance to the left
or to the right at each step. In particular, after its first stip it will be located at
either x =1 or x = —1. Suppose that the probability that it moves to the right
at each step is ‘p” and the probability that it moves to the left is ‘1-p’ where
0< p<1. We might ask ‘what is the probability that the paricle will remain in
some interval centered about the point ‘O’ after n steps?’

Example (a) : Consider a sequence of trial with a fair coin

i.e., P(Head) =

ra| =

= P(Tail)

Let X,, = number of heads in the first # trials.
IfX,, =% then X,=Kork+1

Thus, P {Xn = Xin |Xn—1 =kXy2= x.f,r_z,---Xl = xin}

%,{f Xpg =k or k+1

0, otherwise

It follows that {Y,} is a Markov chain. Also, conditional probability is

independent of 7. Such a sequence is said to have stationary transition probabilities.
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Example (b) :
Let {X,}be a sequence of independent r.v’s with pmf

P(X,=1)=p.P(X,=-1)=1-p, 0<p<I1

n
Write Sn =2.%i . Show that {S,} is Markov sequence.

i=l

n-1
Solution : Note that S» =Xn+ 2 .Xi = X, + 8,

i=l
To show that P(Sn =Sy |Srr—l =8 1-9-2 =Sp-2.9] :Sl)
P(Sn =P |Sp-1 = Sn—l)

Where s, 55 ... $,, 5,1 are fixed numbers.

Clearly, P(S, =5y |Sy-1 =sp-1)
= P(Xn + 8,1 =8, |Sn—1 =Sn'1)
=r (Xn =3y _Sn—l)

{Pa if 8y =85y +1
= 1

l=p.if sy =51
Thus, P(S, =s,|S:-1=5,-1) depends on s,_, only, and not on sy, 53 ...,
S0, P(Sy =84 [Spet =S, Sh-2 =251 =91)
= P(Sn ] |Sn—l :Sn—l)

which shows that {S,} is a Markov sequence.

41
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It can be seen that, by multiplicative rule of probability,
P(Xp=ip X1 =01 Xyt =)
= P(Xg=i,).P(X) =i |¥, =i, ).P(X2 =i2 |Xg =ip,.¥) =41)
P(X a1 =it | X0 =i, X1 =i Xy =iy)
= P(Xo =ip)P (X1 =4|Xg =ip)P(X2 =ia|¥1 =41) - P(X 1 = by [ X =),

for all n, if {X,} is a Markov sequence.

Here, P(X, =iy) is called the initial probability

and P(X;=i;|¥; 1 =ijo1).( =123 0 +)

are called the one-step transition probabilities of the Markav chain (M.C)

These probabilities determine the joint distribution of any finite number of r.v.’s
of the M.C. sequence. Hence, we conclude that the probability deistribution of
the M.C. is completly determined if we are given the initial probability
distribution and one-step transition probabilities.

Transition probability matrix (t.p.m) :
If P(X,41 =ipy X, =iy) depends only on (is1in).
and not on #, the transition probabilities are said to be stationary. In this case.
P(X, = j| Xy =i)=P(Xy = j]Xq =)
= pij, say, for ij 1,

where I is the set of integers including zero.

If P = (pjy) is called the one-step transition probability matrix. On account of
probabiliy properties, we have.
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0<py <l %1"&:1’

Hence, the elements of P are non-negative and the row-sum equals unity. Any
matrix, with such a property is called a stochastic matrix. The matrix will be
called doubly stochastic if the column sums are also equal to unity.

n-step transition probability :

Let us denote
P(X,=j|Xo=i) by pg’) which equals

P(Xn+m =f|Xm =i)a Yim=123..,
for stationary transition probabilities. This is called an n-step transition

probability, and the matrix whose (i) the element is Pf:) is denoted by P(™

and is called the transition probability matrix. It is also a stochastic n-step matrix
n-step. For statinary press pi™' =p x p x ....p =p" i.e, n™ power of one step TPM
For stationary process p/™=pxpx...p=pie. nh powers of one-step TPM

Example (¢) : (Random walk and gambler’s ruin problem) :

Consider a gambler with initial capital x laying against an adversary with initial capital
a — x. In every play, the winner will get one unit of money from the loser if he has
money. If p is the probability that the gambler will win and ¢{=1-p), that he will lose,
fortunes (X,)) of the gambler after n plays, form a Markov chain with one-step transition

pif j=i+],
probabilities given by P(Xs1 = j|Xn =) = py =2qif j=i-L
o, otherwise

(n = 031323'-'3) (?J = 112 - a_l)a Poo™ 1 = Paa.

Thus, the transition matrix is
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O 0 0 ... 0
q p 0 0
0 0

P=(py=|:
0000 .. p
000 0 . 1

The space I = {0,1,2,...,a} is called the state space. The states ‘0’ and ‘a’ are
called absorbing, since the M.C cannot move out once it reaches one of these
states. Absorption at ‘0’ denotes the ruin of the gambler and at ‘a’ denotes the
ruin of the adversary, hence the win of the gambler.

In general, any state #, for which P(4 el =P[5 =:‘)= pii =1 is called absorbing.

All other entries in the i row are equal to zero. The above problem is also the
same as the random walk problem, gambler’s fortune performing the “walk”

of one-step to the right or to the left every unit of time, with “0” or “a” as the
absorbing barriers and x as the initial position.

Example (d) :

Solution : Her‘e’ P:(py)

Let P = (py)y., and Q = (g;),.,, be two transition probability matrices (tpm)
corresponding to two M.C.’s. Then, the product PQ is also a transition
probability matrix.

and ©Q=(ay)

H=R. M.

Then, the product PQ=(:;;,‘) say, where 7; is given by

KX

Since 7;=°%4 =% hence r;20
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1=

Also, Z75="row sum of PQ, (=121

7=l

woon
El Z Puly

% 7
= zpr.4,
k=1 j=1 ik kg

E H
r,| 24,
il ik =1 &

[ [

But Zlq;g- is the sum of the k'™ row of Q, so that Z 9% =1, as Qis a stochastic matrix.
J= J=i

F F
Thus, finally, Z‘sz' =k21p"" =1 as P is also a stochastic martix.
}:I =

It can be easily checked that if P and Q are doubly stochastic (i.e., their column
sums are also unity), then the product PQ is also doubly stochastic.

1.5.2 Chebyshev’s inequality
Theorem 1.5.1

Let h(X) be a non-negative function of a random variable X such that E(4#(X))

exists. Then, for every e>0, PU(X)ze)< @

To prove the result, we assume X to be discrete. The continuous case is treated
similarly.

Let P{X =x}=p,, k=12
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Then EC()=2 h(x)p,
=1

= [Z+Z ]"?(Xk)pk_

A4 40
where A={k:h(x;)2e}, 47 ={k: h(x; ) <e}

Then E(h(X))z%R(xk)pk
ze Y P =€ P(h(X) z€)
A

Eh(Y)
&

P(MX)zE)<

Corollary : Choose h(X)=(X - 1)°. e= k22, when
o =E(X -p)?, u=E(X), and k > 0.

0'2

el
ko~

Hence, P((X - ,u)2 2e) <
|
or, P(X-#zko)s—
' k
This 1s called Chebyshev’s inequality.

Chebyshev’s inequality given an upper bound to the tail probabilities of a
distribution.

. 1 B} 1
Example (a) : Let 7(& =0)=l—k—2~ P(X Zil)ZP, when k > I, a constant.
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1 1 1
Here E(X)=0.{1——J+1,[—J_1_{_] =0
K2 2%2 22

E(XZ):L%H_%:%
wr ur g

1 2 1 1 1
V(X)=—-0?=— &= f_=_
kQ k2 E k2 k

Hence P{LY-4zko}

L.

w2 k2 k2

= ri¥

1
so that Chebyshev’s inequality P{¥ —#|zko }Sk_g is satisfied.

Example (b) : Let X be distributed with pdt ix) = 1if0 <x < 1,

and = 0 otherwise. Then

1 1
E(X)= PRIES
() =[xf(de="| =3
0 0

| 1
B %)= [ flx)de = %9} -
0 0

[ N SRS
1 127 J12

F(X) =

| =

By Chebyshev’s inequality,

1 1 1
Pily <2 /= t>1-— =075
“ 2 12} 52 :

47
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But the actual probability is

| 1 1 1 1 1
PHA——Esz\/g}_P{E—ﬁsXsE+ﬁ}

=1,as X liesin 0 <x < 1.

The means that Chebyshev’s inequality gives good approximation to the actual
value.

1.5.3 Characteristic function

The mgf does not always exist. A generating function which always exists is

the characteristic function (c.f), written as #(:), where

plt)=£F (E’”"A), where ;=./21, and 7 is the parameter.

The relation between ¢ f and m gf is that

H(1) = E[e"“\' J

=M (it),
where M(t) is the mgf of X, i.e, M(t) = E(e™)

Example (a) : Consider the normal distribution with the pdf
1
f(x)ZﬁeXP(—(X—#)zf’(20’2))« —0 < X <00,

—oo<;:<oo,0'2>0-

The characteristic function of this distribution is a complex integral, which on

e 22
simplification, comes out to be g = fu-t"c"/2

The characteristic function about mean # will be given by
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B, (1) = E("X~#)
_ e—ir;zE(e:'r,‘{)
Thus, for the normal distribution above, are have
4= e—r‘rﬂ‘eiw—rzaz /2
= e—t‘262a"2
Example (b) : Let X be a discrete random variable with pmf
p(x):’é‘,,pan—x“ x=01,.n0<p<l,ptq=1
x
The characteristic function of X is then given by

H0) = E(er‘rX)

LI v n
_ zem Cy pnqn—x
x=0

I
0
—
3
L]
=
Ry
a1
]
=
1
-

= (q + pe't )”

One important property of the characteristic function is that the characteristic
function of the sum of a fixed number of independent random variables is the
product of the characteristic functions of the summands.

The characteristic function uniquely determines the underdying distribution.
Given a characteristic function, it is possible to get back he distribution by using
what is called the ‘inversion theorem.’
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1.5.4 Probability generating function (pgf)

Another important and useful generating function is the probability generating
function (pgf) applicable to the case of discrete variable only. More specifically,
here we assume that the variables under consideration is the integer-valued
random variable,

Let X be a random vanable and let

P(X=k)=pg k=0,12,..

[ra]
with 2 7, =1
k=0

Then the pgt of X is given by

G(t) = 2 FPX =k
k=0

= E(t¥), (t is the parameter)
Example (a) :

Consider the Poisson distribution with pmf

k
Py =ky=e? %, k=012, .

Then pgf G(t) is given by
G(y=E@™)

0 i e—ﬁgk

_ o @
AT
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n
—

= oM

G

Note that if G’(+) and G"(¢) be the derivatives of G(t) with respect to t once and

twice, respectively, then G'(1) = E(X)

and G'(1)+G'(1)-(G'(M) =V (X)

=P(X=k}) k=012,

Another property of the pgf is that the pgf of the sum of two integer-valued
random variables is the product of their pgf’s, if they are independent.

Thus, Gy sx,©=E@ 1742y

= E(r1.r72)

E(r“"l)E(r‘Yl) (- X; & X, independent)

Gy, (0,Gx, (@)

1.6

Summary

In this unit,we have studied the concept of probability along with its different
meanings. The classical definition of probability, the frequentist approach as well
as axiomatic approach are all considered. The hLmitations of the classical
definition of probability are also mentioned.

The important concept of a random variable along with its distribution is also
discussed. The ideas of moment generating function (m.g.f), probability
generating function (p.g.f) and characteristic function {(ch f) are also given. The
functional relationships between them are discussed.
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1.7 Exercises
1. Let AC be the complement of the set A. Then P(A®) =1-P(A)
2. For A} and A, events, not necessarily mutually exclusive,
P4 w)< P(4)+P(4y). Discuss the situation when the equality holds.
3. For two events A and B, P(4~ B)< P(B). Discuss the case when equality holds.
4. Express P (ACHBC ﬁ(-“c) in terms of the probabilities of A, B and C and their
intersection.
5. Check that the function f{x) defined as follows is a valid p.d.f—
x»0<xel,
Ffix)=42-x1sx<2,
0. otherwise
6. Show that if X is a random variable such that
Plasx<b)=1, then a<E(x)<h, V(X) é%(b—a)z
7. Check whether fi(x)=1-|3/,-1<x<l, is a proper p.d.f of a random variable X.
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2.0 Objectives

The followings are discussed here:

Definitions of probability mass function (pmf)
Definition of probability density function (pdf)
discrete distributions

Continuous distributions

Bivaviate distribution

Weak Law of Large Numbers (WLLN)
Central Limit Theorem (CLT)

2.1 Introduction

In many scientific investigations, we are confronted with huge numerical data that
arise from what are technically called populations. In statistics, these populations are
characterzed by probability. This unit considers the different properties of these
populations and their uses in inferential problems. Different aspects, mainly, means
and variances of these distributions are studied here,

2.2 Discrete Distribution

2.2.1. Uniform distribution

This distribution will occur if the different values of the random variable happen
to be equally likely. Thus, if a fair die is thrown, the variable which is the number
of points coming on the uppermost face takes the values 1, 2, 3, ... .. . 6, which are
equally probable.

The pmf is given by

fixy= % x=a,ath, . .. a+ (k-1) where ‘@’ and ‘& are fixed real numbers

and ‘%" is a fixed positive integer.
Clearly, f{x) >0 for all x, and

1 1

a+{k=1)k a+{k=1)k
Bt eae

2 fir) =

X=4a



n
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a+(k=1)h
The mean is a + (k=1) h E(x) = 2 xfix)

x=

2 2

_ %{(2“(1{-1)&;)&-} _ g4 ME-D

Similarly, F{x) = E (X — n )2, where p= E(X) = E (X3) - (E (X))%.
Note that variance of theset @, a+ /A, ... . @+ (k— 1)his same as that of 0, A, 24,
........ Ak — D)h, since variance is unaltered by change of origin. Again, variance of the set

0, h, 2k, ..., (k — 1k is h? times variance of 0, 1, 2,.... .k — 1 which is #? k;,;l .

With this in mind, define ¥ = 2= ~% 5o that ¥ takes the values 0, 1, .., (k- 1). Now,

PO =x)=P (=59 =1 ¥=0,1,2..,(-1),

k-1

so that £(Y) = yz:(:)y [%]

2 2

_ [i}(f’f —Dk _k-1
%
E(X) = a + hE(D)

=a+ h(k;l) , as already obtained.

We know that (1) = %

k2

I - L as already established.

LX) =R =1
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Therefore, standard deviation

R _ k-1
= 0 =

2.2.2, Binomial distribution

Repeated independent trials with two possible outcomes, a ‘success’ with probability p
and a “failure’ probability 1 — p, are called Bernoullian trials. The most familiar examples
of such trials are tosses of a coin, where occurrence of ‘head’ may be termed as success
and that of ‘tail’ as failure. Qur aim is to obtain the probability of x heads (x =1, 1, 2,
..... , ) in # trials (n 1s a fixed pre-assigned number).

The pmt of a Binomial Distribution is given by

fo=(prg-nx=01,2..,n 0<p<lg=1-p

Define parameter : The parameters of a distribution are constants that define the
distribution, such as its mean, variance etc.

The mean of the distribution is given by

E(X)= 3 %Ax)

x=0

- S

x =1 _{n=-1={x-1)

q
:”PZ|1 1 (n D-(x-1)

anl— put
np Z \_lﬁ' 1-x' xX=x-1

nplg+py-l=np (cg+tp=1)
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Probability generating function of Xis
E@)= 2. p g T=(q+piy = G@), say
1=

ThenG(f) =n(g+pty' L p
=np (g +piy-!
G'(1) = np(g + py'~ ! = np = E(X), as already shown
and G"(f) = np(n — 1) (q + pty' " *p
G (1) = nn — 1)p?
Finally, Y(X) = ¢“(1) + ¢'(1) - (¢' (1)
=n(n — D)p? + np — n?p?
= np - np?
=np (1 - p)
= npq (putting ¢ = 1 — p)
and standard deviation = fnpg .
Theorem : Let X follow a binomial distribution with parameters # and p, written

lim it
n—s00, p—0

as X~b (n, p), then as » —oc and p — 0 keeping np = ;, (finite), we have

—hn X
b(n,p)=e|;’,x=0?1?2? ....... np =

Proof : Denoting pmf of X by b(n, p), we have

bin,p)= Hp¢~x=1,1,2,... . Hp=1,
which can be rewritten as

b p) = G

n(n—l)(n—2) An—x+1 -

02 () -0
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Y Y A
—l1-=|]1-= as # —w
E[ nj( n)’

X

e since
|E +

lim [l—%] =e¢and lim [l—%) =1, as x is fixed

=¥ =¥

X

Thus, An, p) = e ™ }t, x=012... «

x k E

= fx), say.
Some examples satisfying # o, p —0, but np = Afinite) :
(1) Number of misprints per page of a book.
(2) Number of defects in a given area of photographic plate,

(3) Number of telephone calls received by the telephone operator in a given duration
during peak hours of the day.

Mode of a binomial distribution :

Consider a binomial distribution with pnrt.

Sy =Opqgx=0,1,2, ... ,n

Let M, be the mode of the distribution. Then

J M) = fiM, + 1)

and fiM,) > f (M, — 1), M, being an integer.

Note that mode is the value of the variable at which the probability is the maximum.

Jx Rt

Here. 76-0 = @i
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= Jﬁ/ =llp-x+1p _ r—x+Dp
IE n—x JE q xq

f (Mo) 2 f (Mo +1) implies

SMy+1) <1
FMy)

m-My+)+Dp <
of, Mo+Dg

o, {(n-M)p<Mg-+q
o, nmp-Mp<Mg+tagqg
o, Mfp+tq)up-gq
o, My>nmp-1+p=@m+1p-1
ie, My>Mm+1)p—-1 > (1)
JMy) _n-My+hp
Alo, 7, 1) Mg
o SMy) 2 fMy - 1)
= w-M+1)p > Mg

o, np-Mp+p>Mg

o, Miptgqg) <ntlp
o, M,<(m+1)p > (2)

(n+l)p -1 (n+ 1)
Case 1. If (7 + 1)p is not an integer, there must be a unique integer between (n
+ 1)p — 1 and (»n + 1)p, satisfying (1) and (2).
We choose this integer to be A4, which will be the unique mode. Thus, the greatest integer
contained in (7 + 1)p, i.e., M, = [(# + 1)p] is the unique mode.

Case 2. If (#+ 1)p is an integer, then the two modes are M, and M, — 1, where
My=n+1)p.
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Example : Consider a binomial distribution with # = 6 and p = 0-5.
= 1 _ 7 _
Here, n+ 1pp=(6 + )5 = 3 = 3-5.

So, the unique mode is a number A4, (integer) such that

MO > 35-1=2525 3 35
and M, <35
Thus, M, =3

On the other hand, if # =7, p = 0-5, then
(n+Dp=(7+1); =4
In this case, the two modes are 3 and 4.
Note : The mean and variance of a binomial #» X can also be obtained by first

obtaining the mgf of X and then differentiating the mgf, as explained in the previous
chapter.

2.2.3. Negative Bionomial Distribution

Consider the succession of trials of a random experiment which results either in
a ‘success’ of a failure with probabilities p and 1 — p respectively. Let us compute
the probability of observing excatly » successes, where » > 1 is a fixed integer.

Let X denote the number of failures that precede the #h success. Then X + # is the
total number of trials needed to produce » success. This will happen if and only if
the last trial results in a success and among the previous » + x — 1 trials there are exactly
x failures. Since the trials are all independent, we have

PX=x)=¢"NYHhp (1-pr.x=0,1,2,.....

X

Equivalently,
PX=x)= "y {-qy,x=012_...,9=1-p
Note that > pX=x)=p" 3 (Y =p (1 -¢7=pp7=1
x=0 x=0

The mgf of the distribution is clearly
M) = E(e")
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oo

= 2.y (9

x=0

=P 2 )¢y
x=0
=p" (1 - gefy7, for ge" < 1.
The mean and variance can be obtained in a number of ways, for example, by using

mgf.
Here, M(?) = p" (1 — ge')™

M@ =p (1= gely i =r) (0 - geh)

so that a7 (0) = p! (~r}-¢q) = %: E(X), the mean.

Also, a7 () = () ¢ [0 = ey + ¢t (e = IX1 = gy ™X(~4e)
= qrp” [e" (1 = ge)™ 1 + elgel(r + 1) (1 - ge'y™2)
so that ar(0) = qrp” [p7! + q(r + 1) ()]

rgp”
= pr+l [1 + q (r + l)p_l]

= E[H—Q(H 1)] =uh
P P

ance T rg ()’ 4 ¢’
Thus variance M(X) = —+—="—+rir——
P P p b

2
— Hqp+irq”
B

P

_rqlp+q) _rq
2 2

v P
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=[5

. q Fi
so that standard deviation is 1,? =

The probability generating function (pgf) G(f) = E(+¥) can be obtained by replacing ¢’
by 7 in mgf. Thus,

GOy=p (1 -g" | <1.
2.2.4,. Geometric distribution

Let X be the number of failures preceding the first success, say, occurrence of a head,
in a series of independent tosses of a coin with P (Head) =p and P (Tail)=1-p =gq,
say. The resulting distribution is called a geometric distribution or waiting time distribution.

The pmf of the distribution is given by

f=PX=x)=pg,x=01,2

The distribution is obtained as a special case of Negative Binomial Distribution with »
= 1 .

Consequently, the mgf and mean and variances are

My = —2
1-ge
Bxy =1
=L
0=

2.2.5, Poisson Distribution

This distribution can be obtained as a limiting case of binomial distribution. Consider a
binomial distribution with p.m f.

J)=Mpqg -5 x=0,1,2
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In many practical situations, # is very large while p is exceedingly small so that #p =
%, a finite constant. Then the above pmf can be approximated as

5 AT
fix)= e ‘*E,x=0, 1,2,......
This distribution is known as the Poisson distribution.
Define parameter

The mean and variance of X can be obtained either by mgf or pgf. The pgf of X is
given by

G(f)= E(#)
e e F
= \go(x r

e ()
- S

WM A(t=1)

=¢g e =g
LGty=eM (1 -0)
=MD
and G" (1) = 2e™ - (1 -0)
= 2™

so that mean = G (1) = A,
and variance = G (1) + ¢'(1) - (G’ (1))?
=A==

Thus, for the Poisson distribution, both mean and variance are equal to 3 .

Additive Properties of Binomial and Poisson random variables :

(1) Let X| and X, be independent Binomial random variables with parameters
(n, p) and (1, p), respectively. Then X, + X, follows a binomial distribution with
parameters (1, + 1, p).
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(2) Let X, and X, be independent Poisson random variables with Parameters 7, and

%, , respectively. Then the sum X, + X, follows a Poisson distribution with parameter %, +

}\42.

2.3 Continuous Distributions

2.3.1 Uniform Distribution

The uniform distribution (also called rectangular distribution) has the same probability-
density at all values throughout the range of the variable X. The pdf of X is defined, for

some constants o & B, as

() = qu,ifa <x<p

= 0, otherwise.
The pdf can be shown graphically as follows :

(0,0 o X B

Fig. 2.1 A uniform distribution with range (o, B)

The mean is

b 1|2 P
EQX) = [xftx)de = B_—GM

1
= 2([3_(1)[[32 - a?] 7 >
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b 1 | x? i
EXP = [xfxdx = m{y}
1 2 raf+a’
= m [B3 — (13] = %
LX) = EQG) - (B,

B2 +pa+a’ (a+P)
3 4

_ 4% +4aB+4a’ —30’ —3p1 —6ap
12

_ (p-o)

12
2.3.2. Exponential Distribution

The pdf of an exponentially distributed random variable X is

Ble™*P x>0p>0
0. otherwise

f(x)={

If we take 9= p~!, then the above pdf can also be written as

0% x>0,0>0

0, otherwise

Sfx) = {
Define parameter
The mgf of X is

M(1) = E(e™)

=9 Je‘x e~ dx
0
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0 J‘e—(e—r).\‘dx
o

(1)
6-t’

-1
(l—%] <.

=2

Then () = (-1) (1—3] '[—

Sy

|
i i3 (4] (4

-3
= %[1_1)
o’ 7]

Thus, ECO) = 30/(0) = & =B,
MX) = E(X?) - (X))

| —

=m0 -
2 1 1 .9
A

The exponential distribution can also be obtained as a special case of a gamma
distribution.

2.3.3. Erlangian Distribution
The standard form of a gamma distribution with shape parameter o (> 0) is given by

f= ﬁxa—le‘—“, x = 0.
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If o is a positive integer, then the above distribution is called an Erlangian distribution.
Note that for o = 1, we have an exponential distribution.
Since o 15 a positive integer here, the pdf can be rewritten as

1
f(x) = a_lxa’_le_‘r, X = 0, o > 2

Define parameter
Moment generating function (mgf) :
M) = E(e™)

=L°o ix —1p,x
l‘(a)ge x& -l gy

= ﬁjxa—le‘—“(l—t) d¥,
0

_ 1 T
T Ty T

(1-97",¢t<1

1ttt 0L(0|L2+1) 24 a(a+1é(a+2)

£+

. 4
p; = mean = coeflicient of o= @

2
. !
p, = coefficient of Z - a{oa+1).
p,= Varance = pw)— p’= o’ + o- a? =«
So, the mean and variance are equal.

Example (a) : For the Erlang distribution having pmf
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,x =0, &> 0, ¢ (integer) > 0,

L
A e

show that mgfis (1 — by, t > l, mean = be, variance = bc.

Solution : By definition, mgf is given by

ot el
M(t) = E(e") = m“'o exf,(%] e—xa’bdx_

L1 e

Bl(c— 1] p1 Jo

- 1 1 Ie) 1
S e vl T E
=
S S |
aQobry =B
= (1 - b1ye, 1 < bl
Now, (1) = (-0) (1=bty <" (=b) = be(1 — btytc* D

and M"(¢) = -be(c +1)(1- 1) D™ (-b),

M 0) = be, e (0) = Pe (e + 1),

Hence, = bc, p,= pr7(0) — (a7 (0))? = b%c = B¢ (c + 1) — b
2.3.4 Gamma Distribution

A random variable X with the following pdf s said to follow a gamma distribution:
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Cf.

f) = =— xa1e™™ x>0 ¢8> 0, Define parameter.

and, = 0, otherwise,

Mean E(X) = j xf (x) dx
o
_ l"(a) Ixu —Gxdx
0* Ta+l) _ «

r(a) e T @
and V(X) = E(X?) - (X)),

where E(X?) = (aj x4 gy
0

0% T(o+2)

(o +1)¥a)
072

(12+0'.

92

a’+o o o

= S5t

The mgf about zero is
M) = E (e)

69
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_ 8% T(w
L) (0-1)*

On further simplification, we have

Mo = (1-5] 1 <.

The mean and variance can also be obtained by differentiating and putting z = 0, as

discussed earlier.

2.3.5. Beta Distribution

A continuous random variable is said to follow a beta distribution with parameters m
and # if its pdf 1s given by

1
F &Y= Boam” lA-xy-Lo<x<1 mn>0

= (), otherwise

Here, EX) = jxf (x) dx
0

1
1
= B(n,m) gxm (1 _ x)n - ldx

B(m+1n)
B(n,m)

I(m+DI(m) I (m+n)  m
C(m+n+DC(mIR) ~ m+n

1
and E(X?) = B(n',‘, B B R
0
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B(m+2.m)
B(m.n)

L(m+2)[(n) T(m+n) {m+1)}mn
T Tim+n+2) TonLm) — (m+r+ 1 (m+n)

Finally, on simplification,

V(X) = E(X2) — (E(X)) =

(m+nY¥m+n+l)

2.3.6, Normal Distribution

A continuous random variable X is said to follow a normal distribution if its pdfis given
by

2 2
fx)= 1 -Gewie <X < o, —w< U< 0, g2 > 0.
oA\2|

The constants 1 and o are the parameters of the distribution. The distribution is
symmetric about M.
Below we show that £(X) = p and {X) = 52

The mgf about zero is

2
I Co )

1 ]?e 2t g

Il
|
§e—3

2 2
¥ x 2 p .
exps — +{to” + ) - ——dx
p{ 26° & # 902}
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2
w _10
2

= e“’*%‘zcz , (using the fact that j e’ o dr=oc2n

—ed

The moments of all order exist and may be computed from the mgf. Thus,
M= T (ie?y = MO (1 +i6?)
~ pff(0)y = p, the mean

and pge(6) = pe (O (n+ t6?) + M) (6?)

M (0) 1+ A(0) 52

w e’ (WA(0)=1)

Hence, p¢7(0)

Finally, J{X) = ( ;.12 +o)— P =42
Characteristic function ;
The characteristic function ¢ (7) of X can be obtained from the mgf using the relation

GO =Min, i= J1.
Thus, &(f) = ALir)
_ ep.(i:)+%(ir)zcz
=¢

Standard normal distribution : If p=0, o= 1, then X is said to follow a standard
normal distribution having the pdf

27

XL

fO= e w<x

The corresponding cumulative distribution function (cdf) is given by

X

Fixy= [ fx)ae

-l
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je_l"é dx, which have been extensively tabulated for practical

purposes.

IfXxX - N (,,1302 ), a normal distribution with mean p and variance 52, then Z =

X-p
(a3
(HX=4W+oZ
(2) EX) = 1 + cE(2), so that B(Z) = 0

(3) V(X) = 52 V(2), so that F{(2) = 1

follows N(0, 1). This follows from the following facts :

1

A Z=x —% , a linear function of the normals random variable X, hence Z also

follows a normal distribution with mean zero and variance unity.
Example (a) :

By Chebyshev’s inequality, if EJX?| < », E(X) = p and V(X)) = 52, then

1
P{X-n|>ko} ik—z, (k > 0).
For & = 2, we get
PX -pn| > 26} < 025,

and for £ = .3, we get

P X - 1> 3c}sg = 001235,

In this case, for X ~Mu,s?), we have
P{X-n|>ks}=P{Z >k}, Z ~ N(O, 1).
Using the normal table, it can be seen that
P{Z| > 1} = 0-318, P {|Z] > 2} = 0-046
and P { |Z] > 3} = 0-002, while the estimated value is 0-01235 by Chebyshev’s
inequality.



74 NSOUe GE-MT- 11

Example (b) : Let X~ N(3, 4), then

P2<X<5)=P [2;3£X2'33553]
=P(05=2Z<1)
=PZ < 1)y-P(Z < -0%5)
=P(Z<1)-P(Z = 03)

(due to symnetry about zero)

={(1-P(Z>1)-03085
= (1 - 01587) — 03085
= (0-5328.

Normal distribution is extensively used in many branches of physical, biological and social
sciences. This distribution has occupied a unique position in statistics due to the so-called
central limit theorem (CLT). It has been seen that under some mild assumptions, such as
large sample size, many distributions can be approximated by a normal distribution.

Normal distribution possesses a reproductive property in the sense that if X} and X, are
normal random variables, then X, + X, is also normal even if X, and X, are not independent.
2.3.7. Log-normal Distribution

A variable X is said to have a log-normal distribution if log X is normally distributed.
As log X goes from —o to +oo, X goes from O to o .

Let log X follow M(£,8), then the pdf of X can be shown to be

1 1 2
exp | ——q - ,x > 0.
Sx2m v [ 28° log, ¥-%) ]

Unlike the normal distribution which symmetric about the mean, log-normal distribution
is positively skewed.

The mean and variance of the distribution are
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EX) = exp [£+54 ]
and J(X) = o2 (o2 1) exp (28),

where @ = exp (3% )

This distribution has wide application in reliability theory where the underlying situation
is far from symmetry.

2.4 Sampling Distributions

2.4.1. Central Chi-square Distribution
Introduction :

Chi-square distribution is one of the three basic sampling distributions. The other two
are the t-distribution and F-distribution, respectively.

Sampling distribution is the basis of statistical analysis. When we suggest a value for the
unknown parameter based on the sample observations, the statistical properties of that
suggested value will be needed. For this, we are to obtain the distribution of that suggested
value, also called statistic. By the term ‘sampling distribution’, we shall mean the probability
distribution of a statistic.

While discussing these three sampling distributions, we shall assume in all the cases that
the random sample, namely, X, X,, ... X hasbeen drawn from a normal population ¥(1,

o’ )

Distinguish between statistic and parameter:
A statistic is a function based on the sample, and hence it is a random variable,
while a parameter is a constant that characterises a distribution.

Definition of a »? (chi-square) random variable :
The sum of squares of » mutually independent normal random wvariables having

zero mean and unit variance is called a central ;> with 2 degrees of freedom (d.f)).

This is sometimes written as  *.



76 NSOUe GE-MT- 11

The pdf of a ? with n d f. is given by

1 21
S = %exp [-;Xz](xg)z 22> 0,
- avar| i = ’
3)
where () is the gamma function.
The 5> - distribution is related to gamma distribution and the properties of this
distribution follow from those of the gamma distribution.

The important properties of the ->- distribution are :
(DE(x’) =n,

2) V(%) =2n

2 p—
(3) xﬂ” tends to MO, 1), as # >

(4) 42 - distribution is positively skewed,

(5) If 2 and 3 are two independent 52 with n| & n, d.f. respectively, the sum

2

vs + y3 isitself a 42 with (n, + n,) degrees of freedom.

{6) When it is non-central? (Pl. mention)
Uses : (a) To test an assumed variance —Let X|, X, .. X be a random sample

L xi-XY
from M p c? ), whose both p and 52 are unknown. Then, Z[ r ] follows a >

G
i=1 0

with (7 — 1) degrees of freedom under H, : o=0.
(b) Chi-square distribution can also be used to obtain confidence interval for the

unknown variance g2 for specified confidence co-efficient.
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2.4.2. Central ¢-distribution

X
y?'

A t-statistic with » degrees of freedom is defined as ¢ =

_

where X ~ MO, 1), }? is a central §? with 1 degrees of freedom and X & ¥? are
independent.

The pdf of a t statistic with » degrees of freedom is given by

r n+l _atl
2 ) 2
A = ———=| 1+— ,—oo < .

ey

Some properties of the distribution :

(1) The distribution 15 symmetrical about zero.

(2) Mean of the distribution is zero.

(3) If » > 2, the distribution has variance n(n — 2).

(4) The statistic ¢ follows asymptotically a normal distribution.

(5) We get a non-central ¢ if E(x) is different from zero

Uses : (1) To test an assumed mean : If X|, X,,..... X 7id ~N(p o%), h& g2both

n

unknown, then the statistic % (when § is the sample standard deviation with

divison 7 — 1) follows a #-distribution with # — 1 df under H, : p = p,.
{2) To obtain the confidence interval for the mean when vanance is unknown.

(3) To test equality of two means when the populations have same variance.

2.4.3. Central F-distribution

An F-statistic with (n,, n,) degrees of freedom is given by
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_ Xt _m X
X3iny, M X,

where X2 and X,? are independently distributed central * random variable with 7,
and n, d.f., respectively.

The pdf of F is given by

b o 1 mi2
r(l° J( 1] 5
)
= = 2 F LO<F< o

RF)= ==
133 (e

Properties:

2

iy

(1) B(F) = .25, (if n,> 2)

2n3(1y + 1y —2)
(i, —2) (m, — 4)

(2) (F) = , (if ny > 4)

(3) For n, = 1, F = £2, 1 being a t-statistic with n, d.f
(4) The statistic /" follows a beta distribution
(5) When it is non-central : (Pl. mention)
Uses :
(1) To test equality of the variances of two normal populations.
{2) To obtain confidence interval for the vanance ratio.

(3) To test equality of several means as in the case of analysis of
variance.
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2.5 Bivariate Distribution

2.5.1. Bivariate normal Distribution

Inunit 2 of chapter 1, we have given the basic ideas of bivariate distributions in general
along with the marginal and conditional distributions. Here, we consider the case of bivariate
normal distribution.

The joint pdf of the pair (x, y) is said to be of the bivariate normal form if it is given

Where p, = E(X), u, =E(Y), 5.2= NX), gy? = V(¥) and p= correlation co-efficient
between X and ¥, |p| <1.
In brief, we write (X, ¥) ~N, (n.n:0.7°,6,%p)

The role of the correlation co-efficient :
If p= 0, then f (x, y) can be written as

2 . 2
]. exp _ l X— !J-x + ) I'I'y .
26,0, 2 o, o,

S, )

1
= /. 1.
C,.V2E o,V2n

= g(x), i(y), (say),

where g(x) and #(y) are the marginal distribution of X and ¥, respectively. This shows
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that in this case X & Y are independently distributed.

The conditional distribution of ¥, given X=x, is univariate normal with mean and variance
given by

E(¥Y/x) = regression of ¥ on x
Sy
= IJ'}' + pc_(x_ I'L,\‘)a
and (Y | x) = cj,z(l—pz)_

Gy 2 2
In other words, ¥ | x ~N(Hp+p —(x - p), 6,7 (1-p))

Similarly, the conditional distribution of X, givey ¥'=y, is given by aunivariate normal
distribution with mean and variance given by

E(Xly) = n+ po=(v— 1),
)
VXly) = 6.7(1-p%)-

Gx
In other words, X/ —~N(Mx+ Ps, 0= 1)), o (1-p%)).

Note that £(X/y ) is the regression of X on y.
Thus, both the regression equations are linear,

The joint mgf of X and Y in case of bivariate normal distribution is given by

Mt

— 2

Oyl
where #, and 7, are parameters.
Independence of X'and ¥ for p = 0 follows from A4(7, £,) as in this case M(#,, #,) reduces

to the product of two mgf's of N(p_.¢.* ) and M u},,c},z ).
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2.5.2. Weak law of large numbers (WLLN)

Let {X } be a sequence of random variables and let §, = ZX =12 we
k=1

say that {X } obeys the weak law of large numbers (WLLN) with respect to the
sequence of constants {B, }, B, > 0, B, 1 «, if there exists a sequence of real constants

A, such that B1(S - A) —£>0asn —»ow. A, are called centering constants, and
B, norming constants.

Example (a) : Let X|, X, .. be iid random variables with common distribution
b(1, p), binomial with parameter 1 and p.

Then E(X) = p, V(X)) = p(1 - p)
and we have

E(LS_HJ _ES) _np

n n n P

S V(S,) n
V [fJ: (zn)zizqz%_”), as H 5w,
n n

(Note that §, = > X, follows Binomial distribution with parameters » and p)
k=1

T S, 7
The above result implies that f—) P, as H 5o

So, here B, = n, and centering constants

A, = E(S,) = np.

S, —np
n

14
Thus, we have proved that — 0, so that WLLN obeys in this example.

Example 1 : Let x; assume two values 7 and -/ with equal probabilities. Show that
WLLN cannot be applied to the sequence x,, x,,....x,,.....
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Solution : We have been given,

for each 7, p(x, = 7) = %=p (x, = —1)
7=1,23,... )

~E(x) =1 [%) + (_,').%: 0

Define Sn = Z«tf
i=1

Also, V(x)) = E(x2) - (E (x))%2

=42 . % + .,'2.%
=i
2 o 2
~E(S)=0,and F(S) = 3= w
i=1
VS D2Zn+1
Note that LG):(n+ )énn+ )740, as n —ow

Therefore, WLLN does not hold for the sequence {x, }.
An alternative definition of WLLN :

Y #
The WLLN is said to held for the sequence {X } of mv. 5. if {?”} ,where S = >"X,,

i=1

converges in probability to a constant. For this, we need to check the following conditions

Var(S,)
e

—0

(1)

¥

E(S
%a(ﬁ, a constant.

)

Example 2. If x; can take two values i“ and —/* with equal probabilities. Then
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show that WLLN can be applied to the sequence {x, }, if o <%_

Solution : Here, E(x)) = %fa +%(—fu) =0

and V(x) = E(x?) - (E(x))?

_ 120, 1 2¢
= 5 +§r
= 1‘2(}.
M
Define §, = Zx,
i=1
#
then J(S,) = ZV(X;-) , (assuming x|, x,,......, x, to be independent)
i=1
15 5
= Zf"a
i=l
=120t +220t +320t+ +n2ct

V(S

- j' x*dx | (by Euler’s summation formula)
0

(2ol n
- 2o+l
0

20+
??U’

20 +1

n2c¢+l

T Qo+’

20-1

= — 0,a8n —»w
2o +1
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Provided 2a— 1 < 0,

1
< =
or, a 5

Thus, for a < %, the WLLN holds for the sequence {x }.

Khintchine’s WLLN :

Let {X,} be a sequence of independently and identically distributed random
variables with mean

E(X) = 1, vi, Then

X, _p> K, ie, X, tends to pin probability,

#
where X, = %ZX:
i=1

This is called Khintchine's WLLN.

Symbolically, we write X, ﬁ 1, to mean the following :

A sequence of m.v.’s {X } 1s said to converge in probability to X, if, for given ¢
and §, both > 0, there exists a ¥ such that
PiX, - X|> e}< s, foralln =N,

ie, Mpay X |>c}=0,forevery ¢ > 0.

T g

Example:
The variable X, (7 = 1, 2, .....) assumes the value 2-2°¢' with probability 2. Examine
if the WLLN holds in this case.

[l

Solution : E(X) = Zz_i i — 2logi

i=l

A2
— Zz—-logx
i=1
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= 1
=25

1 2'°g’ =11

Ms

i

a convergent series.

l\.‘rl —

But the series Z

So, E(X)) is finite. Hence, by Khintchine’s theorem, the sequence X, X,...,
X, .......satisfies the WLLN. This is called Khintchine’s WLLN.

Example : Consider Poisson’s scheme of sampling : » independent Bernoull trials
are performed, the i trial with probability of success p,, and failure g,

Let X, = 1, or O if the i trial results in ‘success’ or in ‘failure’.

Then £(X,) = [ ZX]_%iE(X,.)

i=1

1< _
= ;;pj:p,

and (X ,) %ZV(XI.), since X, X,,....., X are independent.
2
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Zp,q, , (where g, = i - p))

Note that p.g; < %, Vi,

v 1 <
X)) = _gzpiQi
=

1 (1 1
< —|=—
<5 2li)a

which tends to zero, as # — 0.
Thus, X, — P, in probability.
This 1s known as Poisson’s WLLN.

2.5.3. Central limit theorem (CLT)

Let the distribution of a random variable ¥ depend on a parameter #, and if there
exits two quantities | and ¢ (which may or may not depend on #) such that

Y- Mo 2
I

then we say that y 1s asymptotically normally distributed with mean pu and variance
c%. We also say that (Y—u)/c follows the central limit law.

The following theorem states the classical problem where the variables are
independent.

The Lindeberg-Levy Theorem—

Let {X;} be a sequence of independent and identically distributed random variables
with
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E(X;) = n and (X;) = ¢°<oc. Then

F

Z(XK _Iu)

£=1
on
is asymptotically normal with mean 0 and variance 1.
Note that

H

Z(XK — 1)

= _X—H

0'\/;_1 - 0';"’-\/; ’

so that the sample mean [ is asymptotically normal with mean |1 and varnance

o’fu.
Theorem (Liapounov)

Let {X,} be a sequence of mutually independent random variables such that for
some 3(>0),

E{|X; — |32+ exists for every k = 1, 2, 3, ..., where
E(X) = w and V(X)) = o2

Then, if the condition

. 12
lim———— > E{X, - 4,
T3 k=l

Ao 1
i =
z : 2
k=1

2+o‘}:0

. . JSH - #'ﬂ . . . .
is satisfied, the Mls asymptotically normal with mean O and variance 1,
a .
()

where

"

oy = ;#k ) O-.[n)r2 = ZG: .

k=1

The Liapounov theorem, as stated about, gives only a sufficient condition for {S 3,
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where S, = ZX « , to follow central limit theorem (CLT). The proofis omitted.
k=1

Theorem (Lindeberg - Feller)
The following theorem, known as Lindeberg-Feller CLT, gives a necessary and

sufficient condition for the sum S,=2 X, to have an asymptotically normal
k=1

distribution.
This is the central limit theorem (CLT) in the most general form We state the
theorem without proof.

Statement of Lindeberg-Feller CLT :

Let {X,} be a sequence of independent r.vs with the cumulative distribution
function (c.d.f) of X; as Fi(x), E(Xp) = weand V(X3) = 67 <o
Then,

(1} S, 15 asymptotically normal Mg, G

(ii) lim max —£ = 0

n—vor 1ok =n O'{ ) N
n

if and only if

Zj(x 4. ) dF, (1)—)0

n} k=l |- |_cO"]

4,(¢)=

as n—oo, holds for every € > 0.
We omit the proof of the theorem.
Below we consider an example where CLT holds, but WLLN does not hold.

Example :
Consider the sequence of mutually independent r.v’s {X,} such that
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|

P(Xy =k)=P(Xp=-k)=—+ P(Xk=0)=1_L

2k
Choose 8 = 1. Then CLT holds if

=30 O'

H
and ©=,> 0
k=1

Here #=E(X;)=k-

n 3
limizo, where p° :ZE‘X.& -4
k=1

LIS

AN

=0

and Ele‘3=k3'L+k3-—=k2

|
Wk 2k

and V(X,)=E(X])=F"

Therefore,

Vi

=0

39
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1

3
a— 7 1
" we | 25205

P
=3
L e
| e
e
Nyl —-
=
Al
et |
ar| =

15 4

1 g(n

1
Bz 267

p—

]

J5
where A:W’ and g(n):\]}?

A
lim—— 0
Then» = g (n)

Hence CLT holds.

IJIJ‘|
Wl

But  [im v )—11111

< - =1i111'\'/5_?_'2 ( ]11111\/5:'&0

B =30 n =30 3 =

Hence WLLN does not held.

2.6 Summary

The chapter elaborates the distinction between a discrete random variable, and a
continuous random variables. Several standard distributions of discrete random
variables are considered here, and m.g.f’s as well as means and variances of these
distributions are derived.

Similarly, some distributions of continuous random variables, including the well-
known normal distribution, are considered here. The m.g.f.’s of these distributions

have been calculated and the means and variances are derived from these m. g.f’s.
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The bivariate normal distribution is also considered and the marginal and conditional

distributions of this bivariate distribution are also derived. The ideas of conditional mean

and variance are also given.

2.7 Exercises

1.

Write the m.g f of a normal random variable X having p.d.f. N(0,1). Also, state its
mean and variance.

. For a binomial distribution, the mean is always greater than the variance. Discuss this

phenomenon.

. Show that exponential distribution can be obtained as a special case of gamma

distribution. Hence, obtain i1ts mean and variance.

. Obtain the m.g.f. of a log-normal distribution starting from a normal distribution.

. Obtain the m.g.f. of a Poison distribution. Hence obtain the p.g f. from this m.g f.

Find also £(X) and (X).

. Consider the trinomial distribution with p.m.f.

X ¥ L H-X-¥

|n v
Iﬁ@l”—x—}’ b ps

where x, y are non-negative integers such that x + y < n, p, py p3> 0 and
ptptps=1

P(X=xY=y)=

Then E(Y/x):(n—x)lf; .

and E(X/}’)z(”_y)%.

Suppose X has the probability function given by
PX=a+bly=C k=12 ., N

where C(>0) is a constant. Find the constant (' and the mean and variance
of X.
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8. Show that the normal distribution N (1, 62) is symmetric about its mean .

9. Show that X has a symmetric distribution if and only if X and —X are identically
distributed.
10. Let f}, /5, ..., /i be density functions on the interval (a, b), b>a. Show that

k
(1) Zﬁ cannot be a density function on the interval (a, 2).
i=1

i i
(ii) Z“;ﬁ , 0ga, <1, Z“,- =1 is a density function on (a, b).
i=1 i=1

11. A fair coin is tassed once. Let X be the number of heads and ¥ be the number
of tails. Are X and Y identically distributed? Is P(X = V) = 1?

Examines related to WLLN and CLT.
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o Simple random sampling with replacement (SRSWR)
e Simple Random Sampling with Replacement (SRSWOR)

3.1 Introduction

In Scientific investigations, we draw samples from populations. We need these
samples to be representative of the populations. if they are not, then the inferences
drawn from than will be biased. The theory of probability helps in drawing
representative samples. This reduces the errors in survey as well. For operational

simplicity, SRSWR or SRSWOR is usually employed in real life problems.

3.2 Sample survey and complete enumeration

The practice of drawing a ‘sample’ from a ‘population’ and then drawing inferences
about this population 1s quite old.Technically speaking, a population is the set or
collection of all conceivable and identifiable units (1.e., individuals) under study, a
sample means only a part (i.e., a subset) of the population. Data are collected only
on the individuals that form the sample. It is desirable that the sample should be a

good representative of the underlying population.

By sample survey, we mean studying the population on the basis of the data
collected from a sample. Complete enumeration, on the other hand, means studying

all the units of the population. This is called census.

There are some advantages of sample survey over complete enumeration, or census.
These are :

(a) greater speed in execution,

(b) less cost compared to total inspection of all units,

{¢c) greater accuracy of the results,

(d) possibility of estimation of error in drawing inferences.

Regarding the point (a) above, it is clear that as only a part of the population is
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considered in a sample survey, less time will be required for study, and hence greater
speed can be achieved.

Regarding the cost aspect namely, (b), it can be said that the cost per unit involved
in a sample survey would be larger compared to that in a complete enumeration owing
to the employment of skilled and trained workers, sophisticated equipments for data
collection, and so on. But the total cost in a sample survey is likely to be much less
than that in a complete enumeration because of the smaller number of units involved
in the study.

3.2.1 Sampling and Non-sampling Error

To understand the point (c) above, it 1s necessary to distinguish between ‘sampling
error’ and ‘non-sampling error’. The discrepancy between the estimate supplied by
the sample, and the true value of the population characteristic under study is termed
as sampling error. Thus, this error arises solely due to the fact that we are studying
a part of the population, and not the whole of it. This type of error, therefore, is absent
in a complete enumeration. On the contrary, errors due to omission, wrong tabulation,
fatigue, miscalculation, and so on, constitute what are called non-sampling errors.
These errors are likely to be present both in sample survey as well as complete
enumeration.

It is to be understood that both these errors, namely, sampling error and non-
sampling error, are present in a sample survey while a complete enumeration is affected
by the non-sampling error only whose magnitude will be very high if the population
is large enough. We can, however, control both the errors present in a sample survey,
firstly, by using appropriate statistical inference procedure, and, secondly, by
employing skilled and adequately trained personnel for the survey.

Finally, regarding the point (d), it is possible to give statistical measure of the error
involved in the inference regarding the population.

3.3 Different types of sampling

Broadly speaking, these are two types of sampling : (a) Judgement sampling, and
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(b) Probability sampling. Judgement samples are those which are selected rather
subjectively by the investigator and, as a result, no scientific and rehable conclusions
can be drawn from these types of samples. For example, in estimating the quality of
apples in a basket, the sampler may choose apples only from the upper portion which
are usually of the good type. Hence, the sample does not represent the population,
here apples of the whole basket, adequately.

Probability samples, also called random samples, are selected in such a way that,
at each draw, each unit in the population has got some preassigned and known
probability of being included in the sample. Thus, let there be a population of ¥ units,
N being finite. Aslo, the p be the probability of selecting the /* unit (7 = 1, 2,.,N)

in the first draw. Then, p, > 0 and ips =1 1Ifp = % 1.e., the probability of selection

is the same for all units, then the sample drawn is called a simple random sample
(SRS), and the selection procedure is termed as the simple random sampling.

3.3.1 Simple Random Sampling With Replacement (SRSWR) and Simple
Random Sampling Without Replacement (SRSWOR)

There are two ways of drawing a simple random sample : (a) with replacement,
(b) without replacement. In the first place, ach unit being drawn is returned to the
population before the next draw. In the second case, the unit drawn in a draw is not
returned before the next draw and the process is continued till a specified number of
units are taken.

Clearly, in SRSWR, the population size remains the same, but in SRSWOR, the
population size decreases in each step. Also, in case of SRSWR, the same population
member may appear more than once in the sample, while in SRSWOR, all units of
the sample are distinct.

Let N be the number of units in the population, ¥ being finite. If SRSWOR 1is

employed, then at the first draw, a unit will have probability % of being selected,

at the second draw, a unit will be selected, with probability ﬁ, etc. If the sample
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size is #, then the #* sample unit will be selected with probability N—ln 1

In case of SRSWR, the probability of selecting the first unit is % . the second unit

1 b s :
N the #® unit also with N

3.3.2 Sampling Errors in SRSWR and SRSWOR

Suppose there are N units in a population and ¥, ¥,,....Y, are the corresponding
values of the variable y under study. In many cases, the population size N will be
known, but the population mean or total unknown. Our aim is to estimate these
population parameters on the basis of random samples.

Define standard error of an estimator.
Theorem 1. Let y, v,,....,y, be the values of y for an SRSWOR of size n obtained
from a population of size N with members having the values ¥, ¥, ..¥,. Then,
E(y) =17, (¥ and ¥ being the sample and population mean).

2

Also, v (¥) = =

n 1

, where 52?1s the population variance and is given by

@ Ls@-ry

i=1

The positive square-root of the variance V(¥ ) is called the sampling error (same

as standard error) of ¥ which estimators y .

Thus, ie., (V)= N"

J‘

Theorem 2. Let y, y,.....,y, be the values of y for an SRSWR of size »# obtained
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from a population of size N. Then,

E(¥) = 7, the population mean

Wy) =/, and
ie, (V)= Y.

N-
Note that SRSWOR is better than SRSWR since \/—1/ n %‘

The quantity };:T is called ‘finite population correction’ (fp.c.)

3.4 The method of drawing random samples, random
numbers

3.4.1 Method of drawing random samples

Suppose we want to draw a random sample of size 3 from a population of 10
marbles. Here, » = 3, N = 10. This can be done by putting 10 marbles in an urn, and
then taking 3 from it after properly mixing all the marbles. The situation becomes
complicated if & is large enough or the population units are human beings, villages,
etc. The problem is then solved by using what are called random numbers. As the first
step, we prepare a list of all the units in the population, which is termed as a ‘sampling
frame’.

Definition of a random number series : A random sampling number series 1s an
arrangement, which may be worked upon either as linear or rectangular, in which each
place has been filled in with one of the digits 1,2,....,9,0. The digits occupying any
place is selectd at random from these ten digits and independently of the digits
occurring in other places. Thus, a series of numbers (read either as one digit, two
digited, three digited, etc.) are said to be random if the following conditions are
satisfied :
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{a) the numbers occur with equal frequency (i.e., probability) in the long run,
(b) the numbers occur independently of one another.

There are published tables of random numbers which are used in practice.

Pseudo-random number : Please mention about computer generated random
numbers using linear congratied sources.

Mean and standard error of sample proportion :

Sometimes we are interested in estimating the proportion p of individuals in the
population having a certain attribute 4. Clearly, population proportion of individuals
possessing the attribute ‘not - A" 1s ¢, ¢ = 1 —p, 0 <p < 1. This type of situation arises
when we estimate, say, the proportion of voters supporting an issue of national interest.
The following theorem may be of interest in this regard :

Theorem 3. Let f'be the number of units having a certain attribute in an SRSWOR
of size n. Then % = p, (say), will be the sample proportion. Let N be the population

size and p the population, then

E(p)=p

and ie, (p) = ,/%1’%,

where

?\’; :T is the finite population correction (f.p.c.).

) ) N —n l_ ';},,.r
Note that if 7 1s small compared to N, then for large N, ﬁ:ﬁ: 1, as
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% and % both tend to zero for large N.

As in the earlier case, for SRSWR, we have

E(p)=p.

ripy= L1

and ie., (p) = ,/% .

Clearly, if the population is large, then SRSWR and SRSWOR are identical.

3.4.2. Random numbers—their uses and properties

The following example will explain the use of random numbers in selecting random
sample from a population :

Example 1. Suppose we have to select a random sample of 35 voters from a list
of 345 voters.

(Reference : Statistics for the Social Sciences by Gun, A M. and Aich, A.B., World
Press, P. 104.)

Solution : First of all, the voters are serially numbered from 1 to 345. Here N =
345, which 1s a three-digited number. As a source of random numbers, one may use
either (a) A Million Random Digits, published by Rand Corporation (1955), or (b)
Random Sampling Numbers (Tracts for Computers. XV) by LH.C. Tippett (1927),
or {¢) the random number series given in the ISI publication Formulas and Tables
Jor Statistical Work by Rao, Mitra, Mathai and Ramamurthi.

Since we need three-digited numbers, we can select arbitrarily columns 1 to 3, or
4106, 0or 7to 9, etc., and read the numbers vertically downwards, rejecting all numbers
greater than 345 as well as the number 000. The selected voters will be those whose
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serial numbers correspond to the chosen random numbers. We continue the process
till the required sample size is reached. The above procedure, however, often involves
the rejection of a large number of random numbers. To avoid this huge rejection, we
divide a random number by 345 and choose the voter with a serial number between
1 and 344 that corresponds to the remainder if it is different from zero, and the senal
number 345 when the remainder is zero. It is however, necessary to reject the random
numbers from 691 to 999 (as also the number 000) in the above procedure, because
these will correspond to Voter Nos. 1 to 309 and so each will get a larger chance of
being selected, viz. 3/999, while Voter Nos. 310 to 345 will have the probability
2/999 each of being selected.

If we draw an SRSWOR, then we have to ignore any repetition of numbers. In the
case of an SRSWR, we have to retain these numbers.

The next example explain the estimation of the standard error, or sampling error
of the mean.

To do this we note that the population variance g2is estimated by

2 1< 2
c =EZ(}’:_}’)

i=l

H
- n1_1{z.11—2 ‘”}_’2} = §°, say.
i=1

Also, note that E(g2) = o°.

In the following example, observations on a sample of size 20 are given for a large
population :

Example : 2 To estimate the average monthly rent per flat in a big locality, a random
sample of 20 flats was selected and the following data on monthly rent {in Rs.) were
obtained :

385 715 615 475 800 735 525 390 720 500
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365 900 525 485 6350 575 435 825 415 480

Estimate the average monthly rent. Also obtain an estimate of the standard error
of the estimate.

We shall assume that the total number of rented flats in the locality is large
compared to 20 and hence shall igmore the fp.c.

Since 2% = 11715,
=1

the estimate of the average monthly rent is

11715

?=T = 58575 rupees.

The estimate of the standard error of the estimate of average monthly rent is (since
N may be supposed to be very large)

P s u _
3-8-(}’)=$, where s* = ﬁ{Z}’f—ny 2}
=1

20
Henre, 11 = 20, 7= 58575, 2% = 7305325,
=1

On simplification, we obtain s* = 23329.674 and so

. 2
s.e.(y)z% = 34.15 rupees.

Properties of random numbers : From the definition of random numbers given
in 3.3.1, it follows that if the random numbers are read with a decimal before them
i.e., the number 3459, say, is read as 0-3459, then the resulting numbers will constitute
observations from a uniform distribution {0, 1). This result is used in drawing random
samples from standard distributions, as explained in Unit 4.
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3.4.3 Different tests for random numbers

The following tests are commonly used as test for random numbers. These tests
can be used to any part of the series, read as single digited, two-digited, three-
digited numbers, and so on. These tests are explained below :

{a) Frequency test : Here, the observed frequencies of the ten digits from 0 to 9
are noted. Then the observed and expected frequencies are compared by %2 - test

under the assumption that the numbers are actually random in which case each

digit has the probability % to occur.

(b) Serial test : Here the series of numbers are read as two-digited numbers, i.e,
00, 01, ......,99 and their observed frequencies are noted. Then, the 32 - test is

applied to test the hypothesis that the numbers are random in which case the

. |
probability for each is 100

(c) Gap test : We first pick out the successive occurrences of zeros, say, and find
the gaps between them. The frequencies of such gaps are obtained and the

ke

hypothesis of randomness, according to which the gap is x with probability o

x=20,1,2,,,, is tested by using an appropriate x2.

(d) Poker test : Here, the series of numbers are read as four (or five)-digited
numbers. There are five possibilities — aaaa, abed, aabb, acab, aabe. Under the
hypothesis of randomness, their probabilities are obtained. Finally, observed and
expected frequencies are compared by an appropriate 32 - test.

3.5 Random number generation using inverse transformation
technique

Example 1. Exponential distribution
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Consider the exponential distribution with pdf

f)y=p" 7, x>0,
= (), otherwise.

The distrtibution function F{x) of this distribution is given by

Fey= | f (e
0]

= 1 —_ e—x;“'}

L = 1= ),

or, (%) = log(1 - F(x)).

or, x = —Blog, (1 - F{x)).

As explained earlier, F(x) is obtained from the random number table by considering
the numbers with decimals before each of them, e g, 0.6752 is taken to be F(x) if
6752 number appears (reading the table as four-digited numbers). Here, we use the
result that F{x) follows a uniform distribution {/(0,1).

Thus, for each given F(x), we obtain a value of x, as shown above.

This is called inverse transformation technique for random number generation.
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In order to generate samples of large size are may as pseudo-random numbers as
the values of F{x).

Example 2. Consider the Cauchy distribution with location parameter g and scale
parameter j as

oy
fFx)=(m)" [”{xT} ], W0 —n<x < .

The cumulative distribution function F{x) is the

F)= | Ay

I D S ﬂ)
—2+ntan (7\. .

Therefore, tan™ [x;ﬁ] = n(F(x) — %),

x_—

or, ——= tan (—%+nF(x)),

OL,X = 9+ tan (—%+1:F(x))_

Then, for each given F{(x) (which is obtained from random number tables), we get
a value of x by using the above relation. This x will be an observation from the Cauchy
distribution stated above. The procedure will be repeated till we reach the required
number of observations.

Example 3. The pdf of a Pareto distribution, which fits income for all higher income
group, is given by

fy=akx@* D k>0, a>0x 2k

The cumulative distribution function F(x) = P(X<x) 1s
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F(x)=1-(5) k>0,a>0,x ok

X

=1- Fx),

)
o, [%) — (1 - F(x))*
(

1 1
£)=(-F@) T = - Ryt

or, x=k(l—Fx)~

Hence, for each F(x), we get an x by using the above relation.
Example 4. The standard form of ¢ gamma distribution is given by

—1 —x
xu e X

fx)= (@) X = 0

Note that the cumulative distribution function F{x) is
F(x)= P(X<x)

1 x
= Ixu'le'xdx
0

T()

1
= WE (x), where

1—‘ . . . .
. (x) 1s the incomplete gamma function given by
X

Loy = [xle™an.
0

Thus, E(x) = I'(a) F(x), so that for given F(x) (obtained from the random
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number tables), the right hand side is known completely (since ois a known
constant).

Also, E(x) is tabulated for different x by Pearson.

Hence, x can be obtained by inverse interpolation from given values of E(x). This

is a random number from the gamma distribution with shape parameter o .

We may generate gamma from exponential samples (this method 1s easier) as
gamma is sum of indop exponential.

3.6 Summary

In this Unit, we have studied the basis of sample survey which is a branch of
applied statistics. We have defined a random sample, distinguished between
random sampling with replacement and without replacement. The sampling
errors in these cases are also indicated.

The uses of random number series are also discussed. Their properties are stated
with examples.

The technique, called inverse transformation technique, for generating random
numbers 1s discussed taking some standard statistical distribution. The technique
can be extended to other distributions as well.

3.7 Exercises

1. Define random sample. Distinguish between SRSWR and SRSWOR. State the
corresponding sampling errors.

2. Define finite population correction {(£p.c.). What happens to fp.c. if sample size
is (a) 25%, (b) 50% and (c) 75% of the population size?

3. Define random number series. State their uses.
4. State some common tests for random numbers.

5. Generate a random sample of size five from a normal distribution with mean
50, and variance 25. [as hint plese mention the polar transformation]
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e Meaning of Parameters
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e Properties of Good Estimators

e Methods of Estimation

4.1 Introduction

We have distinguished between a sample and a population. In many practical
situations, nothing or very little is known about the population. The problems of
drawing inferences about the population then arise which constitute the topics of
statistical inference.

The logic behind statistical inference is clearly ‘inductive’ in the sense that it
involves generalization from particular cases. Because, here random samples are first
drawn from the populations, certain features of these samples, say, mean and variance,
etc., are then calculated and using these values the corresponding features of the
populations are then guessed. The purpose of the present chapter as well as the
following chapter 1s to make this process of guessing as objective as possible.

The type of statistical inference usually takes one of the two forms : (a) estimation
of some unknown features of the population, (b) testing about a tentative assumption
about the unknown parameter of the population. The first one will be studied in the
present chapter, while the second will be taken up in the next chapter.

As examples, consider data on family-size obtained from a random sample of
families of Kolkata, which may be used to guess the average family-size in the city.
This is a case of estimation. On the other hand, in studying the percentage of voters
showing allegiance to a particular political party, our tentative assumption might be
that the proportion of voters sympathetic to that party is, say, 0-48. This is the example
of statistical hypothesis which would test this assumption or belief.

4.2 Statistic and Parameter

To begin with, it is important to distinguish between a ‘statistic’ and ‘Parameter’.
A statistic 1s a function of the sample observations while a parameter is a characteristic
of the population. Thus, a statistic i1s a random variable, and a parameter 1s a constant.
However, there i1s a branch of statistics, called Bayesian School, where a parameter
itself is also considered to be a random variable. We would not discuss this approach
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here.

It is also important to distinguish between an ‘estimate’ and an ‘estimator’. If an
unknown parameter 0, say, population mean, is estimated by the sample mean

M
X :lz X, , then the particular value obtained from a given sample X, X,, ... X
1
i=1
is called an estimate, while in the general case the random variable i is termed as
estimator.

In the following discussions, we shall assume that we are given a random
sample X, X,, X, from some distribution having the pdf f(x) in the continuous
case, {or pmf fix) in the discrete case). Some or all the parameters of the
distribution may be unknown. Then any function 7(X |, X,,.... X )of X|, X,,. . X

will be called a statistic. An estimation g of the parameter gis itself a statistic,

and we may write §= 7 (X, X,,.....,X ).

The criteria of selecting the right type of estimator § are the topical of discussion
of this chapter.

We first mention certain desirable properties to be satisfied by a good
estimator.

(a) Unbiasedness :

An estimator 7 of ¢ will be called unbiased if £E{T) = ¢, for all . This would
mean that the mean of the sampling distribution of 7'1s ¢ . In non-technical terms,
unbiasedness means that if we estimate ¢ by I a large number of times, i.e.,
by drawing repeated random samples of a fixed size », then, on the whole, we
shall neither overestimate nor underestimate the true value of 8. An estimator
which is not unbiased is called a biased estimator. For a given parameter, there
may exist a large number of unbiased estimator.

(b) Minimum Variance :

The property of unbiasedness 1s, in itself, not a very important criterion. This is
because expectation is only one of the many measures of location. Moreover, an
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estimator possessing this property is not unique. A natural course of action would be
that of selecting the unbiased estimator having the smallest variable If such an
estimator exists, it is called the minimum variance unbiased estimator (MVUE). An
MVUE, if exists, is unique.

(c) Consistency :

Consistency is essentially a large-sample property of an estimator. A statistic T,
which 1s a function of sample observations, depends on the size of the sample, say,
n. By varying n, we get a sequence {7, }. Ifhow this sequence converges to a parameter
gin some sense, then I will be called a consisted estimator of 9.

For a consistent estimator 7, of o (the suffix # in 7 indicates its dependence on
n), the difference |7 — ¢ | should decrease as » increases.

Note that |7, — o] is also a random variable being the function of 7, and hence
the statement that ‘|7, — 6| —0 as # — o’ is not a deterministic statement. Thus,
there may exist situations where the difference |7, — o] is not small even through »
is large.

The consistency property of an estimator, however, ensures that the proportion of
such cases tends to zero as » increases. That is,

P{T —-8l>ec}>0 asn—a.
Or, equivalently,
PA{T, - ol<e} >l a8m > .

Either of the above conditions is taken as the difinition of consistency of 7 for
0. In practice, the verification of the above conditions is not at all easy. However,
the following result helps us to decide whether a given statistic (or estimator) is
consistent for a parameter ¢ :

Let {7} be a sequence of estimators for the parameter ¢ If, now,
ET) »0,asn 5w
and  WT) —-0,asn 5w,

Then 7, is consistent for ¢.
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The above two conditions provide a set of sufficient conditions for consistency
which have been found very useful in practice.

Example : Let X be distributed in the Poisson from with parameter ¢. Show that
the only unbiased estimator if exp [-(k + 1)g], £ > 0, is T(x) = (<k)*

Solution : Let us write y(8)=exp (- (K + 1)9)

e %%

Then E(T(x) = i(—k}" B
x=0

=, (k)"
x=0 |£

=e_B

So, 7{x) 1s an unbiased estimator of v(6) = exp (—(k + 1)o.

We note that y(6) = 0. But its estimate 7(x) > 0, if x 1s even,

and 7(x) < 0, if x 1s odd.

Example : Let X|, X,.....X be iid M c>). If § is the sample variance defined

by % = %Z(Xi - X)?, then $2 is consistent, though biased.
-1

¥

a-

) ) ¢ (X, -X
Solution : Let us write

us” _ z -
i=1

2
] which follows %2 with (# — 1) degree

of freedom. From the property of a 32— distribution, we have

2
E[%] =(n-1)

(-4
n 1

which is less than o2.
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Thus, $? is a biased estimate of o? and it also underestimates o2 .

2
Also L{%J =2(n-1).
=

Hence, E($?) _, 52, as 1 —

and V(S%) 50, as n —oo.

Thus, by the sufficient conditions for consistency, 52 is seen to be consistent for o?.
Example : Consider the truncated Poisson distribution, truncated at x = 0,

with pmf.

Yo%

fx)=(1 -e?)l E X 1,2,...

Based on a single observation x, find an unbiased estimator of 1 — ¢7%.

Solution : Based on a single observation x, let us define an estimator 7{x) as
T(x) =0, when x is odd

= 2, when x is even.

1 e %"

;:1 1(x) 1-¢® |x

Then E(T(x))

I
&
1
5
ey

[+ |
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_a=e%
T -
=(1-¢")

So, T{x) is unbiased for 1 - ¢™®.

Sufficiency :
Let XY= (X, X,,....... X ) be a sample from a population with pmif (or pdf) I(x),
D

where g1s a unknown parameter.

A statistic 7{X) 1s said to be sufficient for gif and only if the conditional distribution
of X, given T = ¢, does not depend on g.

Example : Let X, X,,.. X be iid. Bernoulli random variables with parameter p.
Consider the statistic 7 such that 7= X, + X, +.._ +X which follows b(n, p), i.e, a
binomial distribution with parameters » and p.

The conditional distribution of X, X,,.. X, given T = ¢ (fixed), is
P(Xl=xl’X2=x23 _____ 3Xn=Xn|T=t)

pIX, =5, X, =55, X, =x,) (T =9)]
pT =0

= J'D(‘X/I :xI:Xz :x23“"Xn
g

:x”), ( putting Zx;- =1)
i=l
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R
= = - — ,noteg =1 —p
{; )prq ‘

_ pa-p
- (n i n—t
?

)P'q

%, which is independent of p.
!
This shows that the statistic 7= X, + X, +...... +X is sufficient for the parameter p.

Not every statistic is sufficient. Let X|, X, be 7.i.d by p(3.). Consider the statistic
I'= X, + 2X, for estimating unknown j .

We have (X, = 0, X, = I|X| +2X] = 2)

P[(X1 =0, = DN(X; +2, =2)]

P(X,;=0,X,=1)
P(X,=0,X,=1)+P(X, =2,X,=0)

R e—llr
_ T
- —4q2 —hAal
—h-nh e "RT eTTA
CYRTTR B
_ A
32
7L+7

1
= +(%) , which depends on 3

Thus, the statistic 7(X|, X;) = X| + 2X, cannot be considered to be sufficient for
the parameter ;.
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4.2.1 Fisher-Neyman Factorization Theorem

The following theorem, called Fisher-Neyman factorization theorem, gives a

constructive method of determining sufficient statistics

Let X, X,,....X, be discrete (or continuous) with joint paf (or pc{f)fe (X}, Xy, X,).
Then the statistics 7, T5,....,T, will be sufficient for g (which may be a scalar or vector)
if and only if the joint pmf f (x,, x5......x,) is expressible in the form

fe (x|, X5,..X,) = g, (t, b,,....05).h(x,, x,,....x, ) where g, (*) depends on pand 4(*)
is independent of ¢, and is a function of x, x,,...x, only.

Example : Let X, X,,. .. X be iid P(; ) with the p.mf of X,

as £ (x)) = L x=0,1,2,

The joint p.m.f. of X, X,,. . X 1is
o
25
(ﬂxlyxza-'-axﬁ) - H{ L }

"
DL

—Hhn 1
= ¢l T2
i=1 |ﬁ
= gl(t)‘h(xl, Xpper X))

when g (1) = (¢)7), 1 = Zx
=1

a5 5 11
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"
So, t = fo is sufficient for 3 .
=1

Efficiency :

The concept of efficiency is related to variance of an estimator. We expect an
estimator to be better if its variance is small. In other words, the reciprocal of the
variance is large. This reciprocal of the variance of an estimator is termed as its
efficiency. Thus, given two estimators 7, and 7, we will choose 7, if J{7|) < V' (T}),

or eff (I}) > eff (T), whose eff (T)) = %

Complete family of distributions :

A statistic T for gis said to be complete if for any function y(7), we have

E(y()=0forall g.
= g {7) = 0, almost everywhere.
In this case, we say that the underlying distribution is also complete.

Thus, if 7'1s complete, then there is no non-trivial unbiased estimator of zero based
on 7. The only such estimator is zero itself.

Example. Let X, X,,. X be a random sample from some Poisson distribution (¢ )
with common p.m.f.

—Bnx
e 0
Jolx) = [x ,x=0,1,2,...

H
Here, T = ZX ; 1s a sufficient statistic for g having the distribution P(7¢) so that
=1

the p.m.f. of T is
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— 1 i
fo(®) = %, 1=01.2. .

Consider a function w(7) of T and write
e—ne(ne)f
¢

E(w@) = S¥0 :

=e™ 3 alg,
=0

()
|t

Thus, E{yw (7)) =0, for all o,

where a(f) =

:Za(t‘)gf =0, for all o.
=0

But, we know from algebra that a convergent power series which is identically zero,
must have all the co-efficiants as zero.

Thus, a{r) =0, forz=0, 1, 2,.......
or, w(H=0forr=0,1,2,...
Hence, T is complete and, also, the Poisson family of distributions is complete.

Define Completeness.

4.2.2 Basu’s Theorem
We first define an ancillary statistic which will be needed in stating the theorem.

A statistic V( X) is said to be ancillary if its distribution does not depend on ¢.
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An ancillary statistic by itself contains no information about g.

Statement of the theorem : Let g be the parameter of a distribution P(x), which
may be a p.m.f. or p.d.f. Also, let T be a statistic which 1s complete as well as sufficient.
Then any ancillary statistic }(X) is independent of 7.

Proof : If V' is ancillary, then by definition the probability P(V<A) = p,, say, is
independent of gfor all values of A. Define the conditional probability

P(VeAYT = 1) = n,(2), say.
But  E(n, (D) =p(ed)
= p,» (using the result that E(P(4/B) = P(4))
or, E(n (1) - p,) = 0,
By completeness, n,(7) -p, = 0,
e, (D =p,

o,  p(VeAlT)=p(red) y
So, ¥V and T are independent.

4.3 Minimum Variance Unbiased estimator, (MVUE) Cramer-
Rao Inequality

As already mentioned, an unbiased estimator is not unique. Thus, there may
be a number of unbiased estimator corresponding to a given parameter. It is,
therefore, natural to select the one having the minimum variance. In this section,
we discuss an inequality, called Cramer-Rao inequality (or C-R inequality), also
called Cramer-Rao bound, which gives a lower bound to the variance of an
unbiased estimator.

Given an unbiased estimator, we can use this inequality to check if the lower bound
of the variance is attained. This is helpful to identify the estimator under consideration
as a MVUE or not.
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Theorem : Let 7(X |, X,,.. X ) be anunbiased estimator of ¢ based onarandom sample
X, X,,... X from a pmjf or pdf fy(x). Then, under some regularity

conditions,

1
E[%j (1)

where L =log, f5 (x|, %,,...X,), fo (X}, X,,.X,) being the joint density of X, X,,,.. X .

we have (7)) >

Anunbiased estimator 7 of g attaining the equality in (1) will be called MVUE or minimum
variance bound (MVB) estimator, but the converse is not true,

Proof of the theorem :

For simplicity, we write the multiple integral w.z.2. x|, x,,...x, as

J(....)d X , where 4 means the entire permissible range.
A

Note that, [f,( X )dX = 1. (Total probability).
4
Differentiating w.z.f. 9, we have

Sl fe(X)dX =0

o, [, &fa(X)dX =0
o, §, [ )e(x) dx =0

OL
or, E(@] =0 -(2)
Also, o = E(T), (since T 1s unbiased for g)

=yt fe(X)dX

Differentiating w.z.f. 9, we have
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1=yt fo(X)dX
= [yt Flose S £y (x) dx

=ET & logfe(X))
—E(Tae)

But  cos (T )

=E((T-0) [—E(ag]]

~EW-0) &), (E(F)-0

= E (T ).
By Cauchy - Schwarz Inequality, we have

[cos (7, Z)p <DV (L)

or, 1 sV(D'E(%Ta [p(%]:E(%T}

o, V(1) >

o

It can be shown further that
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LY __ (&L
%) -5

so that the above inequality reduces to

. 1 : &L
T}y 2-———, (assuming | —= | =0}
E{ B LJ 0?
02
It is to be noted that the above inequality will hold under some regularity conditions such

as differentiability within the integration etc,

Regularity conditions : The following conditions taken together are called
regularity conditions and the situation where these conditions hold is called a regular
estimation case. The Cramer-Rao Inequality (or bound) is derived under these
conditions only.

It is assumed that @ is a single parameter varying over the parameter space (H)
and that X, X,, .. X are all continuous with joint pdf fo(x,, x,, ... x ). For the

The discrete case follow similarly — multiples integrals being replaced by multiple
sums.

L. (H) is a non-degenerate open-interval.

II. %fe (x|, x,,...,x, ) exists for all g ¢ (H)

0
ML 2584 fo (v, ) d =
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dlog, /(% X20s%, | .
V. E {(IOge ‘fe(ag’x" ’x”} exists and positive for all g ¢ (H).

Here, A4 is the domain of x|, x,,. ,x, for which 7y (x,, x,,..,x,) is positive.

An example where the above regular conditions are not satisfied is the reactangular
distribution R(0,0).

Example : Consider X, X,, .X as a random sample from M 1,62), Then the

2
sample mean Y =%i X, is distributed as N ( H,%]- Then question that we may ask

i=l
' Is ¥a MVUE of n?

It is well-known that ¥ is unbiased for n. To check if ¥ has the minimum

az_f] as follows -

variance, we calculate E [
o~

1 M
=const ——S (X, — n)?
QUZE( .

L_ 1,3 _
Therefore, i -;(X,- - )

1.
= 5 {nx-nuj
I3
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no_
=2 x-m
2
or, 2L -1
i/ Thet o}

Hence, finally, -E(&_%J -
(7].1 o

so that the lower bound of the variance of an unbiased estimator is G% which is also the

variance of i in this case. Hence, y is a MVUE of p.

Example : Let X|, X,,...X be a random sample from a Bernoulli distribution with

parameter @, which is assumed to be unknown.
The pmf is given by
fy=g(1-0)"%x=01

so that log, f(x) =xlog, 6+ (1 -x)log, ) (1 - 9)

. Ologef(x) _x 1-x_ x—8
” a0 0 1-6 6(1-9)
6logef(x)]2 1
Conse entl,E[ =— ~E(x - o),
quently, = -0y (x-0)

0(1-0 -
= e (-Ex- 0P =¥ = 0(1- o))

1
- 8(1-9)

The Cramer-Raoc lower bound to the variance of an unbiased estimator for g is
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1 _ 1 6(1-0)
2 1 - n
o O] g

Consider the sample mean i which is unbiased for a. Also, we know that

F(X) 86(1-6
iy = L0 _80-6)

which coincides with the Cramer-Rao lower bound. Thus, ¥ is the MVUE of 9.
Note : If X, X,... X are i.i.d with common pmf (or pdf) f (x), then

E (alogef(XhXQ?“?Xn)]?
i3]

_ dlog, F(x)\
= nk (—69 J ,

so that the Cramer-Rao lower bound is

Ir(}') > 1 _
nE[ 8log, f(x) J”

0

In fact, it can be further shown that

” 1
N1 =- . :
. E( 0, log, / (x)J
%_.
4.3.1 Condition for equality of Cramer-Rao Inequality
The equality in the Cramer-Rao Inequality is achieved if

L — o) (T-0)

or, L= [C(g){t- o) do + constant,
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or, log, fo(x,.x,..x)= JC(8)(f— 6)de + constant,
On further simplification, we get

fe (Xl * X2?' N '?xn) = eIC(e)(f_B)de .mD

=g, {#).m, where
m is free of ¢, but may depend on x, x,, . x,

Thus, in order that gmay have 7 as an MUVE, T must be a sufficient statistic
for o.

Example : Suppose that X, X,,. .. X are a random sample from N(A1, o), where p
is the mean and ¢ is the variance of the distribution. Suppose also that pis known. Without
any loss of generality, let us assume that p=0.

Then the pdf of the common X is given by

-2
Sty = ¢??

2n9

Then, the logarithm of £ {x) 1s

1 x?

— 1
log, f (x) = const —Elc.ge@_EE

Hence 2108, /() __ 1 14*

2607 2¢g?

Flog, f(x) _ 1 x°
and —— 5——=-"5""3
0 20° &
B & log, f(x) D W 4 €))
' o0’ 26° ¢’
_ 11
207 9>’
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1-2

267

>

|'_‘

o2’

Then Cramer-Rac lower bound to the variance of an unbiased estimator of g is

=

-1

ng(_f72 log. /() J
&2

_ 28°
o

#
Define S;2 as S? = %Z x?

i=l

But Zl%e follows a3 ? - distribution with # df
=1 7

-E (zfeJ =

F
so that %Z x7is an unbiased estimator of @. Its variance is
=1
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which coincides with the Cramer-Rao lower bound, as derived above. Thus,

”n
2,

;Zx: is the minimum variance unbiased estimator (MVUE) of the variance.

i=l

Note : It is to be remembered that the Cramer-Rao lower bound is valid for the
distributions that satisfy certain regularity conditions, including interchangeability of
differentiation and integration. This requires, among other things, that the range of

x is independent of 9. So, Cramer-Rao lower bound will not be valid for the density

f®=5.0<x <0

4.4 Method of generating minimum variance unbiased estimator
(MVUE), Rao-Blackwellization

We have seen in the preceeding section that given an unbiased estimates T of a
parameter g of some distribution, it is possible to check whether this estimates is the
minimum variance unbiased estimator by comparing its variance with the lower bound
of the Cramer-Rao Inequality. In case, this proposed estimator is not an MVUE, there
is no way to improve the estimator in this approach.

Rao-Blackwellization is a technique of generating a minimum variance unbiased
estimator (MVUE). If we are given an unbiased estimator U/, then we can improve
upon {/ by forming a new estimator ¢(7) based on U/ and a sufficient statistic 7.

The following theorem, called Rao-Blackwell Theorem, enables us to obtain an
MVU estimator from any unbiased estimator by using a sufficient statistic.

4.4.1 Rao-Blackwell Theorem

Let the statistic I/ = {(X|, X,,.....X)) be an unbiased estimator of y(8), a function
of o Also, 7{X|, X,,.,X) is a sufficient statistic for ¢
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Define ¢ (1) = E(U/T), which is the conditional mean of [/, given 7.
Then (i)  E(¢(T)) = v(®)
and (i) M(¢(T) <)),

where J(+) stands for variance.

Proof : We have }BE(U) = %?E (U/T)
= }Bj(q;(D, for all ¢.
But g(lﬂ = y(9), so that %“(Mﬂ) = y(9).

This shows ¢ (7) is also unbiased for y(8) .

Agaim, ¥ (1) = g WUiT + v E(UIT), for all g.
f 0
= %“V(Um + 5(4)(7))
But EV(UH) >0,
V(D) 217 (1)
9 8
or, ¥{¢(D) < v (1)), forall g
8 8

Thus, ¢(7)1s an MVUE of y(8) .
Uniqueness : Let ¢(7) and ¢,(7) be both MVUE for y(8).

Then, ,g(cb(f)) = y(0), for all o,
and §(¢1(T) = y(0), for all o.

.'.Ig(‘b(T) — 0,(D) =0, foral g. — (1)

If the distribution of T'is complete, then the last equation (1) would suggest that
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$(7) = ¢,(7), almost everywhere. i.e., ¢$(7) is unique.

Thus, the estimator obtained by using Rao-Blackwellization is not only an MVUE, but
is also unique if the underlying distribution is complete.

4.4.2 Application of Rao-Blackwell and Lehmann-Scheffe theorems
Example 3.1 Let X, X, . X be a random sample from a Poisson distribution with
p.mf.

—Bax
)= S x=0.1.2,50 >0

Find an MVUE for P(X = k), assuming that gis unknown.

N
Solution : First note that P(X = k) = % = ¢(0), say.

Let X, X,.....X be the given random sample from f, (x).

Definea random variable ¥ such that

Y=1ifX =k
= 0, otherwise.
Then, £4(Y) = 1'-P(X, = k) + o-P(X| =k)
e %"
&
=PX=k = vy(0).

Thus, Y is an unbiased estimator of ().

15
Again, it is known that 7= > X, is a sufficient statistic for ¢.

i=1
Consider now the statistic ¢{¢) defined by
b () = %? (¥t

= P(X, = kIT = 1)
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PYX, =0T =)}
P(T =0

i
P(X, =k X, =t-k)
— i=1

P(T =0

e—Oek ’e—(n—l)B (n _ l)e)f—k

1K -k

e—nO (ne)f

If

II ‘(n_l)f—k
[kl =k pt

VK
At

#

Thus, an MVUE of P(X = k) is

distribution 1s complete.

. (‘*in follows a Poisson
i=1

distribution with parameter (# — 1)9)

n-1"* I . .
({)%, which is also unique as the Poisson
1

Example 3.2 : Let X}, X, .. X beiid (1, p). Then éX,: T is sufficient for p.
Again, this distribution is complete. Let us find the MVUE of d(p) = p(1 - p).

Solution.

We have E(nT)= nf(T)

= n.np (- T follows b(n, p))

= wp.
and  E(7%)= V(1) + (E(T)?

= np(1 - p)y + np?
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~EmT — T=n(n— 1) p (1 — p), on simplification.

2
Finally, £ [};&__ﬂ) ] =p (1 — p), so that

% is unbiased for d(p) = p (1 - p).

Also, E[??T—Tz fT]z nT —T*
nin-1) n{n—1)

which by Rao-Blackwell theorem, is the MVUE of p(1 - p).
Example 3.3 : Let X, X,.....X be Mo, 1). Find the MVUE of d(g) = 9°.

Solution. We first obtain an unbiased estimator of d(g) = ¢72.

We have V(7)) =E (Y3 - (£ (1),
or, % =E(¥Y)- e,
or, o2 =E(g°- %), so that

x2- % 1s an unbiased estimator of g2 .

Again, since variance is known, the sample mean ¥ is sufficient for 9, so that 72—

%is a function of the sufficient statistic. In other words,

E(x* -2 ©)= %2 - =

=

Thus, ¥2 - % is an MVUE of d(o) = 92

Furthermore, ¥ isacomplete sufficient statistic, or equivalently, the normal distribution

is complete.
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Hence, y2 - % is the unique MVUE of d(o) = 02.

Example 3.4 : Let X follow N(y. 6” } i.e., a normal distribution with unknown mean

tand unknown variance 2. Consider a random sample X, X,,. X from the

distribution. Define

g_1x 1< 72
X=32 % and 8 - w2 i,
=

being respectively the sample mean and sample variance. Then fTand S? are
statistically independent.
We first note that

(a) yand $? are jointly sufficient for (y,o2),
and (b) (. 5?) has a complete family of distributions.

In other words, the pair ( ¢, $?) is complete sufficient for (u &?).

2 il _v 2
It may be noted that % = Z[%J has a 2 - distribution with {2 — 1) degrees
o =

]

15
of from. In other words, Z(X;- — X)? has a distribution which is free of 1, so that
i=l
it is an ancillary statistic for p, as it contains no information for p.
Also, jis sufficient for 1. By Basu’s theorem we thus have the important result
that ¢ and S$? are independently distributed. This is called a characterising property

of a normal distribution.

4.5 Method of Maximum Likelihood Method of Moments

The most important of all the methods of estimation is the method of maximum
likelihood. Its importance lies in the fact that it generally yields very good estimators
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as judged from various criteria.

The first define the likelihood function. Let X, X5, ..., X, be a random sample from
some pdf (or puf) fp(x), and let fy(x, x5, ..., x,,) be their joint distribution.

For given x|, x,, ..., x,, and unknown &, the function f (x;, x5, ..., X,,) may be looked
upon as a function of 8 only, and we may write

L(B) = fy (x1, X3, ..., Xp).
In case of a random sample x|, x5, ..., X, we have
L(8)=M1f(x)
which is known as livelihood function.
4.5.1 Maximum Likelihood Estimate or (MLE) :

The MLE estimator of 0, say, § is such that

L(6)=L(0), for all & < (H).

or L(é) = sup L(8)

’ Bzt

In practice, it is easier to work with loge L(B)

than L {8), so that we have

logL(é)ZlogL(B), for all 0.

log L (é) = sup log L(6)

T,
or, Be(H )

When the supremum is attained at an interior point of (H) and L(6) is a
differentiable function of & throughout the interval (H), the partial derivative of

loge 2{0) will vanish at the point §, where § is the solution of

dlog, L(6) 0
m - .



NSOU «GE-MT - 11 133

This equation is called the likelihood (or log-likehood) equation and ¢ is the maximum
likelihood estimate.
Example 4.1: Consider the rectangular distribution R(0,0)

whose pdfis

1
E,Osxse.

Jo(x)=

Given the random sample X}, X, ..., X, the likelihood function is

L(e)=.f9 (xla X5 woes xn)

R 0>x,(i=12,..,n)

Olog, L(9)

=0 has no solution.
58]

Here, the likehihood equation

Let X)) < X2, = X3,< X, be the ordered observations of the sample, with X, being
the largest observation.

1
So, L(0)= o for 02 x,

But L(8) will be the maximum if 6 takes the minimum value, which is X, here.

So, ém =X, 1s the maximum likelihood estimator (MLE) of 6 for the rectangular

distribution.

Example 4.2 : Consider a set of # Bernoullian trials with probability of success &.

With the /™ trial we associate a variable X; with the probability mas function.
F(5) =67 (1-0)" =01

The joint probability mass function of xy, x5, ..., X, 18



136 NSOUe GE-MT- 11

f(xl 2 Xas ..,x") - egx' (1 _e)n—g*‘r

. . PO |
=g (1_(-))”‘“‘3 , where 9=;Zx.—

=1

The function f(x, x5, ..., x,,), treated as a function of & and written as L(0), is called
the likelihood function. Thus,

L(8)=0"(1-6)""
Taking logarithm,

log, L{8)= néloge 0 +(n —n(:})loge (1-9)

Olog, L(9)

Solving 0 =0, we have
, n(l—é)
_TG)L (0)==> o Y
or. @— n(l_é) or. e(l—é)zé(l—e)
8 1-8 ’
or, e(l—é+é)=é of, ezéziilﬂ-,

=1

which is the maximum-likehihood estimator (MLE) of the parameters &, and is seen
to be the sample mean.

Example 4.3: Let X}, X5, ..., X,, be a random sample from a Poisson distribution with
parameters A. Then the likelihood function is
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-t lZ|X

L(?L) _— i .
H( X, and log-likelihood 1s

log, L{A) ={-nh)+ [iX,. Jloge A— iloge (X
=l i=1

L

, dlog, L(%) . > X,
So, the equation O:T gives _, B _g
A
- 1&
or, 7~=—ZX,,
L=

which 1s the maximum-likelihood estimator (MLE) of A. Thus, in this example, the
sample mean is the MLE of A.

Tl
-

Example 4.4 : Consider the MLE of 8 of the exponential distribution f(x)==

0<x<6, 08>0

Based on a random sample X, X5, .., X, the likelihood equation is
L(0) ( ] ezx

So,

Or, =—Z 7, which is the MLE of 4.
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Example 4.5 : Suppose X, X;, ..., X,,, are independent random observations from a
normal distribution with mean « and variance &
Case 1 : ¢ known and & unknown,

In this case, the likelihood function is

L(c)=[$]ﬂexp -Z(IIT_H)

The log-likelihood is given by

log ., L(c) = constant independent of ¢

2 )’
-l =
+(-n)log, o o
dlog, L(o)

o gives

Hence, the equation 0=

0=—n;’0—(%](—2)6'3i(X,- —M)2

]. 2 P4 # e 2
or, QZ(XF“') =5 or G‘Z—Z(X,-—M)

i=1

N 1< 2
Finally, 6=/~ (X, =), which is the MLE of &
i=1

Case 2 : 1 unknown and o2 known.
In this case, we obtain the maximum likelihood estimator by first writing the hkelihood
function as
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1 & 5
L{pn) = constant independent of L + exp {_EE(X" -1 }

so that the log-likelihood is given by
log , L(1) = constant —;?Z(X, -u)

dlog, L
Solving 0= gg—u(m, we have

0= 5= 320X, W) (-),

or, 0= (X, -1} or, Ai==>X,
=1

which is the sample mean.
Thus, in this case, the sample mean is the MLE of .
Case 3 : Both # and oare unknown.

Here, the likelihood function is given by

L{nc)= exp{—i(X,- —n) /(20° )]

i=l

(ovm)

The log-likelihood is given by

i(X i~ 1")2

log oL (1.0) = -1 l0g, (5/2m) -

Y

plo

Since both g and g are unknown, the MLE’s of & and o are obtained by solving the
simultaneous equations :

_Olog, L{n.0)  _ dlog, L(p.0)
ou > 3

0
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On solving these equations, we obtain the MLE’s of the unknown p and © as

fi= X, the sample mean

-
2

~ l Z b . .
and ©= ;Z(X,-—X) , the sample standard deviation.
=1

The properties of maximum likelihood estimation :
Apart from their intuitive appeal, maximum likelihood estimates possess several nice
properties :
1. Consistency : The maximum likelihood estimators (MLE) g of 6 is, under general
conditions, a consistent estimator.

2. Asymptotic normality: Under general conditions, gis esymptotically normally

C . . | .
distributed with mean 6 and variance -, which the lower bound

E dlog, /'(x)
a0

of the variance of Cramer-Rao Inequality.

3. Among all asymptotically normal consistent estimators of 8, § is generally
efficient.

4. If there exists a sufficient statistics for 6, then g 1s also sufficient, or is a function
of a sufficient statistic.

5. Unbiasedness : Generally, g is not unbiased.
6. Invariance : If g is the maximum likelihood estimator of 8, then W(é) is also

the maximum likelihood estimator of \If(é) , ¥ being a single-valued function of

0 with a unique inverse.
7. May not always exist.

4.5.2 Method of Moments :

The particularly simple method of estimating parameters is the method of
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moments. Supposting these are k parameters to be estimated, the method consists of the
following steps :

1. To express the moments of the theoretical distribution in terms of the parameters.

2. To equate the first £ theoretical moments which are expressed in terms of the &
parameters to the corresponding sample moments.

3. Finally, to solve the % resulting equations to determine the & parameters. The &
parameters will, therefore, be obtained in terms of the & sample moments, i.e.,

L}

m (=X), m)s - m,
Mathematically, the process can be explained as follows :
Let X;, X5, ..., X, be a random sample from some distribution having & parameters.

L
Define ”?UZEZX, LAr=1,2,3, ..k,
i=1

where m is the rth order sample raw moment, about zero and » =X . Similarly,

define

H=E(X).(r=12..k).

'

where ! is the r order population raw moment about zero, and p =E(X).

We first equate p/ with ' to have the & simultaneous equations.
wo=mr (r=12 ., k.

But each p/ depends on & parameters. By solving the & equations for # unknown
parameters, we get the moment estimates of the parameters.

Example 4.6 : Consider the binomial distribution X ~ b (n, p), where p is unknown,
we have
E(X)

n

E(X)=np or, p=
By equating £(X) with the sample mean ¥, we have an estimate of p as

p=

3 | e
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This p will be the moment estimate of p .

4.6 Summary

In this chapter, the theory of estimation has been discussed. Terms like ‘statistic’,
‘parameter’, ‘estimator’, etc. have been defined. The purpose of estimation has been
elaborated.

The properties of estimators, e.g., unbiasedness, consistency, sufficiency and
efficiency have been explained with examples. Completeness of a distribution is
defined. The role of Basu’s theorem has been discussed with example.

Cramer-Rao Inequelity has been stated and proved. Numerous example sare given.
The method of deriving the minimum variance unbiased estimator (MVUE) has been
thoroughly explained. The importance of Rao-Blackwell theorem has been elaborated
with numerous examples.

The method of maximum likelihood estimation and moment method are also
mentioned.

4,7 Exercises

1. Distinguish between the term ‘statistic’ and ‘parameter’, with examples.

2. Why do we need to study estimation? What do we estimate? Does it give the
exact value of the quantity that we assume to be unknown?

3. Mention some good properties of the estimator. which do you think to be the
most important?

4. Give an example of an estimator in each of the following cases :
(a) unbiased and consistent, (b) biased but consistent,
(c) sufficient but biased, (d) sufficient and unbiased.

5. Describe the maximum likelihood method of estimation. What are the properties
of a maximum likelihood estimator?

6. Let X follow a binomial distribution &(n,0), where 0 is unknown. Obtain an
unbiased estimetor of 0. Is it also UMVUE?
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7. Let X follow N(M, &) bistribution, why p and @ both unknown. Obtain sufficient
statistics for p and o2 Are they unbiased?

8. Find the maximum-likelihood estimator of 7 based on a single observation x,

for the distribution
flxy=P(1-Py1 forx=1,2, 3, ..

9. Let X ~ P(4), a Poisson distribution with parameter 4. Show that X is the UMVUE
of A.

10. Find the lower bound for the variance of an unbiased estimator of & based on
a sample of size » for the distribution

1
f(x)=§e"”e, x>0,0>0.

Is this estimator UMVUE?
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5.1 Introduction

The purpose of this unit is to decade whether a statement about an unknown
parameter is true. As the decision is based on samples, and not on the entire data, there
is a posibility of ariving at wrong conclusions. Testing procedures are avoidable where
the probability of such wrong decisions is minimized. These are the issues discussed
in this unit.

Another aspect of testing 1s confidence interval. A point estimator assigns a single
value to an unknown parameter, but an interval estimator assigns an interval to the
parameter which is supposed to cover it with high probability. This interval is called
confidence interval. We discuss all these with examples.

5.2 Population and Sample

A population is the set or collection of all conceivable and identifiable units under
study. On the contrary, a sample is a part of the population.

In statistical inference, we draw conclusions about the unknown characteristics
of the population, such as its mean, variance, skewness, etc., on the basis of data
collected from the sample. A sample, being a part of the population, may not give
exact value of the population characteristics. For example, the population mean of
the students heights, may be 165 cm. while the sample estimates it as 160 ¢m, say.
This difference is termed as sampling fluctuation, and it arises due to the fact that
we are studying only a part of the population.

Since we draw conclusion on the basis of samples, it is desirable that the samples
should be representative of the population. The more this is ensured, the better will
be the inferences about the unknown characters of the population. Random sampling
technique is the most widely used technique of drawing representative samples from
a population.

5.2.1 Statistical Hypothesis

A statistical hypothesis 1s a tentative statement or assertion about the unknown
population characteristic (s).

We distinguish between two types of hypothesis, namely, null hypothesis, say,
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H, and aternative hypothesis, say, H,. In general, /7, is a statement about the
unknown parameter, say g, which we believe to be true. When a null hypothesis.

H, is rejected, we accept the alternative hypothesis H, with some degree of

@

confidence associated with it. For example, let X, X,,......X, be a random sample
from a normal distribution N(8,1), where 8 is unknown. The only krowledge about

0 is that it lies on the real line. Then, our H, and H, might be H_ :6=6 and
H, 0=6,.0,=6,, respectively. Here, we test H, against H,. If on the basis of the
data, H, is rejected, we accept H, as a plausible value of ¢.

We consider a second example. In coin-tesing experiments, one frequently

assumes that the coin 1s fair, 1.e., the probability p of getting heads 1s 3 How does

one test whether the coin is fair? If one 1s guided by intuition, a reasonable procedure
would be to toss the coin n times, say, and count the number of heads. If the

. ' % l
proportion of heads out of » tosses does not deviate*‘too much” from p =7 one

would tend to conclude that the coin is fair.
5.2.2 Type I and Type 2 error

Since we take our decision either to accept or to reject the hypothesis H, on the
basis of a random sample, we are likely to commit two types of errors :

(a) We may reject H, when H, is true. This is the case of rejecting a true
hypothesis. This error is termed as ‘Type 1 error’.

(b) We may accept H, when H, is false. This is the case of accepting a false
hypothesis. This error is termed as ‘Type 2 error’.

This is indicated in the following table :

Table 5.1
Type 1 and Type 2 error

True situation/Decision made H, true H, false
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H, rejected Type 1 error correct decision
H, accepted correct decision Type 2 error

Level of significance : The level at which the probability of type 1 error is set
is called the level of significance and is denoted by « . This being the probability of
rejecting a true hypothesis, should be very small, such as 0.05, 0.01, etc.

Power of a test : The probability of Type 2 error, i.e., the probability of accepting
a false hypothesis, is denoted by g, which is also small. Then, 1- 8 is the power
of the test which is the probability of rejecting a false hypothesis. The larger the power
of a test, the better will be its performance.

Uniformly Most Powerful (UMP) test :

Consider the hypothesis H, :0=6, against H,:6=6,. If 9,and 6, are both
numbers, then the hypothesis are simple. If €, is a number, but g, is a set, say, subset
of the real line, then H, is composite. The case of UMP test arises in the latter case.

Let us consider the case of testing of the simple hypothesis
H,-6=6,
against the composite alternative hypothesis
H 020,
A test is said to be UMP test if it satisfies the following two conditions

1. The test is of size «,

2. Its power is greater than or equal to the power of any other test of the same
size.

Note that simple hypothesis completely specifies a distribution, while a composite
hypothesis does not. Moreover, in case of a composite alternative hypothesis of the
form H,:0 =6, we will get a power curve 8(8), say, for varying ¢ instead of a single
power. Our aim is to obtain a test that maximies power (or miximizes type 2 error)
subject to given level of significance. The now celebrated Neyman-Pearson Lemma
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(NP Lemma) gives a complete solution to this problem.
5.2.3 Acceptance and rejection region

A test of a statistical hypothesis practically means a demarcation of the sample
space nto two regions—acceptance region, and rejection region (also called critical

. . . . . . 1
region). For example, in the case of coin-tossing experiments for testing p=5,

observed values of heads for away from 50 will constitute the rejection region if we

toss the coin 100 times. The suitable demarcation of the sample space into acceptance
and critical region is the main purpose of testing statistical hypothesis.

It is to be clearly understood that we cannot control or minimize Type 1 and Type
2 error simultaneously. This will be clear from the following consideration. If we
always accept H,, whatever be the data, then there will be no occasion of rejecting
H, whether it is true or false, and we have & =0, but in this case f=1, as in this
case a false hypothesis will be accepted.

Conversely, if we always reject H, whatever be the data, then there will be
occasion when a true hypothesis H, will be rejected and we have « =1, but in this
case f =0, as a false hypothesis H, will not be accepted. Thus, both ¢ and 8 cannot
be made zero simultaneously.

That 1s why, we keep o fixed at a lower level and minimize £, or maximize
1- 4, which is the power of the test.

5.3 Confidence co-efficient, Confidence interval etc.

5.3.1 Relation between tests and confidence intervals

A confidence interval is a statement about the unknown population
parameter. While a point estimator guesses the value of the unknown parameter by
a single number, an interval estimator identifies an interval which is a random
interval, which is likely to contain the unknown parameter. We attach a probability,
called confidence co-efficient, to this interval so that the resulting interval now
becomes confidence interval with confidence co-efficient |-, a being the level
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of significance of a test as discussed earlier. Clearly, larger is the value of |-,
better 1s the chance that the confidence internal will contain the unknown parameter.

Thus, let X,,X,,.,X,be a random sample from some population with
pd.f .j(x),or pm.f.p,(x). Then, a point estimator T'(X,,X,...X,)} estimates ¢ by
&

a single number, a confidence interval (/(X,,X.... X, )u(X,X,...X,),(z>1)), estimates

¢ by an interval, which is random, and we write

P(lzs@su)=1-a,

Where 1—« 1s the confidence co-efficient. Thus, if & =0.05,0-01, etc. then the
confidence co-efficients are 0-95, 0-99, respectively.
5.3.2 Tests and confidence internal for mean

(a) Let X,,X,,..,X, be arandom sample from N(,H,O'E), o2 being known, We

want to test H,:u =gy, against H,:u= u, This is the case, when H, is simple but

H, is composite.

Consider X =12X} as a point estimator of #. Then, we known that

=1

<

.
X follows N(,u, . J

Hence, z =X —# follows N(0,1).
a

N

This Z is the standard normal variable and is the test statistic in the problem. We

then reject the null hypothesis H,: =y, if
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when Z_,, is the critical value to be obtained from a normal table corresponding
to a given « . For a=0-05, the critical value Z_, =1-96. Similarly, for other values
ofa .

The confidence interval for # can be obtained from (1) by replacing 4z, by #,
and rewriting it, in terms of probability, as (see Fig. 5.1)

Ora P _)u iZa.-": :]'_aa
Jn
= [#2 = (o)
P X—z .—<susX+z,, ., —:=l-«a
{ il n y :x;\/;}

- T = (a2

X-z, = X+7 ,— | _a)e
so that ( w2 [ a_\/;?]ls the 100(1-«a)%
confidence interval for 4.

(b) Consider the case where X follows N (,u,dg), both # and &2 unknown. To

test H,:u=y, against H :u=u,.
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In this case -t where = /——3 (x,-X)
sixn n-1 :

under H, follows a t-distribution with (n—1) d.f, so that for & level of significance,

the critical region is

X —n
Sf\/a

= r:x.fz ;(?? - l)

when ¢_,:(n-1} is to be obtained from a t-distribution.

Introducing probability and rewriting the above, we have on replacing x, by #,

P{‘X - ﬂl = %} =a,

) = - 5
ThllS, the interval (X_ta,.-g;,,_l ﬁsX"'ra;zmqﬁ]

is the 100(1-a)% confidence interval for # when &> is unknown.

Thus, in the above two cases, we have seen that the case of testing and confidence
interval are somehow related. If one knows the rejection region, or its complement
the acceptance region, then the confidence interval with a specified confidence co-
efficient can be determined in a straight forward manner,
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5.3.3 Tests and confidence interval for variance

Let X, X,,. X, beiid random variables from & (,u,crz), when both # and ¢ are

unknown. Our aim here is to test H,:0” =0, against H :c’=c,, and also obtain

a confidence interval for 52.

First we note that

i

(X,-X) 5
rl=t= ﬂ follows 2,
Ty Ty

a chi-square distribution with (n-1) d.f, under H.
So, under the alternative H,:.c" =07, we reject H, .c” =o; in favour of H, if

either observed x7, < ...

or, observed ., >y ..

When the critical values Z]_%_n_] and Zg_;n_l
are obtained from the 4 —table for given ¢« .

To obtain the confidence interval for &2, we consider the probability

P{zga X S o }=1—a,

1-=.r-1 =1
2

Or, P{Zf s”‘_g:ngr }:l—a,

o 2
—?;n—l fe2 E.n—l

On writing the value of y’ and replacing o, by &°.

Further simplification gives
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| o 1
Pi—=s—<— =l-a
xS ons oy, ’
1—:;;1—1
ns” ) ns”
Or Pi——<o0 <£— =]l-«a
’ Xa A =
Z -l =21
ns* ns*
E > 2 1
so that e Zl_g-,m is the

2

100{1-a)% confidence interval for the variance 42.

Test and confidence interval for proportion :
Let f denote the number of success in # Bernoullian trials. Then the sample

proportion of successes is

Pt
]

To test H,:p=p, against H :p=p, , where p is the unknown proportion of

successes, we consider the test statistic

Z= ﬁ_po

Po(l_P.:-)

Which, under H,, is distributed as N(0.1), for large sample. Thus, for a level of

significance «, we reject the null hypothesis if

Z|2Z,

2
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5.4 Large Sample Theory of Testings

5.4.1 Large Sample Theory

So far we have considered testing of hypothesis which are exact and true
irrespective of the sample size. But we have situation in practice where the exact
testing procedures will be difficult to apply as the underlying distributions may be far
from being normal. Howerve, if the sample size is large, the test procedures can be
simplified by virtue of what is known as central limit the reom (CLT). It states that,
under some general conditions on the distribmon of a variable X, a standardized
variable of the form (X-mean)/standard derivation follows a standard normal
distribution, provided the sample size is large. In other words, the assumption of
normality of the population can be dropped if the sample size is large. One can then
apply the standard results of normal theory for estimation and testing purposes.

The critical regions of tests depend on the nature of the alternative hypothesis,
as shown in the following figure (Fig. 5.1). All the three tests have the same level
of significance, namely, « .

() H,:0>6,
(i) H,:0<8,
(1) H :0=6,

Critical regions in the three cases are given, respectively, by (i) z>z_, (i) z<—z_,

and (1)) z<z,, Of z>z_,.

We summarize below the different steps in calculating confidence interval of a
parameter ¢ with confidence co-efficient |-«

Step 1. Estimate g by g, say

6 .
Step 2. Argue that Z= (8) follows N(0,1) for large n. Estimate s.e. (9) if
SE.

g5

necessary.

Step 3. Write p{—za2 <99 ¢ zag} =l-a.
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n
Lh

Finally,

Step 4. The 100(1-«)% confidence interval is

(9 Z,.5€ (é),9+zase(é))

w2 _test of Goodness of fitness :

Suppose we have a hypothetical population which is completely specified, there
being no unknown parameter in its distribution. Even if some of the parameters are
unknown, these are estimated from the given data. Let us visualize the population as
being composed of & mutually exclusive classes, and let us suppose that, according

. If the

frequency in the i class in a random sample of size # from this distribution is f] then
under the hypothesis, the quantity

to the hypothesis, the population proportion in the /™ class is P°i=12,

i( ) /.

p n;gi i=l ?’?P,O

¥

is approximately a »° with (k—1) degrees of freedom (d.f), provided nP’ is large
enough for each i.

If « is the chosen level of significance, then our test procedure consists in the
rejection of the hypothesis of agreement between the observed distribution and the
hypothetical distribution if

's

k
Z j, ~7 exceeds y°, (k—1), and accepted otherwise.
=1 AL

This test 15 called a test for goodness of fit since it tests the closenesrs between

the expected frequencies np° and observed frequencies f,i=12,...k. This is the

celebrated Pearsonian y* —test for goodness of fit.

5.5 Tests based on x2, t and f-distributions

Tests based on 7, ¢ and F-distributions have already been considered while



156 NSOUe GE-MT- 11

discussing theoretical and sampling distributions in chapter 2. Here, the main
consideration 1s that the parent distribution is normal.

72— test :

Two uses of y* —distribution are already mentioned in unit 2 (confidence interval
for vaniance) and unit 3 (Chi-square test for goodness of fit).

Example 1. A manufacture claims that the lifetime of a certain brand of batteries
by his factory has a variance 5000 (hours)’. A sample of size 26 has a variance of

7200 (hours)® Assuming normality, let us test H,:o" =5000against H,:c" #5000 at

level ¢ =0.02.
o . 5000
¢ = =x11.524
Here, 1L 23
= 2304-8
ol . 5000
2 = x 44314
and T 5
= 88628

Here, y* —values for & =0.02 are obtained from y* —table. Also, ¢ is the sample
variance with divisor (n—1). Since

s 18 neither <2304-8, nor :>88628,

we accept H, at o =0-02 level of significance.

t-test for testing population mean, the population variance being unknown
Example 2.

In a pollution study of a river in India, the concentration of lead in the upper
sedimentary layer of the bottom is measured from 15 sediment samples of thousand
cubic centimetres each. The sample mean is 0-38 and the unknown population standard
deviation is estimated from the sample as s = 0-12 (divisor n—1)

Then, under H,:yu, =048 (against H,: g, = 0.48),
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n(X-p,) .
we have that r=———— 2 follows t-distribution
£

with (n—1) defrees of freedom.
J15 (038 - 0.48)

0-12
= 32275

Here, 1=

For & =0.05, we have #yq,,, =2:145.

Since |f|=3.2275>2-145, we reject H, at 5% level of significance, and conclude
that the mean concentration of lead is different from 0-48.

Other examples of t-test are already considered in unit 3 of chapter 2.

F-test for testing homogeneity of variances of two populations :

The F-distribution and its uses are discussed in unit 3 of chapter 2. Here we discuss
one numerical example in this regard.

Example 3. Consider two samples from two populations of size # =9 and n, =10

whose sample sums of squares of deviations from the means are 36 and 42,
respectively. To test the hypothesis that the two populations have identical variance.

36 42

The unbiased estimates of the vanances of the two populations are ry and e

The observed F-statistic is

42/9
“3e/3 with 9 and 8 degrees of freedom,

=104,
while £, =3-39.

Since F<3-39, it is not significant and we conclude that the samples may be drawn

from the same population, 7.e., we accept the hypothesis H, o =0? against

H ol #0;.
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36 42

The unbiased estimates of the variances of the two populations are ry and 3

The observed F-statistic is

42/9
=36/3 with 9 and 8 degrees of freedom,

= 104,
while Fj ., =339,

Since F<3-39, it is not significant and we conclude that the samples may be drawn

from the same population, ie, we accept the hypothesis H .o =0, against

H ol #0;.

5.6 Summary

In this chapter, we have studied the theory of testing of statistical hypothesis. After
studying this chapter, you would know null hypothesis, alternative hypothesis, Type
1 and Type 2 error, level of significance and power associated with a testing procedure.
You would also know UMP test.

The ideas of confidence interval, confidence co-efficient, the difference between
point and interval estimation have been explained. These are elaborated with numerical
examples.

Finally, large sample testing procedure is explained.

5.7 Exercises

Define Type 1 and Type 2 error.
Distinguish between level of significance and power of a test.

What are acceptance and rejection region?

Bowop

How does point and interval estimation differ?
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5. Derive testing procedures for the following cases :
(a) H,: u=p,, against H :pu= pu, for the normal case N(#,O'z), o? unknown.
(b) H,:p=u, against H,:u= u, for the normal case z’\*r(,nur,c#'2 ),:'ﬁtﬂ’2 known.

6. Define confidence interval for 5* in the normal case N (#,0'2), where # is

not known.

7. Write a note on Goodness of Fit test,
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6.1 Introduction

Most of our discussions so far confined to a single variable. In statistical work
we often have to deal with problems involving more than one variable. Let us consider,
for the moment, two variables. Qur interest lies in studying the relationship between
the two variables.

For example, we may be interested in finding the relationship, if any, between

1. the performance of students in two subjects, say, mathematics and statistics or
accountancy and economics,

2. the heights of father and eldest son,
3. the index of wholesale prices and that of agricultural production,
4. the ages of bride-groom and bride.

A rough idea about the association between two variables can be obtained by
studying what is called a “scatter diagram’. Here, two variables are plotted along two
perpendicular axes, namely, x-axis and y-axis. After plotting the data in a graph, one
obtains a clear picture of the variation in one variable with respect to the other. Scatter
diagram is explained below in detail.

6.2 Scatter Diagram

Given a set of pairs of observations on two variables, x and y, a rough picture about
their interrelationship can be obtained by drawing a scatter diagram. Such a diagram
can be obtained by taking, say, x along the horizontal axis and y along the vertical
and then plotting each pair of values (x,y ) as a point with respect to these axes. Thus
the diagram will be a conglomeration of points (x,y,). The pattern of this
conglomeration will vary depending on the nature of the relationship between the
variables. For example, consider the following three scatter diagrams (fig.6.1, parts
a-b).

In fig. 6.1(a) the general tendency of the points (x, y) is such that as one variable
increases the other also increases. In fig. 6.1(b) the general tendency of the points
(x, ¥) is such that as one variable increases the other decreases. But in fig. 6.1(c), x
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and y are uncorrelated in the sense that with an increase or decrease in one variable,
the other generally remains unchanged. The three situations are said to be, respectively,
the case of positive correlation, that of mnegative correlation and that of zero

correlation.
A A
o o o
]
]
o [} Y ° [|] °
}» o -] . }v ° °
° o o o
(]
o o 0 4 o °
[+] 4] o
X X

y °

\{

Fig. 6.1 : (Clock-wise from upper left-hand corner) Scatter diagrams for (a)
positive, (b) negative and (c) near- zero correlation.

6.3 Correlation Co-efficient and its properties

Assuming that the relationship between the variables x and y is linear, or
approximately so, as may be revealed by the scatter diagram, we can give a measure
of the strength of this relationship. This numerical measure is called the correlation
co-efficient.

Suppose (x,.3,).(x,.¥,)....(x,.»,) be n pairs of observations on (x,y). Then the

correlation co-efficient between x and y, written as 7, is defined as
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L (-7, 7)
r, =2 ()

5.8

xty
where the numerator is the covariance between x and y, and the denominators are the

standard deviations of x and y. Note that 7, =7, , so that the expression of correlation

co-efficient 1s symmetric in x and y. So, we write the correlation co-efficient as ‘#’
only ignoring the suffix.

An expression of 7, useful for calculation, is given as

S {5 o)

=1

If in a given problem, # comes out to be positive, our conclusion will be that y
generally increases as x increases. In case » comes out to be negative,we would
conclude that y generally decreases when x increases. If » 1s equal to zero, the
conclusion is that as one increases (or decreases), the other remains unchanged.

The following properties of the correlation co-efficient are worth noting :

1. If all the points in a scatter diagram lie on a straight line with positive scope,
then » =+ 1. Similarly, if all the points in a scatter diagram lie on a straight line with
negative slope, then » =—1. More specifically, if x and y satisty ax + by + ¢ = 0., ‘@,
‘6" and ‘¢’ being constants, then the value of r either 1 or — 1, depending on the slope
of the line.

2. Let us consider » pairs (x.y),7=12,.,n of observations. Define
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x—a y-c
u= p V= 7 (=0, d=#0). Then
hd
rxv:—rw
"l

Thus, if ‘b and ‘d” are of the same sign, then 7, =7, as in this case bd =|b||d|.
On the other hand, if *5* and ‘d” are of the opposite sign, then bd =—|b| |d], and r,, =—7,,.

3. The numerical value of # (ie, | r |) measures the strength of the linear
relationship and the sign of # indicates the direction of the relationship, i.e., increasing

or decreasing.
4. The correlation co-efficient r satisfies |+|<1.

Proof: Let (x,,¥).(x.,)5),...(x,.¥,) be n pairs of observations. Define # and v as

X.—X y.—y
i, = WV, = .
5 s,

(1=12.3,...1)

-
i

Then 2 (% +v,) 2o, (x,andv,being real numbers)

=1

or, iaf + ivﬁ + 2iuiv‘. 20,
=1 =1 i=1

n

(-5 Y07 59—

Or, i=1 _ + i=1 > +2 i=1 ‘ZO
5 s 5,5,

or, n+n+2nr 20
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Again, considering 2.(#,-v,) 20,
i=1

we will get #n+n-2nr =0
or, —2nr, =-2n
or, #, <1...(2)

Combining (1) and (2), we have

—-lsr, =1

1

6.4 Mathematical relationship between random variable,
Regression Equation

When two variables are found to be associated, as revealed by the scatter diagram,
one can think of a mathematical relationship between these variables. This may take
the form of a straight line, quadratic or cubic curve, or some other complicated
mathematical model. However, we will keep them to be of the simplest type, say, a
polynomial of certain degree.

Another important aspect of fitting a line or curve from data is the choice of
independent or dependent variables. Unlike mathematics, the selection of independent
(or dependent) variables in statistics is not that clear cut. For example, in studying
demand and price of a commodity, we are mostly inclined to take price as an
independent variable, and demand as a dependent variable. In doing so, our logic may
be that price determines demand of a commodity. But it may so happen, in some
situations, that demand for a commodity will manipulate its price.

The case of regression involving two variables can be extended to the case of
n(>3) variables. However, one needs to consider only the variables which are really
meaningful and effective in explaining the data.
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6.4.1 Curve fitting by the method of least squares

Let us consider »# sets of observations, namely, (¥, X,.X,...X;;).(i=12,..n),

involving k + 1 variables, where Y is the dependent variable and X,,X,, .. X, are the

independent variables.

As a mathematical relationship, we consider the regression plane
Y=ay+a X, +a, X, +. . +a X, (i=12,.7n)
The constants «,,a,,..,a, are estimated by the method of least squares, namely,
by minimizing
- =12
§° =Z(Yf ‘Yf) , the error sum of squares,

where ¥ =4, +a4.X, +..+4d,X,. is the estimate.

-

as*
O lving O=—(i=12,.n:j=12, .k
n solving Py ( 7 )

F

we have O=i2(y_éO_éIXli_""_éiji_"'C}kai)'(_Xﬁ)

i=1
FAN L

or, 0= i(Xﬂ.)(Y —ay =X, —..—d X, - &4X,),
i=1

(for j = 1,2,3.. k), giving k equations ...(1)

Another equation is obtained from

which gives 2.1, =nd, +a ) X, +..+a. > X, (2)
i=1 i=1



NSOU «GE-MT - 11 167

The (k+1) equations in (1) and (2) determine the values of 4,.4,,..,4, which are

called the least squares estimates (LSE) of a,,q,...,4, .

6.5 Regression equation—the case of variables

Given » pairs of observations of the form (x,,v,), we may be interested in deriving

a functional relationship between x and y. The simplest type of relationship between
x and y is a straight line given by

y = a + bx, where ‘@’ and ‘b’ are constants which are also called parameters.

These parameters are estimated from the given data by applying the method of least
squares,

Thus, we minimize the error sum of squares

5’=Z(y,- —a—bx, )2 with respect to ‘@’ and ‘b’.
i=1

So, by solving

s O
—=0 —=0
r» and b

we get ZJ’,- 2”“”’,21?
i=1

i=l

L H L
and le!.y‘. =azlx‘. +bzle
i= = i=

These are called normal equations.

On solving, we get



168 NSOUe GE-MT- 11

where r is the correlation co-efficient between x and y, and s, and s, are the s.d’s

of x and y respectively.
Also, a=v-bx,¥ and y being the sample means.
Then the fitted regression line is
y=(y-bx)+bx
=y+b(x-¥).

The constant b, sometimes written as Ay, is called the regression co-efficient of

y on X.

We can also fit a line of the form
x=d'+by=x+b'(y-7¥),

Which will be called regression equation of x on y, and p* will be denoted by 5, .

SV
Note that #» =7 P that

¥
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or, r==% b,\y‘b}:r

Thus, r 1s the geometric mean of the two regression co-efficients. It takes the sign

of either & _or b,, as b, and b, are of the same sign.

It can be shown that ,2 measures the proportion of total variability in the data that

is explained by the regression equation. For instance, if » = 0.8, then 64% of the data
variability is explained by the regression line,

Another important property of the regression lines is that they intersect at the point
(%.7).
6.5.1 Regression equation considering three variables

The case of regression equation involving one explanatory variable can be extended
to the situation where there are ‘k’ explanatory variables. If the explanatory variables
are selected suitably, the predicting capability of the regression equation increases
considerably. The simplest case of regression equation with, say, & = 2 explanatory
variables is one where the equation is linear. Such a line is called a ‘regression plane’.

Thus, with three variables x,,x, and x,
we have
X = bo + blz_axz + bla.zxs »

where 5,.5,, and b, are estimated by the method of least squares. We discuss

one numerical example as shown below.
Example 1.

The following table gives the number of children (x,}, educational level of the

mother (x,) and total monthly expenditure (x;) of 15 nuclear families. Here only those
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families are considered for which the mothers have crossed the child-bearing age, and
their educational level is measured in terms of number of years spent in school, college
and university.

Table : 6.1. Number of children, educational level of the mother and total
monthly expenditure of 15 families :

S1. No. Number of Educational level |Total monthly expendi-
of family children (x,) of mother (x,) ture in Rs. (x,)
1 2 14 4350
2 1 17 5450
3 1 15 4500
4 6 12 3750
5 2 12 4220
6 7 7 3150
7 1 17 6750
8 3 10 3600
9 3 12 3225
10 4 10 4875
11 5 9 2250
12 4 8 2700
13 6 11 4050
14 0 16 7225
15 5 8 1800

Our aim is to fit a regression plane of x, on x, and x,, and examine the effects

of mother's educational level and farnily’s standard of living (as given by the total
monthly expenditure) on the number of ¢lildren born to the family.

Let the regression plane of x, on x, and x, be given by
Xy = by 4 by Xy b X,

The least-square estimates of the parameters b,.b,,, and 5., can be shown to be

S F.—FLF
_ % Hz T Habs
by =—x

s, 1-r,
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S K. —FaF

% ha T hots

by, =Lyl
5y Fay

and x, =b, +b,, x, +b,.x,,

where s,,s,,s, are the standard deviations of x,x, and x,respectively.
For the data in table 6.1, we have the following :

¥, =333, s =20869,

%, =1187, 5, =3.2014,

%, =4126.33, s, =1464.09,

and r,=-0.8217, r,=-07068 and r, =0.8342

13

Finally, 5,,,=-0.4974, b,, =—0.0001 and b, = 96468

So, the fitted regression plane of x, on x, and x, is given by

X = 96468 — 04974 %, — 0.0001 x,.
The multiple correlation co-efficient can be found to be #,, =0.8226

Thus, r?,,being 0.6767, the fitted regression plane explains 67.67 per cent of the
total variability in the observed values of x,. Our conclusion, therefore, is that the
performance of mother's educational level (x,) and family's total monthly expenditure
(x;) as explanatory variables is satisfactory, though there may be other explanatory
variables which we have not considered.

As an application of the above fitted regression plane, we can predict the number
of children x, in a family with, say, x, = 15 and x,= 5000, as follows :

x, =9.6468-0.4974 x 15 —0.0001x5000

= 1.6858
=2
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(Source : Statistics for the Social Sciences by Gun, A M and Aich, A.B. (2002),
World Press, Kolkata-700 073, p. 53-54.)

6.6 Partial and Multiple Correlation

Let us consider the case of three variables x,,x, and x,.Then the regression line,
which is actually a plane, called regression plane, of x, on x, and x, is given by
x,=b, +b,x,+b,x,, when b, b, are co-efficients, called partial regression co-
efficients and written by 5,, and b, respectively. Hers, 5 ,, measures the change
in x for unit change in x,, x, being fixed. Similarly, 5,, measures the change in x,

for unit change in x,, x, being fixed.

Multiple correlation co-efficient—

The multiple correlation co-efficient with three or more variables is a generaliza-
tion of the simple correlation co-efficient involving two variables only. The multiple
correlation co-efficient is defined to be the usual correlation co-efficient between the

observed x,, and its estimate obtained from the regression equation (here, regression

plane) In case of three variables x ,x, and x,, this correlation is denoted by 7,

Mathematically, let x and %, be respectively the observed x, and its estimate

obtained as

X =b,+bx, +bx,
Then 7 ., =corr.(x,.%,)

cov(x,, %)

- sd.(x).s.d (%)

On simplification, we have

B 2
_ 1 +4; —2?‘12?‘13}“23
123 = 1- /2 .
2
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where #, is the simple correlation co-efficient between x,and x,, r, that between
x, and x,, and, finally, », between x, and «x,.

Contrary to the case of a simple correlation co-efficient, a multiple correlation co-

efficient i1s never negative, and lies in between 0 and 1, ie, 0<s,, <1,

1.23
An important interpretation of the multiple correlation co-efficient is that it
measures the degree of association between the observed x, and its estimate %,
obtained from the regression plane.
Thus, larger value of r,, indicates that the regression plane is adequate as a

predicting formula for x,.
Partial correlation co-efficient :

Let there be three variables x,,x, and x, Here, we are interested in knowing the

degree of association between, say, x, and x,, when the influence of x, is eleminated
from both. The resulting correlation co-efficient, called partial correlation co-efficient,

will be denoted by r,,. The formula for #,, is given by

fiz P

Ji=r2)(-2)

where r,.r, and »,

Hag =

are the total correlation co-efficients.

6.7 Summary

In this chapter, we have studied the important concept of association and
regression. The idea of correlation co-efficient is discussed in detail, along with its
various properties. The scatter diagram, as discussed here, though simple in nature,
plays a wvital role in identifying the nature and extent of association between
variables The idea of LSE is also given.

The regression equation is stated and the parameters are estimated by least squares
method (LSE). The significance of regression co-efficients is elaborated. The
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relationship between regression co-effiicients and correlation co-efficient is estab-
lished.

The case of three variables is also taken up. A numerical example in this context
is also given. Finally, partial and multiple correlation co-efficient are discussed.

6.8 Exercises

1. What do you mean by ‘scatter diagram’? What are their uses?

2. Define correlation co-efficient. Write its three important properties.

3. Prove that |[r|<1. When does the equality hold?

4. Interpret the cases (a) r =1, (b) r =-1, (c¢) r = 0.

5. What are regression lines? How do you estimate the regression co-efficients?
6. What is multiple correlation co-efficient? What about its range of variation?
7. What are partial regression co-efficients? How would you interpret them? Can

b., and b, be equal?

8. What are partial correlation co-efficient? Can #,, and #, be equal?

6.9 Further Readings

1. Goon, A. M. and Aicj, A.B.—Statistics for the Social Sciences, World Press,
Kolkata, 2002,
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1), World Press, Kolkata, 2000.

3. Goon, AM. Gupta, MK and Dasgupta, B—An Outline of Statistical Theory
(Vol -1), World Press, Kolkata, 2010.
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Publishing Co. Delhi, 1978.
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APPENDIX

Tables for Normal, 42, ¢ and F-distribution. These tables are used to find critical

values in respect of a given test, and to find confidence interval for given level of
significance.

TABLE I : STANDARD NORMAL DISTRIBUTION
Plz <k] for specified values of k

k 00+ 05+ 10+ 15+ 20+ 25+ 30+ 35+
0.00 5000 6915 8413 9332 9772 9379  9°865 977
0.01 5040 6950 8438 9345 9778 9396 9869 978
0.02 5080 6985 8461 9357 9783 9413  9°874 978
0.03 5120 7019 8485 9370 9788 9430 9878 979
0.04 5160 7054 8508 9382 9793 9446  9°882  9°80

0.05 5199 7088 8531 9394 9798 9461 9°886 981
0.06 5239 7123 8554 9406 9803 9477 9°889 98l
0.07 5279 7157 8577 9418 9808 9492 9893  9°82
0.08 5319 7190 8599 9429 9812 9506 9°897 983
0.09 5359 7224 8621 9441 9817 9520 9900  9°83

0.10 5398 7257 8643 9452 9821 9534  9°03 9°84
0.11 5438 7291 8665 9463 9826 9547 906 985
0.12 5478 7324 8686 9474 9830 9560 9’10 985
0.13 5517 7357 8708 9484 9834  9°573 913 9'86
0.14 5557 7389 8729 9495 9838 9585  9l6 986

0.15 5596 7422 8749 9505 9842 9598 9’18 987
0.16 5636 7454 8770 9515 9846 9609 921 987
0.17 5675 7486 8790 9525 9850  9%21 924 988
0.18 5714 7517 8810 9535 9854 9632 926 988
0.19 5753 7549 8830 9545 9857 9°%43 929 989

0.20 5793 7580 8849 9554 9861  9°653 931 9'89
0.21 5832 7611 8869 9564 9864 9664 934 990
022 5871 7042 8888 9573 9868 9%674 936 990
0.23 5910 7673 8907 9582 9871  9°683 938 904
0.24 5948 7704 8925 9591 9875  9%693 940 908

176
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0.25 5987 7738 8944 9599 9878  9°702 9342 912
0.26 6026 7764 8962 9608 9831 92711 9344 915
027 6064 7794 8980 9616 9884  9°720 946 918
0.28 6103 7823 8997 9625 9887  9°728 9348 922
0.29 6141 7852 9015 9633 9890 9°736 950 925
030 6179 7881 9032 9641 9893 9744 9°52 9428
031 6217 7910 9049 9649 9896 9752 9°53 931
032 6255 7939 9066 9656 9898 9760 9°55 9433
033 6293 7967 9082 9664 9901 9767 9°57 936
034 6331 7995 9099 9671 9904 9774 9°58 9439
035 6368 8023 9115 9678 9906 9781 960 941
036 6406 8051 9131 9686 9909  9°788 9°61 943
037 6443 8078 9147 9693 9911 9795 9°62 946
038 6480 8106 9162 9699 9913 9801 9°64 948
039 6517 8133 9177 9706 9916 9807 9°65 9450
040 6554 8159 9192 9713 9918  9°813 9°66 9452
041 6591 8186 9207 9719 9920 9819 9°68 9454
042 6628 8212 9222 9726 9922  9°825 9°69 9456
043 6664 8238 9236 9732 9925  9°831 970 9458
044 6700 8264 9251 9738 9927 9836 971 9459
045 6736 82890 9265 9744 9929 9841 9372 61
046 6772 8315 9279 9750 9931 97846 9373 63
047 6808 8340 9292 9756 9932 93851 974 64
048 6844 8365 9306 9761 9934  9°856 975 66
049 6879 83890 9319 9767 9936  9°861 976 67
Notes : (1) The specified value of £ is obtanable by adding the number in the

marginal column with the number in the marginal row.

{2) Decimal points in the body of the table are omitted, and repeated 9’s are indicated
by powers; e.g., 9’379 stands for 0.99379 and 6915 for 0.6915,

DISTRIBUTION OF STANDARD NORMAL VARIABLE

Values of z,

o

0.05 0.025 0.01 0.005

Za

1.645 1.960 2.326 2.576
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TABLE III : ~DISTRIBUTION : P[t <k] for different values of k¥ >0 and on
differing degrees of freedom v

k v=1 2 3 4 5 6 7 b 9 10
0 0.500 05300 0300 03500 0300 0300 0300 0300 0500 0500
0.1 532 535 537 537 538 538 538 539 539 539
2 563 570 73 574 575 576 76 5T 5TT 5T
.3 593 604 608 610 612 613 614 614 614 615
4 621 636 642 645 647 648 649 630 631 631
5 648 667 674 678 681 683 684 685 683 686
6 672 695 Jos 71 713 715 716 717 718 719
T 694 722 33 739 742 745 4T 748 749 750
8 15 746 59 766 770 773 715 777 718 779
9 733768 783 790 795 799 801 803 804 805
1.0 750 789 804 813 818 822 825 827 828 830
1.1 765 807 824 833 839 843 846 848 350 851
1.2 7719 823 842 832 838 862 863 868 870  R71
13 791 838 858 868 875 879 883 885 887 889
14 803 832 872 883 890 894 898 600 902 904
15 813 864 885 896 903 908 911 914 916 918
16 822 875 896 908 915 920 923 926 928 930
1.7 831 834 O06 918 925 930 933 936 938 940
18 839 893 B15 927 934 939 943 945 947 949
1.9 846 901 923 935 942 947 950 933 955 9%
20 852 908 930 942 949 954 957 960 962 963
21 858 915 937 948 955 960 963 965 967 969
22 864 921 942 9% 90 965 968 970 972 94
23 869 926 947 958 965 969 972 975 976 978
24 8714 931 952 963 99 973 976 978 980 981
25 879 935 956 967 973 977 979 9381 983 984
26 883 939 960 970 976 980 982 9384 986 987
27 887 943 963 973 979 982 985 986 988 989
28 891 946 966 976 981 984 987 988 990 991
29 8% 949 969 978 983 986 988 9% 991 992
30 898 952 971 980 985 988 990 991 992 993
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3.1 o901 935 973 985 987 989 991 993 994 994
32 904 957 975 983 988 991 992 994 995 995
33 906 960 997 985 989 992 993 993 995 996
34 909 962 979 986 990 993 994 995 996 997
35 911 964 980 98 991 994 995 906 997 997

36 914 965 982 989 992 994 9% 9% 997 998
37 916 967 983 990 993 995 99 997 997 998
38 918 969 984 990 994 99 997 997 998 998
39 920 970 985 991 994 996 997 998 998 998
40 922 971 986 992 995 9% 997 998 998 999

4.1 924 973 987 993 995 997 998 998 999 999
42 926 974 988 993 996 997 998 998 999 999
43 927 975 988 994 996 997 998 999 999 999
44 929 976 989 994 996 998 998 999 999 099
43 930 977 990 995 997 998 999 999 999 999

46 932 978 990 995 997 998 999 999 999 999
47 933 979 991 995 997 998 999 999 999 1.000
48 935 980 991 996 998 998 999 999 999

49 936 980 992 996 998 999 999 999 1.000

50 937 98l 992 996 998 999 999 999

5.1 938 982 993 996 998 999 999 999
52 939 982 993 997 998 999 999 1.000
53 941 983 993 997 998 999 999
5.4 942 934 994 997 998 999 999
35 943 984 994 997 999 999 999

56 944 985 994 997 999 999  1.000
57 945 985 995 998 999 999
58 946 986 995 998 999 999
59 947 986 995 998 999 999
60 0947 0987 0995 0998 0999 0999
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TABLE- IV : ~DISTRIBUTION

Values of ¢z,

181

@/ 0.05 0.025 0.01 0.005
1 6.314 12.706 31.821 63.657
2 2.920 4303 6.963 9.925
3 2.353 3.182 4541 5841
4 2.132 2.776 3.747 4.604
5 2.015 2.571 3.365 4.032
6 1.943 2.447 3.143 3.707
7 1.893 2.363 2.998 3.499
8 1.860 2.306 2.896 3355
9 1.833 2.262 2.821 3.250
10 1.812 2228 2,764 3.169
11 1.796 2.201 2.718 3.106
12 1782 2.179 2,681 3.055
13 1771 2.160 2,650 3.012
14 1.761 2.145 2.624 2977
15 1753 2.131 2.602 2.947
16 1.746 2.120 2.583 2921
17 1,740 2.110 2567 2.898
18 1734 2.101 2552 2.878
19 1.729 2.093 2.539 2861
20 1725 2.086 2528 2.845
21 1.721 2.080 2518 2831
22 1.717 2.074 2.508 2819
23 1714 2.969 2.500 2.807
24 1711 2.064 2.492 2797
25 1.708 2.060 2.485 2787
26 1.706 2.056 2.479 2.779
27 1.703 2,052 2.473 2771
28 1701 2.048 2.467 2.763
29 1.699 2.045 2.462 2.756
30 1.697 2.042 2.457 2750

40 1.684 2.021 2.423 2.704
60 1.671 2.000 2.390 2 660

120 1658 1.980 2358 2617
% 1.645 1,960 2.326 2.576"

¥For very large v, ¢, _becomes approximately equal to z,, .
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