PREFACE

In a bid to standardise higher education in the country, the University Grants Commission
(UGC) has introduced Choice Based Credit System (CBCS) based on five types of
courses: core, generic discipline specific elective, and ability/ skill enhancement for graduate
students of all programmes at Elective/ Honours level. This brings in the semester pattern,
which finds efficacy in tandem with credit system, credit transfer, comprehensive and
continuous assessments and a graded pattern of evaluation. The objective is to offer
learners ample flexibility to choose from a wide gamut of courses, as also to provide them
lateral mobility between various educational institutions in the country where they can carry
acquired credits. I am happy to note that the University has been recently accredited by
National Assessment and Accreditation Council of India (NAAC) with grade “A”.

UGC (Open and Distance Learning programmes and Online Programmes) Regulations,
2020 have mandated compliance with CBCS for all the HEIs in this mode. Welcoming this
paradigm shift in higher education, Netaji Subhas Open University (NSOU) has resolved
to adopt CBCS from the academic session 2021-22 at the Under Graduate Degree
Programme level. The present syllabus, framed in the spirit of syllabi recommended by
UGC, lays due stress on all aspects envisaged in the curricular framework of the apex body
on higher education. It will be imparted to learners over the six semesters of the Programme.

Self Learning Materials (SLMSs) are the mainstay of Student Support Services (SSS)
of an Open University. From a logistic point of view, NSOU has embarked upon CBCS
presently with SLMs in English. Eventually, these will be translated into Bengali too, for the
benefit of learners. As always, we have requisitioned the services of the best academics in
each domain for the preparation of new SLMs, and | am sure they will be of commendable
academic support. We look forward to proactive feedback from all stake-holders who will
participate in the teaching-learning of these study materials. It has been a very challenging
task well executed, and 1 congratulate all concerned in the preparation of these SLMs.

I wish the venture a grand success.

Professor (Dr.) Subha Sankar Sarkar

Vice-Chancellor
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Unit 1 4 First Order Equations

Structure
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1.8 Dynamical System

1.9 Summary

1.10 Keywords

1.11 Further Reading

1.12 Exercise

1.0 Objective

In a classical treatment of ordinary differential equations. the main attention is to find the
solution curve. The purpose of this unit is to develop some elementary yet important
examples of first-order differential equations. These examples illustrate some of the basic
ideas in the theory of ordinary differential equations in the simplest possible settings. Some
examples of existence and uniqueness of solution are included to provide the basic idea
when solution of differential equation exists uniquely. The basic models such as the logistic
models with harvesting, are included to give the reader a taste of certain topics, e.g.
bifurcations, periodic solutions that we will return often in other units.

1.1 Introduction

A first order differential equation is of the form F (t- X, L:{—),:)= 0, where t 1s independent
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variable, x is the dependent variable and F is a given function. Sometimes the equation can

be written in the normal form as 3—? =1t %)

A solution of the equation is of the form x = x(t.c) , where c is an arbitrary constant.
This solution is called general solution. There are several well known methods namely
separation of variables, variation of parameters, methods using integrating factors etc. for
solving first order ODE. There are many techniques to solve linear ODEs but there 1s no
general method for solving even a first order nonlinear ODE.

Some typical nonlinear first order ODEs can be solved by Bernoulli's method (1697),
method of separation of variables, method of variation of parameters, method using integrating
factors etc. The lack of general formula for solving nonlinear ODEs has two important
consequences. Firstly, methods which yield approximate solution (numerical) and give
qualitative information about solutions assume greater significance for nonlinear equations.
Secondly, questions dealing with the existence and uniqueness of solutions became important.
The following questions arias naturally :

+ Givenan IVP is there a solution to it (question of existence)?
«+ If there is a solution, 1s the solution unique (question of uniqueness)?

+ For which values of x does the solution to [VP exists (the interval of existence)?

1.2 Existence and Uniqueness of Solution

Consider the initial value problem (IVP) as

dx

dt

THEOREM 1.2.1 (Existence theorem): Suppose that f{(t.x) is continuous function

in some region R = {(t, x) : [t —t| <a, [x — x| <b} (a. b>0). If f is continuous

in Ry (t,X) € R, then there exists at least one solution x = x(t) of (1.1) in the interval
it—t | < o where o = min {a,b/k}. Notice that here R is a subset of real plane.

= f(t,x) with the initial condition x(t,) = X,. (1.1)

Theorem 1.2.2 (Uniqueness theorem): Suppose f and ‘g—:’ are continuous functions

in R. Hence both f and |g—i‘ are bounded in R, i.e [f(t,x)] < k and ‘g—£| <C, y(tx)e

R. Then the IVP (1.1) has at-most one solution x = x(t) defined in the interval |t —t | <
o where oo = min{a, b/k}.
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Combining Theorem 1.2.1 and Theorem 1.2.2, the IVP (1.1) has unique solution x =
Xt)in[x—x|<a, [x—x|<b.

1.3. Lipschitz Condition

.. |df| o s
Now, the condition |R‘ < C of the above theorem can be replaced by a weaker condition
which is known as Lipschitz condition.
A function f{(1,x) 1s said to satisfy Lipschitz condition in R if there exists a constant C

such that [f(t.x ) - f(t.x,)| < Clx, — x|, v (t.x). (t.x,) €R.

Note I: The existence and uniqueness theorem stated above are local 1n nature since
the interval where solution exists may be smaller than the original interval, where f{(t, x) is
defined.

Note 2: The conditions of existence and uniqueness theorem are sufficient but not
necessary.

Note 3: Any function f(x) = mx + b, m # 0 must be a Lipschitz function. If f is
Lipschiz on R, then f is continuous with respect to x on R.

Ex 1.3.1 Show that the IVP %: X, X(0) = 1 has unique solution.

Solution: Here, f(t.x) = x, and % = 1. Clearly both of these exist and bounded

around (0,1). Hence, unique solution exists and given by x = e'.

2

Ex 1.3.2 Show that the IVP % = 3x%, x(0) = 0 has no unique solution.
2 “y(x)
Solution: Here, f{t,x) = 3x° is
continuous on t — X plane.

Now,

% + } =
[£(0,x)—£(0,0)| _,Ix{'|_ 3 2 €2 €

| x,=0] x| 2

X ,
X Figure 1.1 :
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It we take x| very close to zero, il becomes unbounded. Hence. Lipschitz condition

| X] |
does not hold around a region about (0, 0). So, we can not say anything about uniqueness
of solution. Since Lipschitz condition is a sufficient condition.

dx _ ¢
Now, I 3 = dt,

%3

1

x?=t+c
AL t=0, x=0=C=0 (1.2)
So, x = t* 1s a solution. Again x =0 is also solution. Hence, the solution is not unique.
The solution can be written as x(t) = {“BC]_ by

[
Ex. 1.3.3 Show that the function f{t,x) = tx* does not satisfy Lipschitz condition in

|

any domain containing origin but IVP (cil—‘t( = tx3, x(0) = 0 has a unique solution.

=ralra

10, %) ~1(L0)] By —L_which is unbounded in any domain

%, 0] X2
Xj

Solution: Now,

containing the origin. Hence, the function {t.x) does not satisty Lipschitz's condition.
Again, we have

1

dx _

a -
d: "
- [ =t
x.’w

)
= 3x3 =t? +c¢

A x(0)=0=¢=0.
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2
So, the solution is 3x* =1, This is an example in which Lipschitz condition is only
a sufficient condition for uniqueness and not a necessary one.

] . . 2x
Ex 1.3.4 Discuss the existence and uniqueness for the [VP —(3;,[( = —”th ,X(0)=x.
. e 2% daf 2 bl
Solution: Here, f(t.x) = <2 and et Clearly both of these are unbounded

around (0, x,). So, nothing can be said from the existence and uniqueness theorem.

If we solve the equation we find x =At2. When X, % 0. there exists no solution of this
differential equation. If x, = 0, then we have infinite number of solutions x = kt* (k any real
constant). This typical behavior arises due to singular nature of ODE at t = 0.

Wellposedness

The 1nitial value problem (1VP) Lcif,: f(t,x) with x(t ) = x, is said to be wellposed

if
(1) the system has a solution in a class of functions (existence of solution)
(11) the solution is unique in class of function (uniqueness of solution)

() the solution depends continuously on initial condition x (stability of solution).

1.4 Picard iteration for IVP (Initial Value Problem)

This method gives approximate solution of IVP (1.1). Note that the IVP (1.1) 1s equivalent

to the integral equation x(t) = X, + f' (s, x(t))ds. A rough approximation to the solution

X = X(t) is given by the function x (t) = x,, which is a simply horizontal line through (t X,
[f we find

x, () =x,+ [ fis.x (D)ds,

then x (t) may be a little more closer to x(t) than x, (t). In similar manner, we can find x.(t),
X,(t) and so on. At the n-th stage

x ) =x,+ I} fisx_,(t)ds

The Picard theorem states that x (t) — x(t) as n — o< giving the unique solution of
the initial value problem.
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THEOREM 1.4.1 If the function f{t.x) satisfy the existence and uniqueness theorem

for IVP (1.1). the the successive approximation x (t) converges to the unique solution x{t)
of the IVP (1.1).

Ex 1.4.1 Find the first three approximation of the IVP ?j—x =1+1tx,x(0)=1.

Solution: Let the zeroth approximation be x (t) = x(0) = 1.
The successive approximation are as follows :

x,(t) =X, + [ fls.x,(t))ds,

2

= x(t)=1 +J'(§t(l+s)ds=1+t+7“,

Again, % (0= I+L)|:I+<(1+s+ ﬂds

1
W
= Xp(t)=l+t+ 5+ 0+
Also, X5(t) —1+J [1+sx,(s)]ds
2 4 45 (6
s t t_ LR S o
= X;(t) = HH‘_ 3+8+15+48
Ex 1.4.2 Consider the IVP (31}{_\2 x(0) = 0. Show that the uniqueness of solution

in the Picard's theorem may fails, when the Lipschitz condition is dropped

I
Solution: f(t.x)= x? is continuous for all values of x.

e

, f(t,x,)—f(t,0 ,
S0, FEX)=f(L,0)| _x¢ _
[x,=0]| X

which 1s unbounded as x, — 0. So f(t.x) does

ql'—‘

A0
not satisfy Lipschitz condition in the neighbourhood of (0.0)

The Picard's successive approximations at (n+l)th step are x_(t) = x, +
J, £(%,%,(t))ds.
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Here, x(0) =0, x (1) =0,x (1)=0+ Ll] f{s,x (s))ds = 0. Similarly, other approximations
are zero. Hence, x (t) > 0 as n = o and so x (t) = 0 is a solution of the TVP.

2
Again, g}—:dt::’2\/;=t+c,att—-0_.}r0=>c-—0. Thus x = t? ts the solution
X

of IVP. This solution is different from the solution x(t) = 0 as obtained from Picard’s
theorem. Hence proved.

1.5 Single Species Growth Equation

Let consider Malthusian population growth model equation ((i:l—’t\ = ax.

Here x = x(t) 1s an unknown real-valued function of a real variable t. Also, ais a
parameter; for each value of a we have a different differential equation. The solutions of
this equation are obtained from calculus: [f k 1s any real number, then the function x(t) =
ke* is a solution.

Suppose that a function x(t) satisfying the differential equation is also required to satisfy
X(t,) = u,. Then we must have ke*o = u, . so that k = u e—"0. Then the solution of the system
1s X(t) = u,e""'’ Note that there is a special solution of this differential equation when
U, =0 = k=0. This is the constant solution x(t) = (. A constant solution such as this
is called an equilibrium solution or equilibrium point for the equation. Equilibria are often
the most important solutions of differential equations. Equilibrium solution 1s obtained by

setting ?;1—: =0.

The solution of system changes qualitatively with variation of a. If a <0, lim ke* = 0;if
t—reo

a = 0 ke"=constant; if a > 0 tlim ke™ = o when k > 0. and equals
e

oo when k < 0. Note that the behaviour of solutions is quite different when a is positive
and negative. When a > 0, all non-zero solutions tend away from the equilibrium point at
0 as t increases, whereas when a < 0, solutions tend toward the equilibrium point. The set
of trajectories may imagine as a flow on R or R?or R*. We say that the equilibrium point
1s a sourceunstable when nearby solutions tend away from it. The equilibrium point is a sink
stable when nearby solutions tend toward it.
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The above equation can X | X
be considered a simple A
model of population
growth when a > 0. The
quantity x(t) measures the
population of some species

at time t. The assumption \
that leads to the differential

equation 1s that the rate of

growth of the population Y A
ly, dx/dt) is directly
(namely, dx/dt) 1s directly a>0 a<0

proportional to the size of the
population. Of course, this
naive assumption omits many
circumstances that govern
actual population growth, including, for example, the fact that actual populations cannot
increase without bound.

Figure. 1.2:

1.6 Logistic Population Model

In order to make restriction on unbounded growth of population, we can make the
following further assumptions about the population model:

1. If the population is small, the growth rate is nearly directly proportional to the size
of the population;

2. but if the population grows too large, the growth rate becomes negative. One
differential equation that satisfies these assumptions is the logistic population growth
model. This differential equation is

dx _. (_1)
i ax (1 N

Here a and N are positive parameters: a gives the rate of population growth when
x 1s small, while N represents a sort of "ideal" population or "carrying capacity."

Without loss of generality we will assume that N=1. That 1s, we will choose units so
that the carrying capacity is exactly 1 unit of population, and x(t) therefore represents the
fraction of the 1deal population present at time t. The logistic equation becomes
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dx

== =ax(l—x).

di ( )
This 1s an example of a first-order, autonomous, nonlinear differential equation.
Now,

dx
=] adft,
J x(1—x) J

:}f(‘—}(+—l )dx:a,[dt,

l—x
keil(
= X()=——
1+ ke"
: ; ; X . o
Evaluating this expression at t =0, x(0) =x, =~k = —x and solution is
4]
at
. N
1-x,+x,e"

So this solution is valid for any initial population x,. When x(0) = 1, we have an
equilibrium solution, since x(t) reduces to x(t) = 1. Similarly, x(t) = 0 is also an equilibrium
solution.

1.7 Single Species Model with Harvesting

Now let's modify the logistic model to take into account harvesting of the population.
Suppose that the population obeys the logistic assumptions with the parameter a=1. but is
also harvested at the constant rate h. The differential equation becomes

dx

- X(I=x)—hwhere h > 0 is a new parameter.

In Figure 1.3, we display the graph of f(x) in three different cases: 0 < h < 1/4,
h=1/4, and h > 1/4,

It 1s straightforward to check that f(x) has two roots when 0 < h < 1/4, one root
when h = 1/4, and no roots if h > 1/4, as illustrated in the graphs.

As a consequence. the differential equation has two equilibrium points x, and x, with
0<x, <x,when0<h<1/4
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As h passes through h = 1/4, we f(X)
encounter example of a bifurcation. The two
equilibria x, and x, coalesce as h increases
through 1/4 and then disappear when h > 1/

4. Moreover, when h > 1/4, we have f(x) < //—\ X
0 for all x. Mathematically. this means that all

solutions of the differential equation decreases ? \ bl

to —o as time goes on.

1.8 Dynamical System Figure: 1.3

Dynamics is a time-evolutionary process.
It may be deterministic or stochastic.

A system of n first order differential equation is called dynamical system of dimension
n which determines the time behaviour of evolutionary system. The subject of dynamical
systems concerns the evolution of systems in time. In continuous time, the systems may be
modeled by ordinary differential equations (ODEs), partial differential equations (PDEs), or
other types of equations (e.g.. integro-differential or delay equations); in discrete time, they
may be modeled by difference equations or iterated maps.

A dynamical system is described by two things: a state and a dynamics. The state of
a dynamical system is the values of all the variables that describe the system at a particular
time instant. And by dynamics of the system it is meant that the set of laws or equations
that describe how the state of the system evolves with time. Usually this set of equations
consists of a system of coupled differential equations, one for each of the states variables.
Each state of a system can be represented by a point in a space, called state space or
phase space. The dynamics of a system s governed by the line connecting the consecutive
points in state space which is called the trajectory of the system.

The mathematical form for the dynamical system is written as

dx _ ;
it = 1T o I (1.3)

where Xx(t) is a n- vector and f(t, X) 1s sufficient smooth function defined on some
subset U < R" x R. Dynamical system is linear and nonlinear according as f(t.X) is linear
or nonlinear. The most common form of dynamical system 1s Newton's second law of
motion: X=y, y = F, where F is force on unit mass particle.
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If the right hand side of (1.3) is explicitly time independent then the system is called
autonomous and the trajectories of such systems do not change as time goes on. On the
other hand, if the right hand side of (1.3) 1s explicitly time dependent then the system is
called non-autonomous. Logistic equation: x= ax(l — x) 1s example of autorpn”ous, system.
Harmonic oscillator is example of nonautonomous system represented by mx+ bx+ kx =
F cost.

LetPcR" me N,X=(x,..x_ )€ P, te R.Acontinuous dynamical system is
defined as X = F(x), where F: P> P, F=(f f, .. f ). The swinging of a pendulum is
governed by the equation

o
X+=sinx =0,
15

where x 1s the angle of the pendulum from vertical, g 1s the acceleration due to gravity. and
L is the length of the pendulum. The equivalent system 1s nonlinear dynamical system.

Let, PcR", me N;x € P.ne Z Thenx  =G(x,), where G : P— P, is a discrete
dynamical system (or discrete-time dynamical system) and G = (g .g,.... g ). Logistic map,
Henon map are two very tamous discrete dynamical system.

1.9 Summary

In this unit we provided theorems to understand the basic concepts of existence and
uniqueness of solution of ordinary differential equation. Examples are given in order to
clarify more on this topic. Some basic ideas of continuous and discrete dynamical system
are provided. Finally, single species growth equation, logistic equation, and single species
model with harvesting are also discussed.

1.10 Keywords

Dynamical system, Existence and uniqueness of differential equation, Picard's successive
approximations, Growth equation, Logistic equation.

1.11 Further Reading

1. Coddington, E. A. (2012). An introduction to ordinary differential equations. Courier
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CRC Press.
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1.12 Exercise

i

(A general example of non-uniqueness) Consider the initial value problem

D
=%t (=0 where p and q are positive integers with no common

factors.
a) Show that there are an infinite number of solutions if p < q.
b) Show that there 1s a unique solution 1f p > q.

Discuss existence and uniqueness of logistic equation x = rx(l — x), x(0) =
X, for different values of x,.

Find the first three successive approximations X, (t), X,(t) and x(t) for the
initial value problem x = x2, x(0) = 1. Also, use mathematical induction to
show that for all n > 1, Xy =1 4 bd. T Ot*Hast— 0.

Find the general solution of the logistic differential equation with constant harvesting
dx

i X(l1 — x) — h for all values of the parameter h > 0.

x—4 if t<5

5. Consider the nonautonomous differential equation X = {3 < if (55
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(a) Find a solution of this equation satisfying x(0) = 4. Describe the qualitative
behavior of this solution.

(b) Find a solution of this equation satisfying x(0) = 3. Describe the qualitative
behavior of this solution.

(c) Describe the qualitative behavior of any solution of this system as t —

oo,

6. (Tumor growth) The growth of cancerous tumors can be modeled by the Gompertz
law N= — aN In(bN), where N(t) is proportional to the number of cells in the
tumor, and a, b > 0 are parameters.

a) Interpret a and b biologically.

b) Sketch the vector field and then graph N(t) for various initial values.

7. (The Allee effect) For certain species of organisms, the effective growth rate N

N
is highest at intermediate N. This is the called the Allee effect (Edelstein-Keshet

1988). For example, imagine that it 1s too hard to find mates when N is very small,
and there is too much competition for food and other resources when N is large.

a) Show that % =r—a(N —Db)’ provides an example of Allee effect, if'r, a,
and b satisfy certain constraints, to be determined.

b) Find all the fixed points of the system and classify their stability.

¢) Sketch the solutions N(t) for different initial conditions.

d) Compare the solutions N(t) to those found for the logistic equation. What are
the qualitative differences, if any?
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2.0 Objective

In this unit we begin with the simplest class of higher dimensional systems. namely, linear
systems in two-dimension. These systems are interesting in their own way, and, as we'll see
later, they also play important role in classification of fixed points of nonlinear systems.

2.1 Introduction

A system of differential equations is a collection of n interrelated differential equations of
the form

X, = f,(t,X,.X5,....X, ),
X = B(8X),%g50,%,);
2.1)

};rn = fn(t-x 1525250550 _},
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F

Here the functions f; are real-valued functions of the n + | variables x,.x,, ....x,, and
t. Unless otherwise specified, we will always assume that the f; are C* functions. This
means that the partial derivatives of all orders of the f, exist and are continuous. In vector
notation, = F(t.X). A solution of this system 1s then a function of the form X(t) = (x,(t).....
x,(1)) that satisfies .the equation, so that X(t) = F(t,X(t)) where X(t) = (X,(t), ...,X,(t)). n
= 2 gives the planer system.

A vector X, for which F(X) = 0 is called an equilibrium point for the system. An
equilibrium point corresponds to a constant solution X(t) = X, of the system.

2.2 Planar System

A two-dimensional linear system 1s a system 1n the form
X =ax + by
y=cx + dy (2.2}

where a, b, c,and d are real parameters. The two variables x, y might represent, for
example, two interacting animal species in an ecological system, two different conductances
of 1on channels in a cell membrane, two different chemicals in a chemical reaction, or the
concentration of a drug in two different organs.

This system (2.2) can be written more compactly in matrix form as X=AX, where
AZ(? ldj)and X= (\\ ) e R’ Since the solution of linear homogeneous system forms a vector
space hence ¢, X, + ¢,X, 1s also a solution whenever X, and X, are solution of the equation
(2.2).

The solutions of X=AX. can be visualized as trajectories moving on (x, y) plane, in
this context is called the phase plane. Also notice that X= 0 when X = 0, so X* =0 is
always a fixed point for any choice of A.

Proposition 2.2.1 The planar linear system X= AX has
1. A unique equilibrium point (0.0) if det A # 0.
2. A straight line of equilibrium points if det A = 0 (and A is not the 0 matrix).

Theorem 2.2.1 Suppose that V,, is an eigenvector for the matrix A with associated
eigenvalue A. Then the function X(t) = e*'V, is a solution of the system X=AX
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Proof: Suppose V, is a nonzero vector for which we have AV, = AV, where A
€ R

To prove X(t) = e™V, is a solution of X= AX.
X = AeMV,
= e"(\V,)
= ¢"(AV,)
= A(eMV,)
= AX(t)

So X(t) does indeed solve the system of equations.

2.3 Changing Coordinates

Any 2x2 matrix that 1s in one of the following three forms is said to be in canonical form,
(fj ﬁ) (6 f) (UH Q) . A may equal p in the first case, Given any linear system X
= AX, we can always "change coordinates" so that the new system's coefficient matrix is
in canonical form and hence easily solved.

Now, instead of considering a linear system X=AX, suppose we consider a different
system Y= (T 'AT)Y for some invertible matrix T (detT # 0). Note that if Y(t) is a solution
of this new system. then X(t) = TY(t) solves X=AX. We can always change the coordinates
by finding a suitable matrix that converts a given linear system to one of the canonical
forms.
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Study of non-diagonalizable system is beyond syllabus. It requires concepts of Jordan
canonical forms and generalized eigen vectors.

2.4 Solving Linear System

We can find the solution to equation (2.2) in terms of a, b, ¢, and d by solving the
characteristic equation of A, given by det(A — AI) = 0, where I is the identity matrix.

Thus the general solution is X(t) = C,e"'V, + ¢,e’2'V,, where V, and V, are linearly
independent eigenvectors corresponding to eigenvalue A, and A,, respectively. In particular,
any 1nitial condition X, can be written as linear combination of eigenvectors as X, = ¢, V,
+ ¢,V,. Where C,, C, are consta.

THEOREM 2.4.1 Suppose A has a pair of real eigenvalues A, # A, and associated
eigenvectors V, and V,. Then the general solution of the linear system X=AX is given by
X = Ceit N, #C eV,

THEOREM 2.4.2 Suppose A has a pair repeated eigenvalues A, = A, = A and
associated with one linearly independent eigenvectorV,. Let V, be generalized eigen vector
of A [(A—AI)V, = V,]. Then the general solution of the linear system X=AX is given
by X(t) = ¢,eMV, + c(te"'V, + e™V,).

THEOREM 2.4.3 Suppose A has a pair complex conjugate eigenvalues o + i3 and
associated with eigenvectors V, + 1V, and V, - iV,. Then the general solution of the linear
system X=AX is given by X(t) = C,e*(V, cos Bt — V, sin Bt) +c,e*(V, sin Bt + V, cos
Bt).

0 1

Ex 2.4.1 Find the general solution of the linear system X= ('_2 _;)X.

Solution: The characteristic equation is A* + 3A + 2 = (A + 2)(A + 1) = 0, so the
system has eigenvalues —1 and —2. The eigenvector corresponding to the eigenvalue —1 is

given by solving the equation (1_;_ 1_2)(\\) = (3) = one independent equation x +y = 0.
Hence one eigenvector associated to the eigenvalue —1 1s (1. —1)". In similar fashion we
compute that an eigenvector associated to the eigenvalue -2 as (1,-2)". Note that these
two eigenvectors are linearly independent. Therefore, by the previous theorem, the general

solution of this system is X(t) =c,e" ('_1) + ¢,e™ (1_2)
Ex 2.4.2 Find the general solution of the linear system X=3x—4y, y=x—V.

-4
~1

=

Solution: The characteristic equation is H_}“ =0=>(A-1Y=0=A=11
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The matrix has repeated eigen values. Let V = (v,,V,)' be a eigen vector corresponding
to A = 1.

A-DV=0= (] 3)(:-_1:) = (§)= V,-2v,=0. So, V=(2,1) be the only

eigen vector corresponding to A = 1.

Let U be the generalized eigen vector corresponding to A — 1, so (A-DU = V.
which implies (]2 :;) (“’ )= (,2) =u, —2u, = 1. So, U= (1.0)" is another independent

[15]

eigen vector corresponding to A = 1. Hence required general solution 1s X(t) = ¢,¢'
(F)+ e {(F) t+(5)}-

Ex 2.4.3 Solve the homogeneous system X= AX, where (: 12)

Solution: The characteristic equation is A* — 44 + 13 = 0 = A =

Saalu—gs “176_52:1:2i31 A has complex eigen values. The eigen vectors V,
corresponding to 2 + 31 is obtained from
(A — AV =0,

3-2-3i 2 (vl)_ 0)
=N 5 1-2-3il\wy) \Of
= (1 =3V, +2v, =0 = 5v, + (<1 = 3i)v, =0

A non-trivial solution of the system 1s v, = 2 v, = =1 + 31, so V, (—llsi)‘

Similarly, the other eigen vector V, corresponding to 2 — 31 is ( lﬂ ﬂ,)_
—1—:51

The general solution is given by X(1) = ¢S, + ¢,S,. where

8y =¢™ {(2,) cos 3t—(3)sin Bt},

,=¢™ (El)sin 3t+ ('_«f)cos 3t}.
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2.5 Phase Portrait

A qualitative understanding of two-dimensional nonlinear systems can often be gained from
studying the phase plane of the system. This can provide information about multiple stable
and unstable fixed points that is not given by numerical integration. By flowing along the
vector field, a phase point traces out a solution x(t), corresponding to a trajectory winding
through the phase plane. Furthermore, the entire phase plane is filled with trajectories, since
each point can play the role of an initial condition. For nonlinear system, there's typically
no hope of finding the trajectories analytically.

To sketch the phase portrait, it 1s helpful to plot nullclines, defined as the curves where
either x= 0 or y= 0. The nullclines indicate where the flow is purely horizontal or vertical.

Real Distinct Eigenvalues

Consider X = AX and suppose that A has two real eigenvalues A, < \,.
Case 1: A, < 0 < A,

MO
Consider A= ( O' n J, then this can be solved immediately since the system decouples

into two unrelated first-order equations: x" = A,x , vy’ = A,yv. So A, and A, are the
eigenvalues of A. An eigenvector corresponding to A, is (1,0) and to A, is (0,1). Hence

we find the general solution X(t) = c¢,e*" (},) + ¢t ({1’)

dy Ay 2
Also, ax —1 = is the differential equation of the phase paths. This givesy = kx|
k is integrating constant. Y

Since A, <0, the straight-line solutions of the form
c,e"1'(1, 0)' lie on the x-axis and tend to (0.0) as t — oo
This axis is called the stable line. Since A, > 0, the A
solutions ¢,e’2(0,1)" lie on the y-axis and tend away
from (0,0) as t = oo ; this axis is the unstable line.

All other solutions (with ¢, ¢, # 0) tend to oo in the
direction of the unstable line, as t = oo, since X(t) \/
comes closer and closer to (0, ¢c,¢™") as t increases. In
backward time, these solutions tend to « in the direction
of the stable line.
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This kind of equilibrium point at the origin is called saddle. A saddle is always
unstable.

Case 2: A, <A, <0

. et (%,)Jr sz:}‘21 (?) Unlike the saddle case, now all
solutions tend to (0.0)ast — oo.

We compute the slope dy/dx of a solution with ¢, # 0. We write x(t) = ¢,e™", y(t) =

Aot
Aot d_y— Ajcle - KECE (Jy= g
c,e?" and compute G = e s

aeeht MC

Since A, — A, > 0, it follows that these slopes approach + e (provided c, # 0). Thus
these solutions tend to the origin tangentially to the y-axis. Since A, <X, <0, we call A,
the stronger eigenvalue and A, the weaker eigenvalue. In this case the equilibrium point is
called stable node or a sink. Figure 2.1 (a) 1s phase portrait of a sink.

Y
|

(a) (b)
Figure 2.1:
Case 3: 0 < A, < A

The general solution and phase portrait remain the same, except that all solutions now
tend away from(0, 0) along the same paths. Figure 2.1(b). This is the case of unstable
node.
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Complex Eigenvalues

Case I: Consider X' = AX where A = (_QB 2] and o, B # 0. The characteristic

equation is now A, — 20A + o + 7, so the eigenvalues are A = o + if3. The eigen vector
corresponding to o + 1 is (1,1)". The general solution is X(t) = ¢;6™X.(t) + €26 X aginan (t).

) [ cos Pt . [sin Pt % . ;
where X.,(t) = |_ g, Bt and X inar() = \cos Bt/ The €™ term converts solutions into
spirals that either spiral into the origin (when o < 0) or away from the origin (o > 0). In
these cases the equilibrium point is called a spiral sink or spiral source, respectively. See
Figure 2.2. The equilibrium point origin is called focus.

— [~
N
Spiral Sink Spiral Source

Figure 2.2:

Alternatively, let put x =rcos 0, y =r sinf in X' = AX. The system 1s transtormed
from (x,y) — (7,0).

Now,  =x'+Yy,
= T = XX+yy
= 1 = x(ox + fy) + y(-Px + ay)

= 0 = of+y)
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- 1 ¢ = or
= i = or

= 1t} = ke“ k, i1s constant.

Again, tan# = Y
X
; Xy—yX X(—px+ay)-y(ox+py)
= sec200 = 2} = P Y)‘ .
X X
2" 2,2
s —BET+
:>[l+y—2 6= —B( 3 y
X, X
= o = pr
= =
= 6t = —Bt + ks, k; is constant.

0
Case II: Now put o = 0 in the previous case and A = (—B Ié) ,and (B # 0. The

characteristic polynomial is A* + B? = 0. so the eigenvalues are now the imaginary
numbers i3

, i P
We solve, (_ —lﬁ)[
The general solution is X(t) = C X (1) + € X, ainan (1), Where X, (1) = (

B (sin Bt)
Xinmginun'(t) ~ lecos Bt :

= [0] 1Bx = By. The corresponding eigen vector is (1.1)".

cos Bt
- sin Pt

) and

Note that each of these solutions is a periodic function with period 27t/p. Indeed.
the phase portrait shows that all solutions lie on circles centered at the origin. These
circles are traversed in the clockwise direction if 3 > 0, counter-clockwise if § < 0.
See Figure 2.3(a). This type of system is called a center.
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(b)
(a)

Figure 2.3:

Repeated Eigenvalues

A D
0 A
form X(t) = ¢,e™V (V is the eigen vector corresponding to A). Each such solution lies
on a straight line through (0,0) and either tends to (0.0) (if A < 0. Figure 2.3(b)) or
away from (0, 0) (if A > 0).

, % 1 " : .
Consider the case when ( ) orA= (0 A)' In the first case solutions are of the

In the second case. both eigenvalues are equal to A. but now there is only one
linearly independent eigenvector given by (1,0)". The solution of the system may be

. 8 Mot
written ce™ (§)+c,e™ (}).

2.6 Trace-Determinant Plane

The characteristic equation is
A—TA+ A=0, (2.4)
where, T=a + d, A = ad — bc.

’_-"! 2
Then l’l — M and A'_'; = ﬂ

3 5 are two solutions of quadratic

equation (2.4).

We can show the type and stability of all the different fixed points on a single
diagram (Figure 2.4). The axes are the trace T and the determinant A of the matrix
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A 1= + A, A=A\, and D = 72— 4A. The parabola represented by t° — 4A =0
is the borderline between nodes and spirals. star nodes
and degenerate nodes are on the parabola.

[f A= 0, at least one of the eigen values is zero. The
origin 1s not the only isolated fixed point. There is either
a whole line of fixed points or a plane of fixed points.

The trace-determinant plane is a two-dimensional
representation of what 1s really a four-dimensional
space, since 2 > 2 matrices are determined by four
parameters, the entries of the matrix. Thus there are
infinitely many different matrices corresponding to each
point in the TD-plane.

Saddle

T

12 -4A=0
A Unstable Nodes

Unstable Spirals
A

Stable Spirals

Stable Nodes

Figure 2.4:

Nature Eigen values T— A + A A - AL D=r>-4A
Saddle A, are real distinct
and opposite sign — A<O0 D>0
Stable Node A, , are real distinct
with negative real parts <0 A>0 D=>0
Stable spiral A, » are complex conjugate
with negative real parts <0 A>0 D<0
Unstable node A, are real distinet
with positive real parts >0 A>0 D>0
Unstable spiral | A, , are complex conjugate
with positive real parts >0 A>0 D<0
Centre A, » are complex conjugate
and purely imaginary =0 A>0 D<0
Degenerate A, , are equal <0 A>0 D=0
stable node with negative part
Degenerate A, are equal >0 A>0 D=0

unstable node

with positive part
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Ex 2.6.1 Draw the phase portrait for the system of initial value problem x" =x +y,
y" = 4x — 2y. subject to the initial condition (x,,y,) = (2, =3).

Solution: In matrix notation

Y _ (1 1Y)[(x
(y’)_ (4 —3)(3’)°
The characteristic equation is the system
A—Al =0

1-h 1

= I4 a3

= A+ A—6=0,
=3 A =2, A, =-3.

The eigenvector corresponding to the eigenvalue 2 is given by solving the equation

(_41 ]4)(51)= (g) one independent equation v, — v, = 0. Hence one eigenvector
1%

associated to the eigenvalue 2 is (1,1). In similar fashion we compute that an
eigenvector associated to the eigenvalue -3 is (1, —4)".

y Next we write the general solution as a
linear combination of eigensolutions. The

n 2 3t 1
general solution is X(t) = ¢,e”' (i)+cze . (_4)

Finally, we compute ¢, and ¢, to satisfy the
x Initial condition (x,.y,) = (2. —-3). At t = 0,

becomes

(3)=ei)+e2(3)

\ =2 =¢q + G5,

_3 = Cl_' 4C:

Figure 2.5:
=¢; = ¢, = L

Substituting yields,
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x(t) = e+ e?,
y(t) = e — 4e™
The eigen values are A, = 2. A, =-3. Hence the first eigensolution grows exponentially,
and the second eigensolution decays. This means the origin is a saddle point. Its stable
manifold 1s the line spanned by the eigenvector v, = (1, —4). corresponding to the decaying
eigensolution. Similarly, the unstable manifold is the line spanned by v, =(1,1). As with all

saddle points, a typical trajectory approaches the unstable manifold as t — « . and the
stable manifold as t — —e . Figure 2.5 shows the phase portrait.

Ex 2.6.2 Sketch a typical phase portrait for the system whose coefficient matrix A =
(31)
-31)
Solution: The characteristic equation is the system is

IA—AT) = 0

=3 A =-1, A =2
The eigen vectors corresponding to —1 is (1,3/2)' and -2 is (1.1)".

Both eigen values are less than zero, then
y slow eigendirection )11y ojoengsolutions decay exponentially. The
Y=X fixed point is a stable node. Trajectories
typically approach the origin tangent to the
slow eigendirection, defined as the direction

\\ x spanned by the eigenvector with the smaller

Al. In backwards time ( t — —oo ), the
trajectories become parallel to the fast
eigendirection.

fast eigendirection
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2.7 Linearization near fixed points of two- dimensional systems

In this section we will discuss the linearization technique and approximate the phase
portrait near a fixed point by that of a corresponding linear system. Now consider a system

in R? as
X, = filx,. %),
%= 60X, %)
where f; and f, are given functions. Let (x*.,y*) be the fixed point, 1.e
f,x*, ¥*) =0, f(xy") = 0.
Let u=x —x*, v=y—y* denote the components of a small disturbance from the
fixed point. To see whether the disturbance grows or decays, we need to derive equations

foru and v.
Now,
I =%=1E* %Y 9

of| of,
—u—+\,—+O( ),uv)

0x ady
UWJF\}?_}/JFO{ uv)

Since u and v are very small, the quadratic or higher order terms are extremely small

Similarly we find

. 2
V=u—==+Vv-=
ox ady

7 i
“, v, uv)

Hence the disturbance (u, v) evolves according to
(2.5)

of, (lf,
Ix dy

. f)f ‘;,fl ‘ r
u u :
] = { Ox OV J [ vj +0(h]gh€[‘ oder terms).
(x*. )

v
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The matrix A =| §% 3} is the Jacobian matrix at the fixed point (x*, y*).
L ox T‘u (x%y")

Since the quadratic terms are extremely small and we neglect them, we obtain the

. of, of
. ' u _| ax oy u
linearized system v) | o of v
(x*.v¥%)

_Ox dy

(2.6)

Ex 2.7.1 Classify the equilibrium point at (0,0) for the system x=¢ **-1, y=—x(l-

¥ )
Solution: The linear approximation about the point (0.0) is
X=-x— 3y
V=%

The origin 1s the equilibrium point of the system.

=1 =3 T : .
A= (_1 0 ) soT=-1,A=-3<0,and D = 13 > 0. Hence the equilibrium point
1s a saddle point.

Ex 2.7.2 Find all the fixed points of the system X = —x + x’, y = —2y, and use
linearlization to classify them. Draw the phase portrait for the nonlinear system.

Solution: The fixed points will be obtained by solving X = 0 and y = 0. There
are three fixed points: (0,0), (1,0) and (—1,0). The Jacobian matrix at A general point

o,

of, o ,
] 5 oy |[—1+43x° 0
(xy) A=| 9 & |
’ { oY

Next we evaluate A at the fixed points. At

0
(0,0), A= (U _2), so (0, 0) is a stable node.

% 0
At (£1,0), AZ(O _2), so both (1,0) and (-
1,0) are saddle points.

Since x and y equations are uncoupled; the system is essentially two independent first-
order systems at right angles to each other. In the y-direction, all trajectories decay
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exponentially to y = 0. In the y-direction, trajectories are attracted to x = 0 and repelled
from x = £1.

Ex 2.7.3 Find and classify the equilibrium points of X" =x —vy, vy = | —xy. Finally
sketch the phase diagram of the system.

Solution: The equilibrium points are at (—1.—1) and (1.1). The matrix for lincarization,
to be evaluated at each equilibrium point in turn, 1s A = (_ly __l)
At (—=1,~1), by the transformation u = x + LLv =y + 1 original system becomes (see
equation 2.6)
[L'I (1 -1
v) U 14

The characteristic equation of A becomes A* — 24 + 2 =0 = g = 1 2 1
Then (—1.—1) 1s unstable spiral. To obtain the direction of rotation, 1t is sufficient to
use the linear equations (2.7) (or the original equations may be used): putting v = 0,
u > 0 we find v = u > 0, indicating that the rotation is counterclockwise as before.

u] (2.7)

v/

At (1,1), we find that the eigen values of A
are =.,/> which implies a saddle. The directions
of the 'straight-line' paths from the saddle.

The eigen vector for eigen value =./5 are

v 1
respectively, (1—\/5_) and (I +\5] Then all

trajectories decay exponentially along the line
y = (1+ /> )x and grow exponentially along
the line y = (1 — /2 )x toward the equilibrium
point (1,1).

Finally the phase diagram 1s put together,
where the phase paths in the neighbourhoods of the equilibrium points are now known. The
process can be assisted by sketching in the direction fields on the lines x =0, x = I, etc.,
also on the curve 1 - xy = 0 on which the phase paths have zero slopes. and the line y
= x on which the paths have infinite slopes.
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2.8 Summary

[n this unit we have discussed the planar systems and how to classify the equilibrium
points of planar system. Some general ideas along with examples are provided for solving
linear two dimensional automnomous system. Also we have coined the idea of phase
portrait and different cases for drawing a phase portrait are given. Trace determinant
method is very useful to classify the equilibrium points for two dimention systems. Basic
idea, method and examples for linearization are given.

2.9 Keywords

Planer system, Trace-determinant plane, Stable node, Unstable node, Saddle. Stable
spiral, Unstable spiral, Centre, Linearization.
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2.11 Exercise

. . a b
Find the general solution of the system X = (C d) where be > 0.

For the harmonic oscillator system X +bxX +kx =0 find all values of b and k for
which this system has real. distinct eigenvalues. Find the general solution of this
system in these cases. Find the solution of the system that satisfies the initial
condition (0,1).

Consider the system X =4x —yy=2x + V.

Write the system as X=AX. Show that the characteristic polynomial is A — SA
+ 6 = 0, and find the eigenvalues and eigenvectors of A.

Find the general solution of the system.
Classify the fixed point at the origin.
Solve the system subject to the initial condition (X..y,) = (3.4).

Find and classify the equilibrium points of X" =¢(x +y)’ —y. y" = 18(x+y)’ — x.
Verify that lines y = x, y = 2 — X, y =— 2 — X, are phase paths. Finally sketch
the phase diagram of the system.

Sketch phase diagrams for the following linear systems and classify the equilibrium
point:

a) x=x-by,y=x-y;

b) x=x+y y=x—-2y;

c) X=—4x + 2y, y=3x —2y;

d t=x-x,y=-y

€) X=x(2-x-Yy),y=x—-Y.

Show that the origin is a spiral point of the system X = — y —
Xyx> +v%, ¥ =x—y4/x* +y* but a centre for its linear approximation.

Use lincar stability analysis to classify the fixed points of the following
systems.
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4

a)x=1-e%,
b) x = x(I — x).
¢) X = Siny, ¥ = Cosx.

Using linear stability analysis, classify the fixed points of the Gompertz model of

tumor growth N=—aN In(6N).

Find the nature and stability of the fixed points of X=—ax +y, y=—-x—ay for
different values of the parameter a.
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3.0 Objective

This unit 1s to give 1dea on stability of the system. different Liapunov methods to analyze
the stability. Stability of a dynamical system is a fundamental requirement for its practical
value, particularly in most real-world applications. We will give brief description on
periodic solutions and limit cycle. Gradient system and Hamiltonian system are also very

39
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useful in real life. One of the basic nonlinear system is pendulum. Motion of pendulum
1s discussed.

3.1 Introduction

The technical term "stability" first appeared in the context of mechanics in 1749 in the work
of Euler. The question of stability of floating bodies has been a strong motivation for the
theoretical research on stability in the seventeenth and eighteenth century. Although there
is no outright definition of stability, ideas on stability have continuously developed during the
course of history. Various stability concepts exist in modern literature, but we shall confined
ourself to Liapunov stability mainly.

It's useful to introduce some language that allows us to discuss the stability of different
types of fixed points. This language will be especially useful when we analyze fixed points
of nonlinear systems.

The stability of an equilibrium point determines whether or not solutions nearby the
equilibrium point remain nearby, get closer, or get further away.

Consider a dynamical system represented by ODE as
X=F(X,t), XeR,n21. (3.1)

Let X* is an isolated equilibrium point of the system. We assume that the function X
= ®(t) is a solution of the equation (3.1), which satisfies the initial condition [X], = @(t,),
t, > 0. We assume furthermore, that the function X = X(t) is a solution of the same
equation, which satisfies another initial condition [X],, = X(t,). [t is assumed that the
solutions ®(t) and X(t) are defined for all t > t,,.

3.2 Liapunov Stability

An equilibrium point 1s stable if initial conditions that start near an equilibrium point stay near
that equilibrium.point. Mathematically, we say that the solution X = ®(t) of the system (3.1)
is stable if for all € > 0, there exists an 8 = d(€ ) > 0 such that

[X(ty) — D) < & = [X(O) - D) < € yt>1,

Note that this definition does not imply that x(t) gets closer to ¢(t) as time increases,
but rather just that it stays nearby. Furthermore, the value of & may depend on €, so that
if we wish to stay very close to the equilibrium point, we may have to start very, very close.
This type of stability is sometimes called stability "in the sense of Liapunov”. In other word,
the equuilibrium point 1s called Liapunov stable.
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xs

The trivial solution x = 0 of the system i—}: = 0 1s Liapunov stable.

3.3 Asymptotic Stability

The solution X = @(t) of the system (3.1) is said to be asymptotically stable if

(1) the solution X = ®(t) 1s Liapunov stable and

(i1) there exist 6 > 0 such that for any solution X = X(t) of (3.1), which satisfies the
condition || X(t,) — ®(t,)|| < d. we have lleW | X(t) = ®(t) ||= 0.

The trivial solution x =0 of the equation %’f— =0 1s Liapunov stable but not asymptotically

stable. The trivial solution x = 0 of the equation c:j—: =_a°x (a constant), is asymptotically

stable.

A

Note: The stability ot a nontrivial solution of a difterential equation does not imply that
the solution is bounded. Also the boundedness of solution of a differential equation does

not imply that the solutions are stable. The concepts of boundedness and stability of
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solutions are mutually independent. All solutions of i}t‘ = sin 2x are bounded but x(t) =0
solution of this differential equation is unstable. The solution x(t) =t is a stable solution of

the differential equation ili—): = 1 but it is not bounded.

3.4 Liapunov Function

Even for systems that have nothing to do with mechanics, it is occasionally possible to
construct an energy-like function that decreases along trajectories. Such a function is called
a Liapunov function.

Let V(x) be a continuously differentiable function. Let V= %—Y X. Then V is called

Liapunov function if V 1s positive definite, 1. V(x) > 0 for all x # x*, and V(x*) = 0.

THEOREM 3.4.1 Let V be a real valued function on some open neighbourhood G
of equilibrium point and V(x*) = 0. Let V satisties

I. V(x) > 0 and V(x) v X # x*, then x* is asymptotically stable: for all initial
conditions, X(t) — x* ast — eo,

2. V(x)>0and V <0 V x # x* then x* is stable but not asymptotically.

Liapunov functions are not unique and hence we can use many different methods to
find one. Indeed, one of the main difficulties i using Liapunov functions 1s finding them The
existence of Liapunov function in a neighbourhood of an equilibrium point but non-existence
in the whole space implies the local stability of the equilibrium point.

Note: Liapunov function in certain sense is a generalized distance from the
origin. Moreover V(0) = 0 is required. Otherwise choosing V(x) = 1/(1 + |x]) we
can prove that x'(t) = x 1s locally stable. But actually the system x’(t) = x is unstable
at 0.

Ex 3.4.1 By constructing a Liapunov function, show that the system X = —x + 4y, ¥
=X — v has no closed orbits.

Solution: Now, (0.0) is a equilibrium point for the system. Consider V(x, y) = x*+ay’,
where a is a parameter to be chosen later: Then V= 2xx + 2ayy — 2x(-x + 4y) + 2ay(-
x —y') =-2x> + (8 — 2a)xy — 2ay* If we choose a = 4, the xy term disappears and V
= _2x* — 8y*. By inspection, V>0 and V <0 V (x, y) # (0, 0).

4 e I ™ i . . .
Hence V = x + 4y~ is a Liapunov function and origin is an asymptotically stable
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equilibrium point 1.e all trajectories approach the origin as t — eo, so there are no closed
orbits.

Ex 3.4.2 Using Liapunov function show that the origin is asymptotically stable equilibrium
point of the system x=-2y +yz—x’, y=Xx-xz—-y’, 2—xy — Z.

Solution: Let, V(x. y. X) = x* + 2y* + z*as Liapunov function for the given system.
Now, V=2xx + Ayy + 222 =2x(-2y + yz—X') + dy(X — Xz — y') + 2z(xy — ) = (2%’
+ 4y* + 2z*). Thus, V(0.0.0) =0 and V > 0, V< 0 ¥(x.y.z) # (0,0.0).

Hence the equilibrium point origin is asymptotically stable.

3.5 Local and Global Stability

Global stability analysis of an equilibrium point can be done by Liapunov function (without
solving differential equation). Origin 1s a globally asymptotically stable equilibrium point if
there exist a Liapunov function for the system in R". However, the local stability are
analysed based on linearization of the nonlinear system mostly.

3.6 Periodic Solution

A solution of (3.1) through the point x,, 1s said to be periodic of period T if there exists
T > 0 such that x(t.x,) = x(t + T, x,,) for all t € R. Any periodic orbit in the phase space
is a smooth closed curve. Let us consider a nonlinear autonomous system,

x=F(x¥)
y = G(x.y). (3.2)

The function F(x.y) and G(x.y) are continuous and have continuous first order partial
dernivatives throughout the phase plane. We are interested to find the global properties of
paths. Global properties of paths are those which describe their behaviour over large region
of the phase plane. The main focus of the global theory is that of finding whether the system
(3.2) has closed paths. This is the close connection with the periodic solution of the system
(3.2).

3.7 Limit Cycle

A limit cycle is an 1solated closed trajectory in the phase space. Isolated means that
neighboring trajectories are not closed; they are spiral either toward or away from the limit cycle.

DEFINITION 1 A cycle of a continuous-time dynamical system, in a neighborhood
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of which there are no other cycles, is called a limit cycle. It is a cycle in a limiting sense.

[f all neighboring trajectories approach the limit cycle, we say the limit cycle is stable
or attracting. Otherwise, the limit cycle is unstable, or in exceptional cases, half-stable.
Limit cycles are inherently nonlinear phenomena; they can't occur in linear systems and its
phase space should be at least two dimensional. Of course, a linear system X= Ax can have
closed orbits, but they won't be isolated; if x(t) is a periodic solution, then so is cx(t) for
any constant ¢ # 0. Hence x(t) is surrounded by a one-parameter family of closed orbits.

3.8 Attractors

An nvariant set in the phase space are those sets which remain invariant under time
evolution. A closed invariant set A  E 1s called an attracting set of X = f(x), where f €
C'(E) where E is an open subset of R", if there is some neighborhood U of A such that
Vxe U ¢(x)e Uforallt=0and ¢(x) — A ast — o=. An attractor of the above
system is an attracting set which contains a dense orbit. Attractors can be of different types,
viz., point attractor, periodic attractor, strange attractor, etc.

Most common example of an attractor is a free damped pendulum whose phase space
trajectory is a spiral converging to the origin. Fixed point and limit cycle are examples of
attractor and they are predictable. There is another kind of attractor which is called strange
attractor. Strange attractors exhibit unpredictable and unusual motions and hence also
called chaotic attractor. The example of strange attractor 1s the famous Lorenz attractor.

Beside above three attractors there is another type of attractors called 'Torus'.

3.9 Bendixson's Criterion

If F_ and G, of equation (3.2) are continuous in a region R which is simply-connected (i.e.,
without holes), and F, + G, # 0 at any point of R, then system (3.2) has no closed
trajectories inside R.

3.10 Poincare-Bendixson Theorem

The Poincare-Bendixson theorem gives us a complete determination of the asymptotic
behaviour of a large class of flows on the plane, cylinder, and two-sphere.

Let R is a closed, bounded subset of the phase plane; X = f{x) is a continuously
differentiable vector field on an open set containing R; R does not contain any equilibrium
points; and there exists a trajectory C that is confined in R, which means the starts in R
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it stays in R for all future time. Then either C is a closed orbit, or if a trajectory spirals
towards a closed orbit as t — . [n both the cases, R contains a closed orbit.

If we start on one of the boundary curves, the solution will enter 1n, since the velocity
vector points into the interior of R. As time goes on,
the solution can never leave R, since as it approaches R
a boundary curve, trying to escape from R, the
velocity vectors are always pointing inwards, forcing
it to stay inside R. Since the solution can never leave
R the only thing it can do as t — e is either approach
a critical point P but there are none, by hypothesis-
or spiral in towards a closed trajectory. Thus there
i1s a closed trajectory inside R.

Ex 3.10.1 Show that the system given by i = (1
— %)+ prcosO, 8= 1. has a stable limit cycle for i =0 at r = 1. Also show that a closed
orbit still exists for u > 0, as long as W 1s sufficiently small.

Solution: For u = 0, the radial and angular dynamics are uncoupled and so can be
analyzed separately. Treating i = r(l — r°) as a vector field on the line, we see that r* =
0 is an unstable fixed point and r* = 1 is stable fixed point.

Hence, back 1n the phase plane, all trajectories (except r* = 0)) approach the unit
circle r* = 1 monotonically.

Since the motion 1n the B-direction 1s simply
rotation at constant angular velocity, we see that
all trajectories spiral asymptotically toward a limit

cycle at r = 1. Since 6 > 0. Therefore flow
direction will be anticlockwise. 21D \
%

If we plot the solutions as functions of t, we
find that the solution settles down to a sinusoidal
oscillation of constant amplitude. corresponding
to the limit cycle solution x(t) = cos (t + 6,).

For > 0., we seek two concentric circles with radiui r,,, and r,,,. such that i <0 on
<r<r,. willbe

min — max

our desired trapping region. Note that there are no fixed points in the annulus since 8> 0;
hence if 1, and r,,. can be found, the Poincare Bendixson theorem will imply the existence

the outer circle and i > 0 on the inner circle. Then the annulus 0 <r
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of a closed orbit.

To find the least value of r. we require i = r(l - r*) + pr cos 6 > 0 for all 8. Since cos
0 >—1, a sufficient condition for r
as long as < 1.

is 1 —r* = >0. Hence, any r,,;, < /1—p will work

nin

We choose r,,,, =0.999 /1 . By a similar argument, the flow is inward on the outer
circle if r,,,, = 1.001 \/1+p . Therefore a closed orbit exists for all p < 1, and it lies
somewhere in the annulus 0.999v1-p <1< 1.001 /1.

Ex 3.10.2 Consider the glycolytic oscillator, x=—x + ay + x°y, y=b — ay — x?y. Prove
that a closed orbit exists if a(> 0) and b(> 0) satisty an appropriate condition, to be
determined.

Solution: The fixed points are obtained from, x= 0 and y= 0 Simple calculation

9

b . . -1+2 , Ja .
?_)‘] - The Jacobian matrix is A =( i ek 4 J . The Jacobian
X", 2Ry =A==

gives, (x*,y¥) = [b,

b* +(2a—1)b>+a+a’
a+b’

has determinant A = a + b? and trace t=-—

Hence, the fixed point is unstable for t > 0, and stable for T < O. The dividing line

1 =0 occurs when b? = ';(1—23 tx/l—ga)_

For parameters in the region
corresponding to T > 0, we are
guaranteed that the system has a closed
orbit-numerical integration shows that it
i1s actually a stable limit cycle. Limit cycle
oscillation of the system fora =0.08, b
= 0.6 is shown in Figure 3. 1.

Figure 3.1: Limit cycle solution of glycolytic
oscillator with initial condition (a) (1,1) with
red line (b) (0.01,0.2) with blue line are
shown.
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3.11 Gradient Systems

Suppose the system can be written in the form x=-AV, for some continuously differentiable,
single-valued scalar function V(x). Such a system 1s called a gradient system with potential
function V.

Note: For a gradient system, the linearized system at any equilibrium point has only
real eigenvalues.

THEOREM 3.11.1 Closed orbits are impossible in gradient systems.

Selution: Suppose there was a closed orbit. We obtain a contradiction by considering
the change in V after one circuit. On the one hand, AV = 0, since V is single-valued.

But on the other hand,

AV =J'J?j—‘t’dt

= Jo (VVX)dt
=—fT1x|? dt<0 (3.3)

(unless x = 0, in which case the trajectory .is a fixed point, not a closed orbit). This is a
contradiction which shows that closed orbits can't exist in gradient systems.

Ex 3.11.1 Show that the nonlinearly damped oscillator x*+(x")*+x = 0 has no periodic
solutions.

Solution: Suppose that there were a periodic solution x(t) of period T. Consider the
energy function E(x.X) =+(r* + x?). After one cycle, x and Xreturn to their starting values,
and therefore AE = 0 around any closed orbit.

On the other hand, AE = j(j]{_ Edt. If we can show this integral is nonzero, we've
reached a contradiction. Note that E= x (x + X) = x(—X') = —X* < 0. Therefore AE =—
j'uTiﬁdL <0, with equality only if x = 0. But x = 0 would mean the trajectory is a fixed point,

contrary to the original assumption that it's a closed orbit. Thus AE 1s strictly negative,
which contradicts AE = 0. Hence there are no periodic solutions.

Ex 3.11.2 Consider a particle of mass m = 1 moving in a double-well potential V(x)
= —5x* +7 x". Find and classify all the equilibrium points for the system. Then plot the
phase portrait and interpret the results physically.
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Solution: The force 1s — i}: = X — X, so the equation of motion is X = x — x*. This

can be rewritten as the vector field
X=y
e 3
y=X-X

where y represents the particle's velocity. Equilibrium points occur where (Xy) = (0,0).
Hence the equilibria are (x*,y*) = (0,0) and (£1,0). To classity these fixed points we

1
compute the Jacobian: A = (l gt 0]. At (0, 0), we have A = —1, so the origin is a

saddle point. But when (x*, y*) = (£1, 0), we find T =0, A =2 ; hence these equilibria
are predicted to be centers. Therefore equilibrium points are saddles and centers only.

The trajectories are closed curves defined by the contours of constant energy

L.z L 3.1 4
E= S Y —5X 'y 1% -
E=yy-xx+ x’% - x(x - X’) - X(x — x*) =0 = E = constant. Therefore, the system

IS conservation.

To decide which way the arrows point along the trajectories, we simply compute the
vector (x, y) at a few convenient locations. For example, x > 0 and y = 0 on the positive
y y-axis, so the motion is to the right. The
orientation of neighboring trajectories
follows by continuity.

/f;\\\ As expected, the system has a saddle
\\\:‘yj X point at (0, 0) and centers at (1,0) and (-

1,0). Each of the neutrally stable centers
is surrounded by a family x of small closed
orbits. There are also large closed orbits
that encircle all three fixed points. Thus solutions of the system are typically periodic,
except for the equilibrium solutions and two very special trajectories: these are the trajectories

that appear to start and end at the origin. More precisely, these trajectories approach the
origin as t — *eo. They are common 1n conservative systems, but are rare otherwise.

Finally, let's connect the phase portrait to the motion of an undamped particle in a
double-well potential.
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The neutrally stable equilibria correspond to the particle at rest
at the bottom of one of the wells, and the small closed orbits
represent small oscillations about these equilibria. The large orbits
represent more energetic oscillations that repeatedly take the particle \/
back and forth over the hump.

3.12 Hamiltonian System

Hamiltonian systems are fundamental to classical mechanics; they provide an equivalent
but more geometric version of Newton's laws. They are also central to celestial mechanics
and plasma physics, where dissipation can sometimes be neglected on the time scales of
interest. The theory of Hamiltonian systems is deep and beautiful, but perhaps too specialized
and subtle for a first course on nonlinear dynamics. Hamiltonian system 1s basic concept
for quantum mechanics also.

Let H(p, q) be a smooth, real-valued function of two variables. The varable q 1s the
"generalized coordinate" and p is the "conjugate momentum". Then a system of the form

. _OH . oH . S . ‘ o
4= g P "5y 1S called a Hamiltonian system and the function H is called the Hamiltonian.

3.13 Motion of Pendulum

Consider a pendulum consisting of a light rod of length L to which is attached a ball
of mass m. The other end of the rod is attached to a wall at a point so that the ball of the
pendulum moves on a circle centered at this point. The position of the mass at time t is
completely described by the angle 8(t) counterclockwise direction. Thus the position of the
mass at time t 1s given by (sin0(t), — cos6(t)).

The speed of the mass is the length of the velocity vector, which is L (jl? , and the
2

e v o 8D : ;
acceleration is L g We assume that the only two forces acting on the pendulum are the

o
o

force of gravity and a force due to friction. The gravitational force I l

1s a constant force equal to mg acting in the downward direction; EL\
the component of this force tangent to the circle of motion is given m
|

—mg sinB. We take the force due to friction to be proportional to
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velocity and so this force 1s given by —bL 3? for some constant b > 0. When there 1s no
force due to friction (b= 0), we have an ideal pendulum.

Newton's law then gives the second-order differential equation for the pendulum

2
mL a8 -bL ?j? —mg sin 0.

3

dt™
For simplicity, we assume that units have been chosen so that m = 1. Rewriting this
equation with no friction as a system,

2
j ? — --uJ2 sin 0 5 (3 -4)
2

where o = JE > 0. The corresponding system in the phase plane is

0=v

(99
n

V=—sind, (
v is the (dimensionless) angular velocity.

The fixed points are (0*,v*) = (km, 0), where k 1s any integer. There's no physical
difference between angles that differ by 27, so we'll concentrate on the two fixed points

0 1

(0,0) and (m, 0). At (0,0), the Jacobian is A= (_wz OJ . The eigenvalues here are pure

imaginary. So the origin is a linear center.

Multiplying (3.5) by @ and integrating yields 6(8 + @’ sinf) = 0 = ,1} 0’ w* cosh =

constant.

The energy function E(6.v) = _l} v’ — @’cosO has a local minimum at (0.0), since
_—
2
system. This equation expresses conservation of energy during any particular motion. This
equation has the form E = kinetic energy + potential energy at a point, and a particular
value of E corresponds to a particular free motion. Hence we may simply plot the level
curves of E to see where the solution curves reside. The phase portrait are shown in Figure
3.2,

V2+W292)_W3 for small (6, v). E = 0. E is constant along all solutions of the
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T
Now consider the fixed point at (7, 0). The Jacobian 1s A = sz 0) The charac
teristic equation of A is A* — w* = 0. Therefore A, =—w, A, = w; the fixed point is a saddle.
The corresponding eigenvectors are v, = (—1,w) and v, = (1, w).

Now consider the family of closed curves immediately surrounding the origin in Figure

3.2 These indicate periodic motions, in which the pendulum swings to and fro about the

vertical. The amplitude of the swing is the maximum value of © encountered on the curve.

For small enough amplitudes, the curves represent the usual 'small amplitude’ solutions of

the pendulum equation in which equation (3.5) is simplified by writing sin@ = 0. Then (3.5)

is approximated by & + w?0 = 0, having solutions 0(t) = A cos wt + B sin wt, with
2

. v
corresponding phase paths 6° + —5 = constant.
w*

|
<<

ol
el

)
i

Figure 3.2 :
Ex 3.13.1 Consider the damped linear pendulum given by the equation X + X+ x =
0. Analyze the system.
Solution: The equivalent equation is written as
=Y,
V=N

Origin 1s equilibrium point of the above system. The Jacobian matrix 1s given by

A=)
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The characteristic equation is given by A + A+ 1=0= A= —% + i é . The eigen

values are complex with negative real parts, then
origin is a stable node, 1.e all orbits are spirals
converging to the origin. Hence, the origin is an
asymptotically stable equilibrium pointed (see the
figure below).

Let construct an energy like function as E(x)y) =
0 1f (x,y) = 0 and E(x,y) > 0 for (x,y) # 0.

dE _ 9Edx , JEdy
dt  oxdt dvdt

= XX+ Yy
=xy + y(=x-y) = -y'(< 0).

In this system energy function decreases with time and tends to zero with enhancement
of time, 1.e the system is dissipative.

3.14 Index Theory

The index of a closed curve C 1s an integer that measures the winding of the vector
field on C. The index also provides information about any fixed points that might happen
to lie inside a closed curve, as we'll see. This idea may remind you of a concept in
electrostatics. In that subject, one often introduces a hypothetical closed surface (a "Gaussian
surface") to probe a configuration of electric charges.

Properties of Index
Now we list some of the most important properties of the index.

1. Suppose that C can be continuously deformed into C” without passing through a
fixed point. Then I = |..

2. If C doesn't enclose any fixed points, then I. = 0.

3. If we reverse all the arrows in the vector field by changing t — —t, the index is
unchanged.

4. Suppose that the closed curve C is actually a trajectory for the system, i.e., C is
a closed orbit. Then I, = +1.
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Note: Notice that the vector field is everywhere tangent to C, because C is a trajectory.
Hence, as x winds around C once, the tangent vector also rotates once in the same sense.

Index of a point

Suppose x* is an isolated fixed point. Then the index I of x* 1s defined as I, where
C is any closed curve that encloses x* and no other fixed points. By property (1) above,
[ 15 independent of C and 1s therefore a property of x* alone. Therefore, we may drop
the subscript C and use the notation I for the index of a point.

Ex 3.14.1 Find the index of a stable node, an unstable node, and a saddle point.

Solution: As we traverse C once counter clockwise, the vectors rotate through one
full turn in the same sense. Hence 1. = +1. The index is also +1 for an unstable node,
because the only difference 1s that all the arrows are reversed; by property (3), this doesn't
change the index! (This observation shows that the index is not related to stability). Finally,
Ic =1 for a saddle point.

THEOREM 3.14.1 If a closed curve C surrounds n isolated fixed points x’f x; Ko

then 1. = I, + I, +...1, where 1., is the index of \T\ fork=1, ... n

3.15 Keywords

Liapunov stability, Asymptotically stability, Liapunov function, Limit cycle, Poincare Bedixson
theorem, Gradient system, Hamiltonian system, Motion of pendulum, Index theory.

3.16 Summary

[n this unit we have discussed different types of stabilities e.g Liapunov stability, asymptotic
stability, local and global stabilities of equilibrium points. The concepts and examples of
periodic solution and limit cycles. Poincare-Bendixson theorem is a milestone regarding periodic
solution. Gradient and Hamiltonian systems and their application in finding periodic orbits has
been discussed and corresponding examples are provide. A double well potential system is
a kind of gradient system. Motion of pendulum and index theory has also discussed.
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3.18 Exercise

5]

Define Liapunove function and Liapunov stability.

Show that the system X = y—x’, y=—x—y’ has no closed orbits, by constructing
a Liapunov function V = ax® + by” with suitable a, b.

Show that X = —x + 2y’ — 2y*, y = —x — y + xy has no periodic solutions.

Find the equilibrium points and the general equation for the phase paths of X +
cosx = 0. Obtain the equation of the phase path joining two adjacent saddles.
Sketch the phase diagram.

Use the Poincare Bendixson theorem to show that the vector field X = px —y —
X(x*+ ), y=x+ 1y — v(x* + V), (x,y) € R?, has a closed orbit for i > 0. (Hint:
transform to polar coordinates.)

Find the approximate relation between amplitude and frequency for the periodic
¥ —exx+x=0.

Find a conserved quantity for the system X = a - €%, and sketch the phase portrait
fora<0,a=0,and a > 0.

(Epidemic model revisited) Consider the model X" = —kxy, y* = kxy — ly where
k1> 0.
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10.

I1.

a) Find and classify all the fixed points.
b) Sketch the nullclines and the vector field.

¢) Find a conserved quantity for the system. (Hint: Form a differential
equation for dy/dx. Separate the variables and integrate both sides. )

d) Plot the phase portrait. What happens as t — oo.
(Harmonic oscillator) For a simple harmonic oscillator of mass m, spring constant

P~ | kx’ ;
om + 5 . Write out

k, displacement x, and momentum p, the Hamiltonian 1s H =

Hamilton's equations explicitly. Show that one equation gives the usual definition
of momentum and the other is equivalent to F = ma. Verify that H is the total
energy.

Find and classify the fixed points of 6 + b6+ sin® = 0 for all b > 0, and plot the
phase portraits for the qualitatively different cases.

Show that the system X =y ++{1 —(XZ + Yz)} ;
X“4+y

y=—X+ — {l - (x2 + y2 )} has a stable limit cycle.
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4.0 Objective

In this unit we waill first discuss about hyperbolicity, manifolds and bifurcation. Later we will
provide two important continuous dynamical system viz., Lorenz system and Duffing oscillator

to discuss there concepts.

4.1 Introduction

A characteristic of nonlinear oscillating systems, a subject of considerable recent interest,
is their varieties of responses of which they are capable as change in initial conditions or
change of parameter phenomenon. Bifurcation 1s a phenomenon where the sudden quantitative

56
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change in behaviour occurs as a parameter passes through a critical value, called a bifurcation
point. A system may contain more than one parameter, each with its own bifurcation points,
so that it can display extremely complex behaviour. A manifold is a subspace of a phase
or solution space on which a characteristic property such as stability can be associated.
First we will discuss the hyperbolicity, stable, unstable and centre manifolds.

4.2 Hyperbolicity

A fixed point or equilibrium point of an nth-order system 1s hyperbolic if all the eigenvalues
of the linearization lie off the imaginary axis, i.e., Re(A,) # 0 for i = 1 ...n. Hyperbolic fixed
points are sturdy; their stability type 1s unaffected by small nonlinear terms. On the other
hand if an equilibrium point is not hyperbolic then it is called non-hyperbolic.

THEOREM 4.2.1 (Hartman-Grobman theorem): The local phase portrait near a
hyperbolic fixed, point is "topologically equivalent" to the phase portrait of the linearization;
in particular, the stability type of the fixed point is faithfully captured by the linearization.
Here topologically equivalent means that there 1s a homeomorphism (a continuous deformation
with a continuous mverse) that maps one local phase portrait onto the other, such that
trajectories map onto trajectories and the sense of time (the direction of the arrows) is
preserved.

In other words, a phase portrait is structurally stable at hyperbolic equlibrium point i.e.
topology of the phase portrait cannot be changed by an arbitrary small perturbation to the
vector field. However, at non-hyperbolic equilibrium point phase portrait is structurally
unstable and qualitatively different phase portrait arrive for an arbitrarily small perturbation
to the vector field.

4.3 Higher-Order Systems: Manifolds

Consider a n-th order autonomous nonlinear systems X= F(X). X,F € R", which has
equilibrium point at X = X*. After linearization about equilibrium point the system becomes

X =AX, (4.1)

JE (X)
where A = J(X*) = [J(X™)] = | 9% L= Lt
1 A=X"
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The stability and classification of equilibrium points of linear approximations will depend
on the eigenvalues of A. It all the eigenvalues of A have negative real part then the linear
approximation 1s asymptotically stable and so may be is the nonlinear system. If at least one
eigenvalue has positive real part then the equilibrium point will be unstable.

Technically a manifold is a subspace of dimension m < n in R" usually satisfying
continuity and differentiability. Thus the sphere surface x* + y* + z* =1 is a manifold of
dimension 2 in R?, the solid sphere x* + y* + z* < 1 is a manifold of dimension 3 in R*;
and the parabola y = x* is a manifold of dimension 1 in R*.

4.3.1 Stable, Unstable and Centre Manifold/Subspaces

The subspaces spanned by the eigen vectors of the matrix A which is associated with
the linear system (4.1) determined the stable, unstable and centre manifold or subspace.
Let the matrix A has k negative eigen values and n - k positive eigen values and these values
are distinct. The set of eigen vectors corresponding to negative eigen values form a k
dimensional stable subspace and denoted by W*, and eigen vectors corresponding to
positive eigen values form a n — k dimensional unstable subspace and denoted by W*. For
a nonlinear system the stable manifold will occupy a subset of R" including a neighbourhood
of the origin. If the matrix A has purely imaginary eigen values or zero eigen values then
there 1s also a centre subspace denoted by W°*.

Ex 4.3.1 Find the manifolds for the linear system
x=-x+ 3y,

y=—=X+y-z,

2=-y—12
-1 3 0O
Solution: The eigen values of _Ol ]l ~1] are given by
~1
~l=A 3 0
-1 1-2 -1 |=0=A+DA+1)=0=A=-1, 4.
0 —]. ~l=k

Let A, =i, A, = —i, A, = —1: the corresponding eigenvectors are
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-3 -3 -1
1 1 |

Since A, =—1 is the only real eigenvalue and it is negative, it follows that there is no
unstable manifold, and that, parametrically, the stable manifold is the straight line x =—u,
y=0,z=u(u € R). The centre manifold W* (which must always have even dimension)
is the plane x + 3z = 0. In algebraic terminology, we say that E® is spanned by V., and
that E¢ is spanned by V, and V,, written as E* = {V,}, E'= {0}, E°* = {V,, V,}.

For a nonlinear system having an equilibrium point with linear manifolds E*, E*, and E°,
the actual manifolds W* W", and W* are locally tangential to E*, E', and E*. Whilst
solutions on W* and W" behave asymptotically as solutions on E* and E* as t — e
respectively, the same 1s not true of W¢. Solutions on W* can be stable, unstable, or
oscillatory.

4.4 Bifurcations

The term bifurcation was introduced by Poincaré and it has been used to describe significant
qualitative changes that occur in the trajectories generally of a nonlinear dynamical system,
as the parameters of the system are varied The parameter values at which the bifurcation
occur are called bifurcation points. The methods, techniques and results of bifurcation
theory are fundamental to an understanding of nonlinear dynamical systems, and the theories
can be applied to any area of nonlinear physics. The bifurcation theory in dynamical system
allows one understand many real-world phenomena. Bifurcations occur in both continuous
systems and discrete systems.

We begin with most fundamental bifurcations of one dimensional continuous dynamical
system.

4.4.1 Saddle-Node Bifurcation

The saddle-node bifurcation is the basic mechanism in which the fixed points are
created or destroyed as the parameter varies. The prototypical example of saddle-node
bifurcation 1s given by the first order system with parameter r.

x=f{x)=r+x’, reR

The fixed point of the above one-dimensional system are x;,=+v-r. When
r < 0, there are two fixed points. To determine linear stability. we compute f'(x*) = 2x*,
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Thus x* = ++/—r 1is unstable, since f'(x*) > 0. Similarly, x* —+/—r 1s stable. When r =
0, the fixed points merge at x* = 0.

\ L/ 7\]/;1 N

" .

r<0 r=0 r>0

And when r > 0, there are no fixed points. The bifurcation or the qualitative change
in the dynamics is occurred at r = 0, since the vector field for r <0 and r > 0 are
qualitatively different. The stable and unstable fixed Unstable
points merge at r = 0 and j"ig"ppear whenr>0. Tt
The following Figure 4.1 the parameter r vs x* is ’
called bifurcation diagram of the system, and r=0
1s the bifurcation point.

Ex 4.4.1 Show that the first-order system
£=r- x e undergoes a saddle-node bifurcation Stable
as r 1s varied. and find the value of r at the
bifurcation point.

Figure 4.1: Bifurcation diagram

Solution: The fixed points satisfy fix) =r—x—e¢*=0. We can't find the fixed points
explicitly as a function of r. We plot r — x and e ™ on the same picture. Where the line r
— x intersects the curve ¢ ™, we have r —x = ¢ * and so f(x) = 0. Thus, intersections of
the line and the curve correspond to fixed points for the system. This picture also allows
us to read off the direction of flow on the x-axis: the flow is to the right where the line lies
above the curve, since r— x > ¢ * and therefore x > 0 . Hence, the fixed point on the right
1s stable, and the one on the left is unstable.

We start decreasing the parameter r. The line r — x slides down and the fixed points
approach each other. At some critical value r = r_, the line becomes tangent to the curve
and the fixed points coalesce in a saddle-node bifurcation (Figure 4.2b). For r below this
critical value, the line lies below the curve and there are no fixed points (Figure 4 2¢).
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r-x
ek
———— e g \ \\
— P = — i
(a)
®) ©

Figure 4.2:

To find the bifurcation point r,., we impose the condition that the graphs of r — x and

e " intersect tangentially. Thus we demand equality of the functions and their derivatives, e

*=r—xand %e_‘ = % (r — x) and the second equation implies e ™*=—-1,s0 x=

0. Then the first equation yields r = 1. Hence Saddle-hode the bifurcation pomntisr, = 1,

and the bifurcation occurs at x = 0.

4.4.2 Transcritical Bifurcation

There are certain scientific situations where a fixed point must exist for all values of a
parameter and can never be destroved. But such fixed point can changes its stability nature
as the parameter 1s varied. The normal form for a transcritical bifurcation is

x=flx)=rx-x, rekR
The fixed points are x* =0, x* =r and f'(x*) = r— 2x*. Note that there 1s a fixed

point at x* = 0 for all values of r.

For r <0, there is an unstable fixed point at x* = r and a stable fixed point at x* =
0. As r increases, the unstable fixed point approaches the origin, and coalesces with it when
r = 0. Finally, when r > 0, the origin has become unstable, and x* = r becomes stable.
The bifurcation diagram is shown in Figure 4 4.

Ex 4.4.2 Analyze the dynamics of X = rInx + x — | near x = 1, and show that the
system undergoes a transcritical bifurcation at a certain value of r.
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(a)r<0

.t X 47
(b)r=20 (¢)
Figure 4 3:
X stable
stable - ot e L unstable
"' r
anstable

Figure 4.4:

0

Solution: First note that x = 1 is a fixed point for all values of . We are interested in
the dvnamics near this fixed point, we introduce a new variable u = x — 1, where u is small.

Then

u X

rln(u + 1)+ u
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- r[u—-%u2 +O(u‘ﬂ‘)}+u

= (1‘+I)u—lu2 +O(u’)

Hence a transcritical bifurcation occurs at r, =—1.
4.4.3 Pitchfork Bifurcation

We turn now to a third kind of bifurcation, the so-called pitchfork bifurcation. This bifurcation
is common in many physical system which have symmetry. Many physical system has a
special symmetry between left and right. In such cases, fixed points tend to appear and
disappear in symmetrical pairs.

There are two very different types of pitchfork bifurcation The simpler type is called
supercritical, and will be discussed first.

Supercritical Pitchfork Bifurcation
The normal form of pitchfork bifurcation is
x=fx)=rx-x’, rek

This equation 1s invariant under the change of variables x — —x. The fixed points are

x*=0,+/r. f'(x*=0)=r, ' (x*=r )=-2r, and f'(x* =—r )=2r. Figure
4.5
% o i
= - S g
x X X
(a) r<0 ) r>0
(b)r=20

Figure 4.5:
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shows the vector field for different values of'r.
When r < 0, the origin is the only fixed point, and it is stable.

When r = 0, the origin 1s still stable, but much more Stable
weakly so, since the linearization vanishes. Now solutions
no longer decay exponentially fast-instead the decay 1s

a much slower algebraic function of time. This lethargic Unstable
d_ecay 1s called critical slowing down in the physics Stable v
literature.

Finally, when r > 0, the origin becomes unstable.
Two new fixed points appear on either side of the origin, Stable
symmetrically located al x* =+ +/r . The bifurcation
diagram is shown in Figure 4.6. Figure 4.6:

Subcritical Pitchfork Bifurcation

Normal form for subcritical bifurcation
X=f{x)=rx+x, reR.

Figure 4.7 shows the bifurcation
dagram. ~umEE ..

Compared to Figure 4.6, the a
pitchfork is inverted. The nonzero fixed — stable S unstable
points x* = ++/r are unstable, and *
exist only below the bifurcation (r < et
0), which motivates the term Unstable ~
"subcritical." More importantly, the
origin is stable for r < 0 and unstable
for r > 0, as in the supercritical case,
but now the insta-bility for r > 0 is not
opposed by the cubic term-in fact the cubic term helping the trajectories out to infinity!

4.5 Hopf Bifurcation

Figure 4.7:

There is one more "generic" bifurcation known as Hop-f bifurcation. In an Andronov-
Hopf bifurcation (often shortened to Hopf bifurcation), a family of periodic orbits bifurcates
from a path of equilibria.
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In two and higher dimensional systems saddle-node, transcritical and pitchfork bifurcation
are possible. On the other hand in one dimension autonomous system, Hopf bifurcation is
impossible since oscillation is impossible in one dimensional autonomous system defined in
real line. Therefore for the existence of oscillatory (isolated periodic solutions) solution at-
least two dimensional system is necessary (in R" with n = 2).

Consider the system
X=px —-y—x(x*+ vy
y=x+uy— y&+y) ¢h2)

where u is the bifurcation parameter. There is an equilibrium point at the origin and the
linearized system is

X=UX -y
y=x+uy.

r —1

The Jacobian is (}1 ) The eigenvalues are p =+ 1.

H
In polar coordinates the equations become i = r(n — ), 6= —1.

Note that the origin is the only equilibrium point for this system, since 6 0. If u <
0 the origin is a sink since pr—r’ <0 for all r > 0. Thus all solutions tend to the origin
in this case. So the entire diagram consists of a stable spiral. When p > 0 the equilibrium
becomes a source. When u >0 we have i =0 if r = \/L_l So the circle of radius JLT
1s a periodic solution with period 2. We also have i > 0 if 0 <r < \/L_l ,while f <0 1f
e \/!_l . Thus, all non-zero solutions spiral toward this circular solution as t — oo. Then
there 1s an unstable spiral at the origin surrounded by a stable limit cycle which grows out
of the origin, the steps in its development are shown in Figure 4. 8. This 1s an example of
a Hopf bifurcation which generates a limit cycle. There are three different types of Hopf

bifurcation e.g. supercritical, sub-critical and degenarate.
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Figure 4.8:

4.6 Lorenz System

Edward Lorenz (1963) had derived the three-dimensional system from a drastically
simplified model of convection roll in the atmosphere. The system looks like

X=o(y-x),

y=I1X-Yy— Xz,

Z=Xy — bz

(4.3)

Here o, 1, b are the positive parameters. The same equations also arise in models of
lasers and dynamos. The simple-looking deterministic system has wide range of behaviors

depending on parameters. The solutions oscillate
irregularly, never exactly repeating but always remaining
in a bounded region of phase space. The trajectories in
three- dimensional phase space settled into a complicated
set, now called strange attractor. Unlike stable fixed points
and limit cycles, the strange attractor 1s not a point or a
curve or surface.

[f we replace (X,y) — (—x—y) in (4.3), the equations
stay the same. Hence, if (x(t),y(t), z(t)) is a solution, so
15 (—x(t),~y(t).—z(t)). In other words, all solutions are
either symmetric themselves, or have a symmetric partner.

The Lorenz system 1s dissipative, which means that the
volume in the phase space contract under the flow.

Figure 4.9:
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The Lorenz system (4.3) has two types of fixed points. The origin (0,0, 0) 1s a fixed
point for all values of parameters. For r > 1, there 1s also a symmetric pair of foxed points

x* =y*=1+/b(r—1), z*¥=r— 1. Lorenz called them C" and C". As the parameter r —
1, the two fixed points C' and C coincide with origin giving a pitchfork bifurcation of the
system.

Note: Two different solutions start out very difterently, but eventually have more or
less the same fate: They both seem to wind around a pair of points, alternating at times
which point they encircle. This 1s the first important fact about the Lorenz system: All non-
equilibrium solutions tend eventually to the same complicated set, the so-called Lorenz
attractor (Figure 4.9).

Linear Stability of the Origin
The linearization of the system (4.3) at origin 1s given by
X = o(y—x),
y =rx-y,
z = —bz (44)

The equation for 2 is decoupled and shows that z(t) — 0 as t — eo. The other two
directions are governed by the system

(?,) - (I_rU ° 1)(;) (45)

If r > 1, the origin is a saddled point because determinant A = o(r - 1) < 0. A new
type of saddle 1s created since the system 1s three-dimensional. Including the decaying
2-direction, the saddle has one outgoing and two incoming directions. If r < 1, all
directions are incoming and the origin is sink. Specifically, since 1° — 4A = (¢ — 1)’
 4or > 0, the origin 1s a stable node for r < 1.

Global Stability of Origin

To show the global stability of origin we would try to construct a Liapunov
function, a smooth, positive definite function that decreases along trajectories.

9

Let consider a Liapunov function V(X.y,z) = % + y* + Z%, which is the surfaces

of constant V are concentric ellipsoids about the origin.
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The idea is to show thatif r< 1 and (x, y, 2) # (0,0, 0), then V< 0 along trajectories.
This would imply that the trajectory keeps moving to lower V, and hence penetrates smaller
and smaller ellipsoids as t — co. But V is bounded below by 0, so V(x(1)) ->0 0 and hence
x(t) — 0, as desired.

Now calculate;

N7

L XX L o 4o
E ?"FYY"FZZ
= (xy — X%) + (1xy - ¥ — Xyz) + (xyz — bZ’)

=(r+ Ixy - x* -y’ - bz

2 2
e
<0ifr<1and (x,v,2) # (0,0,0)

For V=0 implies (x, y, z) = (0,0, 0). Otherwise V< 0. Hence the claim is established,
and therefore the origin is globally stable forr < 1.

4.7 Duffing Oscillator

The Duffing oscillator has the dynamical equation

X=Y,
y=%x-x -0y, (4.6)

where 8 is a positive parameter. It is easy to see that this
equation has three fixed points given by (0,0), (+1, 0).
The matrix associated with the lincarized vector field 1s

0 1
given by (] 352 —6] _Here, A=3x*-1,1=-0, and

?_4A=8— 122 + 4.
For the fixed point (0,0), A =—1 (< 0) which implies
the eigen values at (0.,0) are real distinct and of opposite X

I L i Il Il L Il
. [ L - L] 1 ] L]

sign, so (0,0) 1s a saddle fixed point. Hence it is unstable. :

For the fixed points (£1,0) A=2(> 0), ¥ — 4A = & Fi%t‘_”e ‘t‘-'”f = Eﬂsae _di(;‘%f;““
—8and 1< 0. So if & > 8 the fixed points are stable i
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node and if & < 8 the fixed points are stable spiral (Figure 4.10).

Forced Duffing Oscillator
Forced Dutting Oscillator equation 1s given by
¥+ ckt—x+x'=¢eF cos wt, =1y,

where 0 < e << 1. We are now interested in the unstable limit cycle about the origin in
the phase plane, and the stable and unstable manifolds associated with points on it. For
small |x], x satisfies Xe kx — x = € F cos wt. The periodic solution of this equation is

7 )
-e(l+w") € wk
2a T and D = 2.2 I
(1+w Yy +e k"w™ (I+w )y +€ k™w

xp = C cos wt + D sin wt, where C =

2 p I

-€ € kw 4

5 s > 5 | to order €.
1+w® (1+w7)”

which has the fixed point [

1 1 1 A |
£ ] -A [ - [ 1]

X
Figure 4 11: Phase diagram of system with e= 25 k=1 F=018 u=1

4.8 Keywords

Hyperbolicity, Stable manifold, Unstable manifold, Centre manifold, Bifurcation,
Saddlenode bifurcation, Transcritical bifurcation, Pitchfork bifurcation, Hopf bifurcation,
Lorenz system, Duffing oscillator.
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4.9 Summary

In this unit we first discuss brief about hyperbolicity of the system. Next we have
coined some 1deas about stable, unstable and centre manifold of higher order system. Next
we come to important concept of bifurcation. Details of saddle node, transcritical and
pitchfork bifurcation diagram are given and bifurcation diagram are shown for each case.
Also, one of two dimensional bifurcations, Hopf bifurcation is also analysed. A detailed
analysis of Lorenz System and Dutfing equation 1s provided.
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4.11 Excercise

l.

For each of the following exercises, sketch all the qualitatively ditferent
vector fields that occur as r is varied. And mention the name of bifurcation
for each case.

a) X = rx — sinh x
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I~

bit=r+x-In(l+x

I

¢) X=X(r —€%)
d) X=x+ g
l+x
Consider the system X = rx — sinx.

a) For the case r = 0, find and classify all the fixed points, and sketch the vector
field.

b) Show that when r > 1, there is only one fixed point. What kind of fixed point
is it?
c) As r decreases from oo to 0, classify all the bifurcations that occur,

d) For 0 <r << 1, find an approximate formula for values of r at which bifurcations
occur.

¢) Now classify all the bifurcations that occur as r decreases 0 to —oe.

f) Plot the biturcation diagram for r, and indicate the stability of the various branches
of fixed points.

Discuss all bifurcations of the system x=x*+y* -2, y=y — x> + u. Compute
phase diagrams for typical parameter values.
Letx=pux—-y+x/(1+x*+y), y=x—puy + yAl + x* + y*). Show that
the equations display a Hopf bifurcation as p > 0 decreases through p = 1.
Find the radius of the periodic path for 0 < p < 1.

Let X= AX, where X = [x.v.z]'. Find the eigenvalues and eigenvectors of A
in each of the following cases. Describe the stable and unstable manifolds of
the origin.

| 2 20 0 655
a)[l 1 b) 02 2 C)[565]
2 1 02 -1 536

Show that the equilibrium points C° and C of Lorenz system are sinks
LM)

oc—b-1/

a) Show that the Duffing equation X + x + ex’ = 0 has a nonlinear center

at the origin for all € > 0.

(a—

— 2

provided | <r <rH = G(

b) If € < 0, show that all trajectories near the origin are closed. What about
trajectories that are far from the origin?
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5.0 Objective

Our goal in this unit is to begin the study of discrete dynamical systems. While the study
of discrete dynamical systems is a topic that could easily fill this, we will restrict attention
here primarily to the portion of this theory that helps us understanding chaotic behavior in
one dimension. Later we will discuss about chaos, Liapunov exponent, period-doubling
bifurcation, logistic map, tent map and horseshoe map.

5.1 Introduction

Let Pc R", meN; x,€P,n €Z. Then
Xpe1 = G(Xu)v (51)
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where G : P — P 1s a discrete dynamical system (or discrete-time dynamical system) and
G =(g,,2,.-.g,). If G is a nonlinear function then it called a nonlinear dynamical system.
Logistic map, Henon map are two very famous discrete dynamical system. In some scientific
contexts, it is natural to regard time as discrete. Discrete dynamical system has been used
in many realistic field as financial marketing, animal populations modelling and digital
electronics.

5.2 Fixed Point of a Map

A point p is said to be fixed point of the map f: X — X if f(p) = p, that is, if p is invariant
under f In other way, p is mapped onto itself by f Orbit of f at x, is the set {x,, f(x,), f/x,)....

A fixed point p of a map f'is said to be attracting (stable) fixea point if there exists
e> 0 such that Vx e(p—e€, p+ €) so that lim f'(x) = p. An attracting fixed point is

. n—oco
called sink.

Again, a fixed point p of a map f'is said to be repelling (unstable) fixed point if for
€> 0 there exists some integer M such that Vx e N_(p) e(p—€.p + €) so that 1'(x) ¢
Ne (p). n > M. A repelling fixed point is called source.

THEOREM 5.2.1 Let f be a smooth map, i.e f € C' and p be a fixed point of f.
(1) If [f'(p) < 1, then p 1s an attracting (stable) fixed point of f. known as sink;
(1) if |f'(p)| > 1, then p is an repelling (unstable) fixed point of f, known as source.

Proof: (i) We have |f'(p)| < 1, there exists m in 0 < m < 1 such that [f'(p)| <m < 1. Since
f 1s continuous at x = p then for m > 0 there exists € > 0 such that

f(x)-f(p)
X=p

<m when [x — p| <€,

= [f(x) — f(p) <m|x —p| < 1.

Now, |[ff(x) — fi(p)| = [{(f(x)) — f(f(p))| < mlf(x) — fip)| < mIx — p|. Similarly,
If"(x) — f'(p)] < m"[x — p|. Also we have 0 <m <1 = m" — 0 as n — . Now, f'(p)
= p, then [f"(x) — p| = 0 as n — o= when |x — ple = p 1s a attracting fixed point or sink.

Similarly, case (i1) can be established.

Hyperbolic fixed point: Let f be a map on R",m > 1. Assume that f(p) = p. Then
the fixed point p is called hyperbolic if none of the eigen values of the Jacobian matrix at
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p has magnitude 1. Otherwise the fixed point is called non-hyperbolic.

For example, consider the map f(x) = x*. The fixed points are x* = 0,1. Since [{'(0)|
=0# land |t'(1)] =2 # 1, the fixed points 0.1 are hyperbolic.

5.3 Periodic Points

Let f: X — X be a map. We call p a periodic point of period k if f(p) = p and if k is
the smallest such positive integer. The orbit with initial point p is called the periodic orbit
k. We often use the abbreviated terms as period k point, or period k orbit or periodic k
cycle. If p is a periodic point of period 2 for the map /, then p is a fixed point of the map
2. However the converse is not true.

The fixed point p, with period k 1s stable if [(f*)'(p,)| < 1 and is unstable if (f*) (p,)| >
1. The periodic orbit {p,,p,.... pyy 1S stable if |[f'(p)f'(p,)..f(py)| < | and is unstable if
IF(p)f (p,)..f (p) > 1. Periodic cycle 1s a collective property, and each points must be distinct.

Ex 5.3.1 Consider the map f{x) = x*— 1. Show that the map f{x) has a periodic orbit
of period 2.

Solution: The 2-cycle or period 2 orbit of a map exists if and only if there are two

points p and q such that f(p) = q and f(q) = p. Equivalently, such a p-must satisty, fof(p)
= pand fof(q) =q. ie, f(p) = p and }(q) = q

“—:‘E . Also, (0)

=1, f(-1)=0. £#(0) = fof(x) = (x* = 1) = | =x*—2x*=0. Similarly. fz(_:l) =1, f(0)
=—1. Hence the map = (x° — 1) has a periodic orbit of period 2, i.e., {0,—1} is a periodic
orbit of period 2.

The fixed points of the map are given by f(x) = (x*— 1) implies x =

5.4 Period-Doubling Bifurcation

Discrete dynamical systems undergo bifurcations when parameters are varied just as
differential equations do.

Flip bifurcation or period-doubling bifurcation is a typical feature of nonlinear maps,
rarely observed in continuous systems. The period-doubling bifurcation sequence is as
follows : Period — Period-2 — Period-2* —.......— Period-infinitum. The normal form of
flip bifurcation for a one dimensional discrete map is given by

fix)=—1+nx+x,reR, xeR. )
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The above map (5.2) has fixed points x* = 0, +v2+r .

It is easy to verify that (5.2) has a nonhyperbolic fixed A
point at x* = 0 for r = 0 with eigenvalue —1, 1.e f(0) =
0 and f'(0) =—1. The fixed point x* = 0 is unstable for
r < -2, stable for -2 < r < 0, unstable for r > 0. And
x*? =2 + r is unstable for r > -2, does not exist for r
<-2. So, all of three fixed points are unstable for r > 0.
A way out of this difficulty would be provided if stable
periodic orbits bifurcated from x* =0 for r = 0.

Y

Let consider the second iterate
fx)=x+ 12+ r—-2x° + 0(4). (5.3)

It is easy to verify that (5.3) has a nonhyperbolic fixed point at x* = 0 for r = 0 having
an eigenvalue of 1, i.e., ££(0) =0, " (0) = 1. The second iterate of (5.2) undergoes a
pitchfork bifurcation at x* = 0 for r = 0. Since the new fixed points of °(x) are not fixed
points of f(x), they must be period two points of f(x). Hence, f(x) is said to have undergone
a period-doubling bifurcation at x* =0 forr = 0.

5.5 Sensitive Dependence on Initial Condition

Sensitive dependence on mitial conditions (SDIC) refers to the property that pairs of points
which begin as close together as desired, will eventually move apart. Let f: X — X be
a map. A point x, € X has sensitive dependence on nitial conditions 1f there 1s a non-zero
distanced such that some points arbitrarily near x, are eventually mapped at least d units
from the corresponding image of x,,, More precisely, there exists d > 0 such that any nbd
N of x,, contains a point x such that [f*(x) — f*(x,)| > d for some non-negative integer k.
Sometimes we call such a point x,,, a sensitive point.

Ordinarily, the closer x 1s to x,, the larger k will need to be. The point x will be
sensitive if it has neighbours as close as desired that eventually move away the prescribeded
distance d for some sufficiently large k. The doubling map g : s — s on the unit circle s
debined by g(8) = 28 is an example of a map satisfying SDIC property.

5.6 Liapunov Exponent

The Liapunov exponent of a map is useful to determine wheather a map to be chaotic.
Liapunov exponent is a measure of sensitive dependence on initial conditions of a dynamical
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system. We extend the definition of Liapunov exponent to one-dimensional maps. It gives
an average measure at the exponential rate of which nearby orbits move apart.

Let x, be some given initial condition. We consider a nearby point x,, + 9, where the initial
separation 9, is extremely small. Let §, be the separation after n iterates. If

EETE I (34)

then A is called the Liapunov exponent. A positive Liapunov exponent is a signature of
chaos.

Now,
5l = f(Xl, L3 60) == f(X[})

511 - I’“(X” W aﬁ) . f“(xn) (

L
n
—t

Taking logarithms of both sides of (5.4) and noting (5.5) we get.

1 (x+50)~f™ (x()
60

|

= —In 1
n

n

oo L2 |8
A= =In |2
no g

(f“)’(xﬂ )‘ .

where 0, — 0.

By using chain rule of differentiation we can write (f')" (x,) = 1‘[:’;]1 f'(x;). If this
expression has a limit as n — oo, then we have

-
A . ) n - :
k= lim _ X Inf'(xj). provided the limit exists.
n—ee =0

Since f*(x,) = x.. HK €Z.

If L > 0 then the system has sensitive dependence on x, and if A < O then the system
has no sensitive dependence on x,, 1.€., the map is non-chaotic. The Liapunov exponents
for stable periodic and superstable cycles are negative, and so these properties are
regular.

5.7 Chaos

Choas is a deterministically unpredictable phenomenon. There could be a motion even for
a simple system which is erratic, not simply periodic or quasiperiodic.
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We consider autonomous maps on R" denoted as x — F(x). The mapF: 1 —> 1 is
said to be chaotic in an interval I, 1 < R, 1f, (1). F 1s topologically transitive, given any two
subintervals I, and L, in I there is a point x, € 1, and an n > 0 such that f'(x,) € L., (2),
the periodic points of F are dense in I, (3). F has sensitive dependence on initial conditions.
This is the Devaney's definition but there are many other definitions of chaos.

5.8 Logistic Map

The logistic map

= —-%).0=012... ... (5.6)

is a discrete time analogue of the logistic equation

for population growth. Here x, > 0 1s a

dimensionless measure of the population in the f:’:d

n-th generation and r 2> 0 is the intrinsic growth

rate. We restrict the control parameter r to the - - .

range 0 <1 <4 so that (5.6) maps the interval
[0,1] into itself. If x, > 1 for some n, the
population becomes negative in the (n+ 1) the
generation and subsequent iterations diverges towards minus infinity.

The tixed points of the logistic map are obtained by solving the equation

(] %) =xF

g Therefore, x* =0, (l—]l_) are two fixed points of
r>
(5.6). The point (I—-i) is a fixed point of (5.6) distinct
from the fixed point 0 if r > 1.

f(x) Let x* be a tixed point of (5.6). To determine
r=11 the stability of x*, we calculate derivative of f(x) =
r= rx(1 — x). If [f'(x*)] < 1 then the fixed point is

linearly stable. Conversely, if |[f'(x*)| > 1, the f(x)
B fixed point is linearly unstable. The fixed point
x* =0 1s locally stable if r < 1 and unstable for r > 1. At the other fixed point x*

= (l—l]—_) is locally stable it 1 <r < 3. It i1s unstable for r > 3. For r = 1, the fixed point

x* =0 1s non- hyperbolic fixed point. For r = 1,3, the fixed point [l— 11 ) is non-hyperbolic
fixed point.
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For r < 1 the parabola lies below the diagonal, and the origin is the only fixed point. As
r increases, the parabola gets taller, becoming tangent to the diagonal atr = 1. For r > 1 the

parabola intersects the diagonal in a second fixed point x* =1 — ||~ while the origin loses

stability. Thus x* bifurcates from the origin in a transcritical bifurcation at r = 1.
Note that at a bifurcation point fixed point of a map is non-hyperbolic.
Ex 5.8.1 Prove that the 2-cycle of logistic map is stable for 3 <r<1+ Jg =3.449....

Solution: To analyze the stability of a cycle, we have to find the stability of the fixed
point. If p and q are fixed points of 1f*(x) = x, then p and q are fixed points of the second
iterative map f*. The original 2-cycle is stable precisely, if p and q are stable fixed point for
2. A 2-cycle periodic fixed point will be stable if [f' (p)f'(q)| < 1. Here, f(x) = rx(1 — x), X
€[0.1], and f'(x) = r — 2rx. Now, for stability of 2-cycle gives

(P (q) =1

= |(r — 2rp)(r — 2rq)| < 1

= (1 - 2p)1-2q)| < 1

= |l -2(p+q) +4pg <1 [p.qare fixed points of fi(x) =0, so that

r+l rl

prq=- and pr:?g_

= 17 |1-2 55+ 410 <]

=d+2r-rl<l,=2-I<t-1¥-5<1=4<(r-17<6
=5 3 << (l+ 5 )

Hence proved.

5.9 Tent Map

The tent map is a one-dimensional piecewise linear map. Its graph resembles the front view
of a tent.

The tent map is denoted by T(x) and defined as T : [0,1] — [0,1]
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The fixed point of the map obtained as,

1f 0 € x % Tx)=x%x, =22x=x=x=0

. Both fixed points are unstable

w|u

lf% 2x2 L, TR = =s23l-x)=x=x=%
as f'(x)=2(>1), Vx.

The period-2 points of the map are obtained by solving the equation T*(x) = x.

THx) = ToT(x) =22x =4x 0 < x <
=2(1 -2(1 - x))=4x-2
= THx) =dx, 0=x<

= 4x + 2

_ s
=4x—2, 5 x5 g 0 v2 73 1y

=4 — 4x,

lue
(VAN
4
1A

)
The fixed points of T are T*(x) = x = X= 0,§,

Again, {g%} is a two cycle because, T(%) 2.

g4 B2 (Y4

Ex 5.9.1 Show that the Lipunov exponent A = In 2 for the tent map, independent of
the mnitial condition x,,.

Solution: Since f'(x) = +£2, Vx € (0,1) except at x =

1D |—

l

we find A = ﬂ)ﬂ o In If'(x;)] = log2 > 0. The Liapunov exponent A is positive and

so the tent map 1n Chaotic.
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5.10 Horseshoe Map

The Smale horseshoe is the prototypical map possessing a chaotic invariant set. It is
possible to create more complicated basin boundaries in dynamical systems.

Smale's horseshoe exhibited the chaotic behavior. The version of the horseshoe map
H which we will analyze acts on the unit square by shrinking it three times vertically and
stretching it three times horizontally, then bending it back 5 in the unit square as shown
below in Figure 5.1. A horseshoe map generally is a diffeomorphism F : R* — R? that maps
a rectangle D over itself in the form of a horseshoe.

We study the dynamics of the map H on the set E of all points (x,)/) whose iterates,
both forward and backward, stay in the unit square. Choosing the origin at the bottom left
corner we get the following formula for H for any (x, y) € E.

O 1
(3x,3y) if XE[O,B]

H(x,y)= 1 5
(-3x,1-1y) if xe [ﬁ,l},

The first component of H{X.y) 1s the tent map T(x). Assume for simplicity that homoclinic
bifurcation causes a square ABCD (Figure 5.1) to be mapped in a particular manner, which
will be specified, into a horseshoe ABCD.

The mapping is assumed to be carried out in this way: the square is stretched in the
direction AD, compressed in the direction AB, bent through
180°, and placed back over the square (Figure 5.1). Suppose
the mapping is repeated for such points as still lie in the square,
and that this process is iterated. Figure 5.2 shows the first two
iterations. The horizontal shaded strips in the square are chosen
so as to map onto the vertical parts of the horseshoe. These
two vertical strips now map onto the pair of thinner horseshoes.
After two iterations there are points remaining in 16 'squares';
after the third iteration there will be 64 'squares’, and so on. The
limit set of the horseshoe map has a same limit set like Cantor
set, but twodimensional structure. The implication is that there
exists an uncountable number of points in the initial square which.,
when treated as nitial states at t = 0 for iterated first returns, lead ultimately to endlessly

g [ B
BC D
Figure 5.1: The
horseshoe map acting
on the unit square.
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repeated scans of a certain set of points-the limit set-which constitutes the strange attractor.
The associated oscillations will include periodic motions and bounded nonperiodic motions.
The elements of this set are distributed on the unstable manifold since horseshoes can be
constructed for each loop across the stable manifold.

il

[r=————————————

Nele
l “n

BRI

Couaht e iv ) dJdar !

Figure 5.2: Successive horseshoe maps showing generation of the Cantor set.

S.11 Summary

[n this unit, we have discussed the idea of discrete dynamical system. First we have
discussed about fixed points, periodic points, periodic cycles and their stability. Here we
only provided the idea about flip bifurcation which one of most significant bifurcation in
discrete system.

Next we gave an brief sketch of sensitive dependence on mitial condition of the system
and Liapunov exponent. After defining Liapunov exponent we define chaos, most core
theory of dynamical system. Then some examples of discrete dynamical system e.g logistic
map, tent map and horseshoe map.

5.12 Keywords

Fixed point, Period-doubling biturcation, Chaos, Liapunov exponent, Logistic map, Tent
map, Horseshoe map.
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5.14 Exercise

)

L

Define period-k points of a map with example.

Find the fixed points of following the maps and analyse its stability.

a) Xn+l = VXn

TN
C) xn+]_l+35m Xy

Consider the quadratic map x,,, = xi +cC.
a) Find and classify all the fixed points as a function of c.

b) Find the values of ¢ at which the fixed points bifurcate, and classify those
bifurcations.

¢) For which values of ¢ 1s there a stable 2-cycle?
Calculate the Liapunov exponent for the decimal shift map x, , = 10x,(mod 1).

Prove that for logistic map, the first 2-cycle bifurcation occurs at r = 3.
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10.
1

L)

a) Show that f(x) = — g x* + % x+1 is a map with a 3-cycle. Is it attracting
or repelling?

b) Consider the map f(x) =—x", x € R. Show that the origin is an attracting fixed
point and {—1,1} is a repelling 2-cycle.

Consider the differential equation X = x — x* — bsin(2xt) where |b| is small.
What can you say about solutions of this equation? Are there any periodic
solutions?

Find the Liapunov exponent for the logistic map. Also, calculate the Liapunov
exponent for x,., = rsin(nx,), r > 0, x, € [0,1].

Prove that the map g : unit circle s — s defined by g(8) = 6 + o, where the
rotation ¢ is irrational is topologically transitive.

Show that T"(x) of the tent map T(n) has 2" fixed points.

Show that there must exist three distinct periodic-4 orbits of T*(x) of the tent
map T(x).

Suppose a continuous map f : I — I has a horseshoe. Then prove that (i) f*
has at least 2* fixed points, (ii) f has periodic points of every period (iii) f
has an uncountable number of aperiodic orbits.
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