PREFACE

In a bid to standardise higher education in the country, the University Grants
Commission (UGC) has introduced Choice Based Credit System (CBCS) based on
five types of courses viz. core, discipline specific, generic elective, ability and skill
enhancement for graduate students of all programmes at Honours level. This brings
in the semester pattern, which finds efficacy in sync with credit system, credit
transfer, comprehensive continuous assessments and a graded pattern of evaluation.
The objective is to offer learners ample flexibility to choose from a wide gamut of
courses, as also to provide them lateral mobility between various educationa
institutions in the country where they can carry acquired credits. | am happy to note
that the University has been accredited by NAAC with grade ‘A’.

UGC (Open and Distance Learning Programmes and Online Learning Programmes)
Regulations, 2020 have mandated compliance with CBCS for U.G. programmes for
all the HEIs in this mode. Welcoming this paradigm shift in higher education, Netaji
Subhas Open University (NSOU) has resolved to adopt CBCS from the academic
session 2021-22 at the Under Graduate Degree Programme level. The present
syllabus, framed in the spirit of syllabi recommended by UGC, lays due stress on all
aspects envisaged in the curricular framework of the apex body on higher education.
It will be imparted to learners over the six semesters of the Programme.

Self Learning Materials (SLMs) are the mainstay of Student Support Services
(SSS) of an Open University. From a logistic point of view, NSOU has embarked
upon CBCS presently with SLMs in English / Bengali. Eventualy, the English
version SLMs will be trandated into Bengali too, for the benefit of learners. As
always, all of our teaching faculties contributed in this process. In addition to this we
have also requisitioned the services of best academics in each domain in preparation
of the new SLMs. | am sure they will be of commendable academic support. We look
forward to proactive feedback from all stakeholders who will participate in the
teaching-learning based on these study materials. It has been a very chalenging task
well executed, and | congratulate all concerned in the preparation of these SLMs.

| wish the venture a grand success.

Professor (Dr.) Subha Sankar Sarkar
Vice-Chancellor



Netaji Subhas Open University
Under Graduate Degree Programme
Choice Based Credit System (CBCYS)

Subject: UG Mathematics (HMT)
Course : Applications of Algebra

Course Code - GE-MT-31

First Print : August, 2022

Printed in accordance with the regulations of the
Distance Education Bureau of the University Grants Commission.



Netaji Subhas Open University
Under Graduate Degree Programme
Choice Based Credit System (CBCYS)

Subject: UG Mathematics (HMT)
Course : Applications of Algebra
Course Code - GE-MT-31

: Board of Studies:
Members

Professor Kajal De

(Chairperson)

Professor of Mathematics and Director,
School of Sciences, NSOU

Mr. Ratnesh Mishra

Associate Professor of Mathematics,
NSOU

Dr. Nema Chand Dawn

Associate Professor of Mathematics,
NSOU

Mr. Chandan Kumar Mondal
Assistant Professor of Mathematics,
NSOU

Dr. Ushnish Sarkar

Assistant Professor of Mathematics,
NSOU

: Course Writer :

Chapter-1 & 2 Mrinal Nath
Assistant Professor of
Computer Science, NSOU
Chapter-3, 4 & Dr. Satyabrota Kundu

Dr. P. R. Ghosh
Retd. Reader of Mathematics,
Vidyasagar Evening College

Professor Buddhadeb Sau
Professor of Mathematics,

Jadavpur University

Dr. Diptiman Saha

Associate Professor of Mathematics,
S. Xavier’s College

Dr. Prasanta Malik

Assistant Professor of Mathematics,
Burdwan University

Dr. Rupa Pal
Associate Professor of Mathematics, WBES
Bethune College

. Course Editor :
Dr. Sujit Kumar Sardar
Professor of Mathematics,
Jadavpur University

5 Assistant Professor of Mathematics,

Loreto College

. Format Editors :
Mr. Mrinal Nath
NSOU

Notification

All rights reserved. No part of this Study material be reproduced in any form
without permission in writing from Netaji Subhas Open University.

Kishore Sengupta
Registrar






: Netaji Subhas
%wg Open University

WYLIN

Course : Applications of Algebra
Course Code - GE-MT-31

Unit-1 O Coding Theory
Unit-2 O Block Design
Unit-3 O Symmetry Groups and Color Pattern
Unit-4 O Application of Linear Transformation
Unit-5 O Matrix Theory

UG Mathematics

(HMT)

742
43-67
68-97

98-144
145-205






Unit 1 A Coding Theory

Structure

1.0 Objectives

1.1  Intreduction

1.2 Algebraic preliminaries for Coding Theory
1.3  Linear Block Codes

1.4  Cyclic Codes

1.5 Summary

1.6 Exercises

1.7 Reference and further reading

1.0 Objectives

After going through this unit the learner should be able to :

define the Linear Block Code.

understand the generator matrix of linear code.

define parity check matrix.

understand process to create parity check matrix for a linear code.
define Hamming Distance and Hamming Weight.

understand how Hamming Code can detect and correct the error in data
transmission.

define Cyclic code and their relation with polynomials of ring

use abstract and linear algebra as a tool for coding theory.

1.1 Introduction

In the recent years, a significant increase of interests has been noticed in the field

of digital data transmissions and storage systems. With the advent of large-scale, high
speed data network, efficiency and rehability becomes two most important
parameters to measure the quality of digital data transmission. Error is inherent in
any digital transmission. In particular, when the transmission media or the channel
is noisy, it becomes a major ¢oncern for the designer to control the errors so that the
reliable reproduction of data is obtained. In 1948, Shannon demonstrated in a



8 NSOU « GE-MT-31

landmark paper that, by proper encoding of the information, errors induced by the
noisy channel can be reduced to any desired level without sacrificing the rate of
information transmission. Since Shannon’s work a great deal of effort has been
expended on the problem of devising effective encoding and decoding methods for
error control in noisy environment.

A typical transmission system can be represented by the block diagram shown in
Figure 1.1. The Information Source is a digital computer or similar machine. It
sends the output to the Source Decoder either as a continuous waveform or a
sequence of discrete symbols. The Source Encoder transforms this into a sequence
of binary digits called the information sequence #. The Channel Encoder transforms
the information sequence # into a discrete encoded sequence v (mostly binary) known
as code word. Since the discrete symbols are not suitable for transmission in physical
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Figure 1.1

channel, the Modulator transforms output symbol into a waveform which is suitable
for transmission. This waveform enters into the channel and is corrupted by noise.
The output from channel is received by the Demodulator which produces a sequence
r corresponding to the encoded sequence v. The Channel Decoder transforms the
received sequence r into a binary sequence u# known as estimated sequence. The
Source Decoder transforms the estimated sequence u# into an estimate of the source
output and delivers it to the final destination. Now the primary focus of this unit is
to design of Channel Encoders and Channel Decoders to combat the noisy
environment. The strategy and principle to transform the sequence # into v or 7 into
u will be discussed with the help of abstract and linear algebra.
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1.2 Algebraic preliminaries for Coding Theory

1.2.1 Group

Definition 1.1

A set & on which a binary operation * 15 defined is called group if the following
conditions are satisfied.

{1) The binary operation * is associative i.e. for any a,b,cc G
a*b*o)={@*b)y*c
(2) G contains an element e such that, for any ac G
a*e=e¢e*a=a
This element e is called an identity element of &G w.rt. the binary operation
*, (It can be proved that e is unique and once it is proved one can say the
identity instead of an identity.)

(3) For any a< G, there exists an element &'« G such that
a*d =d *a=e¢
This element & is known as an inverse of a . (It can be proved that &' is
unique and once it is proved one can call it the inverse.).
A group G is said to be commutative or Abelian if its binary operation satisfies
the condition : For all ¢,be G, a*b=b*a
The number of elements in a group is called the order of the group. A group of
fimite order is called finite group.
Example 1.1

Consider the set of two integers, G = {0, 1}. Let us define a binary operation,

denoted by, on G as follows :
0e0=0, 0d1=1, 1®0=1, 191=0.

This binary operation is called modulo-2 addition. To be more precise, @ © »
denotes the remainder after dividing the result of (& + 5) by 2. The operation can be
thought of as clock operation which has O at top of the clock and 1 at the bottom.
Let us consider we are at the top (0). Now adding 1 will send our position at the
bottom (1) in the clockwise direction. Adding another 1 will again send us to the top
(0) from where we started our journey. (Refer the diagram 1.2).

The set & = {0, 1} is a group under modulo-2 addition It follows from the
definition of the modulo-2 addition @© that < is closed under @ and @ is
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commutative. It can easily be checked that @ is associative. The element O is the
identity element. The inverse of O is itself and the inverse of 1 is also itself. Thus G
together with ® is a commutative group and this group is usually denoted by Z,.

We are here

We are here again
4 s
.> <.
gy
Figure 1.2
N.B. The set {0, 1, 2, 3,........ , m — 1} is a group under modulo-m addition for

any positive integer m and this group is usually denoted by Z_.

1.2.2 Ring
Definition 1.2

Let R be a set of elements on which two binary operations, called addition ‘+’

[

and multiplication °.” are defined (for any a, b € R, a.b will be written as ab). The
set R together with the two binary operations + and. is said to be a ring if the
following conditions are satisfied.

(1) R 1s a commutative group under addition +. The identity element with
respect to addition is called the zero element and denoted by O .
(2) Multiplication ‘. associative: a(bc) = (ab)c for all a, b, c € R.
(3) Multiplication .’ is distributive over addition + from both left and right i.e.,
a(b+c)=ab + ac and (b + ¢)a=ba + ca for all a, b, c € R.
A ring R is said to be commutative if multiplication is commutative i.e., if
ab=bava,b € R. A ring R is said to have identity (denoted by 1) if 1 is the identity

with respect to multiplication 1.e., if al=1aV aeR.

1.2.3 Field
Definition 1.3

Roughly speaking, a field is a set of elements in which addition, subtraction,
multiplication, division can be done without leaving the set. A formal definition of
the field is given below.
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Let 7 be a set of elements on which two binary operations, called addition ‘+’
and multiplication *.” are defined . The set F together with the two binary operations
‘+> and °." is said to be a field if the following conditions are satisfied.

(4) F is commutative group under addition + The identity element with respect

to addition 1s called the zero element and denoted by O .
(5) The set of non-zero elements in F (¥ \{0}) i1s commutative group under
multiplication *.’.The identity element with respect to multiplication is
known as the unit element and denoted by 1 .
(6) Multiplication is distributive over addition; that 1s for any three elements
a b cel
afb + ¢) =ab + ac

In other words, a commutative ring with identity is called a field if every non
zero element has multiplicative inverse.

The no of elements of a field is the order of the field. A field with finite number
of elements is known as a finite field. The additive inverse of an element « is denoted
by — a and the multiplicative inverse is denoted by @, provided that a = 0.

Example 1.2

Consider the set {0,1} together with modulo-2 addition and modulo-2
multiplication shown in table 1.1 and 1.2. In, Example 1 it has been shown that
{0, 1} 13 a commutative group under modulo-2 addition. It can be easily checked that
{1} 1s also a commutative group under modulo-2 multiplication. It is easy to verify
that modulo-2 multiplication is distributive over modulo-2 addition by computing
a(b + ¢) and ab + ac for eight (2%) possible combinations of @, » and ¢. Therefore,
the set {0, 1} 15 a field of two elements under modulo-2 addition and modulo-2
multiplication.

The field given by Example 12 is known as binary field which plays an
important role in coding theory. Normally we denote binary field by B. It is also
denoted by Z, Finite fields are also called Galois Fields (GF), in honour of their
discoverer. Therefore, the binary field is also represented by GF(2).

Modulo-2 Addition Modulo-2 Multiplication

0 X 0

0 0 0

1 0
Table 1.1 Table 12
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For any prime number p, Z is a field with addition as addition modulo p and
multiplication as multiplication modulo p.

1.2.4 Vector Space
Definition 1.4

Let }' be a set of elements on which the binary operation addition + is defined.
Let F be a field with two operations ‘+ and “” (+ of V and + of F will not create
any confusion as context will make it clear and . of F will be written by juxtaposition
i.e, for any a, b € F, a.b will be written as ab). A multiplication operation also
denoted by juxtaposition, between the elements in 7 and the elements in } is defined.
Then V' is said to be a vector space over the field F' if it satisfies the following
conditions.

(1) V is a commutative group under addition +.

(2) For any @ € F and any v €F, av is an element J’

(3)Foranyu, velandany a, b€ F, alu + v) =qu + av and (g + b)y = av+bv.

(4) For any v €V and any a, b € F, (aby = a(bv).

(5) Let 1 be the unit element of /" Then for any v €¥, 1v = v.

The elements of V" are called vectors and elements of the field F are called
scalars. The addition + in } is called vector addition and the multiplication that
combines the scalar in 7" and vector in V is referred to as multiplication of a vector
by a scalar. The additive identity of }"is denoted by O (called the null vector). The
additive identity of F is also denoted by 0 (called the scalar 0 and the context will
not create any confusion). The following two properties will be used several times
in the sequel.

Property 1 : For any vector ve Vand 0 € F, Ov=0

Property 2 : For any scalar c € Fand 0 e V, c0=10

Let us consider an ordered sequence of # components, (a,, a,, a, ........... a_ )
where each components «, is an element from the binary field GF(2) (i.e. ¢, = 0
or 1. This sequence is generally called an n-tuple over GF(2). Since there are two
choices for each a,, 2" distinct # tuples can be constructed. Let us denote the set of
this 2”7 distinct » tuples by V. Now let us define addition + on V' in the following
way : For any u = (up, uj, ...,u_yand v = (v, v, ... LYV, ) in ¥,

UV =(Ug+Vg, U + Vi, e u, +V, ) (1)

here u, + v, is carried out in modulo-2 addition. Since #, and v, both are either 0 or
1, u, + v, will also be either 0 or 1(refer to Table 2.1).Clearly # + v also in n-tuple
over GF(2). Hence V is closed under addition defined in (1).
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It can be seen that all O s#-tuple 0 = (0, 0, ........, 0) is the additive identity. For
any vin V, | v+v=(vo+vy, vi+v, v +v 1 )=(0,0, ... ,0)=0. Hence
the additive inverse of each n-tuple in V), is itself The addition defined in (1) is
commutative and associative. Therefore, V', is commutative group under the addition.

Now let us also define scalar multiplication ** of an n-tuple v in ¥, by an element
a from GF(2) as follows :

a(vo' Vi Vo sorrmvennnneen, Vo ) = {8V, AV, Vs, e, av ) (2)
where av, is carried out in modulo 2 multiplication (refer to Table 2.2). Then it can
be easily shown that V', satisfies all the conditions outlined in the definition of vector
space. Therefore, the set V, of all n-tuples over GF(2) forms a vector space over
GF(2).

Example 1.3

Let # = 4. The vector space 4 V' of all 4-tuples over GF(2) consist of following
16 vectors.

© 000, (O001O©O010OOI1I1D,
(01 00,10 NDOI110,0111,
(1 000, Q00110100011
(1100, Q101N 1100T1T1M1M,
The result of vector addition of (1 0 0 1)and (1 1 0 1)i1s:
(1 o0+ 10 1DND=1Q+1,0+1,0+0,1+1)=(0101)

The result of scalar multiplication on some vector (1, 0, 1, 1) by the element of
GF(2) is :

01 0 1 1)y=(01, 00, 01, O1)=(0 O O 0)
110 1 y=q1, 10, 11, 11)=(1 0 1 1)

The vector space of all » tuples over GF(2) or over an extension field of GF(2)

[e.g. GF (2™), m is a positive integer] can be constructed similarly.

1.2.5 Subspace

Definition 1.5

A nonempty subset S of vector space V" over a field F is said to be a subspace
if S itself is a vector space over the field /' .

Let § be a subset of vector space } over a field /. Then S be subspace of } if
the following conditions are satisfied.

{1) The 0 vector is in S .
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(2) S 1s closed under vector addition. That is, for any two vectors
uveS=u+ves
(3) S is closed under scalar multiplication. That is, for any

uecS,acF=aucs

Let S = {v,, v,, ... , V. be a subset of a vector space V over a field /. Let
a;, a,, ... , ak F be k scalars. The sum a,v; + a,v, + ...... + av, 1s called linear
combination of v, v,, ....... , V.. It can be proved that the set of all linear combinations
Vi, Vyy e , v forms a subspace of }" and it is denoted by L(S) and called the linear

span of S. It can also be checked that L(S) is the intersection of all subspaces of V
containing S i.e., the smallest subspace of V containing S.

In Figure 1.3 the shaded area shows a
subspace S formed by taking all linear
combinations of two vector v, v, €]
where vector space J; is comprised of
3-tuples over the field of real numbers R.
The subspace S can be represented as
av, + a,v, where a,, a, € R. Clearly the
subspace is a plane in 3 dimensions.

Figure 1.3

Example 1.4
Consider the vector space V, of all 4-tuples over GF(2) given by example 4.
The linear combination of (0 0 1 1) and (1 0 1 O0) are

00 01 )+0(1 01 0)=( 0 0 0)
00 01 D+1(1 01 0=( 01 0)
1001 1)+0(1 01 0= 01 1)
00 01 )+0(1 01 0)=( 0 0 0)
These 4 vectors form a subspace of V.
Aset {v, vy, ... , Vs 1 of vectors in a vector space } over a field 7" is said
to be linearly dependent if and only if there exist k scalars a,, a,, ......... , a, € I, not

all zero, such that

V] +a,V, e +a,v, =0 (the null vector) (3)
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A set (v, v,, ..., v,) of vectors in a vector space V is said to be linearly
independent if it is not linearly dependent. That is,
a v, +av, + ... +av #0 (4)
unless a; =a, = ... =a_ =

A set S of vectors 1s said to span a vector space V if L(S) =V 1.e,, every vector
of V' is a linear combination of the vectors in the set S. In any vector space or
subspace there exists at least one set B of linearly independent vectors which span
the space. This set is called a basis of the vector space. The no of vectors in the basis
of a vector space is called the dimension of the vector space.

Example 1.5

Consider the vector space V, of all n-tuples over GF(2). Let us form the
following n n-tuples :

e,=(1 0 0. ... 0)
e, =0 10..... 0)
e,=(0 01 ... 0)
e, ,=(0 00 1)

where tuple e, has only one non-zero component at /” position. Then every
n-tuple (a,, a,, a5, ........ ,a,,)inV can be expressed as a linear combination of
(€, €], €50 ovornn. . e, ) as follows:

4

@y, aj, ay, oo a, ) =ae, Tae +ae, T ... +a e

n— ™1 n-1
Therefore, (e,, ¢, ¢,, ........, e, ) span the vector space V', of n-tuples over GF(2).
Also it can be seen that (e, e, ¢,, ......., ¢ ) is linearly independent.

Hence they form the basis of } and dimension of V', is n.

1.2.6 Inner Product
Definition 1.6
Let = (uy, v, tty, ... LU
inv,.
The inner product {dot product) between u and v 1s defined as

pand v =(v, v, v, ... . V1) be two n-tuples

.y = uo . VO +u1 . Vl S PO + l‘n_‘l B Y

where #,. v, and u,. v. + u, . v, are carried out in modulo-2 multiplication
and addition. Hence the inner product is a scalar in GF(2). If # . v = 0 then » and

v are orthogonal to each other.
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Let S be the & dimensional subspace of vector space ¥, and let S, be the set of
vector in ¥ such that for any v € Sand v e §,;, ¥ . v= 0. The set §, contains at
least the all-zero n-tuples (0 = (0,0, 0, ......... . 0), since for any # € 5, and #.0 = 0.

Thus S, is non-empty. For any element a< GF(2) and veS§,,
YO if a=0
ave {v if a=1

Therefore, av is also in 5. Let v and w be any two vectors in S, For any vector
win S, u.(v+w)=wu.v+u.w=0+0=0. This says that v + w is also orthogonal
to # . Consequently, v + w is a vector in §, This proves that S, is a subspace of
vector space V. This subspace S, is called the null (or dual) space of § and vice-
versa.

Theorem 1.1

Let S be & dimensional space of the vector space V, of all n-tuples over GF(2).
The dimension of its null space S, is # — &, In other words dim(S) + dim(S)) = n.
1.2.7 Matrices

A k » n matrix over GF(2) (or over any other field) is a rectangular array with
k rows and »n columns.

g 800 801 Box e 8orn-1)
£ 810 St 81z e yn-1)

G=|g_ |=| &0 &1 8 e 82(n-1)
.................................. ©)
k-1 | Btk-1j0 Brr-11 Sr-12 e 8(k-1)n-1) |

where each g, with 0 < i << kand O < j < n is an element from the binary field
GF(2). If the k (k < 1) rows of G are linearly independent, 2* linear combinations of
these rows form a 4 dimensional subspace of vector space V), of all n-tuples over
GF(2). This subspace is called a row space of G.

Let § be the row space of a £ * » matrix G over GF(2) whose k rows (g, g,
& - & ) are linearly independent. Let S, be the null space of S.

Then the dimension of S, is n — k. Let (A, A, Ay, ..., B, . |) be n — k linearly
independent vectors of S, Clearly, these vectors span S, An (» — k) < » matrix H
may be formed using (4, A, h,, ..., h,_, ) as rows :
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hy oo ho, Ry e hom—u

h ho by hy e 1(n—1)
H=|h = Py hy e 2 n-1)

hn—k—l k(n—L—l)O h{n—k—l)l h(n—k—l J2 e h{n—k—l)(ﬂ—l)

The row space of H is S, For each row g, € G and A, € H, the inner product
between g; and /2. must be zero (i.e. g . A = 0). Since row space (S) of G is the null
space of the row space (S,) of H, we call § the null space (dual space) of /. The
result could be expressed by the following theorem :

Theorem 1.2

For any &# x n matrix over GF(2) with & linearly independent rows, there exists
an (n — k) x n matrix A over GF(2) with n — k linearly independent rows such that
for any row g € G and any row f& =H g }?f = (. The row space of & is the null
space of H, and vice versa.

1.3 Linear Block Codes

In this unit, the output of information source is thought of a sequence of binary
digits ‘0’ and ‘1°. In block coding, this sequence is divided into message blocks of
some fixed length (say k), denoted by u. Therefore, total no of possible distinct
messages is 2¢. The encoder transforms each of these message # into a binary n-tuple
v where »# > k. This binary # -tuple v is referred to as the code word(code vector) of
the message #. Since code word must be distinct, the total no of code word also
should be 2¢. Therefore, a one-to-one correspondence should exists between message
# and code word v. This set of 2% code words is known as block code. To reduce the
encoding complexity a desirable structure of block code is linearity.

Definition 1.7

A block code of length 7 and 2* code wards is called linear (2, k) code if and only
if 2¥ code words is 4 dimensional subspace of the vector space of all n-tuples over
the field GF(2).

Since (n, k) linear code C is a & dimensional subspace of the vector space V, of
all the binary n-tuples, there are k linearly independent code words in ' . Table 2.3
shows linear code block with # = 7 and & = 4. It can be checked easily that sum of
any two code words in this is also a code word.
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Messages Code words
© 0 0 0) © 00000 0)
(1 0 0 0) (1101000
0 1 0 0) ©11010 0
(1 10 0) (1011100
© 0 1 0) (111001 0)
(1 01 0) © 01101 0
© 1 1 0) (10001 1 0)
(111 0) ©101110)
© 0 0 1) (101000 1)
(1 00 1) © 11100 1)
© 10 1) (110010 1)
(1 101 © 001101
001 1) ©10001 1)
(1 01 1) (100101 1)
011 1) ©010111)
(1111 (1111111
Table 1.3

It is always possible to find the & linearly independent code words (g,, g,, &,.
...... . €_) such that every v in C is a linear combination of these & code words, that
is,

V=180 H 168 T Uags Fene. +up 185 (5)

where #, = 0 or 1 for 0<i<k,

1.3.1 Generator Matrix

Now let us arrange this k linearly independent code words as the rows of a
k »x n matrix as follows.

g 8o 8o {1 8orn-1)
ES] &0 & Bz e 81(n-1)

G=1& |=|80 8n 822 e &3n1)

(©6)
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where & = (80, 81, &izr +orereers » 8in-y) for 0<i<k, fu=(up u,uy .o, Uy ))

is the message to be encoded, the corresponding code word can be given as :

8o
&
v:u.G:(uO,ul,uz, ......... i ) & | T o8y T8 T HAZs T +u 18

(7
&1
It is clear that the rows of generator matrix & generates (or span) the (», #) linear
code C. For this reason G 1s known as generator matrix for (.
Example 1.6

The (7,4) linear code is given below as a generator matrix G. Let us consider a

message # = (1 1 0 1) . The code word corresponding to the message # needs to be
determined.

£o 1101000

G=|& =01 10100

“le|TI11 1001 0

2 1010001

Using the equation (7), the code word would be #. G

=11 101000M)+1(0110100+0( 11001 0
+11 010001
=1 101000+© 110100)+(@0O0D0O00O0 0)

+(1 010001
=0 001101

1.3.2 Linear Systematic Block Code

In example 1.6, it can be observed that the last four digits of the code word
v({00O01101)issame as the message # = (1 1 0 1). The first three digits are
redundant and could be written as linear sums of information digits (message) (refer
example 1.7). These redundant digits are known as parity-check digits. Therefore, a
code word of length # could be divided into following two parts.

1. Message part : Consist of # unaltered information digits

2. Checking part : Consist of £, _, parity — check digits.
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Redundant Message part

checking part

— n - k digits — «— k digits —
Figure 1.4

The linear block code with this structure (Figure 1.4) is referred to as linear
systematic block code.

A linear systematic (n#, &) code is completely specified by & x » matrix G of the
following form :

80 Pw Pol PUZ rens PO(H—k—l) |1 0 0 rens 0
& PIO Pll Pl? i P](n—k—l) |0 10...0
G=18 [=|Po Pu Po o Py 001 0

®)

8x-1 Fipo Biop Biorp o Bictjn-sy [0 00 00

Where Py=0or 1 Let/, denote the £ x k identity matrix. Then G = [P L] Let

u=(u,u,u, ... . u,_,) be the message to be encoded. The corresponding code
word is
V=V, V], Vs, e, v, 1)
= (Uy, Uy, Uy, e, w1 )G {9)
Using (8) and (9), the components of v could be written as following :
Vg =W forO<i<k (10)
v, =wp,tup+.... ty, Py, Jor 0 j<n—k (11)

Equation (10} shows that the rightmost & digits of code word is identical to
information digits and Equation (11) leftmost # — & redundant digits are linear sum
of information digits. Equation (11) is known as parity-check equation of the code.

Example 1.7

The matrix given in example 1.6 is in the systematic form. The equation of the
digits of the code word needs to be determined.

Let u=(uy,u,4,,u;) be the message and v = (v, v, 5,5,V V5, V) be the code
word.

| 1101000
Gol&a|_l0 110100
|11 1001 0
| 1 0100 0°1
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Then, we know that v=# . G

1 101 0 0 0
= (Vo Yy, Vg, V3, Vg, Vs, Vg ) = (g 1y, U U5 ). ? 11 ll (? 5 (1) %
1 01 0 0 0 1

Solving the above equation, we get,
Vg = Hy, Vs =iy, Vg =Hy, V3 =1,
vy =iy i, + i,
v =y Uy

We can check easily that if # = (1 0 1 1) then v can be derived using the above
equations as (1 00101 1)

1.3.3 Conversion of Generator Matrix into Systematic Form
Elementary Row Operation :

An elementary row operation on a binary matrix (elements are from GF(2)) of
replacing a row of the matrix with the sum of that row and any other row.

If we have a generator matrix & for a linear code L | all other generator matrices
for L can be obtained by applying a sequence of elementary row operations to G.

Example 1.8

0011

Let G=|011 0] 15 a generator matrix of the
1100
Figure 1.5

linear code {0000, 0011, 0110, 1100, 0101, 1111, 1010, 1001},

Matrix G consists of four column (figure 1.5), out of these C; and C are already
the columns of identity matrix /;. Therefore, we need to create a

C, C,C, Cy
001 1
G={011 0
110 0

column of the form (0 1 0)T. To do that, we begin by applying the elementary row
operation of replacing the second row of (& by the sum of the first and second rows
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(R; = R, + R;) to give

001 1
G=l0110
110 0

Now after rearranging the columns we can easily get the generator matrix G in

systematic form.
1100
G=[1010

0 001

1.3.4 Parity-Check Matrix

There is another usefull matrix associated with every linear block code. As per the
Theorem 1.2 stated in section 1.2.7, For any kx» matrix G over GF(2) with % linearly
independent rows, there exists an {(n — k) x n matrix H over GF(2) with
n — k linearly independent rows such that any vector in the row space of G is
orthogonal to rows of i and vice versa. Therefore, we can describe the (n, k) linear
code generated by & in an alternate ways as follows: An # - tuple v is a code word
if and only if v. HT = 0. The matrix A is parity check matrix of the code. The
2k linear combination of the rows of A form the (# — k, ») linear code C ;- This
code is the null space of the (», %), linear code C generated by matrix & (Refer
section 1.2.6). €, is called dual code of C.

Example 1.9

Let us define the parity check matrix for the linear code (7,4) generated by G in
example 1.7.
We have seen following seven check equation for the code n Example 1.7.

Vo =ity (12.a), vy =u, (12.b), v, =14 (12.c), v3 =u, (12.d)

Vs =ttty (12.€), vy =ugt+iugtu, (12.f), vy=u,+u,tuy (12.g)

Replacing the value of #, ’s in equation (12.¢, f, g) from equation (12.a, b, ¢, d)
we get new equations as follows :

(13a)| L T T gy YTt g

31)1_1’ +V4+V5 :VO:1’3+Vs+V6

Vo =ity + Uy + 1y
=V, =V, + Vs + Vg

Now consider the equation (13.a)
V= vyt vs v ) ) )
= v, + v, = v, + v+ v, + v, (Adding v, in both the side)

=v,ty,+y + ve=0(..», + v, =0in modulo 2 addition where v, = GF(2))

2 5
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Applying the above method for equation (13.b) and (13.¢) also, we get new set
of equation as follows.

vty t v, +y, =0
lJrv3+v4+v5=0

v, tv, tv,+ v, =0

Now if we will write this equation in matrix form v . AT = 0 as follows

“’)

100

010

0 01
(Vo, V1, V2, V3 Vg, Vs,V ) 1 1 0 (=0

011

11 1

1 01

Therefore, the parity-check matrix

1001011
H=01011109
0010111

This shows that parity-check matrix takes the form H# =7, PT.

H—k
Example 1.10

The parity check matrix H can be generated from the generator matrix G (in
systematic form) of Example 1.8.

1100
G=/1010
0 001

Here G is in the form of [P /], where P = (1 1 0)!. We know that, the matrix
H =[I_, PT] where n = 4, k = 3, Therefore, H = fI,, PT] =[1 11 0] It can also
be checked that G . HT = 0.

1.3.5 Minimum Distance of a Block Code

The error correcting and error detecting capability of a code depends on the
parameter known as minimum distance. To define minimum distance let us introduce
the term Hamming Weight and Hamming Distance.

Hamming Weight

Ifv = (v vy ceoeeee, v, ) be a binary # — tuple, then the Hamming Weight wr
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(v) 15 defined as no of nonzero digits in v. For example the Hamming Weight of
(1100101)is 4.

Hamming Distance

If v and w be two » — tuples, then Hamming Distance d (v, w) between v and w
is defined as the no of places where they differ. For example, the Hamming Distance
betweenv=(1100101)and w=(000 100 1)is 4. They differ in zeroth, first,
third, fourth places. Hamming Distance is a metric on the vector space v, over GF(2).
Therefore, for any three vectors v, w and x € v, obeys the following conditions.

(L dmv, w20

(2) div, w) = diw, v)

(3) div, w) + diw, x) 2 dfv, x)

The important point to be notices that, Hamming weight of the modulo-2 sum
of v, w actually gives the Hamming distance between v and w. For example,

v+w=(1100101D+@0001001)=(1101100)

Therefore,

dv,w)y = wt (v + w). (14)

Since for any linear code, the sum of two code words gives another code word,
so equation (14) can be written as:

diy, w) = wifx) ; x €C where v, w and x are code words of linear code C (15)

Minimum Distance

The minimum Hamming distance between two distinct code of any code C is
known as minimum distance (d . ) of the code C .

d.=mn{dy, w) vy we C,vzwl (16)
= min{wt(v + w) . v, we C, v#w} (from equation) (14)
= min{wi{x) : x €C, x # 0} (from equation (15)

Let us introduce a parameter min ¥ . = min{wi(x) : x € C, x # 0} which is
called the minimum weight of linear code C. The above result is summarized in the

following theorem.

Theorem 1.3

The minimum distance of a linear block code is equal to the minimum weights
of its non-zero code words.

Therefore, the minimum distance of code (7, 4) given in table 1.3 is 3. There is

another way to calculate the minimum distance of a linear block code from the parity
check matrix using following theorem.
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Theorem 1.4

Let C be an (n, &) linear code with parity check matrix /. For each code vector
of Hamming Weight /, there exist / columns of / such that the vector sum of these
[ columns is equal to zero vector. Conversely, if there exist / columns of H whose
vector sum is zero vector, there exist a code vector of Hamming Weight / in C .

Corollary 1.4.1

Let C be a linear block code with parity check matrix /. The minimum weight
of C is equal to the smallest no of columns of / that sum to zero.

The parity check matrix A for (7,4) linear block code 1s following :

1001011
H=010111020
0010111

Since no two columns are exactly same in // ;so sum of two columns cannot be
zero. Therefore, the minmmum distance of C is > 2. However, the zeroth, fourth and
fifth column sum to zero. Thus the mimmum distance of code C is 3.

1.3.6 Error Detecting Capability of Block Code

Theorem 1.5
A linear block code € of minimum distance _. | detects up to ¢ errors if and only

min’

if its minimum distance is greater than ¢ ie. d_. (C) > ¢
Proof

Let v° be the code word transmitted over a noisy channel from the block code)
Ctn k) and r be the received word which differs from v° in at most ¢ places.
Therefore,

dve, r) <t
=>d(V°,r)=t—k where k; >0 (17)

To detect that » is in error it 1s sufficient to ensure that » does not correspond to
any of the valid code words v, that is, d# v) > 0 for 0 < i < 2%
Using the triangle inequality, we have that for any code word v, :
d(ve,r)+d(r,v;) =2d(v°,v;)
=d(r,v;) 2d(v°,v,)-d(v°,F) (18)
Given that d, i

= d(v°,v;) =t +k, where k, >0 (19)

(C)>t=d(vo,v;)>t Vi
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Replacing the value of d(v°, r) and d(v°, v) from equation (17) and (19), in
equation (18) we get,

d(r,v;)>(t+k,—(t—k))=>d(r,v;) >k +k,
=d(r,v;) >0 (since k; +k, >0) (20)

Figure 1.6

Figure 1.6 depicts the two closest code words, v, and v, ata distance of (r + 1)
(ie,d . (C)=1+1). Here the value of is &, = 1. The hypersphere of distance (z +1)
drawn around each code word may touch another code word but no code word falls
within the hypersphere of another code word since this would violate d_. (C) =7 +1.
Clearly any received word r of distance ¢ from any code word will fall within the
hypersphere of radius # + 1 from one of more code words and hence be detectable

since it can never be mistaken for a code word.

1.3.7 Error Correcting Capability of Block Code

Theorem 1.6

A linear block code C of minimum distance d_. , corrects up to 7 errors if and
only if its minimum distance is greater than 7 i.e. d_. (C) > 21.

Proof : Let v° be the code word transmitted over a noisy channel from the block
code C(n, k) and r be the received word which differs from v° in at most 7 places.

Therefore,

dpo°, r) <t
=d(v°,r)=t—k where k, >0 21

To detect that 7 is in error and ensure that the Hamming distance decoding rule
uniquely identify v° as a corrected code, it is sufficient to ensure d(r, v) > d(r, v°)
for 0 < i < 2% This means the closest correct code word of r is v° which
was originally transmitted. Using the triangle inequality, we have that for any code
word v, :
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d(ve,r)+d(r,v;) 2d(v°,v;)
=d(r,v;)>2d(v°,v;)—d(V°,r) (22)
Given that, d . (C) > 2t
=d(V°,v;)>2t Vi
=d(v°,v;) >2t +k, where k, >0 (23)
Now, using equation (22), we can write,
d(r,v;)—d(r,v°)=>d(v°,v;)—d(v°r)—d(r,v°)
=d(v°,v;,)-2d(v°,r) (sinced(V°r)=d(r,v°)
=(2t+k,)-2(t—k;) (usingequation (21)and (23)
=k, +2k; >0
Therefore, finally we get,
d(r,v;)—d(r,v°)>0
=d(r,v;)>d(rv°) (24)

Figure 1.7 depicts the two closest code words, v, and v, ata distance of (27 + 1)
(ie.d . (C) =2t + 1). Here the value of is k&, = 1. The hyperspheres of distance #
drawn around each code word do not touch each other. Clearly any received word r
of distance < 7 from any code word will only fall within the hypersphere of radius
t from that code word and hence can be corrected.

.s
-------------------------

. .
........

Figure 1.7
Example 1.11

Let us analyze the error detecting and correcting capability of (3, 2) linear block
code given in the following table.
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Messages (K = 2) Code words (n = 3)
00 000
01 001
02 011
03 111
Table 1.4

For (3,2) code given in the table 14, d . = 1

it
Asd . -1 =0, this code cannot detect any error.
Example 1.12

Let us analyse the error detecting and correcting capability of (6,3) linear block
code given in the following table.

Messages (K = 3) Code words (n = 6)
000 000000
001 001110
010 010101
011 011011
100 100011
101 101101
110 110110
111 111000
Table 1.5

For (3,2) code given in the table 1.5, d . = L
Asd . — 1 =0, this code cannot detect any error.

By computing the distance between all pairs of distinct code words, requiring

(g) =28 computations of the Hamming distance, we find that d_. = 3. This means

min

the code can detect d_.

— 1 = 2 bit error and can detect [%} =1 bit error.

1.3.8 Hamming Code

Hamming codes are the linear code which have been used in error control in
digital communication and data storage system. For any positive integer m => 3, there
exists a Hamming code with following parameters mentioned in table 1.6 :
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Parameter Name(Symbol) Expression
Code Length () (2" — 1)
Number of information bit (%) (2" —m — 1)
Number of parity-check bit (# — k) (m)
Minimum Hamming Distance (d ) 3

Error correcting capability(?) [%} =1

The parity check matrix consists of all non-zero m — tuples.

Total no of m tuples formed by m bits = 27. Qut of all these m — tuples, 1 tuple has
all zero’s. Therefore, no of non-zero m — tuples = 27 — 1.

The parity check matrix in systematic form :

fyz[Ln:PT] (25)

where [ is the identity matrix and contains #7 columns of weight 1, and PT consists
of remaining (2 — m — 1) columns of m — tuples of weight 2 or more. For m = 3, The
Hamming Code has lengthn=2%-1=7.

Therefore, k =n-m=7-3 =4

Now the parity check matrix can be constructed by all non-zero 3 tuples as columns
in the form of equation (25).

1 0 01 0 1 1
H=|0 1 01 11 0
0 01 0111
The columns of PT can be arranged in any order without affecting the distance

property and weight distribution of the code.
Now it is also easy to write the generator matrix for the (7, 4) code using following
formula.

G=[P:I]
1101000
G0 110100
lt1 1001 0
1010000

The minimum distance of (7,4) code can be easily determined form . It can be
checked that at least three {e.g. the zeroth, first and third) columns of // need to be added
to get 0. Therefore, using corollary
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1.4.1 Tt can be concluded that the d_ = 3 and the code can correct {—d’“’;_ 1} =1

bit error.

Error correction by Hamming Code

The parity check matrix columns of Hamming code can be rearranged such that
column in position 7 represents the integer /. Then the parity check matrix will be :

1 2 3 4 5 67

1 01 0101
H=|0 1 1 0 0 1 1 (26)
0 001111

Here the column 7T (x, y, z) represents the number x(2°) + y(2!) + z(2?). Let us
also consider r be the received code word and v be the transmitted code word. Now
we calculate the value of . H? which is known as syndrome. If syndrome (» . HT)
is 0, then » = v since for any valid code word v, we can write v. H? = 0 (refer section
1.3.5). Otherwise, for any non-zero syndrome it can be concluded a single bit error
has occurred while passing through the noisy channel and received word r is no
longer a valid code. Now in Hamming code the non-zero value of » . H' gives the
bit position of the single bit error in #. Once the error bit position is identified, it can
be corrected.

Let (0 10101 0)bea code word in (7, 4) Hamming code. Suppose a single
bit error occurred in second bit and the received word » becomes (0 0 0 1 0 1 0).
Using the parity check matrix A from equation (26) we calculate the syndrome (7 .
HT) as follows

rHP=0001010). =/010]

P b Y Y
S _, O o=
S, a®oo

The number represented by the syndrome is 2 hence the error is in second bit
position. Therefore, the estimated code word is (0 1 01 0 1 0).

1.4 Cyclic Codes

Cyclic codes are important subclass of linear code. These codes are useful for
following two reason.
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(1) Encoding and syndrome {refer section 1.3.9) computations are easy to implement.
(2) It has considerable inherent algebraic structure which makes it possible to use it
in various practical methods.
Before detailing the topic, it 1s important to mention few algebraic properties of
polynomials.
1.4.1 Rings of Polynomial

Polynomial of degree » : A polynomial of degree » with coeflicients in a ring R
is an element of R°*!. Therefore, a n + 1 tuple (N ST SRR . ¥,) can represent the

- ft
polynomial 7 +HX+HX 4. +rX.

Example 1.13

The following polynomials over the ring of integers, Z.

pi(X)=1+2X +3X° +4X° +5X* and p,(X)=1+2X-4X* +6x°-2X*

Adding these polynomials means adding the coefficients and multiplying by an
integer means multiplying the coefficient :

PUX)+pa(X)=(1-1)+(2-2)X +(3+4)X* +(4-6)X° +(5-2)%*

=7X*-2x% +3x*

6p,(X)=6+12X +18X° +24X’ +30X*

Example 1.14

Polynomials also can be defined over the binary field GF(2). Following Two
polynomials over GF(2) are added using modulo-2 addition.

pUX)=1+X+X*+X’ +X* and po(X)=1+ X+ X’

PUX)+p(X)=(1+D)+(1+ DX+ X7+ X+ X4+ X°

=X +X’+x*+ X7
Multiplying polynomials by elements of GF(2) is trivial : we either multiply by
0 to get the zero polynomial, or multiply by 1, which gives the same polynomial.
The set of polynomials of degree n over GF(2) is a vector space J»*! The
elements of J7*! with polynomials can be identified by matching the components of
the vector with coefficients of the polynomial, matching the lefimost bit with
the constant term. So, for » + 1 = 8, 11100101 1is matched with

p(X)=1+X+X +X°+Xx7.
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Table 1.7 shows the vector and their corresponding polynomial for different values
of n.

Value | Vector Polynomial Vector Polynomial
of n
1 00 0 01 X
10 1 11 1+ X
000 0 001 X?
2 100 1 101 1+ X?
010 X 011 X + X?
110 1+X 111 1+ X+ X
Table 1.7

Polynomial over GF(2) also can be multiplied in the usual way. At the time of adding
the intermediate result modulo-2 addition should be applied.

I+ X+ X )1+ X)=1+X+ X+ X+ X*+ X°

=1+(X+X)+( X2+ X))+ X =1+ X°
In the vector form the above result can be written as 111 > 11 = 1001. If the ring of
coefficient is a field, then the division operation for polynomial over that field can also be
defined by synthetic division method. The following example.
Example 1.15
Consider X + 4 and X° + 2X2 - 5X + 15 to be polynomials with coefficients in the

field of real numbers. We start the synthetic division by setting them out as follows :
X*-2X+3
X+4)X3 +2X2-5X +15

X% +4x°
—2X°-5X%
—2X”>-8X

3X+15
3IX+12
3

This shows that X° +2X% —5X +15=(X +4)X>-2X+3)+3
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Example 1.16

We can perform synthetic division in the same way when the coefficients of the
polynomials come from the binary field GF(2). In this case, addition and subtraction are
the same operation. To justify this argument let us recall the module -2 addition as a clock
operation mentioned in the example 1 of section 1.2.1. It is seen that adding 1 means
clockwise rotation. Since subtraction is negative addition, Subtracting 1 means
anticlockwise rotation. Figure 1.8 clearly shows that addition and subtraction in modulo-
2 arithmetic gives same result.

To divide X° + 1 by X? + X we start by setting the polynomials out in the usual way:

We are here

a

We are here

We are here again

Figure 1.8

X2+X°+X+1
X2+X>X5 1

This shows that X° +1=(X> + X)(X>+ X+ 1)+ (X +1)

If two polynomials of degree » are multiplied together, the result is usually a polynomial
of degree 2n. This means that the set of polynomials of degree » can’t be a ring under the
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operations of polynomial addition and multiplication, as multiplying two polynomials in this
set will give a polynomial that is not in this set. To get rid of this problem the multiplication
operation is defined differently to create a new ring structure.

The operation of multiplication modulo the polynomial X* + 1 gives products which are
polynomials of degree # — 1 or less. The set of polynomials of degree less than # forms
a ring with respect to addition and multiplication modulo X" + 1 ; this ring will be denoted
B (X)/(X"+1)

Theorem 1.7 (Remainder theorem for polynomial over GF(2)) :

The remainder that is obtained when a polynomial in B (X) is divided by
X" + 1 can be calculated by replacing X with 1 in the polynomial This operation
“wraps” the powers of X around from X” to X? = 1.

Example 1.17

The remainder of X* + X2 + X when divided by X>+1=1+X?+X.

The remainder of X*+ X+ X* when divided by

X r1=1X+1+X> =1+ X+ X*

The remainder of y7 4 x¢ x5 when divided by

X H1=1X 41X 41X =X+ X2+ X7

We can now compute the multiplication tables of the rings B (X) / (A" + 1).

The elements of B,(X) / (X% + 1) are the polynomials 0, 1, X and 1 + X

Multiplication by 0 and 1 is trivial. The other products are,

(X}(X) modulo (X2 + 1) = 1
(X1 + X)) modulo (X2 + 1) =X+ X2 modulo (X2 +1)=X+1
(1 +X)(1 +X)modulo (X?+1)=1+X+ X+ X% modulo (X> + 1)
=1+ X2 modulo (X2+1)=1+1=0

The multiplication table for the polynomial of B,(X) / (X* + 1) is given in
Table 1.8.

1+X
0 0 0 0 0
1+X
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X 0 X 1 1+X
1 +X 0 1 +X 1 +X 0
Table 1.8

Identifying the polynomial 0 with 00, 1 with 10, X with 01 and 1 + X with 11, the
multiplication table becomes :

00 10 01 11

0 00 00 00 00

1 00 10 01 11

X 00 01 10 11

X+1 00 11 11 00
Table 1.9

Theorem 1.8

Multiplication by X'in B (X) / (X" + 1) is equivalent to shifting the components of the
corresponding vector in vector space }” over GF(2) cyclically one place to the right.

Proof :
Let p(X) be a polynomial in B (X) / (X" +1),

pX)=by+b X+ I;»_,X2 F ereveeereeeneees + bn_lX”'l and the corresponding vector in
V" = bbby, e b,.; where b €{0,1}.

Xp(X) =D X + DX + DX + v +b, X"

To find out Xp(X) modulo (X” + 1), we need to replace X” by 1. Therefore, Xp(X)
modulo (X" +1)=b,X + B X +5,X", cooovervnraane, +b, X" 4D,

= —1 +b0X+b1X2 +b2X3, ................. +bn_2Xn_l

The vector corresponding to the polynomial Xp(X) modulo (X" + 1) is

b, bbb,y b, , which is the result of cyclic shifting 5,555, .......... b, .

one place to the right.
Definition 1.8

A cyclic code 1s a linear code with the property that any cyclic shift of a code word
is also a code word.
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Consider the (4,2) linear code whose generator matrix is

[to10
G_[OIOI]

The linear code generated by G is {0000,1010,0101,1111}. Note that shifting 0000
cyclically gives 0000, shifting 1010 one place cyclically gives 0101, shifting 0101 one place
cyclically gives 1010 and shifting 1111 cyclically gives 1111. So this is a cyclic code.

In polynomial notation, the code is {0,1+ X2, X + X°,1+ X + X* + X°} . A cyclic shift
to the right can be accomplished by multiplying by X modulo X? + 1. Multiplying 0 by X
gives 0, multiplying 1 + X> by X gives X + X°, multiplying
X + X2 by X (modulo X* +1) gives 1+X? and multiplying 1 + X + X*> + X3 by X (also
modulo X* +1) gives 1 + X + X2 + X3,

Theorem 1.9

A cyclic code contains a unique non-zero polynomial of mimimal degree.

1.4.2 Generator Matrix
Generator Polynomial

The unique non-zero polynomial of minimal degree in a cyclic code is the
generator polynomial of the code.

Theorem 1.10

If ¢eB,(X)/(X"+1) is the generator polynomial for some cyclic code, then
every polynomial in the code can be generated by multiplying g by some polynomial
in B,(X)/(X"+1).

Proof :

Since multiplication by X modulo (X” + 1) has the effect of shifting a code word
cyclically one place to the right, multiplying by X* modulo (X" + 1) has the effect of
shifting a code word cyclically 4 places to the right. It follows that the product g by
X* modulo (X + 1) will be a code word for any k = 0.

Multiplying g by any polynomial is equivalent to multiplying g by various
powers of X modulo (X" + 1) and adding the products together. Since the products
are all code words, so is their sum.

To show that every code word can be generated in this way, note that if the degree
of g is 7, then the polynomials g, gX, gX? .. .., gX* ™! form a basis for the code and
hence that every code word can be generated by taking a linear combination of these basis
elements.
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If the generator of a cyclic code is g(X) =g, +g,X + g3X2 F o +2,X"! the
fact that the polynomials g, gX, gX? ... ..., gX"7! form a basis for the code means that
the generator matrix of the code can be written in the form :

(28 & . & O 0 .. 0]
0 gO gr—l gr 0 0
G= 8 0 ... L L o
0 0 g & - & 0
0 0 0 & - & & ]

G 1s a cyclic matrix {each row i1s obtained by shifting the previous row one column to
the right).

Example 1.18

The following code is a cyclic code.

0000000 1011100 0010110 0010111
1001011 1100101 1110010 0111001

The code word 1011100 corresponds to the polynomial 1+ ¥ + x3 + x*, whichis
the polynomial of minimal degree and hence the generator polynomal.

The generator Matrix
1 01110 0
G=01 01110
c 010111
The generator matrix in systematic form G = [ka(n_ 0 L k] (refer to section 1.3.3)
can be derived by interchanging columns (C,, <> C,,C, <> C5):
1 01110 0
G=11 01010
1 11 0 0 0 1

The parity check matrix H =[I,_, PT] (refer to section 1 3.5) could be expressed
as

0
_ 0
= 1
0

— 000
—_— ey —
— s —
O —

0
1
0
0

Soo-
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1.5 Summary

Several key aspects coding theory with help of abstract and linear algebra are
discussed in this unit. Learners can now appreciate why the encoding and decoding is
required in the context of digital transmission. They can now differentiate between linear
and cyclic code. How these codes are generated along with the parity check matrix.
Learners can now explain how the polynomials of ring and vector spaces are important for
different coding technique. They may use the concepts of this unit while specializing in
information and coding theory in future course.

1.6 Exercises

1. Consider a linear block code C, with parity check matrix given by

H=

'—‘O.—O
Y o Y

What is (n, k) of C ?
2. Consider following binary code block, C
C ={00000,110011,011101,11111}

Show that C can’t be a linear block code? What are the code words those needs to
be added in C so that € becomes a linear code words.

3. Consider a systematic (8.4) code whose parity check equations are
Vo =1y +1ty + 1
V| =y Uy it
Vy =y + i) 1ty
Vy = Uy 1ty + il

where w,, u,, u,, u, are message digits and v, v|, v,, v; are parity-check digits. Find

the generator and parity-check matrix for this code. Show analytically that the minimum
distance of this code is 4.

4. Let H| be the parity matrix of an (#,k) linear code C that has both odd-andeven
weight code vectors. Construct a new linear code C| with following parity-check matrix:

0
0
H-={ H
0
11 1.1
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a. Show that C| is (# + 1, k) linear code, C| is called an extension of C.

b. Show that every code vector of (| has even weight.

c. Show that C'| can be obtained C from by adding an extra-parity-check digit,
denoted v_, to the left of each code vector v as follows :

1) if v has odd weight, then v_ = 1, and

2) if v has even weight, thenv_ = 0

The parity-check digit v__ is called the overall parity-check-digit.

5. Write down the following generator matrix in systematic form. Then write down the
parity check matrix H. Also verify that GHT = 0.

110011
G=011101
1111 11

6. If C be a linear code with both even and odd weight code words then show that
the number of even weight code words is equal to the number of odd weight code words.

7. Write down the following generator matrix in systematic form. Then write down the
parity check matrix /. Also verify that GHT = 0.

00001
G=0 011 1
11111

8. Suppose that the code words of a & -dimensional linear code of length # are
arranged as the rows of a matrix with 2* rows and » columns, with no column consisting
only of “0”s. Show that each column consists of 257! “0”s and 2#! “1”s. Use this to show
that the sum of the weights of the code words is #2%-1.

9. Use the result of the previous Exercise to show that the minimum distance of a &-
nzk—l
2" -1

10. Write down the generator polynomials of the cyclic codes whose generator
matrices are given below :

dimensional linear code of length # is no more than
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11. Write down the generator matrices of the cyclic codes whose generator
polynomials and lengths are given below :

() g(X)=A+X+X*+X°),n=8

(b) 8X)=(1+X>+X°),n=9

12, Construct the parity check matrix of the Hamming code for m = 4, and show that
it is equivalent to the cyclic code with # = 15 and generator polynomial (1 + X + X*).

1.7 Solution & Hints

Exercise 1.1 n=7 k=3

Exercise 1.2 Find all the subsets of code words from the given set C. Total no of

subset by choosing 2 and 3 code words from the set is 4C.'2 +* C; =12 . Check whether

the linear sum of members of each of these subsets is a code word or not. If not, then add
the new code words into the set C to make it linear block code.

Exercise 1.3 The parity matrix H

Exercise 1.4

Part a : The H| is (7 — k + 1) x (n + 1) matrix. Since H is a linear code with
n — k linearly independent rows, the first 7 = & rows of | are also linearly independent.
The last row of /| has a “1” in the first position but the other rows of /| have “0” at their
first position. Any linear combination including the last row of H, will never yield a zero
vector. Hence all rows in H| are linearly independent. The dimension of row space of H,
is (77— k + 1). Since the dimension of the null space of /|, C| we can write using theorem
1.1,

dm (C)=@n+)-@m-k+ 1=k

Therefore, C| is (7 + 1, k) linear code.

Part b : We will prove it by contradiction. Assume there is a valid code vector v of
odd weight. As the last row of /, is an all “1” vector the expression v./{ IT (Adding odd
no of 1 will produce 1) which can’t be true for ant valid code word. Therefore v can’t
be of odd weight.

Part ¢ : Let v be a code word in C. Then v. HT = 0. Extend v by adding a digit
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v_ to its left. This results in a vector v' of # + 1 digits,
V=V V) = (Vo Vs Vs covveens V1)

Since v be valid code word in |, we can write v.H," =0. Considering the last row
of H|, the last component of inner product becomes,

Vo + Vo V| e +v
To satisfy the above equation v_ must be 1if v = (v, ¥, coneeen ,v,_1) has odd weight

and v_ must be 0 if v=(vy, v, .. ,V,,_1) has even weight.

Exercise 1.5

After following sequence of row operations,
1. Ry >R +Ry

2. Ry >R, +Ry

3. R, >R/ +R,

G becomes

10 0 0 1 0
G=(01 0 0 0 1
001100

Which is in [/, - P] form. We can also represent it in [P : /, ] after interchanging the
columns.

So the matrix / can be expressed in the form [PT : 1. ,] as following.

00110 0
H=10 0 0 1 1
01 0 0 0 1
It can be easily checked that GH” = 0.

Exercise 1.6
Let C, = Set of all even weight code words in C
C, = Set of all odd weight code words in C.

x be an odd weight code word in ;. Adding x to each vector in C,, we obtain a
set (', of all even weight vector

Therefore, Ic|=[ci| <|c.|=|Co|<|c.] E1)

Adding x to each vector in C,, we obtain a set (') of all odd weight vector.
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Therefore, IC.|=cs| < [Co| = [C.| < |Co (E2)
From equation (E1) and (E2) we can conclude |C,|=|Cy|

Exercise 1.8 (1st Part)

Every column of the matrix contains at least one non-zero entry. Now consider any
arbitrary column 7. Let S, be the set of code words which contain “0” in i column and
Let S, be the set of code words which contain “1” in i column. Let x be a code word
from S| . Adding x to each vector of S, gives a set 8’| of code words with a “1” in /*

column, Therefore,

1Sol=5i] <[5i] = || <[] (E3)

On the other hand adding x to each vector of S, gives a set S'; of code words with
a “0” in i column, Therefore,

ME

So

<[So| = [51] <So| (E4)
From equation (E3) and (E4), we can say that |S,|=|$;|- Since the i column contains

: 25
2% entry, we can conclude |So| = |51| =5 = 281

Exercise 1.8

The total no of “1”s in the matrix is #2%!1,

Using theorem 1.3 we can write, each non-zero code word has weight at least min
d .. Out of 2* code words one code word has all “0”s. So total no nonzero code words

min

is = 2% — 1. Therefore,

n2k!
k-1

2F-d, <n2 ' =d

o
min —
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2.0 Objectives

After going through this unit the learner should be able to :

® define what 1s a block design?

® understand balanced incomplete block design (BIBD) and its parameters.

® represent the block design in algebraic structure matrix,

design new blocks from old blocks.

define symmetric BIBD and its parameters.

construct symmetric BIBD using different algebraic techniques.

use block design in practical problems,

use abstract and linear algebra as a tool for combinational block design

technique.

2.1 Introduction

Design theory, specifically the combinational design theory, concerns questions

about whether it is possible to arrange elements of a finite set into subsets so that
certain “balance” properties are satisfied. Let us start with following puzzle of seven
golfers to understand the content of this unit.

43
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Golfers’s Puzzle

Seven golfers are to spend a week’s holiday at a seaside town which has two splendid
golf courses. They decide each should play a round of golf on each of the seven days. They
also decide that on each day they should split into two groups, one of size 3 to play on
one course, and the other of size 4 on the other course. Can the groups be arranged so
that each pair of the golfers plays together in a group of 3 the same no of times, and each
pair plays together in a group of 4 the same no of times?

We will see the solution of this problem later. But the important point is to be noted
that, this kind of problem is more recreational than most of the other brunches of
mathematics. Even though combinational design theory that are studied today were first
considered in the context of mathematical puzzles or brain-teasers in the eighteenth and
mneteenth centuries. The study of design theory as a mathematical discipline really began
in the twentieth century due to applications in the design and analysis of statistical
experiments. Designs have many other applications as well, such as tournament scheduling,
lotteries, mathematical biology, algorithm design and analysis, networking, group testing,
and cryptography.

Design theory makes use of tools from linear algebra, groups, rings and fields, and
number theory, as well as combinatorics. In this unit, the mathematical theorems relevant
to design will be discussed with the examples rather than rigorous proofs.

2.2 Definition and Properties of Design

Definition 2.1
A design is a pair (X, A) such that the following properties are satisfied
(1) Xis a set of elements called points.
(2) A is a collection (i.e., multiset) of nonempty subsets of X called blocks.

If two blocks in a design are identical, they are said to be repeated blocks. Because
of this repetition A is referred as a multiset of blocks rather than a set which contains
distinct element. A design without repeated blocks is known as simple design. The order
of the elements in a multiset is irrelevant, as with a set. Balanced incomplete block designs
are probably the moststudied type of design. In this unit, our main focus will be on balanced
incomplete block designs which is known as BIBD, in short.

Definition 2.2

Let v, k, and A be positive integers such that v > k£ = 2. A (v, k, A)- balanced
incomplete block design (which we abbreviate to (v, &, A) - BIBD) is a design (X, 4) such
that the following properties are satisfied
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1) |X|=v.

2) each block contains exactly & points.

3) every pair of distinct points is contained in exactly A blocks.

Property 3 in the definition above is the “balance” property. A BIBD is called an
incomplete block design because & < v, and hence all its blocks are incomplete
blocks. A BIBD may possibly contain repeated blocks if A > 1.

Example 2.1 (Solution of the Golfers’ Puzzle)

One solution of the Golfers’ Puzzle mentioned in Section 2.0 is given in Table
2.1. The players are marked by the numbers 0,1,2,3.4,5,6.

Day of the week Group A(3 Players) Group B(4 players)
Day 1 {10, 1, 3} {2, 4, 5, 6}
Day 2 {1, 2, 4} {0, 3, 5, 6}
Day 3 12, 3, 5} {0, 1, 4, 6}
Day 4 {3, 4, 6} {0, 1, 2, 5}
Day 5 {4, 5, 0} {1, 2, 3, 6}
Day 6 {5, 6, 1} {0, 2, 3, 4}
Day 7 {6, 0, 2} {1, 3,4, 5}
Table 2.1

It can be checked that each pair of group A plays once together and each pair of
group B plays twice together. Therefore, group A is an example of (7, 3, 1)-BIBD and
group B is an example of (7, 4, 2)- BIBD. For the (7, 3, 1)- BIBD we can see :

X =1{0,1,23,456} and 4 = {013, 124, 235, 346, 450, 561, 602}

This BIBD has a nice diagrammatic representation; see Figure 2.1. The blocks
of the BIBD are the six lines and the circle in this diagram. The diagram is known
as Fano Plane which satisfies the axioms of Fano’s (Gino Fano) Geometry.

Example 2.2

A (9, 3, 1) - BIBD, where

X=A(1,2,3,4526 78,9 and
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4
Figure 2.1

A = {123, 456, 789, 147, 258, 369, 159, 267, 348, 168, 249, 357}
This BIBD can also be presented diagrammatically; see Figure 2.2. The 12 blocks of
the BIBD are depicted as eight lines and four triangles. Observe that the blocks can be

separated into four sets of three, where each of these four sets cover every point in the
BIBD.

l1e 2 3je
1 2 3
® . *
4 5 6
4‘ 5 6. ® - (]
7 8 9
7 ———o —8
¢ 8 Yo

Figure 2.2
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Theorem 2.1

Av=1)
k-1

Ina (v 4, A) - BIBD, every point occurs in exactly = blocks.

Proof.
Let (X, 4) -be a (v k A) - BIBD. Suppose x €X, and let r, denote the number of
blocks containing x, Define a set

I.={(v.A4,):yeX,y#x, A, €A {x,y)CA,)

We will compute |Ix| in two different ways.

First, there are v — 1 ways to choose y € X such that y # x. For each such y, there
are A blocks 4,, such that m {x, y} € 4, Hence,

|1.|= 20v-1)
On the other hand, there are », ways to choose a block 4, such that x A ,. For
each choice of 4, there are k¥ — 1 ways to choose ye A,y # x. Hence,
| =r.&-1.
Combining these two equations, we see that
Av=-D=r(k-1).

Hence r, = A=) is independent of x and we denote 7, = r, Therefore,
Lo A=D
(k—1)

The value 7 is often called the replication number of the BIBD.
Theorem 2.2

A -
A (v k A) - BIBD has exactly 52%:%

Proof.
Let (X, A) be a (v k, A) - BIBD, and let b = |A|. Define a set
I={(x,A,):xeX,A,cA xcA,).

We will compute | /| in two different ways.

First, there are v ways to choose x € X. For each such x, there are r blocks A, such
that x € 4, Hence,

blocks.

I=vr
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On the other hand, there are 5 ways to choose a block 4,, € A. For each choice of
A, there are k ways to choose x € 4, Hence,
I=bk.
Combining these two equations, we see that
bk = vr

vr_Avv-1) AV =)
kookEk-D (kK -k

We can also use the notation (v, b, 7, £, A) -BIBD if we want to record the values
of all five parameters.

=>b=

Corollary 2.3

If a (v, k, A)-BIBD exists, then A (v — 1) =0 mod (4 — 1) and Av (v=1) = 0 mod
k(k—1). [Here a = » mod ¢ means the remainder will be same when & and 2 both divided
by c].

For example, an (8, 3, 1)- BIBD does not exist because A(v —-1) = 7 # 0
(mod 2}).

As another example, let us consider the parameter set (19, 4, 1). Here, we see
that A (v — 1) = 18 = 0 {mod 3) but v (v — 1) = 342 # O{mod 12) Hence a
(19, 4, 1)-BIBD cannot exist.

Corollary 2.3 is necessary conditions for existence of a BIBD with fixed values
of v, k and A This means if we find that the corollary 2.3 is not satisfied for the
specific values of parameter v, k£ and A, we can conclude construction of (v, &, A)-
BIBD is impossible. On the other hand, satisfying the corollary 2.3 for the specific
values of parameter v,k and A doesn’t guarantee the existence of (v, k, A)-BIBD. One
of the main goals of combinatorial design theory is to determine necessary and
sufficient conditions for the existence of a (v £ A)-BIBD. This is a very difficult
problem in general, and there are many parameter sets where the answer is not yet
known. For example, it is currently unknown if there exists a (22, 8, 4)-BIBD even
though the necessary condition (corollary 2.3) are satisfied.

2.3 Incidence Matrix

It 1s often convenient to represent a BIBD by means of an incidence matrix.
Definition 2.3

Let (X, 4) be a design where X = {x,, x,, ..., x }and {4, 4, ..., A4,} The
incidence matrix of (X, 4) is the v x » 0—1 matrix M = (ij) defined as
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L x; €A,
(mi,j)— 0 if xig-:Aj

The incidence matrix, M, of'a (v, b, r, k, A)-BIBD satisfies the following properties

1. every column of M contains exactly £ “1”s ;
2. every row of M contains exactly » “17’s ;
3. two distinct rows of M both contain “1”’s in exactly A columns.

Example 2.3
Consider the (9, 3, 1)- BIBD of example 2.2. The parameter for the BIBD is given
below.
X=1{1,2,3,4,5,6,7.8,9}
A = {123, 456, 789, 147, 258, 369, 159, 267, 348, 168, 249, 357}
v=9.k=3,2=1b="20"D 15, 207D _,
k(k—1) (k-1)

The incidence matrix of this design is the following 9 x 12 matrix (Figure 2.3).

A A, A A A A A, Ay Ay Ay A, A,
x[1 0010010010 0]
1 0001 00100T10
x{1 00001001001
xJO1 01 00 00T1O0T1 0
M=x/0 100101000 01
%0 1 0001010100
0 01 1.0 001 00 01
%001 01 0001100
%0 0100110001 0]
Figure 2.3

We can validate that every row sum is 7 = 4 and every column sum is & = 3. The
corollary 2.3 can also be proved from the incidence matrix M.

If we add the “1”s for all rows, then total no “1”s in the matrix M is vr.
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Again if we add the “17s for all columns, then total no “17s in M is bk.
Therefore, equating total no of “1” from the above two count we can conclude,
vr = bk
We can also observe that the intersection of any two rows has a common “1” in A

(in this case, 1) block positions. This implies every pair of distinct points of X are contained
in will A bocks.

We know that, there are (;) ways to choose a pair of points from v distinct points
of set X.

Next we consider the (;) x b pair-incidence matrix
4 4, " 4, 4,
XX, €, €2 Tt € oy €
X3 | €3, €135 Tt €36m €35

XXy | €o-vr Cov-1v2 T €1 Ev-1pvb

Now the every row sum of M is A and there are (V) rows in M.

2

Therefore, total no of “1”s in M for all rows is (5)2 .

k

On the other hand, since any block has & points, we can choose (2

) pair of points

where each pair is associated with that block. Therefore, every column has (lzc) no

of “17s.

The total no of “1” s in the matrix for all columns is (]26) b.

We can write,

R
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=>viv-DA=vr(k-D[. Dk =br]

. Alv-1)

k-1
The same result was also obtained in theorem 2.1.
Corollary 2.4
For every non-empty BIBD, A <r
Proof':
From definition of BIBD we know that, A <v=k-1<v-1= i <1 (1)
from theorem 2.1 we know that,

A k-1__ A
Av-DH=rk-1)=> Pl = " <1 [From equation (1)]

= A<r

2.4 New BIBDs from Old BIBD

A new BIBD can be constructed from old BIBD in two different methods. The
methods are following.

2.4.1 Sum Construction :
Theorem 2.5
Suppose there exists a v, £, 4-BIBD (X, 4)) and a v, k, A,-BIBD (X, 4,). Then
there exists a v, £, 4| + A, -BIBD (X, 4) on the set X.
Proof :

Let 4 = A, W A, be the multiset union of the multisets 4, and 4,. Then A is a multiset
of nonempty subsets of X. We have already seen in Section 2.2 that multiset may contain
repeated block, therefore A can have same block repetitively.

@ Clearly |x|=v

® Turthermore, since every block in 4, contains & points and every block in 4,
contains the same & points, we can conclude that every block in A (union of
two sets each having same & points) contains £ points.

® Let us consider an arbitrary point x, v € X be such that x # y. Then the pair
{x, y} is contained in 4, blocks in 4, and the pair {x, y} is contained in A,
blocks in 4,, so the pair {x, y} is contained in A, + 4, blocks in 4 (can have
repeated blocks as 4 is a multiset.
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® Hence X, Aisav k A + A,-BIBD.

Corollary 2.6

Suppose there exists a (v, &, A)-BIBD. Then there exists a (y; &, s4)-BIBD for all
integers s = 1.

Note that the BIBDs produced by Corollary 2.6 with s 2 2 are not simple designs,
even if the initial (3, &£, A)-BIBD is simple. For (4 > 1), construction of simple BIBDs
is, in general, more difficult than construction of BIBDs with repeated blocks. The
construction process used to prove theorem 2.5 can be used to create new BIBD from
old BIBD.

2.4.2 Block Complementation:

Theorem 2.7

Suppose there exists a (v, b, r, k, A)-BIBD, where & < v — 2 Then there also exists
aWwbb—rv—k b-2r+ A)-BIBD.

Proof:

Suppose (X, A) is a (v, b, r, k, A)-BIBD. Then block complementation is done by

replacing every block A, € A by X\ A, (all other points of X not belonging to 4, .
We will show that new design (X, {X\A4 :A4 € A})is a BIBD.
® (learly the new design has v points since no point has been deleted.
® The new design has b blocks since we have created one block corresponding
to each block of the old design.
® Any block in the new design (X, {X\ A4 : A4 € A}) has been created with
the points which were not there in the corresponding block of old design (X,
A).
Suppose, X ={0,1,2,3,4,5,6}, 4 ={013, 124, 235, 346, 450, 561, 602} Then
the block in the new design corresponding to the block 4, = (013) € A will
be A’ = 2456. Therefore, the new design will have #" = v — & points in every

block.

® Any point x € X of design (X, 4) with parameter (v b, 7, k, A) occurs in »
blocks (4, 4,, ....., 4,). It is clear that x can’t be there in any of the remaining
b—vr(d A .5 . . A,) blocks of (X, A). Now the new design is
constructed in such a way that point x will present in all » — r
(A1, A5y Ay) blocks corresponding to (4, , |, 4, 5, ..., 4;) of old

design (X, A). Therefore, any point x € X of new design will be there in
b — r blocks. Therefore, r' = b — .
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® We need to prove the last parameter A’ of new design is # — 2r + A4,
Let x,ye X,x # y, then considering design (X, 4) we can write,

|Al=b= (4, cA:x.yed,|+|4, cA: x4, . ye A

ml
+HA,cA:xed, yeA |+|4, eA:xyed =D Q)

Define, b :|Am €A:x,ye Am| =4
b2=|AmeA:xeAm,yeAm‘z‘AmeA:xeAm‘—‘AmeA:xeAm‘_yeAm|=r—/1
by =|Am eA:xeAm,yeAm|=|Am €A:yve Am|—|Am cA:xe Am,yeAm|=r—l

by = |Am cA:xye Aml) =
We can rewrite the equation (2) as
b+b,+by+b,=b=> A+(r—-D+(r—-+ A" =b

=>A=b-2r+1

Therefore, we can conclude new design (X,{X\ A : A4, € A}) is a BIBD with

parameters (v, b, b —r, v -k, b—2r + A).

Now if we refer the solution of golfer’s puzzle in table 2.1 of Section 2.2, it can
be verified that BIBD for group B(4 players) with parameters) (7, 7, 4, 4, 2) can be
constructed using block complementation method from the BIBD of group
A(3 players) with parameters (7, 7, 3, 3, 1).

2.5 Fisher’s Inequalities

We have already discussed two necessary conditions for the existence of a
(v, &, A)-BIBD, namely theorems 2.1 and 2.2. Another important necessary condition
is known as “Fisher’s Inequality”. Before we elaborate this, it is important
understand few basic properties of linear algebra.

Rank of a Matrix :
The dimensions of column space or row space (refer to section 1.2.7 of unit 01)
of a matrix i1s known as rank of the matrix.
The following theorem can be proved easily using linear algebra.
Theorem 2.8
If M| M, be the product of matrix A, and M, then
rank(MM,) < min(rank(M,), rank(M.)
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Theorem 2.9 (Fisher’s Inequalities) :

In Any BIBD, b 2 v
Proof.
Let M(v < b) be an incident matrix of a BIBD with parameters (v.b, 7, &, A).

M =[m,.j]where row i = 1, 2, ......., v denotes the no of points and column
j =1, 2, ..., b denotes the no of blocks of BIBD. Let us also define a new
(v * v) matrix M'=MM" = [m,’j] From the definition of matrix multiplication, we
can write,

b .
. _ _Jr when i=j
my = kz_l gty = {)L when [ # j

The matrix,

M =MM" = =(r— I, +AJ,

ooooo

where [ denotes an # X » identity matrix, J, denotes the 7 X »# matrix in which
every entry is a “1”. Subtracting the first column of a matrix from the other columns
does not change the determinant. Hence,

(r A—r A—r A-r .. A-r
Ar—-A 0 0O ... 0
san=7 o 0t 00
A0 0 0 . r-Ai

Adding the other rows of a matrix to the first row does not change the
determinant. Hence,

r+(v-HA4 0 0 O 0
A r-A 0 0 .. 0
0O r-40 ... 0
0

det(M’) = ﬁ 0 0 r—A.
: ; .
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Since the upper triangle of this matrix is all zeroes, the determinant is the product of
the diagonal entries. Thus,
det(M") =[r+ (v -DA](r - A)""
Now (¥ —A4)>0 (form corollary 2.4) and [r + (v = DA] > 0 (- v > 2), det (M) is non-
Zero.
Accordingly, the rank of the (v x v)-matrix MM is v. Since the rank of the
(v x b) incidence matrix M is at most b, and since the rank, v, of the product matrix

MM cannot exceed the rank of the matrix A (theorem 2.8), it follows that v < & or
bz

2.6 Symmatric BIBD :

Definition 2.4

A BIBD in which = v (or, equivalently, » = k or A(v—1)=4k*—k ) is called a
symmetric BIBD. The term symmetric is a poor choice inherited from the statistical
history of the subject. The incidence matrices of these designs are not symmetric
matrices.

Theorem 2.10

Suppose that (X, 4) is a symmetric (v, &, A)-BIBD and denote 4 ={4, 4,, ..., 4}

Suppose that 1<i, j<v,i=j. Then |AfﬂAj|=/1

Proof :

To prove the above theorem first we state few important properties of
determinant and matrices in table 2 2. The reader can refer the book “Linear Algebra
and its Application” by David C. Lay mentioned in the Section 2.11 (Reference and
Further Reading) to proof these theorems.

Property 1 :

If A is an # xp matrix, then det(A) = det(47)

Property 2 (Multiplicative property) :

If 4 and B are # x n matrices, then det (AB) = det{4) det(B)
Definition 2.5

An 1 x n matrix A 1s said to be invertible, if there is an » x » matrix C such
that

CA=1and AC =1
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where /= I, the # < n identity matrix. In this case, C is inverse of 4, which
also is denoted by 471,
Property 3 :

If inverse of matrix A exists then det(4) # 0
Table 2.2
In theorem 2.9, we have already proved that for incidence matrix
det AMAL) > 0
= det(M)det(M”) > 0 [using property 2 of table 2 2] (3)

Also since the design is symmetric, 1t’s incidence matrix is square using property 1
of table 2.2 we can write,

det(Af) = det(M7) 4)
Now from (3) and (4), we can conclude det(Af) # 0, thus M exists [using
property 3 of table 2.2]. Now from theorem 2.9 we get,

MM =(r— DI+ AJ, > MM™M =((r = )1, + AJ )M
= MM™M =((r - D)I,M + AJ M)
= MM M =((r-)MI, +AMJ )y [ IM=MI, JM=MI]
= MM M = M((r— I, +1J,) > MM"M = MMM"

=M MM M=M"MMM" = M"M = MM"

The (i, /)™, entry in the product on the right is A if / # j (refer theorem 2.9)
however this entry in the product on the left is the inner product of columns i and
jof A, ie., it gives the number of elements in common in the two blocks which are
represented by these columns.

2.7 BIBD Construction

We now discuss a method for constructing symmetric BIBDs that uses the arithmetic
of the integers modulo n (Z,).

2.7.1 Method using Difference Set

In this method, the points are the integers in Z , so, to make our notation consistent,
we use v instead of #.

Let v = 2 be an integer, and consider the set of integers mod v ;
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Z,={0,1,2,.....v-1}
Note that addition and multiplication in Z, are denoted by the usual symbols + and *.
Let B = {/,, i,, ..., i} be a subset of Z, consisting of & integers. For each integer j in
Z,, we define
B+j={i+j b+ i+ ]}
to be the subset of Z, obtained by adding j and v to each of the integers in B. The
set B + j also contains k integers. We can prove this by method of contradiction. So let

us assume two integer ip.,i € Z , are found to be the same after adding j mod v to two
integer i p,,i s € Z , respectively. That is,

ly =t =i, +]=i,+]
=1, =i, [By adding the additive inverse j f{ into both side]

The v sets can be formed by
{B+0,B+1,...,B+v-1}
are called the blocks developed from the block B, and B is called the starter.

Example 2.4

we have,

B+0=1{013
B+1={124)
B+2=1{235)
B+3={346)
B+4=1{450} [.. 6+ 1mod(7)=0]
B+5={561

B+6=1{60.2}

Each set in this list, other than the first, is obtained by adding 1 mod 7 to the
previous set. In addition, the first set B on the list can be found from the last by
adding 1 mod 7. This is a BIBD, indeed, the same one in the introductory example
2.1{golfers’ puzzle) in Section 2.2. Since b = v, we have an symmetric BIBD with
b=v=T k=r=3and A =1.

Example 2.5

Letv="7and Z,= {0, 1, 2, 3,4, 5, 6} as previous example. The starting block
B =10, 1, 4}. Then we have,
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B+0=1{0,1,4}
B+1=1{125}
B+2=1{236}
B+3=1{340}
B+4=1{451}
B+5=1{562}
B+ 6=1{60,3}

In this case, we do not obtain a BIBD because, for instance, the pair of points (1, 2)
occurs in one block, while the pair of points (1, 5) is in two blocks.

It follows from these two examples that sometimes, but not always, the blocks
developed from a starter block are the blocks of a symmetric BIBD. Therefore, we
must define additional property so that the development process ensures the design
to be symmetric BIBD.

Difference Set

Definition 2.6

Suppose (G, +) is a finite group of order v in which the identity element is
denoted by “0”. Unless explicitly stated, we will not require that G be an Abelian
group. Let &k and A be positive integers such that 2 < k <v. A (v, &, A)-difference set
in (G, +) is a subset B C G that satisfies the following properties :

(1) Bl=k
(2) The multiset [x — y : x, y € B, x # y] contains every element in G | {0}
exactly A times.

Example 2.6

A4 (7, 3, 1)- difference set in (Z,, +) 1s B = {0, 1, 3}.

Let us first understand the addition and subtraction operation in modulo 7
arithmetic using a 7-hour clock which is marked with 0,1, 2, 3, 4, 5, 6 along its
perimeter (figure 2.3). Let us choose any arbitrary pair of points (x, y) from set B.
Say x = 1 and y = 3. The

Oﬁlitial Position 2 Initial Position

Final Position O
Final Position 0

1+3=4

Figure 2.3
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14+3 means, clockwise movement by 3 steps from initial position 1, therefore, the result
of addition is 4. On the other hand, 1-3 means, anticlockwise movement by 3 steps from
initial position 1, therefore, the result is 5.

Addition modulo (v) Subtraction modulo (v)
Xty X+y if x+y<v v xX—y if xz2y
W (x+ y)ymod(v) if x+yzv ) x+(v-y) If x<y

Table 2.3
In general, the modulo v operations can be written algebraically as mentioned in table

2.3. Now we compute x — y for all pair x, y € B, x # y and note down the result in table
24

- 1 3
0 * 6 4
1 1 * 5
3 3 2 *
Table 2 4

Examining this table, we see that the nonzero integers 1,2, 3,4, 5, 6 in Z,, each occur
exactly once in the off-diagonal positions and hence exactly once as a difference. Hence, B is
a difference set mod 7. All the diagonal entries are marked as “*” to indicate them redundant
asx =y 1s not considered to find out the difference set.

Example 2.7
Let us create the subtraction table (table 2.5) for example 2.5.
- 0 1 4
0 * 6 3
1 1 * 4
4 4 3 *
Table 2.5

We see that 1 and 6 each occur once as a difference, 3 and 4 each occur twice, and
2 and 5 do not occur at all. Thus, B is not a difference set in this case.

Theorem 2.11 :

Let B be a subset of k& <~ v elements of Z, that forms a difference set mod v. Then
the blocks developed from B as a starter block form a symmetric BIBD with

_ k(k—1)

v—1

A
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Proof.

Since & < v, the blocks are not complete. Each block contains £ elements. In section
2.7.1, we have already seen that v sets can be developed by

{B+0,B+1,...,B+v-1}

Therefore, the number of blocks is the same as the number v of points.

Since B is a difference set, as per the definition each nonzero integer in Z, occurs as
a difference exactly same no of times. Let us assume this no is 4. Now total no of ordered
pair from & elements of set B is & (k— 1). This means the subtraction table of B contain
k(k —1) no of differences.

Again total no of non-zero element in Z_ is v —1. Each of these elements is repeated
Atimes as a difference in the subtraction table of set B. Therefore, we can write,

Av-D =ktk-1 = 2 =KD

(v—1)
. . . . k(k-1)
This proves that each nonzero integer in Z, occurs as a difference exactly oD

times in the subtraction table of difference set. Now we show that each pair of elements

of Z isin 2=2%5=1 plocks
(v—1)

Let p and ¢ be distinct integers in Z . Then,
p—q=r#0, and r € Z (by property (2) of definition 2.6)

Now r must be present exactly A times in the subtraction table of set B as a difference.
Therefore, there must be A distinet equation for, X, ¥y € B, where
1 < < A, such that

xj—yj=r:xj—yj=p—q:p—xj=q—yj

Let us suppose, g;=P—X;=>p=g;+X;

Then, g=p-x,+y,=8;+y;

Now since g; € Z, B+g; is another block that can be developed from B. If the

pair (x, y) € B then,(x+g,,y+g,)€B+g; = (p,q)€B+g;

Now since, 1 < j < A, p and ¢ are together in exactly A blocks and the blocks
are denoted by {B+ ¢, B+g, ......,B+g}
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k(k-1)

(v-1)

Thus each pair of elements of Z isin / = blocks.

2.7.2 Quadratic Residue Difference Sets

The difference set can also be formed using quadratic residue Most of the topics of
this section will use different results from number theory. We will discuss them without
rigorous proofs. The reader can refer the books mentioned in the section 2.11 (Reference
and Further Reading) to proof these results.

Quadratic Residue

Definition 2.7
Suppose that a, m(= 2) are two integers and ged(a, m) = 1 {a,m are coprime). Then
we say that a is a quadratic residue modulo # if and only if the congruence

= a(mod m)

has a solutionx € Z_\ {0}, otherwise a 1s said to be non-quadratic residue.

Example 2.8

To find quadratic residues mod 11 we square all the numbers 1. 2, 3,....,10 except 0
of x € Z,, \ {0} and reduce to mod 11(table 2 6)

x 1| 2] 3 al]ls]se] 7] s8] o]0
x2 1| 4] 916|253 49| 64| 81| 100
mod1) | 1| 4] 9| s | 3|3 5] of 4|1
Table 2.6

Therefore, quadratic residues mod 11 denoted by QR(11) is {1,3,4,5,9} and quadratic
non-residues mod 11 denoted by ONR(11) is {2,6,7,8,10}.

Let us now define quadratic residues in a finite field . GF(q), where ¢ is an odd
prime power. The quadratic residues of ' , are the elements in the set

QR(q)={x" :xeF,, x =0}
We will also define
ONR(q) = F, A (OR(g) v {0})
The elements of ONR(q) are called the quadratic nonresidues of F’ .

We will now characterize the quadratic residues and nonresidues in a different way. To
do that let us first define the cyclic group as follows.
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Cyclic Group :
Definition 2.8
A group G is called cyclic if 3x « G such that,

G={x)={x":neZ}.

We say x is a generator of G . (A cyclic group may have many generators.) Although
the list .., x2 x! x% xl. x°, .. has infinitely many entries, the set
{x" . n € Z} may have only finitely many elements. Cyclic groups are Abelian. And
all groups of prime order are cyclic.

We make use of the important fact (which we do not prove) that the
multiplicative group (g ! {0}, *) 1s a cyclic group. A generator of this group, say
, is called a primitive element of the field F ¢ Clearly, an element ® <€ F, is a
primitive element if and only if]

{o":0<i<q-2}=F,\(0}).
Observe that we have not considered i = ¢ —1. This is because according to
Fermat’s Little Theorem, if ¢ be a prime number then we can write,
w9 =1modg

Again »° =1(mod ¢), so we can conclude »7 =»"1(mod g). Since we have
considered the w9, there is no need to consider %! again in the set.
Example 2.9

Consider the field 7. Let us find the primitive element of this field. We have
determined all the powers of each element of /., except “0” in table 2.7. Suppose to
find out 4° (mod 7) we do the following.

43 = 64, now the remainder when we divide 64 by 7 is 1. Therefore, 4° =
1{mod 7).

x x° x! x? X x* x>
1 1 1 1 1 1 1
2 1 2 4 1 2 4
3 1 3 2 6 4 5
4 1 4 2 1 4 2
5 1 5 4 6 2 3
6 1 6 1 6 1 6

Table 2.7



NSOU « GE-MT-31

We can easily check that 3 is the primitive element as 3/ for 0 <i <g -2 generates
all the elements of 7\ {0}. We also find the quadratic residue of mod(7) in table 2.8.

x 1 2 3 4 5

x2 1 4 9 16 25

x*(mod 7) 1 4 2 2 4
Table 2.8

The QR(7) = {1,2,4} and ONR(7) = {3,5,6} Therefore, we can observe that in terms
of a primitive element, o of /¥, the quadratic residues are the even powers of ®, and the
quadratic nonresidues are the odd powers. So, from the example 2.9, we can state the
following result (without proof) :

OR(q) ={0¥ :0<i< ‘32;3}

The cardinality or no of element (#) of this set can be determined by the help of
arithmetic progression in the following manner,
to+(n—-ld=t,
where ¢, is the 7 th element and ¢ is the common difference. Replacing all the
values we get,

04(n-n=12=,-971
2 2

Finally,

% oo q=3] gq-1
(@° :Os:qu} =QT|QR(q)|

Therefore, The OR(g) can be generated from primitive element of £,
Theorem 2,12
Suppose ¢ = 3(mod 4) is a prime power, Then OR(g) is a difference set in
(F +).
Example 2.10
The QR difference set obtained when ¢ = 11 1s an (11, 5, 2)-difference set. We
have already seen in example 2.8 that OR(11) = {1, 3, 4, 5, 9}. Then by theorem 2.12
we can choose that B = {1,3,4,5,9} as a difference set. Then we have,
B+ 0=1{1,3,459}
B+ 1=1{24506,10}
B +2=1{3,5,6,70}
B +3=1{4,6,78,1}
B +4=1{578,92}
B+5={689103}
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B+ 6={79,1004}
B+7={810,0,1,5}
B+8=1{90126

B+9=1{10,1,237}
B+ 10 = {0,2,3,4,8}

It can be checked that } = QT_I =5 1= q4;3 =2 for this symmetric BIBD.

2.8 Summary

The theory and principle of block design with help of abstract and linear algebra are
discussed in this unit. Learners can now appreciate that the technique of block design is
highly dependent on the principle of number theory, abstract and linear algebra. To realize
the beauty of block design, someone should have basic knowledge of these fields. After
studying this unit learners can opt more advanced courses in combinational design.

2.9 Exercises

Exercise 2.1
Find out value of # in a (46, 6, 1)-BIBD (if it exists) and the value of # in a (65, 5,1)-
BIBD (if it exists) ?
Exercise 2.2
Does there exist a BIBD with following parameters
(Hb=10, k=4, v=8and r = 5.
2yb=12, k=4, v=16and r = 3.
3)b=20,k=9,v=18 and » = 10.
Exercise 2.3
Let M be the incidence matrix of a (v, b, 7, &, 1)-BIBD and define a (» < b) matrix

N = MT M. Denote N=|:n,-j:|. Prove that
N = k ifi=]j
710 or 1 ifis]

Exercise 2.4
Consider the squares of 4 x 4 board.
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There are total 16 squares in the board. We define blocks as follows: For each given
square, we take the 6 other squares that are either in its row or in its column (so not the
given square itself). Prove that the design is a BIBD.

Exercise 2.5

Determine the complementary design of the BIBD with parameters
WHb=v=T k=r=3 4A=1
2)b=v=16,k=r=06,A=2

Exercise 2.6

How are the incidence matrices of a BIBD and its complement related ?

Exercise 2.7

Show that a BIBD, with v points whose block size v equals v — 1 does not have a
complementary design.

Exercise 2.8

Show that (21, 5, 1)-difference set in (Z
Exercise 2.9

Show that (15, 7, 3)- difference set in (Z
Exercise 2.10

Develop all the blocks of the symmetric BIBD (11, 5, 2) using the starter block as B

= {0, 2, 3, 4, 8} difference set in (Z,,, +).
Exercise 2.11

Show that B = {0, 1, 3, 9} is a difference set in (Z 5, +), and use this difference set
as a starter block to construct a symmetric BIBD. Identify the parameters of the block
design.

Exercise 2.12
Is B={0, 2,5, 11} a difference set in (Z
Exercise 2.13

Using The QR(7) difference set, generate the (7, 3, 1) symmetric BIBD.

L, P isB=1{0,1,2,4,5,8, 10},

s ) isB=1{0,1,2 45,8 10}.

11°
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2.10 Solution & Hints

Exercise 2.4

Solution :
The squares of 4 x 4 board has 16 squares. This means the no of points
v = 16. Each square has a block defined, therefore, no of block » = 16. Each square

belongs to 6 blocks, since each square lies in a row with 3 other squares and in a column
with 3 more squares. Thus, we also have r = 6. To determine A let us choose a pair of
squares x and y. There are three possibilities :
1. x and y are in the same row. Then x and y are together in the two blocks
determined by the other two squares in their row.
2. x and y are in the same column. Then x and y are together in the two blocks
determined by the other two squares in their column.
3. xand y are in different rows and in different columns. Then x and y are together
in two blocks, one determined by the square at the intersection of the row of x
and the column of y, the other determined by the intersection of the column of x
and the row of y. The following array, where the blocks are those determined by

the squares marked with an asterisk (*), is illustrative :

Therefore, in all the above 3 scenario A= 2. So the design is a BIBD.
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Unit 3 U Symmetry Groups and Color Patterns

Structure

3.0 Objectives

3.1 Introduction

3.2 Review of Permutation Group

3.3  Groups of Symmetry and action of a group on a set
3.4 Colouring and Colouring Patterns

3.5 Polya’s theorem and pattern inventory

3.6 Generating functions for non-isomorphic graphs,
3.7 Summary

3.8 Exercises

3.9 Reference and Further reading

3.0 Objectives

The main objective of the present chapter is to study groups of symmetry and
action of a group on a set, colouring and colouring patterns, Polya theorem and
pattern inventory, generating functions for non-isomorphic graphs.

3.1 Introduction

This chapter presents some interesting applications of abstract algebra to
practical real-world problems. Whereas many applications of calculus are presented
in undergraduate courses, usually no such applications are given in courses on
abstract algebra. The object of this book is to fill this lacuna. It is hoped that this will
make the study of abstract algebra more interesting and meaningful, especially for
those whose interest in algebra is not confined to mere abstract theory.

3.2 Review of Permutation Group

Definition 3.2.1

Let S be a non-empty set. A per mutation of S is a bijective mapping of S onto
itself. A group is called a permutation group on S if the elements of the group are
some permutations of S and the group operation is the composition of two maps.

68
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Example 3.2.1.1

Let X be a non-empty set and let Sx be the set of all bijjective functions of X on
to itself. Since e, being the identity map on Xi is bijective, ¢ S. Thus Sx = . By usual
compositions of function s oi it can be easily verified that (Sx, o) forms a group and
the group is said to be the permutation group on X Let us now consider
permutation on a finite set. Let In denotes the finite set {1, 2, 3, 4, ..., n}. Any
permutation on In is a bijectivemap from In to itself Let Sn be the set of all
permutations on In. Then (Sn, o) forms a group under usual compositions of
functions o. This group 1s said to be the symmetric group on n elements. It is easy
to see that |S, | = n!.
Example 3.2.1.2

Let us consider the group S3, the elements of the group, all the permutations on
L. As the number of bijective functions of /; on to itself is 6, we have |5,| = 6 Now

123 123 123 123
S;={e,a, B,y,0,0), where 62(123), t3":(231), /8:(312), ?’:(132),

3 3 . . .
6 =(£212) g =(_£,22 l)‘ It can be easily verified that under the compositions or
product of the elements of S, viz

doy = (%21 g) 0(% % g) = (é%%) =, (8,,0) will form a group.

Example 3.2.1.3

If < z* such that n 2 3, then the symmetric group §, is a non commutative
group.
Definition 3.2.2

A permutation ¢on/ =1{1,2,3, ... . n} is called a A-cycle or cycle of length
k if there exists distinct elements i}, /,, ..., i, in I such that

a(il):fg, a(f:):fa,a(fa):i4, .......... ,a(ik_l):ik,

a(iy=f and a(x)=x Vxe L \{i, 5,1, ... Vg ).

A k-cycle with &£ = 2 1s called a transposition.
Example 3.2.2.1

3 . .
If & =(¥5 2151 2) 1s a permutation on [, = {1, 2, 3, 4, 5, 6} such that

aly=3,a3)=2,a(2)=5,a(5) =L a(d)=4, x(6) = 6.
Hence « is a 4 -cycle and it is denoted by (1325).
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Definition 3.2.3

Two cycles (), iy, I, ..., i) and (i, j,, j5 ..., J) of S, are said to bed is joint
if {i, iy i s B Y U da dys o Jid = 0.
Theorem 3.2.3.2

Prove that product of two disjoint cycles in §, is commutative.

Proof. Let a=(1,...4,) and B=(j, J,..... j,)be two disjoint cycles.
Claim : (a B{x) = (B o)(x) VxeI, .

Now,
i =i h b
iy h i
ol i p: Je1 P Jy
i, = Je
when y&{ij, i, ... W, when vy {ji, jp. .. s Jid

Suppose x is neither i, ; i

Ax) = x. Hence,
(f)x) = a(/j(x)) =a(x)=x,
(Pa)(x) = fa(x))= P(x) = x.

Suppose now that x is one of 7, ; 7, ; ... . i, Hence, x¢{j, j;,..... fr}. Then
Px=xand ofx) is one of 7|, i, ; ... . 7, Hence, (aﬁ)(x)=a(ﬁ(x))=a’(x) and
(Ba)x)= pla(x))=P(x) as a(x)&j, jy»-er ). Similarly, if x is one of
Jp o s Jp then x @i, iy, ..., iy}, proceeding as above it can be shown that
(af)(x)= f(x) =(Ba)x). Hence, (af)(x)=(fa)x)Vxel,.

Theorem 3.2.3.3

13 By s e gy nor jo o i Then o (x) = x and

Any non-identity permutation « € 5,(n>2) can be expressed as a product of
disjoint cycles, where each cycle is of length = 2.

Proof. Let e S§,,n>2 . We begin by considering 1, @, a(1), (1), till we

find the smallest positive integer » such that «r» = 1 This gives us a r-cycle, say |
such that

a, = (la(ar’()....a ™ (1)).]
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Let i< I, such that 7 is the smallest integer, that does not appear in ;. Then we

consider afi), a*(1), ... so on until we come across the smallest positive integer s
such that ¢ (i) = /. Evidently this gives us an s-cycle, say &, such that

o, = (LD’ @) ... a1 (i),

Before proceeding further, it is to be noted that &, @ been constructed must
have disjoint cycles, i.e.

AW’ (D) ..o ApNdada’()..a’ (D)) =¢.

Indeed otherwise, if (i) = a*(1), for some p, &k with 1<sp<s, 1<sk<r, then we
must have o"'(7) = a(c#(7)) = a(a (1)) = a(a**'(1)) and so on, which in turn
implies that a{ (7)) = e a**(1)) for t = 1, 2.... Now 3  such that p + ¢ = 5. Hence,
for this 7, i = () = of * (i) = &**'(1). This appears that / appears in ¢, a
contradiction to the choice of i. Now if,

(L), ), ..., WYL e, @), ..., (D} = 1,

then we consider the smallest number of In not appearing in the left hand side
union above and continue the same process as before to construct the cycle «;. Since,
In 1s finite, the aforesaid process must terminate after finite steps, with some cycle,
say, o . From the denition of the cycles «, «,, ..., «, it follows that
a=0,00,. .., a,ifollowsthat ¥ =, 00,0 .00,

The uniqueness of the decomposition is treated as an exercise.

Example 3.3.3.4

Any non-identity permutation « € §,(n2>2) is either a transposition or can be
expressed as a product of transposition. (Prove !}

Definition 3.2.4

Any non-identity permutation « €5, is called an even permutation if & can be
expressed as aproduct of an evern number of transpositions and a permutation x < §,
is called an odd permutation if a can be expressed as a product of an odd number
of transpositions. The set of all even permutations in S, forms a group and this group
is known to be the afternating group of degree #, denoted by 4,

It is to be noted that identity permutation is an even permutation. (Justify)

3.3 Groups of Symmetry

In this section we consider the application of group theory to study the
symmetries of a geometrical figure (in a plans or three-dimensional space).
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Definition 3.3.1

Suppose X is a two or three dimensional figure. Then any symmetry of X is
defined to be a rigid motion that maps the figure to itself.

We write Sym(X) to denote the set of all symmetries of X. Obviously, Sym(X) is
a subset of Sn, the set of all permutations of all verticles of X It can be easitly checke
that the composition of two symmetries is a symmetry and invese of a symmetry is
a symmetry. So the following result is obvious.

Theorem 3.3.1

Sym(X) is a subgroup of §_
Remark 3.3.1

The symmetric group Sx is defined for any non-empty set X, but Sym(X) is
defined only for a figure.

Consider the symmetries of a polygon P. (By P we mean the set of points
constituting the polygon.) Let V be the set of vertices of the polygon. It is clear from
geometrical consideration that any symmetry of the polygon must map a vertex to
a vertex.Thus o determines a symmetry o of the set V. Convesley given any sym-
metry p of V, it determines uniquely a symmetry o of the polygon that coincides
with © on the verticlses. Hence we can identify the symmetries of the polygon with
the symmetries of the set of its vertices. In other words, speaking more formally, the
group of symmetries of P 1s isomorphic with the group of symmetries of V. Let us
now consider a regular polygon of » sides (# = 3). Let us label the vertices in
counterclockwise order as 1, 2, ... . i Consider any symmetry © of the set of
vertices. Suppose a maps vertex 1 to vertex i. Then a must take vertex 2 to a vertex
adjacent to i — 1.e, either i + 1 or / — 1. Once o(1) and o(2) are fixed, the mapping
p is completely determined by the fact that it preservesthe distance between very two
points. So if pmaps 2 to 7 + 1, then it must map 3, 4, ... to i+ 2,7+ 3, ...,
respectively. On the other hand, if o maps 2 to i + 1, then it must map 3, 4, ..... to

i—12,i-3, .. respectively. Thus there are exactly two symmetries viz o, and 0, that
take vertex 1 to i. These are given by
_{1 2 3 ... n
Pi ‘(f P+1 042 .. i—l)

{1 2 3 .. =n
Qr“(i i-1i-2 .. 1’+l)

Thus we see that a regular polygon of » sides has a in all 2# symmetries viz o,
Q.i=1 ..n
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The mapping o, preserves the cyclic order of the verticss, but O, reverses the
cyclic order. Geometrically, o, represents a rotation of the polygon abut its cerner

through an angle 2zG-1) and Q, represents a reflection in the diameter lying

2

midway between Verticgs 1 and 7. (By a rotation, we mean a rotation of the polygon
in its own plane. A reflection in a diameter is equivalent to a rotation abou the
diameter through an angle 7, but this rotation takes place in the third dimension and
not in the plane of the polygon.) It is obvious that a o, is the identity permutation,
and Q, represents reflection in the diameter through vertex 1. The identity permuta-
tion is equivalent to a rotation through an angle 2.

The 2n symmetris o, O, i = 1, ... , h, can be expressed in terms of two basic
symmetries. We write @ = p,, f=0,,s0

R VA )

Geometrically, a represents a rotation through angle o and moves each vertex

S . | . 2r(m—1)
itoi+ 1. For any integer m = 1, ..., n, &" ! represents a rotation angle —
hence an ! = om. Further a" B =a™ (1) =m and

a"'B2)y=a" (n)=m—1. Since a symmetry is determined uniquely by its effect
on vertices 1 and 2, it follows that o™ '3 = Q,, - Thus the 2n symmetries are given
by a™ '8, m=1,2,....,n. It is clear that "= e and "= e. Further, consider Sc :

Po1) =B (2) =nand P (2) = B (3) =n - 1. Hence =0, = o"'f. Thus we

have proved the following result.

Theorem 3.3.2
The group G of symmetries of a regular polygon of n sides is given by
G={e o .., B af .., o\

. 2 .
where a represents a rotation through an angle ——, and Srepresents reflection in a

diameter through a vertex. Moreover, the following relations hold in the group G :

a"=e, B =e Pa=a""p

]

Figure 1 : The symmetry group of the figure is C,.
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Any group of 2n elements that has the same structure as the group G above is
called a dihedral group of degree n and denoted by D, That is, we have the following
definition.

Definition 3.3.2
A dihedral group of degree », written DD, is a group of order 21 given by

D ={e.d,...da"" bab,..a"b)
with the following defining relations :
a'=eb?=e, ba=a"b

We have thus shown that the group of symmetries of a regualr polygon of n sides
(n =) is a dihedral grop of degree n. We shall shortly explain the geopmetrical
intepretation of the dihedral groups D, and D, asgroups of symmetries. For the
present, let us observe that D, = e, b, with b2 = ¢, is a cyclic group of order 2. Further,
D, = {e, a, b, ab} has the defining relations @ =e b =e¢, and ba = ab. Hence D,
is 1dentical with a Klein’s 4-group.

If we interpret the elements of the dihedral group D, n > 2, as permutations of
the set {1, ..., n} of vertices of a regular polygon, then D, is a subgroup of the
symmetric group S, In particular, D; has six elements and hence D; = §,. For
n >3, Dn is a proper subgroup of S,.

An equilateral triangle is a regular polygon of three sides. Hence its group of
symmetries is D;. Any permutation of the vertices of an equilateral triangle 1s a
symmetry of the triangle. Hence S; and D, are the same.

Consider now an 1sosceles (but not equilateral) triangle. It has ony one symmetry
b in addition to the identity permutation-namely, the one given by reflection in the
median bisecting the angle between the two equal sides. So the group G of symme-
tries of an isosceles triangle is given by G = {e, 8}, with / = e. As noted above,
G 1s a dihedral group of degree 1.

Consider next the symmetris of a rectangle {other than a square). It is easily seen
that there are only three symmetries &, 5, ¥ in addition to ¢. Geometrically, these
represent a rotation through an angle 7 and refelction in the lines thoruhg the centre
and parallel to the sides of the rectangle. Labeling the vertices as 1, 2, 3, 4 in order,
we can write these symmetries as permutations of the vertices as follows :

a =(13)(24), £ =(12)(34), y =(14)(23).

It is easily verified aff = ¥ = Bor. Hence the group of symmetries of a rectangle
is given by G = {e, &, B, af3}, with the defining relations o2 = e, 82 = ¢, for= af3
So (r is a dihedral grop of degree 2. We can summarize the results proved above with
few examples : The group of symmetries of an isosceles triangle is D,. The group

of symmetries of a rectangle is D,. For any » > 2, the group of symmetries of a
regular polygon of # sides is D, The dihedral group Dn. has a subgroup C, = {e, «,
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..., @1} that, geometrically, consists of all rotrational symmetries of the polygon.

The symmetry group of a geometric figure may be infinite. For example, a circle
has infinitely many symmetries. It can be shown that if the symmetry group G of a
plane figure is finite, then G is either D or C for some ».

Example 3.3.1

Let us now consider the symmetries of three-dimensional geometric objects.
Consider first a regular tetrahedron.Let the vertices be labeled as 1, 2, 3, 4. As in the
case of an equlateral triangle, the distance between every two vertices of a regular
tetrahedron is the same Hence every permutation of the vertices is a symmetry.
Therefore the symmetry group of a regular tetrahedron i1s S4. How many of the 24
permutations in .S, are rotations ? It is clear that by a suitable rotation we can take
vertex 1 to any vertex 7 = 1, 2, 3, 4. Having done that, we can rotate the tetrahedron

bis 4
about an axis through the new position of vertex 1 through angles 0,——, and ——

3° 3
to obtain three symmetries. Thus there are in all 4 x 3 = 12 rotational symmetries.
They form a subgroup of the group of all symmetries of the tetrahedron. The
following table gives the 12 rotational symmetries of a regular tetrahedron as
permutations of the vertices and their geometric description as rotations. The edge 7

— j denotes the edge joining vertices i and j.

Permutations Axis and Angle of Rotation
(I)=e any axis,rotation through angle 27
. 2 4
(234), (243) axis through vertex 1, angles 3 and 3
. 2 4
(134), (143) axis through vertex 2, angles 3 and 3
. 2 4
(124), (142) axis through vertex 3, angles 3 and 3
. 2 4r
(123),(132) axis through vertex 4, angles 3 and 3
(12) (3 4) axis through middle points of edges 1-2 and 3-4, angle &
(13)(24) axis through middle points of edges 1-3 and 2-4, angle 7
(14) (23) axis through middle points of edges 1-4 and 2-3, angle ©
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Example 3.3.2

Let us now consider the symmetries of a cube. Let the vertices of the cube be
labeled 1, 2, ....., 8 such that vertices 2, 3, and 4 are adjacent to vertex 1. Let p € §; be
a symmetry. Suppose o takes 1 to i. Then must take 2, 3, and 4 to the three vertices
adjacent to i, which can be done in 6 ways. Hence there are
8 x 6 =48 symmetries in all. Of these, 24 are rotational symmetries. The vertex 1 can be
taken to any vertex / by a rotation, and then we can rotate the cube around the diameter
through the new position of vertex 1 to obtain three symmetries.

We can arrive at the same result by considering the symmetries of the cube as per
mutations of its six faces. By a rotation, face 1 can be taken to face i (i = 1, ..., 6).
Having done that, we can rotate the cube around the diameter perpendicular to the new

bis 3z
position of the face 1 through angles 2 7and B and obtain three symmetries. Hence

there are 6 x 4 = 24 rotational symmetries. The following table gives a geometric
description of the various types of rotational symmetries of a cube and their numbers.

Axis and Angle of Rotation Number
any axis,angle 27 1
) ) ) 2 4r
axis through opposite vertices, angles 3 and 3 8
. ) 4 4r
axis through centers of opposite faces, angles 5,73 , and ER 9
axis through middle points of opposite edges, angle 7 6

Action of a group on a set

Definition 3.3.3

Let (G, o) be a group and A be a non empty set, then ( is said to act on A if there
exists a function *:Gx A A satisfying

® (g og)ta=g*@g*a

®c*a=av g,g € Gandac A

The mapping * is called a group action of G{or a & action) on 4 and A 1s called
a G-set andwe express it by saying (; acts on 4. Similarly we can define action of
( on A on the right by considering the map from A x G — A satisfying



NSOU « GE-MT-31 77

®a¥(gog)=(a*g)*g

®a*e=avyg,g€CGandae 4
Example 3.3.3

Let G be a group and A be any non empty set. Define * : G x A — A A such
that g *a=a, va e A, g G. It can be easily veried that under *, G acts on A and
A is a G-set.
Example 3.3.4

Let (G o) be any group and take 4 = G. Define *by g *a=g o0a, g €G, a
€ A = G. Then * i3 a group action since

(g og)*a=(g1og)0a=8°(8o@)=g%(gca)=g *(g *a),
e*a=eca=a,vg,8 cG,ac A
Example 3.3.5

Let (G o) be any group and take 4 = G. Define * by g * a =
aogl ge G, ae A Then

(gog)*a=a-(gog) =(aog, H-g" =g *(g*a),

e*a=ace ' =a

Hence, * 15 a group action and is sometimes called as regular action of G on
itself.

Example 3.3.6

Given any nonempty set X, let G be a subgroup of the symmetric group §,. For
any g € G and x € X, we define g * x = g(x). Then it follows from conditions in
Definition (3.3.3) that * is an action of G on X We say in this case that G acts
naturally on X_ In particular, if G is the group of symmetries of a set X of points in
space, then G acts naturally or cannonically on X.
Theorem 3.3.3

If a group (G, o) acts on a set X, then G determines a subgroup of ;. that is
homomorphic image of §,.

Proof. Let & be a group acting on a set X. Given g € G, we define a map
My X — X by the rule M, (x) = g * x Then My is a per mutation of X. Let
x,ye€ X then, () =n,0)=>g*x=g*y=g'*@g*n=g'*g*y=
(glog)*x=(glog)*y=e*x=e*y= x=y Hence, My is injective. Further,
givenye X, letx =g *y Then, 7(x)=g*x=g*(g'on=('*g*y=



78 NSOU « GE-MT-31

e * y. Hence, 1, is surjective. Consider now the mapping ¢ : G — Sy defined as
g1, Let g, # € G Then for all x € X Ugoh(x)=(g0h)*x=g* (h *x)= M,
(1,(x)) = (1, Nx). Hence, ¢(g o 1y = o(g)¢(A) which proves ¢ is a homomorphism.
Hence, /m ¢ is a subgroup of 5, and a homomorphic image of G.

Kernel of an Action
Definition 3.3.4
Let * : G x A — A be a group action, then Kernel of * is defined to be the set
Ker(*)={ge Glg*a=a, vae A}
It can be easily verified that Ker(*) is a subgroup of G

Orbits And Stabilizers
Definition 3.3.5

Let ((, 0) be a group acting on a set 4 under * Let a € 4 be any fixed element,
Then the set

Stab(a) = G, ={ge G| g*a=a}
is called the stabilizer of a in G. Then indeed G, is a subgroup of G(verify!).
Definition 3.3.6
Let G be a group acting on a set A under * For any a € A, let
Orbla)y=Ga={xe Alx=g *aforsome ge G, = {g*age G}.
Then Ga is called an orbit of a under G.
Remark 3.3.2
Since ¢ * ¢ = a(e Ga), orbit of any element of 4 i1s a non-empty subset of A.
Problem 3.3.1
Let (G, o) act on a set A under * For any a, b € 4, definea~ biff 3 ge G,
such that @ = g * b. Show that is an equivalence relation and for any ¢ € A, the
equivalence class of a {denoted by [a]) is the orbit of a in G
Solution 3.3.1
® Reflexivity follows as e *a=a, vae A, thusa~a, vae A
® For symmetry, assume that a ~ b = 3 g€ G, s.2. a=g* b Now g1 *
a=gl*g*bh=(@glogy*b=e*b=b=b~a
® Transitivity is also true. (verify!)
Hence, ~ 1s an equivalence relation.
Let a € A be any element, then equivalence class of a is given by

[a] = {xeA|x~A}={xcA|x=g*A for some gc )
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={g*alg <G}

which is the orbit of a under G
Theorem 3.3.4

Let (G, o) be a group acting on a set X and x € X. Then the index of the subgroup
G . in Gis [G: G] = [Gx|.

Proof. As usual, G = G denote the set of all left cosets of G in G. We define
the map ¢ : & = Gx—)beyq)(g(;)—g X,

Claim : ¢ is bijective. If gG_= hG_, then g Uh e S hence glhx = x and therefore
g *x = g(g'hx) = h * x. This shows that ¢ 1s well-dened. If ¢(gG,) = ¢(hG,), then
g * x =h* x and hence g'lix = x, which implies g2 € G, which implies
gG, = hG_ whence ¢ is injective. If y € Gx, then y = g * x = 0(gG,) for some
g € G. Hence, ¢ is surjective implies ¢ is bijective. Hence the proof.

Theorem 3.3.5

(BURNSIDE THEOREM) : Let G be a finite group acting on a finite set X,
Then the number x of orbits in X under (& is given by

F(g)
|G|z

eeG

where F(g) = |Fix(g) = {x € X| g * x = x} 13 the number of elements in X that
are fixed by g.

Proof. We count in two ways the number of ordered pairs (g, x) € G < X such
that g fixes x. We take

P={(gx)e G =X gx=x}

If g *x =x, then g € G, and x € Fix(g). Hence, given x € X, the number of
elements that fix x equals |G,]. On the other hand, given g € G, the number of
elements in X that are fixed by g equals |Fix(g)|. Hence,

Since, the index of the subgroup G _in G is |G : G | = |Gx], therefore,
1Gel=1G:G.1= 121
|G, |
Hence,
(3.2)

xeX xeX | G |
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Now for any orbit 7' € X/, we have
1

Z|T| |T|

xeT| G | xel
Therefore, since the orbits in X form a partition of X,

1
Y SxeT———X/Glx
516x| TgG | Gx |

Hence, using (3.1) and (3.2), we obtain

-y — F(g)
) |G|ZI |G|Z &

xeX | Gx | xeX geG

3.4 Colorings and Color Patterns

Pattern is repetition of line, form, shape, texture, etc. Since color can create form,
shape, texture it may similarly create pattern. Pattern can be symmetric or a
symmetric.In art and design color pattern plays very significant role. Color patterns
can be found in nature as well as are manmade. Suppose that you are given a graph
G with n vertices and are asked to paint its vertices such that no adjacent vertices
have the same color. What is the minimum number of colors that you would require?
This constitutes a coloring problem. Having painted the vertices, you can group them
into different sets-one set consisting of all red vertices, another of blue, and so forth.
This is a partitioning problem. The coloring and partitioning can, of course. be

AVAVAVAN
WAVAVA

Figure 2 : Equilateral Triangle
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performed on edges or vertices of a graph. The coloring and partitioning of vertices
(or edges) is not performed out of mere playfulness. Partitioning is applicable to
many practical problems such as coding theory, partitioning of logic in digital
computers and state reduction of sequential machines.

A
N

Figure 3 : Isosceles Triangle

/\
JA

Suppose we color each vertex of an equilateral triangle white or black. Then
there are 8 ways in which the three vertices can be colored. Let us refer to them as
color assignments or colorings. We say that two color assignments are equivalent (or
have the same pattern) if one of them can be obtained from the other by rotating the
triangle through an appropriate angle or flipping it over. The second operation-
namely, flipping over-is equivalent to reflection in some mirror line. We then find
that the eight color assignments fall into four distinct patterns, as shown here.

If we consider an isosceles triangle, then we find that the eight color assignments
fall into six distinct patterns.

Finally, if we consider a triangle whose sides are all of unequal lengths, then no
two colorings are equivalent, and hence all eight colorings are distinct patterns. On
the basis of the above examples let us formulate a general problem.

Let |S] = n, whose elements are specified points or parts of some given geometric
figure. Let |7] = m, be the set of m colors. If each element in S is assigned a color
from the set 7. The total number of ways in which such color assignments can be
made 1S mxmx............ xm (n times) = mn. The problem is to find the number of
distinct patterns in which these mn color assignments can be considered. To identify
distinct color patterns, we may use either the weaker conditions i.e. both rotations
and reections or the finer conditions i.e. only rotations. The number of distinct color
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patterns under the coarser (weak) conditions is less than or equal to the number under
the finer (strong) conditions (verify!). From the examples discussed above, the
number of distinct color patterns (7.e. mn) depends both on the numbers m, # and on
the symmetry properties of the under lying geometric figure. The symmetry property
possessed by the figure is directly proportional to the number of equivalent pairs of
colorings and inversely proportional to the number of distinct color patterns.

Let X denote the set of all m-colorings of §. Let & be a group of symmetries of
the set S. The group G acts naturally on the set S. Therefore G also acts on the set
X Given g € 2 G and x € X, gx represents the color assignment obtained by
performing on the coloring x the symmetry operation (rotation or reflection)
represented by g. Two color assignments x and y are equivalent if and only if y = gx
for some g € (. Hence all color assignments that are equivalent to x lie in the orbit
of x under &. Each orbit represents a color pattern. Thus by virtue of the action of the
group G, the number of distinct patterns is equal to the number of orbits in the set
X This number is given by Burnside the orem. Suppose the points in the set § are
coplanar. Then the group of symmetries of S is either a dihedral group

D, = U TN, S S -7 ; A ,ai gy

) 2r . . .
where o represents a rotation through an angle — and Sis the reflection or its
q

cyclic subgroup Cq = {e, o, a? !} consisting of all rotations in Dq.
Problem 3.4.1

Each vertex of an equilateral triangle is colored by one of m given colors. Find
the number of distinct patterns among all possible colorings.
Solution 3.4.1

Since each vertex can be colored in m ways, the total number of color assignments
is m*. The group G of symmetries of an equilateral triangle is the dihedral group of
degree 3 ; thatis, G=D, = {e, a, &7, B, o}, &? 5} where arrepresents a rotation through

2 . .. . . . C e
angle — and Sis a reflection in a diameter. Since, every color assignment is invariant
q

under the identity e; hence F(e) = m*. To find the number of color assignments invariant
under the other elements of G, let us number the vertices 1, 2, and 3. Then & takes
vertex 1t0 2, 2to 3, and 3 to 1. If a color assignment is invariant under ¢, the nall three
vertices must have the same color. This common color can be any one of the s given
colors. Hence there are m color assignments that are invariant under «, so F(&) = m.
The same reason in g applies to ¢2, so F(o?) = m. If Bis the reection in the diameter
passing through vertex 1. Then Stakes vertex 2 to 3 and 3 to 2. If a color assignment is
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in variant under £, then vertices 2 and 3 must have the same color, so vertices 1 and 2
can have arbitrary colors. Hence the number of color assignments invariant under S is
m?. The same argument holds for the other two reflections o8 and &?3. Hence F(f) =
F(af)) = F(?B) = m?. Using Burnside the orem, the number of patterns (that is, the
number of orbits under ) is

K= |1€|{F(e) +F(@)+F(@*)+F(B)+Faf) +F*B)}

= %(m3 +3m? + 2m).

To find the number of patterns under the finer criterion of rotations only, we take
the group of rotations H is

K = L(F(e) +F()+F(a?) = l(m3 +m?).
[H] 3
In the particular case of only two colors, on putting m = 2 in the above results, we
obtain ¥ =x' =4 . In the case m = 3, we have ¥ =10, k' =11.
Problem 3.4.2
A rectangular dining table seats six persons, two along each longer side and one on
each shorter side. A colored napkin, having one of m given colors, is placed for each
person. Find the number of distinct patterns among all possible color assignments.
Solution 3.4.2
For rectangle, the group of symmetries is
G=D,= (e, o, B, o}
where o is a rotation through angle 7z, and Sis a reflection. Let us take to be the
reflection in the line through the center parallel to the longer side of the rectangle. Then
represents the reection in the line parallel to the shorter side. Let us number the six
napkins on the dinning table as follows

1 2
6 3
S 4

Figure 4 : Dining Table
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Then takes napkin 1 to 4, 2 to 5, 3 to 6, and viceversa. If a color assignment is
invariant under the rotation, then the napkins 1 and 4 must have the same color, 2 and 5
must have the same color, and 3 and 6 must have the same color So we can assign
arbitrary colors to napkins 1, 2, and 3. Hence the number of color assignments in variant
under is m*>. Now Skeep napkins 3 and 6 fixed, takes 14 to 5, 2 to 4, and viceversa. If
a color assignment is invariant under 3, then napkins 1 and 5 must have the same ¢olor,
and 2 and 4 must have the same color. So we can assign arbitrary colors to napkins 1, 2,
3, and 6. Hence the number of color assignments invariant under is m*. By a similar
reasoning, we find that the number of color assignments in variant under is m*. Therefore,

by virtue of Burnside theorem, the number of patterns is
1

K=E{F(€)+F(Q)+F(a’ﬁ)}

= é(m6 +m* +2m3).
The number of patterns under the finer criterion of rotations only is
K= %{F(e)+F(a)} = %(m6 +m*).

In the particular case of two colors, we have x =24, " =36.
Problem 3.4.3

A straight necktie in the form of along rectangular strip is divided in to » bands
of equal width parallel to the shorter side. Each band is colored by one of m given
colors. Find the number of ties with distinct patterns.

l2f3(4] [ | [ |n]|

Solution 3.4.3

The group of symmetries of a rectangle is the dihedral group D, But in the
present case the reection in the line parallel to the longer side doesn’t play any role.
The relevant group here is G = D, = {e, &}, where « may represent a rotation
through angle 7z°, or a reflection in the line through the center parallel to the shorter
side of the rectangle. (The two operations are equivalent in this case) If a color
assignment is invariant under ¢, then the bands 1 and » must have the same color,
the bands 2 and » — 1 must have the same color, and so on. In general, the bands 7

and # + 1 — 7 must have the same color. If # is even, we can assign arbitrary colors

i . n+l1
to bands 1, ..., 5 hence F(&) = m*. But if # is odd, the bands 1, ..., — - can
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n+l
2
F(c) = m* . Therefore, by Burnside theorem, the number of patterns is

be assigned arbitrary colors. (The th band is the band in the nuddle.) Hence

1
x=—I{F(e}+ F(a)}
&

"+, if nis even;
R SRy e
E(m” +m ), if nisodd.

Theorem 3.4.1

Let (& be a finite group acting on a finite set 5, let C be a finite set of m elements,
and let X = C° be the set of mappings from S to C. Let g € G be fixed. Then the

number of elements in X(w. r ¢ g) is given by F(g) = m™® \where Ag) is the number
of disjoint cycles (including cycles of length 1) in the cycle decomposition of the
permutation M, of § induced by g. Consequently, the number of orbits in X under the
action of (& is given by

_ 1 Ag)
K== m"%.
ol
Proof. Let g€ Gand fe X If g * f=f, then As) = (g * )(s) = Ag (s)) vsES.
Hence, fig™'(s)) = Ag-1(g(s)) = fis), vs € §.
Conversely, if fig(s)) = fis), ws € S, then (g * /)(s) = Ag™(s) = Agg s =
fs)vs el hence g * f=f Thus f € Fix(g) © fg(s)) =As) vs &l
Let M, be the permutation of S determined by gie. wvse 51 g(S) = gs. Let
N, = &, ... &, be the decomposition of 7, into disjoint cycles. Any cycle in this
decomposition is of the form & = (agag?a ........ g~ \a). If f € Fix(g), then fla) = flga)
= ... Ag ! a). hence fis constant on the elements in the cycle « This holds for
every cycle &, in the decomposition of 1) .
Conversely, if fis constant on every cycle &, then f{g(s)) = f(s), vs € S Hence
Jf € Fix(g) if and only if f is constant on each cycle in the decomposition of 1,
Let f € Fix(g) and £}, /5, f5, ..., f € C be the values of fin the cycles
Oy o, o, respectively. Then f, /5. /5, ... . f; can be chosen in m different ways.
Hence, |Fix(G)| = m"*. This proves the first part of the theorem. The second part of
the theorem follows by Burnside theorem.
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3.5 Polya’s Theorem and Pattom Inventory

Polya’s Counting Theory is a spectacular tool that allows us to count the number
of distinct items given a certain number of colors or other characteristics. Basic
questions we might ask are, “How many distinct squares can be made with blue or
yellow vertices?” or “How many necklaces with # beads can we create with clear and
solid beads? We will count two objects as‘the same’ if they can be rotated or flipped
to produce the same configuration. While these questions may seem uncomplicated,
there is a lot of mathematical machinery behind them.Thus, in addition to counting
all possible positions for each weight, we must be sure to not recount the
configuration again if it is actually the same as another We can use Burnside’s
Lemma to enumerate the number of distinct objects. However, sometimes we will
also want to know more information about the characteristics of these distinct
objects. Polya’s Counting Theory is uniquely useful because it will act as a picture
function-actually producing a polynomial that demonstrates what the die rent
configurations are, and how many of each exist. As such, it has numerous
applications.Some that will be explored include chemical isomer enumeration, graph
theory and music theory.

Let G be a group actingonaset X Let R=0[t, #,, ..., rq] be the set of all
polynomial sin some given in determinates f, £,, ......... , ¢ with rational coeficients.
A mapping o :X > R 1s called a weight function on X under G if @(g(x}) = a(x);
vg € G, x € X If this condition holds, then every element in the orbit 7 = Orb(x)
= Gx has the same weight w(x). The common weight of all elements in an orbit T
is called the weight of 7 and written as @(7). The following theorem, known as
weighted Burnside theorem, is a generalization of Theorem(3.3.5).

Theorem 3.5.1. Let G be a finite group acting on a finite set X. Let ® : X — R
be a weight function on X under G. Then the sum of the orbits in X under G is

> ro(T)=ﬁz > ox)

TeX!G geFxeFix(g)
Proof. From Burnside theorem, let
P={gxeGxX ge=x}

Now, §= 2, o(gx)

{g.x)eP
can be computed in two ways. On one way,

G §=> > a@n=> > o

g xeFix(g) geG xeFix(g)
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On another way,
(5.2) S=> > o@gn=> |Stab(x)|(o(x).
’ xeX  geStab(x) xeX

Since, the index of the subgroup G, in G is |G : G| = |Gx|, we obtain

__lg
|Stab(x)| = Ty
Moreover, by Theorem (3.3.5), for any orbit 7 € X /GG, we have
1
; |Orb(x)| -
Thus, 2 [Stab)]w(x) —qu)
xeX ('X)
Glo(T) =|Glao(T).
“Jolo Y. -1

Therefore, since the orbits form a partition of X, we have
> [Stab(x|o(xy= D D |Stab(xye(x)| =|G| > o).
xeX TeX!/GxeT TeXiG

Hence, from equations (5.1) and (5.2),we obtain

> o(T)= IGIZ > o(x)

TeXIG geG xeFixig)

Remark 3.5.1

In particular, if we take w{x) = 1 for every x € X in Theorem 3.5.1, we recover
the original Burnside theorem. Then (7) = 1 for every orbit T, and so the left-hand
side gives the number x of orbits.
Theorem 3.5.2

(Polya’s Theorem) Let G be a finite group acting on a finite set S having »
elements, let C be a finite nonempty set, and let X = C¥ be the set of all mappings
from S — C. Letw : C — R, and let w : X — R be the weight function on X under
G induced by #. Then the sum of the weights of the orbits in X under G is

Aig)
> ro(T)-l lZ]‘[[ (u(c))’]

TeXIG geG =1
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where A, (g) is the number of cycles of length #(i = 1 . 1) in the cycle
decomposition of the permutation 7, of § induced by g.

Proof. Let g € G and 7, = 04 &, ...... &, be the cycle decomposition of 77,. Let
f € X Then by Theorem (3.4.1), f € Fix(g) < fis constant in each cycle o, Let );
be the value of f on the cycle o Gg=1,2, ... ). Then, ‘

o(f)=TTu(f(s) = H(u(f !

s=8

where 0, denotes length of the cycle o Hence,

D a(fH=D D, ﬁ(u(fj))'a;"

feFixig) fieC feC j=1

Changing the order of summation and multiplication on the right-hand side of the
above equation, we have

Alg)
o(f) -H 3 e ]‘[( 3 (u(c))'}

fEFr\ig) j=l e i=1 \.ceC

where A4, (g) is the number of cycles of length 7 in the cycle decomposition of 7,
G=1, ... . n). Hence, by the weighted Burnside the orem, the sum of the weights
of the orbits in X is

> ro(T)-lGlz 2, o)

TeXiG gelFxeFix(g)

A(g)
(u(c))
1G] ZHLC ]

g oi=1

Remark 3.5.2

In particular, if in Polya’s theorem we take wu(c) = 1 for each
¢ € C, then were cover Theorem 3.5.1.
Corollary 3.5.1

Prove that

(53) 2 ro(ff)-%zr[(rl+1r2+1r3 YA

TeX/!G QEG i=1
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where symbol shave their usual meaning.
Proof. Taking u(c) =1; v C in Polya’s theorem, we have w(7}) =1, y7T &€ X =
G and further assuming |C| = m, we have

] u(c)) %(83}: - e = e
[1] > e [Tom
i=1

=1 \eeC

where )»(g) = Z/L—(g) is the total number of cycles in the decomposition of 77,.
i=1

Now, let C = {c, c,, ... , ¢, be the set of m colors and R=0Q|¢, 1,, ..... , tq| be the
set of all polynomials in some given indeterminates 7, #,, ......... t with rational
coeficients. Let @ be the weight function on X induced by the mapping w:C—>R
withw(c)=1,i=1,2,3, ..., m Then applying Polya’s theorem, we have the desired
result,
Pattern Inventory

Consider a color assignment f: § — C in which the colors ¢, ¢,, ........ , ¢, occur
with frequencies B, B, ........., B,, where S, e Z"(i=1,2,3,.......,m) such that 5, +
B+ . .. +B,=n80B (=123, .. ., m)isthe number of elements s € § such

that flc,) = s. Therefore the weight of f and hence also the weight of the orbit T
containing f are

(D) =w(f)=[Tu(fis)=1t{"....eLn

58

Hence the sum of the weights of the orbits in X is equal to

A B
©6.1) D AT = (B s Bt
TeXiG
where p(3,, B, ... , /3,) denotes the number of orbit shaving the same weight
tﬂ rﬁ , and the summation on the right-hand side is overall m-tuples
B, By oo, B,) of non negative integers such that Zﬁf =1 Equivalently, in
i=1
terms of colorings, p(8,. 3, ........ . 3,) is the number of patterns in which the colors
Clo €3r i ¢, occur with frequenc:les B B , B, respectively. The

polynomial on the right-hand side of equation 6.1 1s a homogeneous polynomial of
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degree # in m indeterminates. We denote it by Py, ;{(f. 4, ........,t,,) and refer to it

i

as the pattern inventory of orbits in X under . Thus the number of patterns with

given color frequencies 5, 5, ......... . 3, is the coeficient of the monomial tlﬁl ,,,,,,, rﬁm
in the pattern inventory polynomial Py(#, #,, ...., ). Equating the two

expressions for Z(O(T) in equations 5.3 and 6.1,we obtain

,L
| | geC f=1
Since Py (7}, 15, ... , £,) 1s a homogeneous polynomial of degree nin 7, ¢, ...,

t . the fact is also clear from the right-hand side in equation (6.2). Since 77, is a
permutation of a set of » elements, the sum of the lengths of the cycles in the

decomposition of My is equal to n, so 2iA(g)=n. Hence every term in the

summation in equation (6.2) is of degree #. Further, P, (¢, 4,, ...... ) 1s symmetric

in the indeterminates 7, £, ......... L,

’}‘H

Cycle Index Polynomial

The result of Polya’s theorem and the formula for the pattern inventory can be
expressed in a more compact and elegant form by introducing the concept of the
cycle index polynomial of a permutation group. Given a permutation ¢ of a set of
n elements, the cycle index of G is defined to be the n-tuple (4, A,, 4, ..., A).
where A, denotes the number of cycles of length 7 in the cycle decomposition of o,
Definition 3.5.1

Given a permutation group G of degree n, the cycle index polynomial of G is

defined to be the polynomial Z in n in determinates 7, ., 7y ......... , ¥, given by
ZG(Fs Fys Fyevvneey Fy) = ZH e
| G Igel” =1
where A(g)i =1, 2, 3, ..., m), denotes the number of cycles of length i in the

cycle decomposition of the permutation. The sum of the coeficients in the polynomial
Z 1s 1. This is a consequence of the fact that the number of terms in the summation
on the right-hand side is equal to |G].

Theorem 3.5.3

Let G be a finite group acting on a finite set S having 7 elements, and let Z (|,
Fos ¥y s o, . ¥} be the cycle index polynomial of G acting on S. Let |C|] = m and
X = Cg be the set of all mappings from § — C. Then
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1. The number x of orbits in X under < is given by
K=Zsmmm,......, m.

2. The pattern inventory of orbits in X under G is given by

Bt ot

m?

Pyiot gty ) = Lglly Htn +

me

14t o).
Proof. Exercise

Problem 3.5.1
Find the cycle index polynomial of S,.

Solution 3.5.1

Here, S, = {(1), (12), (13), (23), (123), (132)}. The identity permutation (1) = (1)
(2) (3) has the cycle index (3, 0, 0). The three permutations (12), (13), and (23) all
have the index (1, 1, 0). The remaining two permutations both have the index (0, 0,
1). Hence the cycle index polynomial of S, is

LZg = %(rf +3nr, +2n).

3.6 Generating Functions For Non-isomorphic Graphs

Intuitively, a graph consists of a set of points and a set of lines such that each
line joins a pair of points. In this section we consider an application of Polya’s
theorem in graph theory. Informally, a graph consists of a set of vertices of which
some pairs (possibly all or none) are joined by line segments or arcs. A formal
definition 1s given below.

Definition 3.6.1

A graph G is an ordered pair G = (J; E), where V' is a finite non empty set and
E C 17, where for any set V, V2=V x V= {(4, v)| 4, v €V, u 6 = v). The elements
of V" are called vertices of the graph G, and the elements of £ are called its edges.

Two vertices a, » in a graph are said to be adjacent if the pair (¢, ») is an edge.
A graph G i1s commonly represented by a diagram in which the vertices are shown
as points or small circles, and two vertices a and b are joined by a segment or an are
if and only if (@, b) is an edge. The positions of the vertices in the diagram and the
shapes of the arcs joining the vertices are immaterial. For example, the three
diagrams below, though they look quite different from one another, represent the
same graph G = (J] £) with

V=Aa b c d}, E={a b),(a c), (a d), (b o), {c, d)}
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d
! b b

Figure S : Graph

A less trivial and more interesting example is provided by the two diagrams
below, which represent the same graph, known as the Petersen graph.

=
9 .‘ :

Figure 6 : Peterson Graph

n)_nn-1 A g
Here, |V2 = [Ej = 5 = there are 2|V| distinct subsets of }2. Hence the

n(n—1)

2
among these, there are several cases of graphs that are essentially a like and can be
obtained from one another by permuting the vertices. Such graphs are said to be
isomorphic. Now we are in a position to define:

Definition 3.6.2

Two graphs G = (V] E) and G" = (V’, E’) are said to be isomorphic if 3 a bijective
mapping f : V — V7 such that v (a, b) € V2, (a, b) & E (fla), f(b)) € E'.

For example, the graphs represented by the two diagrams below are seen to be
isomorphic on taking V' = {l, 2, 3, 4} and V" ={qa, b, ¢, d}, the mapping f: V' — V'
givenbyl > a, 2 —>¢, 3 —>b 4->4d,

It follows from the definition that two graphs are isomorphic if and only if the
irrespective diagrams can be obtained from each other by relabeling the vertices.

number of distinct possible graphs on a given set }” with »n vertices is . But
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Let us now focus our attention to those graphs that are not isomorphic. Our
problem is to find the maximum number of non isomorphic graphs with a given
number # of vertices. For small values of », one can find this number by drawing all
possible unlabeled diagrams with 7 vertices. For example,we can easily see that there
are just four different diagrams of a graph with three vertices, as shown below. Hence
there are only four non isomorphic graphs with three vertices. But this method is not
practical for large values of n.

As we shall see shortly, this problem is closely related to that of counting color
patterns and so can be tackled by applying the theory that we developed in the
foregoing sections. Let X be the set of all graphs on a given set /" of

1
4
a
2 3 c >,
Figure 7 : Isomorphic Graph

AVANE

Figure 8 : Nonlsomorphic Graph

n vertices, and let K = (V }?) be the graph in which every pair (a, b) € }? is
an edge. Given a graph G = (V] E), let us color the edges in the diagram of the graph
K with two colors, say black and white, as follows : If (a, ) € £, we color the edge
(a, b) in K with black, otherwise with white. Thus each graph G on the vertex set
}J" determines a coloring of the edges of K with two colors. It is clear that this gives
a one-to-one correspondence between the set X of graphs on /" and the set of all 2-
colorings of the edges in the diagram of K. In other words, we can identify X with
the set of all two-color assignments of the set 2. Without loss of generality, we write
V={1, ... ,n} and let S, be the group of all permutations of }. The natural action
of § on V induces an action on J2 by the rule o(a, b) = (o(a), o(b)) vo € S and
(a, b) € V2. Two graphs G = (V, E) and G’ = (V, £’) are isomorphic if and only if
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the corresponding 2-colorings of F? are in the same orbit under the action of the
group S, So the non-isomorphic graphs on the vertex set V' correspond to the orbits
in X under S, . It follows that the number of non-isomorphic graphs on V' is equal to
the number & of orbits in X under §, By Theorem 3.4.1, we have

1 b
k=22
n‘creS"

where A_ is the number of cycles (including cycles of length 1) in the cycle
decomposition of the permutation of 72 induced by o.

Theorem 3.6.1
The generating function f (x) for the non-isomorphic graphs on » vertices is
given by

L =ZA+x,1+x%,.......1+x"),

where, N = |F?| and Z(r|, ¥y . F). 18 the cycle index polynomial of the group
S, acting on the set 2, where V'={1,2,3, ... ., n}.

Proof. By virtue of Polya’s theorem, we can find the number g(n, m) of non-
isomorphic graphs on ¥ having m edges, m =0, 1, ..., N, where N = |I?|. Let Z
(1, 72, ..., ") be the cycle index polynomial of the group S, acting on the set }2.
Then the pattern inventory of the orbits in X under S, is the polynomial

P, t,) =Z(t, + b, £ + £y, N 1Y)

The coefficient of the monomial /™™ in this polynomial gives the number
g(n, m) of non-isomorphic graphs having m edges. Since P(¢, #,) is symmetric in
4, t,, it follows that g(n, m) = g(n, N — m). Putting ¢, = 1, #, = x, we obtain the
function

=P x)=Z(0 +x, 1+x% .., 1+xM

The coeficient of x in the polynomial f (x) gives the number g(n, m) of

non-isomorphic graphs on » vertices having m edges, so

N
Lxy=Y glnmx™.
m=0

The polynomial f (x)) is called the generating function for the non-isomorphic
graphs on n vertices. Since g(n, m) = g(n, N — m), it follows that £ (x) is a reciprocal
polynomial.
Remark 3.6.1

To compute the cycle index polynomial Z(#,, 7,,......, #) of S acting on }?2
where V'= {1, 2, 3, ..., n} it is not necessary to consider every in S _ Suppose O,
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© have the same cycle structure. Then they are conjugate elements in the group S, .
Therefore the permutations induced by them on the set }? are also conjugate and
have the same cycle structure.

Problem 3.6.1

Find the generating function f, for the non-isomorphic graphs on four vertices.
Solution 3.6.1

Here V = {1, 2, 3, 4} and therefore 12 = {(1, 2), (I, 3), (I, 4),
(2, 3), (2, 4), (3, 4)} For the sake of conve- nience, let us write the pair a, b as ab.
Then we can write }2? as J2 = {12, 13, 14, 23, 24, 34} The following table shows
a typical permuation ¢ € §, for each possible cycle structure, the number #(G) of
permutations that have the same cycle structure as o, the permutation ¢ induced by
o on }?2, the number of cycles in the decomposition of o, and the monomial
contributed by ¢ to the cycle index poynomial.

o #o) & AE)  [1yN9
e=(l) 1 e=(12) 6 %

(12) 6 (1323)(1424) 4 yiy3
(12)(34) 3 (1324)(14 23) 4 yiy?
(123) 8 (122313)(142434) 2 y3
(1234) 6 (12233414)(1324) 2 Y2Y4

Figure 9: Calculation
Here the cycle index polynomial of §, acting on the set J2 is given by
1
LAYy, V2o V30 Yas Vs V) = ﬂ(yf +9Y7¥3) +8Y; + Yoy
So

f4(x):i{(1+x)6+(1+x)2(1+x2)2+8(1+x3)2+6(1+x2)(1+x4)}.
Simplifying, we obtain

f4(x):1+x+2x2 +3x% +2x* 4 0+ 46

The total number of non-isomorphic graphs is 7,(1) = 11. Or equivalently, by
using Theorem 3.4.1, we can obtain k¥ = 11. Here are the diagrams of the 11 non-
isomorphic graphs on four vertices.
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Figure 10 : Nonisomorphic

Remark 3.6.2
In the above problem, the cycle index polynomial Z(r,, 7., ...... , I¢) of S, acting
on 2 where V' = {1, 2, 3, 4} is replaced by Z(y,, ¥y, ......, Vo).

3.7 Summary

The unit highlights on permutation groups, groups of symmetry and
action of a group on a set. The unit also introduces the concept of coloring and color
patterns. The learner can understand the use of Polya’s theorem to solve problems
related to counting the patterns. The unit also includes the concepts of pattern inven-
tory, generating functions for non-isomorphic graphs which will motivate the learn-
ers to increase their knowledge in their future courses.

3.8 Exercises

1. Product of two cycles may not be a cycle. Justify.

2. The cycles (2435) and (168) are disjoint cycles where as the cycles (4532) and
(138) are not disjoint.

3. Any non-identity permutation o € S, is either an even permutation or an odd
permutation but never both.

4. Let (G o) be any group and take A = G. Define *byg*a=go aogl g
€ G, a € A. Prove that is a group action and is called action by conjugation.

5. Suppose each vertex of a regular hexagon is colored by one of m given colors.
Find the number of distinct patterns among all colorings.

6. Suppose each vertex of a regular hexagon is colored by one of m given colors.
Find the number of distinct patterns among all colorings.

7. Find the generating function for the non-isomorphic graphs on five vertices
and draw their diagrams.
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4.4 Differential equations.
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4.7 Summary

4.8 Exercise

4.9 References

4.0 Objectives

The main objective of the present unit is to study the various aspects on
Applications of Linear Transformations viz Fibonacci numbers, incidence models,

Least squares methods and Linear algorithms.

4.1 Introduction

The main goal of the unit is to help students master the basic concepts and skills
they will use later in their careers. The topics here follow the recommendations of
the linear algebra curriculum study group, which are based on a careful investigation
of the real needs of the students and a consensus among professionals in many

98
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disciplines that use linear algebra. Hopefully, this course will be one of the most
useful and interesting mathematics c¢lasses taken by undergraduates.

4.1 Fibonacci Numbers

The ancient Greeks attributed a mystical and a esthetical signicance to what is
called a Golden Section. The Golden section is the division of a line segment in to
two parts such that the smaller on a to the larger one b is b : (@ + b) i.e.

a b
—
b a+b
Hence &> + ab — »* = 0. In particular, if » = 1, then @ +a—1=0. Thus,

_ -1£V5 J5-1

> The particular value a =

We introduce the sequence of numbers as the Fibonacci numbers, name being
derived from the Italian Mathematician Leonard o Fibanacci, who lived in Pisa. This
problem gives rise to the sequence of numbers viz a,=0,a=1a=1,a =12,
a, =3, ..y ... where thea | =a +a  , n21. This sequence is known as
the Fibonacei sequence and its terms are said to be the Fibonacci Numbers. Now the
question arises : Is it possible to find a simple formulae for finding an as a fuinction
of n ? The answer is in armative sense as demonstrated below. The approach we take
is by means of 2 x 2 matrices.

We write down a sequence of vectors built up from the Fibonacci numbers as
follows :

a a a a
1 2 3 4

a is said to be the golden mean.

Now for all n =2 1,
aﬂ = Oan—l + an
aﬂ+l = an—l +aﬂ‘

This can be written in matrix notation as

FEH 6
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1> VR =1 where A= (0 1)

ie v,=Av 11

kL

Thus A carries each term of the sequence into its success or in the sequence.
Going back to the beginning, we have

v = Ay, .

v, =Av, = A%,

_ — 43
v, = sz A Vo

= = AHtl
Vo Avﬂ A Yy
If we know «a

» ¢, then using the relation 4™v, = v we can find the formula for
a , which is

a = the nearest integer to ——
2

H Jg

[for details refer to [4]].

There are several natural variants of the Fibonacci numbers that one could
introduce. To begin with, we need not begin the proceedings with g, = 0, a, = 1,
a,=1,.... ... we could start with

2
=ba,=a+b, ..., ..,a, =ata .

1 [1+J§J"‘

a =a,a

0 1 2

. {01 . .
The same matrix (1 1), the same characteristic roots, and the same characteristic

. . a
vectors w,, w, (say) arise. The only change we have to make is to express ( b) as

combination of w,, w, . The rest of the argument follows as above.
A second variant might be :
a,=0,a =1a,=c, ... . .a_ =ca +da
. 1 1) F—
where ¢ and d are fixed integers. The change from the argument above would be

) 01y ..
that we use the matrix B = ( d C); it is to be noted that

B an—l — 01 an—l — an — an—l
a, d c/\ a, da,  +ca, a,

If the characteristic roots of B are distinct, to find the formulae for a, we must



NSOU « GE-MT-31 101

i . 0
find the characteristic roots and associated vectors of B, express the first vector (1)

as a combination of these characteristic vectors, and proceed as before.

Example 4.2.1. Suppose that
a,=0,a, =l a=1,a,=a,+2a =3, ... Y

a =a ,t+2a nz2.
n n-1 n-2’

Thus, B = ((2) %) The characteristic roots(eigen values) of B are 2, —1.
(1 (-1 _ _ 0)_1 1
If w, = > w2 =14 , then Bw; = 2w, Bw, = —w,. Also, 1]=zm +—W,, hence
3 3
n _ n 2_ (_1)n+1
v :BnVO:anW1+anW2:2—W1+&W2 —| 37 e |-
" 3 3 3 3 Al Vi
3 3
n 1yt
Thus a, :—2 +(3 D ,n=>0

4.3 Incidence Models

Models used to determine a local prices of goods transported among various cities,
and certain other models used to determine electrical potentials at nodes of a network
of electrical currents and to determine displacements at nodes of a mechanical structures
under stress, all have one things in common. When these models are stripped of the
trappings that go with the particular model, which is left is an incidence diagram as
shown below :

By
N

Figure 1: Incidence Diagram
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What exactly is an incidence diagram? It consists of certain number of 7 nodes and
a certain number # of oriented branches, each of which begins and ends in different
nodes, such that every node is the beginning or ending of same branch. Now the question
is how incidence diagram be represented as mathematical model ? Considering to each
incidence diagram is an incidence matrix such that each column has one entry whose
value is 1, one entry whose value is -1, and 0 for all other entries. To form this matrix,
let there be one row for each node N_and one column for each branch B_. If node N _is
the beginning of branch B, let the (r, s)th entry of the matrix be 1. Otherwise let the (7
5) th entry be 0, indicating that N _is neither the beginning nor the ending of the branch
B_. The matrix of the foregoing diagram is

-11-10 0

1-10-1 0

001 1-1

0 00 0-1
Conversely, given an 7 X s incidence matrix 7, 3 a corresponding incidence diagram
with m nodes N, N, ..., N _ corresponding to the rows of 7 and » oriented branches
B.,B, ... B, correspondmg to the columns of 7. If #th row has —1 in the column s,

then the node Nr is the beginning of the branch B . On the other hand if the rth row has
1 in the column s, then the node Nr, is the end of the branch Bs‘ For instance, the matrix
T given by

1 1-1 0 0
|1-10 -1 0
=10 01 1 -1
0 000 1
is an incidence matrix whose incidence diagram is illustrated here.

Example

In a transportation model, the nodes N of our incidence diagram represent cities
and the branches B transportation routes between the cities. Suppose, bisleriis produced
and consumed n the cities N_and transported along the routes B_such that :

1. For each city N, if we add the rates at which bisleri is transported along the
routes B_heading to the city N _and then subtract therates 7 for routes B _heading
out of city N, we get the difference G, between the rate of production and the
rate of consumption in city N . So for city ¥, since route B, heads in whereas
routes B, and B, heads out, G, =F - F,-F,

2. Ifwe denote P, to be the price of bisleri (per bottle) in city ¥ and E_the price at
the end of the route B_minus the price at the beginning of the route B,3Ja
positive constant R such that R = E_ The constant R_reflects the dlstance
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and other resistance to flow along the route B that will increase the price
difference £ For s =3, the price at the beginning of B, is P, such that R.F; =
E., where £, =P - P,

4.4 Differential Equations

Finding the set of all solutions to the homogeneous differential equation viz

dﬂ v dﬂ—lv
) +an—l n—1
dt dt
1s really the same as finding the nullspace of a linear transformation. The reason
is that the mapping T that maps a function v of a real variable ¢ ie., v(7) to its
derivative 7v = is linear on a vector space & of » times differentiable complex
valued functions v over ¢ Here the derivative of the function

w(#) = a(?) + b(r)i

F e +agy = 0.

ety a8,
is defined as, woa
Let flxy=x"+a_ DS +a, ; A7) being linear on F we can express
the set of solutions to
n n-1
d—:+ n_ld—?:+..........+bov:0.
dt dt

as the null-space
W={veF,|f(Tyv=0}

To determine the null space W of A1), since ATW =0 = TATWw=RKDT(»)=0,
therefore T(W) C W. Let v € W. Let } be the subspace of W spanned over C by the

functions v, Tv, ........ ., "'y Since, AT)v = 0, T"v is a linear combinations of {v, 7¥,
ey, T3, s0 A © V. It follows that 7 maps v, Tv, ..., 7" lv into V, ie.
Vcv

Theorem 4.4.1. Let T be a linear transformations of a finite dimensional vector
space V over a field F of complex numbers and let A7)} = 0, where fx) = (x — a)™!
+ (v - a,)" + ...+ (x — a)"™. Then V is the direct sum

V=V, D&V, (D&....V,T)
where ¥V (7) are the generalized characteristic subspaces

V.(Hh=veV[(T-al)v=0, for somee}.
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Proof. We assume that " # ¢, take & to be the characteristic root of 7, and
(x — b) | Ax). Taking S = T — b, we have V=X @ ¥, where X is the generalised null
subspace
X = {v e2 }§ = 0, for some e}

of S and ¥ =_ §%. To prove this we use the equations

X={veV|Sv=0}, Y=5%
for dim (). Since, §°X = 0, §°¥ = §7°) = $°V = ¥ for such e, the mapping defined
by 5° on X is 0 and the mapping defined by $° on Yis 1 — 1 and onto. So, X n ¥
= {0}. Now let e = dim } and take v € V. Choose w € Y such that $°v = $w. Then
v = (v —w) +w. Since, S(v —w) = 5% - S =0, we get that v € X + ¥ Since, we
know that X n ¥ = {0}, we conclude that }"=X @ Y. The subspace X of V" is non
zero since 5 is a characteristic root of 7. If X =V, then (x — &) | Ax) = V' =V, ()
and we are done. Otherwise, both X and ¥ are nonzero subspaces of lower dimension
than V. Since 7 maps the subspaces X and Y into themselves and A7)X = 0,
ADY = 0, by induction, we get the desired decomposition

Y=Yal(T)(-BYa2(T) ......... @Yak(T).

Moreover, we also have X = V(7), where (x — 8) | fix) and Y (7) = {0}, as

§=7-17is1-1 on Y Renumbering the a_ so that » = a , we get

V=X®Y=V, OV, I....8V, (.

Theorem 4.4.2. The vector space W of n-times differentiable complex valued
solutions v to

d"v d" "y
dfﬂ + n-1 dfﬂ_l +

as the null-space
W={veF|ATw=10}
is n-dimensional over C. Prove that the basis for W is

[t"e%t|l<r<k,0<n,<m -1}

where

n i i "
X" +b, | o+ by, factors as (x— )™ (x- @) (x—a)™.
Proof. Writing vasv=v + ... tv owithv € V. (7),vr, we have

(T-al)"v =0
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For some fixed 7, let us denote a=a v, =w and m =m. Since, T(e*u) = ae"u
+ ¢®Tu for any differentiable function #, we have
(T - alXe®u) = e“Th.
Applying (7 - al) like this for (m — 1) more times,we also have (7 — a, " (¢™u)
= ey

Replacing # by ¢ *w, we have
(T —aly" (" e “w)=e"T" (e “w), le.

(T _ aI)m W= é’me(e_m'W).

So, (T - al)™w is equivalent to 7"(¢"“w) = 0 which in turn is equivalent to the
condition that e *w is a polynomial p(f) of degree less than m. But then w = pe™
holds implies w is a linear combination of e® e ... .. , et

Conversely, the functions ¥, ze* ... . , "1 eat are solutions to the differential
equations (7' — al)” = 0. Since, (x — a)" = (x — a )"r is a factor of Ax), they are also
the solutions to the differential equations A7) = 0.

Since, each solution v € W i1s a sum of functions v, each of which is a linear
combination of

we can say that the set

{te“t[1<r<k,0<n,<m, -1}

spans W. So, W is finite dimensional vector space. As, T a linear transformation
of W, we have A7)W = 0 and

W=W,DHeW,T)®....OW, (T),

where are generalized characteristic subspaces introduced in Theorem 3.4.1
Since, the functions e*”, #%t, ... , ""—1 ¥t are linearly independent elements of

War (1), ¥, | the set

{the“t|1<r<k,0<n <m, -1}
is linearly independent.
Theorem 4.4.3. For any 7 € AM"(C) (collection of all » x # order matrices with

complex entries), x,C”, and fHeR, x(?) = e(“‘«:}rxo is a unique solution of

matrix differential equation x’(z) = 7x(¢) such that x(7)) = x, .
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Proof. Taking f(¢) = e’Txo_, we differentiate the series

f= +rT +I2T2 + +rka +
—xo Fxo 2 xo .......... on ...........
term by term, getting its derivative
iT? Al
W)=0+8xg +——Xg+ et
S e (k-11"°

1T? eIk 7

Since, ¢x has derivative e“x, and !0k = ¢7e 0y  the derivative of the
function x(r) = "0"x_is Tx(s}(Verify). Since, x(z)) = x, , this proves the existence
of the solution. it remains to prove that the solution is unique.

Taking #(#) denote any other solution to the equation x’(¥) = 7x(f). Setting,

(r—1,0T

v=u-e X,, we have

w(1,) = 0. (verify)
To prove # = ¢~y its suffices to show that v = 0, using v(z,) = 0. To the

contrary, let v be non-zero.Taking d > 0 such that 7% is linearly independent on
79 7' ..., T the vector function 7% is a linear combination of v, Tv, ...,
7%y 1t follows that the linear span F of {v.Tv, ........ , 71y} over is mapped to itself
by 7. Let w be the characteristic vector of 7 in J” such that 7w = aw, for some scalar
a. Since, w € V, v/ = Tv and v(z)) = 0, w satisfies the conditions w’ = Tiv and w(Z)
= 0. So, w" = aw. Since the solutions to the dieffrential equations
w (1) = awr (7)
are of the form w (1) = wre“'“‘ro) for some constants r,, w is of the form

wlea{jr—ro‘)

wgea(x—xoﬁ}
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Since, w(f)) =0 = | ... |, it follows w = 0, which contradicts the fact of being
W

ft

w as the characteristic vector and therefore, non-zero. So, our hypothesis that
v # 0 leads to contradiction. Hence the proof.

Theorem 4.4.4, For any 7, and v, v, ..., v_, the differential equation
d"v d" v
dfn + n-1 drn—l

has a unique solution v such that v(r)#,) = v, for 0 <r < n -1, namely, v = u,,
]”0

where u=e TN

v,

Proof. Consider the system of equations

ul 112

U =l

H,  =u,

u, = —bot) —....—b,_u,

of n dierential equations in » unknowns represented by the matrix equation
' = Tu, where T 1s

0 _bo
1
0 *
0..01-b,,

the companion matrix to the poly nomial b, + ... + bn_lx”‘l + x” with the same

coefficients as the differential equations. The condition #” = 7u = v = u| satisfies the
conditions

= W0 1, = v Lu =L
But then,

vin) =o' =-bu —...-b u,lie
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v(n) = —bov(o) — —b VD,

n-1
so by virtue of Theorem 4.4.3, gives the desired result.

4.5 Least Squares Methods

4.5.1 Approximate solutions of systems of linear equations

The system of m linear equations in » variables with matrix equation Ax = y has
a solution x if and only if y is in the column space of 4. What shall we do with an

equation Ax = y such as
6 3\(x \_(2
21/\x,) \2

which has no solution? We can always find an approximate solution x by
replacing y by the vector )" in the column space of A nearest to y and solving Ax =
y’ instead. In case of the equation

6 3\(x \_(2
21)\x, ) \2)
where A = (g f) and y = (%), the column space of 4 is the span R (f) of (f)

[5)-)

as small as possible. we can represent y, y and W pictorially as follows:

is

So, )’ is the multiple )’ = l(f) of (f) such that the length ||y — y'|| =

y =Projy (»)

Figure 2: Projection Diagram
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To get an explicit expression for the y” in the column space W of A nearest to y,
we need to define :

Definition 4.5.1.1. Let # be a subspace of R”, so that " = W & W, and write
y€ R” as ¥, t ), where y € Wand y, € Wt Then ¥, is called the projection of
y on W and is denoted by y, = Proj . (). For W= refer to [2].

: 6 3\ x)_(2
For the equation (2 1)[x}3)_(2)’

we take W to be the span RG) of (‘I’) Then W is the span of (_31) So we get

that

C . . {2} 4
the first term of which is Proj,, (2) = 3

To minimise the length,

-s1={3)-(3)
26
30504

Since, (?) and (_:1,’) are orthogonal we must take tz%to eliminate the term

. . (3)
involving |7}
, 2y ., o {2} _4(3
So the element )* of W nearest to 5] 1s ¥y = Proj,. |5 ~3\/ From the

theorem of Pythagoras, we have that if y = y, + y,, where y, and y, are orthogonal,
then |[y> = |y, |* + |y,|I%, si
en ) H|I°, since



110 NSOU « GE-MT-31

DIF =<3 + 3201 +32 >

:<yl’yl>+<yl’y2>+<y2’y2>
:<y5yl>+<y2’y2>
= |, II* + Iyl
Using this we have,
Takingy =y +y,, withy € Wand y, € W such that ¥, = Proj (v). Then for
w € W, the distance [[y — w||* = (v, —w) + y22||. By Pythagoras theorem, we have
lly, = wli* + I, >
which is minimal if and only if w = y, = Proj (y). Thus we are in a position to
state,
Theorem 4.5.1.1. Let ¥ be a subspace of R”. Then the element y” of W nearest
toy € R'is )y = Proj ().
Given a vector y and a subspace W, the method of going from y to the vector
Y = Proj_(y)in W nearest to y is sometimes called the method of least squares since
the sum of the squares y — »" 1s there by minimized.
Next how to compute Proj  is evident from the following theorem.
Theorem 4.5.1.2, Let ¥ be a subspace of R" with orthogonal basis w |, w
w, and let y € R”. Then

g5 ceeesees

. < VW, > < VY, W, >
Proju(}}):#wl +..... +Awk_
<Wy, Wy > < Wy, Wy >
<YW > <Y, W >
Proof Let W=t W
Then we have,
<hw; > :
LY =YW =YW, > ——————<w,w; >, forl< j< k.
W W, >

So, (y -y} € 2 Wand y, = Proj (y).

The geometrical statement of the above theorem is as follows : the projection of
y on the span W of mutually orthogonal vectors Wi Wy oy W, equals to the sum
of the projection of y on the lines Rw, ..., Rw,.

Problem 4.5.1.1. Suppose that we have a supply of 5000 units of 4, 4000 units
of B and 2000 units of C, materials used in manufacturing products are P and 0, if
we ask:

if each units of P uses 2 units of 4, 0 units of B and 0 units of C, and each units

2’



NSOU « GE-MT-31 111

of O uses 3 units of 4, 4 units of B and 1 unit of C, how many units p and ¢ of P
and On should we make if we want to use up the entire supply?

Solution 4.5.1.1. The system is represented by the equation
23 5000
04 (P)= 4000
01 M/ {2000
5000

2 3
Since, the vector {‘2‘8'88] is not a linear combination of p [8]""?[?] of the

23
columns of {0 4} there 1s no exact solution (p

q) So, we get an approximate solution

01

2 3
(g ) by finding those values of p and ¢ for which the distance from p {OJ + q {?]
0

{5000

4000] is as small as possible. To fullfil the purpose we first find the vector in
2000

2 3 5000
the space W of linear combinations p 8 +tq i‘ that is closest to ‘21888 . This

5000 5000
vector is the projection Proj ‘21888 of ‘21888 on W. Computing this by the

>w <y, W ow, of theorem 4.1.2, where W, and w,

formulae Proj (v) = <v, w, . , W,

1 0
1
are the orthonormal basis w = {OJ , W, = _{ﬂ where ¢ =./17 of W, we get,

(8 ) 8- )

5000
Proj, {gggg}:sooo[ J [ 16, 000] [ 2000]
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1 0
(4 1) =5000{0]+@{4J.
‘ 0 17 11

To get p and ¢ amounts to expressing equation (4:1) as a linear combination

2 3
2500_[§J[ISOOOJ 0 +18000 1
2 17 0 17 11
2 3
of 8 and ?‘Soweget

pZZSOO—[éj[@]:9II.76
2 )17

g=189%9 _ 105882,

Thus our approximate solution is (g ) = (?(1}518@2) Thus using 911.76 units of P

and 1058.82 units of O, the vector representing supplies used is

2 3 5000
911.76| 0 |+1058.82| 4 | = Proj, | 4000
0 1 2000

1 0 5000
=5000| 0 +M 4 |=]423529
0 1 1058.82
So we exactly used 5000 units of 4, 4235.29 units of B and 1058.82 units of C.
In the above example, we found an approximate solution in the following sense:
Definition 4.5.1.2. For any m > »n matrix A with real entries, an approximate

solution x to an equation 4x = y is a solution to the equation Ax = Proj 4(Rm(y)‘
In the above e.g., W is the column space A(R®) of 4 and we found Proj, .,

5000
4000
2000

4.5.1.2, where w and w, are the orthonormal basis of A(R?). Now to find the shortest
approximate solution x to Ax = y, we use the following lemma viz.

]by using the formulae Proj M) = W Wt <vw > w of Theorem

1 2
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Lemma 4.5.1.1. Let W be a subspace of R” and y € R”. Then the element of
y+ W= {y+w we W} of shortest length is y — Proj ().

Proof. The length ||y + w|| of y + w 1s the distance from y to —w. To minimize
this distance from all w € W, we take —-w = Proj_(y), by Theorem 4.5.1.2. Hence the

proof.
Figure 3:

By virtue of above lemma, we get the shortest element of v + N by replacing v
by v — Proj,, (v) = Proj,, (v), where N = Nullspace(A). Since, N* is the column space
of transpose A" of 4, Proj,;,(v) is just the projection Proj AT(Rm)(v) of v on the column
space of 4. So we can find the shortest approximate solution x to Ax = y as follows:

1. Find one approximate solution v to the equation Av = y by any method
(e.g., by the one given above)

2. Replace the approximate solution v by x = Proj AT(Rm)(v).

N = Nullspace (A4)

NL= 4R

= Proj ¢ g(m (V)

Figure 4 :
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Problem 4.5.1.2. Find the best approximate solution to
235 5000
04 4 (x=|4000 |
011 2000
235

Solution 4.5.1.2. Since, the column space of 4 = {g 4 4] = column space of
11

23 py_{911.76
W= |0 4| refer to the Problem 4.5.1.1, the approximate solution (q) :(1058.82)

%

—_ et

23 5000 2
to the equation |04 (p ) =1 4000 |, which satisfies the equation |0
01 )9/ {2000 0

5000

Proj , ®3) [gggg} leads to the approximate solution

p 911.76 23 5000
,— | g |=]1058.82 . 0 4 |v=]| 4000
} 0 0 to the equation 01 2000

23 5000
as 1t satisfies the equation |0 4 (p ):ProjA(Rs\' 4000 |, leads to the
01 )\9 " 2000

approximate solution.
p 011.75 23 5000
v=|q |=]|1058.82 : 0 4 |v=| 4000
K 0 to the equation 01 2000

235 5000
it sati ion | 0 4 4 |x=Proj, .. | 4000 |.
as it satisfies the equation 01 1 ARY 3000 So, to get the best

approximate solution, v is replaced by v = Proj (v),
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911.76 235
where v = | 1058.82 |, N = Nullspace 044

0 01 1

-1
Since, N {rw |w = [1] r being any scaler} (verify), we replace v by

v = Projy(v)=v- <hw>

<W, W
911.76 . _ -1 254.90
=|1058.82 |- 011.76-1058.82 —1|=| 401.96
0 3 1 656.86

911.76
The approximate solution | 1058.82 | has length 1397.29. New approximate
0
254.90
solution ggégg has length 811.18, a substantial decrease in length.

Theorem 4.5.1.3. Let 4 bean mn matrix with real entries and let y ¢ R™. Then
Ax = y has unique best approximate solution x. Necessary and sufficient conditions
that x be the best approximate solution to Ax =y are

].. Ax = PrOJA(R“) 0’),

2. x is in the column space of AL, transpose of 4.

Proof. Suppose that u and v satisfies the above two conditions stated in the
theorem. Then the vector w = v — # is in the nullspace N of A, since

Aw = Av—Au=Proj, p.,(¥) = Proj , p.,(¥) =0

Moreover, w L &, since # and v are in the column space of AT Since, w € N,
wlw=2w=0=uy=yv

4.5.2 The Approximate Inverse of an m x n matrix.
Few well-known results
1. Any m>#n matrix 4 such that the equation Ax = y has unique solution x € R"

for every y € R™ is an invertible # x » matrix.
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2. For any m>#n matrix A with real entries the equation 4x = y has the unique best
approximate solution x € R" for every y € R™.

What, the, should we able to say ?

Let us denote the shortest approximate solution to Ax =y by A™(y), ¥y R™.
By Theorem 4.5.1.3, this means that 47(y) is an unique vector v € R” such that
1 Av = Proj AR ),

2. v is in the column space of AT, transpose of 4.
Theorem 4.5.2.1. Prove that the mapping A~ : R” — R” is linear.
Proof. Let y, z € R” and ¢ € R, we have

AA(Y) + A(2) = A47(y) + A47(2)

= ProjA(R,.)(y) + Pr OjA(R“)(Z)

= Proj ) (p + 2)Verify)
2. A(y) + A(2) is in the column space of AT, as A(y) and A(z) belongs.
It follows that A(y + z) = A(y) + 47(z). By similar reasoning we have,
1. A(cA™ () = cAA—(y) = cP’"OfA(R»)(y) = me‘q(R»)(cy),
2. cA"(y) is in the column space of AT,
From this it follows, A7(cy) = c4™(y).
Since, every linear map has a matrix representation, therefore, A™ is # x m matrix.
Definition 4.5.2.1. For any m * » matrix A with real entries, we call the # x m

matrix 4~ the approximate inverse of A, since A (y) i1s the shortest approximate
solution x to Ax =y, vy The approximate inverse is also called the Pseudo Inverse.

Theorem 4.5.2.2. Prove that A4~ = IF OjA(R,.) and A4 = Pr Of‘qr(R") .
Proof. Since, A- maps y to the shortest x suchthat Ax = Proj ar(r'), A4” maps

yto Proj A(r") (7). And since 4 maps x or y where upon A~ maps y to P "OJAT(R») (x),

|

5000 23 p 5000
. : : - | 4000 04 ( ): 4000 |.
and use it to find the shortest approximate solution A 2000 of o1\ 2000

A™A maps x to meAT(R») (x).

SO
— =t

Problem 4.5.2.1. Find the approximate inverse A— of the 3 x 2 matrix 4 = [
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1Y {0) (O 23
Solution 4.5.2.1. The projections of {0} [B]’ {OJ on the column space of {g ﬂ

0 1
1
0|,
are |

are

Slesk @

—

34
I
7
23
Since, column space of the transpose 041 is R the projections of

e ()
Js(

—_
Ora—

1INy (-2 2
[6][ EJ[ }41 on the column space of the transpose of {8

17

[Nl 00}
—_

2~
:|'P-:|c\
I
Sl
M

5V (_3
[ f}[ 114J themselves., So, theapproximate inverse of {
17 17

and the shortest approximate solution of

23 5000
0 4 (p)= 4000 is(p)=(9“'76)
01 1\d 2000 q 1058.82

4.5.3 Solving a matrix equation using its normal equation

Till now, we have found approximate solutions to Ax =y and computed approximate
inverse of A directly from the definitions. Now the question arises, are there any better
methods ? Fortunately, we can find the approximate solutions x to Ax = y by finding
solutions x to the corresponding normal equation 4"4x = 4"y A" being the transpose of
A. In most applications, finding solutions to 474x = 4"y is easier than finding the
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approximate solutions to Ax = y directly. One reason for this is that AT4 is an # * n
matrix when 4 is an m x » matrix. So, if # < m, which is true in most applications. 474
is an 7 * » matrix which is of smaller size than 4 which 1s an m x » matrix. Another fact
is that A4 is symmetric, so similar to a diagonal matrix.

Why can we find approximate solutions x to Ax = y by finding the solutions x
to the corresponding normal equation A Ax = ATy ?

Theorem 4.5.3.1, Let y € R™. Then,

1. The approximate solutions x to Ax = y are just the solutions x to the
corresponding normal equations A 4x = ATy,

2.x=Ay & ATAx = ATy and x is in the column space of 4T

Proof. The condition Ax = Proj m )(y) on the element Ax of the column space A
is that y — Ax be orthogonal to the column space of 4, i.e., that AT(y — Ax) = 0. But
this is just the condition that s be a solution of 4T4x = 4Ty, Further, that x to be the
shortest approximate solution Ax = y is, by Theorem 4.5.1.3, equivalent to requiring
that x be in the column space of AT, Hence the proof.

Theorem 4.5.3.2, If the columns of 4 are linearly independent, then the matrix
A4 is invertible.

Proof. Since, A4 is a square matrix, it is invertible if and only if its nullspace
is 0. Let us choose x in such away that AT4 = 0, its suffices to show that x = 0.
Multiplying by xT, we have 0 = x"4T4x = (4x)"(4x), implies ||4x]| = 0 = 4x = 0.
Since, the columns of A are linearly independent, it follows that x = 0.

Corollary 4.5.3.1. Suppose that the columns of A4 are linearly independent. Then
for any y € R™ there is unique approximate solution x to Ax = y, namely,
x=ATA T ATy

Proof. If the columns of 4 are linearly independent, we know that ATA is
invertible (by theorem 4.3.2). Since, by theorem 4.3.1, x is an approximate solution
of Ax = y if and only if x is a solution of ATAx = ATy, it follows that x is an
approximate solution of Ax = y if and only if x = (44 '4Ty.

It is very useful to have the explicit formulae 4~ = (474)™'4" for the approximate
inverse of 4 in the case that the columns of 4 are linearly independent. Is there such
a formulae in general ? The answer to this is that, for a rectangular matrix [4]
where #» < m and the columns are linearly independent, the approximate inverse of
A denoted by 4™ is defined by A~ = (474)'4"

23

Example 4.5.3.1. Since, the columns of A = [8 f] are linearly independent, the
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approximate inverse of A is

-1
4 _|[200 33 200\ {46\ 20
“Ba)|gt]] BBar)le2e) 34
113 -3\200\_(3 -7 %
3413 2/\3 41 0% 11_7

which agrees with our calculation of A~ of the preceding section.

4.5.4 Finding Functions that approximate data
In an experiment having an input variable x and output variable y, we get output

values y,, ..., y_ corresponding to the input values x,, ..., x from data generated
in an experiment. We then seek to find a useful functional approximation to the
mapping y, = Ax y =1, 2, ..., m, i.e. we want to find a function such as y = ax?

+ bx + ¢ such that y_and ax’ + bx_+ ¢ are equal or nearly equal for r =1, 2, ...,
m. If we seek a functional approximation of order », ie. a function of the form
y=px)=c¢,tex+.. + cnx”, how do we choose the coefficients ¢, ? We write
down the equations

. B
CoH Xy, + oo +C X0 =V,

i nem
considering x°_ as the entries of the coefficient matrix 4 and the ¢_as the
unknowns. Thus we find the approximate solution

n
€ DX oo Xo |G (Yo
N 17 O S| ¢ |[for example by calculating the
Cn 1 'xm x::} ¢, ym
1 Xy o o Xg o Yo
approximate inverse 4" of 4 = |: : ¢ i ¢ |andletting | : |=A4 | : |. The
L C ‘?
1 Ky oo e Ky n B

functional approximation y =p(x} = ¢, + ¢ x + ... + ¢ x" for the mapping y = fix )»
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=1,2,.... , m that we obtain in this way is the polynomial p(x) of degree » for which
the sum of the squares (y, — p(x))’ + ... + (v, — p(x )} is as small as possible. This
method of finding functional approximation is often called the method of least
squares.

Example 4.5.4.1. In a time study experiment that we conduct to find a functional
relationship between the duration x of the tea break (in minutes) and the value y(in
lakhs of rupees) of the work performed the same day by a group of employees, tea

breaks of Xy =10, x, =15, x, =21, x;=3

minutes duration and the values y, =10,y =14, y, =13, y, =10

of lakhs of rupees worth of work performed were observed on the four
successive days of the experiment. We decide to analyze the data by two ways viz
first-order approximation and then use it to get second order approximation.

1. To begin the first-order approximation, we first get the general approximate

solution to
o ()- s
1 xi'ﬂ Cl y m

This is

Yo Yo 1 x
(COJ=AT Sl=ATA)AT] V|, where A= ¢ ¢ | e
“ Vo Vo L ox,

1x, Y] ,

[cojz (1 1 ] ;o [1 e 1 ] Y0

cl Yoo )\ ] 5 Xo X )|y
_{m+1 LY Ly (o) fm+1 1x) {1y
x1 xx) \xy a x1 xx} \xy)

1
where 1 = {J and # . v denotes < w, v >, In the time study » = 3 and we have

x 1=10+15+21 +5=5]
X x =100 + 225 + 441 + 25 = 791
1.y=10+ 14+ 13 + 10 = 47
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x.y =100+ 210 + 273 + 50 = 633.

So,
e _(m.+1 1.x)‘1(1.y)_(4 51 )“(4?)
) \xl xx) \xy} \51 791}) 1633
_ 1 {791 —51\'{ 47\ _(8.69
“Se3t-51 4 ) 1633171024

and we find that the linear function y = 8.69 + 0.24x is the approximation of first
order Let’s see how it approximates :

X 10 15 21
actual y 10 14 13 10
approximating y = 8.69 + 0.24x | 11.57 | 1229 | 13.73 9.89

2. For the second order approximation, the general solution to

Lxo %5 )(co) (%
: : : Cl =] :
1 X xi G Yon
C 42
AT Ay AT Yo xo x5 |
is ATAY A Jwhere A=|: @ @ |ie
Vn Vi L x, x,
5 37!
C 1 xo xo 1 e 1 )'10
is given by Y P X X ||
. z . x2

C

[COJ m+l Lx Lx° | (Ly 1

2 : :
But then | €1 |~ x;I rx o xx xy b=
Cs 1 xix xta’ Xy 1

&) (4 51 791 Y 47
o |a [=]51 791 13,761 633 |.
“ley) 1791 13,761 255231) 110,133
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For these ¢, ¢, ¢, the approximation of second order is the quadratic

polynomial y = ¢, + ¢ x + czxz‘

Theorem 4.5.4.1. The matrix 4 = 1 S is invertible if and only if the

Xgo X5 ooy X are all distinct.

Proof. If two of the x_are same then the two rows will be identical and hence,
the matrix will not be invertible. Suppose, conversely, the matrix A is not invertible.
Then the system of equations

cptex, t .. tex =y,

n o m

CO + clxm Tt cnxnm :ym

€o
has a non-zero solution | : |, 7.e. 3 a non-zero polynomial p(x) = ¢, + ¢ x + ...

C!I

+ cnx" of degree # which vanishes at all of the # + 1 numbers Koo Xpo voes X Since
the polynomial p(x) of degree » has atmost » roots, two of the x_are equal.

4.6 Linear Algorithms

Now that we have the theory and applications behind us, we ask | How can we
instruct a computer to carry out the computations? So that we can get into the subject
enough to get a glimpse of what it i1s about, we restrict ourselves to a single
computational problem-but one of great importance the problem of solving a matrix-
vector equation Ax = y for x exactly or approximately, where the entries of 4, x, and
y are to be real. To instruct a computer to find x for a given 4 and y, we simply find
a mathematical expression for x and devise an unambiguous recipe or step by step
process for computing x from the expression. We call such a process analgorithm.
How do we choose a particular algorithm to compute x? Many factors may be
involved, depending on the uses that will be made of the algorithm. Here we want
to be able to solve Ax = y without knowing anything in advance about the size or
nature of the matrix 4 or vectors y that we are given as input.

The algorithm that plays the most central role in this section, the row reduction
algorithm discussed in section (5.2) may come about as close to satisfy ing all four
of the foregoing properties as one could wish. It 15 simple and works for all
matrices. At the same time 1t is very fast and since it uses virtually no memory except
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the memory that held the original matrix, it 1s very efficient in its use of memory.
This algorithm, which row reduces memory representing an ordinary matrix into
memory representing that matrix in a special factored format, has another very
desirable feature. It is reversible ; that is, there is a corresponding inverse algorithm
to found orow reduction. This means that we can restore a matrix in its factored
format back to its original unfactored format without performing cumbersome
multiplications. To solve the equation Ax = y exactly, we use the row reduction
algorithm to replace A in memory by three very special matrices L, D, I/ whose
product, in the case where no row interchanges are needed, is A = LDU. If rank
A =r, Lis an m x r matrix which is essentially lower triangular with 1’s on the
diagonal (its rows may have to be put in another order to make L truly lower
triangular), D is an invertible # x » matrix, and U/ is an echelon r * » matrix. The
entries of these factors, except for the known 0’s and 1’s, are nicely stored together
in the memory that had been occupied by A. So that we can get them easily whenever
we need them, we mark the locations of the 7 diagonal entries of D).

Example 4.6.1. When we apply the row reduction algorithm to the matrix

61218 0
A=12 9 6 10|
37107

from which we extract the matrices

I =

P [t e P
th|— - []

Solving Ax = y for x now is reduced to solving LDUx = y for x. To get x, we
simply solve Lv =y, Dw = v and Ux = w. These equations are easy to solve (or to
determine to be unsolvable) because of the special nature of the matrices L, D, U
So in this way, we get our solution x to Ax = y, if a solution exists. When we are
done,we can reverse the row reduction to restore the matrix 4. This amounts to
multiplying the factors L, D, U to get her in a very efficient way, getting back
A = LDU. This is of great importance, since we may, with in a small time frame,
want to go back and forth many times between the unfactored and factored formats
of the matrix. After discussing this, in Sections 4.5.2 through 4.5.3 we go on to
develop an algorithm for solving 4x = y approximately. This algorithm also finds
exact solutions, if they exist, but not as efficiently as does the algorithm for finding
exact solutions. Here the algorithm replaces the matrix 4 by a factorization 4~ = JTK
of its approximate inverse, where J/, in the case where no row interchanges are
needed, is upper triangular. Solving Ax = y approximately for x now is reduced to
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solving x = /'Ky, which we solve in two steps z = Ky and x = Jz. Finally, we
illustrate how these algorithms can be used to build a computer program for solving
Ax =y and finding the exact or approximate inverse of a matrix A.

4,6,1 The LDU Factorization of A

For any m x n matrix 4 and vector y € R™), solving the matrix-vector equation Ax
= y for x € R which amounts to reducing the augmented matrix [4, y] to an echelon
matrix [U/, z] and solving Ux = z instead. Let’s look a gain at the reason for this, so that
we can improve our methods. If A/ is the product of the inverses of the elementary
matrices used during the reduction, a matrix that we can build and store during the
reduction, then A/ is an invertible m < m matrix and [MU, Mz] = [A, y]. Since Ux =z if
and only if MUx = Az, x is a solution of Ux = z if and only if x is a solution of Ax = y.
From this comes something quite useful. If we reduce A4 to its echelon form U/ gaining
M during the reduction, then A = MU and for any right-hand-side vector y that we may
be given, we can solve Ax = y in two steps as follows:

(1) Solve Mz = y for z.

(i) Solve Ux = z for x.

Putting these two steps together, we see that the x we get satisfies

Ax =MUx =M=y,

If no interchanges were needed during the reduction, Af is an invertible lower
triangular matrix. So since U 1s an echelonmatrix,bothequations Az = y and Ux =z
are easy to solve, provided that solutions exist. We have already seen how to solve
Ux = z for x by back substitution, given z. And we can get z from Mz =y, for a given
¥, using a reversed version of back substitution which we call forward substitution.
Of course, if interchanges are needed during the reduction, we must also keep track
of them and take them into account.

How do we find and store M so that 4 = MU ? Let’s look at few examples:

6128 0

Example 4.6.1.2, Let’s take 4 = {% g 160 I?,OJ (unfactored format for the matrix

A), and row reduce it to an echelon matrix /. As we reduce 4, we keep track of
certain non zero pivotentries a, and for each of them, we store each multiplier

f
a_q(f > P) as entry (7, q) after the (1, ¢) entry has been changed to zero as a result
rq

a&‘ af
of performing the operation Add {r’ p ;_a_qJ means Row (7) + {—a—qRow( p)} . The

Pq Pq
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1 1 1
row operations Add [ll;_g]aAdd [3, 1;_5}Add [3’2;_§J reduce A to the upper

612 18 0

triangular matrix }* = [8 S ? 150} If we write the pivot entries used during the

reduction in bold face, the successive matrices encountered in the reduction are

612180)(6 1218 0 12180] (612180
296105 5010350103 5010
37107){3 7107 1

117 T 15

These matrices successively displace 4 in memory. The upper triangular part of
the last one,

[JEY R Y o

6128 0
1
3 ? 0 10 {(LVfactored format for A),
> 35 15
61218 0
holds V' = 8 (5) ? 150 where as the lower part of it holds the lower entries
100
of the matrix of multipliers L = | § 1 O |. Qur Claim : A = LV. Of course, it is easy
11y
25

to compute the product to check that 4 = LV. To see why A = LV, however, note also

1 1
that if we were to apply the same operations Add (2, I; —gj Add [3, L; —5] Add

1
[3, 2 _E]’ to L = I, implies that L can be gotten by applying their inverses in the

opposite order to /. So

L= Add[z, I l] Add[?»,l; l] Add[3,2; l]l
3 2 5

Lv= Add[z, I %} Add[3, I %J Add[S,z; é}v _a
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612 18 0

Going on, we can factor } = [8 8 ? 150J by taking the matrix of pivots

600 1230
D= 10501 24d the echelon matrix U =D7'=|0102]|. So we get the
001 0015

factorizations V= DIJand A = LDU :

612180 6001230
0 5010(=050)0102
0015 0o01)A0015

612180 [100) 6001230
05010[=[L10]050|0102
0015) |110f001/0015

Of course, we could do this directly, starting from where we left off with the

6121890
5 0 10| Simply divide the upper entries (entries above the main

1
L1s

diagonal) of V, row by row, by the pivot entry of the same row to get the upper entries
of U, to get

matrix %
1

[o¥]

12 18 0
0 10
1 5

—_

(LDU factored format for 4).

| = O
w

1
5

So not only have we factored A = MU, but our M comes to us in the factored
form A = LD, enabling us to store it in factored form by storing L and D).

From our example we see how to find and store M so that 4 = MU. In fact, M
comes to us in a factored form A = LD, so that A = LDU/, and the factors L, D, U
are stored efficiently during the reduction. In the general case, things go the same
way. If no interchanges are needed, we can reduce A to an upper triangular matrix }

tyy
using only the elementary row operations Add [fv p; 7} At the stage where we

have a non zero entry a in row p and column ¢, the pivot entry, and use the operation
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a
Add (f’ P?_f], to make the (¢, q) entry 0 for ¢ > p, the (¢, ¢) entry becomes

a
available to us for storing the multiplier f. Letting L be the corresponding lower

a
triangular matrix of multipliers, consisting of the multipliers a, —= (with ¢ > p) used
a

in the reduction, below the diagonal, and 1°s on the diagonal, we get 4 = LV. Why?
In effect, to get J” we are multiplying 4 by the element ary matrices corresponding

a,
to Add (f » Ps _7}; and we are multiplying / by their inverses, in reverse order, to

get L. To see this, just compute the product of their inverses in reverse order, which
has the same effect as writing the same multipliers in the same places, but starting

100
from the other end and working forward. For example, if L = [i 15 (;], it 1s the

100 1001003100
L=[310(=(310}010|010
451 0014014051,

Theorem 4.6.1.1. If no interchanges take place in the reduction of an m x »
matrix 4 to an echelon matrix U/, then 4 = LDU, where L is the lower triangular
matrix of multipliers, D is the matrix of pivots, and I/ is the echelon matrix.

Proof fweget V=FE, .. . E Athenwegetd=FE" . E™ =LV After we
get A = LV, we go on to factor ¥V as ' = DDV = DU, where D is the diagonal matrix
of pivots whose diagonal entry in row p is 1 if row p of Vis O and a if a is the first
nonzero entry of row p of ¥, and where U is the echelon matrix D"'v. Then we can

rewrite the product A = LV as A = LDU = MD, where M = LD.

We can further simplify the factorization 4 = LDU by throwing away parts of the
matrices that are not needed. Letting » be the rank of A, we throw away all but the
first » columns of L, all but the first » rows and columns of D, and all but the first
r rows of {/. Then we still have A = LDU, but now L is a lower triangular m x #
matrix with 1’s on the diagonal, D is an invertible diagonal » x r matrix, and U/ 15
an ¥ * n echelon matrix.

product
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4.6.2 The Row Reduction Algorithm and its Inverse

In order to give the algorithm, we must describe how to store an m x » matrix
A in memory and how to perform and keep track of row interchanges. Of course, we
must have an m x »n array Memory (R, C) of real numbers in the memory of the
computer, to hold the entries of 4. So that we do not need to actually move entries
when we perform a row or column interchange, we just keep track of the rows and
columns by making and updating lists Row and Col of their rows and columns in
memory. So if we load the 4 x 6 matrix into memory with the Row = [1, 2, 3, 4]
and Col =1, 2, 3, 4, 5, 6], we can keep track of Row, Col, and the entries, held in
the array Memory (R, (), by the following 4 x 6 matrix structure 4 :

123456
1010345

422134555
3333333
4222222

All we mean by this is that the matrix 4 that we loaded in the computer was
loaded by setting up the two lists Row =[1, 2, 3, 4] and Col = [1, 2, 3, 4, §, 6], and
putting the entries of A into the array Memory (R, () according to the lists Row and
Col. In this case, Row and Col indicate that the usual order should be used, so the
entries occur in the array Memory (R, (') in the same order as they occur in 4. So
giving A is the same as giving the lists Row and Col and the array Memory (R, ().
After loading A in memory in this way, suppose that we first interchange rows 3 and
4, then rows 4 and 2, then columns 2 and 4. The matrix 4 undergoes the following
changes

To make corresponding changes in the matrix structure 4, we keep updating the
lists :

Row = [1, 2, 3, 4] (after interchanging rows 3 and 4)

Row =[1, 4, 2, 3] (then after interchanging rows 4 and 2)

Col =[1, 4, 3, 2, 5, 6] (then after interchanging columns 2 and 4)

Let’s look at the matrix structure 4, which represents A as it undergoes the
corresponding transformations :

123456 123456 123456 143256
1{/010345) 1{010345 1/010345 1{1010345
21134555 21134555 4134555 21134555
3333333 74333333 2(333333 ) 313333337
4222222) 31222222) 3222222} 4222222
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Definition 4.6.2.1. An m x n matrix structure 4 consists of Row, Col, and
Memory (R, (), where Row is a 1-1 onto function from {1, ....... , m} to itself, Col
is a 1 — 1 on to function from {1, ... n} to itself, and Memory (R, ) is an m x
n array of real numbers.

When we write Row = [1, 4, 2, 3], we mean that Row is the mapping
Row (1) = 1, Row (4) = 2, Row (2) = 3, Row (3) = 4 from {1, 2, 3, 4} to itself
Similarly, writing Col = [1, 4, 3, 2, 5, 6] means that Col is the mapping from
{1, 2, 3, 4, 5, 6} to itself such that Col(s) = ¢, where s is in position 7 in the st
{1, 4, 3, 2, 5, 6]. So since 4 is in position 2, Col(4) = 2. The 4 x 6 matrix structure
consisting of Row =[1, 4, 2, 3], Col =11, 4, 3, 2, 5, 6], and on 4 x 6 array Memory
(R, C) is just

123456
1{010345
4134555
20333333
3222222

Matrices get put in, or taken from, matrix structures according to

Definition 4.6.2.2, The m x n matrix A corresponding to the matrix structure 4
consisting of the lists Row, Col, and the m % » array Memory (R, C) is the m x »
matrix A whose (r x s) entry 4 is given by the formula

A = Memory (Row(r), Col(s)):

For example, the 4 x 6 matrix 4 corresponding to the 4 x 6 matrix structure 4
described earlier is the matrix

A4 =4 = Memory (Row (r), Col(s)).

which can easily be read from A when we write it out to look at

3 b fau —
[ SRV ol B
o W= b2
o O W
o B ML e
o U
R ITETA-N
s
1l
— O
Al NRSERSY
oo
'3 po D —
o 2
b2 L oy

For example 4, = Memory (Row(4), Col(3)) = Memory(2, 3) is read from the
matrix structure by going to the row of memory marked 4 (which 1s row 2 of memory)
and to the column of memory marked 3 (which is column 3 of memory) and getting the
entry 4,, = 4 in that row and column. Of course, our objective in all of this been to
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represent m X n matrices by m < n matrix structures and row and column interchanges

on m * n matrices by corresponding operations on #7 X x matrix structures.

Definition 4.6.2.3. To interchange rows (respectively, columns) p and g of an
m > n matrix structure A consisting of Row, Col, and Memory, just interchange the
values of Row(p) and Row(q) [respectively, Col(p), Col(¢)].

In our example above, we interchanged rows 4 and 2 when Row was Row =
[1, 2, 4, 3] The result there was that the values Row(4) = 3 and Row(2) = 2 of Row
=[1, 2, 4, 3] were interchanged, resulting in the new list Row = [1, 4, 2, 3], the new
values 2 and 3 for Row(4) and Row(2) having been obtained by interchanging the
old ones, 3 and 2. We can now give the row reduction algorithm. This algorithm is
reducing a matrix to an echelon matrix, but we’ve made some important changes and
added some new features :

1. Our operations are performed on an m * # matrix structure rather than an

m x n matnx, to make it easy to perform them and keep track of row
interchanges.

2. Where ‘0’ occurs there, we now say ‘less in absolute value than ¢ (where e
is a fixed small positive value which depends on the computer to be used).
Instead of looking for the ‘first nonzero value if any’ in the rest of a given
column, we look for the first value that is the largest in absolute value’ in rest
of that column.

4. As we reduce to the echelon matrix {/, we keep track of the pivot entries and
use the freed memory on and below them to store the entries of D and L. In
particular, we record the number of pivot entries in the variable rank 4. Of
these changes, (2) and (3) lead to increased numerical stability. In other
words, these changes are important if we prefer not to divide by numbers so
small as to lead to serious errors in the computations. The others enable us
to construct, store, and retrieve the factors, L, D, and U/ of A. They also
enable us to reverse the algorithm and restore A.

LN

Of course, the operations on the entries Ars of A performed in this algorithm are
really performed as operations on Row, Col, and the array Memory (KR, (), the
correspondence of entries being 4 = Memory (Row(r), Col(s)). This algorithm does
not involve c¢olumn interchanges and, infact, neither to the other algorithms
considered. So, henceforth we take Col to be the identity list Col(s) = s and we do
not label columns of a matrix structure.

Algorithm to row reduce an m < n matrix 4 to an echelon matrix U
Starting with {(p, g} = (1, 1) and continuing as long as p < m and ¢ < n, do the
following :
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1. Get the first largest (in absolute value) (p', g) entry
a= Ap,q = Memory (Row(p’), Col{(g)), of 4 for p' > p.

2. If its absolute value is less than, then we decrease the value of p by 1 (so later,
when we increase p and g by 1, we try again in the same row and next column), but
otherwise we call it a pivot entry and we do the following :

{a) We record that the (p, g) entry is the pivot entry in row p, we do this using
a function Pivot list by setting Pivot list (p) = q.

(b) If p” > p, we interchange rows p and p’ (by interchanging the values of Row

(p) and Row (p")).

(c) For each row 7 with 1 > p, we perform the elementary row operation

A
Add(t, p; —f)(add —%times oW p to row {),

where 4, is the current (7, g) entry of 4; in doing this, we do not disturb the area
in which we Eave already stored multipliers; we then record the operation by writing

the multipler % as entry (7, ¢) of 4 ; (since we know that there should be & O there,

we lose no needed information when we take over this entry as storage for our
growing record).

{d) We perform the elementary row operation

1
Multiply (P; EJ (divide the entries of row p by a);

we then record the operation by writing the divisor dp = @ as entry (p, q) of A4,
(sinc we know there should be a 1 there, we lose no needed information when we
take over this entry for our growing record).

3. We increase the values of p and ¢ by 1 (on to the next row and column...).
After all this has been done, we record that row p — 1 was the last nonzero row by
setting the value rank 4 = p — 1.

This algorithm changes a matrix structure representing 4 in unfactored form at
to a matrix structure representing A in LDU factored format. Since we keep track of
the pivot sand the number » = rank A of pivots, we can get the entries of the echelon
matrix U, the diagonal matrix D, and the lower triangular matrix Z.

1. L 1s the m x 7 matrix whose (p, q) entry is

APPI,"O Listg) Memory (Row(p), Col{PivotList{q)), for p > ¢
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=1,forp=gq
=0, forp <gq.
2. D is the r x r diagonal matrix with (g, q) entry
qujvo Listtq) Memory(Row(g), Col(PivotList{¢)); for 1 < q <.
3. Uis the X n echelon matrix whose (p * g) entry is
APP:,"O List) Memory (Row(p), Col(PivotList(q)), for p > ¢
=1, forp=g
=0, forp < q.
The A = LDU factorization of the Section 4.6.1 is then replaced by a factorization
A = PLDU, where P is the permutation matrix corresponding to the list Row, defined
by
4. P is the m x m matrix whose (p, g) entry 15 1 if p = Row{(g) and 0 otherwise.

37 107

Example 4.6.2.1. Let 4 = [g 192 168 1%] be represented by the matrix structure

312 9 610

with row = [1, 2, 3]. Then the row operations

13 7 107
4=4=2|612180 {unfactored format for A4),

1 1
Interchange (1, 2), Add[zs 1§_§], Add[il;—gj,

1
Interchage (2, 3), Add[3e2;—gj
reduce the matrix structure 4 to
3f0 01 5
V=1/612180
20 5 010

which represents the upper triangular matrix = How do we get this, and what
is the multiplier matrix? Writing the pivots in bold face, as in the earlier example,
the successive matrices encountered in the reduction are :

1(37 10 7Y 2(3 7107} 231 17
2061218 0| 1|/61218 0| 1|6 1218 0
3129 610)°32 9 610/)°329 610
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oL 17y 3211 7Y 3Ll
116 1218 0 116 1218 0 116 12 18
3%5010’2%5010’2%50
Now A has been reduced to

3(f0 01 5
V=161218 0
200 5 010

6 12 18 0

V=0 5 0 10

and 4 to 0015

3
and the matrix structure of multipliers 1s L =1
2

with corresponding matrix L =

hj— - O
=

VOt S —

L | =

— oyt
o O

The matrix P is obtained by listing rows 1, 2, 3 of the identity matrix as the rows

3, 1, 2 of memory i.e., P is the matrix

0 01
/100
F 010
3(7 3
obtained from the matrix structure L=1{1 0
AR |

by removing the row labels and the multipliers.

D0~

Theorem 4.6.2.1: Suppose that A is represented by the matrix structure with
Row =[1,...., m], which is reduced to its L. D.U. format with list Row updated during
reduction to record the affect of interchanges. Then 4 is obtained by performing the
product PLDU, where F.L,D, U/ are as described above.

4.6.3 Back and Forward Substitution : Solving Ax =y
Now that we can use the row reduction algorithm to go from the m % » matrix

A to the matrices I, D, U and the list Row, which

was built from the interchanges
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during reduction, we ask | How do we use £, L, D, U, and Row to solve Ax = y ?
By Theorem 4.6.2.1, A = PLDU. So we can break up the problem of solving 4x =
y into parts, namely solving Pu = y, Lv = 4, Dw = v _and Ux = w for &, v, w, x. The
only thing that is new here is solving Pu# = y for u. So, let’s look at this in the case

0 01
of the preceding example. There we have Row = (3, 1, 2) and P = {(1) (l) g] is the

corresponding permutation matrix. So, solving we obtain
0 1Yy ¥

0 0|lw, (=¥ |
1 0} u Y3

y 1 ¥3 YRow(1)
for| 12 |, we get #y | =1 Y2 | =] YRowi2) |* What this means is that we need make
uy iy N YRow(3)

oo

only one alteration in our earlier solution of Ax = yp, namely, replace

¥z Yrow(l)
Y3 |BY| Yrowe2) | So,we now have the
¥ 1 y Row(3)

§ Algorithm for solving Ax = y for x

Use the row reduction algorithm to get the matrices £, D, U/ and the list Row.
Given a particular y in the column space of 4, we do the following
1. Solve Ly = y by the forward substitution formula
-1
Vo = VYRowipy ~ Z Lp Vi
j=1
for p = 1 to the rank of A.

v

2. Solve Dw = v by the formula ¥p = D_p

re
for p = 1 to the rank of 4.
3. Solve Ux = v by the back substitution equations :

"

X,=W,= 2. if column ¢ contains a pivot entry ; or
J=g+1
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x,=1; if column ¢ contains a no pivot entry
for1 <g<n.

When y is not in the column space of 4, the above algorithm for solving Ax = y
exactly cannot be used. Instead, we can solve 4x = y approximately by solving the
normal equation A74x = ATy exactly by the above algorithm. Since A%y is in the column
space of A7A, by our earlier discussion of the normal equation, this is always possible.

So we have
§ Algorithm forsolving 4x =y for x approximately:

We will use the algorithm for solving A74x = ATy for x exactly. If we need to solve
Ax = y approximately for many different vectors y, it is more efficient first to find A~
and then to use it to get x = A y for each y. In the next section, we give an algorithm for
finding 4~ for any A. We now turn to the important special case when the columns of 4
are linearly independent. In this case, we can solve the normal equation A74x = A%y and
find A™ efficiently by a simple algorithm involving the Gram-Schmidt Orthogonalization

Process. From the columns v, v,, ......., v, of 4, the Gram-Schmidt Orthogonalization
Process gives us orthogonal vectors w, w,, ....., w,, where
W=y — SV We > W - _<1’S,W1>
5 - 5 . S_l LR . .
<W, g, W, > < Wy, Wy >
<V, W > <V, Wy >
— 14t s 5= FElid | .
or ViEW,h——T—w 4 —T——wy
<W_, W > < Wy, W, >

1 1
for 1 <s <k Letting ¥ = [WJ Wis oo Uy = [m}wk* b, = |ws| and setting

vo=by +...+b_u_ +bu,
for 1 <s < k. Letting O be the m »x & matrix whose columns are the ortho normal
vectors u,, #,, ......, 4, and R be the & < k matrix whose (7, ) entry is b, for ¥ <sand 0
for r > s, these equations imply that
A =R (Prove!)
This is the so-called OR factorization of A as product of a matrix O with orthonormal
columns and an invertible upper triangular matrix R. (We leave it as an exercise for the

reader to show that there is only one such factorization of 4). So applying the Gram-
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Schmidt Orthogonalization process to the columns of 4 to get orthonormal vectors ,,
t,, ..., i, In the above manner gives us the OR factorization 4 = OR.

eg . ifA= (; i), we get the orthogonal vectors

)
&!

w _(2)_1.2+3.4(1)
27\ 114333

1
whose lengths are ‘wl ‘ =~/10 and |W3‘ = g\ﬂo- From these, we get the orthonormal
vectors

wifratafs

ol

“Tl
BT
The equations v, = b i +.....+b_u_+b.u (1<s<k)
are then \/mul = (é)

7 1 {2
100 + 210w, =(3).

1 1 3
the matrices O, Rare O = E(_g - 1) and \/E[l

0
(12).
3418

==

J and the OR factorization of

2)=(5 2[5 )

Given the QR factorization A = QR for a matrix A with independent columns, the
normal equation A7Ax = ATy,

can be solved for x easily and efficiently Replacing 4 by OR in the normal
equation
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ATdAx = AT,

can be solved for x easily and efficiently. Replacing 4 by JR in the normal
equation A7Ax = ATy, we get RTQ"QRx = R'Q"y. Since R and R” are invertible and
the columns of () are orthonormal, this simplies to

Rx =0,

X = R‘IQTy

(Prove!). Since R is upper triangular and invertible, the equation Ry = O7y can
be solved for x using the back substitution equations

=7 - . .
‘bqqxq “q Z bq;xj’

where Z_ is entry ¢ of O"W(1 < q < k). Moreover, since R is invertible, there is
only one such solution x. So x is the shortest approximate solution to Ax =y, from
which it follows that A~ = R"'O!. Computing the inverse R™! can be done very easily,
since R is upper triangular. One simply finds the columns ¢, ¢,, ....., ¢, of K~ I as the
solutions ¢, to the equations Rc, = e, (column s of the £ x & identity matrix) using
back substitution equations :

k
b =0— > byc,. forgzs
j=q+1

’
Do =1- Z bycic

J=g+l
for each s with 1< s < k. As it turns out, ¢js = 0 for j > s. So the above back
substitution equations simplify to the equations

DagCas =~ )3 by s for g < s
J=g+l
bsscqs =1 Cs = 0, for qg<s
for 1 < s < k We summarize all of this by formulating the following algorithms.

§ Algorithm for solving Ax = y for x approximately when the columns of 4 are
linearly independent :

1. Use the OR factorization 4 = OR to get the equation Rx = 07y (which replaces
the normal equation A74x = 47y).
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II. Solve Rx = Oy for xx by the back substitution equations

-5, T b,

j=q+1
where z_ is entry g of Oy for 1 < ¢ <k
§ Algorithm for finding R for an invertible upper triangular matrix R.

Letting b,,c, . denote the (5, 5) entry of an invertible upper triangular & x & matrix
R, the entries ¢, of R™' are determined by the back substitution equations

bygCos = Z bCisr for r < s
J=r+l

bSScSS
¢, =0, forr>s

for 1 <s <k

§ Algorithm for finding A~ when the columns of 4 are linearly independent :
(1) Use the OR factorization 4 = OR to get Q and R.
(ii) Find R~ by the above algorithm.
(iii) Then A~ = R1QT.

4.6.4 Approximate Inverse And Projection Algorithms

In section (4) we saw how to find the approximate solution x to an equation
Ax =y, where A is an m n real matrix. To do this efficiently for each of a larger
number of different y, we should first get 4~ and then compute x as x = A7y. How
do we get 47?7 In principle, we can get A~ by using the methods of section (4) to
calculate each of its columns A"e . (where ¢_1is column s of the identity matrix) as
an approximate solution xs to the equatlon Ax = ¢ However, there are more efficient
methods, which are based on Theorem 4.6. 2 1 and diagonalization of a symmetric
matrix. Unfortunately, however, these methods are also some what complicated. To
avoid the complications, we have worked out an efficient new method for finding A~
which uses only elementary row operations. This method, a variation of the method
for finding the inverse of an invertible matrix, 1s based on two facts. The first of these
is that the matrix Proj ATR(m 1s just J1J where J is gotten by row reducing 474 to an
orthonormalized matrix in the sense of

Definition 4.6.4.1. An orthonormalized matrix is an m > » matrix J satisfying the
following conditions :
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(i) Each non zero row of ./ has length 1.

{(ii) Any two different nonzero rows of J are orthogonal.

We can always row reduce a matrix to an orthonormalized upper triangular matrix.
How 7 First, reduce it to an echelon matrix. Then orthonormalize the nonzero rows in
the reverse order , ......, 1 by performing the following row operations on 4 for each
value of k from # down to 1 :

1
(i) Multiply [k’;J , where u, is the current length of row £.
3

(ii) For each value of ¢ from - 1 down to 1, add (¢, &, -v, ), where v, is the inner
q q
product of the current rows 4 and g.

How do we show that £79/ Ar(r7) equals JJ 7 First, we need some preliminary

tools.
Definition 4.6.4.2. Amatrix P < M, (R) is a projection if P = Pland P?=P.

Theorem 4.6.4.1, If P is a projection, then P = ProjP(R,,) .

Proof. Let us denote the column space of P by W. Let v e R” and write v =
v TV, where v, e W,v, € W+. Then v = Pu for some u, so that Pvl= qu =Pu= 12
Thus Pv, =v, . Letting # now represent an arbitrary element of R”, Pu e Wsuchthat Pu
and v, are orthogonal This implies that

0=(Pu)'v,=u"Plv,=u'P,

But then Pv, is orthogonal to # for all w € Rn, which implies that Pv, =0. It follows
that P = Pv + 12-)1)2 for all v, i.e. P=Proj (v).

Theorem 4.6.4.2. The column spaces of 474 and A” are the same.

Proof. Certainly, the column space of A4 is contained in the column space of AT.
Since the dimensions of the column spaces of 474 and AT are the ranks of 474 and 4,
respectively, and since these are equal as we just saw, it follows that the column spaces
of AT4 and AT are equal.

Theorem 4.6.4.3. Let A be a real m x » matrix. Then for any orthonormalized

matrix ./ that is row equivalent to A, Proj AT(R") and the columns of 7 — J1J span the null

space of A.
Proof. Since J is an orthonormalized matrix, we get (JJ1)J = J. But then JTI/TJ =

JUJ. Since (JINT and (JT)? = J1J, /1 is a projection and J'J = Proj (R Since S and
A are row equivalent, JT and AT have the same column spaces. So, by Theorem (4.6.4.2),
JUT; JU. AT have the same column spaces. But then J1.J = Proj () = Pr OjAT(R"] It

follows that the columns of 7 — J./ span the null-space of 4, since -
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(i) The nullspace of 4 is (4T R™)T (Prove!).

(i) (ATR™ YT = (JTUR™ Y = 1 - FJR™ since JTJ is a projection (Prove!).
Lemma 4.6.4.1. Let P € M _(R) satisfy the equation PPT=PT Then Pisa projection.
Proof. Since PT =PPT P=PT But then P=PT=PPT=PP =P so Pisaprojection.

Theorem 4.6.4.4, Let A bean m < n real matrix, and let A/ be an invertible 7 x
matrix such that /= MATA is orthonormalized. Then A~ =JTAAT.

Proof. Let B = JTMAT. We claim first that
(i) BA=J'J= Proj ).

(n) BAB=B.

(iii) AB = Proj AT(R)-

[1] Since B = JAM4T = J1J, and since AT4 and A| have the same column space by
Theorem (4.6 4 2), (1) follows from Theorem (4.6 4 3),

[11] For (ii), we first use the equation JJTJ = J from the proof of Theorem 4.6.4.3 to
get the equation STJ/T =JT. Then BAB = JTJB =S/ MAT.

[IIT] For (iii ), we first show that AB is a projection. By Lemma 4.6 4.1 it suffices to
show that (4B)(4B)" = (4B)T, which follows from the equations

AB(AB) =(AT" MATYAMTJAT) = AT (MAT AxM T JAT

= AJTIMTJAT = (ATTT)MTJAT = AMTJAT =(AB).
Here we use the fact that since JJAT = AT, by Theorem 4.6.4.3, 4/17= A. (Prove!)
Finally, the column space of 4 contains ABR™ | which in turn contains ABAR" and

A(BAR™), which in turn is 4(4TR™ } by (i). Since 44" and 4 have the same column
space by Theorem 4.6.4.2, it follows that all these spaces are actually equal i.e.

AR™ = ABR™ = ABAR" = A(ATR"") = AR™.
So 4 and AB have the same column spaces. But then the projection 4B is just

AB = PPOJA(R,,) .

To show that B = A", let x = By. Then from (iii) we get that Ax = ABy = Proj o y,
and from (i) and (ii) we get that Proj ,,pm x = BAx = BABy = By = x. So x is the

shortest solution to Ax = Proj ;o y and x = A7y. Since this is true for all y, we get
that B = A"
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§ Algorithm to compute the projection Proj ... for a real m X n matrix A
(i) Row reduce 474 to an orthonormalized matrix J = MATA.

(ii) Then Proj gy is JJ

§ Algorithm to compute the nullspace of a real m X n matrix A

(i} Then the columns of 7 — JTJ span the nullspace of A.

§ Algorithm to compute the approximate inverse of a real m X n matrix A
(iv) Then 4™ is JTK, where X = MAT.

§ Algorithm to compute the projection ijAT(R") for a real m X n matrix A

(v) Then  Proj g is A4".

§ Algorithm to find all approximate solutions of Ax =y

(vi) The shortest approximate solution to Ax = y is x = A"y, which we have by (iv).
(vii) Every approximate solution is x + w, where we (J —JTHR™, by (iii).

It is instructive to look at some examples.
Example 4.6.4.1. To compute the projection of R? on to the column space of

1 T
[—J, row reduce (é)(é) :(é i) to its orthonormalized echelon form

2 |

L

1
O&l_
OS|M

5]_ Then the projection is J'J =[

A isia|—
[EYERLI [

23
Problem 4.6.4.1. Calculate A~ for 4 = {g ﬂ

Solution 4.6.4.1. Since 474 = (g 266) we row reduce (g 266

o b

2 ({) to the

echelon form

01505 00 ) i
01 0 % # We then apply the operation Add (1, 2, —v,,) where v, is the

. _ . (1005 -2 -2} .
inner product 1.5 of (I, 1.5) and v = (0, 1), getting 01 0 J7 17|, Since

05 - -3
J=[,A‘=IK=K=(0 4’ f}
17 17
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235
Problem 4.6.4.2. Calculate 4~ for 4 = [0 4 4}‘
011

Solution 4.6.4.2. Here the columns of A4 are linearly dependent. Since,

10 32 42 1032 42 5 4 1

eschelon form as

4 6 10 4 6 10 2 0 0
AT4 = 6 26 32 we row reduce 6 2632 3 4 1 to the row reduced

4 610 20 0) | 235100y ... (235100

62632341L62632341ﬁ>01717041

1032 42 5 4 1 1032 4254 1 % 10171704 1

e (235100 (235100

— &% 51017170 4 1|50 110 & &
000000 000000

To avoid further fractions, we orthogonalize (2, 3, 5) and (0, 1, 1) directly, by the
operation Add (1, 2, —4), where 4 was chosen as the inner product 8 of (2, 3, 5) and
(0, 1, 1) divided by the inner product 2 of (0, 1, 1) and (0, 1, 1). We then get

16 _ 4
2—111—!4—7—11—7
0110 & 1L

To normalize the orthogonal vectors (2, —1, 1), (0, 1, 1) to vectors of length 1,

1 1
we apply the operations Multiply [1’ %} and Multiply [2, ﬁ] . getting

0 7071 7071 0 1664 .0416

8165 -4082 .4082 4082 -.3842 -.0961
0 0 0 0 0 0

So,

R165 —.4082 4082 .4082)(.4082 -.3842 —-.0961
A"=J'K=| 0 7071 7071 O 0 1664  .0416
0 0 0 0 0 0 0

-1667  .2745  .0686

3333 3137 -0784
| 1667 —.0391 —.0098
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4.7 Summary

The present unit deals with Fibonacci numbers incidence models and differential
equations. The learners can explain how Least Squares Methods can povide
approximate solutions of system of linear equations. They can also appreciate the
method to find out the approximate inverse of non-square matrix. The unit also
shows how to solve a system of linear equation using different linear algorithms like
row reduction, matrix factorization, matrix inverse and Projection algorithm. They
may use the concepts of this unit while specializing in their future course.

4.8 Exercises

. Find o if

ay oo =0,0,=4, 0,=4,..=0  +to , fornz2
n 1 2 n- n-

1
N 4
n-

2

b) oy =, 0= L., o =40 +30 , fornz2

1 1
¢y o, =1, 0,=3,.,0 =40 +3 , fornz2.
n n-1 n-2

do,=10,=1.,0=2 (a,, +0,,) for n=2.

2. Show directly that %{[(IJF\E)/ z]n _[(1'\/5)” 2]"} is an integer and

is positive.
1 -1 0 1
3. Draw the incidence diagra, for T = -1.0 1 0
o 1 -1 -1
4. Show that if D is an incidence diagram with m nodes that is not

connected (some node cannot be reached from the first node) then the corresponding
incidence matrix has rank less than m-1.

215 2

: ; : 022 =10

5. Find all approximate solution 000 X 2
215 2
6. Find the shortest approximate solution to 8 S g X = g
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11
7. Find the appropriate inverse of A = [? %J and use it to find an

2
approximate solution to Ax = [} J

100} (10Y(100 L 2 3
: ; 210 12 120 -

3. Find LDU for the matrices 241 loolloos) (2 1 3)

9. If the matrix A is symmetric, that is, A= A’, and no interchanges take place
when the row reduction algorithm is applied to A, show that in the resulting
factorization A = LDU, L is the transpose of U.

10. Show that if QR = ST, where Q and S are m xk matrics, then Q = § and R
=T
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5.0 Objectives

The main objective of the matrix theory is to deal with various articles related with
matrices and their applications in various areas.

5.1 Introduction

Modern work in matrix theory confined to either linear or algebraic techniques. The
subject has a great deal of interaction with combinatories, group theory, graph theory,
operator theory, and other mathematical disciplines. Matrix theory is still one of the richest
branches of mathematics. This unit contains articles covering various types of Special types
of matrices. Positive Semi-definite matrices and Symmetric matrices and quadratic forms.

5.2 Special type of matrices

5.2.1 Idempotence, Nilpotence, Involution, and Projections

We first present three types of matrices that have simple structures under similarity :
idempotent matrices, nilpotent matrices, and involutions. We then turn attention to
orthogonal projection matrices.

Definition 5.2.1.1. A square matrix 4 is said to be idempotent, or a projection, if

A2 =4
nilpotent if for some k€ Z°, AF =0,
and involutary if A =1

where symbols have their usual meaning.

Theorem 5.2.1.1. Let A be a square complex matrix of order #. Then

1. Ais idempotent if and only 1f 4 1s similar to a diagonal matrix of the form diag (1,
e 1,0, L, 0)

2. Aiis nilpotent if and only if all the eigenvalues of A are zero.

3. Ais involutary if and only if A is similar to a diagonal matrix of the form diag (1,

=1, 1)

Proof. 1. Necessary Part : Let A =P7'(J 1 @ ... @ J )P be a Jordan decomposition
of 4 Thenforeachi=12, . . &k

A=4=F =

if J is a Jordan block and if 2 = J, then .J must be of size 1; that is, .J is a number.
The assertion then follows. The sufficiency part is quite obvious.

2. Necessary Part : Consider the Jordan decomposition of 4 as

il



NSOU « GE-MT-31 147

AT
A=U .o
0 A,

where {/ is an #-square unitary matrix.

If 4“ = 0, then each AF, and 4 has only zero eigenvalues. For sufficiency part, it is

trivial to verify by computation that 4” = 0 if all the eigenvalues of 4 are equal to zero.

3. Exercise !

Theorem 5.2.1.2. Let A and B be nilpotent matrices of the same size. If 4 and B
commute, then 4 + B is nilpotent.

Proof. Let 4" = 0 and B” = 0. On computation, we have

(A + B)m+n = 0.1

for each term in the expansion of (4 + B)™" is A™™ is B™™" or contains A*B’, s >
mor { > n. In any case, every term vanishes.

By choosing a suitable basis for C”, we can interpret Theorem 5.2.1.1(1) as follows.
A matrix 4 1s a projection if and only if C” can be decomposed as

(1.1) =W oW,

where Wl and W2 are subspaces such that for all w, € Wl, w, € W2=

Aw =w, Aw, = 0.

Thus, it w =w +w, € (¥, where w € W, and w, € W,, then

Aw = Aw + Aw, = w .

Such a w| is called the projection of w on W . Here,

W, =1ImA, W, =Kerd = Im(l — 4).

Using this and Theorem 1.1.1(1), we are in a position to state the following theorem :

Theorem 5.2.1.3. For any 4 € M , the following statements are equivalent:

(a) A is a projection matrix ; that is, 4° = 4.

(b C" = ImA + KerA with Ax =x for all x € Im A.

(c) KerAd = Im(I - 4).

(d) rank A + rank (I — A) = n.

(ey Im A nIm{I — 4) = {0}

We now turn our attention to orthogonal projection matrices. A square complex matrix
A is called an orthogonal projection if

A% = 4 = A* (conjugate transpose of 4).
For orthogonal projection matrices, the subspaces
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W =ImA, W, =1Iml-A)

in (1.1) are orthogonal ; i.e, forallw, € W andw, € W, ,

(1.2) <w, w,>=0.

Since, < W, W, =< Aw,w, > =<w, Aw, <w, Aw, > 0,

therefore, < Ax, (I — A)x > =0, yx & C"

Theorem 5.2.1.4. For any 4 € M , the following statements are equivalent :

(a) 4 is an orthogonal projection matrix ; 7.e. A>=4=A.

(b) 4 =U* diag(1, ..., 1, 0 ..., 0){J or some unitary matrix {/.

(¢) | — Ax|| < |]x — Ay|| for every x and y in ",

(d) A% = 4 and ||4x]| < |lx|| for every x € ™.

(e)A=A4%A

Proof. (a) & (b) : Let(a) holds. Because A is Hermitian, by the spectral
decomposition theorem viz “Let A bean #-square complex matrix with eigenvalues ?Ll,
)”2’ e An. Then A is normal if and only if A is unitarily diagonalizable i.e., there
exists a unitary matrix I/ such that

V¥ AV = diag(h, Ay ooy X))

In particular, A is Hermitian if and only if the Ai are all real and is positive
semidefinite if and only if the { are all nonnegative”, we have A = V diag
(7\.1, )”2’ ...... , An) V for some unitary matrix V, where the i are the eigenvalues of A.
However, A is idempotent and thus has only eigenvalues 1 and 0 according to the
previous theorem. It follows that

A=U=*diag(,....,10,..... 00U,

where rank A = r and U is some unitary matrix. The converse part is obvious.
(a)(c) : Let (a) holds. Let A be a northogonal projection. We have the decomposition
(1.1) with the orthogonality condition (1.2). Let x = X, o+ X, where
X € Wl, X, € W2 and < W, W> = 0. Analogously, y = Y+, ¥€ W1’ ¥, € W.. Now,
asx € W,y € W)x —y € Wand W LW,. Since, <u, v>=0— el + |yl
= ||z + v||", we obtain

1 = Ax |P={lxs IPsllxs [P + 112 =y IP=lx; + 0 =) IP=llx - Av |

It suffices to show that the decomposition (1.1) with the orthogonality condition
(1) holds, where W =1ImA and W, = Im(I - A). Now,

x=Ax+ (I -Ax, yvxe O=2C'=ImA + Im(I - A).

Claim : wx, v, x€ ImA, ye Im(I - A) = <x, yv>=0.

On the contrary, let us suppose that for some x, y € C < (I-A)x, Ay>6=0.
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We show that 3 z € C" such that
v = Azl < [lx — Ax{[;
which is a contradiction to the given condition(¢). Let for some x, y € C", <
(I - A)x, Ay > = (= 0): We may assume that [§ < 0, otherwise replace x by ¢, where
6 € R is such that &< 0.
Let Zx = x — €y, where 8 > 0. Then

| x—Ax, < (x— Ax)+(Ax— Az) ||
Hlx - Ax || +|| Ax— Ax_ | 42 < - A)x, A(x—2) >
| x - Ax || +|| Ax - Ax, | +2 e<(I- A)x, Ay >
Hlx-ax|f + €Ay | +2 8

As, B <0 we have 62” Ay ||2 +2 e B <0 for some small enough €, which results
in a contradiction to the assumption in (c¢).

(a) = (d) : If A is an orthogonal projection matrix, then the orthogonality condition
(1.2) holds. Thus, < Ax, I -A)x>=0
and

| Ax |P<)) Ax | + (|1 - Ax |[P=]] Ax+ (T - x| x )
(dy=(e)x ITA#A¥A, e (A¥-DA #0or AXI - A) # 0, then by Theorem
5.2.1.1(1), rank (I — A) < n and dim Im(I — A) < n.
We show that Jx(z 0) such that
<x,(I-Ax>=0,but({-A)x 6 =0
Thus, for this x,
[l Ax IP=ll x = (7 = Ay |P=ll x [ + {1 = Ax [P x 1P
which contradicts the condition ||Ax]| < ||x]| for every x € C".

To show the existence of such a vector x, it suffuces to show that Jx(= Q) such
that

x e (Im(J — AN:, but ¢ Ker(I — A), i.e. (Im(I — AD* & Ker(I - A).
We know that
dim Im(I — A) + dim K er(d — A) = n

and € = Im(J - AY® (Im(] — A))*
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Now, if (Im(1 - A))" < Ker(I - A), then (Im(I — A))" = Ker(I - A) as
It follows,
Im(I — A) = Im(I — A*(Verify !)
Hence, I — A = I - A and A is Hermitian, which proves(e).
(e} => (ay. If A = A*4, implies A is Hermitian. Thus,
A= A*A = AA = A%

5.2.2 Tridiagonal Matrices

One of the frequently used techniques in determinant computation is recursion. We
illustrate this method by computing the determinant of a tridiagonal matrix and go on
studying the eigenvalues of matrices of this kind. A square tridiagonal matrix of order 7 is
a matrix with entries ;=0 whenever |7 — j| > 1. The determinant of a tridiagonal matrix
can be calculated inductively. For simplicity, we consider the special tridiagonal matrix

a b 0
c a b
(13): T=| € a b
¢c a b
0 c a

Theorem 5.2.2.1. Let T, be defined as in (1.3).Then,

a”, if be =0
detT, =1 (n+D(2)", if 4 =bc;
(an+l+‘8n+{1\) . 2
g if a # bc,
a+va® -be a-~a -bc
where, a = — B= —

Proof. On expanding the determinant along the first row of the matrix in (1.3), we
obtain the recursive formula as

(1.4) detT, = adetT, , —bedetT, .

If bc = 0 ; then b = 0 or ¢ = 0 and from (1.3), we obtain det T = a”.
If bc # 0, let and be the solutions of x2 — ax + be = 0. Then,

a+B=a, af =bc.
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Now, we know that,
@’ —dbc =(a —,6’)2.
From the recursive formula (1 4), we have
detT, —adetT, | = f(detT, , —adetT, ,), and
detT, — pdetT, , = a(detT, | — BdetT ,).
Let us denote,
f,=detT, —adetT, ,,and
g, =detT — pdetT .
Then,

fn = ﬁfn—l’gn = agn—l’
with (by a simple computation),

f‘z = ﬁzagz = ags
Hence, =08, =d"ie

(L.5) detT,—adetT, =", detT, - fdetT, =",
Using 7., in (1.4) and subtracting, we obtain
(a,n+1 + n+1) )
det T, =—ﬁ,U°a¢ﬁ.
a-p

If = f, then by induction we have,

a n
Dl=1.
(e )[2]

Theorem 5.2.2.2. If T, is a tridiagonal matrix defined as in (1.3) witha, 5, c€ R
and bc > 0, then the eigenvalues of 7, are all real and have eigenspaces of dimension one.
Proof. The first half follows from the argument prior to the theorem. For the second
part, it is sufficient to prove that each eigenvalue has only one eigen vector upto a factor.
Let x = (x, ......, x,,) be an eigenvector of T corresponding to the eigenvalue A. Then

(AI-T)H)x=0,x=0,
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or equivalently,
(A—a)x; —bx, =0
-cx +(A-ayx,_ -bx, =0

-cx,_(A-a)x, =0.

As b =0, x, is determined by x| in the first equation, so are x;, ....., x,, successively
by x,, x; and soon. If x| is replaced by kx|, then x,, x5, ..., x, become kx,, kx;, ...,
kx,, and the eigenvector is unique up to a factor.

Remark 5.2,2.1, The theorem is in fact true for a general tridiagonal matrix when a,
is real and b, > O for each 7.

5.2.3 Circulant Matrices
An n-square circulant matrix is a matrix of the form

C, C C . Co
c., C, C O S
c_, C C

(16) ng_ E n-1 EH §1—3
¢ ¢ G o G

where C,, C,, C,, ...... , C,_; are complex numbers.
Example 5.2.3.1.

1 2 3 n
nl 2 n—1
N=|: + =+ :
34 5 .. 2
23 4 ... 1
and
01 0 . 0
0 01 0
v - - -
L7 P =t
0 0 0 ..
1 0 0 ... 0

W W
are circulant matrices. Note that Pis also a permutation matrix. We refer to this P
as the n X n primary permutation matrix.
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Theorem 5.2.3.1. An n-square matrix C is circulant if and only if
C= PCP,

where P is the # x a primary permutation matrix.

Proof. The proof follows by direct verication.

Theorem 5.2.3.2. Let C be a circulant matrix in the form (1.6), and let fiA) = C,
+ CA+ .+ C_ AL

Then, = »

(i) C = P}, where Pisthe n x n primary permutation matrix.

(ii) C is a normal matrix ; i.e. C* C = CC*

(iii) The eigenvalues of C are fwty k=0,1,2, ....,n- 1

(iv) det C = A% Aw) Aw?) ... A1), where ® denotes nth root of unity.

(v) F*CF is a diagonal matrix, where F is the unitary matrix with the (i, j) entry
equal to

L(0("‘_1)”_1), Lj=12,...., n
n
Proof. (1) Verify by direct computation.
(ii) 1s due to the fact that if matrices A and B commute, so do p(4) and g(B), where
p and g are any polynomials (Verify). Here, Pp* = p*p,
(ii1) The characteristic polynomial of P is

n-1
det(A - P)=A"-1=[[(A-0").
k=0

Thus, the eigenvalues of Pand P are, respectively, o and o*, k=1, 2, ...... ,
n—1. Itfollows that the eigenvalues of C =f(f’) are i), k=0,1,2,.....,n—1and
that

n—-1
det C = ]_[f(fok)-
k=0

(iv) Same as the (iii).
(v) Let x, = (1, o, of, * ..., 0@ V%), k=0, 1,2, ..., n — 1. Then,
Py, = (o, o, 0., oDk DT = afy,

and Cx, = ﬂﬁ‘)xk = flob)x,,
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i.e. x, are the eigenvectors of P and C corresponding to the eigenvalues ®* and
fwkb), respectively, k = 0, 1, ....., n — 1. However, because

n—1 . . -1 0. iz
<X, X >:| IaJ*'L(o’k => @k = TE )
LA n, ;:J,
£=0 k=0
we have that

1 1 1
—— X0, — = X1y eeeene s X,
{\/E O Jn 1}

is an orthonormal basis for C*. Thus, we get a unitary matrix as

1 1 1 1
el _
1 o o ™!
] -
F=|1 & ot e @D
P i
1 ™! @V, .. bl

such that F'CF = diag( f (@) f(@").... f (@™ 1))
That F is aunitary matrix is veried by a direct computation.
Remark 5.2.3.1. The unitary matrix F, called a Fourier matrix, is independent of

C.
5.2.4 Vandermonde Matrices

Denition 5.2.4.1. An n-square Vandermonde matrix., denoted by Via), ay ...,
a, or simply V is a matrix of the form

1 1 1 ... 1
a4 ) dy . a,
2 2 2 2
ql a:z ... a,
n=1 n-1 n-1 n-1
a4 3 e -

Vandermonde matrices play a role in many places such as interpolation problems
in Numerical Analysis and solving systems of linear equations. We consider the
determinant and the inverse of a Vandermonde matrix in this section.

Theorem 5.2.4.1. Let Vi, a, ... , @ ) be a Vandermonde matrix.Then
and Via, a, ... a) is invertible if and only if all the a, are distinct,
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Proof. We proceed with the proof by induction. There is nothing to show if
n =1, 2. Let n > 3. Suppose the assertion is true when the size of the matrix is

n — 1. For the case of n, subtracting row { multiplied by ¢, from row i + 1, for i going
down from n — 1 to 1, we have

1 1 1 1

0 a, —q @ —q a,—q

detV=10 aya-a) ayia,-a) ... 4a,a,-aq)
-2 -2 -2
0 ay (a—a) a3 (a;—ay) ... a, “(a,—a)
(12 _a-l 612 _al ..... an _al
_| %@ —-a) (J,Z(Q,2 -a;) aﬂ(qﬂ -a;)

n=2 ) _ n—2. _ ’ n— 3 _

(a,—a) ay “(a5-a) ... a, “(a,—a)

= H(a2 _al)det‘/n_l (az, dessieen an)
j=2

=H(a3 H (@; =), (by (hypothesis)

j=2 2<f< j<n

= H (aj—al).

1€i< j2n

It is readily seen that the Vandermonde matrix is singular if and only if atleast two
of the a, are equal.

Theorem 5.2.4.2. For any integers k| < k, < ..... < k , the quotient
detV,(k;, kyyoocos k)
detV (1,2, ..., n)

is an integer.
Proof. Let f, be any monic polynomial of degree i for i = 1, 2, ....., n. The additive
property of determinants shows that

1 1 1 w1
Aty Ay Atk . filky)
(1.8) Lk hk) LK) Sk

f;:—l'(kn—l) f;:—l i](2) f;:—l.(k3) ‘.“‘ f;:—l' (kn)
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is the same as det Vn(kl, kz’ eves kn). By taking, for any integer a,

flw=aa-a-2)...@-i+1)= ;'(?)

we see that f; (a) is divisible by(i — 1)!. Factoring out (i — 1)! from row i, i = 1,
2, .ooun, 1, we see that the determinant in (1.8), thus det Vn(kl’ kz, ey kn), is divisible

by the product H(f —D! The proof is complete, for H(f —D! = get v (1, 2, ..., n).
i=1 i=1

We now turn our attention to the inverse of a Vandermonde matrix. Consider the
polynomial in x given by the product
p)=x+a)x+a,) ... x+a),
where a,, a,, ...... , a_are constants. Expand p(x) as a polynomial
p) = sx + s+ st 4 L+ s X+ S
where 5, = 1 and for each k=12, ... 4

k
S = S (ay, Ay oees @) = D [0

I2p Ep,..2p, 50 g=1

We refer to S s depending on Ay, Ay ooeee. , a_, as the k-th elementary symmetric
. - n
function of a,, d,, ....., a,. ( for details refer to [4])

Theorem 5.2.4.3. Suppose that a,i=1,2, ... nare distinct. Then V (a,, a,4,
vy an)‘1 = (OLU) where for each pair of i and j,

IRTY =/

_ (1) Zpl Py, Hq=l.pq¢i an
T M@
ket e i

Proof. Recall from elementary linear algebra ([3]) that the entries of the inverse of
the matrix V are the cofactors of order n — 1 divided by det V i.e.,

. 1 ]T
V = _CJ .
detV ¥

where c. is the cofactor of the (7, j)-entry of V. Now we compute the cotactors €
Let V, be the matrix obtained from V by deleting row k + 1 (the kth powers) and
adjoining as a new nth row the ath powers of the a¢. We show

(1.9) det V, =5, det V.
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Augment V with the nth powers of the a. as the (» + 1)th row and with
(1, =x, (=x)2, ...., (=x)") as the first column. Denote the resulting matrix by W. Then W
is a Vandermonde matrix and

detW=(x+a)x+a)..x+a)detV
=(x +sxX 4+ 5+ 5 ) det V.

(1.10)

Expanding det W along the first column, we have

(L11)det W=det V,+ xdet V, + ... + x" det V.

By comparing equations {1.10) and (1.11), we obtain identity (1.9). Each cofactor
€ is a determinant of order # — 1 in the same form as det V,. Let V (‘{,-) and s, (‘{,-)
denote, the (#n — 1) square Vandermonde matrix and the ith elementary symmetric
function of ay, Ay ooy A, without a. Using equation (1.9) we have respectively,

¢; = (-1 det V(i | j)
= (1) 50,1y (@) det Via,)

= (=)™ s, y,(@;)detV(a;)

Hence,
1 (- 1)’”5(” o(@;)detV(a;)
detv ¥~ I1 e —ay)

_ (- l)iﬂ S(n—lj}(él)
[Tt -a)] ] jcta -ap
_ (_I)H—j S{:n—f:}(ai )
H Ll,k;q(ak -a;)
S T | F

k=1,k¢x(ak a;)

it 1—[ n—i
_ ( l) Zpl Ly q=l,p,# ap,ar
T 7
H k=1 ki (A — @)

&
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§ Application of Vandermonde Matrices
An interesting application follows : Let A € M. Then,
=0, trA* =0,k =1, 2
Because A" =0, A is mlpotent, thus, A has only zero elgenvalues; so does A* for
each k. For the other way round, let the eigenvalues of Abe A, A, ....., A . Then the
trace identities imply
M+ + .o +A =0
Mo+r+ .+ =0

AU+ AN + L+ AR =0,
rewritten as
VAL Ay oy Ay Mgy vy AT =
If all of the A, are distinct, then by the preceding theorem the Vandermonde matrix
is non singular and the system of equations in A, A,, ...., A has only the trivial
solution 7& 7& = = ?Ln = (. If some of the { are identical, for instance,
?L ?L an = 7& = A are distinct, we then write the system as
}1_1(7&2, vors AY2A ey A =
A similar argument will result in A, = A, = ... = )»n =0
This idea applies to the interpolation problem of finding a polynomial Ax) of
degree at most # — 1 satistying
j(xl.) =y,i=1, 2, B
where x, and y, are given constants [7].
Exercise 5.2.1.1. Let X» Xss <ors X, be different numbers. Show that for any set of
n numbers y,, ¥, ...., ¥, there exists a polynomial f{x} of degree atmost n —1 such that
f‘(xf) =y,i=1, 2, R
In particular, for any numbers 7&1, 7&2, ey ?Ln, there exist polynomials g(x), and k(x)
if each kf > 0, of degree at most n — 1 such that

gAY = Ay hA) = JA,i=1,23,...n

5.2.5 Hadamard matrices
Definition 5.2.5.1. An n-square matrix A is called a Hadamard matrix if each entry
of A is 1 or —1 and if the rows or columns of A are orthogonal i.e.,
AAT=1, ATA=1,
Exercise 5.2.5.1. Prove that for any 1eal matrix of order n, AAT = I and AT4 =
I are equivalent.
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Example 5.2.5.1. The following are two examples of Hadamard matrices viz

1 1 1 1
I 1 1 1 -1 -1
-1 |1 -1 -1 1
1 -1 1 -1

It A is a Hadamard matrix, then so is AP for any matrix P with entries £l
satisfying PPT = I. Thus, one may change the —1 in the first row of A to +1 by
multiplying an appropriate matrix P with diagonal entries *1. There is only one
2 x 2 Hadamard matrix of this kind. Can one construct a 3 x 3 Hadamard matrix? The
answer to this question is the following theorem viz

Theorem 5.2.5.1. Let n > 2. A necessary condition for an n-square matrix 4 to
be a Hadamard matrix is that # is a multiple of 4.

Proof. Case I Let A = (a,) bean n-square Hadamard matrix. The entries of A are
+1, the equation AAT = nf yields

ft
_fo, if i=j;
inaikajk _{naijgcfﬂ{

Upon computation, we have

i i n i i
]
z(aik Y CCTRICES zalk + Zalkazk +za1ka3k +za2ka3k

k=1 k=1 k=1 k=1 k=1

1
2
:zalk =H.
k=1

The possible values for a, +a,, and a, + d,, ae + 2, 0, =1. Thus, each term
in the summation

ft

DGy + g Xy, + as)
Pt

must be +4, 0, or —4. It follows that # is divisible by 4 i.e. 4 | n.

Case II Let P be an n-square matrix with main diagonal entries 1 or —1 such that
the first row of AP consists entirely of +1. Here, AP is also a Hadamard matrix. Since
the second and third rows of AP are orthogonal to the first row, they must each have
the same number, say r, of + 1s and —1s. Thus #» = 2r is an even number.
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Let n*— be the number of columns of AP that contain a + 1 of row 2 and a -1
of row 3. Similarly, we define n™, nt , and n~_. Then
ny+nl=n;+n] =n_+nl=r.

Thus,

n; =n_and n’ =n.
The orthogonality of rows 2 and 3 umplies that

ny=n_=nl+n,o>nl=n>n=2r=4n]

is a multiple of 4.
Theorem 5.2.5.2. If A 1s a Hadamard matrix, then so is

(1.12) (ﬁ _‘ffl)

By this theorem, Hadamard matrices H of order 2n can be generated recursively
by defining

H H
(1.13) H = (i _11), H, =[Hn—1 _Hﬂ-l], n>2.

n-1 n-1

Theorem 5.2.5.3. Let Hn be defined as in (1.13). Then Hn has eigenvalues 427
and 2% each of multiplicity 2"!, and an eigenvector x, corresponding to the positive

eigenvalue 2%.
Proof. The proof is done by induction on . The case of n = 1 was discussed just

prior to the theorem. Now for n > 2, we have

Al-H, —-H

n—1

det(M—Hn):‘_H STEY

= det(AI-H,_YAI+H, )-H>)
—det(A*1-2H2 )
= det( Al —2H__)det(AI +~2H, ).

Thus each eigenvalue U of H  generates two eigenvalues 2 pu of H. The

assertion then follows by the induction hypothesis, for H_, has eigenvalues 5" and
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_2*" each of multiplicity 2! To see the eigenvector part, we observe that, by

induction again,

H H

X
ann — n—1 n—l] n-1 ]
[Hﬂ—l - Hﬂ—l [(_ + \/E)xn—l

= JEHH— Xn-1 = 2% ['xn—l ] = 2"2’xn‘
Q-DH,_x, (—+ND)x,

LetJ denote the r-square matrix whose entries are all equal to 1. We give a lower
bound for the size of a Hadamard matrix that contains a J as a submatrix.

Theorem 5.2.5.4. If A is an n-square Hadamard matrix that contains a J as a
submatrix, then m > n°.

Proof. We may assume by permutation that A is partitioned as

J, X
(1.14) Az(y“ ZJ-

where ZS is an g-square matrix of entries 1, and s = m — n. Since A is a Hadamard
matrix of size m = n + 5, we have

AAT = (n + ),

which implies, by using the block form (1.14) of A, that

P +XX"=@+ 9,

Thus,

(1.15) XX" = (n + ) — nl .

The eigenvalues of the right-hand matrix in (1.15) are

2
H+s—n-, n+s, . , R+s

However, XX| is positive semidefinite, and thus has nonnegative eigenvalues.

]
Therefore, n + s — n°> > 0 or m > n°.

5.2.6 Permutation and Doubly Stochastic Matrices

Our goal in this section is to show that every permutation matrix is a direct sum
of primary permutation matrices under permutation similarity and that every doubly
stochastic matrix is a convex combination of permutation matrices.

A square matrix is called a permutation matrix if each row and column of the
matrix has exactly one 1 and all other entries are 0. It is easy to see that there are n!
permutation matrices of size n. Furthermore, the product of two permutation matrices
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of the same size is a permutation matrix, and if 2 is a permutation matrix, then P is
invertible, and P-! = PT,

A n-square A is said to be reducible if there exists a permutation matrix P such
that

(1.16) PTAP:(g %)

where B and D are square matrices of order atleast 1. A matrix is said to be
irreducible if it is not reducible. Here a matrix of order 1 is considered to be irreducible.
The matrix PTAP in equation (1.16) is similar to A through the permutation matrix P.
We say that they are permutation similar. It is obvious that the diagonal entries of
irreducible permutation matrices are all equal to 0, but not viceversa. For example,

0100
1000
0 001
0010

Theorem 5.2.6.1. Every reducible permutation matrix is permutation similar to a
direct sum of irreducible permutation matrices.

Proof. Let A bean n-square reducible permutation matrix, as in equation (1.16).
The matrix  in this case must be zero, for otherwise, let B be r x v and D be
s X 5, where r + s = n. Then B contains r 1s (in columns) and D contains s 1°s (in
rows). If C contained a 1, then A would have at least r + s + 1 = n + 1 1's, a
contradiction. The assertion then follows by the induction on B and D.

We now show that every n-square irreducible permutation matrix is permutation
similar to the # x n primary permutation matrix

0 .. 0O
| 0
pP= : :

0
0
(1.17) 0
1

1
0

00 ..
00 ..

o -

Theorem 5.2.6.2. A primary permutation matrix is irreducible,

Proof. Suppose the n X n primary permutation matrix P is reducible. Let STPS =
J, J, k> 2, where § is some permutation matrix and the J; are irreducible matrices
with order less than #. The rank of P —T'is n — 1, for det(P — I} = 0 and the submatrix
of size n - 1 by deleting the last row and the last column from
P — I is nonsingular. It follows that
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rank (STPS— D =rank (S"(P-DS=n- 1.
By using the above decomposition, we obtain

rank (STPS—I) = zrank(aﬂ-—f)sn—kqn_l‘
f=1

This is a contradiction. The proof is complete.

Theorem 5.2.6.3. A permutation matrix is irreducible if and only if it is permu-
tation similar to a primary permutation matrix.

Proof. Let Q be an # x n permutation matrix and P the # x # primary permutation
matrix in equation (1.17). If Q is permutation similar to P, then @ is irreducible by the
previous theorem. Conversely, suppose that @ is irreducible. We show that () can be
brought to P through simultaneous row and column permutations. Let the 1 of the first
row be in the position (1, #;). Then {, = 1 since @ 1s irreducible. If i} = 2, we proceed
to the next step, considering the 1 in the second row. Otherwise, i; > 2. Permute
columns 2 and #; so that the 1 is placed in the (1, 2) position. Permute rows 2 and {;
to get a matrix ;. This matrix is permutation similar to @ and also irreducible. If the
(2, 3-entry of @, is 1, we go on to the next step. Otherwise, let the
(2, i,)- entry be 1, i, = 3. If i, = 1, then @, would be reducible, for all entries in the
first two columns but not in the first two rows equal 0. Thus, i, > 3. Permute columns
3 and i, so that the 1 is in the (2, 3) position. Here the 1 in the (1, 2) position was
not affected by the permutations in the second step. Continuing in this way, one
obtains the permutation matrix P in the form of equation (1.17). The product of a
sequence of permutation matrices is also a permuttation matrix, therefore we have a
permutation matrix § such that

STQS = §710S = P.

Remark 5.2.6.1. Combining the above theorems, we see that every reducible
permutation matrix is permutation similar to a direct sum of primary permutation
matrices. Moreover, the rank of an #-square irreducible permutation matrix minus / is
n-1

Exercise 5.2.6.1. Let P bean n x n irreducible permutation matrix. Show that

rank (P-DHh=n-1

Theorem 5.2.6.4. Let O be an n-square permutation matrix. Then Q is irreducible
if and only if the eigen-values of Q are 1, w, w?, ...... , w1 where w is an n-th
primitive root of unity.

Proof. If Q is irreducible, then Q is similar to the n x n primary permutation
matrix, according to Theorem 1.6.3, which has the eigen-values 1, o, w2, ..., oL
where ( 1s an n-th primitive root of unity; so does matrix Q.
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Conversely, suppose that 1, . w?, ......., "1 are the eigenvalues of Q. Here
o =1 for any 1 < k < n since w is an nth primitive root of unity. If Q is reducible,
then we may write

STOQS=J, @ ... ® J,

where § is a permutation matrix, and the J; are primary permutation matrices with
order less than 7. The eigenvalues of those J; are the eigenvalues of (), none of which
is an nth primitive root of unity, for the order of every J; is less than n. This is a
contradiction. Thus, () is irreducible.

We next present a beautiful relation between permutation matrices and doubly
stochastic matrices, a type of matrices that plays an important role in statistics and in
some other subjects.

Definition 5.2.6.1. A square matrix is said to be doubly stochastic if all entries of
the matrix are non negative and the sum of the entries in each row and each column
equals 1. Equivalently, a matrix A with nonnegative entries is doubly stochastic if

(1.18) eTA=el andde=¢,e=(1, 1, 1, ..., DT.

It is readily seen that permutation matrices are doubly stochastic and so is the
product of two doubly stochastic matrices. We show that a matrix is a doubly stochas-
tic matrix if and only if it is a convex combination of nite permutation matrices, To
prove this, we need a result, which is of interest in its own right.

§ Frobenius—Konig Theorem

Let A bean n-square complex matrix. Then every product of n entries of A taken
from distinct rows and columns equals (, in symbols,

(1.19) alr'1 > a?f’g > a3r’3’ a4r’_‘. am’,‘ =0, {il’ i2’ ’In} =(12,3,..n)

if and only if A containsan r x § zero submatrix, where r + s =1 + 1.

Remark 5.2.6.2. First notice that property (1.19) of A will remain true when row
or column permutations are applied to A. In other words, an n-square matrix A has
property (1.19) if and only if PAQ has the property, where P and Q are any
n-square permutation matrices.

Proof. Necessary Part : If all the entries of A are zero, there is nothing to prove.
Suppose A has a nonzero entry and consider the submatrix obtained from A by deleting
the row and the column that contain the nonzero entry. An application of induction on
the (n — 1) x (n — 1) submatrix results in a zero submatrix of size
p x g, where p+ g=(n-1)+ 1 =n We thus may write A, by permutation, as

A:(g %)
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where B is ¢ x ¢ and D is p x p. Since every product of the entries of A from
different rows and columns is 0, this property must be in herited by B or D, say B.
Applying the induction to B, we see that B has an 1 x s zero submatrix such that
1 + s =g + 1. Putting this zero submatrix in the lower-left corner of B, we see that
A has an r x s zero submatrix, where r=p+ land r+ s=n + 1.

Sufficient part : We may assume by permutation that the r x s zero submatrix is
in the lower-left corner, and write

B C
4=(6 %)

Because n x r=y5—1, Bis of size (s — 1) x 5. Thus, the remust be a zero among
any s entries taken from the first s columns and any s different rows. Therefore, every

product &y; @y, » ds; 5 Ay
§ Birkho Theorem

A matrix A is doubly stochastic if and only if it is a convex combination of
permutation matrices.

Proof. Necessary Part: We apply induction on the number of zero entries of the
doubly stochastic matrices. If A has (at most) »° — n zeros, then A is a permutation
matrix, and we have nothing to show. Suppose that the doubly stochastic matrices with
at least k zeros are convex combinations of permutation matrices. We show that the
assertion holds for the doubly stochastic matrices with £ — 1 zeros. Let A be an #n-
square doubly stochastic matrix of £ — 1 zero entries. If every product of the entries
of A from distinct rows and columns is zero, then A may be written as, upto

permutation,
_{B C
4=(& 5)

where the zero submatrix is of size r x s with r + s = # + 1. Since the entries in
each column 4 add upto 1, the sum of all entries of B equals 5. Similarly, by consid-
ering rows, the sum of all entries of D is r. Thus, the sum of all entries of A would
be atleast ¥ + s = n + 1. This is impossible, for the sum of all entries of A is #.

@,; has to contain a zero factor, hence equals zero.

Therefore, some product &;.a;, 45,4y @ = 0. Let P/ be a permutation
matrix with 1 in the positions (j, i, ), i=1, 2, ..., n, and O elsewhere. Consider the
matrix

E=(1-6)"(A-6P),
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where & = min (G Oy > G355 Ay d,; ). Itis readily seen by equation (1.18)

that E is also a doubly stochastic matrix and that £ has atleast one more zero than A.
By the induction hypothesis, there are positive numbers #, £, ...., f,, of sum 1, and
permutation matrices P,, Py, ....., P, such that

E=1,P, + . + 1P

mom
It follows that A = P, + (1 - &)t,P, + ... + (1 = 3, P,
where P, are permutation matrices, and their coefficients are non{negative and
sum up to 1.
Sucient Part : Let A be a convex combination of permutation matrices P, P,, P4

s vy £ LE,
A=4P + ,Py + ... + 1P,
where £, £,, ......, t,, are non negative numbers of a sum equal to 1. Then it is easy
to see that ¢TA = €T and Ae = ¢, where e = (1, ....., )T. By equation (1.18) A is doubly
stochastic.

5.3 Positive Semi-definite matrices

5.3.1 Positive Semi-definite matrices

Definition 5.3.1.1. An n-square complex matrix A is said to be positive semi
definite or nonnegative definite, written as A > 0, if A = A and

(2.1) X¥Ax>0,¥xeC".

A is further called positive definite, symbolized A > 0, if the strict in equality in
(2.1) holds ¥ x(=0) 2 C™. It is immediate that if A is an # X # complex matrix, then

(2.2) A>0=x*AX 20

for every n x m complex matrix X. (Note that one may augment a vector by zero
entries to get a matrix of size # x m.) The spectral decomposition theorem of positive
semi-definite matrices best characterizes positive semi-deniteness under unitary
similarity.

Theorem 5.3.1.1. An n x n complex matrix A is positive semi definite if and only
if there exists an # X # unitary matrix U/ such that

(2.3) A=U*diag(4, ..., A)U.

where the i are the eigenvalues of A and a re all nonnegative. In addition, if
A >0 thendet A > 0. A is positive definite if and only if all the { in (2.3) are positive.
Besides, if A > 0 then det A > 0.
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A principal minor is the determinant of a submatrix indexed by the same rows and
columns, called a principal submatrix. Positives emidefinite matrices have many
interesting and important properties and play a central role in matrix theory.

Theorem 5.3.1.2, Let A bean n-square real symmetric matrix. Then

(i) A is positive definite if and only if the determinant of every leading principal
submatrix (leading minor) of A is positive.

(i) A is positive semi definite if and only if the determinant of every (not just
leading) principal submatrix of A is nonnegative.

Proof. Let A, be a k-square principal submatrix of A € M,. By permuting rows
and columns we may place A, in the upper-lett corner of A. In other words, there exists
a permutation matrix P such that 4, is the (1, 1)-block of PTAP If A 20, then (2.1)
holds. Thus, for any x € R¥,

x*Ax=y*Ay =0, where y = P(g)sz.

This says that A, is positive semi definite. Therefore, det A, > 0. The strict in
equalities hold for positive definite matrix A.

Converse : It is easy to verify that a minor of a matrix A € M, is the determinant
of a subsquare matrix of A, then

24 det(AT-A)= A"~ 8, A" 16,472 — .+ (1) det A.

where 81. is the sum of all principal minors of order ¢, i = 1, 2, 3, ..., n — L.

In anticipation to the for going fact, every principal submatrix of A has a non-
negative determinant, then the polynomial in is given by (2.4), containing no negative
zeroes since each d is non-negative. The case where A is positive definite follows
similarly.

As a side product of the proof, we see that A is positive (semi) definite if and only
if all of its principal submatrices are positive(semi) definite. It is immediate that A >

0 =>q; > 0 and that q,a; > ||a,;,‘||2 for i = j by considering 2-square principal
) d; . . ;
submatrices | , 4. | Thus, if some diagonal entry g, = 0, then a; = 0 for all j, and
i Y
hence, a,; = 0 for all #, in as much as A is Hermitian. We conclude that some diagonal
entry ¢, = 0 if and only if the row and the column containing @, = 0 consist entirely

of 0.
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Theorem 5.3.1.3. Prove TFAE for A M, (R)

(1) A 1s positive semidefinite.

(i) A = BTB for some matrix B.

(iii) A = CTC for some upper-triangular matrix C.

(iv) A = DID for some upper-triangular matrix D with non negative diagonal
entries (Cholesky factorization).

i. 0
(v) A=ET (0’ 0] for some 1 x n invertible matrix F and » x # matix F, where

r is the rank of A (Rank factorization).

Proof. Exercise

Exercise 5.3.1.1. Show that if A is a positive semidefinite matrix, then so are the
A, AT, adj (A) and AL, if the inverse exists.

Exercise 5.3.1.2. Let A be a positive semi definite matrix. Show that tr A > 0.
Equality holds it and only if A = 0.

Exercise 5.3.1.3. Let A € 2 M, be positive semi-definite. Show that

(det A)" < Loa
n

Exercise 5.3.1.4. If A > 0 then the Cholesky factorization of A is unique.

Exercise 5.3.1.5. Find a Hermitian matrix 4 such that the leading minors are all
non-negative, but A is not positive semidfienite.

5.3.2 A pair of positive semi-definite matrices

Let A and B be two Hermitian matrices of the same size. If A \ B is positive
semidefinite, we write 4 > B or B > A.

It is easy to see that > is a partial ordering, referred to as L owner (partial) ordering,
on the set of Hermitian matrices, that is,

(i) A > A for every Hermitian matrix A.

(i) IfA>Band B> A, then 4 = B.

(i) fA>Band B> C, then A > C.

Obviously, 4 + B > Bif A > 0. That in (2.2) of the previous section immediately
generalizes as follows.

(2.5)A >0 & X* AX > 0 for every complex matrix X of appropriate size. If A

and B are both positive semidefinite, then ( A%) = A’ and thus A?BA? >0
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Theorem 5.3.2.1. Let A > 0 and B > 0 be of the same size. Then

(1) The trace of the product AB is less than or equal to the product of the traces
trAand tr Bie, tr (AB) > tr A tr B.

(i1) The eigenvalues of AB are all non negative. Furthermore, AB is positive
semidefinite if and only if AB = BA.

(i11) If, are the largest eigenvalues of A, B, respectively, then

—%aﬁ < AB+ BA <2apI.

Proof. (1) By unitary similarity, with 4 = U* DU,

ti(AB) = tr (U*DUB) = tr (DUBU*),

we may assume that A = diag(4,, ....., A). Suppose that b, ..., b are the
diagonal entries of B. Then

tr(AB)y = Ab, + ... + A b

F

<A+ o+ A)G + o+ D)
= 11, i1p.
(i1) We known that XY and Y X have the same eigenvalues if X and Y are square
matrices of the same size. Thus, AB = A%(A% B) has the same eigenvalues as A*BA®
which is positive semidefinite. AB is not positive semidefinite in general, since it need

not be Hermitian. If 4 and B commute, however, then AB is Hermitian, for
(AB)* = B¥A* = BA = AB
and thus AB > 0. Conversely, if AB > 0, then it is Hermitian, and
AB = (AB)* = B*A* = BA:
(iii) We assume that A = 0 and B # 0. Dividing through the inequalities by, o8
we see that the statement is equivalent to its case « = 1; = 1. Thus, its suffices to

show that —%I <AB+BA <2l

It is to be noted that 0 < A < I => 0 < A% < A < I It follows that

1
0=(A+B——I
( > )

=(A+B)3—(A+B)+%I

=A2+BZ+AB+BA—A—B+%I
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SAB+BA+%I

1
that is, AB + BA >_ZI' To show AB + BA < 21, we compute

0<(A-B?=A2+ B2- AB - BA <2l < AB - BA:

Theorem 5.3.2.2. Let A and B be n-square positive semi-denite matrices. Then
there exists an invertible matrix P such that P*4P and P*BP are both diagonal
matrices. In addition, if A is nonsingular, then P can be chosen so that P*AP = [ and
P*BP is diagonal.

Proof. Let rank (A + B) = r and § be an on singular matrix so that

S*¥A + B)S = (6 g)
Conformally partition S*BS as

B, B
*gs=| P11 P2
S BS_(le Bzzj

By (2.5),we have §*(A + B)S > $*BS. This implies
By, =0,B,=0 B, =0
Now for B, because B, > 0, there exists an r-square unitary matrix T such that
TBI1IT is diagonal. Let us put
_eofT O
p=$ (0 1)
Then PBP and PBP = P(A+B)P — PBP are both diagonal. If A is invertible, we

write A = CC for some matrix C. Consider matrix (C"1)BC-1. Since it is positive semi-
denite,we have a unitary matrix U such that

(ChYsBCc ! =uDU *.
where D is a diagonal matrix with nonnegative diagonal entries. Let
P = C-'U. Then PAP = I and PBP = D.

Many results can be derived by reduction of positive semi-definite matrices A and
B to diagonal matrices, or further to nonnegative numbers, to which some elementary
in equalities may apply. The following two are immediate from the previous theorem
by writing A = P*D\ P and B = PD,P, where P is an invertible matrix, and D, and
D, are diagonal matrices with nonnegative entries.
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Theorem 5.3.2.3. Let A > 0, B > 0 be of the same order (> 1). Then
dettA + By > det A+ det B
with equality if and only if A + B is singular or A=0or B=0, and

(A+B) < i(ﬂr1 +BYH

if A and B are nonsingular, with equality if and only if A = B.

Theorem 5.3.2.4. It A > 0, B > 0, then

(1) rank A > rank B,

(i) detA > detB,

(iii) B! > if A and B are nonsingular.

Every positive semi-definite matrix has a positive semi-definite square root. The
square root is a matrix monotone function for positive semi-definite matrices in the
sense that the Lnowner partial ordering is preserved when taking the square root.

Theorem 5.3.2.5, Let A and B be positive semi-definite matrices. Then

A2B=>A*:=B*
Proof. It may be assumed that A is positive definite by continuity. Let C = Al,
D =Bl and E = C - D. We have to establish E > 0. For this purpose, it is sufficient
to show that the eigenvalues of E are all nonnegative. It is to be noted that

0>C?-D*=C*—(C-E)’ =CE+EC-E’
It follows that CE + EC > 0, for E is Hermitian and E? > 0. On the otherhand,
let be an eigenvalue of E and let u be an eigen vector corresponding to A. Then A
is real and by (2.1),
O>u*(CE+ECQu=2Au*Cn).
Since C > 0, we have A > 0. Hence E > 0; namely, C > D.
Theorem 5.3.2.6. Let A and B be positive semi-definite matrices. Then

A>B=> A*>B 0>r>1.
Exercise 5.3.2.1 Give an example where 4 > 0 and B > () but AB is not Hermitian.
Exercise 5.3.2.2 Let A, B, C be three n-square positive semidefinite matrices.

Give an example showing that there does not necessarily exist an invertible matrix P
such that P*AP, P*BP, PCP are all diagonal.

Exercise 5.3.2.3 Show that for Hermitian matrices A and B of the same size,
A? + B2 > AB + BA.
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Exercise 5.3.2.4 Let A and B be n-square real symmetric invertible matrices.
Show that there exists a real n-square invertible matrix P such that PTAP and PTBP
are both diagonal if and only if all the roots of p(x) = det (x4 — B) and g(x) = det(xB
— A) are real.

5.3.3 Square root of a positive semi-definite matrix
Every non negative number has a unique non negative square root. The
analogous result for positive semi-definite matrices also holds.

Theorem 5.3.3.1. For every A > 0, there exists a unique B > 0 so that B® = A.
Further more, B can be expressed as a polynomial in A.

Proof. We may view n-square matrices as linear operators on €. The spectral
theorem [refer to Theorem 5.4.1.4] ensures the existence of orthonormal eigenvectors
Uy, Uy, ..., i, belonging to the eigenvalues A, A,, ..., 4 of A, respectively. Then
Uy, Wy, ..., 4, form an orthonormal basis for " and A(x) = /llui, )»1 > (). Define a
linear operator B by B(u;)) = fori=1, 2, ......, n. It is routine to check that B,(x) =
A(x) and < B(x), x > 0 for all vectors x i.e., B> = A and B > 0. To show the uniqueness,
suppose C is also a linear operator such that C3(x) = A(x) and

<C(x), x >=<x,C(x)>=0

for all vectors x. If v is an eigenvector of C : Cv = pv, then C>v = u?v, i.e.; u°
18 an eigenvalue of A. Hence, the eigenvalues of C are the non negative square roots

of the eigenvalues of A ie., \/Z ,\/Z s eeery \/Z .

Choose orthonormal eigenvectors vy, v,, ...., v, corresponding to the eigenvalues

\/Z ,\/Z ) eeeens \/Z . of C, respectively. Then v, v,, ...., v, form an ortho normal basis
for C". Letu;=w, v + ...+ wv  i=1,2, ..., n. On one hand, C.2(uf) = Au) =

nr

A, = WAV, + .+ w Av | however, C2(u) = w A v, + ... + w A v . Because

nm1hn? m 'n n

Vi, Vs, ....., v, are linearly independent, we have wtii = w A, for each t. It follows that

Wi \//1_1 =wy At =12,...n Thus,

Cu=C(w v +...+w,v)

m R

= wlf,/i,-vl Fo WAV,
= wh-,//l,‘vl o WA,

= J4u; = Baw;)
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As uy, u,, ..., u, constitute a basis for C*, we conclude B = C. To see that B is
a polynomial of A, let p(x) be a polynomial, by interpolation, such that

p(A) = \/Z,i =1,2,....,n. Then it is easy to verify that p(A) = B.

Remark 5.3.3.1. (i) Such a matrix B is called the square root of A, denoted by Al

(i1) A*A is positive semi-definite for every complex matrix A and that the
eigenvalues of (A*A) are the singular values of A.

Exercise 5.3.3.1. Let A > 0 and B > 0 be of the same size. Show that BA?B <
I=>B! AB'>L

Exercise 5.3.3.2. Show by example that A > B > 0 = A’ > B%

5.4 Symmetric matrices and quadratic forms

5.4.1 Diagonalization of symmetric matrices

Through out the section, unless otherwise mentioned, all matrices are real. A
square matrix A is said to be diagonalizable if A is similar to a diagonal matrix, that
is, if A = PDP-! for some invertible matrix P and some diagonal matrix D. The next
theorem gives a characterization of diagonalizable matrices and tell show to construct
a suitable factorization.

Theorem 5.4.1.1. [3] The Diagonalization Theorem : An n X n matrix A is
diagonalizable if and only if A has n linearly independent eigen vectors.

In fact, A = PDP-1, with D a diagonal matrix, if and only if the columns of P are
n linearly independent eigenvectors of A. In this case, the diagonal entries of D are
eigenvalues of A that correspond, respectively, to the eigenvectors in P.

A symmetric matrix is a matrix A such that AT = A, AT being the transpose of
A. Such a matrix is necessarily square. Its main diagonal entries are arbitrary, but its
other entries occur in pairs on opposite sides of the main diagonal.

Example 5.4.1.1. Lets consider the following matrices:

Lo 0 -1 0Yfab ¢
Symmetric : (0 —3)’ 615_8}‘?5;

Non-symmetric : (3 0)* 66 —16 —14 , g g 125

To begin the study of symmetric matrices, it is helpful to review the
diagonalization process from [2], [3].
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-1 -1 5
Solution 5.4.1.1. The characteristic equation of A is
0=—A"+174" — 002 +144 = —(1 -8} A —6)(1 - 3).

-1 -1 1
A=8:v=| 1;A=6v,=[-1[;A=3:v;=]1
0 2 1

So the normalized (unit) eigenvectors are

6 -2 -1
Problem 5.4.1.1. Diagonalize the matrix A = [—2 6 - l]

For,

L 1 L
' ¥ ¢
u-l— E ,uZ_ _f ,U3— ﬁ B
0 2 1
6 N
-1 _1 1
REEN 800
Let P = Oﬁ _F ? D, g 8 2 Then, A = PDP-1. Since P is square and

J6 i

has ortho normal columns, P is an orthogonal matrix, and P-1 = PT. The following
theorem explains why the eigenvectors in the above problem are orthogonal they

correspond to distinct eigenvalues,
Theorem 5.4.1.2. If A is symmetric, then any two eigenvectors from different

eigen spaces are orthogonal.
Proof. Let v1 and v2 be eigen vectors that correspond to distinct eigenvalues, say,

1 and 2 . It’s sucess to show that v, v, = 0. Now,
Ay = (A )T vy =(Ay, )T ¥, 'y 1S an eigen vector
= (vl;r,‘alr)v2 =v (Avy) - A" =4
=y (Aw,) o is an eigen vector
=hov v
=Av ¥y
Hence, (A=A, )0 %,=0= 0.0, =0, w A=A, #0= A # A,
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Definition 5.4.1.1. An n n matrix A is said to be orthogonally diagonalizable if
9 an orthogonal matrix P( with P-!1 = PT) and a diagonal matrix D such that

3.1 A = PDP! = PDPT

Such a diagonalization requires # linearly independent and ortho normal

eigenvectors. When is this possible ? It A is orthogonally diagonalizable as in equation
(3.1), then

AT = (PDPTYT = PTIDTPT = PDPT = A.
Thus A is symmetric. The following the orem conversely states that every
symmetric matrix is orthogonally diagonalizable.

Theorem 5.4.1.3. An n x n matrix A is orthogonally diagonalizable if and only
if A is a symmetric matrix.

3 -2 4
Problem $5.4.1.2. Orthogonally diagonalize the matrix A = {42 26 %J whose

characteristic equation is
0=-A+ 1222 =214 -98 == (A = DA + 2).
Solution 5.4.1.2. For,

1 . .
A=Ty=|0|,y=| | [A=2:n=|-n
| 0 |

Although v, and v, are linearly independent, therefore they are not orthogonal.

v2 .v]

Recall from [3] that the projection of v, on to v, is » and the component of v,

V=V,

orthogonal to v, is

1
2

v2 .v]

Fny =
2 "

Then (v,, z,) is an orthogonal set in the eigen space for = 7. Here, z, is a linear
combination of the eigen vectors v, and v,, so z, is in the eigen space. This
construction of z, is just the Gram-Schmidt process (refer to [3]) Since the eigenspace
is two-dimensional (with basis v,, v, the orthogonal set (v, z,) is an orthogonal basis
for the eigenspace, by the Basis Theorem. (refer to [3]).
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Normalize (v,, Z,) to obtain the following ortho normal basis for the eigens pace
for A= 7.

1

1

3 13
W = 01 = o

- L

& UE

An ortho normal basis for the eigenspace for A = =2 is

-2
u, o= L 21»'52l -1|=
2lv 7 3(2

By Theorem 3.1.1, u, is orthogonal to the other eigenvectors u,; and u, . Hence
{u;, Wy, uy} is an orthonormal set. Let

|
R LT C Y T

1 __1 _2
N :{G 14 70 0
P=(uw u, ud)=\u - =+=—= —<[,D={07 0
1 Uy U Li—g ;3 00 -2
200G 3

Then P orthogonally diagonalizes A, and A = PDP-L.
In the above example, the eigenvalue 7 has multiplicity two and the eigenspace is

two-dimensional.

The Spectral Theorem

The set of eigen values of a matrix A is sometimes called the spectrum of A, and
the following description of the eigenvalues is called a spectral theorem.

Theorem 5.4.1.4. The Spectral Theorem for Symmetric matrices : An n x n
matrix A has the following properties:

(1) A has n real eigenvalues, counting multiplicities.

(i1) The dimension of the eigenspace for each eigenvalue equals the multiplicity
of as a root of the characteristic equation.

(iii) The eigenspaces are mutually orthogonal, in the sense that eigen vectors
corresponding to different eigen- values are orthogonal.

(iv) A is orthogonally diagonalizable.

Proof. The proof of the theorem follows from [3].
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The Spectral Decomposition

Suppose A = PDP! | where the columns of P are ortho normal eigenvectors u,
u,, ..., u of A and the corresponding eigenvalues A,, A,, ...., A_are in the diagonal
matrix D. Then, since P-1 = PT, we obtain

A4 03y
(3.2) A=PDP = (uiy,m)| :
0 A4 )luf
ulT
(3.3) = (ACseerr Alt)

u,

Hence, A = Auu”, + Auu’, + ... +Auul
This representation of A is called a spectral decomposition of A because it breaks

up A into pieces determined by the spectrum (eigenvalues) of A. Each termin equation
(3.2) is an n x n matrix of rank 1.

Problem 5.4.1.3. Construct a spectral decomposition of the matrix A that has the
orthogonal diagonalization.

2 L
T RIS
5 55
Solution 3.1.3. Denote the columns of P by ul and u2 . Then,

A= 8uluTl + 3u2uT2.
To verify this decomposition of A, compute

T_| {2 )=
i = %J(I JE)_[
F
r_ S -1 23)—
i F)s -
NG
32 16 3 _s 7 2
8ulul +3£L2£L2 (i 5&}'[5& 13}:(2 4):A
5 3 5

5.4.2 Quadratic Forms

Quadratic forms, occur frequently in applications of linear algebra to engineering
(indesign criteria and opti- mization) and signal processing (as output noise power).
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They also arise, for example, in physics (as potential and Kinetic energy), differential
geometry (as normal curvature of surfaces), economics (as utility functions), and
statistics (in confidence ellipsoids). Some of the mathematical background for such
applications flows easily from our work on symmetric matrices.

Definition 5.4.2.1. A Quadratic form on R n is a function Q defined on R"* whose
value at a vector x in R™ can be computed by an expression of the form Q(x) = xTAx,
where A 18 an n x n symmetric matrix. The matrix A is called the matrix of the
quadratic form. The simplest example of a non zero quadratic form is Q(x) = xTIx =
|IX||%, I being the identity matrix. The following examples show the connection between
any symmetric matrix A and the quadratic form xTAx.

el 8
O

X
Example 5.4.2.1. Let x = [ xlzj Then, xTAx for the matrices A = ( ) and A

= (32 _72 ) are 4x> + 3x2, and 3x%, — 4xx, + 7>, respectively.

Example 5.4.2.2. For x € R?, let Q(x) = 5x2, + 3x%, + 2x%, — x,x, + 8x,%;. Write
this quadratic form as xTAx.

The coefficients of x?,, x2,, x5 on the diagonal of A. To make A symmetric, the
coefficient of xx. for i = j must be split evenly between the (i, j) — and (j, {) —entries
in A. The coefficient of x x; is 0. Thus,

Exercise 5.4.2.1. Let Q(x) = x?, - 8x,x, — 532, . Compute the value of Q(x) for

o= (PhZ)ene( )

Remark 5.4.2.1. In some cases, quadratic forms are easier to use when they have
no cross-product terms— that is, when the matrix of the quadratic form is a diagonal
matrix. Fortunately, the cross-product term can be eliminated by making a suitable
change of variable.

Change of Variable in a Quadratic Form

If x € R" represents a variable vector in, then a change of variable is an equation
of the form

(3.4) X = Py or equivalently y = P-lx

where P is an invertible matrix and y is a new variable vector in R®, Here y is the

coordinate vector of x relative to the basis of R® determined by the columns of P. If
the change of variable equation (3.4) is made in a quadratic form xTAx, then
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(3.5) xTAx = (Py)TA(Py) = yTPTAPy = yI(PTAP)y;

and the new matrix of the quadratic formis PTAP. Since A is symmetric, Theorem
3.1.2 guarantees that there is an orthogonal matrix P such that PTAP is a diagonal
matrix D, and the quadratic form in equation (3.5) becomes yTDy. This is the strategy
of the next theorem.

Theorem 5.4.2.1. The Principal Axes Theorem : Let A be an n x n symmetric
matrix. Then there exists an orthogonal change of variable, x = Py, that transforms the
quadratic form xTAx into a quadratic form y™Dy with no cross-product term.

Remark 5.4.2.2. The columns of P in the theorem are called the principal axes
of the quadratic form xTAx. The vector y is the coordinate vector of x relative to the
ortho normal basis of R” given by these principal axes.

Example 5.4.2.3. Make a change of variable that transforms the quadratic form in
Example 5.4.2.1 into a quadratic form with no cross-product term.

The matrix of the quadratic form in Exercise 5.4.2.11sA = (1_ 4 —gl) The first step

is to orthogonally diagonalize A. Its eigenvalues turn out to be A = 3 and A = 7.
Associated unit eigenvectors are

2 1
A=3: [fEL];’?':?{f]
5 J5

These vectors are automatically orthogonal (because they correspond to distinct
eigenvalues) and so provide an orthonormal basis for R, Let

e
% 3o
['EE 0 =7

Then, A = PDP-! and D = P-1AP. A suitable change of variable is

x 2
x =Py, x =[x13j’y = (“;',12)

Then, x{ —8xx,-5x3 =x’ Ax=(Py)" A(Py)=y" PTAPy=y"Dy
=32 -7y,
Remark 5.4.2.3. Example 5.4.2.3 illustrates the Theorem 5.4.2.1.
To illustrate the meaning of the equality of quadratic forms in Example 3.2.3, we
can compute (x) for x = (_%) using the new quadratic form. Since x = Py,

vy = Plx = PTx, so
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&

2 _ 1 6
L 2 (27 2
5 5

Hence, 3y%, — 7y%, = 16.
The geometrical interpretation of Example 5.4.2.3 is illustrated from Figure 1.

x "
R? xTAx
Multiplication I .
1
by P 0 16
y'Dy
y-
R2

Figure 1 : Change of variable in xT Ax

A Geometric View of Principal Axes
Suppose Q(x) = xTAx, where A is an invertible 2 x 2 symmetric matrix, and let

¢ be a constant. It can be shown that the set of all x € R? that satisfy

(3.6) xTAx = ¢ ;

either corresponds to an ellipse (or circle), a hyperbola, two inter secting lines, or
a single point, or contains no points at all. If A is a diagonal matrix, the graph is in
standard position, such as in Figure 2. If A is not a diagonal matrix, the graph of (3.6)

is rotated out of standard position, as in Figure 3. Finding

X,
. AN 7
~— ~ ~
~ NN\ b 'y
N ===
o Ry
1 V .
a o A al *
AL AN
i NN
I S N
e \
e R
—+—==1,a>b>0 ———==1,a>b>0
> ] ’ bl
a b a b
hyperbola

ellipse

Figure 2 : An ellipse and a hyperbola in standard position
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the principal axes (determined by the eigenvectors of A) amounts to finding a new
coordinate system with respect to which the graph is in standard position.
The hyp N\ ow here A is

\ ,
N
LI T

(a) ixf —4xx, + 51‘:: =48 (b) \']2 -8xx, - S.x':: =16
Figure 3 : An ellipse and a hyperbola not in standard position
the matrix in Example 5.4.2.3. The positive y, -axis in Figure 3(b) 1s in the direction

of the first column of the matrix P in Example 5.4.2.3, and the positive y,-axis is in
the direction of the second column of P.

Exercise 5.4.2.2. Find a change of variable that removes the cross-product term

from the equation of the ellipse in Figure 3(a).

Classifying QuadraticForms

When A is an n n matrix, thequadraticform Q(x) = x'Ax is a real-valued function
with domain R". Figure 4 displays the graphs of four quadratic forms with domain R™
For each point x = (x, x,) In the domain of a quadratic form Q, the graph displays the
point ((x}, x,) 2) where z = Q(x). Notice that except at x = 0, the values of Q(x) are all
positive in Figure 4(a) and all negative in Figure 4(d). The horizontal cross-sections of

the graphs are ellipses in Figures 4(a) and 4(d) and hyperbola sin Figure 4(c).

Definition 5.4.2.2. A quadratic form Q is :

X3

() z=2x; +7x;, Jy._—vl.; {€) z=3x;-7x3 (d) 2= 3] 7x3

Figure 4 : Graph of quadratic forms
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® positive definite if O(x) >0, vyx 6 =0

® negative definite if Q(x) <0, vx 6=0

® indenite if OQ(x) assumes both positive and negative values,

Also, Q is said to be positive semi definite if Q(x) > 0, v x, and to be negative
semidefinite if (x) < 0 ; v x. The quadratic forms in Figure 4(a) and 4(b) are both
positive semi definite. Theorem 5.4.2.2 characterizes some quadratic forms interms of
eigenvalues. The classification of a quadratic form is often carried over to the matrix
of the form. Thus a positive definite matrix A is a symmetric matrix for which the
quadratic form xTAx is positive definite. Other terms, such as positive semi definite
matrix, are defined analogously.

5.4.3 Constrained motion

Engineers, economists, scientists, and mathematicians of ten need to find the
maximum or minimum value of a quadratic form Q(x) for x in some specified set.
Typically, the problem can be arranged so that x varies over the set of unit vectors.
This constrained optimization problem has an interesting and elegant solution. In the
foregoing examples and the discussion in foregoing sections will illustrate how such
problems arise in practice. The requirement that a vector x in R" be a unit vector can
be stated in several equivalent ways :

<l = 1, JIxl* = 1, x"x = 1
and

(3.8) le + X22 + X F o + xzn = 1.

3
The expanded version equation (3.8) of x'x = 1 is commonly used in applications.

When aquadratic form @ has no cross product terms, it is easy to find the maximum
and minimum of Q(x) for x'x = 1.
e.g. Find the maximum and minimum of Q(x) = 9x21 +4x° + 3x23 subject to the

constraint x1x = 1.

2

Since, x 5

and xzz are non-negative,

2 2 2 2
4x; <9x; and 3xy <9x;
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and hence, Q(x)=9x; +4x3 +3x;

:93612 +9x§ +3x§ :9(x12 er32 +x32) =9
whenever le + x22 + x23 + o + x2n = 1. So the maximum value of Q(x) cannot
exceed 9 when x is a unit vector. Further more, Q(x) = 9 when x = (1, 0, 0). Thus
9 is the maximum value of Q(x) for x'x = 1. To find the minimum value of Q(x),
observe that

=9x7 >9x7 and 4x; >3x;
and hence, Q(x) > 3)(2l + 3)(22 + 3)(23 = 3()(2l + x22 + x23) whenever, le +x°

+x°, + ..+ X7 = 1. Also, Q(x) = 3 when x
value of Q(x) for x'x = 1.

2

=X, = 0, Xy = 1. So, 3 is the minimum

Theorem 5.4.3.1. Quadratic Forms
LA and Eigenvalues : Let A bean n x n
\ symmetric matrix. Then aquadratic form

'{\-__-
| )/ xTAx is :
\ " \ o« . . . . .
%—/__, ® positive definite if and only if the
o eigenvalues of A are all positive,

I “~ ty ® negative definite if and only if the
Positive definite eigenvalues of A are all negative,
s ® indefinite if and only if A has both
\‘\.\ B positive and negative eigenvalues.
e Proof. By the Principal Axes
' A Theorem, there exists an orthogonal
)/ ‘-\ ‘.\\ change of variable x = Py such that
\1 //"'"\‘N (3.7) O(x) = x"Ax = y'Dy = klyzl +
v 7»2)122 + o + knyzn.
Negative definite where A, Ay, ... , A are the

Xy eigenvalues of A. Since P is invertible, 3
a one-to-one correspondence between all
nonzero x and allnonzero y. Thus the
values of Q(x) for x = 0 coincide with the
values of the expression on the right side
of (3.7), which is obviously controlled by
the signs of the eigenvalues 7»1, 7»2, ..... ,
Indefinite A, in the three ways described in the
Figure 5 theorem.
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Problem 5.4.3.1. Is Q(x) = 3x° | + 2x°, + X°, + 4xx, + 4x,x, positive definite ?
Solution 5.4.3.1. Because of all the plus signs, this form “looks” positive definite.

But the matrix of the form is
320
2 22
0 21

and the eigenvalues of A turn out to be 5, 2, and —1. So Q is an indefinite quadratic
form, not positive definite. The classification of a quadratic form is often carried over
to the matrix of the form. Thus a positive definite matrix A is a symmetric matrix for
which the quadratic form x'Ax is positive definite. Other terms, such as positive
semidefinite matrix, are defined an alogously.

Example 5.4.3.1. Let A = (g g) and let Q(x) = x'Ax for x € R%. Figure 6(1)

displays the graph of (. Figure 6(2) shows only the portion of the graph inside a
cylinder; the intersection of the cylinder with the surface is the set of points
(X}, Xy, 2) such that z = Q(xl, x,) and le + ch2 = 1. The “heights” of these points are
the constrained values of Q(x). Geometrically, the constrained optimization problem is
to locate the highest and lowest points on the intersection curve. The two highest
points on the curve are 7 units above the x x,-plane, occwring where x, = 0 and
x, = *1. These points correspond to the eigenvalue 7 of A and the eigenvectors x =
(0, 1) and —x = (0,1). Similarly, the two lowest points on the curve are 3 units above
the x,x -plane. They correspond to the eigenvalue 3 and the eigenvectors (1, 0} and
(-1, 0). Every point on the intersection curve in Figure 6(2) has z-coordinate between
3 and 7, and for any number ¢ between 3 and 7, there is a unit vector x such that
Q(x) = 1. In other words, the set of all possible values of xTAx, for ||x| = 1, is the closed
interval 3 < ¢ < 7. It can be shown that for any symmetric matrix A, the set of all
possible values of xTAx, for [|x]| = 1, is a closed interval on the real axis. Denote the
left and right endpoints of this interval by m and M, respectively. That is, let

(3.9) m = min{xTAx : ||x|| = 1}, M = max{x"Ax : |1 = 1}

Remark 5.4.3.1. The use of minimum and maximum in (3.9), and least and
greatest in the theorem, refers to the natural ordering of the real numbers, not to
magnitudes.

Theorem 5.4.3.2. Let A be a symmetric matrix, and define m and M as in (3.9).
Then M is the greatest eigenvalue 7&1 of A and m is the least eigenvalue of A. The value



NSOU « GE-MT-31 185

of xTAx is M when x is a unit eigenvector u, corresponding to M. The value of xTAx
is m when x is a unit eigenvector corresponding to m.

1 o= 3x] + Tx3 2 The intersection of
= = 3x] + 7x and the cylinder
x4+ xi=1.

Figure 6

Proof. Let us orthogonally diagonalize A as PDP-!. We know that
(3.10) x"Ax = y'Dy, when x = Py.
Also, since, PTP = I and |Py||? = (Py)"(Py) = y'PTPy = yTy = ||y|]?, therefore,
[l = [IPyll = |lyll holds .
In particular, ||y|| = 1 < ||| = 1. Thus, xTAx and y'Dy assume the same set of
values as x and y range over these to fall unit vectors. Suppose that A is a 3x3 matrix

i
with eigenvalues a > b > ¢. Arrange the (eigenvector) columns of P so that P = {”J
Uy
a 0 O
and D = 8 8 (c) Given any unit vector y in R3 with coordinates y,, ¥,, ¥3,
e
Cy3 = ays

and obtained

yTDy = ayl2 + by% + cy32
< ay12 + ay% +ay§
=mﬁg%+%>
=allyl'=a
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Thus M < a. However, when y = ¢; = (1, 0, 0) then yIDy = a, so M = a holds.
By equation 3.10, x that corresponds to y = ¢, 1s the eigenvector u, of A, as

1
x =P = [u, t, i3] [8]= u,

Thus M = a = ¢,TDe, = u" Au,
which proves the statement about M. A similar argument shows that m is the least
eigenvalue ¢, and this value of xTAx is attained when x = P, = u,

321

Problem 5.4.3.2 Let A = {% 13 i} Find the maximum value of the quadratic

form xTAx subject to the constraint xTAx = 1 and and a unit vector at which this
maximum value is attained.

Solution 5.4.3.2 Using Theorem 5.4.3.2, the desired maximum value is the
greatest eigenvalue of A. The characteristic equation turns out to be

0=-A"+104* =274 +18=~(A-6)(A =3)A-1).

The greatest eigenvalue is 6. The constrained maximum of xTAx is attained when

1
X is a unit eigen vector for = 6. Solve for (A — 6I) = O and find an eigenvector [1]
1

and set m=\5

Theorem 5.4.3.3 Let A, A, u; be as defined in Theorem 5.4.3.2. Then the
maximum value of xTAx subject to the constraints
Ay =1, 2T, =0
is the second greatest eigenvalue, A,, and this maximum is attained when x is an
eigenvector #, corresponding to A, .

Proof. Hint: It can be proved by an argument similar to forgoing theorem 3.3.1 in
which the theorem reduces to the case where the matrix of the quadratic form is
diagonal.
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Example 5.4.3.2 Find the maximum value of 9x?, + 4x%, + 3x>; subject to the
constraints xTx = 1, xTu; = 0 ; where 4, = (1, 0, 0)

If x = (X}, X», X3), then the constraint xTul =0 => x| = 0. For such a unit vector,
¥+ x5, =1and

9x2, + 4x2, + 3x% = X2 + 3x%,
< 4x? + 4x%, =4

Thus the constrained maximum of the quadratic form does not exceed 4. And this
value is attained for x = (1 0, 0), which is an eigenvector for the second greatest
eigenvalue of the matrix of the quadratic form.

Exercise 5.4.3.1 Let A be the matrix in Problem 5.4.3.2 and let #; be a unit
eigenvector corresponding to the greatest eigenvalue of A. Find the maximum value of
xTAx subject to the constraints

xly =1, 2Tu, = 0.

The next theorem generalizes the foregoing one and combining with Theorem
(3.3.1), gives a signicant characterization of all the eigenvalues of A.

Theorem 5.4.3.4 Let A be a symmetric # X n matrix with an orthogonal
diagonalisation 4 = PDP-1, where the entries on the diagonal of D are arranged so
that A, > A, > ... > A, and where the columns of P are corresponding unit
eigenvectors iy, U, ...., #,. Then for k = 2, 3, 4, ..., n, the maximum value of
xTx =1, xTu, =0, xTu, | =0 is the eigenvalue k and this maximum value is attained
at x = .

The proof is beyond the scope of the book.

5.4.4 The singular value Decomposition

Unfortunately, as we know, not all matrices can be factored as A = PDPT with
diagonal D. However, a factorization A = QDPT is possible for any m x n matrix A'A
special factorization of this type, called the singular value decomposition, is one of the
most useful matrix factorizations in applied linear algebra. The singular value
decomposition is based on the following property of the ordinary diagonalization that
can be imitated for rectangular matrices. The absolute values of the eigenvalues of a
symmetric matrix A measure the amounts that A stretches or shrinks certain
eigenvectors. If Ax = Ax and ||x|| = 1, then

G.11) llAx] = [lAxll = Al [ld] = |Al

If A, is the eigenvalue with the greatest magnitude, then a corresponding unit
eigenvector v, identies a direction in which the stretching effect of A is greatest. That
is, the length of Ax is maximized when x = v,, and [[Av,|| = |A,| by (3.11). This
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description of v, and A, has an analogue for rectangular matrices that will lead to the
singular value decomposition.

4 11 14
Example 5.4.4.1. If A= g 7 ) then the linear transformation x —> Ax

maps the unit sphere {x : ||x]| = 1} in R3 on to the ellipse in R? (refer to Figure 7). Find
a unit vector x at which the length ||Ax|| is maximized, and compute this maximum
length.

Multiplication X,
by A
= ==

Figure 7

The quantity ||Ax||* is maximized at the same x that maximizes ||Ax||, and ||Ax]||? is
easier to study. Here,

IAx|]> = (Ax)TAx = xTATAx = xT(ATA)x.

Also, ATA is a symmetric matrix, since (ATA)T = ATA. So the problem now is to
maximize the quadratic form xT(ATA)x subject to the constraint ||x|| = 1. The maximum
value is the greatest eigenvalue 1 of ATA (verify!). Also, the maximum value is attained
at a unit eigenvector of ATA corresponding to A,.

80 100 40
; TA - | 100 170 140 : T
For this e.g., we have A'A = 40 140 200 The eigenvalues of A*A are

Ay =360, A, =90, and A, = 0. Corresponding unit eigenvectors are, respectively,

Vlz ’V2_

Wowrow =
|
Ww =
S
<
w
[l
|
W= W

The maximum value of ||Ax||> is 360, attained when x is the unit vector v,. The
vector Av; 18 a point on the ellipse in Figure 7 farthest from the origin, namely,

Ay, = (168) For ||x]| = 1, the maximum value of Ax is 4; = /360 = 6+/10.
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§ The Singular Values of an m x n Matrix

Let A bean m x n matrix. Then ATA is symmetric and can be orthogonally

diagonalized. Let v, v,, ..., v, be an orthonormal basis for R"* consisting of
eigenvectors of ATA, and let 7»1, s kn be the associated eigenvalues of ATA. Then,
for 1 < i < n, we have

(3.12) lAv|* = (Av)TAv, = vTATAy,

= viTO»ivi), *y. 18 an eigen vector of ATA
= A, * v, is a unit vector.
So the eigen values of ATA are all nonnegative. By renumbering, if necessary, we
may assume that the eigen values are arranged so that
M>2A>, A, >0
The singular values of A are the square roots of the eigen values of ATA, denoted

by &, &y e , &, and they are arranged in decreasing order. That is, & = \/Z .By

equation (3.12), the singular values of A are the lengths of the vectors Ay,
i=1,2, ... , N.

Example 5.4.4.2. Let A be the matrix in Example 5.4.4.1. Since the eigenvalues
of ATA are 360, 90, and 0, the singular values of A are

o, =6310,0, =310 & o5 = 0.

From Example 5.4.4.1, the first singular value of A is the maximum of ||Ax|| over
all unit vectors, and the maximum is attained at the unit eigenvector v,. Theorem
(5.4.3.3) shows that the second singular value of A is the maximum of ||Ax|| over all
unit vectors that are orthogonal to v;, and this maximum is attained at the second unit
eigenvector, v,. For the v, in Example 5.4.4.1,

Avy = (_S).

This point is on the minor axis of the ellipse in Figure 8, just as Av, is on the major
axis. (See Figure 11.) The first two singular values of A are the lengths of the major
and minor semiaxes of the ellipse.

Figure 8
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This point is on the minor axis of the ellipse in Figure7, just as Av, is on the major
axis. (refer to Figure 11.)

Theorem 5.4.4.1. Suppose (v,, Vs, ...., V) is an orthonormal basis of R consisting
of eigenvectors of ATA, arranged so that the corresponding eigenvalues of ATA satisfy
Aqs ooy Ay, and suppose A has r nonzero singular values. Then {Av,, ....., Ay, is an
orthogonal basis for Col A, and rank A = r.

Proof. Because v, and A.jvj are orthogonal for i = j, therefore

(Avi)T(Avj) = viTAij = va(A.jvj) =Q.

Thus {Av,, ....., Av,} is an orthogonal set. Further more, since the lengths of the
vectors Avy, ....., Av, are the singular values of A, and as there are r nonzero singular
values, Av, =0 iff 1 <i < r. So Av, ....., Av,_ are linearly independent vectors, and
they are in col A. Finally, for any y € 2 col A-say ¥ = Ax— we can express

X=oV+ oV, + o+ 00,

and

Yy=Ax = AV, + AV, + ... + AV, + €, qav, 4 + ... + C AV,

= AV, + AV, + ..+ cAv, + 0+ ... + 0.

Thus y € span {Av,, ..., Av_}, which shows Av,, ....., A, is an orthogonal basis

for col A. Hence rank A = dim col A = 1.

§ The Singular Value Decomposition

The decomposition of A involves an m X n diagonal matrix of the form

(3.13) 5:(10) 8)

where D is an r X r diagonal matrix for some r not exceeding the smaller of
m and n. (If r equals m or n or both, some or all of the zero matrices do not appear.)

Theorem 5.4.4.2. The Singular Value Decomposition : Let A bean m x n matrix
with rank r. Then there exists an m x n matrix as in (3.13) for which the diagonal
entries in D are the first » singular values of A, E_,l, ﬁz, vevers ér > 0, and there exist an
m x n orthogonal matrix U and an n X n orthogonal matrix V such that
A=UEVL

Proof. Let A.f and v, be as in Theorem 5.4.4.1, so that Av,, i = 1, 2, ..., n1s an
orthogonal basis for Col A. Normalize each Av,, i = 1, 2, ...., r to obtain an ortho
normal basis #,, u,, ...... , it,, where

L L

Ay =—Ay,

&

u;
A




NSOU « GE-MT-31 191

and
3.14) Av, =&u;
Now extend {u, i =1, 2, ....., r} to an orthonormal basis {u, i =1, 2, ....., m}

of R™ and let
U= [uyy ... u,]and V = [vv, ... v, ]

By construction, U and V are orthogonal matrices. Also, from (3.14),
AV =[AVIAV, ... 0, ... 01| &gy ..£,00,0, .0 |

Let D be the diagonal matrix with diagonal entries &, ....., & and let be as in
(3.13) above. Then

< 0

o ¢

=&y .£u,0,....0] = AV
Since V is an orthogonal matrix, U Z VT = AV VT = 4,

Remark 5.4.4.1. Any factorization A = UZVT, with U and V orthogonal, Z as in
equation (3.13), and positive diagonal entries in D, is called a singular values
decomposition (or SVD) of A. The matrices U and V are not uniquely determined by
A, but the diagonal entries of are necessarily the singular values of A. The columns
of U in such a decomposition are called left singular vectors of A, and the columns of
V are called right singular vectors of A.

Example 5.4.4.3. Use the results of Examples 5.4.4.1 and 5.4.4.2 to construct a
singular value decomposition of

{411 14
A‘(s 7 -2)-

A construction can be divided into three steps.

Step 1 Find an orthogonal diagonalization of ATA : That is, find the
eigenvalues of ATA and a corresponding ortho normal set of eigenvectors. However,
for the matrix A here, the eigen data for ATA are provided in Example 5.4.4.1.

Step 2 Set up V and E : Arrange the eigenvalues of A7A in decreasing order. In
Example 3.4.1, the eigenvalues are already listed in decreasing order : 360, 90, and 0.
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The corresponding unit eigen vectors, vy, v,, v, are the right singular vectors of A.
Using Example 3.4.1, construct

(5] L STIRY REPRY Y
|

o2

V=[vv,]=

L et frrar —

W

The square roots of the eigen values are the singular values :

& =610,& =310, =0.

The nonzero singular values are the diagonal entries of D. The matrix Z is the
same size as A, with D in its upper left corner and with (’s elsewhere.

(610 0 ) =_ (610 0 0
D‘[o 3\/5]’“_“) O]_[ 0 310 0)

Step 3 Construct U : When A has rank r, the first » columns of U are the

normalized vectors obtained from Av, i = 1, 2, ..., r. In this example, A has two
nonzero singular values, so rank A = 2. Recall from Example (5.4.4.2) and the

paragraph before Example (5.4.4.2) that ||JAv,|| = &, and [|Av,|| = &,. Thus
1 1 13) T
I :—Av :_( = 10
A O [T

1 1 {3\ [+
=— Ay :_( ): V10
“ &1 * 2d10\9 [%}

Thus, the singular value decomposition of A4 is

A{% @[6@ 0 0]

(5] LIS TIRY MR Y

L L o 3/10 0

Jio 10

[FYY [PETIY ETIY o]
|
Rk (BT Y

1 -1
Problem 5.4.4.1. Find a singular value decomposition of A = [22 22]
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Solution 5.4.4.1. Step 1 Here ATA = (89 _99 ) The eigen values of ATA are

18 and 0, with corresponding unit eigenvectors

1 Nl
V2 V2

Step 2 These unit vectors form the columns of V = [v, v,]|. The singular values

are £ =+/18,&, =0.
Since there is only one nonzero singular value, the “matrix” D may be written as

a single number D =./18 Hence,

D 0) (18 0
Z=|0 0l=| 0 0
0 0 0 0

2

f4 0
Step 3 Here, A = ;ﬁ > Avy = 8

N

Figure 9
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Now, [lAv,|| = &, = /18 (verify!). Also ||Av,|| = &, = 0. The only column found

for U is,

W=

— 2

U =——=
1 \/E N
3

The other columns of U are found by extending the set 1, to an ortho normal basis
for R3. In this case, we need two orthogonal unit vectors #, and 4 that are orthogonal
to u;. (Refer to Figure 9.) Each vector must satisfy u;x, which is equivalent to the
equation x; — 2x, + 2x, = 0. A basis for the solution set of this equation is

(]

Applying the Gram-Schmidt normalization process to {w;, w,}, one obtain
3

2 3
nT T TS
NS

Finally taking U = [u, u, u,], and using steps 2 and 3, we obtain the desired result.

§ Applications of the Singular Value Decomposition
The Singular Value Decomposition (SVD) is often used to estimate the rank of a

matrix, as noted above. Several other numerical applications are described briefly
below, and an application to image processing is presented in subsection 5.4.5.

Figure 10
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Example 5.4.4.4. (The Condition Number) Most numerical calculations in
volving an equation Ax = b are as reliable as possible when the SVD of A is used. The
two orthogonal matrices I/ and V do not affect lengths of vectors or angles between
vectors(Theorem 5.4.3.3 in subsection 5.4.3). Any possible in stabilities in numerical
calculations are identitied in Z. If the singular values of A are extremely large or
small, roundoff errors are almost inevitable, but an error analysis is aided by

knowing the entries in and V. If A is an invertible n X n matrix, then the ratio £
i)

of the largest and smallest singular values gives the condition number of A. Actually,
a condition number of A can be computed in several ways, but the definition given
here is widely used for studying Ax = b.

Example 5.4.4.5, (Bases for Fundamental Subspaces [7]) Given an SVD for an
m X n matrix A, let #,, u,, ....., u,, be the left singular vectors, v, ...., v, the right
singular vectors, and &, &, ....., &  the singular values, and let r be the rank of A.
By Theorem 5.4.4.1,

(3.15) {uy, 4y ooy 1}

is an ortho normal basis for Col A. Also its known that (Col A). = NulAT. Hence,

(3.16) {u, .y, oo 1)

is an ortho normal basis for Nul AT, Since Av, =& for 1 <i < n, and § =0 if
and only if i > r, the vectors v, _ |, ....., v, span a subspace of Nul A of dimension
n —r. By the Rank Theorem (refer to [3]), we have dim NulA + rank A = n which
follows that

GBI v, oves V)

is an orthonormal basis for Nul A, by the Basis The- orem [refer to [3]]. From
(3.15) and (3.17), we have (Nul AT)T = ColA. Interchanging A and A7, its known that
(Nul A)T = Col AT + Row A. Hence, from (3.17)

G.18) {vy, oy v}

is an ortho normal basis for Row A.

Remark 5.4.4.1. For the definition of Fundamental subspaces refer to [3].

Theorem 5.4.4.3. The Invertible Matrix Theorem : Let A be an n x n matrix. Then
the following statements are each equivalent to the statement that A is an invertible
matrix.

® (Col A)T = {0).
® (Nul A)T=R_
® Row A =R
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® A has n nonzero singular values.

Multiplication
— fby A T

Figure 11

Example 5.4.4.6. (Reduced SVD and the Pseudoinverse of A) When = contains
rows or columns of zeros, a more compact decomposition of A is possible. Using the
notation established above, let r = rank A, and partition U and V into submatrices
whose first blocks contain r columns :

U = [U, Um—r], where U, = [u; .... u,]

V =[V, Vm-r], where V_= [v, .... v] Then Uris m x r and Vris n x r. Then
partitioned matrix multiplication shows that

D 0\(vT
(3.19) A=[UrU,_ ] (0 0)@"4}

This factorization of A is called a reduced singular valued ecomposition of A.
Since the diagonal entries in D are nonzero, D is invertible. The following matrix is
called the pseudoinverse (also, the Moore-Penrose inverse) of A

(3.20) Ay = VD 1U'r.

Example 5.4.4.7. (Least-Squares Solution) Given the equation Ax = b, use the
pseudo inverse of A in (3.20) to define

x=A'b=V.D'U"D.
Now feeding SVD in (3.19),
Ax =U,DV Y V.D'U! D)

=U,DD™'U"Db
=U,U"D.
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It follows from (3.15) that UrUT b is the ortho gonal projection b of b on to Col
A. Thus "x is a least-squares solution of Ax = b. Infact, this x has the smallest length
among all least-squares solutions of Ax = b.

5.4.5 Applications to image processing and statistics

& s B ¥ .4 s W

(d) Principal component 1: 93.5%. (e) Principal component 2: 5.3%. (f) Principal component 3: 1.2%.

Figure 12 : satelite image

The main goal of this section is to explain a technique, called principal component
analysis, used to analyze such multivariate data. The calculations will illustrate the use
of orthogonal diagonalization and the singular value decomposition. Principal
component analysis can be applied to any data that consist of lists of measurements
made on a collection of objects or individuals. For instance, consider a chemical
process that produces a plastic material. To monitor the process, 300 samples are taken
of the material produced, and each sample is subjected to a battery of eight tests, such
as melting point, density, ductility, tensile strength, and soon. The laboratory report for
each sample is a vectorin R8, and the set of such vectors forms an 8 x 300 matrix,
called the matrix of observations. Loosely speaking, we can say that the process
control data are eight-dimensional. The following example describe data that can be
visualized graphically.
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Example 5.4.5.1. An example of two-dimensional data is given by a set of
weights and heights of N college students. Let X, denote the observation vector in R?
that lists the weight and height of the ith student. If ® denotes weight and 4 height,
then the matrix of observations has the form

W oWy ..ow,
h h, ... h,
where, X, = (w,, h), 1 =1, 2, ... , N, the set of observation vectors can be

visualized as a two dimensional scatter plot. Refer to Figure 13.

h

Figure 13 : A scatter plot of spectral data for a satellite image

Example 5.4.5.2. The first three photographs of Railroad Valley, Nevada, shown
in the beginning of the section can be viewed as one image of the region, with three
spectral components, because simultaneous measurements of the region were made at
three separate wave lengths. Each photograph gives different information about the
same physical region. For instance, the first pixel in the upper-left corner of each
photograph corresponds to the same place on the ground (about 30 meters by 30
meters). To each pixel there corresponds an observation vectorin R that lists the signal
intensities for that pixel in the three spectral bands. Typically, the image is 2000 x
2000 pixels, so there are 4 million pixels in the image. The data for the image form
a matrix with 3 rows and 4 million columns (with columns 34 arranged in any
convenient order). In this case, the “multidimensional” character of the data refers to
the three spectral dimensions rather than the two spatial dimensions that naturally
belong to any photograph. The data can be visualized as a cluster of 4 million points
in R3, perhaps as in Figure 14.
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Figure 14 : A scatter plot of spectral data for a satellite image.

§ Mean and Covariance

For principal component analysis, let [X,, ...... , Xyl be a p x N matrix of
observations, such as described above. The sample mean, M, of the observation
vectors X, i =1, 2, ... , N is given by

For the data in Figure 13, the sample mean is the point in the “center” of the scatter
plot. For k=1, 2, ..... , N. Let

X, =X,—-M.
The columns of the p x N matrix
B=[X| ... Xy]

have a zero sample mean, and B is said to be in mean-deviation form. When the
sample mean is subtracted from the data in Figurel3, the resulting scatter plot has
the form in Figure 15.

3}

Figure 15 : Weight-height data in mean-deviation form.
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The (sample) covariance matrix is the p x p matrix § defined by

s=—_Bp".
N-1
Since any matrix of the form BBT is positive semidefinite, so is §.
Example 5.4.5.3. Three measurements are made on each of four individuals in a

random sample from a population. The observation vectors are

1 4 7 3
X-l: 2,X2:2 ,X3: 8,X4:4.
1 13 1 5

Calculate the sample mean and the covariance matrix.
The sample mean is

G

Subtract the sample mean from X, X,, X,, X, to obtain
_ -1y _ -1y _ 2 _ 3
4 8 4 0
-4 -1 2 3
and B=-2 -2 4 0
4 8 40

The sample covariance matrix is

1, (1060
S=—BB =|6 8 -%
3 0 -8 32

To discuss the entries in S = [s-lj], let X represent a vector that varies over the set
of observation vectors and denote the coordinates of X by x,, i = 1, 2, ....., p. Then
X,, for example, is a scalar that varies over the set of first coordinates of [X .... X].
For j =1, 2, ......, p, the diagonal entry gjj in § is called the variance of X The
variance of X; measures the spread of values of x;. The total variance of the data is
the sum of the variances on the diagonal of §. In general, the sum of the diagonal
entries of a square matrix § is called the trace of the matrix, written ¢/(S). Thus
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total variance = tr(S).
The entry s; in § for i = j is called the covariance of x; and x;. Observe that in
Example 3.5.3, the covariance between x; and x5 is O because the (1, 3) entry in §
is 0. Statisticians say that x, and x, are uncorrelated. Analysis of the multivariate data

in X, ..... Xy is greatly simplified when most or all of the variables x;, x5, ......, X,
are uncorrelated, i.e. when the covariance matix of X, ..... X 1s diagonal or nearly
diagonal.

§ Principal Component Analysis

Let us assume the matrix [X ..... Xy] is already in mean-deviation form. The goal
of principal component analysis is to find an orthogonal p X p matrix P = [, ..... i,
that determines a change of variable X = PY or

X |

X ¥
32 =[] 2

X, Y,

with the property that the new variables y,, ....., Y, are uncorrelated and are
arranged in order of decreasing variance.

The unit eigenvectors i, ......, u, of the covariance matrix S are called the
principal components of the data (in the matrix of observations). The first principal
component is the eigenvector corresponding to the largest eigenvalue of S, the second
principal component is the eigenvector corresponding to the second largest eigenvalue,
and so on.

The first principal component #, determines the new variable y, in the following
way :

Letc,, ..., <, be the entries in #,. Since uTl is the first row of PT, the equation
Y = PTX shows that

Thus y, is a linear combination of the original variables x, ...... s Xy using the
entries in the eigenvector 1, as weights. In a similar fashion, #, determines the
variable y,, and soon.

Example 5.4.5.4. The initial data for the multi-spectral image of Railroad Valley
(Example 5.4.5.2) consisted of 4 million vectors in R3. The associated covariance
matrix is
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2611.84 3106.47  2553.90

2382.78 2611.84  2136.20
S =
2136.20 255390  2650.71

Find the principal components of the data, and list the new variable determined by
the first principal component.

The eigenvalues of § and the associated principal components (the unit
eigenvectors) are

A =761423 A, =427.63 43 =98.10
5417 -4894 6384
u =| 6295 u, =| -3026 uy =| =7157
5570 -8179 1441

Using two decimal places for simplicity, the variable for the first principal

component is
y; = 54x; + 63x, + 56x; .

This equation was used to create Figure 12(d) in the beginning of the section. The
variables x,, x,, and x; are the signal intensities in the three spectral bands. The values
of x,, converted to a grayscale between black and white, produced Figurel2(a).
Similarly, the values of x, and x, produced Figure 12(b) and Figure12(c), respectively.
At each pixel in Figure 12(d), the grayscale value is computed from y,, a weighted
linear combination of x;, x, and x;. In this sense, Figure12(d) “displays” the first
principal component of the data.

§ Reducing the Dimension of Multivariate Data

Principal component analysis is potentially valuable for applications in which most
of the variation, or dynamic range, in the data is due to variations in only a few of the
new variables, y,, ......, Ypr It can be shown that an orthogonal change of variables, X
= PY, does not change the total variance of the data. (Roughly speaking, this is true
because left-multiplication by P does not change the lengths of vectors or the angles
between them. This means that if S = PDPT, then

{total variance of x,, ..., x,} = {total variance of y,, ..., Yo} = tr (D) = A+t ?Lp

The variance of Y; is kj, and the quotient kj = trS measures the fraction of the total
variance that is “explained” or “captured” by y,.
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Remark 5.4.5.1. The calculations in Exercise 5.4.5.1 will reflect the data that
have practically no variance in the third (new) coordinate. The values of y, are all close
to zero. Geometrically, the data points lie nearly in the plane y; = 0, and their locations
can be determined fairly accurately by knowing only the values of y; and y,. In fact,
¥, also has relatively small variance, which means that the points lie approximately
along a line, and the data are essentially one-dimensional.

§ Characterizations of Principal Component Variables

Ify, ... » ¥, arise from a principal component analysis of a p x N matrix of
observations, then the variance of y, is as large as possible in the following sense :
If  is any unit vector and if y = #TX, then the variance of the values of ¥ as X varies
over the original data X, ......, X, turns out to be u'Su. By Theorem 5.4.3.4 the
maximum value of #TSu, overall unit vectors u, is the largest eigenvalue 1 of S, and
this variance is attained when u is the corresponding eigenvector ;. In the sameway,
Theorem 5.4.3.4 shows that ¥, has maximum possible variance a mongall variables y
= uTX that are uncorrelated with ¥,. Likewise, y; has maximum possible variance
among all variables uncorrelated with both y, and y,, and so on.

5.5 Objective Type Questions

Mark each statement True or False. Justify each answer. In each part, A repre-
Sents an n X R MAtrix.
(i) 1If A is orthogonally diagonalizable, then A is symmetric.

(i) If A is an orthogonal matrix, then A is symmetric.
(itiy If A is anorthogonal matrix, then ||Ax|| = |[x]| for all x € R™.

{(iv) The principal axes of a quadratic form xTAx can be the columns of any matrix
P that diagonalizes A.

(v) If Pis an n x n matrix with orthogonal columns, then PT = P-1,

(vi) If every coefficient in a quadratic form is positive, then the quadratic form is
positive definite.
(vii) If xTAx > 0 for some x, then the quadratic form xTAx is positive definite.

(viti) By a suitable change of variable, any quadratic form can be changed in to one
with no cross-product term.

(ix) A positive definite quadratic form can be changed into a negative definite form
by a suitable change of variable x = Pu, for some orthogonal matrix P.



204 NSOU « GE-MT-31

(x) An indefinite quadratic form is one whose eigenvalues are not definite,
(xi) If Aisn x n, then A and ATA have the same singular values.

5.6 Summary

The present unit is focused on different special types of matrices : idempotent,
nilpotent, involution and proection, tri-diagonal matrices, circulantmatrices. The learn-
ers can now explain Vandermonde matrices, Handmard matrices, permutation and
doubly stochastic matrices and their use in solving different problems. The unit also
introduces the concepts of Positive Semi-definite matrices and the method to find the
square root of a positive semi-definite matrix. The unit also includes diagonalization of
symmetric matrices, quadratic forms, constrained optimization, singular value decom-
position, and applications to image processing and statistics.

5.7 Exercises

1. Compute the various percentages of variance of the Railroad Valley multi-spec-
tral data that are displayed in the principal component Figure 12,(d)—(f), shown
in the beginning of the section.

2. Find the singular values of the matrix (g g)

3. Find the SVD of A = (; % _22)

4. Suppose the factorization below is an SVD of a matrix 4, with the entries in ¥/
and V rounded to two decimal places.

40 -78  47)y{7.10 0 03Y(.30 -.51 -.81
A=|37T -33 -.87 0 210 0 ||.76 64 —.12

-84 —-.52 —-.16 0 0 0/i.58 -58 .58
(1) What is the rank of A ?

(i1} Use this decomposition of A, with no calculations, to write a basis for Col
A and a basis for Nul A.

5. Show that the columns of V are eigenvectors of ATA, the columns of U are
eigenvectors of AAT, and the diagonal entries of are the singular values of A.
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6. Show that if P is a northogonal m x m matrix, then PA has the same singular

values as A.

5.8 References

Herstein, ILN., Winter, D.J., A Primer on Linear Algebra, Macmillan Publish-
ing Company, New York.

Lay, David C., Linear Algebra and its Applications, Pearson New International
Edition.

Friedberg, S., Insel, A., Spence, L., Linear Algebra, Pearson New International
Edition.

Zhang, F., Matrix Theory : Basic Results and Techniques, Second Edition,
Universitext, Springer.

Ayres Jr, Frank, Schaum’s Theory and Problems of Matrices, Schaum Publish-
ing Co, NewYork.

Gentle, James, Matrix Algebra, Theory, Computations and Applications in
Statistics, Springer.

Strang, Gilbert, Linear Algebra and its Applications, Cengage Publications.
Hogben, Leslie, Hand Book on Linear Algebra, Chapman and Hall CRC.

Lax, Peter D., Linear Algebra and its Applications, Wiley Interscience.



2006 NSOU « GE-MT-31




	Title New
	File-1
	File-2
	File-3
	File-4
	File-5
	File-5a

