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PREFACE
In the curricular structure introduced by this University for students of Post-Graduate

degree programme, the opportunity to pursue Post-Graduate course in a subject introduced
by this University is equally available to all learners. Instead of being guided by any presumption
about ability level, it would perhaps stand to reason if receptivity of a learner is judged in the
course of the learning process. That would be entirely in keeping with the objectives of open
education which does not believe in artificial differentiation. I am happy to note that university
has been recently accredited by National Assessment and Accreditation Council of India
(NAAC) with grade ‘A’.

Keeping this in view, study materials of the Post-Graduate level in different subjects are
being prepared on the basis of a well laid-out syllabus. The course structure combines the best
elements in the approved syllabi of Central and State Universities in respective subjects. It has
been so designed as to be upgradable with the addition of new information as well as results
of fresh thinking and analysis.

The accepted methodology of distance education has been followed in the preparation of
these study materials. Co-operation in every form of experienced scholars is indispensable for
a work of this kind. We, therefore, owe an enormous debt of gratitude to everyone whose
tireless efforts went into the writing, editing, and devising of a proper layout of the materials.
Practically speaking, their role amounts to an involvement in ‘invisible teaching’. For, whoever
makes use of these study materials would virtually derive the benefit of learning under their
collective care without each being seen by the other.

The more a learner would seriously pursue these study materials the easier it will be for
him or her to reach out to larger horizons of a subject. Care has also been taken to make
the language lucid and presentation attractive so that they may be rated as quality self-learning
materials. If anything remains still obscure or difficult to follow, arrangements are there to come
to terms with them through the counselling sessions regularly available at the network of study
centres set up by the University.

Needless to add, a great deal of these efforts are still experimental— in fact, pioneering
in certain areas. Naturally, there is every possibility of some lapse or deficiency here and there.
However, these do admit of rectification and further improvement in due course. On the
whole, therefore, these study materials are expected to evoke wider appreciation the more
they receive serious attention of all concerned.

Professor (Dr.) Subha Sankar Sarkar
Vice-Chancellor
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Unit - 1

Structur es
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1.4 Origin of Ordinary Differential Equation

1.5 Classification of Ordinary Differential Equations

1.6 Homogeneous and Non-Homogeneous Ordinary Differential Equation

1.7 Solution of an Ordinary Differential Equation

1.8 Summary

1.9 Exercise

1.0 Objective

The objective of this unit is to discuss on basics of ordinary differential equations and
their solutions.

1.1 Differential Equation—Genesis, Order and Degree

Differential equations have wide level of applications in various aspects of science and
engineering. Many of the principles or laws underlying the behaviour of the natural world
are statements of relatios of rates by which things really happen. When expressed in
mathematical terms the relations are equations and rates are derivatives. The mathematical
statements of facts describing a real world problem is said to be mathematical models.
Differential equations play a significant role in framing of mathematical models. During
the last part of 17th century, eminent scientists like Issac Newton, Gottfried Leibniz,
Jaeques Bernoulli, Jean Bernoulli and Christian Huygens were engaged in solving
differential equations. Many of the techniques which they built up are still in use today.
During the 18th century the  mathematicians like Leonhard Euler, Dainel Bernoulli, Joseph
Legrange and others added significantly to tthe enrichment of the subject. The doyens who
pioneered tot he development of ordinary differential equations as a branch of modern
mathematics are Cauchy, Riemann, Picard, Poincare, Lyapunoy and Birkhoff.
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To understand and to investigate problems involving the motion of fluids, the flow
of current in electric circuits, the dissipation of heat in solid objects, the propagation and
detection of heat waves or the increase or decrease of population, among many others,
it is necessary to know the basics and working theories of differential equations. While
applying differential equations to any of the numerous fields in which they are useful, it
is necessary first to formulate the appropriate differential equation that describes or
models the problem being investigated.

1.2 Formal Defintion

An equation involving derivatives or differentials of one or more dependent variable
(s) with respect to one or more independent variable (s) is called a differential equation.

For example,

5 3
dy

x
dx

= +

4 3
y y

x t

∂ ∂+ =
∂ ∂

Depending on the nature of differential of dependent variable (s) to the independent
variable (s) the differential equation can be classified in two categories.

1. Ordinary Differential Equation (ODE)

2. Partial Differential Equation (PDE)

Definition of ODE and PDE : A differential equation is ordinary differential equation
(ODE) if the unknown function or dependent variable depends only on one independent
variable. If the unknown function of dependent variable depends on more than one
independent variable then the differential equation is said to be a partial differential
equation (PDE).

1.3 Order and Degree of ODE

The order of a differential equation is the highest ordered derivative that appears in
the equation.

The degree of a differential equation is the greatest exponent of the highest ordered
derivative involving in it, when the equation is free from radicals and fractional powers.
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To find the degree of a differential equation, the important view is that the differential
equation must be a polymomial in derivatives of various orders. Also it can be mentioned
nere that the order and degree (if defined) of a differential equation are always positive
integers.

Example : Determine the order and the degree of the following ordinary differential
equations :

a. 

3
2 22

2
1

dy a y
c

dx dx

   + =  
   

b. 
2

2

d y dy
y

dxdx
+ =

c. sin 0
dy dy

dx dx
 + = 
 

d. 

3/ 2 2/33 2

3 2
0

d y d y

dx dx

   
   + =
   
   

Solution : a. Here 

2/32 2

2
1

dy d y
c

dx dx

   + =  
   

i.e. 

3 22 2
2

2
1

dy d y
c

dx dx

     
 + =         

So, the order and degree of the equation are two each, since the highest order
derivative is two and the exponent of the highest order derivative is also two.

b. Here 
2

2

d y dy
y

dxdx
+ =
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Clearly, the order of the diffrential equation is two and the degree is one.

c. The degree of the differential equation sin 0
dy dy

dx dx
 + = 
 

 is not defined as the

differential equation is not a polynomial in its derivatives although it has order one.

d. The order is three and degree is nine as the differential equation is a polynomial
equation in its derivatives not a polynomial in y.

1.4 Origin of Ordinary Differential Equation

1. Algebraic and Geometric origin.

2. Mechanical origin

3. Physical/Chemical Science origin

4. Population and Demographic origin

5. Economics and other Social Sciences origin

6. Biological origin

In algebraic or geometric field the differerntial equations are formed by eliminating
all the arbitrary constants that involved in a relation. The elimination of the arbitrary
constants from the resulting equation gives the required differential equation whose order
is equal to the number of independent constants actually involved. For example, given
a relation

y = ax2 + a2 (1)

where a is an orbitrary constant. This relation contains only one arbitrary constant,
so the order of the ODE is one. Differentiating (1) with respect to x, we have

2 ,
dy

xa
dx

=

i.e., 
1

·
2

dy
a

x dx
=

Substituting the value of  a in (1), we have
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2
21 1

· ·
2 2

dy dy
y x

x dx x dx
 = +  
 

i.e. 
2

2 22 4 0
dy dy

x x y
dx dx

  + − = 
 

which is the required differential eqution.

There is one very good example drawn from Biology to demonstrate the need of
ordinary differential equation. Let us suppose that the rate of increase in the number of
bacteria is proportional to the number of bacteria present. Let N(t) = the number of bacteria
at time t.

Assuming N(t) to be a differentiable function of t we can describe the above
phenomenon as

( )
( )

dN t
cN t

dt
= , where c is a constant.

1.5 Classification of Ordinary Differential Equations

q Linear and non-linear ordinary differential equatins :

An ordinary differential equation which contains a single dependent variable and its
derivatives with respect to a single independent variable as all first degree terms and
there is neither any such term involving any form of product between two or more
derivatives of different order nor any transcendental form of the depedent variable or any
of its derivatives will be called  a linear differential equation.

The general form of a linear ordinary differential equation is

( ) ( ) ( ) ( )
1

0 1 1
........

n n

nn n
d y d y

a x a x a x y r x
dx dx

−

−+ + + = ,

where a0, a1......, an and r(x) are the funcitions of x only.
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For exmple, 2 xdy
x y e

dx
+ =  and 

2

2
d y

dx
+ ( ) ( )sin sec

dy
x xy x

dx
+ = linear ordinary differential

equations.

If the condition of linearity as stated in the above definition is violated then the
corresponding ordinary differential equation is said to be a non-linear ordinary differential
equation.

For example ( )2 25 3ydy
x y e x

dx
− + =  and ( )

2
2

2
siny a y dy

e y xy y
dxdx

+ + =  are not in linear

form. These are non-linear ordinary differential equations.

1.6 Homogeneous and Non-Homogeneous Ordinary Differential
Equation

An ordinary differential equation is said to be homogeneous if there is no isolated
term in the equation, i.e, if all the terms are proportional to a derivative of dependent
variable or dependent variable itself and there is no term that contains a function of
independent variable or constant alone.

An n-th order linear differential equation of the form

2 1

0 1 1
.....

n

nn n
d y d y

P P P y R
dx dx

−

−+ + + = (2)

where y is the dependent variable, x is the independent variable, P0, P1, P2, ....., Pn

and R are either constants or functions of x.

In (2), if R = 0, then (2) is called a homogeneous linear ordinary differential equation.
An ordinary differential equation which is not homogeneous is called a non-homogeneous
ordinary differential equation.

Remarks : A homogeneous differential equation has several distinct meanings :

1. A first order oridinary different equation of the form 
dy y

f
dx x

 =  
 

 is a particular

type of homogeneous equation.
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2. A linear differential equation is said to be homogeneous if it has zero as a solution
otherwise it is non-homogenous.

3. Generally (2) is written in the form F(x, y, y′ , y′′ , ......, y(n)) = 0

1.7 Solution of an Ordinary Differential Equation

A function  is said to be a solution of an ordinary differential equation, over a
particular domain of the independent variable, if its substitution into the equation reduces
to an identity everywhere within that obtain.

A function φ is said to be a soution of ODE F(x, y, y′ , y′′ , ......, y(n)) = 0 if

( )( ), ( ), ( ), ( ), ......., ( ) 0′ ′′ϕ ϕ ϕ ϕ =nF x x x x x

where (n)( )xϕ  stands for n-th derivative of the function : x → ϕ (x) with respect to

the indenpendent variable x.

The solution of an ordinary differential equation is called general solution if it contains
a number of arbitrary constants equal to the order of the differential equation. This solution
sometimes called a complete solution or a complete primitive or a complete integral.

If the solution of an ordinary differential equation with y as dependent and x as
independent variable can be obtained in the form y = f (x) then that  form of solution
is said to be an explicit solution. An implicit solution of an ordinary differential
equation is a solution that is not in explicit form rather can be expressed in the form
ϕ (x,y) = 0.

A solution of a differential equation by giving particular values to the arbitrary
constants in its general solution is called a particular solution of that equation.

The general solution of any differential equation may not include all possible solutions
of the differential equation. There may exist such a solution which cannot be obtained
by giving any particular value to these arbitrary constants in the general solution. This
is called a singular solution of that ordinary differential equation.

Theorem : Any n-th order ordinary differential equation can have only n and not more
than n, independent first integrals and so its general solution cannot have more than n
arbitrary and independent constants.
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1.8 Summary

This unit provides the basic understanding of ordinary differential equation, its order
and degree and certain basic classifications.

1.9 Exercises

1. Determine the order and degree of the following differential equation :

a. 
2

23 0
dy

y
dx

  + = 
 

b. 

22

2
d y dy

xy
dxdx

 
+ = 

 
 

;

c. 2
dy

y
dx

= ;

d. 
2/3 2

2
3

dy d y

dx dx

  = + 
 

;

e. 

2/32

2
1 3

d y dy
x

dxdx

 
+ = 

 
 

;

f. 

2

2
d y

dxdy
y e

dx
+ =
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Structur es

2.0 Objective

2.1 First Order Ordinary Differential Equations

2.2 Cauchy-Lipschitz Condition

2.3 Picard’s Theorem

2.4 Solution Strategies for First Order  and First Degree Differential Equation

2.5 Working pr ocedure to solve an exact equation

2.6 Integrating Factor

2.7 Rules for Finding Integrating Factors (I. F.)

2.8 Summary

2.9 Exercise

2.0 Objective

The objective of this unit is to discuss on various types of first order and first degree
ordinary differential equations and their salution strategies.

2.1 First Order Ordinary Differential Equations

q First Order and First Degree Ordinary Differential Equations :

Standard form for a first order ordinary differential equation in the dependent variable

is with the independent variable x is ( , )
dy

f x y
dx

= , where f (x, y)  is a continuous real valued

function defined on some rectangular region in real xy-plane. An ordinary differential

equation of first order and first degree ( , )
dy

f x y
dx

=  can be written as

M(x, y)dx + N(x, y)dy = 0

2.2 Cauchy-Lipschitz Condition

A function f (x, y) defined on a rectangular region R : |x – x0| < a, | y – y0| < b is
xy-plane is said to satisfy Cauchy-Lipschitz condition if there exists a positive constant
λ such that.
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|f (x, y) – f (x, y2)| ≤ λ | y1 – y2 | for all (x, y1),(x, y2) ∈R2.

The above constant λ is known as Lipschitz constant for the corresponding function.

2.3 Picard’s Theorem

The first order and first degree differential equation ( , )
dy

f x y
dx

= , where f (x, y) defined

on a rectangular region R : |x – x0| < a, | y – y0| < b in is xy-plane, will have a unique
solution subject to the following conditions :

(i) f (x, y) is continuous in R;

(ii) | f(x, y) | ≤ M, where M is a fixed real number, for all (x, y) in R i.e, f (x, y)
is bounded in R ;

(iii) |f (x,y1) – f (x, y2)| ≤ λ |y1 – y2| for all (x, y1), (y, y2) ∈ R, λ being the Lipschitz
constant.

2.4 Solution Strategies for First Order  and First Degree Differential
Equation

We can classify these equations according to the methods by which they are solved.

(i) Equations with Separable Variables

(ii) Homogeneous Equations

(iii) Exact Equations

(iv) Linear Equations

(v) Bermouli Equations

(i) Equations with Separable Variables :

When a first order and first degree differential equation ( , )
dy

f x y
dx

=  can be arranged

in the form ( )
( )

, ( ) 0
φ= ψ ≠
ψ

dy x
y

dx y  then we have ψ(y)dy = φ (x)dx..

Integrating we have  ∫ ψ(y)dy = ∫ φ(x)dx + c, where c is an arbitrary constant. This
method is known as method of separable variables.

In other words, in standard form Mdx + Ndy =0, Where M = M(x) and N = N(y)
then we can apply this method.
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Example : Solve 
2

2

3

1

dy x

dx y
=

+
,

Solution : Here given one is a first order and first degree differential equation

( , ),
dy

f x y
dx

=  where f (x, y) = 
2

2

3

1

x

y+

Now, f (x, y) = ( )
( )x

y

φ
ψ , where φ(x), = 3x2, ψ(y) = 1 + y2

So, we can apply the method of separable variables.

Thus  ∫ψ(y)dy =  ∫φ (x)dx + c, where c is an arbitrary constant.

i.e., ∫(1 + y2)dy = ∫3x2dx

Therefore, 
3

3

3

y
y x c+ = + , which is the required solution.

Remarks : In the above example, 
2

2

3

1

dy x

dx y
=

+
 if we put it in the standard form, we

have 3x2dx + {–1(1 + y2)} dy = 0.

Comparing this equation with the equation Mdx + Ndy = 0, get M = 3x2 and
N = {– (1 + y2)}.

It is clear M = M(x) and N = N(y). So observing this we can apply the above method.

(ii) Homogeneous Equations :

If a function f (x, y) can be  expressed in the form either 
n y

x
x

 φ 
 

 or 
n x

y
y

 
φ 
 

then

f (x, y) is said to be homogeneous function of degree n in x and y.

When the function M and N are homogeneous functions of  x  and  y of same order,
then the differential equation Mdx + Ndy = 0 is called  a homogeneous differential equation.

There is another way to check the homogeneity of a first order and first degree equation
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( , )
dy

f x y
dx

= . If f (tx, ty) = f (x, y) for any real t, then ( , )
dy

f x y
dx

=  is called a homogeneous

differential equation.

Remarks :  A function f (x, y) is said to be homogeneous of degree n, if f (tx, ty)
= tn f (x, y) in x and y and t be any non-zero real.

For example we take 
2

2 2

3dy x

dx x y
=

+

We put the above in the form ( , )
dy

f x y
dx

= , where  
2

2 2

3
( , )

x
f x y

x y
=

+

Now for any real t(non-zero).

f (tx, ty) = 
( )

( ) ( )

2 2

2 2 2 2

3 3
( , )

tx x
f x y

x ytx ty
= =

++
Therefore, the given differential equation is homogeneous.

Again, here we have

2

2 2

3dy x

dx x y
=

+
So  Mdx + Ndy = 0, where M = 3x2 and N = –x2 – y2..

Now, 2 y
M x

x
 = φ 
 

 and 2 y
N x

x
 = ψ 
 

, where 
y

x
 φ 
 

=3 and 
y

x
 ψ 
 

 = – 1 – 
2

2

y

x

It is clear that  M and V are homogeneous functions in x and y of order 2. i.e., M
and V are homogeneous functions of same order.

Hence the given differential eqution 
2

2 2

3dy x

dx x y
=

+
 is a homogeneous differential

equation.

Problems : Verify whether  the following differential equation are homogeneous

(i) ( )2 22 0x y dx xydy− + = ,
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(ii) 2 23 2 0
dy

x xy y
dx

− − = ,

(iii) 2
y

xdy
x y xe

dx

−

= + ,

(iv) sin · sin
y dy y

x y x
x dx x

= +

(v) 2 2dy
x x y

dx
= +

(iii) Exact Equations :

The differential eaquation Mdx + Ndy = 0 is called  exact differential equation if
there exists a function u = u(x, y) such that du = Mdx + Ndy and its general solution
is u(x, y) = c, where c is an arbitrary constant.

Thorem : The necessary and sufficient condition for the ordinary differential equation
Mdx + Ndy = 0 to be exact on a rectangular region R : |x – x0| <a, | y – y0| < b  in xy-

plane is 
M N

y x

∂ ∂=
∂ ∂  in R.

Note : xdx + ydy = d(xy)

log
xdy ydx y

d
xy x

−  =  
 

1
2 2

tan
xdy ydx y

d
xx y

− −  =   
 +  

( )( )1

2 2
sin

1

xdt ydx
d xy

x y

−+ =
−

Exmaple : Check whether the equation (x + y)dy + (y – x)dx = 0 is exact.

Solution :  Here we have (x + y)dy + (y – x)dx = 0

Comparing the eqution with Mdx + Ndy = 0, we have

M = y – x, N = x + y
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Now, 1
M N

y x

∂ ∂= =
∂ ∂

So, 
M N

y x

∂ ∂=
∂ ∂

By the statement of last theorem the given differential equation is exact.

Example : Check whether the equation ydx + xdy = xy(dy – dx) is exact or not.
Solution : Here we have ydx + xdy = xy(dy – dx)
i.e. (y + xy)dx + (x – xy)dy = 0
Comparing the equation with Mdx + Ndy = 0 we get M = y + xy, N = x – xy.

Now 1 ,
M

x
y

∂ = +
∂ 1 ,

N
y

x

∂ = −
∂

So, 
M N

y x

∂ ∂≠
∂ ∂

Hence the given equation is not exact.

2.5 Working pr ocedure to solve an exact equation

Step  1. Calculate ∫ Mdx treating y as constant and omitting arbitrary contant.

Step 2.  Calculate ∫ Ndy treating x as constant and omitting arbitrary contant.

Step 3. Add with the result of step 1, the result of step 2 deleting those terms which
are already been taken in step 1.

Step 4. Equating the result in step 3 to an arbitrary constant, we get the general solution
of the equation.

Example : Solve (4x3 + 3y2 + cos x)dx + (6xy + 2)dy = 0.

Solution :  Here we have (4x3 + 3y2 + cos x)dx + (6xy + 2)dy = 0.

Comparing this equation with Mdx + Ndy = 0, we get

M = (4x3 + 3y2 + cos x), N = (6xy + 2)

Now 6
M

y
y

∂ =
∂ , 6

N
y

x

∂ =
∂
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So, 
M N

y x

∂ ∂=
∂ ∂  and hence the given equation is exact.

Now, ∫ Mdx = (4x3 + 3y2 + cos x)dx = x4 + 3xy2 + sin x, omitting arbitrary constant

∫ Ndy = ∫ (6xy + 2)dy

= 3xy2 + 2y, omitting arbitrary constant

Therefore, x4 + 3xy2 + 2y + sin x = c, where c is an arbitrary constant, is the required
solution.

Example : Solve cos x. sin ydx + sin x.cos ydy = 0.

Solution : Here we have cos x. sin ydx + sin x. cos ydy = 0

i.e. of the form Mdx + Ndy = 0, where M = cos x sin y and N = sin x. cos y.

Now 
M

y

∂
∂  = cos x. cos y and 

N

x

∂
∂

 = cos x. cos y.

Hence the given differential equation is exact.

Therefore, ∫ Mdx = ∫ cos x. sin ydx = sin x. sin y and ∫ Ndy = ∫ sin x. cos y dy =
sin x. sin y

Hence the required solution is sin x. sin y = c, where c is an arbitrary constant.

Exercises :

1. Solve : (x + 2y)dx + (2x + y)dy = 0.

2. Solve : (2xy + 3x2)dx + (x2 + 2y)dy = 0

3. Solve : (6x + y2)dx + y(2x – 3y)dy = 0

4. Solve : (y2 – 2xy + 6x)dx – (x2 – 2xy + 2)dy = 0

5. Solve : (2xy – y)dx + (x2 + x)dy = 0

6. Solve : (2uv2 – 3)du + (3u2v2 – 3u + 4v)dv = 0

7. Solve : (cos2 y – 3x2y2)dx + (cos2 y + 2x sin2 y – 2x2y)dy = 0

8. Solve : (1 + xy2)dx + (x2y + y)dy = 0.

9. Solve : (1 + y2 + xy2)dx + (x2y + y + 2xy)dy = 0
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10. Solve : (w2 + wz2 – z)dw + (z3 + w2z – w)dz = 0

11. Solve : (2xy – tan y)dx + (x2 – x sec2 y)dy = 0

12. Solve : (cos x cos y – cot x)dx – sin x sin y dy = 0

13. Solve : (r + sin t – cos t)dr + r(sin t + cos t) dt = 0

14. Solve : (3xy – 4y3 + 6)dx + (x3 – 6x2y2 – 1)dy = 0

15. Solve : (sin t – 2r cos2 t)dr + r cos (2r sin r + 1)dt = 0

16. Solve : [2x + y cos (xy)]dx + x cos (xy)dy = 0

17. Solve : 2xydy + (y2 + x2)dy = 0

18. Solve : 2xy dx + (y2 – x2)dy = 0

19. Solve : (2x – 3y)dx + (2x – 3x)dy = 0

20. Solve :(3x2y3 + 2xy)dx + (2x2y3 – x2)dy = 0

21. Solve : (x3 + 3xy2)dx + (y2 + 3x2y)dy = 0

2.6 Integrating Factor

Let Mdx + Ndy = 0 be a non-exact first order and first degree ordinary differential
equation. A non-zero function µ = µ(x, y) is called an integrating factor of the equation
Mdx + Ndy = 0 if µ(Mdx + Ndy) = 0 becomes an exact differential equation

i.e. µ(x, y) is said to be the integrating factor of the differential equation Mdx + Ndy
= 0, if we can find u = u(x, y) such that µ(Mdx + Ndy) = du = 0

Theorem : The number of integrating factors of an equation Mdx + Ndy = 0 is infinite.

2.7 Rules for Finding Integrating Factors (I. F.)

Rule 1. If the given  equation Mdx + Ndy = 0 is a homogeneous such that Mx + Ny

≠ 0, then ( )
1

Mx Ny+  is an integrating factor ( ). . .I F

Example : Solve : 
2 2dy x y

dx xy

+=
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Solution : Here the given equation can be written in the form Mdx + Ndy = 0, where
M = x2 + y2; N = – xy.

Now, 2
M

y
y

∂ =
∂

, N
y

x

∂ = −
∂

Therefore, 
M N

y x

∂ ∂≠
∂ ∂ , so the given differential equation is not exact.

Now  Mx + Ny = x(x2 + y2) + y(– xy) = x3 + xy2 – xy2 = x3 ≠ 0

So, 
3

1 1
I.F

Mx Ny x
= =

+

Multiplying I. F to the both sides of the given equation we have

( )2 2
3 3

1
0

xy
x y dx dy

x x
+ − =

or, 
2

3 2
0

dx y y
dx dy

x x x
+ − =

or, ( ) 2
log 0

y ydx xdy
d x

x x

 − + = 
 

or, ( )log 0
y y

d x d
x x

 − = 
 

.

Integrating we get 
21

log
2

y
x c

x
 − = 
 

, where c is an arbitrary constant.

Example : Solve (x2y – 2xy2)dx + (3x2y – x3)dy = 0

Solution : Here, ( ) ( )2 2 2 32 , 3M x y xy N x y x= − = −

Therefore, 
M N

y x

∂ ∂≠
∂ ∂  So, the given differential equation is not exact.
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Here, 2 2 2 3 2 2( 2 ) (3 ) 0Mx Ny x x y xy y x y x x y+ = − + − = ≠

So, 
2 2

1
. .=I F

x y

Multiplying I. F. to the both sides of the given equation we have

( ) ( )2 2 2 3
2 2

1
2 3 0x y xy dx x y x dy

x y
 − + − =  

Or, 2

1 2 3
0

x
dx dy dy

y x y y

 
− + − = 

 

Or, 
x

d
y

 
 
 

 – 2d(log x) + 3d(log y) = 0

Integrating we get 2log 3log
x

x y c
y

− + = , where c is an arbitrary constant.

Example : Solve (y3 – 2x2y)dx + (2xy2 – x2)dy = 0

Solution : Comparing the given differential equation with Mdx + Ndy = 0, we get

M = (y2 – 2x2y), N = (2xy2 – x3)

Therefore 
M N

y x

∂ ∂≠
∂ ∂ , So, the given differential equation is not exact.

Now, Mx + Ny = x(y3 – 2x2y) + y(2xy2 – x3) = 3xy(y2 – x2) ≠ 0

So. I. F. = ( )2 2

1

3xy y x−

Multiplying I. F. to the both sides of the given equation we have

( )
( )

( )
( )

3 2 2 2

2 2 2 2

2 2
0

3 3

y x y xy x
dx dy

xy y x xy y x

− −
+ =

− −
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or, 
( )

( )
( )

( )
3 2 2 2

2 2 2 2

2 2
0

3 3

y x y xy x
dx dy

x y x y y x

− −
+ =

− −

or, 2 2
0

dx dy ydy xdx

x y y x

−+ + =
−

or, 2d(log x) + 2d(log y) + d(log (y2 – x2)) = 0

Integrating we get log x2 + log y2 + log (y2 – x2) = log c i.e. x2y2 (y2 – x2) = c, where
c is an arbitrary constant.

Rule : 2. If Mx – Ny ≠ 0 and the equation can be written as {f (xy)} ydx + {g(xy)} xdy
= 0, i.e. Mdx + Ndy = 0 then the integrating factor of the given equation is of the form

1

Mx Ny−

Example : Solve ( ) ( )xysin(xy) cos(xy) ydx xysin(xy) cos(xy) xdy 0+ + − =

Solution : Here given differential equation is of the form

f (xy)ydx + g(xy)xdy = 0

where f (xy) = (xy sin (xy) + cos (xy)), g(xy) = (xy sin (xy) – cos (xy))

Here, M = (xy sin (xy) + cos (xy)) y and N = (xy sin(xy) – cos(xy)x

Now Mx – Ny = 2xycos(xy)

So, I. F. = ( )
1

2 cosxy xy

Multiplying I. F. to the both sides of the given equation we have

( ) ( )( )
( )

( ) ( )( )
( )

sin cos sin cos
0

2 cos 2 cos

xy xy xy xy xy xy
ydx xdy

xy xy xy xy

+ −
+ =

or, ( ) ( )1 1 1 1
tan tan 0

2 2
xy ydx xy xdy

xy xy

   
+ + − =   
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or, ( ){ }1 1
tan 0

2 2

dydx
xy ydx xdy

x y

 
+ + − = 

 

or, tan (xy) d(xy) + d(log x – d(log y) = 0
Integrating we have,
log | see(xy)| + log x – log y = log c
or, x sec (xy) = cy, where c is an arbitrary constant.

Rule : 3. If 
1

N

M N

y x

 ∂ ∂− ∂ ∂ 
 be a function of x only, say φ (x), then ( )x dxe∫φ  is an

integrating factor of the given equation Mdx + Ndy = 0.

Example  : Solve (x2 + y2 + 2x)dx + 2ydy = 0

Solution : Here M = (x2 + y2 + 2x), N = 2y

Therefore, 2 , 0
M N

y
y x

∂ ∂= =
∂ ∂

Therefore, 
M N

y x

∂ ∂≠
∂ ∂ . So, the given differential equation is not exact.

Now, ( )1 1
2 0

2

M N
y

N y x y

 ∂ ∂− = − ∂ ∂ 
 = 1 = φ (x) (say)

Thus I. F. = ( ) 1.I.F. x dx dx xe e e∫φ ∫= = =

Multiplying I. F. to the both sides of the given equation we have

ex(x2 + y2 + 2x)dx + 2yexdy = 0

or, exdx + 2xexdx + y2exdx + 2yexdy = 0

or, d(exx2) + d(y2ex) = 0

Integrating we get exx2 + exy2 = c, where c is an arbitrary constant.

Rule : 4. If 
1 N M

M x y

 ∂ ∂− ∂ ∂ 
 be a function of y alone. say φ (y), then  ( )y dye∫φ  is an

integrating factor of the given differential equaton Mdx + Ndy = 0.
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Example : Solve (3x2y4 + 2xy)dx + (2x3y3 – x2)dy = 0

Solution : Comparing with the equation Mdy + Ndy = 0, we have

M= (3x2y4 + 2xy), N = (2x3y3 – x2)

Therefore, 
2 312 2

M
x y x

y

∂ = +
∂ , 2 36 2

N
x y x

x

∂ = −
∂

So, ( ) ( )2 2 2 3
2

1 1 1
6 2 12 2

3 2

N M
x y x x y x

M x y xy xy

 ∂ ∂− = − − − ∂ ∂  +

= 
2

y
−  = φ(y) (say) which is a function of y only.

Thus, I. F. = 
3

2log4
2

1dy ye e
y

− ∫− −= =

Multiplying I. F. to the both sides of the given equation we have

( ) ( )2 4 3 2 2
2 2

1 1
3 2 2 0x y xy dx x y x dy

y y
+ + − =

or, 
2

2 2 3
2

3 2 2 0
x x

x y dx dx x ydy dy
y y

+ + − =

or,  ( )
2

3 2
2

2
0

xydx x dy
d x y

y

−+ =

or, ( )
2

3 2 0
x

d x y d
y

 
+ = 

 
 

Integrating we get 
2

3 2 x
x y c

y
+ =



28 NSOU ●   CC ●  MT - 07

Rule 5. If Mdx + Ndy = 0 can be expressed in the form xαyβ(mydx + nxdy) +
xλyβ(m1ydx + n1xdy)=0, where α, β, g, γ, δ, m, n, m1, n1, are constant and mn1 – nm1

≠ 0, then xhyk is an integrating factor of the given equation Mdx + Ndy = 0, where

1 1h k

m n

α + + β + +=  and 
1 1

1 1h k

m n

γ + + δ + +=

Example : Solve x2 (2ydx + 3xdy) + y2( –2ydx + 2xdy) = 0

Solution :

We can rewrite the iven equation in the following form :

x2y6(2ydx + 3xdy) + x6y2 (– 2ydx + 2xdy) = 0

i.e., xαyβ (mydx + nxdy) + xλyδ(m1ydx + n1xdy) = 0

where, a = 2, b = 0, y = 0, d = 2, m = 2, n = 3, m1 = – 2, n1 = 2.

Therefore, I. F. = xhyk where

1 1h k

m n

α + + β + += , 
1 1

1 1h k

m n

γ + + δ + +=

i.e. 
2 1 0 1

,
2 3

h h+ + + +=  
0 1 2 1

,
2 2

h k+ + + +=
−

Solving the above equations we have h = – 3 and k = – 1.
Hence, I. F = x–3 y–1

( ) ( )3 1 2 3 1 2· 2 3 · 2 2 0x y x ydx xdy x y y ydx xdy− − − −+ + − + =

i.e 2
2 3 2 0

dx dy y ydx xdy

x y x x

 − + + + = 
 

or, d(2 log x) + d(3 log y) + d
2

2

y

x

 
 
 
 

 = 0

Integrating above we get 2log x + 3log y + 
2

2

y

x
= c. where c is an arbitrary constant.

(iv) Linear first order ODE :

A particular type of first order and first degree ordinary differential equation of the
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form + =dy
Py Q

dx
, where each of  P  and Q  is either a function of x  only or a constant,

is called a Linear Ordinary Differential Equation of first order in y.

For the above form of ODE Pdx
e∫  is an interating factor (I.F) i.e. the given ODE

can be integrated on multiplying this factor to both the sides. This can be evident from
the following analysis.

Multiplying both sides of the iven ODE by Pdxe∫  we have

. . .
Pdx Pdxdy

e e Py e Q
dx

∫ ∫+ =

which gives

. .
Pdx Pdxd y e e Q

dx
  =  

∫ ∫

or, . .
Pdx Pdx

d y e e Q dx   =      
∫ ∫

Integrating above we can have the desired solution through the following step :

. .
Pdx Pdx

y e e Q dx c ∫ ∫= + ∫

i.e ( ) ( ). . . . . .= +∫y I F I F Q dx c

where ‘c’ is an arbitrary constant.

We can summarize the steps involved in solving such equations.

Step 1.  Put the equation in the form + =dy
Py Q

dx

Step 2. Obtaint I.F. as Pdx
e∫ .

Step 3. Simplify ( ) ( ). . . . ,= +∫y I F I F Qdx c  where c is an integration constant.
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Example : Solve 
( )2 32

dy 4 1y
dx 1 1

x

x x
+ =

+ +

Solution : Here 
( )2 32

4 1P , Q
1 1

x

x x
+ =

+ +

Here integrating factor is given by

I.F. = ( ) ( )
24 2log 1 22 21 1

x dx xPdx xe e e x
∫ +

+∫ = = = +

Hence we have, ( ) ( ). . . . .y I F I F Qdx c= +∫

ie. ( ) ( )
( )

2 22 2
32

1. 1 1 .
1

y x x dx c
x

+ = + +
+

∫

or, ( )22 –1. 1 tan+ = +y x x c

(v)  Bernoulli’ s Equations :

The first order ordinary differential equation of the form + = ndy
Py Qy

dx
 where P and

Q are continuous function of x and n is a real number, is known as Bernoulli’s Equation.

From  + = ndy
Py Qy

dx

we have – 1–+ =n ndy
y Py Q

dx

If we put 1– =ny v  then we can have ( ) –1– n dy dvn y
dx dx

=

Thus the quation transforms to ( ) ( )1 – 1+ = −dv
n Pv n Q

dx  which is a first order liner ODE

in v, its integrativing factor being ( ) Pdx1–n
e∫ .
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Then its solutionis given by

( ) ( ) ( ). . . 1 – . . .v I F n Q I F dx c= +∫

ie. ( )
Pdx Pdx(1–n) (1–n)

v.e 1 – n Q. e dx + c=∫ ∫∫

or, 
( )

( ) ( )1–n Pdx 1–n Pdx1–ny . e 1– n Q.e dx + c=∫ ∫∫

where c is an arbitrary constant.

Example : Sove 2 22 4 .= +dy
x xy y

dx

Solution : Here  
2

2
–2 1 .

2

dy
y y

dx x x

 + = 

Therefore, 2dy
Py Qy

dx
+ = . where 2

–2 1,
2

= =P Q
x x

We put 1– 1–2 1= = = −nv y y y .

So 2
1– .= dydv

dx dxy  Now we can  have 2
1 1– . – . – ,=dy

P Q
dx yy

i.e., – . – ,=dv
P v Q

dx

Which is a first order lincar ODE  in v.

Therefore integrating factor of the above is I.F. ( ) 2 22
logdxP dx x xxe e e

− == = =∫∫

Hence 
( )2 2

2
–1

. .
2

v x x dx
x

= ∫

i.e, 
21 . –

2
= +xx c

y
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2

2
+ =x x

c
y   where c is an integrating constant.

2.8 Summary

The present unit emphasizes on first order and first degree ordinary differential
equations with the conditions of haring unque solution and different working procedures
to solve them analytically.

2.9 Exercises

(A) Solve the following exact equations :

1. ( ) ( )2 2 0+ + + =x y dx x y dy

2. ( ) ( )2 22 3 2 0+ + + =xy x dx x y dy

3. ( ) ( )26 2 – 3 0+ + =x y dx y x y dy

4. ( ) ( )2 2– 2 6 – – 2 2 0+ + =y xy x dx x xy dy

5. ( ) ( )22 – 0+ + =xy y dx x x dy

6. ( ) ( )2 2 22 – 3 3 – 3 4 0+ + =v uv du u v u v dv

7. ( ) ( )2 2 2 2 2 3cos – 3 cos – 2 sin – 2 0+ =y x y dx y x y x y dy

8. ( ) ( )2 21 0+ + + =xy dx x y y dy

9. ( ) ( )2 2 21 2 0y xy dx x y y xy dy+ + + + + =

10. ( ) ( )3 2 3 2– – 0w wz z dw z w z w dz+ + + =

11. ( ) ( )2 22 – tan – sec 0+ =xy y dx x x y dy
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12. ( )cos cos – cot – sin sin 0=x y x dx x y dy

13. ( ) ( )sin – cos sin cos 0+ + + =r t t dr r t t dt

14. ( ) ( )3 3 2 23 – 4 6 – 6 –1 0x xy y dx x x y dy+ + =

15. ( ) ( )2sin – 2 cos cos 2 sin 1 0+ + =t r t dr r t r t dt

16. ( ) ( )2 cos cos 0 +  + = x y xy dx x xy dy

17. ( )2 22 0+ + =xydx y x dy

18. ( )2 2–2 – 0+ =xy dx y x dy

19. ( ) ( )2 – 3 2 – 3 0+ =x y dx y x dy

20. ( ) ( )2 3 3 3 23 2 2 – 0+ + =x y xy dx x y x dy

21. ( ) ( )3 2 3 23 3 0+ + + =x xy dx y x y dy

B. Solve the following Equation :

1. ( ) ( )1 1–+ =y dx x dy

2. 2 2cos cos=x ydx y xdy

3. ( )2= +y xe dy e x dx

4. ( )2 –11 tan 0+ + =ydx x xdy

5.  2 21– 1–x y dx y x dx=

6. 2 2. tan . sec .tan . 0+ =Sec x y dx y x dy

7. 2log 1 – 0+ =x xdy y dx
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8. 2–1 –1 2cos . cos . 0+ =x y dy y x dx

9. ( ) 23 . tan – 1 – sec 0=x xe y dx e ydy

10. ( )4 0y x yx e dx e dy++ + =

11. dy y x dx= −

12. ( ) ( )21 . 1+ = +x xe y dy y e dx

13. dy = y. secx. dx

(C)  Determine whether the given ODE is exact or not and if exact find the solution:

1. ( ) ( )3 2 2 0x y dx x y+ + + =

2. ( ) ( )2 3 2 – 4 0+ + =y dx xy dy

3. ( ) ( )22 1 4 0+ + + =xy dx x y dy

4. ( ) ( )2 33 2 – 0+ + =x y dx x y dy

5. ( ) ( )2 26 2 – 5 3 4 – 6 0+ + + =xy y dx x xy dy

6. 2(6sec tan ) (tan 2 ) 0x sec x x dx x y dy+ + + =

7. 
2

2 3
0

   
+ + + =   

   
x x

x dx y dy
y y

(D) Solve the followings :

1. ( ) ( )22 – 3 4 0, (1) 2.+ + = =xy dx x y dy y

2. ( ) ( ) ( )2 2 3 3 23 – 2 2 – 3 1 0, –2 1+ + + = =x y y x dx x y xy dy y
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3. ( ) ( )2 22 sin cos sin sin – 2 cos 0, (0) 3+ + = =y x x y x dx x y y dy y

4. ( ) ( )2 22 sin sin – 2 cos 0, (0) 3+ + + = =x xye e y x dx x y x dy y

E. Solve the following differental equation :

1. ( )32+ =x y dy ydx

2. cot – tan 0=y dx xdy

3. ( ) ( )– 0x y dy y x dx+ + =

4. ( )–+ =ydx xdy xy dy dx

5. ( – ) 0+ + =xdx ydy k xdy ydx

6. 
1– – cos . 0  = xdy ydx dx
x

7. 2sin cosdy
x y y x

dx
+ =

8. 2 log+ =dy
x y y x

dx

9. 2 2 22 1 – 0+ + =dy
x xy x y

dx

10. ( ) 2cos( sin( )) cos( ) 0+ + =xy xy xy dx x xy dy

11. ( )2sin .cos (cos .sin tan ) 0+ + + =xx y e dx x y y dy

12. ( ) ( )2 21 4 2 1 4 2 0+ + + + + =xy y dx xy x dy

13. ( ) ( )1 1– 0+ + =xy ydx xy xdy

14. ( ) ( )2 2 2 21 3 6 1 3 6 0+ + + + + =x xy dx y x y dy

15. 
1log 2 0xy dx y dy
x y

  + + + =   
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16. ( )2 – 0+ =x xxy e ydx e dy

17. ( )2 3 3– 0x ydx x y dy+ =

18. ( ) ( )2 2 2 21 – 1 0+ + + + =x y xy ydx x y xy xdy

19. ( ) ( )2 2 2 23 3 6 0+ + + + =x y dx x x y y dy

20.( ) ( )3 2 2 42 0+ + + + =xy y dx x y x y dy

(F) Prove that 2xe is an integrating factor of the equation :

( )2 4 32 0.+ + =x xy dx y dy

(G) If xαyβ be an integrating factor of the equation (2y dx + 3x dy) + 2xy(3y dx +
4x dy) = 0, find α and β.

(H) If α βx y  be an integrating factor of the equation

( ) ( )1 4 1 33 2 3 0x y dx y xy dy− −− − + − + = , then find the values of α and β .

I. Solve : ( ).cos . .sin cos 1+ + =dy
x x y x x x

dx

J. Solve : 
2–2+ = xdy

xy e
dx

K. Solve : ( )2 21 2 4+ + =dy
x xy x

dx

L. Solve : 2cos . tan .+ =dy
x y x

dy

M. Solve :  ( )2 3 2+ =x y xy dy dx

N. Solve : ( )22
.log . log+ =dy y y

y y
dx x x
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Structur es

3.0 Objective

3.1 Equation of first order but not of first degree

3.2 Singular Solution

3.3 Second Order Differential Equation

3.4 Theorem : Existence Theorem

3.5 Theorem : Uniqueness Theorem

3.6 Wronskian

3.7 Theorem : Principle of Superposition

3.8 Theorem

3.9 Method of finding the particular  integral (P. I)

3.10 Properties of D-operator

3.11 Homogeneous Linear Differential Equations with Variable Coeffcicients

3.12 Method of Undetermined Coefficients

3.13 Method of Variation of Parameters

3.14 Simultaneous Linear Differential Equations with Constant Coefficients

3.15 Series Solution of the Ordinary Diffrential Equations

3.16 Note : Test of Singularity at Infinity

3.17 Series Solution about an Ordinary Point

3.18 Series Solution about Regular Singular Point (Frobenius Method)

3.19 Bessel’s Equation

3.20 Application of Bessel’s Equation

3.21 Solution of Bessel’s Equation : Bessel’s Function

3.22 Solution of Legendre’s Equation : Legendre Polynomial

3.23 Application of Ordinary Differential Equation to Dynamical Systems

3.24 Dimension of a Dynamical System

3.25 Equilibrium Point of A Flow
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3.26 Analysis of Stability of an Equilibrium Point of a One Dimensional Flow

3.27 Stability Analysis of The Equilibrium Points

3.28 Summary

3.29 Exercise

3.0 Objective

The objective of the present unit is to discuss on the various aspects of first order but
not of first degree and second order ordinary differential equations; the strategy of series
solution and some basic discussions dynamical systems as an application.

3.1 Equation of first order but not of first degree

An ordinary differential equation of first order and n-th degree can be written as—

–1
0 1 –1......... 0+ + + + =n n

n nQ p Q p Q p Q (A)

where = dy
p

dx
and Q

0
, Q

1
,........Q

n
 are functions of x and Q

0
≠ 0.

There can be three special cases for the above equation :

(a) Solvable for p.

(b) Solvable for x.

(c) Solvable for y.

(a) Solvable for p :

Let us assume that the left hand side of differential equation (A) can be expressed as a
product of n-linear factors in p by the following form :

( )( ) ( )( ) ( )( )1 2– , . – , ............ – , 0=np f x y p f x y p f x y

i.e. ( ) ( ) ( )1 2, , , ...., ,= = = np f x y p f x y p f x y]

all of which are first order and first degree equations. Solving each of the equations we
can have the solutions as—

( ) ( ) ( )11 2 2, , 0, , , 0, ........, , , 0n nF x y c F x y c F x y c= = = (B)
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where 1 2, ....., nc c c are constants.

As the differential equation (A) is of the first order we must have only one arbitary constant

in its general solutiou. without loss of generality 1 2, ....., nc c c  can be replaced by a single arbitrary

constant c. Thus the general solution of the differential equation i.e, one parameter soluton of
the equation is given by—

( ) ( ) ( )1 2, , . , , ............. , , 0nF x y c F x y c F x y c= , where c is an arbitrary constant.

Example  : Solve : p2+ 2xp– 3x2 = 0

Solution :  Now  p2+ 2xp– 3x2 = 0

i.e :  (p–x) (p+3x) = 0

So, p = x  and p+3x = 0

i.e., , –3= =dy dy
x x

dx dx

Integrating we get 
2

2
1 2

3, –
2 2

= + = +xy c y x c

As the given differential equation of the first order, we must have only one arbitrary constant
in its general solution i.e. c

1
, c

2
, can be replace by a single arbitrary constant c.

Hence the general solution is —

2
23– – – 0

2

   + =    
xy c y x c
z

 where c is an arbitrary constant.

(b) Solvable for x :

If the differential equaton (A) be solvable for x, then it may be put in the form x = f(y,p)
(C)

Now  1 1= =dx
dy dy p

dx

Thus differentiating w.r.t. y we get the following form : 1 , =   
dp

F y p
p dy

 (D)
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Eliminating p between (C) and (D) , we get the solution of the differential equation as a
relation between x,y and arbitrary constant c.  If the elimination of p is difficult x and y may
be expressed in terms of p where p acts as a parameter.

Example : Solve : 
2

–
1

=
+

p
x a

p
(a)

Solution : The given equation can be written as :

This equation of the form x = f(y,p)

Differentiating both sides with respect to y  we get.

( )
32

2 2

21 1– . .
1

1

= +
+

+

dp p dp
p dy dy

p
p

i.e., 

( )
3

2 2

1 1 . 0

1

+ =

+

dp
p dy

p

i.e., 

( )
3

2 2
.

1

p
dy dp

p

= −

+

Integrating, we get 
2

1

1
+ =

+
y c

p

i.e.,  ( )2 2
1

1
+ =

+
y c

p
, (b)

where c is an arbitrary constant.

Now from (a), ( )
2

2
2

–
1

p
x a

p
=

+
(c)

Eliminating p  from (b) and (c) we get

( ) ( )2 2– 1x a y c+ + = , which is the general salution of (a).
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(c) Solvable for y :

If the differential equation (A) be solvable for y then it may be put in the from
y = f (x,p). (E)

Differentiating both sides of (E) with respect of x we have an equation of the form

, ,
dp

p F x p
dx

 =   

Now it can be solved to get solution of the form ( ), , 0p x cφ =

Eliminting p between (E) and (F) we get the general solution of the differential
equation (A).

Example : Solve .tan log( );
dy

y p p cosp p
dx

= + = .

Solution :  The equation is of the form ( ),y f x p= .

Differentiating both sides with respect to x, we get

( )2tan .sec – tan
dp

p p p p p
dx

= +

i.e 2. .dp
p p sec p

dx
=

i.e. dx  = sec2p. dp.

Integrating botht sdid we tet  x+c = tanp,  where c is an arbitrary constant. Then

( )–1tanp x c= +  and 
( )2
1cos

1
p

x c
=

+ +

Thus the general solution is

( ) ( )–1

2

1
tan log

1 ( )
y x c x c

x c

 
= + + +  

 + + 

Lagrange Equation :

A first order ODE of the form ( ). ( )y x p p= φ + ψ (G)
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where dy
p

dx
=  and φ (p) and ( )pψ  are known functions of p diferentiable on a certain

interval, is called Lagrange Equation.

Now differentiatinm (G) with respect to x we have

( ) ( )( ) { ' ' }.
.

dp
p p x p p

dx
= φ + φ + Ψ

i.e. ( )
( )''( )

.
– ( )–

ppdx
x

dp p pp p
ψφ+ = φφ

which is a linear equation in x. This can be solved easily and eliminating p from
this solution and the given equation will give us the complete solution.

Example : Solve : y = 2xp–p2

Solution : Here given equation is of the form

( ) ( ).y x p p= φ + ψ         (a)

where  ( ) ( ) 22 , –p p p pφ = ψ =

So, it is a Lagrange equation.

Differentiating (a) with respect to x we have ( ) ( ) ( ){ ' ' } dp
p p x p p

dx
= φ + φ + ψ

i.e ( ){ }2 2 –2 .
dp

p p x p
dx

= + +

or, – . 2 – 2dxp x p
dp

=

or, 
2 2dx x

dp p
+ =

which is linear in x.

Therefore integrating factor of the differential equation (b) is given by—

I.F. =
2

log 2 2
dp

p
e e p p= =∫
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So, the solution of (b) is—

2 2. 2x p p dp c= +∫

i.e , 2 32.
3

x p p c= + , where c is an arbitrary constant.

or, 2
2
3
p c

x
p

= +

Now putting this value of x in the given equation, we get 
22

3
pc

y
p

= +

Thus the general solution is given by 2
2
3
p c

x
p

= +  and y =
22

3
pc

p
+ , where p is the

parameter.
Clairaut’ s Equation :

An ODE of the form y = px + φ(p)        (H)

is known as Clairaut’s Equaton.

Now differentiating both sides of (H) with respect to x we have.

( ){ ' }.
dp

p p x p
dx

= + + φ

i.e ( ){ ' }. 0
dp

x p
dx

+ φ =

This gives either 0
dp
dx

= (I)

or, '( ) 0x p+ φ = (J)

From (I) we get p=c, where c is an arbitrary constant. Putting this value of p=c  in

(H) we get  ( )y cx c= + φ  which is the general solution of this Clairaut’s equatiou.

Again eliminating p from (H) and (J) we get another soluton which does not
contain any arbitrary constant. This solution is caled the singular soluton of the Clairaut’s
equation (H).

Example : Find the general and singular solution of
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( )( )– –1y px p p=  where dy
p

dx
=

Solution :  The given equation ( )( )– – 1y px p p=

can be written as

–1
p

y px
p

= + , which is a Clairaut’s equation.                                (a)

Then differentiating both sides with respect to x we get

( )2
1. – .
–1

dp dp
p p x

dx dxp
= +

i.e. ( )2
1– . 0
–1

dp
x

dxp

   = 
  

i.e either 0
dp
dx

=  or, ( )2
1– 0
–1

x
p

=

Now 0
dp
dx

=  gives p=c..................(b)

Eliminating p from (a) & (b) we get the gensal solution as 
c

y cx
c 1

= +
−

where c is an arbitrary constant

Again 
( )2

1– 0
–1

x
p

=  gives  ( )2 1–1p
x

=

or 1x
p

x

+= ............(c)

Eliminating p from (a) and (c) we have 

1
1.

1

x
x xy x

x
x

+
+= +



NSOU ●   CC ●  MT - 07 45

i.e ( )2– –1 4y x x= . This is the singular solution of the given equation.

Exercises :

1. Find the general and singular solution of 2y xp p= + , where dy
p

dx
=

2. Find the general and singular solution of 21y xp p= + + , where dy
p

dx
= .

3. Sove the folowing differential equations

i. 34 4x p p= +

ii. –x py p=

iii. .2 2.logy y xyp p= +

iv. 2 32y px y p= +

v. ( ) ( )2 2 2–1 –xy p x y p=

vi. 2 – 2 0xp yp ax+ =

vii. 2 26 – 3 0p y y px+ =

viii. ( )2 – . – 0xp y x p y+ =

4. Solve : ( )2 2–x y px p y=

5. Reduce the differential equation ( )2 2 2 0x p py x y+ + =  in Clairaut’s form by the

substitution y = u, xy = v and hence solve the differential equation.

6. Use the transformation 2 2,u x v y= =  to solve the euation ( )( ) 2–px y py x h p+ =

7. Use the transformation 2, –u x v y x= = to solve the equation 2 – 2 2 0xp yp x y+ + =

8. Use the transformation 
1 1,u v
x y

= =  to solve the equation ( )2 4 2–y y px x p=
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3.2 Singular Solution

A  singular solution is a solution of the given  first order higher degree differential equation
which is not obtained from the general solution by assigning particular values to the arbitrary
constant involved in it. It is the equation of an envelope of the family of curves represented
by the general solution.

Let ( ), , 0x y cφ =  represent a family of curves. From the notion of envelope it can be found

that the c-discriminant of ( ), , 0x y cφ =  is the c-eliminant of ( ), , 0x y cφ =  and 0
c

∂φ =∂  provided

( ), , ,x y c
c

∂φφ ∂  are continuons in the domain of the differential equation.  As for example let the

family of curves be

y2 = 4cx. We consider ( ) 2, , 4 –x y c cx yφ = . Then 
c

∂φ
∂  = 4x Eliminating c from ( ), , 0x y cφ =

and,

c
∂φ
∂  = 0, we get x = 0, y = 0 i.e. x= y = 0 gives the required c-discriminant.

Let f(x,y,p) = 0  denote a first order differential equation. The p-discriminant of the equation

f(x,y,p) = 0 is defined as the p-eliminant between the equation f(x,y,p) = 0 and  0
f
p

∂ =∂  provided

f(x,y,p), 
f
p

∂
∂  are continuous in the domain of the differential  equation. The p-discriminant

represents the locus for each of the point of which f(x,y,p) = 0 has equal values of p. As for

example we consider a differential equation ( )2 – – 0p y p x y x+ = .

Let. ( ) 2, , ( – ) – 0f x y p p y p x y x= + = . Then 2 –
f

py x y
p

∂ = +∂

Eliminating p from ( ), . 0f x y p = and 0
f
p

∂ =∂ , we get.
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( )
2– –

–
2 2

y x y x
y x y x

y y
   + =      

i.e. ( )2 0x y+ =

or, 0x y+ = ,  which is the required p-discriminant.

Remark :

It is easy to observe that the equations are of the same degree in c and p, and therefore
whenever there is a p-discriminant, there is a c-discriminant.

Note :

The singular solutions of a  differential equation can be found by exploring the
following situations :

(a) p-equation has multiple roots.

(b) c-equation has multiple roots.

Envelope of  a system of curves ( ), , 0,x y cφ = if it exists, satisfies the differential
equation ( ), , 0f x y p = and this soluton is evidently a singular solution. Thus if

( ), 0E x y = represents the envelope then E is a factor of both c-discriminant and p-
discriminant and also the soluton of the differential equation.

We have already seen that both the p-discriminant and c-discriminant of ( ), , 0f x y p = and
its solution ( ), , 0x y cφ =  respectively contain the envelope (if it exists) of the system of
curves ( ), , 0x y cφ =  . But it can be seen that the c-discriminant and p-discriminant contain
other loci which are different from the envelope and generally they do not satisfy the
differential equation. These are called extraneous loci.

Not the p-discriminant relation gives the locus of such points for which p has at
least two equal values. It may so happen that these two equal values of p belong to
two distinct curves which are not consecutive but which touch each other at that point
of consideraton. This point will  satisfy the p-discriminant but not the c-discriminant.
Also the point not being on the envelope will  not satisfy the differential equation

( ), , 0f x y p = . The locus of  such points which are the points of contact of two non
consecutive curves at which the p has equal values is called tac-locus. So if ( ), 0T x y =

be the locus, then T(x,y) is a factor of p-discriminant but not of c-discriminant.

The  c-discriminant relation is the locus of such points for which c has at least two
equal values. It may so happen that each curve of the family ( ), , 0x y cφ =  has a double
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point whose nature is that of a node and then the locus of the nodes is called the nodal locus.
Thus if N(x,y)=0 be the  nodal  locus, then N(x,y) is a factor of c- discriminant but not of
p-discriminant.

If each member of the family ( ), , 0x y cφ =  has a cusp then the locus of those cusps is known
as cuspidal locus. Thus if C(x,y)=0 be the cuspidal locus, then C(x,y)  is a factor of both c-
discriminant and p-discriminant but not the soluton of the differential equation.

Here using symbols E,N,T and C for envelope, nodal locus, tac-locus, cuspidal locus
respectively we can summarize the results int the following ways :

Discrc ( )φ x,y,c : E. N2. C3 = 0

Discrp f(x,y,p) : ET2C = 0

Example :  Examine for singular solution and extraneous loci, if any for the differential
equation

( )224 – 3 – 0xp x a = .............(a)

Solving for p we get  
3 –
2
x a

p
x

= ±

i.e,  
3 –
2

dy x a
dx x

= ±

or. 3 –
2
x a

dy dx
x

= ±

Integrating we get 
3 1
2 2–y c x ax

 
+ = ±    

( )–x x a= ±

therefore ( ) ( )2 2–y c x x a+ = ...............(b)

i.e. ( )22 22 – – 0c cy y x x a+ + =  ...............(c)

From, (c), Discr
c
 ( ), ,x y cφ  : ( ){ }22 24 – 4 – – 0y y x x a =

or, ( )2– 0x x a =  ..........................(d)
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From (a) Discr
p
 ( ), ,f x y p  : 0– 4.4x. (3x–a)2 = 0 .....................(e)

So from (d) and (e), x is the common factor. Hence x = 0 is the singular solution of (a).

Again 3 – 0x a = is a tac-locus, since it appears twice in the p-discriminant relation (e) but

does not occur in (d).

Also x–a = 0 is a nodal-locus since it appears twice in (d) but does not occur in (e).

Exercises :

a. Solve the following equations and find the singular solution, if any :

(i) ( )2 2 21y p a+ =

(ii) 38 27ap y=

(iii) ( )24 4 – 2 ,p y xp y=  put 2y u=

(iv) ( ) ( )22 2 – 3 4 1 –p y y=

(v) 2 – 2 4 0xp py x+ =

b. Examine for singular solutions of the equations :

(i)
2

3 2 – 2
p

y px
x

=

(ii) ( )224 3 –1xp x=

(iii) 3 2 2 2 0x p x yp a+ + =

(iv) ( )2 4 2–y y xp x p=

(v) ( )3 28 – 27 12.p x p y=

(vi) ( )3 4p y y xp= +

c. Reducting the differential equation :

2 – 2 2 0xp py x y+ + =

to Clairaut’s form by the transformations 2 =x u  and y x v− = , find its singular
solution, if any.
(d) Reducing the differential equation :

( ) ( ) ( )22 22 1 2 2 1 0x p p pxy p y p+ + + + + + =

to Clairaut’s form by the transformations x+y = u and  xy–1 = v, find  its singular
solution, if any.
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3.3 Second Order Differential Equation

A linear ordinary differential equation of nth order is given by

1 2

1 21 2
.......... ( )

n n n

nn n n
d y d y d y

P P P y F x
dx dx dx

− −

− −+ + + + = (1)

In the domain D R⊆ , where each of P1, P2,.........Pn is either  a constant or a function

of x and F is  function of x on D.

In P1, P2 , ...., Pn are all constants then the differential equation

1 2

1 21 2
....... ( )

n n n

nn n n

d y a y d y
P P P y F x

dx dx dx

− −

− −+ + + + =  is known a linear ordinary differential

equation with constant coefficients.

Now in the linear ordinary differential equation with constant coefficients of the above

form if we replace 
d

dx
 by D in (1) we have

(Dn + P1D
n –1 + P2D

n – 2 + .... + Pn)y = F(x) (2)

i.e. f (D)y = F(x) (3)

where f (D) = Dn + P1D
n – 1 + P2D

n – 2 + .... + Pn.

If F(x) = 0, (3) becomes

f (D)y = 0 (4)

(4) is called the correspoinding homogeneous equation to (1) and solution of (4)
is called the complementary function or complementary solution or C. F of (1) The
solution due to non homogeneous part F(x) is called the particular solution
(PI) of (1). The complete or general solution of the differential eqution (1) is thus
y = C. F. + P. I.

3.4 Theorem : Existence Theorem

Let P1, P2,...... , Pn be some constants and let a point x0 be in [a, b] within R. If
α1, α2, ...., αn are any n constants there exists a solution φ of f (D)y = 0 on [a, b] satisfying

φ(x0) = α1, ( )0′φ x  = α2,
 ......, φn – 1(x0) = αn
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3.5 Theorem : Uniqueness Theorem

Let x0 be in [a, b] within R and let α1, α2,.... αn be any n constants. Then there is
at most one solution φ of f (D) = 0 satisfying

( ) ( ) ( )1
0 1 0 2 0, , ......, −′φ = φ = α φ = αn

nx x x x .

3.6 Wr onskian

The wronskian of n differentiable functions y1, y2 ..... yn , denoted by W(x) or W(y1,
y2, .... yn) or, W (y1, y2, ..... yn : x), is defined by

W(y1, y2,..... yn : x) =

1 2

1 2

1 1 1
1 2

....

....

.... .... .... ....

....

u

n

n n n
n

y y y

y y y

y y y− − −

′ ′ ′

Theorem : The function y1, y2, .... yn will be linearly independent solutions of the
equation

1 2

1 21 2
.... ( )

n n n

nn n n

d y a y a y
P P P y F x

dx dx dx

− −

− −+ + + + =

if F and P1 , P2, ..... Pn are analytic in [a, b]

Definition : Any set y1, y2 .....yn of n linearly indepdent solution of the homogeneous
linear nth order differential equation f (D)y = 0 in [a, b] is said to be a fundamental set
of solutions in the interval [a,b].

Theorem : If y = f (x) be the general solution of the equation

1 2

1 21 2
.... 0

n n n

nn n n

d y a y a y
P P P y

dx dx dx

− −

− −
+ + + + = (a)

and y = φ (x) be a solution of the equation

1 2

1 21 2
....

n n n

nn n n

d y a y a y
P P P y x

dx dx dx

− −

− −+ + + + = (b)
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then y = f(x) + φ(x) is the general solution of the equation (b).

Theorem : If y = y1 is a solution of the reduced equation (4) in D, then y = c1y1

is a solution of (4) as well, where c1 is an arbitrary constant.

3.7 Theorem : Principle of Superposition

If y1 and y2 be two solutions of the differential equation ( ) ( ) ( )
2

2
0

d y dy
P x Q x R x y

dxdx
+ + = ,

then the linear combination c1y1
 + c2y2 is also a solution for any values of the constants

c1, c2.

3.8 Theorem

 If y1 and y2 be two solutions of the diffrential equation ( ) ( ) ( )
2

2
0

d y dy
P x Q x R x y

dxdx
+ + =

and if further there is a point where the Wronskian of y1 and y2 is non zero, then the
family of solutions y = c1y1 + c2y2 with arbitrary coefficients c1, c2 includes every solution
of the equation

( ) ( ) ( )
2

2
0

d y dy
P x Q x R x y

dxdx
+ + = .

Last theorem states that, as long as the Wronskian of y1 and y2 is not every where
zero, the linear combination y = c1y1 + c2y2 spans all the solutions of the equation

( ) ( ) ( )
2

2
0

d y dy
P x Q x R x y

dxdx
+ + = .

In this case the expression y = c1y1 + c2y2 is said to be  the general solution. The
solutions y1 and y2, with non zero Wronskian, are said to form a fundamental set of
solution of (5).

Now we pay our attention to the equation of the following form :

2

2
0

d y dy
P Q Ry

dxdx
+ + = (5)
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where P (≠ 0), Q and R are all constains.

We take the following simple example :

2

2
0

d y
y

dx
− = (6)

Comparing (6) with (5) we will get P = 1, Q = 0, R = –1. We can easily verify that
y1 = ex and y2 = e–x are two solutions of (6). We can also conclude that the functions
c1y1 = c1e

x, c2y2 = c2e
–x satisfy the differential equation (6) as well. Further the function

y = c1e
x + c2e

–x is also a solution of (6), for any arbitrary values of c1, c2. Again the
Wronskian in this case is given by

( )
2

1 2
1 2

1
, , : 2 0

x x

x x

y y e e
W y y x

y y e e

−

−
= = = − ≠′ ′ −

.

Hence, 1 2
x xy c e c e−= +  is the general solution of (6)

As  the coefficients c1, c2 in the general solution y = c1e
x + c2e

–x are arbitrary, this
expression represents a doubly infinite family of solutions of (6). Based on this
observation. we suppose a trial solution of (5) of the form y = emx, where m is the
parameter to the determined. Then one can have

mxy e= , mxdy
me

dx
= , 

2
2

2
mxd y

m e
dx

=

Substituting the above results in (6) we obtain

Pm2emx + Qmemx + Remx = 0

(Pm2 + Qm + R) emx = 0

Since emx ≠ 0, we have, Pm2 + Qm + R = 0.

Equation (7) is called the Auxiliar y Equation (A. E.) for the ordinary differential
equation (5).

Now we re-write (5) in the following form :

2

2
0

d y dy
p qy

dxdx
+ + = (8)
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where = Q
p

P
 and 

R
q

P
= . Then the A. E becomes m2 + pm + q = 0. (9)

Now we have three different types of roots of the A. E. (9)

a. Roots are real and distinct

b. Roots are real and equal

c. Roots are complex conjugate

In the corresponding bomogeneous equation (4)  for the differential equation (3) we
put y = emx as a trial solution and this gives the auxiliary equation f (m) = 0

Case-i. If m1, m2.... mn be the distinct real roots of the auxiliary equation f(m) = 0
then the solution of (4) is given by

1 2
1 2 ..... nm xm x m x

ny c e c e c e= + + +  where, c1, c2, ....., cn are constants.

Case-ii If m1, m2, ..., mn be the real roots of the auxiliary equation f (m) = 0 and if
further m1= m2 = .... mr = m, then the solution of (4) is

( ) 1 2 ..1
1 2 1 2... ... .+ +−

+ += + + + + + + + nr r m xm x m xr mx
r r r ny c c x c x e c e c e c e

Case-iii If a ± iβ  be the roots of the auxiliary equation f (m) = 0, then the solution
of (4) must contain the term eax (c1cos (βx) + c2 sin (βx)).

Note : If a ± iβ be the roots of the auxiliary equation f(m) = 0 repeated r times, the
solution of (4) contains the term.

eax (c1 + c2x + .... + crx
r – 1) cos (βx) + eax (b1 + b2x + ... + brx

r – 1) sin (βx).

The general form of non homogeneous ordinary differential equation with constant
coefficients is given by (2) or (3). To solve a non homongeneous linear ordinary
differential equation we first solve the corresponding homogeneous equation by the
method as discussed above and this will give this corresponding C. F.

To get the P. I we employ the following scheme :

1
P.I=

f(D)  X where X = F(x)
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Now the general method of finding the expression for 
1

f(D)
X  is a laborious one.

We shall explain below the short methods for finding 
1

( )
X

f D  for some standard form

of functions.

3.9 Method of finding the particular  integral (P. I)

Rule 1. If X = P(x), where P(x) is a polynomial of degree n. Then

P.I. = ( )1 1

( ) ( )
X P x

f D f D
=

Note : First express, f (D) in the form (1 + φ(D)). Then expanding (1 + ϕ(D))–1 as
an infinite series in ascending powers of D and then operate on P(x).

Rule 2. If X = eax, ‘a’ being a constant, then

P. I. = 
1 1

( ) ( )
axX e

f D f D
=

= ( )
1axe

f a , if f (a)  ≠ 0

= 
( )

ax x
e

f a′
,  if f ′ (a) ≠ 0, f (a) = 0

In general,

( )
P.I=

n
ax

n

x
e

f a
, if f (a) = 0, f ′(a) = 0, ..., 1( ) 0, ( ) 0− = ≠n nf a f a

Rule 3. X = sin(ax) or, sin (ax + b) or, cos (ax) or, cos (ax + b)

Let f (D) = φ (D2), φ (–a2) ≠ 0.

1
P.I=

( )
X

f D
= ( )1

sin
( )

ax
f D

 = 
2

1
sin ( )

( )
ax

Dφ
 = 2

1
sin ( )

( )
ax

aφ −
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or, 2
1 1

sin( ) sin ( )
( ) ( )

ax b ax b
f D D

+ = +
φ

= 2

1
sin ( )

( )
ax b

a
+

−φ

or, 
1

cos( )
( )

ax
f D

=  
2

1
cos( )

( )
ax

D
=

φ
 =

2

1
cos( )

( )
ax

φ −α

or, = 
1

cos( )
( )

ax b
f D

+ = 2
1

cos( )
( )

ax b
D

+
φ

= 2

1
cos( )

( )
ax b

a
+

φ −

If φ (– a2) = 0, then

P. I. =
1

( )
X

f D
= ( )1

sin
( )

ax
f D

= ( )1
sin

( )
x ax

f D′

or, = ( )1
sin

( )
ax b

f D
+  = ( )1

sin
( )

x ax b
f D

+
′

or, = ( )1
cos

( )
ax

f D
 = ( )1

cos
( )

x ax
f D′

or, = ( )1
cos

( )
ax b

f D
+ = ( )1

cos
( )

x ax b
f D

+
′

Rule 4. If F(x) = cax ψ(x) where ψ(x) is a function of x only.

Then P. I. = ( ) ( )1 1 1
.

( ) ( ) ( )
= ψ = ψ

+
ax axX e x e x

f D f D f D a

Rule 5. If F(x) = xnψ(x) where ψ(x) is a function of x only.

Then P. I =
1

( )
X

f D
= ( )1

( )
nx x

f D
ψ =

( )
( ) ( ) ( )1

n
f D

x x
f D f D

′  − ψ 
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3.10 Properties of D-operator

(a) D, D2, D3, ..... denote the differentiations with respect to x once, twice, thrice.....
respectively.

(b) 2 3

1 1 1
, , ,

D D D
...... denote the indefinite integration with respect to x once, twice,

thrice,..... respectively.

(c) 
1

X Xdx
D

= ∫

(d) ( )1
... n

n
X X dx

D
= ∫∫∫ ∫

Example : Solve (D2 + 2D + 1)y = x3 + x2 + x.

Solution : Let y = emx be the trial solution of the corresponding homogeneous
equation of the given equation. Then the A. E. is of the form

m2 + 2m + 1 = 0

i.e. m = – 1, – 1

Therefore, the C. F of the given differential equation is of the form

C. F. = (a + bx)e–x , where a, b are arbitrary constants.

The particular integral is

P. I. ( )
( )3 2

2

1

1
+ +

+
x x x

D

= (D + 1)–2 (x3 + x2 + x)

= (1 – 2D  + 3D2 – 4D3 + .....)(x3 + x2 + x)

= (x3 + x2 + x) – 2. (3x2 + 2x + 1) + 3(6x + 2) = 24

= x3 – 5x2 + 15x – 20

Thus the general solution is given by

y = C. F + P. I= (a + bx) e–x + (x3 – 5x2 + 15x – 20)
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Example : Solve : (D2  – 3D + 2)y = ex

Solution : Let y = emx be the trial solution of the given equation. Then the A. E.
is of the form

m2 – 3m + 2 = 0

i.e. m = 1, 2

Therefore, the C. F of the given differential equation is of the form

C. F. = aex + be2x, where a, b are arbitrary constains.

Now let f (D) = D2 – 3D + 2

The particular integral is

P. I =
1

( )
xe

f D
 = ( )1

xx
e

f ′
, since f ′(1) ≠ 0, f (1) = 0

= – xex.

Thus the general solution is given by y = C. F. + P. I = aex + be2x – xex.

Problems : (a) Solve : (D2 + 4)y = sin 3x.

(b) Solve : (D2 + 9)y = sin 3x + 5 cos 3x.

(c) Solve : (D2 – 2D + 2)y = cos x + sin 2x.

(d) Solve : (D2 – 5D + 6)y = ex cos x.

(e) Solve : (D2 – 4D + 4)y = xe2x cos x.

(f) Solve : (D2 – 5D + 6)y = x2e3x.

3.11 Homogeneous Linear Differential Equations with Variable
Coefficients

A linear ordinary differential equation of the form

1
1

1 1
......

n n
n n

nn n

d y a y
x P x P y X

dx dx

−
−

−
+ + + = (1)

where P1, P2, ...., Pn are constants and X is either a constant or a function of x only
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is called a homogeneous linear differential equation. This is also known as Euler’s
Equation.

Now we want to change the independent variable by using the relation

zx e= , i.e., z = log x (2)

This gives, 
dx

dz
x

= , i.e, 
d

dz
 ≡ ·

d
x

dx
≡ xD ≡ D′ , where D ≡ 

d

dx
, D ′ ≡ 

d
x

dx
,

Thus xDy = D′y

Now, since 
dy dy

x
dz dx

=

2

2
d y d dy

dz dzdz

 =  
 

 = 
d dy

x x
dx dx
 
 
 

 = 
2

2
2

d y dy
x

dzdx
+

So, ( )
2 2

2
2 2

1
d y d y dy

x D D y
dzdx dy

′ ′= − = −

Similary

( )1
0. −

= ′= −
 ∏

r
r r

ir
d y

x D i y
dx

(3)

Now using the relations given by (2) and (3) the differential equation (1) will be
changed into the form of a linear differential equation with constant coefficients. Then
we can write it in the form f (D′)y = X′ , where X′, is a function of z only.

So, we can solve the problem f (D′)y = X′ by the method of linear differential equation
with constant coefficients.

Now let us suppose that a second order differential equation takes the following
form :

( ) ( ) ( )
2

2
2

d y dy
ax b ax b P Qy F x

dxdx
+ + + + = (4)

where P, Q, a, b are constants and F is a function of x on ,
b

a

− ∞ 
 

 which is a

homogeneous linear differential equation as well.
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Example : Solve ( )
2

2
2

log .sin log
d y dy

x x y x x
dxdx

+ + =

Solution : First we change the independent variable x to z by the transformation x
= ez, i.e, z = log  x.

So, 
dy dy

x
dz dx

=  and 
2 2

2
2 2

d y d y dy
x

dzdx dz
= −

The given equation reduces to

(D′2 + 1)y = z. sin z (a)

Let y = emx be the trial solution of the reduced equation of (a). Then the corresponding
A. E. is of the form m2 + 1 = 0, So, m = i, – i.

Therefore the C. F. = A sin z + B cos z, where A, B are arbitrary constants.

Now, ( ) ( )
2

1
P.I .sin

1
z z

D
=

′ +

= ( ) ( ) ( )2 2

1 1
2 sin

1 1
z D z

D D

 
 ′− 

′ ′+ + 
 

= ( ) ( )
2

1 1
2 sin·

21

 
  ′−  ′ ′ + 
 

z D z z
DD

= ( ) ( ) ( )
2

1 1
2 cos·

21

 
  ′− −  

 ′ + 
 

z D z z
D

= ( ) ( )( )
2

2

1
cos cos

2 1

z
z D z z

D
′− +

′ +

= ( ) ( )
2

2

1
cos cos sin

2 1

z
z z z z

D
− + −

′ +
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= ( ) ( ) ( ) ( )
2

2 2

1 1
cos cos sin

2 1 1

z
z z z z

D D
− + −

′ ′+ +

= ( )
2 1

cos cos .
2 2

z
z z z P I

D
− + −

′

= 
2 1

cos ·sin . .
2 2

z
z z z P I− + −

Therefore, P. I. = 
2 1

cos ·sin
4 4

− +z
z z z

Therefore the general solution of the equation (a) is given by

y = A sin z  + B cos z 
2

4

z− cos z + 
1

·
4

z , sin z

By putting z = log x the general solution of the given equation is

y = A sin (log x) + B cos (log x) 
( )2log

4

x
−  cos (log x) + (log x)

1

4
· sin (log x),

0 < x < ∞.

3.12 Method of Undetermined Coefficients

We consider the following problem of the non homogeneous differential equation

2

2

d y dy
P Qy R

dxdx
+ + = (1)

The method of undetermined coefficients is a procedure for finding the particular
solution of the equation (1) where R is an exponential, or a sine or cosine, a polynomial,
or some combination of such functions.

Now, we are going to study this method of undermined coefficients throug an
example.
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Suppose 
2

2
axd y dy

P Qy e
dxdx

+ + = (2)

If we differentiate eax, we have the same function with some numeric constant. Now

this is the procedure to find the particular integral. So let ax
py e=  be the P. I. of (2),

and we guess that

yp = Aeax (3)

might be a particular solution. Here A is the undetermined coefficient and it is to
be so chosen that (3) satisfies (2). Then

( )2 ax axA a Pa Q e e+ + =

Hence, 2

1
A

a Pa Q
=

+ + , if a2  + Pa  + Q ≠ 0.

Now if a2 + Pa + Q = 0, then ‘a’ is a root of A. E. We take

yp = Axeax (4)

Then from (2) we get 
1

2
A

a p
=

+ , if 2a + P ≠ 0

Again, if 2a + P = 0, then we take yp = Ax2eax and we repeat the above procedure
if the order of the differential equation is more than two.

Therefore : If y1 and y2 are two solutions of the non homogeneous differential
equation (1) then their difference y1 – y2

 is a solution of the corresponding homogeneous
differential equation.

If, in addition, Y1 and Y2 determine a fundamental set of solutions of the
corresponding differential equation (2), then Y1 – Y2 = c1y1 + c2y2,  where c1 and c2 are
certain constants.

Example : Solve  by the method of undetermined coefficients, the equation (D2 +
1)y = 10e2x for the condition y = 0, Dy = 0 when x = 0.

Solution : Here it is given that (D2 + 1)y = 10e2x (1)

Let y = emx be  the trial solution of the reduced differential equation of (a) Then the
A. E is
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m2 + 1 = 0, i.e., m = i, – i.

The complementary functon is

C. F. = C1
 cos x + c2 sin x.

where c1 and c2 are certain constants. We assume the particular integral in the form

P. I = Ae2x, where A is  a constant to be determined (since 2 is not a root of the A.
E).

So, (D2 + 1)Ae2x = 10e2x

i.e. 5Ae2x = 10e2x

or, A = 2

Thus the general solution is given by

y = c1cos x + c2 sin x + 2e2x

From the condition y = 0 when x = 0 we get c1 = – 2 and from the condition Dy
= 0 when x = 0 we get c2 = – 4. So the final complete solution is y = – 2 cos x – 4
sin x + 2e2x.

Working Rule :

(a) R = eax

(1) When a is not a root of A.E. i.e. eax is not in the complementary function, take
yp = Aeax.

(2) When a is a simple root of A. E. i.e. eax is in the complementary function, take
yp = Axeax.

(3) When a is a double root of A. E. i.e. eax is in the complementary function, take
yp = Ax2eax.

(b) R = sin (ax) or cos (ax)

(1) When sin(ax) or cos (ax) is not in C. F., take

yp = A sin (ax) + B cos (ax)

(2) When sin (ax) or cos (ax) is in C. F., take

yp = x. (A sin (ax) + B cos (ax))

(c) R = a0 + a1x + ..... + anx
n
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(1) if P ≠ 0, Q ≠ 0, we take yp = A0 + A1x + .....  Anx
n

(2) if P ≠ 0, Q = 0, we take yp = x(A0 + A1x + ....+ Anx
n)

(3) if P = 0, Q = 0, we take yp = x2 (A0 + A1x + .....+ Anx
n)

(d) R = eax sin (bx) or sin (bx) (a0 + a1x + .... + anxn) or, eax (a0 + a1x + .... + anxn)

Modify yp accordingly with the help of (a), (b) and (c).

3.13 Method of Variation of Parameters

The main advantage of the method of variation of parameters is that it is a general
method. In principle, it can be applied to any ordinary differential equation, and it requires
no detailed assuptions about the form of the solution. In fact later in this section we use
this method to derive a formula for a particular solution of an arbitrary second order linear
non homogeneous differential equation. On the other hand, the method of variation of
parameters eventually requires evaluation of certain integrals involving the non
homogeneous term in the differential equation.

We seek a method of finding a particular integral of an ordinary differential equation
for which the complementary function is known. This is the main objective of the method
of variation of parameters.

Now we consider the following second order linear differential equation

2

2

d y dy
p qy r

dxdx
+ + = (1)

where p, q, r are given continuous functions in x. We now assume that c1y1 +
c2y2,where c1, c2 are both constant, be the general solution of corresponding homogeneous
equation.

2

2
0

d y dy
p qy

dxdx
+ + =

i.e. the C. F. of (1)

Now we replace c1, c2 by the function A and B respeectively. This gives

y = Ay1 + By2 (2)
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Then we try to determine A and B so that the expression in (3) is a solution of the
non homogeneous equation (1) rather than the homogeneous equation (2). This method
is known as the Method of variation of parameters.

Calculations yield the expressions of the desired functions A and B as

( )
2

1 2, :

y r
A dx

w y y x
= −∫  and  ( )

1

1 2, :

y r
B dx

w y y x
= ∫ . Substituting these two expression of A and

B in (3) we get particular integral of the non homogeneous equation (1).

Theorem : If the functions p, q, r are continuous functions in an open interval I and
if the functions y1, y2 are linearly independent solutions of the homogeneous equation

corresponding to the non homogeneous equation 
2

2

d y dy
p qy r

dxdx
+ + = , then a particular

solution of this equation is y = Ay1 + By2
 and the general solution is y = c1y1 + c2y2 +

Ay1 + By2.

Note that the two solutions y1, y2 of the corresponding homogeneous equation (2)
are linearly indendpent.

Let us consider a second order differential equation

2

2

d y dy
p qy r

dxdx
+ + = (a)

in which p, q are constants and r = r(x).The corresponding homogeneous equation
of the differential equation (a) is as follows

2

2
0

d y dy
p qy

dxdx
+ + = (b)

Then the general solution of the differential equation (b) i.e. the complementary
function of (a) is

yc = A.u + B.v (c)

where A, B are constants.
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Now as u and v are two linearly independent solutions of (b) we have

2

2
. 0+ + =d u du

p qu
dxdx

(d)

2

2
. 0+ + =d v dv

p qv
dxdx

(e)

Let us assume the general solution in the form y  = A.u + B.v (f)

Here A and B are treated as functions of x.

Dif ferentiating (f) with respect to x, we get

   = + + +   
   

dy du dv dA dB
A B u v

dx dx dx dx dx
(g)

Let us choose A and B in such a way that

0
dA dB

u v
dx dx

+ = (h)

Then from (g) we get

dy du dv
A B

dx dx dx
 = + 
 

(i)

Dif ferentiating both sides of (1) with respect to x, we get

2 2 2

2 2 2
d y d u d v dA du du dv

A B
dx dy dx dxdx dx dx

= + + + (j)

Now putting the values of 
2

2
, ,
dy d y

y
dx dx

 in (a), get

2 2

2 2
d u du d v dv dA du dB dv

A P qu B P qv r
dx dx dx dx dx dxdx dx

     + + + + + + + =             
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So, 
dA du dB dv

r
dx dx dx dx

 + = 
 

(k)

Now using (h) in (k) we can get

. .
dA du u dA dv

r
dx dx v dx dx

− =

i.e., 
dv dv

u v dA vrdx
dx dx

 − − = 
 

or, – W(u, v ;  x) dA = vrdx

The expression W (u, v ; x) = 
 − 
 

dv du
u v

dx dx
 gives the corresponding wronskian.

Integrating we get 
( ) 1

.

. ;

v r
A dx c

W u v x
= − +∫ , where c1 is an arbinary constant.

Similary, we have ( ) 2
.

. .

u r
B dx c

w u v x
= +∫ , where c2 is an arbitrary constant.

Using the above expression of A and B in (f) the general solution takes the following
form

( ) ( )1 2
. .

W W
= + − +∫ ∫

v r u r
y c u c v u dx v dx

u,v : x u,v : x

Working Rule :

Step 1 : Find the complementary function of the given differential equation (1). Let
the complementary function be C. F. = A. u + B. v.

Step 2 : Check Wronskian W(u, v) ≠ 0.

Step 3 : Suppose y = A. u + B.v where A and B are functions of x.

Step 4 : Calculate ( ) 1W u,v : x

vr
A dx c= − +∫
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and ( ) 2
.

W u,v : x
= +∫

u r
B dx c , where c1 and c2 are arbitrary constant.

Step 5 : Put the values of A, B in the expression at Step 3 and this will give the
general solution of the given differential equation.

Exercises :

a. Solve the following diffirential equations with constant coefficients :

i. ( )
3 2

3
1+ = +xd y

y e
dx

ii. 
3

3 2
3

− = −d y
y x x

dx

iii.  
2

2
2

cos− =d y
y x x

dx

iv. 
2

2

d y
y

dx
+  = cosec x

v. 
2

2 3
2

2 cos2x xd y
y x e e x

dx
+ = +

vi. 
2

2
2 sinxd y dy

y xe x
dxdx

− + =

vii. 
2

2
2 4 cosxd y dy

y e x
dxdx

− + =

viii. ( )
2

2
5 6 xd y dy

y x x e
dxdx

− + = +

ix. ( )2 1 2sin (3 )− + =D D y x
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x. ( ) ( ) ( )2 21 sin 1 xD y x x x e− = + +

b. Solve the following homogeneous linear differential equations :

i. 
2

2
2

5 2log
d y dy

x x y x
dxdx

− + =

ii. 
2

2 2
2

3 4 2− + =d y dy
x x y x

dxdx

iii. ( )
2

22
2

2 20 1+ − = +d y dy
x x y x

dxdx

iv. 
2

2
2

+ + =d y dy
x x y logx.sinx(logx)

dxdx

v. ( ) ( )
2

2
2

4 cos− + = +d y dy
x x y logx xsin logx

dxdx

vi. x2 
2

2
4 2 sin+ + = +d y dy

x y x x
dxdx

vii. ( ) ( )
2

2
2

5 2 6 5 2 8 0+ − + + =d y dy
x x y

dxdx

viii. ( ) ( )
2

2 2
2

2 3 5 2 3 3 1+ + + − = + +d y dy
x x y x x

dxdx

c. Solve the following differential equations, using the method of undertermined
coefficients:

i. 
2

2
2

2 5 12 15− + = +d y dy
y x

dxdx

ii. 
2

2
2

+ = +xd y
y e x

dx
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iii. 
2

2
2

9 2− = + −xd y
y x e Sin x

dx

iv. 
2

2
2 5 3+ + =d y dy

y sinx
dxdx

v. 
2

2
4+ =d y

y sin2x
dx

vi. 
2

2
3 2 3− + = xd y dy

y xe
dxdx

vii. 
2

2
2

4 sin 2+ =d y
y x x

dx

d. Solve the following differential equations, using the method of variation of
parameters :

i. 
2

2
4 4 tan 2+ =d y

y x
dx

ii. 
2

2
2

9 sec(3 )+ + =d y dy
x x y logx

dxdx

iii. 
2

3
2

sec+ =d y
y x.tanx

dx

iv. 
2

2
3 2 9− + = xd y dy

y e
dxdx

v. 
2

2

2

1
− =

+ x

d y
y

dx e

vi. 
2 3

2 2
6 9− + =

xd y dy e
y

dxdx x

vii. 
2

2
3 2

1
− + =

+

x

x

d y dy e
y

dxdx e
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viii. 
2

2
2 2− + = xd y dy

y e tanx
dxdx

ix. 
2

2 2
2

+ − = ∞d y dy
x x y x ,0 < x <

dxdx

x. 
2

2 2
2

+ − = ∞xd y dy
x x y x e , 0 < x <

dxdx

3.14 Simultaneous Linear Differential Equations with Constant
Coefficients:

The  system of a linear simultaneous ordinary differential equations with constant
coefficients is of the following form :

φ11(D) x1 + φ12(D) x2
 +  ....... + φ1n(D) xn

 = f1 (t)

φ21(D) x1 + φ22(D) x2
 +  ....... + φ2n(D) xn

 = f2 (t)
.... .... .... .... ....
φn1(D) x1 + φn2(D) x2

 +  ....... + φnn
 (D) xn

 = fn (t), where x1, x2, ..... , xn are the dependent

variables and φij (D), i. j = 1, 2, ...., n are all rational functions of 
d

D
dt

≡  with constant

coefficients and fi(t), i = 1, 2, ..., n, are the function of the independent variable t.

The method of operator :

Let x, y be the dependent variables and t be the independent variable. The equation

with involve derivatives of x and y with respect to t. Let us denote the operator 
d

dt
by

the symbol D.
Let us consider the simultaneous linear differential equation with constant coefficient

for two variables as

( ) ( )1 2 ( )φ + φ =D x D y f t (1)

and ( ) ( )1 2 ( )ψ + ψ =D x D y g t (2)

where 1 2 1 2( ), ( ), ( ), ( )φ φ ψ ψD D D D  are all rational functions of D with constant

coefficients and f and g are functions of t.
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Now we operate both sides of (1) with ψ2(D) and both side of (2) with φ2
 (D).

We get,

ψ2(D)φ1
 (D)x + ψ2(D)φ2

 (D)y = ψ2(D) f(t)

φ2(D)ψ1
 (D)x + φ2(D)ψ2

 (D)y = φ2(D) g(t)

Subtracting we get,

[ψ2(D)φ1
 (D) – φ2(D)ψ1

 (D)x = ψ2(D) f(t) – φ2(D) g(t) which is a linear equation in
x and can be used   to find x as a function of t. Value of y can be obtained as a function
of  t by substituting the result of x in (1) or (2).

Example : Solve 7 0− + =dx
x y

dt
, 2 5 0

dx
x y

dt
− − =

Solution : The given equations are (D – 7)x + y = 0 (a)

(D – 5)y – 2x = 0 (b)

Putting  the value of y = – (D – 7)x in (b), we have

= (D – 5)(D – 7)x – 2x  = 0

So, (D2 – 12D + 37)x = 0 (c)

Let x = emt be the trial solution of the equation (c). Then the A. E is of the form

m2 – 12m + 37 = 0

i.e. m = 6 ± i

Therefore, the general solution of the equation (c) is

( )6 cos sintx e A t B t= + , where A, B are arbitrary constants.

Putting the value of x in (a), we have

y = – (D – 7)x = – (D – 7){(A cos t + B sin t)}= e6t [(A – B) cos t +
(A + B)sin t].

Hence, the solution of the given simultaneous linear equation is given by

x = e6t (A cos t + B sin t)
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and,

y = e6t [(A – B) cos t + (A + B) sin t]

Example : Solve tdx
y e

dt
+ = , tdy

x e
dt

−− = .

Solution : The equations are

Dx + y = et (a)

– x + Dy = e–t (b)

Differentiating both sides of (a) with respect to t we get

D2x + Dy = et

i.e. D2x + (x + e–t) = et [using (b)]
i.e., (D2 + 1)x = et – e–t (c)

Let x = emt be the trial solution of the reduced equation of (c). Then the A. E is of
the form

(m2 + 1) = 0

i.e. m =  ± i.

The complementary function of (c) is

C. F. = A cost + B sin t, where A, B are arbitrary constants,

Now, ( ) ( )2

1
P.I.

1

t te e
D

−= −
+

 = 
2

te
 – 

2

te−

.

Therefore, the general solution of (c) is

x = (A cos t + B sin t) + 
2

te
 – 

2

te−

, where A, B are arbitrary constants,

Putting the above expression of x in (a), we have

y = ex – D ( )cos sin
2 2

t te e
A t B t

−  + + − 
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Therefore, y = A sin t – B cost + 
2

te
– 

2

te−

Hence, the solution of the given simultaneous linear equation is given by

( )cos sin
2 2

t te e
x A t B t

−
= + + −

and, sin cos
2 2

t te e
y A t B t

−
= − + −

Exercises:

Solve the following simultaneous linear differential equations :

i. 25 2 , 6t tdx dy
x y e x y e

dt dt
+ − = − + =

ii. 4 3 , 2 5+ + = + + = tdx dy
x y t x y e

dt dt

iii. 4 3 sin , 2 5 tdy dy
x y t x y e

dt dt
+ + = + + =

iv. 5 4 ,
dx dy

x y x y
dt dt

= + = − +

v. 4 2 , 5 2
dx dy

x y x y
dt dt

= − = +

vi. 3 4 , 2 3
dx dy

x y x y
dt dt

= − + = − +

vii. 2 0, 5 3 0
dy dy dy

x y x y
dt dt dt

+ + + = + + =
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3.15 Series Solution of the Ordinary Diffrential Equations:

The solutions of many differential equations can be expressed in terms of elementary
functions, all of whose mathematical properties are well known. When required, the
analytical behaviour of solutions that involve elementary functions can be explored by
making use of their familiar properties. With either a pocket calculator of a software
package, the method of calculating functional values is usually based on a series expansion
of the function concerned.

Most of the ordinary differential equations cannot be solved in terms of  elementary
functions, yet some form of analytical solution is often needed rather than a purely
numerical one. So the fundamental question that then arises is how to obtain a solution
in the form of a series, when only the differential equation is knonw.

Definition : A function f defined in the interval I containing x0 is said to be analytic

at x0 if f (x) can be expressed as a power series ( ) ( )00
n

nn
f x a x x

∞
== −∑ , which has

a positive radius of convergence.

Defintion : Consider the n-th order linear ordinary differential equation

y(n) + Pn – 1(x)y(n – 1) + Pn – 2(x)y(n – 2) + ..... + P0(x)y= f (x)

A point x0 is called all ordinary point of the given differential equation if each of
the coefficients Pn – 1,

. Pn – 2, ....., P0
 and f (x) are analytic at x0.

Definition : Consider the n-th order linear ordinary differential equation

y(n) + Pn – 1 (x)y(n – 1) + Pn – 2 (x)y(n – 2) + ..... + P0 (x)y = 0 (a)

A point x0 is called a singular point of the given different equation if it is not an
ordinary point, that is, not all of the coefficients Pn –1, Pn –2, ...., P0 are analytic at x0

A point x0 is called a regular singular point of the given differential equation if it
is not an ordinary point but all (x – x0)

n – k Pk(x) are analytic for k = 0, 1, 2, ..... (n –

1) i.e., all the limits given by ( )
0

0lim ( )n k
k

x x
x x P x−

→
−  exist and finite.

A point x0 is called an irregular singular point  of the given differential equation
if it is neither an ordinary point nor a regular singular point.
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3.16 Note : Test of Singularity at Infinity

To determine whether the point at infinity is a singular point or not, we transform

the equation (a) by substituting 
1

x
t

=

Then 2dy dy
t

dx dt
= −  and 

2 2
4 3

2 2
2= +d y a y dy

t t
dtdx dt

Then the differential equation (a) becomes

( )
( )
n
ty  + p′n – 1(t)y

(n – 1)(t) + p′n – 2
 (t)y(n – 2) (t) + ..... + p′n – 2

 (t)y(t) = 0  (b)

If t = 0 is a singular point of (b) then the original equation (a) has a singularity at
infinity.

Example : Find the ordinary and singular point (if any) of the differential equation

2
2

2
2 7 ( 1) 3 0

d y dy
x x x y

dxdx
+ + − =

Solution : The given differential equation

2
2

2
2 7 ( 1) 3 0

d y dy
x x x y

dxdx
+ + − = , can be written as

2

2 2 2
7 ( 1) 3

0
2 2

d y x x dy y

dxdx x x

++ − =

Comparing the above differential equation with ( ) ( )
2

1 02
0

d y dy
p x p x y

dxdx
+ + = ,

we have,

( ) ( )
1

7 1

2

x
P x

x

+
= , ( )0 2

3

2
= −P x

x
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Since neither limx → 0 p1(x) not limx → 0 p0(x) does exist hence, p1(x), p0(x) are not
analytic at x = 0.

Therefore, x = 0 is a singular point

Now, limx → 0 (x – 0) p1(x) = 
( )

0

7 1
lim

2x

x
x

x→

+
 = 

7

2
 and

limx → 0 (x – 0)2 p0(x) = 
2

20

3 3
lim

22x
x

x→

  −− = 
 

So both the limits exist and finite and hence the point x = 0 is a regular singular point.
All the points x (≠ 0) are ordinary points.

Example : Show that the equation 
( )2

2 2 2

12
0

1 1

n nd y x dy
y

dxdx x x

+
− + =

− −
 has a singularity at

infinity.

Solution : Substituting 
1

x
t

=  to the given equation we have

2= −dy dy
t

dx dt
 and 

2 2
4 3

2 2
2

d y a y dy
t t

dtdx dt
= +

Using the above results the given equation reduces to

( )2 2
4

2 2 2

12
· 0

1 1

n nd y t dy
t y

dtdt t t

+
+ + =

− −

( )
( )
( )

2

2 2 2 2

12
· 0

1 1

n nd y dy
y

dtdt t t t t

+
+ + =

− − (a)

Since t = 0 is a singular point of the equation (a) thus the given ODE has a singularity
at infinity.
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3.17 Series Solution about an Ordinary Point :

Theorem : Let x0 be any real number and suppose that the coefficients Pn – 1, Pn – 2, ....,
P0 in

f (D)y = y(n) (x) + Pn – 1 (x) y(n – 1) (x) + Pn – 2 (x)y(n – 2) (x) + .... + p0(x) y(x) have
convergent power series expansions in powers of (x – x0) in an interval | x – x0| < r,
r > 0.

If α1, α2, ...., αn are any n constants, there exists a solution φ of the problem
f(D)y = 0, such that y(x0) = α1, y′(x0) = α2, ...., y(n – 1)(x0) = αn with a power series

expansion ( ) ( )0 0
k

k kx c x x∞
=φ = −∑  convergent for |x – x0| < R where the radius of

convergence is R ≥ r.

Theorem : Suppose that x0 is an ordinary point of the n-th order linear ordinary

differential equation ( ) ( )ny x  + Pn – 1 (x)y(n – 1)(x) + Pn – 2(x) y(n – 2) (x) +..... + p0(x)y(x)

= f(x), where the coefficients  Pn – 1
 (x)· Pn – 2(x), ..., p0(x) and f (x) are analytic at x

= x0 then it has two non-trivial linearly independent power series solutions of the form

( )0 0
n

n na x x∞
= −∑ , 0| |x x R− < , for some R > 0, where na s′  are constants and these power

series converges in some interval 0| |x x R− < , R > 0 about x0, R being the radius of

convergence of the power series.

Example : Find the series solution of the following ordinary differential equation

( )
2

2
2

1 0
d y dy

x x y
dxdx

+ + − =

Solution :  The given differential equation can be written as

2

2 2 2

1
0

1 1
+ − =

+ +
d y x dy

y
dxdx x x

(a)

Comparing the above eqution with the equation ( ) ( )
2

1 02
0

d y dy
p x p x y

dxdx
+ + = ,
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we have ( )1 2 1

x
p x

x
=

+
, ( ) ( )0 2

1

1
p x

x
= −

+
.

We have for i = 0, 1

pi(x) = (–1)i +1 · xi· (1+ x2)–1

= (– 1)i + 1· xi · (1 – x2 + x4 – x6 + ....), – 1 < x < 1.

So, pi(x) for i = 0, 1 can be expressed as power series and x = 0 that are convergent
for – 1 < x < 1 i.e. all the coefficients p1(x) and p0(x) are analytic at x = 0.

Hence, x = 0  is a ordinary point of the differential equation (a) and we take therefore.

( ) 0
n

n ny x a x∞
==∑ , (– 1 < x < 1) (b)

Now 1

1

n
n

n

dy
na x

dx

∞
−

=
= ∑ , and ( )

2
2

2
2

1 n
n

n

d y
n n a x

dx

∞
−

=
= −∑ , – 1 < x < 1.

Putting these expressions of  
2

2
, ,
dy d y

y
dx dx

 in (a), we have

( ) ( )2 2
21 1 n

n nx n n a x∞ −
=+ −∑ + 

1
1

0

α
∞ −

=
=

−∑ ∑n n
n n n

n

x na x a x = 0

Therefore,

( )
2

1 1n
n

n

n n a x
∞

=
− +∑ + ( )( ) 2

0

2 1 n
n

n

n n a x
∞

+
=

+ +∑ +
1

n
n

n

na x
∞

=
∑ –

0

0n
n

n

a x
∞

=
=∑

We shift the index of summation in the second series by 2 i.e. we replace n by (n
+ 2) and use the initial value n = 0. Also we shift the index of summation in third series
by 1 i.e. we replace n by (n + 1) and  use the initial value n = 0.
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Then we get, 2 0 3 12 (6 )a a a a x− + +

+ ( ) ( ) ( ){ }2 21 2 1 0n
n n n n nn n a n n a na a x∞

= +− + + + + − =∑

Equating the coefficients of various power of x to zero. we get

2a2 – a0 = 0 ⇒ 0
2 2

a
a =

1
3 1 36 0

6

a
a a a+ = ⇒ = −

and,  n(n – 1)an + (n + 2)(n + 1) an + 2 + nan – an = 0

i. e., 2
1

2n n
n

a a
n+

−=
+

 for n ≥ 2.

Now putting n = 2, 3, 4, ..... in the above recurrence relation, we get

4 2 0
1 1

4 8
a a a= − = −

5 3 1
2 2

5 5.6
= − =a a a

6 4
1 1

2 16 oa a a= − =

7 5 1
4 2.4

7 7.6.5
a a a= − = −

and so on

Substituting the values of a0, a1, a2, ....... in (b) we get the required solution as

y(x) = 
2 4 6

8
0

5
1 ...

2 8 16 128

x x x
a x
  + − + − + 
  

 + 
3 5 7

1
1 2 2.4

...
6 6.5 7.6.5

a x x x − + − + 
 

 ; – 1 < x < 1
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3.18 Series Solution about Regular Singular Point (Frobenius
Method)

Theorem : If the point x0 is a singular point of the differential equation

( ) ( ) ( )
2

0 1 22
0

d y dy
a x a x a x y

dxdx
+ + = , then it has at least one non-trivial solution of the

form ( ) ( )0 0 0| | nr
n ny x x x c x x∞

== − −∑ , and this solution is valid in some interval

0| |x x R− < , where r is a certain constant (real or complex) and R > 0.

If x = 0 is regular singular point, we shall use this method to find the series solution
about x = 0.

Consider the differential equation of the form

( )2

2 2
( )

0
P xd y dy Q x

y
x dxdx x

+ + = (a)

where the functions P(x) and Q (x) are  analytic for all | x | < R, R > 0.

We assume a trial solution

( ) 0 0, 0,0n r
n ny x a x a x R∞ +

== ≠ < <∑ (b)

Now ( ) 1
0

n r
n n

dy
n r a x

dx
∞ + −

== +∑  and ( )( )
2

2
02

1 n r
n n

d y
n r n r a x

dx

∞ + −
== + + −∑

Since P(x) and Q(x) are analytic at x = 0, then

P(x) = c0
 + c1x + c2x

2 + ......, Q(x) = d0 + d1x + d2x
2 + ...

Thus

( )( )0 1 n r
n nn r n r a x∞ +

= + + −∑  + ( )2
0 1 2 .......c c x c x+ + + ( )0

n r
n nn r a x∞ +

= +∑  +
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( )2
0 1 2 0....... 0n r

n nd d x d x a x∞ +
=+ + + =∑ (c)

Since (c) is an identity, we can equate to zero the coefficients of various power of
x. The smallest power of x is xr, and the corresponding equation is

{ r(r – 1) + c0r + d0}a0 = 0

Since, by assumption a0 ≠ 0, we get,

r2 + (c0 – 1)r + d0 = 0

This equation is known as indicial equation of (a). Solving this quadratic equation
for r. one obtains r1 and r2.

Case-I : Let r1 and r2 be the roots of the indicial equations and r1 – r2 is not equal
to an integer. Then the complete solution is given by

y(x) = A.[y(x)]r = r1
 + B.[y(x)]r = r2, 0 < x < R, where A, B are arbitrary constants.

Case-II :  Let r1 and r2 be the roots of the indicial equations and r1 = r2. Then complete
solution is given by

( ) ( ) ( )
1

2

. . ,0=
=

∂ 
= + < <     ∂ 

r r
r r

y x
y x A y x B x R

r

Case-III. Let r1 and r2 be the roots of the indicial equations and differs by an integer
and if some of the coefficients of y(x) become  infinite when  r = r1, we  modify the
form of y(x) by replacing a0 by b0(r – r0). Then we obtain two indepdenent solutions

by putting r = r1 in the modified form of y(x) and 
( )y x

r

∂
∂

, 0 < x < R. The result  of putting

r = r2 in y(x) gives a numerical multiple of that obtained by putting r = r1 and hence
we reject the solution obtained by putting r = r2 in y(x).

Example :  Find the power series solution of the equation using Frobenius method

2x2y′′(x) + xy′(x)  – (x + 1)y(x) = 0 in powers of x.

Solution :  The given differential equation can be written as
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( ) ( ) ( ) ( )2

11
0

2 2

x
y x y x y x

x x

+
′′ ′+ − = (a)

Comparing the above differential equation with ( ) ( )
2

1 02
0

d y dy
p x p x y

dxdx
+ + = , we have

( )1
1

2
p x

x
=  and ( ) ( )

0 2

1

2

x
p x

x

+
= − . Here the point x = 0 is a singular point.

Now ( ) ( )
0 0 1lim x x x x p x→ −  = ( )0

1 1
lim 0

2 2x x
x→ − =  and

( ) ( )
0

2
0 0limx x x x p x→ −  = ( ) ( )2

0 2

1 1
lim 0

22
x

x
x

x
→

+  −− − = 
 

. So both the limits exist and

finite. Hence the point x = 0 is a regular singular point.

Let us assume that the trial solution of the given equation is

( ) 0
n r

n ny x a x∞ +
==∑ , a0 ≠ 0, 0 < x < ∞ (b)

Now, ( ) ( ) 1
0

n r
n ny x n r a x∞ + −

=′ = +∑  and

( ) ( )( ) 2
0 1 n r

n ny x n r n r a x∞ + −
=′′ = + + −∑ , 0 < x < ∞

Putting these values in (a), we have

( )( )2 2

0

2 1 n r
n

n

x n r n r a x
∞

+ −

=
+ + −∑  + ( ) 1

0

n r
n

n

x n r a x
∞

+ −

=
+∑ –( )

1

1 0n r
n

n

x a x
∞

+

=
+ =∑

⇒ 
0

2 ( )( 1) n r
n

n

n r n r a x
∞

+

=

+ + −∑ + ( )
0

n r
n

n

n r a x
∞

+

=
+∑ – 

1

0

n r
n

n

a x
∞

+ +

=
∑ – 

0

0n r
n

n

a x
∞

+

=
=∑
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⇒ ( )( ) ( ){ }
0

2 1 1 n r
n

n

n r n r n r a x
∞

+

=
+ + − + + −∑  − 

1

0

0n r
n

n

a x
∞

+ +

=
=∑

⇒ ( )( ){ }
0

2 2 1 1 n r
n

n

n r n r a x
∞

+

=
+ + + −∑ − 

1

0

0n r
n

n

a x
∞

+ +

=
=∑

Equating the coefficent of smallest power of x, namely xr to zero the indicial equation
becomes

{(2r + 1)(r – 1)}a0 = 0. As 0 0a ≠  the roots of the equation are r = 1 and 
1

2
r = − .

Here the roots of the indicial equation are distinct and the difference is 
1 3

1
2 2

 − − = 
 

which is not an integer, Now equating the coefficient of xn + r, we obtain the recurrence
relation as

(2n + 2r + 1)(n + r – 1)an – an – 1 = 0

( )( )
1

2 2 1 1
n

n
a

a
n r n r

−=
+ + + −

Putting n = 1, 2, 3.... we get

( )
0

1 2 3

a
a

r r
=

+

( )( )
1

2 2 5 1

a
a

r r
=

+ +

and so on

Putting these values in (b) we get
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( ) ( ) ( ) ( ) ( )
2

0 1 .....
2 1 2 5 2 3 1

r x x
y x a x

r r r r r r

 
= + + + 

+ + + +  
(c)

Putting r = 1 in (c), we get

[y(x)]r = 1 = 
2

0 1 .....
5 70

x x
a x

 
+ + + 

  
, 0 < x < ∞. Next putting 1

2
r = −  in (c), we get

( )
1 2
21 0

2

1 ....
2r

x
y x a x x

−

=

 
  = − − +  

  
, 0 < x < ∞. Hence the required solution is given by

y(x) = ( ) ( ) 1
1

2

. .= =−  +     r r
A y x B y x , 0 < x < ∞, where A and B are two arbitrary

constants.

Exercise :

1. Use method of Frobenius  to solve the following differential equation

2

2
0

d y dy
x xy

dxdx
+ + =

2. Use method of Frobenius to solve the following differential equation

( )
2

2 2
2

1 0
d y dy

x x x y
dxdx

+ + − =

3. Use method of Frobenius to solve the following differential equation

( ) ( )
2

2
2

3 1 0
d y dy

x x x y
dxdx

− + − + =

4. Find the series solution of ODE :
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2
2

2
0

d y dy
x x y

dxdx
+ + =  about the point x = 0.

5. Find the series solution of ODE

2

2
0

d y
y

dx
+ =  about the point x = 0.

6. Find the series soluton of ODE

( )
2

2 2
2

2 2 0
d y dy

x x x y
dxdx

+ − + =  about the point x = 0

7. Find the series solution of ODE

2
2

2
3 0

d y
x y

dx
− =  about the point x = 0 and given y(0) = 1 and (0)y′  = 1.

8. Find the series solution of ODE

2

2
3 2 0

d y dy
y

dzdx
− + =  about the point x = 0

9. Find the series solution of ODE

( )
2

2
2

1 2 0
d x dy

x x y
dxdx

− + − =  about the point x = 0.

10. Find the series solution of ODE

( )
2

2
1 0

d y dy
x x y

dxdx

2+ + − =  about the point x = 0.
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3.19 Bessel’s Equation

The ordinary differential equation

x2 
2

2
+d y dy

x
dxdx

 + (x2 – n2) y = 0

where n is a non-negative real number, is called

Bessel’s equation of order ‘n’.

3.20 Application of Bessel’s Equation:

Bessel’s equation appears in the problems related to Vibrations, electric fields, heat
conduction etc.

Regular Sigularity about x = 0

The Bessel’s equation can be rewritten as 
d y 1 dy n

1 y = 0
x dxdx x

2 2

2 2

 
+ + − 

 

Since 1x  and ( 1 – 
2

2
n

x
) are not analytic at x = 0 i.e. since 1x  and (1 – 

2

2
n

x
) cannot

be expressed in power series about x = 0, it follows that x = 0 is a singular point of

Besseel’s equation. Again, 
0

1lim .
→x

x
x  = 1 and 

2
2

20
lim 1
→

 
− 

 x

nx
x

 = –n2. So both these limits exist

and are finite. Hence x = 0 a regular point of Bessel’s equation.

3.21 Solution of Bessel’s Equation : Bessel’s Function

As x = 0 is a regular singular point of Bessel’s equation we can express its solution
in the form of power series about x = 0 using Frobenius method. We can take y =

0

∞
+

=
∑ m r

m
m

a x , a0 ≠  0. Solving we get

y = C1Jn(x) + C2J-n(x)

Here C1 and C2 are two arbitrary constants. Jn(x) is called the Bessel’s function of
the first kind of order n and it is given by
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Jn(x) = 
2

0

( 1)
! ( 1) 2

∞ +

=

−  
 Γ + +  

∑
m nm

m

x
m n m

J–n(x) is called the Bessel’s function of the first kind of order –n and it is given
by

J–n(x) = 
2

0

( 1)
! ( 1) 2

−∞

=

−  
 Γ − + +  

∑
m nm

m

x
m n m

Here ‘n’ is not an integer.

If ‘ n’ is an integer then the complete solution is

y = a1Jn(x) + a2Jn(x) 
2( )

∫
n

dx

xJ x
 = a1Jn(x) + a2yn(x)

where Yn\(x) = Jn(x)
2( )

∫
n

dx

xJ x
 and Yn(x) is called the Bussel’s function of second kind

of order n or the Neumann’s function.

Derivations :

(1) We have Jn(x) = 
2

0

( 1)
! ( 1)

∞ +

=

−  
 Γ + +  

∑
m nm

m

x
m n m z

So, xnJn(x) = 
2( )

2
0

( 1) ( )
! ( 1)

∞ +

+
=

−
Γ + +∑

m m n

m n
m

x
m n m z

Therefore,

d
dx  [xnJn(x)] = 

0

( 1) .2( )
! ( 1)

∞

=

− +
Γ + +∑

m

m

m n
m n m  

2( ) 1

22

+ −

+

m n

m n
x

= 
( 1) . ( )− +m m n

! ( ). ( )Γ + +m n m n m

2( ) 1

2 1
0

.
2

∞ + −

+ −
=
∑

m n

m n
m

x
 [ Γ∵ (n + 1) = nΓ (n)]

= xn
2 1

0

( 1)
!. ( 1 1) 2

+ −∞

=

−  
 Γ − + +  

∑
m nm

m

x
m n m



NSOU ●   CC ●  MT - 07 89

= xn
( 1) 2

0

( 1)
!. [( 1) 1] 2

− +∞

=

−  
 Γ − + +  

∑
n mm

m

x
m n m

∴ 1( ) ( )−  =
 

n n
n n

d x J x x J x
dx                         → (1)

We have

(2) J–n(x) = 
2

m=0

( 1)
! ( 1) 2

∞ −−  
 Γ − + +  

∑
m nm x

m n m

So, x–nJ–n(x) = 
2( )

2
m=0

( 1) ( )
! ( 1) (2)

∞ −

−
−

Γ − + +∑
m m n

m n
x

m n m

Therefore,

d
dx [x–nJ–n(x)] = 

0

( 1) .2( )
!. ( 1)

∞

=

− −
Γ − + +∑

m

m

m n
m n m  

2( ) 1

2(2)

− −

−

m n

m n
x

= 
0

( 1) .( )
! ( ).( )

∞

−

− −
Γ − −∑

m

m

m n
m m n m n · 

2( ) 1

2 1(2)

− −

− −

m n

m n
x

= x–n . 
2 1

0

( 1)
.

!. ( ) 2

∞ − −

=

−  
 Γ −  

∑
m nm

m

x
m m n

= x–n
  

( 1) 2

0

( 1)
!. ( 1 1) 2

∞ − − +

=

−  
 Γ − − + +  

∑
n mm

m

x
m n m

1( )− −
− − − ∴ =

 
n n

n n
d x J x x J
dx                       → (2)

(3) We have

Jn(x) = 
2

0

( 1)
! ( 1) 2

+∞

=

−  
 Γ + +  

∑
m nm

m

x
m n m

So, x–nJn(x) = 
2

2
0

( 1) ( )
.

! ( 1) (2)

∞

+
=

−
Γ + +∑

m m

m n
m

x
m n m
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Therefore,

d
dx [x–nJn(x)] = 

2 1

2
1

( 1) .2 ( )
.

! ( 1) (2)

m m

m n
m

m x
m n m

∞ −

+
=

−
Γ + +∑

= 
2 1

2 1
1

( 1) ( )
.

( 1)! ( 1) (2)

m m

m n
m

x
m n m

∞ −

+ −
=

−
− Γ + +∑

= x–n
2 1

1

( 1)
.

( 1)! ( 1) 2

m nm

m

x
m n m

∞ + −

=

−  
 − Γ + +  

∑

= x–n
2( 1) 11

0

( 1)
! ( 2) 2

m nm

m

x
m n m

′∞ ′ + + −+

′=

−  
 ′ ′Γ + +  

∑ [we put m – 1 = m’]

= –x–n
 

2 ( 1)

0

( 1)
.

! [( 1) 1] 2

m nm

m

x
m n m

′∞ ′ + +

′=

−  
 ′ ′Γ + + +  

∑

1( )n n
n n

d x J x J x
dx

− −
+ ∴ = −

 

                     → (3)

(4) From (1)

d
dx [xnJn(x)] = xnJn–1 (x)

⇒ nxn–1Jn(x) + ( )n
nx J x′  = xnJn–1(x)

i.e. n
x Jn(x) + ( )nJ x′  = jn–1(x)                      → (4)

From (3)

d
dx [x–nJn(x) ] = –x–nJn + 1(x)

⇒ –nx–n–1Jn(x) + x–n ( )nJ x′  = –x–nJn + 1 (x)

i.e. n
x

− Jn(x)  + ( )nJ x′  = –Jn + 1(x)                      → (5)

Adding (4) and (5) we get,
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2 ( )nJ x′  = Jn–1(x ) – Jn + 1(x)

⇒ [ ]1 1
1( ) ( ) ( )
2n n nJ x J x J x− +′ = −                        →  (6)

Subtracting (5) from (4) we get,

2n
x Jn(x) = Jn–1(x) + Jn + 1(x)

[ ]1 1( ) ( ) ( )
2n n n
xJ x J x J x
n − +⇒ = +                      → (7)

From (7) we can have

Jn + 1 (x) = 2n
x Jn(x) – Jn  1(x)                      → (8)

Now, for n = 1 in (8)

2 1 0
2( ) ( ) ( )J x J x J x
x

= −                      → (9)

Again, for n = 2 in (8)

J3(x) = 2 2
x
× J2(x) – J1(x)

⇒ J3(x) = 4
x  J2(x) – J1(x)

= 4
x [ 2

x J1(x) – Jo(x)] – J1(x) [using (9)]

3 12
8 4( ) 1 ( ) ( )

 ∴ = − − 
 

J x J x J x
xx
�                       → (10)

Now for n = 3 in (8)

J4(x) = 2 3
x
× J3(x) – J2(x)

= 1 02
6 8 41 ( ) ( )
  − −  
  

J x J x
x xx

 – 1 0
2 ( ) ( )J x J x
x
 −  

 [using (10) and (9) ]
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= 3
48 6 2

x xx

 − − 
 

J1(x) + 2
241
x

 − 
 

J0(x)

4 1 03 2
48 8 24( ) ( ) 1 ( )J x J x J x

xx x

   ∴ = − + −   
   

                     → (11)

Legendre’s Equation :

The ordinary differential equation

(1 – x2)
2

2
2

d y dy
x

dxdx
−  + n(n + 1)y = 0

is called Legendre’s equation of order n, where n is a real number.

x = 0 is an ordinary Point

Legendre’s equation can be rewritten as

2

2 2 2
( 1)2 0

1 1

d y dy n nx y
dxdx x x

+− + =
− −

Now both – 
2

2

1

x

x−
and 

2
( 1)

1

n n

x

+
−

can be expressed in power series about x = 0 (i.e. both

are analytic at x = 0) and hence x = 0 is an ordinary point of the Legendre’s equation.

3.22 Solution of Legendre’s Equation : Legendre Polynomial

The solution of Legendre’s equation can be written in the form y = 
0

n
n

n

a x
∞

=
∑ about x

= 0.

Solving we get

y = a0 + a1x – ( 1)
2!

n n+ a0x
2 – ( 1)( 2)

3!
n n− +  a1x

3 + ( 2) ( 1)( 3)
4!

n n n n− + +  a0x
4 +

( 3)( 1)( 2)( 4)
5!

n n n n− − + + a1x
5 + .............

= a0 
2 4( 1) ( 2) ( 1)( 3)

1 .......
2! 4!

n n n n n n
x x

+ − + + − + +  
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+ a1
3 5( 1)( 2) ( 3)( 1)( 2)( 4)

.......
3! 5!

− + − − + + − + +  

n n n n n n
x x x

= a0y1(x) + a1y2(x)

So, y1(x) contains only even powers of x while y2(x) contain only odd powers of x.
We choose the coefficient an of the highest power xn  as

an = 2
(2 !) 1.3.5........(2 1)

!2 ( !)n
n n

nn

−=  (n is a positive integer) and a0 = 1. Then we have Pn(x)

= 
2

0 2
3

1 3

...... ,  if  is even

......  if  is odd

 + + +


+ + +

n
n

n
n

a a x a x n

a x a x a x n

This polynomial Pn(x) is called the Legendre Polynomial of degree n. We can have

P0(x) = 1; P1(x) = x ; P2(x) = 1
2 (3x2 – 1) ;

P3(x) = 1
2 (5x2 – 3x) ; P4(x) = 1

8 (35x4 – 30x2 + 3) and so on,

Eventually Pn(1) = 1 for n = 0, 1, 2,........

Rodrigue’s Formula :

( )21( ) 1
!.2

n n

n n n
dP x x

n dx

 = − 
 

Sample Questions :

1. Write down the Bessel’s equation.

2. Check whether x = 0 is an ordinary point of the Bessel’s equation. If no examine
whether it is a regular singular point or irregular singular point.

3. Write down the expression of Bessel’s function of the first kind of order n.

4. Write down the expression of Bessel’s function of the first kind of order (–n).

5. Write down the expression of Bessel’s function of the second kind of order n or
the Neumann’s functions

6. Prove that ddx [xnJn(x)] = xnJn –1(x)
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7. Prove that ddx [x–nJn(x)] = –x–n Jn + 1(x)

8. Prove that ddx [x–nJ–n(x)] = x–nJ– n – 1

9. Prove that ( )nJ x′  = 1
2 [Jn–1(x) – Jn + 1(x)]

10. Prove that Jn(x) = 2
x
n [Jn – 1(x) + Jn + 1(x)]

11. Express J2(x) in terms of J0(x) and J1(x)

12. Express J3(x) in terms of J0(x) and J1(x)

13. Express J4 (x) in terms of J0(x) and J1(x)

14. Write down the Legendre’s equation.

15. Check whether x = 0 is an ordinary point of Legendre’s equation or not.

16. Write down the expression of Legendre’s polynomial

17. State the Rodrigue’s formula regarding Legendre’s polynomial.

3.23 Application of Ordinary Differential Equation to Dynamical
Systems

Dynamical System :

Definition : A dynamical system is a system which changes with time.

Mathematically if a system can be described by means of interaction of finite number
of variables all of which change with time and if further this change in each variable
with respect to time can be described by means of certain functions involving these
variables where time can be present either explicity or implicity is said to be a dynamical
system. The variables describing a dynamical system are called state variables.

Examples : Motion of a particle under certain number of forces, financial markets etc.

3.24 Dimension of a Dynamical System

The number of state variables involved in a dynamical system is said to be the
dimension of that dynamical system.

Categorization of dynamical system :
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If time is implicity present in the governing equation(s) of a dynamical system then
that dynamical system is said to be an autonomous dynamical system.

If time is explicity present at least once in the governing equation(s) of a dynamical
system then that dynamical system is said to be a non-autonomous dynamical system.

If all the state variables involved in a dynamical system are discrete in nature then
that dynamical system is said to be a discrete dynamical system or a map or a cascade.

If all the state variables involved in a dynamical system are continuous in nature then
that dynamical system is said to be a continuous dynamical system or a flow.

Examples :

(I) Example of a one dimensional autonomous map :

xt + 1 = xt + xt
2

[general form : xt + 1 = xt + f (xt)]

(II) Example of a one dimensional non-autonomous map :

xt + 1 = xt + (xt
3 – 1) + et

[general form : xt + 1 = xt + f (t, xt)]

(III) Example of a two dimensional autonomous map :

xt + 1 = xt + xt
2 – 1, yt + 1 = yt + xtyt – 1

[general form : xt + 1 = xt + f (xt , yt), yt + 1 = yt + g(xt , yt)]

(IV) Example of a two dimensional non-autonomous map :

xt + 1 = xt + txt
3 – 1, yt + 1 = yt + xtyt + 1

[general form : xt + 1 = xt + f (t, xt, yt), yt + 1 = yt + g(t, xt, yt)]

(V) Example of a one dimensional autonomous flow :

dx
dt  = x + 1

[general form : dx
dt  = f (x)]

(VI) Example of a one dimensional non-autonomous flow :

dx
dt  = x – 1 + et

[general form : dx
dt  = f (x, t)]
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(VII) Example of a two dimensional autonomous flow dx
dt = x + y + 2, dy

dt
= xy– 1

[general form :  dx
dt  = f (x, y),   dy

dt
 = g(x, y)]

(VIII) Example of a two dimensional non-autonomous flow :

dx
dt = x + y  + t, dy

dt
 = xy – 1

[general form : dx
dt = f (x, y, t), dy

dt
 = g(x, y, t)]

We can extend the above ideas for three or higher dimensional maps or flows.

N.B. In discrete dynamical system xt represents the magnitude of x in time t and as
derivative does not exist in discrete domain the rate of change of x at t can be equivalently

expressed as 1
( 1)

t tx x
t t

+ −
+ − = xt + 1 – xt

As ordinary differential equation plays its role only in continuous dynamical systems
of flows we will confine our analysis within the domain of continuous case. Also we
will restrict ourselves in autonomous systems only.

3.25 Equilibrium Point of A Flow

One dimension : A point x = x* D R∈ ⊆  is said to be an equilibrium point of a one

dimensional flow given by

dx
dt = f (x) ; x∈D ⊆ R if 

*=x x

dx
dt = f (x*) = 0.

Two dimension : A point (x*, y*) ∈D2⊆ R2 is said to be an equilibrium point of a
two dimensional flow given by

( , )

( , )

dx f x y
dt
dy

g x y
dt

= 

=


 (x, y)∈D2⊆ R2

if  

* *

*

* *

( , )

* *

( *, )

( , ) 0

( , ) 0

= = 


= =



x y

x y

dx f x y
dt

dy
g x y

dt
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Physically, at an equilibrium point of a flow the flow becomes stationary.

Examples :

I) given one dimensional flow :

dx
dt = 2x – 1 ; x∈R

For its equilibrium point we must have

dx
dt = 0 i.e. 2x – 1 = 0 or x = 1

2

So, x = 1
2  is its only equilibrium point.

II) Given two dimensional flow :

2

1

dx x y
dt
dy

xy
dt

= + − 

= −


 (x, y)∈R2

For its equilibrium point we must have

0

0

dx
dt
dy
dt

= 

=


 i.e. x + y – 2 = 0, xy – 1 = 0 or x = 1, y = 1

So, (1, 1) is the only equilibrium point of this flow.

There exist certain dynamical systems for which there is no equilibrium point. For

example in the one dimensional flow dx
dt = ex; x∈R dx

dt can never be zero as ex can never

be zero for any x∈R. Hence this flow has no equilibrium point.

3.26 Analysis of Stability of an Equilibrium Point of a One
Dimensional Flow :

Let, dx
dt = f(x), x∈D ⊆ R be a given one dimensional flow, and let x = x*  ∈D ⊆ R be

an equilibrium point of this flow. Then we must have,
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*x x

dx
dt =

= f (x*) = 0 (2)

We consider a very small amount perturbation ‘∆ x’ about the equilibrium point x =
x*. So near the vicinity of this equilibrium point we have

x = x* + ∆ x (3)

Using (3) in (1) we have,

d
dt (x* + ∆ x) = f (x* + ∆ x)

d
dt ( ∆ x) = f (x* + ∆ x)

= f (x*) + ∆ x f ′ (x*) + 
2( )

2!
x

f
∆ ′′ (x*) +.......[using Taylor series expansion]

i.e. d
dt ( ∆ x) =∆ x f ′ (x*)  + 

2( )
2!
x

f
∆ ′′ (x*) +....... [using (2)] (4)

If ‘ ∆x’ is sufficiently small so that we can neglect (∆x)2 and other higher powers of
∆x then we can have from (4)

d
dt (∆x) = ∆x f ′(x*)

or ( )d x
f

x
∆ ′=∆ (x*) dt

Integrating we get ∆x = 
*( )f x tKe ′ (5)

where ‘K’ is a constant of integration.

Now, at t = 0 we assume ∆x = ∆x|t = 0

So, ∆x|t = 0 = K (6)

Using (6) in (5) we get

∆x = ∆x|t = 0 
*( )f x te ′ (7)

Case I : f ′′′′ (x*) > 0 :

As t → ∞ , ∆x → ∞  or –∞  according as ∆x|t = 0 > 0 or < 0 respectively.

In this case, the small perturbation created about the equilibrium point increases with
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time and thus eventually goes away from the equilibrium point. This situation represents
instability and the corresponding equilibrium point x = x* is said to be an unstable
equilibrium point.

Case II : f ′′′′ (x*) < 0 :

As t → ∞ ,  ∆x→ 0.

In this case, the small perturbation created about the equilibrium point decreases with
time and thus tends to return back to the equilibrium point. This situation represents
stability and the corresponding equilibrium point x = x* is said to be a stable equilibrium
point

Case III : f ′′′′ (x*) = 0 :

We have, ∆x = ∆x|t = 0 ∀t.

So, here we fail to determine whether the equilibrium point is stable or unstable. Further
investigation is required in this case.

Examples :

1. Given one dimensional flow :

dx
dt  = x2 – 3x + 2 ; x∈R.

Find its equilibrium point (s) and discuss about the stability.

Ans. Given one dimensional flow :

dx
dt  = x2 – 3x + 2 ; x∈R

For its equilibrium point we must have,

dx
dt  = 0 i.e. x2 – 3x + 2 = 0 or x = 1, 2

So, the given flow has two equilibrium points viz. x = 1 and x = 2.

We consider f(x) = x2 – 3x + 2

Hence f ′ (x) = 2x – 3

Now f ′ (I) = 2 × 1 – 3 = –1 < 0

So, x = 1 is a stable equilibrium point.

Again, f ′ (2) = 2 × 2 – 3 = 1 > 0
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So, x = 2 is an unstable equilibrium point.

2. Given one dimensional flow :

dx
dt  = 2x2 ; x∈ IR

Find its equilibrium point (s) and discuss about the stability.

Ans. Given one dimensional flow :

dx
dt = 2x2 ; x∈ IR.

For its equilibrium point we must have,

dx
dt  = 0 i.e., 2x2 = 0 or x = 0.

So, x = 0 is its only equilibrium point.

Now, we have, f(x) = 2x2

So f ′ (x) = 4x

and f ′ (0) = 0

Hence no conclusion can be drawn about the stability of the equilibrium point x = 0
from the above. Now, if we consider ‘∆x’ as the small perturbation about the equilibrium
point x = 0 we then have near the vicinity of this equilibrium point x = 0 + ∆x i.e. x
= ∆x

Then we get,

d
dt (∆x) = f(∆x)

= f(0) + ∆x f ′ (0) + 
2( )

2!
x

f
∆ ′′ (0) + 

2( )
3!
x

f
∆ ′′′ (0) +.........

Now, f(x) = 2x2

f ′ (x) = 4x

f ′′ (x) = 4 and ( )( )nf x  = 0   n∀ ≥ 3

So, d
dt (∆x) = 0 + ∆x.0 + 

2( )
2!
x∆ × 4 + 0

= 2(∆x)2
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or, 2
( )

( )

d x

x

∆
∆

 = 2dt

Integrating we get,

– 1
x∆  = 2t + k′ where k′  is a constant of integration,

or, ∆x = – 1
2t k′+

Now, as t → ∞ , ∆x→ 0

So, from the above analysis we get that x = 0 is a stable equilibrium point of the given
flow.

Analysis of stability of an equilibrium point of a two dimensional flow :

Let,

( , )

( , )

dx f x y
dt
dy

g x y
dt

= 

=


 (x, y)∈D2⊆ R (1)

be a given two dimensional flow and let (x*, y*) ∈D2⊆ R  be an equilibrium point
of this flow. Then we must have.

* *

* *

* *

( , )

* *

( , )

( , ) 0

( , ) 0

x y

x y

dx f x y
dt

dy
g x y

dt

= = 


= =


(2)

We consider a very small amount of perturbation given by (∆x,∆y) about the equilibrium
point (x*, y*). So, near the vicinity of the equilibrium point (x*, y*) we have

*

*

x x x

y y y

= + ∆ 


= + ∆ 

(3)

Using (3) in (1) we get,

d
dt (x* + ∆x) = f (x* + ∆x, y* + ∆y)



102 NSOU ●   CC ●  MT - 07

d
dt  (y* + ∆y) = g(x* +∆x, y* + ∆y)

or, d
dt (∆x) = f(x*, y*) + ∆x·∂

∂
f
x

(x*, y*) + 
2 2

2
( )

2!
x f

x

∆ ∂
∂

(x*, y*) + .......

+ ∆y·
f
y

∂
∂ (x*, y*) + 

2 2

2
( )

2!
y f

y

∆ ∂
∂

 (x*, y*) +.......

d
dt (∆y) = g(x*, y*) + ∆x. g

x
∂
∂ (x*, y*) + 

2 2

2
( )

2!
x g

x

∆ ∂
∂

(x*, y*) +.......

+ ∆y·
g
y

∂
∂ (x*, y*) + 

2 2

2

( )
2!

∆ ∂
∂

y g

y
 (x*, y*) +......

This gives,

* * * *

* * * *

( ) ( , )· ( , )·

( ) ( , ) ( , )

∂ ∂ ∆ = ∆ + ∆ ∂ ∂ 
∂ ∂ ∆ = ∆ + ∆

∂ ∂ 

f fd x x y x x y y
dt x y

g gd y x y x x y y
dt x y

(4)

Using (2) and considering ∆x and ∆y sufficiently small so that their squares and other
higher powers can be neglected.

(4) Can be equivalently written as

* *( , )

∂ ∂ 
 ∆ ∆∂ ∂   
 =   ∆ ∂ ∂ ∆    
 ∂ ∂  x y

f f
x xx yd

dt y g g y
x y

(5)

If we take,  X
x

y

∆ 
= ∆  ∼

 and  

f f
x y

g g
x y

∂ ∂ 
 ∂ ∂
 
∂ ∂ 
 ∂ ∂ 
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which represents the Jacobian of the system as J, we have

from (5)

* *( , )x y

d

J
dt

X
X=∼

∼

(6)

We have a trial solution of (6) as

λ 
 
  

= tC
eX d∼

(7)

Then we have, λ 
= λ  

 

t
d X C

e
ddt

∼ (8)

Using (7) and (8) in (6) we get

λ 
λ = 
 

tC
e

d
* *( , )

Jt
x y

C
e

d
λ 

 
 

* *( , )
Jt t

x y

C C
e e

d d
λ λ   

λ =   
   

or, * *( , )
J

x y

C C

d d

   = λ   
   

(9)

From (9) it is clear that λ  is an eigen value of J* *( , )x y
and 

C

d

 
 
 

 is its corresponding

eigen vector. The corresponding characteristic equation is

det (J – Iλ ) = 0

i.e. 

* *( , )x y

f f

x y

g g

x y

∂ ∂− λ
∂ ∂

∂ ∂ − λ
∂ ∂

 = 0
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or, | ·
 ∂ ∂ ∂ ∂ − λ − λ −  ∂ ∂ ∂ ∂  

f g f g

x y y x= 0

or * * * *

2

( , ) ( , )

· ·
   ∂ ∂ ∂ ∂ ∂ ∂λ − + λ + −   ∂ ∂ ∂ ∂ ∂ ∂   x y x y

f g f g f g

x y x y y x  = 0   (10)

The above is a quadratic equation of λ. We can arrive at the solution for different cases
as given below.

Case I : Roots are real and unequal : (say, λ1 and λ2)

[The corresponding equilibrium point is said to be a node]

Here we have

1 2

1 2

1 1 2 2

1 1 2 2

λ λ

λ λ

∆ = + 


∆ = + 

t t

t t

x C a e C a e

y C b e C b e

Sub case Ia ; λλλλλ11111 > 0, λλλλλ22222 > 0.

As t→ ∞ , ∆x→ ∞ , ∆y→ ∞ , (if C1, C2 > 0)

or ∆x→ −∞ , ∆y→ −∞ (if C1, C2 < 0 )

Hence, the equilibrium point is an unstable node.

Subcase Ib : λ1 < 0, λ2 < 0 :

As t → ∞ , ∆x→ 0, ∆y → 0

Hence, the equilibrium point is a stable node.

Subcase Ic : λ1 > 0, λ2 < 0 or, λ1 < 0, λ2 > 0 :

As t → ∞ , one component tends to infinity and the other component drags it to zero.
In this situation the corresponding equilibrium point is said to be a saddle node.

Subcase Id : λ1 = 0, λ2 > 0 or λ1 > 0, λ2 = 0

As t → ∞ , ∆x→ ∞ , ∆y→ ∞  (if C1, C2 > 0)

or ∆x→ −∞ , ∆y→ −∞  (if C1, C2, < 0)
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Hence the equilibrium point is said to be an unstable node.

Subcase Ie : λ1 = 0, λ2 < 0 or λ1 < 0, λ2 = 0 :

As t → ∞ , ∆x→ C1, ∆y→ C1 or ∆x→ C2, ∆y→ C2.

Here, we call the equilibrium point as a pseudo-stable node.

Case II : Roots are real end equal (say λ∗ and λ∗)

[Here also the corresponding equilibrium point is said to be a node]

Here we have

*

*

1 2

1 2

( )

( )

λ

λ

′ ′∆ = + 

′ ′∆ = + 

t

t

x C C t e

y C C t e

Subcase IIa : λ∗ > 0 :

As t → ∞ , ∆x→ ∞ , ∆y → ∞ (if C1
’, C2

’ > 0) or

∆x→ −∞ ,∆y→ −∞ (if C1
’, C2

’ < 0).

Here the equilibrium point is an unstable node.

Subcase IIb : λ* < 0 :

As t → ∞ , ∆x 0→ , ∆y 0→

Here the equilibrium point is a stable node.

Subcase IIc : λ∗ = 0 :

As t → ∞ , ∆x→ ∞ , ∆y → ∞  (if C1
’, C2

’ > 0)

or,

∆x→ −∞ , ∆y→ −∞  (if C1
’, C2

’ < 0)

Here, the equilibrium point is an unstable node.

Case III : Roots are complex conjugate numbers (say iα ± β )

[The corresponding equilibrium point is said to be a focus if 0α ≠ and centre if
α  = 0]
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Here we have

1 2

1 2

cos( ) sin( )

cos( ) sin( )

α

α

 ′′ ′′∆ = β + β  


  ′′ ′′∆ = β + β  

t

t

x C t C t e

y C t C t e

Subcase III a : α > 0 :

As t → 4, |∆x|→ 4, |∆y|→ 4, Hence the equilibrium point is an unstable focus.

Subcase III b : α > 0 :

As t → 4; |∆x|→ 0, |∆y|→ 0

Hence the equilibrium point is a stable focus.

Subcase III c : αααα = 0 :

Here, as t increases ∆x and ∆y oscillates between two finite values. Here the
equilibrium point is said to be a centre.

Example :

Given two dimensional flow :

(4 )
, R

(15 5 3

= − − 
∈

= − −


dx x x y
dt

x y
dy

y x y
dt

Find the equilibrium point (s) and discuss about the stability.

Ans. Given two dimensional flow :

(4 )
, R

(15 5 3

= − − 
∈

= − −


dx x x y
dt

x y
dy

y x y
dt
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For its equilibrium point we must have

0

0

dx
dt
dy
dt

= 

=


 i.e.  
(4 ) 0

(15 5 3 ) 0

x x y

y x y

− − = 
− − = 

Option 1 : x = 0, y = 0.

Hence (0, 0) is an equilibrium point.

Option 2 : x = 0, 15 – 5x – 3y = 0

i.e. x = 0, y = 5

Hence (0, 5) is an equilibrium point.

Option 3 : y = 0, 4 – x – y = 0

i.e. x = 4, y = 0

Hence (4, 0) is an equilibrium point.

Option 4 : 4 – x – y = 0 ; 15 – 5x – 3y = 0

Solving we get x = 3
2 , y = 5

2

Hence, 3 5,
2 2
 
 
 

 is an equilibrium point.

Therefore for the given flow we have four equilibrium points viz. (0, 0), (0, 5), (4,

0) and 
3 5,
2 2
 
 
 

We take,

f(x, y) = x(4 – x – y)

g(x, y) = y (15 – 5x – 3y)

So, f
x

∂
∂  = 4 – 2x – y,   

f
y

∂
∂  = – x ; g

x
∂
∂  = –5y ; 

g
y

∂
∂  = 15 – 5x – 6y.
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Therefore general Jacobian of the system

J =

∂ ∂ 
 ∂ ∂
 
∂ ∂ 
∂ ∂  

f f
x y

g g
x y

4 2

5 15 5 6

− − − =  − − − 

x y x

y x y

3.27 Stability Analysis of The Equilibrium Points

I (0, 0) :

Characteristic equation :

det (J - λI)(0, 0) = 0

i.e. 
4 0

0
0 15

− λ
=

− λ

or (4 – λ)(15 – λ) = 0 i.e. λ = 4, 15.

As here both the eigen values are positive (0, 0) is an unstable node.

II. (0, 5) :

Characteristic equation :

det (J – λI) (0, 5) = 0

i.e. 
1 0

0
25 15

− − λ
=

− − − λ

i.e. (–1–λ) (–15 – λ) or, λ = –1, –15. As here both the eigen values are negative (0,
5) is a stable node.
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III. (4, 0) :

Characteristic equation :

det (J – λI)(4, 0) = 0

i.e. 
4 4

0 5

− − λ −
− − λ  = 0

i.e. (– 4 – λ) (–5 – λ) = 0 or λ = –4, –5.

As here both the eigen values are negative (4, 0) is a stable node.

IV.  
 
 

3 5,
2 2  :

Characteristic equations :

det ( )3 5
2 2
,

(J I)− λ = 0

i.e. 

3 3
2 2 0

25 15
2 2

− −− λ
=

− − − λ

or, 3 15 3 25 0
2 2 2 2

− − − −     − λ − λ − =     
     

or, λ2 + 19λ – 15
2

 = 0

or, 

2 159 9 4 1
2

2 1

 − ± − × × − 
 λ =

×  = 9 101
2

− ±

Here one root is negative and the other is positive. Hence, 
3 5,
2 2
 
 
 

 is a saddle node.
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3.28 Summary

This unit presents a very detailed discussions with certain problems on first order
but not of first degree and second order ordinary diffenential equations. Different common
methods of series solution are discussed and a brief overview of dynamical system are
also discussed with a good number examples.

3.29 Exercise

1. Find the equilibrium point(s) and discuss about the stability for the following one
dimensional flows : [In all such cases R denotes the set of all real numbers]

(i) dx
dt  = x2 – 1 ; x∈R

(ii) dx
dt  = x2 – 3x ; x∈R

(iii) dx
dt  = 1 – sin x ; x∈R

(iv) dx
dt = 1 – cos x ; x∈R

(v) dx
dt  = x3 – 9x2 + 26x – 24 ; x∈R

(vi) dx
dt  = x3 – 6x2 + 11x – 6 ; x∈R

(vii) dx
dt  = x (1 – x) + 3

1
x
x+  ; x∈R

(viii) dx
dt  = 4x2 + r2x – rx ; r∈R, x∈R Here r is a parameters.

(ix) dx
dt  = ax 1 x

K
 − 
 

 ; x∈R+ U {0} ; a, K∈R+

Here ‘a’ and ‘K’ are two parameters and R+ denotes the set of all positive real numbers.

2. Find the equilibrium points(s) and discuss about the stability for the following two
dimensional flows : [In all such Cases R denotes the set of all real numbers]

∵
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(i) dx
dt  = x + 1

dy
dt

 = xy – x ; x, y∈R

(ii) dx
dt  = 2x + 3

dy
dt

 = y + x – 1 ; x, y∈R

(iii) dx
dt  = x (1 – x – y)

dy
dt

 = y(2 – 3x – y) ; x, y∈R

(iv) dx
dt  = x – siny

dy
dt

 = x – y ; x, y∈R

(v) dx
dt  = xy – 1

dy
dt

 = x2 – 1 ; x, y∈R

(vi) dx
dt  = µ  – x2

dy
dt

 = –y ; x, y∈R ; µ ∈R and here µ is a parameter.

(vii) dx
dt = µ x – x3

dy
dt

 = – y ; x, y∈R ; µ ∈R and here µ  is a parameter.

(viii) dx
dt  = – µ x + x2

dy
dt

 = –y ; x, y∈R; µ ∈R and here µ  is a parameter.
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Further Reading :

1. Ordinary Differential Equations : Principles and Applications — A.K. Nandakumaran,
P.S. Datti and R.K. George, Cambridge University Press.

2. Ordinary and Partial Differential Equations — M.D. Raisinghania, S. Chand &
Company Ltd.

3. Dif ferential Equations and Dynamical Systems — L. Perks, Springer.
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