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PREFACE

In a bid to standardise higher education in the country, the University Grants
Commuission {(UGC) has introduced Choice Based Credit System (CBCS) based on
five types of courses viz. core, discipline specific, generic elective, ability and skill
enhancement for graduate students of all programmes at Honours level. This brings
in the semester pattern, which finds efficacy in sync with credit system, credit
transfer, comprehensive continuous assessments and a graded pattern of evaluation.
The objective is to offer learners ample flexibility to choose from a wide gamut of
courses, as also to provide them lateral mobility between various educational
institutions in the country where they can carry acquired credits. I am happy to note
that the University has been accredited by NAAC with grade ‘A’

UGC (Open and Distance Leaming Programmes and Online Learning Programmes)
Regulations, 2020 have mandated compliance with CBCS for U.G. programmes for
all the HEIs in this mode. Welcoming this paradigm shift in higher education, Netaji
Subhas Open University (NSOU) has resolved to adopt CBCS from the academic
session 2021-22 at the Under Graduate Degree Programme level. The present
syllabus, framed in the spirit of syllabi recommended by UGC, lays due stress on all
aspects envisaged in the curricular framework of the apex body on higher education.
It will be imparted to learners over the six semesters of the Programme.

Self Learning Materials (SLMs) are the mainstay of Student Support Services
(SSS) of an Open University. From a logistic point of view, NSOU has embarked
upon CBCS presently with SLMs in English / Bengali. Eventually, the English
version SLMs will be translated into Bengali too, for the benefit of learners. As
always, all of our teaching faculties contributed in this process. In addition to this we
have also requisitioned the services of best academics in each domain in preparation
of the new SLMs. I am sure they will be of commendable academic support. We look
forward to proactive feedback from all stakeholders who will participate in the
teaching-learning based on these study materials. It has been a very challenging task
well executed, and I congratulate all concerned in the preparation of these SLMs.

I wish the venture a grand success.

Professor (Dr.) Subha Sankar Sarkar
Vice-Chancellor
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1.14 Exercise
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1.0 Objectives

In this chapter we shall learn about some Definitions and Properties of Riemann
Integration. Besides we shall discuss necessary and sufficient condition of a function
to be Riemann integrable, some Important Inequalities and Fundamantal theormes of
Calculus.

1.1 Introduction

A german mathematician Bernhard Riemann (1826-1866) introduced the concept of
definite integral from the notion of limit of a sum of which term tends to zero when the
numner of terms tending to ¢o . Literal meaning of integration is “summation”. It can be also

considered as the inverse process of differentiation. That is, if /- [a,b] —[R be a function and

of there exists a function ¢ is called the integral of £

9
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Riemann had defined the integrability of a real valued bounded function on a closed
interval [a.5 ] < R , using the limit of a sum. Further works have been done in this field.
Among these, the theory of integration by Lebesgue (1902) is most noteworthy.

1.1.1. Definition

Let [:[a, bl >R be a bounded function on [a.b ] and let M, m be the bounds
of fon [a,b].

Let P:{a=aq)< X <H <<, <X <L <X <xn:b}‘ be a partition of [a,b ], where
x, r=0, ., n are called the points of division of [a,b], [x,_.,x,] is called the rth

subinterval of [a,b]. O, = x, — x,_, is the length of the r-th subinterval so that

35, =b-a
r=l

Let M m_be the bounds of f in the rth subinterval of [x_,x,].

Then O =M -m, is called the oscillation of f in [x,_,x].

Then norm of the partition F, denoted by ||P||, is defined by the length of the
greatest of all subintervals |[x_,x] . That is, ||P|| = max
P %% X X%, X,

The upper and lower sums, denoted by U (P, f) and L (P, f) respectively, are
defined by

U(P.f) = iM,,ar

r=l

L(P,f) = imﬁr
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Definition 1.1.2 (Refinement of a Partition of [2.5]).

A partition P* is said to be refinement of a partition

Pla=x<x <X, <..<x_ <X <.X,, <.X,=b} of [a.0] if P*DP.
X, <X <X, <L <X, <X, <. <X, <X,

That is, P* forms a new partition of [a.5] containing the points of P as well as

some more points of division of [«,2].

Theorem 1.1.1.
If P* is a refinement of P {az%ﬁ] R R Y <xn=b}rhen for a
bounded function f on [a, b] ,
@) U(P*, fY<U(P, f) and (i) L(P*, f)= L(P, f)
Proof. Let P* contains just one point }’; more than P and let X ,<&<X_. Then
Pe=la=x <x <x,<..<x_<x_<f<x <.<x_<x,=b} Let M, M/

and M be the upper bounds of f in [x_,, r] [ E] and [?;, xr] respectively.

Then U(P*, f)-U(P, f)

r— H=1
=Y M, (x,—x M (E-x_)+M )+;Mk X +1-x,)

1

=
1l

1 a=1
M, (x,—x,_ ) +M, (x,—x,_ +2Mk(xk+1—xk)}

l k=¢

(A, =M, )&~ %)+ (M) M, }(x, ~€)

<o[~M, M <M, |=U(P* f)<U(P, f)
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In the same way, we can show that L(P*, f) = L(P, f) O

Note 1.1.1. By the refinement of a partition P of [a.b], the upper

sums decreases and the lower sums increases.
Theorem : 1.1.2. Let | be bounded function on [a,b] and let M and , m be

supremum and infimum of f on [a,b]_ Then
m (b-a)y<L(P,f)<U(P, f)sM(b-a).

Proof. Let M_ and m_be the supremum and infimum of f in [xr_,,xr].

U (P_,f) = iMﬁ,
F=1
and
L(P.f)=3 M3,
r=1

We have
m<m <M <M Vr=12.,n

=>md, <md <MSH <MJs,
= mi 8, < imﬁ < iM,,B,, sMZn:B,.
=1 =1 r=1 r=1

=m(b-a) <L(P, f)<U(P, f)<M(b-a)
which shows that each of lower sum and upper sum is bounded and also for each
partition £, L(F,f) is less than or equal to U(Ff). (|
Definition 1.1.3 (Riemann Integrability)
Let [ [a, b] — R [a,b]< R bea bounded function on [a,b]_ Then we

have shown that m{(b—a)<L(P,f)<U(P, f)<M(b—a). Further we have

observed that for a refinement P* of P of [a,b],U (P*, fYSU(P, f) and
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L(P*, )2 L(P. [)

Thus for all possible partitions P of [a, b] we have
m(b-a)<..U(P’, f)<U(P', f)<U(P, f)

and L(P, f)<L(P', f)<L(P’ f)..<M(b-a)
where P'. P*, .. are the refinement of P. Hence it follows that the set

U= {U (P.f), P is any partition of [a, b]} of upper sums bounded below by m

( b —a ) has an infimum and the set L = {L (P.f), Pis any partition of [a, b]}
of lower sums bounded above by M (b — a ) has a supremum followed by 1.1.1.

The infimum of U ={U (P, f), Pis any partition of [a, b]} is known as the lower
Riemarnn integral of f on [a: b] and is denoted by J = r J(x)dx.
The supremum of L={L(P,f), Pis any partition of [a, b]} is known as the

upper Riemann integral of f on [a,b] and is denoted by I = j: J(x)dx.

Now fis said to be Riemann integrable on [a: b] if f J(x)dx = I: F(x) dx and

is denoted by Rﬁf (x)dx or Ie R[a, b].

Example 1.1.1.

0, when x is irrational

Given J (x) ={

1, when x is rational,

proven from definition that «E[R[G, b] Jor any a<b.

Solution :

The function £ (x) is bounded on . the least upper bound being 1 and the greatest
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lower bound 0. In each sub-interval &, for all partitions P, the upper and lower bounds

will respectively be 1 and 0. Hence

UP.f)=3M5,=315,=b-a
#=1 F=1

and
L(P,f)= zn:mrﬁr = zn:O_Sr = 0.
r=1 r=1

Thus, J=inf U(P,f)=b-a and I=sup L{U, f)=0

whereby 7 =.J unless b=a.
Hence f (x) is not integrable on [a,b], where a < b.
Note : 1.1.2.

fis bounded but not R-integrable. So every bounded function is not R-integrable.

Example : 1.1.2.

Let [ [O,a] — R a > 0be defined by f(x) =x ‘v’xe[O,a]. Prove that f is R-

4

interable and R_Ll f(x)dx= a

4
Solution :
fis bounded ¥ x <[0,a].
a2a (1) na_ ..
Le‘cP—]IO PRI ,F_a} be a partition of (0,qa).
Then
U(P,f):ZMrﬁ
r=1
=M1(2—0)+M7(E—£)+ +M{ﬂ_(n—l)a}
n Nn n n
3 3 3
:(E) £+(E) a, +(@) a
n! 'n \n)'n n)'n
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j;f(x)dxzinfL:lim{%4(1-3+i2)}:%4

H—yoe n R

So J‘;f(x)dx = I;f(x)ctr: %4

Hence f is R-integrable and
< a4
R.[Tl f (x )ﬁi\f = T

Example : 1.1.3.

Let f:[a,b]— R, be defined by f(x)=e". Prove that f is R-interable on [a,b).
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Solution :
f'is bounded [a,5].
Let P=(a,a+ha+2h,. ,a+nh)whereph=bh—q. Then P is a Partition of
[«,b] diving [a,b]into » Subintervals of equal length || P [|= 2.

Let
M,= sup  f(x),

i xe|:a+{ r=1ha+ rh]

m= _inf f(x),

! xe[a+[ r—l)h_.aﬂ‘h]
for r=12,.n

Then M =e*™ m =e™"™" for r=12, ,n. Then

U(P.f)=h[e™"+e""+ +e"™]
_ a+h e”h -1 _ a+h eb_” -1
= he [_e”—lJ_he [—eh—l]

heh .
- 2o,

et -1

B . . .
v |, f (e =inf U =limU (P, f) =lim

heh
Jt_l

[eb—e"] =e®_¢°
¢

L(P, f)= h[e"+e"+“' +_”+e¢7+[:n—l:]h:|
e[ L=L] e[ €721
=he |:eh_1:|—he |: eh_l ]

= e}’h—l [eb —e"J,

rf(x)dx=sup L=lim L(P, f)=1lim hh l[eb—e“] =e”—e*

h—=0 2" —

As ff(x)fiﬂf:f(x)dx,fis integrable on [a,b] and _[ff(x)dx:eb _et
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Theorem : 1.1.3. [Darboux’s theorem)

For every , there exists a positive number § such that
U(p, f)<_|ff(x)dr+e and L(P, f)>ff(x)dx—e VP with|| P|| <8 .
Proof. Let U ={U (8, f),P1 1s a partition of [a,b]}.

inf U7 = [ f(x) dv. So by property of inf U

U(R,f)<ff(x)aﬁv+% (1.1.2)

Here £ is bounded. So |f(x)|sk Vxelab].

Let P {a =X, <X, <X, <..<X, = b} be a partition of [a,5] containing (p-1)points
in (a,b)such that || P|] <88, is a positive number.

Let P, is a refinement of B, so that P, B =>U (B, f)<U(P, f)
by Theorem 1.1.1.

We first suppose that £, contains one more point than that of £, so one of the
subintervals, say, [x,_,x,]of P is divided into two subintervals [x,_, ,£]and [£,x, ]
respectively such that x_ <& <x r<p

Let M,, M., M, be the sup of £ in [x,,x], [x,_.&]and [€,x,] respectively

such that§, =5 +8 where §, =£—-x,_ and & =x, -&.

Then

U(B, £)=U(Po f)=M,(x,= %)~ M, (&5, )~ M (x,-£)
=(M,-M)5, +(M, -M))8, (1.1.3)

Also

[f ()| <k = k< f(x)<k
=>-k<M <M <k=>0<M -M <2

and—k <M/'SM <k=0<M -M -M, <2
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Therefore, from (1.1.3) follows that
U(P,f)-U(P, f)<2kd,[5,.8,<3,]
<2k8, [P |I<§,] (1.1.4)

Now if £, contains at most (P — 1) more points that of / then from (1.1.4) it follows
that

U(BS)-U(B, £) < 2%(p-1)5,
We choose &, >0 such that 6 < m and let F be a division of [a,b] such

that || P|| <8 and let P,=FRUP. The P, o P. Thus Pis a refinement of P,

containing at most (2 —1) more points than P. Therefore, from (1.1.4)

U(P, f)-2k(p-1)o<U(P, f)<U(P. f)
SU(P, f)<2k(p-1)8+U(B, 1)

< (p-) gt [ f ()t
4k (p-1)

:ff(x)dr+e

SU(Pf)< [ f(x)de+e

Thus the result (1.1.2) is true ¥ Pwith ||P||£8. The proof of

]
L(P,f)> L S (x)dx—¢ is similar to that of the first part. O

Theorem : 1.1.4,
If a function f :(a,b)—>R be bounded on [a,b], then for any partition

Pla=x,<x <x,.<x,=blof [a,b] with norm ||P| <8,8>0, then

@ JmU(P.f)=Jim 303, <[ £(x
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and

"

) lim U(P,f)=lim > m3d =] f(x)ds.

1Pl P04
Proof. Let S, = {U (P, f),Pis a partition of [, b]}

Then Ef(x)dx being an infimum of S, U(P,f)sz(x)dx.

Now from Darboux Theorem 1.1.3

U(P.f)<[ f(x)ds+e=U(P,f)-[ /(x)ds <

U(P, f)—jjf(x)dx

=

<s [ U(P.f)- jb f(x)drz o}

= fim U(P,f)= [ /(x)dx

1Pl

Again, let S, = {L(P, £),P is a partition of [a,b]}

Then Ij 7 (x)dx being the suprimum of S,,L(P, f) < jj F(x)dx .
Now, by Darboux Theorem 1.1.3

L(P.f)> [ f(x)dx-e= [ f(x)ax-L(P,f)<e
<el: [ 1 ()ae-1(P.1)>0]

= limL(P, f)= [ f(x)d

X0

= |[ 7 ()e-L(P.1)

Another definition based on the notion of the limit of a sum

Definition 1.1.4.
A function Let f Let : [a,b] — R is said to be R-integrable, if f for every partition
Pla=x,<x..<x,_ <x,<..<x, <X =b}of [ab]land every choice of &, in

[x,..x,] such that

||E||IEO ;f(ér)ﬁr
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exists, then the limit is called the integral of f on [a,bland is denoted by

Rﬁf(x)dx. That is

R[ £ (x)de = lim 3 1 (5,)3,

1.2 Equivalence of the two Definitions of a Definite Integral

Theorem 1,2.1,

Let a function [ :[a,b] >R be bounded on [a,b]. Then f is R-integrable on
[a.b] if and only if, for every e(>0), there exists a positive number § with

| Pl|<8, where Pla=x,<x <x,<..<x,=b}isapartition of [a,b], and every

S0 F (68, [ 1 ()| <e.

choice of & in [x,_,x ], such that
Proof. Let f be R-integrable on [a,b]. Then

ij(x)dx=ﬁ«f(x)dx=fjf(X)dx 1.2.1)

From Darboux Theorem 1.1.3

U(P.f) <[ f(x)dcre=[ f(x)dere with]| P <

L(Paf)>J.jf(x)dx—e=jjf(x)dr—e with || P || <& (1.2.2)

We have m, < f(E,)<M, V& e[x,_,x]
=3 msr<Y f(8,)5, <M,
F=1 F=1 F=1

> L(P.f) gz:f(ér)ér <U(P.f)
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Therefore by (1.2.2)

= [ f(¥)de-e<L(P.£)< 3 A (6)8, <U(P.1) <[ f()de+e

r=1

= [\ £(x)de=s <21 (6)8, <[ £ (x)de e

= <g[ with||P|<8]

> 7(€)5, - [ £ ()ds

= lim Y £(£)8, = [| f(x)d

Conversely, let

zf ()8, - [ £ (x)et| < e[ with || <5]
Then
m > 7(8)5,= [ £(x)ax

holds for all values of f(£,)

If, in particular, £ attains A, at &, < [x,._l_x,.] ie., if £(&,)

then

lim iM,S, = jjf(x)dx

IPl-0 4=

By Theorem 1.1.4

= [ f(x)ae=[ £ (x)ax

M,

= [ 7 (x)yate=[ 1 (x)at (123)

21
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If, f attains m, at & €[x_,x |, ie if f(£,)=m, then

IP—0

lim > m,8, =r fix)dx
r=l o
By Theorem 1.1.4

:I:f(x)dx:[?j’(x)dx (1.2.4)

Thus from (1.2.3) and (1 2.4),
{07 ()ae=[ 7 (Ve =[ 7 (x)ar

Hence f'is R-integrable on [a,5]. O

1.3 Necessary and sufficient conditions for Integrability

Theorem 1.3.1.

The necessary and sufficient condition is that a bounded function f :[a,b]—R
to be R-integrable on [a,b] is for every (> 0), there exists a positive number§

with ||P|| <8 for every partition P of [a,b],
U(P,f)-L(P. )<=

Proof. The condition is necessary. Let f be R-integrable on[a, b] :

Then

jff(x)dXZI:f(X)dX=Iff(X) (1.3.1)

Now from Darboux Theorem 1.1.3 and using (1.3.1) we obtain

UP.F) <[, )b+ S= [/ (x)e
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and
L(P.S)> [ f(x)dx-E=[ 1 (x)dx -2
= -L(P.f)< —j:f(x)d“%

Therefore,

_ £, 8 _
U(P,f) L(P,f)<2+2 £
The ¢condition is sufficient,

For if U(P, f)—L(P,f)<se and since

L(P,f)< j;f(x)dx sff(x)drs U(P.f),

we have

ff(x)dx—fjf(x)drsU(P,f)—L(p,f)<a

and hence the upper and lower integrals are equal 1.e.

[[7(x)de= 1 ().

Hence the Theorem.

1.4 Integrability Functions

Theorem 1.4.1.
Every continuous function is integrable, i.e., if fix) be continnous on [a,b), then

£ is R-interable on [a,b].

Proof. Since fis continuous on [a, b] , it 15 bounded there and moreover it is uniformly

continuous on [a,].
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Let € > Obe given. Choose 1 >0 such that N < bE a

Now fis uniformly continuous on [a,b] , then for a given >0, Jad >0 such that
|f(x') —f(x")| <M for any two points x,x €[a,b]

with [ - x| <8 (14.1)
where § depends on M alone.

Let P{a=x,<x..<x_ <X <..<X,, <X, =b}be a partition of [a,b], where

8 =x —x _,0r= [xr —xr_l] for ¥ =1, 2,..,n with ||P|| <&, then taking
M, =sup f(x)in &, m, =inf f(x)ins,;
since £ is continuous on & , 3 points £ ,m € §,, such that

FE)=M_ and f(n)=m,

and we have from (1.4.1), the oscillatory sum for the partition P,

U(P.f)-L(P.f)=3 M5, ~> ms =3 (M,-m)s,

whereby f(x) is integrable in the closed interval [a,5]. O

Theorem 1.4.2,

If f(x) be monotone on the closed interval [, 5], it is integrable there, i.e if f be

monotone on [a,b], then f is R-integrable on [a,b].
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Proof. The function f (x)being monotone on closed interval [, 5] is bounded there.
Suppose now, for definiteness, that f (x) is nondecreasing on [a, b] . Then for any

partition P(a =X X Xy X, X, X, X, T b) whose norm is§ , we have with usual

"

notations U(P.1)~L(P.S) =3 (M, m)5, < (M,~m)s =83 (M, -m)

#=1

Since f(x) is non decreasing, we have in each sub-interval 8, =[x, ,x,], least

upper bound M, = f(x, ) and greatest lower bound m, = f(x,_,). Thus

" "

(M, —m)=3{f (%)= (x.)} =F (b)- f ()

F=1 r=1

and hence
U(P.f)-L(P.f)<8{f ()~ 1 (a)}.

If f{a)=7(b),then f(x) is constant and the integrability is clear. If however,

f{a)= f(b), then given ¢ >0 we can choose 8 <&/{f(b)- f(a)} so that the
oscillatory sum,

U(P,f)-L(P. )<=

for every g >0 and the integrability follows. Similarly in the case when f(x) is
decreasing on [a,5]. Hence the theorem. O

Theorem 1.4.3.

Any bounded function which is continuous except for a finite number of
discontinuties is integrable.

Proof. Let f(x) be a real valued function bounded on the closed interval [, 5] and

with a finite number of discontinuties whose number is p. The function is continuous

on all the remaining parts of the closed intervals [a,b] . Let M, m be the bounds of

f (x) on [a,b] and ¢ be any positive number, however small.
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For the p number of discontinuities alone.

Let us enclose all the points of discontinuity of £ (x) on p nonoverlapping number
number of subintervals the sum of which taken to be <&/2(M —m). The part of the
oscillatory sum coming from this subintervals is,

£ (M —m)=

__ s £
“3-m)” 2

Since the oscillation of f {x) in each of the intervals 1s < (M-m) For the continuous
parts.

Now f (x) is continuous on the remaining portion of [a,b], i.e. on at most (p+1)
subintervals of (a,b) excluding those p non-overlapping number of intervals.

Then by Theorem 1.1.7, each of this (p+1) sub-intervals can be further subdivided so
that the part of the oscillatory sum arising from these subintervals of each of them
seperately is <&/2 (p+1) Thus the part of the oscillatory sum coming from all these
(p*1) continuous part is

<e/2pt1) (p+1) = 5
For the whole [a,5].

Thus the combined mode of division P, say, for whole of the closed interval [a,5] is
such that for it the oscillatory sum

U(P,f)—L(P,f)<%+%:s

whereby f(x) is integrable on [a,5] . There remain the possibility that a discountinuous

point might coincide with either & or 5. The slight modification required in the theorem

is obvious. Hence the theore. |

Example 1.4.1.

A function f:[0,3] — Ris defined by f{(x)=x[x]¥xe€[0,3]. Is f R integrable

on [0,3] an if so, evaluate j;f (x)dx.
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0 0<x<l

Solution : Here f(x)=x[x]= f(x)= x, 1<x<2

S has finite number of points discontinuities 1, 2 and 3.

Hence fis R— integrable by Theorem 1.1.1. Now

j; f(x)dx = _..L_:f(x)der f F(x)dx+ jjf(x)dx

0+ .[13 xdx + j; 2xdx
X : 2P
150

=(2—%)+[9—4]=%

Example : 1.4.2.
A function f:[0,1] > R is difined by f(x)=2rx,

when L<xsl, ¥=123 .
r+1 F

2

Show that f is R-integrable on [0,1] and L: F(x)ar=2

%
Solution ;
2x, %<xsl,for r=1
1 1 _
4x, s<x<—forr=2
Here f(x)= > 2
o, %4xs%for r=3
9, x=3
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and so on. Also f(0)=0

} and also

L | —

So fhas infinite number of points of discontinuities given by S = {0, 5

S has a only one limit point 0.
Therefore, fis R— integrable.

Now

Ef(x)dx:J‘;f(x)dx+J‘ff(x)dx+_|‘§f(x)dx+...+Iflf(x)ctr

1 1 1
= ﬁ 2xdx + J‘f 4xdx + If o6xdx + ...+ L’"" 2(n—1)xdx
2 3 4 "

=[wl2[ef [ S+ (- [P ]

2 3 L "

4 o

+..‘+(n—1)(%)2 —(n—l)(ll_?)z

n_

r | =
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Example : 1.4.3.

A function f [0_, 1] — R is defined by f(x)= % for
L<Jursl, n=123,..
n+1 n

2

Show that f R-integrable on [0,1] and _.: Fx)dxe= 7; -1.

—_

o

<x<lfor n=1

Pl

¢

[FAY
|;—|

Solution : Here f(x)=:1 forn =2

A
-
1A

,forn=3

“

b= W= B

= D

and so on.

The points of discontinuities of f are % % %

o . . e e ,_1 11
So £ has infinite number of points of discontinuities given by S = {E’ 3 Z} and also
S has a only one limit point 0.

Therefore, £is R-integrable on [0,1].

Now

L:f(x)dx :ﬁf(x)dx+-|‘%%f(x)dx+...+L:'+1f(x)dx
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11 1 1,11
= l+=+=+..+ —+—.=+
{ 2 3 (n_]) } {2 23

D I SIS i —{1—l}
2 3 (n—])' n

.-.hmf f(x)dx—llm{l+2l 1, oo} 1

A
34" (n—l) n

xX—ran xX—ran 3

:>.[r: f(x)dx:’t;—

1.5 Properties of Integrable Functions

Theorem 1.5.1.
Iff (x) is integrable on g < x < b, then it is integrable on g < x < pthen it is

integrable on ¢c<x<d where g<c<d<b. That is, f (x) is integrable in every

subinterval.

Proof. Let us choose a partition P of [@,5] with ¢ and d as ends of certain partial
intervals in such a manner that to an arbitrary positive numberg , there corresponds a

positive number §, for which U (P, f)- L(P, f)<e, the norm of the division being <§,.
Let P, be the corresponding partition of f (x) in [¢,d]. Then, since U(P, f)-L(P, f)
contains all terms of U(B,f)-L(Z,f) plus other non-negative terms, we

have 0<SU(B, f)-L(B, f)sU(P,f)-L(P, f)<e whereby f(x) is integrable
on [¢,d] O

Theorem 1,5.2,

If f(x) be integrable on g<x<cand c<x<p, then it is integrable on
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a<x<h, e, f (x) is integrable on the sum of two consecutive intervals.

Proof. Let € be a positive number. Then there exist partitions of [,¢] and [¢,5] for

. . . 3 ..
which the corresponding oscillatory sums are each < 5 Now the two modes of partitions

of [a,¢] and [¢, 5] give rise to a partition of [, 5], for which the oscillatory sum will then

be <%+%= e. Hence f(x) is integrable on [a,b] O

Theorem 1,5.3.

Iff (x) be integrable on a<x<b, so also is Af (x) where 3, is any real number.

Proof. If 3 =0 the result is obvious. Taking oscillatory sum for f(x) tobe <g/a, the

result follows for positive .. Similar for negative O

Lemma 1.5.1.

Let P be any partition of [a, b] for f(x), g(x), f(x) +g(x),f(x). g(x) and let
the corresponding supremum and infimum be (M ), (M ',,m',), (M " m,),(M ., m,,),

in the sub-interval & _, then in §,
M, -m < (Mr—mr)+(M;—m',)
Mr <MM,; m >mn, .

Theorem 1.5.4,

If f(x) and g(x) be both integrable on g<x<p, then f(x)tg(x) are also

integrable on the same interval

Proof. Let Pla=x, x, x,, .., X

=1

x

L

- X,,, X, = b} be any partition of [a,b] applied
to all the functions f(x)+g(x), f(x)and g(x).



32 NSQU ¢ CC-MT-09

We take
8, =[x_.x] or,x,—x,_ (1,2,...,m)
and let
M, = sup{f(x)+g(x)}, M =sup f(x), M =supg(x)
m, =inf { f (x)+g(x)}, m =inf f(x), ' =inf g(x)

Then from lemma 1.5.1
M, —m, S(M—mr)Jr(Ma—mr)
We have

" #

(M, =m,)5, < (M =)o, + (M =) 5,
r=1

F=1 F=1

| -’U(P,f+g)—L(P_,f+g)
{U(P,f)-L(P ) +{U(P.g)+ L(P.2)} (1.5.1)

Let g >0 be given, then since /(x) and g(x) are integrable on [a, 5], there exist

two partitions A and £, such that
U(R.S)-L(R.[)<3 and U(P.g)-L(P,g)<3
Let P be the common refinement of F and . Then

U(P,f)-L(P, f) <% and U(P,g)-L(P,g) <%

Hence from (1.5.1),

U(P.f+8)-L(P./+g)<S+Z=¢

[

whereby f(x)+g(x) is integrable on [a,5]

For f(x)—g(x), put—g(x)=¢(x) and proceed as before. O
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Theorem 1.5.5,
The product f(x) g(x) of wo integrable functions f(x) and g{x)ona <x<p

is also integrable on the closed interval [a,b].

Proof. suppose that f(x)and g(x) are both positive on the whole interval
[a, b].

Let P{a=x,,x,%,,...,X, ,X,,..X, ,,%, = b} be any partition of [, 5] for f(x) g(x),

f (x) and g(x) and let the corresponding least upper and greatest lower bounds be
(M,,m,), (M m ) and (Mm) in the sub-interval 3 =x, —x,_ forr=12,.n

Then in &,, (see Lemma 1.5.1)
M sMM andm zmm
Thus
M —m, £MM —mm =M(M —m:)+Jri':!:(j"m"r —ml)
sM' (M -m' )+ M (M -m)

If M M be the upper bounds of f(x), g(x) in [a,5]. Thus

Z(M —m,)s, “MZ( —m )8, +M Z( —m )3,
U(P, f2)-L(P, fg)
<M {U(P,g)-L(P.g)}+M {U(P, f)+L(P,f)}

<k{U(P.g)-L(P,g)}+k{U(P.f)+L(P, )} (152)

where js' and pfvare each less than k.
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Let g > (0 be given, then since f(x) and g(x)are both integrable on [a,5], there

exists two partitions £ and £, such that
U(B,f)-L(P, 1) <% and U (P, g)-L(P,g)< %

Let P be the common refinement of £ and F,. Then

U(P.f)-L(P.f) <5 and U(P.g)-L(P.g) <57

Hence from (1.5.2),

_ £ ke
U(P.fe)-L(P. fe) <k 2= +k2-=¢

whereby f(x)g(x) is integrable on [a,5] [

Theorem 1,5.6.

If f(x) be integrable on [a,b], so is | f(x)| on [a,b].

Proof. Sience f (x) is integrable on g<x <p for a given g >, there exist a
positive number § such that for a partition P{a:x;), XX X, X XX =b} of [a,b]

O

with ||P|| <&, we have

U(P,f)-L(P.f)<e,
where §, = [xr_l,xr]; M ,m_being the least upper and greatest lower bounds of
f(x)in 3,

With the same partition P let A7, m, be the upper and lower bounds of f(x) be &, .

Then since

JelHal<la-2],
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We have
M. -m, <M, -m,
whereby
U(PI)-L{PI)<U (P, f)-L(P. )
which gives
U(PIF)=L(B|f]) <e
and | S (x)| becomes integrable on [a,5]. O

Note 1.5.1.
But the converse of above theorem is not true, which can be seen from the

illustration that follows.

Example : 1.5.1,

when x Is rational. }

1,
va 109={",

when x is irrational
Then in the closed interval [a, b] for b>aqa, we have
I=—(b—a) and j=(b-a)

so that f(x) is not integrable on [a,b].

But since' f (x)| = 1 for all values of x, I and J for \f{x)| are each equal to (b-a) whence
\fx)| becomes integrable on [a,b]

1.6. Properties of the Definite Integral

Theorem 1,6.1,

If f(x) be integrable on [a,b] and ¢ be an intermediate point then

[ 7(x)de={ f(x)ate+ [ 1 (x).
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Proof. Since f(x) is integrable both on [,5], it is integrable both on [&,¢] and on
[¢.6]. Let P be a partition on [a,5] into sub-intervals.
Let P =P U{c}. Then P is also partition of [a,b].

Let B, and P, be two partitions of [a,c] and [c,5] respectively such that

PUP =P . Then

U(P,f)2U(P.f)=U(B, f)+U(P, f)

= [ f eyt [ 1 (x)de (16.1)

Now for any g > 0, there are partitions P, and P, of [a,c] and [c,b] for which

U(P.f)< ij(x)+%andU(}32 f)sff(x)dx+%

since the integrals are the greatest lower bounds of such sums. Now these two partitions

together form a partition p of [a,b], so that for this divisions, we have

U(P.f)=U(P.f)+U(P. f)< jjf(x)dx+]ff(x)dx+a
But the sum on the left is an upper bound for the upper integrals on [a,b] . 80 that

[ 7 (x)aes [ f(x)des [ F(x)d+e

Since this hold for every ¢ > (0, we have
5 ; 5
[ 7(x)ds <[ fx)aes [ f(x)a (162)
Thus from (1.6.1) and (1.6.2)
3 : B
L S (x)dx = L f(x)dxc+ L S (x)dx
Since f(x) is integrable on [a,5], i.e. on [a,¢] and [c, 5], the result follows

immediately. O
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Theorem 1.6.2

If f (x) be integrable on [a,b], and 3, be any real number, then

B il
[ f(x)ae=nf 1 (x)ax
Proof. Since f(x) is integrable on [a,5], ./ (x)is also integrable there.
If 3 =0, the result is obvious. Suppose 3 > 0. Then for any partition P of [a, b],
U(P,Af)=AU(P, f).
Take infimum of both sides. Then for all P,
b
[1f(x)ae=a] F(x)ds
and the property is established for 3 > 0. If, however, ) <0, take ¢#=-1>0and
S0 O

Theorem 1,6.3.

Iff (x) and g(x)be integrable on [a,b] then

I {f(x)+g(x) rj dx+f g(x)dx.
Proof. See that the integrability of f(x) and g(x) on [a,5] implies the integrability
of f(x)+g(x) by Theorem 1.5.4

For any partition P of [a,5], we have

L(P,f)+L(P,g)<L(P,f+g)SU(P,f+g) <SU(P, f)+U(P,g)
and

f{f(x)Jfg(x)}d"SU(Psf‘rg) <U(P,f)+U(P.g) (1.6.3)

Let g > 0 be given. Then there exists two partitions £ and F, such that

U(B,f)<L(Rf)+% <jf(x
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U(Pf)<L(Pf)+25 [ g(x)dr+E
Let P be the common refinement of £, and . Then
UP.S) <[ F(r)ae+, U(P.g)<[ g(x)dx+2
Thus from (1.6.3)

,E{f(x)+ g(x)}dx < J.jf(x)dx+ Jjg(x)dx+ €.

Since g is arbitary

1+ g} des [ fx)des [ g(x)dr (164)
Replacing f(x)and g(x) in (1.6.4) by — f(x) and -g(x),
[{-r()-g @)} de<['=7 (x)de+ | - (x)a

= {7+ dez | f{x)de+ [ glx)ar (165)

Hence the Theorem is established form (1.6.4) and (1.6.5) O

1.7 Some Important Inequalities

Theorem 1.7.1.
If M, m be the least upper and greatest lower bounds of an integrable function

f(x) on g<x<h, then
m(b-a)<| f(x)dx<M(b-a).
Proof . Let P{a’=.7«70,.761,)«12...,)C‘?,_I,JCJ?,,...,JCH_I,JCn =b}be a partition of [a.5 ]

into sub-intervals Sr =[)€,_l,x}_], (I’ = ],2,...,??)with norm of division || P || = & . Denating

M,, m, to be the supremum and infimum of £ (x ) in §,, we have

m<m <M <M
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1e.,

| m(b-a)<L(P,f)<U(P,f)<M(b-a).
Let now 6 —>0
m(b-a)<I<J<M(b-a)
or, m(b—a)sJ:f(x)dxsjjf(x)dst(b—a)

Since f(x) is integrable, f(x) is integrable, 7 = J and hence
L # v =] r(x)ax=[ oo ds
So, m(b—a)={ f(x)ds<M(b-a)

Hence the Theorem. O
Corollary 1.7.1.

If f (x) be integrable on g < x < b, then there exists & number W\ lying between

the bounds of f (x) on [a,b] , stich that
[ 7(x)dx=p(b-a).
Proof. This is obvious since m<p <M H
Corollary 1.7.2,
Iff (x) be continuous on [a,b] , there exists a number & between a and b such that
[ f(x)ax=(b-a)f()., as<gs<b.
Proof. Since f (x) 1$ continuous on g<x<4h, it takes the value p where

m <L <M at some point & on [4,b],ie, f(E)=n O
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Theorem 1,7.2,

If f(x) be integrable on [a,b] and f(x)=0,Yxe[a,b], then

b
L f(x)dx= 0, when p>g

<0, when p<g.

Proof. Let p>qg. Now f(x)EOVxe[a,b]:mZ 0.

Therefore by Theorem 1.7.1
r F(x)ydez=m(b—a)>0[b—a>0]
Again, p<ga=a>bh

= [ f(x)axzm(b-a)>0 [a-b>0]

=-[" f(x)dr20= [ f(x)dx<o

The results are trivial when a = 5.

Theorem 1.7.3.

If f(x)and g(x) are both bounded and integrable on a < x <b, and f(x)2g(x),
then

I:f(x)zdx > _[j g(x)dy.

Proof . Since f(x) and g{x)are both bounded and integrable on

a<x<b, f{x)-g(x) is also such and hence by Theorem 1.7.2 £ (x)-g(x) being > 0;

[{7(x)-g(x)}dx=0

whereby the result follows. |
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Theorem 1,7.4,

If f(x) be interaghle on[a,b], then

b F
|L f(x)dx|< I: |f (x)ldx
Proof. We have seen in Theorem 1.5.6 that if 7 (x) be integrable on [a,5], so is
|f(x)‘ in ‘f(x)‘
Next we have VYxe[a,b],

£ )= ()| £ ()

and by Theorem 1.7.3, since g<x<b,

L1 e[ 7 (x)ee <[]
11 (o)t

Hence the Theorem, |

f(x)|ax

< (17 (e

1.8 Illustrative Examples

Example 1.8.1.

x°, when 0<x<1

Given f(x) defined by f(x) ={\/; Jor1<x<2,

evalnate E f(x)dx.

Solution

¥? and ./ are integrable on their respective given renges, since they are both contiinuous
on [0,2],

hence Lf(x) dx = .[_:f(x)dwrff(x) dx
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jx dx+j J‘dx—i—
Example 1.8.2.

Show that f(x)= zl—nfor ﬁ <X< %,n 0,1,2,... and f(0)=0 is integrable

over [0, 1] and Llf(x) dx:%

Solution :

<x=1, for n=0

1
> =, forn=1
z<x<3,forn

1 1
k2'_’,’ 23 2'_’,’

1
<_’
Here f(x)=|2 2
1 forn=2

and so on.

1
The points of discontinuities of f are

So f has infinite number of points of discontinuities given by

8= {%,%,%,----}and also S has a only one limit point 0.

Therefore, fis R — integrable on [0,1].
Now
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2

Let now # —> 0, so that _.:f(x) dx = 2

Example 1.8.3.
EvaluateE %dx Sfrom m(b-a)< Ibf (x)dc<M(b-a).
g fag

Solution :

sinx )
It decreases in [ 4°3

Tl .. .
Let f(x)=""—. } since it is continuous there and

f’(x): xcos;—sinx <0

Hence the minimum value of the function is

R
sm? 33
-2

and the maximum value is

T
sin =
_f(® o34 1L
M_f(4) T T 2
4
whereby
m(b-a)<| f(x)dx<M(b-a)
o, ﬂ(£_£)<ﬁwdx<i(£_£)
2 \3 4] «x TS \3 4
3W3{m m\_ (isinx 4 (E_E)
1€, 211:(3 4)4§ PRl 23 4
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Example 1.8.4,

1 7 dx yis
Show that 5 < X Ji—rar 6

Solution :
We have in 0<x <1,
4-x*+x° =4—(x3—x3)<4
also,
4-x +3° =(4-2)+2 > 4-x"
Therefore on 0 <x <1, 4>4-x"+x’>4-x or,

1 1 1
< <
V4 Ja-x+x a4 (1.8.1)

Andat x=04=4-x"+x'=4-x Alsoat x=14=4-x"+x".

11 g =
2" Ja-x*4x° 4-x°

intergable there and satisfy (1.8.1) on 0 < x < 1. Thus

<l

Again are all continnous on Q< x <1 and hence

1

-7
o 2 '[\14 +x dx<[sm }0_6

1.9. Fundamental Theorem.

Definition 1.9.1.

Let a function f [a,b]— R be integrable on [a,b]. Then for each x e[a,b], f
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is integrable on [a_, x]. J‘j S@) dt exists and it depends on x. Therefore we can define
a function F on [a,b] by F(x)= -.-: f(t) dt
Theorem 1.9.1.

If  f:[a.b]—>Rbe integrable on [a,b|then the function F defined by
F(x)= .[':f (t)dt,x €[a,b] is continuous on [a,b].

Proof. Let x,,x,be any two points in [a,b].

F(x,)-F(x)= '[:2 £ (et - '[: eyt = J: f(t)dr.

Therefore |F (x,)—F (x1)| = |j:ﬂf (1)t | Since f is integrable on [a,b), fis bounded
Oon [a,b]. Therefore there exists a real number f (0 such that ‘f (x)| <k for all
xe [a, b] .

If x,>x,

_[2 f(t)dt

SJ‘_:|f(l‘)|dtS(x3—xl)k

If x, > x,,

[ f(t)dt’: [reals[’

Consequently |F (x,)— F (x,)|<|x, — x|k

F(1)|dr < (x,-x, )k

Let us take ¢>(0. Then |F (x,)-F(x)|<e for all x,x, in [a,b] satisfying
£
-
Let 5=%. Then |F(x,)-F(x)|<& forall x,x, in [a,5] satisfying |x,—x|<8.

This proves that 7 is uniformly cotinuous on [a, 5] and therefore F is continuous on [a,5].

x, x| <

This completes the proof. |
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Example 1.9.1,

f( )_ 0, for—-1£x<0
Let JW=11 for 0<x<l

Prove that f is integrable on [-1, 1]). Show that the function F defined by

F(x)= _E f{0)dtis continuous on [-1,1].

Solution :

Here fis bounded on [—1,1] and is continuous on [-1,1] except at only one point,
0. Therefore £ is integrable on [-1,1].

For —1<x <0, F(x)zj_lf(t)dtzo

For 0<xx<1,

F(x)=[ r(ar=[ reya+] 1(r)a
=0+[ f(t)dt=x

0, for—-1<£x<0

x, for 0< x <1,

We have J/(*) ={

Clearly, F is continuous on [-1,1].
Note 1.9.1. Here fis not continuous on [-1,1], but F is continous on [-1,1].
We observe that the function F is continuous on [a, #]when f is integrable on

[a,b].

If however, £ be continuous on [«, & | then 7 will be differentiable on [a, »] as we

shall see in the next theorem.
Theorem 1,9.2,

If afunction f[a,b]— R be integrable on [a,b] then the function F defined
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by F(x)= I: f(t) dt. xe[a,bis diferentiable at any point ¢ <|a,b] at which f is
continuous and F ’(C) =f (c)

Proof. Let ce [a,b] and g > (. Since fis continuous at ¢ there exists a positive §
such that |f(x)-f(¢)|<e for all xe[e,c+8).

Let us choose # satisfying 0<% <5. Then f(c)-e< f(x)<f(c)+e for all

xe[c,c+h]‘

Therefore

I:+h f

or |f(c)—c|.h SF(c+h)—F(c)S|f(c)+e|-h

(c)—elae <[ 1 (x)ae < [ 7| (c)+ el

of |F(c+h)—F(c)

| > —f(e)|<e.
This holds for all # satistying Q0 <k <§.
This imples
- Fle+h)y-F(c ,
ti ZEEEE
That is, RF'(c)= f{c) (1.9.1)

Let ce [a,b] and g > 0. Since fis continuous at ¢ there exists a positive 1 such

that|f (x)- f ()| <& for all xe(c—m,c].
Let us choose A satisfying 0 </1<m.
Then f(c)-e< f(x)< f{c)+e forall xe[c—hc|. Therefore

L f_h|f (c)—eleix < j c_h f(x)de < .[;|f (c)+|dx
or |f(c)—c|.h SF(c)—F(c—h)s|f(c)+8|-h

IF("‘fL‘F(")_f(C) <e.

or
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This holds for all h satisfying O<h<n.

This implies
_ F{¢+h}-F(c)
That 1s,
LF'(c)= f{c) (1.9.2)

From (1.9.1) and (1.9.2) it follows that fis differentialble at any point ¢ €[a,5] at

which fis continuous and F'(c)= f(c). |

Theorem 1.9.3.
If afunction f[a,b]—R be continnous on [a,b] then the function F defined

by F(x)= _..:f (t)dt, x a,b] is differentiable on [a,b] and F'(x)=f(x) for all
xe[a,b].
Proof. Case 1. Let ce(a,b)

Let us choose / such that ¢ +/<[a,b]. Then

o+

F(c+h)—F(c)=j F(t)ar.
Let />0 Since fis continuous on [¢,¢+%], f is bounded on [c,c+A]. Let
M = Supre[c‘,cﬂt] f(t)’ m=in .re[c,c+1:]-f(t) .

Then m< f (1) <M forall t e[c,c+h].
o+
Therefore mh < j f(0)dt <Mh
o+ b
or, I F(#)dt =ph, where m<p<M.

Since fis continuous at [¢,c+#], = f(c+6h) for sume ¢ satisfying 0 <0 <1. Then

Fle+h)-F(c
(1) on.
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Since £ is continuous at ¢, lim, . f(c+084)= f(c).

Therefore we have

i F{c+h)—F(c)

A0+ h

Let / < (. Considering the interval [c +A,¢],

we have

—mhs [" f(i)di <-Mh,
where M= Sup[e[c+h‘¢,‘] f(t) » = in -fre[c+h,c]f (t) :

or, j(c+h})1—F(c) =W where m<pu <A .

Since f'is continuous on [c +h,c], nw=f (c + Gh) for some @ satisfying 0<0<1.

Taking limit as ; — 0—and noting that F(C+ ;2 — F(C) = f(c+ Bh) .
Since fis continuous at ¢,lim, , f(c+0h)= f(c).
Therefore we have
. Fle+h)-Flc
}}LI‘& ( ’Z (o) =f{c) (1.9.4)

From (1.9.3) and (1.9.4) we have F'(c)=f(c).
Case 2. Letc = a.

Let us choose # such that a+# <b  Then
Fla+h)-F(a)=["" f(t)ar
Considering the interval [a,a+ /], we have
ath
mh< (" f{i)di<Mh,

where

M= sup f(1), m= _inf f(z)

tefa,a+ t<[aa+h]

49

=f{c) (1.9.3)
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F(a+h)-F(a)
h

or, =L, where m<pu <M.

Since fis continuous on [a,a + h]u =f (a + Gh) for some @ satisfying 0 <0 <1.

Taking limit as % — 0+ and nothing that lim, , f(a+6k)=f(a), we have

PN FE) - f(ayor, £(a)= f(a)

llmh—»lju

Case 3. Let ¢c=»
Proof is similar to case 2.

This completes the proof. O

Definition 1.9.2.
A function § is called an antiderivative or a primitive of a function f on an

interval I, if ¢'(x)= f(x) forall xc1I.

If ¢ be an antiderivative of fon /, then ¢ +c, where ¢ = R, is obviously an antiderivative
of /. This shows that if fadmits of an antiderivative on /, then there exist many antiderivatives
of fonl

It follows from the previous theorem that if be continuous on a closed interval [a, 5],
then f possesses an antiderivatrive on [a, b] given by I Therefore continuity of f ensures
the existence of an antiderivative of /.

Note 1.9.2. It is worthwhile to note that continuity of f is not a necessary
condition for the existence of an antiderivative of f.

for example, let f: [-1,1]—> R be defined by

2xsinl—cosl, x=z0

f(x)= X x

0 x=0.

E

Here f is not continuous on [—1,1], 0 being the point of discontinuity.

R
Let §:[-11] > R be defined by ¢(x)= Xosin, X0
0, x=0

Then & (x)= f(x) for all xe[-1,1].
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Then $is an antiderivative of f on [-11] although f is not continuous on [-1,1].

Theorem 1.9.4,
If f:[a.b]>R be continuous on [a,b], and ¢ [a,b] - R be antiderivative of
fon [a,b], then
[ 7(xydc=0(b)-0(a).
Proof. Since f is continuous on [a,b], fis integrable on [a,5].
Let F(x)= | f(t)dt.xe[ab].
Since fis continuous on [a,5], F s differentiable on [a,5]and #”(x) = f (x)for all

x€[a,b], SoF is antiderivative of f on [a,b] on [a,b]

Since ¢is an antiderivative of f on [a,b], for all x e [a,b], for all xe [a,b], ¢{x)=
F’(x) where ¢ is a constant,

So ¢(a)=F(a)+c=c since F(a)=0.

Therefore ¢(x) = F (x)+¢(a), for all x<[a,b].

Consequently, ﬁf(x)dx =F(b)=9(8)-¢(a).

Note 1.9.3. The theorem states that if f(x) be continnous on [a,b] then the
integral J.f f(x)dx can be evaluated in terms of an antiderivative of f(x) on
[a.5].

O
Theorem 1.9.5,

If f:lab]—>R be integrable on [a,b)], and (i) f possesses an antiderivative

don [a,b], then



52 NSQU ¢ CC-MT-09

[ 7(x) ax=0(8)-4(a).

Proof . Let P ={x,,x,...,x,} where a=x, <x, <..<x, =b beapartition of [a,5].
Let
Mr - te[stu—ll)x ]f(x)’ Mr - .‘:E[_il_.igl,x ]f(X), fOI’ r= 1» 2»--‘3 H

Since ¢'(x)= 7 (x) forall x<[a,b], ¢ satisties all conditions of Langrange’s Mean

value theorem on [xr_,,x,,], for »—12,. ,n

Therefore for »—1,2,.... .,
0(x,)~0(x..) = ¥(2,)(x, -x..) for some & in (x,,)
FE)(x.x.)

The summation gives

il

3 =f(E)x -5 )=6(b)-0(a)

=1

But m, < f(§,)<M, for r=12,.n.

Therefore
S om, (3,5, < $(8) (@) < M, (%, -x..)

Therefore L{P, f)<$(b)—¢(a)<U(P, f).
This holds for all partitions P of [@,5]. So ¢(5)—¢(a)is an upper bound of the set

{L (P, f):Pis any partition of [, b]}} _
As the supremum of the set is | /(x)dx it follows that
[ £ (x)ete <0(8)-0(a) (19.5)
Also §(b)—(a)is a lower bound of the set {U(P, f): P is any partition of [a,b]}}

As the infimum of the set is [/ (x)dx < ¢(6) - §(a) (19.6)
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From (1.9.5) and (1.9.6) We have
[[7()ate<d(b)-t(a)< [ £ (x)dx.
Since f'is intrergable on [a,5],
[0 7 ()= [ 7 () = ff(x)dx_

Consequently Ij f(x)de=4(b)—d{a). |:|

1.10. Mean Value Theorem for Integrals.

Theorem 1.10.1, [First Mean Value Theorem]
Let f (x) and ¢(x) be two bounded functions integrable on g < x<b and let
O(x) keep the same sign on [a,b], then

IMOTGESTRIGES
where m < <M, m and M being the greatest lower and least upper bounds of
f(x) on [a, b].
Proof. Frist we suppose that $(x) is non-negative, i.e., $(x)=0 in [a,b].
Now in a<x<b,
m Sf(x) <M or, md)(x) < f(x)d)(x) st)(x).
Since md(x), f(x)d(x)and M¢(x) are each integrable on [a,b], we have

by < 003 <
ie., m_[?d)(x)dx < _[ff(x)d)(x)dx sMI:d)(x)dx

Therefore, _.ff (x)d(x)dx = Ujj o(x)dx

where m < p <M .

The case when ¢(x) is negative is similar. Hence the theorem. |:|
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Corollary 1.10.1,
If | in particular, d)(x) =1 for all xe [a, b], then
b &
L Fx)de= uL dv=p{b-a),
where m<pu<M.
If, moreover, f is continuous on [a,b], there exists a point & in [a,b] such that
B
[[7(x)ax=1(g)(b-a).
Since &e[a,b],& =a+0(b—a)for some Qsatisfring 0<0<1.
Therefore
[[7(x)dx=(b-a)f(a+8(b-a),

where 0<9<1.

Example 1.10.1. Use first mean value theorem to prove that

I S
G I \/ )(1-#x?) S 1-k*/4

k<1

[ %} and / (x)= 1 xe[O,%] Then

Solution : Ler /(%) = =
1-k'x

0,

]andd) >0 forallxe[ ﬂ

I\JI'—'

f and ¢ are integrable on

0

, by the first Mean value theorem there exists a point

b |—

Since f1s continuous on

E

£ in [O, %} such that

[7 7 ()b (x)ebe = 7 (&) [*6(x) s

L=

L 1
or, ! \/(l—kzxz)(l—x - - k&j \/1 x?
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T 1
1 1 1
Therefore
1
E«( 1 dxgE;
N e T M TS

Lemma 1.10.1. Abel’s Intequality
If (i) a,a.,..a, is a non-decreasing sequence of n positive numbers.

(ii) v, v,,..,v, is a set of any n numbers and

"

(iii) h, H are two numbers such that
h<w+v,+.v,<H for 1sp<n
then ah<av +ayv,+. . +ay, <al.

Proof. Writing S,=v+v,+...+v,, we have
Dav,=aS +a,(S,-8)+..+a,(S,-S,_)
r=1
+.+a (S —S_)
= (al _a2)S1 +(a2 _a3)82 +"'+(an—1 _an)Sn—l +anSn .
Nowby (i) a,—a,, a,—a,..., a,_, —a, are all non-negative. Also by (iif) h < S, < H for

all p<n.
Therefore

zn:arvr <(ay-a,)H+{a,-a)H+ . +(a,_ —a)H+aH=aH
r=1
and

Zav >(a -a)h+(a,—a)h+. . +(a,,—a)h+ah=ah

Hence the theorem.
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Theorem 1.10.2, Second Mean Value Theorem (Bonnet’s form)
Let f (x) be bounded nonotonic non-increasing and never negative on [a, b] ;
and let &(x) be bounded and integrable on [a,b]. Then there exists a value & of x

on [a,b], such that

b 2
L S (x)d(x)dx = f(a)L $(x)dr, a<t<bh.
Proof Let P={a=x,x,..,X,_,x,,..,x,_,x, = b} be any partition of [@,5] and let

M,, m, be the supremum and infimum of ¢(x) on §, =[x,_,x,]. Suppose also that

£, =a and & (r =1)be any arbitrary point of §,. Then
md, <[ $(x)de<M3,

and m,5, <¢(£,)5, <M}3,.

Putting » =1,2,3, .., p where p <» and adding we have

P b
and z md, < Z

F=1 r=1

.e_
—
g“ﬁ
p—
=
1/
1
:

Thus

> 0(5,)8, - [ d(x)a

<M, -m)6, <3 (M, -m,)5,
or, [ 0(x)e= 2 (M, -m,)3, < 3 8(,)3,

sj:"q)(x)cmi(M,-m,)ﬁ,

Now d)(x) being integrable, I ’ d)(x)dx is a continuous function of x and as such
must have its supremum and infimum on [a,b] and must attain them,

Let M, m be the respective supremum and infimum of L ¢(x) dx on [a,b].
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Hence

m=S (M, -m)5, <3 6 (5,)8, <M+ (M, -m)s,
r=1 r=1 r=l
Next we apply Abel’s Inequality by writing
ar :f(EJr)" vr :d)(ér)ﬁr?

h:m—Zn:(Mr—mr)ér, H=M+Zn:(Mr—mr)6,

r=1 r=l

and obtain

F@m-308,-m)5, <3 16825,
<7 @) M+ 3 0,-m )5, |

Let now norm of P 5 () so that Z(M -m )5, —>0
#=1
whereby mf (a) < J‘?f(x)d)(x) dx <M f(a)

ie. [ #(o(x)ar=pr(a), m<p<m

But 7, M are the infimum and supremum of the continuous function I d)(x) dx ,

hence it must assume every value intermediate to m and A4, Therefore, there must exist at
least one value & on g < x < p for which jjf(x)d;(x)dx = f(a)f'd)(x)dx

This proves Bonnet’s form of second mean-value theorem O
Theorem 1.10.3. Second Mean Value Theorem (Weierstrass’form)

Let f(x) be bounded and nonotonic on [a,b]. and let ¢ (x) be bounded and

integrable on [a,b]. Then there exists at least one value of x, say & on [a, b], such

that

[ 7()0(x)de= £ (@) [Po(x)atv+ £ (8) [ b(x) e asess.
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Proof. Case 1. Let f be monotonic decreasing on [a,5] and let
w(x)=f(x)-f(b),xe[a,b]. Then wis monotonic decreasing on [a,b]and
y(x)>0on [a,8].

By Bonnet’s theorem there exists a point & in [a,5] such that
rw x)dx=vy(a f o(x
or, [, [f(x)—f(wa)dn[f(a)—f(b)}fﬁx)c&
or, [ £(x)o(x)d = f ()] o(x)a
O 0@ [ o(x)ar|
— f(@) [} o(x)de+/ (8) [ $()
Case 2. Let fbe monotonic increasing on [a, 5] and let w{x)=f(b) - f(x).x[ab].

Then v is monotonic decreasing on [a,5] and w(x)=0 on [a,5].

By Bonnet’s theorem there exists a point & in [a,5] such that
F’w(xw(x)wc:w(a)m(x)dx
or, [[1() x)de=[ £(8)- £ ()] ] o(x)
or, [ f(x)o(x)ds= a)ch(x)dx
+f ()| [L0x)ax- [Fo(x)ar

= @) [ o(x)de+ 7 (B) [ o (x)ee

This completes the proof O
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Example 1,10.2.

Show that the second Mean value theorem (Bonnet’s form) is applicable to

r"sinxdr
o X

<2
a

. .
L F(x) mzxdx where 0 <a<b<w. Also prove that

Solution :
Let f(x)= %,xe [4.5]. and ¢ (x) Sin x, xe [a,b] Then f(x) and ¢(x)are both

integrable on [&,#] and f(x) is monotonic decreasing on [a,5] and f(x)> 0 for all
xela,b].

By the Mean value theorem (Bonnet’s form) there exists a point & in [a, b] such that
ijiﬂdx = (l)r' sin xdx = (l) f—cos&+cosa)
a X ajda a '

Therefore

Jbsinxdxysgl
X a
Example 1.10.3.

Show that the second Mean value theorem (Weierstrass’ form) is applicable to

b o1 4

<=
o

iny
J‘T S?dx where 0 <aq<b <. Also prove that

Solution :
Let f(x) :%,xe[a,b] and ¢(x)=sinx,x<[a,5] Then f(x) and ¢(x) are both
integrable on [@,5] and f(x) is monotonic decreasing on [a,5] .

By the Mean value theorem (Weierstress” form) there exists a point £ in [@,5] such

that || 7 (x)o(x)d = £ (@) [ o(x)cte+ 7 (8) [ o(x)etr.
or, jf%dx = (%)Ij sin xdx+(%)£sin xdx

(%)[— cos& + cosa] + (%)[—cosb + cos&,]
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Therefore

( )[ cos& +cosa)+ (%)[ cosb+cost]
s(%){|—cos§|+|eosa| (%) |- cos | +|cos&|}

l(1+1)+—(1+1)

Q

<~ a<bh

PN

1.11. Change of Variable in an Integrals

Theorem 1.11.1,

If (i) j'b f(x)dxexists

(ii) x = §(t)is a derivable function on [o,B] and §' (1) # 0 for any value of t and
(o) =a,¢(B) =5, and

(i) f{6{1)}and ¢ (t) are bounded and integrable on [ B] then

[ 7 (xyate= [ £ {o(e)}(1)ar,
Proof. Let P(Of.=t0,t SNUUY S SOOI Y —[3) be any partition of [cx B] and let
Pla=x,%,%, ., X _,%,..X

3o X, 10 %,,...X, X, = b) be the corresponding partition of [a,5], where

x, =¢(z,).

By Mean value theorem of differential calculus
xr _xr—l = d)(rr)_d)(tr—l) = (Ir _rr—l)d)r(ar)’ It‘r—l <ér <Ir.
Let d)(ér) =1, . Then

$(&)=n,
S /)5 =)= DA E I E N )
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Let norm of P — (, then the norm of p’ also — (0 and by conditions (7) and (##/)

b

> (x)ae = [ 7 {60} (1)t

Hence the theorem. |

Example 1.11.1.

1
FEvaluate I_ dx by the substitution x =tant.

1
11+ x°

Solution:

Let $(7)=tanz, re[—z %}

Then ¢ is differentiable and strictly increasing on [—%,%], d)’(t) is integrable on

nnr
_434)?¢

Letf(x)— q,xe[ 1L,1].

APRIN AT
)= 102

Then j_]] f(x)dx= E%f (d)(t))d)'(r)dr

—I 1 _sec” (dt
——1+tan by

:i%ﬁ:h_

1.12. Integration by Parts

Theorem 1,12.1.
If f(x) and g(x)be derivable on g<x<band if f'(x) and g(x) are
integrable there, then

[ 1 (ae=[1(x)g(x)] - [ g(x)f"(x) et
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Proof. Clearly [ f(x)g (x)]' is integrable since

[F(x)2(x)] = £ (x)g(x)+ ()€ (x)
is a sum of products of integrable functions.
Then by Fundamental Theorem of integral calculus

['[f(x)g ()] dxr=[7(x)g(x)]’
e, [ {F(x)g(x)+ £ (g ()= (x)g(x)]
e [ 1(x)g (¥)de=[(x)2(0)] - [ 2(x) 7' (x)s

This completes the proof. (|

1.13 Summary

1. In Section 1.1 Introduction, Definition of Partition, Refinement and darboux’s
Theorem has been discussed.

2. In Section 1.2 and 1.3 we study about the equivalence of two definition of
Definite Integral, Necessary and sufficient condition for a function to be Riemann Integrable
and Integrability of piecewise continuous and monotone functions.

3. In Section 1.4, 1.5, 1.6 and 1.7 we have focussed on Properties of Integrable
function, Properties of definite Integration and some important iequalities.
4, In Section 1.9 Fundamental Theorem and in section 1.10 Abel’s Inequality,

First Mean Value Theorem, Second Mean Value Theorem (Bonnet’s Form and Weierstrass’s
Form) has been taken for discussion.

5. In Section 1.11, and 1.12 we have studied about Change of Variable in an Integral
and Integration by Parts.

1.14 Exercise

1. Let f:[a,b] > R be bounded and monotone increasing on [a,5]. If P, be the

partition of [a,b] dividing into » subintervals of equal length prove that

[[7()yae<U(Bf)< [ f(x)ae 224 £ (b)- £ (a).
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Consider the sequence of partitions {7,} and deduce that lim,_,U(Z, f) :J: S(x)dx

Utilise this result to evaluate
i) [ xax, i) [ xdx, (iii) [ e*dx

“ . .
-, x 1srational

X
2. A function f(x)} is defined on [0,1] by f(x)= {xﬂ

. x1srational -

(/) Evaluate .[01 S(x)dx, j{: f(x)dx;
(i) Show that f(x) is not integrable on [0,1].

3. Provethat lim__, e“z_[:e’zdt =0
4. Show that
1 dx

(l) E< Om<%,vn>l_

(iti) 0.573 <f <0.595.

dx
2 3
NA4=-3x" +x

2 3
X e T

. T’ 5
) 242 <.L snxtcosx 24

3 n et 3

T 2 X b

— <" dx <=—

V) 96<j—§5+3sinx “24-

5. Let fbe continuous and let F(x) = %Lx(x—f)gf(f) dt . Show that

F'(x)=x]|  f(t)ydi- {17 (t)dlr.

6. State and prove the Fundalental theorem of integral calculus, Deduce that

ﬁf(")dxz(b—a)f{a+9(b—a)},0se <1
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under suitable conditions on f (x) to be stated by you.

7. If acand ¢ are positive acute angles, then show that

dx ¢
(I){ - - < - -
j.:\/l—sin‘cxsin“x Jl—sin‘asin‘d}'

Ifo=¢= % , then prove that the integral lies between 0.523 and 0.541.
8. Prove that

1x% cos 5x . 21 1
_L Fdx lies between 5 and 5
9. Show with the help of the function f defined by

1 1 1
x}=—for ——<x<— n=0,12, .
f() 27 2" +1 27

and f (0) =0 that fis integrable over the interval [0, 1] . although it has an infinite

1
number of points of discontinuity. Also show that jo I (x )d"f = % :

10. Prove that the following function f defined on [-11] by

S(x)=2xsin (%) - (g)cos(%), x#0

X X

cannot be integrated on [—1, 1] , but has a primitive there.
11.If f(x)=2x for 0<x<2 and f(x)=x" for 2<x <3, show that
[ 7(ax=3t
12. if f(x) be continuous on [a,5] and f(x)=0 for all xin[a?] and if
ij (x)dx =0, prove that f (x)=0 for all ¥<[a.]
13. Prove that

n n
0< -[f sin™! xdx < ...02 sin”x dx
and

0< _LZ tan™" xdx < _LZ tan”x dx
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f( ) I, when 0<x <1,
Xi=
14. Let x, when 1 <x <2.

Show that F defined by F(x)= _fo (1)dt,0<x <2 is given by

X, 0<x<l
F(x)=11

5(1+x2), l<x<?2

and hence verify that F'(x)= f(x) on [0,2]
15. Evaluate the limits

oy 1 1 1
1 + +. .+
() hm, ., [n+1 n+2 n+3n}

: s W, 2m . HT
iy Ilm sin—+sin=—+ .. +sin —
@i ”"°°[ n n 7]
T [ » P
(i) im,___

L ey SNE L }
| +1° 42 o+ 4

(i) lim,_, _(1 + %)(1 + %) - (1 + ﬂ)]];

R

o 1o 1102 ) (12T |

=

H

16. Use Bonnet’s form of second Mean value theorem to prove that
b . “1
j sin x~ dx

s%if O<a<b<o,

LA

17. Discuss tha applicability of the second Mean value theorem to the integral
x’cosxdx

I

L=

18. Verify second Mean value theorem (Weierstrass form) for the function f on the
indicated intervals.

¢ f(x)= xsinx,xe[—%,%} .
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(i) f(x)=xe" xe[-11],

(@) f(x)=xsinx,xe[n,2n].

Answer :

1. (/) % (i) % (iii) e,

15. (i) 2log2, (i) % (7i7) tan™' 2, () g, () g.
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Unit - 2 : Improper Integrals

Structure

2.0 Objective

2.1 Introduction

2.2 Exercise 1

2.3 Necessary and Sufficient Condition for the Convergence of the First Type

Improper Integral R10 j: f(x)dx
2.4 Tests for Convergence (First Type)

2.5 Necessary and Sufficient Condition for the Convergence of the Second
Type Improper Integral Rba Lh f(x)dx

2.6 Tests for Convergence (Second Type)

2.7 Convergence of the Integral of a Product
2.8 Convergence of Gamma and Beta Functions
2.9 Summary

2.10 Exercise 2

2.11 References

2.0 Objectives

In this chapter we have discussed about the types of Improper Integrals and their
Convergence, different methods for test of Convergence, Convergence of the integral
of Product and Convergence of Beta and Gamma Functions.

2.1 Introduction

L)
The two important limitations in the definition of definite integral I Sf(x)dxare

(1) the limits ¢ and & are finite and (ii) the integrand is bounded and integrable in
a < x < b . If either {(or both) of these limitations is not fulfilled, that is, when a limit

fr
is infinite or the integrand becomes infinite in g < x < p then the symbol I I (x)dx

is called an improper integral.

69
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If either one or both the limits of integration become infinite, and the integrand

bounded, then r S (x)dx is called an improper integral of first kind. If f(x) becomes

b
unbounded on [a,b] and the limits of integration are finite, then we say that I S(x)dx

is an improper integral of second kind.

A. Improper integrals on an unbounded interval (First Kind).

There are three kinds of unbounded ranges over which integrals may be taken are
symbnolised and defened as follows :

(1) Let f(x) be bounded and integrable in g < x < Bfor every B> g. Then the
symbol j:f (x)dx called the improper integral, is said to coverage or to exists if

lim LB F(x)ax finitly and we write

[ 7(x)ds =1im jBf (x)dx.

Bow
The improper integral diverges if the limit tends to infinity with a fixed sign.
Finaly when none of these alternatives occurs, we say it is oscilatory.

) If f (x) be bounded and integrable in 4<x <4 and lim,___ ji f (x)dx exists
fimtely then we say that the improper integral fw f(x)dx exists or is convergent and

we write jif(x)dx = Ali_)rzlm[jf(x)dx‘

If the limit tends to plus infinity or to minus infinity, then the improper integral
is said to diverge. And if there i1s no limit, the integral is said to be oscillatory.

(3) If f(x) be bounded and integrable in 4<x<gq for every 4<g and in
. T . 7
a<x<B for every B>g and llmA_)_wa(x)dx and llmg_mj f(x)dx for

A<a< B exist finitely then we say that the improper integral J‘_mf(x)dxis

convergent and we write

j_‘:f (x)dv = j;f(x)dwrj:f(x)dx

= lim [ 7 (x)ds+lim [ £ (x)

A
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Example 2.1.1.

Does the improper integral _L 1+1x2 dx exist?

Solution : To determine whether this integral is convegent or not, we see that

ry

122 is bounded and integrable in 9 < x < R for every B>(0 and

B—sw B

lim OB 1+1x2 dx =lim I:tan"1 x}f = lim (tan™' B~ tan™' 0)

= i 'p=1
m tan 5

Bow

. © 1 . . . T
Hence the integral L ﬁdx does exist and its value is equal to >

Example 2.1.2.

Evaluate L sinxdx, if it exists.

Solution : Here

. B, . B .
lim | sinxdx= llm[—cosx] = lim (cosa - cos B)
Boamda B0 a B

1
—0

oscillates finitely. Therefore, r sinx dv is oscillatory.

>

Example 2.1.3.

Evaluate I e dx, if it converges.
i

Solution : Here
. B x . B
lim| e dx:llm(e —1)_
Boaxda B

Since (eB—l) increases beyond all bounds as B — o, this integral does not
converge.
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Example 2.1.4.

o - 2 . .
Evaluate I xe™ dx, if it converges.
Solution : For convenience, we break this infinite range into two parts as
0 3t w o
I:I xe dx+j0 xe ™ dv .
Now

. {0 hud ., B H
Iim | xe* de+lim | xe®dx

Ao d BE—w 0

1 e 1 27
= lim [——e“ } +lim [——e“ }
A—— 2 A B 2 o

tim (Lo - D pim (L1,
—llml(ze 2)+}131_IBI(2 2e )

Thus J‘i0 xe de=0

B. Improper integrals on a finite interval where the integrand is
unbounded (Second Kind).

Here also we have three kinds of integrals may be taken are symbolised and
defined as follows :

(1) Let f (x) has an infinite discontinuity only at the left hand endpoint &, then

by

b . b
J‘Tf(x)dx we shall mean lim | f(x)dx, O<g<b—a.

g0+ daati

(2) Let f (x) has an infinite discontinuity only at the right hand end-point 2, they
by

S+ Vi

J‘:f(x)dx we shall mean lim r_ﬁf(x)dx, O<g<b—a.
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(3) Let f (x) has an infinite discontinuity at the point x =cwhere g<c<b,

then by ﬁ S (x)dx we shall mean lim _.:_E S{x)dx+lim _[ia S (x)dx.

S0+
If either of these limits fail to exist, we say that the integrand does not exist.

If however we make ¢—=§ and say that

Ij f(x)dx means lim [_..:_Ef (x)dx+£b+8f(x) dx}

E—l+

We heve what is called the Cauchy Principal value of jj f(x)dx and write it as

Pef! £ (x)ebc =timy [jff(x)dwfﬂ f(x)dx]_

It may sometimes happen that the Cauchy Principla value of the integral exists
when according to the general definition the integral does not exist.

Whenever the appropriate limits exist finitely, an improper integral is said to be
convergent. When the appropriate limits fail to exist or tend to infinity with a fixed
sign, an improper integral is said to be non-convergent. In the third case both limits
must exist and be finite in order that the integral is to converge.

Ilustrative Examples
Example 2.1.5.

H
Evaluate I =dx if it converges.
0 X
. 1 o . N
Solution : Here < has an infinite discontinumity at x=0. So, we evaluate

I%dx: logl—loge =—loge
As e >0+, loge > -—m

. L | . .
Hence llmg_,m.[;;dx does not exist and the integral does not converge.
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Example 2.1.6.
Uodx .
Evaluate _L m:sm (1_8), if it converges.

Solution : Since the integrand becomes infinite as x — 1, we evaluate

I_I_E dx - :sin"'(l—a)
L1 l_x_.

As g >0+, sin'(l-g)—>sin”'(1)=

(1))

dx

_ax _ T
Ji-x* 2

1
Hence IO

Example 2.1.7.
b o .
Prove that L o exists in Cauchy Principal value sense but not in general sense

Solution : The integrand is unbounded as y — (. Therefore, we evaluate

e -¢ 1
lim [ L+ lim liﬂdx:lim[— 1,] +lim|:—L2}
g0+ 0-1 37 B 95y g0+ i o B0 Iy 5

., 1 1 . 1 1
=lim{=—— +1lim{-=+—
tim {1 - ot tim {2

. . 1 . | . . . .
Since llmg_,mz—agand llmaﬁmz—ég do not exist, the original integral does not

exist. If however, we consider Cauchy Principal value, we are to find.

Tl ol ] JL 1N (1, 10
elirrﬁ[j-n ?dﬁ a?dx]_allg}r{(2 283)+( 2+283)}_0

Since the term involving ¢ cancel before the limit 1s taken.
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A useful Theorem in Evaluating Improper Integrals

Theorem 2.1.1.

If ) f (x) be bounded and integrable in 0 < x/ < a leqa and tends to « only

when x — 0-+or f(x) is bounded and integrable in 0<x <aand fends t0 «only

when x —>a- and (ii) I: S (x)dx converges, then
[ 7(x)ac=["f(a-x)dx
Proof. Let f{x)—>wasx—>0+. And since _..; 7 (x)dx we have from definition

lim Laf(x)dx

i+

exists and finite. Putting x=a -z,
J:f(x)dx = J‘:_ef(a— z)dz = J‘:_ef(a— x)dx
and the result follows. Similar in the case where f(x)—was x —a—. Hence

the theorem,. |

Remark 2.1.1.
.Laf(x)dx=I:f(x)dwrff(x)dx when

f(x)—)ooasx—>0+ or f(x)—)oo as x —a-—, f(x) being bounded and

integrable in O < x <qg un the first case and in 0 < x < g 1 the second case provided

_L f(x)dx converges.
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Ilustrative Examples

Example 2.1.8.

Assuming the integrals to be convergent show that

_LE logsinxdx = _LE log cosxdx = %log% .

Solution : The only singularity is at y =(. The integrand has been assumed to be
convergent, hence by

[ f(x)e= [ f(a—x)dx,

we have

I= E logsin xdx = E logsin (g — x) dx = E log cos xdx

o2 = E (logsin x +log cos x)dx = f log (% sin 2x) dx

[addition 1s valid, since both integrals are convergent]

= J.L_:_"E log%dr + E logsin 2xdx = %log% +E log sin 2xdx .

Next to find the convergent integral ( log%being convergent)
f logsin 2xdlx .

We are to calculate E_alogsin 2xdx when €8 —» 0+

Thus,

E A 1 m A
2 —
J log sin 2xdx = E-[o logsin xdx

0
* —£ l L. * 1
s 21= 2log,2+2 ZL log sin xdx

=X
2

1

log 3

L 5[ 100 cin +
+ 5 2‘[:_ log sin xdx
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:%log%+1

7=Zloel
Thus, 5 ng.

Example 2.1.9.

Assuming the integrals to be convergent show that

I" xtanxde T
o secx+cosxy 4°

Solution : The only singularity is at X =%. The integrand ¥ =%has been assumed

to be convergent, hence we have

= llmj f x)cir+§£111j‘;+8f(x)ctr

s+

.3 xtanx m xtanx
=lim | ———————dv+lim — dx
e-0+d0  SEC X+ COS X 5-0+ ¢ 3+5 SE€C X + COS X

m_ .
. 3% oxsiny _xsinx
=lim |? ———dx+Ilim I
e0+d0 1 4COS” X 30+ —+51+cos x

Putting x = x—z in the first integral andx =71 —1 in the second integral we get

= lim -.._Hd)(?t— z)dz + lim ILSd)(TE—I‘)dI

i+ G0+

=lim I%_ad)(n x)dx + lim I_+E¢ T—X)

S+ S0 £—0+

xsiny
1+cos’ x

=j0nd>(n—x)dx Where ¢(x)=
e

j‘" xtanxdx _ ¢ xsinxdy _ o (n—¥)sinxdy
osecx+cosx 0 l+cos’x * l+cos’x

Hence

21:nJ‘anﬂdx
o l+cos x
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And

RI mnx

dx=a proper integral
1+cos’x prop &7

J' sin x sin(n—x) de
2% | Trcos' x 1+cosz(ﬂ:—x)

T .
=£X2J‘g s x

27 "o 1+cosix
vz
:‘]‘t ¥ —
XL]Jrzz where z=cosx
= LT g B
—ﬂ:><[tan A]U—nx4_ T
2.2. Exercise 1.
1. Show that
. ® s R 1
(i) ID e Fdx =1. iy [_e* dx ==
iy [ T2=1 e
(i) b 5~ > 2 (iv) Loxe =0
) wa +1
© x7dx _ T
2. Prove that L (x2+az)(x3+b2)_ 2(a+b)’ a,b>0
. o _ax _ b
3. Show that L e ™ sinbxdx = =; a>0
a +b
T
' b
4. Show that I a+bcosx \/az—bzn ad>0
5. Show that r 3 d =% 0<a<x,
o x*+2xcosa+1  sina
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6. Show that [ dx =L

S S ab>0.
o atcos x+bhsin"x  2ab

3 dx . T .
7. Prove that Io (az cos® x + B sinzx)z = Jab’ (a+b)’ a,b>0‘

8. Assuming the following integrals are convergent prove that

(i) J:log(1+cosx) dx=-rlog2

(i) | log(1+cos6)d6=—m log%

1 logx T 1
(iii) Iﬂ EIOgE
Xl
(i )Iu secx +cosecy 2(1+log\/_+1)

(V) Elog(tan x+cotx)dx =nlog2

(vi) E logtanx dx =0

ssi:]nn;dx, show that (n—1)(7 —1, _,)=2sin(n—1)x. Hence or

9 G)If L=

sin #x
—d

otherwise prove that J X=7 or 0 according as # i1s odd or even.

(i) If 1, L de when # is a positive integer, show that

l,,=21 -1

#+1 " -1

Hence deduce that / =nm.

(i) If 1, —I sin2nx cot xdx, n>1, show that /_, =7 and that {, =

Ml:l

10. Verify each of the following :

. 1 1 1 _n
(1) lim + +..+ _2.

S VAT \/rf—(n—l)2
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e 1 a1 T p+r i
(1) hm”"“‘zf:'; (n—r)ZEH‘

Gii) fim, 1
Fi e

2.3. Necessary and Sufficient Condition for the Convergence

of the First Type Improper Integral [~ 7 (x)dx

Let f(x) be bounded and integrable in ¢ < x< B for every B>a so that the
proper integral

[/ (x)ax

exists and is a function of B, say, £(5). Suppose now that F{B) tends to a finite
limit / as B — o« . Then according to the definition of himit we get the following.

Definition 2.3.1.
Let f (x) be bounded and integrable in g < x < B for every B=a. The integral

J" " I (x)dx is convergent and has the value 1 if for any preassigend positive numbers,

however small, there corresponds a positive number X such that.
‘I—Isf(x)dr| <g B>x

Also the Cauchy Criterion for existence of the limit of the function f (B), we may
come to the following theorem.

Theorem 2.3.1. (Cauchy Criterion)

B
A necessary and sufficient condition for the convergence of the integral j F(x)dx

is that for any preassigned positive number g, however small, there corresponds a
positive number X such that
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<&

|1—j:’f(x)dx

Jor all values x,, x, for which x,>x > X.

Clearly, a similar criterion holds for the existence of an improper integral when
the singularity 1s at the lower limit.

Absolute and Conditional Convergence

Definition 2.3.2.

The integral f S(x)dx is said to converge absolutely when J‘j |7 (x)|ax

converges and when f(x) is bounded and integrable in the arbitrary interval

a < x < Bforevery B~ qg. Butif the first integral converges and the second diverges,
then we say that j f(x)dx is conditionally convergent.

Theorem 2.3.2.

An absolutely convergent improper integral carries it ordinary convergence.
That is, if I ¥ (x)dris an absolutely convergent improper integral, it is convergent,

Proof. Since

I ()

< _..: |f (x)|dx:, Jor x,>x>X

it follows with a two-way use of the Cauchy Criterion that if r | f (x)|dx

converges, so also does r S (x)dx. Hence the theorem. O

Observation :

The converse of the theorem is not necessarily thue. That is, an improper integral
of this type may converge and yet not necessarily converge absolutely.

. @ $1n X
For example let us consider I de _

. “SINX 4.
In the first step we will show that L de is convergent. We note that
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- sin X
lim,_, . =1. Hence the integrand is not singular at y=0. The singularity is only

at upper limit. Next since % and sinx are bounded and integrable in [xl,xz] . by the

second mean value theorem of integral calculus, we have

Y gin X L(f.. 1.
j S—dxz—f smxdx+—] sinxdx, x,Se€<x,
X, X, Je

] X
Now r sin xdx| = |cos X, —COS §| < |cos x,|+|cos §| <2 and similarly Uj sin xdx|[ <2
Consequently

’ 1 1 1

j sinxdx[< 25— <—<g x,>x>X

5 X, x2 X,

Provided X = g Thus the integral is convergent.

*|sin x

: = [sin x
Next we show that _L dx = L ITldx diverges. First of all let us consider

rm |sin x| i
o X

the integral

where » 1s any positive integer.
We have

J"mmdx ZI smx

Putting x=(r—-1)7+7, we obtain

{(r 1 11:+r| -.. ( |Sm;‘|

|sinx] ,
-[{r—l)n x _-L (r—1)m+¢ ~1) 7c+r
since |Sin{(r—1)1£+r}| :|(—1)r_1 sjm‘| =|sins|=sin7 since ¢ varies from 0 to x.

Again since rmis the maximum value of (r—1)m+/ in 0<s<m,
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we have

Im JSiﬂldxzi_[nsinmr:i
(r-ljm X P A0 re

m |sin x| 21
L —tdxz=) —
L b T ; F
But the series on the right diverges to ocas n — w0, whereby
x|S0 X
_L p dx—o now,

Let now X be any real number. Then without loss of generality we may assume

Hp< X g(n+1)7c for n to be a positive integer.
Thus

J-X S1n x|dx2rm sinx|dx
0 X 0 X

Let now X —s o so that # also — o . Thus we see that

rlsmxldxeoo X -,
0 X

4 |sin x|
Hence L

dx diverges.

2.4. Tests for Convergence (First Type)

(A) Comparison Test
Theorem 2.4.1.

If f(x) be a non-negative integrable function when x>q ond IB f(x)dxis

bounded above for every B> g, then r f(x)dx will converge, otherwise it will
diverge to o« .
Theorem 2.4.2,

If F(x) and g(x) is integrable functions when x> g such that0 < f{x)< g(x),
then
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(i) J‘j f(x)dx converges if f g(x)dx converges
(if) Lm g(x)dx diverges if j:f (x)dx diverges.

(B) Limit Tests

Theorem 2.4.3.
Let f(x) and g(x) be integrable function when x>aand g(x)be positive.
Then if

the integrals F = _.:Df (x)dx and G= Lm g(x)dx both converges absolutely or

both diverges.
If f/g—0 and G converges, then F converge absolytely. If f/g —twoand G
diverges, then F diverges.

Comparison Integral 1.
Show that the inproper integral _L "ep"'dx, where p is a constant, converges for

p=0 and diverges when p<0.
Proof. We have

I:ep"'dx = —%[e"’”‘}f = %{1 —e%}, p=0

B
and I dx=8 whenp=0.
” pxdx_l .
Let B—» w0, then _..O e dx = L when p>0 and diverges when p<0. []

Comparison Integral 2.
Show that the inproper integral L %Cfr (1> 0)exists if p>1 and does not exist,

if u<l.
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Proof. We have

By . 1 TR W

_L Fdx‘l_u{B f-a F} when 1z L
and

B Ay
L %zlogB—loga when p=1

I-pt
a when L >1

c.oalx_ 1
Let B, then .L Pl ! ,
, when <1

8

whereby the result follows. O

Theorem 2.4.4. (The L\ test for convergence)

Let f(x) be an integrable function when x> q. Then F = _r0 S (x)dx converges
abslutely if
limx'f(x)=4 p>1

and F diverges if
limx'f(x)=A(20) ortew, p<l,

X0
INlustrative Examples :

w Ly
From Comparison Integrals 1 and 2 it has been clear that L e dx,

© wo_ Ta [Ta [Ca @ 1
L e "dx,jo e*dx, .. and J] R J] ;§,J] ... converge, whereas IO erdx,
X

I:erdx, ... and Lwd_g}r%? -+ diverge.

Examples 2.4.1.

@ 1 1 x w
converges by comparison test, since 0< S—=¢ and I e dx.
Io e*+1 ges by comp e*+1 e 0
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Examples 2.4.2,

Ide

1 1
Tog » diverges by comparison test, since for X=2,10gx < x,@ > —and

x
J‘;% diverges.

Examples 2.4.3.

- T
*§in” X .
L 7 dx(a>0) converges by comparison test,

_ sinx _ 1 *1
since 0 —=—=<— when x>qg>0 and o 2 X converges.
X X

Examples 2.4.4,

Le""x”dx converges by W —fest for all values of n, since as x —

w2

xzf(x)=xex =0, for n=2>1.

2.5. Necessary and Sufficient Condition for the Convergence

of the Second Type Improper Integral jb £ (x)dx

Let f (x) be bounded and integrable in < x<b and a be the only point of
infinite discontinuity of f(x) in a finite interval [a,5] Then the proper integral
Ib fx)dx, O<e<b-a

exists and is a function of ¢, say, ¢(c). Suppose now that ¢(€) tends to a finite
limt 7 as ¢ 0+ Then according to the difinition of limit we get the following.
Definition 2.5.1.

Let f (x) be bounded and integrable in a g < x<b and a be the only point of
infinite discontimiity of f(x)in a finite interval [a,b]. The integral I: F(x)dx is

convergent and has the value I if for any preassigned positive number g', however
small, there corresponds a positive number § such that.
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<g 0<g<d

-[ 1

Also the Cauchy Criterion may be restated as:

Theorem 2.5.1. (Cauchy Criterion)

b
A necessary and sufficient condition for the convergence of the integral I F(x)dx
&

is that for any preassigned positive numberg', however small, there corresponds a
positive number § such that

.[:E"'f(x)dv| <g' for O<g <g, <8,

Jor all values x,x, for which x,>x>X.

Clearly, a similar criterion holds for the existence of an improper integral when
the singularity is at the lower limit.
Absolute and Conditional Convergence

Definition 2.5.2.

Let a be the only point of infinite discontinuity of a function f (x) ina finite

b
interval [a,b]. The integral I S (x)dx is said to converge absolutely if f(x)is
bounded and integrable in the arbitrary interval [a+e,b] where 0 <g <b—-a and

b .
I | i (x)ldx converges. But if the first integral converges and the second diverges,
B
then we say that I f(x)dx is conditionally convergent.

Theorem 2.5.2.

An absolutely convergent improper integral r F(x)dx, where f(x) has an

infinite discintinuity at x=q only, carries with it ordinary convergence, but the
converse Is not necessarily true.
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2.6. Tests for Convergence (Second Type)

(A) Comparison Test
Theorem 2.6.1.

If f(x) be a non-negative integrable function in a<x <band a be the only

point of discontinity of f(x) in a finite interval [a,b] and .[b S (x)dx is bounded

above for 0 <g <b—a, the integral r f (x)dx will cormverge, otherwise it will diverge 10 o .

Proof . Since f(x) is non-negative in 0 <x <b, the integral.

b
-[‘.r+€f(x)61x
monotonically increase as ¢ decreases and will approach a finite limit if bounded

above, but if unbounded, it will tend to o . d
Theorem 2.6.2.

Let a be the only point of infinite discontinuity. If f(x) and g(x) is integrable

Sunctions in a < x < bsuch that 0< f(x)< g(x), then
(i) f F(x)dx converges if I:g(x)dx converges

(i) Ij g(x)dx diverges if Ij F(x)dx diverges.

(B) Limit Tests
Theorem 2.6.3.

Let f(x) and g(x) be integrable function when a< x <band g(x) be positive.

the integrals F =Jj f(x)d and G = r g (x)dx both converges absolutely or both

diverges.
If f/g—0 and G converges, then I converge absolutely. If /g — twand G
diverges, then I diverges.
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Comparison Integral 3.

b
Show that the improper integral I exists, if 1L <land does not exist, if

dx
(x-a)
n=1.

Proof. When n =1, we have

[t o)

and when p=1,

Ib dx__ log(b—a)—loge,

ate X —¢J

On letting ¢ — 0+, we obtain

(b—a)l_M
de |——, when O<p<«l
T I-p
L, when 1L >1

when however, n <1, the integral is proper.
Comparison Integral 4,

The integral I ) converges if (n<1) and diverges if nu=>1.
“(x-a
Theorem 2.6.4. (The |\l-test for convergence)

Let f(x) be an integrable function in the arbitrary interval (a+g,b), where

O<e<bh—qg. Then F = .[b f (x)dx converges absolutely if

lim(x—a)' f(x)=A for O<p<l,

X—ra+

and F diverges if
lim(x—a)' f(x)=A=0) or to for pxzl.

xF—wTt+
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Ilustrative Examples :

Example 2.6.1.
1 logx
Io (1+x) Jx converges, since

1
. -1 ]_ _
leI})1+(x—0)~ =lim—~=1

T ‘for IJ.<1
Example 2.6.2.
1log x dx
_L \/; converges, since
. Slogx .. logx . !
lim (x—0)? === lim —=== lim| —4x* [=0 for pn<lI.
x—=0+ \/; K—p+ x—z x—0+

Example 2.6.3.

! dy
.[% ’x(l—x) converges, since

L
z

)lri_)nl'{(l—x)ﬂf(x)zl Jor n<l.

2.7. Convergence of the Integral of a Product

Theorem 2.7.1. (Test for absolute convergence. Type A.)

Let f(x) be a bounded and integrable function when x>q and J"x'd)(x)a‘x

converge absolutely, then r F(x)b(x)dx is absolutely convergent.

Proff. Since f(x) is bounded when x> gq

|7 (x)|<M for every x>a (2.7.1)

Where M is some definite positive constant. Again since I |d> (x)|dx converges,
there exists a positive number p¢' such that

"
x < or every X>a 272
J, loGlas < g @172)
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Thus from (2.7.1) and (2.7.2), for every X >a
[ 1 ()t <pa ]

so that J‘j |7 (x)é(x)|dx converges or, in other words f F(x)d(x)dx converge

d)(x)|dx<MM'

absolutely. Hence the theorem.

[
Theorem 2.7.2. (Test for absolute convergence. Type B.)

Suppose a to be the only point of infinite discontinuity. Let f(x) be a bounded

and integrable function when x> b and rd>(x)dx converge absolutely, then

b
L 7 (x)d(x)dx is absolutely converges.

Theorem 2.7.3. (4bel’s Test. Type A.)
Let | (x) be bounded and monotonic wheny > g and d)(x) be bounded and

integrable on the arbitrary interval g < x < B for every B > g and also let _L d)(x)dr

be convergent then f F(x)¢(x)dx converges.

Proof We have from second mean value theorem
Lxlzf(x)d)(x)dr:f(xl)ﬁd)(x)dr+f(x3)f¢(x)dx (2.7.3)
for a<x <&<x,.

Since f (x) is bounded, we can find a positive number A such that |f (x)|<M

for every x>g. Thus in particular,

|f(x1)|<M and |f(x2)|<M_ (2.7.4)

Also since I ¢(x)dx is convergent, we can choose a positive number X (&)

such that
I: d(x)dx

We now suppose that in (2.7.3), x,,x, are numbers greater than X so that

£
{m for X, > X, > X
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Ed)(x)dx <ﬁ and |.[:d>(x)civ|<ﬁ _ (2.75)
It follows from (2.7.3), (2.7.4), (2.7.5) that

J:f (x) ¢(x)4‘+ <M 'ﬁ"‘MZ%:S for x,>x,>X(€) and the theorem

follows. C
Theorem 2.7.4. (Dirichlet’s Test. Type A.)

Let f (x) be bounded and nonotonic when x>a and let f (x) —>0asx—>w,

Also let ¢(x) be bounded and integrable on the arbitrary interval g< x < B for

B oo
every B> q and L b(x)dx be bounded when B > q. Then L F{(x)d(x)dx converges.

Proof. We have from second mean value theorem
[77 o) = £ () [ 0 (e + 1 () 9 ) (27.6)
for a<x <&<ux,.

B
Since I ¢(x)dxis bounded for B> g, there exists a positive number M such

that Ia8¢(x )dx <M for every B >a. Therefore,
[ o) =|[Fo(x)ate- [ p(x)
< de)(x)dx|+’j:'¢(x)dx <M+M
=2M - 2.7.7)
Similarly
|_|‘l:2¢(x)dx <2M (2.7.8)

Next since f(x)— 0 as x -, we can find a positive number X (¢) such that

|f(x)|<ﬁ when x> X.

Next taking x,>x, > X, we have
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|f(x,)|<ﬁ and |f(x2)
Thus from (2.7.6)-(2.7.9) we have

[ f (x)o(x)ae

>4
<2t (2.7.9)

Sﬁw"'ﬁwzg for x,>x > X(e), and the theorem

follows. |

2.8. Convergence of Gamma and Beta Functions

(1) Gamma Function :

Let us discuss the convergence of

[Cexra. 2.8.1)

. o o—xn-l _ 1 -x .1 _ * -x.n-1
We write, f{x)=e7x"" 1, —Le x"dx 1, —Il e x"dx
The part I, is proper when #z1, improper but absolutely convergent when
0O<n<1; for as ):—>0+,|:te"‘“;»c”'1 —w as x—>0+] by pu— test

xl—nf (X) — xl—ne—xxn—l — e—.\: _)1

for O<p=1-n<l, ie, for Q<cn<l.

The part I, also converges absolutely for all values of »# by p—test, forasx — o,
x*f (x) =x2e X" =™ 50

Thus (2.8.1) converges for p> (. This is called Gamma function denoted by

F(H)‘

Hence

I'(n)= J‘; e*x"'dx, n>0
(2) Beta Function :

Next let us discuss the convergence of
! -1 n-1
[ 2 (1=x)"ax (2.8.2)

This is a proper integral when m, 5 >1 but is improper at the lower limit when
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m <1, and at the upper limit when # <1. We, therefore, split it into two parts 7, + 1,

where

L

1= [ (-0
and

I,= J: " (1-x)"" dx
Now I, converges for 0 < m <1, diverges when ;< 0, foras x — 0+, by p—test

¥ ()= x(l-m)x" (1-x)" =(n-1)" =1
for = =1-m and for convergence 0<L=1-m <1 that i1s 0<m<1 also.

1 whenm=20
o when m<0

SE (9 =08 1) < 1) |

where f(x) =x"(1—-x""(/par) par Next if we change the variable x=1-y, the

second integral reduces to the first with # and » interchanged. Hence we may draw
the same calculation as before with » in place of m. Thus (2.8.2) converges for

m, >0 . This is called the Beta function denoted by B(m,#n) or

1 e
B(m,n) =Lx’"‘1(l—x) ‘dv for mn>0.
Ilustrative Examples :
Example 2.8.1.

_CosX 4
Show that _[ \/_x X converges absolutely.
Solution :
since | = % >1we have

. 2 cosx COS X
llmx"-—_ll —=0
o N+ x? xoe x‘\/1+x

J‘“’ COSX_ 1
Hence J, m converges absolutely.
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Example 2.8.2.

“l—cosx
Show that I EO3X converges.
o x

Solution :
By pn—test, since at the lower limit x=0,
lim 1=608% _ L
x=0* x° 2

and at the upper limit, by |L—test
3
sl—cosx _ ;. 1—cosx _
> =l =0 for H=—31.

k]

lim x2, m
K=o x u=% J;

Hence j l_cﬂdx converges.
o x

Example 2.8.3.

1 =l
Prove that _L lx +xdx converges for m> 0.

Solution :
The integral is proper when m >1but is improper at the lower limit when m <1,

Now the integral converges for 0 <m <lby p—test, since as y —> 0+,
nr—1
1

l-m X 1

'1+x:1+x

and for convergence O<p<l, that is Q<l—-m<1, Of 0Q<m<]1. Hence the

integral is convergent for m> 0.

Example 2.8.4.

1
dx converges for m<1.

Prove that ...1 :C —

Solution :
By n—test as x > o
-1
2-m X X 1 1 1

I+x 1+x 141
x

and for convergencepn=2-m>1, or m<l1,
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Hence the integral is convergent for p<1.
Example 2.8.5.

Discuss the convergence of _..: log sin xdx.
Solution :

Note that the only singularity is at x =0. Also

Slnx]:log;vc+log smy
X

logsin x = log (x-

By n—test,

limox'l logsin x = lim [x“ log x + x* log sin x] -0

X X0+ -

sin x

[since lim, ,.,x"logxyx=0ifp>0and lim,_, = 1] forp >0

See also that p cannot be taken to be >1. Thus 0 <pu<1. Hence the integral

converges.
Example 2.8.6.

[

Show that sin x logsin xdx converges and find its value.

0

Solution :

The only singularity is at x=0. Now

J%(logsin x)(sinx)dx =[-cosxlogsin Jc]2

cosslogsing + [cos x + log tan %]

%

cosalogsina—cose—logtan%

—>log2-1 as ¢ >0+0

Since li1}1+ (cose logsin € — cos€ — log tan %)
£ =]

finesing = 2 sin € cosE tan & = sin £/ z]
[ertmgsme smzcosz,tan2 sinz-/cos >
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g0+

= lim {(cose -1) logsin% + cosslochos% + logcos%— cose}

and by L Hospital’s rule

e log sin% -
lim 1 (cose —1)logsin = lim 5" (_)
=0+ €—>O+_§cosec2% =)

.1 .28
= lim = E_o
1n_1251n2

s+ *

and also, lim__, {cos clog2 cos% +log cos% —COs e} =log2-1.

Thus the integral converges and its value=log2-1.
Example 2.8.7.

sin x
xP

Show that JTO dx converges for p>0.

Solution :
Apply Dirichlet’s test, taking f(x) = ;—p,dl‘(x) =sinx, f(x) = xl—pis bounded and
B B
monotone for x>1and 50 as x —» o« for p>0. Also .L ¢(x)xdx=jl sin fx is

bounded for B > |, since

“]B sin xdx|= |cosl - cosB| < |cosl|+|cosB| <2for B>1

Therefore, by Dirichlet’s test

*ginx
L o dx converges for p>0.

Example 2.8.8.

©COSX
Show that L @dx Jor a>1converges by Dirichlets test.

Solution :

Let f(x):loéx and d)(x):cosxl
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Then f(x) is monotonic decreasing — 0 as x — oo and ¢(x) is bounded in
[a.B], B>a.

Hence by Dirichlet’s test, the integral converges for g>1.
Example 2.8.9.

| . = - sin 2bx
Examine the converges of the integral L e’ . dx.

Solution :
See that
@ g sin2bx 5o - > sin 2bx
J. e MR dy = 26[ e W dx (2.8.3)
. . . : sin 2bx
First part is a proper integral as hm,_, T obr =1
_ sm be e
For the second part, let f(¥)=>2"= and ¢(x)=e

Then I S (x dx j szbxdx is congergent by Dirichlet’s test. Also d)( )

bounded and monotonically decreasing in [L ).

Therefore , by Abel’s test _[ f x)d>(x)dx I e 511;1)21‘) SRX dx i convergent.

Hence from (2.8.3) it follows that the given integral; is convergent.

2.9 Summary

1. In Section 2.1 and 2.2 we have studied the types of Improper Integrals
and a useful theorem in evaluating Improper Integrals with some examples.

2. In Section 2.3, 2.4, 2.5, and 2.6 we have discussed about necessary and
sufficient condition for convergence of Improper integrals, Cauchy Criterion, Limit

Test, Comparision Test, }L — test for convergence and two comparision Integrals.

3. In Section 2.7 and 2.8 we have discussed Abel’s Test and Dirichlet’s Test for
absolute convergent and Convergence of Beta and Gamma function.

2.10. Exercise 2.

1. Show that the following integrals converge:

e (ii) f l(\)/g;xdx

S0 dx
(1) _L m
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(i) I

2. Show that the following integrals are non-convergent

o [edx . ¢ d
(1) .[0 lngdx (“) IO 1-cosx
ey [T

(1) -L xlogx

m -1 0 m—

dx converges for s > 0 and j T

3. Show that I dx converges for m <1

1+

r>0a-1¢1

and hence _f

d’t converges for Q<m<].

4. Show that fsin x’dx and fcos x’dx converge.

5. Verify that I 1+x T, converges and I 1+ans’x diverges.

6. Show that | ﬁconverges but I %does not.
‘1 anllla

7. Prove that L ﬁsm < ¥ converges for 0<a <.

z
8. Discuss the convergence of .[2 cos 2nxlogsin xdx and evaluate it.
7

* CO8 X

9. Show that the improper integral _L log x is convergent but not absolutely

convergent but not absolutely convergent.

i
10. Show that J )2 —adx converges to %Jr%
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Unit - 3 : Sequence And Series Of Functions

Structure

3.0 Objective

3.1 Sequence of Functions
3.2 Illustrative Examples
3.3 Exercise 1

3.4 Series of Functions
3.5 IlNlustrative Examples
3.6 Exercise 2

3.7 Limit Superior and Limit Inferior
3.8 Power Series

3.9 Illustrative Examples
3.10 Summary

3.11 Exercise 3

3.12 References

3.0 Objectives

In this third unit we have focussed on Pointwise Convergent and Uniformly
Convergent of Sequence and Series of functions, different tests for Uniformly
Convergent and some theorems regarding Uniform Convergent and Continutity,
Uniform Convergent and Integrability and Uniform Convergent and Differentiability.
Also we have discussed on Limit superior and Limit inferior and eventually different
tests for Convergent of Power Series,

3.1 Sequence of Functions

Let £ be a subset of real number and for each n e N, let f,: £ — R be a function.

Then { fn} is a sequence of functions on £ toR. F is said to be the domain of
sequence of functions {fn}.

To each x,€F the sequence {fn} gives rise to a sequence of real numbers
{ 7 (x )} which is obtained by evaluating each f, at x,.

103
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For sonme x e E, the sequence { A (x)} may converge to a limit and for some
other x¢E, the sequence {f (x)}not converge.
Pointwise Convergence

Let £ < Rand for each ne N let f,:D — R be a function. The sequence {fn} is
said to be pointwise convergent on E if for each xe £, the sequence {f,(x)}is
convergent. And then it is natural to say that {f,}, #<Nconverges to the function

f oon E ie

limf, (x)=f(x), xekE 3.1.1)

Wb

If (3.1.1) holds we say that f is the limit or the limit function of {fn}, neN . For
if (3.1.1) holds, then for every point x on £ the sequence {f,,(x)}, nelN of real

numbers converges to f(x).

Definition 3.1.1.

The sequence of function {f,}, neNdefined on a set E converges (pointwise)

to fonE, if for each x € E and for a given £> 0,3 a positive number N such that

fn(x)—f(x)|<a Jor n>N (3.1.2)
In general the number N depends on both ¢ and x.
Example 3.1.1.

Let f,(x)=x"0<x<1. We know that {x”},neNis

lmx"=0 for 0<x <l

i

=1 jfor x=1.
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Hence {f,},neN converges poimwise to f on [0,1] ie., lim,_, £, (x)=7(x)

on [0,1] where
fl{x) = 0 jor 0<x<l
=1 for x=1.
Example 3.1.2.
For each neN, let f,-R — R be defined by fn(x):%, xeR. Then {f,}isa
sequence of function on R. For each xc R, the sequence { A (x)} converges to 0.
Therefore the sequence { £ (x)} Is pointwise convergent on R and the limit

function f is defined by f(x)=0, xeR.

Example 3.1.3.

Let f,,(x)=1+xnx,0£x<°0. When x>0, 0<f;(X)_%=%, whereby

lim, _ f,(x)=0,x>0.

i

Also, since £,(0)=0 for each neN, it is clear that {f,},ncN converges

pointwise to fon < x <, where f (x) =0.
Example 3.1.4.

nx .
0t wherexe R ie, —o<x<%.

Let f,(x)=

For x>0, f,(x)= —l—il and hence lim,__ f (x)=0.

3
J'r'.\:2

Also f,(0)=0. Agam lim,_, f,(x)=0 for x<0.
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Thus lim,_, f,(x)=0 for each xR and for each neN.

Therefore,{ f,},ne N converges to f =0in (—o,), whereby f(x)=0.

Uniform Convergence

We have seen that { fn},n €N converges pointwise to f on £, if for each xec E

and for a given &>03 a positive number N such that

|j;,(x)—f(x)| <g for u> N .

We have also onserved in the previous example 3.1 4 that it is not always possible
to find an N such that (3.1.2) holds for all x & E simultaneously, if for each € >0,

it becomes possible to find a unique N such that (3.1.1) holds for all x€ £ then we

say that { fn(x)},ne N converges uniformly to f on £.

Definition 3.1.2.

Let { /£, (x)} ,ne N be a swquence of real-valued functions on a set E. We say that

{ £ (x),} ne N converges uniformly to the function f on E if for any given > 0,3

a positive integer N such that.

fn(x)—f(x)|<8 for n>Nand for all xe E. (3.1.3)

Here N depends on ¢ alone but not on x. It automatically follows that the uniform
convergence implies its pointwisre convergence.

But that the converse is not true is discussed in the following example.
Example 3.1.5.
In example 3.1.1 the sequence {fn} converges on (—1, 1] fo the function f where.

f(x)zO Jor 0<x<1

=1 for x=1
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Let us examine if the convergence of the sequence { fn} is uniform on (0,1).

Let ce(O,l). Then

1, (c)—f(c)| =c".

o (C’) -f (C’)| < & whenever ¢" <g,

Let 0<g<l Then
ie., whenevernlog(l ;’c) >log (1 f’e),

ie., whenevernilog (;—)> log (1/¢).

Let & = [10 g (L—)(l—)] + 1 Then k is a natural number and

forall y>k.

Therefore for all x<(0,1),

‘fn(c)—f(c)|<a

7, (c)—f(c)| <g foralln>k,
where k=[log(1/€)/log(1/¢)]+1.
This i depends on gas well as x. As x > -k > w. [t follows that there does

not exist a natural number k such that for all x < (0, 1),

£(x)= f(x)|<e holds for

all n> k. Consequently, {f,} is not uniformly convergent on (0,1).

Example 3.1.6.

Let fn(x)zlffu_,OS)réw‘

We have seen in Example 3.1.3 that 0<fn(x)£%a”d F(x)=00n 0<x<mw.

Hence for any given ¢ >0, and for all x in 0<x <w.

£(x)-F(x)=

_ol<L
£ (%) 0|£n<e Jor n=N

if we accept N = integral part of (é) Thus N depends only on ¢ but not on x.

Hence it is uniformly convergent in 0<x <.
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Remark 3.1.1.

We have seen in Example 3.1.1 that { fn}, ne N where fn(x) =x",0<x<lconverges
pointwise but not uniformly convergent in the interval, whereas in Example 3.1.6

{ fn}, nelN where f, (x) = ﬁ, 0<x<1 converges uniformly and automatically

converges poititwise.
(A) The Cauchy condition for uniform convergence.

Theorem 3.1.1.
Let { A (x)}, ne N be a sequence of real-valued functions on a set E. A necessary

and sufficient condition for a sequence { A (x)}, ne N of functions defined on a set

E to be uniformly convergent is that for each given € > 0,3 a positive integer N such
that for mn>N
Putting p=m—n,

f(x)= £, (x)|<e forn >N P=123..
and for all (3.14)

Proof. The condition is necessary

Let the sequence {f },n € N be uniformly convergent sequence of functions over
E, convergens to f on E. Then for a given € (>0)3J a positive integer N such that.

£.(x)=f (x)|<e for all xe E and for all n>N

Thus if mn=N, we have for all r ¢ E,
150160 = | {£.0- rel+{r@- 1,0}

£0- [

<| -S|+

The condition is sufficient.
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Let {f}, neN be a sequence of real-valued functions on E such that, given a
positive ¢~ (3 a positive integer N such that.

| £, = £, | <eholds formn> NandVxe E. (3.1.5)

We are to show that there is function f on E such that {f }, ne N and converges
uniformly to f on E.

From (3.1.5), it is clear that for each fixed xe F, the sequence of real numbers
{f(x)}, neN is a Cauchy sequence.

Hence lim f (x) exists for each x€E and Call lim for all £ (x) = f{x) for all x¢ E.

Keep m fixed and let »— «,then from (3.1.5)

1) = £, ()| =| {e for m)N and for all xe E
This show that { £}, me N converges uniformly to f on E the froof is complete.

Hence the theorem. d

(B) Test for Uniform Convergence,

Theorem 3.1.2. (M Test)

£, ()= r(x).

Then f,— funiformly on E if and only if M, >0 as n— .
Proof. The condition is necessary.

Let lim, . f,(x)= f(x), for all xc Eand M, = 1‘?

Given that {f,(x)},neN converges uniformly to f(x) on E.

Then for a given €>0,3 a positive integer N such that

j;(x)—f(X)|<8 for >N and for all xc £.

oM, =sup_ | £,(x)- f(x)| <& for n>N whereby M, >0 as n >0,
The condition is sufficient.
Given M — 0 as »—> 0, then for any given € >0,3 a positive integer N such

that M <e for >N and for all xc E.
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Then, sup,. . fn(x)—f(x)|<e for p> N and for all v E.

Thus for all xe £,

fn(x)_f(x)l55xg£|fn(x)_f(x)|<3 for all u> N .

That means {f,(x)} converges uniformly to f(x) on E.

This completes the proof . (|

Example 3.1.7.

Prove that {f,, (X )} :{ X } converges uniformly to 0 on 0<x<1.

nx+1
Solution.
lim, ,_ f,(x)=lim,__ nxx+1 =0=f(x), for all xE [0,1] . Or, in other words,

{ £ (x)}_,ne N converges pointwise to 0 on [0,1]. Next,

M = -
AN vt

Now to find the supremum of nxx+1 forall xe [0, 1] .Letuscallit g, (x) , then
N X

& (l) nx+1°
) g,(x)=nx+l—nx= 1

= - 0
(ne+1)  (me+1) >V for all xe[0,1].
Thus g,{x) is strictly increasing on [0,1]. Moreoverg,(x) is continuous on

[0,1]. Hence g,(x) assumes its maximum (supremum) value at X=1. Thus

1 1
M, = = =——0
" xsel[lul,?]an nl+l n+l as n—ow.

Hence {f,(x)} converges uniformly to 0 for all x<[0,1].
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Example 3.1.8.

X ) _ _ _
Show that { A (x)} = {m} is not uniformly convergent in any interval

CORIAIRING zero.

Solution,

Here

—11m (x)—llm—X lim—X—=0
'[ > 1+ ""”1+nx

n
for any xe[a,b] containing zero.

Now,

M, = sup n(x)—f(x)| = sup

x=[ab] x=[ab)

1+ #°x%|

:'E 2 :gﬂ(x)a Say-

1+nx

_ n(l - ngxz)

(1 +nx’ )2

To find maximum of

Hence g,',(x) is O at x=%,—i‘ Also,

(1 + r13x3)2 (—2n3x) -2n (1 - nzxz) (1 + ngxg) 2n°x

(1 + 1’ )4

. . 1 . P
is negative when X = n and is positive if x¥=-

g, (x)=

x =

. 1 1
Hence the maximum has been reached at ¥ = > and max &, (x)=5‘

1 .
Therefore M, =35 which does not 50 as > .

Hence the result.

(C) Uniform Convergence and Continuity

Let us begin with an illustration to discuss the problem of interchange of the
order of the limiting operations.
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Example 3.1.9.
We start with the sequence of functions {fn(x)} where

f(x)=x"on 0<x<1 for neN.
Then f,(x) is contimious on [0,1].
However {f,} converges pointwise to f on [0,1], where at x =1, f,(x)=1 for
all n but for all x in 0<x<1. f,(x)=x"—0; whereby
f(x)=0, when 0<x<l
=1, when x=1

Clearly f(x) is discontimious on 0 < x <1 since lim__,_, f{x)=0, bz f(1)=1.
This shows that a sequence of continuous functions may converge pointwise to a
discontinuous function.

Remark 3.1.2,
This example shows that

lim lim f, (x)=1

H—ser x—]-0

whereas,

lim lim £, (x) =1

#—l-0 x—w0

That is the two limits are not interchangeable as they would be if fn(x) were

continuous at y=1.

We should then like to know what conditions on f,(x) will ensure that f(x) will

be continuous, if the approximating functions are themselves continuious. Uniform
converges provides a sufficient condition to guarantee this result, We therefore, come
to the following theorem.

Theorem 3.1.3. (Interchange of the order of the limiting operations.)
A sequence { £ (x)} ne N of real-valued functions is defined on [-gq<x<b.
Suppose { A (x)} converges uniformly to f(x) on I

Let x,€[a,b] and suppose that lim_, f,(x)=a, n=123, ..
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Then show that
(i) the sequence {a,}of real constants converges, and

@) lim,_, f(x)=lim,_ a,

In other words,

lim lim £, (x)=limlim £, (x)
Yo

X=Xy X0 K00

Proof. Let ¢ =~ (0 be given. By uniform convergence of {fn(x)} on J-g<x<p,

for this €, there exists a positive integer N such that for all y <c Jand Vm,n> N,

£(x) = fu(%)] < (3.16)

Keep m,n fixed and let x — x, then

an—am|<e, for Y mn>N .
Therefore, by Cauchy’s general principle of convergence {an} of real constants
becomes a Cauch sequence and {an} converges, say to A, 1e.,
ima, = 4
Which proves (7).

Next since {an} converges to A4 as # — o and {fn(x)} converges uniformly to
F(x) on I, then for any £ >0, 3 a suitable positive integer ¥ such that

|a“—A|<\% for n> N

and

f(x)- f(x)l 4% for n> N
and for all xe[a,b].
Again by the given condition, lim,_ f,(x)=a, for all n, and hence for the

same €£>0,38 >0 such that for all xelxr-x|<3,
|7, (x)-a,] <% for all ».

Thus for all > N and for xe|x—xr_,| <0, we have
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|f(x)—A| < |f(x) ~f.(x)—a,+a, —Al
S|f(x)—j;,(x)|+|j;,(x)—an|+|an —A|

€ , E , & _
SERERERL
whereby
lim f(x)=A=lima,
or,

fim Yim £, (x}=lim fim /. (x)
which proves (#). 0 0
Hence the theorem. O
Theorem 3.1.4. (Continuity of the limit function.)

If {f,}. neN be a sequence of continuous functions on an mterval I, and if
f, = f uniformly on I, then f is continuous on 1.

Proof. Let x, be any arbitrary point on /. Then we are required to show that for
each ¢ >0, there corresponds a 8(e) such that

|f(x)—f(x,)| <g for [x—x|<8
Now for any n,

1 (x)= £ ()| =|7 (%) = 1, (x)+ £, ()= £, (6 )+ £, () = £ ()]
< ()= £, )|+ £, )= £ )|+ ()= 7 () (3.1.7)

Since the given sequence is uniformly convergent, there exists an N (e)

independent of x, for which

fx(x)—f(x)|<§ if »>N and for all x in 7.

Therefore
|f,,(x,)-f(x1)|<§ if n>N

Again £,(x) being a continuous function, there exists a 8(¢) for a fixed 5> N,
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for which

fn(x)—j;(xl)|<§ whenever |x—x1|<8
Thus (3.1.7) gives

|f(x)_f(xl)|{%+%+§:8 for |x—x,|<6_

Hence the theorem. O

(D) Uniform Convergence and Integration

Let us begin with the illustration

Example 3.1.10.

Let j;,(x)znxe"”“:, nelN and 0<x<l.

Determine whether

lim 7, (<) = [ {im 7, (<)

Now

T )

clim [ 7, (x)dbe = lim £ (1-e7) = 1

Sf(x)=lim,__ f (x)=lm, nxe™ =0, whether x—0 or O<x<l.

Then | f(x)ds=0.
It follows that

lim [, (x) e = [ {lim 7, (x) )

i

i.3., limit cannot be taken under the integral sign. The reason is that although

the sequence { /£, (x)} converges to 0, it does not converge uniformly to 0.

So we come to the theorem.
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Theorem 3.1.5,

Suppose the sequence of the functions { f,},n € N be R integrable on an nterval

I:a<x<b and suppose f, — f uniformly on I which is also R— integrable on I,
then

tim [7 7, ()t = [ {im 7, ()} e = [/ (x)

Proof. Let g0 be given. Science { fn} converges uniformly to f on I, we can

find a positive integer N (g)such that

|f;,(x)—f(X)|<(bEa) ,forall #me N and for all xe .

Thus for x> N, we have

I £, eyt [ 7 ()l =

[ {5.6) -1 ()}
< [|£,(0)= £ (x)]ds

b
S'I‘abfadx=bia(b—a)=8

Thus

tim {7 7, () = [ {1im 7, (o)} te = [ £ (x)e.

"

Hence the theorem O

(E) Uniform Convergence and Differentiation

Theorem 3.1.6.

Let { £,},ne N be a sequence of functions, differentiable on I:[a,b] and such
that { £ (x)} converges for each x [a,b]. If each f, has a continuous derivative f.
on [a,b] and if { fn’} converges uniformly on [a,b], then if {f } conveges unifomly

to a function f, on [a,b] then.
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2 fiim 7, (x)} = tim {1, (x)}
or. ['(x)= Ll_l;l;lo‘)‘:(x), a<x<bh
Proof. Since each f/(x)is continuous and {/,}converges uniformly to F(x),
say on [a,b], F(x) is continuous on [a,b], by Theorem 3.1.4
That is lim, , f(x)=F(x), since they are continuous.

Also f/(x) and F (x) are R-integrable on [a,5], then by the fundamental theorem

on integrals and by Theorem 3.1.3, for g<x<bh
[ {tim £ (ot = tim [ £ ()l
or, [ F(tydt=lim " £:(#)dt = lim { £, (x)~ £,(a)}
=lim /,(x)-lm £,(a) = f (x)- f(a),
Since f,(x) coverges uniformly to f(x) on /.
d [ d ,
Hence ELF(I)&:E{f(x)_f(Q)} = f'(x)
And since F(x) is continuous, we have F{x)= f'(x)

And the theorem is established . O

3.2 Illustrative Examples

Examples 3.2.1.

Show that the limit function of the sequence of functions { /£, (x)} where
f(x)= 1—|1—x3|n, in the domain (x : |1—x3| < 1) is not continous at y =0.
Solution.

When |1-¥*|<Llim,_, f,(x)=1-0=1
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When ‘l—xz‘zl, e, x=0 Of, x=+./2
~dlim,_ f(x)=1-1=0, when x=02,—+2
Therefore limit function f (x) of the given sequence of functions is
S(x)=1 if [-x|<1 ie, -2 <x<0and g<x<2
=0, if x=0,-2,v2

Now lim__, f{x)=1 but f(0)=0
So the limit function of the given sequence of functions is not continuous at

x=0.
Example 3.2.2.
Show that the sequence of functions {f,}, where f, (x) :% does not converge
uniformly on [0,0).
Solution.
Here f,(x)=27 neN and xe[0,%)
Now lim,__ £, () =lim=* = xlim,__({L)=0

Therefore limit function f(x) on 0<x<w, 18 f(x): OVOsx<ow.

Let g0 be given Now

L(x)-7(x)|=

X X . X
=-0[==<g f n>=
n n g

But as Q< x <o, then % can have sufficiently large value (however large), so

that is not possible to choose any number  such that ¥ 72> m and x<[0,%), such
that

fn(x)—f(x)|<a,

That means {f,(x)} dies not converge uniformly on [0,%).
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Remark 3.2.1.

But the sequence of functions converges uniformly on [O,k] , whatever k may be.

Example 3.2.3.

px’
Test Uniform convergence of trhe sequence of functions {nx n 1} on [0,1],

Solution.

e
¥+

Here f,(x)= P

T on [0.1]. Now

- -

lim £, (x) = lim 22 = lim -

H—0 nosee FEY = X0 Y+ l

solimf(x)=x, if O<x <]
=0, i1f x=0.
Therefore the limit function f(x) on[0,1] is

f(x) =x for 0<x<1

Let
M, = il[lg] £)- f(x)| B iﬁ?} m+l x‘
- xE}:B] nx+ 1‘ - iﬁel nx+1 [ x= O]
Now nxx+1 < % = %[if 0 < x <1, in particular if x =0, then nxx+1 = 0]‘

1
M= —
" tSEL[Ll?] nx+1l n

~limM, = o[-: lim =0 and M > o}

=0 n—0

-

nx
Hence the sequence of functions { } is uniformly convergent on [0, 1].

nx—+1
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3.3 Exercise 1

1. a) Show that uniform convergence of a sequence of functions on a set
E implies its pointwise convergence on £,

(b) Hence show that {fn(x)},neN where f,= 1+xnx

uniformly to 0 and necessarily converges pointwise on Q< x <«

,0<x <0 converges

2. {a) State and prove the Cauchy condition {necessary and sufficient) uniform
convergence of a sequence of functions over a set £

{b) State and prove M -test for the uniform convergence of a sequence of
functions on a set £,

-

3. Test the sequence {fn(x)} for uniform convergence, where
f"(x)zl—%n,xeN[O,l]_

_sinnpx
4 For each pecN, deﬁnegn:[O,l]eR by gn(x)_T. Show that

{g,} converges pointwise on [0,1] to a differentiable function g, but { g;(O)} does
not converge to g'(0).

5. Let f,:[0,]] >R be defined by f,(x)=tan"(nx)¥x<[0,1] and for
every positive integer 5. Find the limit function f (x) of the sequence of the functions

{£,(x)} in [01]. Is{£,(x)} uniformly convergent on [0,1]? Justify your answer.

: _ H+COSX
6. Show that the sequence of functions{ £, (x)}, where £, (x)= s’
xeR, neN, i1s uniformly convergent on R .
. i’
X)=————
7. Show that the sequence of functions {f,(x)}, where f,(x) pEmpe

is uniformly convergent on [a,b] . where 0 < ¢ < b, but the convergence in not uniform

on [-11].
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3.4 Series of Functions

Let F—p. Let {fn(x)}be a sequence of functions on E to R . Then

w,(x)+u,(x)+u,(x)+ u, (x)+.. is said to be a series of functions on g. The
infinite series is denoted by an(orbyz; f,,(X)). The sequence S, (x) where

S, (x)=u,(x)+u, (x)+u,(x)+ .. +u,(x)

15 said to be the partial suns of the infinite series Z I

Pointwise convergence

Let #,(x),u,(x),u,(x), .., #,(x),... be real-valued functions of x, each defined
on a set £ Then the series {infinite series)

g= (XY, (x)+a, (x)+ +u (x)+ ..

Coverges pointwise to the functions S(x) on £, if the sequence {S, (x)} converges

to S{x) on E where S,(x)=wu,(x)+u, (x)+u,(x)+..+u,(x).

Definition 3.4.1.

The series of functions anl u, converges pointwise to S(x)on E, if for each
xe FE, given £>0, 3 a positive integer N such that

S, (x)-8(x)|<e for n>N (.4.1)
As usual, N, in general depends on both g and x.

Uniform Convergence

Let u,(x),u,(x),u,(x),...,u,(x), ... be real-valued functions of x, each difined

on a set £. Then the series (infinite series)

3 () +u, () +u (x)+ L+, () +

#=1
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Converges uniformly to the function § (x) on F, if the sequence of functions

{S,(x)} converges uniformly to $(x) on E where
S (x)=u, (x)+u, (x)+u,(x)+...+u, (x).
Definition 3.4.2.

The series of functions Z:;l u, converges uniformly to S (x) on E, if for any

given €0, 1 a positive integer N such that

<t for pn>N and for all xc F . (3.42)

(A) The Cauchy Condition for Uniform Convergence of Series.

Theorem 3.4.1. [Necessary and sufficient condition for uniform convergence. |

The series of functions Z; u, converges uniformly on a set E, if the sequence
of functions {S" (x)} where where S, (x)=u, (x)+u,(x)+u,(x)+..+u,(x)

defined on E converges uniformly on E. Thus ZL u, converges uniformly on E
if and only if for every given £ >0, 1 a positive integer N such that for mn=> N,
1S, (x)-8,(x)|<e  forall xeE. (3.4.3)
Putting p=m—n,
A (x)—Sn(x)| <€ for n>N,p=123,. and forall xcE.

Proof. The condition is necessary.

Let Z:;l u,(x) converge uniformly, that is, the sequence of functions {Sn (x)}

converge uniformly to S(x) on E Then for any given &(>0),3 a positive integer
N such that

|Sm(x)—S(x)| <€ forall yeE and for all > N .

Thus if m,n> N, we have for all xe E,

|S,,,( x)| |5 (x)- Sx)|

(%)= Sx)|< +—=8_
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The condition is sufficient.

Let {Sn (x)} neN be any sequence of real-valued functions on £ such that,

given €(>0),3 a positive integer N such that

Sm(x)—Sn(x)| <€ holds for m,n>N an for all xc E.

Now it is clear that for each fixed x e E, the sequence of real numbers {Sn (x)}_,

ne E 1s a Cauchy sequence. Hence

lim S, (x) exists for each x< f .

Call im S, (x)=S8(x)for all xeE.

Kep m fixed and let » — oo, then

S,(x)-(x)|<e for p>N and for all xeE.
This shows that {Sm (x)} meN converges uniformly to S(x) on £ and the

theorem is established. |
(B) Test for Uniform Convergence of Series,

Theorem 3.4.2. [Weierstrass’s M-test]

The series Z:j:] u,(x) of real-valued functions defined on a set E converges
uniformly and absolutly on a set E, if each term satisfies |un (x)l <M, forall xeE
and Z::]M . IS a convergent series of positive ferms.

Proof. Let S,(x)= 3" u (x). Since |n,(x)|<M,, we have

g,:'"” (x)| ggMn

And hence > u,(x) is absolutely convergent.
Second part :

Since anlM , 18 a convergent series of positive terms, then for a given g > 0,3
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a positive integer N such that for all ;- m > N (Cauchy criterion)
M, +M, L +M_ . +. . +M <g. (344)

i+l i+l
Therefore, for p>m> N,

. ' ) -S, (x)| = |um+1 (x) +u,,, (x) ..+, (x)|

<M +M . +M .+ +M <t

m+2 nr+3

m+3

Hence by Cauchy criterion Z; i,(x) converges uniformly on a set £ and the

theorem is established. O

Example 3.4.1.

= sinax © COSMX .
Show that z 7 and z 2 e uniformly convergent for all x.

Solution

Sl 1] nx

See that

for all x and thatz = converges being a p-series with p> 1.

Hence by Weierstrass s M-test, the series Z:l% converges uniformiy for all x.

Similarly we can show that Z SJX converges uniformly for all x.

(B) Some Useful Theorems on Uniformly Convergent of Series of Functions :

Theorem 3.4.3. |Continuity in the Sum)

If the series Z:;l u,(x) converges uniformly to S(x) on an interval I and if
each term u,(x) of the series be continuous on the interval, then the sum functions
AY (x) is continuous on 1.

Proof. Take >~ u,(x)=5,(x). Since > u,(x) converge uniformly to S(x)

on I, then for any given £ 0, 3 a positive integers S (e) such that for all xe< 7,
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|S"(x)—S(x)|S§, for all n>N. (3.45)

Let now x, be a point in /, then from (3.4.5)

8, (x,) =5 (l”o)‘ﬁ % for all n =N (3.4.6)

Again since each u_(x) is continuous at evey point of I, it is necessaily continuous
at x= x, and therefore S (x) which is the sum of a finite number of continuous
functions must be continuous at x = x,.

Hence of the same positive number €, 3 a positive number & such that for all n,

\Sn(x)—S(xo)Iég, for all x-x, (3.4.7)
Thus for all #>/N and for all xe|x—x|<8, we have
IS (%)= S (x)| =[S (%)= 5, () + S, (x) =S, (x,)+ 5, (%)~ 5 (x,)]
<[S(x)= S, ()| +[S, (x) =S, ()| + [, (%) = S ()

Hence $(x) is continuous at x,. But x, is arbitrary, whereby S(x) is continuous

on /. Hence the theorem. |
Remark 3.4.1,

If for each n € N, S,(x) is continuous on I and the sum function S(x) of the
series Z:zl u"(x) is not continuous on 1, then it follows from the theorem that the
series Z; un(x) is not uniformly continous on I.

Remark 3.4.2,
If each un(x) be continuous on I, then the condition of uniform convergence of

the series Z:zl , (x) is sufficient but not necessary for continuity of the sum function

S(x) on I
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Example 3.4.2.

E

We consider the series of functions > _u,(x),

n=l H

HY (H—l)x
i = - 5 031
where () e 1+(n-1) xe[o.1]

Nl

Then Sn(x)zul(x)+u2(x)+‘..+un(x)= nx ,.Vxe[O,I],

1+mnx"

The sequence {S,(x)}converges to the S(x), where S(x)=0 for all x €[0,1]

n—)ool EE

[Since lim W __0vxe [0_, 1]}
+ X"

Here each u,(x) is continuous on [0,1] and S(x) is also continuous on [0,1],

is not

but in, examnple 3.1.8 we see that the sequence {um(x)} ie., {m}

uniformly convergent on [0,1].

This proves that, for a convergent series of continnous function, The uniform
convergence of the series is not necessary for continuity of the sum function.

Theorem 3.4.4. |Term by Term Integration)

o . . . .
If a series Zn_] u,(x) of Riemann integrable functions converges uniformly to

S(x) on I:a<x<p which itself is R -integrable on I, then

IbS(x)dx: J‘ju, (x)dr+_|‘ju2(x)afr+_”+ﬁun (x)ede+...

T

Proof. Since the given series is uniformly convergent on [a,5], then to an arbitrary

&> 0, there corresponds a positive integer & independent of x in [a,5] such that for
n>N,

Sn(x)—S(x)|<bEa, a<x<h

Thus for ;> N, we have since S{x) is integrable on / as also S, (x) being the

sum of a finite number of [ -integrable functions is also integrable on 7,
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[5,(x)ate=["5 (x)ate|= [ {5, (x) = 5 (x) e

sfSAﬂ—&wﬂ
b —=7 (b—a)=¢,
and the theorem is established. O

Remark 3.4.3.

The result j S{x)dx = j ", x)dx+j 1, (x)dx +.. +fb LX)+ ... implies that
the series of functions can be integrated term by term on [a,b] if the series of
Junctions Z:zl u"(x) is uniformly convergent.

Remark 3.4.4,

If each u,(x) be integrable on [a,b], then the uniform convergence of the series
Z:;l un(x) is only a sufficient but not a necessary condition for the integrability of
the sum function S(x) on [a,b].

Example 3.4.3.

Let us cosider the series of function » . u,(x),

n—1y x
“here "( ) 1+nnxx o (( 1)4 7 xE[O’I].

Let S (x)=u(x)+u,(x)+. .. +u,(x), x€[0,]]

Now S (x)_ﬁ, x<[01].
X
n’x P
Clearly !:I—IE:S( )_!el—>nr]x\]+n4xq_!el—>nr]x\ ln _0.

X
n
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Therefore the sequence {S,,(x)} converges pointwise to the function $(x), where
S(x)=0 Similarly as example 3.1.8 we can show that the sequence {Sm (x)} does
not converge uniformly on [0,1].

Now it is clear that the series of functions Z:zl u,(x) is such that each u,(x)
is integrable on [0,1] and it converges to the sum functions S(x) which is also

mtegrable on [0,1], but the convergence of the series is not uniform on [0,1].

This result proves that for a series of integrabl;e functions the uniform convergence
of the series is not necessary for integrability of the sum function,

Remark 3.4.5.
If the series of functions Z:j:] u,(x) converges to a function S(x) on [a,b]

which is integrable on [a,b] and each u,(x) is also integrable on [a,b], then the

uniform convergence of the series is only a sufficient but not necessary condition for

term by term integration of the series on [a,b].
Example 3.4.4.
We take same example 3.4.2

ie “n(x)= nzych_ (n_l)f
o I+n°x" 1+(n-1) x*

2l a2

xe[01]

We have already seen in example 3.4.2 that the series of functions Z:;l u,(x)
converges to S{x) on [0,1], where S(x)=0,x € [0,1] but the series is not uniformly

convergent on [0_, 1].
Now j;é(x)dx = 0[ $(x)=0, 0<x< 1} )

(o)~ 5= Sollog(1)] - o2

For p>2,
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J o i {n-D)x
Lun(x)ch: - °1+”2x2a& J.°1+(n—1)2xz
_1 y___ 1 _1Y
_2nlog(1+n) 2(n_l)log{H(n 1)}
Let
tn :Llul (x)dx+'..01u3 (x)dx+...+j.; u,(x)dx
_1 1iges-1
—210g2+[410g5 2log2}+...
1 2 1 2
+|:§log(l+n )—mlog{l‘i‘(n—l) }:|
_log(1+r:3)
- 2n '
limz, =lim W[g]
= lim —2 ‘
Hsco (1 + ,,2) o [L’ Hospitals rule]
:O.
Therefore

[[s(x)dc=0=lims,

0 H—sa
1 1 1 1
or, LS(x)dx = Lul (x)dx+.[0u2(x)dx+..‘+.[0un(x)dx+.”
Thus the series can be integrated term by term on [0,1], although the series is
not uniformly convergent on [0,1].
So for term by term integration of a series of functions Z:j:] u,(x) on an interval

[a,5]. the condition of uniform convergence of the series is sufficient but not necessary,
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Theorem 3.4.5. [Term by Term Differentiation]

If the series Z:j:] u,(x) converges to S(x) on q<x<b and if the derivative of
each u,(x) be continuous on [a,b] and the series derivatives > u.,(x) be uniformly
convergent on a g < x <p, then the series of derivatives converges fo § ’(x).

Proof. Let us denote z; u, (x) by f(x). Then since the series of derivatives

is assumed to be uniformly convergent on g < x < b . By theorem 3.4.4 this series to
be integrated term by term, so that for g<x<p

[ (o)t =3[ (ke = 3o ()=, ()} = 5 ()= )
Hence
L[ F ()= {S(x) - S (a)} = 5'().
and since £ (x) is a continuous function, we obtain
7(x)=5(x)

Hence the theorem. |

Remark 3.4.6.

Only the uniform convergence of the series of functions Z:j:] u,(x) on [ab] is

not sufficient to ensure validity of term by term differentiation of the series on [a,b] .

Example 3.4.5.
Let us consider the series of functions Z; u,(x) on [01],

X x x

where UH(X): Lt 2 _1+(n_1)x2 V=2 and U, (x): R

Now

S, (x)= zn:ur(x) = (x)+u, (x)+..+u,(x), x[0,1] = 1+J;x3

r=1
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. B X _
Now lim,_ S {x)=lim, " 0vxe[0,1]

Therefore the sequence {Sn (x)} converges pointwise to the function

S(x), where S(x)zO, 0<x<l.
Let

x)|— su

[ S(x)zO, and x> 0,1+ nx’ >0]

[o|]1+nx

Now for x>0,

=+ nx 1
X > ,’—-nx (3.4.8)
2 X

the equality occurs when nx = % ie, x= L[ x> 0]

From (3.4.8)
1+ nx ' as X < 1
2x l+mx”  2m
and
by 1 1
— at X=—F
1+ rmx 2J;_; \/;
For x= 0' =0
1+nx

X
Therefore teo ]1+nx = 2\/?—1

1
M= xﬁg?ll (x)‘_%/r_:

Now lim,__M =Ilim

By m =

Which implies that the sequence {Sn (x)} is uniformly convergent on [0,1].

131
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Hence the series of functions Z:;l un(x) converges uniformly to the function

S(x) on [0,1]. Now

b

- (1 +nx2)- 1—-x(2nx) 1

25, (x)) = 2 X
a‘x{ } (1+nx3) (1+nx2)

~AimS(x) =0, if O<x<l

=1 if x=0.

Therefore the series Z:;l u,(X) converges to the function g(x),
where
g(x)=0, if0<x<l
=1 if x=0.

Now %[u,(x)+113(x)+...]:Ozuf(x)+u;(x)+... when 0 <x<I1,

But %[u,(x)+u2(x)+.”:|¢u{(x)+u;(x)+”. when x=0,

Hence only the uniform convergence of the series of functions is not sufficient to
ensure validity of term by term differentiation of the series.

Remark 3.4.7.
If the series of functions Z:;l u,(x) be convergent on [a,b], then the uniform

convergence of the series u,(x)+u,(x)+.. on [a,b] is only a sufficient but not

necessary condition for the validity of term by term differentiation of the series

3 u,(x).

3.5 Illustrative Examples

Example 3.5.1.

24}

. X _ _
Prove that the series znzlm is uniformly convergent for all real x.
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Solution :
Here f,(x) P

When x=0,u,(x)=0
n :
T4 and #°|x| and get

When x =0, we take two numbers | xl

|§| +n*|x| —

e H-n ||
n

the equality occurs when H_ || or |x] Jn

or, ﬁ =n’lx| = 2

Then (u (x
n(x)|s=%VerE{ and vrneN.

2n?
<M, VneN.

If we take M, = 3,
2n?
3 is a convergent series of positive real numbers.

The series Z M, Z
2}12
2 1s uniformly convergent for all real x

Then by Weierstrass’s M-test, Zn_] PRI

Example 3.5.2.
n+1)
Show that the series Z ( 3) is uniformly convergent on [-3,3]
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Solution :

Here u,(x)= %(

| =

),,

(n+1) ( )

u,(x)|=

H

<1 ie, 3<x<3.

Now |un(x)|s(L3+%+Lj) vneN and x € [-3,3
n n

n
1,2
We take A, =(—3+—4
woon
We know zn 157

g therefore |u x)|<M V,eN and xe[-33].

is convergent when p>1.

=" M, is a sum of three convergent sequence.

Therefore .

Therefore by Weierstrass’s Af-test, we conclude that Z

convergent on [-3,3].

Example 3.5.3.

Y. M, is convergent.

n+l .
—)( i) is uniformly
# 3

Prove that the series x* + -+

Solution :

Let u,(x)= ﬁ

S (x)=u,(x)+u,(x)+..u,(x)

and

=} 142 1

++... is not uniformly convergent on [0,1].

L1

I+ x°

(1+x3)

-+ = +...

(L)
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When x=0,8,(x)=0.
When 0<x<1,

‘1 1 I
S, (x)=x% {1+ =(l+x3)[l— 1 ‘|

1_1+1x (l+x3)"

Now
hmS,(x) =0, if x=0

Ky

=(1+x2), if 0<x<lI,

Hence the sequence {S,(x)} converges pointwise to the limit function $(x),
where

S(x)zO, for x=0,

- for O<x<l,

C1+x

Now S(x) is not continuous at x=0. So S(x) is not continuous on [0,1] Now

each §,(x) is continuous on [0,1]. Therefore the sequence {S,(x)} is not uniformly

convergent on [0,1]. Consequently, the series x3+11x3+( X ) +... is not
1+x°

uniformly convergent on [0,1].

3.6 Exercise 2

1. Find the pointwise limit of the following series of functions ZQ:] x”(l—x”)
on [0,1].
2. Find the sum function of the series Y. (1-x)x", 0 <x=<1. Hence state with

reason weather the series is uniformly convergent on [0,1] or not.

3. State Cauchy’s principle of convergence of a series of fnctions defined on an
interval.
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. = coskx
Prove that the series Zk:,—

2 converges uniformly in —R < y <R, where R

is a real number.

@ COSX’ ”
#1550

4. State Weierstrass’s Af-test and apply this to prove the series Z

uniformly convergent for all xe[—3, 2].

5. Find the sum function of the series * ' 1+ x° (1+x4)d (1+x4)3

0<x=<1
Hence examine weather the series is uniformly convergent on [0,1].

0

6. Show that the series of functions > an ;ine ” is uniformly convergent onJg .

@ X
7. Using Welerstrass’s A{-test show that the series Zn=1 n(l + nxz) is uniformly

convergent on any interval [a,5].

Answer :

1. f(x)=0,0<x<]

2. §(x)=1, 0<x<1 and f(x)=0, x =1, Not uniformly convergent on [0,1].
5. 8(x)=0, x=0 and S(x)=1+x* 0<x<1 Tt is not uniformly convergent

on [0,1].

3.7 Limit Superior and Limit Inferior

We know that every convergent sequence is bounded but not every bounded
sequence is convergent. With every bounded sequence, however, we associate two

real numbers upper limit or linit superior (p) and lower limit or limit inferior ().

A bounded sequence converges only when A=p.
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(A) For a Bounded sequence {xn} of Real Numbers:

Definition 3.7.1. [First Definition of [\ and },]
1. A real number W is said to be the limit superior of the bounded sequence {xn}
if W satisfies the following two conditions :
(i) For every g >0, 3 only a finite number of members of {xn} which are > +g,
i.e., for every € >0, 3 a positive integer N such that
n>N=x <p+s.
(ii) Given & >0 and given positive number m, 3 a positive integer n>m such

that x,>n—g. We write

L =lim supx, or limx,.
2. A real number 3, is said to be the limit inferior of the bounded sequence
§x,} if A satisfies the following tow conditions :
(i) For every & >0, 3 only a finite mimber of members of {x,} less than ), —g,
ie., for every € >0, 3 a positive integer n, such that
n>n, =X, 2Ah-¢.
(ii) Given & >0 and given positive number m, 3 a positive integer n>m such
that x, <A+g. We write

A =liminf x, or limx,

Definition 3.7.2. [Second Definition of |\ and } ]

Let {x,} be a bounded sequence of real numbers. We collect all the subsequential

limits of {x,}. This collection is denoted by E, i.e., each member of E is the limit of

a convergent sub-sequence. The set E is clearly non-empty and bounded; hence E
has a glb and lub. We now define

(1) The lub or supremum of E as the limit superior |\ of the sequence {xn} ; we

write |L=lim supx, or limx,.
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(i) The glb or infimum of E is called the limit inferior 3, of the sequence{xn}.

Then we write A =lim inf x, or limx,.

B. For unbounded Sequence {x,} of Real Numbers :

(1) If {x,} is unbounded above, then lim supx, =+
(i) If {xn} is unbounded below, then lim infx, =—.

(i) 1If {xn} is unbounded below, and there is no other sub-sequential limit then

its hmit inferior 1s also —90, so that

limx, =limx, — o
(iv) If {xn} is unbounded above, and there is no other sub-sequential limit then
its limit inferior is also +oc, so that
limx, = limx, +o.
Example 3.7.1.
The bounded sequence {(—1)n} ={-L+L-L+L..} has limit inferior 3 =—1 and

limit superior W= +1. There are only two sub-sequence limits {-1,1} for the sequence
{(—1)"} Here A=, the sequence oscillates finitely between -1 and +1.

Example 3.7.2.

E E E

R

3 _
2

W |
W |

The sequence {—2,2— ,} has ) =—1 and n=1.

Remark 3.7.1.

Observe that none of the terms of the sequence lies between -1 and +1, ie., -1
is not a lower bounded and +1 is not an upper bound.

Remark 3.7.2.

The lower limit of a sequence is not necessarily the glb of the sequence, nor is
the upper limit the Iub. In fact, the lower limit may not even be alower bound, as we
can be seen from example 3.7.2 above.
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Example 3.7.3.

Let us consider the sequence {xn} where X, = sin%(n =123, 4,--').

The sequence {x,}is

(80508 5

2 E 2 T 2 1 ?3 1

The sub-sequential limits are

oS

, 0 and —g as those terms occur infinitely
many times in the sequence.

limx, = —ﬁ and limx, = +§

Important Inequalities:

Theorem 3.7.1.
If {x,} and {p,} are bounded sequence of real numbers, then
(i) lim(x, +y,) <limx, +limy,.

(i) lim(x, +y,)=limx, +limy,

Proof. Let limx,p, limy, =, lim (x,+y,)=H
To prove
L+,
Let ¢ be any arbitrary bpositive number ; 3 positive integers m, and m, such

that
X, < +%8, Yrzm,
Y, <U, +%e, Ynzm,

Hence, x,+y, <(W, +Wn,)+&, Vn=m, where m=max(m,m,).

This proves that ﬁ(x" + yn) cannot exceed p, +L,(¢being arbitrary)



140 NSOU « CC-MT-09

o,
E(J{n + Y, ) S,
e,
lim(x, +y,) <limx, +limy,
Proof of (77) is similar to (7). |

3.8 Power Series

We have studied sequence and series of functions in the previous sections. Here
we will study a special type of series of functions, which are called Power Series. We
will first define power series and then discuss about its convergency and some
important properties.

Definition 3.8.1.
ki n n
A series of the form Zan(x_xo) =a,+q (x_x0)+“'+an(x_x0) o
n=0
whose terms are powers of x—x, multiplied by constants is called a power
series. 10 study power series, it is sufficient to assume that x, =0, since the substitution
o . . “ tn
x—x,=X" transforms the series into the form an X" . Hence let us take
“ n 2 n
D ax = a, Fax+ax’F ax
=0 A #
as the general type of power series in x.

Example 3.8.1.

24}

- - - + + " '
1+ 2x +3x> +. w0 IS a power series which can be written as Z" a.x”, where

=

a,=n+l.
Convergence of Power Series

A power series Zﬂzoanx” is said to be convergent (non-cnvergent) at x=c,
according as the infinite series ano ac” is convergent (non-cnvergent) . Clearly any

- “ Hoor
power series ano a x” is always convergent atx =0.
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There are three types of power series:
(i) If a power series is convergent for all x <k, then it is called everywhere
convergent power series.

2 3 "
. X, x X .
The power series 1+x+§+a+.”+m+..‘ is an example of everywhere

convergent power series.

(ii) If a power series does not converge for any real x(:t 0), then it is called
nowhere convergent power series.

The power series 1+ y+21x>+31x*+ 15 an example of nowhere convergent

power series.
(iif) There are another type of power series, which are convergent for some
values at x and non-convergent for other values of x.

The power series Y X" ie, |4yx4x?+. I convergent when |x|=1.

Theorem 3.8.1.

If Z:jzn a x" is convergent for x=a, it is absolutely convergent for every value
of x such that |x| < |a| If it diverges for x = b, it is devergent for all values of x such
that |x|<5|.

Proof. since the series is convergent for x =, the sequence {anx”} converges

to zero and hence there exists a positive number A such that

anx”‘ <M for every value of >0

Now, if |x|<|a|, Le, if |xfa|:x41,

anx"| = |a"x”| x|x/al" <ME".

Hence the series converges by comparison with the convergent geometrical series
with f <1.

For the proof of the second part of the theorem let if possible the power series
be convergent for x=c, where |c|>|5|Since the series is convergent fo x = ¢, then
by first part of this theorem the series would be convergent for x =}, which is a
contradiction.

Hence the series is divergent for all real x stisfying |x|>[|. ]
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Theorem 3.8.2, [Fundamental Theorem)

o
If Zn_n a x" be any power series which does not merely converge everywhere

or nowhere, then a definite positive integer R (called the radius of convergence of
A A kS # A
the power series) Exists such that Zﬂzoanx converges for every |x|<R {in fact

absolutely), but diverges for |x| > R. In the two extreme cases, we write R =0 if the

series converges only at x = (nowhere convergent) and R = 1o, When the series
converges for all x (everywhere convergent).

Proof. Suppose that the series Z; a,x” is not merely everywhere convergent or
no where convergent, so that there exist at least one point of convergence, a positive
x, and one point of divergence, a positive y, . Hence clearly x, < y,. We call [xL-,, yL-,]
by 7,. Divide [ into two equal parts and denote by [, the left or right half of 7,
according as the series diverges or converges at the middle of /.

By a continuation of the process, the intervals of the nest (/) all have the

property that Z:; ,a,x" converges at their left end point, say, x, and diverges at their

right enc point, say, y,. The number R (necessarily positive)} which the nest determines

is the required number of the theorem.

In fact, if £ be the set of x’s for which the series Z; ,a,X" converges then
R=suplx|
E

Now let any x in |x| < Rbe given. Then there exists an x, such that
|x| <|x0| <R

for which the series converges (this is by the difinition of supremum). By the
previous theorem, It converges absolutely at x. Hence it converges for all such x that

is all x for which |x|<R.
Suppose now that the series does not diverge for some x,where |x0|> R . This

means that it converges for x,. But then we have found a member of the set £ larger
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than the supremum. This is a contradiction. When R =0 or R =+, we have nothing
to prove. Hence the theorem.

Definition 3.8.2.

Let for a given power series Z:): ,A.X", E be the set of these real x's for which

the series converges. Then the number R, defined below, will be called the radius of

convergence of Z::o ax"if
() R=0,if D" a,x" converges only for x=0, ie., E={0}.

(i) R=mw, if Z:zoanx” converges only for real x ie, F =R = set of all real
numbers.
(iify R=sup__, |x|, if Z:j:n a x" converges for some x s and diverges for others.

The interval —_R < x < R is called the interval of convergence of the power series
er‘ ax’.
EE

Determination of the Radius of Convergence :

Theorem 3.8.3. [First Method: Use of Ratio Test|

24}

If R be the radius of convergence of the power series Z ax"and if

a=0 A

) a +1
Iim i

0

‘=Q((f¢0) then R=i.

"

Proof. By D’Alembert’s ratio-test, since

1
a  +x" | )
A+l |= llm

fr—bon

an+1

aﬂ

. |u )
lim [ = lim

Fr=—b oo H‘ =t oo
L

J=ald,

4]
the series Z;Oaﬂx” converges if q|x|<1 ie., |x|<1fq and diverges when

qlx|>1, ie, [x|>1/q. Thus R=1/q. Hence the theorem. |



144 NSOU « CC-MT-09

Theorem 3.8.4. [Second Method: Cauchy-Hadamard Formula)

o
. # .
For the power series Zﬂzoanx if
g =limsup #fa, |,
H—x0
[=2]

then the radius of convergence R of the series an ,a.x" is given by R=0 if

g=w, R=w if =0 and R=1/q if O0<g<w.

Also Z; ,a,X" converges absolutely if |x| <R, and diverges if |x| >R,

Proof. As a consequence of Cauchy’s root test,

lim sup ¢ anx”| =1lim supm-|x| =g

" H—

Now for convergence ¢|x|<1, which is true for all values of x if ¢=0. If
1
g =+, it holds only for x=(; if 0<g <o, it holds only if |X|{E. Hence the

theorem. O

Example 3.8.2.

Find the radiul of convegence of
-1

1 - 1 S X

X=X +sx —..= ¥ (-1} =

2 3 ;’( ) n

and discuss its convergence at each end of the interval.

Solution :

By ratio-test,

|a

#+1

.|

_ |= 1
n+l| n+l

—>1=9 as n>w.

Hence R=1/¢g=1. Thus the series is absolutely convergent for |x| <1,

. 1.1 C
Also at x =1, the series becomes 1—§+§—--- which 1s seen to convergent and

. 1,1 N .
at y =—1, the series takes the form —(1 +5+§+.”) which is clearly divergent. Thus

the series convergens in -] <x<1.
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Example 3.8.3.

Find the interval of convergence of

5 5 . _1)”—1 x2n—l
S S ) S

X—

3t s - (2?7—1)!
Solution
Here
un+1 _ _(2\"—1)' 3| x2
| u, |_ (2??+1)!X a 211(2n+1) —>0<1 a5 >,

So the series is absolutely convergent for all values of x.
Example 3.8.4.

Find the radius of convergence of the power series
2 3
1+5+(£) +(5) +...
313 3
Solution :

sl
. . = X
Here the given power series is an ,a,x", where @, :(3) :

If R be the radius of convergence, then by Cauchy-Hadamard formula we have

1 _ . 1\" _ 1
_=l Il — - —
RSP (3) 3

Hence R =3 is the radius of convergence of the given power series.

Some Properties of Power Series :

Theorem 3.8.5,

an n + - +
Let anoanx . be a power series with radius of convergence R(> 0) . Then the
series is uniformly convergent on [-s,s], where 0 <s<R.

Proof. Let u,(x)=a,x", nz0
Since R is the radius of convergence of the power series, the series is absolutely

convergent for all real x satisfying |x| <R.
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Sience O « s <« R, the series Z::Uanx” is absolutely convergent for all x satisfying
|ﬂ£s<R.

Therefore the series Z:j:n

L M
. | is convergent.

(x ‘a x"

Let M =

Then Z:=UM . 1s a convergent series of positive real numbers and for all ne N,
|un(x)| <M, forall xe[-s,s].

By Weierstrass’s M-test, the series »_ #,(x) is uniformly convergent on [-s, s].

Consequently, the series ZL u,(x), i.e, the power series Z; a,x" is uniformly

convergent on [-s,s]. ]

Theorem 3.8.6. [Continuity in the Sum.)

A power series represents a continuous sum-function within its interval of
convergence. That is, suppose the power series

D.ax" converges for x| <R (3.8.1)
n=0

and define
S(x):za"x” for |x|]<R.
Then the functions S(x) is continuous on [a, b] where _R<a<h<R.
Proof. Let x, be any point on [a,5]. For continuity of S(x) at x,, we are to
show that for any given ¢ > (0, there must correspond a 6(8) such that
S (x)=S{x )| <& for [x-x|<85.

Now for any #, (taking S(x)=a,+ax+ax’+. .+ anx”)
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|5 (x)=S(x)|=|S(x)=S,(x)+S,(x)=S,(x)+S,(x)-S(x)
<|S(x)=S, (x)|+|S. ()-8, (x)|+|S, (x)-S(x)]. (382

Again (3.8.2) being uniformly convergent to S(x) on [a,], for any given ¢ >0
there exists a positive integer N (independent of x) such that

Sn(x)_S(X)|{% for n> N and for all x on [a,5].

Since x, is any point on [a,5],

Sn(xl)_S(xl)|<%a for p>N .

Next, S,(x)=a,+ax+a,x’+..+a,x" is a continuous function and hence there

must exist a 6(8) for any given g >0 and for a fixed #>N such that

|5, (x)-S(x)|< % , whenever |x—x|<35.

Thus (3.8.2) gives,

|S(x)—S(x,)| <%+%+%=8 for |x—x1|<6,

Since x, is an arbitrary point on [a,5], the theorem extablished. 1
Theorem 3.8.7. [Integration of Power Series.]

A power series may be integrated term by term in any closed interval which lies
entirely within its interval of convergence. That is, suppose the power series
24X convrges for x| <R (383)
and define

Ll

S(x)=2 ax" for |x|]<R.

=i

Then for —_R<a<b<R
Ibé'(x)dx= Ibaocbc+falxdzx+“.+ranx"dr+.‘_

Proof. Let S, (x)=a,+ax+a,x’+..+a,x" Now (3.8.3) converges uniformly to
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S(x) on [a,b] and, therefore, for a given g >0, there exists a positive integer N

(independent of x) such that

Sn(x)—S(x)|<ﬁ for n> N and for all x on [a,5] (3.8.4)

Again since (3.8.3) represents a continuous sum-function S(x) on [a,5], and

hence integrable on [a,b] . we have for » > N and with the help of (3.8.4),
Ij S, (x)dx— _..T S (x)dx|= |jf {5, (x)- S (x)}dx

<15, (x)-S (@) < [ e = Ex(b-a)=s

and the theorem follows.

O

Theorem 3.8.8. [Differentiation of Power Series|

A power series may be differentiated term by term in any closed interval which
lies entirely within its interval of convergence. That is, suppose the power series

24X converges for x| <R (385)
#=0

and define
$(x)=ax" for |s|<R. (3.8.6)

Then the function S (x) is differentiable on [a, b] where _R<g<bh< R, and

24}
1 —1
S(x)=2rnax" i g<x<b. (3.8.7)
n=1
Proof. Let S,(x)=a,+ax+ax’+. . +ax" Since 4 51 as n—>x,

limsup ¢|ra,| = limsup #la,
H—x0 o

so that the series (3.8.6) and (3.8.7) have the same interval of convergence

(=R R) . Since (3.8.7) is a power series, it converges uniformly to a function ¢(x),
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say, on [a,b], where —R <a <b < R. Integrating term by term for any x on [a,5],

Lxd)(x) dx = if: nax"" dv = i{anx” —ana”}

=1

— i{anx” —a"a"} =S(x)-S(a),

#=0

Hence,
d d{o ,
&l oo = LS ()= 5(a)} =5 ()
Since ¢(x) is continuous on [a,b], we have ¢(x)=S5'(x). Hence the theorem.

O

Theorem 3.8.9. [Abel’s Theorem (Limit Form).]

kS # A . .. A
If anoanx be a power series with finite radius of convergence R, and let
[=2]
f(x)= Dlax", —R<x<R
n=0
. ks #
If the series Zﬂzoanx converges, then

lim f{x)= iaﬁR”‘

xR0 "
=

Proof. Let us first show that there is no loss of generality in taking g 1.
Put x =Ry, so that

2 ax" =2 aRy" =3 by where b, =a R".

n=0 n=0 n=0

. . . . R 1 .
It is a power series with radius of convergence g’, where I %Rﬂ|,—1,‘ Thus it

is sufficient to prove the following;

Let an ,a,x" be a power series with unit radius of convergence and let

f(x)=2ax", -l<x<I
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. ol
If the series anoan converges, then

[Eal

lim f(x)=>a,

x> .
n=u

Let S, =a,+a,+a,+..+a, 5 ,=0, and let Z:):Oan =S, then

-]
i ax’ = i (S,-8,)x" = mz: Sx"+8 x"— zm: S, x"
=0 =0 w=1) n=0

m-1 m
_ # -1 L
=285, —x> 85 " +8 x

n=0 n=0
=(1- x)i]S" x"+8 x"

For |x|<1, when m — w0, since §, =8, and 50, we get
f(x)=(1—x)§Snx”, for 0<x<l. (3.88)

Again, since S, > .5, for g >0, there exists N such that

[, -8|<3. forall n2N (3.8.9)
Also

(1-x) > 82" =1 |a|<1 (3.8.10)

a=0

Hence for 3 > N, and using (3.8.8) and (3.8.10), we have for 0<x <1,

|f(x)—S| = ‘(l—x)iSnx"—S

- ‘(l—x)i(Sn -8)x"

=i

Sx"-8

w &y . = "
X +5(1_l) Z x

#=N+1

s(l-x)i

N
< (l—x)z §x"-8 x”+%
#=0
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But for a fixed N, (1—3‘)210

S|x” is a positive continuous function of

x, having zero value at y=1. Therefore there exists §-(Q, such that for

1-8<x<l, (l—x)z

x<—

|f(x) ‘S|< +_‘ » when 1-§ < x <1

Hence

lim f(x)=S= Za

X—1-0

O

Theorem 3.8.10. [Weierstrass Approximation Theorem.]
If fis areal continuous function defined on a closed interval [a,b] then there
exixts a sequence of real polynomials { }whlch converges uniformly to f(x ( ) on

[a.8], ie., lim,_, P,(x=f(x), uniformly on [a,b].

L]

Proof. If =4, the conclusion follows by taking P (x) to be a constant

polynomial, defined by P,(x)= f(a), for all n.
We may thus assume that a<b .

,_(x-a) . .
We next observe that a linear transformation * = (b—a) 1$ a continuous mapping

of [a,b] onto [0,1]. Accordingly, we assume without loss of generality that

a=0 b=1.
Consider

F(x)=f(x)-7(0)-x[f()-7(0)], for 0<x<1.
Here F{0)=0=F(1), and if F can be expressed as a limit of a uniformly
convergent sequence of polynomials, then the same is true for £, since f—-F'is a

polynomial. So we may assume that f(1)=7(0)=0.
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Let us further define /(x) to be zero for x outside [0,1]. Thus fis now uniformly
continuous on the whole real line.

Let us consider the polynomial (non-negative for |x|<1).

B,(x)=C,(1-%*)", n=123,.. (38.11)

Where €, independent of x, is so chosen that

[ B(x)dr=1 for n=123,_. (3.8.12)
1= C,(1-¥) ax=2C,[ (1-x) ax

2 2an_31}5(1 - x?) dx

1: 2 4Cn Cn
22C"LT(1—nx)dx:m>\/?_l
=C, <n (3.8.13)

Which gives some information about the order of magnitude of C,.

Therefore, for any &0, (3.8.13) gives

B,(x)<n(1-8%),  when d<|x|<1 (3814)
So that B, — 0 uniformly, for 6£|x|£1.
Again, let
P(x)=] f(x+1)B, (), 0<x<l

—X 1-x 1
=L f(x+t)Bn(t)dt+J'_x f(x+t)Bn(t)dt+.[l_xf(x+r)Bn (t)dr
For |x|£1, 1+x<x+7<0, for —-1<7<-x, so that x+ lies outside [0,1] and

therefore f (x+r) =0, and hence the first integral on the right vanishes. Similarly

the third integral 1s also equal to zero. Hence

P(x)=["f(x+1)B, (1)t
= [ £ (1) B, (- x)ar
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which clearly is real [polynomial.

We now proceed to show that the sequence {£,(x)} converges uniformly to £ on
[0.1].
Continuity of f on the closed interval [0,1] implies that £ is bounded and uniformly

continuous on [0,1].

Therefore there exists Af such that
M = suplq| (3.8.15)
and for any ¢ > (, we can choose §>( such that for any two points x,x, in
[0.1].
|f(x,)—f(x3)|4%, when |x, - x,|<8<1 (3.8.16)

For 0<x <1, we have

P.(x)=1 ) = |f 7Gx ()= 1)

= U_ll{f (x+t)—f(x)}3n(r)dt| [using (3.8.13)]

< [ [f(+)-f (B (0ar (~B,(1)>0)

< [ 17 (x+0)- 1 (B, (o) et

| ety = (B, (1)dt-+ [ (x+0)= £ (0B, ()

3 -3 1
<2M| "B, ()dt+Z B, (1)dt+2M [ B, (t)at
[Using (3.8.15) and (3.8.16)]
23" - 1 £
<o (1-8) {[ e farf +£
[using (3.8.13) and (3.8.15)]
52} 4B
<4Mn(1-8°) s

<g, for larg values of n.
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Thus for g >, there exists N (independent of x) such that
Pn(x)—f(x)l-(e, V=N

=lim,_, P,(x)= 7(x), uniformly on [0,1].

3.9 Illustrrative Examples

Example 3.9.1.

Find the radius of convergence of the power series

1+lx+ ﬁx2+ 13.5 ¥+

2 24 246

Solution:

Let an ,&,%" be the given power series.

1 and _1:3-5. (2n-1)
Then a,=1 and a, = 346 for all z>1.
Now
e, 1| 135 -20-1)(2n+1)  2.4.6...2n
m = = 2-4:6- .-(2n)(2n+2) 1-3-5- (2n-1)
el 2ty 2
= lim =lim ===1
i 2R+ 2 s 2+% 2

Hence the radius of convergence of the given power series is 1.

Example 3.9.2.

Let R be the radius of convergence of the power series Z:znanx" . Show that the

w+1

_ : @ X :
radius of convergence of the power series anoan-m will also be R.

Solution :

Since the radius of convergence of the power series Y. a,x” is R, so by
Cauchy-Hadamard formula,
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_ 1
lim, » |a"| :

0

a,l ie.,

1
—=limy,
=

R

The series is nowhere or everywhere convergent according as llmn_mrf|a"| =

Or Zero.
Now for the second series

F—
=lim

1
" (1)

lim [——
n+l

Wb

= Tim gfa,| |- lim —L=1
H—s 20 m—>c.0(

n+1)15

[using L’Hospital rule]

Therefore it is proved that the radii of convergence of the power series Z:: Sa, X"

1

nt+
w X
and Z*Fﬂ'a"‘m are same.

Example 3.9.3.

Starting form the power series expansion for log,(1+x), show that the power

2 3 4
series representing (1+x)log,(1+x)=x+ 1x_2 -~ % + 3){—4 —.. Find its radius of
convergence. Deduce that % - % + 31—4 —.0=2log,2-1,

Solution:

We know that the power series expansion of loge(1+x) is

2 _ -1 "

- <
R - . l<x<l
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This series i1s uniformly convergent and term by term integrable within its interval

of convergence, i.c, (-11]. So

=
[

-
()

-

e
.
|
—
—
T
-
k3

or, (1+x)10ge(1+X)=x+?—ﬁ+ﬂ—..‘+w+

Let Z:zoa,,x" be the form of the above power series, where

-
a,= ((n—)l)n’nz 2, =1 Now

()"

n—>c-0| an I H—dD (_1)" “ noo pr+1
(n-1)n
So the radius of convergence 1s 1.
When x =1, the series becomes
11 .1 (=
137 33%53 ey

which 1s an althernating series and it is convergent by Leibnitz’s test.
Hence by Abel’s theorem
1

1
2log 2=l+—————+
08 1.2 23 3.4 (n+1)

1 1
Therefore 132 23 + 3.4
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3.10 Summary

1.

LN

In Section 3.1 we have focussed on pointwise convergence and uniform
convergence of sequence of functions, Cauchy Condition for Uniform
Convergence, Test for uniform convergence and different theorems on
uniform convergence and continuity, uniform convergence and integrability
and uniform convergence and differentialbility.

In Section 3.4 we have focussed on pointwise convergence and uniform
convergence of series of functions, Cauchy Condition for Uniform
Convergence, Test for uniform convergence and different theorems on
uniform convergence and continuity, uniform convergence and integrability
and uniform convergence and differentiability.

In Section 3.7 we have discussed difinition some theorems on Limit superior
and Limit Inferior,

In Section 3.8 we have studied convergence and absolute convergence of
power series and discussed some tests (Abel’s Test) for convergence of
power series and different theorems regarding term by term integration and
term by term differentiation of power series. Also we focussed on
Weierstrass’s Approximation Theorem.

3.11 Exercise 3

1. Verify the interval of convergence of the following series :

O 1+x+x*+3°+ . for-1<x <l

2 3
(i) 1+l+x—+x7+... for —1<x<1

35

(it 1+2x+3x+4x+. for —1<x <1

vy 1+ +
(v) 1+

(v) x+

XE
2
XE xS Xn
. ——
2-10 3.10° n-10""

XS
+—=+.. for-4<x<4
2

+.. for -10<x <10

2. Calculate the radi of convergence of the following series:

. . xn N . xn
(f) Zn:l? (”) Zn:ln_2

(iii) Z;(n% N 1)”,{' ) (1y'm,

nﬂ
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3. Give example to show that a power series Z:): ,@,X" may be convergent

for all values of x, for a certain region of values of x or for no value of x
exceptx =0.

4. Prove Abel’s theorem in the form: If the power series ijoanx" has a

finite non-zero radius of convergence R and if it converge at X =R then
it converges uniformly in —R < x<0.

5. Find the series for log,(1+x) by integration and use Abel’s theorem to

show that 1—%+%—%+‘..=log2_

6. Find by integration or otherwise the power series for tan™' x in the form

mn"'x=x—%x3+%x5—%x?+..., —1=x<1

and show that

Show that f'{x)=2x f(x) in —o<x <.

8. Prove the following :
(i) A power series can be integrated term by term in any closed interval
wich lies entirely within its interval of convergence.
{(il) A power series may be Differentiated term by term in any closed interval
wich lies entirely within its interval of convergence.

Answer :
2. () 1 (i) 1

i) 5 ) e
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