
PREFACE
In a bid to standardize higher education in the country, the University Grants 

Commission (UGC) has introduced Choice Based Credit System (CBCS) based on 
five types of courses viz. core, discipline specific, generic elective, ability and skill 
enhancement for graduate students of all programmes at Honours level. This brings in 
the semester pattern, which finds efficacy in sync with credit system, credit transfer, 
comprehensive continuous assessments and a graded pattern of evaluation. The 
objective is to offer learners ample flexibility of choose from a wide gamut of courses, 
as also to provide them lateral mobility between various educational institutions in 
the country where they can carry their acquired credits. I am happy to note that the 
University has been recently accredited by National Assessment and Accreditation 
Council of India (NAAC) with grade ‘‘A’’.

UGC (Open and Distance Learning Programmes and Online Programmes) 
Regulations, 2020 have mandated compliance with CBCS for U.G. programmes for 
all the HEIs in this mode. Welcoming this paradigm shift in higher education, Netaji 
Subhas Open University (NSOU) has resolved to adopt CBCS from the academic 
session 2021–22 at the Under Graduate Degree Programme level. The present syllabus, 
framed in the spirit of syllabi recommended by UGC, lays due stress on all aspects 
envisaged in the curricular framework of the apex body on higher education. It will be 
imparted to learners over the six semesters of the Programme.

Self Learning Materials (SLMs) are the mainstay of Student Support Services 
(SSS) of an Open University. From a logistic point of view, NSOU has embarked 
upon CBCS presently with SLMs in English/Bengali. Eventually, the English version 
SLMs will be trnslated into Bengali too, for the benefit of learners. As always, all 
of our teaching faculties contributed in this process. In addition to this we have also 
requisitioned the services of best academics in each domain in preparation of the new 
SLMs. I am sure they will be of commendable academic support. We look forward to 
proactive feedback from all stakeholders who will participate in the teaching-learning 
based on these study materials. It has been a very challenging task well executed, and I 
congratulate all concerned in the preparation of these SLMs.

I wish the venture a grand success.

Professor (Dr.) Subha Sankar Sarkar
                                                                                  Vice-Chancellor
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Unit - 1	 	 Set Relation and Mappings

Structure
1.1 	 Objectives
1.2 	 Introduction
1.3 	 Sets
1.4 	 Relations
1.5 	 Functions
1.6 	 Summary
1.7 	 Worked Examples
1.8 	 Model Questions

1.1	 Objectives
	 The following are discussed here:
	 * Definition of set and subset
	 * Elementary operations on sets, De Morgan’s law, Cartesion product
	 * Definition of relation
	 * Relfexive, Symmetric, transitive and equivalance relation
	 * Equivalance class
	 * Defintion of function/ mapping
	 * Onto mapping, one-one mapping and bijective mapping

1.2	 Introduction
Set theory is the branch of mathematical logic that studies sets, which can be 

informally described as collections of objects. Although objects of any kind can be 
collected into a set, set theory, as a branch of mathematics, is mostly concerned with 
those that are relevant to mathematics as a whole. In this unit, some basic introduction 
of set theory along with the concept of relation and mappingare to be discussed.

1.3 	 Sets

A set is a collection of objects, called the elements or members of the set. The 
objects could be anything (planets, squirrels, characters in Shakespeare’s plays, 

7
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orother sets) but for us they will be mathematical objects such as numbers, or sets of 
numbers. We write x ∈ X if x is an element of the set X and x ∉ X if x is not an element 
of X.

Sets are determined entirely by their elements. Thus, the sets X, Y are equal, 
written X = Y , if

x ∈ X   if and only if   x ∈ Y.

It is convenient to define the empty set, denoted by ∅, as the set with no 
elements. (Since sets are determined by their elements, there is only one set with no 
elements!) If X ≠ ∅, meaning that X has at least one element, then we say that X is 
nonempty.

We can define a finite set by listing its elements (between curly brackets). For 
example,

X = {2, 3 , 5, 7, 11}

is a set with five elements. The order in which the elements are listed or repetitions 
of the same element are irrelevant. Alternatively, we can define X as the set whose 
elements are the first five prime numbers. It doesn’t matter how we specify the 
elements of X, only that they are the same.

Infinite sets can’t be defined by explicitly listing all of their elements. 
Nevertheless, we will adopt a realist (or “platonist”) approach towards arbitrary 
infinite sets and regard them as well-defined totalities. In constructive mathematics 
and computer science, one may be interested only in sets that can be defined by a rule 
or algorithm — for example, the set of all prime numbers — rather than by infinitely 
many arbitrary specifications.

1.3.1 Numbers : The infinite sets we use are derived from the natural and real 
numbers, about which we have a direct intuitive understanding. 

Our understanding of the natural numbers 1, 2, 3, . . . derives from counting.We 
denote the set of natural numbers by

	  = {1, 2 , 3, . . . }.

We define  so that it starts at 1. In set theory and logic, the natural numbers are 
defined to start at zero, but we denote this set by 0 = {0 , 1, 2, . . . }. Historically, the 
number 0 was later addition to the number system, primarily by Indian mathematicians 
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in the 5th century AD. The ancient Greek mathematicians, such as Euclid, defined a 
number as a multiplicity and didn’t consider 1 to be a number either.

Our understanding of the real numbers derives from durations of time and 
lengths in space. We think of the real line, or continuum, as being composed of an 
(uncountably) infinite number of points, each of which corresponds to a real number, 
and denote the set of real numbers by .

We denote the set of (positive, negative and zero) integers by
 = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . . },

and the set of rational numbers (ratios of integers) by

 = {p/q : p, q ∈  and q ≠ 0}.

The letter “Z” comes from “zahl” (German for “number”) and “Q” comes from 
“quotient.”  These number systems are discussed further in unit 2.

Although we will not develop any complex analysis here, we occasionally make 
use of complex numbers. We denote the set of complex numbers by

 = {x + iy : x, y ∈ } ,
where we add and multiply complex numbers in the natural way, with the additional 
identity that i2 = −1, meaning that i is a square root of −1. If z = x + iy ∈ , we call x = 
ℜz the real part of z and y = ℑz the imaginary part of z, and we call

| |z x y= +2 2

the absolute value, or modulus, of z. Two complex numbers z = x + iy,  w = u + iv are 
equal if and only if x = u and y = v.

1.3.2 Subsets : A set A is a subset of a set X, written A ⊆ X , if every element of 
A belongs to X; that is, if

x ∈ A implies that x ∈ X.
We also say that  A is included in X. For example, if P is the set of prime 

numbers, then P ⊆ , and  ⊆ . The empty set ∅ and the whole set X are subsets of 
any set X. Note that X = Y if and only if X ⊆ Y and Y ⊆ X; we often prove the equality 
of two sets by showing that each one includes the other.

If A ≠ X but A ⊆ X, then A is called a proper subset of X and is denoted by A ⊂ 
X. In our notation, A ⊆ X does not imply that A is a proper subset of X (that is, a subset 
of X not equal to X itself), and we may have A = X.
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A B

Fig. 1.1 : Venn diagram of set A with a subset B

Definition 1.3.3 : The power set P (X) of a set X is the set of all subsets of X.

Example 1.3.4 : If  X = {1, 2, 3}, then
P (X) = {∅, {1}, {2}, {3}, {2, 3}, {1, 3}, {1, 2}, {1, 2, 3}} .

The power set of a finite set with n elements has 2n elements because, in defining 
a subset, we have two independent choices for each element (does it belong to the 
subset or not?).  In Example 1.3.4, X has 3 elements and P(X) has 23 = 8 elements.

The power set of an infinite set, such as , consists of all finite and infinite 
subsets and is infinite.

We imagine that a general subset A ⊆  is “defined” by going through the 
elements of  one by one and deciding for each n ∈  whether n ∈ A or n not belongs 
to A.

If X is a set and P is a property of elements of X, we denote the subset of X 
consisting of elements with the property P by {x ∈ X : P (x)}.
Example 1.3.5 : The set

{n ∈  : n = k2 for some k ∈ }
is the set of perfect squares {1, 4, 9, 16, 25, . . . }. The set

{x ∈  : 0 < x < 1}
is the open interval (0, 1).

1.3.6 Set operations : The intersection A ∩ B of two sets A, B is the set of all elements 
that belong to both A and B; that is

x ∈ A ∩ B if and only if x ∈ A and x ∈ B.
Two sets A, B are said to be disjoint if  A ∩ B = ∅; that is, if A and B have no elements 
in common.

The union A ∪ B is the set of all elements that belong to A or B; that is
x ∈ A ∪ B if and only if x ∈ A or x ∈ B.
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A A∩B BA B

                   Fig. 1.2 :  Union of A and B                     Intersection of A and B

Note that we always use ‘or’ in an inclusive sense, so that x ∈ A ∪ B if x is an element 
of A or B, or both A and B. (Thus, A ∩ B ⊂ A ∪ B.)

The set-difference of two sets B and A is the set of elements of B that do not 
belong to A,

B \ A = {x ∈ B : x ∉ A} .
If we consider sets that are subsets of a fixed set X that is understood from the context, 
then we write Ac = X \A to denote the complement of A ⊂ X in X.  Note that (Ac)c = A.

A

X\A

 Fig. 1.3 : Complement of A

Example 1.3.7 : If
A = {2, 3, 5, 7, 11},        B = {1, 3, 5, 7, 9, 11}

then
A ∩ B = {3, 5, 7, 11},   A ∪ B = {1, 2, 3, 5, 7, 9, 11}.

Thus, A ∩ B consists of the natural numbers between 1 and 11 that are both prime and 
odd, while A  ∪ B consists of the numbers that are either prime or odd (or both). The 
set differences of these sets are

B \ A = {1, 9},      A \ B = {2} .
Thus, B \ A is the set of odd numbers between 1 and 11 that are not prime, and A \ B is 
the set of prime numbers that are not odd.

If A, B ⊂ X, we have De Morgan’s laws:
(A ∪ B)c = Ac ∩ Bc,      (A ∩ B)c = Ac ∪ Bc
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(A ∪ B)
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 ∪   

   A            B

   A              B   A              B

Fig. 1.4 : De Morgan’s laws

The Cartesian product X × Y of sets X, Y is the set of all ordered pairs (x, y ) with 
x ∈ X and y ∈ Y.  If  X = Y , we often write X × X = X2. Two ordered pairs (x1, y1), 
(x2, y2) in X × Y  are equal if and only if x1 = x2 and y1 = y2. Thus, (x, y) ≠ (y, x) unless  
x = y. This contrasts with sets where {x, y} = {y, x} .

Example 1.3.8 :  If X ={1, 2, 3} and Y = {4 , 5} then

X × Y = {(1, 4), (1, 5), (2, 4) , (2, 5), (3, 4), (3, 5)} .

Example 1.3.9 : The Cartesian product of  with itself is the Cartesian plane 2 

consisting of all points with coordinates (x, y ) where x, y ∈ .

A B
A×B

=×

Fig. 1.5 : Cartesian Product of Two Sets.
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The Cartesian product of finitely many sets is defined analogously.

Definition 1.3.10 : The Cartesian products of n sets X1 , X2, . . . , Xn is the set of 
ordered n-tuples,

X1× X2 × . . . × Xn = {(x1, x2 , . . . , xn ) : xi ∈ Xi for i = 1, 2, . . . , n}, where (x1, x2 
, . . . , xn

 
) = (y1, y2 , . . . , yn) if and only if xi = yi for every i = 1 , 2, . . . , n.

1.4	 Relations
A relation R on two non-empty sets X and Y is a rule that associates some or all 

the elements of X with some elements or element of  Y . We write xRy if x ∈ X and 
y ∈ Y are related. One can also define relations on more than two sets, but we shall 
consider only binary relations and refer to them simply as relations. If X = Y , then we 
call R a relation on X

1

A B

xRy

1

2 2

3 3

 Fig. 1.6 : A relation between A and B

The relation R between two non-empty sets X and Y is a subset of  X × Y, i.e.,
R = {(x, y) : xRy,      x ∈ X  and  y ∈ Y } ⊆  X × Y.

Example 1.4.1 : Suppose that S is a set of students enrolled in a university and B is a 
set of books in a library. We might define a relation R on S and B by :

s ∈ S has read b ∈ B.
In that case, sRb if and only if s has read b. Another, probably inequivalent, relation is:

s ∈ S has checked  b ∈ B out of the library.
Example 1.4.2 : Let S be the set of balls in a box. Now define a relation R on S by 

xRy if and only if x and y have the same colour.
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When used informally, relations may be ambiguous (did s read b if she only 
read the first page?), but in mathematical usage we always require that relations are 
definite, meaning that one and only one of the statements “these elements are related” 
or “these elements are not related” is true.

The graph GR of a relation R on X and Y is the subset of X  × Y defined by
GR = {(x, y) ∈ X ×Y : xRy}.

This graph contains all of the information about which elements are related.

Definition 1.4.3 :  A relation R on a set S is said to be reflexive if
xRx for all x ∈ S.

Example 1.4.4 : The relation R defined on the set of real numbers  by
xRy if and only if x – y ≥ 0.

Then the relation R is reflexive on .
Example 1.4.5 : Let S be the set of all students in a class. Now a reflexive relation R 
is defined on S by

xRy if and only if x and y obtain same marks.
Not all relations satisfy the reflexive condition, see the following example.
Example 1.4.6 : Consider the relation R on the set of integers  defined by

xRy if and only if  x + y = 1.
This relation is not reflexive.
Definition 1.4.7 : A relation R on a set S is said to be symmetric if

xRy implies yRx    ∀x, y ∈ S.
Example 1.4.8 : The relation R defined on the set of real numbers  by

xRy if and only if x and y have a common divisor other than 1.
Then the relation R is symmetric on .
Example 1.4.9 : Let S be the set of all students in a school. Now a relation R is 
defined on S by

xRy if and only if x and y are from different classes.
This relation is symmetric but not reflexive.

Definition 1.4.10 :  A relation R on a set S is said to be transitive if
xRy and yRz implies xRz   ∀x, y, z ∈ S.

Example 1.4.11 :  The relation R defined on the set of integers  by
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xRy if and only if x < y.
Then the relation R is transitive on  although it is neither reflexive nor symmetric.

1.4.12 : Equivalence relations : Equivalence relations decompose a set 
into disjoint subsets, called equivalence classes. We begin with an example of an 
equivalence relation on .

Example 1.4.12.1 : Fix N ∈  and say that m R n if
m ≡ n (mod N),

meaning that m - n is divisible by N . Two numbers are related by R if they have the 
same remainder when divided by N . Moreover, N is the union of N disjoint sets, 
consisting of numbers with remainders 0, 1,. . .N − 1 modulo N .

Definition 1.4.12.2 : An equivalence relation R on a set X is a binary relation on X 
such that for every x, y, z ∈ X :

(a) x R x (reflexivity);
(b) if x R y then y R x (symmetry);
(c) if  x R y  and y R z then x R z (transitivity).

Example 1.4.12.3 : The relation R on the set of integers defined by
x R y if and only if x – y is divisible by 2.

This relation is reflexive since x – x = 0 is divisible by 2. It is easy to check that this 
relation is symmetric and also transitive. Therefore, it is an equivalence relation.
Example 1.4.12.4 : The relation R on the set of balls in a box, S, defined by

x R y  if and only if both x and y has same colour.
This relation is an equivalence relation (check it !).
Example 1.4.12.5 : The relation R on the set of all triangles in the plane, K, defined by

x R y if and only if both x and y has same area.
This relation is an equivalence relation .

Example 1.4.12.6 : If we define a relation R on  by
x R y if and only if  x < y.

Then this relation is not equivalence as the it breaks the reflexive and symmetric 
conditions.

For each x ∈ X, the set of elements equivalent to x,
[x/R] = {y ∈ X : x R y} ,
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is called the equivalence class of x with respect to R When the equivalence relation is 
understood, we write the equivalence class [x/ R] simply as [x]. The set of equivalence 
classes of an equivalence relation R on a set X is denoted by X/ R. Note that each 
element of X/ R is a subset of X, so X/ R is a subset of the power set P(X) of X.

The following theorem is the basic result about equivalence relations. It says 
that an equivalence relation on a set partitions the set into disjoint equivalence classes.
Theorem 1.4.12.7 : Let R be an equivalence relation on a set X. Every equivalence 
class is non-empty, and X is the disjoint union of the equivalence classes of R.

Proof. If x ∈ X, then the reflexive of R implies that x ∈ [x]. Therefore every equivalence 
class is non-empty and the union of the equivalence classes is X.

To prove that the union is disjoint, we show that for every x, y ∈ X either [x] ∩ 
[y] = ∅ (if x R  y) or [x] = [y] (if  x R y).

Suppose that [x] ∩ [y] ≠ ∅. Let z ∈ [x] ∩ [y] be an element in both equivalence 
classes. If x1 ∈ [x], then x1 R z and z R y, so x1 R y by the transitivity of R and therefore 
x1 ∈ [y]. It follows that [x] ⊂ [y]. A similar argument applied to y1 ∈ [y] implies that 
[y] ⊂ [x], and therefore [x] = [y]. In particular, y ∈ [x], so x R y. On the other hand, if  
[x] ∩ [y] = ∅, then y does not belong to [x] since y ∈ [y], so x R  y.	  

There is a natural projection p : X → X / R given by p (x) = [x], that maps each 
element of X to the equivalence class that contains it. Conversely, we can index the 
collection of equivalence classes

X/ R = {[a] : a ∈ A}
by a subset A of X which contains exactly one element from each equivalence class. It 
is important to recognize, however, that such an indexing involves an arbitrary choice 
of a representative element from each equivalence class, and it is better to think in 
terms of the collection of equivalence classes, rather than a subset of elements.

Example 1.4.12.8 : The equivalence classes of  relative to the equivalence relation 
m R n if m ≡ n (mod 3) are given by

I0 = {3, 6, 9, . . . }, I1 = {1, 4, 7, . . . }, I2 = {2, 5, 8, . . . }.
The projection p :  → {I0 , I1, I2} maps a number to its equivalence class e.g. p (101) 
= I2. We can choose {1,2, 3} as a set of representative elements, in which case

I0 = [3],        I1 = [1],        I2 = [2],
but any other set A ⊂  of three numbers with remainders 0, 1, 2 (mod 3) will do. For 
example, if we choose A = {7 , 15, 101}, then

I0 = [15],        I1 = [7],        I2 = [101],
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1.5 		  Functions
	 A function f : X → Y between sets X and Y assigns to each x ∈ X a unique 
element f (x) ∈ Y . Functions are also called maps, mappings, or transformations. The 
set X on which f is defined is called the domain of f and the set Y in which it takes its 
values is called the codomain. We write f : x → f (x) to indicate that f is the function 
that maps x to f (x).

Definition 1.5.1 :  A function f  between two sets X and Y is a subset f ⊆ X × Y such that
(i) For all x ∈ X, there exists y ∈ Y such that (x, y) ∈ f
(ii) For any x ∈ X, if there exists y, y′ ∈ Y such that (x, y), (x, y′) ∈ f  then y = y′.

Fig. 1.7 : X Y
f

Example 1.5.2 : The identity function idx : X → X on a set X is the function idx : x → 
x that maps every element to itself.
Example 1.5.3 : Let A ⊂ X. The characteristic (or indicator) function of A,

χA :  X → {0 , 1},
is defined by

χA x
x A
x A

( ) =
∈
∈





1
0

if
if

Specifying the function χA is equivalent to specifying the subset A. 
Example 1.5.4 : Let A, B be the sets in Example 1.4. We can define a function  
f : A → B by

f (2) = 7,     f (3) = 1,     f (5) = 11,    f (7) = 3,      f (11) = 9,
and a function  g : B → A by

g (1) = 3,     g (3) = 7,     g (5) = 2,     g (7) = 2,     g (9)  = 5,     g (11)  = 11.
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Example 1.5.5 : The square function f :  →  is defined by

f (n) = n2,

which we also write as f : n → n2. The equation g (n) = n , where n  is the positive 

square root, defines a function g :  → , but h (n) = ± n  does not define a function 
since it doesn’t specify a unique value for h (n). Sometimes we use a convenient 
oxymoron and refer to h as a multi-valued function.

One way to specify a function is to explicitly list its values, as in Example 1.5.4 
Another way is to give a definite rule, as in Example 1.5.5 If X is infinite and f is 
not given by a definite rule, then neither of these methods can be used to specify the 
function. Nevertheless, we suppose that a general function f : X → Y may be “defined” 
by picking for each x∈ X a corresponding value f (x) ∈ Y .

If  f  : X → Y  and U ⊂ X, then we denote the restriction of  f  to U by  
 f |U : U → Y, where f |U (x) = f (x) for x ∈ U.

In defining a function f : X → Y , it is crucial to specify the domain X of elements 
on which it is defined. There is more ambiguity about the choice of codomain, 
however, since we can extend the codomain to any set Z ⊃Y and define a function  
g : X → Z by g(x) = f (x). Strictly speaking, even though f and g have exactly the same 
values, they are different functions since they have different codomains. Usually, 
however, we will ignore this distinction and regard  f and g as being the same function.

The graph of a function  f : X → Y is the subset Gf  of  X × Y defined by

Gf = {(x, y) ∈ X × Y : x ∈ X and y = f (x)} .

For example, if f  :  → , then the graph of f is the usual set of points (x, y) with y = 
f (x) in the Cartesian plane 2. Since a function is defined at every point in its domain, 
there is some point (x, y) ∈ Gf for every x ∈ X, and since the value of a function 
is uniquely defined, there is exactly one such point. In other words, for each x ∈ X 
the “vertical line” Lx = {(x, y ) ∈ X × Y : y ∈ Y } through x intersects the graph of a 
function f : X → Y in exactly one point : Lx ∩ Gf = (x, f (x)).

Definition 1.5.6 : The image, of a function f : X → Y is the set of values

Img(f  ) = {y ∈ Y : y = f (x) for some x ∈ X } .
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A

B

C

D

1

2

3

4

5

Domain               {A,B,C,D}

Image                  {2,3,5}

Codomain           {2,2,3,4,5}

Fig. 1.8 : Function

Definition: function f  : X → Y  is said to

• Onto or surjective if the image of  f  is the whole Y, i.e.,
Img(f) = Y

X

1

2

3

4

D

B

C

Y

Fig. 1.9 : Onto

• One-one or injective if each point in the image of  f  in Y has a unique pre-image in 
X, i.e.,

f (x) = f (y) implies x = y  ∀x, y ∈ X.

X

1

2

3

4

D

B

C

A

Y

Fig. 1.10 : One-one
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• Bijective if  f is both onto and one-one.
X

1 .

2 .

3 .

4 .

.D

.B

.C

.A

Y

Fig. 1.11 : Bijective

1.6	 Summary
In this chapter, we have discussed the preliminary concept in set, relation and 

functions. Various elementary operations in sets such as union, intersection etc are 
discussed. Various types of relations are presented and also some clasification of 
functions are described in pictorial notion.

1.7	 Worked examples 
1. Determine whether each of the following relations are reflexive, 

symmetric and transitive :
(i) Relation R in the set A = {1, 2, 3…13, 14} defined as
R = {(x, y): 3x − y = 0}
(ii) Relation R in the set N of natural numbers defined as
R = {(x, y): y = x + 5 and  x < 4}
(iii) Relation R in the set A = {1, 2, 3, 4, 5, 6} as
R = {(x, y): y is divisible by x}
(iv) Relation R in the set Z of all integers defined as
R = {(x, y) : x – y is as integer}

Solution :
(i)  A = {1, 2, 3 … 13, 14}
R = {(x, y): 3x − y = 0}
∴ R = {(1, 3), (2, 6), (3, 9), (4, 12)}
R is not reflexive since (1, 1), (2, 2) … (14, 14) ∉ R.
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Also, R is not symmetric as (1, 3) ∈R, but (3, 1) ∉ R. [3(3) − 1 ≠ 0]
Also, R is not transitive as (1, 3), (3, 9) ∈ R, but (1, 9) ∉ R.
Hence, R is neither reflexive, nor symmetric, nor transitive.
(ii) R = {(x, y): y = x + 5 and x < 4} = {(1, 6), (2, 7), (3, 8)}
It is seen that (1, 1) ∉ R.
∴ R is not reflexive. Now (1, 6) ∈R But, (1, 6) ∉ R.
∴ R is not symmetric. Now, since there is no pair in R such that (x, y) and (y, z) ∈R, 
then (x, z) cannot belong to R. Therefore, R is not transitive.
Hence, R is neither reflexive, nor symmetric, nor transitive.
(iii) A = {1, 2, 3, 4, 5, 6}
R = {(x, y): y is divisible by x}
We know that any number (x) is divisible by itself.
⇒ (x, x) ∈R
∴ R is reflexive. Now,
(2, 4) ∈ R [as 4 is divisible by 2] But, (4, 2) ∉ R. [as 2 is not divisible by 4]
∴ R is not symmetric.
Let (x, y), (y, z) ∈ R. Then, y is divisible by x and z is divisible by y. ∴z is divisible 
by x.
⇒ (x, z) ∈ R
∴ R is transitive.
Hence, R is reflexive and transitive but not symmetric.
(iv) R = {(x, y): x − y is an integer}
Now, for every x ∈ Z, (x, x) ∈R as x – x = 0 is an integer.
∴ R is reflexive.
Now, for every x, y ∈ Z if (x, y) ∈ R, then x − y is an integer.
⇒ −(x – y) is also an integer.
⇒ (y – x) is an integer.
∴ (y, x) ∈ R. Hence, R is symmetric.
Now, Let (x, y) and (y, z) ∈ R, where x, y, z ∈ Z.
⇒ (x – y) and (y – z) are integers.
⇒ x – z = (x – y) + (y – z) is an integer.
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∴ (x, z) ∈ R. Hence, R is transitive.
Hence, R is reflexive, symmetric, and transitive.

2. Show that the relation R in the set R of real numbers, defined as
R = {(a, b): a ≤ b2} is neither reflexive nor symmetric nor transitive.

Solution :
R = {(a, b): a ≤ b2}

1
2
1
2,( ) ∉R, since 12

1
2

1
4

2
> ( ) =

It can be observed that
∴R is not reflexive.
Now, (1, 4) ∈ R as 1 < 42 But, 4 is not less than 12.
∴ (4, 1) ∉ R
∴ R is not symmetric.
Now, (3, 2), (2, 1.5) ∈ R (as 3 < 22 = 4 and 2 < (1.5)2 = 2.25) But, 3 > (1.5)2 = 2.25
∴ (3, 1.5) ∉ R
∴ R is not transitive.
Hence, R is neither reflexive, nor symmetric, nor transitive.

1.8	 Model Questions
A	 1. 	 Do the following relations represent functions? Why?
	 (a) 	 f :  →  defined by
	 i. 	 f = {(x, 1) : 2 divides x}∪ {(x,5) : 3 divides x}.
	 ii. 	 f = {(x, 1) : x ∈ S} [ {(x, −1) : x ∈Sc}, where S = {n2 : n ∈ } and Sc =  \ S.
	 iii. 	 f = {(x, x3) : x∈ }.
	 (b) 	 f  : + →  defined by f = {(x, ± x ) : x ∈ +}, where + is the set of all 

positive real numbers.
	 (c) 	 f :  →  defined by f  = {(x, x ) : x ∈ }.
	 (d) 	 f :  →  defined by f = {(x, x ) : x ∈ }.
	 (e) 	 f : – →  defined by f = {(x, loge |x|) : x ∈ –}, where – is the set of all 

negative real numbers.
	 (f ) 	 f :  →  defined by f  = {(x, tanx) :  x ∈ }.
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	 2. 	 Let f : X → Y be a function. Then  f –1 is a relation from Y to X. Show that the 
following results hold for f –1 :

	 (a) 	 f –1(A ∪ B) = f –1(A) ∪  f –1(B) for all A, B ⊆ Y .
	 (b) 	 f –1(A \ B) = f –1(A) \ f –1(B) for all A, B ⊆ Y .
	 (c) 	 f –1(∅) = ∅.
	 (d) 	 f –1(Y ) = X.
	 (e) 	 f –1(Y \ B) = X \ ( f –1(B)) for each B ⊆ Y .

	 3. 	 Let S = {(x, y) ∈ 2 : x2 + y2 = 1, x ≥ 0}. It is a relation from  to . Draw a 
picture of the inverse of this relation.

B	 Determine the equivalence relation among the relations given below. Further, for 
each equivalence relation, determine its equivalence classes.

	 1. 	 R = {(a, b) ∈ 2 : a ≤ b} on .
	 2. 	 R = {(a, b) ∈ * × * : a divides b} on *, where * =  \ {0}.
	 3. 	 Recall the greatest integer function f :  →  given by f(x) = [x] and let  = 

{(a, b) ∈  ×  : [a] = [b]} on .
	 4. 	 For x = (x1, x2), y = (y1, y2) ∈ 2 and * =  \ {0}, let

	 (a) 	 R = {(x, y) ∈ 2 × 2 : x x y y1
2

2
2

1
2

2
2+ = +  }.

	 (b) 	 R = {(x, y) ∈ 2 × 2 : x = ay for some a ∈ *}.
	 (c) 	 R = {(x, y)∈ 2 × 2 : 4 9 4 91

2
2
2

1
2

2
2x x y y+ = + }.

	 (d) 	 R = {(x, y) ∈ 2 × 2 : x – y = a(1, 1) for some a ∈ *}.
	 (e) 	 Fix c ∈ . Now, define  = {(x, y) ∈ 2 × 2  : y2 − x2 = c(y1 – x1)}.
	 (f ) 	 R = {(x, y) ∈ 2 × 2  : |x1| + |x2 | = a( |y1| + |y2|)}, for some number a  ∈ +.
	 (g) 	 R = {(x, y) ∈ 2 × 2  : x1x2 = y1y2}.

	 5. 	 For x = (x1, x2), y = (y1, y2) ∈ 2, let S = {x ∈ 2 : x x1
2

2
2 1+ = }. Then, are the 

relations given below an equivalence relation on S?
	 (a) 	 R = {(x, y) ∈ S × S : x1 = y1, x2 = –y2}.
	 (b) 	 R = {(x, y) ∈ S × S : x = –y}.

	 6. 	 Let f, g be two equivalence relations on . Then, prove/disprove the following 
statements.

	 (a) 	 f ο g is necessarily an equivalence relation.
	 (b) 	 f ∩ g is necessarily an equivalence relation.
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	 (c) 	 f ∪ g is necessarily an equivalence relation.
	 (d) 	 f ∪ gc is necessarily an equivalence relation. (gc = ( × ) \ g)

7	 a. 	 Find an example of two nonempty sets A and B for which A × B = B × A is 
true.

	 b. 	 Prove A ∪ φ = A and A ∩ φ = φ.
	 c. 	 Prove A ∪ B = B ∪ A and A ∩ B = B ∩ A.
	 d. 	 Prove A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C).
	 e. 	 Prove A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C).
	 f. 	 Prove A ⊂ B if and only if A ∩ B = A.
	 g. 	 Prove (A ∩ B)′ = A′ ∪ B′.
	 h. 	 Prove A ∪ B = (A ∩ B) ∪ (A \ B) ∪ (B \ A).
	 i. 	 Prove (A ∪ B) × C = (A × C) ∪ (B × C).
	 j. 	 Prove (A ∩ B) \ B = φ.
	 k. 	 Prove (A ∪ B) \ B = A \ B.
	 l. 	 Prove A \ (B ∪ C) = (A \ B) ∩ (A \ C).
	 m. 	 Prove A ∩ (B \ C) = (A ∩  B) \ (A ∩  C).
	 n. 	 Prove (A \ B) ∪ (B \ A) = (A ∪ B) \ (A ∩  B).

	 8. 	 Prove the relation defined on 2 by (x1, y1) ∼ (x2, y2) if x y x y1
2

1
2

2
2

2
2+ = +  is 

an equivalence relation.

	 9. 	 Let  f  : A → B and g : B → C be maps.
	 (a) 	 If  f  and g are both one-to-one functions, show that g ο f is one-to-one.
	 (b) 	 If g ο f  is onto, show that g is onto.
	 (c) 	 If g ο f  is one-to-one, show that  f  is one-to-one.
	 (d) 	 If g ο f  is one-to-one and  f is onto, show that g is one-to-one.
	 (e) 	 If g ο f  is onto and g is one-to-one, show that f is onto.

	 10. 	 Define a function on the real numbers by

f x x
x( ) = +

−
1
1

		  What are the domain and range of f ? What is the inverse of  f  ? Compute  
f ο f –1 and f –1 ο f.
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	 11. 	 Let  f : X → Y be a map with A1, A2 ⊂ X and B1, B2 ⊂ Y .

	 (a) 	 Prove f (A1 ∪ A2) = f (A1) ∪ f (A2).

	 (b) 	 Prove f (A1 ∩ A2) ⊂ f (A1) ∩ f (A2). Give an example in which equality fails.

	 (c) 	 Prove f –1(B1 ∪ B2)  =  f –1(B1) ∪ f –1(B2), where

f –1 (B) = {x ∈ X : f (x) ∈ B}.

	 (d) 	 Prove f –1 (B1 ∩ B2) = f –1 (B1) ∩ f –1(B2).

	 (e) 	 Prove  f –1 (Y \ B1) = X \  f –1 (B1).
	 12. 	 Determine whether or not the following relations are equivalence relations on 

the given set. If the relation is an equivalence relation, describe the partition 
given by it. If the relation is not an equivalence relation, state why it fails to 
be one.

		  (a)  x ∼ y in  if x ≥ y	 (c)	 x ∼ y in   if  |x − y| ≤ 4
		  (b)  m ∼ n in  if mn > 0	 (d)	 m ∼ n in   if  m ≡ n  (mod 6)

	 13. 	 Define a relation ∼ on 2 by stating that (a, b) ∼ (c, d) if and only if a2 + b2 ≤ 
c2 + d2. Show that ∼ is reflexive and transitive but not symmetric.

	 14.	  Show that an m × n matrix gives rise to a well-defined map from n to m.
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26

Unit - 2  		 Introduction to Groups

Structure
2.1 	 Objectives
2.2 	 Introduction
2.3 	 Binary Operation
2.4 	 Definition of Group
2.5 	 Basic properties of groups
2.6 	 Subgroups
2.7 	 Summary
2.8 	 Worked examples
2.9	 Model Questions

2.1 	 Objectives
The followings are discussed here :
• Definition of binary operation along with examples
• Definition of group
• Basic properties of group
• Definition of subgroups, centralizer, normalizer, center of a group
• Order of a group and order of an element

2.2 	 Introduction
Group theory, in modern algebra, is the study of groups, which are systems 

consisting of a set of elements and a binary operation that can be applied to two 
elements of the set, which together satisfy certain axioms. Groups are vital to modern 
algebra; their basic structure can be found in many mathematical phenomena. Groups 
can be found in geometry, representing phenomena such as symmetry and certain 
types of transformations. In this unit, we introduce the concept of group and subgroup 
and demonstrate this concept through some examples.

2.3 	 Binary Operation
Definition 2.3.1 : Let S be a set. The the binary operation * on S is a map

* : S × S → S (x, y) → x * y.
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S

S

S

Fig. 2.1 : Binary operation on S.

Example 2.3.2 : The arithmetic operations +,−,×, ... are binary operations on suitable 
sets of numbers such as ,  etc.

Example 2.3.3 : Matrix addition and multiplication are binary operations on the set of 
all n × n matrices.

Example 2.3.4 : Vector addition and subtraction are binary operations on n.

Example 2.3.5 : The vector product, or cross product, (a, b, c) × (x, y, z) = (bz – cy, 
cx – az, ay – bx) is a binary operation on 3.

Example 2.3.6 : Composition of symmetries is a binary operation on the set of 
symmetries of a triangle, square, cube,...
	 In the definition of binary operation, for any two elements from a set, the 
element produced by applying binary operation on them is also an element of the 
same set, i.e., a * b ∈ S whenever a ∈ S and b ∈ S. This property is sometimes 
expressed as : S is closed with respect to ‘*′. The notion becomes important when we 
consider restricting a binary operation to subsets of the set on which it was originally 
defined.
	 Let T be a subset of S and S is closed under the binary operation *. Then T ×T 
⊂ S × S. Now we consider the restriction of the map * : S × S → S to T × T. Then it is 
not always true that for any x * y ∈ T whenever x, y ∈ T.
For example, take S =  and define a binary operation * on S as follows :
for any

n * m = n + m + 1   for any n, m ∈ S.
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Then S is closed under *. But if we consider the set of even number E ⊂ S, then E is 
not closed under the restricted binary operation * from S. Hence, we say the following 
definition :
Definition 2.3.7 : Let the set S is closed under the binary operation *. Then we say 
that a subset T of S is closed under the restricted binary operation *
if

x * y ∈ T   whenever x, y ∈ T.
Example 2.3.8 : The set of all non-singular (non-zero determinant) n × n real matrices 
is denoted by GL(n, ). Now this set GL(n, ) closed under matrix multiplication. 
Again, consider the subset SL(n, ) of  GL(n, ), the of all matrices whose determinant 
is 1. This subset is also closed under matrix multiplication.
Example 2.3.9 : Let C be the set of all concentric circles with center at the origin. A 
circle in C with radius r is denoted by ar. Now the binary operation is defined by

ar* at = ar+t .

The set C is closed under the binary operation *.

r+t

r
t

Fig. 2.2 : Binary operation on concentric circles

Binary operation can also be imposed on real life objects, see the following 
example:
Example 2.3.10 : Let A be the set of all students in a class. Now define the binary 
operation on A as follows: for any x, y ∈ A,

x y
x x y
y

* =
≥




if age of age of 
otherwise.                

Definition 2.3.11 : A binary operation * on a set S is said to be commutative  
if  x * y = y * x for all x, y ∈ S.

In general binary operation may not be commutative, see the following example:
Example 2.3.12 : Let M (n, ) be the set of all real n × n matrices. The binary operation 
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addition is commutative on M (n, ). But the binary operation multiplication is not 
commutative on M (n, ).

2.4 	 Definition of Group 
Definition 2.4.1 : Let G be a non-empty set * be a binary operation defined in such a 
way that the following four rules are true :

1. * is closed in G, i.e., if a, b ∈ G then a * b ∈ G.
2. * is associative, i.e., a * (b * c) = (a * b) * c for a, b, c ∈ G.
3. G contains an identity element e, i.e.,

a * e = e * a = a for all a ∈ G.
4. Inverse exists in G, i.e., for any a ∈ G there exists an inverse element a′ ∈ G 
such that

a * a′ = a′ * a = e.
Then the pair (G, *) is called a group with the binary operation &.

In multiplicative notation the inverse of an element a is denoted by a–1. If G is 
commutative with respect to the binary operation *, then (G, *) is called the abelian 
group.
Example 2.4.2 : The set of real numbers , integers , rational numbers , complex 
numbers  forms a group under the binary operation ‘+′. The identity element is 0 and 
for each element x, the inverse is –x.

* e a b c
e
a
b
c

e
a
b
c

a
e
c
b

b
c
e
a

c
b
a
e

Table 2.1 : Multiplication table

Example 2.4.3 : The set of all m × n real matrix is denoted by M (m, n). Then M (m, 
n) forms a group under matrix addition. Hence, the identity element is the zero matrix. 
This is an abelian group.
Example 2.4.4 : The set GL(n, ) forms a group under matrix multiplication. Let A, 
B ∈ GL(n, ). Then det (A) ≠ 0 and det (B) ≠ 0. Now det (AB) = det (A) * det (B) ≠ 
0. Hence, A * B ∈ GL(n, ). The matrix multiplication is associative. The identity 
matrix In acts as identity element. For any element A ∈ GL(n, ), the inverse is A–1. 
Hence, GL(n, ) is a group under matrix multiplication. But this group is not abelian, 
since matrix multiplication is not commutative.
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Example 2.4.5 : Let G = {e, a, b, c} with multiplication as defined by the table 2.1 
From the table, we observe that
1. G is closed under composition.
2. e is the identity element.
3. e–1 = e, a–1 = a, b–1 = b and c–1 = c.
4. the multiplication is commutative.
It can be checked that the multiplication is associative. Thus, (G,*) is anabelian group. 
This group is called Klein’s 4-group. The multiplication table 2.1 is known as Cayley 
table of a group.

Example 2.4.6 : The set C [a, b] is the set of all continuous functions on [a, b]. Let f, 
g ∈ C[a, b]. The binary operation + defined by

(f  + g)(x) = f(x) + g(x) ∀x ∈ [a, b].
Then f + g is also continuous. The binary operation + is also associative. The identity 
function i is the identity element and for any f ∈ C [a, b], the inverse is – f. Therefore, 
C [a, b] forms a group under addition +. In fact it abelian.

Example 2.4.7 : In the Euclidean plane, let Gp be the set of all rotations about a fixed 
point p. If two rotations differ by a multiple of 2p then we say that they are equal. If a 
and b are two elements of GP then a ο b is the rotation obtained by first applying β and 
then applying α. Thus, GP is closed under composition. Again functional composition 
is associative. An identity element of GP is the rotation of 0°. Each rotation has an 
inverse : rotation of the same magnitude in the opposite direction. Finally, as an 
operation on GP , composition is commutative. Therefore, GP is a group with respect 
to the rotation about the point p.

Example 2.4.8 : The subset {1,−1, i,–i} of the complex numbers is a group under 
complex multiplication. Note that –1 is its own inverse, whereas the ainverse of i is –i, 
and vice versa.

Example 2.4.9 : In the example 2.3.7, the set C does not form a group under the given 
binary operation as the inverse of any non-zero element does not exists (why?).
Example 2.4.10 : The set S of positive irrational numbers together with 1 under 
multiplication satisfies the three properties given in the definition of a group but is not 
a group. Indeed, 2 2 2* = , so S is not closed under multiplication.
Example 2.4.11 : The set n = {1, 2, ..., n – 1} for n ≥ 1 is group under integer 
modulo n. For any j > 0 in n, the inverse of j is n – j. This group is called integer 
modulo n group.
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Example 2.4.12 : For n > 1, we define U (n), to be the set of all positive integers less 
than n and relatively prime to n. Then U (n) is a group under multiplication modulo n.

For n = 10, we have U(10) = {1, 3, 7, 9}. The Cayley table for U(10) is

Mod 10 1 3 7 9
1 1 3 7 9
3 3 9 1 7
7 7 1 9 3
9 9 7 3 1

Table  2.2

(Recall that ab mod n is the unique integer r with the property a.b = nq + r, 
where 0 ≤ r < n and a.b is ordinary multiplication.) In the case that n is prime, then 
U(n) = {1, 2, ..., n − 1}.

In his classic book Lehrbuch der Algebra, published in 1895, Heinrich Weber 
gave an extensive treatment of the groups U(n) and described them as the most 
important examples of finite Abelian groups.

Example 2.4.13 :  Let 1 =  
1 0
0 1

0 1
1 0







=
−







I

J
i

i
K

i
i

= 





=
−







0
0

0
0 ,  where i2 = –1. Then the relations I 2 = J2 = K2 = – 1,  

IJ = K, JK = I, KI = J, JI = –K, KJ = –I, IK = –J hold. The set Q8 = {±1, ±I, ±J, ±K} is 

a group called the quaternion group. Notice that Q8  is non-abelian.
Example 2.4.14 : Let * be the set of nonzero complex numbers. Under the operation 
of multiplication * forms a group. The identity is 1. If  z = a + ib is a nonzero 
complex number, then

z a ib
a b

− = −
+

1
2 2

is the inverse of z. It is easy to see that the remaining group axioms hold.
Example 2.4.15 : (Direct product of groups). Let (G1, *1), . . . (Gn, *n) be groups. 
Then the direct product G = G1 × G2 × . . . × Gn is the set of n-tuples (g1, g2, . . . , gn) 
where gi ∈ Gi with operation defined componentwise :

(g1, g2, . . . , gn) * (h1, h2, . . . , hn) = (g1 *1 h1, g2 *2 h2, . . . , gn *n hn).
It is a routine checkup that G = (G1, *1) × . . . × (Gn, *n) forms a group under the 
binary operation defined above.
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2.5 	 Basic properties of groups
Proposition 2.5.1 : The identity element e of a group is unique, i.e., there exists only 
one e such that ex = xe = x for all x ∈ G.
Proof. Suppose both e and e′ are the identity element. Then xe = ex = x and xe′ = e′x = 
x for all x ∈ G. We need to show that e = e′. If we think e as identity then ee′ = e′ and 
if we think e′ as identity, then ee′ = e′. Therefore, combining them we get e = e′.     

Similarly we can say that
Proposition 2.5.2 : Inverse of an element is also unique.
Proof. Let g′ and g″ be two identity elements of g. Then g′g = e and g″g = e. We want 
to show that g′ = g″. Now g′ = g′e = g′(gg″) = (g′g)g″ = eg″ = g″. Hence, g′ = g″.    

Group Operation Identity
Form of 
Element Inverse Abelian

Z Addition 0 k –k Yes
Q+ Multiplication 1 m/n,

m, n > 0
n/m Yes

Zn Addition mod n 0 k n – k Yes
R* Multiplication 1 x 1/x Yes
C* Multiplication 1 a + bi 1 1

2 2 2 2a b
a
a b

bi
+

−
− Yes

GL(2,F) Matrix
   multiplication

1 0
0 1







a b
c d





 ,

ad – bc ≠ 0

d
ad bc

b
ad bc

c
ad bc

a
ad bc

−
−
−

−
− −

















No

U(n) Multiplication
    mod n

1 k,
gcd (k, n) = 1

Solution to
kx mod n=1 Yes

Rn Componentwise
     addition

(0,0, ...,0) (a1, a2, ..., a3) (–a1, –a2, ..., –an) Yes

SL(2, F) Matrix
    multiplication

1 0
0 1







a b
c d





 ,

ad – bc = 1

d b
c a

−
−





 No

Dn Composition R0 Ra, L R360 – a, L No

Fig. 2.3
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Proposition 2.5.3 : Let G be a group. then for any two elements a, b ∈ G, (ab)–1 =  
b–1 a–1.
Proof. Let a, b ∈ G. Then abb–1 a–1 = aea–1 = e. Similarly, b–1 a–1 ab = e. Therefore, 
(ab)–1 = b–1 a−1.									          
Proposition 2.5.4 : In a group G, right and left cancellation law holds, i.e., ba = bc 
implies a = c and ab = cb implies a = c.
Proof. Taking inverse of b in both sides of ba = bc we get

b–1 ba = b–1 bc =) ea = ec.
which implies that a = c. The right cancellation can be proved similarly.            	  
Definition 2.5.5 : (Order of a Group). The number of elements of a group G (finite or 
infinite) is called the order of the group G and it is denoted by |G|.
Example 2.5.6 : The group of integers  under addition is of infinite order.
Example 2.5.7 : The group 10 is of order 10. The group U(7) is of order 6. 
Definition 2.5.8 : (Order of an element). The order of an element g in a group G is 
the smallest positive integer n such that gn = e. (In additive notation, this would be  
ng = 0). If no such integer exists, we say that g has infinite order. The order of an 
element g is denoted by |g|.
Example 2.5.9 : Consider U(15) = {1, 2, 4, 7, 8, 11, 13, 14}. under multiplication 
modulo 15. This group has order 8. Then for any element, say 7, 71 = 7, 72 = 4, 73 = 
13, 74 = 1. Hence, the order of 7 is 4. Similarly, the order of 11 is 2.
Example 2.9.10 : The order of Q8 is 8. In this group order of each element, except 
identity, are of order 4. 
Proposition 2.5.11 : Let G be a group and g be an element of order m. Then gi ≠ gj for 
i ≠ j and 1 ≤ i, j ≤ m. And if g is of infinite order, then all the elements g, g2, ..., gn, ... 
are distinct.
Proof. For the first proof let us assume that gi = gj for some i ≠ j and 1 ≤ i, j ≤ m. 
Suppose i < j, then g j − i = e. But j – i < n. Which contradicts that |g| = n. Hence, our 
assumption is wrong. 
For the second proof, suppose g i = g j for some i, j ≥ 1 and i ≠ j. Assume that j > i, then 
it implies that g j−i = e. Which contradicts that g has infinite order.

The question naturally arises :
Given a set A, can we define a binary operation on A which makes A a group?.
In case of empty set it is not possible. But in case of non-empty set, fortunately, 
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this question has an affirmative answer if we assume the Axiom of Choice1 (which 
is done in most of mainstream mathematics, but may not be done in the more 
foundational parts). To answer this first we need to prove the following theorem:
Theorem 2.5.12 : Let A be a non-empty set and G be a group such that there exists a 
bijection f : A → G. Then a group structure can be defined on A.
Proof. First we define a binary operation on A. Let a, b ∈ A. Then the binary operation 
a * b on A is defined by

a * b = f –1 (f (a) f (b)).
Since f is a bijection, this binary operation is well-defined. It is clear that A is closed 
under the binary operation *. The operation is associative since G is a group and f is a 
bijection. Let eA = f –1(e), e be the identity element of G. Then for any a ∈ A.

a * eA = f–1(f (a) f (eA)) = f–1(f (a)e) = f –1(f (a)) = a = eA * a.
Which shows that eAis the identity element in A. Now what is the inverse of an element 
a ∈ A? The inverse is a′ = f –1(f (a) –1). Here f (a)−1 means inverse of the element f (a) 
in the group G. Then

			   a * a′  = f –1(f (a) f (a′))
				    = f –1(f (a) f (f –1(f (a) –1)))
				    = f –1(f (a) f (a) –1)
				    = f –1(e) = eA.

Similarly, we can show that a′ * a = eA. Therefore, eA is the identity element of A. 
Thus (A, *) is a group.

Now come to our main question. If A is finite, having n-number of elements, 
then there is a bijection between A and n. Then by the above theorem, A can be given 
a group structure. If A is countably infinite, then A forms a group under the binary 
operation which can be constructed from the bijection between A and . And in case 
when A is uncountable, the same thing can also be done by the bijection between A 
and R.

2.6 	 Subgroups
Sometimes we wish to investigate smaller groups sitting inside a larger group. The set 
of even integers 2 = {...−2, 0, 2, 4...} is a group under the operation of addition. This 
smaller group sits naturally inside of the group of integers under addition.

1The Axiom of Choice states that for any family of nonempty disjoint sets, there exists a set that 
consists of exactly one element from each element of the family.
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Definition 2.6.1 : We define a subgroup H of a group G to be a subset H of G such 
that when the group operation of G is restricted to H, H is a group in its own right.

K

G
H

e

Fig. 2.4 : Group G with two subgroups H and K

Observe that every group G with at least two elements will always have at least 
two subgroups, the subgroup consisting of the identity element alone and the entire 
group itself. The subgroup H = {e} of a group G is called the trivial subgroup. A 
subgroup that is a proper subset of G is called a proper subgroup. In many of the 
examples that we have investigated up to this point, there exist other subgroups 
besides the trivial and improper subgroups. The set of rationals , the set of integers 
 are subgroups of  under addition.

Example 2.6.2 : The set of non-zero complex numbers * is a group under 
multiplication and also the set H = {±1, ± i} is also a group under multiplication. 
Since H ⊂ *, H is a subgroup of *.

Example 2.6.3 : The set of all 2 × 2-matrix with determinant 1 is the set

SL(2, ) = 
a b
c d

ad bc





− =







: 1

Then SL(2, ) closed under multiplication, since for A, B ∈ SL(2, ) implies AB ∈ 
SL(2, ) as det (AB) = 1.

Since the identity matrix I = 
1 0
0 1





 has determinant 1, I is the identity element for 

SL(2, ). For any a b
c d







∈ SL(2, ), the inverse is d b
c a

−
−







 which also belongs to 

SL(2, ). Therefore, SL (2, ) is a group under matrix multiplication. Also SL(2, ) ⊂ 
GL (2, ), so SL(2, ) is a subgroup of GL(2, ).
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Theorem 2.6.4 : (Two-steps test). Let G be a group and H be a non-empty subset of 
G. If ab ∈ G whenever a, b ∈ G and a–1 ∈ H whenever a ∈ H, then H is a subgroup 
of G.
Proof. Since H is a subset of G and G is a group, the binary operation on H is 
associative. Let a ∈ H. Then a–1 ∈ H from the hypothesis. Now aa–1 = e ∈ H. Hence, 
H contains the identity element. Also from the hypothesis inverse of each element of 
H exists in H. So, H is a subgroup of G.
Theorem 2.6.5 : (One-steps test). Let G be a group and H be a non-empty subset of 
G. If ab–1 ∈ G whenever a, b ∈ G, then H is a subgroup of G.
Proof. Let a, b ∈ H. Then by the hypothesis ab–1 ∈ H also ba–1 ∈ H. Now 

e = (ab–1)(ba–1) ∈ H, 
So, H contains identity element. Also for a ∈ H, a–1 belongs to H, since a–1 = ea–1. 
Which implies that ab = a(b–1)–1 ∈ H for anb ∈ H. Therefore, H is a subgroup of G.
Example 2.6.6 : For any a ∈ G. The set 〈a〉 = {an : n ∈ } is a subgroup of G. For 
any p, q ∈ 〈a〉, p = ak and q = at for some k, t ∈ . Now pq–1 = ak a–t = ak–t ∈ 〈a〉. 
So, by the above theorem it is proved that hai is a subgroup of G. In fact this group 
is generated by one element a. This type of group is called cyclic group and it will be 
discussed in detail in next chapter.
Example 2.6.7 : Let G be a group of non-zero real numbers under multiplication,

H = {x ∈ G : x = 1 or x is irrational} and
K = {x ∈ G : x ≥ 1}.

Now H is not a subgroup of G since 2 ∈ H  but 2 . 2  ∉ H. Similarly, it can be 
shown that K is also not a subgroup of G.
Example 2.6.8 : (Centralizer of an element). Let G be a group and a ∈ G. Now 
consider the set

Ca = {x∈ G : xa = ax}.
This set is non-empty, since ea = ae. Let x, y ∈ Ca. Then xa = ax and ya = ay. Now
	 (xy–1) a (xy–1)–1  	 = 	 xy–1 ayx–1

		  = 	 x(y–1 y) ax–1

		  = 	 axx–1 = a.
Which implies that

(xy–1) a = a (xy–1).
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Therefore, xy–1 ∈ Ca, whenever x, y ∈ Ca. So, Ca is a subgroup of G. This subgroup is 
called centralizer of a.

Example 2.6.9 : (Center of a group). The center of a group G is defined by 

Z(G) = {a ∈ G : ax = xa ∀x ∈ G}.

Now Z(G) ≠ φ, since e ∈ Z(G). By using the same arguments of the above example it 
can be proved that Z(G) is a subgroup of G (Complete the proof). This group in fact is 
the largest abelian subgroup of G. If G is abelian, then Z(G) = G.

Example 2.6.10 : (Normalizer of a subgroup). Let H be a subgroup of G. Now 
consider the set

N(H) = {x ∈ G : xHx–1 ⊆ H} = {x ∈ G : xhx–1 ∈ H ∀h ∈ H}.

Now e ∈ N(H). Let x, y ∈ N(H). Then xhx–1 ∈ H and yhy–1 ∈ H for all h ∈ H. Now for 
all h ∈ H,

	 (xy) h (xy)–1 	 = 	 (xy) h (y–1 x–1)

		  = 	 x (yhy –1) x–1

		  = 	 xh1x
–1 ∈ H

Thus xy ∈ N(H), whenever x, y ∈ N(H). Again x–1 h (x–1)–1 = x–1hx = (xh–1 x–1)–1 = 
h′–1 ∈ H, since xh–1x–1 ∈ H. Therefore, x–1 ∈ N(H) for x ∈ N(H). Hence, N(H) is a 
subgroup of G. This group is called normalizer of H in G.

Proposition 2.6.11 : Let H and K be two subgroups of G. Then H ∩ K is also a 
subgroup of G.

G N(G) Z(G)

Fig. 2.5 : Group, Normal subgroup and center of a group
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G

H

K
H∩K

Fig. 2.6 : Intersection of two subgroups

Proof. Since H and K are two subgroups of G, H ∩ K contains the identity element e. 
Let a, b ∈ H ∩ K. Then a, b ∈ H and a, b ∈ K. Hence, ab–1 ∈ H and ab–1 ∈ K. Which 
implies that ab–1 ∈ H ∩ K. Therefore, H ∩ K is a subgroup of G. 	

The above theorem can also be extend in case of finite sum, i.e., if H1, H2, ..., Hn 
are subgroups of G, then  ii n=

=
1  Hi is also a subgroup of G. Can we extend this theorem 

in case of infinite sum? Yes it is possible and the proof is same as the finite one.
Union of two subgroups may not be a subgroup. For example let G = . Then 

3 and 5 are subgroups of . Now 3 ∈ 3 ∪ 5  and 5 ∈ 3 ∩ 5. But 3 + 5 = 8 
∉ 3 ∩ 5.

2.7	 Summary
In this unit, we have mainly studied the concept of group along with various kinds of 
subgroups such as normalizer of a group, centralizer of a group. We have seen that the 
examples of groups are abundance in nature.

2.8	 Worked examples
1.  Let x and y be elements in a group G such that xy ∈ Z(G). Prove that xy = yx.
Solution : Since xy = x–1x(xy) and xy ∈ Z(G), we have xy = x–1x(xy) = x–1(xy)x = (x–1x)
yx = yx.
2.  Let G be a group with exactly 4 elements. Prove that G is Abelian.
Solution : Let a and b be non identity elements of G. Then e, a, b, ab, and ba are 
elements of G. Since G has exactly 4 elements, ab = ba. Thus, G is Abelian.
3.  Let a be an element in a group. Prove that (an)–1 = (a–1)n for each n ≥ 1.
Solution : We use Math. induction on n. For n = 1, the claim is clearly valid. Hence, 
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assume that (an)–1 = (a–1)n. Now, we need to prove the claim for n + 1. Thus, (an+1)–1 = 
(aan)–1 = (an)–1 a–1 = (a–1)n a–1 = (a–1)n+1.
4.  Let H and D be two subgroups of a group such that neither H ⊂ D nor D ⊂ H. 
Prove that H ∪ D is never a group.
Solution : Deny. Let a ∈ H \ D and let b ∈ D \ H. Hence, ab ∈ H or ab ∈ D. Suppose 
that ab = h ∈ H. Then b = a–1h ∈ H, a contradiction. In a similar argument, if ab ∈ D, 
then we will reach a contradiction. Thus, ab ∉ H ∪ D. Hence, our denial is invalid. 
Therefore, H ∪ D is never a group.
5.  Give an example of a subset of a group that satisfies all group-axioms except 
closure.
Solution : Let H = 3Z and D = 5Z. Then H and D are subgroups of Z. Now, let 
C = H ∪ D. Then by the previous question, C is never a group since it is not closed.
6.  Let H = {a ∈ Q : a = 3n 8m for some n and m in Z}. Prove that H under 
multiplication is a subgroup of Q \ {0}.
Solution : Let a, b ∈ H. Then a = 3n1 8n2 and  b = 3m1 8m2 for some n1, n2, m1, m2 ∈ 
Z. Now, a−1 b = 3m1 – n1 8 m2 – n2 ∈ H. Thus, H is a subgroup of Q \ {0} by Theorem 
12..29..71.
7.  Let a, x be elements in a group G. Prove that ax = xa if and only if a–1x = xa–1.
Solution : Suppose that ax = xa. Then a−1x = a−1xaa−1 = a−1axa−1 = exa−1 = xa−1. 
Conversely, suppose that a−1x = xa−1. Then ax = axa−1a = aa−1xa = exa = xa.
8.  Let H = {x ∈ C : x301 = 1}. Prove that H is a subgroup of C \ {0} under 
multiplication.
Solution  : First, observe that H is a finite set with exactly 301 elements. Let a, b ∈ H. Then 
(ab)301 = a301b301 = 1. Hence, ab ∈ H. Thus, H is closed. Hence, H is a subgroup of C \ {0}.
9.  Let H = {A ∈ GL(608, Z89) : det(A) = 1}. Prove that H is a subgroup of GL(608, 
Z89).
Solution : First observe that H is a finite set. Let C, D ∈ H. Then det(CD) = det(C)
det(D) = 1. Thus, CD ∈ H. Hence, H is closed. Thus, H is a subgroup of GL(608, Z89).
10.  Prove that if G is an abelian group, then for all a, b ∈ G and all integers n,  
(a . b)n = an . bn.
Solution : We resort to induction to prove that the result holds for positive integers. 
For n = 1, we have (a . b)1 = a . b = a1 . b1. So the result is valid for the base case. 
Suppose result holds for n = k – 1, i.e. (a . b)k−1 = ak−1 . bk−1.
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We need to show result also holds good for n = k. We have
	 (a . b)k 	 = 	 (a . b)k−1 . (a . b)

		  = 	 (a k−1 . bk−1) . (a . b)

		  = 	 (ak−1 . bk−1) . (b . a)

		  = 	 (ak −1 . bk) . a

		  = 	 a . (ak−1 . bk)

		  = 	 ak . bk

So the result holds for n = k too. Therefore, result holds for all n ∈ . Next suppose n 
∈ . If n = 0, then (a.b)0 = e where e the identity element. Therefore (a . b)0 = e = e . e 
= a0 . b0. So the result is valid for n = 0 too. Next suppose n is a negative integer. So n 
= −m, where m is some positive integer. We have
	 (a . b)n 	 = 	 (a . b)−m

		  = 	 ((a . b)−1)m by definition of the notation
		  = 	 (b−1 . a−1)m

		  = 	 ((a−1) . (b−1))m

		  = 	 (a−1)m . (b−1)m as the result is valid for positive integers
		  = 	 (a−m) . (b−m)
		  = 	 an . bn

So the result is valid for negative integers too. Hence the result that (a . b)n = an . bn 
holds in an abelian group for all n ∈ . 
11.  If G is a group in which (a . b)i = ai . bi for three consecutive integers i for all  
a, b ∈ G, show that G is abelian.
Solution  : Let n, n+1, n+2 be some three consecutive integers. Therefore we have

	 (a . b)n = an . bn	 (1)
	 (a . b)n+1  =  an+1 . bn+1	 (2)
	 (a . b)n+2 = an+2 . bn+2 	 (3)

Using (2) we have
		  (a . b)n+1 = an+1 . bn+1

	 ⇒	 (a . b)n . (a . b) = an+1 . (bn . b)
	 ⇒ 	 (an . bn) . (a . b) = (an+1 . bn) . b, Using (1)
	 ⇒ 	 ((an . bn) . a) . b = (an+1 . bn) . b
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	 ⇒ 	 (an . bn) . a = (an . a) . bn

	 ⇒ 	 an . (bn . a) = an . (a . bn)
	 ⇒ 	 bn . a = a . bn 			                                       (4)

Again using (3), analogously we have
		  bn+1 . a = a . bn+1

	 ⇒	 b . (bn . a) = a . bn+1

	 ⇒	 b . (a . bn) = a . bn+1,  Using (4)
	 ⇒	 (b . a) . bn = (a . b) . bn

	 ⇒	 b . a = a . b
So we have a . b = b . a ∀ a, b ∈ G. And hence G is abelian.
12.   If G is a group of even order, prove it has an element a ≠ e satisfying a2 = e.
Solution  : We prove the result by contradiction. Note that G is a finite group. Suppose 
there is no element x satisfying x2 = e except for x = e. Thus if some g ≠ e belongs to G, 
then g2 ≠ e, i.e. g ≠ g−1. It means every non-identity element g has another element g−1 
associated with it. So the non-identity elements can be paired into mutually disjoint 
subsets of order 2. We can assume the count of these subsets equals to some positive 
integer n as G is a finite group. But then counting the number of elements of G, we 
have o(G) = 2n + 1, where 1 is added for the identity element. So G is a group of odd 
order, which is not true. Hence there must exist an element a ≠ e such that a2 = e for G 
is a group of even order.
13.  Let : P be the set of all real numbers except the integer 1. Let the operation 
‘∗’ be defined by a ∗ b  = a + b – ab  for all a, b ∈ P.  Show that (P,∗) is a group.
Solution  : (i) Closure Property: Let  a, b ∈ P.

So, a and b are two real numbers and a ≠ 1, b ≠ 1.
Now, a * b = a+b – ab	 which is a real number and a + b – ab ≠ 1, because a + 
b – ab = 1 ⇒ b(1 – a) = 1 – a ⇒ b = 1,  since a ≠ 1. But b ≠ 1.
Therefore, a * b is a real number and  a * b ≠ 1 . So, a ∗ b ∈ P ∀ a, b ∈ P.
Hence P is closed under the binary operation ‘∗’.

(ii) Associative Property :  Let a, b, c ∈ P,  where a, b, c ∈ R and a ≠ 1, b ≠ 1, c ≠ 1.
Now, a * (b * c) = a * (b + c – bc) = a + b + c – bc – a (c + c – bc)
					          = a + b + c – bc – ab – ac + abc
(a * b) * c = (a + b – bc) * c   = a + b – bc + c – (a + b – ab) c
				             = a + b + c – ab – ac – bc + abc
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Therefore, a * (b * c) = (a * b) * c  ∀ a, b, c ∈ P.
So, associative property is satisfied w.r.t. the binary operation ‘∗’.

(iii) Identity Property : 0 ∈ P.
Now, 0 ∗ a = 0 + a − 0. a  = a ∀ a ∈ P.
So 0 is the left identity element in : under the binary operation ‘∗’.

(iv) Inverse Property : Let b be an element in P such that b ∗ a = 0.

Now,  b ∗ a = 0 ⇒ b + a – ba = 0 ⇒ b(1 – a) = –a ⇒ b = a
a −1 , since ≠ 1 

Since  a
a −1  is a real number as a ≠ 1 and a

a −1  ≠ 1, so b = a
a −1  ∈ P.

Therefore, for any element a in P, ∃ an element  a
a −1  in P such that  a

a −1 * a 
= 0.

So,  a
a −1  is the left 0-inverse in P under the binary operation ‘∗’.

Therefore, (P, *) is a group.

14.  Let (G, o) be a group and a, b ∈ G. If o(a) = 3 and aoboa–1 = b2, find the order 
of b if b is not the identity element of G.
Solution  : aoboa–1 = b2  ⇒ a2oboa–2 = aob2oa–1

	 = 	 (aoboa–1) o (aoboa–1) since ‘o’ is associative.
	 = 	 b2ob2 = b4

	 ⇒  	a3oboa–3 = aob4oa–1 = (aoboa–1) o (aoboa–1) o (aoboa–1) o (aoboa–1)
	 = 	 b2ob2ob2ob2 = b8

	 or, 	b = b8  ⇒ b7 = e.
	 Since b ≠  e  and 7 is prime, so o (b) = 7.

2.9 	 Model Questions
	 1. 	 In each case, find the inverse of the element under the given operation.
	 i) 	 17 in 20.
	 ii) 	 2, 7 and 8 in U(9).

	 2. 	 Prove that for a group G,
Z G C

a G
a( ) =

∈

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	 3. 	 List all the elements of U(20).

	 4. 	 Let a, b be any two elements of an aleblian group and n be an integer. Show 
that (ab)n = anbn. Is this also true for non-abelian groups?

	 5. 	 Prove that a group G is abelian iff

(ab)−1 = a−1 b−1, ∀a, b ∈ G.

	 6. 	 Give an example of a group with 105 elements. Give two examples of groups 
with 44 elements.

	 7. 	 Prove that in a group (ab)2 = a2b2 iff ab = ba.

	 8. 	 Prove that if G is a group with the property that the square of every element 
is the identity, then G is abelian.

	 9. 	 Let a.b ∈ G. Find x ∈ G such that xabx−1 = ba.

	 10. 	 For each divisor k > 1 of n, let Uk(n) = {x ∈ U(n) | x mod k = 1}. [For example, 
U3(21) = {1, 4, 10, 13, 16, 19} and U7(21) = {1, 8}.] List the elements of 
U4(20), U5(20), U5(30), and U10(30). Prove that Uk(n) is a subgroup of U(n). 
Let H = {x ∈ U(10) | x mod 3 = 1}. Is H a subgroup of U(10)?

	 11. 	 Suppose that a is a group element and a6 = e. What are the possibilities for 
|a|? Provide reasons for your answer.

	 12. 	 If a is a group element and a has infinite order, prove that am ≠ an when  
m ≠ n.

	 13. 	 For any group elements a and b, prove that |ab| = |ba|.

	 14. 	 Show that if a is an element of a group G, then |a| ≤ |G|.

	 15. 	 Show that U(14) = 〈3〉 = 〈5〉. [Hence, U(14) is cyclic.] Is U(14) = 〈11〉?

	 16. 	 Show that U(20) ≠ 〈k〉 for any k in U(20). [Hence, U(20) is not cyclic.]

	 17. 	 Suppose n is an even positive integer and H is a subgroup of Zn. Prove that 
either every member of H is even or exactly half of the members of H are even.

	 18. 	 Let n be a positive even integer and let H be a subgroup of Zn of odd order. 
Prove that every member of H is an even integer.

	 19. 	 Prove that for every subgroup of Dn, either every member of the subgroup is 
a rotation or exactly half of the members are rotations.
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	 20. 	 Let H be a subgroup of Dn of odd order. Prove that every member of H is a 
rotation.

	 21. 	 Prove that a group with two elements of order 2 that commute must have a 
subgroup of order 4.

	 22. 	 For every even integer n, show that Dn has a subgroup of order 4.

	 23. 	 Suppose that H is a proper subgroup of Z under addition and H contains 18, 
30, and 40. Determine H.

	 24. 	 Suppose that H is a proper subgroup of Z under addition and that H contains 
12, 30, and 54. What are the possibilities for H?

	 25. 	 Suppose that H is a subgroup of Z under addition and that H contains 250 and 
350. What are the possibilities for H?

	 26. 	 Prove that the dihedral group of order 6 does not have a subgroup of order 4.

	 27. 	 If H and K are subgroups of G, show that H ∩ K is a subgroup of G. (Can 
you see that the same proof shows that the intersection of any number of 
subgroups of G, finite or infinite, is again a subgroup of G?)

	 28. 	 Let U(n) be the group of units in n. If n > 2, prove that there is an element k 
∈ U(n) such that k2 = 1 and k ≠ 1.

	 29. 	 Prove the right and left cancellation laws for a group G; that is, show that in 
the group G, ba = ca implies b = c and ab = ac implies b = c for elements  
a, b, c ∈ G.

	 30. 	 Show that if a2 = e for all elements a in a group G, then G must be abelian.

	 31. 	 Show that if G is a finite group of even order, then there is an a ∈ G such that 
a is not the identity and a2 = e.

	 32. 	 Let G be a group and suppose that (ab)2 = a2b2 for all a and b in G. Prove that 
G is an abelian group.

	 33. 	 Find all the subgroups of 3 × 3. Use this information to show that 3 × 3 
is not the same group as 9.

	 34. 	 Find all the subgroups of the symmetry group of an equilateral triangle.

	 35. 	 Compute the subgroups of the symmetry group of a square.

	 36. 	 Let H = {2k : k ∈ }. Show that H is a subgroup of *.
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	 37. 	 Let n = 0, 1, 2, . . . and n = {nk : k ∈ }. Prove that n is a subgroup of . 
Show that these subgroups are the only subgroups of .

	 38. 	 Let T = {z ∈ * : |z| = 1}. Prove that T is a subgroup of *.
	 39. 	 Let G consist of the 2 × 2 matrices of the form

cos sin
sin cos

θ θ
θ θ

−





		  where θ ∈ . Prove that G is a subgroup of SL2().
	 40. 	 Prove that

G = {a + b 2  : a, b ∈  and a and b are not both zero}
		  is a subgroup of * under the group operation of multiplication.
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46

Unit - 3	 	 Cyclic Groups and Cyclic Subgroups

Structure
3.1 	 Objectives
3.2 	 Introduction
3.3 	 Definition and Examples
3.4 	 Properties of Cyclic Group
3.5 	 The Circle Group and the Roots of Unity
3.6 	 Summary
3.7 	 Worked examples
3.8 	 Model Questions
3.9	 Solution of some selected problems

3.1 	 Objectives
The followings are discussed here:
• Definition of cyclic group
• Examples of cyclic group
• Basic properties of cyclic group
• Euler Phi function
• Roots of unity

3.2 	 Introduction
Cyclic group is the basic building block of group theory. In this unit we discuss 

the notion of cyclic group. The generators of a cyclic group is also derived. Finally, 
as an application of cyclic group, the circle group and the root of unity are discussed.

3.3 	 Definition and examples
Definition 3.3.1 : A group G is called cyclic if there exists an element g ∈ G such that

G = {gn : n ∈ }.
The element g is called the generator of G. The generator may not be unique. If 

G is cyclic and generated by g then G can be written as 〈g〉.
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a5

a4

a0

a1

a2

a3

Fig. 3.1 : Cyclic group generated by a

Example 3.3.2 : Any integer n 2 Z can be expressed as
n = 1 + 1 + ... + 1(n times), when n is positive.

Also
n = (−1) + (−1) + ... + (−1)(|n| times), when n is negative.

Which implies that both 1 and −1 are generators of the infinite cylic group .
Example 3.3.3 : n = {0, 1, 2, ..., n − 1} with addition modulo n is a finite cyclic 
group. In this group 1 and −1 = n − 1 are the generators.
For example 8 = 〈1〉 = 〈3〉 = 〈5〉 = 〈7〉. To verify that 8 = 〈3〉, we note that 〈1〉 = {3, 
3 + 3, 3 + 3 + 3, ...} = {3, 6, 1, 4, 7, 2, 5, 0}. On the other hand 2 is not a generator 
(check it).
Example 3.3.4 : U(12) = {1, 5, 7, 11}, in this case 〈1〉 = 1, 〈5〉 = {1, 5}, 〈7〉 = {1, 7} 
and 〈11〉 = {1, 11}. Therefore, U(12) is not cyclic. But note that U(10) is cyclic and 
generated by 3 and 7.
Example 3.3.5 : The group 2 × 3 = {(m, n) : m ∈ 2, n ∈ 3} is a cyclic group. The 
binary operation is component wise addition

(m, n) + (m′, n′) = (m + m′, n + n′).

In this group the element (1, 1) has order 6.
	 (1, 1) + (1, 1) 	 = 	 (0, 2)
	 (1, 1) + (0, 2)	 = 	 (1, 0)



48   NSOU  CC-MT-10 NSOU  CC-MT-10  49

	 (1, 1) + (1, 0) 	 = 	 (0, 1)
	 (1, 1) + (0, 1) 	 = 	 (1, 2)
	 (1, 1) + (1, 2) 	 = 	 (0, 0).

Hence, 2 × 3 is a cyclic group of order 6. Be careful, in general it is not true that 
m× n is cyclic.

3.4 	 Properties of Cyclic Group
Since the elements of a cyclic group are the powers of an element, properties of cyclic 
groups are closely related to the properties of the powers of an element.
Theorem 3.4.1 :  Every cyclic group is Abelian.
Proof. Let G be a cyclic group generated by g. Take a, b ∈ G. Then a = gn and b = gm. 
Now

ab = gngm = gn+m = gm+n = gmgn = ba.
Which implies that G is Abelian.

The converse of the above theorem need not be true always, check that (hints: 
try)

Theorem 3.4.2 :  Every subgroup of a cyclic group is cyclic.
Proof. The main tools used in this proof are the division algorithm and the Principle 
of Well-Ordering. Let G be a cyclic group generated by a and suppose that H is a 
subgroup of G. If H = {e}, then trivially H is cyclic. Suppose that H contains some 
other element g distinct from the identity. Then g can be written as an for some 
integer n. We can assume that n > 0. Let m be the smallest natural number such that  
am ∈ H. Such an m exists by the Principle of Well-Ordering. We claim that h = am is 
a generator for H. We must show that every h0 ∈ H can be written as a power of h. 
Since h0 ∈ H and H is a subgroup of G, h0 = ak for some positive integer k. Using the 
division algorithm, we can find numbers q and r such that k = mq + r where 0 ≤ r < m; 
hence,

ak = amk +r = (am)ka r = hqa r.

So ar = akh−q. Since ak and h−q are in H, ar must also be in H. However, m was the 
smallest positive number such that am was in H; consequently, r = 0 and so k = mq. 
Therefore,

h′ =  ak  = amq  =  hq

and H is generated by h.

Corollary 3.4.3 : The subgroups of  is exactly n  for  n = 1, 2, ....
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Theorem 3.4.4 : Let a ∈ G such that |a| = n. Then for any k ∈ 

1. 〈ak〉 = 〈agcd(n, k)〉

2. |ak| =  n
n kgcd( , ) .

This theorem is related to the order of ak and the groups generated by it. They 
will help us to find generators of a cyclic group
Proof.  1.  Let d = gcd(n, k). So, in particular, d is a divisor of k so there exists an 
integer r such that k = dr. So, ak = (ad)r. This implies that ak ∈ 〈ad〉, i.e., 〈ak〉 ⊆ 
〈agcd(n,k)〉.
Conversely, with d as above we know there exist integers s and t such that d = ns + kt. 
So,

	 ad 	 = 	 ans+kt

		  = 	 (an)s + (ak)t

		  = 	 e(ak)t

		  = 	 (ak)t.
Therefore, ad ∈ 〈ak〉 and so 〈ad〉 ⊆  〈ak〉 by closure.

2.  It is clear that ( )ad
n
d  = an = e, so that |ad|  ≤ nd . We can not have |ad| < nd . If we 

did, then there exists i < nd  such that |ad| = i, then adi = e and di < n which contradicts 

that |a| = n. Thus, |ad| = nd  . This is true for every positive divisor of n and gcd(n, k) is 

such a divisor. So, we have |ak| = |〈ak〉| = |〈agcd(n,k)〉| = n
n kgcd( , )  .		   	  

Theorem 3.4.5 : Let G = 〈a〉 be a cyclic group of order n. If G contains an element b 
of order n, then 〈b〉 = G.
Proof. Since b ∈ G and |b| = n. Then 〈b〉 contains n number of distinct elements. Again 
〈b〉 ⊆ G. Hence, 〈b〉 = G.								         
Definition 3.4.6 : (Euler Phi Function). Let n ∈ +. The Euler Phi function of n, 
denoted by φ(n) is the number of positive integers less than n and relatively prime to 
n and we set φ(1) = 1.
Example 3.4.7 : The following table shows the value of φ for different n.

n 1 2 3 4 5 6 7 8
φ 1 1 2 2 4 2 6 8

Example 3.4.8 : By definition |U(n)| = φ(n).
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3.5 	 The Circle Group and the Roots of Unity
The multiplicative group of the complex numbers, +, possesses some interesting 
subgroups. Whereas + and + have no interesting subgroups of finite order, + has 
many. We first consider the circle group,

S = {z ∈  : |z| = 1}.
Proposition 3.5.1 : The circle group is a subgroup of +.
Although the circle group has infinite order, it has many interesting infinite subgroups. 
Suppose that H = {1,−1, i,−i}. Then H is a subgroup of the circle group. Also, 1, −1, 
i, and −i are exactly those complex numbers that satisfy the equation z4 = 1. The 
complex numbers satisfying the equation zn  = 1 are called the nth roots of unity.

e j2p 4/12
e j2p 2 /12

e j2p 2 /12

e j2p /12

e j2p 11 /12

e j2p 10 /12

e j2p 9 /12
e j2p 8 /12

e j2p 7/12

e j2p 6 /12

e j2p 5 /12

e j2p 0 /12   =  e j2p 12 /12

				           Fig. 3.2

Theorem 3.5.2 : If zn = 1, then the nth root of unity are

z k
n= ( )exp ,2 π

where k = 0, 1, ..., n − 1. Furthermore, the nth roots of unity form a cyclic subgroup of 
S of order n.
Proof. By DeMoivre’s Theorem

z n k
n kn = ( ) = =exp exp2 2 1π π( )

The z’s are distinct since the numbers 2kp/n are all distinct and are greater than or 
equal to 0 but less than 2p. The fact that these are all of the roots of the equation  
zn =1 follows from from fundamental theorem of algebra, which states that a 
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polynomial of degree n can have at most n roots. We will leave the proof that the nth 
roots of unity form a cyclic subgroup of S as an exercise.				     

A generator for the group of the nth roots of unity is called a primitive nth root 
of unity.

3.6 	 Summary
In this unit, we have introduced the concept of cyclic group. We have showed that a 
subgroup of a cyclic group is cyclic. Also we have studied that for each divisor of the 
order of a cyclic group there exists a unique cyclic subgroup of that order.

3.7	 Worked examples
1.  Find all generators of Z22.
Solution : Since |Z22| = 22, if a is a generator of Z22, then |a| must equal to 22. Now, let 
b be a generator of Z22, then b = 1b = b. Since |1| = 22, we have |b| = |1b|= 22/gcd(b, 22) = 
22 . Hence, b is a generator of Z22 iff gcd(b,22) = 1. Thus, 1,3,5,7,9,11,13,15,17,19,21 
are all generators of Z22.

2.  Let G = (a), a cyclic group generated by a, such that |a| = 16. List all generators 
for the subgroup of order 8.
Solution : Let H be the subgroup of G of order 8. Then H = (a2) = (a16/8) is the 
unique subgroup of G of order 8 by Theorem 3.2.5. Hence,(a2)k is a generator of H iff 
gcd(k,8) = 1. Thus, (a2)1 = a2, (a2)3 = a6, (a2)5 = a10, (a2)7 = a14.

3.  Suppose that G is a cyclic group such that |G| = 48. How many subgroups does 
G have?
Solution : Since for each positive divisor k of 48 there is a unique subgroup of order 
k by Theorem 3.2.5, number of all subgroups of G equals to the number of all positive 
divisors of 48. Hence, Write 48 = 3123. Hence, number of all positive divisors of 48 = 
(1+1)(3+1) = 8. If we do not count G as a subgroup of itself, then number of all proper
subgroups of G is 8 − 1 = 7.

4.  Let a be an element in a group,and let i, k be positive integers. Prove that 
H = (ai) ∩ (ak) is a cyclic subgroup of (a) and H = (alcm(i,k)).
Solution : Since (a) is cyclic and H is a subgroup of (a), H is cyclic by Theorem 3.2.2. 
By Theorem 1.2.18 we know that lcm(i, k) = ik/gcd(i, k). 
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Since k/gcd(i,k) is an integer, we have alcm(i,k) = (ai)k/gcd(i,k). Thus, (alcm (i,k)) ⊂ (ai). 
Also, since k/gcd(i, k) is an integer, we have alcm(i,k) = (ak )i/gcd(i.k). Thus, (alcm(i, k)) ⊂ 
(ak). Hence, (alcm (i, k) ) ⊂ H. Now, let h ∈ H. Then h = aj = (ai)m = (ak)n for some j, m, 
n ∈ Z. Thus, i divides j and k divides j. Hence, lcm(i,k) divides j.
Thus, h = aj = (alcm(i,k))c where j = lcm(i,k)c. Thus, h ∈ (alcm(i,k)). Hence, H ⊂ (alcm(i,k)). 
Thus, H = (alcm(i,k)).

5.  Let a be an element in a group. Describe the sub-group H = (a12) ∩ (a18).
Solution : By the previous Question, H is cyclic and H = (alcm(12,18) = (a36).

6.  Let G = (a), and let H be the smallest subgroup of G that contains am and an. 
Prove that H = (agcd(n, m)).
Solution : Since G is cyclic, H is cyclic by Theorem 3.2.2. Hence, H = (ak) for some 
positive integer k. Since an ∈ H and am ∈ H, k divides both n and m. Hence, k divides 
gcd(n,m). Thus, agcd(n,m) ∈ H = (ak). Hence, (agcd(n,m)) ⊂ H. Also, since gcd(n,m) 
divides both n and m, an ∈ (agcd(n,m)) and am ∈ (agcd(n,m)). Hence, Since H is the 
smallest subgroup of G containing an and am and an, am ∈ (agcd(n,m)) ⊂ H, we conclude 
that H = (agcd(n,m)).

7.  Let G be an infinite cyclic group. Prove that e is the only element in G of finite 
order.
Solution : Since G is an infinite cyclic group, G = (a) for some a ∈ G such that |(a)| 
is infinite. Now, assume that there is k an element b ∈ G such that |b| = m and b ≠ e. 
Since G = (a), bk = a for some k ≥ 1.

	 Hence, e = bm = (ak)m = akm. Hence, |a| divides km.

a contradiction since |a| is infinite. Thus, e is the only element in G of finite order.

8.  Let G = (a) be a cyclic group. Suppose that G has a finite subgroup H such that 
H ≠ {e}. Prove that G is a finite group.

Solution :  First, observe that H is cyclic by Theorem 3.2.2. Hence, H = (an) for some 
positive integer n. Since H is finite and H = (an), Ord(an) = |H| = m is finite. Thus, (an)
m = anm = e. Hence, |a| divides nm. Thus, (a) = G is a finite group.

9.  Let a be an element in a group G such that |a| is infinite. Prove that (a), (a2), (a3), ... 
are all distinct subgroups of G, and Hence, G has infinitely many proper subgroups.

Solution : Suppose that (ai) = (ak) for some positive integers i, k such th  at k > i. 



52   NSOU  CC-MT-10 NSOU  CC-MT-10  53

Thus, ai = (ak)m for some m ∈ Z. Hence, ai = akm. Thus, ai km = e. Since k > i, km ≠ i 
and therefore i − km ≠ 0. Thus, | a | divides i − km . Hence, |a| is finite, a contradiction.

10.  Let G be a group containing more than 12 elements of order 13. Prove that G 
is never cyclic.

Solution : Suppose that G is cyclic. Let a ∈ G such that |a| = 13. Hence, (a) is a finite 
subgroup of G. Thus, G must be finite by the previous Question. Hence, by Theorem 
3.2.5 there is exactly φ (13) = 12 elements in G of order 13. A contradiction. Hence, G 
is never cyclic.

3.8	 Model Questions

	 1. 	 Find all generators of the cyclic group 28.
	 2. 	 In 30 find the order of the subgroup 〈18〉 and 〈24〉.
	 3. 	 Show that any cyclic group of even order has exactly one element of order 2.
	 4. 	 Show that + is not a cyclic group.
	 5. 	 Let G be an abelian group of order 15. Show that if you can find an element a 

of order 5 and an element b of order 3, then G must be cyclic.

	 6. 	 Let H =  ± ± ± ±{ }1 2
2

2
2, , ,i i  is a cyclic subgroup of +.

	 7. 	 Let H =  
1 0
0 1 0
0 0 1

3

m
GL m















∈ ∈











( ) :� �  and K = 

1 0
0 1 0
0 0 1

n













∈






		  GL3() : n ∈  } are cyclic groups of GL3().

	 8. 	 Prove that p does not have any non-trivial subgroup if p is prime.
	 9. 	 Let G be an abelian group. Show that the elements of finite order in G form a 

subgroup. This subgroup is called the torsion subgroup of G.
	 10. 	 Find all generators of 48.
	 11. 	 Prove that the following groups are not cyclic:
		  (i) 	 2 × 2

		  (ii) 	 2 × 
		  (iii) 	  × 
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	 12. 	 Prove that the cyclic subgroup 〈a〉 is the smallest subgroup of G containing  
a ∈ G.

	 13.	 If a cyclic group has an element of infinite order, how many elements of 
finite order does it have?

	 14. 	 Suppose that G is an Abelian group of order 35 and every element of G 
satisfies the equation x35 = e. Prove that G is cyclic. Does your argument 
work if 35 is replaced with 33?

	 15. 	 Let G be a group and let a be an element of G.
		  a.   If a12 = e, what can we say about the order of a?
		  b.   If am = e, what can we say about the order of a?
		  c.   Suppose that |G| = 24 and that G is cyclic. If a8 ≠ e and a12 ≠ e, show that    

      〈a〉 = G.
	 16. 	 Prove that a group of order 3 must be cyclic.
	 17. 	 Let Z denote the group of integers under addition. Is every subgroup of Z 

cyclic? Why? Describe all the subgroups of Z. Let a be a group element with 
infinite order. Describe all subgroups of 〈a〉.

	 18. 	 For any element a in any group G, prove that 〈a〉 is a subgroup of C(a) (the 
centralizer of a).

	 19. 	 If d is a positive integer, d ≠ 2, and d divides n, show that the number of 
elements of order d in Dn is f (d). How many elements of order 2 does Dn 
have?

	 20. 	 Find all generators of Z. Let a be a group element that has infinite order. Find 
all generators of 〈a〉.

	 21. 	 Prove that C*, the group of nonzero complex numbers under multiplication, 
has a cyclic subgroup of order n for every positive integer n.

	 22. 	 Let a be a group element that has infinite order. Prove that 〈ai〉 = 〈aj〉 if and 
only if i = ± j.

	 23. 	 List all the elements of order 8 in Z8000000. How do you know your list is 
complete? Let a be a group element such that |a| = 8000000. List all elements 
of order 8 in 〈a〉. How do you know your list is complete?

	 24. 	 Suppose that G is a group with more than one element. If the only subgroups 
of G are {e} and G, prove that G is cyclic and has prime order.
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	 25. 	 Let G be a finite group. Show that there exists a fixed positive integer n such 
that an = e for all a in G. (Note that n is independent of a.)

	 26. 	 Determine the subgroup lattice for Z12. Generalize to Z p q2 , where p and q 
are distinct primes.

	 27. 	 Determine the subgroup lattice for Z8. Generalize to Z pn , where p is a prime 
and n is some positive integer.

	 28. 	 Prove that a finite group is the union of proper subgroups if and only if the 
group is not cyclic.

	 29.	 List all of the elements in each of the following subgroups.
		  (a)  The subgroup of  generated by 7
		  (b) The subgroup of 24 generated by 15
		  (c)  All subgroups of 12

		  (d)  All subgroups of 60

		  (e)  All subgroups of 13

		  (f)  All subgroups of 48

		  (g)  The subgroup generated by 3 in U(20)
		  (h)  The subgroup generated by 5 in U(18)
		  (i)   The subgroup of * generated by 7
		  (j)   The subgroup of * generated by i where i2 = −1
		  (k)  The subgroup of * generated by 2i

		  (l)   The subgroup of * generated by ( ) /1 2+ i

		  (m) The subgroup of * generated by ( ) /1 3 2+ i
	 30.	 Find the subgroups of GL2() generated by each of the following matrices

		  (a)	
0 1
1 0−







	 (c)	
1 1
1 0

−



 	 (e)	

1 1
1 0

−
−







		  (b)	
0 1 3
3 0

/





	 (d)	
1 1
0 1

−



 	 (f)	

3 2 1 2
1 2 3 2
/ /
/ /−








	 31.	 Find the order of every element in 18.
	 32.	 Find the order of every element in the symmetry group of the square, D4.
	 33.	 What are all of the cyclic subgroups of the quaternion group, Q8?
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	 34.	 List all of the cyclic subgroups of U(30).
	 35.	 List every generator of each subgroup of order 8 in 32.
	 36. 	 Find all elements of finite order in each of the following groups. Here the “*” 

indicates the set with zero removed.
		  (a) 	  	 (b) 	* 	 (c) 	*
	 37. 	 If a24 = e in a group G, what are the possible orders of a?
	 38. 	 Find a cyclic group with exactly one generator. Can you find cyclic groups 

with exactly two generators? Four generators? How about n generators?
	 39. 	 For n ≤ 20, which groups U(n) are cyclic? Make a conjecture as to what is 

true in general. Can you prove your conjecture?

3.9	 Solutions of some selected problems
	 1. 	 { 1, 3, 5, 9, 11 , 13, 15, 17, 19, 21, 23, 25, 27}
	 2. 	 5, 5
	 10.	 All the elements less than and prime to 48.
	 13. 	 Only one
	 15. 	 (a) order of a may be 1, 2, 3, 4, 6 or 12
		  (b) order of a may be all the divisors of m
	 17. 	 Use the fact that all the subgroups of a cyclic group are cyclic
	 20. 	 {+1, –1}
	 23. 	 Use theorem 3.4.3
	 29. 	 (a) {7n : n ∈ Z}
		  (b) {0, 6, 12, 15, 6, 21}

	 30. 	 (a)  { : }
0

0
a

a
a R

−






∈

	 31. 	 use theorem 3.4.3
	 36. 	 (a) 0
		  (b) {+1, –1}
		  (c) {+1, –1}
	 37. 	 All the divisors of 24
	 38. 	 Z2
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Unit - 4	 	 Cosets and Normal Subgroups

Structure
4.1 	 Objectives
4.2 	 Introduction
4.3 	 Definition and concept
4.4 	 Lagrange’s Theorem
4.5 	 Normal Subgroups
4.6 	 Summary
4.7 	 Worked examples
4.8 	 Model Questions
4.9	 Solution of some selected problems

4.1 Objectives
The followings are discussed here:
• Definition of cosets and examples
• Definition of normal subgroup and normalizer
• Basic properties of normal group
• Lagrange’s theorem

4.2 Introduction
In this unit, we prove the single most important theorem in finite group theory—

Lagrange’s Theorem. In his book on abstract algebra, I. N. Herstein likened it to the 
ABC’s for finite groups. But first we introduce a new and powerful tool for analyzing 
a group—the notion of a coset. This notion was invented by Galois in 1830, although 
the term was coined by G. A. Miller in 1910.

4.3 Definition and concept
The Euclidean plane 2 forms a group under component wise addition, i.e., for 

any two (a, b), (c, d) ∈ 2, then 
(a, b) + (c, d ) = (a + c, b + d ).

57
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Now the subset X = {(x, 0) : x ∈ R} is a subgroup of 2 which is nothing but the x axis 
(check it!). If we take any element (a, b) ∈ 2 which is not in X, then the set

H(a, b) = (a, b) + X = {(a + x, b) : x ∈ }
is parallel to x-axes and looks like the set X, see Figure 4.1. Also it can be seen that if 
we choose an element from X, i.e., of the form (a, 0), then H(a,0) is X itself. Therefore, 
we conclude that either H(a,b) = X or H(a,b)  X = φ. Since the collection of all straight 
lines, parallel to x-axes covers the whole Euclidean plane, it implies that (a,b)∈2 
H(a,b) = 2. Hence, the collection {H(a,b)} forms a partition of the Euclidean plane. If 
we take the collection

H(a,b) = X + (a, b) = {(x + a, b) : x ∈ }
then we also get the same image as the figure 4.1 for the commutativity of the addition 
in 2. In group theoretic language this type of element is called coset, more specifically 
left-coset. Here comes the formal definition.

H(a,3/2)

H(a,1)

Y

X(0, 0)

H(a,–1)

Fig. 4.1

Definition 4.3.1 : Let G be a group. Now take an element a ∈ G, then the set aH 
defined by

aH = {ah : h ∈ H}
is called the left coset. Similarly we can define the right-coset Ha.
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Example 4.3.2 : Consider the subgroup H = 〈3〉 of 6. The cosets are
	 0 + H = {0, 3} = 3 + H
	 1 + H = (123)H = {(13), (123)}
	 2 + H = (132)H = {(23), (132)}
Example 4.3.3 : Let G = S3 and H = {(1), (12)}. Then the left cosets of H in G are
	 (1)H = (12)H = {(1), (1, 2)}
	 (13)H = (123)H = {(13), (123)}
	 (23)H = (132)H = {(23), (132)}
	 The right cosets are
	 H(1) = H(12) = {(1), (1, 2)}
	 H(13) = H(132) = {(13), (132)}
	 H(23) = H(123) = {(23), (123)}.
Note that, except for the coset of the elements in H, the left and right cosets are 
different.

G

H

gH

g′H

Fig. 4.2 : Group G and cosets gH and g′H of the subgroup H

Proposition 4.3.4 (Properties). Let H and K be two subgroups of G and a, b ∈ G. 
Then
1. a ∈ aH.
2. aH = H if and only if a ∈ H.
3. aH = bH if and only if a ∈ bH.
4. aH = bH or aH  bH = φ.
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5. aH = bH if and only if a−1b ∈ H.
6. |aH| = |bH|.
Proof. 1. Since H contains the identity element e, which implies a.e = a ∈ aH.
2. Suppose aH = H, then e = ah for some h ∈ H. Therefore, a = eh−1 = h−1 ∈ H. 
Conversely, suppose a ∈ H. Then aH ⊂ H. Let h ∈ H. Then h can be expressed as h = 
aa−1h = ah1 ∈ aH for some h1 ∈ H. Which implies H ⊆ aH. Hence, aH = H.
3. This part can be easily deduced from 1. and 2.
4. Let aH  bH ≠ φ. Take x ∈ aH  bH. Then x = ah1 = bh2 for some h1, h2 ∈ H. 
So, we get a = bh2h1 ∈ bH. Hence, from (3) we say that aH = bH. Therefore, either 
aH  bH = φ or aH = bH.
5. Let aH = bH. Then b = ah for some h ∈ H. Which implies that a−1b = h ∈ H. 
Conversely, let a−1b ∈ H. Then b ∈ aH. So, from (3) we get aH = bH.
6. Define a function f : aH → bH by f (ah) = bh. (Check it!) This function is bijective.  
Hence, aH and bH has same number of elements. 		

From (3) of the Proposition 4.4, it is clear that cosets makes partition of the 
group G. But we know that for any partition there must be a equivalence relation. 
Now we define the equivalence relation.

Let H be a subgroup of the group G. For any a, b ∈ G, a is related to b, a ~ b if 
and only if a−1b ∈ H.

This relation is reflective, i.e., a ~ a since a−1a = e ∈ H. This relation is also 
symmetric. Now for any a, b, c ∈ G such that a ~ b and b ~ c, we get a−1b ∈ H and 
b−1c ∈ h. Hence, (a−1b)(b−1c) = a−1c ∈ H. Which implies that a ~ c. Therefore, the 
relation ~ is transitive. Hence ~ is an equivalence relation.

Consider the equivalence class [a] of a ∈ g, i.e.,
[a] = {b ∈ G : a ~ b}.

Theorem 4.3.5 : The equivalence class [a] is nothing but the left coset aH.
Proof. Since the relation ~ is reflective, [a] ≠ φ. Let b ∈ [a]. Then a ~ b, i.e., a−1b ∈ H. 
Which implies that b ∈ aH. Hence, [a] ⊆ aH.
Again take b ∈ aH. Then b = ah for some h ∈ H. Which implies that a−1b = h ∈ H. 
Therefore, a ~ b. So, b ∈ [a]. Therefore, aH ⊆ [a]. Hence, we get [a] = aH. 	

This theorem makes it clear why the cosets partition the whole group. Note that 
the above result holds if we replace ’left’ with ’right’.
Definition 4.3.6 : Let G be a group and H be a subgroup. The number of left cosets of 
H in G is called index of H in G and denoted by [G : H].
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Example 4.3.7 : From the previous example we get [6, H] = 3 and [S3, H] = 3.
Theorem 4.3.8 : Let H be a subgroup of G. Then the number of left cosets of H in G is 
same as the number of right cosets of H in G.
Proof. Let LH and RH be the number of left cosets and right cosets of H in G 
respectively. Now we define a bijection between LH and RH. Consider the function

ϕ : LH → RH

defined by
ϕ(gH) = Hg−1.

First, we will show that this map is well-defined. Suppose g1H = g2H. Then by 
proposition 4.4, Hg1

−1 = Hg2
−1 = ϕ(g1H) = ϕ(g2H). Thus, ϕ is well defined.

Let ϕ(g1H) = ϕ(g2H) for some g1, g2 ∈ G. Then, Hg1
−1 = Hg2

−1. Again, the proposition 
4.4 implies that g1H = g2H. Hence, the function ϕ is injective. The function ϕ is 
obviously surjective. Therefore, ϕ is a bijection so the result holds. 	

The above theorem implies that in the definition of index of a subgroup H in the 
group G we can replace the term ‘left cosets’ with ‘right cosets’ also.

4.4 Lagrange’s Theorem
We’re finally ready to state Lagrange’s Theorem, which is named after the Italian born 
mathematician Joseph Louis Lagrange.
Theorem 4.4.1 (Lagrange’s Theorem). Let G be a finite group and H be a subgroup of 
G. Then |G|/|H| = [G : H]. In particular, |H| divides |G|.
Proof. The group G is partitioned into [G : H] number of left-cosets and each left 
coset has |H| numbers of element by the proposition 4.4. Hence, |G| = |H|[G : H]. 	

The converse of Lagrange’s Theorem is not true: namely, if G is a finite group 
and n divides |G|, then G need not have a subgroup of order n. It can be seen by 
an example: A4 has no subgroup of order 6. But there are some partial converse to 
Lagranges Theoem. For finite abelian group the full converse is true, i.e., for each 
divisor of |G|, we have a subgroup of that order.
Theorem 4.4.2 (Cauchy’s Theorem). If G is a finite group and p is a prime dividing 
|G|, then G has an element of order p.
Proof. The proof is out of the scope of this book.

We’ll now examine a host of consequence of Lagrange’s Theorem.
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Corollary 4.4.3 : Suppose G is a finite group and g ∈ G. Then 
1. |g| divided |G|.
2. g|G| = e.
3. If |G| is a prime, then G is cyclic and every element g ≠ e of G is a generator of G.
Proof. 1. Consider the cyclic group 〈g〉 generated by g. Then 〈g〉 has order |g|. Now by 
Lagrange’s theorem | 〈g〉 | divides |G|, hence, |g| divides |G|.
2. Since |g|||G|. So |G| = m|g| for some integer m. Now g|G| = (g|g|)m = em = e.
3. Let g ∈ G be an non-identity element. Now |g| divides |G|. But |G| is a prime 
number. So either |g| is one or |G|. But |g| ≠ 1 since g is not the identity. Therefore, 
|g| = |G|. Therefore, g is a generator of G. Since g is arbitrary, so every element g ≠ φ 
of G is a generator of G and G is cyclic. 	
Corollary 4.4.4 : Let H and K be subgroups of G such that K ⊂ H ⊂ G. Then 
[G : K] = [G : H][G : K].
Proof. By, Lagrange’s Theorem we have

[ : ] | |
| |

| | | |
| | [ : ][ : ]G K G

K
G
H

H
K G H G K= = =

Theorem 4.4.5 : (Fermat’s Little Theorem). For every integer a and every prime p,
ap ≡ a mod p.

Proof. By division algorithm, a = pm + r where 0 ≤ r < p. Thus a ≡ r mod p, and it 
suffices to prove that rp ≡ r mod p. If r = 0 the result is trivial, so we may assume that 
r ∈ U(p) = {1, 2, ..., p − 1}. Hence, rp−1 ≡ 1 mod p and therefore, rp ≡ r mod p.

4.5 Normal Subgroups
Normal subgroups was introduced by Evariste Galois in 1831 as a tool for deciding 
whether a polynomial is solvable by radical or not. Galois noted that a subgroup H 
of a group G of permutation induced two decompositions of G into what we call left 
cosets and right cosets. If the two decompositions coincide, that is, if the left cosets are 
the same as the right cosets, Galois called the decomposition proper. Thus a subgroup 
giving a proper decomposition is what we called normal subgroup.
Definition 4.5.1 : A subgroup H of G is called normal, denoted by H  G, if gH = Hg 
for all g ∈ G, i.e., left-coset and right-coset are equal.

You should think of a normal subgroup in this way: You can switch the order of 
a product of an element a from the group and an element h from the normal subgroup 
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H, but you must “fudge” a bit on the element from the normal subgroup H by using 
some h′ from H rather than h. That is, there is an element h′ in H such that ah = h′a. 
Likewise, there is some h′′ in H such that ha = ah′′. (It is possible that h′ = h or h′′ = h, 
but we may not assume this.)
Proposition 4.5.2 : Let G be a group and H be a subgroup with index 2. Then H is 
normal in G.
Proof. Let g ∈ G − H so, ny hypothesis, there are two left cosets of H in G, they are 
eH and gH. Since eH = H and the cosets partition G, we must have gH = G − H. Now 
the two right cosets of H in G are He and Hg. Since He = H, we again must have 
Hg = G − H. Combining these gives, gH = Hg for all g ∈ G. Hence, H is normal in G.
Example 4.5.3 : Every subgroup of an abelian group G is normal.
Example 4.5.4 : G = S3, H = 〈(1, 2, 3)〉 = {e, (1, 2, 3), (1, 3, 2)}. Now [G : H] = 2, so 
H is normal in G.
Let g = (1, 2). Then
	 gH = {(1, 2), (1, 2)(1, 2, 3), (1, 2)(1, 3, 2)} = {(1, 2), (2, 3), (1, 3)}
	 Hg = {(1, 2), (1, 2, 3)(1, 2), (1, 3, 2)(1, 2)} = {(1, 2), (1, 3), (2, 3)}.
this example shows that if H is normal in G, then gH = Hg ∀g ∈ G but it is not true 
that gh = hg for all h ∈ H.

There are several equivalent formulations of the definition of normality. Normal 
subgroup can also be expressed in terms of conjugacy relation.
In a group G, two elements g and h are said to be conjugate if

h = xgx−1 for some x ∈ G.
The conjugacy relation in G is an equivalence relation (Check it !). The conjugacy 
class of g ∈ G is denoted by

[g] = {xgx−1 : x ∈ G}.
Example 4.5.5 : In S3, what are the conjugates of (1, 2)? We make a table of σ(1, 2)
σ−1 for all σ ∈ S3.
	         σ 	   (1) 		 (1,2) 	 (1,3) 	 (2,3) 	 (1,2,3)	  (1,3,2)
	 σ(1, 2)σ−1 	 (1,2)		 (1,2) 	 (2,3) 	 (1,3) 	   (2,3) 	     (1,3)

The idea of conjugation can be applied not just to elements, but to subgroups. If 
H is a subgroup of G and g ∈ G, the set

gHg−1 = {ghg−1 : h ∈ H}
is the conjugacy class of g in H.
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Proposition 4.5.6 : The conjugacy class gHg−1 is a subgroup of G.
Proof. Since e ∈ H, which implies e ∈ gHg−1. So gHg−1 ≠ φ. Let x, y ∈ gHg−1. 
Then x = gh1g

−1 and y = gh2g
−1 for some h1, h2 ∈ H. Now, xy−1 = gh1g

−1(gh2g
−1)−1 = 

gh1g
−1gh2

−1g−1 = g(h1h2
−1)g−1 ∈ gHg−1. Therefore, gHg−1 is a subgroup of G.

Theorem 4.5.7 : A subgroup H of G is normal if and only if gHg−1 ⊆ H for all g ∈ G.
Proof. Let H is normal in G. Then gH = Hg for all g ∈ G. Now for any h ∈ H, there 
exists h′ ∈ H such that gh = h′g. Which implies that ghg−1 = h′ ∈ H. Hence, gHg−1 ⊆ H 
for all g ∈ G. 
Conversely, let gHg−1 ⊆ H for all g ∈ G. Then for any gh ∈ gH there exists h′ ∈ H 
such that gh = h′g from the hypothesis. Hence, gH ⊆ Hg. Similarly, we can show Hg 
⊆ gH. Therefore, gH = Hg for all g ∈ G. Hence, H is normal in G. 	
Definition 4.5.8 : Let H and K be subgroups of a group G and define

HK = {hk : h ∈ H, k ∈ K}.

a1H

a1g2H

a1g2H

a1NG(H)

a1g3H

a1g1H

H

g4N=Ng4

g2H=Hg2

NG(H)

g3H=Hg3

g1H=Hg1

a3H

a3g4H

a3g2H

a3NG(H)

a2g3H

a3g1H

a2H

a2g2H

a2g2H

a2NG(H)

a3g3H

a2g1H

Fig. 4.3 : Abstract visualization of the relationships H ∆ NGH ∆ G
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Proposition 4.5.9 : If H and K are finite subgroups of a group, then

| | | || |
| |HK H K
H K= ∩

.

Proof. Notice that HK is a union of left cosets of K, namely,

HK hK
h H

=
∈
 .

Since each coset of K has |K| elements it suffices to find the number of distinct left 
cosets of the from hK, h ∈ H. But h1K = h2K for h1, h2 ∈ H if and only if h2

−1 h1 ∈ K. 
Thus

h1K = h2K 



 h2
−1h1 ∈ H  K 



 h1(H  K) = h2(H  K).

Thus the number of distinct cosets of the from hK, for h ∈ H is the number of distinct 
cosets h(H  K), for h ∈ H. The latter number, by Lagrange’s theorem, equals | |

| |
H

H K∩ . 
Thus HK consists of | |

| |
H

H K∩   number of cosets of K which proves the result.	  

4.6	 Summary
In this unit, we have studied the concept of cosets and normal subgroup. We have 
showed that the cosets partion the whole group. We have also discussed the Lagrange’s 
theorem.

4.7	 Worked examples

	1. 	List the cosets of 〈9〉 in Z16×× , and find the order of each coset in Z16×× /〈9〉.
Solution: Z16×  = {1, 3, 5, 7, 9, 11, 13, 15}.
	 	 〈9〉 = {1, 9}    3 〈9〉 = {3, 11}     5 〈9〉 = {5, 13}      7 〈9〉 = {7, 15}
		  Now the order of aN is the smallest positive integer n such that an ∈ N.
		  The coset 3 〈9〉 has order 2 since 32 = 9 and 9 belongs to the subgroup 〈9〉. (We 

could have used either element of the coset to do the calculation.) The coset 5 〈9〉 
also has order 2, since 52 = 9. The coset 7 〈9〉 has order 2 since 72 = 1.

	2.	 List the cosets of 〈7〉 in Z16×× . Is the factor group Z16×× / 〈7〉 cyclic?
Solution: Z16×  = {1, 3, 5, 7, 9, 11, 13, 15}.
	 	 〈7〉 = {1, 7}      3 〈7〉 = {3, 5}      9 〈7〉 = {9, 15}      11 〈7〉 = {11, 13}
		  Since 32 ∉ 〈7〉, the coset 3 〈7〉 does not have order 2, so it must have order 4, 

showing that the factor group is cyclic.
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	3.	 Show that the subgroup {id, (1 3)} of S3 is not normal.
Solution: Here’s the multiplication table for S3, the group of permutations of {1, 2, 3}.

id (1 2 3) (1 3 2) (2 3) (1 3)  (1 2)
id  id (1 2 3) (1 3 2) (2 3) (1 3) (1 2)

(1 2 3)  (1 2 3)  (1 3 2)  id (1 2)  (2 3)  (1 3)
(1 3 2) (1 3 2) id (1 2 3) (1 3)  (1 2)  (2 3)
(2 3)  (2 3)  (1 3)  (1 2)  id (1 2 3) (1 3 2)
(1 3)  (1 3)  (1 2)  (2 3) (1 3 2)  id (1 2 3)
(1 2)  (1 2)  (2 3)  (1 3)  (1 2 3)  (1 3 2)  id

		  We have to find an element g ∈ S3 such that
g{id, (1 3)}g−1 ⊄ {id, (1 3)}.

		  There are several possibilities. For example,
		  (1 2){id, (1 3)}(1 2)−1 = (1 2){id, (1 3)}(1 2) = {(1 2)id(1 2), (1 2)(1 3)(1 2)} = {id, 

(2 3)}.
		  Since {id, (2 3)} ⊄ {id, (1 3)}, the subgroup {id, (1 3)} is not normal in S3. 	
	4.	 Let G and H be groups. Let G × {1} = {(g, 1) | g ∈ G}.
		  Prove that G × {1} is a normal subgroup of the product G × H.
Solution: First, I’ll show that it’s a subgroup. Let (g1, 1), (g2, 1) ∈ G × {1}, where g1, 	

g2 ∈ G. Then
(g1, 1) ⋅ (g2, 1) = (g1g2, 1) ∈ G × {1}.

		  Therefore, G × {1} is closed under products.
		  The identity (1, 1) is in G × {1}.
		  If (g, 1) ∈ G × {1}, the inverse is (g, 1)−1 = (g−1, 1), which is in G × {1}.
		  Therefore, G × {1} is a subgroup.
		  To show that G × {1} is normal, let (a, b) ∈ G × H, where a ∈ G and b ∈ H. I must 

show that
(a, b)(G × {1})(a, b)−1 ⊂ G × {1}.

		  We can show one set is a subset of another by showing that an element of the first 
is an element of the second. An element of (a, b)(G × {1})(a, b)−1 looks like (a, b)
(g, 1)(a, b)−1, where (g, 1) ∈ G × {1}. Now

(a, b)(g, 1)(a, b)−1 = (a, b)(g, 1)(a−1, b−1) = (aga−1, b(1)b−1) = (aga−1, 1).
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		  aga−1 ∈ G, since a, g ∈ G. Therefore, (a, b)(g, 1)(a, b)−1 ∈ G × {1}. This proves 
that (a, b)(G × {1})(a, b)−1 ⊂ G × {1}. Therefore, G × {1} is normal.

	5.	 The cosets of the subgroup 〈19〉 in U20 are
	 	 	 〈19〉 = {1, 19}
			   3 ⋅ 〈19〉 = {3, 17}
			   7 ⋅ 〈19〉 = {7, 13}
				    9 ⋅ 〈19〉 = {9, 11}
		  (a) Compute {3, 17} ⋅ {9, 11}.
		  (b) Compute {3, 17}−1.
		  (c) Compute {9, 11}3.
Solution: (a) Take an element (it doesn’t matter which one) from each coset, say 

3 ∈ {3, 17} and 11 ∈ {9, 11}.
		  Perform the operation on the elements you chose. In this case, it’s multiplication:

3 ⋅ 11 = 33 = 13.
		  Find the coset containing the answer: 13 ∈ {7, 13}. 
		  Hence,

	 {3, 17} ⋅ {9, 11} = {7, 13}. 	
		  (b) Take an element (it doesn’t matter which one) from the coset, say 3 ∈ {3, 17}.
		  Perform the operation on the elements you chose. In this case, it’s finding the 

inverse (use the Extended Euclidean Algorithm, or trial and error):
3−1 = 7.

		  Find the coset containing the answer: 7 ∈ {7, 13}.
		  Hence,

	 {3, 17}−1 = {7, 13}. 	
		  (c) Take an element (it doesn’t matter which one) from the coset, say 11 ∈ {9, 11}.
		  Perform the operation on the elements you chose. In this case, it’s cubing:

113 = 1331 = 11.
		  Find the coset containing the answer: 11 ∈ {9, 11}.
		  Hence,

	 {9, 11}3 = {9, 11}. 	
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	6.	 Let G be a group of order 24. What are the possible orders for the subgroups of G.
		  Solution: Write 24 as product of distinct primes. Hence, 24 = (3)(23). By Theorem 

1.2.27, the order of a subgroup of G must divide the order of G. Hence, We 
need only to find all divisors of 24. By Theorem 1.2.17, number of all divisors 
of 24 is (1 + 1)(3 + 1) = 8. Hence, possible orders for the subgroups of G are :  
1,3,2,4,8,6,12,24.

4.8	 Model Questions
	 1.	 Let G be a finite group. If a, b ∈ G such that |a| = 5 and |b| = 7, then show that 

|G| ≥ 35.
	 2.	 Suppose that G is a finite group with 60 elements. What are the orders of possible 

subgroups of G?
	 3.	 Prove or disprove: Every subgroup of the integers has finite index.
	 4.	 Prove or disprove: Every subgroup of the integers has finite order.
	 5.	 List the left and right cosets of the subgroups 〈8〉 in 18.
	 6.	 List the left and right cosets of the subgroups 〈3〉 in U8.
	 7.	 List the left and right cosets of the subgroups 3 in .
	 8.	 Describe the left cosets of SL2() in GL2().
	 9.	 Show that the integers have infinite index in the additive group of rational 

numbers.
	10.	 Let a and b be elements of a group G and H and K be subgroups of G. If aH = bK, 

prove that H = K.
	11.	 If H and K are subgroups of G and g belongs to G, show that g(H  K) = gH  

gK.
	12.	 Let a and b be nonidentity elements of different orders in a group G of order 155. 

Prove that the only subgroup of G that contains a and b is G itself.
	13.	 Let H be a subgroup of R*, the group of nonzero real numbers under 

multiplication. If R+ ⊆ H ⊆ R*, prove that H = R+ or H = R*.
	14.	 Let C* be the group of nonzero complex numbers under multiplication and let 

H = {a + bi ∈ C* | a2 + b2 = 1}. Give a geometric description of the coset (3 + 4i)
H. Give a geometric description of the coset (c + di)H.

	15.	 Let G be a group of order 60. What are the possible orders for the subgroups of 
G?
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	16.	 Suppose that K is a proper subgroup of H and H is a proper subgroup of G. If 
|K| = 42 and |G| = 420, what are the possible orders of H?

	17.	 Let G be a group with |G| = pq, where p and q are prime. Prove that every proper 
subgroup of G is cyclic. 

	18.	 Recall that, for any integer n greater than 1, φ(n) denotes the number of positive 
integers less than n and relatively prime to n. Prove that if a is any integer 
relatively prime to n, then aφ(n) mod n = 1.

	19.	 Compute 515 mod 7 and 713 mod 11.
	20.	 Use Corollary 2 of Lagrange’s Theorem (Theorem 7.1) to prove that the order of 

U(n) is even when n > 2.
	21.	 Suppose G is a finite group of order n and m is relatively prime to n. If g ∈ G and 

gm = e, prove that g = e.
	22.	 Suppose H and K are subgroups of a group G. If |H| = 12 and |K| = 35, find 

|H ∩ K|. Generalize.
	23.	 For any integer n ≥ 3, prove that Dn has a subgroup of order 4 if and only if n is 

even.
	24.	 Let p be a prime and k a positive integer such that ak mod p = a mod p for all 

integers a. Prove that p – 1 divides k – 1.
	25.	 Suppose that G is an Abelian group with an odd number of elements. Show that 

the product of all of the elements of G is the identity.
	26.	 Suppose that G is a group with more than one element and G has no proper, 

nontrivial subgroups. Prove that |G| is prime. (Do not assume at the outset that G 
is finite.) 

4.9	 Solutions of some selected problems
	 2.	 Use Lagrange’s theorem
	 5.	 {0, 8, 16 ,6, 14,4,
	 7.	 Z3

	 8.	 R*

	14.	 The coset (3 + 4i)H is the circle with center at the origin and radius |3 + 4i|.
	15.	 Use Lagrange’s theorem
	16.	 42*n where 1 < n < 10.
	22.	 1
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70

Unit - 5	 	 Permutation Groups

Structure
5.1 	 Objectives
5.2 	 Introduction
5.3 	 Definition & Notation
5.4 	 Operations on Permutation
5.5 	 Cyclic Notation
5.6	 Transposition
5.7	 The Alternating Groups
5.8 	 Summary
5.9 	 Worked Examples
5.10 	Model Questions
5.11	 Solution of some selected problems

5.1 Objective
The followings are discussed here:
• Definition of permutation group
• Operation on permutation
• Cyclic notation of permutation
• Transposition
• Alternation group

5.2 Introduction
Permutation groups are central to the study of geometric symmetries and 

to Galois theory, the study of finding solutions of polynomial equations. They also 
provide abundant examples of nonabelian groups. In this chapter, we shall deal with 
various concepts of permutations.

5.3 Definitions and Notation
Let X be a set. Then any bijection on X is called a permutation. We have already 

seen that the set of all permutation SX forms a group under functional composition. If 
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X is finite, then we can assume that X = {1, 2, ..., n}. In this case we write Sn instead 
of SX. The following theorem says that Sn is a group. We call this group the symmetric 
group on n letters. This group has n! numbers of element, i.e., |Sn| = n!.
5.3.1 Notation :
Suppose X = {1, 2, 3, 4, 5} and consider the permutation σ defined by σ(1) = 3, 
σ(2) = 2, σ(3) = 5, σ(4) = 1 and σ(5) = 4. This permutation can also be expressed in 
array notation by writing

σ
σ σ σ σ σ

= 





= 





1 2 3 4 5
1 2 3 4 5

1 2 3 4 5
3 2 5 1 4( ) ( ) ( ) ( ) ( )

.

where the top row represent the original elements and the bottom row represents what 
each element is mapped to. Note that some texts use square brackets. This is one of 
the notations of a permutation. Below, we will see there is another way to represent 
permutations. Let us look at some specific examples.
Example 5.3.2 : Let A = {1, 2, 3, 4}. And suppose that σ(1) = 3, σ(2) = 1, σ(3) = 4, 
σ(4) = 2 ans then we would write

σ = 





1 2 3 4
3 1 4 2

.

and to indicate the action of α on an element, say 2, we would write

1 1

2 2

3 3

4 4

Fig. 5.1 : Visualization of σ

σ( ) ( )2
1 2 3 4
3 1 4 2

2 1= 





= .

Example 5.3.3 : Any symmetry of an equilateral triangle is also a permutation. Let 
∆ABC be an equilateral triangle whose vertices are marked as A,B,C counterclockwise. 
Then each symmetry represents a permutation on the set {A, B, C}, see Figure 5.2:
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Group of Permutation of 
{A, B, C}

Group of Symmetries of 
an Equilateral Triangle Interpretation

p
A B C
A B C
A B C

1 = 





( )( )( )

A

B C

Do nothing

p
A B C
B C A
ABC

2 = 





( )

A B

C

Counterclockwise rotation 
of 120°

p
A B C
C A B
ACB

3 = 





( )

A

B

C

Counterclockwise rotation 
of 240°

p
A B C
A C B
A BC

4 = 





( )( )

A

BC

Flip through vertex A

p
A B C
C B A
AC B

5 = 





( )( )

AB

C

Flip through vertex B

p
A B C
B A C
AB C

6 = 





( )( )

A

B

C

Flip through vertex C

Fig. 5.2 : Symmetries of an equilateral triangle
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Example 5.3.4 : The identity permutation on A = {1, 2, 3, ..., n} is

σ = 





1 2 3 4
1 2 3 4





n
n
,

in other words, it does not change anything.

5.4	 Operation on Permutation
Above we said that Sn was a group under composition. Let us look in more detail at 
composition of permutations. Composition of permutations written in array notation 
is performed from right to left, that is the permutation on the right is performed first.

Let A = {1, 2, ..., n} and σ, β ∈ Sn. Then the composition σβ is the functional 
composition. This composition can be written in cyclic notation as

σ
σ σ σ σ β β β β

= 










1 2 3
1 2 3

1 2 3
1 2 3









n
n

n
n( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

	 = 





1 2 3
1 2 3





n
nβσ βσ βσ βσ( ) ( ) ( ) ( ) .

Example 5.4.1 : Let A = {1, 2, 3, 4} and σ, β ∈ S4 defined by

σ = 





1 2 3 4
3 1 4 2    and   β = 





1 2 3 4
2 1 4 3

Then

σβ = 





1 2 3 4
4 2 3 1

And

βσ = 





1 2 3 4
1 3 2 4

Example 5.4.2 : Consider two permutations

P = 





1 2 3 4
2 3 4 1    and    Q = 





1 2 3 4
2 1 4 3

Then

PQ = 





1 2 3 4
1 4 3 2

.
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5.4.3 Inverse of Permutations :
If a permutation σ maps ni to nj, then the inverse permutation σ−1 maps nj back to ni. 
In other words, the inverse of a permutation can be found by simply interchanging the 
top and bottom rows of the permutation σ and (for convenience in reading) reordering 
the top row in numerical order 1, 2, ..., n.
For example,

σ σ= 





⇒ 





−1 2 3 4 5
3 5 2 4 1

1 2 3 4 5
5 3 1 4 2

1 .

Here, σ(1) = 5 so σ−1(5) = 1.

5.5 Cyclic Notation
The notation that we have used to represent permutations up to this point is 
cumbersome, to say the least. To work effectively with permutation groups, we need a 
more streamlined method of writing down and manipulating permutations. The cycle 
notation was introduced by the French mathematician Cauchy in 1815. The notation 
has the advantage that many properties of permutations can be seen from a glance. We 
now present this notation.
Definition 5.5.1 : Let A = {1, 2, ..., n}. A permutation σ ∈ Sn is a cycle of length k if 
there exists elements a1, a2, ..., ak ∈ A such that

σ(a1) = a2

σ(a2) = a3

.

.

.
σ(ak) = a1,

and σ(x) = x for all other elements x ∈ A. We write them as (a1, a2, ..., ak).
Example 5.5.2 : Let A = {1, 2, 3, 4, 5} and σ ∈ S5 defined by

σ = 





1 2 3 4 5
3 2 5 1 4 .

Then this permutation can be expressed in cyclic notation as (1, 3, 5, 4). Observe that 
there are also some other cyclic notations of this permutation as:

(1, 3, 5, 4) = (3, 5, 4, 1) = (5, 4, 3, 1) = (4, 1, 3, 5).
Bur we usually prefer the notation in ascending order.
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Definition 5.5.3 When two cycles have no elements in common, they are said to be 
disjoint.
Example 5.5.4 The permutation

σ = 





1 2 3 4 5 6
2 1 4 6 5 3 ,

can be represented by (1, 2)(3, 4, 6)(5) and (1, 2)(3, 4, 6) if we omit the 1-cycle.
Note. If you wanted to dial the telephone number 413−2567 but accidentally dialed 
314 − 5267, then you permuted the digits according to (2, 5)(3, 4).

Theorem 5.5.5 Let σ be any elements of Sn.
Then σ may be expressed as a product of disjoint cycles. This factorisation is unique. 
ignoring 1-cycles, up to order. Teh cycle type of σ is the lengths of the corresponding 
cycles.
Proof. We first prove the existence of such a decomposition. Let a1 = 1 and define ak 
recursively by the formula

ai+1 = σ(ai).
Consider the set

{ai | i ∈ }.
As there are only finitely many integers between 1 and n, we must have some 
repetitions, so that ai = aj, for some i < j. Pick the smallest i and j for which this 
happens. Suppose that i ≠ 1. Then σ(ai−1) = ai = σ(aj−1). As σ is injective, ai−1 = aj−1. 
But this contradicts our choice of i and j. Let τ be the k-cycle (a1, a2, . . . , aj). Then ρ 
= στ−1 fixes each element of the set

{ai | i ≤ j}.
Thus by an obvious induction, we may assume that ρ is a product of k − 1 

disjoint cycles τ1, τ2, . . . , τk−1 which fix this set.
But then

σ = ρτ = τ1τ2 . . . τk,
where τ = τk.

Now we prove uniqueness. Suppose that σ = σ1σ2 . . . σk and σ = τ1τ2 . . . τl are 
two factorisations of σ into disjoint cycles. Suppose that σ1(i) = j. Then for some p, 
τp(i) ≠ i. By disjointness, in fact τp(i) = j. Now consider σ1(  j). By the same reasoning, 
τp(  j) = σ1(  j). Continuing in this way, we get σ1 = τp. But then just cancel these terms 
from both sides and continue by induction. 	
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Example 5.5.6 : Let

σ = 





1 2 3 4 5
3 4 1 5 2 .

Look at 1. 1 is sent to 3. But 3 is sent back to 1. Thus part of the cycle 
decomposition is given by the transposition (1, 3). Now look at what is left {2, 4, 5}. 
Look at 2. Then 2 is sent to 4. Now 4 is sent to 5. Finally 5 is sent to 2. So another part 
of the cycle type is given by the 3-cycle (2, 4, 5).

It is claimed then that
σ = (1, 3)(2, 4, 5) = (2, 4, 5)(1, 3).

This is easy to check. The cycle type is (2, 3).
Lemma 5.5.7 : Let σ ∈ Sn be a permutation, with cycle type (k1, k2, … kl). The order 
of   σ is the least common multiple of k1, k2, …, kl.
Proof. Let k be the order of σ and let σ = τ1τ2 . . . τl be the decomposition of σ into 
disjoint cycles of lengths k1, k2, . . . , kl.

Pick any integer h. As τ1, τ2, . . . , τl are disjoint, it follows that
σ τ τ τh h h

l
h= 1 2 .

Moreover the RHS is equal to the identity, iff each individual term is equal to the 
identity.

It follows that
τik e= .

In particular ki divides k. Thus the least common multiple, m of k1, k2, . . . , kl divides 
k. But σ τ τ τ τm m m m

l
m e= =1 2 3  . Thus m divides k and so k = m. 	

5.6 	 Transpositions
A 2-cycle is called a transposition.
Since

(a1, a2, . . . , an) = (a1an)(a1an−1) … (a1a3)(a1a2),
any cycle can be written as the product of transpositions, leading to the following 
proposition.
Proposition 5.6.1 : Any permutation of a finite set containing at least two elements 
can be written as the product of transpositions.
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Definition 5.6.2 : A permutation is said to be even if it can be expressed as the product 
of an even number of transpositions, and odd if it can be expressed as the product of 
an odd number of transpositions.

5.7	 The Alternating Groups
One of the most important subgroups of Sn is the set of all even permutations, An. The 
group An is called the alternating group on n letters.
Theorem 5.7.1 : The set An is a subgroup of Sn.
Proof. Since the product of two even permutations must also be an even permutation, 
An is closed. The identity is an even permutation and therefore is in An. If σ is an even 
permutation, then

σ = σ1σ2 … σr,
where σi is a transposition and r is even. Since the inverse of any transposition is 
itself,

σ−1 = σrσr−1 … σ1

is also in An. 	
Proposition 5.7.2 : The number of even permutations in Sn, n ≥ 2, is equal to the 
number of odd permutations; hence, the order of An is n!/2.
Proof. Let An be the set of even permutations in Sn and Bn be the set of odd 
permutations. If we can show that there is a bijection between these sets, they must 
contain the same number of elements. Fix a transposition σ in Sn. Since n ≥ 2, such a 
σ exists. Define

λσ : An → Bn
by

λσ(τ) = στ.
Suppose that λσ(τ) = λσ( μ). Then στ = σμ and so

τ = σ−1στ = σ−1σμ = μ.
Therefore, λσ is one-to-one. We will leave the proof that λσ is surjective to the 
reader. 	
Example 5.7.3 : The group A4 is the subgroup of S4 consisting of even permutations. 
There are twelve elements in A4:
	 (1)	 (12)(34)	 (13)(24)	 (14)(23)
	 (123)	 (132)	 (124)	 (142)
	 (134)	 (143)	 (234)	 (243).
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5.8	 Summary
In this unit, we have studied various concept of permutation group. We have 

showed that a permutation can be expressed as the product of transpositions. The 
concept of alternating group is also discussed in this unit.

5.9	 Worked Examples
	1.	 Find the orbit and cycles of the following permutations:

		  (a) 1 2 3 4 5 6 7 8 9
2 3 4 5 1 6 7 9 8







		  (b) 
1 2 3 4 5 6
6 5 4 3 1 2







Solution: 

		  (a) Clearly 
1 2 3 4 5 6 7 8 9
2 3 4 5 1 6 7 9 8





  = (1, 2, 3, 4, 5)(6)(7)(8, 9). So orbit 

of 1, 2, 3, 4 and 5 is the set {1, 2, 3, 4, 5}; orbit of 6 is 6; orbit of 7 is 7; orbit of 8 
and 9 is the set {8, 9}. Also (1, 2, 3, 4, 5) and (8, 9) are its cycles.

		  (b) Again 
1 2 3 4 5 6
6 5 4 3 1 2





  = (1, 6, 2, 5)(3, 4). So the orbit of 1, 2, 5 and 6 is 

the set {1, 2, 5, 6}; and the orbit of 3 and 4 is the set {3, 4}. Also (1, 6, 2, 5) and 
(3, 4) are its cycles.

	2.	 Write the permutation in the worked example 1 as the product of disjoint cycles.

		  Solution: We have 
1 2 3 4 5 6 7 8 9
2 3 4 5 1 6 7 9 8







 = (1, 2, 3, 4, 5)(6)(7)(8, 9)

		  and  
1 2 3 4 5 6
6 5 4 3 1 2







 = (1, 6, 2, 5)(3, 4).

	3.	 Express as the product of disjoint cycles:
		  (a) (1, 5)(1, 6, 7, 8, 9)(4, 5)(1, 2, 3).
		  (b) (1, 2)(1, 2, 3)(1, 2).
		  Solution:
		  (a) Let (1, 5)(1, 6, 7, 8, 9)(4, 5)(1, 2, 3) = τ . So we have τ = τ1τ2τ3τ4, where 
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τ1 = (1, 5), τ2 = (1, 6, 7, 8, 9), τ3 = (4, 5) and τ4 = (1, 2, 3). Now
	 	 	 τ(1) = τ1τ2τ3τ4(1)
				    = τ1(τ2(τ3(τ4(1))))
				    = τ1(τ2(τ3(2)))
				    = τ1(τ2(2))
				    = τ1(2)
				    = 2
		  Repeating analogously, we have τ(2) = 3; τ(3) = 6; τ(6) = 7; τ(7) = 8; τ(8) = 9; 

	 	 τ(9) = 5; τ(5) = 4; and τ(4) = 1. Thus we have τ = 





1 2 3 4 5 6 7 8 9
2 3 6 1 4 7 8 9 5

 
= (1, 2, 3, 6, 7, 8, 9, 5, 4).

		  (b) Proceeding as in part (a), we have (1, 2)(1, 2, 3)(1, 2) = (1, 3, 2).
	4.	 Prove that (1, 2, . . . , n)−1 = (n, n − 1, n − 2, . . . , 2, 1).
		  Solution: One can easily check (1, 2, . . . , n)(n, n−1, . . . , 1) = I, where I is the 

identity permutation. Hence (1, 2, . . . , n)−1 = (n, n − 1, . . . , 1).
	5.	 Show that A3, the set of even permutations of {1,2,3} is a cyclic group with 

respect to the product of permutations. Find a generator of this cyclic group. 
Answer with reason.

		  Solution: The set of even permutations of {1,2,3} is A3 = ρ0, ρ1, ρ2 where 

		  ρ0
1 2 3
1 2 3

= 





, ρ1
1 2 3
2 3 1

= 





, ρ2
1 2 3
3 1 2

= 





.

		  Find the composition table and prove that the set A3, the set of even permutations 
of {1,2,3} is a commutative group with respect to the product of permutations.

		  The order of this group is 3 and since 3 is a prime number, so A3 is a cyclic group.
		  Since o(ρ1) = 3 and o(A3) = 3, so ρ1 is a generator of this group.

	6.	 Let a =
1 2 3 4
3 1 2 4







. Find the smallest positive integer k such that ak = e in S4.

		  Solution: S4 is the symmetric group with respect to the multiplication of 
permutations of the set {1,2,3,4} and e be the identity element in S4.

		  Now, a = 





1 2 3 4
3 1 2 4   = (1  3  2) which is a cycle of length 3.

		  So o(a) = 3.
		  Therefore, 3 is the least positive integer such that a3 = e in S4.
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	7.	 Prove that α = (3, 6, 7, 9, 12, 14) ∈ S16 is not a prod-uct of 3-cycles.
		  Solution: Since α = (3, 14)(3, 12)...(3, 6) is a product of five 2-cycles, α is an odd 

cycle. Since each 3-cycle is an even cycle by the previous problem, a permutation 
that is a product of 3-cycles must be an even permutation. Thus, α is never a 
product of 3-cycles.

5.10	 Model Questions
	1.	 Write the following permutations in cycle notation.

		  (a) 
1 2 3 4 5
2 4 1 5 3







  (c) 
1 2 3 4 5
3 5 1 4 2







		  (b) 
1 2 3 4 5
4 2 5 1 3







  (d) 
1 2 3 4 5
1 4 3 2 5







	2.	 Compute each of the following.
		  (a) (1345)(234) 	 (i) (123)(45)(1254)−2

		  (b) (12)(1253) 	 (j) (1254)100

		  (c) (143)(23)(24) 	 (k) |(1254)|
		  (d) (1423)(34)(56)(1324) 	 (l) |(1254)2|
		  (e) (1254)(13)(25) 	 (m) (12)−1 
		  (f) (1254)(13)(25)2 	 (n) (12537)−1

		  (g) (1254)−1(123)(45)(1254) 	 (o) [(12)(34)(12)(47)]−1

		  (h) (1254)2(123)(45) 	 (p) [(1235)(467)]−1

	 3.	 Express the following permutations as products of transpositions and identify 
them as even or odd.

		  (a) (14356) 	 (d) (17254)(1423)(154632)
		  (b) (156)(234)
		  (c) (1426)(142) 	 (e) (142637)
	 4.	 Find (a1, a2, . . . , an)

−1.
	 5.	 List all of the subgroups of S4. Find each of the following sets.
		  (a) {σ ∈ S4 : σ(1) = 3}
		  (b) {σ ∈ S4 : σ(2) = 2}
		  (c) {σ ∈ S4 : σ(1) = 3 and σ(2) = 2}
		  Are any of these sets subgroups of S4?
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	 6.	 Find all of the subgroups in A4. What is the order of each subgroup?
	 7.	 Find all possible orders of elements in S7 and A7.
	 8.	 Show that A10 contains an element of order 15.
	 9.	 Does A8 contain an element of order 26?
	10.	 Find an element of largest order in Sn for n = 3, . . . , 10.
	11.	 Let σ ∈ Sn. Prove that σ can be written as the product of at most n – 1 

transpositions.
	12.	 Let σ ∈ Sn. If σ is not a cycle, prove that σ can be written as the product of at 

most n – 2 transpositions.
	13.	 If σ can be expressed as an odd number of transpositions, show that any other 

product of transpositions equaling σ must also be odd.
	14.	 If σ is a cycle of odd length, prove that σ2 is also a cycle.
	15.	 Show that a 3-cycle is an even permutation.
	16.	 Prove that in An with n ≥ 3, any permutation is a product of cycles of length 3.
	17.	 Prove that any element in Sn can be written as a finite product of the following 

permutations. 
		  (a) (12), (13), . . . , (1n)
		  (b) (12), (23), . . . , (n – 1, n)
		  (c) (12), (12 . . . n)

5.11	 Solution of some selected problems
	 1.	 (a) (1 2 4 5 3)
		  (b) (1 4)(3 5)
		  (c) (1 3)(2 5)
		  (d) (2 4)
	 2.	 (a) (1 4) ( 3 2)
	 3.	 (a) (1 6)(1 5)(1 3)(1 4)
	 4.	 (an, an–1, … , a2, a1)
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Unit - 6	 	 Quotient Groups and Group Homomor- 
		  phism

Structure
6.1 	 Objectives
6.2 	 Introduction
6.3 	 Quotient group
6.4 	 Group Homomorphism
6.5 	 Automonphism
6.6 	 Summary
6.7 	 Worked Examples
6.8 	 Model Questions
6.9	 Solution of some selected problems

6.1 Objective
The followings are discussed here:
• Definition of quotient group
• Definition of group homomorphism, isomorphism and automorphism
• Properties of homomorphism
• Kernel of a homomorphism
• First, second and third isomorphism theorem
• Inner automorphism

6.2 Introduction
We have yet to explain why normal subgroups are of special significance. The 

reason is simple. When the subgroup H of G is normal, then the set of left (or right) 
cosets of H in G is itself a group—called the factor group of G by H (or the quotient 
group of G by H). Quite often, one can obtain information about a group by studying 
one of its factor groups. One of the important concept of group theory is the concept 
of homomorphism. Homomorphism is the natural group theoretic mapping between 
two groups preserving the binary compositions. The study of homomorphism reveals 
various properties of a group.
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6.3 Quotient group
Theorem 6.3.1 : Let G be a group and H be normal subgroup of G. Then the set 

G/H = {gH : g ∈ G}
is a group under the operation g1H ∗ g2H = g1g2 H of order [G : H].
Proof. This operation must be shown to be well-defined; that is, group multiplication 
must be independent of the choice of coset representative. Let aH = bH and cH = dH. 
We must show that

aH ∗ cH = acH = bH ∗ dH = dbH.
Now a = bh1 and c = dh2 for some h1, h2 ∈ H. Then,
	 acH = bh1dh2H
		  = bh1dH
		  = bh1Hd
		  = bHd
		  = bdH.
Hence, the binary operation is well defined. Now the element eH acts as the identity 
element, since aH ∗ eH = eH ∗ aH = aH for all a ∈ G. Associativity property holds 
automatically as G is a group. Now for any element aH ∈ G/H, the inverse element is 
a−1H, since aH ∗ a−1H = a−1H ∗ aH = eH.
Hence, G/H forms a group. Since the number of cosets of H in G is [G : H], therefore 
the order of the group G/H is [G : H]. 	
Definition 6.3.2 : For a normal subgroup H of a group G, the set

G/H = {gH : g ∈ G}
with the binary operation g1H ∗ g2H = g1g2H is called Quotient group or Factor group.

Although the concept of quotient group is now considered to be fundamental to the 
study of groups, it is a concept which was unknown to early group theorists.It emerged 
relatively late in the history of the subject: toward the end of the 19th century. The main 
reason for this delay is that in order to give a recognizably modern definition of a quotient 
group, it is necessary to think of groups in an abstract way. Therefore the development of 
the concept of quotient group is closely linked with the abstraction of group theory.

This process of abstraction took place mainly during the period 1870-1890 and 
was carried out almost exclusively by German mathematicians. Thus by 1890 the 
development and understanding of the concept of quotient group had largely been 
completed.
Example 6.3.3 : Consider the normal subgroup 3 of . Then the cosets of 3 are 
0 + 3, 1 + 3 and 2 + 3. The group /3 is given by the multiplication table below 
Since |/3| = 3 so /3 is isomorphic to 3.
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+ 0 + 3 1 + 3 2 + 3
0 + 3 0 + 3 1 + 3 2 + 3
1 + 3 1 + 3 2 + 3 0 + 3
2 + 3 2 + 3 0 + 3 1 + 3

Fig. 6.1

Theorem 6.3.4 : The quotient group of a cyclic group is cyclic.
Proof. Let H be a subgroup of G and G = 〈a〉. Then we will show that aH is a generator 
of G/H. Let gH ∈ G/H. Then g = ak for some integer k.
Now

(aH)k = aH ∗ aH ∗ ... ∗ aH (k times)  
	 = akH = gH.

Hence, G/H is a cyclic group generated by aH. 	

6.4 Group Homomorphism
Definition 6.4.1 (Homomorphisms). A mapping ϕ from a group (G, ο) to a 
group (H, ∗) is called a homomorphsim if it preserves the group operation, i.e., 
ϕ(a ο b) = ϕ(a) ∗ ϕ(b) for all a, b ∈ G.
Definition 6.4.2 : If ϕ is a homomorphism of G into H, the kernel of ϕ, Kerϕ, is 
defined by Kerϕ = {x ∈ G : ϕ(x) = e′, e′ = identity element of H }.
Proposition 6.4.3 : Let G and H be groups and let ϕ : G → H be a homomorphism.
	 (i)	 ϕ(e) = e′, where e and e′ are the identities of G and H, respectively.
	 (ii)	 ϕ(g−1) = ϕ(g)−1 for all g ∈ G.
	 (iii)	 ϕ(gn) = ϕ(g)n for all g ∈ G.

G H

N= Ker (∅)

∅

∅ (a)
aN

a

e

e′

Fig. 6.2 : Homomorphism ϕ : G → H



84   NSOU  CC-MT-10 NSOU  CC-MT-10  85

Proof. (i) Since ϕ(e) = ϕ(e ο e) = ϕ(e) ∗ ϕ(e), the cancellation laws shows that 
ϕ(e) = e′.
(ii) ϕ(e) = ϕ(gg−1) = ϕ(g)ϕ(g−1) and, by part (i), ϕ(e) = e′, we get

e′ = ϕ( g)ϕ(g−1).
Now multiplying both sides on the left by ϕ(g)−1, we get the result.
(iii) This can be easily deduced by using induction and (i) and (ii). 	
Proposition 6.4.4 : Let ϕ be a homomorphism from (G, ο) to (H, ⋅). Then 
	 (i)	 kernel of ϕ, kerϕ, is a normal subgroup of G,
	(ii)	 image of ϕ, Imϕ, is a subgroup of H.
Proof. (i) Since ϕ(e) = e′, so kerϕ is non-empty. Let a, b ∈ kerϕ. Then ϕ(a  b−1) = 
ϕ(a) ⋅ ϕ(b−1) = ϕ(a) ⋅ ϕ(b)−1 = e′ ⋅ e′ = e′. Therefore, a  b−1 ∈ Kerϕ. Hence, kerϕ is a 
subgroup of G.
Now to prove kerϕ is normal, take x ∈ G. Then, for any q ∈ kerϕ,

ϕ(x  q  x−1) = ϕ(x) ⋅ ϕ(q) ⋅ ϕ(x−1)
	 = ϕ(x) ⋅ e′ ⋅ ϕ(x)−1

	 = e′.
Hence, xkerϕx−1 ⊆ kerϕ for all x ∈ G. Therefore, kerϕ is a normal subgroup of G.
(ii) Since ϕ(e) = e′, the identity of H lies in Imϕ, so Imϕ is nonempty. Let x, y ∈ Imϕ. 
Then there exists a, b ∈ G such that ϕ(a) = x and ϕ(b) = y.
Now by using homomorphim and proposition 6.5, we get

x ⋅ y−1 = ϕ(a) ⋅ ϕ(b)−1 = ϕ(a) ⋅ ϕ(b−1) = ϕ(a ⋅ b−1).
Therefore, x ⋅ y−1 ∈ Imϕ. So, Imϕ forms a subgroup of H. 	
Theorem 6.4.5 : A homomorphism ϕ : G → H is injective if and only if Kerϕ = {e}.
Proof. Suppose ϕ is injective, and let a ∈ Kerϕ. Then ϕ(e) = e′ = ϕ(x).
Hence, x = e. Therefore, kerϕ = {e}.

Conversely, suppose kerϕ = {e} and x, y ∈ G such that ϕ(x) = ϕ(y).
Then

ϕ(x  y−1) = ϕ(x) ⋅ ϕ(y)−1 = e′.
Therefore, x  y−1 ∈ kerϕ. But kerϕ = {e}. Hence x  y−1 = e, i.e., x = y. 	
Definition 6.4.6  (Isomorphism). A homomorphism ϕ from a group G to a group H is 
called isomorphism if ϕ is one-to-one and onto map.

If there is an isomorphism from a group G to a group H, we say that G and H are 
isomorphic and write G ≈ H.
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Philosophical considerations give isomorphism a particular importance. Abstract 
algebra studies groups but does not care what their elements look like. Accordingly, 
isomorphic groups are regarded as instances of the same “abstract” group. For 
example, the dihedral groups of various triangles are all isomorphic, and are regarded 
as instances of the “abstract” dihedral group D3.
Example 6.4.7 : Let G be the real numbers under addition and let H be the positive 
real numbers under multiplication. Then G and H are isomorphic under the mapping 
ϕ(x) = 2x. To prove that this map is onto-to-one, suppose 2x = 2y. Which implies that 
loge2

x = loge2
y, and therefore x = y. For “onto,” we must find for any positive real 

number y some real number x such that ϕ(x) = y, that is, 2x = y. Now, solving for x 
gives log2 y. Again,

ϕ(x + y) = 2x + y = 2x ⋅ 2y = ϕ(x) ⋅ ϕ(y) ∀x, y ∈ G.
Therefore, G is isomorphic to H.
Example 6.4.8 : Any infinite cyclic group is isomorphic to . Indeed, if a is a 
generator of the cyclic group, the mapping ak → k is an isomorphism. Similarly, any 
finite cyclic group 〈a〉 of order n is isomorphic to n and the isomorphism is defined 
by ak → k mod n.
Example 6.4.9 : The groups U(5) and U(10) are isomorphic, since both of them are 
cyclic groups of order 4.
Example 6.4.10 : U(10) and U(12) are not isomorphic, although they have same 
number of elements. First observe that, x2 = 1 for all x ∈ U(12). Now, suppose that ϕ : 
U(10) → U(12) is an isomorphism. Then,

ϕ(9) = ϕ(3) ⋅ ϕ(3) = 1
and

ϕ(1) = 1.
Thus, ϕ(9) = ϕ(1), but 9 ≠ 1. which contradicts the assumption that ϕ is one-to-one.
Example 6.4.11 : The quotient group (/, +) = {r +  : r ∈ [0, 1)} is isomorphic to 
the circle group S of complex numbers of absolute value 1. The isomorphism is given 
by r +  → ei2πr.
Example 6.4.12 : There is no isomorphism from , the group of rational number 
under addition, to *, the group of nonzero rational numbers under multiplication. 
Suppose there is an isomorphism ϕ. Then there exists a rational number a such that 
ϕ(a) = −1. But then,
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However, no rational number squared is −1.
Theorem 6.4.13  (Properties of Isomorphism). Suppose ϕ is an isomorphism from a 
group G to a group H. Then
	1.	 For any elements a and b in G, a and b commute if and only if ϕ(a) and ϕ(b) 

commute.
	2.	 G = 〈a〉 if and only if H = 〈ϕ(a)〉.
	3.	 |a| = |ϕ(a)| for all a ∈ G, i.e., isomorphism preserves order.
	4.	 For a fixed integer k and a fixed group element b in G, the equation xk = b has the 

same number of solutions in G as does the equation xk = ϕ(b) in H.
	5.	 If G is finite, then G and H has same number of elements of every order.
Proof. Property 1 can be easily proved by using the property of isomorphism. Let 
G = 〈a〉. Take q ∈ H, then p = ϕ−1(q) ∈ G. Hence, p = ak for some k > 0. Now, q = ϕ(p) 
= ϕ(ak) = ϕ(a)k. Hence, the second statement follows.
Third statement follows directly from the second one.
Forth statement follows from oder preserving property of isomorphism.
From third one, the fifth statement follows. 	
Theorem 6.4.14 : Let H be a normal subgroup of G. Then the mapping f : G → G/H 
defined by f (x) = xH for x ∈ G is an onto homomorphism with kernel H.
Proof. Let us take two elements x, y ∈ G. Then f (x) = xH and f ( y) = yH.
Now

f (xy) = xyH
	 = (xH) ∗ (yH)
	 = f (x)f (y),
which shows that f is a homomorphism.
Now the identity element of G/H is H. Hence, kerf = {x ∈ G : f (x) = H} = {x ∈ G : xH 
= H}. Therefore, from the property of cosets, Kerf = H. 	
Theorem 6.4.15 (First Isomorphism Theorem). Let ϕ : G → G′ be an onto 
homomorphism. Then G/Kerϕ is isomorphic to G′, i.e., G/kerϕ  G′.
Proof. Since H = Kerϕ, H is normal subgroup of G. Let us define a mapping 
f : G/H → G′ by f (aH) = ϕ(a), aH ∈ G/H.
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First we show that f is well defined in the sense that if aH = bH, then f (aH) = f (bH). 
Now

aH = bH  ⇒  a−1b ∈ H
	 ⇒  ϕ(a−1b) = e′ Since H = Karϕ
	 ⇒  ϕ(a−1)ϕ(b) = e′
	 ⇒  ϕ(a) = ϕ(b)
	 ⇒  f (aH) = f (bH),
where e′ is the identity of G′. So f is well defined.

G

f
p

φ
G

G / H
Fig. 6.3 : First Isomorphism Theorem

Again for aH, bH ∈ G/H, we get
	 f (aH ∗ bH) = f (abH)
	 = ϕ(ab)
	 = ϕ(a)ϕ(b)
	 = f (aH)f (bH).
Which shows that f is homomorphism.
Let aH ∈ Kerf. Then f (aH) = ϕ(a) = e′. Which shows that a ∈ Kerϕ = H. Hence, aH = H. 
Thus, Kerf only the identity element. So, f is one-one. Finally, f is onto, because each 
element of G′ is of the form ϕ(a) for some a ∈ G. And since ϕ(a) = f (aH), the pre-
image of ϕ(a) is aH in G/H. Thus f is an isomorphism from G/H to G′. 	
Example 6.4.16 : Let ϕ : GLn() →  − {0} = * defined by ϕ(A) = det (A). Then 
ϕ is a homomorphism with kernel SLn(). Therefore, by First isomoprhism theorem 
GLn()/SLn()  *.
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Example 6.4.17 : Those who learn some complex analysis, might know the Möbius 
transformation on the complex plane . The Möbius transformation looks like

	
A z az b

cz d( ) = +
+  	 (6.1)

where ad − bc ≠ 0. Let M be the set of all Möbius transformation on .
Then M forms a group under the functional composition. Now consider the function 
ϕ : GL2() → M defined by

ϕ
a b
c d

A











=

where A is the Möbius transformation defined in (6.1). Since composition of two 
Möbius transformations is same as product of their respective matrices, the function 
ϕ is a homomorphism. Also ϕ is onto. What is the kernel of ϕ? Or said differently, 

for what values of a, b, c, d, the matrix 
a b
c d







 gives the identity operator? It it only 

possible when c = b = 0 and a = d = λ for λ ∈ ∗. Hence, the kernel is
kerϕ = {λI : λ ∈ *},

where I is the 2×2 identity matrix. Now by First Isomorphism theorem, we get
GL2()/Kerϕ  M.

The group GL2()/Kerϕ is called Projective General Linear group and is denoted by 
PGL2().

We have seen that the symmetric group Sn of all the permutations of n objects 
has order n!, and that the dihedral group D3 of symmetries of the equilateral triangle 
is isomorphic to S3, while the cyclic group C2 is isomorphic to S2. We now wonder 
whether there are more connections between finite groups and the group Sn. There is 
in fact a very powerful one, known as Cayley’s Theorem.
Theorem 6.4.18  (Cayley’s Theorem). Any group G is isomorphic to a subgroup of 
Sym(G), where Sym(G) is the group of all bijections of G.
Proof. The proof has been omitted. 	
Theorem 6.4.19  (Second isomorphism Theorem). Let H be a subgroup of G (not 
necessarily normal in G) and N a normal subgroup of G. Then HN is a subgroup of G, 
H ∩ N is a normal subgroup of H, and 

H
H N

HN
N∩ ≅ .
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Theorem 6.4.20 (Correspondence Theorem). Let N be a normal subgroup of a group 
G. Then H → N/N is one-to-one correspondence between the set of subgroups H 
containing N and the set of subgroups of G/N. Furthermore, the normal subgroups of 
H correspond to normal subgroups of G/N.
Theorem 6.4.21 (Third Isomorphism Theorem). Let G be a group and N and H be 
normal subgroups of G with N ⊂ H. Then

G
H

G N
H N≅ /

/
.

6.5	 Automorphism
Definition 6.5.1 : An endomorphism of a group G, denoted by End(G), is a 
homomorphism of G into G; an automorphism of a group G, denoted by Aut(G), is an 
isomorphism of G onto itself.

Fig. 6.4 : Automorphism of G

Example 6.5.2 : Let G be a group. The identity mapping on G is an automorphism of 
G. This is called the identity automorphism and denoted by IG.
Example 6.5.3 : Let G be an abelian group and the mapping f : G → G defined by f (a) 
= a−1, a ∈ G. Then f is an automorphism.
Example 6.5.4 : Let G = (, +) and the mapping f : G → G defined by f z z( ) = , 
z ∈ G. Then f is an automorphism.
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Proposition 6.5.5 : The Aut(G) forms a group under composition.
Proof. Since identity function idG ∈ Aut(G), so Aut(G) ≠ φ. Let f, g ∈ Aut(G). Then 
it can conclude that f  g is also a homomorphism. Also we know that composition of 
two bijective functions is also bijective. Therefore, f  g is also an isomorphism. So, 
f  g ∈ Aut(G).

The function composition automatically satisfies associativity property. The 
identity function IG is the identity element.

Let f ∈ Aut(G). Then the inverse function f  −1 of f is the inverse element of 
Aut(G). Hence Aut(G) forms a group under composition. 	

However, the class of abelian group is a little limited, and we should like to 
have some automorphism of non-abelian groups. Strangely enough the task of finding 
automorphism of non-abelian groups is easier than for abelian groups.

Let G be a group and g ∈ G. Then consider the mapping Ig : G → G defined by 
Ig(x) = gxg−1, x ∈ G.

Theorem 6.5.6 : The mapping Ig is an automorphism for each g ∈ G.
Proof. Ig is injective, because

Ig(x1) = Ig(x2)  ⇒  gx1g
−1 = gx2g

−1  ⇒  x1 = x2.
Ig is onto, because an arbitrary element y in G has a pre-image of g−1yg in G.
Therefore, Ig is an bijection.
Let x, y ∈ G. Then

Ig(xy) = g(xy)g−1 = (gxg−1)(gyg−1) = Ig(x)Ig(y).
Hence, Ig is a homomorphism. Thus Ig is an automorphism. 	
Definition 6.5.7 : The automorphism Ig defined by Ig(x) = gxg−1, x ∈ G is said to be 
the inner automorphism of G determined by g.

x

y

z

G
G

gyg–1

gzg–1

gzg–1

Fig. 6.5 : Inner automorphism Ig
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The set of all inner automorphism of a group G is denoted by Inn(G).
If G is abelian, then each mapping Ig for all g ∈ G is simply the identity 

mapping. But if G is non-abelian, then there must be al least two distinct elements g, x 
∈ G, such that gx ≠ xg. Hence, the mapping Ig is non-trivial. Thus, the automorphism 
of non-abelian group is more interesting than that of abelian group.
Theorem 6.5.8 : The inner automorphism Inn(G) is a normal subgroup of Aut(G).
Proof. Since Ie is contained in Inn(G), Inn(G) ≠ φ. Take Ig1 , Ig2 ∈ Inn(G).
Then
		  (Ig1  Ig2)(x) = Ig1(g2xg2

−1 ) = g1(g2xg2
−1)g1

−1

	 = (g1g2)x(g1g2)
−1

	 = Ig1g2(x), ∀x ∈ G. 	

Aut(G)

Inn(G)

Fig. 6.6 : Automorphism and inner automorphism of G

6.6	 Summary
This unit deals with the concept of quotient group , homomorphism and isomorphism. 
The most important topic in this unit are the isomorphism theorems. The concept of 
automorphism and inner automorphism have been discussed.

6.7	 Worked Examples
	1.	 Let G be a finite cyclic group of order n. Prove that G ≅ Zn.
		  Solution: Since G is a finite cyclic group of order n, we have G = (a) = {a0 = e, 

a1, a2, a3, ..., an–1} for some a ∈ G. Define Φ : G → Zn such that Φ(ai) = i. By a 
similar argument as in the previous Question, we conclude that G ≅ Zn.

	2.	 Let k, n be positive integers such that k divides n. Prove that Zn/(k) ≅ Zk.
		  Solution: Since Zn is cyclic, we have Zn/(k) is cyclic by Theorem 5.1.2. Since 

Ord((k)) = n/k, we have order(Zn/(k)) = k. Since Zn/(k) is a cyclic group of order k, 
Zn/(k) ≅ Zk by the previous Question.
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	3.	 Prove that Z under addition is not isomorphic to Q under addition.
		  Solution: Since Z is cyclic and Q is not cyclic, we conclude that Z is not isomorphic 

to Q.
4. 	 Consider the group 3. Let H = {(x1, x2, x3) ∈ 3 : x1 + 2x2 – x3 = 0}. Show that 

H is a normal subgroup of 3. Show that 3/H  .
		  Proof. The identity of the additive group 3 is 0 = (0, 0, 0). Notice that 0 ∈ H so 

H ≠ ∅. Let x = (x1, x2, x3) and y = (y1, y2, y3) be two elements of H.
		  Then x1 + 2x2 – x3 = 0 and y1 + 2y2 – y3 = 0. It f ollows that the coordinates of 

z = x – y = (x1 – y1, x2 – y2, x3 – y3) satisfy
(x1 – y1) + 2(x2 – y2) – (x3 – y3) = (x1 + 2x2 – x3) + (y1 + 2y2 – y3) = 0.

So x – y ∈ H if x, y ∈ H. This directly proves that H is a subgroup of 3. Since 3 
is abelian, any subgroup is automatically normal.

Alternatively, we can argue as follows: Now define f : 3 →  by
f (x1, x2, x3) = x1 + 2x2 – x3.

	 Let x = (x1, x2, x3) and y = (y1, y2, y3) be two elements of 3. Then we verify that
f (x + y) = f (x1 + y1, x2 + y2, x3 + y3)

	 = (x1 + y1) + 2(x2 + y2) – (x3 + y3)
	 = (x1 + 2x2 – x3) + (y1 + 2y2 – y3)
	 = f (x) + f (y).
		  So f is a group homomorphism. Looking at the definition of H, we notice 

H = ker(f  ).
		  Since the kernel of any homomorphism is a normal subgroup, we find that H is 

a normal subgroup of 3. Given any x ∈ , we notice that f (x, 0, 0) = x, so f 
is an onto homomorphism. Thus by the first isomorphism theorem, we get an 
isomorphism 3/H  .

5.	a) Describe the set Hom(+, +) of all homomorphisms f : + → +. Which of 
them are injective? which are surjective, which are authomorphisms?

	b)	 Use the results of (a) to determine the group of automorphisms Aut(+).
		  Solution:
	a)	 Let z ∈ Z we have two cases:
	 i)	 If z ∈ Z+—set of non-negative integers.
		  Since 1 is the generator for z under addition

z = 1 + 1 + ... + 1(z times)
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		  since f is a homomorphism;
		  f (z) = f (1 + 1 + ... + 1) = f (1) + f (1) + ... + f (1) = z f (1)
		  Let f (1) = a ∈ Z then it follows that f (z) = az
	ii)	 If z ∈ Z—set of negative integers –1 is also a generator for Z under addition:

z = −1 −1 − ... −1 = (−1) + (−1) + ... + (−1)(–z times)
As from the hyopthesis, f is a homomorphism;
f (z) = f (−1 −1... −1) = f (−1) + f (−1) + ... + f (−1) = z f (−1)
But f (1) = a ⇒ f (−1) = −a ⇒ f (z) = −az.

	 	 ∴ we have proved that any homomorphism f : Z+ → Z+ is of the form f (z) = az
		  where a = f (1)
		  Suppose that f (z1) = f(z2) ) az1 = az2 ⇒ z1 = z2 when a ≠ 0 ⇒ f (z) = az is injective 

when a ≠ 0.
		  When a = ±1, f (z) = az = ±z and f is surjective.
	 	 ∴ Hom(+,+) = {f : Z+ → Z+ : f (z) = az, z ∈ Z, a = f (1)}
	b)	 Aut(+) = {f : Z+ → Z+, f (z) = z, f (z) = –z} = 〈f (z) = –z〉
	 	 ∴ Aut(+)  C2.

6.8	 Model Questions
	1.	 Prove that det(AB) = det(A) det(B) for A,B ∈ GL2(). This shows that the 

determinant is a homomorphism from GL2() to *.
	2.	 Which of the following maps are homomorphisms? If the map is a homomorphism, 

what is the kernel?
	(a)	φ : * → GL2() defined by

φ( )a
a

= 





1 0
0

	(b)	φ :  → GL2() defined by

φ( )a
a

= 





1 0
1

	(c)	φ : GL2() →  defined by

φ
a b
c d

a d











= +
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	(d)	φ : GL2() → * defined by

φ
a b
c d

ad bc











= −

	(e)	φ : M2() →  defined by

φ
a b
c d

b











=

		  where M2() is the additive group of 2 × 2 matrices with entries in .
	3.	 Let A be an m × n matrix. Show that matrix multiplication, x → Ax, defines a 

homomorphism φ : n → m.
	4.	 Let φ :  →  be given by φ(n) = 7n. Prove that φ is a group homomorphism. Find 

the kernel and the image of φ.
	5.	 Describe all of the homomorphisms from 24 to 18.
	6.	 Describe all of the homomorphisms from  to 12.
	7.	 In the group 24, let H = 〈4〉 and N = 〈6〉.
		  (a) List the elements in HN (we usually write H + N for these additive groups) and 

H ∩ N.
(b) List the cosets in HN/N, showing the elements in each coset.
(c) List the cosets in H/(H ∩ N), showing the elements in each coset.
(d) Give the correspondence between HN/N and H/(H ∩ N) described in the proof 
of the Second Isomorphism Theorem.

	8.	 If G is an abelian group and n ∈ N, show that φ : G → G defined by g → gn

is a group homomorphism.
	9.	 If φ : G → H is a group homomorphism and G is abelian, prove that φ(G) is also 

abelian.
	10.	If φ : G → H is a group homomorphism and G is cyclic, prove that φ(G) is also 

cyclic.
	11.	Show that a homomorphism defined on a cyclic group is completely determined 

by its action on the generator of the group.
	12.	Let G be a group of order p2, where p is a prime number. If H is a subgroup of G of 

order p, show that H is normal in G. Prove that G must be abelian.
	13.	If a group G has exactly one subgroup H of order k, prove that H is normal in G.
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	14.	Prove or disprove: / ≅ .
	15.	Let G be a finite group and N a normal subgroup of G. If H is a subgroup of G/N, 

prove that φ−1(H ) is a subgroup in G of order |H| ⋅ |N|, where φ : G → G/N is the 
canonical homomorphism.

	16.	Let G1 and G2 be groups, and let H1 and H2 be normal subgroups of G1 and G2 
respectively. Let φ : G1 → G2 be a homomorphism. Show that φ induces a natural 
homomorphism φ : (G1/H1) → (G2/H2) if φ(H1) ⊆ H2.

	17.	If H and K are normal subgroups of G and H ∩ K = {e}, prove that G is isomorphic 
to a subgroup of G/H × G/K.

	18.	Let φ : G1 → G2 be a surjective group homomorphism. Let H1 be a normal 
subgroup of G1 and suppose that φ(H1) = H2. Prove or disprove that G1/H1 ≅ G2/
H2.

	19.	Let φ : G → H be a group homomorphism. Show that φ is one-to-one if and only if 
φ−1(e) – {e}.

	20.	Given a homomorphism φ : G → H define a relation ∼ on G by a ∼ b if φ(a) = 
φ(b) for a, b ∈ G. Show this relation is an equivalence relation and describe the 
equivalence classes.

Automorphisms
	1.	 Let Aut(G) be the set of all automorphisms of G; that is, isomorphisms from G to  

itself. Prove this set forms a group and is a subgroup of the group of permutations 
of G; that is, Aut(G) ≤ SG.

	2.	 An inner automorphism of G,
ig : G → G,

		  is defined by the map
ig(x) = gxg−1,

		  for g ∈ G. Show that ig ∈ Aut(G).
	3.	 The set of all inner automorphisms is denoted by Inn(G). Show that Inn(G) is a 

subgroup of Aut(G).
	4.	 Find an automorphism of a group G that is not an inner automorphism.
	5.	 Let G be a group and ig be an inner automorphism of G, and define a map 

G → Aut(G)
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		  by
g → ig.

		  Prove that this map is a homomorphism with image Inn(G) and kernel Z(G). Use 
this result to conclude that

G/Z(G) ≅ Inn(G).
	6.	 Compute Aut(S3) and Inn(S3). Do the same thing for D4.
	7.	 Find all of the homomorphisms φ :  → . What is Aut()?
	8.	 Find all of the automorphisms of 8. Prove that Aut(8) ≅ U(8).
	9.	 For k ∈ n, define a map φk : n → n by a → ka. Prove that φk is a homomorphism.
	10.	Prove that φk is an isomorphism if and only if k is a generator of n.
	11.	Show that every automorphism of n is of the form φk, where k is a generator of 
n.

	12.	Prove that ψ : U(n) → Aut(n) is an isomorphism, where ψ : k → φk.

6.9	 Solutions of some selected problems
	2.	 (a) Ker(φ) = {1}
		  (b) Ker(φ) = {0}

		  (e) Ker
a b
c d

M R b( ) ( ) :φ 




∈ =








2 0

	4.	 Ker(φ) = {0}, Img(φ) = 7Z
Automorphism
7. All homomorphisms from Z to Z are of the type n → an for some fixed a ∈ Z. 

Aut(Z) = Z2.
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