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PREFACE

In a bid to standardise higher education in the country, the University Grants
Commuission {(UGC) has introduced Choice Based Credit System (CBCS) based on
five types of courses viz. core, discipline specific, generic elective, ability and skill
enhancement for graduate students of all programmes at Honours level. This brings
in the semester pattern, which finds efficacy in sync with credit system, credit
transfer, comprehensive continuous assessments and a graded pattern of evaluation.
The objective is to offer learners ample flexibility to choose from a wide gamut of
courses, as also to provide them lateral mobility between various educational
institutions in the country where they can carry acquired credits. I am happy to note
that the University has been accredited by NAAC with grade ‘A’

UGC (Open and Distance Leaming Programmes and Online Learning Programmes)
Regulations, 2020 have mandated compliance with CBCS for U.G. programmes for
all the HEIs in this mode. Welcoming this paradigm shift in higher education, Netaji
Subhas Open University (NSOU) has resolved to adopt CBCS from the academic
session 2021-22 at the Under Graduate Degree Programme level. The present
syllabus, framed in the spirit of syllabi recommended by UGC, lays due stress on all
aspects envisaged in the curricular framework of the apex body on higher education.
It will be imparted to learners over the six semesters of the Programme.

Self Learning Materials (SLMs) are the mainstay of Student Support Services
(SSS) of an Open University. From a logistic point of view, NSOU has embarked
upon CBCS presently with SLMs in English / Bengali. Eventually, the English
version SLMs will be translated into Bengali too, for the benefit of learners. As
always, all of our teaching faculties contributed in this process. In addition to this we
have also requisitioned the services of best academics in each domain in preparation
of the new SLMs. I am sure they will be of commendable academic support. We look
forward to proactive feedback from all stakeholders who will participate in the
teaching-learning based on these study materials. It has been a very challenging task
well executed, and I congratulate all concerned in the preparation of these SLMs.

I wish the venture a grand success.

Professor (Dr.) Subha Sankar Sarkar
Vice-Chancellor
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Unit-1 Q Basics of Logic and Truthtables

Structure

1.0 Objectives

1.1 Introduction

1.2 Propositions

1.3 Truth Table

1.4 Logical connectives, Elementary operations on statements
1.4.1 Negation
1.4.2 Conjunction
1.4.3 Disjunction
1.4.4 Implication
1.4.5 Biimplication

1.5 Tautology,Contradiction

1.6 Examples

1.7 Converse, contrapositive and inverse propositions of an implication
1.7.1 Examples

1.8 Exercise

1.9 Answers to the exercise

1.10 Summary

1.0 Objectives

After going through this unit the learners should be able to :

e Understand the definitions of proposition, truth table, logical connectives,
tautology, contradiction.

e Represent logical expressions by using symbols, variables and connectives in

place of natural languages such as English to remove vaguness.
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1.1 Introduction

Mathematics is based on logic and logic is the study of reasoning or argumentation.
It is therefore necessary to know the rules of logic to distinguish between valid and
invalid arguments. Let us discuss it with an example.

Suppose you walk past a barber’s shop one day and see a poster in the shop that
says—

“Do you shave yourself ? If not, come in and I will shave you ! I shave everyone
who does not shave himself and no one else.”

This seems fairly simple. But if a question occurs as “who shaves the barber 77,
then no matter if we try to answer this question we get into trouble.

Now if we say that the barber shaves himself then we get into trouble, because
the barber shaves only those who do not shave themselves. So if he shaves himself
then he does not shave himself which 1s self-contradictory.

Again if we say that the barber does not shave himself then also we get into
trouble. Because the barber shaves everyone who does not shave himself. Thus if he
does not shave himself then he must shave himself which again a self-contradictory.

Even if we try to avoid the truble by a tricky answer such as the barber is a
woman then also it will be absurd because the woman either shaves herself or does
not shave herself. It she shaves herself then she is one of the people who is not
shaved by the barber.

Again if she does not shave herself then she is one of the people who is shaved
by the barber. Both the cases are impossible.

Thus the barber can neither shave himself nor not shave himself Hence the
question “who shaves the barber 7 1s not answerable. This means that ‘barber’ does
not exist. There is no entity that satisfies the description of the barber.

The above paradox is known as barber’s paradox, discovered by British
mathematician and philospher Bertrand Russell, at the begining of the twentieth
century.

Thus it is necessary to know the mathematical logic 1.e. the part of mathematics
concerned with the formal language, formal reasoning, the nature of mathematical
proof and other aspects of the foundation of mathematics.

Now we start with a brief overview of mathematical logic. Next we review some
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basic notations from elementary set theory which provides a medium or communicating
mathematics in a precise and clear way.

1.2 Propositions

A proposition (or statement) is a declarative sentence which is either true or false
but not both. A declarative sentence declares or states a fact. Thus imperative, optative,
interrogative or exclamatory sentences are not propositions. The truth or falsity of a
statement or proposition is called its truth value. If a statement is true then we denote
its truth value by ‘T’ (or by ‘17). Again if a statement is false then we denote its truth
value by ‘F’ (or by ‘0’). Thus the working nature of a statement or proposition can
be compared to natural working switch in a circuit,

True (‘T" or ‘17)
SO statement <

False (‘F" or ‘0’)

on (‘1)

and switch <
oftf (‘0’)

We shall use the lower case letters of the alphabets (such as a, » or ¢) to represent
a statement or proposition. As for example

a-3+4=7
b : Kolkata is the capital of U.S. A,
and ¢ : n =3 1is a sclution of #<2

are propositions. Since the statement « is true 1.e. 3 + 4 = 7 is true hence the truth
value of @ is T {or 1). But the statements b and ¢ are false hence the truth value of
b or ¢ if F (or 0). On the otherhand the following sentences are not propositions or
statements.

(i) What a beautiful scenery it is !
(i) Will you go to the college tomorrow ?
{1ii) Get up in morning.
This is due to the fact that these are not declarative sentences. Again the following
sentence
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“I am lying”

is not a proposition because it is neither true nor false i.e. it has no truth value.
Actually this sentence 1s a self contradictory or paradox known as har’s paradox in
logic. Because if the speaker is indeed lying then the liar is telling the truth but a liar
can not tell the truth. Again if the speaker is a truth-teller then a truth teller can not
tell that he is lying.

A statement which is true is known as valid statement and a statement which is
false is known as invalid statement. A statement is called simple or primitive if it
cannot be broken down into simpler proposition or statement. Thus the truth value
of a simple or primitive statement does not explicitly depend on any other statement.
A statement 1s said to be compound if it is formed by two or more simple statements
by various logical connectives such as ‘and’, ‘or’, ‘not’, ‘if then’ etc. We shall discuss
about the various logical connectives subsequently. Thus in the preceding statements
a, b or ¢ are primitive statements.

Again the statement

p:3+4=Torn=231is asolution of # < 2 is a compund statement because it
is formed by two primitive statements & and b by a logical connective ‘or’. Simple
statements which when combined to form a compound statement are called
substatements or subpropositions. Thus in the compund statement p, ¢ and & are
subpropositions,

1.3 Truth Table

A table that shows the relationship between the truth value of a compound
statement S (p, g, #....) and the truth values of its substatements p, ¢, #.... etc. is called
the truth table of statement S. We know that truth value of a compound proposition
S (p, g, 7 ......) depends exclusively upon the truth values of its variables 1.e. the truth
values of its subpropositions p, g, # .... etc. Thus for preparing truth table we take 1st,
2nd, 3rd ... etc. columns for the variables p, ¢, # .... etc. and we have to take enough
rows in the table to allow these variables. Thus for single variable p, 2' = 2 rows are
necessary, for two variables p and g, 2° = 4 rows are necessary, for three variables
p. q and ; 2° = 8 rows are required. As for example if S be compound statement of
three variables p, g, # then 1st three columns and eight rows can be taken as follow:
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The eight possible truth assignments for p, g, » can be listed in any order Thus
we can also write eight rows as follows (by writting ‘0’ for false and ‘1’ for true)

-
X

— O O OO
—_ =D D = =D

—_— D = D = O = D™

1.4 Logical connectives, Elementary operations on

statements

Two or more connectives are combined to form a compound statement by using
symbols. These symbols are called logical connectives. Logical connectives are given

below :
Words Symbols

and A

or v
implies that (if ... then) -
implies and is

implied by (if and only if)

exclusive or i
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1.4.1 Negation :

Negation is an unary operation on a statement. If p is a statement then its negation
is denoted by ~ p or — p. Negation of p or ~ p is an another statement formed by
writing “it is false that” before p or if possible by inserting the word “not” in p. We
read negation of p i.e. ~ p as “not p”. By definition truth table for negation is as
follow :

P |~Pp
T F
F T

1.4.2 Conjunction :

Conjunction is a binary operation on statements. Two statements p and g can be
combined by the word “and” to form a compound proposition called the conjunction
of their original propositions. Symbolically we denote it as p A ¢ and and read as
“p and ¢”. The truth table for conjunction is :

P19 |1P1rq
T|T T
T|F F
F|T F
F|F F

It is clear from the above table that p A g takes the value T when and only when
both p and g are true. As for example if p : Amit is a student, ¢ : Amit lives in
Kolkata then p A ¢ is equivalent to Amit is a student and he lives in Kolkata. Above
conjunction can also be explained through circuits where the two switches p, g say
are connected in the series. Current will pass only from A to B if both p and g are
of ‘on’ state.

1.4.3 Disjunction :

Disjunction is also a binary operation on statements. Any two propositions can
be combined by the word “or” to form a compound proposition called disjunction of
the original propositions. Symbolically we denote it as p v ¢ and read as “p or ¢g”.
The truth table for disjunction is :
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P |4 |PVY
T|T T
T |F T
F|T T
F |F F

From the above table it is clear that p v g takes the value F when and only when
both p and ¢ are false. The word “or” is used in above in inclusive sense. In the
inclusive sense “p or ¢” means “p or g or both”. Thus by our symbolic language “p
v q” we always mean “p and / or ¢”. As for example if

p : Train left early

q : The watch of Mita is going slow

then p A ¢ is equivalent to :

Train left early or the watch of Mita is going slow.

If we went to combine two propositions p and g by the word “or” in exclusive
sense which is known as “xor” then we denote the compoun proposition as p Vv q.
In the exclusive sense of “or”, “p xor ¢” we mean “p or g but not both”. This means
the compound statement p v ¢ is true if either p or ¢ is true but not true if both of

the statements are true. The truth table for p v ¢ is :

P14 |PYY
T]|T F
T |F T
F|T T
F |F F

The disjunction p v ¢ can also be explained through circuits where the two
switches p, g say are connected in parallel. Current will pass from A to B when either
or both the switches are of ‘on’-state.

ApF—>— q —>— B
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1.4.4 Implication (or Conditional) :

Implication {or Conditional) is also a binary operation. Any two statements p and
g can be combined by using the word “if” before p and the word “then” before g.
Thus the implication is “if p then ¢”. Symbolically we denote it as p — ¢ where p
is called the hypothesis of implication and ¢ is called the conclusion. Alternatively
we can also say that “p is sufficient for ¢” or “q 1s necessary for p”. The truth table
forp - gqis:

Plq |Pq
T|T T
T|F F
F (T T
F|F T

The table shows that p — ¢ 1s false when and only when p 1s true but ¢ 1s false.

As for example if p : Bus reaches in time, ¢ : Bimal will attend the college then
p — ¢ is equivalent to : If bus reaches in time then Bimal will attend the college. It
means that if bus does not reach in time then Bimal will or will not attend the college.
But it guaranted that Bimal will attend the college provided bus reaches in time.

1.4.5 Biimplication (or Biconditional) :

The binary operation ‘biconditional’ or ‘bumplication’ combines two statements
p and ¢ to form the new statement “p if and only if ¢” denoted by p < g. Alternatively
we can say that “p 1s necessary and sufficient for ¢”. Its truth tabl is :

P |q |P4q
T (T T
T |F F
FI|T F
F |F T

The table says that p < ¢ is true when and only when both p and g have the same
kind of truth values. As for example if

p : The unit digit of an integer is 0 or 5
¢ . The number is divisible by 5

then p < g is equivalent to : The unit digit of an integer is 0 or 5 if and only
if it is divisible by 5.
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1.5 Tautology, Contradiction

A compound statement is called a tautology if in its truth table, the column under
that compound statement contains only T’s i.e. if its truth function takes always the
value T. As for example “p or not p” that 1s p v ~ p is a tautology. This can be
verified from the following truth table.

P |~pP |(PV™P
T F T
F T T

Similarly a compound statement is called a contradiction if in its truth table the
column under that compound statement contains only F’s i1.e. if its truth function
takes always the value F. As for example the proposition “p and not p” thatis p A ~ p
is a contradiction.

This can be verified by looking the folowing

P | ~pP | Pr~P
T F F
F T F

Thus the negation of a tautology is a contradiction and the negation of a
contradiction is a tautology.

If a compound statement is neither tautology nor contradiction then the compound
statement 1is called a contingency.

1.6 Examples

1.6.1 Determine whether each the following sentences is a propostion. Also identify
the primitive statements.

(1) Switch off the fan.
(i1) Smoking 1s injurious to health.
(i) If 9 1s greater than 6 then 10 is greater than 7.
(iv) x is an integer.
{v) The sum of 2 and 3 is greater than 6.
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Solution :

(1) It is an imperative sentence hence it 1s not a statement or proposition,
(i) It is a declarative sentence, hence it is a proposition.
(i) It is also declarative sentence hence it is a proposition.

{iv) Here we do not know the sentence is true or false because we do not know
the value of x. Hence it is not a proposition.

(v) It is a proposition because we know that the given sentence is true or false.
Since 2 + 3 } 6 hence the truth value of the statement or proposition is ‘F’
(or False). However it is a proposition or statement.
2nd Part :

The statements (i) and (v) are primitive or simple statements since these
statements cannot be broken into two or more sentences. But the statement
(i) 1s a compound statement since it 1s formed by two simple statements
“Q 1s greater than 6” and “10 is greater than 7 by the word “if ... then”

1.6.2 Let p, ¢, +, s denote the following statements
p : Kolkata is in UP.
g:5+2>38
r : Delhi 1s the capital of India.

s : 54 is divisible by 9.
Find the truth values of
W pgrs
(i) ~p, ~r
() pvrpvg gvs
(W) pAGPAL~PA~q FAS
(V) pxqpvrrxs

(Vi) poEp—oqgr—qg s—orF
(vil) pe g g rnres
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Solution :

(1)

(ii)

(iif)

(iv)

)

(vi)

(vii)

Since Kolkata is not in U P. hence the truth value of p is F.
Again since 5 + 2 = 7 } 8 hence the turth value of ¢ is F.

Again since it is true that Delhi is the capital of India hence the truth value
of ris T.

Similarly since 54 is divisible by 9 hence the truth value of s 15 T.

Since the truth value of p is F hence the truth value of “not p” ie. ~ p is
T. Similarly the truth value ~ 7 is F.

p v r will be true if and only if either p or r or both are true. As r is true
hence the truth value of p v # 1s T. Similarly the truth value of p v ¢ is
F since neither p nor ¢ is true. The truth value of ¢ v s is T as s is true.

We know the p A ¢ is true if and only if both p and ¢ are true. But here
p 15 false hence the truth value of p A ¢ is F. By the same argument
P ~ v is false hence its truth value is F. Again as ~ p is true and ~ ¢ is true
hence ~ p A ~ ¢ is also true and hence its truth value is T. Similarly the
truth value of ¥ A sis T.

We know the p vq is true if and only if exactly one statement p{or ¢) is
true and the remaing statement g (or p) is false. Now since p is false and
q 1s false hence p v ¢ is false and hence the truth value of p v ¢ is F. Again
since p 1s false and r is true hence the truth value of p v 7 is T. Again since
both » and s are true hence the truth value of » v s is F.

We know that p — # 1s false if and only if p is true and # is false. In our
problem p is false hence whatever be the truth value of 1, p — 7 is true 1.e.
its truth value is T. Similarly the truth value of p — ¢ is T. Again since r
is true and ¢ is false hence the truth value of # — ¢ is F. Again since s is
true and 7 is also true hence the truth value of s — r1s T.

We know that p < ¢ is true if and only if both p and ¢ have the same truth
value. In our problem since p and ¢ have the same truth value F hence the
truth value of p <> ¢ is T. Again since ¢ is false and 7 is true i.e. ¢ and
¥ have not the same truth value hence ¢ < r is false 1.e. the truth value of
g <> ris F. Again since both » and s are true hence the truth value of » &
sis T.
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1.6.3 Let p, g, r denote the following statements about a quadrilateral ABCD.
p : ABCD i1s a rectangle.

g - ABCD is a square.

r . ABCD is a parallelogram.
Translate each of the following into an English sentence.

~p (@Wpveg ()g—=>p (V)pr~q Mr—=>p M)por
Solution :
(1) ~p  ABCD is not a rectangle.
(i) p v g : ABCD is a rectangle or a square.
(i) ¢ = p : If ABCD is a square, then it is a rectangle.
(iv) p A~ q : ABCD is a rectangle but it is not a square.
(v) ¥ = p : If ABCD is a parallelogram then it is a rectangle.
(vi) p & r : ABCD is a rectangle if and only if it is a parallelogram.
1.6.4 Find the truth table of
) ~pnrg
(i) prg)—p
(i) ~@pv~q —>p
(iv)y p > q)—>7r

where p, g, r denote primitive statements. Also identify the compound statement
which is a tautology.

Solution :
(1) Truth table of ~ p A ¢

pla | ~pP|~pPrq
T|T| F F
T|F| F F
F|T| T T
F|F| T F
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(ii) Truth table of (p A g) = p

Pla|prqg|lprq —p
T|T T T
T|F F T
F|T F T
F |F F T

(i1) Truth table of ~ (p v ~q) > p

Plqg|~-p|Ppv~-q|~@V~-9|~PV-g@ =P
T|[T]|F T T T
T|F | T T F T
F|T|F F T F
F|F | T T F T
(iv) Truth table of (p — ¢) — r

plag| r|po2q|lpa>9—>r

T[T T T T

T|T]| F T F

T|F | T F T

T|F | F F T

F|T| T T T

F| T]| F T F

F|F | T T T

F|F | F T F

2nd Part :

In the truth table of (p A ¢) — p we have seen that (p A ¢) — p contains only
T in the last column. This means (p A g) — p 1s true for all truth values of p and
g. Hence (p A g) — p 1s a tautology.
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1.7 Converse, contrapositive and inverse propositions
of an implication

Given an implication statement of the form “if p then ¢~ we can create three
related statements :

We know that a conditional statement consists of two parts, the hypothesis in the
“if” clause and a conclusion in the “then” clause. For example in the statement “If
it rains then Hafija cancels dancing”. Here “It rains” is the hypothesis. “Hafija concels
dancing” is the conclusion.

To form the converse of a conditional statement, interchange the hypothesis and
the conclusion. Thus the converse of “If it rains Hafija cancels dancing” is “If Hafyja
cancels dancing then it rains”.

To form the inverse of a conditional statement take the negation of both the
hypothesis and conclusion. Thus the inverse of “If it rains then Hafija cancels dancing”
is “If it does no rain then Hafija does not cancel dancing”.

To form the contrapositive of a conditional statement, interchange the hypothesis
and the conclusion of the inverse statement. Thus the contrapositive of “If it rains
then Hafija cancels dancing” is “If Hafya does not cancel dancing then it does not
rain”,

Thus converse, inverse and contrapositive statements of the conditional statement
p — g (ie “If p then ¢”) are ¢ — p (i.e. “If ¢ then p”), ~p — ~ g (i.e. “If not p
then not ¢”) and ~ ¢ = ~ p (i.e. “If not g then not ¢”) respectively.

Let us construct the truth tables for conditional proposition p — ¢ and
the converse, inverse and contrapositive statements of the conditional proposition

P—=4q

rl| q Conditional | Converse| _ r|l~q Inverse Contrapositive
P4 q—-p ~Po>~4qd ~q2>~p

T| T T T F | F T T

T| F F T F| T T F

F| T T F T| F F T

F| F T T T | T T T
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1.7.1 Examples :

Write the converse, inverse and contrapositive of each of the following
implications. For each implication, determine its truth value as well as the truth
values of its corresponding converse, inverse and contrapositive.

(i)
(i)

If 2 + 3 =5 then cos (2m) + cos (3%) = cos (57)
If2>1and 5> 3 then7 > 6

Solution :

(i)

(ii)

We know that 2 + 3 = 5 is true. Again cos (2m) + cos(3n)=1—-1=0 but
cos (5m) = -1
Thus cos (21) + cos (3m) = cos (5w is false. Hence the implication :

If 2 + 3 = 5 then cos (27) + cos (3w) = cos (57) 1s false. This 1s due to the
fact that in the above implication the hypothesis is true but the conclusion
is false.

Again the converse statement of the implication is :

If cos (2®) + cos (3®) = cos (57) then 2 + 3 = 5. The above statement 1s
true since its hypothesis cos (211) + cos (37) = cos (5m) 1s false.

Again the inverse statement of the given implication 1s :

If 2 + 3 # 5 then cos (2m) + cos (37) # cos (57). This statement is true since
its hypothesis 1s false.

Again the contrapositive statement of the given implication is :
If cos (2r) + cos (3m) # cos (5m) then 2 + 3 = 5.

The above statement is false since in the above proposition the hypothesis
1s true but its conclusion is false.

The given implicationisp —> gwherep:2>1land5>3 andg: 7> 6
Here p 1s ture and ¢ is also true. Hence p — g is true.

This mean the implication, “If 2 > 1 and 5 > 3 then 7 > 6” is true.
Converse of the above implication is : If 7> 6 then 2 > 1 and 5 > 3.
This is also true as both p and ¢ are true.

Inverse of given implication is : If 2 +1 or 5 $3 then 7 »6

The above statement is also true since the hypothesis of the above implication
is false.

Again contrapositive statement of the given implication is : If 7 $ 6 then
2% lorS5%3
It is also true since the hypothesis of the statement is false.
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1.8 Exercise

1.8.1 Chose the correct option :

(i)

(it)

(iii)

(iv)

V)

(vi)

Which of the following is not a statement.

(a) 2 is the only even prime number.

(b) 72 is not divisible by 3.

(¢c) Come here.

(d) Ram and Shyam are friends.

The conditional statement of “You will get nice gift after the dinner” is
(a) If you take the dinner then you will get a nice gift.

(b) You get a nice gift if and only if you take the dinner.

(¢) You take the dinner and get a nice gift.

(d) None of the above.

Which of the following is the inverse of the proposition “If a number is a
prime then it is odd”

(a) If a number is not a prime then it is odd.

(b) If a number is not a prime then it is not odd.

(¢) If a number 1s not odd then it is not a prime.

(d) If a number 1s not odd then it is a prime.

Let p and g be two statements. Then p v g is false if

(a) p is false and ¢ is true.

(b) both p and ¢ are false.

(c) both p and ¢ are true.

(d) p 1s true and ¢ 1s false.

If p . A quadrilateral is a parallelogram, ¢ : The opposite sides are parallel.

Then the statement “A quadrilateral is a parallelogram if and only if the
opposite sides are parallel” is represented as

@pvg O)p—=>q ©OQprg Dpeog
Which of the following is true for the statements p and ¢ ?

(a) p v g is true when atleast one of p and g is true.
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(b) p — ¢ is true when p is true and g 1s false.
{c) p & ¢ is true only when both p and ¢ are false.
(d) ~ {(p v ¢) is true only when both p and ¢ are false.

(vil) The converse of the contrapositive of the conditional p — ~ ¢ 18
@p=>qgb)~po>~¢q ©)~qg-=p (D~p—>4q

(vii) Which of the following propositions is tautology ?
@@vg—>p Gpvig—=>p ©@Qpvep—-9 Dp-0@->p)

1.8.2 Using the following statements :

p . Temperature is above 40°C.

g . Rita will go for movie.

Write the following statements in symbolic forms :

{1) Temperature is above 40°C but Rita will not go for movie.

(i)} If temperature is above 40°C then Rita will go for move.

(iii) Rita will go for movie if and only if temperature is not above 40°C.
1.8.3 Find the truth table for — (i) pv~¢q ({i)~pA~¢g
1.8.4 Verify that the proposition (p A g) A ~ (p v ¢) is a contradiction,

1.8.5 Prove that the following are tautologies.
N prlp—>9)—q
(i) po>gpepvyg

1.8.6 If p and ¢ are true, determine whether the statement (p v ¢) A [(~p) v
(~ q)] is true or false.

1.8.7 How many rows are needed for the truth value of the compound statement
(~rA{pvq) = (~pAs)wherep, g, rand s are all primitive statements ?

1.9 Answers to the exercise 1.8

1.81 (1) c (i)a ()b (v)b (vid (viya,d (vi) d (vii) ¢
182()par~q (i)p—og (M)ge ~p
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1830 |p|g|~q|PVv~4q iy |plag|~p| ~q|~pPr~q
T|T| F T T|T| F| F F
T|F| T T T|F| F| T F
F|T| F F F|T| T| F F
F|F| T T FI|F| T| T T
1.8.4 plalprglpvel~vg |rpr~pVqg)
TI|T T T F F
T|F F T F F
FI|T F T F F
F |F F F T F

From the last column it follows that (p A g) A ~ (p v ¢) i1s a contradiction.

1850 |p | |Pr2q|pr@o@|Aalp—>q9) 9
T|(T| T T T
T |F F F T
F|T| T F T
F T F T

From the last column we see that for all possible values of p and g the given
proposition 1s true. Hence it is a tautology.

iy (pleg| ~plPo2q|~Pvg|Popo(pVvy
T| T | F T T
T|F| F F F T
F|T| T T T T
FI|F| T T T T

From the last column it follows that the given proposition is a tautology.
1.8.6 False
1.8.7 2* = 16
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1.10 Summary

In this unit we have learnt how to translate statement into symbolic form and
how to construct a truth table. Also the structure of conditional statement has been
discussed. Learner can now distinguish a compound statement by tautology,
contradiction or contingency. It is expected that learner should understand thoroughly
the usage of the elementary operations on statements.
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26



NSOU « SE-MT-11 27

e Understand the mathematical logic that is closely connected with the foundation
of mathematical analysis and theoretical computer science.

2.1 Introduction

In Mathematics, sometimes we wish to know when the entities we are studying
are equal or essentially the same. As for example for real x, we have y? <4 if
—2< x <2 and cpmversely —2 « x <2 it x*< 4. Thus for real x, the two statements

<4 and -2 < x <2 are esentially the same. So we need to define the logical
equivalence of propositions.

2.2 Propositional equivalence : Logical equivalences

2.2.1 Logical equivalence of propositions :

Let P(p, g, .....) denote an expression constructed from propositions p, ¢, ...
which can take on the value True (T) or False (F) and the logical connectives A, v
and ~ (and others which are already discussed). Such an expression P(p, ¢, .....) is
also a proposition and its truth value depends exclusively upon the truth values of its
variables i.e. the truth values of propositions p, ¢, ...... Two propositions (or statements)
P, q .....) and O(p, ¢, .....) are said to be logically equivalent or simply equivalent,
denoted by P(p, ¢......y = 0(p, q......) or P(p, q......) = O(p, ¢q.......) when the statement
P(p, g.....) 1s true or false if and only if the statement O(p, ¢,......) is true or false
respectively. Thus P(p, ¢,.....) and O(p, ¢,......) have the same truth tables because
P, q.....)and O(p, q,......) have the same truth values for their primitive components.
As for example we can write ~(p A g) & ~pv ~qor~(pAqy=~pv ~ g, since
both the propositions ~ (p A ¢) and ~ p v ~ ¢ have the identical truth tables as
follows :

pla|prg|~rg plg|~pP|~q|~PVv~4q
T|T| T F T|(T| F | F F
T|F F T T|F|F | T T
F|T F T F|T| T | F T
F|F F T FIF| T | T T
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Let us consider an another example. Let us find the truth tables of p — ¢ and
~p v q as follows :-

p1q|\pP—4 P14 |~P|~PVY
T|T T T|T| F T
T|F F T|F| F F
F|T T F|T| T T
F|F T F|I|F]| T T

We observe that the truth values p — ¢ are exactly same as the truth values of
~PV{q

Hence we can writ p — ¢ © ~p v gq.

Let p and g be the primitive statements as

p : Bus reaches in time.

g . Bimal will attend the college.

Then p — g is the statement : If bus reaches in time then Bimal will attend the
college.

We have seenthat p - ¢ = ~p v ¢q.

Again ~ p v ¢ 1s the stateemnt : Bus does not reach in time or Bimal will attend
the college.

Hence the two statements “If bus reaches in time then Bimal will attend the
college” and “Bus does not reach in time or Bimal will attend the college” are
logically equivalent.

2.2.2 Algebra of propositions (The Laws of Logic) :

Using the concepts of logical equivalence, tautology, contradiction we state the
following laws of propositons known as laws for algebra of propositions :

For any primitive statements p, g, # any tautology T, and any contradiction F .
(1) Law of double negation {(or Involution law) :
~~pe=dq
(i1) Idempotent laws
pvpep pArpesp
(i) Associative laws :
pvagvrepvgvn pagrrepaAgar)
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(iv)

)

(vi)

(vii)

(viii)

(ix)

(x)

Commutative laws :
pvVgESgyVppAaqgESgAap

Distributive laws
pv@anesppvogarlpvrpaAgvrnepPagypar)
Complement laws (or Inverse laws) :
pv~peT,pr~psF,

Identity laws :

pvE epprl op

Domination laws :

pvI, @I . paF &F

Absorption laws :
pvprgopprlpVvyg Sp

De Morgan’s laws :

~pV S -pA~g-PAg S PV g

29

We can verify the above laws by constructing truth tables for the statements of
each side of ‘=’ signaswe didin2.1 toprove~(p A g) & ~pv~gor(p— q)
S ~pvaqg.

One interesting point can be noted here. From the above mentioned pair of laws
from (n) to (x) we observe that from the first law of each pair, second law can be
deduced by interchanging the connectives A and v and by interchanging 7 and F|
and vice-versa that is first law can also be deduced from second law by interchanging
~ and v and by interchanging 7, and F

This principle is called the Principle of Duality.

In general for any two statements s and ¢ if s < ¢ then

dual of the statement s & dual of the statement .

Again we have seen earlier that for any statement p and ¢. (p = q) & ~p v g

This means (p — ¢) & ( ~ p v ¢) 15 a tautology.

Now in the above property we can replace p or ¢ or both by any other compound
statement.

As for example if we replace p by compound statement (s v #) we can write as
svh)-oge~Gsvpvgie (svi) o qg)e (~(svi)vg)willalso be a
tautology. This rule is called substitution rule.
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2.3 Examples

231 Provethat ~-(p o gl opeo ~go ~p &g

Solution :

Let us construct the truth tables for ~ (p < q), p & ~ g, ~ p < ¢ separately

Plglpeogq~eoq| |pla|l~q|lpe~q| |P|la|~pr|l~Peg
T|T| T F T|T| F F T|T| F F
T|F| F T T|F| T T T| F| F T
F|T| F T F|T| F T F|T| T T
FIF| T F FIF| T F F|F| T F

From the above truth tables we observe that the last column of each table are
identical.

Hence ~poggeopo~ge ~p o g

2.3.2 Write down the negation of each statement as simple as possible.
(1) If John is rich then he is happy.
(b) If it is cold then Sita will not go to school.

(c) Sum of two integers i1s odd if and only if one integer is odd and other
integer is even,

Solut

ion :

(i)

Let p : John is rich
g : He is happy.

Then the given statement is p — ¢

Hence its negation is ~ (p — ¢)

We know that p - g & ~p v g

~. By De Morgan’s law

~pog@poeo~(~pvgeo~~pr~gEpar~gq

Hence the simplified form of negation of the given stateemnt is John is rich

and he is not happy.

(i) Let p : It 1s cold.
g . Sita will go to school.
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(iii)

Then the given statement is p — ~ ¢

Hence the negation of the statement is ~ {(p — ~ g)
S ~(~pv~gqg) & paqg by De Morgan’s law.
Hence the negation of the given statement is :

It 1s cold and Sita will go to school.

Let p : Sum of two integers is odd.
g - One integer 1s odd.
¥ . The other integer is even.
Then the given statement is p <> (g A )
Hence its negation is
~pegane~pogar
Hence the negation of the statement in simplified form is
Sum of two integers is not odd

if and only if one integer is odd
and the other integer is even

2330 (p A ~r) = (q v r)is false then what will be the truth value of p ?

Solution :
Let us prepare a truth table for (p A ~r) — (g v ) as follows :

~

PA~T | g PpAr~r)=1(gvy)

e I I - T T R I
T T I T T T I I B
I I I B I R I
e e B B o L B
e I I I e I I I N P
e e I I B B R I

We observe from the last column and fourth row that (p A ~ ) = (g v r) 15 false
only when the truth value of p is T. Hence p must be true.
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2.3.4 Using the laws of logic prove that ~(p v @) v (~pA g & ~p
Solution : ~{(p vg) v{~p Arg)
S (~pA~q)v (~p A q) by De Mogran’s law
= ~ p A {~ g v q) by distribution law
& ~p A I, by complement law
& ~ p by identity law
L~Ppvgvi~pnrgqg) & ~pproved
2.3.5 Choose the correct option.
1y IS, g r)={(~p) v~ (g ~Ar)is acompound statement then S(~ p, ~ ¢,
~ ¥} 18
(@ ~Sp.qr ®YSp.q.1n ©pvigary pvigvr)
(i1) Consider the following statements
p . Sarama is brilliant
g - Sarama is rich
r : Sarama 1s honest
The negation of the statement
“Sarama 1s brilliant and dishonest if and only if Sarama is rich.”
can be equivalenty expressed as
@~¢e~pvr ~go~par ~qgeopyv~r
dy~qgepa~r
(i) The statement p — (¢ — p) is equivalent to
@p—>q9 Gp-oPvey @Wp-oP-oq Ap-o@rg)
Solutions :
W) S, g, nN=Cpv~(gnrr
LS p g mpyv e~ gAa~r)=pNvigvr)
Hence the correct option 1s {d)
(i1) The given statement is
pr~1)e g
Hence negation of the statement is
~prA~NoPe~qgeo @A~
Hence the correct option 1s {d)
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(i) po>@-pe~pvigopeEpvi~qvp)
& (~p) v (p v ~ g) by commutative law
& (~p v p) v (~ q) by associative law
& T, v (~ q) by complement law
& T, by domination law
Aganp > pv g o (~p)vipvyg
& (~ p @ p) & g by associative law
& T & g by complement law
& T, by domination law
Hencep - (¢ »p)op —->{pv g
Hence the correct option 1s (b)

2.3.6 “If p and g are arbitrary statements such that p — ¢ is a tautology then
we say that p logically implies ¢ and we write p = ¢.”

Using the above definition prove that p = (p v ¢)

Solution :
The truth table of p — (p v g) is as follows :

pla|pvag|lp—=>pPVyg
T| T T T
T| F T T
F| T T T
F| F F T

Since p — (p v q) 1s a tautology, hence p = (p v ¢q)

2.4 Predicates and quantifiers

2.4.1 Definition of predicate and gquantifier :

Consider the sentence “» is less than 57 In this sentence without knowing the
value of # we do not know the given sentence is true or false. So it is not a statement.
But when certain value is given to the variable » then this sentence becomes a
statement. This type of sentence is called an open statement. Moreover the open
statement “# is less than 5 has two parts. The first part the variable # is the subject
of the open staement and the second part “is less than 57 is the predicate. It refers
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to a property that the open statement can have. The open statement “» is less than
57 can be denoted by p(#) where p denotes the predicate “is less than 5” and # is the
variable.

Thus a predicate or a propositional functin or an open statement defined on a set
A (say) is an expression p(x) which has the property that p(a) is true or false for each
ae A

That 1s p(x) becomes a statement (with a true value) whenever any element « is
substituted for the variable x. The set A is called the domain of p(x) or the universe
or universe of discourse for the open statement and the set T of all such elements
a € A for which p(a) 1s true is called the truth set of p(x).

In general an open statement may have more than one variable. As for example
we can denote the open statement “x = y + 27 as p(x, y)

Obviously p(1, 1) is not true since 1 = 1 + 2

but p(3, 1) is true since 3 =1 + 2.

Quantifiers are words, expressions or phrases that indicate the no. of elements
that an open statement pertains to. Let p(x) be a propositional function or open
statement defined on a set A. Then p(x) could be true for all x € A4, or for some x
e A or for no x € A As for example if p(x) be defined on set N (the set of natural
no.) as “x + 1 > 4” then its truth set is Tp ={xe Nx+1>4} =1{4,5,6, ... hH
consisting of all integers greater than 3.

Again if p(x) be “x + 1 < 1”7 defined on the set N then its truth set is null set as
foralxe N x + 1 4L

More over if p(x) be “x + 1 > 17 defined on N then its truth set is N since for
alxe Nx+1>1.

In mathematical logic there are two quantifiers “there exist” and “for all”. The
first one is called existential quantifer and the second one is called universal quantifier.

Existential Quantifier :

Let p(x) be propositional function defined on a set A Consider the expression
{(dx € A)p(x) or dx, p(x}

which reads “There exists an x € A4 such that p(x) is a true statement” or simply
“for some x, p(x)”. The symbol “3” which read “there exists” or “for some” or for
“at least one” is called the existential quantifier.
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Thus (3 x € A4) p(x) is equivalent to 7, = {x/xe A4, p(x)} # <.
J being empty set.

As for example the proposition (I # € N)(n + 1 < 4) is true
since {neN/n+l<d}={12}=J

But the proposition (3 n € N)(n + 4 < 1) is false

since {n € Nin + 4 <1} = & (the empty set)

We note that the expression p(x) by itself is an open statement and therefore has
no truth value but (3 x € 4) p(x) i.e. p(x) preceded by 3, always has a truth value.

Universal Quantifiers :

Let p(x) be propositional function defined on a set A. Consider the expression

(vxe 4)p(x) or vx p(x)

which reads “For every x in A, p(x) is a true statement” or simply “For all x,
p(x)”. The symbol “v’ which reads “for all” or “for every” is called universal quantifier.
The statement (¥ x € A) p(x) is equivalent to the statement Tp ={x:x € A, p(x)}
= A that is the truth set of p(x) is the entire set A.

We note that the expression p(x) by itself is an open statement or condition and
therefore has no truth value. However (v x € A) p(x) that is p(x) preceded by a
quantifier ¥, does have a truth value.

As for example the proposition ( ¥V # € N)}n + 2 > 1) is true

since {ne N. n+2>1}y=1{1,2,3.... }=N

But the proposition (¥ n € N)(m + 1 > 2) 1s false

since {fne N n+1>2}=1{2,34..}=N

2.4.2 Binding variables :

The vanable x in each open statement p(x) is called a free variable. As x varies
over the universe for an open statement the truth value of the statement may vary.
In contrast to the open statement p(x), the statement J x, p(x) has a fixed truth value.

In symbolic representation 3 x, p(x), the variable x is said to be a binding variable
or bound variabl as it is bound by the existential quantifier 3.

Thus a variable whose occurance is bounded by a quantifier is called a binding
variable or bound variable. Variables not bound by any quantifiers are called free
variables. As for example in the expression (3 x € N)(x + 1 > 10) the variable x is
a bound variable since a quantifier ‘3’ is used on variable x.
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Again the expression (d x € N)(x + 1 > y) the variable y is a free variable since
no quantifier is used on the variable y, but the variable x is bound since a quantifier
‘3" used on the variable x.

2.4.3 Order of quantifiers :

Consider the propositional function (v x)}3 y) p(x, y), where p(x, y) means “x
loves y”. This means for every individual x there exists at least one individual y such
that x loves y. This means everybody loves some body. But on the other hand if we
write (3 yXV x) p(x, y) then it means there exists some individual y who is loved by
everyone. This is obviously not the same meaning as previous.

So we have to careful about the order of quantifiers and order to be followed
from left to right.

2.4.4 Negations of quantified statements :

Consider the statement : “All real numbers are complex numbers”. We know its
negation as “It is not the case that all real numbers are complex numbers” or
equivalently we can say that “There exist at least one real number which is not a
complex number”. Symbolically if R be the set of all real numbers then “All real
numbers are complex numbers” can be writen as (V x € R)}x is complex) and its
negation 1.e. ~ (V x € R)(x is complex) is equivalent to (3 x € R)}x is not complex)

Again if we denote “x is complex” as p(x)
then we have ~ (V¥ x € R) p(x) & J x (~ p(x))

In a similar manner the rule for negation of a proposition which contains the
existential quantifier i1s as follows :
~ (3 x plx)) & Y x(~ px))
Thus the negation of the statement “There exists a prime number greater than
1000” is “Every prime number is less or equal to 10007

We know that if p is a statement its negation is denoted by ~ p and ~ p means
the statement “not p”. In a similar manner if p(x) is a propositional function then ~
p(x) has the meaning as “The statement ~ p(a) is true when p(a) 1s false and vice
versa’

Similarly for two propositional function p{x) and ¢{(x)

p(x) A g(x) means
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“The statement p(a) ~ g(a) is true when p(a) and g(a) are true”.
More over p(x) v g(x) means
“The statement p(a) v g(a) is true when p{a) or ¢{a) is true”.

We can also verify the laws of propositions also hold for propositional functions.
As for example De Morgan’s law for two propositional functions p(x) and g(x) will be

~ (P(x) A q(x)) & (~ p(x) v (~ q(x))
and ~ (p(x) v ¢(x)) = (~ p(x)) A (~ ¢(x))

2.4.5 Propositional functions with more than one variable :

A propositional function of two variables defined over a product set L = 4 x B
is an expression p(x, ¥) where x € A and y € B which has the property that p(a, b)
is true or false for any (a, b) € L.

Such a propositional function p(x, y) has no truth value. But if a propositional
function preceded by a quantifier for each variable then the propositional fiinction
will be a statement and has a truth value.

As for example let A ={1,2,3, 4,5} and B={1, 2, 3, 4, 5} and let p(x, y) denote
“x +y=6" Then p(x, y) is a propositional function defined on L = 4 x B. Now p(x,
y) 1s not a proposition, since we do not know whether x + y = 6 is true or false. But
if write ¥ x 3 y, p(x, y) that 1s “For every x there exists y such that x + vy = 6” then
it 1s a statement and its truth value is T, since if x =1, y =S orif x =2, y = 4 and
SO on.

Again if we write 3 y V x, p(x, y)

that is “There exist y for every x we have x + y = 67

then it 1s also a statement and its truth values is F since no such y exists.

Thus a different ordering of the quantifires may yield a different statement which
we have discussed in 2.3 4.

In a similar manner we can define a propositional function of » variables
(n=z3)

2.4.6 Negation of quantified statements with more than one variable :

Quantified statements with more than one variable may be negated by successively
applying the two equivalence properties discussed in 2.3.5. Thus we have to pass ~
symbol through the statement from left to right by changing each V to 3 and each
Jto V.
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As for example

~[¥x3dy, px, N]edx~ [y, p(x, ]IV y,~ p(x, y)

As for example let us consider the example in 2.3.6 where ¥ x 3 y, p(x, ) means
“For every x, there exists y such that x + y = 6”

Then its negation will be

~[Vxdy, plx,p)] & 3xVy, ~ p(x,y)
that is “There exists x such that for all y, x + y = 6”.

2.5 Examples

2.5.1 Let p(x), ¢(x) denote the following open statements :
plxy x¥*=3x-2
glx) 2x <7
r(x) : x + 1 is even

If &, the set of natural no. is the universe, what are the truth value of the
following statements ?

iy p(2) 1) ~g(3) i) p(3) v r(5) v) p(1) A (g(2) v r{4)) v) p(1} = ¢(4)
vi} ¢{4) — p(1) vi)) 3 x p(x) vii) ¥V x p(x) 1x) g(3) & r(3) x) 1{4) & ¢(4)
Solutions :
(1) p(2) 1s true since 2 =32 - 2
(i1) Since 2.3 < 7 is true hence ¢(3) is true and hence ~ ¢(3) is false.
(iii) p(3) is false since 3° = 3.3 — 2 and #(5) is true since 5 + 1 is even.
Hence p(3) v #(5) is true.

{iv) p(1) is true since 1° = 3.1-2, ¢(2) 1s true since 2.2 < 7, r{4) 1s false since
4 + 1 is not even,

Hence ¢(2) v #(4) is true and hence p(1) A (g(2) v ¥(4)) is true.
{(v) p(1) is true and g(4) is false since 2.4 4 7 hence p(1) — ¢(4) is false.
(vi) g(4) 1s false and p(1) is true hence g(4) — p(1) is true.
{vil) Since for x = 1, p(x) i1s true hence 3 x p(x) is true.
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(viii) Since for x = 3, p(x) 1s false hence ¥V x p(x) is false.

{ix) Since ¢(3) and 7(3) both have the same truth value T hence ¢(3) & #(3)
1s true.

(x) Since r(4) and g(4) both have the same truth value F hence r(4) & g(4) is
true.

2.5.2 Let A = {1, 2, 3, 4}. consider the following sentences. If it is a statement
determine its truth value. If it is a propositional function, determine its
truth set. Also identify the bound variable(s) and free variable(s) in each
case.

(i) (VxeH@yedx+y<6)
(i) (Vxe A)x*+y* <25)
(iii) (Vxe ANV yeA)}x*+)° <35)
(iv) (Vxe AV yed)(x’+y <25)
(v) @yed(x+y<b)
(Vi) (x+y<6)

Solutions :

{i) The open sentence is of two variables and each variable is preceded by a
quantifier hence it is a statement and hence each variable is a bound variable.
More over the statement is true since for x = 1, 2, 3, 4, we have at least one
value of y = 1(say) such that x + y < 6.

(i) The open sentence is of two variables x and y. Here only one variable x is
preceded by a quantifier, hence x is a bound varniable and y is a free vanable.
Thus it is a propositional function. We note that for every x € 4, x* + y* <
25 if and only if 4° + 37 < 25.

Hence the truth set of y = {y € 4/16 + y* < 25} = {1, 2}

(i) It 1s also a statement since both the variables x and y are preceded by
quantifiers. Thus x and y are bound variables.

Again the statement is true since for all x, y € {1, 2, 3, 4}, x> + y* < 35

(iv) It is also a statement and x, y are bound variables. But the statement is false
since if x = 4 and y = 3, x* + )7 < 25 is not true.
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(v) The given open statement has two variables out of which y is preceded by
a quantifier. Hence it is a propositional function. Again for any x € {1, 2, 3,
4} we can find at least one y € {1, 2, 3, 4} such that x + ¥ < 6 hence the truth
set of x = {1, 2, 3, 4} i.e. A4 itself.

Again here x is a free variable and y is a bound variable.

{vi) The given open statement has two vanables without any quantifier. Hence
these variable x, y are free variables. Hence it is a propositional function of
x and y. Now the truth set of (x, ) is as follows :

f(x, Ve A x Alx + y <6}
={(1,1),(1,2),(1,3),(1,4), (2, 1), (2,2), 2,3), 3, 1), (3, 2), (4, 1)}
2.5.3 For the universe of all integers, consider the following open statements
plx) : x is even
g(x) . x 1s prime
Hx) . x is a perfect square.
Write down the following statements in symbolic form. Also write down negation
of each statement in symbolic form and in English sentence.
(i) There exists an even integer which is prime.
(i) If any integer is even then it 1s a perfect square.
(iii) If any integer is even and perfect square then it is not prime.

Also determine the truth value of the given statement and its negation. Provide
counterexample for each false statement.

Solutions :

(1) Fx p(x} A glx)
It’s negation is

~ (3 x p(x) A gx))

& VX~ (p) A gx) =V x(~ p(x) v ~g(x))

This means “For all integer x, x is not even or x is not prime”.
(it} (Vx)(p(x) > r(x))

It’s negation is

~ (Vx p(x) = r(x))

< Ix(~ (p(x) = 1(x))) @ 3x (= (- plx)vr(x))) < Ax(p)A~r(x))
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This means “There exists an integer x such that it is even and not perfect
square”.
(1i1) The given statement in symbolic form 1s Vx((p(x) » #(x)) >~ g(x))

The negation of the above statement is
Fx ~ (p(x) A F(x)) o~ g(x)
&Ix~ (~ (p(x)AF(X)) A~ q(x)) & Ax(p(x)AF(X)) A gx)

This mean “There exists an integer x such that it is even and perfect square
and prime.
2nd Part :
{i) The given statement Ix(p(x) A ¢(x))is true since 2 is an even integer and
prime. Thus its negation

YV x(~ p(x)v~g(x))is false and x = 2 is the counter example.

{(11) The given statement V x(p(x) —>r(x))is false. x = 10 is a counter example
since 10 is even but not perfect square. Hence its negation Jx(p(x)A ~ #(x))is
true.

(i11) The given statement Vx{({p(x) A r{x)) —~ g(x)) s true since every even perfect
square integer is not a prime integer. Hence its negation

Ax{p(x) A r{x)) A g{x)1s false. This means there is no integer x s.t. it is even,

perfect square and prime.

2.6 Exercise

2.6.1 Chose the correct option

() (pvp)vip—(gvg))is equivalent to
ap—>q b)pvg cprg dyg—=p

{1)) The proposition p — [¢ — {(p A g)] 15
a) a tautology b) a contradiction ¢) logicaly equivalent to p — ¢
d) none of these.

(iii) (p v q) ~ ~ (~ p A q) is logically equivalent to
ayp—>q bpcg d~p
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(iv) For any primitive statements p, ¢, 7, the statement p — (¢ — r) can be
written equivalenty with exactly one occurance of the connective — is

Apvig—-rn bp-ogvr g~p-ogvr d@-onv~p
2.6,2 Use truth tables to verify the logical equivalence of the following :
(po>gnr)o~r>(p-oq)
Also find the dual of the above logical equivalence,

2.6.3 Prove that the implication p — ¢ is logically equivalent to its contrapositive
statement.

2.6.4 Use substitution rule to show that p > (g Ar) S P A~q) > r

2.6.5 Let NV be the set of natural numbers. Determine the truth value of each
statement

(1) @xeN)YTyeM[2x+y=5)r(x-y=-2)]
(i) QxeN)YFyeN)ix+y=Hrlx—y=1)]
(i) (Gxe N)VyeN)xy=1y)

(iv) (VxeNVyeNXx+2y>y)

() @yeN)VxeN)xy=y)

2.6.6 Consider the definition that the sequence {a,} _ is a null sequence is as

follows :
(V e>0)3Fme N), (Vn>m)a,|<<)

where N is the set of natural numbers. Determine the negation of the above

)

statement that is when the sequence {a,} is said to be a non-null sequence.

#=1

2.6.7 Consider the quantified statement “Every science student of IS, has at
least one course where the teacher is a laboratory assistant.”

Write down the statement in symbolic form. Determine its negation in symbolic
form and in an English sentence.
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2.7 Answer to the exercise 2.6

2.6.1 (i) ¢ (ii)a (ii)b (v)d
262 S8incep > (gqvreo~p vigvr
and ~r > P-oqgervp—2qrvi~pvyey
Dual of the given logical equivalence is ~p A {g AFr) @ r A(~p A q)
2.6,5 (i) True (ii) False (iii) True (iv) True (v) False
2.6.6 Definition that the sequence {4 } is a non-null sequence is as follows :
(> 0)(Vme N)In > m)

a,| =€)

2.6.7 Let A be the set of science students of H.S. and B be the set of courses and
P be the statement “The teacher is a laboratory assistant™.
The given statement in symbolic form (VxeAX3y<B)p)
and its negation is (xc ANV ye B}~ p)

This means “There is a science student of H S. such that in every course the
teacher is not a laboratory assistant”.

2.8 Summary

In this unit we have discussed about the use of truth-tables to identify logically
equivalent statements. Learner can now construct combined truth-table of propositions.
Two different quantifiers existential and universal have been discussed with different
scenarios. The learners need to understand these topics completely for making rules
of inference and decision making.
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3.0 Objectives

After going through this unit the learner should be able to :

e Understand the fundamental concepts of sets and operations on sets like
union, intersection & complementation.

e Know the laws of set theory, venn diagrams and counting principle.

e Develop mathematical theories formally by having the collections we want to
the talk about as mathematical objects on their own accord.

3.1 Introduction

The concept of sets is used for foundation of various topics in mathematics. To
learn sets we often talk about the collection of objects such as set of vowels, set of
real numbers, a list of fruits, a bunch of keys, a group of students etc.. Here we shall
adopt the naive theory of sets as developed by German mathematician George Cantor.

3.2 Sets, subsets, universal set, empty set, equality of
two sets

3.2.1 Sets :

According to the definition of Cantor, a set is a well defined collection fo distinct
objects of our perception or of our thought, to be conceived as a whole. The word
‘well defined’ refers to a speific property which makes it easy to identify whether a
given object belongs to the set or not. The word ‘distinct’ means that objects of a set
must be all different. The objects of a set are called the elements or members of the
set. A set is usually denoted by capital A, B, C .. ... etc. and the elements are denoted
by small letters a, b, ¢, ...... etc. If Ais a set and ‘e’ is an element of the set A we
write a € A read as ‘a belongs to A’. Again if A is any set and ‘¢’ is not an element
of A then we write @ A4 read as ‘a does not belong to A’

There are three ways to represent a set,
(1) Tabular form : Listing all the elements of a set seperated by comma and

enclosed within curly brackets *{}’. As for example 4 = {2, 3, 7, 10}, B
= {a, ¢, i} etc.
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(i1)) Descriptive from : Describing all the elements of a set by words. As for
example C = set of first ten natural numbers.

(i11) Set Builder form : Writing in symbolic form the common characteristic
property shared by all the elements of a set. Thus if p be defining property
of the element of a set § then § is expressed as
S = {x : x has the property p} or § = {x / x has the property p}

This means S is the collection of all those elements x such that x has the
property p. As for example X = {x : x is an even integer and x > 10}
Some sets will occur very often in the text and so we use special symbols
for them. Unless otherwise specified we will let

Z

. the set of all natural numbers

- the set of all integers

- the set of all even integers

- the set of rational numbers

. the set of all nonzero rational numbers
* . the set of all positive rational numbers.

O QO MmN

. the set of real numbers.
R" : the set of all nonzero real numbers.
R* : the set of all positive real numbers.

C : the set of all complex numbers.

3.2.2 Universal set and empty set :

In any application of the theory of sets the members of all sets under investigation
usually belong to some fixed large set called the univerasl set and this set is generally
denoted by U/ or §.

For example we can take U= {x € N : 1 <x < 10} as a universal set if we discuss
involving the sets B= {1, 2,4, 5}, C=1{4,5, 10}, D= {2, 5, 8} since all the elements
of B, C and D are the elements of U/

A set 1s said to be empty set or void set {or null set) if it has no element. Such
a set 1s doneted by ¢. For example the set {x : x is an integer such that x* — 3 = 0}
is an empty set since there is no integer x such that x* — 3 = 0. Thus {x € Z : x* —
3=0}1=¢

We remember that a null set or empty set is denoted by ¢ but the set {¢} deontes
the nonempty set whose only one elements is ¢.
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An empty set has the following properties
(i) It is subset of any set.

{11) Its only subset is the empty set itself.

(in1) Its number of elements is zero.

3.2.3 Subset :

If 4 and B are two sets such that every element of A is also an element of B then
we say that ‘4 is a subset of B’ or ‘4 is contained in B’ or ‘B contains A°. This
relationship is written as 4 < B or 8 0 4. If in addition B contains an element that
is not in A then we say that 4 is a proper subset of B and this is denoted by 4 — B
or B D A. Again if atleast one element of A does not belong to B then we write A
C BorB 2 A

We note that for all sets 4, B from a universal set {/
For example A4={1,3,7,8,9}, B={2,7,9}, C={7,9} then

CcAdand C c Bbut Bg A since 2 € Bbut 2 ¢ A Furthermore since the
elements of 4, B, C must also belong to the universal set {7 hence {/ must at least
contain the elements of the set {1, 2, 3, 7, 8, 9}

3.2.4 Equality of two sets :

Two sets A and B are said to be equal if 4 ¢ B and B < 4 and we write 4 = B.
From the definition it is clear that neither order nor repetition is relevant for a general
set. For example {2, 5, 9} = {5, 2,9} =19, 9,5, 2, 9}

3.3 Set operations and the laws of set theory

3.3.1 Union and Intersection :

Let U be the universal set and 4, B be the subsets of /. Then the union of two
set A and B denoted by 4 U B is the set of all eleemnts which belong to 4 or to B.
Thatis 4 UB={x:xe 4 vxe B} Here ‘or’ is used in inclusive sense.

Again the intersection or meet of two sets 4 and B denoted by A "B ={x :x
€ A Axe B}

If A ~ B = ¢ thatis if 4 and B do not have any element in common then A4 and
B are said to be disjoint or non-intersecting,

For example it {/ = {2, 3,4, 5,6}, A=1{2,3,5}, B=1{4,5,6}, C=1{6}
then4 VB =1{23,4,56,ANB={5,,AvC=1{2,356,AnNnC=9¢
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3.3.2 Complement of a set :

We know that all sets under consideration at a particular time are subsets of fixed
universal set /. The complement of a set 4 = U, denoted by 4° or 4 is the set of all
elements which belong to &/ but which do not belong to A.

ThisisA=1{x xe Unxeg A}
For example if I/ = {2, 3,4, 5,6} and 4 = {2, 3, 5} then 4 = {4, 6.

3.3.3 Laws of Set Theory :

Sets under the operation of union, intersection and complement satisfy the various
laws or identities. These laws are known as laws of the algebra of sets or simply laws
of set theory. Let us enlist some of the major laws as follows :

For any sets 4, B, C taken from a universal set S we have

() 4=4 law of double complement or Involution law
(i) Aup=A4 AnS=4 Identity laws
(i) AvA=A4 AnA=A4 Idempotent laws
(iv) AoB=BuAd, AnB=BnA4 Commutative laws

V) (AuB)uC=Au(BUC), (ANBYNC=AN(BnC) Associative laws

(vi) AV(BNC)=(AUB)NAUC), ANBUC)=(AnB)u(AnC)
Distributive laws

(vil) Av(AnB)y=4, An(AuB)=A4 Absorption laws
(Vi) AuA=S, AnA=¢ Inverse laws
{ix) AUS=S, And=¢ Domination laws
(xX) AUB=ANB, AnB=A4AUB De Morgan’s Laws

All the above properties or laws can be proved by using the definition of equality
whichisA=Bes AcBABcA

For exampl let us prove second equality of (v), second equality of (vii) and 1st
equality of (x) and leave the rest as an exercise.

Proof of (A~B)~C =An(B~C)
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Proof : Let xe(AnB)nC=>xeAnBand x e C

=>xedand xeBandxeC =>xedand xe BNC = xe An (BN )
Hence (ANB)NmCCc AN(BNC) v (1)

Again let ye An(BnC)=> yedand ye({Bn()

=>yedandye Bandye C=ye AnBandye C=2ye dnB)nC
Hence AN(BNCO)Yc{ANBYNC e (2)

Combining (1) and (2) we have (4\B)Y~C = A~ (B~C)Proved.
Proof of An(AwB)=A
Proof: Let xc An{AuB)=>xecdandxye{AUB)y=>xcd . An{(AuB)c A4
Conversely let y € A4, hence y € A U B and hence yec An(4wB)
sAC An(AUB)
combining the reverse inclusion we have A~ (4w B)=4. Proved
Proof of 4  B-4~R
Proof : Let x € S Then xeAUB=x¢(4uB)=>x¢ 4 andx ¢ B

—xcd ad yeBoxeAnB Thus 4OBc AnB

Againlety € S. Then yc 4~B=>yecd and yeB=yed and y¢B
= ye(4duB)=ye(4uB) Thus 4nBc (4UB)

Thus 40Bc A~EB and A~Bc (AU B)

Hence it follows from definition that 4., B = 4~ B Proved.

We can also establish the laws or properties by both subset relations simultaneously
by using logical equivalence ‘<’ instead of logical implications (= and <).

For example let us prove the second equality of (vi) of distributive law.
Proof of A~ (BUC)={AByu{A~C)

Proof : foreachx e §, xedn(Bul)oxed and (xe Bu()
{xed)y and (xeBorxe(y(xeAand xe Byor (xeAand x()

SxeAdnBorxe AnC o xe(AnB)yu{AnC)
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As we have equivalent statements throughout, hence we have
AnBuO)cAnB)yuAnC)and(AnB)uANC)c An(BU(C)
Hence AN (BuUC)=(AnB)u(AnC). Proved.

As in the laws of logic we see in the pair of laws in set theory from (i) to (x)
that first law can be deduced from second by interchanging  and M and also by
interchanging S and ¢ and vice versa. This principle is known as duality principle in
set theory.

3.3.4 Venn diagrams :

The set operations — union, intersection, complementation etc can be visualised
from the diagramatic representations of sets known as Venn diagram. It is a pictorial
representation of sets in which sets are represented by enclosed areas in the plane.

The universal set U or § is represented by the interior of a rectangle and the other
sets are represented by disks lying within the rectangle. If 4 and B are two arbitrary
sets then it may happen that some objects are in A but not in B, some objects are in
B but not in 4, some objects are in both 4 and B and some are neither in 4 nor in
B. Hence in general we represent 4 and B as in the following figure :

S

A B

Hence 4 U B, A N B, A can be represented by the shaded portion as follows :
S S SE=————

A B

A B

AUB AnB 4
Moreover if A < B then the disk representing 4 will be entirely within the disk
representing B. Again if 4 and B are disjoint then they have no elements in common.
These can be represented as follows :
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S S

AcB A and B are disjoint
We can also establish the laws of set theory by drawing the Venn diagram.
For example if we want to verify the De Morgan’s law (AUB)ZZME we

proceed as follows :

Step 1 : First we draw the Venn diagram for 4 « B which is the shaded area as
the following.

Step 2 : Next, we draw th Venn diagram of (A UB) which is the shaded area

as follows:

’||"||||||lIIlumﬂlllll“""l"
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Step 3 : Next, we draw the Venn diagram of 4 and B by strokes é and

NN

respectively and the Venn diagram for 4 N B which is the crosed shaded area
as follows :
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Step 4 : Since the shaded area represented in step 2 and crossed shadede area in

step 3 are equal hence (A U B ) —AnB

3.4 Finte sets, Infinite sets and counting principles

3.4.1 Finite sets and Infinite Sets :

A set X is called a finite set if it contains exactly » distinct elements where # is
a nonnegative integer otherwise it is said to be an infinite set. Thus a finite set is
either an empty set or the process of counting of elements surely comes to an end.
The number of distinct elements counted in a finite set 4 is denoted by n(4), called
the cardinal number of the set 4 or cardinality of A. Thus if 4 be the set of the
English alphabets then n(4) = 26.

The cardinality of a set 4 may also be denoted by |4| or card(A4). thus the cardinality
of empty set ¢ is 0. Again the set of odd opsitive integers is not a finite set because
the process of counting of elements of the set of odd positive integers does not come
to an end.

3.4.2 Countable set :

Infinite sets are of two categories, countably infinite and uncountable. A set is
said to be countably infinite if there exists an one to one corespondence between the
elements in the set A and the elements of N. Thus an infinite set is countably infinite
if there exists a bijective mapping from N to A.

For example the set of integers Z is countably infinite since if we define f: N
— Z as
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n

2
JS(m)=
—(”2;1) if nodd

if n even

then f is obiviously a bijective mapping (see the figure below)

N V4

A countable infinite set is also termed as denumerable. A set that is either finite
or denumerable is called countable. A set which is not countable is called uncountable
or nondenumerable set.

Suppose that 4 and B are two sets (finite or infinite). We say that 4 and B have
the same cardinality (written as |[4A| = |B|) if a bijective mapping exists between A
and B.

Thus by our earlier discession, N and Z have same cardinality.

3.4.3 Counting Principle, The inclusion-exclusion principle :

Sets are extensively used in counting problems— for which we need to study
about the size of the sets. For a finite set A, we know that the size of the set 4 is n(A)
or cardinal no. of the set 4. Now if 4 and B are two disjoint finite sets, let us find
n(A U B). In counting the elements of 4 U B, first we count those that are in 4 which
is n(4). Next we count only other elements of 4 U B i.e. the no. of element which
are in B but not in A. But since A and B are disjoint hence there are n(B) elements
that are B and not in A. Therefore n(4A v B) = n(4) + n(B).

We can also find a formula for n(4 U B) even when they are not disjoint. This
formula states as follows :

If A and B are two finite sets then n(4 U B) = n(4) + n(B) — n(4 U B)

Proof : In counting the elements of 4 U B we add n(4) and n(B) then subtract
n(4 v B).

This means we include n(4) and n(B) and then we exclude n(4 N B).
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Because when we add #(A4) and #(B) we have counted the elements of A N B
twice. So to obtain the accurate value of #(4 U B) we have to subtract #(4 M B) from
wA) + w(B).

Hence n(d m B) = n(4) + n(B) — n(4 M B)

The above principle is the simplest from of Inclusive-Exclusive principle. This
principle holds for any number of sets.

For example for three sets it will be as follows :
If A, B, C are three finite sets then
HAUBUCYy=m( A+ n(BY+m(AB)—n(BAC)—m(ANCY+m{AB~C)

In this case we first include n(A4), »(B), #(C) then we exclude
A B),n(BC),nC A) and then we again include #(A~B~C).

3.5 Classes of sets, Power set of a set, Cartesian
product of sets.

3.5.1 Classes of sets :

We have defined a set as a well defined collection of distinct objects or elements.
Sets can also contain other sets. For example the set {N, (J} 15 a set containing two
infimite sets & and Q. {{1, 2}, {5}} is a set containing two finite sets {1, 2} and {5}.
Thus in the set {N, @}, N is an element of {N, O} 1.e. N e {N, O}. Similarly {1,
2y e {{L, 23, {53}

This type of set where the elements are also sets is called a class of sets or a
family of sets or set of sets. Sets containing sets arise naturally when an aplication
need to consider some or all of the subsets of a base set A(say).

For example let us take 4 = {1,2,3,5,7}

Now let B be the class of sets whose elements are subsets of 4 containing exactly
four elements. Then B = {{1,2,3,5}, {1,2,3,7}, {1,2,5,7}, {1,3,5,7}, {2,3,5,7}} Again
since A is a set of five elements hence its cardinality #(4) = 5. Again B is a set of
five elements hence its cardinality 5.

The empty set like any other set can be an element of a set of sets. Thus {¢,
{1,2,}} 1s a set containg two elements, the empty set ¢ and the set {1,2}.
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3.5.2 Power set of a set :

The collection of all subsets of a set S is a class of sets. This set is said to be
the power set of S and is denoted by P(S).

Thus P(S) = {4 : A is a subset of S}

If S is a finite set of # elements then P(S) contains 2” subsets. This due the fact
that any subset of § i1s either ¢ or a subset containing 7 elements of
S for i =1, 2, 3, ... n which implies that the number of elements of

PS)=1+"C,+"C,+......+7°C =2"

For example if 4 = {1, 2, 3} then

P(A)={$.{1}.£2},{3},1,2}.{1,3},{2,3}. {1, 2,3} }

We note that power set of 4 always contains the empty set ¢, regardless what is
in 4. As a consequence P(¢) = {¢}.

3.5.3 Cartesian product of sets :

Let A and B be nonempty sets. The cartesian product of 4 and B denoted by 4
x B is the set defined by AxB = {(a, ) . ae A and b € B}.

We assume A < ¢ = ¢ and ¢ < A = A for any set A. We observe that if 4 and B
are finite sets such that #(4) or |A| = m, and #(B) or |B| = m, then n(4 * B) or |4 x
Bl =mm,

We can also consider the cartesian product 4 < 4 of a set 4 itself denoted by 4%

For example if 4 = {1,2,} B = {2, 3} then

A4 xB={(12),(1,3),(22), 2.3)} and B x 4 = {(2,1), (2,2) 3.1), (3,2)}

A£=4x4={L1),(L2), (2.1), 2.2)}.

3.6 Examples

3.6.1 Let A = {2,5,{5}} which of the following statements are true ?

2ed (i){2jed i){5jed W) {5)cd ({5} cd (i) {2
cCA (vil)4=1{25}
Solution :
(1) 2 € A 1s true since 2 is an element of A.
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(i1) Since {2} is a set containg one element 2 but this set is not an element of
A. Hence the statement is false.

(i11) Since 4 contains the set {5} as an element hence {5} € A4 is true.

{iv) Since 5 is also an element of 4 hence the set {5} is a subset of 4. Hence
the statement is true.

{v) Since the set {5} is also an element of 4 hence the set {{5}} 1s a subset
of A. Hence the statement is true.

(vi) Since 2 is an element of 4 hence the set {2} is a subset of of 4. But A4
contains two other elements 5 and {5} hence {2} is a proper subset of A.
This means {2} c 4 is true.

(vil) Since {2,5} < £2,5,{5}} but {2,5, {5}} is not a subset of {2,5}. Hence the
statement 4 = {2,5} is not true.

3.6.2 Determine all the elements in each of the following,
(1) A={I+(-1)"/neN} (i) B={2n-1/neZ}
Solution :
(1) Since (—1)" is either 1 or — 1 hence A={1+11-1}={2,0}

(i1) Since for any n € Z, 2rn — 1 1s an odd integer and any odd integer can be
written in the form 2n» — 1 for some #» € Z hence B is the set of all odd

integers.
363 Let A={neZ/0<n<d4jand B={neZ/2<n<7;be two subsets of a
universal set S={neZ/0<n<10}
Find () 4 U B (i) 4 " B (i) (A0B) (v) 75
Solution : Her 4 = {0,1,2.3.4}, B=1{23,4,56}and S ={0,1,2,3,4,5,6,7,8,9,10}
(i) AuB=1{0123456} (i)AdnB={234} (i) 4oB={7,8910

(iv) Since 4=1{56,7,8910} and B={017,89,10} hence 4~B=1{7,89,10}

3.6.4 Let A, B, C be three subsets of a universal set S. Prove that

(i) (A~B)u(AAB)yu(AnB)(ANB)=S
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(i) (A0BUC)A(AUBUC)=Cn4
Solution:

(i) (4 mB)u(A ﬁE)U(ZﬁB) U(Z(‘\E)
={AnBuEAB)}U{ANBUENB)} (by associative law)
={4nBUB}L{ARBUB)Y} [by distributive law]
=(4"S) u(Zm S) [by inverse law]

- 4 A4 [by identity law] = § [by inverse law] Proved.

(ii) (A uBuE)m(A UEUE)

=(AUD)~(AVE) where D=BuUC andE=BUC
=A W {D N E) [distributive law]

Now DnE = (Bug)m(ﬁuf)
= (B a E) wC [distributive law] = ¢ C [inverse law] = C [identity law]

" AUDNE)=AUC

Hence (AUBUE)m(AUEUE)
:(AUE) :Zm? [by De Morgan’s law]

— A~C [law of double complement or Involution law]

—(C~A [commutative law] Proved.

3.6.5 Among integers 1 to 100, how many of them are
(i) divisible neither by 2 nor by 3 nor by 57
{11) divisible either by 2 or by 3 but not by both ?
(iii) divisible by 2 but not by 3 nor by 5?
(iv) divisible either by 2 or by 3 but not ny 57
Draw a suitable Venn diagram for verification.
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Solution :
Here total no. of integers = 100
Let § be the set of integers from 1 to 100, .. #(S) = 100

Let 4, B, C be the set of integers from § which are divisible by 2, 3 and 5
respectively.

n(d)= [100] n(B) = [100] nC) = [100] 20

where [x] denotes the greatest integer not greater than x.

Now mANB) :[200] [120} ~16

nBAC) = [100} [100} 6. WCrA)= [100]:[100]_10

25
WANBAC) = [21005] [%]:3

(1) Numbers not divisible by 2 nor by 3 nor by 5
=mS)y-n(Aw B ()

=100 —{m( )+ 1 BY+ m(Cy— (A B)— (B C)—m(C ~ A+ m{ A B C)}
100 - {S0+33+20-16-6—-10+ 3}

100 — (106 — 32) = 100 — 74 = 26

(1) Numbers divisible either by 2 or by 3 but not by both
=m{AUBYy—nAB)=nA)+mBYy—mABy—n(AB)
=50+33-16-16 =51

(1) Numbers divisible by 2 but not by 3 nor by 5
=mABUC)Y-nBUC)

=74 - BY+n(Cy—m(B~C))

=74-33+20-6) =74 -47 =27

(iv) Numbers divisible either by 2 or by 3 but not by 5
=mABoC)y-n(C)

=74 -20 =54
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All the above results can be verified from the following Venn diagram

n(S)y=100

;
aa

26

3.6.6 If AZ{x/2c0s2x+sinx£2} and B:{x/g£x£32n}

Find A N B in simplest form.
Solution :
2¢cos?x+sinxyx <22 -2sifx+sinxyx<2&e 2sinPx—sinx=0

< sinx(2siny—-1) >0 sinx(sinx—%) >0

< Fithersinx< 0 orsinx 2%

Thus the set 4 = A, U A, where 4 ={x/sinx<0}, 4,= {x/sinx 2 ;}

Hence ANB=(4,UA4,)nB
=(4, nB)u(4,nB) [Distributive law]

Now AlmBz{x/sinxSO anngxS?}z{x/nSxSM}

2
. 1 3 5
Also Asz:{x/smezandechS;}:{x nﬁxggc}
L AnB={x/2< 35“} {/ < 33“}
M {x/2 XSSO rsxs
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367If AU B=A N B then show that A = B.
Solution :
A=AnNn (A VB (law of absorption)

=A~(ANB) ( AuB=ANB)=(AnA4A)"B (Associative law)
=4 N B (Idempotent law)

Again B=B n (B uw A) (law of absorption)

=Bn(AwB) (commutive law)=B (A nB) (. AuB=AnB)

=B~ (B~A) (commutative law) = (B M B) " A (Associative law)
=B A (Idempotent law) =4 N B (Commutative law)
s A=B Proved

3.6.8 If A, B, C are substes of a universal set S suchthat A U B=A4 v C and
AN B=A n C then prove that B = (.

Solution :
B=(4 v BB (Absorption law) =4 ~" )"\ B (- AuB=A4Au()
=(AnB)(CnB) (Distributive law)=(ACYy(CB)
(cANB=ANC)
=AYy (BnC) (Commutative law) = (4 W B)n(C  (Distributive law)
=AduOnC (- AuB=A4Au()
= ( Proved. (Absorption law)

3.6.9 Justify the following set-theoretic statements or else give counter examples
to disprove.

Let A, B and € be subsets of a set S.
i) AnB=BnNn(C = A=8
(i) AUB=Bu(C =A=8B

(i) 4w(BnC)=(4uB)n(40C)

(iv) Ax{(BnC)=(AxB)n(4xC)
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Solution :

(i)

(ii)

(iif)

(iv)

The statement is false.

Let §={1,2,3}, A={1}, B={2},c={3}

Then ANC=¢=BnC but A=B

Let §={1,2,3}, A={1,2}, B={2},C={1,2,3}
Then AuC={1,23}=BuC but 4= 58

Hence the statement is false.
The statement is false.

Let S={1,2,3,4,56,7.8}
A=112345} B=14567} C=178}

L C={,234,56) . BnC=1{456
- AU(BAC)={12,3,4,5,6}
Again AUB={12,34,567, AuC={1,23457,8}

" AUC=1{6} - (AUB)AUC = {6}
Au(Bmg)i(AuB)mm

The statement is true,

Proof : For any (x, y) € 4 x (B n C)

< xedand ye(Bn(Cyeoxedand yeB and yel

e (x,y)eAxBand (x,y) € AXC & (x, ) €(AXB)N(AX()
Now (x,1)€ Ax(BNC)=>(x,y)c(AxB)Yn{(Ax )

shows that Ax(BNC)C (AxBYN(AXC)............. {)]
Again (x,y)e{AxB)~(AxC)= (x,y) e Ax(B~C)
shows that (AxB)(AxCYS Ax(BNC).............. (2)

From (1) and (2) we conclude that
Ax(BAC)=(AxBY(AxC)

3.6.10 Prove that the following three statements are equivalent

(i) AcB (i)A~B=¢ (i) AnB=4A
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Solution :

Let the statement (i) be true ie. 4~ B

Hence 4B ={r:xcAand xe B}

={x:xeBandxe§} (- AC B)
={x:xeBand x g B}=¢
Hence condition (1) = condition (i)
Again let A(“\E:d} s Foranyxe A =>x¢ B ie.xe A>xe B

s AcB
Hence condition (ii) = condition (1)
Againlet A C Bbetrue. Thismeansxe 4 = xe B ............. (1)
Hence AN B=fx:xe Aandxe B} ={x:xe A} =A [by(1}]
Hence condition (i) = condition (in)
Again let A ~ B = A be true.

Thenxe A @2xece AnB=>xc4andxe B =xec B s AcB
Hence condition (iii) = condition (i). Hence the proof.

3.7 Exercise

3.7.1 Chose the correct option :

(i)

(it)

(iii)

(iv)

Two finite sets have m and » elements. the number of subsets of the first
set 18 112 more than that of the second set. The values of m and » are
respectively

(@) 4,7, (b)7.4 (c)64 (d) 387
If A={8"-Tn-1:ncN}and B={49n—-49 n< N} then
(@QAdc B (b)Bc A (c)A=F (d) none of those

The set (A ﬁﬁ) (BAC)is equal to

(@) 4UBUC (b) AUB (c)AUC (d)A~B

Let S be the universal set for sets 4 and B. If #(A4) = 200, #(B) = 300 and
1A N B) = 100 then n(4 N B) = 300 provided »(S) is equal to

(a) 600 (b) 700 (c) 800 (d) 900
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(v) In a school of 300 students, every student reads 5 newspaper and every
newspaper is read by 60 students. Then the number of newspaper is

(a) at least 30 (b) atmost 20 (c) exactly 25 (d) none of those

(vi) Let 4 and B be two nonempty subsets of a universal set .S such that 4 is
not a subset of B, then

@AcB (B)Bc A ()AnB=¢ (d)AnB+¢
3.7.2 Use the laws of sets to prove that
1) AuB:(AmE)u(ZmB)u(AmB)
(i) (AmBmC)u(AmBmE)u(AmEmC)u(AmEmE):A
3.7.3 Let S be a universal set and A be a fixed subset of S.

(1) If 4 U B = B holds for all subset B of S, prove that 4 = ¢.
(i) If 4 N B = B holds for all subsets B of S, prove that 4 = §.

3.7.4 Find the number of subsets of the set S = {1,2,3.4,.......... 15} such that the
product of the elements in each subset is a multiple of 3.

3.7.5 Let A, B and C be three subsets of a universal set .S such that A U B=A4
U Cand AU B =4 v C, prove that B = C.

3.7.6 Find the power set of the set 4 where A = {{1,}, {2}, {1,2}}.
3.7.7 The following Ven diagram shows the subsets A, B, C of a universal set S.

Lg

AN
o7

Shade the following subsets of §

(i) AnBUC) (i) Zm(BuC) (i) Zu(CmE)
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3.7.8 Let A and B be two subsets of a universal set S. Prove that P(A N B) =
P(A)N P(B) where P(A) denotes the power set of A.

Give an example of two subsets 4 and B of a universal set S such that
P(AU B) = P(A)w P(B).

3.7.9 Write the dual statement of the following set-theoretic result A = (4 U B)
NA v ¢).

3.7.10 Is it possible to draw a Venn diagram of sets 4, B, C where A c B, B n
C=¢and A N C# ¢? Justify.

3.8 Answers to the exercise 3.7

3.7.1 (i) (b) [Hints:2"-2"=112=2%2"-1)]

(i @ Gi)d) WO ©E© )@

3.7.4 21925 - 1)

37.6 P = {0, {13}, {21, (L2, (1, @8, U0, L2, 63, 4L, 23,
(@, 1,3y

3.7.7 S S
i) (ii)

(ii1)
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3.7.8 2nd Part :

Let § = {1,23}, A={1}, B=1{2}

Then {1,2} € P(4 v B) but {1,2} ¢ P(4) v P(B)
379 A=A By u (4 N S) where .S is the universal set.

3.7.10 No such Venn diagram exists.

Because ANC=z¢=>dxst xed and xeC>xeBandxe( (- AcCB)
>xeBNnC=>BnC#=¢

3.9 Summary

In this unit we have learnt the basic concept of set theory which is one of the
most fundamental in mathematics. Several mathematical concepts specially on
mathematical analysis, abstract algebra, discrete mathematics and topology can be
defined precisely using only set theoretic concepts.
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Summary

4.0 Objectives

After going through this unit the learner should be able to:

sets.

e Understand the set identities and the various method of proof.
e Know the generalised De Morgan’s laws.

e Perform two more operations, difference and symmetric difference of two

4,1 Introduction

Set theory uses a number of different operations to construct a new set from old

ones. It is important to have well defined ways to construct these new sets and
example of these include union, intersection of two sets and complement of a set. In

66
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this unit we shall learn about two more operations difference and symmetic difference
of two sets.

4.2 Difference and symmetric difference

4.2.1 Difference and symmetric difference of two sets :

The difference of two subsets A and B of a universal set S is denoted by 4B or
A-B is the set of elements which belong to 4 but which do not belong to B. This

means A-B or (A\B)={xeS:xe Aandx¢ B} or simply = {x : xe4 and x¢ B}

The shaded portion of the following Venn diagram represents the set A4\B.

A-B is shaded

The subset A-B of § is also called complement of B relative to 4.

The difference A-B can also be expressed as A—B= AN B where B is the
complement of B.

In particular A-B=¢ @ AcBandAd-B=4A ©AnB=¢

For example if § = {1,2,3,4,5}, 4 = {1,2.3}, B = {3,4,5} then A — B = {1,2},
B—A4 = {4,5}

The symmetric difference of two subsets 4 and B of a universal set .S is denoted
byA ABor 4@ B consists of those element which belong to 4 or B but not to both.

Thatis AAB=(AUB)—-(ANB)......... (1). AAB can also be equivalently expressed

as AAB=(A-B)U(B-A)=(ANB)U(BNA)....(2). The equivalence of two
definitions (1) and (2) will be proved in the next article.
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The shaded portion of the following Venn diagram represents the set 4 A B

S
—_— pP———-
=,
yi 7 N\ A
f : rd
E i X

A A B is shaded

The name symmetric difference suggests a connection with the difference of two
sets which is evident from both the formulas (1) and (2). The symmetric difference
is also known as disjunctive union of two sets since it is the union of two disjoint
subsets A-B and A-B provided A-B and B-A are both nonempty. Again by

construction the role of A and B can be changed. Thus AAB=BA 4.
For example if §=1{1,2,3,4,5}, A={1,2,3} B={3,4,5}
then AAB=(4A-B)u(B-A4)={,2}u{4,5}={1,2,4,5}
Again it follows from definition that for any set A,
AANA=(AVA)—(ANnA)=A-A=0
and AAG=(AVP)-(ANndP)=A4A-¢=4

4.2.2 Properties of difference and symmetric difference:
Some important properties of difference and symmetric difference are as follows:

For any sets 4, B, C taken from a universal set .S we have
1) A-BNnC)=(A-B)yu4-0)
A-(BuC)=(A-B)n(4-C)
(i) AAB=BA A (Commutativity)
(i11) AA(BAC)=(AAB)AC (Associativity)
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Proof of A—(BNC)=(A-B)U(A-C) [that is first part of 4.1.2 (1)]
Proof : A—(BNC)=ANn(BAC)=4n(BUC)

=(ANBYyu(AnC) (by distributive law)

=(A-B)yu(A4-C)Proved

Proof of 4—(Bu()=(4A-B)n{A-C) [that is second part of 4.1.2(1)]
Proof : 4—(BUC)=AN(BUC) (by definition)

= An(BnC) by De Morgan’s law
=ANBNC=(ANB)NANCY=(4-B)n(4-C) Proved.

Proof of (ii) AAB = BAA

Proof : By definition AAB=(4W B)-{4AN B)

=(Bud)-(BnA) (by commutative law for union & intersection)

= BA4 (by definition) Proved.
Proof of (iii) AA(BAC)=(AAB)AC
Proof : By definition BAC =(BAC)U(BNC)

- ANBAC)

=(4n{BAC))L (4 (BAC))

- [Ar\{(Br\C_.)m(EmC)}]U[Eﬁ{(BﬁC_')U(EmC)}:I

[4nfEuc)nBud]o[[An(End)luin(Eac)]]

[
AN
D

=4~ (EmE)u(BmC)}]u(EmBm(_T)u(ZmEmC)

{
{(EmB)U(EmE)U(CmB)u(CmE)}]u(ZmBmE)u(Emﬁmc)
{
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=(AnBNC)u(AnBNC)u(AnBAC)U(AnEBNC)

- AA(BAC)
=(AnBNC)u(AnBNC)u(ANBAC)U(ANBAC).......... (1)
Interchanging A and C in (1) we have

CA(BAA)
=(CNBnA)u(CABNA)U(CABNA)U(CABNA4)

=(ANBUC)UANBAC)YU(ANBAC)U(ANBAC) ... (2)
From (1) and (2) we have

AA(BAC) = CA(BAA) = (BADAC (- AAB = BAA)

= (AAB)AC Proved.

Let us now prove the equivalence of two definitions {equations (1) and (2) in
1) of symmetric difference of two sets 4 and B. (i.e., A AB) as follows :

Proof of (AUB)-(ANnB)=(4A-B)U(B- A)

Proof : (4UB)—(4NB)=(4AUB)"(ANB)

=(4uB)n (AU B) (by De Morgan’s law)
={4uB)na}lu{duB)nB} (by distributive law)
=(ANDHUBNDHUANBVBAB) (by distributive law)
=pUB-HUA-BUd [+ XNX=9)

=(B-A)U(A-B) (+Xud=X)=(4-B)U(B-4) (by commutative law)
Hence (AUB)—(ANB)={(4-B)yw(B-A4) Proved.
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4.3 Set indentities and the various methods of proof

Set identities are methods of expressing the same set using the names of set and
set operations. They can be used in the algebra of sets. We have already discussed
about the laws of set theory in 3.2.3 for any sets 4, B, C taken from universal set S,
those laws are set identities. Also we have proved properties of difference and
symmetric difference in 4.1.1. Those are also set identities. Any identity relating to
sets can be proved in many ways. As for example let us prove De Morgan’s law

AUuB=ANEB for any sets 4, B taken from a universal set S in various methods.

1st method In this method we shall show that 4UWBcANEB and
ANBc AUB

This method is known as double inclusion method. This method of proof is
already discussed in 323

2nd method In this method we use the logical equivalence of defining propositions
or by using quantified definition of union, intersection or complement

Proof : (AUB)={xeS:~(x€AvxeB)} where S is the universal set.
={xeS:(~xeA)A(~xeB)}:{xeS:(er)A(er)}
={xeS:(erm§)}=Em§ Proved.

3rd Method In this method we use a membership table. This method works the
same way as a truth table in which we use T and F to indicate the following :

T : For x is an element belongs to the specified set

F : For x i1s an element does not belong to the specified set

Proof : Let us prepare the membership table for {UBand A~ B

A|B|A|B|AuB|AUB|AnB
T|T|F|F| T F F
T|\F|F|T| T F F
F|T|T|F| T F F
F|F|T|T| F T T

From the last two column we have (AUB) =AnNB
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4.4 Generalised union and intersections

We now generalise the concepts of union and intersection of two sets to an
arbitrary collection of sets. Let us consider a finite collection of » sets Al, AE, A
(nz2)

In this case we write

L]

LjA,.=A1uA2uA3 ....... VA, ={x:xe 4 for somei1<i<n}
i=l

and NA=ANANA ... A ={x:xed for all ,1<i<n}
=1

To generalise 1t further for any arbitrary family of sets, finite or infinite we
introduce the notion of an index set. A nonempty set I is said to be an index set for
a family F of sets, if for any / € 7 there exists aset 4, € Fand F'= {4 :ie I}
It can be noted that I can be a finite or infinite set. We now define the union and
intersection of the sets A, i € 7, as follows

UA ={x:xe A for at least one i e I}
el

gA):{x:xeAf foralliel}

The above definition of the union and intersection of the family of subsets can
be restated by using quantifiers as follows :

xegA]. = Fielxe 4) and erA,. o Vielxe d)
Thus xegA,. o~[@iel)xe A)]

e Viel red) o (Vielxed)
Thus (9}4)=QE

This 1s generalised De Mogran’s law. In a similar manner we see that

xeN4

e~[(vieD(re4d)]
e@ielred)
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S@ieD(xe d)
Hence (QA,) = ng

This is another generalised De Morgan’s law.

4.5 Examples :

4.5.1. Let A = {1,2,3,4}, B= {3,456}, D= {157}, E= {57}, F={2,4,6}
be subsets of a universal set 8 = {1,2,3,4,5,6,7,8}. Find

i) A-B ii)B-A iii)4 AB iv) D-EV)E-Dvi)DAE vii)) D A F viii) (4-F)
ix) (BAD) x)AA(BAF)

Solution :
1) A-B = The set consists of elements in A which do not belong to B = {1,2,}
i) B-A = {56} i) AAB=(4-Byu(B-A4)={1,2,56}
iv) D-E = {1} vy E-D=4¢
viy DAE=(D-EYu(E-D)y={l}uo={1}
vil) D A F = the set consists of elements in D or in F but not in both D and F

={1,2,3,4,56,7}
viii) A-F = {1,3} A(A-F)={2,4,56,7,8
ix) BDD=(34617} - (BAD)=12,58
x) A={1234} BDF={352 .. AA(BAF)={145}

4.5.2, For any three subsets A, B, C of a universal set S prove that
) A-ONB-C)=AnB)y-C
i) (A-ByuB=AleBcA
) A-B=A-(AnB)y=(AuB)-B
iv) (AAB=AAC)= B=C
v) AN{BACQ)=(ANBAANC)
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Solutions :
) (A=C)N(B-Cy=(ANCYA(BNC)
=(ANC)N(CB) (by commutative law} = {(4~C)NCYN B
(by associative law)

={AN(CNC)}B (by associative law)

=(4NC)B (- CnC=0C)

=4An(BNC) (by commutative law) = (4~ B)~C (by associative law)
=AnB-C Proved.

i) (4-B)UB=(4NB)UB

=(AUB)N (E w B) (by distributive law) = (40U B) S (by inverse law)
=4 u B (by identity law)

L {A-ByuB=4uUB

Thus [(A-ByuB=A]l = [(AwB)=A4]

Hence we have to prove [(AuB)=Alo Bc A

Now if [(4 W B)=A4] then Bc A wB=4 = B c A4 Proved.
Conversely if B Athen A uwB=4 Proved

i) 4-(4NB)=AN(ANB)

= An(AuB) (by De Morgan’s law)

= (AN A)yu(4u B) (by distributive law)
=0U(ANB) (v AnA=¢)

— A4~ B (byidentity law) = 4 - B Proved.

Again in a similar manner we have
(AUB)-B=(AUB)NB=(ANB)YU(BNB)=(ANBYU¢=A—-B Proved.
" A-B=A-(AnB)=(AUB)-B
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iv) Weknowthat A AAd=¢ and 4 Ap=4
Thus B=B A ¢
=BA(AAA) (+AAA=¢)
=(BAA)AA by associative law for symmetric difference
=4 A B)AA by commutative law for symmetric difference
=AAQOAA (- AAB=AAC)
=(C A A) A A by commutative law for symmetric difference
=CAAAA
=CA ¢ =C Proved

Alternative proof : Let x € B, Now two cases may arise.

Casel: xe 4
Sincex € A and x € Bhencex ¢ (4 AF)

=xe¢AAC (- AAB=AAC)
=>xe( (rxed)

Case2: xe A

Since x ¢ A and x € B hence x € (4 A B)

=>xe (AAC)=2xe C - xeAd)

Thus from all the cases we have xe B=>xe C .. Bc(

In a similar argument we can show that C < B. Hence B = C
v) LHS. =4 N (BACQ)

= AN{{B-Cyu(C - B)}

=An{BAC)UBNC)}

= {ANBACRU{AN(BANC) by distributive law
=(ANBNC)U(ANBAC) by associative law

Again RH.S. =(AnB)A(ANC)
={(ANB)—(AnCV{ANC) - (AN B)}

= {(ANB) NANCH VHANB)N(ANC)}

={(ANB) A{ANOVUH{AVB)N(ANC)} by De Morgan’s law
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= [HANBY N A U{ANB)NCHU[{(AUB) A} ~C] by distributive and
associative laws

=pU(ANBNC)U[{(AN AU (B A)}nC] by distributive law
=(ANBNC)U[fd (AN B} NC]
=(ANBNAC)U(ANBNC)
Hence A (BAC)=(4nB)AANC)
4.5.3. Let A, B, C be subsets of a universal set .S such that AAB = C, Prove that
() A=BAC (i) An(BUC)= A
Solution :
(1) BAC =BA(AAB)y (. AAB=C)
= BA(BA A) (by commutative property)
=(BAB)AA (by associative property)
=0AA (- BAB=0)
=4 (:QAA=A)
(i) An(BUCO)
=(AnBYyu(AnC) (by distributive law)
=(AnB)U{4N(4AB)} (- AAB=C given)
Now AN (4AAB)
= Am{(A mE)u(ZmB)}
= {Am(AmE)}u{Am(ZmB)} by distributive law
={(A mA)mF}u{(A mZ)mB} by associative law
=(AnB)u(0nB) (v AnAd=9)=(4nB)uo=4nB
Hence AN(BUC)=(AnB)U(ANB)

=An(BUB) by distributive law
=4nS (+BUB=S)

=4

Hence AN (BWC)= A Proved.
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4.5.4. Let R be the universal set. Consider the following family F of sets
indexed by N as follows :

F ={4 :ie N} where 4={xeR:0<x<%forallieN}

Prove that

i) 94={XGRIO<X<1} ii) C]]AT:q)

[+

iii) A=R iv) ﬁz={xeRExSO}u{xeR/x21}
1 =1

Solution :
It 1s given that

A1={xeRf’0<x<1},Ag={xeRf’0<x<%}

A"={xeRf0<x<%} efe.

1) First we shall show that for each ne N
A C A4
Forn=1, A, A is obviously true.

" =

Now for n#>1 let xeAﬂ:0<x<%

Since n>1hence%<1 .‘.0<x<%=>0<x<1

Hence x e 4

Thus 4, c A foralln e N 94 C A4

Conversely suppose x € 4 hence by the definition of union xe& QA,.
Hence 4, QQ/L

Hence l:_J]xi =4 ={xe R/0<x<1} Proved.

i) I possible let ﬁl A#¢ and let ye |°j A

By the definition of intersection we have 0< y < " for every positive integer #.

We know that Ll_lg % =0
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Thus by the definition of null sequence for any € = y (say) >0 there exists a
positive integer m such that

|%—0 <e=y forall w =2 m

This means %< y forall n =z m

This means 0<%< y forall wzm

1

Thusy ¢ A for n3m ( An={xeR/0<x<;})

. 1 e
The above result contradicts the fact that 0<y < - for every positive integer 7.

Hence f:]lA, =¢ Proved.

iil) By generalised De Morgan’s law we have

sz=(94]=$ (‘.‘QA;=¢]=R Proved.

iv) By generalised De Morgan’s law we have

N4 =(OA,]=E ( U4, =A1]=R—A,

=l i=1

={xeR/xgd} ={xe R/x<0 or x21j
={xe R/x20tuvuixe R/x=21} Proved

4.6 Exercise

— 111 _J1 11 _j1 11
4.6.1. Let A_{laiagsz}a B_{E’Z’E}’ C—{gszsg} and suppose that the
Cereis Sfp 111111
universe is S_{l’2’3’4’5’6’7}

Find (i) F—C (i) AAB (i) MAd-B) (V) (AABAC) (V) n(B)—nA)

(vi) mB-4) (vii) 4AB (vii) 4AB
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4,62, Let $ = {x € R/ 0 <x <1} is the universal set and

11 1
A, ={1,5,§, ............ } forallie N

T
Applying generalised De Morgan’s law prove that l';-;'\r Ai={xeR/0Sx<1} and
N 4; ={xeRﬁ0$xSlbmrx¢%,neN}
el
4.6,3. For any three subsets A, B, C of a universal set S prove that

i) AVB=(ANBYA(AARB)

MN(AAB=C) CAA=B8

m A-BuB-QOYuw{C-A)=(AuBULU)-(AnNnBN(O

w)A=B & AAB=4¢
4.6.4. State and prove generalised De Morgan’s laws.

4.6.5. Let A, B, C be any three subsets of a universal set S. Prove the following
set-theoretic statements if you find them correct or else give counter
examples.

() (4-By=(B-4)

(i) (A — B) = n{A) — n(B), #n(A) being the cardinality of the set A,
(i) A-C=B-C)esd4ulC=Bu()

(ivy A-B)-C=4-Bul)

VWA-(A-B=4NnB

(vil)(AUB) -A=A4-B

(i) 4-O)-B-O=Ad-B)-C

4,77 Answer to the exercise 4.6

4.61.i) B C={1,%,%,%,%}
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. 11
11) AAB—{1,3,6}
iy A - B) =2

o {14

| —

v) n(B) - n(d) = - 1
vi) mB —A) =1

4.6.5. All are correct except (i) and (vi), for counter example take S = {1,2,3,4,5},
A={1,23} B={234}

4.8 Summary

In this unit we have discussed about the difference and symmetric difference of
two sets. We know that in set theory ‘or’ represents the union of two sets when used
in an inclusive sense. On the otherhand in set theory, if ‘or’ is used in an exclusive
sense then the symmetric difference of two sets can be obtained. Moreover we have
seen that the difference between two sets i1s not symmetric but the symmetric difference
between two sets 1s always symmetric.
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5.0 Objectives

After going through this unit the learner should be able to:

e Understand the term ‘binary relation’ between two nonempty sets.
e Perform composition of relations.

e Learn various kinds of relations.
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5.1 Introduction

In this unit we are going to define relations formally, first binary relation then in
general n-ary relation. A relation in everyday life shows an association of objects of
a set with objects of other set (or the same set) such as 5 is a divisor of 20, Ais a
subset of B, 11 is less than 15, Rita has a Maruti car etc. The essence of relation is
these associations. In certain sense these relations consider the existence or
nonexistence of a certain connection between pair of objects taken in a definite order.
We define a relation in terms of these order pairs.

5.2 Product set, Binary relation

5.2.1 Cartesian product, binary relation, terminolgies :

We know that if A and B are two nonempty sets then the set of all ordered pairs
(a, b) where ae 4 and b < B is known as the cartesian product of two sets A and B

and is denoted by A x B. A binary relation p from a set A into a set B is a subset
of A x B. Thus any subset p of the cartesian product AxB is a relation from A into

B. If the order pair (a,b)<p then we say that a is related to b and denoted it by apb.
On the other hand if (4,b)¢p then we say that a is not related to » and we denote

it as apb or apb . Sometimes p may be a relation from a set A to itself1e. pc Ax 4

and then we speak of relation on A. Thus a binary relation p on a set A is a rule that
associates some or all elements of A with some or all elements of itself

For example let 4={1,23}, B={l,mn}and p={(,m), (2,n)} clearly
pc AxB. Hence it i1s a relation. We observe that 1pm but 3pn. Again if we
define a relation R as, for abed if and only if ¢ + b is even then
R={(L1),(1,3)(2,2),(3.1),(3.3)}

Here R is a relation on the set A

We also observe that 1 R 3 but 1R2.

It is to be noted that for a set A, since any subset of AxA is defined to be a
relation on A hence AxA itself and the null set ¢ itself to be relations on A. They
are called the universal relation and the empty relation respectively.

Let p be a relation from a set A to a set B. Then the domain of p, denoted by
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D(p) and is defined as D(p)={a:ae A and there exists h € B such that (a,b) € p}
Again the image of p, denoted by Im(p) and is denoted as

Im(p) = {b :b € Band there exists a € 4 such that (a,b) e p}

Again the codomain of p is the whole set B. Thus range of p £ codomain of p.
Let p be any relation from a set A to a set B. the inverse of the relation p denoted

by p! is a relation from the set B to the set A and is defined by p™ ={(b,a): (a,b) ep}
For example the inverse of the relation p={(1,m),(2,n)} from A={1, 2, 3} to
B ={l, m, n} is a relation p~' ={(m,1),(n,2)} from the set B to the set A.

Clearly for any relation p, (p_l)_1 =p.

Also the domain and range of p' are equal to the range and domain of p
respectively.

5.2.2 Representations of relations :
A relation is represented either by Roster method or by set-builder method.

Consider an example of two sets A =1{1,2,3,4,9} and B={0,1,2,-1,-3}
Let the relation p from A to B is such that a p b holds if and only if
acAand be B and a=b*

In set-builder from we write p = {(a,b) :a€ A and b e B such that a = bz}

In roster form we write p={(1,1), (1,-1), (4,2), (9,-3)}

We can also represent the above relations pictorially by arrow diagram as

follows :
A B

)y
M

We can also represent the above relation by a rectangular array whose rows are
lebeled by the elements of A and whose columns are lebeled by the elements of B.
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We put 1 or 0 in each position of the arry according as for ae 4 and be B,
a p b holds or a p # does not hold respectively. This array is called the matrix array
of the relation.

Thus the matrix array of the above relation i1s as follows :

-1 -3

H

o R T
o O O O O|©
[== R e B B = N o
o = O D O
o O O O -
- o O O O

Again if we consider a relation p on the set of real numbers R then as

p S RxR=R? and as R* can be represented by the set of points in a plane hence we

can draw the picture of p by plotting those points in the plane which belong to p.
This pictorial representation is sometimes called the graph of the relation.

5.3 Composition of relations

Let p be a relation from a set A into a set B and & be relation from B into C.

Then composite relation (G, p) is the relation from A to C defined by
op={(a,c):ac A, ceC and there exists some element b< B such that
{a,byep and (b,c)e o}

Thus D(G,p) is a subset of D(p) and Im(c,p) is subset of Im(c). Also (G,p)
is a subset of 4 x C.

By our definition a(G,p)c holds if there exists some b B such that a p b and
bocfor aed ceC.

As for example if 4 = {1,2,3}, B = {5,10,15,20}, C = {p,q,r,s} and p is defined by
p={(1,5.(1,20).(2.10).3,10),(4,20)}

and ¢ is defined by

6 ={(59).(57),(10, p).(15,5),(20,r)}
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then 6,p ={(1,9),(1,7),(2,p),(3,p).(4,1)}

p~' ={(5,1),(20,0),(10,2),(10,3),(20,4)}

Po P =1{(1L1).(2,2),(2,3),(3,2),3,3),(4,1),(4.,9)}
p.p~ ={(5.5),(5,20),(20,5),(20,20),(10,10)}
Thus in general p;'p=p,p™.

The above results can be pictorially explained as follows :
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5.4 Types of relations

Let A be a nonempty set and p be a relation on A. Then p is called
(1) reflexive if for all ae 4, a p a holds.
(i1) symmetric if for a,he A, whenever a p b holds, b p a must hold.

(ii1) transitive, if for abce 4, whenever ¢ p » and » p ¢ hold,

a p ¢ must hold.

Thus a relation p is not reflexive if there exists @€ 4 such that (a,a)ep ie,
a p a does not hold. Similarly a relation p is not symmetric if there exist a,be 4
such that (a,b)ep but (h,a)ep. Also a relation is not transitive if there exist
a,b,ce A such that (a,b)ep and (h,c)ep but (a,c) p.

We have already learnt in 5.1.1 that a relation p on set A is called void relation
or empty relation if no element of set A is related to any element of A. Again a
relation p on set A is called universal relation if every element of the set A is related
to every element of the set A.

For example let us consider four relations p,,p..p,.p, defined on the set Z where
apbeoabeZandash

ap,beabeZandabz0

ap,be=abeZ and a — b is divisible by 3

ap,be=abeZand ab >0

We observe that p, 1s reflexive since a<aVaeZ

Again p is transitive since a<b and b<c=a<c forabceZ

But p, is not symmetric since for a,beZ, a<b does not necessarily implies

b<a
Again we see that p, is reflexive, symmetric but not transitive. Because

5p,0and Op, — 7 hold (~+5.0=0 and 0.(-7) 20)
but 5 p(~7) does not hold (- 5.(-7)=-35<0)

This means for a,b,c € Z, ab = 0 and bc 2 0, does not necessarily implies ac =20
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It can be verified that p, is reflexive, symmetric and transitive as follows :

p, is reflexive since for any ae Z, a—a is divisible by 3.

p, is symmetric since for a,be Z if (a,b)ep, = a—>b is divisible by 3

= b—a is divisible also by 3

p, is transitive, since for a,b,ce Z if a — b is divisible by 3 and & — ¢ is divisible
by 3 then (a — b)+(b—¢c) = a — ¢ is also divisible by 3.

In a similar manner it can be shown that p,is symmetric, transitive but not reflexive.
5.4.1 Equivalence relation

A relation p on a set A 1s called an equivalence relation if it is reflexive,
symmetric and transitive.

We have seen in article 5.3 that the relation p, defined on the set Z by

“a p, b if and only if @ — b is divisible by 3" for a,beZ is an equivalence
relation.

It is very simple to observe that the relation p defined on R (the set of real
numbers) by ““a p b if and only if a = b a,b€ R is also an equivalence relation.
But p, and p, as defined in article 5.3 are not equivalence relations.

5.5 Partition

Let A be a nonempty set and P be collection of nonempty subsets of A that is

P={4,:iel}, I being the index set and 4, < 4. Now P is called a partition of
A4 if

- A=4

i U

(i) 4nA,=¢fori,jelandi#j

The Venn diagram of partition of a set A into four nonempty subsets
A, A, A, A, (say) can be defined as follows :

[~
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For example let A, B, C be three subsets of N defined by
A={3n-neN}={36912, .}
B={31-2.neN}=1{,4,710..}

and C={3n-1:neN}={2,5811,...]}

Clearly A, B, C are such that each is nonempty

and AUBUC=Nand AnB=BnC=CnAd=¢
Thus the subsets 4, B, € form a partition of the set .

3.6 Relation of congruence

Let m be a positive integer. For integers a, » 1.e. abe Z we say that a is

congruent to b modulo m and write g=5 (mod m) provided a — b is divisible by m.

Equivalently ¢ =5 (mod m) holds if and only a,h< Z and a — b is of the form
of a — b = k m for some integer keZ.

Now we shall prove that the relation of congruence modulo m is an equivalence
relation on Z.

Proof :
For any ae Z, a — a is divisible by m hence a=a (mod m) for any aeZ.
Thus the relation of congruence (mod m) is reflexive.
Again for a,be Z if a=b (mod m) holds then a — & is divisible by » and hence
b — a is also divisible by m. Hence the relation of congruence (mod #7) is symmetric.

Finally for any a,b,ce Z if a=b (mod m) and b=c (mod m) then as a — b and
b — c 15 divisible by m hence (a — )+ (b—c¢) 1e. a — ¢ 15 also divisible by m.

Hence the relation of congruence {mod m) is transitive.

Hence the relation of congruence {mod m) on the set Z is an equivalence relation,

3.7 Equivalence class

Let p be an equivalence relation on a set S.

For each element a e S, lef [a] or cl(a) defined as [a] or ca) = { xeS.xp a}
This set [a] or cl(a) is called the p-equivalence class of ¢ in §.
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Thus cla) or [a] is the set of those elements x of § such that x p ¢ holds.

[

For example consider the relation p defined on Z by *“ apb if and only if

a — b is divisible by 37 for a,b € Z . We have seen earlier that it is an an equivalence
relation of congruence (mod 3).

Now cl(0) or [0]={xe Z : xp0}
={xeZ:x-0is divisible by 3} ={0,+3,£6,...}
cl(dy={xeZ: xp 4}

={xe Z:x-4is divisible by 3}

={...,=5-214710.._}

cl(l)={xe Z:xp 1}

={xe Z:x~-1is divisible by 3}

={1,1£3,16,..... }etc

The collection of all equivalence classes of elements of a set § under an

equivalence relation p is denoted by §/p and is defined as S/p = {[a]/a es }

It is called the quotient set of .S by p.

The fundamental property of quotient set S/ p is contained in the following
theorem.

Theorem : Let p be an equivalence relation of a set S and a, »€.S. Then
(i) For each a in S, aecl(a)

(ii) cllay=cl(b) = (g,b)ep

(iii) If @ p b does not hold then c/(a) and c/(b) are disjoint.

(iv) Two classes cl(a) and c/(b) are either disjoint or equal.

{v) The quotient set S/ p is a partition of S.

(vi) Each partition of § yields an equivalence relation.
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(1) Since p is an equivalence relation, hence p is reflexive and hence for

(it)

(iii)

anyae S, apa holds. Thus a e clia)

Let cl{a)=cl(h) and let x ecl(a) .. x e cl(b)
Since x e cl(a) hence xpa holds.

Again since x € cl(b) hence xpb hods.

Nowxpaandxp b
=apxandxpb (- p i1s symmetric)
= apb (- pistransitive)
~cllay=clhy=aph

Conversely let a p b and let x e cl{a)
. x p aholds. Hence x p aand a p b
= x p b (.p 1s transitive)

= xeclb)

Thus if ap b and x € cl(a) = x e ci(b)
Thus if a p & then cl(a) < cl(b)

Similarly it can also be shown that if @ p b and x € cl(b) = x e cl{a)

= cl(h) c cl(a)

Hence ap b = cl(a) < cl(b) and cl(b) < cl(a)
Thus it follows that a p b = cl(a) = cl(b)
Hence clla)y=cl(b) = aph

It is given that a p b does not hold.

We have to prove that cl{a)ncl(b)=¢.

If possible let cl(a)cl(h) ¢ and thus let x ecli@yncl(b)

SLxpaandxpbd
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(iv)

(v)

(vi)
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= ap xand x pb (" pissymmetric)
= ap b (- pistransitive)
This 1s a contradiction. Hence cl(a)nclb)=0¢

Since a, b € §two cases my arise, either & p b holds or ¢ p b does not hold.
Now if @ p & hold then by the proof of part (ii) we have cl(a) = c/(b)
Again if @ p b does not hold then by the proof of part (iii) we have
cllaynclib)=¢

Thus either cl(a)=cl{b) or cllayclb)=0¢

We know that the quotient set S/p 1s the family of distinct p-equivalence
class. Again we have already proved that for any a,be § the p-equivalence
class cl(a), cl(b) are either disjoint or equal. Thus in the quotient set S/p,

{a) each class in S/p 15 nonempty (since for any cl{a)e S/p, a < cl(a))

(b) the union of family of classes is the set S that is | ) c/@)=S and

asSip

(c) the classes are pairwise distinct.

Therefore the family of distinct p-equivalence classes that is the quotient set
Sp is a partition of §.

Let there be a partition P of the set § into subsets.

Let us define a relation p on the set § as follows :

“a p b holds if and only if a and b belong to one and the same subset of
the partition P*” for a,be S.

Now for any ae §, @ p a holds since a and a belong to one and the same

subset of the parition P. Therefore p is reflexive.

Again let @, .S, such that @ p b holds. Then @ and b belong to one and

the same subset of the same subset of the partition P and therefore b and a
belong to the same subset of the partition P. Therefore b p a holds.

Thus ap b= b pa. Hence p is symmetric.

Again let a,b,ceSandap b, bp c bothbold.
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Then a and & belong to one and the same subset S(say) of Pie § e P
Also b and ¢ belong to one and the same subset S,(say)of Pie. S, e P.
Thus be S, andbe S, hence be § NS, Thus §NS, = ¢.

Again since P is a partition and §,, 5, € P hence S, and 5, must be either
disjoint or equal.

Again since 5, NS, #¢ hence §, = §,. Thus a and ¢ belong to one and the
same subset §,(=S5,). Therefore p is transitive.

Thus p is an equivalence relation. This completes the proof

Let us verify the above theorem with some examples.

Let us consider the relation p of congruence {(mod 3) defined on Z.

We have seen that this relation p is an equivalence relation. Now we observe
that
cl(0)={0,43,26,....}={3n/ne Z} =cl(3) = cl(-3) = cl(6) = cl(-6) etc.
cl()={1+0,1£3,1%6,.. ... }={3n+1/neZ}=cl(4)=cl(-2) = cl(7) = cl(-5) etc.

cl(2)={2+0,2£3,2%6,....... }={3n+2/ne Z}=cl(5) = cl(=1) = cl(8) = cl(-4) etc.

Thus there are three distinct p-equivalence classes and any two classes are either
disjoint or equal. Thus the quotient set Z/ p={c!(0),c:’(1),c:’(2)} is a partition of Z

consists of three distinct p-equivalence classes.
Thus the results of the given theorem is verified.

More over consider the partition P = {E, O} of Z where £ is the set of even
integers and O is the set of odd integers then this partition yields the equivalence
relation as follows :

“a p b holds if and only if @ — b is divisible by 2”’ for a,be Z.

Hence for every partition of a set we can yield an equivalence relation,
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5.8 Antisymmetric relation

We know that a relation p on a nonempty set S 1s symmetric if apb=bpa
for @, b §. Thus p is not symmetric if there exists a, b€ .S such that (a,h)ep but

(b,a)2p  We now discuss an another kind of relation known as antisymmetric
relation.

A relation p on a nonempty set S is said to be antisymmetric if for a,be §,
whenever both apb and bpa hold then @ = 5. This means whenever {(a,5), (b,a)ep
then @ = 4. Thus p 1s not antysymmetric if there exists b€ .S such that (¢, b) and
(ba)epbuta=b.

For example consider the two relations p, and p, on the set S={1,2,3} where
p={0.1,0,2),.2 D}, p. ={0.3).2.1)}

Now p, is not antisymmetric since (1,2)ep,, 2,)ep butl=2.

Again p, is antisymmetric since we cannot find any a,h€S such that both
apbandbpa hold

Again let us consider the relation p, defined on the set Z as follows :
“a p, b hold if and only if a<b” forabe Z

By our discussion it is clear that if p, and p, are empty relation and universal
relations respectively on a set § = {1,2,3} then p, is antisymmetric but p, is not
antisymmetric.

5.9 Partial ordering relation

Now we define an another important class of relations known as partial order
relation. A relation p on a nonempty set S is said to be partial ordering or partial
order of § if p 1s reflexive, antisymmetric and transitive. A partial order relation is
often denoted by ‘<’ even if it is not “‘less than or equal to’.

A nonempty set S together with a relation of partial order defined on § is called
a partial order set or poset.

For example let S be any nonempty set and P(S) be the power set of §.
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Now for any two subsets 4, B of § that is for any A4, Be P(S) either
Ac BordazB.

Hence ‘<’ (of being subset) defines a relation of P(S).

E

Since for any A< P(S), A< A hence the relation ‘<’ is reflexive.

Again for any A,Be P(S)if Ac B and B < A then by the definition of equality
of sets A = B. Thus the relation ‘<’ is antisymmetric.

Again for any A4,B,C e P(S)if A< B and B C then 4 c Chence the relation
‘<’ 1s transitive. Consequently the relation ‘<’ (where 4 — B means 4 is a subset

of B) is a partial order relation on P(S5) and so (P(S),(;) is a poset.

Let us consider an another example. It can be proved that (¥, p) is a poset where
N 15 the set of natural numbers and m p # means “‘m is a divisor of #”” for mne N,
that is p={(m,n)e N XN :m is a divisor of n}.

Now the relation p i1s antisymmetric. Because if @ p & and b p « holds for some
a,b e Nthen as a is a divisor of » hence & can be expressed as # = la where Je N

and as b is a divisor of a hence a can be expressed as a = pb where pe N
b=la=lpb =lp=1=I=landp=1(since/, pe Ny = a=>b

Hence p is antisymmetric. In a similar manner we can also prove that p is
reflexive and transitive.

Hence p is a partial order relation on N.

In a similar manner one can also easily verify that (R, <) is a poset where R is

the set of real numbers and x <y means “‘x is less than or equal to " for x, ye R

5.10 n-ary relation

All the relations discussed in the previous articles were binary relations. In binary
relation we derived a relation from ordered pair of elements. Instead if one defines
a relation of the ordered n-tuple then one may talk about »n-ary relation.

For example let us consider two sets 4, of students and A4, of subjects as follows

4, = {Amal, Bimal, Chhanda}
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A, = {Physics, Mathematics, Computer Science}

Let us consider a relation p involving the roles of the students of 4, that might
play with two subjects of 4, which can be expressed as a statement of the form :

p: ““A student xe 4 thinks that a subject y € A, is more interesting than a
subject ze 4,”

Also we assume that the above statement is true for the following values of x,y,z
in tabular form

Statement (x) Subject () Subject (2)
Amal Physics Mathematics
Amal Mathematics Computer Science
Bimal Mathematics Physics

Chhanda Computer Science Mathematics
Chhanda Mathematics Physics

Each row of the table records a fact that “‘x thinks that y is more interesting
than z7’.

For instance from the first row we have an information that ““Amal thinks that
Physics is more interesting than Mathematics’’.
Thus the table represents the relation p among a student x € 4, a subject y € 4,

and subject ze 4,. Thus the data of the table are equivalent to the following set
ordered trip-lets.
p = {(Amal, Physics, Mathematics), (Amal, Mathematics, Computer Science),

{Bimal, Mathematicds, Physics), {(Chhanda, Computer Science, Mathematics),
{Chhanda, Mathematics, Physics)}

The relation p is a ternary relation since there are three items involve in each
row. Obviously this relation is a subset of the cartesian product 4 x4, x4,

By generalising this concept, we can define ordered # tuple, cartesian product of
n sets and rm-ary relation.

An ordered » tuple is a set of # objects with an ordered associated with them.

If 1 objects are represented by x,, x, ... x then we write the ordered » tuple as
(o, X, o x ). Let us con51der n sets A, A, . A . Then the set of all ordered
n-tuples (@, a,......... a ) where a,€ 4, 1<i<n is callecl the cartesian product of

sets A, A, ... A and is denoted by A x A, > ... x A,
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Let us now define an n-ary relation as follows :

An n-ary relation on sets 4, A,....... 4 is a set of ordered n-tuples (a, «,
@) where a, € A foralli=12. . »n

Thus n-ary relation on sets 4, A,........ 4 is a subset of cartesian product
AX A X x A

In particular if A =A4,=.......... = A = A (say) then for a set A, an n-ary relation
is a subset of the cartesian product 4 x 4 x ... x A or A",

Now if we take 7 = 3 then a subset of 4° is called a ternary relation on A.

For example let 4, 4,, A, be the set of names, addresses and mobile numbers
as follows :

A, = {Amal, Bina, Osman;}
A, = {25 Ghoshpara Street, 51 Central Avenue, 10 Mahatma Gandhi Road}
A, = {9547212379, 8237178234, 8723456213}

Then the set of 3-tuples {(Amal, 51 Central Avenue, 9547212379), (Osman, 25
Ghoshpara Street, 8723456213)} is a 3-ary relation over A, A, and A,, since the
above set is the subset of the cartesian product 4, < 4,x A,

For an another example consider the subset

p=1{(a,a, ... ayeZ' a,a,,. ... a, arein AP} of theset Z".
This p is an n-ary relation on Z (the set of integers).

Clearly (1,3,5,......... .2n-1) epbut (1°,27,3%,...... n)ep

5.11 Examples

5.11.1 Choose the correct option

(1) Let A and B be two sets such that #(A) = m and #(B) = p. Then the total
number of nonempty relations that can be defined from A to B is—

(a) m* (b) p™1 {c)y mp — 1 (d) 2™-1
(i1) Let R be a relation on N defined by x + 2y = 8.
The domain of R is (a) {2,4,8} (b) {2,4,6,8} (¢) {2,4,6} (d) {1,2,3,4}
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(iii) Let R be the relation from 4 = {2,3,4,5} to B = {3,6,7,10} defined by “‘x
divides y”’, for xe Aand y € B. Then R is equal to
(a) {(6,2), (3,3)}, (b) {(6,2), (10,2}, (3,3), (6,3), (10,5)}
{c) {{(6,2), (10,2}, (3,3), (6,3)} (d) none of the these
Solution
(i) Given w(Ay=m, {By=p ..(AxBy=mp
Total no. of relations from A to B = 2%

Total no. of nonempty relations from A to B = 2"#' Therefore the correct
option is (d)

(ii) Given R={(x,y):x+2y=8,x,yeN}

8—x
2

Now x+2y=8= y=

S R={(2,3),(4,2),(6,1)}
.. Domain of R = {2,4,6}. Therefore the correct option is {(c)
(iii) Given 4 = {2,3,4,5}, B = {3,6,7,10}
R={(x,y) x dividesy, xe 4, y € B} ={(2,6),(2,10),(3,3),(3,6),(5,10)}
S R =1(6,2),(10,2),(3,3),(6,3), (10,5)
Hence the correct option is (b).

5.11.2 Prove that the inverse of an equivalence relation is an equivalence
relation,

Solution
Let p be an equivalence relation on a set S. Then p is reflexive, symmetric and
transitive.

(i) Since p 1s reflexive hence (a,a)ep, Vaes.
Thus (a,a)ep™ VYae S Hence p is reflexive.
(ii) Let (a,b)ep™ for some a,be S
S(b,ayep = (a,b)yep (- pis symmetric)
= ba)ep”

Thus (a,h)ep™ = (b,a)ep”’. Hence p™'is symmetric.
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(ii1) Let for some a,b,ce S, (a,h)ep™ and (b,c)ep™
Then (b,ayep and (c,b)ep.
Since (¢,b)ep and (b,a)<p and p is transitive hence (c,a)ep = (a,c) ep™
Thus (a,b)cp™ and (b,c)ep™ =(a,c)ep”

Therefore p~'is transitive.
Hence p'is also an equivalence relation.

5.11.3 Let p be relation on a set 4. Prove that p is transitive if and only if ppCp.
Solution

Let p be the transitive. We shall prove that p,p<p.

Let (a,c)ep,p. This means there exists some be A such that (a,h)ep and
(bcyep

Since p is transitive and (a, b), (b, c)ep hence (a,c)ep
Thus (aac)e pOp = (aac)e p =}pupgp

Conversely let p,p <P
Let for some a,b,c, (a,b)<p and (b,c)ep
Then since p,p Cp hence (a,c)ep

Thus (a,b)ep and (b,c)ep = {(a,c)ep
Hence p is transitive.
This completes the proof.

5.11.4 For each of the following relations on 4 = {1,2,3} decide whether or not each
of the following relation on A is reflexive, symmetric, antisymmetric or transitive.
Also identify the equivalence relations.

(@) p = {(1,3), G,1);
(i) p = {(1,1)}
(i) p = {(1,2), (1,3)}



NSOU « SE-MT-11 99

(iv) p = {(1,1), (2,2), (3,3), (2,3}, (3,2)}
v) p=1{(1.1), 2.2), 3,3), (2,3)}
(vi) p = ¢ (empty relation)

(vii) p = A x A (universal relation)

Solution
(i) Since (L,1)¢p, p is not reflexive
p 1s symmetric since whenever (a,h)ep we also have (ha)ep.
p 18 not antisymmetric since (1,3)epand (3,1)cp but 1=3
p is not transtive since (1,3)epand 3,)epbut (L,)ep

(i) Here p is not reflexive since (2,2)¢p
p is not symmetric whenever {a,b)ep we also have (ba)ep
By a similar argument it can be shown that (b,¢) €p is antisymmetric and
transitive.
{iii) p 15 not reflexive since (1,1)&p
p 18 not symmetric since (1,2)ep but 2, &p
p is transitive as there do not exist any two pair of the form {a,b), (b,c) in p

p is antisymmetric as there do not exist any two pair of the form (a,4) and
(b,a) in p

(iv) It is easy to verify that p is reflexive symmetric and transitive but not
antisymmetric (Since (2,3), (3,2)epbut2#3). Since p is reflexive
symmetric and transitive, hence it 1s an equivalence relation.

(v) Clearly p is reflexive, transitive and antisymmetric but it is not symmetric
since (2,3)epbut(3,2)ep.

(vi) The empty relation ¢ is not reflexive since (1,1) & p(= ¢}

p is symmetric, antisymmetric and transitive as there is no element {(a,5) in p.

(vi) p = AxA 1s obviously reflexive, symmetic and transitive but it is not

antisymmetric since (1,2)ep and (2,1)ep but 1£2. Since p is reflexive
symmetric and transitive, hence it 1s an equivalence relation.
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5.11.5 Let R and S be two relation on 4 = {1,2,3} where
R={(1,2),(1,3),(2,1)3,3)} and § ={(1,1),(1,2),(2,3),(3,1),(3,3)}
Find (i) RS (i) RS (i) § (iv) RoS (v) R°= RoR
Solution
Here R = {(1,2), (1.3), (2,1), (3,3)} and 5={(1,1), (1.2), (2,3), (3.1), (3.3)}
Also R and § are subsets of universal set 4xA4.
(1) RS = the usual intersection of two sets R and 5 = {(1,2), (3,3)}

(i) RuS = the usual union of two sets R and S = {(1,1), (1,2), (1,3), (2,1),
(2,3), 3, 1), (3,3)}

(ili) S = the usual complement of S =A4xA4-S5={(13),(2,1),(2,2),(3,2)}
(iv) We know that RoS={(a,c).acd,ceA and there exists some element
be A such that (a,h)e S and (b,c)e R}

Thus as (1,1)e.S and (1,2), (1,3) € R hence (1,2).(1,3)€ Ro §
Similarly since (1,2)e .5 and(2,1)eR hence (1,1)e Ro.S
Also since (2,3)e § and (3,3)e R hence (2,3)e RS
Similarly since (3,1)e .5 and (1,2), (1,3) € R hence (3,2),(3,3)e R0 §
Again as (3,3)e S and (3,3)e R hence (3,3)e Ro S
Therefore RoS=1{(1,2),1,3),(1,1),(2,3),(3,2),(3.,3)}

{v) Following the arguments in (iv) RoR= {(l, 1),(1,3),(2,2),(2,3),(3, 3)}

5.11.6 Examine if the relation p on the set § i1s—(1) reflexive (1) symmetric
(i) antisymmetric (iv) transitive. Also identify the equivalence relations.

(a) § = Z and p is defined on Z by ““a p b if and only if 2a + 35 is divisible by
57 for abeZ

(b S =N x N and p is defined on N x N by “(a, b) p (¢, d) if and only if
ad{b+c)y=bcla+d)’ for (a,b),(c,d)e NxN
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(c) § = Zand p is defined on Zby “‘ap bifand only ifa— b <-4 for a,be Z
(d) S 15 the set of all straight lines in a plane and p is defined by
“Ipm if and only if / is perpendicular to m”” for [, meS.
Solution
(a) (i) p is reflexive since for any a <€ Z, apb holds that is 2a + 3a is divisible
by 5.

(1) If for some a,be Z apb holds that is 2a + 3b is divisible by 5 then
S(a+b)y—(2a+ 3b) or 3a + 2b is also divisible by 5. This means
apb = bpa. Hence p is symmetric.

(ii1) (1,6)ep since 2.1+3.6=20 is divisible by 5. Also (6,1)ep since
2.6+3.1=15 is also divisible by 5.

Thus (1,6) and (6,1)epbut 1£6 hence p is not antisymmetric.

(iv) If for some a,b,ce Z, apb and bpc hold then (2a + 3b) and (24 + 3¢)
is divisible by 5. Thus (2a + 3b) + (2b + 3¢) = (2a + 3¢) + 5b is divisible
by 5. Hence 2a + 3¢ 1s divisible by 5. (.- 55 is divisible by 5)

Thus for a,b,ce Z, apb and bpc = apc. Thus p is transitive.
Since p is reflexive symmetric and transitive, hence it is an equivalence

relation.
(b) Given {(a,b)p(c,d) = ad(b+c)=bcla+d) for (a,b),{c,d)e NXN
This means (a,6)p(c,d) ‘:%%:%% for (@, b).(c.d)e NxN since

abed# 0
(i) For any (a,b)e NxN

{a,b)p{a,b) holds since %+%=$+%. Hence p is reflexive.
(i) If for some (a.b),(c,dye NxN

1 1_1 1
(a,b)p(c,d) holds then Fre= Lt =

L
d d
holds.
Hence p is symmetric.
(iii)) Weseethat fora=2 b=2,¢c=3,d=3

{a,b),(c,d) e N x N such that both (a,b)p{c,d) and (c,d)p(a,b) hold

e Lyl 1.1
smceb+c—a+d)

But (a,b)#(c,d)ie (2,2) #(3,3) hence p is not antisymmetric,

1_1,1
+5— - + 5 = (¢, d)pla,b)
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(iv) If for some (a,b), (c,d), (e, fl e NXN
such that (a,b)p{c,d) and (c,d)p (e, f) hold them

1,1 1,1, g1 1 1,1
b+c_a+dandd+e c+f
1,11, 11, 1,1 1,1 1.1
= tetd T T Tt S5tes gty —@heer)
holds.

Hence p is transitive. Since p is reflexive symmetric and transitive,
hence it is an equivalence relation.

(c) Given that apb o a-b<4dforabe”

(i) For any aeZ, a-a=0<4 = apa - p is reflexive.
{11) We observe that 1 p 6 holds since 1 — 6 < 4 where 1,6 Z.
But 6 p 1 does not hold since 6—1¢ 4. Hence p is not symmetric.

(iii) We observe that 2p3 and 3 p 2 hold since 2 -3 <4 and 3 -2 < 4
where 2,3 Z

But 2#3. Hence p is not antisymmetric.
(iv) We observe that 6 p 3 and 3 p | hold since 6 - 3 <4 and 3 — 1 <4 where
31e Z

But 6 p 1 does not hold since 6—1¢ 4. Hence p is not transitive.

(d) Given that S is the set of all lines in a plane and /pm </ is perpendicular

tomfor ImeS.
(i) p is not reflexive since for any line / € S, / is not perpendicular to itself
(i1)) For any /,me S, { is perpendicular to m = m 1is perpendicular to /
~Ipm=mpl Hence p is symmetric,

(1i1)) We know that two lines in a plane will be perpendicular only if they are
different.

Hence /pm and mp! does not imply / = m. Hence p is not antisymmetric.

(iv) Forany I mne S, Ipm and mprn imply that m is perpendicular to both
/ and m.

This means the straight line / and # are parallel or coincident.

Thus 7 p m and m p n does not imply /p n. Thus p is not transitive.
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5.11.7 Find the equivalence classes of p defined in the problems in 5.10.4 (iv) and
5.10.6 (a). Also find the corresponding partition of the set A and Z respec-
tively induced by the relation.

Solution :
In the problem 5.10.4 (iv), p is defined on the set 4 = {1,2.3}

and p={(11),(2.2).(3.3.02.3).3.2)}

We have already proved that p is an equivalence relation.

Now cl(l)={xe A/xpl}={1} {-1p1 holds)

cl(2y={xe A/xp2}={23}

cl3y={xe A/xp3}=1{2,3} (- 2p 2and 3 p2 holds)

. There are two distinct classes for p and these are ci(l), c/(2).
Accordingly {c/(1),cl(2)} =£{1},{2,3}} is the partition of 4 induced by p.
In the problem 5.10.6 (a), p 1s defined on the set Z as follows :
“a p bif and only if 2a + 3b is divisible by 57 for a,be Z

We have already seen that this relation is an equivalence relation.
Now cl(0)={xe Z/xp0}

={xe Z/2x+3.0 s divisible by 5}

={0,£5 £10,....... y={5nineZ}

clh)={xeZ/xpl}

={xe Z/2x+3.1is divisible by 5}

={L1x51£10,.. ... . y={5n+1/nez}

In a similar manner, cX2)={5n+2/ne Z},cl(3)={5n+3/ne Z}
cl(4)y={Sn+4/ne Z}, cl(5)=cl(0), cl(6) = cl(l) etc.

Thus there are five distinct equivalence classes for p and these are
cl(0),cl(1),cl(2),cl(3),cl(4)

Accordingly {ci(0),cl(1),cl(2),ci(3),cl(4)} is the partition of Z induced by p.
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5.11.8 Let N be the set of all positive integers. Define a relation < on Nby “g<p
if and only if a is divisor of y*° for a,b e N. Prove that (¥, <) is a partially
ordered set or poset.

Solution :

The relation < is reflexive since for any ae N, a is a divisor of . Thus a<a
holds. Again if for some a,be N, a<hand b < a hold that is the statements “‘a 13

divisor of #° and **4 is a divisor of & are true then there exist same #2,n < N such
that

b=ma and a =nb
= b=ma=mnb = mn=1
But as mne N and mrr = 1 hence m =n = 1.

So that we get @ = . Thus the relation < is antisymmetric.
Again for any a,b,ce N if a is a divisor of » and & is a divisor of ¢ then there

exist some m and # such that b = ma and ¢ = nb = c=nb=mna

Since mne N hence a 15 a divisor of ¢. Thus a<band b<c = a<c

Hence < is transitive. Therefore (N, <) is a poset.

5.12 Exercise

5.12.1 Choose the correct option
(1) Let R be a relation from A={11,12,13} to 5={8,10,12} defined by y =x -3
for xe 4, ye B. The relation R is

(a) {(11,8), (13,10)} (b) {(8,11), (10,13)} (c) {(8,11), (5,12), (10,13)}

{d) none of these
(i1) Let a relation p be defined as p = {(4,5), (1,4), (4,6), (7,6), (3,7)}. The

relation p;'p is given by

(a) {(L1), (44), (7,4), (4,7), (7,1)} (b) {(L1), (44), (4,7), (7.4), (7.7), 3,3}
{c) {(1,5), (1,6), (3,6)} (d) none of these

5.12.2 Let p be a relation on a set A. Prove that p is symmetric if and only if p~'=p.
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5.12.3 Give examples of relation R on 4 = {1,2,3} such that

(i)

(ii)

(iif)
5.12.4

5.12.5

5.12.6

5.12.7

5.12.8
(a)
()
(c)

(d)
5.12.9

R is both symmetric and antisymmetric

R is neither symmetric nor antisymmetric

R is transitive but R R™ is not transitive
For the partition P={{1}, {2,3}, {4,5}} write the corresponding equivalence
relation on the set 4=1{1,2,3,4,5).

Let R be the set of real numbers and let p,,p.P,. oo p, be eight relations

defined on R and for any a,hc R
ap,b & b=3a,ap b & a<b ,ap,b = azb
ap,b ©ab>0  ap, b © bza+l , ap, b & ash

ap,b @ abz20, ap,b o a=b

Test whether the relations are reflexive, symmetric and transitive.

Prove that a relation p defined on a set .5 is an equivalence relation if and
only if p 1s reflexive and such that a pband bpec = cpa.

A relation p is defined on Z by ““ a p b if and only if &* — 7 is divisible by
57 for a, b € Z. Prove that p is an equivalence relation on Z. Show that there
are three distinct equivalence classes for p.

Examine if the relation p on the set Z is an equivalence relation
p={{a,b)e ZxXZ ab 20}

p={{ab)eZxZ 3a+4b is divisible by 7}

p={{a,b)eZxZ |a-b|<5}

p={(a,h)e ZxZ :a’+b* is a multiple of 2}

Let S be the set of all positive divisor of 36. Define a relation

< onSby “x<y only if x divides )" for x, y € §. Prove that (§,<) is a
poset.

5.12.10 Let 5 be a finite set of three elements. How many different relations can be

defined on §? How many of these are reflexive?
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5.12.11 Let S be the set of all students in a coeducation college. Let p be a relation
defined on § by “‘a p b if and only if « is the brother of 5"’ for a,be S, Is
p an equivalence relation? Is p a partial order relation? Justify.
5.12.12 Let p be a ternary relation defined on A*> where A={xe N 1< x<20} by
“Aa,bcyep if and only if & + b2 = ¢*7" for a,b,ceA.
(1) Find the values of b,ce A such that (12, b,c)ep.
(i) Find (a,b,c)ep such that a, b, ¢ are in arithmetic progression.
(i) Is there any a,b A such that (a,b,4)sp?

(iv) Prove that 3 me 4 such that (a, 2m* + 4m, C) €p for some a,ce 4.

5.13 Answer to the exercise 5.12
5.12.1 (i) (b) (i) (b)

5.12.2 There are several possible examples, one possible set is as follows :
() R={(22),33);
(i) R=1{(2,3),(3,2),(1,3)}
(iii) R = {(2,3)}

5.12.4 The equivalence relation

2={(11),(2,2),(3,3),(4,4),(5,5),(2,3).(3,2).(4,5),(5,4)}

5.12.5 Reflexive | Symmetri¢ | Transitive
0| F F F
P, F F T
0,| F T F
P, F T T
D, T F F
Ps T F T
Pe T T F
0, T T T

T means true. F means false.
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5127 c(0)y={5n:neZ}
cl)={5nxl:neZ}
c(Qy={5nx2 . nez}
5.12.8 (a) No (b) Yes (c) No (d) Yes
5.12.10 2° 2°
5.12.11 p is neither equivalence relation nor partial order relation
5.12.12
(1) (b,c)€{(5,13),(9,15),(16,20)}

(i) (3, 4, 5)
(iii) No
(iv) m =1,a =28, ¢ =10 so that (8, 2.1° + 4.1, 10)=p

5.14 Summary

In this unit we have discussed various types of relations, reflexive, symmetric,
transitive, antysymmetric, equivalence relation etc. elaborately. Relations are in general
also a part of set thory. Relations are at its core no more than ordered pairs. Binary
relations are common when studying database design through relational calculus and
allow us to define things such an order.
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Sample Questions

Short answer type questions :

1.

LN

For each of the following decide whether it is a proposition or not and if it
is, indicate whether it 1s true or false.

(i) 16 is a prime number.
(i)x*+1>0
(iii)) Yxe R, x* 20 (R being the set of real numbers)

(iv) Do your homework.

. Let p, ¢, r denote the propositions

p : The weather is nice.
q - It is day-time.
v - Madhab will wash his car.
Write the following in symbolic form
(i) It is night-time and Madhab will not wash his car.
{11) It 1s not the case that either it is day-time or the weather is nice.
(i) If it 15 day-time and the weather is nice then Madhab will wash his car.

(iv) Either it is day-time and Madhab will wash the car or the weather is not
nice.

. Let p and ¢ be any two logical statements and r. p— (~ pvg). Ifrisa

false statement then find the truth value of p and ¢.

. Prove that the statement ~ (p &~ g) is equivalent to p< g

If X={4"-3n—-1:neN}and Y ={9(n—-1):ne N} where N is the set of
natural numbers then prove that X v ¥ = ¥.

. Let 4 = {1,2,3,4,5}. Determine the number of

(i) Subsets containing three elements,
(i1) Subsets containing the elements 1 and 2.
Let Z be the set of integers and a relation defined on the set Z by ““x p y if

and only if xy+y'=x*+1" forx, yeZ

Give one counter example to show that p is not transitive.

109
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8. Find all the equivalence relations on the set 4 = {1,2}.
9. Let p, g and r denote the propositions

p . The light is on.

g . The switch is down.

¥ . The door is closed.

Write the following propositions in English sentences.

D (prg)e (1)

(ii) (pv~q)—)r

10. If @ and & are false statements and ¢ and d are true statements then what are
the truth values of the following propositions
(i) (~ a) A (cv ~ b)

(i) (en~d)v(av~(~b))

11. Let A and B be two sets containing 2 and 3 elements respectively. Find the
number of subsets of 4 x B having 3 or more elements.

12. In a class there are 10 students with white shirts and 8 students with red
shirts. 4 students have black shoes and white shirts. 3 students have black
shoes and red shirts. There is no student with both white and red shirt. The
number of students with white shirt or red shirt or black shoes 1s 21. Find
the number of students who have black shoes.

13. Choose the correct option with justification :

If s and » be two statements then the negation of the student ~ sv (~r As)
1s equivalent to
() sa~r () sa(ra~s) (i) sv(rv~5) (V) sAr

14. Find the converse and invese of the proposition (pa~¢g)—r.

15. Let § = Z x Z and p be defined on § by (a,b) p (¢, d) if and only if ad =
bc Y(a,b),(c,d)e S. Show that p 15 not transitive.

16. Define the composition of two relations with an example.
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Medium answer type questions :

17.

18.

19.

20,

21.

22,

24,

Construct a truth table for the compound statement ~ (pv ~ g) -~ p where
p. g, ¥ denote primitive statements.

Let Z be the set of integers. Consider the predicates

px) x<1land g{x) : x>5

Determine which of the following statements are true and which are false.

(1) (Vx € Z)(p(x) v q(x))
(i1) {(Vx I= Z)p(x)} v {(Vx I= Z)q(x)}
(1) (3x e Z)}p(x)Aq(x))

(iv) {(Elx I= Z)p(x)}A{(Elx I= Z)q(x)}

If A, B, C be subsets of a universal set .S, prove that
(AUB)N(BUC)N(CUA)=(ANB)U(BNC)U(C N A4)

Let p be a relation defined on C (the set of complex numbers) by

“la + iby p {c + idyif and only if a<¢c and b<d for a+ib, c+ideC.
Show that p is a partial order relation.

Prove by using truth table that for any two primitive statements p and g,
P4 ~pvy

hence show that for any three primitive statements p,q,7.

(r—)(p—)q)) <:>(px\r)—>q

Let p and g be two propositions as follows :

p : If a mobile phone is good then it is not cheap.
g . If a mobile phone is cheap then it is not good.
Show that p is equivalent to ¢.

. For any three subsets 4,B,C of a universal set § show by using double

inclusion method that
B-AHuoC-AH)=Buw)-A4

Prove that the relation ‘<’ defined by {a,b)<(c,d) @ ab<ecd fora, b, ¢, d
are integers ranging from 0 to 6, is a partial order relation.
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Long answer type questions :

25. (a) Show by the truth tables that p A(gvr) and (p Ag) v F are not equivalent
but (pa(gvr)—>{(pag)vr is a tautology.

(b) Let S={1,2,3,4} and p={(1,1),(2,2).(3,3),(4,4),(1,2),(2,1),(2,3),(3,2)}

Show that p is reflexive and symmetric but not transitive.
26.(a) If A, B, C are three subsets of a universal set .S, prove that

AN(BAC)=(AnBYA(ANC)

(b) For the univese of all integers let p(x) and #(x) be the following open
statements
plx): x1seven.
r{x): x is divisible by 5
Write the following two statements in symbolic form :
(1) If x 1s even then x is not divisible by 5.
(i) There exists an even integer divisible by 5.

Determine whether each of the statements above is true or false. For each
false statement provide counter example.

27 (a) Prove that the inverse of an equivalence relation is an equivalence
relation.

(b) Using Venn diagram verify that for any three sets A, B, C of universal set
S. AA(BAC)=(AAB)AC
28. (a) Examine whether the relation p defined on the set S =2 xZ-{(0,0)} by
(a,b) p (c,d) if and only if ad = be for (a,b),{(c,d)e §

is an equivalence relation.
(b) Verify that [(p SPrlgeo nalreo p)]
o [(p— g)Alg > r)a(r— p)] for primitive statement p, ¢ and r.

29. {(a) Show that for any two statements p and ¢, p — ¢ is not equivalent to the
converse ¢ — p but equivalent to the contrapositive ~gq— ~ p.

(b) For any three subsets 4, B, C of a universal set § prove that
AX(B\C)=(Ax B\ (AX()
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30 (a) Let Z be the set of integers. Let p(x),q(x),7{x) be the following open
statements.

px) x*=11x+30=0

g(x): x’+x-12=0

r{x):x<0

Determine the truth value of the following statements with explanation.
(Vx e Z)(p(x) =~ r(x))

(Vx e Z)(g(x) - r(x))

(Ix € Z)(g(x) - r(x))

(Ix € Z)( p(x) > r(x))

(b) Let A and B be two sets taken from a universal set §. Define quantified
definition of 4 ¢ B. From this definition prove that negation of A C B
(that is 4 B)
e@QxeS)xeArxeB)
31 Let 4 =1{1,23456,7}

(a) Find the number of proper subsets of A.

(b) How many subsets of A have odd cardinality?

{¢) Find the number of subsets of 4 of 3 elements with least element 4.

(d) Find the number of subsets of 4 of three elements with least element 1s
less than 5

{e) Find the number of subsets of A of three elements containing one odd
integer and two even integers.

32. {(a) Let p be an equivalence relation on a set S and a,b< S . Prove that
cliay=cl{by = apb.
Hence show that cXa) and ci(b) are either disjoint or equal.
(b) Find the equivalence classes determined by the relation p on Z defined
by “a p b if and only if ¢ — b is divisible by 4 for a,be Z.
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Answers to the Sample Questions

1. (1) & (iii) are statements out of which (i) is false and (iii) is true.
2. (1) ~ga~r (i) ~(gvp) (i) (gap)—F (iv) (gaF)v~p
3.  p:True, ¢ : False

6. (1) 10 (i) 8

7 Op—1and —1p2 hold but Op2 does not hold .

8. p={aD,22}, p.={LD.(2.2.L2).21}

9. (i) The light is on and the switch is down if and only if the door is not
closed.
(i1) If the light is on or the switch is not down then the door is closed.
10. (i) True (u) False

11. 26-°C,-°C,-°C,=42
12. 10
13 (iv)

14. Converse : r — (pa~¢q) Inverse . (~ pvg)—~r

Y oTaev=a[~v-a) [~ (ov~a) > p
T|T| T F T
T|\F| T F T
Flr| F T T
FlF| T F T

18. (i) (i1} (m) are false statements and (iv) is a true statement.

26. (b) (i) (Vxe Z) p(x) >~ r(x)

(i) (Ix e Z)(p(x) Ar(x))

First statement (i) is false and the second statement (ii) is true. Counter
example of first statement is x = 10.

30. {a) True, False, True, False
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31. (a) 127 (b) 64 (c) 3 (d) 34 (e) 12

32. (b) cl(O)={dn/neZ}
c()={an+1/nez}
c(2y={4n+2/neZ}

cd@y={4n+3/nez}
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