
PREFACE
In a bid to standardise higher education in the country, the University Grants

Commission (UGC) has introduced Choice Based Credit System (CBCS) based on
five types of courses: core, generic discipline specific elective, and ability/ skill
enhancement for graduate students of all programmes at Elective/ Honours level.
This brings in the semester pattern, which finds efficacy in tandem with credit system,
credit transfer, comprehensive and continuous assessments and a graded pattern of
evaluation. The objective is to offer learners ample flexibility to choose from a wide
gamut of courses, as also to provide them lateral mobility between various educational
institutions in the country where they can carry acquired credits. I am happy to note
that the University has been recently accredited by National Assessment and
Accreditation Council of India (NAAC) with grade “A”.

UGC (Open and Distance Learning programmes and Online Programmes)
Regulations, 2020 have mandated compliance with CBCS for all the HEIs in this
mode. Welcoming this paradigm shift in higher education, Netaji Subhas Open
University (NSOU) has resolved to adopt CBCS from the academic session 2021-22
at the Under Graduate Degree Programme level. The present syllabus, framed in the
spirit of syllabi recommended by UGC, lays due stress on all aspects envisaged in
the curricular framework of the apex body on higher education. It will be imparted
to learners over the six semesters of the Programme.

Self Learning Materials (SLMs) are the mainstay of Student Support Services
(SSS) of an Open University. From a logistic point of view, NSOU has embarked
upon CBCS presently with SLMs in English. Eventually, these will be translated into
Bengali too, for the benefit of learners. As always, we have requisitioned the services
of the best academics in each domain for the preparation of new SLMs, and I am sure
they will be of commendable academic support. We look forward to proactive feedback
from all stake-holders who will participate in the teaching-learning of these study
materials. It has been a very challenging task well executed, and 1 congratulate all
concerned in the preparation of these SLMs.

I wish the venture a grand success.

Professor (Dr.) Subha Sankar Sarkar

Vice-Chancellor
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Unit 1 � Basics of graph theory

Structure

1.0 Objective

1.1 Introduction

1.2 History of Graph Theory

1.3 Applications of Graph Theory

1.4 Summary

1.0 Objective
This unit will help the students to understand the basic concept of graph theory

and how the subject evolved to its present form.

1.1 Introduction
The subject of mathematics is broad. It is a tree of information branches into an

ever-growing number of sub-topics.  Numbers in problems can either be discrete, like
natural numbers 1,2,3,4... Alternatively, they can be continuous, which precisely map
our reality as dynamic, changing values.

What is the fastest route from the national capital to each state headquarters?
What is the maximum flow per unit time from source to sink in a network? Can we
colour the regions of every map using four colours so that neighbouring regions have
a different colour? These and many other problems are solved in graph theory. Graph
theory, a discrete mathematics topic, is at the highest level the study of the link
between things. These things are more formally involved to as vertices, vertexes or
nodes, with the links themselves pointed to as edges.

1.2 History of Graph Theory
Swiss mathematician Leonhard Euler first originated the fundamental idea of

graphs in the 18th century. His efforts and ultimate solution to the famous Königsberg
bridge puzzle pictured below are generally quoted as the origin of graph theory.
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The German city of Königsberg (Kaliningrad, Russia) is located on the Pregolya
River. The geographic layout is founded of four main bodies of land attached by a
total of seven bridges (see Figure 1.1). The question pretended to Euler was
straightforward: was it possible to catch a walk by the town in such a way as to
traverse over every bridge once, and only once?

Figure 1.1: City of Königsberg (Kaliningrad, Russia)

Euler, realising that the proper constraints were the four bodies of land & the
seven bridges, carried out the first recognized visual representation of a current graph.
A graph (see Figure 1.2(c)) is represented by a set of points, named as vertices or
nodes, that linked by a set of joining lines known as edges.

 

Figure 1.2: Graphical representation of the Konigsberg Bridgeproblem

By first endeavouring to draw paths in the graph above, then later testing with
multiple theoretical graphs with an alternating number of vertices and edges, he
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ultimately extrapolated a universal rule:

In order to be worthy to walk in a Euler path (without repeating an edge), a
graph must have none or twice an odd number of nodes? From there, the chapter of
mathematics known as graph theory extended asleep for decades. In recent times,
however, it is utilised in many fields.

The paper of Leonhard Euler on the Seven Bridges problem of Königsberg in
1736 is considered as the first paper in the history of graph theory.

1.3 Applications of Graph Theory
Graph Theory is eventually the study of relationships. For a set of nodes and

connections, graph theory contributes a helpful tool to quantify and simplify the many
evolving parts of dynamic methods. Studying graphs presents answers to many
arrangements, optimisation, networking, matching and operational problems.Graph
theory has its applicability in various fields of engineering described as follows.

Electrical Engineering : The ideas of graph theory, is applied extensively in
designing circuit connections. The classes or organization of connections are defined
as topologies. Some examples of topologies arestar, bridge, series, and parallel
topologies.

Computer Science : Graph theory is applied to the learning of algorithms. Kruskal's
Algorithm, Prim's Algorithm, Dijkstra's Algorithm,Warshall Algorithms, Computer
Network, are few to mention. The relationships among interrelated computers in the
network follow the postulates of graph theory.

Science : The molecular structure, the DNA structure of an organism and chemical
structure of a substance, etc., are depicted by graph theory.

Linguistics : The analyzing tree of a language and grammar of a language use
graphs.

General : Routes among the cities can be designed using graph theory. Depicting
ordered information (hierarchical) such as family tree can be used as a particular type
of graph called a tree.

1.4 Summary
After studying this units, the learners will become interested in the topic of graph

theory and wish to understand the applications of it deeply.
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Unit 2 � Basic properties of graphs

Structure

2.0 Objective

2.1 Introduction

2.2 Pseudo graphs

2.3 Few more terminology

2.3.1 Walks

2.3.2 Trails

2.3.3 Paths

2.3.4 Cycle

2.3.5 Circuits

2.3.6 Sub-graphs

2.4 Summary

2.0 Objective
The objective of this unit is to give some concept of the terminology used in

graph theory with a few basic properties.

2.1 Introduction
This section has been planned for students who desire to learn the primary of

Graph Theory. Before starting with this chapter, readers need to know the basics of
number theory and set-theoretic operations in Mathematics. It is compulsory to have
a basic knowledge of Computer Science as well.

2.2 Pseudo-graphs
A graph is a pictorial illustration of a set of objects where links connect some

pairs of objects. Points termed as vertices express the objects, and the links that
connect the vertices are named edges.
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Definition 2.1: A graph is a pair of sets (V,E), where V is the set of vertices and
E is the set of edges, connecting the pairs of vertices.

Example 2.1

Figure 2.1: Pictorial representation of a graph

Figure 2.2: Pictorial representation of a simple graph

 

Figure 2.3: Pictorial representation of a null graph

In the given Figure 2.1, {A,B,C,D,E} is the set of vertices. The edges have no
direction and hence, (A,B) and (B,A) indicate the same edge. However, it is seen that
two edges connect A and D. These edges are called multi-edge or parallel edge
(formal definition is given in the following Table 1.1). Thus the edge set will contain
the edge (A,D) twice. Also, it is seen that one edge started from B and ended to B.
This edge is called a loop. The complete edge set is {(A,B), (A,C), (A,D), (A,D),
(B,B), (B,D), (C,D), (B,E)}. Naturally, this edge set is multi-set.
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2.2 Pseudo-graphs
A graph which has no finite vertex and /or edge set is called an infinite graph. A

pseudograph is a non-simple graph in which loops and (or) multiple edges (parallel
edges) are permitted.

Figure 2.4: Pseudo graphs (a and c), simple graphs(b).

Example 2.2: In Figure 2.4 (a) both parallel edges and self-loop exist. In Figure
2.4 (c) parallel edges exist. So these graphs are pseudo graphs (or multi-graphs). In
Figure 2.4 (b), no parallel edges or self-loop exist, so the graph is a simple graph.

Example 2.3: Let  V = { v1,v2,v3,v4}, E = {e1,e2,e3,e4,e5,e6} such that e1 = e5 =
(v1,v2), e2 = (v3,v4), e3 = (v1,v3), e4 = e6 = (v2,v4).

The graph is drawn as follows:

Figure 2.5: Pictorial representation of a multi-graph.
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Terminology Explanation

End vertices The two vertices u and v are end vertices of an edge (u,v).

Parallel edges Edges that have the same end vertices are parallel edges

Loop An edge of the form (v,v) is a loop.

Simple graphs A graph is simple if it has no parallel edges or loops.

Null graph A graph (V,E) with no edges (i.e. E is empty) is a null graph

Adjacent vertices Two vertices uand vare adjacent if an edge connects u and
v.

Adjacent edge Edges are adjacent if they share a common end vertex.

Degree of a vertex The degree of the vertex v, written as d(v), is the number of
edges with vas an end vertex. By the conventional way, we
count a loop twice, and parallel edges contribute separately.

Pendant vertex A pendant vertex is a vertex whose degree is 1.

Pendant edge An edge that has a pendant vertex as an end vertex is a
pendant edge.

Isolated vertex An isolated vertex is a vertex whose degree is 0.

δ(G) The minimum degree of the vertices in a graph G is denoted
δ(G)

Δ(G) The maximum degree of vertices in G is denoted Δ(G).

Table 2.1: Few standard terminologies

Terminology Examples

End vertices In Figure 2.1, A and Bare end-vertices of the edge (A,B)

Parallel edges In Figure 2.1, the edges between A and D are parallel edges

Loop In Figure 2.1, (B,B) is a loop.

Simple graphs In Figure 2.2, one simple graph is drawn as it has no parallel
edges or loops.
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Null graph One null graph is drawn in Figure 2.3.

Adjacent vertices In Figure 2.1, A and B are adjacent vertices.

Adjacent edge In Figure 2.1, the edges (A,B) and (B,D) are adjacent.

Degree of a vertex In Figure 2.1, the degree of B,d(B) is 5, and in Figure 1.5,
d(A)=0.

Pendant vertex In Figure 2.2, E is a pendant vertex.

Pendant edge In Figure 2.2, (B,E) is an pendant edge.

Isolated vertex All vertices in Figure 2.3, all vertices are isolated vertices

δ(G) In Figure 2.3, δ (G)=0, In Figure 2.2., δ (G)=1, In Figure
2.1,δ (G)=1,

Δ(G) In Figure 2.3,Δ(G)=0, In Figure 2.2, Δ(G)=3, In Figure 2.1,
Δ(G)=5,

Table 2.2: Terminologies with examples of Table 2.1

2.3 Few more terminology
2.3.1 Walks

A finite walk is a finite alternating sequence of vertices and edges, starting and
ending with vertices, such that each edge is incident with the vertices preceding and
following it. An infinite walk is an alternating sequence of vertices and edges such that
each edge is incident with the vertices preceding and following it, but with no first
or last vertex.

In graph theory, a finite walk is of the form? v0e0v1e1v2… e(n-1)vn. In a walk, both
vertices and edges may appear repeatedly. The starting and ending vertices of a walk
are called the terminal vertices of walk and rest of vertices are called intermediate
vertices. A walk between two vertices u and v is generally denoted by u-v walk or
uv walk. A walk may be closed or open. If the beginning and ending vertices of a walk
are same, then that walk is called a closed walk or tour, otherwise, it is called an open
walk. Note that the length of a walk is simply the number of edges traversed in that
walk. A walk may intersect itself.

Example 2.4: For the graph shown in Figure 2.6,

i) 1a3c4e5d3b2 is a finite open walk-in which vertex 3 is repeated.
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ii) 1a3c4g6f5e4c3b2 is a finite walk in which vertices 3, 4 and edge c are repeated.

iii) 3c4e5d3 is a closed walk in which starting and ending vertices are the same.

iv) 3c4g6j7k9m8i6f5d3 is a closed walk where terminal vertices are the same,
and an intermediate vertex 6 is repeated.

 

Figure 2.6: A pseudograph.

2.3.2 Trails
A trail is a walk in which all edges are distinct.  Note that vertices of a trail may

appear repeatedly. A trail may be open or close. If the beginning and ending vertices
of a trail are same, then that trail is called closed trail; otherwise, it is called an open
trail. Note that a trail may intersect itself. In the graph shown in Figure 2.6,
3c4g6j7k9m8i6f5d3 is a closed trail, and 4g6h6f5 is an open trail.

2.3.3 Paths
A path is an open trail with no repeated vertices. Degree of starting and ending

vertices of a path are one and degree of each other vertices of the path are two. Note
that all paths are walks but all walks may or may not be paths. Also, a path does not
intersect itself. For example, 1a3c4g6 is a path in the graph of Figure 2.7.

2.3.4 Cycles
A closed trail with no other vertices are repeated apart from the start or end

vertex is called a cycle. In other words, a cycle is nothing but a closed path. Note
that not an edge is repeated in a cycle. A n-cycle is a cycle with n vertices. In Figure
2.6, 3c4e5d3 is a cycle of length three and 6j7k9m8i6 is a cycle of length four.

2.3.5 Circuits
If we traverse a graph in such a way that not an edge is repeated, but vertex can

repeat and starting and ending vertices are same, then the traversing is called a circuit.
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In other words, a circuit is a closed trail. Note that vertices (excluding start/end
vertex) can repeat in a circuit but not in cycle. For examples, 3c4g6j7k9m8i6f5d3 and
6j7k9m8i6 are two circuits in the graph of Figure 2.6. Note that all cycles are circuits,
but circuits are not always cycles.

Example 2.5: In Figure 2.7,v1,e1,v2,e2,v3,e3,v4 is a path of length 3,  v2,e2,v3,e3,v4,e5,v2

is a cycle of length 3 and v2,e6,v5,e7,v6,e9,v7,e8,v5,e4,v4,e5,v2 is a circuit of length 6.

Figure 2.7: A pseudo graph

v1e1v2e2v3e3v4e5v2e6v5 is a walk of length 5 and it is an open walk. This walk has
no repeated edges, and hence it is a trail. Since the walk contains v2 twice, i.e.
repeated vertices, the walk is not a path.

Theorem 2.1: In a graph, any open trail contains a path.

Proof: To prove this theorem by induction on the length of the open trail, we
consider an open u-v trail of length n. We know any open trail of length 1 is a path.
So, the result is true for n = 1.  Now, assume that the result is true for all open trails
of length less than n.  Let u = v0e0v1e1v2e2…e(n-1)vn = v be any open trail of length n. If
all the vertices of the walk are distinct, then it is already a path. If not, there exist at
least two vertices i,j such that 0 ≤ i < j ≤ n and vi = vj. Now, if we remove all the vertices
(excluding vi) and edges which belong to the walk between vi and vj, then  u =
v0e0v1e1…e(i-1)viejv(j+1) e(j+1) v(j+2) e(j+2)…e(n-1) vn = v  is an open trail of length less than n
which, by the induction hypothesis, contains a u–v path. Hence the theorem is proved.
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Theorem 2.2: Every closed trail contains a cycle.

Proof : We prove this result by induction. For this purpose, let v = v0e0v1e1v2e2…
e(n-1)vn = v be a closed trail of length n. Now, if n = 1, then it is a self-loop, so, the trail
is a cycle of length one. So, the result is true for n = 1.  Let us assume that the result
is true for all trails of length less than n.  Now we have to prove that the result is true
for n, i.e., the closed trail v = v0e0v1e1v2e2…e(n-1) vn = v has a cycle. If all the vertices
of that trail are distinct, then it is a cycle of length n. If not, there exist at least two
vertices i,j such that 0 ≤ i < j ≤ n and vi = vj. Now, if we remove all the vertices
(excluding vi) and edges which belong to the trail between vi and vj, then v = v0e0v1e1…e(i-

1) vi ej v(j+1) e(j+1) v(j+2) e(j+2)…e(n-1) vn = v is a closed trail of length less than n which, by
the induction hypothesis, contains a cycle. Hence the theorem is proved.

2.3.6 Subgraphs
A graph S = (E1,V1) is said to be sub-graph of a graph G = (V,E) if E1⊂ E and

V1 ⊂ V, where the incidence property is preserved between G and S.  In graph
theory, an induced subgraph of a graph is another graph, formed on a subset of the
vertices of the graph and all of the edges are connecting pairs of vertices in that
subset.

Formally, let G = (V, E) be any graph, and let S ⊂ V be any propersubset of
vertices of G. Then the induced subgraph G[S] is the graph whose vertex set is S and
whose edge set consists of all of the edges in E that have both endpoints in S. The
induced subgraph G[S] may also be called the subgraph induced in G by S, the
induced subgraph of S.

A graph constructed by adding vertices, edges or both to a given graph is called
supergraph. If H is a subgraph of G, then G is a supergraph of H.

A spanning subgraph is a subgraph that contains all the vertices of the original
graph.

Example 2.6: In Figure 2.8(a), a graph G = (V, E) where V = {A, B, C, D, E,
F, G, H, I}is considered.  In Figure 2.8(b), a subgraph is shown whose vertex set is
a subset of V.  In Figure 2.8(c) an induced subgraph is drawn, and in Figure 2.8(d)
a spanning subgraph is shown.
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Figure 2.8: Different subgraphs of a graph G

Example 2.7: In Figure 2.9, G is a graph, G1,G2 and G3 are subgraphs. In which
G3 is induced subgraph on the vertices {v1,v2,v4,v5}.

Figure 2.9: Graphs and its sub-graphs

2.4 Summary
This unit helps the learners to understand the fundamental concepts and basic

terminology of graph theory with some illustrated examples.
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Unit 3 � Connected Graphs

Structure

3.0 Objective

3.1 Introduction

3.2 Connected Graph

3.3 Component

3.4 Directed graphs

3.5 The complement of a graph

3.6 Line graphs

3.7 Some well-known graphs

3.7.1 Complete graphs

3.7.2 Bipartite graphs

3.7.3 Regular graphs

3.7.4 Weighted graphs

3.8 Isomorphism of graphs

3.8.1 Homeomorphism

3.8.2 Isomorphism

3.9 Summary

3.0 Objective
The learners will be acquainted with some well-known graphs going through this
unit.

3.1 Introduction
The concept of connectedness of graphs is a very important and basic concept.

Other related concept are elaborated later.
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3.2 Connected Graphs
An undirected graph with non-empty vertex set is connected when there is a path

between every pair of vertices. In a connected graph, there are no unreachable vertices.
A graph that is not connected is disconnected. An undirected graph G is said to be
disconnected if there exist two nodes in G such that no path in G has those nodes
as end points. A graph with just one vertex is connected. An edgeless graph with two
or more vertices is disconnected.

3.3 Component
Ingraph theory, a component of an undirected graph is a subgraph in which any

two vertices are connected by paths, and which is connected to no additional vertices
in the supergraph, in other words, a component is a maximal connected subgraph.
Thus a disconnected graph has at least two-component.

Example 3.1:  In Figure 3.1, two components of a graph have been shown. It
is noted that the subgraph containing the vertices v1v2,v3 is not properly contained in
any other subgraphs of the graph.

Figure 3.1: Components of a graph

3.4 Directed Graphs
In graph theory, a directed graph (or digraph) is a graph that is composed of a

set of vertices connected by edges, where the edges have a direction associated with
them.
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Definition 3.1 A directed graph is an ordered pair G = (V, E) where

i. V is a set whose elements are termed as vertices, nodes, or points,

ii. E is a set of ordered pairs of vertices, termed as arrows, directed edges,
directed arcs, or directed lines.

Figure 3.2: A directed graph

3.5 The complement of a graph
In the field of graph theory, the complement of a graph G is a graph H on the

same vertices such that two distinct vertices of H are adjacent if and only if they are
not adjacent in G.

Definition 3.2: The complement Gc of a simple graph G = (V, E) is the simple
graph with the same vertex set V and edge set E(Gc) defined by (u,v)∈E(Gc) if and
only if (u,v)∉E(G).

Example 3.2: In Figure 3.3, a graph and its complement graph are shown. It is
seen that there is an edge between two vertices in the complement graph if there does
not exist an edge between those vertices.
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Figure 3.3: Complement of a graph

3.6 Line graphs
In graph theory, the line graph of an undirected graph G is another graph L(G)

that represents the adjacencies between edges of G.

Definition 3.3: The line graph of a graph G=(V,E), L(G), is the graph whose
vertices are the edges of G and there exists an edge (e,f) in the line graph if e=(u,v)
and f=(v,w) are adjacent edges in G.

Figure 3.4: Line graphs
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Example 3.3: In Figure 3.4, a graph G is shown. Also, its line graph L(G) is
drawn in on the right side of Figure 3.4. Note that the number of edges in G is equal
to the number of vertices in L(G).

3.7 Some well-known graphs
3.7.1 Complete graphs

In the field of graph theory, a complete graph is a simple undirected graph in
which edges connect every pair of distinct vertices.A complete digraph is a directed
graph in which every pair of distinct vertices is connected by a pair of edges (two for
two directions). A cliquein a graph is a set of pairwise adjacent vertices.

Note that a complete graph on n vertices must have nc2  number of edges.

Figure 3.5: Complete graph on 4 vertices (left) and 5 vertices

Example 3.4: Complete graph on four vertices (K4) and complete graph on five
vertices (K5) have been shown in Figure 3.5.

3.7.2 Bi-partite graphs
In graph theory, an independent set of vertices is a collection of isolated vertices,

i.e., no vertex in the set is connected to any other vertex in the set. A bipartite graph
(or bi-graph) is a graph whose set of vertices can be divided into two disjoint and
independent subsets U and V such that every edge connects a vertex in U to one in
V. Vertex sets U and V are usually called the parts of the graph. Equivalently, a
bipartite graph is a graph that does not contain any odd-length cycles. Suppose one
vertex (say a) of a cycle belong to an independent set, then the vertex must be
connected to a vertex (say b) of separate independent set.  Hence, b must be connected
to a vertex (say c) of first independent set. Here a and c must be different and must
not be connected as they belong to the same independent set. Thus, the minimum
length of the cycle is four, if greater then adding by even number to it.
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In the field of graph theory, a complete bipartite graph or biclique is a unique kind
of bipartite graph where every vertex of the first set is connected to every vertex of
the second set.

A complete bipartite graph is a graph whose vertices can be partitioned into two
subsets V1 and V2 such that no edge has both endpoints in the same subset, and every
possible edge that could connect vertices in different subsets is part of the graph. That
is, it is a bipartite graph (V1,V2,E) such that for every two vertices v1 ∈ V1 and v2
∈ V2, v1 v2 is an edge in E. A complete bipartite graph with partitions of size |V1| = m
and |V2| = n is denoted K(m,n).

    

Figure 3.6: Complete bipartite graph, K3,3 (left) and K5,5

Example 3.5: A complete bipartite graph on six vertices K3,3 and another complete
bipartite graph on ten vertices K5,5 have been shown in Figure 3.6.

Note that a complete bipartite graph on m+n number of vertices must have
m×n=mn number of edges.

3.7.3 Regular graphs
In the mathematical field of graph theory, a regular graph is a graph where each

vertex has the same number of neighbours, i.e. every vertex has the same degree. A
regular directed graph must also satisfy the stronger condition that the indegree and
outdegree of each vertex are equal to each other. A regular graph with vertices of
degree k is called a regular graph of degree k or k regular graph.

Note that in the field of graph theory, a cubic graph is a graph in which all vertices
have degree three. In other words, a cubic graph is a 3-regular graph. Cubic graphs
are also called trivalent graphs.
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Example 3.6: In Figure 3.7 (a) a 0-regular graph, Figure 3.7 (b) a 1-regular
graph, Figure 3.7(c) a 2-regular graph and in Figure 3.7(d) 3-regular graph have been
shown.

Figure 3.7: Regular graphs

3.7.4 Weighted graphs
A weighted graph is a graph in which each edge is given a numerical weight. If

the graph represents any city routes, then weights may be its distance from a source
to destination or may be a time of the travelling and many more. Thus the weight of
the edges is significant to represent real-world scenario.

(a): Weighted directed graph
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(b) Weighted undirected graph

Figure 3.8: Weighted graphs

Example 3.7: In Figure 3.8(a) a weighted directed graph is shown. The edge
weights are written beside the edges in the figure. In Figure 3.8(b) a weighted undirected
graph is shown. The numbers beside the edges may indicate the distance between the
nodes which may represent the cities. The weights may be given on different parameters.

3.8 Isomorphism of graphs
3.8.1 Homeomorphism

Two graphs G1 and G2 are said to be homeomorphic if each of these graphs can
be obtained from the same graph 'G' by dividing some edges of G with more verticesor
inserting one or more vertices in an edge.

Example 3.8: Let us consider a graph G as shown in Figure 3.9. Divide the edge
(r,s) into two edges by adding one vertex t (check Figure 3.9)

 

Figure 3.9: A simple graph
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Figure 3.10: A simple graph dividing an edge of Figure 3.9 by a vertex

Now the graph G' can be embedded in a different position as like in Figure 3.10.
The graphs shown in Figure 3.11 are homeomorphic to the first graph.

 

Figure 3.11: Homeomorphic graphs

3.8.2 Isomorphism
A graph can exist in various forms having the same number of vertices, edges, and

also the equal edge connectivity. Such graphs are named isomorphic graphs. The
formal definition of isomorphic graphs is given as follows.

Definition 3.4: An isomorphism from a simple graph G1 to a simple graph G2 is
a bijection f:G1→ G2 such that (u,v)∈E(G1) if and only if (f(u),f(v) )∈E(G2). It is said
that G1 is isomorphic to G2.

Note that

If G1 ≅ G2 then?

i. |V(G1)| = |V(G2)|

ii. |E(G1)| = |E(G2)|

iii. Degree sequences of Gx and G2 are the same.

If the vertices {V1,V2,..Vk} form a cycle of length K in G1, then the vertices
{f(V1), f(V2),… f(Vk)} should form a cycle of length K in G2.
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All the above conditions are necessary for the graphs G1 and G2 to be isomorphic,
but not sufficient to prove that the graphs are isomorphic.

Example 3.9: In the graph G3, vertex 'w' has only degree 3, whereas all the other
graph vertices have degree 2. Hence G3 is not isomorphic to G1 or G2.

 

Figure 3.12: Isomorphism of graphs

Taking complements of G1 and G2, we have

Figure 3.13: Isomorphic graphs

Here, (G1
c ≡ G2

c), hence (G1 ≅ G2).

3.9 Summary
Some important concepts starting from connectivity to isomorphism along with

Bipartite graph and weighted graphs are explained with examples in this unit.
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Unit 4 � Planar graphs
Structure

4.0 Objective

4.1 Introduction

4.2 Kuratowski's Two Graphs

4.3 Summary

4.0 Objective
This unit gives a basic concept of planarity of graphs briefly.

4.1 Introduction
An embedding of a graph into a surface is a drawing of the graph on the surface

in such a way that its edges may intersect only at their endpoints. In the field of graph
theory, a planar graph is a graph that can be drawn in a plane in such a way that its
edges intersect only at their end vertices. A graph can be drawn in several ways. In
certain position, the edges may cross to other edges, but if the graph is drawn without
any crossing among edges in atleast one embedding, then the graphs are called planar
graphs.

(a): Planar graph (left) and non-planar graphs
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(b): A planar graph on four vertices

Figure 4.1: Planar graphs

Example 4.1: In Figure 4.1 (a), a bipartite graph on six vertices and eight edges
is shown. This graph has no crossing of edges. Thus it is a planar graph. But the
complete bipartite graph on six vertices is not a planar graph, which is shown in the
right part of Figure 4.1 (a). In Figure 4.1 (b), a planar graph is shown on four vertices
(which is a complete graph on four vertices).

Euler's formula states that if a finite, connected, a planar graph is drawn in the
plane without any edge intersections, and v is the number of vertices, e is the number
of edges and f is the number of faces (regions bounded by edges, including the outer,
infinitely large region), then v–e+f=2

 

Figure 4.2: Butterfly graph

As an illustration, in the butterfly graph given above, v = 5,e = 6 and f = 3. In
general, if the property holds for all planar graphs of f faces, any change to the graph
that creates a new face while keeping the graph planar would keep v - e + f  an
invariant. Since the property holds for all graphs with f = 2, by mathematical induction,
it holds for all cases. The result can be described as follows. Let G is connected and
has only one face. It is a tree, so e=v-1 and therefore v+f-e=v+1-(v-1)=2.

Now, suppose the formula holds for a connected graph with n faces. We prove
that it holds for n+1 faces. Choose an edge connecting two faces of G and remove
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it. The resulting graph remains connected. The new graph has one fewer edge and one
fewer face. So, by the inductivehypothesis, v+(f-1)-(e-1)=v+f-e=2.

4.2 Kuratowski's Two Graphs
The complete graph K5 and the complete bipartite graph K3,3 are said Kuratowski's

graphs, after the Polish Mathematician Kasimir Kurtatowski, who found that K5 and
K3,3 are non-planar.

Note thatthe complete graph K5 with five vertices is non-planar. The following
diagram can clarify this note. As we know that a complete graph with five vertices
must have 10 edges, the graph with five vertices is started to draw. It is found that
without crossing, 10 edges can not be drawn in the graph in any embedding. Thus the
graph is non-planar.

Figure 4.3: The steps of a drawing of planar graphs on five vertices

Note that the complete bipartite graph K3,3 is non-planar : K3,3 has six vertices
and nine edges. In Figure 4.4, it is seen that K3,3 cannot be drawn without crossing
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between edges in any embedding. And hence K3,3 is a non-planar graph.

 

Figure 4.4: Bipartite graph embedding

Note 4.1 In a planar embedding of a connected graph with at least three vertices,
each face is of length at least three. Suppose a connected planar graph has n ≥ 3
vertices and e edges. Then e ≤ 3n-6 is true. This is explained as follows. Suppose a
connected graph with n vertices and e edges has a planar embedding with f faces.
Then, every edge is traversed exactly twice by the face boundaries. So the sum of the
lengths of the face boundaries is exactly 2e. Also when n ≥ 3, each face boundary is
of length at least three, so this sum is at least 3f. This implies that 3f ≤ 2e

But f=e-n+2 by Euler's formula, and substituting into the above gives 3(e-n+2) ≤ 2e

Which implies that e ≤ 3n-6

4.3 Summary
The learners will have the fundamental idea of planar graphs and their types after

studying this unit.
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Unit 5 � Matrix representation of graphs
Structure

5.0 Objective

5.1 Introduction

5.2 Adjacency matrix

5.3 Incidence matrix

5.4 Worked out Examples (Unit 1-5)

5.5 Summary

5.6 Exercises (unit 1-5)

5.0 Objective
The objective of this unit is to introduce the concept of representation of a graph

using matrices.

5.1 Introduction
The graph theory has many practical applications as is described earlier. For many

of them, graphs of large dimensions are required to be handled and then we have to
use computers for efficient handling. This unit describes how a graph can be represented
by matrix in different ways which can be easily used in computers.

5.2 Adjacency matrix
Suppose that G = (V,E) is a simple graph where |V| = n. Suppose that the vertices

of G are listed arbitrarily as v1,v2,... ,vn. The adjacency matrix A of G, with respect
to this listing of the vertices, is the n × n zero-one matrix with 1 as its (i,j)-th entry
when vi and vj are adjacent, and 0 as its (i,j)-th entry when vi and vj are not adjacent.
In other words, if its adjacency matrix is A = [aij], then

aij =
1,if (vi,vj) is an edge of G

0, otherwise{
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Note that an adjacency matrix of a graph is based on the ordering chosen for the
vertices. Hence there are as many as n! different adjacency matrices for a graph with
n vertices, since there are n! different orderings of n.

Figure 5.1: A simple graph

Example 5.1: Let us consider the graph in Figure 5.1. Its corresponding adjacency
matrix is shown as follows. Note that the rows and columns denote the vertices of
the graph.

0 1 0 0 1
1 0 1 0 1
0 1 0 1 0
0 0 1 0 0
1 1 0 0 0

Also, note that the matrix is symmetric.

The following observations are made.

1. The entries along the principal diagonal of the matrix are 0 if and only if the
graph has no self-loops. For self-loop, the entry will be 1.

2. The adjacency matrix is not defined for parallel edges.

3. If a graph has no self-loop, the degree of a vertex is equal to the number of
1 in the corresponding row or column of the matrix.

4. A graph G is disconnected if and only if its adjacency matrix can be partitioned
into block matrices as follows

 Where g1 and g2 are two components of G.

( )
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5.3 Incidence matrix
Let G be a graph with n vertices, m edges and without self-loops. The incidence

matrix A of G is an n×m matrix X = [aij] whose n rows correspond to the n vertices
and the m columns correspond to m edges such that

aij =
1,if jth edge mj is incident on the ith vertex

0, otherwise

It is also called the vertex-edge incidence matrix and is denoted by A(G).

Example 5.2: Let us consider the graph of Figure 4.1 Its corresponding incidence
matrix is shown as follows. Note that the rows denote the vertices {a,b,c,d,e} and
columns denote the edges {(a,e),(a,b),(b,e),(b,c),(c,d)}of the graph.

1 1 0 0 0

0 1 1 1 0

0 0 0 1 1

0 0 0 0 1

1 0 1 0 0

Observations:

1. Each column in the incidence matrix contains only two '1' for a simple graph
as each column represents an edge and an edge contains two end vertices.

2. Each row of the matrix may contain more than one '1'. The sum of such '1'
is the degree of the corresponding vertex.

3. If all entries of a row are '0', it represents an isolated vertex.

4. The matrix is not symmetrical. It is a rectangular array.

5. Parallel edges indicate identical columns in the matrix

6. If a graph is disconnected into two components, then the incident matrix will
be shown as block matrices as follows;

 

Where g1and g2 are two components of G.

{

( )
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Property: Two graphs G1 and G2 are isomorphic if and only if their incidence
matrices A(G1) and A(G2) differ only by permutations of rows and columns. In incidence
matrix, '1' in a row indicate that the corresponding vertex in the column is incident
with the corresponding edge representing the row. If two graphs are isomorphic, then
their edge and vertex incidence are preserved. Thusrows and columns of the
corresponding incidence matrices will only be differed by positions.

5.4 Worked out Examples (Unit 1-5)
1. Prove that the sum of the degrees of the vertices of any finite graph is even.

Solution: If we begin with just the vertices and no edges (i.e. starting with the
null graph), every vertex has degree zero, so the sum of those degrees is zero,
an even number. Now add edges one at a time, each of which connects one vertex
to another, or connects a vertex to itself.  Each edge is ended at two vertices.
Either the degree of two vertices is increased by one (for a total of two) or one
vertex's degree is increased by two. In either case, the sum of the degrees is
increased by two, so the sum remains even.

2. The number of odd degree vertices is even in an undirected graph.

Solution: Let G be a graph with e edges and n vertices v1,v2,v3,...,vn. Since each
edge is incident on two vertices (different or same), it contributes 2 to the sum
of the degree of vertices in the graph G. Thus the sum of degrees of all vertices
in G is twice the number of edges in G. Hence, 1

n
i=∑ degree(vi) = 2e

Let the degrees of first r vertices be even and the remaining (n-r) vertices have
odd degrees, then clearly,

1

r

i=
∑ degree(vi) = even number

⇒ 1
n
i=∑ degree(vi) = 1

r
i=∑ degree(vi) + 1

n
i r= +∑ degree(vi)

⇒ 
1

n

i=
∑ degree(vi) – 

1

r

i=
∑ degree(vi) = 

1

n

i r= +

∑ degree(vi)

However, the for i = r + 1, r + 2,...,n each d(vi) is odd. So, the number of terms

in 1 1
n

r= +∑ degree(vi) must be evenas the left-hand side of the above equation is
even.
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Thus (n–r) is an even number.

Hence the result is true.

3. Given a graph G with vertex set, V = {v1,...,vn} we define the degree sequence
of G to be the list d(v1),...,d(vn) of degrees in decreasing order. For each of
the following lists, give an example of a graph with such a degree sequence
or prove that no such graph exists:

(a) 3, 3, 2, 2, 2, 1

(b) 6, 6, 6, 4, 4, 3, 3

Solution:

(a) There is no such graph since the number of odd-degree vertices in a graph
is always even.

(b) Consider the following graph:

4. Do simple graphs with the following degree sequences exist:

(a) 6, 6, 6, 4, 4, 2, 2

(b) 6, 6, 6, 6, 5, 4, 2, 1?

Solution: (a) No, since otherwise, we have 3 vertices of degree 6 which are
adjacent to all other vertices of the graph; so each vertex in the graph must be
of degree at least 3.

(b) No! Note that each vertex of the degree 6 is adjacent to all but one other
vertex. In particular, each such vertex is adjacent to at least one of v1 and v2
(where d(v1) = 1 and d(v2) = 2). However, that would mean at least four edges
touching v1 or v2, contradicting d(v1) + d(v2) = 3

5. How many graphs exist on a given set of n vertices? How many of them
contain exactly m edges?
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Solution: Since there are C2
n  possible edges on n vertices and a graph may or

may not have each of these edges, we get that there are C22
n

 possible graphs on
n vertices. For the second problem, out of the C2

n possible edges, we want to
choose m ones. So there are Cm

C2
n
) possible graphs on n vertices and with m edges.

6. Show that a simple graph with n vertices must be connected if it has more

than (n-1)(n-2)
2

edges.

Solution: Let G = (V,E) a simple graph with n vertices say v1,v2,…,v(n-1),vn.

Choose n–1  vertices v1,v2,…,v(n-1) of G. Now, we can draw maximum (n-1)(n-2)
2

number of edges between these n–1 vertices. Therefore, if we have more than
(n-1)(n-2)

2
 number of edges, then at least one edge exists between vn and some

vertices among v1,v2,…,v(n-1). Hence G must be connected.

7. Show that if u  and v  are the only two odd degree vertices of a graph G,
then u  and v  are connected in G.

Solution: If G is a connected graph, then nothing to prove. Let G be disconnected.
If possible assume that u  and vare not connected. Then u  and vlie in the different
components of G. Hence the component of G containing u (similarly the component
of G containing  v) contains only one odd-degree vertex u which is not possible
as each component of G is itself a connected graph and in a graph number of odd
degree vertices should be even. Therefore u and v lie in the same component of
G. Hence they are connected.

8. Every simple graph with n vertices and k edges has at least n-k components
provided n>k.

Solution: A simple graph with n vertices and 0 edges has n components.  By
adding one edge, the number of components is reduced by 1. Similarly, by adding
k edges, the components remain n-k.

9. (a) Is Cn a subgraph of Kn?

(b) For what values of n and m is K(n,n) a subgraph of Km?

(c) For what n is Cn a subgraph of K(n,n)?

Solution: (a) Yes! (left as an exercise)
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(b) We have |V (Km)| = m |V′ (K(n,n))| = 2n. On the other hand, by similar reasoning
as part (a), we get that the statement holds for all m,n with m ? 2n.

(c) First, note that a bipartite graph cannot have any cycle of odd length, so n
cannot be odd. For even n, one can check that K(n,n) has a cycle of length n.

10. A disconnected graph G with n even vertices has two components each of

which is complete, prove that G has a minimum of n(n – 2)
4

 edges.

Solution: Let x be the number of vertices in one of the components. So, the other
component has n-x number of vertices, since both componentsof G are complete
graphs. Then, the total number of edges of G is

m = 2x(x – 2) ( )( 1) ( 1)
2 2 2

n x n x n nx nx− − − −
+ = − +

Therefore, differentiating 2dm x n
dx

= −  and 
2

2 2 0d m
dx

= >

Now, for optimality, 0
2

dm nx
dx

= ⇒ =

Therefore, min m = 
2

2

( 1) ( 2)
2 4natx

n n n nx nx
=

− −⎡ ⎤
− + =⎢ ⎥⎣ ⎦

11. Prove that a path with n vertices is of length n–1.

Solution : We know that in a path, every vertex except the last is followed by
precisely one edge and no edge is used more than once. Therefore, if a path has
n vertices, it must have n–1 edges.

12. Show that a cycle with n vertices has n edges.

Solution : In a cycle, every vertex is followed by precisely one edge. Therefore,
if a circuit has n vertices, it must have n edges.

13. Prove that every cycle is a 2-connected graph.

Solution : We know that in a cycle exactly two edges are incident on every
vertex. Therefore, every cycle is a 2-connected graph.
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14. Show that every simple graph has two vertices of the same degree.

Solution : Assume that the graph has n vertices. Each of those vertices is connected
to either 0,1,2,...,n–1 other vertex. If any of the vertices are connected to n–1
vertices, then it is connected to all the others, so there cannot be a vertex connected
to others with degree 0. Thus it is impossible to have a graph with n vertices
where one vertex has degree 0, and another has a degree n–1. Thus the vertices
can have at most n–1 different degree, but since there are n vertices, at least two
must have the same degree.

Alternate Solution: Suppose that the n vertices all have different degrees, and
look at the set of degrees. Since the degree of a vertex is at most n ? 1, the set
of degrees must be {0,1,2,...,n - 2,n - 1}. But that's not possible, because the
vertex with degree n ? 1 would have to be adjacent to all other vertices, whereas
the one with degree 0 is not adjacent to any vertex

Prove that a complete graph with n vertices contains n(n–1)/2 edges.

Solution : This is easy to prove by induction. If n = 1, zero edges are required,
and 1(1–0)/2 = 0.

Assume that a complete graph with k vertices has k(k–1)/2. When we add the (k
+ 1)st vertex, we need to connect it to the k original vertices, requiring k new
edges. We will then have k(k - 1)/2 + k = (k + 1)((k + 1) - 1)/2 vertices, and
hence the proof is done by mathematical induction.

16. State which of the following graphs are bipartite graphs.
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Solution:  (a)  The given graph is a bipartite graph as the vertex set can be
partitioned into two disjoint independent vertex sets namely {v1,v2,v3,v4}and {v5}.
Also, vertices of one of these sets are connected to vertices of other sets.

(b) This graph is not a bipartite graph as the vertex set can not be written as a
disjoint union of two independent sets.

(c) The given graph is a bipartite graph. The two disjoint independent sets are
{v1,v3,v5} and {v2,v4}. Such that edges join from one set to another.

17. A graph is bipartite if and only if it has no odd cycle.

Necessary Part: Let G be a bipartite graph. Every closed walk alternates between
two bipartite sets, so every return to the original set happens after an even
number of steps. Hence, G has no odd cycle.

Sufficient Part: LetG be a graph with no odd cycle.

First, the result will be proved in the case where G is connected. Assume G has
no odd cycle. Let u ∈ V (G) be an arbitrary vertex and d(u,v) denotes the number
of edges between the vertices u and v.

Also, let,

X = {v ∈ V (G): d(u,v) is even},

Y = {v ∈ V (G): d(u,v) is odd}.

Clearly, X �  Y = ∅ and X �  Y = V (G) since G is connected. We claim that
X,Y is a bipartition of G. Suppose not - then there exists an edge incident to two
vertices of X or an edge incident to two vertices of Y. Without loss of generality,
assume the former.

Let x1,x2 ∈ X and x1 ~ x2. It follows that

x1 ∈ X ⇒ ∃ u,x1-path P1 of even length,

x2 ∈ X ⇒ ∃ u,x2-path P2 of even length.

Concatenate u,x1-path P1, the edge x1 x2, and the x2,u-path P2 to obtain a closed
odd walk. Now it is obvious that the graph must contain an odd cycle.  Hence,
it must be the case the X,Y is a valid bipartition, so G is bipartite.

18. (a) How many edges do a planar graph with 5 vertices and 3 faces have.?

(b) How many vertices does a planar graph with 7 edges and 5 faces have?
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Solution: Euler's formula is V + F = E + 2 where V is the number of vertices,
F is the number of faces (regions), and E is the number of edges.

(a) There are E = V + F - 2 = 6 edges.

(b) There should be V = E – F + 2 = 4 vertices. However, this is not possible
without creating duplicate edges. With duplicate edges, it is possible, and the
formula gives the correct answer if we count the space between two duplicate
edges also as a face. Note, however, that this is not a graph, but a multigraph.

19. What is the maximum number of edges in a bipartite planar graph with n
vertices?

Solution: In a bipartite graph, every cycle has even length, so in particular, every
face has an even number of edges. A face cannot have only 2 edges, because then
there would be a double edge. A face with 6 edges can always be subdivided into
two faces with 4 edges each (and the same is true for faces with even more
edges), so in any planar bipartite graph with a maximum number of edges, every
face has length 4. Since every edge is used in two faces, we have 4F = 2E.
Plugging this into Euler's formula, we find that E = 2V – 4. Since n = V, the
answer is 2n – 4 edges.

5.5 Summary
This unit gives an overview of different types of matrix representation of graphs
which makes it easy to use in computers. With lots of examples given in this unit
the learner will now easily grasp the subject.

5.6 Exercises (Unit 1-5)
1. Draw all types of graphs on five vertices.
2. State which of the following graphs are simple.



NSOU � SE-MT-21 � 43

3. Find the degrees of the vertices in the following graphs

4. Determine which complete bipartite graphs are complete graphs.
5. Prove that if every vertex of a simple graph has degree 2, then the graph is

a cycle.
6. Find the maximum number of edges in a graph with p vertices and no even

cycles.

7. Prove that 1
n
i=∑ di = 2e where di is the degree vertex vi, n is the number of

vertices and e is the number of edges.
8. Prove or disprove that the complement of a simple disconnected graph is a

connected graph.
9. Prove or disprove that every self-complementary graph has 4n or 4n+1 number

of vertices.
10. Determine whether the given walk is (a) a path, (b) a trail, (c) a closed walk,

(d) a circuit, (e) a cycle.
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11. In the following graph, find
(a) a walk of length 5.
(b) a trail of length 9.
(c) a circuit of length 7.

12. Prove that if G and H are isomorphic iff their complements are isomorphic.
13. Prove that the on the left side of the following figure is isomorphic to the

complement of the graph on the right side of the figure.

14. Prove that the complement of a simple disconnected graph must be connected.

15. Check the isomorphism of the following figures.

a.
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b.

c.

d.

16. Is the following graph planar? Is it bipartite?

15. Prove that any two simply connected graphs with n vertices, all of degree
two, are isomorphic.

16. Prove that a simple graph with n verticesmust be connected if it has more than
(n-1)(n-2)/2 edges.
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17. Draw a connected graph that becomes disconnected when any edge is removed
from it.

18. A be an adjacency matrix of a simple graph G, then the ij-th entry of Ar is the
number of different edge sequences of r edges between vi and vj.
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Unit 6 � Eulerian graphs and Hamiltonian graphs

Structure

6.0 Objevtive

6.1 Introduction

6.2 Eulerian circuits and Eulerian graphs

6.3 Hamiltonian Graphs and Hamiltonian cycles

6.4 Illustrative examples

6.5 Summary

6.6 Exercises

6.0 Objective
In this unit, the details of Euler graphs, Hamiltonian graphs and their properties

are described. This chapter concludes with the famous Konigsberg Bridge problem
that all edges will be traversed or not.

6.1 Introduction
The Konigsberg Bridge Problem is one of the famous problems in graph theory.

This problem was unsolved until 1736. In the eighteenth century, Konigsberg was the
capital of East Prussia but now renamed as Kaliningrad and transferred to West Soviet
Russia. The Pregel River flowed through town and split into two branches and formed
two islands, C and D, as shown in Fig 6.1(a). There were seven bridges crossed the
river and linked the four landmasses labelled by A, B, C, D, as shown in Figure 6.1(a).
The problem was if it is possible to start on one of the four landmasses, walk over
each of the seven bridges exactly once, and return to the starting point (without
swimming across the river). Famous Swiss mathematician Leonhard Euler solved this
problem in 1736. To solve this problem, Euler modelled a graph, as shown in Figure
6.1(b), corresponding to this real problem where vertices represent the landmasses
and edges represent the bridges.
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6.2 Eulerian circuits and Eulerian graphs
Now, Konigsberg Bridge Problem became that if it is possible to start on one of

the four vertices, walk over each of the edges exactly once, and return to the starting
vertex, i.e., is it possible to find a circuit which is passing through each edge of the
graph exactly once (allowing vertex repetition). This circuit may not include all vertices
of the graph because if some isolated vertices are present in the graph they do not
have any contribution to find the circuit. Euler also raised (and then solved) a new
question of what type of graphs are suitable for finding this type of circuit.

Figure 6.1: Geographic map of the Konigsberg bridge problem and its graph.

So, without any loss of generality, we can neglect the isolated vertices and say
that the graph in which this type of circuit exists is a special type of connected graph.
This type of circuit is known as the Eulerian circuit. An Eulerian circuit of a connected
graph G is a circuit which passes through all edges of G exactly once.Note that
vertices may repeat in an Eulerian circuit. A graph is called anEulerian graph if it
contains an Eulerian circuit. Eulerian circuits and Eulerian graph are named, of course,
after Leonhard Euler who solved the Konigsberg Bridge Problem. The graph as
shown in Figure 6.2 is an Eulerian graph.

Figure 6.2: An Eulerian graph.

 Now, if we observe the Eulerian circuit, we see that at every vertex other than
the common starting and ending vertex, we come into the vertex along one edge and
go out along another; this can happen more than once, but since we traverse all edges
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exactly once, the number of edges incident at such a vertex must be even. The
common starting and ending vertex may be visited more than once; except for the
very ?rst time we leave the starting vertex, and the last time we arrive at the vertex,
each such visit uses exactly two edges. Together with the edges used ?rst and last,
this means that the starting vertex must also have even degree. For this reason, the
graph corresponding to the since the Konigsberg Bridge Problem is not an Eulerian
graph (it's all vertices have odd degrees). So, the question should arise in our mind
immediately that if a graph is connected and all vertices have even degrees, is there
an Euler circuit? The answer is yes.

Example 6.1: In Figure 6.3, v1,e1,v2,e2,v3,e3,v1,e4,v4,e5,v5,e6,v1 is an Euler circuit.

 

Figure 6.3: A simple graph

Example 6.2: In Figure 6.4, a graph is shown such that each vertex is of even
degree. Hence, anEuler circuit can be found. The Euler circuit is given as follows:
v2,e6,v4,e3,v3,e2,v2,e5,v6,e4,v4,e7,v5,e8,v1,e1,v2

 

Figure 6.4: A simple graph.

Theorem 6.1: A connected graph G is an Eulerian graph iff every vertex of G has
even degree.
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Proof: Sufficient part: Let G is a connected finite graph with all vertices of even
degree. If G has only one vertex, then the problem is trivial, so we assume that G has
edges. We have to prove that G has an Eulerian circuit. Let v be any vertex of G. If
there are any loops incident with v, traverse these first, one after the other without
repetition. Since we are assuming that G is connected and has edges, there exists at
least one vertex v1 (≠ v) which is adjacent to v. If there are any loops incident with
v1, traverse these ones after the other without repetition. Again, since all vertices have
even degrees, there exists at least one vertex v2 (≠ v1,v) which is adjacent to v1. Thus
we have a trail from v to v2 which we continue if possible. Each time we arrive at
a new vertex through an edge which is not visited before, traverse all the loops
(incident at that vertex) without repetition. Since the degree of each vertex is even,
it is always possible to leave a vertex apart from v at which we arrive, until we return
to the starting vertex v, and every edge incident with the starting vertex has been
used. The sequence of vertices and edges formed in this way is a closed-circuit say
C. If C uses every edge, we are done, i.e., C is an Eulerian circuit as every vertex
in C is of even degree since each time we entered and left each vertex through
different edges. If C is not an Eulerian circuit, then we delete from G all the edges
of C and all the vertices of G which are become isolated (that is, acquire degree 0)
by this procedure. All vertices of the remaining graph say G1 are even (since both G
and C have vertices of even degrees) and of positive degree. Also, G1 and C have at
least one common vertex say u because G is connected.  Now, starting at u, and
proceeding in G1, using the same traversing procedure as we applied in G, we construct
a circuit C1 in G1 which returns to u. Now, starting at v, moving along C to u, then
traversing through C1 back to u, and then traversing through C back to v. Thus we
construct a circuit say C2 in G which contains more edges than C1. If it contains all
the edges of G, it is an Eulerian circuit; otherwise, we repeat the previous process to
construct a sequence of larger and larger circuits. Since our graph is finite, the
process must eventually stop, and it stops only with a circuit which passing through
all edges exactly once, i.e., with an Eulerian circuit. Therefore, the graph G is an
Eulerian graph.

Necessary part: Let the connected graph G is an Eulerian graph. So, G contains
an Eulerian circuit. Since the graph G is connected, so the Eulerian circuit not only
passing through all the edges exactly once but also includes all the vertices. Also, it
is observed that at every vertex other than the common starting and ending vertex,
we come into the vertex along one edge and go out along another; this can happen
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more than once, but since we traverse all edges exactly once, the number of edges
incident at such a vertex must be even. The common starting and ending vertex may
be visited more than once; except for the very first time we leave the starting vertex,
and the last time we arrive at the vertex, each such visit uses exactly two edges.
Together with the edges used first and last, this means that the starting vertex must
also have even degree. Hence all vertices have even degrees.

Now, looking back to the graph of the Konigsberg problem (Figure 2.4(b)), we see
that there is no even vertex. Hence, this graph is not an Eulerian graph. Therefore it is
not possible to start on one of the four landmasses, walk over each of the seven bridges
exactly once, and return to the starting point (without swimming across the river).

Theorem 6.2: If G is a graph in which the degree of every vertex is at least two,
then G contains a cycle.

Proof: Let G be a graph in which the degree of every vertex is at least two. If
G has any self-loops or multiple edges, the result is trivial. Suppose that G is a simple
graph. Now, we choose any vertex v0 of G. Since the degree of every vertex is at least
two, so, there exists at least one vertex v1 ≠ v0 such that v1 is adjacent to v0. Again,
there exists at least one vertex v2 ≠ v0,v1 which is adjacent to v1.  Thus we get a path
from v0 to v2 which we continue if possible. Now, at any stage, if the vertex vi,i ≠ 2
is already chosen, then we choose v(i+1) which is adjacent to vi other than v(i-1). Since
the degree of each vertex is at least 2, the existence of v(i+1) is always guaranteed.
Since G has an only finite number of vertices, so, at some stage, we have to choose
a vertex which has been chosen before. Let vk be the first such vertex and let vk = vi
where i < k. Thus we get a closed cycle which is vi→v(i+1)→...→vk (=vi).

Hence the result is proved.

Theorem 6.3: If G is a non-trivial Eulerian graph, then set of edges of G can be
partitioned into cycles.

Proof: Since G is a non-trivial Eulerian graph, so, every vertex is even and has
a degree of at least 2. Therefore, by theorem 6.2, G contains a cycle C1. The removal
of the edges of C1 forms a spanning sub-graph G1 in which every point still has even
degree. If G1 has no edges, then the result is proved; otherwise, we repeat the same
procedure (which we applied on G to get G1) on G1 to forms a graph G2 in which
again all vertices are even. This process will be continued until a disconnected graph
Gn is obtained. Therefore, we have a partition of the edge set E of G into n cycles.
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6.3 Hamiltonian Graphs and Hamiltonian cycles
A path in a connected graph G is called a Hamiltonian path if it traverses each

vertex in G exactly once (starting and ending vertices are distinct, of course). A cycle
in a connected graph G is called a Hamiltonian cycle if it traverses each vertex in G
exactly once, except for the starting and ending vertex that appears twice. A connected
graph G is called a Hamiltonian graph, if it contains a Hamiltonian cycle.  A connected
graph is called a traceable or Semi-Hamiltonian graph if it contains a Hamiltonian
path. Such paths, cycles and graphs are named after famous Irish mathematician Sir
William Rowan Hamilton, who discovered, in 1856, the icosian game, now also
known as Hamilton's puzzle on the regular dodecahedron of wood, as shown in
Figure 6.5, a solid with 12 congruent faces, each of which is a regular pentagon. The
20 corner points of the dodecahedron were marked with the names of 20 cities of the
world, and the object of the game was to find a route (Hamiltonian cycle) "around
the world," along the edges of the solid, which passed through each city exactly once
and come back to the city where the tour started.Hamilton applied such cycles in his
early investigations into group theory, the three edges incident to a vertex corresponding
to three generators of a group. The graph of the dodecahedron is a Hamiltonian
graph; a Hamiltonian cycle is indicated in Figure 6.5 by thick lines.

 

Figure 6.5: Dodecahedron.

On the other hand, the Herschel graph of Figure 6.5 is a non-Hamiltonian graph,
because it is bipartite and has an odd number of vertices. This graph is, however,
traceable, i.e., the Herschel graph contains a Hamiltonian path. Note that an Eulerian
circuit traverses every edge exactly once, but may repeat vertices, while a Hamiltonian
cycle visits each vertex exactly once. Also, if we remove anyone edge from a
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Hamiltonian cycle, then we will get a Hamiltonian path. So, Hamiltonian cycle (or
path) cannot include a self-loop or parallel edges.  Thus a general graph may be made
simple by removing parallel edges and self-loop before tracing a Hamiltonian cycle in
it. Since a Hamiltonian path is a sub-graph of a Hamiltonian cycle, so, every graph
that has a Hamiltonian cycle also has a Hamiltonian path. However, the converse is
always not true. Obviously, not each connected graph has a Hamiltonian circuit. In
this context, one question may arise in our mind that what is the necessary and
sufficient condition for a connected graph to have a Hamiltonian circuit? Hamilton
first proposed this question in 1859, which is still an unsolved problem in graph
theory. While there is a criterion for determining whether or not a graph contains an
Eulerian circuit, a similar criterion does not exist for a Hamiltonian cycle.

Figure 6.6: The graph of the dodecahedron of Figure 6.5.

Figure 6.7: The Herschel graph.

6.4 Illustrative examples
1. Which diagrams can be drawn without lifting one's pen from the paper

not covering any line segment more than once?
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Ans. An Eulerian graph or semi-Eulerian graph.

2. Check whether the following graph has is Eulerian or Semi-Eulerian or
not?

Ans. We see that the given graph is connected and this graph has only two odd
vertices which are b and e. All other vertices are of even degree. So, the given graph
is a semi-Eulerian graph.

3. Give an example of a graph which is Hamiltonian but not Eulerian and
vice versa.

Ans. The graph is shown in the following figure, part (a) is Hamiltonian but not
Eulerian. Also, the graph as shown in part (b) is Eulerian but not Hamiltonian.
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4. Find out Euler trail in the following graph, if exists.

Ans. (a): Here v2 and v5 are of odd degree. Hence the Euler trail will start from
one and end in another. The trail is as follows: v2,e2,v3,e3,v4,e4,v5,e7,v2,e1,v1,e6,v6,e5,v5
.

(b): The graph has no vertices of odd degree, hence it has no Euler Trail.

(c): The graph has more than two odd degree vertices, so the graph has no Euler
Trail.

5. Find Euler circuits from the following graphs, if exists.
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Ans.

(a): The graph has odd degree vertices. So Euler circuit does not exist in the
graph.

(b): The given graph is connected and all vertices are of even degrees. Hence, a
circuit can be found containing all the edges of the graph without repeatation. The
Euler circuit is v1,e1,v2,e2,v3,e,v4,e4,v5,e5,v6,e6,v7,e7,v8,e9,v2,e10,v4,e11,v6,e12,v8,e8,v1.

The remaing graphs are left for reader as assignments.

6.5 Summary
This unit describes the traversibility of a graph viz. Eulerian graph and Hamiltonian

graph which has a wide range of applications.
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6.6 Exercise
1. Show that if there is a xy-walk in a graph G, then there is also an xy-path

in G.

2. Show that the equivalence classes determined by the relation of connectedness
between vertices are precisely the vertex sets of the components of the
graph.

3. Let G be a graph with two distinct non-adjacent vertices x and y, and let
G� {e} be the graph obtained from G by the addition of a new edge e=(x,y).
Show that G has an open Eulerian trail connecting x and y if and only if
G� {e}has an Euler circuit.

4. Show that the Herschel graph is non-Hamiltonian.

5. Draw a graph which is Hamiltonian but not Eulerian.

6. Examine whether a Hamiltonian path or cycle exists in the following graph.

7. Show that in a complete graph K(2n+1) there are n edge-disjoint Hamiltonian
cycles.

8. Write down the difference between circuit and cycle.

9. What is the difference between walk and trail?

10. Prove that there can no path longer than a Hamiltonian path (if exists) in a
graph.

11. Draw a graph in which an Eulerian circuit is also a Hamiltonian cycle. What
can you say about such a graph in general?

12. In the following figure find an eulerian path.
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13. Prove that a connected graph remains connected after any edge is removed
from the graph if and only if the edge belongs to any cycle.

14. Find Eluer circuit of the following graphs, if exists.

15. Describe whether the following graphs have an Euler trail. If the graph has
an Euler trail, write one such trail.
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Unit 7 � Graph Algorithms
Structure
7.0 Objective
7.1 Introduction
7.2 Tree
7.3 Travelling Salesman Problem
7.4 Minimum Spanning Tree

7.4.1 Finding MST using Kruskal's algorithm
7.4.2 Prim's algorithm

7.5 Shortest Path
7.5.1 Dijkstra's shortest path algorithm
7.5.2 Floyd Warshall Algorithm

7.6 Solved Problems
7.7 Summary
7.8 Exercises

7.0 Objective
The objective of this unit is to introduce a special type of graph, tree, which is

widely used. Then the subject is further developed by discussing some useful algorithms.

7.1 Introduction
Tree is a very important and interesting type of graph which has the property to

represent the process of distributing mails by post offices based on PIN code, the
family of a river with its tributaries and subtributaries or the genealogy of a family.

7.2 Tree
A tree is an undirected graph G that satisfies any of the following conditions:

i. G is connected and acyclic (contains no cycles).
ii. G is connected but would become disconnected if any single edge is

removed from G.
iii. Any two vertices in G can be connected by a unique simple path.
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If G has finitely many vertices, say n of them, then the above statements are also
equivalent to any of the following conditions:

i. G is connected and has n - 1 edge.
ii. G has no simple cycles and has n – 1 edge.

Figure 7.1: A tree (acyclic graph)

7.3 Travelling Salesman Problem
The travelling salesman problem is a problem in graph theory requiring the most

efficient (i.e., least total distance) Hamiltonian cycle a salesman can take through each
of n cities. No general method of solution is known, and the problem is NP-hard.

The travelling salesman problem (TSP) asks the following question: "Given a list
of cities and the distances between each pair of cities, what is the shortest possible
route that visits each city and returns to the origin city?"

A salesman is required to visit a number of cities during a trip. Given the distances
between the cities, in what order should he/she travel so as to visit every city precisely
once and return to the starting city, with the minimum mileage travelled?

The steps are given below:

Start from any city.

Move to nearest neighbouring city (i.e., a city with minimum distance)

Go to step 2, if all the cities are not visited.

Return to the starting city.
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7.4 Minimum Spanning Tree
A graph without a cycle is called an acyclic graph. A tree is a connected acyclic

graph. Moreover, A spanning tree is a spanning subgraph that is a tree. For a connected
and undirected graph G, a spanning tree T of the graph is a subgraph that is a tree
and includes all the vertices of G. A single graph can have many different spanning
trees. A minimum spanning tree (MST) is a spanning tree T such that sum of the
weight of all edges of T is less than or equal to the sum of weights of all edges of
every other spanning tree of the graph G. The weight of a spanning tree is the sum
of weights given to each edge of the spanning tree.

Note that: A minimum spanning tree has (|V |- 1) edges where |V| is the number
of vertices in the given graph.

Example 7.1: In Figure 7.2, G is a simple graph, T1 and T2 are spanning trees
of G.

Figure 7.2: Spanning rees

7.4.1 Finding a Minimum Spanning Tree (MST) using Kruskal's algorithm
To obtain a minimum spanning tree of a graph, a novel approach was described

by J.B. Kruskal known as Kruskal algorithm. The steps are given below.

Input: A weighted connected graph, G

Step 1: Sort all the edges in non-decreasing order of their weight.

Step 2: Create a set T where edges of spanning tree will be included. Initially.

T = φ.
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Step 3:  Pick the smallest edge of G. Check if the edge forms a cycle with the
spanning-tree formed so far in T. If a cycle is not formed with the edges of T, include
this edge. Else, discard it.

Step 4:  Repeat step 3 until there are (|V|-1) edges in the spanning tree T.

The algorithm is a Greedy Algorithm. The Greedy Choice is to pick the smallest
weight edge that does not cause a cycle in the MST constructed so far.

Example 7.2:

 Let us considerthe graph in Figure 7.3

Edges Weight Selection

(7,6) 1 Yes

(2,8) 2 Yes

(6,5) 3 Yes

(2,5) 4 Yes

(0,1) 4 Yes

(8,6) 6 No

(7,8) 7 No

(2,3) 7 Yes

(1,2) 8 No

(0,7) 8 Yes

(3,4) 9 Yes

(4,5) 10 No

(1,7) 11 No

(3,5) 14 No

Figure 7.3: A weighted connected graph

The graph contains 9 vertices and 14 edges. So, the minimum spanning tree will
be formed having (9 - 1) = 8 edges. Now the steps of the algorithm are mentioned
as follows.

Now pick all edges one by one from sorted list of edges
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1. Pick edge 7-6: No cycle is formed, include it.

2. Pick edge 8-2: No cycle is formed, include it.

3. Pick edge 6-5: No cycle is formed, include it.

4. Pick edge 0-1: No cycle is formed, include it.
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5. Pick edge 2-5: No cycle is formed, include it.

6. Pick edge 8-6: Since including this edge results in cycle, discard it.

7. Pick edge 2-3: No cycle is formed, include it.

8. Pick edge 7-8: Since including this edge results in cycle, discard it.

9. Pick edge 0-7: No cycle is formed, include it.

10. Pick edge 1-2: Since including this edge results in cycle, discard it.
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11. Pick edge 3-4: No cycle is formed, include it.

Since the number of edges included equals (|V| - 1), the algorithm stops here.

Theorem 7.1 (Kruskal): In a connected weighted graph G, Kruskal's Algorithm
constructs a minimum-weight spanning tree.

Proof: The first task is to show that the algorithm produces a tree. It is obvious
that the graph prepares an acyclic subgraph containing (|V| - 1) number of vertices.
As a result, the subgraph is a tree.

Let T be the resulting spanning tree, and T´ be a spanning tree with minimum
weight. If T = T´, then there is nothing to prove. If not, let e be an edge in T which
is not in T´. If we add e to T´, it will form a cycle. However, then there exists one
edge e´ which does not belong to T. Let us consider the spanning-tree T´+e–e´. Thus
when the algorithm chooses the last edge between e and e´, it is clear that w(e) ≤ w
(e´). Repeating the process, we can conclude the theorem.

7.4.2 Prim's algorithm
Prim's algorithm is used to find a minimum spanning tree. Prim's algorithm is an

algorithm that takes a graph as input and finds the subset of the edges of that graph
which form a tree that includes every vertex has the minimum sum of weights among
all the trees that can be formed from the graph. It falls under a class of algorithms
called greedy algorithms which find the local optimum in the hopes of finding a global
optimum.We start from one vertex and keep adding edges with the lowest weight
until we reach our goal.

The steps of Prim's algorithm are as follows:
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Input: A connected weighted graph

Step 1: Create a set T that keeps track of vertices already included in Minimum
Spanning Tree (MST).

Step 2: Assign a key value to all vertices in the input graph. Initialize all key
values as INFINITE. Assign key value as 0 for the first vertex so that it is picked first.

Step 3: While T doesn't include all vertices of the graph

a) Pick a vertex u which is not there in T and has minimum key value.

b) Include u to T.

c) Update key value of all adjacent vertices of u. To update the key values,
iterate through all adjacent vertices. For every adjacent vertex v, if weight of
edge (u,v) is less than the previous key value of v, update the key value as
weight of (u,v).

The idea of using key values is to pick the minimum weight edge from cut. The
key values are used only for vertices which are not yet included in MST, the key value
for these vertices indicate the minimum weight edges connecting them to the set of
vertices included in MST.

Example 7.3: Let us understand with the following example:

 

Figure 7.4: A weighted connected graph

The set T is initially empty and keys assigned to vertices are {0, INF, INF, INF,
INF, INF, INF, INF} where INF indicates infinite. Now pick the vertex with the
minimum key value. The vertex 0 is picked, include it in T. So T becomes {0}. After
including to T, update key values of adjacent vertices. Adjacent vertices of 0 are 1
and 7. The key values of 1 and 7 are updated as 4 and 8. Following subgraph shows
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vertices and their key values, only the vertices with finite key values are shown. The
vertices included in T are shown in darkcolor.

Pick the vertex with minimum key value and not already included in MST (i.e,
not in T). The vertex 1 is picked and added to T. So T now becomes {0, 1}. Update
the key values of adjacent vertices of 1. The key value of vertex 2 becomes 8.

Pick the vertex with minimum key value and not already included in MST (not
in T). We can either pick vertex 7 or vertex 2, let vertex 7 is picked. So T now
becomes {0, 1, 7}. Update the key values of adjacent vertices of 7. The key value
of vertex 6 and 8 becomes finite (1 and 7 respectively).
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Pick the vertex with minimum key value and not already included in MST (not
in T). Vertex 6 is picked. So T now becomes {0, 1, 7, 6}. Update the key values of
adjacent vertices of 6. The key value of vertex 5 and 8 are updated.

We repeat the above steps until T  includes all vertices of given graph. Finally,
we get the following graph.
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7.5 Shortest Path
The shortest path problem is about finding a path between two vertices in a graph

such that the total sum of the weights of the edges is minimum.

7.5.1 Dijkstra's shortest path algorithm
Given a graph and a source vertex in the graph, find the shortest paths from

source to all vertices in the given graph.

Dijkstra's algorithm is very similar to  Like Prim's MST, we generate at (shortest-
path tree) with a given source as root. We maintain two sets, one set contains vertices
included in the shortest-path tree, other set includes vertices not yet included in the
shortest-path tree. At every step of the algorithm, we find a vertex which is in the
other set (set of not yet included) and has a minimum distance from the source.

Below are the detailed steps used in Dijkstra's algorithm to find the shortest path
from a single source vertex to all other vertices in the given graph.

The steps are given as follows.

1) Create a set T (shortest path tree set) that keeps track of vertices included
in the shortest-path tree, i.e., whose minimum distance from the source is
calculated and finalized. Initially, this set is empty.

2) Assign a distance value to all vertices in the input graph. Initialize all distance
values as INFINITE. Assign distance value as 0 for the source vertex so that
it is picked first.

3) While T doesn't include all vertices

a) Pick a vertex u which is not there in T  and has minimum distance value.

b) Include u to T

c) Update distance value of all adjacent vertices of u. To update the distance
values, iterate through all adjacent vertices. For every adjacent vertex v,
if the sum of a distance value of u (from source) and weight of edge u-
v, is less than the distance value of v, then update the distance value of
v.

Example 7.4: Let us consider Figure 7.5 as an input graph.
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Figure 7.5: A weighted connected graph

The set T is initially empty and distances assigned to vertices are {0, INF, INF,
INF, INF, INF, INF, INF} where INF indicates infinite. Now pick the vertex with
minimum distance value. The vertex 0 is picked, include it in T. So T becomes {0}.
After including 0 to T, update distance values of its adjacent vertices. Adjacent
vertices of 0 are 1 and 7. The distance values of 1 and 7 are updated as 4 and 8.
Following subgraph shows vertices and their distance values, only the vertices with
finite distance values are shown. The vertices included in T are marked 'T' beside the
vertices.

Pick the vertex with minimum distance value and not already included in T. The
vertex 1 is picked and added to T. So T now becomes {0, 1}. Update the distance
values of adjacent vertices of 1. The distance value of vertex 2 becomes 12.
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Pick the vertex with minimum distance value and not already included in T. Vertex
7 is picked. So T now becomes {0, 1, 7}. Update the distance values of adjacent
vertices of 7. The distance value of vertex 6 and 8 becomes finite (15 and 9 respectively).

Pick the vertex with minimum distance value and not already included in T.
Vertex 6 is picked. So T now becomes {0, 1, 7, 6}. Update the distance values of
adjacent vertices of 6. The distance value of vertex 5 and 8 are updated.
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We repeat the above steps until T does not include all vertices of a given graph.
Finally, we get the following Shortest Path Tree (SPT).

7.5.2 Floyd Warshall Algorithm
The Floyd Warshall Algorithm is for solving the All Pairs Shortest Path problem.

The problem is to find the shortest distances between every pair of vertices in a given
edge-weighted directed Graph.The algorithm is an efficient method of finding the
adjacency matrix of the transitive closure of relation on a finite set from the adjacency
matrix. It uses properties of the digraph D, in particular, walks of various lengths in D.

We let A be the adjacency matrix of R and T be the adjacency matrix of the
transitive closure of R. T is called the reachability matrix of digraph D due to the
property that T(i,j)  = 1 if and only if vj can be reached from vi in D by a sequence
of arcs (edges).

1. In Warshall's algorithm, we construct a sequence of Boolean matrices A =
W[0], W[1], W[2],...,W[n] = T, where A and T are as above. This can be done
from digraph D as follows.

2. [W[1]](i,j) = 1 if and only if there is a walk from vi to vj with elements of a
subset of {v1}as interior vertices.

3. [W[2]](i,j) = 1 if and only if there is a walk from vi to vj with elements of a
subset of {v1, v2} as interior vertices.

4. Continuing this process, we generalize to [W[k]](i,j) = 1 if and only if there is
a walk from vi to vj with elements of a subset of {v1, v2,…vk} as interior
vertices.
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To find [W[k]]i,j we use the formula [W[k]](i,j) = [W[k-1]](i,j) or [W[k-1]](i,k) and [W[k-1]](k,j)

Example 7.5:

Figure 7.6: A directed graph

Let us consider the graph in Figure 3.3. The adjacency matrix of the graph is
drawn as follows.

0 1 0 1

A =
1 0 1 0 which is taken as [W[0]]
1 0 0 0
0 0 0 0

Now, [W[1]] = [W[0]](i,j) or ([W[0]](i,1)  and [W[k]](1,j))

Let us construct the W[1] = 

0 1 0 1
1 1 1 1
1 1 0 1
0 0 0 0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎝ ⎠

 where v1 is an intermediate vertex.

Now, [W[2]](i,j) = [W[1]](i,j) or ([W[1]](i,2) and [W[1]](2,j))

Let us construct the W[2] = 

1 1 1 1
1 1 1 1
1 1 1 1
0 0 0 0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎝ ⎠

where v_1is the intermediate vertex.

( )
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Now, [W[3]](i,j) = [W[2]](i,j) or ([W[2]](i,3) and [W[2]](3,j))

Let us construct the W[3] = 

1 1 1 1
1 1 1 1
1 1 1 1
0 0 0 0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎝ ⎠

where v1 is the intermediate vertex.

Now, [W[4]](i,j) = [W[3]](i,j) or ([W[3]](i,4) and [W[3]](4,j))

Let us construct the W[4] = 

1 1 1 1
1 1 1 1
1 1 1 1
0 0 0 0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎝ ⎠

where v1 is the intermediate vertex.

7.6 Illustrated Problems
Use Dijkstra Algorithm to find shortest paths of the following graph.

Solution:

Dijkstra Algorithm: To find the shortest path lengths from each node to the
starting node.

Initially, the shortest path set T = φ and gradually in different steps the set is
completed with all vertices as follows. In the table, the updated values of vertices are
shown.
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Steps Shortest Paths

Step 1 T={A}

Step 2 T={A,B}

Step 3 T={A,B,F}

Step 4 T={A,B,F,C}

Step 5 T={A,B,F,C,D}

Step 5 T={A,B,F,C,D,E}

Step 6 T={A,B,F,C,D,E,G}

Step 7 T={A,B,F,C,D,E,G,I}

Step 8 T={A,B,F,C,D,E,G,I,H}

Vertices Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8

A × × × × × × × ×

B 2 × × × × × × ×

C 3 3 3 × × × × ×

D ? ? ? 4 × × × ×

E ? ? ? 5 5 × × ×

F ? 3 × × × × × ×

G ? ? 5 5 5 5 × ×

H ? ? 6 6 6 6 6 6

I ? ? 5 5 5 5 5 ×

Thus, we obtained the shortest path lengths from each node to the starting nodes
as from B to A: 2, C to A: 3, D to A: 4, E to A: 5, F to A: 3, G to A: 5, H to A:
6 and I to A: 5.

2. Use the Warshall Algorithm to find all pair of shortest paths in the given
problem.



76 � SE-MT-21 � NSOU

From the given graph, we have the adjacent Matrix T0, given as follows.

a b c d

a 0 1 0 0

b 0 0 0 1

C 0 0 0 0

d 1 0 1 0

Now, let us consider T1, a matrix representation of paths from each pair passing
the vertex "a" as follows.

a b c d

a 0 1 0 0

b 0 0 0 1

C 0 0 0 0

d 1 1 1 0

Now, similarly, matrix T2, where "a and b" as the intermediate vertex is formed
as follows

a b c d

a 0 1 0 1

b 0 0 0 1

C 0 0 0 0

d 1 1 1 1
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Now, a b c d

a 0 1 0 1

T3 = b 0 0 0 1

C 0 0 0 0

d 1 1 1 1

and a b c d

a 1 1 1 1

T4 = b 1 1 1 1

C 0 0 0 0

d 1 1 1 1

Thus, the matrix T4 is the representation of all such paths intermediating a, b, c
and d. It is the transitive closure of the adjacency matrix.

7.7 Summary
An important type of graph, Tree is introduced in this unit. Then some very useful

and simple algorithms for finding minimal spanning tree are described which are
applied in various fields and situations.

7.8 Exercise
1. Find the tour using the travelling salesman problem of the given graph.
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2. For each of the adjacency matrices A given below, (a) draw the corresponding
digraph and (b) find the matrix T of the transitive closure using the digraph
implementation of Warshall's algorithm.

3. Show that the following graph having 13 vertices with 9 vertices of degree
1, 3 vertices of degree 4 and one vertex of degree 3 is a tree.

4. Prove or disprove: If T is minimum-weight spanning tree of a weighted graph
G, then any path in T is minimum weight path in G.

5. Prove that Prime's algorithm produces a minimum weight spanning tree of G.

6. Apply Dijkstra Algorithm to find the shortest path tree for the following
graphs. Thick circles indicate source vertices.
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7. Prove that

a. A complete graph with n vertices has atleast 2(n-1)-1 spanning trees.

b. A graph of n vertices can have at most n(n-2) number of spanning trees.

8. Give an example such that the Dijkstra Algorithm will fail.

9. For a complete graph with n vertices show that the maximum number of
different paths between a pair of vertices  is (n-1)!.

10. Find the path matrix for the graph using the Warshall algorithm
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