PREFACE

In a bid to standardize higher education in the country, the University
Grants Commission (UGC) has introduced Choice Based Credit System
(CBCS) based on five types of courses viz. core, generic, discipline specific,
generic elective, ability and skill enhancement for graduate students of all
programmes at Honours level. This brings in the semester pattern, which
finds efficacy in sync with credit system, credit transfer, comprehensive
continuous assessments and a graded pattern of evaluation. The objective is
to offer learners ample flexibility of choose from a wide gamut of courses, as
also to provide them lateral mobility between various educational institutions
in the country where they can carry their acquired credits. I am happy to note
that the University has been recently accredited by National Assessment and
Accreditation Council of India (NAAC) with grade “A”.

UGC (Open and Distance Learning Programmes and Online Programmes)
Regulations, 2020 have mandated compliance with CBCS for U. G. programmes
for all the HEIs in this mode. Welcoming this paradigm shift in higher
education, Netaji Subhas Open University (NSOU) has resolved to adopt
CBCS from the academic session 2021-22 at the Under Graduate Degree
Programme level. The present syllabus, framed in the spirit of syllabi
recommended by UGC, lays due stress on all aspects envisaged in the
curricular framework of the apex body on higher education. It will be
imparted to learners over the six semesters of the Programme.

Self Learning Materials (SLMs) are the mainstay of Student Support
Services (SSS) of an Open University. From a logistic point of view, NSOU
has embarked upon CBCS presently with SLMs in English/Bengali. Eventually,
the English version SLMs will be translated into Bengali too, for the benefit
of learners. As always, all of our teaching faculties contributed in this process.
In addition to this we have also requisitioned the services of best academics
in each domain in preparation of the new SLMs. I am sure they will be of
commendable academic support. We look forward to proactive feedback
from all stakeholders who will participate in the teaching-learning based on
these study materials. [t has been a very challenging task well executed, and
[ congratulate all concerned in the preparation of these SLMs.

I wish the venture a grand success.

Professor (Dr.) Subha Sankar Sarkar

Vice-Chancellor
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Unit-1 0 Laws of Thermodynamics

Structure

1.0 Objectives

1.1 Introduction

1.2 Thermodynamic description of System

1.3 Zeroth Law of thermodynamics and temperature

1.4 First Law of thermodynamics and internal energy

1.5 Various Thermodynamic process

1.6  General relation between C, and C,

1.7 Work done during isothermal process

1.8 Adiabetic process

1.9 Work done during isothermal and adiabatic processes
1.10 Compressibility and Expansion coefficient

1.11 Reversible and irreversible process

1.12 Second law of thermodynamics and entropy

1.13 Carnot’s cycle and theorem

1.14 Entropy changes in reversible and irreversible processes
1.15 Entropy temperature diagram

1.16 Third law of thermodynamics and unattainability of absolute zero
1.17 Problems

1.18 Questions

1.0 Objectives

An 1dea needs to develop about thermodynamics & different thermal processer
is nature. By reeding this unit you will understand about different thermal process
and about ideal heat engine. Eventually you will learn about thermal scale absolute
Zero.
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1.1 Introduction

Thermodynamics is a branch of physical science that deals with the relation
between heat and other forms of energy such as mechanical, electrical, chemical etc
and by extension between all forms of energies.

Determination of the relationship among the various properties of substances,
without consideration of the detailed structure of the materials is the subject of
thermodynamics. Historically thermodynamics was developed before an understanding
of the internal structure was achieved. The results of thermodynamics are all
contained implicitly in certain apparently simple statements called laws of
thermodynamics.

1.2 Thermodynamic description of System

The macro state variables such as temperature, pressure, entropy, internal energy
etc. are known as thermodynamic state variables. A group of materials and/or
radiative contents, whose properties are described by thermodynamics varibles are
thermodynamic system.

A system is a finite quality of substances or a prescribed region of space.

Boundary of a system 1s an actual or a hypothetical envelope enclosing the
system.

Universe outside the boundary is called surrounding.
Open, closed and isolated system :

In open system matter. heat and energy can be exchanged across the boundadry.
In closed system heat and energy can be exchanged across the boundary not matter.
In isolated system none of matter, heat or energy can be exchanged across the
boundary.

1.3 Zeroth Law of thermodynamics and temperature

If two bodies are in thermal equilibrium with a third, they are in thermal
equilibrium with each other.

This law gives the concept of temperature. All these above three systems can be
said to process a properly that ensures their being in thermal equilibrium with one
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another. This property is known as temperature. Thus temperature of a system is a
property that determines whether or not the system is with thermal equilibrium or
can exchange heat will neighbouring system.

1.4 First Law of thermodynamics and internal energy

First law is the law of conservation of energy. states that energy cannot be
created or destroyed in an isolated system. Joule’s statement of first law is “Where
work (W) is convented into heat (H), or heat is convented into work, they are always
proportional to each other. i.e.

W = JH

Where J is constant of proportionality known as Joule’s constant. In other words
J Joule of heat 1s to be spent to get one calorie of heat. The value of J has been found
to be 4.2 J/Cal. The law is adopted in thermodynamics as

a0 =d + W ..o (1)

Where d() is the heat given to a system dU is the increase in internal energy of
the system and dW is the work done by the system. Equation (1) can be written as
for the increase in internal energy

dU =dQ — dW ........ (2)

The internal energy is an important property of the system. It is the heat energy
stored in the system. If a certain amount of heat is supplied to a closed system
temperature and/or volume may increase. If temperature increases internal energy
will increase and if volume increases. work will be done by the system. Internal
energy is a state function and depends only on the temperature. Change in internal
energy depends on the change of the state not on the path the change has taken place.

1.5 Various Thermodynamic process

There are four main thermodynamic Process.

1. Isothermal : An isothermal process is one in which there is no temperature
change (AT = 0). There may be energy flow into or out of the system. however the
exchange of heat is just enough to keep the temperature of the system constant.

As for example during phase change viz melting of solid or boiling of liquid.
The internal energy of this system remains constant.
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2. Adiabatic : The adiabatic process is one in which no heat or mass is
transferred between the system and the surrounding (Am = 0, AQ = 0). In practice
this assumption is most often used for rapidly acting system. The adiabatic process
provides a rigorous conceptual basis for the theory used to explain fist law of
thermodynacmics.

3. Isobaric : The isobaric process is one in which pressure is held constant
(AP = 0). The heat transferred to the system does work and also changes the the
internal energy of the system.

4. Isochoric Process : It is an 1sovolumatric for an isometric process during
which the volume of the closed system remaing constant (AV = 0). Increase in
internal energy of the system is due to absorption of heat from the surrounds or
decrease in internal energy of the system 1s due to release of heat from the system
to the surrounding.

We also speak of isolated system and cyclic process. An isolated system does
not interact with the surroundings. In this case there no heat flow and no work 1s
done and internal energy remains constant. A cyclic process in one in which a system
returnes to its initial state after passing through various intermediate states. In this
process change in internal energy is zero. The amount of heat given to the system
is equal to net work done by the system. This 1s the principle of heat engine whose
purpose is to absorb heat and perform work in a cyclic process.

Over and above said processes in thermodynamics other process are worth
mentioning. They include isenthalpic. isentropic, isotropic. reversible and irreversible
process.

1.6 General relation between C, and C,

Heat capacity, specific heat capacity and molar heat capacity.

Except during phase change application of heat increase, temperature of the
body. Heat required to increase temperature of a body by 1 degree is known as heat
capacity of the body. We write

dQ : o i
C= qr C (in upper case), whose unit is JK!

Heat required to increase the temperature of unit mass of the body is known as
specific heat capacity (c) (in lower case)



NSOU e GE-PH-21 11

1 — ..
T 0 M T mass of the body
The unit of specific heat capacity is JKg 1K1

-
m

One mole (or mol) is the amount of substance that contains as many elementary
entities (atoms, molecules, ions, electrons etc.) as there are atoms in 0.012 Kg of
12C. This number of atoms of 2C is called Avogadro No. (N,) and is equal to
6.022 = 1023 particls per mole. Molar mass of a substance = M = m,N,. Where m,
is the mass of an atom.

Total number of moles n = %

g e e
The molar heat capacity = ¢ = = AT

For an infinitesimal quasi static process, 1st law of thermodynamics can be
written as.

dQ = dU + pdV. ... (1)

Heat capacity of constant volume 1s given by

e~
v\ dT v
In case of an ideal gas U is a function of temperature only and we can write.

_ du
G = 4t

Equation (1) can be re written as.

g0 =CAT + pAY wousa (2)
For n mole of gas we write

pV = nRT
differentiating

pdV + Vdp = nRdT.
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or, pdV =nRT — Vdp
putting in equaiton (2)
dQ = C,dT + nRdT — Vdp

At constant pressure

)
C, = (dT_ =Gy R

On. T~ 0 =R

1.7 Work done during isothermal process

We consider an ideal gas whose pressure and volume are changed from an initial
value p;, V, to a final value p, and V, keeping temperature constant at T.

The wark done 1s

vy
W = _[pdV
Vi
vy
nRT
- [BERav, . pv =T
Vi
Vi
= nRT J dv
Vi
V,

or, W =nRTIn 'gl"

p
or. W =nRT In ffl“ [ PV = poVs]
2

1.8 Adiabetic process

Relations between p, V, T in a reversible adiabatic process.
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We consider our adiabatic process on an ideal gas. Let pressure, volume and
temperature change from p, V, Ttop + dp, V + dV and T + dT respectively. The
internal energy changes from U to U + dU. Since in adiabatic process the amount
of heat supply is zero, we write first law of thermodynamics as.

O =dU + pdV
or, nCdT + pdV=0 ......... (1)
For ideal gas we know pV = nRT

pdV + Vdp = nRdT

o, = DY VD
nR
Putting in (1)
. W};&wd\z:o

o, (Ci+R)pdV +C,Vdp=20
or, C,pdV +C, Vdp=20

C dv d
p ap _
o TV D b
Ldv _ dp . S
or, Y Vo p o (3) ¥ =iy

Integrating between initial to final state are get from (3)

vV P>
c,dv__fdp
vS=-| :

Y Py
v, P,
o, vlIn “\}‘l“—_]“a
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V) _p
or, v, D,

or, p, V¥ = p, VY, or pVY = constant
Again pV = nRT

nRTY
p = ¢onstant

or, p!'*TY= constant

»Iq'\!

or, v—1 = constant
p

Similarly TV¥! = constant.

1.9 Work done during isothermal and adiabatic processes

Work done in an isothermal process. We consider an ideal gas where pressure
and volume are changed from p,. V| to p,, V, isothermally. In such process p;V, =
ngg = nRT

Work done in this process

j _

<=.—.,u~

" nRT

nkl qv
vd

= nRT | L 1

) HV

P
=nRT In —
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Work done in adiabatic process.
In case of adiabatic process
pVY=p Vi =p, V¥ =k

The work done is

V: VZ Vl
W= [ pdv= jkd_V: [ kvrav
: Vi
\’] \’] V|
g [1 1|
= m_\;ﬁ\(—l VIY—I )
1 [_K___K ]
= —l—'Y V§_1 VIY—]
pVi—p,V,
¥—1

Slopes of adiabatic and isothermal curves.

The graph giving variation of pressure with volume at constant temperature is
known as isothermal and that at constant heat i1s adiabatic. We denote the pressure
p. volume V and temperature T of a gas by a point O on the p — V curve. If we vary

C

pT| A

Fig. 1
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p and V keeping T constant we get the curve AOB, on the other hand it p and V are
changed adiabatically to the same extent, the heat will remain confind in the gas and
the variation of p with V will be given by COD.

For isothermal process we have
pV = constant

pdV + Vdp = 0

dp __p . .
V-V s the slope of the isothermal curve.

For adiabatic process we know
pVY = constant, differentiating.
ypVIdV + Vrdp = 0

dp _

or Sp -
Y LY,

is the slope of the adiabatic curve.

Since y > 1, the slope of the adiabatic curve is greater than that of the isothermal
curve,

1.10 Compressibility and Expansion coefficient

The equation of state of any (pVT) system can be written as any one variable
as a fucntion of two other viz.

V=V (T.p

A fundamental theorem in partial differential calculus enable us to write the
differential of the volume V as.

aV A%
dv = (ﬁ)pd“(ap]TdP ......... (1)

If the change of temperature is made smaller and smaller until if becomes
infinitesimal, then the change in volume also become infinitesimal and we have what
is known as the differential coefficient of volume expansion or volume expansivity,
donoted by B, as
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1(9V
B= v \aT p (2)
P is almost always positive with a natural exception of water between 0°¢ to 4°c
where B is negative.

If the change of pressure is made infinitesimal. then the volume change is also
infinitesimal and we have differential bulk modulus. If we further require that
temperature be kept constant the resulting quantily 1s called the i1sothermal bulk
modulus. denoted by B as

_ 3_P)
B_‘V(av .

For calculations 1n thermodynamies, the more useful quantity 1s the reciprocal
of isothermal bulk modulus, called isothermal compressibility and is denoted by

__L(a_\’] X
KT_ vV apT .......... (.))

The units of B and K are respectively K-! and Pa!
For ideal gas we write pV = nRT differentiating we get.

pdV + Vdp = nRdT




18 NSOU e GE-PH-21

If volume changes repidly, so that no heat can flow we define adiabatic
compressibility as.
1 BV)
Ke = —=— | 5=
BV ( ap ).

In this case pVY = constant

or, pyVridV + Vidp =0

V.. N

dp  py

g =Lt

A S

K, 1 & __
Ke oy Cp Ky <Kg

In reality it is found that it is harden to compress a fluid if heat does not flow
out of it.

1.11 Reversible and irreversible process

The state of an ideas gas is described by specifying its pressure p, volume V and
temperature T. If these parameters can be uniquely specified at a time, we say that
the gas is in thermodynamic equlibrium. If a part of this gas is heated the equilibrium
conditon is destroyed.

Let the initial state (p;. V). T;) of the gas be changed to a final state (p,. V».
T,). If the process is performed in such a way that at any instant during the process,
the system is very nearly in thermodynamic equilibrium. the process is called quasi-
static. This means we can specify the parameters p, V. T uniquely at any instant
during such a process. Actual processes are not quasi-static. However, in idealised
processes where changes take place infinitely slowly. the processes may be assumed
to be quasi-static.

A quasi-static processes on a gas can be represented by a curve ona p — V
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diagram. This 1s because at any instant we have a unique value of p and a unique
value of V. Let the curve in the firgure shows such a quasi-static process, taking the
system from an initial state (1) to a final state (2). AB is an arbitrary small part of
the process. Suppose in this part the gas takes an amount dQ of heat from its
surroundings and performs an amount dW of work on the surroung. It may be
possible to design a reverse quasi-static process which takes the system from the
state (2) to the state (1) satisfying the following conditions.

(1) The reverse process is represented by the same curve as the direct process
with the arrow reversed.

(S

pT

Vo
Fig. 2

(2) In the part BA the system gives an amount dQ) of heat to the surrounding

and an amount dW of work is performed on the system.

If such a reverse process is possible, the original process is called reversible
process. In the direct process the system has passed through certain equlibium states
in a sequence. When the process is reversed, the system passes through the same
states in reverse sequence. Also, in any small part of the reverse process, it returns
the same amount of heat to the surrounding as was taken during corresponding part
of the direct process. Similarly any work done by the system in the direct process
1s compensated by the equal work done on the system in the corresponding reverse
process.



20 NSOU e GE-PH-21

A process can be reversible if it satisfies two conditions. The process must be
quasi-static and should be nondissipative. This means friction, viscosity etc. should
he completely absent.

1.12 Second law of thermodynamics and entropy

It is a fact of everyday experience that no heat engine has ever been developed
that converts the heat extracted from a reservoir at a higher temperature into work
without rejeeting some heat to a reservoir at a lower temperature. This negative
statement constitute the second law or thermodynamics. The law has been formulated
in several ways.

Planck-Kelvin Statement

“It 1s impossible to construct an engine that operating in a cycle will produce
no effect other than extraction of heat from a reservoir and performance of an
equivalent amount of work.”

Clausius Statement

“It 1s impossible to construct a refrigerator that operating in a cyvcle will produce
no effect other than the transfer of heat from a lower temperature resevior to a higher
temperature reservoir.”

Though the above two statements are apparently different, it can be shown that
they are equivalent in all respect.

Entropy

Entropy 1s the most important term in thermodynamics but its concept is rather
a bit difficult to understand. There is no straight forward definition of entropy. Like
pressure, temperature volume, internal energy etc, we have another thermodynamic
variable of a system named entropy. In a given equilibrium state the system has a
definite value of entropy. If the system has a temperature T and a small amount of
heat AQ is added to it its entropy increases by
AQ

AN= =7

The change of enuory from an initial to a final equilibrium states is
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td
S;— S = | _Q
i L
The value of the change depends on the two states only but not on the path of
process of the change just as change of internal energy.

Clausius introduced the concept of entropy as a precise way of expressing the
second law of thermodynamics. In terms of entropy the second law of thermodynamics
is stated as “spontancous changes for an irreversible process in an isolated system
always proceeds in a direction of increasing entropy.

[n a limiting view the entropy is sometimes stated to be the measure of
randomness of the system.

The unit of entropy is Joule per kelvin (JK-1).

1.13 Carnot’s cycle and theorem

Sadi Carnot suggested as ideal engine, known as Carnot’s engine which has an
intimate relation with second law of thermodynamics.

We consider an ideal gas in a cylinder. The bottom of the cylinder is diathermic
whereas the rest of which is adiabatic. An adiabatic piston is fitted into the cylinder.
Also suppose we have two large bodies one at constant high temperature T, and
other at constant low temperature T,.

Four processes, togather known as Carnot’s cycle, are performed in the following
order.

1. The cylinder is in contact with the reservoir at temperature T, with the gas
in a compressed state. This situation is shown by the point (1) in the p—V
and T — S diagram. The gas is isothermally expanded from p,, V,. T, to p,,
V., Ty ) (2). Work is done by the gas and Q, amount of heat is supplied to
the gas by the reservoir at temperature T).

ta

The cylinder is now kept on an adiabatic platform and the gas is allowed to
expand further to the state from p,, V,. T, to the state p;, Vs, T, shown by
the point (3). The work is done by the gas and the temperature falls from
T, and T,.
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3. The cylinder then is put in contact with the reservoir at the lower temperature
T,. The gas is isothermally compressed to py, V. T,, shown by the point (4)
inthe p— Vand T — S diagrams. The work is done on the gas and the gas

rejects an amount of heat Q, to the reservoir at lower temperature T,.

4. Finally the cylinder is kept on the adiabatic platform and further compressed
to reach the state (1). Temperature uses from T, to T,. The piston is
frictionless and is moved very slowly during the entire cycle so that cycle
1s reversible.

The efficiency of Carnot’s engine : Work done by the gas W, in the isothermal
expansion in the first process is equal to the heat supplied to the gas.

<

2 v
Q= W, = [ pdV = nRT;In 3
Vr ].
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(W]

The work done by the gas W, is equal to decrease in internal energy of the gas.
W, =nC, (T, - Ty)

The work done on the gas W in the third process is equal to the heat rejected
by the gas.

vV
4 V4
W3=Q, = - [ pdV = -nRT,In -
V. 5

The work done W, on the gas in the fourth process is equal to the increase in
internal energy

W4 = nCV (Tl — T:)

net work done
heat aborbed at high temperature

efficiency n =

B W -W, :Q]_Q2 zlﬁQz
9 Q Q

Since V, and V5 are on the same adiabatic curve.

V,) T,

and V, and V, are on the same adiabatic curve.

-
A T
v,] T,

4

\f'3 V} \Y% ¥
S o =

V’% 4 Vl an-
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T

2

n= I—Tl

Carnot’s Theorem :

All reversible engines operating between same two temperatures have equal
efficiencies and no engine operating between same two temperatures can have
efficiencies greater than this.

1.14 Entropy changes in reversible and irreversible processes

For a process that reversibly exchanges a quantity of heat Q,., with surrounding,

the entropy change is defined by Q'% The heat exchange occurs at temperature T.

Thus AS = Q’% S is the entropy.

We consider and ideal gas expanding at constant temperature.

dQ = du + pdV ; du = 0, for no change of temperature

or, dQ = RT%. pV = RT
dQ _pdv
Ty

Integrating we get the change of entropy

5

dQ V, =K
AS:IT=R1nvI=R111 .

2

(p1» V) and (p,, V,) are the pressure and volume respectively before and after
expansion.

The above definition of change of entropy is strictly valid for reversible
processes. However, we can find AS precise even for real, irreversible processes. The
reason 18 that the entropy S of a system, like internal energy depends only on the
state of the system and not how it reached that condition. Entropy is a property of
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the state. Thus the change of entropy AS of a system between state 1 and state 2 is
same no matter how the change occurs. We just need to find or imagine a reversible
process than takes us from stae 1 to state 2 and calculate AS for that process. That
will be the change in emtropy for any process going from state 1 and 2.

Q
AS:( ) :S?—S
T /ey - ]

\_c\:el‘sib;e

State 2

State 1 \

Entropy S,

O O\
. Entropy S,
AS = 5y —§) = ASy

Fig. 5

1.15 Entropy-Temperature diagram

Entropy-temperature diagram is a thermodynamic diagram used in
thermodynamics to visualize to temperature and entropy during thermodynamic
process or cycle as a graph or a curve. It is useful and common tool particularly
because it helps to visualise the heat transferred during a process. For reversible
process the area under the curve of the process is the heat transferred to the system

during the process.

Working fluids are often catagorised on the basis of the shape of their T-S (often
so called) diagram. An isentropic process is depicted as a vertical line on a T-S
diagram where as an isothermal process is a horizonal line. As an example of a
T-S diagram we have considered a thermodynamic cycle taking place between a hot

reservoir at a temperature T, and a cold reservoir at a temperature T».

For a resersible process the area ABCEF is the amount of heat Q aborbed from
the reservior at higher temperature T,. The area ADCFE is the amount of heat Q,
rejected to the reservoir at lower temperature T,. The thermal efficiency is the ratio
of the area ABCD, (the net work done W = Q, — Q,) to the area ABCFE (the heat
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1 AK_,\_\[))N

E F S —
Fig. 6

absorbed from the hot reservoir). If the cycle moves in a clockwise sence, then it is
a heat engine that output works. If the cycle moves in a counter clockwise sense, it
is a heat pump.

1.16 Third law of thermodynamics and unattainability of
absolute zero

Third law of thermodynamics states that the entropy of a system approaches a
constant value as the temperature approaches absolute zero.

Unattainability of absolute zero.

Experiments show that the fundamental feature of all cooling processes is that
the lower the temperature attained, the more difficult it is to cool further. For
example, the colder as liquid is, the lower is the vapour pressure, and harder it is to
produce further cooling. Similar reasons are there for other concluded that “By no
finite series of processes is the absolute zero of temperature is attainable.” This is
known as unattainability of absolute zero.
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1.17 Problems

Sloved Problems

1. A Carnot engine operates with 11 = 40%. How much must the temperature of
the hot reservoir increase so that M increase to 50%? Temperature of the cold

reservoir is 9.
Solution

Let T, and T he the temperatures of hot reservoir when efficiences are 40% and
50% respectively. Therefore

T T
40 2
100~ IT 2 T, = temperature of the cold reservoir = 9 + 273 = 282K
1
TI --T2 A
or, — T

or, Ti = Tg =04 T|
of, (1-04)T; =T,

T, = 2
1T 06
T, -T
T |
Similarly 100 =

l
or, 05T} =T -T,

T’?

= g5

e (1) _o o0l
T“T‘Tl(o.s 0.6) =Te 7},

LV}
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= ‘23ﬁ = 94K or, 94°. w To=2134+9=728IK
2. What is the increase in entropy of one gram of ice at 0°c when it is melted

and heated to 50°c.
Solution
AQ = mL; + mVC,dT, m = mass of ice = 1g, L; = Latent heat of fusion =

8 cal g1, C, = sp. heat of water = 1

504273
1x80 +j’ cIT

AS = 54273 T oaars

2
5

(%]
L

=0293 + In

NS}
L

= 0.293 + 0.168 = 0461 Cal k.

3. What 1s the decrease in entropy of 25g of water that condenses on a bathroom
minor at a temperature 35° assuning no change in temperature and the latent heat
of vaporization is 2450 KIJ Kg'.

Solution

Mass of water condensed = m = m kg heat liberated = m x L,

dQ =25 x 1073 x 2450 x 10° ]
=25 x 245 x 10° J

Decrease in entropy

dQ 25%x245 B Tl
AS = =550 x 1P IK
= 199 JK-!

Problems

|. Calculate the efficiency of a Carnot engine operating between 10°c and
0%
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Find the change of entropy if 1 kg of water at 80°c is added to 600 gm of
water at 207c.

Find the increase in entropy of 1 kg ice orginally at 0°c melts into water of

0°c.

1.18 Questions

Give the mathematical form of first law of thermodynamics. Explain each
term.

What is meant by state function and path function? Give suitable example
of each.

Distinguish between a reversible and irreversible process. Give examples.

What is the essential difference between first and second law of
thermodynamics.

State second law of thermodynamics in terms of entropy.

Establish TdS relations in thermodynamics. What is their importance ?



Unit - 2 O Thermodynamics Potentials

Structure

2.0 Objectives

2.1 Introduction

2.2 Thermodynamic potentials
2.3 Maxwell’s Relations

2.4 TdS equation

2.5 Joule-Thomson effect

2.6 Clausius—Clapeyron equation
2.7 Heat Capacities

2.8 Problems

2.9 Questions

2.0 Objectives

You already learnt thermal process in privious unit. In this section we shall
develop different equation related thermodynamical quantity and an idea of heat
capacity of different material will also develop.

2.1 Introduction

Thermodynamic potentials are very important functions which give the insight
of many processes leading to achievment of low temperature and different types of
phase changes. Maxwell’s relations are very convenient tools for the study of
thermodynamic phenomena.

2.2 Thermodynamic potentials

The following four thermodynamics functions are of immense importance in the
study of the subject. They are internal energy U (S. V), Helmholtz function
F (T, V), Enthalpy H (s, p) and Gibb’s function G (T, p). In mechanies potential has
the capacity of doing mechanical work. In thermodynamics, internal energy U has

30
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capacity to do work and capacity to release heat. Helmholz function F has capacity
to do mechanical and non mechanical work. Enthalpy H has capacity to do non
mechanical work and capacity to release heat. Finally Gibb’s function G has the
capacity to do non mechanical work. Hence these functions are also known as
thermodynamic potentials. They are defined as.

U = [(TdS - pdV)
F=1—"T§
H=U+pV
G=U+pV+TS

2.3 Maxwell’s Relations

We start from first law of thermodynamics
dQ = TdS = dU + pdV

or, dU = TdS — pdV

Considering S and V as independent parameter
=13 V)

Where from we write

du = (%%)V ds+(%%)s Y s (2)

Comparing equs (1) and (2)
(ﬂu
dS
a_U) s

(av g P

) =T and
v

The imporant content of the relation (1) is that the combination of parameters
on right side 1s always equal to the exact differential of a quantity which in this case
is U. Hence the parameters T, S, p, V which occurs in equ (1) can not be varied
completely arbitranily, there must exist some connection between them to guarantee
that their combination yields the differential dU.
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To obtain this connection, it 1s only necessary to note that the second derivative
of U must be independent of the order of differentiation. i.¢.

‘U _ 9%U

oVoS ~ 0SaV

o (&)%), -(2), (&),

Using eqn (3) we have

(%)s :‘[%]V e (4)

We write pdV = d (pV) — Vdp

Equation (1) is rewritten as
dU =TdS — d (pV) + Vdp
or, d(U+ pV)=TdS + Vdp
or, dH=TdS + Vdp —(5), H=U + pV
Consider H = H (S, p)

dH = (92 [Q-H-] ............ 6
(as)pd5+ o) o (6)

Comparing equation (5) and (6)

oH OH
(X]p = Tand [a—pl 1T — (7)

with previous arguments we now write

’H _ 9°H

opdS  9Sdp

o (3)0) -2 ().
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or, [%)S = (%—\Sf)p .................. (8)

Again from the fundamental thermodynamic relation we write

F5 ]
s

dU = TdS — pdV = d (TS) — SdT — pdV
or, d(U-TS)=-S8dT - pdV
or, dF =- 8dT - PdV ............. (9) F=U-TS
considering F = F (T, V)

~ _ __a...E s _aji .
dF (BT)Vd[+(aV)TdV .............. (10)

Comparing equ (9) and equ (10)

JF\ __ QE) e,

(ﬁ]v =-S and (BV L B s (11)
Equality of cross derivatives

’F__ 0°F
avaT ~ oTaV

and we get as before

(é%%}r::(é¥%)v ............... (12)

From equ (1)

dU = TdS + pdV
=d (TS) — SdT — d(pV) + Vdp
or, d(U—-TS+ pV)=-SdT + Vdp
o, dG=-S8dT+ Vdp ............ (13): G=U-TS + pV
Considering T and p as independent variables

G=G (L, p
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G G
i (ﬁ)p dT +[a—pJT dp (14)

From eqn (13) and eqn (14)

G 0G
{ﬁ)p =— S and (a—pl B CR— (15)

Equalily of cross derivatives

2’G _ 9°G
dpdT dTdp

implies —[3—3) =(g—¥)|, ............. (16)
sy

Relations (4), (8), (12) and (16) are known as Maxwell’s Relations.

2.4 TdS equation

Considering the entropy of a pure substance as a function of T and V we write

. (98 ds
ds = (aT)v dr+ (BV)T 4y

and TdS = T (%)V dT+ T(%)T dv =dQ

For reversible 1sochoric process

G (3_5?)\, :T(%)V

and from Maxwell’s third relation

()= (%),
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(8]
i

_ ap]
TdS = C.dT + T(aT . dv

The equation is known as the first TdS equation.

Considering the entropy of a pure substance as a function of T and p
N N
a5 [E)T] T [ap] dp
We know C,=T (gi)
and from Maxwell’s fourth relation

[5#)=-(57),

dV
We get TdS=C,dT - T (w]dp

This equation in known as second TdS equation

2.5 Joule-Thomson effect

Joule-Thomson effect decribes the temperature change of a real gas or liquid
when it is forced through a valve or porous plug while keeping it insulated so that
no heat 1s exchanged with the environment. This procedure 1s called throttling
process or Joule Thomson process. At room temperature, all gases except hydrogen,
helium and neon cool upon expansion by Joule Thomson process when being
throttled through an orifice; these three gases experience the same effect but only at
lower temperatures. At room temperature ar¢ heated on throttling,

We describe porous plug experiment to demonstrate Joule Thomson effect. The
experimental gas is compressed by a suitable compressor P to a high degree and
forced through a poroum plug (p.p) fitting tightly in a tube A of poorly conducting
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(%]
)}

material. By means of proper packing of asbestor, wool or other non conducting
materials the tube A is thermally isolated so that no heat can enter or leave the
system.

A ;\\\\\\\\\\\\;’ Bk

—> P1 P2
WA,
B
Constant temperature
bath
Fig. 7

Such an expansion of gas is called throttling process. The material usually used
as poous plug is wool, cotton or silk having number of tiny orifices. Fluid flowing
through these orifices undergoes a large droop of pressure (p, << p;). Two platinum
thermometers or thermo comples one placed at each side of the plug are placed to
accurately record the temperatures T, and T, before and after throttling. Pressures p,
and p, at the entry and exit are recorded by suitable guages. The gas to be cooled
is first compressed and made to flow through a constant low temperature bath C to
acquire a particular initial temperature. The observations of the experiment are

(1) If the initial temperature 1s sufficiently low all gases suffer fall of temperature.
Tz < TlA

(11) The cooling is proportional to drop of pressure.

(111) As the initial temperature T, is increased the drop of temperature becomes
smaller and at a particular temperature T > T, the throttled gas gets heated
instead cooling. This temperature T, 1s called inversion temperature and are
621K, 195K and 23.6K respectively for Nitrogen, hydrogen and helium. To
get cooling effect the gas is to be taken below the inversion temperature
before throttling.

Work done by the gas on the piston

W= Ipzdvz = -[pldvl =pVa-pV,
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Since no heat enters and leave the svstem the above work has to be performed
at the expense of internal energy.

Up—TUs + g3V~ pVy = 0
o, U +pV,=U,+pV,
or, H, =H,
H = U + pV = enthalpy = constant
dH = dU + pdV + Vdp
=dQ + Vdp
or, dH = TdS + Vdp

From Tds equation we know that

’ . 3_V)
TdS = C,dT T(andp

_  (dV
or, dH=CdT - T (a—T)p dp+Vdp

e T(B_V) -V 1
or, dT Cp{ 5T ; dp-i-Cp dH.......... (1)

Writing T as a function of p and H

_ (9T aT
dT [ap)ﬁ dp+[aH)de .......... )

Comparing equation (1) and (2)

T _ 1 [¢(aV)_
(ap]H_Cp{T(aT) V} ------------ 3)

n= (g—T) is the change in temperature per unit change of pressure under the
P/

condition of the experiment viz H = constant is known as Joule Thomson coefficient.
If p 1s positive the effect is cooling and if negative the effect is heating.
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For Vander Waal gas

L

RT a ab

o, V= "5 pv pV2 pV = RT
RT a abp

Or. \/ = p _RT+b+RjT') (4)

= | A
<

|
o

+

o
o
=n
S

from (4)

putting in (5) we get

(a_v) _V-b_ 2a _3abp
arj, T "R1Z RIS

JdV) _2a , 3abp
(al) V_RT . R2T2

el T(a—V) -V _L(ﬁ_ ) o5 e
1l Cp{ oT ), C b » ab is very small

(1) If intermolecular forces are strong so that ﬁ >b. u > 0, cooling occurs.

(11) If intermolecular forces are weak so that é—%ﬂj, w < 0, heating occurs.

2a _ T
Rb :

(say) is known as temperature of inversion. We know the critical temperature

8a _.a
5768 2 T =gy

() If }E?F =b no change of temperature occurs. The temperature T =

T, and Boyle temperature T are T =

'.T1=24—7T = 2Tp.
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2.6 Clausius—Clapeyron equation

Clausius-Clapeyron relation is a way of characterisng a discontinuous phase
transitions between two phases of matter of a single constituent. We take the entropy
S for the homogeneous substance to be a function of volume V and temperature T

and write.

aS a8
ds = (BV)T dv+(aT)V dT

Since during phase change temperature and pressure remain constant

from Maxwell’s third relation

(g%)T z(%]v ------------- (2)

from equation (1) and eqn (2) we write

ap]
v | dV
dS (aT ”

Since pressure and temperature remain constant, partial derivative can be
replaced by total derivative and we write

_ dp
dS T dV (3)
~ dp _ds
or, dT - AN it (4)

If L be latent heat of conversion from phase 1 to phase 2 and m be the mass of
substance under going phase change

_TdS_dQ_mL
d3= =T =77
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If v, and v, be the specific volumes of the substance in phase 1 and phase 2
respectively.

dV=(v,-v,)m
Putting these values of dS and dV in equation (4) we get

D__ (5)
dT  T(v —4, )

T—

Fig. 8

On a pressure-temperature diagram the line separating two phases is known as
co-existance curve. The calusius-clapeyron relation (5) gives the slope of the tangent
to this curve.

2.7 Heat Capacities

Heat capacity equations

Equating the first and second TdS equations
C.AT —T (a—V) dp = C.AT + T [a_p] v
P aT/, ¥ dT Jy

Solving from above relation

ap)

1

aT Jy
C,—C, dV+ C

dT =
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Writing T as a function of V and P

JT JT
4T = (av) dV+[ap)V dp (2)

Comparing equation (1) and (2) we get

) 10

avly, C,-C,

ki

and (8_[) ot P
o), Cp-C,

From either of the above relation

aVv dp
R R b ) Np— (3)

Using simple theorem of partial differential calculus viz

(5), (52), (8, -

dp) _ _(9V 3p)
We have (B_T]‘ = (DT)p [8_\/’ s (4)

From (3) and (4)

. oV ap)
Cp-C,=- T(?}T)(BV ............ (5)

Equation (5) is an important equation in thermodynamics and it shows that

(1) Since [@) is always negative for all known substances C, 2 C,
T

aVv
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(i) As T — 0 C, — C; at absolute zero two heat capacities are equal.

(i) C, — C, when (a_v] =(. (at 4°¢c of water)
p

c

We know that the volume expansivity and isothermal compressibility are
respectively defined as

p=1(2Y) iE
vioT), and Kr = = ‘9p .

TVp?
K

In terms these quantities eqn (5) becomes C, — C, =

2.8 Problems

Solved Problems
1. Calculate Joule-Thomson cooling of oxygen at NTP. Given, a = 1.86 = 10°,
b =32 cc and C, = 7.03 cal mol-! K-!.

el 1. (2_ﬂ_b]
AP Cp \RT

1 (2><1.86x106 x76x981x13.6_32)
4.18%107 x7.03 8.3x107 x273

_ 134.46 ) N
 4.18%107 x7.03 degree dyne™ cm

_ 13446 xX76x13.6 X981
4.18x107 x7.03

]

¢ atoms!

= (.45 °c atoms™!

2. Calculate the temperature of inversion of hydrogen. Given T, for hydrogen
is 29.5 K.

Temperature of inversion T; = =-XT;
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Problems

1. Calculate the temperature of inversion for helium. Give T, for helium 1s
5.26K.

39 )

Assuming oxygen as a Vander Waal’s gas having a = 1.36 x 10° atm — cm?,
=32 cc and C,, - 7.03 cal. Calculate J - T coefficient for oxygen.

3. Helium gas suffers J — T effect of —173°. The pressure difference on two
sides of the plug i1s 20 atm. What is the change of temperature? Given a =
0.3341 litre? atm. mol=2, b = 0.0237 litre mol~! R = 8.3 JK~!

2.9 Questions

1. Describe porous plug experiment of Joule Thomson.

2. What is Joule Thomson effect ? Obtain an expression for the change in
temperature during porous plug experiment.



Unit - 3 O Kinetic theory of Gases

Structure

3.0 Objectives

3.1 Introduction

3.2 Assumptions of Kkinetic theory of gases

3.3 Pressure of an Ideal gas

3.4 Kinetic energy and temperature

3.5 Boyle’s Law

3.6 Maxwell’s Law of distribution of velocities

3.7 Most probable velocity, average velocity and RMS velocity
3.8 Experimental verification of Maxwell’s velocity distribution law
3.9 Mean free path

3.10 Transport phenomenon

3.11 Law of Equipation of energy

3.12 Problems

3.13 Questions

3.0 Objectives

In this section you will learn the randem motion of gas molecules & its velocity
distribution in different temperature. Also you gather knowledge about transport
phenomenon of gas & its distribution of energy is different direction.

3.1 Introduction

The concept of molecular constituent of gas and their motion as heat are two
main pullars of kinetic theory of gases. Even without experimental proof of existance
of molecules and their motion the subject was developed mathematically sucessfully.
Later on however, Brownian motion discovered by Robert Brown showed that the
basic concepts of kinetic theory were very much correct.

44
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3.2 Assumptions of kinetic theory of gases

Assumptions of kenetic theory of gases.

1.

o s

The gas consists of large number of identical particles moving ceaselessly
having velocities with all possible direction and magnitude.

The size of a particle is very small compared to average interparticle
separation.

The particles obey Newton’s laws of motion.

The particles do not interact except during collision,

The particles undergo perfectly elastic collision with each other and with the
walls of the container.

The volume occupied by the particles is small compared to the volume of
the container of the gas.

The gas if left to itself for a sufficient time becomes homogeneous and
isotropic.

3.3 Pressure of an Ideal gas

We consider an ideal gas having N particles in a cubical container of edge L.
Let one corner of the container is the origin O of our cartesian coordinate system
with axes parallel to the edges of the cube.

Z
mv,
+—
—e—
['I"IV.\
O
\r

Fig. 9
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Suppose a particle having velocity v (vy, vy, v,) moves and collides on the right
XY-plane and rebound. The Y-momentum of the particle is mv, both before and after
willision with opposite direction. The change of momentum for this impact is 2mv,,

where m 1s the mass of the particle. Such impacts will occur at time intervals of =h
v

Therefore the momentum imparted to the wall in question per second 1s

2mvy o

Mine L2

This is nothing but the force exerted by the particle.

The total force on the wall due to all the particles is there force.

FzZ%VE

Now. since all the directions are equally probable

vav:Zvi:Ev}:%ZviJrvwavE

_ szz

3

_Ilmyy_IlmN 2V
F =T ¥ . -
ressifs pi= =L MN ¥ V2
’ ¢ L2 3 [_‘3 N

or, p= %pcz

N .
where p = nL]—; = densily of the gas.

Yvi vi+vi+e+Wg _ _ _
. Z N —
- N = (=, 1s the mean square velocity and C is root mean

square or rms velocity.
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: 3p
RMS velocity = C = 0
From ideal gas relation
pV = RT
P_RT =
or, p M (M = V[D)
_ [3R1
CTAM
: e o Bl
again p = 3PC" = “_«;XEPL
2
or, p=SE, where E =

3.4 Kinetic energy and temperature

Once mole of gas contains N, (Avogadro’s number) molecules. Let each
molecule has a mass m and the velocities of the molecules are ¢, ¢,. ¢4

,,,,, cy. The
kinetic energy of 1 mole of gas is therefore.
N L P T
E = 5 me| - 5 e + 5 me; 4ot 5 mey

1 5.8y B 2
51’[‘1(01 +e5+¢3 +"'CN)

e R, 2
l C +L'} +L’; o Rl ! .
- :};mch . where ¢2= 122 N N = Mean squre velocity
or, E= %MC2

_ B o
3 M —fRT’ R = Universal gas constant

47
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or, E = Average kinetic energy

23 %2%%»1‘2 %KTZ K = Bollzman constant
3.5 Boyle’s Law
p= 3p¢?
or, pV = %Vp-{:2 = % MC?2, M = mass of certain quantity of gas.

At constant temperature RMS velocity C is constant hence.

pV = constant at constant temperature

or, pe< % at constant temperature.
Charle’s law

M 3RT _gr

MC2 =iM 221
M

L |—
L |—

pv =

at contant pressure V o T

3.6 Maxwell’s Law of distribution of velocities

We consider an ideal gas having N particles per unit volume each of mass m.
We are to find how the particles of the gas possess different velocities or more
clearly how the velocities are distributed among the particles.

The number of particles dN in unit volume having velocity in the interval ¢ and
¢ + dc must be proportional to the interval 1.e.

dN e< dc
or, dN = adc |a is the constant of proportionality]

Over and above dN must depend on the velocity itself. We write a = f(c) and
finally dN will be proportional to N.

Thus dN = N fi{c) dc.
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ifdc=1, flc)= % is called the distribution function and is the fraction of

particles whose velocities are within unit inverval of velocity at c. It is also the
probability that a particle in unit volume having velocity within the unit interval near
¢. This distribution function is also called probability density.

If u, v and w are the components of ¢ along three co-ordinate axes,
u? + v + w? = ¢?
or, udu+vdv+wdw=20 .......... (1)

The probability that a particle selected at random has velocity between u and u
+ du 1s f(u) du and similary it has velocity between v and v + dv and than between
w and w + dw are f(v) dv and f{w) dw.

The probability that a particle has velocity components lying between u and
u+du, vand v + dv and w and w + dw is

flu) f(v) filw) du dv dw
of N particles if dN be number in the above range of velocitics

de = N f(u) fiv) f{w) du dv dw

. dN
We write p = dadvdw = N f(u) f(v) f(w)
which represents the number of particles of the specified type per unit volume
in the volume space.
In steady state
dp =d [fu) f{v) fiw)] =0

or, fi(u)fiv)fiw) du + flu) f(v) fiw) dv + f(u) f{v) f(w) dw =0
£ (u) £(v) £ (w)

L Feu) du+ Fv) dv+ fow) dw=0 ... (2)

multiplying (1) with Lagrange’s undeterminant multiplier o and adding with (2)
we get

[f (u) +au]du +(t (V) +(xv]dv+(ﬂ'w) +0tw]dw =0

f(u) f(v) f(w)
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The above relation is true only if

f’(u) _ f'(v) _ f/(w) -
f(u)ﬂm_O’ V) oav=0: ﬂw)ﬂxw—o
Integrating above,
~cm? —ov? —cpw 2

T )

f(u)=Ae 2 f(v)=Ae 2 "w=Ae 2
O 2 24wl
dN = NATe 2" V"™ dudvdw

and p = NA3e-be? ; where b= %—

| T [NA3e-blu?+view?)dy dvdw = N

again pressure

p = 2mn j f(u)uldu= 21“;11\1}5;J‘e‘b”2 uZdu
0 0

= ImNA ZIT‘/EE"

Equating this with NKT and taking A = \/% we get

m _ m
kT A= \oT

Number of particles dN; having velocity lying between ¢ and ¢ + dc is p
times the volume between two spheres (spherical cell) of radii ¢ and ¢ + dc is

b=

Y —me?
= n % Awodde = m__)"° a9KT ¢2
dN. = p x 4mc’de = 4nN ( EJTKT) S crde

¥ _me?

~ dNc _ S m_ |2 = 2
or, Fdc, F=4n (m) e 2KT¢
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In the diagram F, the Maxwell speed distribution function 1s plotted against the
speed (c)

ET

Cn C—
Fig. 10

F =0 for ¢ =0 and ¢ =  Maximum number of particles possess the velocity
c,. known as most probable velocity. Area of the strip with width dc gives the
number of particles having velocity lying between ¢ and ¢ + dc. The area below the

curve dec =
0

FT
TI T_‘,' > Tj > T]

Fig. 11
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Figure-2 shows the function for three different temperatures. The higher the
temperature, wider is the spread of values of the speed. Area under each curve is 1.
Lower is the temperature greater is the fraction of fast moving particles.

3.7 Most probable velocity, average velocity and RMS velocity

_ m )h —me?
We have dNC = 4nN (m)

dN _ 47N (_m__) ? ¢ 2KT o2
de

It the temperature is kept constant.

3

I‘I‘IC'.,' 9
e — Ac%e3kT; A z4rcN( - )

de 2nKT

differentiating and equating to zero
dNC — d ( I'l'lC: ).._
d[ do ]—Adc cle 2KT =0

I'I'IC: I]‘IC:"
— =2mec.
or, 2ce 2KT 4+¢2x—="%e 2KT =()
2KT

_me? s
Of, 2ce 2KT (1— )=U
2KT

whereform (i) ¢ = 0, (ii) ¢ = or, 1- ‘r)nIE_T 4
atc=0and atc = dN,=0

mc? _ 0

dN. is maximum for I- KT

med 0

This provides the most probable velocity ¢, from 1— KT~
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Vm V M

Average velocity

The average velocity say C, is given by

T cdN, -

]
Ly =37
’ Nj

=L Fei N(
NE[C T

SKT
mn

’SRT
Mn
RMS velocity

The RMS velocity C is given by

2nKT

3/

7 _m(:_2
) c2e 2KTdc

. __m
» B 2KT

Img _Iwg m '32_11‘1__63
2 = ﬁi[c ch_ﬁ(J;C 4TEN(2TEKT) c‘e KTdc
1_}5@

e m o 4a IJC:' s = m
- 4ﬂ(2nKT) £L e % de; b KT
i )3 [

2nKT/ 8 \ b’
. 4n( m )% 3Jn (2KT)%

2nKT 8 m
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.}KT \/3RT

5 -
Thus T 3 G J KT SKT . |3KT

mrt ' m
Ja ( B

=1:1.128 : 1.224

We show them in the velocity distribution curve below

| ch
N dc

. C  velocity

3.8 Experimental verification of Maxwell’s velocity distribution
law

From an electirc oven cesium atoms come out and pass through the slit S,. Most
of these atoms are stopped by the diaphram D, and those who goes through S,
constitute a narrow, almost horizontal beam.

The slit S,, called collimating slit is in between the diaphram D, and detector



n
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D,. The detector consists of a hot tungsten wire with which almost all cesium atoms
of the beam strike and get ionised leaving the tungsten wire as positively charged

D, D,

Fig. 13

ion. These positively charged ions are collected by a negatively charged plate. The
plate current measure the number of cesium atom striking the detector per unit time.
An analysis of the parabolic path of the atoms due to gravity that strike D, at a
distance S gives a relation between the deflection °S™ and the speed v.

HZmmRCN ZO0— >

Fig. 14
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The experimental results are shown in the figure 2 where the smooth curve is
a plat of Maxwell function and dots are experimental point.

3.9 Mean free path

According to the assumption of kinetic theory gas molecules always collide with
cach other and with the walls of the container. They travel in straight line with
constant velocity between two successive collisions. After a collision the magnitude
and direction of velocity change. The distance traveled by a molecule between two
successive collision 1s known as free path. When a molecule under goes a number
of collisions the path will differ in length and form an irregular zig-zag motion as
shown below.

The mean value of these straight paths is called the mean free path and is the
average distance travelled by a molecule between two successive collision and can
be expressed simply as

k4

N

Fig. 15

= X]+X2+X3+"'
n

2

We assume a gas containing ‘n’ molecules per unit volume and *d” is the
diameter of ecach of the molecule. For the purpose of an easy method we consider
that only one molecule 1s moving and all others are at rest. Let v the veolcity of the
molecule. This molecule will collide with the molecules which are at distance d from
its centre. The space traversed per second by the molecule 1s a cylinder of base area

nd? and length v ie of volume nd® v, containing nrtd?v other molecules. Thus in the
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3]
[=

—EBE—c—=~—>

Fig. 16

path length v if will have nmd?v collision. Therefore the mean free path is

v o1
nnd’v  nmd?

Bollzmann deduced and expression for A assuring all the molecules are moving

. , : 3 ; .
with same average velocity and obtained A = o g Maxwell using velocity

distribution law deduced.

1
A = 2mrd2n

3.10 Transport phenomenon

In equilibrium state of a gas the mass motion, temperature and number of
particles per unit volume are same at every part of the gas.

Suppose the equilibrium of the gas is violated by flow velocity (mass motion)
being imparted to one of its parts that differs the flow velocity of adjucent parts. So
there will be a relative motion between the layers of the gas. If the gas so disturbed
is left to itself equlibrium is found to be restored after some time. The velocity of
the entire gas will again become identical in all parts. It is the thermal motion of the
gas particles that level out the flow velocity by transport of momentum from the
faster moving parts of the gas to slower moving ones. This process gives rise to the
phenomenon of internal friction or viscosity.
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Consider next the equlibrium of the gas 1s violated by heating a part of it. In
equilibrium condition the temperature of the gas is same everywhere. So by heating
process temperature inequality among its parts has been injected. Here too if the gas
1s left to itself equilibrium is restored after some time. Temperature again become
identical through out. This leveling of temperature is due to continuous motion of the
particles. There are more fast particles in the heated part, but due to molecular
motion they rush to region where their number is smaller till they get equally
distributed throughtout. Molecules at the same time also move to the heated parts so
the densily of moloecules does not change either in heated or in other parts. The only
thing occur is the transport of thermal energy form the region of higher temperature
to the regoin of lower temperature. This process is called thermal conductivity.

Finally let the equilibrium is disturbed by adding small amount of the same gas
filling a certain volume. So that with identical pressure and volume throughout, the
concentration of one part will be greater than that in other parts. Here too after
certain time the added gas gets distributed through out the entire volume and the
concentration becomes uniform. Such leveling out of concentration is entirely due to
the motion of molecules from the region of higher concentration to the region of
lower concentration, Moleculer at the same time move to the region of higher
concentration so that the pressure remain constant. Only the transport of mass of the
added gas occurs. This phenomenon is called diffusion.

Thus if the gas is not in equilibrium state there will be either transport of
momentum or thermal energy or mass from one region to another inside the gas
giving rise to the phenomenon called viscosity, thermal conductivity or diffusion.
Therefore these pheonomena are known as transport phenomena.

3.11 Law of Equipation of energy

We assume the molecules of a gas as hard tiny sphere. The energy of each
molecule may be written as
E = lnw2 +lmvz-4-l|1nv2 (1)
S MV A MVEF MV
where “'m’ is the mass of the molecule and v, v, and v, are the components of
velocity v along three cartisean co-ordinate axes. There are three terms in the
expression and each may be treated independently. Monatonic gas molecules behave
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similarly and such a molecule is said to have three degrees of freedom. The
molecules of diatomic gases some what looks like dumbbel. Two tiny masses at the
end of a rigid rod. The centre of mass of the diatomic molecule can change three co-

Z

Fig. 17

ordinates indepently the translational kinetic energy is similar to equation. Over and
above the translational motion the molecule may have two rotational motions. If x
be the line joing the two atoms the molecule can rotate about y and z axis. The
rotational Kinetic energy may written as

L WI+ILwe . 2)

[, and I, are the moment of inertia and w, and w, are the angular velocity of
rotation about the z and y-axis respectively of the molecule.

The total kinetic energy is

—npnalente loog, Ly o 1y o3
E = > my: + 3 mvy +2 mz- + > I}_“}_ + 3 Lw?
The molecule has five degrees of freedom. If the distance between two atoms

of the molecule is not rigid but can change, the molecule can vibrate along z-axis.

There is kinetic energy due to such vibration given by %uvz and a potential energy
of the pair of the atoms equal to %kzz. The total energy in this case is

e L pp R T IEE TR 3, 1
E = =-mv +—mv§_+§mvz+zl_\.\-\_‘.+§Izwx+§

9y 1 asd
v+ [18Y +El\z
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There are seven independent terms and the gas is said to have seven degrees of
freedom.

According to the principle of equipartition of energy the average energy of a

molecue in a gas associated with each degree of freedom is %KT where K is the

Boltzman constant and T is the absolite temperature.

If we consider n moles of monatonic gas. The energy is
_ L, (e
E = nNszK'I —anl

The molar heat capacity at constant volume 1s

Lo :C\.‘l‘R—;R
(2
e e
P e 1.67

E=H%RT andC\.=%R
Th . = & -
and g = ER‘ y=73 =140

9
LP:_szﬁzmg
TER "1 7
2

Relation between degrees of freedom and 1.
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Let the number of degrees of freedom of each molecule of gas is f. The kinetic
energy of one mole of gas is

Ezzngxfoe= fRT

1D |—

The molar specific heat at constant volume

dE _ |
C =gr—2 R

The molar specific heat at constant pressure 1s therefore.

_ _1 & _ L
CP—Q+R—§tR+R~R“E)
% 3 .8
Y=t. £ T
' 2

3.12 Problems

Solved Prolems

1. Calculate the root mean square velocity of air molecules at N.T.P. given that
the density of air is 1.293 Kg m™.

Solution

We know the RMS velocity is given by

’3- /“XI.OI"XIO’—’
Cl‘ll'IS - ?P = = 12;3 = 485 # 102 mS_l

2. The average kinetic energy of a molecule of hydrogen at 0° is 5.64 x
102! J. The molar gas constant R = 8.32 JK-! Calculate the Avogardo
number.

The average kinetic energy of a molecule is

E:

RSV

KT, where K = Bﬂis the Boltzman constant
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- 3RT= 3)(832)(27% =6><1023
2E 2x5.64x1072!

3. 2 moles of hydrogen gas at 30°c 1s mixed with one mole of helium gas at
60°. Find the temperature of the mixture.

Solution

The kinetic energy (Average) of a mole of gas = %KN *x N K = Baltzmann

constant

Kinetic energy of 2 moles of hydrogen of 30°c 1s N = Avogardo number

Il

E, z%xk(30+273)xN><2
= 3K x 303 x N

Kinetic energy of 1 mole of helium is
E, =

x k x (60 + 273) x N x 1]

oo

k x 333 x N

|
2|t

Let the mixture of 3N molecules has temperature TK, and kinetic energy

3

E; =§k><T:<.3N

Es =Ei + B
%KTK}N:3KK3O3XN+%KX333XN

3T =2 *303+333

T :—606;333 = 313K =313 - 273 = 40°%

4. Assuming Maxwell’s distribution find the most probable, average and
RMS speed of nifrogen at 27°c. Given that molecular mass of nitrogen i1s
.+ . .. kg and gas constant is 8.314 J mol™! k!,
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(]

Solution

The must probable velocity

. _\/ZKT= ORT _ [2x8314x300
"oV om M 28x1073

=422 % 10? ms™! (27 + 273 = 300)

The average velocity

_ [BKT _ [BRT _ [8x8314x300
mm  VaM  Y3.14x28x103

&,

=476 x 10* ms™!

Rms velocity

3KT _ [BRT _ [3x8.314x300

Coms =y'm ~ VM~ \ 28x10-
= 5.17 x10? ms!
Problems
1. Find the ratio of most probable velocity of oxygen to that of helium.
2. Calculate the molecular kinetic energy of 1 g of hydrogen at 50°c. Molecular
mass of hydrogen = 2, R = 8.3 Joule™! k™!,
3. v for diatomic and polyatomic gases are 1.4 and 1.33 respectively. Find the
degrees of freedom of the molecules.
4. At what temperature will the rms veolcity of nitrogen molecule be double

its value at N.'T.P. Pressure remaning constant.

3.13 Questions

(1)

(i1)

(111)

What are the basic assumption of kinetic theory of gases. Are all of them
Jjustified.

Obtain a relation between pressure, volume and temperature of gas according
to Kinetic theory.

b2

What do you mean by degrees of freedom. Show y = 1+

—



Unit - 4 Q Theory of Radiation

Structure

4.0 Objectives

4.1 Introduction

4.2 Black Body Radiation

4.3  Absorptivity, Reflectivity and Transmitivity
4.4 Prevost theory and Kirchhoff’s law

4.5 Spectral distribution

4.6 Concept of energy density

4.7 Derivation of Planck’s Law

4.8 Wien’s distribution law from Planck’s Law
4.9 Rayleigh Jeans Law from Planck’s Law

4.10 Stefans Boltzmann Law from Planck’s Law

4.11 Wien’s displacement law from Planck’s Law

4.12 Problems

4.13 Questions

4.0 Objectives

In this unit thermal radiation & its distribution of energy will be discussed. You
will learn different laws related to radiation & its application in different thermal

system.

4.1 Introduction

Radiation

The process of emission of energy or matter from a body and its transmission
like wave or particle 1s called radiation. The radiant energy or particle 1s also known
as radiation. We come across the following types of radiation in our daily life.

64
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1. Eelectromagnetic Radiation like radio waves, micro waves, infrared, vissible
light, ultra violet, x-ray and g-ray.

2. Particles like o, B and neutron.
3. Accoustic radiation like sound. ultrasound and seismic waves.
4. Gravitation.

4.2 Black Body Radiation

A body that absorbs all incident electromagnetic radiation regardless of frequency
and angle of incidence and emit maximum amount of thermal radiation at all
wavelength at any specified temperature is known as black body.

A cavity with a small hole and inside wall blackened may play the role of a
black body.

4.3 Absorptivity, Reflectivity and Transmitivity

When a radiation say R, (Wm!) is incident on a body, a part R, (say) is reflected
, a part R (say) is transmitted and a part R, say is absorbed. So that

Ri : Rl‘ 4 Rr T R‘ﬂ

Rr R[ Ra I
or, _R-'.+-E_{T+T{'_n

1

i@ pHara=l
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R
I 3 - o 3
Where p = =~ = fraction reflected known as reflectivity or reflection
1
co-efficient
Rl
T = R~ fraction transmitted known as transmitivity or transmission
|
co-cfficient
R'l
and @ =g = fraction absorbed known as absorptivity or absorption

i
co-efficient.
ror black body p =0, t1=0, o = 1
for opaque body t=0,p + & = |

for white body p=1,t=0, aa =0

4.4 Prevost theory and Kirchhoff’s law

A body constantly exchanges heat with its sunounding, radiating an amount of

energy which is independent of its surrounding The temperature of the body
increases or decreases depending on whether 1t absorbs more radiation than it emits
or vice-versa.

Kirchhott’s law of radiation

The ratio of spectral emissive power to the spectral obsorptive power for any

wavelength for any substance at the same temperature is same and is equal to the

spectral imessive power for the same wavelength for a black body at the same

temperature.

E?‘
_ax = constant = Ey, v ay, = 1

4.5 Spectral distribution

A function expressing analytically or graphically the relation between radiant

flex per wavelength (or frequency) interval against the wavelength (or frequency) is
called spectral distribution.
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Black body spectrum

Black body spectral distribution at three different temperatures are shown in the
figure. The radiation is a characteristic continuous spectrum. In each case E; — 0
as either A — 0 or A — 0.

m—

T1>T,>T,

; : :Ts
7\'m | km?_ }‘-m; L=

Fig. 19

In between them for a particular of A (A,,) E; is maximum. Higher is the
temperature lower is the value of A,,. In fact A, T = constant. The area under the
curve gives the total radiant energy of the black body at the respective temperature.

An analysis of the above graphs provides the following facts.

(1) Energy associated with the radiation of a given wavelength increases with
increase in temperature of the black body.

(i1) The energy E, emitted corresponding to the wavelength of maximum
emission (A,,) increases with fifth power of the absolute temperature of the
black body.

(111) The area under each curve represents the total energy emitted for the
complete spectrum at a particular temperature and 1s proportional to fourth
power of the temperature.

(iv) At a particular temperature of the black body, energy associated with the
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radiation initially increases with wavelength, becomes maximum at
wavelength A,, and then decreases.

(v) The wavelength for maximum emission A, shifts toward lower wavelength
as the temperature of the black body increases.

4.6 Concept of energy density

Radiation energy density can be defined as Radiant energy per unit volume.
From Planck’s law we know that the energy density at frequency v is given by

_ 8th v’
Ub 03 ]'l_U
ekT —1

here u 1s the spectral energy density at frequency v and u,d, 1s the energy
density of radiation of frequency between v and v + dv. When integrated over entire
frequency range from zero to o we get the rediation energy density as.

T 8mik?
= |lud = —T
v =

The unit of u is Jm—.

The total energy emitted per unit area per second at temperature T is given by
Stefan’s law as.

E =oT? o = Stefan’s constant. Unit of E is Jm—=3s1.

E and u can be shown to be related as

; . i . hv
According to special theory of relativily the momentum of a photon is 2 The

radiation pressure (p) is the momentum transferred on irradiant surface of unit area
per sec is given by

_2w _E_u
p (& c 4
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4.7 Derivation of Planck’s Law

In order to explain the black body radiation and the distribution of energy among
wavelength Planck introduced the concept of atomic oscillator. He assumed that

(i) Cavity radiation comes from the atomic oscillators in the cavity walls of the
black body.

(i) The energy of an oscillator can have only certain discrete values given by
E, = nhv; (v = frequency, h = Planck’s constant) and n is a positive integer
called quantum no.

(1i1) The oscillator emit or absorb energy when making a transition from one
quantum state to another. The entire energy difference between the initial
and final states in the transition is emitted or absorbed as a single quantum
of radiation.

Now it is to be considered that al modes (and photons) are to be in thermal
equilibrium at temperature T. In order to establish equilibrium there must be ways
of exchanging energy between the modes (and photons) and this can occur through
interaction with any particle or oscilator within the volume or with the walls of the
enclosure.

We use Boltzman distribution to determine the excepted occupancy of the
modes in thermal equilibrium. The probability that a single mode has energy E, =
nhv is given by Boltzman law is

exp(—E_/KkT)
~ Yexp(—E_/kT)

p(n)

The mean energy of the mode of frequency v is

B - %En exp(=E_/KkT)
Eu = %Enp(n) =

oo

7y exp(-E_/KT)
0

> nhvexp(—nhv/kT)
0

Y exp(—nhv/kT)
0
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Z nx"
5 —hu

= n— where x = e KT
an
0

?

= fiy RE 2T+ 2xT denninn o0

) ST
hox 1+_x+3>: 400
l+X+X% 400

D
or, EU & h‘m{(1 3) hux

C(1-x)t 1=x
o, . =____ho
Y x—l_,[ hv
ekT —|

We know that the number of modes in frequency interval v and v + dv is

"
g—n;)_du per unit volume.

C
u(v)dv = SHPE dux hgu
¥ ekT —1
or, u(v)dv = 811.11‘1)3 hgu ................ (1)
kT -1

putting v = % in equation (1) we write for the energy density of radiation in the
wavelength range A and A + dA as

uAM)dh =8mch dr (2)

3 he
eAkT —1
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Either of the expressions (1) and (2) may be taken as Planck’s distribution
function.

4.8 Wien’s distribution law from Planck’s Law

The Planck’s distribution law can be written in terms of wavelength A as

E,d, = 8_;‘i R )
erkT —]

- h—c
For short wavelength 715

we write equation (2) as.

Fdh _ 811:ch_ dA

~h

"5 i
A em‘
c2
ot Bady =647 8 0T8N snuunans (2)

where ¢, = 8nch and ¢, = % are constants. Equation (3) is the Wien’s

distribution law:

4.9 Rayleigh Jeans Law from Planck’s Law

We write Planck’s law in terms of wavelength A as.

8mch _ di
By, =" i naumma (2)
erkT —1

l ~
For large wavelength exfff 1

Neglecting higher order of expansion we write
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he
- hc
KT =1
§ YT

Equation (1) becomes

L dl = Sm;‘h 1
' AT
AKT
» 87[(_:[’1 " AKT
A he
or E,db = &;tl:——r ............. 4)

Equation (4) 1s the Rayleigh Jeans distribution law.

4.10 Stefans Boltzmann Law from Planck’s Law

Stefans Boltzmann Law states that the total energy emitted by a unit area of
ablack body per second is directly proportional to the fourth power of its absolute
temperature. Thus we write for total energy of all wavelength emitted per unit area

per second E as.

Where 6 1s a constant unknon as Stefan’s constant and has a value 5.67 x
108 Wm—2 K,

This law can be obtained from Planck’s distribution law.

We write Planck’s distribution law as

u(v) dv =@‘fu& .................. (1
€ ekT —1

To obtain the total energy density we integrate equation for frequenicy from 0
to oo Le.
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! T 03
u = ju(U)dU=8—T¥l -————}l’udu
0 T 0 akT —1
 8mh [ X3K3T3 _ kTdx  hv .. xkT ., kTdv
- { i Bes—ly DSt¥= =5 mde =" 7]
 8mk4T+ T x3dx
chd pe¥-1
_ 8mkATH mt T Bdx L S . .. 3t
== Fm 18 ltj]e-‘— 1s a standard integral whose value 1s ]SJ
514
or,u = AT+ ... (5) A = constant = 831 ~k 3
15e7kH?

The total energy E per unit arca per sec. is related with u as

; — uc_Acoyg
B =="rT

e
@
I
Q
—]

&=

which is the Stefan’s law.

Stefan’s law can be extended to include the net loss of energy by a body after
exchange of heat with the surroundings. If a body at temperature T is kept in an
enclosure at a lower temperature T, the body loses heat by emission of radiation and
gains heat from the enclosure. The net loss of heat per unit area per second is

B = (T =T oo (7)

Newton’s laws of cooling from Stefan’s law.

When the temperature of the hot body T and that of surroundings to differ by
small amount, Newton’s law of cooling states that the rate of cooling is proportional
to the tempeature difference (T — Ty)

From equation (7)
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E =oc (T - T,

6 (T2 + Te2) (T + To)(T = Ty)

=g % 2T % 2Ty (T—Tg) QTy=Ty
=40 Ty® (T — Ty)

= K (T = Ty) .....(8), K = constant

4.11 Wien’s displacement law from Planck’s Law

Wien’s displacement law states that the product of the waveleng A, corresponding
to maximum energy emission and the absolute temperature T of a black body is
constant. Mathematically

AmT = const

We write Planck’s distribution law as.

— 8nch 1 (5)

= T
A eAkT —1

uy

In order to find the value of A for which uy is maximum we must differentiate
equation (5) w.r.t. A and equate to zero. We rewrite equation (5) as

u;, = 8mch ]?::;

e kT —1]
differentiating
du. e
—2~ = 8nch i[h—]
di dA{ okt —1
-1 -2 _he =3
= -6 he -5 he a1 hC;L L

he

-1
- he 5 he _
or, 3+(cﬁ T —l) eAkT x T 0
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I he
-G ST

; he
or, AkT =35 putting X = 57=
e PUbBe AKT
erkT —]
Xer
or, —e“—lvs ............... (6)

Equation (6) is a trancendental equation and must be solved numerically. The
result is

X = 4965
he y o
oL, T T = 4,965, [This A corresponds to the max™
or, Ayl = 4;1;5 K energy hence equals to A,]

or, A, T = 2.898 x 10~ mK = constant.

4.12 Problems

Solved Problems

1. A black body at temperature 1373°¢c has a wavelength corresponding to the
maximum emission is .78 micron. Determine the temperature of the moon
if the wavelength corresponding to the maximum emission is 10 micron.

According to wein’s displacement law A, T = constant.
For the 1st case A, = 1.78 micron
and temperature T = 1373° + 273 = 1646 K

For moon A,, = 10 micron

T =9
14 x T =178 x 1646
g = LIBRIGAS iy ¢ = 19056%

10

2. Two identical black bodies A and B at temperature 227°c and 327°%
respectively are separately placed in two evacuted enclosures at temperature 27°c.
Compare their rate of heat loss.
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From Stefan Boltzman Law.
E =s(T*=-T,%H
For A T =227+ 273 =500K
Ty =27 + 274 = 300K
Es = o (500% — 300%)

Il

=6 % 544 x 108
For B T =327 + 273 = 600K
T, = 300K

Eg = o (600* — 300%)
=6 x 1215 x 108

A 544
E, 1215

3. The wavelength corresponding to maximum energy in the lunar spectrum 1s
found to be 14.46 = 10~*cm. If the value of Wein’s constant be 0.293 cm K,
Find the effective lunar temperature.

From Wein’s Law A, T = 0.293

0.293

T = T446x10-

= 200K

4.13 Questions

—_—

. A platinium ball of radius 1 c¢cm at temperature 927° is suspended in
an enclosure at 27°c. Determine the rate of loss of heat by the ball. Given
s = 1.36 x 10712 cal cm™ s K.

2

The wavelength of maximum energy of the spectrum of an unknown star is
20 x 10~ cm. If the Wein constant is 3 * 10-! ¢cm K find the temperature of
the star.

(%]

What is meant by black body ? How can it the realised in practice? Draw
the distribution curve of energy against wavelength of the spectrum of the
black body of a particular temperature.

4. Obtain Stefan’s law from the Planck’s distribution law.



Unit - 5 O Statistical Mechanics

Structure

5.0 Objectives
5.1 Introduction
5. Phase space

2
5.3 Macrostate and microstate
4

5.4 Entropy and thermodynamic Probability
5.5 Maxwell Baltzmann Law

5.6 Distribution of velocity

5.7 Fermi—Dirac distribution Law

5.8 Electron gas

5.9 Bose—Einstein distribution Law

5.10 Phaton gas

5.11 Comparison of three statistics

5.12 Questions

5.13 Suggested Readings

5.0 Objectives

The entire privious knowledge of any thermal system will change by reading
this unit. A modern statistical approach 1s adopted to eastablish thermal laws as well
as some new phenomear 1s discussed by this new method.

5.1 Introduction

Classical mechanics based mainly on Newton’s laws describes the motion of a
system in time and space in terms of displacement, velocity, energy etc of the
individual particles. The results are nice so far the system contains small number of
particles. But when the system contains a large number of particles it is not possible
to apply the laws of dynamics to describe the behaviour of the system. Statistical

T



78 NSOU e GE-PH-02

method must he applied in such cases. The statistical mechanics provides a frame
work relating the microcopic properties of individual particles to the macrocopie
bulk properties of material. It is said sometimes that statistical mechanics is not a
science but a pure mathematics which explains the natural phenomenon so nicely.

The statistical mechanics i1s divided into classical statistics governing the
distinguishable particles known as Maxwell-Boltzman statistics and Quantum statistics
governing indistinguishable particles known as Bose-Einstein statistics and Fermi-
Dirac statistics.

5.2 Phase space

Statistical Machanics

To describe the state of motion of a point particle, it is custormary to set up a
six diamensional hypothetical space, called phase space. in which six coordinates x,
Y, Z. Py, Py and p, are marked along six mutually perpendicular axes. The first three
Ay are three position co-ordinate and the second three p,, p, and p, on the
momentum co-ordinates representing the component of linear momentum along three
space axes. This phase space for a single particle is also known as p-space.

To describe the state of motion of system of N point particles it is customary
to set up a 6N diamential hypothetical space in which 6N co-ordinates, (X;. X,. X3
e XaNC1- X3Ns Ple P22 P3--o-Pancgs Pan) are marked along 6N mutually perpenducular
axes. The first three x|, x, and x; are three position co-ordinates of the first particle,
Xy, X5 and x; are three position co-ordinates of second particle and so on, while p,
p> and p; are three momentum co-ordinates of the first particle, p,, ps and p, are
three momentum co-ordinates of the second particle and so on. This phase space for
a system of particle is known as [space.

5.3 Macrostate and microstate

Microstate : A description of a system of particles that specifies the properties
of each individual particle is a microscopie description and the state is referred as
microstate. Position, momentum etc of particles are the properties used for such
description.

Macrostate : A more generalised description can be in terms of macroscopic
quantities such as pressure, volume etc or in can be interms of the number of
particles whose properties fall within a given range.
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We consider a system of four molecues (A, B, C and D) and we have two
compartments to accomodate the molecules.

(1) We can placed all the molecules in compartment 1 and keep compartment
2 empty.

(i1) We can place 3 molecules in compartment 1 and one moloculecule in
compartment 2.

(111) We can place 2 molecules in compartment 1 and 2 molecutes in compartment
3

(iv) We can place one molecule in compartment 1 and 3 moleccules in
compartment 2.

(v) We can place all the molocules in compartment 2 and keep the compartment
1 empty.

Thus we have 5 choies. These are the five macrostates.

Now we describe with more details the macrostate (1) as |ABCD only.

The macrostate (i1) as

|ABC[D|, [BCD|A|. [CDA|B

. |DAB|C| four microstate

The macrostate (iii) as

|AB|CD|, |BC|DA

., |[cD|AB|. |[DAIBC|. [AC[BD|, [BD|AC]|

There are six microstate.

The macrostate (iv) as

IA|BCD], [B]CDA

. [C|DAB]. |D]|ABC]

There are four microstates.

The macrostate (v) as [O|ABCD| only

Thus corresponding to 5 macrostate we have | +4 + 6 + 4 + 1 = 16 microstates.

5.4 Entropy and thermodynamic Probability

According to Boltzmann the entropy S of a state 1s a function of thermodynamic
probability (W) of the state. We write
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We consider two system of entropies S; and S, and the thermodynamic
probabilities w; and w,.
S] = f(W|) and SZ = f(\\’z)
If the two systems are mixed the entropy is S = S, + S, and the probability 1s
W= W X W,
S;+ 5 =1 (w X wy)
or, flwy) + filwy) =1 (W) ¥ W3) oo, 2)
Differentiating above relation w.r.t. w, keeping w, constant we get

f(wy) = 1w %X wy) X W,

£(w,)
oL \Vj

= (“{l X W"z) ,,,,,,,,,,,,, (3)

Similarly, differentiating (2) w.r.t. w, and keeping w; constant we get

f'(w,)
= _ f”(wl B Wa ) o 4)

w I

From equation (3) and (4) we get

f"{wl) B f’{wz')

W, W,

or, w; f(w;) = w, f(w,) = wf(w) = ¢, = constant

or, f(w)dw = ¢, %

or, filw)=c¢ In w + ¢,, ¢c; = constant

of, S=clnw+¢ covvviveran (5)
Planck showed that ¢, = 0. For pure crystal w = 1 and S = 0, putting these in
equation 5 we get ¢, = 0.

For an isothermal expansion of one mole of ideal gas from volume V to V' we

know
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W (V—’)N . N = Avogadro number

w Vv '

If S” and S are the entropies after and before expansion
8 -S=c¢;Inw —-¢ Inw

v’

or, §-8=¢n"- =eN- (6)

Again change of entropy for the 1sothamal expansion is given by

§—-S=RIn \\; ........... (7) . R = gas constant
From equation (6) and (7)
C]N =R
_R_x _
or, ¢ = y=h = Boltzman constant

Thus the relation between the entropy and thermodynamic probability, one of
the most popular relation is physics is given by

S=KIn w

5.5 Maxwell-Baltzmann Law

In statistical mechanics Maxwell—Boltzmann law describes the average
distribution of non-inracting material particles over various energy states in thermal
equilibrium and is applicable when temperature is high enough or particle density is
low enough to render quantum effect negligible.

The basic pestulates

1. The particles are 1dentical but distinguishable.

b2

. The total number of particles is constant.

L

. The total energy of the system is constant.

4. The particles are spinless and do not obey Pauli’s exclusion principle and
Heisenberg’s uncertainity principle.

Suppose there are N number of particles of which N, are in the energy state E,,
N, are in the energy state E; ... N, are in the energy state E,,.
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Total number of particles

By F My F s + Ny =N = constant ........ (1)
Total energy

N\E, + N,E, + ... + N,E, = E = constant ........... (2)

The number of ways in which the groups of particles could he chosen from N
particles 1s
2 N!
©ONJIN, LN

Wi

If g; 1s the number of quantum state, corresponding to the energy E;. the possible
arrangement of N; particles in g; states is giN'. Thus the possible arrangement of N,
particles in g, states, N, particles in g, states ......... N, particles in g, states is

- 11 N.
W, = Hg] R (4)

Therefore the total number of ways (W) in which all the N particles are
distributed among the quantum states is

== - N‘ & Ni 5
LAl L LI e — (5)
[N,
i

n
or, In W=InN!+ zNi Ing, —ZIHNi!
1

2

Taking the help of stirling formula In x! = x In x — x, the above relation
becomes.

n n
InW=NInN-N+ 2N Ing->®NInN-N)
I l

n n
or, InW=N1Inn-+ ;Ni Ingi —;Ni I“Ni .............. (6)
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The statistical equilibrium corresponds to the most favourable distribution ie dw
=0ordlnW=0

From equation (6)
n n
SInW = ZdngiﬁNi — > InN.8N.
| |
For statistical equilibrium

[ g oM, 0 ..

from equation (1) we have

multipying equation (8) and o and equation (9) by 3, where o and 3 are known as
Lagrange’s undermined multiplier and adding with equation (7) we get

(InN!'—Ingi+a+BE)3dN; =0

whereform

N.
In — +a+ BE.-g

&
N 3
g oogPE  MBTi
~1
where fMB(Ei)z; is known Maxwell Boaltzmann distribution
o ePE,

function.
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5.6 Distribution of velocity

We write Maxwell Boltzmann distribution function as number of particles N;
with energy E;.

where g; 1s the number quantum state with energy E;,

It can be shown that

N
Vv

hz

2amkT " 1
al } g B © KT

Maxell-Boltzmann is a classical statistics. For continuous Energy spread we
may write equation (1) as the number of particles with energy between E and E +
dE

N(E) dE = g(E) dE e % PE .. ... (2)

where g(E) is called the density of states of a system describing the number of
state, that are occupied by the system at energy level E.

The equation (2) therefore becomes, on inserting the value of g(E)

47nVARE 3/ o N ( h2 )": _E
EYdE = ———m2dE —|————| e KT
. oV amkT) €

- 1 E
or, N(E)dE = —2™N__E2 ¢'KT dE ... (3)
(TKT)"

For number of particles with velocity lying between ¢ and ¢, we put E = %mc2

and dE = mcdc putting in equation 3 we get

-

75 _me-
N(c)dc = 4nN (2::}1@) e 2KTc2 dc
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5.7 Fermi—Dirac distribution Law

In quantum statistical mechanics Fermi-Divac law describes the average
distribution of electrons, protons, neutrons and all hyperons over various energy
states in thermal equlibrium. Particles obeying Fermi-Dirac statistics are called
fermions.

The basie postulates
1. The particles are indentical and indistingushable.
2. The total number of particles is constant.

3. The total energy of the system is constant.

4. The particles have spin % etc. in units of 7. They obey Pauli’s

10 | —
12|

exclusion principle and Heisenberg’s uncertainity principle.

n

The wave function 1s antisymmetric under the positional exchange of any
two particles.

We consider a system of N non-interacting particles of which N, are in the
energy state E;, N, are in the energy state E,. ....... N, are in the energy state E,. Such
that the total number of particles

Wit W+ sonsvans M, = = constant ... (1
and total energy
N,E| + N;E;, + .. NEx = B =constant ..o (2)

Let g; is the number of quantum states corresponding to the energy E;. Since N;
particles are to be distributed among g; degenerate state. (g; 2 N;) having energy E;,
N; states will be filled up and (g; — N;) states will remain vacant. Now g; states can
be arranged in g! possible ways. But since the particles and quantum states are
indistinguishable we have deduct N;! ways and (g; — N;)!ways from the all possible
ways to get effective number of arrangements.

Thus total number of possbble ways of arrangement for the ith state is

Wi = N (gi-ND)!
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And total number of possible ways of arrangements for all the states is

orln W = ;[ngi ~InN, I~In(g —N)!
using Stirling formula.

n
InW = %[gi Ing —g —N,InN; + N, —(g - N)In(g, -N)+g - N, |
=

or, n W = Z[gi Ing, —N, InN, —(g, —N. )In(g, — N, }]

taking the differential

n 6Ni 6Ni
S InW = Z|' _6Ni lnNi—Nj N +6Ni ln(gi—Ni)+(gi—Nj)g_“N

n
or. In W = ;[wln N, +In(g, wNi)]SNi

The statistical equilibrium corresponds to the most favourable distribution is

oW =0 or. 6lnW=20

or, i[—lnNi+ln(gi—Ni)15Nj I — (2)

i=l

Since total number of particle is constant

n
;5“[ =0 (3)
1=

Since total energy is constant
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multiplying equation (3) by —a and equation (4) by -3, where « and [ are lagranges
undermined constants and adding with equation (2) we get

Y (-InN, +In(g, - N, )—a—BEi)aNi =0,

where from

—|I1Ni + In{gi—Ni)—OL—BEi-—O

g —-N.
or, In T = a+ bE,

y —N.
or, ',317[ ‘——eaeﬁEi

E
or, — =eePE 41
N
or, = PE -l

where t& £ - 1s known as Fermi-Driac distribution function.
ER e%ePEi 41

5.8 Electron gas

Electrons are part of family of particles known as fermions. Fermions have spin

%, % % ..... in units of /i and follow Fermi-Dirac statistics. A gas like collection of

electrons which have many of the properties of conversional gas like hydrogen or
neon including pressure, temperature volume etc is called electron gas or more
generally free electron gas. This concept 1s very successful in explaining the
electrical and thermal conductivity, the thermionic and field emission of electrons n
metals. In an atom of a metal, the valency electron is loosely bound with the atom.
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[f a large number of metalic atoms are closely arranged in metal the binding of the
valence electrons becomes very very small and become almost free. They are
confined within the boundary of the metal. These free electrons more within the
metal in between the ionic core like molecules of gas as assumed in the kinetic
theory. The ions at the lattice ponits becomes less important only provide the
electrical neutrality. In this theory following assumptions are considered.

1. Electrons move at random in all direction with different velocities in metal
1n between the 1onic cores.

2. The electrons undergoes collisions with each other. he collision with the
ionic core may be neglected.
3. The mean time between two successive collision is called the mean free

time, which is independent of position and velocity of the electrons.
4. Electrons exchange energy during collision and equilibrium state is reached.

5. There are no other interaction with electrons except that during collision.

5.9 Bose—Einstein distribution Law

In statistical mechanics Bose—Einstein Law describes the average distribution of
photons., phonons. mesons and material partiles having integral spin over various
energy states in thermal equilibrium. Particles obeying Bose-Einstein statistics are
called bosons.

The basic pastulates

1. The particles are identical and indistenguishable.

(B

The total number of particles is constant.

(8]

The total energy of the system 1s constant.

4. The particles have zero or integral apin. They do not obey Pauli’s exclusion
principal but obey Heisenberg uncertainigy principle.

5. The wavefunction 1s symmetric under the positional exchange of any two
particles.

R AR T . 1 are in the state of energy
E;, N, are in the state of energy E,............ N, are in the state of energy E,. Leg g;
1s the number of quantum states corresponding to energy E;. N; particles are to be
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distributed among g; quantum states each having energy E,. So that the ith energy
level have (N; + g;) objects. Keeping the first quantum state fixed the remaining
(N; + g, — 1) objects can be permuted in (N; + g; — 1)! possible ways. But since the
partilces and quantum states are indistinguslable we deduct N! ways and (gi — 1)!
ways from the all possible ways to get the effective number of arrangement. Thus
the total number of possible ways of arrangement for the ith state is

(g, +N. -1)!
N (g, —D)!

and total number of possible ways of arrangement of all the particles in all the
energy states is

n (g +N. -1

W =] ———
i Ni!(gi—l)!
orWZIE[M (])'ner] ine 1
() [ R O ) ;. neglecting
g IN T

or InW =Z|“(é + N, ) Z?: ZN'
1=l

using stirling formula, we get
n

Inw = ;[(gi+Ni')ln(gi+Ni)-gi—Ni —8; [ngi+gi—Ni lnNi+Ni]

n

= ¥ [(g+N,)In(g, +N,)~g Ing, —N, InN, |
1

N.

=4 1 1

n ON. ON.
or 8lnW = 2| In(g; +N;)8N; + (g +N,)— +1|\1 —8N. InN, —-N. —
1

ordlnW = El:ln(gi +Ni )—lll NJSN[
|
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The statistical equilibrium corresponds to the most favourable distribution i.e.
oW =0. or, 0InW=10

or, X [In(g+N)—InN;[]dN. =0 ... (2)

Since total number of particles is constant

Ny +Ny+ + N, = N = constant

Since total energy is constant

EiN; + E;N; + ... E.E, = E = constant

Multiplying equation (3) by —« and equation (4) by—[3, where o and 3 are
Lagrange’s undermined multipliers and adding with equation (2) we get

W

3 (In(g; +N;)~InN, —o.—BE, )3N, =0
1

or, In [%H]—a—ﬁlﬁi =0

o,
|

or, +I =ea +BEI
N;
or, Si_coehE; _|
N,
Ni |
o, —t=——0—=f_(E)

g, evefFi_1 BETTI
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1

where fBE ( Ei }= m

i1s known as Bose-Einstein distribution function.

5.10 Photon gas

Photons are part of family of particles known as bosons. Basons have spin 0, 1,
o I— in units of 7 and follow Bose-Einstein Statistics. The other members of this
family one phonons, mesons and material particles with integral spin.

A gas like collection of photons which has many of the properties of convensional
gas like hydrogen or neon including pressure. tempeature etc. The most common
example of photon gas is black body radiation. The important properties, of photon
gas very different from convensional gas or electron gas are.

1. The photon number is not conserved.
2. There is no collision between photons.

3. Photon interact with material particles in the cavity or in the walls of the
enclosure.

4. During such interactions photons are born when material particles go to
lower energy state from higher energy state and are lost when from lower
energy state to higher energy state.

n

The exchange of energy between material particles and photons helps to
attain equilibrium condition.

5.11 Comparison of three statistics

Comparison of M-B, B-E and F-D statistics

Quantity M-B B-E F-D
1. Nature of Distinguishable | Indistunguishable | Indistinguishable called
particles gas molecules called boson. fermions  electron,

Photons, phonons | photons. neutrons etc.
etc.
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state

Quantity M-B B-E F-D

2. Spin Spinless U, Loy s 1l 3 5.

2°2%2

3. Wave = Symmetric Antisymmetric
function

4. Number No upper limit No upper limit [One particle per
particles per Bosons obey | quantum state. Fermions
quantum Heisenberg obey Heisenberg

principle but do
not obey Pauli’s
exclusion
principle

principle and Pauli’s
exclusion principle.

function gSehE

f(E)

5. Distribution | 1

|
e®ePE —1

e%ePE +]

5.12 Questions

1. State the basic postulates of (i) M-B statistics (1) B-E statistics and
(111) F-D statistics.

2. What is meant by phase space?

3. Obtain Bose-Einstein distribution law.

4. Compare between (1) M-B statistics (ii) B-E statistics and (ii1) F-D statistics.

5.13 Suggested Readings

I. Head & thermodynamics & statistical physics — Brijlal (S. Chand)

)

sd

Thermal Physics

Heat & thermodynamics — Zemonsky

C. K. Ghosh & S. C. Gang
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