
PREFACE

In a bid to standardize higher education in the country, the University Grants
Commission (UGC) has introduced Choice Based Credit System (CBCS) based on five
types of courses viz. core, generic, discipline specific, elective, ability and skill
enhancement for graduate students of all programmes at Honours level. This brings in the
semester pattern which finds efficacy in sync with credit system, credit transfer,
comprehensive continuous assessments and a graded pattern of evaluation. The objective
is to offer learners ample flexibility to choose from a wide gamut of courses, as also to
provide them lateral mobility between various educational institutions in the country where
they can carry their acquired credits. I am happy to note that the university has been
recently accredited by National Assessment and Accreditation Council of India (NAAC)
with grade “A”.

UGC (Open and Distance Learning Programmes and Online Programmes) Regulations,
2020 have mandated compliance with CBCS for U.G. programmes for all the HEIs in this
mode. Welcoming this paradigm shift in higher education, Netaji Subhas Open University
(NSOU) has resolved to adopt CBCS from the academic session 2021-22 at the Under
Graduate Degree Programme level. The present syllabus, framed in the spirit of syllabi
recommended by UGC, lays due stress on all aspects envisaged in the curricular
framework of the apex body on higher education. It will be imparted to learners over the
six semesters of the Programme.

Self Learning Material (SLMs) are the mainstay of Student Support Services (SSS)
of an Open University. From a logistic point of view, NSOU has embarked upon CBCS
presently with SLMs in English / Bengali. Eventually, the English version SLMs will be
translated into Bengali too, for the benefit of learners. As always, all of our teaching
faculties contributed in this process. In addition to this we have also requisioned the
services of best academics in each domain in preparation of the new SLMs. I am sure they
will be of commendable academic support. We look forward to proactive feedback from
all stakeholders who will participate in the teaching-learning based on these study materials.
It has been a very challenging task well executed, and I congratulate all concerned in the
preparation of these SLMs.

I wish the venture a grand success.

Professor (Dr.) Ranjan Chakrabarti

Vice-Chancellor



First Print : November, 2022

Printed in accordance with the regulations of the Distance Education
Bureau of the University Grants Commission.

Netaji Subhas Open University
Under Graduate Degree Programme

Choice Based Credit System (CBCS)

Subject : Honours in Physics (HPH)

Course : Electricity & Magnetism

Course Code : CC-PH-08



Professor Kajal De
(Chairperson)
Director, School of Sciences
NSOU
Dr. Gahul Amin
Associate Professor of Physics
NSOU
Dr. Goutam Kumar Mallik
Associate Professor of Physics
NSOU
Mr. Pranab Nath Mallik
Associate Professor of Physics
NSOU

Board of Studies
Members

Dr. Rupayan Bhattacharya
Retd. Principal, Gurudas College

Dr. Goutam Gangopadhyay
Professor of Physics
University of Calcutta

Dr. Amit Kumar Chakraborty
Associate Professor of Physics
National Institute of Technology

Dr. Subhratanu Bhattacharya
Assistant Professor of Physics
Kalyani University
Dr. Manik Sanyal
Associate Professor of Physics
Barasat Govt. College

Netaji Subhas Open University
Under Graduate Degree Programme

Choice Based Credit System (CBCS)

Subject : Honours in Physics (HPH)

Course : Electricity & Magnetism

Course Code : CC-PH-08

: Course Editor :

Dr. Goutam Kumar Mallik
NSOU

Mr. Pranab Nath Mallik

NSOU

Notification

All rights reserved. No part of this Self-Learning Material (SLM) may be reproduced in
any form without permission in writing from Netaji Subhas Open University.

Dr. Ashit Baran Aich

Registrar (Acting)

: Format Editor :

Mr. Pranab Nath Mallik
NSOU

: Course Writers :

Unit 2,4,5,6,8 : Mr. Pranab Nath Mallik

NSOU

Unit 1,3,7,9 : Dr. Shib Kumar Chakraborty

Retd. Associate Professor of Physics

B.B.College





Unit 1  Electric Field and Electric Potential 7-75

Unit 2  Dielectric Properties of Matter 76-112

Unit 3  Magnetic Field 113-141

Unit 4  Magnetic Properties of Matter 142-165

Unit 5  Electromagnetic Induction 166-189

Unit 6  Maxwells Equations And Electromagnetic

Wave Propagation 190-238

Unit 7  Network Theorems 239-257

Unit 8  Electrical Circuits 258-282

Unit 9  Ballistic Galvanometer 283-295

References 296

Course : Electricity & Magnetism

Course Code : CC-PH-08

NETAJI SUBHAS
OPEN UNIVERSITY

Honours in
Physics (HPH)





UNIT 1 : Electric Field and Electric Potential

1.1 Objective

1.2 Introductions

1.3 Electrostatiocs in Vacucm

1.4 Electrostatic potential

1.5 Multipole expansion of electrostatic potential

1.6 Gauss’s Theorem and its application–

1.7 Laplace and Poisson’s equation.

1.8 Electrostatic energy

1.9 Conductors in electric field

1.10 Capacitors

1.11 Electrical Image

1.12 Summary

1.13 Review question and answer

1.14 Problems and solution

1.1 Objective

After completing this unit you will be able to understand

1. Electrostatic interaction between charges through Coulomb’s law.

2. Electric field conception to explain the propagation of interaction by introducing
field lines conception.

3. A vector presentation of electric field through the introduction of electric field
intensity conception-a vector representation of electric field in space.

4. Electric flux, Gauss’s theorem and its application.

5. Presentation of electric property by a scalar field conception through introduction
of electric potential.

6. Presentation of electric field intensity 

E  as a gradient of electric potential V..

Equipotential surfaces.
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7. Conservative nature of electric field, Laplace’s and Possion’s Equations.

8. Energy assoicated with a symmertic charge distribution.

9. Capacitance of capacitors.

10. Electrical image and its application to some specific cases.

1.2 Introduction

The term ‘electricity’ started its path from the experiment of Thales (600 BC)-Greek
philosopher who rubbed Amber with silk and it was seen both of them developed the
property of attracting small papers bits. As the Greeks called Amber as electron, so the
term electricity boiled down. Electricity was in its rudimentary state still late 18th century
until, about 100 years after the introduction of Newton’s Law of Gravitation (1687),
Coulomb in 1785 AD, introduced the law governing the interaction between the charges
– the subject electricity got its space.

Atom, the basic ingredient of matter contains two charged particles called electron
(negatively charged) and proton (positively charged) carrying equal but opposite charges
of magnitude 1.6 × 1019 Coulomb each, which is the smallest quantum of charge that can
exist in nature. Obviously,

Any charge that physically exists will be the integral multiple

of the smallest quantum of charge - the magnitude of the

charge of an electron, this is known as quantisation of charge.

The charge also follows another law called conservation of charge which goes as,

The total charge of an isolated system remains conserved.

but this conservation is not like mass conservation law which changes
with the speed of reference frame. Charge

conservation law is independent of reference frame

1.3 Electrostatics in Vacuum

(a) Coulomb’s Law and Electric Field :

Coulomb’s law gives the interaction between the two static point charges. The law
states that the force of interaction between two point charges separated by a distance is,

i) directly proportional  to the product of the charges,



NSOU  CC-PH-08   9

ii) inversely proportional to the square of the distance of
separation between the charges,

iii) action along the line joining the charges.

The fig.-1.1 shows two static point charged particles q1 and

at position vectors 
1


r  and 


jr  respectively. Then according to

The Coulomb’s law, the force on jth particle due to ith particle
will be,

 2
ˆ ... ... ... 13.1

 i j
ji ij

ij

q q
F r

r

Where ; 
  

ji j ir r r  
 

j ijir r r  and  ˆ   
   

j i j ijir r r r r = unit vector along

 
 

j ir r

Similarly, the force on ith particle due to jth particle will be

2
ˆ  

  i j
ij ji ij

ij

q q
F F r

r

We can write eqn, (1.1) as,  2
ˆ , ... ... ... 1.13.2

 i j
ij ij

ij

q q
F k r

r

Where k is a constantthat, depends on the intervening space and choice of unit. In this
book, we will use the SI unit for wide acceptance of this unit over the globe. In this unit

k = 9
01 4 9 10    Nm2c-2. 0 is known the permittivity of vacuum. The value 0 =

8.8542 × 10-12 C2N-1m-2.

In SI unit the unit charge is that charge which when placed at 1m away from an identical
charge in vacuum the force of interaction is 9 × 109 N. This unit charged is referred as
Coulomb.

If there are N number of particles bearing charge q1, q2, q3 ......at poisiton vectors

1 2 3, , ,..........,
  
r r r  respectively then, the total force on ith particle

qi

qj


ir


jr

Fig. 1.1
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 2
1

ˆ ... ... ... 1.13.3





 
 j N

i j
i ij

j ij
j i

q q
F k r

r

Equation (1.3) explains that, the superposition Principle is applicable for this electric
interaction. This means that force on a charged particle is the vector sum of the forces due
to all other charged particles.

Problem - 1

A conductor possesses 80C of positive charge. How many electrons does it have in
deficit or in excess?

Solution - 1

To get this positive charge it has to liberate electrons. As each electron has magnitude
of charge 1.6 × 10-19C, so the deficit of number electron

n = 80 × 10-6/1.6 × 10-19 = 5 × 1013

Problem - 2

Four point charges each of + 10C is placed at (3m, 0, 0), (-3m, 0, 0) and (0, -3m,
0). Find the force on a charge 10C placed at (0, 4m, 0)

Problem - 3

(b) The Electric Field

It is obvious that electric interaction is a distant force, which means that electric interaction
may migrate through space without any physical contact. Now two questions arise

i) Who is the carrier of this interaction?

ii) With what speed the interaction travels.

To resolve the first question, we introduce the conception, what is known as electric
field?

This field migrates with the speed of light.

Due to the presence of charge, a quality in space is developed, which is known as
electric field. In case of static charge, only electric field is developed but for dynamic
charge magnetic field is also developed. The interaction between the charges takes place
with this field obeying Coluomb’s law without an material interaction.

A space is said to possesses electric field
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The magnitude of the field is named as ‘electric field intensity’  
E  and is defined as :

The electric field intensity at a point is the force experienced

by a unit positive charge placed at that point

1. Field Due to A Point Charge

The fig. (1.2) shows a point charge q is placed at the origin ‘0’ of the reference frame.

To calculate the field intensity atpoint p at position vector ,

r  we place a test charge dq

at p. (The charge dq is so small that it does not put any distortion of field pattern of q.

Now from Coulomb’s law the force on the charge dq is,

 2
0

1 ˆ... ... 1.3.3
4




 qdq
F r

r

Therefore, the electric field intensity at p is,

 2
0

1 ˆ... ... 1.3.4
4




 qFE r
dq r

This shows that the field pattern of a point charge is spherically symmetric but decreasing

with square of the distance from the point charge. If 1 2 3, , ......
  
E E E

Calculation of electric potential and hence field intensity

(a) For a point charge

The fig. (1) shows a point charge q at origin 0 of referene frame. To find the potential

at P at position r


 vector we proceed as follows. The electric field intensity at P due to

+ q charge at 0 
0

1 ˆ,
4 2

q
E r




 if V is the potential at P then, Then the work done in

transferring a unit charge from     ,P r toQ r d r
  

2
0 0

1 1ˆ. . ,
4 4 2

q q
dV E dr r dr dr

r
     

 

  
 so the potential at P which is the work

done to carry a unit charge from infinity to the point quasi-statically,
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 2
0 0

1 1 ... ... 13.5
4 4

r
q q

V dr
rr

   
 

As V is a function of r only 
2

0

1 along 0P
4

q
V r

r
    



or, 2
0

1 ˆ,
4

q
E r

r





 which is in exact coincidence with the previous result.

(b) For a uniformly charged circular ring

The fig (1.4) shows a uniform circular ring of radius a. + q Chargedistributed

uniformly over the ring. We have to find out the potential at P at a distance x from centre
0 of the ring.  be the charge per unit length on the ring. Consider an element charge dl
at A (in fig) Then potential at P due this element of charge,

0

1 ,
4

dldV
r


  So the total potential at P du to the whole

ring  
2 20 0 0 0

1 1 1 1 ... ... 1.3.6
4 4 4 4

dl q qdlV
r r r a x

   
    

 

So the intensity along x axis (since V = V (x))

 3 22 20

1 along 0P
4

qxVE
x

a x

  
 



 
 3 22 20

1 ... ... ... 1.3.7
4

qx
E

a x







(c) For uniformly charged disc

The fig (1.5) shows a uniformly charged disc of radius R and of charge density Cm–2.
To calculate the electric field intensity E, at point P at a distance × from 0 the centre of
the disc we consider an elemental ring of radius r and thickness dr as in fig ( ).

The area of the elemental ring = 2r dr
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The charge of the elemental ring dq = 2r dr

So the potential due this elemental ring at P, 
 1 22 20

0

1 2
4

4

rdrdV
r x

 


 

We put tan ,r x  2sec ,dr x d    so,    2

0
sin sec

2
dV x d   



    2 2 2

0 0 0 0

1sin sec 1 ... ... 1.3.8
2 2 cos 2

xV x d R x x
                       

As V is a function of x only, So

   22 20 0 0

1 1 cos 1 cos
2 2 2

qV xE
x RR x

                    
 along 0P

... ... (1.3.9)

Alternative method

Field at P due this elemental ring 
 3 22 20

1 2
4

rdr xdE
r x

 



 (ref. eqn no. (1.10))

 
3 3

2 3 2 22 2 00

1 2 1 2 cos
44

rdr x rdr
x xr x

     
 

 Now, tan ,r x   so, 2secdr x d  

So the above equation boils to,

2 3

0 0

1 12 tan sec cos 2 sin
4 4

dE d d         
 

Thus the total electric field at P,

   1

2
0 00

1 cos1 12 sin 2 1 cos
4 2

q
E d

a

  
        

  along 0P, same as eqn.

................(1.3.10).
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(d) For a uniformly charged spherical shell :

The fig (1.6) shows a spherical shell of radius R carrying a
charge q uniformly distributed over the sphere. We have to find
out the potential at point P at a distane x as shown in fig (1.6)
We consider an elemental ring within the angle  and  + d as
in fig (1.6)

The area of the elemental ring = 2R sin  (Rd),  be the charge per unit area.

Therefore the charge on the elemental ring  2 sinR Rd   

The potential at P due to this ring 
 

0

2 sin1
4

R Rd
dV

r
  




Now from the fig. (1.6) 2 2 3 2 cosr R x Rx     or 2 2 sinrdr Rx d  

sin d dr
r Rx
  

Therefore the above equation can be written as 
0

1 2
4

RdV dr
x




So 
0

1 2 ,
4

RV dr
x


   where the integration is to be carried out with proper limit.

When the point P is outside sphere

 
2

0 0 0

1 2 1 4 1 ... 1.3.11
4 4 4

x R

x R

qR RV dr
x x x





   
  

Be the intensity at a point due to a discrete distribution charges at
a point, thenform principle of superposition the net field at that point

will be 1 2 3.......E E E E  
   

(a) Field Due To A Continuous Chage Distribution

So far we have confined to discrete charge distribution, but in macroscopic world we
frequently encounter the cases where charge distribution is continuous for example a charged
metallic body.

+ q

0

P

Fig. 1.3

r


+
+
+
+
+
+
+
+

+
+
+

+

+
+
+

+

+

+

+
+
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To calculate the field intensity at the point p due to such a continuous charge distribution.
We usually follow this procedure. We have taken an element of charge dq as in fig (1.7)
The field at p due to this elemental charge,

2
0

1
4

dq
d E r

r






So the net field at the point p will be,

 2
0

1 ... ... ... 1.3.1
4

dq
E d E r

r
 

 
  

Where the intagration is to be carried out over the entire charge distribution. Now in
case of line distribution of charge dq  dl, where is the charge per unit length on the
line element dl.

In case of surface distribution of charge dq  ds, where is the charge density over
the surface element ds.

For a volume distribution of charge dq dv.

Electric Lines Of Force Or Field Lines

To give as visual representation of electric field the conception electric lines of force
(now referred as field lines) was introduced by Michael Faraday. The electric field line is
an imaginary line drawn in the space containing electric field such that tangent at any point
on the line is along the direction of electric field at that point.

The field lines bear the following properties :

a) They emanate from a positive charge and end up to a negative charge or to in finity.

b) They try to contract lengthwise and repel each other laterally.

c) Field lines can’t intersect each other.

d) The number of field lines associated with a charge is finite and proportional to the
magnitude of charge.

e) The magnitude of field intensity at a point is the number of field lines passing per unit
area when the area is placed perpendicular to the field lines.

(c) Conservative Nature Of Electric Field & Electric Potential

Now let us explore how this force field is related to energy and work. We have already

seen how the electric interaction in a region can be represented by the vector ,E


 the

electric field intensity. Can we represent this field in terms of a scalar called electric

dq

dE
P

Fig. 1.1
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potential? The answer to this poser is yes.

We have already seen that electric field due to a static point charge is given by the
equation

 03
0 0

1
4

q
E r r

r r
 

 

  
 

So,  03
0 0

1
4

q
E r r

r r

 
        

  
 

So,      03
0 0

1
4

q
E r r G R R G R R G

r r

 
             

    
    ,R R



where  0R r r 
 

     

     

 

0 0 0

i j k

G R R G R R G R G R R
x y z

x x y y z z

       
  
  

  

So electric field is non-rotational. As curl of a gradient of a scalar is always zero i.e.,

0 0E V   
  

Therefore, we can write  ... 1.3.2E V 


The negative sign is to carry on a logical convention that work is done in quest of
electrostatic energy.

From eqn. 1.3.2 It is obvious that E


 remains same if V is replaced by V + c (const).
Thus, an absoulate value of potential bears indeterminacy. It depends on the choice of
origin. As the electric field is zero at an infinite distance from a charge, we usually refer this
point to be of zero potential. With this choice we can put c  0. However, this constant
is not so important as it does not affect the force field.

Now we take a migraction of a unit + ve charge from the space point I along the loop

i I f II i     then the work done,

O

r




ro



q r ro




P

Fig. 1.2
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. . 0
ilflli

W E dr dr d        
  

  

Thus 

log

. . 0,
f i

i fa ilf along flli

E dr E dr
  
   
     

 
   

So, . .
f f

i ialong ilf along flli

E dr E dr
   

   
      
 
   

 that shows work done along the path i

i I f   and i II f   are same. Thus, the work done is independent of path and
depends on the initial and final position. As work done is energy concerned, so in this force
field, the work done depend on some energy function which solely depends on the energy
of initial and final position. Such work which is a function of position is known as potential
energy, here referred as electric potential or potential energy per unit charge and is represented
by V.

 The electric potential at a point is the work done to bring a unit

positive charge from infinity up to that point quasistatically.

1.4 The electrostatic potential

It is defined as the amount of work energy needed to move a unit of electric charge from
a reference point to a particular point in an electric field, precisely, it is the energy per unit
charge for a test charge that is so small that the disturbance of the field under comsideration
is negligible

The electric potential at a point r in a static electric field E


 is given by the integral

 · .... 1.4.1E
C

V E dl 


where C is an arbitrary path from some fixed reference point to ,r


 in electrostatics, the

Maxwell-Faraday equation reveals that cure 0,E 


 making the electric field conservative.

So the integral above does not depend on any speafic path c chosen, but only an end
points, implying VE

 is well defined at evey point. Therefor we can write

 ... 1.4.2EE V 
 

II

fI

i

Fig. 1.3
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This states that the electric field points downhill towards lower voltage. The scalar
potential can be visualized using equipotential, surfaces. An equipotential surface is a surface
over which is a constant. The electric field is the negative of the gradient of the electric
scalar potential. The electric field lines are every where normal to the equipotential surface
and point in the direction of increasing potential.

1.4.1 Electric dipole

Two equal but opposite point charges separated by a small distance consitutute an
electric dipole.

The dipole moment of a dipole has magnitrde, charge time the distance between the
charges and is directed from + ve to – ve charge.

If + q and – q be the charges shown. in fig (1.4 ). Then dipole moment of this dipole

 2 ,p q l
 

 where l


 is taken along
2l

q q
   Fig. 1.4

(a) Electric Potential due to dipote

The fig (1.5) shows an electric dipole AB. The potential at point P at position Vector

r


 from centre O of dipole,

0

1
4

q q
V

BP AP
     

0

1 1
4

q

r l r l

 
  

    
   

Taking r > > l we can write 
2 2 2 20

1 1
4 2 cos 2 cos

q

r l rl r l rl

 
          

2 20

1 1
4 2 cos 2 cos

q
V

r rl r rl

 
        

0

1 1
4 2 cos 2 cos1 1

q
r l l

r r

 
 

      
 

r

P

q
Al l B

+q

Fig. 1.5
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0

cos cos1 1
4

q l l
r r r

        

2 2
0 0

2 cos 1 cos
4 4

q l P
r r

  
 

or,  3
0

·1 .... 1.4.3
4

p r
V

r




 

So the electric field intensity at P

3
0

1 ·
4

P rE V
r

        

   

     3 3
0

1 1 1· · .... 1.4.4
4

P r P r
r r

        

    

Calculation

     ˆ ˆˆ ˆ ˆ ˆ· ·x y zP r iP jP kP ix jy kz      
  

 ˆˆ ˆ
x y zi j k xP yP zP

x y z
           

ˆˆ ˆ ,x y ziP jP kP P   


and 

 3 3 22 2 2

1 1ˆˆ ˆi j k
x y zr x y z

 
                     



     5 2 5 2 5 22 2 2 2 2 2 2 2 2

23 2 3 3 2ˆˆ ˆ
2 2 2

yx Zi j k
x y z x y z x y z
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5 5

ˆˆ ˆ
3 3

ix jy kz r
r r

 
  



So 
 

3 5
0

3 ·1
4

P r rPE
r r

 
   

  
 

  

 
5 3

0

3 ·1
4

P r r P
r r

 
  

  
 

   

 
 3 2

0

3 ·1 .... 1.4.5
4

P r
r P

r r

 
  
   

 
 

So the radial component in (r,) co-ordinate

2

3 2
0

1 Pr cos3 cos
4

rE P
r r

      

 3
0

1 2 cos .... 1.4.6
4

P
r




and the transverse component

 3
0

1 sin
4

E O P
r

      

 3
0

1 sin .... 1.4.7
4

P
r




So E


 makes an angle  with Er

 1tan tan .... 1.4.8
2rE E   

Thus along with same line when r > > l field lines are parallel to each other on same .r


E
y

E0



Er


0 x

Fig. 1.6
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   2 2 2
3

0

1 3cos 1 .... 1.4.9
4r

PE E E
r

   




field at end-on position (on the axis of dipole) along p


 3
0

1 2 ..... 1.4.10
4

end on
PE

r
 





field at broad side position (on perpendicular bisector)

 3
0

..... 1.4.11
4

PE
r







(b) Dipole in a electric field.

P.E of a dipole in electric field.

The potential energy (P.E) of a dipole in a electric field is the work done to bring the
dipole from infinity to the point concerned quasislatically Now if a dipole is brought to a
point with its poles perpendicular to the direction of field then the work done will be zero
since + ve and – ve charge will do same work but in opposite direction. So we can take
the field normal position to be zero P.E Position.

The fig. (1.7) shows a dipole AB of length  2 .l V r


 P.E

the potential energy at 0, the centre of dipole. Then the P.E
of the dipole.

   U qV r l qV r l    
   

Taking l


 to be very very small

         · ·U q V r l V r q V r l V r      
     

   2 · · ·ql V r P V r P E     
      

  As E V r 
 

So the force on the dipole

 ·F U P E   
  

0

r 
 




q +q
Ai Bi

r 

0 

r 
 



Fig. 1.7
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Using the vector identity

         · · ·P E E P P E E P P E          
             

We have

 ·F P E 
  

....(1.4.18) since the rest of all terms are individually zero.

(c) Torque on a dipole in uniform electric field.

The fig (1.8) shows a dipole AB in uniform electric field .E


 The total fore on the dipole

is zero since poles are acted by equal and opposite forces. The torque on the dipole

21sin sinqE PE    

Taking direction of  ..... 1.4.13P E  
  

If the field is non-uniform apart from the torque there
will be a translational force also on dipole.

(d) Dipole–dipole interaction

Now we shall calculate the potential energy of due to dipole–dipole interaction of two
co-planar dipoles.

The fig (1.9) shows two coplanar dipole of dipole

moments 1P


 and 2P


 at position vector 1r


 and 2r


respectively.  2 1 .r r r 
  

The potential energy of dipole of dipole moment 2P


 in

the field of dipole of dipole moment 1,P


1 121 · ,U P E 
 

 where 1E


 is the field due to 1P


 at 2.P


 1
2 13 2

0

3 ·1·
4

P r r
P P

r r

 
   
   

  
 

   1 2 2 11

3 2
0

· · ·1 3
4

P r P r P P

r r

 
  
   

     

2 

qE   A

+qE
B

2 sin 

Fig. 1.8

0 
r2

 r

P






r1

0 P1



Fig. 1.9
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 1 2 1 1 2 23
0

1 cos 3 cos cos
4

P P P P
r

    


 1 2
2 1 1 23

0

cos 3cos cos
4

P P

r
        

12U

Now if the dipoles have same dipole moment i.e. 2P P
 

 i.e they are oriented along

same line,

Then  
2 2

3 3
0 0

1 3 .
4 2

P PU
r r

  
 

1.5 Multiple Expansion of Electrostatic Potential

It has been carlier seen that when the charge distribution has sufficient symnetry, or
when the potential is to be calculated on symnetry axis of the distribution, one can obtain
potential due to it a point outside the charge distribution by solving Laplace’s equation with
necessary boundary condition. It is a problem of finding potential due to an arbitrary charge
distribution and one must take recourse to appronimation. One such proceedure, called
multiple expansion of the potential, at a point far removed from the distribution. In this
appronimation, the potential is expressed as a sum of contribution due to charge monopole,
dipole, and quadrapole etc

Let us consider a charge distribution shown in the figure (1.10). The potential at the

point r


 is given by

   
0

1 1
4 ''

V r r d
r

   
 


....(1.5.1)

d ʹ rʹʹ

rʹ
r

o

 Fig. 1.10

P
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Using the law of cosines,

 2''2 2 2 cosr r r rr    

   2
2 2 cosr rr

r r
     
 

where is the angle between r


 and r
  so we get,  '' 1r r  

with   2cosr r
r r
    

For points far from the charge distribution < 1, from binomial expansion.

   1 2 2 31 1 1 1 3 51 1 ....
'' 2 8 16r r r
          

or interms of , andr r 

          2 2 3 31 1 1 3 51 2cos 2cos 2cos .....
'' 2 8 16

r r r r r r
r r r r r r r r

                 
 

     2 32 31 3cos 1 5cos 3cos1 cos
2 2

r r r
r r r r
                 

    

In the last expansion, we sbserve that series comes with power of r
r


 along with

Legerdre polynomial as coefficients. we get

     
0

1 1 cos .... 1.5.3
''

n

n
n

r P
r r r





 

Substituting the equatim 1.5.3 in equation (1.5.1) we get the potential as

       1
0 0

1 1 cos ' '
4

n
nn

n

V r r P r d
r
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More explicitly,

       22 3
0

1 1 1 1cos  
4

V r r d r r d r
r r r

                 


   23 1cos ....
2 2

r d        ....(1.5.5)

The equation (1.5.5) is expression for multipole expansion of V in powers of 1 .
r

rearrange the term as follows–

         0 1 2 ..... 1.5.6V r V r V r V r   
   

where,    0
1 ' ..... 1.5.7

4
V r d

r
  

 


     1 2
0

1 cos .... 1.5.8
4

V r r r d
r

    
 



       2 2
2 3

0

1 1 3cos 1 ' .... 1.5.9
24

V r r r d
r

     
 



The Monopole and Dipole Terms :

Monopole term is defined as.

     0
0

1 ' ..... 1.5.10
4

V r r d
r

   
 



It is the potential which would have at P if The whole charge is concentrated at the

origin, and d    is the monopole moment.

If the total charge is zero, the dominant term in the potential will be the dipole.

     2
0

1 cos .... 1.5.11
4

dipV r r r d
r

    
 



Since is the angle between r
  and r
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ˆcos ·r r r  


So we can write the dipole term as

     2
0

1 1 ˆ. .... 1.5.12
4dipV r r r r d

r
    

 


This integral is called the dipole moment of the charge
distribution,

   .... 1.5.13P r r d    
 

So the dipole contribution to the potential is given by

   2
0

ˆ1 · .... 1.5.14
4dip

P rV r
r






The dipole term plays the important role when all the monopole term vanishes, so

 1V r


 is the potential as if a pure dipole is placed at the origin. The term  2V r


 is defined

as potential contribution due quadrapole moment The figure 1.10a portrays gemetrical

1.6 The Gauss’s Theorem

(a) Electric flux :

In science, flux, usually concerns to some flow of physical property. In case of fluid flow
‘fluid flux’ refers to the amount of fluid flowing through a specific area per unit time.
‘Vehicular flux’ often refers to the number vehicle crossing a specific gate area per unit time.
However, in case of electric flux, no such transport physically exists. It refers to the
crossing of electric field lines (which is an imaginary conception to give a visual presentation
of field pattern) through specific area. It is defined as :

The electric flux through an area the number of field lines passing perpendicular to the

area. E


 be the electric field at a space point. Then the flux through a surface, d s


 is,

. ....d E d s 
 

As d s


 is infinitesimal E


 can be taken to be constant over the surface. The total flux

z

x

P

p
r

y

Fig. 1.10 a
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on a finite surface can be obtained by integration as,

. ,E d s  
 

 where the integration is carried over the entire surface.

(b) Surface area and solid angle :

Surface area is treated as a vector whose magnitude is the area of the surface considered
and direction is specified as follows.

i) For closed surface the direction is + ve in outwards normal to the surface.

ii) In case of open surface the direction is specified by
right hand screw rule.

The solid angle is three dimensional analogues to that of
an angle in two dimension.

Now an angle can be visualized physically as a two
dimensional peeping from a point. Mathematically it is defined
as the ratio of the arc by radius of a circle.

In fig the angle subtended

arc AB ,d r dl r    which is a dimensionless quantity..

Its unit is taken as radian which is defined as angle subtended
by a arc of a circle of unit length and unit radius at the centre of the circle, so, the total

angle about a point as 
2

2
2 2r

r
    radian.

Similarly, a solid angle can be visualized as a three dimessional peeping through a point
and it is mathematically defined as three dimensional angle produced at the centre of a
sphere due to an area boudary on the surface of the sphere.

If ds be the elemental area in the surface of a
sphere then, the solid angle suspended at the centre

O is, 2
dsd
r

 

If the area plane makes an angle with the
tangent to the sphere at that point then solid

angle 2 2 2
ˆ ˆcos . . .ds d s r dsn rd

r r r
   

 
 where n̂

and r̂  are unit vectors along d s


 and .r


 as

explained in the figure.

0 r1

d

A

B

dr

Fig. 1.11

0

d

r ds

Fig. 1.12

d
ds


d

r


ds
dsnFig. 1.13
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Unit of solid angle is named steradian, one steradian is the solid angle subtended at
the centre of a sphere of unit radius by a unit surface on the sphere.

Obviously the total solid angle about a point will

2

2 2 2
ˆ ˆ. cos 4 4dsn r ds r

r r r
          steradian

When o is outside then referring the fig.

Due to the orientation of 1 2ˆ ˆn and n  the surface area vectors the total solid angle

subtended at o will obviously be zero, because they will cast solid angle of same magnitude
but in opposite sense and will cancel each other to make the yield null.

(c) The Gauss’s law :

Now we consider a point charge q at a point o bounded by the surface S. The electric

field on the surface ds is 
2

0

1 ˆ,
4

q
E r

r





 so the flux through the surface element ds,

2
0 0

1 1ˆ ˆ. .
4 4

q
d E d s r d sn qd

r
    

 
 

So the total flux outgoing the whole surface S,

 
0 0 0

1 1 .4 ... ... 1.6.1
4 4

S

q
qd q     

  

The result in equation is independent of position of the charge and obviously when the
point charge q falls outside the surface the yield integration is zero, in that case

0 

1.6 Application of Gauss’s theorem

Before going to the application of Gauss’s theorem let us give a second look to what
we have done in the previous discussion. We see that with Coulomb’s law, if we know the
charge, we are able to find out the field produced by the charge and from Gauss’s law if
the field in a region is known, we can work out the net charge responsible for creating the

Fig. 1.14

n2



n1



o Fig. 1.15

q
ds

n


r


Fig. 1.11
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field if we can evaluate , cosE d s Eds  
 

 which is obviously not a function of single

variable. So for evaluation of this integral the angle between d s and E
 

 should remain

constant throughout the surface. Such a hypothetical surface, on which such symmetry is

maintained, so that ,E d s
 

can be evaluated, is called Gaussian Surface.

(1) Field due to a uniformly charged spherical shell :

The fig (1.17) shows a hollow spherical charged sphere of radius R and charge q,
uniformly distributed over its surface. To calculate the intensity at point P at a distance r
form the centre o we consider a Gaussian surface shown by dotted line in the fig (1.17 ).
E be the intensity of field at a distance r from centre 0. Then using Gauss’s law.

2
0, cos 4E d s Eds E r q      

 
or,  2

0

1 ... ... 1.6.2
4

q
E

r




Inside the shell the right hand side is zero as there is no charge included within the
Gaussian surface for any value of r (r < R) so E = 0 within the shell.

(2) Field due to a uniformly charged sphere :

(a) At a point outside the surface :

The fig (1.18) shows a uniformly charged sphere of radius R and
total charge q uniformly distributed. To calculate the field intensity E at
the point P outside the surface, we consider a Gaussian surface through

the point P as shown by the dotted line. E


 be the field intensity at point

P and d s


 be an elemental area on the surface at point P, then by Gauss’s theorem

 
0

, ...... 1.6.3
q

E d s 


 


Now from symmetry of charge and its consequent field distribution E remains same all
over the Gaussian surface and is always on the surface. Hence,

 2

0
4 ,

q
E r 

  or 2
04

q
E

r




Fig. 1.12

P

P

Fig. 1.13
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Taking direction into consideration  2
0

ˆ...... 1.6.4
4

q
E r

r






( r̂  is a unit vector in the direction of .r


)

(b) At a point inside the surface :

To calculate the field inside the surface, we consider the Gaussian surface represented
by dotted line as shown in fig (1.14) R be the radius of the sphere and  be the charge
density taken to be uniform inside the sphere. E be the intensity over the Gaussian surface.
Then,

 3
0

4.
3

E d s r   
 

  or     32 2
03

44
3

RE r r
R

     


Thus  3
0

1 ... ... 1.6.5
4

q
E r

R





From the above equation it is obvious that electric field of a uniformly charged sphere
is zero at the centre of the sphere and linearly increase up to the surface of sphere where

it resumes its maximum value. For outside the surface the field falls  
 2

11 distance
distance

from the centre of the sphere.

(3) A uniformly charged long cylinder :

Consider an infinitely long cylinder having uniform linear charge density and radius a. Let
P be a point located at a perpendicular distance or from the wire we construct the Gaussian
surfaces, wehich in this case is a concetric cylinder of radius r and length .

Applying Gauss’s law for this surface, we get

0

1.
S

E d s  


 


Where  is the charge enclosed by the surface. Electrical

field lines E


 will be normal to the curved portion of the

surface. Due to cylindrical symmeiry, E


 will be of same

magnitude all over it. Also E


 will be tangential to the end

faces, so .E d s
 

 will be zero on these faces, we can write

P

Fig. 1.14

R

Fig. 1.15


P

E


 r

a
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0

1. .2 .
S

E d s E ds E rl    
 

 


or, 
0 0

1 1 2
2 4

E
r r

  
 

vector notation  
0

1 2 ˆ... 1.6.6
4

E r
r





(b) Field inside cylinder :

To find the electric field at any internal point, P at a distance r, we construct a cylinder
cal Gaussian surface, of length l and radius r coaxial with it. The charge endosed by the

surface is 2 . .enclQ r l s 

where  is the charge density o to and is related to  by 2. .1 ,a    2
a

a
 


From Gauss’s law

0

1. enclE d s Q


 

Now . .2E d s E rl 
 

or, 2

0 0

1 12 enclE rl Q r l    
 

2
2

0

1 r l
a

 
 

or, 
2

0

1 2
4

rE
a




In vector form,  2
0

1 2 ˆ ... ... 1.6.7
4

rE r
a





(4) Unformly charged infinite plane :

Consider an infinite plane sheet of charges with uniform surface charge density . To
find out electric field at P at distance r, we construct a cylindrical Gaussian havig equal

 r P

a

Gaussian
surface

Fig. 1.16
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length on both sides

From Gauss’s law

0

1.E encl
S

E d s Q  


 


or   
' oP P

. = .      .   + . enclQ
E d s E ds E ds E ds       

      


curved surface

The electric field is perpendicular to the area element at all points on the carved surface
and is parallel to the surface P and P'

oP P'

 . 0E enclEds Eds E ds


          curved 

Since the magnitude of the electric fild at these two equal surfaces is uniform, E is taken

out of the intergration and ,enclQ s   
0

2 sE ds 


Hence 
0

2 SES 


or, 
02

E 


If r̂  is unitvect perpendicular to the plane, then in vector form

 
0

ˆ ... ... 1.6.8
2

E n




Electrical Field Inside A Parrallel Plate Conductor :

At the points P2 and P3, he electric field due to both plates are equal in magnitude and
opposite in direction. As a result, electric field at a point outside the plates is zero. But
inside, electric fields are in the same direction ie. towards the right, the total electric field
at a point P1

E.ds
 

Pʹ

ds ds
ds

E

Gaussion 
surface

Fig. 1.17
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0 0 0

... ... 1.6.9
2 2insideE     
  

The direction of the electric field inside the plates is directed from positively charged
plate to negatively charged plate and is uniform every where inside the plate

1.7 Laplace and Pisson’s Equations

Consider a closed surface S enclosing a volume V and charge q. Then from Gauss’s
law we can write

0 0
.

V

q dV
Eds

    


Where E


 electric field intensity vector at the point d s


 and the  is the charge density

at the point concerned to .E


 Using Gauss’s divergence theorem in above equation we have

0
.

V V

dV
EdV

 
 



or,  
0

. ...... 1.7.1E
  



The equation (1.17 ) is known as differential form of Gauss’s law of electrostatics. Now
using potential – intensity relation, we have

 
0

. .
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or,  2

0
... ... 1.7.2

   


In free space  = 0 the above equation takes the form

2 0 ... ...  

Equation (1.7.1) and (1.7.2) are respectively known as Poission and Laplace’s equations,
which play important role in solving out the potential of a charge distribution with given
boundary condition, which is the basic motto of solving electrostatic problems.

2  in different co-ordinate system :

(a) Rectangular co-ordinates (x, y, z)

2 2 2
2

2 2 2n y z

         
  

(b) Spherical polar co-ordinates (r, , )

  2
2 2

2 2 2 2 2
1 1 1sin

sin sin
r

r rr r r

                 

(c) Cylindrical co-ordinates (r, , z)

  2 2

2 2 2
1 1s

s z
      

     

1.7.1 Uniqueness Theorem

Two solutions of Laplace’s equation obeying the same boundary conditions diffon at
best by a constant.

In order to prove the The orem, let us assame that 1 and 2 are the two solutions of
Lapalac’s equation in volume V exterior to surface of different conductor S1, S2....Sn.
bouded by on the outside surfaces. Assuming that 1 and 2 satisfy the same boundary
condutions including the surfaces, S1...S2....Sn, and specifically. These boundary conditions
includes either the specificatons of the potential on the bounding surface which is known
Dirichlet condition, or in other way, the specification of the normal derivati overs of  i.e.

.
n



 The bounding surface, known as Neuman condition.
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Let 1 2 ,     As 2
1 0      and 2

2 0   

so, 2 2 2
1 2 0         inside V and 0  , an 0

n
 


 on the surface S for

Dirichlet and Neuman boundary conditions, respectively. Applying divergence Therem to

the vector ,


 we get

 ˆ· ·
S V

nds dv    
  

2 2 2

V
dv     

  \

2

V
dv  

2 0   

The integration on the left hand side vanishes on both types boudary conditions so, we
get

2
0

V

dv 


It is clear that integrand is positive definite quantity, it must be zero at every point in V

for the integral to vanish, where,

0, 


 or, 1 2   costant inside VV

Now, for Diricihet boundary conditions 1 2 0    on the surface S, so we have

1 2   through out i.e. it is a unique solution.

For Neuman’s boundary conditions

 1 2 ˆ· 0n   


 on. S

 or, 2  Constant S

As the constant is arbitrary, it may can be taken to be zero, and the solution is unique

: 1 2 
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1.8 Electrostatic Energy

The energy stored in accumulation of charge due to work done against the
Coulomb’sforce, is called electrostatic energy. This is essentially potential energy in case of
static charges. reference zero of potential energy can be set to be zero at that separation.

Calculation of electric potential energy for a charge distribution

Consider a point charge qi at position vector Ni and all other charges, infinitely separated

from each other. Then to bring a point charge qj at position vector jr


 the work done

2 2
0 0

1ˆ · ,
4 4

j jr r
i j i j

ijij ij ij
ij ij

q q q q
w r d r dr

r r 

 
  


 where ij j ir r r 

  
 and ˆ j i

ij
j i

r r
r

r r






 
 

 
0 0

1 1
4 4

rij

i j i j
ij

ij ij

q q q q
w

r r


 
 

So the total work done for accumulating N charges

0 0 01 1 1 1 1 1 1

1 1 1 1 1 1 1
2 4 2 4 2 4 2

j NN N N N N N
i j i j i j

j j
ij ij iji j i j i j j

q q q q q q
U q

r r r



      
    

      ..1.8.1

Where 
01

1
4

N
i

j
iji

q
r


 

  is the potential due to all particles at jth charge point. The

multiplication of 1/2 is to avoid double counting like 1 2q  and 2 1q  which will have same

effect on energy.

Electrostatic energy for continuous charge distribution

we can replace i)  jq r dV   for volume distribution of charge,

ii)  jq r ds   for surface distribution of charge,

iii)  jq r dl   for line distribution of charge,

Considering all type of distribution of charge the expression of electrostatic energy
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           1
2 V S L

U r r dV r r dS r r dl             + the energy due to

point charge e distribution.

1) Electostatic energy in terms of field vectors

We start with a volume distribution of charge, then the electrostatic energy

     1 1 .
2 2V V

U r r dV r D dV      


Now using    . . .D D D    
  

 In the above equation we have

   1 1. . . . ]
2 2V S

V

U D D dV D d S E D dV
 

            
  

     

Now confining the charge to a finite region if the integration is extended to infinity the

first term vanishes since 
2

1 1, Dr r
   and 2ds r2 so the first term falls as 1 .r  Thus

when we extend for all space the expression of electrostatic energy becomes.

 1 . ... 1.8.2
2 V

U E D dV 
 

We can obviously take electrostatic energy density  1 .
2

u E D
 

1.8.1 Electrostatic Energy of Uniformly charged sphere :

Eectrostatic self energy of a charged sphere us given by–

2 2
0 0

1 1 .
2 2

inside

U E dV E dV    

Assuming total charge of the sphere Q,  its charge density and ‘a’ is the radius, then,
electric field at a dirtaue ‘r’

3

2 2
0 0

4 31 1·
4 4

rQ r
E

r r
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3
0

·1
4

Q r

a


  where r < a.

and 2
0

1
4

Q
E for r a

r
 



2 4
2 20 0

3 20
0 0

4 4
2 24 4

a

a

Qr Q
U r dr r dr

a r

    
              

 

 2 2

0 0

31 1 1 1· ·
2 4 5 4 5

Q Q
a a a

  
 

Total energy of charged sphere,

 
2

0

31 ... ... 1.8.3
4 5

Q
U

a




1.9 Conductors in electric field

When a conductor is placed in electric field the free electrons in it move in opposite
direction creating induced field in opposite direction as in fig. The electron migration
continous untill the field inside the conductor vanishes and the conductor becomes equi-
potential all through. Any charge given to the conductor will migrate to its surface. If not

.E
 


 implies presence of electric field inside the conductor. Which

contradicts the above discussion.

1) Field intensity on the surface of a charged conductor.

Consider a cylinder a cylinder of plane surface area d s


 as in fig

1.2.9 The electric field at any point of the surface is perpendicular to the surface as 


is perpendicular to constant potential surface. Now consider a Gaussian surface as denoted

by a cylinder of each plane surface ·d s E
 

 be the intensity at the surface point at the element

.d s


 The using Gauss’s law we have . dsE d s 


 
 or, , E 




 acting normally outwards at

the point considerd ... ... (1.9.3)

Fig. 1.19
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2) Mechanical Force and presure on a charged conducting surface

Consider a charged coductor as in fig. (1.20) then by Coulomb’s Theorem the electric

field at vicinity of the outside of the surface is E    acting normally outwards. We can

visualize the 1 2 ;E E E 
  

 where 1E


 is the field intensity due to

the charge on the element ds and 2E


 is the field due to the rest

of the charge at the element ds. Now the intensity inside the

conductor is zero, so 1 2 0,E E 
 

 thus 1 2
02E E     and at

outside point the intensity will match with the Coluomb’s theorem

1 2
0

E E E    
  

 acting outwards normal.

Thus the elemental charged area ds  will be under the outwards field intensity 1
0

E  

So the force on the charge elemental

 
2

0
ˆ ˆ .

2
dsF n n unit vector acting outwards perpendicularly  




So the electrostatic pressure 
2

0
.P  

1.10 Capacitors

A capacitor is a device, which can store electrical energy. The capacitance of a conductor
is defined, as the charge required increasing its potential by unity. If q charge is required

to increase the potential of a conductor by V then its capacitance, ,
q

C
V

  which is found

to be independent of charge. The capacity of a conductor increases in the presence of
neighbouring conductors due to induction of opposite charge at proximity and similar
charge at relatively apart. It further increases if the neighbouring conductor is earthed. This
is what is known to be ‘Principle of capacitor’. Practically a capacitor is combination of
two conductors with equal and opposite charges at so proximity that their potential difference
remains unaffected for the presence of other charges but depends on the shape, size and
proximity of two conductors and the intervening medium.

Fig. 1.20

ds
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Its practical unit is farad. Capacitance of a capacitor is said to be 1-farad if 1C if
charge, given to the unearthed plate increases the potenrtial difference between the plates
by 1V.

1) The parallel plate capacitor

A set of two parallel conducting plates of same size with dielectrics or vacuum inside
constitute a capacitor. To calulate its capacitance we take the separation to be very small
compared to its lateral dimension, field inside the plates can be taken to uniform in between

thr plates.

The fig (1.21) shows a parallel plate capacitor of each plate
area A separated by a distance d. Q be the charge given on plate-
1, The plate-2 is earthed and is carrying the bound charge –q as
in fig (1.20) V be the potential difference between the plates. 
be the charge per unit area of plate-1.

Then using Coluomb’s theorem, the electric field inside the

plates E     acting from plate-2 to plate-2 and it can be taken

to be uniform considering d to be very small.

Thus the potential difference .
qdd A dV E d

A A
    
  

Thus the capacitance of a parallel plate capacitor can be written as

 0 ... ... 1.10.1r Aq AC
V d d

   

Where 0 = permittivity of vacuum and r   dielectric constant of intervening medium.

In case of vacuum 1.r   The eqn. Shows that capacitance is independent of charge.

2) Energy stored in a capacitor

Consider a capacitor has to be charged Q, then its potential be V.  In the course of
charging q be the charge on the one plate of capacitor and  be its potential. Then for
further charging through an infinitesimal charge dq the work done.

qdq
dW vdq

C
 

So the total work done in charging the capacitor to the charge Q is

+–
+–
+–
+–
+–

Fig. 1.21
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2
2

0

1
2 2

Q
qdq Q

W CV
C C

    where V is the final potential difference between the plates.

... ... (1.10.3)

Thus the above expression gives the electrostatic energy stored in a capacitor.

3) Capacitors with layer of dielectrics

a) The dielectrics are parallel to plates :

The fig (1.3.1) shows a parallel plate capacitor filled with two

dielectrics with dielectric constants 1  and 2 , q  be the charge given

on the upper plate which raise its potential by V. E1 and E2 be the
electrostatic field intensities in medim 1 and 2.

Then 1 1 2
1 1 2 2 2 1 2

0 1 0 2 0 1 0 2 0 1 2

x x xq
V E x E x x x x

A
                       

b) When the dielectrics are perpendicular to plates :

Here we consider the plate separation is d and the area portion A1 and A2 are occupied

by the dielectris of dielectric constants 1  and 2  respectively. q be the charge given to

the upper plate. The potential difference

 1 2
0 1 0 2

... ... 1.10.4V E d E d d d    
   

(2) Combination of Capacitors

(a) Capacitors in series

The fig (1.24) shows a set of capacitors C1, C2, C3....Ci....CN, in series combination.




x

x





Fig. 1.22



 



 

Fig. 1.23

C C C

V

 

V V V

Fig. 1.24

+
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To calculate the equivalent capacitance We apply a potential difference V across the
combination. V1, V2, V3.....Vi.....VN be the Potential difference at steady state across C1,
C2, C3.....Ci.....Ci....CN respectively. q be the charge on the + plate of the capacitors, it
will be same for all plates as same current flows for the same time through each capacitor.

So, V = V1 + V2 ..... 
1 2 1 2 3

1 1 1....... .....
q q

q
C C C C C

       

So the equivalent capacitance eq
q

C will give
V



1 2 3 1

1 1 1 1 1.....
i N

eq ii
C C C C C




     

(b) Capacitors in parallel

The fig (1.25) shows a set of capacitors C1, C2, C3....Ci...CN in parallel combination.
N be the potential difference applied across the terminal of of the combination.

q1, q2.............qi....qN bethe charge at steady state on capacitors C1, C2, C3,.....CN
respectively.

The total charge 1 2 ..... ...i Nq q q q q     

1 2 3 ...... NC V C V C V C V    

If Ceq is the equivalent resistance of the combination then,

1 2 3 .....eq Nq C V C V C V C V C V     

Or, 1 2 3 ......eq NC C C C C    

(c) Energy loss due to sharing of charges of conductors

Cosider two conductors having charges q1 and q2, capacitances C1
and C2 and respective potentials V1 and V2 (V1 > V2). When they are
make to touch or joined by a conducting wire, they will reach to common
potential

1 1 2 2

1 2

arg C V C VTotal Ch e
V

Commonpotential V V


 


So the final charge on the conductors are

C

C

C

Fig. 1.25

V
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1 1 2 2
1 1 1

1 2

C V C V
q C V C

C C
      

 and 
1 1 2 2

2 2 2
1 2

C V C V
q C V C

C C
      

So the initial electrostatic energy stored 2 2
1 1 2 2

1
2iE C V C V   

stored    
2

2 1 1 2 2
1 2 1 2

1 2

1 1
2 2f

C V C V
E C C V C C

C C
       

So the change in energy due to sharing of charges

 
2

2 2 1 1 2 2
1 1 2 2 1 2

1 2

1 1
2 2i f

C V C V
E E E C V C V C C

C C
             

     21 2
1 2

1 2
... ... ... 1.10.5

2
C C

V V
C C

 


The above equation shows E to be always positive and thus there is always a loss of
energy in sharing of charge.

(d) Force of attraction between plates of charged parallel pate capacitor

If  is the surface charge density on one of the plates of parallel plate conductors then
this charge is under the electric field /2 for the charge on the other plate. So force on
the unit area acting between the plates is P = 2/2. For the plate area A, the force is

22

2 2
qAF
A

 
 

 where q is the charge on one of the plate. This force

in attractive as the plates bear opposite charges.

(e) Breakdown Voltage

A capacitor can withstand a limiting value of potential difference
between its terminals, called break down voltage, which depends on the
proximity of its plates, its structure and intervening dielectric. This is because, dielectric
break down takes place at a limiting value of field intensity when the force on bonded
electron crosses the bounding force of nucleus and the dielectric starts conducting. In case
or air it is about 3 × 103 kV/m.

Example-1

A parallel plate capacitor with place separation d and plate area A each is filled with
two dielectries of dielectric constants K1 and k2 in such a way that half the length of the
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plates is covered by each dielectric. Show that the capacitance is given by

 0
1 1 .

2
A

C k k
d


 

Soln.

The fig. (1.26) shows such an arrangement that can be visualized as a

parallel combination of two capacitances, 0 1
1 2

k A
C

d


  and 0 2
2 2

k A
C

d




So the total Capacitance  0 1 0 2 0
1 2 1 22 2 2

k A k A A
C C C k k

d d d
  

       hence proved.

Example-2

Find the expression of force on a dielectric slab inserted partly in a parallel plate
Capacitor maintained at constant potential difference .

The fig. 1.27 Shows a parallel plate capacitor of length l and
breath b. d be the distance between the plates. A dielectric slab of
breath b is inserted through a distance x as in fig. (1.27). The system
can be considered as a parallel combination of two capacitors C1
(portion with dielectric) & C2 (portion without dielectric).

Thus 
   00 0

1 2 1
l xkxb b

C C C kx x
d d d

  
        

So the energy stored in the system

 2 201 1 1
2 2

b
U C kx x

d


       

So the force acting on the dielectric slab

    2 20 01 11 1
2 2

b bUF kx x k
x x d d

               

1.10 (a) Capacitance of Spherical Capacitor

(i) Isolated Sphere

The fig (1.28) shows an isolated conducting sphere of radius
R. Q be the total charge on the surface. We consdier a gaussian

surface given by dotted line. .E


 be the electroic field intensity

 

K d1 K1

Fig. 1.26

Fig. 1.27

++
+

+
+

+
+
+

+
+

+ + + +
+

+
+
+

+ +
+

+
+
+

Fig. 1.28
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at a point on the surface. Then from Gauss’s theorum 
0

.
S

QE d S  
 

Or, 2

0
4 QE r  

2
0

,
4

rdV Q lE
dr r

  
  where VVr is The potenhal on Gaussian surface.

So 2
0

1
4r

Q
dV dr

r
 



Considering V as the potential at R and the other plate to be at infinity, where the
spotential is assumed to be zero we have

2
04rV R

Q drdV
r


 

 

0 0

1
4 4R

Q Q
O V R

r


    
 

04
QV R 

So  04 ... ... 1.10.10
Q

C R
V

  

(ii) Two concentric spheres, outer sphere earthed

The fig (1.29) shows a spherical capacitor consiting of two concentric spherical
conducting shells of iner radius a and other radius b.

Q be the charge given on the inner sphere, E be the
intensity at point P, Through which passes a gaussian surface
as shown dotted line. Then using Gauss’s Theorem,

2

0
. 4

S

QE d S E r   
 

Or, 2
04

QdVE
dr r

  


++
+

+
+
+
+
+
+

+
+ + + + +

+
+
+

+ +
+

+
+
+

a

r
b

P

Fig. 1.29
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Or, 2
2

4

o
b

a
v

Q d rd v
r

 
  

 
0 0

1 1 1
4 4

b

a

Q Q
V

r b a
   

 

   
0 0

1 1
4 4

b aQ Q
V

a b ab


  
 

So its capacittance  04 ... ... 1.10.7
Q abC
V b a

  


As b   its gives the result of isolated capacitor..

(iii) Inner sphere earthed

Let q the charge given on the outer sphere of radius b. a be the radius of inner sphere

(conducting) q  be the charge induced on inner sphere. Then from fig (1.30). As the

potential on inner sphere is zero, Then 
0

1 0
4

q q
b a

     

Or,  ... ... 1.1.8aq q
b

  

Now considering the Gaussian surface Through P of radius r,
We have using Gausse’s theroem,

.
S

q aE d S qr b
  

 

2
0

1
4

qaE
b r




Or, 2
0

1
4

qdV
dr r


  Or, 2

0

1 1
4

adV dr
b r




Or, 2
04

V b

O a

q a drdV
b r


 

+
+
+

+
+

+ + +
+

+
+
+
+

+
+

+++++
+

+
+

+

– –
–

–
–
–
–

–
–
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–
–

–
–
–
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a

r

b

P

Fig. 1.30
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  2
0 0

1 1
4 4

q qa b aV
b a b b

        

   2
04 ...... 1.10.9

q bC
b av

   

(b) Capacitance of Cylindrical Capacitor.

Outer Cylinder earthed

The fig. (1.10.15) shows a cylindrical capacilor whose length L is much larger than its
breadth so that electric field inside The cylinder can be considered to be axially symmeteric.

We consider a Gaussian surface a cylinder of radius r (r < r < b) as shown by dotted

cylinder. E


 be the electric field at a point P on this Gaussian surface.

Then applying Gauss’s Theorem

.
S

q
E d s 


 

 ( be The permittivity of medium in space between the

cylinclers)

 = charge/unit length

Or, 2 lE r l   


1
2

dVE
r dr

  


1
2

drdV
r

 


So potential difference between the cylinders

2
V a

O b
drdV
r

 
 

Or, ln ln
2 2

a bV b a
   
 

ln
2

q b
aL




 (where q L  )

L

P

b a

Fig. 1.31

dl
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 2 ... ... 1.10.10ln
q L bC aV

 

(c) Capacitance of spherical capacitor with dielectrics

The fig (1.32) shows a spherical Capacitor of inner radius a and outer radius b with a
dielectric of dieletric const K1 Thickness t with inner sphere and The rest portion is filled
in with dielectric constant K2. q be the charge given on inner sphere Then potential
difference between inner and outer sphere

 1 1· · · ... ... 1.10.11
a t

b

a t
a

V E d r E d r



  

   

Where 1E


 and 2E


 are electric field intensity at The specific

point in inner an outer sphere respectively

Now applying Gauss’s Theorrein

1 1
0

·
S

qE d S k 
 

= permittirty of free space.

Or, 
2

1
0 1

4
q

E r
k

 


Or, 1 2
0 1

1 ˆ
4

q
E r a r a t

k r
   




Similarly  2 2
0 2

1 ˆ
4

q
E r a t r b

k r
   





So 2 2
0 1 0 2

1 1
4 4

a t b

a a t

q q
V dr dr

k kr r




  

  

   
0 1 2

1 1 1 1 1 1
4

q
k a a t k b a t
         

 
 
 0 1 2

1
4

b a tq l t
k ka a t b a t

   
        

a

b

b-t

K2

K1
K2

K2

Fig. 1.32
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2 1

0 1 24

k bt k a b a tq
k k ab a t

   
     

 
   0 1 2

2 1

4
... ... 1.10.12

k k ab a tq
C

V k bt k a b a t

 
  

   

(d) Capacittance of Cylindrical Capacilor with dielectrics

The fig (1.33) shows a cylindercal capacitor consisting of two co-axial cylinder of radius
a and b. (b > a). A dielectric of Thickness t and dicelctric conat k i is attached with inner
cyl inder and the rest portion is f i l led in with dielectric of dielectric constant k2 as shown
in fig (1.33 ) E1 and E2 be the electric field in first and second dielectric Then applying

Gauss’s Thorein as pervious 1
0 1

ˆ
2

rE
k r




 and 2
0 2

ˆ **
2

rE
k r




So the potential difference between inner and outer cylinder

**  = charge/unit length on inner cylinder

1 2· ·
a t b

a a t

V E d r E dr




   
   

0 1 0 22 2

a t
b

a t
a

dr dr
k r k r




  
  

0 1 2

1 1ln ln
2

a t b
k a k a t
      

0 1 2

1 1ln ln
2

q a t b
L k a k a t
     

 0

1 2

2
... ... 1.10.13

1 1ln ln

Lq
C

V a t b
k a k a t
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(c) Capacitance between two long parallel wires each of radius r separated by
a distance d

The fig (1.34) shows such an arrangement where length of wire L > > a and d > > r
the radius of wire.

Consider a point P at a distance at a distance x from wire A,  be the charge per unit
length of wire A and –be that of wire B.

The inlensity of field at P

0

1 1 ˆ
2

E x
x d x

      



So the potentrial difference between A and B

 
0

1 1·
2

r d r

d r r
V E d x dx

x d x



    
  

 

 
0

ln ln
2

d r
x d x

    

0 0
ln ln ln

2
d r r d r

r d r r
          

Thus the capacitance per unit length

 0 ... ... 1.10.14
ln

C
V d r

r

 
 

1.11 Electrical Image

Electrical imaging is a mathematical method of solving electrostatic problems introduced
by Lord Kelvin. In this method the induced charge appeared on the surface (surfaces) due
to the presence of point charge (charges) at proximity to the surface (surfaces) can be
replaced by suitable point charge (charges) called image charge (charges), on one side of
the surface. The field and potential on the other side of the surface can be evaluated by
the superposition of field and potential due the charge (charges) and their image charge
(charges).

Here also the Lapalce’s equation is satisfied as with the actual carges and hence uniqueness
theorem is followed.

Fig. 1.34

wire A B

P

x d-x

d
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Thus, electrical image (images) can be defined as a ficitious point charge (charges) on
one side of a surface (surfaces) that can replace the effect of induced charge (charges) on
other side of the surface (surfaces).

(1) Example–1

A point charge q is placed at (a, 0) in front of a infinitely extended earthed coducting
sheet occupying (y, z) plane. Find

i) the position of image charge

ii) magnitude and nature of image charge

iii) Potential at a point x > 0

iv) field intensity on the surface of the sheet

v) force between the charge and the conductor.

vi) charge density at any point on the surface of the conductor.

vii) total induced charge on the surface.

Solution

The fig (1.35) shows a point charge q at position

vector îa  with respect to the origin O, in front of

a large earthed coducting plane occupying y – z qi
plane, be the image charge as shown in fig. (1.35).

i) From the symmerty of the field qi lines is to be

placed at îa

ii) From the condition of zero potential, at any point C on conducting plane

0

1 0,
4

iqq
AC BC

       
 we have qi = –q

iii) The potential at point P (x, y, z), V = V0 + Vi = potential due to source charge
q + potential due to image charge.

 
0

1 ... ... 1.11.1
4 ˆ ˆ

q q

r ia r ia

 
   

    
 

Fig. 1.35

 q  q

(-a,o a,o)O

P(x,y,z)

r1

Fig. 1.36
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Where ˆˆ ˆr ix jy kz  


 is the position vector of point P, ˆˆ ˆ, ,i j k  are the unit vectors

along x, y and z axis.

Thus, 
   

 
2 22 2 2 20

1 1 ...... 1.11.2
4

q

x a y z x a y z

 
   
         

iv) The field intensity at point P (x, y, z) along x, y and z axis are

     3 2 3 22 20 2 2 2 24x
q x a x aE

x
x a y z x a y z

 
               
 

     3 2 3 22 22 2 2 2
y

y y
E

y
x a y z x a y z

 
           
 

     3 2 3 22 22 2 2 2
z

z zE
y

x a y z x a y z

 
           
 

On the surface of the conducting sheet x = 0, so only x-component of the field survive

and 

 3 22 2 2
0

2

4
x

aq
E

a y z


  

 acting along –x axis. ... ... (11.11.3)

v) The induced charge can be replaced by the image charge –q fig (1.37). So the force

betwee the surface and the charge q is 
 

2

2
04 2

q
F

a



 and is attrative.

v)  be the surface density at a point (y, z) on the conductor face
as in fig. (1.4.5)

 Then Fig. 1.37

 q
 q

(-a,o) (a,o)

Y (y,z)

x

z
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 0 3 2 3 22 2 2 2 2 2

2
... 1.11.4

4 2

aq aq
E

a y z a y z

     
     

vii) To calculate the total charge on the coductor we consider a ring of radius r and
thickness dr about the origin 0 through the point (y, z).

Then the area of the elemental ring dA=2rdr, charges on the ring = 2 rdr 
so the total charge is reduced.

   
 3 2 3 22 2 3 2 2

0 0 0

2
2 ... ... 1.11.5

2 2

aq dr aqrdr
dr q

a y z a r

         
    

  

Problem–1

Find the work done in removing a charge q placed in front of earthed coductor at
distance ‘a’ from the conductor.

Solution.

From the conception of electrical image, the induced charge can be replaced by –q
charge on the other side of the surface at the same distance from the surface in which the
charge q is present. The force of attraction between the charge q and the induced surface

charge, when their distance of separation x is given by 
2

2
016

q
F

x




Then the work to separate the charge to infinity is,

2 2

2
00

. ,
1616d

q q
W F d r dx

dx



  


 
 which is the

energy required for the separation.

1) Point charge placed between two large
intersecting conducting sheet perpendicuar to each
other.

The fig (1.38) shows a z = constant section of a large
coducting plane occupying (x – z) and (y – z) plane.

Considering the conditions to be satisfied by the charges

Y

O

Z

M

N

(-a,b)

P (a,b) q

 q  q
(a,-b)

(-a,b)
Fig. 1.38
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1. Laplaces eqn. at all places excipt at point P ;

2. Potential over the conductor to be zero

3. Potential at infinity to be zero, Thus proceeding in the same way as previous for
infinite earthed conducting plane, the image charges will be –q at (–a, b) ; + q at (–a, –
b) and –q at (a, –b) as shown infig.

The potential at any point A (x, y)

               0

1 1 1 1
ˆ ˆ ˆ ˆ ˆ4

q
V

i x a j y b i x a j y b i x a j y b i x a j y b

 
                 

The intensity E


 can be evaluated by eqn.  . ... ... 1.11.5E V 


(2) Point charge in front of an earthed conducting sphere.

Let a point charge is placed infornt of an eirthed
conducting sphere of radius a.

Let the induced charges be replaced by image

charge q  at a distane d   from centre  O on the line
OP due to symmetry of induced charge.

We must follow the conditions

i) Leplaces equation to be satisfied at all point r >
a, except the point P

ii) Potential over surface of sphere be zero

iii) Potential at infinity from charges to be zero

Now from condition (ii), potentia on surface of sphere,

0

1 0
4S

q q
V

PR MR
      

2 2 2 20

1 0
4 2 cos 2 cos

q q

x d ad a d ad

 
            

Fig. 1.39

Q(r,

R r





a

dʹ

qʹL
P

d
q

d+a
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2 20

2 2

1 0
4 21 2 cos 1 cos

q a q a

d d a a
a da d

 
    

  
       

As this equation is valid for all values of we can write & dq d q a a d
a

    

Or,  2 & ... ... 1.11.7
qadd a d q q

a d
    

Thus we know the position, quantity and sign of image charge.

Potential at point Q.

2 2 2 20

1
4 2 cos 2 cos

Q
a dq

V
r d rd r d rd

 
           

Or, 
2 2 2 2 4 20

1
4 2 cos 2 cos

Q
q aV

r d rd r d a rda

 
          

Q
r

V
E

r





 and 1 QV

E
rd


 

 
 can be calculated ... ... (1.1.8)

Or,  
1 221 22 2 2 2

2
0

2 cos 2 cos
4Q

q dV r d rd a r rd
a

               

when r = a i.e. wehen, Q is a point on the surface of the sphere, then VQ = O

In order to find the The surface density on the surface of the sphere, we must know
The radial component of the electric field.

04
Q

r

V q
E

r 
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2

2

3 2 3 22 22 2 2
2

cos
cos ... ... 1.11.10

2 cos 2 cos

d r d
r d a

d rr d rd a rd
a

 
  

             

when the Q point is on the surface of the sphere,

when r = a, then

 
 

2

3 22 204
2 cos

r r a

d aq aE
a d ad




 


  

 2
3

04

q
a d a

l
 

 

where  = RP =  1 22 2 2 cosa d ad  

Or, we can write

   2
3

0

... ... 1.11.12
4

n r r a
q

E E a d a
l
    

Induced charge density at on the sphere : If be the induced surface charge density
at the point R on the spare.

 2
0 34

n
q

E a d a    


 
2 2

3
... ... 1.11.13

4

q d a
al

      

Since d > a, equation (1.11.13) shows that  is negative. The magnitude of the surface
charge density is maximum when  = O, i.e., l is minimum, and minimum when  = .

The ratio of manimum and the minimum surface charge density is given by,
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3 3

min

manl d a
l d a

     

Force exerted on the point charge + q at P.

which is altractive,

 

 2 220 0
4 4

q q a dqq
F

LP d a d


  

  

 
 

2

22 2
0

... ... 1.11.14
4

q ad

d a


 

(3) Point charge in front of an unearthed condcting sphere.

The fig (1.40) show an unearthed
conducting sphere of radius a. Here to
calculate the image charge and its position
the following conditions must be satisfied :

i) Laplaces equation for r > a except
the point P,

ii) Total charge induced is zero.

iii) Sphere surface is at constant
potential.

iv) Potential at infinity is zero.

So, this case will be similar to the earthed conducting sphere condition with a charge

aq
d

  is to be placed at the centre of conducting sphere to satisfy the condition (ii) as

mentioned in fig (Fig.1.40).

So the surface potential now will be 
0

1
4S

q a d
V

a


 0

1
4

q
d


  instead of zero.

The potential at point Q will be

Fig. 1.40

a


q

+qa–
d

R
r

Q

q

d

P
-qa
–
d
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2 2 2 2 4 20

1 ... ... 1.11.4
4 2 cos 2 cos

Q
q a aV

rdr d rd r d a ra d

 
           

The radial component of field at  ,Q r 

 
 

 

2

3 2 3 22 2 2 2 4 20

coscos
4

2 cos 2 cos

Q
r

ad rd aV q r dE
r

r d rd r d a ra d

         
     

 2 ...... 1.11.5a r d 

On the surface of sphere (r = a)

 
 

2

3 22 20

1 1 ... ... 1.11.15
4

2 cos
n

q dE a
a ad

a d ad

 
            

So the induced charge per unit area on the surface,

0 nE    will be maximum for 0.   .... .... (1.11.16)

 
2 2

3 22 2

1
4

2 cos

q d a
a d

a d ad

 
     

    

Let us see the nature of nature of the induced charge, whether positive or negative when

0 

 
2 2

3
1

4
q d a

a dd a

     
   

 
2

2
3

4
q ad a

a d a
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Which is clearly negative. Now when   

 
2 2

3
1

4
q d a

a dd a

     
   

 2
3

4 a

q a d
d d a

  
   

Which is  positive charge density

There is no induced charges on the sphere separating the regions of positive and
negative charge density : NOW, putting 0   in eqaution, we have for the line of non-
electrification.

  2 3
2 2 2 2

2N

a d d d a
Cos

ad

   
  

Which is positive, it implies that 2N  

Force experienced by the charge at P

   
 

2 2 2 3 2 222 2
3 22 20 00

2
4 44

adq q a q a d aF d a
dd d a

    
  

1.12 Summary

After studying the unit we should understand following :

1. Interaction between two charges through Coulomb’s law and for a cluster of charges.

2. Conception of electric field electric field 

E  lines. Conservative nature of 


E  and

introduction of electric potential V through . 

E V

(a) Point charge 
2

0 0

1 1
4 4



   
 

r
q q

V dr
rr

 and 2
0

1 ˆ
4




 q
E r

r
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(b) due to a uniformly charged ring on its axis at a distance x from its centre  be The
charge per unit length.

2 20

1 ,
4


 

q
V

a x
 

 3 22 20

1 ,
4







P

qx
E

a x
 2 .  q a

(c) due to a charged disc ( = charge per unit area)

2 2

0
;

2
       PV R x x  2

0

ˆ1 cos
2

  



P

q
E x

R

(d) due to spherical distribution of charge

(i) Uniformly charge spherical shell.

(a) 1
0

1 ,
4

 
ix a V q a  0iE

(b) 0
0

1 ,
4

 


q
x aV

x  0 2
0

1 ˆ
4




q
E x

x

(ii) Uniformly charge sphere. P = charge density

3

2
0

ˆ4 31 ,
4


 

i
x px

E
x

0 2
0

ˆ1
4




q x
E

x

Gausse’s law and its and its application for various distribution of charge.

Laplace and Poission’s equations

Poission’s eqn 2
0   P

Laplace’s eqn 2 0    and their one dimensional soluns.

Eletrostatic energy

0

1 1 ;
2 4


 qiqj

U
rij  1 ·

2
 

 
V

U E D dv

Study of capacitors

Capacitance of parallel plate capacitor 0  C A x

Capacitors in series  1 1c eq c
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Capacitors in parallel eqC c

Energy loss in capacitor  21 2
1 2

1 2

1
2

 


c c
v v

c c
 due to sharing of charge

4. Capacitance of spherical apacitor 04 c R

Two concentric spheres, outer sphere grounded 04 

abc

b a

Capactance of cylinder 2 ln c L b a

Spherical capacitor with dieteclric 
 
 

0 1 2 1

2 1

4 k k a t k
c

k bt k a b a t

 


  

Capacitance of cylinderical capactor with dielectric, 0

1 2

2

1 1ln ln

L
c

a t b
k a k a t



    

Capacitance of two parallel wires, 0

ln





c

d r
r

5. Electrical image

Point charge in-fornt of a earthed unifinite cmducting plane.

Point charge infornt of earhed conducting sphere

Point charge in front of unearthed conducting sphere

1.13 Review question and answer

QNO 1 Why the electric field inside a good condutor is zero in a steady state
and any net charge on a good conductor must be entirdy on the surface?

Answer : If there were field, charges would move, charges will move until they find the
arrangement that makes the eletric field zero in the interior. if therby where charge in the
interior,  Then by Gaussn law there would be a field in the interior, which cannot be true.
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QNO 2 Why do electric field lines never cross each other?

Answer : It is so because if they cross each other then at the point of interessection
there will be two tangent’s which is not possible.

QNO 3 What is the net amount of charge on a charged capacitor?

Answer : The net charge of a charge capactior is zero because the charge on its two
plates are equal number and opposite in sign. Even when the capacitor is discharged net
charge on the capacitor remains zero because each plate has zero charge.

QNO 4. How does the field line and an equapotential surface behave?

Answer : They are always at 90º

QNO 5. What is the power dissipoted in a pure capacitor?

Answer : Zero

QNO 6. What will be the potential difference between the plates when a dielctric
slab is introduced in parallel plate capactor?

Answer : decrease.

QNO 7. A point charge q is held at a distance d infornt of an infinite grouded
conducting plane what is the electric potential infornt of the plane?

Answer : See Article 1.11. for answer.

QNO 8. A point charge q is placed at a distance d from the centre of a grounded
conducting sphere of radius a (a < d). Calculate the density of the induced surface
charge on the sphere?

Answer : See article 1.11 for answer.

QNO 9. The concentric spheres of radii r1 and r2 (r1 > r2) carry electric charges
+ Q and –Q respectively. The region between The plates is filled with two insulating
layors of dielectric constant 1 and 2 with widths d1 and d2 respectivly. Compute
the capacitane of the system

Answer : See article 1.10 C for answer.

QNO 10. Which one of the following is an impossible in electrostatic field?–

i)     ˆˆ ˆ2 3E xyi yz j xz k  


ii)    2 2 ˆˆ ˆ2 2E y i xy z j yz k   
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Answer : For solution, if 0,E 
 

 Then That electric field exists in electrostatics

correct answer is (1)

QNO 11. There charges Q, + q and + q are placed at the vertices of right angled
isoscles traingle as shown in the figure. What is the value of electrostatic energy?

Solution : Length of the hypotenase 2 ,a  the net electro static energy is–

0

1
4 2

Qq Qq qq
U

a aa

      

QNO 12. Three infinite long plane sheets carrying
unfirom charge densitics  1 = , 2 = + 2, and 3
= + 3 are placed parallel to × z plane at z = a, z =
3a, and z = 4a as shown in the figure.... what is value
of electric field at the point Q?

Solution : The electric field a point Q due to an
infinite long plane sheet carrying uniform charge density is
given by–

02
E 



which is independent of the distance of point Q from the sheet and is, therefore uniform
The direction of the electric field. is away from the sheet and prependicular to it if   is
positve and it towards the sheet and perpendicuar to it if   is negative so

 1
0

ˆ
2

E k 



 along – ve z direction

 1
0

2 ˆ
2

E k 



 along –ve z direction

and  3
0

3 ˆ
2

E k 
  along – ve z

direction

From the superposition principle. The
resultant electric field at point Q is

1 2 3E E E E  
   

Q

+q -q
a

Fig. 1.41

 

 

 

Q

Z

Z=4a

Z=3a

Z=a

XFig.1.42
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0 0 0

2 3ˆ ˆ ˆ
2 2 2

k k k       
  

0

3 k̂ 


1.14 Problems & Solutions

QNO 1. The electric field in a certain region is given as 3 ˆ.E Ar r


 Prove that charge

contained within a spherical surface of radius ‘a’ centred at the origin is 5
04 .Aa

Solution : From The differential form of Gauss’s in law 
0

·E   
 

So the charge density  2 3
0 2

1 r Ar
rr

      

(using spherical polar co-ordinate)

2
05 Ar  

Total charge within a sphere of radius ‘a’ is   2

0
4

a
Q r r dr  

4 5
0 00

20 4
a

A r dr Aa   
QNO 2. The electrostatic potential due to a charge distribation is given by

 
04

rq eV r
r

 
 

  enclosed within a sphere of radius 1   given by 
2

.
q
e

Solution : Given  
04

rq eV r
r






So the electrical field is

 
2

0
ˆ

4

r rre eq
E V r

r
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 2
0

ˆ1
4

rq e r r
r


  



So the total charge enclosed within a sphere of radius r is

0 .enclQ E d s  
 



 2 20
20 00

ˆ ˆ1 ·sin
4

rq e r r d d drr
r

 
    

  

 1rqe r  

Thus the total charge enclosed within a sphere of radius 1r 
  is

 11enclQ Qe   


2q
e

QNO 3. Two large non-conducting sheet one with a fixed uniform positive charge and
another with a fixed uniform, negative charge are placed a distance of 1 meter from each

other. The magnitude of the surface charge densities are 210 c m    and

25 c m  

for the positive plate and negative plate respectively. What is the electric field in the
between the sheets?

Solution : The electrical field between the sheet is

0 02 2
e 

 
 

  6

0

1 10 5 10
2

  


6

12
15 10

2 8·86 10
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6·8465 10 

58·46 10 N C 

QNO 4. A long cylinder carries a charge density  = Ar ; for some constant A. Find
the electric field inside the cylinder.

Solution : We draw Gaussian cylinder of length l, and radius r. For this surface, Gauss’s
law state that

0

1· encle
S

E ds Q


 


So the enclosed charge is

  
2

0
0 0

e
r

enclQ dV Ar rdr d dz


      

2 3

0
22
3

r
Al r dr Alr   

Now from symmetry, it is cleart that E


 is radially out word, so for the curved portion
for the Gaussian surface we get

· 2E ds E ds E rl   
 

Hence 
3

0

22
3

E rl Ar  




So finally 
2

0

1 ˆ
3

E Ar r




QNO 5. A hollow, conducting sphereial shell of inner radius ‘a’ and outer radius be
encloses a charge –‘q’ inisde, which is located at a distance d < a from The centre of the
sphere what is the potential of the centre of the shell?

Solution : charge induced on the inner sphere is + q and charge induced on the outer
sphere is + q

Thus the potential at the centre of the sphereical shell is
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0

1
4

q q q
V

d a b
       

04
q q q q

a d b
      

QNO 6. Given the potential 5 sin cosV
r

  

(a) Find the electric flun density D


 at  1, 02


(b) Calculate the work done in maving a 100 c  charge from a point (2, 30º, 120º) to
B (4, 90º, 60º)

Solution : 0D E 
 

But 1 1ˆ ˆˆ
sin

V V VE V r
r r r

              

 

2 2 2

ˆsin cos 1 1 ˆ5 cos cos sin
r

r r r

        

At  1, ,02


0 0
ˆ ˆˆ5 0 0D E r        

 

12 25 8·85 10 c m  

244·25c m

work done . .
B

ABA
W Q E dl Q V  

 

 B AQ V V 

65 1 5 1100 10
4 2 2 2 2
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125 J 

QNO 7. Consider two electric dipoles with their centres at fined distance of reparation.

Show that if the angles of the dipoles make with the line joining ther centres are 1  and

2  and if 1  is held fined Then for equillibrium 1 2tan 2 tan 0   

Solution : Configuration of the dipoles are show in the figure.

We know that interaction energy between two dipoles,

 2 1
21 1 2 1 23

sin sin 2cos cos
P P

W
r

     

The couple exerted by the first dipole on the second is

 21 1 2
21 1 2 1 23

2
sin cos 2cos sin

W P P

r


       



At equilibrium 21 0 

1 2 1 2sin cos 2cos sin 0     

1 2tan 2 tan 0      Proved

QNO 8. Three electric charges are placed at the corners of an equilateral traingle

ABC  of length ‘a’. Find the magnitude of the dipole of the system.

Solution : Taking B as the origin of two dimensional co-ordinate system B (O, O)

32
2

A a
 
 
 

 and  ,0c a

The dipole moment the system as in equilateral traingle ,ABC

 
ˆ3ˆ ˆ 2

2 2
ajaP aql i q

 
    

 



ˆ3aq j 

The magnitude of the dipole is 3qa

r

C1

C2

2

1

P1

P2

Fig.1.49

Fig.1.50

A (-2q)

a a

a
q q
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QNO 9. A sphere of radius R centred at the origin carries charge density

 ,r  ,  2
· 2 s inRk R r
r

    where k is a constant, and  ,r   are usual spherical

co-ordinales. Find the approrimate potential for points on z axis far from the sphere.

Solution : Monopole terme for potential

 
2

2
1 0

0

, sin
R

monopoleV V dV r r d
 


         

Dipole term 2 cos 0V r sdV  

and Qudruipole term  2
3 3

0

1 1 3cos 1
24

V r dV
r

  
 

 
5

3
0

1
4 48

k R r z
z

 


QNO 10. Find the capacity of concertric spheres with two dielectric.

Solution : Let Q charge given on the inner sphere, so the electric field within the radius
a to be

1 2
0 14 r

Q
E

r


 

So the potential difference across 1

1 2
0 1

·
4 ·

b b

a ar

Q drV E dr
r

   
  

 

0 1

1 1
4 r

Q
ba

      

Similary the potential difference across 2

2 2
0 24

c

b r

Q drV
r


 

b

a 



Fig.1.51
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0 20

1 1
4

Q
b c

    

Total PD V = V1 + V2

Capacitance 
1 2

Q
C

V V




0

1 2

4
1 11 1 1 1

r ra b b c




         

Alternative method :

Using spherical co-ordinate system, to find but the potential in at any point inside the

dielectric, taking note that 0V 
  and, 0V 



 2
2

1 0Vr
r rr
      

2 0Vr
r r
      

2
1

Vr c
r

 


where c1 is constant of integration

Again intergating, in region I

1
1 2

c
V c

r
   in 1

1
2 2

C
V c

r


    in 2

Then from, 1 ˆ,E grad v r


 we get

1
1 2

ˆ ,
c

E r a r b
r

   


1
2 2

ˆ ,
c

E r b r c
r
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1
1 0 1 2

ˆ r
c

D r a r b
r

     


1
2 0 2 2

ˆ r
c

D r b r c
r


     



We observe that there are four unkowns, so we need four boundary conditions, to
evaluate therm, They are,

on ,r a 1
1 2a

c
V V c

a
  

on ,r c 1
2 2c

c
V V c

c


   

on 1 2, ;r b V V   i.e. 1 1
2 2

c c
c c

b b


    

on r = b, Dn is continouons, so, nl nzD D

or, 2rl rD D  i.e. 
1 1

0 1 0 22 2r r
c c

b b


    

From, these boundary conditions, we obtain ‘D’ on the surface of the inner sphere of
radius a

 

   
0

1 2

2 1

1
1 1 1 11 1

c a

r r

V V
D

a
c bb a

 

      

So the total charge on the inner sphere, will be 24 a  times D on ‘a’

arg
Capctance

c a

ch e
C

V V
 



   
0

2 1

4
1 1 1 11 1

c br b r a
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QNO 11. A dipole having a moment  ˆˆ ˆ3 5 10i j k   me m is loated at Q (1, 2, –4)

in free space. Find V at P (3, 3, 4)

Solution : Unit vector along the straight line 
ˆˆ2 8ˆ·

69

i j k
PQ r

 

Potential at the point P (3, 3, 4)

   
 

99

2
0

ˆ3 5 10 · 2 8 10ˆ· 10

69 694

i j k i j kP r

r

      




1·27V m

QNO 12. Three point charges are located as shown in the figure Fig (1.52) Find the
approximate electric field at points far from the origin state your answer is spherical co-
ordinates, and include The lowest orders in multipote expansion.

Solution : Total charges Q = 3q – q – q = q

0

1
4mono

q
V

r


  and dipole moment ˆ3p qaz

so, 2
0

3 cos

4
dip

qa
V

r


  Therefore

  2
0

1 3 cos,
4

q aV r
r r

      

   2 3
0

1 3 ˆˆ ˆ, 2cos sin
4

q aE r r r
r r

          



QNO 13 Consider an electric dipole ,P


 which

is is fined at a distance zo along the z-ams and at an orientation   with respect to that axis,
consider the xy plane as conductor at zero potential. what is the charge density on the
conductor induced by the dipole

Solution : As shown in the figure the dipole is  sin ,0,cosP P  


 and its image

dipole is  sin ,0,cosP P    


 In the region z > 0, The potential at a point  ,r x yz


Z

3q
a

a-q

Y

a -q X

Fig.1.52
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is    
 

3 2

0
22 20 0

sin cos1
4

Px z z
V r

x y z z

    
 

     

   
  

0
3 222 2

0

sin cosx z z
P

x y z z

 
     

  
   
 

The induced charge density on the surface of the coductor is given by

0

0
z z

V
z 

  


 3 22 2 2
0

cos

2

P

x y z


  

 

 
0 0

5 22 2 2
0

3 sin cos

2

Pz x z

x y z

  


  

QNO 14. Two similar charges are placed at a distance 2d apart. Find appronimately,
The minimum radius of a grounded conducting sphere placed midway between them that
would neutralize their mutual repulsion.

Solution : The electric field outside the sphere conresponds to the resultant electrical

field of the two given charges + q and two image charges .q  By the method electrical

images. q aq d
   and they are to placed at the two sides of the centre of the sphere at

the same distance 
2ad

d
   from it For each charge + q, besides acted by repulsive force

of + q, There is also the altraction exerted by the two image charge, For the resulant force
to vanish, we must have

2 2 22

2 2 22 24

q a d q a dq

d a ad b
d d

 
       
   

   2 4 8

3
2

1 3 5 ....
q a a a

d dd

 
    

 

Pʹ


P


 

Z0 Z0

Fig.1.53



NSOU  CC-PH-08   74

2

3

2q a

d


The value of a (a < b) that satisfies the
d bove requirement is given by,

8
da 

QNO 15. Chareges + q at points (q, 0
a) and –q at points (–a, 0, a) above a
grounded conducting plane at z = 0, Find

(a) The total force on charge + q

(b) The work done against the electrostatic forces in arranging this distribution of
charges

(c) The surface charge density at the point (a, 0, 0).

Solution : The method of image charges implies at + q (–a, 0, –a) and –q at (a, 0,
–a). The resutlant force exeted on +q at (a, 0, a) by other charges is

     
2

2 2 2
0

1 1 1 1 1ˆ ˆˆ ˆ
4 2 22 2 2 2

q
F i k i k

a a a

 
            



2

2
0

1 1 1 1 ˆˆ
4 48 2 8 24

q
i k

a

                  

Magintude of the force 
  2

2
0

2 1

32
F q

a






Force is acting on × z plane and points to the origin along a direction at angle 45º to
the x axis as shown in the figure.

(b) we can build the system by bringing the charges + q and –q from infinity through
the path

1 : , 0L z x xy 

2 : 0L z xy  

Fig.1.54

a

qʹ qʹ

+ q + q

d d
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symmetrically to the points (a, 0, a) and
(–a, 0 a) resectively. when the charges are at
(, o, ) on path L1 and (–, 0, ) on Path
L2 respetively, each of the charges suffers a

force 
  2

2
0

2 1

32

q

l




 whose direction is parallel

to the direction of the path. so that total work
done by the exernal forces is

  2

2
0

2 1
2

32

a

a

q
W Fdl dl

l






 

 

  2

0

2 1

16

q

a






(c) Now take case of electric field at a point (a, 0, 0+) just above the conducting

plane; The resultant electric field intensity 1E


 produced by + q at (a, 0, a) and –q at

(a, 0 –a) is

1 2
0

2 ˆ
4

q
E k

a






The resultant field 2E


 produced by – q at (–a, 0, a) and + q at (–q, 0, a) is

2 2
0

2 1 ˆ
5 54

q
E k

a






Hence the total field at (a, 0, 0+) is

1 2 2
0

1 ˆ1
5 52

q
E E E k

a

 
      

  

So the surface charge density is

0 2
0

1 1
5 52

q
E

a

 
       

 q (-a,o,a)  q (a,o,a)

 q (-a,o,a)   q (a,o, a)

Fig.1.55



UNIT 2 : Dielectric Properties of Matter

2.1 Objective

2.2 Introduction

2.3 Classification, of Dilectric Materials

2.4 Polarization

2.5 Gauss’s Law in Dielectrics

2.6 Boundary Condition in Dielectric Medium

2.7 Energy Density within Dielectric Medium

2.8 Electronic Polarisation

2.9 Electric Field Inside a Cavity in Dielectric

2.10 Polar Dielectrics and the Langevin–Debye Formula

2.11 Some Speical Properties of Dielectric Material

2.12 Summary

2.13 Review question and answer

2.14 Problems and solutions

1.1 Objective

In this unit you will be acquainted with microscopic as well as macroscopic properties
of dielectric. Following topics will be convered :

1. Difference between polar and non polar dielectric

2. Explanation of polarisation and quantitative analys’s of bound charges due to
polarisation.

3. Idea of electric displacement vector and derivation of Gauss’s Law in presence of
dielectric.

4. boundary condition at the interface of two different dietectric medium.

5. To find the electric field in different structures/shapes of dielectric.

6. Moleular polarisation and its relation with dielectric constant.

7. Properties of differant types of dielectric.
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2.2  Introduction

In electromagnetism, a dielectric is an insulator that can be polarised by an applied.
electric field. In our earlier study on electrostatic, we are acquainted with external featuring
properties of them. The electric field become lessened, with introduction of dietectric media
in place of vaccum, even the dietectic inside them. In this unit we will study The
transformational properties of dielectric in presence of electric field.

Basically. There are four mechanism of polarisation :

(a) Electronic or atomic, polarisation

This involves the displacement of the centre of the electron cloud around an atom with
respect to the centre of its nucleus under the influence of electric field.

(b) Ionic Polarisation

The ionic polarzation occurs, when atoms formmolecules and is mainly due to a relative
displacement of the atomic components of The molecules due to the influenece of electric
field.

(c) Dipolar ar Orientation polarsation.

This is due to orientation of the molecular dipoles in the direction of the field, which
would otherwise to be distributed randomly due thermal agitation.

(d) Interface or space charge polarisation

This involves limited movement of charges resulting in alligenent of charged dipoles
under the electric field. It is usually observed at the grain boundaries or any other iterfae
such as electrode material interface.

Also we will study molecular level changes due to electric field, This changes are called
polarization. Behaviour of bound charges along with the modified Gauss’s law wil be
explained in dietectric.

2.3 Classification Dielectric Material

In our everyday experience, most of the materical, that we come into contact can be
classified into two distinct branch–these are conductor and dielectric. There are many free
electrions in conductor which are not attached to the atoms. They move freely every-where
at random. Most of the metals have these properties and each atom has one on two such
free electrons. There no free electrons in dielectric each electron is all attached to the atom/
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molecule. But the electrons can move slightly within the atom, as a consequence, negative
and positive charges get slightly displaced. But in certain dielece trics centre of positive and
negative charges of the atom donot coincide with the same point, and they tend to behave
as electric dipole. Dielectric material can be classified into distinet catagories one is polar
and the other is non-polar.

(a) Polar dielectric :

Dietetrics, in which each atom/molecule has permanent dipole moment even in absence
of electric field is called polar dielectric. Let us illustrate an example of dipole moment
behaviour of HCl,- Hydrogen and cholrine atom have one and seventeen electrons in their
outer orbit, respectively. Their chage districbution is such that their centre of positive and
negative charges concide with a single point location, but when they coalasce to form a
HCL molecue, the one electron of Hydrogen atom goes to The surrouneling chlorine atom.
So Hydrogen becomes positively charged and chlorine atom becomes negatively charged
of HCL molecule. The molecule HCL is transformed into an electric dipole. Examples of
dipolar molecules are water (H2O), Ammonia (NH3), Carbondisulphide (CS2) and Hydrogen
sulphide etc. Dipole moment of different molecule is in the range of (1 – 20) coulmb/meter.

(b) Non polar Dielectric : whose atom/molecule of Dielectric material does not have
permanent dipole, is called non polar dielectric. In spite of having no permanent dipole, for
non polar dielectric, atoms/molecules of the dielectric, or the dielectric as a whole, can be
trans formed to have dipole moment under the influence of external electrical field. Examples
of nonpolar molecules are H2, N2, CO2, CCl4, etc.

2.4 Polarisation

When a dielectric material placed inside electrical field, then each atom/molecute becomes
converted to dipole. In additon to this, if the material is polar in character, then atoms
molecules become more polarised. Average dipole moment generated under the influence

of the electric field ,E


 alligned along the field, is termed as molecular polarsation, and

denoted by the symbol P


 If n is the number of molecule/atom, per unit volume, then,

 ... ... 2.4.1P n p
 

P


 is defined as polaraisation sation per unit volume of the dielectric. Its unit is c/m2.

Let us take an infinetisimal parallelopiped of dielctric of length ‘’ and cross-section s
placed in an electric field E


 alligned along the length (Fig. 2.1). Induced surface density
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charge '  andb b   will appear on the plane perpendicular to the direction of the electric

field which is due polarsiation. Positive charges will mutually be neutralized by the negative

charges inside the dielectric material. Total charges b S   and Sb 


 will appear at the

two terminal end surface of the dielectric material. So the  total dipolemoment polarisation

of parallelopiped will be .b Sl   Again the volume of the dielectric is ,Sl  and its dipole

moment is .P Sl


 So,

. . .b S l P S l   

 ...... 2.4.2bP  

So induced surface charge density on the surface perpendicular to the direction of the
electric field is equal to the value of polarisation vector. Even if the plane surface is not
perpendicular to the electric field, it can be shown that induced surface density of charge

will be  . ...... 2.4.3bP n  
 

Where n


 is the unit vector perper clicular to the surface.

2.4.1 Electrical field due to polarised dielectric

When applied electric field causes polarisation in dielectric, dipole moment is developed
in the dielectric. So these dipoles will certainly create electric field on its own. Let us try
to find the potential due to this dipoles.

Potential due to a single dipole P


 is given by

   2
0

ˆ1 · '''' ... ... 2.4.4
4 ''

PrV r
r






Where r
 is the vector from the dipole to the point at which we are finding the potential

Fig. 2.1

P


E
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(Fig. 2.2) Now the dipole moment P pdv
 

 in each volume element ,d   so the potential

is  
0

ˆ( '). "1 ... ... 2.4.5
4 "

P r r
V d

r
 

 
 



But we know from vector,

 '
2
ˆ1 ''

'' ''
r

r r
 

where the differentiation is with respect to the source co-ordinates   ,r  so we have,

 
0

1 1· ' '
4 "

V P d
r

  
 

 


On integrating by part’s

0

1
4

1'. ' ( ' ) '
" "

v v

V P d P d
r r




        
   

 
  



using Gauss's divegence theorem

   
0 0

1 1 1 1. · ... ... 2.4.6
4 4 ''

V P ds P d
r r



     
 



The first term of integration, we get potential due to surface charge

 ˆ· ... ... 2.4.8b P n 


Where n̂  is the unit normal vector to the surface. The second term of the intgrand will
give the potential of a volume charge

P

r

Fig. 2.2
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 · ... ... 2.4.9b P  
 

Using the above defined term, equation (2.4.6) can be written as,

   
0 0

1 1 1 ... ... 2.4.10
4 '' 4 4 ''

b b

S

V r ds d
r r
    

   


 

The experssions for V contains two terms, first is ˆ·b P n 


 which is the due to induced

surface charge. Second term is from the distribution of charge throughout the volume of the

dielectric, · ,
b

P  
 

 produced due volume density of charge. In our earlier discussion we

have assumed uniform distribution volume charge density, i.e. · ,P O 
 

 as a result, excluding

the outer surface charge density of the dietetric, every- where in the volue +  and –
volume density of charges neutrilizes each other.

2.4.2 Bound Charges

We have observed that polarisation causes the appearance of surface charge on the
outer surfaces and charges inside the volume of the dielectric. These charges are bound or
fixed with the individual atom or molecule, and cannot move freely. So no current is
generated due to this. So they are callted bound charges. The character of free charges
in a conduction is different from the bound charges of dielectric as they can move freely
to conduct electricity on with drawal of the external field, bound charges are removed due
to reunification of positive and negative charges.

2.5 Gauss’s Law in Dielctrics

Electrostatic field in the dielectric material is modified due to polarization and not like
as in vaccum. In the Fig. 2.3 (a) a parallel plate capacitor, of metallic plate, each of area
S, medium is vacuum inside them. In the Fig. 2.3 (b) An identical capacitor with a dielectric
inside them.

Both the plates of each capacitors are charged with +q and –q, respectively. A gaussian
surface abcd encirculing the +q charges have been drawn. whose ab and cd surfaces are
parallel to the plates of the capacitor, other planes are perpendicular to the plate. When

the medium is vacuum as in Fig 2.3(a) and the electrical field intensity is 0 ,E


 then applying

Gauss’s Theorem in abcd plane, we get, S being their area of plate,

0 0.E ds q 
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 0 0· ... ... 2.5.1E S q 

Observe that Gaussian integral is non zero only for cd plane.

Induced charge will be developed due to polarisation adjacent to the plates of the

capacitor and two terminal end of the dielectric, as shown in Fig. 2.3 (b) Let q  be The

induced bound charges near the positive plate of the capactior. E


 is the electrical field
intensity inside the dielectric. Applying Gauss’s Theorem in abcd plane, as before, we get

   0· . ... ... 2.5.2E ds E S q q   
 


From equation (2.5.1) and (2.5.2) we get

0 a

q q
E

S S


 
 

 
0

... ... 2.5.3O
q

E E
S


 


If V0 and V is the potertial difference between two plates of capactior with and without

dielectirc, then 0 0E V
k

E V
   where k is dielectric constant As E < E0, k is greater

than 1.

From equation (2.5.3) we get

b
c




q d
Electricfield

Dielectric

Fig. 2.3b
Fig. 2.3a
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0 0 0

q q q
k S S S


 

  

Or,    1 1 ... ... 2.5.4q q k  

From equation (2.5.4) it is clear That q q 

Now equation (2.5.2) can be written in the following way

0 ·
q

E ds q q
k

   
 


Or,  0 · . ... ... 2.5.5k E ds q 

 


Equation (2.5.5) is more advantageous form of Gauss’s law to apply in dietectric. As
the quantity k has been included in intagral of the left side, there is no need to include

induced charges on the right hand side of the integral. 0k  is the permittivity of of the

dielectric medium and denoted by .  In our earlier discussion. q  and q  have been
mentioned to be the charges residing on the end surfaces of diectric, Their surface density

of charges will be b P    and ,b P   respectively..

From equation (2.5.3) we get,

0E kE P  

Or,  0 0 ... ... 2.5.6KE E P   

Here E and P are all vector quantities, Equation (2.5.6) can be written, in the following

way  0 0 ... ... 2.5.7KE E P   
  

Expression on the right hand side of the equation (2.5.7) is termed as Maxwell electrical

displacement and denoted by D


From equation (2.5.5) we get

.D ds q
 


Again we know ,fq dv   where f is free volume charge density, and integral has

been covered all over the gaussian surfaces. Applying divergence theorem, we can show
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that

 · ... ... 2.5.8fD  
 

Equation (2.5.8) is the differential form of the Gauss’s law in dielectric medium.

Equation (2.5.7) can be written in the following way,

   0 01 ... ... 2.5.9P k E E     
  

As k > 1, 1k    is positive, and denoted as electrical susceptibility..

2.5.1 Relation between ,E P
 

 and D


The equation (2.5.7) written as 0 ,D E P  
  

  then we can get a clear relation between

, .D E and P
  

 Though D


 depends only on free charges, E


 and P


 vectors depend both

on free and bound charges. In linear isotropic dielectric, ,D E
 

 and polarization vector are

parallel To each other, i.e. ,D KE
 

 where k is a scalar quantity In nonlinear, anisotropic

dietectric ,D E
 

 and P


 are not parallel. Here K is represented by tensor quantity..

2.6 Boundary Condition in Dielectric Medium

(a) Let AB be boundary between two dietectric media, which is homogenous and
isotropic. Consider The interface between 1 and 2, and imagine small pill box shaped
Gaussian surface intersecting the interface [Fig. 2.4 (a)]. Its height and the area covered
by the curved surface is very small. Let S  be area cut out by the pill box on the interface.
If   be the surface chage density of free charge on the interface, The application of
Gauss’s law to The pillbox yields–

 2 1ˆ ˆ· · ... ... 2.6.1D n S D n S S    
 

Where n̂  is the unit vector pointing from medium 1 to medium 2. Flux over the curved
surface is negligible and does not contribute to the equation (2.6.1) Neglecting negligible

volume of the pill box, we get,    2 1 ˆ· ... ... 2.6.2D D n  
 

Or,  2 ... ... 2.6.3n inD D  



NSOU  CC-PH-08   85

It is clear from equation (2.6.2) or (2.6.3), that discontinuity in the normal component
of the electric displacement in moving from one medim to other medium is given by the

surface density of free charge on the interface between the media. Normal compant of D


is conlinous across it when there is no free charge at the interfaec.

(b) Let AB be The boundary between two dielectric media 1 and 2. Take a closed path
PQRS across The boundary AB [Fig. 2.4 (b)] Its height QR and SP are very small and

neghigible and the length PQ = RS = dl. Let 1E


 and 2E


 are electric field vectors in media

1 and 2 at an inclination 1  and 2  with the norma to the boundary The work done in

moving an unit positive charge around the path PQRSP is zero .E dl O
 


sin 0E dl 

 1 1 2 2sin · sin · 0E dl E dl    

 1 1 2 2sin sin 0 ...... 2.6.4E E   

But 1 1 1sin tE E   and 2 2 2sin tE E 

E1t and E2t are The tangertial component of electric fields on both sides dielectric
boundary, So, E1t = E2t ... ... (2.6.5)

Thus the tangetial component of The electric field is continuons across The interface
between two media.

D2n


D2

2

A B
1


D1

D1n

1

2

a
1

2

A B

S R

P Q

2

1


E


E1t

E2t



bFig. 2.4
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(c) Refraction of Eelectical lines of Force :

we know, for charge free interface between two dielectric medium

D1n = D2n

Or, 1 1 2 2cos cosD D  

Or, 0 1 1 1 0 2 2 2cos cosK E K E    

Or,  1 1 1 2 2 2cos cos ... ... 2.6.6K E K E  

and  1 1 2 2sin sin ... ... 2.6.7E E  

So we get from equations (2.6.6) and (2.6.7)

 1 1 2 2cot cot ... ... 2.6.8K K  

This is the law of refraction for electrical lines of force when K2 > K1

Then 1 2cot cot    or, 2 1    implies that when the dielectric constant of medium

two is greater than medium one, electrical lines of force in medium two, will move away
from the normal at the interface. This is in contrast opposite to the normal refraction of light
rays.

2.7 Energy Density within Dielectric Medium

Consider a system free charges embedded in a dielectric medium. The inerease in the

total energy when a small amount of free charge f  is added to the system is given by

   ... ... 2.7.1fW r dV   


Where the integral is taken over all space, and  r


 is the electrical potential. Here

we have assumed that the original charges and the dielectric and held fixed, so that no

mechanical work is done. From equation (2.7.1) we get,  · fD 
 

 · ... ... 2.7.2W D dV   
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Where D


 is the charge in electric displacement due to increase in charge.

Using the vector identity,

   . . ·D D D      
     

We get

   · · ... ... 2.7.3W D d Dd         
   

giving,  · · ... ... 2.7.4W D ds D d       
   

If the dielectric medium is of finite spatial extent, then we can neglect the surface term
to give,

 · · ... ... 2.7.5W Pd E Pd         
  

Assuming 0D KE 
 

 where K is the dielectric constant, the change in energy associated

while D


 has been increased from 0 to  D r


 at all points in space is given by

 
0 0

· ... ... 2.7.6
D D

W W E Pd      
 

Or, 
 2

0 2
00

1
2 2

E K E
W d KE d

 
      

Which rediuces to

 1 · ... ... 2.7.7
2

W E Dd 
 

So the electrostatic energy density inside a dietectric medium is given by

 1 · ... ... 2.7.8
2

U E D
 

2.7.1 Potential Energy of Dipole in Electrical Field

When a dipole placed in an electric field, two equal and opposite forces F


 and F


on the charges q and –q, which constritules a couple (Fig. 2.5).
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The moment of the couple or toque = Force × perpendicular distance

But F = qE and from the ,ABC BC = ABSinθ

2 sinqE l     [as AB = 2l = length of the dipole]

Now, p = 2lq = dipole moment

sinPE  

which forms a vector,  ... ... 2.7.9p E  
  

This dipole will be rotated by the couple   in the direction of the field. Let dw be the

work done in rotating the dipole Through a angle ,d

.dw d  

Total work done w in rolating the dipole from angle 1  to 2.  is 
2

1

·w d




  

The work done is stored in the dipole as potential energy U

 2 1cos cosU W pE     

Or,  2 1cos cosU pE    

If the initial and final positions are 1 90º   and 2    Then,

cosU pE  

Fig. 2.5
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Or,  · ... ... 2.7.10U p E 
 

2.8 Electronic Polarisation

Consider an atom in an electric field of intensity ‘E


’, since the nucleus of charge +ze
and surronding encircling electron cloud of charge ‘–ze’ of the atom have opposite charges

and acted upon by Lorentz force. As a consequence, nucleus moves in the direction of The
field and electron cloud in the opposite direction. As electron cloud and nucleus gets
displaced from their normal equillibrium positions, an allractive force between them is built
and the separation continues until coulomb force FC is balanced by The Lorentz force F2,
until a new equillibrium state is ereated.

Let  be the charge density of the sphere.

34
3

ze

R

 


where ‘–ze’ is the total charges in the sphere. So the negative charge in the sphere of

radius x, 34
3xq x  

 3

3

4
4 3
3

ze x
R

 


 3
3

... ... 2.8.1x
zeq x
R


Fig. 2.6

+ze x

R
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Allractive coulomb force between nucleus and electrons

2
0

1
4

x p
C

q q
F

x

 
    

3

2 3
0

1
4

zex ze
x R

     

 
2 2

3
0

... ... 2.8.2
4

C
z e xF
R




Force experienced by displaced, nucleus in electric field internsity E


 is

 · ... ... 2.8.3
pL qF E Ze E 

  

Since, ,L CF F  we can write

 
2 2

3
0

... ... 2.8.4
4
z e x zeE
R

 


Or,  3
0

... ... 2.8.5
4
zexE
R

 


Again we know 
e

dipolemoment
E 



where e  is represented as electronic polarizability..

From equation (2.8.5), we get

3
04 e

zex zex
R

 


So,  3
04 ... ... 2.8.6e R  

Hence electronic polarisibility is directly proportinal to the radius of the atom.
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2.9 Electrical Field inside a cavity in the Dielectric

Spherical Cavity : Let us imagine a speherical cavity inside the dielectric whose centre
at O and radius ‘r’. The size of the cavity is small compared to the dielectric material, but
large enough compared to size of the molecule. The electric field inside The dielectric is

E. Electrical force on a unit positive charge placed at O is E where PE E E  

EP is electrical intensity due to the induced charge on the surface of the cavity. We use

spherical co-ordinate system to find EP. If P


 is the polarisation vector, then surface charge

density on the surface of the cavity ˆ· ,P n 


 where n̂  is the unit vector perpendicur to

the surface so, total surface charge on an elementray area ds is

ˆ· cosdq ds P nds Pds    


Electrical field, intensity due to this charges at ‘O’

2
1 cos

4P
PdsdE
r

 


We will take the component which is parallel to E


, Horizontal component is

2

2
0

cos' cos
4

P P
PdsdE dE

r
  



Now elemental surface area

between   and ,d   is

22 sinds r d   

S o ,
2 2·2 sin cosPdE P r d    

Or, 
2

0
sin cos

2P
PdE d   


Intequrating 0 ,to      we get

 2
00 0 0

2sin cos · ... ... 2.9.1
2 2 3 3P
p P PE d
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So the total intensity at the centre of the cavity  
0

... ... 2.9.2
3P
PE E E E    


  

If the dielectric material is kept inside a parallel plate capacitor, Then electrical field

intensity at the centre of the cavity is  0
... ... 2.9.3

m i PE E E E  
   

where 0E


 is the itensity due to the chargeson the capacitor plates. This field induces

potarization inside the dietetric, and induced surface charge density + P and –P on the

terminal surface of the dielectric 0iE P  


Electrical field inside the dielectric 0 0 0iE E E E P    
    

So the electrical field intensity at the centre of the cavity is less than 0 ,E


 but it is greater

than the field inside the dielectric.

2.9.1 Atomic and Molecular Polarisation : Clausious–Mossotti selation

Now we will, find out the relation between relative permillivity and molecular/atomic
polarisation. Let us now explore the field intensity at the centre of sphere of radius ‘r’ inside
the dielectric material. All the molecules inside the sphere gets polarised along with the
polarisation entire dielectric. But all the dipoles inside it contributing to the field at the centre
gets neulralised or mitigated due to the vector sum of the evenly distributed dipoles (fields).

So mE


 is effective intensity of a molecule kept at the centre ‘O’.

We know 0 0D K E E P    
   

where E


 is The electrical intensity inside the dielectric.

Or,   01P k E  
 

From m PE E E 
  

 1 2
3 3
k kE E E
   

  

Or, 3
2 mE E

k



 

So,    0
31 ... ... 2.9.4

2 mP k E
k
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Or, 
 
   0
3 1

... ... 2.9.5
2

m
k

P E
k


 



 

If Pm is the dipole moment of molecule generated due the electric field intensity Em, so

the dipole moment per unit field strength, so we say molecular polarisibility 
m

m

P
E

 

If ‘n’ is the numbe of molecule per unit volume, Treating mP


 as vector

m mP nP nE  
  

Hence, 
   0 13

... ... 2.9.6
2

k
n k


 


Above relation of equation (2.9.6) is known as clausius-Mossotti relation. Physical

implication of this relation is that we can get the entrie macroscopic propertics i.e. we can
get the value of molecular polarsability from the relative permillivity. Thus, from a measurement
of k, it  is possible to get important quautitative information about molecular structures.

From electronic polarisation, we know that molecular polarisibility from equation (2.8.6)

is 3
04 a  

Using classius-Mossotti relation, we get

 30

0 0

41 4· ... ... 2.9.7
2 3 3 3

nk n n a V
k

     
  

where V is the volume of total one unit volume of molecules.

From equation (2.9.7), we have

3 3 1·
4 2

ka
n k


   Or,  

1 3
3 1· ... ... 2.9.8

4 2
ka

n k
     

Equation (2.9.8) gives the relation between atomic radius and dielectric constant (k).

2.10 Polar Dielectrices and The Langevin Debye Formula

Molecules like CH3CL, H2O, HCl, cthyl acetate carries electric dipole moment even
in the absence of electric field. However, The net dipole moment is negligiby small since
all the dipoles under continous thermal agitation, are oriented randomly when there is no
external electric field. In the presence externally applied field, individual dipoles experience
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torques, which tend to allign them along the field direction. As a result the net dipole
moment becoems large.

Polarisability has been calculated based on the principle of statistical Thermodynamics.
Under this principle, in thermal eqnillibrium, the probability of finding a molecule with

potential energy U is proportional to ,BU K Te  where kB is The Boltzman constat and T

is the absolute temperature. The potential energy of a dipole moment P


 in  an electric field

is,  · cos ... ... 2.10.1V P E PE    
 

Assuming, local field is solely to be the electric field, the probability that a dipole will

have orientation   with respect to the field is cos .BPE K Te   If < P > is The average

polarisibility of dipolar molecule, at a particular temperature is given by the Langevin
formula

 1coth ... ... 2.10.2P
P

    


where 
B

PE
K T

 

The fig. (2.8) shows The variation of P
P

   as a function of .  At large electrical field

strengths or at low temperatares i.e. where 1,
B

PE
K T

    Lengevin predicts 1.P
P

  

which states that nearly all the polar molecules have been alligned with the electric field.

i.e. almost saturation P
P

 

Fig. 2.8

<P>
P

1.0
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while for small values of  1 ,   i.e. normal fields and higher temperatures equation

(2.10.2) reduces to 
3

P
P

    Or,  
2

... ... 2.10.3
3 B

P EP
K T

  

which indicates a linear relationship between < P > and E. Thus a polar dielectric is
normally linear. Now the polarsibility   is defined as the molecular dipole moment per unit
field

 
2

... ... 2.10.4
3

P P
E KT

   

Equation (2.10.4) shows the temperature dependence of polarisibility. This equation
holds pretty well for small values of P and E and for large enongh T which we can presume
as normal conditions.

The total polarization for dilute gas can be written as

 
2

... ... 2.10.5
3e i
P
KT

       

where e  and i  are electronic and ionic polarisibility, respectively..

Equation (2.10.5) is known as Langevin–Debye equation.

From clausius–Mossolti equation and equation (2.10.5), we get,

 
2

0

1 ... ... 2.10.6
2 3 3e i

k n P
k KT

         



Polar
nopolar
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This equation is known as Debye equation. From this equation we can find the value
of dipole moments and polarization from measurement of gases. For polar molecules

1vs T will be a straight line. But equation (2.9.6) shows that for nonpolar molecules 

versus 1 T graph will be a straight line parallel to 1/T – axis (Fig. 2.9) The intercept of the

straight line for polar molecules gives the value of  e i   and the slope of the line

gives P.

The variation of dielectric properties with the frequency of an applied ac field also
interesting. Due to interia of heavy polar molecules they cannot follow the rapid change in
the direction of the applied ac field. For this at higher frequencies (in the micro wave region
of above) the polar contribution to the dielectric constant begins to fall with frequency. But
because of smaller incrtia of electric the electronic polarisibility remeins almost unchanged
upto optical frequences.

2.11 Some special Properties of Dielectric Material

Here we will discuss some specific propertis of dielectric material which is of immense
use in engineering and as sensors, etc

1. Ferroelectric Materials :

These are crystalline materials that displays electrical polarisations switehable by an
external field. Ferro electric crystals have high dietectric constant and each unit cell of
ferroelectric crystals carries reverisble electrical cell.

Ferro electric property depends on temperature and this property vanishes at a certain

critical temperature–dietectric property vauishes rapidly with temperature. Relation
between dietectric constant, temperature and critical temperature is given by

0
e

CK K
T T

 


 Here Tc is the critical temperature, c is constant and K0 is the contribution to dielectric
component from electronic dielectric constant. Examples are Barium Titanate (BaTiO3)
sodium nitrate and Rochelle salt.

2. Piezeo Electricity :

The process of creating electrical polarisation by mechanical stress is called piezo
electric effect. Contrary to this, inverse piezo electric effect is observed, when electric field
is applied–The material gets strained and directry proportional to the strength of the electrial
field.
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Examples are, quartz crystal, Rochelle saltet. Among The piezo electric semiconductor
are Gatts, ZnO and Cds – which are mainly used utrasomic amplifiers, electromic watch,
microphone etc.

3. Electret :

This can be considered a piece of diectric materical with the presence of quasi-permanent
real charges on the surface or in the bulk of the material or frozen-in-alligned dipole. Some
dipole moment remains–even when the electrial field is removed. Some organic paraffin,
and some plastic exhibits these propertics.

When These materials are polarised in molten state, and There after solidefied, they
retain Their dipolar characteris tics, and a permancent dipole generated. It is called thermal
electret. Some materials are called photo electret when are transformed by light and electric
field to dipole propertics.

4. Dielectric Break down :

All dietectric material retain their property until high enongh field to destroy their
characteristics, allowing large flow of current, this happens due to removal of electrons
from the atomic orbit by strong electric field mainly. Also some breakdown is observed by
the effect of following agent–intrivnsic, thermal, electrochemical, deffect and discharge,
breakdown.

5. Dielectric Relanation Time :

It takes a certain amount of time for a dietectric to be fully polarised when subjected
to an electric field. It is observed that the electromic and ionic polarisation is attained
instaneonsly, if we cosider high frequencies (107 – 1017/sec) and not The optical frequencies.
Dielectric loss, at these frequencies, is mainly due to relaxation effect of the permanent
dipoles. A molecule in dielectric, which tries to allign with the applied electric field, is
effected by the opposing forces of adjacent molecule. This is the phenomenon of relaxation.
Polarisation of the dielectric, when influenced by an atterating electric field, does not
conform to proportionatc transformational gain. Rather a hysterisis is observed in polarisation.
It has been observed that the platies of the capacitor gets charged again even after being
discharged to meutralise the plates from the first follow up charging. Hence, sometimes a
certain amount small current flow has been observed Electrical energy is lost due to
hyserisis of the dielectric and flow of current, dielectric material gets heated. Motecules
cannot orient harmoniously and swiftly with high frequency alternating field. So There is no
loss of energy due to hysteris.
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2.12 Summary

1. Dielectrics are insulators that support charge. The dielectric constant K indicates
polarisibility of dielectric. Each of the polarisation mechanism has a chargeteristics relaxation
time (frequency).

2. Gauss’s law for dielectric is relates free charge to the displacement vector. E


 and

D


 Follow the boundary condition at the interface of two different dietectric media. Refraction
law has been duduced.

3. Microscopic properties have been discussed after studying macroscopic properties.
Inter relation between molecular polarisabiity and dielectric constant has been deduced by
studying the electric field intensity in microscopic spherical cavity deep inside dielectric
substance.

4. Clausius–Mossotti reation has been deduced as 03 1
2

k
n k
  


 [see equation 2.9.6)]

Again, Molecular polarisibility 3
04 a    (see quation (2.8.6). combining these two

equation, we have establised the relation between atomic radius (a) and dielectri constant
(k).

5. We have alo established the expression of molecular potarisibility    for polar

dielectrics given by 
2

3e i
P
KT

      [see equation (2.10.5)]

which is known as Langevin–Debye equation.

6. versus 1/T for polar and nonpolar dielectrics have been plotted (see Fig. 2.9) and
importance of the graph has been discussed.

2.13 Review Questions and Answers

1. What is polar and non polar dielectric? How They behave in an exeternally
applied electric field.

Answer : See article 6.3.

2. Find the electric potential inside a polarised dielectric.

Answer : See article 2.4.
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3. Prove The continunity of normal and tangentral component of electrical field
intensity at the interface two different media.

Answer : See boundary condition article 2.6.

4. Establish The claussius–Mossotti relation.

Answer : See claussium–Mosotti relation, article 2.9.1.

5. Define orientation polarisation.

Answer : When an electric field is applied in a dielectric medium with polar molecules,
the electric field tries to allign these dipoles along its field direction, due to that there is a
resultant dipole moment in the dielectric material and this process is called orientation

polarisation. 
2

3P
P
KT

 

6. Define local or internal or Lorentz field.

Answer : In a dielectric material. The field acting at the location of an atom is called
as local field or internal field ‘Ei’.

The internal field Ei must be equal to the sum of the applied field and the field due to
The location of the atom by the dipoles of all other atoms.

Ei = E + The field due to all other atoms.

7. What is electric polarisation?

Answer : It is defined as production of electric dipoles by the applied field. It is due
to the shifting of charges in the elietectric by the applied electric field.

8. Mention The different break down mechanism in dietectric material.

Answer : (i) Intrinsic and avalanche break down.

(ii) Thermal break down

(iii) Chemical and electrochemical break down

(iv) Discharge break down

(v) Defect break down

2.14 Problems and Solutions

1. The dielectric constants of a Helium gas at NTP is 1·0000685. Calculate the electric
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polarizability of Helium atoms if the gas contains 2·7 × 1026 atoms/m3. Calculate the radius
of the Helium atom.

[Given 12 1
0 8·854 10 Fm    ]

Solution :

Relative permitivity 1·0000685r 

No of atoms of the Helim gas N = 2·7 × 1026 atms/m3

Permitivity of free space 12
0 8·854 10 F m  

Now, Polarization  0 1rP E   

and .eP N E 

Where e  is electromic polarizability of Helium atom

From above two equation, we can write  0 1e rN    

Or, 
 0 1r

e N
  

 

 12

24

8·854 10 1·0000685 1

2·7 10

 




Hence 42 22·245 10e Fm  

Again 3
04e R  

Where R is the radius of Helium atom 

11
42 33

12
0

2·245 10
4 4 3·14 8·854 10

eR



              

R = ·272 × 10–10 meter.

Radius of the Helium atom R = ·272 × 10–10 meter

2. An electric field intensity of strength 10 kV/m is applied across a parallel plate
capacitor filled with dietectric constant 2·5 The distance between the plate is 2 mm
calculate.
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(a) D, (b) P

(c) The surface density of free charge on the plates

(d) The surface density of polarization charge

(e) The potetial difference between the plates

Solution :

(a) 
9

4 2
0

10 2·5 10 220·98
36rD E nc m


      


(b) 
9

4 2
0

101·5 10 132·58
36eP E nc m


      



(c) 2ˆ· 220·98s nD i D nc m   


(d) 2ˆ· 132·58ps P i nc m  


(e) V = E.d = 104 × (2 × 10–3) = 20 V

3. A dielectric cube of side ‘a’ centred at the origin

carries a polarisation charge  P r kr 
 

, where K is constant. Find all the bound charges

and prove that they all add up to zero.

Solution :

The bound volume charge density is equal to    2
2

1· 3b P r kr k
rr
       




Since the bound volume charge density is constant. The total bound volume charge in
a cube is equal to the product of the charge density and the volume

qvolume = – 3ka3

The surface charge density b  is equal to,

ˆ ˆ· ·b P n kr n  


Now 1ˆ· cos
2

r n r a  



n P

a

a
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1ˆ·
2b kr n ka  



The surface charge density is constant across the surface of the cube

 2 31 6 3
2surfaceq ka a ka 

Thus total bound charge on the cube is equal to

qtotal = qvolume + qsurface

3 33 3ka ka  
= 0

4. The sphere of radius R carries a polarisation  P r kr
  

where K is constant, and r is the radius vector from the centre.

(a) Calculate bound charges b  and b

(b) Find the field inside and outside the sphere.

Solution : The unit vector n̂  on the surface of the sphere is equal to the radial unit
vector.

The bound surface charge is equal to ˆ ˆ· ·b r R r RP n Kr r KR    
 

The bound volume charge density equal to    2
2

1· 3b P r kr k
rr
       


 

First consider the region outside the sphere.

The electric field in this region due to the surface charge is equal to

 
2 3

2 2
0 0

41 ˆ ˆ
4

b
surface

R KRE r r r
r r

 
 

 



The electric field in this region due volume charge is equal to

 
3

3

2 2
0 0

4
1 3 ˆ ˆ

4

b
volume

R
KRE r r r

r r
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Hennce the total electric field outside the sphere is equal to zero.

To find the electric field inside the sphere : the electric field due to surface charge is
equal to zero. The electric field due to volume charge is equal to

 
3

2
0 0

4
1 3 ˆ ˆ

4
b

volume

r
KrE r r r

r

 
  

 


5. Two vast homogenous isotropic dielectrics are in contact in the plane z = 0. For

0,z   
1

1·5r   and for z < 0 
2

1.r 

A uniform electric field 1 ˆˆ ˆ4 2 4E i j k kV m  


 exists for 0.z   (a) Find 2E


 for

0,z   (b) The angles E1 and E2 makes at the interface, (c) The energy densitics inJ/m3

in both dielectrics.

Solution : The problem is portrayed in Fig. 1... As, k̂  is normal to The boundary plane

of two dielectrics, normal components are as follows :

1ln
ˆˆ· · 4E E n E k  

 

ln ˆ4E k


2 2 ˆ ˆ·nE E k k   
 

Also, n tE E E 
  

Hence, tangential component,

ln ˆ ˆ4 2ltE E E i j   
  

Applying boundary condition at the interface we have,

2 1 ˆ ˆ4 2t tE E i j  
 

Similary displacement vector,

1
2 1 2 12n n n nr rD D E E    
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 1

2

2 ln
1·5 ˆ4
1

r
n

r
E E k


 


 

2 ˆ6nE k


Thus electric vector in dielectic 1r   is

2 2 2tE E E n 
  

 ˆˆ ˆ4 2 6i j k kv m  

(b) Let 1  and 2  be The angles 1E


 and 2E


 make with the interfacing surface as

shown in Fig. 1, while 1  and 2  are the angles they make to the interface as in figure,

we have,

1 190º  

2 290º  

Since ln 4E   and 2 24 2 2 5ltE   

1
2 5 5tan

4 2
  

1
1

5tan 48·1888
2

  

1 41·8112º 

Similarly 2
2

2

2 5 5tan
6 3n

E t
E

   

1
2

5tan 36·6991º
3

  

2 53·3009º 
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(c) The energy densties are given by

 
1

92 6
1 1

1 1 101·5 16 4 16 10
2 2 36EW E


       



3238·7 J m 

 9
2 2 2 6

2
1 101 4 2 6 10
2 36

W
      


3247·57 J m 

6. An electric field vector  ˆˆ ˆ4 2 4E i j k mv m  


 is incident at a particular point on

the interface between air and conducting surface. Find D


 and s  at that point.

Solution :

Electric displace ment vector is given by

9
310 ˆ ˆ4 2 4 10

36
D i j k

      


2ˆˆ ˆ0·353 0·1768 0·353i j k pc m    

9
2 2 2 310 4 2 4 10

36s D
        

2·00593 pc m

7. A sphere of radius R has a dielectric constant r  and uniform charge density of 0

(a) Find the potential at the centre of the sphere.

(b) Find the potential at the surface of the sphere.

Solution :

Given 
O

v
O r R

O r R

  
   



NSOU  CC-PH-08   106

For r < R,   3
2

0
44

3r
rE r    

Or, 0
3r
r

E





Hence potential, at any point inside the sphere 
2

0
1.

6
r

V E dr c


    


For r > R,   3
2

0 0
44

3r
RE r    

Or, 
3

0
2

03
r

R
E

r






Potential at external point out side the sphere, 
3

0
2

0
.

3
R

V E dr c
r


   



As ,r  V = 0 and C2 = 0

At r = R,    V r V R
 

2 2
0 0

1
0 06 3r

R R
c

 
  

    
2

0
1

0
2 1

6 r
r

R
c


   

 

(a) So the potential at the centre, V (r = 0)

V (r = 0) 
 0 0 2

1
0

2 1
6 r

c R
  


 

(b) At r = R The surface of the sphere,  
2

0

03
R

V r R


 


8. A sphereical shell is filled with dielectric material 0 r     for a < r < b and 0  for

0 < r < a. If a charge q is placed at the centre of the shell, find,

(a) P


 for a < r < b
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(b) v  for a < r < b

(c)  at r = a, and r = b

Answer : Applying Gauss’s law,

2
0 04

r
qDrE b r a
r

     

24
rD q

r


 
 for a < r < b

(1) Now, Polarization is given by,

0 1

r
P D

 




Hence, 
 

2

1

4
r

r
r

P q
r

 

 

 for a < r < b

(2)  2
2

1· 0v rP r P
rr


     


 

Surface density of charge,   2

1
ˆ tan

4
r

s r
r

q
P n r a

a


           



  2

1
ˆ·  r

4
r

s r
r

q
P n for b

b


          



9. The electric polarizability of Ar atom is 1·7 × 10–40 F/m2. What is the dielectric
constant of solid Ar if its density is 1·8 g/cm3

Solution :

Relative atomc mass of Argan at to atom is 39·95 gm/mole. If NA is the Avaggadra’s
member. If N is the no of atom per cc.

  
 

23 1 3

1

6·02 10 1·8

39·95
A

mol

mol cm cmN d
N

M gm mol
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N = 2·71 × 1022 cm–3

with, N = 2·71 × 1028 m–3 and 40 11·7 10e Fm   

0
1 1·55e

r

N
   



If we use the clausius-Mossdti equation we get 
0

0

1
3

1·87
2

1
3

e

r
e

N

N





  






10. At normal pressure and temperature of 35ºc dielectric constant is k = 1·000516 for
Argon atom. Find atomic polarisability and volome.

Solution :

At normal pressure and temperature (0ºc) atomic density is 2·687 × 1025/m3

So density at 35ºc is 25 2732·687 10
273 35

n   


25
3n 10

m
 2.382 

From Clausius Mossolti equation,

12
0

25

3 k 1 3.854 10 .000516

n k 1 2.382 10 3.000516

     
 

4 21.917 10 Fm 

Molecular volume is given by,

3
25

3 3

4 1 k 1 1 .000516
a

3 n k 2 2.382 10 3.000516

7.221 10 m

   
 

 

11.  A diaelectric cube of side 'l' centred at the origin carries a frozen-in-polarization

P cr
  . Find all the bound charges and total charges.
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Solution :

Given, ˆ ˆ ˆP cr c(xi yj zk)   
 

Bound volume charge density

b .P c(1 1 1) 3c     
 

Total volume charge of the cube 33c 

Bound surface charge density, at the top,

b

c
P.n

2
  

   (on all six surfaces)

Hence at the top of the cube total charge C along +ve Z direction,

2 3
b

c

2
   

1· cos
2

r n r l  
 

Hence 1ˆ·
2b cr n cl  



The total surface charges comprising all the six faces of the cube of are l2 is equal to

n





Fig. 2
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 2 31 6 3
2surfaceq cl l cl  

Total bound charges compring volume and surfaces

q = qsurface + qvolume =

= 3cl3 – 3cl3 = 0

12. The space between two parallel plate copacitor is filled with two slabs of linear
dielectric naterial as shown in Fig. 3. Each slab has thickness b, so that the total distance

between two plates is 2b. Slab 1 has a dieclectric material of dielectric constant 1  and

slab 2 has dielectric constant 2.  The free charge density on the top plate is   and on

the bottom plate is 

(a) Find the electric displacement Dineach slab.

(b) Find the electric field E in each slab.

(c) Find the polarization in each slab

(d) Find the potential difference between the
plate

(e) Find the location and amount of all bound
charges

(f) Now knowning all charges recalculate the field in each slab

(a) Applying Guass’s law  · freeD ds Q
 

 enclosed From the Gaussians surface we

get.

DS s D    

Note that D = 0 in the metal.

Similarly for the second slab D  

(b) 1D E E     
 

 in slab 1, 
2

E 
  in slab 2.

Again we, know 0 ,r   

So, 1 02    and 2 0 0
51·25
4

    

E1

E2

b

b

s
+



NSOU  CC-PH-08   111

1
02

E 
  and 2

0

4
5

E 


(c) 0 eP E  
 

 so, 0
0

e
e

r r
P

         



Now, 1,e r   

   11 1 1r rP         

1 2P    and 2 5
P 

(d) Now potential 1 2
0

1 4 5
2

bV E b E b         

0

13
10

b


(e) Volume charge density 0b 

Now bound charges is slabs :

1b P    at the bottom of slab 1 2 

1b P    at the bottom of slab 1 2 

2b P   at the bottom of slab 12
5


2b P    at the bottom of slab 2
5
 

(f) In slab 1 total surface charge above 2 2   

total surface charge below 2 5 2
5
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0/2

0/2


Fig. 4





which implies 1
02

E 


Inslab 2 total surface charge above 40
2 2 5 5
      

total surface charge below 4
5 5
   

which implies 2
0

4
5

E 




UNIT 3 : Magnetic Field

3.1 Objective

3.2 Introductions

3.3 A brief capitulation on magnetism

3.4 Unit of B


3.5 Track of a charged particle in a magnetic field

3.6 Biot Savart Law

3.7 Torque on a current loop

3.8 Ampere’s law and its application

3.9 Properties of B


3.10  Summary

3.11  Review Question and Answer

3.12 Problems and solution

3.1 Objective

After completing this unit you will be able to understand–

1. The force due to magnetic field over a moving charge and trajectory of charge
in a magnetic field.

2. The origin of magnetic field due to flow of charge through two laws, Biot-
Savart’s law and Ampere’s law.

3. Application of Biot-Savart’s law to find magnetic induction for
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a) straight current carrying finite and infinite one dimensional conductor.

b) circular loop,

c) solenoid.

4. Application of Ampere’s law to find the magnetic field in some symmetric cases of
current distribution.

5. Vector magnetic potential.

3.2  Introduction

The history of magnetic effect has been known from the ancient time; from the
discovery of loadstone. The relation between electricity and magnetism was first established
experimentally by Oersted in 1819, though such connection had been hinted in a book by
Gilbert in 1600. The quantitative relation between current and magnetic field was established
by Biot-Savart and Ampere during the period 1820-1825.

3.3 A brief recapitulation on Magnetism

We have already come across the existence of magnetic field which is prouduced by
permanent magnet or by moving electric charge and so they also under go magnetic
interaction when placed in a magnetic field according to Newtonian law of action and
reaction. The magnetic field is described by magnetic field lines which provides its
direction (along the tangent to the field line at the point concerned) and the magnetic

field induction B


 at a point is the number of field lines corssing per unit area through
the point, when the area is held perpendicular the field lines at the point concerned.
Unlike the electric field lines the magnetic field lines are closed which leads to the
conclusion of nonexistence of free magnetic poles in nature.

The force on a moving charge q in electric field E


 and magnetic induction B


 is

given Lorentz force, d F qE qv B  
   

Thus the force on a moving charge due to static magnetic field

 ... ... 3.1.1md F qv B 
  

So both static and moving charge experiene electric interaction but only a moving
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charge may undergo magnetic interaction. The direction of force is perpendicular to both

v


 and .B


 The magnetic force is a no work force as

. . . 0.drdw F dr F dt F v dt
dt

   
    

The direction of the force can be obtained easily by right hand thumb rule shown in fig
(3.1). The thumb finger gives the direction of force when the other fingers specify the

direction of rotation from v


 to .B


3.4 The Unit of .B


The magnetic field induction at a point is said to be unity if 1C of charge moving at 1m/
s, perpendicular to the field, experiences a force of 1 Newton. This unit is called Tesla.

 11 1 1 sin 2 1N C ms B T 

1
N NT

AmCms
 

3.5 Track of charged particle in uniform magnetic field

1. When v


 is perpendicular to B


Here F = qvB sin 90º = qvB and is directed along

.v B
 

 So the motion is confined in a plane with radius

of rotation r, such that centripetal force qvB = mv2/r, r
r = mv/qB. If  is the is the angular frequency of rotation,
then v = r, or r = m r/qB or  = qB/m, so T = 2m/
qB. Thus we see that the time period of rotation is
independent of velocity of particle and depends on the
q/m of the particle. Motion is shown in fig. (3.2)

2. When v


 makes an angle  with the direction of .B


In this case the term v cos remains unaffected by magnetic field, since this component

is along the line of .B


 For the component v sin  the magnetic force Fm = qvB sin =

Fig. 3.1
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Fig. 3.2
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mv2 sin2 /r, or r = mvsin/qB. So the time period of rotation T = 2 m/qB. The motion
is as shown in fig (3.3)

So the path is helical with pitch (= the distance moved in the net direction of motion
in each rotation = vcos (T) = 2mvcos/qB)

The force on a current carrying conductor in a uniform magnetic field.

we consider a segment dl of current carrying conductor carrying current i as shown in
fig. (3.4)

dq be the charge flowing through the element dl in time dt. Then the force on the
element

m
dqdld F dqv B dq B dl B idl B

dt dt
       

       

 ... ... 3.5.1md F idl B 
  

So the force is perpendicular to both dl


 and ,B


 the direction of force can easily be

obtained from Fleming’s left hand rule as in fig. (3.5).

The total force on the conductor

 ... ... 3.5.2mF idl B i dl B iL B iAC B        
        

Fig. 3.3
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i
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B

Fig. 3.5
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NSOU  CC-PH-08   117

3.6 Biot-Savart Law

So far we have discussed the force on charge or current element in magnetic field. Now
we shall discuss how the current produce the magnetic field. This is given by Biot-Savart
law.

The law states that if i be the current through an element

length dl


 then the magnetic field produced by the current element

idl


 at position vector r


 with current element as origin in SI unit

is given by (please refer the fig. (3.6)

 0
3

... ... 3.6.1
4

dl rd B i
r

 


 

The direction of magnetic field at a point can be obtained from dl r
 

 or by right hand

thumb rule. It states that if we stretch our right thumb in the direction of current element
and curl our other fingers through p specify the direction of magnetic field.

Application of Biot-Savart Law.

1) Magnetic field intensity due to a straight current carrying conductor.

The fig. (3.7) shows a current carrying conductor with current i. To calculate magnetic
field intensity at the point p at a distance a from the conductor we take an current element

id y


 at point y as in fig. (3.7). The magentic field due to this elemental current at P, using

Biot-Savart law 0
34

d y r
d B i

r

 


 

0
3

cos
4

dy
dB i

r

 
  directed vertically inside the

plane of paper.

So the total magnetic field intensity at P

2

1

0
2

cos
4

dy
B i

r





 
 

d

Fig. 3.6

i

O


r

P

Fig. 3.7

O P

B

A

y

i

dy
r

a
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We put tan ,y a   Then 2sec .dy a d    Again cosa r  

Thus 2 2

1 1

2 2
0 0

2

i isec cos cos cos
4 4

a dB d
aa

 

 

       
  

Or,  0
2 1sin sin ,

4
i

B
a


   

  ... ... (3.6.2) acting down The plane of paper..

Thus we see that at a distance a from the wire the field is constant in magnitude and
is tangent to the circle of radius a following right hand cork-screw rule and the field lines
are closed.

For a straight infinitely long conductor 2 12 2.and     

So from eqn. (3.6.2) we have

 0 2 ... ... 3.6.3
4

B i
a







 Vertically inside the plane of paper..

2.  Field due to a current carrying circular loop.

The fig. (3.8) shows a circular loop of radius a carrying current i in anticlockwise
direction when viewed from the right side of the fig.
(3.8). We have to find out the magnetic field intensity
B at a point P on the axis of the coil at a distance
x from the centre O of the ring.

We consider an elemental length dl at A. Then

magnetic field at p due to the current element idl


at A is 
0

24
dld B i
r







 along PC

(Since d B


 is perpendicular to both r


 and the ring wire at A)A)

Resolving d B


 along op and perpendicular to op as sindB   and cos ,dB   we see

that, the component cosdB   vanishes on summation over the entire wire by symmetry So
the neat field is along OP and is,

0 0
H 2 2

sin 2B
4 4

idl i a a
rr r

  
 

Fig. 3.8

i
O



dBcQ
dB

dBSinx

r
A l
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2

0 0
3 2 3 22 2 2 2

2 2
4 4

ai a i

a x a x

   
 

 

So, 
 

2
0

3 22 2

2
4H

a iB
a x

 





 along OP..

For a coil with Nturens

 
2

0
3 22 2

2
4H

a NiB
a x

 





  along OP ... ... (3.6.4)

3.7 Torques and Forces in Magnetic Dipole

A magnetic dipole experiences a torque in a magnetic field, just as an electric dipole in
an electric field. Let us calculate The torque on a rectangular current loop in a uniform
magnetic field. Loop is placed at the origin and at inclination of   from The z-axis towards

the y axis. Let B


 point in the z-direction. The forces on the two sloping sides cancel. The
forces on the horizantal sides likewise equal and opposite, so the net force is zero, but they

form a torque ˆsinN aF i 


The magnitude of the force on each of these segment is F = IbB

and therefore ˆsinN Iab i 


Or,  ... ... 3.7.1N m B 
  

Where m = Iab is the dipole moment of the loop.


B


m

z



I
o

a
b

 y

Fig. 3.9

F


B

z




m

r
a F

Y

Fig. 3.10
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The torque N


 tends to dearease the angle ,  If U is the potential energy of the loop.

Then, sinU N mB   


so that cos constant.U mB    Taking 0 2.U at     we get

 cos · ... ... 3.7.2U mB m B    
 

The equation (3.7.2) is similar to the expression for the potential energy of an electric

dipole of moment P


 placed in an electric field. E


 is ·U P E 
 

3.8 Ampere’s Law

The Ampere’s law states that the line integral of magnetic
field vector about a closed path is equal to   times the
current through the surface enclosed by the closed path,
mathematically

 0. ... ... 3.8.1B dl I 
 


were 0  stands for the permeability of of free space,

in case of medium it should be replaced by permeability of the medium. If J


 is the current

density then, . ,
S

I J d s 
 

(where d s


 stands for an elemental surface area)

So the Amere’s law takes the form,

0 0. .
S

B dl I J d s    
   



Using Stoke’s theorem 0 0. .
S

B d s I J d s     
   



Since this equation is true for all value of s


 so,

Fig. 3.11


Bi
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 0 ... ... 3.8.2B J  
 

Application of Ampere’s law

1) Field at a point due to a long current carrying conductor

The fig. (3.12) shows long current carrying conductor carrying current
i. We have to find out the expression of magnetic field intensity B at
point P at a distance a from the conductor as in fig. (3.12). In the mode
of calculation we draw a circle of radius a around the conductor, then
by symmerty field on it wil be of sme magnitude and acting tangent to
the circle. (Direction of field is given by Biot-Savart law)

Now by Ampere’s law

0·B dl i 
 


Or, 02B a i  

Or,  0 ... ... 3.8.3
2

B
a






2) Field due to a long solenoid

We consider a solenoid of n-turns per unit length. The length of the solenoid be very
very long compared to its radius. i be the current flowing through it in a anticlockwise
direction when viewed from the right. The fig. (3.13) shows the solenoid and fig. (3.14)
shows a vertical section of The solenoid.

i

a P

Fig. 3.12

Fig. 3.13 × × × × × × × × × × × × × × × × ×

d c

a b

c f

h gd

Fig. 3.14
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We draw two loops abcd and efghe each of length l as shown in fig. (3.14) We
consider the loop efghe. Here

. 0
efghe

B dl 
 

  as no current is entrapped in the loop.

As this valid for any such loop so B = 0.

Thus the magnetic field intensity outside the loop is zero.

Now we take the loop abcda

0.
abcda

B dl inl 
 



Or, 0. . . .
b c d a

a b c b

B dl B dl B dl B dl nil      
       

Or, 0Bl O O O nil    

 0 ... ... 3.8.4B ni  

Here we have cosidered the field inside the solenoid is axial and uniform.

3) Field due to a toroid

A toroid is a device consisting of a ring (a torus) wrapped with insulated conducting
wire.

×
×
×
×
×
×

××× × × × ××××××
×

×
×
×
×
×
×
×

×
×

×
×××××××××××

×
×

×
×
×

Fig. 3.15

O

C3

Fig. 3.16

c3

c1

o
r

P
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The fig. (3.15) shows a toroid of inner radius a and outer radius b with n turns per unit
length, carrying current i. The fig. (3.16) shows a section of the toroid in a plane through
the plane of the ring passing through its Centre O of the ring.

To find the magentic field intensity at a point P at a distance r from centre please refer
fig. (3.16).

i) When r > a, . 0B dl 
 

  as no current is entrapped in the loop. So B = 0.

ii) For r > b, . 0B dl 
 

  as current enclosed in the loop is again zero, since each turn

passes twice throgh it carrying equal but opposite current.

iii) For a < r > b, within the core of the toroid

0. 2B dl B r Ni    
 

  according to ... Amper’s law..

So,  0 02 . ... ... 3.8.5B Ni r ni    

Thus we see the field inside the core of a toroid is not constant. However the field
reamains fairly constant when the inner radius and outer radius are close to each
other.

4. Magnetic field due to a current carrying cylinder

The fig. (3.18) shows a long cylinder carrying current i. J be the
current density which is taken to be constant. From symmetry, field lines
are closed circles, co-centric with the axis of wire. We are calculating
magnetic inducution at point P at a distance r from Tha axis.

(a) When r > a, P is outside the wire. We consider the dotted loop

C1. 0B


 be the magnetic inducution on C1. Then

2
0 0 0. 2

C
B dl B r i i     
 

   0 0 2 ... ... 3.13B i r  

(b) When P is inside The cylinder r < a. Refer to loop C2.

2

2
2 0·

C
B dl J r  
 


2

2 2 2
0 02

2i
aB r J r ir a
a

         0
2

... ... 3.8.6
2

i
ir

B
a


 



c2

Fig. 3.17

c1r
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5. Force between two parallel current carrying wires.

The fig. (3.19) shows two long Parallel current carrying conductors A
and B, separated by a distance a, carrying current i1 and i2 respectively.

Then using Ampere’s law the magnetic induction B


 at point P due to the
conductor A is,

0 12
,

4
i

B
a







 directed normally  into the plane of paper..

The force on a current element 2i dl


 at P due to this B


 is

2d F i dl B 
  

2d F i dlB


 acting along PQ

0 22
4

ii i
B

a





 dl acting along PQ

So the force per unit length on wire B is 0 1 22
4

i i
B

a



 along PQ ... ... (3.8.7)

Now using Netwon’s third law the force per unit length on A due to current in B will
be same but will act along B. So the wires will attract each other. If the currents are
oppositely directed the wires will repel each other.

3.9 Properties of B


To know a vector completely, we must explore its curl and divergence (Helmholtz
criterion).

We have already explored the curl of B


 through Ampere’s law as 0B J  


Now to explore . ,B


 we define magnetic flux

through an elemental surface ds, as the number of
field lines passing through the surface perpendicular to
the surface. The magnetic field intensity B at a point
is defined as the number of field lines passing through the point per unit area, when the area

C B

i1 i2

d
P

a

Fig. 3.19

Fig. 3.20

d

r

B


ds
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is placed perpendicular to the direction of the field. So magnetic flux through an elemental

area ds, at a point where the magnetic field intensity vector is B


 as shown in the fig. (3.20)

.d B d s 
 

So the total magnetic flux through a surface S, . .
S

B d s  
 

  Now for a closed surface

. 0,
S

B d s  
 

  since the magnetic field lines are closed, as isolated pole does not exist

in nature.

Now using Gauss’s divergence theorem we can write.

. . . 0
S V

B d s B dv     
  

   as this is applicate for any volume.

So  . 0. ... ... 3.9.1B 


As the divergence of curl of a vector is always zero, so we can write

 ... ... 3.9.2B A 
 

Where A


 is called megnetic vector potential.

It is to be mentioned that that vector potential A


 is not uniquely defined through the

equation (3.9.2) as it B


 remains unchanged with addition of a function whose curl is zero.

(1) Vector magnetic potential for a current loop

The fig (3.21) shows a current loop carrying current i. Then for a current element ,id l


the magnetic field at a point P of position vector r


 with current element at origin is given
by Biot-Savart law,

0
34
rd B idl
r


 



 

Now   2 3
1 1 1r̂ r
r r r

    


Fig. 3.21

d


dB


P

r
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So we can write    0 1
4

d B idl
r


  


 

     0 1 ... ... 3.9.3
4

idl
r


  




Now   ,A A A     
  

 so using this identity in the above equation we have

 0 1
4

idld B idl
r r

           

 

0 ,
4

idl
r

      


 since 0idl 



0 0 .
4 4

idl idlB
r r

          
 

 

Compering this equation with ,B A 
 

 0 ... ... 3.9.4
4

idlA
r


 






Again  
 0 0

·
... ... 3.9.5

4 4V

J d s dl JdvA
r r

 
 

  
   


As A


 can’t define B


 uniquely, , A


 can be considered as a mathematical interstep for

computer of .B


2) Multipole Expansion of the vector potential

In order to find the appromimate value of vector potential due to a localized current
distribution, method of multipole expansion of potential can offer appromimate value at
large distance from the source, which can be expressed in powers of 1/r, 1/r2. Higher order
terms with negligible non-zero value in the series is the one important aspect of this method,
ensuring appronimately fair value of potential. We get the expansion as follow from the
figure–
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'' 2 12
1 1

2 cosr r r rr


    

   
0

1 cos ... ... 3.9.6
n

n
n

r P C
r r



 

Where   is the angle between r


 and r
  Accordingly vector potential of a current loop

can be written as        0 0
1

1 cos ' ... ... 3.9.7
4 " 4

n
nn

I
A r dl r P dl

r r 
 

     
 

 

Or,        2 20
2 3

1 1 1 3I cos ' cos 1 2 ... ... 3.9.8
4 2

A r dr r dl r dl
r r r

             
 

  
Now the magnetic monopole term is always

zero, for the integral is just the total vector
displacement around a closed loop :

 0 ... ... 3.9.10dl 
Dipole term plays important role as

monopole term is zero,

   0 0
2 2

ˆcos . '. ... ... 3.9.10
4 4

dipole
I I

A r r dl r r dl
r r

        
   

    
 

This integral can be written elegant way if we use the following relation–

   ˆ ˆ. ... ... 3.9.11r r dl r ds     
 



Then    0
2

ˆ ... ... 3.9.12
4dip

m rA r
r

  

 

where m


 is the magnetic dipole moment  ... ... 3.9.13m I d s I s 
  

P

r´´

r



Fig. 3.22

r´ dr´=d ´
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where s


 is the vector area of the loop. If the loop is flat, s


 is the ordinary area

enclosed, with direction followed by the usual right hand rule. In reality, the dipole potential
is suitable appronimation whenever the distance r greatly exceeds the size of the loop.

The magentic field of a perfect dipole is easiest way to calculate if we allign m


 at the

origin and in the z-direction.

   0
2

sin ˆ ... ... 3.9.14
4

dip
mA r

r

  


 

so,    0
3

ˆˆ2cos sin
4

dip
m

B r A r
r


    



   

Astonishingly, this is identical in structure to the field of a electric dipole

If we write    ˆ ˆˆ ˆ. ·m m r r m   
  

ˆˆcos sinm r m   

Then   ˆˆ ˆ ˆ ˆ3 . 3 cos cos sinm r r m m r m r m      
 

ˆˆ2 cos sinm r m   

So can write  dipB r as
 

     0
3

1 ˆ ˆ3 . ... ... 3.9.15
4dipB r m r r m

r

    
   

Fig. 3.24

z

y

Field of a pure dipole Field of a physical dipole

Fig. 3.25Fig. 3.23

z



m

Q
Y
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Also magnetic dipole can be written in the following way–

we know 1 I d '
2

m Is r  
 



   1 ... ... 3.9.16
2

m r J d  
  

3.10 Summary

After studying the unit we should understand following.

1. The magnetic force on a moving charge .F qv B 
  

 It is a no work force.

2. The trajectory of charge in magnetic field is circular for v B
 

 and helical for other

angles of projection.

3. Biot-Savart’s law 
0

2
cos

4
dldB i

r

 
  and its application.

4. Amperes law 0.B dl I 
 

  and its application.

5. Study of nature of .B


 Introduction of vector potential A as B A 
  

6. Magnetic dipole  1
2

m r J d  
  

7. Forque on a current loop N m B 
  

8. Vector potential of magnetic field B A 
  

3.11 Review Questions and Answer

1. What represents The line integral of magnetic vector potetial A


 about the boundary
of surface in a magnetic field?

2. If the flux density at a point in space is  ˆˆ ˆ2 4 ,B xi ayj k a consant   


ˆ ˆ,i j  and
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k are unit vectors along x, y and z directions. The find the value of a.

3. Show that magnetic force on a charge is a no work force.

4. Is megnetic field is a conservative field?

5. A beam of charge undergoes deflection in a space. Can
you identify which field electric or magnetic field is present in the
field.

6. A current is sent through a hanging coiled spring. What change do you expect when
the current is suitehed off.

7. Two long parallel conducting wires carrying current i1 & i2 are kept separated
parallel to each other at a distance d. Will the force between the wires increase if the
diameter of one wire is donbled.

8. A straight wire carrying current i1 is placed along the centre of loop carrying current
i2 as shrown in figure. Is there any force of interaction between the coil and straight wire.
(Neglect gravitational interaction).

9. Starting from the expression of magnetic vector potential 0
4

I dlA
R




 


  obtain. The

expression for magnetic induction .B


 Also show that · 0.B 
 

10. Find the force between two ideal magnetic dipoles of moments 1m


 and m2 separated

by a distance r. Assume that m1 and m2 point in the direction of the vector joining them.
(Ch–13)

11. Find the vector potential of inside and out side a sole noid with n turns per unit
length givn current I and dradius R

1. The line integral of A


 over a boundary of surface S is given by . .A dl
 



Now applying stokes law  . .
S

A dl A d S  
   



Now B A 
 

 by definition. . .A dl B d S 
   

  = flux through the surface S.

2. B


 to be a magnetic flux density . 0.B 


c2

c1

r

Fig. 3.26
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 2 4. 0
ayxB

x y z
     

  



1 2 0,a   Or, 1 2a 

3. The magnetic force on charge is given by

,F qv B 
  

 now work done for a displacement d r


     . . · . 0,drdw F dr q v B dr q v B dt q v B vdt
dt

       
         

as  v B
 

 is perpendicular to .v


 Thus magnetic force is a no work force.

4. No. Please see differential form of Ampere’s law.

5. Consult text.

6. When the current flows each spiral attracts the neighbours turn and the coil turns
become closer. When current is switched of the distance between the turns increases.

7. No. The force depends on current and mean distance of separation.

8. No. The magnetic field produced by each of them is along the direction of other, So

0.F idl B   
  

9. Current density is a function of source co-ordinate, while here all the differential
operatars act m field co-ordinaltes.

Assuming source co-ordinate as  , ,x y z    and field co-ordinates as  , , ,x y z  so

R r r 
 

0
4

I dlB A
R

       

   
 Idl J r d  

 

 0 ... ... 1
4

Jd
R

  
 



Now,   11J R J r J r
R R
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Now,   0J r 
 

 as 


 is an operator of    , ,f r f x y z

 3
... ... 2J J R

R R
 

  

From (1) and (2)

0
34

J RB d
R

  
 

 

Now 0
3

. .
4

J RB d
R

        
   

 0
3 3

0
4

R RJ r J d
R R

            


    

(so 3
0,R

R
 


 and 


 acts only on field co-ordinates)

10. Solution

The force on the dipole m2 due to m1 is given by

  12. ,F m B 
   

where 
 1

0 1
1 3 5

.
3

4

m rmB r
r r

     
  
 

  

ˆˆ ˆ ˆr xi yj zk ri   

1 1
ˆ,m m i  and 2 2

ˆm m i

Soln 10.

   0
2 1 13

ˆ3
4

F m m m i
x r
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 30 1 2ˆ 1
2
m m

i x
x

 
 

0 01 2 1 2
4 4

3 6ˆ ˆ
2 4

m m m m
i i

x x

 
    

 

which is the force of allraction along the line joining the dipole.

Solution 11.

Magnetic field is uniform inside a role roid, of n turms, and carying current I is equal
to

0 ˆ

0

nIz r R
B

r R

 
   



 . . .
S

A dl A d a B da    
      



Now considering a closed loop of radius r insicle the solenoid.

 2
0.2A r nI r   


 when r R

0 ˆ
2
nI

A r


  


Direction of A


 along the direction of I.

Now considering a closed circular loop of radius r.

Outside the solemoid,

22 ·A r B R   
 

20 ˆ
2
nI

A R
r


  


 (Since the field extends up to r = a)

Hence 
0

20

ˆ

ˆ
2

In r R
A In

R r R
r

   


 



r

m1 m2

 

x-axis
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3.12 Problems and Solutions

1. A proton and a deuteron have equal kinetic energies. Compare the radii of their paths
when a magnetic field is applied normal to their orbits.

2. A particle of charge q and mass m is projected with a velocity v perpendicular to
a uniform megnetic field of field intensity B. Find the angle of deviation   when

i) d < r (radius of rotation of charge) ii) d = r iii) d < r

3. A square loop of side 'a' carries a current in anti-clockwise direction when viewed
normally. Calculate the magnetic field at the center of the coil.

4. An electron is rotating of charge e is rotating frequency n around the nucleus in a
circular orbit of radius r. Find the magnetic field B at the position of necleus.  r = 5.1 ×
10-11 m and n = 6.8 × 1015 Hz.

5. A particle with charge q is projected successively along x-axis and y-axis with same

velocity .v


 The force on the particle in these situations is given by 
31 ˆ

2 2
vqB k

    
 and

1 ˆ
2

vqB i     respectively. Find the direction of magnetic induction .B


6. Show that the vector potential for a uniform magnetic field B


 along z-direction is

given by  1
2

A r B  
  

7. The fig (1) and fig. (2) shows two circuits with loop radius 2r and r but with different
orientation of loop. Find the ratio of magnetic f ield produced at the centres o1 and o2.

8. The magnetic vector potential
in a region is defined by

ˆsin .yA e xk


 An infinitely long

coductor, having a cross section area,
a = 5 mm2 and carrying a dc current
I = 5A in the y-direction, passes
through the region as is fig (3)

Determine the expression for (a) B


 and (b) the force density f


 exerted on the

conductor.

c ´2

2r

r
Fig. 1 Fig. 2r

O2

2r
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9. The fig (4) shows a conducting wire
carrying current i placed perpendicular to a

uniform magnetic field B


 acting verfically
into the plane of paper. AB and CD have
length l and circular are BC has radius l.
Find the force on wire.

10. The fig (6) shows a very very long
wire carrying current i, with its middle portion

bent in the form of a circular are of radius
r as shown in fig (6). Find the magnetic

induction B


 at the centre O of arc.

11. A steady current I flows down a long cylindrical conductor of radius a. The carrent
density at a distance r from the axis of the conductor is
proportional to r. Calculate the magnetic field both, inside
and out side the wire as a functor of r.

12. (a) A particle of mass m and charge q is rotating
in a circle of radius a with an angular velocity w. Show that
the ratio of its magnetic moment to mechanical moment
angular momentum is q/2m

(b) If the magntiude of the angular momentum of a
electron rotating in a circular orbit is L find its magnetic
moment.

Solution of numerical problems

1. Let vp and vd be the veolcities of proton and deuteron. m
be the mass of proton, then the mass of deuteron will be 2m.
Their respective radius be rp and rd. Then in a magentic field B
normal to their path,

Conductor
Y

X

I

I

B

Fig. 3

×
× × × ×

×××
×
×

×
×
×

×
×

×
×

×
×

× × ×
× × ×

×
×

×
×

×
×

×
×

×××××××

× × × × ×

× × × × × ×

×
× ×

×
×

×
×
×

×
×
×

×o





a

Fig. 3.32

i iA
B

o

450 450

r r

c

Fig. 6
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Bqvp = mvp
2/rp ..... (3.12.1)

Bqvd = 2mvd
2/rp ..... (3.12.3)

So rp/rp = vp/2Vd ..... (3.12.3)

By the condition mvp
2/2 = 2mvd

2/2, so vp/vd = 1 2 .  Comparing with equation 3.12.3

we have 2d pr r

2. Here r = mv\qB. So from the fig (3.32) sin= d/r = Bqd/mv. So,

i) if r > d, is acute and the particle will migrate in next medium.

ii) if r = d, = /2 and the particle will graze the surface of separation.

iii) if r < d, the particle will describe a half circle and return back to the previous medium
parallel to itself.

3. The fig (3.33) shows a square loop carrying current

i. The magnetic induction at centre o due to arm DA

0
4 2DA

iB
d




  sin 45º sin 45º

0 2 2
4

i
d





 perpendicular to ABCD and directed

normally up the plane of paper.

So the total magnetic induction

0 02 2
4 2 2

4ABCD
iiB B

d d
 

  
 

 acting normally up

the plane of paper.

4. Here 19 15 41.6 10 6.8 10 10.22 10i en A       

7 4

11
4 10 10.22 10 14.4 ... ...3.23

2 5.1 10
B T

 


   

 

45
0

450

i

io

D

A

C

B

Fig. 3.33

d/2
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5. We know magnetic force 2

ˆˆ ˆ

x y

x y z

i j k

F qv B q v v v

B B B

  
  

Now for first condition magnetic field should be in y-z plane So, 

ˆˆ ˆ

y z

i j k

F q v o o

o B B




That gives qv By 3
2

qv B  (Comparing the z-compones of force)

So By 3
2

  B.... (3.12.4)

Imposing the second condition similarly we have B2 = B/2 .... ... (3.12.5)

So  ˆˆ3
2
BB j k 



Let   be the angle with y-axis.

2 23 3ˆ. cos
2 4 2

BB j B B
 

     
 



3cos 30º
2

    

6. Here ˆ,B Bk


 So 

A x A zA y

yx z

i j k

AA AA gives
x y z

 
    
   

 
 



0y xz z
A AA A

y z z x
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& 
Ay AxB
x y

  
 

So A


 will be either propertional to B


 and a linear function of r. We can take two

choice 1. 1A C Br
 

 2.  2A C B r 
  

As for first choice 0,B A  
 

 so it is the The second choice 2 0 0

i j k

A C B

x y z




yields

Ax = –C2yB & Az = 0

Ay = C2Bx

Now 

2 2

ˆ

i j k

B A KB
x y z

c yB C Bx o

     
  



 

Or B = C2B + C2B = 2BC2 Or, C2 = 1/2

Thus  1
2

A r B  
  

 from 2nd choice

7. In fig (1.21), The magnetic is O1

 0 0
1 4 2 4 2

B i i
r r r

     
 


 up the plane of paper..

In fig (2), The magnetic induction at O2

 0 0
2

3
4 2 4 2

B i i
r r r

     
 


 up the plane of paper..

2 1: 3.B B 
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8. 

0 0 siny

i j k

B A
x y z

e x

    
  

 

Or, ˆ ˆsin cosy yB e xi e xj   


 ˆ ˆsin cosye i x y x  

For exerted on a elemental length dl


 on conductor

  ˆF I dl B Ijdl B   
   

 ˆ ˆ ˆsin cos yIdlj i x j x e  

 ˆ ˆsin 5 siny yIdle xk e xk dl  

  force density ˆ5 sinyF e xk N m
dl




9. We set x & y axis as in figs

The force on arm AB, 0 ˆ
4

ABF ilBi







The force on arm CD, 0 ˆ
4

CDF ilBj







The force on arm BC, 
 0
ˆ ˆ

2 &
4 2

BC
i j

F i B







450

ri
o

Fig. 3.32

ir
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 0 ˆ ˆ
4

ilB i j


 


So the total force  02 ˆ ˆ
4

F ilB i j


 




10. Magnetic induction at O due to straight portions of wire

 02 sin 90º sin 45º
4 sin 45ºstright

iB
r

    



 0 2 2 1
4

i
r


 


 acting normally into the plane of paper..

0 2
4

arc
iB
r


 




 acting normally into the plane of paper..

Total magnetic induction  0 2 2 1
4 2straight arc

iB B B
r

         

  
 acting normally

into the plane of paper.

11. Solution

Considuring an Amperian loop in the form of a circle of radius r (r > a) with its axis
on the axis of the cylinder, B is is tangential to the loop be cause of symmetry and constant
over it

0. enclB dl I 
 



Or,  0
0 0

.2 2 .B r rdr J r   

3
2

0 00
2 2

3
r rk r dr k   

where k is portionality constatin J = Kr

2

0 .
3
rB k for r a   



NSOU  CC-PH-08   141

For any external point r > a, Iend = I and then, 02B r I  

Or, 0
2

I
B for r a

r


 


Now the total current   2

0 0
2 . 2

a a
I rdr J r k r dr    

3
2

3
ak   or, 3

3
2

Ik
a




Thus 
2

0
32

Ir
B for r a

a


 



a solution

(12.b)  current flow due to charge q rotating in a circular orbit is

2
2 2

q
q qa

I
T

  
 

Magneitc moment = current × area of the loop 2M I a 

2

2
q

M a m
m

 


2

2
q

mwa
m



2
q
m

  Angular momentum.

Magnetic moment
A ngular momentum 2

q
m



From above, taking q = e as charge of electron. Then

Magnetic moment
2
e

L m


2
eLM
m

 



Unit 4  Magnetic Properties of Matter

Structure

4.1 Objectives

4.2 Introduction

4.3 Magnetisation (M) and its Measurement

4.4 Auxiliary Magnetic Field ( H


)

4.5 Magnetic Permeability and Susceptibility

4.6 Classification of Magnetic Materials

4.7 Relation between B and H of Magnetic Material in Magnetic Field

4.8 Hysteresis or Magnetisation Cycle

4.9 Importance of Hysteresis Loop

4.10 Summary

4.11 Review Questions and Answers

4.12 Problems and Solutions

4.1 Objectives

You will know from this unit—

What is magnetisation and its measurement (M)

Behaviour of closed circulating current and its relation to non-uniform magnetisation.
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Relation between auxiliary magnetic field H


, magnetic induction vector B


, and
intensity of magnetisation M


.

Hysteresis loss for ferromagnetic material and its importance.

Classification of magnetic material according to their property mainly pare dia and
ferromagnetic material.

4.2 Introduction

In our earlier unit we have studied the primary properties of magnetism. Apart from
the directive, and altractive/repulssive properties, the fundamental property of a magnetic
field is that its flux through any closed surface vanishes. Mathematically it is expressed as

.B=0
 

 i.e. these field lines close on themselves.

The most common source of magnetic fields is the electric current loop. It may be an
electric current in a circular conductor or the motion of an orbiting electron in an atom.
Associated with both types of current loops is a magnetic dipole moment, the value of
which is iA, the product of current (i) and area of the loop (A). Besides these, electrons
protons, and neutrons in atoms have a magnetic dipole moments for their intrinsic spin
property.

At present, we will study more about properties of magnetism, and intensity of
magnetisation. The nature of circulating current related to non-uniform magnetisation
and the relation between current density and intensity of magnetisation will be studied
in detail here.

A simple relation between auxiliary magnetic field (H


) and magnetic induction
(B


). their relation will be established here. Magnetic material is classified into three main
category—para, dia and ferromagnetism. Their general properties are included here
particularly, ferromagnetic material with their hysteresis property are relevant in fabricating
temporary or permanent magnet. Ferromagnetic material is of immense use in industry, i.e.
in transformer design.

4.3 Magnetisation and its Measurement

In an atom, electron revoles around the nucleus in different orbits, so we can say that
each orbit is closed electrical circuit, which acts as a magnetic dipole. Magnetism of this
closed electrically orbital circuit or magnetic dipole can be expressed in terms of Magnetic
polarisation. It is the active current flow and a is it surface area, then magnetic dipole
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polarisation of each orbit,

m = Ia ......................(4.3.1)

Normally, these orbits or dipoles are randomly distributed, so in effect, resultant magnetic
effect of these get neutralised. They try to orient themselves in order under the infulence
of external magnetic field. So the material retains magnetic properties. Total number of
dipoles oriented along the externally applied field is defined as the intensity of magnetisation
M


. If V is the volume and total number of dipoles m
i
 in it, then magnetisation M is given

by

im
M

V


 .... (4.3.2)

where m
i
 is the ith magnet dipole value.

4.3.1 Equivalency between Magnetic Circuit and Electrical Circuit :

Let us take a piece of magnetic material. This piece can be imagined to be assembly
of small mesh structures. As current is the source of magnetisation, so the magnetic behaviour
of every micro mesh can be considered due to the flow of current in one direction. This
is portrayed in Fig 4.l. This  current flow is same for every network for uniform magnetisation.

Fig. 4.1

It is clear from the figure that current in adjacent orbital circuit or mesh is equal and
in opposite direction, is neutralised by each other, only the current flow left out in external
boundary or periphery of the collected mesh does not vanish and remain active. It can be
concluded that a magnetic material is an arrangement of equally structured numbers of
orbitally current curcuit mesh work for uniform magnetisation. This active current around
the periphery is called circulating current. The characteristics feature of this current is that
it is not due to freely moving electrons. It is the current produced by electrons revolving

M
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in atoms of different structural configuration of magnetic material. So this current is called
bound current. A relation ship between magnetisation and bound current can be derived as
follows.

Fig. 4.2

In Fig. 4.2 a small sample of magnetic material is displayed, whose area is ‘a’ and its
breath is d. M is intensity of magnetisation and m its dipole moment, then we get,

m = Mad ........(4.3.1.3)

As the magnetic material is like an electrical circuit of equally spaced block, and I is
the governing current then magnetic dipole moment will be,

m = Ia .......(4.3.1.4)

coparing equations (4.3.3) and (4.3.4) we get,

M = I–d = K .......(4.3.1.5)

K is known as surface current density. It is clear from equation (4.3.5) that magnetisation
intensity and surface current density are identical. The direction of the current on each
surface is given by

K


 = M


 × n^ .........(4.3.1.6)

This equation is very important. Here n^ is the unit surface vector. Now surface vector
K


 directed externally outward. M


 and n^ , being parallel to each other, current flow in upper
and lower surface have no existence.

4.3.2 Relation between Magnetisation and Current Density in Non Uniform
Magnetisation :

Magnetisation current is active in adjacent boundary of mesh block of magnetic
material in non-uniform magnetisation. Two adjacent block of magnetic material is
shown in Fig. 4.3. Magnetisation is not uniform everywhere, so intensity of magnetisation
is different in two blocks. Let MZ(y) and MZ(y+y) are magnetic intensity of two blocks,
respectively. Equation (4.3.5) gives the current density. So the current flow in each block
will be different. Arrow sign indicates the direction of flow of current. Let Ix(1) and Ix(2)

M

I

d}
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be the current flow of the blocks, respectively. From equation (4.3.5) and Fig. 4.3, We
get,

Ix(1) = Mz (y)z

and Ix(2) = Mz(y + y)z

Fig. 4.3

At the junction of the  two block Ix(1) is –ve along x-axis and Ix(2) is tve along X-
axis and active. As Ix(2) is grea ter than Ix(1) so we can understand that current will be
more active along positive X-axis. Remainder of the current flow will be

Ix = Ix(2) – Ix(1)

or, Ix = [Mz(y+y) – Mz(y)]z ......(4.3.7)

Now, Mz(y+y) = Mz(y) + zM

y




y + ....... other negligible terms

So, Ix = zM

y




y ........(4.3.8)

J is the current density per unit area and it’s direction along per pendicular to the area,
so current density due to unequal magnetisation along y-axis will be

1
x

m x

I Mz
(J )

y z y

 
 
   .......(4.3.9)

This current density is due magnetisation, (that is why m is used as subscription).

The reasons given above is responsible for the origin of (Jm)x1. It is clear from Fig.
4.3.(b) that residual x component of current will be due to the variation in magnetisation
along z-axis and will remain active. Hence

M (y)z

1

dz}

M (y+dy)z

2
dy

M (y+dy)z

M (y)z

dy
dz

(a) (b)
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y y
m x2

M (z z) M (z)
(J ) y

y z

   
    

= 
My

z




........(4.3.10)

So the total current density at any point due to uneven magnetisation will be

     m m mx x1 x2
J J J 
  

= 
z yM M

y z

 


 

 
........(4.3.11)

= (


× M


)x

i.e.  m x
J


 is x component of (


 × M


)x

In this way we can derive the flow of current along, y and z axis, so the resultant
current density will be

mJ M
  

........(4.3.12)

Equation (4.3.12) is the relation between current density and intensity of magnetisation.




 × M


 = 0, for uniform magnetic field or Jm = 0, the current flow remain active only along

the of periphery. There will be no influence inside the magnetic material.

4.3.3 Alternative Method to Find 


 × J


 = M


To find a quantitative relation between M


 and J


, let us consider magnetic vector
potential due to a magnetised body as shown Fig. 4.4. The vector potential due to a single
current loop of magnetic moment m


 is given by

0
2

ˆm r
A(r)

4 r

 





...........(4.3.13)

where r is a radius vector from the loop to the point of observation. In a magnetised
object, each volume element dz carries a dipole moment M


dz, so the total vector potential is
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0

2

M(r) r
A(r) d

4 r

 
 

 

  
......(4.3.14)

From vector algebra,

2

ˆ1 r

r r


 
 



with this

 1A(r) M(r) d
r

       

  

Integrating by parts

 0M 1A(r) M(r ) d
4 r

      

   M(r )
d

r
       

 

or, 0 01 1A(r) M(r )d M(r )da
4 r 4 r
                 

    
.......(4.3.15)

Fig. 4.4

The first term looks just like the potential of a volume current.

J


 = 


 × M


......(4.3.16)

while the second term looks like the potential of a surface current

K


 = M


 × n^ .......(4.3.17)

rI r

rII


dI P
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where n^ is the unit normal vector, with this definition

0 0J( r )d ' K(r )da
A(r )

4 4 rr
      

 
 .......(4.3.18)

Equation (4.3.18) shows that potential of magnetised object is the same as would be

produced by a volume current J


 = 


× M


 throughout the magnetic material, plus a surface

current K


 = M


 × n^ on the boundary.

4.4 Auxiliary Magnetic Field (H


)

Now we place a magnetic material inside a solenoidal coil and a current If is flown
across it from a battery. If total current density is J


, then

J


 = J


f + J


m

Here J


f and J


m are free current density and bound current density. From Ampere’s
circuital law




 × B


 = 0J


 = 0 (J


f + J


m) .......(4.4.1)

As J


m = 


 × M


So, 


 × B


 = 0J


f + 0


 × M


or, 


 × B


 / 0 – 


 × M


 = J


f

or, 


 × f
0

B
M J

 
     

 
.......(4.4.2)

is denoted as H


, equation (4.4.2)

becomes 


 × H


 =  J


f .......(4.4.3)

H


 is known as auxiliary magnetic field or magnetisation. In reality H


 is very important
as it is directly related to the current flow from battery. If we study equation (4.4.1) and
(4.4.3), we can conclude that magnetic induction vector B


 is related to total current flow,

but cannot be measurable easily otherwise H


 can be measured easily as it is related free
flow of current.
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Applying stoke’s theorem in equation (4.4.3) we get

  f fˆ ˆH .nds H.dl J .nds J     
    

 ........(4.4.4)

Equation (4.4.4) states that an integration of H


 around a closed loop is linked with free
current flow from EMF/other sources. This equation is frequently used to find H


.

We understand from the above analysis that application of auxiliary magnetic field H


in material initiates the evolution of magnetic field, which is known as magnetic induction
vector B


.

Now, 
0

B M H 

  

or, B


 = 0 (H


 + M


) ........(4.4.5)

Here 0 is the permeability of free space. Equation (4.4.5) is the relation between B


,
H


 and M


.

4.5 Magnetic Permeability and Susceptibility

Magnetic permeability of a material is the ability of a material to support the formation
of a magnetic field inside itself. So it is known as degree of magnetisation standard unit of
magnetic permeability is Hm–1.

The magnetic permeability is a relative measurement that it is taken with respect to the
magnetic permeability of vacuum. A diamagnetic material has a relative permeability less
than 1, Where as a paramagnetic material has a value slightly greater than one which means
that when a paramagnetic material is placed in external magnetic field, it becomes slightly
magnetised. But a ferromagnetic materials have relative permeability.

Magnetic susceptibility is the measure of magnetic properties of material which indicates
whether the material is attracted or repell from external field. This is quantitative measurement
of the magnetic properties. It is denoted as m. For a isotropic linear magnetic material.

M


 = mH


............ (4.5.1)

m is a dimensionless quantity the values of m for  common para magnetic and
diamagnetic materials are given below.
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Table 4.1

Paramagnetism and Diamagnetism: Magnetic Susceptibilities

Paramagnetic substance m Diamagnetic substance m

Aluminum 2.3×10–5 Copper –9.8×10–6

Calcium 1.9×10–5 Diamond –2.2×10–5

Magnesium 1.2×10–5 Gold –3.6×10–5

Oxygen (STP) 2.1×10–6 Lead –1.7×10–5

Platinum 2.9×10–4 Nitrogen (STP) –5.0×10–9

Tungsten 6.8×10–5 Silicon –4.2×10–6

Now we can estalish a simple relation between B


 and H


 from equations (4.4.5) and
(4.5.1)

B


 = 0 (H


+ M


) = 0 (H


 + mH)

= 0H


(1+m) ........(4.5.2)

or, B


 = H


.........(4.5.3)

Here  = 0 (1 + m) ........(4.5.4)

where  is the permeability of the medium. Also we get relative permeability,  as

r m
0

1
    ........(4.4.5)

r is a dimensionless quantity. In vacuum, m = 0, r = 1.

4.6 Classification of Magnetic Materials

Magnetic materials can be classified according to the behaviour of magnetic moments
of electron of an atom react to applied magnetic field diamagnetic, paramagnetic and
ferromagnetic materials.

Diamagnetic Materials : They are weakly magnetised in a direction opposite to the
applied magnetic field.

Examples are hydrogen, nitrogen, gold, silver, copper, antimony etc. Its behaviour with
applied field and temperature are shown in Fig. 4.5
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Explanation : Dia magnetic substance are composed of atoms that have no net
magnetic moments. When it is placed in an external magnetic field, the substance as a
whole acquires net magnetic moment in a direction opposite to the applied field. They do
not have unpaired electrons.

Characteristics : 1. Diamagnetic is universal, all materials when exposed to external
magnetic field, tend to develop magnetic moments opposite to the direction of the applied
field.

2. No parmanent dipoles.

3. Relative permeability is less than one but positive.

4. Susceptibility is negative and small, independent of temperature. (Fig. 4.5)

5. Weak repulsion is its main features.

Fig. 4.5

Paramagnetic Materials : It is the phenomenon by which the orientations of the
magnetic moments are mainly dependent on temperatrure and applied field. The number of
orientations of orbital and spin magnetic moments be such that the vector sum of the
magnetic moments is not zero. Resultant magnetic moment in each atom is not zero even
in absence of field. Paramagnetic property vanishes in the absence of external field. Its
behaviour with applied field and temperature are shown in Fig. 4.6. Examples are Aluminium,
platinum, chromium, sodium, calcium, oxygen etc.

Paramagnetism Characteristics :

a. Paramagnetic materials have an unpaired electron in their valence shell

b. These unpaired electrons are in constant spinning motion.

c. This incessant spin of the electron form a dipole moment, they act as small magnets
themsleves

M

H

M= H


slope = 



T

constant
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Fig. 4.6

d. However the dipoles are in random directions and donot interact with one another,
so the total magnetic field created by paramagnetic material is zero.

e. In a magnetic field, the individual dipole moments of the atoms get alligned in a
single direction, along the applied magnetic field. This produces a magnetic field
in the direction of the applied field.

Ferromagnetic Materials : Ferromagnetism is the basic mechanism by which certain
materials form permanent magnets or attracted to magnets. They are strongly magnetised
in the same direction as that of applied field and retains its magnetic moment ever after
removal of the applied field. Examples are Iron, cobalt, nickel. This property is due to the
contribution of spin magnetic moment to the magnetic dipole moments is very large. It
posseses strong magnetic properties due to the presence of magnetic domains. In these
domains, large numbers of atomic moments (1012 to 1015 per unit volume) are alligned
parallel, so that magnetic force within is strong. In unmagnetised state, the domain are
nearly randomly organised, and the net magnetic field for the part as a whole is zero. The
domains are oriented to produce a strong magnetic field under the influence of magnetising
force.

Fig. 4.7 : Ferromagnetic Material Properties

saturation level

M

H



Tc



Ferromagnetic

Paramagnetic

Feromagnet ic Material Properties

M

H

M= H


slope = 



T

 1
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Characteristics :

1. They have large and positive susceptibility.

2. They have strong tendency from weaker to the stronger parts of the non-uniform
magnetic field.

3. B


 = 0(H


 + M


). Magnetisation is not proportional to the applied field. They exhibit
property called hysteresis.

4. Susceptibility depends on the temperature.

5. It retains their magnetic property even after the external field is removed.

Fig. 4.8 : Allignment ferromagnetic domain with magnetic field

4.7 Relation between B


 and H


 of Material in Magnetic
Field

We know that relation between magnetic induction vector B


 and auxiliary magnetic
field vector H


 as B


 = H


. In Fig. 4.9, an experimental setup to find out the relation between

Fig. 4.9
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B


 and H


. A magnetic material is introduced inside a torroid. Two coils have been
wound on the torroid, one is primary coil, through which current is passed. Other is
secondary coil, which has been connected to galvanometer. The magnetic field is produced
by the current flow in the primary, which results in magnetic flux inside the torroid.

Magnetic flux is varied by the change in current flow. Induced emf can be measured.
Thus B


 can be measured.

In this way, we can find the auxiliary magnetic field H


 and induced B


. Thus a graph
can be plotted from this data. B


 and H


 graphs can be drawn for different material by

placing it inside the torroid. A straight line graph is observed for paramagnetic and diamagnetic
material. The gradient of the straight gives the susceptibility m [Fig. 4.9(b)].

4.8 Hysteresis or Magnetisation Cycle

Magnetic properties of ferromagnetic material is different from other materials, which
is clear from Fig. 4.10. B


 and H


 graph. Behaviour of M


 and H


 is not directly proportional

and graph of B


 – H


 is like a loop or cycle. Characteristic features of B


 – H


 from the graph
in Fig 4.10 are detailed below :

Fig. 4.10 : B – H Graph of ferromagnetic material

i) When I = 0, then H = 0, B = 0 and M = 0, so the point ‘O’ shows the
unmagnetised state of the material.

Initially, we increase current slowly i.e. B increases as H increases.
Magnetisation M has reached saturated state at the point C, i.e. H also is
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saturated. As B


 = 0 (H


 + M


), so B increases very little even if H is increased.
OPC portion of the graph shows such variation.

ii) Now we decrease the current slowly after achieving saturated M at the point. We
observe that B – H graph, instead of retracing the path OPC, it traverses along
path CD i.e. B does not become zero value even when H = 0. Section CD
portrays the residual magnetisation.

iii) Now if we reverse the flow of current and increase it slowly, H is also increased
along the DEF portion of the graph. Residual magnetisation gets lost if the intensity
of magnetic field is in the opposite direction along OE. The value of this applied
magnetic field is called co-elective force. The point F describes the sate of saturated
magnetisation in opposite direction.

iv) H is gradually increased from the point F in the reverse direction, and gets zero
value. As a consequence we get the curve FGKC portion of the graph. Thus the
material achieves previous value of magnetisation at the point C. The path
CDEFGKC will be repeated again and again if I or H is changed repeatedly in
forward and reverse direction, but the traversing path OPC of the graph is not
traced at all. This closed path CDEFGKC is called magnetisation cycle or Hysteresis
loop. At each step M or B lags behind the corresponding magnetising field H. It
will be shown latter that the area of B – H loop equals to energy loss per unit
volume per cycle of magnetisation.

4.8.1 Hysteresis Loss :

When a sample of ferromagnetic material is subjected to magnetisation and
demagnetisation, in a hysteresis cycle, some amount of energy dissipated. As the
magnetic domains allign with the magnetising field first in one way and then the
other it produces mechanical stress and consequent heating. The energy spent during
magnetisation is not totally recovered due to the irreversible changes in domain
structure.

Let us take a typical domain of magnetic material of magnetic moment m which
makes an angle  with the field H


 at any instant of time when the magnetisation of

the material is M


.

 The sum of the components of m perpendicular to H


 over unit volume is zero

m sin = 0
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Again, M = mcos

dM = –msin.d

Now the torque acting on the domain of moment m when it makes an angle  with H


is

0m B m Hsin     


........(4.8.1)

where B


 = 0H


 = magnetic induction due to H


.

The work done by the external source in alliging the domain in a unit volume through
a additional angle is

dw = m0H sind = 0HdM ......4.8.2)

So the work done per unit volume in traversing the specimen through a complete cycle
of magnetisation is

W = 0 0HdM  × area enclosed by the M – H loop. (4.8.3)

or, W = 0 0HdM   0 0HdB    area enclosed by the B–H loop.

4.8.2 Increase in Temperature Due to Hysteresis Loss :

Let A be the area of B – H loop and n is the number of hysteresis cycle, m is mass
and   the density.   is the specific heat T is the temperature.

Energy lost per sec is = volume of the material × number of cycle × area of the loop

= 
m nAJ / s

Heat energy produced = 
mnA

J  Calories/s.

By calore metric principle  = msT = 
mnA

J

So T = c
nA  o
Js
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4.9 Importance of Hysteresis Loop

We can understand the nature of magnetic behaviour of a material by studying the
structure of a hysteresis loop and identity its utility in manufacturing magnet. Hysteresis loop
of soft iron and steel is shown in Fig 4.11 certain conclusion can be drawn are as follow
:

(i) Retentivity of steel is more than solf iron.

(ii) Coercivity of steel is more than soft iron i.e. much greater coercive force is
necessary to demagnetise steel-magnet.

(iii) Area of hysteresis loop of iron is much lesser than steel i.e. energy spent per cycle
for soft iron is much less than steel.

Fig. 4.11

So, we can understand why soft iron core is required in the manufacturing of
electromagnet of transformer. Because transsient magnetism requires smaller area of loop
and lesser coercive force. Larger coercivity is the necessity to have strong magnet. A strong
magnet does not undergo a complete magnetic cycle. So energy lost due to hysteresis cycle
in strong magnet, even though area is having much large area.

4.9.1 Demagnetisation of Magnetic Material

Ferromagnetic material retains some magnetism when it undergoes a hysteresis cycle.
Magnetic transformation is unaltered even after with drawal of the applied magnetic field.

H

B

Hard SteelSoft Iron

O
2
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In order to demagnetise it, the magnet is placed in a gradually diminishing field and undergoes
few hysteresis cycle. Area of the loop decreases gradually until it becomes zero. Thus the
material has reached the state complete demagnetic state. (Fig. 4.12)

Fig. 4.12

4.10 Summary

1. Magnetisation of material is measured by M


. Numbers of magnetic dipole produced
per unit volume, if material, is defined as magnetic moment.

2. Magnetic material behaves as composed of huge numbers of equal area circulating
current loop, in uniform magnetisation. And the result at current flows only through
peripheral region of the material.

3. Bound current exists in non-uniform magnetisation. Density of the current flow is
given by J



m = 


 × M


. 


 × B


 = 0J


 = m0 (J


f + J


m) where J


f is the free current
density sourced from battery/other sources and J



m is bound current density due
magnetisation.

4. 


 × H


 = J


f and, fH .dl N I
 

 where 
0

BH M, 

 
 the auxiliary magnetic

field only related to the free current If. B


 = 0 (H


 + M


) for paramagnetic and
diamagnetic material.

5. Hysteresis is the characteristics properties of feromagnet. Total energy spent in a
hysteresis cycle is the area of the loop in SI.

6. Structure of the loop helps in identifying certain material with a specific purpose.

4.10 Review Questions and Answers

1. An electron (charge e mass m) revolves around the nucleus in a circular
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orbit with radius r and velocity v. The electrostatic force provides the
necessary centripetal force.

a) Calculate the current and magnetic dipole moment due to the orbital
motion of the electron.

b) Write down the force equation when the electron is placed in a uniform
magnetic field B


 perpendicular v, how is the force equation modified?

Answer : a) Orbital current due to the electron.

e e evI
T 2 2 r

    , where T is time period,  its augular velocity,,

The magnetic dipole moment m = Ir2

2ev evr. r
2 r 2

 

b) The force equation will be, 
2 2

2
0

1 e mv
4 rr

 
c) The electron will experience a force evB and its velocity rises from v to v 

  in
the presence of magnetic field.

The equation of motion will be—

2 2

2
0

1 e vevB me
4 rr

 
2. Determine the magnetisation current density due to non-uniform

magnetisation current.

Answer : See article 4.3

3. If the magnitude of augular momentum of an electron rotating in a circular
orbit is ‘L’ find the magnetic moment.

Answer : Orbital current due to electron, with time period T is

e e evI
T 2 r 2 r

v

   

So the magnetic moment

2 2ev evr| m | I r r
2 r 2
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We know, v = r and augular momentum L = mr2

2eωr eL| m |
2 2m

 

4. Using the concept of bound current density for non-uniform magnetisation,

establish fH J 
  

, where fJ


 is free current density..

Answer : See article 4.4.

5. Explain what you mean by free current and bound current in magnetisation
of matter.

Answer : Free current is produced by the electric charges, like electron when they
move. It produces Joule’s heating effect. Bound current is produced by the orbital motion
and spinning of electron in atom. It does not produces Joule’s heating effect.

In magnetised matter atomic loops of current circuit are distributed at random. In
uniform magnetisation, produced by the adjacent current loops cancel each other. Hence
net effective current inside the material vanishes. Only we get some amount of surface
current. In non-uniform magnetisation of matter, cancelletion will be partial and donot
vanish. This residual current inside the maternal is called volume current. Thus we get
formation of a current, which we call magnetisation current on bound  current.

6. Discuss why soft iron is suitable for use as the core of transformer where
as steel is preferred for making permanent magnet.

Answer : The core of a transformer is made of soft iron because it has high permeability
so it provide complete linkage of magnetic flux of the primary coil to the secondary coil.
Therefore it has high coercivity and low retentivity. Soft iron provides the best material for
the core of a transformer as its permeability () is very high. Its hysteresis curve is of small
area and its coercivity low.

A permanent magnet requeres high retentivity and high coercivity. Steel magnet has this
property and is able to resist loss of magnetism due to improper handling.

4.11 Problems and Solutions

1. An infinitely long cylinder of radius R carries a frozen-in magnetisation,
parallel to the axis.

M


 = krz^
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where K is a constant, and r is the distance from the axis (there is no free
current here). (a) Find the bound current.  (b) Find the magnetic field inside and
outside. (c) Use Ampere’s law to find H


 and B


.

Solution :

a) Given the magnetisation of the material along z-axis and is equal to

M


 = krz^

The bound volume current is given J


 = 


 × M


b

ˆˆ ˆr r z
1J
r r z

0 0 kr


     



= 
1 1ˆ ˆ(kr) r (kr) r
r r r r
               

 Jb = –k
^

The bound surface current is given by –K


b = M


 × n^

K


b = kr (z^ × r^)

 Kb = Kr
^

b) A sobenoidal field is produced due to bound current. The field outside the cylinder
will be directed along the z-axis Applying Ampere’s law we get,

B.d l B L 



The current intercepted by the Ampere’s loop is given by

R

in b
r

I K L KLdr 

    = –(KLR + KL(R–r) = –KLr

Ampere’s law can now be used to find the magnetic field.

0 n
0

J
ˆ ˆB z Krz

L
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(c) Now 


.M


 = 0, it implies Ampere’s law uniquely defines H


. Now the H


 field is

painting in z-direction. Using Ampere’s law, in terms of the H


 field, we certainly conclude
that for the Ampere’s law

in terceptedH.d l H L J 0  




Since there is no free current, which can be only true if H


 = 0, which implies that

0

1H B M 0  
  

So the magnetic field B


 is given by

B


 = 0H


Magnetisation outside the cylinder is zero and therefore magnetic field is zero

B


 = 0

For the region inside the cylinder

M = krz^

So internal magnetic field

B


 = 0krz^

which is identical to earlier solution

2. An iron rod (density 7.7×103Kgm–3 and specific heat 470 JKg–1) is subjected
to cycles of magnetisation having frequency 50 cycles. If the area of B–H loop of
the specimen is 6×103 Jm–3. Calculate the rise in temperature per min.

Solution :

Hysteresis area enclosed by the B–H loop

= Energy lost per unit volume per cycle

= 6×103Jm–3

 Energy lost per min = 6×103×50×60× 3
m

7.7 10
where mis the mass of the sample.

Let T be the rise in temperature, we get,
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mST = m × 470 × 7 = 6 × 103 × 50 × 60 3
m

7.7 10

or, T = 
3

0 1
3

6 10 50 60 4.97 C(min )
470 7.7 10

   
 

3. Compute the intensity of magnetisation of the bar magnet whose mass,
magnetic moment and density are 400g, 2 Am2 and 8gCm–3, respectively.

Solution : Volume of the magnet = 
Mass

density

= 
3

3 6
400 10

(8 10 ) 10






 
= 50 × 10–6 m3

Magnitude of the magnetic moment Pm = 2Am2

 So the intensity of magnetisation,

   =

Magnetic moment
I

volume
    = 6

2
50 10

M = 0.4 × 105 Am–3

4. Region 0  z   2m is occupied by an infinite stabs of permeable material

(r = 3.5). If B


 = 2ˆ ˆ10yi 5xjmwb / m  within the slap determine (a) J


   (b) J


b   (c)

M


  (d) K


b on z = 0

Solution : By definition

(a) 7
0 r

ByB 1 Bx ˆJ H k
x y4 10 (3.5)

            

  

= –3.410k
^
 KA/m2

(b) Bound current density,

J


b = mJ


 = (3.5–1) (–3.410) × 103

= –8.525k
^
 KA/m2
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(c) M


 = mH = 
3

7

ˆ ˆ2.5(10yi 5xj) 10

4 10 3.5




 

 

= (5.676 yi
^
 – 2.840j

^
) KA/m

(d) K


b = M


 × n^ , since z = 0, is the lowerside of the slab occupying 0z2, n^ =

–k
^
  Hence,

K


b = (5.676yi^–2.840 × g) × (–k
^
)

= (2.840xi^ + 5.676yj^) KA/m

5. The volume of the core of a transformer is 1000cc. It is fed with ac if 50
HZ. The loss of energy due to hysteresis. Calculate the area of the B–H loop.

CU-13

Solution :

The energy loss per second in the transformer core = 36J
3600s

The energy loss per cycle 36J 1s
3600s 50cycles

 

So the energy loss per m3 = 
J

3
6

36
3600 50 m

1000 10 cycle



Now, energy loss (in ergs) percycle per cc

3 7

6
1 36 10 10(loop area)

4 3600 50 10
    

So, loop area = 25.13 cm2.
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5.1 Objectives

In this unit, you will study the nature of electromagnetic induction through different
related phenomenon as detailed below :

Concept of magnetic flux.

Faraday and Neuman’s law, and Lenz’s law, its application, its importance
and specific characteristics.

Motional electromotive force and Faraday’s electromotive force, its quantitative
significance.

What is self inductance and mutual inductance, the ways to measure it and
detail aspects to understand.
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Idea about Neuman’s expression.

Arrangement of inducetance in series/parallel, different values inductance to achieve
for specific uses.

Coupling phenomenon in inductance and its application.

The nature of electromagnetic energy, what is its application in different areas of
study.

5.2 Introduction

In 1820, Oersted had shown that an electric current generates a magnetic field. But can
a magnetic field generate an electric current? This was almost simultanceously and independently
in 1831 by Joseph Henry and Michael Faraday. Faraday showed experimentally that whenever
the magnetic flux linked with a closed circuit changes with time an electric current is induced
in the circuit. The reason behind the generation of current flow in a closed circuit without any
current generating source in it, flow of electric current by changing magnetic flux with time
across the loop, is called electromagnetic induction. Faraday’s law along with Lenz’s law,
which follows from conservation of energy, comprise the governing laws of inductive current
and its direction. Scientist Neuman, had further elaborated the spectrum of any form of
electromagnetic flux flow. This is known as Faraday. Neuman law of electromagnetic induction.

Farady explained electromagnetic induction using the concept of lines of force later on
Maxwell used Faraday’s ideas and build the foundation of his quantitative electromagnetic
theory. Faraday’s law has played an important role in the technological transformation as
we find today.

5.3 Faraday’s Laws of Electromagnetic Induction

Fig. 5.1

Magnet plunged
into coil

(induced current
makes near end

a S pole)

G G

Magnet pulled
out of coil

(induced current
makes near end

a N pole)
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In Fig. 5.1 experiment of Faraday when the bar magnet is moved with respect to the
coil following observations have been seen.

i) The galvanometer shows a deflection when ever there is a relative motion between
the coil and the magnet. Deflection indicates that an induced current has been set-
up in the coil.

ii) Faster movement of the magnet induces more deflection and less when movement
of the magnet is slowed.

iii) Reverse deflection in the galvanometer when the same pole is moved in opposite
direction or opposite pole of magnet is move in the same direction. The observations
led to the inculcation of the following two laws of electromagnetic induction.

a) Induced emf in a circuit is proportional to the rate of change of magnetic flux
linked with the circuit.

b) The direction of induced emf is such that it tries to oppose the cause of
generation i.e. the variation of magnetic flux inducing it.

The second law is known as Lenz’s law, which specifies the direction of current Lenz’s
law follows from the principle of conservation of energy.

If  is the flux linked with a circuit at any instant t, then d is the time rate of change
of flux. The combination of the two laws of electromagnetic induction reveals

 = – d
dt

........(5.3.1)

where  is the induced emf. The negative sign indicates that the emf  opposes the
changes of flux. If R is the resistance of the circuit, we get the induced current as

i = e–R = – 1–R 
d
df ........(5.3.2)

If the electric field in space is denoted by E


 then emf acound a closed path or curve
c is

e

E.dl  


 .....(5.3.2)

If S is an open surface bounded by the curve placed in magnetic field B


, then the
magnetic flux through the surface
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s

B.ds 


........(5.3.4)

Now, using equations (5.3.1), (5.3.2) and (5.3.4) we can write as

c s

dE.dl B.ds
dt

 
  

 ........(5.3.5)

which is the intgegral form of Faraday’s law when the circuit is fixed, the time derivation
can be taken outside the integral, when it becomes partial derivative. Now using stokes
theorem, we get,

   
s

BE .ds .ds
t

  
 

........(5.3.6)

since this must be true for any arbitrary surface s, then we get

BE
t

  

 
........(5.3.7)

which is the differential form of Faraday’s law.

5.4 Self-inductance

The induced emf  in a coil is proportional to the rate of change of magnetic flux
passing through it due to its own current. This emf is termed as self induced EMF. Magnetic
flux produced by the current depends on the geometry of the circuit for non-ferromagnetic
material.

The induced emf is proportional to the rate of change of the current through the coil
and its proportionality constant is called self-inductance L. If I is the current flowing in a
circuit, then associated magnetic flux can be written as,

 = LI .....(5.3.8)

d d dI
dt dI dt
  ........(5.3.9)

The induced emf in the circuit is given by

d LdI
dt dt
  ........(5.3.10)

where L = 
d
dI
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The SI unit of self inductance is henry (H). One henry is the value of self-inductance
in a closed circuit or coil in which one volt is produced by a variation of the inducing current
of one ampere per second. Otherwise a circuit is said to have a self inductance of 1 henry
if 1 weber of flux is linked with the circuit never 1 ampere of current flows through it. In
SI unit , I, t,  and L are expressed in weber, ampere, volt and henry

1 vall, second1 weber1 henry =  = 
1 ampere 1 ampere

= 1 V.A–1.S

As has the dimensions [ML3T–2I–1] and L are of dimensions [ML2T–2I–2]

5.4.1 Calculation of Self-inductance

1. A solenoid : If I be current flow along aircored long solenoid of length containing
N number of turns the axial magnetic field at any inside point.

0N.I
B=

l


.......(5.4.1)

If A is the area of cross-section of the solenoid the flux linking each turn is

0
1

NIA
BA

l
   ......(5.4.2)

and the total flux linking N turns

2
0

1
N AI

N
l

   ........(5.4.3)

Now the self-inductance L is defined as the flux linkage per unit current. So the self-
inductance of the solenoid is

2
0N A

L
I l

  ......(5.4.4)

If the solenoid is wound on a materials of permeability , then

2N A
L

l
 .......(5.4.5)
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Fig. 5.2

If the solenoid is not very long then the anial magnetic field at any anial point p as show
in Fig. 5.2 is given by

0
2 1

NI
B (cos cos )

2
   

   =  
0

2 2 2 2

NI x x
2l ( x) a x a

 
        




In a length dx about P, there are N–Ldx number of turns and hence the flux linking these
turns is

 Nd dx BA
l



So the total magnetic flux through the solenoid is

l

0

BANd dx
l

   

=

2
0

2 2 2 2 2
0

N AI x x
2 ( x) a (x a )

      
    

 
 

or,
2 l

2 2 2 20
2

0

N AI
( x) a x a

2

         




X

dx

P
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   = 
2

2 20
2

N A
(a ) a .I

     




So,
2

2 20
2

N A
L a a

      



.......(5.4.6)

= 
2

20N A
1 (a / ) a /

l
     

 

Note that for  >>a, equation (5.4.6) reduces to equation (5.4.5)

2. Long Caonial Cable : Consider a long coaxial cable consisting of two concentric
cylinder of inner radius a and outer radius b as shown in Fig. 5.3. The two cylinder carry
the same current I in the opposite directions; then they form a coaxial cable.

Fig. 5.3

Applying Ampere’s circuital law, it can be shown that the magnetic field outside the
cable is zero, while at an internal point at a distance r from the axis (a<r<b) the magnetic
field is given by

0I
B

2 r
 

If we imagine two coaxial cylinders of radii r and r+dr and of unit length, the flux in
the region between the two cylinders is B×(1×dr) = Bdr so the total flux is

b
b 0 0

nr a
a

I drB.dr b / a
2 r 2
       

The inductance per unit length is

1
r

dr

b a
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0 bL ln a2
  .......(5.4.7)

In the above discussion we have neglected the flux within the materials of the two
cylinders. This is justified when b>>a.

If instead of air, the space between the two cylinder is having a medium of magnetic
per meability , then from equation (5.4.7) will be modified with inductance

bL ln a2
  ......(5.4.8)

3. Two-wire transmission lines : Two parallel wire transmission line is shown in Fig.
5.4, given the separating distance d, a its radius, and  is the permeability of the medium
in which they reside.

Fig. 5.4

We assume that the radius a of each wire is much less than d, so that the flux inside
the material of the wires may be neglected. The two wires carry the same current in the
opposite directions. The flux is concentrated between the two wires. Total magnetic field
at any point at a distance x from one wire is

I 1 1B
2 x d x
      

So the flux through an elemental area of width dx and length unity is

I 1 1d B.dx 1 dx
2 x d x
         

Therefore the total flux through the entire area between the two wires of unit length
is

d a0
a

I 1 1d dx
2 x d x

         

  
I d a aln ln

2 a d a
      

2a

dx
x

1

I

I
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I d aln

a
  

So, self-inductance per unit length is

 d ah ln
I a

    ......(5.4.9)

Assuming d>>a

or,  d HL ln ma
 

4. Toroidal Coil : The magnetic field inside a toroidal coil having mean length L, N
being the number of turns of cross-sectional area A, and carrying current I is given by

NB nI I
L

 

where  is the permeability of inside medium.

Therefore, the flux through the N turn, neglecting the variation over the cross section,
is given by

2N A
NBA I

L
 

So the self-inductance is

2N A
L

I L
  .......(5.4.10)

5.5 Mutual Inductance

Fig. 5.5 C2

C1

I1 B1
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Two coils C
1
 and C

2
 are two fixed coils placed sufficiently close to each other, as

shown in Fig. 5.5. If I
1
 is current passed through the coil C

1
 then magnetic field B

1
 will be

produced around the coil C
1
. Magnetic flux 

21
 will be passed through the coil C

2
 due to

B
1
. Alternatively, we can say that 

21
 flux linkage due to B

1
 the magnetic field of coil C

1
.

B
1
 will change if I

1
 changes, then 

1
 and 

21
 will also change. An induced emf will be

produced in coil C
2
 due to this. This phenomenon is called mutual induction.

Again, there will be change in 
1
, due to the change in current I, as a consequence

an induced emf will also be induced in C
1
. This is called self-induction.

For a number of turns in both the coils, we can write

2

221 1
s

B .ds  


where ds
2
 is the elemental area in the coil 2. By Bio t-Savart law we can write

0 1
2

I ˆd rB
4 r

  

 

So for coil C
1
, 0 1 1

1 2

I ˆd rB
4 r

  

 

Taking into consideration that, other features of the coil as intact, B


1
 depends only on

I, so we can write,

2 1

0 1 1 2
21 2

s l

I ˆd r.ds
4 r

    

 



21

 = M
21

 I
1

........(5.5.1)

nowhere
2 1

0 1 2
2 2

s

ˆd r.dsM
4 r

   


 
 ......(5.5.2)

M
21

 is proportionality constant between 
21

 and I
1
. Induced emf in the coil C

2
, according

to Faraday’s law, will be

2
2 2

d dIM
dt dt
  


 ........(5.5.3)
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It is observed from the relation in equation (5.5.3) that induced emf in coil C
2
 is related

to the current flow changes in coil C
1
 M

21
 is defined as co-efficient of mutual inductance.

It will be kept in mind that this will remain unchanged if the configuration of the two coil
remain fixed.

5.6 Neumann’s Formula

Determination of mutual inductance is very complex, depending on the set up of two
coils Neumann has formulated a relation to simply the calculation. We know that flux
linkage is given by

2

2

21 1
s

B .ds  


 and 1 1B A
 

where A


1
 is the magnetic vector potential corresponding to B



1
. Also, we know that

vector potential is given by

0

c

I dlA
4 r
 




or,
1

0 1
1

1c

I dlA
4 r
 




Hence   2 2

2 2

21 1
s c

A .ds A .dl    
   



or, 1
2

2 1

0 1
21

c c

dlI
.dl

4 r

          

 
 

But we know, 
21

 = M
21

 I
1


1 2

2 1

0
21

c c

dl .dl
M

4 r
  

 
  .......(5.6.1)

Since the order of integration may be interchanged we can write

0 1 2
21 12

dl .dlM M
4 r
   

 
  .......(5.6.2)
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This is known as Neumann’s formula for the mutual inductance of two arbitrary coils
or loops. The double integral (5.6.2) is not easy to work with except for circuits. With
simple geometry but it does illuminate two important points :

i) M
12

=M
21

=M. This signifies that in any case the flux 
1
 through loop C

1
 when a

current I flows around C
2
 is exactly equal to the flux 

2
 through loop C

2
 when the

same current I flows around C
1
. This is called as reciprocity theorem.

ii) M
12

 or M
21

 is depends on the structure of the coil, configuration and relative
position of the two coils.

5.7 Calculation of Mutual Inductance

1. Two solenoids :

Fig. 5.6

Two coaxial solenoids are shown in the Fig. 5.6 where P is a long primary solenoid
and S is short secondary solenoid. There is alomost no magnetic field outside the long
solenoid. If a current I flows through the primary, the magnetic induction produced at the
centre would be

1
0 0

N
B nI I

L
 

where N
1
, and L were the total number of turns and length of the primary solenoid,

respectively. If A be cross-sectional area of P, then flux linked with the secondary coil of
total number of turns N

2
 would be

0 1 2
2

N N A
B.A.N I

L
 

So the mutual inductance will be 0 2 IAN N
M

I L
   ......(5.7.1)

P
S
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2. Two parallel circular coaxial coil

Let C
1
 and C

2
 are two parallel circular coanial coils with the centres

O
1
 and O

2
 and radii a and b (Fig. 5.7). x is the axial separation O

1 
and

O
2
. The flux through C

2
 can be assumed to be uniform taking into

account C
2
 is small compared to C

1
. If I is the current in C

1
, magnetic

induction at O
2
 is given by

2
0 1

32 2 2

2 N Ia
B

4 (a x )

 
 

where N
1
 is the number of turns in coil C

1
. Total flux linked with the

coil C
2
 is


2
 = B. b2N

2
      Fig. 5.7

or, 
2
 = 2 20 1 2

32 2 2

N N
a b I

2(a x )

 


.......(5.7.2)

So the mutual inductance between the coil is

2 2
0 1 22

32 2 2

IN N a b
M

I
2(a x )

 


........(5.7.3)

If the coils are coplanar then x = 0 and 
2

0 1 2N N b
M

2a
 

Value of M for large circular loop C
2
 can  be determined by using Neumann’s formula.

5.8 Inductance in series and parallel combinations of Inductances

1. Series connection :

Fig. 5.8

O2 C2

b

x

O1

a

C1

I
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Fig. 5.8 (a) shows two coils of self-inductances connected in series. The induced emf
in coil 1 due to self-inductance when current I flows through it,

11 1
dIL
dt

 

while the emf induced in coil 2 due to the current I in coil 1 is 21
dIM
dt

 

where M is the mutual inductance of the two coils. The emf induced in the coil due

     to self inductance is 22 2
dIL
dt

   and the emf in coil 1 due to the current in coil 2

    is  12
dIM
dt

 

Total emf due to the flux aiding me and another is

11 22 12 21 1 2
dI(L L 2M)
dt

         .....(5.8.1)

Again,
eq

dIL
dt

  .......(5.8.2)

Comparing equations (5.8.1) and (5.8.2) the equivalent self-inductance, L
eq

 is

L
eq

 = L
1
 + L

2
 + 2M .......(5.8.3)

In Fig. 5.8(b) mutual flux opposes the self-flux of the two coil in series, then we get,

11 22 12 21     

So the equivalent self-inductance is

L
eq

 = L
1
 + L

2
 – 2M ......(5.8.4)

2. Parallel connection

Fig. 5.9



 

L1 L2

I1 I2

I

M
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Fig. 5.9 shows two coils of self-inductances L
1
 and L

2
 connected in parallel. Total I

gets divided into branches as I
1 
and I

2
. Assuming that the mutual flux aids the self-flux, the

total emf induced in coil 1 is

1 1
dI dIL M
dt dt

  

Similarly

2 1
2 2

dI dI
L M

dt dt
  

Since the two coils have the same emf i.e. 
1
 = 

2
 =  for being parallel, we have

1 2
1

dI dI
L M

dt dt
  ......(5.8.5)

and 2 2 2MdI L dI
dt dt

  ......(5.8.6)

Solving this two equations, we get

1 2
2

1 2

dI (L M)
dt L L M

 


 and 2 1
2

1 2

dI (L M)
dt L L M

 


Therefore, 1 2 1 2
2

1 2

dI dI (L L 2M)dI
dt dt dt L L M

    


If L
eq

 be the equivalent self-inductance, then eq
dIL
dt

 

 
2

1 2
eq

1 2

L L M
L

L L 2M
   ......(5.8.7)

If there is no magnetic coupling between the coils then M = 0 and we have

1 2
eq

1 2

L L
L

L L
   or, 

eq 1 2

1 1 1
L L L

  .......(5.5.8)

3. Coefficient of coupling : In order to find mutual inductance, there is necessity for
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two disconnected coil, so that current flow in one coil can induce emf on other coil. Mutual
flux between them can be less than or at best equal to the self-fluxes of the two loops. It

implies that 12 22   and 21 11  . So we can write 
12

 = K
1


22
 and 

21
 = K

2


11
,

where K
1
 and K

2
 are two numbers less than or equal to one. So we can write,

MI
2
 = 

12
 = K

1


22
 = K

1
L

2
I

2

since 
22

 = L
2
I

2

Hence, M = K
1
L

2
.......(5.8.9)

M.I
1
 = 

21
 = K

2


11
 = K

2
L

1
I

1

or, M = K
2
L

1
.......(5.8.10)

From equations (5.8.9) and (5.8.10) we get,

M2 = K
1
K

2
L

1
L

2

or, M = 1 2K L L .......(5.8.11)

where K = K
1
K

2
, and 0 K 1  . This geometrical constant is known as coefficient

of coupling of the loops. This coupling coefficient depends on verying geometry,
which can be designed according to one’s criteria.

5.9 Magnetic Energy

1. Energy in an inductor : When a electric current flows in an inductor it will
store energy in the form magnetic field. For a pure conductor power which must be
supplied at any instant of time to initial current through the inductor is

diP iv Li
dt

 

Hence the energy in put to have a final current i is given by—

Energy stored (E) = 
t 1

0 0

Pdt Lidi 

21E LI
2

  .......(5.9.1)
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Self-inductance of a circuit can be defined as the two times the magnetic energy stored
in a circuit when a unit current is established in it. So the self-inductance is thus a measure
of the magnetic energy stored in the circuit for a given current.

2. Energy stored in a magnetic field : Energy is required to establish a magnetic
field, which is stored as a magnetic field energy. Let us take a number of current carrying
loops in a finite region of a medium. Magnetic flux associated with the ith circuit is given
by

i

i i

i
s c

ˆB.nds A.dl   


 ......(5.9.2)

where A is the magnetic vector potential associated to B


 by B


 = 


 × A


. The magnetic
energy of the system is

n

i i
i 1

1U I
2 

 

   i i i
il

1 I A .d l
2

 


 ........(5.9.3)

Assuming each circuit is a closed path in the medium which is conducting. iiI dl


 should

be replaced by J


dv and 
ii c v

by so 

v

1U J.AdV
2

 


........(5.9.4)

where J


 is the volume current density. Now using the relation 


×M


 = J


, we can write

equation (5.9.4) as

v

1U ( H).AdV
2

 
 

.......(5.9.5)

From, vector identity

.(A H) H.( A) A.( H)     
       

Now, using the vector identity and divergence theorem, we get
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V S

1 1 ˆU H.( A)dV A H.nds
2 2

    
   

.......(5.9.6)

where S is the surface bounding the volume V.

Note that integration is to be carried out over the entire volume occupied by the
current distribution. For convenience, the surfaces can be moved to infinity. This will not
affect the integration (5.9.4) because J


 = 0 outside the region occupied by the current

distribution. Now at large distances A


 and H


 will fall at least as rapidly as those of dipoles,

hence 2 3
1 1A ~ , H ~
r r

. So the integrand A


 × H


 falls off at least as 1/r3 or faster. As the

surface element ds goes as r2, the surface integral vanishes as 1/r or faster as r goes to
infinity.

Therefore, equation (5.9.6) becomes 1U H.Bdv
2

 
 

......(5.9.7)

So we conclude from equation (5.9.7) that magnetic energy stored in a magnetic field
with energy density as 1–2 (H


.B


). So we can write, energy density as

2
21 B 1U H.B H

2 2 2
   

 
......(5.9.8)

5.10 Summary

We have learned following topics on electromagnetic induction.

1. Idea about magnetic flux : BS B.ds  


 Faraday and Neumann’s laws

d
dt
  and Lenz’s law..

2. Differential form of Faraday’s law BB
t

  
 

 and integral form

d
E.dl

dt
   




3. Self-inducetance and mutual inductance. Inducetance L = –I , and mutual

inductance 2 1

1 2
M .

I I
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4. Neumann’s expression far mutual inductance :

1 2

2 1

0
21 12

c c

dl .dl
M M

4 r
  

 
 

We have studied self and mutual inductance of current loop with different geometrical
shapes.

5. Magnetic energy : 2
mag

1 1U LI A.Jdv
2 2

  
 

2

0

1 B dv
2

 

6. Energy density in magnetic field

22
0

0

HH.B Bu
2 2 2

  

 

5.11 Review Questions and Answers

1. Obtain the integral form of Faraday’s law and then show that

BE
t

  

 

Answer : See article 5.3.

2. Starting from energy consideration prove that M2   L
1
L

2
.

Answer : For two fixed closed circuit with positive coupling, with currents C
1
 and C

2

in the respective circuits

EME equations at any instant.

1 2
1 1 1 1

di di
R i L M

dt dt
    ........(5.9.1)

2 1
2 2 2 2

di di
R i L M

dt dt
    .......(5.9.2)
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From energy conservation consideration, the rate of energy supplied from the source
must be equal to the rate of Joule heat dissipation plus the rate of energy stored in the
magnetic field. so,

2 2
1 1 2 2 1 1 2 2

d Ui i i R i R m a g
d t

     

 1 1 2 2
1 1 2 2 1 1 2 2

2 2
1 1 2 2 1 2 2

d U m a g i i i R i R
d t

i e i (ik i k )

     
    

From (5.9.1) and (5.9.2), We get

m ag 1 2 2 1
1 1 2 2 1 1 2

dU di d i d i d i
L i L i M i M i

dt d t d t d t d t
   

2 2
1 2

1 2 1 2
di di1 1 dL L M (i i )

2 dt 2 dt dt
  

Taking i
1
= i

2
=0 at t = 0, and integrating the equation from t = 0, to t = t We find

2
mag 1 1 2 1 2

1 1U L i L i M i i
2 2

   ........(5.9.3)

or, 
2 2mag 22

1 2 2
1 1 1 1

2U LM Mi i i
L L L L

               ........(5.9.4)

which is valid for all i
1
 and i

2
 and let i

1
 = 2

1

M i
L

 . Then since U
mag

 is positive or zero

for all values of i
1
 and i

2
 we must have M2   L

1
L

2
.

3. Show that the equivalent inductance of the two coils of self-inductances L
1

and L
2
, connected in parallel is

2
1 2

e q
1 2

L L – M
L =

L + L ± M

Answer : See articale (5.8) for answer.
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4. Show that the self-inductance of a long solenoid length l radius a and with
n turns per unit length is approximately given by

L = 2 2 2 2
0n . a l a a      

Answer : See Article 5.4.

5. State and prove the reciprocity theorem in mutual inductance. Derive
Neumann’s formula for the mutual inductance between two arbitrary loops.

Answer: See article 5.6.

6. Two long parallel wires carrying the same current I in the opposite direction
and separated by a distance d in the air. The length of the wire are much larger
than d. Find the self-inductance per unit length.

Answer : See article 5.4.

7. Two coils with self-inductance L
1
 and L

2
 respectively, have mutual inductance

M. Find an expression for their coefficient of coupling.

Answer : See article 5.8.

8. Obtain a formula for the mutual induction between two loops carrying current.

Answer : See article 5.7.

5.12 Problems and Solutions

1. A wire of length 1m moves at right angle to its length at a speed of 100 m/
s in a uniform magnetic field 1 wb/m2 which is also acting at right angle to the
length of the wire. Calculate the emf induced in the wire when the direction of
motion— (i) right angles to the field,  (ii) inclined at 30° to the field.

Solution :

Induced electric field due to motion in magnetic field is equal E


 = (  × B


)

Induced emf  E.dl  




      ( B).dl 



For a length ‘L’ of the rod, induced emf will be
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 = vBLsin ( is the angle between   and B


)

(i) Here  = 90°   = vBL

which v = 100 ms–1,  B = 1wbm–2, L = 1m

 = 100volt

(ii) When  = 30°

 = vBL 50V
2



2. A conducting metallic disc is rotating about an axis passing through its
centre, perpendicular to its own plane. An external magnetic field is applied in a
direction perpendicular to the plane of the disc. What will induced emf ? What will
be the current flow it a metallic wire is connected between periphery and the axis?

Solution : Let P be point where the wire is connected at the periphery. Let the
disc rototates, it position at t is covers a distance dr in time. t +t. i.e. PQ = dr. So the
area POQ = 1–2 rddr. Intercepted magnetic flux d = 1–2 Brdr.

Therefore the induced emf between O and P

d 1 dr 1Br Brv
dt 2 dt 2
  

or,  = 1–2 Br2w

The direction of the induced emf cannot be

determined in this specifi case.

Current flow 
2BrI

R 2R
  

3. Suppose a square loop of side a is placed in the plane of a long straight wire
carrying current I. The nearest side of the loop is at a distance r from the wire.
Find the magnetic flex through the loop. If someone pulls the loop directly away
from the wire at a constant speed, what should be the emf generated in the loop?
What is the value of emf generated when the loop is pulled parallel to the wire?

Solution :

O

r

P

Q
dr

Fig. 3
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Fig. 4

The magnetic induction at a distance x from the wire is 0 2IB .
4 x
 

This magnetic field is in a direction normal to plane of the loop. So the flux through
an elemental area adx within the loop as shown in Fig. 4.

0Iadx
d Badx

2 x
  

Total flux across the loop is

r a
0

0
r

I a r ad x I a
2 x 2 a

     

The induced emf in the loop is

d d dr.
dt dr dt
   

  0Iavvd 1 1
rdr 2 r a

       

  
2

0Iva
2 r(r a)
  

4. A square loop of wire of side ‘a’ lies on a table near a very long straight wire
which carries a current I. Find the flux through the loop if it moves away from the
wire at a speed ‘v’. What is the emf generated ? What is the emf generated in case
the loop is pulled to the right with the same speed ?



r a

a a

I

x dx
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Fig. 6

Solution: The magnetic induction at a distance x from the long wire which carries
current I is

0I
B

2 x
 

which is directed normally on the loop the flux through an elementary area adx within
the loop is given by

0Ia dxd Badx
2 x
  

or,  a r0 0
nr

a I Ia a rdx l
2 x 2 r

    

or,  0Ia aln 1
2 r


 

 Induced emf

d d dr.
dt dr dt
  

0
2

Ivd 1 av
dt 2 a r1

r

        

2
0va

2 r(r a)
   

The current is in anti clockwise direction, when the flux is pulled right, there is no
change in flux, so  = 0.

a
x

r

dx ν

I
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6.1 Objectives

After the completion of the Unit, learners will be able to under stand :

1 Nature of electromagnetic waves and its source

2 Unified classical theory of electromagnetism forwarded by Maxwell and
prediction of oscillating nature of electromangnetic waves

3 Electromagnetic spectrum

4 Boundary condition,behavior of electromagnetic wave throgh free space,
throgh different media like dielectric, metal etc.

Its behavirol changes while interfacing different media.

5 Different optical phenomen, like total internal reflection, Brewester’s law
and evanascent waves etc.

6 Reflection and Refraction of Electromagnetic of waves.

7 Gauge Theories

6.2 Introduction

Electromagnetic waves EM are synchrorized oscilliations of electric and
magnetic fields. These waves are created due periodic change of electric and magnetic
fields. The creations of electromagnetic waves are formed when a cherged particle
is accelerated as a part of oscillatory motion, the charged particle creates ripples on
oscillations in its electric field and also produces a magnetic field. The electric and
magnetic of the wave are perpendicular to each other and also, perpendicular to the

Magnetic field

Electric field

Propagation of 
electromagnetic 

wave

Y

Z

X

Electromagnetic Wave

Fig. 6.1
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direction of the EM waves.

EM waves carry energy, momentum and angular momentum away from their
source particle and can impart those quantites to matter with which they interact
them. EM waves travel with a constant velocity of C=3x10 m/s in vacuum. They
are diflected neither by the electric field nor the magnetic field, they exhibits,
interference diffraction. An EM wave can travel through anything be it vacuum air
and solid material. It requaires no medium to propagale from one space to another
space. This tranverse wave are measured by their amplitude, and wave length. The
highest point of a wave is known as ‘Crest’, whereas the longest point is known as
‘Trough’. The EM wave can be split into a range of frequencies, which is known as
electromagnetic spectrum-examples are radiowaves, microwaves infrared, x-rays and
gamma rays etc.

In quantum mechanics, EM radiowaves, are termed as photons, uncharged
elementary particles with zero rest mass which are the quanta of the electromagnetic
field responsible for all electromagnetic interactions Quantum effects generates
additinal source of radiation such as the transition of electrons to lower energy in
an atom and black body radiation photons have energy of  ‘h’ where h is Planek’s
constant, the higher the frequency the higher the energy.

6.3 Displacement Current and Maxwell’s Equations
Displacement Current

From Ampere’s law we can
calculate the magnetic field due to
steady current flow. We know that the

integral  H.dl
 

  around any closed path

or loop is equal to i' where i is current
passing an area bounded by the closed
curve C (Fig. 6.2)

If Ampere’s law is true all the
time, then the i determined should be
independent of the surface chosen.

Let us consider the case of charging of a capacitor by (Fig.6.3) charging current

i (t) = 
V
R  e -t/Rc, which leads to a magnetic field H

  as observed, with the Ampere’s

Flat surface

loop C Curved surface

Ϩ
.

Fig.
6.2

i
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law  B.dl = i
 


If we look at  i = i (t)

If look at   i = O

This is because there is no charge
flowing between the capacitor plates. It
points out that Ampere’s law is either
wrong or incomplete. Also from Ampere’s
law in differential form

 x H =  J
 

...........................................................(6.3.1)

Where J

 is the current density.

Taking the divergence of the above equation.

.    x H =    . J = O  
   

Fig. 6.3

This reflects that . J = O


 which violates the continuty equation. As the electric
charge is piling up on the plate of the capacitor contained whithin the volume
enclosed by the surface S1 and S2, the continuity equation is


Ot

 . J +


 ...................................................................................(6.3.2)

Where  is the charge density on the capacitor which varies with time. So,
some quantity must be added to equation (6.3.1) on the right hand side, which must
be consistent with the equation (6.3.2). In order to find this, quantity, which must
be consistent, an electric displacement vector D 


 related to the charge density  by

.    D =  


 ...........................................................................................(6.3.3)

From equation (6.3.2) and (6.3.1)

We find . ( . .
t

        

     D
J + D) = J+ O

t
 ..................................(6.3.4)

Now if we add 

D
t

 to the right hand side of equation (6.3.1) then its divergence
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will satisfy equation (6.3.2) with the inclusion of 

D
t

, in Ampere’s law of differential

form, we have,
D

 H  J + 


 


  
t

.................................................................(6.3.5)

The quantity 

D
t

 was first introduced by Maxwell and is called displacement

current density. For a very slowly varying field 

D
t

 is negligible. We can use

equation (6.3.1) of unomodified Ampere’s law of steady field. We learnt earlier that
the electric field can be generated by charges and changing magnetic flux. So we
see from Ampere Maxwell that a magnetic field can be generated by moving charges
(current)  and changing electricflux. Thats is a change in electric flux throgh a
surface bounded by C can lead to an induced magnetic field along the loop ie:
induce magnetic field is along the same direction at caused by the changing electric

flux, without the term 
t






D
D

J    =  electromagnetic wave propagation would be

impossible. Based on the displacement current density, we define the displacement

current, as I  =  d ʃ Jd.

ds = ʃ


D
t


. ds 

We must bear in mind that displacement current is a result of time varying
electric field.

6.4 Maxwell’s Equation
Here we sumarize the laws associated with electromagnetic field :

.
  

D = .......................................................................................(6.4.1)

.
 

B = O.......................................................................................(6.4.2)






  B
 x E = -

t
...............................................................................(6.4.3)






   D
 x H = J+

t
............................................................................(6.4.4)
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Equation (6.4.1) and (6.4.2) express Gauss’s law for the electric and the
magnetic field respectively. Equation (6.4.1) is a mathematical statement of
Coulomb’s law, while the physical significance of equation (6.4.2) is the absence of
free magnetic monopole Equation (6.4.3) states the Faraday-Henry law of
electromagnetic induction, while equation (6.4.4) is the Ampere-Maxwell law

containing the factor displacement current density. 
t



D

All the equations comprising (6.4.1), (6.4.2), (6.4.3) and (6.4.4) represent

Maxwell equations. It is also highlighted that the term  (
 
r, t ) and 

 
J (

 
R, t ) in all

the above equation contain all charges and current respectively, whether free or
bound.

There is however, a more convenient form of the set of general equation of
Maxwell, suitable for the study of electromagnetic fields inside material subtances

that are subject to electrical polarization and magnatizetion, let (

B 


E, ) represents

electromagnetic field inside the material of subtance having both electric and magnetic
properties assuming P as polarization vector and M magnetization vectors respectively
Introducing the auxillary fields we have.

    
o

I
D = ε B - M0

E + P , H = .................................................(6.4.5)

For a linear medium,

  
me E , M =  HP = ε x  .............................................................(6.4.6)

so that 
   1D = E , H = B  ....................................................................(6.4.7)

where, ) meε = o (1+ and  =  (1+   )   
o

 ......................................(6.4.8)

Modified Maxwell equation taking into account t (

r, t ) and Jt (


r, t ) as the free

charge  and current densities respectively inside the meterial take the form

.
 

D = f
 .....................................................................................(6.4.9)

.
 

B = O .....................................................................................(6.4.10)




  B x E = -
t

 .............................................................................(6.4.11)
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   D x H = J +t t
 ..........................................................................(6.4.12)

with proper set of different boundary condition depending on the different
material media at their interface, solution representing their properties, for the above
set of equation can be obtained.

The Maxwell equations are also associated with certain conservation laws, such
as the conservation of charge and the conservation of energy which is explaned by
Poynting’s theorem. Conservation of charge can be demonstrated with the help of
equation (6.4.1) and (6.4.4). Taking the divergence of equation (6.4.4)

 

   D x H = J+  
t


  

  J + 



t

D)
  

  J + 
t

 
 ............................................................................(6.4.13)

Equation (6.4.3) represents the equation of continuity.

Taking the divergence of both side of equation (6.4.3)


 

 x E = O - 



 




B
t = = 

t


B)


, so div 


B = O, which is compatible with

equation (6.4.2)

6.5  Poynting’s Theorem
It states that in a given volume, the stored energy changes at a rate given by

the work done on the charges within the volume, minus the rate of which energy
laves the volume.

From equation (6.4.4) and (6.4.5) we can obtain,


 

 x E - E. 


   x 
 




B
t -E.        J  

  



D
t

   
..............................(6.5.1)

using the vector identity


  

   x B) = B.  x A -A.  x B 
  

in the LHS of equation (6.4.13) we have,
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               E x H) = - H  J
 




B
t





D
t

 ............................................(6.5.2)

For a linear and non-dispersive media, we can write, D = Ɛ. 


 and B = μ 


where Ɛ and µ are permitivity and permeability of the media, so we have






B
t

H. = 
t

(           )1
2


H. 


B

and 






D
t

E. = 
t

(           )1
2


E. 


D

Putting this in equation (6.4.14) and integrating over finite volume V we get

ʃ d
dt

  (E x H) dv = 


ʃ
v

[E.D + H.B] dv  ʃ
v

J.E.dv
       

v  ..................(6.5.3)

Applying Gauss’s divergence theoreom to the left hand side  of equation (6.5.3)

ʃ d
dt

(E x H).n ds  = o  ʃ
v

(E.D + H.B) dv   ʃ
v

J.E.dv
       

s
1
2  ...............(6.5.4)

where S is the surface bounding the volume V as,

ʃ (E. D+H.B) dv = ʃv
J.E.dv+

   
v

d
dt

 1
2

 
ʃ
s(E x H) 

 
.n dso ...................(6.5.5)

The term E.D 
1

2


is energy stored in electrical fields and the term (H.B) 

1
2


 is

the energy stored in magnetic field. The left hand side of equation (6.5.5) points out
the rate at which the electromagnetic energy stored in the volume V decreases with
time. The rate of work done by the electromagnetic force on an infinetisimal charge
dq = dV is given by

dw
dt

= dq(E x  x B). 
   

= dq E. = E. ( dV)=E.J.dV
     

where  is the velocity of the charge element and J = 


, So the term ʃ E.  dV
 

indicates the rate of doing work on the charge in the volume V by electromagnetic
field, in other words it is Joule heat. The last term on the right hand side of equation
(6.5.5) gives the rate which energy flows out of the bounding volume V.
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The vector S = E x H
  

called Poynting vector has the unit of Joule m  s-2 -1  and so
it can be described as the energy flowing out through unit area per unit time.

Poynting’s Theorem can also be represented in differential form

 S +
  


W
t = P2............................................................................(6.5.6)

where P = J.E = 2 .E2  as the Joule heat and 
1
2

W =     ( H +     )  2 


electromagnetic

energy stored in per unit volume.

6.5.1  Time Average Value of The Poynting Vector

Now assuring the electric and magnetic fields is given by:

2
Im) Re Re Re

Now taking the average of the above equa tion we get

o<S> = <(E x B Cos t>-<(E x B
2

Im

)

1[ 0 0 ]
2

]
1
2

so



   

    

   

Im Re Im

Re Re IM IM

Re Re IM IMo

Cos    ><Sin    >

-(<E x B Cos Sin >+<E x B Sin

1
<S> = <E x B <E x Bo

= [<E x B E x B

1
2

t t

ttt

Re )

)(

( )








  

  



  

IM

Re

o

Re IM

Re IM

E =E0e
jwt

= (E j E Cost+jSint)

= (E cos -Eim Sin )

and B B

= (B jB cos +jSin )

Now the Poynting vector S is given by,

S (E x B)1
o

= E Cos -E Sin x (B 

2

2

( (

) Cos )

Re IM

Re Re Re IM

IM Re IM IM

cos -B sin )

= [ E x B )Cos - E x B )Sin Cos

-(E x B .Sin +(E x B Sin ]

(

t t

ejwt

t

t

1
o t t

1
o tt

t t t

t t

t
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But to compute the Poyting vector the simplest way to use a real form for both
field 

  
E  and 

  
B  rather than complex exponential representation.

6.5.2  Energy of Electromagnetic Waves

A plane monochromatic EM waves propagating in Z direction ie: K  direction

is given by 
  
E  =  E

o
cos (kz-t ) and 

  
B = J  B

o
cos(kz-t ) ...........................(6.5.7)

where B
o
 = 

Eo

c

The total energy associated with the electromagnetic wave fields is

U = U
E
+U

M
 = 

1
2

ʃ
v

B2

o
+ Eo

2 dV)(

as B = E/C  and c = o0   The electric and magnetic energy contributions

to the total energy are equal and electromagnetic energy density for a polarised
wave is

U
EM

 = 
o
E2 = 

o
 E

o
2 Cos2 (kz- )

The Poynting vector becomes

  
S = 1

o

  
(E x B) = c  Cos (kz- t)  o o

2 2
  

k 

= k u    c  EM

The time average density is defined as the average over one period T of the EM
wave,

ʃ
o

<u > = em

o o E  2

T

T
Cos (kz- t)dt2 

=
o o E  2

T
T

2
=

1

2
o o E 2

=
1

2

Bo
2

o
 ........................................................(6.5.8)

It follows that energy density of EM wave is proportinal to the square of the
amplitude of the electric (or magnetic) field.

6.5.3 Momentum of Electromanetic Radiation
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Due to The wave-particle duality of radiation, as stated in Quantum Mechanics,
radiation or photonos travelling with speed c, the energy of each photon is given by

    = h

Momentum of a single photon is  P  K = 
 

c k

So for n photons per unit volume we can relate average Poynting vector to n ,

multiplied by velocity vector kc

<S> = n ck = <u > c kϵ em

Now P 
  is defined as momentum of EM waves carried across a plane normal

to propagation vector k  per unit area per unit time P  S/c 
 

when all the momentum of EM wave is absorbed in normal incidence, it exhibits
a force per unit area equL to the normal incoming flux of radiations. The radiation
pressare is

P  = P.n = S/c => P  <u >rad rad EM

In case of diffuse radiation ie. radiation bouncing around in all direction, the
pressure is given by

P
rad

 = <uEM>/3

6.6 Maxwell Stress Tensor
It is a symmetric second order tensor used in classical electromagnetics to

represent the interaction between electromagnetic forces and mechanical momentum.
A second rank tensor whose product with unit vector to a surface reveals the force
per unit area transmitted across the surface by an electromagnetic field. Its easy to
calculate the Lorentz force on the charge moving freely in homogeneous
electromagnetic field, which is simple situation. In complex situation of interaction
of particle and electromagnetic field, Maxwell stress tensor lays the way to use
tensor arithmatic to find an answare to the problem at hand. Momentum conservation
is rescued by the realization that fields themselves carry momentum, also its attributed
energy.

As we know The Lorentz force on a moving charge particle is given by

F = q (E+  x B) ʋ
   

 ..............................................................(6.6.1)
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So the force per unit volume acting on charge density distribution  in a volume V

f =  (E+  x B)  ʋ
   

 ...............................................................(6.6.2)

= f = E + J x B
   

 ..............................................................(6.6.3)

From Maxwell’s Electromagnetin equation

 =     E 
 

.....................................................................................(6.6.4)

and J = 
 1

o
 x B -


   
E
t


 .........................................................................(6.6.5)

Substituting  and J 


 from equation (6.6.4) and (6.5.5) in equations (6.6.3) we get,

f =     x B -       
 1

o



E
t


x B 

     
 ...................................(6.6.6)

Now, (E x B) =  
 

 t


E
t


x B + E x 


B
t


 .................................................(6.6.7)

or, 

E
t


x B =  

 
 t (E x B) - E x 

  

B
t


..................................................(6.6.8)

Also from Maxwell’s third equation





B
t


E x 


= -  ...............................................................................(6.6.9)

Subsituting above in equation (6.6.8) we get




 t


E
t


E) x 


x B


=  (E x B) + E ( 
 

.............................................(6.6.10)

From, equation (6.6.6) and (6.6.10), we get after rearraing

f =   0 [(    E) E-Ex( xE)] + 1
o

[(   xE)xB]-   [      ( x E )] 
 t B

         
.....(6.6.11)

Introducing a term ( x E )BB
  

 in the equation (6.6.11) to make it more symnetrical

f = 


[(    E) E-Ex( xE)] + 1
o

[(    .B) B-Bx xB]-   
       

[ 
 t (ExB)]

    
....(6.6.12)

From the property of gradient, we know that,
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        A.B) = A x  x B + B x  x A + (A.

      x x E + E x  x E + (E.  

    x  x E + 2(E.

        

             

    

so,     x x E =     
  1

2

   
...................................(6.6.13)

21
B B (B ) (B. )B

2
    

     
...................................(6.6.14)

Subsituting, (6.6.13) and (6.6.14) in equation (6.6.12)

     


f =   
 1

o

   1
2

     1
2

   

 t (E x B)] 

        

 
or

  f =   
 1

o

  
  

        

  
1
2      1

2 o
             x

 t

   

Equation (6.6.13) can be simplilfied with the introduction of Maxwells  tress
tensor

T
ij
 = o (E  E  -i j

1
2 δijE ) + 2 1

o
 (B  B  -i j

1
2 δijB )2 .................................(6.6.15)

The indices i’ and j’ refer to the co-ordinates x, y ans z, so the stress tensor
has a total nine components (T

xx
, T

xy
, T

xz
, T

yx
, T

yy
, T

yz
, T

zx
, T

zy
,T

zz
)

Thus,

T
xx

 = 1
2

o   (E  -E -E ) +x y z

2 2 2 1
2

1
o

(B  -B -B ) x y z

2 2 2
...............(6.6.16)

T
yy

 = 1
2

o   (E -E -E ) +y x z

2 2 2 1
2

1
o

(B  -B -B ) y x z

2 2 2
..............(6.6.17)

T
zz

 = 1
2

o   (E -E -E ) +Z x y

2 2 2 1
2

1
o

(B  -B -B ) z y x

2 2 2
................(6.6.18)

and, T
xy

 = T  = yx  o     E  E  + x y

1
o

   B  Bx y  ......................................(6.6.19)
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T
yz

 = T  = zy  o     E  E  + y z
1
o
   B  By z  .......................................(6.6.20)

Tzx = T  = xz  o     E  E  + z x

1
o
   B  Bz x

.......................................(6.6.21)

T
ij
 is represented as a tensor by T


 a rank 2- tensor. It is represented by a 2-

dimensional, (3x3) matrix

Txx

Tyx

Tzx


Txy

Tyy

Tzy

Txz

Tyz

Tzz

T =
....................................................(6.6.22)

We can form the dot product of T


with a vector a



a. T j =  (a  T )) x,y,z j ij(


.................................................................(6.6.23)

the out-coming object, which has one remaining index, is itself a vector. Now
if we take the divergence of T


 has as its jth component.

   j = (
 

) o ( j ) Ej  +        j+(B. j][ ] [         (
1
o

     

1
2 o

-[ o j (E ) +          j (B ) 2 2 ]1
2  ...............................................(6.6.24)

So the force per unit volume in equation (6.6.24) take the form,



S
t


f =   
  

 o   o ..............................................................(6.6.25)

So The total force on the charges in volume V is given by,

F = 


ʃ fdv = ʃ 
v v



S
t  dv

 
 o     o ʃ


dv....................................(6.6.26)

or F = 


ʃ fdv = T.ds -o 



 o   o  ʃ 


S
t


dv..........................................(6.6.27)

Here S
o 

represents the surface. In the static case, ʃ 

S
t dv  is to be dropped.
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Physical signticance of T


 is the force per unit area (or stress) acting on the surface.
Here Tij is the force (per unit area) in the ith direction acting on an element of
surface alligned in the j th direction. The diagonal elements represent pressures ,
and off diagonal elements are shears.

6.6.1 Conservation of Momentum

According to Newton’s second law the force on an object is equal to its momentum

F = 
 dPmech

t



d
 ...........................................................................(6.6.28)

So equation (6.6.27) can be writen in the form given below

 o    oF = 
 d(P ) mech

t



d
=  ʃ 


S
t


dv + T.dso 





.............................(6.6.29)

where P


mech
 is the total mechanical momentum of the particles in volume V. This

expression in equation (6.6.29) is similar to the representation of Poynting theorem.
The first integral represents momentum stored in the electromagnetic fields themselves

o ogem   = 


ʃ S dv  .............................................................(6.6.30)

while the second integral is the momentum per unit time flowing in throgh the
surface equation (6.6.29) is the general statement of conversation of momentum in
electrodynamics. Any increase in the total momentum (mechanical plus electromagnetic)
is equal to the momentum brought in by the fields when V encompass all space then, no
momentum flows in or out, and Pmech + gem is constant.

If the mechanical momentum is V is not changing ie in region of empty space,
then

ʃ 
d

gen

t dv = T.dso 





= ʃ  T dv
 

and hence d
gen

t =    T
 

 ......................................................................(6.6.31)

This is the “continuity equation” for electromagnetic momentum, with gem

(momentum density) in the role of  (charge density) and  T


 playing the role of J   


; it
expresses the total local conservation of field momentum. But in general charges and
fields exchange momentum and only the total is conserved.

Here we note that S   


 plays the energy per unit area per unit time transported bythe
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fields, while S   


oƐo    is the momentum per unit volume stored in those fields. Similarly

T 


 is the electromagnetic stress acting on thesurface and- T 


 represent’s the flow of

momentum ie momentum current density, carried by the fields.

6.6.2  Angular Momentum

The angular momentum of EM wave is a vector that expresses the amount of
dynamical rotation present in the electromagnetic while travelling approximately in a
straight line. The beam of light can also be taking, the two distinct forms of rotation of
light beam are its polarization and its wave front shape. Two forms of rotation are
identified as light spin angular momentum.

Now the energy density of electromagnetic fields carry energy,

1
2

u =  (Ɛo E2+       B )    21
o

..............................................................(6.6.32)

and momentum,

g  =  em Ɛo (E xB)
  

.........................................................................(6.6.33)

The Angular  momentum

L = r x g =em Ɛo [r x(E xB)]
    

.......................................................(6.6.34)

In case of static fields, it can have angular momentum as long as E x B
 

 is non zero
and it is only when these field contributions are incorporated that the conversation laws
are prevailed.

6.7   Potencial Formulation and Gauge Transformations

In Maxwell’s theory, the basic field variable are the strenghts of electric and
magnetic fields which may describe in terms of auxillary variable like scalar and
vector potentials. The gauge (theory) transformations in this theory consists of certain
changes in value of these potentials that do not yield in a change of the value of
electric and magnetic fields. Thus the invariance is preserved as we look forward to
the formulation of modern theory of electrodynamics.

In electrostactics we know x 0    E = 
 

 it enables one to write E =   
 

 , where

 is a scalar function. In electrodynamics E     x  
 

   But B   
 

  . So it demands

for certain generalisation time dependent solution of the problems.
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So we can write variable B


 as

B =   x
  

where is 


 vector potencial.

Now =  x [E + ] = 0
  


A
t


 ........................................................(6.7.1)

Above equation (6.7.1) can be transformed with the introduction of gradient of

a scalar function  to the expression  (E + )
 


A
t



..................................................................(6.7.2)

In static case 
A
t


    , so, E  


   



from Gauss’s law   


 o   
  

  we have,

2
0( .A) /

t

    


 
.............................................................................(6.7.3)

substituting equation (6.7.2) in modified Ampere’s law in electrodynamincs,

     x J + oo


E
t

 

                   x J - x  o o o  o(

t




A
t2

    
....................(6.7.4)

from vector identity            x 
       

we have from equation on (6.7.4)

    oo      )  oo       )  J
  


A
t2





t

   
.................(6.7.5)

So from equation (6.7.3) and (6.7.5) carry all the informations in Maxwell’s
equations. We conclude that potential formulation of Maxwell’s electromagnetic
formulation reduce the six variable of  


 and  


 (three of each) to four variables are

three values of vector potencial  


 and one value to sealar function .
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Equation (6.7.2) and the equation       x
  

 do not uniqely define the

potentials. Let us introduce two sets of potential (, 


) and (̍ ,

A̍), gives the same

electirc and magnetic fields, so writing       +
  

 and       ' + ,

We have,

                 x A = x ' x or x
         

or   = S
 

where S is scalar

Again, E = +       ) =  (            ʹ
  


A
t




Aʹ
t



= O 

   



t

or               B
 


s
t

So the term   B        

S
t  is independant of position co-ordinates, it is only function

of time, taking it as g(t), thus



S
t     g (t)B      

or       


P
t

where P = S- ʃ g(t )dtt ʹ ʹO

The function P can replace S in the defination of

. since =  P = S, so   
  

     A  =  P ʹ   
 

............................................................(6.7.6)

and        ʹ= 

P
t .................................................................(6.7.7)

Thus, we observe that addition of  P 


 to 


 and the subtraction of 


P
t  from 

do not alter the   


 and 


. these changes in  and 


 are called gauge transformations.
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We can also choose set of potential 


, , such that,

 oo         


A
t2

  
 ..........................................................(6.7.8)

This choice is called Lorentz gauge under this transformation, equation (6.7.3)
and (6.7.5) becomes,

 oo          J



A
t2

 
 ...................................................(6.7.9)

  oo        o





t2 ............................................(6.7.10)

We can choose another set of gauge called coulomb gauge, where   
 

,
Equation (6.7.3) and (6.7.5) become,

   oo       = - J +
 


A
t2


  oo


 t ..................................(6.7.11)

and,     o
 .............................................................................(6.7.12)

Equation (6.7.12) can easyly be solved to find , as in electrostatics

 ( r, t) = 
1

4o

ʃ  ( r , t)  ʹ


 1 r- r 1  ʹ
  dv

6.8   Boundary Conditions
We can use Maxwell’s equations to derive the

boundry condition on the magnetic field across a surface.
Consider a “pillbox” across the surface taking Maxwell’s
equation

      
 

...............................................................(6.8.1)

intergate over the volume of the pillbox, apply
Gauss’s the orem :

ʃ     dv  
v s   ds

   
........................................(6.8.2)

S1

S3

S2

B1

B2

Medium 1 Medium 2

n
l

Fig. 6.4
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where V is the volume of the pillbox, and S
its surface. We can break the integral over the
surface into three part’s over the flat ends (S1 and
S2) and over the curved wall (S3) [Fig.6.4]

ʃ    ds  
s1

 
ʃ    ds  
s2

 
ʃ     ds
s3

 
........................(6.8.3)

In the limit that the lenght of the pillbox
approaches zero the integral over the curved
surface also approaches zero. It each end has small
area “A” then equation (6.8.3) becomes

-B A + B A = Oin 2n  ................................(6.8.4)

B  = Bin 2n  ...............................................(6.8.5)

it impiles the normal component of the

magnetic field  


 must be continuous across the surface.

Boundary condition 2: Tangential Component of E 


 consider a loop spanning
the surface (Fig. 6.5)

Maxwell equation : E     x  
 

 


B
t


 ..........(6.8.6)

Integrate over the surface bounded by the loop and apply stoke’s theorem to
get

ʃ      x ds  
s c           dl dsʃ

    
 t s

  
..............(6.8.7)

Now take the limit, in which the width of
the loop becomes zero. The contributions to
integral around the loop C from narrow ends
become zero; as does integral of the magnetic field
across the area bounded by the loop, so from
equation (6.8.7)

 1t 2t  -  = O......................................(6.8.8)

so,  1t 2t = .........................................(6.8.9)

E1

E2

h1
h2

Fig. 6.5

e

S1

S3

S2

D1

D2

Medium 1 Medium 2

h

Fig. 6.6

h
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Hence the tangential component of the electric field is continuous across the
boundary.

Boundary Condition 3 : Normal Component of D , consider a pillbox crossing
the boundary (Fig. 6.6)

 From Maxwell’s equation,

.D =  
 

 .........................................(6.8.10)

Integrating over the volume of pillbox, apply Gauss’s Theorem

ʃ  D dv =   D.ds = ʃ dv 
   

 .................................................................(6.8.11)

Assuming the height of the pillbox to zero, and surface charge density s3 area of the
pillbox being small A, then

- D1n A + D2nA = sA

  or   D2n - D1n = s 
..............................(6.8.12)

When surface charge density is zero. The normal component of D 


 is continuous

across the boundary, However it is not true for the normal component of E 


 unless

the two materials have identical (permittvities). From continuitiy equation,

. J =  
  



t ...................................................................................(6.8.13)

Integrating equation (6.8.13) over the volume pullbox having approximately
zero height, we get from (6.8.10)

J - J  = 1n 2n  s
 t ...........................................................................(6.8.14)

For monochromatic electro magnetic wave, ss will vary as e-jwt then

Ɛ E  - Ɛ E  = 1 1n 2 2n s ........................................................................(6.8.15)

and, 1 E1n - 2 E2n = jws.......................................................................(6.8.16)

Now consider the following cases

It 
s
 = O. from equation (6.8.15) and (6.8.16)

i)    c1

Ɛ1 = c2

Ɛ2 ................................................................................(6.8.17)
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Which can be satisfield for properly chosen materials,

ii)     If s  o, eleminating s from equation (6.8.15) and (6.8.16),

       [Ɛ Ɛ1 1n 2 2n +       ] E  = [  + j        ] E
jc1


c2

 ......................................(6.8.18)

iii)      It c2 = , then E2n = O since the electric field inside a perfect conductor

must be zero. From equation (6.8.15), we have E  =    1n

s

Ɛ1 
as D  =   1n s  when

electromagnetic waves pass into a conductor, the field amplitudess fall exponentially
with a decay lenght given by the skin depth

 


2 
 ....................................................................(6.8.19)

As conductivity increases, the skin depth gets smaller. Since both static and
oscillating electric fields vanish within a good conductor, the boundary condition is
given by:

E1t              t

D1n s            D  2n

.................................................................(6.8.20)

Tangential Component of 


consider a loop across the boundary (Fig. 6.7)

From Maxwell’s equations  x     J
 


D
t

 
,we intergrate over the surface

bounded by the loop, and apply Stoke’s theorem to obtain

H1

H2

h
1

h
2

Fig. 6.7

i



NSOU  CC-PH-08   212

ʃ      x ds  
s c dl        ʃD. ds 

    
 t

 
ʃ 
s

J ds 
 

...............................(6.8.21)

As before taking the limit where the lengh of the narrow edges of the loop
become zero then we have,

H1tl - H2tl = Js^ ...........................................................................(6.8.22)

Where Js^ represents a surface current density perpendicular to the direction of

the tangential component of 


 that is being matched.

6.9  Wave Equation
Formulation of complete and symmetric theories of electricity and magnetism,

together with Lorentz force law, by Maxwell, have culminated in the prediction of
wave theory of light identified and discovered as electrimagnetic wave, which travells
with the speed C.

Let us assume that the medium is linear permittivity e, the permeability  and
electrical conductivity are constant. The wave equation for magnetic intersity is

obtained by taking curl of  x     J
 


D
t

 

    x x x x    J
 


D
t

    
 ......................................................(6.9.1)

As the current density,      J c

 
 and electric displacement,     D Ɛ

 
, so from

equation (6.9.1)

     x x x x       c E Ɛ       ( E)
 

 t

     
.........................................(6.9.2)

Putting the value of  x E 
 

 from Maxwell’s equation and given     B
 

simplitying equation (6.9.2)

 x x             c  Ɛ
    

 t
 

 t

 
 ..............................................(6.9.3)

using the vector identity  x x        
      

From equation (6.9.3) then
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          c           Ɛ
     

 t


 

 t2


........................................(6.9.4)

using,              


   
, Equation (6.9.4) becomes

                        -Ɛ c

  

 t2


 
 t


.....................................................(6.9.5)

Equation (6.9.5) is the wave equation.

Again from Maxwell’s equation,      x  
 t

 
 we can obtain,

        x x x  
 t

   
...............................................................(6.9.6)

            x x Ɛc               
 
 t

     

 t2


..............................................(6.9.7)

or,                      =  Ɛ  c 
 
 t

     

 t2


.........................................(6.9.8)

If the medium contains no charge  = O, so that               D


   
, so

equation (6.9.8) becomes,

                       Ɛ c 
 

 t2


 
 t


.....................................................(6.9.9)

Which is a wave equation.

6.10  Propagtion of EM Waves in Free Space ie  = 0, and
 = 0, J = 0

 An EM wave unlike mechanical waves which requires the presence of material
media to transport energy from one location to another space, carries the energy
throngh a vacuum at a  spaced of C = 3 x 108m/s which will be proved here from
all the electromagnetic equations of Maxwell.

In free space, Maxwell’s equations become
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......................................................................................(6.10.1)

        
 

......................................................................................(6.10.2)

   x  

   
 t


.......................................................................(6.10.3)

   x  Ɛ

   
 t


.......................................................................(6.10.4)

Taking the curl of equation (6.10.3) we obtain,

      


    
 t

   x
 

or     Ɛ    

 t2

 
..................................................................(6.10.5)

Similary taking curl of equation (6.10.4) and using (6.10.3) we get,

                 Ɛ 

  

 t2


................................................................(6.10.6)

Thus it appears that both 


 and 


 satifiys the well known wave equation -

                   
c

  
 t2 ........................................................................(6.10.7)

So the velocity of propagetion of EM wave is

8

0 0

1
C = = 3×10 m/s

ε μ

Which is exactly the speed of light in free space, there is a corelation can be
drawn that light is a form of EM waves.

Let us seek a simple solutions concerning 


 or 


E r  t  and H r, t                
j r ) j r t    

       
.........................(6.10.8)

Where E 


 and H 


 are complex amplitudes. Which are constants in space and

time 
  is the were vector determining the direction of prepagation of wave, 

  is
defined as
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         n =      n 
  ĥ



c .......................................................................(6.10.9)

Where n is the unit vector along the direction of propagation.

Therefore,              and         =  E  2d 
 t2

  
.........................................(6.10.10)

subsituting equation (6.10.10) in equation (6.10.5) we get

                   
 



                
 


    


  

 

 or        
    

...............................................................................(6.10.11)

Now plugging in the value of 0 = 4   x 10-7 H/m and 0 = 8.85 x 10-12  F/m,
we get v = 3x1010 m/s = speed of light(c)

Relative diections of        and
  

From equations (6.10.8), (6.10.1) and (6.10.2) it can be show that.

         and


  
 

..............................................................(6.10.12)

so both  and   
 

 are perpendicular to the propagation vector  


, which implies
the transverse characteristic of EM wave or light wave.

From equation (6.10.8), (6.10.3) and (6.10.4) it can be shown that

j  x j or x                  

     
................................(6.10.13)

and j  x j or x                  

     
..................................(6.10.14)

Equation (6.10.13) shows that  


 is both perpendicular to both  and   
 

Equation (6.10.14) shows that 


 is both perpendicular to both  and  
 

. Hence

field vectors 


 and  


 are mutually perpendicular and also both are perpendicular to

the direction of propagation vector  


 As         
 

, thus in vaccum, K is real

quantity, it proves that both 


 and  


 are in phase.
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Wave Impedance :

The ratio of the absolute value 


 and  


 is defined as wave impendance.

        




      
      





The value of Z
0
 comes around 376.6 .

6.11 Plane EM Waves in an Isotropic
Dietectric Medium

Let us consider a linear homogeneous and isotropic dietectric medium where
 = 0, Maxwell’s equation then becomes

                                   .
 

..........................................................................(6.11.1)

     .
 

.........................................................................(6.11.2)

            x         
 

 t
  


...........................................................(6.11.3)

   x   ϵ
   

 t


...........................................................(6.11.4)

Taking curl of equation (6.11.3) and using (6.11.4), we obtain

        
    

 t
       x
  ϵ 

 t2



As      .
 

 for no charge present in the dielectric

                 Ɛ
  

 t2


....................................................................(6.11.5)

In the same way, taking curl of equation (6.11.4) and      .
 

, we get

                 Ɛ
  

 t


....................................................................(6.11.6)



NSOU  CC-PH-08   217

So both  


 and  


 follow the standrad differential wave equation. So we get
the velocity of electromagnetic waves in dielectric medium,

1 C

0 0 r r r r
1

ν = = (ε μ ε μ ) = ε μ
μ ε ..........................................(6.11.7)

Where 
1

0 0C = ε μ  is the speed of EM waves in free space.

r is the permittivity or deelectric constant K.

r is the relative permeability of the medium For a nonmagnetic dielectric
medium r = 1 so,

C
ν = 

k

Solutions of the wave equations (6.11.5) and (6.11.6) are given by

                   


E (r, t) = E  e0

J(k. r - t)  


H (r, t) = H  e0

J(k. r - t) 



  ...............................................................(6.11.8)

Where E  0


 and H  0


 are complex amplitudes, which are constants in both space

and time and, wave vector is given by


   n̂   ^̄

λ
n̂   

c n̂ ............................................................(6.11.10)

It shows that both 

E  and 


H  are prependicular to the direction of propagation

vector 
 , which reveals that nature of electromagnetic waves.

subtituting the solution given in equation (6.11.8) to (6.11.4) we obtain

K x E = H

 
..........................................................................(6.11.11)


K x H = E

 
.........................................................................(6.11.12)

From equations (6.11.11) and (6.11.12) we can conclude that both 

E  and 


H 

are prependicular to each other and also both of them are perpendicular to the
direction of propagation vector 


K .
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From equation (6.11.8) and from the wave equation we can get

K2 = 2................................................................................(6.11.13)

It states that in this stated dielectric properties wave vector 

K  is a real quanlity

and from equations (6.11.11) and (6.11.12) it can be shown that both 

E  and 


H  are

in phase.

Wave impedance is found to be

       




    


    

 ....................................................(6.11.14)

or   

r

r

    



Poynting Vector : Poynting Vector 

S         is given by


S = E x H        

 
.................................................................................(6.11.15)

sustituting the volume of 

H  from equation (6.11.11) in equation (6.11.15)

we get,

 1
 S =        E x ( K x E)        

  

 1
 [K (E. E)-E (E. K)]

 E2

 K

     



So,   S =            
 E2

 K


...........................................(6.11.16)

Equation (6.11.16) shows that energy flows in the direction of propagation
vector K


, we can write the magnitudes as

 K E = H

or ε E =   H
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or
1


ϵ  = E
2 1


 

..............................................................(6.11.17)

Therefore energy is equally shared between electric and magnetic field in linear
isotropic and homogeneous dietecric medium.

Total electromagnetic energy density is

u = 
1
 ϵ + E

2 1
    =  =  H E H

2 2 2ϵ ............................(6.11.18)

we can also write Poynting vector as

S   n̂  n̂u
ϵ

uν ..................................................................(6.11.19)

Where n̂  is the unit vector in the direction of propagation. So the magnitude
of Poynting vector is velocity of the wave multiplied by the energy density and
propagate in harmony with the electric and magnetic field.

6.12 Reffection and Refractron at the plane interface
of two Dietectrics: Normal Incidence

The interface separating the two different dielectrics is taken to be the X-Y
plane at Z = 0. A plane monochromatic EM wave of angular frequency w incident
normaly at the interface from medium with electric field vector along the X-axis.
The wave will be partly reflected into the medium 1 and partly transmitted into the
medium 2. The frequency of the reflected and transmitted wave will be same as the
boundary condition must be the same at all times. The incident and transmitted
waves will move along positive X-diretion. While reflected wave along negative
X-axis.

The incident reflected and transmitted wave have electric and magnetic field
vector are as follows:

Incident wave :   E1x
e
j(k1z - t)



  Ĵ H1 ye
j(k 2 z t)



Reflected wave : ´     ĉ ́xe
- (k z 1 + t)
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´    ˆ  ́ye
- j(k z 1 + t)



Transmitted wave :   E2xe j(k z 1 - t)


  Ĵ H2 ye
 j(k z 2 - t)



Taking the magnetic permeability of the medium to be 0, we can write magnetic
field vectors as follows :

H  =          E , H  =         E  and ´ =         ´1y 1x 2y 2x y x  

n1

0c 
n2

0c 
n1

0c 

The propagation constants are given by k1 = n1w/c  and  k2 = n2w/c

From the boundary condition follows that tangential component of electric field
is continuous at z = 0. so we have

E1x - E'1x = E2x.............................................................................(6.12.1)

We have from the boundary condition that tangential component of magnetic
field is continuous at  z = 0, then

H1y - H'1y = H2y

or n1 (E1x
+ E'1x

) = n
2E2x .....................................................................(6.12.2)

Solving equations (6.12.1) and (6.12.2) we get,

E  =                        '1x E1x

n n2 1- 
n n2 1+ ..........................................................................(6.12.3)









  

    



Medium 1 Medium 2

  







X

O

Y



Fig. 6.8
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E  =           2x  E1x

2 n1

n n2 1+ ..........................................................................(6.12.4)

Fresnel co-efficient is defined as the ratio of reflected and wave and incident
wave and ratio of transmitted wave and incident waves. These co-efficients are
denoted by r and t.

We get,

r =           
́x

x

=            
n n2 1- 
n n2 1+ ......................................................................(6.12.5)

t =                         x

=            
x 2 n1

n n2 1+ .......................................................................(6.12.6)

Now, the reflectance (or reflecting power) is defined as

R =           
<S1 
<Ś

...................................................................................(6.12.7)

and transmittance as

T =           
<S1 
<S >2

...................................................................................(6.12.8)

where <S
1
>, <S'

1
> and <S

2
> are the average energy. flows per unit area per

unit time for the reflected and transmitted waves. So they represent the time averaged

Poynting vectors or intensities of three waves. Also we know that 
E

<S> =
2

0

0 2




En
= 

c

2
0

0 2  where, n =
0ϵ


 is refractive index and E

0
 is the amplitude of

electric fields. So reflectance and transmittance in normal reflection is given by

R  =                        n  
´  x

2

x 
2 = r  2 =                          

n n2 1- 
n n2 1+ 

2 
......................................................(6.12.9)

and T  =           n = 
n  2 t2 4n n1 2

(n n2 1+ )2 
n E                         2 2n

2  

n E                         1 1n

2  n  1
= ...............................................(6.12.10)
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From equations (6.12.9) and (6.12.10) we get Rn
 + Tn = 1....................(6.12.11)

which proves that energy is conserved at the interface.

6.13 Reflection and refractron at oblique incidence at
the Interface Between two Dietectrics

The reflection and refraction of EM waves at a plane surface between two media
of different dielectric properties are well known phenomena. The different aspects of the
phenomena divide themselves into two classes.

1)  Kinematatic Properties :

a) Angle of reflection equals angle of incidence.

b) Sneall’s law : 
sini    
sin                 ɤ = 

n2

n1
 where i and r are the angle of  incidence and

reflection, while n2 and n1 are the corresponding indices of refraction.

2) Dynamic properties :

a) Intensities of reflected and refracted radiation.

b) Phase changes and polarization.

3) Polarization : Consider the incident, the reflected and the transmitted waves as
shown in the Fig. 6.9. Here K

I
, K

T
, and K

R
 be the propagation vecitors for the incident,

reflected and transmitted waves, respectively. From boundary conditions, we know that
all rays must have the same angular frequency. The electric and the magnetic field
vectors can be written as follows :

For parallel polarization (P)

Incident wave :

 (r. t)
i(k .r-wt)I

 
 e 

  

 (r. t) (
 

 n                1

                c  k1
ˆ x[e               j(k .r-wt)I

 

Refected wave :

R (r. t)
j(k .r-wt)R

 
 Re 

  

R (r. t) (
 

 n                1

                c  k1́
ˆ x[Re               j(k .r-wt)R

 

}......................(6.13.1)

}......................(6.13.2)
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Transmitted wave :

T (r. t)
j(k .r-wt)T

 
 Te 

  

T (r. t) (
 

 n                2

                c  k2́
ˆ x[T0e               j(k .r-wt)T

 

Where k , 1 
ˆ k 1́

ˆ , k2 
ˆ  are the unit vectors along     R

 
and T


respectively let I, R  and

T be the angles between the normal to the interface and the propagation direction. The
angles  I,  R  and  T  are called angle of incidence, reflection and refraction, respectively.

Reflection and Retraction for oblique incidence: The plane of incidence XZ plane,
The incident Electric field as in the xz plane (P polarization).

All three waves have the same frequency that is determined once and for the source
then three wave numbers are related by

 KI I = KR I = KT2

or    =   R = 



T = 

n

n
T ......................................................(6.13.4)

The existence of boundary conditions at Z = 0, which must be satisfield at all points
at all times, implies that the spatial (and time) variation of all the fields must be the same
at z = 0, consequently, we must have the phase factors all equal at z = 0. For the spatial
terms, evidently

   r
 

=   R  


r


= T  


r


   when z = 0

}......................(6.13.3)

K R
ER

H R

HT

K T

ET

H I

K I

E I

Z = 0

n1 n2



R T

Z

X

Fig. 6.9
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which is known as phase matching ......................................................(6.13.5)
Explicitily,

x (KI)x + y (KI)y = x (KR)x +y (KR)y = x (KT)x + y (KT)y
...................(6.13.6)

for all x and all y

Equation (6.13.6) can only hold if the components are separately equal, for if
x = 0, we get

(KI)y = (KR)y = (KT)y.........................................................................(6.13.7)

while y = 0,   gives

(KI)x = (KR)x = (KT)x.........................................................................(6.13.8)

let us orient all our axes so that   


 lies in the xz plane [ie.(KI)y =0]; so from equation

(6.13.7) it follows that R


and   T


also lies in the same plane. Thus we conclude that

First law : The incident, reflected and transmitted wave vectors form a plane

From equation (6.13.8) it follows that

KI sinI = KRsinR = KTsinT ...........................................................(6.13.9)

Second law : The angle of incidence is equal to the angle of reflection

I = R...............................................................................................(6.13.10)

which is the law of reflection

Now for the transmitted angle

Third law,

Sin

Sin

= 
n

n
.............................................................................(6.13.11)

which is the snell’s law of refraction. The boundary condition that the tangential
component of the electric field is continuous across the interface (z = 0) gives

E0I cosI - E0RcosR  = E0T cosT...............................................(6.13.12)

The boundary condition that the tangential component of the magnetic intensity is
continuous across the interface (z =0) gives

n1 E0I + n1 E0R = n2 E0T

n1 (E0I + E0R) = n2E0T..................................................................(6.13.13)
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Equations (6.13.12) and (6.13.13) can be solved for 
E0R

E0I

 and 
E0T

E0I

 which gives the

Fresnel’s reflection and transmition co-efficients

r  = p

(n  cos  - n cos )2 I 1 T 
(n  cos  + n cos )2 I 1 T  ..........................................................(6.13.14)

t  = p

2n  cos1 I
(n  cos  + n cos )2 I 1 T  .........................................................(6.13.15)

Eliminating the refracting index from the above equations (6.13.14) and (6.13.15)
we get

r  = p

tan (      I T

tan (      I T

....................................................................(6.13.16)

t  = p

2cos Sin I   

Sin (  Cos (             I T I T

.............................................(6.13.17)

Note : rp given by equation (6.13.16) is drawn rpverses I   [Fig. 6.12 (a)]

S Polarization: for S polarization electric field of the incident wave is nornal to the
plane of incidence consequently, magnetic field in the plane of incidence. All the reflected
and transmitted waves are shown in fig. 6.10. Frequencies of the three waves are the
same, Like P wave, the boundary conditions remains the same at z = 0, the spatial and
time variation of all fields must be the same. Consequentily phase factor are all equal at
z = 0 i.e.

 (K . r )  = (K .r )  =(K .r )    I z=0 R z=0 T z=0

  ................................................(6.13.18)

Thus the law of reflection (
I
 =


R
) and Snell’s law (n

1
 Sin

I
 = n

2
 Sin

T
)

are obtained for S- polarization. Also
phase matching confirms that all the

wave vectors   


, R


 and T


 are

coplanar.

* Reflection and refraction for
oblique incidence, the plane of
incidence (plane of the paper  xz). The
incident electric field is perpendicular

K R HR

E R

E 2
KT

HT

E I

KI

HI

R

I z   z 


n1 n2

Fig 

X
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to the x z plane (S polarization)

The continuity of the tangential components of    


 and    


 gives (at z = 0)

E0Ie
j      r)

 
+ E    0Re

j      R r)
 

= E    0Te
j      T r)

 

 E    0I + E   0R = E   0T ............................................................................(6.13.19)

and n E  cos  e   1 0I I
j      I r)

 
    n E  cos  e   1 0R R

j      R r)


   n E  cos  e   2 0T T

j      T r)


 n E  cos   1 0I I   n E  cos  E  =   1 0R I 0R n E  cos  2 0T T ............................(6.13.20)

Solving (6.13.19) and (6.13.20) for E0 I   
 E   0R

 and E0 I   
 E   0T

 We get the Fresnel’s reflection and

transmission coefficients.

 
E0I   

 E   0R rs

n cos   1 I n  cos2 R 
n cos   1 I n  cos2 R ....................................................(6.13.21)

and  
E0I   

 E   0T ts

2n cos   1 I
n cos   1 I n  cos  2 T ....................................................(6.13.22)

Again utilising Snell’s law, equation (6.13.21) and (6.13.22) can be written as

 rs

Sin( )   I T

Sin( )   I T

.........................................................................(6.13.23)

 ts

2cos  Sin I T

Sin(  )   T T

.........................................................................(6.13.24)

Note r
s
 given by equation (6.13.23) is drawn rs verses I [Fig. 6.12 (a)]

Reflectance is the amount of flux (radiation) reflected by a surface, normalised by
the amount of flux incident on it. Transmittance is the amount of flux (radiation) transmitted

by a surface, normalised by the amount of flux incient on it. So if SIS


 is the time

averaged Poynting vector for the incident wave for s polarization and SRS


 for the

reflected wave, reflectance is given by
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  S >RS


R =   S 

n̂
n̂ S >IS

 .............................................................................(6.13.25)

If STS


 is time - averaged Poynting vector for the transmitted wave, then

transmittance

  S >TS


T =   S 

n̂
n̂ S >IS

 .............................................................................(6.13.26)

Similarly, the reflectance and the transmittance for P polarization are as follows-

  S >RP


R =   P 

n̂.
n̂.S >IP

 .............................................................................(6.13.27)

  S >TP


T =   P 

n̂.
n̂.S >IP

 .............................................................................(6.13.28)

So the Fresnel’s coefficients are

  rS

2 Rs

n cos   1 I n  cos  2 T 
n cos   1 I n  cos  2 T ....................................................(6.13.29)

  Ts

4n n cos  cos   1 2 I T 
(n cos   1 I n  cos ) 2 T 

n cos   2 T
n cos   1 I

tS

2

.......................................(6.13.30)

  RP

n cos   n cos2 I 1 T 
n cos   2 I n  cos  1 T 

<r >P

2

...............................................(6.13.32)

  TP

4n n cos  cos   1 2 I T 
(n cos   2 I n  cos )1 T 2 

n cos   2 T
n cos   1 I

tP

2

......................................(6.13.33)

Note : See Fig. 6.12 (b) for R
S
, R

P
, T

S
, T

P
 plotted against angle of incidence.

Key points to be take  away :

1. Both the coefficients (R & T) are only independant of the material properties i.e
permeability (as per second form the equations), throgh still have same implications of
the reflective index.

2. Both the coefficients (R & T) are only dependent on the angle of incident I  and
angle of refraction R
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Some interesting results to observe :

1. Normal incidence : Here I  = T  so from equations (6.13.14), (6.13.15), (6.13.21)
we get,

 r S rP

n  n2 1 
n  n2 1  .....................................................................(6.13.33)

and   t  S tP

2n1

n  n   2 1  .......................................................................(6.13.34)

Also RS = RP     and    TS = TP

2. Grazing angle of incidence ; In this case incident waves touches the interface at
on angle I   , then

r
P
 = - r

S
 = -1...............................................................................(6.13.35)

and t
P
 = t

S
 = 0 ..................................................................................(6.13.36)

so that R
P
 = R

S
 = 1................................................................................(6.13.37)

T
P
 = T

S
 =  0...............................................................................(6.13.38)

This reaveals that there is total reflection for  both S and P polarization. Just think
of a beam of light shinning on a flat surface

3. Brewoters law : A reletionship for light waves stating that the maximum
polarization (vibration in one plane only) of a ray of light may be acheived by letting the
ray incident on a surface of transpent medium in such away that the refracted ray makes

Transmitted Beam

Reflected Beam

Incident Beam n1

n2

 



Transmitted Beam

Reflected BeamIncident 
Beam

n1

n2

 



900

Fig. 6.11
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on angle of 900 with the reflected ray.

From equation (6.13.16), we find that for (I + T) =  r
P
 = 0 which implies that for 

 
(I
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+ T) = , the electric field polarized parallel to the plane of incidence is not reflected
at all. Under this condition reflection coefficients r

S 
  ie the electric field polarized

normal to the plane of incident is partly reflected.Thus an unpolarized light consiting of
both types of vibration of E fields incident at angle. B satisfying the condition (I + T)
= , will be plane polarized normal to the plane of incidence. This angle of incidence
B for which r

P
 = 0 is known as Brewsteis angle under this condition, from Snell’s law,

we have

..........................................(6.13.39)

Example of Breswter law application is polarized sunglasses, These glasses use the
principle of Brewster angle. The polarized glasses reduce glare that is directly from the
sun and also from the horizental surface like road and water.

Total Internal Reflection, Evanescent Wave :

According to Snell’s law, Sin  T

Sin  I =
n2

n1

So when light wave passes from a optically denser medium into a rarer one
ie. n

1
 > n

2 
the wave vector 


K bends away from the normal. Specifically, if the light is

incident at the ceitical angle  
C
 defined as C = n  1

Sin n  -1

2  we get SinT= 1, or T = 2


,

which implies that, the trasmitted ray just grazes the surface. It I  C , then Sin T  1 ,
which implies that it dies not correspond to any possible T . Here no rays are reflected,
rather the whole light wave reflected back to the denser medium. This phenomenon is
called total internal reflection.

In spite of no reflection into the denser medium, The fields are not zero in that
medium, which is called evanescent-wave. It altenuates rapidly and it transports no
energy into the rarer medium.

Transmitted wave vector can be written as

K  = K  (Sin  i + cos  K) T T T T  ...................................................(6.13.40)

with   K  = T

v2

   
n2

C
......................................................................(6.13.41)
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As sin
T
1, obviously we can write cos

T
 2

T=   1-Sin θ , which is maginary number.

Now, for the transmitted wave  


=                         c 
 j(k .r- t)T 

 

where x

=

=

= K x + j k z *

Where K*   
n1

C
Sin  I and K = 


C

2
In1

2Sin θ - n2

2

So, we can write the tranmittes wave as

T (r. t)
j(k .r-wt)T

 
  Te 

  

or

T (r. t)
i(k x- t)* 

 Te      e 
 -k2 .................................................(6.13.41a)

This is the wave defined as evanescent wave propagating in x-radiation ie. parallel

Fig. 6.13

1.0

0.8

0.6

0.4

0.2

n1 n2

RI RP

00 300 600 900



successive internal reflections. 

I
n1 /n2

RI

RP

00  900



C

R
ef

le
ct

an
ce

(a) (b)



NSOU  CC-PH-08   232

to x direction with a penetration depth of K-1. It decays rapidly and becomes negligible

beyond a distance of few wavelengts.

Reflectances for S and P polarizations when n
1
<n

2
 and n

1
>n

2

Let 2
T=   Sin θ1-cosT = jD. Now for parallel and perpendicular, electric field

vectors, reflection coeffcient becomes from, equation (6.13.14) and (6.13.21)

................................................................(6.13.41)

and r ´ = S

n cos   jn1 I 2  
n cos  jn1 I 2   .................................................................(6.13.42)

Then Reflectance is given by,

R ´ r ´p p   2.................................................................................(6.13.43)

R ´ r ´S S   2.................................................................................(6.13.44)

It folloes fro above equations that

R ´p   R ´S    .............................................................................(6.13.45)

From Fig. 6.13 (a) it is clear that the reflectance for S and P polarizations when
n

1
<n

2
; it shows that there is no total internal reflection. From Fig. 6.13 (b) it is clear that

when n
1
>n

2
 : there is a critical angle qc and total internal reflection.

From, equations (6.13.41) and (6.13.42), it can be written in phase from,

r
P
' = e (-j2 ).........................................................................(6.13.46)

and r
S
' = e(-j2' )...........................................................................(6.13.47)

where tan = n
1
/n

2
cos

1
  and tan' =

n2
n cos1 I . Here, the electric field lags that

incident wave by 2, for P polarization and 2' for S-polarization respectively. elearlly
elliptically polarized light will be observed it the incident wave is polarized is a palne
making on angle ( 90)0 with the plane of incidence.

6.14 Summary
1. We have studied that how Maxwell’s equation and its solution proved the

secmingly disparate phenomen of electricity magnetism, and optics are all related aspect
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of the larger phenomenon of electro magnetics. Solutions to the fundamental euations of
electrialy and magnetism are electromagnetic waves. Most importants findings of the
solution os Maxwell’s equations is the revelation that all forms of electromagnetic wave
be it, visible light x-rays, r-ray, infrared on ultraviolet light, propagle at the speed of light
in vaccum, and transference of energy from one space to another without any medium.

2. We have also seen, how Maxwell’s moclified the Ampere’s law of steady flow
current to the case of varying current with the introduction of defination of displacement
current due to changing electric field. Instantaneous magnetic field generated due to
changing electric field has led to the propagation of radiation, which carries energy from
one place to another. The EM radiation which propagaties energy is a major discovery
by Maxwell’s due to his prediction of displacement current Modern age comminacation
is impossible with out EM radiation.

3. We have also studied the introduction of gauge transformation. We have discussed
the six variable of EM fields can be represented.

4. The tangential componet of the electric field (


) is continuous across the
interface.When the medium conductivity infinity, the tangential component of magnetic
intennity (


 ) is continuous accross the interface

5. We have discussed reflection and refraction at the plane interface of two non
conducting (di electric) media (i) Normal inciedence and (ii) oblique incidence. We have
calculated the Fresnel reflection coefficient and Fresnel transmission cofficient for both
normnal and oblique incidence . We have also evaluated reflectances for s and p
polarizations when (a)  n

1
<n

2
 (when there is no total internal reflection) and (b) n

1
>n

2

(when there is critical angle c and total internal reflection).

6. We have derived Brewster’s law tan 

6.15  Review Questions and Answer
Question :

1. S now that the dispalcement current in a parallel plate capacitor is equal to
the conduction current in the connecting leads.

Answer :

The capcitance of a parallal plate capacitor is C    Ad
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where A is the area of plate d is the distance between them, and  is its permittivity.
The conducting current in the conecting leads is

ie    
dq
dt

   C
dv
dt

or

The electric field in the (capator) dielectric E = n/d. Now electric displacement is

D        
d

E   , Hence the displacement current density 
dD
dt

   

d

dv
dt

The displacement current is

id    
dD
dt

   
dv
dt

A A
d



Hence  i
D
 = i

C

2. State Poynting vector

Answer : See article 6.2

3. Define Brewster’s Law

Answer :  See article 6.13

4. Define critical angle penetrating
depth.

Answer : See section 6.13

5. Define, momentum, pressure and angular momentum of electromagnetic
radiation.

Answer : Radiatopn pressure is the mechanical pressure exerted upon any surface
due to the exchange of momentum between the object and the electromagnetic field. This
includes the momentum of EM radiation of any wave lenght is obsoerd reflected or
emitted by matter on any scale.

For further follow-up answer, see article 6.5

6. State the boundary conditions between two interfacing different dielectric.

Answer : See article 6.8

id

t

~
li
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7. State the boundary conditions between dielectric and conductind media

Answer : See article 6.8

8. Prove that the momentum density stored in an electromagnetic field is given

g


  s/c2


 in free space where  Poynting vector.

Answer : Force F


  d(P )mechanical

dt
 from this we can show that

P


 
electromagnetic

 = Pem



=  = momentum related to electromagnetic wave

 momentum density Pem


   S  


Again 
1

 ϵ  1c

So, momentum density Pem

 S  


c2   g


6.16   Problems and Solutions
A Steady current I is flowing through a metallic wire of length L and radius R

throght a potential difference V calculate (a) Poynting vector, (b) Total energy delivered

to the system and, (c) derive the value of the resistance of the wire R using J,


ʃ E, d


.

Solution :

Assuming electric field E is parallel to the wire then, E  V
L

 the magnetic field is

circumtanential at the surface

B   

2 R

Hence the Poynting vector magnetude is

(a)

S0   


E x B
 

  


L
V  

2 R   VI
2 RL
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and it shows that Poynting vector is inward

(b) The energy passing throngh the surface of the wire

S . ds0


ʃ   


- S0 2 RL

  -VI
2 RL 2 RL

  -VI

(c) Now

 

ʃ (J. E) d  =   ʃ d    
  V2

L2
ʃd

  V2

L2
2 R L2

    V
2

L
R =2

R V2 

L
 ʃ (J. E) d  = 

 

As ʃ (J. E) d  
 

  = total Joule loss per unit time due to the flow os current

V

R
ʃ (J. E) d   = 

 

 L
= R

R2

2. A plane electromagnetic wave has the magnetic field given by

Where K is the ware number, where kj,  are the cartensian unit vectors in x, y and

z directions respectively.

(a) Find the electric field E 


 (x,y,z,t)

(b) Find the average Poynting vector

Solution :
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(a)

(b) The average Poynting vector is given by

3. The space time dependence of the electric of a linearly polarzed light in free
space is given by  E

0
 Cos (t-kz). Find the time average density associate with electric

field.

Solution :

u
E
 = ½ e

0
E

2
 = ½ e

0
E2cos2(t-kz)

 <u'
E
> = ¼ e

0
E

0
2

4. A plane polarized electromagnetic wave in free space at time t = 0, is given by

E 


 (x,z,t) = j exp[j(6x+8z)]

Solution : Magnetic field vector is given by

5. It the vector potential  satisfied the coulomb gauge find the

value of the constant.
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Solution : condition for Coilomb gauge is   
 

6. A vector potential  


 ke  r r-at  (where a and k are constants) corresponding to

an electromagnetis field is changed to 


  ke  r r-at . Prove that. This will be a gauge
transformation if the corresponding change ' -  in the scalar potential is - akr2e-at

Solution : Gauge transformation

7. The intensity of sunlight reaching the earthis surface is about 1300 wm-2. Calculate
strenght of the electric and magnetic fields of the incoming sunlight.

Solution : The time average Poynting vector

<S> = ½ Re(E x H)
  

Taking incoming wave variation E = E e  0

-jwt


 and H = H e0

-jwt


.

we get

or, H  =           rms

Erms

So, S
av

 =
Erms

2

c

on δ -7 -1
rm sE = cμ Sav = 3×10 ×4 10 1300 Vm

=7000Vm-1

Again

B  rms = E  r ms = 700
c 3 x 10 8

T

2.33 x 10  T-6= 



Unit 7  Network Theorems

Structure

7.1 Objectives

7.2 Introduction

7.3 Thevenin’s Theorem

7.4 Norton’s Theorem

7.5 Superposition Theorem

7.6 Maximum Power Transfer Theorem

7.7 Reciprocity Theorem

7.8 Summary

7.9 Review Questions and Answers

7.10 Problems and Solutions

7.1 Objectives

You will know from this unit—

To learn teachniques of solving circuits for bilinar network comprising passive
elements,

Application of KVL-KCL, in series, parallel, voltage and current divider rule,
source transformation techniques,

Study of Thevenin, Norton, Superposition, Reciprocity Theorem and Power Transfer
Theorem, and their equivalent circuits, to simply the evaluation process,

Necessity of Thevenin’s and Norton’s Theorem in A.C. circuit behaviour and
analysis.

7.2 Introduction

Network theorems give a more simple way to analyse electrical circuits than Ohm's
law or Kirchhoff's laws. They are not basic theorems and are deducible from Kirchhoff's
laws.
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To begin with, the details we focus on some relevant definitions.

Electric network :

Electric network is combination of electric elements like cells, resistances, capacitors,
inductances, diodes, transistors etc.

An active network is that which carries source (sources) of emf, like cell, transistor
etc.

A passive network work does not carry active elements—the source of emfs.

Electric circuit :

Electric circuit is a closed path through which electric current flows or intended to flow.
A closed circuit is that through current flows and when no current flows through, it is an
open circuit. Two points are said short circuit when zero impedance joins the two points.
A linear circuit is that where in the circuit elements do not change with voltage or current,
otherwise it is a non-linear circuit. Node is point at junction of two or more circuit elements.

The Sources:

Voltage Source

A voltage source is an emf generator. The
figure (7.1) shows an emf generator with emf E,
internal resistance ri and load resistance RL. i be
the current flowing through the circuit. Then E =
i(ri+RL) = iri + V0, so the output voltage is less
than the input due to internal potential drop Vi
=iri. To make the output voltage independent of
current ri should tend to zero. A voltage source with zero internal resistance is an ideal
voltage source.

Current Source :

A current source is a current generator. Reference to fig (), we can write

i L L
i

i

E Ei
r R R

r (1 )
r

          Fig 7.2

So the source current become independent of load resistance as ri tends to infinity.

~

Ideal
voltage source 

Ideal ac
voltage source 

Fig 7.1
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An ideal current source has infinite internal resistance.

Thevenin's theorem

The theorem states that any two terminal linear, bilateral network with impedances and
energy sources can be replaced by an open circuit voltage VTh (called Thevenin's voltage)
generator across the terminals with an internal impedance ZTh (Thevenin's impedance)
measured across the terminals replacing the energy sources by their respective internal

impedances. Then the current through the load resistance ZL will be 
Th

i
th i

V
i

Z Z
 

Fig. (7.3) illustrate the procedure of Thevenin's theorem.

  zi

E

z 1

z 2 zL

iL

a

zi

E

b

z 1

z 2

B

A

VTH

z i
I

z 1

z2

c

ZTH ZTH

VTH

B

A

d

z L

B

A

Fig. 7.3

a) The circuit for which iL is to be determined, zi is the internal impedance of the
voltage source E.

b) Load zL is removed and the Thevenin's voltage 
2

Th
i 1 2

Ez
V

z z z
    is calculated

about AB.

c) The E is short-circuited and 
2 i 1

Th
i 1 2

z (z z )
z

z z z
    is calculated across the terminal

AB.

d) The Thevenin's equivalent circuit.

Proof of Thevenin's theorem (using Kirchhoff's laws)

The adjoining figure is a replica of Fig.(7.4) with the
currents flowing through the Given impedances). Using KVL
and KCL in the circuit, we have,

Fig 7.4

z i

E

z1

z2

iL

FL

z1(i - i )L
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i 1 1 2i(z z ) (i i )z E    ........(7.3.1)

i 1 1 2i(z z ) i z E (7.3.2)   ........(7.3.2)

Eliminating i from above equations we have

2

2 1 1 2 Th
L

L i 1 2 2 i 1 2 i 1 L Th

i 1 2

Ez
Ez (z z z ) V

i
z (z z z ) z (z z ) z (z z ) z z

(z z z )

        
 

.....(7./3.3)

Which is same as the yield of the Thevenin's theorem thus proving the theorem.

Procedure of Theveniirs Theorm:

Find the open circuit voltage at the terminals, Voc.

Find the Thevenin's equivalent resistance, RTH  at the terminals when all independent
sources are zero.

Replacing independent voltage sources by short circuit

Replacing independent current sources by open circuit

Reconnect the load to the Thevenin equivalent circuit

Example-1 : Find the current iL through 5 resistor
in the adjoining circuit.\

Solution :

                     Th
10 2 2 4020 10i 5i 10, i.e. i , So V 5. 10 V
15 3 3 3

       

From Fig (7.6)

  Th5 L

40
5 10 10 40 83and R So i 1.6A1015 3 25 55

3

      


Example-2 : The four arms of a Wheatstone bridge have the
following resistances: AB=100, BC=10, CD=4, DA=50.
A galvanometer of 20 resistance is connected across BD. Use

20 V

10 

5 
5 

10 V
10 

iL

Fig 7.5

20 V

10 

5 

10 V
10  V TH

Fig 7.6

10 

5 
10  R TH
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thevenin's theorem to compute the current through the galvanometer when a p.d of 10V
is maintained across AC.

Solution :

We proceed to apply Thevenin's theorem in the Circuit.

G

100  10 

50  4 

A C

B

D

100  10 

50  4 

A C

B

D

10 V 10 V

100  10 

50  4 

A C

B

D

10 Va b c d

10 

4 

100 

50 

CA

B

D

Fig 7.7

b) Galvanometer is removed and the VBD=VTh is calculated

   Th
10 10 1 2V .10 4 10 0.168V

110 54 11 27
    

d) The voltage source is short-circuited and RTh is calculated across BD.

Th
100 10 50 4R 12.79
100 10 50 4

     

So the current through the galvanometer 
Th

G
Th L

V 0.168i 5mA
R R 12.79 20

   

7.4 Norton's Theorem

The theorem states that any two terminal linear bilateral network with energy sources
and resistances can be replaced by current source with current IN (Norton's current),
obtained by short circuiting the chosen terminals and an resistance RN (Norton's resistance),
in parallel to it obtained across the terminal by replacing the energy sources by their
respective internal resistances.

Fig (7.8) gives an illustrative presentation of Norton's theorem.
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Fig. 7.8

a) The circuit for which iL is to be determined; ri is the internal impedance of the
voltage generator.

b) Load RL is short-circuited and short circuit current called Norton's current is

calculated through the terminal AB N
i i

i
r R
 

c) E is short-circuited and Norton's impedance 2 i 1
N

i 1 2

R (r R )
R

r R R )
    is calculated

across AB.

d) Gives the Norton's equivalent circuit with current N N
i

L N

R i
i

R R
 

Proof of Norton's theorem (using Kirchhoff's laws)

The proof is similar to the proof of Thevenin's theorem. Here in Norton's

theorem we have

2 i 1

N N i 1 2 i 1 2
L

L N 2 i 1 1 i 1 2 L 2 i 1
L

i 1 2

R (r R ) E
R i (r R R ) (r R ) ER

i ,
R R r (r R ) R (r R R ) R (r R )

R
(r R R )


           

which is same as the result from Kirchhoff's laws, thus proves the Norton's Theorem.

Procedure of Norton’s Theorm :

1. Find the short circuit current at the terminals, ISC.

2. Find Thevenin's equivalent resistance, RTH (as before).

3. Reconnect the load to Norton's equivalent circuit.

ri

E
RL

iL

a

E

b
B

A

iN

c

RN

B

A

d

R 1

R2
r i

R1

R2

R 1

R 2

iN
R L

iL
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Example

Let us solve Example-1 using Norton's theorem.

From Kirchhoff's laws,

20V–10ii = 0, or i1 = 2 A and 10V–5i2=0 i2 =2A. So iN = ii + i2 = 4A

From the adjoining figure (7.9)

N
50 10R 5II10
15 3

   

i

104 3i 1.6A
105 3


 



7.5 Superposition Theorem

The theorem states that any linear bilateral network with several energy sources, the
current/voltage in any element will be the algebraic sum of contribution from each source

replacing the other sources by their respective internal impedances.

Fig. 7.10

Proof :

The Fig. 7.10(a) hows a circuit to analyze, Fig. 7.10(b) and Fig. 7.10(c) are the
circuits for analyzing the problem using Superposition theorem.

Ei =(ri1 + Rl)i' + R3i1 ......(7.5.1)

20 V

10 

5 

10 V
10 

Fig 7.9

10 

5 
10 

RN

i1

i2

iN

r i1

E 1

Fig.10(a) Fig. 10(b)

R 3

R1 R 2

i1

r i2

E 2

ri1

E 1

R 3

R 1 R2

i1

r i2 r i1

Fig. 10(c)

R3

R 1 R 2

i 1

ri2

E2

I
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Then from Fig. 7.5(b)

3 i2 1 2 2 3 i2 3 i2 2 10 (R r )(i i ) i R (R r )i (R r R )i            ......(7.5.2)

Solving the above two equations by Cramer's rule, we have

n i1 1 1
i2 3

r r R E
1 0(r R

1i       
  

Where il 1 2

i2 3 i2 2 3

r R R
(r R r R R
    

Similarly from Fig. 7.10(c)   
i1 1

1
i2 3 2

r R ) 01i
(r R ) E
  

So i1 1 1
1 2

i2 3 2

r R ) E1i i
(r R ) E
      is the total current through the Resistance R2,

according to superposition theorem.

Now we find out the same solution using Kirchhoff's laws. Please refer Fig.  7.10(a)
From Kirchhoff's laws we have,

E1 = (R1 + ri1)i + i1R2

E2 = (ri2 + R3)(i1 – i) + i1R2 = –(ri2 + R3)i + (ri1 + R3 + R2)i1

From above two equations eleminating i we have,

i1 1 1
1

i2 3 2

(r R ) E1i
(r R ) E

  

which shows i1 = 1 1i i   proving superposition theorem from Kirchhoff’s laws.

Procedure :

1. Dependent source are Never deactivated (always active)

2. When an independent voltage source is deactivated, it is set to zero, replaced by
short circuit

3. When an independent current source is deactivated, it is set to zero, replaced by
open circuit
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Example

Please refer Example-1 : The efm source 10V is short circuited. Then equivalent
resistance about 20V emf generator is

Fig. 7.11(a)

1
125R 10 || (10 5 || 5) 10 ||12.5
22.5

    

So, 1
10 10 1i .72A

125 12.5 2
   

Fig. 7.11(b)

From the principle of superposition theorem we now, activate the source 10 volt and
deactivate 20 volt source, and find out the current in the are EF having 5.

Applying Kirchoff’s law in ABCD network,

–10i1 – 5(i1 – i2) – 10 – 10i1 = 0 ...... (a)

And, applying Kirchoff’s law in the BEFC network,

–5i2 + 10 – 5(i2 – i1) = 0 .......(b)

Solving equations (a) and (b) we find

i2 = ·88A

10A

D

B

C

E

F

i2
5 

5
10

10V

i1

20V

10

10
P

Q

A

D

B

C

E

F

i1

5 

5 



NSOU  CC-PH-08   248

Total current in the arm EF having 5 resistance

i = i1 + i2

i = ·72 + ·88 = 1·6A

7.6 Maximum Power Transfer Theorem

The theorem states that in a linear bilateral with resistances the energy supplied to the
load resistance reaches maximum when the load resistance equals the energy source
resistance.

Proof : Consider the circuit, Fig. (7.12) with a generator of emf E having internal
resistance ri connected to external load RL. Current through the load resistance

L L
i L

ER ,i (r R ) 

So the power delivered to the load resistance,

2
2 L
L L 2

i L

E R
P i R

(r R )
 



For maximum power 2 L
2 3

L i L i L

2RdP 10 E
dR (r R ) (r R )

 
       

So, ri = RL, which proves the theorem.

The percentage of power efficiency of a circuit is defined as

L

i L

Rpower delevered to the external load
% 100 100

total power consumed in the circuit r R
    

Thus efficiency of a circuit becomes 50% when the circuit deliver maximum power to
the external load.

The variation of % with RL is shown in Fig (7.6.3)

The variation of power dissipated across the load with P across the load resistance RL
is shown in Fig. (7.6.4)

Fig. 7.12

ri

E 1

RL

i1
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Fig. 7.14

Example :

1) In the Fig. 7.1.5 Find the value of R for maximum power transfer in 3 resistance.

Solution :

Using maximum power theorem we have for this condition

R 6 3,
R 6
      R = 6

7.7 Reciprocity theorem

The theorem states that in a linear bilateral network with sources and resistances, if the
source of emf in one mesh produce a current in another mesh then the transfer of the emf
source to the second mesh keeping its internal resistance in the previous position will
produce same current in the first mesh.

Proof:

The Fig. 7.16(a) shows the given network and the Fig. 7.16(b) shows the changed

10 V
3 

Fig 7.15

6 

R

100%

η% RL Fig. 7.13

r = Ri L

P
P m ax

RL

ri

E

Fig.7.16(a)

R 2

R1 I

R L

ri

E

Fig.7.16(b)

R2

R1I

RL
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network following Reciprocity theorem.

Consider Fig. 7.16(a), here

2 2

i 1 2 L 2 L i 1 2 L 2 L

R EREI
(r R ) R || R R R (r R )(R R ) R R

       

Now from Fiq. 7.16(b) we see that

2 2

L 2 i 1 2 1 i i 1 2 L 2 L

R EREI
R R || (r R ) R (R r ) (r R )(R R ) R R

         

So, I = I', that proves Reciprocity theorem.

Proceedure :

Conditions to be met for the application of reciprocity theorem :

(i) The circuit must have a single source.

(ii) Initial conditions are assumed to he absent in the circuit

(iii) Dependent sources are excluded even if they are linear

(iv) When the positions of source and response are interchanged, their directions
should he marked same as in the original circuit.

Example :

1. Two cells of emf e1 and e2(e1>e2) and internal resistances r1 and r2 are connected
in parallel to the ends of a wire of resistance R. Find the current through R using i)
Thevenin's theorem ii) Norton's theorem iii) Superposition theorem.

Solution :

The circuit diagram is shown in the Fig. 7.17.

i) iR using Thevenin's theorem.

Step-1 To find VTh

Remove R and find the open circuit p.d VTh

Current through the loop

iR

r 1

e 1

r2

e 2

R

Fig 7.17
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1 2

1 2

e e
i ,

r r
   So the potential across the ab 

1 2 2 1
Th 1 1

1 2

e r e r
V e ir

r r
   

Step-2 To find RTh

Short circuit the emf source and find the resistance across ab.

1 2
Th 1 2

1 2

r r
R r IIr

r r
  

So the current through R

1 2 2 1

Th 1 2 1 2 2 1
R

Th 1 2 1 2 1 2

1 2

e r e r
V r r e r e r

i
R R r r r r r R r R

R
r r


     

ii) iR using Norton's theorem.

Step-1 To find iN. KT

Short circuit the resistance R and find the current through ab.

Norton's current 1 2 1 2 2 1
N

1 2 1 2

e e e r e r
i

r r r r
  

Step-2 To find RN

Here the Norton's resistance 1 2
N

1 2

r r
R

r r
 

Fig. 7.20

So current through the resistance R

RTh
r 1 r2

Fig 7.19

a

b

r 1

e 1

r2

e 2

a

Fig 7.18

b

RN

r1 r2

a

b

r 1

e 1

r2

e 2

iN

a

b

Step 2Step 1
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1 2 1 2 2 1

N N 1 2 1 2 1 2 2 1
R

N 1 2 1 2 1 2

1 2

r r e r e r
R i r r r r e r e r

i
R R r r r r r R r R

R
r r


      

iii) iR using Super Position theorem.

Step-1 Short circuit e1 and evaluate i1.

2 1 2 1
1

1 1 1 2 1 2
2

1

e r e r
i

r R r R r r r R r R
r

r R

    

Fig. 7.21

Step-2 Short circuit e2 and evaluate i2

1 2 1 2
2

2 2 1 2 1 2
1

2

e r e r
i

r R r R r r r R r R
r

r R

    

The total current through R, iR = i1+i2 = 
1 2 2 1

1 2 1 2

e r e r
r r r R r R


 

7.8 Summary

(1) Network circuit Theory is a useful procedure to analyze and simply the complex
circuit in different configuration. Equivalent circuits are drawn by applying different theorems
like Thevenin, Norton superposition and Reciprocity theorems. Also we have shown that

r 1 r2

e 2

R

Fig 7.21 (a)

i1

r 1 r2

Fig 7.21 (b)

e 1

a

a

i2
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Thevenins and Nortons circuit theory are all equivalent in analyzing circuit having bilinear
port. Different types of problems have been discussed using  Kirchoff’s laws, nodal theory
and mesh network to simply Thevenin and Nortons circuit. We have seen the condition for
maximum power transfer from source to the load when source impedence is equal to the
load impedence.

(2) Determination of Voltage Sign : In applying Kirchhoff’s laws to specific problems,
particular attention should be paid to the algebraic signs of voltage drops and e.m.fs.,
otherwise results will come out to be wrong. Following sign conventions is suggested :

(a) Sign of Battery E.M.F.

A rise in voltage should be given a + ve sign and a fall in voltage a –ve sign. Keeping
this in mind, it is clear that as we go from the –ve terminal of a battery to its +ve terminal

(Fig. 7.2.3), there is a rise in potential, hence this voltage should be given a +ve sign. If,
on the other hand, we go from +ve terminal to –ve terminal, then there is a fall in potential,
hence this voltage should be preceded.

 Limitation of Thevenin’s and Norton’s Theorem

(1) These theorems used only in the analysis of linear circuits

(2) The power dissipation of the Thevenin’s equivalent is not identical to the power
dissipation of the real system. Super position theorem limitation—the requisite of linearity
indicates that this theorem is only applicable to determine voltage and current but not
power.

7.9 Review Questions and Answers

1. What are the steps to follow Thevenin’s Theorem?

Ans. See section (7.3) for answer.

 +A AE

Rise in
Voltage
+E

A AE

Fall in
Voltage
E

A   +   BV

Fall in
Voltage
 V= IR

Motion

Current

A      BV

Rise in
Voltage
 V= IR

Motion

Current
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2. What are the steps to follow Norton’s Theorem?

Ans. See section (7.4) for answer.

3. Convert the voltage source of figure to a current source

Fig. 7.24
Solution :

E 100 0I 20 53.13
Z 5 53.13

     

4. Convert the current source of
figure to a voltage source.

Solution : Fig. 7.25

c L

c L

z z (4 90 )(6 90 )
z j12 12 90

z z j4 j6
           

E = IZ = (1060°)(12–90°) = 120–30°

7.10 Problems and Solution

1. In the diagram given in Fig 7.2.6 determine the Norton’s equivalent source current
and resistance with respect to the terminals a,b.

Fig. 7.26(a)
Solution :

Step-1 : Short circuit ab, then the short circuit current

I=10 530

c

a

XL 6 4
Xc

E=120 -300

X 12C 

N



E=100Lo

3   R

X  = 4  
L



C 

I=20A 53.130

3   R

X    4  L 

a

a 

6V

a

b

3
3
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N
6 3 3i 2 2 0.67 2 2.67A

3 3 || 3 3 3 4.5
        

Step-2 : Short circuit 6V and measure the resistance across ab.

Fig. 7.26(b)

RN = 3+3||3=4.5

Fig. 7.26(c)

Problem-2 :

Determine the current through 5W r esistor in Fig. 7.27(a)

Solution :

Step-1 : Short circuit 5 resistance and find iN.

Fig. 7.27(b)

N
2 17i 2 5

12 6
   

Step-2 : Open the 5 resistance and find RN.
Fig. 7.27C

Equivalent circuit of Fig. 7.24(d) is

Fig. 7.24(d)

So RN = 12

So current through 5 resistance
5

17 12
6i 2A
12 5




Problem-3 :
Find the  i) Thevenin’s and ii) Norton’s equivalent circuit

of the adjoining Fig. 7.25 between a and b. Fig. 7.28

6V

a

b

3
3

3

RN

B

A

3

3

5A 2 2A

10

RN

5A

a

b

2 2A 5

2

5A 2 2A

10

RN5A 2 2A

10

iN

10V

a

b
10V

10

10

10 10
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Solution :

 Since no current RTh = 10 + 10||10 Thevenin’s      Norton’s
flows through pq, =10+5=15 equivalent      equivalent
so Vab = 10V circuit      circuit

Fig. 7.29
Problem-4

Find the current through 5k resistance in the circuit in
Fig. 7.30(a) using Thevenin’s theorem.

Solution :                                   Fig. 7.30(a)

Step-1 : Open circuit 5k and find VTh.

From the adjoining circuit

1030 20 6i 20i or i mA
26

   

  Fig.7.30(b)

So, Th
10 30 30 12V 30 6 30 V
26 13 13

     

Step-2 : Replace the emf generator by their respective internal resistances and calculate
RTh.

Fig. 7.30(c)

From adjoining circuit

Th
6 20 60R 6 || 20 k

26 13
   

10V

a

b
10V

10

10

10 10

q

p

10

10

10 10

RN

a

b
10V

15

a

b




A

20V

20k

10 k 

6k

30Vb

a

20V

20k

10 k 

5k

6k

30V

20k

10 k 

6k

b

a

R
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So, Th
5

Th

30 12
V 30 1213i 2.88mA

R 5 60 1255
13


    

Problem 5 : Solve for the power delivered to 20 resistor in the circuit diagram
shown in Fig. 7.31(a). All the resistances are in ohms.

Fig. 7.31(a) Fig. 7.31(b)

Solution : 4A source and its parallel resistance can be converted into a voltage source
(15×4)=60 volt in series with a resistance as shown in Fig. 7.31(a).

Now using superposition theorem to find the current through the 20 resistor, when
60V source is removed, the total resistance as seen by 2V baliery is 1 + 2011 (15+5)11.

The battery current is =  2—11 A. At point P, the current is divided into two parls. The

current passing throng 20 is 
1

2
111I 20 A .09A(20 20) 11

   
When 2 Volt battery removed, the resistance as seen by the battery 60 Volt is 20.95.

The current from the battery is 28693A ~~ 2.87A

This current divides at point A, the current through the 10 is 2
2.87I 1 0.14A

20 1
  

Total current flows through 20 is = I1 + I2
    = 0.09 + 0.14 = .23A

2V

201

5

15


2V

L01

5

15

60V



Unit 8  Electrical Circuits

Structure

8.1 Objectives

8.2 Introduction

8.3 Alternating Current and Its Characteristics

8.4 Representation of Sinusoidal ac by Complex Number

8.5 Kirchoff’s Laws

8.6 A.C. Responses of A Resistance, An Inductance and A Capacitance.

8.7 Series LCR Circuit

8.8 Parallel LCR Circuit

8.9 Summary

8.10 Review Questions and Answers

8.11 Problems and Solutions

8.1 Objectives

You will know from this unit—

All the parameters of AC—voltage and current, its average value, root mean
square value (RMS)

Application of complex number

Kirchoff’s Laws
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Behaviour of Resistance, inductance and Capacitor

Series LCR Circuit, its unique resonant properties

Parallel LCR Circuit its unique resonant properties and uses.

8.2 Introduction

Alternating current (AC) is an electric current which periodically reverses direction and
changes magnitude continuously with time in contrast to direct current (DC) which is
unidirectronal. The most common form of wareform of alternating current in most electric
power circuits is a sinewave, whose positive half period corresponds with positive direction
of the current and vice versa.

We will study the physical properties of resistor R, inductor L, and Capacitor C under
the impact of AC, and the nature of current flow and wattless current. Use of complex
number is essential as it is convenient to represent and calculate both AC, signals and
impedance. Two dimension length and angle allows as to calculate amplitude and phase
together, and keep them consistent. Unique properties of combinational circuit like series
LCR and parallel LCR, culminating to the concept of ‘Band Width’, Quality Factor, which
is of practical importance in physics and engineering will also be studied in detail.

8.3 Alternatring Current and Its Characteristics

Alternating Current (AC) or voltages is current or voltage which periodically reverses
direction and changes its magnitude continuously with time. The most common form of AC
is sinusoid. Even, if it is nonsinusoid it can be resolved into many sinusoid by Fourier
Transform. For symmetric AC its average over a complete cycle is zero.

The most common form of generation of AC works on the principle of Faraday’s law
of electromagnetic induction. Whenever a coil is rotated in a uniform magnetic field about
an axis perpendicular to the field, the magnetic flux linked with the coil changes and an
induced emf is set up across its ends. A pure sinusoidal voltage is represented in Fig. 8.1
can be written as

v(t) = V0 sinwt ......(8.3.1)

Fig. 8.1

Here v(t) is the instanceous value of the voltage and V0 its amplitude, w its angular



Time

90  0

V  m

I  m

V I 
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frequency time period T is relatred to frequency w 1f
2 T

  . When this alternating

voltage applied in a circuit, current flows through it is given by

i(t) = I0 sin (wt + ) .......(8.3.2)

2. RMS value of AC Waveforms : The rms value of an alternating current is given
by that steady (dc) current which when flowing through a given circuit for a given time
produces the same joule heat as produced by the alternating current when flowing through
the same circuit for the same time.

The root mean square value of an alternating current with period T is given by

T
2

rms
0

1I i (t) dt
T

  ............ (8.3.5)

It can be related to the heating effect of ac. Total Joule heat produced by ac in a
resistance R overf a time peiod T is

T
2 2

rms
0

i (t).R.dt I RT .........(8.3.6)

For a simple sinusoidal current i = I0 sinwt the rms value is

2T
2 2 2 0
rms 0

0

I1I I sin wtdt
T 2

 

So,
0

rms
I Peak value of current

I
2 2

  ........(8.3.7)

Similarly for a sinusoidal voltage 
0

rms
V

V .
2

  Irms or VVrms is a measurable value as

all measuring instruments based on the heating effect of current and calibrated accordingly.
The peak value of the domestic AC, mains supply of rms voltage 220V is 220V2 = 311V.
Because of this high peak value of 311V from AC mains is more shocking than same value
of DC supply of 220V.

3. Form Factor : The ratio of the rms value to the average value over a half cycle
of a periodic function is defined to be the form factor of the periodic waveform. For a
sinusoidal ac, the form factor is given by.
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Form factor 

0

f
0

I
2K 1 .1 1

2I


  ......(8.3.8)

From factor gives an idea about the wave shape. Any deviation in the value of Kf from
1.11 indicates deviation from sinusoidal nature.

4. Power in AC circuits : According to Joule heat energy generated is proportional
to the square of current flow. In alternating current rate of electrical energy P spent in a
circuit varies with time and though, at any instant rate energy spent being the product of
voltage and current, but in reality average P is effective parameter. for electrical energy
spent. So the average value of P is

T

0

1P v(t)i(t)dt
T

 

where v(t) = V0 sinwt and i(t) I0 sin(wt+), here  is the phase angle.

Now, 
T

0 0

0

V I
P sin wt.sin(wt )dt

T
 

or, 0 0V I
P . cos

2 2
 

So, P
–
 = Vrms × Irms cos ......(8.3.9)

The term cos is known as power factor. The product VrmsIrms does not, except for
the case cos = 0, gives the true power dissipated in the circuit as does the product in
d.c. circuit. Here Vrms Irms is called apparent power. While P

–
 gives the real power in the

circuit. So we have,

Real power = Apparent power × Power factor ......(8.3.10)

In A.C. circuit instantaneous power is given by p(t) = i(t).v(t) and i(t) have same sign.
The positive value of p(t) imdicates that the source of A.C. supply is delivering energy to
the circuit. Again when v(t) and i(t) have opposite sign, implying that the source is receiving

energy from the circuit when phase angle  or 90°, so no power is dissipated in the

circuit. The current flowing in such curcuit is called wattless current. It will be seen latter
that when current flowing through pure inductor or pure capacitor is a wattless current.

5. Peak factor : The ratio of the peak value to the rms value of any ac waveform
is called its peak factor. For a pure sinusoidal ac,
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peak factor (kp) = 
0

0

I
2

I / 2
 ........(8.3.11)

Since waves of same rms value may have different peak values a knowledge of peak
factor is necessary to get an idea if peak value. Again a knowledge of peak value is
important while testing dielectric insulation or hysteresis loss.

8.4 Representation of sinusoidal ac by complex numbers

Two main reasons that make the use of complex numbers suitable to model AC,
circuits and many other sinewave phenomena in several branches of science and technology
are described below.

1. The AC signals are characterised by a magnitude and phase that are, respectively
very similar to the modulus and argument of complex numbers.

2. The basic operations such as addition subtraction multiplication and division of
complex number are easier to carryout.

We know that when a vector is multiplied by –1, though its magnitude remains unaltered,

but the direction changes in opposite direction i.e. 180°. As –1 = 1 1   , so we

multiply or operate 1  two times in 180° polar angle. Hence operating 1  one time

on a vector it will rotate in 90° in anticlocwise direction.

In a two dimensional co-ordinate system (XY), let X-axis represents real number and
imaginary number along Y-axis (Fig. 8.2). It a vector A


 is along the positive X-direction

then vector quantity will be perpendicular to A


. Denoting A


 as jB


, then the resultant of

A


 and jB


 will be another vector P


 as shown in Fig. 8.3

Fig. 8.2 Fig. 8.3

imaginary

j 

2 

Real 

+ve
imaginary

+ve Real 
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Clearly for A + jB, its magnitude XO = 2 2A B  which is real quantity and the

phase angle with respect to real axis = tan–1B/A is inclined.

So if A = X0cos and B = X0sin are taken, then A and B are replaced by X and
 real numbers and consequently A + jB is expressed as complex number

A + jB = X0cos + jX0sin = X0ej.

Here 2 2
0X A B   is magnitude of A + jB and ej is its phase term.

In case of alternating current, if  = V0sinwt or V0coswt is taken, then they are real
and imaginary part of v = V0ejwt. So v or i can be explained in complex plane whoe vector
disposition or phasor X = A + jB = X0ejwt, the phasor X will be rotating with time at the
angular speed w and its value X0 remains unchanged.

8.4.1 Impedence and Reactance

In AC, circuit, current flow, which faces resistance is called impedence or reactance
when voltage v and current flow i are expressed in complex number, the impedance can
be expressed by the ratio of v and i let  = Vejwt and i = I0ev(wt+), then by the analogy
of ohms law in DC circuit, we have v = zi, here z is called the imp-edance or reactance,

so, j t0

0

Vvz e ,
i I

    the real part of z is called resistance R and imaginary part is called

reactance X.

So, z = R + jX

From the above equation, we get

0

0

V
R cos

I
 

Earlier in this unit, we have shown that P = VrmsIrmscos

= Irms
2|z|cos

= Irms
2R

Comparing this, above average power dissipated with the Joule’s law of heat in steady
flow of current, we can say that real part of z is to denoted as resistance of the circuit.
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8.5 Kirchoff’s Laws

Kirchoff’s laws of AC circuits are as follows :

1. The phasor sum of the currents at any point in the circuit is zero.

2. The phasor sum of the voltages around any closed loop is zero.

The current and voltage equations are derived in the same way as in DC circuits. The
algebric simplifications of phasor quantities is no different from that of DC quantities until
numerical quantities are introduced.

For KVL, let v1, v2........vn be the voltages around a closed loop. Then

v1 + v2 + ..........+ vn = 0 ......(8.5.1)

In the sinusoidal steady state, each voltage may be written in cosine form, so that,
Equation (8.5.1) becomes

V01 cos (wt + 1) + V02cos(wt + 2) + .......... +

.............+ V0n cos(wt+n) = 0 ............(8.5.2)

This can be written as,

Re(V01ejiejwt) + Re(V02ej2ejwt)

.....+Re(V0nejnejwt) = 0 ......(8.5.3)

or, Re[V01ej1+V02ej2 + ........+ Vonejn]ejwt = 0

If we let Vs = V0se
js, then

Re[(V1 + V2 + V3 +......+Vnejwt] = 0 ......(8.5.4)

Since ejwt  0

V1 + V2 + ...... + Vn = 0 .......(8.5.6)

indicating that kirchoff’s voltage law holds for phasors.

In the same way, we can show that Kirchoff’s current law holds for phasors. If we
let i1, i2........in be the current entering or leaving closed circuit in a network at time t, then

i1 + i2 + ..........+ in = 0 ......(8.6.7)
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If I1, I2.........In are the phasor forms of the sinusoids i1, i2.........in then

I1 + I2 + ....... + In = 0 .......(8.5.8)

which is Kirchoff’s current law in the AC domain.

8.6 AC Responses of a Resistance, An Inductance and a
Capacitance

1. Resistance R

Fig. 8.4 Fig. 8.5

In the above AC circuit potential difference across the resistor / conductor is v(t) =
i(t)R, here R is the resistance of the conductor, which follows from ohms law. As R is a
real quantity, so, v(t) and i(t) will be in the same phase, and they are both indicated in the
phasor diagram along the positive real number axis by two straight line (Fig. 8.5).

2. Pure inductance ‘L’

Fig. 8.6 Pure inductive circuit

Alternating voltage v(t) is applied across inductor L. We know that when a time

~

Current Flow  


AC Power

Source
 o Sin t

Resistive
Load

Voltage

Current

     


iL V=VoSin t

Fig. 8.6

v.
i



 

 t
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varying current flows through an inductor, a back emf is produced if the coil is having

inductance L, the back induced emf is Ldi
dt

 , which mitigates the supplied AC voltage

source v(t) so the voltage equation of the circuit Ldiv 0,
dt

   To find solution, we apply

complex analysis as discussed earlier in this unit. Let i(t) = I0ejt is the instantaneous
current in the circuit, then

j t
0 0

Ldiv(t) j LI e j LI
dt

     ........(8.6.1)

so the impedence of the circuit z = jL, which is an imaginary number, so 2
j

z Le


 
Now we get,

v(t) = LI0ej(t+/2 .......(8.6.2)

Taking V0 as the maximum potential difference, then V0 = LI0 and alternating

voltage source is ahead of the current flow in phase by 2
 . In Fig 8.7 phasor representation

of v and i is shown.

(3) Pure Capacitance

Fig. 8.8 Fig. 8.9

When an alternating voltage is supplied across capacitor charged first in one direction
and then in the opposite direction. Let v(t) = V0sint

Instantaneous charge at the capacitor plate

Qt = C V0sint .......(8.6.3)

So, the charging current at any instant

i(t) = t
0

dQ
ωεV cos ωt

dt


~



V
Capasitor (C)

Current Flow
I

   t 

Votage 

Current
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=
0

ωc

V
sin(ωt )2y



or, i(t) = I0 sin(t + /2) .....(8.6.4)

Here I0 is the peak current given hy = 
oI
1
c

 obviously, current i(t) through a pure

capacitor leads over the applied voltage by 90°. Hence power dissipated by the circuit
containing pure capacitar is zero as power factor cos = 0.

Rate of heat dissipation in the circuit at any instant

P(t) = v(t) i(t)

= 
2
0v

cos ωt cos(ωt )2ωL


= 
2
0V

sin 2ωt
2ωL

Average rate of dissipation of heat energy is

2 T
20

0

V 1P sin ωtdt 0
2ωL T

 

So, there is no dissipation of energy in a circuit containing capacitance. Continually at

an interval of T 4  time source current electrical energy is transformed to magnetic energy

returns it to the source as electrical energy. Such mutual exchange of energy is non-
dissipated.

8.7 Series LCR Circuit

Resistance R, inductance L and a capacitance C are connected in series with an AC
source. So source emf. V = VR + VL + VC and separately resistance are as follows R the
resistance, impendance of L is ZL = jL and impedence of C, zc =  j/c

Fig. 8.10
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So, at any instant relation between the voltage and current is given by

v = (R + jL – j/c) i = [R + J(L – 1/c)]i ......(8.7.1)

Here circuit resistance is R and reactance is X = (L –1/c)

Hence i = 
j

0

v e
| z |

 
........(8.7.2)

Now the total impedence of the circuit is

 
0

2
2

1| z |
1R ωL ωc


 

  
  

......(8.7.3)

Phase relation between v and i, = tan–1 X
R

 as shown in Fig. 8.11(a).

Let source emf at any instant is v(t) = V0cost is real part of V0ejt. So the current

flow at any instant is the real part of i(t) = 
j(ωt )0

0

V
e

| z |


 where

 = tan–1
1ωL ωc

R


......(8.7.4)

Phasor diagram (a) L > 1/c,   (b) L < (1/c)   and    (c) L = 1/c

Fig. 8.11

From eqn (8.7.4) it appears that phase angle is not alway positive, so the phase



jwLI

j(wL-l/wl)I
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j
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j
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relationship of v(t) and i(t) varies with the circuit parameter.

i) [L – 1/c] > 0 is positive then current flow legs behind source emf v(t).

ii) [L – 1/c] < 0,  is negative, v(t) lags behind i(t).

iii) L = 1/c then, = 0, v(t) and i(t) are in the same phase.

Under third condition, mentioned above, impendence of the circuit becomes z0 = R,
that is it is purely resistive and lowest value maximum current flows though the circuit (with
maximum value) under this condition, frequency of AC source becomes

0
1ω ω
LC

  ......(8.7.5)

This state of AC circuit is called resonant and 0 is resonant frequency. In reality
resonant circuit behaves as purely resistive even in the presence of L and C.

8.7.1 Phasor relation graph

Here, phasor such as v(t), Ri, jLi and –ji/c are shown in the graph with direction,

in Fig.12

Fig. 8.12

8.7.2 Different types of Resonance in Series LCR

We have shown that under resonant condition, maximum current flows through the
circuit, when maximum root mean square current us given by

rms
rms

V
I

R
 ......(8.7.6)

Root mean square current, other than resonant condition is given by

 
rms

rms
2

2

V
I

1R ωL ωc


 

  
  

.....(8.7.7)


t

VL



VC


V
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and phase angle 1
1L ctan

R
    .

In reality current resonant condition can achieved either by changing the frequency of
the source or changing value of capacitance may bring different values of Irms. Also it can
brought a voltage resonant condition by other than series resonant state in the circuit.

Fig. 8.13 Fig. 8.14

8.7.3 Quality Factor and Shapness of Resonance in Series LCR
Circuit :

The sharpness of resonance relates to the reapdity of the fall in current on eigherside
of the resonance frequency. The current falls to a very low values depending on the
sharpness of the resonant. The smaller the value of the resistance the greater the current
at resonance and the shasper the resonance. Behaviour of R in circuit in forming sharper
resonance is shown in Fig. 8.13.

Fig. 8.15

If we now reduce or increase the frequency until the average power absorbed by the
resistor R in series with resonance circuit is half that of its maximum value at resonance,
we produce two frequency points called the half power points which are –3d B down from
maximum taking OdB as the maximum current reference the point corresponding to the

Ir
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lower frequency at the half power point is called the lower cutoff frequency, denoted as
fL the point corresponding to the upper frequency for half power point called higher
frequency cult of fH. The difference fH – fL is called the bandwith (Fig. 8.15).

At the half power point, impedence z0 = 2R .

or,  2 1R L 2Rc


   

So,  1L Rc  
2LC RC 1 0   

Only the positive roots are acceptable, Rools are

2 2

1
(R C 4L C) R C

2L C
  

and
2 2

2
(R C 4L C) R C

2L C
   .......(8.7.8)

The bandwidth is

0 0
2 1

0 0

RR 1
L L Q CR

       

or,  
0

2 1
Q

   .......(8.7.9)

This equation relates the Q to the bandwidth. Sharpness of resonance increases with
the increase in Q. Quality factor increases with the decrease in R, as there is no change
in resonant frequency. Graph (Fig. 8.13) shows the dependency of sharpness with variation
in R. The circuit can store energy in the form of magneticfield or electrical energy across
the condenser. The performance efficiency is also given by the Q-factor

max imum energy stored
Q 2

energy dissipated per cycle
 

2
0

2
r

12 LI
2

I RT
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where T is the time period, and 
0

r
I

I
2



0

0

L 1Q
R CR
   ......(8.7.10)

Another term, used in resonant circuit is selectivity. It is defined is its ability to respond
more readily to signals than to signals of other frequencies. This response becomes
progressively weaker as the frequency departs from the resonant frequency it is mathematically
defined as

2 1

0

f fBandwidthSelectivity
Resonant frequency f

  ......(8.7.11)

8.7.4 Voltage Resonance in Series LCR Circuit :

Here we will study the behaviour of changing C and L in a series LCR circuit and show
other types resonance. Let us take potential diffference across the capacitor.

rms
c

I
V

C
  .........(8.7.12)

But,  
rms

rms
2

V
I

1R L C



 

     

Therefore,  

 
rms

c
22 2 2 2

V
V

C R LC 1


       

.......(8.7.13)

The variation of |Vc| with  is shown in the figure

Fig. 8.16

VcI I

c 
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Therefore, for the maximum |Vc| we must show

2 2 2 2 2d R C ( LC 1) 0
d

       
After differentiation

1
22

C
1 R C1

LC 2L

            

or,

1
2

C 0 2
11

2Q

 
      

.......(8.7.14)

Equation (8.14) shows that c < 0

The reason is that current peaks at resonance and capacitor voltage is the product of

current and (1/c) which decreases with increasing frequency. c 0   when Q is very large.

8.8 Parallel Resonant Circuit

When an alternating voltage source is connected to an inducetor having small resistance
combinedly in parallel with a capacitor, which is shown in Fig. 8.17. Two current component
from the source is divided into two branches of parallel resonant circuit. These are phasor
current IRL and IC so total phasor current I = IRL + IC and impedences Zc = –j/C and
zRL = R + jL source phasor voltage V = VRL + VC. When R is small, IL and IC will be
almost 180° out of phase, since the capacitor current IC leads the source voltage V by 90°
and while the inductor current IL lags the source voltage V by nearly 90°. At resonance
V and I are in phase.

V VI jωCV
R JωL z

   ......(8.8.1)

where z is the complex impedence of the circuit.

Fig. 8.17
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2 2 2

R jωL1 1 jωC jωC
z r jωL R ω L

    

2 2 2 2 2 2
R ωLj ωC

R ω L R ω L

       

The source voltage V and the source current I will be in phase when the imaginary part
of 1/z varishes. Then

2 2 2
ωLωC

R ω L


   or, 
2

02
1 Rω ω

LC L
   .....(8.8.3)

the source voltage and current are in phase, power factor is unity, this condition of the
circuit is said as parallel resonant frequency. For 0 to be real, the condition must be

2

2
R 1

LCL
   or, LR C .......(8.8.4)

The impedence of the circuit is

 2 2 2 2 20
d 2

R L L 1 RR R
R R LC L
   

d
LR

CR
 ......(8.8.5)

Rd is called dynamic resistance.

At the resonance peak current from the supply is called make up current and is given
by

0
op

d

V
I

R
 ......(8.8.6)

The cupacitor current at parallel resonance is

0
cp

0

V
I

1
w c


........(8.8.7)

So, cp 0
0

op

I ω L
ω CRd

I R
  .......(8.8.8)
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Q of the circuit is defined as the ratio of the capacitor current to the line current at
parallel resonance. Hence,

cp 0

op

I ω L
Q

I R
  ......(8.8.9)

the capacitor current Icp is much large than the supply current due to high value of Q.
At resorce, capacitor or inductor current is Q times the supply current. Such highly magnified
current of parallel resonance can be compared to magnified voltage of series resonance
circuit.

From equation (8.8.2) the impedence z or admittance Y can be written as

2 2 2 2 2
1 R ωLj ωC
z R ω L (R ω L

 
      

or,

2
2

2 2 2 2 2 2 2
1 R ωLY ωC
z (R ω L ) (R ω L

  
       

.....(8.8.10)

Maximum impedence or minimum admittance at a frequency Qm is given by

2d Y 0
dω



which gives   
1

1 222
m 2

1 2CR Rω 1
LC L L

 
    
  

......(8.8.11)

comparing eqh (8.8.3) and (8.8.11) we find that m > 0, i.e. maximum impedence
is achieved at higher frequency than the resonant frequency 0. If Q is large as R is low,
then we can assume that n ~~ 0. This circuit is called anti resonant because current is
minimum at resonance which is in contrast to the series resonant current. Sometimes it is
called rejector circuit.

8.8.1 Selectivity of Parallel Resonant Circuit :

(Fig. 8.18) shows the variation of z with frequency. For R  0, then m ~~ 0, which
is the condition for high Q circuit. Let 0 0ω ω  then if the impedence of the circuit z

becomes 
0z

2
, we say that resonance has become very sharp. Then select band of frequency

which is allowed blocked or filtered, which is the condition for high selectivity of parallel
resonant circuit.
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Fig. 8.18

From equition (8.8.2)

1 1 j c.
z R j L
    .....(8.8.11)

when R  0, The above equation can be written as

2

j L
z

(1 LC) J CR


   ......(8.8.12)

At resonance  = 0 and z = z0 = L
CR

From equation (8.8.12)  
 

0z
z

j 11 L cR


   

or,

 
0

2

2

z
Z

1 11 L cR


   

.....(8.8.13)

For high selectivity we have chosen 
0z

z
2

  (8.8.13) becomes after simplification.

1L Rc   

or, 2 R 1 0LCL
   ....(8.8.14)

t Z 

Leading p.f.Lagging p.f.
o 

impedance Z = L 
CR

Current I =V
L CR

0 

ure: Resonance Curve for Parallel Resonance
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Writing 2
0

1
LC   for assuming low value of R

20
1 0 0

Q
     ......(8.8.15)

Real roots are,

1 0 2
1 11

2Q 4Q

 
        

and 2 0 2
1 11

2Q 4Q

 
       

......(8.8.16)

So the band width is

0
2 1 Q

      ......(8.8.17)

From equation (8.8.17) we conclude that for high selectivity, preferred choice remains
for high value of Q.

Fig. 8.8.4

Parallel Resonance In LCR Circuit.

Fig. Resonance Curve for Parallel Resonance

Fig.

From the eq, we have

rm s
C

2 2 2 2 2

V
V

C R ( L c 1)


      

The value of C for the maximum value of Vc can be found in the following way

Let x = V[2C2R2 + (2Lc–1)2]

2 2 2 2dx 2 R C 2 L( Lc 1) 0
dc

      

f

Band with

0.707Zr

Zr

f1 fr f2

Z

BW
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C = C0 = 2 2 2
L

R L 

So, this resonance can be spoiled with the variation of R. When C = C0, maximum
of value of Vc is

2 2 2
rms

c(max)
V (R L )

V
R


8.9 Summary

1. In AC circuits, it is seen that impedance of reactive components, like inductor or
capacitor is expressed in terms of imaginary number, or, phasor qualysis of impedence of

inductance by jL or for capacitor by 
1

j C . Total electrical energy dissipated in this

component is zero.

2. The frequency at which impedence becomes minimum in series LCR circuit is called

resonant frequency. At resonant, angular frequency 0
1

(LC)
   and quality factor is

0L
Q

R
 .

8.10 Review Questions and Answers

1. Define bandwidth.

Ans. It is defined as the breadth of the resonant curve upto frequency at which the
power in the circuit is half if its maximum value. The difference between two half power
frequencies is called the bandwidth.

2. Define selectivity.

Ans. The selectivity of a RLC circuit is the ability of the circuit to respond to a certain
frequency and discriminate against all other frequencies. If the band of frequencies to be
selected or rejected is narrow, the quality factor of the resonant circuit must be high

H L

0

f fBandwidthSelectivity
Resonant frequency f
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3. Define phasor and phase angle.

Ans. A sinusoidal wareform can be represented in terms of phasor. A phasor is a
vector with definite magnitude and direction. From the phasor, the sinusoidal waveform can
be constructed. Phase angle is the angular measurement that specifies the position of the
alternating quantity relative to a reference.

4. Define power factor.

Ans. Power factor is defined as the cosine of the angle between voltage and current.
If  is the angle between voltage and current that cos is called as the power factor. Other
definition is the ratio between real power and apparent power.

5. Define Apparent power and power factor.

Ans. The apparent power (inVA) is the product of the rms values of voltage and
current, S = Irms Vrms. The power factor is the cosine of the phase difference voltage and
current. It is also the cosine of the load impedence. Power factor = cosf. The power factor
is leading when current loads voltage (capacitative) and lagging when current lags voltage
(inductive load)

8.11 Problems and Solutions

1. A coil takes a current of 1A from 6v dc supply, when connectexd to a 120v
5 OHZ supply the current is 10A. Calculate the resistance, impedence, inductive
reactance and inductance of the coil.

Solution : Resistance 
dc voltage 1R 6
dc current 6

   

impedence = 
ac voltage 120 12
ac current 10

  

V

I
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Since 2 2
Lz R X 

So, inductive reactance 2 2
LX (z R 10.39   

Again, XL = 2fL

inductance LX 10.39L 33.1mH
2 f 2l 50

   

2. A coil of resistance 5 and inductance 120mH in series with 100 mF capacitor,
is connected to a 220V, 50 Hz supply. Calculate (a) the current flowing,  (b) the
phase difference between the current and supply voltage  (c) the voltage across
the coil and  (d) the voltage across the capacitor.

Solution : Circuit diagram is shown in the fig

XL = 2fL = 2(50)(120×10–3) = 37.7

C 6
1X 31.83

2 fc 2 (50)(100 10 )
     

Since XL is greater than XC the circuit is inductive

XL – XC = 5.87

Inpedence 2 2
L Cz R (X X ) 7.71       

(a) Current v 220I 28.53A
z 7.71

  

(b) Phase angle  = arctan L CX X 5.87arctan
R 5

     
 = 49°35´

(c) Impedence of the coil = 2 2
L(R X ) =38.03

(d) Voltage across the coil.

= IZcoil = 38.03 × 28.53 = 1085V



NSOU  CC-PH-08   281

Phase angle of the coil

= arctan 1LX 37.7arctan
R 5

 =82°45´

Voltage across the capacitor VC

= IXC = 28.53 × 31.83 = 90.10V

3. A coil of inductance 0.1 H and resistance 30W is connectred in parallel with
a 10 F capacitor across a 50V, variable frequency AC supply calculate (a) the
resonant frequency,  (b) the dynamic resistance,  (c) the current at resonance and
(d) the circuit Q-factor at resonance.

Solution :

(a) Parallel resonant frequency,

  22
r 2 6 2

1 1 1 1 30Rf
2 LC 2L 0.1 (10 10 (0.1)

 
         

 =152 Hz

(b) Dynamic resistance Rd = 6
L 0.1 333.33

RC 30 (10 10 )  
 

(c) Current at resonance r
50I 0.15A

333.33
 

(d) Circuit Q-factor at resonance 2 frL 3.183
R
 

Capacitor current at resonance C
C

VI
X



r

V 0.477Amp
1

2 f c

      

Hence Q factor = 
C

r

I 0.477 3.183
I 0.15
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4. A complex voltage (20 + j.O)V is applied to a series LR Circuit of complex
impedence (1+3j). Calculate the power factor and the power consumed by the
circuit.

Solution :

Complex current

j

2 2

2 0 j1 0 2 0I 1 0e
1 3 j (3) 1

    

where tan = 3

So the current lags behind the emf by an angle  = tan–1
3  = 60°

 Power factor cos = cos60° = 0.5

Power consumed P = VI cos

= 20 × 10 × 5

= 100 watt.

5. An electric lam p which runs at 100V and 10A current is connected across
220 Volt 50 cycle AC main. Calculate the value of the choke to be connected in
series for the lamps safety.

Solution :

Here the resistance of the circuit or lamp V 100R 10
I 10

   

Impedance 2 2 2 2 2 2z R L 10 (2 50) L    

We have 220z 22
10

 

So, 
2 2

2
22 10L 0.0623H.

(2 50)
 





Unit 9  Ballistic Galvanometer

Structure
9.1 Objectives

2.2 Introduction

9.3 Moving Coil Galvanometer

9.4 Summary

9.5 Review Questions and Answer

9.6 Problems and Solution

9.1 Objectives

After the completing this chapter the learner will understand -

 The construction and operation of electrical measuring instrument- the
galvanometer.

 How a ballastic Galvanometer is used to mesure charge

 How a ballastic Galvanometer can be converte it into dead-beat galvanometer
to mesure current and voltage.

 What is CDR and its rate to current a galvanometer from ballastic to dead-
beat and V.C.V.S

 The current sensitivity, voltage sensitivity and charge sensitivity of
galvanometer and their radiation.

9.2 Introduction
A ballastic galvanometer is a type of instrument, commonly a miror

galvanometer, unlike a current- measureing glavanometer. The moving part has a
large moment of inertia and hence giving it a long period of ocillation period. The
glavanometer works on the principle of permanent magnet moving coil. The force
is generated on the coil, due to Lorentz Force law. “Due to interaction of fluxes, the
pointer in the meter or miror is deflected. As it is the deffected different torqes to
make the pointer stop at its steady state motion. The different torques are deffeching
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control torques and damping torquesis almost zero. For that reason.it is called a
ballastic galvanometer. It is really an integrator measuring the  quantity of charge or
discharge throught it. It can be used ad voltmeter and ammeter.

9.3 Introduction
The fig. 9.1 shows a line diagram of a moving coil galvanometer. It consists of

a) A rectangular frame with insulated copper wire round on it.

b) The frame is suspended
symametrically with a thin
phosphor bronze fibre with its
end connected to the one end
of copper wire.

c) C is a nonconducting or
conducting core palced
symametrically inside
the frame.

d) N-S represent concave
magnetic poles placed co-
contri at the mid point of the
gap.

e) The bottom end of the copper
wire connected to a phosphor-
bronze thread to measure the deflection of coil using lamp and, scale
arrangement.

f) The small mirror M, attached to due suspended phosphor-bronze thread to
measure the deflection of coil using lamp and scale arrangement.

Theory-

We consider the coil c to have  n number of turns with area A (Vertical
lenght l and horizental width b, A=lb) suspended in an uniform magnetic field B dq
be the amount of charge flow through the coil in time dt at an instant t, so i = dq/dt
at instant t.

The torque on the coil  (where niA  ).

N

Moving Coil

Core (C)

Permanent Magnets

S

Phosphor-Broze Strip

Mirror

Lower Suspension
Spring 

Fig. 9.1
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Taking the magnitude of torque we have

............................................(9.3.1)

If I is the moment of inertia of the coil with core along the axis of suspention,

then  [w being the angular speed at instant t]

or I d = nABdq

If we consider the moment of inertia of the coil-core system is sufficiently
high such that the coil-core system does not move during the passege of charge q

0
,

Then intergrating the eqn. (9.2) we have

  I
0
 = n A B q

0
................................................................(9.3.2)

If there is no disipitive force, then from conservation of energy we can write,

  ½ I 
0

2 = ½ c
2................................................................(9.3.3)

Where  is the angular amplitude of first throw.

After migration of charge the equation of motion of the coil at an instant t will
 be

I d2 = -C, where C represents the torque

per unit turist (or torsional rigidity) of the suspension fiber. So the time period
of osciallation of the coil

T = 2 I/c or I = 
4

...............(9.5)

Eliminiting  from eqns. 9.3 & 9.4 and putting the value of I from eqn. 9.5,
we have

q0 = T
2

C
nAB

0  .............................................................(9.3.4)

Theory of moving Coil galvanometer with damping forces.

When a coil moves in a galvanometer two damping forces play important role
to oppose the motion.

1. Mechanical damping force, mostly due to the air friction which at low
angular velocity of coil can be taken to be proportinal to the angular speed.

dt2
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 d
dt , say Fa ddt

2. Electromagnetic damping
force, due to rotation of coil in
magnetic field. To proceed with the
calculation of e.m damping, please
refer Fig. 9.2. Due to rotation of coil
through dq in a inform magnetic field
B, that lies always in the plane of the
coil, the vertical section passes

through the area d.s = 2 b
2

d  x l

= bld

so the number of time  of forces
intercepted by a single turn of coil

= bld B.

so the rate of change of magnetic lines through the coil of n turns

d
dt

nblB nAB d
dt

d
dt

G

Where G = nAB is called golavanometer constant. So the induced end generated
in the coil to oppose the motion

d
dt

eG ............................................................................(9.3.5)

so the induced current

d
dt

id G
R .........................................................................(9.3.6)

Where R = R
G
 (Galvanometer resistance) + Re (External resistance in the

        circuit)

The opposing torque developed due to this induced current

d
dt

G2

ni  AB=d R
................................................................(9.3.7)

d 

Q

b

Fig. 9.2
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so the equation of motion of coil considering the damping force takes the form,

Cd2
dt2I  - a d

dt
- G

2

R
d
dt

C - (a +    )G2

R
d
dt

or  .................................................(9.3.8)

wherw 2b = (a + G2/R)/I and 
o

2 = C/I

To seek for a solution we put q = Aet, then we have from eqn.(9.3.8)

2 + 2b + 
o

2 = O or  = b ± 

Thus the solution of eqn. (9.3.8) coils down to

.................................(9.3.9)

Now for b>o, The first term exponentially decreases with time, the first term
within braces increase  exponentilly with time but less effectively then the outside
term; the second term descreses exponentially with time. Hence the motion is a
damped non-oscillatory motion. Similar logic leads that when b = o motion is non-
oscillatory and is known critically damped motion.

When b<o the eqn. (9.3.9) can be written as

or

we can write the above eqn. as

 = 
o
e-bt sin (t +) ..................................................................(9.3.10)

where A
1
+A

2
 = 

o 
sini (A

1
-A

2
) = 

o
cos,  = 

and i -  .
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So the resultant motion will be an oscillatory motion with decresing time

dependent amplitude and with of angular frequency o
2 2 - b =                                .

Now at t = o,  =o, the above equation gives  = o, so we have

 = 
o
e-bt sint..................................................................(9.3.11)

So the maximum deflection on either side of central position of coil will be at

  t =                              
T

4
  ,                                3T

4
5T 4  ,                                

The variation of deflection with time is as show in the following fig. (9.3)

The successive maximum deflections are

e
-bT/4, e

-b3T/4, e
-b5T/4.................................................(9.3.12)

The ratio of successive amplitude of deflections

 
 


 
 






   e                            
+bT
2
  d.                            

d is known to be decrement per half cycle or simply decrement.

lnd = = bT/2 is called logrithmic decrement.

Now from the eqn (9.3.12)

e
-bT/4 or e

bT/4 e
/2

As the damping factor is small of l is also very small.

So we can write 
o
 = 

1
 (1+/2)

T

e-bt

(O,O)
10



  = e Sin (wt)0

-bt

t

Fig. 9.3



NSOU  CC-PH-08   289

So the correct relation of change flowing and the first throw becomes

q
T


^̄  

C
n

   (1+ /2)                            .............................................(9.3.13)

Procedure for Calculation of 
To find a resonable average  value of , the first throw and the eleventh throw

is noted them,

 
 
  
 

 
 

  
   

 

 e10bT/2 e10

or  =                            



en  
(        )......................................................................(9.3.14)

Similarly two other sets of such readings are taken and the average value of 
is calculated.

Critical damping resistance (CDR)

We have already seen that the condition of ballastic galvanometer to be b<
0
,

where b represents half the damping torque per unit moment of inertia (2b often
reffered as damping factor) and o is the angular velocity of the coil at t = 0,
without damping.

Now b =                            



  (a+ G )                           2

R
, where R = R

G
 (galvanometer resistance) + R

e
 (External

resistance with galvanometer circuit)

Thus we can write the condition for a galvanometer to be ballastic,

or R >e
2 Ic - a

G2

-RG    the limiting value of R
s
.

R =e Ic - aG /(e             )2 -RG .......................................................................(9.3.15)

This value  called CDR of the galvanometer. However the air damping factor
due to air resistance is normally much less compared to the electromagnetic damping
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so we can neglect a and the CDR takes the form

Rc =
2 Ic 

G2

-RG ................................................................................(9.3.16)

when the external resistance Re<Rc the damping force is sufficient to make
the motion non-oscillatory and the galvanometer acts as dead-beat galvanometer.

Measurement of steady current

Now it the galvanometer circuit contains an external emt source E to supply a
steady current i then the general equation of motion of galvanometer coil becomes

I d
2

dt2 =   - C  -    (a+ G ) 2

R

d
dt

+ niAB.....................................................(9.3.17)

Then the resultant motion will be a super position of a damped harmonie motion
about a steady deflection 

s
 (say).

Inthe mesurement of current we choose the external resistance less than the
C.D.R so that the motion is over damped.

In this case ni
s
AB = c

s
 (

s
 = steady diflection for current is)

is =           c
nAB

c ....................................................................(9.3.18)

To increase the electro-magnetic damping the core of the dead beat galvanometer
is made of soft iron which has large permiability.

Under damped (I)

Critically damped 
Over damped 

S 



O

Time

Over damped Vs Critically damped  

Fig. 9.4
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Lamp and scale arrangement. (Fig. 9.5)

The deflection of coil is useally measured by using a lamp and scale
arrangement. The arrangement consist of a lamp L mounted on a vertical stand ST.
The lamp (collimates) a beam of light onthe mirror M attached to the suspension
wire of galvanometer.

The reflected beam is received on a semi-transparent scale S held on same
vertical stand ST and held
horizontally and paralled to the
mirror plane M. D is the distance
between mirror and scale. It due
to passage of current the coil
reflects through  and the
deflection of light spot on scale is
d, then tan2 = d/D or  = ½ d/D
(when is very small)

Sensitivity of Galvanometer

The quality of a galvanometer
to respond towards charge / current
and voltage measurement is the
measure of its sensilivity.
Accordingly a galvanometer may have three types of sensitivity.

1. Current Sensitivity.

The current sensitivity of a galvanometer is the deflection in mm of the
light spot on a scale placed 1m away from the galvanometer mirror intitially
perpendicular mirror to the mirror palne of galvanometer due to the passage of 1A
current through the glavanometer.

So it a current of is A produce a deflection d mm on the scale placed 1m
away, then, the current sensititivity.

Si 
d
is

mm   
2. Voltage Sensitivity.

The voltage sensitivity of a galvanometer is the deflection in mm of the
light spot on a scale placed 1mm away from the galvanometer mirror, initially

M
M

D

S

L

2

ST
L-Lamp
S-Scale

M-Morror
Fig. 9.5
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perpendicular to the mirror-plane of the galvanometer due to 1V potential differnce
across the galvanometer.

So if the potential differnce of Vs V produced a diflection of dmm on the
said scale then, the voltage sensitivity.

Sv 
d
Vs

mm   V

    d    is RG

    RG

S
 ...........................................................................(9.3.19)

3. Charge Sensitivity. (This is concerned to the ballastic galvanometer in
 practice)

   The charge sensitivity of a galvanometer is the deflection in mm of a
galvanometer is the away from the galvanometer mirror, initially perpendicular to
the mirror plane of the galvanometer due to the passage of 1mc of charge through
the galvanometer such that, the during the flow of charge the coil does not move.

    So the charge sensitivity Sq dq mm/c......................................(9.3.20)

Comparing the expression of q and i we have

Sq T Si^̄  
 (T = period of oscillation of galvanometer coil)...(9.3.21)

9.4 Summary
We have learned the following lessons :

1. Basic principle of construction of ballastic and dead-beat galvanometer,
  differance between them.

2. Its operatinal physical parameter are

1. Charge sensitivity

Sq 
d

dq


T

NAB
C



T Si

where S
i
 is the charge sensitivity
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2. The current sensitivity S
i

S1 
d
d1


NAB

C

3. Voltage sensitivity (S
v
)

SV 
d
dv


1

Rg
d
di


Si

Rg

As S
i
  Rg  therefore Sv 

1
VRg

CDR is given by

RC 
G2

2 IC
Rg

9.5 Review Questions and Answer

1.  Plot a neat diagram of Ballastic galvanometer write the names of its various

components.

Ans : See the text

2. Give the theory of moving coil galvanometer. Explain the conditions under

which the galvanometer works a) ballastic b) dead-beat.

Ans : See the text

3. The 1st and 11th throw of a ballastic galvanometer are 5cm and 12cm

respectively. Calculate the value of logarithmic decrement.

 So in  1
10 ln

1

11

4. Define charge sensitivity, current sensitivity and voltage sensitivity of ballastic

galvanometer.

Ans : See Article 9.3

5. what are difference between ballastic and Dead-beat Galvanometer?
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Ans :

Ballastic    Deat-beat

9.6 Problems and Solution
Q. 1. A moving coil galvanometer has the following characteristics _ number

of turns of the coil = 50; Area of coil = 70 mm2; Resistance of coil = 30
tlux density of redial field = I.T. Torsional constant of the suspension
wire = 7 x 10m/rad. Calculate the current and voltage sensitivity.

Solution:

GivenN=50, A = 70mm2, B = O.I.T, C = 7 x 10 Nm/rad, R = 30

1. Damping is small and the motion
is oscillatory.

2. It measure charge

3. The transient flow of charge
causes an impluse while the coil has
not moved sufficently from its rest
position. This condition is achieved
by enhancing the movement of inertia
of the coil to have larges time period
of oscillation to about 10-20 seconds.
The external driving torque is zero
when the coil rotates

4. The coil frame is non-metalic to
reduce electromagnetic damping.
.

5. The ballastic throw measure the
charge.

6. The external resistance of the
glavanometer circuit must be greater
than CDR to ensure oscillatory
motion.

1. Damping is large and the motion
is non-oscillatory.

2. It measure current

3. The coil rotates under the action
of torque.

4. The coil is around on a metalic
frame to increase electromagnetic
damping.

5. The steady deflection measure
the current.

6. The total external resistance
must be less than CDR to obtain non-
oscillatory motion.(aperiodic)
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Current sensitivity (Is)
C

NAB 50 x 70 x 10  x 0.1 x 10-6 +8

 
7

 350 x 100
7

= 5 x 10 div / amp

= 5div / mA.

Voltage sensitivity (Vs)
C

NAB


R
 Is

R


30
5 

6
6

= 0.167 div/mV.

Q.2. What is galvanometer constant?

Solution :

In a moving coil galvanometer the current (I) passing through the
galvanometer is directly propertional to its deflection(  ).

i = G

where G= 
C

NAB
 = galvanometer constant.
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