PREFACE

In a bid to standardize higher education in the country, the University Grants
Commission (UGC) has introduced Choice Based Credit System (CBCS) based on five
types of courses viz. core, generic, discipline specific, elective, ability and skill
enhancement for graduate students of all programmes at Honours level. This brings in the
semester pattern which finds efficacy in sync with credit system, credit transfer,
comprehensive continuous assessments and a graded pattern of evaluation. The objective
is to offer learners ample flexibility to choose from a wide gamut of courses, as also to
provide them lateral mobility between various educational institutions in the country where
they can carry their acquired credits. I am happy to note that the university has been
recently accredited by National Assessment and Accreditation Council of India (NAAC)
with grade “A”.

UGC (Open and Distance Learning Programmes and Online Programmes) Regulations,
2020 have mandated compliance with CBCS for U.G. programmes for all the HEISs in this
mode. Welcoming this paradigm shift in higher education, Netaji Subhas Open University
(NSOU) has resolved to adopt CBCS from the academic session 2021-22 at the Under
Graduate Degree Programme level. The present syllabus, framed in the spirit of syllabi
recommended by UGC, lays due stress on all aspects envisaged in the curricular
framework of the apex body on higher education. It will be imparted to learners over the
six semesters of the Programme.

Self Learning Material (SLMs) are the mainstay of Student Support Services (SSS)
of an Open University. From a logistic point of view, NSOU has embarked upon CBCS
presently with SLMs in English / Bengali. Eventually, the English version SLMs will be
translated into Bengali too, for the benefit of learners. As always, all of our teaching
faculties contributed in this process. In addition to this we have also requisioned the
services of best academics in each domain in preparation of the new SLMs. I am sure they
will be of commendable academic support. We look forward to proactive feedback from
all stakeholders who will participate in the teaching-learning based on these study materials.
It has been a very challenging task well executed, and I congratulate all concerned in the
preparation of these SLMs.

I wish the venture a grand success.

Professor (Dr.) Ranjan Chakrabarti
Vice-Chancellor
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UNIT 1 : Electric Field and Electric Potential

1.1 Objective

1.2 Introductions
1.3 Electrostatiocs in Vacucm

1.4 Electrostatic potential

1.5 Multipole expansion of electrostatic potential
1.6 Gauss’s Theorem and its application—
1.7 Laplace and Poisson’s equation.

1.8 Electrostatic energy

1.9 Conductors in electric field
1.10  Capacitors

1.11 Electrical Image

1.12  Summary

1.13  Review question and answer

1.14 Problems and solution

1.1 Objective

After completing this unit you will be able to understand

1. Electrostatic interaction between charges through Coulomb’s law.

2. Electric field conception to explain the propagation of interaction by introducing
field lines conception.

3. A vector presentation of electric field through the introduction of electric field
intensity conception-a vector representation of electric field in space.

4. Electric flux, Gauss’s theorem and its application.

5. Presentation of electric property by a scalar field conception through introduction
of electric potential.

6. Presentation of electric field intensity g as a gradient of electric potential V.
Equipotential surfaces.
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7. Conservative nature of electric field, Laplace’s and Possion’s Equations.
8. Energy assoicated with a symmertic charge distribution.
9. Capacitance of capacitors.

10. Electrical image and its application to some specific cases.

1.2 Introduction

The term ‘electricity’ started its path from the experiment of Thales (600 BC)-Greek
philosopher who rubbed Amber with silk and it was seen both of them developed the
property of attracting small papers bits. As the Greeks called Amber as electron, so the
term electricity boiled down. Electricity was in its rudimentary state still late 18" century
until, about 100 years after the introduction of Newton’s Law of Gravitation (1687),
Coulomb in 1785 AD, introduced the law governing the interaction between the charges
— the subject electricity got its space.

Atom, the basic ingredient of matter contains two charged particles called electron
(negatively charged) and proton (positively charged) carrying equal but opposite charges
of magnitude 1.6 x 10" Coulomb each, which is the smallest quantum of charge that can
exist in nature. Obviously,

Any charge that physically exists will be the integral multiple
of the smallest quantum of charge - the magnitude of the
charge of an electron, this is known as quantisation of charge.
The charge also follows another law called conservation of charge which goes as,
The total charge of an isolated system remains conserved.

but this conservation is not like mass conservation law which changes
with the speed of reference frame. Charge

conservation law is independent of reference frame

1.3 Electrostatics in Vacuum

(a) Coulomb’s Law and Electric Field :

Coulomb’s law gives the interaction between the two static point charges. The law
states that the force of interaction between two point charges separated by a distance is,

1) directly proportional to the product of the charges,
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i1) inversely proportional to the square of the distance of
separation between the charges,

ii1) action along the line joining the charges.

The fig.-1.1 shows two static point charged particles ¢, and

at position vectors ,71 and E respectively. Then according to

The Coulomb’s law, the force on j* particle due to i particle
will be,

Fjio—"Lr . .. .. (13.1)

—

Where rji=rj—ri; Vi :‘l’j -7

=

Similarly, the force on i particle due to j" particle will be

and fji Z(Fj —7ri )/‘l’j —ri|= unit vector along

= = 449; .
F,'j—Fj,-oo——2 5
i

We can write eqn, (1.1) as, Fij —k%ﬁ- ......... (1.13.2)

2 >
ij
Where k is a constantthat, depends on the intervening space and choice of unit. In this
book, we will use the SI unit for wide acceptance of this unit over the globe. In this unit

k= 1/ 4mey =9x10° Nm?c?. g, is known the permittivity of vacuum. The value g, =
8.8542 x 10712 C°N-lm=.

In ST unit the unit charge is that charge which when placed at Im away from an identical
charge in vacuum the force of interaction is 9 x 10° N. This unit charged is referred as
Coulomb.

If there are N number of particles bearing charge q,, q,, q5 ...... at poisiton vectors

FL 233 e, , respectively then, the total force on i particle
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Equation (1.3) explains that, the superposition Principle is applicable for this electric
interaction. This means that force on a charged particle is the vector sum of the forces due
to all other charged particles.

Problem - 1

A conductor possesses 80uC of positive charge. How many electrons does it have in
deficit or in excess?

Solution - 1

To get this positive charge it has to liberate electrons. As each electron has magnitude
of charge 1.6 x 1071°C, so the deficit of number electron

n=380x 10%1.6 x 1019 =5 x 1013
Problem - 2

Four point charges each of + 10uC is placed at (3m, 0, 0), (-3m, 0, 0) and (0, -3m,
0). Find the force on a charge 10uC placed at (0, 4m, 0)

Problem - 3
(b) The Electric Field

It is obvious that electric interaction is a distant force, which means that electric interaction
may migrate through space without any physical contact. Now two questions arise

1) Who is the carrier of this interaction?
i1) With what speed the interaction travels.

To resolve the first question, we introduce the conception, what is known as electric
field?

This field migrates with the speed of light.

Due to the presence of charge, a quality in space is developed, which is known as
electric field. In case of static charge, only electric field is developed but for dynamic
charge magnetic field is also developed. The interaction between the charges takes place
with this field obeying Coluomb’s law without an material interaction.

A space is said to possesses electric field
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The magnitude of the field is named as ‘electric field intensity’ (E) and is defined as :

The electric field intensity at a point is the force experienced
by a unit positive charge placed at that point
1. Field Due to A Point Charge
The fig. (1.2) shows a point charge q is placed at the origin ‘0’ of the reference frame.

To calculate the field intensity atpoint p at position vector , we place a test charge dq
at p. (The charge dq is so small that it does not put any distortion of field pattern of q.

Now from Coulomb’s law the force on the charge dq is,

This shows that the field pattern of a point charge is spherically symmetric but decreasing
with square of the distance from the point charge. If El , Ez, Ex

Calculation of electric potential and hence field intensity

(a) For a point charge

The fig. (1) shows a point charge q at origin 0 of referene frame. To find the potential
at P at position . vector we proceed as follows. The electric field intensity at P due to

1 49,

+ q charge at 0 E= E—r » if V is the potential at P then, Then the work done in

transferring a unit charge from P (;) t0Q (7” +d ;) ,

dneg 2 - dme, Edl” > so the potential at P which is the work

done to carry a unit charge from infinity to the point quasi-statically,
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r

o1 941 4
V=] rrr R A e (13.5)

As V is a function of r only E = —8V/ or= Lialong 0P

or, E=71

4.
57

= e > which is in exact coincidence with the previous result.
0or

(b) For a uniformly charged circular ring
The fig (1.4) shows a uniform circular ring of radius a. + q Chargedistributed

uniformly over the ring. We have to find out the potential at P at a distance x from centre
0 of the ring. A be the charge per unit length on the ring. Consider an element charge Adl
at A (in fig) Then potential at P due this element of charge,

1 Adl

dv = 4me, —, > So the total potential at P du to the whole

i
e 1 dl 1 149 1 g
rlngV-(JS4n80 r 4mg, r  Admgyr (1.36)

So the intensity along x axis (since V =V (x))

__ar__1 qx

Ox  4me, (a2 2 3/

5 along 0P

7 1 gx
EF=r—er— . ... 1.3.7
47'[:80 (az +x2 )3/2 ( )

(c) For uniformly charged disc

The fig (1.5) shows a uniformly charged disc of radius R and of charge density Cm™.
To calculate the electric field intensity E, at point P at a distance x from 0 the centre of
the disc we consider an elemental ring of radius r and thickness dr as in fig ().

The area of the elemental ring = 27t r dr
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The charge of the elemental ring dq = 2nr dro

1 2nrdrc

4ney 4re (r2 +x° )1/2

So the potential due this elemental ring at P, dv =

We put »=xtand, dr = xsec> odd, so, dV = %(sin (I))(xse02 ¢d¢)
0

V= j sm(I) (xsec (])d(])) 280[ 1 1} :L[\/RZ +x? —x} ...... (1.3.8)

cosO 2g

As V is a function of x only, So

__oV__ o |_ X _ _ _
E= Ox 280|: \/R2+x2 1} 280[1 cos 0] = 2n80R2[1 cos 6] along OP

Alternative method

1 2nrdrox
4%0( 5 )3/2 (ref. eqn no. (1.10))
re4+x

Field at P due this elemental ring dE =

1 2nrdrox’ 1 2nrdro cos’ 0

- 2 32 4ne 2
4meox (r2+x2) 0 x

Now, r =xtan®, 0, gy = ysec® 040

So the above equation boils to,

dE = 1 2mtan Osec’ O cos’ 040 = 1 2nosin 040
47[80 47[80

Thus the total electric field at P,

6,

27[6.[51119619 2no(1—cosB) = q(1-cos0)

E= 2 along OP, same as eqn.

47[ 0 27[80 a

................ (1.3.10).
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+

(d) For a uniformly charged spherical shell :

The fig (1.6) shows a spherical shell of radius R carrying a

charge q uniformly distributed over the sphere. We have to find

r out the potential at point P at a distane x as shown in fig (1.6)
Fig. 1.3 We consider an elemental ring within the angle 6 and 6 + dO as

0 in fig (1.6)
The area of the elemental ring = 2nR sin 6 (RdO), o be the charge per unit area.

Therefore the charge on the elemental ring = 2noR sin 0 (Rd 6)

| 2moRsin O(RdO)
4ne r

The potential at P due to this ring dV =

Now from the fig. (1.6) ;2 = R? + ®* —2Rxcos0 O 2rdr =2Rxsin0d0

sin 040 _ dr

= r Rx

Therefore the above equation can be written as dV = ﬁ@ dr
0

So V' = ﬁ@j dr, where the integration is to be carried out with proper limit.
0

When the point P is outside sphere

Tt
+
+ X+R 2
+ 4me, x 4meg, X dngy x VT
+ ¥ x—R
+ +
+ + Be the intensity at a point due to a discrete distribution charges at
+ . . o .
BA A a point, thenform principle of superposition the net field at that point
+ . - = .
willbe E=E1+E2 +Ej......

(a) Field Due To A Continuous Chage Distribution

So far we have confined to discrete charge distribution, but in macroscopic world we
frequently encounter the cases where charge distribution is continuous for example a charged

metallic body.
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To calculate the field intensity at the point p due to such a continuous charge distribution.
We usually follow this procedure. We have taken an element of charge dq as in fig (1.7)

The field at p due to this elemental charge, P
dE’
w__1 dqn
dE = — 7

So the net field at the point p will be,

4rgyd ;2 o Fig. 1.1

Where the intagration is to be carried out over the entire charge distribution. Now in
case of line distribution of charge dq = A dl, where A is the charge per unit length on the
line element dI.

In case of surface distribution of charge dq = o ds, where o is the charge density over
the surface element ds.

For a volume distribution of charge dq = p dv.
Electric Lines Of Force Or Field Lines

To give as visual representation of electric field the conception electric lines of force
(now referred as field lines) was introduced by Michael Faraday. The electric field line is
an imaginary line drawn in the space containing electric field such that tangent at any point
on the line is along the direction of electric field at that point.

The field lines bear the following properties :

a) They emanate from a positive charge and end up to a negative charge or to in finity.
b) They try to contract lengthwise and repel each other laterally.

¢) Field lines can’t intersect each other.

d) The number of field lines associated with a charge is finite and proportional to the
magnitude of charge.

e) The magnitude of field intensity at a point is the number of field lines passing per unit
area when the area is placed perpendicular to the field lines.

(¢) Conservative Nature Of Electric Field & Electric Potential
Now let us explore how this force field is related to energy and work. We have already

seen how the electric interaction in a region can be represented by the vector £, the
electric field intensity. Can we represent this field in terms of a scalar called electric
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potential? The answer to this poser is yes.

We have already seen that electric field due to a static point charge is given by the

equation _ o T-T
1 _q o
E:m# — 3(7"—1"0) q.* > P
=
_ _ T,
So, YxE=_1 I iy
0, VxFE 4n80V>< ‘;_;03(1* ro)
i ] O Fig. 1.2
- 1 q ﬁ__. B = — —
So, VxE =V ‘;_;03(1’ ro)|=VxG(R)R=G(R)VxR+VG (R)xR,
where ﬁ:(;—ro)
i J k
G(R)VxR+VG(R)xR=G(R)| < % L |+VG(R)<R

(x=x0) (¥=»0) (2—2)

So electric field is non-rotational. As curl of a gradient of a scalar is always zero i.e.,

VXxE=0=VxVV =0

Therefore, we can write E = -V V..(13.2)

The negative sign is to carry on a logical convention that work is done in quest of
electrostatic energy.

From eqn. 1.3.2 It is obvious that £ remains same if V is replaced by V' + ¢ (const).
Thus, an absoulate value of potential bears indeterminacy. It depends on the choice of
origin. As the electric field is zero at an infinite distance from a charge, we usually refer this
point to be of zero potential. With this choice we can put ¢ = 0. However, this constant
is not so important as it does not affect the force field.

Now we take a migraction of a unit + ve charge from the space point I along the loop

i —>1— f — I - i then the work done,
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I £ W= W,E.d? = p-Vodr=—pdp=0
; II ;o L
Thus jE.dr + JE.dr =0,
Flg 1.3 g alogilf L/ along flli

A S
So, [jE-dV] —{J.E-dl”] that shows work done along the path i
/ alongilf along flli

i i

i—>1— f and i > Il — f are same. Thus, the work done is independent of path and
depends on the initial and final position. As work done is energy concerned, so in this force
field, the work done depend on some energy function which solely depends on the energy
of initial and final position. Such work which is a function of position is known as potential
energy, here referred as electric potential or potential energy per unit charge and is represented
by V.

The electric potential at a point is the work done to bring a unit

positive charge from infinity up to that point quasistatically.

1.4 The electrostatic potential

It is defined as the amount of work energy needed to move a unit of electric charge from
a reference point to a particular point in an electric field, precisely, it is the energy per unit
charge for a test charge that is so small that the disturbance of the field under comsideration
is negligible

The electric potential at a point r in a static electric field g is given by the integral

Vp=-[Edl..(141)
C

where C is an arbitrary path from some fixed reference point to , in electrostatics, the

Maxwell-Faraday equation reveals that cure £ = (), making the electric field conservative.

So the integral above does not depend on any speafic path ¢ chosen, but only an end
points, implying V is well defined at evey point. Therefor we can write

E=-VVp ..(142)
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This states that the electric field points downhill towards lower voltage. The scalar
potential can be visualized using equipotential, surfaces. An equipotential surface is a surface
over which is a constant. The electric field is the negative of the gradient of the electric
scalar potential. The electric field lines are every where normal to the equipotential surface
and point in the direction of increasing potential.

1.4.1 Electric dipole

Two equal but opposite point charges separated by a small distance consitutute an
electric dipole.

The dipole moment of a dipole has magnitrde, charge time the distance between the
charges and is directed from + ve to — ve charge.

If + q and — q be the charges shown. in fig (1.4 ). Then dipole moment of this dipole
p= q(ﬂ), where ] is taken along ﬂil_) —q Fig. 1.4

(a) Electric Potential due to dipote

The fig (1.5) shows an electric dipole AB. The potential at point P at position Vector
, from centre O of dipole,

4P
p-_1 |49 _ 49
4ney| BP AP
l'ﬂ
* __4 1 1
s + 47[80 4_7 4+7
qA<—1—>o<T>B 4 ‘r ‘ ‘r ‘
Fig. 1.5
: . q 1 1
Taking r > > 1 we can write = -
4meg {\/rz +1% = 2rlcos® \/r2 +1% +2rlcos O

) q{ L }
4meg \/r2—2rlcose \/r2+2rlc0s6

__q 1 _ 1
4meyr \/l— ZIC:)SG \/1+ 21 c’f)sG
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__q [(14_10056)_(1_10059)}
4meyr r r

__ 9 2lcos®__1 Pcosb
dre, 42 4ne, 52

__1_pr
o7, V_EFT(IA‘.?,)

So the electric field intensity at P

Calculation

V(TJ-;) :?(fo + jP, +1€Pz)-(fx+jy+l€z)
:([%+}%+l€a%j(xf; +yP, +ZPZ)

=iP, + JP, +kP, =P,

3 3/2
7 ox 8y 0z ( 2 y2 Zz)/
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(fx+}'y+l€z) -
s s

_ = 3(Pr)r
o Bl 5

375 7
~ 4mg rS _r_3

| 3(13-;7)#_#
g P|..(145)

y  So the raﬁial ﬁ)omponent in (1,0) co-ordinate

E, B ,
' E, = 1 3{3“ CZOSG—PCOSG:|
4reyr r
0
0 X
Fig. 1.6 =L 2Pcos®  (j 4)
47[80 7’3

and the transverse component

| .
Ey = po—- [0—(-Psin0)]

__1 psinb
e P (14.7)

So g makes an angle ¢ with E_

tand = Ey/E, = %tan 0....(1.4.8)

Thus along with same line when r > > 1 field lines are parallel to each other on same .
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[E|=E? +E§ = 4;80 r%(kosz 0+1)...(14.9)

field at end-on position (on the axis of dipole) along ;

T 1 2P
Eend-on = 47'580 ;»_3 ..... (1410)

field at broad side position (on perpendicular bisector)

(b) Dipole in a electric field.
P.E of a dipole in electric field.

The potential energy (P.E) of a dipole in a electric field is the work done to bring the
dipole from infinity to the point concerned quasislatically Now if a dipole is brought to a
point with its poles perpendicular to the direction of field then the work done will be zero
since + ve and — ve charge will do same work but in opposite direction. So we can take
the field normal position to be zero P.E Position. . .

A<—1—>0<1-B

The fig. (1.7) shows a dipole AB of length 21. V(;) P.E

the potential energy at 0, the centre of dipole. Then the P.E
of the dipole.

U=—qV(r=I)+qv(r+I)

Taking [ to be wvery very small

U =gV (r)=1V¥ (r)} +a{p (7)+ 197 (r)}

So the force on the dipole

F=-VU= ?(TJE)
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Using the vector identity

V(PE)=(E9)P+(PV)E+ Ex(VxP)+ Px(VxE)

We have

F= (ﬁ 'V) E ....(1.4.18) since the rest of all terms are individually zero.
(c) Torque on a dipole in uniform electric field.

The fig (1.8) shows a dipole AB in uniform electric field g The total fore on the dipole
is zero since poles are acted by equal and opposite forces. The torque on the dipole
T=¢gE21sin® = PEsin0

B
kine dicection of &= B B NS> +E
ing direction of ©=PxE.....(1.4.13) 7 > 7 st
If the field is non-uniform apart from the torque there—qE A Fig. 1.8

will be a translational force also on dipole.
(d) Dipole—dipole interaction

Now we shall calculate the potential energy of due to dipole—dipole interaction of two
co-planar dipoles.

The fig (1.9) shows two coplanar dipole of dipole

moments p; and p, at position vector ; and j,

respectively. r= (7’2 —r )

The potential energy of dipole of dipole moment p, in

the field of dipole of dipole moment p;,

— — — . D D 0 P
U,, =—P1'E1, where g, is the field due to p, at p,, Fig. 1.9 P,
_ 3 F1; ; _
:—PZ' 1 3 ( 2 ) _Pl
dreqr r
| (ﬁ1;)ﬁ2a—(ﬁ2ﬁl>
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=7 1 [P P, cos®—3P cosB P;cosh, ]
nEyr

il
4neyr

3 [cos(0,—0,)—3cos0,cosb, |

=Up

Now if the dipoles have same dipole moment i.e. p = p, i.e they are oriented along

same line,

p2
Then U = T[1-3]= T
dneyr 2neyr

1.5 Multiple Expansion of Electrostatic Potential

It has been carlier seen that when the charge distribution has sufficient symnetry, or
when the potential is to be calculated on symnetry axis of the distribution, one can obtain
potential due to it a point outside the charge distribution by solving Laplace’s equation with
necessary boundary condition. It is a problem of finding potential due to an arbitrary charge
distribution and one must take recourse to appronimation. One such proceedure, called
multiple expansion of the potential, at a point far removed from the distribution. In this
appronimation, the potential is expressed as a sum of contribution due to charge monopole,
dipole, and quadrapole etc

Let us consider a charge distribution shown in the figure (1.10). The potential at the
point . is given by

v(r)= 47t180 [Lep(m)dv 5.
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Using the law of cosines,

r2 =2 +(r')2 —2rr'cos0

A Ao

where 0 is the angle between ;: and ' so we get, r"=r/(1+¢)

with €= (i)(’”—' —2cos 6)
r r

For points far from the charge distribution € < 1, from binomial expansion.

1_1 Vv2_1(j_1,,3.2 5.3
r"—r(1+8) _r(l SE+ZE —7pE o )

or interms of r,7" and 0

L_1f,_1(r\(r 3V 2 s (rV(r 3
— == 1——(1)(L—2cose)+—(r—) (1—20056) ——(L) (L—Zcose) +.....
r" r 2V r )\ r g\ r 7 16\ » 7

1{1+( )cos9+( ) (3cos 0— lj ( ')3(5cos39—3c056]+}

r r 7 2 r 2

!

In the last expansion, we sbserve that series comes with power of % along with

Legerdre polynomial as coefficients. we get

IZ( ) (cosh)....(1.5.3)

Substituting the equatim 1.5.3 in equation (1.5.1) we get the potential as

V(;) - 471180 i nl+l j(’”')npn(cose)P(lj)dr'

n=07%
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More explicitly,

V(;) 47180[ fp dr+—jrcosep dT+—J.

(%cosz 9—%)p(r')dr'+...} ...(1.5.5)

The equation (1.5.5) is expression for multipole expansion of V in powers of %

rearrange the term as follows—

v (r)="o(r)+ i (r)+7a(r)+...(1.5.6)
where, (;7) :ﬁjp'dt'.....(lﬁ])
()=
a(r)=

The Monopole and Dipole Terms :

5 J-r cosOp(r')dr'...(1.5.8)

4758 7

SJ' 2 1(3cos 0— 1)p( )dr....(1.5.9)

dreyr

Monopole term is defined as.

VO(;)=4niorjp'(r’)dr’ ..... (1.5.10)

It is the potential which would have at P if The whole charge is concentrated at the

origin, and Ipd ' is the monopole moment.

If the total charge is zero, the dominant term in the potential will be the dipole.

Vaip (;) = 5 J-r cosOp(r')dr'....(1.5.11)

47[8 r

—/

Since 8 is the angle between ' and
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—!
r'cos@=rr

So we can write the dipole term as

Vaip (;) = 475180 r%.fj-r'p(r')dr'....(l.5.12)

This integral is called the dipole moment of the charge
distribution,

P=[rp(r)dr...(1.5.13)

So the dipole contribution to the potential is given by

>

1 P
le-p(r)=4n80 g ..(1.5.14)

The dipole term plays the important role when all the monopole term vanishes, so

" (77) is the potential as if a pure dipole is placed at the origin. The term V) (;) is defined

as potential contribution due quadrapole moment The figure 1.10a portrays gemetrical

1.6 The Gauss’s Theorem

(a) Electric flux :

In science, flux, usually concerns to some flow of physical property. In case of fluid flow
“fluid flux’ refers to the amount of fluid flowing through a specific area per unit time.
“Vehicular flux’ often refers to the number vehicle crossing a specific gate area per unit time.
However, in case of electric flux, no such transport physically exists. It refers to the
crossing of electric field lines (which is an imaginary conception to give a visual presentation
of field pattern) through specific area. It is defined as :

The electric flux through an area the number of field lines passing perpendicular to the
area. f be the electric field at a space point. Then the flux through a surface, 4 is,

dd =Eds ...

As ds is infinitesimal E can be taken to be constant over the surface. The total flux



NSOU e CC-PH-08 0 27

on a finite surface can be obtained by integration as,
o= I E.d s, where the integration is carried over the entire surface.

(b) Surface area and solid angle :

Surface area is treated as a vector whose magnitude is the area of the surface considered
and direction is specified as follows.

1) For closed surface the direction is + ve in outwards normal to the surface.

i1) In case of open surface the direction is specified by
right hand screw rule.

The solid angle is three dimensional analogues to that of A
an angle in two dimension.

Now an angle can be visualized physically as a two bidr
dimensional peeping from a point. Mathematically it is defined

as the ratio of the arc by radius of a circle. B

In fig the angle subtended

d0 = arc AB/r =dl/r, which is a dimensionless quantity.

Its unit is taken as radian which is defined as angle subtended Fig. 1.1
by a arc of a circle of unit length and unit radius at the centre of the circle, so, the total

2
angle about a point as 2Tfr—2 =27 radian.
r

Similarly, a solid angle can be visualized as a three dimessional peeping through a point
and it is mathematically defined as three dimensional angle produced at the centre of a
sphere due to an area boudary on the surface of the sphere.

If ds be the elemental area in the surface of a

sphere then, the solid angle suspended at the centre Oéﬂ ds
0 is, 4AQ = %

dQ :
Fig. 1.12
If the area plane makes an angle 0 with the
tangent to the sphere at that point then solid do
angle dQ = ds cgs@ = ds2.r = ds;;.r_ where 7 R
r r r 0

dQ

and ; are unit vectors along d § and , as

Fig. 1.13 dsh

explained in the figure.
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Unit of solid angle is named steradian, one steradian is the solid angle subtended at
the centre of a sphere of unit radius by a unit surface on the sphere.

Obviously the total solid angle about a point will ,

f,

. 2
Q= Sﬁ di’;'r = qS ds ;gs o_ 47[; =47 steradian

r

When o is outside then referring the fig. ©  Fig LIS

Due to the orientation of 7, and n, the surface area vectors the total solid angle

subtended at o will obviously be zero, because they will cast solid angle of same magnitude
but in opposite sense and will cancel each other to make the yield null.

(¢) The Gauss’s law :

Now we consider a point charge q at a point o bounded by the surface S. The electric

field on the surface ds is E = 2 1 % 7, so the flux through the surface element ds,
Ty r

Fig. 1.14

So the total flux outgoing the whole surface S,

1 1 q
O = qdQQ=——g4n=—".. .. (1.6.1)
C:E 47[80 47'[80 € Flg 1.11

The result in equation is independent of position of the charge and obviously when the
point charge q falls outside the surface the yield integration is zero, in that case

®=0

1.6 Application of Gauss’s theorem

Before going to the application of Gauss’s theorem let us give a second look to what
we have done in the previous discussion. We see that with Coulomb’s law, if we know the
charge, we are able to find out the field produced by the charge and from Gauss’s law if
the field in a region is known, we can work out the net charge responsible for creating the
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field if we can evaluate _[E, ds = J.Eds cos 0 which is obviously not a function of single

variable. So for evaluation of this integral the angle between 4 sand E should remain
constant throughout the surface. Such a hypothetical surface, on which such symmetry is

maintained, so that IE, ds can be evaluated, is called Gaussian Surface.

(1) Field due to a uniformly charged spherical shell :

The fig (1.17) shows a hollow spherical charged sphere of radius R and charge q,
uniformly distributed over its surface. To calculate the intensity at point P at a distance r
form the centre o we consider a Gaussian surface shown by dotted line in the fig (1.17).
E be the intensity of field at a distance r from centre 0. Then using Gauss’s law.

JE,d§=IEdscose=E4nr2 =q/g, or, E= 47380 r% ...... (1.6.2)

Inside the shell the right hand side is zero as there is no charge included within the
Gaussian surface for any value of r (r < R) so E = 0 within the shell.

(2) Field due to a uniformly charged sphere :

(a) At a point outside the surface :

The fig (1.18) shows a uniformly charged sphere of radius R and .
total charge q uniformly distributed. To calculate the field intensity Eat ~ "*-....- -
the point P outside the surface, we consider a Gaussian surface through  Fig. 1.13

the point P as shown by the dotted line. 7 be the field intensity at point

Pand ;5 be an elemental area on the surface at point P, then by Gauss’s theorem

Now from symmetry of charge and its consequent field distribution E remains same all
over the Gaussian surface and is always on the surface. Hence,

E(4757’2):i, or E = 9
80 47580]"2
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Taking direction into consideration £ = —% 7., (1.6.4)
4neyr

(7 1s a unit vector in the direction of ;)

(b) At a point inside the surface :

To calculate the field inside the surface, we consider the Gaussian surface represented
by dotted line as shown in fig (1.14) R be the radius of the sphere and p be the charge
density taken to be uniform inside the sphere. E be the intensity over the Gaussian surface.
Then,

gf;EdE:(;‘nﬁp)/so or E(4nr2)=(§nr2p)1]§/soj %

P

Thus £E=——-L7....(1.6.5)

dne, R3 Fig. 1.14

From the above equation it is obvious that electric field of a uniformly charged sphere
is zero at the centre of the sphere and linearly increase up to the surface of sphere where

1

it resumes its maximum value. For outside the surface the field falls 1/ ( distance) ) 5
(distance)

from the centre of the sphere.
(3) A uniformly charged long cylinder :

Consider an infinitely long cylinder having uniform linear charge density and radius a. Let
P be a point located at a perpendicular distance or from the wire we construct the Gaussian
surfaces, wehich in this case is a concetric cylinder of radius r and length .

A Applying Gauss’s law for this surface, we get
: [Eds=Ls
LY e 80
P : S
£ —tT Where ) ¢ is the charge enclosed by the surface. Electrical
‘l' S R field lines g will be normal to the curved portion of the
u surface. Due to cylindrical symmeiry,  will be of same
N magnitude all over it. Also z will be tangential to the end
NS~ —

Fig. 1.15 faces, so £ g will be zero on these faces, we can write
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[Eds=E[ds=E2mri = Y]
N

€0

Al 1 2A

’ E: —_= —_
oF 2ney v 4me, 1

vector notation E = —L %f...(1.6.6)
dre, r

(b) Field inside cylinder :

To find the electric field at any internal point, P at a distance r, we construct a cylinder
cal Gaussian surface, of length 1 and radius r coaxial with it. The charge endosed by the

surface is Q,,.; = mls.

A
where p is the charge density o to and is related to A by naz.p.l =), W= J

From Gauss’s law
Eds=-L S E—
as = < Qencl
0

Now j Eds=E2mrl

-----

or, E2nrl:LQend :Lnrzlp J 4 L 4P |Gaussian
%0 %0 \L : surface
—glnrzl%—z a
0 a
—c 5
o po 1 2hr @
aney q? Fig. 1.16

b 1 2Ar »
In vector form, E = Ea—zr ...... (1.6.7)

(4) Unformly charged infinite plane :

Consider an infinite plane sheet of charges with uniform surface charge density c. To
find out electric field at P at distance r, we construct a cylindrical Gaussian havig equal
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length on both sides Gaussion
From Gauss’s law / surface
ds /\ ds d
P E.ds s
D, =<]SE.ds=—QeM - N
S €0 P' E

Fig. 1.17

_ I - _ 7 7 ™7 _ Qencl
or 0= qSE-ds = jEds+ jE.ds + .[E.ds ==
‘ P P o
The electric field is perpendicular to the area element at all points on the carved surface
and is parallel to the surface P and P

curved

¢E=jEds+jEds=M[ E.dszo]
P P &

Since the magnitude of the electric fild at these two equal surfaces is uniform, E is taken

os

out of the intergration and Q,,.;, =6 ,s 2E J- ds = £

Hence 2ES = oS
€9

_ o
or, £= 2g,

If 7 is unitvect perpendicular to the plane, then in vector form

Electrical Field Inside A Parrallel Plate Conductor :

At the points P, and P, he electric field due to both plates are equal in magnitude and
opposite in direction. As a result, electric field at a point outside the plates is zero. But
inside, electric fields are in the same direction ie. towards the right, the total electric field
at a point P,
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% _—]
N A T el I
E. E + +7 P o - -_-|E E
<——> + + + 1 . - _ :_ <“——o—>
P3 + + + E_ - : __ —_
+ - [—
Fig. 1.18
c o o
Einside :E+E =g ...... (1.6.9)

The direction of the electric field inside the plates is directed from positively charged
plate to negatively charged plate and is uniform every where inside the plate

1.7 Laplace and Pisson’s Equations

Consider a closed surface S enclosing a volume V and charge q. Then from Gauss’s
law we can write

— dVv
d)jEdS =%: jp—

Where £ electric field intensity vector at the point ;¢ and the p is the charge density

at the point concerned to g Using Gauss’s divergence theorem in above equation we have

The equation (1.17 ) is known as differential form of Gauss’s law of electrostatics. Now
using potential — intensity relation, we have

V(-Vo) =%
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Equation (1.7.1) and (1.7.2) are respectively known as Poission and Laplace’s equations,
which play important role in solving out the potential of a charge distribution with given
boundary condition, which is the basic motto of solving electrostatic problems.

v2 in different co-ordinate system :

(a) Rectangular co-ordinates (X, y, z)

v 20, 0% %
on® ot o

(b) Spherical polar co-ordinates (r, 6, ¢)

2
2 :Lg(,,z@%;@(me@}#@
¢ pror\ or) p2sing M D) 2sin®0 69

(¢) Cylindrical co-ordinates (r, 0, z)

Li(&)+L62® L 020
pop\ds) p2 59> oz°
1.7.1 Uniqueness Theorem

Two solutions of Laplace’s equation obeying the same boundary conditions diffon at
best by a constant.

In order to prove the The orem, let us assame that ¢, and ¢, are the two solutions of
Lapalac’s equation in volume V exterior to surface of different conductor S, S,....S .
bouded by on the outside surfaces. Assuming that ¢, and ¢, satisfy the same boundary
condutions including the surfaces, S,...S,....S_, and specifically. These boundary conditions
includes either the specificatons of the potential don the bounding surface which is known
Dirichlet condition, or in other way, the specification of the normal derivati overs of ¢ i.e.

of

o The bounding surface, known as Neuman condition.
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Let ¢:¢l_¢27 As Vzd)l :—p/SO and VZ(I)Z :—p/go

s0, V2 =V29, -V, =0 inside V and ¢=0, an %=0 on the surface S for

Dirichlet and Neuman boundary conditions, respectively. Applying divergence Therem to

the vector ¢V, we get
| oVoids = | V{6Vo)dv
Jy [ [Vof +av2ov2 v

jV|v¢|2 dv [.-.vzq):o}

The integration on the left hand side vanishes on both types boudary conditions so, we
get

- 2
[ |v ¢| dv =0
v
It is clear that integrand is positive definite quantity, it must be zero at every point in V
for the integral to vanish, where,
Vo =0, or, ¢; — ¢, =costant inside V

Now, for Diricihet boundary conditions ¢; —¢, =0 on the surface S, so we have

¢; — ¢, through out i.e. it is a unique solution.

For Neuman’s boundary conditions

or, $—¢, =Constant S

As the constant is arbitrary, it may can be taken to be zero, and the solution is unique

D h -0,
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1.8 Electrostatic Energy

The energy stored in accumulation of charge due to work done against the
Coulomb’sforce, is called electrostatic energy. This is essentially potential energy in case of
static charges. reference zero of potential energy can be set to be zero at that separation.

Calculation of electric potential energy for a charge distribution
Consider a point charge g, at position vector N, and all other charges, infinitely separated

from each other. Then to bring a point charge q; at position vector 7 ;j the work done

y [ e qlq L T
Wy 47‘5800-[ ,, Ty drij = 41e 0.[ ”y ji> where rjj=r;—r; and 7;; = ‘;j_;l‘
q,qj| ey
i/ 47t80 hj LO 47‘:80 h
So the total work done for accumulating N charges
I S L M S L 1S
2: =l j= = 4mey 7y 2 i=1 j= 141 7 2 —~ 4ney 7 2 = j9j..1.8.1

Where D, z 4 is the potential due to all particles at j™ charge point. The
7580

multiplication of 1/2 is to avoid double counting like ®,q, and ®@,g; which will have same
effect on energy.

Electrostatic energy for continuous charge distribution

we can replace 1) ¢ = p(l’) dV for volume distribution of charge,
ii) q; = G(r) ds for surface distribution of charge,

iii) ¢; = M(7)d! for line distribution of charge,

Considering all type of distribution of charge the expression of electrostatic energy
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U=11],0()@(r)aV +[ o(r)@(r)ds + [, 1(r)(r)dl |+ the energy due 1o

point charge e distribution.
1) Electostatic energy in terms of field vectors

We start with a volume distribution of charge, then the electrostatic energy
1 1 7
U=5],p(r)@(r)av=5] @(r)V.DaV

Now using v_(cpf)) —VOD+®d (vB) In the above equation we have

U= EJ.V[V.(CDB)—CDV.T)} av ‘%Ds(qﬁ)"ﬁ* IJ;E.T)}W]

Now confining the charge to a finite region if the integration is extended to infinity the

first term vanishes since ®oo y ,Do yz and (s 002 12 so the first term falls as % Thus
r r

when we extend for all space the expression of electrostatic energy becomes.

_1[ %5
U=5[, EDdV..(182)

We can obviously take electrostatic energy density # = %(E’B)

1.8.1 Electrostatic Energy of Uniformly charged sphere :
Eectrostatic self energy of a charged sphere us given by—

_1 2 1 2
U=5¢q [ E dV+2sojE dav.

inside

Assuming total charge of the sphere Q, p its charge density and ‘a’ is the radius, then,
electric field at a dirtaue ‘r’

g1 O 1 4/3nr3p

Cdngy 2 4mgy 42
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1Qr

= == where r < a.
ey 3

Qfor r>a

and £ 475 £ 1

2 4
%o J- 4nr2dr+ 0 J. Q0 Amridr
47[8 a 4ng 2

% ! (LJFL):L.Q

dneg\Sa a) 4mey, Sa

Total energy of charged sphere,

1.9 Conductors in electric field

When a conductor is placed in electric field the free electrons in it move in opposite
direction creating induced field in opposite direction as in fig. The electron migration
continous untill the field inside the conductor vanishes and the conductor becomes equi-
potential all through. Any charge given to the conductor will migrate to its surface. If not

V.E= B implies presence of electric field inside the conductor. Which

=

contradlcts the above discussion. == T 5

1) Field intensity on the surface of a charged conductor. é - ;
Consider a cylinder a cylinder of plane surface area ;g as in fig Fig. 1.19

1.2.9 The electric field at any point of the surface is perpendicular to the surface as vy ¢
is perpendicular to constant potential surface. Now consider a Gaussian surface as denoted

by a cylinder of each plane surface jg.F be the intensity at the surface point at the element

ds. The using Gauss’s law we have Eds= GTdS or, E= % acting normally outwards at

the point considerd ... ... (1.9.3)
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2) Mechanical Force and presure on a charged conducting surface
Consider a charged coductor as in fig. (1.20) then by Coulomb’s Theorem the electric

field at vicinity of the outside of the surface is £ = % acting normally outwards. We can

gg Visualize the E = E1 + Eo ; where | is the field intensity due to

the charge on the element ds and £, is the field due to the rest
of the charge at the element ds. Now the intensity inside the

conductor is zero, s0 E| + E = 0, thus £1= £ = %80 and at

outside point the intensity will match with the Coluomb’s theorem

Fig. 1.20

E=FE\+E>= 7 acting outwards normal.
€9

Thus the elemental charged area s will be under the outwards field intensity E = %0

So the force on the charge elemental

AF = c2ds

n (ﬁ = unit vector acting outwards perpendicularly.)

) 2
So the electrostatic pressure P =0 % .
0

1.10 Capacitors

A capacitor is a device, which can store electrical energy. The capacitance of a conductor
is defined, as the charge required increasing its potential by unity. If q charge is required

q

7k
to be independent of charge. The capacity of a conductor increases in the presence of
neighbouring conductors due to induction of opposite charge at proximity and similar
charge at relatively apart. It further increases if the neighbouring conductor is earthed. This
is what is known to be ‘Principle of capacitor’. Practically a capacitor is combination of
two conductors with equal and opposite charges at so proximity that their potential difference
remains unaffected for the presence of other charges but depends on the shape, size and
proximity of two conductors and the intervening medium.

to increase the potential of a conductor by V then its capacitance, C =—-, which is found
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Its practical unit is farad. Capacitance of a capacitor is said to be 1-farad if 1C if
charge, given to the unearthed plate increases the potenrtial difference between the plates
by 1V.

1) The parallel plate capacitor

A set of two parallel conducting plates of same size with dielectrics or vacuum inside
constitute a capacitor. To calulate its capacitance we take the separation to be very small
compared to its lateral dimension, field inside the plates can be taken to uniform in between

thr plates.
=
P The fig (1.21) shows a parallel plate capacitor of each plate
N area A separated by a distance d. Q be the charge given on plate-
*: 1, The plate-2 is earthed and is carrying the bound charge —q as
il in fig (1.20) V be the potential difference between the plates. o
> be the charge per unit area of plate-1.
Fig. 1.21 = Then using Coluomb’s theorem, the electric field inside the

plates £ = c/¢ acting from plate-2 to plate-2 and it can be taken
to be uniform considering d to be very small.

Thus the potential difference V = E.d = od _ Aod _4q4
€ Ae  Ae

Thus the capacitance of a parallel plate capacitor can be written as

Where €, = permittivity of vacuum and €, = dielectric constant of intervening medium.

In case of vacuum ¢, =1. The eqn. Shows that capacitance is independent of charge.

2) Energy stored in a capacitor

Consider a capacitor has to be charged Q, then its potential be V. In the course of
charging q be the charge on the one plate of capacitor and v be its potential. Then for
further charging through an infinitesimal charge dq the work done.

dW:vdq=%

So the total work done in charging the capacitor to the charge Q is
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0
W_quq__Q__lcyz . D
“JTCc Ta2c T2 where V is the final potential difference between the plates.
0

...... (1.10.3)
Thus the above expression gives the electrostatic energy stored in a capacitor.

3) Capacitors with layer of dielectrics |

a) The dielectrics are parallel to plates : z.l ............. T i“.l
The fig (1.3.1) shows a parallel plate capacitor filled with two J_
dielectrics with dielectric constants €; and €,,q be the charge given Fig :1 2

on the upper plate which raise its potential by V. E, and E, be the
electrostatic field intensities in medim 1 and 2.

oX XX

Then V = Epxy + Eyxy =— L4 Oy = O x4 O 5 -9 /1,1
11 242 2 1 2

€0€1 €0 €0€; €0€s Aey| g &

b) When the dielectrics are perpendicular to plates :

Here we consider the plate separation is d and the area portion A and A, are occupied
by the dielectris of dielectric constants €; and €, respectively. q be the charge given to
the upper plate. The potential difference

A, | A
_ __OC c ;
V—Eld-i'Ezd—%d'i‘%d ...... (1104) 1 8]; g b
(2) Combination of Capacitors J__
Fig. 1.23

(a) Capacitors in series
The fig (1.24) shows a set of capacitors C,, C,, C,....C.....Cy, in series combination.

_)| V, |(_ <—V2~>| <—V3—)|

e} c, c,
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To calculate the equivalent capacitance We apply a potential difference V across the
combination. V,, V,, V,....V,....V, be the Potential difference at steady state across C,,
C,, C,....C,....C,...C respectively. q be the charge on the + plate of the capacitors, it
will be same for all plates as same current flows for the same time through each capacitor.

So, V=V, +V, ... S A I B G S
| ) C1+C2 ....... q{C1+C2+C3 .....
So the equivalent capacitance C,, = % will give
=N
L, 1,11 Sl
ettt = Y —
Ceq C’1 C2 C3 i=1 Cl

(b) Capacitors in parallel

The fig (1.25) shows a set of capacitors C,, C,, C,....C....Cy in parallel combination.
N be the potential difference applied across the terminal of of the combination.

Qpp Gyrovevevenees q....qy bethe charge at steady state on capacitors C,, C,, C,,....Cy
respectively.

The total charge g =q; + g, +.....+q; +...+qy

=CV+CGlV+GV +....+CyV

If Ceq is the equivalent resistance of the combination then,

q=CoV =CV+CV + GV +....+ C\V

OI" Ceq:C1+C2+C3+ ...... +CN

(c) Energy loss due to sharing of charges of conductors

Cosider two conductors having charges q, and q,, capacitances C, | |
and C, and respective potentials V, and V, (V, > V). When they are | |
make to touch or joined by a conducting wire, they will reach to common
potential | | |

_ Total Charge GV + Gy, Fig. 1.25
~ Commonpotential ~ V;+V,

So the final charge on the conductors are
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%‘CIV_CI( C+ G and 92 =GV =G, C+C,

So the initial electrostatic energy stored E; = [CIVIZ + Cszz}

L
2

stored £ =%[C1 +G )7 :%[Cl +C2](

So the change in energy due to sharing of charges

2
Vi +C,TV-
_ GG 17 \?
_—2(C1+C2)(Vl 29 (1.10.5)

The above equation shows AE to be always positive and thus there is always a loss of
energy in sharing of charge.

(d) Force of attraction between plates of charged parallel pate capacitor

If o is the surface charge density on one of the plates of parallel plate conductors then
this charge is under the electric field o/2¢ for the charge on the other plate. So force on
the unit area acting between the plates is P = 6?/2¢. For the plate area A, the force is

2 2
F = AZL = 2(]7 where q is the charge on one of the plate. This force
€ €

in attractive as the plates bear opposite charges. ‘ ‘

(e) Breakdown Voltage ‘ ‘

A capacitor can withstand a limiting value of potential difference
between its terminals, called break down voltage, which depends on the
proximity of its plates, its structure and intervening dielectric. This is because, dielectric
break down takes place at a limiting value of field intensity when the force on bonded
electron crosses the bounding force of nucleus and the dielectric starts conducting. In case
or air it is about 3 x 10° kV/m.

Example-1

A parallel plate capacitor with place separation d and plate area A each is filled with
two dielectries of dielectric constants K, and k, in such a way that half the length of the
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plates is covered by each dielectric. Show that the capacitance is given by

ggA
Czﬁ(kl+kl)' A/2 A/2
Soln. Kld K,
The fig. (1.26) shows such an arrangement that can be visualized as a |
kA k,A
parallel combination of two capacitances, C} = 802;, and C, = 802 ;, Fig. 1.26

ggk A N goky A €44

So the total Capacitance C = C} +C, = 2d g =g

(ki +ky ) hence proved.

Example-2

Find the expression of force on a dielectric slab inserted partly in a parallel plate
Capacitor maintained at constant potential difference ®.

The fig. 1.27 Shows a parallel plate capacitor of length / and
s breath b. d be the distance between the plates. A dielectric slab of
breath b is inserted through a distance x as in fig. (1.27). The system

&
<

- can be considered as a parallel combination of two capacitors C,
—Ii (portion with dielectric) & C, (portion without dielectric).
: [ —
Fig. 1.27 Thus C=C,+C, = gofcb + 20 (d x) = Sflb [kx+(1-x)]
So the energy stored in the system
1,2 _ 18D 2
U—EC(D —57[[0C+(1—X):|q)

So the force acting on the dielectric slab

_OU __0|1&b _ale? | L& o2
F=0%= 8x[2 ke (1-x)o }_2 (k-1

1.10 (a) Capacitance of Spherical Capacitor

(i) Isolated Sphere

The fig (1.28) shows an isolated conducting sphere of radius
R. Q be the total charge on the surface. We consdier a gaussian

surface given by dotted line. g be the electroic field intensity
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at a point on the surface. Then from Gauss’s theorum J.S E.dS = %)

Or, E4mr? =Q/
€0

__dVr:QL here V_is Th tenhal on G i 1:
dr dngy 20V ere V_is The potenhal on Gaussian surface.
___ 9 1
So dV, = 4ng, 2

Considering V as the potential at R and the other plate to be at infinity, where the
spotential is assumed to be zero we have

_[VdVr: Q (*dr

_47:80 R,,_2
o Q _1pe__ O
0 V_4nso_r-[R_ 4mig,

_0
V_%TESOR

So C =%= 4megR ... ...(1.10.10)

(i1) Two concentric spheres, outer sphere earthed

The fig (1.29) shows a spherical capacitor consiting of two concentric spherical
conducting shells of iner radius a and other radius b.

Q be the charge given on the inner sphere, E be the
intensity at point P, Through which passes a gaussian surface
as shown dotted line. Then using Gauss’s Theorem,

J. EdS = E4mr? = Q/
S €

_av__ 9
Or, £ = dr

475801"2
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Or, Jd" = _Ij%gizz

0 1I"_ 0 (l_L)

4ney r, 4megg\b a

As b - o its gives the result of isolated capacitor.

(iii) Inner sphere earthed

Let q the charge given on the outer sphere of radius b. a be the radius of inner sphere
(conducting) ¢' be the charge induced on inner sphere. Then from fig (1.30). As the

o - 1 (g .4
potential on inner sphere is zero, Then 4, (b a ]

Now considering the Gaussian surface Through P of radius r,
We have using Gausse’s theroem,

Zi5_49/__a
jSE.dS_/_ 2q

_—a_ 9 1
av __1 9 1 al
Or, dr 47[80 r2 OI', dV_4TC80 Er—zdl"
Vo __4 afbdr
Or, IO v = drgy b Ja 2
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V= q Q(l_l)z q b—a
4neg b\a b) 4mgy\ p?

(b) Capacitance of Cylindrical Capacitor.
Outer Cylinder earthed

The fig. (1.10.15) shows a cylindrical capacilor whose length L is much larger than its
breadth so that electric field inside The cylinder can be considered to be axially symmeteric.

We consider a Gaussian surface a cylinder of radius r (r <r <b) as shown by dotted

cylinder. £ be the electric field at a point P on this Gaussian surface. b a
Then applying Gauss’s Theorem N i
- SO % P
J.S Eds= % (€ be The permittivity of medium in space between the L ¥---- .-.-I-—" .
. AdI T
cylinclers) Yool IS 2
A = charge/unit length il N1
N——" ~
Or, E2mal =201
Fig. 1.31
A 1__dv
2ne r dr
__ 1 dr
= 2me

So potential difference between the cylinders

I av " 2me L:a C;'f’

Or, V——%l nd/ = 2%8111%

=9 14b =
Tl In A (where g =AL)
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_4q_
C=L=2mels b/ (1.10.10)

(c) Capacitance of spherical capacitor with dielectrics

The fig (1.32) shows a spherical Capacitor of inner radius a and outer radius b with a
dielectric of dieletric const K| Thickness t with inner sphere and The rest portion is filled
in with dielectric constant K,. q be the charge given on inner sphere Then potential
difference between inner and outer sphere

a+t

Vo= jEldr+j Er-dr....(1.10.11)

Where £, and E, are electric field intensity at The specific
point in inner an outer sphere respectively

Now applying Gauss’s Theorrein

J. GErdS= 1 . ki g, = permittirty of free space.
Or, £ 4mr?

Okl
Or, EH q Lra<r<a+t

L g 1 «
Similarly £2 = . 7 (a+t) <b

a+t—L b q L
So AV = J- 47T€0k1 7 dr+J.a+t 47580](2 }/-2 dr

g a1 1,1, 1
_4n80_k1(a a+t)+k2( b+a+tﬂ

= ey kil a(at+ 0) *é{bb_(g:;)ﬂ




q {kzbwrkla{b—(aﬂ)}}

 4me, kykyab(a+1)

_ q _ 47T80k1k2ab(a+t)

s C

(d) Capacittance of Cylindrical Capacilor with dielectrics
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The fig (1.33) shows a cylindercal capacitor consisting of two co-axial cylinder of radius
aand b. (b > a). A dielectric of Thickness t and dicelctric conat k 1 is attached with inner
cylinder and the rest portion isfilled in with dielectric of dielectric constant k, as shown
in fig (1.33 ) E, and E, be the electric field in first and second dielectric Then applying

AP

Gauss’s Thorein as pervious £, = ey
01

and E, =

So the potential difference between inner and outer cylinder

*# )\ = charge/unit length on inner cylinder

a+t b
AV = [ Edi+ | Erdr )
a a+t 2\
S N A N P
2negky 4 v 2megkyJati v K

A |1 a+t, 1 b
= — In®“Y¥—Y/—+ —In—=%
27[80 l:kl n a +k2 na+t:|

q [iln—a+t+Lln—b}

:ZTESOL kl a k2 a-+t
o= - ek . (1.10.13)
AV [11 att, 1 b }
kl a k2 a+t

A
27[80](2 r

% 5k
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(¢) Capacitance between two long parallel wires each of radius r separated by
a distance d

The fig (1.34) shows such an arrangement where length of wire L>>aandd>>r
the radius of wire.

Consider a point P at a distance at a distance x from wire A, A be the charge per unit
length of wire A and —A be that of wire B.

The inlensity of field at P
wire T A BT

F—_h [ 1 1 } B | |
I

I

I

I

I

I

I

=2 _[Inx—In(d-x)]"

2mg x d-x] |
So the potentrial difference between A and B | p
I
I (= by d-r l 1
Av= d—rE dx_ZTCSO J.r (x+d—x)dx : X d-x
I
I

B 27[80
«—d —5
__h Pnd—r—mr }: A pd=r Fig. 1.34
2mg r d—-r] mgg r

Thus the capacitance per unit length

1.11 Electrical Image

Electrical imaging is a mathematical method of solving electrostatic problems introduced
by Lord Kelvin. In this method the induced charge appeared on the surface (surfaces) due
to the presence of point charge (charges) at proximity to the surface (surfaces) can be
replaced by suitable point charge (charges) called image charge (charges), on one side of
the surface. The field and potential on the other side of the surface can be evaluated by
the superposition of field and potential due the charge (charges) and their image charge
(charges).

Here also the Lapalce’s equation is satisfied as with the actual carges and hence uniqueness
theorem is followed.
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Thus, electrical image (images) can be defined as a ficitious point charge (charges) on
one side of a surface (surfaces) that can replace the effect of induced charge (charges) on
other side of the surface (surfaces).

(1) Example-1

A point charge q is placed at (a, 0) in front of a infinitely extended earthed coducting
sheet occupying (y, z) plane. Find

1) the position of image charge

i1) magnitude and nature of image charge

ii1) Potential at a point x > 0

1v) field intensity on the surface of the sheet

v) force between the charge and the conductor.

vi) charge density at any point on the surface of the conductor.

vii) total induced charge on the surface.

Solution Lo oo I
B P &
The fig (1.35) shows a point charge q at position | “~.-. * g2:2lc-- N
. .. . IMAGR @ - -« - - - -
vector j; with respect to the origin O, in front of | ¥ e | §
a large earthed coducting plane occupying y —z g, AN E
plane, be the image charge as shown in fig. (1.35). & -

1) From the symmerty of the field g lines is to be

placed at —jg

i1) From the condition of zero potential, at any point C on conducting plane

_ 1 q qi | _
(D_4TC80(AC+BZCVJ_O’ we have (]i =—q

iii) The potential at point P (x, y, z), V =V, + V, = potential due to source charge
g + potential due to image charge.

_ 1| ga ¢
= e o e | (1.11.1)
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Where = ix+ j‘y +kz is the position vector of point P, ; ,j',l€ are the unit vectors
along x, y and z axis.

q 1 1
Thus, ® = S —— (1.11.2)
4meg \/(x—a)2+y2+22 \/(x+a)2+y2+22

iv) The field intensity at point P (x, y, z) along x, y and z axis are

E —_0P__4 x—a x+a
o ox 47t80{

32
(x—a)2+y2+22} / {(x+a)2+y2+z

£ 00 y y

’ & {(x—a)2 +y° +Zz}3/2 {(x+ a)2 + 7 +22}3/2

:_aa% 5 22 N2 5 . 32
{(x—a) +y° 4z } {(x+a) +y2+22}

V4

On the surface of the conducting sheet x = 0, so only x-component of the field survive

—2aq

and E, = acting along —x axis. ... ... (11.11.3)

3/2
4ne, (a2 +y2 + 22)
v) The induced charge can be replaced by the image charge —q fig (1.37). So the force

2
q

4meg (2a)

betwee the surface and the charge qis /' = and is attrative.

v) G be the surface density at a point (y, z) on the conductor face
as in fig. (1.4.5)

Then
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—2aq —aq

47‘:(a2 +y2 + 27 )3/2 i 27‘:((12 +y2 +22)

o =g F = (1.11.4)

75

vii) To calculate the total charge on the coductor we consider a ring of radius r and
thickness dr about the origin 0 through the point (y, z).

Then the area of the elemental ring dA=2nrdr, charges on the ring = A2\rdr
so the total charge is reduced.
T _ " —aq2ndr _OO —aqrdr
[o2mdr = | 75 =] —g...(1.11.5)
0

02Tc(a2+y2+z3) 021t(a2+r2)3/2 !

Problem—1

Find the work done in removing a charge q placed in front of earthed coductor at
distance ‘a’ from the conductor.

Solution.

From the conception of electrical image, the induced charge can be replaced by —q
charge on the other side of the surface at the same distance from the surface in which the
charge q is present. The force of attraction between the charge q and the induced surface

2

charge, when their distance of separation x is given by F' = 9 5
l6meyx
Then the work to separate the charge to infinity is,
0 2 2 Y
W= [Fdr=—94—av=—9 .4 i
£ 16n80x2 16meyd which is the o4 P (a,b)
! (-a,b
energy required for the separation. (-a.b)

1) Point charge placed between two large | 0
intersecting conducting sheet perpendicuar to each A S
other. : Z :

The fig (1.38) shows a z = constant section of a large Ny ii-emeeemeeermeceemecest (a,-b)
coducting plane occupying (x — z) and (y — z) plane. q (-a,b) ' -4

Fig. 1.38

Considering the conditions to be satisfied by the charges
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1. Laplaces eqn. at all places excipt at point P ;
2. Potential over the conductor to be zero

3. Potential at infinity to be zero, Thus proceeding in the same way as previous for
infinite earthed conducting plane, the image charges will be —q at (—a, b) ; + q at (—a, —
b) and —q at (a, —b) as shown infig.

The potential at any point A (X, y)

yo_4 1 ~ 1 i 1 1

~

=4Tt80 f(x—a)+j(y—b) f(x+a)+j(y—b) z(x—a)+j(y—b) z(x—a)+j(y—b)

The intensity 7 can be evaluated by eqn. £ =-VV. .....(1.11.5)

(2) Point charge in front of an earthed conducting sphere.

Let a point charge is placed infornt of an eirthed
Q=.6) conducting sphere of radius a.

Let the induced charges be replaced by image
charge ¢' atadistane 4’ from centre O on the line

OP due to symmetry of induced charge.

- P
1 \\/dﬂ1 l We must follow the conditions

1) Leplaces equation to be satisfied at all point r >
a, except the point P

11) Potential over surface of sphere be zero
1i1) Potential at infinity from charges to be zero

Now from condition (ii), potentia on surface of sphere,

S W A
VS_4TcsO[PR+MR} 0

!

aneg \/x2 +d? —2ad cos0 \/a2 +d'* —2ad' cos0
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_ 1 q/a N q'/a 0
4ne 2 2
0 \/1+dz—2dcos(9 \/l—i-az—zc,lcose
a a a* d

As this equation is valid for all values of 8, we can write ¢'/d' =—g/a &% =a/d'
d'=d*ld&q =g =-9% . (1117

Or, d'=d’fd&q =% =-LF ..(1.117)

Thus we know the position, quantity and sign of image charge.

Potential at point Q.

VQ: q { 1 B a/d }
angg \/r2+d2—2rdcose \/r2+d'2—2rd'cos€)

Or, Vo =—2 { L - 2 }
4me \/r2+d2—2rdcose \/r2d2+a4—2rda20059

ov, ov,
E. = a_rQ and Ey = —%a—eg can be calculated ... ... (1.1.8)

_1)2
or, V,=—L (l”2+d2—2rd0059)_1/2— a2+r2d—2—2rdcos€)
b "0 " 4ne, a’

when r = a i.e. wehen, Q is a point on the surface of the sphere, then VQ =0

In order to find the The surface density on the surface of the sphere, we must know
The radial component of the electric field.

_ _OVQ
r or

_q
47[80

0
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2
- d—z”—dcose
r—d cos a
— 75 o V7 | (1.11.10)
(r +d —2rdcose) (a2+d r —2rdcosej
2
I a i

when the Q point is on the surface of the sphere,

when r = a, then

2
q d?‘“
(E”)rza = /2

) 4me (a2 +d? —2ad cos 6)3

= 9 (a—dz/a)

TN

1/2
where ¢ = RP = (a2+d2—2adcos6)/

Or, we can write

E,=(E,),_,=—L|a-d?/a]....(111.12)

4mgyl?

Induced charge density at on the sphere : If o be the induced surface charge density
at the point R on the spare.

G=80E”=#(a—d2/a)
S —dz‘az} 1.11.13
W{ g (1L11.13)

Since d > a, equation (1.11.13) shows that o is negative. The magnitude of the surface
charge density is maximum when 0 = O, i.e., | is minimum, and minimum when 6 = 7.

The ratio of manimum and the minimum surface charge density is given by,
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3
lman — ( d+a )3
lmin d—a
Force exerted on the point charge + q at P.

which is altractive,

p___ad __ a(-q9/d)
47’5‘°'0LP2 4n80(d—a2/d)2

(3) Point charge in front of an unearthed condcting sphere.

The fig (1.40) show an unearthed
conducting sphere of radius a. Here to
calculate the image charge and its position
the following conditions must be satisfied :

Yq 1) Laplaces equation for r > a except
__________________ | the point P,

i1) Total charge induced is zero.

+ - - Fig. 140 111). Sphere surface is at constant
potential.

1v) Potential at infinity is zero.

So, this case will be similar to the earthed conducting sphere condition with a charge

+q% is to be placed at the centre of conducting sphere to satisfy the condition (i) as

mentioned in fig (Fig.1.40).

1 gqa/d _ 1 q .
ine, a = dne, d instead of zero.

So the surface potential now will be Vs =

The potential at point Q will be
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g L a +4 | .(1.11.4)

V, = -
0
aneg \/rz +d?*—2rdcos® \/r2d2 +a* —2ra’d cos0

The radial component of field at Q(r, 6)

ad(m’ —a® cos 9)

£ :_aVQ __4q r—dcos0 _
- 3/2 3/2
o 4megg (’,2 +d?* —2rd cos 6) / (rzaf2 +a* —2ra*d cos 8) /

+alrd]....{1115)

On the surface of sphere (r = a)

2
E, =1 L (a—d—}L ...... (1.11.15)
4mey (a2 +d?*—2ad cos 9)3/2 a4 ad

So the induced charge per unit area on the surface,

6 =¢gyE, will be maximum for g =0 .... .... (1.11.16)
Go__4 d*—a° 1
3/2
4ma (a2+d2—2adcos6)/ d

Let us see the nature of nature of the induced charge, whether positive or negative when
6=0
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Which is clearly negative. Now when § =

__49 |_a+3d
4y | (d+a)

Which is G positive charge density

There is no induced charges on the sphere separating the regions of positive and
negative charge density : NOW, putting ¢ = ( in eqaution, we have for the line of non-
electrification.

@ +d> —[d(dz —az)T/3
2ad

Cos0y =

Which is positive, it implies that 0, < /2
Force experienced by the charge at P
a2 2V, da ¢ (a) 2d*-d
F d“—a”| + 3= 5
4meod 4neg \d (dz _ az)

 4ng,

1.12 Summary

After studying the unit we should understand following :
1. Interaction between two charges through Coulomb’s law and for a cluster of charges.

2. Conception of electric field electric field £ lines. Conservative nature of % and

introduction of electric potential V through g - _Ap.

r

- (1 g, _ 1 4q,,F=-L 94;
(a) Point charge V—j Iy 2 dr = PP and dneg rzr
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(b) due to a uniformly charged ring on its axis at a distance x from its centre o be The
charge per unit length.

4re \/a2 +x2 47e, (az 2 )3/2 > ¢ =2maa.

(c) due to a charged disc (o = charge per unit area)

VP:L[JRZ_HCZ_X} Ep=—1 (l—cose)fc

280 27[80R2

+ 4+
>

(d) due to spherical distribution of charge
(1) Uniformly charge spherical shell.

(a) x<aV :LOCI/Q, E; =0

4me

__ 1 g p__1 49
(b) x>aly 4rg x’ 07 4ne, x2

(i1) Uniformly charge sphere. P = charge density

__ 1 _4B3mip E:L‘J_’A‘
i_4TC80 B x2 0 47[80 x2 x—P

Gausse’s law and its and its application for various distribution of charge.
Laplace and Poission’s equations

Poission’s eqn V¢ = P/e,

Laplace’s eqn V2¢ = ( and their one dimensional soluns.

Eletrostatic energy

qiqj _l -
2247'[80 rij : _2.[VEDdV

Study of capacitors

Capacitance of parallel plate capacitor C =¢yA4 / Z x/e

Capacitors in serles l/ceq Zl/c
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Capacitors in parallel C,, = z c

: . cc 2 :
Energy loss in capacitor = %ﬁ(‘ﬁ —vz) due to sharing of charge
1 2

4. Capacitance of spherical apacitor ¢ = 4mnegyR

Two concentric spheres, outer sphere grounded ¢ = 47g ba_ba
Capactance of cylinder ¢ =2ne L/In/b/a
Spherical capacitor with dieteclric ¢ = Aol (a i t) a
kybt +kja(b—a—t)
2nggL

Capacitance of cylinderical capactor with dielectric, ¢ =
[kl a k2 a-+t

Lln—a"'t+iln b }

TCSO
d-—r
r

Capacitance of two parallel wires, ¢ =
In

5. Electrical image
Point charge in-fornt of a earthed unifinite cmducting plane.
Point charge infornt of earhed conducting sphere

Point charge in front of unearthed conducting sphere

1.13 Review question and answer

QNO 1 Why the electric field inside a good condutor is zero in a steady state
and any net charge on a good conductor must be entirdy on the surface?

Answer : If there were field, charges would move, charges will move until they find the
arrangement that makes the eletric field zero in the interior. if therby where charge in the
interior, Then by Gaussn law there would be a field in the interior, which cannot be true.
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QNO 2 Why do electric field lines never cross each other?

Answer : It is so because if they cross each other then at the point of interessection
there will be two tangent’s which is not possible.

QNO 3 What is the net amount of charge on a charged capacitor?

Answer : The net charge of a charge capactior is zero because the charge on its two
plates are equal number and opposite in sign. Even when the capacitor is discharged net
charge on the capacitor remains zero because each plate has zero charge.

QNO 4. How does the field line and an equapotential surface behave?
Answer : They are always at 90°

QNO 5. What is the power dissipoted in a pure capacitor?

Answer : Zero

QNO 6. What will be the potential difference between the plates when a dielctric
slab is introduced in parallel plate capactor?

Answer : decrease.

QNO 7. A point charge q is held at a distance d infornt of an infinite grouded
conducting plane what is the electric potential infornt of the plane?

Answer : See Article 1.11. for answer.

QNO 8. A point charge q is placed at a distance d from the centre of a grounded
conducting sphere of radius a (a < d). Calculate the density of the induced surface
charge on the sphere?

Answer : See article 1.11 for answer.

QNO 9. The concentric spheres of radii r, and r, (r, > r,) carry electric charges
+ Q and —Q respectively. The region between The plates is filled with two insulating
layors of dielectric constant ¢, and g, with widths d, and d, respectivly. Compute
the capacitane of the system

Answer : See article 1.10 C for answer.

QNO 10. Which one of the following is an impossible in electrostatic field?—
1) E :xyf+(2yz)j+(3xz)l€

ii) E=y2f+(2xy+zz)j+(2yz)l€
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Answer : For solution, if V x E = 0, Then That electric field exists in electrostatics
correct answer is (1)

QNO 11. There charges Q, + q and + q are placed at the vertices of right angled
isoscles traingle as shown in the figure. What is the value of electrostatic energy?

Solution : Length of the hypotenase =+/24, the net electro static energy is—

_ 1 {Qq qq}
4me \/>a

QNO 12. Three infinite long plane sheets carrying
unfirom charge densitics ¢, = o, c, =+ 20, and o,
=+ 3o are placed parallel to x z plane atz=a, z =
3a, and z = 4a as shown in the figure.... what is value
of electric field at the point Q?

Solution : The electric field a point Q due to an +q<_ a —s R
infinite long plane sheet carrying uniform charge density is Fig. 1.41
given by—
ol
2¢g

which is independent of the distance of point Q from the sheet and is, therefore uniform
The direction of the electric field. is away from the sheet and prependicular to it if & is
positve and it towards the sheet and perpendicuar to it if ¢ is negative so

— ~ Z
Ei = O (_ _ . .

1 2e ( k ) along — ve z direction 74 S
— 2 N 7=3a 6~=+20
Er= ﬁ(_k ) along —ve z direction .

3 A
and £3= 2¢, ( k) along — ve z Z=a 6=-0
direction

From the superposition principle. The Fig.1.42 ;

resultant electric field at point Q is

E=E1+E;+E3



NSOU e CC-PH-08 1 64

1.14 Problems & Solutions

QNO 1. The electric field in a certain region is given as g — 4,7 Prove that charge

contained within a spherical surface of radius ‘a’ centred at the origin is 4neg,, Aa°.

Solution : From The differential form of Gauss’s in law v .F = V
€

. .| L 0(.2,.3
So the charge density P = €9 Lz o (r Ar )}
(using spherical polar co-ordinate)

p= 580Ar2
Total charge within a sphere of radius ‘a’is Q = Ig p(r)anridr

= 207580AJ-(? rhdr = 4n80Aa5

QNO 2. The electrostatic potential due to a charge distribation is given by

V(r)=L=e_r/k losed within a sphere of radius 1/4 given by ~Z
pros, ~— enclosed within a sphere of radius /) given by -
—Ar
Solution : Given V (r) = 4738 er

0

So the electrical field is

—Ar (4 \_ —Ar
Fo oo 4 {re (-1)-e }ﬁ
47[80
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_q e—kr R
_47580 > (1+kr)r

So the total charge enclosed within a sphere of radius r is

Oopel = aogﬁf.dg

. €oqd (™ zne_}\’r A2 ~
= e jo Io r—2(1+Kr)r sin” d0d odrr

=qe " (1+0r)

Thus the total charge enclosed within a sphere of radius 7 =% is
O =0 (1411

-2 %
e
QNO 3. Two large non-conducting sheet one with a fixed uniform positive charge and

another with a fixed uniform, negative charge are placed a distance of 1 meter from each

other. The magnitude of the surface charge densities are o, =10puc / m? and
c_=5 uc/ m?

for the positive plate and negative plate respectively. What is the electric field in the
between the sheets?

Solution : The electrical field between the sheet is

_0, O,
2g, 2g

1 -
H[10+5]><10 6

__15x107°
2x886x10712



NSOU e CC-PH-08 O 66

= 8465x10°

=846x10° N/C

QNO 4. A long cylinder carries a charge density p = Ar ; for some constant A. Find
the electric field inside the cylinder.

Solution : We draw Gaussian cylinder of length 1, and radius r. For this surface, Gauss’s
law state that

— 51
(ﬁ Eds = 8_ Qencle
S 0

So the enclosed charge is

e2n

Orct = [PaV = [ [ | (4r)(rdr)dodz

= 2nAlerr2dr = %nAlr3

Now from symmetry, it is cleart that 7 is radially out word, so for the curved portion
for the Gaussian surface we get

[ Eds =|E|[ ds =|E| 2mr]

Hence ‘E" 2nrl = 3L71Ar3

€

— 1 .
So finally £ =3, —Ar’F

QNO 5. A hollow, conducting sphereial shell of inner radius ‘a’ and outer radius be
encloses a charge —‘q’ inisde, which is located at a distance d < a from The centre of the
sphere what is the potential of the centre of the shell?

Solution : charge induced on the inner sphere is + q and charge induced on the outer
sphere is + q

Thus the potential at the centre of the sphereical shell is
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-4 (9_49_4
dnegla d b

QNO 6. Given the potential V' = %sin Bcos ¢

(a) Find the electric flun density 7; at (1, %0)

(b) Calculate the work done in maving a 100 uc charge from a point (2, 30°, 120°) to
B (4, 90°, 60°)

Solution : D = SOE

But = = L+ 1900100

= S[M—%cos Gcos¢+%sin6$}
r r r

At (1,%5,0)
D=gyE =45 #-00+09|
= 5x885x107"2 c/m2
= 4425¢/m?
B— —
work done W = —QJA Edl=0V,p

=0(Vg-V4)

_ 5.1 =51 -6
_100[4><2 2X2+2}<10
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=125uJ
QNO 7. Consider two electric dipoles with their centres at fined distance of reparation.

Show that if the angles of the dipoles make with the line joining ther centres are 6; and

0, and if 0, is held fined Then for equillibrium tan 6, +2tan6, =0

Solution : Configuration of the dipoles are show in the figure.

We know that interaction energy between two dipoles, 392/‘ P
1
C
PPR , . . 1
W5 =%(smel sin6, —2cosB; cosH, ) ’T
The couple exerted by the first dipole on the second is r ¢

W _ BB

212, r_s(sm 0 cos 6, +2cos6; sin 6, ) \Lle\‘
P
C 2

At equilibrium t,; =0

Fig.1.49

". sin0; cos,+2cos0;sinH, =0
= tan6; +2tan 06, =0 Proved

QNO 8. Three electric charges are placed at the corners of an equilateral traingle
AABC of length ‘a’. Find the magnitude of the dipole of the system.

Solution : Taking B as the origin of two dimensional co-ordinate system B (O, O)
3
A(“ﬂ%) and c(a,0)

The dipole moment the system as in equilateral traingle A4BC, A (-2q)

2 2

ﬁ=aqi+[£f+\/§aj}(—2q) a a

= —3aq j

The magnitude of the dipole is =+/3ga Fig.1.50
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QNO 9. A sphere of radius R centred at the origin carries charge density

R .
p(r,0),= k r_z(R ~ 27 )sin 0 where k is a constant, and p(,0) are usual spherical
co-ordinales. Find the approrimate potential for points on z axis far from the sphere.

Solution : Monopole terme for potential

0=2m
Vmonopole VlajpdV = J.GR:O J- P(l”', 6)7"'2 sin 6d9¢
0

Dipole term V, = I r'cosOsdV =0

and Qudruipole term V5 = j 21 (3cos20—1)pdV

3

o1 knR
4ney 483

(r—z)

QNO 10. Find the capacity of concertric spheres with two dielectric.

Solution : Let Q charge given on the inner sphere, so the electric field within the radius
a to be

E-—2

4758081,.}"2
So the potential difference across g;

J‘b dr

__9 [L_ 1 }
dngge, La 4
Similary the potential difference across €,

Fig.1.51

szjc—Q dr

b 4758082r r2
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- 4TC8Q0820 [% _%}

Total PD V = V,+V,

Capacitance C = 7+ 7,

T ]

Alternative method :

Using spherical co-ordinate system, to find but the potential in at any point inside the

v _,

. . : oV
dielectric, taking note that —~ 20 =0 and, b

HEF)-

8[281/} 0= 29V

or or o A

where ¢, is constant of integration
Again intergating, in region I

q .
14 =—r1+c2 in g

!

V2 =—71+Cé in 82

Then from, E,—grad v, 7 we get

a
Er= —r—2,a<r<b

!

a
Er= r—z,b<r<c
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— A c
D =—I’8081r—12a<1”<b
r

’

= . c
Dzz—reoszr—;b<r<c
r

We observe that there are four unkowns, so we need four boundary conditions, to
evaluate therm, They are,

C
on r=a, Vlea:;1+c2

!
c
on r=c, V2=VC=—?1+C'2
c |
on r=>b,V=V3; ie. —31+02:—31+c§

onr=b, D, is continouons, so, D,; =D,

C!

: a _ 1
or, Dy =Dy ie. &fr17 3 =%0f2r 7

From, these boundary conditions, we obtain ‘D’ on the surface of the inner sphere of
radius a

SO(VC_Va) L

- - 1))

So the total charge on the inner sphere, will be 45,2 times D on ‘a’

D1:

charge

.. Capctance C = A

47‘[80

S VR R P
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QNO 11. A dipole having a moment (35 ~5j+ 10/€) me m is loated at Q (1, 2, —4)
in free space. Find V at P (3, 3, 4)

Solution : Unit vector along the straight line PQ -7 = 20+ j+8k
J69

Potential at the point P (3, 3, 4)
Pix10 (3157 +10k)(2i+j+8k)x10™
dmeg? J69(69)

=127V/m

QNO 12. Three point charges are located as shown in the figure Fig (1.52) Find the
approximate electric field at points far from the origin state your answer is spherical co-
ordinates, and include The lowest orders in multipote expansion.

Solution : Total charges Q =3q—-q—-q=¢q 7

7

mono 9 and dipole moment p =3gaz

4ne, r

3gacos0

S0, Vaip = 4 2 Therefore
TESO}"

~_ 4 _1 3acos0

E(r,e);4;780 —%f+i—?}(2¢osef+sin9é)

B Fig.1.52
QNO 13 Consider an electric dipole P, which

is is fined at a distance zo along the z-ams and at an orientation @ with respect to that axis,

consider the xy plane as conductor at zero potential. what is the charge density on the
conductor induced by the dipole

Solution : As shown in the figure the dipole is P=P (sin 0,0, cos 6) and its image

dipole is ﬁ' = P(—sin 0,0,cos 9) In the region z > 0, The potential at a point ;(x, yz)
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s V(;)— 1 {szin6+(zzo)cose

{x2 +y° +(z+zo)2}3/2

The induced charge density on the surface of the coductor is given by

— , 0
2Tc(x2 +y2 +z§ )3/2 i\ /i/<
[
— |

l¢—, —x] <,
0

0

3Pz, (—xsin 6+ z, cos )

2TC(X2 +y? +zg )5/2

+

Fig.1.53
QNO 14. Two similar charges are placed at a distance 2d apart. Find appronimately,
The minimum radius of a grounded conducting sphere placed midway between them that
would neutralize their mutual repulsion.

Solution : The electric field outside the sphere conresponds to the resultant electrical
field of the two given charges + q and two image charges +¢'. By the method electrical

images. ¢' = 1 % and they are to placed at the two sides of the centre of the sphere at

a
d
of + g, There is also the altraction exerted by the two image charge, For the resulant force

to vanish, we must have

the same distance d' = from it For each charge + g, besides acted by repulsive force

¢ __q’ald_ q*d’/d

4d2 b 2 2 2
d-%- b+
d d

2 4 8
_ 2Z3a [1+3(%) +5(%) +}
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N 2q2a
d3

e
+
[ Jal

The value of a (a <b) that satisfies the
d bove requirement is given by,

d

a= §

QNO 15. Chareges + q at points (q, 0 !
a) and —q at points (—a, 0, a) above a
grounded conducting plane at z =0, Find

————————e t

v

(a) The total force on charge + q

(b) The work done against the electrostatic forces in arranging this distribution of
charges

(c) The surface charge density at the point (a, 0, 0).

Solution : The method of image charges implies at + q (—a, 0, —a) and —q at (a, O,
—a). The resutlant force exeted on +q at (a, 0, a) by other charges is

2
Fo @ |1 ;s 1 gL (L:AQ

4ne, (2a)2 (2a)2 (2x/5a)2

-

q 1, 1 |z 1, 1 7
= ——+—=i+| —+—= |k
47‘580612_( 4 8\/5) ( 4 S\EJ}

Magintude of the force |F| = 4
nEpga

Force is acting on X z plane and points to the origin along a direction at angle 45° to
the x axis as shown in the figure.

(b) we can build the system by bringing the charges + q and —q from infinity through
the path

Li:z=x,xy=0

Ly:z=-xy=0
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symmetrically to the points (a, 0, a) and

(—a, 0 a) resectively. when the charges are at e
(¢, o, £) on path L, and (-, 0, ) on Path e
L, respetively, each of the charges suffers a —q(-a,0,a) ¥~ +q(a0a)

(\/E - 1) qz ///
force —————>— whose direction is parallel .

to the direction of the path. so that total work
done by the exernal forces is

4 OO( 2—1)6]2
W — _del=2Ia Wdl F1g155

+q (-a,o,a) —-q (a,O,_a)

(vV2-1)q>

l6mea

(c) Now take case of electric field at a point (a, 0, 07) just above the conducting
plane; The resultant electric field intensity £, produced by + q at (a, 0, a) and —q at
(a, 0 —a) is

_ 2~

Er= 5 k
4dneya

The resultant field £, produced by — q at (—a, 0, a) and + q at (g, 0, a) is

— Zq l ~
E>r = ——k
47T80a2 55

Hence the total field at (a, 0, 0%) is

— — — q 1 n
E=FE1+E) = ——ljk
Znsoaz(S\/g

So the surface charge density is

q 1
c=¢gyk = —=-1
0 Znsoaz(S\/g j
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1.1 Objective

In this unit you will be acquainted with microscopic as well as macroscopic properties
of dielectric. Following topics will be convered :

1. Difference between polar and non polar dielectric

2. Explanation of polarisation and quantitative analys’s of bound charges due to
polarisation.

3. Idea of electric displacement vector and derivation of Gauss’s Law in presence of
dielectric.

4. boundary condition at the interface of two different dietectric medium.
5. To find the electric field in different structures/shapes of dielectric.
6. Moleular polarisation and its relation with dielectric constant.

7. Properties of differant types of dielectric.
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2.2 Introduction

In electromagnetism, a dielectric is an insulator that can be polarised by an applied.
electric field. In our earlier study on electrostatic, we are acquainted with external featuring
properties of them. The electric field become lessened, with introduction of dietectric media
in place of vaccum, even the dietectic inside them. In this unit we will study The
transformational properties of dielectric in presence of electric field.

Basically. There are four mechanism of polarisation :
(a) Electronic or atomic, polarisation

This involves the displacement of the centre of the electron cloud around an atom with
respect to the centre of its nucleus under the influence of electric field.

(b) Ionic Polarisation

The ionic polarzation occurs, when atoms formmolecules and is mainly due to a relative
displacement of the atomic components of The molecules due to the influenece of electric
field.

(c) Dipolar ar Orientation polarsation.

This is due to orientation of the molecular dipoles in the direction of the field, which
would otherwise to be distributed randomly due thermal agitation.

(d) Interface or space charge polarisation

This involves limited movement of charges resulting in alligenent of charged dipoles
under the electric field. It is usually observed at the grain boundaries or any other iterfae
such as electrode material interface.

Also we will study molecular level changes due to electric field, This changes are called
polarization. Behaviour of bound charges along with the modified Gauss’s law wil be
explained in dietectric.

2.3 Classification Dielectric Material

In our everyday experience, most of the materical, that we come into contact can be
classified into two distinct branch—these are conductor and dielectric. There are many free
electrions in conductor which are not attached to the atoms. They move freely every-where
at random. Most of the metals have these properties and each atom has one on two such
free electrons. There no free electrons in dielectric each electron is all attached to the atom/
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molecule. But the electrons can move slightly within the atom, as a consequence, negative
and positive charges get slightly displaced. But in certain dielece trics centre of positive and
negative charges of the atom donot coincide with the same point, and they tend to behave
as electric dipole. Dielectric material can be classified into distinet catagories one is polar
and the other is non-polar.

(a) Polar dielectric :

Dietetrics, in which each atom/molecule has permanent dipole moment even in absence
of electric field is called polar dielectric. Let us illustrate an example of dipole moment
behaviour of HCI,- Hydrogen and cholrine atom have one and seventeen electrons in their
outer orbit, respectively. Their chage districbution is such that their centre of positive and
negative charges concide with a single point location, but when they coalasce to form a
HCL molecue, the one electron of Hydrogen atom goes to The surrouneling chlorine atom.
So Hydrogen becomes positively charged and chlorine atom becomes negatively charged
of HCL molecule. The molecule HCL is transformed into an electric dipole. Examples of
dipolar molecules are water (H,0), Ammonia (NH,), Carbondisulphide (CS,) and Hydrogen
sulphide etc. Dipole moment of different molecule is in the range of (1 — 20) coulmb/meter.

(b) Non polar Dielectric : whose atom/molecule of Dielectric material does not have
permanent dipole, is called non polar dielectric. In spite of having no permanent dipole, for
non polar dielectric, atoms/molecules of the dielectric, or the dielectric as a whole, can be
trans formed to have dipole moment under the influence of external electrical field. Examples
of nonpolar molecules are H), N,, CO,, CCl,, etc.

2.4 Polarisation

When a dielectric material placed inside electrical field, then each atom/molecute becomes
converted to dipole. In additon to this, if the material is polar in character, then atoms
molecules become more polarised. Average dipole moment generated under the influence

of the electric field £, alligned along the field, is termed as molecular polarsation, and

denoted by the symbol p If n is the number of molecule/atom, per unit volume, then,

p is defined as polaraisation sation per unit volume of the dielectric. Its unit is ¢/m?,

Let us take an infinetisimal parallelopiped of dielctric of length ‘¢* and cross-section &g

placed in an electric field 7z alligned along the length (Fig. 2.1). Induced surface density
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charge ', and —o; will appear on the plane perpendicular to the direction of the electric
field which is due polarsiation. Positive charges will mutually be neutralized by the negative
charges inside the dielectric material. Total charges +06,0S and —3,0S will appear at the
two terminal end surface of the dielectric material. So the total dipolemoment polarisation

of parallelopiped will be §,3S5I. Again the volume of the dielectric is &S/, and its dipole

moment is P§S/. So,

8,55 = P3S.1.

So induced surface charge density on the surface perpendicular to the direction of the
electric field is equal to the value of polarisation vector. Even if the plane surface is not
perpendicular to the electric field, it can be shown that induced surface density of charge

willbe Pn=oc, .....(2.4.3)

Where ,; is the unit vector perper clicular to the surface.

-

—> E

-1

+H + + + +

«— { ——>
Fig. 2.1

2.4.1 Electrical field due to polarised dielectric

When applied electric field causes polarisation in dielectric, dipole moment is developed
in the dielectric. So these dipoles will certainly create electric field on its own. Let us try
to find the potential due to this dipoles.

Potential due to a single dipole p is given by

Vﬁﬂ?ﬁgég ...... (2.4.4)

Where 7 is the vector from the dipole to the point at which we are finding the potential
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Fig. 2.2

(Fig. 2.2) Now the dipole moment P = pdy' in each volume element dt’, so the potential

is 1 =1 j’s(F')'f"dr ...... (2.4.5)

—-n

r

But we know from vector,

(L)
V(l_’:")_rz"

where the differentiation is with respect to the source co-ordinates (r'), so we have,

_ 1 1)
V_4n80jpv (?,,)dt

On integrating by part’s

—

1 > P ' 1 g '

%

using Gauss's divegence theorem

=1 ¢lpge——L1 [(L(vP)av
e T v [=5(V-P)dr.....(2.4.6)
T

The first term of integration, we get potential due to surface charge

Where 7 is the unit normal vector to the surface. The second term of the intgrand will
give the potential of a volume charge
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Using the above defined term, equation (2.4.6) can be written as,

V(;)_m (}ga" j44ng Brav.....(24.10)

The experssions for V contains two terms, first is o, = P which is the due to induced

surface charge. Second term is from the distribution of charge throughout the volume of the

dielectric, p, = ~V-P, produced due volume density of charge. In our earlier discussion we

have assumed uniform distribution volume charge density, i.e. V-P = O, as a result, excluding

the outer surface charge density of the dietetric, every- where in the volue + p and —p
volume density of charges neutrilizes each other.

2.4.2 Bound Charges

We have observed that polarisation causes the appearance of surface charge on the
outer surfaces and charges inside the volume of the dielectric. These charges are bound or
fixed with the individual atom or molecule, and cannot move freely. So no current is
generated due to this. So they are callted bound charges. The character of free charges
in a conduction is different from the bound charges of dielectric as they can move freely
to conduct electricity on with drawal of the external field, bound charges are removed due
to reunification of positive and negative charges.

2.5 Gauss’s Law in Dielctrics

Electrostatic field in the dielectric material is modified due to polarization and not like
as in vaccum. In the Fig. 2.3 (a) a parallel plate capacitor, of metallic plate, each of area
S, medium is vacuum inside them. In the Fig. 2.3 (b) An identical capacitor with a dielectric
inside them.

Both the plates of each capacitors are charged with +q and —q, respectively. A gaussian
surface abcd encirculing the +q charges have been drawn. whose ab and cd surfaces are
parallel to the plates of the capacitor, other planes are perpendicular to the plate. When

the medium is vacuum as in Fig 2.3(a) and the electrical field intensity is £, then applying
Gauss’s Theorem in abcd plane, we get, S being their area of plate,

_"Eo.%:q/so
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Observe that Gaussian integral is non zero only for cd plane.
Induced charge will be developed due to polarisation adjacent to the plates of the
capacitor and two terminal end of the dielectric, as shown in Fig. 2.3 (b) Let —¢" be The

induced bound charges near the positive plate of the capactior. 7 is the electrical field
intensity inside the dielectric. Applying Gauss’s Theorem in abed plane, as before, we get

b 4 Dielectric

+ _ _ g pr—

N B - >

17 - 1 . 1 EN

N : - 11— +pl—

+q _ ' N

17 - 'f‘—)— . +p>l—
e = HEE e N

+17 N R

+ : 1 — . +p>|—

1] - 1 +bl—

+1 - _ M R

+ : - -4_-9_ +9:

+{ —

+ —

q d ; ' _
Electricfield Fig. 2.3b

Fig. 2.3a

$Eds=ES=(g-q)/e - ..(252)

From equation (2.5.1) and (2.5.2) we get

9 94
E=—"=~
€S ¢,
E=Ey-9 . .(253)
O g8

If V, and V is the potertial difference between two plates of capactior with and without

dielectirc, then

=k where k is dielectric constant As E < E, k is greater

Z0_"0
E TV

than 1.

From equation (2.5.3) we get
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!

q 9 _4

keoS  £0S €S

Or, ¢'=q(1-1/k) ...... (2.5.4)

From equation (2.5.4) it is clear That ¢' < ¢

Now equation (2.5.2) can be written in the following way
SOCJSEds =qg—q' :%

Or, ggpkEds=gq .....(2.5.5)

Equation (2.5.5) is more advantageous form of Gauss’s law to apply in dietectric. As
the quantity k has been included in intagral of the left side, there is no need to include

induced charges on the right hand side of the integral. €k is the permittivity of of the

dielectric medium and denoted by ¢. In our earlier discussion. —¢" and ¢’ have been
mentioned to be the charges residing on the end surfaces of diectric, Their surface density

of charges will be —6;, =—P and o, = P, respectively.
From equation (2.5.3) we get,

E = kE - P/,

OI‘, SoKE = €0E+P ...... (256)

Here E and P are all vector quantities, Equation (2.5.6) can be written, in the following

way g0KE =gyE+P .....(2.5.7)

Expression on the right hand side of the equation (2.5.7) is termed as Maxwell electrical
displacement and denoted by 1)

From equation (2.5.5) we get
$5d =g

Again we know ¢ = q.Dp rdv, where p; is free volume charge density, and integral has

been covered all over the gaussian surfaces. Applying divergence theorem, we can show
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that
VD=p; ....(2.58)
Equation (2.5.8) is the differential form of the Gauss’s law in dielectric medium.
Equation (2.5.7) can be written in the following way,
P=gy(k=1)E =go)E ......(2.5.9)
Ask>1, y = k-1 is positive, and denoted as electrical susceptibility.

2.5.1 Relation between £ p and

The equation (2.5.7) written as D = €0 E + P, then we can get a clear relation between
D,E and P. Though 75 depends only on free charges, 7 and p vectors depend both
on free and bound charges. In linear isotropic dielectric, D, E and polarization vector are
parallel To each other, i.e. D = K E, where k is a scalar quantity In nonlinear, anisotropic

dietectric D, E and p are not parallel. Here K is represented by tensor quantity.

2.6 Boundary Condition in Dielectric Medium

(a) Let AB be boundary between two dietectric media, which is homogenous and
isotropic. Consider The interface between 1 and 2, and imagine small pill box shaped
Gaussian surface intersecting the interface [Fig. 2.4 (a)]. Its height and the area covered
by the curved surface is very small. Let AS be area cut out by the pill box on the interface.
If o be the surface chage density of free charge on the interface, The application of
Gauss’s law to The pillbox yields—

D2 -AAS — D1 -#AS = GAS ......(2.6.1)

Where 7 is the unit vector pointing from medium 1 to medium 2. Flux over the curved
surface is negligible and does not contribute to the equation (2.6.1) Neglecting negligible

volume of the pill box, we get, (52 ~Di ) =0 ....(2.6.2)
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It is clear from equation (2.6.2) or (2.6.3), that discontinuity in the normal component
of the electric displacement in moving from one medim to other medium is given by the
surface density of free charge on the interface between the media. Normal compant of 1)
is conlinous across it when there is no free charge at the interfaec.

N
E

2t

@ | D,

A DZ“ A EE——
I
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Fig. 2.4 : @
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(b) Let AB be The boundary between two dielectric media 1 and 2. Take a closed path
PQRS across The boundary AB [Fig. 2.4 (b)] Its height QR and SP are very small and

neghigible and the length PQ=RS =dl. Let £, and E, are electric field vectors in media

1 and 2 at an inclination 0; and 0, with the norma to the boundary The work done in

moving an unit positive charge around the path PQRSP is zero CﬁE dl=0
¢ Esin0dl =0
E,sin 0, dl +{-E,sin0,dl} =0
E;sin®; —E,sin0, =0 ...... (2.6.4)

But El sin 61 = Elt and E2 sin 62 = Ezt
E,, and E,, are The tangertial component of electric fields on both sides dielectric
boundary, So, E,, = E, ... ... (2.6.5)

Thus the tangetial component of The electric field is continuons across The interface
between two media.
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(c) Refraction of Eelectical lines of Force :
we know, for charge free interface between two dielectric medium

Dln - D2n

Or, D, cos0, =D, cosH,
Or, gyK,E|cos0; =¢yK,E, cos0,
OI‘, KlEl COS 61 = K2E2 COS 62 ...... (266)

and E;sin0, = E,sin0, ... ... (2.6.7)

So we get from equations (2.6.6) and (2.6.7)

K cot®, =K, cot, ......(2.6.8)

This is the law of refraction for electrical lines of force when K, > K|

Then cot 6, > cot6, or, 0, >0, implies that when the dielectric constant of medium

two is greater than medium one, electrical lines of force in medium two, will move away
from the normal at the interface. This is in contrast opposite to the normal refraction of light
rays.

2.7 Energy Density within Dielectric Medium

Consider a system free charges embedded in a dielectric medium. The inerease in the

total energy when a small amount of free charge 8p is added to the system is given by
W = [o(r)op dv .....(2.7.1)

Where the integral is taken over all space, and @ (;) is the electrical potential. Here

we have assumed that the original charges and the dielectric and held fixed, so that no

mechanical work is done. From equation (2.7.1) we get, (§B =p f)

3W = [®VID dV .....(2.72)
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Where g§p is the charge in electric displacement due to increase in charge.

Using the vector identity,
V.(®D)=Vo.D+®(V-D)

We get

W = [V-(®8D)dv—[VasDav .....(2.7.3)

giving, 8% = [®8D-ds —[V®-3Ddv ......(2.74)

If the dielectric medium is of finite spatial extent, then we can neglect the surface term
to give,

8W =—[V-5Pdv=[E-8Pdv .....(2.7.5)

Assuming D = goK E where K is the dielectric constant, the change in energy associated

while ) has been increased from 0 to B(r) at all points in space is given by

w=["sw =" [EsPdv...(27.6)

2
Or, w = ”f%(bj)dv = %J.SOKE2dv
Which rediuces to

2.7.1 Potential Energy of Dipole in Electrical Field

When a dipole placed in an electric field, two equal and opposite forces g and _g
on the charges q and —q, which constritules a couple (Fig. 2.5).
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Fig. 2.5

The moment of the couple or toque = Force x perpendicular distance
But F = gE and from the A ABC, BC = ABSin0

. 1=qE2lsin® [as AB = 21 = length of the dipole]

Now, p = 21lq = dipole moment

1= PEsin0

which forms a vector, 1 = ?9 xE ... (2.7.9)

This dipole will be rotated by the couple 1 in the direction of the field. Let dw be the
work done in rotating the dipole Through a angle 46,

dw=1.d0
6,
Total work done w in rolating the dipole from angle 6, to 6,. is w= '[ T-dO
6

The work done is stored in the dipole as potential energy U
U =W — pE(cosB, —cos0, )
Or, U =—-pE[cos6, —cos6, |

If the initial and final positions are 6; =90° and 6, =0 Then,

U=-pEcosH
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Or, U=-pE .....(2.7.10)

2.8 Electronic Polarisation

Consider an atom in an electric field of intensity ‘ £ °, since the nucleus of charge +ze
and surronding encircling electron cloud of charge ‘—ze’ of the atom have opposite charges

Fig. 2.6
and acted upon by Lorentz force. As a consequence, nucleus moves in the direction of The
field and electron cloud in the opposite direction. As electron cloud and nucleus gets
displaced from their normal equillibrium positions, an allractive force between them is built
and the separation continues until coulomb force F . is balanced by The Lorentz force F,,
until a new equillibrium state is ereated.

Let p be the charge density of the sphere.
—ze

3R

p

where ‘—ze’ is the total charges in the sphere. So the negative charge in the sphere of

radius x, ¢, = p%nx3



NSOU e CC-PH-08 0O 90

Allractive coulomb force between nucleus and electrons

1 Qx(Ip

Since, F; = F, we can write

22

-z e"x
=zeFE ... .. 2.84
4mey R’ (284)
or, E=——22—_ . (2.8.5)
47[80R
dipole moment
Again we know £ = P o

e
where o, is represented as electronic polarizability.

From equation (2.8.5), we get

—zex :—zex
4megR> O

So, a, =4negyR’ ......(2.8.6)

Hence electronic polarisibility is directly proportinal to the radius of the atom.
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2.9 Electrical Field inside a cavity in the Dielectric

Spherical Cavity : Let us imagine a speherical cavity inside the dielectric whose centre
at O and radius ‘r’. The size of the cavity is small compared to the dielectric material, but
large enough compared to size of the molecule. The electric field inside The dielectric is

E. Electrical force on a unit positive charge placed at O is E where E'=E+Ep

E, is electrical intensity due to the induced charge on the surface of the cavity. We use
spherical co-ordinate system to find E,,. If 7 is the polarisation vector, then surface charge

density on the surface of the cavity ¢ = P-4, where 7 is the unit vector perpendicur to
the surface so, total surface charge on an elementray area ds is
dq = ods = P-ids = Pds cos 0

Electrical field, intensity due to this charges at ‘O’

r 1 Pdscos9

We will take the component which is parallel to g, Horizontal component is

2
dmeyr

Now elemental surface area
between @ and O0+d0, is

ds = 2mr? sin 0d0
S o )
dEp = P27r? sin O cos” 040

Or, 9Ep =%sinecos2 0d0

Intequrating 6 =0 100 = 1, we get

__P (" 2900=_F 2__P
Ep= 26 Jo sinOcos” 040 = 2603 " 3eg (2.9.1)
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So the total intensity at the centre of the cavity E=E+E p= E+ 3i ...... (2.9.2)

If the dielectric material is kept inside a parallel plate capacitor, Then electrical field

intensity at the centre of the cavity is Em - EO YEi+Ep ... (2.9.3)

where | is the itensity due to the chargeson the capacitor plates. This field induces
potarization inside the dietetric, and induced surface charge density + P and —P on the

terminal surface of the dielectric E; = —PJg,
Electrical field inside the dielectric £ = Eo + E; = Eo — P/g,

So the electrical field intensity at the centre of the cavity is less than £, but it is greater
than the field inside the dielectric.

2.9.1 Atomic and Molecular Polarisation : Clausious—Mossotti selation

Now we will, find out the relation between relative permillivity and molecular/atomic
polarisation. Let us now explore the field intensity at the centre of sphere of radius ‘r” inside
the dielectric material. All the molecules inside the sphere gets polarised along with the
polarisation entire dielectric. But all the dipoles inside it contributing to the field at the centre
gets neulralised or mitigated due to the vector sum of the evenly distributed dipoles (fields).

So E,, is effective intensity of a molecule kept at the centre ‘O’.
We know D=KegyE =gyE + P
where F is The electrical intensity inside the dielectric.
Or, P= (k—l)aof?

From E,, =E+Ep
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= 3(k-1) -
Or,PZ(ScTz))SOEm ...... (2.9.5)

If P is the dipole moment of molecule generated due the electric field intensity E_, so

the dipole moment per unit field strength, so we say molecular polarisibility & = E—m
m

If ‘n” is the numbe of molecule per unit volume, Treating p,, as vector

—

_ 3gy (k1)
Hence, o= 7m ...... (296)

Above relation of equation (2.9.6) is known as clausius-Mossotti relation. Physical
implication of this relation is that we can get the entrie macroscopic propertics i.e. we can
get the value of molecular polarsability from the relative permillivity. Thus, from a measurement
of'k, it is possible to get important quautitative information about molecular structures.

From electronic polarisation, we know that molecular polarisibility from equation (2.8.6)
is o =4ngya’
Using classius-Mossotti relation, we get

k—1_ no _némey 4 3_
Kr2 e 3e, =n3ma Vo .. (2.9.7)

where V is the volume of total one unit volume of molecules.
From equation (2.9.7), we have

1/3
=3kl o az[ 3 ﬂ} (2.9.8)

:4><n.k+2 dxn k+2| 7

Equation (2.9.8) gives the relation between atomic radius and dielectric constant (k).

2.10 Polar Dielectrices and The Langevin Debye Formula

Molecules like CH,CL, H,O, HCI, cthyl acetate carries electric dipole moment even
in the absence of electric field. However, The net dipole moment is negligiby small since
all the dipoles under continous thermal agitation, are oriented randomly when there is no
external electric field. In the presence externally applied field, individual dipoles experience
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torques, which tend to allign them along the field direction. As a result the net dipole
moment becoems large.

Polarisability has been calculated based on the principle of statistical Thermodynamics.
Under this principle, in thermal eqnillibrium, the probability of finding a molecule with

~U/K,T

potential energy U is proportional to ¢ , Where k; is The Boltzman constat and T

is the absolute temperature. The potential energy of a dipole moment p in an electric field

is, V'=—PE=-PEcos# ......(2.10.1)

Assuming, local field is solely to be the electric field, the probability that a dipole will
have orientation @ with respect to the field is ,PEcosO/K,T If < P > is The average

polarisibility of dipolar molecule, at a particular temperature is given by the Langevin
formula

<P>_ 1
=p—=cotha e (2.10.2)

PE
where o = K_BT

The fig. (2.8) shows The variation of < ]€ > as a function of o. At large electrical field
<P>
P
T 10— ===——————-
%
¢ Fig. 2.8
strengths or at low temperatares i.e. where & = % >>1, Lengevin predicts = 1€ > =1.
which states that nearly all the polar molecules have been alligned with the electric field.

P>
P

) . <
i.e. almost saturation
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while for small values of (OL << l) , 1.e. normal fields and higher temperatures equation

< P>
P

(2.10.2) reduces to ~% O, <P>=ypir...(2103)

which indicates a linear relationship between < P > and E. Thus a polar dielectric is
normally linear. Now the polarsibility o is defined as the molecular dipole moment per unit
field

Equation (2.10.4) shows the temperature dependence of polarisibility. This equation
holds pretty well for small values of P and E and for large enongh T which we can presume
as normal conditions.

The total polarization for dilute gas can be written as

T M *
nopolar

where o, and a; are electronic and ionic polarisibility, respectively.

Equation (2.10.5) is known as Langevin—Debye equation.

From clausius—Mossolti equation and equation (2.10.5), we get,
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This equation is known as Debye equation. From this equation we can find the value
of dipole moments and polarization from measurement of gases. For polar molecules

avs 1/T will be a straight line. But equation (2.9.6) shows that for nonpolar molecules o

versus 1/T graph will be a straight line parallel to 1/T — axis (Fig. 2.9) The intercept of the

straight line for polar molecules gives the value of (ae + oc,-) and the slope of the line

gives P.

The variation of dielectric properties with the frequency of an applied ac field also
interesting. Due to interia of heavy polar molecules they cannot follow the rapid change in
the direction of the applied ac field. For this at higher frequencies (in the micro wave region
of above) the polar contribution to the dielectric constant begins to fall with frequency. But
because of smaller incrtia of electric the electronic polarisibility remeins almost unchanged
upto optical frequences.

2.11 Some special Properties of Dielectric Material

Here we will discuss some specific propertis of dielectric material which is of immense
use in engineering and as sensors, etc

1. Ferroelectric Materials :

These are crystalline materials that displays electrical polarisations switehable by an
external field. Ferro electric crystals have high dietectric constant and each unit cell of
ferroelectric crystals carries reverisble electrical cell.

Ferro electric property depends on temperature and this property vanishes at a certain

critical temperature—dietectric property vauishes rapidly with temperature. Relation
between dietectric constant, temperature and critical temperature is given by

Here T, is the critical temperature, ¢ is constant and K, is the contribution to dielectric
component from electronic dielectric constant. Examples are Barium Titanate (BaTiO,)
sodium nitrate and Rochelle salt.

2. Piezeo Electricity :

The process of creating electrical polarisation by mechanical stress is called piezo
electric effect. Contrary to this, inverse piezo electric effect is observed, when electric field
is applied—The material gets strained and directry proportional to the strength of the electrial
field.
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Examples are, quartz crystal, Rochelle saltet. Among The piezo electric semiconductor
are Gatts, ZnO and Cds — which are mainly used utrasomic amplifiers, electromic watch,
microphone etc.

3. Electret :

This can be considered a piece of diectric materical with the presence of quasi-permanent
real charges on the surface or in the bulk of the material or frozen-in-alligned dipole. Some
dipole moment remains—even when the electrial field is removed. Some organic paraffin,
and some plastic exhibits these propertics.

When These materials are polarised in molten state, and There after solidefied, they
retain Their dipolar characteris tics, and a permancent dipole generated. It is called thermal
electret. Some materials are called photo electret when are transformed by light and electric
field to dipole propertics.

4. Dielectric Break down :

All dietectric material retain their property until high enongh field to destroy their
characteristics, allowing large flow of current, this happens due to removal of electrons
from the atomic orbit by strong electric field mainly. Also some breakdown is observed by
the effect of following agent—intrivnsic, thermal, electrochemical, deffect and discharge,
breakdown.

5. Dielectric Relanation Time :

It takes a certain amount of time for a dietectric to be fully polarised when subjected
to an electric field. It is observed that the electromic and ionic polarisation is attained
instaneonsly, if we cosider high frequencies (107 — 10'7/sec) and not The optical frequencies.
Dielectric loss, at these frequencies, is mainly due to relaxation effect of the permanent
dipoles. A molecule in dielectric, which tries to allign with the applied electric field, is
effected by the opposing forces of adjacent molecule. This is the phenomenon of relaxation.
Polarisation of the dielectric, when influenced by an atterating electric field, does not
conform to proportionatc transformational gain. Rather a hysterisis is observed in polarisation.
It has been observed that the platies of the capacitor gets charged again even after being
discharged to meutralise the plates from the first follow up charging. Hence, sometimes a
certain amount small current flow has been observed Electrical energy is lost due to
hyserisis of the dielectric and flow of current, dielectric material gets heated. Motecules
cannot orient harmoniously and swiftly with high frequency alternating field. So There is no
loss of energy due to hysteris.
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2.12 Summary

1. Dielectrics are insulators that support charge. The dielectric constant K indicates
polarisibility of dielectric. Each of the polarisation mechanism has a chargeteristics relaxation
time (frequency).

2. Gauss’s law for dielectric is relates free charge to the displacement vector. g and
D Follow the boundary condition at the interface of two different dietectric media. Refraction

law has been duduced.

3. Microscopic properties have been discussed after studying macroscopic properties.
Inter relation between molecular polarisabiity and dielectric constant has been deduced by
studying the electric field intensity in microscopic spherical cavity deep inside dielectric
substance.

3% k-1

4. Clausius—Mossotti reation has been deduced as o = P [see equation 2.9.6)]

Again, Molecular polarisibility o = 47'cgoa3 (see quation (2.8.6). combining these two
equation, we have establised the relation between atomic radius (a) and dielectri constant
(k).

5. We have alo established the expression of molecular potarisibility (oc) for polar

2
dielectrics given by av =0, +a; + ;;;—T [see equation (2.10.5)]
which is known as Langevin—Debye equation.

6. a.versus 1/T for polar and nonpolar dielectrics have been plotted (see Fig. 2.9) and
importance of the graph has been discussed.

2.13 Review Questions and Answers

1. What is polar and non polar dielectric? How They behave in an exeternally
applied electric field.

Answer : See article 6.3.
2. Find the electric potential inside a polarised dielectric.

Answer : See article 2.4.
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3. Prove The continunity of normal and tangentral component of electrical field
intensity at the interface two different media.

Answer : See boundary condition article 2.6.

4. Establish The claussius—Mossotti relation.
Answer : See claussium—Mosotti relation, article 2.9.1.
5. Define orientation polarisation.

Answer : When an electric field is applied in a dielectric medium with polar molecules,
the electric field tries to allign these dipoles along its field direction, due to that there is a
resultant dipole moment in the dielectric material and this process is called orientation

- p?
polarisation. o p =3KT
6. Define local or internal or Lorentz field.

Answer : In a dielectric material. The field acting at the location of an atom is called
as local field or internal field ‘E;’.

The internal field E; must be equal to the sum of the applied field and the field due to
The location of the atom by the dipoles of all other atoms.

E. = E + The field due to all other atoms.
7. What is electric polarisation?

Answer : It is defined as production of electric dipoles by the applied field. It is due
to the shifting of charges in the elietectric by the applied electric field.

8. Mention The different break down mechanism in dietectric material.
Answer : (1) Intrinsic and avalanche break down.

(i1) Thermal break down

(ii1) Chemical and electrochemical break down

(iv) Discharge break down

(v) Defect break down

2.14 Problems and Solutions

1. The dielectric constants of a Helium gas at NTP is 1-:0000685. Calculate the electric
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polarizability of Helium atoms if the gas contains 2-7 x 102 atoms/m?. Calculate the radius
of the Helium atom.

[Given g, = 8854 x 1072 Fm 1]
Solution :
Relative permitivity €, =1:0000685

No of atoms of the Helim gas N = 2-7 x 10? atms/m>
Permitivity of free space g, = 8:854x107'% F/m

Now, Polarization P =g (&, —1)E

and P=No,E.

Where o, is electromic polarizability of Helium atom

From above two equation, we can write Na,, =g (8, —1)

€ (sr —1)

Or, a,= v

_ 8854x107"2(1:0000685-1)
27x10%

Hence a, = 2245x10™* Fm?

Again o, = 47gy R’

1 1

A ) 42 A

Where R is the radius of Helium atom R = ( Ye j ={ 2:245x10 B }
4 4%314%x8854x10~

R = 272 x 10719 meter.

Radius of the Helium atom R = -272 x 10719 meter

2. An electric field intensity of strength 10 kV/m is applied across a parallel plate
capacitor filled with dietectric constant 2-5 The distance between the plate is 2 mm
calculate.



(@)D, (b) P

(c) The surface density of free charge on the plates
(d) The surface density of polarization charge

(e) The potetial difference between the plates
Solution :

-9
(a) D =¢,e,E = 1306n x2:5x10% = 22098 nc/m”
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>

-9
(b) P=1y.80E = 1-5><130ﬁ><104 =13258 nc/m2

(©) p, = Di =D, =22098 nc/m>

(d) p s = Pi =13258 nc/m*

() V=Ed=10*x (2 x 103 =20V \

3. A dielectric cube of side ‘a’ centred at the origin

a

carries a polarisation charge P =(I7 ) =/7 , where K is constant. Find all the bound charges

and prove that they all add up to zero.

Solution :

The bound volume charge density is equal to pp = _(§F) = _Lz%( rzkr) =3k
r

Since the bound volume charge density is constant. The total bound volume charge in

a cube is equal to the product of the charge density and the volume

= — 3kal

qvolume

The surface charge density o, is equal to,
o), = Ph=krh

Now ;'ﬁerOSG:%a
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- . 1
Sop=krn==ka
b 2
The surface charge density is constant across the surface of the cube

1 2 3
Dsurface = Eka (6a ) = 3ka

Thus total bound charge on the cube is equal to

qtotal - qvolume + qsurface

= 3ka® +3ka’
=0

4. The sphere of radius R carries a polarisation 13(77) = kr

where K is constant, and r is the radius vector from the centre.

(a) Calculate bound charges o, and p,
(b) Find the field inside and outside the sphere.

Solution : The unit vector 7 on the surface of the sphere is equal to the radial unit
vector.

The bound surface charge is equal to o, = P | —r=K i —r =KR
. U.p 1 0(,2
The bound volume charge density equal to P» = _(V'P ) = _r_zg(’” kr ) =3k

First consider the region outside the sphere.

The electric field in this region due to the surface charge is equal to

4nR’G, . 3
1 A4nR%c, . KR,

Esurface (7”) =
dmey 2 gor”

The electric field in this region due volume charge is equal to

4 53

— - TR o, 3

Evolume(l") = 47‘380 31/,—2;' — _fﬁz 7
0
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Hennce the total electric field outside the sphere is equal to zero.

To find the electric field inside the sphere : the electric field due to surface charge is
equal to zero. The electric field due to volume charge is equal to

Evolume (”' ) =

5. Two vast homogenous isotropic dielectrics are in contact in the plane z = 0. For

z20, € =15 and forz <0 ¢, =1.

A uniform electric field E; = 4/ — 27+ Ak k V/m exists for z>0. (a) Find E, for

z<0, (b) The angles E, and E, makes at the interface, (c) The energy densitics inJ/m?
in both dielectrics.

Solution : The problem is portrayed in Fig. 1... As, f is normal to The boundary plane
of two dielectrics, normal components are as follows :

— —

E,=Ein=Ek=4

n
Eln = 4kA

Fan =[Erk i

Also, E=E, +E;

Hence, tangential component,

Ein=E-En =4;i-2j
Applying boundary condition at the interface we have,
Ezt = E'n = 4?—2}'

Similary displacement vector,

D2y =Din = 8r2E2n =&, E1n
i
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Ean =8—F1E1n =15 (4l€)

A
Eon =6k
Thus electric vector in dielectic €, =1 is
EZ = E2t + EZI’I
= (41 -2 + 6k ) kv/m

(b) Let ¢, and ¢, be The angles E, and E, make with the interfacing surface as

shown in Fig. 1, while 0; and 0, are the angles they make to the interface as in figure,

we have,
(I)l = 900 —61
¢2 = 900 _62
Since £y, =4 and £, = V42 422 =245
_25 A5
tan 0 = 1 =

0, =tan"' gz 481888

¢, =418112°
Similarly tan 0, = £, =55 =5

0, = tan ™! % =366991°

¢, =533009°
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(c) The energy densties are given by

-9
W, = el Bl =1 x15x 20— (16+4+16)x10°

2 36m
=2387 ) /m’
-9
W, :%xlx%(ﬂ +22467)x107°
=24757uJ/m’

6. An electric field vector E = (4f +2) - 4/€)mv/ m is incident at a particular point on
the interface between air and conducting surface. Find ) and p; at that point.

Solution :

Electric displace ment vector is given by

”_10_9 2 A -3
D_m[4l+2]—4k]x10

- [0-3535 101768 —0-35319] pe/m’
p, =|D| :%\/—[42 +22 +42}<10‘3

=-00593 pc/m”
7. A sphere of radius R has a dielectric constant €, and uniform charge density of p,

(a) Find the potential at the centre of the sphere.
(b) Find the potential at the surface of the sphere.

Solution :

po O<r<R

G1vean:{0 SR
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3

Forr <R, &F, (4nr2) =Py Anr

3
_ Po”
Or, E,. = 36
por”
Hence potential, at any point inside the sphere } = — I Edr=-— gs +¢
3
Forr > R, g(F, (4nr2) =Py 4“;{
3
poR
Or, Er =0 2
380r

R3
Potential at external point out side the sphere, V' = —I E.dr= gg B T
0

As r—>00,V=0andC2=0

Atr=R, ¥(r)=V(R)

2 2 2
_PoR +c1:p0R = = PoR (2¢, +1)
6g)E, 3¢ 6¢)€,

(a) So the potential at the centre, V (r = 0)

Po(2g9 +1) 22

V=0 = 6eqc

2
(b) At r = R The surface of the sphere, V( = R) = pg?_R
€0

8. A sphereical shell is filled with dielectric material € = gy¢, fora<r<band g, for
0 <r<a. If a charge q is placed at the centre of the shell, find,

(@ p fora<r<b
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(b) ppy fora<r<b

(c) ppatr=a,andr=b

Answer : Applying Gauss’s law,

E,. = Dr__4 sb<r<a
€ 4dmgyr

ot
€ 4mer’

fora<r<b
(1) Now, Polarization is given by,

p-fo~lp
Sr

(gr _1)

& dmr?

Hence, P. = q fora<r<b

r

—_—

_ op__ 1 o0(2p)\_
(2) va——VP——r—zg(r Pr)—o

Surface density of charge, p,,; = P=(-h,)=+ Z g 3 {SV _l}tan r=a
a r

_BA V4 g, —1 _
ppS—P( n,) Py {—Sr }forr b

9. The electric polarizability of Ar atom is 17 x 1074° F/m?. What is the dielectric

constant of solid Arif its density is 1-8 g/cm?

Solution :

Relative atome mass of Argan at to atom is 39-95 gm/mole. If N, is the Avaggadra’s

member. If N is the no of atom per cc.

Na (602x10%mor ) (18cm/em”)
M= Mo (39-95gm mol_l)
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N =271 x 1022 ¢cm3

with, N = 2-71 x 102 m and o, =17x107* Fm ™!

Na,
g, =1+ —< =155
€0
1+ ];]ge
If we use the clausius-Mossdti equation we get &, = ———— =187
- 2Na,
3gg

10. At normal pressure and temperature of 35°c dielectric constant is k = 1000516 for
Argon atom. Find atomic polarisability and volome.

Solution :

At normal pressure and temperature (0°c) atomic density is 2-687 x 10%5/m?

273

_ . A 25
So density at 35°c is n=2687x10 ><273+35

n= 2.382><1025%n3

From Clausius Mossolti equation,

OL_Sik—l  3.854x10°" " .000516
n k+1 2382x10® 3.000516

=1.917x10"*Fm’

Molecular volume is given by,

3 Lk—1 1 .000516

=— = X
nk+2 2.382x10® 3.000516
=7.221x10"m’

4
—Ta
3

11. A diaelectric cube of side 'l' centred at the origin carries a frozen-in-polarization

P = ¢t - Find all the bound charges and total charges.
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Solution :
Given, P = ¢t = c(xi+ yj+ zk)
Bound volume charge density

p,=—VP=—cl+1+1)=—-3c

Total volume charge of the cube — _3¢¢3
A '\Vej‘
n
0
< Y >
Fig. 2

Bound surface charge density, at the top,
- C .
0, =Pn= Eﬁ (on all six surfaces)
Hence at the top of the cube total charge C along +ve Z direction,
—o, x> =—0
2

4.4_ _l
rn—rcose—zl

Hence ©;, = crn = %cl

The total surface charges comprising all the six faces of the cube of are 12 is equal to



NSOU e CC-PH-08 0O 110

Dsurface :%Clx(6lz) = 36’13

Total bound charges compring volume and surfaces

q= qsurface + qvolume
=3cB-3cP=0

12. The space between two parallel plate copacitor is filled with two slabs of linear
dielectric naterial as shown in Fig. 3. Each slab has thickness b, so that the total distance

between two plates is 2b. Slab 1 has a dieclectric material of dielectric constant €, and

slab 2 has dielectric constant €,. The free charge density on the top plate is ¢ and on

the bottom plate is —¢
(a) Find the electric displacement Dineach slab.
(b) Find the electric field E in each slab.
(c) Find the polarization in each slab

(d) Find the potential difference between the
plate

(e) Find the location and amount of all bound

charges

E, b

E, b

LLLLLS LSS A

[=)
6 +o
S

(f) Now knowning all charges recalculate the field in each slab

(a) Applying Guass’s law IB -ds = (Q ﬁee) enclosed From the Gaussians surface we

get.
DS=0s =>D=o0c
Note that D = 0 in the metal.

Similarly for the second slab p = —¢

(b) D=cE = E=ofe, inslab 1, £=7" in slab 2

Again we, know g =¢g¢,.,

So, g =2g, and &, =125¢ 2%80



_4c

__GC _
E = 2¢, and £ 5¢,

"— E 4: ° = &
() P=ggy . E 80, P=¢gyx, " (gr]c

Now, %, =¢, -1,

= P=(1—1/8r)6=(1—8;1)6

P =c/2 and P2=%

(d) Now potential V' = Ejb+ Eyb= 2—:[% +4/ 5}

_bol3
gg 10

(e) Volume charge density p, =0
Now bound charges is slabs :

6, =+H at the bottom of slab 1=c/2
o, =—h at the bottom of slab 1=-c/2

o, + P, at the bottom of slab 2 = 1?0

o), =—P, at the bottom of slab 2= —%

() In slab 1 total surface charge above 6 —c/2 = /2

total surface charge below =6/2—c/5+ % —-o=-0/2

NSOU e CC-PH-08 O 111
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which implies £ =7

Inslab 2 total surface charge above 0— g,9_0_4,
2 2 5 5
total surface charge below % -0 = —4?0
hich implies £2 =<
which implies =2 =73, : .
O . —0/2
- ) +0/2
(9)
+ 3 1 —O




UNIT 3 : Magnetic Field

3.1 Objective

3.2 Introductions

3.3 A brief capitulation on magnetism
3.4 Unitof 5

3.5 Track of a charged particle in a magnetic field
3.6 Biot Savart Law
3.7 Torque on a current loop

3.8 Ampere’s law and its application
3.9 Properties of g

3.10 Summary
3.11 Review Question and Answer

3.12 Problems and solution

3.1 Objective

After completing this unit you will be able to understand—

1. The force due to magnetic field over a moving charge and trajectory of charge
in a magnetic field.

2. The origin of magnetic field due to flow of charge through two laws, Biot-
Savart’s law and Ampere’s law.

3. Application of Biot-Savart’s law to find magnetic induction for
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a) straight current carrying finite and infinite one dimensional conductor.
b) circular loop,
¢) solenoid.

4. Application of Ampere’s law to find the magnetic field in some symmetric cases of
current distribution.

5. Vector magnetic potential.

3.2 Introduction

The history of magnetic effect has been known from the ancient time; from the
discovery of loadstone. The relation between electricity and magnetism was first established
experimentally by Oersted in 1819, though such connection had been hinted in a book by
Gilbert in 1600. The quantitative relation between current and magnetic field was established
by Biot-Savart and Ampere during the period 1820-1825.

3.3 A brief recapitulation on Magnetism

We have already come across the existence of magnetic field which is prouduced by
permanent magnet or by moving electric charge and so they also under go magnetic
interaction when placed in a magnetic field according to Newtonian law of action and
reaction. The magnetic field is described by magnetic field lines which provides its
direction (along the tangent to the field line at the point concerned) and the magnetic

field induction g at a point is the number of field lines corssing per unit area through

the point, when the area is held perpendicular the field lines at the point concerned.
Unlike the electric field lines the magnetic field lines are closed which leads to the
conclusion of nonexistence of free magnetic poles in nature.

The force on a moving charge ¢ in electric field z and magnetic induction g is

given Lorentz force, dF =gE + qvx B
Thus the force on a moving charge due to static magnetic field
dFm=qvxB .....(3.1.1)

So both static and moving charge experiene electric interaction but only a moving
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charge may undergo magnetic interaction. The direction of force is perpendicular to both

v and B The magnetic force is a no work force as

dw=F.dr = F.%dz = Fydt =0, Fig. 3.1 i

The direction of the force can be obtained easily by right hand thumb rule shown in fig
(3.1). The thumb finger gives the direction of force when the other fingers specify the

direction of rotation from ;, to g

3.4 The Unit of B

The magnetic field induction at a point is said to be unity if 1C of charge moving at 1m/
s, perpendicular to the field, experiences a force of 1 Newton. This unit is called Tesla.

IN =1Clms ™' Bsin (n/2)1T

1. When y, is perpendicular to g

Here F = qvB sin 90° = qvB and is directed along x oxo X
vx B. So the motion is confined in a plane with radius :_) : :
of rotation r, such that centripetal force qvB = mv?/r, r y L < x
r=mv/gB. If ® is the is the angular frequency of rotation,  x  x
then v = or, or r = m or/gqB or ® = qB/m, so T = 2mm/ < x x
gB. Thus we see that the time period of rotation is < x x

independent of velocity of particle and depends on the
g/m of the particle. Motion is shown in fig. (3.2) Fig. 3.2

2. When ,, makes an angle 8 with the direction of g

In this case the term v cosO remains unaffected by magnetic field, since this component

is along the line of B For the component v sin 0 the magnetic force F_ = qvB sin =
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mv? sin? 0/r, or r = mvsin0/qB. So the time period of rotation T = 2 m/qB. The motion
is as shown in fig (3.3)

ANAATS AWA
JAVAVAF A4 0L [ £
a 1] 1T

v V V

v

Fig. 3.3

So the path is helical with pitch (= the distance moved in the net direction of motion
in each rotation = vcos0 (T) = 2nmvcos6/qB)

The force on a current carrying conductor in a uniform magnetic field.

we consider a segment d/ of current carrying conductor carrying current i as shown in
fig. 3.4)

X X X X X XB

X X
l ”’
X X X _%-X
>=
X _ X=X x X
=

x Ax x X x x X x

Fig. 3.4

X X X X

dg be the charge flowing through the element d/ in time dz. Then the force on the
element

R Forcef
dFp =dqvxB =dgLxB = gix B = idix B .
dt dt Magnetic
B o Field B
dFm :leXB ...... (3.5.1) 9 lCurrent
Fig. 3.5

So the force is perpendicular to both 4; and B, the direction of force can easily be
obtained from Fleming’s left hand rule as in fig. (3.5).

The total force on the conductor

Fm=Iid7x§:i.[dfxE:iZXE:iAaxE ...... (3.5.2)
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3.6 Biot-Savart Law

So far we have discussed the force on charge or current element in magnetic field. Now
we shall discuss how the current produce the magnetic field. This is given by Biot-Savart
law.

P The law states that if i be the current through an element
length 4] then the magnetic field produced by the current element
idl atposition vector ;. with current element as origin in SI unit
is given by (please refer the fig. (3.6)

The direction of magnetic field at a point can be obtained from (] - or by right hand

thumb rule. It states that if we stretch our right thumb in the direction of current element
and curl our other fingers through p specify the direction of magnetic field.

Application of Biot-Savart Law.
1) Magnetic field intensity due to a straight current carrying conductor.

The fig. (3.7) shows a current carrying conductor with current i. To calculate magnetic
field intensity at the point p at a distance a from the conductor we take an current element

id}/ at point y as in fig. (3.7). The magentic field due to this elemental current at P, using
= dyxr
Biot-Savart law d B = Z—Ol y3 4

Lo .dycosO ) .
dB = ﬁly—3 directed vertically inside the
r

plane of paper.

So the total magnetic field intensity at P

0,
p=to; dy cos 0

4n 2
o, 7
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We put y =atan®, Then dy = gsec? 040. Again a/r =cos0

Thus B = M_oij'ez asec” 0dOcosBcos” 0 _ Mo jez c0s 040
4m Jo, a2 4ma e,

Or, B= rna (s1n 0, —sin 0 ), ...... (3.6.2) acting down The plane of paper.

Thus we see that at a distance a from the wire the field is constant in magnitude and
is tangent to the circle of radius a following right hand cork-screw rule and the field lines
are closed.

For a straight infinitely long conductor 6, — /2 and 6, > —x/2.

So from eqn. (3.6.2) we have

B = 4L7ltoa 2 ... (3.6.3) Vertically inside the plane of paper.

2. Field due to a current carrying circular loop.

The fig. (3.8) shows a circular loop of radius a carrying current i in anticlockwise
direction when viewed from the right side of the fig.

. : : Al
(3.8). We have to find out the magnetic field intensity ¢ dBcO
B at a point P on the axis of the coil at a distance (.:‘Q 4B
x from the centre O of the ring. ; k
We consider an elemental length df at A. Then 9) 0 >
magnetic field at p due to the current element ;] X X > dBSin0
at A is dB= Z dzl along PC Fig.3.8

(Since g p is perpendicular to both ;. and the ring wire at A)

Resolving ;g along op and perpendicular to op as JBsin0 and dBcos0, we sce

that, the component 4B cos0 vanishes on summation over the entire wire by symmetry So
the neat field is along OP and is,

B Mo idlsin® _ Mo i2ma a
H P2 4n 2 r
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_Mo  2mai _Ho 2na’i

) (a2 e)

— 2.
So, Bu 2&% along OP.
4n (a2 +x7

For a coil with Nturens

— 2A7:
g =20 2maNi_ o100 OP ... ... (3.6.4)
47 2 2 3/2
(a +Xx )

3.7 Torques and Forces in Magnetic Dipole

A magnetic dipole experiences a torque in a magnetic field, just as an electric dipole in
an electric field. Let us calculate The torque on a rectangular current loop in a uniform
magnetic field. Loop is placed at the origin and at inclination of @ from The z-axis towards

the y axis. Let g point in the z-direction. The forces on the two sloping sides cancel. The
forces on the horizantal sides likewise equal and opposite, so the net force is zero, but they

form a torque N = gF sin 07

The magnitude of the force on each of these segment is F = IbB
and therefore N = j4psin 07

Mo & By
F 0
4—\
ﬁ‘y X »> ¥
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The torque p/ tends to dearease the angle 0, If U is the potential energy of the loop.

OU _ N — mBsi
Then, 0 =N =mBsin0

so that {/ = —mB cos 0+ constant. Taking U =0 at0=mr/2. we get

U=-mBcosO=-m B ... .. (3.7.2)

The equation (3.7.2) is similar to the expression for the potential energy of an electric

dipole of moment p placed in an electric field. 7 is y = —_p-F

3.8 Ampere’s Law

The Ampere’s law states that the line integral of magnetic i §
field vector about a closed path is equal to p times the
current through the surface enclosed by the closed path,
mathematically
$Bdl=p,l .....(38.1)
Fig. 3.11

were |, stands for the permeability of of free space,

in case of medium it should be replaced by permeability of the medium. If ; is the current

density then, = _[ Jds,
S

(where g stands for an elemental surface area)

So the Amere’s law takes the form,

s
Using Stoke’s theorem (_f)V xB.ds=pyl = Hoj.j ds
S

Since this equation is true for all value of g so,
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VxB=pyJ .....(3.82)

Application of Ampere’s law
1) Field at a point due to a long current carrying conductor

The fig. (3.12) shows long current carrying conductor carrying current A
i. We have to find out the expression of magnetic field intensity B at
point P at a distance a from the conductor as in fig. (3.12). In the mode

of calculation we draw a circle of radius @ around the conductor, then
by symmerty field on it wil be of sme magnitude and acting tangent to a P
the circle. (Direction of field is given by Biot-Savart law)

Now by Ampere’s law

@E'd?z Kol

Or, B2ma =i Fig. 3.12

2) Field due to a long solenoid

We consider a solenoid of n-turns per unit length. The length of the solenoid be very
very long compared to its radius. i be the current flowing through it in a anticlockwise
direction when viewed from the right. The fig. (3.13) shows the solenoid and fig. (3.14)
shows a vertical section of The solenoid.

de——¥¢ —> ¢

X X X X X X XX X X XX X X X X X

Fig. 3.13 c

he g — g

Fig. 3.14
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We draw two loops abcd and efghe each of length / as shown in fig. (3.14) We
consider the loop efghe. Here

(j) Bdl=0 as no current is entrapped in the loop.
efghe
As this valid for any such loop so B = 0.
Thus the magnetic field intensity outside the loop is zero.
Now we take the loop abcda

¢ Bdi=yyinl
abcda

Or, [ Bl +[Bal+[Bal+]Bdl=ponil
a b b

C

Or, BI+0+0+0 = pynil

Here we have cosidered the field inside the solenoid is axial and uniform.

3) Field due to a toroid

A toroid is a device consisting of a ring (a torus) wrapped with insulated conducting

wire.
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The fig. (3.15) shows a toroid of inner radius @ and outer radius b with n turns per unit
length, carrying current i. The fig. (3.16) shows a section of the toroid in a plane through
the plane of the ring passing through its Centre O of the ring.

To find the magentic field intensity at a point P at a distance 7 from centre please refer
fig. (3.16).

1) When r > a, Cﬁ?.dj= 0 as no current is entrapped in the loop. So B = 0.

i1) For > b, Cﬁfidi =0 as current enclosed in the loop is again zero, since each turn

passes twice throgh it carrying equal but opposite current.

iii) For a < r > b, within the core of the toroid

(j)ﬁ.cﬁ: Bx2mr=uyNi according to ... Amper’s law.

So, B=pgNi/2nr=pgni. ... ...(3.8.5)

Thus we see the field inside the core of a toroid is not constant. However the field
reamains fairly constant when the inner radius and outer radius are close to each
other.

4. Magnetic field due to a current carrying cylinder

'I‘ _____ The fig. (3.18) shows a long cylinder carrying current i. J be the
. It/ current densi.ty which is takt?n to.be constapt. From symmetry, field lipes
~— are closed circles, co-centric with the axis of wire. We are calculating
A T 16 magnetic inducution at point P at a distance » from Tha axis.
\ /
\‘jf'” (a) When r > a, P is outside the wire. We consider the dotted loop
/’ —\\ g . . .
¢ C,. Bop be the magnetic inducution on C,. Then
~~~~~~~~~~ 2 L
\V <]5C2 B.dl = By2mr = poi = Wol B = pgi/2mr ... ...(3.13)
Fig. 3.17 (b) When P is inside The cylinder » < a. Refer to loop C,.

Cﬁ Badl = qunrz
G

) .
@ = pgir?fa® o B =T (3.8.6)

= B;2nr = qunrz s
a
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5. Force between two parallel current carrying wires.

C B The fig. (3.19) shows two long Parallel current carrying conductors A
and B, separated by a distance a, carrying current i, and i, respectively.
LA 4 1, Then using Ampere’s law the magnetic induction g at point P due to the
conductor A is,
Td¢ Mo 2i
B=—"—di i .
P P directed normally into the plane of paper.
S

: ! The force on a current element i,d/ at P due to this 7 is
Fig. 3.19

dF =i,dIxB

dF = i,dIB acting along PQ

Mo 2iiy :
=02 p
i q dl acting along PQ
. . . Ho 2i1i2
So the force per unit length on wire B is P B along PQ ... ... (3.8.7)

Now using Netwon’s third law the force per unit length on A due to current in B will
be same but will act along B. So the wires will attract each other. If the currents are
oppositely directed the wires will repel each other.

3.9 Properties of 3

To know a vector completely, we must explore its curl and divergence (Helmholtz
criterion).

We have already explored the curl of % through Ampere’s law as Vx B = toJ

9
Now to explore V.B, we define magnetic flux w B
9
through an elemental surface ds, as the number of \ ds
field lines passing through the surface perpendicular to T
the surface. The magnetic field intensity B at a point Fig. 3.20

is defined as the number of field lines passing through the point per unit area, when the area
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is placed perpendicular to the direction of the field. So magnetic flux through an elemental
area ds, at a point where the magnetic field intensity vector is g as shown in the fig. (3.20)

dd=Bds

So the total magnetic flux through a surface S, ¢ = CJSE.d 5. Now for a closed surface
S

o= <j.>§d s =0, since the magnetic field lines are closed, as isolated pole does not exist
S
in nature.
Now using Gauss’s divergence theorem we can write.

o= cJSEdE = 956,3@ =0 as this is applicate for any volume.
S 14

So V.B=0......(3.9.1)

As the divergence of curl of a vector is always zero, so we can write

B=Vx4....(392)

Where 4 is called megnetic vector potential.

It is to be mentioned that that vector potential 4 is not uniquely defined through the

equation (3.9.2) as it g remains unchanged with addition of a function whose curl is zero.
(1) Vector magnetic potential for a current loop

The fig (3.21) shows a current loop carrying current i. Then for a current element jd/,

the magnetic field at a point P of position vector ;. with current element at origin is given

by Biot-Savart law, d_])3

e s P
dB="0d1x L /'
4n 1’3 ;'&

Fig. 3.21
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So we can write dB = —Z—O(idi)xV( 1)
T

:Z—%V(%)x(z’ﬁ) ...... (3.93)

Now V x ((1)2) =Vox A+hV x 4, so using this identity in the above equation we have
dB :&{Vx(wj—le(ijl)}
4 r r
_Ho idl . —
_Tnvx(Tj’ since v xjdl =0

) idl | _ vy g o idl
.B—4n<ﬁVx(rj Vx(j)émr.

Compering this equation with B =V x 4,

T & Boidl
nA=¢ T L (394)

Bo Jdv  (39.5)

Again 7 _ f Ho =
g A(]54n - AT

As 4 can’tdefine g uniquely, 4 can be considered as a mathematical interstep for

computer of B

2) Multipole Expansion of the vector potential

In order to find the appromimate value of vector potential due to a localized current
distribution, method of multipole expansion of potential can offer appromimate value at
large distance from the source, which can be expressed in powers of 1/r, 1/#2. Higher order
terms with negligible non-zero value in the series is the one important aspect of this method,
ensuring appronimately fair value of potential. We get the expansion as follow from the

figure—
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1 1

r \/_[r2+r12—2rr'cose]

_1s (Y
- rnZ:E)(i”) P,CcosH ... ... (3.9.6)

Where ¢ is the angle between ;. and " Accordingly vector potential of a current loop

— (- I
can be written as A(r) = Z—g@#dl’ = 4;lr°n+l (r")'P,(cos0)dl"......(3.9.7)

Now the magnetic monopole term is always
zero, for the integral is just the total vector
displacement around a closed loop :

$dI'=0.....(3.9.10)

Dipole term plays important role as
monopole term is zero,

by - u 1 ’ T n U A T
Ad,poze(r) = 4;2 (ﬁr cosOdl' = 4nor2 q.D(r.r ja’l . ...(3.9.10)

This integral can be written elegant way if we use the following relation—

(7 )dl =7 [ds'.....(3.9.11)
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where g is the vector area of the loop. If the loop is flat, § is the ordinary area

enclosed, with direction followed by the usual right hand rule. In reality, the dipole potential
is suitable appronimation whenever the distance r greatly exceeds the size of the loop.

The magentic field of a perfect dipole is easiest way to calculate if we allign ,, at the
origin and in the z-direction.

~ | Field of a pure dipole Field of a physical dipole
Fig. 3.23 Fig. 3.24 Fig. 3.25

50, Buip (;) —VxAd= Honz (2cos 07 +sin Oé)

Astonishingly, this is identical in structure to the field of a electric dipole
If we write m = (%.f)ﬂ(;f; é)é

= mcos 67 — msin 60

Then 3(%.?)?—;1 = 3mcos 07 — m cos OF + m sin 60

=2m cos 07 + msin 60

So can write Bdip (r)as

Edip(?)=:‘—ftri3[3(;a.f)f—%} ...... (3.9.15)
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Also magnetic dipole can be written in the following way—

we know %:[s:%qs;xldﬁ'

m=2[(rxJ)dz.....(3.9.16)

3.10 Summary

After studying the unit we should understand following.

1. The magnetic force on a moving charge F = q; x B. It is a no work force.

2. The trajectory of charge in magnetic field is circular for ,, | p and helical for other
angles of projection.

3. Biot-Savart’s law dB = Z—ii dlc_(z)se and its application.
r

4. Amperes law qSl?d? =uol and its application.

5. Study of nature of g Introduction of vector potential 4 gs B =V x 4
S B e

6. Magnetic dipole m = > j(r X J) dt

7. Forque on a current loop N = ;% B

8. Vector potential of magnetic field B = v x 4

3.11 Review Questions and Answer

1. What represents The line integral of magnetic vector potetial 4 about the boundary
of surface in a magnetic field?

2. If the flux density at a point in space is B = xi —2ay] + 4/€(a =consant), i} and
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k are unit vectors along x, y and z directions. The find the value of a.

3. Show that magnetic force on a charge is a no work force. c,

4. Is megnetic field is a conservative field? m X

5: A b.eam Qf charge unds:rgoes deﬂgction ip a space. Can U =
you identify which field electric or magnetic field is present in the
field. Fig. 3.26

6. A current is sent through a hanging coiled spring. What change do you expect when
the current is suitehed off.

7. Two long parallel conducting wires carrying current i, & i, are kept separated
parallel to each other at a distance d. Will the force between the wires increase if the
diameter of one wire is donbled.

8. A straight wire carrying current #, is placed along the centre of loop carrying current
i, as shrown in figure. Is there any force of interaction between the coil and straight wire.
(Neglect gravitational interaction).

— I e .77
9. Starting from the expression of magnetic vector potential 4 = % Sf) % obtain. The

expression for magnetic induction g Also show that v/.3 = ().

10. Find the force between two ideal magnetic dipoles of moments 7, and m, separated

by a distance r. Assume that m and m, point in the direction of the vector joining them.
(Ch-13)

11. Find the vector potential of inside and out side a sole noid with n turns per unit
length givn current I and dradius R

1. The line integral of 4 over a boundary of surface S is given by qSZdY
Now applying stokes law SBE.d? = IS (6 X Z).d S

Now B =vx 4 by definition. qSZ.d? = Ig.d S = flux through the surface S.

2. B to be a magnetic flux density v B = .
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5_ox_0Q2a) o4 _
V'B_Gx P +82_0

1-2a=0, Or, a=1/2

3. The magnetic force on charge is given by

F = q; x B, now work done for a displacement ;-

dw=Fdr=q(vxB)dr = q(vxB) 4 di = g (v ) s =0,

as (V>< B ) is perpendicular to ,, Thus magnetic force is a no work force.

4. No. Please see differential form of Ampere’s law.
5. Consult text.

6. When the current flows each spiral attracts the neighbours turn and the coil turns

become closer. When current is switched of the distance between the turns increases.

7. No. The force depends on current and mean distance of separation.
8. No. The magnetic field produced by each of them is along the direction of other, So
=F=idIxB=0.

9. Current density is a function of source co-ordinate, while here all the differential

operatars act m field co-ordinaltes.

Assuming source co-ordinate as (x’, y’,z’) and field co-ordinates as (x, y,z), SO
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Now, %xj(r’)zo as v/ is an operator of f(r):f(x,y,z)

(so v XF =0, and v acts only on field co-ordinates)

10. Solution

The force on the dipole m, due to m, is given by

Fz(n?zﬁ)ﬂ,
where B :“_;’c _%_,_3(”115]);

r=xi+yj+zk=ri

my =myi, and m, = myi

Sol" 10.

4y
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to

- —
_; Ko my @(l/ﬁ) m, m,
2n  Ox — * > .
X-aXx18
2n 4 4 4

which is the force of allraction along the line joining the dipole.
Solution 11.

Magnetic field is uniform inside a role roid, of n turms, and carying current I is equal

5 wonlz r<R
1 =0 r>R

$pAdi=[(Vx4)da=[B.da
N
Now considering a closed loop of radius r insicle the solenoid.

‘Z‘.an = uon[(nrz) when , < R

— I -
.-.A:“OT”rcD

Direction of j along the direction of 1.

Now considering a closed circular loop of radius r.

Outside the solemoid,

‘2‘ =2mr = ‘E"TCRz

— I .
‘A‘ = Mg’; R*® (Since the field extends up to r = a)

. uOInﬁD r<R
Hence 4 oI

> R’® r>R
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3.12 Problems and Solutions

1. A proton and a deuteron have equal kinetic energies. Compare the radii of their paths
when a magnetic field is applied normal to their orbits.

2. A particle of charge q and mass m is projected with a velocity v perpendicular to
a uniform megnetic field of field intensity B. Find the angle of deviation § when

1) d <r (radius of rotation of charge) ii)d =riii)d <r

3. A square loop of side 'a' carries a current in anti-clockwise direction when viewed
normally. Calculate the magnetic field at the center of the coil.

4. An electron is rotating of charge e is rotating frequency n around the nucleus in a
circular orbit of radius r. Find the magnetic field B at the position of necleus. r=5.1 x
10" m and n = 6.8 x 10'° Hz.

5. A particle with charge ¢ is projected successively along x-axis and y-axis with same

- L e 1, V37
velocity ,, The force on the particle in these situations is given by vqB {_E + % k } and

vgB [—%ZA } respectively. Find the direction of magnetic induction g

6. Show that the vector potential for a uniform magnetic field 5 along z-direction is
. —“_ (7.5
given by A= Z(VXB)

7. The fig (1) and fig. (2) shows two circuits with loop radius 2r and r but with different
orientation of loop. Find the ratio of magnetic field produced at the centres o, and o,.

8. The magnetic vector potential
in a region is defined by c¢”
A= e Y sin xk. An infinitely long
coductor, having a cross section area, f
a=>5 mm? and carrying a dc current Fig. 1

I = 5A in the y-direction, passes
through the region as is fig (3)

Fig. 2

Determine the expression for (a) 5 and (b) the force density 7 exerted on the
conductor.
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9. The fig (4) shows a conducting wire I
carrying current i placed perpendicular to a I

uniform magnetic field 3 acting verfically Conductor ) /
into the plane of paper. AB and CD have / / B
length | and circular are BC has radius 1. / /
Find the force on wire. X / 1 /
10. The fig (6) shows a very very long /
wire carrying current i, with its middle portion /

bent in the form of a circular are of radius Fig. 3
r as shown in fig (6). Find the magnetic T

induction g at the centre O of arc.

11. A steady current I flows down a long cylindrical conductor of radius a. The carrent
density at a distance r from the axis of the conductor is
proportional to r. Calculate the magnetic field both, inside
and out side the wire as a functor of r. 0

12. (a) A particle of mass m and charge q is rotating /¢
in a circle of radius a with an angular velocity w. Show that |,
the ratio of its magnetic moment to mechanical moment
angular momentum is g/2m

(b) If the magntiude of the angular momentum of a
electron rotating in a circular orbit is L find its magnetic
moment.

B
i A c i
————— 45" > ---
r\]p7r
0
Fig. 6 x X X X x
X X X X
x[OR X x x x
Solution of numerical problems XX x x Vv
Yx x X X x X
" q x x x XX K0
1. Let v_and v, be the veolcities of proton and deuteron. m  y fe—5—=—5¢=x
be the mass of proton, then the mass of deuteron will be 2m. €~ 3, - 2]y *
Their respective radius be r » and 1. Then in a magentic field B L x’; X X% xx

normal to their path, Fig. 3x,32
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- 2

BqVp my, /rp ..... (3.12.1)
Bqv, = 2de2/rp ..... (3.12.3)
So rp/rp = Vp/2Vd ..... (3.12.3)

By the condition mv p2/2 =2mv 2,0V SVa= 1/ /2. Comparing with equation 3.12.3

we have 7; = \/Erp

2. Here r = mv\gB. So from the fig (3.32) sin® = d/r = Bqd/mv. So,
1) if r > d, 0 is acute and the particle will migrate in next medium.
i) if r = d, 0 = ©/2 and the particle will graze the surface of separation.

1i1) if r < d, the particle will describe a half circle and return back to the previous medium
parallel to itself.

3. The fig (3.33) shows a square loop carrying current

1. The magnetic induction at centre o due to arm DA

u ] ) .
Bpy = 4—;1% (sin45°+sin45°)

J < C
= %2\55 perpendicular to ABCD and directed b ]
normally up the plane of paper. 45°
y ___LNO____ 4
So the total magnetic induction \ :
45"
—/ —>
_ L Bos mi 22 a2
B=B,pcp = 44_n 2\/53 =7 acting normally up , B
the plane of paper. < >
Fig. 3.33

4. Here j=en=1.6x10""x6.8x10"° =10.22x107* 4

-7 —4
p=Amx107x10.22x107 _ g 47 323
2x5.1x10"




5. We know magnetic force F = gvx B =gq|v,

B

D':j \<< ~o
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i ]k
Now for first condition magnetic field should be in y-z plane So, F — glv. o o
o B, B,
| NG |
That gives qv By = quB (Comparing the z-compones of force)
So By = % B.... (3.12.4)
Imposing the second condition similarly we have B, =B/2 .... ... (3.12.5)

So Ezg(\/gj+1€)

Let 9 be the angle with y-axis.

2
— . 2
S Bj= (ﬁBJ +B- cosezﬁB

2 4 2
c.cos0 :ﬁ . 0=30°
2
i j k
6. Here B =Bk, So Vx4 04, 04, o4,
Ox 0Oy oz
Ax A_y Az
04, 94, _ 0o 04,
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04y _odx
ox oy

So 4 will be either propertional to 5 and a linear function of r. We can take two

choice 1. Z:CIB; 2. ZzCZ (Ex;)

ik
As for first choice B =V x 4 =0, so it is the The second choice 4=G0 0 B
X y z
yields
A = -CyB&A =0
Ay = C,Bx
I J k
Now B=vVxd=| & 2 9|_p
oW B=Vxd=l o & w~KB

—c,yB CyBx o
OrB=CB+C,B=2BC, Or, C, =1/2
Thus A= —%(;X E) from 2nd choice

7. In fig (1.21), The magnetic is O,

S O n)_Ho.m
B = 4_nl(7_5) = 4x'2, up the plane of paper.

In fig (2), The magnetic induction at O,

. _Ho.m n\_Mo.m3
B> _4—nl(7+5) = EZ?E up the plane ofpaper.

‘EzHE1‘:3.



i k
B-VxA=|90 O 0
8. B=Vxd=5r &% &

0 0 e7Vsinx

Or, B=—¢"7sinxi —e ” cos xj
=—e (z‘ sinx + y cos x)

For exerted on a elemental length ;7 on conductor

F:[(dixﬁ)zﬁdzxﬁ
:Idﬁx—(fsinx+}cosx)e_y

= Idle™ sin xk = 5¢™7 sin xk (dl)

.. force density % = 5¢” sinxk N/m

9. We set x & y axis as in figs

The force on arm AB, Fap = Z—gile

The force on arm CD, Fcp = %ilBj

. i+
The force on arm BC, F'Bc =%i\/§&B( )

NG
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=%ilB(z°+]’)

= 2“0 . AoA
So the total force F —4—nllB(z +])
10. Magnetic induction at O due to straight portions of wire

B _o Mo i 0010 _in 450
Bstright = 2{471 T (sin90°—sin 45 )}

_Hoi2

=4y (\/5 - 1) acting normally into the plane of paper.

Bare = Z—i% /2 acting normally into the plane of paper.

Total magnetic induction B= Estmight + Bare = Z_;)c i [% +2 ( V2 - 1)} acting normally

into the plane of paper.
11. Solution

Considuring an Amperian loop in the form of a circle of radius r (r > a) with its axis
on the axis of the cylinder, B is is tangential to the loop be cause of symmetry and constant
over it

@ Ed? = MOIencZ

Or, B2nr = pojo()andr.J(r)

3
= 2nu0k.[0r rdr = 2nu0k%

where k is portionality constatin J = Kr

2
B:uok% for r<a.



For any external point r > a, I, = I and then, B2mr =p/

Mol s
Or, B_2nrf0r r>a

a a 2
Now the total current / = Io 2nrdr.J (r)=2nk J.o redr

3 37
- a k=
2mk 3 or, e
72
Thus B = Ho r3 for r<a
21a
a solution

(12.b) current flow due to charge q rotating in a circular orbit is

9
]Zizﬂ:ﬂ
T 2nv 2m

Magneitc moment = current x area of the loop ps = 7542

M =ﬂna2m

27'cm

= iﬂ’lWClz

2m

=4 Angular momentum.

2m

Magnetic moment ¢
Angular momentum  2m

From above, taking q = e as charge of electron. Then

Magnetic moment _e = el

L 2m 2m
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Unit 4 O Magnetic Properties of Matter

Structure

4.1 Objectives

4.2 Introduction

4.3 Magnetisation (M) and its Measurement

4.4 Auxiliary Magnetic Field (1)

4.5 Magnetic Permeability and Susceptibility

4.6 Classification of Magnetic Materials

4.7 Relation between B and H of Magnetic Material in Magnetic Field

4.8

4.9

Hysteresis or Magnetisation Cycle

Importance of Hysteresis Loop

4.10 Summary

4.11 Review Questions and Answers

4.12 Problems and Solutions

4.1 Objectives

You will know from this unit—
e What is magnetisation and its measurement (M)

e Behaviour of closed circulating current and its relation to non-uniform magnetisation.
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e Relation between auxiliary magnetic field ﬁ magnetic induction vector ]§, and
intensity of magnetisation M.

e Hysteresis loss for ferromagnetic material and its importance.

e (lassification of magnetic material according to their property mainly pare dia and
ferromagnetic material.

4.2 Introduction

In our earlier unit we have studied the primary properties of magnetism. Apart from
the directive, and altractive/repulssive properties, the fundamental property of a magnetic
field is that its flux through any closed surface vanishes. Mathematically it is expressed as
Vv B=0 i.e. these field lines close on themselves.

The most common source of magnetic fields is the electric current loop. It may be an
electric current in a circular conductor or the motion of an orbiting electron in an atom.
Associated with both types of current loops is a magnetic dipole moment, the value of
which is 1A, the product of current (i) and area of the loop (A). Besides these, electrons
protons, and neutrons in atoms have a magnetic dipole moments for their intrinsic spin
property.

At present, we will study more about properties of magnetism, and intensity of
magnetisation. The nature of circulating current related to non-uniform magnetisation

and the relation between current density and intensity of magnetisation will be studied
in detail here.

A simple relation between auxiliary magnetic field (?I) and magnetic induction
(ﬁ). their relation will be established here. Magnetic material is classified into three main
category—para, dia and ferromagnetism. Their general properties are included here
particularly, ferromagnetic material with their hysteresis property are relevant in fabricating
temporary or permanent magnet. Ferromagnetic material is of immense use in industry, i.e.
in transformer design.

4.3 Magnetisation and its Measurement

In an atom, electron revoles around the nucleus in different orbits, so we can say that
each orbit is closed electrical circuit, which acts as a magnetic dipole. Magnetism of this
closed electrically orbital circuit or magnetic dipole can be expressed in terms of Magnetic
polarisation. It is the active current flow and a is it surface area, then magnetic dipole
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polarisation of each orbit,
m=Ila (4.3.1)

Normally, these orbits or dipoles are randomly distributed, so in effect, resultant magnetic
effect of these get neutralised. They try to orient themselves in order under the infulence
of external magnetic field. So the material retains magnetic properties. Total number of
dipoles oriented along the externally applied field is defined as the intensity of magnetisation
M If V is the volume and total number of dipoles £m. in it, then magnetisation M is given
by

_xm
M= v .. (43.2)

where m, is the ith magnet dipole value.
4.3.1 Equivalency between Magnetic Circuit and Electrical Circuit :

Let us take a piece of magnetic material. This piece can be imagined to be assembly
of small mesh structures. As current is the source of magnetisation, so the magnetic behaviour
of every micro mesh can be considered due to the flow of current in one direction. This
is portrayed in Fig 4.1. This current flow is same for every network for uniform magnetisation.

Fig. 4.1

It is clear from the figure that current in adjacent orbital circuit or mesh is equal and
in opposite direction, is neutralised by each other, only the current flow left out in external
boundary or periphery of the collected mesh does not vanish and remain active. It can be
concluded that a magnetic material is an arrangement of equally structured numbers of
orbitally current curcuit mesh work for uniform magnetisation. This active current around
the periphery is called circulating current. The characteristics feature of this current is that
it is not due to freely moving electrons. It is the current produced by electrons revolving
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in atoms of different structural configuration of magnetic material. So this current is called
bound current. A relation ship between magnetisation and bound current can be derived as
follows. M

}d

Fig. 4.2

In Fig. 4.2 a small sample of magnetic material is displayed, whose area is ‘a’ and its
breath is d. M is intensity of magnetisation and m its dipole moment, then we get,

m=Mad L. (4.3.1.3)

As the magnetic material is like an electrical circuit of equally spaced block, and I is
the governing current then magnetic dipole moment will be,

m=la . (4.3.14)
coparing equations (4.3.3) and (4.3.4) we get,
M=l=x L. (4.3.1.5)

K is known as surface current density. It is clear from equation (4.3.5) that magnetisation
intensity and surface current density are identical. The direction of the current on each
surface is given by

- — A

K=Mxn . (4.3.1.6)
This equation is very important. Here n is the unit surface vector. Now surface vector

=2 4. O A . .

K directed externally outward. M and 1, being parallel to each other, current flow in upper

and lower surface have no existence.

4.3.2 Relation between Magnetisation and Current Density in Non Uniform
Magnetisation :

Magnetisation current is active in adjacent boundary of mesh block of magnetic
material in non-uniform magnetisation. Two adjacent block of magnetic material is
shown in Fig. 4.3. Magnetisation is not uniform everywhere, so intensity of magnetisation
is different in two blocks. Let M,(y) and M,(y+Ay) are magnetic intensity of two blocks,
respectively. Equation (4.3.5) gives the current density. So the current flow in each block
will be different. Arrow sign indicates the direction of flow of current. Let [.(1) and [(2)
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be the current flow of the blocks, respectively. From equation (4.3.5) and Fig. 4.3, We
get,
L(1) =M, (y)Az
and [(2)=M,(y+ Ay)Az

A A
M) M (y+dy)
M,(y+d

} | M (y+dy)
dz

I _ Z M,(y)

1 ~——
dy 2 }\,\,‘/

(a)
Fig. 4.3

At the junction of the two block (1) is —ve along x-axis and [(2) is tve along X-
axis and active. As [(2) is grea ter than (1) so we can understand that current will be
more active along positive X-axis. Remainder of the current flow will be

AIX = Ix(2) - Ix(l)
o, AL=[M(ytAy)-MWAz 43.7)

oM ..
Now, M,(y+Ay) = M,(y) + ayz Ay + ....... other negligible terms

oM,

So, AL, = Ay (4.3.8)

J is the current density per unit area and it’s direction along per pendicular to the area,
so current density due to unequal magnetisation along y-axis will be

Al, oMz
(J m ) 1= ==
X AyAz 0Oy

This current density is due magnetisation, (that is why m is used as subscription).

The reasons given above is responsible for the origin of (J,),,. It is clear from Fig.
4.3.(b) that residual x component of current will be due to the variation in magnetisation
along z-axis and will remain active. Hence
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~ My(z+Az)—My(z)
(Jm)XZ _|: AYAZ :|Ay
_ oMy
=5, e (4.3.10)

So the total current density at any point due to uneven magnetisation will be

(), =), +(3m)..

oM, oM,
- e (4.3.11)
= (§x M),

Le. (K)X is x component of (y7 % M),

In this way we can derive the flow of current along, y and z axis, so the resultant
current density will be

_—

J_=VxM (4.3.12)

Equation (4.3.12) is the relation between current density and intensity of magnetisation.
Vv X M= 0, for uniform magnetic field or J,, = 0, the current flow remain active only along
the of periphery. There will be no influence inside the magnetic material.

4.3.3 Alternative Method to Find ﬁ X T =M

To find a quantitative relation between Mand T, let us consider magnetic vector
potential due to a magnetised body as shown Fig. 4.4. The vector potential due to a single
current loop of magnetic moment mis given by

mxrt
B (4.3.13)

A(r) =
@) d r

where T is a radius vector from the loop to the point of observation. In a magnetised
object, each volume element dz carries a dipole moment M  dz, so the total vector potential is
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M(f) 1"

Am =20 = L (4.3.14)
4n r

From vector algebra,

vl T
I'” rrr2

with this
A(F) = j[M(T)X(V'%)dr}

Integrating by parts
Koo Mol el (e 2 I M(T)
A(r)—ﬁ[f;(v x M(T ))dr -[v x{ o dr

A = 2ot Lo s My Po r L'Viee\da!
or, A(F)= g2 jr,,[v xM(r)dr]+ ol [M(r )da] ....... (4.3.15)

Fig. 4.4

The first term looks just like the potential of a volume current.

—

T=yx™M L. (4.3.16)

while the second term looks like the potential of a surface current

— —

K=Mxa .. (4.3.17)
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where nis the unit normal vector, with this definition

- J(@)dr' K(r')da’
NGES | (r?, u +Z—§’T§% ....... (4.3.18)

Equation (4.3.18) shows that potential of magnetised object is the same as would be
produced by a volume current T= V X 1\_/)[thr0ugh0ut the magnetic material, plus a surface

current K = M x fi on the boundary.

%
4.4 Auxiliary Magnetic Field (H)

Now we place a magnetic material inside a solenoidal coil and a current I; is flown
: oD
across it from a battery. If total current density is J, then

I =T+,

Here Tf and Tm are free current density and bound current density. From Ampere’s
circuital law

vxB=puJl=pnd:+Ty (4.4.1)
As T, =y xM
So, ¥ xB=pJi+py xM
or, §><§/uo—§><1q=ff
o, v X M%—M =5 (4.4.2)
is denoted as I_i equation (4.4.2)
becomes y X a=71r . (4.4.3)

His known as auxiliary magnetic field or magnetisation. In reality His very important
as it is directly related to the current flow from battery. If we study equation (4.4.1) and
(4.4.3), we can conclude that magnetic induction vector B is related to total current flow,
but cannot be measurable easily otherwise H can be measured easily as it is related free
flow of current.
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Applying stoke’s theorem in equation (4.4.3) we get
Equation (4.4.4) states that an integration of Haround a closed loop is linked with free

current flow from EMF/other sources. This equation is frequently used to find H

We understand from the above analysis that application of auxiliary magnetic field H
in material initiates the evolution of magnetic field, which is known as magnetic induction
vector B.

NOW, E—M:ﬁ
)

o, B=p, H+M (4.4.5)

Here 1, is the permeability of free space. Equation (4.4.5) is the relation between E,
H and M.

4.5 Magnetic Permeability and Susceptibility

Magnetic permeability of a material is the ability of a material to support the formation
of a magnetic field inside itself. So it is known as degree of magnetisation standard unit of
magnetic permeability is Hm™.

The magnetic permeability is a relative measurement that it is taken with respect to the
magnetic permeability of vacuum. A diamagnetic material has a relative permeability less
than 1, Where as a paramagnetic material has a value slightly greater than one which means
that when a paramagnetic material is placed in external magnetic field, it becomes slightly
magnetised. But a ferromagnetic materials have relative permeability.

Magnetic susceptibility is the measure of magnetic properties of material which indicates
whether the material is attracted or repell from external field. This is quantitative measurement
of the magnetic properties. It is denoted as y,,. For a isotropic linear magnetic material.

M=y H (4.5.1)
Ym 18 @ dimensionless quantity the values of y,, for common para magnetic and

diamagnetic materials are given below.
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Table 4.1
Paramagnetism and Diamagnetism: Magnetic Susceptibilities
Paramagnetic substance Lm Diamagnetic substance Lm
Aluminum 2.3x107° | Copper —9.8x10°
Calcium 1.9x10° | Diamond -2.2x107°
Magnesium 1.2x10~° | Gold -3.6x107
Oxygen (STP) 2.1x10°% | Lead —1.7x107
Platinum 2.9x10* | Nitrogen (STP) —-5.0x107?
Tungsten 6.8x107 | Silicon —4.2x10°°

Now we can estalish a simple relation between B and H from equations (4.4.5) and
(4.5.1)

B=p, H+M) = p, (H+ y%,H)

=wH(+y (4.5.2)
oy B=pd (4.5.3)
Here py=p, 1+, . (4.5.4)

where L is the permeability of the medium. Also we get relative permeability, as

pe= =1, (4.4.5)
Fo

L, i1s a dimensionless quantity. In vacuum, x,, =0, i, = 1.

4.6 Classification of Magnetic Materials

Magnetic materials can be classified according to the behaviour of magnetic moments
of electron of an atom react to applied magnetic field diamagnetic, paramagnetic and
ferromagnetic materials.

Diamagnetic Materials : They are weakly magnetised in a direction opposite to the
applied magnetic field.

Examples are hydrogen, nitrogen, gold, silver, copper, antimony etc. Its behaviour with
applied field and temperature are shown in Fig. 4.5
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Explanation : Dia magnetic substance are composed of atoms that have no net
magnetic moments. When it is placed in an external magnetic field, the substance as a
whole acquires net magnetic moment in a direction opposite to the applied field. They do
not have unpaired electrons.

Characteristics : 1. Diamagnetic is universal, all materials when exposed to external
magnetic field, tend to develop magnetic moments opposite to the direction of the applied
field.

2. No parmanent dipoles.
3. Relative permeability is less than one but positive.
4. Susceptibility is negative and small, independent of temperature. (Fig. 4.5)

5. Weak repulsion is its main features.

M
A X
+ M=y H
%<0
A - T >
slope =7y, H X= constant
Fig. 4.5

Paramagnetic Materials : It is the phenomenon by which the orientations of the
magnetic moments are mainly dependent on temperatrure and applied field. The number of
orientations of orbital and spin magnetic moments be such that the vector sum of the
magnetic moments is not zero. Resultant magnetic moment in each atom is not zero even
in absence of field. Paramagnetic property vanishes in the absence of external field. Its
behaviour with applied field and temperature are shown in Fig. 4.6. Examples are Aluminium,
platinum, chromium, sodium, calcium, oxygen etc.

Paramagnetism Characteristics :
Paramagnetic materials have an unpaired electron in their valence shell
b. These unpaired electrons are in constant spinning motion.

c. This incessant spin of the electron form a dipole moment, they act as small magnets
themsleves
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M
A X 1
oC —
+ X<
- slope =y
H 5
M=yH "
x>0
- Paramagnetism
Fig. 4.6

d. However the dipoles are in random directions and donot interact with one another,
so the total magnetic field created by paramagnetic material is zero.

e. Inamagnetic field, the individual dipole moments of the atoms get alligned in a
single direction, along the applied magnetic field. This produces a magnetic field
in the direction of the applied field.

Ferromagnetic Materials : Ferromagnetism is the basic mechanism by which certain
materials form permanent magnets or attracted to magnets. They are strongly magnetised
in the same direction as that of applied field and retains its magnetic moment ever after
removal of the applied field. Examples are Iron, cobalt, nickel. This property is due to the
contribution of spin magnetic moment to the magnetic dipole moments is very large. It
posseses strong magnetic properties due to the presence of magnetic domains. In these
domains, large numbers of atomic moments (10'? to 10" per unit volume) are alligned
parallel, so that magnetic force within is strong. In unmagnetised state, the domain are
nearly randomly organised, and the net magnetic field for the part as a whole is zero. The
domains are oriented to produce a strong magnetic field under the influence of magnetising
force.

saturation level <—— Ferromagnetic

| Paramagnetic

1
) H TCl

X —>
Feromagnet ic Material Properties
Fig. 4.7 : Ferromagnetic Material Properties
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Characteristics :
1. They have large and positive susceptibility.

2. They have strong tendency from weaker to the stronger parts of the non-uniform
magnetic field.

3. B= uo(ﬁ + K)/[). Magnetisation is not proportional to the applied field. They exhibit
property called hysteresis.

4. Susceptibility depends on the temperature.

5. It retains their magnetic property even after the external field is removed.

e e
e e T
e e
e e

B=0 TB>01T Saturation Point
Fig. 4.8 : Allignment ferromagnetic domain with magnetic field

4.7 Relation between B and H of Material in Magnetic
Field

We know that relation between magnetic induction vector Band auxiliary magnetic
field vector H as B= pH. In Fig. 4.9, an experimental setup to find out the relation between

Paramagnet

Diamagnet
H

to galvanomete
(a) (b)
Fig. 4.9



NSOU e CC-PH-08 0O 155

Band H. A magnetic material is introduced inside a torroid. Two coils have been
wound on the torroid, one is primary coil, through which current is passed. Other is
secondary coil, which has been connected to galvanometer. The magnetic field is produced
by the current flow in the primary, which results in magnetic flux inside the torroid.

Magnetic flux is varied by the change in current flow. Induced emf can be measured.
Thus B can be measured.

In this way, we can find the auxiliary magnetic field Hand induced B. Thus a graph
can be plotted from this data. B and H graphs can be drawn for different material by
placing it inside the torroid. A straight line graph is observed for paramagnetic and diamagnetic
material. The gradient of the straight gives the susceptibility y,, [Fig. 4.9(b)].

4.8 Hysteresis or Magnetisation Cycle

Magnetic properties of ferromagnetic material is different from other materials, which
is clear from Fig. 4.10. Band H graph. Behaviour of Mand H is not directly proportional
and graph of B-Hislikea loop or cycle. Characteristic features of B H from the graph
in Fig 4.10 are detailed below :

B plux Density

Saturation

Retentivity .D

b

CoercivitxA

E

-M
Magnetizing Force
in Opposite Direction

M
Magnetizing Force

G

Saturation

in Opposite Direction Flux Density

in Opposite Direction
-B

Fig. 4.10 : B — H Graph of ferromagnetic material
) When I =0, then H=0, B=0 and M = 0, so the point ‘O’ shows the
unmagnetised state of the material.

Initially, we increase current slowly i.e. B increases as H increases.
Magnetisation M has reached saturated state at the point C, i.e. H also is
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i)

saturated. As B = TN (ﬁ + 1\7[), so B increases very little even if H is increased.
OPC portion of the graph shows such variation.

Now we decrease the current slowly after achieving saturated M at the point. We
observe that B — H graph, instead of retracing the path OPC, it traverses along
path CD i.e. B does not become zero value even when H = 0. Section CD
portrays the residual magnetisation.

Now if we reverse the flow of current and increase it slowly, H is also increased
along the DEF portion of the graph. Residual magnetisation gets lost if the intensity
of magnetic field is in the opposite direction along OE. The value of this applied
magnetic field is called co-elective force. The point F describes the sate of saturated
magnetisation in opposite direction.

H is gradually increased from the point F in the reverse direction, and gets zero
value. As a consequence we get the curve FGKC portion of the graph. Thus the
material achieves previous value of magnetisation at the point C. The path
CDEFGKC will be repeated again and again if I or H is changed repeatedly in
forward and reverse direction, but the traversing path OPC of the graph is not
traced at all. This closed path CDEFGKC is called magnetisation cycle or Hysteresis
loop. At each step M or B lags behind the corresponding magnetising field H. It
will be shown latter that the area of B — H loop equals to energy loss per unit
volume per cycle of magnetisation.

4.8.1 Hysteresis Loss :

When a sample of ferromagnetic material is subjected to magnetisation and
demagnetisation, in a hysteresis cycle, some amount of energy dissipated. As the
magnetic domains allign with the magnetising field first in one way and then the
other it produces mechanical stress and consequent heating. The energy spent during
magnetisation is not totally recovered due to the irreversible changes in domain
structure.

Let us take a typical domain of magnetic material of magnetic moment m which
. =2 . . . .
makes an angle O with the field H at any instant of time when the magnetisation of
. . T
the material is M.

.. The sum of the components of m perpendicular to H over unit volume is zero

>m sinG = 0
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Again, M = Zmcos0
dM =—-Zmsin6.d0

Now the torque acting on the domain of moment m when it makes an angle 6 with H

7| = ‘ﬁlxﬁ‘ =mpHsin0 4.8.1)

g —> . . . =
where B = p H = magnetic induction due to H.

The work done by the external source in alliging the domain in a unit volume through
a additional angle is

dw = Zmp,H sin6d6 = p,HdM ernd.8.2)

So the work done per unit volume in traversing the specimen through a complete cycle
of magnetisation is

W = py§ HIM = ) x area enclosed by the M — H loop. (4.8.3)

or, W= py¢$ HIM = § HdB = area enclosed by the B-H loop.

4.8.2 Increase in Temperature Due to Hysteresis Loss :

Let A be the area of B — H loop and n is the number of hysteresis cycle, m is mass
and p the density. p is the specific heat T is the temperature.

Energy lost per sec is = volume of the material x number of cycle x area of the loop

= MpAT/s
p

A
Heat energy produced = % Calories/s.

nA
By calore metric principle = msT = mJ_p
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4.9 Importance of Hysteresis Loop

We can understand the nature of magnetic behaviour of a material by studying the
structure of a hysteresis loop and identity its utility in manufacturing magnet. Hysteresis loop
of soft iron and steel is shown in Fig 4.11 certain conclusion can be drawn are as follow

(1) Retentivity of steel is more than solf iron.

() Coercivity of steel is more than soft iron i.e. much greater coercive force is
necessary to demagnetise steel-magnet.

(i) Area of hysteresis loop of iron is much lesser than steel i.e. energy spent per cycle
for soft iron is much less than steel.

v}

A Soft Iron Hard Steel

%

Fig. 4.11

So, we can understand why soft iron core is required in the manufacturing of
electromagnet of transformer. Because transsient magnetism requires smaller area of loop
and lesser coercive force. Larger coercivity is the necessity to have strong magnet. A strong
magnet does not undergo a complete magnetic cycle. So energy lost due to hysteresis cycle
in strong magnet, even though area is having much large area.

4.9.1 Demagnetisation of Magnetic Material

Ferromagnetic material retains some magnetism when it undergoes a hysteresis cycle.
Magnetic transformation is unaltered even after with drawal of the applied magnetic field.
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In order to demagnetise it, the magnet is placed in a gradually diminishing field and undergoes
few hysteresis cycle. Area of the loop decreases gradually until it becomes zero. Thus the
material has reached the state complete demagnetic state. (Fig. 4.12)

B

-—.—*H

Fig. 4.12

4.10 Summary

1.

6.

Magnetisation of material is measured by M. Numbers of magnetic dipole produced
per unit volume, if material, is defined as magnetic moment.

Magnetic material behaves as composed of huge numbers of equal area circulating
current loop, in uniform magnetisation. And the result at current flows only through
peripheral region of the material.

Bound current exists in non-uniform magnetisation. Density of the current flow is
givenby J, = v xM. v xB=pJ =m,(J,+7,) where T, is the free current
density sourced from battery/other sources and fm is bound current density due
magnetisation.

—

—_—

Vv X H =T, and, ¢ H.dl= NI; where H= ﬁ—ﬁ, the auxiliary magnetic
VS

field only related to the free current If. B= K, (H+ IVI) for paramagnetic and
diamagnetic material.

Hysteresis is the characteristics properties of feromagnet. Total energy spent in a
hysteresis cycle is the area of the loop in SI.

Structure of the loop helps in identifying certain material with a specific purpose.

4.10 Review Questions and Answers

1.

An electron (charge e mass m) revolves around the nucleus in a circular
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orbit with radius r and velocity v. The electrostatic force provides the
necessary centripetal force.

a) Calculate the current and magnetic dipole moment due to the orbital
motion of the electron.

b) Write down the force equation when the electron is placed in a uniform
magnetic field B perpendicular V, how is the force equation modified?

Answer : a) Orbital current due to the electron.

[=C& _&w_ ev . . . .
T 2 2mr’ where T is time period, ® its augular velocity,
The magnetic dipole moment m = Ixtr?

ev .2 _ evr
27r 2

2 2

b) The force equation will be, 1 e = mv
T ¢ ol T

c) The electron will experience a force evB and its velocity rises from v to y in

the presence of magnetic field.

The equation of motion will be—

2 —2
1 £ L evB=meY
47T 60 r2 r

2. Determine the magnetisation current density due to non-uniform
magnetisation current.

Answer : See article 4.3

3. If the magnitude of augular momentum of an electron rotating in a circular
orbit is ‘L’ find the magnetic moment.

Answer : Orbital current due to electron, with time period T is

= _—_€¢ _¢ev
T 2nr 27r
\%

So the magnetic moment

— 2 ev 2 __evr
m|=Inr" =—=—nr" ===
| m| 2Tr 2
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We know, v = or and augular momentum L =m®r?

2
> eor el
m=——=—-———
m] 2 2m

4. Using the concept of bound current density for non-uniform magnetisation,

establish VxH=7J,, where J; is free current density.

Answer : See article 4.4.

5. Explain what you mean by free current and bound current in magnetisation
of matter.

Answer : Free current is produced by the electric charges, like electron when they
move. It produces Joule’s heating effect. Bound current is produced by the orbital motion
and spinning of electron in atom. It does not produces Joule’s heating eftfect.

In magnetised matter atomic loops of current circuit are distributed at random. In
uniform magnetisation, produced by the adjacent current loops cancel each other. Hence
net effective current inside the material vanishes. Only we get some amount of surface
current. In non-uniform magnetisation of matter, cancelletion will be partial and donot
vanish. This residual current inside the maternal is called volume current. Thus we get
formation of a current, which we call magnetisation current on bound current.

6. Discuss why soft iron is suitable for use as the core of transformer where
as steel is preferred for making permanent magnet.

Answer : The core of a transformer is made of soft iron because it has high permeability
so it provide complete linkage of magnetic flux of the primary coil to the secondary coil.
Therefore it has high coercivity and low retentivity. Soft iron provides the best material for
the core of a transformer as its permeability (1) is very high. Its hysteresis curve is of small
area and its coercivity low.

A permanent magnet requeres high retentivity and high coercivity. Steel magnet has this
property and is able to resist loss of magnetism due to improper handling.

4.11 Problems and Solutions

1. An infinitely long cylinder of radius R carries a frozen-in magnetisation,
parallel to the axis.

M = krz
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where K is a constant, and r is the distance from the axis (there is no free
current here). (a) Find the bound current. (b) Find the magnetic field inside and

outside. (c) Use Ampere’s law to find H and B.

Solution :
a) Given the magnetisation of the material along z-axis and is equal to

M = kr'z

The bound volume current is given 7= (VAR M

b 2
i_10 0 0
b7 rldr 90 0z

0 0 kr
_ 1 0 f_1|_ 0 g
= ar(k)rG—r[ ar(kr)re
J, = k6

The bound surface current is given by —Kb =Mx fi
K, = kr (2% 1)
-~ K, = Kif
b) A sobenoidal field is produced due to bound current. The field outside the cylinder
will be directed along the z-axis Applying Ampere’s law we get,
§B.di=—BL

The current intercepted by the Ampere’s loop is given by
in —

R
I,, = —K,L+ [KLdr
T

= (KLR + KL(R-r) = -KLr

Ampere’s law can now be used to find the magnetic field.

- J . .
B:MO—L“z:uOKrZ
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(c) Now v/ M=0, it implies Ampere’s law uniquely defines H. Now the H field is

painting in z-direction. Using Ampere’s law, in terms of the ﬁﬁeld, we certainly conclude
that for the Ampere’s law

fHAT=HL =1 0

intercepted —

Since there is no free current, which can be only true if H= 0, which implies that

H=LlB-M=0
Ko
So the magnetic field Bis given by
B = yH
Magnetisation outside the cylinder is zero and therefore magnetic field is zero
B=0
For the region inside the cylinder
M = krz
So internal magnetic field
B= Uokrz
which is identical to earlier solution

2. An iron rod (density 7.7x10°Kgm and specific heat 470 JKg™) is subjected
to cycles of magnetisation having frequency 50 cycles. If the area of B-H loop of
the specimen is 6x10° Jm=. Calculate the rise in temperature per min.

Solution :
Hysteresis area enclosed by the B-H loop
= Energy lost per unit volume per cycle

= 6x10)m>

Energy lost per min = 6x10°%50x60x ﬁ

where mis the mass of the sample.

Let T be the rise in temperature, we get,
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m
= = 3 _—
mST =m x 470 x 7=6 x 10° x 50 x 60 7 7%10°

3
or, T = 6x10 ><50><630 —4.97°C(min ")
470x7.7x10
3. Compute the intensity of magnetisation of the bar magnet whose mass,
magnetic moment and density are 400g, 2 Am? and 8gCm, respectively.

M
Solution : Volume of the magnet = denisify

4001073
(8x107°)x10°

=50 x 10° m?

Magnitude of the magnetic moment P, = 2Am?

So the intensity of magnetisation,

I— Magnetic moment 2
B volume 50x10°°

M =04 x10° Am?

4. Region 0< z < 2m is occupied by an infinite stabs of permeable material
(4, = 3.5). If B= 10yi — 5xjmwb/m? within the slap determine (a) J (b) J, (c)
M ) K, onz=0

Solution : By definition

A

9By 9Bx |
0x Jy

(@) J=VxH=Vx B _ 1_7
oy 410 7(3.5)

— 3.410k KA/m?
(b) Bound current density,
T =T = (3.5-1) (-3.410) x 10?
= —8.525kKA/m?
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_ 2.5(10yi—5xj)x10°°

©) M= H
© X 47 1077 %x3.5

= (5.676 yi — 2.840]) KA/m
) (d) Kb =M x n, since z = 0, is the lowerside of the slab occupying 0<z<2, n=
—k Hence,
K, = (5.676yi-2.840 x g) x (—k)
— (2.840xi + 5.676yj) KA/m

5. The volume of the core of a transformer is 1000cc. It is fed with ac if 50
HZ. The loss of energy due to hysteresis. Calculate the area of the B-H loop.

CU-13
Solution :
The energy loss per second in the transformer core = 36]
3600s
The energy loss per cycle = 32(6)JOS X SOCilscles
36

3600x50° s
-6
1000x10 "cycle

So the energy loss per m* =

Now, energy loss (in ergs) percycle per cc

36x10° %107
3600x50x10°

1 _
1% (loop area)=

So, loop area = 25.13 cm?.



Unit 5 QO Electromagnetic Induction
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5.2 Introduction

5.3 Faraday’s law of Electromagnetic Induction
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5.9 Magnetic Energy

5.10 Summary

5.11 Review Questions and Answers

5.12 Problems and Solutions

5.1 Objectives

In this unit, you will study the nature of electromagnetic induction through different
related phenomenon as detailed below :

e Concept of magnetic flux.

e Faraday and Neuman’s law, and Lenz’s law, its application, its importance
and specific characteristics.

e Motional electromotive force and Faraday’s electromotive force, its quantitative
significance.

e What is self inductance and mutual inductance, the ways to measure it and
detail aspects to understand.
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e Idea about Neuman’s expression.

e Arrangement of inducetance in series/parallel, different values inductance to achieve
for specific uses.

e Coupling phenomenon in inductance and its application.

e The nature of electromagnetic energy, what is its application in different areas of
study.

5.2 Introduction

In 1820, Oersted had shown that an electric current generates a magnetic field. But can
amagnetic field generate an electric current? This was almost simultanceously and independently
in 1831 by Joseph Henry and Michael Faraday. Faraday showed experimentally that whenever
the magnetic flux linked with a closed circuit changes with time an electric current is induced
in the circuit. The reason behind the generation of current flow in a closed circuit without any
current generating source in it, flow of electric current by changing magnetic flux with time
across the loop, is called electromagnetic induction. Faraday’s law along with Lenz’s law,
which follows from conservation of energy, comprise the governing laws of inductive current
and its direction. Scientist Neuman, had further elaborated the spectrum of any form of
electromagnetic flux flow. This is known as Faraday. Neuman law of electromagnetic induction.

Farady explained electromagnetic induction using the concept of lines of force later on
Maxwell used Faraday’s ideas and build the foundation of his quantitative electromagnetic
theory. Faraday’s law has played an important role in the technological transformation as
we find today.

5.3 Faraday’s Laws of Electromagnetic Induction

;///Magne{ pullea
A i

Magnet plunged

into coil out of cail

(induced current
makes near end
a S pole)

{induced current
makes near end
a N pole)

Fig. 5.1
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In Fig. 5.1 experiment of Faraday when the bar magnet is moved with respect to the
coil following observations have been seen.

1)  The galvanometer shows a deflection when ever there is a relative motion between
the coil and the magnet. Deflection indicates that an induced current has been set-
up in the coil.

i) Faster movement of the magnet induces more deflection and less when movement
of the magnet is slowed.

i) Reverse deflection in the galvanometer when the same pole is moved in opposite
direction or opposite pole of magnet is move in the same direction. The observations
led to the inculcation of the following two laws of electromagnetic induction.

a) Induced emfin a circuit is proportional to the rate of change of magnetic flux
linked with the circuit.

b) The direction of induced emf is such that it tries to oppose the cause of
generation i.e. the variation of magnetic flux inducing it.

The second law is known as Lenz’s law, which specifies the direction of current Lenz’s
law follows from the principle of conservation of energy.

If ¢is the flux linked with a circuit at any instant t, then d¢ is the time rate of change
of flux. The combination of the two laws of electromagnetic induction reveals

__ %
e=-% e (5.3.1)

where ¢ is the induced emf. The negative sign indicates that the emf € opposes the
changes of flux. If R is the resistance of the circuit, we get the induced current as

1 @
i= % =-gdf e (5.3.2)

If the electric field in space is denoted by E then emf acound a closed path or curve
cis

e=¢Ba (5.3.2)

If' S is an open surface bounded by the curve placed in magnetic field E, then the
magnetic flux through the surface
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o= {ﬁ.d? ........ (5.3.4)

Now, using equations (5.3.1), (5.3.2) and (5.3.4) we can write as
- — . _i - —
fE.dl— m {B.ds

which is the intgegral form of Faraday’s law when the circuit is fixed, the time derivation

can be taken outside the integral, when it becomes partial derivative. Now using stokes
theorem, we get,

> =2\ B 8_B N
{ (VX E).ds = ( 51 ).ds ........ (5.3.6)
since this must be true for any arbitrary surface s, then we get
UxE—_ OB
VXE= i (5.3.7)

which is the differential form of Faraday’s law.

5.4 Self-inductance

The induced emf € in a coil is proportional to the rate of change of magnetic flux
passing through it due to its own current. This emf'is termed as self induced EMF. Magnetic
flux produced by the current depends on the geometry of the circuit for non-ferromagnetic
material.

The induced emf is proportional to the rate of change of the current through the coil
and its proportionality constant is called self-inductance L. If I is the current flowing in a
circuit, then associated magnetic flux can be written as,

é=1Lr (5.3.8)
do _ dod1
S dlda e (5.3.9)

The induced emf in the circuit is given by

__do_ LAl
e=—g=-=2% (5.3.10)

where L = @

dl
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The SI unit of self inductance is henry (H). One henry is the value of self-inductance
in a closed circuit or coil in which one volt is produced by a variation of the inducing current
of one ampere per second. Otherwise a circuit is said to have a self inductance of 1 henry
if 1 weber of flux is linked with the circuit never 1 ampere of current flows through it. In
ST unit ¢, I, t, € and L are expressed in weber, ampere, volt and henry

1 weber _ 1 vall, second
1 ampere 1 ampere

1 henry =

=1VA'S
As ¢ has the dimensions [ML*T2I"'] and L are of dimensions [ML*T 2]
5.4.1 Calculation of Self-inductance

1. A solenoid : If I be current flow along aircored long solenoid of length containing
N number of turns the axial magnetic field at any inside point.

gt
1
If A is the area of cross-section of the solenoid the flux linking each turn is

IA
b, = BA:% ...... (5.4.2)

and the total flux linking N turns

N2AI
b= N, =0 e (5.4.3)

Now the self-inductance L is defined as the flux linkage per unit current. So the self-
inductance of the solenoid is

_g_uoNzA
11

If the solenoid is wound on a materials of permeability i, then

L

2
L:—“NIA
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Fig. 5.2

If the solenoid is not very long then the anial magnetic field at any anial point p as show
in Fig. 5.2 is given by

ko NI
B=
2

(cosB, —cosb,)

NI f—x n X
20| Je—x)? a2 \/(x2 +a2)

In a length dx about P, there are %dx number of turns and hence the flux linking these
turns is

do= (% dx) BA
So the total magnetic flux through the solenoid is

q>:fd¢:j“BATNdx
0

woNZAI ¢
207

{—x X

JUl—x2+22  (x>+a%)

1

NZAI
or, ¢ZLL027[—\/(€—X)2 +a? /x> +a’

0
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3 oNZA

2 1

J@ +0*)—a

N’A
So, L= —Mogz

2
_ M[\/Pr(a/ﬁ)z—a/é

Note that for y>>a, equation (5.4.6) reduces to equation (5.4.5)

a’+ /0% —a

2. Long Caonial Cable : Consider a long coaxial cable consisting of two concentric
cylinder of inner radius a and outer radius b as shown in Fig. 5.3. The two cylinder carry
the same current I in the opposite directions; then they form a coaxial cable.

==

< :—V,

P Py N

Fig. 5.3

Applying Ampere’s circuital law, it can be shown that the magnetic field outside the
cable is zero, while at an internal point at a distance r from the axis (a<r<b) the magnetic
field is given by

ol
B=—
2Tr

If we imagine two coaxial cylinders of radii r and r+dr and of unit length, the flux in
the region between the two cylinders is Bx(1xdr) = Bdr so the total flux is

_ b pgro ol fdr _ po
= Ji—aBdr= 211{ r —2ﬁ€nb/a

The inductance per unit length is
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_Pob
L=5t1n A ....... (5.4.7)

In the above discussion we have neglected the flux within the materials of the two
cylinders. This is justified when b>>a.

If instead of air, the space between the two cylinder is having a medium of magnetic
per meability p, then from equation (5.4.7) will be modified with inductance

_ b
L=o-ln A ...... (5.4.8)

3. Two-wire transmission lines : Two parallel wire transmission line is shown in Fig.
5.4, given the separating distance d, a its radius, and p is the permeability of the medium

in which they reside. 1 + 2a
F-———-— '()T
dx rog
(S TEEEEEEECEEE Di
I Fig. 5.4

We assume that the radius a of each wire is much less than d, so that the flux inside
the material of the wires may be neglected. The two wires carry the same current in the
opposite directions. The flux is concentrated between the two wires. Total magnetic field
at any point at a distance x from one wire is
1 1

—+

o
B x d—x

2@

So the flux through an elemental area of width dx and length unity is

_ _bhr, 1
do=Bdxxl= 27r[x+d—x dx

Therefore the total flux through the entire area between the two wires of unit length

S
_ (e =l pasaf1 1
d)_fd(b_Zﬁfa X d—de
_pllid—a a
27 In a lnd—a
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H—Iln—d_a
‘N a

So, self-inductance per unit length is

=

h=2—Fpp
1 1 a

Assuming d>>a

or, L zﬁln(g
T \a

Yo

4. Toroidal Coil : The magnetic field inside a toroidal coil having mean length L, N
being the number of turns of cross-sectional area A, and carrying current I is given by

where p is the permeability of inside medium.

Therefore, the flux through the N turn, neglecting the variation over the cross section,
is given by

2
&=NBA = BN"A I
L
So the self-inductance is
2
pobopNA (5.4.10)

I L

5.5 Mutual Inductance




NSOU e CC-PH-08 0O 175

Two coils C, and C, are two fixed coils placed sufficiently close to each other, as
shown in Fig. 5.5. If I is current passed through the coil C, then magnetic field B, will be
produced around the coil C,. Magnetic flux ¢, will be passed through the coil C, due to
B,. Alternatively, we can say that ¢, flux linkage due to B, the magnetic field of coil C..

B, will change if I, changes, then ¢, and ¢,, will also change. An induced emf will be
produced in coil C, due to this. This phenomenon is called mutual induction.

Again, there will be change in ¢,, due to the change in current I, as a consequence
an induced emf will also be induced in C,. This is called self-induction.

For a number of turns in both the coils, we can write
by = [ Bydsz
S2

where ds’, is the elemental area in the coil 2. By Bio t-Savart law we can write

Moll 9g d€><r

: = I, ~dtyxt
So fi 1C, B, = Mot gdbiXT
o for coil C, B, 47155 >

Taking into consideration that, other features of the coil as intact, ﬁl depends only on
I, so we can write,

I
by = Ho ] ffﬁdﬁxrdSz

52 Iy

pup, =wm, . (5.5.1)
d€1><rd52
nowhere M2¢ = f iﬁ 2 e (5.5.2)
Tsrty

M, is proportionality constant between ¢, and I . Induced emf in the coil C,, according
to Faraday’s law, will be

dé I
dtzz I T (5.5.3)

©27 dt
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It is observed from the relation in equation (5.5.3) that induced emfin coil C, is related
to the current flow changes in coil C, M, is defined as co-efficient of mutual inductance.
It will be kept in mind that this will remain unchanged if the configuration of the two coil
remain fixed.

5.6 Neumann’s Formula

Determination of mutual inductance is very complex, depending on the set up of two
coils Neumann has formulated a relation to simply the calculation. We know that flux
linkage is given by

¢y1 =/ Bids, and B, =VxA,
S2
where Kl is the magnetic vector potential corresponding to ]_3)1- Also, we know that
vector potential is given by

A MOI f di
A — Poly fﬂ
Or’ ! 47( ¢ I'l

Hence 2= f(ﬁXA%TS.z = 35&1.512

S €2

or, ¢21 -

CZ Sl

But we know, ¢, =M, [

dl dl

My =fofg=—= (5.6.1)

€2 ¢

Since the order of integration may be interchanged we can write

o o o diid
My =M=y ff=—= . (5.6.2)
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This is known as Neumann’s formula for the mutual inductance of two arbitrary coils
or loops. The double integral (5.6.2) is not easy to work with except for circuits. With
simple geometry but it does illuminate two important points :

) M, =M, =M. This signifies that in any case the flux ¢, through loop C, when a
current I flows around C, is exactly equal to the flux ¢, through loop C, when the
same current I flows around C,. This is called as reciprocity theorem.

i) M, or M, is depends on the structure of the coil, configuration and relative
position of the two coils.

5.7 Calculation of Mutual Inductance

1. Two solenoids :

S

AT ALERRNAAY

(V] o

Fig. 5.6 ©

Two coaxial solenoids are shown in the Fig. 5.6 where P is a long primary solenoid
and S is short secondary solenoid. There is alomost no magnetic field outside the long
solenoid. If a current I flows through the primary, the magnetic induction produced at the
centre would be

N
B:MonI:MOfI

where N, and L were the total number of turns and length of the primary solenoid,
respectively. If A be cross-sectional area of P, then flux linked with the secondary coil of
total number of turns N, would be

MoNlNzAI

=B.AN, =
(b 2 L

$:M ...... (5.7.1)

So the mutual inductance will be M= T
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2. Two parallel circular coaxial coil b

Let C, and C, are two parallel circular coanial coils with the centres Cz

O, and O, and radii a and b (Fig. 5.7). x is the axial separation O, and :
O,. The flux through C, can be assumed to be uniform taking into [
account C, is small compared to C,. If I is the current in C,, magnetic :
induction at O, is given by : x

1

I

1

B_ 1o2N, Ia’
2 2 %
4m(a” +x7)/2
a
where N, 1s the number of turns in coil C,. Total flux linked with the 0. I
coil C, is C,
¢, = B. chzN2 Fig. 5.7
wN,N
o, ¢, = 2R (5.7.2)

a
3
2(a’ + xz)é
So the mutual inductance between the coil is
Vo2 1oIN,N,a’b?
I N A
2(a” +x7)"2

2
If the coils are coplanar then x =0 and M = w
a

Value of M for large circular loop C, can be determined by using Neumann’s formula.

5.8 Inductance in series and parallel combinations of Inductances

1. Series connection : M
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Fig. 5.8 (a) shows two coils of self-inductances connected in series. The induced emf
in coil 1 due to self-inductance when current I flows through it,

dl
en="L dt
while the emf induced in coil 2 due to the current [ in coil 1 is €, = —M%

where M is the mutual inductance of the two coils. The emf induced in the coil due

to self inductance is €5, =—L, % and the emf in coil 1 due to the current in coil 2

Total emf due to the flux aiding me and another is

e=gteptepte=—(0+L, +2M)% ..... (5.8.1)
i _ dI
Again, e=—Laq e (5.8.2)

Comparing equations (5.8.1) and (5.8.2) the equivalent self-inductance, L, is
L,=L+L+2»«» L. (5.8.3)
In Fig. 5.8(b) mutual flux opposes the self-flux of the two coil in series, then we get,

IV
!

E=€| TEx —Ep —Ey

So the equivalent self-inductance is !
L =L +L —-2M
eq 1 2

2. Parallel connection

Fig. 5.9
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Fig. 5.9 shows two coils of self-inductances L, and L, connected in parallel. Total I
gets divided into branches as I, and L. Assuming that the mutual flux aids the self-flux, the
total emf induced in coil 1 is

_dlygdl
s =-L dt Mdt
Similarly
dr, . dI,
2= b Mg

Since the two coils have the same emf i.e. € = ¢, = ¢ for being parallel, we have

LIE‘FMd—— e (585)
Mdl, Ly,
and a + T (5.8.6)

Solving this two equations, we get

- = an =
dt L, —M? dt  ,L,—M?

Therefore, 41 — % dl, —e(;+L,-2M)
Tdt

- 2
dt  dt LL,—M
If L, be the equivalent self-inductance, then € = —L,, %
LL, M
L 12 (5.8.7)

eq — m ......
If there is no magnetic coupling between the coils then M = 0 and we have

L,L, 1 _ 1,1
S 1 S S S 558
€q Ll +L2 ob Leq Ll L2 ( )

3. Coefficient of coupling : In order to find mutual inductance, there is necessity for
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two disconnected coil, so that current flow in one coil can induce emf on other coil. Mutual
flux between them can be less than or at best equal to the self-fluxes of the two loops. It

implies that ¢, <¢,, and ¢, < o;. So we can write ¢, = K ¢,, and ¢,, = K ¢
where K, and K, are two numbers less than or equal to one. So we can write,

MIZ - (I)IZ - I<1(|)22 - K1L2I2

11°

since ¢,, = L I,

Hence, M =KL, .. (5.8.9)
M'Il - (I)zl - Kz(l)n - K2L111
ob M=KL . (5.8.10)
From equations (5.8.9) and (5.8.10) we get,
M? = KK LL,
or, M=KyLL, . (5.8.11)

where K =K K, and 0 < K <1. This geometrical constant is known as coefficient

of coupling of the loops. This coupling coefficient depends on verying geometry,
which can be designed according to one’s criteria.

5.9 Magnetic Energy

1. Energy in an inductor : When a electric current flows in an inductor it will
store energy in the form magnetic field. For a pure conductor power which must be
supplied at any instant of time to initial current through the inductor is

P:iV:Li%

Hence the energy in put to have a final current i is given by—

t 1
Energy stored (E) = J Pdt= [Lidi
0 0

~E :%LIZ ....... (5.9.1)
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Self-inductance of a circuit can be defined as the two times the magnetic energy stored
in a circuit when a unit current is established in it. So the self-inductance is thus a measure
of the magnetic energy stored in the circuit for a given current.

2. Energy stored in a magnetic field : Energy is required to establish a magnetic
field, which is stored as a magnetic field energy. Let us take a number of current carrying
loops in a finite region of a medium. Magnetic flux associated with the ith circuit is given
by

¢, = [ Bids = gad, (5.9.2)

Si G

where A is the magnetic vector potential associated to f}by B= Vv X A. The magnetic
energy of the system is

U= %i Iid)i
i=1
_1 A dl
= 22% LAdE (5.9.3)

Assuming each circuit is a closed path in the medium which is conducting. I, dl; should

be replaced by Jdv and > fby [so

L ¢ v

U= %f JAdv. (5.9.4)
where J is the volume current density. Now using the relation v/ xM=T , We can write
equation (5.9.4) as
U= %j(ﬁxﬁ).fxdv
From, vector identity
%.(;‘;xﬁ) = ﬁ.(@xg)—ﬁ.(ﬁxﬁ)

Now, using the vector identity and divergence theorem, we get
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where S is the surface bounding the volume V.

Note that integration is to be carried out over the entire volume occupied by the
current distribution. For convenience, the surfaces can be moved to infinity. This will not
affect the integration (5.9.4) because J =0 outside the region occupied by the current
distribution. Now at large distances A and Hwill fall at least as rapidly as those of dipoles,

1 1 - —>
hence A ~ 2 H~ R So the integrand A x H falls off at least as '/r* or faster. As the

surface element dS’ goes as 1%, the surface integral vanishes as 1/r or faster as r goes to

Therefore, equation (5.9.6) becomes U = % [ HBdv e (5.9.7)

So we conclude from equation (5.9.7) that magnetic energy stored in a magnetic field
with energy density as ~ (H B) So we can write, energy density as

5 5 2
HB=B"_1,2

_1
U=3 2n 2

5.10 Summary

We have learned following topics on electromagnetic induction.

1. Idea about magnetic flux : ¢ =BS= [ B.ds Faraday and Neumann’s laws

_do
=g and Lenz’s law.
2. Differential form of Faraday’s law %Xﬁz—%—? and integral form
e=— dd) — § E. di

3. Self-inducetance and mutual inductance. Inducetance L = £, and mutual

I’
G _ O

inductance M = =
L I,
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4. Neumann’s expression far mutual inductance :

_ o d_il -d_iz _
My, = pp 3§3§_—r =M,

Cr ¢
We have studied self and mutual inductance of current loop with different geometrical
shapes.

5. Magnetic energy : U, = %le = % [AJdv
1 2
=— | B°dv
2 /

6. Energy density in magnetic field

U= 0B _ B? _ MOHZ
2

2 2

5.11 Review Questions and Answers

1. Obtain the integral form of Faraday’s law and then show that

Answer : See article 5.3.
2. Starting from energy consideration prove that M* < L L.,.

Answer : For two fixed closed circuit with positive coupling, with currents C, and C,
in the respective circuits

EME equations at any instant.

o di di
81:R111~|—L1d—1t1+M% ........ (5.9.1)
e, = Ryip + L, 32 4 M4l (5.9.2)

it T e
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From energy conservation consideration, the rate of energy supplied from the source
must be equal to the rate of Joule heat dissipation plus the rate of energy stored in the
magnetic field. so,

dUu

eiy + €51, = ifR; + 3R, + T

——mag

(11[5 mag = 8111 + g, 12 ('12R1 + i%Rz)
= &) + e,i, — (ik] +i3k,)
From (5.9.1) and (5.9.2), We get

dU di, di, di, di
mag 1
dt = L, dt+L22dt+M”dt+M2dt

_1

di? 1, di3
sLigt 7L 2+M—(1112)

dt 2 dt

Taking i, = 1,=0 at t = 0, and integrating the equation from t = 0, to t = t We find

1 .2 1 . ..
Umag — ELIII + EL 12 —I— M1112 ........ (5.9.3)
2U 2 (L 2
mag |5 4 M —2 M~ |2
or, L i +L112] +[L1 L, ]12 ........ (5.9.4)
which is valid for all i and i, and leti, = — L, 15 . Then since U, 18 positive or zero

for all values of i and i, we must have M*> < L L,.

3. Show that the equivalent inductance of the two coils of self-inductances L.
and L,, connected in parallel is

1

_L,L,-M?

Leq_L1+L2iM

Answer : See articale (5.8) for answer.



NSOU e CC-PH-08 0O 186

4. Show that the self-inductance of a long solenoid length 1 radius a and with
n turns per unit length is approximately given by

\/l2 +a?—a

L= uonz.wa2

Answer : See Article 5.4.

5. State and prove the reciprocity theorem in mutual inductance. Derive
Neumann’s formula for the mutual inductance between two arbitrary loops.

Answer: See article 5.6.

6. Two long parallel wires carrying the same current I in the opposite direction
and separated by a distance d in the air. The length of the wire are much larger
than d. Find the self-inductance per unit length.

Answer : See article 5.4.

7. Two coils with self-inductance L, and L, respectively, have mutual inductance
M. Find an expression for their coefficient of coupling.

Answer : See article 5.8.
8. Obtain a formula for the mutual induction between two loops carrying current.

Answer : See article 5.7.

5.12 Problems and Solutions

1. A wire of length 1m moves at right angle to its length at a speed of 100 m/
s in a uniform magnetic field 1 wb/m? which is also acting at right angle to the
length of the wire. Calculate the emf induced in the wire when the direction of
motion— (i) right angles to the field, (ii) inclined at 30° to the field.

Solution :

Induced electric field due to motion in magnetic field is equal E= (p x ]_§)
Induced emf &= § Edi

— §(¥xB).dl
For a length ‘L of the rod, induced emf will be
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¢ = vBLsin® (0 is the angle between 7 and ]§)
(i) Here 6 =90° .. ¢ =VvBL
which v =100 ms™', B=lwbm?, L= 1m
. € = 100volt
(i) When 6 = 30°

¢ = %zsov

2. A conducting metallic disc is rotating about an axis passing through its
centre, perpendicular to its own plane. An external magnetic field is applied in a

direction perpendicular to the plane of the disc. What will induced emf ? What will
be the current flow it a metallic wire is connected between periphery and the axis?

Solution : Let P be point where the wire is connected at the periphery. Let the
disc rototates, it position at t is covers a distance dr in time. t + J t. i.e. PQ = dr. So the
area POQ = %rddr. Intercepted magnetic flux d ¢ =% Brdr.

Therefore the induced emf between O and P

Sdt . 2 dt 2

or, € = %Brzw

€= @— 1Bri—lBrV

The direction of the induced emf cannot be

determined in this specifi case. Q

Pdr

2
Current flow [— € — Br'w .
I R R Fig. 3

3. Suppose a square loop of side a is placed in the plane of a long straight wire
carrying current I. The nearest side of the loop is at a distance r from the wire.
Find the magnetic flex through the loop. If someone pulls the loop directly away
from the wire at a constant speed, what should be the emf generated in the loop?
What is the value of emf generated when the loop is pulled parallel to the wire?

Solution :
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I

AN\ r a
- L]
Z

a 1 a
Z
L]

x dx
Fig. 4
The magnetic induction at a distance x from the wire is B = 5_101%

This magnetic field is in a direction normal to plane of the loop. So the flux through
an elemental area adx within the loop as shown in Fig. 4.

_ _ poladx
do =Badx = N
Total flux across the loop is
pola ™t dx Jla r+a
¢ = 2w “{ x  "M02n a
The induced emf in the loop is
__do_ dodr
dt dr "dt
~vdo _ polavi 1 }
 dr 2% |r+a %
_ MoIVaz
- 2mr(r+a)

4. A square loop of wire of side ‘a’ lies on a table near a very long straight wire
which carries a current I. Find the flux through the loop if it moves away from the
wire at a speed ‘v’. What is the emf generated ? What is the emf generated in case
the loop is pulled to the right with the same speed ?
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2 ey dx Tv

X
v

| 0
r >1

Fig. 6
Solution: The magnetic induction at a distance x from the long wire which carries

current [ is
ol
B=—"
21X
which is directed normally on the loop the flux through an elementary area adx within

the loop is given by

_ _ Hola dx
dd=Badx = e x
_ Aol ratrdx _ Pola (a—f—r)
or, ¢= 27Tfr x_27r1n r
_HOIa a)
or, b= o ln(l-i-r
.. Induced emf
__d¢_ dodr
dt dr "dt
:_V@:_ML[_Q)
dt 27 l_l_@ rz
T
pova’

E=n———
2nr(r+a)
The current is in anti clockwise direction, when the flux is pulled right, there is no

change in flux, so ¢ = 0.
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6.1 Objectives

After the completion of the Unit, learners will be able to under stand :

1

2

Nature of electromagnetic waves and its source

Unified classical theory of electromagnetism forwarded by Maxwell and
prediction of oscillating nature of electromangnetic waves
Electromagnetic spectrum

Boundary condition,behavior of electromagnetic wave throgh free space,
throgh different media like dielectric, metal etc.

Its behavirol changes while interfacing different media.

Different optical phenomen, like total internal reflection, Brewester’s law
and evanascent waves etc.

Reflection and Refraction of Electromagnetic of waves.

Gauge Theories

6.2 Introduction

Electromagnetic waves EM are synchrorized oscilliations of electric and
magnetic fields. These waves are created due periodic change of electric and magnetic
fields. The creations of electromagnetic waves are formed when a cherged particle
is accelerated as a part of oscillatory motion, the charged particle creates ripples on
oscillations in its electric field and also produces a magnetic field. The electric and
magnetic of the wave are perpendicular to each other and also, perpendicular to the

Y Electric field

\ Propagation of
. electromagnetic
Magnetic field wave

Electromagnetic Wave
Fig. 6.1
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direction of the EM waves.

EM waves carry energy, momentum and angular momentum away from their
source particle and can impart those quantites to matter with which they interact
them. EM waves travel with a constant velocity of C=3x10°m/s in vacuum. They
are diflected neither by the electric field nor the magnetic field, they exhibits,
interference diffraction. An EM wave can travel through anything be it vacuum air
and solid material. It requaires no medium to propagale from one space to another
space. This tranverse wave are measured by their amplitude, and wave length. The
highest point of a wave is known as ‘Crest’, whereas the longest point is known as
‘Trough’. The EM wave can be split into a range of frequencies, which is known as
electromagnetic spectrum-examples are radiowaves, microwaves infrared, x-rays and
gamma rays etc.

In quantum mechanics, EM radiowaves, are termed as photons, uncharged
elementary particles with zero rest mass which are the quanta of the electromagnetic
field responsible for all electromagnetic interactions Quantum effects generates
additinal source of radiation such as the transition of electrons to lower energy in
an atom and black body radiation photons have energy of ‘hv’ where h is Planek’s
constant, the higher the frequency the higher the energy.

6.3 Displacement Current and Maxwell’s Equations
Displacement Current

From Ampere’s law we can
calculate the magnetic field due to
steady current flow. We know that the

Flat surface

integral $F.d] around any closed path 3

or loop is equal to i' where i is current '
passing an area bounded by the closed

curve C (Fig. 6.2) lglzg

If Ampere’s law is true all the
time, then the i determined should be
independent of the surface chosen.

Curved surface

loop C

Let us consider the case of charging of a capacitor by (Fig.6.3) charging current

i(t) = % e R, which leads to a magnetic field [y as observed, with the Ampere’s
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law $B.dl = i Magnetic Field around the circuit
If we look at i =i (t) O o/:_ _\o
° ° ° + - ° ° °
x X X "'H H' x X X
x x x ¥ T X X X
Iflookat i=0
1N\ Vi
This is because there is no charge | w
flowing between the capacitor plates. It | ¥
. R . . €
points out that Ampere’s law is either 0
wrong or incomplete. Also from Ampere’s loop C
law in differential form i + -
- o - + - _
VxH=1] 63.1) +H H
+ -

Where ] is the current density.
Taking the divergence of the above equation.

VVxH=V.J=0 Fig. 6.3
This reflects that y7_ J =  which violates the continuty equation. As the electric

charge is piling up on the plate of the capacitor contained whithin the volume
enclosed by the surface S, and S,, the continuity equation is

V.J+ g—‘izo ................................................................................... (6.3.2)

Where P is the charge density on the capacitor which varies with time. So,
some quantity must be added to equation (6.3.1) on the right hand side, which must
be consistent with the equation (6.3.2). In order to find this, quantity, which must
be consistent, an electric displacement vector ) related to the charge density p by

V. D = P corrererrermenieiite ittt (6.3.3)
From equation (6.3.2) and (6.3.1)

- - 0, = = = oD
We find V. J + a(V-D) = V-[HE} = O e (6.3.4)

—

Now if we add 88_12 to the right hand side of equation (6.3.1) then its divergence
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will satisfy equation (6.3.2) with the inclusion of 8_D’ in Ampere’s law of differential

ot

_ . . D
form, we have, VX H = J 4 —— e (6.3.5)

The quantity oD was first introduced by Maxwell and is called displacement

ot

current density. For a very slowly varying field oD is negligible. We can use

ot
equation (6.3.1) of unomodified Ampere’s law of steady field. We learnt earlier that
the electric field can be generated by charges and changing magnetic flux. So we
see from Ampere Maxwell that a magnetic field can be generated by moving charges
(current) and changing electricflux. Thats is a change in electric flux throgh a
surface bounded by C can lead to an induced magnetic field along the loop ie:
induce magnetic field is along the same direction at caused by the changing electric

D
flux, without the term J D a electromagnetic wave propagation would be

impossible. Based on the displacement current density, we define the displacement
oD =
= .d
ar =

We must bear in mind that displacement current is a result of time varying
electric field.

current, as [, = [ 1. ds =f

6.4 Maxwell’s Equation

Here we sumarize the laws associated with electromagnetic field :

T D) = Prrverressmeessssenssssssessessssses s 6.4.1)

L2 T & YOO (6.4.2)

- - 0B

N X E o m e aa e e ———— (6.4.3)
ot

-~ -~ - D

AV & R VU (6.4.4)
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Equation (6.4.1) and (6.4.2) express Gauss’s law for the electric and the
magnetic field respectively. Equation (6.4.1) is a mathematical statement of
Coulomb’s law, while the physical significance of equation (6.4.2) is the absence of
free magnetic monopole Equation (6.4.3) states the Faraday-Henry law of
electromagnetic induction, while equation (6.4.4) is the Ampere-Maxwell law

oD
containing the factor displacement current density. o

All the equations comprising (6.4.1), (6.4.2), (6.4.3) and (6.4.4) represent
Maxwell equations. It is also highlighted that the term p (T, t) and J(R,t) in all

the above equation contain all charges and current respectively, whether free or
bound.

There is however, a more convenient form of the set of general equation of
Maxwell, suitable for the study of electromagnetic fields inside material subtances
that are subject to electrical polarization and magnatizetion, let (E, B) represents

electromagnetic field inside the material of subtance having both electric and magnetic
properties assuming P as polarization vector and M magnetization vectors respectively
Introducing the auxillary fields we have.

- T (e
D=aOE+P,H—WB-M ................................................. (6.4.5)

For a linear medium,
P=gX B, M=), H s (6.4.6)
sothat D=¢E, H= % B e (6.4.7)
where, &=Eo0 (1+%e ) and =, (1+X ) ceeeerereereeeneeecne, (6.4.8)

Modified Maxwell equation taking into account p; (T, t) and J; (T, t) as the free
charge and current densities respectively inside the meterial take the form
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V xH= J+%]? .......................................................................... (6.4.12)

with proper set of different boundary condition depending on the different
material media at their interface, solution representing their properties, for the above
set of equation can be obtained.

The Maxwell equations are also associated with certain conservation laws, such
as the conservation of charge and the conservation of energy which is explaned by
Poynting’s theorem. Conservation of charge can be demonstrated with the help of
equation (6.4.1) and (6.4.4). Taking the divergence of equation (6.4.4)

<1
ml
Il

<
'+1
<
o))
®

V.

_ V. J+ 0P
O = VT 2 e (6.4.13)

Equation (6.4.3) represents the equation of continuity.

Taking the divergence of both side of equation (6.4.3)

V.VxE=0-V. %3 == %(ﬁﬁ), so div g = O, which is compatible with

equation (6.4.2)

6.5 Poynting’s Theorem

It states that in a given volume, the stored energy changes at a rate given by
the work done on the charges within the volume, minus the rate of which energy
laves the volume.

From equation (6.4.4) and (6.4.5) we can obtain,

B
ot

oD

HVxE-EVxH=-H 5 -E5°

using the vector identity
V(AxB)=B. VxA-A.VxB
in the LHS of equation (6.4.13) we have,
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VExD=-AB EL ET i 6.5.2)

For a linear and non-dispersive media, we can write, )= ¢ E and B= Mﬁ
where ¢ and p are permitivity and permeability of the media, so we have

|

HB_ 0 lasa
D

1
2

t-m99

.OD_ 0 1 g R
and at—at(zE.)

Putting this in equation (6.4.14) and integrating over finite volume V we get

JV.(ExH) dv= —d% JIED+H.B] dv ATEQV (6.5.3)

Applying Gauss’s divergence theoreom to the left hand side of equation (6.5.3)
- —~ d 1 == G - =
=_4Y = + —
JExH)fids, =~ (7 (ED+HB) dv—[TEAV ........... (6.5.4)

where S is the surface bounding the volume V as,

d 1L & BBy dve ST E.dvt S i) &
-4 5 (ED+H.B)dv=J JTEdv+ [ (E x F) & ds,

The term % E.Dis energy stored in electrical fields and the term % (ﬁ.]g) is

the energy stored in magnetic field. The left hand side of equation (6.5.5) points out
the rate at which the electromagnetic energy stored in the volume V decreases with
time. The rate of work done by the electromagnetic force on an infinetisimal charge
dq = pdV is given by

dw

F:dQ(EXGXﬁ).G

=dqE.v =E. uv(pdV)=E.J.dV

where U is the velocity of the charge element and j — pU, So the term [ \j qv
indicates the rate of doing work on the charge in the volume V by electromagnetic
field, in other words it is Joule heat. The last term on the right hand side of equation
(6.5.5) gives the rate which energy flows out of the bounding volume V.
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The vector ¢ — | x [ called Poynting vector has the unit of Joule 17 g' and so

it can be described as the energy flowing out through unit area per unit time.
Poynting’s Theorem can also be represented in differential form
oW

6.§+W=P2

where P,= J.E = 6.E’ as the Joule heat and W = %( uH+ SE)electromagnetic
energy stored in per unit volume.
6.5.1 Time Average Value of The Poynting Vector

Now assuring the electric and magnetic fields is given by:
E=E,¢"
= (Eg. +J E,, XCosot+jSinmt)
= (Eg.cosmt-E,, Sinomt)
and B =B.e"
= (Bg.t jBp ) (cosot+j Sinwt)
Now the Poynting vector Sis given by,
i 1 — —
S= m (E xB)
= ﬁ [(EReCoscot -E,Sinot) x (BRecoso)t-BIMsin(ot)]

= % [(Egex Bg.) Cos’ot -(Eg.x By, )Sinot Coswt
'(EIM X BRe) COS(Dt.SinQ)t+(EIM X BIM)SHIZ(,Ot]

Now taking the average of the above equation we get

Ho<S>= <(E XB,,) ><Cos’ ot>-<(E X B, ) >< Cosot><Sinot>
«(<E, X B;, ><Cosot><Sinot>+<E,_ x B, >< Sinot >

s0 <S>= i [% <E XB,, >-0 _0+%<EIMX B,,>]

1
= E w [<E X B,.>+<E XB,,>]
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But to compute the Poyting vector the simplest way to use a real form for both
field g~ and g~ rather than complex exponential representation.

6.5.2 Energy of Electromagnetic Waves
A plane monochromatic EM waves propagating in Z direction ie: { direction

is given by " = 7 E cos (kz- ot) and B= T B _cos(Kz- gyt) «eervverrverienrrrcrnnns (6.5.7)

where B = E,
0 C

The total energy associated with the electromagnetic wave fields is

1pB :
U=UgU, = (- +ef)dv

as | B =|E/C| and ¢ = /e ,u, The electric and magnetic energy contributions

to the total energy are equal and electromagnetic energy density for a polarised
wave is

U, =¢E =¢ E’Cos® (kz-t)

The Poynting vector becomes

S= % (Ex §) =cg, B/’ Cos2(kz-0)t)/12
=uC K

The time average density is defined as the average over one period T of the EM
wave,

2
=2 E, fTCos2(kz-cot)dt
" =TT o
80 Eo2 T ]- 2 ]- B02
= T EIEEOEOIE TR (6.5.8)

It follows that energy density of EM wave is proportinal to the square of the
amplitude of the electric (or magnetic) field.

6.5.3 Momentum of Electromanetic Radiation
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Due to The wave-particle duality of radiation, as stated in Quantum Mechanics,
radiation or photonos travelling with speed c, the energy of each photon is given by

e=ha=hv
Momentum of a single photon is P = K = % k

So for n photons per unit volume we can relate average Poynting vector to ne,
multiplied by velocity vector ¢

AN /\
<S> =neck=<u_>ck
Now P is defined as momentum of EM waves carried across a plane normal

to propagation vector § per unit area per unit time p = §/¢

when all the momentum of EM wave is absorbed in normal incidence, it exhibits
a force per unit area equlL to the normal incoming flux of radiations. The radiation
pressare is

P _=PA=S/c=>P_ <u,>

In case of diffuse radiation ie. radiation bouncing around in all direction, the
pressure is given by

P = <ug>/3

6.6 Maxwell Stress Tensor

It is a symmetric second order tensor used in classical electromagnetics to
represent the interaction between electromagnetic forces and mechanical momentum.
A second rank tensor whose product with unit vector to a surface reveals the force
per unit area transmitted across the surface by an electromagnetic field. Its easy to
calculate the Lorentz force on the charge moving freely in homogeneous
electromagnetic field, which is simple situation. In complex situation of interaction
of particle and electromagnetic field, Maxwell stress tensor lays the way to use
tensor arithmatic to find an answare to the problem at hand. Momentum conservation
is rescued by the realization that fields themselves carry momentum, also its attributed
energy.

As we know The Lorentz force on a moving charge particle is given by

F = Q(EHD X B) wevrereeeeeereeeeeeeeeeessesssssssssssssssssssssssssssssse (6.6.1)



NSOU e CC-PH-08 0O 201

So the force per unit volume acting on charge density distribution p in a volume V

F= P (BHU X B) covvveerereresmmmssneneeeemsessssssesmssssesssessssessen (6.6.2)
S>Sf= pE F JXB coreerereeeeee et (6.6.3)
From Maxwell’s Electromagnetin equation
D= B Frrerrrrrsrrrsesssssssensssssssss s (6.6.4)
and T =1 VX B -6, OB (6.6.5)

f—g(ﬁ.E)EJr(LﬁxB-sa—E)xﬁ ................................... (6.6.6)
H T
0 T« B _ELB+ExOB
Now, a_t(EXB)_ tXB+EXat ................................................. (6.6.7)
E B
or, QExB- at (ExB)- Ex%— .................................................. (6.6.8)

Also from Maxwell’s third equation

Subsituting above in equation (6.6.8) we get

oE
ot

From, equation (6.6.6) and (6.6.10), we get after rearraing

XB= L (ExB) + B (VXE) o (6.6.10)

f=¢, [(V.E) E-Ex(VxE)] + d [(VXE)xB]-&,[-5- (Ex B)]....(6.6.11)

Introducing a term (Ex B)B in the equation (6.6.11) to make it more symnetrical

f=¢,[(V.E) E-Ex(VxE)] +

(EXB)] (6.6.12)
From the property of gradient, we know that,
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V(AB)=AxVxB+Bx VxA+(A.V)B+(B.V) A
=>V(E) =V(EE)=ExVxE+ExVxE+(EV)E+ (E.V)E
=2E x VX E+ 2(E.V)E
so, EXV xE= % VE)=EVE o 6.6.13)
BxVxB=VB)-BIB e (66.14)
Subsituting, (6.6.13) and (6.6.14) in equation (6.6.12)
—¢,[(V.E).E- %ﬁ(EZ) + (B.V)E] - %ﬁ(BZHBﬁ)é]

—e [FExB)] o

[(V.B)B + (B.V)B]

o

—[ZSOV(E)+ . V(B)] a[ (ExB)]

Equation (6.6.13) can be simplilfied with the introduction of Maxwells tress
tensor

T,= €0 (E.E - 28iE) + 1= (B B - 28,8 (6.6.15)

The indices i’ and j’ refer to the co-ordinates x, y ans z, so the stress tensor
has a total nine components (T, _, Txy, T,T.T,T, T,T.T)

xz> Tyx? Tyy yz’ T zx’ T zy’

Thus,
1 2 2 2 1 i 2 2 2
T, = 5 Eo(E, -E,;-E, ) + 2, (B, -B, -B, ) FORT (6.6.16)
1 1 1
Y_ES (E E E)+2 ™ (B B B) .............. (6.6.17)
1 1 1 2 2 2
T = 5 o(EZ E -E, ) += > (B, -B,-B)) oo (6.6.18)

and, T =T =80EE+1BB

=T, CE T BUB, (6.6.19)
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T,=T,=E€0E,E +1B,B, core (6.6.20)
Tzx = T,=E0E,E, +%BZ B, (6.6.21)

T, is represented as a tensor by T a rank 2- tensor. It is represented by a 2-
dimensional, (3x3) matrix

Txx Txy sz
% = |T T T
" ? T e (6.6.22)
sz sz Tzz

We can form the dot product of Twith a vector 3

(8.T) J =2, (8 T)) oo (6.6.23)

the out-coming object, which has one remaining index, is itself a vector. Now
if we take the divergence of T has as its jth component.

(V.T)j=€0[(V.E) Ej HE.V) Ej] + % [(V.B) Bj+(BV) Bj]

-[% 21“0 ............................................... (6.6.24)
So the force per unit volume in equation (6.6.24) take the form,
f=(V.T)-Eo %f .............................................................. (6.6.25)
So The total force on the charges in volume V is given by,
F={ fdv=[(V.T) dv-Eo , J as AV e (6.6.26)
or F=Jfdv=§Tds,-Eop, f & as AV oo (6.6.27)

Here S_represents the surface. In the static case, |57 as dv is to be dropped.
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Physical signticance of T is the force per unit area (or stress) acting on the surface.

Here Tij is the force (per unit area) in the ith direction acting on an element of
surface alligned in the j th direction. The diagonal elements represent pressures ,
and off diagonal elements are shears.

6.6.1 Conservation of Momentum

According to Newton’s second law the force on an object is equal to its momentum

Fo Qe e, (6.6.28)

So equation (6.6.27) can be writen in the form given below

F= g{f ") =go , f %—% dv + cﬁT.cTso ............................. (6.6.29)

where p__is the total mechanical momentum of the particles in volume V. This

expression in equation (6.6.29) is similar to the representation of Poynting theorem.
The first integral represents momentum stored in the electromagnetic fields themselves

Bon ZE0 LSS AV werrrrrrerrerseessssmsenesssssssasssssssesssssseseseons (6.6.30)

while the second integral is the momentum per unit time flowing in throgh the
surface equation (6.6.29) is the general statement of conversation of momentum in
electrodynamics. Any increase in the total momentum (mechanical plus electromagnetic)
is equal to the momentum brought in by the fields when V encompass all space then, no
momentum flows in or out, and Ppech + Zem 1S cOnstant.

If the mechanical momentum is V is not changing ie in region of empty space,
then

08 gv=dTds = V. T
rgE dv=$pTds,=f V. Tdv
and hence 387 = V. T ot (6.631)

This is the “continuity equation” for electromagnetic momentum, with gen
(momentum density) in the role of p (charge density) and T playing the role of j; it
expresses the total local conservation of field momentum. But in general charges and
fields exchange momentum and only the total is conserved.

Here we note that § plays the energy per unit area per unit time transported bythe
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fields, while TR § is the momentum per unit volume stored in those fields. Similarly
T is the electromagnetic stress acting on thesurface and- T represent’s the flow of

momentum ie momentum current density, carried by the fields.

6.6.2 Angular Momentum

The angular momentum of EM wave is a vector that expresses the amount of
dynamical rotation present in the electromagnetic while travelling approximately in a
straight line. The beam of light can also be taking, the two distinct forms of rotation of
light beam are its polarization and its wave front shape. Two forms of rotation are
identified as light spin angular momentum.

Now the energy density of electromagnetic fields carry energy,

_1 2 1 e
LG o ) (6.6.32)

and momentum,
o= €0 (E XB) cvrrrrssressrsssenssnsissssssssssssss s (6.6.33)

The Angular momentum

L=7xg,=€0 [FX(EXB)-rrrremimmrrrrriemmneerssiassnssenssoasns (6.6.34)

In case of static fields, it can have angular momentum as long as g x B 1S non zero

and it is only when these field contributions are incorporated that the conversation laws
are prevailed.

6.7 Potencial Formulation and Gauge Transformations

In Maxwell’s theory, the basic field variable are the strenghts of electric and
magnetic fields which may describe in terms of auxillary variable like scalar and
vector potentials. The gauge (theory) transformations in this theory consists of certain
changes in value of these potentials that do not yield in a change of the value of
electric and magnetic fields. Thus the invariance is preserved as we look forward to
the formulation of modern theory of electrodynamics.

In electrostactics we know v ¢ E = ( it enables one to write E= v ¢, where

¢ is a scalar function. In electrodynamics v/ y E =0 But v g =(. So it demands
for certain generalisation time dependent solution of the problems.
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So we can write variable ]§ as
B=VxA
where is A vector potencial.

8AO

Now => VX[E-I—at]

Above equation (6.7.1) can be transformed with the introduction of gradient of

a scalar function ¢ to the expression (E ~|— )

E=-Vo A e (6.7.2)

oA _ =~
In static case 3t =0,50, E=—V ¢

from Gauss’s law VE = g_po we have,

a - —
A Bl QLN By T — (6.7.3)
substituting equation (6.7.2) in modified Ampere’s law in electrodynamincs,

VxB)=pJ+ &, %1;:

(VxVxA)=pJ-peEo V(a(b ) — n.Eo ‘Z‘? .................... (6.7.4)

from vector identity V x (V.A)= V(V.A) -V’ A

we have from equation on (6.7.4)

(V' A azA) —V(V.A+pE0SE acb == J . (6.7.5)

So from equation (6.7.3) and (6.7.5) carry all the informations in Maxwell’s
equations. We conclude that potential formulation of Maxwell’s electromagnetic

formulation reduce the six variable of | and g (three of each) to four variables are

three values of vector potencial 5 and one value to sealar function ¢.
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Equation (6.7.2) and the equation §_v x A do not uniqely define the
potentials. Let us introduce two sets of potential (¢, A ) and (¢, A), gives the same

electirc and magnetic fields, so writing A — A + o and ¢' = + 3,
We have,
B=VxA=VxA =Vx(A+a)orVxa=0

or o=VS
where S is scalar
R OA, _ _ aA
Again, E (Vo + 6t) (Vo'+ 6t
VB4+9%-
ot

or V(B+ ) @)

So the term (B+ ) is independant of position co-ordinates, it is only function

of time, taking it as g(t), thus

B=-23 +g(1
or B=—%—It)

where p=S.[,'g(t")dt’
The function P can replace S in the defination of

. since=VP=V S, so

A7 = A 4V Prorerrerreeereneieenieiee e (6.7.6)
4 _OP
and d=¢ P ——— (6.7.7)

Thus, we observe that addition of y; p to A and the subtraction of —~ ot from ¢

do not alter the g and g. these changes in ¢ and A are called gauge transformations.
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We can also choose set of potential A, ¢, such that,

This choice is called Lorentz gauge under this transformation, equation (6.7.3)
and (6.7.5) becomes,

S = PLE e (6.7.10)

We can choose another set of gauge called coulomb gauge, where ¢ A — O,
Equation (6.7.3) and (6.7.5) become,

oA
i e [ (6.7.11)

VA - €

and, V2 = —P/E, wovrrerremieiiinieieie st (6.7.12)

Equation (6.7.12) can easyly be solved to find ¢, as in electrostatics

1 (7,0
=— d
(I)(ra t) 47580 lf_ f’l v

6.8 Boundary Conditions

We can use Maxwell’s equations to derive the
boundry condition on the magnetic field across a surface.
Consider a “pillbox” across the surface taking Maxwell’s Medium

equation s, |
V. B = () ceoeeereerermsmmsssseieisisisiese st (6.8.1)

intergate over the volume of the pillbox, apply B
Gauss’s the orem :
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where V is the volume of the pillbox, and S
its surface. We can break the integral over the
surface into three part’s over the flat ends (S, and
S,) and over the curved wall (S;) [Fig.6.4]

[B-ds+]B.ds+[B.ds=0_ ... (6:83)

1 2 S3

i

In the limit that the lenght of the pillbox
approaches zero the integral over the curved
surface also approaches zero. It each end has small
area “A” then equation (6.8.3) becomes

SN N - T X o IR (6.8.4)

it impiles the normal component of the
magnetic field §_ must be continuous across the surface.

Boundary condition 2: Tangential Component of § consider a loop spanning
the surface (Fig. 6.5)
.= = 0B

Maxwell equation : V x E B T i (6.8.6)

Integrate over the surface bounded by the loop and apply stoke’s theorem to
get

— — — — — a —

VxE.ds=@E.dl= =/B.d
{ $ oty

o A= TP B (6.8.7) Medium 1

Now take the limit, in which the width of S,
the loop becomes zero. The contributions to
integral around the loop C from narrow ends
become zero; as does integral of the magnetic field
across the area bounded by the loop, so from D,

equation (6.8.7) /
E£L-EL=0..iiiiiiinn. (6.8.8)
SO, B\, = E, eovereiiiniiniciceiceeicene (6.8.9)
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Hence the tangential component of the electric field is continuous across the
boundary.

Boundary Condition 3 : Normal Component of 13, consider a pillbox crossing
the boundary (Fig. 6.6)

From Maxwell’s equation,

VD =P ceeereremememnnnininins (6.8.10)

Integrating over the volume of pillbox, apply Gauss’s Theorem
TV D v =@ D.dS= [PAV.cerriirricrsiersiesiscesiessseessoesseese (6.8.11)

Assuming the height of the pillbox to zero, and surface charge density s; area of the
pillbox being small A, then
-D,A+D,A=0cA
or Doy - Dy = Gy weevereerersesesesseessenenes (6.8.12)
When surface charge density is zero. The normal component of 1 is continuous

across the boundary, However it is not true for the normal component of | unless
the two materials have identical (permittvities). From continuitiy equation,

VT =0 (6.8.13)

Integrating equation (6.8.13) over the volume pullbox having approximately
zero height, we get from (6.8.10)

Jm 3= G P s (6.8.14)
For monochromatic electro magnetic wave, s, will vary as e then

CE, - E = O i (6.8.15)
and, o1 Ein - 02 BEon = JWO ittt (6.8.16)

Now consider the following cases

It 6. = O. from equation (6.8.15) and (6.8.16)

& _&
1) T G e (6.8.17)

cl
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Which can be satisfield for properly chosen materials,

i)  If o, # o, eleminating o, from equation (6.8.15) and (6.8.16),

jo., . ©
_] Eln = [82 +J

[, + 12

S - (6.8.18)

1i1) It 6.,= oo, then E,, = O since the electric field inside a perfect conductor

1
Fig. 6.7 H, \

GQ
must be zero. From equation (6.8.15), we have E, = _€> as D, =6, when
1

electromagnetic waves pass into a conductor, the field amplitudess fall exponentially
with a decay lenght given by the skin depth

O R [ e (6.8.19)

As conductivity increases, the skin depth gets smaller. Since both static and
oscillating electric fields vanish within a good conductor, the boundary condition is
given by:

E.~O E,=0

D ~o. D g Qs (6.8.20)

Tangential Component of 1y

consider a loop across the boundary (Fig. 6.7)

-

From Maxwell’s equations Vx H=1J+ g—lt),we intergrate over the surface

bounded by the loop, and apply Stoke’s theorem to obtain



NSOU e CC-PH-08 0O 212

g‘ﬁx H. ds =<JSCH. dl = Js"f. 540 DS (6.8.21)

As before taking the limit where the lengh of the narrow edges of the loop
become zero then we have,

Hid - Hold = Jon o (6.8.22)

Where J,~represents a surface current density perpendicular to the direction of
the tangential component of fj that is being matched.

6.9 Wave Equation

Formulation of complete and symmetric theories of electricity and magnetism,
together with Lorentz force law, by Maxwell, have culminated in the prediction of
wave theory of light identified and discovered as electrimagnetic wave, which travells
with the speed C.

Let us assume that the medium is linear permittivity e, the permeability pu and
electrical conductivity are constant. The wave equation for magnetic intersity is

obtained by taking curl of VxH=7J+ S—It)
§X%Xﬁ:§xj+6xg—? ...................................................... (6.9.1)

As the current density, J =g E and electric displacement, [ = ¢ ., so from
equation (6.9.1)

Putting the value of y/y | from Maxwell’s equation and given B =p H
simplitying equation (6.9.2)

using the vector identity vV xV x A =V (V.A) — V’A

From equation (6.9.3) then
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V. fi-Vi=—op @H g, 0H
VV.H-VH=-0cu T e S s (6.94)
using, V.H= & VB=0 , Equation (6.9.4) becomes
V' H=-gnd H cu%? = O e (6.9.5)
Equation (6.9.5) is the wave equation.
Again from Maxwell’s equation, VxE=- %—}? we can obtain,
VXVxH==V 588 (6.9.6)
- - - O 2
VxVxE:—ucca—IE—Su%]f; .............................................. (6.9.7)
o - - ") 2
o VVE-VE=-onGE-enlt (69.8)

If the medium contains no charge p = O, so that VE-= %ﬁ.ﬁ=0, SO

equation (6.9.8) becomes,

O'E OE
pYe —C.M 5= = O e (6.9.9)

Which is a wave equation.

VE-Eu=—

6.10 Propagtion of EM Wavesin Free Spaceiet=0,and
c=0,J=0

An EM wave unlike mechanical waves which requires the presence of material
media to transport energy from one location to another space, carries the energy
throngh a vacuum at a spaced of C = 3 x 10®m/s which will be proved here from
all the electromagnetic equations of Maxwell.

In free space, Maxwell’s equations become
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LV S | SRR (6.10.1)
LVZ0 5 [ TSRO (6.10.2)
Vx B =y 00
VXE =—y, G —————s (6.10.3)
VxHe—g OE
VxH=-¢, B[ e (6.10.4)

Taking the curl of equation (6.10.3) we obtain,

V(VE) -VE=p, ait (V x H)

or I T o (6.10.5)

So the velocity of propagetion of EM wave is

C= ! =3x10°m/s

VEH o

Which is exactly the speed of light in free space, there is a corelation can be
drawn that light is a form of EM waves.

Let us seek a simple solutions concerning E or {
E (I_:, t) = Eo g and H (f‘; t) = _Hoé(EFmt) ......................... (6.10.8)

Where E  and H, are complex amplitudes. Which are constants in space and

time  is the were vector determining the direction of prepagation of wave, ¢ is
defined as



NSOU e CC-PH-08 0O 215

2ha_ @

= _ A
K:Tn— 0 D, (6.10.9)
Where 4 is the unit vector along the direction of propagation.
2 2 dZE _ 205
Therefore, V E=—«x"E and Py OF e, (6.10.10)
subsituting equation (6.10.10) in equation (6.10.5) we get
K'E=—pg o E
2 2
K =LU,E O
o _ 1
K Mg O
or V= (6.10.11)
LB, e .10.

Now plugging in the value of p, =4 x 107 H/m and g, = 8.85 x 10> F/m,
we get v = 3x10'° m/s = speed of light(c)

Relative diections of E H and « :

From equations (6.10.8), (6.10.1) and (6.10.2) it can be show that.

KCE=0 and KH =0 v (6.10.12)
so both E gnd H are perpendicular to the propagation vector g, which implies
the transverse characteristic of EM wave or light wave.

From equation (6.10.8), (6.10.3) and (6.10.4) it can be shown that
jﬁxE:—“O (—Jmﬁ) OI'IEXEZMO(DFI ................................ (61013)

and J Exﬁ:—go (—JQ)E) OrlEXI_:IZSO(DE .................................. (61014)

Equation (6.10.13) shows that fj is both perpendicular to both K and E.
Equation (6.10.14) shows that § is both perpendicular to both § and H- Hence
field vectors | and fj are mutually perpendicular and also both are perpendicular to
the direction of propagation vector g As K’ =gouom2, thus in vaccum, K is real
quantity, it proves that both § and fj are in phase.
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Wave Impedance :

The ratio of the absolute value g and fj is defined as wave impendance.

Z,= ‘_]:: ‘:EO(” _ | M
H K €

The value of Z,, comes around 376.6 Q.

6.11 Plane EM Waves in an Isotropic
Dietectric Medium

Let us consider a linear homogeneous and isotropic dietectric medium where
p = 0, Maxwell’s equation then becomes

T 6.11.1)
T 6.11.2)
VxE=- MaatH ........................................................... (6.11.3)
%xﬁ:—e%—? ........................................................... (6.11.4)

Taking curl of equation (6.11.3) and using (6.11.4), we obtain

- .- €ud’E
V(VE) -VE=—u2 (VxH == "—

ot ot
As V. E = 0 for no charge present in the dielectric
— 21
VE-pé aa?=0 .................................................................... (6.11.5)

In the same way, taking curl of equation (6.11.4) and v [ = (), we get

vii-pe 2H g 6.11.6)
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So both g and 7 follow the standrad differential wave equation. So we get
the velocity of electromagnetic waves in dielectric medium,

V= \/}T \/(50}10 &n,) \/Sr}lr .......................................... 6.11.7)

1
Where C = /80 i, is the speed of EM waves in free space.

& 1s the permittivity or deelectric constant K.

K. is the relative permeability of the medium For a nonmagnetic dielectric
medium p, = 1 so,

C

V:_

N3

Solutions of the wave equations (6.11.5) and (6.11.6) are given by

E (f; t) _ EO eJ(E.F-mt)
FL(E 1) = I, 7 oo (6.11.8)

Where EO and ﬁo are complex amplitudes, which are constants in both space
and time and, wave vector is given by

K=KA= S 0= =5 Al (6.11.10)

It shows that both £ and [j are prependicular to the direction of propagation
vector ¢, which reveals that nature of electromagnetic waves.

subtituting the solution given in equation (6.11.8) to (6.11.4) we obtain
KxE= uwﬁ .......................................................................... (6.11.11)

T2 EET S B (6.11.12)

From equations (6.11.11) and (6.11.12) we can conclude that both £ and {
are prependicular to each other and also both of them are perpendicular to the
direction of propagation vector i .
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From equation (6.11.8) and from the wave equation we can get

................................................................................ (6.11.13)
It states that in this stated dielectric properties wave vector g is a real quanlity

and from equations (6.11.11) and (6.11.12) it can be shown that both g and [ are
in phase.

Wave impedance is found to be

s |Ej_bpo _ | &
s TR A Tg e (6.11.14)
T Z
or =27, ol .

S = B x [ rorveeeseeresessenessssss s (6.11.15)

sustituting the volume of [ from equation (6.11.11) in equation (6.11.15)
we get,

gZ%O EX(KX #)
1 o e
= [K(E.E)-E (E.K)]
:“_E)K ........................................... 6.11.16)
s EZ -
So, S_WOK

Equation (6.11.16) shows that energy flows in the direction of propagation
vector g, we can write the magnitudes as

K E = poH
or  JeE=VuH
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or € T W e (6.11.17)

Therefore energy is equally shared between electric and magnetic field in linear
isotropic and homogeneous dietecric medium.

Total electromagnetic energy density is

u=%€E2+%uH2=€E2:MH2 ............................ (6.11.18)

we can also write Poynting vector as

- Y A —uvh
T i S (6.11.19)
Where 7 is the unit vector in the direction of propagation. So the magnitude
of Poynting vector is velocity of the wave multiplied by the energy density and
propagate in harmony with the electric and magnetic field.

6.12 Reffection and Refractron at the plane interface
of two Dietectrics: Normal Incidence

The interface separating the two different dielectrics is taken to be the X-Y
plane at Z = 0. A plane monochromatic EM wave of angular frequency w incident
normaly at the interface from medium with electric field vector along the X-axis.
The wave will be partly reflected into the medium 1 and partly transmitted into the
medium 2. The frequency of the reflected and transmitted wave will be same as the
boundary condition must be the same at all times. The incident and transmitted
waves will move along positive X-diretion. While reflected wave along negative
X-axis.

The incident reflected and transmitted wave have electric and magnetic field
vector are as follows:

Incident wave : E

Reflected wave : E =— ¢cE [ ozt
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TT’— _ Sy’ - ikz+ot
Hi=—iH|.
Transmitted wave : E,= 1 E, Jkz- o)

T = jk,z - wt)
Hz =] sze

Taking the magnetic permeability of the medium to be p,, we can write magnetic
field vectors as follows :

_ nl _ n2 ro__ 1’11 ,

Hly - Moc Elx) H2y - MOC E2x and Hly_ Moc Elx

5} X
1
Medium 1 Medium 2
E,
...... fi, YE
— Y H

Fig. 6.8

The propagation constants are given by k;, = n;w/c and k, = n,w/c

From the boundary condition follows that tangential component of electric field
is continuous at z = 0. so we have

T < OO (6.12.1)

We have from the boundary condition that tangential component of magnetic
field is continuous at z = 0, then

Hly - Hlly = H2y
or N (B L4 E' ) SILE, e (6.12.2)

Solving equations (6.12.1) and (6.12.2) we get,

| I—
E 1x n2+ 1'11 JX *oeeeeesseeccscseccscsectsscnctsscenssscnnssssnnsssssnsssssnsssssnesssnes

(6.12.3)
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2n,
n,+n, "

E, = (6.12.4)

Fresnel co-efficient is defined as the ratio of reflected and wave and incident
wave and ratio of transmitted wave and incident waves. These co-efficients are

denoted by r and t.

We get,
— Ellx - n2_ nl
r= E, T e (6.12.5)
(= E, _ 2n
T TR (6.12.6)
Now, the reflectance (or reflecting power) is defined as
_ <S8>
= DG, S s (6.12.7)
and transmittance as
<S>
T= DG S s (6.12.8)

where <S >, <S§'> and <S> are the average energy. flows per unit area per
unit time for the reflected and transmitted waves. So they represent the time averaged

2
_ f g E,
Poynting vectors or intensities of three waves. Also we know that <S>= M_ 5
0

n E’ €
= —— where, 1= «/_ is refractive index and E  is the amplitude of
HoC 2 € 0
electric fields. So reflectance and transmittance in normal reflection is given by

— E’1x2 _2_(D-Dy
R, = E =T —(n2+ nl) ...................................................... (6.12.9)

_ anzn2 _1’12 2 4n1n2
and T.= B N, L Y= S (6.12.10)
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From equations (6.12.9) and (6.12.10) we get R, + Th = 1..cccceeiennnnne (6.12.11)

which proves that energy is conserved at the interface.

6.13 Reflection and refractron at oblique incidence at
the Interface Between two Dietectrics

The reflection and refraction of EM waves at a plane surface between two media
of different dielectric properties are well known phenomena. The different aspects of the
phenomena divide themselves into two classes.

1) Kinematatic Properties :

a) Angle of reflection equals angle of incidence.
b) Sneall’s law : :% = % where 1 and r are the angle of incidence and
reflection, while n, and n, are the corresponding indices of refraction.
2) Dynamic properties :
a) Intensities of reflected and refracted radiation.
b) Phase changes and polarization.

3) Polarization : Consider the incident, the reflected and the transmitted waves as
shown in the Fig. 6.9. Here K, K, and K be the propagation vecitors for the incident,
reflected and transmitted waves, respectively. From boundary conditions, we know that
all rays must have the same angular frequency. The electric and the magnetic field
vectors can be written as follows :

For parallel polarization (P)

Incident wave :

B (r.t) = B, I(kr-w0)
...................... 6.13.1)

H, (. t)= ( )kx[EOIeJ(k'r'Wt)]

Refected wave :

i G t)_( ) B e o FwOp (6.13.2)
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Transmitted wave :

E, (. )= B, el (krT-W0) }

—

) ) S G (6.13.3)
HT (r. t): 1:L_20C) k;x[EToe _](kT .I‘-Wt)]

Where k k', k, aretheunit vectorsalong K | K, and K, respectively let0,, 0, and

0. be the angles between the normal to the interface and the propagation direction. The
angles 0,, 0 and 0, are called angle of incidence, reflection and refraction, respectively.

/'%'Q_ E, x
A
7
«2»% n n
1 2 ~ $’\_
s
0, 0, T .
0, Z=0 z
™ K Fig. 6.9
N

Reflection and Retraction for oblique incidence: The plane of incidence XZ plane,
The incident Electric field as in the xz plane (P polarization).

All three waves have the same frequency that is determined once and for the source
then three wave numbers are related by

K; v, =K v, =Ky,

UZ nl
or K, = K= o, K. = TZKT ...................................................... (6.13.4)
The existence of boundary conditions at Z = 0, which must be satisfield at all points
atall times, implies that the spatial (and time) variation of all the fields must be the same
at z = 0, consequently, we must have the phase factors all equal at z = 0. For the spatial

terms, evidently

K.r =K,.Tr=K,.r whenz=0
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which is known as phase matching ............ccooceeviiiiiniiiiniiiiniieieee (6.13.5)
Explicitily,
x (K, +y (KD, = x (Kp)y +Y (Kp)y =X (Kp), + Y (Kp),soeeeereeeeessaneee (6.13.6)
for all x and all y

Equation (6.13.6) can only hold if the components are separately equal, for if
x =0, we get

(KD, = (Kg)y = (Kp)yeiiiiiiiiiiiii (6.13.7)
whiley =0, gives

(KD = (KR = (Kp) eveenvermeenieeieniienieeieniteste ettt (6.13.8)
let us orient all our axes so that f(l lies in the xz plane [ie.(K;), =0]; so from equation

(6.13.7) it follows that f(R and f(T also lies in the same plane. Thus we conclude that

First law : The incident, reflected and transmitted wave vectors form a plane
From equation (6.13.8) it follows that

K, sinB; = KsinOp = K SINOc.eeeiiiiiiiiiiiieeeee (6.13.9)
Second law : The angle of incidence is equal to the angle of reflection

D o R ettt (6.13.10)
which is the law of reflection
Now for the transmitted angle

Third law,

Sinf;, n

SID, Ty s (6.13.11)

which is the snell’s law of refraction. The boundary condition that the tangential
component of the electric field is continuous across the interface (z = 0) gives

E €080, - ErcosOr = B COSOquuniiiiiiiiiiiiiiiiiiieceecee (6.13.12)

The boundary condition that the tangential component of the magnetic intensity is
continuous across the interface (z =0) gives

n, By +n, Bz =n, By

T O S (6.13.13)
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OR 0T

Equations (6.13.12) and (6.13.13) can be solved for E and E which gives the
01 01

Fresnel’s reflection and transmition co-efficients

_ (n,cos6, - n,cosB,)

Al v e U — (6.13.14)
¢ = 2n, cosB,
A . ey — (6.13.15)

Eliminating the refracting index from the above equations (6.13.14) and (6.13.15)
we get
_ tan (el — 6T)
r T (B, F 0, )77 (6.13.16)

¢ = 2cos6, Sind,
P SIN (0, 10, ) Cos (B, — B,y

(6.13.17)

Note : r, given by equation (6.13.16) is drawn r,verses 0, [Fig. 6.12 (a)]

S Polarization: for S polarization electric field of the incident wave is nornal to the
plane of incidence consequently, magnetic field in the plane of incidence. All the reflected
and transmitted waves are shown in fig. 6.10. Frequencies of the three waves are the
same, Like P wave, the boundary conditions remains the same at z = 0, the spatial and
time variation of all fields must be the same. Consequentily phase factor are all equal at
z=01i.e.

(K. 1), 0= (KT ),y =K T ), greeeeeeererersmsesnmnensnsensnninisiesennnn, (6.13.18)

Thus the law of reflection (6, =
0,)and Snell’slaw (n Sin6 =n,Sin0.,)
are obtained for S- polarization. Also
phase matching confirms that all the

wave vectors K, K, and K are

coplanar.

* Reflection and refraction for
oblique incidence, the plane of
incidence (plane of the paper xz). The
incident electric field is perpendicular
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to the x z plane (S polarization)

The continuity of the tangential components of g and fy gives (at z = 0)

J(K,.7) J(K, .1 (K, .T
EOIe 1 + EORe (KR ) — EOTCJ (K'T . I')
= Ej + B T E e (6.13.19)
and i, .7 i (K. ) i (K, .7)
nE; cosO, e -nE, cosO, e =nkE, cosH, e
=nE cos6, —nE, cosO, E, =nE; cosO,...cccccccoeinn. (6.13.20)

OR

E E
Solving (6.13.19) and (6.13.20) for £ and E—OT We get the Fresnel’s reflection and
01 01

transmission coefficients.

Ex n,cosb —n,cos6,

I :E_(n = 1,000, + N, GOS0, "7 s (6.13.21)

E,: 2n,cosB,

t< = =
and E, | 108D, + I, COgO, " (6.13.22)

Again utilising Snell’s law, equation (6.13.21) and (6.13.22) can be written as

Sin(6, - 0,)

I, = m ......................................................................... (6.13.23)

. 2cos0, Sin6,
s = —Sin(G Q) (6.13.24)
Note r, given by equation (6.13.23) is drawn r, verses 0, [Fig. 6.12 (a)]

Reflectance is the amount of flux (radiation) reflected by a surface, normalised by
the amount of flux incident on it. Transmittance is the amount of flux (radiation) transmitted

by a surface, normalised by the amount of flux incient on it. So if <S> is the time

averaged Poynting vector for the incident wave for s polarization and < §RS> for the
reflected wave, reflectance is given by
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N <§RS>
R= Fl ‘ ............................................................................. (6.13.25)

n <SIS>

If §T5> is time - averaged Poynting vector for the transmitted wave, then
transmittance

T= Fl <S> ‘

i <§IS> ............................................................................. (6.13.26)

Similarly, the reflectance and the transmittance for P polarization are as follows-

R = ﬁ.<§m,>
P “ﬁ.<slp> ............................................................................. (6.13.27)

T = “ﬁ.<§TP> ‘

ﬁ'<§1p> ............................................................................. (6.13.28)
So the Fresnel’s coefficients are
n,cosf, —n, cosB
R=r 2 — 1 1 T
: [nlcosel PRl T ——— (6.13.29)
cosO, 4n n,cosB, cosO,
e N P bk Rt (6.13.30)
n,coso, (n,cos0,+ n, cosO,)
0, —n,cosBO
R, = <p> = (20%Y% ~ 1, T
p=<T, (nzcosel PPy [ (6.13.32)
ncosf, ,  4n,n,cos6, coso,
T =71 =
P nlcosel (nzcosel+ n, COSOT)2 ...................................... (61333)

Note : See Fig. 6.12 (b) for R, R, T, T, plotted against angle of incidence.

Key points to be take away :

1. Both the coefficients (R & T) are only independant of the material properties i.e

permeability (as per second form the equations), throgh still have same implications of
the reflective index.

2. Both the coefficients (R & T) are only dependent on the angle of incident 6, and
angle of refraction 0y
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Some interesting results to observe :

1. Normalincidence: Here 0, =0; so fromequations (6.13.14),(6.13.15),(6.13.21)

we get,
n,—1n,
= —TI.=
T, W T ————— (6.13.33)
2n
and t, =t,= n2+1n1 ....................................................................... (6.13.34)

Also Rg=R, and Ts=T,

2. Grazing angle of incidence ; In this case incident waves touches the interface at
on angle 0, = T/, then

= = T = Lo (6.13.35)
AN 1= 1= 0 oo (6.13.36)
SOhAt Ry = Ry = oo s (6.13.37)
Ty = Ty = O (6.13.38)

This reaveals that there is total reflection for both S and P polarization. Just think
of a beam of light shinning on a flat surface

3. Brewoters law : A reletionship for light waves stating that the maximum
polarization (vibration in one plane only) of a ray of light may be acheived by letting the
ray incident on a surface of transpent medium in such away that the refracted ray makes

Reflected Beam Incident Reflected Beam
Beam
0, 0,
0, 0,
Incident Beam n, 90" n,
n, n,
0, 0,
Transmitted Beam
Transmitted Beam
Fig. 6.11
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1.0 Total reflection

sin(®, — 0,
sin(0, + 0,)

Iy =-

_/‘GB 0. Total internal — 0,
\ reflection

tan(0, — 6,) Brewster

r =
) tan(0, + 0,) Angle (a)
1.0 : g
T, |
08 4 _4n _ ; e
(1 +n) Ty A
0.6 :
Brewster’s
04 4 Angle (8, =0)
R
O 2 1 — n)2 ______ S
l+n/ T
eI RS : _________
0.0 T T o i T =T T T
0° 10° 20° 30° 40° 50° 60° 70° 80’ 90’

angle of incidence

(b)
fig. 6.12
on angle of 90° with the reflected ray.

From equation (6.13.16), we find that for (0,+ 0,) = 75 r, = 0 which implies that for (6,
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+0p) = T, the electric field polarized parallel to the plane of incidence is not reflected
at all. Under this condition reflection coefficients ry# 0 ie the electric field polarized
normal to the plane of incident is partly reflected. Thus an unpolarized light consiting of
both types of vibration of E fields incident at angle. 0 satisfying the condition (0,+ 6)
= T, will be plane polarized normal to the plane of incidence. This angle of incidence
0p for which r, = 0 is known as Brewsteis angle under this condition, from Snell’s law,
we have

n, Sinf,  SinG,
0, Sin@,  Sin(n/2-6,)

tan Oy (6.13.39)

Example of Breswter law application is polarized sunglasses, These glasses use the
principle of Brewster angle. The polarized glasses reduce glare that is directly from the
sun and also from the horizental surface like road and water.

Total Internal Reflection, Evanescent Wave :
nZ

. Sin6,
According to Snell’s law, Smo. 1,
T

So when light wave passes from a optically denser medium into a rarer one
ie. n, > n, the wave vector g bends away from the normal. Specifically, if the light is

-1
nn,

incident at the ceitical angle 0 defined as 9.= St we get Sin0,= 1, or 9, = A,

which implies that, the trasmitted ray just grazes the surface. It 6, > 0 _, then Sin 6. > 1,
which implies that it dies not correspond to any possible 6_. Here no rays are reflected,

rather the whole light wave reflected back to the denser medium. This phenomenon is
called total internal reflection.

In spite of no reflection into the denser medium, The fields are not zero in that
medium, which is called evanescent-wave. It altenuates rapidly and it transports no
energy into the rarer medium.

Transmitted wave vector can be written as

K, =K, (Sin0, 1+ €080, K)-ererririrrmmmrrrrrrereereeveeeeeeennennnnns (6.13.40)
@
with K= = —(I:]? ...................................................................... (6.13.41)
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Assinb >1, obviously we can write cos@,. = ,/1-Sin® 0, , whichis maginary number.

Now, for the transmitted wave § — | CJ (kp.r-wt)
T 0T

where K,.T = K,Sin6,x+ K,co0s6,Z

= % SinO, x +] % \ Sin*6,, Z
_ % Sing, x +J % J(Sin®0,- n?) Z

= Kx+jkz

«on, Sinb, and K = 2/ n;Sin’0,- n;

h K=
Where C

So, we can write the tranmittes wave as

or
(6.13.41a)

This is the wave defined as evanescent wave propagating in x-radiation ie. parallel

successive internal reflections.

1.0

0.8

0.6

0.4

0.2

— I_

Reflectance

0° 30° 0 60° 90° 0°

0,— (a)
Fig. 6.13
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to x direction with a penetration depth of K'. It decays rapidly and becomes negligible
beyond a distance of few wavelengts.

Reflectances for S and P polarizations when n <n, and n >n,

Let cos6, =,/1-Sin’6,= jD. Now for parallel and perpendicular, electric field
vectors, reflection coeffcient becomes from, equation (6.13.14) and (6.13.21)

, _ n,cos6, —JnA

r, 1,080, A I A *reeeeess s nnnssssssnnnsssss (6.13.41)
pr— n,cosf, —jn,A
and I 10,080, + jmA I A e e (6.13.42)
Then Reflectance is given by,
Ry = 0 s (6.13.43)
Ry =1 e, (6.13.44)
It folloes fro above equations that
R, = Ry'= T, (6.13.45)

From Fig. 6.13 (a) it is clear that the reflectance for S and P polarizations when
n <n; it shows that there is no total internal reflection. From Fig. 6.13 (b) it is clear that
when n >n, : there is a critical angle qc and total internal reflection.

From, equations (6.13.41) and (6.13.42), it can be written in phase from,
1 =€ ) e, (6.13.46)
and 1 = e, (6.13.47)

1’12
where tand = n A/n.cosO. and tano' = .
¢ =n,AM, 1 ¢ n,cosb,

Here, the electric field lags that
incident wave by 24, for P polarization and 2¢' for S-polarization respectively. elearlly
elliptically polarized light will be observed it the incident wave is polarized is a palne

making on angle (# 90)° with the plane of incidence.

6.14 Summary

1. We have studied that how Maxwell’s equation and its solution proved the
secmingly disparate phenomen of electricity magnetism, and optics are all related aspect
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of the larger phenomenon of electro magnetics. Solutions to the fundamental euations of
electrialy and magnetism are electromagnetic waves. Most importants findings of the
solution os Maxwell’s equations is the revelation that all forms of electromagnetic wave
be it, visible light x-rays, r-ray, infrared on ultraviolet light, propagle at the speed of light
in vaccum, and transference of energy from one space to another without any medium.

2. We have also seen, how Maxwell’s moclified the Ampere’s law of steady flow
current to the case of varying current with the introduction of defination of displacement
current due to changing electric field. Instantaneous magnetic field generated due to
changing electric field has led to the propagation of radiation, which carries energy from
one place to another. The EM radiation which propagaties energy is a major discovery
by Maxwell’s due to his prediction of displacement current Modern age comminacation
is impossible with out EM radiation.

3. Wehavealso studied the introduction of gauge transformation. We have discussed
the six variable of EM fields can be represented.

4. The tangential componet of the electric field (F) is continuous across the
interface. When the medium conductivity infinity, the tangential component of magnetic
intennity (] ) is continuous accross the interface

5. We have discussed reflection and refraction at the plane interface of two non
conducting (di electric) media (i) Normal inciedence and (i1) oblique incidence. We have
calculated the Fresnel reflection coefficient and Fresnel transmission cofficient for both
normnal and oblique incidence . We have also evaluated reflectances for s and p
polarizations when (a) n <n, (when there is no total internal reflection) and (b) n >n,
(when there is critical angle 6¢ and total internal reflection).
nZ

6. We have derived Brewster’s law tan 0,= tan' n
1

6.15 Review Questions and Answer

Question :

1. S now that the dispalcement current in a parallel plate capacitor is equal to
the conduction current in the connecting leads.

Answer :

The capcitance of a parallal plate capacitor is C = SHA_
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where A is the area of plate d is the distance between them, and &1is its permittivity.
The conducting current in the conecting leads is

. dq dv
—_1_cZt
T
. A dv
1=£— —
or e d dt
The electric field in the (capator) dielectric E = n/d. Now electric displacement is

dD dv
D=¢E =¢ % , Hence the displacement current density i % q

The displacement current is

dD_ A gdv

L=AGTT @ \id ‘
Hence iD=iC 1 t

2. State Poynting vector
Answer : See article 6.2 vV

~~
3. Define Brewster’s Law

Answer : See article 6.13

4. Define critical angle penetrating
depth.
Answer : See section 6.13
5. Define, momentum, pressure and angular momentum of electromagnetic
radiation.

Answer : Radiatopn pressure is the mechanical pressure exerted upon any surface
due to the exchange of momentum between the object and the electromagnetic field. This
includes the momentum of EM radiation of any wave lenght is obsoerd reflected or
emitted by matter on any scale.

For further follow-up answer, see article 6.5
6. State the boundary conditions between two interfacing different dielectric.

Answer : See article 6.8
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7. State the boundary conditions between dielectric and conductind media
Answer : See article 6.8

8. Prove that the momentum density stored in an electromagnetic field is given

g= §/C2 in free space where § = E x [ Poynting vector.

d(P

mechanical)

dt from this we can show that

Answer : Force F =

em

P electromagnetic

=M, Sofsdv = momentum related to electromagnetic wave

momentum density Pem — e, S

.1 1
Again TR
.5 S .
So, momentum density P.,=5 =g
c

6.16 Problems and Solutions

A Steady current I is flowing through a metallic wire of length L and radius R
throght a potential difference V calculate (a) Poynting vector, (b) Total energy delivered

to the system and, (c) derive the value of the resistance of the wire R using [ i E, dv-
Solution :

Assuming electric field E is parallel to the wire then, E = % the magnetic field is

circumtanential at the surface

w,l
B="%
2AR

Hence the Poynting vector magnetude is

- =
SO:}.TO|EXB‘

(@) _1vpl _vi

"k L 2AR 2ARL
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and it shows that Poynting vector is inward

(b)  The energy passing throngh the surface of the wire

IS, ds =-S,2ARL

-VI *
=YX 9JA
2KRL2 RL

= -VI

(©Now [ (J.E)dv= IG-EZdVZG% Jdv

— o 2ARL
L

c l/_\Rzz
L

CTEEdv="7"°

As [ (J.E) dv = total Joule loss per unit time due to the flow os current

~ AR
2. A plane electromagnetic wave has the magnetic field given by

B} +y)K .
B (xy2) = B,Sin[ (05 + o] &

Where K is the ware number, where f, j, k arethe cartensian unit vectorsin x, y and
z directions respectively.

(a) Find the electric field g (X,y,z,t)
(b) Find the average Poynting vector

Solution :
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esf!
II
7(11

= (K x B)
[K(l 1)) x B, Sm{(x+y)k + (Dt} ]

E =CB, [ (szy) k+ wt](lT})

(a)

WIO W|

(b) The average Poynting vector is given by

g = CB; vk = CBOZX_(f\;j)

2y, 2y,
_ CB; [f+j]
T2, LV

3. The space time dependence of the electric of a linearly polarzed light in free
spaceisgiven by | E  Cos (wt-kz). Find the time average density associate with electric
field.

Solution :
u, =%z ¢ E, = V2 ¢ E’cos’(ot-kz)
so<u'>=YieE?
4. A plane polarized electromagnetic wave in free space at time t = 0, is given by
E (X.z,t) =j exp[j(6x+82)]

Solution : Magnetic field vector is given by

—_— 1A —
BZFkXAE A
1 61+ 8k )
?( 10 )XSJexp[](kr wt]
_2
C

5. Itthe vector potential A = Bx i +4yj_ 57 k satisfied the coulomb gauge find the

value of the constant.
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Solution : condition for Coilomb gauge is yv A — ()

=>pB+4-5=0
>p=1
6. A vector potential A = e ¢ (Where a and k are constants) corresponding to
an electromagnetis field is changed to A = _ ke ¢ ¢ Prove that. This will be a gauge

transformation if the corresponding change ¢' - ¢ in the scalar potential is - akr’e™
Solution : Gauge transformation

A=A+§k,(p = aa—;t“

S A —A=—2ke'a‘rr:M=a—7r‘f
>A=-ke"r :>aa—7tL =kae™ 1’
:>(])— :—a—)\':—kae_atz

7. Theintensity of sunlightreaching the earthis surface is about 1300 wm-2. Calculate
strenght of the electric and magnetic fields of the incoming sunlight.
Solution : The time average Poynting vector
<S>=1 Re(E X H)
Taking incoming wave variation E = E,¢™ and = H e
weget S, =|<8>=<E,x—=-=E_ H_,B=pH=L=
g av V 0 \/2— rms* rms? 0 C

2

H _ Erms
Or’ Tms MOC
E 2
S , S = rms
0 av CMO
on E_=JcuS, =v3x10°x471071300 Vm’
=7000Vm!
B... =E... =700
8
Again ¢ 3x10

=233x10°T



Unit 7 Q Network Theorems

Structure

7.1 Objectives

7.2 Introduction

7.3 Thevenin’s Theorem

7.4 Norton’s Theorem

7.5 Superposition Theorem

7.6 Maximum Power Transfer Theorem
7.7 Reciprocity Theorem

7.8 Summary

7.9 Review Questions and Answers

7.10 Problems and Solutions

7.1 Objectives

You will know from this unit—

e To learn teachniques of solving circuits for bilinar network comprising passive
elements,

e Application of KVL-KCL, in series, parallel, voltage and current divider rule,
source transformation techniques,

e Study of Thevenin, Norton, Superposition, Reciprocity Theorem and Power Transfer
Theorem, and their equivalent circuits, to simply the evaluation process,

e Necessity of Thevenin’s and Norton’s Theorem in A.C. circuit behaviour and
analysis.

7.2 Introduction

Network theorems give a more simple way to analyse electrical circuits than Ohm's
law or Kirchhoff's laws. They are not basic theorems and are deducible from Kirchhoff's
laws.
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To begin with, the details we focus on some relevant definitions.
Electric network :

Electric network is combination of electric elements like cells, resistances, capacitors,
inductances, diodes, transistors etc.

An active network is that which carries source (sources) of emf, like cell, transistor
etc.

A passive network work does not carry active elements—the source of emfs.
Electric circuit :

Electric circuit is a closed path through which electric current flows or intended to flow.
A closed circuit is that through current flows and when no current flows through, it is an
open circuit. Two points are said short circuit when zero impedance joins the two points.
A linear circuit is that where in the circuit elements do not change with voltage or current,
otherwise it is a non-linear circuit. Node is point at junction of two or more circuit elements.

The Sources:
Voltage Source

A voltage source is an emf generator. The _| @
figure (7.1) shows an emf generator with emf E,

internal resistance r; and load resistance R; . i be
the current flowing through the circuit. Then E=  Ideal Ideal ac
i(r+R; ) =i, + V,y, so the output voltage is less ~ voltage source

than the input due to internal potential drop V; Fig 7.1
=ir;. To make the output voltage independent of

current r; should tend to zero. A voltage source with zero internal resistance is an ideal
voltage source.

voltage source

Current Source :

A current source is a current generator. Reference to fig (7.2), we can write

E E

i: =
SR LapRy Figr2 @ @
ri

So the source current become independent of load resistance as r; tends to infinity.
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An ideal current source has infinite internal resistance.
Thevenin's theorem

The theorem states that any two terminal linear, bilateral network with impedances and
energy sources can be replaced by an open circuit voltage V, (called Thevenin's voltage)
generator across the terminals with an internal impedance Zty, (Thevenin's impedance)
measured across the terminals replacing the energy sources by their respective internal

. V.
impedances. Then the current through the load resistance Z; will be 1; = ﬁ
th T4

Fig. (7.3) illustrate the procedure of Thevenin's theorem.

=z, | A Z, A 2 A A
S z, 2
B Z’. VTH | TH TH )
E E V.,
B B B
a b c d
Fig. 7.3

a) The circuit for which 1; is to be determined, z; is the internal impedance of the
voltage source E.

Ez

b) Load z; is removed and the Thevenin's voltage Vi = m is calculated
about AB.
. . zy(zi +7)) .
¢) The E is short-circuited and Ztn = 7tz 17 18 calculated across the terminal
i T4 T2
AB.
i _ d) The Thevenin's equivalent circuit.
IE L
Proof of Thevenin's theorem (using Kirchhoff's laws)
Zi (i-i)]|* ol The adjoining figure is a replica of Fig.(7.4) with the
currents flowing through the Given impedances). Using KVL
£ and KCL in the circuit, we have,

F, Fig 7.4
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I(ZI+Z1)+(1_11)22:E ........ (7.3.1)
i(Zi +Z1)+i1Z2 — E ........ (7.3.2)
Eliminating 1 from above equations we have
EZ%
i = £z, = @Azn47) _ Vm g3
7, (z; +2, +2,) +2,(z, + 7)) zz(zi—f—zy 7, +2Zqy,
(zi +2,+2,)

Which is same as the yield of the Thevenin's theorem thus proving the theorem.
Procedure of Theveniirs Theorm:
Find the open circuit voltage at the terminals, Voc.

Find the Thevenin's equivalent resistance, Ry at the terminals when all independent
sources are zero.

+ Replacing independent voltage sources by short circuit

+* Replacing independent current sources by open circuit

100 i Reconnect the load to the Thevenin equivalent circuit
vrvy \/
50 % 1 Example-1 : Find the current i; through 5Q resistor
sov| E100 £5Q in the adjoining circuit.\
-7 10V
_ Solution :
Fig 7.5
00 20=10i+5i+10, ie i=9=2 sov, =52+10=20v
15 3 3 3
5Q %
sov| F10Q +=Vm From Fig (7.6)
10V
T 5x10 _ 10 iy 40 _8
1"0(2 and Ry s G 3 Q Soip m+5 253 1.6A
50% 3
3 Ry .
$100 Example-2 : The four arms of a Wheatstone bridge have the
following resistances: AB=100Q2, BC=10Q2, CD=4Q, DA=50Q.

Fig 7.6 A galvanometer of 20Q resistance is connected across BD. Use
1g 7.
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thevenin's theorem to compute the current through the galvanometer when a p.d of 10V
is maintained across AC.

Solution :

We proceed to apply Thevenin's theorem in the Circuit.

B

B B
B
100 10Q 100 10Q 100 10Q 100Q
10Q
A C A C A c >
A C
50Q 40 50Q 40 500 40
D D
a v, nyv d

10V b

Fig 7.7
b) Galvanometer is removed and the Vgp=Vy, is calculated

10 10
Von :(— 10—124)=10

110° 54

1 2)_
1 27)—0.168\/

d) The voltage source is short-circuited and Ry, is calculated across BD.

100x10 , 50x4
R, = =12.79Q
Th 100+10+50+4 79

. V.
So the current through the galvanometer 1g = R TIFR = 1207'52_820 =5mA
Th L .

7.4 Norton's Theorem

The theorem states that any two terminal linear bilateral network with energy sources
and resistances can be replaced by current source with current Iy (Norton's current),
obtained by short circuiting the chosen terminals and an resistance Ry, (Norton's resistance),
in parallel to it obtained across the terminal by replacing the energy sources by their
respective internal resistances.

Fig (7.8) gives an illustrative presentation of Norton's theorem.
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A“AA]' I o A A'AR'A'AiA' A 1
RE ¥ 7 RE |W R. ¥ L
r RL R N GD > R L
E E
B B
a b c d

Fig. 7.8

a) The circuit for which i; is to be determined; r; is the internal impedance of the
voltage generator.

b) Load Ry is short-circuited and short circuit current called Norton's current is

. . E
calculated through the terminal AB 1 =
s N 4R,
c) Eis short-circuited and Norton's impedance Ry = R +Ry) is calculated
L +R;+R,)
across AB.
. ] . . . . . RNi

d) Gives the Norton's equivalent circuit with current i, = ————

Proof of Norton's theorem (using Kirchhoff's laws)
The proof is similar to the proof of Thevenin's theorem. Here in Norton's

theorem we have

R,(r+Ry) E

) Ryi (r +R,+R,) (r +R,) ER

i = N — i 1 2 1 1 — 2

. Rp +Ry R, + L(5+R)) Ri(; +R; +R,) +R,(; +Ry)’
(5 +R;+Ry)

which is same as the result from Kirchhoff's laws, thus proves the Norton's Theorem.
Procedure of Norton’s Theorm :
1. Find the short circuit current at the terminals, Ig.

2. Find Thevenin's equivalent resistance, Ry (as before).

3. Reconnect the load to Norton's equivalent circuit.
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Example
Let us solve Example-1 using Norton's theorem.

From Kirchhoff's laws,

20V-10i; = 0, or iy = 2 A and 10V-5i,=0=1, =2A. So iy = i; + i, = 4A
From the adjoining figure (7.9)

L

100
59%12
20v ] EI0Q — Yi
_|_‘ 10V
_ _50_10
0o Ry =5110=23 =170
100 10
4%
T i = A:16A
5+104
Fig 7.9 3

7.5 Superposition Theorem

The theorem states that any linear bilateral network with several energy sources, the
current/voltage in any element will be the algebraic sum of contribution from each source

Fig.10(a) Fig. 10(b) Fig. 10(c)

replacing the other sources by their respective internal impedances.
Fig. 7.10
Proof :

The Fig. 7.10(a) hows a circuit to analyze, Fig. 7.10(b) and Fig. 7.10(c) are the
circuits for analyzing the problem using Superposition theorem.

E =(r, +R)I"+Rsif (7.5.1)
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Then from Fig. 7.5(b)

0=(R;+1,)(i—ij)—i5R, =—(Ry+ 1) + (Ry +1, +RY)i] ... (7.5.2)
Solving the above two equations by Cramer's rule, we have
i _d|n—=+R F
L7 A —024Rs 0
Where A =| TR R,
—(y +R3 5 +R, +R;
Similarly from Fig. 7.10(¢) 1 =" "1 9
imilarly from Fig. 7.10(c) 1 =x —(t, +R3) E,
./ .//_Lrll“l_Rl) El . .
So i) +1; = A|—(t, +Ry) E, is the total current through the Resistance R,,

according to superposition theorem.

Now we find out the same solution using Kirchhoff's laws. Please refer Fig. 7.10(a)
From Kirchhoff's laws we have,

From above two equations eleminating 1 we have,

(t; +R)) E
—(1, +R3) E,

1

which shows i; = i{ +i; proving superposition theorem from Kirchhoff’s laws.

Procedure :
1. Dependent source are Never deactivated (always active)

2. When an independent voltage source is deactivated, it is set to zero, replaced by
short circuit

3. When an independent current source is deactivated, it is set to zero, replaced by
open circuit
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Example

Please refer Example-1 : The efm source 10V is short circuited. Then equivalent
resistance about 20V emf generator is

p A &€ B ; E

AAMAA

e g
201/__ 50
"1OQ§§
Q D C F
Fig. 7.11(a)
— _ _ 125
Rl—10||(10+5||5)—10||12.5—22.59
10,10 1 _
So, L =7 5><1 ‘5><2 12A
Fig. 7.11(b)
A lAOQ il B E
10Q2 ) SQ i;SQ
TlOV
D C F

From the principle of superposition theorem we now, activate the source 10 volt and
deactivate 20 volt source, and find out the current in the are EF having 5Q.

Applying Kirchoft’s law in ABCD network,

-101; - 5(i; - i,) - 10 - 103y =0 . (a)
And, applying Kirchoff’s law in the BEFC network,

—5iy, +10 - 5(i, —ip)=0 L (b)
Solving equations (a) and (b) we find

i, = -88A
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Total current in the arm EF having 5C2 resistance
i=i;+1i,
=72+ -88=16A

7.6 Maximum Power Transfer Theorem

The theorem states that in a linear bilateral with resistances the energy supplied to the
load resistance reaches maximum when the load resistance equals the energy source
resistance.

Proof : Consider the circuit, Fig. (7.12) with a generator of emf E having internal
resistance r; connected to external load R; . Current through the load resistance

1
i —E
R = e ry)

1

\AAAU

So the power delivered to the load resistance, R,
2
P= iiRL - £ iL 2
L.
(G +Ry) Fig. 7.12
2R
For maximum power d(g =0=E’ 1 > L
L (+Rp)” (g+Rp)
So, r; = Ry, which proves the theorem.
The percentage of power efficiency of a circuit is defined as
R
% = power delevered to the .externa.l loqd 00— L 4100
total power consumed in the circuit r,+Rp

Thus efficiency of a circuit becomes 50% when the circuit deliver maximum power to
the external load.

The variation of n% with R; is shown in Fig (7.6.3)

The variation of power dissipated across the load with P across the load resistance Ry
is shown in Fig. (7.6.4)
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100%

t P,
P :

n% R,—> Fig. 7.13

T, E lﬁlﬁiﬂé_’

Example :

1) In the Fig. 7.1.5 Find the value of R for maximum power transfer in 3C2 resistance.

Solution :

Using maximum power theorem we have for this condition

Rx6 R
= = —W—
R16 3, R = 6Q W,
6Q 1
$3Q
10V ] )
Fig 7.15

7.7 Reciprocity theorem

The theorem states that in a linear bilateral network with sources and resistances, if the
source of emf in one mesh produce a current in another mesh then the transfer of the emf

source to the second mesh keeping its internal resistance in the previous position will
produce same current in the first mesh.

Proof:

The Fig. 7.16(a) shows the given network and the Fig. 7.16(b) shows the changed

R, I I' R,
AMA AMA,
wyyy wyyy
3
v, = = 7 =
3 R Z T E3 R,
<‘R , > <’R2
E E

Fig.7.16(a) Fig.7.16(b)
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network following Reciprocity theorem.

Consider Fig. 7.16(a), here

[— E y R, B ER,
(+R)+R, IR Ry +Rp (5 +R)DR, +R)+RR

Now from Fiq. 7.16(b) we see that

E % R, _ ER,
R +R, [|(; +R) "R, +(R;+1) (5 +R)R, +R)+R,R|

I'=

So, I =T, that proves Reciprocity theorem.

Proceedure :

Conditions to be met for the application of reciprocity theorem :
(1)  The circuit must have a single source.

(i) Initial conditions are assumed to he absent in the circuit

@) Dependent sources are excluded even if they are linear

(iv) When the positions of source and response are interchanged, their directions
should he marked same as in the original circuit.

Example :

1. Two cells of emf ¢; and e,(e;>¢,) and internal resistances r; and r, are connected
in parallel to the ends of a wire of resistance R. Find the current through R using 1)
Thevenin's theorem ii) Norton's theorem iii) Superposition theorem.

Solution :

The circuit diagram is shown in the Fig. 7.17.

i) iy using Thevenin's theorem. Iy

Step-1 To find V¢, rli % "y ¢
EF

Remove R and find the open circuit p.d Vi, e _|_ _|_ e, ]

Current through the loop Fio 7.17
1g 7.
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€ —6
L +1

1=

Step-2 To find Ry,

Short circuit the emf source and find the resistance across ab.

la
LT
Ry =rllr, =—12 r r
Th 1'ti2 1 2
L+ 1)

So the current through R T T
e, +e,1 Fig 7.18
- Ym o __Gtn _ enten
RTRy +R T 1 " 55, +5R+15R
UL AN
h+1

i) ip using Norton's theorem.
Step-1 To find iy. KT

Short circuit the resistance R and find the current through ab.

. S € e, + €57,
Norton's current iy = —- -2 =-12 21
L n LL r

AAAAA
YWYy
N
8]
~
=

Step-2 To find Ry

Step 1 Step 2

nn
L+,

Here the Norton's resistance Ry =

Fig. 7.20

So current through the resistance R
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nL, €5 +¢e

L Ryly 415 5,  entey
RTR+Ry R D it +5R +15,R
L+

i) ip using Super Position theorem.
Step-1 Short circuit ¢ and evaluate ;.
) I Con

R 1 +R - 5, +R+1,R
2T R
1 )

i
T

Fig 7.21 (a) Fig 7.21 (b)

~
AAMAA
YWY

AAAAA
VVWWy
~
~
)
Ry IS

:b
—
di
-
N

Fig. 7.21

Step-2 Short circuit e, and evaluate 1,

- € L L)
2 LR 1, +R  nr,+5R+1,R
n+
r, +R
P o Bl
The total current through R, ip = 1;+i, = It +6R + R

7.8 Summary

(1) Network circuit Theory is a useful procedure to analyze and simply the complex
circuit in different configuration. Equivalent circuits are drawn by applying different theorems
like Thevenin, Norton superposition and Reciprocity theorems. Also we have shown that
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Thevenins and Nortons circuit theory are all equivalent in analyzing circuit having bilinear
port. Different types of problems have been discussed using Kirchoft’s laws, nodal theory
and mesh network to simply Thevenin and Nortons circuit. We have seen the condition for
maximum power transfer from source to the load when source impedence is equal to the
load impedence.

(2) Determination of Voltage Sign : In applying Kirchhoff’s laws to specific problems,
particular attention should be paid to the algebraic signs of voltage drops and e.m.fs.,
otherwise results will come out to be wrong. Following sign conventions is suggested :

(a) Sign of Battery E.M.F.

A rise in voltage should be given a + ve sign and a fall in voltage a —ve sign. Keeping
this in mind, it is clear that as we go from the —ve terminal of a battery to its +ve terminal

Current Current
E 4 £ 4 44V B 4-V +B
A + _ _ +
— |+
o—F |—O o— I—O o —wWw—- O wWw—20
—> —> : .
Rise in Fall in m Motion @l Motion
e Voltage Voliage Voltage
" £ ~V=-IR +V=+IR

(Fig. 7.2.3), there is a rise in potential, hence this voltage should be given a +ve sign. If,
on the other hand, we go from +ve terminal to —ve terminal, then there is a fall in potential,
hence this voltage should be preceded.

Limitation of Thevenin’s and Norton’s Theorem
(1) These theorems used only in the analysis of linear circuits

(2) The power dissipation of the Thevenin’s equivalent is not identical to the power
dissipation of the real system. Super position theorem limitation—the requisite of linearity
indicates that this theorem is only applicable to determine voltage and current but not
power.

7.9 Review Questions and Answers

1. What are the steps to follow Thevenin’s Theorem?

Ans. See section (7.3) for answer.
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2. What are the steps to follow Norton’s Theorem?

Ans. See section (7.4) for answer.

3. Convert the voltage source of figure to a current source

+ a
E=100Lo

—> 1=20A(53.13'(4

——x, - 40

\ZJ

3QZ R 30> R

s
B!
Fig. 7.24
Solution :
_E_ 10040 _ o0, 0 i
I=2 =g a3 ge = 20£-53.13

4. Convert the current source of
figure to a voltage source.

I=10|5_3°Q9 X,| lee

L

Solution : Fig. 7.25

z, Xz, (44-90°)(6£90°)
Z= = - - e
z,+z —j4+ 36

E = 1Z = (10£60°)(12£-90°) = 120./-30°

—jl2=120/-90°

o

E=120}-30"
L, 9

—— X120

7.10 Problems and Solution

1. In the diagram given in Fig 7.2.6 determine the Norton’s equivalent source current

and resistance with respect to the terminals a,b.

Fig. 7.26(a)
Solution :

Step-1 : Short circuit ab, then the short circuit current

6V

T

3Q
3Q




6

AMAA
vy

AAAL
vy

3Q

i = 3 —3 40— =
1N_3+3II3X3+3+2_ +2=0.67+2=2.67A

Step-2 : Short circuit 6V and measure the resistance across ab.

4.5

3Q LWM_I—A

3Q

Y Ry = 3H3|3=4.5Q

Problem-2 :

= »l

Fig. 7.26(c)
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6V

3Q
3Q

Determine the current through SW r esistor in Fig. 7.27(a)

Solution :

Step-1 : Short circuit 5Q resistance and find iy;.

Fig. 7.27(b) 54

Equivalent circuit of Fig. 7.24(d) is

10Q

®

54 2Q

24

)

So current through 5€2 resistance i, 6

. 2 1
Iy = 2 + 5x E = ?
Step-2 : Open the 5Q resistance and find Ry.
Fig. 7.27C
iy Fig. 7.24(d)
So Ry = 12Q
17512
245 A

Problem-3 :

Find the 1) Thevenin’s and ii) Norton’s equivalent circuit

of the adjoining Fig. 7.25 between a and b.

r N

Fig. 7.26(b)

10Q

0 24

®

20

i~
\_/

AAAAA
\4

54 2 24 $°
b
10Q
4—
54 o 24 Ry
|
10Q 10Q
1Y a
100Z
10V
Tog T
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Solution :

100Q 100
q ‘E
00¥
10V
pT : 1 b

Since no current
flows through pq,

so V,

=10V

Problem-4

Find the current through 5kQ resistance in the circuit in

10Q 10Q
AMAA AAMAA
vy vy
=
3
1003
< ‘
R,
) :
1003
=

Ry, = 10 + 10[10
=10+5=15Q

Fig. 7.30(a) using Thevenin’s theorem.

Solution :

Step-1 : Open circuit SkQ and find V..

From the adjoining circuit

Fig. 7.29

Fig. 7.30(a) 27

30—20=6i+20i or i=-OmA

Fig.7.30(b)

N
AAAA
YYVV

jC

w|

Thevenin s Norton's
equivalent equivalent
circuit circuit

AAAAN—

v
T

AMA
YYvvy

>

z

2 20k
3 +

200 L)
T 100k

30V

T

Step-2 : Replace the emf generator by their respective internal resistances and calculate

26
_ 10 30 _30x12
So, Vi, =30—6x10 3030 _ 30x12y
Ry, ) |
$aa 4 Fao
}?Th
§§1oom
From adjoining circuit 3 b
Th_6||20 6><20 6OkQ

26

13

Fig. 7.30(c)



NSOU e CC-PH-08 0O 257

v 30x12

: Th 13 30x12

frnd = = :2. A

So, 15 Rop +5 @_'_5 125 88m
13

Problem 5 : Solve for the power delivered to 20Q2 resistor in the circuit diagram
shown in Fig. 7.31(a). All the resistances are in ohms.

A'A'A'AVAV 50 50
L L 15Q
= >3 4A -
3200 >3 s
1Q s s GD 10 ::LOQ
2V 2V
T T sov|

Fig. 7.31(a) Fig. 7.31(b)

Solution : 4A source and its parallel resistance can be converted into a voltage source
(15%4)=60 volt in series with a resistance as shown in Fig. 7.31(a).

Now using superposition theorem to find the current through the 20Q resistor, when
60V source is removed, the total resistance as seen by 2V baliery is 1 + 2011 (15+5)11Q.

The battery current is = %A. At point P, the current is divided into two parls. The
2
t ing th 20Qis 1, =11 1A
current passing throng is I, A) +20) x20 I A =.09A

When 2 Volt battery removed, the resistance as seen by the battery 60 Volt is 20.95.

The current from the battery is 28693A =~ 2.87A
This current divides at point A, the current through the 10Qis I, = 220—§_71 x1=0.14A
Total current flows through 20Q is =1; + 1,

=0.09 + 0.14 = 23A
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8.1 Objectives

You will know from this unit—

o All the parameters of AC—voltage and current, its average value, root mean
square value (RMS)

e Application of complex number

e Kirchoft’s Laws
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e Behaviour of Resistance, inductance and Capacitor
e Series LCR Circuit, its unique resonant properties

e Parallel LCR Circuit its unique resonant properties and uses.

8.2 Introduction

Alternating current (AC) is an electric current which periodically reverses direction and
changes magnitude continuously with time in contrast to direct current (DC) which is
unidirectronal. The most common form of wareform of alternating current in most electric
power circuits is a sinewave, whose positive half period corresponds with positive direction
of the current and vice versa.

We will study the physical properties of resistor R, inductor L, and Capacitor C under
the impact of AC, and the nature of current flow and wattless current. Use of complex
number is essential as it is convenient to represent and calculate both AC, signals and
impedance. Two dimension length and angle allows as to calculate amplitude and phase
together, and keep them consistent. Unique properties of combinational circuit like series
LCR and parallel LCR, culminating to the concept of ‘Band Width’, Quality Factor, which
is of practical importance in physics and engineering will also be studied in detail.

8.3 Alternatring Current and Its Characteristics

Alternating Current (AC) or voltages is current or voltage which periodically reverses
direction and changes its magnitude continuously with time. The most common form of AC
is sinusoid. Even, if it is nonsinusoid it can be resolved into many sinusoid by Fourier
Transform. For symmetric AC its average over a complete cycle is zero.

The most common form of generation of AC works on the principle of Faraday’s law
of electromagnetic induction. Whenever a coil is rotated in a uniform magnetic field about
an axis perpendicular to the field, the magnetic flux linked with the coil changes and an
induced emf is set up across its ends. A pure sinusoidal voltage is represented in Fig. 8.1

can be written as v | o0 o

V(t) = VO sinwt L, """\-] ""::,-:' N ."’.\‘ . /\ ...... (831)

Here v(t) is the instanceous value of the voltage and V, its amplitude, w its angular
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W 1

frequency time period T is relatred to frequency f = MmO T When this alternating
voltage applied in a circuit, current flows through it is given by
i(t)y=Ipsim(wt+¢p L. (8.3.2)

2. RMS value of AC Waveforms : The rms value of an alternating current is given
by that steady (dc) current which when flowing through a given circuit for a given time
produces the same joule heat as produced by the alternating current when flowing through
the same circuit for the same time.

The root mean square value of an alternating current with period T is given by

L= L2 a
me =T/ EO AU (8.3.5)

It can be related to the heating effect of ac. Total Joule heat produced by ac in a
resistance R overf a time peiod T is

ms~~~  ddeeeeees

T
[i*(HRdt=1} RT (8.3.6)
0

For a simple sinusoidal current i = I sinwt the rms value is
rms

L Lo
I :T£IS sin’ wtdt:%

_ I,  Peak value of current

Irms - -
So, NA 2 e (8.3.7)

V,
Similarly for a sinusoidal voltage Vims = Tg. L, or V. is a measurable value as

all measuring instruments based on the heating effect of current and calibrated accordingly.
The peak value of the domestic AC, mains supply of rms voltage 220V is 220V2 =311V.
Because of this high peak value of 311V from AC mains is more shocking than same value
of DC supply of 220V.

3. Form Factor : The ratio of the rms value to the average value over a half cycle
of a periodic function is defined to be the form factor of the periodic waveform. For a
sinusoidal ac, the form factor is given by.
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1%
V2 g

Form factor K¢ =5y —=1.110 (8.3.8)

0
T

From factor gives an idea about the wave shape. Any deviation in the value of K from
1.11 indicates deviation from sinusoidal nature.

4. Power in AC circuits : According to Joule heat energy generated is proportional
to the square of current flow. In alternating current rate of electrical energy P spent in a
circuit varies with time and though, at any instant rate energy spent being the product of
voltage and current, but in reality average P is effective parameter. for electrical energy
spent. So the average value of P is

_ T
P=1L [v(vi(t)dt
T9
where v(t) = V, sinwt and i(t) I, sin(wt+¢), here ¢ is the phase angle.

Now. 5 Volo T
ow, p :Tfsm wt.sin(wt + ¢)dt
0

V, 1
o7, _0_0 COSd)
V22
So,P=V_ xL .cos¢ L. (8.3.9)

The term cos¢ is known as power factor. The product VI does not, except for
the case cos¢ = 0, gives the true power dissipated in the circuit as does the product in
d.c. circuit. Here V(I is called apparent power. While P gives the real power in the
circuit. So we have,

Real power = Apparent power X Power factor ... (8.3.10)

In A.C. circuit instantaneous power is given by p(t) = i(t).v(t) and i(t) have same sign.
The positive value of p(t) imdicates that the source of A.C. supply is delivering energy to
the circuit. Again when v(t) and i(t) have opposite sign, implying that the source is receiving
energy from the circuit when phase angle ¢=mt/, or 90°, so no power is dissipated in the
circuit. The current flowing in such curcuit is called wattless current. It will be seen latter
that when current flowing through pure inductor or pure capacitor is a wattless current.

5. Peak factor : The ratio of the peak value to the rms value of any ac waveform
is called its peak factor. For a pure sinusoidal ac,
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I
peak factor (k)) = T, /5 /0\5 =2 (8.3.11)
0

Since waves of same rms value may have different peak values a knowledge of peak
factor is necessary to get an idea if peak value. Again a knowledge of peak value is
important while testing dielectric insulation or hysteresis loss.

8.4 Representation of sinusoidal ac by complex numbers

Two main reasons that make the use of complex numbers suitable to model AC,
circuits and many other sinewave phenomena in several branches of science and technology
are described below.

1. The AC signals are characterised by a magnitude and phase that are, respectively
very similar to the modulus and argument of complex numbers.

2. The basic operations such as addition subtraction multiplication and division of
complex number are easier to carryout.

We know that when a vector is multiplied by —1, though its magnitude remains unaltered,
but the direction changes in opposite direction i.e. 180°. As —1 = \/_{x+/—1, SO We

multiply or operate /1 two times in 180° polar angle. Hence operating /1 one time
on a vector it will rotate in 90° in anticlocwise direction.

In a two dimensional co-ordinate system (XY), let X-axis represents real number and
imaginary number along Y-axis (Fig. 8.2). It a vector A is along the positive X-direction
then % vector quantity will be perpendicular to A. Denoting A as j_B), then the resultant of
A and j§ will be another vector P as shown in Fig. 8.3
. . A
imaginary A
— tve
JA B imaginary
_l Al2

A Real A +ve Real

Fig. 8.2 Fig. 8.3
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Clearly for A + jB, its magnitude XO = /o2 4 g2 which is real quantity and the
phase angle with respect to real axis ¢ = tan™ 1B/ a 1s inclined.

So if A = X,cos¢ and B = Xysin¢ are taken, then A and B are replaced by X and
¢ real numbers and consequently A + jB is expressed as complex number

A +jB = X,cosd + jXsind = Xoeid’.
Here X, =+/A% +B? is magnitude of A +jB and i is its phase term.

In case of alternating current, if v =V sinwt or V,coswt is taken, then they are real
and imaginary part of v = Voej“’t. So v or i can be explained in complex plane whoe vector
disposition or phasor X =A +jB = Xoej“’t, the phasor X will be rotating with time at the
angular speed w and its value X, remains unchanged.

8.4.1 Impedence and Reactance

In AC, circuit, current flow, which faces resistance is called impedence or reactance
when voltage v and current flow i are expressed in complex number, the impedance can
be expressed by the ratio of v and i let v = Vel and i = I,e"™"%), then by the analogy
of ohms law in DC circuit, we have v = zi, here z is called the imp-edance or reactance,

50, z=~Y = ;/—0 e 1%t the real part of z is called resistance R and imaginary part is called
1 0

reactance X.
So, z=R +jX

From the above equation, we get

R = Y—;’ cosod
Earlier in this unit, we have shown that P=V__ I cos¢
= Irm52|z|coscl)
= IrmszR

Comparing this, above average power dissipated with the Joule’s law of heat in steady
flow of current, we can say that real part of z is to denoted as resistance of the circuit.
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8.5 Kirchoff’s Laws

Kirchoft’s laws of AC circuits are as follows :
1. The phasor sum of the currents at any point in the circuit is zero.
2. The phasor sum of the voltages around any closed loop is zero.

The current and voltage equations are derived in the same way as in DC circuits. The
algebric simplifications of phasor quantities is no different from that of DC quantities until
numerical quantities are introduced.

For KVL, let v, v,........ v,, be the voltages around a closed loop. Then

In the sinusoidal steady state, each voltage may be written in cosine form, so that,
Equation (8.5.1) becomes

VOl COS (Wt + 91) + V02COS(Wt + 92) + o, +
............. + Vi, cos(wt+0n) = 0 crreeennnnn(8.5.2)
This can be written as,
Re(V;e1%el™) + Re(V,ei9%ei™)
..... +Re(Vy,e!Me™) = 0 n(8.5.3)
or, Re[Ve?1+V,e? + ...+ V ™ =0
If we let Vg = VosejeS, then
Re[(V, + V, + V3 +...4V " =0 . (8.5.4)

Since ™! % 0

indicating that kirchoff’s voltage law holds for phasors.

In the same way, we can show that Kirchoff’s current law holds for phasors. If we
letiy, 1y........ 1, be the current entering or leaving closed circuit in a network at time t, then
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which is Kirchoff’s current law in the AC domain.

8.6 AC Responses of a Resistance, An Inductance and a
Capacitance

A

Current Flow — Voltage
urrent

Vv Resistive |

AC Power Load

N~/
Source T T 3np PN
v = v, Sinmt
v

1. Resistance R

Fig. 8.4 Fig. 8.5

In the above AC circuit potential difference across the resistor / conductor is v(t) =
1(t)R, here R is the resistance of the conductor, which follows from ohms law. As R is a
real quantity, so, v(t) and i(t) will be in the same phase, and they are both indicated in the
phasor diagram along the positive real number axis by two straight line (Fig. 8.5).

2. Pure inductance ‘L’

— T ——

1

L V=VoSinwt N\
\%

Fig. 8.6

WIS

vi—>

‘ n\_/\Zn ot

Fig. 8.6 Pure inductive circuit

Alternating voltage v(t) is applied across inductor L. We know that when a time
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varying current flows through an inductor, a back emf is produced if the coil is having

inductance L, the back induced emf'is _Ld_(il , which mitigates the supplied AC voltage
source v(t) so the voltage equation of the circuit v— Ld—(}:l =0, To find solution, we apply

complex analysis as discussed earlier in this unit. Let i(t) = Ioej @1 s the instantaneous
current in the circuit, then

v(t) = Ld—‘:i = jwLle* =jwll, . (8.6.1)

so the impedence of the circuit z = j ®L, which is an imaginary number,so , _ 1 ej%
Now we get,

v(t) = coLloei(wt+n/2

Taking V|, as the maximum potential difference, then V, = @ LI, and alternating

voltage source is ahead of the current flow in phase by % . In Fig 8.7 phasor representation

of v and 1 is shown.

| Votage

Current Flow
Current

Capasitor (C)__ /‘\
vV T \
A WZTC ot

(3) Pure Capacitance
Fig. 8.8 Fig. 8.9

When an alternating voltage is supplied across capacitor charged first in one direction
and then in the opposite direction. Let v(t) = Vsinmt

Instantaneous charge at the capacitor plate
Q=CVyginwt L (8.6.3)

So, the charging current at any instant

it) = dﬁt = weV,cosot
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V, . -
= Vo sin(ot + A)
or, i(t) = Iy sin(@t+"» L (8.6.4)
1,
Here I is the peak current given hy = _1 obviously, current i(t) through a pure
0c

capacitor leads over the applied voltage by 90°. Hence power dissipated by the circuit
containing pure capacitar is zero as power factor cos¢ = 0.

Rate of heat dissipation in the circuit at any instant

P(t) = (1) i(t)
2

oL cosmt cos(mt A)

2

A/
= 0_sin2wt

2oL
Average rate of dissipation of heat energy is

Vozl

P=30LT

T
fsin2 otdt=0
0

So, there is no dissipation of energy in a circuit containing capacitance. Continually at

an interval of % time source current electrical energy is transformed to magnetic energy

returns it to the source as electrical energy. Such mutual exchange of energy is non-
dissipated.

8.7 Series LCR Circuit

Resistance R, inductance L and a capacitance C are connected in series with an AC
source. So source emf. V =Vy + V| + V. and separately resistance are as follows R the
resistance, impendance of L is Z; =j®L and impedence of C, z, = -7/

« Ve Vi Ve

Fig. 8.10 R L c
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So, at any instant relation between the voltage and current is given by

v=R+joL-I/ )i=[R+JeL-Y )i .. (8.7.1)
Here circuit resistance is R and reactance is X = (oL 1y oc)
. V_.—jd
= —¢€
Hence 1 BN (8.7.2)

Now the total impedence of the circuit is

1

" \AR2 Flor-1 Y

Phase relation between v and i, ¢ = tan ! % as shown in Fig. 8.11(a).

Let source emf at any instant is v(t) = Vcoswt is real part of Voei“’t. So the current

. . . Vo jet—o)
flow at any instant is the real part of i(t) = EN ¢ where
0
oL—1

b= tanI# ...... (8.7.4)
N 3 4 .
joLl Jwll JwLI

. . RI
R > J(WL-I/wh)l
RI Real
_J 1 g il
c '_ WwC v We

V

Phasor diagram (a) oL > 1/wc, (b) oL < (1/wc) and (c)wL =" /e
Fig. 8.11

From eq" (8.7.4) it appears that phase angle is not alway positive, so the phase
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relationship of v(t) and i(t) varies with the circuit parameter.
) [oL-1Y wc) > 0 1s positive then current flow legs behind source emf v(t).
i) [oL-1 ocl <0, ¢ is negative, v(t) lags behind i(t).
i) oL = 1/, then, ¢ = 0, v(t) and i(t) are in the same phase.
Under third condition, mentioned above, impendence of the circuit becomes z, =R,

that is it is purely resistive and lowest value maximum current flows though the circuit (with
maximum value) under this condition, frequency of AC source becomes

1
0=0,=—F——
0 ic e (8.7.5)

This state of AC circuit is called resonant and y, is resonant frequency. In reality
resonant circuit behaves as purely resistive even in the presence of L and C.

8.7.1 Phasor relation graph

Here, phasor such as v(t), Ri, joLi and iy wc are shown in the graph with direction,

<l

P
A
in Fig.12
Fig. 8.12
8.7.2 Different types of Resonance in Series LCR

We have shown that under resonant condition, maximum current flows through the
circuit, when maximum root mean square current us given by

VI'HI
e == (8.7.6)

Root mean square current, other than resonant condition is given by

V,

I — rm

S
. \/Rz +(mL—%0C)2
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wL— 1
and phase angle ¢ = tan”# )

In reality current resonant condition can achieved either by changing the frequency of
the source or changing value of capacitance may bring different values of I, .. Also it can
brought a voltage resonant condition by other than series resonant state in the circuit.

(f)

N fr

N

Capacitive | Inductive

—

X=X and cancel each other

a4 Impedance

Frequency f
Series Resonance - Impedance vs. Frequency.

Fig. 8.13 Fig. 8.14

8.7.3 Quality Factor and Shapness of Resonance in Series LCR
Circuit :

The sharpness of resonance relates to the reapdity of the fall in current on eigherside
of the resonance frequency. The current falls to a very low values depending on the
sharpness of the resonant. The smaller the value of the resistance the greater the current
at resonance and the shasper the resonance. Behaviour of R in circuit in forming sharper
resonance is shown in Fig. 8.13.

IMAX

0.707T.x
E Band with
5 >
f, f, fy Frequency f
Fig. 8.15

If we now reduce or increase the frequency until the average power absorbed by the
resistor R in series with resonance circuit is half that of its maximum value at resonance,
we produce two frequency points called the half power points which are —3d B down from
maximum taking OdB as the maximum current reference the point corresponding to the
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lower frequency at the half power point is called the lower cutoff frequency, denoted as
f; the point corresponding to the upper frequency for half power point called higher
frequency cult of f};. The difference fj; — fj is called the bandwith (Fig. 8.15).

At the half power point, impedence z, = /2R .

or, \/R2 +<wL—%)C)Q — 2R
So, (wL_%uc): +R

WLC+WRC—-1=0

Only the positive roots are acceptable, Rools are

o J(R2C? +4LC) —RC
=

2LC
2~2
and ), — JRPC?+4r0)+RC (8.7.8)
2LC
The bandwidth is

L wlL Q w,CR
Yo

or, Q= e e (8.7.9)

This equation relates the Q to the bandwidth. Sharpness of resonance increases with
the increase in Q. Quality factor increases with the decrease in R, as there is no change
in resonant frequency. Graph (Fig. 8.13) shows the dependency of sharpness with variation
in R. The circuit can store energy in the form of magneticfield or electrical energy across
the condenser. The performance efficiency is also given by the Q-factor

maximum energy stored
energy dissipated per cycle

Q=2r

B 27(><%LI(2)

I’RT
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I
where T is the time period, and Ir = %

_wol 1
Q=F= 5CR e (8.7.10)

Another term, used in resonant circuit is selectivity. It is defined is its ability to respond
more readily to signals than to signals of other frequencies. This response becomes
progressively weaker as the frequency departs from the resonant frequency it is mathematically
defined as

Bandwidth _5-f
onant frequency £,

Selectivity = Res (8.7.11)

8.7.4 Voltage Resonance in Series LCR Circuit :

Here we will study the behaviour of changing C and L in a series LCR circuit and show
other types resonance. Let us take potential diffference across the capacitor.

I

V. = % ......... (8.7.12)

\Y%
ms (8.7.13)

Therefore, V.= >
WCR? 4 (w’LC 1) }

J

The variation of [Vc| with ® is shown in the figure

Vel
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Therefore, for the maximum [V | we must show

d [ 2p2~2 2 2]
m[wR C? 4 (WLC—1) }_0

After differentiation
1
2\
W=Wwe = 1 - R C
LC 2L
A
we=wl-—- 8.7.14
or, Wc o' 202 ( )

Equation (8.14) shows that o, < o,
The reason is that current peaks at resonance and capacitor voltage is the product of

current and (1/(00) which decreases with increasing frequency. w, >~ w, when Q is very large.

8.8 Parallel Resonant Circuit

When an alternating voltage source is connected to an inducetor having small resistance
combinedly in parallel with a capacitor, which is shown in Fig. 8.17. Two current component
from the source is divided into two branches of parallel resonant circuit. These are phasor
current Ip; and I so total phasor current I = I + I~ and impedences Z, = —j/(oc and
zp1, = R + joL source phasor voltage V = Vp; + V. When R is small, I} and I~ will be
almost 180° out of phase, since the capacitor current I~ leads the source voltage V by 90°
and while the inductor current I; lags the source voltage V by nearly 90°. At resonance
V and I are in phase.

B \Y . _V
I= R+JwL+J(DCV_ e (8.8.1)
where z is the complex impedence of the circuit.
Fig. 8.17

A 4

J:IC L

N

v(t) () c
N/
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1_ 1 ) _ R—-joL .
2 T+ joL +JOJC——R2 P +joC
R . ol
R? + 0’L? J[ R? + 0’L?

The source voltage V and the source current [ will be in phase when the imaginary part
of l/Z varishes. Then

2
0C=—20kL _ | L _R-_
R2 +(D2L2 Or, (D LC Lz 0‘)0 .....

the source voltage and current are in phase, power factor is unity, this condition of the
circuit is said as parallel resonant frequency. For ® (, to be real, the condition must be

R _
- <He R UL (8.8.4)

The impedence of the circuit is
2 212 ’
R, :ﬂ: R_i_L_(L_Ryz)
R R \LC L
_ L
CR e

R is called dynamic resistance.

Ry

At the resonance peak current from the supply is called make up current and is given
by

v
I, = R_Z ...... (8.8.6)
The cupacitor current at parallel resonance is
Vo
I, =
Py (8.8.7)
W,C
SO, I_ = (,OOCRd = T ....... (888)

op
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Q of the circuit is defined as the ratio of the capacitor current to the line current at
parallel resonance. Hence,
I, ®,L
Q= ﬁ == L. (8.8.9)
the capacitor current ICp is much large than the supply current due to high value of Q.
At resorce, capacitor or inductor current is Q times the supply current. Such highly magnified
current of parallel resonance can be compared to magnified voltage of series resonance
circuit.

From equation (8.8.2) the impedence z or admittance Y can be written as

1 R oL
—=——tjloC——2=—
z R?+40°? (R? 4+ @?L?
9 2
1 2 R oL
—| = Y = + Q)C_ ..... . -1

Maximum impedence or minimum admittance at a frequency Q,,, is given by
d 12
—I1Y[ =0
oYl

! 2
L(2CR+1)5 R

e Y T e (8.8.11)

which gives ®p =

comparing eqh (8.8.3) and (8.8.11) we find that _, > ®, i.e. maximum impedence
is achieved at higher frequency than the resonant frequency . If Q is large as R is low,
then we can assume that o, ~ o. This circuit is called anti resonant because current is
minimum at resonance which is in contrast to the series resonant current. Sometimes it is
called rejector circuit.

8.8.1 Selectivity of Parallel Resonant Circuit :
(Fig. 8.18) shows the variation of z with frequency. For R — 0, then o, ~ ®), which
is the condition for high Q circuit. Let o, = A, then if the impedence of the circuit z
%
becomes \/-72, we say that resonance has become very sharp. Then select band of frequency

which is allowed blocked or filtered, which is the condition for high selectivity of parallel
resonant circuit.
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tZ4 impedance Z=L
CR

Current I =V_
Licr

H »
>
“«— O, —> O
. 0. .
Lagging p.f. Leading p.f.

ure: Resonance Curve for Parallel Resonance

Fig. 8.18
From equition (8.8.2)

1__ 1 -
Z RyjoL ¥ (8.8.11)
when R — 0, The above equation can be written as
jwL
= 2 ke . (8.8.12)
(1-w’LC)+JwCR
At resonance ® = ®, and z =z, = &
. Z
From equation (8.8.12) z= ] "
I
o, |7]= N (8.8.13)
1 1/ \
1+I{2(UJL—AC)

V4
For high selectivity we have chosen Z = Tg (8.8.13) becomes after simplification.

wL—%)C:j:R

2 _ R
o, wWFpw- Y =0 (8.8.14)
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Writing wé ~ %C for assuming low value of R

W FRNy—wi=0 (8.8.15)
Q

%JF /1+%Q2] ...... (8.8.16)
wo

(8.8.17)

Real roots are,

and Wy =Wy

So the band width is

Aw=w, —w, =

Qe

From equation (8.8.17) we conclude that for high selectivity, preferred choice remains
for high value of Q.

z
N
Fig. 8.8.4 T
Parallel Resonance In LCR Circuit. 0.707Z.
Fig. Resonance Curve for Parallel Resonance i
andiwit
Fig. :
From the eq, we have £ £ f 7
—>» BW —
VC — Vrms

\/[wzcsz + (w2Lc— 1)2}

The value of C for the maximum value of V can be found in the following way

Let x = V[@?C?R? + (0?Lc—1)?]

?1_)2 = 2w'R*C+ 20’ L(w'Lec—1)=0
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__ L
So, this resonance can be spoiled with the variation of R. When C = C;;, maximum
of value of Vc is

v VinV(R” +w’L")

c(max) — R

8.9 Summary

1. In AC circuits, it is seen that impedance of reactive components, like inductor or
capacitor is expressed in terms of imaginary number, or, phasor qualysis of impedence of
inductance by jJL ® or for capacitor by jwC - Total electrical energy dissipated in this
component is zero.

2. The frequency at which impedence becomes minimum in series LCR circuit is called

1

V(LC)

resonant frequency. At resonant, angular frequency w, = and quality factor is

woL

Q=—7F%"-

8.10 Review Questions and Answers

1. Define bandwidth.

Ans. It is defined as the breadth of the resonant curve upto frequency at which the
power in the circuit is half if its maximum value. The difference between two half power
frequencies is called the bandwidth.

2. Define selectivity.
Ans. The selectivity of a RLC circuit is the ability of the circuit to respond to a certain

frequency and discriminate against all other frequencies. If the band of frequencies to be
selected or rejected is narrow, the quality factor of the resonant circuit must be high

Bandwidth _ -t
onant frequency f,

Selectivity = Res
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3. Define phasor and phase angle.

Ans. A sinusoidal wareform can be represented in terms of phasor. A phasor is a
vector with definite magnitude and direction. From the phasor, the sinusoidal waveform can
be constructed. Phase angle is the angular measurement that specifies the position of the
alternating quantity relative to a reference.

4. Define power factor.

Ans. Power factor is defined as the cosine of the angle between voltage and current.
If ¢ is the angle between voltage and current that cos¢ is called as the power factor. Other
definition is the ratio between real power and apparent power.

v

¢

S
>

5. Define Apparent power and power factor.

Ans. The apparent power (inVA) is the product of the rms values of voltage and
current, S=1, V. The power factor is the cosine of the phase difference voltage and
current. It is also the cosine of the load impedence. Power factor = cosf. The power factor
is leading when current loads voltage (capacitative) and lagging when current lags voltage
(inductive load)

8.11 Problems and Solutions

1. A coil takes a current of 1A from 6v dc supply, when connectexd to a 120v
5 OHZ supply the current is 10A. Calculate the resistance, impedence, inductive
reactance and inductance of the coil.

Solution : Resistance R = chltage —1_ 602
dc current 6

ac voltage 120

ac current 10 =120

impedence =
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Since 7z = +/R> + X3

So, inductive reactance X, =./(z> —R* =10.39Q

Again, X; =2nfL

: _ Xy _10.39
inductance L = = f = 1% 50 =33.1mH

2. A coil of resistance 5Q and inductance 120mH in series with 100 mF capacitor,
is connected to a 220V, 50 Hz supply. Calculate (a) the current flowing, (b) the
phase difference between the current and supply voltage (c) the voltage across
the coil and (d) the voltage across the capacitor.

Solution : Circuit diagram is shown in the fig

X = 2nfL = 2n(50)(120x1073) = 37.7Q

1 |
Xp=—1_— —31.83Q
€ 2nfe 2n(50)100x10°°%)

Since X is greater than X- the circuit is inductive

X; — X¢ = 5.87Q

Inpedence z = \/[Rz + (X, —X)? | =7.71Q

_ Vv _ 220 _
(@) CurrentI—Z 771 28.53A

(b) Phase angle ¢ = arctan

XL =Xc|_ 5.87 _ s002<-
R ]—arctan 5 49°35

(c) Impedence of the coil = \/(R? + X} ) =38.03Q2

(d) Voltage across the coil.
=1Z,,;; = 38.03 x 28.53 = 1085V
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Phase angle of the coil

X _
= arctan TL: arctan 137?'7=82°45'

Voltage across the capacitor V-
= IXc = 28.53 x 31.83 = 905.10V

3. A coil of inductance 0.1 H and resistance 30W is connectred in parallel with
a 10 pF capacitor across a S0V, variable frequency AC supply calculate (a) the
resonant frequency, (b) the dynamic resistance, (c) the current at resonance and
(d) the circuit Q-factor at resonance.

Solution :

(a) Parallel resonant frequency,

P L (L_Ry):L
T 2r\\LC 2 27

(b) Dynamic resistance Rd = RLC = 30><(1(())'>1< 0 =333.33Q

1 ~30?
0.1x(10x107% (0.1)

=152 Hz

50

(c) Current at resonance I, = 33333 0.15A
(d) Circuit Q-factor at resonance = % =3.183
Capacitor current at resonance I = XL
C
= \1/ =0.477Amp
[27T frc]

I
Hence Q factor = f =015
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4. A complex voltage (20 + j.O)V is applied to a series LR Circuit of complex
impedence (1+\/ 3j)Q. Calculate the power factor and the power consumed by the
circuit.

Solution :
Complex current

20410 20

1= — = =10e 1°
14+ 3j \/(3)2+12

where tand = /3

So the current lags behind the emf by an angle ¢ = tan"' /3 = 60°

.. Power factor cos$ = c0s60° = 0.5
Power consumed P = VI cosd
=20x10 x5
= 100 watt.

5. An electric lam p which runs at 100V and 10A current is connected across
220 Volt 50 cycle AC main. Calculate the value of the choke to be connected in
series for the lamps safety.

Solution :

Here the resistance of the circuit or lamp R = ¥ = % =100

Impedance z — \/RZ + W = \/1 0% + (27 x 50)* 12

220
We have Z__IO =22
2 2
So, L="22"=10" _ ¢ 06231,

(21 x50)
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9.1 Objectives

After the completing this chapter the learner will understand -

The construction and operation of electrical measuring instrument- the
galvanometer.

How a ballastic Galvanometer is used to mesure charge
How a ballastic Galvanometer can be converte it into dead-beat galvanometer
to mesure current and voltage.

What is CDR and its rate to current a galvanometer from ballastic to dead-
beat and V.C.V.S

The current sensitivity, voltage sensitivity and charge sensitivity of
galvanometer and their radiation.

9.2 Introduction

A ballastic galvanometer is a type of instrument, commonly a miror

galvanometer, unlike a current- measureing glavanometer. The moving part has a
large moment of inertia and hence giving it a long period of ocillation period. The
glavanometer works on the principle of permanent magnet moving coil. The force
is generated on the coil, due to Lorentz Force law. “Due to interaction of fluxes, the
pointer in the meter or miror is deflected. As it is the deffected different torges to
make the pointer stop at its steady state motion. The different torques are deffeching
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control torques and damping torquesis almost zero. For that reason.it is called a
ballastic galvanometer. It is really an integrator measuring the quantity of charge or
discharge throught it. It can be used ad voltmeter and ammeter.

9.3 Introduction

The fig. 9.1 shows a line diagram of a moving coil galvanometer. It consists of
a) A rectangular frame with insulated copper wire round on it.

b) The frame is suspended
symametrically with a thin
phosphor bronze fibre with its
end connected to the one end Core (©)
of copper wire.

Phosphor-Broze Strip
Movmg Coil Mirror

c) C is a nonconducting or

conducting core palced
symametrically inside N S
the frame.

Permanent Magnets

d) N-S represent concave
magnetic poles placed co-
contri at the mid point of the  pjg 91
gap.

e) The bottom end of the copper
wire connected to a phosphor-
bronze thread to measure the deflection of coil using lamp and, scale
arrangement.

Lower Suspension
Spring

I

f) The small mirror M, attached to due suspended phosphor-bronze thread to
measure the deflection of coil using lamp and scale arrangement.

Theory-

We consider the coil ¢ to have n number of turns with area A (Vertical
lenght 1 and horizental width b, A=Ib) suspended in an uniform magnetic field B dq
be the amount of charge flow through the coil in time dt at an instant t, so i = dq/dt
at instant t.

The torque on the coil =M x B (Where M= niA ).
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Taking the magnitude of torque we have

d
T=M B = niAB =nABd—? ............................................ 9.3.1)
If I is the moment of inertia of the coil with core along the axis of suspention,
then I%) = nAB(ilﬂt [w being the angular speed at instant t]

or I do = nABdq

If we consider the moment of inertia of the coil-core system is sufficiently
high such that the coil-core system does not move during the passege of charge q,
Then intergrating the eqn. (9.2) we have

If there is no disipitive force, then from conservation of energy we can write,
V2l 0] = V20 % i (9.3.3)
Where 0 is the angular amplitude of first throw.

After migration of charge the equation of motion of the coil at an instant t will
be
I d’0 = -CO, where C represents the torque
dt?
per unit turist (or torsional rigidity) of the suspension fiber. So the time period
of osciallation of the coil

_ CT
T=2A,1 [==—
/o or AR 9.5)

Eliminiting ®, from eqns. 9.3 & 9.4 and putting the value of I from eqn. 9.5,
we have

Theory of moving Coil galvanometer with damping forces.

When a coil moves in a galvanometer two damping forces play important role
to oppose the motion.

1. Mechanical damping force, mostly due to the air friction which at low
angular velocity of coil can be taken to be proportinal to the angular speed.
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@ (_((11—(3), say F, = (21—(3

2. Electromagnetic damping
force, due to rotation of coil in
magnetic field. To proceed with the
calculation of e.m damping, please
refer Fig. 9.2. Due to rotation of coil
through dq in a inform magnetic field
B, that lies always in the plane of the
coil, the vertical section passes

through the area d.s = 2 (hd@ x 1)

2
= bldo.

so the number of time of forces o
intercepted by a single turn of coil / Fig.9.2

= bld0 B.

so the rate of change of magnetic lines through the coil of n turns

_ do_ do
= nblB i =nAB &t

_gdo
_Gm

Where G = nAB is called golavanometer constant. So the induced end generated
in the coil to oppose the motion

do
=G=
e L T (9.3.5)
so the induced current
- G do
L= R g s (9.3.6)
Where R = R, (Galvanometer resistance) + Re (External resistance in the
circuit)
The opposing torque developed due to this induced current
2
i, AB= G0 e 9.3.7)
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so the equation of motion of coil considering the damping force takes the form,

0 _cp.ad0 G d0 _ g (a+qhdo
P =0 2q Rg -0 %)dt

d0 7599 4 79=0

or dt dt

wherw 2b = (a + G/R)/l and w > = C/I

To seek for a solution we put q = Ae®, then we have from eqn.(9.3.8)

a2 +2bo+w’=0o0ra=b+ . p @’

Thus the solution of eqn. (9.3.8) coils down to

9=Ae(_b+*' b -0, )t +Be(_b_“ b*-0,) t
— ™ [Ae b -0t ggyb -0 t] ................................. (9.3.9)

Now for b>wo, The first term exponentially decreases with time, the first term
within braces increase exponentilly with time but less effectively then the outside
term; the second term descreses exponentially with time. Hence the motion is a
damped non-oscillatory motion. Similar logic leads that when b = ®, motion is non-
oscillatory and is known critically damped motion.

When b<w, the eqn. (9.3.9) can be written as

e_e-bl(Ag_i\/woz-bZt +Ae-i \/moz'bzt)
= 1 2

or 0= e'b‘[(A1+A2) os /o - b’ t+i(Ai-A,)sin,fw?- b’ t]

we can write the above eqn. as

0 =0, SN (O +8) wovovreeiicecee (9.3.10)
where A +A, = 0 sind; i (A-A)) =6 cosd, o = /- b’

and ; /- L .
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So the resultant motion will be an oscillatory motion with decresing time
dependent amplitude and with of angular frequency = .,/®- b’ .

Now at t = 0, 6 =o, the above equation gives d = 0, so we have

0 =0 SINM Lo (9.3.11)
So the maximum deflection on either side of central position of coil will be at
_ T 3T 514
4° 4°

The variation of deflection with time is as show in the following fig. (9.3)

The successive maximum deflections are

las

Fig. 9.3
0, = 0,7, 8, = B, 0, = B4, (9.3.12)

The ratio of successive amplitude of deflections

0,6 6 T
N SN

d is known to be decrement per half cycle or simply decrement.
lpd = A = bT/2 is called logrithmic decrement.
Now from the eqn (9.3.12)
0, =0, or 6, =0e""=0e"
As the damping factor is small of 1 is also very small.

So we can write 0 = 0, (1+A/2)
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So the correct relation of change flowing and the first throw becomes

T C
q= % nAB 0, (1 M2) oo, (9.3.13)
Procedure for Calculation of A.
To find a resonable average value of A, the first throw and the eleventh throw
is noted them,

0, s B B Jio 06T _ 10a
/911 0, 0, 4 0, ¢ €

1
or r=10 (en(el/e“) ...................................................................... (9.3.14)

Similarly two other sets of such readings are taken and the average value of A
is calculated.

Critical damping resistance (CDR)

We have already seen that the condition of ballastic galvanometer to be b<w,,
where b represents half the damping torque per unit moment of inertia (2b often
reffered as damping factor) and w, is the angular velocity of the coil at t = O,
without damping.

Now b= N (at %), where R = R, (galvanometer resistance) + R_ (External

resistance with galvanometer circuit)

Thus we can write the condition for a galvanometer to be ballastic,

1 [c G’
b==—(a+G)<w =,/ =>R>
21 i) ° I 2/Ic-a

G’ R,
or R> V- a the limiting value of R_.
c-a

€ (N TSP (9.3.15)

This value called CDR of the galvanometer. However the air damping factor
due to air resistance is normally much less compared to the electromagnetic damping
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so we can neglect a and the CDR takes the form

G R,
Rc =
C 2\/? ................................................................................ (9.3.16)

when the external resistance Re<Rc the damping force is sufficient to make
the motion non-oscillatory and the galvanometer acts as dead-beat galvanometer.

Measurement of steady current

Now it the galvanometer circuit contains an external emt source E to supply a
steady current i then the general equation of motion of galvanometer coil becomes

140

_ 248,
0@ G) G THAB e 9.3.17)

R

Then the resultant motion will be a super position of a damped harmonie motion
about a steady deflection 0_ (say).

A Under damped (I)
Ogl--f-mmrr e e -\ NS
0 Critically damped .
Over damped Time
O Ll

Over damped Vs Critically damped

Fig. 9.4

Inthe mesurement of current we choose the external resistance less than the
C.D.R so that the motion is over damped.

In this case ni AB = cO_(0, = steady diflection for current is)
—¢ 6
LT AR e s (9.3.18)

To increase the electro-magnetic damping the core of the dead beat galvanometer
is made of soft iron which has large permiability.
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Lamp and scale arrangement. (Fig. 9.5)

The deflection of coil is useally measured by using a lamp and scale
arrangement. The arrangement consist of a lamp L. mounted on a vertical stand ST.
The lamp (collimates) a beam of light onthe mirror M attached to the suspension
wire of galvanometer.

The reflected beam is received on a semi-transparent scale S held on same
vertical stand ST and held
horizontally and paralled to the
mirror plane M. D is the distance _
between mirror and scale. It due
to passage of current the coil
reflects through 0 and the
deflection of light spot on scale is
d, then tan20 = d/D or 6 = %2 d/D
(when 0 is very small)

Sensitivity of Galvanometer

The quality of a galvanometer L]
L-Lamp
to respond towards charge / current ¢ g 1o ST
and voltage measurement is the M-Morror

measure of its sensilivity. Fig. 9.5
Accordingly a galvanometer may have three types of sensitivity.

1. Current Sensitivity.

The current sensitivity of a galvanometer is the deflection in mm of the
light spot on a scale placed 1m away from the galvanometer mirror intitially
perpendicular mirror to the mirror palne of galvanometer due to the passage of 1nA
current through the glavanometer.

So it a current of i, pA produce a deflection d mm on the scale placed 1m
away, then, the current sensititivity.

d
S_ = —
T mm/; A
2. Voltage Sensitivity.

The voltage sensitivity of a galvanometer is the deflection in mm of the
light spot on a scale placed Imm away from the galvanometer mirror, initially
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perpendicular to the mirror-plane of the galvanometer due to 11V potential differnce
across the galvanometer.

So if the potential differnce of Vs uV produced a diflection of dmm on the
said scale then, the voltage sensitivity.

s, =d
v,

=d/i,R,

mm/MV

U ——— (9.3.19)

3. Charge Sensitivity. (This is concerned to the ballastic galvanometer in
practice)

The charge sensitivity of a galvanometer is the deflection in mm of a
galvanometer is the away from the galvanometer mirror, initially perpendicular to
the mirror plane of the galvanometer due to the passage of 1mc of charge through
the galvanometer such that, the during the flow of charge the coil does not move.

So the charge sensitivity Sq = % IMM/UC.eoiicceeseen. (9.3.20)

Comparing the expression of q and i we have

Sq = 2% S, (T = period of oscillation of galvanometer coil)...(9.3.21)

9.4 Summary

We have learned the following lessons :

1. Basic principle of construction of ballastic and dead-beat galvanometer,
differance between them.

2. Its operatinal physical parameter are

1. Charge sensitivity
~df, 2n NAB 2n S
~dqg T C T©™

where S, is the charge sensitivity

Sq
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2. The current sensitivity S,

~do  NAB
' d, C
3. Voltage sensitivity (S )

1
As Soc \/ Rg therefore Sv oc\TRg

4. CDR is given by
G2

fe=qic ke

9.5 Review Questions and Answer

1. Plot a neat diagram of Ballastic galvanometer write the names of its various
components.

Ans : See the text

2. Give the theory of moving coil galvanometer. Explain the conditions under
which the galvanometer works a) ballastic b) dead-beat.

Ans : See the text

3. The 1st and 11th throw of a ballastic galvanometer are Scm and 12cm
respectively. Calculate the value of logarithmic decrement.
- 1 0
SoinhA=—jy—L
109,
4. Define charge sensitivity, current sensitivity and voltage sensitivity of ballastic

galvanometer.
Ans : See Article 9.3

5. what are difference between ballastic and Dead-beat Galvanometer?
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Ans :

Ballastic

Deat-beat

1. Damping is small and the motion
is oscillatory.

2. It measure charge

3. The transient flow of charge
causes an impluse while the coil has
not moved sufficently from its rest
position. This condition is achieved
by enhancing the movement of inertia
of the coil to have larges time period
of oscillation to about 10-20 seconds.
The external driving torque is zero
when the coil rotates

4. The coil frame is non-metalic to
reduce electromagnetic damping.

5. The ballastic throw measure the
charge.

6. The external resistance of the
glavanometer circuit must be greater
than CDR to ensure oscillatory
motion.

1. Damping is large and the motion
is non-oscillatory.

2. It measure current

3. The coil rotates under the action
of torque.

4. The coil is around on a metalic
frame to increase electromagnetic
damping.

5. The steady deflection measure
the current.

6. The total external resistance
must be less than CDR to obtain non-
oscillatory motion.(aperiodic)

9.6 Problems and Solution

Q. 1. A moving coil galvanometer has the following characteristics _ number
of turns of the coil = 50; Area of coil = 70 mm?; Resistance of coil = 30Q;
tlux density of redial field = O.LT. Torsional constant of the suspension
wire = 7 x 108Nm/rad. Calculate the current and voltage sensitivity.

Solution:

Given N=50, A = 70mm?, B = O.I.T, C = 7 x 10® Nm/rad, R = 30Q
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e NAB 50x70x10°x0.1x10"
Current sensitivity (Is) = < - =

= 350x 1@

7
=5x 10 div / amp
= 5div / mA.

e NAB g
Voltage sensitivity (Vs) = CR R

5 6

=0.167 div/mV.
Q.2. What is galvanometer constant?

Solution :

In a moving coil galvanometer the current (I) passing through the
galvanometer is directly propertional to its deflection( 0 ).

i=G0

where G = = galvanometer constant.

C
NAB



NSOU e CC-PH-08 0O 296

Further References

1.

Electricity and Magnetism

- Chattopadhayay & Rakshit

New Central Book Agency, Kolkata
Electricity and Magnetism

- David J. Griffiths

Cambridge University Press UK
Electricity and Magnetism

- Sadiku

OUP, USA

Electricity and Magnetism

- Hayt & Buck, Mc.Graw Hill



	Title Page
	U1
	U2
	U3
	U 4 & 5
	U6
	U 7 & 8
	U9

