PREFACE

In a bid to standardize higher education in the country, the University Grants Commission
(UGC) has introduced Choice Based Credit System (CBCS) based on five types of courses
viz. core, generic elective, discipline Specific, ability and skill enhancement for graduate
students of all programmes at Honours level. This brings in the semester pattern, which finds
efficacy in sync with credit system, credit transfer, comprehensive continuous assessments and
a graded pattern of evaluation. The objective is to offer learners ample flexibility to choose
from a wide gamut of courses, as also to provide them lateral mobility between various
educational institutions in the country where they can carry their acquired credits. I am happy
to note that the university has been recently accredited by National Assesment and
Accreditation Council of India (NAAC) with grade “A”.

UGC (Open and Distance Learning Programmes and Online Programmes) Regulations,
2020 have mandated compliance with CBCS for U.G. programmes for all the HEIs in this
mode. Welcoming this paradigm shift in higher education, Netaji Subhas Open University
(NSOU) has resolved to adopt CBCS from the academic session 2021-22 at the Under
Graduate Degree Programme level. The present syllabus, framed in the spirit of syllabi
recommended by UGC, lays due stress on all aspects envisaged in the curricular framework
of the apex body on higher education. It will be imparted to learners over the six semesters
of the Programme.

Self Learning Materials (SLMs) are the mainstay of Student Support Services (SSS) of
an Open University. From a logistic point of view, NSOU has embarked upon CBCS
presently with SLMs in English/Bengali. Eventually, the English version SLMs will be
translated into Bengali too, for the benefit of learners. As always, all of our teaching
faculties contributed in this process. In addition to this we have also requisitioned the
services of best academics in each domain in preparation of the new SLMs. | am sure they
will be of commendable academic support. We look forward to proactive feedback from
all stakeholders who will participate in the teaching-learning based on these study materials.
It has been a very challenging task well executed, and | congratulate all concerned in the
preparation of these SLMs.

I wish the venture a grand success.

Professor (Dr.) Subha Sankar Sarkar
Vice-Chancellor
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Unit-1 : Recapitulation of SHM

Structure
1.0 Objectives
1.1 Introduction
1.2. Definitions and characteristic of SHM

1.3
1.4

1.5
1.6

1.7.

12.1 Condition of SHM

1.2.2 Differential equation of SHM

1.2.3  Solution of diffrential equation

1.2.4  Some parameters of SHM
Mechanical energy of a body execiting SHM
Examples of SHM

14.1 Mass spring system

142  Simple Pendulum

143 Compound Pendulum

1.4.4 Torsional Pendulum

145 Oscillation of charge and current
14.6  Oscillation of two masses connected by a single spring
Importance and limitation of SHM

Summary

Review Questions and Answers

1.0 Objectives

After reading this unit, you will learn

The necessary conditions for SHM.

Formation and solution of differential equation of SHM.

Calculation of kinetic and potential energy of a body executing SHM.
Similarities between different type of SHM.

1.1 Introduction

We know that motion of a body is usually two types. (a) linear and (b) rotational.
In these motions there is a particular type of motion wehre the body returns to its

7
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initial state after a certain interval of time. These motions are called periodic motion.
Thus of a body repeats its path after a regular interval of time, then it is called periodic
motion. There is a proverb that “World is full of periodic motion”. In fact in every
nooks and corners of our daily life are get the example of periodic motion. The motion
of a fan, motion of a pendulum clock, motion of leaves in trees—the motion of the
earth round the sun etc. It a periodic motion fulfils some condition then it is calld
simple harmonic motion. we can analyse and describe these motions by simple
assumption.

In nature we get many examples of SHM and hence its importance and usefulness
knew no bounds. We will show that these motions are the smallest building block of
any kind of vibration.

1.2 Definition and characteristic

It a body in periodic motion has its acceleration always proportional to its
instantaneous displacement and always in a direction opposite to displacement, then
it 1s called simple harmonic motion. The main characteristic of this motion is that the
force acting on it must be proportional to the displacement and always in a direction
opposite to it.

1.2.1 Conditions

If the motion of a body is such that it satisfies the two following conditions—
(a) The acceleration oo instantaneous displacement ie foox.

(b) The direction of acceleration is opposite to displacement.
Combining both we get joo—_)?

It is to be noted that in general we consider the motion of a particle is point mass
but for an entended body are will consider the centre of mass of it.

1.2.2 Differential Equation y

Let us consider a particle of mass m moving
along x-axis. With its equilibrium point at 0. Let f

is tlie acceleration of the mass when its displacement B . <
is ¥ from 0. Then for SHM we must have 0
Foou % . (1.2.1) «— A M—

- N - N - k -
of, mfeo—X O, mf =—kXx OF, f=%x
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o, — =0% .. (1.2.2)

[k . .
where ® = 18 the angular velocity of mass m.

1.2.3 Solution

The equation (1.2.2) is a linear second order homogeneous differential equation.
It can have three types of solution—

1. trigonometric solution—  x = 4, sin 07 + B, cos wf
2. exponential solution— x= 4" +Be™
. . _ k+n
3. series solution— x=) al
n=0

Out of these the most familier is trigonometric solution.

If we now impose condition that of r = 0, x = 0, then we get B=0, so x = A sin of
will be acceptable but if we put the condition that at £ = 0, x = A, then we get
x = A cos ot is the acceptable solution.

e If we consider exponential solution then x = 4’ + Be™™ .
But " =cosw!*isinwt, hence x=(A4 + B, )coswrt+i(4 — B )sinwr
It we put 4, +B, = AcosO and l'(Al1 —B1)=Asin9, then we get

x = Acos(o—0) as the general solution.

e We can show that the series solution also leads to same solution is
x = Acos (o —0), and putting 6 = 0 or 8 = 1/2 we get the solution
x=Acosw or x = A sin ot.

1.2.4 Some parameters for description of SHM

In general, we see that SHM is described by x = Acos(wr—6). Here x is the

instantaneous displacement. A is the maximum displacement called amplitude, ® 1is
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the angular velocity which is 2775 =21V . Where v is the frequency of oscillation is

number of oscillation per unit time and T is the time period i.e. time required for one
complete oscillation. The most important parameter related to SHM is phase, which
is defined as the quantity (angle) that determines the state of motion of a oscillation.
Here (ot — 0) is the phase of the SHM and 6 is the initial phase of the motion called
epoch.

The unit of displacement or amplitude is cm or meter.
The unit of frequency is cps or hertz.

The unit of time period is second.

The unit of phase is radian or degree.

Exercise 1. Which of the following describe SHM. Find the amplitude and
frequency.

(a) x = Alog (0 +6), (b) x=Acos’(wr+8), (¢c) x=e** (d) x= Asin® .

2z

2. A particle executes SHM with x = 5sin s

tcm. Find the distance the particle
travels in 25.25 second.
3. The equation of an SHM is x =3cos (25t+§). What is the amplitude, phase

and epoch of this motion.
4. Find the time period of oscillation of this restricted pendulum.

R\\\\\\\\\h
D
—

L/3{

Fig. 1.1

5. Calculate the ratio of time taken by a particle execuiting SHM in describing the
Ist half and next half of its amplitude.
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1.3 Mechanical energy of a body executing SHM

A particle in SHM has both K.E and PE at any instant.

If x=asin(wr+0¢)is the equation of SHM, then v= %= wa cos (0 +¢) is the

velocity and if m is the mass of the body, then.

KE at any instant 7 is KE(¢)= %mv2 = %mm2a2 cos” (@t +¢)

:%m(f(cﬂ_f) L (13.1)

Similarly the PE is

X B X _1 )

[ Febe= k[ Fe = 2 ke

0 0
But k= mo? so PE =%m0)2a2 sin® (wr+ 0) =%m(y)2x2 .. (1.32)
The Sum of PE and KE at any instant is ME = KE + PE

:%mofaz = Constant .. (1.3.3)

Now the time average of KE and PE are

T
171 1
<KE>T = T_([Emmch cos’ (0)1 +¢)dt = mezaZ

T
11 . 1
<PE>T = T-([EmeaZ sin’ (O)Z +0)dt = mezaz

Hence (ME), = 2mw?a’ . (13.4)

The average of KE over displacement is

(KE)

X

=21_a ff %mo)2 (a2 —xZ)dx
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2. 11 Lld+a 11 524
(PE), = zanmwxdx—ﬂzmw{ 3 }%5 3
Ly @
="M 3
2
1,2 b o,

Thus the average of mechnical energy both w.r. to time and displacement are same.
Average of KE and PE of a particle executing SHM :

1 2.2
KEzlm(oZ(aZ—xZ) PE:E'”O) X

. _2l+al 2l 2 de<PE> lm(ozljzdx m(1)21 3+a
(KE) sy =224 E”w)(“ -x) dip. ~ 2 27 2|3

T 1 1 24°
11 % 15124
=Z.§m(,02 {612 —?} 27’)’1(,0 503
I
2a 2 3 3 Hence
_ 1 2 9
= %%WKDZ {26[3 —23L3} <KE>disp + <PE>disp - <ME>d,-Sp = Em(,l) a
a
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Time average of KE and PE :
(KE), = Lo cos? or = L moa?
) 4

<PE>T = <%m0)2a2 sin? 0)t> = %meaZ

(PE), + (KE), = (ME), = 3 mo’a’

1.4 Exampls of SHM

1.4.1 Mass spring system :

It x is the instantaneous displacement of mass m, then the equation of motion is

d2x d2x k
= = —kx z F__
m 2‘2 or 7 X

So if 0)2=£, then (02:\/z or, 1'=2m ™ is the time
m m k k

period of oscillation.
In this example we have considered zero mass of the spring but
if we assume the spring has mass M, then we can show that the
time period becomes xl "

1.4.2 Simple pendulum :

In case of a S.P. of bob mass m and effective length L, the
equation of motion is

2

mﬁ=—mgsin9 and if © < 10°, then sin@~0 and as

2
X

. ) d"x
0 =% so the equation of motion becomes m?: —mg T

mg cos 6

I mg cos 6
hence = \/% or, I = 275\/; =1, Fig. 1.3
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3 5
But if © > 10°, then for large values of 6 we have to take sin6 = 9—%+%+...

d detailed calculation shows that 7 =21 |2 x 414+ & 4.0 |
an ctailea calculation Shows a = P 16 1024 "

Thus with increase of angular displacement, the time period increases.
It is to be noted that when @~ 7.25°, the change in T is only 0.1%.

1.4.3 Compound pendulum :

A rigid body of any arbitrary shape suspended from a smooth
fixed point and allowed to oscillate in a vertical plane constitute
a compound pendulum. If | is the distance between point of
suspension and centre of gravity, then the equation of motion

2 2
]d—ze=—mgLsin9, If 6 < 4°, then d_?:_mgLe
dt di 1
Ing Hence (0 = \/@ Or’ T — 2TC ]
1 mgL

Fig. 1.4
Here I is the M.I of the compound pendulum about the point of suspension.
1.4.4 Torsional Pendulum : yai

When a disc or cylinder is suspended by a wire of torsional rigidity
C, and if the disc or cylinder is slightly rotated by an angle 6 and

released, then its equation of motion will be C
2
199 _cq
dt ¢
o, et
or, T

C . . . Fig. 1.5
which is the equation of motion of a SHM. 8

Hence ®= \/g or T =2Tc\/g. Here 1 is the moment of inertia of the disc or

cylinder about its axis of rotation.
Here it is to be noted that in many SHM we put sin 0 = 0, i.e. it is valid only for
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2

D . d-9
0 < 4° But in this case of torsional pendulum ?w—e for any value of 6. Here

it is to be noted that for that value of 6, we should not cross elastic limit of the wire.
1.4.5 Oscillation of charge and current :

We can show that if a charged capacitor is connected with an inductance then the
charge and hence the current in the circuit starts executing SHM.

Let g 1s the charge and i is the current in the LC circuit then from KVL we get

di _q L
-L 7 =V, and V, = C and hence Q%mw
. d2 C A
L%z—% of, Lﬁ+%=0 asi:% + 1/ — =/v
+q| \fq T o8
d’q 1 D . . I
or, ? = _ﬁq which is the equation of SHM. 1 | | |
Fig. 1.6
1
Hence ®= T 7 =2n+JLC 1s the time period of oscillation.
) ) . d .
ere g = g, cos (ot + d) is the instantaneous charge and i = —- = —g,Wsin (¢ +
H . 5) is th harge and i = =g, 5

is the instantaneous current.

We can make a one to one correspondence between the mass-spring system and
LC oscillation.

Mass spring System LC Oscillation
1. x = displacement 1. g = charge in capacitor
_dx . . dq .

2. v= 7 velocity 2. i=— = current in L
3. m = mass corresponds to inertia 3. L = self-inductance supplies inertia.
4. K = force constant corresponds to|4. C = capacitance supplies elasticity.

elasticity

1 1. ) )
5. Emv2 = KFE of the system 5. ELZZ = magnetic energy with L

2

6. %kx2 = PE associated with the spring |6. lCV2 _la _ electrostatic energy

27 T2C
stored in capacitor.
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Exerise 6. A 32 uF capacitor is charged by a 6V emf battery and then connected
with a self-inductance of L = 500 mH. Find the frequency of oscillation of charge and
also calculate the maximum value of current though the LC circuit.

1.4.6 Oscillation of two masses connected by a single spring.

Let us consider two masses m, and m, connected with a spring of force constant k.

If x, and x, are the instantaneous displant of m, and m,, then the equation of motion
are

m, k m,
mf) =-+h (x; =) @—"800680005—O
=k assuming x, > -
myXx, = X, —X;) assuming x, > X, X, X,
Fig. 1.7

or, myny, (562 —5c'1)=—k(m1 +m2)(x2 —xl)

If x, — x, = z, then above equation becomes

—L2_§=—kx or, u¥ =—kx which is the equation of SHM.
.k \/?
o, ¥=——Xx,s80 0= |—
25 20
or, 1'=2m % is the time period of oscillation.
hm,
Here = = reduced mass of the system.

Exercise 7. If HCI molecule is supposed to be like two masses connected by a
spring of force constant k, then assuming the frequency of vibration of the molecule
as 8.57 x 103 Hz, find the value of k.
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1.5 Importance and limitation of SHM :

From fourier series analysis we know that any periodic function that represents
vibration may be expressed as a linear combination of many SHM as

VAGE Zan cosn(;)t+2bn sin n !
n=0 n=1
Thus any kind of vibrtion can be expressed in terms of many SHM. Thus SHM
may be called the smallest building block of any kind of vibration.

If we assume a particle is at equilibrium at x,. and if a force F(x) acts on it, then
using Taylor series expansion

F(x):F(x0)+(aa_§)x=xo (x_x0)+%(x_x0)2(3827§l0+...

If F(x,) = 0 and if x — x, is small, then the above expression becomes
dr
F(x):(x—xo)-(a) Thus F(x)eo(x—x,),
X0

dr

Now, if (a) =—ve  then the motion will be SHM.
X0

But if (%) =+ve or if it is zero, then the restoring force will vanish and the

motion will no longer SHM. Also if the higher power of (x —x,) are not negligible
then the motion will not be SHM. This motion may represent vibration but it will not
be SHM. This is the limitation of SHM.

7

Exercise 8. A simple pendulum is suspended by a massless
string of length L. from a rigid support. If the rigid support start
moving with an acceleration f in horizontal direction, then calculate
the time period of oscillation of the pendulum.

Om
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Exercise 9. A block of mass m connected with a spring of force constant k oscillate

on a rough floor of coefficient of friction . k m
Calculate the frequency of oscillation and the
instantaneous amplitude of the mass spring system.

AW,

Exercise 10. A uniform rod of mass m and length L is attatched
with a disc of radius r, mass M forms a pendulum. If it oscillates m L
in a vertical plane, then calculate the time period of oscillation.

VoY
WO,

Exercise 11. The potential energy of a diatomic molecule is given by

6
2 2
V(F ) =2V (70) +2), (70) , where V) & r,, are constants and r is instantaneous

distance between the two molecules. Calculate the frequency of small vibration of the
diatomic molecule.
Exercise 12. The PE of a diatomic molecule is represented by V(r) = k k_é If
ror
r, 1s the equilibrium distance of the atoms in molecule, then find the expression for
force constant of the system for small oscillation.

1.6 Summary

1. The most fundamental vibration associated with wave motion is the simple
harmonic motion (SHM).

2. When a point rotates on the circumference of a circle with a uniform angular
velocity, the foot of the perpendiculear on any one of its diameters will execute
simple harmonic motion.

: : : . d? :
3. The differential equation for SHM is ?;C+O)2x=0 where 0)=\/% is the

angular velocity of mass m and the exponential solution is x = 4’ + Be™™
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4. The time average of KE and PE are (KE) :%mofa2 =(PE) and mechanical

energy (ME)= %mofa2 .

1.7 Review Questions and Anwers

1. Show that two rectangular SHMs of equal frequency but having a phase difference
of /2 can generate a circular motion.

2. Show that a SHM can be considered as the superposition of two equal and
opposite circular motions.

3. A particle of mass m is under a unidimensional potential V(n) = V,, (1- cos Kx)
where V, and K are constants. Find the time period of small oscillations about
the equilibrium position.

4. A mass M is suspended at the end of a spring of length / and stiffness s. If the
mass of spring is m and the velocity of an element dy of its length is proportional
to its distance y from the fixed end of the spring, show that the time period for
small verticle oscillation is given by

M+m/3
s

T=2m

5. A particle of mass m is attached to the midpoint of a vertical light string stretched
between two rigid supports under a constant tension. Find the time period of
small horizontal oscillations.

6. A small pendulum consists of a rod of mass m and length [ which is capable of
oscillation about one end and the other end carries a mass M. Determine the
natural frequency of oscillation.

ANSWER
1. Let the two SHMs be represented by
X = cos ¢
and  y=acos(or+7/2)=—asinexr

Now x*+y*=d’ (cos2 of +sin’ (ol) =

It represents a circular motion.
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Circular motions can be represented by

X; = acos ot X, = acoswt

} Anticlockwise } Clockwise

Y =asinot Y, =asint

Adding thse equation we get x = 2a cos ot, y = 0.

For equilibrium, ddx_V: 0 or, sin Kx=0o0r, x=0

Now if x be the displacement from equilibrium at any instant then equation of
motion is

d’x _ dV _ :
m?——a— V,K sin Kx

For small oscillation sin Kx — Kx

2% KK? v, K>
_d ;C =__0 x=-m%x where W= —VOK
dt m m

It represents a SHM. Its time period is

po2m_2n m
o K\,

Let at any instant the displacement at the free end from equilibrium position be

x. The velocity of the spring at the free end at that instant is =x . Velocity

dx
dt
of the spring at fixed end is zero. As the instantaneous velocity increases of an

X

7Y The

element dy of the spring at a distance y from the fixed end would be

kinetic energy of the element is %(pdy)(xy/ 1)2 where r is the mass per unit

length of the spring. Hence total kinetic energy of the mass-spring system is

Dape o 1071 g Ly 1P 2
Mx* + l_([ydy—zMx+2 3 |x
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X

Potential energy of the system is Jsxdx = %st
0

.. Total energy of the system is

_1 m)2, 1 o2
E—2(M+ 3)x +2sx
Since total energy of the system remains constant, dEidt = 0O
Thus, we get

S

This shows that the motion is simple harmonic and the time period of oscillation is

T =om /M+Sm/3

5. Let x be the horizontal displacement of the mass m at any instant of time t. The
displacement is assumed to be small and hence the tension T in the string may
be taken to remain constant. Referring to Fig. 1. P-1, the tensions in the two
halves of the string can be resolved into vertical and horizontal components.

X

T cos 6
e A
T
< < » X-axis

2T sin O m

H T cos 6

! v

0 T

Fig. 1. P-1

The vertical components 7 cos 6 cancel out. Hence the restoring force on the
mass is 27 sin 6.
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From Fig. 1.P-1

sinf = I/LZ = ZI_x where [ is the length of the string.

Therefore, the equation of motion is

2
md— =-27sin6 = —2T2—x
dr? /
2
or, d—; =-0’x where ® = all
dt mi

This shows that the motion is simple harmonic and the time period of oscillation
is

_2n_ o, ml
T= "o =T
6. Let 6 be the small angular displacement at any instant as shown in Fig.1. P-2
Now the kinetic energy of the system is oy
a O
_1 2,1 =
Kb = 2 rode + 2]masse 5 I
1(1 1 h l g
_ (1 a2 1 g242 2
—2(3ml )9 +2M19 o
1 242 M
M+=|l - :
2( ) o Lh )
. . X
Potential energy of the system is Fig. 1. P2

PE:Mgl(l—cose)+mg;(l cos6) = (M+ )gl(l cos6)
Since total energy (KE + PE) is constant,

4 (KE+PE)=0

dt
( )129+( 5)gls1n9 0


https://www.print-driver.com/?demolabel-en

NSOU « CC-PH-09

For small oscillation sin® = 0 and the equation of motion becomes,

_M+m/2 g
S MAm/3 1

. The time period of oscillation is

T=2—n27c M+m/3 |
® M+m/2 g

0 =—n%0 where ®°

23
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Unit-2 : Damped Harmonic Motion
Structure
2.0 Objectives
2.1  Introduction
2.2.  Equation of damped vibration
2.3 Solution of differential equation
2.3.1 Heavy daming
2.3.2  Critical damping
233 Weak damping
24  Energy of a weakly damped oscillator
2.5  Estimation of damping
25.1 logarithmic decrement
2.5.2 Relaxating time
253  Quality factor
2.6 Summary
2.7  Review Questions and Answers

2.0 Objectives

After reading this unit, you should be able to :

Understand the various types of damping effects

Write the differential equation of damped harmonic oscillator

Analyze the weakly damped, critically damped and over damped motions
Explain various parameters characterizing weak damping and

Understand the damping in LCR circuit

2.1 Introduction

So far we have seen the SHM once starts, continues for infinite time with constant
amplitude. But in practice it does not happen. The vibration of any system stops after
a certain interval. This is because of the resistive force that acts on the system which

24
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is not considered in previous section. This resistive force acting on a vibrating system
is called damping force.

In general these damping forces are classified in three type.

1. Viscous damping : The resistive force offered by fluid medium on oscillating
system. This force is found to be proportional to the instantaneous velocity of the body

. d .
ie F,= bd—);, b = proportionality constant.

2. Coulomb friction damping : This damping appears due so direct contact of the
vibrating body with any other body. This force may be represented by F, = uR, where
u = coefficient of friction and R is the normal reaction.

3. Structural damping : This damping arises due to structural deformation or
uneven shape of the body.

In this section we will discuss only the effect of viscous damping on oscillating

2 3
system. This damping may be expressed in general as /' =b d—); +c (@) +d (@) +...

di dt dt
but if % is small, then it can be represented by F, :b%.

2.2 Equation of damped vibration :

Equation of damped vibration :

Let us consider a mass-spring system subject to a
damping force. Then if the mass m is displaced by
x, then, it is acted upon by two forces

(1) —kx restoring force
(i1) —b% damping force
Hence the equation of motion
mx = —bx — kx .. (221

Or.

2

s+l 0K 0 andifweput & =2y &
m m m

k 2 .
el the equation is

Fig. 2.1

¥+2yx+0; =0 .. (22.2)
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Here v is called the damping factor and ®, = \/% is the angular frequency of

undamped oscillation.

Here it is to be noted that equation (2.2.2) is a second order linear homogeneous
differential equation whose solution will give us the displacement of the oscillating
system at any time t.

2.3 Solution of differential equatgion

To solve equation (2.2.2). Let x = Ae™ where o is to be determined. Then we get

x=o0de” and ¥=o’Ade™

or,
or,
or,

So,

hence

[oc2+2yoc+(o§}x:0

o’ +2ya+ i =0

0(_—271«/472—4(03
B 2
o ==y +{Y -0 & 0, =-y-\v -0

2 2 2 2
_ ( Y —0)0.)1‘ _ —( Y —0)0.)1‘
x=Ae Ve +A,e " e

[2_ 2 a2 2
:e_W{Ale VIO ge VY mo't}

Here we may have three different cases.

2.3.1 Heavy damping 4

.. (23.1)

X
If V> ie. damping is large, then the heavy damping

variation of (2.3.1) is depicted as shown in Fig.
2.2. This is called heavy damping and here if at
x,, as t increases x(r) deceases

t=0, x =

v
~

exponentially but at a very slow rate due to presence

of term e

2—0)0 R

2

Fig. 2.2
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2.3.2 Critical damping Xa

2 2 . . .
If Y7 =g, then the displacement is |\ ™. heavily damped

x=(4+4,)e™" .. (23.2)

~
~.
-
..
Snan

This is called critical damping. Here at # = 0, x = x,,,
but as times goes on x decreases at exponential fast rate
which is compared with heavy damping in Fig. 2.3.

critically damped

Fig. 2.3

2.3.2 Weak damping

If the damping is very weak, so that y? < (1)3, then the quantity ./v? —(1)3 =i@ is

imginary. So, the solution becomes

x=e" {Ale’mt + 4, } =e {(Al + A4, Jcos it +i (4, — A4,)sin 0)1}

= Aye™" cos(wr —3) where 4 +4, = 4,cosd (4 —A4,)i=4,sind.
. (233)

From this expression we note that

(a) as time goes on the amplitude decreases but here we get an oscillation with
decrease of amplitude. This is called damped vibration which is shown in Fig. 2.4.

(b) Here we also note that this vibration
has frequency ® which is less than natural 4
frequency o). R o
The time period of this oscillation is /-\/

27 27

_2r_ 2 /\
7= o " M_YZ = \/ﬁ_ﬁ...(z.m) \/ \JV _____

m 4m |\ | .

b
e
-
"
o
-

Exercise 1. What is the unit of damping
factor v.

Fig. 2.4

Exercise 2. In a weakly damped system the amplitude reduces from 8 cm to 2 cm
in 160 sec. If during this time the system completes 80 vibrations, then find the value
of damping factor y and the time period of vibration.
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2.4 Engergy of a weakly damped oscillator

We have the instantaneous displacement of a weakly damped ocillator is

x = A4ye " cos(wr —8). So the KE. of the oscillator is

KE = %m)'CZ = %m [— Aye™ " cos(wr —8) — Age ™" wsin (or — 5)}2
and PE. = moic? = L mw? 42e 72" cos? (o -3)

. T E.=E=PE+KE= %mo)ZAOZe‘Z’” cos” (wr —8)+
%m {yonze_ZW cos? (ar —8)+ 2.4, we ™" sin (oo —§) cos (wr —3)

+A450%e " sin” (o +8)

Taking o large i.e. T = small, we can take time average of this T.E. as

2 42 2y
(E)= %m(y)2 ge +% as <cos2 (wr —6)> = %
and <sin2 (O)t - 8)> = % E,
but <sin(0)l—5)cos(0)l—5)> =0 s
We get (E)= %mo)ZAloze_ZW . (240 >
Fig. 2.5

Thus we see that the total energy of a weakly
damped oscillator also decreases at exponentially fast rate.

Exercise 3. In a mass-spring sysem the mass is m = 2kg and force constant k =
2N/m. If it is subject to a damping force of 0.2 Ns/m, then

(1) What is the frequency of damped oscillator.

(i1) How much time will be required to reduce the energy to L th of its maximum

10
value.
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2.5 Estimation of damping

The damping of a weakly damped oscillator can be estimated in three ways. These
are—

(a) Logarithmic decrement or log decrement ()
(b) Relaxating time (7)
(c) Quality factor or Q-factor.

2.5.1 Logarithmic decrement () :

It is one of the easiest way of estimating damping of a oscillating system. To
explain it let us consider the 1st few amplitude of a weakly damped oscillator.

We have  x=Ae™" cos((z)t - 8) Ta

Putting 6 = 0, we see that o

i A 2 A
@ R
U —u—--—u-—-
att=2T, x=Ae " =4, i \[| U~

>
o
-
»
-
Ra
»

_ _ —-v.37 _
at t =37, x=Ae " efc. = 4, Fig. 2.6

.. We see A_2 = A_3 = A—4 ~~~~~~~~~ =e" = constant = d (called decrement)

- logd = yT = y = called logarithmic decrement.

) 4 A, A4 A o
Now to determine A, we see _A2 X_A3 X_A4 X A A
A
n-1 _ ‘4
oL AT =7
1 Al
or, = 1 .. (251
A - 1log( Anj ( )

Thus from (2.5.1) we can determine A and hence y = A/T, the damping factor of
the weakly damped oscillator.
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2.5.2 Relaxation time (7)

We have seen that the amplitude of a weakly damped oscillator varies as A = A,

. . . . . 1 .
e . Now we can consider a time 7 = 1, in which the amplitude reduces to - times
of its maximum value. This time ¢ = 7, is called relaxation time, and hence for ¢ =T,

we haveyt=1or 1= % Thus the relaxation time is the reciprocal of damping factor.

Here it is to be noted that this parameter is usually used to estimate the damping
of subatomic systems. On the other hand the log decrement is widely used to estimate
the damping of ballistic galvanometer, mechanical oscillators, damping of a simple
pendulum etc.

2.5.3 Quality factor (Q)

It is a parameter which measures the damping of a weakly damped oscillator by
measuing the rate of decrease of energy. It is defined as

Energy stored per unit time period _ 5 <E >

Q=2mx Energy lost per unit time period T d{E)
Cdt
~ d{E
Now (£)=FEe™ .. % =-vit)

0= ZTE.YLT = % , Hence Q-factor is the ratio of the angular frequency of damped
oscillator and the damping factor.

It is to be noted that Q-factor is extensively used to estimate damping of forced
vibrating oscillator, LCR circuit, etc.

2.6 Summary

In this section we have discussed—

1. Effect of viscous damping on real oscillating system.

2. The equation of motion of a damped oscillator.

3. It’s solution and their nature in different condition.

4. The process of estimation of damping in different types of damped oscillator.
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5. The final expression of the three parameters logarithmic decrement (1), relaxation
time (t) and Q-factor.

2.7 Review Questions and Answers

1. The angular amplitude of a simple pendulum decreases from 4° to 2° in making
50 oscillations. If T = 2 sec is the time period, then calculate the A and t.

Obtain a relation between A and T, T and Q factor and A and Q-factor.
3. State the unit and dimension of A, T and Q-factor.

A mass m connected with a spring of force constant k vibrates in a horizontal
rough floor of coefficient of friction . Set up the equation of motion and discuss
the vibration of it.

5.  The length of a simple pendulum is 10 cm. When it is allowed to oscillate in a
viscous medium its frequency of oscillation becomes 9.0 rad/sec. Calculate the
damping factor (y) of this damped vibration.

6. A mass of 0.01 kg is acted upon by a restoring force of 0.01 N.n! and a resisting
force of 2 x 10 N.s.m™'. Find out whether the motion is oscillatory or non-
oscillatory. Also, find the value of resistive force for the motion to be critically
damped.

7. A mass m = 2.5 kg is suspended by a spring of stiffness constant s =40 N.m".
the amplitude of vertical oscillations of the system is observed to decrease to 20%
of the initial value after five consecutive cycles of oscillations. Determine the
damping coefficient R of the system.

8 A mass m = 0.2 kg is suspended by a light spring of stiffness constant
20N.m™'. The energy associated with the vertical oscillation of the system is
observed to decay to 1/e of initial value in 50s. Assuming the damping force
(R,,v) proportional to the velocity (v), find the damping force constant R = Also
find the Q-value of the oscillator and the percentage change is frequency due to
damping.

9.  Abody of mass m = 10 kg is subjected to a restoring force of stiffness constant
s = 10 N.m™'. The sysem is subjected to a damping force proportional to its
velocity with the constant of proportionality as R, = 10 N.s.m™!. The mass is
given an initial empulse of 0.68 kg.m.s™' when at rest. Find the subsequent
displacement of the mass as a function of time.

10. Show that if the damping force is of constant magnitude the frequency of vibration
of a damped oscillator is not affected by the magnitude of damping.
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11. In a damped harmonic oscillator the amplitude of vibration decreases from 10
cm to 1 cm after 100 complete cycles of oscillation. The time period of oscillation
is 2.3 sees. Estimate the first undamped amplitude.

ANSWER

1. We have x:ﬁln(%j:ﬁln(g—lj, here 6, = 4°, 0, =2° & n = 50.

n n

oL (ﬂ)_ln_2_0.693

“49 M 2)7 9" 49
L. 0693 _ _ 0.693 1 98
But A = AT .. 29 v2 or, A= o8 and hence T_7_0.693 sec.
2. We have A = y.T, T=1 dQ=9=2—TC
. e have A = v.T, =y an v 4T
_I. _2nt _2n

3. A and Q are unit and dimensionless as they are ratio of same quantity. But T has
unit sec and diension [T7].

4. The equation of motion of the mass is

2 X
md2x=—kx—umg X m—,
a T
P (ke 777777777777 7777777777777 997777777
o, —,*t (—+ Hg) =0 mn
Coodt m .
Fig. 2.P-1
d’c k mug )
or, 3t E(H—T =0 putting
z=x+ WZ—g , we get

) . k . mug
d—+0)02=0 S z=Asinmyt, (ooz\/% and x=As1n(1)OZ—T


https://www.print-driver.com/?demolabel-en

NSOU « CC-PH-09 33

5. T'=2rn L taking ¢ = 10 m/sec?, when L = 10cm, 7' =27 10
g 1000

o _

T V100 = 10 rad/sec, here w = 9 rad/sec.

0)0:

w=\oi-y? or Y=ol -0?=10"-9?=19 .. y=+19s"
6. Here =0.01 kg, s=0.01 Nm'and R, =2 x 108 Nsm!.

R, 2x107°
S0, b= = 2x001

o _ﬁ_ /0.01_1
0" \'m N001

As b < ©,, the motion is oscillatory.

=0.1 Nsm™ kg!

For the motion to be critically damped b = o,

R S
or. 2= =

 2m \m
or, R =2vsm=24001x001=002 N.Sm

7. The damped vibration of the system is given by
x = Ae? cos(ot — ¢)

where b = R /2m, w=./o;-b> and o, =+/s/m

The maximum amplitude in a cycle occurs when cos(or — ¢) =1. Therefore the
maximum amplitudes on the same side of the mean position are,

A= Ae™ A5 = 47T 4z = Ae 0T

where T = 27t/o 1s the time period.
Now in the problem,

A1
A7 7020
o, ¢*T=5 or, bT = st —0322 or b——2® _-0322

o, —b*
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Putting @, =Js/m=+/40/25=4 rads’!, we get b = 0.20.

NSOU « CC-PH-09

Damping coefficient R, = 2bm = 2 x 020 x 2.5 = 1 N.Sm.

8. The energy decays according to the law

(E)= Ee where 2b = R /m

E
At t = 50 sec, 70=E0e_2b'50

or, 2b=(1/50)s!

2

Hence R, =2bm=4-x02=4x107 Nsm'

The undamped natural frequency

_ s _ 20 =

(00—\/;— 0.2—10 rad s

o _ 1 [ 2 32 sy 102 L =
Q_Zb_Zb (0% b =50 {10 104—500

b
Now, (02«/0)3—1)2:0)0[1 —Zj —(oo[l 2]
0

Wy

i) |

I = —

. The percentage change in frequency due to damping is

@ 100=100 _ 100 _ 5 g0,

N 80  8x(500)’

9. The equation of motion of the mass is

mx = —Rmx — $X
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10.

and its solution is of the form

x=e¢ (A cos 7 + bsin (ol)

Rm 2 2
where b:ﬂ’ W= w;—>b" and ®,=+/s/m; A and B are constants to be

determined from given initial conditions.
At t = 0, x = 0, This indicates that A = 0.
x = Be™ sin ot

Now the impulse is equal to change of momentum. Therefore

mx, — 0 = 0.68
.. Initial velocity x, =%:0.068 m.s!
_Ry 10 o | Y
_%_ZXIO_O'SS , Wy =~s/m=1 rad. s, ®=4/w;—b" =0.866

x=—bBe " sinwt + wBe™ cos ot
Att=0, 0.068 = oB.

0.068
B= m = 0078m

Thus x = 0.078¢ %> sin 0.866¢
This equation describes the subsequent motion.
The equation of motion in this case is

mx = —Iy —sx
or, m¥X= S(x+F0 /s) =0
Introducting a new variable y=x+1I/s we get
my+sy=0
or, j+wpy=0

where @, =+/s/m is the angular frequency for undamped oscillation. Obviously

the damped natural frequency is equal to the undamped natural frequency and
does not depand on the magnitude of the damping force.
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11. Log decrement

A 1 10 _
K— %100 logeT—OOIIS

-1
A= o log,

. Undamped amplitude

0.0115
2

AzA1(1+k/2):10(1+

) =10.06 cm.

NSOU « CC-PH-09
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Unit-3 : Forced Vibration and Resonance
Structure

3.0  Objectives

3.1  Introduction

3.2.  Equation of motion of a forced System

3.3 Solution of the differential equation

3.4  Variation of displacement with frequency (®)

3.5 Resonance

3.6  Rate of energy dissipation

3.7  Sharpness of resonance and Q-factor

3.8  LCR Resonance Circuit

3.9  Summary

3.10 Review Questions and Answers

3.0 Objectives

After studying this unit, you should be able to :

define forced harmonic opcillations

write the differential equation for weakly damped forced harmonic oscillator
solve the differential equation for weakly damped forced hamonic oscillator
describe the phenomenon of resonance

apply the solution of wearkly damped forced harmonic oscillator to explain
resonance

obtain an expression for the power absorbed by a forced oscillator and
define the quality factor of a forced oscillator and sharpness of resonance.

3.1 Introduction

We

have seen that the amplitude of vibration of a system decreases with due to

damping force on it. But if the vibrating system is subject to the action of an extenal

period
the bo

ic force, it is said to be in a state of forced vibration. In this condition initially
dy tends to vibrate with its own natural frequency (), while the applied force

37
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tries to make the body vibrate with the frequency of forcing system. Soon the natural
vibration dies away due to damping force and finally the body continue to vibrate with
the frequency of periodic force. This vibration is called forced vibration. As an
example a bridge vibrates under the influence of marching soldiers, the housing of
a motor vibrate owing to periodic impulses from an irregularity in the shaft, a tuning
fork vibrate when exposed to periodic force of a sound wave, etc.

3.2 Equation of motion of a forced system

Let us consider a mass-spring system LI
connected with a simple pendulum, which y
exert a periodic force F'= F|, cos ot on the 2
. . Y L
mass-spring system. Let the damping force g
7
on it is —p% . Then the equation of g k -— | —
motion of the forced system is Z—Wm—// F = F, cos ot
: 7 %
d'x _ dx et I .
m?——pz— + OCOS(DZ Flg 31
d*x _dx . o
or, ?+yz+(y)0x—focosmt .. (32.1)
_P o =k _to
where v=o 0)0—\/; and f, = p” .. (3.22)

This is a second order linear inhomogeneous equation.

3.3 Solution of the differential equation

The solution of this equation will have two parts. One x, called complementary

function obtained by putting R H.S. equal to zero, i.e. x; = Ae™"'? cos ((o’l — ¢) ..(33.1D)

and the other called particular integral x, keeping R.H.S. intact. The solution x,
gradually decreases due to exponential term, but the solution x, remains also the time.
So after a sufficiently long time the forced vibrator settles down to vibrate with the
frequency of periodic force i.e.
x, = By (cos 0t - §) ..(332)
This just after the exernal driving force is put on the solution is x = x; + x,. This
is called transient state. But after some time x; — 0 and we get x = x,, This is called
steady state.


https://www.print-driver.com/?demolabel-en

NSOU « CC-PH-09

39

Now to find the amplitude and phase of steady state solution let us take F' = F,
cos ot = F, "' whose real part respresents the periodic force.

Thus we getﬁ+y—+0)§x:foe

hence assuming x = Bje

Or.

Or.

Thus

Thus

and

d? dx ot

dt

i(wr—3) , we get

[(—(02 + (oé) + i(oy} x = f,e'

l](oel'a

.. (3.3.3)

So

— —id
BO - Or’ Boe ! =

((og - (02) +i0yy ((,)g _

£ {((z)g —(02) —i(oy}

2

B, cosd—iB,sind = 5
o —(02) +’y?

2 2
0y — O
B, cosd = fo( 02 ) and B,sind =
(0)3—0)2) + oy’
By = Jo

§=tan"!| -
[0)3 -’

Thus we get the steady state solution

x = Bcos(ot — 0)

m2)+ioyy

Wy fo
(0)3 - 0)2)2 +m’y’

.. (33.4)

.. (3.3.5)

.. (3.3.6)

3.4 Variation of displacement with frequency (®)

Thus we see that the amplitude and phase of displacement varies with the frequency
of periodic force.

Here we note that

F,

When ¢ —0, Boﬁiozzf
0
29 (D%(DOJ BOZ&
wy

22

Jo

O —> large, By~
®
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d 2 2\, 22| _ :
Moreover we see that when 70 (0)0 - ) +®"y” =0, then the amplitude

will be maximum, and this gives ®, =4/ 0)3 —v%, . Thus the amplitude will be

maximum when the frequency of forcing system is

W, =05 —v% .. (3.4.1)

This is known as amplitude reasonance and the maximum value of this displacement

isgivenby B - Jo . (342)

" oyei-vy

Fig. 3.2 shows the variation of
amplitude of forced oscillator with the
frequency of the periodic force. We see

for small damping ®, ~®,. but for

large damping amplitude resonance
frequency differes from the natural
freqency of oscillator.

3.5 Resonance

Now we see that the instantaneous velocity of the forced vibration is

dx _d

v="r= EI:BO cos (o —§) | =~V sin (wr - 3)

or, v=05B, cos{mt—(mZ—B)}=mBo cos{wr -9} .. (35.1)

So the velocity amplitude is B, =
\/( 2 2\, 20
W) — O ) + 0%y

and we see this @B, = Jo = J% = max.
2

2
=g
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when o = o, exactly. This is known as velocity reasonance.

Thus the velocity of the oscillator will be maximum when the frequency of the
forcing system is exactly equal to the natural frequency of vibration of the system.

v4 Here we see wB,=vy, —>0asw—0
0 S 1 Wy = small
z A I 0
/ 1 , 2% _— —
; o v when o = 0,
------ {."’*{t*/ v, — 0 when @ — large
""""" .\:9@0 RN
0 L P T N The variation of V,, with @ is as shown beside.
® ®
0
Fig. 3.3

3.6 Rate of eneregy dissipation

We know that the energy of a damped oscillator decreases exponentially as
E=Ey " So in order to maintain steady state oscilation of the oscillator, the driving
force must supply the power to the oscillator to compensate the loss of energy due
to damping force.

Now this rate of dissipation of energy by the oscillator is

P(t)= F(l)x%z force x velocity

But we have % =w{B, cosdcosr — By sin§sin o }

= {Bl cos ®f — B, sin (1)1‘}

Where B, =B,sind = waZY
2 2 2.,2
\/(0)0—0) ) +oy
£ (0F —o?
and B, =B,cos0 = 0( - )

\/((oﬁ -’ )2 +oy?

P(t)= @k} cos ot {Bl cosf — B, sin (1)1‘}
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.. The average power dissipation is

ol B,

<P (Z)> = wly, <cos2 0)l>B1 - (sin 2001)
But <cos2 0)t> = % & (sin2wr)=0
1 1 [
o0 (=long-l Wt
22 2,,2
J(o -0 -0
1 2
<P> — EFOZP Q)] .
J(mg _0)2) +mzyz) .. (3.6.1)

This is the average power dissipated by the damping force and this must be equal
to the power supplied by the forcing system in order to maintain constant amplitude
oscillation.

3.7 Sharpness of resonance and Q-factor

From the expression of average power dissipation we see that it is maximum when
® = 0, and this maximum value is

l,2p
Py =-p2L
< >max 2 0 ,YZ

2.,2

(P)=(P) s {( =1 INERAD

2
o, —(02) +(0272}

From the variation of average (P) 1
power dissipation with the frequency
of forcing system we see that there are <P >
two frequencies @, and o, at which
this dissipative power reduces to half §<P >maX
of its maximum value and the
difference of this two frequencies is
called bandwidth. Thus Bandwidth 0

BW)=0,-0, ... (3.72)
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These frequencies are called half power frequencies.
Now at o, and ©, we get
1 0)272

2" (0)8 ~’ )2 + oy’

2
or, ((og —032) =o'y’ o, 0l-0’=t0y

Thus we get two equations m* —ym — (og =0 and ®*+wy— (og =0 and the positive

roots of these two equations gives us

Y 2, 2 Y 2, 2
O ==+ @)+ /4 and 0y =+ @)+ /4
Thus BW. =0, — o, =v .. (3.7.3)

. . W, . W, _ W
Since Q-value is equal to 7; hence we can write ¥ = v A .. (3.74)

Thus lower the bandwidth greater is the Q-value.
Thus from the variation of (P) with © N
we see that if Q is large then the resonance
is sharp which means the resonance takes (P)
place only for a small range of values of ®
near ©,. But if Q is small then the resonance T
is not sharp or blurred which means that
the resonance takes place over a wide range
of frequencies on both side of ®,. Thus the
sharpness of resonance of a forced vibrator
is determined by its Q-factor. Fig. 3.5

O ®

sv

0

3.8 LCR Resonance circuit

L C R So far we have discussed the forced vibration
—’mﬁW—| F/VVVV\/— of mechanical systems but in a series LCR circuit
with a a.c. source we can observe this forced
vibration also.

o Let us consider an inductance L, capacitance C
and resistance R in series with an ac source of

=g @O
€ =g,

Fig. 3.6 emf e=goe’”, j=v-1.
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Then if i is the instantaneous current in the circuit, then using KVL (kirchhoff’s
voltage law) we get

d _ ., 4q
€ Ldt_lR+C
di e d g piot
of, Ldt+lR+C_eoe
di L di 1. . -
Or. —_ — =7 = jor
) Ld12+RdZ+C1 JOEe

Thus if we put i = i ,¢/®, then we get
p 0 g

[—(ozL + jOR+ i}'o = jwe,

C
. 1 .
or, |:R+ ]((DL —R):|lo = 80
, €
or, Iy = v
R+ ]((DL - —C)
. €
Hence ‘10’ = n and i, = |ij|
2
\/R +(0)L (DC)
((oL —%)
where &=tan! T(D

. o g,
Thus the current in the ckt is 7(¢) = —
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Thus we see that the current not only depends i 4
on L, C & R, but also on the frequency © of the
ac source. This current is maximum when

R = small

0, L-——=0 is o, =ﬁ. this is called the

b

®,C

resonance frequency of the circuit.
Comparing this eqation

e
(=)
Sv

d*i Rdi i __jmeoemt

2 TatIcTI

with the equation Fig. 3.7

. . d2x dx 2 iof . R
of forced vibration ?4‘75"‘(’3035: Jfoe™ we get damping factor V=7 and
o - L
T LC

So the Q-value of the ac circuit is given by

Q = & = O)O = O)OL = l
R R o,R
i /L 0
Thus we see that smaller the value of R grdater the value of Q and this Q-factor
also measures the sharpness of resonance.

3.9 Summary

1. Due to damping force the amplitude of a vibration body decreases. But this
amplitude can be retained constant by imposing a periodic force on it. This is
called forced vibration.

2. The general differential eqation of a forced vibration is

d’x  dx i
m?+pz+kx:Fo cosef or Fe".

3. = \/% is the natural frequency of vibration of the body. ® is the frequency

P

of the forcing system and v = pn is called damping factor.
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The general solution of the above equation is
X = Ae_y% cos ((o’l - 5’) + B, cos ((ol - 5) . This is known as transient state

but after a certain lapse of time, we get only x = B, cos ((1)1‘—5). This is called

steady state.

For a particular frequency o, = Joi —v*/4, the amplitude is maximum. This
is called amplitude resonance and for ® = o, the velocity is maximum. This is
called velocity resonance.

For sustained oscillation in a forced vibration we must have average power
dissipated by damping force must be equal to the power supplied by the forcing
system.

ie <P>supply = <P>diss :
The sharpness is a very important characteristics of resonance. And this sharpness

. . . .. ®
of resonance is determined by Q-factor of the forced oscillator and it is O = —2.

A®

Like mechanical system, the forced vibration is equally observed in electrical
circuit also. LCR series resonance circuit is a good example of it.

3.10 Review Questions and Answers

1.

A mass-spring system has m = 500 gm, force constant k = 200N/m. It is subjected
to a damping force 0.5 N/ms™'. If this mass is subject to a force of amplitude SN
& frequency o = 30 rad/sec, then calculate the frequency of osillation at amplitude
resonance and velocity resonance. What is the Q-value.

Discuss the variation of phase of a forced oscillator with frequency of forcing
system.

Show that in a forced vibration the avergae power dissipated against damping
force is equal to the power supplied by the driving force.

In a series LCR circuit R = 10QQ and C = 50uf The emf of ac source is
€ = 20 sin 100 7wt volt. For what value of L, the current in the circuit will be
maximum. And what is that maximum current?

If x= Boe’(mt_a) is the displacement of a forced oscillator and the value of B, at

max

resonance is B, . then show that B =0, where Q is the Q-factor of the
0

circuit.
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6.

Consider a weakly damped harmonic oscillator driven by a force F = F, cos ot.
If m 1s the mass and R is the damping force per unit velocity show that the width
of the amplitude resonance curve is approximately /3 R/m, where the width is
measured between two frequencies where the amplitude equals half the maximum
value.

In case of a forced vibration under a simple harmonic force the half-power
frequencies correspond to the phase angle range given by tan ¢ ==x1 where ¢
is the phase difference between the displacement and the driving force.

Show that in forced vibration the total energy of the vibrating system is not
constant. Also show that

Average PE. (o§

Average KE 2
where ©, is the undamped natural (angular) frequency and @ is the angular
frequency of the driving force.

Consider the following equation which represents the equation of motion of a
weakly damped harmonic oscillator driven by a constant external force F),.

mxX+R, x+sx=F,

Solve the equation for small damping and sketch graphically the nature of variation
of x with 7.

ANSWER
_ |k _ | 200 _ _
Here (@, = \/% =, /—O.SOO =+/400 =20 rad/sec
0.5
here Y —0—5—1 rad/sec

_ 2 2,4 I /1599
®, =) —7 /4_\/4OO_Z_J ) rad/sec ~ 200 rad/sec

o, = 20 rad/sec is the frequency of velocity reasonance;

_ % _20_

Q==p=T=20
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If x = B,cos (ot — 0) is the displacement of the forced oscillator then

_ oy
d=tan"! 4
[0)3 ~®’ } o
Now §—=0 when @ —0
T
2
) %g . 0= 0,
d—m » ® — v.vlarge
Thus the variation of & with © is as shown 0 o ®
in Fig. 3.P-1. 0 is almost m = 180° when Fig. 3.P-1

o 1s very very large.
Here F =F,coswr is dring force x=B,cos(wr—38) displacement and

v=%=—mBsin(o)t—S):chos(O)t—(I)) where ¢=%—5.

v = 0B cos §cos @ + @B sin ¢ sin 0 = [ B, cos @ + B, sin ¢

Damping force F'= p% B, =Bcos¢, B,=Bsin®

= Bsind = Bcosd
Now power dissipated is

po e dx_ (dxY
P ar TP
P, = po’ {B, coswr + B, sin (1)t}2

2
(Pu) = pot 3 (B 4 B2) =4 poo? 0

2
((og -~ (02) + oy’

and Py =F (1) % = F; cos L0 { B, cos r + B, sin i }
<Psupp> = Iy0B, <0052 (Dl> = %FO(;)B1 = %FOOJ Jo®Y

2
(0)3 - 0)2) +m?y?

as f, = %, hence <Psupp> = <Pdm>
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1 _ 108
Lx50%x107% SOL

4. Here o] =L and it is 100 radians, so 100)2
LC

or, S0L = 100, L = 2 Henry.

The current is maximum when resonance takes place and this maximum current
is

8 20
hmax = 2 = 10 =2 amp.
5. From Eqn. (3.3.4), we have B, = Jo - .. (D)
2 2V, 2 2|7t
{(030—0) ) +o°d }
Again, from (3.4.1), we have o, = «/(og —d*/2 .. (2
Substituting ®, for o, in Eqn. (1), we have
Bmax :#1
d2 A
Y| of -
Bmax _ (Dg 0)0 Q

B, oV RV 7
() (%) )

For low damping, Q is very large, hence

1

N
] —Q[”@]—Q

B 1
— “max __ 1—

B, Q[ 40?*
= OB, (Proved).

fo
\/(wé —-w’ )2 +4b*w?

Thus B .

X

6. Amplitude 4=

where f, = F,//m, b = R/ 2m and o, is the undamped frequency.
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(Dres = (Dg - 2b2
__Jo
A“max 2b0)0

2
\/((03—0)2) +4b’0* =2x2bw,
2 2)\? 2,2 2,2
or, (0)0—(0 ) +4b"0° =16b"w;

As b*< (og we can write 4h°w? = 4b2(1)§

((og —(02) =12bw;

o, f-w’=+23hn,
or, o =) (1+23b/ 0, |
or, mzmo(li\/gb/(oo)

Therefore, A= A;ax , at frequencies

®, =0, —~/3b and ®, =w,+~/3b
- Width o, -0, =235 =243, %: SRIm
7. Average power [from Eqn. (3.6.1)

mbf;}

o} ’
[—0 - (oj +4b*
©®

(p)=

NSOU « CC-PH-09
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At half power points,

o Y
[ao—mj =4b* or, 0? -0* = +£2bw

Therefore the phase angle ¢ is given by

tan¢ = 22b0) =1

8. For forced vibration under a force F' = F cos ot the displacement is given by
xX= Acos(mt—¢)
Now total energy E = KE. + PE.

LR
—2mx +2S)C

= %mAZ(o2 sin® (o — )+ %SAZ cos” (0f — )

where m = mass, s = stiffness and w, =+/s/m

Clearly E is not constant and varies with time t.
Now average values of K.E. and PE. are given by,

1

_ 1 2.2
(KE)=gmdo

N R Y )

and  (PE)=sd = mA’w;

[ <sin® (o — ¢ >) =< cos” (@t — ) >= %}

9. The given equation can be rewritten as

¥ +2bx%+0ox = Fy/m [where of =s/m and 2b =R /m ]

12
or, 5c'+2b5c+(o§(x—?°j:0
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Introducing a new variable y = x — F/x we get
P+2by+wiy =0
For b < ®, we have the solution

y=Ae™" cos(wr —¢)

Or.

2

x= %+ Ae™" cos(wt —¢)

where m = 4/(1)3 —b* and A, ¢ are constants determined by the initial conditions

x T

A

—>t

Fig. 3.P-2 : Forced vibration with aconstant force

The variation of x with t is as shown in Fig. 3.P-2.
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4.7  Lissajous figures

48  Summary

49  Review Questions and Answers

4.0 Objectives

After reading this unit, you will learn :

principle of superposition

applications of superposition principle in different cases
formation of beats

Lissaous figures and its uses

4.1 Introduction

In the previous unit we have discussed the condition of SHM and its differential
equation and its solution. We have also shown same inportant applications. But in
nature many times we see a number of SHM. acts simultaneously on a single system.
For example in a sitar a point on a wire, a number of SHM of different frequency
superpose on each other. In such condition the resultant motion can be obtained by
using a principle called superposition principle. And the resultant vibration may be
of different types and form depending upon the number of frequencies, their magnitude,
phase and direction of oscillation. In this unit we will learn the resultant of two, three
or more SHM of same or different frequencies in either same or perpendicular direction.

53
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At the end we will discuss some methods to observe these resultant vibration by
mechanical, optical or electronic method.

4.2 Superposition Principle

This principle states that “if two SHMs of same frequency but different amplitude
and phase are superposed, then the resultant will also be a SHM of same frequency
but of different amplitude and phase”. In fact this principle is a consequence of the
fact that for a homogeneous 2nd order differential equation. If y, is a solution and y,
is another solution, then y = y, + y, must be another solution of the same equation.

: : : . d’ : .
The differential equation of SHM is ﬁ =-’x is a 2nd order linear homogeneous

differential equation, hence if x; = Asin ((ol+ ¢1) is a solution and x, = B sin(w? + ¢,)

is another solution, then their linear combination x = A sin(wt + ¢,) + B sin(w? + ¢,)
will also be a solution i.e. is it will represent another solution.

2
It is to be noted that if the differential equation contains terms like (E) or x?

terms then this principle will not hold.

4.3 Superposition of two SHMs of same frequency acting along the same
direction

1. Trigonometric method : Let x, =a cos ((x)l+91) and x, =a, cos ((ol+92)

represent two SHMs of same frequency in same direction (along x-axis). Then if these
two are supsposed, then the resultant will be

X =x+x,=q cos((x)l+91)+a2 cos((ol+62)
=a, cos®f cos B, —a, sinfsin 6, +a, coswf cos, —a, sinwrsin 6,
= (al cosB, +a, cosH, ) cosef — (al sin@; +a, sinO, ) sin ¢
=a, cosd coswf —asin O sin wf

= acos(wr+3)
where the resultant amplitude is

2

a‘ = (al cos6, +a, cos 92)2 + (al sin 6, +a, sin 92)2
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or, a:\/a12+a§+2a1azcos(91—92) .. (43.1)

a;sin®; +a,sin b,

and tand =
a, cos9, +a, cos0,

.. (43.2)

Vector addition method : We know that a SHM can be represented by a rotating
vector method.

. Y x>
Let OP=a, and OQ =a, are two rotating '
vectors rotating at angular velocity . Ifor+0, ] 1 P 5
' P
and ot + 0, are the angles made by 4, and a, ot+0, -
at any time ¢, then their resultant will be given :
by ot+0,!
. ) 5 : ——
d =a,+a, = ia cos(wf +6, )+ ja; sin (07 +6, )+ 2ooh

ia, cos (0)1‘+ 92)+ Jjsin (0)1‘+ 92)

If we consider only the x componenent of this vector then we see that the resultant
will also represent a SHM of same frequency ©. But of amplitude equal to

Acosd =a,cos6, +a,cos0, and Asind=q,sinO, +a,sinb,

Hence the resultant will be x = Acos(wt+35)

In this process are can add any number of SHM of same frequency but of different
amplitude and initial plase. If we have n no. of SHM given by

X, =a, cos((z)l+91), X, =a, cos((ol+92) ..... xX,=a, cos((z)l+9n)

then the resultant SHM will have amplitude ‘a’,

i=1

2 2
So a= [Zai coseij +(Zai sineij .. (433)
i=1 i=1
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n
Zal. sin O,

and resultant phase tand =->1—— .. (43.4)
Z a, cos 0,
i=1

3. Using complex form : We know that ¢ =cos®+isin® hence a SHM.

i(or+6)

acos(wr+06) may be expressed as RP. of ae . Similarly y = asin(wf+6) may

be expressed as y = ImP. of ae' ™%

Thus if we have x; =a, cos ((ol+ 91) and x, =a, cos ((ol+ 92) then their resultant

Wlll be given by
X =x+x,=RP.ae "+ RP.ae )
= R.P.eimt.[aleiel + %eie2 i|

= RP.Ae™ & (say)
So Ae® = ae’® +a,e™
Thus A*A  =|4[" = (ale’el +a,e™ ).(ale ® tae ’92)
2 2 i(6,-62) —i(6;-85)
=a; +a; +aa,e +aja,e

_ 2 2 i(6,-8,) | ,~i(6,-6,)
—a1+a2+a1a2{e +e

=al +a; +2a,a, cos (6,-6,)

Thus A:\/a12+a§+2a1a2 cos(6, - 6,) .. (4.3.5)

a;sin®; +a,sin b,

and tand =
a, cos9, +a, cos0,

.. (43.6)

Exercise 1. Let we have n number of SHM of same angular frequency and same
amplitude but each has a constant phase difference from other, then find the resultant
of these due to superposition.
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Let x, =ae'”, x, = ae'©+0)

Then when they are superposed.
The resultant will be x = x; + x, + ... + x

x =ae™ {1+e’¢ +e2i¢...+e(n_l)i¢}

{ o (a-1).) Sin b n-1
_ aez(mt+(7)¢). 2 _ ez(mt+(7)¢)
sing
. no
sin—- _
where A=a 2 , and 5:(%1)¢
sin%

4.4 Superposition of two SHM in same direction but of different
frequency

During superpostion of two SHMs in same direction if the frequencies are different,
then a new phenomena is developed which is called beat phenomena.

To explain this let x; = a; cos ((oll+¢1) and x, =a, cos ((021+¢2) are two SHMs

in same direction but of different frequencies ®, and ®,. Then thier superposition
gives

X =X +X, :alcos((z)ll+¢1)+a2cos((o21+¢2)
Let o, = 0 and 0, + Ao

xX=q cos((ot+(])1)+a2 cos{(ot+A(ol+¢2}

= a, cos O cos O, —a, sin (7 sin O, + a, cos M7 cos G5 —a, sin M7 sin ¢,
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where ¢; = Awr+¢,

= (al cos O, +a, cos 0 ) cos @f — (“1 sin ¢ +a, sin ¢ )sin o

= Acos O cos 0 — Asin Osin wf

= Acos(wr+3) .. (44.1)
where Acosd =a, cos O, +a, cos h)

e o
Asind = q,; sin ¢, + a, sin ¢}

2=

and A= {(6’1 cos ¢y +a, cos O )2 +(aysin ¢y +a, sin ¢} )2}

1
= {af +aj; +2a,a, (cos O, cos 0 +sin ¢ sin ¢ )}2

1
= {alz + ag +2aya, cos (q); -0, )}2 .. (442)
Here in equation (4.4.1) amplitude A is a function of time t and we see when
0, — ¢ =Awt+¢, — ¢, =0, 2w, 41, 67 etc. A = (a; + a,) = maximum.

but when  ¢;-¢{=m, 3w, 5n etc. A = (a, — a,) = minimum.

Thus equation (4.4.1) shows a vibration whose amplitude will vary periodically
with time and the time difference between these two successive maximum and minimum
_2n _ 2m

is Aw(t,—1;)=2% or hh=h =300

.. (4.43)

Fig. 4.2 displays graphically the result of superpostion of two SHMs of slightly
different frequencies. As an examiple, we show in Fig 4.2 superposition of two SHMs
having frequencies 4Hz and SHz. They are further assumed to have same amplitudes
and same initial phases.

It is clear from Fig 4.2 that the time interval between two successive maxima or
minima in the resultant pattern in this case is 1 sec. The resultant amplitude thus varies
with a frequency of 1 Hz which is equal to the difference of frequencies (5 Hz — 4
Hz) of the component vibrations.

Beats :

In caee of sound waves the superpostion of two waves having slightly different
frequencies causes the intensity of the resulting sound to increase and decrease
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periodically with time. This phenomenon is known as beats. The numnber of beats

per second equals the difference of frequencies of the component waves.

S T~
;1;\.\ f//\\ ";’/‘\\“ ,\V\.} ;,’\\ /\\S )ff
U \\// i U’ U \ \/’ U
IAANNANNL
AR A
! 7\ {
x1+)1;2 \ \i\\,\li{\//( \ / % ﬁ\\ }
\ YV U T
// \\ 1 e
o ..
o 3!

Fig. 4.2 : Superposition of SHMs with slightly different frequencies

Exercise 2. Two colinear SHM are x1=20sin(

. T
X = 2451“(487"1 + 3 ) cm. Find the equation of resultant vibration.

somr+ &

) and

4.5 Superposition of a large number of SHMs

Let us consider N number of SHM of same amplitude in same direction but whose

frequencies differ from each other by same amount.

Let X =ae™, x,=ae

or i(o+Ao)

, Xy =ae

i(o+2A0)
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_ gelor J 1=
l_ elAOJt

iN Aot iNAwt iN Aot
e 2 e 2 e 2

ot

=de iAmt iAmt
iAmt{eT—e_ 5 }
2
e
. NAwt
i{m+%Am}t sin 2
=ae
sin Aot
2
. N-1
:Ae’{mTAm}f .. (451
Thus the amplitude of resultant vibration of N number of SHM will be
. NAwt
sin—
A=a——40 L (452)
SIHT

Thus the intensity of resultant vibrtion due to superpotion of N number of such
SHM will be proportional to

sin2 NAwt 41
2
sin’ Aot
2
The variation of intensity due /\AA A/\/\ R
superposition of such N number of waves 0 Act) —p
of equally separated frequency is shown (—)
Fig. 4.3

in Fig. 4.3.

The above analysis is helpful in finding the diffraction pattern due to a plane
diffraction grating in the study of physical optics.

Exercise 3. Three SHMs are of same frequncy o = 1007 but their phase differ form

one another by g . If each have same amplitude a = 5 c¢cm then find their resultant

amplitude.
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Exercise 4. You have N = 100 number of SHMs each of same amplitude a = 2cm
but frequencies starting from © = 1007w differ from each other by Ao = 2n. Find the
amplitude of resultant vibration of these.

4.6 Superpoisition of two SHMs in mutually perpendicular direction

4.6.1. Same frequency

Let us us consider x =acoswr and y=bcos(wr+¢) are two SHMs in mutually

perpendicular direction. If they superpose on a particle simultaneously, then their
resultant vibration may be obtained as

2
Xzcoscolcosq)—sin(otsinq)=§cosq)— l—x—zsinq)
a

b
2 2
cosq)} :(l—z—Jsian)

.
2 2

y X 2xy .2
or, b_2+a_2_%cosq)_31n (0] .. (4.6.1)

SN

Q=

This shows that the resultant motion will depend on the phase difference ¢.

(2)

(b)

(©

If =0, then (4.6.1) gives y =gx .. (4.6.2)

which represents a straight line with slope g.

2 2
If ¢=g, then (4.6.1) reduces to Z—2+x—2=1 .. (4.63)
a
which is the equation of an ellipse and it reduces to a circle if a = b, i.e.
¥+ ¥ =a? .. (4.6.4)
If ¢ = &, then (4.6.1) gives y = —gx ... (4.6.5)

which is again a straight line with slope —gx


https://www.print-driver.com/?demolabel-en

62

NSOU « CC-PH-09

(d) If ¢ has any other value excluding these three, then (4.6.1) will represent an
inclined ellipse

¢ = arbitrary n> ¢ > 0 ¢ = arbitrary -t > ¢ >0
(d) (e)
Fig. 4.4

Here it is to be noted that where © > ¢ > 0, the motion will be clockwise but when
-1 < ¢ <0, the motion will be anticlockwise.

In this section we have discussed the resultant of two vibrations.

4.6.2 Frequency ratio 1:2

Let two rectangular SHMs of frrequencies in the ratio 1:2 differing in phase by 6
be represented by

X = acosmt ... (4.6.6)
y =bcos(2mr +3) .. (4.6.7)
Y

B = cos 2Mf.cos 6 — sin 2m7.s1n O

= (2 cos? wr — 1) cos O — 2 sin mf.cos ®f.sin d
Using Equation (4.6.6) we get

2 2
Y| X _ o X X
5 (2.612 ljcosﬁ 2a 1 " sin O
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2
y 2x2 4x? x2). »
Z+c080—""+c0sd | =——|1-"|sin“ d 468
or, [b 7 } 7 7 ... (4.6.8)

This is an equation of fourth degree in x and, in general, represents closed curve
having two loops. for a given value of 0 the exact nature of the curve can be traced.

=0 /4 /2 3/ 4 b1
V4 7N
\ \ )

{a) (b) {c) (d) (e}

Fig 4.5 Resultant pattern of two rectangular SHMs having frequency ratio 1: 2

For example, if & = 0 then Eqn. (4.6.8) reduces to

y 2x? ?
(z+l—a—2j :O
It represents two coincident parabolas [Fig 4.5.(a)] given by

2

a
It 8 = n/2 Eqn. (4.6.8) reduces to
4x? [ x? y2
—| =5-1|+==0
o> (az j B2 ... (4.6.10)

This equation represents a curve containing two loops as shown in Fig. 4.5.(¢c)

4.6.3 Frequencies in any commensurate ratio

If the frequency ratio of the rectangular SHMs becomes large then analytical
method of obtaining the resultant pattern becomes very combersome. In that case one
can use graphical method using the concept of rotating vectors.

4.7 Lissajous figures

The figures or curves formed by the superposition of two simple harmonic motions
at right angles to each other are known as Lissajous figures. The shape of these curves
depends on the ratio of frequencies as well as on the initial phase relationship of the
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component simple harmonic motions. The curves shown in Fig. 4.4 and Fig. 4.5 are
examples of Lissajous figures.

Demonstration of Lissajous figures :

There are a number of experimental methods for obtaining Lissajous figures. These
may be classified as mechanical optical and electrical methods. We only discuss
electrical method here.

Electrical method

Most suitable method of demonstrating Lissajous figures is to use a modern cathode
ray oscilloscope (CRO) Here a narrow beam of electrons iron an electron gun is
passed through two pairs of parallel metal plates arranged at right angles to each other.
When electric field is set up one pair of plates deflects the electrons in horizontal
direction and the other pair deflects them in vertical direction. The electrons finally
impinge on a fluorescent screen and produce visible spot.

Glass envelop

Elkectron gun 5
e

Q

wv

=

Q

A\ 4 8

=

Q

B I O D =
T_} -

Deflecting plates

Fig. 4.6 Cathode-ray oscilloscope

To display a Lissajous figure on the CRO screen two simple harmonic vibrations
are at first converted into sinusoidal voltages with the help of two microphones. These
voltages, after proper magnification, are applied to the two pairs of deflecting plates
of the CRO. As the electrons move under the simultaneous action of two sinusoidal
electric fields at right angles to each other they traces out Lissajous figure on the CRO
screen.

Use of Lissajous figures :
Lissajous figures have many important uses. For example, these figures may be
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used to find the ratio of two exactly commensurate frequencies of the component
vibrations. For this purpose draw a horizontal and a vertical line to intersect the curve
and find the number of intersections each line makes with curve. Now the ratio of
the number of intersections of the horizontal line to that on the vertical line will give
the ratio of the vertical to the horiozontal frequency i.e.,

V,near . NO. of cuts on horozontal line
No. of cuts on vertical line

Dhorizonal

Lissajous figures can be used to compare to two nearly equal frequency. If the
frequencies differe slightly Lissajous figures change gradually and passes through a
complete cycle of changes in a time T given by

1
=x
So by measuring T we can find the Ya

difference Ay of frequencies. Again, if one
of the frequencies is knowsn then the other
can be found out.

Lissajous figures can also be used to
measure the phase difference & between two
signals of same frequency. Depending on the
value of 6 the Lissajous figure will be an
ellipse or one of its degenerate forms.
Refgerring to Fig. 4.7 let the distance of the
point of intersection of the ellipse with y-
axis be A and maximum vertical displacement
be B. Now from Eq. (4.6.1) A= b sin § and Fig. 4.7 Measurement of phase differences
B =b. Hence

8 = sin"! (A/B)
Thus measuring A and B we can determine &.

4.8 Summary

1. Superposition principle and its applications to (a) two collinear SHMs oscillations
with equal and unequal frequencies and (b) two SHMs perpendicular oscillations
have been discussed.

2. Formation of Lissajous figures and its uses have been mentioned.
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4.9 Review Questions and Answers

1. Let x;=x,sinof and x, =x,,sinw/ represent solutions of a SHM equation.
Then show that x, + x, will also be solution of that equation. If @ of x; and x,

where different then will they satisfy the same condition?

: : . d? : o
2. The equation of motion of a pendulum is ;29+§s1n9 =0. Does it satisfy the

superpostion principle. If not then why?

3. The equation of two SHMs are x; = A cos (ot — 30°) and x, = A cos (ot + 45°).
Find their resultant using vector method and complex form method.

4. Two SHMs are vibrating with same frequency and amplitude in mutually
perpendicular direction. The phase of x directed SHM is 60° ahead that of y
directed motion. Discuss the trajectory of resultant motion.

5. the earth moves round the sun in an elliptical orbit under the action of gravitational
force. Can the motion of earth be regarded as the superposition of two SHMs in
mutually perpendicular direction.

6. Two SHM of same amplitude but different frequency superpose on a particle
simultaneously in mutually perpendicular direction. Will the resultant force on
the particle be propostional to the displacement and in direction opposite to it.

7. Lissajous figure obtained by using two tuning forks A and B having slightly
different frequencies undergoes complete cycle of changes in 20 sec. When B is
loaded with a little wax, the time reduces to 10 sec. If the frequency of A is
288 Hz, calculate the frequency of B before loading it with wax.

8. Suppose a particle is simultaneously subjected to three collinear SHMs all of the
same frequency and having amplitudes 1 cm, 0.5 cm and 0.25 cm respectively.
the phase of the second relative to the first is 30° and that of the third relative
to the second is 60°, find the resultant motion.

ANSWER

d’ : : : :
1. Let d—f+0)2x =0 is the equation of SHM. Then if x, and x, are two solutions
1

2 2
x X . )
then d—21+0)2x1:O and d—22+(02x1=0 so adding or subtrating we get
! !

?(x1 ix2)+o)2 (x1 ix2) =0 hence x;*x, is also a solution of the equation.
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. . d*x d*x
But if ®, and o, are different then we get d—21+0)12x1 =0 and ?+0)§x2 =0,
1

d’ : :
hence —2+(x1+x2)+(0)12x1+0)§x2)=0 and hence if ®, #®, so it does not
dt
represent the solution of same equation.
2 2

dtgl %Sin 6, =0 and

dtezZ %sin 9, =0

2. Thereif 61 and 62 are two solutions then

. d’ : .
but adding these we get ?(91 +92)+§(sm61 +sin®,)=0 and as
sin®, +sin O, # sin (91 +92), hence it does not satisfy superposition theorem.
3. Using vector method we get the resultant R is

V=

R = (xl2 + x% +2xx, cos75° )" = 2a* +2a® cos 75°

)%

1
=\/§a{l+cos75°}A =1.567a ... (1)

i(mt—30°) mt+45°)

{
In complex form x, = ae , X, =ae
So x= xl+x2 :aezmt {e—m/6 +em/4}

So the amplitude of resultant
T T, (. T . T
{cos€+ COS 4 +1 (sm 2 sin E)H

=1.568a . (2

R=aqa

4. Let x:acos((y)l+§) and y = acosor are the two SHMs in mutually

. L x ) .
perpendicular direction. Then , =cos 60° —sin w¢ sin 60°
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Or.

2

2 2 2 /
3
Honee o4t X _ 3 3 (/
a

2
o Ty w3 Fig. 4.P-2
B 2 4
a* a a
2, .2 _3 2
or, X +y —xy=a .. (D)

This is the equation of an oblique ellipse. Hence the trajectory will be elliptcal.
5. Try yourself.

Try yourself.
7. The frequency difference before loading is

A1)=21—O or, v, —V; =0.05 Hz

After loading v, and the difference v, —vy :%zo.le increases. This

indicates that v, >v,. Thus

v, —v; =005 Hz

o, v;=v,-005 Hz
= (288 — 0.05) Hz
= 287.95 Hz.
8. The resultant is

X =coswt+0.5 cos((y)t+300)+ 0.25 cos(ml+90°)

=coswf+0.5 [cos ml.g —sin (ol%} —0.25sin
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(.3 1.
—(1+T cosml—zsm(ol
=Acos(0)t+¢)

NG

. 1
where =Acosq)=l+T=l.433, Asing=5=0.5

.. For the resultant motion, amplitude 4 = \/(1.433)2 +(0.5)2 =1.52 cm and the

phase relative to the first is ¢ =tan™’ % =19.23°.
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-5 : Wave Motion

Structure
5.0  Objectives
5.1  Introduction
5.2  Wave equation
5.3  Plane wave solution
5.4  Spherical wave solution
5.5  Volumetric strain, particle velocity and wave velocity
5.6  Energy distribution in plane progressive sound waves
5.7 Intensity of sound waves
5.8  Specific acoustic impedance
59  Sound intensity, pressure and loudness/levels
5.10 Water waves : Ripple measurement

5.1

1 Summary

5.12 Review Questions and Answers

5.0 Objectives

From this unit, you will learn

What is wave and how it is produced

characteristic of mechanical wave

The mathematical formulation of a sinusiodal wave

The equation of one dimensional, and 3-dimensional progressive wave
Plane wave and spherical wave solution

Relation among volumetric strain, particle velocity and group velocity
Energy distribution in plane progressive sound wave

Sound intensity presure and loudness levels

Ripple measurement of water waves

70
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5.1 Introduction

A wave may be defined as the fluctuation of some physical quantity with position
and time. In case of acoustic waves propagating through any material medium the
particles of the medium vibrate about their mean position and the distubance thus
created is transmitted from one layer to the next due to elasticity of the medium. It
is the disturbance which is transmitted but there is no bodily moment of the medium.
For the propagation of an acoustic wave the medium must have inertia and elasticity
distributed throughout the medium. If an element of the medium is displaced it also
displaces the neighbouring elements due to elasticity. In this way the disturbance is
transmitted. The disturbance at a particular position varies with time and at any given
instant it varies with position. Thus the disturbance associated with a wave is a
function of both position and time.

An acoustic wave way be generated when a vibrating source is coupled to an open
elastic medium. The waves travel away from the vibrating source that created them.
Such waves are called travelling or progressive waves. These waves can transport
energy and momentum. If the vibrating source oscillates with harmonic motion the
progressive waves it produces are called harmonic progressive waves. However, it
should be kept in mind that a wave need not be necessarily periodic. In general, there
are two types of wave motion.

Longitudinal waves— Wave in which the direction of disturbance is parallel to
the direction of wave propagation are called longitudinal waves.

Transverse waves— The waves in which the direction of disturbance in the medium
is transverse to the direction of wave propagation are called fransverse waves.

Sound waves are longitudinal elastic waves. A gaseous medium can sustain only
longitudinal waves because transverse waves require a shear force to maintain them.
However, both the transverse and longitudinal waves can travel in a solid.

The most common example of a wave is that produced by dropping a stone into
the water of a quiet pond. Such waves are not truly periodic and change their shape
during propagation. However, for the mathematical description of wave motion we
shall start with a periodic wave of constant type in which the disturbance varies
periodically both in space and time and the wave does not change shape during
propagation. The curve showing the variation of displacement of a particle with time
t at a fixed space-point is called time-displacement curve. In the simplest case of
harmonic variation the time-displacment curve is sinusoidal (Fig. 5.1). For a wave of
constant type all the particles in the path of propagation of the wave will have identical
time-displacement curve. Here it should be noted that the word ‘particle’ to which we
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refer is not necessarily an individual molecule but may be very small volume of the
medium over which the conditions of displacment, velocity, acceleration, pressure,
density etc. may be taken to be the same all over it. A particle away from the source
goes through the same motion as that of a particle nearer to the source but at some
later time because the wave takes some time in going from one point to another. In
a homogenous medium this time or phase lag is proportional to the distance between
the partilce.

A

»
»
»

[ .

— Displacement
y
— Displacement

\/ — Time : —> Position
T .
LR T »
Fig. 5.1 Time-displacement curve Fig. 5.2 Spece-displacement curve
at a fixed position at a particular instant of time

The curve showing the displacement as a function of distance from some suitably
chosen point on the line of propagation, at a particular instant of time is called a
space-displacement curve. It gives the shape or the form of the wave and therefore,
is also called waveform or wave profile. For the simplest case of a harmonic wave
it is sinusoidal (Fig. 5.2)

A study of the time-displacement curve shows that a given particle on the line of
propagation undergees a complete cycle of vibration at equal intervals of time, called
time period (T). This is the time required for the generation of a complete wave. The
frequency (v) of a wave is defined as the number of complete waves generated per
second and is given by v = 1/T. The unit of frequency is SI system is hertz (Hz). The
space displacement curve shows that particles separated by a certain distance or an
integral multiple of this distance are in the same phase i.e., in the same state of motion.
The minimum distance between two particles along the line of propagation having the
same phase of motion is called the wavelength (A).

The particles of the medium do not move bodily. They merely vibrate about their
mean position whereas the disturbances created are transmitted through the medium
with a velocity determined by the properties of the medium. When the waves are
harmonic progressive waves, this velocity is called the phase velocity (c).

If we imagine a surface at all points of which the particle of the medium at any
given instant are in the same phase of motion, then the surface is called a wavefront.
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For a point source in a homogeneous and isotropic medium the wavefronts are
concentric speherical surfaces. Such waves are called spherical waves. For a long line
source wavefronts are cylindrical. If the wavefronts are parallel planes we call it plane
waves. In this case the waves move only in a fixed direction without spreading
laterally. A small part of a wavefront at a large distance from the source may be
considered to be plane Students shouold go through Article 8.4, Unit-8 for definition
of wavefront and their properties.

In the mathematical description of a wave motion we are to relate the phase
difference between particles to their A
physical separation in space. Let us
consider one dimensional plane
progressive harmonic waves
travelling in a medium with a phase
velocity c¢. Consider two planes A,
and A, separated by a distance x as
shown in Fig. 5.3. Let y(x, f) be the
field parameter which may the
displacement, velocity, presure or Fig. 5.3 Propagation of disturbance w(x, #)
any other physical paramenter that varies with space and time like a wave. Suppose
the harmonic oscillations of the particles at the plane A (x = 0) at any time instant
t is given by

Az:

v (0, 1) = asin ot
where a is the amplitude and o is the angular frequency. This disturbance propagates
throught the medium with a phase velocity c. So the disturbance at x = 0 takes a time
x/c to reach the point x on the plane A,. Now the displacement y(x,) of a particle
at the position x on the plane A, at any time 7 will be the same which another particle

at x = 0 had at same earlier time " =7—x/c¢. Therefore, for a plane progressive
harmonic wave we have

v D =0, )

=asinot’

:asinm(t—x/c)

:asin(wt—kx) .. (5.1.1)
=asin 2/ L (ct — x) .. (5.1.2)

where k=wc=2n/TvA=2r/AI1s known as wave number.

Note that at a fixed position x, y varies harmonically in time ¢ with a period T. At
a fixed instant of time,  varies harmonically in space with a period A, For a wave
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travelling in the negative x-direction the corresponding equation is

V(x, 1)=asin(of+kx) .. (5.1.3)

5.2 Wave Equation

We now develope a differential equation which governs the propagation of one
dimensional waves. Let us consider the equation representing a plane progressive
harmonic wave

V(x, 1)=asin(of—kx) .. (520
Differentiating twice with respect to ¢ we get

aalel;z—OJZasin((ot—kx) .. (52.2)
Differentiating Eqn. (5.2.1) twice with respect of x we get

aaZTlgz—kzasin((ol—kx) .. (5.23)

Combining Eqs. (5.2.2) and (5.2.3) we get
Py _ 20
or’ ox?
where ¢ = o/k is the velocity of the wave. Eqn. (5.2.4) is the well-known one
dimensional differential wave equation.

. (5.2.4)

5.3 Plane wave solution

The Eqn. (5.2.4) can be solved by the method of separation of variables.

Let w(x, 1) = F (x).5 (1) (530
where F is a function of x only F), is a function of 7 only. Now substituting (5.3.1)
in Eqn. (5.2.4) and dividing throughout by F,. F, we get

1 &% dh
By ar Koa?’

Left hand side of this equation is a function of ¢ only and right hand side is a
function of x only. So for the validity of Eqn. (5.3.2) each side must be equal to some

.. (53.2)
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constant — 2 (say). We choose the negative sign in order to have a periodic solution.
thus we get

d’F,
dx; +k°F =0 (5.3.3)
d*F;
T =0 L (53.4)

where k = o/c.

Solutions to these equations are of the form
F(x)= Ae™ + Ae7

F,(t)=Be™ + Be™
Thus
y(x, 1) = Fy(x).F,(7)

= (Aleib“ + AZe_ibC)(Blem + Bze_’mt)

= 4B, 4 4,Be7 M) 4 4 B oM 4 g Bt (53.5)
Thus the solution can be put in the form

V(x,1)=fi(ct = x)+ f, (ct +x) .. (5.3.6)

Theoretically, the functions f; and f, can have any form but for correct representation
of a wave we must choose a proper form. For example, a plane progressive harmonic
wave travelling along +ve x-axis can be represented by

W(x,t):asink(ct—x):asin(wt—kx)
o, w(x,t) = acosk(ct—x) =acos (O)I—kx)

Similarly a plane progressive harmonic wave travelling along —ve x-axis can be
represented by

w(x,t) =asin (0)1‘+kx)

or, w(x,t) =acos ((1)1‘+kx)
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5.4 Spherical wave solution

The three dimensional wave equation is
azllf 272
—=c'V .. (541
o v (5.4.1)

where, in general, the field paramenter v = y (r, 6, ¢, ). if the waves have
spherical symmetry then y will be independent of the angular coordinates 6 and ¢ of
a spherical coordinate system. In this case Eqn. (5.4.1) reduces to

2
8 \|I_cz 1 8 (1’2 aW)

a R or
Putting yw=wy'/r

or

20
105w 2ol oy ] L1y
O o2 Tear o TV TR
aZW/ aZW/
ob or? = or?

This equation is of the same form as the one dimensonal wave equation (5.2.4).
Hence its general solution is, therefore,

V= fi(ct—r)+ fi(ct+r)

or, \|I=%f1(ct—r)+%f2(ct+r) . (542)

The first term of Eqn. (5.4.2) represents a spherical wave diverging from the origin
of coordinates with a velocity c. the second terms represents a similar wave converging
to the origin. A diverging harmonic spherical wave can be represented by

y(rit)= A.%cos (o —kr)+B.%sin (o1 —kr) .. (543)

In exponential form,

L (r.t) = éexp I:i (kr + O)t):l

5.5 Volumetric strain, particle velocity and wave velocity

Volumetric strain : Let a wave be set up in a cylinder of cross-section unity
the axis of the cylinder coinciding with the diredtion of propagation ACE of the
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Wave (Fig. 5.4) Let ABCDE represent the displacement curve of the wave—the
waveform.

Consider P, Q to be two close points dx apart. The displacement at P = PR and
that at O = OS. So the volume of the gas limited by P and Q is PQ x 1 = PQ. When
the wave is in the position as shown in Fig. D
5.4 the change in volume between P and Q
is

QS - PR =ST =dy g A0 _,C I
. change in volume d
Volume strain = ——; T 4
original volume R W
STB
PQ RT dx

Volumetric strain = Slope of the displacement curve.

Thus the volumetric strain at a given point is measured by the slope of the
displacement curve at that point.

Particle velocity— Let the equation of the wave be given as

\pzasinz%(cl—x) .. (551

Differentiating (5.5.1) with respect to time. We obtain

) ) dy 27c 27
Particle Velocity —=—"~= aTcosT(cl ~a) .. (552)
Differentiating (5.5.1) with respect to x, we get
) d
Volume strain = ¥ = —az—ncosz—n(ct—x) (5.5.3)

dx A A

If dy/dx is positive a rarefaction occurs; if however dy/dx is negative, a compression
takes place.

Comparing (5.5.2) and (5.5.3), we obtain

_dy__dy
Cdt T dx
.. Particle velocity = — wave velocity X volume strain.

This is an important relation between volume strain, particle velocity and the wave
velocity.
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5.6 Energy distribution in plane progressive sound waves

When sound waves pass through any medium the particles of the medium are set
into oscillation, so these particles now possess extra amount of energy which is partly
kinetic and partly potential in nature. The total average energy per unit volume of the
medium is called energy density.

Suppose a plane, harmonic longitudinal wave is moving through a medium along
+ve x-direction. The displacement of a particle at the position x at any time 7 may be
represented by

W (x,1) = acos(or - kx) .. (5.6.1)
where © is the angular frequency, k the propagation constant and a is the amplitude

of vibration. Let us now consider an infinitesimally thin layer of thickness 6x and and
of unit cross-section. The layer is considered so thin that all the particles within the

layer may be assumed to possess the same velocity dy/dr. The mass of this layer
is p,0x where p, is the equilibrium density. Therefore, kinetic energy of the layer is

m@=%@&ﬂG%J . (562)

Using Eqn. (5.6.1) we get the kinetic energy per unit volume as
E, = %poazmz sin? (o — k) . (563)

Now the time average value of sin? (o7 — kx) over complete time period (or its space
average value over a complete wavelength A) is 1/2. Thus average kinetic energy per
unit volume becomes

F, =1 py’e’ . (5.6.4)

During the transmission of the acoustic wave the voluem element is periodically
compressed and rarefied. So there is change in potential energy associated with this
volume change. Suppose an increase of pressure from P, to P, + p compresses unit

. oV . .
volume of the medium to a volume (1 — s) where s =——="-is the condensation. The

ox

potential energy associated with this volume is equal to the work done in the process
of compression. Thus potentrial energy per unit volume is given by

E, :jo pds .. (5.6.5)
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Now by difinition bulk modulus

Bzé or, p = Bs

Bl ode = L B2
Therefore, [, = BJ.o sds = EBS
1 oy 2
=EB(_8_x) ... (5.6.6)
Using Eqn. (5.6.1) we get
E, = %Bazkz sin? (o — k) (567

Now the time or space avewrage value of sin? (ot — kx) is 1/2. Therefore the
average value of potential energy per unit volume becomes

= 19,9
Ep—zBak

=%p0a20)2 ['.'c=\/B/p0 =0)/k} .. (5.6.8)
.. Energy density is

E=FE,+E, :%poazmz . (5.6.9)

Thus we find that the average values of the kinetic energy and potential energy
densities in the sound wave are equal. A
Another interesting feature is that
unlike the case of simple vibrations
here the instantaneous values of the
kinetic and potential energies are in
phase [Eqgs. (5.6.3) and (5.6.7)] i.e,,
both of them reach maximum value
or the zero value at the same instant
of time. A compression or rarefaction /oy
produces a maximum in the energy — distance
of any element of volume. So the Fig. 5.5 Energy distribution in space for a
energy in the wave is distributed in sound wave in a fluid
the wave system with distance as shown in Fig. 5.5. The regions of maximum energy
alternate with regions of little or no energy.

— Total energy
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5.7 Intensity of sound waves

The intensity of sound or acoustic intensity at a point is defined as the average rate
of flow of energy through a unit area surrounding the point held normal to the
direction of wave propagation. If OE is the average energy crossing an area 6S nornally
per unit time then intensity at a point is given by

.ok
=5
For a plane progressive wave through

a homogenoues isotropic medium the unit area
energy that crosses unit area in unit time
in the direction of propagation of the wave
equation of propagation of the wave -.
equals the amount of energy contained in '\

a cylinder of unit cross-section and length K ¢ g
c. The volume of this cylinder is c. Fig. 5.6 : To calculate intensity
Therefore,

1 = average energy density X ¢

:(Ek+Ep)><c

:%pocazmz CEA)

where we have used the Eqn. (5.6.4) and (5.6.8). This relation shows that the
intensity is proportional to the square of the amplitude a.

Most of the modern acoustic detectors respond to the variation of acoustic pressure
rather than to the intensity. So it is useful to express / in terms of acoustic pressure
p which is given by

p=(-0y/dx).B where y = a cos (ot — kx)

p =—Bak sin(wr — kx) B = Bulk modulus of the gaseous medium
= —pyamcsin (of — kx) [ c:\/ﬁpo:m/k}
=y cos(0f —kx+1/2) .. (5.72)

where peak acoustic pressure p, = p,.anc
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The r.m.s accustic pressure p, is given by
2 _ 1T 2
Prms = TJ-O p dlt
A simple integration using Eqn. (5.7.2) shows that

_ Py _ pyawx

ms == .. (573
Hence Eqn. (5.7.1) can be expressed as

2
pr.m.S
]:W .. (5.7.4)

5.8 Specific acoustic impedance

While discussing the propagation of plane waves through a modium certain analogies
may be drawn between some acoustic quantities and some electrical quantities in the
electrical circuit theory. If the displacement is represented by W = a cos(@r —kx) then
particle velocity u = dy /0t = —awsin(or — kx)

and acoustic pressure

_ 3 _ _Buksin (o
p= de— Baksm((x)l kx)

acoustic pressure _ p _ Bk _ o _
Therefore, particle velocity  #  ® = Po¢ [ = B/p, —m/k},

If we take acoustic pressure to be analogous to e.m.f and particle velocity to
electric current then their ratio will be analogous to electrical impedance. Thus the
ratio p/u is the acoustic impedance presented by the medium to the acoustic waves.
The product p,c is found to have greater significance as a characteristic property of
the medium than p, or ¢ alone. For this p,c is called characteristic impedance of the
medium. the ratio p/u is also called specific accoustic impedance. 1t s to be noted that
we speak of impedance between two points in an electrical circuit, but the acoustic
impedance is a point property. For plane progressive waves the specific acoustic
impedance is a real quantity but for speherical waves or standing plane waves it has
also a reactive component. In electrical circuit the product e.m.f x current represents
instantaneous power in ac curcuits. Similarly we can show that the product pu represents
the instantaneous acoustical power,

pu = Ba’ok sin® (0o —kx) = poca’®? sin® (o — x)
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Its average value is
— 1 2.2
pu =5pyca®
2
= 1 (acoustic intensity)

= Energy flow per unit area per second

5.9 Sound intensity, pressure and Ioudness levels

In theoretical study absolute intensity of sound is expressed in units of W/m?. But
in practical applications it is customary to express sound intensities in terms of some
standard intensity by using a longarithmic scale. One reason for doint this is the
variation of sound intensities over a wide range (approximately 1072 to 10 W/m?) in
our audible acoustical environment. The other reason is that our ear does not respond
linearly to sound intensities. The sensation of hearing depends on the logarithim of
intensities. The commonly used standard intensity for air borne sounds is 10712 W/
m? which approximately corresponds to the lower limit to intensity for audibility in
air at a frequency of 1 kHz. The intensity level (IL) of a sound of intensity / is defined
by

IL = 10 log, ,(I/1,) .. (5.9.1)

where IL is expresed in decibets (dB) and I is the standard reference intensity. Bel
is a larger unit of IL. 1 Bel = 10 decibels. Nowadays the noise pollution level is
expressed in units of decibels.

Most of the modern sound detectors like headphones, loudspeakers respond to the
changes in acoustic pressure rather than to the intensity. Hence it would be more
useful to exprese Eq. (5.9.1) in tems of sound pressures. Since / = pfms /poc, we may
define sound pressure level (SPL) in decibels by the equation.

SPL = 20log, Lons .. (5.9.2)
Po

where p, is effective pressure of a standard sound. The commonly used reference
pressure for specifying SPL in air is 2 x 10~ N/m?. It corresponds almost exactly to
I, = 107'> W/m?. Hence almost identical numerical values are obtained by using either
of the above two equations for sound waves in air.

For underwater measurements it is the SPL and not the IL which is most commonly
used. Two standard pressure levels (p,) are used for specifying SPL in water. p,, is
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taken as 2 x 107> N/m? to express underwater noise levels and as 0.1 N/m? for calibration
and investigation of the acoustic characteristics of sonar transducers and hydrophones.

Loudness of sound is the degree of auditory sensation produced by sound waves
reaching the ear. It depends not only on the intensity of the sound but also on the
frequency and sensitiveness of the ear. Loudness is a physiological quantity rather than
a physical quantity Loudness depends on mental interpretation and hence cannot be
measured exactly with an instrument. There is no absolute scale for the measurement
of loudness. Our ear cannot make a quantitative assessment of the loudness. However,
it has been found that there is fair agreement between observers as to when a pure
tone of one frequency appears as loud as a tone of another frequency. Therefore, it
is possible to make a quantitative measurement of loudness by comparing the sound
under test with some standard sound. The standard is chosen to be a tone of frequency
1 kHz and of acoustic presure 2x107> N/m?. The unit of loudness level (LL) is phon.
The intensity level of the standard tone is raised until it appears equally loud with the
sound under test, then the rise of the intensity level of the standard tone in DB is said
to be the equivalent loudness of the sound in number of phons.

5.10 Water waves : Ripple meaurement

A ripple tank can be used to measure and calculate frequency, wavelength, and the
speed of waves on the surface of the water. A ripple tank is a transparent shallow tray
of water with a light shining down through it onto a white card below in order to
clearly see the motion of the ripples created on the water’s surface. Ripples can be
made by hand but to generate regular ripples it is better to use a motor.

Aim of the experiment

To measure the frequency, wavelength, and speed of waves in a ripple tank.
Method

1. Set up the ripple tank as shown in Fig. 5.7 with about 5 cm depth of water.

2. Adjust the height of the wooden rod so that it just touches the surface of the
water.

3.  Switch on the lamp and motor and adjust until low frequency waves can be
clearly observed.

4. Measure the length of a numebr of waves then divide by the number of waves
to record wavelength. It may be more practical to take a photograph of the card
with the ruler and take measurements from the still picture.

5. Count the numebr of waves passing a point in tens seconds then divide by ten
to record frequency.
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6. Calculate the speed of the waves using : wave speed = frequency x wavelength.

Lamphouse

white screen

Fig. 5.7 : The ripple tank

5.11 Summary

1. For a sinusoidal wave, the displacement is given by
W = acos[kxof+¢]

where a represents the amplitude of the wave. (= 2nv) the angular frequency
of the wave, k (= 2n/)A) the wave number and A represnets the wavelength associated
with the wave. The upper and lower signs correspond to waves propagating in
the —x and +x directions respectively. Such a displacement is indeed produced in
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a long stretched string at the end of which a continuously vibrating tuning fork
is placed. The quantity ¢ is known as the phase of the wave.

2. The most general solution of the wave equation

oy _1 Py
ox? v or?
is of the form

L :f(x—vt)+g(x+vt)
where f and g are arbitrary functions of their argument. The first term on the RHS
of the above equation represents a disturbance propagating in the +x direction
with speed v and similarly, the second term represents a disturbance propagating
in the —x direction with speed v. Thus if we can derive the wave equation from
physical considerations, then we can be sure that waves will result and y will
represent the displacement associated with the wave.

3. For a sperical wave the displacment is given by
_ A i(rter)
y=-¢

where the + and — signs correspond to incoming and outgoing waves respectively.
Notice that the factor 1/r term implies that the amplitude of a spherical wave
decreases inversely with r, and therefor the intensity will fall off as 1/72.

4. For a 3-D wave we have \lf(l”,l)=ASin(0)l—k.7) and wave equation is

Py (r.1) a0
=vVay(r,t).
atZ W( )
5. Particle velocity = — wave velocity x volume strain.

6. Energy density =%p0a20)2

7. Intensity of sound wave (/)= %pova%a2

5.12 Review Questions and Answers

1. State two disfference between a plane wave and a spherical wave.

0? 9*
2. Solve the equation BTT = c%a—tll;

to obtain an expression of y(x, ).
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Prove that for one dimensional progressive wave the average kinetic energy and
potential energy is always same.

If the velocity of sound in air is 340 m/sec. and the frequency of a progressive
wave is 255 Hertz, then how many complete waves will be in a distance of 60
meter.

Show that the function w(x,7)=f(ct—x)+ f,(ct+x) satisfies the one

dimensional differential wave equation.

. o oy _ Loty .
Consider the one dimensional wave equation P ¢ Find the travelling
wave solution satisfying the initial conditions y(x, 0) = g(x) and y(x, 0) = 0.
Show that the acoustic pressure, condensation, dilatation and particle velocity all
satisfy the differential wave equation.

Compare the intensities of sound in air and water at N.T.P. for the same acoustic
pressure. Given the density of air p, = 1.21 kg/m?, density of water p_ = 998 kg/
m?, the speed of sound in air ¢, = 343 m/s and the speed of sound in water c,_
= 1480 m/s.

A source of sound emits energy isotropically in all directions at the rate of 1 J/
s. Determine the intensity level at a distance of 10m from the source. Take the
reference as intensity 10712 W/m?.

An air-conditioning unit operates with a sound intensity level of 73 dB. If it is
operated in an office with surrounding intensity level of 68 dB, what will be the
resultant intensity level?

Find the sound energy density in air of a free plane progressive acoustic wave
having an IL of 80 dB. Given the velocity of sound in air = 343 m/s and reference
intensity 1, = 10712 W/m?.

The intensity of a sound is 102 W/m? at a frequency of 1 kHz. What is its
loudness level? Take the reference intensity level = 10712 W/m?,

An intense plane harmonic wave in air at STP has an r.m.s. excess pressure
of 20 Nm?. The frequency is 1 kHz and the phase velocity 350 m/s.
Calculate the maximum value of particle displacement and particle velocity.
Given v, = 1.40.
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ANSWER

1.y, =Asin(wr—kx) represents plane wave but Y, =ésin (wf —kr) represents

spherical wave.

e The wavefront is a plane surface for plane wave but the wavefront is a
spherical surface.

e The amplitude remains constant at all points for plane wave but the amplitude
varies inversely with distance from source.

oy _ 1%y
ox? 2 o

only, f(t) is a function of ¢ only.

(1), Let y(x,1)= X (x)f(¢), where X(x) is a function of x

Hence y = X (x) f(¢) and from equation (1) we get

d*x 1 d*f
F T =m0
1 d*’X 1 1 d*f )
— =—k :
T X csGar
2
We get 0 +k*x=0 (2)
X

2
d f+k202f(l)=0 .. 3)
d
Hence X (x)=Ae™ and f(1)= A,e™, where o = kc.
This (x,7) = 4 or, y = Acos(or thx) ete.
3. Consider one dimensional progressive wave y = asin(f—kx)

. dy _ 1 2
This v, = A = () COS (Q)Z—kx) and KE = Emvp

KE = %m(y)za2 cos? (OJZ - kx)
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Average KE is (KE) = %mmch <cos2 (ot —kx)>

:%mm%Z.(D

d2
Now Force on particle is F = mf = mo?y. as f = ﬁ = acceleration

¥ ¥
.:PE:=JF¢W=anfydy:%wwfyZ:%mm%fst@ﬁ—kﬂ
0 0

Hence average PE is (PE) = %meaZ <sin2 (o)t—kx)>

:%mm%Z.(ﬂ

Hence (KE)=(PE).

L_ L I\
The number of complete waves is Y
We have aa—\)‘: =—f(ct—x)+ f5(ct +x)
aZW ’7” ”
‘a;Zﬁ(“_ﬂ+ﬁ(“+ﬂ (D)

where f ’(ctix) indicate differentiation with respect the argument.

Again aa—\y =cf(ct—x)+cfy (ct +x)

aZ—W _ 2 ” _ ”

W =c [fl (ct—x)+ f5 (ct+x)] .. (2
Combining (1) and (2) we get

Py _ 20

or’ ox?

Thus v satisfies the differential wave equation.
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6. Let the solution be
V(x,1)=fi(x—ct)+ f, (x—c1)

where f; and f, are two arbitrary functions.
Now using the initial conditions we get

W (x,0)= £ (x)+ fo(x)=g(x) .. (D
and W' (x,0) = —cf/(x)+cfy (x)=0 .. (2
From Equation (2),

f(x)=1;(x)
Which on integration gives,

fl(x):fZ(x)+c1 .. (3)
Solving Equation (1) and (3) we get

A)=2le@+al, Ax)=2[2(x)-q]

Therefore the required travelling wave solution is

v (x,1) :%[g(x—cl)+01:|+%[g(x+ct)—01:|

1 1
=§g(x—cl)+§g(x+cl)
7. If y(x,t) be the displacement at any position x at any time ¢ then acoustic

pressure is given by p=-B (aa—if) where B is the bulk modulus.

Now v satisfies the wave equation

0? 0?
c¥_22¥ (D)
ot ox
We assume y to be a well-behaved function with differentiable derivatives of
higher order. Now differentiating (1) with respect to x we can write

9 (W) 29 (¥
aZ‘Z ax B axZ ax
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Multiplying both sides by —B and using p = —B(aa—if), we get

or? B or
. : oy ..o . oy :
Similarly we can show that condensation s = i dilatation A =— = and particle
. oy . .
velocity # === all satisfy the wave equation.

ot

2
8. Intensity 7 = Prms
pc

]air _ pfms/(pc)air :p_mxc_m—%X@:3559

]water - pfms/(pc)water P, c, B 1.21 343

9. The sound intensity at 10 m from the source is

7 — bower radiated 1 5
area 47 (10) Wim
/ 1
Therefore 1L =10log,, — =10log,, 3 —~ dB =89 dB
1y 47(10)” 10

I
10. ([L)I:IOIOgIOi:B dB or, I, =1073],

I/
(IL), :lOlogloi:68 dB or, I, =103,
.. The total absolute intensity 7 = L +1, = (107.3 +1 06.8) I,

. Resultant 1L=101og,r10]i=101og10 (107 +10°%) dB = 74.19 dB
0

I
11. IL=10log;y7-=80dB or, I = 10%, = 10® x 10'2 W/m? = 10+ W/m>,
0

-4
Now energy density =é= 13(13 Jm? =29 %107 J/m?.
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12. Loudness level in number of phons= IL in dB

-2
=10log,, ]L =10log;, 110— =100
0

012 -
13. Let displacement = acos(wt — kx)

Excess presure p=-B aa—\)‘: = Bak sin (¢ — kx)

where bulk mudulus B = vy.P,=1.40 x 1.013 x 10°> N/m?
= Bak or.

2

P iax Maximum particle displacement

_ Pmax _ \/Eprms xc

o= Bk v xo [.- ¢ = o/k]
2 x20x350
= V2 < sm=111x105m
1.40x1.013x10° x2rn <10
. . oy . o
Particle velocity u=§:—a(osm((ot—kx):a(ocos((ot—kx+90 )

. Maximum particle velocity = ao
=1.11 x 107 x 21 x 10° m/s = 6.97 x 102 m/s.
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Unit-6 : Velocity of Waves

Structure

6.0  Objectives
6.1  Introduction
6.2 Velocity of Transverse Vibrations of a stretched String
6.3  Velocity of Longitudinal Waves in a fluid
6.3.1 Newton’s Formula
6.3.2 Laplace’s correction
6.4  Relationship between the speed of sound and rms speed of gas molecules
6.5  Summary

6.6  Review Questions and Answers

6.0 Objectives

After reading this unit, you will learn :

e how to set up the expression for velocity of transverse vibrations of a stretched
string

e how to find the expression for velocity of longitudinal waves in a fluid (Newton’s
formula) and Laplace correction.

6.1 Introduction

The transverse vibration of a stretched string is a simple example of a vibrator
with distributed characteristics of masses throughout the medium. It is also a simple
example of a medium of wave propagation. There is, therefore, much theoretical
interest in the study of the vibration of strings. Here we consider the transverse
vibration of an ideal string. An ideal string is a hypothetical one and cannot be
realized in practice.

A sound wave propagates, through an elastic fluid medium as an alteration in
pressure, particle displacement or particle velocity. To drrive an expression for velocity
of a plane longitudinal wave in fluid medium we need some approximations.

92
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6.2 Velocity of Transverse Vibrations of a Strectched String

A string is a perfectly uniform and flexible filament of solid matter whose length
is large compared to its radius.

When a string is stretched between two fixed
points (Fig. 6.1) and a portion of it is plucked
perpendicular to its length, transverse vibrations
are set up in it. The particles vibrate at right
angles to its length and the movement is handed ¥
over from particle to particle. This results in T
the propagation of a transverse wave along the
string with a velocity determined by some
constants of the string. Fig. 6.1

Expression for velocity : Let a string be stretched between two fixed points and
let ab be its rest position along x-axis (Fig. 6.1). Let a portion of the string be now
drawn along y-axis, i.e., at right angles to its length such that the amplitude of
vibration is small. Since the string is perfectly flexible, we can take the tension T of
the string to remain essentially constant along the string acting tangentially at each
point as the waves travel along it.

Consider a small segment AB (= &l) of the string in the displaced position. If 6 be
the angle made by the tangent at A with ab, the transverse component of the tension

at A is TsinethanezT(g—J;), since O is small.

2
Transverse component of tension at B=17 9 y+a—yﬁx =T 8_y+T a—yﬁx.
ox ox ox  Jx?

2
.. Resultant force along y-direction on the element AB=T —J;F)x.

ox
If p be the mass per unit length of the string pox is the mass of the element AB.
0%y
7dx x acceleration of AB=T a—ZSx
X

or. =— =V .. (6.2.1)
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where v = \/z
Y

This is the differential equation for transverse wave motion alsong the stretched
string.

Wave velocity, v= \/% .. (622)

6.3 Velocity of Longitudinal Waves in a Fluid

A sound wave propagates throguh an elastic fluid medium as an alternation in
pressure, particle displacement or particle velocity. To derive an expression for the
velocity of a plane longitudinal wave in fluid medium we start with the following
assumptions :

(1) The medium is homogeneous isotropic and has no dissipative forces.

(i1) The medium is continuous 1.e., the wavelength (A) of the wave is much greater
than the mean free path.

(1)) The medium is of infinite extent so that we can neglect the boundary effects.

(iv) The equilibrium pressure P, and density p, are the same everywhere i.e., we
neglect the effect of gravity.

(v) The wave is of small amplitude, the strain developed in the medium is so small
that the Hooke’ law is obeyed.

Let us consider a tube of fluid of unit cross-section with its axis in the direction
of propagation of the wave and two plane sections A and B of the tube at x and x +
Ox as shown in Fig. 6.2. Here ox > A.

DI 10): QN >
A A B B
P, +P
<+— P, + p + 3p— x-axis
P0
X x+( XTOX  x+3x+{+8L

Fig. 6.2 A tube of unit cross-section and of thickness dx
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The Volume of the slice AB is 6x. Under the influence of the sound wave let the
particles in the layer A are displaced parallel to the axis of the tube by a distance &

Ato A’ and those at B are displaced by & + 8¢ to B’ where & << dx. Therefore, the
final volume of the slice A’B’ is

(x+6x+§+6§)—(x+§):6x+6§:6x+g—§.6x

Now the fractional change in volume, called dilataztion (A) is given by

98
_ change in volume _ (8x+8_x F)x) ox _df L (63.1)
~ original volume dx  ox

When an acoustic wave passes through any medium the medium is deformed due
to change in pressure from layer to layer. The pressure p in excess of normal equilibrium
pressure P is known as excess or acoustic pressure. Let p be the exces pressure on
dap
ox

slice between A" and B’ along x-axis is

dp __op
p—(p+a—x§x)——ax~5x

A’ and that on B” be be p+0p=p+=—0x. Therefore, the resulting force on the

From Newton’s law this force must be equal to mass (p,.0x) multiplied by the

2
acceleration %, where p, is the equlibrium density. Thus
4

I’ __9p
pOSX‘a7:—a—x'8x

%% _ op
Or. T, —, TR

b pO atZ __ax (632)

Now by definition bulk modulus of the medium is

_ volume stress _ p
volume strain  —A

__p9%
p__Ba_x .. (6.3.3)
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Substituting Equation (6.3.3) in Equation (6.3.2) we get

ot ox?

where v=/B/p,

Thus the displacement & satisfies the well-known differential wave equation. Hence

.. (6.3.4)

we can identify v=./B/p, as the velocity of propagation of sound waves.

6.3.1 Newton’s Formula

Newton gave the first theoretical expression of the velocity of sound wave in a gas.
He assumed that when sound wave travels through a gaseous medium, the temperature
variations in the regions of compression and rarefaction are negligibe. The conditions
are, therefore, isothermal and Boyle’s law can be applied.

Consider a volume V of a gas at pressure P. As a result of sound having travelled
in it, let the change in pressure be AP and the corresponding change in volume be
AV. From Boyle’ law we have

PV = constant (isothermal change)
Differentiating partially we have

PAV + APV =0

AP _ excess pressure
AV /V  volume strain

= Fi (by definition)
where E is the volume elasticity of the gas when isothermal conditions hold.

or. P=

Therefore, under isothermal conditions,

_\F
v |
p

This is Newton’s formula for the velocity of sound in a gas. For air at standard
temperature and pressure (STP), density p = 1.29 kg m™ and pressure P = 0.76 m of
Hg = 0.76 x (13.6x10%) x 9.8 Nm™, Substituting these values in Newton’s formula
gives

v =280 ms!
The experimental value, from various experiments, for the velocity of sound at STP
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is ~ 332 ms™!' which is considerably higher (by about 16%) than the above theoretical
value obtained from Newton’s formula. Newton was unable to give a satisfactory
explanation for this discrepancy. The first satisfactory explanation was given by a
French scientish Laplace, in 1816.

6.3.2. Laplace’s correction

According to Laplace when a sound wave passes through a gas the compression
and rarefaction occurs so rapidly that the heat produced in the regions of compression
finds no time to dessipate in the body of the gas. This makes the process adiabatic
and we can use the adiabatic relation

PV? = constant

whosh v is the ratio of specific heat of the gas at constant pressure to that at constant
volume. Differentiating the above equation we get

VYdp—yPvidy =0

__ dar _
o ¥=-—grp=b
Therefore, the velocity of sound in gas is
v=\B/p, =JV¥P/p, .. (6.3.5)

For air at NTP, p, = 1.293 kg.m™, P = 1.013 x 10> N.m? (or Pa) and y = 1.4.
Substituting all these values in Eqn. (6.3.5) we get v = 331.6 m.s™'. The result agrees
well with experliment.

The Eqn. (6.3.5) can be used to discuss the dependence of the velocity of sound
in gases on various factors such as pressure, temperature, humidity, frequency, amplitude
and nature of the gases. Using the perfect gas equation PV = RT we can write from
Eqn. (6.3.5)

Therefore the velocity v= Y;E[—T ... (5.3.6)

where M = p,V is the molecular weight. Eqn. (6.3.6) shows that velocity v is independent
of pressure, frequency and amplitude but it is proportional to the square root of the
absolute temperature 7. The presence of moisture lowers the density and hence increases
the velocity of sound. ¥ depends on the molecular structure and M is different for
different gases. Hence the velocity of sound through a gas depends on its molecular
structure and molecular weight.
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6.4 Relationship between the speed of sound and rms speed of gas
molecules

According to the kinetic theory of gases the pressure exerted by a gas is given by
1
P= §po"r2

where v, is the root mean square (rms) speed of the gas molecules and p,, is the
density of the gas. Therefore

_[3p _ \F v _ \F
v.= |—=|=|"—=[ZV
Po YN Po Y
where v is the speed of sound For air or any diatomic gases v = 1.4 and hence

v, =, /% v = 1.46v. Thus the rms speed of molecules in air is slightly greater than

the speed of sound.

The particle speed (0&/0¢) in sound waves is small and has a value of the order

of 0.1 m.s™!, but the rms molecular speed due to thermal agitation of the order of 102
to 10° m.s.”!. When the molecules of a gas come in contact with a vibrating source
they receive small amount of additional momentum in a definite direction. The rate
of transfer of this additional momentum in a definite direction from molecule to
molecule is the sound speed. Obviously this sound speed cannot exceed the thermal
speed. The speed of sound is roughly 1/2 of the rms speed.

6.5 Summary

. . . . T
1. Velocity of transverse vibration of a stretched string comes out to be v= /E

where T = tension of the string.

2. Velocity of longitudinal waves is found to be v = /pﬁ where B = bulk modulus
0

of the medium and p, = density of the medium.

3. Newton’s formula for the velocity of sound in a gas v = \/? where P = pressure

of the gas and p = density of the gas at a particular temperature.
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According to Laplace correction, v = /% where y = ratio of specific heat of the

gas at constant pressure to that at constant volume.
Relation between the speed of sound (v) and rms speed of gass molecules (v )

. 3 .
is given by v, = \/; -v. The rms speed of gas molecules is greater than the speed

of sound.

6.6 Review Questions and Answers

1.

A heavy chain of length / and mass per unit length m is suspended vertically from
one end. A transverse wave is initiated at the upper most end. Show that the time
taken by the wave to travel down to the lower end is 2@ :

Transverse wave are generated in two uniform steel wires A and B of diameters
107 m and 0.5 x 10~ m respectively, by attaching their free end to a vibrating
source of frequency 500 Hz. Find the ratio of the wavelengths if they are stretched
with the same tension.

Calculate the velocity of sound in (a) water and (b) steel. Given density of steel
= 7800 kgm, Young’s modulus of steel = 20 x 10! Nm and bulk modulus of
water = 0.20 x 1010 Nm2,

Compare the velocities of sound in hydrogen (H,) and carbon dioxide (CO,). the
ratio (y) of specific heats of H, and CO, are respectively 1.4 and 1.3.

ANSWER

Consider an element dx of the chain at a distance x from the upper end. The
tension 7' at this point is equal to the weight of the lower part of the chain of
length (/- x). Thus

T.=(l-x). mg.
The velocity of transverse wave at this point is

The time taken by the wave to travel the distance dx is
_dx _ dx

dt —_—
Vi (I -x)g
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100

f

‘ ‘ B de 1 0(—dz)
Required time t—_([ m— \/g'z[ Jz

where we have put r — x = z.

r=—[2:2] = 2\ﬁ
Je 25 G
2. The density p of a wire of mass M, length L and diameter d is given by

AM 4
o= _ 4

=—>-=—> where LL:M
nd"L nd L

9, = |4 -
Now A I, and Vg Wy

1
H — = =— =05 =—
enee, B 5 dy 107 2

A
3. (a) E_=0.20 x 10° Nm™
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_ [P o [COP
4 Oy = [ op 5 9C0 =55

OH, | YH, ‘pCOZ
¥CO, \yCO, pH,

Since density of a gas is proportional to its molecular weight

pCO, 4401
pH, 2016

OH, [14_4401 _
9CO, V13 “2016 ~ %

Velocity of sound in hydrogen is 4.85 times that in carbon dioxide.

101
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Unit-7 : Superposition of Waves

Structure
7.0  Objectives
7.1  Introduction
7.2  Wave equation : Stretched string
7.3  Harmonic solution of the wave equation
7.4  Eigen values, eigen functions and eigen frequencies
7.5  Stationary waves in a vibration string
7.6  Energy of a vibrating string
7.7  Plucked string
7.8  Struck string
79 A few remarks about stringed musical instruments
7.10 Melde’s Experiment
7.11 Vibration of air columns
7.11.1 Open pipe
7.11.2 Pipe closed at one end
7.11.3 End correction
7.12  Wave train and the concept of wave group
7.13  Phase velocity and group velocity
7.14  Relation between phase velocity and group velocity
7.15 Importance of group velocity
7.16 Summary
7.17 Review Questions and Answers

7.0 Objectives

In this unit, you will learn

e Standing (stationary) waves in a stretched string and analytical

treatment to find eigen values, eigen functions and eigen frequency

e energy of a vibrating string

e plucked and struck strings

e some important points about stringed musical instruments
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e Meldes experiment to find frequency of a tuning fork
e Relation between wave velocity and group velocity
e Longitudinal standing waves and normal modes in open and closed pipes

7.1 Introduction

In the Unit-5 and Unit-6, we have discussed waves which travel uninterrupted in
open or unbounded systems. We assumed that the medium was homogeneous and
infinite in extent. This unit is devoted to closed or bounded systems. The study of the
vibrations of strings and air columns is very important because the sound emitted from
many sound sources is due to vibrations of one of these kinds.

The study of vibration of strings is important both from theoretical and practical
points of view. In a simple vibrating system, the mass is assumed to be concentrated
at one point and the motion of the system can be completely specified by giving
displacement of one or more mass points as a function of time. But most practical
vibrators are not of this type. For example, in the strings of a muscial instrument and
air column of organ pipes the masses are distributed. In case of wave motion the
inertia and elasticity are distributed throught the medium. The transverse vibration of
a string and longitudinal vibration of air column are simple examples of a vibrator
with distributed characteristics and are also simple examples of a medium of wave
propagation. There is, therefore, much theoretical interest in the study of the vibration
of strings and air columns. From practical point of view, we note that the vibrations
of string and air column play important roles in the world of music. String instruments
like guitar, sitar, piano are all based on the transverse vibration of stretched strings.

Only longitudinal waves are possible in air columns. the vibrations of air columsn
in open and closed pipes serve as the source of sound in many musical instruments
like organ, flute, clarinet etc.

In all the cases of above vibrations generated waves are reflected from the boundary
and stationary waves or standing waves are produced due to superpostion of the
reflected and incident waves.

7.2 Wave equation : stretched string

We have obtained one dimensional differential wave equation in Unit-6 (see Art.
6.2) for a stretched string given by

(721
dr* ox? (7.2.1)
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where ¢ is the velocity of transverse waves along the string.

Eq. (7.2.1) 1s the well-known differential wave equation and hence ¢ can be
identified as the velocity of transverse waves along the string.

7.3 Harmonic Solution of the wave equation

A general solution of the wave equation (7.2.1) may be obtained by using the
method of separation of variables. Let

y(x,1)=F(x).F (1) .. (131D

where F| is a function of x only and F, is a function of 7 only. Substituting (7.3.1)
in Eqn. (7.2.1) and dividing throught by F,F, we get

1 dF, A dR
Eyar B
Left hand side of this equation is a function of ¢ only and the right hand side is

a function of x only. So for equality each side must be equal to some constant, say,
—o°. the negative sign is chosen in order to get periodic solution. Thus we get

.. (13.2)

d*F,
dx; +k*E =0 .. (713.3)
d2F2 2

and e +0°f, =0 .. (13.4)

where k = o/c.

The general solutions to these equations are

Iy = Acoskx+ Bsinkx ... (1.3.5)

and I, =C coswt+ Dsin ot .. (7.3.6)

where A, B, C and D are arbitrary constants which can be determined from the given
initial and boundary conditions. Thus the solution to the wave Eqn. (7.2.1) may be
written as

y(x, t)= (A coskx+Bsinkx)(C cos ®f + Dsin o) .. (1.3.7)

In this solution there is no restriction on the values of . This happens so because
in the above discussion we have tacitly assumed stretched string of infinite length.
Thus a string of infinite length can sustain any arbitrary frequncy of oscillation.
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With a veiw to practical system we consider a streched string of finte length /
reigidly fixed at both ends. Suppose the string is fixed at x = 0 and x = 1. Then
y =0 at x = 0 and [ for all values of ¢. Substituting the condition y = 0 at x = 0 in
the solution (7.3.7) we get

A (Ccosot+ D sinor) =0
This indicates that A = 0. the condition y = 0 at x = [ requires that
Bsinkl(C cos ¢ + Dsin O)t) =0

This is to be valid for all . So we must have

sin kIl =0
or, kl = nm, where n=1, 2,3
or, k= nn/l = k, (say) ... (71.3.8)

and  © = kc = nnc/ll = o, (say)
Note that the possibilities B = 0 and n = 0 are not physically intersting because

they make y = O for all 7. This corresponds to the situation when the string is at rest.
The solution (7.3.7) now can be written as

y = sin k x (a, cos ot + b_sin o 1)
where we have put BC = a, and BD = b, . For each value of n we get a solution. Since

the wave equation is linear and homogeneous the general solution is obtained by the
principle of superposition as

y= i sin knx(an cos®,f+b, sin (onl) .. (71.3.9)

n=1

It can also be written as

y=icn sink,x cos (@,/ —0,) .. (7.3.10)

n=1

where ¢, =\/a’+b} and ¢, =tan! b /a .

The solution (7.3.10) indicates that a stretched string of finite length and rigidly
fixed at both ends can sustain only certain discrete frequencies. In the nth mode an
element of the string vibrates simple harmonically with amplitude ¢, sin k x and
andgular frequency ©,. The frequency of vibration in the nth mode is

O] 1 nme wnc n |T
=_n_-__ = _=_7 JZ .. (73.11
Y"Tor Tor T 21 2i\m ( )
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The mode corresponding to n = 1 is called fundamental mode of vibration and its

frequency v, = %\/T /m is called the fundamental or first harmonic frequncy. The
higher frequency modes have frequencies which are initegral multiple of the fundamental
frequency and are called harmonics. All the normal modes may be present at the same
time and the general displacement is the superpostion of the displacements due to all

the modes.

7.4 Eigen values, eigen functions and eigen frequencies

Suppose we have an operator A and functions W, such that
Ay, = ay,

Then v, are called eigen functions and a, eigen values of the operator A. For
example,

%(emx) =me™
In this case ¢ is an eigen function and m is an eigen value of the operator d/dx.

the space part of the solution (7.3.10) is X (x) = sin k x.

4 )y _p2x
Now ? n " Ynn
Thus X are eigen functions and k}f are eigen values corresponding to the operator
—d?/dx>.
Similarly taking the time dependent part of the solution (7.3.10) we find that

d* 2
(_?jcos@nz—%):mn.cos<wnr—¢n>

Thus (oi are the eigen values and cos (mnl—¢n) are the eigne functions of the

operator —d?/df?. These frequencies o, are called eigen frequencies.

The eigen functions X, (x) =sink,x form a complete set of orthogonal functions.

Two eigen functions X (x) and X (x) are said to be orthogonal if

J Xn(x)Xm (x)dsz for nm

all x
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i
Jsmk x sin k,, xdx —Js1n—s1nmdx

Here /
0

Thus X (x) form a set of orthogonal functions. These functions X (x) form a

complete set in the sense that any arbitrary function f(x) satisfying the same boundary
conditions can be expressed as a linear combinations of these functions i.e.,

=§q&u>

7.5 Stationary waves in a vibrating string

The solution (7.3.10) can be rewritten as y = 2 v, where

n=1
y, =c,sinkx.cos (o0, )
A %cn sin ((ont+knx—q)n) %cn sin ((onl—knx—q)n)

This gives the displacement of the string at any
point x at any time instant r when it is vibrating in
the nth mode. Thus the vibration of the nth mode
may be considered as the superpostion of two waves
propagating in two opposite directions. The
resultant amplitude at any point is ¢ sink x. It varies
with x and has maximum values (antinodes) when

nmY

k,x= 7
where p=10,1,2,3, ... (n—-1)
§~~.---"¢' AN — d :3

/ 3 1 n

Ton’ T 2n’” Fig. 7.1 The first four modes of
vibration in the string

=(2p+1)m/2

Or.

2

and has minimum (nodes) when

knngzsn where s =0, 1, 2, 3,
or, x=20,1/n,2ln, ... 1

2
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Note that the cases s = 0 and s = n corresponds to the original boundary conditions
that y = 0 at the ends of the string. Thus in the nth mode the string vibrates in n
segments. The distance between two consecutive nodal points is //n. The neighbouring
segments will vibrate in opposite phase. The stationary wave patterns for the first few
modes of vibration are shown in Fig. 7.1.

7.6 Energy of a vibrating string

For a vibrating stretched string rigidly fixed at both ends. the displacement y at any
point x at any instant of time ¢ is given by

y(x1)=Y c,sink,xcos(w,(~9,) . (7.6.1)
n=1
where the sum is over all possible modes of vibration.

For brevity let us put

¢, cos ((ont - ¢n) =&,

dg, :
Then g, = = 0C, sin (w,1-9,) .. (7.6.2)
and Y :2Sinknx'§n (763)
Now kinetic energi of the string is
(1
2
Ek‘([i(mdx)y

L 2
E, = %'([%[2 sinknx.inj dx

n=1

[ e e
= gj%ZZ&nis sink,xsink x dx
0

n=l s=1

l
Since Jsin k,xsink xdx =0
0

for n#s

=[/2 forn==s
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We can write
B =2L5e2 M (202602 (0,00, . (1.6.4)

where M = m.l is the total mass of the string.

The potential energy 6Ep associated with an element 6/ of the string (Fig. 6.1) can
be calculated by considering the work done against the tension 7 in stretching the
element Ox to the length

81 = \[(8x)* +(8y)* = /1+(%)2 -8x:{1+%(3—i)2}8x

Since the tension remains practically constant,

1 ay ?
5Ep =T(5]—5x)=T§5x(a—x)

Using Eqn. (7.6-3) we get,

2
T -
6Fp =5 .Bx[n; k, cos knx.énj

P
= E'sz N k,k &8, cosk,xcoskx

n=1 s=1

Integrating over O to / we get the total potential energy as

[ o o
E,= gJZanksinis cosk,xcos k x.Ox

0 n=1 s=1

/

Since Jcosknxcosksxdx=0 for n+s
0
=12 forn=ys
T I~ 202
Weget E =— —
A
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o 2
Tl 2¢2 2 O,
= () kn —
402 % n&n |: 02 :|
ME
=szi§i [+ s*=T/m and M = ml|
n=1
ME
= 7203503 cos” (0, = 9,) .. (7.6.5)
n=1

.. The total energy of the vibrating string is
E=E +E,

_ %;(gﬁ 022 = %2 0l (7.6.6)

This expression shows that the total energy is the sum of the energies associated
with the individual modes excited separately. The energy associated with different
modes are entirely independent of each other. The energy is never exchanged among
the modes. If the string is set into oscillation in a particular mode other modes will
not be excited by acquiring energy from the vibrating mode.

A string may be considered as an assembley of infinite number of strongly coupled
particle oscillators. So it will have infinite nimber of normal modes of vibration. For
the nth mode the quantity £ can be identified as a normal coordinate and o as the
normal frequency.

7.7 Plucked string

A stretched string may be set into transverse vibration in a variety of ways. Most
common methods are the excitations by
plucking, striking and bowing. The
number of modes excited and their
relative magnitudes are determined by
the method of excitation. Thus the
quality of the emitted note depends on
the way in which the string is set into
vibration. Fig. 7.2 Plucked string

l—a

If a point of a stretched string rigidly fixed at both ends is pulled in a transverse
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direction and then released the string is said to be plucked. It can be found in musical
instruments like guitar, sitar, tanpura etc. Suppose a stretched string of legnth / rigidly
fixed at points x = 0 and x = [ is plucked at a point x = a so that the initial displacement
at x = a is h. From Fig. 7.2 we find that the initial configuration of the string may
be represented analytically as follows.

Yo_h
x a
or, yo=% for0 <x<ua
Similarly
h(l-
y, = g_ax) fora<x<l . (17.1)

Here y,, is the initial displacement at any point x. The initial velocity at every point
is zero i.e.,

Yo =0 .. (1.72)
Now if the string is released the transverse disturbance travels alone the string
satistying the differential wave equation

or* ox?

which has a general solution in this case as

y(x,1)= z sin knx(an cos®,f+b, sin (onl) . (7.73)

n=1

where k, = nn/l, o = nnc/l and ¢c=~NT/m
The initial condition (7.7.2) indicates that

I (x,0)=J, = Zmnbn sink,x=0

n=1

Therefore, b, =0 .. (1.74)
Now from Eqn. (7.7.3) we can write

y(x,0)=y, =Y a,sink,x .. (17.5)
n=1
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The constant a, can be determined by the Fourier series method. Multiplying both
sides of (7.7.5) by sin kx and and integrating from x = 0 to x = [/ we get

L w 1
Jyo sink xdx = Zanjsin k, xsink xdx
0

n=1 0
1

Since Jsin kxsinkxdx=0
0

=12

We can write

L
2

!
Jyo sink,xdx=a;
0
This is valid for any integer value of s.
5l
a, = 7_([)/0 sin k,,x dx
Using the value of y, from Eqn. (7.7.1) we get

a l
27 hx . 2 th(l-x)x .
a, —7£;s1nknxdx+7 _([ﬁ.smknxdx

Integrating by parts,

Q>

a =2
" k, 2

a
x sink_x
[——-cosknx+ < }

0

2 h | lcoskx «x
I (I-a)

n n

_ 2hsink,a (l 1 ) _ 2hsink,a
k; \a l-a) a(l-a)k;

T +k—cosk X

for n#s

forn==s

sink,x
v 2
k, o

.. (1.7.6)
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Now putting the values of a,, b, k, and o, in Eqn. (7.7.3) we get the general
expression for displacement in a plucked string as,

y(x l):%iLsmnm.sinnnxcosnncz 777
> a(l—cl)TCZ n:1n2 l l l ( N )
It shows that the maximum amplitude of the nth harmonic is inversely proportional
to n?. So the amplitudes of higher harmonics fall off rapidly and only first few
harmonics become audible. The term sin(nma/l) indicates that the nth harmonic will
be absent if the plucking point is such that

. [ nma nrwa
SIH(T) =0 or, ——=sT

where s =1, 2, 3, ...

st
T a

Or.

2

For example, if the string is plucked at the mid-point i.e., if a = I/2 then n = 2s
=2, 4, 6, ... etc. harmonics will be absent from the resultant vibration. Note that all
these harmonics require the plucking point as a node. Similarly if a = I/3 then n =
3, 6. 9,... etc., harmonics requiring a node at the point x = //3 will be absent. Thus
we can make the following general statement :

When any point of a string is plucked, struck or bowed all the harmonics which
require that point as a node will be absent from the resultant vibration. This is known
as Young’s law or Young-Helmoholtz law.

If the plucked point is touched immediately after plucking all the vibrations will
be stopped. This is due to the fact that all the harmonics having node at the point of
plucking are absent from Young’s law and other harmonics not having a node at that
point will be damped at due to touching.

7.8 Struck string

In the musical instruments like a piano a stretched string is set into vibration by
striking it at a point with a hammer. A rigorous analysis of the motion of a struck
string requires to consider a number of factors such as the duration of contact, the
velocity of the hammer, the relative masseses of the hammer and the string. However,
for the sake of simplicity we assume that time of contact is so small that the impact
ceases before the disturbance finds time to spread over any appreciable length of the
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string. Thereafter the motion can be considered to be almost free with the following
initial conditions :

(i) At t = 0, the displacement y(x, 0) = y, = O for all x.

(ii) At ¢ = 0, the velocity y(x, 0) = y, = 0 for all x excepting the small region of
striking.

Let us consider a stretched string of length / rigidly fixed at two ends. It is struck
by a hammer over an infinitesimally small region from x = a to x = a + da. The
disturbance created travels along the string satisfying the wave equation

or* ox?

which has a general solution in this case as

y(x, 1)= z sin knx(an cosw,f+b, sin (onl) .. (7.8.1)

n=1

where k= AT o =" and ¢ is the velocity of transverse wave. ... (7.8.2)

/A |
The condition y(x, 0) = 0 indicates that a, = 0.

Now J‘/(xao):.j/o :zo‘)nbn Sinknx (783)
n=1
the constant b, can be determined by the Fourier series method. Multiplying both
sides of Eqn. (7.8.3) byt sin kx and integrating from x = 0 to x = [ we get

I o 1
Jﬂo sink xdx = zjwnbn sink, xsink xdx
0

n=1(

1
Since JSin kxsinkxdx=0
0

for n#s

=[/2 forn==s
We can write

!
Jj/o sink,xdx = O)Sbsé
0
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This is valid for any integer value of s.

2

b”=10)

!
Jj/o sink,x dx
"0

Since y, =O0for all points excepting the region of contact from a to a + da, the
above relation reduces to

a+da

2 Jyosinknxdx

"o,

Since da is infinitesimally small, the sine function may be assumed remain consant
over this region and hence we may write

) a+da
b, =7sink,a [ o
24 . nma
=——smn——
Tcn /
a+da

where 4= J Yo dx . If the law of variation of y, over da is known then A can be

evaluated.

Now putting the values of a,, b, k, and o, in Eqn. (7.8.1) we get the general
expression for diaplacement in a struck string as

2A~1 . nma . nmx . nrct
y(x,l)=gzzs1n i .Sin i .Sin i .. (71.8.4)
n=1

It shows that the maximum amplitude of the nth harmonic is inversely proportional
to n. In case of plucked string this variation is as 1/n?. So in case of struck string
greater number of harmonics will have appreciable amplitudes. Hence sound emitted
by a struck string will be richer in harmonics as compard to that emitted by a plucked
String.

The term sin (nna/l) in Eqn. (7.8.4) indicates that the nth harmonic will be absent
if the striking point is such that

sin@: 0 or, @=Sﬂ'«

] /
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where s = 1, 2, 3, ...

sl
n=—
a

Or.

2

For example, if the string is strucked plucked at the mid-point i.e., if a = I/2 then
n=2s=2 4, 6, ... etc. harmonics will be absent from the resultant vibration. Note
that all these harmonics require the striking point as a node. Similarly if @ = /3 then
n=3,6.9,. etc, harmonics requiring a node at the point x = //3 will be absent. So
in general, all the harmonics requiring the striking point as a node will be absent from
the resultant vibration. Thus Young’s law is also obeyed by the struck string.

Discussions :

the above is a simplitied analysis. The actual motion of a struck string is complicated
and we need to consider a number of factors such as the duration of contact, the
velocity of the hammer, the relative mass of the hammer and the string. A considerable
amount of research has been done to account for these factors. It has been found that
for more abrupt and localised blow the relative intensities of higher harmonics become
greater. In a piano the harmonics above the sixth are considered undesirable as they
tend to produce dissonance. Consequently the hammer is covered with felt to redue
the abruptness and localisation of the impact and the string is struck at a point nearly
one-seventh the length to eliminate the 7th harmonic. The amplitude of the fundamental
incresses with the increase in the mass of the hammer and for a striking point nearer
the bridge.

7.9 A few remarks about stringed musical instruments

The stringed musical instruments can be classified into three distinct types—
plucked, struck and bowed. Guitar, mandiline, sitar, tanpura, sarode, vina etc. are the
plucked type instruments. Piano and santur are struck type instruments whereas violine,
esraj, sarengi etc. are bowed type musical instruments. In plucked and bowed type of
instruments the amplitude of nth harmonic is proportional to 1/n?> whereas in struck
type instuments it is proportional to 1/n. So more number of harmonics will have
appreciable amplitude in the case of struck string. Hence sound emitted from struck
string will be richer in harmonics.

In most stringed musical instruments the ends of a stretched string are fixed to
screws or pegs in a board. As the string vibrates the vibration is communicated to the
board via these serews or pegs. The vibrations of the board and the adjoining air
responsible for the radiation of sound energy. The string itself is a poor radiator of
sound energy. The quality of the sound is modified to a large extent by the body of
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the instument. The resonant vibration of the body may increase the intensity of some
of the frequency components relative to the other.

We have made all the analysis by considering an ideal string. A real string is never
an ideal one. A practical string may be non-unform . In that case tension will be a
function of x. The two ends of the string are not perfectly fixed due to yielding of
the support. This has the same effect as that of an increase of length of the string. A
practical string always possess some amount of rigidity and elastic forces come into
play. Due to this stiffness there is an extra restoring force. Its effect is to increase the
frequencey of each component by different proportions and hence they now do not
form a harmonic series.

7.10 Melde’s Experiement

This is a scientific experiment carried out in 1859 by the German physicist Franz
Melde on the standing waves produced in a tense cable originally set oscillating by
a turning fork, later improved with connection to an electric vibrator. This experiment
attempted to demonstrate that mechanical waves undergo interference phenomena.
Mechanical waves traveled in opposite directions form immobile points, called nodes.
These waves were called standing waves by Melde since the position of the nodes and
loops (points where the cord vibrated) stayed static. In this experiment the change in
frequency produced when the tension is increased in the string similar to the change
in pitch when a guitar string is tuned will be measured. From this the mass per unit
length of the string / wire can be derived.

_/
Standing Wave
A
Electric vibrtor r 1

o }Ode _ Pulley
(o o

Tension (T)
Fig. 7.3
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This is a scientific experiment carried out in 1859 by the German physicist Franz
Melde on the standing waves produced in a tense cable originally set oscillating by
a tuning fork, later improved with connection to an electric vibrator. This experiment
attempted to demonstrate that mechanical waves undergo interference phenomena.
Mechanical waves traveled in opposite directions form immobile points, called nodes.
These waves were called standing waves by Melde since the position of the nodes and
loops (points where the cord vibrated) stayed static. in this experiment the change in
frequncy produced when the tension is increased in the string similar to the change
in pitch when a guitar string is tuned will be meaured. From this the mass per unit
length of the string / wire can be derived.

Melde’s experiment in longitudinal/parallel position :

(a) Longitudinal wave

(b) Transverse wave

Fig. 7.4

Melde’s experimental set up consists of a light string tied to one of the prongs of
a tuning fork which is mounting on a sounding board. The other end of the string is
passed over a horizontal pulley and a light pan is suspended from the free end. The
tension of the string can be adjusted by changing the weights placed in the pan while
the length of the string can be adjusted by changing the position of the pulley towards
or away from the fork. If they fork is adjusted so that its arms vibrate parallel to the
length of the string. Through adjusting the length or the tension number of clear loops
can be visible as the standing wave is formed. When the prongs vibrate parallel to
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the length of the string, the frequency of the fork is twice the frequency of the string.
Since the string is vibrating in the fundamental mode, its frequency n is given by,

1 |7

"2 m

Therefore, the frequency of the tuning fork will be

oy LT
N—2n—l\/; .. (7.10.1)

If number of loops formed is p, then

N=§ % . (7.102)

Melde’s experiment in transverse/perpendicular position :

When the fork is adjusted so that its arms vibrate perpendicular to the length of
the string, the frequency of the fork is same as the frequency of the string. Since the
string is vibrating in the fundamental mode, its frequency n is given by

1 |7

"2 m

Therefore, the frequency of the tuning fork will be

N=n=>; % L (7.103)

If number of loops formed is p, then

_p [T
N—j\/% .. (7.10.4)

7.11 Vibration of air columns

The vibration of air columns enclosed in a pipe serves as the source of sound in
a large class of wind instruments like organ, flute, clarinet etc. The phenomena are
also of great theoretical interest. There are two types of pipe which have practical
importance. The pipe open at both ends is known as open pipe and the pipe closed
at one end is known as closed pipe. Any distrubance created at the mouth of a pipe,
travels down the pipe and is reflected back from the other end. Stationary waves are


https://www.print-driver.com/?demolabel-en

120 NSOU « CC-PH-09

formed by the superposition of reflected and incident waves. At the open end there
must be formed an antinode and at the closed end there must be a node. Only certain
descrete frequencies depending on the size of the pipe and the velocity of sound can
be excited in the air column. At the closed end a forward displacement of air particles
is reflected by the rigid boundary as a backward displacement of equal magnitude and
makes the displacement zero at the closed end. Here a compression is reflected as
compression i.e., with no phase reversal. When a compression reaches at the open end,
the front part of the compression spreads out rapidly causing a fall of pressure. The
rear part of the copression having higher pressure moves rapidly in the outward
direction causing a fall of pressure behind it. In this way a pulse of compression is
reflected back as rarefaction save i.e., with a reversal of phase.

In order to develop the thneory of vibration of air columns in a pipe we start with
the following simplifying assumptions :

(1) the diameter of the pipe is small compared with the length of the pipe and the
wavelength of sound.

(i1) walls of the pipe are perfectly rigid.

(iii) The effects of viscosity and thermal conduction are negligible.

(iv) There is only small amplitude adiabatic change of pressure without rotatory
or eddy motion.

(v) Plane waves are produced so that the motion is uniform over any particular
cross-acction.

Under these conditions the differential equation representing the vibration of air
column will be given by
9 _ , 9%
S2°-¢ 32
ot ox
where ¢=.,/B/p is the velocity of the wave, B = bulk modulus and p = density of

the air.

The equation can be solved by the method of separation of variables as done in
Art. 7.3. Thus

&(x,1) = (Acoskx+ Bsinkx)(C cos o + Dsin o) (7111

where k = w/c. The constants A, B, C and D are to be evaluated from the given
boundary and initial conditions.
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7.11.1 Open pipe :
For a pipe open at both ends (x = 0 and x = /) there must have displacement

d _

antinodes (maximum vibrations) at the two ends i.e., (i) 5—0 at x = 0 and (i)

o€ _ _
a—x—O at x = 1.

Using the condition (i) in Eqn. 7.11.1 we get B = 0
Therefore, &(x t)= coskx(a cos O + b sin @)
where a = AC and b = AD
Now applying the condition (i1) we get
sinkl = 0 or, kl = nt where n = 1, 2, 3 etc.
or. k=nn/l=k, (say)

2

Also w=kc=nnc/l=wm, (say)

For each value of n we get a solution. Hence, by the principle of superposition the
general solution is given by

& (x, 1)= z cosk,x (an cos®,f+b, sin (onl) . (7.11.2)
n=1
The solution indicates that the air column can =200 W,=2020 h,=212

vibrate with certain characteristic frequencies. The
frequency of the nth mode is

®W, nc_n |B

YT om T 20 T 20\ p

So the fundamental mode will have a frequency

v, = % and a wavelength A, = ¢/v; = 2/. As n can
take up all integer values an open pipe gives rise to
all harmonics, both odd and even Eqn. (7.11.2) ¥
represents a stationary wave pattern formed inside n=1 n=2  n=3
the pipe. The stationary wave patterns of first few Fig. 7.5 Modes of vibration

harmonics are shown in Fig. 7.5. In open pipe
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7.11.2. Pipe closed at one end

For a pipe closed at one end there must be formed a node at the closed end
x = 0 and an antinode at the open end x = /. Hence the boundary conditions to be

satisfied are (1) £ = 0 at x = 0 and (i1) aa—f: 0 atx=1
The condition (1) when applied to the Eqn. 7.11.1 gives A = 0. So

&(x,t)=sinkx(acoser+bsinwr)

where a = BC and b = BD
Now condition (ii) requires that cos k[ = 0

or. ki=""

, 2 wheren =1, 3, 5, ...

or,  k=Tr=k, (say)

Also o= ke =€ = o, (say)
2/
For each value of n we get a solution and hence the general solution is given by
the principle of superposition as

&(x,1)= Z sink,x(a, cos®,f+b, sinw,7) L (7.113)
n=1,3
The solution indicates that the air column in a M=4l =43 h=4lS

pipe closed at one end can vibrate only with certain
characteristic frequencies. The frequency of the nth
mode is

®W, nc_n |B I

YT om T Al T Al p

its wavelength is A, = ¢/v; = 41. As here n can take
up only odd integer values, a pipe closed at one end
gives rise to only odd harmonics. Eqn. (7.11.3)
represents a stationary wave pattern formed inside ~ Fig. 7.6 Modes of vibration in
the pipe. The stationary wave patterns of first few an a pipe closed at one end
modes of vibration are shown in Fig. 7.6.

The frequency of the fundamental is v, = ¢/4/ and \

n=1 n=3 n=>5
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7.11.3 End correction

In the above discussion we have assumed that antinodes occur at the open ends
of a pipe and that the sound energy in the pipe is perfectly reflected from the open
ends. This is not strictly correct. Some amount of energy escapes at each reflection
from the open end. The plane waves inside the pipe changes into spherical waves at
the open end. The air beyond the open end is, therefore, in vibration and the effective
length of the pipe becomes greater than the geohetrical length of the pipe. Under
certain assumptions Helmholtz deduced a value mr/4 as the open as the open end
correction where r is the radius of the pipe. Rayleigh obtained a value 0.82 r for this.
Experimental values are 0.8 r for pipe with large flange and 0.6 r for an unflanged
pipe.

The end effect lowers the frequencies of all tones in a pipe.

7.12 Wave train and the concept of wave group

A monochromatic wave may be represented as w(x,7)=Re A @) Tt extends

from —oo to +oo both in space and time. It is an idealized concept because no
practical source vibrates indefinitely and its amplitude does not remain constant. In
practice we get a train of waves of finite duration and of damped amplitude. It may
be called a wave train. A wave train of finite length may be considered to be formed
by the superposition of a theoretically infinite number of plane harmonic waves
having continuously differing frequencies. For practical purposes the frequencies are
limited with a finite range depending on the length of the wave train. The shorter is
the length of the wave train the wider is the effective frequency range. In this sense
a short enough wave train may be considered as a group of harmonic waves. It may
be called a wave group or a wave packet. If such a wave group is examined by
spectrum analyser it would be found to contain a range of frequencies. Maximum
energy is associated with some central frequency @, in the range and the energy
content of other frequencies falls off as the frequency differs from o,

7.13 Phase velocity and group velocity

When a monochromatic harmonic wave moves through a medium the velocity with
which a point of constant phase moves is called the phase velocity or wave velocity.

A plane harmonic wave may be represented by s (x,7)=Re Ae )
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For points of constant phase,
ot — kx = constnat

Differentiating,
%(mt —kx)=0
O w Tk

where c¢ is called the phase velocity.
Group velocity :

A wave group may be considered as formed by the superpositin of an infinite
number of plane harmonic waves. Practical waves are of finite duration and are not
truly monochromatic. A short enough wave train may be considered as a wave group
formed by the superpositon of an TW(”) T A(®)
infinite number of plane harmonic
waves having slighly differing
frequencies and phases. The wave
group has a maximum of amplitude
which falls off to zero not far from
the maximum (Fig. 7.7). If the
medium is dispersive i.e., the phase

velocity depends on frequency then > X C >
the shape of the wave group changes (@) )
as it Fig.7.7(a) Wave group formed Fig. 7.7 (a) Wave group formed by infinite
by infinite number of harmonic number of harmonic waves having slightly

waves having slightly differing differing frequencies, (b) its frequency spectrum
frequencies (b) its frequency spectrum. travels through the medium. The maximum
of the wave group travels with a velocity that is different from the velocities of the
component waves. This velocity is known as group velocity (cg).

7.14 Relation between phase velocity and group velocity

For a simpler treatment we consider a wave group formed by the superpostion of
two waves of equal amplitudes but of slightly different frequency and wavelength. Let
us represent the waves by

Y, = acos((olt —klx) and Y, = acos((x)Qt—kzx)
The superposition of these two waves gives the resultant wave as
Y=y,


https://www.print-driver.com/?demolabel-en

NSOU « CC-PH-09 125

=2acos{(ml_m2)t (kl—kZ)x}COS{((ol+0)2)t_(k1+k2)x}

2 2 2 2

= 4,, cos (0,7 —k,x) . (7.14.1)

where mazé(ml+0)2), kazé(kl+k2) and Am=2acos((0ml—kmx) with

®, = %(0)1 ~®,) and &, = %(k1 k). If o, and o, differs lightly then Eqn. (7.14.1)

may be interpreted as a high frequency (o ) wave whose amplitude varies slowly with
a frequency o, (Fig. 7.8). The high frequency part moves with a velocity o /k, which

y slowly varying amplitude

f f\/\ Mm
UUUU LG

h1gh frequency oscillation

Fig. 7.8 Wave group formed by two waves
of slightly different frequencies

is practically the phase velocity of either wave. The velocity with which the modulation
represneted by the term A = 2a cos (o, f — k, x) propagates is the group velocity (cg).

e =0 _O170

& km - kl_kZ

Now o and k are related by the dispersion relation, ® = w(k)

k)-o(k
Therefore, Cg=%2(2) .. (7.14.2)

k +k,
Let k; — k, = Ak and ——= — =k,
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Ak
5

Now by making Taylor series expansion we can write

Therefore, &k, =k, + % and k, =k, —

m(kl):(o(ka+%)z(o(ka)+aa’,—(£k %
Ak d Ak
(o(kz):(o(ka—T)z(o(ka)—d—(;k =

Putting all these is Eqn. (7.14.2) we get

_do

‘e~ dk

ka

Since phase velocity ¢ = w/k or ® = ck we can write

_ Corp 96y de dh
cg_%(Ck)_c—i_kdk_c-i_kdk T
o dh_ 2n
Now k_T or, dk- 2
_2m dc _ kdc
T T AT T M an

This is the required relation between phase velocity and group velocity for a
dispersive medium. For a non-dispersive medium dc/dh = 0. Then ¢, = ¢ i.e., group
velocity equals phase velocity. Note that sound waves in the audible range do not
show dispersion in any medium but ultrasonic waves show dispersion.

7.15 Importance of group velocity

An important use of waves is that they can be used to carry energy or information.
A single monochromatic harmonic wave cannot be used to send a signal because such
a wave travels unchanged. In order to send a message we must modulate some
properties of the wave at the sending end in such a way that it can be decoded at the
receiving end. Now a modulated wave may be considered as a mixture or a group of
harmonic waves. Such a wave group travels with the group velocity. The energy or
the signal is thus propagated with the group and has the velocity of the group. In some
cases the phase velocity may become greater than the speed of light (for example, the
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phase velocity of electromagnetic waves in the ionosphere is greater than the speed
of light). It does not violate the principle of relativity as the energy is propagated not
with phase velocity but with group velocity which is always less than the speed of
light.

7.16 Summary

1.

10.

I1.

According to the principle of superpostion of waves, the resultant displacement
(at a particular point (produced by a number of waves is the vector sum of the
displacements produced by each one of the disturbances.

The stationary waves on a string and in an air column are formed by the
superpostion of waves travelling in opposite direction.

Harmonic solution of the wave equation has been found and eigen value, eigen
functions and eigen frequencies have been evaluated.

We have made all the analysis by considering an ideal string.

Constants a, and b, for plucked string and struck string, respectively have been
determined using the Fourier series method. It is to be noted that b, = 0 for
plucked string and a, = O struck string.

When any point of a string is plucked, struck, or bowed all the harmonics which
require that point as a node will be absent from the resultant vibration. This is
known as Young’s law or Young Helmholtz law.

In plucked type instruments the amplitude of the nth harmonic is proportional to
1/n® whereas in struck type instruments it is proportional to 1/n. Hence sound
emitted from struck string will be richer in harmonics.

Frequency of a tuning fork can be determined by Melde’s experiment both in
longitudinal and transverse positions.

The theory of vibration of air columns for both open and closed pipes with end
correction have been discussed.

It is noticed that as n can take up all integer values as open pipe gives rise to
all harmonics, both odd and even. Sound emitted from open pipe is richer in
harmonics as compared to closed pipe.

A wave train of finite length may be considered to be formed by the superposition
of a theoretically infinite number of plane harmonic waves having continuously
differing frequencies. A wave packet may be considered as a wave train of short
length.
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12. For a wave packet, phase velocity ¢ :% and group velocity ¢, = 6;—23 and their

relationship is given by
2n dc _

c, :C—T-d—x—c—k

de
n

7.17 Review Questions and Answers

1. For gravity waves in a liquid the phase velocity ¢ depends on the wavelength A

according to the formula ¢ = 4./A , A being a constant.

Show that the group velocity is half the phase velocity.
2. The phase velocity ¢ of deep water waves is given by
2 _ g_k 2mS
“ =" ph
where g is the acceleration due to gravity, p is the density of water, S is the

surface tension of water. Find the wavelength A, at which the waves do not
disperse in water. Show that for 4 << 2, ¢, = 3¢/2 and for A >> A, ¢, = c/2.

3. The dispersion relation for microwaves in ionoshere is given by
o’ =l +c%k

where ¢ is the velocity of light in free space and ®, is a constant depending on
the electron density of the ionosphere. Show that the phase velocity ¢, is greater
than c¢. Does it violate the principle of relativity?

4. The phase velocity ¢ of transverse waves of wavelength A in a crystal is given
by

sin(ma/\)
* (ma/\)

C=¢C

where a is the average interatomic separation and ¢ is a constant. Show that the
ratio of phase velocity and group velocity is given by

¢ _tan(ma/L)

¢, (mal))
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10.

I1.

12.

13.

Two harmonic waves represented by
& =3 cos(7t—12x)m and &, = 3 cos(5t— 8x)m
are superposed to form a wave group. Find the group velocity.

A bridge is placed near the middle of a sonomter wire. When two parts are
plucked simultaneously 3 beats per second are produced with a stretching load
of 4 kg-wt. Find the number of beats produced when the load is increased to
16 kg-wt.

A string of length / fixed at both ends has a fundamental frequency v,. The string
is plucked at a point //4 from one end and at the same time the string is lightly
touched at the mid-point. What is the lowest frequency excited in such a case?
What will be the frequency of the next harmonic in this situation?

The stationary waves on a string is represented by
y(x, £) = 0.15 sin S5x cos 300¢ m.

Find the (1) amplitude of vibration at the antinode, (ii) distance between consecutive
nodes, (iit) wavelength, (iv) frequency and (v) the speed of the wave.

Suppose one end (x = 0) of a long stretched string is given a sinusoidal motion
with frequency 500Hz and amplitude 0.001 m. At time t = O the end has zero
displacement and is moving towards + y direction. At any given instant of time
the displacement at x = 0.1 m is —0.005 m. and that at x = 0.2 m is + 0.005 m.
Calculate the wavelength and velocity of the wave. Also, write down an equation
for the wave.

Consider two strings of same length and smae material. Tensions in the two
strings are in the ratio 4 : 1 and diameters of the wires are in the ratio 1: 2.
Compare the frequencies of the fundamental modes of vibration.

Two open organ pipes, one 1 m long and the other 1.05 m long, are sounded
together. If the velocity of sound in air is 340 m/s how many beats per second
will be produced between the fundamental tones?

An air column in a closed pipe of length 80cm and radius 5 c¢cm produces
resonarce with a tuning fork. If the speed of sound in iar is 340 m/s, what would
be the frequency of the tuning form?

Which of the following represents a progressive wave and which one represents
stationary waves :

(@) y=5sin200ms e*™

(b) y=5cos2mxtan 27t
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15.

16.

17.
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(c) y=3tan (O)I—kx)

d) y= 3cos(2000m —0.02mx + 3%)

(e) y=2¢"" cos(0.27x)

The equation of a wave is y = 20cos (200071‘1 -0.02mx + %) m. Find the frequency,

phase velocity and wavelength of the wave.
. kd
sin —

If the phase velocity of a transverse wave in crystal medium is v, = c—2

%)

Why we do not hear beats when two waves of frequency y, = 200 Hz and
Y, = 250 Hz are superposed on each other.

where ¢ = constant then find group velocity.

Two waves are propagating along x-axis such that, they are y, = 5 cos(20007t —
0.04mx,) and y, = 5 cos(2000nt — 0.047mx,). For what values of x, — x;, we will
get maximum intensity and minimum intensities.

ANSWER
c=A\/x
de 1 .
a2
oy de_ 1 _._c_1
Therefore ¢, =c kdk—c 2A\/X—c 5 =5¢

. . de
For no dispersion o 0

Diferentiating the given expression with respect to A and putting Z—i =0 and

A=A, we get A, =2m,/S/pg
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2rnS
For A <<, cZ:p—k

or, C=ﬁ where 4=./2nS/p

dce 1

de _ 1 .30
a7
e aa 13
Hence ¢, =c¢ kdk—c+2A7u =ctoc=5c
2_ gh
For A>>hg, ¢ =% ©°b c=BJ\ where B=g/2n
de 1 -1
o =2
e lpn_ 1. _1
Hence, ¢, =c kdk—c ZBK =c-jc=5c¢
o= Jo +c’k’
2
. Phase velocity ¢, = 2= ,c> + 2 which i h
<. Phase velocity ¢, ===, /¢ +k—2 which is greater than c.
Differentiating the dispersion relation with respect to k we get
d(D_ 2
20 5 =¢ 2k
r Q.d_(’)_CZ
ok dk -
of, ¢, = c? [since ¢, > ¢, ¢, < ]

It does not voilate the principle of relativity because energy or signal is transmitted
not at the phase velocity but at group velocity which is less than c.

de _  sinma/d cos(na/A) ( ma
4. 7 “ (ma/\) %
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de _ . . sin(na/?»)+ cos(ma/l)
T mal) T (nai)

(ma/k)

Now cgzc—kd—k

_ (ra/h) cos(ma/k)
e G ) (man) M)

(TC a/\)
“tan (TC a/\)

c _tan (TC a/?u)

g B (ma/h)
5. Angular frequencies are ©, = 7 rad/s and o, = 5 rad/s. Wave numbers are k; =
10m™ and k, = 8m™".
o = Ao _ 7-5 _
& Ak 10-8
6. Let the length of the sonometer wire be 2/ and a bridge is placed near the middle
such that the length of one part is / + x and that of the other part is / — x where
x << [. Frequencies of the fundamental tones under a tension 7T are

V. :#\/z d vV, :#\/z
2+ Nm T 2T \m

According to the problem v, — v, =3 with T = 4 kg-wt.

1 m/s.

Now, if T is increased to 77 =16 kg-wt = 4T then new fundamental frequencies

would be
v’:—l r__1 ,/£—2v
V2(l+x)Nm o 2(l+x)Nm T

Similarly v; =2v,
.. The number of beats per second would now be
vé—vl’=2(v2—v1)=2><3=6
7.  From Young’s law all the harmonic having a node at the plucked point /4 will
be absent i.e. 4th. 8th, 12th, ...etc. harmonics are absent. Since the string is

touched at the mid-point only those harmonics having a node at the mid-point
can exist. Thus only the 2nd, 4th, 6th, ...etc. harmonics may be present. Out of
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10.

these 4th, 8th etc. modes are absent due to Young’s law. So the lowest two
frequencies excited would be 2v, and 6v,.

(1) Comparing with the form
y = A sin kx cos (of — ¢)
We get amplitude A = 0.15m

(i1) For modes sin5x =0 or, 5x =0, w, 27 ... etc.

.. The nodes are at x = 0, =/5, 2n/5.

Therefore, the distance betwen two consecutive nodes is /5 = 0.628 m.

(1)) Wevelength A= 2 x distances between two consecutive nodes
=2xq/5=126m

(iv) 2nv = @ = 300 or, v = 300/2n = 47.7 Hz.
Let y(x,t):Asin(O)t—kx) .. (D)

where A = 0.0l m, ® = 2nv = 21 x 500 = 1000w rad/s and k = 27/A.

It represents a wave travelling along + x direction and it satisfies the condition
that y (0, 0) = 0.

Now ¥(0.1, £) = 0.01sin (10007 — 0.1k) = — 0.005
¥(0.2, 1)=0.01sin (1000 7t/ — 0.2k) = +0.005
10007/ —0.1k =sin™" (-1/2) = Tr /6 - (2)
100077 — 0.2k =sin™' (1/2) =1/6 .. (3)
Subtracting (3) from (2) we get
0lk=m or,2n/A=10r or, A=1/5m=02m

Velocity ¢ = v.A = 500 x 0.2 = 100 m/s

Putting A= 0.01 m, ® = 1000 & and k = 107 we get from (1) the equation for
the wave as

y (x, ) = 0.01 sin(1000 7t — 10 7x) m

Fundamental frequency

v:Lﬁ:L r
2iNm 2] n(D/Z)Zp

where T = tension, D = diameter and p = density
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Now for the two strings,

w_ LDy o are th

v T, D12 [ -/ and p are the same]
_[4.4_4

N1 11

11. In the fundamental mode in an open pipe the length / = A/2 or A = 2/ and
frequency v, = c¢/A = ¢/21.

. _¢c_c¢ 34011 1 |
. No of beats per second =TT 2 [1 1.05}—8.09

12. For resonance with the fundamental mode there is a node at the closed end and
an antinode at the open end. Therefore, length of the pipe [ = A/4 or A = 41

If the end correction 0.6 r is taken into accounts, then A = 4(/ + 0.6r)

340
.. Frequency v =——5 = Hz = 102.4 Hz.
TR ™ 4(1+0.6r) 4(0.8+0.6x0.05)

13. The general expression of a progressive wave is y = a sin(of + kx) or y = a cos(ot
— kx) 1.e. both the variable must remain within a periodic function which must
have finite values all the time. But for stationary wave the variable x and r are
in separate finite periodic function. i.e. y = A sin of cos kx or, A cos of sin kx
etc.

3n .
Thus (d) = y=3 COS{ZOOOTCZ —0.02mx + ?} represents progressive wave.

and (e) y=2cos(0.27mx)e’™ represents stationary wave.

14. Here ®=20007w =2ny

B ) _ @ _ 20007 _
y = 1000 Hz. phase velocities v, = R 0020 100,000 m/sec
and k=2%2002
2
k—m—lOOm
15 v, =90 O _, =4 (kv,)= i
e Tk ke Ve T g\ T Ve T
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16.

17.

We know that due to persistance of hearing we will not hear beats greater than
10 Where.

For maximum frequency the path difference of two waves must be x, —x; =2n. .

2
Where n =0, 1, 2, 3 ..
2r ] 2
Here T—k—0.04n o 7»——0.04—50m
50
Hence for x, —x =2n7= 50n metre where n =0, 1, 2, 3...

We get maximum

For minimum intensity x,—x, =(2n+ 1)%
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Unit-8 : Wave Optics

Structure
8.1  Objectives
8.2  Introduction
8.3  Electromagnetic nature of light
8.4  Definition and properties of wavefront
8.5  Huygens' principle of wavefront propagation
8.6  Laws of reflection from the wave theory
8.7  Laws of refraction from the wave theory
8.8 Reflection of spherical wave at a plane surface
8.9  Reflection of spherical wave at a spherical surface
8.10 Refraction of spherical wave at a spherical surface
8.11 Refraction of spherical wave through thin lens
8.12 Limitations of Huygens' principle
8.13 Geometrical optics as a limit of wave optics
8.14 Concept of coherence
8.15 Temporal coherence
8.16 Spatial coherence
8.17 Linewidth: Purity of spectral line
8.18 Visibility of fringes and degree of coherence
8.19 Summary
8.20 Review Questions and Answers
821 Illustrated Examples

8.1 Objectives

In going through this unit, you will learn :

1.
2.

Electromagnetic nature of light

Definition and properties of wavefront

136
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Huygens' Principle and propagation of wavefronts
Wave theory of reflection and refraction both at a plane and spherical surface
Concept of coherence - temporal and spatial

Coherence length and coherence time

N o kW

Line width : Purity of spectral line
10. Visibility of fringes and degree of coherence

8.2 Introduction

Optics is a branch of Physics in which the nature and properties of light are studied.
The term light is commonly used to mean radiant energy that causes the sensation of
vision. However, at present the term light is used to mean all kinds of radiations, both
visible and invisible. The subject of optics is conveniently divided into three distinct
branches :

1. Geometrical or ray optics
2. Physical or wave optics
3. Quantum optics

In geometrical optics, many basic principles concerning light are studied by
geometrical methods, without assuming anything regarding the nature of light. It
assumes rectilinear propagation of light which is considered as the ray of light.
Geometrical optics is therefore also known as ray optics.

In Physical optics many experimental results are explained by considering primarily
the wave nature of light and is thus called the wave optics.

Quantum optics deals with the interaction of light with atomic entities of matter.
Here one considers the particle nature, the so-called photons, and exact analysis, one
must take recourse to the method of quantum mechanics.

To understand different optical phenomena, we are to discuss the nature of light.
Historically different theories have been proposed regarding the nature of light. In
1675 Newton first proposed the corpuscular theory of light. The theory suggests that
light consists of a stream of minute particles that move in straight lines with extremely
high but finite speed. Different colours are due to different size of the corpuscles.
While this model could explain many of the facts of geometrical optics, it failed to
explain phenomena like interference, diffraction, and polarization etc.

The mechanical wave model of light, in contradistinction to the corpuscular
theory of Newton, was first proposed by the Dutch physicist C. Huygens in 1690.
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Huygens assumed that, like sound waves, light waves were also longitudinal in character.
But this supposition was subsequently proved to be wrong. Though wave theory was
extremely successful in explaining the phenomenon of interference, and diffraction,
there was no satisfactory answer to the objection raised by Newton as to the nature
of light wave and of the medium through which it travels. It also failed to explain
the phenomena of polarization. To overcome these difficulties Fresnel and Young
introduced the concept of transverse waves and Fresnel's idea of half period zones.

All the above difficulties were finally resolved in 1864 by the English physicist
Clark Maxwell when he put forward his electromagnetic theory of light considering
transverseelectromagnetic wave.

We shall keep in mind that the modern concept (which includes quantum theory)
of light, pioneered by M. Planck, A. Einstein, N. Bohr, and P.A M. Dirac, says that
electromagnetic energy is quantized which means that light can only be imparted to
or taken from the electromagnetic field in discreate amounts called photons. Light is
said to have a dual nature. When the wavelength of electromagnetic wave becomes
very small compared to the dimension of the material with which it interacts, as in
the case of x-rays, and y-rays, it exhibits the particle aspect of light. The electromagnetic
theory of Maxwell and the quantum theory of Heisenberg-Schrodinger has been
combined by Dirac and is known as quantum electrodynamics.

With this modern concept we can fairly assume that the nature of light is well
understood, at least within the context of a mathematical framework that accurately
accounts for present experimental observations. The question as to the true or ultimate
nature of light, although yet unanswered, is quite irrelevant to the study of optical
phenomena.

There are many physical processes that can be described in terms of wave motion.
Throughout the study of optics, one uses the idea of plane, spherical and cylindrical
waves. We learned in Part-1 some simple ideas regarding the propagation of
disturbance through any medium. Here the term disturbance is used in a general
sense; it may be the electric field of an electromagnetic wave or a particle displacement
in any medium.

Finally, we consider Huygens' principle and its applications. It is important to
point out that Huygens' principle is an approximate descriptions of wave propagation
in three dimension which contains some physical truth and at same time avoids
mathematical complexities.

Coherence is the key concept in the study of interference phenomena. It should
be kept in mind that monochromatic light wave, unlike radio or micro - waves, is a
mathematical artifice and not a physical reality. Actual light disturbances are not as
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simple as the sinusoidal variations with constant amplitude and phase. Laser source
may approximate such disturbances, but not the light from candles, incandescent
bulbs, or stars. These lights are the resultant of a large numbers of amplitudes from
individual atomic emissions, which occur independently. Light from a real physical
source 1s never strictly monochromatic. Even the sharpest spectral line (viz., green of
a Hg-vapour, yellow of Na-vapour, etc.) has a finite line width. Moreover, a physical
source is never a point source, but has a finite dimension, consisting of billions of
elementary radiators (atoms). According to Fourier's theorem, the disturbance
produced by such a source may be expressed as the sum of strictly monochromatic
and, therefore, of infinitely long wave trains. The elementary monochromatic theory
is, then, essentially concerned with a single component of this Fourier representation,
expecting for the best that the amplitudes of the higher harmonics vanish quickly.

The fluctuations in the two beams originating in the same source are, in general
correlated, and the beams are said to be completely or partially coherent depending
on whether the correlation is complete or partial. The fluctuations are completely
uncorrelated in beams from different sources, and the beams are said to be mutually
incoherent. No interference is seen under ordinary experimental conditions if mutually
incoherent beams are superposed, and the total intensity will be everywhere the sum
of the intensities of the individual beams.

Hence, coherence of a wave describes the accuracy with which it can be represented
by a pure sine wave for which the wave vector k and the frequency © can be exactly
defined.

8.3 Electromagnetic nature of light

According to Maxwell's electromagnetic (EM) theory of light waves are transverse
electromagnetic waves consisted of varying and coupled electric and magnetic fields,
perpendicular to each other and to the direction of propagation of the wave. A changing
magnetic field produces a changing electric field and a changing electric field in turn
produces a changing magnetic field. This makes the propagation of EM wave possible
even through vacuum. Hertz first experimentally verified the existence of such EM

waves. The velocity of propagation of an EM wave is given by /1/ue, where n

is the permeability and € the permittivity of the medium. Since € and p have definite
values for vacuum, it was unnecessary to assume the existence of the hypothetical
ether medium.

Here we will not discuss Maxwell's EM theory in detail. We will just mention that
these equations can be written in differential and integral forms.
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8.4 Definition and properties of wavefront

Definition of Wavefront—a wavefront is defined as a surface on which the phase
of disturbance is the same at any given instant of time. All points on it are in the same
state of vibration (Fig. 8.1).

Direction of propogation

Wavefronts

Fig. 8.1

The direction along which the disturbance propagates in a homogeneous medium
is called the ray. So, a ray is always normal to the wavefront.

There are three types of wavefronts :

1. Spherical wavefront (spherical in shape)

2. Plane Wavefront (linear in shape)

3. Cylindrical wavefront (cylinder in shape)

Spherical Wavefront (See Fig. 8.2a)

> When the source of light is a point source the wavefront formed will be
spherical wavefront.

> Point source means the source of light is so small that it is considered as point.
It can be considered as dimensionless.

> For example : Ripples in water are in the form of concentric circles which are
spherical wavefronts.

Plane Wavefront (See Fig. 8.2b)

> When the small part of a spherical or cylindrical wavefront originates from a
distant source like infinity then the wavefront which is obtained is known as
plane wavefront.

> For example: Rays coming from infinity like Sun.
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Cylindrical Wavefront

> When the source of disturbance is a slit (i.e., line source) then the wavefront
is cylindrical because all the points are equidistant from the source, and they
lie on the surface of the cylinder.

> For example: When rays of light fall on a lens after coming out of lens, they
will converge at a point.

> The waves are bending and converging at a point, so the shape of the wavefront
is in the form of cylinder.

> Many concentric circles are formed, and the wavefront is in the form of
cylinder.

Properties of Wavefront :

1. Tt is the locus of all points having same phase at a given instant of time.
2. The shape of wavefront depends on the shape of the source of disturbance.
3. A wavefront is always normal to the light rays.
4

A wavefront does not propagate in the backward direction.

8.5 Huygens' principle of wavefront propagation

According to Huygens, if we have a point light source at S in a homogeneous
isotropic medium sends out light waves in every direction and theses waves travel
with equal velocity to carry energy with them to be transmitted in all directions and
will, therefore, reach simultaneously to all points lying on the surface of a sphere
drawn with the S as centre (Fig. 8.2a). Thus, the wavefront is spherical in this case.
After a short interval of time At, all the particles in the medium will be on the
spherical surface AB and lie in the same state of vibration, i.e., the particles will be
in the same phase. Plainly, AB is drawn with S as centre and radius cAt, where c is
the velocity of propagation of the wave. The surface AB is called the primary wavefront.
At long distances it may be considered as a plane wavefront (Fig. 8.2b). As the wave
advances, the wavefront moves parallel to itself in a direction normal to the wavefront.

Now, an important question arises. Suppose we know the wavefront AB at an
instant t. Then how to construct the wavefront at a later instant t + 6t ? The answer
to this question is the Huygens' principle. According to this principle, in an isotropic
homogeneous medium, each point on the primary wavefront serves as the centre of
a new disturbance that sends out secondary wavefronts. So, a series of secondary
wavelets propagate through space in all directions with the same velocity and frequency
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as those of the primary wave. After an interval of time, the envelope of the secondary
wavelets gives the new wavefront.

Fig. 8.2

So, to locate the position of the new wavefront after an interval At, several points
are taken on AB and with each point as centre and radius cAt, spheres are drawn in
turn. These are the secondary wavelets, starting from those points respectively. The
sections of these secondary waves by a plane will be circles as shown in figure (Fig.
8.2). The surface A,B, touching all such spheres in the forward direction, is the new
wavefront. This is how one wavefront can be constructed from another.

m  In case the medium is not homogeneous and isotropic, appropriate velocity is
to be used in different points and directions to construct the new wavefront.

m  Huygens' principle is open to two objections : (i) Why does not a wavefront
propagate backward giving rise to A,B,? (ii) What is the justification of
ignoring arbitrarily the large part of the secondary waves not tangent to the
enveloping surface?

Subsequently, Fresnel considered the superposition and interference of the wavelets
and showed that they are effective at the points of tangency only. And Kirchhoff
showed mathematically that the amplitude due to a wavelet in a direction making an
angle 6 with the ray is proportional to (1 + cos0). For backwave, 6 = © which gives
zero amplitude. Hence the wavefront does not propagate backward. The quantity
(1 + cosB) is often referred to as obliguity factor.
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8.6 Laws of reflection from the wave theory

Let PO be the reflecting surface and AB the plane wavefront incident on it
(Fig. 8.3). When the wavefront strikes the reflector at A at an angle i with it (wavefront
and reflector being perpendicular to the plane of paper), i is the angle of incidence,
being equal to the angle between the normal and the incident ray (direction of arrows)
at A. Now A becomes the source of secondary wavelets tending to spread out in
surrounding space. By the time the disturbance from B reaches the reflector at C, the
secondary waves from A will have a radius BC. Draw a sphere with A as centre and
radius = BC. A plane through C, touching the sphere at D, then gives reflected
wavefront CD.

\
\E G

Fig. 8.3

The disturbance from any point £ on the incident wavefront, after reflection from
the reflector at F, must then reach the reflected wavefront in the time the disturbance
from A reaches D. If FG is drawn perpendicular to CD, then EF + FG must equal
AD (or BC). We shall now prove this to ensure that CD is the true reflected wavefront.

Proof. Draw FH | BC and consider right-angled AABC and AADC. Since
AD = BC and AC is common,

ABC =AMDC = LBAC =ZLDCA=r .. (81
Again, FH ||AB= £ZHFC = ZBAC = £LDCA = LGCF .
Now in right angled AFHC and AFGC, /GCF = ZHFC and FC is common.
AHFC = AFGC = FG=HC
EF + FG = BH + HC = BC. So, CD is the true reflected wavefront.

Now, 1 = L/BAC = ZDCA =1t = i=r, e, angle of incidence = angle of
reflection.
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Also, plainly, from the very construction the incident ray, the reflected ray and the
normal at the point of incidence, all lie in the same plane.

Hence the laws of reflection are proved from wave theory.

8.7 Laws of refraction from the wave theory

Let a plane wavefront AB be incident on the plane refracting surface PQ that
separates two media a and b (Fig. 8.4) in which the velocities of the waves are ¢, and
¢, (c;> ¢y).

Fig. 8.4

When the point A of the wavefront touches the refracting surface, the point B is
away from it and by the time the disturbance from B reaches C at the surface of
separation, secondary waves from A have acquired a radius AD in the medium b.

AD _ BC

.. (82
P (8.2)

Draw a sphere with A as centre and radius AD. The tangent plane CD through C
and touching the sphere gives the refracted wavefront. To confirm that CD is the true
refracted wavefront, the disturbance from any point £ on the incident wavefront
should, after refraction at F on the surface of separation, reach G on CD at the time
the disturbance from A reaches D, ie., EF /¢, + FG/ c, must equal AD/c, (or BC/
¢;)- We shall now prove this.

Proof. Draw FH | BC. But BC = BH + HC

BC_BH_i_HC_E_i_H_C
G - G G - G G

(- BH =EF)
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Suffice then if we show : HC/c, = FG/c,. Now AABC and AFHC are similar.
Also, AADC and AFGC are similar.

FC HC FC _FG 83)
AC ~ BC’ AC ~ AD A

HC _FG _ AD _FG
BC  AD ~—~ BC HC
.. Using (8.2), we obtain

=

¢, _FG _ HC _FG

= = , as required
¢ GC [

It is thus confirmed that CD is the true refracted wavefront.
Also, ZBAC = i = angle of incidence; LACD = r = angle of refraction.

sini _sinBAC _ BC AC _ BC _ ¢
sinr sinACD ~ AC AD_AD_6'2

= constant .. (8.4)

Using the relation (8.2).

This is Snell's law. The constant is called the refractive index, a"b, of the medium
b with respect to medium a.

Plainly, from the manner of construction, the incident ray, the refracted ray and the
normal to the surface of separation of the media at the point of incidence, all lie in
the same plane. Thus, the laws of refraction are established from the wave theory.

From (1.4), we may write that

b = velocity of light in medium a
~ velocity of light in medium b

If the medium a is vacuum, a"b is written as n, or simply n, the refractive index
of medium b.

velocity of light in vacuum
velocity of light in medium

n (of a medium) =

The refractive index n of a medium does not depend on the frequency of the wave,
for when light travels through a medium, it is the wavelength that changes but the
frequency remains unaltered.
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8.8 Reflection of spherical wave at a plane surface

Let LOS be a spherical wavefront that diverges from the point source P to be
incident at O on a plane reflector AOB (Fig. 8.5). In the absence of the reflector, the
wavefront after a time Ar would have been in the position AMB. Thus, OM = vAt
where v i1s the velocity of light in the incident medium.

Fig. 8.5

The presence of the reflector however causes the secondary wavelets generated at
L,0 and S on the wavefront LOS to be at A, N and B respectively after time A¢. Thus,
the common envelope of these secondary waves, i.e., ANB will be the reflected wave
front after time Ar. We thus have

M = ON = AL
= BS = vAt
Since the medium is homogeneous, the reflected wavefront ANB will also be
spherical and appear to diverge from Q. Q is thus the image of P.
From geometry of Fig. 8.5, we obtain,
ON = AO*/20N
And OM = AO?*/2PM.
Since, ON = OM, we have, from above,
MP = ON
= OM + OP = ON + 0Q
= OP =0Q (.- OM = ON)
.. Object distance = Image distance (For a plane mirror)
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8.9 Reflection of spherical wave at a spherical surface

Let a spherical waveform LBS diverge from a point object P and be incident on
a concave spherical reflector LAS. The aperture of the reflector is small, its pole is
at A and the centre of curvature is at C (Fig. 8.6).

Fig. 8.6

In time-interval Af, say, the secondary wave from B reaches A, when those from
L and S arrive, after reflection from the reflector, at N and M respectively.

AB = LN = SM = vAt
where & is the velocity of light in the incident medium.

NAM, the common envelope of the reflected secondary waves represents the reflected
wavefront after time At. Like LBS, the reflected wavefront NAM will also be spherical
since the object and image spaces are homogeneous and converge at O to form a real
image. Draw LE | AP and ND | AP. LE and ND are essentially equal.

Now, from geometry, we obtain
BE = LE? /| 2BP = LE% | (-2u) .. (8.5)
(- BP >~ AP =-u)
AE = LE?/ 2AC = LE? / (-2r) .. (8.6)
AD = DN?/2AQ = DN?/ (-29) .. (8.7)
Now, from figure, we obtain,
AD = AE + ED = AE + AB = AE + (AE - BE)
or, AD + BE =2AE (... ED = LN = AB, practically)
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which is the relation for reflection of light in a concave spherical reflector.

m  The students are advised to work out the corresponding relation for reflection
in a convex spherical reflector.

m  The students should study the ''"Total internal reflection from wave theory'".
In this context they may consult any textbook on light.

m  Note that the following rwo conditions must be satisfied for total reflection.
1. The ray must travel from a denser to a rarer medium.

2. The angle of incidence in the denser medium must be greater than the
critical angle for the pair of media.

8.10 Refraction of spherical wave at a spherical surface

In Fig. 8.7 let CAB be a concave spherical refracting surface separating the media
of refractive indices n, and n, (n, > n,). P is the centre of curvature of surface and
r (= PA) the radius of curvature.

Fig. 8.7

Let O be a point object on the principal axis OA and BFC the portion of spherical
wave touching the surface at C and B.

By Huygens' construction, each point on the wavefront BFC is a source of secondary
waves. While B and C send disturbances into medium n,, the other points send them
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partly in medium n, and then in medium n,. If 7 be the time taken by the disturbance
from F to reach A in medium n,, then at the same time, the disturbance from C
reaches, say E, in medium n,.

A_F:C_E:>CE:AF><C_2:AF><ﬂ ... (8.8)
a 9 2 &

where ¢, ¢, are wave velocities in medium n, and medium n, and ¢ /c, = n,/n,.

In the same time 7, the disturbance from B reaches D in medium n,. So, after time
t, the disturbance from all points on incident wavefront will be on DAE, the refracted
wavefront, originating from . I is thus the virtual image O.

Draw CH | OA, EG 1L OA. Clearly, CH = EG =y, say.
Now, AO = u, Al = v and AP = r. Also, from geometry, we have

CH? = AH x 2r = AH = CH?/2r = y*/2r) .. (8.9)
Similarly, FH =y?/ 2u and AG = y*/2v ... (8.10)
From Fig. 8.7, CE = HG and so from (8.8)

n AF = n, CE = n, HG

m(AH —HF)=n,(AH - AG)

2 2 2 2

Y oY —n X _u Y U
= MG S = iy =y S, using (8.9) and (8.10)

m_h_m=n
= 577 ; .. (1.11)

which is the required relation; here u, v, rare all negative by sign convention.
m  Whenn, =1 (ie, air), the boxed equation (8.11) takes the usual form

n 1 n-1

vuT T

m  The students are advised to work out the corresponding relation for refraction
in a convex spherical refracting surface.

8.11 Refraction of spherical wave through thin lens

In Fig. 8.8 let A and D, be the poles of two spherical surfaces of radii of curvature
r, and r, respectively of the thin convex lens L of index n,. Let O be a point object
in the surrounding medium of index n,, on the principal axis, giving out spherical
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waves. Also, let ¢, ¢, be the wave-velocities in medium n, and n, (n, >n, = ¢, >¢,)
and BAC a portion of a spherical wavefront touching the pole A at an instant.

By Huygens' principle, A becomes the origin of secondary waves that move over
the thickness AD in lens-medium in time t. So, t+ = AD/c,. The disturbance from C
and B travels in medium n; and reach, say F and E respectively following paths CF
and BE in time t. So, t = CF/c, and FDE is the spherical wavefront after refraction
through the lens and converging to I, which is the real image of the object O.

CLF
¢ G4
G H
0 AlM|D
B E
Fig. 8.8
Now, i—D=Cc—F=z = CF =(¢/¢,)AD =(n,/n)AD .. (8.12)
2 1

Draw, CG L 0OA, LM 1L OI.
But, simply,

GH = CF = (n,/n; )AD, using (8.12)

n,(GA + AD + DH) = n,AD

= m(GA+DH)=(n,—m)AD = (n, —n)(AM +MD) .. (8.13)

Now, AO =u, ID =vand CG = LM = FH =y, say. Also, from geometry

GA = y*[2u; AM = y2/2r1; MD = )/2/21”2 and DH = y?/2v
Substituting the above values in (8.13), we obtain

n, [2u + y*/2v] = (n, — n)y*2r, + y* / 2r)]

u v n Hon
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By sign convention, v and r, are positive and « and r, are negative

m-m\(1 1
:(Tj(ﬁ_gj .. (8.14)

When u = <o (i.e., object is at infinity), v = f (i.e., image is at the focus : second

focal length).
e

1

1
v o u

1
VU T .. (8.16)

the usual lens formula.

If the surrounding medium be air, n, = 1 and from (8.15) using n, = n,

%:(”_1)(%_%j L (8.17)

the lens-maker's formula.

m  The students are advised to work out the formula corresponding to thin concave
lens.

m [tisto be noted that Huygens extended his principle to explain the phenomenon
of double refraction in the case of uniaxial crystal (e.g., calcite). He used his
new ideas regarding the ordinary and extraordinary wavelets to find the direction
of the refracted rays inside the crystal.

8.12 Limitations of Huygens' principle

We have seen that Huygens' principle, in its original form, was able to give a
satisfactory account of the laws of reflection, refraction and double refraction. It
enabled a series of wave surfaces to be constructed when one was given. However,
Huygens' principle by itself, was insufficient to enable the distribution of illumination
in diffraction patterns (Unit-11) to be calculated.
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We have also seen that Huygens' principle, by itself, cannot explain the phenomena
of non-occurrence of backwave. This was avoided by an arbitrary, at the time of
Huygens, assumption that the amplitude of the secondary wavelets was not uniform
in all directions; it was maximum in the forward direction and zero in the backward
direction. Almost two hundred years later, this assumption was found to be correct.

At the time of Huygens, light was known to travel in straight lines and Huygens
explained this by assuming that the secondary wavelets do not have any amplitude
at any point not enveloped by the wavefront which was again open to criticism.

The occurrence of illumination in the geometrical shadow was later (after 150
years) explained satisfactorily be Fresnel on the postulate that the secondary wavelets
mutually interfere. At the time of Newton and Huygens, the phenomenon of interference
of light was not known. In fact, the formation of Newton's rings, a phenomenon
observed by Newton,was not explained either by Newton or by Huygens.

Huygens' principle gained perfection in three stages (distributed over two hundred
years).
m  Stage I : Solely contributed by Huygens.

m  Stage II : Fresnel and his followers extended Huygens' principle. This is what
is known as Huygens-Fresnel principle.
m  Stage I : Fresnel-Kirchhoff integral formula. This formula gives us spherical

monochromatic waves travelling outward from the source. Finally, this equation
has a significant importance in the theory of diffraction.

8.13 Geometrical optics as a limit of wave optics

Geometrical optics constitutes our day-to-day guide to the outside world. It is the
basis for construction of the image-forming devices like mirrors, telescopes,
photographic and microscopic lenses, etc. However, geometrical optics does not embrace
such studies as the nature of light, the mode of its propagation or such phenomena
as interference, diffraction, and polarization, which form the subject of study in
physical optics or more precisely wave optics.

It can be shown that
m  geometrical optics is the limiting case of wave optics as the wavelength of
light A—0.

m In the limiting case as A— 0 there is no diffraction i.e., light travels in
straight line.
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8.14 Concept of coherence

If a wave appears to be a pure sine wave for an infinitely extended time or an
infinitely extended space, it is called a perfectly coherent wave. The characteristic of
such a wave is that a definite phase relationship at different points of time and space.
A perfectly coherent wave however is an idealization, for a real light source always
emits light in short pulses. Light waves that are pure sine waves only in a limited
space or for a limited time are only partially coherent waves. For a source to be
coherent it must emit radiation of single frequency, or the frequency spread must be
very small, and the wavefront must have shape which remains constant in time.

From above, it is apparent that there are two different criteria as regards coherence
- the criterion of time or temporal coherence and the criterion of space or spatial
coherence.

8.15 Temporal coherence

The oscillating electric field E of a perfectly coherent light wave has a constant
amplitude at any point in space, but its phase will vary with time linearly. As a
function of ¢, the field E will appear as illustrated in Fig. 8.9. Obviously, it is an ideal
sinusoidal function of time and does not agree with real cases.

NNANNDN NN
= \VAAVALVAL VALV ALY AR VAR

Fig. 8.9

No real source can ever produce an ideal sinusoidal field for all time, since when
an excited atom makes a transition back to its initial state, it emits a light pulse of
extremely short duration Az ~ 107®s. The field therefore is sinusoidal for an interval
of At ~ 10%s only. It undergoes abrupt phase changes thereafter for, different atoms
of the source emit radiation in a random fashion. Fig. 8.10 illustrates the field due
to a real source of light.

a4
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Fig. 8.10

Coherence time : It is the average time-interval for which the wavefield of light
vector remains sinusoidal, and therefore a definite phase relationship exists. It is also
termed as temporal coherence of the light beam and symbolized by 1, (or Ar).

Coherence length (L ) : The distance over which the wave field is sinusoidal and
is given by
L. =1, xc¢ ... (8.18)
where c is the speed of light in vacuum.

In an interference experiment we consider two wave fields arriving at a particular
space point from a point source via two different optical paths. If in any interference
experiment the path difference between the two interfering beams becomes greater
than L, then the wavetrains are derived from two different wavetrains having no
definite phase relationship. So, no definite interference pattern will be observed in this
case.

Temporal coherence can be related to the line width. A Fourier analysis of the
wavetrains of finite duration shows that it is equivalent to many harmonic waves
having frequencies within a certain interval Av about a central frequency (v). The
frequency spread or line bandwidth Av is related to the coherence time t, by the
relation

Av=—
T

4
Thus, narrow bandwidth implies long coherence time. For a perfectly monochromatic
wave Av = 0 and 7T, =eco. Thus, a monochromatic wavefield is truly temporally
coherent.

Ilustration : In order to clarify the concept of temporal coherence let us consider
the Michelson interferometer experiment (Fig. 8.11) about which we shall read in
Unit-10 Interferometers.

The two beams 1 and 2 can produce stationary interference pattern only when there

exists a definite phase relationship between them. With A 2', the image of the mirror
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M,, the Michelson's arrangement is equivalent to an air-film sandwiched between two

parallel reflecting surfaces—MZ' and the mirror surface M,. If d be the separation
between M, and M,, 2d will be the path difference between the two interfering beams.
Now, if

2d << L,
then a definite phase relationship exists between the two beams and well-defined
interference fringes are observed. On the other hand, if

2d >> L,
then, in general, there is no definite phase relationship between the two beams and
no interference pattern is observed.

So, starting with equal path lengths, if by moving one of the mirrors, the separation

d is gradually increased, the fringes become poorer and poorer in contrast and eventually

at a certain stage completely disappear. The path difference corresponding to the
disappearance gives an estimate of coherent length.

__M1
SR E——— M‘Z
L
&1
) — -]
s 2 |
. P
v M2
12
M+
Fig. 8.11

m  For example, for the neon line (A = 6328A), 1.~ 107'% sec and for the red
cadmium line (A = 6328A), 7.~ 10719 sec; the corresponding coherent lengths
are 3 cm and 30 cm respectively and few kilometers for laser light. Thus, using
a laser beam, say commercially available helium-neon lasers, sharp contrast
interference fringes can be obtained even for a path difference of a few meters.


https://www.print-driver.com/?demolabel-en

156 NSOU « CC-PH-09

m  The finite value of the coherence time t, could be due to many factors; for
example, if a radiating atom undergoes collision with another atom, then the
wavetrain undergoes an abrupt phase shift. The finite coherence time could
also be on account of the random motion of atoms or since an atom has a finite
lifetime in the energy level from which it drops to the lower energy level while
radiating.

8.16 Spatial coherence

The spatial coherence refers to the phase relationship between the radiation fields
at different space points.

Let the light waves be emitted from the source S (Fig. 8.12) and A, B be two space
points on a line joining them with S. The phase relationship between the points A,
B depends on (i) the distance AB and (ii) the temporal coherence of the beam.

IfAB << L_, the coherent length, there will be a definite phase relationship between

A and B. Consequently, there will be a high degree of coherence between the points
A and B.

wn*

Fig. 8.12

Conversely, if the distance AB >> L , the coherent length, there will be no coherence
between the points A and B.

We now consider the points A and C which are equidistant from the source S, but
unlike the previous case, not on the same line joining with S. If S is a true point source,
light waves will reach A and C exactly in the same phase. In other words, the two
space points will be in perfect spatial coherence. In case the source is an extended
one, the two points A and C will no longer be in coherence as illustrated by Young's
double slit experiment.
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Ilustration : In order to understand the concept of spatial coherence we consider
Young's double hole experiment as shown in Fig. 8.13; the interference pattern produced
by this experimental arrangement will be discussed in considerable detail in Unit-9
Interference of light.

P
LB
L
1 2
3 [
S
Screen
Fig. 8.13

Light from a narrow slit S falls on two slits S, and S, situated symmetrically with
respect to S and equidistant from it. Since the light beams from §, and §, are from
the same original beam, a constant phase difference will be maintained at all points
on the screen and a stationary interference pattern will be observed.

Now, the interference pattern observed around the point P at time ¢ is due to the
superposition of waves emanating from S, and §, at times r — r/c and 7—r)/c
respectively, where S,P = r; and S,P = r,. Obviously, if

vy —F

<=
then the waves arriving at P from §; and S, will have a definite phase relationship
and an interference pattern of good contrast will be obtained. On the other hand, if
the path difference (r, — r,) is large enough such that

Ty —

h
—<KLT,

c

then the waves arriving at P from §, and S, will have no fixed phase relationship and
no interference pattern will be observed. Thus, the central fringe for which r; = r, will,
in general, have a good contrast. As we move towards higher order fringes the contrast
of the fringes will gradually become poorer and poorer and eventually disappear.
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Let us gradually increase the slit width. Then also the pattern becomes poorer and
poorer in contrast and eventually disappear. As the size of the source increases, the
spatial coherence on the screen changes into incoherence. The reason is that when §
becomes wide, the slits S, and §, receive light waves from different, and hence
independent, parts of the source and do not remain coherent with each other.

Calculation of lateral coherence width :

Let the double-slit be illuminated by two independent point sources S and S,
separated by / (Fig. 8.14). To find the least value of / at which the pattern on the screen
would disappear.

N —SiT
! : 11
fs ; Q‘i 0
K ™S—
f——— § ———» Screen
Fig. 8.14

There would be a bright fringe at O on the screen due to interference of waves from
§ reaching O via S, and §,, having zero path difference. Waves from S’ reaching O
A
5>
A being the wavelength of light. When this occurs, the maximum due to waves from
S is destroyed by the minimum due to waves from S".

Let a = SQ and d = §,S,, the separation between S, and S,. Then,

via §; and S, have path difference KS,. So, at O a dark fringe is obtained KS, =

s'S, =[a2+(d/2+1)2}1/2 f:a+i(d/2+l)2

s'S, :[a2+(d/2—l)2}1/2 f:a+i(d/2+l)2

assuming a >>d and also [,

KS, = 'S, - §'S, = ld/a.

KS,
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So, for the fringes to disappear, we must have
KS,=A/22=ld/a

j=ha
= 2d

Now, if we have an extended incoherent source whose linear dimension is
~ Aa/d then for every point on the source, there is a point at a distance of ~ Aa/2d
which produces fringes which are shifted by half a fringe width. Therefore, the
interference pattern will not be observed. Thus, for an extended incoherent source,
interference fringes of good contrast will be observed only when

ra
l<<ﬁ ... (8.19)

I © be the angle subtended by the extended source SS' at Q, then 6 = //a and (8.19)
becomes,

d < A6 ... (8.20)
On the other hand, if
d~ A\B .. (8.21)

the fringes will be of very poor contrast. Indeed, a more rigorous diffraction theory
shows that the interference pattern disappears when
A A A
d=122—=_225—_ 324—
122, 2255, 3245 .. (8.22)
Thus, as the separation of the pinholes is increased from zero, the interference
fringes disappear when d = 1.22A/0; if d is further increased the fringes reappear with
relatively poor contrast and they vanish again when d = 2.25A/6, and so on. The
distance

I, =M\ /0 (Lateral coherence width) (8.23)
gives the lateral distance over which the beam may be assumed to be spatially coherent
and 1s known as the lateral coherence width.

For a circular source [ is given by

I =1.22% .. (8.24)

From the above discussion it is evident that by using ordinary non-coherent sources
such as electric bulb, the sun etc., it is possible to make spatially coherent beam by
passing the light through a small hole of size << [ .



https://www.print-driver.com/?demolabel-en

160 NSOU « CC-PH-09

8.17 Linewidth: Purity of spectral line

A spectral line is said to be perfectly pure if it consists of a single frequency. This
is only an ideal condition and is true only theoretically. Every spectral line has a finite
width implying that it corresponds to a continuous distribution of wavelength in an
interval, however narrow, between A and A + dA. The width of a spectral line is a
measure of the purity of line; smaller the width, pure is the line.

In Michelson interferometer, the fringe pattern disappears, as already mentioned,
when the path difference between the interfering beams exceeds the coherence length.
Thus, the concept of temporal coherence is directly related to the width or purity of
the spectral line.

Relation with temporal coherence :

Let us consider the Michelson's interferometer experiment using two closely spaced
wavelengths A, and 2, (like the D, and D, lines of sodium). It is known that the
criterion that when the path difference 2d between the interfering beams equals the
coherence length L, at the centre a bright ring of A, coincides with a darkring of A,
i.e., the interference pattern will disappear if

LC LC l
7‘—2_7‘_125 ... (8.25)

AA
Lc — 17v2
200-1) .. (8.26)

Instead of two discrete wavelengths, if we assume that the beam consists of all
wavelengths lying between A and A + dA, then the interference pattern produced by

the wavelengths k+%Ak will disappear if

A? A?
Lc = =
2(%&) Ak . (827)

Thus, we may conclude that the spectral width or spread A\ of the spectral line
of mean wavelength A is

.. (8.28)
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Thus, the temporal coherence t, of the beam is directly related to the spectral width
AN,

Further, since v = ¢/A, the frequency spread Av of a line would be

C C
Av =5 Mk~ - .. (8.29)

C

where we have disregarded the sign. Since T, = L /c, we obtain

1

Av=— .. (8.30)

c

Thus, the frequency spread Av of a spectral line is of the order of the inverse of
the coherence time 1.

. A
m Note : Monochromaticity or spectral purity of the source = 7‘}

m For a commercially available laser beam, t ~50 nsec implying
Av/v ~ 4x1078,

8.18 Visibility of fringes and degree of coherence

The visibility V of interference fringes is defined as follows :

]max B ]min

V= ]max +]min

where I and [ . are respectively the maximum and minimum intensity.

The visibility V' is a measure of the degree of coherence of the interfering light
waves.

When two wavetrains of equal intensities overlap in in the entire finite lengths, the
minimum intensity / . = 0. So, the visibility V = 1 or 100% and the waves are said
to be in perfect coherence with highest contrast between the maxima and the minima.

If, however, the two wavetrains do not overlap atall I . =1 . and so V=0. The

waves have no coherence and fringes are not visible.

The intermediate situation is the partial overlapping of the two wavetrains as
illustrated in Fig. 8.15.
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1

Fig. 8.15

In this case, interference is possible but the contrast between the fringes is far less.
The degree of contrast depends on the degree of overlapping.

Relation between visibility and coherence :

Let two points on a screen be illuminated by two bundles of light to produce equal
intensities /, and assume that each bundle has two parts a and b. Of these, the parts
a are completely coherent and parts b completely incoherent. Let the parts a produce
an intensity

I, =Bl
where [ is known as the degree of coherence.
- Parts b will produce an intensity, I, = (1 - B) I,

Obviously, interference occurs due to parts a, only and give fringes whose maxima
is 4 times the individual contributions (see Note below).

. Maximum intensity = 4/ ; Minimum intensity = 0
Due to the b parts, a uniform intensity, a uniform intensity 2/, will be superposed
on the above interference pattern. In the pattern, therefore,
I =4, +2I =4Bl, + 2(1 - b)l,
=2(1 + B,
I =0+2[ =2(1-p),
_ 2(1+B) 1, —2(1-B) 1, _ 4Bl -B
2(1+B) 1, +2(1-B) 1, 41,
The visibility or the degree of contrast of the fringes produced by two waves of
equal intensities is equal to the degree of coherence between the waves.

Note: I = (a,+ a2)2, where a = amplitude. If a; = a, = a, say then we have

I =4a? = 4xI.

max indiv’
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8.19

Summary

Using corpuscular model, Descartes derived Snell's law of refraction.

Using the wave model, Huygens could explain the laws of reflection and
refraction and he could also interpret the phenomenon of double refraction.

Maxwell propounded his famous electromagnetic theory of light according to
which, light waves are electromagnetic waves.

In 1905, Einstein interpreted the photoelectric effect by putting forward his
famous photon theory according to which the energy in a light beam of frequency
v was concentrated in corpuscles of energy hv, where h represents Planck's
constant.

In the Young's double hole interference pattern, the corpuscular nature of the
radiation is evident from its detection in the form of single photons and never
a fraction of a photon. The appearance of the interference pattern is because
a photon interferes with itself. The quantum theory tells us that a photon
partially passes through the two holes. This is not the splitting of the photon
into two halves but only implies that the photon is in a state which is a
superposition of two states, one corresponding to the wave emanating from the
first hole and the other to the one emanating from the second hole. The
superposed state will give rise to an intensity distribution like that obtained by
considering the superposition of two waves.

Huygens' principle along with the fact that the secondary wavelets mutually
interfere, is known as the Huygens - Fresnel principle.

Laws of reflection and Snell's law of refraction can be derived using Huygens'
principle.

Using Huygens' principle one can obtain the mirror equation, relation for
spherical refracting surface, lens formula and lens-maker formula.

The sign convention is as follows :

1. The rays are always incident from the left on the refracting surface.

2. All distances to the right of the refracting surface are positive and distances
to the left of the refracting surface are negative.

Limitations of Huygens' principle discussed.

The coherence time t_ represents the average duration of the wavetrains, i.e.,
the electric field remains sinusoidal for times of the order of t_.
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The length of the wavetrain, given by
L =1 xc
(where ¢ is the speed of the light in free space) is referred to as coherence

length. For example, for the red cadmium line (A = 6438 A), T, ~ 107 sec;
the corresponding coherent lengths are 3 ¢cm and 30 cm.

The lateral coherence width (/) of an extended incoherent source represents
the distance over which the beam may be assumed to be spatially coherent;
it is given by

where O is the angle subtended by the source at the point of observation.

Using the concept of spatial coherence, Michelson developed an ingenious
method for determining the angular diameter of stars. The method is based on
the result that for a distant circular source, the interference fringes (formed by
two pinholes) will disappear if the distance between the two pinholes is given
by

A

d:l.22§

where 0 is the angle subtended by the circular source.

In the two beams interference pattern, the contrast of the interference fringes
varies as the optical path difference A is varied, beginning from an extremely
good contrast for A << L_ to a very poor contrast for A > L .

Monochromaticity or spectral purity of the source = &
v

8.20 Review Questions and Answers

1.

Deduce from Huygens' principle of wave propagation, the laws of reflection
and refraction of plane waves at plane surface.

Ans. See Articles 8.6 and 8.7.

2.

Apply Huygens' principle to study the reflection of the spherical waves
from a concave mirror and hence prove the mirror equation

1, 1_2

v ou r

Ans. See Article 8.9.
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3.

Ans.

Ans.

Ans.

Ans.

Ans.

Ans.

Ans.

10.

Ans.

Establish, from wave theory, the relation

for refraction of spherical waves through spherical refracting surface.
See Article 8.10.

Account for the formation of images by refraction through lenses on
wave theory and prove the relation

70053

where the symbols have their usual significance.
See Article 8.11.

Explain the concept of coherence. Discuss temporal coherence and spatial
coherence, illustrating them with the help of suitable experiments.

See Articles 8.14, 8.15 and 8.16.

Explain how the width and purity of a spectral line is related with the
concept of temporal coherence. Show that the frequency-spread of a
spectral line is of the order of inverse of coherence time.

See Article 8.17.
How does the visibility, of fringes depend on the degree of coherence?
See Article 8.18.

Distinguish between the spatial coherence and temporal coherence. What
are coherence length and coherence time?

See Articles 8.15 and 8.16.
Explain what you understand by line width and the frequency spread.
See Article 8.17.

Explain spatial coherence due to a point source and an extended source
of light.

See Article 8.16.

8.21 Illustrated Examples

Example 1 : The Doppler width of a source at A = 6058 A is 0.0055 A. Find out
the coherent length.
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Solution : Here frequency v=c/A = ]Av\ = %AK

. 1
Coherence time, T, =-— = coherent length,

Av
_ 1 eAr Al
LemeX T =R 0= AN AL

2
(6058 ><10‘1°)
©0.0055%1071°

=0.67m

c

Example 2 : For sodium light of wavelength A = 5890 A and, coherence time
1, = 107'%s; find the monochromaticity of the source.

Solution : T, =105 = Av = Ti —10"Hz

c

10
= £:73><10 S = 5X1014HZ
A 589x%10
Now, monochromaticity,
10
Av_ 107 2x 107

v 5%10M

Example 3 : A laser beam of wavelength A = 6000 A, power 10 mW and angular
spread 1.5 x 107 rad is focused by a lens of focal length 10 cm. Find (i) radius, (ii)
power density of the image and (iii) the coherence width.

Solution : The radius of the image is given by
r=f.0 where f=10cm and 0 = 1.5 x 10 rad
r=10x15x10%cm=15x 103 cm

Area of the image = nr? and the power density of the image

__lox10”w
1c(1.5><10‘3)2 cm

2 = 1.4 kW/em?

6000x107 % m

=4 mm
1.5%107*

Coherence width /, = % =
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Example 4 : Consider an optical resonator of length 10 cm. Determine the number
of modes present in the wavelength range 4 nm about a central wavelength
A = 500 nm.

Solution : Frequency separation between the consecutive modes is,

c
Av = 77 (assuming refractive index n = 1)

Now vz%; or, AV:;—ZAK

.. Wavelength separation between the consecutive modes is,

3 7\’2 3 7\’2
‘A?\,‘ = 7AV = E

Thus, the required number of modes is,

dnm _Anmx2L,  4x107 x2x0.1

_ _ = 3200
| AN A2 (500x10™ )2

Example 5 : Find the separation between holes illuminated by the sun of angular
diameter 32’ through a filter which passes light of wavelength A = 5000 A, such that
interference fringes of good contrast can be obtained.

Solution : The separation must be smaller than the lateral coherence width

;o L22h 1.22%5000%x1071°
w 0 32T

60 180

m = 0.0065 cm

Example 6 : Two light beams having intensities in the ratio 1:9 produce interference
fringes of intensity 0.3. What information do you get about the degree of coherence?

Solution : If the intensity ratio of the two coherent beams be o, then we have
2o
I+o
Proof : With a's as amplitudes,

2 2
[maxz(al+a2) > [min:(al_a2)
_ — 2 2
= Imax - Imin - 4611612 and Imax + Imin - 2(a1 + a2 )
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Also, a=a?/a,’
. L 2a,a, _ 2(ay/ ay) :2\/a
2(a12+a22) a22(1+a12/a22) (l+a12/a22) I+o
H =1/9 V—2 (1/9)—06
ere, o= = —m— .

But the given value of visibility is 0.3 1.e., half the value of two coherent beams.
So, the degree of coherence is only 50%.

Example 7 : A magnetic-field technique for stabilizing a He-Ne laser to 2 parts
in 1019 has been patented. At 632.8 nm, what would be the coherence length of a laser
with such a frequency stability?

Solution : Frequency stability is given by

Av 2
TZIOT, C—V?\«
So =S 3x10%m/s
’ A 6328%x107m

Coherence length L = ¢ x 1,

=4.74%x10" Hz

Frequency range Ay = %XV = 10%><4.74 x10" Hz

= +2(4.74 x 10* Hz) or 9.48 x 10*Hz

1 1
T ==
© Av  948x10*Hz

L, = (3 x10% m/s) x (1.05 x 107s) = 3.15x 10° m

~1.05x107s
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9.1 Objectives

In going through this unit, you will learn :
1. Interference of light : Young's Double slit experiment (YDSE)

2. Interference Pattern : Fringe width and shape of fringes
3. Intensity Distribution of Interference Pattern

4. Conditions for Interference

5. Types of Interference

6. Division of wavefront : Fresnel's Biprism

7. Determination of unknown wavelength

8. Measurement of the acute angle of biprism

9. Measurement of the thickness of a thin film

10. Interference with White light : Colour effect

11. Lloyd's Mirror

12. Comparison of biprism and Lloyd's mirror fringes

13. Phase change on Reflection : Stoke's treatment

14. Division of amplitude : Interference in Thin Film (wedge-shaped)
15. Fringe width in wedge-shaped film

16. Fringes of equal thickness and equal inclination

17. Newton's rings

18. Applications of Newton's rings

9.2 Introduction

In general, whenever two waves superpose, one obtains an intensity distribution
which is known as the interference pattern. In this unit, we will consider the
interference pattern produced by waves emanating from two-point sources. It may be
mentioned that with sound waves the interference pattern can be observed without
much difficulty because the two interfering waves maintain a constant phase
relationship; this is, also the case for microwaves. However, for light waves, due to
the very process of emission, one cannot observe interference between the waves from
two independent sources.

Thus, one tries to derive interfering waves from a single wave so that the phase
relationship is maintained. The methods to achieve this can be classified under two
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broad categories. Under the first category, in a typical arrangement, a beam is
allowed to fall on two closely spaced holes and the two beams emanating from the
holes interfere. This method is known as division of wavefront and will be discussed
in detail in this unit. In the other method, known as division of amplitude, a beam
is divided at two or more reflecting surfaces and the reflected beams interfere. For
example, if a plane wave falls on a thin film, then the wave reflected from the lower
surface. Such studies have many practical applications and explain phenomena like
the formation of beautiful colours produced by a soap film illuminated by white light.

We must, however, emphasize that the present and the following units are based
on one underlying principle, namely the superposition principle.

It may be mentioned that it is also possible to observe interference using multiple
beams; this is known as multiple beam interferometry and will be discussed in
Unit 10. It will be shown that multiple beam interferometry offers some unique
advantages over two beam interferometry.

Family-tree of Interference : See Fig. 9.1

| 1

Basic study Applications
]
[ 1 I T . 1
Doublle Beamn MultiphT Beam Interferometry Spectroscopy Metrology

I L Division of
Division of Division of Amplitude
Wavefront Amplitude

Fig. 9.1

Principle of superposition : According to the principle of superposition of waves,
the resultant displacement (at a particular point) produced by several waves is the
vector sum of the displacements produced by each one of the disturbances.

Because of this principle, when monochromatic light waves, coming from two
sources, proceed almost in the same direction and superpose at a point, the intensity
of light at that point will be maximum or minimum according as the waves at the point
are in the same or opposite phase. This phenomenon is called interference of light and
is rather important since the phenomenon requires for its explanation the wave nature
of light.
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9.3 Interference of light : Young's double slit experiment (YDSE)

The modification in the distribution of light intensity in the region of superposition
of two or more waves of light is called the interference of light.

When the resultant intensity is the sum of the intensities, the interference is said
to be constructive, and the resultant intensity is equal to the difference of the intensities
of the interfering waves, the interference is said to be destructive.

Young Double slit experiment : Thomas Young in 1801 devised an ingenious but
simple method to lock the phase relationship between the two sources. The trick lies,
in the division of a single wavefront into two; these two split wavefronts act as if they
emanated from two sources having a fixed phase relationship and, therefore, when
these two waves were allowed to interfere, a stationary interference pattern was
obtained. In the actual experiment a light source illuminates the pinhole S (see Fig.
9.2). Light diverging from this pinhole fall on a barrier which contained two pinholes
§, and S, which were very close to one another and were located equidistant from
S. Spherical waves emanating from §, and S, were coherent and on the screen
beautiful interference fringes were obtained. To show that this was indeed an interference
effect, Young showed that the fringes on the screen disappear when S, (or §,) is
covered up. Young explained the interference pattern by considering the principle of
superposition, and by measuring the distance between the fringes he calculated the
wavelength.

Screen
B

Fig. 9.2
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9.4 Mathematics of interference (YDSE)

Let us consider two plane harmonic waves of the same frequency . They meet
at a point in time t. Three different methods are available for carrying out the calculations
for the resultant. These are

1. the algebraic method
2. the method using complex quantities, and
3. the vector method or phasor diagram.

The choice of the method to be used in solving a particular problem is a matter
of personal choice or mathematical convenience since each of the three methods must
give the same result if we used correctly. In the following we shall use complex
method for two sources called the two-beam interference.

9.5 Interference Pattern : Fringe width and shape of fringes

Fringe width : Let S, and S, represent the two pinholes of the Young's interference
experiment. We would determine the positions of maxima and of minima on the line
LL' which is parallel to the y-axis and lies in the plane containing the points S, and
S, (see Fig. 9.3). We will show that the interference pattern (around the point O)
consists of a series of dark and bright lines perpendicular to the plane of Fig. 9.3; O
being the foot of the perpendicular from the point S on the screen.

Fig. 9.3
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For an arbitrary point P (on the line LL") to correspond to a maximum we must
have

S,P—S,P=nhn=012 . . (9.1

Now, (8,P) =(8,P) = [DZ +( ” +%ﬂ—[1)2 +( ” —%ﬂ =2y,d

where §§, =d and OP =y,

2y,d

Thus SZP_SIPZW

.. (9.2)

If y,, d << D then negligible error will be introduced if S,P + S P is replaced by
2D. For example, for d = 0.02 cm, D = 50 c¢m, OP = 0.5 cm (which corresponds to
typical values for a light interference experiment)

S,P + 8, P =[(502+ (0.51)2 ]"2 + [(50)% + (0.49)2]1/2
= 100.005 cm

Thus, if we replace S,P + § P by 2D, the error involved is about 0.000%. in this
approximation, (9.2) becomes

2y,d y,d
SZP_S1P~S2P+S1P~ D .. (9.3)
Using (9.1) we obtain
_n\D

Thus, the dark and bright fringes are equally spaced and the distance between two
consecutive dark (or bright) fringes is given by

B=Yu—Y,= d 4
or, B=%= Fringe width .. (9.5)

Shape of fringes : To determine the shape of the interference pattern we first note
that the locus of the point P such that

S,P-SP=D . (9.6)
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is a hyperbola in any plane containing the points S, and §,. Consequently, the locus
is a hyperbola of revolution obtained by rotating the hyperbola about the axis §,S,.

¥

Fig. 9.4

To find the shape of the fringe on the screen we assume the origin to be at the point
O and the z-axis to be perpendicular to the plane of the screen as shown in Fig. 9.4.
The y-axis is assumed to be parallel to §,S,. We consider an arbitrary point P on the
plane of the screen (i.e., z = 0) (see Fig. 9.4) Let its coordinates be (x, y, 0). The

coordinates of the points S, and S, are (O,%, D) and (0)—%, D) respectively. Thus

1/2

1/2
S,P—SP=|x A 2 a\',pr| -
=S P=| x4yt +D S| Y-S +D A (say)

2 AR 2 d\',
or, x+y+§ +D—A+x+y—§ +D

or, [2yd—A2}=(2A)2[x2+(y—%)2+D2}

1/2 1/2

Hence, (a’Z—AZ)yZ—A2 2= A? [D2+%(d2—A2)}
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which is the equation of a hyperbola. Thus, the shape of the fringes is hyperbolic.
On rearranging we get

D? v 2 o2 i o
y:i(mj [x +D +Z(d ~A )} .. (9.7)
For values of x such that
x2 &« D? ... (9.8)

the loci are straight lines parallel to the x-axis. Thus, we obtain approximately
straight-line fringes on the screen. It should be emphasized that the fringes are
straight lines although the sources S, and S, are point sources. It is easy to see that
if we had slits instead of the point sources, we would have obtained again straight-
line fringes with increased intensities.

The fringes so produced are said to be non-localized; they can be photographed
by just placing a film on the screen; they can also be seen through an eyepiece.

If instead of slits, two coherent point sources §, and S, are used, then in three-
dimensional space, the loci of maxima of different orders will be a system of confocal
hyperboloids with S, S, as foci (Fig. 9.5). On a screen placed parallel to the line S,
S,, short straight-line fringes are obtained. If, however, the screen be at right angles
to the line S,S,, several alternately bright and dark concentric circles with their
common centre on the intersection of §,S, line with the screen.

A

Fig. 9.5
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9.6 Intensity distribution of interference pattern

Let y, and y, be the disturbances produced at the point P by S, and S, respectively
(see Fig. 9.3). The disturbances y, and y, will, in general, have different directions
and different magnitudes. However, if the distance S,P and S,P are very large in
comparison to the distance S,S,, the two disturbances will almost be in the same
direction. Thus, we may write

yl — alez(mthl)}

3, = ae @) .. (9.9)

The resultant disturbance at P, according to the principle of superposition, is given
by

_ _ ot —ikxy —ikxy
y—yl-i-yz =e [ale +a,e :|

L [al (cos kx, —isin kx, ) +a, (cos kx, —isin kx, )]

. . . 1 b
= [a—jb]:e"‘” Nat+b?e?; o=tan 15 .. (9.10)
where a = a,cos kx; + a,coskx,; b = a;sin kx; + a, sin kx,

Therefore, y = A0
where A’= @+ b*= a2+ a3+ 2a,a, cos k(x, — x,) .. (9.11)

Here A is the resultant amplitude of the resultant disturbance. Hence the intensity
of light at P is given as

| o A2 =af +a; +2a,a, cos d + (9.12)
[=1,+1,+2JI,I, cosd .. (9.13)

where phase difference

2 2
5=k.(x2 _xl):%(xZ _xl):%

Obviously, this phase difference depends on the path difference A = (x, — x, ) and
hence on the position of the point P.

% path difference .. (9.14)
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From (9.13) we may deduce the following :

1. Maxima or minima : The maximum and minimum values of cos d are +1 and
—1 respectively, as such the maximum and minimum values of I are given by

L =(VL L)
L nin :(\/71_\/3)2

The maximum intensity occurs when
O = 2nm, n=20,12,..
A = nA
and the minimum intensity occurs when

d=QCn+m, n=0,12,.

1
A=|n+=|A
Notice that when I, = I, the intensity minimum is zero. In general, /, #1, and the
minimum intensity is not zero.

.. (9.15)

2. If the holes §, and S, are illuminated by different sources (see Fig. 9.2), then
the phase difference & will remain constant for about 1071° sec (see discussion in Art.
8.16, Unit 8) and thus ¢ would also vary with time in random way. If we carry out
the averaging over time scales which are of the order of 107 sec, then

(cos8)=0 and we obtain /=1, +1,

Thus, for two incoherent sources, the resultant intensity is the sum of intensities
produced by each one of the sources independently and no interference pattern is
observed. Hence, we get general illumination.

3. In the arrangement shown in Fig. 9.4, if the distances S,P and S, P are extremely
large in comparison to d, then
I, =1, =1, (say)
and

I=2I,+2I,cosd =4I, coszg .. (9.16)

The intensity distribution (which is often termed as the cos? pattern) is shown in
Fig. 9.6. The intensity distribution curve is known as the interference pattern and
the alternate bright and dark regions the interference fringes.
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Fig. 9.6

9.7 Interference and conservation of energy

At first sight, it appears that the law of conservation of energy is violated in the
phenomena of interference, for the energy at the minima points is lost. But this is only
apparent as would be clear from the following discussion.

In absence of interference, the intensity due to two waves should be /, + I, = 21,
but the intensity at maxima points is 4],, while that at minima points is zero. Fig. 9.6

shows the variation of intensity / as a function of phase difference .

As discussed in Art. 9.6, the average value of intensity in the range & = 0 to
8 =2mis 2l,. So, the energy which apparently disappears at minima has been transferred
to the maxima where the intensity is 4/, > 2/, the sum of the intensity of the two
beams acting separately. There is thus no destruction of energy because of interference.
The energyis simply redistributed. The formation of interference fringes is thus in
accord with the law of conservation of energy.

9.8 Conditions for interference

In order to have well defined observable interference pattern the following conditions
must be satisfied.

1. The two beams of light which interfere must be coherent (see Arts. 8.16 and 8.17,
Unit 8).

Two sources are said to be coherent if the phase difference ¢ between the sources
remains constant in time. If the sources are incoherent ¢ changes continually and we
get uniform general illumination.

2. The interfering waves must have the same frequency. Also, their amplitudes
must be equal or very nearly equal.

2
If the intensities /, and I, differ widely then the intensity, 7, = (\/71 + \/Z ) , in


https://www.print-driver.com/?demolabel-en

180 NSOU « CC-PH-09

2
the bright region and that, 7 .. :(\/T1 —\/Z ) in the dark region will not differ

significantly and hence intensity variation cannot be recognized.

3. The original source must be monochromatic or very nearly monochromatic. If
the light source is heterogeneous the optical path difference between the interfering
beams must be kept very small.

The spacing AD/d between consecutive bright or dark fringes is a function of A.
So, fringes for different colours will be in step only at the central fringe and soon get
out of step on either side of central fringe. If the path difference is large, then dark
fringes for some wavelengths may be masked by the bright fringes of some other
wavelengths.

4. The two interfering beams must propagate along the same direction or
must intersect at a very small angle.

If the angle between the two interfering wavefronts is large or the distance between
the coherent sources is large the spacing between the interference fringes becomes
small and may become indistinguishable even under high magnification.

5. For interference with polarized light the waves must be in the same state of
polarization.

9.9 Types of interference

Interference may be divided into two main classes based on how the coherent
sources are produced. These are

1. By the division of wavefront 2. By the division of amplitude

Division of wavefront : Here, the incident wavefront is divided into two parts by
reflection, refraction etc. to produce two coherent interfering beams. The two beams
are made to travel unequal distances and reunite at some angles to produce interference
fringes. To maintain spatial coherence, it is essential to use narrow line or point
sources in this type of interference. Examples of this type are the fringes formed by
biprism, Lloyd's mirror etc.

Division of amplitude : In this class, the amplitude of the incident beam is divided
into two or more parts by partial reflection or refraction to produce two or more
coherent interfering beams. The beams travel over different paths and reunite to
produce interference fringes. A broad light source is to be employed here (Why? To
be explained in a subsequent article) to produce brighter fringes. Examples of this
class are the fringes formed by thin films, Newton's rings, Michelson's interferometer etc.
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9.10 Division of wavefront : Fresnel's biprism

Fresnel produced two coherent sources by division of wavefront using this device.

A biprism essentially consists of two prisms, each of very small refracting angle,
placed base to base. In practice, however, it is made from a single optically plane glass
plate by proper grinding and polishing. The obtuse angle of the prism is about 179°,
and the other angles are about 30" each.

Production of fringes : Set up - The arrangement for obtaining interference
fringes using biprism is illustrated in Fig. 9.7.

S ‘ ;
dshﬁn“ /L ,%/////////// o
L - .

Fig. 9.7

S is a narrow vertical slit and is illuminated by monochromatic light. The light
emerging from S is allowed to fall symmetrically on the biprism P, placed at a small
distance from the slit S, with its refracting edge parallel to it. The incident wavefront
is divided into two parts and suffer separate refractions from the upper and lower
halves of the biprism to diverge from two virtual images S, and §,, respectively, of
the slit S. S, and S, thus act as two coherent (virtual) sources. The light cones BS,D
and AS,C, diverging respectively from §; and S, are superposed. BC being the
overlapping region where interference occurs. Interference fringes can be easily seen
through an eyepiece. The fringes are not localized (non-localized fringes) in any plane
and that is why the screen can be placed anywhere within a suitable distance. Typical
fringe pattern is shown in Fig. 9.8.
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Necessity of narrow source :

A broad source of light is equivalent to many narrow sources placed side by side.
Now if the slit is broad the two virtual coherent sources will also be broad. Now each
pair of conjugate points on the virtual sources will give rise to an interference
pattern. These interference patterns are slightly displaced from one another. An
overlapping of such patterns results in general illumination.

Fresnel's biprism can be used for various optical measurements as discussed
below.

9.10.1 Determination of unknown wavelength

Theory :

The theory of biprism is essentially the same as that of the double slit; it is already
discussed and would not be repeated.

The unknown wavelength A of monochromatic light can be determined using
biprismfringes from the formula

B=%=>7~=B% (917)

where B = fringe-width, d = distance between the virtual sources and D, the
separation between the slit § and the eye-piece at O fitted with a micrometer. Thus,
measuring 3, d and D we can determine A.

Experiment :

The experiment can be conducted by using a suitable form of optical bench along
the bed of which can slide several uprights carrying the linear slit S, the biprism P
and Ramsden's eye-piece fitted with a micrometer screw.

The slit is illuminated by the monochromatic light and adjustments are made to
make the slit S, the edge of the biprism and one of the cross-wires of the eye-piece
perfectly vertical and all in the same vertical plane and at the same height from the
bench. At this time the fringes will be very distinct. The biprism and eye-piece stands
are given proper lateral movement so that fringes do not suffer lateral shift relative
to the cross-wire as the eye-piece is moved.

Measurement of 3 : The fringe width 3 is now measured by setting the cross-wire
at successive fringes with the help of micrometer screw fitted with the eye-piece.

Measurement of D : Distance D can be measured directly from the bench scale
as the distance between the slit and the eye-piece.

Measurement of d : To measure d a convex lens of suitable focal length is placed
on another upright inserted between the biprism and the eye-piece. The focal length
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of the convex lens is such that the distance between the slit and the eye-piece is greater
than four times the focal length of the lens. Under this condition, there are two
conjugate positions of the convex lens for which real images of S, and S, will be seen
by the eye-piece kept at the same place. The distances ¢, and d, between the real
images of S, and §,, for the first and second positions of the convex lens respectively,
are measured by moving the eye-piece perpendicular to the bench. Now magnification
at one position will be inverse of magnification at the second position i.e.,
d d

g:d—z o1, d= d1d2

There may be index error between slit stand and eye-piece stand. It can be corrected
for or avoided by measuring fringe widths 3, and f3, at two different distances D, and
D, respectively. Then, instead of (9.17), A is given by

7~=d% . (9.18)

As all the quantities on the right hand are known, A can be easily determined.

9.10.2 Measurement of the acute angle of biprism

The separation d between the virtual sources S, S, can be expressed, as follows,
in terms of refracting angle o of prism, the refractive index n of its material and the
slit-prism separation x. Since o is very small, the deviation of a ray produced by each
of the prism is (n — 1)a. If, 6 be the total deviation of the ray striking the centre of
the biprism (Fig. 9.9)

%Gz(n—l)oc; also, d = x6

d=2x(n — Do ... (9.19)
Measuring d and x and knowing the refractive index n for the monochromatic light

used, oo can be evaluated.
/ P
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9.10.3 Measurement of the thickness of a thin film

Fresnel's biprism can be used to measure the thickness of a given thin sheet of
transparent material.

Let S, and S, be the two virtual coherent sources which are producing interference
fringes on the screen so that C is the position of the central bright band of zero optical
path difference i.e., S;C = S,C (Fig. 9.10). If a thin film of thickness tbe introduced
into one of the paths (say S,P) of the interfering rays, then the positions of central
fringe will be shifted from C to P (say), so that the optical path § P is again equal
to the optical path S, P.

P
A
]
1
d} C
]
[]
v §
a3
m
=

Fig. 9.10

The time taken by light in going from §, to P and from S, to P will be equal. Thus,

—s = 4
C C v
or, S,P-SP=(n- 1) . (9.20)

where ¢ and v are the velocity of light in air and in the film; n = ¢/v is the refractive
index of the material of the film.
If P is the position originally occupied by the mth order fringe, then
S,P —S,P=ml .. (9.21)
Therefore, from (9.20) and (9.21) we get,
(n—1)t=mr .. (9.22)
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The lateral shift of the central fringe of zero optical path difference is given as

x, = CP=m ... (9.23)
where [3=7 is the fringe width .. (9.24)
From (9.22) and (9.23) we get
x
n-1)t=-"2")\
(n-t)e="
o X, A
= B(n—l) ... (9.25)

Finding x _, the displacement of the central fringe due to introduction of the thin
film and B, the distance between two consecutive bright bands, we can find ¢, the
thickness of the film by (9.25), when the wavelength A of light and the refractive
index n of the film are known.

From (9.24) and (9.25) we may write,

o d
_(n—l)'D ... (9.26)

With a monochromatic source, fringes appear to be similar, and it is difficult to
locate the position where the central fringe is shifted. For this purpose, a white light
source is used. With a white source the central fringe is white and all other order
fringes are coloured.

Velocity test : The relation (9.26) may be written as

X, :g(%—l)z .. (9.27)

If the light travels with smaller velocity in the denser medium (film) then c¢/v is
greater than 1 and x _ is positive. Hence the central fringe will be shifted towards the
side of the film. Experimental result agrees with this inference arrived at. Hence the
conclusion is that light travels with smaller velocity in denser medium.

9.11 Interference with white light : Colour effect

The distance of the mth bright fringe from the central one is given by
AD

X, =m

=g
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where d is the separation between the two coherent sources and D is the distance
of the screen from the sources, x  is a function of wavelength A. So, the fringes of
different colours will be in step only for the central band (m = 0). In this case x,_ =0
and bright fringe of all wavelengths will coincide, and the central band will be white
with white light. For higher order bright fringes (m > 0) x will be greater for a light
of longer wavelength and less for a light of shorter wavelength. As the wavelength
A, for red light is longer than the wavelength A for violet we infer that all bright
bands, excepting the central bright band, will be coloured in which red will be in the
outermost position while violet will be in the innermost position.

When the path difference between interfering waves is large the condition for
constructive interference for one wavelength and the condition for destructive
interference for another wavelength may be satisfied at the same point. In that case
the resultant illumination cannot be distinguished from white light. So, for observable
fringes with white light the path difference should be kept very small. In this case we
get a few coloured fringes on either side of the central white fringe.

9.12 Lloyd's mirror

In Lloyd's single mirror arrangement (Fig. 9.11) light from a narrow slit S,
illuminated with a monochromatic light is partly incident at a grazing angle on a
metallic mirror M, M, while the rest reaches the screen AB directly. The reflected
light appears to diverge from a virtual source S,. Hence S, and act as coherent sources
and interference fringes are formed in the region of overlapping EF.

A A
] d F
, T
: P
X,
s, 9; )
~ i ]
i E |
di Femme—o> 3 c\if
Pl M
sz 0T D! g
? € mmm— e ——e e S 17T >|8
B
Fig. 9.11

The central point C on the screen for which CS, = CS, receives only the direct light
and for this the central fringe of zero path difference is not visible here. However, if
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the screen is displaced to the position A'B' the central fringe can be brought into view.
The central fringe can also be brought into view by introducing a thin film of mica
or glass in the path of direct light. In this case the fringe system shifts in direction
in which the film is introduced. If t is the thickness of the film and n is the refractive
index of the film then central fringe will be formed at a point such as O for
which the condition S,0 = §,0 + (n — 1)t is satisfied. The central fringe is found to
be dark. This indicates that light reflected from the mirror suffers a sudden phase
change of m.

9.12.1 Comparison of biprism and Lloyd's mirror fringes

(1) In biprism experiment fringes are formed on both sides of the central fringe,
whereas in Lloyd's mirror arrangement less than half of the fringes are obtained on
one side of the central line.

(i1) In biprism the central fringe is bright whereas in Lloyd's mirror it is dark.

(iii) In Fresnel's biprism the separation (d) between every pair of corresponding
points of the coherent sources is same and hence fringe width is same for all parts
of the source. But in Lloyd's mirror due to lateral inversion in the mirror d is different
for different pair of coherent point sources. Consequently, in Lloyd's mirror fringe
width is not same for all parts of the source slit.

9.12.2 Measurement of wavelength

Lloyd's mirror can be used to measure the wavelength (A) of a monochromatic
light.

Fringe width 3 is given by (for deduction see Art. 9.6)

B:%zk:[}% .. (9.28)

where d = distance between the coherent sources and D = distance between the slit
and the screen. Thus, measuring 3, d and D we can determine A.

9.13 Phase change on reflection : Stoke's treatment

We will now investigate the reflection of light at an interface between two media
using the principle of optical reversibility. According to this principle, in the absence
of any absorption, a light ray that is reflected or refracted will retrace its original
path if its direction is reversed.

Consider a light ray incident on an interface of two media of refractive indices n,
and n, as shown in Fig. 9.12(a). Let the amplitude reflection and transmission
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coefficients be r, and 7, respectively. Thus, if the amplitude of the incident ray is a,
then the amplitudes of the reflected and refracted rays would be ar, and ar, respectively.

., arf
a ! alfp ary
m
iy
i r‘t ﬁtT ."2
(a)
Fig. 9.12

We now reverse the rays, and we consider a ray of amplitude at, incident on medium
1 and a ray of amplitude ar, incident on medium 2 as shown in Fig. 9.12(b). The ray
of amplitude ar, will give rise to a reflected ray of amplitude at,r, and a transmitted
ray of amplitude ar,z, where r, and t, are the amplitude reflection and transmission
coefficients when a ray is incident from medium 2 on medium 1. Similarly, the ray
of amplitude ar; will give rise to a ray of amplitude arl2 and a refracted ray of
amplitude art,. According to the principle of optical reversibility the two rays of
amplitudes arl2 and att, must combine to give the incident ray of Fig. 9.12(a).
Thus

2 -
ar” +atit, =a

o, tt,=1-r .. (9.29)
Further, the two rays of amplitudes at,r, and ar,t, must cancel each other, i.e,
at,r, + ar;f; =0

Or.

2

rry = =1 ... (9.30)

Since we know from the Lloyd's mirror experiment that an abrupt phase change
of m occurs when light gets reflected by a denser medium, we may infer from (9.30)
that no such abrupt phase change occurs when light gets reflected by a rarer medium.

This is indeed borne out by experiments. Equations (9.29) and (9.30) are known as
Stokes' relations.
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9.14 Division of amplitude : Interference in thin film (wedge-shaped)

Let a ray PQ of monochromatic light of wavelength A, be incident at an angle i
on a transparent wedge-shaped film, bounded by the surfaces AB and CD and enclosing
an angle o, as shown in Fig. 9.13. At Q, the ray is partly reflected along QO and partly
refracted along QR at an angle r. At R, it is again partly reflected along RS and partly
refracted along RT,. The above process of multiple reflections and refractions are
repeated at S, V etc. As a result, we have a set reflected rays QO, SO, ... etc. and
another set of transmitted rays RT, VT,, ... etc. At each point O, R, S, ... etc., only
a fraction of light is reflected; the rest is refracted so that rays QO and SO, suffering
one reflection each, have almost equal intensities. The rest are rapidly attenuated and
are ignorable. QO and SO, both derived from the same incident ray, are coherent and
hence can interfere.

Fig. 9.13

Computation of path difference : Reflected system
Draw SN L QO, SN, LOR and SIM L CD

Produce QR and SL to meet at M. The paths of the two reflected beams (QO and
SO) which are going to meet at O, will be equal from the dotted line SN upto O (for
they are very close to each other). Hence the path difference of the two reflected
interfering beams would be,

A=n(QN, +N,R +RS) - ON (9.31)

where n = refractive index of the film.
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From the geometry of Fig. 9.13, RS = RM and SL = LM = t = thickness of the film
at S. By Snell's law we get,

=S _ ON/QS
~sinr ON,/0S,

or, ON =n.QN,

Thus (9.31) now reduces to,

A =n(NR + RS) = n(N\R + RM) = nN\M
=n.SM cos (r— o)
A = 2nt cos(r — o) ... (9.32)
In addition to this path difference, there is an extra phase difference of © equivalent
to a path difference + A/2, caused by reflection at Q, from the surface backed by

denser medium. The reflection at R, from the surface backed by rarer medium, will
not cause any change of phase.

So, in reflected system, the net path difference between the above two rays
(QO and SO) is

N>

A =2ntcos(r-o)+ ... (9.33)

9.14.1 Interference in reflected light
Conditions for maxima and minima :

For maxima or brightness at O,

LA

+ 5 =even multiples of A

2nt cos(r—ot) 5

= 2ntcos(r—o) = odd multiples of %

=(2m+1)% m=0,12,... .. (934)
Similarly, for minima or darkness at O, we must have
2nlcos(r—oc)=2m& m=0,1,2, ... ... (9.35)

2
Note that for a parallel film a = 0.
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1. Fringes with monochromatic light :

(1) When a parallel beam of monochromatic light falls on a film of varying thickness,
n, A and r all are constants; so, we shall get different orders numbers (m) of fringes
for different thickness ¢ of the film.

With increasing ¢, the order number of the fringe increases, and a given order
corresponds to the locus of points of equal ¢. The fringes are therefore called fringes
of equal thickness or FET fringes.

At the thin edge of the film, 7 is essentially zero so that A = A/2. The thin edge
would thus be dark, for all A-values (lights of all colours).

(ii) For extremely thin film, # — O for all parts of the film and the path difference
between the reflected rays, A = A/2. The film surface then appears completely dark
even with white light.

(1) If the film surfaces are plane-parallel (i.e., oo = 0) and a parallel beam of
monochromatic light is incident obliquely, n, A and ¢ are all constants but » will vary
with the inclination of the beam. The surface would thus be bright or dark according
as r satisfies the conditions of brightness or darkness.

The fringe of a given order here corresponds to the locus of points of equal ». Such
fringes are thus known as fringes of equal inclination or FEI fringes.

For normally incident parallel beam, cos r =1, so that the film surface will be
uniformly bright or dark according as 7 satisfies the brightness or darkness condition.

2. Fringes with white light : Colour of thin films

When a parallel beam ofwhite light falls on a thin wedge-shaped film, n, A and
r will be different for light of different colours in the white light. Since A, <A , the
first order bright fringe of violet light occurs at a smaller 7 of the film than the #-value
for the corresponding bright fringe of red. We shall thus get differently coloured
fringes at different thickness. This explains the colour of thin films. Such fringes are
called fringes of equal chromatic order or FECO fringes.

At the thin edge of the film, 7 is essentially zero and the edge will be practically
dark since A = A/2 for all A's, as explained earlier.

It may so happen that we get another thickness where the brightness condition is
simultaneously satisfied by two or more colours leading to a coloured band by
overlapping. When the film thickness is sufficient, the overlapping is to such an extent
that uniform illumination results.
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9.14.2 Interference in transmitted light

A similar interference phenomenon occurs with rays transmitted through the
film and emerging on the side CD of it.

Calculations, following a procedure like that adopted in reflected beam, yield for
the path difference A between two successive rays and is given by
A = 2nt cos(r — 2a) ... (9.36)
Proof. In reference to Fig. 9.14 one part of the ray QR incident on the boundary
CD emerges out along RO, the other part undergoes two successive internal reflections
at R and § to emerge finally out of CD along T0,.

Draw TN, L RS, TN L RO, and TLM 1 AB RS and TL meet at M when produced.
From geometry, ST = SM;, LT = LM = t = thickness of film at L.

Fig. 9.14

Also, since NO, - TO,, the path difference of the two transmitted interfering rays
is
A =n(RN, + N,S + ST) - RN .. (9.37)

L__sini__ RN/RT _ RN
Now, sin(r—a) RN,/RT ~ RN,

= RN = n.RN,
- From (9.37) A =n(N,S + SM) =nNM=nTM cos (r — 2a)
= 2nt cos (r — 2a) ... (9.38)
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Conditions for maxima and minima :

In the transmitted beam, the reflection at different points occurs inside the film at
the surface backed by rarer medium (usually air) and so there is no phase change by
7, unlike in the case of reflected system.

For Maxima or brightness, the condition is

2ntcos(r—20c) =2m%=mk m=0,12,..

And for Minima or darkness, the condition is

2ntcos(r—20¢)=(2m+l)% m=0,12, ..

Thus, the conditions of maxima and minima in the transmitted pattern are just the
reverse of the conditions for reflected pattern. So, the pattern due to the transmitted
beam is complementary to that due to the reflected beam.

9.14.3 Fringe width in wedge-shaped film

Let BAC be the thin wedge-shaped film of a very small angle 6 and index n (Fig.
9.15). A parallel beam of light of wavelength A falls normally on the upper surface
and viewed by reflected light. As already discussed, alternate bright and dark bands
will be observed.

Fringe width : Let t be thickness at any point P, distant x_ from the end A of the
wedge. The condition of brightness at P gives

2nt =(2m+l)%

t=x,0 (. 0 small)

2nbx,, = (2m + l)%

But

2

_(2m+1)A
= W T e

Similarly, for (m + 1)th bright band, we obtain

_[2(m+1)+1]a
m+l 410

X
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.. Fringe width, [ = distance between two consecutive bright bands is

B=xm+1—xm=L (9.39)

Therefore, for a given film (n, 6 const.) and light of a given wavelength A, B =
constant. The fringes are thus equi-spaced. When 0 increases, 3 decreases implying
fringes become narrower and conversely.

The same expression is obtained with dark fringes as well.

f
>
A

9.14.4 Difference in film thickness

Let 7,, 1, be the thicknesses at P and Qrespectively and m = number of fringes

between these points. So, 7, = x,0; #;, = x,0, x's being distances of P and Q from the
end A of the wedge (see Fig. 9.15).

Ih=h _
5 =
But (x, — x; )/ m = A/ 2n0, from (9.39) and therefore,

X=X

L=t _%=%_ A
mo m 2no

(1 —t1)=7;—';’ .. (9.40)

9.14.5 Need of an extended source

An extended source is necessary to observe colours in thin films, for the narrow
source limits the visibility of the film.
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The situation is explained in reference to Fig. 9.16(a) and let SA be a ray that starts
from a narrow source and be incident on the film. On reflection from the upper
surface of the film and suffering one internal reflection, it enters the eye E. SB is
another ray from S but is incident at a different angle. On reflection and having an
internal reflection, it cannot finally reach the eye (Fig. 9.16 (a)). So, only a limited
portion of the film becomes visible. To observe the whole of the film, the eye is to
be continuously shifted from one position to another.

s A Ny
VN Vo

(a) (b)

=

Fig. 9.16

If, however, an extended source S,S, is used (Fig. 9.16(b)), the light reflected from
a large part of the film reaches the eye, placed in a suitable position. One can thus
see the entire film simultaneously. Therefore, an extended source is used to view the
film.

9.14.6 Fringes of equal thickness and equal inclination

The conditions for maxima and minima of brightness of the fringes formed by the
light reflected from a thin wedge-shaped film are respectively given by equations
(9.34) and (9.35). These conditions suggest the existence of two distinct types of
fringes as mentioned in Art. 9.15.1.

1. Fringes of equal width or thickness(FET) called Fizeau fringes
2. Fringes of equal inclination (FEI) called Haidinger fringes

Fizeau fringes of equal thickness are employed to test the optical planeness of a
surface. For this purpose, an air film is formed between the working surface and a
standard optically flat surface. The fringes of equal thickness formed by the air film
are repeatedly observed with a monochromatic light and the polishing of the working
surface is continued until the fringes are perfectly straight and parallel to the line of
intersection of the surfaces of the air film.
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Haidinger fringes of equal inclination can be produced by transmitted light from
a thick transparent plate. As the plate is thick, the pair of adjacent transmitted rays
will be wide apart and hence they cannot enter the eye through its small pupil to
produce any interference phenomena there. But if a telescope with a bigger diameter
objective be employed, then the objective will be able to collect those transmitted rays
which are very close to the normal ray and consequently those collected rays will
produce interference phenomena at the focal plane of the objective. The fringe pattern
obtained in the focal plane of the telescope consists of concentric bright and dark
rings. They are fringes of equal inclination type. These fringes are called Haidinger
fringes.

Haidinger fringes are employed to test the flatness of a plate to a high degree of
accuracy. For accurately plane-parallel Haidinger fringes will be perfectly circular but
any deviation from the parallelism of the surfaces will be indicated by the distortion
in the rings.

9.15 Newton's rings

Newton's rings constitute a special instance of interference in a film of slowly
varying thickness. It is the example of fringes of equal width or thickness. It was
Hooke, and not Newton, who had first observed them.

If a plano-convex lens of large radius of curvature be placed with the convex
surface in contact with a plane glass plate, an air-film of small thickness is formed
between the two. The thickness of the film at the point of contact is zero and gradually
increases outwards. If monochromatic light be allowed to fall normally on the film
and viewed normally with a low-power microscope in reflected light, a system of
alternate bright and dark concentric rings around the point of contact, with their
centre dark, is observed to form in the air-film. These are called Newton's rings.
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These fringes are the loci of points of equal film thickness and the rings are
localized in the film. Typical Newton's rings (both in reflected Fig. 9.17(a) and
transmitted light Fig. 9.17(b)) are shown in Fig. 9.17.

Experimental arrangement : The experimental arrangement for observing Newton's
rings is illustrated in Fig. 9.18. L is the plano-convex lens, PC the glass plate on which
L is placed with convex surface in contact. Light from an extended monochromatic
source S fall on a glass plate G held at 45° with the vertical. The light reflected from
G falls normally on air-film enclosed between L and PC. Interference occurs between
the rays reflected from the upper and the lower surfaces of the film giving rise to
interference pattern in the form of circular rings localized in the film. The rings are
viewed by a low-power microscope M focused on the film.

Ay
AM
1

G

g

Q
T

Fig. 9.18

Theory : In Fig. 9.19 corresponding to the incident ray, the interfering reflected
rays are 1 and 2. The effective path difference between the rays is

A=2nlcosri%

21 A
where n = index of film (air), # = thickness of the
film at B and r = inclination of the ray. The factor A/
2 is due to phase change of m on reflection at lower
M

surface of the film - glass plate.

For normal incidence, r = 0

A
= —
A=2nt=x 5
At the point of contact, 1=0=A=2A/2 which o {

corresponds to the condition of minimum intensity.
Hence the central point is dark. Fig. 9.19
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The condition for mth order maximum intensity, i.e., bright fringe is
A=mA=2nttA/2=mh m=0,1,2, .
= 2nt =2(m1)\/2
The condition for mth order minimum intensity, i.e., dark fringe is

A=(2mEN)\/2=2n£0/2=(2m=1)\/2

:>2nt=2m%=m

The above expressions show that, bright or dark, a fringe of any order m occurs
for a constant r-value. In a film, r = constant along a circle with centre at the point
of contact. So, the fringes appear in the form of concentric circles—each circle
corresponds to a definite t-value, and different circles to different t's. Since each fringe
is the locus of constant thickness (r), Newton's rings are fringes of equal thickness

(FET).

Diameter of rings :
Newton's rings.

We shall now find an expression for the diameters of the

-

2R -t

Fig. 9.20

Let AB be the glass plate, LOL' the lens placed on it with O as contact point
(Fig. 9.20) and R the radius of curvature of the curved surface of the lens. Also
let p, be the radius of the mth Newton's ring corresponding to the point P where

thickness is 7.
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Now, from geometry,
PN?= ON x NE
= p.=tx(2R-1)
=2Rt — 2 =2Rt (. t very small)
20=p> /R .. (9.41)
Since, for a bright ring,

2nt = (2m + 1) A/2 .. (9.42)
Using (9.41) and (9.42) we get

pL/R=(2m+1)\/2

AR
= p :(2m+l)% .. (9.43)
Similarly, for the mth dark ring,
2 o MR
p,, =2m. o .. (9.44)

. Diameter of mth bright ring, D _ is given by

D, =2p,, =2<2m+1x~AR/2n

D,, =~2AR/(2m+1)/n .. (9.45)

o~N2m+1

Similarly, Diameter of mth dark ring, D is given by

D, =~2AR~N2m/n ... (9.46)
-

Thus, we note that the diameter of bright rings are proportional to the square root
of odd natural numbers and that of the dark rings proportional to the square root of
natural numbers.

The difference in diameters of the mth and (m + 1)th order dark rings is

D,.-D, :@ [Vm+1-/m ]
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Thus, as the order number m increases this difference decreases meaning that the
rings gradually become narrower as their diameter increase. There will be more
crowding of the rings as we move outward from the centre.

Fringe width : If D_ and D, are the diameters of two successive bright rings
then we can write from (2.45),
_4AR

2
-p: =200
n

DZ

m+1

_ 4AR
o P =bn =D, +D,)

Writing D,,,, +D,, =2D,, we have fringe width 3 as,

_Dm+1_Dm _ 7\‘R

Thus, fringe width 3 decreases as the diameter D of the ring increases.

Central fringe : At the point of contact O, we have r = 0. Consequently, the
condition for destructive interference will be satisfied. This indicates that the central
fringe is dark. It appears as a dark spot. Normally, with the presence of minute dust

particles the point of contact is not perfect, and the central spot may not be perfectly
dark.

Newton's rings with white light : With a white light the central spot will be black,
and it will be surrounded by a few coloured rings and beyond this there will be general
illumination due to overlapping of different coloured rings.

9.16 Applications of Newton's rings

1. Determination of wavelength : Newton's rings can be used for the measurement
of the wavelength of almost monochromatic light (emitting from a sodium lamp). The
diameters of mth Newton's rings for an air film (n = 1) are given from (9.45) and
(9.46) as

D,i =2 (2m + l) AR [Bright ring]

D? = 4m\R [Dark ring] ... (9.48)
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Thus, if D, and D, .p are respectively the diameters of the mth and (m+p)th rings
(bright or dark) then the wavelength A is given by

iR .. (9.49)

2. Determination of refractive index of a liquid : Newton's rings can be used for
the measurement of the refractive index (n) of a liquid. At first the diameters of the
mth and (m+p)th rings (bright or dark) are measured with air film. Then the diameters
of these rings are measured again by forming a liquid film between the lens and the
glass plate. Introduction of the liquid decreases the diameters of the rings.

For air film,

-

m+p

=4 pAR

ai

For liquid film,

(D’%“P -D, )liq - 41?1XR

Hence,
_ (D31+p _Di)air
n= (Dfﬁp o )liq ... (9.50)

3. Determination of optical flatness of a glass plate : Consider a glass surface
placed on another surface whose flatness is known. If a monochromatic light beam
is allowed to fall on this combination and the reflected light is viewed by a microscope,
then, in general, dark, and bright patches will be seen. The space between the two
glass surfaces forms an air film of varying thickness and whenever this thickness

1
becomes m A/2, we see a dark spot and when this thickness becomes (m"'a)?b/ 2

we see a bright spot. Two consecutive dark fringes will be separated by the air film
whose thickness will differ by A/2. Consequently, by measuring the distance between
consecutive dark and bright fringes one can calculate the optical flatness of a glass
plate.

4. Newton's rings under different configurations :
1. Lens in contact with a concave surface
2. Lens in contact with a convex surface
3. Lens separated from the plate by some distance.
The first two cases have been discussed in Tlustrated Examples', Example 7.
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9.17

Summary

In 1801, Thomas Young devised an ingenious but simple method to lock the
phase relationship between two sources of light. The trick lies in the division
of a single wavefront into two; these two split wavefronts act as if they
emanated from two sources having a fixed phase relationship and, therefore,
when these two waves were allowed to interfere, a stationary interference
pattern is obtained.

For two coherent point sources, almost straight-line interference fringes are
formed on some planes and by measuring the fringe width (which represents
the distance between 2 consecutive fringes) one can calculate the wavelength.

On a plane which is normal to the line joining the two coherent point sources,
the fringe pattern is circular.

In the Young's double slit interference pattern, if we use a white light source,
one gets a white central fringe at the point of zero path difference along with
a few coloured fringes on both the sides, the colour soon fading off to white.
If we now introduce a very thin slice of transparent material (like mica) in the
path of one of the interfering beams, the fringes get displaced and by measuring
the displacement of fringes, one can calculate the thickness of the mica sheet.

If a plane wave is incident normally on a thin film of uniform thickness t then
the waves reflected from the upper surface interfere with the waves reflected
from the lower surface.

If we place a plano-convex lens on a plane glass surface, a thin film of air is
formed between the curved surface of the lens and the plane glass plate. If we
allow monochromatic light (such as from a sodium lamp) to fall (almost
normally) on the surface of the lens, then the light reflected from the curved
surface interferes with the light reflected from the plane surface. Since the
convex side of the lens is a spherical surface, the thickness of the air film will
be constant over a circle, and we will see concentric dark and bright rings.
These rings are known as Newton's rings. The radii of the concentric rings
are such that the difference between the square of the radii of successive
fringes is very nearly a constant.
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9.18 Review Questions and Answers

1.

Ans.

2.

Ans.

Ans.

Ans.

Ans.

Ans.

Ans.

Ans.

Ans.

What are coherent sources? How are they produced? Explain.
See Article 9.8.

Find an expression for the fringe-width in case of Young's double slit.
Show that the dark and bright fringes are equally spaced.

See Article 9.5.

Explain what happens in biprism experiment when (a) white light
illuminates the slit and (b) the edge of the prism not parallel to the slit.
(a) See Article 9.11.

(b) If the edge of the prism is not parallel to the slit, then the edge will not
divide the incident wavefront into two equal parts and the fringes observed
will be indistinct.

Calculate the displacement of fringes when a thin transparent sheet is
introduced in the path of one of the interfering beams in biprism. Show
how the method is used for finding the thickness of mica plate.

See Article 9.10.3

Give Stokes' treatment to explain the change of phase when reflection
takes place at a denser medium.

See Article 9.13.

In what respect do Lloyd's mirror fringes differ from biprism fringes?
See Article 9.12.1.

While it is necessary to use narrow source for Fresnel's biprism, extended
source is needed for Newton's rings. Explain.

See Articles 9.10 and 9.14.5.

How will you test the flatness of a surface by interference?

The interference fringes obtained from a film of varying thickness are used
to test the flatness of a surface. If a wedge-shaped air film is formed between
an optically plane glass plate and the surface under examination, the fringes

will be straight if the surface is perfectly plane, otherwise the fringes will be
irregular in shape.

Why are the fringes in Newton's rings arrangement circular and in an
air-wedge straight and parallel?

In both, each fringe is the locus of points of equal thickness of t]re film. In
Newton's rings arrangement, the points of equal thickness of film lie on
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10.

Ans.

11.

Ans.

circles with point of contact of the lens and plate as centre. So, the fringes
are concentric circles. In wedge-shaped air-film, the loci of equal thickness
are straight lines parallel to the edge of the wedge.

What will happen in Newton's ring experiment if the glass plate is replaced
by a plane mirror?

If the glass plate is replaced by a plane mirror, the fringes will disappear, and
we shall get a uniform illumination. It is because the intensity of light reflected
from the surface of the mirror is very large as compared to the intensity of
light reflected from the curved surface of the air film. Hence the intensity at
a dark fringe (difference of two intensities) and at the bright fringe (sum of
the two intensities) will be practically the same.

Why do we prefer a convex lens of large radius of curvature for producing
Newton's rings?

In Newton's ring arrangement, we prefer a lens of large radius of curvature
because?

(1) It results in the increase of the diameter of Newton's rings which increases
the accuracy in the measurement of their diameters.

(i1) Large value of R results in the decrease of the thickness of the air film
at any point and hence we are justified in neglecting #* as compared to 2Rt
in the theory.

(1i1) The angle of wedge-shaped film enclosed between the glass plate and the
lower surface of lens is very small and hence can be neglected.

12. Explain what will happen in Newton's ring experiment when air in the

Ans.

inter-space is replaced by a transparent liquid (water)?
If d, and d, are the diameters of the mth dark rings in the two cases, then

4mRA

dj =4mRA and d12 = m

d, 1
or, é: \/% =0.867

As p = 1.33 for water, hence d,<d,

Thus, the rings will shrink.
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9.19 Illustrated Examples

Example 1 : Interference fringes are produced by prism in the focal plane of a
reading microscope which is 1 m away from the slit. A lens interposed between
biprism, and microscope gives two images of the slit in two positions: 4.05 mm in
one position and 2.90 mm in the other. If the wavelength of light used is A =5893
A, find the distance between consecutive bands.

Solution : Here, A =5893A = 5893 x 10'9m; D = 1 m;
d, = 4.05 mm = 4.05 x 107 m; dy = 2.90 mm = 2.90 x 107 m

d=/dd, =\4.05x2.90 X107 m=3.427x107m

.. Distance between consecutive bands i.e., fringe width is

-10
B:§7L21.0><5893><12 — 172 x 10~ m
3.427x10

Example 2 : Fringes are produced with monochromatic light of wavelength 689
nm. A thin film of glass of n = 1.52 is placed normally in the path of one of the
interfering beams. The central bright fringe is found to be shifted to a position
occupied by the fifth bright band from the centre. Calculate the thickness of the glass
film.

Solution : Here A = 689 x 10%m, n=1.52, ¢t =?

By the problem, shift in central fringe = 5f
From the relation,
x, = B(n — Di/x

SB:%(n—l)l:ﬂk:(n—l)l

fo Sk _ 5% 689x107

_ -3
== 1501 = 6.625 x 10~ mm

Example 3 : In Newton's ring arrangement, a source emitting two wavelengths A,
=6 x 107" m and A, = 5.3 x 107 m it is found that mth dark ring due to one
wavelength coincides with (m + 1)th dark ring due to the other. Find the diameter of
mth dark ring if the radius of curvature of the lens is 0.9 m.
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Solution : By the problem, (D,i )x = (Di +l)x , We have therefore
1 2

4mR, = 4(m + 1DRA, => mh, = (m + 1)A,
mx6x 107 =(m+1)x 53 x 107

Solving, we get, m = 59

D, =Dgy =4x59x0.9x6x107 = 1.13 x 102 m

Example 4 : The fringes of equal thickness are formed when two glass plates are
kept over each other with a small gap in between. If a parallel beam of light of
wavelength 6000 A is used and fringe separation is 3 mm then what is the angle
between the plates in seconds?

Solution : Here A =6000 x 107 %m, B=3mm =3 x 103m

n =1, 6 = angle of plate = ?

From the relation,

_ A _ M
B—%, :>9_an so that
6000x1071° i 107 %180
=—=10 rad=7 de ree
2x1x3%x107 n g
107 %180

= x 3600 seconds = 20.62"

Example 5 : Two plane surfaces of glass are in contact at one edge while they are
separated by a thin piece of mica at the other edge. If 20 interference bright fringes
are observed between these edges when illuminated normally by sodium light
(A = 589.3 nm), find the thickness of mica.

Solution : We know 2t = 2m + 1) A/2 = t= (2m +1) A/4
Here m=20,\=75893 x 10° m

_ 41x5893x107°
- 4

Example 6 : Newton's rings are formed with a source of a light containing two
wavelengths A, and A, If mth order dark ring due to A, coincides with the (m + 1)th
order dark ring due to A, prove that the radius of the mth dark ring of A, is equal to

t = 6.04 x 10> mm



https://www.print-driver.com/?demolabel-en

NSOU « CC-PH-09 207

AR
7‘1 _7‘2

where R is the radius of curvature of the lower curved surface.

Solution : By the problem, mth order dark ring due to A, coincides with the
(m + 1)th order dark ring due to A,. So

mh, = (m+ 1) A,

radius of the mth dark ring of A, is

_ _ [MAR
P =NR =3,

Example 7 : Show that the diameter D, of the mth Newton's ring, when two
surfaces of radii R, and R, are placed in contact, is given by
1, 1 _ 4mh

R™R, D?

Solution : Newton's rings result from interference between waves reflected from
upper and lower surfaces of air-film of varying thickness enclosed between the two
surfaces (Fig. 9.21).

Fig. 9.21

If the radii of curvature of the surfaces be large and incidence of light almost
normal, then the effective path difference between interfering waves is

A=2t+ N2
where ¢ is the film-thickness at the point under reference.
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For a dark ring say,

2t+%=(2m+l)%:>2t=m7u .. (9.51)

Let p,, be the radius of a ring corresponding to a point P, where thickness is 7 and
R,, R, be the (large) radii of curvature of the two surfaces.

t =1 +t, (Fig. (a) for + sign; Fig. (b) for - sign)
2 2

—Pw 4 Pm _2 Ly

“2R T2R, ﬁzl_p’”(Rl_RZ

Substituting this value of 27 in (9.51), we get
2 1, 1)
o2 =
D—’i 1,1 =m\ (. diameter D_ = 2p )
4\R™R,) ' m m

1 1 _4mh
—t =
R 2 (Proved)

Example 8 : An oil film (n = 1.2) on water (n = 1.33) is viewed from directly above
with light of wavelength 600 mm in air. The film appears circular and has a centre
thickness 1 um decreasing to zero thickness at the edge. Explain if the edge will
appear bright or dark. How many dark rings appear in the fringe?

Solution : Since the incident rays suffer identical change in phase, the condition
for mth bright fringe is

—6
2nt=mh =m= 2nt _2x1.2x10 4

A 600%107~°

Also, at the edge, the optical path difference is zero implying that the edge will
appear bright (m = 0) so, 4 dark rings will be seen.
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10.5 Fabry-Perot interferometer
10.6  Applications of Fabry-Perot interferometer
10.7 Summary
10.8 Review Questions and Answers
10.9 Illustrated Examples

10.1 Objectives

In going through this unit, you will learn :

1.

A el

Michelson Interferometer
Idea of formation of fringes
Determination of Wavelength
Wavelength Difference
Refractive Index

Visibility of Fringes
Fabry-Perot interferometer

10.2 Introduction

An instrument which depends on the interference of EM waves in general, and
light, is called an interferometer. Thus, an interferometer is an arrangement
aining interference effects with a large path difference, compared to the
wavelength of the interfering light, between the two interfering rays. The simplest and
the oldest arrangement is due to Young which we already have studied (Art.9.3,

for obt

Unit 9)
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All interferometers divide a beam of light into two or more parts, which travel
by different paths and recombine, forming interference fringes. It is thus a
difference in optical paths that an interferometer measures, in units of wavelength of
light.

In general, the purpose of any interferometer is to isolate a specific portion
of the EM spectrum and to make spectroscopic study such as (i) analysis
of hyperfine structure of spectral lines, (ii) the wvariation of refractive index
(ri.) of gases or salt solutions with density, temperature, (iii) the linear diameters of
stars etc.

Unlike grating or prism spectroscopes, interferometers are not dispersive instruments
but use interference to selectively transmit a certain wavelength.

The connection between interferometers and stellar astrophysics is amazing. These
are principally used for the measurement of the angular diameter of stars and for the
measurement of binary star orbits. Experimental astrophysicists generally choose a
small portion of the EM spectrum to study, preferably one that has the least noise from
other sources in the sky. The types of waves they want to study are EM waves (now-
a-days mostly microwaves and is called CMB meaning cosmic microwave background),
because that is the characteristic wavelength of the photons left over from Big Bang
In this context, remember that photons are timeless and don't die until they impart the
information they were carrying by interaction with matter (mostly electrons and
phonons, the quanta of crystal vibration).

The number of interfering beams in an interferometer is 2 or more. Those with two
beams are called double-beam and those with many beams are called multiple-beam
interferometers. In the former, the distribution of intensity in an interference band
obey cosine (square) law, as in equation (9.16). In a multiple-beam instrument the
bands have very sharp maxima which makes it very useful for the study of spectral
lines.

There are two basic classes of interferometers depending on interference by (see
Art. 9.10) :

1. Division of wavefront : such as, Rayleigh's interferometer, Michelson stellar
interferometer, Young's interferometer, Fresnel bi-prism, etc.

2. Division of amplitude : it is further subdivided into two categories:

(a) Double-beam : such as Michelson interferometer, Twyman-Green
interferometer, Mach-Zehnder, Jamin, etc.
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(b) Multiple-beam : such as Fabry-Perot interferometer, Lummer-Gehrcke
plate.etc.

When the interferometer is employed to study specifically the refractive index of
a substance, it is called a refractometer.
Interferometers are usually instruments of very high resolving power.

In the following articles we shall briefly describe only Michelson interferometer
and Fabry-Perot interferometer, state their principles of action, and mention their uses
based on their resolving powers.

10.3 Michelson interferometer

Michelson interferometer is an ingenious arrangement which was designed to test
the ether-hypothesis in the famous Michelson-Morley experiment. However, it is now
primarily used to find wavelength of light, fine structure of spectral lines and some
other measurements based on the phenomenon of interference of light.

Construction : It essentially consists of two highly polished and optically plane
mirrors M|, and M, (Fig. 10.1) placed at right angles to each other. There are two
other optically flat glass plates G, and G, of the same material and thickness, placed
parallel to each other and inclined at
45° to the plane mirrors M, and M,.
The plate G, is semi-silvered (half-
silvered) at the back, i.e., the face
towards G,. The mirror M, is mounted
on a carriage and can be moved back
and forth, exactly parallel to itself, with
the help of a fine micrometer screw
that can read displacements up to
107> cm. By the levelling screws at
their backs, the mirrors M,, and M,
can be tilted about both vertical and
horizontal axes to make them exactly
at right angles to each other. The
interference bands produced by the
interferometer are observed in the field
of view of the telescope T.

Fig. 10.1

Principle : Light from an extended monochromatic source S is rendered parallel
by a collimating lens L and is allowed to fall on the plate G, (Fig. 10.1). It gets divided
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into two parts of equal intensities : one being reflected at the semi-silvered back
surface of G, to move along AC towards M|, and the other being transmitted along
AB towards M,. Both the rays AC and AB fall normally on M, and M, respectively
and retrace their paths after reflection to enter finally into the telescope T along AT.
Since the two rays are derived originally from the same single beam by division of
amplitude, they are able to produce interference fringes in the field of view of telescope
T under suitable conditions.

What is the role of glass plate G,? For without it, the ray AC passes through G,
twice, while the ray AB none at all. So, the paths of the two rays AC and AB in the
glass are not equal. To compensate for this, an exactly similar glass plate G, and made
of the same material is introduced in the path of AB. Hence G, is called a compensator.
While G, is not essential in working with monochromatic light, it is a must for white
light.

Production and form of fringes : If one looks towards M, from T, one sees M,
and also a virtual image M, of M, formed by reflection at G, (Fig. 10.1). Although
the two interfering beams, received by telescope 7, come by way of reflections from
M, and M,, behave functionally as if reflected from M, and M,. So, the interferometer
is optically equivalent to an air-film enclosed between M, and M,. Depending on the
path-difference and the angles between the mirrors M, and M, (virtual mirror), the
form of the fringes may be different - circular, straight etc.
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Fig. 10.2

Circular fringes : Circular fringes are produced in Michelson interferometer with
monochromatic light when M, and M, are perfectly vertical and exactly at right angles
to each other. The production of such fringes is illustrated in Fig. 10.2.
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M, and M, (image of M,) are parallel reflecting surfaces, the real extended source
being replaced by its virtual image S', formed by reflection at G|, behind the eye E.

This virtual source S’ again forms two virtual images S, and S, in M| and M. Light
from a point P, say on the extended source, appears to the eye E to come from the
corresponding coherent points P, and P, and on S, and S, respectively. If d be the
separation between M, and M, then that between §; and S, will be 2d. The path
difference between the rays entering the eye is obviously 2d cos 6 where 0 is the angle
the reflected beam makes with the normal.

If 2d cos © = mA (m = 0,1,2,...), P appears bright (maximum)

If2d cos0=02m+ 1) A2 (m=0,12,.), P dark (minimum)

For a given d, m and A, the angle © will be constant so that the locus of P is a
circle with centre on the axis. So, a series of alternate bright or dark circular fringes
are observed. The fringe order, however, decreases as O increases, i.e., as we move

away from the centre. Since the interfering rays are parallel, these fringes are formed
at infinity and hence observed through a telescope focused for infinity.

Localized fringes : When the mirror M, and the image M, of M, are not exactly
parallel, they enclose a wedge-shaped film of air between them (Fig. 10.3). Hence the
ray PQ starting from the extended source §', after reflection from M, and M, will give
rise to two reflected rays QF, and RE, which when produced backward will meet at
O where interference fringes will be produced. To see these fringes the eye must be
focused near to the mirror M, and not for infinity as in the case of circular fringes.
Hence these fringes are called localized fringes.
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Shapes of the localized fringes : Since the light is incident on the film at various
angles, curved fringes with convexity towards the thin edge of the wedge are observed.
The shape of the fringes for different path differences are shown in Fig. 10.4. Curved
fringes are seen in Fig. 10.4(a) and Fig. 10.4(c).

A fringe of given order is a line of constant path difference. When the mirrors M,
and M,, intersect at the middle and film-thickness is small, and hence the path
difference 2d cos 6 is practically zero. Here we shall get straight fringes parallel to
the line of intersection of M, and M, [Fig. 10.4 (b)]. These fringes are called fringes
of equal width. The fringes that corresponds to thickness d = 0 is the one which is
perfectly straight. These fringes are visible up to path difference relatively much
smaller than those in circular fringes.

(b)

Fig. 10.4

White light fringes : When monochromatic light source is replaced by white light
and the thickness of film is small, a few curved and coloured localized fringes are
seen. The fringe of zero thickness (d = 0) is again perfectly achromatic and straight.
If, however, the film is thick, uniform illumination is observed. White light fringes
are useful in finding the zero path difference, particularly in standardizing a metre.

® In Michelson interferometer, the intensityis given by

I =41, cos’ O where 8= 2TTC(Za’ cos0)

2

d being the distance between M, and M,
I=1 . whend=2m A2

X

and I =1 . wheno6=02m+1) M2, m=0,1.2,.
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10.4 Applications of Michelson interferometer

1. Determination of unknown wavelength of light.

2. Determination of wavelength difference of two very close spectral lines.
3. Determination of thickness or refractive index of a thin transparent film.
4. Standardization of 'metre' in terms of wavelength.

1. Determination of wavelength of a monochromatic light :

The interferometer is first adjusted for circular fringes in the field of view of the
telescope. If the mirrors M, and M, are equidistant from the glass plate G,, the field
of view will be perfectly dark. M, is next adjusted in positive to obtain a particular
bright fringe in the field view of telescope with its centre coinciding with the cross-
wire. From this position when M, is moved away through a distance A/2, the path-
difference changes by A and the position of a particular bright fringe is occupied by
the next bright fringe. If m be the number of fringes that cross the centre of field when
M, is moved from initial position x, to a final position x,, then

X, — X :m&:ﬁuzsz %)
2

The difference x, — x; can be measured correct up to 10~* mm with the help of the
micrometer screw and m is actually counted. Then the wavelength A is obtained by
using the above formula.

.. (10.1)

2. Determination of difference of two very closed wavelengths:

Let the source emit two very close wavelengths A, — A, (A, > A,), e.g., sodium
D-lines, and the interferometer be adjusted to obtain circular fringes. There will be
two sets of fringes - one corresponding to A, and the other to . Since A, is very close
to 2, the two sets will practically coincide. As M, is moved slowly the two sets will
separate out slowly and when the dark fringe of A, coincides with the bright fringe
of A,, the result is maximum indistinctness (poor visibility). On further movement of
M, the next indistinct position is reached after a distance x, say. In this position, if
m fringes of A, appear at the centre, then (m + 1) fringes of A, will appear at the
centre of the field of view.

A
d x=(m+)2=m+1==2
an ( )2 »
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~ 1 1) 2x(A-2,)
(m+l)—m—2X(7\’—2—7\’—lj }\’17\’2
MAy A

where ) = %(kl +A,) = mean of two wavelengths A, A,.

Thus, measuring the distance x moved over by M, between two consecutive
positions of maximum indistinctness, the difference of two close wavelengths
(Resolution of spectral lines) can be determined.

3. Determination of thickness or refractive index of a thin transparent film :

The interferometer is set for localized white light fringes and the cross-wires made
to coincide with the central dark fringe. The path AB and AC are exactly equal.

The thin film is next interposed between the glass plate G, and the mirror M, such
that the light passes through it normally. The introduction of the sheet of thickness
t and refractive index n increases the optical path by 2(n—1)r. The fringes will thus
get shifted from their positions. The mirror M, is next moved till again a dark fringe
of zero path coincides with the cross-wire. The distance x through which M, is moved
is noted.

The white light is next replaced by monochromatic light of wavelength A and the
mirror M, is moved slowly to count the number of fringes contained in x. Then,

mA

2(n—1)z:mx:>z:m .. (10.3)

Thus, the thickness ¢ can be readily evaluated from a knowledge of n, m and A.
Note 1 : It may appear that when the formula

2(n — 1)t = mA

is being used, localized white fringes are unnecessary. In fact, however, it is not so,
for the fringes with monochromatic light are exactly alike and it is difficult to count
the number of fringes shifted, the shift being sudden on insertion of the sheet.

Note 2 : The same method or working formula may be used to determinethe
refractive indexn of the material of the sheet, provided m, A and r are known.
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10.5 Fabry-Perot interferometer

It is an interferometer of high resolving power in which fringes of constant
inclination, called Haidinger fringes, are produced by transmitted light after multiple
reflections in an air-film enclosed between two parallel and highly reflecting glass
plates. It is based on the principle of multiple beam interference.

Construction : It consists essentially of two optically plane glass plates A and B
(Fig. 10.5) placed accurately parallel to each other and separated by a distance d. The
inner surfaces of A and B are thinly silvered so as to reflect 80-90% of the incident
light. The outer surfaces of the plates are also parallel but inclined to their respective
inner surfaces, (i.e., the plates are slightly prismatic) to avoid interference of the rays
reflected at the outer unsilvered surface.

S 5
1 L A B L ]
(I ==
5 [ m 9
s o 0
| be L

Fig. 10.5

Set-up : Monochromatic light from an extended source S, is made parallel by the
collimating lens L,. Each parallel ray suffers multiple reflections successively at the
two silvered surfaces as shown. At each reflection, a small fraction of light is also
transmitted so that each incident ray produces a group of coherent, parallel transmitted
rays. There is a constant path difference between any two successive transmitted rays.
A second converging lens L, brings these rays to focus on P in its focal plane where
they interfere. Thus, the rays from all points of the source produce an interference
pattern on a screen S, at the focal plane of L,. This is known as multiple beam
interference.

Formation of fringes : If 6 be the inclination of a particular ray with the normal
to the silvered surface of A and d the separation between the plates, then the path
difference between two successive transmitted rays corresponding to the incident one
is 2d cos 0.
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For maxima
2d cosB =mA (m=0,12, ..)
where m is the order of interference and A the wavelength of light.

The locus of points in the source giving rays of constant inclination 0 is a circle.
Thus, with an extended source the interference pattern will be a series of bright
concentric rings (Fig. 10.6) on a dark background. Each of the rings will correspond
to a particular 6-value.

Fig. 10.6

Visibility of fringes : The visibility V of the fringes measures the distinctness of
fringes to the eye and is defined as

I 1. R

V — max min

]max +]min - 1+R2

where R being the fraction of the intensity of incident light which is reflected at
each silvered surface. R is also called reflecting power.

.. (10.4)

10.6 Applications of Fabry-Perot interferometer

Fabry-Perot interferometer is mainly used for the (i) comparison or measurement
of wavelengths of spectral lines and for (ii) the investigation of hyperfine structure
of spectral lines.

1. Measurement of wavelength : From the condition of maxima, 2d cos® = mA,
we get at the centre of the fringe pattern

2d = my\
where my is the order of interference at the centre.
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If at the centre, we get a bright fringe of order m, for a separation d,, and again
a bright fringe of order m, for a separation d,, then
2d, = mA, 2d, = m,\
2(d, — d)) = (m, — m)A = NA

where N = m, my, i.e., the number of fringes crossing the centre of the fringe
system, when the separation changes from d, to d,

- 2(d,—d,)
N
2. Determination of AMA (fine structure) : With two very close wavelengths A,
and 2, emitted from a source we get two sets of fringes, one for each wavelength.
Let mth order maximum for A, coincide with pth order maximum for A,, with plate
separation d, in a direction ©.

.. (10.5)

2d, cos® = mk,; = ph,
= AJ/A, = p/im ... (10.6)
If now we move from centre outward, the condition for next order to coincide is

M/A, = (p — 1)/ (m — 1) (order decreases outward)

Since m and p are rather large, p/m = (p — 1)/(m — 1) which implies that the
maxima of A, and A, coincide over a wide range of angle covering the whole field
of view appearing distinct maximum.

On increasing the plate separation to d, till the two sets of fringes again coincide
showing maximum distinct field, then

2d, cos® = (m+ )L, = (p + 5+ 1A, ... (10.7)
s being the increase in order of A, and s + 1 that for A,

2(d, — d)cosO® = sk, = (s + DA,
using (10.6) and (10.7).
At the centre 6 = 0, cos® = 1; so, from above, we have

2Ad, —d) = sh, = (s + DAy = s(A, = A,) = A,
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M, A A
2dy=dh) =5 5= = M

7\’2

ey .. (10.8)

= AL

where A, = mean of A, and A, and (d, — d,) = distance moved over by the movable
plate for two consecutive positions of maximum distinctness of the field of view.

Note : The method described is known as the method of coincidence and is not
very accurate. The other method - the method of exact function - is due to Benoit.

10.7 Summary

The Michelson interferometer was used by Michelson for the standardization
of the meter. He had found that the red cadmium line (A = 6438.4696 A) is
one of the ideal monochromatic sources and as such this wavelength was used
as a reference for the standardization of the meter. In fact, he defined the meter
by the following relation :

1 meter = 1553164.13 red cadmium wavelengths, the accuracy is almost one
part in 10°.

Michelson interferometer can also be used in the measurement of two
closely spaced wavelengths.

If a plane wave falls on a plane parallel film, then the beam would undergo
multiple reflections at the two surfaces and a large number of beams of
successively diminishing amplitude will emerge on both sides of the plate.
These beams (on either side) interfere to produce an interference pattern at
infinity. If the reflectivity R at each surface is close to unity, then the fringes
so formed are much sharper than those by two beam interference and, therefore,
the interferometers involving multiple beam interference have a high resolving
power and hence find applications in high resolution spectroscopy. The Fabry-
Perot interferometer is characterized by a high resolving power.


https://www.print-driver.com/?demolabel-en

NSOU « CC-PH-09 221

10.8 Review Questions and Answers

1.

Ans.

Explain how circular fringes are produced in Michelson interferometer?
Show that the radii of circular fringes obtained by the interferometer are
proportional to the square root of natural numbers.

First part : see Article 10.3.

Second Part : Radii of circular fringes are proportional to the square root of
natural numbers.

The path difference between the two rays reflected normally is 2d. when this
path difference is an integral multiple of A, all the rays reflected normally will
be in phase. Hence for maximum intensity

2d=m'\ (1)
The path difference between the two rays coming to the eye from corresponding

points P, and P, will be 2d cos © where O is the angle which the reflected
beam make with the normal. Hence for maximum intensity

2d cosO = mA (i1)
From (i) and (i1), we have

2d —-2d cos®=(n"-n)A=n"A (n<n’)
or, 2d(l1-cos®)=n"A
where n" 1s also an integer.

2 4
Now 1—cos6:l—(l—62—!+3—!—...j

4
Neglecting % and higher powers of 6, we have

ﬁ_ l/l”7\,
2 2d
e oc /n//
If6,, 0,, 0, are the angles and 1, r,, r; ... the radii of the first, second, third
. rings respectively, then
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Ans.

Ans.

Ans.

Ans.

where x is the distance of M, from S'. As X is constant ¥ o< 0, but as @ o« \/n”

r oc 'n//
It may be noted that as M| is moved forward or backward by half a wavelength,

keeping M) fixed a path change of A is introduced, hence a circular fringe

will appear or disappear at the centre of the field. However, if M, and M, are
exactly coincident, the field of view will be dark. Under these conditions the
path difference will be zero for all angles of incidence.

What is the shape of interference fringes obtained with Michelson
interferometer?

When the mirrors M, and M, are perfectly perpendicular to the direction of
two beams, circular fringes are obtained. If the two mirrors are made slightly
inclined, straight localized fringes are obtained.

How will you measure small difference in the wavelength of two waves
with Michelson interferometer?

See Article 10.4.

How will you use Michelson interferometer to determine the thickness of
a thin transparent sheet of refractive index p?

See Article 10.4.

Explain the visibility of the fringes obtained with Fabry-Perot
interferometer.

See Article 10.5.

10.9 Illustrated Examples

Example 1 : The movable mirror of Michelson interferometer is moved through
0.02603 mm. If the wavelength used in 5206 A, find the number of fringes shifted
across the cross-wire of the eye-piece of the telescope.

Solution : Here A = 5206 x 101%m, d = 0.02603 x 103m and m = ?
From the relation 2d = mA

o 2d _ 2x0.02603 %107

=100
A 5206x1071°
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Example 2 : A Michelson interferometer is set for white light straight fringes.
When a mica sheet of thickness 0.005 cm is put in front of the fixed mirror, then to
bring back the coloured fringes to their original position, the movable mirror is
movedby 0.0025 c¢m. Calculate the refractive index of mica.

Solution : Let n be the index of mica (sheet) of thickness 7. So, the increase in
optical path is (n — 1)t. If d be the distance moved. by movable mirror, then to bring
the coloured fringes in the original position,

m—t=d =>n-1=dt

aeqad g, 0.0025
7 T 770,005

=1+0.5=1.5

Example 3 : The wavelengths of two components of D-lines of sodium are
5800 A and 5896 A. By how much distance one of the mirrors of Michelson
interferometer be moved so as to obtain consecutive positions of maximum distinctness?

Solution : Here A, = 5890 x 1071%m, &, = 5896 x 1071 m and d = distance to be
moved by one of the mirrors in passing from one maximum intensity to the next.

Mhy - M

R A T WSF W)

_ 5890x107"" x 5896101  5890% 5896 , ;110

~ 2%(5896-5890)x107"° 2%6

=0.2894 x 107 m

Example 4 : In an experiment for determining the index of a gas by Michelson
interferometer, a shift of 140 fringes is observed when all the gas is removed from
the tube. If the wavelength of light used is 5460 A and the length of the tube is 20 cm,
calculate the refractive index of the gas.

Solution : Here 1= 5460 A = 5460 x 101%, m =140, d=20 cm = 0.2m, n=?
(n—1)d=m\2

_mh_140x5460x107"0
n-l1=2-= %02 =0.000191

n =1+ 0.000191 = 1.000191
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Example 5 : Find the order number and angular radius of the 8th bright fringe in
a Michelson interferometer. Assume that the two arms differ in length by 3 mm and
the central fringe is bright. Wavelength of light is 589.6 nm.

Solution : For the central fringe, 2d = mA

-3
.. Order number, m=%=%10_9z10176
A 589.6x10

.. Order of 8th bright fringe = m — 8 = 10176 — 8 = 10168
If © = angular radius of 8™ bright fringe, then

2d cos 210168xk:>cos9=%
10168 ~

0 = cos1(10168 / 10176) = 2.12°
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11.1 Objectives

In going through this unit, you will learn :
(a) Fraunhofer diffraction :
1. Diffraction in a single slit
Diffraction in a double slit
Single slit vs. Double slit diffraction
Circular aperture
Multiple slits : Plane Diffraction Grating
Absent spectra and Ghosts in a Diffraction Grating
Overlapping of Spectral Lines

Comparison of Grating and Prism Spectra

h o P AR S

Determination of wavelength of light by using Plane Diffraction Grating

—_
o

. Resolving power and Rayleigh Criterion of Resolution

11. Resolving power of a Grating

(b) Fresnel Diffraction :
12. Fresnel Half-period Zones of a Plane Wavefront
13. Explanation of Rectilinear Propagation of Light
14. Theory of Zone plate : Multiple Foci of a Zone Plate
15. Zone plate vs. Convex lens

16. Fresnel diffraction pattern of a straight edge, a slit and a wire

11.2 Introduction

Consider a plane light wave incident on a long narrow slit. According to geometrical
optics one expects the region of the screen to be illuminated and the remaining portion
(known as the geometrical shadow) to be absolutely dark. However, if the observations
are made carefully then one finds that if the width of the slit is not very large
compared to the wavelength, then the light intensity is not uniform and there is also
some intensity inside the geometrical shadow. Further, if the width of the slit is made
smaller, larger amounts of energy reach the geometrical shadow. This spreading-out
of a wave when it passes through a narrow opening is usually referred to as diffraction
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and the intensity distribution on the screen is known as the diffraction pattern. We
will discuss the phenomenon of diffraction in this unit and will show that the spreading
out decreases with decrease in wavelength. Indeed, since the light wavelengths are
very small (A ~ 5 x 107 cm), the effects due to diffraction are not readily observed.

We should point out that there is not much of a difference, between the phenomena
of interference and diffraction, indeed, interference corresponds to the situation when
we consider the superposition of waves coming out from a number of point sources
and diffraction corresponds to the situation when we consider waves coming out from
an area source like a circular or rectangular aperture or even a large number of
rectangular apertures (like the diffraction grating).

The diffraction phenomena are usually divided into two categories : (i) Fresnel
diffraction and (ii) Fraunhofer diffraction.

In the Fresnel class of diffraction, the source of light and the screen are, in general,
at a finite distance from the diffracting aperture. In the Fraunhofer class of diffraction,
the source and the screen are at infinite distances from the aperture. It turns out that
it 1s much easier to calculate the intensity distribution of a Fraunhofer diffraction
pattern which we plan to do in this unit. Further, the Fraunhofer diffraction pattern
is not difficult to observe; all that one needs is an ordinary laboratory spectrometer;
the collimator renders a parallel beam of light, and the telescope receives parallel
beams of light on its focal plane. The diffracting aperture is placed on the prism table.
In this unit we will also study the Fresnel class of diffraction. The underlying principle
in the entire analysis is the Huygens-Fresnel principle according to which:

Each point on a wavefront is a source of secondary disturbance and the secondary
wavelets emanating from different points mutually interfere.

We will first introduce the concept of Fresnel half-period zones to have a qualitative
understanding of the Fresnel diffraction pattern.

11.3 Fraunhofer diffraction at a single slit

Let a plane wavefront of monochromatic light of wavelength A propagating normal
to a slit S, be incident on it (Fig. 11.1). According to Huygens-Fresnel principle each
point of the wavefront in the plane of the slit may be regarded as the source of
secondary spherical wavelets. The secondary wavelets travelling normal to the slit are
brought to focus by a convex lens L on the screen at C. The wavelets travelling at
an angle 6 with the normal are brought to focus on Q. Let us calculate the intensity
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of light at Q. Let the complex light disturbance at any instant due to secondary waves
from the origin O (the midpoint of the slit) be represented by Ae® where A is the
amplitude and o is the circular frequency of the wave. The phase difference between
the waves at Q coming from O and from apoint Par a distance x from O is given by

A 5,
dx:PN
Lo

Qk ——————————————————————————————— C

: 8
E a
B ISZ L E
Fig. 11.1
ZTTCXPNZZTTE‘XSine=lX (111)

where, / =27nsin9

Hence the disturbance at Q due to secondary waves from will be proportional to
e©=1%) The disturbance at Qdue to the diffracting element can be written as

dy = C.A.dx.e©%)

where we assume the amplitude to be proportional to the width dx; C is a
proportionality constant.

If a is the width of the slit, then the resulting complex disturbance at due to the
waves coming from all the diffracting elements will be given by

a
t2

y: JCAei(mt—lx)dx

a

2

=(CAhe™ ]
—il

a
2
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sinla o e
= ChAa—2 | - ginp=2_—-¢ _
la 2i

The resultant intensity / at Q is obtained by multiplying y by its complex conjugate
y". Thus

* sin” o
I=yy =1,—; .. (11.2)
o
where I, = (CAa)* and Oc=%a=%.asin9 .. (11.3)

o depends on the angle of diffraction and thus (11.2) gives the intensity distribution
e, it gives intensity for different values of 6.

(a) To find maxima and minima :
The maxima or minima are given by

dl

L -0
do
2sinolcosol 2sin’ o
I, 2 B ;7 =0
o o
or, sino(acosa —sina) =0
Hence either sin o = 0 .. (11.4)
or, o =tano .. (11.5)

2
I . .. . )
The value of o is found to be positive for sin oo = 0 and negative for o = tan a.
o

Hence the condition (11.4) will give minima and condition (11.5) will give maxima.
Thus, for minima,

sino =0
o, a=mn, m==x1 £2 £3 .
or, o sin® = mA ... (11.6)
Here m = 0 is excluded because for this o = 0 and since (1111)1}) sino_ 1, it gives a

maximum.
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Fig. 11.2

The positions of maxima can be obtained by solving (11.5). It is transcendental
equation and can be solved graphically by plotting the curves y = a and y = tano. and
finding the point of intersections as shown in Fig. 11.2. An inspection of the Fig. 11.2
shows that one value is oo = 0 and other values of a which will give maxima are less
3775, i%t, etc. o = 0 gives the position of
principal maximum and the other values gives secondary maxima.

than but gradually approaching towards *

The intensity of principal maximum is

: .2
. s o
I=lim/[,——==1,
o—0 o

The intensity of first secondary maximum is

sin22n
B3 1
]lzlo—zziloz_o

3n)  on’ 22
2
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The intensity of second secondary maximum is

. 2575
_ Sin 7: 4 z]_O
2 0 S5 2 25752 0 61
2

Thus, the secondary maxima are very feeble compared with the principal maximum
and their intensities diminish very rapidly with the increase in order number.

The intensity distribution in the diffraction pattern due to a single slit is shown
in Fig. 11.3.

IA

YAV AN VALY

-t -2 -=m 0 T 2m 3n
—_

Fig. 11.3

The angle of diffraction 0, for the first minima on either side of central maximum
is given by (11.6) as

. . a A
asin®, =A; or, 6 =sin6 —
a

Therefore, the angular width of central or principal maximum (20, = 2)/a) is
inversely proportional to the width (a) of the slit. When oo = A, we get from the
relation a sin® = A, 0 = 90°, i.e., the first minimum occurs at 90°, i.e., the principal
maximum fills the whole space.

11.4 Diffraction at a circular aperture

Consider on narrow circular aperture AB of diameter d and centre at C, placed
perpendicular to the plane of paper (Fig. 11.4) and a parallel beam of monochromatic
light of wavelength A be incident normally on it. The light, in passing through the
aperture, suffers diffractions. If a lens L is placed in the path of the diffracted beam
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very close to aperture a real image of the diffractive pattern is obtained on the screen
XY, placed perpendicular to the plane of the paper, in the focal plane of the lens.

X
L
A\ .

T | "7
1] ~
d C: - > O-L
"

B g v

Y

Fig. 11.4

The secondary waves travelling in the direction CO come to focus at O and bright
image is formed as the secondary waves, equidistance from C in the upper and lower
half travel the same distance before reaching O and reinforce each other.

The rays reaching a point P on the screen distant x from O, after diffraction at an
angle 0 from the extreme ends A and B of the aperture, have path difference

BN = AB sin@ = d sin 0

If this, path difference is an integral multiple of A, then by reasoning similar to that
as in the case of single slit pattern, the point P will have, minimum intensity, when

dsin® =mh = Zm%, m=0, 1, 2, ... etc. give minima.

The point P will have maximum intensity if the path difference is equal to an odd

multiple of A/2 ie.,
dsin© :(2m+l)%j m=20,1,2, .. etc. give maxima.

As the circular aperture is symmetrical about the axis, the resultant pattern may
be obtained by rotating Fig. 11.4 about the same axis. The point P thus will trace out
a circular ring of uniform intensity, minimum or maximum depending upon, the
conditions given above.
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Thus, the diffraction pattern due to a circular aperture consists of a central bright
disc called the Airy's disc, surrounded by alternate dark and bright concentric rings
called the Airy's rings as shown in Fig. 11.5. The intensity of dark rings is zero and
that of bright rings decreases gradually outward from O.

L

Fig. 11.5

Radius of Airy's disc : If the collecting lens L lies very close to the aperture and
the screen is at a very large distance, then

sme=e=§- .. (11.7)

where f is the focal length of the lens.
But for the first secondary minimum,

a’sin(9:7u:>sin(9:(9=7b

7 ... (11.8)
From (11.7) and (11.8), we get
i—&:}x—&f

where x is the radius of the Airy's disc.
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The radius of the first dark ring is slightly more than that given by the above
relation (11.9). Airy has shown that

x:%f . (11.10)

The intensity distribution of the bright and dark rings is similar to that given for
a rectangular slit. Clearly, with increasing the diameter of the aperture, the radius of
the central bright disc decreases.

Importance : The diffraction of a plane wave from anarrow circular aperture is
of great importance, on account of its application to resolving power of telescopes and
microscopes. A lens acts like a circular aperture and produces a diffraction pattern
surrounded by alternate dark and bright rings. If there are two point objects lying close
to each other, then two diffraction patterns are produced. The two objects are said to
be resolved if the central maximum of one fall on the first secondary minimum of
the other.

11.5 Diffraction at a double slit

Let a parallel beam of light of monochromatic light of wavelength A be incident
normally on a surface containing two slits, each of width a and separated by an opaque
space of width b. The distance betweenany pair of corresponding points of the two
slits is d = @ + b. According to Huygens-Fresnel principle each point of the incident
wavefront in the plane of the two slits may be regarded as the source of secondary
spherical wavelets. The secondary wavelets travelling normal to the slits are brought
to focus by a convex lens L on the screen at C (Fig. 11.6). The wavelets travelling
at an angle 6 with the normal are brought to focus at Q. Let us calculate the intensity
of light at Q. Let the complex light disturbance at any instant due to secondary waves
from the origin O (mid-point of the first slit) be represented by Ae'®t where A is the
amplitude and o is the circular frequency of the wave. The phase difference between

the waves at Q coming from O and from a point P at a distance x from O is given
by

2y 2 2 i
TXPN_ n xsin@=/x .. (11.11)

where, /= r sin 0

A


https://www.print-driver.com/?demolabel-en

NSOU « CC-PH-09 235

b

T

-]

Fig. 11.6

Hence the disturbance at Q due to secondary waves from will be proportional to
e ©=1%) The disturbance at Q due to the diffracting element can be written as

dy = C.A.dx.e©%)
where we assume the amplitude to be proportional to the width dx; C is a
proportionality constant.

The resultant complex disturbance at O due to both the slits will be

+5 d+5
y= J. C A @) gy + J. CAe @) gy
_a a-4

.. (11.12)

The resultant intensity 7 at Q is obtained by multiplying y by its complex conjugate
y*. Thus
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= (CAa)2 2 (2+2cosld)

;

N
| I

e® =cosB + isinb

and ¢ =cos® —isinO
—a sin® o 2
=4y = 7 -cos p .. (11.13)
2 la
where ]0=(CAa) , 0(=7
_T _ld_m -
=5.asin® and = 2 k(a+b)s1n9 . (11.14)

Thus, we see that the resultant intensity in the diffraction pattern of two slits
depends upon two factors :

s 2
1 1, s1n20c which gives the diffraction pattern due to a single slit.
o

(i) cos® B which gives a system of interference fringes due to wavelets from the
corresponding points of the two slits.

The set of diffraction fringes have greater dispersion while the set of interference
fringes have lesser dispersion. These are superimposed on the diffraction set of fringes
and are visible only in the region of central maxima.
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Condition for minima : The resultant intensity would be zero when either factor

c 2

o :
of (11.13) becomes zero. The factor s1n2 =0 when sina = 0 but ov#0.
o

Therefore, o =mn,;m= 1, £2, ..
a sin @ = mn .. (11.15)
These minima are known as diffraction minima.

Or.

2

The positions of minima due to the factor cos’p are given by
B=+(2s+1)m/2;8=023,..
o, (a+b)sin®==%(2s+1)A/2 .. (11.16)

These minima are known as interference minima.

c 2

o . » . sin” o
Condition for maxima : The positions of maxima due to the factor —5— are
a
. 3n Sm
at o = 0 and at values approaching +—-, 17, etc.

The positions of minima due to the factor cos’p are given by
B=pr,p=0,1, £2, £3..
or, (a+Db)sinO = pA .. (11.17)

Missing order : If the conditions for maxima of interference pattern (11.17) and
minima of diffraction pattern (11.15) are simultaneously satisfied for a given value
of O then the corresponding interference maxima will be missing. If the slit width ais
kept constant and separation b is varied, then it is obvious from (11.17) the distance
between consecutive interference maxima changes but the diffraction pattern due to
single slit remains constant. Let for some value of 6 conditions (11.15) and (11.17)
are satisfied simultaneously. Then,

a+b _P
— == .. (11.18)

Iftb=a p=2m=2 4,6, .., (. m=1,2 ..) which implies that the 2nd, 4th,
6th, ... etc. order of interference maxima will be missing, i.e., coincide with the 1st,
2nd, 3rd, ..., etc. orders of diffraction minima.

Iftb=2a,p=3m=3,6,9, ..,
will be missing, coinciding with the 1st, 2nd, 3rd, ..

= 3rd, 6th, 9th, ... order of interference maxima
etc. order of diffraction

*2
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minima.The central diffraction maximum will then have five interference maxima.
And so on.

7
6 -.B
e AVA A
Fig. 11.7
Thus, as b increases to a, 2a, 3a, ..., the number of interference maxima within

the central diffraction maximum increases due to missing orders.

For b = 4a, the central diffraction maxima will contain nine interference maxima,
as shown in Fig. 11.7.

What happens if a + b = a ? This means b = 0 i.e., the two slits get joined and
all the orders of interference maxima will be absent. The diffraction pattern observed
will be that due to a single slit of width 2a.

11.5.1 Effect of various factors on double slit diffraction pattern

A number of factors such as slit width, slit separation, wavelength etc. may affect
the double-slit diffraction pattern.

1. Effect of increasing slit width : If the slit width a is increased, the envelope

of the fringe pattern so changes that the central peak becomes sharper. The
spacing between the fringes however does not change as it depends only on the
slit separation b. So, now within the central diffraction maximum, a smaller
number of interference maxima will fall. The converse occurs on decreasing the
slit-width.

. Effect of increasing slit separation : If the slit separation b is increased,

keeping the slit width a constant, the fringes become closer together, but the
envelope of the pattern remains unaltered. So, a greater number of interference
maxima will now fall within the central diffraction maximum.

. Effect of increasing wavelength : If the wavelength A of the incident light is

increased, the envelope of the fringe pattern becomes broader, and the fringes
move further apart. The converse effect occurs on decreasing the wavelength.
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11.5.2 Single slit vs. double slit diffraction

A comparison of the diffraction patterns due to a single slit and a double slit is
worth noting. The main points of difference between the two are :

1. The single slit diffraction pattern consists of a central brightest maximum along
with minima and secondary or subsidiary maxima of rapidly diminishing
intensities on either side.

The double slit pattern, on the other hand, consists of equally spaced
interference maxima and minima within the central maximum. The intensity of
the central maximum in double-slit pattern is four times that of the central
maximum (4/,) due to a single slit diffraction. If, however, one of the slits is
covered by an opaque screen, the pattern becomes similar to that due to a single
slit.

2. The spacing of diffraction maxima and minima depends on the slit width a, but
the spacing of the interference maxima and minima depends on both a and b,
where b is the slit separation. The intensities of interference maxima are not
constant but decreases to zero on either side of central maximum. The maxima
reappear two or three times before the intensity becomes too low to be observable.

3. While in a double slit diffraction pattern there arises, under certain condition,
missing or absent orders - missing of interference maxima, there is no such
phenomenon in the single slit diffraction pattern.

11.6 Multiple slits: Plane diffraction grating

(a) Construction : Plane diffraction grating consists of a number of parallel and
equidistant lines ruled on an optically plane and parallel glass plate by a fine diamond
point. The number of such ruled lines per mm is of the order of 100. Each ruled line
behaves as an opaque line while the transparent portion between two consecutive
ruled lines behaves as a slit. If a be the width of a clear space and b be the width
of a ruled line, then the distance (a + b) is called grating element or grating constant.
The two points in the consecutive clear spaces whose distance of separation is (a + b),
are called corresponding points.

Drawing of exactly parallel and equidistant lines on a glass plate by a diamond
point is an extremely difficult task and hence the grating becomes too costly. To make
it comparatively cheaper, a cast of this ruled surface is made with some transparent
material and such casts are called replica gratings. Cellulose acetate, properly diluted,
is poured on the surface of the master grating and then dried to a thin, tough film
which can be easily separated from the master grating under water. This film can then
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be mounted on a plane glass plate forming what is known as replica grating. Due to
distortion and shrinkages of the film, replica seldom functions as well as its master.

Screen ©

(a) (b)
Fig. 11.8

(b) Theory : Let a parallel beam of monochromatic light of wavelength A be
incident normally on a plane diffraction grating consisting of N slits each of width
a and with equal opaque space b between two successive slits. According to Huygens-
Fresnel principle every point of the incident wavefront in the plane of the slits may
be regarded as the origin of secondary spherical wavelets. The secondary wavelets
travelling normal to the slits are brought to focus by a convex lens L on the screen
at C. The wavelets travelling at an angle 6 with the normal are brought to focus at
Q [Fig. 11.8 (a)]. Let us calculate the intensity of light at Q. Let the complex light
disturbance at O due to secondary wavelets from O (the centre of the 1st slit) be
represented by Ae where A is the amplitude and o is the circular frequency. The
phase difference between the waves at Q [Fig. 11.8 (b)] coming from O and from a
point P at a distance x from O is given by

2n 2n . .
TXPN_—k xsin® =/Ix .. (11.19)
where, / =—2{' sin©

Hence the disturbance at Q due to secondary waves from will be proportional to
e ©=1%) The disturbance at Q due to the diffracting element can be written as

dy = C.Adx.e ™)
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where we assume the amplitude to be proportional to the width dx; C is a

proportionality constant.
The resultant complex disturbance at O due to both the slits will be

+5 d+5 (N-1)d+5
y= ZJ e+ z J e e+, 4z J e
-5 d—5 (N-1)d—5
where 7 = CAe™’
e—zlx *2 —ib d+% —ilx (N-1)d+3
=T P =T P \
-2 a-2 (N-1)d-2
. la
sin 2 —ild i(N=-1)id | ot
=CAa. 7 [l+e +..+e }.e (- z = CAeior)
2
sinlﬂ iNld
_ 2 R
=Cda— = S ¢ .. (11.20)
2
The resultant intensity 7 at Q is obtained by multiplying y by its complex conjugate
y*. Thus
sin’ la iNId iNId
o 2 o oeM 1 e
y=yy*=(CAa)". 2 e 1 et
2
2 la _ _
(Cdal? SIN" 2 _ NI _ p-iNld
=(CAa) 2o id__—ild
la 2-e
3)
. 2 la
=(CAa)2 SIN 5" 2 _2cos Nid

(la)Z " 2-2cos ld
2
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¢® =cosO+isin®

and e =cos®—isin®
s 2 c 2
sin” o sin® N
=1 :
02 sin’ B .. (11.21)
2 la _w .
where 1, =(CAa) , oczizxasme
T . T .
and Bzxdsmezx(cwb)sme .. (1122)
Thus, the resultant intensity depends on two factors :
sin” o
(i) {,—5—=1, which gives the diffraction pattern of a single slit.
o
... sin® NB D . . .
(i) — e =/, which gives the interference pattern of the diffracted light beams
sin

from N slits.
Note : by putting N = 2 we can get the double slit intensity pattern.
Principal maxima : If the slit width a is very small and observation is confined

.2
to the neighbourhood of the central pattern the variation of the factor st 20( is small
o
and under this condition the maxima will be solely controlled by the factor
)
I, = Sn.l AE))B . This factor is maximum when
sin

B=mm, m=0,1+2, £3. .
or, (a+b)sinO = mi .. (11.23)

These are known as Principal maxima.

For B = mm, I, =%

And hence indeterminate. But in the limit B — mn we get the maximum value
of I,

sin VB _ . NcosNB _ N cos N (mn)

T =1 = :N
pomn sinf pomm  cosP cos(mm)
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using L Hospital rule. This gives

sin’ o
o2

L=N* and I =1 (say) I, XN*=I,xN* .. (11.24)

2

Thus, the intensity of principal maxima increases as the number of slits (V) increases,

but due to the presence of the factor sin_o , whose value decreases with the increase

o
of the angle of diffraction (0), the intensity of principal maxima decreases with the
increase in the order number of bands.

2

Conditions for secondary minima and maxima :

.2
The factor 7, = S NB depends on 3 and for maxima or minima we must have
Sin
dl,
ap ="
N &_2NsinN[3.cosN[3_2sin2N[3.cos[3
ow dp sin® B sin’ B
.2
sin” N
=27 B(NcotNB—cotB) .. (11.25)
sin N8

Hence for maxima or minima, either sinp =0 or, N cot Nf§ = cot f3.

(i) Secondary minima :
sin N3
sin 3

When sin N = 0 but sinf} #0 then =0 and hence intensity becomes zero

(i.e., minimum). Thus, for minima

or, (a+b)sin9:i%7u (11.26)

where s has integral values excepting O, N, 2N, 3N, etc. as for these values of s,
sin B = 0 and we obtain principal maxima. Thus, it is evident from (11.23) and (11.26)
that between two consecutive principal maxima there are (N — 1) minima. Hence there
will be N — 2 other maxima known as secondary maxima between any two adjacent
principal maxima.
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(ii) Secondary maxima :

.. dl . )
The condition N cot N3 = cot 3 makes d—[32: 0. Also, it can be shown that this

condition makes B negative. Thus, the values of 3 which satisfy the condition

N cotNP = cot 3 will give the positions of secondary maxima, excepting 3 = mm which
gives principal maxima.

Now to find the intensity of secondary maxima we note that

N cot Nff =cotf

A2 cos® NB _sin® NP

’ cos” P sin? B
N*(1-sin® NB) N2 sin? NB N?
o1, = =
1-sin*B N?*sin*B l+(N2—l)sin2[3

Hence the intensity of secondary maxima is given by,

N? 1,,

! =]1Xl+(N2—l)sin2[3 =1+(N2—l)sin2[3

Sm

1
or, = .o(11.27
]pm l+(N2—l)sin2[3 ( )

This equation shows that as N increases the intensity of secondary maxima relative
to the principal maxima decreases. When N is very large the secondary maxima
become very weak. Therefore, secondary maxima are not generally observed with a
grating having large N.

sin®> N

In Fig. 11.9 we have given a plot function ———= as a function of 8 for N = 5
sin

and N = 11. One can immediately see that as the value of N becomes very large, the
above function would become very sharply peaked at 3 =0, £x, +27. .... The intensities
of secondary maxima are also shown in Fig. 11.9(a). It is evident from this figure that



https://www.print-driver.com/?demolabel-en

NSOU « CC-PH-09 245

intensities of secondary fall off as we proceed towards the middle region between two
consecutive principal maxima. These secondary maxima are in general unequally
spaced and are not quite symmetrical [see Fig. 11.9(a)]. This lack of symmetry is
greatest immediately adjacent to principal maxima and the secondary peaks are shifted
a little towards the adjacent principal maxima.

sin® NP

sin® B

Ne 12

sl W
—x

Fig. 11.9

4.6.1 Absent spectra and ghosts in a diffraction grating
For the mth order principal maximum in the direction 6, we have the condition

(a+Db)sinb = mr ... (11.28)
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Suppose the value of a is such that sth order diffraction minimum occurs
in the same direction © then

a sin @ = s\ ... (11.29)

If these two conditions are satisfied simultaneously then mth order principal
maximum will be absent from the resulting spectra.

From (11.28) and (11.29) we get

atb_m
a s

For example, if a = b then m = 2s. Then m =2, 4, 6, etc. order of principal maxima
will be absent corresponding to the diffraction minima s = 1, 2, 3, etc.

Ghosts : In an ideal grating the rulings should be equally spaced. But in practice
there remains some errors in the rulings. If the error is random the grating gives a
continuous background illumination. If the error is progressive in nature the spectral
lines become sharper in planes which are different from the focal plane of the optical
system.

The most common error is periodic in nature. It arises from defects in the
driving mechanism of the ruling machine. It gives rise to false lines accompanying
the principal maxima of ideal grating. These additional false lines are known as
ghosts.

4.6.2 Overlapping of spectral lines

We know that for a grating having grating element (a + b) the angle of diffraction
O in the mth order spectrum for a light of wavelength A is given by

(a + b)sinO = m\ ... (11.30)

For a given grating a + b is constant and hence 6 will be the same when mA is
constant. Thus, if the light incident on the grating surface consists of a large range
of wavelengths, the spectral lines of longer wavelength and of lower order may
overlap on the spectral lines of shorter wavelength and of higher order.

For example, the 3rd order maximum of light of wavelength A = 700 nm and 4th
order maximum of light of wavelength 525 nm will be formed in the same direction
because

mh =3 x 700 nm = 4 x 525 nm = constant
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11.7 Angular dispersive power of grating

The angular dispersive power of a grating is defined as the rate of change of the
angle of diffraction (6) with the change in wavelength.

Thus, angular dispersive power = Z—g

If O is the angle of diffraction for rays of wavelength A which form the mth order
bright band then we have

(a + b)sinO = m\ .. (11.31)
Differentiating with respect to A we get,

a9 _  m

dh  (a+b)cosH .. (11.32)

Thus, the dispersive power is
1. directly proportional to the order m of the spectrum,

2. directly proportional to the number of lines per unit length; in other words,
inversely proportional to the grating element (a + b), and
3. large for large values of 6.

m Since in a given order 6 increases with increase in A [see (11.31)], we conclude
that the grating spectra are spread much more at red end than at the blue end
of the spectrum.

m When 0 is small (not exceeding 6°) cos 6 remains almost constant. Under this
situation dO is proportional to dA i.e., angular separation between two spectral
lines is proportional to the wavelength difference. Such a spectrum is known
as normal spectrum.

11.8 Prism spectra vs. grating spectra

(i) A prism produces only one spectrum, but a grating produces a number of
spectra. Consequently, prism spectrum is brighter than the grating spectrum.

(i) In grating spectra there is chance of overlapping of different spectral lines
in higher order. As there is only one prismatic spectrum there is no such
overlapping in prismatic spectrum.

(iii) In prism the deviation of violet colour is more than the deviation of red

colour. But in grating spectrum the deviation of violet is smaller than that
of red.
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(iv) Resolving power of grating is much greater than that of the prism.

(v) Grating spectrum is nearly normal but the prism spectrum is never
normal.

(vi) Dispersion in the grating spectrum does not depend on the material of the
grating, but dispersion in prism spectrum depends on the material of the
prism.

(vil)) Some times, due to periodic error in ruling additional false spectra known
as ghosts are produced by the grating. But prism spectrum is free from such
ghosts.

11.9 Determination of wavelength of light bygrating

The wavelength of light can be measured by using a plane diffraction grating and
ordinary spectrometer. Knowing 6 and m the wavelength A can be calculated from the
relation

(a + b)sin® = mA

(a+b)sin9 _sin@
m ~ pm

7\’=

The quantity p= represents the number of rulings per unit length, which is

a+b
usually supplied by the manufacturer of the grating. If not known, it can be easily
determined by measuring the angle of diffraction 6 for a light of known wavelength
and then using the

_sin@

T mh

11.10 Resolving power

By increasing the magnifying power of an optical instrument like a microscope or
telescope we can increase the size of the image. But a larger image does not always
reveal new details. The upper limit to the useful magnification is set by the fact that
the image of a point object formed by an optical system with limited aperture consists
of circular diffraction pattern. The resolving power of an analyzing instrument is its
ability to resolve two close point objects or to just separate two close spectral lines
in their diffraction patterns.
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11.11 Rayleigh criterion of resolution

According to Lord Rayleigh two equally bright point sources could be just resolved
by any optical system if the distance between themis such that the central maximum
in the diffraction pattern due to one source coincides exactly with the first minimum
in the diffraction pattern due to the other. This is known as Rayleigh criterion of
resolution. In other words, the angular separation between the principal maxima of
the two diffraction patterns should be equal to half the angular width of either principal
maximum. Under this condition the resultant intensity distribution in the diffraction
pattern shows a distinct dip (Fig. 11.10) at a point half- way between the two principal
maxima and we are just able to identify them as separate. Accordingto Rayleigh the

intensity at 'dip' is about % times the intensity ofeither peak in the resultant intensity
T

distribution.

Diffraction pattern of one uhjeu:t-) C Diffraction pattern of other object

Fig. 11.10

The above criterion of resolution is also application to the resolution of two close
spectral lines of equal intensity. Thus, two close spectral lines will be said to be just
resolved when the angular separation between the principal maxima of two spectral
lines in a given order is equal to half the angular width of either principal maximum.

11.12 Resolving power of a grating

The resolving power of a grating measures the ability to distinguish two very close
spectral lines A and A + dA and is defined by A/dA, dA being the smallest wavelength
difference for which the spectral lines can be just resolved at wavelength A.
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Expression for resolving power : The mth order principal maximum of a spectral
line of wavelength A of a grating for normal incidence is

(a + b)sinO = m\ .. (11.33)

where (a + b) is the grating element, 6 the diffraction angle corresponding to mth
order.

P

Central Peak of mth Pr.  Minima Peak of mth
Maximum  Maximum of i of A Pr. Maximum
of A+dA

Fig. 11.11

Differentiating (11.33) we get

mdA
(a+b)cosH

It gives the angular separation (d0) between the two mth principal maxima
corresponding to A and A + dA (Fig. 11.11). Eq. (11.33) can be written as,

do = . (11.34)

N(a + b) sin® = NmA .. (11.35)
where N is the total number of slits in the grating.
Thus N(a + b) sin® = 0, NA, 2NA ... ... (11.36)
gives the direction of O, 1st, 2nd, ... order of principal maximum for the

wavelength A.
The positions of minimum intensity are given by
Na+b)sin®=A2x, 21, ... (N— DA, (N+ DA, (N+2)A,... (11.37)

An inspection of the (11.35) and (11.36) shows that the angle of diffraction 6 +
dO of the 1st minimum after the mth principal maximum will be given by

N(a + b) sin (0 + d9) = Nmh + A .. (11.38)
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From (11.33) and (11.38) we can write

sin(9+d9) 3 Nmi+A

sind  Nm)
or, sinefdecose “ 14 1
sin© Mm
[.- dO is very small, sind® — d0 and cosd6 —1]
_ 1
or, do=-r = .. (11.39)
It gives the angular half width of mth principal maximum.
Now equating (11.34) and (11.39) we get
1 __ md\
Nm  (a+b)sin®
Using (11.33) we get the resolving power of a grating as
A
ﬁsz ... (11.40)

Thus, the resolving power of a grating increases with the total number (N) of
rulings effective in the formation of diffraction pattern and with the order number (m)
of the spectrum.

Substituting the value of m from (11.33) we can also write

A N(a+b)sin9
dr A
_W.sin®
A

where W = N (a + b) is the total width of the ruled surface of the grating. Thus,
a change in N (the number of rulings)for a given W will not change the resolving
power. But note from (11.34) that the angular dispersive power of a grating

.. (11.41)

increases with the increase in number of rulings per unit length (i.e., m). Thus,

a grating with higher dispersive power does not necessarily possess a higher resolving
power.
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Putting 6 = 90° in (11.41) we find that

AN
N ) A

For oblique incidence it can be easily shown that
A 4

11.13  Resolving power of a telescope

The resolving power of a telescope is defined as the inverse of the least angle
subtended at the objective by two distant close point objects which can be just
distinguished as separate in its focal plane.

From the theory of Fraunhofer diffraction at circular aperture of diameter D the
angular separation @ of Ist minimum from the centre of diffraction pattern is given
by

1.220

s1n9=T

As 0 is very small practically,
1.220
D

This is the value of minimum angular separation between two point objects that
can be just resolved by the telescope. So, the resolving power (R.P.) of the telescope
would be

0=sinO= ... (11.42)

1__ D
6 1.22)

Therefore, telescope with larger objectives will have higher resolving power. The
resolving power can also be increased by using light of smaller wavelength.

RP.= .. (11.43)

11.14 Fresnel's Assumptions

In Fresnel's diffraction, the source of light or screen or both are at finite distances
from the obstacle or aperture. No lenses are used to make the rays parallel or convergent.
The incident wavefront is not plane but is either spherical or cylindrical. As a result,
the phase of secondary wavelets is not the same at all points in the plane of the
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aperture or the obstacle causing diffraction. The resultant amplitude at any point of
the screen is obtained by the mutual interference of secondary wavelets from different
elements of unblocked portions of wavefront.

To explain this, Fresnel made the following assumptions :

(1) A wavefront could be divided into a large number of small elements or zones
called Fresnel's zones, each of small area. The resultant effect at any point P
(Fig. 11.12) on the screen will depend on the combined effect of all the
secondary waves originating from the various zones.

(i1) The effect at any point due to a particular zone will depend on the distance
of the point from the zone.

.
8 P
F
S 5 0
C
A
R
Fig. 11.12

(ii1) The effect at P will also depend upon the obliquity of the point with respect
to the zone. The obliquity factor is proportional to (1 + cos 0), where 0 is the
angle which PE makes with £O. Considering an elementary wavefront at E,
the effect is maximum at O as 6 = 0° and cos© = 1. As we move from O
towards P the value of 6 increases and hence resultant effect decreases. Similarly
in a direction EF tangential to the wavefront, the resultant, effect is one half
of that at O as 6 = 90° and cos 6 = . In the direction ES, the resultant effect
is zero as © = 180° and cos 6 = —1. This explains the non-existence of the wave
in the backward direction.

Fresnel type of diffraction is produced when light suffers diffraction at a straight
edge, a narrow slit, a thin wire, a small circular hole, or an obstacle. An application
of this type of diffraction is met with in the construction of a zone plate.
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11.15  Fresnel's half-period zones : Plane wavefront

Half-period zones : In Fig. 11.13 consider a plane ABCD which represents a plane
wavefront of monochromatic light of wavelength A travelling from left to right.
According of Huygen's principle every point on the wavefront is regarded as the origin
of secondary wavelets and at a given instant every one of these secondary wavelets
pass through the point O. The resultant effect at O due to the whole wavefront will
be equal to the disturbances reaching from different portions of the wavefront. To find
the resultant effect we divide the entire wavefront into concentric zones as follow.

B

J&)

Fig. 11.13

From O drop a perpendicular on ABCD at the point P, the foot of the perpendicular
is called the pole of the wave with respect to O. Let OP be equal to a and A be the
wavelength of light waves. With O as centre and radius (a+A/2) draw a sphere, cutting
the wavefront in a circle at M, then

OM,=a+ M2 OM, - OP = /2
This simply means that the secondary wavelets originating from P and from the
points on the circumference of the circle M, on reaching O, will differ in phase by

21
A

Now r radian is equivalent to phase difference 7/2. Hence the area enclosed by
the circle M|, is called Fresnel's first half-period zone.

(OM,-0P)=mn
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Similarly, we can draw other spheres of radii (a + 2A/2), (a + 3A/2), (a + 40/2)...
which will intersect the wavefront in circles M,, M;... This construction divides the
wavefront into a number of Fresnel's half-period zones. It may be noted that the first
half-period zone is a circle, while the second half-period zone is an annular ring
between M, and M, and so on.

These are known as half-period zones because the waves reaching O from P and
M, differ in phase by 7 or 7/2. Similarly, the waves reaching O from M, and M, differ
in phase by & or 7/2.

11.16 Explanation of rectilinear propagation of light

To explain rectilinear propagation of light we have to find the resultant effect of
the whole wavefront at the point O (Fig. 11.13). To do this divide the whole wavefront
into half-period zones. The problem is then reduced to find the resultant of a large
number of disturbances originating from the various annular rings into which the
whole wavefront is divided. The amplitude due to wavelets produced by each zone
reaching depends upon the following factors :

(1) It is directly proportional to the area of the zone.

(i1) It varies inversely as the distance of zone from the point O. Greater the distance
smaller is the amplitude reaching O.

(111) It varies with the obliquity factor (1 + cos 6). The amplitude decreases with
increasing obliquity.

The areas of each of the half period zones are approximately equal, as shown
below.

The square of the radius of the first half-period zone
PM?=(a+AM2¢ —a®=a*+ M4 +al - a*>=ak .. (11.44)

as A?/4 involves the square of a very small quantity and can be neglected as
compared to gA.

Area of first half-period zone = maA
To find the area of the nth half-period zone.
Square of radius of the nth circle
PM?= (a+ nA2)? — a* = ank
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Similarly Square of radius of the (n — 1)th circle

PMf_1 =a(n—l)7u
.. Area of the nth half-period zone = TE(PM 2 —PM 3_1)

=n[ank—a(n—l)k]
= na\ .. (11.45)

This is the same as that for the first half period zone.

Thus, we find that the areas of the various half period zones are independent of
the order of the zone and are nearly equal. The radii of these zones are proportional
1o Jn wheren = 1, 2, 3 etc.

Suppose every point on the plane is in a state of vibration and sends out secondary
wavetrains, then the light vibrations at O are due to superposition of these waves (Fig.
11.14). Since the incident wave is plane one, all the points on the plane ABCD are
in the same phase. Their distances from O are different and consequently the secondary
waves which these points send out, reach O in different phases.

M,

n

Fig. 11.14 Fig. 11.15

The phase of the wavelets coming from P is zero. The distance of O from points
in the first zone lies between a and (¢ + A/2). Hence the phase of wavelets from
intermediate points between P and M, will vary from 0 to =. Thus

O+ =

Average phase of all wavelets from first zone = 5 =5 radian.

Similarly, the phase difference of wavelets from M, and M, will lie between 7 and
21. Hence
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m+2n =3—n radian
> 5 ra .

This is opposite to that due to the wavelets from the first half-period zone.

Average phase/difference of wavelets from second zone =

Similarly, the average phase difference of wavelets from the third zone will be
5m/2 and fourth zone will be 7n/2 and so on.

It is clear that the resultant phase difference between two consecutive zones is T
radian, while that between alternate zones is 2n radian. Thus, if the resultant amplitude
of wavelets from first half-period zone is positive, that from the second half-period
zone will be negative, that from third zone positive and fourth zone negative and so
on (Fig. 11.15).

Let d,, d,, d;, etc., be the resultant amplitudes at O due to first, second, third etc.,
half-period zones respectively, then

Resultant amplitude D = d, —d, +d; - d, ... £ 4,

The amplitudes of the successive zones depend upon the obliquity factor
(1 +cos 0,) where 6, is the angle which the direction of O from the nth zone makes
with PO. It is assumed that the obliquity factor varies slowly so that it may be
regarded constant over a single half-period zone. As O increases from zero, cos 6
decreases very slowly first, but more rapidly for larger values of 6. Thus, successive
amplitudes decrease at first, slowly but more rapidly for higher values of n. Hence
the amplitude goes on decreasing with the order of zones. Thus, each term in the
above series is slightly less than the one preceding it and is greater than the one
succeeding it. To a first approximation, we can write

_dit+dy
===,

_dy+ds

d, 5

d, and so on.

The above series can now be rewritten in the following form

_d, (d,+d, dy +d; d,
D_7+( 5 d2j+( 5 d, +...2

— dl dn :
= 7"‘ 7 (If n 1S Odd)
— dl dn—l :
D= 7+ 5 (If n 1s even)
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If n is sufficiently large, the effect due to the nth zone becomes negligible and
resultant amplitude due to the whole wave

dl
b=

As intensity [ is proportional to the square of the amplitude

_di
4

Hence the intensity at O due to the wavelets from all the zones is equal to one
fourth of the intensity due to the waves from the first half-period zone.

1

If an obstacle is placed at P, (Fig. 11.13) the resultant disturbance at O is equal
to half the disturbance due to the first exposed zone. As the displacement decreases
rapidly with the order of the zone, if the obstacle at P blocks a considerable number
of half-period zones the effect will be negligible and practically no light will be
received at O. In other words, light travels approximately in a straight line.

11.17 Theory of a zone plate : Multiple foci of a zone plate

Zone plate : It is a transparent plate on which circles whose radii, proportional
to the square roots of natural numbers 1, 2, 3,... are drawn. The alternate annular zones
thus formed are blocked. Such a plate behaves like a convex lens and produces an
image of a source of light on the screen placed at a suitable distance.

Fig. 11.16

Theory : Let O be a luminous point object, emitting spherical waves of wavelength
A whose effect at the point / on the screen is required. Consider an imaginary plane
through P of a transparent medium lying perpendicular to the plane of the paper and
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the line joining OI. Divide this plane into zones bounded by circles having centres
at P and radii PM, = r;, PM, =r, ... PM, = r, such that

OM, +IM, =0P+IP+%

OM, +IM, :0P+]P+%

OM, +IM, = 0P+IP+%
The annular rings thus formed are half-period zones for the image I because length
of the path of light through the corresponding points of any two consecutive zones,
differs by A/2. To find the radius r, of the nth circle, we have

OM, +IM_ =OP+1P+ >

5 .. (11.46)
Let OP=uy and IP=v

Now - OM,=(ot el =+

2

r
2 can be

Because u is very large as compared to r, and higher powers of A

neglected.

1 2
. (2 2\
Similarly /M, = (v +7; ) =vtos

Substituting this value in (11.46), we have

2 2
r 7 nh
U+ —+v+==u+v+—-
2u 2v 2

or, I’nz(l-i-l):n?\, :}l+l:%
u v u-ovop
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Applying the sign convention, we have

1 1 nA
or rfz’jb_u“j ... (11.48)

since u#, v and A are constants

r,e<In .. (11.49)

The area of the nth zone is given by

Tc(rz _,2 1) _ {n?»uv B (n—l)?»uv} _ mhuy

no T T Yy —y u—v u—v

This is independent of n; hence for a given object and image, the areas of all the
zones remain the same. Further, the area diminishes as v and u decreases i.e., as the
plate is approached by the object or the image. The numerical magnitudes of the
displacements d,, d,, d; ... at I due to wavelets from the various zones, diminish only
slightly with the order of the zone. Hence the resultant displacement at /

D=d —d,+d —d, ..

How zone plate acts like a convex lens : If now the alternate zones say even are
blocked, then the resultant displacement at / will become

D=d +d;+d .
which is many times greater than that due to all the zones and hence the intensity
at 1 is very much increased. This explains the focusing action of the zone plate. Under
these conditions Iis said to be the image of the object O.

Focal length :The relation between u and v, the respective distances of the object
and the image is given by relation (11.47), i.e,,

1 1_nk

Vo u rnZ

This is a result similar to the one found for a convex lens, i.e.,

1 1

1
v u f
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Thus, the focal length of the zone plate

7,2

f=0 .. (11.50)

If the radius of the half-period zone is 0.316 mm and the wavelength
A =5 x 107 cm, then the zone plate will behave like a lens of focal length 20 cm.

Construction of zone plate : Zone plate is a system of areas corresponding to the
half period zones. To construct a zone plate, concentric circles whose radii are
proportional to the square roots of the natural numbers are drawn on a sheet of white
paper. The alternate zones are painted black, and a very much reduced photograph of
this drawing is obtained on a glass plate. The negative, when held in the light path
from a distant point source, produces a large intensity at a point on its axis at a
distance corresponding to the size of the zone and the wavelength of light used.

(b)
Fig. 11.17

If odd zones are transparent and even zones are opaque, as shown in Fig. 11.17(b)
it is said to be a positive zone plate. If the even zones are transparent and odd zones
are opaque, as shown in Fig. 11.17(a) it is said to be a negative zone plate.

4.17.1 Comparison between convex lens and zone plate

(i) Focal length of a lens is given by the relation 1. (]_L—l)(i—L
S R Ry
that of the zone plate is given by %= %
r

n

J whereas

(i1) The focal length of a lens is directly proportional to the wavelength and hence
is greater for red rays than for violet rays. The focal length of a zone plate is
inversely proportional to the wavelength and hence is greater for violet rays
than for red rays.
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(iii) Light, in passing through the lens, takes the same time to go from O to [
through any part of the lens, whereas in a zone plate disturbance from any
transparent zone reach the point 7 one period later than the disturbances from
the next inner zone.

(iv) For a fixed distance of the object, a lens produces only one image, whereas
a zone plate produces a number of images. In other words, it is multiple foci.
It is because the number of half-period zones contained in an area depends
upon the position of the screen. If therefore, a point /; lies near to P than I so
that the transparent ring contains three half-period zones, then the point 7, will
have again maximum illumination and thus will be the image of O. Similar
will be the case when 5, 7.... half-period zones are contained in a transparent
ring. The position of the various foci is given by

2 7,2 7,2

r}’l — n — n
N =30 5= 5

The intensity of the image, however, decreases, as the focal length decreases.

11.18 Fresnel's Integrals : Cornu's spiral

The Fresnel's integrals are defined by the following equations :

v 2
T
X (v)= eos B —dv L (11.51)
0
v 2
and ¥ (v)=Jsin T —dv . (11.52)

0

Since the integrands are even functions of v, the Fresnel's integrals X(v) and Y(v)
are odd functions of v :

X(—v) = —X(v) and Y(—v) = Y(v) ... (11.53)

c
_{oe dx—J; .. (11.54)

R imv? I i .
We have Jen /Zd":\/ it/ =2e™* = (1+i) ... (11.55)

Further, since
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e 2 * 2 v 2
TV _ v L. Ty
Now, J exp [1 T}a’v =2 {J. cos —— v+ ZJ. Sin—5— dv

0 0

=2[ X (e0) +iY ()]
Thus, using (11.55), we get X (o0)=1/2=Y (o).
To summarize, the Fresnel's integrals have the following important properties :
X (e0) =Y (e0)=1/2; X(0) = ¥(0) = 0 ... (11.56)
X(—v) = -X(v) and Y(—v) = -Y(v)
Figure 11.18 gives a parametric representation of the Fresnel's integrals and is
known as the Cornu's spiral (see Fig. 11.18) which is in the form of a double spiral.

The horizontal and the vertical axes represent X(v)and Y(v) respectively. This spiral
curve will be understood from the following discussion of the integrals.

v 2
M Y=I Jinf—v—dv
b . 2

Fig. 11.18

Discussions of Fresnel's integrals :

(a) When v =0, we get X = Y = 0. Thus, the curve passes through the origin.
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(b) When the sign of vis changed, the signs of X and Y will change but their
numerical values will remain unchanged. The curve connecting X and Y is,
therefore, symmetrical about the origin.

(c) (1) If ¥ be the angle which the tangent drawn to a point on the curve makes

with X-axis then, tan¥ = ar _ tanﬁ. Thus ¥ = n—vz; or v = 2¥ . When
dx 2 2 n
v =0, y = 0. The curve is, therefore, parallel to the X-axis at the origin.
(ii) For v*= 1, y = /2. The curve is here parallel to Y-axis.
(iii) For v* = 2, y = . The curve at this point is again parallel to X-axis.
(iv) For v? = 3, y = 3n/2. The curve is again parallel to X-axis.
av 1

(d) The radius of curvature of the curve at a point is given by, p:W:H

2 1
{ v =?W; or, 2vdy = Edllf] When v = 0, p=oo. The curve has a point

of inflection at this point. As the value of v increases the value of p decreases.
Thus, the curve assumes the form of a double spiral. When y=o0, p =0; i€,
the curve reduces to points as are shown by 7 and 7, in Fig. 11.18.

11.19  Fresnel's diffraction at a straight edge

Consider a straight edge C and an illuminated narrow slit S parallel to each other
and perpendicular to the plane of the paper (Fig. 11.19).

Fig. 11.19

It is required to determine the illumination of the screen TR placed perpendicular
to the plane of paper. Join SC and produce it to meet the screen at O. A straight line
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on the screen through O perpendicular to the plane of the paper defines the limits of
the geometrical shadow.

According to the laws of geometrical optics the illumination should start abruptly
at O. In practice however dark and bright bands of unequal width and of varying
intensity are observed in the region above O. The intensity goes on decreasing gradually,
as we move into the geometrical shadow below O.

To study the intensity at any point Q distant x above O on the screen, let ACB be
the incident wavefront at C originating from the source S. Join QS, cutting the
wavefront at P, then P is the pole of the wavefront with respect to the point Q. With
P as the pole construct Fresnel's half-period elements. The effect at Q depends upon
the number of half-period elements contained in PC and the effect of the upper half
of the wave PB.

The effect at O is due to the upper half of the wavefront only. Hence the displacement
at O is half of the displacement which would have been there in the whole wavefront
was effective. The intensity at O, therefore, is 1/4 of the intensity at a point far
removed from O where the whole of the wavefront is effective.

As we move into the geometrical shadow, the pole P moves from C towards A and
first, second, third etc., half-period elements are intercepted respectively. The intensity,
therefore, goes on decreasing gradually.

As we move from O towards R, first, second, third, etc., half-period elements are
exposed. The illumination at a point Q, distant x from O on the screen, is due to the
complete half of the wave surface PB together with the resultant of the number of half-
period elements contained in CP.

1
3/4
12

1/,'4‘

o DISTANCE
GEngTHICAL — “CROM O

Fig. 11.20
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The amplitude at Q will be maximum or minimum, according as CP contains odd
or even number of half-period elements. The intensity at a maximum goes on decreasing
and at a minimum goes on increasing and finally when we move a large distance from
O, we get a uniform illumination. This is shown in Fig. 11.20.

The number of half-period elements contained in CP depends upon the path
difference CQ — PQ.

Suppose SC = a and CO = b, then

CQ=\/bZ+x2

1
_b(l+b—2 _b+§.7

Since x 1s very small as compared to b, therefore, other terms are negligible.

2

Similarly S0 =\(a+b) +x _a+b+2(a+b)
PO =S0-SP b s
Hence Q=50-5P=a+ +2(“+b)_a
2
_ X
_b+2(a+b)
- Path diff C PO=b x2 b x2
<. Path difference CQ—-PQ=b+77 - " 2(a+b)
__ax®
2b(a+b)

For the displacement to be maximum

=(2n+l)%

ax?
2b (a + b)

\/b(a+b)(2n+l)7u

or, x= where n =0, 1, 2 ..


https://www.print-driver.com/?demolabel-en

NSOU « CC-PH-09 267

For the displacement to be minimum

2

ax _
2h(asp) "
or, x= w where n =0, 1, 2 ...

Since x o< +/n for a dark band and x o< \/2n+1 for a bright band the fringes width
goes on decreasing as we move away from O. This will be clear from the following
example.

When n=1 xlzk\ﬁ:k

For n=2 x, =kJ2 =1.414k
Width of the first bright fringe = 1.414k — k = 0.414 k

Similarly, width of the 2nd bright fringe = /3 —k+/2
= 1.732k — 1.414k = 0318k

and width of the 3rd bright fringe = k4 —k+/3
=2k — 1.732k = 0.268 k

This shows that the fringe width goes on decreasing and hence the bands produced
are not equally spaced.

Determination of wavelength : A straight edge, say a sharp razor blade is set with
its edge parallel to the slit on one of the stands on the optical bench. The slit is
illuminated with a monochromatic light. Diffraction bands of unequal width and
decreasing intensity are observed in the field of view of the micrometer eye-piece. The
position of the first maximum intensity band and the one (say nth) most distant and
clearly visible band is noted, then

_[b(a+b))

X =\ ———— n=0
a

For the nth maximum intensity band, we get

. \/b(a+b)(2n+l)k

a

X, —x = @x( (2n+l)—l)
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The distance b from the straight edge to the eye-piece and a between the slit and
the straight edge are measured. Hence knowing (x, — x,), we can find the wavelength
of light.

11.20 Fresnel's diffraction by a slit

Let C and F be the edges of a rectangular aperture and AB the section of a
cylindrical wavefront of which the axis coincides with S. The edges C and F of the
slit will cast a geometrical shadow above M and below N on the screen held normal
to SO. The space between M and N will be illuminated.

(a) (1) Width slit : When the slit is wide enough so that it allows about
a hundred half-period elements from each half of the wavefront to pass through the
aperture, the edges C and F will act like independent straight edges. This
will result in producing diffraction bands of unequal width at M and N inside the
geometrical bright portion, similar to the bands produced by a straight edge.
As we move from M and N towards O, the general illumination increases and
the visibility of the bands decreases, so that there is a uniform illumination about
0. As we proceed beyond M and N the illumination rapidly falls to zero. This is shown
in the side. (Fig. 11.21).

Fig. 11.21

(i1) Narrow slit : When the slit is narrow so that it allows only a few half-
period elements, say five (odd) to pass through each half of the wavefront with respect
to O, the illumination at O is again maximum. If the number of half-period elements
contained in each half of the wavefront that passes through the slit is even, the point
O will have a minimum intensity.
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Keeping the screen fixed if we move to a point P such that four half- period
elements from the upper half of the wavefront and six half period elements from the
lower half of the wavefront pass through the aperture, the resultant amplitude of the
wavelets from the upper half of the wavefront will be d, — d, + d; — d, = 0 and that
of the wavelets from the lower half will be d;, — d, + d; — d, + d; — d, = 0. Hence
the illumination at P will be minimum.

If the point P is moved a little further, so that three half-period elements from the
upper half and seven from the lower half of the wavefront pass through the aperture,
then the amplitude of the waves from three half-period elements will be d, — d, + d,
= d, and that from the seven half-period elements will be d, — d, + d; — d, + d5 —
d,+d, = d,

Hence the resultant amplitude is d; + d, which will produce a maximum intensity.
In general—

"As P moves up, the illumination is maximum or minimum according as odd or
even number of half-period elements, from each half of the wavefront pass through
the aperture and reach P'.

This shows that a set of alternately dark and bright bands parallel to the edges of
the geometrical shadow will be seen inside MN.

For a point Q within the geometrical shadow, one-half of the wavefront is entirely
cut off. The intensity at Q will be maximum or minimum according as CF contains
odd or even number of half-period elements with respect to Q. If the path difference
CO-FQ=02n+ 1) AM21 e, an odd multiple of A2, there will be odd number of
half period elements in CF and hence the point Q will be bright as one half-period
element will be in excess. If the path difference, CQ — FQ = 2nA/2 there will be even
half-period elements in CF and hence Q will have minimum intensity. Thus, bands
within the geometrical shadow beyond M and N are also diffraction bands of decreasing
intensity and width.

(i) Aperture very narrow : When the aperture comprises one or less than one-
half period element with respect to O, it is always bright and there are no bands
between M and N. For a point Q in the geometrical shadow the number of elements
contained in the slit may be more than one. Hence the intensity at such a point is
maximum or minimum according as the number of half-period elements contained in
the aperture with respect to O is odd or even.

(b) Effect of movement of slit away from screen : When the slit is moved
gradually away from the screen, the number of half period elements in each half of
the wavefront will change and hence the illumination will change. With increase in
distance of screen from the slit, the number of half-period elements will decrease. As
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an example, if the number decreases from four to three the displacement at O will
be maximum. If the slit is moved further away the number will become two with the
result that the intensity will be again minimum. Thus, the point O will undergo a
change of maximum and minimum intensity. The same thing is observed when the
distance is decreased gradually. If the distance is such that the slit comprises one or
less than one half period element in each half of the wave surface with respect to O
on the screen, there will be a broad maximum at O.

11.21  Fresnel's diffraction by a thin wire

Let S represent a narrow rectangular slit placed parallel to the wire of thickness
XY and perpendicular to the plane of the paper. This will give rise to a geometrical
shadow MN on the screen RT (see Fig. 11.22).

The effect at a point Q outside the geometrical shadow is the same as that due to
a straight edgeat X and hence diffraction bands of unequal width and intensity will
be seen above M and similarly below N. These bands are independent of the thickness
of the wire, as on either side, the effect of the other half of the wave is negligible,
because most important half-period elements are cut off due to the finite width of the
wire.

O BVTO

o

Fig. 11.22

Within the geometrical shadow, interference fringes are observed. The effect due
to the portion AX of the cylindrical wavefront, at any point P within the geometrical
shadow, is due entirely to a few half-period elements at X, so that it may be regarded
as a small luminous source at X. Similarly, the effect due to the portion BY of the
wavefront is equal to the source at Y.

The effect at any point P within the geometrical shadow MN will depend upon the
path difference PY — PX. The point P will be bright if PY — PX = nA and dark if it
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is equal to (2n + 1) A/2 . These fringes are of equal width and the fringe width
D
B=C

where D is the distance of the screen from the obstacle XY and d the thickness of the
obstacle, i.e., the diameter of the wire.

M O N M Q N
i L.
AUV AL
GEOMETRICAL GEOMETRICAL
SHADOW SHADOW
(a) (b)
Fig. 11.23

The centre O will be bright because at O the waves from X and Y will always meet
in phase.

The variation of intensity of the interference fringes produced within the geometrical
shadow is shown in Fig. 11.23(a).

As the diameter of the wire is increased the fringe width decreases and when the
thickness of the wire is sufficiently large, the interference fringes will disappear and
only the diffraction bands outside the limits of the geometrical shadow will be visible
as shown in Fig. 11.23(b).

Diameter of the wire : Focus the micrometer eye-piece on the interference fringes
obtained within the geometrical shadow of the wire. The fringes are of equal width.
Find the mean fringe width by measuring the shift of the cross-wire for a known
number of fringes. The diameter of the wire can be found out from the expression—

D
B="7

Here d is the diameter of the wire, D the distance between the obstacle and
cross-wires of micrometer eye-piece and A the wavelength of monochromatic
light used.
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11.22

Summary

Interference corresponds to the situation when we consider the superposition
of waves coming out from a number of point sources and diffraction corresponds
to the situation when we consider waves coming out from an area source like
a circular or rectangular aperture or even a large number of rectangular apertures
(like the diffraction grating).

When a plane wave is incident normally on N parallel slits, the Fraunhofer
diffraction pattern is given by

sin’o_sin® NP
a?  sin’P

I=1,

where o =%asin9, [3=%(a+b)sin9

A is the wavelength of light, 6 the angle of diffraction, a represents the width
of each slit and (a + b) = d the separation between two slits. When N = 1, we
have the single slit diffraction pattern producing a central maximum at 6 = 0

and minima when a sin © = mA, m = £1, £2, ... When N =2 the intensity
distribution is the product of the single slit diffraction pattern and the interference
pattern produced by N point sources separated by a distance d. For N = 2, we
obtain the Young's double slit interference pattern. For large values of N, the
principal maxima occur when 3 = mm implying

dsin® =mk, m=0,12, ...

which is usually referred to as the grating condition.
The resolving power of the grating is given by

_ M
R.P.—%—Nm

where N represents the total number of lines in the grating.

The underlying principle in the theory of diffraction is the Huygens-Fresnel
principle.

The Fresnel's integrals are defined by the following equations:

v v 2

2
X(v) =J.cos%dv and Y(v) =Jsin %dv
0 0
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The intensity monotonically goes to zero as we go deep inside the geometrical
shadow. As we move away from the edge of the geometrical shadow to the
illuminated region, one obtains maxima at -1.22, -2.34, -3.08 ... with gradual
decrease in intensity and minima at -1.87, -2.74, -3.39 ... with gradual increase
in intensity.

11.23

Review Questions and Answers

1.

Ans.

Ans.

Ans.

Discuss the distribution of intensity in the diffraction pattern due to a
single slit.

See Article 11.3.

How does the diffraction pattern due to double slit change if the distance
between the slit centres is varied, keeping slit width constant?

In a double slit diffraction pattern, the slit width is taken as a and the
separation between the slits is b. If the slit width is kept constant, the diffraction
pattern remains the same. Keeping a constant, if the distance between the slit
centres b is varied, the spacing between the interference maxima changes,
depending upon the relative values of a and b. Certain orders of interference
maxima will be missing in the resultant pattern.

The angular separation between two secondary maxima due to interference,
is given by

sin@, —sin®, = ——

2 V" a+b

If b increases, the angular separation decreases. Hence the spacing between
the secondary interference maxima decreases.

The position of secondary minima is given by
asin® =+ mh
As a remains constant the diffraction pattern remains constant.

What will be the effect on a diffraction pattern of a grating if the grating
element is of the order of A or less?

In a diffraction grating the principal maxima are given by the equation
(a + b) sinB = mk
For the first order maximum

sin®, =777
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Ans.

Ans.

Ans.

Ifa+b=kthensin61=1or6=9O°?

Thus, a theoretical limit is reached i.e., the first order maximum will not be
visible.

If (@ + b) <A, sin O becomes greater than 1, which is not possible. Hence
no spectrum is formed, and the grating is rendered useless.

State and explain Rayleigh's criterion of resolution and discuss its
significance in studying the spectral lines. Define resolving power and
deduce an expression for it in the case of a telescope.

See Articles 11.11, 11.10 and 11.13.

Distinguish between the resolving power and the magnifying power of a
telescope.

The magnifying power of a telescope should be carefully distinguished from
its resolving power. The following features are :

1. Magnifying power is its ability to show an enlarged view of the object to
the eye: the R.P. on the other hand, is its ability to show the number of
details or grains in the object.

2. Magnifying power increases with distance between the centres of diffraction

pattern of two points but gives no idea of the size of central maximum,;
the R.P. provides ideas of both the distance between the centres of two
maxima and their width.

3. The R.P. increases with the decrease of the wavelength of light. But the

magnifying power is independent of the wavelength of light.

4. The magnifying power of a telescope is given by F/f, 1.e., the ratio of the

focal length of the objective to that of the eye-piece. Two telescopes of
the same diameter for the objective will give different magnifying powers
(as focal length can be different), but the same resolving power for a given
wavelength since the resolving power is given by the ratio D/A.
What are the factors on which the amplitude of light waves from a half-
period zone at observation point depend?

(1) Resultant of secondary wavelets from the half-period zone.

(i1) On obliquity factor (1 + cos0), where 0O is the angle which the line joining
the centre of half-period zone makes with the horizontal.

Why do we get bright light spot at the centre of the image of an opaque
object when the size is extremely small?
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Ans. The resultant displacement dueto the whole wavefront is d,/2. If the obstacle
blocks first, second, third half-period zones the resultant displacement will

be —d,/2,d;/2,-d,/2. ... etc., and the intensity will be a’22 /4, a’32 /4, df /4 etc.

Thus, the central point will always be bright if the obstacle is small.

11.24 TIllustrated Examples

Example 1 : A diffraction pattern is observed using a double slit of wavelength
5000A. If the slit-width is 0.02 mm and spacing between the slits is 0.10 mm,
calculate (i) the distance between the central maximum and the first minimum of the
fringe envelope and (ii) the distance between any two consecutive double slit dark
fringes.Given : the slit/screen separation = 1 m.

Solution : Here ¢ = 0.02 mm = 0.02 x 103 m; b=0.1 mm = 0.1 x 107 m and
A =5000A = 5000 x 1019 m; D =1m. So, a+b =0.12 x 103 m, and let x, = distance
between the central maximum and the first minimum of the fringe envelope.
(i) Angular separation 0, between central maximum and first minimumis given
by
sind, = 0, = A, (a + b); also 6, = x,/D

XA AD  5000x107"" x1

L= =X = =
D" 2(a+b) "7 2(a+b)  2x0.12x107
=208 x 107 m = 2.08 mm
(i) Angular separation between the consecutive dark fringes is given by

‘ o o 3 A A
sin®, —sin 8, =6, el_2(a+b) 2(a+b) (a+b)

If x, be the distance between the consecutive dark fringes, then

, -10
§ ) _ AD _5000x107"" x1
5:>x2—D(92 el)_a+b_ 0.12%x107°

=416 x 103 m = 4.16 mm

0,6, =

Example 2 : Fraunhofer double slit diffraction pattern is observed in the focal
plane of a lens of focal length 0.5 m. The wavelength of incident light is 500 nm.
The distance between two maxima adjacent to zero order maximum is 5 mm and the
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fourth order maximum is missing. Find the width of each slit and the distance between
their centres.

Solution : Since the 4" order maximum is missing, we must have

a+b

=4=b=3a

Now, for the first order maximum, (a + b) sin9, = A
A A
V" a+b  4a
.. Distance between two maxima adjacent to zero order maximum is
2\
x=fXx20,=f X"~
f 1 f 461

fA 0.5x500x107°
a=-—= 3

2x 2x5%10
b=3a=3 x0.025=0.075 mm

Example 3 : How many orders would be visible if the wavelength of incident light
is 589 nm and the number of lines in the grating is 100/mm?

Solution : Here A = 589 x 107 m; p = 1/a+b = 100 x 10%/m;

m = 0.025 mm

0 = 90° (maximum) = sinO = 1

From (a+b)sind = mr
m=Fling = - 5 =1632
A 100 x10° x589 %10

Thus, 16 orders would be visible.

Example 4 : Consider a grating of width 5 cm with slits of width ¢ = 0.001 mm
separated by a distance 0.002 mm? How many orders would be visible at A = 550
nm? Find the width of the principal maximum. Is there any missing order?

Solution : Here a = 0.001 mm, b = 0.002 mm, A = 550 x 1072 m = 550 x 10°° mm

From (a + b) sin O = mA, the maximum number of orders visible, is

_(a+b)sin®,,,

(0.00140.002) % sin 90°
m= =

= = 5.45
A 550%107°

So, the maximum number of orders visible = 5
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Angular width of principal maximum is

2 _ 2 :2><550><10‘9
Nmcot® N (a+b)cosd 5%1072

2d0 =

=22 x 10~ rad

Since N(a + b) = width of grating = 5 x 1072 m and cos 0 = 1 for principal maximum.

a+b_0001+0002 _3
0001 1

Thus, 3rd, 6th, 9th etc. order maxima will be missing.

We have :

Example 5 : Calculate the least width a grating must have to resolve the D-lines
sodium (589.0 nm and 589.6 nm) in the second order. The number of lines per mm

of the grating is 80.

Solution : Here 7»=an = 5893 nm = 5893 x 109 m

m=2 and dh = 589.6 — 589.0 = 0.6 nm = 0.6 x 10 % m.
R.P. of the grating is

589.3%107°
—=Nm=>N=—"=—"—"——
d\ 2%0.6x107°

.. Least number of lines required for resolution = 492

=491.1 lines

.. Least width of the grating = % = 6.15mm

Example 6 : Calculate the inner and outer radii of the 10th half-period zone for
a plane wavefront with respect to a point at a distance 0.5 m from it. Assume the
wavelength of light A = 500 nm.

Solution : For the nth half-period zone the outer radius is,

2
r, :\/(b+%) SN

And the inner radius is,
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Here n =10, b =0.5m, A =500 x 10° m
ry=1.58 mm, ry = 1.5 mm
Example 7 : The primary focal length of a zone plate is 20 cm for light of
wavelength 500 nm. Calculate the radius of the central zone on the zone plate.
Solution : We know that

7,2

_n K
.f;z_ﬁ :>f1—7

o, 7=/ =v02x500x10"m = 0.316 mm.

Example 8 : Consider a plane wave of wavelength 500 nm incident on a circular
aperture of fixed radius 0.5 mm. Calculate the position of the brightest and the darkest
points on the axis.

Solution : If the distance b of the axial point is such that the circular aperture
exposes only the Ist half-period zone, then the point will be the brightest point.

Thus

3 2
;2 (0.5x107)
P=b\, o, b=F="——7-m=05m
A 500%10
For minimum intensity at an axial point the aperture must expose two half-period
zones,

Or.

2

2
b2+r2:(b+%) =b% +2b\

2
o, b=r—=£m=0.25m

A2


https://www.print-driver.com/?demolabel-en

Unit-

12 : Laser and Holography

Structure

12.1  Objectives

12.2  Introduction

12.3  Spontancous and Stimulated emissions

12.4 Basic components of a laser
12.4.1 Resonator
12.4.2 Lasing action

12.5 Population inversion

12.6  Optical resonator

12.7 Einstein's A, B coefficients

12.8 Ruby laser (three level laser)
12.8.1 Spiking in Ruby laser

12.9 He-Ne laser (four level laser)

12.10 Holography

12.11 Summary

12.12 Review Questions and Answers

12.1 Objectives

In going through this unit, you will learn:

1.

Ao A ol

[—
)

Spontaneous and stimulated emission
Basic components of a laser
Population inversion

Meta-stable states

Optical resonator

Einstein A, B coefficients

Three level and four level LASERs
Ruby Laser

He-Neon Laser

. Holography
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12.2 Introduction

LASER is an acronym for Light Amplification by Stimulated Emission of Radiation.
The light emitted from a laser often possesses some very special characteristics - some
of these are :

(a) Directionality : The divergence of the laser beam is usually limited by
diffraction and the actual divergence can be less than 10-5 radians; this leads
to the application of the laser in surveying, remote sensing, lidar, etc.

(b) High Power : Continuous wave lasers having power levels ~ 105 W and
pulsed lasers having a total energy ~ 50,000 J can have applications in welding,
cutting, laser fusion, etc.

(c) Tight Focusing : Because of highly directional properties of the laser beams,
they can be focused to areas ~ few (um)? - this leads to applications in surgery,
material processing, compact discs, etc.

(d) Spectral Purity : Laser beams can have an extremely small spectral width
AA ~10%A. Because of high spectral purity, lasers find applications in
holography, optical communications, spectroscopy etc.

Because of such unique properties of the laser beam, it finds important applications
in many diverse areas and indeed one can say that after the discovery of the laser,
optics has become an extremely important field of study. Indeed, because a laser beam
can be focused to very narrow areas, it has found applications in areas like eye surgery,
laser cutting, etc.

The basic principle involved in the lasing action is the phenomenon of stimulated
emission, which was predicted by Einstein in 1917. In this introductory section we
will discuss this first, which will be followed by brief discussions of the main
components of a laser and the underlying principle as to how the laser works. In Art.
12.7 we will have a slightly more detailed account of optical resonators. In Art. 12.8
we will discuss Einstein coeflicients and optical amplification. In Art. 12.9 we will
discuss the working of the ruby laser, which was the first laser to be fabricated. In
Art 12.10 we will discuss the working of the helium-neon laser.

12.3 Spontaneous and Stimulated emissions

Atoms are characterized by discrete energy states. According to Einstein, there are
three different ways in which an atom can interact with electromagnetic radiation :
(a) Spontaneous emission : Atoms in the energy state £, can make a (spontaneous)
transition to the energy state £, with the emission of radiation of frequency
E2 -

E
“’:Tl where ;, = h/2m = 1.0546 x 1034 Js .. (12.1)
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and h ( = 6.626 x 103 Js) is known as the Planck's constant. Since this process
can occur even in the absence of any radiation, this is called spontaneous emission
[see Fig. 12.1 (a)]. The rate of spontaneous emission is proportional to the number
of atoms in the excited state. In this case the photons are created at random. So, it
creates waves of random phase, and the light is said to be incoherent.

(b) Stimulated emission : As put forward by Einstein, when an atom is in the
excited state, it can also make a transition to a lower energy state through what is
known as stimulated emission in which an incident signal of appropriate frequency
triggers an atom in an excited state to emit radiation - this results in the amplification
of the incident beam [see Fig. 12.1(b)]. The rate of stimulated emission depends both
on the intensity of the external field and also on the number of atoms in the excited
state. In this case, the light waves associated with the incident and emitted photons
are in phase. Hence, they are said to be coherent.

(c) Stimulated absorption : Stimulated absorption (or simply absorption) is the
process in which the electromagnetic radiation of an appropriate frequency
(corresponding to the energy difference of the two atomic levels) can pump the atom
to its excited state [see Fig. 12.1(c)]. The rate of stimulated absorption depends both
on the intensity of the external field and also on the number of atoms in the lower
energy state.

Ep e
|~ —
E, ' _
Spontaneous emission
(a)
E, »
N i AVAVAVAV S
E;
Stimulated emission
(&)
/ Fo
AN — |
E4 o
Absorption

(c)

Fig. 12.1
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When the atoms are in thermodynamic equilibrium, there are larger number of
atoms in the lower state implying that the number of absorptions exceeds the number
of stimulated emissions; this results in the attenuation of the beam [see Fig. 12.2(a)].
On the other hand, if we are able to create a state of population inversion in which
there are larger number of atoms in the upper state then the number of stimulated
emissions would exceed the number of absorptions resulting in the (optical)
amplification of the beam [see Fig. 12.2(b)]. The amplification process due to stimulated
transitions is phase coherent.

E S09e

—"T NSNS —
VV\QL%_

Attenuation

(a}

__ 28833088

W= LT

State of population inversion = amplification
(b)

Fig. 12.2

12.4 Basic components of a laser

The three main components of any laser are (see Fig. 12.3) :

1. Active medium : The active medium consists of a collection of atoms, molecules,
or ions (in solid, liquid, or gaseous form), which is capable of amplifying light waves.
Under normal circumstances, there are always a larger number of atoms in the lower
energy state than in the excited energy state. An electromagnetic wave passing through
such a collection of atoms would get attenuated; this is discussed in detail in Article
12.7. In order to have optical amplification, the medium has to be kept in a state of
population inversion, i.e., in a state in which the number of atoms in the upper energy
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level is greater than that in the lower energy level - this is achieved by means of the

pump.

Pump

R

Active medium—=

[ —

M,

Semi-transparent

100% reflecting Mirror -

~ 80% reflecting

Fig. 12.3

2. Pumping source : The pumping mechanism provides for obtaining such a state
of population inversion between a pair of energy levels of the atomic system and when
we have a state of population inversion, the input light beam can get amplified by
stimulated emission (see Fig. 12.4).

3. Optical resonator : A medium with population inversion is capable of
amplification, however, in order that it acts as an oscillator, a part of the output energy
must be fed back into the system. Such feedback isbrought about by placing the active
medium in a resonator; the resonator could just be a pair of mirrors facing each other.

12.4.1 Resonator

Ic-ul

Optical amplifier

Fig. 12.4

As mentioned earlier, a medium with population inversion is capable of amplification
but in order that it act as an oscillator, a part of the output energy must be fed back
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into the system. Such feedback is brought about by placing the active medium between
a pair of mirrors facing each other (see Fig. 12.3). Such a system formed by a pair
of mirrors is referred to as a resonator, a slightly more detailed account of which will
be given in Art. 12.7. The sides of the cavity are usually open and hence such
resonators are also referred to as open resonators. A resonator is characterized by
various modes of oscillation with different field distributions and frequencies. One
can visualize a mode as a wave having a well-defined transverse amplitude distribution
which forms a standing wave pattern. The transverse intensity distribution of the
fundamental mode is usually a Gaussian. Because of the open nature of the resonator,
all modes have a finite loss due to the diffraction spill over of energy at the mirrors.
In addition to this basic loss, scattering from the laser medium, absorption at the
mirrors and output coupling at the mirrors also contribute to the cavity loss. In an
actual laser, the modes that keep oscillating are those for which the gain provided by
the laser medium compensates for the losses. When the laser oscillates in steady state,
the losses are exactly compensated for by the gain. Since the gain provided by the
medium depends on the extent of population inversion, for each mode there is a
critical value of population inversion (known as the threshold population inversion)
below which that particular mode would cease to oscillate in the laser (see Article 12.8
below).

12.4.2 Lasing action

The onset of oscillations in a laser cavity can be understood as follows: Through
a pumping mechanism, one creates a state of population inversion in the laser medium
placed inside the resonator system. Thus, the medium is prepared to be in a state in
which it is capable of coherent amplification over a specified band of frequencies. The
spontaneous emission occurring inside the resonator cavity excites the various modes
of the cavity. For a given population inversion, each mode is characterized by a certain
amplification coefficient due to the gain and a certain attenuation coefficient due to
the losses in the cavity. The modes for which the losses in the cavity exceed the gain
die out. On the other hand, the modes whose gain is higher than the losses get
amplified by drawing energy from the laser medium. The amplitude of the mode
increases rapidly until the upper level population reaches a value when the gain equals
the losses, and the mode oscillates in steady state. When the laser oscillates in the
steady state, the losses are exactly compensated for by the gain provided by the
medium, and the wave coming out of the laser can be represented as a continuous
wave.
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12.5 Population inversion

Let us consider an assembly of independent atoms which can exist only in two
levels 1 and 2 with energies E|, and E,. Let N,, and N,, be the number of atoms per
unit volume in state 1 and 2, respectively (see Fig. 12.5). These numbers are called
the population of the respective levels. According to Boltzmann distribution, under
thermal equilibrium we can write

% =g B .. (12.2)
where K is the Boltzmann's constant, and T is the absolute temperature and E, > E|.
Thus, the population of higher energy state is smaller than that of the lower energy
state. For a transition to give visible light £, — E, ~ 1.25 ¢V. Now K7~0.025 ¢V at
room temperature. A substitution of these values in (12.2) shows that N, is almost
negligible compared with N,. Thus, under thermal equilibrium at room temperature
if a photon of energy hv = E, — E, approaches the system it is very likely to be
absorbed rather to cause a stimulated emission. For stimulated emission to dominate
we must by some means make the population of the upper state greater than that of
the lower state. The system is then said to possess population inversion. The method
by which such a population inversion is achieved is called pumping.

Equation (12.2) indicates that N,, becomes just equal N,, when temperatureis made
infinitely high (7= =°).To make N, > N, i.e, to get population inversion the temperature
T in (12.2) must be made negative. For this reason, a state of population inversion
is sometimes misleadingly referred to as a negative temperature. In fact, population
inversion can he achieved at ordinary temperature but only under nonequilibrium
situation where Boltzmann's law is not applicable.

Energy 2 population N, E,

E
population N,

Fig. 12.5
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Mechanisms of population inversion :

The mechanism of obtaining population inversion in a system is known as pumping.
There are diverse techniques of achieving population inversion in a laser system. We
discuss below some commonly used methods.

1.

Optical pumping : Here the atoms are exposed to strong source of light such
as flash lamp or arc lamp. By selective absorption of radiation, the atoms are
excited from the lower state to the higher state. This method is known as
optical pumping. It is used in ruby laser.

Collision of first kind : Here free electrons created by gas discharge are
accelerated to high velocities by employing a strong external electric field.
These electrons when make inelastic collision with gas atoms a part of the
kinetic energy of the electrons is transferred to the atoms and the atoms get
excited. The process may be represented as

slow

A+eg, — A +e

where A and A* denote the ground state and excited state of the atom A
respectively. This method is employed in argon laser.

Collision of second kind : This method involves the use of a gas mixture in
which there occurs in addition to excitation by electron impact, a resonant
transfer of excitation between colliding atoms of two kinds. Consider a gas
mixture of A and B atoms kept under electrical discharge. A may be excited
to its metastable state A* (having a comparatively long lifetime than the
normal mean lifetime ~10~® s of an excited atom) by collision with fast electrons
and next it interacts with B, resulting B in the excited state and A itself goes
to the ground state. Symbolically, the process may be represented as

Atey, — A (metastable)+ e

slow

A" (metastable) +B—> A+B*

Here the A atom must have at least one metastable state that corresponds to
the excited energy state of B. This method of pumping is used in the He-Ne
laser.

Chemical pumping : It corresponds to an excitation mechanism through
specially selected exothermic reaction. For example, the reaction

H,+F, — 2HFI generates enough energy to pump a CO, laser.
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5. Thermal pumping : It corresponds to an excitation mechanism through
heating of the active medium.

6. Molecular dissociation : When an excited atom collides with a molecule a
dissociation of the molecule may take place and leave one of the dissociated
fragments in an excited state which may then serve as a starting level of laser
transition. For example, Ne in an excited state dissociates O, molecule in this
way :

Ne*+0, — Ne+O0*+0

12.6 Optical resonator

In Article 12.5 we had briefly discussed that a light beam passing through a suitable
medium with population inversion may be amplified. In order to construct an oscillator,
which can supply light energy and act as a source of light, one must couple a part
of the output back into the medium. This can be achieved by placing the active
medium between two mirrors which reflect most of the output energy back to the
system, see Fig. 12.3. Such a system of two mirrors represents a resonant cavity.

Now, in order to obtain an output beam, one of the mirrors is made partially
reflecting. Thus, imagine a wave that starts from one of the mirrors and travels
towards the other. In .passing through the active medium, it gets amplified. If the
second mirror is partially reflecting, then the wave is partially transmitted, and the rest
reflected back towards the first mirror. In traveling to the first mirror, it again gets
amplified and returns to the position it has started from. Thus, in between the two
mirrors, we have waves propagating along both directions. For resonance, it is necessary
that when a wave returns after one round trip it is in phase with the existing wave.
For this to happen, the total phase change suffered by the wave in one complete round
trip must be an integral multiple of so that standing waves are formed in the cavity.
Thus, if d represents the length of the cavity, then we may write

2n
A
where A is the wavelength of the radiation in the medium enclosed by the cavity.
If n, represents the refractive index of the medium enclosed by the cavity then
A
A=—" . (12.4)

1y

2d=2mn:m=1,2,3, . . (123)
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If we put A, = ¢/v, (12.3) becomes

C
V_Vm_mznod (125)

which gives the discreate frequencies of oscillation of the modes. If we assume
n, = 1 (like in a He-Ne laser), (12.5) simplifies to

¢
VEV, =mo ... (12.6)

Different values of m lead to different oscillation frequencies, which constitute the
longitudinal modes of the cavity; for further details and for reasons why they are
known as longitudinal modes the reader is referred to any textbook on lasers. The
frequency difference between adjacent longitudinal modes is given by

_c
8= . (127)

Returning to (12.5), we would like to mention that for a practical optical resonator,
m is a very large number. For example, for an optical resonator of length d = 60 cm

operating at an optical frequency of v = 5x10'* Hz (corresponding to A = 6000 A), we
obtain

5%10™ x2x60
m:

_ 6
3%1010 =2x10

Equation (12.5) tells us that the cavity will support only those frequencies for
which the round-trip phase shift is an integral multiple of 2. We may mention here
that an open resonator consisting of two plane mirrors facing each other is nothing
but the Fabry-Perot interferometer discussed in Unit 10 the main difference is that
in a Fabry-Perot interferometer, the spacing between the mirrors is small compared
to the transverse dimension of the mirrors while in an optical resonator, the converse
is true.

Resonator Configuration :

An optical resonator as used in a laser can have different configurations. The
simplest form of an optical resonator as used in a laser device is a pair of two plane
parallel mirrors facing each other in between which is placed the active medium.
These mirrors require very precise alignment. Such configuration is rarely used
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nowadays. As an alternative configuration two identical concave mirrors separated by
a distance equal to their radius are used. Diffraction losses are low in such a confocal
configuration. Also, alignment problem is much less critical here.

A concentric or spherical resonator uses two concave mirrors of same radius
separated by a distance equal to twice their radius. A hemispherical cavity uses a
concave spherical mirror at one side and a plane mirror placed at the centre of
curvature of the spherical mirror. Such a resonator is easier to align but power output
is relatively low. A 'long-radius' cavity with two concave mirrors of equal and fairly
long radius of curvature is found to be most common in commercial lasers.

Note :

1) The resonant modes of the cavity given by (12.5) are narrower in frequency than
the bandwidth of single spontaneous emission line. So, several resonant cavity modes
may lie within the width of a single emission line. Out of relatively broad range of
frequencies available from an emission line the cavity selects and amplify only certain
narrow bands. By adjusting the cavity modes separation, it is possible to generate only
one cavity mode within the bandwidth of an emission line. This is the origin of
extreme quasi-monochromaticity of laser light.

Intensity
A

Atomic emission line

0 % Frequency
Intensity
A

Cavity modes

> Frequency

Broad emission line and narrow cavity modes

Fig. 12.6
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2) In addition to longitudinal modes of oscillation there are a few transverse
modes. Since the fields are nearly normal to the axis of cavity they are known as TEM
(transverse electric and magnetic) mode. Lowest order transverse mode i.e., TEM,,
is the most widely used mode.

3) Laser cavities may be classified as stable and unstable. In stable type of
resonator, the beam remains close to the axis and tends to bounce back and forth in
between the mirrors without much loss. On the other hand, in an unstable resonator
the beam goes away from the axis on each reflection and quickly leaves the resonator
altogether.

4) The resonant mode of a resonator is not a sharp line but has a small but finite
frequency spread. This spread is related to various losses (scattering, absorption,
diffraction, etc.) associated with the modes in the cavity. A measure of these losses
is often expressed in terms of the quality factor Q of the cavity, which is defined as

_ Maximum energy stored per cycle in the mode

=21 = — -
Q=2m Energy dissipated per cycle in the mode
It can also be expressed as
O
Q= A®

where Ao is the linewidth. Thus, a high Q cavity has low loss and narrow width
of a mode.

5) One can visualize a mode as a wave having a well-defined transverse amplitude
distribution which forms a standing wave pattern. In an actual laser, the modes that
keep oscillating are those for which the gain provided by the laser medium compensates
for the losses. When the laser oscillates in steady state, the losses are exactly
compensated for by the gain. Since the gain provided by the medium depends on the
extent of population inversion, for each mode there is a critical value of population
inversion (known as the threshold population inversion) below which that particular
mode would cease to oscillate in the laser.

6) Threshold Condition for laser action : It can be shown that the threshold
population inversion for oscillation at the frequency v is given by

8t vg
(N =M, =5~ (12.8)
h 3 .
" g,
where v, is the central frequency, ¢, is the passive cavity lifetime and t is the
spontaneous emission lifetime of upper state. In the above derivation we have assumed
that the atom is capable of interacting with a radiation of a particular frequency.
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Actually, the emission lines have some finite breadth caused by various factors such
as Doppler broadening, pressure broadening, natural breadth, Stark effect broadening
etc. As a result, an atom can interact with radiations over a range of frequencies. The
strength of interaction is a function of frequency known as line shape function and
is denoted by g(v,).

In order to get smallest possible threshold population inversion, we must
have the following requirements :

(i) z. be as long as possible i.e., losses be minimum.
(i1) t, out of the upper level be very short.

(i) As g(v,) o< 1/Av, the atomic linewidth be kept as small as possible. Temperature
should be kept low to reduce Av.

(iv) Lower value of v, is prospective for laser action.

(v) Laser material should be so selected that N, can be kept small.

12.7 Einstein's A, B coefficients

The consideration which led Einstein to the prediction of stimulated emission was
the description of thermodynamic equilibrium between atoms and the radiation field.
Consider an atom having two states. Let N, and N, be the number of atoms (per unit
volume) in states 1 and 2 respectively; the levels correspond to energies £, and E,
(see Fig. 12.5). As mentioned earlier, an atom in the lower energy level can absorb
radiation and get excited to the level E,. This excitation process can occur only in the
presence of radiation. The rate of absorption depends on the density of radiation at
the particular frequency corresponding to the energy separation of the two levels.
Thus, if

E,-FE =ho .. (12.9)
then the absorption process depends on the energy density of radiation at the frequency
o; this energy density is denoted by u(®) and is defined such that

u(o)do = Radiation energy per unit volume within the frequency
interval ® and o + do.

The rate of absorption is proportional to N, and also to u(®). Thus, we may write
Number of absorptions per unit volume per unit time = N, B ,u(®) ... (12.10)

where B, is the coefficient of proportionality and is a characteristic of the energy
levels.
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Let us now consider the reverse process namely the emission of radiation at a
frequency ® when the atom de-excites from the level E, to E,. As mentioned in Article
12.4, an atom in an excited level can make a radiative transition to a lower energy
level either through spontaneous emission or through stimulated emission. In
spontaneous emission, the probability per unit time of the atom making a downward
transition is independent of the energy density of the radiation field and depends only
on the levels involved in the transition. The rate of spontaneous transitions (per unit
volume) from level E, to E, is proportional to N, and thus

dN. N.
T;:_Alezz_lz .. (12.11)

sp

where A, represents the coefficient of proportionality and is known as the Einstein
A coefficient and depends on the energy level pair and

;= 1
sp _A—21 (1212)

represents the spontaneous emission lifetime of the upper level. The solution of
(12.11) is given by

t

N,(£)=N,(0)e ** . (12.13)
implying that the population of level 2 reduces by 1/e in a time 7_. For example, for
sp

the 2P — 1S transition in hydrogen atom A=~6x10°S™" giving a mean lifetime
(= 1/A) of about 1.6 x 107~ s. In the case of stimulated emission, the rate of transition
to the lower energy level is directly proportional to the number of atoms in the upper
energy level as well as to the energy density of the radiation at the frequency ®. Thus

Number of stimulated emissions (per unit volume per unit time) = N,B, u(®)

with B,, representing the corresponding proportionality constant. The quantities
A,,, B}, and B,, are known as Einstein coefficients and are determined by the atomic
system. At thermal equilibrium, the number of upward transitions must be equal to
the number of downward transitions. Thus, we may write (at thermal equilibrium):

N B u(0) = NyAy + N,B, u(0)

or u(m):N Ay .. (12.14)
Y

N, By =By
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Now according to a fundamental principle in thermodynamics, at thermal
equilibrium, we have the following expression for the ratio of the populations of two
levels :

ﬂ—ex EZ_EI = ex h_O)
NZ_ p kBT - p kBT (1215)

where kj, (= 1.38 x 1072* J/K) represents the Boltzmann constant and 7 represents
the absolute temperature and we assume that degeneracy of each level is unity.
Equation (12.13) is known as the Boltzmann's law. Thus, we may write

A21

BZIehm/(kBT) _ B21

Now, at thermal equilibrium, the radiation energy density is given by Planck's law :

u(w)= .. (12.16)

" (0)) B hofné 1
= el .. (12.17)
where n, represents the refractive index of the medium. Comparing (12.16) and
(12.17), we obtain

B,, = B,, = B (say) (12.18)
d Ay _ b, (12.19)
an o - .
B21 75203

These relations are known as Einstein's relations.

Notice that if we had not assumed the presence of stimulated emission, we would
not have been able to arrive at an expression for u(o); Einstein in 1917 had predicted
the existence of stimulated emission which was later confirmed by rigorous quantum
theory.

From (12.17) and (12.19), the ratio of the number of spontaneous to stimulated
emissions under thermal equilibrium is given by

A21 ha/(kpT)
—=——=¢ -1

We may note the following two important points :

1. For normal optical source, T ~ 10°K with ® =3x10" sec! (corresponding to
L = 6000A) we have

ho _ 1.054x1073* x3x10" _ 3
KgT 1.38%107 %2 %103
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. A
giving — 21 _ =10
By (0))
Thus, when the atoms are in thermal equilibrium, the emission (at optical
frequencies) is predominantly due to spontaneous transitions and hence the
emission from ordinary light sources is incoherent.

2. From (12.19), one can see that the coefficient B,, is inversely proportional to

®* implying that laser action would become more difficult as we go to higher
frequencies.

12.8 Ruby laser (three level laser)

In the first laser fabricated by Maiman in 1960, the population inversion was
achieved in the following manner. It was made from a single cylindrical crystal of ruby
whose ends were flat, with one of the ends completely silvered and the other partially
silvered (see Fig.12.7). Ruby consists of Al,O; as a host material doped with a small
percentage (about 0.05% by weight) of Cr,O; which acts as active material. The
energy states of the chromium ion are shown in Fig. 12.8. The chief characteristic of
the energy levels of a chromium ion is the fact that the bands labeled E, and E, have
a lifetime of ~107® sec whereas the state marked M has a lifetime of ~3 x 1073 sec—
the lifetime represents the average time an atom spends in an excited state before
making a transition to a lower energy state. A state characterized by such a long
lifetime is termed a metastable state.

Glass tube Flash lamp Ruby rod

— C > Laser
I beam
N [N

[ Partially
silvared

Fig. 12.7
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The chromium ion in its ground state can absorb a photon (whose wavelength is
around 6600 A) and make a transition to one of the states in the band E,; it could
also absorb a photon of A ~ 4000 A and make a transition to one of the states in the
band E,—this is known as optical pumping and the photons which are absorbed by
the chromium ions are produced by the flash lamp (see Fig. 12.7). In either case, it
immediately makes a non-radiative transition (in a time ~1078 sec) to the metastable
state M — in a non-radiative transition, the excess energy is absorbed by the lattice
and does not appear in the form of electromagnetic radiation. Also, since the state M
has a very long life, the number of atoms in this state keeps increasing and one may
achieve population inversion between states M and G. Thus, we may have a larger
number of atoms in states M and G. Once population inversion is achieved, light
amplification can take place, with two reflecting ends of the ruby rod forming a cavity.
The ruby laser is an example of a three-level laser.

Ey |
=y — M
Pump
Photon
A~ 6600 A 2= 6943 A
A~ 4000 A
[c]
Fig. 12.8

In the original setup of Maiman, the flash lamp (filled with xenon gas) was
connected to a capacitor (see Fig. 12.7) which was charged to a few kilovolts. The
energy stored in the capacitor (~a few thousand joules) was discharged through the
xenon lamp in a few milliseconds. This results in a power which is ~ a few megawatts.
Some of this energy is absorbed by the chromium ions resulting in their excitation
and subsequent lasing action.

The state of inverted population is, however, not a stable one. One or two photons
emitted spontaneously will induce stimulated emission and coherent laser beam is
obtained through the partially silvered mirror. Ruby laser is a pulsed laser 1.e., it emits
laser light in pulses. The metastable state M is in reality a doublet of separation 14A.
The output of the laser has two lines of wavelengths 6943A and 6929A. However,
under lasing conditions the line 6943A predominates.
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12.8.1 Spiking in Ruby laser

The flash operation of the lamp leads to a pulsed output of the laser. Even in the
short period of a few tens of microseconds in which the ruby is lasing, one finds that
the emission is made up of spikes of high intensity emissions as shown in Fig. 12.9.
This phenomenon is known as spiking and can be understood as follows.

Power output

Fig. 12.9

When the pump is suddenly switched on to a value much above the threshold, the
population inversion builds up and crosses the threshold value, as a consequence of
which the photon number builds up rapidly to a value much higher that the steady
state value. Since the photon number is higher than the steady state value, the rate
at which the upper level depletes (because of stimulated transitions) is much higher
than the pump rate. Consequently, the inversion becomes below threshold, and the
laser action ceases. Thus, the emission stops for a few microseconds, within which
time the flash lamp again pumps the ground state atoms to the upper level, and laser
oscillations begin again. This process repeats itself till the flash lamp power falls
below the threshold value and the lasing action stops (see Fig. 12.9).

12.9 He-Ne laser (four level laser)

We will now briefly discuss the He-Ne laser which was first fabricated by Ali Javan
and his coworkers at Bell Telephone Laboratories in USA. This was also the first gas
laser to be operated successfully.

The He-Ne laser consists of a mixture of He and Ne in a ratio of about 10:1, placed
inside a long narrow discharge tube (see Fig. 12.10). The pressure inside the tube is
about 1 Torr. The gas system is enclosed between a pair of plane mirrors or a pair
of concave mirrors so that a resonator system is formed. One of the mirrors is of very
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high reflectivity while the other is partially transparent so that energy may be coupled
out of the system.

Mirror Mirror

~—= Laser

He + Ne —» beam

Discharge
electrodes

Fig. 12.10

The first few energy levels of He and Ne atoms are shown in Fig. 12.11. When
an electric discharge is passed through the gas, the electrons traveling down the tube
collide with the He atoms and excite them (from the ground state F,) to the levels
marked F, and F;. These levels are metastable, i.e., He atoms excited to these states
stay in these levels for a sufficiently long time before losing energy through collisions.

19 He Ne
L Through atomic
llisions
17} £ €0
3
- F > ES o 3“\:‘..39 .u_
16 - = E, h
o A 6328 A
13l Excitation “@; Fs
by collisions o [
] o pontaneous
wf with electrons emission {~6000 A}
T ~——— De excitation
0 3 y by collisions

Fig. 12.11

Through these collisions, the Ne atoms are excited to the levels marked
E, and E, which have nearly the same energy as the levels F, and F; of He. Thus,
when the atoms in levels F, and F; collide with unexcited Ne atoms, they raise them
to the levels £, and E respectively. Thus, we have the following two step process :
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1. Helium atom in the ground state F,+ collision with electron —
Helium atom in the excited state (F, or F;) + electron with lesser kinetic energy.

2. The spectroscopic states corresponding to the states F, F, and F are llSO, 23
S, and 2150 respectively. The excited states of He (F, or F}) are metastable - they
would not readily lose energy through spontaneous emissions (the radioactive lifetime
of these excited states would be about one hour). However, they can readily lose
energy through collisions with Ne atoms :

He atom in the excited state F; + Ne atom in the ground state —
He atom in the ground state + Ne atom in the excited state E,.
Similarly

He atom in the excited state F, + Ne atom in the ground state —
He atom in the ground state + Ne atom in the excited state E,.

This results in a sizeable population of the levels E, and E,. The population in these
levels happens to be much more than those in the lower levels E; and E;. Thus, a state
of population inversion is achieved, and any spontaneously emitted photon can trigger
laser action in any of the three transitions shown in Fig. 12.11. The Ne atoms then
drop down from the lower laser levels to the level E, through spontaneous emission.
From the level E,, the Ne atoms are brought back to the ground state through collision
with the walls. The transition from E to E,, E, to E; and E, to E, result in the
emission of radiation having wavelengths 3.39 pm, 1.15 um and 6328A respectively.
It may be noted that the laser transitions corresponding to 3.39 um and 1.15 um are
not in the visible region. The 6328A transition corresponds to the well-known red
light of the He-Ne laser. A proper selection of different frequencies may be made by
choosing end mirrors having high reflectivity over only the required wavelength
range. The pressures of the two gases must be so chosen that the condition of population
inversion is not quenched. Thus, the conditions must be such that there is an efficient
transfer of energy from He to Ne atoms. Also, since the level marked E, is metastable,
electrons colliding with atoms in level £, may excite them to level E;, thus decreasing
the population inversion. The tube containing the gaseous mixture is also made
narrow so that He atoms in level E, can get de-excited by collision with the walls
of the tube. Referring to Fig. 12.11, it may be mentioned that actually there are a large
number of levels grouped around E,, E;, E,, E; and E_. Only those levels are shown
in the figure which correspond to the important laser transitions.

Gas lasers are, in general, found to emit light, which is more directional and more
monochromatic. This is because of the absence of such effects as crystalline
imperfection, thermal distortion, and scattering, which are present in solid state lasers.
Gas lasers are capable of operating continuously without need for cooling.
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In an improved form of the He-Ne laser, the resonator mirrors M, and M, are
used externally to the laser cavity, because the mirrors sealed inside the discharge
tube are eroded by the gas discharge and have to be replaced. These are spherical
in shape and the radius of curvature of each mirror is equal to the cavity length
(see Fig. 12.12).

Further, to minimize the loss due to reflection at the ends of the discharge tube,
Brewster windows W, and W, are used, as shown. These are fitted at an angle known
as Brewster angle O, given by tan O, = u, where p is the refractive index of the
material of the window.

E g
" o
M, M,

1

He + Ne

Fig. 12.12

To understand the action of Brewster's windows W, and W,, we consider an
unpolarized wave incident on a plate as a resultant of two superimposed plane polarized
waves, one of which is polarized in a plane passing through the normal to the window
and the tube axis and the other at right angle to this plane. The wave polarized normal
to the plane of oscillation is completely reflected by the window plate and, therefore,
does not play any part. The other wave, polarized in the plane of oscillation, is
transmitted in the same direction, and is completely reflected by the mirrors M, and
M, again and again, thus producing a strong plane polarized laser beam.

The power output of He-Ne Laser lies between 1 mW to 50 mW of continuous
wave for inputs of about 5 W to 10 W. He-Ne laser gives a continuous operation.

12.10 Holography

Holography is a lens-less two-step imaging process which can produce three
dimensional images. It was first suggested by D. Gabor in 1948. In ordinary photography
we record only the intensity of light and no information about phase so that the three-
dimensional character of the object is lost. But in holography we record information
regarding boththe amplitudes and phases. The word 'hologram' is derived from
Greek word 'holos' meaning 'the whole' i.e., the whole of information.
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Principle of holography : A beam of coherent light from a laser is split into two
by a semi-transparent mirror such that one beam (called object beam) can be scattered
by the object to be photographed and the other beam (phase related reference beam)
falls directly on the film. These two beams form interference patterns on the film. The
fine speckled pattern on the film contains information regarding both the amplitude
and phase. Thus, a hologram is produced. This step of holography is called recording

Object

&
5T
b'?l;
&

Hologram

»

Laser . .
beam Semitransparent mirror
5.

« Reference beam

Y

v

Fig. 12.13 Recording

Virtual H
3D image =
~

N
~
~
~
~
h
H

-~
TReal
image

Fig. 12.14 Recording

(see Fig. 12.13). The next step is the reconstruction step (see Fig. 12.14). The
hologram is illuminated with coherent light called reconstruction wave (usually of
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same wavelength as the original beam). The hologram acts as a diffraction grating
producing two sets of diffracted beams, one set forms a real image while the other
forms a three-dimensional virtual image.

Applications : Holography gives a 3D idea of the object. A single hologram can
record a large number of images. A small portion of the hologram can reproduce the
entire image. All these properties make holography very popular in many applications.
Most common applications are in holographic microscopy, holographic interferometry,
3D cinema or TV, espionage, non-destructive testing etc.

12.11 Summary

m  Laser often possesses some very special characteristics - some of these are (a)
Directionality, (b) High power and (c) Spectral purity.

m  As put forward by Einstein, when an atom is in the excited state then, in
addition to the spontaneous emission, it can also make a transition to a lower
energy state by what is known as stimulated emission in which an incident
signal of appropriate frequency triggers an atom in an excited state to emit
radiation - this results in the amplification of the incident beam. If we are able
to create a state of population inversion in which there are larger number of
atoms in the upper state, then the number of stimulated emissions would
exceed the number of stimulated absorptions resulting in the (optical)
amplification of the beam.

m  The three main components of any laser are
(1) The active medium,
(i) The pumping mechanism, and
(i) The optical resonator.

m  The first successful operation of a laser device (A ~ 0.684 um) was demonstrated
by Theodore Mainman in 1960 using a ruby crystal. Within a few months of
the operation of the ruby laser, Ali Javan and his associates constructed the
first gas laser (A ~ 0.633 pm), namely the helium - neon laser.

m  The basic technique in holography has ben discussed.

12.12 Review Questions and Answers

1. Define meta-stable state.

Ans. Normally an atom in the excited state comes back to the original or groundstate
within a very short time of about 1078 second by the emission of a photon.
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Ans.

Ans.

Ans.

Ans.

Ans

The average time for which an atom remains in an excited state is known as
its mean life. The mean life of an atom is characteristic of the energy state.
Some energy states have comparatively longer mean life.

Energy states having mean life of more than 107 sec. are known as meta-
stable states.

Name some important types of lasers.

Types of Lasers : Various types of lasers in use are :

(1) Solid lasers : The most commonly used solid laser is a Ruby laser. The
other solid laser used is ¥,AI;0,, doped with Nd"? ions in place of ¥ (Yttrium).
Its most useful operating wavelength is the infra-red light A = 1.064 um.
(i1) Gas lasers : Helium-Neon gas lasers (consisting of about 10 parts of Ne
and 1 part of He is the best-known gas laser. It operates on three wavelength
6328 A in the red and 1.15 and 3.3 um in the infra-red region.

(i) Other important types include semiconductor lasers, chemical laser, and
dye lasers.

In a semiconductor laser, the conduction band population of electrons is
increased by injecting free electrons into the negative side of an ordinary
junction diode. The operating wavelength for GaAs laser is usually in the
range 8400 - 8500 A

In a chemical laser, population inversion results from a chemical reaction.
In a dye laser, laser action is obtained by pumping certain dye solutions with
micro second long flashes from high intensity lamps. The active material is
an organic fluorescent dye dissolved in a common solvent. Optical excitation
and emission in organic dyes takes place between the rotational vibrational
levels of the singlet ground state S, and the singlet excited state §,.
Explain the concept of negative temperature in connection with the
population inversion in an active medium.

See Article 12.5.

What are Einstein's A,B coefficients? Derive a relation between them.
See Article 12.7.

What is optical resonator? Discuss the role played by it in a laser system.
See Article 12.8.

Draw a neat sketch of a ruby laser. With the help of a simple energy level
diagram describe the operation of a ruby laser.

. See Article 12.8.
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7.

Ans.

8.

Give the construction of a He-Ne laser. With the help of a simple energy
level diagram show how population inversion is achieved here.

See Article 12.9.
Mention some important applications of laser.

Ans. Lasers find wide applications in different branches of science, technology and

in surgery etc.

Laser beams can project intense energy into a small area of approximately
0.001 mm in diameter and produce, at the focal point, temperatures of the
order of 10,000 to 16,000K. Therefore, laser has been used for drilling holes
in hard materials like diamonds, vaporize metals, painless drilling and welding
of teeth, retinal surgery i.e., welding the detached retina back into position
and treatment of malignant tumours, specially removing eye tumours.

As the laser beam acts as a sharp knife and its localized heating causes
all the blood vessels to be sealed instantaneously, it is used to perform 'blood
less surgery' and for performing difficult operations of the scalp and abdominal
skin.

In basic scientific research, laser has been used in exploring the molecular
structure, nature of chemical reactions, Raman spectroscopy, precision
measurement of length and accurate determination of velocity of light.

In high-speed photography, laser has been used to obtain very sharp images
of moving objects like bullets in flight. Holography i.e., three-dimensional
photography, has been made possible by the use of lasers.

Laser light, being highly coherent, can be modulated to transmit hundreds
of messages at a time on radio and television. As laser beams are not readily
absorbed by water, these have proved very useful for under water
communication. Laser beam is also being used for automatic control and
guidance of rockets and satellites, determining the distance of stars, planets,
and moon, and ranging of the planes like Radar. A powerful laser beam can
also be used to destroy aero planes and missiles, as well as damaging far-
located tanks.

Briefly give the requirements for holography and mention various
properties of a hologram.

Ans. Requirements : The various requirements of holography are as given below:
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1. Monochromaticity. The light source used should be monochromatic, as
the fringe pattern produced is a function of wavelength of the illumination.
If a broad spectrum is used, then each wavelength will give rise to its own
fringe pattern, which will overlap and produce blurring.

2. Spatial coherence. If the source lacks spatial coherence i.e., it is broad,
then each element of the source will produce interference fringes, which are
displaced from those of other elements. The resultant effect of this fringe
pattern will average to some uniform value and the fringe pattern will be
missing.

The monochromaticity is obtained by passing the light through a
monochromator or a narrow band colour filter. Spatial coherence is obtained
by passing through a pin-hole. Such a traditional source is quite inefficient
as illumination available is limited.

Thus, a laser beam, which is highly monochromatic and has extraordinary
spatial coherence, is used for wavefront reconstruction photography.

Properties. 1. A hologram has remarkably three-dimensional image properties
and a highly exact reproduction of the image is possible.

2. With pulsed laser sources, instant three dimensional volume holograms
have been prepared which contain a fog like suspension of particles. Once
image has been reconstructed, the particles can be studied and counted with
a microscope.

3. Multicolour holograms have also been prepared. These utilize the fact that
photographic emulsion has thickness. Successive layers in emulsion can reflect
a particular colour strongly if their spacing is proper for that colour and angle
of illumination.

4. Each part of the hologram, no matter how small, can reproduce the entire
image. Thus, a hologram can be broken into small fragments, each of which
can give a complete image. It is because each part of the hologram receives
light from all parts of the object and hence contains the entire image in an
encoded form.

5. The hologram constructed is regarded as a negative, but the image it
produces is positive. If a contact print is obtained, the hologram would be
reversed in the sense that the opaque areas would now become transparent
and vice versa. The image produced from a copy will, however, remain a
positive and is indistinguishable from the image produced by the original.
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10.

Ans.

Indicate one major disadvantage of a three level laser.

One major disadvantage of a three level laser, such as a ruby laser, is that
no significant stimulated emission occurs until at least half the ground state
population has been excited to the meta-stable state. That is, population
inversion exists only when the meta-stable state is more densely populated
than the ground state. This makes a high threshold for optical pumping and
a considerable waste of energy. Better performance is expected from a four
level laser in which population inversion begins between the meta-stable state
and laser terminal state with very little pumping.
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Unit-13 : Polarization of Light

Structure

13.1  Objectives
13.2  Introduction
13.3  Propagation of EM waves in anisotropic media
13.4  Fresnel's formula
13.5 Uniaxial and Biaxial crystals
13.6  Propagation in uniaxial crystals
13.7  Double refraction
13.7.1 Polarization by double refraction
13.8  Malus's law
13.9  Retardation plates
13.10 Production of e¢lliptically and circularly polarized light
13.11 Detection of elliptically and circularly polarized light
13.12 Analysis of circularly polarized light
13.13 Analysis of elliptically polarized light
13.14 Babinet's compensator
13.15 Optical activity
13.16 Biot's laws for rotatory polarization
13.17 Fresnel's theory of optical rotation
13.18 Polarimeter
13.18.1 Laurent half-shade polarimeter
13.19 Summary
13.20 Review Questions and Answers
13.21 TIllustrated Examples

13.1 Objectives

In going through this unit, you will learn:
1. Linear, Circular and Elliptical Polarization
2. Propagation of EM. Waves in Anisotropic Media

306
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Fresnel's Formula or equations
Uniaxial and Biaxial Crystals
Light Propagation in Uni axial Crystal

3
4
5
6. Ordinary & Extraordinary Refractive Indices
7. Double Refraction

8. Polarization by Double Refraction

9. Nicol prism

10. Malus's law

11. Phase Retardation Plates: Quarter-Wave and Half-Wave Plates

12. Production & detection of Plane, Circularly and Elliptically Polarized Light
13. Babinet Compensator and its Uses

14. Optical Rotation and Specific rotation

15. Biot's Laws for Rotatory Polarization

16. Fresnel's Theory of optical rotation

17. Laurent's half-shade Polarimeter

13.2 Introduction

The phenomena of interference and diffraction of light show that the light is a wave
motion which may be longitudinal or transverse in nature. It is the phenomenon of
polarization which for its explanation requires that the light must be a transverse
wave. In fact, in the electromagnetic theory (Article 8.4) light is considered as a
transverse electromagnetic wave consisting of vibrating electric and magnetic vectors
at right angles to each other and also at right angles to the direction of propagation
of light.

The electric vector is called light vector because it is responsible for the sensation
of vision. In an ordinary beam of light with millions of waves the light vectors of
component waves will remain in all possible directions on a plane drawn at right
angles to the direction of propagation. This happens so due to random orientations
of excited atoms or molecules in the source. Such an ordinary beam of light with the
electric vectors arranged symmetrically about the direction of propagation is called an
unpolarized light. We may assume all these vibrations to be resolved into two
rectangular components of equal amplitude but having a relative phase difference
which varies rapidly and randomly. Now, if by some means one of these rectangular
vibrations is cut off, we get vibrations of all the component waves confined in one
definite direction. Such a light is said to be plane polarized light (also called p-state
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light). The pictorial representations of unpolarized and plane polarized lights are

shown in Fig. 13.1.
* %—}—ﬁ Direction of propagation

(a) Unpolarised light

A 4
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(b) Plane polarised light with its vibration in the plane of the paper
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& o * . o v v

& Y
- 7

(c) Plane polarised light with its vibration in the plane perpendicular to the plane of the paper

Fig. 13.1

The electric vector of a plane polarized light is confined to a particular plane,
known as the plane of vibration. This plane contains the £ - vector and the propagation

vector k . The plane perpendicular to the plane of vibration is known as plane of
polarization (see Fig. 13.2).

Plane of vibration

A \lD A
—ﬁ i AR LIV 44
AT TN : Iy
TN,/ 6T NN T

Plane of polarisation
Fig. 13.2

By the superposition of two plane polarized waves under suitable conditions the
resultant light vector may be made to rotate in a plane perpendicular to the direction
of propagation. If the magnitude of the resulting light vector remains constant the tip
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of the light vector appears to trace out a circle at a fixed space. Such a light is said
to be circularly polarized. If, on looking towards the incoming light the resultant light
vector appears to rotate clockwise, then the light is said to be right circularly polarized
light. If the light vector rotates counter-clockwise, then the light is said to be left
circularly polarized light. On the other hand, if the magnitude of the resulting light
vector varies periodically between a maximum and a minimum value then the tip of
the light vector appears to trace out an elliptic path. Such a light is said to be
elliptically polarized.

A mixture of polarized and unpolarized lights is called partially polarized
light.

13.3 Propagation of EM waves in anisotropic media

In this Article, we will discuss the plane wave solutions of Maxwell's equations
in an anisotropic medium and we will completely restrict ourselves to uniaxial crystals
for which the refractive indices are given by

n.=n,=n,and n,=n, .. (13.1)

y

The difference between an isotropic and an anisotropic medium is in the relationship
between the displacement vector D and the electric vector E; the displacement vector
D is defined elsewhere (see any textbook on Electricity and Magnetism). In an isotropic

medium, D is in the same direction as E and one can write
D =¢E .. (13.2)

where € is the dielectric permittivity of the medium. On the other hand, in an
anisotropic medium D is not, in general, in the direction E and the relation between
D and E can be written in the form
D =¢ E + exyEy te E,

D = + +
y = EEc T 8 By ek

D =¢ FE +te E +¢g FE
x Tx zy Ty 72

X

where € _, €, ... are constant. One can show that

€y = By By =~ €y and €y, = &y .. (13.4)

Further, one can always choose a coordinate system (i.e., one can always choose
approximately the directions of x, y, and z axes inside the crystal) such that

D = SXEX
D = SyEy ... (13.5)
D = SZEZ
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This coordinate system is known as the principal axis system and the quantities

€y €, and ¢_ are known as the principal dielectric permittivities of the medium. If

e, #€, #¢€_ (biaxial) ... (13.6)

we have what is known as a biaxial medium and the quantities

n—exn—eyn—ez 13
x g > My T g, > Mg = € ( 7)

are said to be the principal refractive indices of the medium; in the above equation
g, represents the dielectric permittivity of free space (= 8.8542 x 10712 C?/N-m?). If
v * g (uniaxial) ... (13.8)

we have what is known as a uniaxial medium with the z-axis representing the optic
axis of the medium. The quantities

€ €, €
= X = |2 d - | Z
n, /80 [80 and n, /80 .. (13.9)

are known as ordinary and extraordinary refractive indices. For a uniaxial medium,
since & = g, the x and y directions can be arbitrarily chosen as long as they are
perpendicular to the optic axis, i.e., any two mutually perpendicular axes (which are
also perpendicular to the z-axis) can be taken as the principal axes of the medium.
On the other hand, if

€. 7 ¢

€.~ ¢

v = & (isotopic) ... (13.10)
we have an isotropic medium and can choose any three mutually perpendicular
axes as the principal axis system.

We will assume the anisotropic medium to be non-magnetic so that
B =y H
where L, is the free space magnetic permeability.

Let us consider the propagation of a plane electromagnetic wave (EM). For such
a wave the vectors E, H, D and B would be proportional to exp[i(k.r—of) ]. Thus

E= Eoei(k.r—mt)H _ Hoei(k.r—mt)
D=D.krolp_ p ilkr-o) .. (13.11)
-0 -0

where the vector E, H,, D, and B, are independent of space and time; k represents
the propagation vector of the wave and © the angular frequency. The wave velocity
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v,, (also known as the phase velocity) and the wave refractive index n, are defined
through the following equation :

__c
"w—;—a .. (13.12)
k|=k=2n, . (13.13)

In the present article, it is our objective the possible values of n , when a plane
wave propagates through an anisotropic dielectric. Now, in a dielectric medium

divD =0 .. (13.14)
For a plane wave given by (6.11) the above equation becomes

i(kDx + kD + kD) =0

or Dk=0 .. (13.15)

implying that D is always at right angles to k.
Similarly, since in a non-magnetic medium div H = 0,
H will always be right angles to k. (13.16)
Now, in the absence of any currents (i.e., J = 0) Maxwell's curl equations become

VxE:—aa—l:—i(oB:i(ouoH .. (13.17)
and Vtzaa—ll)zi(oD ... (13.18)

where we have assumed the medium to be non-magnetic (i.e., B = pu H). Now it
can be shown that

1
H = kxE
wuo( ) . (13.19)
D:%(ka) . (13.20)
Equations (13.19) and (13.20) show that
H is at right angles to k, E and D .. (13.21)

implying

k, E and D will always be in the same plane.

Further [see (13.15)]

D is at right angles to k .. (13.22)
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Substituting for H in (13.20), we get

w"}u [(k-k)E —(k.E)k] . (13.23)

D=

where we have used the vector identity

(A xB)x C=(A.C)B - (B.OA

Thus D:IE—Z[E—(’;E)’:‘}: o [E—(kE)k} . (13.24)

~ k&
h ==
where k A

represents the unit vector along k. Since
- - 2
Dx a 8XEX a 80 anx
We have for the x-component of (13.24)
golloc’n

B =E, —k, (kL +k E, +k.E. )

nW

Since ¢ = 1/(g,,), we have
2 ¥y

nW

2
nx
[——kZ —kijx+kxkyEy +kk . =0 .(13.25)

where we have used the relation k2 +ky2 +k%=1 (since k is a unit vector).

X

Similarly, kok L+ (

ésm ‘ Esm

—kZ—kaEﬁkyszz =0 .. (13.26)

2
n, 2 2
kxszx+kyszy+[n_2_kx _kijz (1327)
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Since the above equations form a set of three homogeneous equations, for non-
trivial solutions, we have

n2
x 2 2
n—Z—ky —k k.k, kk,
n2
k.k, ki —k? kk. =0
n
" .. (13.28)
2
n, 272
k k. k k. — -k -k}

We should remember that we still do not know the possible values of n_. Indeed,
for a given direction of propagation (i.e., for given values of k , ky and k) the solutions
of (13.28) gives us the two allowed values of n . It may be mentioned that from

(13.28) it appears as if we will have a cubic equation in nfv which would give us three

roots of nfvz however, the coeflicient of ”fv will always be zero and hence there will

be always two roots. We illustrate the general procedure by considering propagation
through a uniaxialmedium.

13.4 Fresnel's formula

The simple laws of reflection and refraction give no indication in regard to what
fraction of the amplitude or energy of the incident wave is reflected and what fraction
is transmitted. This is what we shall now inquire. The equations that relate the
amplitudes of reflected and transmitted (refracted) waves with that of the incident
wave are called Fresnel's equations of formula.

We will now derive expressions for the reflection and transmission coefficients
when a plane polarized wave is incident on an interface of two dielectrics. We will
first consider the case when the electric vector lies in the plane of incidence which
will be followed by the case when the electric vector is at right angles to the plane
of incidence.

Case 1. E Parallel to the plane of incidence : We will assume the electric vector
to lie in the plane of incidence as shown in Fig. 13.3.


https://www.print-driver.com/?demolabel-en

314 NSOU « CC-PH-09

Es
8o .
| X
6,/ 2 :
Enflp ! 5
E1 E3 81 ] lu1 'V
3]
% ky 1] 63 ks %
Fig. 13.3

The magnetic vectors are along the y-axis. Clearly, the z-component of the electric
field represents a tangential component which should be continuous across the surface.
Thus

E| tE; = Ey
or —-E,cos0, +E; cos0 =-E, cos 6, ... (13.29)
[-E,, explilk,r — o)} + E;, exp{i(k;r — 0t)}],_, cos 6,
= [-E, expli(k,.r — ot)}] _, cosO, (13.30)

where E |, E,, and E;, are the peak values of E,, E, and E; respectively and
independent of space and time but may, in general, be complex. The vectors k,, k,
and k; represent the propagation vectors associated with the incident, refracted, and
reflected waves respectively. We must notice that the fields must satisfy Maxwell's
equations. We also remember that k, kly and k. represent the x, y, and z-components
of k; similarly, for k, and k.

Once again, since this condition has to be satisfied at all space points in the plane
x = 0 and at all times, the exponents must be identically equal which leads to the
following equations

O =0, = 0 .. (13.31)
kyy = ky, = ks .. (13.32)
k, =k, =k, ... (13.33)
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Thus
.. (13.34)

[EIO —E30]cos 0, = L5, cos 0,
Further, the normal component of D must also be continuous and since D = €E,

we must have
g Bt 8B =&k,
or & [B+E;,]sin® =¢,E,sinb, .. (13.35)

Substituting for E,, from (13.34), we get

[EIO B E30]

& [Ejo+ Ey |sin 6, =¢€,sin6, cos6, cos 6,

[€,5in0, cos, +¢,sin6, cosh, | Ey,

of,
=[e,sinB, cos6, —g, sin6, cosH, | £,
Ly, ¢€,sin0,cos6, —¢g,;sinb, cosO
Thus == 112 .. (13.36)
I E, €,sin0,cos6,+¢;sin6 cosH,

where q denotes the amplitude reflection coefficient, the subscript || refers to the
fact that we are referring to parallel polarization. If we now divide (13.34) by E,; and

substitute the expression for E; / E,, from (13.36), we will get

€, sin 0, cosO; — ¢, sin 6, cos O, Ey,
- . 0s0, = —="cosH0,
€,s1n0, cosO; +¢€,sin O, cosH, £,

By 2¢,sin O, cos O, (13.37)
- E, ¢&,sinB,cos6, +¢,sinb, cosH, T

or,

where f denotes the amplitude transmission coefficient.
For non-magnetic media, 1, = p, = 4p x 107 Namp? and the expression for the

amplitude reflection coeflicient (13.36) simplifies to

n; sin@, cos®, —n’ sin @, cosH,
y =
H 2 . 2 .
n, sin®, cos O, +n; sin B, cosO,

using the fact that for non-magnetic media n=c/v = \/ e/ gyl = \/ /g, , thus n?

= ¢elg)
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Since n;sin0, =n,sin0, ... (13.38)
We get
_ n,c0s6, —n cosH,
I 1, cos®, +m cos6, - (13.3%)
_ sin®,; cosO; —sinB, cos 6,
~ sinB; cos O, +sin6, cosH, - (13.390)
_sin20,-sin20, 2cos (6,+9,)sin (6, -6,)
~sin26, —sin20,  2sin (6, +6,)cos(6, -6, )
tan (6, -6, )
~ tan (9, +6, ) ... (13.39¢)
Similarly, starting from (13.37) one easily obtain
= 2cos0,;sin 0,
I sin (8, +8,)cos (6, —6,) - (13.40)

Equations (13.39a) — (13.39¢) and (13.40) are known as Fresnel's equations.
From (13.39) and (13.40) we may deduce the following :

(a) No Reflection when n, = n,
When n, = n,, 0, = 0, and we get
= 0 and f = 1
Thus, there is no reflection when the second medium has the same refractive index

as the first medium. Thus, if we have a transparent solid immersed in a liquid of the
same refractive index, the solid would not be seen!

(b) Polarization by Reflection :

Brewster's Law : If the angle of incidence is such that

el+ez=§, then 7, = 0

i.e., there is no reflected beam. Thus, if an unpolarized beam is incident at an angle
T

such that 6, +6, = 5

then the parallel component of the E-vector will not be reflected,
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and the reflected light will be polarized with its E-vector perpendicular to the plane
of incidence (see Fig 13.4).

A

Reflected ray
g0°

r Refracted ray

Fig. 13.4

This is the famous Brewster's law. The corresponding angle of incidence is known
as the Brewster angle (or polarizing angle) and is usually denoted by ip.

Notice that the angle of refraction will be I_

5 i, and therefore Snell's law takes
the form
ny, _sin6, _ sini,, o
m o snd, . (m Y o .. (13.41)
sin E_ZP
=t -1 n_Z
T TR .. (13.42)

Thus, when the angle of incidence is equal to tan™ (Z—f) then the reflected beam

is plane polarized. Further, the transmitted beam is partially polarized. It is easily seen
that at the polarizing angle, the reflected ray is at right angles to the refracted ray.

Further, the following facts can easilybe explained from Fresnel's equations:
(c) Phase Change on Reflection and Stokes' Relations

(d) Reflection at Grazing Incidence and

(e) Total internal reflection

Case 2. E Perpendicular to the plane of incidence : Let us next consider the
reflection and refraction of a linearly polarized plane wave with its electric vector
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perpendicular to the plane of incidence; the reflection is assumed to occur at
the interface of two dielectrics. Thus, the electric vectors will be along the y-axis
(see Fig. 13.5).

Fig. 13.5

Since the y-axis is tangential to the interface, the y-component of E must be
continuous across the interface; consequently

E,+ Ey = Ey .. (13.43)
The directions of the magnetic fields are also shown in Fig. 6.5; they lie in the
plane of incidence and are given by

H =H, exp[i(kl.r—(ot)] = %exp[i (kl.r—(ol)] \

1

k,xE
H2=H20exp[i(kZ.r—(oz)]:%Zﬂ)exp[i(kz.r—mt)] > . (13.44)
kyxE
%exp[i(k}r—mt)] )

1

H,=H,, exp[i(k3.r —(ol)] =

(Notice that H lies in the plane of incidence). Since k, is at right angles to E,,, the

klEIO
WL, ) )
13.5 that for the z-component of the magnetic field to be continuous, we must have

H,,cos0, — H,,cos0, = H,,cos b, ... (13.45)
ko
W,

magnitude of H,, is simply ; similarly, for H, and H,,. It is obvious from Fig.

Or.

2

k
(EIO —E30)cos(91 = (D_lszZO cos0, ... (13.46)
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Substituting the expression for E,, from (13.43) we get

k. k.
0)—I~1L1(E10 - E30)cos 0, = (D_LZLZ(EZO +F;, )cos 0,

Rearranging, we get

k
—L cos6, - cos 6,
r o= Ly _ ouy 2
E . (13.47
10 L cos®, + cos 6, ( )
1 2

_ & /1, cos, —Je, /1, cosh,
et oot 1 fe e cost, . (13.48)

_ sinB, cosB; —sin6, cos6,
sin®, cos6; —sin6,; cosO,

_sin(6,-6,)
sin (6, +6,) ... (13.49)

Further

ZJ_ :hzl-l-h
ElO ElO

2,/g; /1, cos6,

RN Y TR Wy ey ... (13.50)

; _ 2sin6, cos6,

where the subscript L on r and ¢ refers to the fact that we are referring to the state
of polarization in which E-vector is perpendicular to the plane of incidence. It may
be mentioned that (13.47), (13.48) and (13.50) are exact, whereas (13.49) and (13.51)
are valid for non-magnetic media. Once again, we can show that when 6, > 0 , total
internal reflection will occur and for grazing incidence the reflection is complete.

Equations (13.49) and (13.51) are known as Fresnel's equations.
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13.5 Uniaxial and Biaxial crystals

As light propagates through a transparent material it excites the atoms within the
medium. The electrons are driven by the E-field, and then reradiate; these secondary
wavelets recombine, and the resultant refracted wave moves on. Thus, optical properties
depends on the electrical properties of a transparent material, i.e., on € and p. Here
we shall consider only non-magnetic crystalline materials so that the effect of © may
be neglected (i.e., u = 1). Transparent crystals are divided structurally into seven
categories :

Cubic, trigonal, tetragonal, hexagonal, orthorhombic, monoclinic, and triclinic.
As regards optical properties these transparent crystals fall into three distinct groups :

Cubic : Crystals in which three crystallographically-equivalent, mutually orthogonal

directions may be chosen. Here ¢, = €, =&,

Uniaxial : These are crystals of the trigonal, tetragonal, and hexagonal systems.
For example, calcite, tourmaline, quartz, etc. Here €, =€, #¢€_, where ¢_ is said to
be the distinguished direction.

Biaxial : These are crystals belonging to orthorhombic, monoclinic, and triclinic
systems. Examples are mica, topaz, borax, etc. €, #€, # €, 1.e., crystals in which no
two crystallographically-equivalent directions may be chosen.

Optic Axis : In doubly refracting crystals, there is a direction fixed relative to the
crystal geometry along which no separation of the o-ray and e-ray take place. This
direction is called the optic axis. In other words, both the rays travel with the same
velocity along the optic axis. It should be noted that an optic axis is just a direction
and not a particular line. However, optic axis is an axis of symmetry with respect to
both the crystal form and the arrangement of atoms. In uniaxial crystals there is only
one optic axis and in biaxial crystals there are two optic axes.

Principal Plane : A plane that contains the optic axis and is perpendicular to the
opposite faces of the crystal is called a principal section. As shown in Fig. 13.6, any
plane parallel to the plane BDEG is a principal section of the calcite crystal, the line
DG being the optic axis of the crystal through the point D.

As is seen the principal section cuts the calcite crystal in a parallelogram, the angles
of the parallelogram being 71° and 109°.
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Fig. 13.6

A plane that contains the optic axis and o-ray or e-ray is called a principal plane.
In general, there are two principal planes. When the plane of incidence is a principal
section, it will contain both the principal planes.

13.6 Propagation in uniaxial crystals

As discussed earlier, for uniaxial crystals, n = n,=n, and n_ = n, and the x and
y directions can be arbitrarily chosen as long as they are perpendicular to the optic
axis. Now, for a wave propagating along any direction k, we choose our y-axis in such
a way that it is at right angles to K, i.e., the y-axis is normal to the plane defined by
k and the z-axis, obviously, the x-axis will lie in the same plane (see Fig. 13.7).

X
4

L4
y ér, z (optic axis)

Fig. 13.7

Thus, we may write

k, = sin s, ky=0and k, = cos y
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where  1s the angle that the k vector makes with the optic axis (see Fig. 13.7).
Equations (13.25) — (13.27) therefore become

2
[n—g—cos2 WjEx+sin\|fcos1|f rE=0 (13.52)
nW
2
A,
[n—g— jEy =0 ... (13.53)
n2
sin\f cos\f Ex+[—§—sin2 WJEZ =0 ... (13.54)
nw

Once again, we have a set of three homogenous equations and for non-trivial
solutions, the determinant must be zero. However, since two equations involve only
E and E_ and one equation involves only Ey we have the following two independent
solutions :

First Solution : We assume £, #0 then E, = 0 = E_ From (13.53) one obtains

the solution

n,=n, = n, (ordinary wave) ... (13.55)

The corresponding wave velocity is
vV, =V, = ni (y — polarized o — wave) ... (13.56)
0

Since the wave velocity is independent of the direction of the wave, it is referred
to as the ordinary wave (usually abbreviated as the o-wave) and hence the subscript
''onn and v

Second Solution : The second solution of (13.52) — (13.54) will corresponds to

E,=0; E, E, #0 .. (13.57)

We use (13.52) — (13.54) to obtain

", 2
—-—cos” Y
E. n sin\y cos
Zz D =_
E. sinycosy oo,
—-—sin”y
w

Simple manipulations would give us

1 1 _cos’y  sin’y
T T3 T3 .. (13.58)

n n,, n, n,
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where the subscript e refer to the fact that the wave refractive index corresponds to
the extra ordinary wave. The corresponding wave velocity would be given by

2 2 2

2 _ ¢ _¢C 2 )
Vie = 3~ = 7008 Y +—7sin Y ... (13.59)
nwe [2] n@

Since the wave velocity is dependent on the direction of the wave, it is referred
to as the extraordinary wave and hence the subscript e.

13.7 Double refraction

When an unpolarized light beam is incident on a uniaxial crystal (e.g., calcite), it
usually splits up into two linearly polarized beams as shown in Fig. 13.8. The beam
which travels undeviated is known as the ordinary ray (o-ray) and obeys Snell's laws
of refraction. On the other hand, the second beam, which in general, does not obey
Snell's laws, is known as the extraordinary ray (e-ray). Both of these o- and e-rays
are plane polarized whose vibrations are along and at right angles to the principal
section. This phenomenon in which a single incident ray is refracted into two rays is
called double refraction or birefringence and the crystals which exhibit the
phenomenon are called doubly refracting crystals or birefringent. For a negative
crystal n,< n, (e.g., calcite) and for a positive crystal n, < n_ (e.g., quartz).

C ¥ Principal section [

0-ray

E-ray

Fig. 13.8

13.7.1 Polarization by double refraction

When an unpolarized beam enters a dichroic crystal - like tourmaline, it splits
up into two linearly polarized components. It has different coefficients of absorption
for the two linearly polarized beams. Consequently, one of the beams gets
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absorbed quickly and the other component passes through without much attenuation
(see Fig. 13.9).

Incident unpolarized
light

p 3

Linearly polarized
wave

Tourmaline
crystal

Fig. 13.9

Nicol Prism : Another method for eliminating one of the polarized beams is
through total internal reflection. We noticed in Article 13.6 that the two beams have
different velocities and as such the corresponding refractive indices are different. If
one can sandwich a layer of a material whose refractive index lies between the two,
then for one of the beams, the incidence will be at a rarer medium and for the other
it will be at a denser medium. This principle is used in a Nichol prism which consists
of a calcite crystal cut in such a way that for the beam, for which the sandwiched
material is a rarer medium, the angle of incidence is greater than the critical angle.
Thus, this particular beam will be eliminated by total internal reflection. Figure 13.10
shows a properly cut calcite crystal in which a layer of Canada Balsam has been
introduced so that the ordinary ray undergoes total internal reflection. The
extra ordinary component passes through and the beam emerging from the crystal is
linearly polarized.
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-

End face

( Black surface 0 : ¢

Fig. 13.10

13.8 Malus's law

Malus experimentally obtain a relation which shows how the intensity of light
transmitted by the analyzer varies with the angle that its plane of transmission makes
withthat of the polarizer. Suppose that the angle between the two planes of transmission
be O at any instant, as shown in Fig. 13.11.

1 T ..
) ransmission

1 ~" plane of polariser
] -

b
L4
A

Transmission
——— plane of analyser

N

Fig. 13.11

The light vector AP = E;in the plane polarized light emerging from the polarizer
may be resolved into two components AE = E, cos 0, AO = E|; sin 0 respectively along
and perpendicular to the plane of transmission of theanalyzer. The perpendicular
component E, sin 6 is eliminated while the parallel component is freely transmitted
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through the analyzer. Hence the intensity of light that emerges from the analyzeris
given by,

I =E} cos’0=1,cos* 0 ... (13.60)

where I, is the intensity of the polarized light incident on the analyzer. This is, of
course, one-half of the intensity of the unpolarized light incident on the polarizer.
(13.60) shows that the transmitted intensity varies as the square of the cosine of the
angle between the planes of transmission of polarizer and analyzer. This is known as
Malus's law.

13.9 Retardation plates

A plate made of doubly refracting crystal with its refracting faces cut parallel to
the optic axis and employed to introduce a given phase difference between e-ray and
o-ray is called a retardation plate. If d be the thickness of the plate, n and n, be the
refractive indices for o-ray and e-ray then the path difference introduced by the plate
is given by

(n,~n,)d ... (13.61)

Corresponding phase difference is given by

2n

F)zT(no~ne).d .. (13.62)

If the thickness d of the plate is such that a path difference of A/4 or a phase
difference of m/2 is introduced between o-ray and e-ray then the plate is called
a quarter-wave plate. Thus, the thickness of a quarter-wave plate is given by

A

(no ~ ne)d = 7\//4, o1, d= W

.. (13.63)
On the other hand, If the thickness d of the plate is such that a path difference
of A/2 or a phase difference of m is introduced between o-ray and e-ray then

the plate is called a half-wave plate. Thus, the thickness of a half-wave plate is given
by

A

(nONne)dZK/Z, o1, d:m

.. (13.64)
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13.10 Production of elliptically and circularly polarized light

Production of elliptically polarized light : An elliptically polarized light can be
produced by superposing two mutually perpendicular coherent linear vibrations of
unequal amplitudes but differing in phase by A/2. For example, the linear optical
vibrations (at z = 0)

x =a cos(ot + n/2), y = b cos ot
yield an elliptic vibration given by

+2-=1
a® b

Two such linear vibrations can be obtained by allowing a beam of plane polarized
light to be incident normally on a quarter-wave plate with the direction of vibration
making an angle 6 other than 45° (about 30°) with the optic axis of the plate. The
incident light of amplitude A can be resolved into two components, one along the
optic axis forming e-wave of amplitude a = A cos 6 and the other normal to the optic
axis forming o-wave of amplitude b = A sin 0. Let these two components (at z = 0)
be represented by

x2 oy
2

x =acosot and y = b cos ot

On passing through the A/4 plate a relative phase difference of A/2 will be introduced
between these two waves. As a result, the emergent light will be elliptically polarized
as discussed above.

Production ofcircularly polarized light : A circularly polarized light can be
produced by superposing two mutually perpendicular coherent linear vibrations of
equal amplitudes but differing in phase by 7/2. For example, the linear optical vibrations
(at z = 0)

x = a cos(ot + m/2), y = a cos ot

yield a circular optical vibration x> + y? = a2

Two such linear vibrations can be obtained by allowing a beam of plane polarized
light to be incident normally on a A/4 plate with the direction of vibration making an
angle 6 = 45° to the optic axis of the plate. The incident light of amplitude A can be
resolved into two components, one along the optic axis forming e-wave of amplitude
Acos45° = A/+/2 and the other normal to the optic axis forming o-wave of amplitude

Asin45° = A/\J2 . Let these two components (at z = 0) be represented as

x=icos0)l and y=

iwt
\/E \/E CcOS
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Now on passing through the A/4 plate a relative phase difference of /2 will be
introduced between these two waves. As a result, the emergent light will be circularly
polarized as discussed above.

13.11 Detection of elliptically and circularly polarized light

Detection of elliptically polarized light : To confirm if the light coming out of
the quarter-wave plate is elliptically polarized, first examine it with a rotating Nicol
and adjust the position of the Nicol for maximum intensity. Place another quarter-
wave plate between the first quarter-wave plate and the analyzing Nicol such that the
optic axis of the second quarter-wave plate is parallel to the principal section of the
Nicol adjusted for maximum intensity. If the light was elliptically polarized it will
now become plane polarized. If the Nicol prism is now rotated, variation of intensity
from maximum to zero will be observed.

Detection of circularly polarized light : To confirm whether light emerging out
of the quarter-wave plate is circularly polarized, it is first passed through another
quarter wave plate with optic axis in any position. The light on emergence from the
second quarter-wave plate will become plane polarized. If it is now examined through
a Nicol prism, it will show variation of intensity withzero minimum.

13.12 Analysis of circularly polarized light

A circular vibration consists of two linear vibrations of equal amplitudes mutually
perpendicular to each other. When circularly polarized light is examined through a
Nicol prism the intensity of the transmitted beam is not altered as the Nicol is rotated.
The behaviour is similar to that of unpolarized beam of light.

To distinguish between the two, allow the light to fall normally on a quarter-wave
plate and then examine it through the Nicol prism. If the intensity varies between
maximum and zero, it is circularly polarized light. It is because the circular vibration
on entering the quarter-wave plate is broken up into two linear vibrations of the same
amplitude mutually perpendicular to each other. The quarter-wave plate further
introduces a phase change of m/2 between the two. The resultant phase difference
becomes O or 1 and the outgoing light is plane polarized. On examination through
the rotating Nicol, maximum intensity is observed when the principal section of the
Nicol is parallel to the vibration of the plane polarized light. Light will be cut off
completely when the principal section of the Nicol is perpendicular to the direction
of the resultant plane polarized vibration.
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The unpolarized light after passing through a quarter-wave plate remains unpolarized
and hence no change in intensity will be observed when passed through a Nicol prism
which is rotated gradually.

NAPLATE
PO%%EST%HTH PLA POLA.RISED IcDL
/\ 7INTENSITY
N4 I MAXIMUM
ZERO
ANALYSER
Fig. 13.12

Thus, we conclude that if the beam after passing through the quarter wave plate
is extinguished twice in each rotation of the Nicol prism, it is circularly polarized
(see Fig. 13.12).

13.13 Analysis of elliptically polarized light

When a beam of elliptically polarized light is examined through a rotating Nicol
prism about the ray as an axis, its intensity varies in magnitude, but is never zero.
It is because an elliptic vibration consists of a combination of two unequal rectilinear
vibrations in two directions perpendicular to each other along the major and minor
axis of the ellipse. When the principal plane of the Nicol is parallel to the vibration
along the major axis, the transmitted light has a maximum intensity and when the
principal plane is parallel to vibrations along the minor axis it has a minimum
intensity.

The behaviour is similar to a mixture of unpolarized and plane polarized light when
examined through a Nicol prism.

To distinguish between the two :

(1) Allow the light to pass through the rotating Nicol alone and adjust its position
for maximum intensity.

(i1) Allow the light under examination to pass through the quarter-wave plate
normally and the optic axis of the plate parallel to the principal plane of the Nicol
adjusted for maximum intensity.

The elliptic vibration is resolved into two rectangular vibrations of unequal
amplitudes with a phase difference of m/2 between them. By passage through the
quarter wave plate a further phase difference of n/2 is introduced between the two
rectangular components along the two axes of the ellipse, so that the resultant phase
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difference becomes © or 0. This light on emergence becomes plane polarized. If the
light is now examined through the Nicol prism, the intensity is reduced to zero twice
in one rotation of the Nicol prism when the principal section of the Nicol is perpendicular
to the plane of vibration of the emergent light. The incident light is thus elliptically
polarized.

13.14 Babinet's compensator

In the analysis of polarized light, it is desirable to have a device which can produce
a phase difference of any arbitrary value between two plane polarized waves in
mutually perpendicular planes. A single crystal, such as a quarter-wave plate, can only
produce one particular phase difference, depending upon its thickness and the
wavelength of light used. Babinet devised an arrangement called Babinet's compensator
by means of which a measurable and variable pathdifference can be introduced.

Construction : It consists of two slender right-angled quartz prisms ABD and ACD
placed together with their hypotenuse AD in contact with each otherso that they
together form a rectangular slab (Fig. 13.13). The axis of ABD is on the face AB and
parallel to AB of the section ABD whilethe axis of ACD is on the face CD but
perpendicular to the section ACD. Thus, the axes of the two prisms are at right angles
to each other so that the ordinary ray in one will behave as the extraordinary ray when
travelling in the other and vice versa. The thickness of the prisms are very small so
that the separation between the ordinary and extraordinary rays is practically nil.

In the Jamin's modified form one of the prisms is shifted by a micrometer
screw (Fig. 13.13).

VR, WwN,

Fig. 13.13
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Action : Let a ray PN of plane polarized light be made incident on the face AB
normally so that its plane of vibration is making an angle 45° with the optic axes.
This ray will be broken up into extraordinary and ordinary rays whose vibration will
respectively be parallel and perpendicular to the axis of ABD. If these two rays
traverse the thickness d of the prism ABD, then the path retardation introduced
between these two rays by the prism ABD is d(n,— n_ ) for quartz has a greater
refractive index (n,) for extraordinary ray than that (n,) for ordinary ray. These two
rays on entering the prism ACD will change their character, i.e., the ordinary and the
extraordinary rays in the prism ABD will respectively behave as the extraordinary and
the ordinary rays in the prism ACD. If these two rays traverse the thickness d' of the
prism ACD then the path retardation introduced between these two rays by the prism
ACD will be, —d' (n, — n,), for here opposite phase will be introduced. Thus, the
resultant phase difference between the rays emerging from the two prisms is

(d-d)(n,—n) ... (13.65)
and phase difference is

8=2Tn(d—d’)(ne—no) . (13.66)

For the central region, d (=NN,) becomes equal to d' (=N,N,) and hence the
resultant phase difference is zero. The emergent lightwill, therefore, remain plane
polarized whose direction of vibration will be parallel to that of the incident light.

If the compensator is placed between two crossed Nicols we get a dark band in
this position. This is the central dark band. Keeping the positions of crossed Nicols
fixed if the micrometer screw is rotated the phase difference will go on changing and
when 6 becomes 27 again a dark band appears. If the shift of the micrometer for this
is 2b then a shift x of the micrometer will introduce a phase difference

27 _TX
267"

Thus, by shifting one prism with help of a micrometer screw any amount of phase
difference can be introduced between e-rays and o-rays. On the other hand, if any
phase difference exists between e-ray and o-ray (for example, due to transmission
through any doubly refracting crystal plate), it can be neutralized or compensated by
the Babinet's compensator. This is why it is called a compensator.

Uses :

(a) To produce elliptically and circularly polarized light and

(b) To analyze an elliptically polarized light
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13.15 Optical activity

If a plane polarized light is passed through some crystals like quartz along the optic
axis the plane of vibration gradually undergoes rotation about the optic axis. The angle
of rotation is found to depend on the thickness and nature of the crystal and also on
the wavelength of the light employed. This phenomenon is called optical activity or
rotatory polarization and the substance which rotates the direction of vibration of
the incident polarized light is called optically active substance.

There are two classes of active substances. One class of substance rotates the line
of vibration of the incident light towards right and the substances belonging to this
class are called dextro-rotatory substances. Another class of substance rotates the
line of vibration towards left and the substances which belong to this class are called
laevo-rotatory substances.

The optical activity of crystals is associated with the structural dissymmetry of the
crystals. Optically active crystals are found to possess one or more screw axis of
symmetry. Here the atoms or molecules constituting the crystal are arranged on a
spiral which may be left-handed or right-handed. Some crystals occur in both the
varieties, one of which is the mirror image of the other producing rotation in opposite
directions. Some substances in solution show this property. In this case optical activity
is associated with the asymmetrical structure of the molecules themselves. There may
be a preferential direction of rotation associated with a molecule. Though molecules
in a solution are randomly oriented the rotations do not cancel out because the sense
of rotation is same for molecules having same type of dissymmetry. Thus, optical
activity 1s caused by structural dissymmetry of crystals or by molecular dissymmetry.
There are substances in which optical activity is associated with both kinds of
dissymmetry.

13.16 Biot'slaws for rotatory polarization

Biot made a systematic study of the natural rotation of the plane of polarization
by different substances, and established the following laws :

(1) The angle (0) of rotation produced by an active substance is proportional to the
length (/) of the substance traversed by the ray and is not affected by turning the
substance around, consequently the rotation will be annulled if the ray is reflected
back through the substance.

(2) The combined rotation produced by two different substances having different
thickness is the algebraic sum of the rotation caused by each separately.
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(3) The amount of rotation () in the case of a solution, is proportional to the
amount of active substance (m) present per c.c. of the solution.

(4) The amount of rotation varies with the wavelength of the incident light and with
temperature of the substance. The rotation is approximately proportional to the inverse
square of the wavelength.

In case of a solution, the first and third laws may be combined to have the relation,
0 = slm, where s is a constant and is called rotatory power or specific rotation of
the solution. Thus, specific rotation of a solution is defined as the amount of rotation
produced by a 10 cm column of liquid containing lgm of the active substance per c.c.
of the solution. Thus, for a solution containing mmg. of active substance per c.c. the
rotation (0) for a path length Icm is given by

0 = s.m. (I/10) .. (13.67)
where s is the specific rotation. For a pure liquid m is simply the density.

In the case of optically active crystals specific rotation is defined as the
rotation produced by a crystal plate of thickness 1mm.

Molecular rotationis obtained by taking the product of the specific rotation and the
molecular weight of the substance. According to the fourth law the angle of rotation
of the plane of vibration of a plane polarized light produced by an optically active
substance is found to be approximately proportional to the inverse square of the
wavelength. So, if a plane polarized white light is passed through an optically active
substance it will decompose into constituent colours. This phenomenon is known as
rotatory dispersion.

13.17 Fresnel's theory of optical rotation

According to Fresnel, a plane polarized light may be considered as the superposition
of two equal and oppositely described circularly polarized light. In case of optically
active quartz the secondary wavelets due to o- and e-rays do not touch each other
along the optic axis. As a result, the two equal and opposite circular vibrations travel
along the axis with unequal speed. On passing through the crystal some amount of
phase difference (say &) will be introduced between them. So emergent circular
vibrations will combine to form a plane polarized light whose plane of vibration is
rotated by certain amount (&/2) with respect to the incident vibration. This can be
explained as follows :

Let the incident linear optical vibration at z = O be represented by
x = 2a cos ot ... (13.68)
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This can be resolved into two circular motions :

left circular ~2

X, = a cosot X,= d COSmt
y, = —a sin ot

' right circular
y, = asinot

?Al

Fig. 13.14

These vibrations will travel with different velocities and as a result some phase
difference will be introduced between them. Let the right circular motion travels faster
than the left circular motion and there is a relative phase advancement of right circular
motion by . Since only relative phases matter the emergent light can be represented by

X, = a cosot and x, = a cos(wr + d)
y, = a sin ot y, = —a sin (ot + d)

Thus, the resultant vibrations along the x and y directions, on emergence are
respectively given by

x=x, +x, =a[cosot+ acos(or+ d)]

2 2

y=y, Ty, =alcosot— a sin(ort+ )]

=2a cosé. cosS ((ol + §)

b 8
=—2a sin.cos ((ot+ E)

Taking the ratio of x and y we get

yﬂan(—g)x .. (13.69)
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So, the emergent light is plane polarized whose direction of vibration makes an
angle —0/2 with the x-axis (which is the direction of vibration of incident plane
polarized light).

If v, and v, be respectively the velocities of the left- and right-handed
circular motion within the active substance, v, > v, then their time difference
=t = (l/lv, - l/vg) (wherel = thickness of active substance).

.. Phase difference between the two circular vibrations is given by

_2r( 11
0= T (VL ij
[.- for periodic time difference 7, the phase difference is 27.]

S:ZEI(L—szz—’d(nL—nR) .. (13.70)

o, =
cl'\v, v A

2

where n; and n, are respectively the refractive indices of the active substance for
left and right circularly polarized light along the direction of optic axis.

Again

1 1
SZZEI(E_EJ [ v, T =Rk vl = A

_2mIAN
or, 0= 2
Taking A, = A and A, = A + AL
Thus, the rotation of the plane of vibration is given by

(approx.) .. (13.71)

nl

0=8/2="(m, —ny) [from (13.70)]
or, <1>=5/2=n;A27” [from (13.71)]

Thus, the rotation varies as the thickness / and inversely as the square of the
wavelength A.

13.18 Polarimeter

Polarimeter is an optical device designed for accurate determination of the angle
of rotation of the plane of vibration produced by an optically active substance. When
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a polarimeter is calibrated to directly read the percentage of cane sugar in the solution,
then it is called a saccharimeter.

A polarimeter in its simplest form consists of two Nicols capable of rotation about
a common axis. The active substance is placed between them. Such an arrangement
is not sensitive enough for accurate measurement. For these various types of polarimeters
have been designed for accurate measurement of the angle of rotation.

13.18.1 Laurent half-shade polarimeter

The construction of a Laurent half-shade polarimeter is shown in Fig. 13.15. §" is
a slit kept at the focal plane of the convex lens L so that the rays emerging from L
will be parallel. The polarizing Nicol P polarizes this parallel light. This polarized
light then falls on the half-shade plate H. T is a tube containing the solution of active
substance.

¥

LA
Y

Fig. 13.15

The analyzing Nicol A, the objective O and an achromatic eye-piece E are kept in
a tube which can be rotated about a horizontal axis and this angle of rotation can be
recorded by two verniers rotating with the tube over a fixed circular scale S graduated
in degrees.

Working of the apparatus : The slit S’ is illuminated by monochromatic light
suitable for half-shade plate. Light from S’ will be rendered parallel by the lens L and
after being polarized by the Nicol P, will pass out of the half-shade plate H. This light
from H is received by the analyzer A and the telescope in the absence of the tube T.
The tube containing the analyzeris rotated until the two halves of the half-shade plate
are equally bright. The readings R, of the verniers are noted from the scale S.

The tube T, containing the active solution is now put in its position when the two
halves of the plate H will be unequally bright due to the rotation of the plane of
polarization by the solution. The tube containing the analyzeris again rotated either
towards right or towards left until the two halves of H again become equally bright.
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The readings R, of the verniers are again noted. Then 6 = (R, ~ R, ) will be the angle
of rotation of the plane of polarization by the solution.

Action of half-shade plate : One half of the half-shade plate is made of glass while
the other half is made of quartz whose axis is on the surface and parallel to theline
of junction of glass and quartz. Let the directions of vibration of the polarized rays
of light on the half-shade plate be parallel to RS (Fig. 13.16). If 6 be the angle which
the direction of vibration OS of a ray of light on quartz O, makes with OX (a line
perpendicular to the axis of the quartz which is parallel to YY') then the vibration of
this ray of light on the quartz half will be resolved into two vibrations. One parallel
to the axis of the quartz known as extraordinary ray and another perpendicular to the
axis known as ordinary ray. These two rays travel within the quartz with unequal
speed and hence a path difference will be created.

Fig. 13.16

The thickness of the quartz is such that a path difference of A/2 or a phase
difference of © will be introduced between the emergent ordinary and extraordinary
rays and they will combine to form a linear vibration whose direction will be parallel
to OT and inclined with OX by the same angle 6, but on the other side of OX. The
directions of vibration of the rays of light. incident on the glass half (G), will remain
unchanged on emergence i.e., the vibrations of the rays of light from the glass half
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will remain parallel to OR. If now the principal section of the analyzer be kept in
position N; so that it bisects the ZROT’, then the amplitudes of light received by the
analyzer at N, from both the glass half and the quartz half will be equal and both
halves will appear equally bright.

If now the tube T containing the active solution be placed in its position, the
vibrations parallel to OR and OT from glass half and quartz half respectively will be
equally rotated in the same direction by the same angle ¢ and the resolved parts of
their amplitudes in a direction parallel to the principal section of the analyzer at N,
will be unequal and hence the two halves G and Q will appear unequally bright. When
the tube containing the analyzeris rotated by an angle ¢ to bring the analyzing Nicol
at N, so that its principal section may bisect the angle between the new directions of
OR, and OT, the two halves G and Q will again become equally bright.

Determination of the strength of solution : The length / of the solution is
measured and expressed in decimetre. If the specific rotation s of the substance is
known, we can find the mass m of the active substance per c.c. of the solution from
the relation 6 = sim. If m is known, we can find s, the specific rotation of the
substance.

13.19 Summary

m  Linearly polarized light can be produced by various methods : e.g.,
(a) by allowing an unpolarized light to pass through a Polaroid
(b) by allowing an unpolarized light to fall on a dielectric surface at the

Brewster angle i, (= tan™! Z—fj
(c) by passing through a Nicol prism
m  If an unpolarized plane wave is incident on a uniaxial crystal, the plane wave
will split into two plane waves. One is referred to as the ordinary wave (usually
abbreviated as the o-wave) and the other is referred to as the extraordinary
wave (usually abbreviated as the e-wave). For both waves, the space and time
dependence of the vectors E, D, B and H can be assumed to be of the form
ekr=on where k denotes the propagation vector and represents the direction
normal to the phase fronts. In general, k vector for the o- and e-waves will
be different. Further,

(a) Both ordinary and extraordinary waves are linearly polarized.
(b) D.k = 0 for both o- and e-waves
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(c) For the o-wave, the D vector is at right angles to the optic axis as well
as to k.

(d) On the other hand, for the e-wave, D lies in the plane containing k and
the optic axis and of course, D.k = 0

m  Consider a uniaxial crystal whose optic axis lies on the surface of the crystal.
If the thickness of the crystal is such that a phase difference of 7/2 is introduced
between the ordinary and extraordinary waves, then the plate is said to be a
quarter wave plate (usually abbreviated as a QWP). If a linearly polarized
wave (with its E making 45° with the optic axis) is allowed to fall normally
on a QWP, the output is a circularly polarized wave.

m  When a linearly polarized light beam propagates through an "optically active"
medium like sugar solution then—as the beam propagates—its plane of
polarization rotates.

m  In a uniaxial crystal, the wave velocities associated with the ordinary and extra
ordinary waves are given by

C
Vw:Vwo:n— (O—WaVe)
0

2 6‘2 6‘2 2 02 2
Vie =5 =5 C0S" Y+—SIn" Y (¢ — wave)
nwe nO ne

where Vs is the angle that k makes with the optic axis; n_and n, are constants
of the crystal.

m  For E, (incident wave) lying in the x-y plane (which is the plane of incidence)

_ n,c0860;, —m cosO, tan (6,-9,)
1™ n,cos8, +mcosB,  tan(6, +6,)

- 2n, cosB, B 2cos 9, sin 6,
I nycos® +mcosB, sin(6,+6,)cos(6, +6,)

Notice that =20 when 6, + 0, =% implying

n
0, =i, =tan'| =2
1 p n

This is the Brewster's angle.
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m  For E, (incident wave) perpendicular to the plane of incidence (i.e., along

y-axis)
n, cos6; —n, cos6, sin (8, - 6,)
]’J_ = =——
n, cosO, +n, cos6, sin (6, +6,)
2n, cos 6, 25in 0, cos 6,
ZJ_ = =—
1, cos8, +n,cos8,  sin(6,+6,)

m In both cases, if n, < n, and 6, > 0, = sinfl(nz/nl) we have total internal
reflection. We can still use the above expressions for o B, 1) and t, but we
must remember that

sind, = n,/n, sin 0, will be greater than 1.
13.20 Review Questions and Answers

1. What is the difference between negative and positive crystal?

Ans. Negative crystal The wavefronts surrounding a point source S in such a
crystal are shown in Fig. 13.17(a). It is clear that
(1) ordinary wave surface lies inside the extra-ordinary wave surface.
(i1) Velocity of o-ray is constant in all direction.
(i) The velocity of e-ray varies with the direction.It is minimum and equal
to the velocity of the ordinary ray along the optic axis. It is maximum in a
direction perpendicular to the direction of the optic axis.

(iv) The refractive index for the e-ray is less than the refractive index

for the o-rayie ,n,<n,

OFTIC AXIS OPTIC AXIS

1A A

E o)

B ‘B
NEGATIVE POSITIVE
CRYSTAL CRYSTAL

(a) (b)

Fig. 13.17
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Ans.

Ans.

Ans.

Ans.

Positive crystal : The wavefronts surrounding a point source S in such a
crystal are shown in Fig. 13.17(b). It is clear that

(1) The ordinary wave surface lies outside the extraordinary wave-surface.
(i1) The velocity of o-ray is constant in all directions.

(i) The velocity of e-ray varies with the direction. It is maximum and equal
to the velocity of the o-ray along the optic axis. It has a minimum value in
a direction perpendicular to the optic axis.

(iv) The refractive index for the e-ray is more than the refractive index for
the o-ray i.e, n, > n .

State and explain Malus law.

Statement of Malus law :It states that the intensity of the polarized light
transmitted through the analyzer varies as the square of the cosine of the
angle between the plane of transmission of the analyzer and the plane of
polarized.

For explanation, see Article 13.8.

Give theory and construction of a half-wave plate and a quarter-wave
plate.

See Article 13.9.

What is the nature of emergent polarized light when circularly polarized
light is passed through (i) a quarter-wave plate (ii) a half-wave plate.

(1) When circularly polarized light is passed through a quarter-wave plate
such that the vibrations make an angle of 45° with the direction of optic axis,
the outgoing light will be plane polarized as the phase difference between the
e-component and o-component becomes ©/2 + 7/2 = 7.

(i1) When left-handed circularly polarized light is passed through a half-wave
plate such that the vibrations make an angle of 45° with the direction of optic
axis, the outgoing light is right-handed circularly polarized light as 6 = n/2
+ 7 =3m/2.

Plane polarized light is incident normally on a quarter-wave plate.
Determine the nature of emergent light in each case when the vibrations
in the incident light make angles of 0°, 30°,45° and 90° with the axis of
the plate.

When plane polarized vibration of amplitude A is incident normally on a
quarter-wave plate, it is split up into the e and o vibrations. If 6 is the angle
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which the incident vibration makes with the direction of optic axis, then on
emergence the resultant vibration is given by

+2-=1
a b

where a = A cos6and b = A sin 9

(1) When 6 =0°,a=A and b =0

This shows that the amplitude of the vibration perpendicular to the optic axis
is zero which therefore vanishes. The emergent light is plane polarized having
vibrations in a direction parallel to the optic axis.

(i) When 6 = 30°, a = A cos 30° and b = A sin 30° i.e., a is not equal to b.
The resultant vibration is given by

2 2
a b
This shows that the resultant light is elliptically polarized, the major and the
minor axes of the ellipse coincide with the co-ordinate axes.

(1)) When 6 = 45°, a = A cos 45° and b = A sin 45°, then a = b and we have
24P =

2
x2 oy
2

This shows that the emergent light is circularly polarized.

(iv) When 6 = 90°, a=0and b = A

The amplitude of the vibration along the optic axis vanishes. The outgoing
light, therefore, is plane polarized having vibrations perpendicular to the
optic axis.

In a uniaxial crystal, the wave velocities associated with the ordinary
and extra-ordinary waves are given by

C
Ve =Vio = n— (0 - Wave)
0

2 2 2
2 _ 2 C” 2
Vie = ——5C08" Y+—sin" Y (e — wave)

n n;

we €

where \ is the angle that k makes with the optic axis; n, and n, are constants
of the crystal.

Ans. See Article 13.6.
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7. Deduce Fresnel's laws of reflection and refraction from EM theory of
light. Show that Brewster's law of polarization is a direct consequence
of Fresnel's laws of reflection.

Ans. See Article 13.4.

13.21 Illustrated Examples

Example 1 : By Brewster's law show that light incident on a transparent
substance at polarizing angle gives reflected and refracted rays at right angle to
each other.

Solution : According to Brewster's law n = tan i = sin i/cos i
According to Snell's law n = sin i/sin r

Comparing above two equations, we get
cosi = sinr = cos(90° — r)
i =90°-r
i +r=90°
Angle between reflected and refracted = 180° — (i + r) = 180° — 90° = 90°,

Hence at the polarizing angle the reflected and refracted beams are at right angle
to each other.

Example 2 : If the refractive indices for the ordinary ray in the case of calcite and
Canada balsam are 1.658 and 1.550 respectively, calculate the maximum possible
inclination with the Canada balsam surface so that the ordinary ray is still quenched.

Solution : Here n, = 1.658, n, = 1.550

If C is the critical angle when light travels from calcite to balsam layer, then

1550 _
sin(C = m =0.9348
C =69.2°

Thus, the o-ray incident on the balsam layer at an angle less than 69.2° will not
be quenched. Hence maximum angle with the balsam layer for the o-ray to be quenched

= 90° — 69.2° = 20.8°.
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Example 3 : Two polaroids are adjusted so as to obtain maximum intensity.
Through what angle should one polaroid be rotated to reduce the intensity to (i) half
and (i1) one fourth.

Solution : According to Malus law

_ 2
I, =1 cos 0

or, 1,/1, = cos® 6
Now () I/I,=1/2
cos?® =05 or cos® =0.7071
Hence 0 = 45°
Now  (ii) I/1, = 1/4 =025

cos2 =025 or cos® =05
Hence 0 = 60°

Example 4 : Calculate the thickness of a quarter-wave plate for light of wavelength
5893 A, given refractive indices for ordinary ray and extra-ordinary ray 1.544 and
1.553 respectively.

Solution : Here n, = 1.544, n, = 1.553 and A = 5893 A = 5893 x 10 m

As p, > u,, the quarter-wave plate is made from a uniaxial positive crystal, the
thickness d of which is given by

A 5893x107"

I ) 4(1553-1.54)

_ 5893%1071°

_ —4
450000 0.1637 x 10 m

Example 5 : Calculate the thickness of a half-wave plate for light of wavelength
5000 A, given refractive indices for ordinary ray and extra-ordinary ray 1.544 and
1.553 respectively.

Solution : Here n, = 1.544, n, = 1.533 and A = 5000 A = 5000 x 1010 m

A _5000x107" .
2(n,—n,)  2(1.544—1533) ~ 0227 x 107 m

d=


https://www.print-driver.com/?demolabel-en

NSOU « CC-PH-09 345

Example 6 : The adjoining diagram shows the section of an extraordinary wave
surface in a positive uniaxial crystal with optic axis along OX. Show that the ray
refractive index of the medium at an angle 0 to the v
optic axis is given by

P(xy)

2 2
ne:\/nfcosze+ne sin” 6

where n_ and n, are respectively the refractive
index for the o-ray and the principal refractive index
of e-ray.

"

Solution : The equation of the wave surface is given by

2

+2 =1

3,5,

%)

But x = r cos0, y =rsin 0, b = vt v, being the wave velocity for e-ray along
OY (perpendicular to optic axis) and r = OP = v,t, where v, is the ray velocity of e-
ray along OP. Again, since the wave surface for o-ray is spherical, touching the wave
surface for e-ray along optic axis OX, a = v t, where v  is the wave velocity of o-ray,
being the same in every direction.

Thus, the above equation may be written as

2.2 - 2
vat’ cos’®  vit’sin 0

=1
v02t2 vft2

2 )
cos“0 sin“0
+ =

o, —5— — =1
v V)
2.2 22 2
c’cos’® ¢“sin“0 ¢
o1, 3 + 3 =
Vo Ve Vo

2.2 2.2 2
or, n,cos”0+mn,sin”0=n;

Ny = \/nf cos”0+n’sin’ @
where ny = ¢/v, , the ray refractive index for e-ray at an angle 6 to the optic axis.

Example 7 : The rotation in the plane of polarization (A = 5893A) in a certain
substance is 10° per cm. Calculate the difference between the refractive indices for
right-handed and left-handed circularly polarized light in the substance.
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Solution : Let 7 cm be the thickness of the substance and nj, and n, the indices
for right and left circularly polarized light in it. Then the rotation 6 in the plane of
polarizationis given by

9
3

a|>

e:%(”R N”L)Z =hp~n, =
Here 0/t = (10 x 2m/360) rad/cm and A = 5893 A = 5893 x 10°® cm

w2 10x2m 5893107
ROTET360 3.142

= 4.09 x 10~

Example 8 : A certain length of 5% solution causes an optical rotation of 20°.
How much length of 10% solution of the same substance will cause rotation of 35° ?

Solution : Let S be the specific rotation of the solution, /; the length of 5% solution
causing 20° rotation and /, the length of 10% solution causing 35° rotation.

0, 20° 35°

S = e1 = —
R A Lx5% 1, %x10%

_5x35, _7
27 10x20" 8"

Example 9 : A 20 cm length of a certain solution causes right-handed rotation of
38° and 30 cm of another solution causes left-handed rotation of 24°. What optical
rotation will be caused by 40 cm length of a mixture of the above solutions in the
ratio 1:2 by volume?

Solution : Optical rotation, 9o/, length of substance traversed for a given A.

Rotation by 20 cm of sol. 1 = +38° (right-handed)

Rotation by 30 cm of sol. 2 = —24° (left-handed)

= Rotation by 40 c¢m of sol. 2 =-24° x% =-32°

Since rotation of a mixture of active substances is the algebraic sum of individual
rotations, we write as

Rotation by (20 cm of 1 + 40 cm of 2) = + 38° — 32° = 6° i.e., mixture in the ratio
1:2

. rotation by 30 cm of the mixture = +3° (right-handed).
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14.1 Objectives

In going through this unit, you will learn :

1.

2.
3.
4.

Propagation of light in fibre
Numerical Aperture

Step and Graded Indices
Concepts of Single and Multiple Mode Fibres

14.2 Introduction

In recent times transparent dielectric fibres have been developed to carry efficiently
optical signals from one place to another. These are known as optical fibres. The study
of the properties of such optical fibres is known as fibre optics. Prior to the introduction
of fibre optics, EM waves down to microwave region were used for the purpose of
communication. But since the amount of information carried by EM waves is
proportional to its frequency, only about 100 pulses per second at best could be
transmitted by a wave of frequency 100. Now, by using laser light through fibre,

347
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million pulses per second can be transmitted. Moreover, because of low cost, high
reliability and extremely low losses optical fibres are gradually being used more and
more.

The diameter of optical fibres is usually large compared to the wavelength of
optical signals. The wave nature of light may thus be neglected to study the properties
of optical fibres and the known laws of geometrical optics may be applied. In fibres
of thin variety, the diameter of the fibre becomes of the order of the wavelength and
the wave nature of light cannot be neglected. In such cases, light propagates as EM
wave along the fibre, similar tomicrowave propagation along a wave guide.

14.3 Basic principle of fibre optics

An optical fibre is a very thin cylindrical fibre of glass or any transparent dielectric
medium such as plastic, having a radius ~ a micrometer (107° m). A bundle of such
thin fibres forms what is called light pipe, consisting of many thousands of very long
fine-quality glass or quartz fibres. the fibres are coated with a layer of material of
lower refractive index.

Coating (n=1.5)

Fiber material
(n=1.7)

Fig. 14.1

Total internal reflection is the basic principle of optical fibres. When light is
incident at one end of the fibre wall, it makes a nearly glancing incidence because
of the small radius of the fibre. Let 1 be the angle of incidence of the ray with the
axis (Fig. 14.1) and r the angle of refraction. If © be the angle at which the ray is
incident on the fibre boundary, then 6 = 90° — r. Let n, be the refractive index of the
fibre. If © > O, the critical angle, where 0. = sin(~1)1/n,, then the ray will undergo
total internal reflection. The ray is thus transmitted along the fibre by repeated internal
reflections until its emergence by the other end. Even if the fibre is bent in a complicated
shape, the transmission occurs without any appreciable loss.

Thus, the light ray is guided through the fibre from end to the other without
any energy being lost due to refraction.
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It is important to note that there must be very little absorption of light during transit
over a long distance inside the fibre. This is achieved by purification and special
preparation of the material used.

14.4 Structure and classification

Structure : Structurally, an optical fibre consists of an inner cylinder usually made
of glass and is known as the core. It is the core that carries the light. The dia of core
varies from about Sum to 100 pm.

The core is surrounded by another coaxial cylindrical shell of refractive index
lower than that of the core. This is called the cladding whose diameter is usually
about 125 um. The function of cladding is to retain the light within the core through
total internal reflections (Fig. 14.2).

Primary
coating

Secondary
# coating

Fig. 14.2

To provide greater strength and protection, a layer of soft plastic coating
of dia about 250 um surrounds the cladding. This coating is the primary coating. A
second layer of coating, called secondary coating, is often used outside the primary.

Classification : There are mainly two types of optical fibres, based on refractive
index profile of the core, namely (i) step-index fibre and (ii) graded-index fibre.

14.4.1 Step-index fibre

In step-index fibre, the refractive index n, of the core is uniform throughout the
core. Similarly, the refractive index n, of the cladding is also uniform. Necessarily,
n, > n,. Let a and b be the radius of the core and cladding respectively so that b > a.
The index profile and the radii of the core and the cladding of a step-index fibre is
illustrated in Fig. 14.3.
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Depending on the launch angle of the incident light into the fibre, there may a large
Limber of different zig-zag paths of the rays or modes by which energy travels down
the core. In Fig. 14.4, we have restricted to two rays only, entering at different angles
of incidence with the fibre-axis and emerging out of the fibre at different times. This
is then called a step-index multimode fibre. The rays travelling along different paths
take different times to reach the other end of the fibre leading to a widening of input

pulse as it traverses the fibre. This is called intermodal dispersion that distorts the
signal to be transmitted.

|2

Y ; - - - 1
SIS
Z I RNAY.VAV/AVARY)N

M

Fig. 14.4
14.4.2 Graded-index fibre

In a graded-index optical fibre, unlike the step-index one, the core has a
non-uniform refractive index that gradually decreases from the centre towards the
core-cladding interface. The cladding however has a uniform index The refractive

index profile of a graded-index fibre is illustrated in Fig. 14.5 and the paths of the
rays in Fig. 14.6.


https://www.print-driver.com/?demolabel-en

NSOU « CC-PH-09 351

An

n; Core
ﬂ_[ Cladding

ng | .
Air

N

[ ——

_______.:m
S

!
io
i

Fig. 14.5 Fig. 14.6

Here in multimode graded-index fibre, the ray-paths are not zig-zag; they are
refracted gradually. At the central region, the index is higher implying that the light
velocity is smaller; but near the cladding the situation is reverse, the index is smaller,
and the light velocity is greater. The rays thus spiral around near the axis, take shorter
paths, and travel slowly. But the rays spiraling around the vicinity of cladding take
longer paths and travel faster. As a result, all the rays tend to recross the axis at almost
the same instant as shown in Fig. 14.6.

14.4.3 Single mode fibre

There is another type of optical fibres, called single or monomode optical fibres
having narrow cores (~ 10 um) which allow only one mode to propagate, as shown
in Fig. 14.7. Here the rays travel only parallel to the axis and the problem of intermodal
dispersion is practically absent.

7

H =

/

Fig. 14.7

14.4.4 Comparison among different fibres

Of the different types of optical fibres, the multimode step-index fibre is the oldest.
Its advantages are that it is least expensive, rugged and can be infused easily with
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light. But its serious drawback is its intermodal dispersion and is unsuitable for long
distance communication.

The multimode graded-index fibre is medium-priced and intermodal dispersion
is not serious. It is thus widely used in medium distance communication.

The monomode fibres are relatively expensive and require laser sources. There is
no intermodal dispersion. They are most suitable for long distance communication.

Note : (1) If many uncladded fibres are packed to form a bundle, then light may
leak through from one fibre to the other. This is termed cross-talk. In modern fibres,
therefore, cladding is used. Cross-talk may also occur if a fibre is bent too sharply
for then the angle of incidence at core-cladding interface may be less than the critical
angle and a part of light may escape.

(2) If fibres are properly aligned in a bundle, it is called a coherent bundle; if not,
the bundle is an incoherent one.

(3) The reason for using glass for optical fibres are : (1) It has a range of accessible
temperatures where its viscosity is variable; it does not solidify at a fixed freezing
point but gradually becomes harder and harder and in the transition region can be
easily drawn into a thin fibre, (ii) Pure silica is characterized by extremely low 'loss'
e.g., in commercial silica fibres 96% of power gets transmitted through 1 km of
optical fibre, (iii) Its intrinsic strength is as high as 2 x 10® Ib/inch?. Further, silica
is very cheap and abundantly available.

14.5 Acceptance angle and Numerical aperture

We consider a step-index optical fibre. Let n;, n, be the indices of the core and
cladding respectively and n_ be that of the outside medium.

Let a ray be incident on the entrance aperture of the fibre at an angle 0, with its
axis and O, be the corresponding angle of refraction (Fig. 14.8).

///177 B LI/ Cedding f/7//1/77//7 D ‘/Z///

A B 03 i Core

By
m

N VI nzj//////////// CLIIHTII
Fig. 14.8

ny, sin®; = n; sin 0, .. (14.1)
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To retain the ray inside the core, the angle of incidence 0, at the core-cladding
interface must not be less than the critical angle 6.

But 6, = 90° - 0, .. (14.2)
Now, if 6, is increased, 0, also increases and so 0, decreases. There is thus a

maximum value of 0, for which 0, is not less than 0. and internal reflection at core-
cladding interface occurs. This angle is called the acceprance angle, 6, or 6 .

The acceptance angle is thus defined as the maximum value of launch angle
incident light into the fibre for which the ray is totally internally reflected at core-
cladding interface and gets transmitted without loss.

The acceptance angle is a measure of the light gathering power of the fibre.
A cone of light of semi-angle 0, is called the acceptance cone. Maximum acceptance
angle is 2 X0 ,.
Determination of 0, : We have from (14.1) and (14.2),
ny sin®, = n, sin0, = n, sin(90 - 6;) = n, cos O,
= n,sinB, = n, cos O .. (14.3)

for 6, = ©,),,. =9, and 6; = 0, the critical angle.

7y sin® , =m\/1-sin’ 0, :nl\/l—ng/nl2 :\/nlz—ng .. (14.4)

Since, sin O, = n, / n,.

The quantity n, sin 6, or sin 6, (when the outside medium is air) is defined as the
numerical aperture (NA) of the fibre. It is a measure of the light gathering power
of the fibre. If NA is large, it becomes easier to launch power into the fibre. Since for

all practical purposes (nl2 —n22) >1, we can define the numerical aperture as
NA=\n'-n; .. (14.5)

14.5.1 Fractional index change

Another important parameter, in this context, is the fractional refractive index
change.

It is defined as the fractional difference A between the indices of the core and the
cladding of the fibre.

A= .. (14.6)

m
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The parameter A is always positive since n, is always greater than n, to satisfy one
of the conditions for total internal reflection. For guiding the light rayseffectively
through a fibre A << 1 and typically A ~ 0.01.

Relation between A and NA : We have from (14.5)
NA=\n'-n;

Now, ”12 —ng =(n1 +112)(n1 —n2)

1 nm-—n
:E(n1+n2)( lnl 2)2111

1
~ () A2n, [ E(n1 +1,) nl}
= 2n12A

NA=./2n'A = n\2A .. (14.7)

14.6 Summary

m  We have explaind optical fibre and its working principle and described the
stucture of a typical optical fibre giving the necessary diagrams.

m  We have discured the step-index and graded-index optical fibre with necessary
diagram.

m  We have mentioned different classes of fibres and discured their relative merits
and demerits.

m  Relation between the numerical apearture (NA) of an optical fibre and fractional

index change A is N4 =m~/2A, where n, is the refractive index of the core.

14.7 Review Questions and Answers

1. What is an optical fibre? Explain the working principle of optical fibre
as a waveguide for light.

Ans. See Articles 14.2 and 14.3.
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2.

Ans.

Ans.

Ans.

Ans.

Ans.

Describe the structure of a typical optical fibre giving the necessary
diagrams.

See Article 14.4.

Describe, with necessary diagram, the step-index and graded-index optical
fibre.

See Articles 14.4.1 and 14.4.2.

What are meant by acceptance angle and numerical aperture (NA) of a
fibre. Find their expressions and significance for a step-index fibre.

See Article 14.5.

What are the different classes of fibres? Discuss their relative merits and
demerits.

See Article 14.4.4.

Give the expression for the numerical aperture (NA) of an optical fibre
and show that it is related to fractional index change A, by the equation

NA =n~2A
See Article 14.5.1.

14.8 Illustrated Examples

Example 1 : Find the numerical aperture (NA) of a step-index fibre when the
refractive index of the core is 1.51 and that of the material used for cladding is 1.47.

Solution : Here, n, = 1.51, n, = 1.47

NA =nt—n? =+1.51* =147

= J(1.51+1.47)(1.51-1.47)

=/2.98x0.04 =0.3452

Example 2 : Calculate the acceptance angle of the fibre referred to in Ex. 1 when
it is placed in air.

Solution : Let 0, be the required acceptance angle. Then we have

nysin® , = \/nlz —ng = NA=03452 (Ex.1) and n, = 1 (air).
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So, we obtain
sin@, = 0.3452 = 6, = sin 1(0.3452) = 20.19°

Example 3 : The numerical aperture (NA) of an optical fibre is 0.5 and the core
refractive index is 1.54. Find the refractive index of the cladding

Solution : Refractive index of cladding is

ny = \n? —(NA)* =~/11.54% —0.52 =1.46
Example 4 : In a graded-index fibre the radial distribution of index is given by
n(r) = 1.52 — 212

With 7 in mm up to a radius r, = 0.2 mm. Calculate the acceptance angle of the
fibre.

Solution : Here, n, = 1.52 and n, = 1.52 -2 x (0.2)> = 1.52 — 0.08 = 1.44

.. Acceptance angle,

0, =sin” \/nf —ng
=sin"'\/1.522 —1.44%
=sin"'/2.96x0.08 = 29.12°

Example 5 : For a typical step-index (multimode) fibre with n, = 1.45 and
A =0.01. Calculate acceptance angle.

Solution : sin6 , = NA=m~/2A =1.45%x/2x0.01 = 0.205 = sinl12°
GA =12°
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