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PREFACE

In a bid to standardize higher education in the country, the University Grants
Commission (UGC) has introduced Choice Based Credit System (CBCS) based on
five types of courses viz. core, generic, discipline specific, elective, ability and skill
enhancement for graduate students of all programmes at Honours level. This brings in
the semester pattern which finds efficacy in sync with credit system, credit transfer,
comprehensive continuous assessments and a graded pattern of evaluation. The objective
is to offer learners ample flexibility to choose from a wide gamut of courses, as also to
provide them lateral mobility between various educational institutions in the country
where they can carry their acquired credits. I am happy to note that the University has
been recently accredited by National Assessment and Accreditation Council of India
{NAAC) with grade “A”.

UGC (Open and Distance Learning Programmes and Online Programmes) Regulations,
2020 have mandated compliance with CBCS for U.G programmes for all the HEIs in
this mode. Welcoming this paradigm shift in higher education, Netaji Subhas Open
University (NSOU) has resolved to adopt CBCS from the academic session 2021-22
at the Under Graduate Degree Programme level. The present syllabus, framed in the
spirit of syllabi recommended by UGC, lays due stress on all aspects envisaged in the
curricular framework of the apex body on higher education. It will be imparted to
learners over the six semesters of the Programme.

Self-Learning Materials (SLMs) are the mainstay of Student Support Services (SSS)
of an Open University. From a logistic point of view, NSOU has embarked upon CBCS
presently with SLMs in English / Bengali. Eventually, the English version SLMs will be
translated into Bengali too, for the benefit of learners. As always, all of our teaching
faculties contributed in this process. In addition to this, we have also requisioned the
services of best academics in each domain in preparation of the new SLMs. [ am sure
they will be of commendable academic support. We look forward to proactive feedback
from all stakeholders who will participate in the teaching-learning based on these study
materials. It has been a very challenging task well executed by the teaches, officers &
staff of the University, and I heartily congratulate all concerned in the preparation of
these SLMs,

I wish you all a grand success.

Professor (Dr.) Ranjan Chakrabarti
Vice-Chancellor
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Unit 1 O Complex Analysis

Structure

1.1  Objectives

1.2  Introduction

1.3  Brief Revision of Complex Numbers

1.4 Euler’s Formula

1.5 De Moiver’s Theorem

1.6 Roots of complex numbers

1.7 Functions of Complex Variables

1.8  Analyticity and Cauchy-Riemann conditions
1.9  Singular functions

1.10 Integration of the function of a complex variable
1.11 Cauchy’s integral formula

1.12 Laurent and Taylor’s expansion

1.13 Residues and Residue Theorem

1.1 Objective

After studying this section, students will be able to—

know the historical background of the origin of complex numbers
understand the basic concept of complex numbers
understand the basic algebraic properties of complex numbers

)
)
.
e understand the general rules for working with complex numbers
e learn the graphical representation of complex numbers

)

understand the uses of complex numbers

1.2 Introduction

The role of complex numbers is inevitable in many branches of physics. Analysis
of electric circuits, electromagnetic waves, matter waves, quantum mechanical

7
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phenomena, acoustic vibrations, nuclear reactions—all needs the intervention of
complex algebra. For instance, we may refer to optics where it appears in the form
of complex refractive index causing absorption of electromagnetic waves, in nuclear
physics, we introduce complex numbers or complex variables in terms of complex
potential to investigate nuclear reactions and many more.

1.3 Brief Revision of Complex Numbers

One of the first mathematicians who realized the need for complex numbers was
Italian mathematician Girolamo Cardano (1501-1576). Around 1545, Cardano
recognized that his method of solving cubic equations often led to solutions
containing the square root of negative numbers. Imaginary numbers did not fully
become a part of mathematics, however, until they were studied at length by French-
English mathematician Abraham de Moivre (1667-1754), Swiss family of
mathematicians named the Bernoullis, Swiss Mathematician Leonhard Euler (1707-
1783), and others in the eighteenth century.

Complex Numbers and their Graphical Representation

Complex numbers consist of two parts, one real and one imaginary. An

imaginary number is the square root of a negative real number, such as ./_4. The

expression ./—4 is said to be imaginary because no positive real number can satisfy
the condition stated. Meaning, no positive number can be squared to give the
value —4. The imaginary number ,/_] has a special designation i/ in mathematics.

Complex numbers can be represented as a binomial (a mathematical) expression

consisting of one term added to or subtracted from another) of the form (a+r‘b). In
this binomial, a and b represent real numbers and ;= ./_].

From the above discussions, it is obvious that complex numbers can be defined
as an ordered pair (x, y) of real numbers that are to be interpreted as points in the
complex plane, with regular coordinates x and v, just as real numbers x are thought
of as points on the real line. When real numbers x are displayed as points (x, 0) on
the real axis, we write x = (x, 0); and 1t is quite obvious that the set of complex
numbers includes the real numbers as a subset. Complex numbers of the type (0, y)
correspond to points on the y-axis and are called pure imaginary numbers for non-

zero y (1.e. when y#0). The y-axis is then referred to as the imaginary axis. It is
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customary to express a complex number (x, y) by z, so that

z=(x, ¥) (1.1)
The real numbers x and y, also respectively called real and imaginary part of z,
and can be donoted as

x=Rez y=1Im: (12)

Two complex numbers z and z, will be equal only when they have the same real
parts and the same imaginary parts. Thus the statement z, = z, refers to the same point
on the complex plane, or on the z plane.

The sum z,+z, and the difference z —z, of two complex numbers z, = (x,,3)

and z,(x,,y,) are defined as

(xl.}’l)i(xzn}’2)=(xl x5, 0 i}’z) (1.3)

and their product is defined as

(.21 )0 0m) = (0% = 1y % + 5135) (1.4)

It can be noted that the operations defined by means of Eqs (1.3) and (1.4) become
the usual operations of addition, substraction and multiplication when restricted to
the real numbers:

(x,0)£(x;,0) = (xlixzao)}
(x,00%2.0) = (xx,,0)

Thus, the complex numbers system is an extension of real numbers system. Any
complex nmber z=(xy) can be written as z=(x,0)+(0,y), and it is easy to verify

that (0,1)(y,0)=(0,y). Hence z=(x,0)+(0,1)(»,0) and if one thinks of a real number

as either x or (x,0) and let / be denote the purely imaginary number (0,1) as depicted
in Figure 1.1, then

z=x+iy (L5)
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Following the convention z%=z 72*=z%;z*=2%; efc., one may have
2 =(01(01)=(-10), or
=1 (1.6)

Since, (x,y)=x+iy, definitions (1.3) and (1.4) become

(x +iv ) (6, + i) = (£ )+ () 2 3,) (1.7)

and their product is defined as
(g + 00 )oe +102) = (32 = 2 )+ i(xs +x,32) (1.8)

Basic Algebraic Properties

Operations with complex numbers mostly follow the same rules as those for real
numbers. Two exceptions to those rules arise because of the nature of complex
numbers. First, what appears to be an addition operation, g+bi, must be left
uncombined. Second, the general expression for an imaginary number, such as
i’ = -1, violates the rule that the product of two numbers of a like sign is positive.
Some of the basic properties of complex numbers follow:

e Closure law if z, z,, z; belong to the set S of complex numbers. Then x; +z,
and z z, also belong to the set S.

e The commutative laws
i+ zy =2y 2,512y = 257 (19)
e The Associative laws
(zl+zz)+z3=z2 +2),212; = 252 (1.10)
e The distributive law
z(zl+zz)=zzl+zz2 (1.11)

e Additive identity 0 = (0,0) and the multiplicative identitity 1=(1,0) for real
numbers apply to the entire complex number system. That is,
z4+0=zand z.1=z (1.12)
for all complex number z.
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e For each complex number :z =(x, y) there exists an additive inverse of the
form

—r=(ox-y), (1.13)

which satisfies the equation z+(—z)=0. It is to e remembered that there
exists only one additive inverse of any given z, since the equation
(x,y)+(u,v)=(0,0) implies that #=-x,v=-y.

e Multiplicative inverse ; For any nonzero complex number z = (x,y), there is
a number z! satisfying the condition zz7'= 1. To see it we need real numbers

# and v expressed in terms of x and y, such that (x,y)(x,v) = (1,0) = xuw—pv=1,
yu + xv = 0. Solving them one may yet

x
X +y°
-y
X2 +y?

H =

vy =

Thus the multiplicative inverse of z = (x, y) 15

Z'l=[ R 2] [z 0] (1.14)

Pyt +y

When z=0, the inverse z! is undefined, because z = 0 means x%+ % =0,
which is not allowed in the Eq. (1.14). Existence of multiplicative inverse
help us to prove that if a product zz, is zero, at least one of the factors z|

1

and z, must be zero. If zz,= 0 and z; # 0, then the iverse z~ exists and any

complex number multiplied by zero is zero. So,

-1 -1 -1 -1
2, =2,1= 22(2121 )= (zl 21)22 =z (z25) =2 (0)=0.

Thus, if z z,= 0, then either z= 0 or z,=0; or possibly both z and z, are zero.
It can also be stated that if two complex numbers z, and z, are nonzero, then
their product z z,is also nonzero.
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12
e Subtracton and division can be defined in terms of additive and multiplicative

inverses:

=zlzz'l(z2 #0) (1.16)

T
i |_N

Using the notations, z =(x,) )and z, =(x,,5,), above relations can be

expressed as
(1.17)

L-%;= (xl.»}’l)"‘ (‘Xz.»‘}’z) = (xl —X2. N —}’2)

2

Z

X2 =)
(1, 32 7. 22, .2
X;+y; x3+y7

{xlxz + VY2 WXz _xl}’zJ [22 = 0] (1.18)

> 2 22
s+, s+,

Again using the notations, z; =x; +iy, and z, = x, +#y,, above relations can

further be expressed as
(1.19)

-2 = (xl ‘xz)"‘f(}’l -¥,)

z + —
A B0EN | IS TN [ ) (1.20)

o x+y; X3+ )
Eq. (1.20) can also be written in an easy to remember form as

- (r+ 3 )xa — 13, 121)
22 (x2 +f:y2)(X2 —l:yz) :
e Using Eqs. (1.11) and (1.16), one can also write
otz _
17 2 = (zl+22)z3l
23
= zlz;l+zzz3_l>
2z (1.22)
- 23 I3
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e Relation (1.16) with z, =1, gives

1

P =z [z,#0] (1.23)

e Eq. (1.23) enables us to write Eq. (1.16) in the form

A zl(%) [z, = 0] (1.24)

2
Further one can verify that
(zlzz)(zl_lzz_ l) =(zlzl_l)(zzzgl)=l [z, #0, z, #0] and hence that

1251 = (2122)_1'

e One can use Eq. (1.24) to verify that

2) - =
L)\ %
= (3132)_1

= L
= 3 [z #0,2, #0]

=
“1

(1.25)

e Another useful property which can be derived is

ll 22) “192
= 1.26
[23)[24 2324 (1.26)
e The binomial formula involving real numbers remains valid with complex

numbers. That is, if z, and z, are any two nonzero complex numbers, then

[

(r+z) =X i)t (=12, (1.27)

k=0

n #
where (k) = m(k =012,. &0t =1')' Applying additive commutation
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property of complex numbers Eq. ( ) can also be stated in the form

[

(a+z) =X [i) A A (=12, (1.28)
k=0

The general rules for working with complex numbers

The following are the basic rules that apply to the algebraic operation of
complex numbers.

1. Equality: To be equal, two complex numbers must have equal real parts
and equal imaginary parts. That is, assume that we know that the
expressions (a + i#) and (¢ + id) are equal. That condition can be true if
and only if ¢ = cand b = d.

2. Addition: To add two complex numbers, the real parts and the imaginary
parts are added sepatately. The following examples illustrate this rule:

(a+bi)+{c+di)=(a+c)+(b+d)i

(3+5i)+(8-7i)=11-2i

3. Subtraction: To subtract a complex number, subtract the real part from
the real part and the imaginary part from the imaginary part. For
example:

(a+ib)—(c+fd)=(a—c)+i(b—d)
(6+41)—(3-2/)=3+i6

4. Zero: To equal zero, a complex number must have both its real part and
its imaginary part equal to zero. That is, g+ bi=0 if and only if =0
and b = 0.

5. Opposites: To form the opposite of a complex number, take the opposite
of each part. The opposite of a + ib is —(a + ib), or —a + i(-b). The
opposite of 6 — 27 1s -6 + 2/,

6. Multiplication: To form the product of two complex numbers, multiply
each part of one number by each part of the other. The product of

(axiB)x(c+id)isac +iad +ibc+i°hd . Since ;2pg =_pg, the final

product is ac+adi+bci—bd . This expression can be expressed as a



NSOU « CC-PH-10 15

complex number as (ac—bd)+i(ad +bc). Similarly, the product
(5—2i)x(4-3i) is 14 — 23i.

7. Conjugates: Two numbers whose imaginary parts are opposites are
called complex conjugates. The complex numbers g+ bi and g—pi are

complex conjugates because the terms #7 have opposite signs. Pairs of
complex conjugates have many applications because the product of two

complex conjugates is real. For example, (6 —127) x(6+127) = 36 —144i°,
or 36+144=180.

8. Division: Division of complex numbers is restricted by the fact that an
imaginary number cannot be divided by itself. Division can be carried
out, however, if the divisor 1s first converted to a real number. To make
this conversion, the divisor can be multiplied by its complex conjugate.

Graphical Representation

After complex numbers were discoverd in the eighteenth century, mathematicians
searched for possible ways of representing these combinations of real and imaginary
numbers. One suggestion was to represent the numbers graphically, as shown in
Figure 1.1. In graphical systems, the real part of a complex number is plotted along
the horizontal axis {i.e., X-axis) and the imaginary part is plotted on the vertical axis
(Le, Y-axis).

In figure 1.1(a), point P stands for the complex number 3 + 44, point O stands for
the complex number -3 + 3/, point R stands for the complex number -2.5 — 1.5/ and
point § stands for the complex number 2 — 2/.

In Figure 1.1(b); P represents a point in the complex plane to represent the
complex number {(x, v¥) or (x + Jjy), such that x=rcos,y=rsin6,

r=yxt+y° =[x+#] is called the absolute value or modules of z=x+iy and

6= tan™! (%) is called the amplitude or argument of z = x+/y also denote by arg z.

Thus, z=x+iy=rcosO+irsin® = r{cosO+isin®)represents the polar form of the
complex number with polar coordinates » and ©.

D/Barun-2022/Netaji Subhas Open University/CC-PH-10 New Book /Unit-1/4.1.2023/15
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Y
Y
T4 .
PG, 4)
. +3
0(-3,3) P(x, )
-2
,
L g y
T(2.5,0) ,
X ———— e ——X X 0 N X
4 3 2 - 1 2 3 4
-1
R(-25,-15)
o T2 e
+-3 (b)
(a) Yy’ Y’

Figure 1.1: Graphical representation of complex numbers: (a) in cartesian
coordinates, (b) in polar coordinates

Use of Complex Numbers

For all the ‘‘imaginary’” components they contain, complex numbers occur
frequently in scientific and engineering calculations. Whenever the solution to an
equation yields the square root of a negative number (Such as \/—9), complex

numbers are involved. One of the problems faced by a scientist or engineer, then, is
to figure out what the imaginary and complex numbers represent in the real world.

1.4 Euler’s Formula

Objectives
After studying this section, students will be able to-

e know the historical background of the Euler’s formula

e understand the fundamental relationship between trigonometric functions
and complex exponential function

learn the graphical representation of the complex function
understand how to interpret Euler’s formula

understand use Euler’s formula in defining logarithm of complex numbers

understand the connection of complex analysis with trigonometry

e learn exponentiation of complex function
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Introduction

Euler’s formula, named after Leonhard Euler, is a mathematical formula in
complex analysis that establishes the fundamental relationship between trigonometric
functions and the complex exponential function. Euler’s formula states that for any
real number x:

™ =cosx+isinx (1.29)

which for ¥ — —x becomes

e =cosx—isinx (1.30)

where e is the base of the natural logarithm, i i1s the imaginary unit, and cos and sin
are the trigonometric functions cosine and sine respectively, with the argument x
given in radians. This complex exponential function i1s sometimes denoted cis x
(“‘cosine plus i sine’’). The formula is still valid if x 1s a complex number, and so
some authors refer to the more general complex version as Euler’s formula.'

Euler’s formula has many applications in mathematics, physics, and engineering,
The physicist Richard Feynman called the equation ‘“‘our jewel”” and ‘‘the most

1y

remarkable formula in mathematics’ > When x =g, Euler’s formula evaluates to

™ +1=0, which is known as Euler’s identity.

Interpretation of Euler’s Formula

Euler’s formula can be interpreted as saying that the function €is a unit

complex number that traces out a unit circle in the complex plane as ¢ ranges through
the real numbers. Here ¢ is the angle in radians that a line connecting the origin to
a point on the unit circle makes with the positive real axis, in the counterclockwise
direction.

The original proof is based on the Taylor series expansions of the exponential
function ¢° (where z is a complex number) and of sin x and cos x for real numbers
x. The same proof shows that Euler’s formula is even valid for all complex number x.

A point in the complex plane can be represented by a complex number written

1. Moskowitz, Martin A. (2002). A Course in Complex Analysis in One Variable. World Scientific
Publishing Co. p. 7. ISBN 981-02-4780-X.

2. Feynman. Richard P. (1977). The Feynman Lectures on Physics, vol. I. Addison-Wesley. p. 22-10.
ISBN 0-201-02010-6.
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o
>

e’ =cos g +ising

sin @

Figure 1.2: Graphical representation of complex number

in cartesian coordinates. Euler’s formula provides a means of conversion between
cartesian coordinates and polar coordinates. The polar form simplifies the mathematics
when used in multiplication or powers of complex numbers. Any complex number

z=x+1iy,and its complex conjugate, z=x—iy, can be written as

=
Il

xX+iy

|z|(cosp+ising)
0

re'

Al
Il

=1y (1.31)
|z|(cosp—ising)

re '®

where x=Re(z)is the real part of z y=Im(z)is the imaginary part of

Zr= |z| = /x? + y? is the magnitude of z,¢ =argz =atan2(y,x)[0 is the argument
of z, i.e., the angle between the x axis and the vector z measured counterclockwise
in radians, which is defined up to addition of 2x.

Many texts write ¢ =tan™" (%) instead 9 = atan2(y,x), but the first equation
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needs adjustment when x < (. This is because for any real x and y not both zero the
angles of the vectors (x,)) and (—x, —y) differ by = radians, but have the identical

value of tan ¢=%‘

Use of Euler’s formula in Defining Logarithm of Complex Numbers

Euler’s formula can be used to define the logarithm of a complex number using
the definition of the logarithm as the inverse operator of exponentiation:

a = ehe (1.32)
and that
e%eb = ootP (1.33)
both valid for any complex numbers @ and . Therefore, one can write:
7= |Z|ei(p — e]n|z|ei(p — eln|z|+.i(p (1.34)
for any z (. Taking the logarithm of both sides we find
In z = In|z|+i¢ (1.35)

and in fact this can be used as the definition for the complex logarithm. The
logarithm of a complex number is thus a multi-valued function, because ¢ is multi-
valued.

Finally, the other exponential law
k 1
(e") =% (1.36)

which can be seen to hold for all integers %, together with Euler’s formula, implies
several trigonometric identities, as well as de Moivre’s formula.

Euler’s Formula in Connecting Complex Analysis with Trigonometry

Euler’s formula provides a powerful connection between complex analysis and
trigonometry, and provides an interpretation of the sine and cosine functions as
weighted sums of the exponential function :
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CosX = Re(eix) = "'26 ,
sin x = Im(¢'") = e —e” (137)
2i

Alm

ix, _~ix

(0]
|+
(]

e
y

L
*

D

Figure 1.3: Relationship between sine, cosine and exponential function

Euler’s formula:

e” = cosx+isinx,
(1.38)

—ix

e cos(—x)+isin(—x)=cosx—isinx

and solving for either cosine or sine. These formulas can even serve as the definition
of the trigonometric functions for complex arguments x. For example, letting x = iy,
we have:

¥4V
cos(iy) = %:cosh(y),

(1.39)

=Y _ oY Y _po7Y
sinly) = £ :i(e 5 j=sinh<y>,
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Complex exponentials can simplify trigonometry, because they are easier to manipulate
than their sinusoidal components. One technique is simply to convert sinusoids into
equivalent expressions in terms of exponentials. After the manipulations, the simplified
result is still real-valued. For example:

¥ 4o My

2 2
1 ei(x+y)+ei(x—y)+ei(—x+y)+ei(—x—y]
2 2

COs8 X' COs )

(1.40)
ei[x+y] + e—i[x+y] ei(x—y] + e—i(x—y]

= 2 * 2

c os(vx+ v cos(vx— v

2 |

Another technique is to represent the sinusoids in terms of the real part of a
complex expression and perform the manipulations on the complex expression. For
example:

cos(ix) = Re(e™)

- Re(ei(n—l)x.eix)

ei(n—l)x_[eix +e—ix _e—ix}] §
[ ——
] o Z2cosx )

= Re(ef(”_l]x-Z cosX— e“”‘z”)

= cos[(n—1)x][2cos(x)] - cos[(n - 2)x]

= Re

(1.41)

This formula is used for recursive generation of cos nx for integer values of »
and arbitrary x (in radians).

Exponentiation of Complex Function

The exponential function e* for real values of x may be defined in a few different
equivalent ways (see Characterizations of the exponential function). Several of these
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methods may be directly extended to give definitions of ¢* for complex values of z
simply by substituting z in place of x and using the complex algebraic operations. In
particular, we may use either of the two following definitions, which are equivalent.
From a more advanced perspective, each of these definitions may be interpreted as
giving the unique analytic continuation of ¢* to the complex plane.

Power Series Definition

For complex z

2 3
z _ £,z
e’ = 1+”+2!+3!+...
- 3 z
- n=0
2 3
z _ Z4Z 4z
€ 1+”+2!+3!+... (1.42)
v z
n=0 gl

Using the ratio test, it is possible to show that this power series has an infinite
radius of convergence and so defines ¢ for all complex z.

Limit definition

For complex z

H
e = lim [1+ 2 (1.43)
I

H—ioo

Here, # is restricted to positive integers, so there is no question about what the
power with exponent # means.

Proofs: Various proofs of the formula are possible.
Using power series

Here is a proof of Euler’s formula using power-series expansions, as well as
basic facts about the powers of 7:

. (1.44)
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Using now the power-series definition from above, we see that for real values
of x

(i;?z s (i;cf . (iﬁ" . (:'335 s (,26 N (i);): N (r‘;c!)g .

Pl S S S S N

e = l+ix+

S TR T U T TI TR
2 4 6 b3 3 3 7
S T S A N S I IV SO SO (1.45)
- [1 217 41 61 8 "']“(x 31751 7!*'“)
= cosx+isinx.

In the last step, we have simply recognized the Maclaurin series for cos x and
sin x. The rearrangement of terms is justified because each sereies is convergent.

Using polar coordinates :

Another proof is based on the fact that all complex numbers can be expressed
in polar coordinates. Therefore, for some » and © depending on x,

" =r(cos®+isin®) (1.46)

No assumptions are being made about 7 and 0; they will be determined in the course
of the proof. From any of the defimtions of the exponential function it can be shown
that the derivative of e™is ie™ Therefore, differentiating both sides gives

je™ =(cose+isine)%+r(—sin9+icosﬂ)%‘ (1.47)

Substituting r(cos®+7sin®) for e and equating real and imaginary parts in this
formula gives

and

de

a ]

Thus, r is a constant, and 0 is x4+ for some constant C. The initial values #{0) =1
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and 8(0) =0 come from ¢% =1, giving # = 1 and 8 = x. This proves the formula

e™ =1(cos x +7sin x) = cos x +7sin x. (1.48)

1.5 De Moivre’s theorem

Objectives

After studying this section, students will be able to-
e understand the basic concepts of de Moivre’s theorem
e use de Moivre’s Theorem to calculate powers of complex numbers
e derive Euler’s formula from de Moivre’s theorem
e solve problems on complex numbers based on de Moivre’s theorem

Introduction

Abraham de Moivre introduced a very important formula named after him that
connects complex numbers to trigonometry. De Miovre’s formula also known as de
Moivre’s theorem or de Moivre’s identity in mathematics, states that for any real
number x and integer # it holds that

(cos(x)+7sin(x))" = cos(rx)+7sin(nx) (1.49)

where 7 is the imaginary unit (7 = —1). By expanding the left-hand side and then
comparing the real and imaginary parts under the assumption that x is real, it is
possible to derive useful expressions for cos(zx) and sin(rx) in terms of cos(x) and
sin{x). The formula is valid for only integer #». A generalization of this formula is
valid for other exponents and those can be used to find explicit expressions for the
n-th roots of unity, using the relation z*= 1 for complex z. If we have any arbitrary
complex number z, we can write it in the complex polar form as

z=(rcos0)+i{rsin Q) (1.50)
where 7, 0 are real and 7° =—1. Furthermore, if we have another complex number

v=(pcosdh)+i(psin) (1.51)
Then the product of z and v is given by

[(F cos®)+i(rsin0)] x[(pcosdp) +i(psin )]
rp[cos(@ +¢)+isin(0+ ¢)]

zv
(1.52)
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In other words, the moduli of the complex number are multiplied together while the
arguments are added together. The above formula can be extended to any integer 7.

Generalization of de Moivre’s formula

If zy=x+iy =r{cosB +isinB)) and z, =x,+iy, =r(cosB,+isinB,), then

one can show that

2,2, = K, [cos (6,+6,)+isin(6, +6, )]

and
| i i -
Z—g[cos(el —8,)+isin(, —92)]
In general,
222, =Ky, {cos(, +6,+..+0, ) +isin(6,+0,+..+6, )}
If, zi=zp=z3=........ =z, =Z,h=h=K=. ... =t,=r and
0, =0,=0;=..... =0, =0, then from (1.55) we have

2" =" {cos(0) +isin(0) }
" {cos(0) +isin(0)}" = r" {cos(#0) +isin(n0)}
{cos(8)+7sin(8)}" = {cos(10) +isin(nO)}
Eq. (1.58) is the De moivre’s formula.

Derivation of Euler’s formula from de Moivre’s theorem
De Moivre’s theorem can easily be derived from Euler’s formula
e” =cosx+isinxy

and the exponential law for integer powers

Y/ e
(e:,\) =

(1.53)

(1.54)

(1.55)

(1.56)
(1.57)

(1.58)

(1.59)

(1.60)
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Then, by Euler’s formula,
e"™ = cosnx+isinnx. (1.61)

Proof of de Moiver’s theorem by induction (for integer n)

The truth of De Moivre’s theorem can be established by using mathematical
induction for natural numbers and extended to all integers from there. For an integer
n, call the following statement S(n):

(cosx+isinx)” = cosnx+isinnx, (1.62)

For n > 0, we proceed by mathematical induction. $(1) is clearly true. For our
hypothesis, we assume S(4) is true for some natural 4. That is we assume

(cosx+isinx)” =coskx +isinkx. (1.63)

Now, considering S(k + 1):
(cosx+isinxy™ = (cosx+isinx)* (cosx+isinx)
= (coshx+isinkx)(cosx+7isinx)
[by the induction hypothesis]
= cos(kx)cosx —sin{kx)sin x
+i{cos(kx)sin x + sin(kx) cos x (1.64)
= cos((k+Lyx)+isin((k+1)x)

[by the trigonometric identities]

We deduce that S(k) implies S(%+1). By the principle of mathematical induction
it follows that te result is true for all natural numbers. Now S(0) is clearly true since
cos(Ox)+17sin(Ox) =1+ 0i =1. Finally, for the negative integer cases, we consider an
exponent of —n for natural #.

-1
((cos x+isin x)”)

(cosx+isinx)™"

(cosrx +isinnx)”!

(1.65)

cos{(—nx) +isin(—nx).
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where the last equation is the result of the identity

t-l]

v_l —_
< 7 |z|2 ? (166)

for z=cos(mx)+7sin(nx). Hence, S(z) holds for all integers .

Formulae for cosine and sine

Using the binomial expansion formula

[

(cosx+isinx)" = 2 ( "Cp ) (cosx)* *(isinx)* (1.67)
k

one can extract the formula for cosine and sine, where "C, are the usual binomial

n ! .
coefficients defined as “Cy = m. Equality of two complex numbers, demands

equality of both of the real parts and of the imaginary parts of both members of the
equation. If x, cos x and sin x are real numbers, then the identity of thee parts can
be expressed in terms of binomial coefficients uggested by 16th century French
mathematician Frangois Viéte:

: _ L [ n—k _: (??—k)TC
sin(ax) = Z P Cr(cosx) (sin x) sin=——s——

n g koo ok (n—lkm (1.68)
cos(rx) = z k=0”(,k(cosx) (sin x)” Cos———5——

Concrete instancess of these equations for # = 2 and #» = 3 follows:

cos2x ={cosx) + ((cos x)? - 1) =2cos’x—1

sin2x = 2(sin x)}(cosx) =28INXCOS X

cos3x ={(cosx) +3cosx((cosx)2 —1) =4cos® x—3cosx (1.69)
sin3x =3(009.36)2(S.inx)—(sinx)3 =3sinx—4sin’ x. |
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1.6 Roots of complex numbers

Objectives

After studying this section, students will be able to-
e apply de Moivre’s theorem to find roots of a complex number
e understand the geometrical interpretation of the roots of a complex number
e find n-th roots of unity
e understand how to get solution of polynomial equations

Introduction
A number # is said to be an n-th root of complex number z, if #"=z or u = z'".

Theorem 1.6.1 Every complex number has exactly n distinct n-th roots.

Let, z = r(cos@+isin0),
and,u =p(coso+isino)

Then, r{cos®+isin0) [p(cosa+isino)]”

= p"(cosa+isino)”
= p"(cosno.+isinno)
[By deMoivre’s theorem]
= p'=rno=0+2mk
[where, k=0,1,2,. .. (n—1)

oF p=f‘”",0{,=%+2%k

/
Hence,# = z!7

= /7 |:cos(§+ ﬂ) +isin (Q+ %)]
non n

H

Geometrical interpretation of the roots of a complex number

For a point ;= 4™, lying on a circle of radius » and centred at the origin, as 0
increases, the point z moves around the circle in the anticlockwise direction. And in
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particular when 9 is increased by 2, we return to the starting point, and the same
is true if B is increased further by 2x. This means that two non-vanishing complex

numbers z, =# and 9, =9, +2rxk with 0, =0, +2nk integer.

2

Thus the expression z=re™ raised to any integrer power 7 may be used to find

i efne 9, _

the n-th root of the nonozero complex number z, = r0e39° if z"=zorr =rye’

fo.2m)
1/ where k=0,1,2,3, . .,(nn - 1) In general the &*

i
: : . 1in 1/n
Which gives: z=zy" =7""e

root of the non-zero complex number z = 7,¢* can be expressed as:
%

o =t ) k=012, (-] (1.70)

The 1* roots of unity

The solutions of the equation z” = 1 where # is a positive integer are called the
" roots of unity and are given by

i2km

= cos| 284 sin( )~ [k=0,12,..,(1-1)] L.71)
2n 21 i
If we assume 03=COS(7)+?'5111 7 =e¢ "  then »n roots will be 1,

0),(02, 033,, __,03”‘1 respectively. Geometrically, the roots represent the # vertices of an

n-sided regular polygon inscribed in a circle of radius unity with centre at the origin.
This circle has the equation |z |=1 and is often called the unit circle.

Polynomial Equations
More often we require solutions of polynomial equations of the form

Coz" + clz”"l + czz”"2 +. 4.2+ +e, =0 (1.72)

where ¢, #0,¢,...,c, are given complex numbers and # is a positive integer called
the degree of the equation. Such solutions are also called zeros of the polynomial on
the left of Eq. (1.72) or roots of the equation. A very important theorem called the
fundamental theorem of algebra states that every polynomial equation of the form
(1.72) has at least one root in the complex plane. From this, we can show that it has,
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in fact, » complex roots, some or all of which may be identical If z,z,,...,z,are n

roots of the polynomial (1.72), then we can write.

cO(z—zl)(z—zz)(z—z3)(z—z4) ....... (z—zn)=0
which 1s called the factored form of the polynomial equation.
Solved examples on basic operations of complex numbers
1. B+2)+(-6-3i)="?
Solution :
(B+2))+(-6-31)=(3-6)+i(2-3)=-3-i
2. (-7-3)+(5+4i)="7
Solution :

(=7 =30+ (5+4i) = (=T+5)+i{(=3+4) =2 +/

|Example 1&2 illustrate commutative law of addition‘|

3. (6-61)—-(2i-7)="
Solution :

(8—6i)—(2i-T)=8—6i-2i+T=15=8;

4. 5430+ {(-1+20)+(7-50)} = (5+3)+[-1+2i + 7= 5i} =

(5+3)+(6-31) =11

|Exampl@s 3 & 4 illustrate the associative law of addition‘|

5. (2-31)4+2i)="?
Solution :
(2=3i)(4+21) = 2(4+2/) - 3i(4+ 21) =8+ 4i —=12i = 6i° =
8+4i—-12i+6=14-8i

6. (44+2iK2-3) ="

(1.73)



NSOU « CC-PH-10 31

Solution :
(4+20)(2-3N=42-31)+2i(2-3i) = 8—12i+4i—6i* =

8—12i+4i +6=14-8i

|Examples 5 & 6 1llustrate the commutative law of multiplication.

7. 2=-N(=3+2N5-4i)="7
Solution :
(2—1’)(—3+2i)(5—41’)=(2—i){—15+12i+101’—8i2} =
(2=)(=T+22i) = —14+44i + 7i — 22i> =8 +51i

8 (2-N=3+2N(5-4i)="7
Solution :
(2=iN=3+2/)(5-4i) = {~6+ 4 +3i =242} (5—4) = {-6+ 4i +
3i4 2} (5— 47) = (—4+ Ti)(5 - 4i) = {=20+167 +357 — 28i%} =

{-20+16i+35i+28} =8+ 51/

|Examples 7 & 8 illustrate the associative law of multiplication.|

9. (1420 (7-5N)+(-3+4i)}="?
Solution :
(=14 207 = 5)+(=3+ 4} = (-1+ 2)4—i) = -4+ + 8 - 2i* =

4 +i+8+2="2+9
Alter :

(=14 2){(7 = 51+ (=3+ i) = (=14 2/)(T = 5i) + (= 1+ 2i =3+ 4i) =

(~T+5i+4i—10i" )+ {3-4i —6i + 8°} = 3+19i) + (=510} = -2+ 9i

|This example 1llustrates the distributive law.|
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3-27

10. ===7

11.

12.

1

Solution :

3-2% _(3-2\(=14i\_(=3+3i42i=2* ) _(=145)\_ 1,5,
-1-i \-1-if\-1+i (-1 =Gy 1+1 22

== (p+gi) (say),

Alter - If i

then, 3—2i = (-1-iNp+qi)=—p-qi—pi—qi° =—p—i(p+q)+¢=
(—p+q)-i(p—-q)=>-p+q=3&p+g=2=p=

g g=2 =-L.3;
—E&q—2=>p+qr— > t51

31-30 _I-9

=7
2i—1

Solution :

301 361 @i 3D -1 341 _ (B4i)=1-24)
2i -1 2i -1 2i -1 2i—1 " (=1+2/)(~1-2i)

3+6i—i+2 _5+5 _

T T B

1_3

If zy =244z, =3-2i,24 =—§=7:‘, then evaluate (a) |3zl —422|,

2zy+z =i
2z)—zy+3—i

(b) 7 322 +4z -8, (© (%), @
Solution

(a) B21—42| =@ +)-4G-20)|=|6+3/ -12+8i|=|-6+11]

=J(=6)> +(11)* =36 +121 =157
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(b) 7 =37 +42-8=(2+i)’ =3(2+i)’ +4(2+i)-8=

{2 + 3022 (N + 320 +i° 1 =34+ 4i +i°)+8+4i -8 =
8+12/—6—i—12-12i +3+8+4i—8=—T+3i

o 67T (4 48]

(d)

13.

(2)

(b)

G+£-_;T =[_%+£,-T =[%_£i_§)=_1_ﬂf

2
,‘2 2
3—4:'|2_|3—4:'|2_( 3744 ) _25_
4+31 " |4+3iF 27257
| | (J42+32)

Show that : (a) z;+z,=Z,+Z, (b) |zlzz| < |zl||zz|.
Solution :

O+ = +H) o+ )=(q+x)+i(y + )=

(r+x) =i+ ) =0 =)+ =) =x + +x, +iy, =
)

|2125| =[x + )00 + )| =360 = Wy )+ iy + 0o )|

{22,722 2.2
= \/xl X3+ Y Vy = 2XX 0 Y2 H X YT + 22X, ),

_f22 22 22 22_f(2 o\ 2 2
_\/xl YNV + XY Hx% _\/(Xl ) )(x2 +}2)

=y + 3+ 52 =[xl

Di/Barun-2022/Netaji Subhas Open University/CC-PH-10 New Book /Unit-1/4.1.2023/33

25,42 =5—i' _|26-20+Q2+)=5-if _|6=di+2+i=5-i_
27—z, +3+i| 2@+ -(3-20)+3-i| " [4+2i-3+2i+3 1]

33
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14

15,

Alter

|2122|2 122)(21 5)=550% = (25 )(25) = | |22|
= |a2] =2z
Prove (a) |zl+22|S|zl|+|22|_, (b) ||zl+zz+z3|S|zll+|22|+|z3|_,

(c) |Zl _Zzl 2|21|_|22|
Solution :

Let z; =x,+/y,z, =x, +iy,. Then

(a) |zl = 22|S |zl|+|zz|=> |(3cl +1y1)+(x2+ry2)| < \/xlz +y12 +
2433 = () +0n ) <62 #8432

Squaring both sides we have

(x "‘Xz)z"‘(}’l "‘}’2)2 s(3512 "‘}’12)"‘(3‘5 +}’§)+2\/X1 g \/X2 +;

2, .2 {2, 2
= XX+ Yy, \/xl +I X+
Squaring both sides once agin we have
2 2, 2802, 2 2.2, .22
(qxy+ 33 ) S+ +33) = 20000, SOV + Y X%5)
2 2
= 0= (), —nx,)”, o, (Y, —yxy)” 20
[which 1s true, hence the given relation 1s correct]
(b) |(zl+22)+z3|S|zl+22|+|z3|5|zl|+|22|+|z3|
Replacing z, by - z, we also have |z +z)| 2|z |-|z,|
Find all roots of the number - 16,

Solution :

The given number can be expressed in the standard form as:

Zy =f‘0€ie° =16e™. So, F =F =]6=24 =r=2 n=4, 90 =1
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16.

17.

0
Yo\ 2mk _ T, 2k Thus, the given number has four roots (¢,

Hence, 0 = . 3t

i
corresponding to k=0, 1, 2, and 3 which are : ¢; =2¢ * = 2(cos%+ isin %) =

[\/— \/—J \/_(1"") Similarly, cl=\/§(—1+i)_, 02=\/§(—1—i),
¢y =~2(1-1).

z+i
z—1

Prove that cot™ z= —108(

Solution :

z+7_cotw+i_ cosw+isinw _
z—i ¢otw—i cosw—isinw

Let w=cot'z Then, z =cotw. Now,

e_,-w =e™, Taking logarithm on both sides, we get: log 22 = 2w =
e

T
'

2icot ' z = cot_'z=llog(;t;) (Proved)

2i

-92 —
Prove that sec™ z= %log(%}

Solution :

.92 — 2
Let w=sec™!z. Then, z=secw. Now, 1t¥l1—=2" _I1+vi-sec”w _

z secw
cosw+isinw
1+\!—tan2w _1+itanw _ COSW _ o _ W
= = =coswtHiIsinw =¢e ki
secw secw 1 Taking

cOosw

logarithm on both sides, we get: log[

L (1+\/1—22
T8 T

2 J (Proved).
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18. Solve the quadratic equation gz’ +hz+c = 0,a=0.

Solution :

az* +bz+c = 0
or, 22+2,4€ =0
a  a
2 2
ISP URN O 2 U 02 R _ (b
or, < +2(')(2a)+(2a) ta (Za)
2 2
b b C B
or, (z+2a) (Za) +a =0
b Y _{bYV ¢
on (‘+§) B (20) a
Y _ b —dac
or, 2a da?
b° —4ac
- - =
or, Z+2a 402
or. z _ —bt~b’ —dac
T 2a

19. Solve the equation z*+(2/-3)z+5-7=0,
Solution :

Comparing the given equation with the standard quadratic equation :

az’+bz+c=0, we have, a=1,b=2i-3.c=5—-i Thus

_ —bt\b? —dac

2a

 —Q2i=3)£\(2i =3 - 41)(5-1)
- 2(1)

_ 3-2i+J-15-8i
2
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_ 3-2i21-8i+16/

2

3—2i++/1-8i+16i°

2
_ 3-2ik -4y
2

3-2i+(1-4i)
2

_ [3—2i+2(1—4r')] or [3—2:' —2(1—41')]

(2=3i) or (1+1).

the solutions are : =

1.7 Functions of Complex Variables

Objectives

After studying this section, students will be able to-

e understnad the basic structure of the function of a complex variable
understand mathematical representation of complex variables
understand concepts of single and multiple-valued functions
concept of branch

learn concepts of limit, continmty, and differentiability of functions of
complex variables

e learn to find inverse function corresponding to a function of complex
variables

Introduction

The theory of functions of a complex variable, also known as complex variables
or complex analysis, is one of the beautiful as well as useful branches of mathematics.
Although originating in an atmosphere of mystery, suspicion, and distrust, as
evidenced by the terms imaginary and complex present in the literature, it was finally
placed on a sound foundation in the 19th century through the efforts of Cauchy,
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Riemann, Weierstrass, (Gauss, and other great mathematicians.” It has many
applications in branches of mathematics including algebraic geometry, number
theory, analytic combinatorics, applied mathematics, etc. In physics, it appears in
hydrodynamics, thermodynamics, and particularly in quantum mechanics. Complex
analysis has its uses in engineering disciplines such as nuclear, aerospace, mechanical,
and electrical engineering. In the field of engineering and science, many complicated
integrals of real functions are solved with the help of functions of a complex
variable.

Functions of complex variables

An arbitrary set of complex numbers represented by the symbol z(= x + iy) which
is made up of a real component (x) and an imaginary component (y), is called a
complex variable. Now if, to each value of that complex variable z, there corresponds
one or more values of another complex variable say w(= u+iv), then we say that w
is a function of z and express the relation as w = f{z), where the variable z is called
independent variable while w is called dependent variable. The value of the fiinction
f(z) at some point say at z = a is often written fla).

Thus we see that f(z) is a function of complex variable z and is denoted by w.
w = flz) and w = & + jv, where # = u(x, y) and v = W(x, y) are the real and imaginary
components of f(z).

Mathematical representation of complex variables
e Cartesian form : z=x+iy,i=v-1
e Polar form : z=r(cos@+isin@)
e Exponential form | 5 —;,!®

Examples on mathematical representation of complex variables

L If f(z)=2", then f(2i)=(2i)’ =-8i.

[

=L | f()=u+im, z=x+iy,u=—2— v=—"?
CIf S(2) =1 [f( ) Y. BE I LA I

2]

LN

Cf()= El:f(Z)=u+iv_, Z=x+iy, u=x"+)y°, 1;:0]

oy

S=E
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Single valued function

For w = f(z), if each value of z corresponds to only one value of w, then we may
say that w is a single-valued function of z or that Az) is single-valued.

Multiple-valued function

For w = f(z), when each value of z correspods to more than one value of w, then
we say that w is a multiple-valued or many-valued function of z.

Example of single and multiple-valued functions
1. If w = z* then to each value of z there is only one value of w. Hence,
w = fz) = 2* is a single-valued function of z.

2. If w? = z, then to each value of z there are two values of w. Hence,
w? = z defines a multiple-valued (here two-valued) function of z.

Branch

A multiple-valued function can be considered as a collection of singlevalued
functions, each member of which 1s called a branch of the function. /Usually, one of
the branches of the multiple-valued function is designated as a principal branch and
the value of the function corresponding to this branch as the principal value.

Limit of a funtion of a complex variable
Let f(z) be a single-valued function defined at all points in the neighbourhood of

the point z0. Then the limit of /(z) as z approaches z, is w, expressed as: 11m F(2)=wp

Continuity of a funtion of complex variable

The function f(z) of a complex vanable z is said to be continuous at the
point z if for any given positive number €, we can find a number 6 such that

|/(z)= f(z,)| <& for all points z of the domain satisfying | z - z,| <& Then f(z) is
said to be continuous at z = z_ if _h_)nzlo f(2)=1(z)

Differentiability of a funtion of complex variable
Let fiz) be a single-valued function of the variable z, then

Py lim LEHE) =)

b-—0 oz
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provided that the limit exists and is independent of the path along which §z — ¢. If

P be a fixed point and  be any neighbouring point on the complex plane z =x + iy.
Then the point Q may approach the point P along any straight line or curved path.

Inverse function corresponding to a funtion of complex variable

If w = f{z), then we may consider z as a function of w, written z = g(w) = f~'(w),
where the function /! is often called the in verse function corresponding to £ Thus,
w = f(z) and w = f7'(z) are inverse functions of each other.

Example on finding inverse of a complex function
1. If f(x)=2x-35, find the inverse.

Solution :
Step 1: Change f{x)to y=2x-5
Step 2: Switch x and y: x = 2y — 5

Step 3: Solve for y by adding 5 on each side : x;—S =y
Step 4: Change y back to f_l(x) ; f_l(x) = x-;S
2 fr)=5v=Tand /=24

3. Prove that cos30=4cos’8—3cos0
Solution :

Let x=cos@+isin®, then, 1=cos®—isin. Now, x+1l=cosf+isin0+
3 1 .
cosB—isin®=2cos®. Taking cube on both sides, (2cos8) =(x+ ) =

x

or, 8cos’0=cos30+isin30+6cosO+cos30—7isin30,

3c3+3(3c+l)+x'3
x a
O, 8cos’B=2cos30+6cosB> O Acos’B=cos30+3cosB, O cos30=
dcos* B —3cosH -

4. Prove that sin sin30=3sin®—4sin° 0.
Solution :

Let x=cosB+isin@, then, %=cosﬂ—isin9_ Now, x—%=cosﬁ+isin9—
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3
cosB+7sin0=2/sin0 . Taking cube on both sides, (2/sin 9)® = (x - %) =

3 1 -3 : .
X —3(3‘—;)—" +OF, —8isin> 6 = cos 30 +7s1n 36 — 675in@—cos 30+ 75in 36,

or, —8isin’ O=2isin30—6isin@, OF, —4sin’ O =sin30—3sin®, or, sin 36 =
3sin@—4sin’ -

5. Prove that sinh3x =3sinhx+4sinh’ x .
Solution :
sin3x = 3sinx—4sin> x or,sin 3ix =3sinix — 4sin’ ix or, isinh3x =73 sinh x—
4(¢ sinh x)3 [Since, siniz =isinhz] O, jsinh3x=/3sinhx+4isinh®>x OF,
sinh 3x = 3sinh x+ 4sinh” x .

6. Prove that cosh 3x=4cosh® x—3coshx
Solution :

cos3x = 4cos’ ¥ —3cos x or, cos3ix= 4cos’ ix —3cosix or, cosh3x = 4

(cosh x)’ — 3cosh x [Since, cosiz =coshz] or, cosh3x=4cosh® x—3coshy

1.8 Analyticity and Cauchy-Riemann conditions

Objectives
After studying this section, students will be able to-
e understand the basic concepts of analyticity
e learn about Cauchy-Riemann relations and harmonic functions
e find derivatives of complex functions
e learn to identify harmonic functions
e learn applications of the analyticity and Cauchy-Riemann conditions

Introduction

This section aims to define and discuss some of the important properties of
complex functions. A function £(z) is aid to be analytic if it has a complex derivative
f'(z). If the derivative f'(z) exists at all points z of a region R, then f(z) is said to be
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analytic in R and is referred to as an analytic function in R or a function analytic in
R. The terms regular and holomorphic are sometimes used as synonyms for analytic.
Thus the function f(z) is said to be analytic at some point z, if there exists a

neighborhood |z - zO|< 9, at all points of which f'(z) exists. In complex analysis we
defined the derivative as a limt:

ro=2

. Af

= l _ b3
s Az (1.74)
_ o JEHA)- £

Az —{( Az

Analyticity and Cauchy-Riemann conditions

A function f(z) is said to be analytic (holomorphic) at a point z = z0 if it is
differentiable not only at z = z_ but at every point in a neighborhood of z. A function
f(2) is analytic in a domain (D) if it is analytic at each point of the domain (D).

A function analytic at every point of C is said to be entire.

If f(z) is analytic in an open domain D, then each of its derivatives f'(z), f"(2),
...exists and is analytic in D.

Derivatives of a complex function

The definition of the complex derivative of a complex function is similar to that
of a real derivative of a real function: For a function f(z) the derivative f at z_ is
defined as

£/(z)= lim

= —)ZO

f(2)- f(z)
T" (1.75)

If the limit exists, we say f is analytic at z, or f is differentiable at z,

Cauchy-Riemann equations (or conditions)

A necessary condition that w = f{z) = w(x, y) + iv(x, y) be analytic in a region
R is that, in R, # and v satisfy the Cauchy - Riemann equations
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du _ ov
ox  dy
u oy (1.76)
d  ox

If the partial derivatives in Eq. (1.76) are continuous in R, then the Cauchy-
Riemann equations are sufficient conditions that f{z) be analytic in R.

The functions #(x, v) and v(x, y) are sometimes called conjugate functions.
For a given u which have continuous first order partial derivative on a simply
connected region R, we can determine v (within an arbitrary additive constant) so that
w+iv= f(z) is analytic.

Derivation of Cauchy—Riemann equations

1. Necessary condition:

In order for f{z) to be analytic R, the lint

f(HAz—f(Z)

iig}) =f'(2)
_ [u(x+ Ax, y+ Av)+iv(x + Ax, y+Ay)] [u(x y)+ivix, y)] (1.77)
A\—>0 Ax+iAy

A}

must exist independent of the manner in which Az (orAx and Ay) approaches zero.
We consider two possible approaches:

Case 1. Ay=0, Axr— 0. In this case, Eq. (1.69) becomes

o JuGcr A ) —u(xy) | vk A ) -vn)| _du  dy
Ar—0 Ax Ax ax "ox

Case 2. Ax=0,Ay — 0. In this case, Eq. (1.69) becomes

fim u(x,y+ Ay)—u(x,y) 1(x y+AY)—v(x, y)| _ av
Ay—0 iAx iAx 8y E

subject to the requirement that the partial derivatives exist. Now f{(z) cannot possibly
be analytic unless these two limits re identical. Thus, a necessary condition that f(z)
be analytic is
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du | .dv _ 'Ehr v
> Ty Yy

From which we obtain the desired Cauchy-Reimann conditions:

du _ v
ax oy
w v (1.78)
dy  Ox

I1. Sufficient condition:

. du Ju .
Since 7 and 3y are supposed to be continuous, we have

A =u(x+ Ax, y+ Ay)—u(x, y)
= {u(x+ Ax,y+Ay)—u(x, y+ Ay)} + {u(x,y +Ay)—u(x, y)}

d d
=(a—u+ El)”‘"’[a}j +n1JAy

g“ Ax+ g" Ay+ €, Ax+1,Ay

where > Oand 1, - 0as Ax—>0and Ay -0
Similarly, since % and 8_; are supposed to be continuous, we have
Av=v{x+Ax, y+Ay)—v(x, y)

= [V +Ax, y+ Ay) = v(x, y+ AV} + {V(x, y + &) = v(x, y)

(g‘ +€2)A¥+(g‘ +n2JAy

_adv v ,
= —Av+— ay Ay+ e, Ac+1,Ay

where e,—» 0and 1, > 0as Ax - 0 and Ay = 0.
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Then,
Aw = A+ iAv

(g" Ax+ g" Ayt e, Ax+n1Ay)

(g‘ Ac+ g" Ay+e, Ax+n2Ay)

du | .oV du | .y
—(5 a)Ax+(ay a)Ay+eAx+nAy

where €=(g +ie,) >0 and N=(n+iM,) >0 as Ax—0 and Ay —0.

By Cauchy-Riemann equations we have

Aw—(a—“ a‘)Ax+( w a“)Ay+eAx+nAy

ax '3 '3
=(8u il )(Ax+rAy)+eAx+nAy
o

Then by dividing Aw by Az=Ax+iAyand taking the limit Az—0 (ie,
Ax — 0,Ay — 0), we have

_df

Az—( Aa da
= f'(2)

du , ,ov
(8x+ ax)

so that the derivative exists and is unique, 1.e., f(z) is analytic in R.

Harmonic functions

If the second partial derivatives of # and v with respect to x and y exist and are
continuous in a region R, then from Eq. (1.68) we may find

2 2
ax° oy
Py v, (1.79)

¥
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It follows that under these conditions, the real and imaginary parts of an analytic
function satisfy Laplace’s equation denoted by

2 2
d ?_'_8 ? 0
ox  dy
or, V’® = 0
5 5 (1.80)
where, V2 = 8_2+8_2
dx°  dy

The operator ¥ *is often called the Laplacian. Functions such as #(x,y) and v(x,y)
which satisfy Laplace’s equation in a region R are called harmonic functions and are
said to be harmonic in K.

Solved problems on analyticity functions and Cauchy-Riemann conditions
1. Find the derivative of f(z)=z%.

Solution :

We may solve this using the definition of the derivative as a limit.

yon_ o fEtAD=f(2) _ . (z+Az) =2
J@)= AI;E)]O Az - Al_}E;IO Az
- lim 22+2zAz+(Az)2—z2
_A:—>O Az

= lm{(2z+Az)=2z
Az—0

2. Using the definition, find the derivative of w = f(z)= z° =2z at the point
where (a) z =z, (b) z = -1

Solution :

+Az)— f(z
(a) By definition, the derivative at z =z, is f'(z;) = gimo /G Az) ACY

[(z0 +Az)’ = 2(zy + Az) - (zg -2z, ):I

= lim
Az—0
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LN

3 43z3Az 432y (As) + 20— 22— 22—z + 22,
= lim = lim
Az—0 Az Az—0

323Az+3zy(Az) —2Az

Az z§2

In general, #'(z)=3z%-2 for all z.
(b) From (a), or directly, we find that if z =1, then f’(-1)= 3(_1)2 -2=1.
Assuming f{z)=7z, show that the limit for f(0) does not converge.

Solution :

f(0+Az) Ff(0) Ax—iAy
0 =l
J©O)= A\—) AxTOAZ Av—0 Ax +iAy

As, Az=Ax+iy,

—iAx
=—1 when Ax = 0. Since,

we have llmO%—l when Ay = 0 and 11 ™ Ay

Az — 0 means both Ax and Ay have to go to 0.

(2) Prove that u(x,y)=e "(xsiny—ycosy) is harmonic. (b) Find v(x, y)
such that f(z)=wu+iv is analytic.

Solution :

(2) < * —( e ") xsin y — ycos y)+{(e " )sin y)
=—xe " siny+ye " cosy+e siny (181
% =x¢ "siny—e “siny—ye " cosy—e “siny
=xe " siny—2¢ " sin y— ye™ " cos y (1.82)
% =(e ") (xcos y+ ysin y —cos y)
=xe T cosy+ye Tsiny—e T cosy (1.83)
du

8y_2 ={(e ")(—xsin y+ ycos y+sin y+sin y)

—xe™ siny+ye Fcosy+2¢ " siny (1.84)
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2 2

Adding (1.72) and (1.74) we get a_u+ﬂ=0. As, u the function u(x,y)
ot
satisfies Laplace’s equation, it is harmonic.

Solution:

(b) Since f(z) is analytic, we may apply Cauchy-Riemann conditions:

v _ou
dy odx
=(—e ") xsin y—ycosy)+(e " )sin y)
=—xe “siny+ye " cosy+e siny (1.85)
v _du
ox ay
=(e" "} xcos y+ ysin y —cos y)
=xe " cosy+yetsiny—e™ cosy (1.86)

Integrating (1.75), we have

oy ,
=l
=J(—xe"“ sin y+ ye " cos y+e~ " sin y)dy

=xe " cosy+ye Tsin y+e T cosy—e T cosy+ F(x)

=xe " cosy+ ye Csin y+ F(x) (1.87)
where F{(x) is an arbitrary real function of x. Using (1.77) into (1.76) we may
obtain

—% = —aa—x(xe_Jr cos y+ ye “siny+ F(x))

=xe “cosy+ye Tsiny—e Tcosy

= xe " cosy—e cosy+ye siny—F'(x)

=xe " cosy+ ye Tsin y—e T cosy (1.88)
= F'(x)=0
= F(x})=constant = c(say) {1.89)

Hence v(x, y)=xe " cosy+ye “siny+c.
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5. Show that the function f£(z)= z2 is analytic.

Solution :

Let, f(z) = u(x, y) + iv(x, ) Now, f(z) =22 = (x + iy)*= (x**— ") + i(2xy) Thus
we have, u(x, y) =x*— y* and v(x, y) = 2xy

Computing the partial derivatives we have :

Oy A By W

%‘2"’3}» =2 ’ax_zy’ay =2

Since, the given function satisties Cauchy-Riemann conditions:

du _ v _

g = ay = 2x

du _ _dv _ _ (1.90)
dy ~ dx 2y

we may conclude that f(z)=z* is analytic.

Alter:

f(2)= = u(x,y)= x* —yz;v(x,y) =2xy.

Applying Cauchy-Riemann sufficient condition we get

fr(z)=bliglof(z+AAZZ)_f(Z) =(%+i%)=(2x+i2y)=2: _ As the

derivative exists, the given function is analytic.

6. Check the analyticity of the function defined as

=2

f()=1z

0, whenz =

,whenz #0,

7. Which of the following is an analytic function of z everywhere in the
complex plane?

(a) 2 (b) (z*) (¢) |21 (d) vz
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Ans.: (a)

Solution:

2 =(x+iy)’ =x -y +i2yp s u(x, ) =x" -5 v(x, ) =2xy,  Cauchy
du _dv _ dv _ o

Riemann equations : P N AR o =2y satisfied.

|
1+z
contour going from —w t0 o along the real axis and closed in the lower
half-plane circle (up to two decimal places)?

8. What is the value of the contour integral 43(: >dz evaluated along a

Ans: ©
Solution :

1 o 1 1
dz = de+ P ——dz
qSC1+zz ('f()‘°°1+x2 Cl4z22

Poles, 1+2°=0=> z==4i,z=—i is inside C

-=_f1= | —1 = —1 = 1 =—L
Res (2= f)—:lgnjj(z+‘)(z_;)(z+;) L e Y
SN I I A T
e

{Since here we use lower half-plane ie, we traversed in the clockwise
direction, hence we have to take —2mi).

1.9 Singular functions

Objectives

After studying this section, students will be able to-
e understand the basic concepts of singularity and their natures
e understand the concepts of poles and branch points
e understand about different types of singularities
e locate singularities of a given function
e find the order of singularity of a given function
e understand the concept of branch cuts
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Introduction

In general, a singularity 1s a point at which an equation, surface, etc., blows up
or becomes degenerate. Singularities are often also called singular points. Singularities
are extremely important in complex analysis, where they characterize the possible
behaviors of analytic functions. Complex singularities are points z, in the domain of
a function f where f fails to be analytic. Isolated singularities may be classified
aspoles, essential singularities, logarithmic singularities, removable singularities, etc.
Non-isolated singularities may arise as natural boundaries or branch cuts.

Definition of singular function

If the function f{z) fails to be analytic at some point in the region R, it is then

called a singular function. For example the function f(z)= fails to be analytic

zZ—a
atz=a«a.
A point at which f(z) fails to be analytic is called a singular point or singularity

1
z=-2

of f(z). For example, the function f(z)= has a singular point at the location

wherez - 2=0o0rz =

Types of singularities

There are several types of singularities including- Isolated and nonisolated
singularities, Removable singulanties, Essential singulanties, etc.

Isolated and non-isolated singularities

The point z = z, is called an isolated singularity or isolated singular point of f(z)
if we can find § >0 such that the circle |z - z | = & encloses no singular point other
than z_ (ie., there exists a deleted neighborhood of z, containing no singularity). If
no such & > O can be found, we call z, a non-isolated singularity.

If z_ is not a singular point and we can find § > 0 such that |z —z | = 3, encloses
no singular point, then we call z, an ordinary point of f(z). Removable singularities

An isolated singular point z, is called a removable singularity of f(z) if zl‘_)mo f(2)

exists. By defining f(z9)= 11_}‘2 f(z), it can then be shown that f(z) is not only

continuous at z, but is also analytic at z.
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Example of removable singularity

z

1. The singular point z = 0 is a removable singularity of f(z)=% since

. sinz
lim 322 =
=z, £ ’
Essential singularities

An isolated singularity that is not a pole or removable singularity is called an
essential singularity.

Example of essential singularity

1
1. f(z)=e=2 has an essential singularity at z = 2.

If a function has an isolated singularity, then the singularity is either
removable, a pole, or an essential singularity. For this reason, a pole is

sometimes called a non-essential singularity. Equivalently, z = z is an

essential singularity if we cannot find any positive integer » such that

lim (z—zy)" f(z)=A#0

7z,
Singularities at infinity
The type of singularity of f(z) at z =oo (the point at infinity) is the same as that
of f(l/w)atw=0.

Example of singular function

1. The function f(z) = z* has a pole of order 3 at z = co, since J{l/®)= é has

a pole of order 3 at w=0.

Poles and branch points

If z, 1s an 1solated singularity and we can find a positive integer # such that

]

lim (z-z,) f(z)=A#0, thenz =z is called a pole of order n. If n = 1, z, is called

a simple pole.
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Examples of poles
1. f(@)= 1 5 has a pole of order 3 at z = 2
' (z-2) P S

3z-2
2 f(z)= (7_1)2(,_‘_1)(,_4) has a pole of order 2 at z = 1, and simple poles

atz=-1and z =

If g(z)=(z-2z,)" f(z), where f(z,) = 0 and # is a positive integer, then

z =z, is called a zero of order » of g(z). If » = 1, z is called a simple zero.

. ] 1
In such a case, z, is a pole of order # of the function ()

3. Which of the following statements is TRUE for the function f(z) = %9
(a) f(z) is analytic everywhere in the complex plane.
(b) f(z) has a zero at z = m.
{c) f(z) has a pole of order 2 at z = 1.
(d) f(z) has a simple pole at z = m.
Answer: (c). Reason: f(z) has a pole of order 2 at z = &

Branch points

Branch points of multiple-valued functions, are non-isolated singular points since
a multiple-valued function is not continuous and, therefore, not analytic in a deleted
neighborhood of a branch point.

Branch points are generally the result of a multi-valued function, such as

Jz or log(z) being defined within a certain limited domain so that the function can
be made single-valued within the domain.

Definition: The point z, is called a branch point for the complex (multiple)
valued function f(z)- if the value of f(z) does not return to its initial value as a closed
curve around the point is traced (starting from some arbitrary point on the curve), in
such a way that f varies continuously as the path is traced.
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Example of branch points

1. f(2)= Jz—3 has a branch point at z = 3.

2. f(z)=In(z*+z-2) has branch points where (224.2_2:0) ie,atz=1
and z = 2.
Order of singularity

The order of singularity is defined in terms of the order of pole of a given
function. And a function f(z) can be said to have a pole of order m at z_ if m is the

largest positive integer such that a_,, #0. A pole of order one is a simple pole. A
pole of order two is a double pole, etc.

Example on order of singularity

1. The function f(z)= is singular function, having singularity at

1
(z=3i)
z = 3i. This function can also be said to have a pole of order 7 at z = 3i. So
the order of singularity of this function is 7.

Branch cuts

The branch cut is a line or curve excluded from the domain to introduce a
technical separation between discontinuous values of the function. When the cut is
genuinely required, the function will have distinctly different values on each side of
the branch cut.

The shape of the branch cut is a matter of choice, however, it must connect to
two different branch points (like z = 0 and z = « for log(z)) which are fixed in place.

Let us consider the complex valued function
log(z)=In{r)+70 (1.91)
where z = re® | with ¥ > 0 and 0 real. As one goes around the closed path in Figure

1.3, starting counter-clockwise from point A and returning to A, it is clear that 6
increases to /60+2m. Therefore, upon tracing the path, we have:

log{A) = log{A) + 2ni (1.92)

This means that log(z) does not return to its original value when one tries to
define it continuously along the closed path. Thus we have an identity crisis: which
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value should we choose for log(z) at A? Of course, A is arbitrary, so this problem
arises at every point in the complex plane!

-
-
X

z=x+iy

Figure 1.1: Closed path in Complex Plane Figure 1.2: Another closed path

Figure 1.4: Branch-cut

Before answering this question let us first note that 0 returns to its original value
as z traces the closed path in Figure 1.3. Thus one may ask the question: what is the
difference between the paths in these two figures which makes the behavior of log(z)
so entirely different as the closed paths are traced? The answer is that the first path
encloses the origin z = 0, while the second path does not. That is why 0 increases
by 24 as one goes around the second path. Thus the origin is a branch point of log(z).

Cusps

In algebraic geometry, a singularity of an algebraic variety is a point of the
variety where the tangent space may not be regularly defined. The simplest example
of singularities are curves that cross themselves. But there are other types of
singularities, like cusps. For example, the equation y* — x* = 0 defines a curve that
has a cusp at the origin x = y = 0. One could define the x-axis as a tangent at this
point, but this definition can not be the same as the definition at other points. In fact,
in this case, the x-axis is a “double tangent”.

1.10 Integration of the function of a complex variable

Objectives
After studying this section, students will be able to-
e understand the basic concepts of the complex line integral

e understand the connection between real and complex integrals
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e to know the properties of complex integrals
e cvaluate complex integrals
Introduction

The concept of the definite integral of real functions does not directly extend to
the case of complex functions since real functions are usually integrated over
intervals and complex functions are integrated over curves. Interestingly complex
integrations are not so complex to evaluate, most of the time easier than the
evaluation of real integrations. Some real integrals which are otherwise difficult to
evaluate can be evaluated easily by complex integration, and some basic properties
of analytic functions are established by complex integration only. The concept of

b
definite integral L JS(»)dy, as studied in the calculus of real-valued function £ on a

real variable y was generalized to the line integral in vector analysis. Here we extend
the concept once more and consider the line integral of a complex function. As in
calculus of a real variable, here also we distinguish between definite integrals and
indefinite integrals. Complex definite integrals are called the line integrals and are

written as j B f(z)dz . The integrand f(z) is integrated over a given curve C in the
complex plane called the path of integration normally represented by a parametric
representation z(#) =x(f)+iy(r), a<t <b The sense of increasing t is called the
positive sense on C which is assumed to be a smooth curve, having continuous
derivatives at all 7 € (a,b) . If the initial and final points of a curve coincide 1.e., when
z{a) = z(b), the curve is said to be a closed one,

Complex line integrals

Let f(z) be continuous at all points of a curve C (see Fig. 1.5), which we shall
assume has a finite length, i.e., C is a rectifiable curve. Subdivide C into n parts by
means of points z, z,,...,z , chosen arbitrarily, and call @ =z, = z . On each arc

-1t

joining z,_ to z, [where & goes from 1 to #], choose a point &;. Form the sum

S, =fENz —+ fE Nz —2)+ .+ FENE~-2,) (1.93)

Using the notation Az, =z, —z, |, we can write

Sn=Zf(ak)(zk_zk—1)=2f@k)Azk (1.94)
k=l k=l
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Let the number of subdivisions » increase in such a way that the largest of the
chord lengths |Az| approaches zero. Then, since f(z) is continuous, the sum S

y

21

Figure 1.5: Curve on a complex palne.

approaches a limit that does not depend on the mode of subdivision and we denote
this limit by

[\ ryde = )z (1.95)

called the complex line integral or simply line integral of f(z) along curve C, or the
definite integral of f(z) from a to b along curve C. In such a case, f(z) is said to be
integrable along C. If f(z) is analytic at all points of a region R and if C is a curve
lying in R, then f(z) is continuous and therefore integrable along C.

Connection between real and complex line integrals

Suppose f(z) = u(x, y) + iv(x, y) = u + iv. Then the complex line integral (1.95)
can be expressed in terms of real line integrals as follows:

[ 1(2)dz = | e, y)+iv(x, y))elx +idy)

= | [ = valy)+i(vdc +udy)]
(1.95)

= jc (udx —vdy) +i jc (vdx + udy)

Sometimes relation (1.96) is also taken as a definition of a complex line integral.
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Properties of integrals

Suppose f(z) and g (z) are integrable along C. Then the following hold:

L [L(f@+g@dz= | f(2)dz+ ] g(2)dz

2. JC Af(z)dz = AJC f(2)dz, where A = any constant.
b a
3. [ rode ==, 7 (2)dz
b mo b .
4, L f(z)dz = —L j(z)dz+J‘m f(2)dz, where a, b, m are points on C,
5. ’J‘Cf(z)dz < MI., where |j’(z)|SM , L.e., M is an upper bound of | #(z)| on

C, and L is the length of C.

If POR are successive points on a curve, property (3) can be written

fydz=[  f(z)dz

J POR ROP

Similarly, if C,C,C, represent curves from a to b, a to w1, and m to b,
respectively, it is natural for us to consider C' = C, + C, and to write property (4) as

Jo £y =[, Feyz+ |, fdz

1.11 Cauchy’s integral formula

Objectives

After studying this section, students will be able to-

e learn how the values of an analytic function on a circle determine its values
at points enclosed by the circle

e learn applications of the Cauchy integral formula
Introduction

In mathematics, Cauchy’s integral formula, named after Augustin-Louis Cauchy,
is a central statement in complex analysis. It expresses the fact that a holomorphic
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function defined on a disk is completely determined by its values on the boundary
of the disk, and it provides integral formulas for all derivatives of a holomorphic
function. Cauchy’s formula shows that, in complex analysis, “differentiation is
equivalent to integration”: complex differentiation, like integration, behaves well
under uniform limits - a result denied in real analysis.

Let f(z) be analytic inside and on a simple closed curve C and let a be any point
inside C (see Fig. 1.6). Then

f(a) :LgSC@dz. (1.97)

2riJcz—a

where C is traversed in the positive (counterclockwise) sense.

Figure 1.6: Simple closed curve

Proof of Cauchy’s Integral formula

Consider the function f Ezc)l, which is analytic at all points within C, except

z = a. With the point a as centre and radius r, draw a small circle C| lying entirely
within C.

f(2)

Now P is analytic in the region between C and C1; hence by Cauchy’s

integral theorem for multiple connected region we have
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§ L0 g 10,
Cz—a Gz—a
_§, Lasf@rs@,
—a (1.98)

g, L= f(a) FO=L@ gy pay§, L

For any point on (|

it

i
§ LS @ Jjn[f(awe )~ f(a)}m,ede [2-a=re® e = ireae]

= [ fla+re®)~ f(a)]ide

= 0 where r — 0]
Cﬁ 1 s _ jzﬁ fre'ede
C z—a
2
= jo id0

- 1o}

=2ni

Hence we have,

3 L2L = 0+ piaxem)

Z—a
= f (a¥2ni)
_ f(z)dz
or, f(a) T 2w Cﬁ(‘ z—a

Also, the nth derivative of £z) at z = @ is given by

F(a) = HICﬁC J() dz;n=012,.

2! (,_a n+l

('f)C f( )da ZTCIJ(‘(H)( )[f(")(a)_ 7 f(z)|z=0:|

(7 _ a)n+l nl

(1.99)
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The result given in Eq.(1.97) can be considered a special case of result in
Eq.(1.99) with #» = 0 if we define 0! = L.

The results given in Eq.(1.97) and Eq. (1.99) are called Cauchy’s integral
formulas and are quite remarkable because they show that if a function £ (z}) is known
on the simple closed curve C, then the values of the function and all its derivatives
can be found at all points inside C. Thus, if a function of a complex variable has a
first derivative, i.e, is analytic, in a simply-connected region R, all its higher
derivatives exist in K. This 1s not necessarily true for functions of real variables.

Cauchy’s Inequality
Suppose fiz) 1s analytic inside and on a circle C of radius » and centered at
z = a. Then

n nl
|7 )(a)|£ﬂ;{,," =012, (1.100)

where M 1s a constant such that | f(z) | < M on C, i.e., M is an upper bound of | f{z) |
on C. We have by Cauchy’s integral formulas,

(n) J(z)
I ay= 2,,;, s )n+1d‘ n=012,. (1.101)
Since, |z—a| = r lies on C and the length of C is 277,
(1) f( ) d- ﬁ
@)=~ L
M |
- f Rl
2 (1.102)
_Mn
==

Solved examples on Cauchy’s integral formulas

1. If £ (z) be analytic inside and on the boundary C of a simplyconnected region
R, then prove Cauchy’s integral formula

Fay=-=¢ ffz) (1.103)

Proof: Method 1. The function f(z) = (z—a) is analytic inside and on C
except at the point z = a.

27
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Theorem 1.11.1 If f (z) be analytic in a region bounded by two simple closed
curves C and C1 (where C1 lies inside C as in Fig. 1.7(a)) and on these

curves, then Cﬁc f(2)dz = q-)C f(2)dz where C and C1 both are traversed in

the positive sense (counter- 1clockwise) relative to their interiors. The result
shows that if we wish

y

@ (b)

Figure 1.7: Simple closed curves

Figure 1.8: Simply connected regions

(a) (b)

to integrate f(z) along curve C, we can equivalently replace C by any curve
C, so long as f(2) is analytic in the region between C and C, as in Fig

1.7(b).
We have

¢ RACI R S ACIS (1.104)
Cz—a rz—a

Where we can choose 1" as a circle of radius € with center at a. Then an
equation for [ is |z—a|l = € or z —a = €¢" where (<0 <x. Substituting

z=a+ee® dz=c®d9 integral on the right of (1.104) becomes
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§ LD oo [rLlared e jo i1 faree®s

rz— CI Eele

From (1.104) we get,

4&%0’: =] far e e®)do (1.105)

Taking the limit of both sides of (1.104) and making use of the continuity
of f(z), we have

(j) % = 611_1)1(1) IM f(a+ e e®)do

J.zn fim j(a+ e e™)do

0 -0
= f'jo j(a)de
= i2m)f(a)

=fla) = ZEJC»[)cf() -

(1.106)

?'5 A

2. Evaluate dz
—-g

Simply and multiply connected region

A region R is called simply-connected if any simple closed curve, which lies in
R, can be shrunk to a point without leaving R. A region K, which is not simply-
connected, is called multiply- connected. For example, suppose R is the region
defined by | z | = 2 shown shaded in Fig. 1.9(a). If I" is any simple closed curve lying
in R [i.e., whose points are in R], we see that it can be shrunk to a point that lies in
R, and thus does not leave KR so that R is simply-connected. On the other hand, if R
is the region defined by 1 <" |z | < 2, shown shaded in Fig. 1.9(b), then there is a
simple closed curve I' lying in R that cannot possibly be shrunk to a point without
leaving R so that R is multiply-connected. Intuitively, a simply-connected region is
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Py’
W 2

WY
Wy

(@) b

Figure 1.9: Simply and multiply connected regions.

one that does not have any “holes” in it, while a multiply-connected region has
“hole(s)”. The multiply-connected regions of Fig. 1.9(c) have, respectively, one and
three holes in them.

1.12 Laurent and Taylor’s expansion

Objectives
After studying this section, students will be able to-

e learn to determine Taylor’s series and Laurent’s series of some given
functions within specified regions

e understand the definition of zeros of order n of an analytic function

Introduction

Taylor’s theorem states that any function satisfying certain conditions can be
expressed as a Taylor series. And the Laurent series of a complex function f(z) is
a representation of that function as a power series which includes terms of negative
degree. It may be used to express complex functions in cases where a Taylor series
expansion cannot be applied.

Taylor’s theorem

Let f(z) be analytic inside and on a simple closed curve C. Let @ and a + & be
two points inside C. Then

2 n
fla+h)= f(a)+hf'(a)+g—!f"(a)+...+Z—!f<”>(a)+... (1,107)
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orwritng z=a+horh=z—-a

@)= f@+ f@-a s LD map o+ LD gy 108

This is called Taylor’s theorem and the series (1.107) or (1.108) is called a Taylor
series or expansion for f(at+h) or f(z). The region of convergence of the series
(1.108) is given by | z — a | < R, where the radius of convergence R is the distance
from a to the nearest singularity of the function f(z). On | z—a | = R, the series may
or may not converge. For |z — a| > R, the series diverges. If the nearest singularity
of f(z) is at infinity, the radius of convergence is infinite, i.e., the series converges
forallz. Ifa=01n (1.107) or (1.108), the resulting series is often called a Maclaurin
series.

Laurent’s theorem

Let C, and C, be concentric circles of radii R and R, respect- ively, and center
at a (see Fig. 1.10). Suppose that f'(2) is single- valued and analytic on C, and C, and,
in the ring-shaped region R [also called the annulus or annular region] between C|
and C, is shown shaded in Fig. 1.10. Let a + A be any point in R. Then we have

fla+hy=ay+ah+ah* + ... +£+ah;22+c;l;33+ ..... (1.109)

where

@ = 2mgsc (z— a)"“ T

a, = 2mg€ (z—a)" f(2)dz; n=1,2,.

C, and C, being traversed in the positive direction with respect to their interiors. In
the above integrations, we can replace C, and C, by any

(1.110)

Figure 1.10: Contour
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concentric circle C between C, and C,. Then, the coefficients can be written in a
single formula,

- f(z) dz n=

With an appropriate change of notation, we can write the above as

FO=qra-arta-ay+ s Lot (1.112)

where

% =55 (qff))’"‘ G #=0EL 22 (1113)

This 1s called Laurent’s theorem and (1.109) or {1.112) with coefhicients (1.110),
(1.111), or (1.113) is called a Laurent series or expansion. The part a, + a,(z — @) +
afz — ay’ + ... is called the analytic part of the Laurent series, while the remainder
of the series, which consists of inverse powers of (z — a), i1s called the principal part.
If the principal part is zero, the Laurent series reduces to a Taylor series.

Problems on Lorentz and Taylor’s expansion

1. (a) Expand f(z) = sin z in a Taylor series about z =%.

{b) Determine the region of convergence of this series.

_ 1. \ ,
2. Expand f(z)= GG in a Laurent series valid for
{a) 1< |z| < 4
(by|z]>3

{(c)0<|z+1|=2
(@ z]<1
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1.13 Residues and Residue Theorem

Objectives

After studying this section, students will be able to-
e understand the concepts of residues
e determine residue at specified poles
e understand the statement of Cauchy’s residue theorem
e learn the application of Cauchy’s residue theorem

Residue

Let f{z) be single-valued and analytic inside and on a circle C except at the point
z = a chosen as the center of (' Then f{z) has a Laurent series about z = ¢ given by

f@ = Y az-a)

- o —a? a a (1.114)
agta(z—a)y+a,(z—a) +'”'+Z—a+(z—a)2 +......
where
__1 fGe
a,= zmgﬁc(z_a)ml dz; n=1+1,+2,. (1.115)
In the special case # = “1, we have from (1.115)
<j3cf(2)dz=2m'a_1 (1.116)

Formally, we can obtain (1.116) from (1.114) by integrating term by
term and using the results

(J-) f(2) o 2mi, for p=1,
Clz—a)’ 0, f or p=integer #1

Because of the fact that (1.116) involves only the coefficient @ | in (1.114), we
call a_ the residue of f(z) at z = a.

(1.117)

Calculation of Residues

To obtain the residue of a function f(z) at z = a, it may appear from (1.114) that
the Laurent expansion of f(z) about z = @ must be obtained. However, in the case
where z = ¢ is a pole of order %, there is a simple formula for ¢”1 given by
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k—1
a; = lim (kll)! ;;k—l {e-a)f 1(2)} (1.118)

If £ =1 (simple pole), then the result is especially simple and is given by
a_ = lim(z~a) f(z) (1.119)
which is a special case of (1.118) with £ = 1 if we define 0! = 1.

Application of residue in solving definite integrals

1. Find the value of the integral @C%dz , where the contour C is the umt
circle: |z—-2| =1

Solution:

|z-2|=1=1<z<2 ie. the pole z = 0 does not lie inside the contour.

(ﬁc & Slzn(z_) dz =21 x Z(Residue) =2mix 0=0

2 ey
[Residue at the pole z=0is lim(z—0)7(z) =lim (z)[L“(‘)] = lim
Z— Z—

z z—0
¢ sin(z) = 0]
2. Consider a counterclockwise circular contour |z | = 1 about the origin. Let

zsin(z)
Z—T

(c) in (d) 2in

Solution:

, then the integral Cﬁ f(2)dz over this contour is (a) —imt (b) Zero

Since, pole z = does not lie inside the contour, hence

(j)f (2)dz = (2ri)Z(Res) = (2ni)Z(0) =0

2
e +1

. The value of the integral Cﬁc dz where C is the circle | z | = 4 is (a) 2mi

LN

(b) 2% (¢) 4% (d) 4n
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Solution:
Pole, ¢” =—1=¢*"D" ,=01,2,3, ..
2
oz) _ @t _ 22

For z=ixn, Res = lim =——=
' —in$'(2) 2’

- 2
For z=-in, Res= lim QT'((:)) = —T—m= n°
Z—iT 2 e
2
§ —Z—dz =2miZRes = 2mi)(n’ +77) = 4n’i
Ce  +1

Chapter-end exercise

1.

Assume: z, = 3/ and z, = 2 -2/
(a) Plot the points z -z, z, + z,, and Z
(b) Compute |z, + z,| and |z, — z|.

(c) Express z, and z, in polar form.

1
Let zy=6¢™* and z,=2¢"™°. Plot zz,, and z 2,
Find an identity for sin 30 using n = 3 in De Moivre’s formula. Write your

identity in a way that involves only sin 8 and sin 30 if possible.

Evaluate JC 22dz where C is any curve joining 0 and 1 + 7,

22 -1

Find the residue of f(z)=—5—atz=0
z

-
3

2
Using Cauchy’s integral formula evaluate JC ”‘_—2dz where C is the circle

|z|=3.

Find an analytic function f (z) = # +iv whose real part is ¢*(scos y — ysin y).
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70
8. Find a representation for the function
1 1 1
f@=r—=1,
1+z =z L+ (%)
in negative powers of z that is valid when 1<|z|< .
9. Find the Taylor series for the function
z 24(z-2) 2'1+(z-2)/2
about the point z, = 2. Then by differentiating the series term by term, prove
that
1 _ 15y z=2\"
,_2=Zz(_1) (n+1)( 5 ) (lz-2]<2)
“ =0
10.

Show that the singular point of each of the following functions is a pole.
Determine the order m of that pole and the corresponding residue B.

(0) )=
— cosh
by f(z)=129802 =
_exp(2z)
) f (Z)_—(z— e

® m=1B=-1. () m=2 B=2¢"]

[Ans. (a) m=3,B=— >

RTEN



Unit 2 O Integrals transforms

Structure
2.1  Objectives

2.2 Introduction

2.3 Fourier Transforms

2.4 Representation of Dirac delta function as a Fourier Integral
2.5  Fourier transform of derivatives

2.6 Inverse Fourier transform

2.7 Convolution theorem

2.8 Properties of Fourier transforms

2.9 Three-dimensional Fourier transforms with examples

2.10 Application of Fourier Transforms

2.1 Objective

After successtul completion of this chapter, learners will be able to—

e understand the concepts of two highly powerful tools for solving differential
equations: Fourier Transforms and Laplace transforms

e understand Fourier integral theorem and derivation of Fourier integral
e understand the basic concepts of Fourier transform

e calculate the Fourier transform of periodic functions including the cosine, sine, and
other functions

learn the Fourier representations of Dirac delta function
express a convolution mathematically and explain its function
understands the Fourier transform of a delta function and a shifted delta function.

learn the Fourier representations of derivatives and differential equations etc

understand the Fourier inversion theorem

71
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2.2 Introduction

Integral transforms refer to two highly powerful tools for solving dif-ferential ferential
equations: 1) The Fourier Transforms and ii) The Laplace transforms. Besides practical
applications, the Fourier transform has a fundamental importance in quantum mechanics,
providing the correspondence between the position and the momentum representations of
the Heisenberg commutation relations. An integral transform becomes useful only when it
allows one to transform a complicated problem into a much simpler one. hese transforms
are also useful for solving integral equations. When one attempts to solve a differential
equation, with an unknown function £, he/she first applies the transform to the differential
equation to turn it into an easily solvable equation: often an algebraic equation for the
transform F of f. One then solves the resulting equation for F and finally applies the inverse
transform to get back /. The idea can be sequentially presented as in the block diagram
shown in Fig 2.1. It is to be noted that a direct solution from the 1st step to the last step
is often difficult. So we have to follow the apparently long but effectively straightforward
path. The ultimate purpose of developing such formalism is to reduce the solution of
complicated problems to a set of simple rules which even a machine could follow.

algebraic equation for I —_—p- | solution: F

inverse

transform transform

differential equation for f — — — — | solution: f

We would like to follow the dashed line, but this is often very difficult.

Figure 2.1 : Steps followed in Fourier Transform

2.3 Fourier Transforms

The readers are assumed to have ideas on how to expand a periodic function as a
trigonometric series. Which can be thought of as a decomposition of a periodic function
in terms of elementary modes, each of which has a definite frequency allowed by the
periodicity. If the function has period L, then the frequencies must be integer multiples of

the fundamental frequency & = 2nt / L (i e, K, = 2775) Thus, the Fourier series expansion
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of a periodic function f{x) with fundamental period L is given by

)= a,e™™" @21
where the coeflicients of the series a, ared by

a, =1 F(x)e ™" (22)

In this section, we would like to establish a similar decomposition for functions that are
not periodic. A non-periodic function can be thought of as a periodic function in the limit

I — o . The larger L is, the less frequently the function repeats until in the limit 7 — oo

the function does not repeat at all. In the limit, 7 — o the allowed frequencies become
a continuum and the Fourier sum goes over to a Fourier integral.

Thus it is understood that Fourier Transform is a tool that breaks a waveform (a
function or signal) into an alternate representation, characterized by sine and cosines. And
it shows that any waveform can be re-written as the sum of sinusoidal functions.

Fourier Integral theorem

A periodic function f{x) having a fundamental period L, defined on the real line, can
be expanded in a Fourier series (converging to almost everywhere within each period) as

f(x) — Z an e;‘lrrm‘.-"L ( 2 3)
Where the coefficents o are given by
L2 ]
a, = %J._z.-'z F(x)e 2™ . (2.4)

Here we have chosen the period to be [—L/2, L/2] for convenience. In the cases
where f{x) is not periodic, we can still define a function

hd 12nRx

f)=Yae T (2.5)

—ea

with the same a¢_as above. By construction, this function £, (x) is periodic with period
L and moreover agrees with f{x) for almost all x €[-L/2, L/2]. Then it is clear that as we
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make L larger and larger, then £, (x) and f(x) agree (almost everywhere) on a larger and

larger subset of the real line. One should expect that in the limit L — o, £ (x) should
converge to f{x) in some sense. The task ahead is to find reasonable expressions for the

limit L — <o of the expression (2.5) of £,(x) and of the coefficients (2.4).

Derivation of Fourier integral
Let Ax) has the following properties:

e understan

e Prop 1 : f{x) is piecewise continuous on every interval [—L!Z,L;’Z]

e Prop 2 : fx) is absolutely integrable on the x-axis, that is f lf(x)dxl converges.

Prof 3 : At every x onthe real line, f{x) has left and right hand derivatives.

Consider the Fourier seies representation of f{x) i on the interval [—L!Z,L;’Z] . We

have
flx)= —+ Z[a cos(uz)+b Sm(L;’Z)] (2.6)
where
sz

a, = J Lu L»[ (2.7)

_ 1) e

a, = L,r‘z.[ L (LIZ )dx

m 25y’

- L.[ LIy ( )dx (2.8)

U? nwx’\ o

b, = L,fz.[ Lir (ﬁ)dx

- J‘m sm(zm )dr (2.9)

UZ
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Set ® = T75="7— an

nt_ 2m 2n
A(l):(ﬂn -0, =m=?{n—n+l)=T

Then, we can write

Aoy = 22 plxya

205 11 fiekos(o, ) Jooso, ] 210)
+A?(’)|:{I_sz f (x’)sin(mnx')dx’}sin(mnx)]

Let [ —co, so that (-L/2,L/2)—(-o0, ). then Aw—0, and

g_;,; L; £ =0, f |/ (xfx converges, Henece, summation can be replaced by

integration (as_f{x) satisfies the proprties Propl to prop3 and we have
fAx) = 0+ %J:d(o[{fm f (x')cos(mx')dr'}cos((ox)]
]. = = . Y r 4 M
- dm[{ | A(cinfon)as }sm(mx]

The above equation in analogous to the Fourier series, wherein the sums are replaced
by the integrals. Let us denote :

2.11)

A(w) = jj; 7 {x")cos(ax i’

" 212
B(®) = |~ f(xsino')i” @12)
Then from Eq. (2.11) we write

flx)= %j:dw[A(m)cos(mx) + B(w)sin(ax)] (2.13)
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This equation is called the Fourier integral of f{x) or Fourier integral representation of
Sfx).

Theorem : If f(x) satisfies the properties propl to prop3, then the Fourier integral

[f(x +);f(x —)}

representation of f(x) conveges to f{x) at a point of continuity and to

at a point of discontinuity.

Fourier integral transform
Fourier transform of the function f{x) is defined as

Flk)=F[f(x)]= ﬁf;f (x)e™dx 2.14)

subject to the requirement that the integral exists. Is 1s to be noted that not every
Sfunction f{x) has a Fourier transform.

A sufficient condition for a function that it has a Fourier transform is that it must be
square-integrable or the following integral converges:

AP = [ |#eef e 2.15)

Explanation with case study :

Let fx) = el

Let us evaluate the integral :

= [LIreof e
1

——dx

[Hints : Let x = 2 tan 8, dx = 2 sec?&d8, M—o°,>]—> 9[—%,%:”
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As the function is square-integrable, its Fourier transform exists and we have :

_ 1= o ik
F(k)_zn —o g g 2

ikz

. e . . .
The function — has simple poles at z =%2i, According to residue theorem, for

i

k < 0, we have to pick up the residues of the poles in the upper half-plane :

by = (;—n)(zm)ZRes
= (%)(ZRi)Res(Zi), fk<0
1

2%
= —¢
4

and for £ > 0 we have to pick up the poles in the lower half-plane. Therefore we have

Therefore,
) = 3¢ ™ [k ==, ]

Fourier sine transform of f(x) :

F.,[f(x)]=\/%ﬁ° J(x)sinfe)ate (2.16)

Finite Fourier sine transform of f{x) :

ELAR] =] #(sin(kois @2.17)
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LO<x<b
i, fxy = {

0,x>b

A = [ f(sin(kde+ |7 (x)sinflcke

Job( Jsin(kx dr+J Jsin{kx

_ l—c;sbk (2.18)

Examples of Fourier transforms

1. Find the Fourier integral representation of the function

0,if x <0,
iFO<y<
Aoy = | LiF0SxS]
0ifx>1
f’2
Hence, show thatj Smx )dx_i

Solution : As the given function satisfies the hypothesis of the theorem, we have

Afo) = = dd Leinerd |-
Ifmcos(mx)dx

=]

sin

B(o)

I: S(x)cos{mx)dx = Immsin(m)ttr
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L0

[

0

1- cos{oax)
)

fx) = %J;dm[A(w)cos(mx)+B(0))sin(0)x):|

_ 1= [sing 1-cos .
= njo do)_ 5 cos{wx) + - sm((ox)]

= %-[owdm W

[ 25in(/2)cos(w/2)cos{wx) + 2sin>(w/2)si n((ox)]

_ %j;dmésin(mf 2)] cos(/2)cos(exx) + sin(ey/ 2)sin(ax)|

or, fix) = %j;dm[%sin(mf 2)cosw(x —1/2)]

This is the Fourier representation of the given function.
Let x = 1/2, then f{1/2) = 1.

Hence 1 = %j:dw[%sin(wfz)]
or Jowdw[%sin(wEZ)] = %

o 1.
= .[o dw[;sm(x&)] = %

Fourier transform of trigonometric function, Gaussian, finite wave train &
other functions

1. Find the Fourier transform of the function
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b if |x| <a,
fx) = {0 if |x| >a

Solution : The F.T. of f{x) is given by

Fk) ﬁﬁf (x)e™

—ii‘xalx

b a
= Ej—de

2ab

_ \/ﬁ{sipkaka}

After obtaining /(%) we can write

o = el Pt

_ 1 2b = {Sinka}ekadk
- T Tk

_ be )sinkal| ux
- nj_m{ 7 }e dk

2. Find the Fourier transform of the function

a, when —1 <t < 0,
0, otherwise, [a > 0]

Ry = {
Solution - The F. T. of f{t) is given by

e —i df

o = 7=l

—w)&‘dt

0
-

NSOU « CC-PH-10
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2a

W27

- iazn I:l _em)f:l

sin (®/)

3. Find the Fourier transform of the function

-]

a, when —1 <t < 0,
0, otherwise, [a > 0]

Solution - The F.T. of f{t) is given by

FIRD]

—w)fdr

=i

[#] ! —igt
——| e dt
Nkis J ~

—d I:e—m)r:l‘r
021 ~

. — I:e:'co.l’ _e—w)l:l
io2n

4. Find the Fourier transform of the function

Sx) = {

1, when |x| < I,
0, when, |x| > 1

81
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Solution : The F.T. of f{x) is given by

Flfx)] = flo)

I
5
a

t——y
i 3
Sy
=

@,

&

&

For m — 0, F(m):J\E

f(0)=

0, when, t>=
o

sin(oz), when Oétsg

I
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Solution : Fourier sine transform of A(%) of the function f () is given by

J%Jon.-'af(t)sin(kt)dt-p\/%J;af(t)sin(kf)df

A (k)

\/%J:;asin (cut)sin (ke )dt

%\/%Joma[cos(a—k)f—cos(a"'k)t}jt
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-k o+k

\E sin[(a-k)r] sin [(a+k)r]]“’°"

0

o-k o+k

l\/Z_Si“[(“—k)M&] sinf(o+ k)ma]}

(2.19)

6. Find the Fourier transform of the function f ()= ™ —oo< 1<o0, a>0. write

the inverse transform.

e t<0

e, >0

o
Solution : The F.T. of fix) is given by

Flf(]=F(o) - ﬁ [ e ar

[r e dt+ j: e“”e""’”dt]

—

. O . =)
e{a—:cﬂ}( . e—{a+:w}r
a—iw ) a+im .
1 1

| a—-i a+io
[ 24 ]
| &+

_a
a2+cf)

|
ﬁ —
a

|
ﬁ*
=]

o) 2 || — b2 || —
S- 9
1

Al



84 NSOU . CC-PH-10

The inverse transform is given by,

O(t)=F'[F(w)]=F" {L} = \/ge‘”.

a’ +w?

2.4 Representation of Dirac delta function as a Fourier Integral

Dirac delta function

The one-dimensional Dirac delta function, d(x), can be pictured as an infinitely high,
infinitesimally narrow “spike,” with unit area (i.e. area = 1 (as shown in figure 2.1 & 2.2).

A

i X % X
Figure 2.2 : Delta function Figure 2.3 : Delta function
with spike at x =0 with spike at x = a
That is to say :
0,ifx#0
d(x)=< "~
() {mj i Fx=0 (2.20)
and
|7 3(x)dx=1 (2.21)

if f (x) is some “ordinary” function then the product

£(x)8(x) = £ (0)8(x) (2.22)

Of course, we can shift the spike from x = o to some other point, x = ¢;

0,ifx#a

- ifr=a (2.23)

se-a)-|
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and
" 8(x-a)as=1. (2.24)
Also,
F(x)8(x—a)=f(a)8(x—a) (2.25)
and
|7 r(x)3(x—a)de= £ (a) (226)
1D representations of Dirac delta function
8(x) =0, xz0 (227)
[ a(x)ae =1 (2.28)
| r(@)8(x-x ) = f(x) (2.29)

3D representations of Dirac delta function

It is an easy matter to generalize the delta function to three dimensions :
& (7)=8(x)3(y)5(z) (2.30)

Since, ¥ =ix+ jy+ kz is the position vector,extending from the origin to the point

(%, v, ). This three-dimensional delta function is zero everywhere except at (0, 0, 0), where
it blows up. Its volume integral is 1

Atpoced (F)dT = 1T 8(x)8(»)8(z)dedydz =1 (2.31)

and

Ajifspacef (F)83 (F_C_i)dt =f(a (232)

-~

Since the divergence of rLZ is zero everywhere except at the origin, and yet its integral
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over any volume containing the origin is a constant (4xw). These are precisely the
determining conditions for the Dirac delta function; evidently

ﬁ"(r%)=4n53 (F) (2.33)
Fourter integral representation of Dirac delta function
_ 1 Im 8( _ ) —xsxdr .
F(s) = o - X—Xg € (2.34)
eisxo N
= N (2.35)
1 it —isy
Fs) = Tom I_W[B (x+x0)+8(x—x0)]e dx (236)
- |: e—;‘sxo + e."s)qJ ]
L Von
2cos(sx, )
= T m (2.37)

Solved examples
1. Evaluate the integral [ = [J x*3(x —3).

Solution : As the spike of the function lies outside the domain of integration, the
result of the integration would be 0.

2. Evaluate the integral J = Jj x*3(x -3).
Solution: The delta function picks out the value of x* at the point x = 3, so the

integral is 7 = [} x*3(x-3)= 7 (3)=3" =81.

-~

. Evaluate the integral J = In (r +1) ﬁ’_(%)dt, where v is a sphere of radius R
F

LN

centered at the origin.
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Solution - J=JU(r+1)ﬁ’{:iz]d:=Ju(r+1)4na3(f)dfc=4n(o+1)=4n

2.5 Fourier transform of derivatives

Theorem 2.5.1 Let for a positive integer n the n” order derivative of f(x), i,e., f™(x)

is piecewise continuous on every interval (—Z, L) and .. | £ (x)a‘x‘ converges. Then

one may asume that

lim % (x)= lim /9 (x)=0,1,2, ., (n-1) (2.38)
If F[f'(x)]=F(o),then
F L) ]=(io) F(o) (239)

Proof : From the definition, we have

FLr®] =

FLr®] =
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= —0’F(®)

By induction, we obtain the result

F /()] =(i0)" F(0)

2.6 Inverse Fourier transform

Fourier inversion theorem
The theorem states that, if f (x) is square-integrable, then the Fourier transform
F [ f (x)] = f(k) exists and moreover

f(x), if f(x)is continuoius
| floe™dr = 1 [

> lim + lim ]f(y), otherwise (2.40)

Yot pox—

In other words, at a point of discontinuity, the inverse transform produces the average
of the and right limiting values of the function f (x).

In Quantum mechanics (QM), Fourier transforms are defined slightly differently as

P(k)=F[6(x)]=k— J:zf(x)e_%dx (2.41)

~J21th
and
. ip
P(x)=F[¥(k)]=— P (k)e * dk
(x)=F[¥(K)] %L (k)e (2.42)
Applications

Solution of First order differential equation by Fourier Transform

1. Find the solution of the differential equation " —2y = u,(x)e ™ —oo < x < o0
using Fourier transform.

Solution : Applying FT on both sides of the gieven differential equation, we get
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FIY1-2F1y] = Flug(x)e™]
()Y () — 2Y (o) = ﬁ(zj—:m)
- ﬁ 2+ i(o)l(io) =2)

F(w)

Where F[y(x)]=Y(®).
Using the formula for inverse FT :

- 1 1 IR -a
3’{?164=3J;?“wmn“:lwem“1

y(x)=F[¥ ()]

[ Jﬁ4+m}

__Ti \/_ 2l

1

The solution cal also be expressed as

_%eZ.r’

—%e'z", x20.

x<0

¥

y(x) =

2.7 Convolution theorem

Introduction

In mathematics, the convolution theorem states that under suitable conditions the
Fourier transform of a convolution (meaning coil or winding or fold or twist) of two signals
is the pointwise product of their Fourier transforms. This means convolution in one domain
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(e g., time domain) equals point-wise multiplication in the other domain {(e.g., frequency
domain). The theorem holds for different Fourier-related transforms.

Theorem 2.7.1 If f and g be two functions with convolution f * g (where asterisk
denotes convolution in this context and not standard multiplication), then

FLA*gl=F1/1*Fg] (2.43)

Flregl=71r1® %(g] (2.44)
The tensor product symbol ® is also used sometimes to represent convolution.

Definition of convolution
The convolution of piecewise continuous functions £, g is the function /* g given by

4
(f*g)n= IO f(W)glt-1)dt (2.45)
Mathematical representation of convolution

cw)= ()@ g(x) = F(x)gu—x)dr (2.46)

Remarks :
1. f* gis also called the generalized product of fand g.

2. The defimtion of convolution of two functions also holds in the ¢case that one of
the functions 1s a generalized function, like Dira¢’s delta.

Example of convolution of two functions
1. Find the convolution of f(f) =¢™ and g(t) = sin(¢).

Solution : By definition:

(f *g)t) = [ f(ogt-n)d
= J;e'T sin(f —T)d7
= {e't cos(t — 1:)}; - {e" sin(f — T)}; - I; e "sin(t —1)dt

2‘[; e "sin(t—T)dt = [e'”E cos(f — 'c):rt:o - I:e'”E sin(z — T):I;o

=¢ ' —cost+sint
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2.8 Properties of Fourier transforms: translation, change of
scale, complex conjugation, etc
Translation (shifting)

Theorem 2.8.1 [f F{(s) is the complex Fourier transform of f(x), then

[4]: F{f(x—a)} =" F(s) (2.47)

[B): F{e® f(x)} = F(s+a) (2.48)

Proof : [A] :

F(s) = [ &= f(x)ar

Flf(x-a)}= ﬁj:oe’“f(x—a); [put :x—a=t, so that dv = dt]

_ 1 = istira)
=——| ¢ f(tdt
2w J -

e”“ it
= e H)dt
= ¢
= e!'-m'F(S)

Proof : [B] :

F {e"‘“ f (x)} = ﬁj:ef‘u (x)e“dx

Ejj;ei(ﬁa]xf(x)dx

= F(s+a)
Change of Scale
Theorem 2.8.2 [f F(s) is the complex Fourier transform of fx), then
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Proof :

F{flax)} = ﬁj:em {arx)dx; [Put:ax=r, dx=%j|

1 = et dt
= T — “ t—
\fznj.—“’e f()a
1 1 2 iy
= ———=| &= flr)dt
a 211:'[—‘” f()
a \a

2.9 Three-dimensional Fourier transforms with examples

The 3-dimensioal Fourier transform
The Fourier pairs naturally extend to 3-dimensional functions as

feeoyz) =[N0 dk dkdi Ak b, k) ot yrec)
e—f[k‘.\‘+k}_):+k:z]

Alk kb)) =17 1717, dvdydsf (x,y,2)

(2.49)

2.10 Application of Fourier Transforms to differential
equations : One dimensional Wave adn Diffusion/Heat
Flow Equations

One dimensional heat flow equations

du _ du

o —a?,[x,t > 0]

subject to the conditions :

l.u =0, whenx =0, ¢t > 0
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L0<x <1
2.4 = , when, t =0
0,x>1

3. u(x, f)1s bounded.

Note : If at x = 0, u is given then take Fourier sine transform and when g—:

at X = 0 is given, then use Fourier sine transform

For the given initial conditions : taking Fourier sine transform of both sides of given
equation, we get

JW %—?Sin sxdx

r 8‘1: sin sxdv 8_u=8;t2:
0 ox* o Ix

%J:u sinsxdx = _SZE(5)+SH(O); [ =0, when, x =0]

o7 = _s'7 (s*)

o
aaiz+5217(s) =0
(D+52)17 =0

Let, @ = Ae™ then,

(m+52) = 0,[Auxiliary eguation]
=m = —5 (2.51)

(st} = ge=" (2.52)
W= ﬁ(.s,t)=I:u(x,t)sinsxctr

ir(s,0) = J:u (x,f)sin sxctr+J:u(x, 0)sin sxdx
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= [ (1)sin sxd+ [ (0)sin sxae

o

(1) sin swdx

I
i 8

4]

1
| cossx | _l-coss
—[ S ]0— S (2.53)
But,it(s,0) = A = lc"” [From(2.65)&(2.66)]
i#(s,1) = (#)et (2.54)
Appling inverse FT on (2.67), we get
_2
u(x, 1y = J (5,¢)sin sxds (2.55)
2 (={l=coss| -s* .
= Ejo (T)e sin sxds {2.56)

One dimensional heat conduction

Consider a very long hetr conducting rod lying along the x-axis. The temperature-
distribution in the rod is described by the one-dimensional heat equation:

0 _ 126 ‘
— 2= o1 [G)=G)(x,r=O),G)(x,r=0)=f(x):|
Asuuming thea, in the limit x —teo, O(x,7)—> 0, aa? — 0. and the Fourier

transtorm of £ (x) exists. Let

\/EL” x,1) h;"‘dx

Taking Fourier transform of Eq. (2.60), we get

1 a@ :kxdx_

1
J2m = o’ S Jf2r Ot
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Using trasforms of deriveatives, Eq. (2.62) becomes

1 dO(k, 1)

KOk t)== ~ (2.60)

20
% 5

zero at the ends of a very long rod). The solution of Eq. (2.63) is

where we assumed that, as x — Foo, @(x, t) - — 0. (i.e., the temperature is

O(k,1)= de " (2.61)

Since
H | - ik
O(k,0)= (x,0)e"dx = x)eFdx = f(k),
( \/EI \/%Lof( ) fk), (262
the solution in k-space becomes

O(k,1)=F(k)e " (2.63)

The objective here is to derive an expression for O(x, ) for which need the inverse
FT of ®(k, #). This can be obtained by the use of the convolution theorem i.e.,

O(x,7)= ﬁj: | Flk)e™" fa = ﬁj: f(0)g(x-0)dd  (264)

We require the original form (in x-space) of the second founction g(x — ¢ ), which is

just FT of ™" and is given by
1 (™ ot
g(a‘FELﬁ ek (2.65)

Let w” =2k*ct, dik= _dw_ then

V2ot

g(x)=
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Using Eq. (2.70) for (x —¢), the expression for ©(x,¢) in terms of the convolution
integral now becomes

()

-1 1 r Aot
@(x,t)—m@j_mf(q))e do (2.67)

The above Eq. (2.65) can be solved only when the specific form of f(¢) or f(x),
the initial temperature distribution along x are given.

x=y (2.68)

Forced oscillation
Consider a system governed by a differential equation

d'o() . dolr)
det T dt

+ a0 (1) =e'™ (2.69)

The function ¢(r) represents the response of the system which is being driven by a

sinusoidal force &' . After considerably long time, a realistic system will be in a so-called
steady state: in which

o(r) = A(w)e’™. (2.70)

The reason is that the system dissipates energy due to damping or friction, so that in
the absences of the driving term, the system will tend to lose all its energy: so that

(¢)¢ — 0 in the limit as 7 — 0. To get the steady-state response of such systems one then

substitutes ¢(¢) = A(w)e™. in the above equation (Eq. (2.37)) and solves for A(w):

2
ddq;g) +a, d:';,gr) +ah(t) = (—(02 +aio+a, ) e =™
1

Alm)=
= A4() ~0° +ain+a,

Therefore
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o(r) = 1 e 2.71)

Damped harmonic oscillator

the differential equation of motion of a damped harmonic oscillator is

d*x(t dx(t
‘;z(r)+2b dg)+m§s(t)= 70 2.72)

where b is the damping paramater and f (¢) i1s any function of time such that

Fi)=—7=]  Flo)e™do 13)
and
Flo)=7=[_ fea XD

Taking FT of each term in Eq. (2.56), we get

g2
L dX oty de

1 =
—= —— [ 2p¥x
2l df? J2n .

e:ﬁ)(dt

1 =2 i 1 bt i
T wix(H)edt =— He'“dt
or, 1 m J._m ox(f) o j_mf (7)

or, -0 X (0)+2bieX (@) +0iX (w)=F(w)

o X))
-0 + 2bi + W
F
o X{w)= () (2.75)

oF — 07 +i2bw

L o
Again, X ((0)=Ef_mx(f)€‘°’df (2.76)
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Taking inverse FT of Eq. (2.60) we have,

X(f) = ﬁjﬁm){(m)e_imrdw

1 J-m Flo)e™

J2r

dw

=0 — 0 +i2bw
Chapter-end exercise

1. Find the fourier series of
(a) f(x)=x; O0<x>2m.

(b) f{x)=-x, O<x>2x

(c) f(x):—%xz; —R<xX>T

2. Find the Fourier transform of

[k |k|<n
f(p)_{o’ |k|>n

where # s a positive integer.

3. Express the function
f(x)z xsinx, —W,-N<X<T

in the form of Fourier series and show that

1 1 1
13735757

b2 —

T
4

2.77)

(2.78)

: — e siny = 1 _ 2 2 _ 2 2
[Ans: f(x) =xsinx = 1 — 5008 X — 75C08 2xr + 35¢0s8 3x — 35c0s 4x + 7= cos

5x — 25 cos 6x]

4. Show that if F{—f) = —F{¥), then real Fourier series expansion of (7} contains no

sine terms.

5. Show that if F{—r) = -F{(?), then real Fourier series expansion of F{(#) contains no

cosine terms and no constant term.



Unit 3 O Laplace Transforms

Structure

3.1 Objectives

3.2 Introduction

3.3 Laplace transform

3.4 Laplace Transform (LT) of elementary functions
3.5 Properties of LTs: Change of scale theorem, Shifting theorem
3.6 LTs of 1st and 2nd order derivatives and integrals
3.7 Derivatives and integrals of LTs

3.8 LT of Unit Step function

3.9 Convolution Theorem

3.10 Inverse Laplace Transform (ILT)

3.11 Application of LT

3.1 Objective

After studying this section, students will be able to—

e This chapter aims to introduce the concept of Laplace transform and its
inverse operations useful in solving linear as well as nonlinear differential
equations, initial value problems, etc. Prerequisites for this chapter are the
knowledge of integration and differentiation of functions of one and more
variables.

e Successful learners will be able to apply this transform to solve the differential
equation involving damped, undamped free, or forced oscillation as well as
current-voltage related equations ansing from simple electrical circuits
containing inductor, resistor, a capacitor with constant or time-varying
sources.

3.2 Introduction

In elementary calculus the students learned that differentiation and integration
are transforms, meaning, these operations transform a function into another function.

99
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For example, the function f(¢¥) = # is transformed, in turn, into a linear function and
a family of cubic polynomial functions by the operations of differentiation and
integration:

d .2 _
drt =2t

and
Irzdr = %13 fc.

Moreover, these two transforms possess the linearity property that the transform
of a linear combination of functions is a linear combination of transforms. For a and
b constants

%[af (+bg(n))=af (t)+bg' (1)
and

[lar )+ bg®)]dt = af f(r)dr+b[ g0t

provided that each derivative and integral exists. In this section we shall examine a
special type of integral transform called the Laplace transform. In addition to
possessing the linearity property the Laplace transform has many interesting properties
that make it very useful in solving linear initial-value problems.

Basic indea of integral transform and convergent, divergent integrals

If f(x, y) is a function of two vaiables, then a definite integral of f with respect
to one of the variables leads to a function of the other variable.

For example, by keeping x constant we see that

Lz 2%% yely = 3x°

o Similarly, a definite integral such as

[P (.05 @ar

transforms a function f of t into a function F/ of the variable s. We are particularly
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interested in an integral transfrom, where the interval of integration is the unbounded
interval [0,o0]. If f(¥) is defined for 7 >(, then the improper integral is given as

j:K(s,r)f(:)dz = lim job K(s,0) f(t)dt. G.1)

If the limit in (3.1) exists, then we say that the integral exists or is convergent,
if the limit does not exist, the integral does not exist and is divergent. The limit in
(3.1) will, in general, exist for only certain values of the vanable s.

Kernel

The function K(s, #) in (3.1) is called the kernel of the transtorm. The choice
K{(s, ) = ¢ as the kernel gives us a specially useful transform.

3.3 Laplace transform

Definition

If £(#) be a function defined for all positive values of the vanable ¢ (ie. r>0),
then the integral

c{fw}=[e fanar (3.2)

is said to be the Laplace transform (LT) of f, provided the integral conveges. This
transform is named in the honor of the French mathematician astronomer Pierre-
Simon Marquis de Laplace (1749-1827). When the defining integral (3.1) converges,
the result is a finction of s. Generally we shall use a lower case letter to denote the
function being transformed and the corresponding uppercase letter to denote its
Laplace transform.

Notations used to denote Laplace transforms

L{f(O}=F(s), L{g}=G(s), L{x(N} = X(s) or some times L[ f(1)] = F(s)
An example based on the definnition of Laplace transform
1. Evaluate L{1}.

Solution: From definition (3.2),
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L{l} = j:(l)e—“dz

. b _
=lim | e ¥t
b—reo
—st
. —
= lim b
b §
—sb
— ljm =6 *1
bh—eo A
-1
S?

provided that s > 0. In other words, when s > 0, the exponent —sb 1s
negative, and ¢ — 0 as p — 0. The integral diverges for s < 0.

Some important formulae on Laplace transforms and their proofs

L[l]:%,s>0 (3.3)
7!
L[1]=Sﬂ_+l,n=0,1,2,3,..” (3.4)
L[ecr]zslc;[s >c] (35)
—ctq _ | . 3

fe =500 (3.6)

L[cosct]=—>—:[s>0
[ ] 52+02.[ ] (3.7)

£[sinct]=—=5—;[s>0
[ ] Sg+cg[ ] (3.8)
Llcosher]= —5—[s° > 7] (3.9)

§°—

L[sinher] = . < . J[s% > %] (3.10)
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Proof of the formulae

=1

L()=| e (et = ["__; } =Lle=-e]=Lo-1)=1
0

L[t"]=;—+!l

L(")= j:e—“(x”)dz=j:e—~*[x—"](@)= L[~ eryrge = L22D _

57 s Sn+l 0 Sn+l Sn+l
c 1
del=5—2
L(ec‘f) — Iooe—sf (eCI )dt — Ime—(s—c)fdt = e_(S—C).f _ 1 [e_m _eO] _
0 0 —(s—c) o —{(s-¢)
1 _ 1
—(s—0¢) [o-11= s—c
] _ 1
L[e :I ~ s+c
s . —(s+cy |7
—cty _ —st p _—ct _ —(s+c¥ 3, | € _ 1 —o _ 0 —
L(e )—IO e " {e )dr—jo e dt_[—(s+c)]0 _—(s+c)[e e
1 _ 1
—(s+¢) [0=11= s+c¢
L[cosct] =
5P+
et —ict
N g _ [~ -st| e +e _ 1| 1 —tiex
L{cosct) = Jo e " {cosct)dt = Jo e (—2 Jdt =3 [Jo et +

Jme'(““)’dt]:l[ L, 1']= s
0 2{s—ic s+ic] 402

103
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L[sinct] =

C
242

oo e . ict _ —ict
L(sinct)= jo e ¥ (sinct)dr = jo e [%)dt = %[

{5+t _l 1 1 — A
jo ¢ dr]_ 2[5—c+s+c] 2 —¢?

J.w e—(s—ic).fdt _
0

Aj

.5‘2 —02

Llcoshef] =

o0 oo of —ct oo
L(coshet) = .[o e~ (cosct)dt = I e (%) di = %UO oSN gy o

0
Jme—(sw)rdt]:l[ 1 " 1
0 2ls—¢ s+

]_ s
T2 o2

c

52—02

= = f - =
L(sinhet) = jo e~ (sinhct)dt = J e [ﬂ)dg = %“ o (=M gy _

L[sinhct] =

0 2 0

2 —{stch _l 1 1 — C
jo ¢ dr]_ 2[s—c+s+c] 2 —c2

3.4 Laplace Transform (LT) of elementary functions

Solved examples on Laplace transform of elementary functions

0,forx<3

1. Find the Laplace transform of the function f (x)={x_3 forx>3
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Solution:

Lf= | e ()
= [ f e+ [ e f oy
= [y ()04 (e )x-3)ete

=J:e'“(x—3)dx

2. Find the Laplace transform, if it exists, of each of the following functions

(a) f(1) = e
by =1
) fin=1
Solution:
2 (a)
Y —st g, " at —st g _ % —is—a¥ 3, _ e_(s_a)f oo_
L[f(‘)]—jo f(t)e dt—jo e¥e dt_jo et )dr_[—_(s_a)]o =
1 for s>a.
S—d
2. (b)

-5 |0 =

c[r®) =], f@we™dr =] edr =] ¢ dr= [e_}“ =1

for s > 0.
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2. (¢)

Ll )=, s =] i = [ sed = [te—_: 5 ]z i
1 ,

5_2 for s > 0.

3.5 Properties of LTs: Change of scale theorem, Shifting
theorem

We shall continue discussing various properties of Laplace transform. We mainly
cover change of scale property, Laplace transform of integrals and derivatives etc.

Change of scale property

cLren]=1F(

c

Proof:
If L{f(")}=F(s), then L{f(cr)}= J‘O“’ e [ f(ct)]dr = J': | f(u)][%] =

%J:; e f(w)du = %F (q)=%F (%), [Assumptions : ¢t = u, dt = du /¢, q¢ = s/C]

Shifting theorem

L{f-o)}=e“F(s)

Proof:

If £{f (D)} = F(s), then L{f(t-c)} = J:e"“ [f(z—c)]dr =jﬂme's(°+p) [/ (p)]dp =

™

_“J:e_Sp f(p)dp =™ F(s), [Assumptions . t—c=p,t=c+ p,dt =dp]
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3.6 Laplace Transforms of first and second order deriva-
tives and integrals of functions

LT of 1st order derivative of functions
Let f (#) be a function and £* (¢) be its derivative with respect to time which exists,
Laplace transform of f(#) is given by

L[f(H)]=Fs)= j: Ftedt (3.11)
Laplace transform of ' (#) 1s
[ ] =j0°° FiUedr (3.12)

Carrying integration by parts of Eq. (3.12) we get

c[rn]=[erm] -], (-s™) fa
=—f(O)+s], f)e "t
=—f(0)+ sF(s); [using Eq. (3.11)]
= 5F(s)~ f(0)

LT of 2nd order derivative of functions
Let £'(f) and f"(#) denote the lst and 2nd order derivaties of the function f(7).
Laplace transform of f"(¥) is
c[fra)=] e (3.14)

Carrying integration by parts of Eq. (3.14) we get

(3.13)

c[r]=[e f’(t)]: —j:(—se—“) FO)dt

=—fO)+s]. f0ye"dr

==f (O +sL[ /(1]

=—f"(0)+s[sF(s)— £(0)];[using Eq. (3.13)]
= 5’F(s) =5/ (0)— f"(0)

(3.15)
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LTs of integrals of functions

Let us consider the function defined in terms of the integral

g = I; f(r)dt (3.16)
such that
g't)=f) (3.17)

Now,

L[ f(0)]=£[g’()]; [using Eq. (3.17)]

=s£[g()]-g(0), [using Eq. (3.13)] (3.18)
For g(0) = 0, we have from Eq. (3.18)
F(s)=st]g®)]
=5t [j’ f('c)dt]
F(s) (3.19)

or, LU f('c)d'c]

3.7 Derivatives and integrals of LTs

Derivatives of LT

If L[F()]= f(s), then f'(s)=L[~()] and ds,, =(-1)" ["F ()]
Proof :
By definition,

f(s)= j:e‘”F(r)d: (3.20)

Differentiating w.r.s.

F(sy= ]t Fit)di = £[~1F (1)) (3.21)



NSOU « CC-PH-10 109

By repeated differentiations,

Fr)= [ e Fad= [ (' F() = () t[rFo]  622)
Integrals of LT
If L[F()]=f(s), then L[j F(p)dp] S
Proof:

By definition,

L[I; F( p)dp] - I:[I;F( p)dp]e—“dr

5

Using integration by parts
1
= LIF)]
_f(s)
A

IF(p)dp} 41 j Ft)e d

For F(7) at least piecewise continuos and x large enough so that e=*F{(¢) decreases

exponentially (as x — eo), the integral

F(x)= j:o e F ()t (3.23)

is uniformly convergent with respect to x. This justifies reversing the order of
integration in the following equation:

J e[ ax[ aweF () (3.24)
=0 Ff)( e, (3.25)

on integrating with respect to x. The lower limit is chosen large enough so that fis)
is within the region of uniform convegence. Now letting p — o, we have
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I_Sf(x)dx I 2O sty L[F(r)], (3.26)

40}

t

F{t
L|: § )]wﬂl exist.

provided that is finite at 1 = O or diverge less strongly than 77 (so that

3.8 LT of Unit Step function, Dirac Delta function, Periodic
Functions

LT of Unit Step function

L[u (r—c)] = %F(s)

Q. Find the Laplace transform of the function un it step function defined as:

1, fortzc.

"(g_c)={0’f0rt<c

Solution:

Llu@-c)]= I: e u(t —c)dt
= JOC e ut —c)dt + J:m e u(t—c)dt
= _L:(e_“)(())dt + j:(e—“)(l)dz

=| e ¥ dr

g
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LT of Dirac delta function

L[u (r—c)] = %F(s)

Q. Find the Laplace transform of the unit step function defined as:

0,fort<c
Lfortze

u(t—c)= {
Solution:
Llut-o)]= j: e u(t —c)dt
= [Te Ut —cydr+ | e Mu(t—c)dr
= j: (e J0pett + j:(e—“ ) Wr

= J.:o e dt

LT of periodic function

r -5/
I e™” f(t)dt

0
l_e—SI

c[f(0)]=

Q. Find the Laplace transform of the periodic function defined as:

t, forO<t<ce
2ce—t, forc<t<2e

7004
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Solution: Period = 7= 2¢. Laplace transform of periodic function f(7) is

e rwd [ e f(t)dt
L[f (t)] I —e sT IO 1- —2cs

e

On puting the values of f(7), we get

£[1@)=— _M [che"“(c)dt+ [ —t)dt]
c 2c
_ 1 re—S.f e—SI e—S.f e—SI
l-ee { s _(—sf} +{(zc")(-~*)_(_l) (_5)2}
_ 1 ce’™ % 1
- 1_6—20:3 _{ (—s) (_5)2 0+ (_5)2}

+{(2c-zc)%+e; ((20 ")(—_j)}re_“H

—2es —cs —cs

=¥ —C¥
_ 12 _ece " ¢ +L+e e e
|—e 25 2 2

5 s s s 5 s
_ 1 1 cs —2es
1 —2 |: 3 (1 2e " +e )]
L (1 e—CS
2 Q+e)1-e7%)

=]

3.9 Convolution Theorem

If £(#) and g(¥) be two functions of 7. The convolution of f(#) and g (¢) is also a

function of ¢, denoted by (f * g)¥) and is defined by the relation

(f*2) =] fa-vgxads
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However if f and g are both causal functions then (strictly) f(#)g(¢) are written

fu(r) and g(fyu(r) respectively, so that

()0 =] fl-xutr-x)g(ouod = || £(-x)gx)ds

because of the properties of the step functions (#(z — x) = 0 if x >

x << 0).

(3.28)

tand u(x) = 0 if

3.10 Inverse Laplace Transform (ILT)

Example of Inverse Laplace Transform

1. If L'l[ 5 = ]=cosh4t then determine L'l[ 23 ]
s -16 257 -8
Solution: Given that El[ 3 516]=cosh 4¢ . Replacing s by 2s and using
S5 -
scaling property we have L'l|: 223 ]=lcosh 2t ! [4] = lcosh 2t
4s°-16] 2 25°-8] 2
> Find O[] 551
' | s—a |
. af 3
3. Find £ _5_2]
. a2 2
4. Find £ _s+2+5—2]

Change of Scale Property

If £'[F(s)]=f(), then £ [F(as)]= %F(%)

Inverse Laplace Transform of derivatives (Derivative Theorem)

If £ [F(s)]=f(1), then £! [js_}:’f (as)} =(=1)'1"f()n=12
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Examples

2as
2_ 2

— S _—
1. Find the ILT of (i) (52 +a2)2 i Tra?)

d a 2as d s 2 —g?
Solution: Note that —- =— and _[ ]= -
uti d5[32+a2] (32+a2)2 ds| 2+ 42 (32+a2)2

(1) By direct application of the derivative theorem we have,

- 2as -l d a -1 a .
[l 2| g _[_ ]]: 1L [_ ]=tsma; and
(52 + 02)2 [ds s +a’ D st +a?

22
) gl el =L‘l[—i[;ﬂ= -1 tL‘l[—;]= { cos at
. (52+az)2 ds| 5% +a? (=) st +a?
Inverse Laplace Transform of Integrals
It [ F(s)]=f(2). then L'l[ i f@)]:@
1. Find the inverse Laplace transform (ILT) f{t) of the function
|
-L s(s+1)ds

Solution: Solution: By the method of partial fraction we obtain

o1 |- o L]
= o[ L) o[ ]
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Multiplication by powers of s

If £ [F(s)]= /() and f(0)=0, then I [sF(s)] = f'(1)

1. Using L_l|: 21 1] =sinz, and with the application of the above result evaluate
57+

L—l|: s ]
s2+1

Solution: Direct application of the above result leads to

-1 s d .
L =—=8Inf = cosf
[32+1] dt

3.11 Application of LT to 2nd order differential equations

Driven Damped Harmonic Oscillator

Many systems exhibit mechanical stability: disturbed from an equilibrium position
they move back toward that equilibrium position. We will start with a single degree
of freedom, which will illustrate most of the important behavior. If the damped
oscillator is driven by an arbitrary function of time, then

£+ 2b%+ 0% = % (3.29)

One of the important techniques for solving Eq. (3.10) is via an integral transform
called the Laplace transform. The transform converts time derivatives into polynomials,
which produces an algebraic equation. These are easier to solve than differential
equations. After solving the algebraic equation, we then apply the inverse Laplace
transform to return to a time-domain expression that gives x(t).

First, we define the Laplace transform of a function of time, x(¢), as

X(s)= £[x(t)] = j: x(D)e "dr. (3.30)

Since we will be applying this to time derivatives of generalized coordinates, let’s

. a’
work out expressions for the Laplace transform of % and I;C
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dx _ Wﬂ -5 _
L[E] =)y 3¢ ‘dt, [x = x(1)] (3.31)
=e x () 6°+I: se™ xdt
=—x(0)+ sX(s)
de | _ -
L [E] =sX(s)— x(0) (3.32)
d’x | _ (= d’x N
L[dtz ] 0 g2 dat. (3.33)
e—.s.f dx) +J‘ —s.r dx
=—x"(0)+ s(sX (5) — x(0))
L & = §2 X (s) - sx(0)) — x'(0) (3.34)
dr?

where the prime indicates differentiation with respect to the argument of the function.
We now seek to apply the Laplace transform to Eq. (3.10). Let us assume that we
have situated the origin of time such that the system is quiescent and the forcing
function vanishes for t < 0. Then we may take all of the integrated terms to vanish,
and get

F(t F

4 2ps o) - o] EL| £ (3.39)

Solving for the Laplace transform of x, X(s), gives

F(s)
X(s)=
(s) m(52+2[35+c0§) (3.36)
We now apply the Laplace transform inversion integral 1 (the Bromwich integral),
_ 1 gt st

x(f) = ijy-m X(s)e" ds (3.37)

- | O e F(s) S g
27 Yy=e (5% + 2Bs +®F) (3.38)
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where v is a real constant that exceeds the real part of all the singularities of X{s),
to solve for x(#). Equation (3.19) 1s derived on the basis of contour integration.

Example 1

Suppose that the oscillator described in Eq. (3.10) is thumped at # = 0 with a delta
function impulse: F(f)=0d(¢). Find x(¢f) using the Laplace transform method.

According to Eq. (3.17), we need first to calculate the Laplace transform of the
forcing function:

L[F(0)]=L[ed()]=] od(r)e "dr = (3.39)
By Eq. (3.17) and the inversion integral, we have

_ v ofm s
(=55, .3 Topsrar’ © (3.40)
The integrand has poles at the roots of the quadratic equation in the denominator,

s, =P, /]32 —m§ . both of which lie to the left of s = 0. So, we may integrate along

the imaginary axis and close in the left half-plane, where the exponential sends the
integrand to zero for t > 0. By the residue theorem, the integral is therefore 2w times
the sum of the two residues.

Writing the denominator as (s—s, )(s—s_)

1 ¢+ o/ m 8t
X0 = I G e

_ 1 Y= a}fm 1 _ 1 Srds
29 Jy—ee (.s'+—_s'_) S—8, S-8_

#L*’U(znf){ fim 85 iy @e“]

55, § 8, 55, S —5_
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P (it —t
o e e —¢
“w o ( 2i ] (3.41)

_B(
Finally, x(t) = %%sin(wt)

where © = \jo, —B*

Simple Electrical Circuits
LCR series circuit with constant voltage source

Let us consider a circuit containing an inductor (L), a capacitor (C), and a resistor
(R) connected in series with a dc source of emf E. The instantaneous value of the
current in the circuit is related to the circuit elements and the emf (E) of the battery
through the equation

dl 1 {7
LE+R!+?jfdz_E (3.42)
Applying LT, we get
I(s) 10
L[.gf(.g)_f(o)]+RJ(.g)+%[$+%=%] (3.43)

We that for the given circuit, at t=0, the current is zero, i.e., I{0) =0. Eq(3.24)
therefore becomes

£ _ ifrt]eroped 1

= [Ls+ R+é]!($)

or, I(s) = £ 1
s [Ls +R+ T]
Cs
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_ FE
[L52+R5+%]
_ E/L
2 RO
5+ R ]
- ?L 1 (3.44)
2
|:S +IS+LC]
_ E/L
_|: -
s —(a+b)s+ab]
ElL
of, l(s) = 3.45
R [Py G4
where, a+b=—%, ab:% (3.46)
L, . R,[B 1
2L N4 IC
R _IR* 1
=b = TartuEIc
. E 1 1 1
Again, Ks) :fa—b[s—a_s—b] (3.47)
Koy = L7'[1(s)] (3.48)
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Fils 't Y
-5 R 1 R1
_  FEe |:e(\j4}jLC B efxlwu:]

R* 4
Wi 1e

Rt
2Fe 1L, R* 1 .
[f = —Sll’lh —_— |} 3-49
() R?_4L { 47 LC ] (3:49)
- _ _

LR series circuit with constant voltage source

Let us consider a circuit containing an inductor (L) and a resistor (R) connected
in series with a dc source of emf E. The insstantaneous value of the current in the
circuit is related to the circuit elements and the emf E of the battery by the equation

dl _
LE+RI—E

Applying LT, we get
L[SI(S)—I(O)]+RI(S)=% (3.51)

We that for the given circuit, at t = 0, the current is zero, i.e., [(0) =0. Eq(3.24)
therefore becomes

% = L[sI(s)]+RI(s) (3.52)

= [Ls+R]i(s) (3.53)

=1{s) = —S(Li ) (3.54)
E

= m (3.55)
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E/L|1 1
= R/Lls _ R (3.56)
L
£11__1
- R|s R (3.57)
s+7
Koy = L7'[1(s)] (3.58)
E o ]. 1 if
N e (3.59)
S+
L
Iy = gll-e (3.60)
Coupled differential equations of 1¥ order
Example: Solve the following system of coupled differential equations:
cx
—L =3x-3x,+2;x(0)=1 (3.61)
dt
dd
Fg‘l :—6x1 —r;xz (O):—l (362)
Takin Laplace transform of both differential equations, we have
$X (5)=x(0) = 3X,(5)-3X, (s)+ 2
= (s-3)X(9)+3X,(s) =1+ 2 (3.63)

sX, (s)—x2(0)=—6X1(S)_SL2
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= 6X(s)+shy(s)=-1- (3.64)

Multiplying the Eq.(3.44) by s and Eq.(3.45) by -3 and adding we get

352 +3

SZ

(52 —3S—18)X1(S) = 2+8+

s2+557+3
= N6) =T 5T
B S 4557 +3
~ s (s+3)(s-6)

Xis) = Tog\s—6 s+37s 2 (3.65)

1 { 133 28 3 18
s g _

Taking the inverse transform gives us the first solution,
_ 1 6t 3
6 (0)=153 (133¢% - 2807 +3-18¢) (3.66)

Now to find the second solution we could go back up and eliminate X, to find
the transform for X, and sometimes we would need to do that. However, in this case
notice that the second differential equation is,

dxy
dt

x (1) = [[-6x(r)-1]dr

So, plugging the first solution in and integrating gives,

x (1) = I[(é){ﬁ(meﬁ’ —28e7 +3—18:)}—t]d:

_ 1 6f _ mo, -3t

= 753 (133¢% - 28¢ 7 +3) it

= o (133e% —56e7¥ +181)+c (.67)
108 '
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Now, reapplying the second initial condition to get the constant of integration
gives

| S
-1 = —m(133+56)+0
_ 3
=c =3 (3.68)
The second solution is then,
_ 1 6t -3¢ 3
%, (1) =~ 755 (133¢” +56¢7 +181)+ 5 (3.69)
Thus the solution of the given coupled equations are:
5i() = ho(133¢% 28 +3-18/)
1 108
_ 1 (1226 3 (3.70)
X (1) = —qogll33e™ +5607 +18-81)

Exercises on application of Laplace transform

1. Find £ * g where f (z) = ¢ and g(¥) = sin ¢,
t
Hints: Convolution: (f * g)(?) = Jo(t—s)g(s)ds

Solution:

i

(f*g)(n)= J; e ginsds = I:e_(H} (sins—cos s)]o

2 | —

= %I:(sin {-cost)+ e‘f:l

2. Express the solution to the initial value problem:

v +ay=g(t), y(0)=y,, in terms of a convolution integral.
Solution:
Solving this initial value problem by the method of integrating factor we find

ofe—s)

}’(f)=e_w}’o +J:) e Sil‘lSdS=e_wy0+e_w *g(t)
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3. For circuit containing a capacitor and a resistance (C-R) with source of
constant EMF E and a key (K) all in series the the instantaneous charge on
either plate of the capacitor is Q. Solve the corresponding dfferential equation

do O _
RG+e™

to find O(f) using Laplace transform method.
Chapter-end exercise

1. Find the Laplace transform of F{f) = exp(#?).

2. Show that £{sin o} = (s > 0).

%+’

3. Find the Laplace transform of the function

0 <0
F(t)=1 sint 0<t<2m
sinf+cost f>2m

4. Use Laplace transforms to solve the initial value problem:
Y43y +2y=e”, y(0)=0

5. Use Laplace transforms to solve the initial value problem:
y' +2y=26sin3t, y(O) =3

6. Use Laplace transforms to solve the initial value problem:
Y +3y' +2y=6e", y(0)=1, y’(0)=2.

7. Use Laplace transforms to solve the initial value problem:
yr=2y"+y=e", y(0)=0, y(0)=0

8. Obtain general solution of heat flow along an infinite bar using Laplace
transform.



Unit 4 (1 Tensors

Structure

4.1 Objectives

4.2 Introduction

4.3 Tensors as multilinear transformations

4.4 Examples of tensors

4.5 Components of a tensor in basis

4.6 Symmetric and antisymmetric tensors

4.7 The completely symmetric and antisymmetric tensor
4.8 Summation convention

4.9 Inner product of vectors and the metric tensor
4.10 Coordinate systems and coordinate basis vectors
4,11 Reciprocal coordinate basis

4,12 Components of metric

4,13 Change of basis

4.14 Change of tensor components

4,15 Example : Intertial coordinates

4.16 Lorentz transformations as coordinate transformations

4.17 Elelctro-magnetic tensor and

4.1 Objectives

By the end of this unit, students will be able to:

e understand concept of tensor variables and difference from scalar or vector
variables.

e understand the reason why the tensor analysis is used and explain usefulness
of the tensor analysis.

e derive base vectors, metric tensors and strain tensors in an arbi-trary
coordinate system.

e understand the meaning of symmetric, antisymmetric and completely
antisymmetric tensors.

125
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e understand summation convetion

e learn about change of tensor components under change of coor-dinate
systems,

e understand inertial coordinates & bases in Minkowski space

e know Elelctro-magnetic tensor and change in its components un-der Lorentz
transformations etc.

4.2 Introduction

Laws of Physics must be independent of any particular coordinate systems used
in describing them mathematically if they are to be valid. A study of the consequences
of this requirement leads to tensor analysis, of great use in general relativity theory,
differential geometry, mechanics, elasticity, hydrodynamics, electromagnetic theory,
and numerous other fields of science and engineering.

In three-dimensional space, a point is a set of three numbers, called coordinates,
determined by specifying a particular coordinate system or frame of reference. For
example, (x, ¥, 2), (1, ¢, 2), (r, 8, ¢) are coor-dinates of a point in rectangular,
cylindrical, and spherical coordinate systems respectively. A point in N-dimensional
space is, by analogy, a set of N numbers denoted by (Xl, Xt xN) where 1, 2, ..,
N are taken not as exponents but as superscripts, a policy which will prove useful.
The fact that we cannot visualize points in spaces of dimension higher than three has
of course nothing whatsoever to do with their existence. Thus, in mathematics, a
tensor is a geometric object that maps in a multi-linear manner geometric vectors,
scalars, and other tensors to a resulting tensor. Vectors and scalars are the simplest
tensors. Vectors from the dual space of the vector space, which supplies the
geometric vectors, are also included as tensors.

4.3 Tensors as multilinear transformations (functionals) on
vectors

Coordinate transformations

Let (xl, X,y V)and (fl, ¥, ., JTN) be coordinates of a point in two different

frames of reference. Suppose there exists N independent relations between the
coordinates of the two systems having the form
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v reeeeeaaees (41)
YN’ _ fw (xl,xz, ’xm')
which we can indicate briefly by
7 = (ot k=123, N (4.2)

where it is supposed that the functions involved are single-valued, continuous, and
. . . . —_ — —_N
have continuous derivatives. Then conversely to each set of coordinates (Xl , xz, v X ¥ )

there will correspond a unique set (xl,xz,...,x‘w)given by

=t (7L k=123, N (4.3)

Relations (4.2) or (4.3) define the transformation of coordinates from one frame
of reference to another.

Contravariant and covariant vectors

If N quantities A", 4%...., A", in a coordinate system (x' x% _ x") are related to
N other quantities A4', 4%, .., 4" in another coordinate system (x' x?,  x") by the
transformation equations

N o

= o ox? _
AP —Za?Aqa p_132y33'“»N (44)
q=l1

which by the adopted conventions can simply be written as

_ afP
AP =F_ g4
A {45)
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they are called components of a contravariant vector or contravariant tensor of the

first rank or first order. If N quantities 4 , 4..... A in a coordinate system (x! x%, .. xV)

are related to N other quantities A4,4,,..,4y; in another coordinate system

—1 — —N . .
(xl_,x2 ,...X\) by the transformation equations

ax?
A, _;Zfa_p A4, p=123_.N (4.6)
or,
- e?
AP_BY_P , “.7

they are called components of a covariant vector or covariant tensor of the first rank
or first order. Note that a superscript is used to indicate contravariant components
whereas a subscript is used to indicate covariant components, an exception occurs in
the notation for coordinates. Instead of speaking of a tensor whose components are
AP or A we shall often refer simply to the tensor AP or 4 . No confusion should arise
from this.

Contravariant, Covariant and Mixed Tensors
If N* quantities A% in a coordinate system (x', x°...,x") are related to N other
. . . = =2 =N .
quantities 47 in another coordinate system (xl,xz,..‘,x ) by the transformation

equations

1

ox? ox” g% —
Z{Z{aanA pr=123 N (4.8)
s=1g=

or

qPF — afp afr

ax? ogx®

by the adopted conventions, they are called contravanant components of a tensor of
the second rank or rank two.

(4.9
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The N* quantities A% are called covariant components of a tensor of the second
rank if

= _ox? o’
LR

(4.10)

Similarly, the N* quantities 47 are called components of a mixed tensor of the

second rank if

¥
= (4.11)

Kronecker delta

Kronecker delta written 37, is defined by

o _[tifi=k
“Z) 0if 2k (4.12)

As its notation indicates, it is a mixed tensor of the second rank.
Tensor of rank greater than two
Tensors of rank greater than two (i.e., rank > 2) are easily defined. For example,

Agf are the components of a mixed tensor of rank 5, contravariant of order 3, and

covariant of order 2, if they transform according to the relations

gk _ 0% Ox’ %" ox® v’ por
" 9P ot o ox o

(4.13)

Scalar or Invariants

Suppose ¥ is a function of the coordinates x*, and let i denotes the functional
value under a transformation to a new set of coordinates ¥* . Then Y is called a
scalar or invariant with respect to the coordinate transformation if W =y . A scalar
or invariant is also called a tensor of rank zero.
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Tensor Fields

If to each point of a region in N-dimensional space there corresponds a definite
tensor, we say that a tensor field has been defined. This i1s a vector field or a scalar
field according to the tensor is of rank one or zero. It should be noted that a tensor
or a tensor field is not just the set of its components in one special coordinate system
but all the possible sets under any transformation of coordinates.

Fundamental operations with tensor
Addition

The sum of two or more tensors of the same rank and type (i.e. same number of
contravaniant indices and the same number of covanant indices) is also a tensor of
the same rank and type. Thus if 4”*and B/9are tensors, then C74 = 4% + BP is

also a tensor. The addition of tensors 15 commutative and associative.
Subtraction
The difference of two tensors of the same rank and type 1s also a tensor of the

same rank and type. Thus if 4?? and B/ are tensors, then D/? = 477 — B? is also

a tensor.
Quter Multiplication

The product of two tensors is a tensor whose rank is the sum of the ranks of the
given tensors. This product which involves ordinary multiplication of the components

of the tensor is called the outer product. For example, A,f""B;; =C£§{ is the outer

product of 47 and B;. However, note that not every tensor can be written as a
product of two tensors of lower rank. For this reason, the division of tensors is not
always possible.

Contraction

If one contravariant and one covariant index of a tensor are set equal, the result
indicates that a summation over the equal indices i1s to be taken according to the
summation convention. This resulting sum is a tensor of rank two less than that of
the original tensor. The process is called contraction.

itk

7 set m =k to obtain Ay = B}j , a tensor

For example, in the tensor of rank 5, 4/,

of rank 3. Further, by setting / = j we obtain BY =B’ a tensor of rank 1.
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Inner Multiplication

By the process of outer multiplication of two tensors followed by a contraction,
we obtain a new tensor called an inner product of the given tensors. The process is

called inner multiplication. For example, given the tensors 4! and B}, the outer

product is 47 Bf. Letting k¥ = p, we obtain the inner product Ai{BP Letting £ = p

ogF -
and ¢ = j, another inner product Ai{BJ{; is obtained. Inner and outer multiplication of
tensors 1s commutative and associative.

Quotient Law

Suppose it is not known whether a quantity X is a tensor or not. If an inner
product of X with an arbitrary tensor is itself a tensor, then X is also a tensor. This
is called the quotient law.

Notes on Quotient Rule

In the tensor analysis, it is often necessary to ascertain whether a given quantity
is tensor or not and if it is tensor we have to find its rank. The direct method requires
us to find out if the given quantity obeys the transformation law or not. In practice
this is troublesome and a similar test is provided by law is known as Quotient law.
Generally, we can write,

KA =B (4.14)

Here A and B are tensors of known rank and K is an unknown quantity. The
Quotient Rule gives the rank of K. For example

In=1 (4.15)

Here [ and ® are known vectors, then Quotient Rule shows that / is a second
rank tensor. Similarly,

mi=F (4.16)
oE=J (4.17)
B =P (4.18)
all establish the second rank tensor of m, G,%  The well known Quotient Rules are
KA =B (4.19)

KA =B (4.20)
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KA, =B, (4.21)
K:JHAU' - Bk! (4.22)
KA =B, (4.23)

In each case, A and B are known tensors of rank indicated by the number of
indices and A is arbitrary whereas in each case K is an unknown quantity. We have
to establish the transformation properties of K.

The Quotient Rule asserts that if the equation of interest holds in all Cartesian
co-ordinate systems, K is a tensor of indicated rank. The importance of physical
theory is that the quotient rule establishes the tensor nature of quantities. There is an
interesting idea that if we reconsider Newtons equations of motion

ma=F

based on the quotient rule that, if the mass is a scalar and the force a vector, then
you can show that the acceleration x a is a vector. In other words, the vector
character of the force as the driving term imposes its vector character on the
acceleration, provided the scale factor m is scalar. This will first make us think that
it contradicts the idea given in the introduction. But when we say m is scalar

immediately we are considering that & and F have the same directions which make
m scalar. Now let us prove each equation and find the nature of XK.

Proof of the quotient rules
1. The quotient rule 4.19:
KA =B

Proof: Taking prime on both sides
K4 =B

Here A has one index and hence it is a vector. Using the transformation equation
for a vector

K'[axf )Aj =B

dx;
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because B’ = B, since it is a scalar. Now using the given rule RHS is modified and
we get

L 0%
K [ax JAj =KAJ-

J

) ’ax; .
oFr, {K aT_KJAJ =0

7

. Now A4j cannot be zero since it is a component and if it vanishes the law itself
does not exist. Hence the quantity within the bracket vanishes.

A ox}

Here the transformation is with one coefficient and thus X is a first rank tensor.
2. The quotient rule 4.20:
KAJ. =B,

Proof: Now we will proceed as in the case 1, taking prime on both sides

KA = B
, ax’ ax;

=<(5 - (5

Y 0
=& 24 - |24

axs. 5 axp 5 \
NPV (4.25)

dx; o, s

X’ ox
- | &%

=4 =& [axs ax,.]

Thus X is a second rank tensor.
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3. The quotient rule 4.21:

KAjk - Blk
Proof:
Taking prime
K’ }k = By
ox’; o’ dx; o}
N el — i k
=k [ax » O, ]AP‘I (axr dx, Bry
ox’; ox!
, _j = i
=K [axp]qu (.axr JKAm
N P PR (4.26)
dx, ox, pq
=K = K’ %ax"
dr, dx;
K is a second rank tensor.
4. The quotient rule 4.22:
KA, =B,
Proof:
Taking prime
K'dy = By
292 _ oy
ox, dx, ¥ dx, dx, "
ox’, ox’; ax: ox!
rJ T = k7
= dx, dx, #? ox, odx, K Ay
ox; o} ;. Ox]
P Bt ST Bl | — 427
=>[K dx, dx, dx, Ox, K |4 0 (4.27)
% _ g dx; 9% dx, ox,
dx,, dx, dx; dx;

K is a 4" rank tensor.
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5. The quotient rule 4.23:

KA, - B,
Proof:
Taking prime
K'4; = Bj
, 0% _0x] dxf dxg
Ky A = Dx, v, oy, e
7 Ox’
=K'4, = 3"' LK 4,
X, 0%, [
P A I (4.28)
dx,, dx, 4
dx, dx,
=K = K| =51
0x] 0x;

Hence X is a second rank tensor.
Exercises
1. The double summation KgA; = Bj is invariant for any two vectors 4. and Bj..
Prove that K, 15 a second-rank tensor.
2. The equation KA, = B, holds for all orientations of the coordinate system.

If 4 and B are arbitrary second rank tensors show that X is a second rank
tensor.,
Matrices
A matrix of order m by n is an array of quantities a, called elements, arranged
in m rows and n columns enclosed between pair of parentheses or in brackets and
generally denoted by

4y 4qp 43 ... G, 4y 4qp 43 ... G,
dy Gy tyy .. Uy dy Gy tyy .. Uy
3y dyp  dyz ...y, [OF A3 dyp  dyz .. gy,
Al Ty Gz 0 Oy _aml Quy 3 Do i
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or in abbreviated form by (@) or [a ], i = 1,...m; j = 1,...n. If m = n the matrix is
a square matrix of order m by m or simply m; if m = 1 it is a row matrix or row
vector; if » = 1 it is a column matrix or column vector. The diagonal of a square
matrix containing the elements a,, a,,,....a_ is called the principal or main diagonal.
A square matrix whose elements are equal to one in the principal diagonal and zero
else is called a unit matrix and is denoted by /. A null matrix, denoted by O, is a

matrix all of whose elements are zero.

4.4 Examples of tensors

Moment of Inertia Tensor

Finding the components of the moment of inertia is the simplest example given
in many textbooks introducing nine component physical quantity. Consider a rigid
body rotating with fixed angular velocity @ about an axis that passes through the
origin (see Figure 4.1). Let r, be the position vector of the ith mass element, whose
mass is m.. We expect this position vector to precess about the axis of rotation (which
is parallel to ) with angular velocity w. We, therefore, have

dr; _ WXr
dt i

Thus, the above equation specifies the velocity, v, = dr/dt, of each mass element
as the body rotates with fixed angular velocity /£ about an axis passing through the

origin. The total angular momentum of

Figure 4.1: A rigid body
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the body (about the origin) is written

L= mp x—— Y. myp; < (wxr)

i=LLN i=1,N

= m; [(rfw - rj.w)rj]_,

i=LN

(4.29)

where use has been made of Equation (4.14), and some standard vector identities.
The above formula can be written as a matrix equation of the form

L_‘A 1 xx 1 xy I xz || W,
Ly |=|he Ly Iz | Wy |, (4.30)
L. I Izy I \w.
where
I .= I=;N(yI +z )m I(y +2%)dm, @31)
1, = (xf +z,.2)mf =j(x2 +2%)dm, (432)
i=IN
— 2 2 _ 2 2
Izz _.;=LN(Xi +y.i )m.i _I(x +y )dma (433)
],\j]’=]}9£‘=_z X1 ;‘:_nydmy (434)
i=LN
- Z Y2 = _Iydea (435)
=LA
=1 z X;Z;m; ——Jx zdm, (4.36)

Ilg\‘

Here, I is called the moment of inertia about the x-axis, va the moment of inertia
about the y-axis, I  the xy product of inertia, 7 the yz product of inertia, etc. The
matrix of the If_j. values is known as the moment of inertia tensor.
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Note that each component of the moment of inertia tensor can be written as
either a sum over separate mass elements, or as an integral over infimtesimal mass
elements. In the integrals, dm = p dV, where p i1s the mass density, and 4V a volume
element. Equation (4.15) can be written more succinctly as

L=1Iw» (4.37)
Here, it is understood that L and £ are both column vectors, and I is the matrix

of the /_ values. Note that I is a real symmetric matrix: i.e., 1; =f;and [; =1, In

general, the angular momentum vector, L, obtained from Equation (4.22), points in
a different direction to the angular velocity vector, . In other words, L is generally
not parallel to .

Finally, although the above results were obtained assuming a fixed angular
velocity, they remain valid at each instant in time if the angular velocity varies.

Excercises

1. Find the principal axes of rotation and the principal moments of inertia for
a thin uniform rectangular plate of mass m and dimensions 2a by a for
rotation about axes passing through (1) the center of mass, and (1) a corner.

Dielectric susceptibility tensor

When an electric field passes through a dielectric medium, it causes polarization
for the medium, and we define the electric susceptibility %, at some point in the
dielectric as:

P=¢, x E (4.38)

Where P is the electric dipole moment per unit volume and E is the total electric
field at that point.

Well, if the dielectric is “isotropic”, meaning P is independent of the orientation
of the E-field, X will be a scalar However, if the dielectric is “an-isotropic”, Xe
will be a rank-2 tensor and P and E will not necessarily be collinear.

The question is: Why shall P and E be non-collinear? How does it happen (the
physical process)?

The expression of Px, for example, will be

‘R\f =EO x.erx-'- EO Xxygy+ EO szEz (439)
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Thus the x-component of P depend on the y- and z-components of E. And the
same is true for other components also. Hence,

. P, Xor Ko X || E, |
B0 Xpx X Aoz || By | (4.40)
P_— _XZx XZy XZ-' EZ.

which can be expressed as
P=c,%E. (4.41)

where ¥ is called the dielectric susceptibility tensor.

4.5 Components of a tensor in basis

Let us consider a second-order Cartesian tensor defined as

The coefficients 7, are the components of 7" A tensor exists independent of any
coordinate system. The tensor will have different components in different coordinate
systems. The tensor T has components T,-j with respect to basis e, and components
T, with respect to basis e, ie.,

T=T,e,®e =Te e (4.43)

i

Applying basic rules of coordinate transformation of tensors we have

T,e,®e,=7,0.0,¢e0e =T e, (4.44)

¥ jgti g
giving us
Tf; = quQﬁpQﬂ} ' (4.45)
Similarly,

Tie; ® e =100, ®ey =T, e, ®e, (4.46)
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gives the relation
TP‘I = T;;QIPQM = prquTx; (447)

Equations (4.45) and (4.47) are the transformation rules for changing second-
order tensor components under change of basis. In general Cartesian tensors of
higher order can be expressed as

and the components transform according to

7.:;}( = Qinij}a‘" qur}

4.49
qur,,, = Qinijk?' ' 'Y;J‘k,,, ( )

4.6 Symmetric and antisymmetric tensors

Symmetric tensors

A tensor is called symmetric with respect to two contravariant or two covariant

indices if its components remain unaltered upon interchange of the indices. Thus if
A% = 4% the tensor is symmetric in 7 and j. If a tensor is symmetric with respect

T fr

to any two contravariant and any two covariant indices, it is called symmetric.

Antisymmetric (skew-symmetric) tensors

A tensor is called skew-symmetric with respect to two contravariant or two
covariant indices if its components change sign upon interchange of the indices. Thus

if A}{;‘ = A‘{;‘r‘ the tensor is skew-symmetric in 7 and j. If a tensor is skew-symmetric

with respect to any two contravariant and any two covariant indices it is called skew-
symmetric,

4.7 The completely symmetric and antisymmetric tensor

Completely symmetric tensors

Let’s consider a tensor in d dimensions, meaning that each index runs from 1 to
d. The rank (r) of the tensor 1s the number of indices that it has and the fact that it
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is totally symmetric means that 7 , = T, for any pair of indices. The first
example to look at is a tensor with two mdlces T This case is simple because it
represents the components of a symmetric dxa’ matrix. The only independent
components are the diagonal elements and the upper triangle because the lower
triangle i1s determined from the upper one by the symmetry. There are of course d
diagonal elements and we are left with d°— d non-diagonal elements, which leads to

dd—-1)
2

elements in the upper triangle. The total number of independent components

is then

d{d—-1) d(d+1)
2 2
The next example will be more complicated and will show the general idea.

Consider a totally symmetric tensor of rank 3, 7, = There are three types of

components possible. We can first have things like 7 for a fixed number a from

1 to d and of course there are d such terms. We can next have terms like T, with

d+ (4.50)

a#b and we don’t care about 7, or T, because they are related to 7 , by
symmetry. The number of these components is d(d — 1) because you have d options
for the first (repeated) index and then only d-1 possible choices for the remaining

index. The last type of components is T, with a#b=c. There are
d\_d(d-1)d-2)
3/ 31

choose three different 3! numbers between 1 and o and the order doesn’t matter. The
total number of independent components is then

d(d—1)d -2) _d(d+1)d+2)

3! a 3!

independent components of that form because we only need to

d+d{d-1)+ (4.51)

In general, the number of independent components of a totally symmetric tensor
of rank r in d dimensions is

d+r=1 (d+r=1 (d+r-Dd+r=2)...(d+1)d
[r )=(r!(dr—l))!=( r= X ];g) @+ (4.52)

Completely anti-symmetric tensors

It’s possible to do the same kind of thing for totally anti-symmetric tensors that

satisfy 7, =-T ,  for every pair of indices, but the analysis is easier. From the

antl-symmetry we can already deduce that the value of all the indices for a non-zero



142 NSOU « CC-PH-10

component must be different because otherwise we would have 7 = -T
= T __, = 0 This then means that we can’t have a non-trivial totally anti-
symmetric tensor with » > d For a generic r < d, since we can relate all the
components that have the same set of values for the indices together by using the
anti-symmetry, we only care about which numbers appear in the component and not
the order. The number of independent components is then simply the number of ways

of picking r numbers out of d without a specific order, which is
(d) _ @)

riori{d—-r)

In particular, there is only one free component for an anti-symmetric tensor of

rank d in d dimensions. Asking for 7|, , = | defines the well-known Levi-Civita

(4.53)

tensor €,4,. q,-

4.8 Summation convention

T

In writing an expression such as ax'+ax’+.. +ax¥ we can use the short

notation z e a,x"_ An even shorter notation is simply to write it as ax’, where we

adopt the convention that whenever an index (subscript or superscript) is repeated in
a given term we are to sum over that index from 1 to N unless otherwise specified.
This is called the summation convention. Clearly, instead of using the index 1 we
could have used another letter, say p, and the sum could be written @ x”. Any index
which is repeated in a given term, so that the summation convention applies, is called
a dummy index or umbral index. An index occurring only once in a given term is
called a free index and can stand for any of the numbers 1, 2, ., N such as k in
equation (4.2) or (4.3), each of which represents N equations.

4.9 Inner product of vectors and the metric tensor

Inner product of vectors

An inner product is a generalization of the dot product. In a vector space, it is
a way to multiply vectors together, with the result of this multiplication being a
scalar. More precisely, for a real vector space, an inner product <> satisfies the
following four properties. Let #, v, and w be vectors and o be a scalar, then:

1. < #+vw>= gw >+ < pw >,
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2. oW =0T v,

3. < Py = W, v =,

4. < v, v »2 0 and equal if and only if v=0.

The fourth condition in the list above is known as the positive-definite condition.
Related thereto, note that some authors define an inner product to be a function <->
satisfying only the first three of the above conditions with the added (weaker)
condition of being (weakly) non-degenerate (i.e., if <yvw>=0 for all w, then v= 0).
In such literature, functions satistying all four such conditions are typically referred
to as positive-definite inner products (Ratcliffe 2006), though inner products which
fail to be positive-definite are sometimes called indefinite to avoid confusion. This
difference, though subtle, introduces several noteworthy phenomena: For example,
inner products which fail to be positive-definite may give rise to “norms” which yield
an imaginary magnitude for certain vectors (such vectors are called spacelike) and
which induce “metrics” which fail to be actual metrics. The Lorentzian inner product
is an example of an indefinite inner product.

A vector space together with an inner product on it is called an inner product
space. This definition also applies to an abstract vector space over any field.
Examples of inner product spaces include:

1. The real numbers R, where the inner product is given by <x,)>=xy.
2. The Euclidean space Rn, where the inner product is given by the dot product

T, Xy e, X)), (Y Y, s V) 2 XY TRy, Xy (4.54)

3. The vector space of real functions whose domain is an closed interval [a,b]
with inner product

b
(f.g>= L S gdx. (4.55)

4. When given a complex vector space, the third property above is usually
replaced by

<V, W= < W,V >, (4.56)

where z refers to complex conjugation. With this property, the inner product
is called a Hermitian mnner product and a complex vector space with a
Hermitian inner product is called a Hermitian inner product space.
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Every inner product space is a metric space. The metric 1s given by
gv,w)=<v-wv—-w>, (4.57)
If this process results in a complete metric space, it is called a Hilbert space.

What’s more, every inner product naturally induces a norm of the form |x|= /< x, x>,

whereby it follows that every inner product space is also naturally a normed space.
As noted above, inner products which fail to be positive-definite yield “metrics” -
and hence, “norms” - are something different due to the possibility of failing their
respective positivity conditions.

For example, n-dimensional Lorentzian Space (i.e, the inner product space
consisting of R* with the Lorentzian inner product) comes equipped with a metric
tensor of the form

(ds) = —dxs +dxl + .+ dx(n—1Y (4.58)
and a squared norm of the form

|v|2 =+ v+ +v(n-1) (4.59)

for all vectors v = (v, v,, ..., v(—1)). In particular, one can have negative infinitesimal
distances and squared norms, as well as nonzero vectors whose vector norm is
always zero. As such, the metric (respectively, the norm) fails to be a metric
(respectively, a norm), thoughthey usually are still called such when no confusion
may arise.

Metric tensor

An expression that represents the distance between two adjacent points is called
a metric or line element. In three dimensional space the line element i.e. the distance
between two adjacent points (x, y, z) and (x + dx, y + dy, z + dZ) In cartesian
coordinate is given by ds? = dx? + dy* +dz* In terms of general curvilinear
coordinates, the line element becomes

33
ds? = 2 2 8,49, dx,dq, = g,,dq,dx,dq, (4.60)

=l v=1

(using summation convention). This idea was generalized by Riemann to n-dimensional
space. The distance between two neighbouring points with coordinate x¥ and x*+dx*
is given by
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won
ds’ =YY g, e’ (4.61)

=l v=1

where the coeflicients g, are the functions of the coordinates x%;, subject to the
restriction g = determinant of g, = (g, |# 0. The quadratic differential form g, dx*dx”
is independent of the coordinate system and is called the Riemannian metric for n-
dimensional space. The space which is characterised by Riemannian metric is called
Riemannian space. Here the quantities g, are components of a covariant symmetric
tensor of rank two, called the metric tensor or fundamental tensor.

Exercises

1 If dS* = g dx'dx’ is invariant, show that g, is a symmetric covariant tensor of
rank 2.

Solutions
1. We have, dS* = g dx'dy .
Since it is invariant, dS°= gifcifid?f .
So, g,de'dy’ = gdetdr’.
Now applying inverse transformation law of dv’ and dx”, we get,

. . k i
ggcﬁ‘ﬁ"‘=gk;aidf%cﬁ? =g 8x ax Cﬁcﬁ

x ax’ M ox ’
ox* 9
=>[8; — & ax axj )dfi‘ﬁj
=& =8u gx ;)x — = the required transformation law for the second order

covariant tensor. Hence, g, is a covariant tensor of rank two. Now, g, can be
expressed in terms of symmetric and antisymmeric combinations as follows

8y =3(g;+8;)+3(g,;—g;)=A4;+B; where 4; =1(g, +g;) is a symmetric
tensor and By = %(g;)f —g&5) 1s an antisymmetric tensor. Then dS 2= gydx‘drf =

(A, +B)dx dx’
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We can write, Bgdr"dxf = Bgdxf'drf =Bﬁ_drfdr" = —Bgdxf'drf (interchanging dummy
indices / and j and using the fact that B is antisymmetric i.e., B = -B )

ZBydxfdrj =0,= B; =0.i.e, (g, -g;) =0, 0r g = €5, which shows that g,
is symmetric.

4.10 Coordinate systems and coordinate basis vectors

Objectives

This section aims to introduce basis vectors, coordinate system, and representation
of a vector in terms of basis vectors in an N-dimensional space V.

Qutcomes
In this section learners will
e Learn to view a basis as a coordinate system on a subspace.

e Leam to compute the B-coordinates of a vector, compute the usual coordinates
of a vector from its B-coordinates.

e Learn to find B-coordinates of a vector using its location on a nonstandard
coordinate grid.

In this section, we interpret a basis B = {v, v,, v,} of a subspace V as a
coordinate system on } , and we learn how to write a vector in } in that coordinate
system.

Writing a vector using B-coordinates

IfB={v, v, v, .. v} be abasis of a subspace V, thenv=cyv +cyv, +cyv,
+ o +¢,v, be a vector in V. The coefficients ¢, ¢, c,, ..., ¢, are the coordinates
of v with respect to the basis 5.

Theorem

If B={v, v, v,} is a basis for a subspace }", then any vector A in }" can be
written as a linear combination

A=Av +Av, + Ay, + ... + A4V (4.62)

exactly in the same way.
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Proof:

If B represents a basis for the vector space V', then B spans V" and B is linearly
independent. Since B spans }', we can write any v (=¥) in V as a linear combination

of v, v, v, ..., v,. For uniqueness, suppose that we had two such expressions:
— ¥
v=cv tov,tev, +o + Vg (4.63)
— r r r ’
v=clv tov, tov, ol ey (4.64)

Subtracting the first equation from the second yields
v—v={c -V +{(c; =)V +H{cs =iV + . ey —cy)vy =0 (4.65)

Since B is linearly independent, the only solution to the above equation is the

trivial solution: all the coefficients must be zero. It follows that (c; —¢/)=0 for all

i, which proves that ¢, =¢[,¢c, =¢3,...,cy =cjy.

Standard basis of R":

The standard coordinate vectors

| 0 0 0
0 1 0 0
0 0 | 0
Q= [© 25 pes=| [oONT
(4.66)
0 0 0 |

form a basis for R¥. This is sometimes known as the standard basis. In particular, &Y
has dimension N.

Standard basis of K3

A basis in a three-dimesional space, is any set of three linearly independent
vectors e, e,, e, in that space. However, it is to be kept in mind that two linearly
dependent vectors are collinear. For a given basis e, e, e,, every vector v in 3-D
space has a unique representation of the form

v =xe, +ye, +ze; (4.67)
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which can also be represented 3-D space as

1 0 0
v=x[0|+y|1[+2]|0 (4.68)
0 0 1

In the above representation, if < el, x e2, x e3 are all orthogonal, of unit
magnitude and constant, the coordinate system is called cartesian coordinate system.

Example:
1 0 0
v=20([=3[1]+4]|0 =2e1—3e2+4e3 (469)
0 0 1

Eqs.(4.67) to (4.69) represent the relation between vector and bases in
3-dimensional space in cartesian coordinates.

Note: The N vectors A, A,, A, ..., A are called linearly independent if and
only if

ClAl + 02A2 + C3A3 + ... + CJMAN = 0‘ (4‘70)
Implies that each of the coefficients ¢, ¢, ...., ¢, vanishes.

2-D Coordinate transforms of vectors

A vector cannot be described without a coordinate system. Let us have a vector
v in the 2-D plane having components v,, v along the x-axis and y-axis resapectively.
Now we introduce a rotated coordinate system represented by the broken line as
shown below, using x* and y* . The new system is rotated counter-clockwise by an
angle, 0, from the initial coordinate system. It 1s to be noted that the vector itself
remains unchanged, although it 1s described by different numerical values in the new
coordinate system. In this case, the vector makes smaller angle with the x' -axis than
with the y’ -axis , so the 7 component will be greater than the j* component. The
vector in both the systems are represented as

v=vitv j=vi+v§ (4.71)
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The 2-D vector transformation equations are

v, =v,cos0+v, sin0

Y= —yp 5] ’
v, =—v,sind+v, coso

This can be seen by noting that

e the part of v_that lies along x’ is v_cos 0

e the part of v that lies along x’ is v, sin 6

e the part of v_that lies along ' is —v_sin ©

e the part of v that lies along y* is v cos ©

149

(4.72)

These four factors make up the four terms in the transformation equations. They
are easily checked by setting q = 0° and q = 90°

e When 6 = 0° ;

vio=v cos O+ v sin®=v cos 0°+v sin0°=w

!

v =
I

“’)
¥

L}

v

X

v

1

—v,sin @ + v, cos 8= v _sin 0°+v,_cos 0° =

e When 6 = 90° :
v =y cos@+v sin@=v cos 90°+v sin 90° =v
x x » x » ¥

=-v_sin § +v cos 6 =-v_ sin 90° + v, cos 90° = -y,
¢ When 0 = 45° :

v_cos 6 +v sin 6 =v_cos 45° + v sin 45° =

1
v o = _v aip 45° o =—=[-v. +v
v_sin B + v, cos 0 v, sin 45° + v, cos 45 ,-—2[ V]

It is obvious that, v, >v] for 0°< 8 < 90°.

Transformation matrix

NG

LTy 40,

It is more convenient to write (and work with) transformation equations using

matrices.

|

“’)

Vv v

H

cosB sind
—sin® cosH

|

Ve

Vv y

|

(4.73)
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The cos B terms are on the matrix diagonal while the sin 8 terms are offdiagonal.
The above equation (4.73) can be written in matrix notation as

v =Ty (4.74)
where T is chosen to represent the transformation matrix!, ie.,

T= cos®  sin®
—sin® cosHO (4.75)

The rotation matrix R which arises when the coordinate axes remains fixed but
the object rotates thtough angle 6:

R=T cos® sin® ’_ cos® —sin® 476
—sin® cosB| |sin® cos@ (4.76)

I Readers may get a little bit confused when one talks about the Transformation matrix and Rotation
matrix. This confusion arises for not clarifying what is fixed and what is rotating. In the current
discussion, it 1s the coordinate system that is rotating while the object remains fixed. So the term
transformation matrix is used here to emphasize this.

However, in the situations in which the object rotates while the coordinate system remains fixed,
the term rofation matrix will be used to emphasize that the object is rotaling.

Another reason that causes this confusion is the amazing fact that each matrix (transformation
and rotation) is just the transpose of the other! So they look extremely similar. In 2-D problems,
the only practical difference is whether the minus sign in front of sin , is on the 7, term, or the
T,, term.

4.11 Reciprocal coordinate basis

Let us consider three linearly independent vectors e, e, e, which are neither
orthogonal nor have unit length (i.e they are non-orthonormal). Let any arbitrary
vector A expanded w.r.t. this basis vectors has expansion coeflicients components
can be A", 4% 4%, then

—_ 1 2 3
A =Ale + A%, + Ae, 4.77)

Now we shall aim towards finding the expansion coefficients. Concerning an
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orthonormal basis, the solution could be obtained by taking the dot product of the
vector with each of the orthonormal basis vectors, i.e.,
4= Ae (4.78)
When the basis is not orthogonal, the resolution of A will become less obvious.
Considerable simplification to the problem can be achieved by introducing a new
basis vectors called the reciprocal basis vectors. To different sets of basis vectors,
say, (e, e, e) and (¢, &, ¢’) are said to be reciprocal basis if they satisfy

et =8F. (4.79)

In order to construct reciprocal basis from the ordinary one, it is to be noted that
e¢' must be perpendicular to both e, and e,. Hence, we set

e'=ple,xe) (4.80)
The requirement that
ee =1 (4.81)
implies that
pe (e, xe)=1 (4.82)
|
or, p=———— 3
P e.(e; xe5) (4.83)
Hence,
1 ez X e3
e =———
e .(e; xe3) (4.34)
In the similar way, we get
2 _ e3 X el
e .(e; xe3) (4.85)
3 € <&
e=——
e,.(e, Xe3) (4.86)
It is obvious that “an orthonormal basis is its own reciprocal basis”, 1.e,
el = &
y
L (4.87)
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when &. & = §/ and | &| = 1. Taking the dot product of A with ¢, we find
Ao =4 (4.88)
Hence in general we have
A =(Ae)e + (Aede, + (Aede, (4.89)

4.12 Components of metric in a coordinate basis and asso-
ciation with infinitesimal distance

In the rectangular cartesian coordinate basis (i, j, k), an infinitesimal distance
between points located at P(x, y, z) and O(x + dx, y + dy, z + dz) is expressed as

ds® = dr.dr = (idx + jdy + kdz).(idx + jdy + kdz) = ¢ + d* + d2. (4.90)

In general, the distance between two neighbouring points with coordinate x* and
¥+ die¥ i1s given by

dsz Z z g}lvdxudxv =gpvdxudxv s [H, v=L2, 3] (4 9])

pn=lv=l

where the coeflicients g, are components of the covaiant metric tensor of rank two.
Comparing (4.90) and (491) we have, g, =g,,=g,, =1, and g,=0 for L#V. As
g, 1s a coavariant tensor of rank two, it transforms according to tensor transfomtion
law as

o
B = gij g;i Lop- (4.92)
When, ds® =dx® +dy* +dz°,
3 x® ox” .
g = ;ﬁ g S [sInCE, 8w =0 for L #= v]
2 o (4.93)

or, gpw= ;[as_, gaa=1]

=l 3=V
o ox' d%
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Components of metric in spherical coordinates (r, 0, ¢)

The transformation equatiion from cartesian to spherical polar coordinates are

x=rsinQcosd

y=rsin@sin¢ (4.94)
z=Frcoso
Let
xl=x_, x2=y X =z

From Eq. (4.93), we have:

_ oy oy + o? ax? | o o’
L R
JX¥' JX¥ JX JX¥ JY OX
2 a W2 ; 2 ‘
=(%) +(a—“:J +(g_r) , [using (4.82)]
= (sinBcos t]))2 + (sin 8sin ¢)2 +(cos 6‘)2
=1

Again from Eq. (4.93):

_ ox' ox! | ax? x| x ox’
O% I¥%  OF° I¥°  O%° I%’

_ (g_’é)z + (%)2 + (S—g)z, [using (4 82)]

= (rcos O cosd)? + (7 cosOsin ¢)2 +(—7sin0)°

=r2

S
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Again from Eq. (4.93):

ot ot + x> Ox? + ax® o’
v ox o ov oF ox’

2
=(8_x) +(ay) +(az) [using (4.95)]

833 =

9 199/ "\d0
= (-rsin®sin§)’ + (rsinBcos ¢)* +(0)°
=r2sin” @

Again from Eq. (4.93):

ol ol a? ax? o o
Tl t ol o2 T ol o2
Jdr o dx ox° dI% ox

dx\{ ox ay \( dy oz \{dz .
(8r)(89)+(8r )(89)+(§)(%)’ [using (4.97)]
= (cosB)(—sin8) + (sin 8)(r cosB)+ (0)(0)
=ysinBcosB+7sinBcosO

=0, [= g5 ]

8=

Similarly, g, = g,, = 0; g,, = g, = 0. In general g,=0 Jory = v
Thus

dSZ - g;vd;“d;v
= Zfl=l g]._lv(i;“'(i;u’ [Sil'lce_, gLW = 0? for TEZ V]
= gnldx')? + g dx®) + g (dx’)?
= ()(@r)” +(r*)(d8)* + (1)(dz)’
=dr’ +r7de’ +dz’
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Components of metric cylindrical coordinates (r,0,¢)

The transformation equatiion from cartesian to spherical polar coordinates are

x=rcoso
z=z
Let
o =X, x2=y =z
¥i=r, =06 =z (4.97)

From Eq. (4.93), we have:

| ax? ax? L axd o’
T T T ol Al T ool el
Jr g dx dx ox ox

2 , 2
=(§_”f) +(‘3—ij +(§z) [using (4 97)]
=(cos8)% +(sin6) +(0)%, [using (4.96)]

=1.
Again from Eq. (4.93):

g1 =

ax! ! + ox? ox? + ox
OF J¥% oY I¥’ O’ ox’

=(g_’é)2+(g§) +(3§) [using (4.97)]

= (cos8)” +(sin6) +(0)%, [using (4.96)]

=f‘2‘

En =

Again from Eq. (4.93):

ox! ox! + ox? Ox? + ot ad
ox’ ox’  oax o’ oF o’

ERCRE R

=(0)? +(0)* +(1)?, [using (4.96)]
=1

gn =
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Again from Eq. (4.93):

Tl Sl s [T g
= + +
BT 5T 0 od o2 | oF' OF

()25 e

={(sin B cos )7 cos B cos @)+ (sin Osin G} » cos O sin )+ (cos O)—+ sin Q)

= sin 0 cosO(cos’ ¢+sin’ ¢)—rsinOcosO
=0

Similarly, g = g, = 0; g,, = g, = 0. In general g,, =0, for p#v.
Thus

ds® = g dx" dx

= zu 48 ;‘,dx‘”dx‘” [since, Ew =0 for p = V]

= g (dX")Y? + g5, (dx*) + g(dy’y’
= (I)(dr)* +(r* XdBY + (1)(dz)’
=dr? + r?de? + d-*

4.13 Change of basis: relation between coordinate basis
vectors

Change of basis

Any »n linearly independent vectors in n-dimensional space (R") form a basis in
R'. Let (e, e, e) and (u, u, u,) be two sets of bases in 3-dimensional space (R’).
For example let’s take
el =i +2i,e=1+2 +i,e=- +1I (4.98)
and

w =i ti,uw =i+ 213, e, = 211 + 1, i, (4.99)
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where (i, i, i,) is the standard basis in R*. These two sets form a basis in R3 since
the vectors in each set are linearly independent. Now,

1 2 0

(e, Xeyyez=det|1 2 1(=1=x0.
0 -1 1
11 0

(uy xup)uz =det|0 1 2 |=120.
21 -1

If we want to change from the old basis (e, e,, e,) to the new basis (u , u,, u,),
we can express each of the new basis vectors to the old ones as follows:

(u; = ey +Ofe, + 06,/ =1,2,3 (4.100)
where

1 2
o O oy

_ 12
o=det|a, 05 05 (4.101)

a o5 o

is the matrix of the coeflicients of direct transformation from the old to new basis.
Its i row is the coordinates of u, in the old basis (e, e, e,) To find o we have to
solve Eq.(4.100) for given (e, e, ¢) and (u, u, u,). For example, for the bases
given by Eq.(4.98) & (4.99), relation (4.100) becomes

| 0
1 2 3
| 0] [ 0 [ 1] |1
[0] | 1] [ 0]
1 2 3
| 2] 0 [ 1) [ 1]

0
|
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Rather than solving each of the above system of equations separately, we can
combine relations 4.102 to 4.104 to a single system

U=0oF (4.105)

where U and E are matrices whose rows are ui and ei respectively. In our example
we obtain

11 0] |1 of &{[1 2 o
01 2|=|a) a3 o 2 1 (4.106)
2 1 1] |ed o2 ol|l0 -1 1
Solving this linear system we find
o = UE! (4.107)

4.14 Change of tensor components under change of coordi-
nate system

Let us consider a tensor A}k defined in terms of the coordinates x', 7 = 1,2,3.

This tensor can be transformed to ng;, in a new set of coordinates, say ¥',i =1,2,3
according to
p _ % o
T o ol oyt
It is to be remembered that the position of the indices p,q,r on the lefthand side

of the transformation are the same as those on the right-hand side. Since p. q, r is
associated with OPx coordinates and since i1, j, k are associated respectively with

P Q. I

Exercises

(4.108)

1. A quantityM(p, g, r, s) which is a function of coordinates x/ transforms to
another coordinate system £ according to the rule

ox? ox’ ox* ox’

ax’ ox? dx” ox*

M, jk )= M(p,q.r,5) (4.109)
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(a) Is the given quantity a tensor?
(b) If yes, express thee tensor in suitable notation and
(c) Give the contravariant and covariant order and rank.

2. A covariant tensor has components xy, 2y — 2% xz in rectangular coordinates.
Find its covariant components in spherical coordinates.

Solutions

1. {a) Yes, the given quantity is a tensor.

(b) M.

-

{c) Contravariant order: 3, covariant order: 1, and rank = 3+1 =4,

2. Let A, denotes covariant components in rectangular coordinates

A =xx,

A4, =2x, — x?

A3 = xlx_’»

Let A, denotes covariant components in spherical coordinates ¥, =7, ¥, =6,
¥; =¢. Then 4 p= %Ak . The transtormation equations between coordinate

systems are

X; =X, 8InX, cos X3
X, = X; SIN X, SiN X3
X3 =X COSX,

Hence, the covariant components of the given tensor in spherical coordinates

are

_ 1 2 3

3=95 4195 4 40
ox ox

4y

= (SIn X, cos X3 (X X, }+ (sIn X, sin X3 }(2x, — x32 Y+ {cos X, )x;x3)
=(sinBcos q))(r2 sin’ Osin Ocosd)+(sinBsind)

X (2r sin@sin ¢ — r? cos? 8)+(cos 9)(1‘2 sin @ cosBcos )
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- _ o ox*
A, = A4+
e o
= (¥ cOs X, cOS X3 )(x; X5 )+ (¥ cO8 X, sin X3 }(2x, — x32 Y+ (=rsin X, ) x;y)
=(rcosH cosq))(r2 sin” O'sin Gcosh)+(rcosOsing)

X (2rsinBsin ¢— r? cos? 0)+(—rsin 9)(!‘2 sin@cosBcos ()

a 3
A2+a;2 4

o
x>

o’
x>

- ol
= (=7 $in X, sin 5 )(X,X, )+ (#'Sin T, cos F3 (2%, — X3 )+ (0)(x,x3)
= (—rsinBOsin q))(r2 sin’ 'sin dcosd)+ (rsinBcosd)

X (2¢ sin B sin ¢—r2 cos’ 0)+ (())(r2 sin@cosOcosd)

A+ 4,

4.15 Example: Inertial coordinates and bases in Minkowski
space

Minkowski space in mathematical physics is the mathematical setting in which
Einstein’s theory of special relativity is most conveniently formulated. In this setting,
the three ordinary dimensions of space are combined with a single dimension of time
to form a fourdimensional manifold for representing spacetime. The name Minkowski
space (or Minkowski spacetime) i1s named after the mathematician Hermann
Minkowski.

In 1905-06 Henri Poincar’(e) showed that by taking time to be an imaginary
fourth spacetime coordinate icz, where ¢ is the speed of light and (= \/i) is the

imaginary unit, a Lorentz transformation can formally be regarded as a rotation of
coordinates in a fourdimensional space with three real coordinates representing
space, and one imaginary coordinate representing time, as the fourth dimension. In
physical spacetime special relativity stipulates that the quantity: —# +x* +)? + 27 15
invariant under coordinate changes from one in ertial frame to another, 1. e. under
Lorentz transformations. Here the speed of light ¢ is, following Poincaré, set to unity.
In the space suggested by Poincaré, in which spacetime is represented by coordinates
(t. x, v, 2) & (x, y, z, if), known as coordinate space, Lorentz transformations appear
as ordinary rotations preserving the quadratic form x* + y* + 22 + £ on coordinate
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space. The naming and ordering of coordinates, with the same labels for space
coordinates, but with the imaginary time coordinate as the fourth coordinate, is
conventional. The above expression, while making the former expression more
familiar, may potentially be confusing because it is not the same t that appears in the
latter (time coordinate) as in the former (time itself in some inertial system as
measured by clocks stationary in that system).

Standard basis in Minkowski space

In his 1908 “Space and Time” lecture, Minkowski gave an idea of using a real
time coordinate instead of an imaginary one, representing the four variables (x, y, z, )
of space and time in coordinate form in a four dimensional real vector space. Points
in this space correspond to events in spacetime. In this space, there is a defined light-
cone associated with each point, and events not on the light-cone are classified by
their relation to the apex as spacelike or timelike It is principally this view of
spacetime that is current nowadays, although the older view involving imaginary
time has also influenced special relativity. The vector space nature of Minkowski
space allows for the canonical identification of vectors in tangent spaces at points
(events) with vectors (points, events) in Minkowski space itself They can be

expressed formally in Cartesian coordinates as (’, ', ¥, x°) « x%¢, |, +x'¢/ |, +

xze2 |, +x2e2 |, +x3e3 |, & erO g +xlel |, +3c2¢32 |, +x3e3

4 with basis vectors in the

tangent spaces defined by

€, etc

1
B 0
I |p_@|qa 0 ]

OF, ¢, =
€, (4.110)

0

where p and ¢ refer to any two events. The first identification is the canonical
identification of vectors in the tangent space at any point with vectors in the space
itself. The appearance of basis vectors in tangent spaces as first order differential
operators is due to this identification.

A standard basis for Minkowski space is a set of four mutually orthogonal
vectors e, €, €, e, such that —(¢ )’ = (¢ )’ = (¢,)’ = (¢,) = 1. These conditions can
be written compactly in the following form:

<ey,e, >="M,, [L,v=0,12,3] (4.111)
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where 1] is given by

-1 00 0

o 100

"o o1 o (4.112)
0 0 01

The above tensor (1) 1s frequently called the “Minkowski tensor”. Relative to a
standard basis, the components of a vector v are written (v°, v', v, ), which in
Einstein notation is written as v = y¥e . The component " is called the timelike
component of v while the other three components are called the spatial components.

4.16 Lorentz transformations as coordinate transformations

In physics, the Lorentz transformations are a one-parameter family of linear
transformations from a coordinate frame in spacetime to another frame that moves
at a constant velocity (the parameter) relative to the former. The transformations are
named after the Dutch physicist Hendrik Lorentz. The respective inverse transformation
is then parameterized by the negative of this velocity.

The most common form of the transformation, parametrized by the real constant
v, representing a velocity confined to the x-direction, is expressed as

}

7 = y(t——%

' = ylx-vr)

Vo= y (4113)
2 = z

where (7, x, y, z) and (¢, x', y', z") are the coordinates of an event in two frames,
where the primed frame is seen from the unprimed frame as moving with speed v

along the x-axis, ¢ is the speed of light, and ¥ = 1s the Lorentz factor. When

2

speed v is significantly lower than ¢, the factor is negligible, but as v approaches c,
there 15 a significant effect. The value of v cannot exceed ¢, in the present
understanding.
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4.17 Elelctro-magnetic tensor and change in its components
under Lorentz transformations

Introduction

In electromagnetic theory, the electromagnetic tensor or electromagnetic field
tensor (sometimes called the field strength tensor, Faraday tensor, or Maxwell
bivector) 1s a mathematical object that describes the electromagnetic field in spacetime.
The field tensor was first used after the four-dimensional tensor formulation of
special relativity was introduced by Hermann Minkowski. The tensor allows related
physical laws to be written very concisely.

Derivation of EM filed tensor using Lorentz gauge

It is possible to combine three-components of each of electric field £ and
magnetic field B to construct a second rank tensor F'** in the fourdimensional space-

time. In the Lorentz gauge, £ and B are given in terms of the scalar and vector
potentials as

Fo_194_
E=--52-Vo (4.114)
B=VxA4 (4.115)

_ 194, 90 _ a0 1,0

E =-port-g-=—0"4 =94 (4.116)
M, 94y 53 30

Be=%5 5 =394’ -9%4 (4.117)

The above forms of Ex and Bx prompt that one may define a second rank tensor
JIAY = 1 \-"_ v o4l = aAV _aAu

F=d'4"-d'4 ox, o, (4.118)

Now

F™ =94 -9 4" = (" 4" - 0" ") = —F™, (4.119)
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so F* 1s an antisymmetric tensor. 1.e.,
Fw=_fw (4.120)
as a matter of fact diagonal elements of /" vanish. If in Eq(4.72) on choses
v=20,t=1,2 3, he may check from Eq. (4.70) that
FP=E, F¥=E, F*=E, (4.121)

Further if one chooses the values of the index pair (uv) to be (1,2), (2,3), (3, 1),
he may see from Eq. (4.71) that

12 23 31
F?=-B_ F¥=-B F'=-B, (4.122)
The tensor F* then becomes
0 -E. —E}, -E,
E. 0 -B By
F hv =< : >
Ey B. 0 -B, (4.123)
E. -B, B, 0

The tensor represented by Eq.(4.77) is called electromagnetic field tensor.
Eq.(4.77) gives F*" explicitly in terms of £ and B and Eq.(4.72) represented F** in
terms of the scalar and vector potentials ¢ and A respectively.

Lorentz transformation of EM Field tensor

We can use the usual tensor transformation rules to see how the electric and
magnetic fields transform under a Lorentz transformation. We get

wy _ E)x’” E)x”' if
= o (4124
= AfAYFY (4.125)

where the Lorentz transformation matrix is

Yy -¥ 00

Al = B v 00
‘ 0o 0 10 (4.126)

0 0O 0 1
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The above transformation (4.75) can be written as a matrix equation of the form

F'=AFAT
The first product

vy -y 0 0
_ 0 0| £, 0
AF = woy d
0 0O 1 0 Ey B.
0 0 0 1 E. -B

_ YEx YBEX YBE y 'YB - YBEZ + 'YB v
| E, B 0 -B,
E. —By B, 0
The final product
F'=AFAT
r_YBEx _'YEX _YEy + YBBZ _'YEZ - YBB v
_ 'YEX YBEx YBE L 'YB_' YBEZ + YB v
| E, B 0 -B,
E, —31, B, 0
Yy -¥ 00
y -8 vy 0 0
0 0O 1 0
0 0O 01
0 _Ex _YEy + YBBZ _'YE_' - YBBy ]
Ex 0 YBE}, - YBz YBE_' + YBy
" |vE, —1BB. —YBE, +7B. 0 _B,
Lq{Ez + YBB} _YﬁEz - YB} B ¥ 0

(0 -E, -E, -E

-4

-B. B,
0 -B,
B, 0

(4.127)

(4.128)

(4.129)

(4.130)
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Again in the rotated frame

(0
E;
$

E.r
E!

¥

-E!
0
B

»
B,

—E
B’
-B’
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(4.131)

Comparing {4.120) and (4.121) element by element we have the components of
EM field tensor under Lorentz transfomation

B!

E=E,

E, =YE, —1pB,
E] =YE. +vBB,
B =B,

B, =vBE, +YB,

_YﬁEy +vB.

(4.132)
(4.133

(4.134)
(4.135)
(4.136)
(4.137)

It is to be noted that, unlike lengths, the components of E and B in the direction
of motion are unchanged, while those perpendicular to the motion are altered.

Chapter-end exercise

1.
2.

LN

What is the Levi-Civita symbol? What is contraction applied to tensors?

What do you mean by contravariant, co-variant, and mixed tensors? Prove
that velocity and acceleration are contravariant and the gradient of a field is

a covariant tensor.

and antisymmetric tensors of rank 2.

Construct a scalar from the tensor V’,}}

. Show that any tensor of rank 2 can be expressed as the sum of symmetric
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NOTE
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