PREFACE

In a bid to standardize higher education in the country, the University Grants Commission
(UGC) has introduced Choice Based Credit System (CBCS) based on five types of courses
viz. core, generic, discipline specific. elective, ability and skill enhancement for graduate
students of all programmes at Honours level. This brings in the semester pattern, which
finds efficacy in sync with credit system, credit transfer, comprehensive continuous
assessments and a graded pattern of evaluation. The objective is to offer learners ample
flexibility to choose from a wide gamut of courses, as also to provide them lateral mobility
between various educational institutions in the country where they can carry their acquired
credits. [ am happy to note that the university has been recently accredited by National
Assessment and Accreditation Council of India (NAAC) with grade “*A"".

UGC (Open and Distance Learning Programmes and Online Programmes)
Regulations, 2020 have mandated compliance with CBCS for UG programmes for all the
HEIs in this mode. Welcoming this paradigm shitt in higher education, Netaji Subhas
Open University (NSOU) has resolved to adopt CBCS from the academic session 2021-22
at the Under Graduate Degree Programme level. The present syllabus, framed in the spirit
of syllabi recommended by UGC, lays due stress on all aspects envisaged in the curricular
framework of the apex body on higher education. It will be imparted to learners over the
six semesters of the Programme.

Self Learning Materials (SLMSs) are the mainstay of Student Support Services (85S) of
an Open University. From a logistic point of view, NSOU has embarked upon CBCS presently
with SLMs in English / Bengali. Eventually, the English version SLMs will be translated
into Bengali too, for the benefit of learners. As always, all of our teaching faculties contributed
in this process. In addition to this we have also requisitioned the services of best academics
in each domain in preparation of the new SLMs. I am sure they will be of commendable
academic support. We look forward to proactive feedback from all stakeholders who will
participate in the teaching-learning based on these study materials. 1t has been a very
challenging task well executed by the Teachers. Officers. Staff of the University and [ heartily
congratulate all concerned in the preparation of these SLMs.

1 wish you all a grand success.

Professor (Dr.} Ranjan Chakrabarti

Vice-Chancellor
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Unit - 1 o Simple Harmonic Motion

Structure

1.0 Objectives

1.1 Introduction

1.2 Defintion and Basic Characteristics of Sample Harmonic motion (SHM)

1.3 Energy of a Simple Harmonic Oscillator—Kinetic energy and Potential
energy

1.4 Examples of some Physical Systems Executing SHM
1.5 Summary
1.6 Questions and Problems

1.7 Solutions

1.0 Objectives

After studying this unit you will be able to
® learn the basic idea for the somple harmonic motion.
establish the differential equation for the system executing SHM and how to solve it.

define the terms amplitude, phase, time period, frequency, velocity and acceleration.

compute potential, kinetic and total energies of a body executing SHM.

1.1 Introduction

In your school science courses, you must have learnt about different types of motions.
As for example, translational motion is the motion of a free-falling body under the action
of gravity and the periodic motion, which is the motion of a particle. traces and the same
path again and again and comes back to a given point on the path at a regular internal of
time.

A particle in periodic motion performs a vibratory or oscillatory motion if it moves to
and frorepeatedly over the same path at regular intervals of time e.g. the motion of a
simple pendulum 1s clearly vibratory or oscilallatory. Again when a body is moving
uniformly in a circular path executes a periodic motion, but not the vibratory or oscillatory
e.g. the motion of a ceiling fan.
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The simplest kind of oscillatory motion which can be analyzed mathematically easily
is the Linear or simple Harmonic Motion (SHM).

In this unit, we will study oscillatory systems using simple mathematics. We calculate
the kinetic energy, potential energy and hence we see the conservation of energy of SHM.
We also study the different types of cases of SHM as we see In nature are very
important.

1.2. Definition and Basic characteristics of Simple Harmonic Motion

(SHM)

Definition : When a body or a particle moves to and tro along a straight line such that
the restoring force acting on it is always directed towards a fixed point on its path and is
proportional to its distance measured from that fixed point, the motion of the body or

particle is called simple harmonic motion (SHM).
Characteristics :
(1) The motion 1s linear and periodic.
(i) The motion is always directed towards a fixed point on its path

(m) The restoting force (which bring back the body to its equilibrium position)
acting on the body is proportional to the distance from the fixed point i.e.

displacement.
1.2.1 Set up Differential equation of SHM :

Let x be the displacement of any instant of time t of a particle of mass m executing
the simple harmonic motion. Then for small displacements, the restoring force F acting
on it to bring back the particle to its equilibrium position is proportional to the

displacement.
Hence we can write.

F = — sx where s is a constant, called force constant, spring constant or stiffness
constant, defined as restoring force per unit displacement. The negative sign of the above

equation indicates that F and x are oppositely directed.
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Equating the restoring force to the force of inertia, we get

2
md—;z—S
dt
2
d“x s
or, — +—x=0
dt= m
2
d=x
. FJFWZX:O'" (1.1

$ . -
where o = 0l called the angular trequency.
1

Note that the quantity % has units of Nm~'kg! = (kg.ms~2)kg'm~! = 52

The equation (1.1) is the differential equation of motion of Simple Harmonic

Oscillator.
1.2.2. Solution of the differential equation of SHM :

Equation (1.1} is a second order difterential equation, the general solution of which

will contain two arbitrary constants.

Let x = Ae®, (o and A are constants}) be the trial solution of the equation (1.1.).

d
Now, d_J: = Ace™ = ax and

Putting these 1n equation (1.1). We get,
(az + wz):r =0
or, o> + > = 0 since, x cannot be equal to zero.

oo o=t io where = /01
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Hence, the solution of the differential eqution (1.1) is x = A;e!® + Aje ! ... (1.2)

where A | and A, are two orbitrary constants.
Using 1% = cos6 +isin® . we can write the above equation as

x=A(cos ot + 1sin wt) + A, (cos ot — i sin ot)
or, x = (A + A;) cos ot +i{A| — A,) sin ot (1.3)

Since. x 1s real, the aceptable physical solution is either real or the imaginatory part of
the euation (1.3)

L x=acosot+bsinot.. (1.4)
where,a =A| + Asand b=i (A, — A;) are two real arbitrary constants,

Now, Leta=A cos ¢ and b= A sin ¢.

b
SO A =+a2 + b2 and tan @ =

So. the equation {1.4) becomes

x=Acos{(ot— @}...(1.5)

: T : - :
Putting ¢ = 57 8, the equation (1.5) changes into

x=Asin{ot+8) .. (1.6)

Each of equation (1.2).{1.4), (1.5) and {1.6) gives the general physical solution of the
difterential equation (1.1}.

1.2.3 Some parameters of SHM :

In general, the solution of ditterential equation of SHM takes as x = A sin {wt + )
(i) Amplidute and Phase :

The quantity A in the above equation is the maximum displacement of the particle
from the mean position and is known as the amplitude of the oscillation.

The angle (wt + 0) 1s called the phase angle or phase. At t = 0, the phase angle is 0,
called the epoch.
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(ii) Time period and frequency of oscillation :

You know that the displacement x at time t and t + T must be some, if T be the time
period of oscillation.

sosin{ot+8)=sin 2r+ot+8)=sin[o(t+T)+ 0] =sin (0T + ot +8)
Thus, 0T =27
2 5
- Time period T = e { w?= —}
o s m
And the frequency of oscillation

I _ o

n=—=—
T 2=

(iii) Velocity and Acceleriaton :

. dx d .
We know the velocity (v) =d—f=a [Asin (ot + 8)] = A® cos (wt + 0)

2
or, v=Aw,|l —% [ x?=AZsin? (ot + 0) = A2 [1 — cos? (wt + 0)]

2
or, cos {wt + 8) = 1—? ]

v modAZ 2 e e
<. Velocity of the particle is SHM (v) = ovA? - 52

Again we see thatatx =0, v = Ao, i.¢, the velocity of the particle is maximum,

max
when the particle is at the equilibrium position during oscillation.

2
Now acceleration, f=v= c(lj_v = d_: — —Ao?sin (ot +8)
tdt

fE—wlxl L (1.2)

Maximum acceleration, f,,, = A®? and it occurs when x=x,,,.=A, ie, the
acceleration 1s maxmimum when the particle is at the two extreme positions during the
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oscillation.

The negative sign in the equation (1.8) indicates that the acceleration is always directed
opposite to the displacement.

1.2.4. Evaluation of Constants aand b :

To evaluate the constants a and b of equation (1.4). we consider the particle is brought
to a distance x; and then released. Thus x is the maximum displacement a time t= 0.

Now equation (1.4) i.e., x = a cos ot + b sin wt can be written as
xp=acos0 +bsin0=a,
T a=x
Differentiating equation (1.4) with respect to t. we get the velocity of the particle at

any instant t as :

dx .
V= E = —am sin ot + bw cos ot

: Let, at t = 0. velocity, v = v, then from above equation.

we get vy = b

: . v . .
Putting these values of a=xyand b= (—3 in equation (1.4) we get,

v .
x = xg cos ot + ~Lsin ot (1.9)

63}
Case-1: [f the motion starts with initial displacement (x,,) but velocity is zero.
Then from equation (1.9} we get,
X = Xy cos o, as in the case of simple harmonic motion.

Case-II : If the motion starts with initial velocity (vi) only then

¥ .
X =—sin ot
Q)

This type of motion takes place, when the pendulum bob is struck by a hammer to
give the initial velocity v,,.
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Exercise-1

A particle executing simple harmonic motion has displacements x|, x, and velocity
vy, v at ty, 1> respectively. Calculate the amplitude and time period of oscillation.

Exercise-2
The displacement of a simple harmonic oscillator is given by x = a sin (@t + 0). If the

s ) " . . _xg
oscillations started at time t = 0 from a position x, with velocity v,, show that tan8= vo

1
2\
\‘.' —
and a= [xg +—0]

[0)]

[ ]

1.3 Energy of a simple harmonic oscillator

Let the displacement at any time t of a particle executing simple harmonic motion
from the mean position x = A sin (ot + @). I E, and E;, are the kinetic energy and potential
energy of the oscillator respectively at that instant (t). Then the total mechnical energy of
the oscillator i1s E =E;. + Ep

Kinetic energy :

The instantaneous kinetic energy of the simple harmonic oscillatory of mass m is
I (dxY 1 [d
X .
Ex = om {EJ =5m [a[sm (wt+ d))ﬂ
= %rmsz(!)2 cos” (ot + ) L(1.10)
= %m/—\zm2 {I - sinz((ﬂt + (p)}

1 1
= 5 ma A% - 5 mszz(wt +¢)

_ Lz Lg2 [ @? = and x = Asin{ot + cp)}
2

2 m

. Ekzés(Az—xz) R C I
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Potential Energy :

The potential energy is given by the amount of work required to move the system
from x = 0 to x by applying a force.

Here, the force must be just enough to oppose the restoring force sx., i.e the forec to
be applied is eaqual to sx. Thus, the work done against the resorting force for the
displacement dx is sxdx.

Hence the total workdone to displace the particle from 0 to x is

0= stdr = x>
0 2
. I 2 1 5
.. The potential energy, E;, = 58.\‘ =3 ma’x ... (1.12)

1
or. E, = 3 ma?AZ sin? (ot + @) ... (1.13)

= Total energy E =E, + Ep

Now from equation (1.10) and (1.13) we can write

1 1 .
E= EmAzm2 cos’ (ot+o)+ 3 mAZe” sin’ (ot+o)

1 2,2
= 5ma:rA' = constant

Again, trom equation {1.11) we see that the maximum kinetic energy,

]
—mo:azA2 =E
n

—

Ekma.r =

and from equation {1.12) maximum potential energy
I 2,2 o
E-pmangmco A =E

Thus, the maximum kinetic and the maximum potential energies are equal and is
equal to total mechanical energy of the oscillator, which is constant.

Average kinetic energy :

Average kinetic energy over a time period T, is given by
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T SN2 T Tl +cos (ot + ydt
2 =l J‘lm(ﬁj dt = _[cos“(oat+¢)dt=j ( ¢
T,2 \dt 0 0
] 5 5T Iy ll{sinZ(mtﬂpT
=ﬁmm A 5(&)t+(p)dt 5 o o 0
11T 22T =I+L{sin2((ot+(p)—sin2{p}
=57 MO A 3 2 4o
- = I+L{sir12((ot+(p) -sin20} [ oT = 27]
Mol AL 2 4o
22
_T
Ey 1 2
- E _ max _ g
kev 2 5 L(1.14)
Average potential energy :
Average potential energy over a time period T, 1s given by
A DT IR L e J
pav = 7 IEsx t=ommo [sin® {wt+@)dt
¢ ¢
T
1 oe2a2t | _[Si]lz(ﬁ)t-‘r(p)dt:I
27 2 | 2
l-ln(!)zA2
22
Epmax |
Epay === F (1.15)

pray 2 2

Equations 1.14 and 1.15 we see that the average kinetic energy and average potential
energy of a harmonic oscillator are equal and each is equatation to half of the corresponding

maximum energies and also half of the total energy.
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—>Total
Energy (E)

—E

Energy —

—E,

-A O +A

Displacement (x) ——>

Figure 1.1 shows how the kinetic energy, potential energy and total energy of the
harmonic oscillator vary with displacement.

From figure it is clear that as the particle oscillates, its energy continuously changes
between the kinetic energy and potential energy, i.e. we can say one increase at the cost of
he other. But total energy is always constant.

1.4 Examples of some physical systems executing SHM.

You have got some idea on simple harmonic motion. Now, we will study some physical
systems executing simple harmonic motion.

1.4.1 Simple Pendulum :

An ideal simple pendulum consists of a small mass (bob) suspended by a light
inextensible string from a fixed point. As the bob of mass m is displaced by small angle 0
from its quilibrium position (A) the restoring force is provided by the tangential component
of the weight mg along the arc as shown in fig 1.2, is given by

F=-mgsin 6

The equation of motion of the bob is

2
md—f=—mgsin9=—mg9 .. (1.16)
dt” |
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along the arc (PA) whose length at any instant
is given by x, when the angular displacement is

0.

which is the sum of the length of the string by
which the bob is suspended and the radius of

When 6 is very small. The bob is moving

Then, x =10 .. (1.17)
where, | is the length of the pendulum,

the bob.
Now, from equations (1.16) and (1.17) we
get,
2
ml% =-mgb Figure 1.2
dt
2
do g
or, —+=06=0
dt> |
2
do -
s +e70=0 (1.18
o2 (1.18)

where, © = \/%

Equation (1.18) is exactly of the standard from of equation (1.1) showing that the

pendulum executes the simple harmonic motion, when 0 is very small..

The time period of oscillation is given by

27 |
T=—=2 /—
P n o ... (1.19)

By analogy, we can write the general solution of equation (1.18) as

6 =0¢sin(ot+9) ... (1.20)

From equation (1.19) you have noted that for small angular displcement, the time

period of oscillation of the pendulum depends on | and g, but not on the mass of the bob.
So.due to variation of acceleration due to gravity (g) with lalitude of the earth a pendulum
clock will move slower near the equator than at the pole of the earth.
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1.4.2 Oscillation of Srping mass system :
(a) Horizontal oscillations of spring mass system :

Consider one end of a massless ideal spring is fixed to a wall and the other end is
attached to a body of mass m, which is free to move on a frictionless horizontal surface
(fig. 1.3). Figure 1.3a represents the position of equilibrium. When no force is acting on
the body. Now, if the body is pulled to right (fig. 1.3b) through a small distance x, then the
force exerted by the spring on the body is directed towards the left, which is the restoring
force and is given by F = — kx, where k is the spring constant or stiffness constant.

Since, the restoring force is proportional is the displacement and is opposite to the
direction of displacement, so the motion is simple harmonic
. We can write

md:l;:—kx
dt
2

or, 9K 220 .. g
dt2

k. I
Here, ©= \j; is the angular frequency of oscillation.

Relaxed
000050
(a)
Stretched «F
0000050
«—x—> ®)

Compressed F—

| —r ©

fig. 1.3
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. . e 2n m
The time period of oscillation is T:; 2n m

Vertical oscillations of spring mass system :

Consider a massless spring is suspended vertically
from a rigid support and the lower and is attached to a
mass m. In th equilibrium position, the mass is at A

(fig. 1.4). m
Now, if the mass is displaced through a small A
distance AB = x from the equilibrium position and BDI‘
released, it starts oscillation with simple harmonic fig. 1.4
motion. T

Since the restoring force is given by F = —kx,
where k is the spring constant,

Thus we can write

2
F= md—;z—kx
dt |
5 i
d°x 2 . !
ot x=0 . 1.22 v i
dt? (122) )
k fig. 1.5
m=,—
m

Which is the equation of simple harmonic motion, whose time period of oscilllation
is

m
T=—=2m, f? , which is same as that for horizontal motion.
[t}

1.4.3 Compound Pendulum :

A rigid body of any shape capable of oscillating in a vertical plane about a horizontal
axis passing through a point near one end is called compound pendulum.

Fig. 1.5 represents the vertical section of a rigid body free to rotate about the point of
suspension (0), called centre of suspension, ¢ is the centre of mass of the body. When the
rigid body is in equilibrium the line OC remains vertical as shown by dotted line in the
figure 1.5. The distances OC = /, called the length of the pendulum.
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When the pendulum is given a small angular displacement 0 and released, it begins to
oscillate about the point O.

The weight mg of the body acts vertically downwords at C” in displaced position.
This force mg is, when resolved we get mgcos 8 along OC” and mgsin 6 perpendicular to
OC!'. The component mgcos 6 is balanced by the tension (T) along CO and the component
mgsin 6 tends to bring back the body to its equilibrium position.

The moment of this force about 8 is equal to mgsin 8. = mgf8 . When 0 is small.

If T is the moment of inertia of the body about the axis of oscillation, the eqution of
motion of the body is given by

2
IQ = -mgfB
dt”
or, a8 | met 8=0
a? 1
2
a6 2
L —to0=0_(123
e 1.23)
. mgé
where angular frequency ©= e

This equation (1.23} is the equtgion of simple harmonic motion and its time period.

2n |
T:—:z —
o Thlmgé_. . (1.24)

If 1, is the moment of inertia of the pendulum about an axis passing through its centre
of mass C and parallel to its axis of rotation. Then we have

I, = mk? , where k = radius of gyration
Then usig the parallel axis thorem, wet get

=1, + m¢? = mk*+ m¢? = m(k? + {%)

(1.25)
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The equivalent simple pendulum :

It the time period of oscillation of a compund pendulum as equal to the time period of
oscillation of simple pendulum, then that compound pendulum is called an equivalent
simple pendulum.

From equation (1.25) we have

where, L:k7+€ (1.26)

Now, the time period of a simple pendulum of eftective length L is

T':QN\/E
£

. If T"=T and L is the length of the equivalent simple pendulum, then

L= ﬁ +7
¢
or, - Li+k?=0..(1.27)
This is a quadratic equgion of {.
Let £, and {5 are two values of ¢ which satisfies the equation {1.27)
Then, (¢ — i+ )+ 0,5, =80 —L. 0 + k>
Comparing both sides of this equation, we get,
¢+ ¢ =Land{,f, = k?

. The time period of compiound pendulum will be same as that of simple pendulum
when, OC =¢, or, {,.

Now, we consider OC =¢, and O'C = ¢,
Since, L =1, +1,

Then we may also prove that O and O’ points are interchangable in the following
way :

When O 1s the point of suspension and O’ is the point of oscillation (as in figure 1.6).
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Then from equation

2 2 " 2
=2 KA g |2 gy (270 2n\E
gl gl g g

Again when O’ is the point of suspensioni and O is
the point of oscillation, then

2 2
7 L.
o025 o wzgn\F
gls gl g

. Tr — rl—w

Thus the point of suspension O and point of
oscillation O” are interchangable.

Maximum and minimum time periods of compund
pendulum can be calculated from the equation of time
period of oscillation of a compound pendulum.

k2 + ¢2
g

T=2n

. we see that T depends only on (,

because for a particular rigid body k is constant.

1
ar (k22220102
a2

Now, —=2n-— 5
tg gl

1
K2+e%) 202 k2
lg

2

gl

From maxima or mimima

dt

—=0
ds¢

(1.2.5)

———

o

Fig. 1.6
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l<2+!vf2

- Fork=1, is minimum.

2k
. Minimum time period, .. Ty, ZZT‘,/;"- (1.28)

Again, from equation (1.25) we see that
aslLt! - 0orltl — o, T— =
and for { =k, T is minimum.

Therefore, if there be a little change in the value of (. the change in the time period of
the pendulum becomes negligibly small.

o, A, C \02 0,

\7_/: :\:/

I | | I I

] | | I I

] | | I I

I I I ] I

o L

! LS bl —

y K 0 1 K L
s

Fig. 1.7

figure 1.7 shows how the period of a compound pendulum varies with the distance of
its centre of suspension from the centre of mass C.

It is seen from the graph that the time period increases enormouly when the point of
suspension approches the centre of mass and it is minimuim when { = k.

Again, in the graph

CO, =CO;3 =10, and CO; =CO4= 1,
s+, =C0O5+ CO; =050,
Also, {; + 1, =CO, + CO, = 0,0,
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Thus, knowing the values of time period (T) and (, + {, from the graph, we can
determine the value of g from the equation.

by +1
T= 2“,/ l o 2 or, knowing k and T,;, we can also determine g from equation (1.28)

1.4.4 Torsional Pendulum :

When a rigid body like a disc, cylinder, sphere or rod is suspended from one end of a
thin vertical wire and the other end is clamped to a fixed support (fig.1.8), then this
arrangement is called a torsional pendulum. Here the axis of the wire passed through the
centre of gravity of the body.

If the body is given a slight rotation about the suspension and
then released, it executes osciallations about its axis. This type of O
oscillation is called torsional oscillation or angular SHM. SIS S S S S S S

Now if the vertical wire is twisted by applying a torque to the
body. then the wire tends to untwist itself exerting a restorting
torque on the body. Within the elastic limit, this restoring torque is
proportional to the angle of twist (0).

Let ¢ be the restoring torque per unit twist, then the restoring
torque for O rotation is CO.

It I be the moment of inertia of the body about the axis of
rotation, then the equation of motion of torsional oscillation is

2

=99 co
e P
N,
2
3 j Yi0?0=0 .. (1.29) Fig. 1.8
2

C
where ©® = \/; . This equation (1.29) is exactly of the form of SHM.

Hence, the motion is simple harmonic and the time period of oscillation is

I
T—Zﬂ\/g (1.20)
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1.4.5 Kater’s Pendulum

Kater, constructed a special type of compound pendulum
to determine the accurate value of acceleration due to gravity
‘g”. The principle of this pendulum is based on the reversibility
of centre of suspension and centre of oscillation.

It consists of a metallic rod carrying a heavy bob (W) and
two adjustable weights A and B, as shown in figure 1.9. A
being larger then B. Two knife edges K, and K, are fixed, so
that they face each other and are either side of the centre of
gravity (C.G.) of the pendulum. The object of this experiment
is to arrange that the time periods of oscillation about each of
these knife edges are equal by adjusting the two masses A and
B.

Let, ¢, and {, are the distances of the knife edges from
C.G. of the pendulum in the final adjustment positions.

Let T, and T, be the corresponding time periods about the
two knife edges k; and k,

Then from equation (1.25) we can write

k2+€2
“zan?él . . . (1.31)

k2 + 03
(28

and To =2n

Squaring equation (1.31) and (1.32) we get

2, 52
T r-L Sk

Subtracting above two equations, we get

2 2
4= [ 2 4~ :
lf'T,2—3'2T§=%(h -17)- ?(f?u +02) (£~ 12)

/A

/]
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T -1 A B

— -

Ty T () h-0) frhy o GV w133

Now, we can write

41‘[2 f]TIZ_L]T22 (fﬁi|—f2)A+({"|+f2)B fl(A+B)—€2(A—B)

g (a+0)n-f) (a+re)a-6) — (hra)a-4)

. From above equation, we have

A+B=T and A-B=T5

LN S L S
, A—E(Tl +T2) and |53_2(TI T2)

Putting the values of A and B in eqution (1.35), we get,

2 2.2 2 2
o Ti+T | i (136
g 2(0+f2) 2(f-1l2)

As the quantities ¢ .¢,, T, and T;. are known by the experiment, the value of g can
be determined, provide the position of the ¢.g. 1s accuarely known.

Since. it is very difficult to docate the position of ¢.g.. So, the time periods T, and T,
are adjusted to be very nearly equal, i.e, T =T, T (say).

2 T2

=z
Hence, the term 2(6,—5)

is the above equation is negligibly small.

Then, the equation (1.36) takes the form

S G )
g 2((]+|(2) LgLetf|+€2_L

2 £
- g=4n F o

Here, L is the distance between the two knife edges. Equation (1.37) 1s similar to the
equation of a simple pendulum.
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1.4.6 Two masses connected by a spring
Let two masses m; and m, are connected by a massless spring of length 1 and spring

constant k. The masses are constrained to move on a frictionless floar along x axis, i.e.
along the axis of the spring as shown in figure 1.10.

H

X,

A 4

Fig. 1.10

If x, and x, are the co-ordinate of the two ends of the spring at any time t, then the
change in length of the spring is giveb by

x=(xp—x)— 1 (1.38)

From equation (1.38) it is clear the when x > 0, x = 0 and x < 0, the spring is in
extended, normal and in compressed conditions respectively.

Now, in the extended condition (x > 0), if the spring exerts a forec F; =kx on the mass

m, then the opposing force F, = — kx will be exerted on m, .

Hence, the can write the equation of motion of two masses are :

2
Fl =my d “§] =kx
dt
dx kK
e . (139)
PE R 1.40
an 2 my (1.40)

Subtracting equations (1.39) and (1.40) we get

d? !
P(xz —xp)= _l{_“L—Jx

my ms
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2 =l
d*:
From equation (1.38) we have p f = d—z(xz -x)
- t

Since, the length of the spring { is constant.
Therefore, the equation of motion of the system 1s

-

d“x k
: +—x=10
dt= H
2,
or, o x=0 (1.41)
dt?
1 1 1
where —+—=—
my ms 18
__mmy
or, M= m is called the reduced mass of the system. That means, the system

behaves, like a single object of mass u connected by the spring.

k
Equation, (1.41) is the general form of SHM of angular frequency w:\/g and

1 Ik
, - g . f=— =
frequency of oscillation o / n

1.4.7 An inductance-capacitance circuit :
You have got an idea abou the SHM of mechanical systems. Now we will discuss the
simple harmonic oscillations of changes in an 1dea. L. C circuit (when resistance is zero).

Let a condenser (C} be first connected by the two way key to the cell E. When it is fuly
changes, then the key is thrown to the position is remove the cell out of the circuit. (as
shown in figure 1.11). so that the condenser gradually gets dischanged through the
inductance (1).

Let at any instant the change of the condenser is q and the current in the circuit is

. d g ) di .
]:d_(t]' then the potential difference across the inductance V[ :_LE and potential

. . q
difference across the condenser is V¢ = ek
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Since, there is no sourec of emf in the circuit, so we can write

q di
Ve=Vior, —=-L—
r LS+ d-0
t ¢
I I \fb
2 ¥ Key
I, L—;]+q:0 |: ]—d—q:| l lC T a
dt© ¢ dt
d’q - II
—+w0°q=0
C 2 q .. (1.42) .
Fig. 111

1
where, ©® =" Jic equation (1.42) represents and equation of SHM of time period of

21 1
illation is T="==2nJLC j f=r—F
oscillation is o T and frequency e

The solution of equation (1.42) is
q = qocos (ot + @) ... (1.43)
where, q is the maximum charge in the capacitor.

If we consider at t = 0, i.e. when the key is released to the position tot he charge is qq,
then we can write the equation (1.43) as

q = qgpcos ot and the current in the circuit as
. dq . s
1=—=—(qposinmt =(q,0cos| ot +—
4~ agosinot =g ocos{ o+ 7
Thus we see that both charge and current in the circuit are oscillatory, the phase
. ) b
difference between them is 5
Now you can have a question, that how oscillation take place without any mechanical

energy.

2

As you know that the energy stored within the capacitor is E¢ = %% and that of
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) . ] 1. .
within the inductances is Ep :Ele'

Now we can write,

1 2 2 1. 292 .2
E~=—aqpcos ot and E1 = —Lgpm~sin” ot
C 2Cq0 L > qo

1

~

“—

2 L .2
Lgg——sin™ mt
do Te !

2
] .
= —q—051|12(!)t
2 C

2
1 5 . 5
.. Total energy (E) = Ec +E|_ = 5%’ (cos® mt + sin® ot}

From the above equation we see that

2
when ot =0, 1.e. att =0, Eczl% c. =EamdE,=0
2 C max
and when wt = g
2
_ | g~0
E(j_oandELzz?:ELmaXZE
Again total 'E=E +E——Li2+llq2
gain total energy " 2= 5 Yo

. . . ] I
similar to the mechanical oscillator total energy E = > mv? +55X2

Thus, we can say as charge and current very with time, the inductor and capacitor
exchange their energy periodically.

Exercise 3

The springs S, and S, each of length ¢,. have spring constants k; and k,. Calculate the
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spring constant of the spring, system when connected in parallel as shown in figure.

fig. 1.12

Exercise-4

What is the length of the equivalent pendulum which consists of a sphere of radius 10
cm suspended by a light sprig of length 50 cm?

Exercise -5

Show that a particle allowed to slide down without friction through a tunnel bored
through earth will undergo simple harmonic motion. Also show that the time period is
independent of the direction of the tunnel and radius of the sphere.

1.5 Summary

(1) Simple harmonic motion : An oscillatory motion will be simple harmonic, when
the restoring foce is proportiona to the displacement and is always directed against it .

(i1) Differential equation of SHM is

2

d ’5 2 f
;+(132x=0 where ®=,/— and T:—K:ZR m
dt m o S

(ii1) The most general solution of the differential euation of SHM is x = A sin(ot + 0)

(iv)Velocity and energy of oscillator :
v=oVAZ - x?

1 1
Kineti energy (Ex) = ) s(A?—x?), potential energy (Ep) = > s
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1 1
Total energy(E) = ESAz = Em(ozAz

Table of Analogies
System Differential Inertial Spring W T
Equation factor factor
. g [
Simple pendulum b1+ 0l8=0 m mg/¢ n 2x g
. k m
Spring mass system  m¥ +kx =0 m k - 2n n
C d Pendulum 1§ I met o | L
ompound Pendulum 10+ mgl6=10 mgf I mg?
. .. C |
Torsional Pendulum  i§+Cco=0 I C \/; 27 c
. _myms k M
Two body system pX +ke =0 = m ; 2n .
L C circuit Li +l ~0 L 1 1 Jic
. C.circul q . q C JLC 2k LC

(vi) Determination of g by Kater’s pendulum :

o {T,%T%JF-T%}

=0
=

g sn2| fi+fy £ 62

1.6. Questions and Problems

1.6.1 Show that the momentum of a particle executing SHM is plotted against its
displacement will be elliptic.

1.6.2 Two springs S, and S, each of length 1, have spring constants., K, and K,.Calculate
the spring constant of the spring system when connected in series.

1.6.3 Calculate the ratio of the amplitude to displacement for a simple harmonic motion
when the kinetic energy is 90% of the total energy.

1.6.4 A U tube of constant cross-sectional area A of the limbs is filled with a hquid of
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density p upto a length | in each limb when the tube is vertical The tube 1s slightly
tilted and then again made vertical . Supposing the force 1s only gravitational, calculate
the time period of oscillations of the liquid.

1.6.5 A heavy uniform rod of length 90 cm swings in a vertical plane about a horizontal
axis (called bar pendulum) passing through its one ends.

Calculate the position at which a concentrated mas may be plced so that the time of
swing remains unaltered.

1.6.6 Calculate the frequency of electrical oscillation, when an inductor of 30 mH is
connected with a capacitor of 3uF. If the maximum potential difference across the
capacitor is 10 volt, Calculate the energy of oscillation.

1.7 Solutions

Exercise: 1

. dx
Let x = a sin (ot + 8), then V:E =amcos (ot +0)

. £=sin(mt+(-)) and — = cos{mt +0)

a am
2 VZ
o, x—,,+ 5 =Sil'|2(03t+9)+(3052 (ot+8)=
a~  ato
2
¥ V2
Now, —5+ . =1 (1)
a‘©  atw
2 2
VA
and, a_+ 2, =1 (2)

Subtracting equation (1) and (2) we get




-2

-
|
-
T

or, ®=

b

bara
|
=

¥}

2
. Time period of oscillation (T) = Eﬂ = 2m

Again putting @? in equation (1) we get,

242 2

2 V'(xz_x') 2

X +72 3 a
V] —Vv2

a =
or, .
= Amplitude (a) =

Exercise —2 :

Here.x=asin(ot+6) ... (1)

Ld
- Velocity (v) = cl_: = am cos (ot + 0)

Now, att=0,x=x,

- From equation {1) we have
xp=asinb ..

Andatt=0,v =y,

. From equation {2} we have

Vo =aw cos 0

xg _ sind

" vg  wcosB

WXxp _
Sotan 9 = —‘*'0 .. (3)

-
L ] o]
e

2

-
—12

-
(YN

N5OU o GE-PH-31

(2)

)

4
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Again from equation (3} and (4) we can get,

X ¥ .2 ¥
20, 0 _§in"B+costO=1
2 22

a a“m

D) 1/2
| 2.vG
-.a—[xo+ 2} (6)

Exercise-3 :

Let x be the extension at the lower end of the spring system, when mass m is attached
is the system as shown in figure 1.12.

Now, the tension in S; 18 F; = K;x and that in S5 1s F; = K)x.

So, the resultant tension, F = F; + F, = (k| + k») x is balanced by the weight mg of

mass m.
somg =k tkox... (1)
Let k be the spring constant of the combination then F = mg = kx . (2)

.. From equation (1) and (2) we get
k= kl + k2

Exercise-4

2 2

The length of the equvalent simple pendulum is L = 0 where k 1s the radius of

2
gyration of sphere, 1.e, k? = ng, R = radius of the sphere =10 em.

2. 9
= —107 =40 cm?
3
| = effective length of the pendulum = 50 + 10 = 60 cm.

404602
60

~ L =60.67 cm
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><—;.<—> w)

0
|
| —

Fig. 1.13

Exercise-5 :

Let D be the position of the particle inside the tunnal at any instant and A is the
middle point of the tunnel as in figurel.13. AD = x.

Force F on the particel is along po where O is the centre of the earth of radius R and
is given by

F = GmM/r?, where m = mass of the particle and M = mass of the concentric sphere
of radius OD =r.

4 . .
= Emjp , p = density of earth

Gm ( 4 nr3p)
" F= 3 . gm‘pmG

2
r

4
Component of F along pA = Em‘pmg(cos Z0DA)

from fig.

i*J'[rpmG.E { cos ZODA = i}
3 r r

4
—narpmG.x
3 P

Hence, the equation of motion is
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m—’:—%ﬂpme

d’x 4
4 2 pGr=0
o2 3

RS (1)
2

4 [47pG
where ©° =§Tth or, ®= %

. The particle executes SHM with a period

2n / 3 /3?T e . .
T="—"=1n =./—=, which is independent of the direction of the tunnel and
iy} 4Tth P

the size of the sphere (R).

Solutions of problems :
1.6.1 As you know that the total energy
E = kinetic energy + potential energy

o (dxY 1
=—_m|—| +-sx
2 \dt) T2

i

Now, momentum, P = m_t or, —=—

and § = mo?

1 1
. We can write —mp—,, +—mo’x? = E
2 m- 2
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2 .‘(‘2
+ =1
ofr, 2mE 2
mo?
p? x2
>+ 7= 1
- (v2mE) J 2E
mo’

which represents an equation of elliptic curve in p — x plane.

1.6.2 Here a mass m is attached at the lower end of the spring system. the series
combination at s; and s, (as shown in fig).

Let x; and x, are the extentions of s; and s, respectively.
Then the total extension is x| + x.

Now, we have, mg =k x,

mg

X1 =
or, ¥l Ky

mg

and mg = kox, or, 2 < K

where k; and k, are spring constants of springs S; and S, respectively.

. mg mg 1 1
Again, mg (x; + xo)k = (k—l+gjk = mg(k—+k—]k

LI
L Kk ki kg

_ kiko
kl+k2

here, k = spring constant of the system.

m

1
You know the total energy E = Emtﬂzaz .

Fig. 1.14
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Let x be the displacement when kinetic energy is 90% of total energy.
Since, the kinetic energy is 90% of total energy, then the potential and energy, Ep =

10
10% of total energy =@E

- I 22
But potential energy E, = 5 mo”

E ,])rn(nza2 2
Ep 1 422 «°
2
100E a2 a2 0
or, ——=—H= or, —~—
10E 2 2

or, %=\/E=3.16

. The ratio of the amplitude to displacement is equal to 3.16.

1.6.4 Suppose that at any instant, the level in one arm rises by x and in the other falls
by x (as in fig).

Let us take gravitational energy at the bottom of the
U tube as zero.

Then from the principle of conservation of energy.

—=—3
I

Initial potential energy = sum of potential and kinetic
energies at any instant.

—=—

Since, the centre of mass of a height { of the liquid

|
5

is at

. Total potential energy at the displaced positionx ¥ === Y
is Fig. 1.15

- p(.f%jg(€+x)+Ap(.fj}xjg(f—x)

[~ P.E = mgh]
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1 dr\?
and kinetic energy = E-ZAfp(E)

2
1 2 1 , dx
.. Total energy = E'Agp( (+x)” + E'Agp(f_’ + X)2 + Afp(a) = constant

Now, differentiating the above equation

| 2
l dx dx d2r
—Apgs 2(L+x)—+2{{=-x)| —— |} +2Alp—==0
> pg{( ¥)+ 2 r)[ dt]} v
A (0F+ x—f +°r)£+2Ap E_dz-‘?_o

or Apigi+ax— g+ m "pdt =

2
or, 2er + 2185 —¢

dt”

X
Or, (fd7+gf =

o
where ©= \/% is the angular frequency
) 27 4
- Time period, T=—=2x |-
o g

1.6.5 Here, the length of the rod, L =90 cm

Square of the radius of gyration of the rod, K* = —

NSOU e GE-PH-31
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Distance of the point of suspension from the centre of graviting, {; =45 cm

Let the distance of the point of oscillation from the centre of gravity = {,

Then, K2 = £165

, K2 90x90
or, Ip=—= —
2770 T12x4s

=15cm

.. The distance of the point of oscillation from the point of suspension = £, + £, = 43
+ 15 =60 cm

~. A concentrated mass has to be placed at a distance of 60 cm from the point of
suspension, so that the time of swing remains unaltered.

1.6.6. Here, inductor, L=30mH =30 x 10-* H
Capacitor, C =3uF =3 x 10¢F
We know the frequency of oscillation
1 1
2 fi0n107 x3x108 2103107

f

=530.79 HZ.

Again, here maximum potential difference across the capacitor 1s V = 10 volt.

| ] _
-. we have the energy E:ECVZ = 5><3><]0 6 ><(|0)2 = 1.5 x 10~ Joule.



Unit : 2 7 Superposition of Simple Harmonic Oscillations

Structure

2.0 Objectives
2.1 Introduction
2.2 Principle of Superposition

2.3 Superposition of two colinear simple harmonic motions of same frequency
but different amplitudes and phases.

2.4 Superposition of many harmonic oscillations of same frequencies.

2.5 Superposition of two simple harmonic motions of slightly different frequency
along the same straight line : Beats.

2.6 Oscillations in two dimensions.
2.7 Summary.
2.8 Questions and Problems

2.9 Solutoins.

2.0 Objectives :

After studying this unit you will be able to—
e state the principle of superposition of harmonic motion.

e apply the principle of superposition of two harmonic oscillation of the same frequency
or ditferent trequencies along a line or perpendicular to each other.

® Use the methods of vector addition and complex numbers for superposition of two
or amny simple harmonic oscillations.

e learn about Lissajous figures.

2.1 Introduction

In unit 1, we studied the simple harmomic motion with a number of examples from
different branches of physics. We observed that in each case the motion in goverened by a
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o ) ) d7x : o
harmogeneous second order differential equation, o2 +@?x =0 The solution of this
t

equation x= a sin (ot + q) or a cos (ot + q) gives us information regarding the displacement
of the body as a function of time. But in many situations, we have to deal with a combination
of two or more simple harmonic oscillation. So, in this unit we discuss the principle
of superposition and then we apply this principle to different situations, where
two or more harmonic oscillations, are superposed along a line or in perpenducular
directions.

2.2. Principle of Superposition

The principle of superposition states that. when two or more waves of same type meet
at a point. the resultant displacement at that point is equal to the vector sum of the
displacements due to each individual wave at the same point.

In unit -1 we observed that the differential equation of Simple Harmonic motion is

£

2 +ox=0.. 2.D

This is a linear homogeneous equation of second order and x is the displacement of
vibration of any time t.

Now, consider x|{t) and x,(t) respectively satisfy the equation (2.1). Then,

2 2

d<x dx
’;' +(:)2x| =0 and ;2

dt” dt

+ wzxz =0
Additing these two equations, we get

20 .
%+w2(’fl £32)=0 0 e e e e (22
2

According to the principle of superposition, the sum of two displacements is
given by

X (t) = X|(_t) + _Xz(t) (23)

also satisfies equation (2.1). Thus we can say, the superposition of two displacements
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satisfies the same linear homogeneous differential equation which is satisfied individually
by x(t) and x,(t}).

Using this principle, now we shall discuss about the superposition of a different types
of vibrations.

2.3 Superposition of two colinear simple harmonic motions of same
frequency but different amplitudes and phases.

Let the displacements of two simple harmonic vibrations are represented by
xy=a;cos{mt+ o)) ... (2.4)
and x, = a» cos{wt + ¢() ... (2.5)

where a; and a, are the amplitudes, ¢, and ¢, are the initial phase of the two simple
harmonic motions of same angular frequency o.

By the principle of superposition, the resultant displacement is given by
xX=x+x;

=a, cos (mt+ ¢,) +a, cos (ot + ¢,)

= a, (cos ot cos ¢ — sin ot sin ¢) + a, (Cos Ot oS Py — sin @t sin §,)
or, x =(a; cos ¢, +a, cos §,) cos ot — {(a;sin ¢; + a, sin ¢,) sin ot

= A cos ot cos & — A sin ot sin 3

s x=Acos (ot +d) L {(2.6)
where A cos d=a, cos O + a, cos ¢ (2D
Asin d=a; sin ¢, + a, sin 9, ..(2.8)

From equations {(2.7) and (2.8) we get

A?={(a, cos ¢, +a, cos ¢;)* + (a, sin ¢, + a, sin ¢)?

_ 2.2 L

= aj +a3 + 2aja; (cosd) cosdy + sing sindy )

" a” =aj +a3 +2aja3cos(d —92) - (2.9)

a|sing) + a5 sin¢; (2.10)
a)cosdy +ay cosdo T

and tan & =

Equation (2.6) shows that the resultant motion is also a SHM of same frequency with
amplitude A and initial phase 9.
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Special cases :

(D) If &, — ¢, = 2nmt where n = 0, 1, 2 .... etc.i.e, when the phase difference is even

multiple of T (same phase) then

A% =a? +a3 +2aja, =(a; +a, )2

. A:a| +32

(i) If ¢; — 0, = (2n + 1) i.e., the component vibrations one in opposite phase, then

2
A% =a +a3 —2aja, =(a;—ay)”

A=a| —dy

Again, if a; = a,, then A = 0, i.e., the vibrating particle with remain at rest.

2.3.1 Method of vector addition :

The rotating vector method is explained in figure 2.1, to obtain the resultant of two

simple harmonic motions of same

frequencies. In figure o_;\ is a rotating
vector of constant length a rotating
anticlockwise with a constant angular
velocity o and making an angle (ot +
¢) with respect to x-axis at any time t.
The projection ON; of this vector of x-
axis gives the displacement x; at time
t. Similarly the component ON, of the

. < .
relating vector OB in figure 2.1 will
represent the displacement x,.

Now, the resultant motion will be

. — >
given by the vector sum of OA and OB.
By the parallelogram law of vector

Y 4 ,C

addition the magnitude A of the resultant oC is given by

A2 :a12 +a% +2ajap cos(¢p —dy) [

which is same as equation (2.9)

d, — 0, is the angle between OA and O_I>3]

If the resultant OC makes an angle (ot + d) will x axis, then from figure 2.1, ot + & =

ot+o, + o
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tan ¢ + tan o
Stand=tan (Gt o) = T o

—tan ¢ tan o
a Sill ((I)| — (I]] )

Again, tano =
as +ajcos( — )

Putting tan o in the above equation and simplifying we get.

aysingy +as sin
tan & = 1 by +apsingy

: sam tion
a|sing; +ascosds Same as equatlo

.. The projection of OC on x-axis is

N5OU o GE-PH-31

(2.10)

x =A cos (ot + 8) represent the simple harmonic motion with frequency .

2.3.2 Method of Complex Numbers :
You know that any complex number
z=x + iy can be expressed as z = Ae'’
ifx=Acosfandv=Asin6.
Again7z" = Ae® Ae = AZ=x2+y?

. . . Y
Z" is the complex conjugate of z and tan tanf =~
X

Now, we can write the quations (2.4) and (2.5) as the real part of

x =age®92) and x, —ael(@1H02)

- we have x = x; + x, = A cos (ot + 3)

Let, ,— Aci(9t+9) then we can write

Aei(mt+6) — alei(ml+¢2) +3.2€i(mt+¢2)
ot 5 — i ido | it
or, Ael(,')t‘el ={ae " +axe €

or, Ae® =a;e'®l 12,62

. (211
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or, AZ=AA" =(a|ei¢l + azei‘i’z ){a|e_i¢1 + aze_i¢2 )

al2 +a% +asa, Iei(¢'_¢2) +e_i(¢]_¢2)}

{312 +a% +ajan {‘305(‘1‘2 _¢2)+i5i“(d‘l _‘112)+COS(¢:| —y ) - isin(¢| — 05 )}

or, AZ =a]2 + a% +2aja; cos(¢) — ¢, ) same as equation (2.9)
Again from equation (2.11) we get
Ae®® = alei¢1 + azei¢2

orA(cosd+isind)=(a cos P, +a>cos,) +i(a, sin ¢, + a, sin ¢,) equating real parts

and imaginary party from both sides we can write.

A cosd=a;cos P, +a, cos o

and A sin & = a; sin ¢; + a, sin ¢,

a|sing +agsind,

Sotan &= same as equation .. (2.10)

ajcosdy +ajcosdy

Thus we can find the equation of superposition of two simple harmonic vibration by

vector addition method or complex number method easily,

2.4 Superposition of many harmonic oscillation of same frequencies

Instead of two vibrations, it these are several vibration of different amplitudes and

phases but same frequency, the resultant vibration can be deduced in the same way as
discussed in the previous article.

as

The resultant displacement of large number of simple harmonic vibration can be written

x=a;cos (ot + ¢) +a, cos (wt + ¢y) + a3 cos {wt + ¢y) + ...
=(a cos P, tacosd,+a cosd;+ ... ) cos ot

{a, sin ¢ +a; sin ¢, + a; sin G5+ .....) sin ot

Let A cos 0= a, cos 0| +a; cos ¢, + a5 cos ¢ +...... =3 a;cosd;
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Asind =a; cos ¢y 18 C0s 0t a3 €oS P3 oo =3 a; cosd;
i

Then we have x = A cos (ot + §)

2
where A2 = (a, cos¢| +ascosdy +a3coshy +...)

: . 2 ajsind;
ajsing) +assingy +........

and tan 6 = a, cosdy +assindy +....... 3.a;-sing;
i

Exercise—I1

Two simple harmatic motions acting simultaneously on a particle are given by the

equations

. T . T
x| =2sin ( ot + E) and x2 = 3sin ( ot + g} calculate amplinde and phase of the resultant

vibration.

2.5 Superposition of two SHMS of slightly different frequencies

along the same straight line : Beats :

Let two simple harmonic motions (SHMSs) of angular frequencies  and © + A, (Aw

<< (p) are

x; =a cos (ot + )

and x, = a, cos {{ot Ao)t + ¢,)

or, Xy cos (ot + Aot + §,)

= ay cos (ot + ¢, ) where ¢, =Aot + ¢,

- After superposition the resultant displacement is given by

xX=x+x;

=a, cos (ot + ¢;) + a; cos (ot + ¢3)

= (a, cos 0; + a; cos §3) cos ot — (a; sin ¢, + a, sin ¢3) sin ot

=Acos(ot+d,... . .. (2.12)
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Here, Acos & =a;cos | + a; cos 05
Asind =a;sing; + a, sin 95
and A? = (a; cos ¢, + a, cos P3)? + (a; sin ¢ + a, sin ¢3)°

= a7 +a3 +2aq3 cos{{y —¢h) . (2.13)

a sind; +a, sind5
~ ajcosdy +a, sindh

tan L (2.14)

The resultant motion described by equation (2.12) is not simple harmonic, for both.

The amplitude A and initial phase angle 6 very with time, because ¢5 (= Aat+¢; ) is
function of time.

Thus, when ¢; - ¢5 = ¢ — ¢ —tAo=(2n+1)n

wheren=0,1,2,3 ..... ete

Then from equation (2.13) we get

A% =af +af —2aa, =(a —a2)2 [ - cos(Zn+lym=—1]

sA= a) -4ap
and when ¢)_¢5 =d¢)_d5 - tAo =2n7
A=a +ta

Hence, the amplitude of the resultant vibration changes between a; —a, to a, + a, with
time

If a; = a, then the limits would have been 0 to 2a. Thus the amplitude of the resultant

. . .- . A .
vibration changes periodically with a frequency equal to T A3, the frequency difference
of the component of vibrations.

This phanomenon is known as the beats.

You can produce the beats by using two tuning torks or any two sources at sound at
nearly equal frequencies are sounded together. The method of beats is very important to
measure the unknown frequency.

Figure 2.2 shows the variation of resultants displacement with time after superposition
of two SHMs which produces beats.
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Displacement ———

Time

Exercise-2

A note produces 20 beats/see with a tuning fork of frequency 512Hz and 4 beats/see.
with a tunning fork of frequency 514 Hz. Find the frequency of the note.

2.6 Oscillation in two dimensions

So far our discussions were confined to harmonic oscillations in one dimension. Now
we see when a pendulum oscillates in X — y plane, we call it spherical pendulum.

Now we apply the principle of superposition to the case where two harmonic oscillation
are mutually perpendicular.

2.6.1 Superposition of two mutually perpendicular harmonic oscillations of same
frequency :

Consider two mutually perpendicular oscillation having amplitudes a and b of same
frequency w are described by equations.

x=acos ot v (2.15)
and y = b cos (ot + ¢) .. (2.16)
here ¢ is the phase difference between two vibrations

Now, y = b(cos ot + cos ¢ — sin ot ¢ sin ¢)

From equation (2.15) we get

X
—=cosmt
a
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=] —sin2 ot

=
(=1 =

or, sin wt = /1 —-
a

‘-1
(o) (RN

2
. yb{xcosd) llzsind)]
- a

a

2
’ x5 X ¥
or, /| ——=sin¢ =—cosp—=
az ¢ a ¢ b

2 2 .2
. X lein < x 9 xy
squaring {] - .2 me ¢ _ E—_}+—2005“¢—2;;COS¢
: © o a

2 2

x° y© 2xy . 72

== +<= =——=cosd =sin

27 ¢ ¢ e (2.17)
The equation (2.17) represents the general equations of ellipse. So the motion in general

elliptical and the position of the vibrating particle at any instant depends on a, b and ¢.

Xy b
Case-I1 : Let ¢ = 0 then the equation (2.17) reduces to 5—% =0 or, y= ;x

This represents a straight line passing through the origin making an angle 6

. .. .. . b
with positive direction of x -axis, such that tan6= " (figure 2.3a}

) ' -b
Case-11: If ¢ = x then from equation {2.17) reduces to g+ % =0 or, ¥y= ?A’

This is also represents a straight line passing through origin as shown is
figure 23b.

Case-III: If ¢ = /2

From equation {2.17) we get
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x2 .
a2

(S

=1, this represents an ellipse, axes of which coinciding with x and

<:r|&<

2

y axes (figure 2.3¢).
Case-1V:If¢=m/2anda=b
Then from equation (2.17) we get

x? +y2=a?, which represents a circle with radius ‘a’ the nature of the curve
is shown in figure 2.3d.

Y Y

el
IS}

2.6.2 Superposition of two mutually perpendicular harmonic oscillation having
frequency ratio1:2 .

4

T
a b \c/

Let us consider the case when the frequency of Y oscillation in twice the frequency of
X oscillation.

Then two simple harmonic oscillations are given by
X =acos ot .. (2.18)
and y = b cos (2ot + ¢) .. (2.19)

where a and b are their respective amplitudes and ¢ is the phase differenence between
them.

Case-1:If0 =0, then x=acoswtandy=b cos 2 wt
or, y=b(2 cos®> ot — 1)

2
X
y= b{Z—j— ]] [ cos mt =£}
a” a

The above equation is the equation of parabola, the nature of the curve is
shown in figure. 2.4a.

Case-II: If ¢=% then
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Y
+b
O S
-b
-a +a
Fig.2.4a
X =acos ot
T
and y =b cos (Z“TOE]
=—Dbsin 2 ot
=—2b sin ot cos Wt [." cos Ot = x/a and sin Ot =[] _ 2 /42 |
Y
+b
0
> X
-b
-a +a
Fig. 2.4b
x X
=-2b=, [l-—=
a a2
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The nature of the curve of the above equation is shown in figure. 2.4b
Case-II1 : when ¢ =m/2

Then x = a cos ot and y = b cos (2wt + 1)

=—b cos 2ot

=-b(2cos2mt—1)

2
X
L Y= b[] - 23_2} . This is also a parabola nature of the curve is an shown in figure

2.4c.
Y
M
+b
0] > X
-b
-3 +a
Fig.2.4.¢c

2.6.3 Frequencies of any commensurate ratio:
In general, if the frequencies of two simple harmonic motions are in commensurate

.. B m . .
ratio ie. if g L where m and n are two integers and phase difference between the

waves is ¢ = 5> then the resultants motions returns to their initial into after a time period
mam nw . . .
T= 2—2 =—2 and the number of loops in the path (fig. 2.3¢, 24b) will be equal to
T "

the ratio at the frequencies. If the ratio of the frequencies be N, then the path of the particle
will show N number of loops.

Exercise - 3

Show that the resultant of the two SHMs x = sin ot and y = 2 sin 2ot will be
y2=16x2 (1 —x?)
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2.6.4 Lissajous figures

The figures or curves formed by the superposition of two SHMs at right angles to
each other are known as Lissajous figures. The shape of these curves depend on the ratio
of frequencies, amplitudues and the initial phase relationship of the components of SHMs.

The curves shown in figures 2.3 — 2.4 are the examples of Lissajous figures.

Demonstration of Lissajous figures :

The most appropriate method to demonstate the Liassajous figures is to use cathode
ray oscilloscope (CRO).

The basic structure of CRO (as shown in figure 2.5) in an electron gun (G), the vertical
(v1.v,) and horizontal (H,, H,) deflection plates, and a fluorescent screen (S).

A narrow beam of electrons from the electron gun is passed through the vertical plates
and then horizontal plates which deflects the beam in vertical and horizontal directions
respectively. The electrons beam finally impinge on the screen which produce vissible
spot.

To display Lissajous figures on CRO screen, two SHM, are first converted into
sinusoidal voltages by using two microphone and amplified by amplifiers, fed through the
two deflecting chambers. Under the simultaneous action of the two voltages at right angles
to each other, the spot traces out Lissajous figures on the CRO screen.

Vertical deflection

| N N
Electron Horizontal Fluorescent
gun deflection Screen
plates

Fig. 2.5

4.7 Summary

The principle of superposition states that if we superpose two or more harmonic
oscillation in a same straight line then it produces new type of oscillation, the resultant
displacement is the vector sum of individual displacement at all subsequent times.

i.e., x(t) = x(t) + x; (1)

when two or more colinear harmonic oscillation of same frequency.

X; = a,cos (ot + ¢,), x, = a, cos (ot + ¢,)

X3 = a3 cos (ot + ¢3), ........etc are superposed, then after superposition the resultant
displacement will be
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x=Acos(ot+38)
2

2 2
where Al :[z a; cosq)i} +[Z a; cos d)]]

> a;cosd;

o 1
and tan o = I a;cos0;
i

If two colinear harmonic oscillations of different frequencies are superposed, then the
resultant motion will not be simple harmonics, it produces beats

When two mutally perpendicular harmonic oscillations are superposed the resultant
from traces out different curves. The general from of the curve is elliptical but for certain
phases, it closes to a straight line, circle ete. These curves are known as Lissajous figures.

2.8 Questions and Problems

2.8.1 Two harmonic oscillations of frequencies o having amplitude 2 cm and initial

phases difference is % are superposed. Calculate the amplitude and the phase

of the resultant vibration.

2.8.2 A particle 1s subjected to two SHM in the same direction having equal amplitudes
and frequencies. If the resultant amplitude is equal to the amplitude of the
individual motion, what is the phase ditference between them?

2.8.3 Equation of two SHMs are x; = a cos (ot + 30°) and x, = a cos (ot — 307).
Calculate the resultant equation of motion in vector method and complex number
method when they are superposed.

2.8.4 In a CRO, the deflection of electrons by two mutually perpendicular linear
harmonic osciallations of unequal amplitude of electric fields are given by
x =4 cos ot
and y =3 cos (ot + m/6)
what will be the resultant path of electrons ?

2.9 Solutions

Exercise - 1:

Here x; = 2 sin (ot + 11/6)

and x, = 3 sin (ot + /6)
Thus,a,=2.a,=3, ¢, =7/6 and ¢, = 7/3.
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The resultant vibration is
x =X, Tx;=Asin (ot + 3)
where, A2 = af + a5 + 2a,a, cos (¢, — §5)

=22+ 3242.2.3. cos (/6 —1/3)

A :J4+9+I2cos(—%]

SoA=4.84

. .
. . Z2sin_ +3sin
apsingy +assindg, 6

Again, tan 8 = 4 cosdy +ascosdy

=1.113

s
N
2
T
Y
2

o
2COSE +3cos

48.1xn  4=m

© & =tan-] = o — il
S0 =tan! 1,113 =48.1 150 T

4r
. The phase =t + 0=t + I

Exercise : 2

In the first case

Frequency of the tunning fork =512 Hz
Beats/sec=A3=9,~93,=2

~ Possible frequencies of note are 512 +2 =514 Hz
or,512-2=510Hz

Similarly, in second case, the possible frequencies of the note are 514 +4 =518 Hz
or.514-4=510Hz

Hence, the frequency of the note is 510 Hz
Exercise-3

Here, x = sin @t

and y = 2 sin ot

57
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S y=2.2sin ot cos ot

J 2. .
or, %ZX-\JI—X [ sinwt=x or,sin?wt =x2or, 1 =cos?mt=x2 . cosot=

vl —x71]
o yi=16x? (1 —x?) Proved.

Solution of problems

2.8.1
Here a;=a, =2cm

m
and¢|—¢2=5

.. The amplitude of the resultant vibration is

A= Ja,z +a3 +2aa, cos{d) —¢7 )

_ J4‘+ 4+ 2.224:05%

=8
A:2\/§ cm.

ajsindg; +assinds;
aysing) +ascosd,

Again. tan § = [Let ¢, = 0° and ¢, = =/2]

. X
2.sin
—_ 2 —_

2.cos0°

o= 1
. 9=45 1

I
- The phase is [fﬂ'f + Z]
2.8.2 Herea;=a; =A

. .. 2, .2
We know the amplitude of the resultant motion is A = \/ ai’ +aj +2ajazcos(d —9;)

or, A =A% + A? + 2A? cos (4 —¢2)=2A2 [] +cos{) — 7 )} [¢, = 0° and ¢, =where,
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=phase difference between the two SHMs
or, 2 {1 +cos (¢; - ¢p)} =1
1
or, 1 +cos (0, —by) = 5
1
or, cos (¢; — 0p) = D)
1 2n
or, (¢; — 0,) = cos! —5 ) =120° or, =
3
. . 21
. Phase difference between the two SHMs is (¢ =) = 3
2.8.3 Vector method :
In figure OA is vector of length “a’ makes an angle ot + 30° with x-axis.
.. The projection OA along x-axis represents x; = a cos (wt + 30°)
Similarly, OB is a vector of length ‘a’, makes an angle wt — 30° with x-axis.
s Xy =acos (ot —30°)
<. The resultant of OA and OB is
— -
A=va? +a? +2aa.cos60° = V3a [ Angle between OA and OB is 60° ]
. The equation of motion of the Y
resultant is y = \/3a cosot -
Complex number method : C

Here x, = a cos (ot + 30°)
_ g0l(@t+30°) (Real Part only)

and x, = a cos (ot — 30°)

_ aci(@1=30°) (R.P only) o X

59
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.. The resultant

x=xtx;

4 {ei(mt+30°) N el(mt—30°)}

g iane i
_ aelut(eIBU ‘e i30 )

ae!®t (c0s30°+ (isin30° + cos30° - isin 30°)

= gel®t (2c0s30°)

_ {2 B }

= \/ﬁeimt
= Jfacosot (Real part only)
" x=+[3acosot

2.8.4 Here x =4 cos ot and y = 3 cos (ot + 71/6)

we know the equation (2.17) is.....

2 2

X° ¥yT 2xy .2
—+5——=cos¢ =sin
277 ab ¢ ¢

Here,a=4,b=3 and ¢ =m/6

x° y2 Xy m . 2.
S —+ = ———=cos— =sin" —
4= 3= 43 6 6
2 .2 .
or T, ¥ w31
16 9 6 2 4
X2 y2 NE) l
+E— Xy =—

16 9 12 4

~. The resultant path is an ellipse.



Unit - 3 0 Damped Harmonic Motion

Structure
3.0. Ohbhjectives
3.1. Introduction

3.2. Differential equation of a Damped Oscillator and its solutions in different
damping conditions.

3.3. Evergy of a damped oscillator

3.4. Mathods of characterising damped system
3.5. Example of working damped system.

3.6. Summary

3.7.  Questions and problems

3.8. Soluations

3.1 Objectives

@ After studing this unit you will be able to estblish the differential equation for a
damped harmonic oscillator and solve it in different damping conditions, such as weakly
damped. critically damped and overdamped systems.

@ Know the effect of damping on amplitude. energy and frequency of oscillation.

@ find the relaxation time, logarithmic decrement and quality factor for a damped
oscillator and able to draw the similarities between ditferent natural system.

3.1 Introduction

In the previous chapter (unit-I) you learnt about the free simple harmonic motions.
This 1s an ideal thing once such a system is set in motion it will continue to oscillate
forever with a constant aplitude. But in real physical system, the amplitude of the oscillator
gradually decreases with time and the oscillator eventually comes to rest. You must have
observed that oscillations of a simple pendulum. torsional pendulum, a spring-mass system
etc, the amplitude of vibration 1s gradually diminished and becomes imperceptible after
some time. Hence, we may conclude that there is a force on the vibrating body and this
may be due to viscosity of the medium or other frictional forces. This force is called the
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damping force. For small velocity, we may take the damping force is proportional
to the instantaneous velocity of the body and in the opposite direction to the
velocity.

In this unit, you will learn to establish and solve the equation of motion of a damped
harmonic oscillator in different damping conditions.

3.2. Differential equation of a damped oscillator

Consider a particle of mass m is oscillating under the action of a restoring force
proportional to the displacement (x) from its equilibrium position and a damping force
proportional to the instantaneous velocity {dx/dt). The equation of motion of such as
oscillator is

m‘i"' ek 3.1)

where s is the restoring force per unit displacement and k is the damping force per unit
velocity.

Equation (3.1} can be written as
d?x d?x

5 + S+ wix =0.. 3.
o Yy Tetx =0 (3.2)

where 2b = % and @ = \/% w is the angular frequency of vibration in absence of
damping.

Equation (3.2} is knowen as differential equation of damped motion.

To solve this equation (3.2), let x = A e™! be the trial solution of equation (3.2), where A
and ¢ are constants.

Dirrerentiating x we get

g: ut dz—x= ot
P Ag e” and e Aa’e

Putting these in equation (3.2) we get

(o’ +2bg + ) Ac™=0
of, (¢’ +2ba + ) x=0
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o’ t2bot+ =0 xz0
Now the roots of this equation are ¢z, =—b + m and o, =-b— m
~. The two possible solutions of equation (3.2} are

— ot —
x, =AM and x, = A oot

Since the equation (3.2) is a linear homogeneous equation, so its general solution 1s
given by the principle of superposition as

x=xl+x2

:Al el’_iﬂ -+ A} el’_izt

I .
(—h+\.‘b“—m2 Wt [—h—v’bz—o)z t
=Aze\ 4 +A3e /
2oy NN
Lx=e | ARY TV AT e (3.3)

Here A, and A, are two artitrary constants, which can be evaluate from initial
conditions.

2 2
The nature of the soluti > + % - ]—\Exy = % on of equation (3.3) depends on the relative

values of b and o
i) if b> ¢, we say that the system is overdamped or heavy damping.
i) if b ~ . we have a critically damped system. and
i) it b < @, we have an under damped, the motion is damped oscillatory.
Now we shall consider three different cases.
3.2.1. Heavy damping b > o :
When resistance to the motion is very strong, the system is said to be heavily damsped.

Now as b > e the quantity b* — ©? in equation (3.3) is positive definite. Let B2 _ 2 =

b’ , equation (3.3) can be written as

x=e"(Ae"+Ae™") 3.4)
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In equation (3.4) quantity b’ is positive, so the motion is obviously non-oscillatory,
aperiodic or dead beat type.

Now let at time t = 0, x = x,.
-. From equation (3.4) we getx, =A +A, = 0

i.e. if the motion is started with
initial displacement (x,) but no X
initial velocity, the displacement (x)
gradually falls of to zero with time
due to presence of the term e ™™ from X
it initial value x, and finally the body
returns to the equilibrium position 7
without any oscillations. The
motion is illustrated in figure - 3.1

(D /

Againifatt=0,x=0 11

and velocity % =1y, then from 0] Figure 3.1 >t

equation (3.4)
We get

AI +A2 =0 orAl =—A2

and ﬂ—fz ~be ™ (A, bt +A, e P+ e (A, b’ Pt Ab ey

_n dx
. Att= U E =V
=2A, b [-A =-A]

Vo
2b'

or, A, =

Vo
S A= \:0 and A, >
2Vb? —? -

24/b? — o’

(%] -6
e —€
]

Putting these values of A and A, in equation (3.4) we get [ . sinhp= 5

—_ VO o s
R ﬁe bt sinh (,ﬂ'bz _(02 t) (.)5)
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Equation (3.5) discribes the behaviour of a heavily damped system which is disturbed
from equilibrium by a sudden impulse at t = 0. The motion is illustrated in figure - 3.2.
When time is small the term e ™ is very nearly equal to unity, so from equation (3.5) we

see that the displacement depends on the factor sinh (/|2 — 2 ) i.e. displacement increases

with time as shown in figure 3.2 (a). But when the displacement reaches to a certain
maximum value the term e dominates and then it decays exponentially with time, Figure
- 3.2(b). The overall variation of displacement with time is shown in figure — 3.2 (c).

This type of motion is found in a pendulum immersed in a highly viscous liquid and
also in a dead-beat galvanometer.

h A A

sinhb’t

(a) (b) (©)
Figure 3.2
3.2.2. Critical damping, b ~ o:

When b = ® we see from equation (3.3) that

Xx=e"A +A) (3.6)  [vVb?—®=0]

Since the constants A and A, are multiplied by the same factor, so they are equivalent
to one constant. Hence, the equation (3.6) does not satisfy the second order differential

equation. Thus to get the solution for this condition, we takeb —» ® ieb— © =~ B, which
is very small quantity. Using this condition, from equation (3.3) we get
x=eb (A e +A e
=e™A (1+Bt+..)+A (1-Bt+...)}
=e™{(A, +A)+ (A —A)Bt} [- Bis very small higher
order terms neglected]

Lx=e"(c +et) (3.7)



66 NSOU o GE-PH-31

where ¢ =A + A, and (A - A,)p = c, are constants.

The motion represented by the equation (3.7) is also non-oscillatory. But here rate of
decay is more faster than overdamped case. The motion is called critically damsped.

Nowifatt=0, x =x,and Lcil—)tc = 0, then from equation (3.7) we get
xU - C]
dx = -l —I
and It =—beM(c, +c,t) +eMe,
0 =—bc +c [att=0, ¥ =g
5 ' " dt

~.¢,=bc =bx,

Putting ¢, and c, in equation (3.7) we get
x=e™(x, + bx,t)

or x=ePx(l+ at)... (3.8) [+ b~o]

From the above equation (3.8) we see that the displacement (x) decreases from its
initial value x, with time. This is illustrated by the curve II in figure-3.1. Here the body
returns quickly to the position of equilibrium.

Againifatt=10,x=0and % = v, then from equation (3.7) we have

0=c¢,
.dd_x:b—bt +‘t+_b"
and - - = —be (¢, +e,bt) +ee,
or, v.=¢, [ att=0 d—x—v and ¢, = 0]
» ¥ 3 . » dt_ e 1

- Putting ¢, and c, in equation (3.7) we get

x = ypett= vute_wt... 3.9)

and %= Vo €N (L = O, (3.10)

Now figure 3.3 represents the variation of displacement ( x ) against time (t} for b ~ ®
condition.
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Here the oscillator is given a sudden
impulse in equilibrium position, for small

values of't, oot is very nearly equal to unity

and the displacement increases almost
linearly with time (from equation (3.9) x =

vot as ¢© ~ 1) and becomes maximum

] dx _ . _ 11 .
when a Oieatt 5 b (from equation

3.10), after which it decays to zero
exponentially.

In comparison equation (3.5) and (3.9)
we see that the decay rate is much faster for
b~ o that for b> o.

=1/

Figure : 3.3

In both the cases there are no oscillations as the displacement never becomes negative.

The motion is called the critically damped motion.

In a pointer type galvanometers where the pointer moves immediately to the correct
position and stays there without oscillation, is example of this type critically damped

motion.

3.2.3. Damped oscillation or light damping, b < ©:

Here b < w, so /p? = »? is imaginary,

Let \p2 =2 =1 Jo? —b2 =10 , where o = /2 b2

From equation (3.3) we get

x= e_m (A., ew)l + A..} e—l(‘]t )

or, x= e "{A (cosw't +isinw't) + A (cosw't —isinw't)}

=e™ {(A, +A)cosa't+i(A —-A)sine't}

=e " (a, cos't + a, sinw't)

wherea =A +A anda, =i(A —A)

Putting a, = A cos@and a, =A sin ¢ in the above equation we get

x=Aecos(w't— @) ....... (3.11)

Where A and ¢ are real constants, the values of which depend on the initial conditions.
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Evaluation of A and ¢—

Letat t=0,x =x, and ?j—f = vy . then from equation (3.11) get
X, =ACSO Lo (3.12a)
Differentiating equation (3.11) we have
— =—Abe cos (a't— ¢)— Ae e sin{w't— ¢)
or, v, =—Abcoso +Aw sing
=-bx, + Ae' sine

or, Asing = 2o ;,bxo (3.12b)

From equations (3.12a) and (3.12b) we get

2
A= \/)c2 + [L :;,bxo) and

vy + bxg
’
0'x;,

tang=

Now ifatt=0, x = x, and ?j—f =0 the

_ |z b%x? _ b’ _ ©’
A=yxa+—0 =x It 55 =x\ 5 >
® " —bh w —b

X0 b
A= —Y—andtang = ——
Vol —b° Vol —b?

. Equation (3.11} can be written as

o= 209 bog { /wz—bzt—tan"'[%]} ........ (3.13)

m° —b”
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Equation (3.11) and (3.13) represent a
damped oscillatory motion with amplitude
Ae™ which goes on decreasing
exponentially with time and a new

frequencey o'= /2 —p2 the variation of x
with t, is shown in figure 3.4.

Exercise—1

The amplitude of vibration of a damped
oscillator decreases from 16 cm to 2 cm in
100 sec. If this oscillator performs 50
oscillations in this time. Calculate the
periods with and without damping.

Figure : 3.4

3.3. Energy of a damped oscillator

Let x be the instalments displacement of a pareticle of mass m at any time t, executing

damped simple harmonic motions.

The potential energy of the particle is

]

X
E = ‘[sxdx =
p
0
And the kinetic energy at that instant is

2
_ 1 dx
Ek_fm [_dt]

-, Total everty (E) = Ep +E,

[...(D:\/%]

Now using equation (3.11)

x =Ae™cos(wt— )

sx? [ -+ s is the stiffness constant]

(3.14)
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dx — ~In 4 L 4
I =bAe" cos(w't— 9)—Ave™sin(w't— ¢)

- E=xzmo?AleMcos(o't— o)+ %m {—bAe™ cos (@'t — ¢)

ta|—

—Aw'e "sin (o't— @)}’

mao A% cos(@'t— ¢ )+ %mA?e‘z"l {b’cosi (@'t — ¢)

| =—

+ @' sin (@'t — 9) + 2ba sin (&'t — @) cos(w't— 9)}

Since the damping 1s weak the sine and cosine functions vary more rapidly with time
than e * in a period. So, the time averaged value of E can be obtained by taking the
average over a period T of sine and consine functions.

T
-, Time average energy, <E> = % JEdt
0

|
or, E= % ImmzAge““ cosf(@'t— 9)+ mAZ™ {b’cos’(w't — ¢)
0

+ @' sin’ (@'t — ¢) + 2be’ sin(e't — ¢ ) cos (@'t — o)}dt

or, E= 3T

T
mA 22 I[m? cos’ ('t — ¢ )+ {b? cos’ (w't— o)
0

+ @ sin(@'t— ¢) + 2bw sin{@'t— @) cos (&'t— ¢)i]dt.

I r T s T . T
= ﬁmA-e-“[m2 5t {b* - 5t 5 +0}]
= § mA% P (02 b+ ) [0t 0o b
= %mA?e‘z"l (0 + b+ 0’ -b?)

I ]
=5 m eiAle 2
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— a2t _ 1
=Ee™ [Where E = 5 m ®’A?]

. <E>=Ege?....(3.15)

From unit—1 we can say E = %m ®>A’

is the total energy of an undamped
oscillator.

From equation (3.15) we see that the
average energy of a weakly damped
oscillator decays exponentially with time
as in figure 3.5.

. 1 .
Now if <E>= P E, i.e. the energy falls

Figure : 3.5

to é of its initial value, then from equation

(3.15) we get
I B
EE{} = E(]e 2bt

or, e = e 2t

or, 2bt =1

2b=t,(say) .. (3.16)

This time ( t,) is known as energy decay time constant.

3.4. Methods of characterising damped system

The characterise the damped motion we can relate b and © in this section briefly.
3.4.1. Logarithmic decrement :

The displacement as given in equation (3.11) becomes maximum when cos
(0't=1)=+1

Let the oscillation starts from the mean position. Then after the time t = % (where T is
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the time period) the particle goes to the extreme position ie say, A = A .~*"% and again it

will be at the extreme position on the other side whent = }+ % = % i.e.

A, =Ae M

2

Hence, the quantity d which is the ratio of two successive amplitudes (on the opposite
sides of mean position) is called decrement and log d = } is called the logarithrmic
decrement of the damped oscillastion.

Therefore, we can define the logrithimic decrement as the natural logrithm of the ratio
of two successive amplitudes of damed oscillations that are separated by the half of its
time period.

or. e A L g
TOA, A A,
A
| _ _in-14
-— =¢
or, R

Ch=—nL (3.17)

Thus 2 can be measured by noting A and A and hence we can measure experimentally
the damping co-efficient b.

Exercise-2 : A damped oscillator starting from rest has amplitude 4 cm after 101
swings. Its first amplitude was 40 cm and its time period is 2.3 sec. Calculate its



NSOU e GE-PH-31 73

logdecrement and relaxation time.
3.4.2. Decay constant or Relaxation time (7 ) :

It is defined as the time in which the amplitude of a damped oscillatory motion reduces
to éof its initial value.
It  be the relaxation time and A is the initial amplitude, then

bt _ A 7 ..t
Ae e()r,b*.: l -1 b

Thus the relaxation time varies inversely with damping co-etficient.
You have already known the energy decay time t, = 2l—b (equation 3.16). But here the

relaxation time t :lb‘ Hence t =21 -

3.4.2. Quality factor or Q-factor

The average energy of a damped oscillator is

<E>=E e

d<E=
dt

-. Power dissipation (p) = — = 2bE e~ = 2b<E>

If dt =T = time = 2% , then we have the loss of energy in one period i.e. loss of energy
per cycle is

_d<E>_
de

—(ETT) = 2b <E>

1o __<EBE>
OL 2b2n T <Eq >

o mp_ <E> [-_-2b=£

__<ET> m]

Ofr, %: k

Hence we can define Q-factor as

- : average energy of the oscillator
Quality factor (Q) = = =12 = g gy ¢ .
- 2b k average energy lost per cycle
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Exercise — 3 : The quality factor of a
turning fork of frequency 520 Hz is
1000. Calculate the time in which its
energy becomes 20% of its initial value.

3.5. Example of weakly

damped system

You know that all harmonic
oscillators in nature are not simple
harmonic but they have some damping.
We will discuss one of such motion here.

3.5.1. An LCR circuit

NSOU e GE-PH-31

L R
—— 555 55— ANAN——
b
LS
[ ,
d
K
I
E
Figure : 3.6

In Unit-I you have seen that an LC circuit is an ideal case, where the resistance of the
inductor coil neglected. But here we consider the resistance of the circuit. Hence the
circuit is an LCR circuit as shown in figure — 3.6.

Here the resistance R, an inductance L, and a capacitance ¢ are connected in series.
Now by pressing the key k downward, the capacitor is charged by a battery of emf E. If K
is released, the battery is thrown out of the cvircuit and the capacitor begings to discharge
through L. and R giving a current i at any instant t.

Let at any instant t, the charge on the capacitor be q and current i, then the potential

difference across the capacitor (V) = % . the potential difference across the resistor (V)

= iR and the induced emf in the inductor (V) = L4/ .

di

N ﬂ o = —
: c+lR Ldt

9-9

di .
or,La +1R + .

dq
E'f’

d? .
or_.L-—9 +R -9 [-1
dt” c

42
or, —? + 2bd—cI
dt”

T o =0...

, _R S
where 2b 3 and o ic

o
=185
| S—

(3.18)
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Equation (3.18) 1s of the same form as that of damped mechanical oscillator equation
(3.2).
Therefore, the general solution of equation (3.18) is

7 2
—b?-m’t

fl2_ 2
q=e (A e T A e Yoo e (3119)
where A and A, are arbitrary constants.

As before the motion of the chargew depends on the relative values of' b and o, three
ditferent cases may arise.

Case — I : Heavy damping b> o :

R 1
Here b>w ie x>ﬁ

S0, /b2 — ? is real, thus the charge on the capacitor decreases exponentially. The motion

is non-oscillatory or dead-beat.
Case—II : Critical damping b ~ @ :
The charge at any instant on the capacitor is given by
q=e™(C,+Cp)
where C, and C, are constant.
Here also, the motion is non-oscillatory and quickly.

Case—III : Weak or light damping b < o :

R 1
Here b < o ie x<ﬁ.

So, b2 —? 18 imaginary and as before the solution of equation (3.18) is
q=Ae™ cos(w't—¢)... ... .. (3.20)

where &' = /,2 _ 2 , Aand ¢ are constants.

gy

Here 1s before, A= =
o> —b?

where q, is the initial charge on the capacitor

b

t = -
and tano m
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% )
_ ..\.L(_ ﬂnd tdn(P —
\JLC 4L2 LC 4L:
——= |1 R
Now ¢ = Vo' —b* = [~ -——
LC 412

. The time period of oscillation T is given by

2m 2n 2m
T=—=-= = = .. .. 21
o0 L R (321
LC 412
and frequency of oscillation
11 J1 R?
=T =5:41C TR (3.22)

If R is very small then frequency of oscillation

.-

__ 1 T
n= TaJLC asin ideal case.
The quality factor,

=W _ol oL = f.2_12 \
Q b~ R R [ " —b (Dandb{(')]

The above equation shows that tor a pure inductive circuit {R = @), the quality factor
will be infinite.

Exercise—4 : In an LCR circuit L=1 m H and ¢ = 2uF. If R = 10Q, calculate the
frequency of oscillation and the quality factor when the discharge is oscillatory.

3.6 Summary

2
® The differential equation of a damped harmonic oscillator is ?:lt + 2b%+ ox =0

where 2b = % and =%



NSOU e GE-PH-31
The solution of this equation for heavy damping is
x Te A MU+ A oY) where b = (Jp2 o .

For critical damping the solution is
x =e™(C +Cp)

And for weak damping or light damping

x =AePcos (w't— 0) where o =y’ -b°

® The average energy of a weakly damped oscillator is

<E» = Ene‘“" where E, = %mmzAz.

® The logarithmic decrement is

, _bT _ Ay R

@ Relaxation time (1) = %

® Quality factor ((Q) = % = %

® The differential equation describing flow of charge in LCR circuit is

d’q . dq o _
dt2+2bdA+mq—(}

R 5 1
Th= >~ al= —
where 2b 3 and e

@ In weakly damped circuit the motion of charge will be oscilllatory.

77
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| 2
The frequency of oscillation (n) = % L]_C —%

® For low resistance value (R is very small) Q = %L

3.7. Questions and Problems

3.7.1. Aheavy mass 1 kg is suspended from a spring of stiffness cvonstant 25 Nm™' and
the damping factor Skgs™'. Calculate the ratio of undamped frequency to damped frequency.

3.7.2. Amass (1.2 kg is suspended from a light spring of stiffness constant 20 Nm™, The
average energy of oscillation of the system is found to decay to ™' of its initial value is
100 sec. Calculate the damping constant (K) and Q-value of the oscillator.

3.7.3. Show that the fractional change in the natural frequenmcy of a damped simple

harmonic oscillator is Lz , where Q is the quality factor of the oscillator.
8Q

3.7.4. A capacitor of capacity 1 LF, an inductance of 0.2 henry and a resistance of 800
€ are connected 1n series. Is the circuit oscillatory?

2.7.5. The equation for displacement of a point on a damped oscillator is given by x =

5¢Isin (%)t metre. Find the velocity of the oscillating point at t =T, where T is the time
period of oscillations.

3.8. Solutions

Exercise—1
Here, Initial amplitude (A )= 16 cm.
Final amplitude (A) =2 cm.
Time (t) = 100 sec
Number of oscillations (N) = 50.

-, Time period (T) = % =% =2 sec, (without damping)
To find time period with damping; we know

o =wn —b
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F—
or, o = \Ju? —b?

Again we know
A - A(Je_bI
or, 2 = 16e1%
or, § = el

or, In8 = 100b

_ 8 _
. b_](}{) 0.021

. From equation (1) we get

T = 2n

= 1.999 sec.

\/[ T f -0.0217

.. Time period with damping is 1.999 sec and without damping = 2 sec.

Exercise-2

(1)

Here initial amplitude (A ) = 40 cm. and atter 101 swings i.e. n = 101, final amplitude

An =4 ¢m.

.. Logdecremednt (3. ) =

T
=0.023

n-1
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we know, relaxation time © =

==

Here time period (T) = 2.3 sec

2.3

ST 30003 50 sec.

Exercise—3
Here Q = 1000 and frequency (n) = 520 Hz

we know Q = %:%: [ '.‘T=%]

o, Q= 21t2nt:ﬂm [.ow=2mm]

Q _ 1000

=an =750 0.612 sec

Again we know

] E_20 1
E=Ene‘-b‘, Here E_O_W_S

1
5=
2.
or, 5=¢°
or, In5=2Y
of, = T|n5:0.6]2x]1‘l5 = 0.44 sec.
2 2
Exercise—4

Here L=1md4=10°H
C=2uF=2x10°
and R=10¢Q

We know the frequency of oscillation
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1 1 R?

= SIVIC 42

__LJ 1 T
T 2n\ 107 % 2x107%  4(107)?
=347 KHz.
Solutions
3.7.1. Here, stiffness constant (s} = 25 Nms™"', mass (m) = 1 kg.
and damping factor (k) =5 kgs™',

we know o'’ = 0’ -b’

2
_ k/2m ok _
—1—{ qJ -_-b—mand(:)— s

- k“m
N 2
4m*.s
_ 52
=373
1.3
~1-773
o 3
o %72
2nn’ _ﬁ
2an 2
or, % = %3 [-' @ =2nn | nis the frequency

~. The ratio of undapmed to damped frequency is 75 .
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=2: /3
3.7.2,  Here, mass (m)=0.2kg
Stiffness constant (s) = 20Nm™!
energy <E> = éED.

time (t) = 100 sec.

As we know <E> = E ¢~ where 2b = %

1 .
_ = =2lx
or, E,=Eg¢

2w

or, — =e¢

1
=]
of, 2bt = 1

or,2b= ¥ =155 =0.01

Again, Damping const (k} =2b.m =0.01 x0.2=2x10*N.S. m '

Now, Q - value = o _1 Vol —b?

26 260 T

L ojs 2
2bmb

0.01Y
R

120
0.01Y02
= 099,699
= 1000

3.7.3. we know o' = J,2 _ 2
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|
2 2
dm-m
1
k2 2
=w|l-—5—
4&)2m2]
_ NS Kk " i
SO 2 42 [ - 1?2 is very small for sma
value of k]
or. (—Orzl K
W 8m’m’
or 1—0—)!= S _1 Lz
’ @ gmim:  Simo
@ — o 1
o, T g3? -+ Quality factor (Q) = %ﬁ)

3.7.4. Here, capacity of capacitor (¢) = 1 pF = 10-°F

inductance (L) = 0.2 henry
and resistance (R} = 800

R _ 800

Now. b= 5-=5755

= 2000

_ I A1
and © AC Jomnios (4.5 x 10

0 =2222722

-- b < ®, therefore the circuit is oscillatory.

3.7.5. Herex =35 e_'!'i" sin (%]t .....

This equation is similar to the equation

x=ae™sinomt

83

(D)
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Comparing these two equations we get

o="

2 _ 272

. Time period (T) = o 4 sec.

Now differentiating equation {1} with respect to t,
1y -t . -t
Velocity (v) = ?j_f =5 (—z) e 1 sin (g]“’ e _.4_%_005[%}

Whent=T =4 sec.

dx 5 -4 T | b
Y= == R S g
dt 4e sm(—z].éH—be .—2.(.08 5 4

S tiginons SEe
46 sin2m+ 5 e “tcos2n

=0+57ne" [vsin2x =0,co82n =1]

=2.89 mm/s.



Unit-4 0 Forced Vibrations and Resonance

Structure

4.0.  Objectives.

4.1. Introduction

4.2. Differential equation for weakly damped forced vibration.
4.3.  Solutions of the differential equation.

4.4. Energy of forced vibration and velocity or energy resonance.
4.5. Amplitude resonance.

4.6. Phase of the force vibration

4.7. Power absorbed in forced vibration

4.8. Quality factor and sharpness of resonance.

4.9. An LCR circuit

4.10. Summary

4.11. Questions and problems

4.12. Solutions

4.0 Objectives

After studing this unit you will be able to—

e establish the differential equation of a system driven by periodic force and solve
it.

e compute the energy of forced vibration, energy resonance and amplitude
resonance.

e calculate the Q factor and sharpness of resonance.

e draw analogy between electrical and mechanical oscillation.

4.1 Introduction

In the previous unit we studied free oscillations of undamped system. In that case
once the oscillations started it continue for ever with a constant amplitude and
frequency. But in real physical system there are not constant due to damping force and
the amplitude gradually decreses with time and the oscillator comes to rest. To
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maintain oscillations we have to apply energy to the system from an external source
called a driver. Usually the frequencies of driver and the driven system may not same.
At the initial stage of vibrations, if the frequency of the applied periodic force be not
the same as the natural frequency of the vibrating body, the state is called unsteady
state. But. when the body oscillates with the frequency of the applied force, the state
is called steady state. However, if the frequency of the driving force 1s exactly equal
to the natural frequency of the vibrating system, then the amplitude of the forced
oscillations becomes very large and ther we say the resonance occurs. This type of
osciliations are called forced oscillations.

In this unit, we shall discuss the motion of the system under the application of
external periodic force.

4.2. Differential equation for weakly damped forced vibration.

Consider the motion of a mechanical oscillator of mass m under the action of a

restoring force —sx, a damping force —k%and an external periodic applied force

F=Fycosmt.
The equation of motion of such an oscillator is

2
mﬁz—sx—k%

+ Fycosmt

where x is the displacement from the equilibrium position at any instant of time t.
s is the stiffness constant. k is the damping constant, F is the amptitude and o is the
angular frequency of the applied force.

The above equation can be written as

3
d x dx 2
p + 2ba +wjx =fceosot, (4.1)

F
Here 2b=£, oy =\~ and f=-2,
m m m

Equation (4.1) is the differential equation of forced vibration.

4.3. Solution of the differential equation of forced vibration.

In the previous unit we see that in obsence of applied force, a weakly damped

system (b <wy) oscillates harmonically with an angular frequency o, = \Jof - b* . But
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when a driving force (F; cos ot) of angular frequency o is applied, it imposes its own
frequency on the oscillator. Thus, we expect that the actual motion will be a result of
super position of two oscillation. One of frequency wy (of damped oscillator or driven
system) and the other of frequency o (of the driving force). Hence, for oy # o the
general solution of equation (4.1) can be written as—

() =x(1)+x2(1) o ... 4.2)
where x|, 1s a solution of complementary function of equation (4.1) 1.e. when RHS
is zero.
dy o

2
d"x; | _
cl7+ 2b gt T 0% = feoswt . . (4.4)

you know the solution of equation (4.3) for weakly damped condition (b < wg) is

bt cos{(m|t+ o)

x(ty=ae

Here due to the presence of the factor e the complementary function decays
exponentially and after some time it will disappear. It is known as transient solution.
In this case, the system will oscillate with a frequency other than vy and w.

Hence, after some time the system will oscillate with the frequency of the driving
force, then the solution is called steady solution.

Now, consider the solution of equation (4.4} is

Xo(t) = A cos (ot - o) where amplitude (A) and phase angle (o) are unknown
constants,

Now, % =-Awsin{wt —o)

2
and d_x22: ~An? cos{mt —at)
t
putting these in equation (4.4) we get
—Aw’cos (of — o) — 2bAo sin (ot — ) + o} A cos (ot — o)
= f cos ot
=t cos {ot — a) + o}
ot (w3 - o)) A cos (ot — o) — 2bAo sin (ot — o)
=t ¢os (ot — &) cos & — f sin (ot — @) sin «
Equating the co-efficients of cos (st — @) and sin (ot — «) from both sides, we get
Ao - 0?) = f cos «
and 2bAe = f sin «
From above two equation we get
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A= f
\/(w(:; —0%)? +4b%? 4.5)

2bw
and tan o = m%_mz (4.6)

The general solution of forced vibration is
X=X tXx)= ae ™ cos (ot + Q) +

f
cos(mt — tan”! 2bo

\/(mg _02)? +4b26? wg _mz) 4.7)
Thus the first part of the solution (x;) represents the natural damped motion, which
will persists for longer time if the damping is small and after lapse of some time it
will vanish as shown in figure 4.1a.
At the beginning, if o; is close to w, during transient state of superposition, beats
will be formed known as transient beats, as shown in figure 4.1b. But after some time

the first term (x;) will vanish and we can write x = A cos (ot — o), which represents
the sustained force vibration as in figure 4.1c.

AN

\/ N4 < da

A

aWaWaWaw
VAR,

Time ———

Displacement

Figure 4.1
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4.4. Energy of forced vibration and velocity or energy resonance.

The motion of a particle in the steady state under the action of a periodic force is
given by

x = A cos (ot — )
- velocity (20} = — Ao sin (pt — o)

Hence the kinetic energy of the forced vibration at any instant is given by

T=lm\,f2 = LmAzmz sinz(wt—a)
2 2
Since the motion is a steady simple harmonic motion. so the maximum Kinetic

energy is the total energy of the system.

. Total energy (E) = %mmzA2

2 £2

1
= —mo
(0)% - m)2 + 4b%e?

_ %mf2
0 2
Oﬁ[_ﬂ_ﬂ) +4b2
ORENON
l mf?
. E=% ........ (48)
Q}UA + 4b”
Writing A=20_ @
O 0

Now. if ©y = o, A = 0, the energy of the system is maximum for any value of b.

Thus, when the frequency of the forcing system {driver) coincider with that of the
natural frequency of the forced system (driven system), the energy of the forced system
is maximum. Thus phonomenon is known as energy resonance or velocity resonance
or simply resonance.
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<. The energy at resonance is Ep. ==—— ..(4.9)
4b

Figure 4.2 gives the variation of energy (E) with A for different values of b, the
curves are symmetrical about A = 0 with its maximum value at A = 0 i.e. at 0 = o.
It is also clean from the figure that smaller the value of b, greater is the value of energy

for a particular value of A.

s
)

A=0 A—
Figure 4.2
4.5. Amplitude resonance
From equation (4.5) we have the amplitude
A f . . .
is maximum for a particular value of » and we say there

\/(a)é - (1)2)2 +4b%e?
is amplitude resonance between the driver and driver system.

The amplitude A to be maximum when
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dA

do ~°
dA f—é{Z(w%—mz)-2m+4b2-2w} )
. %_ - -

2
(03 —0?)? +4b%0?}2
or, —4(0f — %) +8b%0 =0

or, (0f —0?)—2b% =0

or, (02 = (I)(z) —2b2 (4103)
1

2, 2b% 5 1 2b?

or, o = {y(1-=5)}2 =0o(1-5=5) for small value of b.
) ]
2

g 0)=0J(]‘m—0 . e (4.10b)
Thus for amplitude resonance the

angular frequency (o) is slightly smaller
than that at energy resonance.

The wvariation of the amplitude of
oscillation of the driven system with
frequency of the driver (o) at different
damping constants (b) is shown is figure
4.3. Here at o = 0 for all values of b the

o0 and as damping increases

amplitude is

the maximum value of amplitude is shifted

—

i,

m:wll
Figure 4.3

towards the lower value of . Again we see that as b decreases the amplitude increases
for any value of » and becomes infinite for b = 0 at o = «y.

4.6. Phase of the forced vibrations

We have from equation (4.6) the phase angle of the steady motion is

1 2bw

. 2bAo
a)é—(oz and sino = F

o =tan~
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from this value of sin «, we see that a. is always positive, that means o lies
between 0 and 7.

Suppose the angular frequency (o) of the applied force is increased gradually from
0 to «, then

(i) When ¢=0.tan ¢ =0. Hence ¢=0.
Thus there is no phase difference between driver and driven systems.

(i) When o < o, tan o is positive, that means the phase difference lies between

0 and

2|3

(ii1) When o = g, tan oo = «, hence o = ud , Thus at resonance the driven system
lags behind the driver by an angle g

(iv) When o > o in this case tan o
is negative, i.e. the angle a is

. L
in second quadrant or o<

T.

Again as ® —> o, tan o — 0 in this
case oL —> T.

Hence for all values of o, a lies
between 0 and 7 and at resonance it is

i
2
O O=0, 0—>
Again o=tan"' 2b0 Figure : 4.4
&)0—(!)-'
2b(0f — ©%) +2bo -2
or, da_ I 2b(0) —©7) +2bo 20
do o 4b’e’ (05 —0%)?

2 22
(0p —07)
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_ Zb((oé + (!)2)
(03 —0>)? +4b%0?

da
At resonance (o = wg){we get Ja ) e=0

_2b(og+op) _ 1
4b’wd b
Thus, smaller the values of b, the greater is the rate of change of phase angle (o)
near resonance frequency. The vairation of ¢ and o 1s shown in figure 4.4.

4.7. Power absorbed in forced vibration

{a) Power supplied by the driving force:
When a damped simple hermonic oscileator is acted upon by an external periodic
force Fy cos ot, the velocity of the forced system is given by

vz%zi{Acos(mt—Q)} [+ x=Acos (ot — a)]
(4.11)

v=—A@sinfot—a) ...
The instantaneous power supplied to the system 1is
P = Force x Velocity
= Fy cos ot {—Aw sin (ot — )}

Average power 1s given by

.
P.= —% IFOAO)COS(DtSin(O)t —o)dt
0

T
FhAw . 2 .
T J(cos wtsinwtcosa — cos™ mtsina)dt
O

- Fﬂ?m(—%sin a)
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[~ }cosmtsinmtdt =( and ]j‘cosmtdt =%
0 0
or, P,, = FO/;(D sin o
= FO[;@) : 2b?m [From equation (4.6) sino = beAW
and 2b = -]
= 1020 BA0 [ Fy = mf]
Average power supplied (P,,) = %kAzm2 (4.12)

(b) Power dissipated by the damped oscillator:

The power supplied by the driving force is wtilised in doing work against the

damping force k%

-. The rate of work done by the damping force

_ o dx dy k[dsz

dt de - ldt

kAzcozsinz(wt - o) [by equation 4.11]
. Average power loss

= Average power loss

|

Taz2 1
T

T
1 2.2 .2 _ 2 2.2
= T[S[kA o sin“ (ot —a)dt = —kA“® 5 _2kA @

. (4.13)

Thus from equations (4.12) and (4.13) we see that in the steady state of forced
vibration, the average power supplied by the driving force is equal to that being
dissipated by the damping force.
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Exercise-1

A particle of mass 0.02 kg is subjected to a restoring force 1.0 N/m and an external
simusoidal force of constant amplitude. Find the frequency of the driving force for
which there will be energy resonance.

Exercise-2

Find the difference of the frequency from resonance for which amplitude of velocity
of oscillation have half the value at resonance.
Exercise-3

Calculate the ratio of average kinetic energy to average potential energy
of a vibrating system, when a periodic force F = F; coset is applied on the
system.

4.8. Quality factor and sharpness of resonance

Here we study the response of the oscillator to the driving torce, when the angular
frequency of the driving force is varied slowly.

Now from equation (4.12) we have
Average power suppied Pav =%kw2A2
Putting the value of k and A we get

_1 2bme’f2
Pav=73 (mé - (02)+ 4b%e?

.
_ mbw"t~
3 2. @
Mo (=2 — I(—D)2 +4b%e?
)] @y
-2
mbf '
or, Pn= L A= o
- w§AS +4b . O 0

Now the maximum value of P, will accur for the frequency o = wq. 1.e. power will
be maximum at resonance.
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mbf?
. Pmax =5

4b2

Py _ 4b7
Prax m%A2+4b2

(4.14)

|
At resonance (o = o), so, A = 0 and P & =1, But below and above the resonance
max
P,
A=0 and Pa" <1, Quantitatively sharpness of resonance (S) is defined as the
max

reciprocal of |A|at which P, =%Pmax. From figure 4.5 we see that there are two

values of o (o; and o, say) for which P, is half of its resonance value. The frequencies
w; and w, are called half power frequencies.

PIT[E]X

, o,

O (D:O)O —>s
Figure 4.5
4b? 1

From equation (4.14) we have " 5,377,273

or, 8b%=w3AZ +4b’

or, w3A%=4b



NSOU e GE-PH-31 g7

or, wpA = +2b

or mo(m_o_gjzﬁb

2
)

o, % _u=12b
®

2
Or, @ — o’ = £2bo

@?£2b0-0F =0 o (4.16)

Thus equation (4.16) can be written as

o’ + 2bo - wi=0

and, 0> — 2be — m% =0

Each of these equations have one positive root and one negative root. Since w 1s
positive hence taking positive roots only, we have

o = \,'(13(2}+b2 —-b
and, o; = \,1(0[2)+b2 +b

Wy — W = 2b
The frequency interval (@) — ;) is called the halt band width or simply baudwidth.

Now, sharpness of resonance (s) = %: % [From equation {4.15)]
S_&_G)Um_ oy "2b—£
L "2k @y-o; |~ m
_ % _ Wpn _ Wy _
S= "k oo Q . (4.17)

The quantity is called the quality factor or Q-factor.

g —
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Thus Q is a measure of the sharpness or resonance. Smaller the damping smaller
is the band width and higher the quality factors (It is also shown is figure 4.5).

4.9. An LCR circuit

Let a pure ohmic resistance R, a pure inductor L and a pure capacitor ¢ connected
in series with a sinusoidal source of e.m.f E = E; coswt as shown in figure 4.6.

R L C
— VN —T5T5T0 ||
N
/
E=E cosmt
Figure 4.6

Let i be the current in the circuit at any instant of time and q be the charge on the
capacitor plate at that instant.

The potential difference across the capacitor is V, =34 the potential difference

C »
across the resistance, Vi =iRand the potential difference across the indictor is
di
vp =L
L™ dee

The applied e.m.f is E = Ejcosot.

We can write

di oo 9.
LE+R1+6_E0cosmt
L% e, 0 gy [imd

or, dt2 t ¢ 0 Codt
dq Rdqg q _E

or, — . T =% cosot
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I
or, F”baﬂﬂoq:eocowt (4.18)
, R _ ] Eq
; =y = -
Where 2b [ 20 JiC and eg 3

The equation (4.18) is exactly same as the mechanical equation of driven harmonic

oscillator equation (4.1). Hence the steady state solution of this equation (4.18) can be
written as

q = go cos (ot — o)

e
Where g, = 0
\/((:)8 - o? )2 +4b%w?

— €(

.l
1 2.2 R” 2
\/LCGJ)+L2®

Eq
q0 = I 9
(ﬂ\/((oL L (4.19)
o
and tana= 2b0)2 _ (EUL)c;) — R
(DU — - o 1 eL
Le we
q= By cos(wt—a)
w\/R2 +((0L_L)2 (4.21)
e

And current is

. dq —Eo(ﬂ

T
0)\/R2 +{owlL - L)2
we

sin{mt — )
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. E
1= 0 cos{omt — @)

2 R .(4.22)
\/R +(wL mC)

where p=« —%

1

L-— . .
tang =tan (0 — 5} =—cot o = @ RmC [using equation 4.20]

2|3

¢ is the phase difference between applied emf (E = E; cos ot) and current in the
circuit.

Again we can write equation (4.22) as

Fq (4.23)

i =iy cos (ot — @) where ij= ]

2 412
\/R + (L wC)
iy 1s the amplitude of the current.

From equation {4.23) we see that the amptitude or peak value of current i1s a
function of frequency (w).

Now iy will be maximum when

| 1
ol- oC 0 or, oL = oC
or, 0% = or, ®= S (4.24)
) ic , c .

-. The value of i, will be maximum when

1 ]

=— f=—F——
JLC oL HadLC

where f is the frequency of ascillation.

Thus the maximum value of io 18

. Ey
Dmax = R
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When oL =U:—C the phase difference between current and emf is ¢=0. ie is same
phase.
This condition is called resonance condition.

For different values of R, the frequency variation of peak current is shown in figure
4.7. You see that lower the value of resistance, higher the peak value of current and
sharpen is the resonance.

Figure 4.7

Now the power is an electric circuit is defined as the product of current and emf.
For LCR cuircuit we can write

Power (P) = Ei = E i, cos (ot — @) cosot
= Ei, [cos’wt cos¢ + sin ot cos ot sin ¢ ]

. T
| .
. Average power <P> =?6[Eg|0

(cos’ot cos¢ + sinot coswt sin@ )dt

Epig
= —5—CoSQ

)

= E msirms COSQ ... (4.25)

. i[) EO
Where rms :ﬁ and Erms = 7o are the root mean square values of current and emf



102 N5OU o GE-PH-31

respectively.
The term cos¢ 1s called the power factor of the circuit.

Again we know the quantity factor (Q) is [from equation 4.17]

_Og _ ® oyl
Q=3 "R/IL™ R (4.26)
|
Wy =
Where ®@o Jie -
oL L _1 4L
_ Q_R\/E_R\/; . @

-. The Q factor of the circuit depends on the values of L, C and R. The Q of a
circuit determines the ability to select a narrow band of frequencies from wide range
of frequencies. This property 1s used in radio and TV sets. This circuit is also called
tunning circuit.

4.10. Summary

+ The differential equation of forced vibration under the application of external
periodic froce F = F, coswt to the oscillator is

2,
d—;+ Zbd—x+a)ﬁx =fcoswt
dt dt

; F
where 2b=£, moz,fi and f=-2
m m m

¢ The general solution of the differential equation is

X(t) = aecos (wit + @) + Acos (wt— o)

i -1 2b
Where A= ! — and o=tan I 3 (02
\/(coo —0))2 +4b-®" @y -

are the steady state amplitude and phase angle respectively.

« Energy of the oscillator under forced vibration is

| Y
mf
. 2 W Dp o
E=—%—— where A=——-—
(03&2 +4b? 0 0
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Energy is maximum when o = g, called energy resonance or simply resonance.

¢ Amplitude resonance ocurrs at ¢ = Jof —2b> .

e The average power absorbed by a forced oscillator is

< Py = %kAsz.

e The quality factor of a forced oscillator 1s

Mg _ HOpMm _ g

),
S my-op ko 2b 5
where § is the sharpness of resonance.
o, — o is called band width.

¢ The differential equation of LCR circuit is

dzq Rdq 1 F
WJFTEJFEQ = Tcosut

In steady state the solution is

> cos{wt — )

4.11. Questions and Problems

4.11.1. A body of mass 100 gm is suspended from a spring of spring constant{s} 100
Nm™ and a resisting force (k) 5 NSm™'. Set up the differential equation of
motion and find the angular frequency for damped oscillations. Now a
periodic force F = 5 cos 10 tN is applied. Calculate the amplitude of forced
oscillations in the steady-state.

4.11.2. An oscillator of mass 1 gm is acted upon by a restoring force of 10"N/m of
displacement. a retarding force of 4NS/m and a driving force coswt N. Find
the value of maximum possible amplitude.
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4,11.3. A series LCR circuit with L= 0.05 H, C = 50 uF and R = 10x is corrected
to an alternating supply at 200 volts and 50 Hz. Find the peak value of
current and the power factor of the circuit.

4.11.4. A capacitor of capacitance 100 pF, a coil of resistance 50Q and inductance
0.5H are connected is series with a 220v, 50Hz, AC source. Calculate the Q-
factor of the circuit.

4.12. Solutions

Exercise—1

Here, mass (m) = 0.02 kg, Restoring force (5) = 1 N/m. We know at resonance
frequency at during force is equal to the natural frequency of the vibrator ie.

O=0my=+vs/m=+v1/02= 7.07rads™!

Exercise—2

Here displacement x = A cos (ot — o}

- Velocity (v) = —Ao sin (ot — o)
= vy sin (ot — o)

-, The amplitude of velocity

f.o

vy = Aw = for resonance

0 v \/((02 — o’ )2 +4b’w”

_ , _fw  f
O = 0. OF Vi max —m—%

Vom:
Now. for, v :%
fo 1 f

29
J(w%—m2:)2+4b2m2 2 2b

2
or, (w% —(1)2) +4b2m2 = Iﬁbz(,o2

or, {0y — ©) (o + w)}2 = 12b%°

or.{{wg — 03)2@)}-2 = 12b%° for small damping o - oy
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or.(wg — (11)2 = 3b’
Ly, — o= \/ib

Exercise—3
We know x = A cos (ot — a)

. | . 2
~. Kinetic energy (E) = §mv2 = %m{—Amsm(mt—a)}

= %mAzm2 si|12(wt -

- Average K. E. <E> = %m/—\zm2

"
¢l 2
And average poltential energy <P.E> = T Jfﬁx dt
0

T
S (a2 20
=57 G[A cos” (ot —o)dt

LT
=1sA” %l jcosz(mt —o)dt = %}

2T
0
L a2
=—sA
4
1,22 2_ S
=—mA ey | 0y =—
4 ()|: { m:|
. ] mA 26’ 3
Average kinetic energy 4 o
Average potential energy ZmAz‘”U B (,)8

= 0.1 kg, spring constant (s) = 100 Nm_]_. resisting force

4.11.1. Here m = 100 gm
(k) = 5 NSm™', Fy = 5N, o = 10 rad/sec.

_k_5 _
m 0.l =30

-. Damping constant (2b)

b =25
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m%zshnz%zlo{}o

». The frequency for damped oscillations

(1) = o —b% = V10007 - 252 =19.36 rad /s

e o dfx
and the differential equation is dT;JrSUd—:Jr 1000x =0

We know the amplitude

f -

= CRyo5 5
\/(@)3 _ o) + 4% here f=—"= S7=50m/s

A

_ 50
\/(1000 ~10%Y +(50x10)°

=0.05m
4.11.2. Here,. m =1 gm = 107 kg

F
4 o _k_
s=10"N/m-> k=4NS/m and f - _IO.BIMS

we know the maximum amplitude

A =1

max — 5 5
2byjaf — b?

¢

A= 7.2
\j(e)(z) - ) +4b%ew?

Now at amplitude resonance

{equation 4.10a) @2 = m% _9h%,

f
A =
ma X \/(m%—(:){z)+2b2)2 +4b2((0(2)—2b2)
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_ £
Jab? + 4b%3 — bt

___f
Jab?wj —ab?
L—

i 2bywi - b’

3
Amax = N 10
22% 105107 - 4x10°

=1.02x107*m
4.11.3. Here L = 0.05H, C = SOuF = 50 x 10°°F
R = 10r, w = 2=f = 25.50 = 314 rad/s
and E, = 200 vots

we know the peak value of current

Egy
2 1V
R +[(0L_Ej

200

g =

2
J102+(314x0.05- ‘ (}
314%50%10°

200
~49.02

= 4.08 amp

1, = 4.08 amp.

Again we know the power factor of the circuit

cosp = R - _10 =0.204

\/ 1 2 49.02
R2 +(0)L——,]
anC
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4.11.4. Here, C = 100nF, R = 50 and L = 0.5H = 100 x 10™°F
we know the Q factor (Q) =%\/% [using Equation 4.27]

50Vip0x107®

- Q of the circuit = 1.414.

= 1.414
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Structure

5.0 Objectives

5.1 Introduction
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5.3 Application of Fourier’s thorem
5.4 Importance of Fourier’s theorem.
5.5 Summary.

5.6 Questions and Problems.

5.7 Solutions,

5.1 Objectives

After studing this unit you will be able to know that any periodic functions can be
expressed as a Fourier series.

Derive Fourier Series of a given periodic function by evaluating Fourier co-
efficients.

Write a given function in terms of sine and cosine terms in Fourier Series.

5.1 Introduction

Any function f(t) is periodic function if it can be expressed as f{t) = f{t + T) when the
timeinterval T is the period of the function. The functions sin ot and cos ot are periodic

. . 2n . .
functions of period T = o The square wave. saw-toothwave etc are not sinusoidal but
they are also periodic functions.

When several simple harmonic vibrations of frequencies integral multiple of its fun-
damental frequency combine, then they may produce some complex vibrations which are

not simple harmonic Fourier’s theorem is of great importance in the synthesis as well as



11¢ N5OU o GE-PH-31

analysis of these different tvpes of periodic vibrations. The analysis of this complex note
helps us to determine the quality of sound. Fourier’s theorem has extensive applications
in different branches of physics.

In this unit are will discuss the proces of solving some periodic vibrations with the
help of Fourier’s theorem.

5.2 Statement of Fourier’s theorem

Fourier’s theorem states that Any finite periodic motion can be expressed as the sum
of a series of simple harmonic motions of commensurate periods.

Mathematically it can be written as

fity=ap+ A cos (vt +0y) T A> cos (2ot + §-) + Ascos Bat + 03) + ... + A, c0s (Nt +
Bp) + oo (5.1

or, f(t) = ay + A cos ot cos ¢, + A| cos 2ot cos O, + ... — A sin ot sin ¢; — A, sin 2ot

=ayta cosettacosZott......+ta,cosnamt+.... +b;sinat+by;sin2 et + ...
+bsinnet+.....

where. a; = A cos 0, a; = Ay cos Oy .......a, = A, COS 0,

and b] —Alsin ¢|,b2:—A2 sin ¢l2 IIIII bn:_An sin (IJ"
b
. 2 2 =__n
. A, =+a; +b; and tan ¢, a
- We can write
f{ty=23p+ 2. agcosnot + ) bpsinnet (5.2)
n=1 n=1 '

This series is known as Fourier series,

ag, A ...... a,and by, by....b, etc are known as Fourier co-efficients or constants. The
values of these constants can easily be determined

Limitations of Fourier’s theorem :

To analyse any complex periodic functions using Fouriers theorem, the following
conditions should be satisfied by the function.

(i) Single Valued : That means the displacement should be only one direction at any
time, there may not be two or more values of displcements.
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(1) Continuous : The function should be continuous in nature, that means it should
have no discontinuity.

(ii1) Finite : The displacement during vibration should always remain finite, 1.e, if
should not infinite value at any instant.

In case of all mechanical vibrations all the above three conditions are satisfied.
5.2.1 Evaluation of Fourier’s Co-efficients :
(i) Determination of ag :

To determine a, we integrate equation (5.2} with respect to t both side for one
complete cycle e, t=0tot=T.

. we have,

[ I |

(a,cosnwmt + b, sinn (:)t)dt}

T T O
fr(t)dt=fagdt + X [
0

0 n=0

T T
= a,T [ Icosn wtdt = Isin n otdt = 0}
0 O

1
L 8= jf(tyae (5.3)
0

(ii) Determination of a, :

To determine the coefficient a,,, i.e the coefficients of cosine terms, multiply equation
(5.2) by cosket and integrate with respect to t from t = 0 to t = 7, k is a positive integer,

T T
Then jf{t)coskat = [(ag+a| cosot +aycos2amt+.....
0 0

+a,cosnot+.....) coskntdt + I(l:q sinot+ by sin2et+ ...+ by sinnet + ...} cos knt dt...

(5.4)
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T
Now, Icos notcoskntdt=
0

1

3 |

T
L_][{cos(n +k)ot+cos(k - Il)(ot}dt

T

—_—

] , 1 .
:E{WSIH (n+k)ot+ msm (k- n)o)t}

0

T
]

1 . 2x ] , 2n
= E{(wr—k)msm(n+k)?-T+msm(k—n)T'T}

0 whenk #n [... sin 2nmt = 0]
But when k =n,

0

T T n T
Icos nmtcos kntdt = jcos‘ nmtdt = —
2
0 0
T
Again, Isin nmtcosk ot dt
0
] T
=5 I{sin (k+n)ot+sin{k - n)(!)t}dt
0

=0 for all values of k
- We can write equation (5.4) as

T
[f(t)cosnot=a, T
2
0
2T
., ay =;Uff(t)cosmtdf - (53)

(iii) Determination b, :

In the same way as above,we can determine b, by multiplying equation {5.2) with sin
n wt and integrating w.r.t z between the limits 0 to T
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we get

T
by == [f(Osinnotdt . (56
0

—~ | t2

Thus the Fourier’s co-efficients can be calculated by knowing the function f{t).
5.3 Application of Fourier’s theorem :

Fourier’s theorem is applied both for analysis and systhesis of the complex curves. To
find the component vibrations from the resultant one, is known as analysis of the curve
and to find the resultant vibration from the component vibration is known as synthesis.

5.3.1 Analysis of square-wave :

Let the displacement curve of a vibrating particle be given by y = k from

T
t=0to t=5 and y= 0 from

T
t= 3 to T, where T is the

time period of vibration.

T

k
O T2 T 3T/2 2T
———— !
Figure : 5.1
Let us write
y=f(t)=a,+ 2 ancosnot + » bysinnot R )|

n=1 n=1
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T
2 A k 1 T:/2
Apain, 8 == Jycosnotdt = = | cosnotdt = 2= [¢inn ot]’
24 TJ T j T nw[ ]O

0

_ 2K 0=0
noT
7T 2 Ti2 T
by == jvsmnwtdt I ksinnaot+ _[ 0.sin notdt
T 0 T 0 Ti2

z—[—cosn (s)t]:r_)r 2

Tno
[I l [ oT 2nT n}
—COSNT —=——=
Tnm 2 T 2
|
2kn[ ( ) }
k
= —2 fornodd
nx

=0 for n even.

2k
. by =— when nis odd.
nm

-. Only the odd terms of the sine series appear in the expression.
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. Putting a, a,, b, in equation (5.7) we get

2 : 1 . 1.
y =f(1) =§+% (sin wt + (smwt+§ sin 3&)t+§sm5mt+ ..... J (5.8)

when you that this series, you get a square are waveform.
5.3.2 Analysis of saw-tooth wave :

Let the displacement increase uniformly with 1 from y =0 to y = k as t increases from
OtoT.

The resulting wave form is a saw-tooth wave form as shown in figure 5.2.

Here, from figure we can write

y_k
t T y
k [
y=—t
T
1T 1
Hence, apg =— |ydt
cag = [y L
0 s l
I
1 Tk '
— — [—tdt = T 2T —>t
TyT )
Figure : 5.2
kT2
122
- _E
. g >
T T
and a, _2 Icosnmtdt =§jtcosn(ﬂtdt
T L
2k '

t 2k T
= —| —sinsot | —— |—si tdt Int ting by part
5 [n Sins® L 5 6[" sinnw [Integrating by parts]
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2k 1] T
= 0———[cosnwt]
T3 113032 0
=0
o) T
Now. bs == Iysin n ot dt
1 T 0

T
2k .
- — Itsmnmtdt
-2
79

2k _ 2 cosnomt + '
- T2 ny - nzwz

sinn wt]
W

T
== —-—Cos2nn+—;
T<L ne nm-

sin2m1}

k k 1 1
vy =1{t) =3 (sin ot +5 sin 2 ot + Esirl Jot+ ... v {59

Here all harmonies ar present.

5.4 Importance of Fourier’s theorem

To analysis and synthesis of vibration, Fourier’s theorem has important application.
Using this theorem you can find out the harmomic components in a particular vibration.
This theorem tells us which components of harmonies are to be taken to produce a vibra-
tion of given periods. This theorem enables in to study qualitatively the quality of a musi-
cal sound. It also helps us to design a rectifier circuit.
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Exercise :1
Find the Fourier series for the function f{x) defined as f{x) =k, —n <x <0

=-k0<x<m
5.5 Summary
Fourier series is
G0 o
f(t)=ag+ > agcosot+ 3 b, sinnot where ag, a, and b, are constant called
n=1 n=1

Fouriers’s coetfticients.
Fourier coefficients are

ag =— ft)dt

| —
o3

a f{t)connomtdt

n:

— |2
== |

b, = f(t)sinnmtdt

=
Do —

5.6 Questions and problems

5.6.1 An alternating e. m. t of sine form is applied to a half-wave rectifier. Obtain an
expression for the rectified voltage in harmonic series.

5.6.2 Find the Fouriers® series for the function defined as
fxy=-1,-m<x<0

=],0<x<m

5.7 Solutions

Exercise-1 ;
Here, f(x) =k, - <x <0
=-k 0<x<m

we know the fourier series as

tf(x)=ag+ X a,cosnx + > b, sinnx
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| ™ i ¢ m
C o= — [fdy = —| [k dx + [(—k)dy
A= zn_jnf(x_)cu_ o _{E +g( Ydx

3 " O 0
—,)— I )cosmcdx Ikcosnrdr _[kcosnxdx
=7 -1 -n 0

= [[mn nx] [sin nx]ﬂ =0

an

I i k 0 T
b, =— jf(x)sinnxdx - - Isinnxdx— jsinnxdx
T

n s
— -n 0

= %[{—cos 'U‘}Eﬂ +{—cos nx}ﬂ

= %[{—cosmw 1}+ {-cosnx +1}]

2k
= — l — ~ = 0
mr( cosnm)

4
= — fornodd
n

Z 4k .
L fix) = 2 ——sinnm _ ﬂ[sin x+lsin 3x+lsin 5x+...}
135, 0T T 3 5

5.7.1 Here we consider the function for half wave rectifier as

) T
v(i)=Asinot, ) <t< B

T
=0, —<t=T
0, 5

*. The Fourier series in
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o0
y(t) = a, + Zoan cosnet
n=

> by sinnot
n=0
y
O T/2 T 3T/2
—>t
Figure : 5.7
1 T
Q= 5 Iy(t)dt
0
T/2

- é _f sin ot dt
T 0

(j—T[cos c::rt]g"I2

—zi[cosn —cos0]
T

T

2T;’2

and, . a, = T j Asinotcosnotdt

0
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24 T2
= — _[[sin((ot+nc)t)+sin(0)t—no)t)1dt
2T 0

T/2

=

{cos(l—n)n—l}}

Y il cos(l+n)ot -
- T|(l+n)o

mcos(l—n)mt}

0

I

l+nJ [-n

-A J 1
= 1+ — s(1—
"03[11 ncos( n)m cos(l—n)n

‘ Alfl 1
Now, forn=1a3= 5 EcosZn—E -

—n

1-n)k
A ] —sinzi( n)
= 2n I-n 2 =0forn=1

= _ A lCO‘?3TI—l—lCOSﬂ:—ll
Lol —0, ar = 7 - 3 4 J’

w3
Al 1
U
Al
= +£{§—2]

Similarl =0 —A(L-L]
imilarly, a; =0.a4= A 5-=730

11
- — = A - —
as =0, 2 [?n S:rc}
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1 1
s a, = A{(nﬂ)n_(n—l)ﬂ} when n is an even integer

2A
b T e—
Now, T

j sinwtsin notdt
0

24T

_[ [cos(n —jot-cos(n+1) (.)t}dt
T 0

sin(n—Dot | ol Ny
i{&? ’ i{&}: 2

Tw n-—I1 o T n+1

A .
= 211(11 [sm I)n}—m[sm(n +|)TII:|

=0 except forn =1

Ti2
b= " j si|12mtdt = ﬂl:i
LA T 4 2
A A 1 1 ]
Ly= ———J(——lJcos2ut+(— f]cos4ﬁ)t+(———] cosbmt+...... 3+—S|n(ot1
n o |\3 305 5 J
A 2A l ] .
Ly =——-— coszt+—c054(0t+—cos6(ot+ “““ +—sinmt
T X 3 15 35 2

5.7.2 Heref(x)=—1.—-t<x>0
=1,0<x<m

Fouuier’s series is

o o
f(x)=ag+ > apcosnx+ > bysinnx
n=0 n=0

Here, ag = 5~ jfdr(X)_ [(}( l)dx+j]‘(l)dx]={)

0
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1 T i 0 T
ay = _[f(x)cosmrdxz; _f—cosnxdx+ _fcosnxdx -
-7 —TT 0

l n l 0 n
and bn =— [ f(x)sinnxdr =—| [ —sinnxdx+ [sinnxdx
T T
- -7 0

2 |
= E( - cosnm)

0 for n even

4
= — for n odd.

nx

e 4 (Sinx+sin3x+sin5x+ ]
w Ry =— | 3 P R



Unit : 6 10 Wave Motion

Structure
6.0 Objectives
6.1 Introduction
6.2 Velocity of plane longitudinal waves in fluid.
6.3 Energy density and intensity of plane progressive wave,
6.4 Phase Velocity and Group Velocity.
6.5 Waves in two and three dimensions.
6.6 Summary.
6.7 Questions and Problems.

6.8 Solutions.

6.0 Objectives

After studing this unit, you will be able to

e define wave motion and difference between longitudinal and transverse waves.
e establish the wave equation in elastic medium.

o derive expressions for energy and intensity of progressive wave.

# know the bel and decibel. phase velocity and group velocity.
°

write two and three dimensional wave equations.

6.1 Introduction

When a particle of a material medium is slightly displaced from its equilibrium position
and released, then it starts to vibrate about its equilibrium position by virtue of the elastic
and inertial properties of the medium. Since the neighbouring particles are bound in each
other by the force of cohesion. So this vibration is transmited to the neighbouring ones.
Such a process at transfer of vibration from one particle to an other particle is known as a
wave motion. Through wave motion, a disturbance and energy are carried out from one
point to another point of the material medium, but he medium itselt however is not
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physically transported. You have seen the water waves formed on the surface of water in
pond, when a stone is dropped in the pond, the molecules of water move up and down at
the same place, therefore a cork placed on the surface of the water moves up up and down
at the same place as water moves across the surface of the pond. Thus each particle of the
medium executes similar vibration about its mean position with same frequency and
amplitude but not in same phase. The difference in phases increase as the distance of the
particles increase from the source. Hence the wave motion, in general refer to the transfer
of evergy from one point to another point of the medium.

There are two types of wave motions, transverse wave and longitudinal wave motions.
In a transverse wave motion the particle of the medium vibrate at right angles about the
mean position of the direction of propagation of the wave.

But in the longitudinal wave motion the particles of the medium vibrate about mean
position in the same direction in which the wave is propagated.

There are source waves in which no material medium in requried, viz heat radiation,
light waves, x-ray, r-ray, radio waves etc. These waves in general are called electromagnetic
waves.

In this chapter we shall discuss the elastic waves in material medium, i.e., only sound
wave.

6.2 Velocity of plane longitudinal waves in fluid (in an elastic
medium)

Consider a cylinder of fluid of cross-section A perpendicular to the direction of
propagationof the wave. Let x and

. 8y
x + 8x be the positions of two close x-+y x+dx-+y+ o ox
seictlons A, and‘BI of the cylinder A, A, B, B,
(figure 6.1) with respect to an g P ’ r
arbitrary origin such that A B, = x | | | |
+ 8x — x = Ox. ‘\ IIl\ "\ ‘\
) X
Due to disturbance, let the . x+ox
Figure : 6.1

particles on the plane A, be
displaced to A, by y i.e., the co-

3]
ordinate of A, is x +y, and B, to B, such that the positon of B, is x + dx +y + % ox.

Thus the thicknes of the layer
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A,B, = (x+8x+y+%8x]—(x—y):8}.‘+%8x

i

- Initial volume between A, and B, is V; = Adx and final volume between A and B,

is vi=A {E‘)x + 2 Sx]

iy

. Increase in volume (AV)=V,=V,= A ébx

AP o
Hence, the volume strain=__ dx  _ _¢¥
Adx x

This negative sign indicates that the colum is compressed.This is due to the excess
pressure over the atmospheric pressure.

Let P be the excess pressure on A; and that on B be p + P s

Ox

ap
~. The resulting force on the slice A, and B, along x axis is A{p_[p + ad"]} =

From Newton’s Law this force must be equal to mass of the layer (pdx) multiplied by

i

the acceleration at_g . where p is the equilibrium density of the fluid.

3’y op
T dx——= =3
hus pox 8{2 ™ X

&’y P

o Py = (6.1)

Again from Hooke’s law, we get

volume stress P

Bulk modules (x) = volumestrain _8_\*;’6x
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I p—
s P= '*ax (6.2)

Now, from equation (6.1) and (6.2) we get,

P32 &\

CJ%y 207y (6.3)

Equation (6.3) is the differential eqution of progressive wave and c¢ is the velocity of
wave in fluid.

The solution of equation {6.3) is given by

y = fi(et — x) + 5 (ct + x) where f| and f> are two arbitrary functions. f; (¢t — x)

represents the wave travelling in the positive direction of x axis and f5(ct + x)} represents a
wave travelling in the negative direction.

This treatment 1s applicable to all case, of plane progressive waves, but for fluid the
appropriate modulus 1s adiabatic bulk modulus, young’s modulus for long narrow solid
bar and axial modulus for unlimited solid medium.

6.2.1 Acoustic pressure

Let a simple harmonic wave in a gas travelling in the positiev direction of x axis with
a velocity ¢. The displacement at x is given by
2n

¥ = asin - (ct—x)

and the excess pressure

i)

- ay
oP=-x—

ox
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= 27;a|< cos 2;[ {ct—x)

. The maximum excess pressure

2
Pmax =20 .64

This is known as acoustic pressure.

Again acoustic pressure can be expressed as R. M. S acoustic pressure

{2

|
. 1T omax )2 22m
. R. M. S acoustic pressure = ?J. ) cos T(Ct_x)dt

0
2mac[ 1 T2
roLT2

B2 EE (6.5)

A

Exercise — 1

Show that the function W(x. t) = f(x — ct) + g(x + ct) satisfies the one dimensinoal
wave equation.

6.3 Energy density and intensity of plane progressive wave

When sound wave pass through a medium the particles of the medium vibrate. So,
these particles posses extra amount of energy which 1s partly kinetic and partly potential.
The average enery per unit volume of the medium is called energy density.

Kinetic energy :

Let a plane harmonic longitudinal wave is moving through a medium along positive
direction of x axis. The displacement of a particle at the position x at any time t may be
written as

yix,t) =acos{ot-kx) ... ... . .. (6.6)
where, o = angular frequency, k = propagation constant and a = amplitude of the
vibration.

Consider an infinitesimally thin layver of thickness 8x and of unit cross-section, the
mass of this layer is pdx, where p is the density of the medium.Then the kinetic energy of
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2
I L fovy
this layer is Eg = prx( a‘t ]

= %p&x a%w? sin? (ot —kx) [ % = —awsin (ot - kx)]

4

-~ The average kinetic energy over a complete cycle of period T is

T
< Ey >= 1 Ilazmzpﬁxsinz(mt — kx)dt
T 0 2

T2 2

1 22
= —a“e pdx
3 p

.. . [
Hence, the average kinetic energy per unit volume < Ey >= i P . (6.7)

Potential Energy ;

The force acting on the element of Thickness 6x and of unit cross-section is given by

.2
Y 2
Now, —- = -a0" cos (ot —kx)

8t
o F=—aw’pdx cos(wt — kx)
=— pw? dxy [Putting y = a ¢os (ot — kx)]

The negative sign indicaets that the force is directed towards the equilibrium position
1.e. opposite to the displacement.

Hence the work done to produce a small displacement dy 1s
dEp = pe?dx ydy

. The total workdone for the displacement from 0 to y. which is stored in the volume
of the medium as potential energy of the wave is given by
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Y 2
Ep= _[p(:)z&r ydy =p(026x}7
0

= %pmzazﬁx cos? (ot - kx)

. Average potential energy per unit volume over a complete period T is

T
<Ep> = %pmzaz% jcosz (ot - kx )dt
= 0

1 _
=Za2t02p " (6.8)

Thus from equations (6.7) and (6.8}, we see that the average kinetic energy per unit
volume is equal to the average potential energy per unit volume.

So, the total energy per unit volume, ie., energy density

E:<Ek_>+<EP>

2

= la (02p + la2
4 4

2
O p

" E:%az(o?p (6.9)

Now, we know o = 27tn when n is frequency of the wave

; E=%at2 (21tn)2p=2:rc2a2n2p . (6.10)
From equation (6.10) we see that the energy density is proportional to the density of
the medium, square of the amplitude and square of the frequency of the wave.
Intensity of the wave :

The intensity of sound wave at a point in the energy flowing per unit area perpendicular
to the direction of propatation per unit time. hence it is the energy contained in a volume
of unit cross-sectional area and of length c.

-~ Intensity (1) = Energy density x ¢

=2maln’pe ... (6.11)
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From equation (6.5) we have

\/ETCEIK

R. M. S acoustic pressure. P ;5 = )

n 1 n K
or, Prins :«/E:rcapcz'; [.c=nhor, -=—and ¢= \/; or, k= pc?]

?\. C
| 2n232n2pc _ 1
Pﬁ-ns B 211232p3c2n2 pe
2
P
.= Srms
1o . (612)

Exercise-2

Compare the acoustic pressure tor identical sound waves of equal intensity in air and
water given for air py = 1.21kg/m3. ¢; = 343 m/s and for water Po = 998kg/m?, ¢. = 1480
m/s.

Exercise-3

A plane harmonic wave has an RMS excess pressure of 20N/m?2. The frequency in 1
KHz and the phase velocity 350 m/s. Calculate the maximum value of particle displacement.
[Given bulk modules (k) = 1.4 x10° N/m?]

6.3.1 The Bel and the Decibel

The sensation of loudness depends upon the intensity of sound but there no relation
between the two. Loudness in the sensation which depends upon the ability of hearing of
the listener but intensity is a purely physical quantity.

The relation between the intensity and the loudness is Weber-Fechner law. This law
states that the change in Loudness dL is directly proportional to dI/I, where dI 1s a small
change in intensity I.

dl ) . . .

s dL=Kj T where K is constant Integrating the above equation between the limits
L, to L, corresponding intensities [ to L, ,

I 1
we have L2 —Ly=Kgln-==2303K, l—2 = Clogg 'I—Z
l [ |
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Where, C = 2.303 k a constant.

I
The quantity 19210 ? . gives the intensity level, in unit of bel. of I, relative to I which

is taken as a standard intensity.

The threshold audibility, that is the lower limit of audibility, for arole of frequency
1KHz corresponds to an intensity 10-2 watt/m? and the corresponding acoustic pressure 2
x 107 N/m’ is taken as the standard intensity (I,).

\ The intensity level (IL) of sound of intensity 1 is defined as

I
IL=log1p— bel
Lo

1
1L=10g10EdB.... (6.13)

where IL 1s expressed in decibel (dB).
1bel=10dB

The modern sound deterctors. such as head phones, loud speakers etc responds to the
changes in accoustic pressure rather than to the intensity.

So, 1t is more useful to express equation (6.13) in terms of sound pressure.

From equation (6.12) we have intesity | = p2 /pC

rms
2
oL _[Prms
Iy U P

So. we may define sound pressure level (SPL) as

SPL:Z{}IOgmpggs e . (614

in dB, where Py is the eftective pressure (RMS) at the standard sound.
6.3.2 Musical Scale

A musical scale is a collection of notes having certain relation to one another as regards
the frequency of vibration. The note of lowest frequency of the scale 1s called key note or
tonic. The physists prefer 256 Hz as a key note but th musicians concert. the pitch however
uses a frequency of 264 Hz. The not having a frequency twice that of key note is called an
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octave. Between a note and its octave, the hurman ear can distinguish a number of notes of
definite frequencies. By introducing a number of notes between keynote and the octave a
musical scale is constructed.

6.4 Phase velocity and Group velocity

Phase velocity : When a monochromatic harmonic wave moves through a medium,
the velocity with which the planes of constant phase move is called the phase velocity or
wave velocity.

Let a plane progressive harmonic wave 1s propagating in the positive direction of x
axis is expressed as

y=asin(wt—kx).. .. (6.15)

where v 1s the displacement of the particle at x at any time t, ‘a’ is the amplitude, o is

2n
the angular frequency and K [Z TJ is the wave vector of the wave.

For planes of constant phase we have ot — kx = constant

dx
-k—=0
or O™ % 4t
dr o
E:I:Vp (6.16)

where v, is called the phase velocity.
Group Velocity :

In a dispersive medium a wave group may be formed by the superposition of an
infinite numer of plane simple harmonic waves. The amplitudes and phases are such that
the group has maximum of amplitude that falls off to zero near the maximum. The
maxmimum amplitude of the wave group travels with a velocity ditferent from that ot the
component waves. This velocity of maximum amplitude 1s called group velocity.

Let us consider the group to be formed by the superposition of two waves of equal
amplitude. but slightly different angular frequencies o and o + Aw, travelling with
propagation constants k and k + Ak respectively.

~ We can write the waves as
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y) =asin(ot—kx) and y; =asin{(o+Aw)t—(k+Ak)x}
. The resultant wave is

Y=Yit
=asin (wt — kx) + a sin {(o + Aw)t — (k + Ak)x}

= 2asin%{(mt —kx)+{o+Aw)t—(k+ Ak)x}

cos%{(mt —kx)—(o+Av)t+(k+ Ak)x}

Aw . Ak o { 2o+Aw . Zk+ Ak
= 2acos Tt—;x sin t— X

2
Aw . Ak .
. y=12a cos(Tt —Tx]sm((ot - kx) . (6.17)
or, y = A sin o (ot —kx) [-+ w >> Aw and k >> Ak]
where A = ZaCOS[Et —A—kx]
2 2

Thus we see that the amplitude is also a wave.

Now the amplitude with be maximum (A, = 2a)

Am Ak
hen, —t——x=0
WheR. 57T

Awt_ Ak
oL ST

Am  x
or, —=—
Akt

N Lt Ao do  x v
OW. Ak —_— — = — =Y
- Ak—0 Ak dk  t g

d :
" Vg = — . (6.17)
dk
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here v, is the velocity of maximum amplitude or group velocity.

Relation between group velocity and phase velocity

From equation (6.16) the phase velocity is vp = @

k
or. o =kv,,
differenting we get
dv
1k P
MY
) dw
But group velocity, vg =—~
dk
dv
_ P
Vp= Vg + k 1k
dvy di
= \‘,-’p PR
di dk
v 2w @:zn[-L]
dvp .
Ve =vp—h " .. (6.18)

dv
Now, (i) it d—f is positive quantity then v <v .

This 1s normal dispersion.

dv
(i) It d—}p =0 . then v,=V, .This happens in a non dispersive mediun.

(i) If

dv
d”p is negative quantity then v, e This is the case of anomalous dispersion.
A
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6.5 Waves in two and three dimensions

When a plane progressive wave amoving along positive direction of x axis with velocity
¢, then the tunction be represented by y = f (x — ct).

Here y 1s the disturbance associated with the wave, which may be the displacement
of the particle or any characteristics of the wave. called the wave field parameter.

. The plane wave differential equation in one demension is

82t|1 2 ﬁzlp . : i
5~ =¢"—= here W =y {x, t) is. the waves are constrained to move along a line as
az ol

in the case of vibration of string. where the particles vibrate is perpendicular direction.

But, suface waves or ripple on water caused by dropping a pebble into a quite pond
are two dimensional (2D).

In such cases, the displacement is a function of x, y and t i.e y =y (x, v, t) and the
ditferential equagoin in 2D is

6’2lu(x. vz} {8%1 82qu
=c +
a2 2

2 22 . (6.14)

o

- —
The solution of this eqution is y = a sin (mt —k.r ] e (6.20}

- = . N . s
Where k.r =(ik, +iky ) and r=ir+]y

—

- kor =kyx+kyy

Similarly, in three dimension y = y(x, y, z, t) and the differential equation is

azlp(x,v,z,t) 2 621p 621p 621p
PR ST el A Tt 5t
P x % oz

=clydy ... (6.2])

2 2 2
7 & 5] o 2 .8 .8 0
; Vis—+—+— V=i—+]—+k—
where ol o o and x oy ;

o
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is an opertor.

And the solution of equation {6.21)( 1s
- —
Y =asin| ot—K-r . (6.22)

- = - - . o e oA -
where k-r =k x+kyy+k,zs k=1k, +jky +kk, and r=ix+jy+kz

Plane wave and spherical wave :

When a disturbance is caused in a medium. the particles of the medium vibrate and
the continuous locus of all particles vibrating in came phase at any instant of time 1s called
the wave front. Thus a wavefront is a surface of constant phase.

Now in a homogeneous isotropic medium a point source of sound sends waves in all
directions travelling with same speed so that they arrive simultaneously at the surface of
a sphere with the spoint source as its centre. Hence, the wave front is a sphere and this
wave is called spherical wave.

But 1s 1f the point source 1s at a large distance, then a small portion of the spherical
wave front may considered to be a plane and 1s called plane wave front. Thus a plane
wave is a wave 1s one dimensional medium.

Summary :

g

. . . . . . L 821;r(x,t) 5 07y

o Differential equation of Progressive wave in one dimension is 2 =¢ 2
1y

6211;(x,y,t) _ cz[azw . aZwJ

in 2
in 2D 2 PRGN
6‘21|J(x. v.iz.t) o[ 8%y %y Py a2
in3D. 3 "¢ | 3ttt eV
ot o= Iy oz
. 2 mak
¢ R. M. S acoustic Pressure (an) = \/_%

o Energy density, E = 2n%a’n’p
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2
P rms
=2n2 2.2

o Intensity, I= a“n“pe
pc

1
e Decible, Intensity lebel =10log,, Gdb

e Relation between group velocity and phase velocity

dv
b — R P
da

6.7 Qustions and problems

6.7.1 An increase of pressure of 100 Kp, causes a certain volume at water to decrease
by 5103, of its original volume. Calculate the speed of sound in water.

6.7.1 Calculate the change in intensity level when the intensity of sound increases by
10° times its original value.

6.7.3 A microphone emits a 1 KHz pure done having an intensity level of 70 dB. Calculate
the actual intensity.

6.7.4 For gravity waves in a liquid the phase velocity v, depends on the wave length A

1/2

according to the formula v, =g)" <. g being a constant. Show that the group

velocity is half the phase velocity.

6.8. Solution

Exercise-1

Here v = f{x —ct) + g{x + ct)

Now, %P =—cf’{x—ct)+cg'(x +ct)
2
a—;“ = czf”(x —ct)+ czg"(x +ct)
a2
= cz[f”(x—ct)+g"(x+ct)] .. (3)

Again, v _ f'{x —ct)+g'(x+ct)

x
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42
a—lgzt‘"(x—ct)+g”(x+ct) e (2)
ax

-~ From equation {1} and (2) we get.

6‘2111 2 82l|1

=C
a2 ox2

Thus  satisfies the differential wave equation,

Exercise-2.

2
we know intensity I =—">
pc
2 2
: P P
.. Forair, I=——=1=—"9 (D
Poto 1.21x 343
2 2
P P;
. (2)

- . I — =
and for water, oCo  998x1480

2 2
. P _ e
T 1.21x343 9981480

Py 998x1480

o p2 T 21x343 =3358.9

P

. —£=59.66
- P,
“ Py:Py,=060:1

Exercise-3
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Here, P, = 20 N/m? _ wave length (A} =%
frequency (n)= 1kHz = 10° Hz
velocity (v} =350 m/s

5 x:i:@:%omo*m
oo

and | =1 4%10°N/m?

. 2n
Let the displacement y =asin )—(ct -x)

. Maximum displacement = a

\/5 mak

-

Now, we know, pyps =

Pn'ns;‘- — 20X350X]0_3
S2rk axlAx1077

p 100x10°
6.7.1 Here, Bulk modulus g = — = — 5
v 5x10

v

=1.126 x10~°m.

=2x10%Pa

and density of water p =1 gm/c.c = 10° kg/m>

. velocity of sound in water,

K 2x10°
v=— = 3 =1414.21 m/s
P 10

6.7.2 Here, initial intensity = I,
Final intensity = I
LTV
o

. . 1
- Increase in intensity level, L = 10log;q I
0

6.7.3 Here, intensity level L =70 dB

=10logo 10® = 60 dB.
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we know the reference intensity (Ip) = 10712 o/m?

1
. ?0=]0|0g|0— =
10—]2

70
logipl=— =
or, logg 30 0.58

- 1=10°8 =383 p/n?
6.7.4 Here vp=gz”2

We have group velocity

dvp
dh

vgzvp - A

Ay
Vp kdk(g?‘_ )

-
vp—hgin V2



Unit : 7 0 Vibration of Strings

Structure

7.0.  Objectives

7.1. Introduction

7.2. Differential equation and velicity of transverse waves along a stretched
string.

7.3. Stationary waves in a vibrating string

7.4. Energy of a vibrating string

7.5. Plucked string

7.6. Struck String

7.7. Summary

7.8. Questions and problems

7.9. Solutions

7.0 Objectives

® After studing this unit you will be able to construct the differential equation of
stretched string and solve it.

® define the Eigenfunctions and Eigenfrequencies.
® determine the energy of vibration of a string.

@ learn the nature of vibration of string when it 1s plucked and when it 1s struck.

7.1 Introduction

In the previous units you have studied about the vibration of a system whose inertia
and elasticity are concentrated in a region, while in wave motion they are distributed
throughout the medium. But in stretched string. It acts as a vibrator and also a medium of
wave propagation. Again in the world of music, vibration of string plays and important
role. Instruments like guitar, Piano, Siutar, violin etc all are based on the transverse vibration
of stretched strings. Thus the study of vibration of string is very important both in theoretical
and practical points of view.
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According to Lord Rayleigh an ideal string is defined as “‘a perfectly uniform and
perfectly flexible filament of solid matter stretched between two fixed points.”. A practical
string is neither perfectly uniform nor perfectly flexible. The strings used in music only
closely approximate. Real strings always have some amount of rigidity, whose effect
decrease as the length to diamter ratio increases. The transverse vibration of an ideal
string is controlled by its tension not by its rigidity. When a point of a stretched string is
displaced from its rest position either by striking or plucking or bowing, the point vibrates
and waves travel along the length of the string an either side. The reflected waves from the
fixed supports superposed on the incident waves, producing stationary wave patterns. The
string then produce a musical note of definite pitch and quality.

7.2. Differential equation and velocity of transverse waves along a
stretched string.

Let a perfectly flexible string stretched by a tension T between two fixed supports lie at

rest along x-axis. N

Consider a small segment AB of
length §x of the string when it is
undisturbed. Let A B, represents the
element when the string is displaced
in XY plane and co-ordinates of A ,
B, be (x.y) and (x + §x,y + §Y)
respectively. Again consider that the
displacements are very small, so the
tension remains same when the
string vibrates.

Let A/A, and B B, are two
tangents at A and B, making angles
0, and 0, with x-axis respectively,
as shown in figure 7.1.

Now the force on the element at
A and B is T along A A ) and B B,.

Hence, the resultant force on the element along X-axis is

F =Tcos6,—Tcos6,=0][6,and 0, are small cos8,=

cos0, =1 and sinp=tang ]

And the resultant force on the element along Y axis is
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F=T sing,— T sing
=T (tang,—tang )

(3. #)
SILIPE IR
{ax(eraxbx] ax}

A2 _
=T [QJra_ygx_ﬁJ

o ot Ox

E;‘zy

= Ox
ax

=T

If m is the mass per unit length of the string. the mass of the element A B, (5] 4 65 ) is
2

i

m§ x and its acceleration is ? , then from Newton is law of motion, we can write
&

2. 2.,
a—gﬁx:mf)xa—g

ax at

LAy Ty .y (7.1)

s —— =T —= e .. . . . . . .
ot m gy’ ax?

where c = [T/, (7.2)

Equation (7.1) is the differential equation for transverse wave along the stretched string
and ¢ is the velocity of the wave.

The general solution of equation (7.1) 1s
y=1 (ct—x)+1f (ct+x)... .. (7.3).

which represents two transverse waves travelling along the positive and negative
difections of X-axis with velocity (¢).

7.2.1. Solution of differential equation :

The general solution of the wave eqution (7.1) can be obtained by the method of
separation of variables. Since y 1s function of x and t, so we can write,
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Y=Xx)T®w.. .. .. . (7.4)
where X(x) 1s the function of x only and T(t) 1s function of t only.

Substituting for xy in equation (7.1) we get

2 - 2 .
PT(O) _ 20 8X(x)

X
at? a?

1 &°T o X
T atz :Yaxz vaa PR ‘s e ves e ves (?.5)

or,

Since left hand side of equation {7.5) in function of t only and the right hand side is a
function of x only, this is possible only when both sides is equal to a constant. The value
of this constant must be negative, as otherwise y will not be periodic and go on increasing
sor decreasing with x or r which would not obay the boundary conditions. Let the constant
as — o where o*>0.

Therefore equation (7.3) gives

18°T 8T
T?=—®2 or, ?=—(02T =0.. .. .. (7.6)
2 92X X o
and %;7}@2 or, ;—2+‘;’2 =0 e e eI

Equtions (7.6) and (7.7} are standard equation of SHM. So the solution are

. mx X
T=a cospt+b sinet and X =a, cos=— + bzsm?
where a,, b, a, and b, are constants to be determined trom the initial boundary conditions.

Thus the solution of the wave equation for the stretched string is Y = XT = (a, cos %
X .
+b, sm?)(alcosmt +b, sinet) ... .. (7.8)

B _ . _ i — |
Nowleta =A sin¢ andb =A cos¢ where A = faj +b] and tang = /hl .
Then a,cosemt + b, sinwt = A sin (ot + ¢)

Thus we can write equation (7.8) as

mx . Ox .
y=(a, COS? + b3 sm?)A] sin (ot + @)
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=(A cos%x +B sin(ﬂTx ysin(ot+o) .. (7.9)

where A=A a, and B = A b, are also constants.
7.2.2. Eigen functions and Eigen frequencies :

Suppose the stretched string of length {, righdly fixed atx = Gand at x ={. Thusx =0
and x ={, y = 0 for all values of t.

- First condition gives (from equation 7.9)
O=Asin{wt+¢)
. A=0 [ sin(wt+¢) cannot be equal to zero]

-. The equation (7.9) becomes

y=Bsin (0% sin{at+¢).. .. .. (7.10)
Again from second condition we get

o=B sin% sin (ot +q)
which gives, sin(’%{f =0

of e
x % =Sn where s =1, 2, 3........ positive integers.

LO=== .. (7.11)

-, Equation (7.10) becomes

-XB, sm%sin(&;tﬂpsl T (A D)

We can rewrite the above equation as

o
Z (a, cos&ct +b_sin &ft)sin % (7.13)

Where a_= B, sin g, and b = B_cos¢, are new constants.
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Equations (7.12) and (7.13) are the general solutions of the differential equation of the
transverse vibration of the string in different forms and s represents the modes of vibrations.

Now trom equation (7.11) we can write the s th mode of frequency of the vibrating
string as

t‘:E_Z A

] zp_f m e (?14) [ ‘_'(ﬂ:znf‘]

For s =1 the fundamental frequency is
]
f] = y %‘l »

el 2 o
fors_zstz_ﬁ %]_2f|

fors=3,f, % Ve = 3f,, and so on.

Thus the higher harmonics have frequencies which are integral multiple of f .

The frequencies f_given by equation (7.14) or angular frequencies «, inequation (7.11)
are called characteristics frequencies or eigen frequencies.

Suppose we have an operator A and functions ¥, such that AW, = a ¥, where a_ are
constants.

Then ¥, are called eigen function and a eigen values of the operator A.
ST d’
Here the tunction sin “ is the eigen function of the operator R

From equation (7.7} we see that
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) 42 N2
. The eigen values of the operator 2 e —(%)

S . . STIX
and the corresponding eigen functions are sin A

Again the eigen functions of a stretched string are orthogonal because they satisfy
orthogonality condition

¢
. smx . kmx dx =5 . .
SIN—== SN ==Y = O [ where k is an integer]
0

where 5, =0 where s 2k

and 8, = % when s =k

7.3. Stationary waves in a vibrating string

From equation (7.12) we get

o
y= Z BS Sin(&gct+%15in¥ x=0 /\ x=/
s=1 :

s=1
or, y = B_sin (%}Ct + (psjsin% taking sth mode only.
or, Y, /’”“\\\
=%[Cos{(%:Ct+(st_%}}_%[005[(%@+tpsj+$ﬂ \\\‘__’// ~

This equation gives the displacement of the vibrating
string at any distance x and at any time 1 in 5th mode. / N
Which is the superposition of two waves propagating in . ,,’\_/\\ %
two opposite directions. B o

The resultant amplitude at any point is B_sin % . Figure : 7.2

It varies with x and has maximum values (antinodes)
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whenﬂ (2n +1)— wheren=0.1.2.3...

0r,x=(2n+1)%

¢ 3r 5¢
3ot o g e
And has minimum values (nodes) when

or, X =

g_nn wheren=0,1,2,3.........

g2
orx—O—Z— .......... ¢
SS

The stationary wave patterns for few modes are shown in figure - 7.2.

7.4. Energy of a vibrating string

We know trom equation (7.12) the displacement y at any point x at any instant at time

t for a vibrating stretched string rigidly fixed at both ends 1s

smct
y(x, 1) = ZB sin 22X gin (THPq]

Now kinetic energy at the string 1s
f 2
-l dy )
6[2(1ndx)[ dt]

Here, —= Z B X~ “M ( sn;:t + q’;)

f 2
. E = m I[ZB ;msm STYCOS($+¢SJ} dx
2 ] l_s:l

| * o
= % R];': [ZZ{B“BnSnq1n$sm$co<(¥+%]COS(%CtJF‘Pn ]}dx
i) n=1s=1 .
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!
. .O8TX . NmXx
since jsstm 7 dx=0 forn =s
0 '

2 = .,
L E=MLEC > s?B2cos? (%Ctﬂps) (7.15)

To calculate the potential energy at the element §sin displaced position. The work
done against tension when the element is stretched from dx to §s is T(&s —8x ), or the
potential energy of the element is T( §s —8x ).

From fiture (7.1)

[-(3]]
o
s

2
_T(oy) s,
N 2[8)(] ox

Hence the potential energy of the whole string is

| [%Tmc

f
0

| —

[%J-} neglecting higher order terms.

~2|

T
E,=>
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7

) < STX smct )
Now ( ] {ZB»TCOS—S'”(T“&)}

O.)

B.B, _ . nmet
= mc IZZ{"SH sgbosgsm(sidﬂpzj Slll( ; +cpn)}dx

2 (n=I 5=l

]'ITEY

Since J‘cos ST —Zdx=0forn =5

y

:% forn=s

TIZ
2

I\Jlt"‘*;

5w, (o0

22 = .
_ mr¢c M eiae | STt j
7 EsBssm ( ALY IS (7.16)

. The total energy of the vibrating strisng is

E=E +E
P

_ mTC c? ZS B? {cos (5R—[Ct+(pq]+sm (5R—[Ct+cqu}

— Z—c SR o's'B2,

2

—~ Mz~ 2 22 ) . .
Z 2 ¢ 5 where M = mf is the mass of the string
s=1
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- E=Mnr?> iB?sfls.......(?.n) [-- f = %eqn. (7.14) |

)
s=1

Hence, the energy of vibration of a string for a particular mode is proportional to the
square of the frequency (f,) and the square of the amplitude (B ) of that mode of vibration.

Exercise-1

Consider two strings of same length and same material. Tension in the two strings are
in ratio 1 : 4 and the ratio of radii are 1 : 2. Compare the frequencies of the fundamental
modes of vibration.

Exercise-2

A heavy chain of length { and mass per unit length m is suspended vartically from one
end. A transverse wave is initiated at the upper most end. Show that the time taken by the

wave to travel down to the lower end is 2 ./ % .

7.5. Plucked String

Let a stringof length { is fixed at two ends be plucked at a point P of distance h from the
end A, which is taken as the origin (Figure - 7.3). And, let the vertical displacement of the
string at P at time t = 0 is k, which is very small. Hence the two portions of the string form
two sides of a trangle and then P(h.K)
released. The string is said to be
plucked and the vibration occurs
due to plucking. This type of
vibrations can be found in musical
instrument like sitar, guitar,
tanpura etc.

X

Figure : 7.3

If at t= 0, y,(x) be the vertical displacement of a point at a distance x <h from A, then
from figure — 7.3

We can write

)’o(x)zﬁ or,y, = k,vcwhenO<xh:cmd forh<x </{(
X h 0 h

Yo _ ko= kK o

ix 70 YT ()

Now, the general expression for the displacement of a stretched string at any point x
and at any time t is (from equation 7.13).
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_x smet | . STX
}f—Z s—+b HT)bln 7 (7.18)
Now initially at t = 0 velocity of the string
a)! =
&t
. ﬁ = i smC . SmCt STC 6 srcct
" (—aqumT +bq P IG )
5=1 : . ' .
oy = bsme STIX
St =0= Z sﬁ n -
=0 o] .
Since this is true for all values of x at t=0
b, =b,=.... =b,= . =0
Hence we can write equation (7.18) as
yx,t)= 2, a cos%f:t sin g (7.19)
- / /
Nowatt=10
¥, (x, 0) = Za %m—r i.e. y is function at x only
mmx
f
=0 tox =1, we get
‘ mrx z !
' si : = sin mTEX
1,05m T ZJ sin SMMTX 4y
0 s=l ¢
=0fors =m
=1 a fors=m
2
a= 2 [y sin T dx (7.20)
5 { j a ¢ .
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Putting the values of y, we get

i h
. OSTX s:rcx STIX
J sin T dy = [{lsin = &
0 0
= k}]x sin 31X 4, k? Ij[si SX 4y — Ir sin—> srcx dx
h0 ¢ #—1 ; ¢ f—h h
K ; {"2 h
L 5 ,5111% _ ke ¢ sSTY
hi s £ s £ 0 {-=h sm £,
2 f
S S D L5 S S
F—h rrE

k| #h__seh . ¢ . szh k¢? smh
= 2| —— g - Bt Rl
{ Y 7 25 } T n[coss:rt cos= }

- K {—ﬁcoss:nw@cosih——'G2 sinﬂ}
f— h ST ST F Sznz F
b3 ) 2 2
| ke, Kk kth | smh ke k¢ sth
_{ s:rc+(f—h)sn_(f—h)sn} T“{hsznz (—mea (St

ke . k¢
(F—h)yst * (F—hysn | COSSA

_ kCekihek —keh omh | KE(C-h+kPh s
(f—hysn / hs’n*(¢—hy 7 T C

3
k¢ sin $7h

s*n?h(£—h) 7

f
2 STCX
a = 7] Slanx
0
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02
e 721\!? sinﬁ (7.21)
S N )
Thus we can write equation (7.19) as
2ke? ¢ . suh . smx _smct .
— z—zn __S“ oS L (7.22)

s h(f h)

It shows that the maximum amplitude of the sth harmonic is inversely proportional to

s

sth .

Again we see the sth harmonic will be absent if sin =

. sth _ . .
1.e. wher —— =nn where n is any integer.

_nf
Qr, 8 = F

When the string 1s plucked at the mid point

ie ifh= Y, s=2nputting n =1, 2, 3...... we see that the 2nd, 4th. 6th and all even
harmonics will be absent from the resultant vibration.

Simarlarly it h = % then 3rd, 6th, 9th......etc.. harmonics will be absent.

Hence, if the string be plucked at a point where nodes of certain harmonics fall, than
those harmonics will be absent. This 1s known as Young’s law or Young - Helmholtz law.

Effect of touching

If the plucked point is touched immediately after plucking, then all vibrations will be
stopped, for those harmeonics which have not anode at the point are stopped by damping,
where as by Young's law those harmonics which have a mode at the point of plucking are
not generated and hence absent from the begining.

7.6. Struck String

You know that in musical instruments like Santoor or in Piano, where the string 1s
struck by a hammer and a sudden impulse is imported to a small part of the string struck
and initial velocity at all points 1s zero, except the region struck. The waves move in
opposite directions from the point of struck and get reflected from the fixed ends. Thus
we may say that the initial conditions of a plucked string are “Static’, while those of struck
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string are dynamic.

The general expression for the displacement of a stretched string at any point x and at
any time t 1s given from equation (7.13) as

yix.t)= ... (7.23)
Let the string 1s struck by a hammer over an infinitelly small region fromx=htox=h
+ Ax and let the instantaneous velocity imparted to the region at time t = 0 be y,

a r
Hence at t=0, y = 0 and velicity (ﬁ)) = ( for all values of x except the small region of

striking Ax where it is v,.

-+ Att=10,y =0, then from equation (7.23) we get
L STX
Zas SInT =
s=1

a=0[.sin SF":—,._XiO]

-. Equation (7.23) will be

STX

o, . SWCt . ST
}’=stsstmTf“‘ (7.24)

s=1

3y sme smet . smx
Now 5= 2 s T

At, t =0 we can write

ay STC . STIX
E Zb - sin——

The constant b, can be determined by the Fourier’s theorem method i.e. multiplying

both sides of the above equation by sin% and integrating from x = 0to x =/ we get

i
I[%jl smS( Z s'nc i 7snxdx}
0

o Ls=I1
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£
. . 2 STX |
singce |sin® —dx =
¢ A
0

- We can write

snch b STX 3)(
5= _[ vosin—dx [ g] =0 except the regionhtoh + Ax
2 ; # t=0
¢ STX h+Ax
ST h

vyt ST sth
= ﬁ[: cos=—+(h+Ax+cos—

¢ £
Vg _stth suVx . smh . smAx _smh
= | =cos2 = —cos = 4 sin2—— sin +eos>—
ST £ £ £ 4 ¢

v, ¢ . .
of STAX m% [-+ A X 1s very small

g i
LU STAX . SmAXY
Se0sT=— = and sin ; =snAY ]
b = L)OA'Ysinﬂ
5 SRC '
Y= M £sinﬂsinﬁsinﬂ (7.24)
’ e 5 £ £ ¢

s=I1

Thus the amplitude of the sth node of vibration is inversely proportional to s.

Here, due to presence of the term sin @ in the expression of displacement (y) the 2nd,
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4th, 6th......... etc. all even harmonics will be absent, if the string is stuck at the mid point
and 3rd, 6th, 9th....... etc. harmonics will be absent, if the string is struck ath = % . Hence
Young’s law is also applicable here.

Effect of touching the string immediately after strucking is same as plucked string.

7.7. Summary

@ Differential equation for transverse wave along the stretched string is

® Velocity of the wave ¢ = JT/
@ Solution of the wave equation is
- sTct smet
v = Z[as cos——+ b sinT]
- s=1 . .

@ Frequency of a vibrating string for Sth mode

t = %m is the frequency of the fundamental.

1
® Energy of the vibrating string is
E=Mn" ZBES ..
5=1

® The general expression for displacement in plucked string is

sin —SII] — 05 ——

B 2k 2 i ¢ . smh STY smct
Y7 -y 5 et

and for struck string 1s

2\’0sz sin smh sin ST gipp SToCt
£ £ ¢
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7.8. Questions and problems

7.8.1. Find the ratio of intensity of the fundamentals at /4 and '/ when the string is
struck at % .

7.8.2. A stretched string of length ¢ is plucked through K at a distance % from one
end. Find the maximum aplitude of vibration.
7.8.3. A 2m long wire having a linear mass density 0.0025 kg/m is stretched between two

fixed supports such that stwo adjacent harmonic frequencies are 252 Hz and 336 Hz. Calculate
a) the fundamental frequency and b) the tension of the wire,

7.9. Solutions

Exercise—1

We know the frequency of fundamental 1s

- ”(\/7“ 20y ny?

Where T = Tension, r = radius, p = density of the wire.

Now the ratio of frequencies for two strings
’ TI

Y x 2f
TC["

27

[che ¢and p are same]

[
~ |_—]
m|l\3=ru

LI |
ere -1—\2 4 an y )

122
TR V41

. f, =1, i.e. the frequencies are same.
Exercise-2

Let an element dx of the chain at a distance x from the upper most end.
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Therefore, the tension T at this point is due to the weight at the lower part of the chain
of length (¢ — x)

S T=(r —x)mg

Now, the velocity at the transverse wave at this point is

c= [ = l%

dx PSR
or, C—E— ({—x)g

dx

or, dt = m

. Time required to travel the wave fromx=0tox = ¢is

- It e

\f[ (r_r)+{]z =2.f%

7.8.1. We know for struck string

VRS R XS .
== ngm Fsin—o

5=
Here, h = %.xZ # s =1 for first case

ZUOA\C 1 sin l.mé sin ../
1 ) 2/

Amplitude (A ) =

200AT

sin4
Forsecond case.h= %, x = 1/, ,s =1

. Amplitude (A.) = 200 LILL G L
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= —AxsinE sinZ
C 374

2 2
». The ratio of intensities is I_l = (A_] = [T] =
2 2
7.8.2. We know the displacement for sth mode

2
2k L sxh . smx smet

= T2, . . I —SIN——-<C05——
7T hi—nys M7 ; 7

Here. h = % and for maximum amplitude sin%x =], ands=2.

. The maximum amplitude

—2“2 Lsinﬂ
h(r-hy's* ¢

k(23 1 . 2nf

2pen 2 3f
we(r=ty) 2t 3t

_6ke231 . 2n

— ‘I_

= b =
wraed” 3

= X in 1200
n°4

9k 3

S o4n® 2

9.3k
A= ‘52
8

7.8.3. We know, the length of the wire (=5

P ¥
Or, AT T
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_ € _¢s
-. The frequency f = A 2/

_Ccs _
Here fS =57 " 252

CE .

S 252

[

cs _
or, 252

i @= 336

s+1_336 o, 1_336
s 252 7 s 252
1_,.336 .. _;

or,g—l 52 SL85=3

- Velocity (¢) = 22224 = 292X4 =336 mys,

. Fundamental frequency of the wire

C_ﬂ:
fi=35~55 — 84 Hz.

- Velocity (¢) = [T/, or, T=me?=0.0025 x 336

- Tension (T) = 282.24 N.

161



Unit : 8 0 Acoustics of Buildings

Structure
8.0 Objectives
8.1 Introduction
8.2 Reverbration
8.3 Absorption co-efficient
8.4 Reverberation Formula for live room.
8.5 Reverberation time.
8.6 Eyring’s formula for reverberation time,
8.7 Design of a good auditorium.
8.8 Summary
8.9 Questions and Problems

8.10 Solutions

8.0 Objectives

After studying this unit you wil be able to
e define reveberation reverberation time.
e learn the term absorption co-efficient, live room, dead rom.

» complete the growth and decay of sound and hence the reverberation time i.e. Sabine
formula and Erying’s formula.

e desigin a good auditorium.

8.1 Introduction

The branch of physics that deals with the process of production, reception and propa-
gation of sound is called acousties.

In this unit you will study. how to construct a conference room. concert hall. audito-
rium etc, from an acoustical point of view. The aim of this design is to reduce the noise
and obtaining optimum listening condition. Sabine from his experimental studies found
that the acoustical properties of a room depends on the reverberation chracteristics.
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8.2 Reverberation

It is observed that when a source is sounding continuously of constant intensity in a
closed room. the sound waves spread over in all directions. The waves receive by the
listenters are (1) direct waves and (ii) reflected waves due to multiple reflections trom the
walls, ceiling and floor of the hall. The sound energy in the room increases to a certain
maximum value, when the steady state 1s reached between the rate of energy emitted trom
the source and that of absorbed by the walls and other materials in the room. Now if the
source of sound in cut off, the listeners get the impression of prolongation of persistence
of sound for some time after the original source of sound has ceased, because the sound
dies away slowly due to absorption within the hall. This prolongation or persistence of
sound due to repeated reflection is called reverberation.

The time taken for the sound to fall below hte minimum audibility after the source of
sound is cut off is called reverberation time. The reverberation time depends on the size of
the room or auditorium, the nature of the reflecting material on the wall, the ceiling and
the area of the flecting surfaces.

Accourding to W. C sabine, the reverbertion time T is the time required for sound to
fall from the initial intensity to one-millionth of its initial value. i.e., to fall by 60dB in
loudness.

So the relation 1s

1 KTy

Iy
or. ITze—KT ~10%
T_%] 0 =%In106: 2.3KO3 Iogm]{)6
=&K3X6 (8.1}

where 1 is the initial intensity I is the intensity at time T and K is a constant.

8.3 Absorption co-efficient

The acoustic absorption co-efficient for the material of a surface is defined as the
ratio of the sound energy absorbed by the surface of the material to the incident energy.
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Ifa;, a), a3 ...... etc are the absorption co-efficient at each reflection of the surface
having areas ds.ds».ds;..... etc respectively in the room, then the average value of absorp-
tion co-efficient ais

apds;
a_ adsp +agdsy +azdsy+. ; ]]
© o ds #dsy +dsy H . D ds
i
2 ayds;
i (3.2)
S

where S is the total area of all surface.

The standard unit of absorption co-efficient is Sabine, which is the amount of sound
energy absorbed by one square-foot of a perfectly absorbing surface i.e., an open window.

Live room and dead room

If the loudness in a room increase the reverberation, then the room is called a live
room. In this case the absorption co-efficient is less than 0.4. But when the absorption co-
efficient is more than O .4,then the reverberation is very small and the rom is called dead
room. Again if the absorption co-efticient is unity then there will be no reverberation the
room 1s called a perfectly dead room.

8.4 Reverberation formula from live room

Sabine developed the reverberation formula to expression the growth and decay of
sound in an auditorium on the following assumptions :

(1) the emission of sound energy by the source in all directions are at constant rate.
(i1) there is no interference of sound waves.

(i11) sound energy is umformly distributed in the enclosure and absorption co-etficients
are independent of the intensity of the incident sound.
Let u be the energy density of the sound field in the enclosure of any instant of time t.

Consider an elementary volume dV at a distance r from an elementary area ds taken on the
wall, r makes an angle 8 with the normal to ds as in figure 8.1

The energy contained in dV is udV. Since the energy distribution is uniform in all
directions, then the amount of energy reaching ds from dV will be

do . :
dE = udvﬂ where do 1s the solid angle made by ds at the volume elements



NSOU e GE-PH-31 165

dv
T////”
0 ‘/
/-
N
ds
Figure : 8.1
dE - U 6 drdod dscosf
- dB=7_ rsin0dr ) 2
Here dv =12 sin 0 dr dO d¢
. . . dscosB
in spherical co-ordinate and do = 5
r
uds .
. dE =——sinOcosOdrdod¢ ... ... .. (8.3)

4n

So, the energy passing per second through ds from the front side will be that con-
tained in the hemisphere at radius ¢, where ¢ is the velocity of sound.

udsn!Z C 2n
Then E=— _[ sinBcos0dO _[dr _[dq)
an 0 0

. . E wuc
. The intensity of sound 1=—=—
i ds 4

[fthe areas of different materials are ds,, ds,, dss...... etc. with absorption co-efficients
a1,a7,a3....... etc of the walls of the enclosure,

n

Then a = absorptive power = 2 aids;
i=l



166

Hence, the total rate of absorption of energy by the walls is

auc
——Zd ds; =

N5OU o GE-PH-31

Now, if energy produced per second by the source be P, then according to the conser-
vation principle, the rate of increase in energy of the whole enclosure of volume v will be

du _p_auc
dt 4
vdu

or, p_2¢ L.

Now, att =0, u= 0 and let after time

u = E, then integrating equation (8.5) we get

_[dt—\fgp_%
4

P aBe  _cat/dv
or. ————=¢
P 4P

aEc - id
=l-e catidv
or, P

or, E= ﬁ(] _ e—cat.-"-’-lv )
ac

(8.4)

(8.5)
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4p
att=oc, E=Ep =—
ac

E=Epay (1= %) L 80

4c )
Now, | =7 50 attimet,u=Eand att =<, E= E_,,

cE ) . )
== Tmax = 213" , here 1 = intensity at time t.

From equation (8.6) we get

(= I (1-€7) N )

The I -t graph has been shown in the figure (8.2)
Decay of intensity : N

When the intensity or energy den-
sity in the room attains its maximum
value, the source of sound in cut off,

then the energy density decays with
time.

Now, to determine how energy T
density decay, consider the equa- I
tion(8.4) by putting P =0

We get,

max

v

{t——

. Can
Figure : 8.2

or, gr=—2vdu

Pl (8.8)

Now, at t = 0, u = E,;,,x and let after time t, u = E, then integrating equation (8.8)
between these limits.

t_[ dt = v B dqu
We get T ac u
0 ac Emax 4
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M
I
Fi
Imax
I
I
I
I
I
I
I
I
I
Source cut off t—>
Figure : 8.3
4v E
— _ " In
or, t ac Emax
E _E
or, =e 4v (8.9)
Ema,x
And =1 e a4V (8.10)

The I —t graph has been shown in figure 8.3.

8.5 Reverberation time

From figure-8.3 we see that the intensity of sound in the room decays exponentially,
Now we know the reverberation timeist = T, when | = 10°%[, = 10°°l,,,, i.e., when the

intensity is 107 the times of maximum intensity.

From equation (8.10) we get

_ e—c.-at /4y

Imax

or, 10—6 _ e—eaTMv

or, 111(106)=%
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6x2.303x4v -T
ca

or,

_ KV 6% 4x2.303

. - . . K:
. T .. (8.11) where C

Equation (8.11) agrees with the sabine's empirical formula for reverberation time.

8.6 Eyring's formula for live room

From equation (8.11) we see that for a= 1, T is finite but not equal to zero, because for
a perfectly dead room (a = 1) absorption 1s complete, so T must be equal to zero.
According to Eyring, every time the sound strikes the wall, a fraction of a of its

intensity 1s absorbed and (I —5] fraction 1s reflected. So, intensity of sound in the room
after successive flection becomes.
- —2 —n . s ee 1 . — .
Iy (l —a) g (l —a) ...... Iy (l —a) . when g is the initial intensity and a is the mean

absorption. co-efficeient. So, after the source is cut all, the intensity after nth reflection
becomes [ (l —5)“ and if after this it attains threshold audibility, then we get,

I —6
=10 . i
Iy where | = 10(1 —a)

or, (1-a)" =107
or, n log, (1-a)=-6x2.303
L o6x2.303
In (l - a)
Now, if A be the mean free path of sound in the room. i.e., the average distance tra-

versed between two succesive reflections on the walls,

FAY .
=— where s = total surtace area.

euet, A=—-=
we get, » S S
4

Again nA = ¢T, where T = reverberation time

cT 2.303x6

n-"---——-——m————

A ]n(]—ﬁ)
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S 2.303x6

" =

o “T4y T Tin(i-13)

2.303x6x4V KV 2.303x6x4
3 -T-:_— - - "l _ . O x
or, csln(]—ﬁ) sm(l—a) when K —C
Y
L e » . o o (8.12)

_sin(]—E)

This is known as Eryring’s tormula

Now,

n{l-ay=—a=———........= 2 for 7 is small.
KV KV e . .

T= S = which is Sabine’s formula.

But when g =1 thenln(1-3)=-=

. From equation (8.12) T=0

Let
[x=mIn{1-3)
or,1—-a =¢f
when 3 =1
thene*=0

when x = — e
e==1(]

Thus we can say Sabines formula is only for live room (a > 0.4}, but Eyring’s formula
is valid for live room and also for dead room.
Exercise-1

The volume of a room is 500 m?. The wall area of the room is 220 m? , the floor area
is 120m? and the ceiling area is 120 m?. The average absorption co-efficient for the walls
is 0.03, ceiling is 0.08 and floor is 0.06.
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Find the averge reverberation time.
Given velocity of sound 350 m/s.
Exercise-2

Find the reverberation time of an auditorium of volume 3000 m® and a total sound
absorption of 70 metric Sabine. What is the additional sound absorption required for an
optium reverberation time 4.2 see ? Give velocity of sound is 350 m/s.

8.7 Design of a good auditorium

The following are the requirement of a good auditorium

(1) Adequate loudness

{i1) Suitable reverberation time.

{iii) Uniform distribution of sound i.e., absence of echoes and focussing of sound.
(iv} Resonance must be as small as possible.

(v) Interference etfect must be absent.

8.8 Summary

The reverberation time is defined as the time required for sound to fall from initial
intensity to 10-° times of its initial value or to fall by 60 dB in loudness.

Energy of growth of sound in a hall is written as

E =Enax (l —e_cat-"'4v)

And intensity [=1pqy (l —eTCatidy )
For decay of sound

—cat/ dv —cat/4v
E = E;axe and 1=1,,.e

Reverberation time in live room

Kv 24x2.303

T= _ where K =

c

Erving’s formula for reverberation time
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K
sin(1-3)

8.9 Quesions and Problems

8.9.1 A hall of volume 3300 m? is found to have a reverberaton time of 3.3 sec. The
second absorbing surface was an area of 750 m? calculate the average absorption co-
efficient. Given velocity of sound = 350 m/s.

8.9.2 The reverberation time in a hall measuing 16.0 x 14.0 x 20.0 m? is 1.6 sec, when
it is empty. What will be the reverberation time in the hall when an audience of 250 person
is present?

Assume that sound absorption by each person is 4 metric Sabine.

8.10 Solution

Exercise-1

The average sound absorption co-efticient

> aids;
i

7= ajds) +andsy +agds,
dds;  dsy+dsy +dsy
i

Here, a; = 0.03, ds; = 220 m?
a,=0.03, ds,= 120 m?
and a3 = 0.03, ds;= 120 m?

0.03x220+0.08 <120+ 0.06 x 120
220+120+120

. a=

_m
460
T a=ax460=234

Now, reverberation lime

_ﬂ _ 0.158x500
a 234

T =3 38 sec.



NSOU e GE-PH-31 173

24 %2303

Here, K == ¢~ 250 m/s
_ 24 %.303 —0158
350
a= Zﬁidsi
i
v =500 m?
Exercise-2

We know reverberation time

T:0.158v

Here, in S. 1. Unit K=0.158 for ¢ =350 m/s.

V = 3000 m? a = 70 metric - sabine

01583000

. T =6.77 gec

Let, a" is the total absorption for reverberation time T = 4.2 sec

s TP =42 sec
, 0.158v
=
. 0.1538x 3000 . )
or, 4 =20~ 112.86 metric Sabine

E

- Additional sound absorption required = 112.86 — 70 = 42. 86 metric Sabine
8.91 Here, v=23300m3T =3.3 sec. s = 750 m?

Let the average absorption co-efficient as a

Kv Kv 24 x2.303
We know, T=—=— K=""22"220159 ¢ =350 m/s
a as C
_0‘158><3300

750a
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‘_:0.158><3300=0.2|
730x3.3
8.9.10 Here v=16 x 14 x20=4480 m*, T= 1.6 sec

0.158v

we know, T=

-. Total absorption tor empty hall is

L0158y _ 01584480
T 16

Now, total absorption when the audience is present

a’ = (442.4+250 x4) = 1442 .4 metric Sabine

=442 .4 metric Sabine

0.158x 4480

!

. The new reverberation time T =—————— =0.49 sec

1442.4



Unit : 9 0 Wave Optics

Structure
9.0 Objectives
9.1 Introduction
9.2 Nature of light.
9.3 Wave front
9.4 Huygens Principle and Propagation of wave front
9.5 Summary
9.6 Questions and problems

9,7 Solution

9.0 Objectives

o After studying this unit you willbe able to

o know what is light ?

define the wave front and propagation of wave front using Huygen’s princple

explain laws of reflection and laws of refraction from the wave theory of light.

Compute the lens formula from wave theory.

9.1 Introduction

In the previous units. you have gathered some knowledge about the wave nature of
sound. Sound wave can be classified as transverse or longitudinal depending upon the
direction of vibration of particles relative to the direction of propagation of the wave. In
fact, we can classify waves in many ways. As for example, we have mechanical and non-
mechanical waves depending on whether a wave needs a medium for propagation or not.
Sound wave and water waves are mechanical waves areas as light waves are not. You
have also some idea about reflection and refraction of light, which was explained by
assuming that light is propagating in a straight line. But wave nature at light canalso
explain these phenomena. In this unit we shall discuss how wave nature of light can explain
the different physical phenomena of light.
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9.2 Nature of light

The wave theory of light proposed by Hungers was very successtuly to explain some
aptical phenomena. But to explain the propagation of light through vacuum it had to
assume the existence of an all pervating ether medium. If E be the modules of elasticity
and p, the density of such medkium, then the velocity of waves travelling through the

E
medium is v = \/% . Roman calculated the velocity of light (2 x 108 m/s} during eclipse of

planet Jupiter due to its satellite (10). To account this high value of velocity of light, ether
must possess high elasticity and lowd ensity. But these two properties are contrasy to each
other. Experiments had been carried out to detect the presence of ether medium, but failed
from the theory of relativity. we know that ether does not exists.

To overcome this difficulty a completes new concept regarding the nature of light
wave was proposed by clerk Maxwell. According to him, light is a transverse
electromagnetic wave. A changing magnetic field produces a changing electric field and
vice vera.

That means when either magnetic field or electric fields changes with time, the other
field 1s induced in space. This leads togenerate electro magnetic disturbance and no material
medium is required to propagate this disturbance i.e., it can propagate in free space. These
disturbance have the properties of a wave and are called electromagnetic waves. The

]
JHo €0

Uy =41 x 107 henry/m and E, = 8.854 % 10-'2 farad/m. Therefore

nc=3x108m/s

where

velocity of these waves in free space is C=

The existance of electric magnetic waves was experimentally demonstrated and verified
by Heritz. But this theory could not explain the photoelectric effect. Photoelectric effect
was explained by Einstaein with the photon theory of light.

Thus we may conclude that there are some phenomena which can be explained by
wave theory of light and some can be expaine on the basis of photon or particle nature of
light. So, the nature of light is such that is possess the dual character i.e. sometimes it
behaves as wave and sometimes as particle. Hence, we can say that the wave and particle
nature of light are complementary to each other.

9.3 Wave Fron

When a disturbance 1s caused in a medium, the particles of the medium vibrate and
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the continuous locus of all particles vibrating in same place at any instant of time is called
wave front.

You have seen that, when a piece of stone be thrown in a pond of still water, ripple are
generated all around that point. The ripple consist of concetric circular troughs and crests,
on which the particle of water vibrates in same phase. The wavefront in this case is circular.

Thus a wavefront is a surface of constant phase.

Figure : 9.1

Now in a homogeneous istropic medium a point source of light sens waves in all
directions travelling with some speed, so that they al arrive simultaneously at she surface
of a sphere wil the point source at its centre. Hence, the wavefront in a sphere. But if the
point source is at a large distance, then a small portion of the spherical wavefront may be
considered to be a plane as shown in figure 9.1. In that case, it is a plane wavefront. For a
line source the wavefront will be cylindrical.

9.4 Huygens principle and propagation of wavefront

Let S is a point source of light from which light waves are propagated in all directions
At an instant of time t’, all the particles in the medium will be on the spherical wave
surface AB are vibrating in the same phase. AB is thus the portion, which have been
drawn with S as centre and radius ct’, where ¢ is the velocity of light. The surface AB is
called the primary wavefront. To obtain the position of the new wavefront after time t, we
can apply Hunger’s Principle.

According to Hunger’s principle, “every points on the primary wave front is the source
of a new disturbance. It sends small secondary wavelets in all directions. These wavelets
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are spherical and move forward in a homogeneous medium with same velocity. At any
instant the position and shape of the new wavefront can be obtained by drawing a surface
enveloing the secondary wavelets.”

To find the position of he new wavefront after t seconds, take a number of points on
AB, with each point as centre and radius ct, sphere are drawn in turn. These spheres
represent the secondary waves starting from these points A surface.

A, B, touching all these spheres in the forward direction is the new wave front as
shownin figure 9.1. The construction can be repeated with A| B, to get the next wave
front and so on.

In figure 9.1 we see that A,B, is also on enveloping surface to the secondary wavelets.
That is the wavefront moving towards the source. This is however, not an experimentally
observed fact. Hence the wavefront does not propagate backward.

9.4.1 Laws of reflection from the wave theory :

Let PQ be a plane reflecting surface and AB the plane wavefront incident on it. When
the wavefront touches the reflector A at an angle i1 with it, i is the angle of incidence,
because it is the angle between the normal and the incident ray at A shown in figure 9.2.
The point A becomes a surface of secondary wavelets which lend to spread out in the
surrounding space by the time the disturbance from B reaches the the reflector at C, the
secondary waves starting from A will have a radius BC. Draw a sphere with A as centre
and radius equal to BC. A plane through C, touching the sphere at D, represents the reflected
wave front.

Figure : 9.2

Now, the disturbance from any point E on the incident wave front AB, after reflection
from the surface PQ at F, msut reach the reflected wave front CD in the same time in
which the disturbance from A reaches at D. If FG is drawn perpendicular to CD, then EF
+ FG must be equal to AD or BC. Now we have to prove that CD is the reflected wavefront.

To prove this we draw FH perpendicualr to BC and consider the triangles AABC and
AADC.
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Since, AD = BC, ZABC = ZADC and AC is common,
Therefore, AABC and .. AADC are congruent,
~ /BAC=/DCA=r ... .. (9.1)
Again HF parallel to AB and ZHFC = Z/BAC = Z/DCA = ZGCF,
Again ZCGF = ZCHF = right angle
and ZGCF = ZHFC, FC is common.
. AFHC and AFGC are congruent

~ FG=HC
or, EF + FG=BH + HC = BC
Hence, CGD is he reflected wave front
Now, /BAC = /DCA
But, i=ZBAC andr= ZDCA
=
It is also clear from the construction the incident ray ; the reflected ray and the normal,
all lie in the same plane.
Hence, the laws of reflection are verified from the wave theory.
9.4.2 Laws of refraction from the wave theory

Let a plane wavefront AB incident on a plane refracting surface PQ} that separates the
two media a and b. Let ¢; and ¢, be the velocities of the waves in the two mediaaand b
respectively (¢, > ¢,) as shown in figure 9.3

By the times the disturbance from the point B reaches C at th surface of separation.,
the secondary waves from A have acquired a radius AD in the medium b.

Therefore, we have

AD BC
g = C—| (9.2)
Draw a sphere with A as centre and AD as radius A tangent plane DC passing through
C and touching the sphere will give the the refracted wavefront.
To prove that CD is the true refracted wavefront, the disturbance fromany point E on
the incident wavefront after refration at F on the surface of seperation must reach the
refracted wave front CD in the same time when the disturbance from A reaches at D.

EF_FG AD  BC
Hence, c, G, must be equal to c, ¢
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Figure : 9.3

Now, FG is perpendicular to CD and if we draw FH perpendicular to BC, then
BC =BH + HC

BC_BH HC EF FG :
Or, Cl Cl Cl - Cl C2 aea aas aas ass ara aas (9..})

[BH = EF]

HC LiS]
C must be equal to C,

From figure 9.3, triangles AABC and AFHC are similar triangles

FC HC
© AC_BC (9.4)
and also triangles AADC and AFGC are similar
FC FG
AC AD (7.5)

From equations (9.4) and (9.5) we get

HC FG AD FG

—=— o, —=——

BC AD ~BC HC

But from relation (9.2) we have
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AD _Cy
BC C(

FG_Cp
LHC

HC _FQ .
or, c, G, as required

(9.6)

Thus it is proved that CD is the true refracted wave front

Again ZBAC =1and ZACD =r angle of incidence and refracted angle respectively.

sini BC AC BC G
—= = =, =constant ..

= N — = =
sinr AC AD AD

9.7)

This is snells law and the constant is called the refractive index ,uy,, of the medium b

with respect to the medium a.

It is also clear from figure 9.3 that the incident ray, the refracted rayand the normal at

the point of incidence, all lie in the same plane.

Hence, the laws of refraction proved using the wave theory.

9.4.3 Refraction of a spherical
wave through in this lens.

Let A and B are the poles of the
two spherical surface of a thus conver
lens of rail of curvature R, and R,
respectively. Consider A;AA, be the
incident wavefront which diverges
from the object point P. After
imergence from the lens the
wavefront becomes curved in
apposite direction and goint to
converage at Q, which is the image
point of the object at P.

Now, PA=PA, and QB = QB,

Figure : 9.4

Therefore, the optical path A; CB; must be equal to the optical path AB, by Fermat’s
principles, the optical path between P and Q. via any path in same. If w; and W, are the
refractive index of the surrounding medium and that of the material of the lens respectively
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then,

w (A CB))=wAB

or, ) (A1C+ CB) = U, (AO + OB)

For small aperture of the lens

A C=LO=LA+AO

and B; = OM = 0B + BM

S LA+ AO)+ (OB + BM)} = 1, (AO + OB)
or. u; (LA+ BM) + 1, (AO + OB} =, (AO + OB)
or. Wy (LA + BM) = (U; — 4 XAO + OB)

or, LA+ BM = [“—2-1] (AO + OB)

Hi
From geometry of the circles we have

ALY A7 AL
2AP 20P  2u

_BM? BM® BM’
2BQ  20Q 2

BM

2 ]

ocC- DC~
AO=—- OB =

2R|2 and 5

where OP = u, the object distance
0Q = v, the image distance
Putting these in equation (9.7) we.get

2 2
u 2y M ZR| 2R

IR TV
oL v i Ry Ry

9.7)

(9.8)

Since the lens is very thin, So A,L = B/M = OC and according to sign convention v
and R, are positive, while u and R, are negative.



NSOU e GE-PH-31 183

When n = < (ie object at infinity), v = f (ie. the image is at the second focus)

B es

From equation (9.8) and (9.9) we get

AL (9.10)

v u f

the usual lens formula

Again if the surrounding medium 1s air, then p; = 1 and let 4, = p, I then from equation
(9.9) we get

1 l ]

—={u-1 — - —

=={n )[RI Rz) . (9.10)
This formula is known as lens-making formula.

Exereise-1

A convex lens of focal length 24 cm (W = 1.5} 1s totally immersed in water (L= 1.33).
Find its focal length in water.

9.5 Summary

I, .3
Velocity of light in free space is C= m =3x10%m/s

A wavefront is a surface of constant phase

N 1 |
Usual lens formula —=—=—
v v

. I_:( _]) 11
Lens make is formula F u R, R,

9.6 Question and Problems

9.6.1 The velocity of light in air is 3 x 10° m/s. Find the wavelength of sodium light.
(wave length in air A,= 5893A) in water of refractive index 1.33 and also find the velocity
of light in water.
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9.7 Solution

Exercise -1
Here ,u, = 1.5 and ,u,, = 1.33

. L(M_z_l][L_LJ
WC KNOw f U RI R2

When the lens in air, t =41, =1.5

M = refrative index of air =1
t=24 cm

When the lens in waterp, =ap,, =1.33

My =apg =1.5

) l:( 5 —1J L —(1.125-1) 1ot
©f \1.33 Ri R, R R>

Dividing equation (1) by (2) we get,

05
2.4 0.125
. =9 cm

9.6.1 Here ¢, = velocity of light in air =3 x10* m/s
¢, = velocity of light in water of refractive index, p=1.33

I hit
. |_|_:_l 02=3X10
1.33

— =2.26x108m/s
<2

(D)

(2)

If A, = 5893 A for sodium light in air and A, that in water, then ¢, = VA, and ¢, = VA, ,

v = frequency of light.

)v| _ C_| _
}“2 C2 “
Al 5893
A= = =4431A

hy 133
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Structure
10.0
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10.10
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10.12.

10.13

10.14
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Objectives

Introduction

Principle of superposition

Young’s double slit experiment

Conditins for interference.

Types of interference

Interference by division of wavefront

Change of phase on reflection: Stokes treatment
Lloyd’s mirror
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10.0 Objectives

After studing this unit. you will be able to

e Use the principle of superposition of light waves to interprete constructive and

destructive interference.

e know the coherent and incoherent sources of light.

e know the origin of the interference pattern produced by youngs double slit, biprism
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and Lloyd’s mirror.
e Compute the intensity of light distributed in the interference pattern.
e Compute the fringse-width in terms of wavelength of light.

e describe the various arrangements for producing interference by division of wave
front and by division of amplitude.

10.1 Introduction

You are familiar with some optical phenomena like reflection, refraction, dispersion
etc. in geometrical optics. All these phenomena are explained with rectilinear properties
of light. But some phenomena as we observe in nature like, the bright colours are seen
in an oil shck floating on water or in a sunlit soap bubble are caused by interference,
which cannot be explained by rectilinear properties of light. Similarly we cannot explain
the diftraction, polarization of light with rectilinear properties of light. To explain these
we have to consider the wave nature of light.

In this unit, we shall discuss the interference phenomena with some experimental
observations.

10.2 Principle of Superposition

You have already learnt about the principle of superposition of waves in the previous
section (unit-2}. According to this principle in any medium, when two or more disturbances
acting at a point simultaneously the resultant disturbance at that point is the vector sum
of the individual disturbances, provided the disturbances are small.

Suppose y, is the displacement of a particle at a given point at any instant and y,
is that due to other wave. When these two waves simultaneously arrive at a point, the
resultant displacement y of the point is given by the principle of superposition as

Y=Y £,

Positive sign is to be taken when the displacements are in the same direction and
the negative, when they are in opposite directions.

In case of light waves, when monochromatic waves of light from two sources proceed
almost in the same direction and superpose at a point, then the intensity of light at that
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point will be maximum or minimum according as the waves meet at that point in same
phase or in opposite phase. This phenomenon is known as interference of light. This
phenomena requires for its explanation the wave nature of light.

10.3 Young’s double slit experiment

Young gave the first demonstration of the interference of light waves. Here, the
monochromatic light is allowed to pass through a narrow slit s and then fall on the two
identical narrow closely spaced. slits s1 and sy as shown in figure—10.1. The cyndrical
waves emerging from the slits s| and sy overlap.

Figure : 10.1

Since the slits are equaidistant from S, so the phase of the wave at S1 will be same
as that at S». Hence, sources S| and Sy act as secondary coherent sources of light. The
waves leaving from S| and S7 interfere and produce alternate bright and dark bands on
the screen at P.

Young’s experiment is known as double slit experiment of interference by the division
of wavefront.

The wave front from S is divided at S| and Sy .
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In the original experiment Young used sunlight as source of light and found coloured
bands on the screen.

10.3.1. Analytical treatment of interference.

Let s be a narrow stit is illuminated with a monochromatic light of wavelength. S
and S2 are two similar parallel slits, very close to each other and equidistant from §
(figure—10.1)

According to Hygyven's principal cylindrical wavelets spread out from the slit S
arriving at S| and S2 in same time as SS =85S, The secondary wavelets start from S
and So with equal phase diverge towards the screen (P). S1 and 82 may be considered

as coherent sources,

Let the light waves at S; be represented by

y=ae" .. {10.1)

where aj is the amplitude and « is the angular frequencey of the wave.

In travelling from Sq to any point p on the screen the phase changes by

2n 2w n
S =——x =Kz here Sp=x and K-==,

propagation constant [figure10.2]

Hence at time t the complex disturbance at P due to light from s, will be

Y, =ae.... (10.2)

Y., :ajei(m_kx:) ...... (103)
where a, is the amplitude and s.p=x,

. According to principle of superposition the resultant disturbance at P, is given by

Weat=kx, ) ifeat—kxy )

Y=y ty.=ae +a,6
— ei{m (ale—k\', + aze—ik\'_?)

e {a. (coskx, —isinky, ) +a, (coskx, —isinkx, )}

e {(al Cos kx] _a,cos I{x3 ) - i(Sil‘l k.l”] +sin kX: )}
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=e" (a-ib)

Ly=Aetth L L (10.4)
Where a=a, cosky, +a,coskx,
b=a,sinkx, +a,sinkx,

b a,sinkx, +a,sinkx,
and tang=—= 2 2
a a,coskx, +a,coskx,

.

Now, A®=a’+b’ =(a,coskx, +a,coskx,) +{a sinkx +a,sinkx,}

=a’ +a’ +Zalagcosk(x3 -x)

. The amptitude of the resultant disturbance is A = fa; +a? + 22,8, c083 ccrvvern. (10.5)

2
Where 8=k(x, -x,)= ;[ (xy—x) ... (10.6) is the phase diference between the two

W

waves at p due to path difference x,—x,.
Since, intensity at p is proportional to A2
- Intensity at p is

1=a’ +a; +2a,a,cosd ... (10.7) [taking proportionatity constant = 1]

(i) Condition for constructive interference

Now it §=2nr wWheren=10.1, 2 ......
Of, X,—x =§p-5p

_y A ) .. _

= HE (using equatioin 10.6)

Then the intensity will be maximum
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P
xI
X,
S, 2
sD) )
%
S,
Screen
Figure : 10.2
[max :aI2 +a§ +2a|a2 [". cosd =cos2nz = ]]
L =(2,%2,) o (10.7)

Thus when the path difference (x, — x,) of the point p from the two sources (s] and sz)

-

is the even multiple of 5 the intensity of light at that point becomes .,,, maximum and

we get a bright band there. This is knows as constructive interference. When n = 0, we
get the central bright band at the point O, for which the path difference is zero i.e. x, = x,

and for n = 1 we get next bright band called 1st order bright band, for n = 2 second
order and so on.

(ii) Condition for destructive interference

The intensity (I) will be minimum when cos hd = —1, that is when 8=(2n+1)n

A
or, X,—x, =s,p—s,p=(2n +])5
where n =0, 1, 2, ....
From equation (10.6) we can write the minimum intensity
[, =a+a’-2aa,=(a =a,) .. (10.8)

Therefore, when the path difference of the point P from s, and s, is odd multiple

A . . . . .
of b the intensity of light at that point becomes minimum and we get a nearly dark

band there. This is called destructive interference.
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Now if amplitude of the I
two waves are equal i.e. a,

= a, = a, then

Lo =(a+a,)" =42’ and

Imin =0

The intensity 3r 2n - 0 ®™
distribution curve as shown —>9
in figure—10.3. This is Figure : 10.3

known as the intensity
pattern. The alternate dark and bright regions are called interference fringes.

10.3.2 Fringe width and shape of fringes in young’s double slit.

Let two coherent sources s, and s, are separated by a distance d which are sending
monochromatic light of wave length A to produce interference fringes on the screen as
shown in figure-10.4. The screen is placed parallel to the slits s, and s,.

Let the distance of separation between the screen and sources is D. The point O on
the screen is equidistant from s, and s,. Hence the waves from s, and s, will arrive at
O, at the same time. If the initial phase difference between the two coherent sources
is zero then the waves will meet at O from s, and s, is same phase and will produce
a bright band at O, called central bright band. Let the n th bright band be formed at
P, distance x_for O.

Then from figure—10.4
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d 2 Xy +ﬂ
qu3=D3+(xn+—] =D+ 2
- 2 D
xn + E _ 1 xn + 5
[--D>>d we have neglected the higher order terms]
- d :
imilarly Sp=Dl1+L| 2
similarly =,p= l +E D[
(10.10)
. _xl'ld
S,p-S,p = path difference =A ey - 10.11)
Fringe width
For the n the bright fringe at p we have
A
A=2n— wheren =0, 1, 2, ...
or xl':‘)d=2n% ", xn=nﬁ'd—D (1,12}
Similarly the distance of (n+1) the bright fringe from O will be
iD
X =(n+l)% (10.13)

.. The distance betweent to consecutive bright bands is

A D
il CLE ) e (10.14)
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RN . . .. AD
Again if p be the position of nth dark fringe then, x“:(an)EH and
)\rD
Xn+l :(2n+3)55

Spacing between nth and (n+1)th dark fringe is

_D

ﬁ:xll+| X, = d (10-15)

Hence, the specing between any two consecutive bright or dark fringes in equal and

is given by f = This distance between two consecutive bright or dark fringe [5 is

known as fringe width. Now, using this expression, you can experimentally measure the
wave length of monochromatic light by measuring , D and d.

Exercise-1

Calculate the intensity of maxima when two light waves y, = 3 sin (ot-k x ) and ¥,
= sin (ot-k,x,) interfere.

Shape of the fringes

Let s, and s, are two sources (slits) of monochromatic light Let O be the mid point
between the slits as the origin (0,0) of a coordinate system. Consider the x-axis be along
OX and Y-axis perpendicular to the plane containing the slits. If P(x.y) be any point,
then are can write.

: a “a d . . . .
and S.P =y" +(x +E] where d is the distance between two slits.
The path difference
A=S,P-Sp

or, A+SP=S,P
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N

squaring both sides and rearranging we get

2A{y3 +(s—%] } =2xd—A?

Again squaring and rearranging,

b=

X

Screen

........ (10.16)

This equatioin (10.16) represents
a hyperbola with eccentricity (e)
equal to

A dP-A2): (A d Figure : 10.5
e=| —+ I[—]zg

[ e :(a2 +b2)%x’a}

Thus the loci of points of constant path difference A in xy place are hyperbola with
s, and s, as foci on y axis.

In optical experiments the path difference A is very small (~ IO'Scm) and d ~10%cm -

Therefore e is very large and the hyperbola become practically straight lines, given by

1
2 A2\3
yzi[d A:A] x

If instead of slits we use two coherent point sources s, abd s, then in 3-dimensional
space the loci of bright fringes of different orders will be a system of confocal hyperboloids
with s , s, as foci (figure-10.5). If the screen be placed parallel to the time joining s,
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and s, then short straight time fringes are obtained. Again if the screen is placed
perpendicualr to the lime joining s , s, we shall observe a number of atternately bright
and dark concentric circles with their common centre on the intersection of line s, s,
with the screen.

These fringes are called non-localised fringes, because they can be obtained on a
screen from any where.

10.3.3 White light fringes and colour effect.

You know that the distance of the nth bright fringe from the central fringe is

X =n—,

- n

where d = distance between two slits and
D = distance between the slits and the screen.

Here d and D are constant. Thus when slits are illuminated by white light source,
then for n = 0,

x, =0, the central bright band will be white, because light of all wave lengths in white
light will coinsideat this point.

For higher orders n > O, x_will be greater for light of longer wave length and less
for shorter one.

As wavelength of red light % is longer than % for violet light, hence all bright bands

will be coloured except central one, in which red will be in the outermost positiong and
violet will be in innermost position.

10.3.4 Conservation of energy

When two light waves interfere, at first sight it appears that conservation of energy,
is violated, for the energy at the minimum points is lost. According to the law of
conservation of energy, the energy cannot be destroyed. but it is transferred from points
of minimum intensity to points of maximum intensity.

In absence of interference phenomena due to two waves of amplitudes a, and a, the
intensity 1s
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[=1,+1,=a; +a; ... .. .. (1)

When the two light waves from coherent sources interfere the maximum and minimum
intensity of the resultant disturbance after interference are obtained from equations (10.7)
and (10.8)

o

[ :(a’] +al)2 and [n1ax :(al _a:')_

max

[ILRY + Ll

- Average intensity is 1, ="

(a, +a.) +(a —a.)

o

So. the conservation of energy i1s proved.

10.4 Conditioins for interference

In order to observe a distinct and well defined interference pattern the following
conditions must be satisfied.

(1) The two interfering waves of light must be coherent.

It the waves are coherent, then they maintain a constant phase difterence over time
and space. Hence a stationary interference pattern will observe.

(11) The two interfering waves must have same or nearly same frequency or wavelength.
Their amplitudes must also be equal or nearly equarl, otherwise the intensity variations
of dark and bright fringes cannot be recognised.

(ii1) If the interfering waves are polarised. they must be in the same state of polarization.

(1iv) Path difference must not be large.

10.5 Types of interference

On the basis of production of coheerent sources, the interference may be classified
into two classes division of wavefront and division of amplitude.
(i} Division of wavefront :

In this class of interference. the incident wave front is divided into two parts by
reflection, refraction etc. to produced two coherent interfering beams. In order to maintain
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coherence it is essential to use narrow sources in these cases.
Examples of this types are the fringes formed by biprism, Lloyd’s mirror etc.

(ii) Division of amplitude

Here the amplitude of the incident bean is divided into two or more parts by partical
reflection or refraction. to produce two or more coherent inter fring
beams. A broad source is required here to produce interference patter.
Examples of this class are the fringes fromed by the thin film, Newton’s
rings, Michelson’s inter ferometer etc.

10.6 Interference by division of wave front

10.6.1 Fresnel’s biprism

Fresnel’s produced two coherent sources by division of wavefront
using a biprism. The biprism consists of two prism of very small
refracting angles joined base to base in practice, it is constructed from
a thin glass plate by proper grinding and polishing. The obtuse angle
of the prism is about 179° and two side angles are about 30" each
(figure—10.6).

Experimental set up: Figure : 10.6

The experimental arrangement for obtaining interference fringes
using biprism is shown in figure 10.7.

Light from a narrow slit s, illuminated by a monochromatic light. The light from s
incident symmetrically on the birpism ABC, placed at a small distance from the slit s,
with its refracting edge parallel to the length of the slit, the incident wavefront is divided
into two parts and suffer separate retractions from the upper and lower parts of the

A
p oo 22—\« b >
SI\“‘“*-...H 5 P
d S C
C
W a”,”S
g, <-~----= B Q
B

Figure : 10.7
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biprism. The two refracted wavefronts appears
to diverge from two vistual sources s, and s,
Thus s, and s, can be considered as two
coherent sources. The emergent wavefronts
meet at small angles and produce interference
pattern on the screen in the overlapping region
PQ or may be seen through an eyepiece. The
fringes are not localised, so the screen may
be placed any where within a suitable distance.
The typical fringe pattern is shown if figure Figure : 10.8
10.8.

10.6.2 Thory of biprism

Theory of the interference fringe formation of biprism is same as that of Young’s
double slit, as described in article-10.3

The unknown wavelength A of monochromatic light can be determined by using the

formula .. (10.14 or 10.15)
AD
Sy
r=pd 10.17)
or, D o (10.

Where p = fringe width, d = distance between the two virtual sources s, and s,, D
= (atb), the distance of the slit s from the eyepiece (figure—10.7)

10.6.3 Experimental procedure :

A narrow slit s, the biprism and a micrometer eyepice are mounted on the uprights
of an optical bench all are adjusted properly to obtain the interference fringes. The slit
is illuminated by a monochroniatic light.

Measurement of B :

When the fringes are observed in the field of view of the eyepiece, the cross-wire of
the eyepiece is mde to coinside with the centre of one of the bright fringes. Now the
fringe width B is measured by setting the cross-wire at successive bright fringes with
the help of micrometer screw fitted with the eyepiece.
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Measurement of D :

The distance D, between the slit and eyepiece can be measured directly from the optical
bench scale.

Measurement of d:

A convex lens of suitable focal length (f) is placed in between the biprism and eyepiece
such that D > 4f. Under this condition, there are two conjugate positions of the convex
lens for which sharp real images of s, and s, are obtained in the field of view of the
eyepiece. If d, and d, are the distances between real images in the above two postions
of the lens, then the magnification at one position will be inverse at the other positions.

4 _d
d d,
or, d=,/dd,

Hence measuring d, d, the distance d can be obtained.

Now to avoid the index error between the slit stand and eyepiece stand, we measure
fringe width B, and B, at two different positios D, and D.. Then by using equations (10.17)
A 1s given by

wogPBoo L (10.18)
D,-D,

knowing all these parameters 2 can easily be determined.

Exercise—2

In a biprism experiment, the fringe width is 10~ *m for a wave length of 5893A. If

b . . . . :
g=20 where b is the distance between the biprism and screen, and x is the distance

between slit and biprism, Calculate the refracting angle («) of the biprism. m=1.5

Neccessity of narrow sources

A broad source can be considered as a large number of narrow virtual coherent
sources. Thus each pair of conjugate points on the virtual sources produce interference
fringes. which overlaps and a general illuminatioin will be observed.
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10.6.4 Measurement of acute angle of biprism:

From figure—10.7, we see that the deviation ofthe rays SA and SC after passing
through the biprism is given by £SAS, = 2SCS, =38

Again, the deviation produced by the path of the ray by a thin prism = (u—1)a, where
o is the acute angle of the prism and p is the refractive index of the material of the prism.

From figure—10.7, again we have

d/2 d
5 = o 1 r
®  a [ §is very small]

Here d is the distance between two virtual sources s, and s, a is the distance of biprism
from slits.

.. We can write

d
(-1 = %a
sod=2a(p-Na .. .. .. .(10.19)
Hence, measuring d, a and
knowing L, the acute angle o can be P
determined.

Exercise-3

Calculate the separation between
two coherent sources fformed by a
biprism whose acute angle is 2° The
distance between slite and biprism

is 20 em. (n=1.5)

10.6.5 Measurement of thickners
of a transparent thin film

The biprism experiment can be used to measure the thickness of a thin sheet of
transparent material such as mica, glass etc.

Suppose s, and s, are the two virtual coherent sources of monochromatic light which
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process interference fringes on the screen. Here the position of central fringe 1s at ), as
shown in figure 10.9 Hence the optical path S 0=8,0.

Let a thin sheet of transparent material of thickness t and refractive index p be placed
in the one of the paths (say S P) of the interfering rays. The optical path lengths S O
and S,0 are now not equal and the central bright fring shifted to the position P from
0.

Thus the optical path S P is again equal to the optical path S,P.
OSP4 (p—1)t=S,P
or, S,P-SP={p-Tjt.. .. {10.20)
If P 1s the position originally occupied by nth order bright fringe, then
S,P-SP=nh.. .. .. (10.21)
From equation {10.20) and equation {10.21) we get
(p-Nt=nk... .. . (10.22)

The lateral shift of the central fringe of zero optical path difference is given as

X, =0P=np
j— xl‘l -
or, n —[—3 ..... (10.23)
»D
where fringe width p= e

From equations (10.22) and (10.23} we get

(u—l)tz%l

Xk x  d
(n-1p p-1D 7

l

(10.24)

This equation can be used to find the thickness of the transparent thin film(t)
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Exercise—4

In a biprism experiment fringes were first observed with sodium light of wave length
589 nm and fringe width 0.347 mm. Sodium light was then replaced with white light
and central fringe was located. On introducing a thin sheet of glass in the path of one
of the beam, the central fringe was shifted by 2.143 mm. Calculate the thickness of the
glass sheet of refraction index 1.542.

10.7 Change of phase

on reflection : Stoke’s

treatment Rarer Medium

Stoke’s law states that
when a light wave is reflected P
at the surface of a medum,
which is optically derser than
the medium through which
the wave istravelling, a
change of phase equal to 7 or
a path difference of is

Q

Denser Medium

introduced
D C
Let PQ be the surface Figure : 10.10
separating the denser medium
from the rarer medium above it.

Let a wave AO of amplitude ‘a” incident on the surface of the denser medium from
the rarer medium is partly reflected along OB and partly refracted into the denser medium
along OC, as shown in figure 10.10.

If r and t are the reflection co-efficient (fraction of the amplitude of the incident light
which is reflected) and transmission co-efficient (fraction of the amplitude of) respectively,
then the amplitude of the reflected wave OB = ar and that of refracted wave OC = at.

Now consider that the direction of reflected and refracted waves are reversed. So,
on reversing the reflected wave BO, we get the amplitude ar’ along OA and refracted
amplitude art along OD. And on reversing the refracted wave CO, we get the reflected
wave OD of amplitude ar’t and refracted wave OA of amplitude at t where 1’ is the co-
efficient of reflection at the surface of rarer medium and t’ is the transmission co-efficient
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for the wave passing from denser to rarer medium.

Thus the two amplitudes along OA will combine together to produce the original
amplitude, only if the total amplitude laong OD is zero

at" + ar = a and art + ar't = 0

o, r=—r" .. (10.25)

The negative sign implies that when one wave has a positive displacement, the other
has negative displacement. Which is equavalent to a phase change of m or a path

v A
difference of 5

Hence a phase change of m will be introduced when the reflection takes place from
the surface of a denser medium.

But when reflection takes place at the surface of a rarer medium, no change in phase
or path difference takes place.

10.8 Lloyd’s mirror

The Lloyd’s mirror (MN) is a plane mirror polished on the front surface or a piece
of a black glass plate, so that no reflection can take place from the back of the mirror.

S, is a narrow slit, illuminated by a source of monochromatic light placed parallel
to the surface of the mirror. Light from S is partly incident at a grazing angle on the
surface of the mirror MN, while the rest reaches the screen directly.

The reflected light appears to diverge from S, as shown in figure-10.11, which is
the virtual image of the source S,. Thus S, and S, act as two coherent sources and the
interference f

Figure : 10.11
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The central point O on the screen for which S O=S,0 receives only the direct light
and this central fringe of zero path difference is not usually seen. To observe the central
fringe, it is necessary to move the screen in contact with the end N of the mirror. It can
also be seen by introducing a thin sheet of mica or glass in the path of direct ray. Which
causes the entire pattern shifted upward. It is observed that the central fringe is black
instead of bright, because the light reflected from the mirror (i.e. denser medium) suffers
a phase change of m and the path difference between the rays at zero order is not zero

A
but 7

Fringe width
Now the path difference of the point P on the screen is

A=S,P-SP.If dis the distance between S, and S,. D is the distance between the
source and screen, then as young’s double slit experiment (equatioin 10.11} we have.

A=sp-sp-x L
: D

Here for nth order dark fringe at P we have

xn%=2n% forn=40,1, 2, ...
D
or, xn—nﬁF (10.26)

and for (n+1)th order dark fringe, x,, =(n+1)4 (10.27)

=0 lw!

. The fringe width

B=x.,, —x, =(n+])’l|D—n7&§

L B=A

a|g

Again for nth order bright fringe at p we have

d 2
.vanz(ZnnLl)2 forn=0,1,2..

or, x,=(2n+1)

o |
(S ) I



NSOU e GE-PH-31 205

and for (n+1)the bright fringe we have

={2(n+l)+l}§%

X

i+l

.. The fringe width for bright fringes

D 2 DA
=%, —x, = {2(n 1)+ 122 (an 4 )22
P=x, —x {(n+ )+}d2 (n+)d2

This shows that the fringes are equally spaced.
Exercise—S

In Lloyd’s mirror experiment, the slit is at a distance 3 mm from the mirror. The
screen 1s kept at a distance of 1.5 m from the source sht. Calculate the fringe width.
Wavelenth of light is 5890A. used.

10.9 Comparison of biprism and Lloyd’s mirror fringes.

(i) In fresnel’s bi-prism the conerent sources are composed of two virtual sources
produced by refraction through the prism, while in Lloyd’s mirror the coherent sources
are of one real and the other is virtual produced by reflection at a plane mirror.

(11) In biprism experiment fringes are formed or both sides of the central fringe, white
in Lloyd’s mirror method less than half of the fringes are seenn on one side of the central
line.

(ii1) In biprism the central fringe is bright while in Lloyd’s marror it is dark.

{iv} In biprism experiment, the distance between two corresponding points of the
sources (d) is constant. so the fringe width is same for all parts of the source. But in
Lloyd’s mirror, the above distance is different fro different pairs of coherent point
sources, causing unequal fringe width.

10.10 Interference by division of amplitude

10.10.1 Interference in thin wedge shaped film

Consider a thin wedge shaped filmis bounded by two plane surfaces AB and CD
inclined at an angle o.
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Let a ray PQ of monochromatic light of wavelength A is incident at an angle i on
the film. This ray is partly reflected from the front surface AB along QO and partly
refracted along QR at an angle r. At R, it is again partly refracted along RS inside the
medium and partly refracted out
of the medium along RM. Smilar
reflections and refractions occur
at S, T etc. as showsn in figure—
10.12. Since the rays QO and so,
suffer only one reflection each,
so they have almost equal
intensities. But due to multiple

0]

A
’ I
reflections of the rest of the rays g R, T D
the intensities are ignorable. N
ke
As the two rays QO and so (r-a)

_ =

are derived from the same [
incident ray PQ and hence they Figure : 10.12
are coherent. They combine to

produce interference pattern.

Calculation of path difference.

To calculate the path difference between these reflected beams QO and SO, draw
SN_LQO, SNLQR and SLM_LCD. produce QR and SL to meet at a point M.

We can write from geometry

RS = RM and SL = LM = d, the thickness of the film at S.

Hence the path difference between QO and SO is

A=pu(QN'+NR+RS)-QN ......... . (10.28)

Where p is the refractive index of the film by Snell’s law we get,

_sini_ QN/Qs
a sint  QN'/QS
or, QN = uQN'

Therefore, from equation (10.28) we get
A=p(NR+RS)+uQN'-QN

=u(N'R +RS) +pQN’ - uQN’ [ ON =pQN’]|
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=u(NR+RM) [ RS=RM]

=pN'M

= puSM cos(r —d) [ N'M =SMcos(r —d)]
{from fig. 10.12)

. A=2dpcos(r—d) ... (10.29)

Here the light (PQ) is reflected from the surface of the denser medium, which causes
a phase change of =.

" LEL . . .
So, there is an extra path ditterence of EY 1s introduced for reflection from the surface
of the denser medium (ie at Q)
Hence the effective path difference between the two rays 1s
A
A=’>ducos(r—d)ig (10.30)

Conditions for maxima and minima

For maxima of brighness at O (i.e. for constructive interference), the condition is

A=2dpcos(r-d)+

b | >

[
= even multiple of

A
=2n— where n = 0.1, 2...
ks
of, 2ducos(r—d)={2nxl): .- (10.31)

Similarly condition for minima of brightness (ie for destructive interference)

Zducos(r—a):Zn%... (10.32)

If the surfaces of the film are parallel, then & = 0 in that case the path difference
is
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Fringe width. A

If x be the distance of nth order
bright fringe from the thin edge of
the wedge shaped thin film of
thickness d, then from figure—10.13, d

we get

d
fano = —

X, a

v .B
< X >
or d=x, tanc ....... ... . -nl{] 3
(10.34) rgure - 19.

Now, for normal incidence, r=0, then from equation (10.31), we have

2dpcoso=(2n+ ])%

or, 2dpcosa =(2n +])%

A
dusino
For (n+1)th bright fringe we have

ofr, X, =(2n+])

A
=12 1)+1
el { (n+ )+ }4psinoa
. Fringe width B=x_,, —x,
A
:[{Z(H+])+]}_(2n+])]4usina
A
2usina
If o is very small, then
A
—ﬁ (10.35)
Similarly for dark fringe the fringe width is
-
2pa

Thus the fringes are equispaced.
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Exercise—6

A thin film of air in the form of wedge is formed between two glass plates. Find
the angle of the wedge if the interference fringes are 1 mm apart when viewed normally
with light of wavelength 589nm.

10.10.2 Fringes of equal width and fringes of equal inclination

In thin film interference fringes are produced due to path difference A =2dpcosr.(o=0)
between the overlapping rays. For a given film, we see that the pathdifference arise (i)
due to change in thickness (d) and (i1) due to change in angle of refraction (r) i.e. on
angle of incidence (i).

Thus when a parallel beam of monochromatic light falls on a film of varying thickness
L, A, r are held constant, maxima or minima represents the locus of points where the
thickness is constant or equal width. This kind of fringes are observed in Newton’s ring
experiment.

Again if the thickness of the film (d) is constant i.e. if the film surfaces are plane
parallel (1.e. o = 0), and p, A are also held constants then different order number (n)
of maxima or minima will be determined by the values of angle of refraction (r) and
hence the angle of incidence (1).

Thus the fringes of a given order corresponds to the locus of points of equal r (or
1). Such fringes are known as fringes of equal inclination. They are also called Haidinger’s
Fringes Enings of equal thickness are called Fizeaw Fringes.

Fringes with white light

When a parallel beam of white light falls on a thin wedge shapped tilm colour fringes
are obtained. becouse the path difference 21d cos r depends upon p, d and r. As 2, > X .
the first order bright fringe of violet colour light ocurs at smaller d of the film and the

corresponding red colour fringe will be at larger value of d. Thus we shall see the

differently coloured fringes at different thickness. But if the thin edge of the film is zero
A

i.e.d = 0 then at that point the fringe will be dark due to extra path difference of 7>

as discuss earlier.

10.10.3 Necessity of broad source

In the case of interference in thin films, the narrow source limits the visibilty of the
film.

To explain the situation, consider a ray SA starting from a narrow source s (figure—
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XLy
WA

Figure : 10.14 Figure : 10.15

%

10.14), after suffering reflection from the front surface and then reflection from the back
surface of the film enters the eye, where as the ray SB incident incident at a different
angle after reflection and internal reflection will not reach the eye. Thus a limited portion
of the film is visible.

In an extended source the rays S| A, S,B after reflection and internal reflections will
reach the eye from a large portion of the film as shown in figure 10.15. Thus the entire
firm can be seen simultaneously.

10.11 Newton’s rings

Newton’s ring experiment is an example of interference formed by thin film. The
convex surface of a long focal length plano-convex lens (L) is placed on a plane glass
plate (G) A very thin air film of varying thickness is formed between the lower surface
of the lens and the upper surface of the glass plate. The thickness of the air silm at the
point of contact (O) is zero

and increases towards the \ /

periphery of the lens as

shown is figure 10.16a. \ Bj/
If monochromalic light

be allowed to fall normally G

on the film and observed

by means of a low powr

travelling microscope, the Figure : 10.16 (a) Figure : 10.16 (b)

interference fringes in the

form of concentric circular rings are found. These rings are known as newton’s rings.
These fringes are the loci of points of equal thickness and are localized in the air film.

Typical Newton’s rings are shown infigure (10.16b)
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Experimental arrangement

The experimental arrangement for observing Newton’s rings is shown in figure—
16.11. The light from an extended.

monochromatic source S is made paralled by
a lens L,. These parallel rays are reflected by a M
glass plate p held at 45° with the horizoltal. The
light reflected from the plate P falls normally on —
air film enclosed between the glass plate (a) and
the plano convex lens(L) as shown in figure—
10.17. Interference occurs between the rays

I S W N

reflected fromthe upper and lower surfaces of / L

the air film. The concentric circular alternate /

dark and bright rings localized in the film are P < \ L:/ S
viewed by a low power travelling microscope < -

(M) focussed on the film.

Formation of fringes. \
The path difference between two successive |

reflected rays QS R, reflected from the upper
surface of the air film at Q and NS R, reflected
from the lower surface of the film at N as shown
in figure (10.16a) will be

P
T
e

<

PR

Figure : 10.17

A
A= Zd].LCOSI‘i‘E where d = thickness of the film at N, p = refrative index of the film

T . AL
and r = inclination of the ray. Here the extra path difference o is introduced due to phase

change of © on reflection at the lower surface of the film at G.

Now for normal incidence, r = 0, so the path difference is

A=2dp+ 5 which is the condition for minimum intensity. Thus the central point (O)

id dark.

For constructive interference i.e. for bright fringes, A =2dp+

2| >

. -
= even multiple of 7

or, 2du= odd multiple of %
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‘. 2du=(2n—1)%.. . ...(10.38)

whenn=1,2,3 ....

A A
And for destructive interference, i.e. for dark fringes A= 2d1-li5= odd multiple of 5

. A
or, 2dm = even multiple of 5

)

. 2dpu=2n

o | >

=nh .. e .(10.39)

From equations (10.38) and (10.39) it is clear that, the bright or dark fringe of any
particular order (n) occurs for a constant value of thickness (d) of the film. In the fil
d is constant along a circle with centre at the point of contact (O). Hence the fringes
will be concentric circlesfor different values of thickness (d).

Diameters of the rings.

Let r be the radius of the nth Newton’s ring C
corresponding to the point P where the thickness
of the film is d, as shown in figure 10.17

Then from geometry.

CP? =CN? +NP’

R-d
R*=(R- d)2+r"2 l
where R = radius of curvature of the plano N q P

convex lens CP,r =NP

and CN = CO-NO = R—d. O
Figure : 10.17

R*=R*-2Rd+r’ [ .. d is very small, d>-
neglected]

or, 2Rd = r’

r’=2Rd... .. .. (10.40)

We know the condition (from equation 10.38) for nth bright ring

2dp=(2n—])%
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rr;-‘u' 7"
0Or, F = (2“ — I)E

AR
2

r =(2n-1) (10.41)

. Diameter of nth bright ring is

D, =2r, =2v2n-1 ’

R
2p
=2n-1.J2%R/p

D, =vV20—-1y2AR/p o o . (10.42)

Since p, 4 and R are constant,

therefore D ov/2n—1

Hence the diameters of bright rings are proportional to the square roots of odd natural
numbers

Le. D, :D,: D=\ﬁ\/§\/§,
Similarly for nth dark ring we can write

. nAiR

r :T using equations (10.39) and (10.40}

, niR
or, I =
: N
niR . i o 4niR
or, I, = T . the diameter of nth darking is D. = oo (10.43)

Here also D is proportional to ./ .

Now the difference in diameters of nth and (n+1} th order dark rings in

D.-D, = ﬁ(\/ﬁ—ﬁ)
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This shows that as the order number (n) increases this difference decreases, which
means that the rings are gradually become narrower as their radii increase, Thus as we
move outward from the centre, we see that the rings are more crowded.

Fringe width
From equation (10.42) we can write

23R
il

L-Di=[{2(n+1)-1}-(2n-1)]

= " where D, and D, are the diameters of two successive bright rings.

4%.R
Dn+| - Dn = },I.(D +D ) WTitiI]g Dn+| + D" = ZDII
i+l n

Fringe width, B%(DHH—DH)%- 4;3 - 7;'; . o (10.44)
-~ “ 1 J‘L n

Hence fringe width B decreases as the diameter of the ring (D } increase.
Newton’s rings with white light :
The diameter of a ring depends upon the wavelength of light used (equation 10.42)

Thus if white light is used instead of monochromitic light a few coloured rings will
be observed and beyond this there will be generall illumination due to overlapping of
ditferent rings, but the central spot will be dark.

10.12 Applications of Newton’s rings

1) Determination of wavelength

Wavelength of monochromatic light can be measured with the help of newtons rings.
The diameters of nth newton’s ring for an air film are obtained from equations (10.42)

] =(2n-1)(2nR) [ Hair = l]

2:R

and (10.43) are D} =(2n —]){—
u'dlr

or, D? =2(2n-1)AR for brightring

and D] =4nAR for darkring.
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Now if D and D , are the diameters of the nth and (n+s)th rings (bright or dark)
then, from the above equation, we get

-

D, - D} =4(N+S)AR —4nAR

n+3

=4RALS

n+3

D, -D;
4SR 7

b= . (10.45)
Hence, the wavelength A of the monochromatic light can be obtained by measuring

D D, and by counting s. The radius R can be measured by a spherometer.

n-s *

2. Determination of refractive index of a liquid:

To measure he refractive index of a liquid by newton’s rings experiment. At first
measure the diameter D and D, i.e. the diameter of n+s and nth bright ordark rings
with air film. After this, the diameters of these rings and measured again by forming
the liquid film by pouring the experimental liquid between the lens and the glass plate
within a container, without disturbing the arrangement.

For air film(D;,, - D, )m_r = 4shR

L

and for liquid (D}..-D}) = 45)R

lawd

where P 1s the refractive index of the experimental liquid.

(D7.. - D7)
H=1hr ) (10.46)
( hquid

n+s n

So, p can be determined, if D, . D for air and for liquid are known.

Exercise-7

Newton’s ring experiment. the diameter of 10th dark ring is 0.5 cm. Find the radius
of curvature of the lens. Given 3 =59x10"m
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10.13 Michelson interferometer and its application

Michelsoninter fermeter:

The interference fringes of different shapes are produced in this interferometer by the
method of division of amplitude.

Constructions :

The main optical parts of michelson interferometer consiists of two highly polished
from silvered plane glass mirrors M, and M, placed at right angles to each other. G,
and G, are two plane paralled glass plates of same material and thickness. The plates
are held parallel to each other and inclined at 45° to the mirror M,. The plate G1 is half
silvered at the back, so that the incident beam is divided into reflected and ftransmitted
beam of equal amplitudes. The mirror M, is mounted on a carriage to move it back and
forth exactly parallel to itself with the help of a micromater screw fitted with a graduated
drum to take readin of displacements of the order of 10~ cm. The mirrors M, and M,
can be tilted about both horizontal and vertical axes with the levelling screw at their
back to make them exactly perpendicular to each other. The interference fringes are
obserbed in the field of view of the telescope T as shown in figure-10.18.

@T

Figure : 10.18

Working principle

Monochromatic light from an extended source S is rendered parallel by a lens L and
is made to fall on the glass plate G. It gets divided into two parts of equal amplitudes
by partial reflection and transmission at the back surface of G,. The reflected wave
proceeds towards M, along AC and transmitted wave proceeds to M, along AB. Both
the rays AC and AB fall normally on M, and M, respectively and retrace their paths after
reflection and finally enter into the telescope T along AT.

Thus two beams along AT are produced from a single source by the division of the



NSOU e GE-PH-31 217

amplitude. These two beams produced interference under suitable conditions.

From figure 10.18 it is clear that the ray AC passes through G, thrice.but AB traverses
the glass plate G, once only. To compensate for this an exactly similarly glass plate G,
is introduced. Hence G, is called a compensator plate.

Form of fringes

If you look through the telescopeT twowards the mirror M,. you will see the mirror
M, and a virtual image M} of M, formed by reflection from the glass plate G,. Thus
we may consider that the two interfering beams received by the telescope are coming
after reflection from M, M} (figure-10.19)

Depending on the path difference and angle between the mirrors M, and virtual mirror
M, the fringes of different shapes such as circle, straight line etc may be formed.

Formation of circular fringes:

Circular fringes with monochromatic light is produced in Michelson interferometer,
when mirrors M, and M, are exactly perpendicular to each other. The production of these
fringes can be under stood from figure—10.19.

S: SI M| Mz'
P e P
I I
-__-l \
VLY, T e U
I :
|_—
«—2d— «—d—>
Figure : 10.19

Here M, and the image M) of M, are exactly parallel to each other. The real extended

source is also replaced by its virtual image S formed by reflection in glass plate G, behind
the eye E. This source S' produces two virtual images S, and S, after reflection from
M, and M, respectively. These two virtual images S' and S, behave as virtual coherent
sources and consequently the phases of the corresponding points in them are exactly the
same at all instant. Thus the points P, and P, on S, and S, are the two virtual image

points of the point P in S' formed by the reflections in M, and M} respectively are always
exactly in phase.

If d is the distance between M, and M, . then the distance of separation between S,
and S, will be 2d. Let 0 is the angle which the reflected beams make with the normal,
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then the path difference between the two rays entering to the eye, from the corresponding
points P, and P, of the two virtual sources is 2d cos0.
If 2d cos = nA (where n = 0, 1, 2.....) the point P appears bright ie maximum and

A
if 2dcosO=(2n+1)=" p, appears dark i.e minimum.

Thus for a given value of n, d and A the angle 0 will be constant, hence locus of
the point P is a circle about the foot of the perpendicular from the eye to the mirrors
as the centre.

So, a series of concentric alternate bright or dark circular fringes are osbserved. These
fringes are called fringes of equal inclinations and are fromed at infinity. These fringes
are non-localized.

Formation of localized fringes:

When two mirrors M, and the image M, of M, are not exactly parallel, then they

enclose an wedge shaped film of air between them. Hence a ray PQ from the extended
source S after reflection from M, and M, will give two reflected rays QE, and RE, which
on producing backward will meet at a point O, where the interference fringes will be
formed (figure10.20) To observed these fringes the eye must be focussed near to the

mirror. Thus these fringes are localized fringes.
0

@ () €]
Figure : 10.20 Figure : 10.21
For a certain value of d, the light is incident on the film at various angles. So observe

fringes are curved and are always convex towards the thin edge of the wedge as shown
in figure {(i) and (iii) of 10.21}. But if the path difference 2d cosO betwen the mirrors

M, and M)} approach to zero, the fringes becomes straight till the mirror M, interesects

M} as shown in figure-10.21 (ii).



NSOU e GE-PH-31 219

Localized white light fringes :

When a white light source is used a few coloured fringes with a central dark fringe
can be observed. In observing these fringes, the mirrors M, and M, are adjusted for
localised straight fringes. The position if often troublesome to find with white light. The
position can be located with monochromatic light when the fringes are straight. The using
white light a few coloured fringes (8—10) are observed on either side of a central dark
fringe.

Applications of Michlson interferometer :
(i) Determination of wavelength of monochromatic light.

To measure the wavelength of monochromatic light the interferometer is adjusted M ||
M, to obtain circular fringes in the fild at view of the telescope. If the mirror M| is moved
forward orbackward, the circular fringes appear or disapper at the centre. Now as the
mirror i1s moved through a known distance the number of fringes disappearing of the
centre is counted. Let D is the initial thickness of the air film between the mirror M|
and the image M) of M, corresponding to the n th order of bright fringe and d, for the
(n+s)the order fringe.

Then 2d, = ni and 2d, = (n+s)x

or, 2(d,—d)) = sA

2(d,-d))
==

A= (10.47)

Hence measuring d , d, and counting s, % can be determined accurately.
2. Determination of the refractive index of a material :

To determine the refractive index of a material the interferometer is adjusted for
localized white light fringes and a cross wire made to coincides with the central dark
fringe. In this position the optical path difference between two interfering rays are equal
(ie AB = AC). Now a thin film of thickness t and refractive index p is introduced in
the one of the path of the interfering rays, when an extrapath of {p—{)t is introduced in
the side of the film. Due to this extra path, the central fringe will be displaced from the
wire. The mirror M, is then to be moved by a distance d(say) until the central fringe
coinsides again with the wire. Hence we can write.

2d (u=1t or, d = (-1}t

t:

me e

Thus knowing t and d. it can be determined. Again knowing p and d, t can be
tdetermined also from this experiment.
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Exercise—8

A Michelson interferometer is set for white light straight tringes. Shen a thin mica
sheet of thickness 0.005 canmriginal position, the movable mirror is moved by 0.0025
cm. Calculate the refractive index of mica.

10.14 Summary

e The resultant amplitude of the waves after superposition in youngs double slit
experiment is

A= (al +a3 +2a,a, cosd)

2T . -
; (Xg —X, ), X, — X, = path difference between the two waves and 6 is the

"

e Where 6=

correspondingphase difference

e  Condition for constructive interference is path difference = even multiple of — = 2n 5

and for distructive interference

}V )V
path difference = odd multiple of = =(2n +l)5

e Fringe width g = E‘D = distance between slit and screen d = distance between two
d

slits SI and Sz.

e Acute angle of the biprism is &= m a = distance between the position ot
the slit and biprism.

e Conditions for bright and dark fringes in Loyd’s mirror are odd multiple of % and

.k :
even multiple of 5 respectively.

o The effective path difference between two interfering rays in a thin film is
}\4
A:decos(r—a)iE

r
e Fringe width P= m for thin film. oo = angle between the upper and lower surface

of the film.
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D;,.-D; . . N .
e Wave length A =W can be determined in Newton's ring experiment.

2 d'? _d| N - N - .
u and the thick of a thin film '= ——, can be determined
s

e Wave length A= il

by michelsom interfero meter.

10.15 Questions and Problems

10.15.1 A monochromatic light of wavelength 5100A from a narrow slit is incident
on a double slit. If the overall sparation of 10 fringes on the screen 200 cm away is 3
cm find the distance of separation between the slits

10.15.2 Interference fringes are observed with a biprism of retracting angle 1° and
refractive index 1.5 on a screen 100 cm away from it. If the distance tetween the source
and birism is 10 ¢m. Calculate the fringe width. Given A = 5890A.

10.15.3 In a Lioyd’s mirror experiment, calculate the ration of the intensities of the
inderference minmima and maxima if the mirror reflects only75% of the light incident on
it.

10.15.4 Fringes are produced with monochromatic light of wavelength 689nm.. A
thin film of glassof u = 1.52 is placed normally in the path of one of the interfering
beams. The central fringe is found to be shifted to a position occupaid by the 5th bright
band from the centre. calculate the thickness of the glass film.

10.15.5 In Newton’s ring experiment, the diameter nth dark ring is 8 mm and
diameter of (n+5)th dark ring is 12 mm. If the radius of curvature of the lens is 8 m,
find the wavelength of light used.

10.5.6 In Michelson’s interferometer, 100 fringes cross the field of view when the
movable mirror is displaced through 0.02948mm. Calculate the wave length of
monochromatic light used.

10.16 Solution

Exercise-1

We know the maximum intensity
2 _ _
Lo =(a ta,) there a, =3.a, =4

=(3+4)
=49
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Exercise—2
B=10""m, b_ 20, ,=5893x10""m
a

p=15and oo = ?

we know the fringe width

AD  A{a+b)

p= P m [ d=2a(p-1)a equationl().l‘)]

Sl

=
_ B3I
2(1.5-1)x 10"

=0.0124

= 0.0124><llﬂ

=0.711°
Exercise-3

Here, a = 20 cm= 0.2m, 1 = 1.5

o= i‘Z = iradian
180 o0

The distance of separation between two slits is d =2a{pn—I)a

2x.20(].5—l)%

=0.00698m.
Exercise—4
Here % = 589 nm = 589x10”m, p= 1.542 and distance x = 2.143 mm, = 0.347 mm
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If n is the number of fringes contained in x , then

X

Cx, 2143

=2 =6.175
B 0347

Now (u—1)t=nk

. _ 6.175x589 %107

n-1 1.5-1
st =727%10 *m.
Exercise—S
Here,

Slit is at adistance from the mirror, thus the distance between two coherent source
d = 2x3 mm = 6x10~m.

A = 5890A = 5890%10 "'m.

D= 1.5m.

AD 5890x107"x1.5
inge wi === = =147x10"'m
Fringe width 3 1 ex10° <

Exercise—6
Here, p, =1,B=1mm=10"m
and 3 =589nm =589 <10~ m.

8
2pa

we know, P=

L _589x10”
20, B 2x107

=2945%x 10 rad

[80°

w

a=2945x107" x

= 0.01688°.
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Exercise—7

n=10,D =05cm=0.5%10"m, L = 5.9<10 'm

we know D’ =4niR

2 5) x107
R = D, = (0 5) <10 —=1.059m
dnd. Ax10x59x107

Exercise—8
Here t = 0.005 cm
d = 0.0025 cm

d
we know t1=——
p-1

L—l—E
or. | t
o3 20025
t 0.005
10.15.1

Here, A = 5100A = 5100x10-*cm.

Overall separation of 10 fringes is 3 ¢m

3
:, B=Ecm , D =200 cm

AD
we know, P= rE

_ XD _ 5100 %107 x 200

- d
: B 3/10

=0.034cm

8
A5, Lo=1"=——rad. pn=1.5,
10.15.2 Here, %0 H

b =100 cm, a = 10 cm. A = 5890A = 5890x10*cm
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D = a+b = 900+10 = 110 ¢cm

»D
we know P = e and d = 2a (p-De

_ xD  5890x107° x110x180
2a{p- o 2.10(1.5-1)=

=0.037 cm

75 3
10153 Here, reflectivity (R) = 75% = ;.=

3
The amplitude reflection co-efticient, r vR =\/;

so. if a, be the amplitude of direct beam, then the amplitude of rreflected beam is

\/?
3.2:3'[‘: —a]
4
T a _a 3 _
Imin _ (a1 _a3 )H _ ] ] 4

R ~
L {2, +a.) 2 +a, /i

2

_"\E _[2—\6}2_ -] |

| ) e

(2—-\/5)2 ::5.15x10"‘
1

2° -3

=5.15%107"

10.15.4 Here % = 689 nm = 689x10-9 m, p = 1.52

shift of the central fringe. x =3B
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X, A
we know, = (n-1)B [ using equation—10.24]

_ Px689x107
(1-1.52)p

t = 6.625%10 *m.
= 0.006625 mm

10.15.5

Here D, =8mm=8x10""m.
D,,,=12mm=12x10""m
R=8m.s=35

k ) D:']+S—Di Di+$_Di
W Nnow, A= = -
€ RNOW. ASR 4SR

(12x107) —(8x107)
458

A =5x10"m = 500 nm.

10.15.6

Here, n = 100, d = 0.02948mum = 0.2948x10 *m

we know 2d = ni

_2d_2 x0.02948 <107
n 100

= 5896x10~"m.

o A= 5896A

h =5806x107m




Unit : 11 0 Diffraction of Light

Structure
11.0 Objectives
11.1 Introduction
11,2 What is diffraction
11.3 Fresnel’s half perid zones of a plane wave front
11.4 Zone plate
11.5 Fresnel’s diffraction at a straight edge
11.7 Fresnels diffraction due to a narrow rectangular aperature.
11.8 Fraunhoffer diffraction in a single slit
11.9 Fraunhoffer diffraction in a double slit
11.9 Multiple slits: plane diffraction grating.
11.11 Summary
11.12 Questions and problems
11.13 Solutions

11.1 Objectives

After studying this unit. you will be ablet
e define diffraction
® discuss the concept of fresnel half period zone, zone plate and their applications.
® discuss the diffraction patterns due to straight edge, thinwire, narrow rectangular
aperture of Fresnel class of diffraction
® explain Fraunhofter’s class of diffraction due to single slit, double slits and multiple

slits 1.e plane diffraction grating.

1.0 Introduction

In school level physics you have learnt that light is propagating in a straight line
path. If an obstacle held in the path of light rays they from a sharp geometrical shadow.
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But if you examine the shadow carefully, you will see that it is not so as you expected.
The departure from the expected result confirms the light is not travelling in a straight
line, 1t bends round the corners. Such an efect of bending at light round a sharedge of
the opaque obstacle is called diffraction etffect. This phenomenon was first observed by
Grimaldi. The eftect of bending 1s negligible small if the dimensions of the obstacle or
aperture and large compared to the Navelenght of ligh. It the size of the aperture or
obstacle is comparable to the Navelength of light, the bending becomes more
pronounced, all waves like sound, light, x-ray etc. exhibit diffraction under suitable

conditions.

Fresnel gave a satistactory explanation of the diffraction of light, consideringHuygen’s
principle i.e. the principle of secondary wavelets and based on the superposition of
waves, Ditfraction phenomenon (diffraction fringes)} occurs due to multual interference
(diffraction fringes) ocurs due to mutual interference of secondary waves from different
points of a particular wave front not blocked by the obstactle. Fraunhoffer also gave an
explanation of diffraction considering the source and screen are placed at infinite distance
from the obstacle. But Fresnel assumed both source and screen are placed at nearer

points.

All optical instruments are not free from diffraction effects as a limited portion of
the incident wave fron is used. Hence. diffraction effects are of great importance to

understand the optical devices.

In this unit, we¢ shall discuss both Fresnel and Fraunhoffer’s class of

diffractions.

11.2 Diffraction

11.2 Definition of Diffraction :

The bending of light round the edges of an obstable or apertures of sizes comparable
with the wavelenght of light and spreading of light into the geometrical shadow of the
object is called diffraction.
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11.2.1 Difference between interference pattern and diffraction pattern

Interference Diffraction

1. Interference 1in the result of | 1. Diffraction pattern is the result of

superposition of light waves coming from superposition of light waves coming
two different wave fronts originating from from different parts of the same wave
the same source. front.

2. Interference frinages may or may not | 2. Fringes are not of the equal width
be of equal width,

[N ]

3. Minimum intensity points are perfectly Minimum intensity points are not
dark. pertectly dark.

4. All bright band are of uniform intensity. [ 4, Bright bands are of different intensity.

11.2.2 Classes of diffraction:

There are two classes of diffraction phenomenon known as Fresnel’s diffraction and
Fraunhoffer diffraction.

(1) Fresnel’s diffraction : In this type of diffraction, the source of light or screen or
both are at finite distances from the obstacle or parture. Hence, the incidident wave front
is spherical or cylindrical.

(i1) Fraunhofter diffraction : In this type of diffraction, the source of light and the
screen are effectively at infinite distances from the obstacle or apperture. This may be
made by using two convex lenses, to make the light source parallel before 1t falls on
the aperture and the other to focus the light after diffraction on the screen. Thus the wave
front is plane.

11.3 Fresnel’s half period zones of a plane wave front

Fresnel explained the phenomenon of diffraction of light onthe basis of the multual
interference of the secondary waves of wavelets from the different points of a wavefornt.

Let ABCD isa plane wave front of monochromatic light of wavelength % is advancing
twowards the right and P is a an external point at which the resultant intensity to be
found out due to the wave from ABCD. Fresnel divided the wave front into a number
of half period elements or zones called Fresnel’s half period zone and find the effect
of all the zones at the point P.
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From P draw a perpendicular on ABCD at the point O. the foot of the perpendicular
is called the pole of the wave with respect to P. Let PO = b and with P as centre and

.. A 20 3n . .l
radii b+ E’b b+ —. etc. Spheres are drawn, the sections of which made by the

h

wavefront are concentric circles M, Mo, M3 ..... My, etc. with centre at O. The area
enclosed bythe first circle (M) is called first half period zone. The annutar space between
the first and (M) and the second circle (M») is called the second half period zone and
so on, as shown in figure : 11.1.

Areas of zones:

The area of the nth zone i.e. the area between the circles My, and Mp.] s

A, =x|[IM;-OM] |

m=7r[(MnP2—bg)—(Mn_]Pg—bz)] B

EFTE

J { 1) —+b(n—])/1H

2 a2 2 a2 2
- [1bi+]]j —(” —"j +nbi—bﬁﬂ

or A

4

=1 bﬁ+%—(2n—l)}:;rb/1 e (11,1) Figure : 11.1

since b>> 4 S0 22 is neglected.

Thus the area of all zones are appoximately equal. But actually the area of the zone
increases with increase in order number n.

Resultant amplitude due to all wave fronts.

Since each zone differs from its neighbour by a path difference of %, hence the phase

difference of the alternate zones will be A. Thus if the resultant amplitude of wavelets
from first half period zone is positive, that from second half period zone will be negative,
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that from third zone positive and so on
Let d.d, d, .. etc half period zones respectively then,
Resultant amplitude, D= d1 — d2 + d3 —d4 ... +H-1) n—1 an.... (11.2)
It can be written as.

d, (d +d Y o(d;+d, d
D=1+ 1 —d, |+ 2———d, [+... ¥—2 (if 1 is :
> [ 5 ) ( ) 4] 5 (if n is odd)

:ﬁ+(dl+d\
> 2

d,+d, d, _ ) .
; J_d’JJr[ -‘2 —d4]+ ‘‘‘‘ + ,)]—d” (if n is even)

d, +d,

As dy , dy. dy .... are in descending order of magnitudes :_d, and so on.

Hence. all the terms of the above equation within bracket will be zero and we get,
d d .
D=?'+7” (When n is odd)

d d
and D=7‘+?"— d, (When n is even)

If n is sufficiently large, the effect due to the nth zone becomes negligible and
resultant amplitude due to the whole wave is

D:

ra |_Q-

(for both odd or even n)

Thus the resultant amplitude at p due to the whole wave front 1s equal to half the
amplitude to the secondary waves trom the first half period zone.

As intensity is proportional to the amplitude
. d;
Intensity, I:T]

Hence the intensity at P due to the wavelets from all zones is equal to one fourth
of the intensity due to the waves from the first half period zone.
11.3.1 Rectilinear propagation of light.

We have seen in the previous article that the resultant disturbance at P is equal to
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the half of the disdurbance due to first half period zone only. The amplitude is also
decreases rapidly as the order of the zone increases. Thus if small obstacle is placed at
O it blocks a considerable number of half period zones, by which the light from the
source is practically cut off i.e. no light will be received at P. In other words, light travels
in straight line.

11.4. Zone plate.

zone placte is a transparent plate on which concentric circles of radii proportional

to the square roots of natural numbers is /1.,/2:/3 etc. are drawn. The alternate

even or odd annular spaces betweeen the circles are blocked such a plate behaves like
a convex lens and produces image of a light source on a screan placed at a suitable
distance.

If odd zones are transparent and even zones are blocked, then it is called a positive
zone plate as shown in figure 11.2a. If even zones are transparent and odd zones are
blocked, then it is called negative zone plate as in figure 11.2b.

Therory of zone plate.

Let O be a point source of
monochromatic light emmitting spherical
waves of wavelength A whose effect at the
point I on the screen is required.

Let an imaginary plane perpendicular

to the plane of the paper through the point
P of a transparent medium. Draw a

Figure : 11.2

perpendicular OP to the plane and
produce it to I as shown in figure 11.3.
Divide this plane into zones bounded
by circle zones bounded by circle having

centres at P and radii PM, =r,
PM, =r,.PM, =r,
PM_=r Such that

OM|+IM1=OP+IP+%

2
OM, +IM, =OP +1P+ ==

J P
Figure : 11.3
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0M,,+1M,,:0P+|P+% (11.3)

The annular rings thus formed are halt period zones for the image 1, because the path
ditterence between the corresponding points of two consecutive zones 1s -

—

Let OP = u and IP = v, then we have from (figure-11.3)

“(s+1)

1] =
1] =

OMH=(OP3+PMH)

1

= u{l +i]
u-

-

r
=y +-=2 [ usr ]
2u !

S

! 2
Similarly M, =(v* +17)* =v+ 2 [ v ]

Putting these values in equation (11.3) we get

r; r; ni
u+-—"—+v+-r-—=u+v+
u 2v 2
1
rr|—+—|=nd
o (1+)
I 1 _nk
Yy T e e e . . . . (11.4)

n

Applying sign convention, we have from equation (11.4)

————Ee . . . . . (11.5)

.o . C
Where t, :Lﬂ’ Equation (11.5} 1s similar to convex lens fromula,
n

Thus zone plate may behave as a conven lens of focal length.
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r3
f —_n
= (11.6)
Again from equation (11.4) we have

5 nAnvy
I =

u+v
Since u, v, A are constants.
r a~/n , Thus the radii of the half period zones are proportional to the square roots
of natural numbers.
The are of the nn zone is given by

;r(rf )= ﬁ{n/’»uv {n —l)ﬂbuvl

-1
"t u+v u+v

TUY
= A=constant.
U+v

This is independent of n, hence for a given object (u} and image (v) distances, the
areas of all zones are same. Again, the are increases as u or u increases i.e. as the plate
oves away from the object or image.

Again as all the zones are of equal area and hence the magnitude of the amplitudes
dj. dy....dy at I due to secondary wavelets from the various zones. diminish only slightly
with the order of the zone Hence the resultant amplitude at 1

D=d,-d,+d,-d, +....

Now if the alternate zones say even are blocked, then the resultant amplitude at I
will be

D=d, +d, +d, +.....
Again if we block odd number of zones then we have the resultant amplitude at [;
D=d,+d, +d, +.......

Thus we see that in both cases the resultant amplitude at I 1s many times greater
than that due to the wavelets from all zones. Thus [ will be the point of maximum
intensity, i.e. the light from O will be focussed at I. Under this condition I 1s said to
be the image of the object O.
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11.4.1 Difference between convex lens and zone plate

(1) For a particular position of object, a lens produces only one image, where as a
zone plate produces a number of images of diminishing intenity, because for a given
% the lens has only one focus but the zone plate has multiple focal lengths (n-dependent)

.

[

— I

'I'I_nﬁ'

(i) light from the consecutive clear zones of the zone plate arrives at the image point
I after one complete period of the wave. Buit in a lens the rays reach the image point
in same phase.

1 1

1
(i11) The focal length of a lens is given by the relation F:(“ _l)(R_._R_:] Where

1 nd
as that of the zone plate is + =7

n

{(iv) For a zone plate focal length decreases as A increases. Therefore, the focal length

for red light is less than for violet (ief, <f) for zone plate. but for convex lens f, >f, .

{v) The image is formed in a zone plate by diffraction. but for convex lens image
formed by refraction, and image of convex lens is more intense than that of zone plate.

Exercise-1

What is the radius of the first half period zone in a zone plate behaving like a convex
lens of focal length 60 cm for a light of wavelength 6000A.

11.5. Fresnel’s diffraction at a straight edge.

Let S be a narrow slit illuminated by a source of monochromatic light of wave length
.. The length of the slit is perpendicular to the plane of the paper. AB is a straight edge
(e.g. edge of a razor blade) and the length of the edge 1s parallel to the length of the
slit MN is the incident cylindrical wave front. O 1s a point on the screen XY. Join SAO
is perpendicualar to the screen. The screen is perpendicular to the plane of the paper.
According to geomatrical optics below the point O 1s the geometrical shadow and above
is the 1lluminated portion. But in fact, it is observed that the dark and bright bands of
unequal width above O and the intensity below O falls off repidly and becomes zero
at a small distance from O, all are shown in figure {11.4a and b).

To study the intensity at any point Q at a distance x above O on the screen. join
QS which interesects wave fron MN at P. Thus P is the pole of the wave front with respect
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X
N
o [
P griad

4 rad 2

S - 0 z

—a—>Ne—b——> g
1

Geometrical O ——» Distance from O
M Shadow
(a) Y (b)

Figure : 11.4

to the point Q. With P as pole construct Fresnel’s half period elements. The effect at
Q depends on the number of half period elements contained in PA and the upper half
of the wave PN.

The effect at O is due to the upper half (AN) of the wave front only. Hence, the
displacement at O is half of the displacement that would have been there if the entire
wave front was effective. The intensity at O, is therefore one fourth of that at a point
for removed from O, where the whole wave front is effective.

As we move in the geometrical shadow, the pole P moves from A towards M and
Ist, 2nd , 3rd. etc, half periods are intercepted and the intensity falls off gradually. Again
it we move from O towards X, 1st, 2nd 3rd....etc. half period elements are exposed. The
illumination at Q is due to the complete half of the wave surface PN and the resultant
of the number of half period elements contained in PA.

The amplitude at Q will be maximum or minimum depending on the number of odd

d d
or even number of half period elements contains in AP. [As we know, D, =?' +?“ odd

d d
number of elementas and D, =?I+ "2-'

- d, for even number of elements, i.e. D, >D,.]

The intensity at a maximum goes on decreasing and at a minimum goes on increasing,
till finally at a large distance from O, we get a uniform illumination as shows in figure
(11.4b)

The number of half period elements in AP (figure-11.4a) depends upon the path
difference AQ —PQ.

Let SA = a and AO = b, then

b=

AQ:(E+xﬂ%=b@+fi]

xE
S| =T b ]
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Similarly

SQ={(a+b)2 +x3}=a+b+2(a+b)

X:
PQ=SQ-SP=a+b+ 2(a—+b)-a [~ SP=a]

X
=b

+2(a+b)

- P
Path difference, AQ — PQ =P 5~ _2(a+b)
__

2b(a+b)

Now for maximum brightness at Q.

FAQ — PO = =2 —(2n+1)* [Where n =0, 1.2 ..]
Za+b) o

x =\/M(2n+l)l ....... (11.7)

a

And similarly for minimum at Q

N L GR A P
a

From equation (11.7) or, (11.8 we can write

b{a+b)A
Xl'_:+] - X:I'l =2k Where k= %
The fringe width
2 k
ﬁ_XI1+J _x" B JCIH_J +xl1 _x_“--(l]..g)

From the equation (11.9) we see that, as n increases x increases and 3 decreases.
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Thus the spacing of dark or bright fringes decreases with the increase of order number
(n).
Determination of wavelength

By measuring the distance between the position of first maximum intensity fringe
and the one (say nth) most distant clearly visible bright fringe, by means of a micrometer
eye-piece, we can measure A by using the relation (11.7) Hence

N CCEDP

For n the maxima

X, = Jb(a +)(2n +1)4

a

X, —X = M(\Qnﬂ —I)

n a
The distance b from the straight edge to the eye piece and a between the slit and

the straight edge are measured. Hence knowing x_- x, . we can determine the wavelength
of light.

11.6 Fresnel’s diffraction by a turn wire

Let a narrow slit S is illuminated by
monochromatic light of wavelength A. A fine
wire AB is placed parallel to the slit and is
perpendicular to the plane of the paper. The
screen XY is also perpendicular to the paper.
Let waves from S are intercepted by ABA to
produce the geometrical shadow PQ on the
screen XY as Shown in figure—11.5.

We consider a point R outside the
geometrical shadow on the screen. Join SR
which interesets the wave fron MN at C.
Thus C is the pole of the wavefront with
respect to R. Thus C is the pole of the wave
front with respect to R. The intensity at R due
to the wave front above C is same for all

Figure : 11.5
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points and effect due to the wave front BM is negligible. The intensity at R will be
maximum or minimum depends on the number of half period elements contains in CA
is odd or even. Thus the diffraction bands of gradually decreasing intensity will be
observed in the illuminated protion of the screen.

Now within the geometical shadow if we consider a point L, the inter ference bands
of equal width will be observed in this region due to the fact that the points A and B
of the incident wave front are similar to the two coherent sources. Intensity at the point
L will be maximum or minimum depends on the path difference BL-AL is equal to even

A
multiple of 5 or odd multiple of =

.. . AD . .
The fringe width S = 4 where D = the distance between the wire and screen and

d = the distance between two coherent Geometrical Shadow
sources (AB) ie the diameter of the wire.

o v (11.10) whereristhe  ~ ¥V MV \/\/\/\)/ VA e

iD nnf\ml’ iU QU1 N N A
L ﬂ:— I
radius of the wire. !

The intensity distribution due to a
narrow wire is shown in figure 11.6a Geometrical Shadow

Here the centre of the geometrical E E i
shadow (O) is bright, because the path AN [\EP EO QE/\ N A A

difference between AO and BD is zero.

If the wire is very thick, then from
equation (11.10), we seen that as diameter Figure : 11.6
increases the fringes width decreases and
finally when the thickness of the wire becomes large engough, the interference fringes
disappear. But outside of the geometrical shadow the diffraction bands are visible as
shows in figure—11.6b

11.7 Fresnel’s diffraction due to a narrow rectangular a perative

Let a narrow rectangular aperture of width AB is placed between a narrow slit S
illuminated by monochromatic light of wavelength A and a screen XY, both are
parpendicular to the plane of the paper. MN is the section of the cylindrical wave front
from S incident on AB. On the screen, the region PQ is the illuminated protion, above
Q and below P is the region of geometrical shadow, as shown in figure-11.7
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The intensity at the piont C, the central region of PQ depends on the number of half
period elements on the exposed wave front between A and B, C as a pole with respect
to. O.

The intensity will be maximum or minimum if the number of half period elements
are odd or even. respectively.

If we consider another point Q, in the
illuminated portion PQ ofthe screen, the
intensity at Q, will be maximum or
minimum according as odd or even number
of half period elements are remaining in
each half of the exposed above (O A) and

below (O B) the new pole O, .

Now we consider a point Q, in the

region of geometricl shadow. Q, is the
pole of the wave front with respect to the Figure : 11.7 Y
point Q,. The intensity at Q, will depend
on the number of half period elements
exposed by the slit AB. The upper half of the wave front above O, is obstructed by the
obstacle and the half period elements between O, A are also cut off by the
obstacle.

Hence, O, gets light only for a few half period elements contained in the part AB

of the lower half of the wave front.
P C Q Thus when the path difference.

BQE—AQE:(ZnH)ga Q, will be
N\/\/\/\/W maximum [where n =0, 1, 2, ....]
and BQ,-AQ:=202.Q, will be

Figure : 11.8 minimum [where n = 1, 2, 3.....]

The conditions are similar to the interference due to two coherent sources. But if Q,

is for away from Q the diffraction pattern will be indistinguishable. The intensity
distribution due to narrow aperture is shown in figure. 11.8.

Exercise-2

A narrow slit is illuminated by a light of wave length 5890A is located at a distance
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of 0.1m, from straight edge. If the measurements are made at a distance of 0.5 m from
the edge, calculate the distance between the first and second dark band.

Fraunhoffer diffraction

11.8 Fraunhoffer diffraction in a single slit.

Let a narrow slit S S, of width ‘a’ placed perpendicular to the plane of the paper

is illuminated by a parallel beam of

monochromatic light of wavelength S
A (i.e a plane wave front).
Accordingto Muygens principle each
point of the wave front on the slit
plane maybe considered as a source
of secondary wavelets. The
secondary wavelets travelling is a
direction parallel to OC comes to
focus by a conven lens L on the
screen at C. The wavelets travelling
at an angle Q with the normal are brought to focus tat P (figure-11.9)

To find the resultant intensity of light at P, let the complex distrurbance at any instant
due to secondary waves fron the mid piunt o of the slit is represented by AE iwt where
A is the ampliture and o is the augular frequencey of the wave.

Now draw ON perpendicular to the direction of the diffracted rays from O.

Therefore, the path difference between the waves at P coming from O and from
a point Q at a distance x from O is

QN = x sinf

—_—
S
—_—
S
; &
—_—
e

[0S
— <]
A 4
-~

Figure : 11.9

2 2 .
and the phase difference due to this path difference QN is TEQN = Txxsm 0 [where

2 .
—sinf
7 sin .. (11.11)

Hence the disturbance at p due to secondary waves from Q for diffracting element
dx can be written as dy = CAdx e i(ot-kx) where ¢ is the proportinality constant, as we
consider amplitude is proportional to dx.
The resultant disturbance at p due do the waves coming from whole slit S1S» is
g i(ot—kx
v=| cAe'( )

—da

5
2
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a

E uk\'{ )
=cAe" J.e{’k"dx =cAe™ {_e }

[N

-k |
2 B

ka . ka ka . ka
. e—lka-"2 —eika:‘g . COSE—SII’]? - COS?-I‘SIIIT
— CAelr')T - _CAeI(m e

—ik —ik
2sin . ..
— cAe™ 2 [ e’ =cos€i|sm€]
. ka
51N —
:CAewma i
ka
2
sina k a 7T oa

= sin & 11.12

=cAae"™ —— where «
o 2 A

.. The resultant intensity I at P is obtained by multiplying Y by its complex conjugate
Y.

[ =yy*

_ (cAa): sin” o

k)

ot

=1, (11.13) where 1, = (cAa)’

o 2
[#3

Thus from equations {11.12) and 11.13) we see that the resultant intemnsity at P
depends on o , and o depends on 6, 1e. intensity depends on the angle of diftraction
(6).

Maxima and Minima—

The intensity (I) will be maximum or minimum at a point, when

di

o

d sina Y’
iy -0
or, da' 0( o ] }

0
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H o z

singr| arcolse —sine
Or 2 :0
P

or, sina{acose —sine) =0
Hence, either sing=0 ... . {11.14)

or, gcos—sing =0

or, g =tane (1115)

)

. dl o .. .
But. it is found that o is positive for sine =0 and negative for o =tane .

Hence for minima

& =nrx

of, ¢ =nz where n=+ 1+ 2 + 3....
. From equation (11.12) we get

z .
—asiné=nrx
A

asind =nk .. . (11.16)
Thus we get, first, second....etc. minima forn=+ 1, + 2 .._ete/ Here n = O is excluded

sinar

because for this o« = O and since Lim =1, that gives a maximum (I =1,), called
il :
central or principal maximum.
For maxima, we have trom equation (11.15)

o = tano, which is transcendental equation and can be solved graphically by plotting
the curves y = o and y = tano. and finding the intersections as shown in figure-11.10.
The figure shows that for o = 0 and other values of o which will give maxima are less
but gradually approaching towards

st etc. For o = 0 gives the central maxima and for other values give

secondary maxima.

The intensity of principal maxima is

I=1, fora=20
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k /\
-3n -2r - 0 ¢
=5m/2 —3n/2
3n/2 Smi2
y=a &
K
/0‘//
Figure : 11.10

And intensities I, I, I3...... etc of the first, second third.....etc. Secondary maximia
are

sinzh’
[~ 2 =]
1—to 2 92 0
£ ST
)
. Lo
- sin 5 4
e (S;r] 25722 0 ... ete
)

Thus the intensity of secondary maxima falls off rapidly. hence we se that secondary
maxima of decreasing intensity occur on either side of central maxima. The intensity
distribution in the diffractioin pattern due to a single slit is shown in figure-11.10.

Width of central maxima.

Let the angle of diffractioin © for which the first minimum on either side of central
maxima occurs. Then

asinf@=+4 n+l

or, afd=+1 '+q 1s very small
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A
a

24
The angular width of the central maximum is 29=? which is inversely
proportional to the width (a) of the slit.
White light effect

If white light is used. then the central maxima becomes white, while the other
maxima willbe concoured. Since the condition for minima is 35ing =n'

A
or, & =— for first order dark band.

]

so, as A > 4,6, >6,. Thus the red maxima being farther apart than blue.
Exercisr-3

A screen 1s placed at a distance of 90 cm from a narrow slit. The slit is illuminated
by a parallel bean of light of wavelength 6000A. Calculate the width of the slit if the
first minimum is at a distance of Imm on either side of the central maximum.

11.9 Fraunhoffer diffraction in a double slit

Let a parallel beam of monochromatic light (i.e. plane wave front) of wavelength
% be incident normally on two slits, each of width *a’ and separated by an opaque space
[b]. The distance between any pair of corresponding points of the two slits is d = (at+b),
called double slit constant. According to Huygen’s principle each point of the wave front
on the plane of the slits may be considered as a source of secondary wavelets. The
secondary wavelets travelling normal to the slits are brought to focus by a convex lens
L on the screen at ¢. The wavelets travelling at an angle © with the normal are brought
to focus at P, as shown in figure—11.11

To find the resultant intensity of light at P, let the complex disturbace at any instant
due to secondary waves from the mid point O of the first slit is represented by Ae™,
where A is the amptitude and o is the angular frequency of the wave.

Draw a perpendicular ON to the direction of the diffracted rays from O.

Therefore, the path difference between the waves at P coming from O and from a
point Q at a distance x from O 1s

QN = x sinf
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2 2 .
and the phase difference due to this path difference QN is %QN = =% xsinf = kx

p)
2T
(11.17) where k :%smﬁ

Hence, the disturbance at P due to secondary waves from Q for diffracting element

dx can be written as dy = cAdxe'®* where ¢ is the proportionality constant, as we
consider that the amplitude is propertional to dx.

The resultant disturbance at P due to both slits is

Figure : 11.11

+a d+a

2

y = J‘CAel{(ul—k,r})dx + I CAei(f:;t—kx)dx

—a

-

—kx
=cAe™ _e.‘ +48
—ik | -a

—kLOH—]
2 2 2,
—cAe™ | S 48

Y

d-a

ak ak

ol 2isin? ., 2isin? e’ —e" .
=cAe™ - fe M2 =—isin®
ik ik 2
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sin a?
_ it ikd
=chae” s (lee®) L 11.18)
2
. The resultant intensity I at P is obtained by multiplying y by its complex consjugate
y*
[=yy*
sin® —

[=(CAa)’ 2 (] + e"“d)(l + e”‘")

sin” —
=(CAa) = (2407 4ot
(CAa) [ ™ ] ( )
2
. - ka
L sin” ==
_(CAa) F(z"—zcog kd) [-_-em +e_i{; :2C056J
2
sin” ka
=2(C/—'\a)2 2 =2(:05EE .
[E) 2 [] +cos28 =2cos” 6’]
2
=41, oo’y . (11.19)
a
2 k .
where 1, = (CAa) ,a=73=%asm9 (11.20)
kd .
and B=7=%(a+b)sm9 . (11.21)

The resultant intensity depends on two factors

iy 1, =4I(,Sl;2a which gives the diffraction patterns due a single sht and (i)

I, =cos” 3, which gives the intereference pattern of diffracted light waves from the two
slits.
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Nature of diffraction pattern
The intensity of central maximum 41 when oo = 0 and B = 0 i.e when 6 = 0., because

sin o
Lt

a—0

=1 and at p =0; cos B =1

The position of minima due to this factor is given when o = nn or, asin®—n where
n==* 1, £ 2.... minima and for secondary maxima

Interference pattern: Considering the factorl, =cos® g for intensity variation, we

find that the intensity will be maximum, if cos® =1 i.e. b=mp where m =+ 0, £ 1,
+ 2.
From equation (11.21) we get,

B= )E(a +b)sin®=mn

S(a+b)sin@=mi .. . .. (11.22)

The positions of interference minima due to I, =cos” 8 is given by

cosp=0 i‘e.B=(2S+l)§ where s =0, 1, 2 .....
. |
»+ (a+b)sing=(2s+1) =
(a )smq ( S )2 (11.23)

L ARAAARAANAAAAA S

B

L~

sin‘o, / \ -
ESNVZ N A DN

AN

Figure : 11.12
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sin” o

In figure (11.12a) cos™ B 1s plotted against , in figure (11.12b) is plotted against

al
o and and figure (11.12¢) shows the intensity distribution (I} in the resultant diffraction
pattern due to double slit.

Missing orders in double slit pattern
Let a be the width of each slit and b is the width of the opaque space.
Then we know the condition of interference maxima is {atb) sin® = ma
and the condition for diffraction minima
a sinf = ni
Where m and n are integers.

If the value of a and b are such that both the equations are satisfied for the same
value of 0, then a certain interference maxima will overlap the diffraction minima and
hence that order will be missing.

Hence we get from the above two equations.

a+b m

. (11.24)

a n

If a = b, then

m _Z2a
—=—= or, m=2n
n a

Ifn=1,2,3 ... ¢etc.thenm=24. 6 ... etc.

This shows that the 2, 4, 6 ..... etc. orders of interference maxima will be missing
in the diffraction pattern. Hence, there will be three interference maxima in the central
ditfraction maxima (corresponding m = 0, £ 1)

Similarly if b = 2a

at+Z2a_m
=— or, m = 3n
n

a

Thusitn=1,2,3....m=3.6,9.... This means 3rd, 6th, 9th etc. orders of interference
maxima will be missing in the diffraction pattern and there will be five intereference
maxima in the central diffraction maxima (corresponding m =0, + 1, + 2). The position
of the third interference maximum corresponds to the first diffraction. minimum (figure-

11.12)
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Exercise-4

Find the missing orders for a double slit Fraunhoffer pattern if the width of each
slit is 0.15 mm and they are separated by a distance of 0.60 mm.

11.10 Multiple slits: Plane diffraction grating.

A plane diffraction grating consists of a large number (N) of identical parallel and
equidistant shlits of same width. It is constructed by ruling equidistant parallel lines on
a glass plate by a fine diamond point. Each ruled line acts as an opaque space and the
transparent portion between two consecutive ruled lines acts as a slit. The number of
rulings on a plane diffraction grating is of the order of 10,000 per cm.

If “a’ be the width of the clear space and ‘b’ be the width of a ruled line, then the
distance (a+b) is called the grating element or grating constant. The points in two
consecutive spaces separated by a distance (atb) are called corresponding points.

Since the process of making a large number of exactly parallel and equidistant lines
on a glass plate by a diamond point is very difficult and hence too costly. So, for practional
purposes, replicas of the original grating are prepared. For this, on the original grating
surface a thin layer of properly diluted collodion solution is poured and the solution is
allowed to harden into a tought film, which can be easily separated from the master
grating under water. The film is then fixed between two glass plates. This serves as a
plane diffraction replica grating.

Theory: Let a plane diffration grating of N slits each of width “a’ and equal opaque
space between two successive slits is ‘b’ consider a parallel beam of monochromatic
light of wavelength A incident normally on the grating surface. According to Huygen’s
principle each point of the incident
plane wave front on the slits may
be considered as a source of
secondary wavelets. The secondary —
wavelets travelling normal to the —]
slits are brought to focus by a
convex lens L on the screen at C.
The wavelets travelling at an angle
6 with the normal are brought to
focus at p, as shown in figure — —
11.13. —

|
A AN

To find the resultant intensity
at light at P, let the complex Figure : 11.
disturbance at any instant due to

—
(OS]
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secondary waves from the point O (the centre of the first slit) is represented by Agr,
where A i1s the amplitude and © is the angular frequency of the wave.

Now draw on perpendicular to the direction of the diffracted rays from O.

Therefore, the path difference betwen the waves at P coming from O and from a
point Q a distance x from O is

QN = x sin 0 and the phase difference due to this path difference QN is

> m 2
;QN= ;xsme=l<x ..... (11.25) where k= f

siné |

Hence, the disturbance at P due to secondary waves from Q for diffracting element
dx can be sritten as,

dy = CAcxe ™™ Where ¢ is the proportionality constant, as we consider amplitude
is proportional to dx.

The resultant complex disturbance at P due to the all slits is

? d+2 (N-1jd+2
y = jel{o)t—kr}dx + j el{mt—k.r}dx N j el{mt—kn}dx CA
N -2 (N-1y-2

Where the grating element d =a + b

P F3. e JIN-1+ S
L y=Cae™ { _ } el +{ o
—ik - l—lk Jd_- _]kJ(N—l)d‘“

P
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The resultant intensity (I) at P 1s obtained by multiphying y by its complex conjugate

y*
L= yyE
S k oM | e1de ]
CAa —ihd ikd
a e —1
H
sin” ak
5 2 2 e1de e—|\kd
=(CA =, _ :
( a) El,k 2 Z_elkd e—ﬂ\d
2
Singﬁ :
—(CAa)z 2 sin” NKd
[ak]z sin” kd ['.'e"’+e'“’=2cos€}
2
. ~ak
—((Aaf Sin 5 sin" NKd
ak ) sin’kd ['.'I—cos29:25in:91
2
sin“a sin” Nf _
I=1, o smp .. (11.26)

2 ak nm T, .
[, ={CAa) ,c=—=—asin® and B=—dsin8
0 =(CAa) 2 A g 3

Bz}E(a+b)sin9 - (11.27)

. : . . sinf“o . .
The resultant intensity depends on two factors (i)l, =1,——=— which gives the
o

sin” Np

diffraction pattern due a single slit and (ii) 1. = Sinp which gives the interference
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pattern of diftracted light waves from the N slits.

Principal maxima:

Let us confine our observation to the neighbourhood of the central part of the pattern.,

i sin“ o . . :
where the variation of |, =——— s very small and the condition for maxima solely
o 3
sin° Bp sin” BR

depends on the factor 1, = ow

sin” B Now, sin” B

will be maximum when 3 = nn, where

n=+0+1=+2 .. etc.
kd = . .
Now; szzi(zH—b)smB:mc [using equ. (11.27)]

or, (a+b)sinf=nk ... (11.28)

These are known as principal maxima.

For n =0, we get zero order spectrum and forn=+ 1, + 2 .. etc. We get first order,
second order .... etc. principal maxima. The sign indicates that there are two principal
maxima of the same order lying on either side of zero-order maxima.

. 0 . )
Again, for p=b=, I, =5 which is indeterminate.

To find the value of this limit, we get the maximum value of 15, When

sinNf§ Lt NecosNB
Bont ginfd Bobr cosf3

N [using L Hospital’s rute]

From equation (11.26) we get

sin“ct .,
I=1, = N- .. {11.29)

Thus the resultant intensity is proportional to NZ, i.e the principal maxima increases

sin” o

with number of slits (N) increases. but due to the factor whose value decreases

By »

o
with the increase of the angle of diffration (8). Hence, the intensity of principal maxima
decreases with increase in order number of fringes.
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Conditions for secondary minima and maxima:

sin” N R . o dl,
The factor I :W depends on B and for maxima or minima dp =0
dl, sin® (2NsinNBcosNB}—2sin® NBsinfcosf
dpg sin’ B
_ 2NsinNficosNB  2sin” NB cosp
sin” B sin“p sinf
2sin” NB
=————(Ncot N[} - cot 3
o ( p-cotf) . . (11.30)
_ dl,
For maxima or, minima —~ =0
dp
or M(N cotNB—cotp)=0
*osinT 3
sin” Np
i Ny —— =0
Hence, either (i) sin” p

or, (il) NcotNB—cotB=10
or, NCot  + N=Cotp

Secondary minima

sin N3
When sin NG =0 but sinp= o, the factor sinp becomes zero and hence intensity

15 minimum.

Thus for minimum
SinNp = 0

or, Ng=+mn

or, N}E(a +b)sin® = tmn { B= )E(a + b)sine}
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or, (a+b)sind=+22 w1131

Where m has all the integral values except O.N. 2N ...nN as for these values of
m, sinf becomes zero and we get principal maxima. Hence there will be (N—1} minima
between twoconsecuted principal maxima.

Secondary maxima

dl,
From the condition N cot Np= cotp . dT%ZO

a’l, . . .

dB{ is negative. Thus for those values
of [} other than p=bx satisty the condition NcotNP=cotp give rise to another set of
maxima, called the secondary maxima. Its intensity is much less than the intensity of

principal maxima.

It can also be shown that in this condition

Now, to find the intensity of secondary maxima, we have

Neot+ NP =cot

,cos” NP _ cos P
or . =—
¥ sin" NB  sin”’ p

N7 (1-sin” NB) _L-sinp

or,

sin” NP sin”

N“’(l—sin:Nﬁ)_stin:B_ N* La_e_ate
oL T | _sin’p N’sin*@  1+(N*~1)sin’B |"b d b+d
Intensity of secondary maxima (Ism) N- ]
Intensity of principal maxima (Ipm) I+(N:)Sil"l2 BN’

_ ]
]+(N2 —])sin:B

It 1s clear that as N increases the intensity of secondary maxima relative to the
principal maxima decreases and becomes negligible when N 1s very large.
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sin’Np

0 n 2n 3n 4n Sm 6m Tn 8x:

TN TP o
sin’p 8
0 e 2mg 3mjg 4T STy 676 T 876 .
1 sinzNBT (c)
N° sin'B
N - .
o 1 2 3 4 5 6 7 8
Figure : 11.14

To understant the variation of intensity of secondary maxima we have plotted sin® Nf3

1
againnst 3 in figure (11.14a) and the product of ratio and and [F) against m, foir

N = 6. From figure it is evident that the secondary maximal falls off between two
successive principal maxima and are unequal spaced. Due to back of symmetry the peaks
of the secondary maxima shifted. towards the adjacent principal maxima.

Absent spectra:
The condition for the principal maxima in a grating spectra is
(atb) sin@ = nA  where 0 = angle of diffration
m = order number.
a + b = grating constant.
The condition for 5th diffraction minima in the same direction is
a sin® = sh.

Now, if these two conditions satisfy simutaneously, then nth order principal maxima
will be absent.

Therefore, the condition for absent spectra is

a+b n
S

.. (11.32)

a
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Ifb=a,thenn=2sie 2, 4,6, ..etc. (s = 1. 2, 3...) order of principal maxima will
be absent, corresponding to 1, 2, 3 etc. diffraction minima.

Overlapping of spectral lines
We know the conditin for principal maxima is
(a+b) sinB = ni

Now, for a given grating d = a + b = Const., so for constant 0, ni is constant. Thus
if the incident light has a large range of wavelengths, then the lines of shorter wavelength
and higher order overlap on the lines of longer wavelength lower order.

For example, 3rd order of light of wavelength.

A = 700 nm, 4th oirder of light 2 = 525 nm and 5th order of light wavelength 2
= 420 nm wll be formed in the same direction, i.e. they all overlap. because

ni = 3x700 = 4x525 = 5x420 = constant.

Exercise—5

How many orders would be visible, if the wavelength of incident light is 5460A
and the number of lines inthe grating is 6000 lines/cm?

11.11 Summary

® When the distance between the source of light and the screen or both from the
diffracting operature /obstacle is finite, the diffraction pattern of this type is Fresnel
class of diffraction.

® In case of Fraunhoffer class both source and screen are at infinite distance from the
slit.

® The area of each fresnel halt-period zone 1s nearly equal to so mba.
® DPhase change of the alternate zones 1s .

A zone plate is an optical device in which alternate half period zones are blackended.
It is equaivalent to a convex lens.

® The focal length of zone plate, f, ::_],1'

b(a+b
® Position of nth bright and dark band due to straight edge are x, = JM(Zn +1)4
a
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b{a+b
and x, = MZM respectively.
a

L

¢ condition for minima of single slit diffraction pattern is a sin® = na..

atb_m . . : . . .
=— is the condition of missing order of interference maxima in the diffraction
a

pattern of double slit.

® {a+b)sin@=na is the condition of principal maxima of grating diffraction pattern.

sin” o

. - . . N . . Ta | .
® Expressions for intensity for single slit 1=1; where ¢ =}—Sln9 . for double

in” R a . . . )
slit 1=41; SIQZQCOS'B where a=7;—sm€’ and B=}E(a+b)sm9 and for grating

sin” & sin” Np

e =1,  Where a:%sin@ and B=%(a+b)sin~9.

of  sin’p

11.12 Questions and problems

11.12.1 An object i1s placed at 20 ¢cm from a zone plate and the brighest image is
situated at 20cm from the zone plate, the wavelength ; = 6000A . Find the number of
fresnel’s zones in a radius of 3 cm of the plate.

11.12.2 Find the angular width of the central bright fringe in the Fraunhoffer
diffraction pattern of a single slit of width 0.24mm. Wavelength of light used is 5890A.

11.12.3 Fraunhotter double slit diffraction pattern is observed in the focal plane of
a lens of focal length 0.5m. The wavelength of incident light 1s 600 nm. The didtance
between twomaxima adjacement to the macimum of zero or der is 5 mm and the 4th
order maximum is missing. Find the width of each slit and the distance between their
centres.

11.12.4 Light is incident normally on a grating of toal ruled width 0.005m with 2500
lines in all. Calculate the angular separation of the two sodium lines in the first order
spectrum.

11.13. Solutions
Exercise—1 Here, f = 60 cm, n = 1 and A= 6000A = 6000x10-8 cm.
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2
In

we know f =

nA
or, 1’ =f.1.A=60x1x6000x107" =3x107
o =6%107 =0.06em

Exercise-2:
Here, 2 = 5890A = 5890x10-10m, a = 0.1m. b = 0.5m

b{a+b
we know for dark band x, = % Ind
=11
X, =X, = M(ﬁ_l):\jo-s(o.l+0.5)x2x5890x10 (\/E—I)
a 0.1
= 7.7 x10—4m,
Exercise-3

Here, Distance between slit and sereen (D) = 90 ¢cm
% = 6000A = 6000108 cm, n =1, xl = 0.1 cm.
we know the condition for minima is

a sinf = nA O is very small

ni

Or, tanf=— S sin@=0-tand
a
x, ni
or, — =
D a

as nAD [x6000%107° <90
X 0.1

1

=54%107 =0.054

Exercise-4

Here a = 0.15 mun, b = 0.60mm.

a+b m
we know ——=—
a n
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m_0.15+06
oL 0.5

or.m = 5n
when n =1, 2, 3.....etc then m = 5, 10, 15 ... etc,

.. The 5th, 10th, 15th ...etc orders of interference maxima will be missing in the
diffraction pattern.

Exercise-5

Here, & = 5460A = 5460x10—8 cm. and number of lines per cm is

1
a+b

= 6000 lines/cm

(m)=

For principal maxima, we know

(ath) sinB = n2

or. sind = ni = mni

a+b
Here, 6 = 90° (Maximum)
mna = sin90° =1

] 1
or, n=——

= =3.04
mi 6000 x5460x107°

-

. n=3, i.e. 3 orders will be visible only.
11.12.1

Here u = 20 cm, v =20 cm, A= 6000A = 6000x10~8 cm radius of nth zone (1) =
3 cm.

we know

S =10 cm
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w1
r 3
Mo T 5000
oL B Ton T 10x6000x10°

The number of Fresnel’s zone is 15,000

11.12.2
Here., a = 0.24 mm=0.024 cm. A= 5890A = 5890%10—8 em.
we know for single slit minima.

asinG =ni forn=1

J. 5890107

sinf == =245%x10"
a 0.024
oo 8 =0.140°
Angular with of the central maxima (20} = 0.28°

11.12.3
Here, £ = 0.5 m, & = 600x10~9m.
The distance between two maxima (x) = 5 mm = 5x10—3m.
Adjacent to maximum of zero order

For missing of 4th order maximum, we have

a+b
—:4
a
or, b = 3a.
Now, for 1st order maximum

(at+b) sinB = A

A A
e: _— v 1 7
or, b 2a [ 8 1s very small]
X
L 20="
Now, F
or, x=20f = 2~

4a
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_u
a= A 2053600107 _ 4 65 _ g 63mm
2x 2x5x10”

. b= 3a=0.009 mm.
11.12.4 Here, width of ruling = 0.005m.
Total Number of slits = 2500

2500
. Number of rulings per metre = 0.005 =5x10"No/m

1
: ing a+b)=——=2x10"m.
. Grating element ( ) T

For sodium light, 2q= 5890x10~10m
and A>= 5896x10-10m

Now, We know for principal maxima
(atb) sinB = nk for n =1

T k!

or, sing, = 3801074504

atb  2x10°
or, 8, =17°7
Similarly

=1
sing, =22 = 890 5948
© a+b 2x10™

or, 8, =178’

Angular separation 6,-6, =17°8'—17°7'=1".



Unit : 12 Polarization

Structure
12.0 Objectives
12.1 Introduction
12.2 Methods of producing plane polarized light.
12.3 Polarization by reflection and brewster’s law
12.4 Double refraction
12.5 Geometry of calcite crystal, optic axis and principal section.
12.6 Nicol prism.
12.7 Malus’s law.
12.8 Dichroism and polariods
12.9 Huygen’s theory of double refraction
12.9.1 Huygen’s construction of surfaces in uniaxial crystal.

12.10 Superposition of two plane polarized waves with vibrations at right
angles.

12.11 Reterdation plates.

12.12 Optical activity

12.13 Biot’s laws of optical activity and specific rotation
12.14 Fresnel’s explanatioin of opitical rotation

12.15 Polarimeter.

12.16 Summary

12.17 Questions and problems

12.18 Solutions

12.0 Objectives

After studying this unit you will be able to

® define polarization of light, different types of polarization.
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know the process of producing plane polarized light.
explain laws of Brewster’s, Malus.
construct Nicol prism, polaroids, reterdation plates.

explain dischroism, optical activity, optical rotation.

draw the wave surfaces within the uniaxial crystal using Huygen’s theory of double
refraction.

® determine experimentally specific rotation of optically active solutions, using
polarimeter.

12.1 Introduction

In the presions units you have learnt about interfernce and diffraction phenomena
of light which proved that light is a wave. But, whether the light waves are longitudinal
or transverse or whether the vibrations are linear or circular cannot be deduced from
the above two phenomena. Polarization is the only phenomenon which explains the light
must be a transverse wave. Again, you know that the light is an electronagnetic wave
consisting of vibrating electric and magnetic field vectors at right angles to each other
and also perpendicular to the direction of propagation. The electric field vector is
responsible for the sensation of vision, so it is called light vector. Ordinary or unpolarized
light consists of large number of waves, the light vectors of the component waves will
remain in any plane about and at right angles to the direction of propgagation, because
such light is emitted by an atom or a group of atoms of the source vibrating independently.
Such an ordinary light beam with electric vectors arranged symmetrically about the
direction of propagation is called unpolarized light. If by some means, these vibrations
in an unpolarized light are so cut off that only vibration of a constant mode and direction
remain, the light so obtained is called polarized light, the phenomenon is called polarization,
as shown in figure—12.1.

Plame Polarized light

_— % > © S = >

Un Polarized light

Figure : 12.1
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When two plane polarized light waves superposed under suitable conditions, then
the resultant tight vectors rotate in a plance perpendicular to the direction of propagation
and 1f the magnitude of the resultant hight vector remains constant, then the tip of light
vector appears to trace a circle at a fixed space.

Such a light is called circularly polarized light. If the rotation, when looking towards
the incomeing light is clockwise then the light is called right circularly polarized light.
If the light vector rotates anticlockwise, then it is called left circularly polarized light.

On the other hand, it the magnitude of the resultant light vector varies periodically
between a amaximum and minimum value, then the tip of the light vector appears to
trace on a eliptic path, such light is called elliptically polarized light.

A mixture of polarized and unpolarized lights is known as partially polarized light.

In this unit we shall discuss about the production, detections and other phenomena
ot polarized light.

12.2 Methods of producing plane polarized light.

1. Polarization by retlection
2. Polarization by double refraction

3. Polarization by dichroism.

12.3 Polarization by reflection and Brewster’s law

Malus observed that when a beam of ordinary light is incident on the surface of a
transparent medium (like glass plate, dielectric surface, water etc. the reflected beam is
partially plane polarized. The degree of polarization depends on the angle of incidence.

Sir David Brewster performed a series of experiments on the polarization of light
by reftections at a number of ditferent media. it is found that, for a particular angle of
incidence when the reflected and refracted rays are perpendicular to each other then the
reflected ray 1s completely plane polarized.

This angle of incidence at which the reflected and refracted rays becomes mulually
perpendicular and the reflected ray is completely polarized is known as angle of polarization
or Brewster’s angle.

Brewster’s proved that the tangent of the angle (&, ) at which polarization is obtained
by reflection 1s numerically equal to the refractive index of the meduium

If p is the refractive index of the medium then p=tan8, ... (12,1)
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This is known as Brewster’s law.
Proof:

Consider a ray of unpolarized light S A
from the source S incidents on a medium
of refractive index . OA is the reflected
polarized light with vibrations
perpendicular to the plane of incidence
and OB is the refracted light, which is 0 90°
partially polarized. as shows n in figure
12.2.

. sini
According to Snell’s law #:ﬁ’

where | is the refractive index of the
medium. Here, angle of incidence i=6,

(Brewster’s angle) and r is the angle of B
refraction.
"G, +r+90°=180° Figure : 12.2
or, r = 90°-6,
sinffy,  sing

. = = =tanf),
Hence # sin(90°-6,) cosd, ?

. u=tanf; g, is also called polarizing angle. This is known as Brewster’s law.

12.4 Double refraction

In the isotropic refracting medium (like glass, water, air, etc.) the refractive index
is same in all directions. Thus when a light is incident on an isotropic medium, it refracts
as a single ray in all directions. Because the atoms in a crystal of isotropic material are
arranged in a regular periodic matter. If the arrangement of atoms within a crystal are
differ in different directions then the physical properties very with directions. This type
of crystals are called anisotropic crystal. Calcite, quartz, tourmaline are the examples
of anisotropic materials.

Bartholinus discovered that when a ray of unpolarized light is incident on a crystal
like calcite, quartz etc, it is refracted into two rays. one of these rays obeys the laws
of refraction of light, is called ordinary ray(E-ray)
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Both of these O-ray and E-ray are plane polarized, whose vibration are along and
perpendicular to the principal section, i.e. they are mutually perpendicular to each others
shown in figure-12.3

Principal section

Figure :

This phenomanon of refraction where a single incident ray is refrated into two rays
is called double refraction or birefringence and the crystals that exhibits the phenomena
are called doubly refracting crystal or birefringent.

12.5 Geometry of calcite crystal, optic axis and principal section.

Calcite (CaCO3) is a colourless, transparent crystal also known as iceland spar, found
is nature. it is a rhombohedral crystal containing six parallelogram foces. The two
opposite angles of each parallelogram are at 101°55" and 78°5". The two diagonally
opposite corners A and C (as in figure-12.4) Where three obtuse angles of 101°55" meet,
are called blunt corners of the crystal. The rest of the six corners there is one obtuse
angle and two acute angles.

Optic axis:

If a straight line by drawn through any one of the blunt corners (A or C) and that
bisects these blunt convers is known as optic axis.

In fact any line parallel to this line is also an optic axis. So, the optic axis is a direction
but not a particular straight line.

Optic axis of a crystal is also defined as a direction along which if a ray pass then,
there will be no double refraction of the incident ray, both the ordinary and oxtra-ordinary
rays travel with same speed along this direction.

Principal section :

Principal section is a plane containing the optic axis and perpendicular to the opposite
refracting faces of the crystal. Since there are infinite number of lines parallel to the
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direction of optic axis, so there are infinite number of principal sections. ACC1A7 is
one of such principal section, as shown in figure-12.4.

78°5"

12.6 Nicol prism

Nicol prism is an optical device made from a calcite crystal and is used to produce
and analyse the polarized light.

Principle

When an unpolarized light is incident on a unixial crystal (Calcite), it splits up into
the ordinary ray (O-ray) and extra ordinary ray (E-ray). Both are plane polarized. One
of these rays is cutoff by the process of total internal reflection and the other is transmitted
as a plane polarized light.

This prism was designed by Willium Nicol and is known as Nicol Prism after his
name.

Construction:

It is constructed from a calcite crystal whose length is three times of its breadth.
The end faces AC and A]Cq of the crystal are cut down to reduce the angles of pricipal
section to 112° and 68° inplace of 109° and 71° respectively. The crystal is then cut into
two pieces along the plane A'C’' (as shown infigue 12.5), perpendicular to both the
principal section and the two end faces of the crystal. Two cut surfaces are ground,
polished optically flat and then cemented together with canada balsam, whose refractive
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index (p, =1.55)is greaterthan the refractive index of E-ray (u, =1.486). but less than
the prism are blackened to absorb totally reflected rays.

Action :
(i) Nicol prism as polarizer

When an unpolarized light falls on a nicol prism, the ray splits up into two refracted
rays. ordinary ray (O-ray) and extra ordinary ray (E-ray), they travel through the crystal.
Both the rays are plane
polarized, of which the \Q
plane of vibration of O- A
ray is perpendicualar to
the principal section
and that of E-Ray is in
the plane of the
principal section of the
crystal. When these
two rays are incident
on canada balsman
layer O-ray suffers total

Principal Section

internal reflection, as it is passes from denser to rarer medium (p, >p.,) and the

geometry of the Nicol prism is such that the angle of incidence of O-ray is greater than
the critical angle. Finally it is absorbed by the black laryer onthe sides of the prism. But
when the E-ray incidets on canada balsam layer it traversing from rarer to denser medium

(#4cs > M) and is transmitted through the canada balsam layer, Finally emerges through
the Nicol as a plane polarized light. Whose vibrations are parallel to the principal section
(Figure-12.15).

(ii) Nicol prism as analyzer :

When two Nicol prisms P and A are placed adjacent to each other (Figure—12.6),
one of them (P) acts as a polarizer and the other (A) as analyser.

When an unpolarized light is incident on the Nicol prism P, the emergent ray will
be plane poolarized (E-ray). Now if this ray incidents on the second Nicol (A) whose
principal section is parallel to that of P, then as long as the second Nicol remains parallel
to the principal section of the first nicol (P), E-ray will be tansmitted through the second
Nicol (A). The intensity of the transmitted light will remain maximum, as shown in
figure-12.6a.

Now if the second prison (A) is rotated, the intensity of the emitted E-ray from the
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second Nicol decreases gradually and ultimately becomes zero, when the principal
section of Nicol A is exactly perpendicular to that of the Nicol P (figure 12.6b). In this
position the E-ray behaves as O-ray inside the prism A and is totally reflected by the
canada balsam layer and two Nicol prisms P and A are said to be crossed.

If A is further rolated throlugh another 90°, the intensity of the emergent light from
A will again be maximum i.e., the principal sections of two prisom are in parallel position
again (Figure-12.6c¢).

P A P A p A
E
M plAgIA AM S A4 K NE, AAA LA WU
T v vivy|v vivww” Vv ViVl ’¢/¢'H!~lf ¢¢E
(a) Figure : 12.6 (b) (c)

Thus the prism P produces plane polarized light and the prism A detects it.
Hence Nicol prism P is called a polarizer and the nicol prism A is called an
analyzer.

12.7 Malus’s Law

Malus obtained a relation between the intensity of light transmitted by the analyzer
with the angle between the planes of polarizer and analyzer. This relation is known as
Malus’s law.

It states that the intensity of plane polarized light transmitted through an analyzer
is proportional to the square of cosine of the angle between the planes of transmission
of the analyzer and the plane of polarizer.

Proof:

Let a plane polarized light of amplitude A is incident on an analyzer and the angle
between the planes of transmission of the analyzer and that of polarizer is 0 (figure-
12.7)

Now the amplitude A of the plane polarized light emerging from the polarizer may
be resolved into two components, A cosO and A sin0, along and perpendicular to the
plane of transmission of the alalyzer respetively. The component A sin6 will be reflected
from the analyzer, but the parallel component A cos® will be transmitted through the
analyser.

Therefore, the intensity of the transmitted light from the analyzer is,



NSOU e GE-PH-31 271

I=A%cos’0=1,cos’0 Plane of Polalizer
" loecos® @ ... (122)
where 1, = A*, the intensity of the polarized
light incident on the analyzer and is a constant N Plane of analyzer
quantity.
Thus the intensity of transmitted light is
proportional to the square of the cosine of the 0
angle between the planes of transmission of Asin
polarizer and analyzer. ] AcosB
This is Malus’s Law. Figure : 12.7

2.8 Dichroism and polaroids

The phenomenon by this a doubly refracting crystal (e.g. calcite, tourmaline) absorbs
one of the doubly refrecting rays (E. rays or O-ray) strongly and the other passes through
the crystal with a minimum loss is called dichroism and the crystal with a minimum
loss is called dichroism and the
crystals that show this property are
called dicroic crystals.

Thus when an unpolarized light
passes through this crystal it will
produce plane polarized light, as
shown in figure 12.8.

A thin piece of four maline
crystal can be used as a polarizer
by cutting its faces parallel to optic
axis. However, its use as polarizer
is limited, because the polarized light is coloured due to unequal obsorption of light of
various wavelengths.

Figure : 12.8

Polaroids:

A polaroid is a thin transparent film which can produce and analyze the plane
polarized light. Because of certain advantages instead of Nicol prism polaroids are used
to producing and analyzing plane polarized light in Laboratory.

The polaroid is prepared from suspension of small herapathite (Iodo-sulphate of
quinine) crystals in nitro cellulose. In this way, a large fine sheet is produced which
contains million of tiny crystals with their optic axes all parallel. This is mounted between
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two thin sheets of glass to give more stability. The construction of polaroid is based on
dichroism.

Another type, called H-polaroid, is formed by stretching polyvinyl alcohol film so
as to orient the complex molecules in the direction of stress, which makes it doubly
refracting and when saturated with iodine it exhibits dichroism.

e =~ e =l e

' 1

~ - ~4 | 1 ~4_| L~

() Figure : 12.9 (b)

]

When two polaroids are not crossed, the transmitted beam is plane polarized (figure
12.9a) and when they are crossed (figure-12.9b), there is no light prassing through.

Polaroids are widely use in everyday life e.g. in sunglasses, head lights and wind
screens of a car, windows of railway trains, aeroplanes, in stereoscopic motion pictures
etc.

It is also used as polarizer and analyzer.
Exercise—1

A ray of light is incident on a glass plate of refractive index 1.5 at the polarizing
angle. Find the polariziang angle and the angle of refraction.

12.9. Huygen’s theory of double refraction.

The phenomenon of double refractions in a uniaxial crystal was explained by Huygen
with the help of his theory of secondary wavelets. According to him, when an umpolarized
light is indicent on a doubly refracting crystal, two wave fronts. are produced, one for
the ordinary ray and other for extra ordinary ray. The wave front of o-ray will be spherical,
as it obeys Snell’s law, so the velocity of O-ray in all directions is same. But the wavefront
of E-ray will be an ellipsoid, as E-ray propagates with different speed in different
directions and does not obey snell’s law of refraction in uniaxial crystal.

Since the optical properties of uniaxial crystals are perfectly symmetrical about optic
axis, hence along optic axis O-ray and E-ray travel with same speed and no double
refraction occurs along optic axis. The nature of wave surfaces is shown in figure along
optic axis. The nature of wave surfaces is showning figure—12.10.
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The crystals like calcite in which E-ray travels faster than O-ray (p,>p,) in the
direction perpendicular to the optic axis are called negative crystals. In this case ellipsoid
lies outside the sphere. Crystals like quartz O-ray travels faster than E-ray (p, >p,) in

the direction perpendicular to the optic axis are called positive crystals. Here sphere is
outside the ellipoid.

Negative Crystal Positive Crystal

Figure : 12.10

12.9.1 Huygen’s construction of surfaces in uniaxial crystal.

For constraction of wave surfaces on the plane of incidence in a unixial crystal, we
take only the examples of a negative crystals.

Case I- Optic axis inclined to the upper face and lying in the plane of the incidence.

Consider a plane wave front AB is incident obliquely on the upper surface of a unixial
negative crystal, cut is such a way that the optic axis (Ax) lies in the plane of the incidence
but is inclined to the upper face at an angle as shown in figure-12.11.

The point A of the wavefront AB, where it strikes the crystal surface first becomes
the centre of secondary wavelets of both ordinary (O) and extraordinary (E) waves.
During the time t the disturbance from B reaches C, the ordinary and extra ordinary
wavefront from A will move to the positions D and F respectively.

Thus

(- BC_AD _AF
C v, g

. ap=BC_BC¢ (12.3)
C

Vo
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Ap._BC _BC
{CJ He o (12.4)
Ve

Where C is the velocity of light in air, v, and v, are the velocitesof O-ray and

E-ray in the crystal respectively, m and m, are the respective refractive indices.

Now dra a circle with A as centre and AD as radius, the circle will cut the optic
axis at X. The circle represents the position of ordinary wave surface. Again for negative

crystal p, >p, but along optic axis p, > p, , which is the maximum value of p . Thus

BC
AX is the seniminor axis of the ellipse. The seminajor axis is given by () - Draw an
E

ellipse with the given semi-major and minor axes touching the circle at X, it gives the
position of extra ordinary wave
surface. B

The tangents CD and CF are
drawn from C of the ordinary and
extra ordinary wave surfaces represent
the ordinary and extra ordinary wave
fronts. The straight lines AD and AF
are the directions of O-ray and E-ray
inside the crystal respectively.

Case-11 optic axis parallel to
upper face and lying in the plane Figure : 12.11
of incidence.

Depending upon the angle of inciedence here two different cases arise.
(i) Oblique incidence

As the optic axis is parallel to the upper face of the crystal and lies inthe plane of
incidence, the positions of O and E wave fronts can be drawn by similar method of
constructiin as in case-I

The sphere and ellipse will touch at X along AX, the ordinary and extra ordinary
wavefronts CD and CF corresponding tothe incident wave front AB are drawn, as shown
in figure 12.12. It is also clear that the E-ray and O-ray travel different directions with
different velocities.
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Figure : 12.12 Figure : 12.13

(i) Normal incidence:

For normal incidence the construction is as shown in figure -12.13. CD and GF are
the wave fronts of ordinary and extra ordinary wave surfaces, corresponding to indident
wave front AB. The O and E wave fronts are parallel toeach other and they travel in

the same directiin with different velocities.
Hence there will be a path difference
between O-ray and E-ray the fact is used
inthe constructiin of the quarter and half
wave plates.

A

B

NUPELAN

L

Case III. Optic axi dicular to th e
ase ptic axis perpendicular to the E <0 E (0]
upper face. >
Here the optic axis is perpendicular to
the face of the crystal, the wavefronts of O Figure : 12.14

and E waves can be drawn by simuilar
method of construction as in case-I The two wavefronts touch each other at x. The O-
ray and E-ray travel with different velocities in different directions. Since the incidence
is normal there is no double refraction, as the O and the E rays travel with the same
velocity inthe direction of optic axis. The two rays (O and E) coinside in the crystal (0o
or EE) as illustrated in figure-12.14.

12.10 Super position of two plane polarized waves with vibrations
at right angles.

Consider a plane polarized monochromatic light be indident normally on a calcite
crystal cut with faces parallel to the optic axis (figure-12.14).

Suppose the electric vector makes an angle withthe optic axis, on entering the crystal
at P the amplitude A of the incident light breaks into two componounts O-wave of
amplitude b = AsinO with vibration perpendicular to optic axis and E-wave of amplitude
a = AcosO with vibrations along optic axis.
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Now the O and E-rays travel throught the crystal with ditferent velocities (v, > v, )}
and therefore, on energence from the crystal the path difference between the rays would
be (1, -, ). where p, and p, are the refractive indices of O and E-rays respectively,
is the thickness of the crystal.

Phase difterence between the rays is

2

b=l me)t . (125

So the equations of energent rays may be written as

X = A sinf cosmt = a conot ... (12.6)

and Y = A cosO cos(ot+¢) = b cos (wt+o) . (12.7)
Where o = the angular frequence of vibrations

a = sin® and b A cosb.

Now in the same way as we deduced eugations(2.17) in the article 2.61. we

Xy 2xy o
E + k] COS@=sIn vra vra vra e ree e 12.8
2 b b T ¢ (12.8)

This is a general equation of the ellipse.

get

Again proceeding n the same way as in article -2.6.1, we can conclude that-
In polarized light, the nature of the resultant emerging light from the crystal are
(i) plane or linearly polarized

(1) circularly polarized and

(i11) elliptically polanized for different values of

12.11. Retardation plates.

An optical device, which makes a finite path difference between O-ray and E-ray
by retarding the motion of one of these two rays is known as retardation plate. There
are two different types of retardation plates.

(i) Quarter wave plate :
A plate of doubly refracting material cut with its optic axis parallel to the refracting
}V

surface. Thickness of the crystal is so adjusted that it produces a path difference of 2
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: A :
or phase difference 5 between the O-ray and E-rays, then the plate is called quarter

A
wave plate or 7 plate.

For a negative crystal (e.g. calcite) the velocity of E-ray is greater than the velocity
of O-Ray, thence p > p.

If t 1s the thickness of the crystal plate, the the path difference between the two rays
(O-ray and E-ray)

will be

(“‘L’l - ue)t
Hence for negative crystal.

A A
(“t)_]-te)t (“’t]_“’e)t_z ..... (129), S t—m

For positive crystal (e.g. quartz)m >m,, so that

] A
}V
(he o) t=7 ....(12.10), 4k, - 1,)

Quarter wave plate i1s used to produce circularly and elliptically polarized light by
placing them in the path of a plane polarized light.

(ii) Half wave plate
A plate of doubly refracting material cut with its optic parallel to the refracting
surface.

. . . . . A
Thickness of the crystal is so adjusted that it produces a path difference of = or

i

phase difference 7 between O-ray and E-rays, then the plate is called half wave plate
'y
or plate.

For a negative crystal (e.g. calcite) p, >p,, if t is the thickness of the crystal plate
then by definition we get

)\-

(1o — )t N S
2 2(“[3_“‘2)

. (12.11)



278 NSOU o GE-PH-31
And for a positive crystal (e.g. quartz) p_>p,

A

t=——
Therefore 2(!% - “n)

. (12.12)

Exercise -2

Calculate the thickness of a quartz half wave plate for the line 6563A for which the
extraordinary and ordinary refractive indices p, =1.55085 and p, =1.54184.

Exercise-3

Calculate the thickness of quarter wave plate of quartz % =5.8x107" um, p, =1.553

and p, =1.544

12.12. optical activity

It is observed that, when plane polarized light passes through certain substances like
quartz, aquas solution of sugar etc. along the optical axis, they rotate the plane of
poarization and the direction of propagation through a certain angle. This phenomenon
is known as optical activity or rotatory polarization. In case of crystals this ability of
rotation arises diquids and the solutions the optical activity is due to certain structural
asymmetry of the molecules themselves.

The angle of optical rotation depends on the thickness of the crystal, density of the
material or concentration of solutions, wavelength of the light used and temperature of
the crystal.

The substances which can rotate the direction of plane of polarization of the incident
plane polarized light are called optically active substances.

There are two types of optically active substances. The substances which rotate the
plane of polarization clockwise 1.e. towards right of the direction of propagation of light
are called dextro rotatory or right handed (e.g. quartz), while those rotate the plane of
polarization anticlockwise are called laevo rotatory or left handed. (e.g. fruit sugar).

12.13 Biot’s laws of optical activity and specific rotation

Biot conducted a services of experiments on optical rotation with various optically
active substances and formulated the following laws—

(1) The angle of rotation (8) of the plane of polarization for a given wavelength
and temperature is directly proportional to the length (1) of the optically active substance
Le. 0 a A,
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(2) The angle of rotation (0) is directly proportional to the concentratio (c} of the
solution i.e. 0 « c.

{3) The rotation (8) produced by a mxiture of optically active substances is equal

n
to the algebraic sum of individual rotations e.e. & = Z &, . here clockwise and anticlockwise

n=1

rotations are taken with opposite signs.

{4) The angle of rotation (8) is inversely proportional (approximately) to the square
of the wavelength (&) of light. For quartz g = A + B/%” where A and B are constants.

{5} The angle of rotation 1s also depends on temperature of the active substance.
Specitic Rotation:
In case of solution, combining the first and second law a relation is obtained as

6 = SIC, where s is a constant and 1s called specific rotation or rotatory power of
the solution.

Thus the specific rotation of a solution at a given temperature and for a given
wavelength of light is defined as the rotation in degrees by one decimetre length of the
solution containing 1gm of optically active material per c.c. of solution.

Therefore specific rotation S! at a given temperature and for a given wavelength
is given by
S} = e (12.13) where | is length of the solution in decimetre, ¢ is the concentration

of the solution in gm/c.c and 9 is the angle of rotation of plane of polarization. But if
A is expressed in cm. then

_108
Ic

S!

. (12.14)

Exercise—4

A tube 20 cm long filled with a solution of came sugar placed in the path of a
polarized light, given an optical rotation of 12°. Find the strenght of solution if the
specific rotation of cane sugar is 66°.

12.14 Fresnel’s Explanation of optical rotation

According to Frenel. a plane polarized light can be assumed to be the superposition
of two equal but opposite circularly polarized light. To explain the optical rotation base
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on above principle. Fresnel assumed the followings.

(i) A plane polarized light incident parallel to the optic axis of the optically active
crystal, is split up into two circularly polarized waves, one of which 1s right handed and
the other is left-handed.

(11) In an optically inactive crystals both the circularly polarized light travel in same
speed. but in active substances they travel with ditferent speeds. If the crystal is dextro
rotatory the right-handed circularly polarized light travels faster, but in laevo rotaroy
substance the anticlockwise travesl faster.

(iii) On emergent the circular vibrations will socmbine to form a plane polarized
light, but the plane of polarization rotates clockwise by a crtain amount (5/2) with
respect to the incident plane, (as in figure-12.15b)

This can be explained by assuming that the incident their optical vibration at z =
(0 be represented by

X =a cos ot . (12.15)

which, on entering the crystal, splits up into two equal and oppisite (L and R) circular
motions (figure-12.15a) OL and OR, OA is the resultant of these two vectors.

Thus x = a cosot(equation 12.15) can be resolved into two circular motions:

1
X, =—acoswt

] left circular motion and
v, = Ea sin wt]

]
X, =—acosmt
right circular motion and
¥, = —asinot
2

These circular components will travel through the crystal with different speeds and
as a result on emergence, some phase difference will be introduced between them.
Assuming the clockwise component moves faster and the phase difference introduced
due to faster movement of clockwise component is &. Then the energent circular components
are:
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1 ]
| = acosot x, =—acos{ot+ )
- and

X
1. . ,.
y, =7 asinat y, =—asin{ot+8)

On emergence OL, OR and OA’ are the left handed, right-handed and the resultant
of them respectively, as shown in figure (12.15b)

The resultant vibrations along the x and y axes are

X=X +x, = %a{(coswt+cos(mt+8)}

5 -
=acos| ot+— |[Cos—
[ 2] 2

and Y=y, +y.= %a{sinwt —sin{ot +8)}

( 5] . D
=—-a¢os| wt+— |sin—
2 2

Now dividing above two equations, we get

- 5 5

%=—tan§ or, y=-tanz- . . {12.16)
5

y=xtan(—5].. . (12.17)

Equation {12.17) represents a straight lime, So the emargent light 1s plane polarized,
whose direction of vibration makes and angle

{_7) with x axis i.e relative to the incident viractions. Now it g and g, are the

retractive indices for left handed and right handed circular components respectively

within the crystal of thickness ‘t” then the path difference between the two circular
I . . : & =l

vibrations is A=(g_— )¢ and hence the phase difference is 9=5=)—(!~1._ —lg ).

";"‘?(ul_—uﬂ) .......... (12.18)

W

. T 0
Thus the angle of rotation of plane of polarization is 8= 5=
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Figure : 12.15(b)
Figure : 12.15(a)

Again we can write

2
52%(,%_%;)6

27( C C [ C}
= =— F ‘_' #:_
ALV, vy v

_2xce{i_£]

A \ \

L R

v, = U4

zané'(L_ f) Ve = LA
7\’ _Yl’]_, 'Y7\’R C = l)ﬁ

272Ce( ¢ ¢
i \ 2

:2;;({@}

LR

AA .
L o= Zﬁf? [Taking A, = Aand A, = A+ AA]

From this equation we see that the angle of rotation varies as thickness (¢) and
inversely Proportional to ;2



NSOU e GE-PH-31 283

Exercise-5

The rotation of the plane of polarization in a certain substance is 10° per cm.
Calculate the difference between the retractive indices for right and left circularly
polarized beamsin the substance Given ¢ =589.6nm.

12.15 Polarimeter:

Polarimeter is an instrument, which measures the optical rotation of the plane of
polarizatioin of a plane polarized light produced by an optically active substance. Different
types of polarimeters have been designed to measure accurately the angle of rotation.

A. Laurent’s half shade polarimeter:

Monochromatic light from a narrow slit S is made parallel by a convex lens L incident
on the polarizer Nicol (P), which converts unpolarized light to polarized light, This
polarized light incidents normally on the half shade plate (H). After passing from H the
light enters the tube (T) containing the active solution whose specific rotation is to be
determined. The light transmitted from T passes through the analyser Nicol(A). The
emerging light is viewed through the telescope (E). The nalyser (A) Nicol can be rotated
about the axis of the light i.e. the axis of the tube and its rotation can be measured in
degrees by a circular scale with the help of vernier as shown in figure—12.16

H

<0 ([ —— g _r

T A

Figure : 12.16
Working:

The polarimeter tube T is first filled with distilled water. The analyzer A rotate slowly
till the field of view is totally dark or bright. The position of the analyzer is recorded
from the circular scale and the vernier scale.

Next, the tube T is filled with experimental solution, replacing water. As the solution
rotates the plane of vibration, So the analyzer (A) is to be rotated in clockwise or
anticlockwise to obtain equally dark or bright field of view. This position of analyzer
is recorded from the scale. The difference between the two positions of the analyzer
gives the angle of rotation (0).
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Determination of specific rotation :

knowing for a known concentration in gm/c.c. and length of the tube ¢, the specific
rolatin s is obtained from the relation

0 .
S=a., here ¢ in decemeter.

Action of half shade plate:

The half-shade plate is a semi-circular plates ADB of glass and ACB of quartz
cenmented together diametrically along AB. The optic axis of the quartz plate is parallel
to the line of separation AOB. The thickness of the quartz plate is such that it introduces
a phase difference of 7 between the O and E vibration. The thicknes of the glass plate
is such that it absorbs the same amount of light as is done by the quartz plate.

Let the light after passing through the polarizer (P) is incident normally on the half-
shade plate with vibrations along OP. On passing through the glass the vibrations will
remain along OP, but it splite up into E and O components when passing through the
quartz plate portion. The vibrations of O-component are along OD (perpendicular to optic
axis) and those of E-components along OA (parallel to optic axis).

On passing through the quartz plate a phase A
difference of m is introduced between these two Q
vibrations. So, the O-vibrations will be along OC /ﬂﬂ N

instead of OD on emergence and E-vibrations
remains along OA.

AY
|

The resultant vibration from the quartz plate
will be along OS after emergence, such that

/POA = ZQOA= 0 N

Now if the principal plane of the analyzing Nicol
is parallel to OP, the plane polarized light through
glass half will pass and tence it will appear brighter
that the quartz half from which light is partly obstructed. Similary if the plane of Nicol
is parallel to OQ the quartz half will be brighter than glass half.

~

]
st

Figure : 18.17

Again when the plane of Nicol is parallel to AOB, the two halves will be euqally
bright, because OP and OQ are inclined equally to its principal plane and hence two
components are equally bright.

Now if the principal plane of analyzer is at right angle to AOB ie parallel to COD
again the components OP and OQ are equal, but as the intensity of the components
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are small, so the two haves are said to be equally dark.

The eye can easily detect a small change when the two haves are equally dark. The
reading are thus taken in this position.

Bi quartz polarimeter:

Half shade plate can be used for a particular wavelength. So it cannot be used for
any other wavelength of light. This disadvantage can be over come by using a biquartz
plate, because it can be used even with white light.

Bi-quartz polarimeter has almost the same arrangement as that of Laurent’s half
shade polarimeter except a bi-quartz plate is used instead of half-shade plate and white
light is used in place of monochromatic light.

Action of bi-quartz plate

Bi-quartz plate consists of two semi-circular quartz plates ACB and ADB, one of
which is lelf handed (L) and the other is right handed (R) quartz cut with their optic
axes perpendicualr to their refracting surfaces. The two plates are then cemented toggether
along AB to form a circular plate.

When a plane polarized white light is
incident normally on the plate each half of
this plate will rotate each colour equally in
opposite directions. The thickness of the
plates are equal and they are so adjusted
that only the yellow light will have 90°
rotation of the plane of polarization.

If AOB is the direction of incident
vibration, then after passage through the bi-
quartz, the vibration of yellow light (y) are
along perpendicular to AOB ie along COD
and the vibrations of the other colours, red
(R) and blue (B) are along different
directions as shown in figure—12.18. Thus if the principal section of analyzer Nicol is
parallel to AOB, the yellow light will be quahead in both halves of the field, while other
colours will be in the same proportion in each half. Thus two halves will then appear
equally illuminated with a reddish violet tint, This is known as the tint of passage. This
tint position is so sensitive that a small rotation of analyzing Nicol from this position
will make one half blue and other half read.

Figure : 12.18
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Determinatioin of Specific rotation:

In order to measure the specific rotation, the position of the analyzer should be
adjusted that the both halves of the field of view get the tint of passage with active
solution and with distilled water in the tube. The difference between the readings of these
two positions of the analyzer gives the optical rotation *8° of the optically active substance.

: : . . . 6
Hence knowing C and ¢ the specific rotation can be found using the equation S, = o’

when ¢ 1s the length of the tube taken in decimeter and C the concentrations in gm/cc.

12.16 Summary

e Polarization—vibrations of light are in particular plane and is perpendicular to the
direction of propagation.

e Circularly polarized light—the magnitude of light vectors are same but the orientations
change continlously

e Elliptically polarized light—the magnitude and orientations of light vector change
continuously.

e DBrewster’s law, p—tan@,.

e Malus’s law p, >p,

e DPositive crystal p, >p, . E-ray refractive index p,
e  O-ray refrative index p,

e Negative crystal p, <p,

A

e Quarter wave plate thickness t=———
p 4(“‘0 - “’e)

e for negative crystal and t= for positions crystal

(Ue _“0)

e Similarly for half wave plate t=———
Y P 2 (Mo e ]-lu)

. . .0
e Specific rotations S, =
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e The angle of rotation of the plane of polarization

& xt

=3 T(ML—MR)

12.17. Questions and problems:

12.17.1 The critical angle of glass with respect to air is 41.81°. What are the angle
of refraction for light and polarizaing angle?

12.17.2 A polarizer and an analyzer are oriented, So that maximum amount of light
is transmitted. To what fractioin of its maximum value is the intensity of the transmitted
light reduced when the analyzer is rotated through 30°?

12.17.3 Determine the wavelength of light used when quarter wave plate of thickness
1.7x107> m is used for delection Given g, =1.65 and g, =1.64

12.17.4  Calculate the thickness of half wave plate for sodium light (/1 = 5893A) \
given g, =1.65 and ratio of velocity of O-ray and E-ray is 1.007.

12.17.5 A certain length of 6% solution rotates the plane of polarization by 22°.
How much length of 12% solution of the same substance will cause a rotation of 30°?

12.18 Solution

Exercise-1

Here p = 1.5

We know the Brewster’s law as
B =tanBy
o8, =tan"'p=1an"'1.5=56.3°
Again we know @, +r=90°
Lor=90°-56.3°=33.7°
- Polarizing angle (6,)= 56.3° and angle of refraction (r) = 33.7°
Exercise-2
Here. } = 6563A =6563x 10 cm

ue =1.55085 and p, =1.54184
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we know for halt wave plate.

Ao 6563 % 107°
2(uy —1e)  2{1.55085—-1.54184)

thickness t=

oot =3.64x1073 cm.

Exercise-3
Here, 3 =5.8%107cms pe =1.553 and

n, =1.544

I3 5.8x107

.'. i ] t= -
Thickness 4, —p,)  4(1.553-1.544)

t = 1.61x10~7m.
Exercise-4

Here, ¢ =20 ¢cm, 8 = 12° and s = 66°

- 'S_@_]Oxlz_é
WEe KNOw ]C ZOXC c
s 66 11
C =99%
Exercise—5

a

0 .
Here - 10° per cem and # = 589.6nm

=]l%radfcm = 589.6x10~7 cm

we know angle of rotations

ot

6-""
A

(he 1)

0% _10.n 589.6%107

=" = . =327x10"°
Mo =0 T 180 3

He =
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12.17.1
Here 6. =41.81°

sini _sin%0° ¢ £ 4
sinr sin.  sinB. sinB. sin4l.81

Il
n

we know H=

[+ O is the critical angle]

Again from brewster’s law

m=tanq, . qg1s the polarizing angle

0,-tan"'p=tan”'1.5=56.3°

Again, 8,+r=90°-r=90°-0, =90°-56.3°=33.7°

The angle of refraction r = 33.7° and polarizing angle 6, =56.3°.
12.7.17.2

Let Ig is the maximum intensity of the transmitted light.

From Malus’s law, we have
I=1I,c0os" #=1,cos"30° Here 9=230°
= [gx0.75

1. 0.75
|

0

12.17.3 Here, t = 1.7x10cm, p, =1.65 and p, =1.64

)\-

we know t=————
4 (Hu —Me )

or A=4t{g, — ) =4x1.7x107(1.65-1.64)
v 2=6.8x107=6800x10""m=6800A

v
12.17.4 Here 2=5893A=5893x10-8cm = 1.54 and _*=1.007
E

Vt]
we know %=—=I-UO7 S lg = 1.007u,=1.007x1.54=1.55

(] F
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: e : A 5803%107° s
Thickness of halt wave platies t= = - a ——=295x10"
2(ue —ng)  2(1.55-1.54)

o t=2.95x107em.

12.17.5
Here C,=6%,08,=22° and C, =12%, 8, =30°

0
we know S =—=—1=
tc fle £,

2 30
O ¢ x6 ¢,x12

£, 30x6

. o

LERS 0.68
oL % T oax12

., =068l
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Notes




