Question Bank For PG Course

Mathematics

Paper-1A

ABSTRACT ALGEBRA: PGMT-IA

Question 1

What are the generators of the cyclic group $^{\it Z}$ of integers?

Question 2

For a prime number p, the ring of integers modulo p i.e., Z_p is

Question 3

How many disjoint cycles do yield the

ation (1 2 3 4 5 6) 2 5 1 6 4 3)

permutation as their product?

Question 4

If Z be the set of integers, then number of elements of the quotient group Z/3Z is

Question 5

Let G be a group and $a \in G$, $b \in G$. Then the derived group of G is the subgroup of G generated by elements of some form .Find that form ..

Question 6

Let R^* be the multiplicative group of non-zero real numbers. Find the kernel of the group homomorphism

$$f: R^* \to R^*$$
 given by $f(x) = |x|, \forall x \in R^*$.

Question 7

What is the characteristic of an integral domain?

Question 8

Let M be a maximal ideal of a non-zero commutative ring R with unity. Then what is R / M?

Question 9

. Let R be the ring of $a \ge 2$ matrices of the form $a \ge 3$, where $a \in F$, $a \in F$, $b \in F$, $a \in F$ being a

field. Then what may be said about the ideal $M = \{ \begin{pmatrix} 0 & b \\ 0 & 0 \end{pmatrix} : b \in F \}$?

Question 10

. Let the field K be a finite extension of degree K over a finite field K with K elements. Then how many elements does K have?

Question 11

What may be said about the multiplicative group of all non-zero elements of a finite field?

Question 12

Let G_1 be a finite extension field over a field F and G_2 be a finite extension field over the field F. Then find $G_2:F$]

Question 13

What is the degree of extension of the splitting field $x^3 - 2 \in Q[x]$ over Q, where Q is the field of rational numbers?

Question 14

Which of the following field is a prime field:

- (a) field of rational numbers Q,
- (b) field of real numbers R;
- (c) field of complex numbers C;
- (d) none of these.

Question 15

. Let G be a finite extension field over a field F of degree m . Then what is the dimension of the vector space G over the field F ?

Question 16

Find the number of generators of the cyclic group \mathbb{Z}_n with addition modulo n.

Question 17

How many cyclic subgroups does the group (S,.) have where $S = \{1, i, -1, -i\}$?

Question 18

Find the number of disjoint cycles, of length at least two, whose composition yields the permutation $\begin{pmatrix} 1 & 2 & 34 & 5 & 6 \\ 2 & 4 & 31 & 6 & 5 \end{pmatrix}$.

Question 19

Let $G = (\mathbb{Z}_6, +)$ and $H = {\overline{0}, \overline{3}}$. Then find [G: H].

Question 20

Let $G = (\mathbb{Z}, +)$ and $H = (2\mathbb{Z}, +)$. Then find [G: H].

Question 21

Let G be a group and $a \in G$ with o(a) = r. If m be a positive integer then find $o(a^m)$.

Question 22

Let $\mathbb{R}[x]$ be the additive group of all polynomials with real coefficients and f'(x) be the derivative of f(x), where $f(x) \in \mathbb{R}[x]$. Find the kernel of the homomorphism $\phi \colon \mathbb{R}[x] \to \mathbb{R}[x]$ given by $\phi(f) = f'$.

Question 23

Let a group G has only one element a of order n > 1. Find the value(s) of n.

Question 24

How many ideals does a field have?

Question 25

Let $\mathbb{Z}[x]$ be the ring of all polynomials with integer coefficients. If $S_1\&S_2$ be the subsets (of $\mathbb{Z}[x]$) consisting of polynomials with odd and even constant terms respectively. Then which ones of $S_1\&S_2$ are ideals of $\mathbb{Z}[x]$?

Question 26

What are the prime ideals of the ring of integers $(\mathbb{Z}, +, .)$?

Question 27

What is the characteristic of the ring $\ensuremath{\mathbb{Z}}$ of integers?

Question 28

What is the characteristic of the ring \mathbb{Z}_5 of integers modulo 5?

Question 29

What are the maximal ideals of the ring of integers $(\mathbb{Z}, +, .)$?

Question 30

Find the number of elements of the quotient ring $\mathbb{Z}_3[x]/(x^2+1)$.