Question Bank For PG Course

Mathematics

Paper-2A REAL ANALYSIS & METRIC SPACES : PGMT-IIA

Question 1

Let $f: [0,1] \rightarrow R$ and $g: [0,1] \rightarrow R$ be two real-valued functions given by $f(x)=x^2$ and g(x)=x. Then what is the relation between sup $\{f(x): x \in [0,1]\}$ and sup $\{g(x): x \in [0,1]\}$?

Question 2

If
$$E = \{1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n}, \dots\}$$
, then

find inf E.

Question 3

Find the limit point(s) of the set $1 \quad 1 \quad 1 \quad 1$

$$E = \{0, 1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n}, \dots \}.$$

Question 4

Find $\bigcap_{n=1}^{\infty} I_n$ where $I_n = (-\frac{1}{n}, \frac{1}{n}), \quad n \in N, \ ^N$ being the

set of natural numbers.

Question 5

Let $[a_1, b_1], [a_2, b_2], \dots, [a_n, b_n]$ are

```
finitely many disjoint closed intervals
and F = \bigcup_{k=1}^{\infty} [a_k, b_k]. Then what is
the Lebesgue measure of F, i.e.,
m(F)?
```

Question 6

Let F be a countable set. Then what is Lebesgue measure of F? Question 7

Let
$$E = \bigcup_{n=2}^{\infty} \left(n - \frac{1}{n}, n + \frac{1}{n} \right)$$
. Find
 $m(E)$

Question 8

Find $L - \int \psi dx$, where $\psi : [0,1] \rightarrow R$ is given by $\psi(x) = 0$, if x is irrational = 1, if x is rational

Question 9

Find $\int x^2 d[x]$

Question 10

. Obtain the fourier series of the function f(x) = 0, $if -\pi \le x < 0$ = 1, $if 0 \le x \le \pi$

Question 11

If A and B are two sets in the metric space (X, d) with $A \cap B \neq \Phi$, then what can be said about the upper bound of diameter of $A \cup B$?

Question 12

If G is any set in the metric space (X, d) and the

closure of G_{is} $G_{, then}$ what is relation between diameters of G, \overline{G} ?

Question 13

Let (X,d) and (Y,ρ) be two metric spaces. Also let $f: (X,d) \rightarrow (Y,\rho)$ and $g: (X,d) \rightarrow (Y,\rho)$ be two continuous functions. Then what can be said about the set

 $\{x \in X: f(x) \neq g(x)\} ?$

Question 14

What can be said about the continuity or uniform continuity of the function

$$f$$
 : $(0,1] \rightarrow R$, given by $f(x) = \frac{1}{x}$,
where R is the set of real numbers?

Question 15

Let (X,d) be any metric space and $\Phi \neq A \subset X$. If $u \in \overline{A}$, then what can be said about dist(u,A)?

Question 16

Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function. Then which of the following sets is/are open and which is/are closed? $S_1 = \{x \in \mathbb{R}: f(x) > 0\}; S_2 = \{x \in \mathbb{R}: f(x) \ge 0\}$

Question 17

Find the derived set of the set $A = \{\frac{1}{m} + \frac{1}{n} : m, n = 1, 2, 3, \dots\}$

Question 18

Find the derived set of $S = \{m + \frac{1}{n} : m \in \mathbb{N}, n \in \mathbb{N}\}$

Question 19

Which sets in \mathbb{R} are both open and closed?

Question 20

If A and B are two non- empty sets in \mathbb{R} such that $a < b, \forall a \in A \& \forall b \in B$, then what is the relation between supA and supB?

Question 21

Find the Lebesgue measure of the set $\mathbb Q$ of rational numbers.

Question 22

Find inf E when $E = \{1 + \frac{1}{n} : n \in \mathbb{N}\}.$

Question 23

What can be said about the union of the closed sets $\bigcup_{1}^{\infty} F_n$, where $F_n = \left[0, \frac{n}{n+1}\right], \forall n \in \mathbb{N}$?

Question 24

For a bounded set *A* in \mathbb{R} , if $T = \{|x-y|: x, y \in A\}$, then find *supT*.

Question 25

Find the Lebesgue measure of zeros of the function $f(x) = \sin \frac{\pi}{x}, x \neq 0, x \in \mathbb{R}$.

Question 26

If A=(0,1], then find dist(0,A).

Question 27

Let (X,d) and (Y,ρ) be two metric spaces. Also let $f:X \rightarrow Y$ and $g:X \rightarrow Y$ be two continuous functions. Then what can be said about the set $\{x \in X: f(x) = g(x)\}$?

Question 28

If $\xi = (\xi_1, \xi_2, ...) \in l_p$ and $\eta = (\eta_1, \eta_2, ...) \in l_q$ where p is a real number > 1 and $\frac{1}{p} + \frac{1}{q} = 1$, what does Hölder's inequality state?

Question 29

If $f(x)=\mu, \forall x \in E$, where $\mu \in \mathbb{R}$ is constant and *E* is a set of finite measure, then find $L-\int f dx E$.

Question 30

Which of the following statement(s) represent(s) Bolzano-Weirstrass Theorem:

(i) Every infinite set has a limit point;

(ii) Every bounded infinite set has a limit point;

(iii) Every sequence has a convergent subsequence;

(iv) Every bounded sequence has a convergent subsequence;

(v) Every bounded set has a limit point.