Question Bank For PG Course

Mathematics

Paper-3A

ORDINARY DIFFERENTIAL EQUATIONS : PGMT-IIIA

Question 1

The differential equation (y - px)x = y where $p = \frac{dy}{dx} \neq 0$ can be transformed into homogeneous equation by which equation?

Question 2

What is the necessary condition for the existence of a singular solution of the differential equation (x, y, p) = 0, $p = \frac{dy}{dx}$?

Question 3

By the substitution $x^2 = u$, $y^2 = v$, $P = \frac{dv}{du}$, the differential equation (px - y)(x - py) = 2p where $p = \frac{dy}{dx}$ transforms to the clairaut's form. Write down the form.

Question 4

Find two linearly independent solutions for the differential equation

$$\frac{a}{ax^2} - 5\frac{av}{ax} + 4y = 0$$

Question 5

Find a fundamental matrix of the homogeneous linear vector differential

equation
$$\frac{dx}{dt} = \begin{pmatrix} -2 & 3 \\ 3 & -2 \end{pmatrix} x$$
 where $x =$

$\binom{x_1}{x_2}$.

Question 6

In the homogeneous linear system $\frac{dx}{dt} = Ax$ where $A = \begin{pmatrix} 3 & 2 \\ -5 & 1 \end{pmatrix}$ and $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$, find the characteristic roots of the matrix A.

Question 7

For interval $0 \le x \le \pi$, the system of differential equation $\frac{d^2y}{dx^2} + \lambda x = 0$ with boundary conditions y(0) = 0 and $y(\pi) = 0$ find the eigenfunctions and the eigen values.

Question 8

Write down the condition for which a second oder Sturn-Liouville equation

 $\frac{d}{dx}\left\{p(x)\frac{dy}{dx}\right\} + \left\{q(x) + \lambda r(x)\right\}y = 0$ is said to be regular in the interval $\leq x \leq b$.

Question 9

Find the Green's function for the equation $\frac{d^2u}{dx^2} = f(x)$ subject to the boundary condition u (0) = u(1) = 0.

Question 10

If $\delta(x)$ be the Dirac-delta function when $a \le x \le b$; find the value of $\int_{a}^{b} f(x) \ \delta(x - x_0) dx$

Question 11

Find the critical point of the system $\frac{dx}{dt} = 5x - 6y + 2$, $\frac{dy}{dt} = 4x - 5y + 3$

Question 12

Determine the nature of the critical point (0, 0) of the autonomous system $\frac{dx}{dt} = -3x + 2y$ $\frac{dy}{dt} = -x - 4y$

Question 13

In Bessel equation $z^2 \frac{d^2y}{dz^2} + z \frac{dy}{dz} + (z^2 - \gamma^2)y = 0$, Find the indicial equation corresponding to the singularity z = 0.

Question 14

In Laguerre equation

$$z\frac{d^2w}{dz^2} + (1-z)\frac{dw}{dz} + rw = 0$$
, what is
z=0?

Question 15

The Legendre polynomials $P_m(z)$ and $P_n(z)$ are orthogonal in the interval $-1 \le z \le 1$, for positive integers m and n if $\int_{-1}^{1} P_m(z)P_n(z)dz = 0$ for $m \ne n$. Now for m = n find the value of $\int_{-1}^{1} P_m(z)P_n(z)dz$.

Question 16

Find the general and singular solution of 4p2=9x.

Question 17

Using the Picard's method of successive approximation, find the second approximation of the solution of the equation $\frac{dy}{dx} = x + y^2, \ y(0) = 0.$

Question 18

It is obvious that y = x is a solution of $(x^2 + 1) \frac{d^2y}{dx^2} - dy$

 $2x \frac{dy}{dx} + 2y = 0$. Find a linearly independent solution by reducing the order.

Question 19

Consider the three vector functions

$$\vec{\emptyset}_{1}(t) = \begin{pmatrix} e^{2t} \\ 2e^{2t} \\ e^{2t} \end{pmatrix}, \ \vec{\emptyset}_{2}(t) = \begin{pmatrix} 0 \\ e^{3t} \\ e^{3t} \\ e^{3t} \end{pmatrix}$$
$$, \ \vec{\emptyset}_{3}(t) = \begin{pmatrix} e^{t} \\ e^{t} \\ e^{t} \\ e^{t} \end{pmatrix}$$

What is the value of the Wronskian $(\vec{0}_1, \vec{0}_2, \vec{0}_3)$?

Question 20

Find the general solution of the non homogeneous system

$$\frac{dx}{dt} = Ax + F(t) \text{ where } x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, A = \begin{pmatrix} 6 & -3 \\ 2 & 1 \end{pmatrix}, F(t) = \begin{pmatrix} e^{5t} \\ 4 \end{pmatrix}$$

Question 21

What is the value of $\sum_{k=1}^{n} coskx - \frac{\sin\left\{(2n+1)\frac{x}{2}\right\}}{2\sin\left(\frac{x}{2}\right)}?$

Question 22

Find the eigen values and eigen functions of the Sturm-Liouville problem $\frac{d^2u}{dx^2} + \lambda u = 0, \ u'(0) = 0,$ $u'(\pi) = 0, \ 0 \le x \le \pi \text{ and } \lambda > 0.$

Question 23

If $\delta(x)$ be the Dirac-delta function and a, b are negative and positive real numbers respectively then what is the value of $\int_{a}^{b} f(x) \delta(x) dx$?

What is the nature of the critical point (0,0) of the autonomous system $\frac{dx}{dt} = x + 3y$ $\frac{dy}{dt} = 4x + 5y$?

Question 25

What is the equation of the phase paths of the system $\frac{dx}{dt} = 5x - 6y + 2$ $\frac{dy}{dt} = 4x - 5y + 3$?

Question 26

Find the Hermite polynomials $H_n(z)$ for n = 2 and n = 3.

Question 27

If $\omega = \sum_{m=0}^{\infty} a_m z^{k+m}$, $a_0 \neq 0$ be a series of Laguerre's equation $z \frac{d^2 \omega}{dz^2} + (1-z) \frac{d\omega}{dz} + \gamma \omega = 0$ then what is the indicial equation?

Question 28

What is the Rodrigue's formula for Laguerre polynomial of degree *n*?

Question 29

If the general solution of the Bessel's equation $z^{2} \frac{d^{2}w}{dz^{2}} + z \frac{dw}{dz} + (z^{2} - r^{2})w =$ 0 be $w = AJ_{r}(z) + BJ_{-r}(z)$ where A, B are arbitrary constants then what is the value of $J_{r}(z)$?

Question 30

If $w = \sum_{r=0}^{\infty} a_r z^r$, $a_0 \neq 0$ be a series solution of the differential equations

$$(1-z^2)\frac{d^2w}{dz^2}-2z\frac{dw}{dz}+$$

n(n + 1)w = 0 then what is the relation between a_{r+2} and a_r for r = 0, 1, 2, ...?