Question Bank For PG Course

Mathematics

Paper-6B FUNCTIONAL ANALYSIS : PGMT-VIB

Question 1

Consider the set $X = \{1, 2, 3, ...\}$ regarded as subspace of the set of real numbers R with usual metric. Then check the completeness, compactness and bounds (if any) of X.

Question 2

Consider the set

 $Y = \{1, \frac{1}{2}, \frac{1}{3}, \dots\}$ regarded as

subspace of the set of real numbers Rwith usual metric. Which subsets of Yare both open and closed?

Question 3

In a metric space (X,d), take $x_0 \in X$. For $x \in X$, let $f_x : X \to R$ (space of real numbers with usual metric) be given as $f_x(y) = d(y,x) - d(y,x_0)$, for $y \in X$. Then what can be said about the continuity of f_x , for an arbitrary $x \in X$?

Consider the set C[a,b] of all real valued continuous functions on the closed intervals [a,b] with the sup metric. What can be said about compactness and bounds (if any) of C[a,b] ?

Question 5

What can be said about the subset $\{f_n\} \subset C[0,1]$ with respect to being uniformly bounded, where

 $f_n(t) = 1 + \frac{t}{n}; 0 \le t \le 1;$ and the set C[0,1] of all real valued functions on the closed intervals [0,1] is a metric space with the *sup* metric.

Question 6		
Give a necessary and sufficient condition for the subset		
$M \subset C[a,b]$ to be		
compact, where the set $C[a,b]$ of all		

set C[a,b] of all real valued continuous functions on the closed intervals [a,b] is a metric space with the sup metric.

Question 7

Let T be a linear operator over a normed linear space X and T is continuous at $a \in X$. Then what can be said about the continuity of T at other points of X ?

Question 8

Find the order of the representive matrix of a linear operator

$T: R^n \to R^m.$

Question 9

Find the dimension of the space of bounded linear operators from R° to R° .

Question 10

```
Let X be a Banach space.
Then what can be said
about the compactness and
completeness of the subset
\{x \in X: \|x\| = 1\} of X?
```

Question 11

For what values of p, the sequence space l_p of real sequences is a Hilbert space?

Question 12

For what values of p, parallelogram law holds in the sequence space l_p of real sequences?

Question 13

```
Let z be a fixed member of
a Hilbert space H. Then
what can be said about the
norm of the bounded linear
functional f over H given
by f(x) = \langle x, z \rangle, for all
x \in X?
```

Question 14

In a separable Hilbert

space H, how many elements can an orthonormal system have?

Question 15

Consider the quotient space C[0,1]/L, where C[0,1]is the linear space of all real valued continious functions over the closed interval [0,1] and L consists of those members $f \in C[0,1]$ with f(1) = 0 i.e., vanishing at t=1. Now if $h \in C[0,1]$ such that $h \notin (f+L)$, then find $(h+L) \cap (f+L)$.

Question 16

The distance D(A,B) between two nonempty subsets of A and B of a metric space (X,d) is defined to be D(A,B)= inf d(a,b), a ϵ A, b ϵ B. What can you conclude about metric property of D?

Question 17

The distance D(A,B) between two nonempty subsets of A and B of a metric space (X,d) is defined to be D(A,B)= inf d(a,b), a ϵ A, b ϵ B. If D(A,B)=0 then what should be the actual relation between A and B?

Question 18

Let X be the set of all polynomials defined on [0,1]. Consider a metric d on X defined by $d(p,q)=\sup|p(t)-q(t)|$, t $\in [0,1]$ for all $p,q \in X$. Then what kind of metric space (X,d) is?

Question 19

Let C[0,1] be the set of all real valued continuous functions on [0,1]. Consider two metric d₁ and d₂ defined by d₁(f,g) = $\sup_{t \in [0,1]} |f(t) - g(t)|$, f, g \in C[0,1] and d₂(f,g) = $\int_0^1 |f(t) - g(t)|$ dt. Let Y be the subset of C[0,1] consisting of all p \in C[0,1] such that p(0) = p(1). Then what

should be the type of (Y, d_1) and (Y, d_2) as a metric space?

Question 20

What is the metric relation between C[0,1] and C[a,b]?

Question 21

Let X be a non-empty vector space with a norm d. Then what kind of metric space (X,d) is?

Question 22

What are the topological properties of the closure of a unit ball on a finite dimensional normed space must have?

Question 23

Let X be a normed space such that the closed unit ball is compact, then which kind of linear algebraic property X must have?

Question 24

Let X and Y be normed linear spaces. What is the necessary and sufficient condition of a linear operator T : $X \rightarrow Y$ to be bounded?

Question 25

Let Y be a subspace of a Hilbert space H. What is the necessary and sufficient condition on Y to be complete?

Question 26

What is the topological property of every subset of a separable inner product space?

Question 27

If H is separable Hilbert space then what property every orthonormal set in H must have?

Question 28

Let H be a Hilbert space. If H contains an orthonormal sequence which is total in H, then what is a special topological property H must have?

Question 29

Let X be the inner product space of all real-valued continuous functions on $[0,2\pi]$ with inner product defined by $\langle x, y \rangle = \int_{0}^{2\pi} x(t)y(t)dt$. Consider the sequence $\{u_n\}$ where $u_n = \cos nt$. What kind of sequence $\{u_n\}$ is?

What is the necessary and sufficient condition for a subspace Y of a Hilbert space H to be closed in H?