Question Bank For PG Course

Mathematics

Paper-7A

DIFFERENTIAL EQUATIONS, INTEGRAL TRANSFORMATIONS: PGMT-VIIA

Question 1

The Laplace transform of a function f(t) defined for $t \ge 0$ is defined by $F(s) = \int_0^\infty e^{-st} f(t) dt$. If $f(t) = e^{t^2}$, then find F(s).

Question 2

The Laplace transform of a function f(t) is denoted by $\mathcal{L}[f(t), s] = \int_0^\infty e^{-st} f(t) dt$. Then find $\mathcal{L}[\frac{\sin \omega t}{t}, s]^{\square}$.

Question 3

Fourier transform of a function f(t) is denoted by $\mathfrak{F}[f(t),\xi] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t)e^{-i\xi t}dt$. Then find $\mathfrak{F}[e^{-a|t|},\xi](a>0)$

Question 4

Find the inverse Laplace transform of $\frac{s-2}{s^2+4s+13}$

Question 5

Find the inverse Laplace transform of $\frac{1}{(s+a)^n}$

If
$$L\{f(t)\} = \int_0^\infty e^{-st} f(t) dt = F(s)$$
,
then find $L\{tf(t)\}$

Question 7

If
$$F_c\{f(x)\} = \int_0^\infty f(t) \cos(\omega t) dt =$$

 $F_c(\omega)$, then $F_c\{f''(x)\} +$
 $\omega^2 F_c(\omega) + f'(0) = b$ implies
1. $b < 0$

- 2. b > 0
- 3. b = 1
- 4. b = 0

Question 8

The Laplace transform of a function
$$f(t)$$
 is denoted by $\mathcal{L}[f(t), s] = \int_0^\infty e^{-st} f(t) dt$.

If $f(t) = \begin{cases} \sin t, 0 < t < \pi \\ 0, t > \pi \end{cases}$ then find the value of $\mathcal{L}[f(t), s]$.

Question 9

The Laplace transform of a function
$$f(t)$$
 is denoted by $\mathcal{L}[f(t), s] = \int_0^\infty e^{-st} f(t) dt$.
If $f(t) = \frac{1-\cos t}{t}$ then find the value of $\mathcal{L}[f(t), s]$.

Question 10

If f(t) is a periodic function with period $^{\mathcal{T}}$, then find the Laplace transform L[f(t), s]

The Laplace transform of a function
$$f(t)$$
 is denoted by $\mathcal{L}[f(t),s] = \int_0^\infty e^{-st} f(t) dt$.

If $f(t) = \operatorname{erf}(t^{\frac{1}{2}})$ then find the value of $\mathcal{L}[f(t),s]$.

Question 12

If $F(\alpha)$ is the Fourier transform of f(x), then find the Fourier transform of f(ax)(a > 0)

Question 13

If $F(\alpha)$ is the Fourier transform of f(x), then find the Fourier transform of $f(x) \cos ax$

Question 14

If the Fourier sine transform of f(x) is $\frac{\alpha}{1+\alpha^2}$, thus find f(x)

Question 15

For a > 0, b > 0, find the value of

$$\int_0^\infty \frac{d\alpha}{(a^2 + \alpha^2)(b^2 + \alpha^2)}$$

Question 16

The Laplace transform of a function f(t) defined for $t \ge 0$ is denoted by $F(s) = \int_0^\infty e^{-st} f(t) dt$. What is the Laplace transform of $f(t) = t e^{-at} \cos \omega t$?

Question 17

The Laplace transform of a function f(t) is denoted by $\mathcal{L}[f(t),s] = \int_0^\infty e^{-st} f(t) dt.$ Find $\mathcal{L}[\int_0^t \frac{\sin x}{x} dx,s]$.

Fourier transform of a function
$$f(t)$$
 is denoted by $\mathfrak{F}[f(t),\xi] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t)e^{-i\xi t}dt$. Find $\mathfrak{F}\left[e^{-\frac{t^2}{2}},\xi\right]$.

Question 19

What is the inverse Laplace transform of $\frac{s}{(s^2+a^2)^2}$?

Question 20

What is the inverse Laplace transform of $e^{-a\sqrt{s}}$?

Question 21

If $L\{f(t)\} = \int_0^\infty e^{-st} f(t)dt = F(s)$, then find $L\{f(at)\}$.

Question 22

What is the Mellin Transform of $\frac{1}{1+x}$?

Question 23

The Laplace transform of a function f(t) is denoted by $\mathcal{L}[f(t),s] = \int_0^\infty e^{-st} f(t) dt.$ What is the Laplace transform of $f(t) = \begin{cases} \sin t, 0 < t < \pi \\ 0, t > \pi \end{cases}$?

Question 24

The Laplace transform of a function f(t) is denoted by $\mathcal{L}[f(t), s] = \int_0^\infty e^{-st} f(t) dt$. What is the Laplace transform of $f(t) = \frac{1-\cos t}{t}$?

Question 25

Find the zero order Hankel transform of $\frac{e^{-ar}}{r}$ (a > 0).

Question 26

Find the zero order Hankel transform of e^{-ar^2} , (a > 0)?

Fourier transform of a function f(x) is denoted by $F(s) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) e^{-isx} dx$. What is the Fourier transform of $f(x) = \begin{cases} \sin x, 0 < x < \pi \\ 0, \text{ Otherwise} \end{cases}$?

Question 28

If F(s) is the Fourier transform of f(x), find the Fourier transform of $f(x) = \begin{cases} 1 - |x|, & |x| < 1 \\ 0, & \text{Otherwise} \end{cases}$

Question 29

If $F_c(s)$ is the Fourier cosine transform of f(x), then find the Fourier cosine transform of $f(x) = e^{-ax} \cos ax$, a > 0.

Question 30

If $F_c(s)$ is the Fourier cosine transform of f(x), then find the Fourier cosine transform of $f(x) = e^{-ax} \sin ax$, a > 0.