Question Bank For PG Course

Mathematics

Paper-7B

INTEGRAL EQUATIONS AND GENERALISED FUNCTIONS : PGMT-VIIB

Question 1

Find the solution of the homogeneous Fredholm integral equation $u(x) = -\int_0^1 u(t)dt$

Question 2
Let
$$\varphi$$
 satisfy
 $\varphi(x) = f(x) + \int_{0}^{x} \sin(x-t)\varphi(t)dt.$
Then find φ .

Question 3

Consider the integral equation $y(x) = x^3 + \int_0^x \sin(x-t)y(t)dt$, $0 \le x \le \pi$. Then, find the value of y(1)

Question 4

What is the value of λ for which $u(x) = 1 + \lambda x$ is a solution of $x = \int_0^x e^{x-t}u(t)dt$?

Question 5

Find the resolvant kernel $R(x, t, \lambda)$ for the Volterra integral equation $\varphi(x) = x + \lambda \int_{a}^{x} \varphi(s) ds$,

Question 6

For the integral equation $y(x) = 1 + x^3 + \int_0^x K(x,t)y(t)dt$, with kernel $K(x,t) = 2^{x-t}$, find the iterated kernel $K_3(x,t)$

Question 7

Find the characteristic number homogeneous integral equation $\varphi(x) - \lambda \int_0^1 (3x - 2)t\varphi(t)dt = 0$

Question 8

Let λ_1, λ_2 be the characteristic numbers for the homogeneous integral equation $\varphi(x) - \lambda \int_0^1 (xt + 2x^2)\varphi(t)dt = 0.$ Then find λ_1, λ_2 .

Question 9

Which of the following is correct?

1. $u(x) = \int_0^1 e^{xt} u(t) dt$ is a Volterra integral equation

2.
$$u(x) = \int_0^x xtu(t)dt$$
 is a
Fredholm integral equation

- 3. $u(x) = \lambda \int_{a}^{b} K(x,t)u(t)dt$ is a Fredholm integral equation
- 4. $u(x) = \lambda \int_0^1 x t u(t) dt$ is a singular integral equation

Question 10

The homogeneous Fredholm integral equation u(x) =

$$\lambda \int_{0}^{b} K(x,t)u(t)dt$$

has only trivial solution. Then what could be said about the solution/solutions of the non-homogeneous equation u(x) =

$$f(x)+\lambda\int_{a}^{b}K(x,t)u(t)dt$$
 ?

Question 11

Which of the following kernels are degenerate?

1. K(x,t) = sin(xt)2. $K(x,t) = e^{x+t}$ 3. $K(x,t) = e^{xt}$ 4. K(x,t) = cos(xt)

Find the Volterra integral equation equivalent to the I.V.P. $\frac{dy}{dx} - 2xy = e^{x^2}$, y(0) = 1.

Question 13

Find thekernel of the Fredholm Integral equation equivalent ton to the B.V.P, $y^{r}(x) + 9y(x) = \cos(x),$ y(0) = y(1) = 0, is

Question 14

Find the eigenvalues of $y(x) = \lambda \int_0^{2\pi} \sin(x+t) y(t) dt$

Question 15

For the homogeneous Fredholm equation $\varphi(x) = \lambda \int_0^1 e^{x+t} \varphi(t) dt$, a nontrivial solution exists, when λ has the value

Question 16

What is the Volterra integral equation equivalent to the I.V.P, $\varphi''(x) =$ $x\varphi(x), \ \varphi(0) = 1, \varphi'(0) =$ 0?

Question 17

Find the Neumann series solution of the integral equation $\phi(x) = 1 + \lambda \int_0^1 xt\phi(t) dt$.

Question 18

Find the Neumann series solution of the integral equation $\phi(x) = 1 + \lambda \int_0^1 e^{x-t} \phi(t) dt$.

Question 19

Find the solution of the

```
integral equation \phi(x) =

1 + \int_0^x (x - t)\phi(t) dt, 0 \le x \le 1.
```

Question 20

```
Find the solution of the
integral equation \phi(x) =
1 + \int_0^x 2t\phi(t) dt, 0 \le x \le
1.
```

Question 21

For the integral equation $y(x) = f(x) + \lambda \int_0^1 K(x,t)y(t)dt$, with kernel $K(x,t) = xe^t$, what is the value of iterated kernel?

Question 22

What is the characteristic number of the homogeneous integral equation $\varphi(x) - \lambda \int_0^1 (3 - \frac{3x}{2}) t\varphi(t) dt = 0$?

Question 23

Let λ_1, λ_2 be the characteristic numbers for the homogeneous integral equation $\varphi(x) - \lambda \int_0^1 (xt + 2x^2)\varphi(t)dt = 0.$ What are the value of λ_1, λ_2 ?

Question 24

Which of the following is correct?

Question 25

Find the condition that the integral equation $\varphi(x) = f(x) + \lambda \int_0^1 t \min(x, t) \phi(t) dt$,

 $0 \le x \le 1$ has unique solution.

Question 26

Which of the following kernels are degenerate?

Question 27

Using the resolvent kernel, find the solution of the Fredholm integral equation $\varphi(x) + \int_0^1 e^{x-t}\varphi(t)dt = e^x.$

Question 28

Find the kernel of the Fredholm Integral equation equivalent to the B.V.P, $y''(x) + \lambda y(x) = 0$, y(0) = y(1) = 0.

Question 29

Find the eigen values of $\phi(x) =$ $\lambda \int_0^{\pi} \cos(x + t) \phi(t) dt.$

Question 30

For the Fredholm equation $\varphi(x) =$ $\lambda \int_{-1}^{1} x e^{t} \varphi(t) dt + x$, no solution exists, what is the value of λ ?