Question Bank For PG Course

Mathematics Paper-9B(i)(OLD)

Special Paper: Pure Mathematics TOPOLOGICAL GROUP: PGMT-IXB(OLD)

Question 1

Let P be an open set in topological group G and A be any subset of G. Then which of the followings is/are true?

- (i) uP, Pu are open set in G for any member $u \in G$
- (ii) AP and PA are open sets in G
- (iii) P A is a closed set in G

Question 2

Which of the followings is/are true?

- (i) The circle group is homeomorphic with the unite circle in \mathbb{C} .
- (ii) If G be a locally compact Hausdorff abelian topological group, then its dual group G^* is also a similar topological group
- (iii) Let G be a topological group then G^* be a topological group.

Question 3

Let *F* be a closed set and *C* be a compact set in a topological group. Which of the followings is/are true?

- (i) FC is a closed set
- (ii) CF is a closed set
- (iii) CF or FC may not closed.

Question 4

Fill in the blank.

A topological group that is Hausdorff is

- (i) completely regular
- (ii) regular
- (iii) T_1

Question 5

Which of the followings is/are true?

- (i) Let H be a sub-group of a topological group G, then its closure \overline{H} is so.
- (ii) A sub-group H of a topological group G is open iff its interior $int(H) \neq \emptyset$.
- (iii) A sub-group H of a topological group G is open iff its interior $int(H) = \emptyset$.

Question 6

Fill in the blank.

The centre of a Hausdorff topological group is a Normal sub-group.

- (i) open
- (ii) closed
- (iii) may not be closed

Question 7

Which of the followings is/are true?

- (i) $M_n(\mathbb{R})$ is Hausdorff topological group that is compact
- (ii) $M_n(\mathbb{R})$ is Hausdorff topological group that is not compact
- (iii) $M_n(\mathbb{R})$ is Hausdorff topological group that is locally compact
- (iv) $M_n(\mathbb{R})$ is Hausdorff topological group that is not locally compact

Question 8

Which of the followings is/are true?

- (i) $G_n(\mathbb{R})$ is an open set in topological group $M_n(\mathbb{R})$.
- (ii) $G_n(\mathbb{R})$ is an closed set in topological group $M_n(\mathbb{R})$.
- (iii) $O_n(\mathbb{R})$ is a compact topological sub group of $G_n(\mathbb{R})$.

Question 9

Let $\{x_n\}$ and $\{y_n\}$ be two Cauchy sequences in a Banach Algebra X. Is the sequence $\{x_ny_n\}$ Cauchy?

Question 10

Let f be a complex homomorphism on a Banach Algebra X and $x \in X$ with $||x|| \neq 1$. Then find f(x).

Question 11

Let X be a Banach Algebra with identity. Is the set of all invertible elements of X open or closed?

Question 12

Is multiplication operator in a Banach Algebra continuous?

Question 13

Let M be a maximal ideal in a commutative Banach Algebra X with identity e. Find the value of e(M).

Question 14

Let M be a maximal ideal in a commutative Banach Algebra X with identity. Is X/M a Banach Algebra?

Question 15

Which of the following statement is always true about an ideal I of the commutative Banach Algebra X

- 1. For any $x \in X$, x belongs to I
- 2. Identity e of X belongs to I
- 3. For any $x \in X$ and $y \in I$, then $xy \in I$

Question 16

Fill in the blank: Let G be a topological group. Then the map $G \to G$ given by $x \to x^{-1}$ are.......

- (i) Continuous
- (ii) Self homeomorphism
- (iii) Differentiable
- (iv) Smooth

Question 17

Which of the following is/are not topological group?

- (i) Set of all $n \times n$ real matrices with addition operation
- (ii) Set of all $n \times n$ complex matrices with addition operation
- (iii) Set of all reals *R* with upper limit topology.

Question 18

Let P be an open set in a topological group G. Which of the following is/are true?

- (i) (G-P)u is closed for $u \in G$
- (ii) uP is closed for $u \in G$
- (iii) uP is open for $u \in G$

Question 19

Let E and W be two compact subsets of a topological group G. Which of the following is/are true?

- (i) EW is also compact
- (ii) EW is not always compact
- (iii) EW is open

Question 20

Let (X,T) be a topological space. Which of the followings is/are true?

- (i) If every singleton set is closed then (X, T) is T_1
- (ii) If every net in X converges to at most one point in X, then (X,T) is T_2
- (iii) If (X, T) is T_2 , then every sequence is convergent.

Question 21

Let G be a T_1 topological group. Which of the following is/are true?

- (i) Every net in *G* converges to at most one point in *G*.
- (ii) G is T_0 space
- (iii) Every singleton set in G is closed.

Question 22

Let H be a subgroup of a topological group G. Which of the following is/are true?

- (i) If H is normal in G, then \overline{H} is so.
- (ii) If H is open, then H is also closed in G.
- (iii) \overline{H} is closed in G.

Question 23

Fill in the blank. The centre of a Hausdorff topological group is............

- (i) Open
- (ii) Normal and open
- (iii) Normal and closed

Question 24

Fill in the blank. Let G be a topological group and H a sub-group of G. Then G/H is a discrete space if and only if H is......

- (i) Closed
- (ii) Open
- (iii) Neither open nor closed
- (iv) Normal subgroup

Question 25

Fill in the blank.

A topological group is locally compact topological group iff its identity

has.....

- (i) Compact neighbourhood
- (ii) Open neighbourhood
- (iii) Closed neighbourhood

Question 26

Let $f: G \to H$ be a continuous homomorphism between two topological groups. Which of the following is/are not true?

- (i) f is an open mapping
- (ii) f is a homeomorphism
- (iii) f is a closed mapping

Question 27

Let $f: G \to H$ be a homomorphism between two topological groups. Which of the following is/are true?

- (i) If A is symmetric in G, then f(A) is symmetric in H
- (ii) For A and $B \subset G$, $\overline{f(A)f(B)} \subset \overline{f(AB)}$
- (iii) For A and $B \subset G$, $\overline{f(AB)} \subset \overline{f(A)f(B)}$

Question 28

Is the set of all invertible elements of a Banach Algebra X open or closed?

Question 29

Let Z denotes the set of all topological divisors of zero in Banach Algebra X and G is the set of all invertible elements of X. Which of the following is/are true?

- (i) $X\backslash G = Z$
- (ii) $Z \subset X \setminus G$
- (iii) $X\backslash G \subset Z$

Question 30

Find the value of

$$\int_{0}^{\infty} \frac{(\cos \lambda x)}{\lambda^2 + 1} d\lambda$$