<u>Question Bank for PG Course</u> অঙ্ক (Mathematics)

প্রথম(খ) পত্র (Paper - IB)

Linear Algebra : PGMT-IB

- Which of the followings is/are vector space over the real field?
 1. Set of all real polynomials R[x]
 2. Set of real polynomials of degree 2
 3. Set of real polynomials of degree less than 2
- 2. Which of the followings is a subspace of the vector space R² over the real field?
 1. {(x, 0): x ∈ R}
 2. {(x, 2x): x ∈ R}
 3. {(x, x²): x ∈ R}
- 3. Let $W_1 = \{(x, 0) : x \in R\}$ and $W_2 = \{(0, y) : y \in R\}$. Is $W_1 \cup W_2$ a subspace of R^2 ?
- 4. Is the vector (1,2,3) linearly independent or dependent in the vector space R^3 over the real field?
- 5. Are the vectors (1,2,3), (1,4,0), (0,0,5) and (1,5,0) linearly independent or dependent in the vector space R^3 over the real field?
- 6. What is the standard basis of the vector space $R_2[x]$, set of all real polynomials of degree less than or equal to 2, over the real field?
- 7. What is the value of the inner product $(x, 0) \quad \forall x \in V$ in an inner product space *V*?
- 8. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation defined by $T(x, y, z) = (x, y, 0), \forall (x, y, z) \in \mathbb{R}^3$. Find the kernel of T.
- 9. Let $T: V \to W$ be a one-one linear transformation. Find the kernel of T.
- 10. If a vector space V is isomorphic to the vector space R^3 over the real field, then what is the dimension of V?
- 11. Is λ is an eigenvalue of a non-singular matrix A, then what is the eigenvalue of the matrix A^{-1} ?
- 12. Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be a linear transformation defined by T(x, y, z) = (3x + 2y - 4z, x - 5y + 3z).Find the matrix of T relative to the basis (1,1,1), (1,1,0), (1,0,0) of \mathbb{R}^3 and

(1,3), (2,5) of \mathbb{R}^2 .

- 13. Find the eigenvalues of the matrix $A = \begin{pmatrix} 1 & 3 \\ 4 & 5 \end{pmatrix}$.
- 14. What are the eigenvalues of a real symmetric matrix?

15. Let $A = \begin{pmatrix} 1 & 3 \\ 4 & 5 \end{pmatrix}$ and Bis the diagonal matrix with eigenvalues of Aas diagonal elements. If $B = P^{-1}AP$, then find P.