<u>Question Bank for PG Course</u> অঙ্গ (Mathematics)

ষষ্ঠ(খ) পত্ৰ (Paper - VIB) Functional Analysis : VIB

- 1. Consider the set $X = \{1, 2, 3, ...\}$ regarded as subspace of the set of real numbers R with usual metric. Then check the completeness, compactness and bounds (if any) of X is
- 2. Consider the set $Y = \{1, \frac{1}{2}, \frac{1}{3}, \dots\}$ regarded as subspace of the set of real numbers R with usual metric. Which subsets of Y are both open and closed?
- 3. In a metric space (X, d), take $x_0 \in X$. For $x \in X$, let $f_x : X \to R$ (space of real numbers with usual metric) be given as $f_x(y) = d(y, x) d(y, x_0)$, for $y \in X$. Then what can be said about the continuity of f_x , for an arbitrary $x \in X$?
- 4. Consider the set C[a,b] of all real valued continuous functions on the closed intervals [a,b] with the *sup* metric. What can be said about compactness and bounds (if any) of C[a,b]?
- 5. What can be said about the subset $\{f_n\} \subset C[0,1]$ with respect to being uniformly bounded, where $f_n(t) = 1 + \frac{t}{n}$; $0 \le t \le 1$; and the set C[0,1] of all real valued functions on the closed intervals [0,1] is a metric space with the *sup* metric.
- 6. Give a necessary and sufficient condition for the subset $M \subset C[a,b]$ to be compact, where the set C[a,b] of all real valued continuous functions on the closed intervals [a,b] is a metric space with the *sup* metric.
- 7. Let T be a linear operator over a normed linear space X and T is continuous at $a \in X$. Then what can be said about the continuity of T at other points of X?
- 8. Find the order of the representive matrix of a linear operator $T: R^n \to R^m$.
- 9. Find the dimension of the space of bounded linear operators from R° to R° .
- 10. Let X be a Banach space. Then what can be said about the compactness and completeness of the subset $\{x \in X : \|x\| = 1\}$ of X?
- 11. For what values of p, the sequence space l_p of real sequences is a Hilbert space?
- 12. For what values of p, parallelogram law holds in the sequence space l_p of real sequences?

- 13. Let z be a fixed member of a Hilbert space H. Then what can be said about the norm of the bounded linear functional f over H given by $f(x) = \langle x, z \rangle$, for all $x \in X$?
- 14. In a separable Hilbert space H, how many elements can an orthonormal system have?
- 15. Consider the quotient space C[0,1]/L, where C[0,1] is the linear space of all real valued continuous functions over the closed interval [0,1] and L consists of those members $f \in C[0,1]$ with f(1) = 0 i.e., vanishing at t = 1. Now if $h \in C[0,1]$ such that $h \notin (f + L)$, then find $(h + L) \cap (f + L)$.