Question Bank for PG Course

অন্ধ (Mathematics)

সপ্তম (খ) পত্ৰ (Paper - VIIB)

Integral Equations And Generalised Functions: PGMT-VIIB

- 1. Find the solution of the homogeneous Fredholm integral equation $u(x) = -\int_0^1 u(t)dt$
- 2. Let φ satisfy $\varphi(x) = f(x) + \int_0^x \sin(x-t)\varphi(t)dt$. Then find φ .
- 3. Consider the integral equation $y(x) = x^3 + \int_0^x \sin(x t)y(t)dt$, $0 \le x \le \pi$. Then, find the value of y(1)
- 4. What is the value of λ for which $u(x) = 1 + \lambda x$ is a solution of $x = \int_0^x e^{x-t} u(t) dt$?
- 5. Find the resolvant kernel $R(x,t,\lambda)$ for the Volterra integral equation

$$\varphi(x) = x + \lambda \int_a^x \varphi(s) ds,$$

- 6. For the integral equation $y(x) = 1 + x^3 + \int_0^x K(x,t)y(t)dt$, with kernel $K(x,t) = 2^{x-t}$, find the iterated kernel $K_3(x,t)$
- 7. Find the characteristic number homogeneous integral equation

$$\varphi(x) - \lambda \int_0^1 (3x - 2)t\varphi(t)dt = 0$$

8. Let λ_1, λ_2 be the characteristic numbers for the homogeneous integral equation

$$\varphi(x) - \lambda \int_0^1 (xt + 2x^2) \varphi(t) dt = 0$$
. Then find λ_1, λ_2 .

- 9. Which of the following is correct?
 - 1. $u(x) = \int_0^1 e^{xt} u(t) dt$ is a Volterra integral equation
 - 2. $u(x) = \int_0^x xtu(t)dt$ is a Fredholm integral equation
 - 3. $u(x) = \lambda \int_a^b K(x,t)u(t)dt$ is a Fredholm integral equation
 - 4. $u(x) = \lambda \int_0^1 xtu(t)dt$ is a singular integral equation
- 10. The homogeneous Fredholm integral equation $u(x) = \lambda \int_a^b K(x,t)u(t)dt$ has only trivial solution. Then what could be said about the solution/solutions of the non-homogeneous equation $u(x) = f(x) + \lambda \int_a^b K(x,t)u(t)dt$?
- 11. Which of the following kernels are degenerate?

- 1. K(x,t) = sin(xt)
- $2. K(x,t) = e^{x+t}$
- $3. K(x,t) = e^{xt}$
- 4. K(x,t) = cos(xt)
- 12. Find the Volterra integral equation equivalent to the I.V.P, $\frac{dy}{dx} 2xy = e^{x^2}$, y(0) = 1.
- 13. Find the kernel of the Fredholm Integral equation equivalent ton to the B.V.P,

- 14. Find the eigenvalues of $y(x) = \lambda \int_0^{2\pi} \sin(x+t) y(t) dt$