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74 Unit 4 Q -Contents : Banach Algebra, Invertible | Non-invertible Elements, their Proper- ties and Representations,
Continuity of Inverse Mapping, Topological Divisor of Zero, Resolvant Set, Spectrum, Spectral Radius, its formula) 4.1 In a
Banach Algebra two apparently diverse trains of disciplines—topological and Algebraic are in conjunction to make a
single mathematical system. Definition 4.1.1. An algebra X over a real / Complex field is a system of two compositions,

namely, a Vector-space in which multiplication is defined subject to :— (1) (xy)z = x(yz) for any three members

X, Y, Z
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of X (2a) x(y + z) = xy + xz, and (2b) (x + y)z = xz + yz for any three members x, y, z

of X, (3) ?(xy) = 7?x)y = x(?y)

for any scalar ? and any two element x, y ? X. We shall generally deal with complex scalar field ? and term X as an algebra
(over ?). Algebra X is said to be commutative if multiplication operation in X is commutative ; That is to say that xy = yx for
all members x and y in X. An algebra X is said to possess an identity if there is a member e called the identity in X such
that xe = ex = x for all x ??X. It is a routine basiness to see that identity element in a Banach Algebra is unique. Example
4.1.1. The space R of all reals as a real Vector-space becomes a commutative (real Banach Algebra where multiplication is
taken as the usual arithmetic multiplication. Here we see that this multiplication operation in R is indistinguishable from
one of the Principal operation, namely scalar multiplication in

100% MATCHING BLOCK 2/17 SA SHAHEEBA P.pdf FINAL.pdf (D143096904)

Vector-space. 75 Example 4.1.2. Let X be a Vector space and

L (X, X) be the collection of all linear operators T : X ??X. Then under usual addition and multiplication (Composition) one
makes a routine exercise to check that L (X, X) is an Algebra with identity element as the Identity operator | : X ??X where
I(x) = x for x ??X. Notice that | is not the same as additive identity, namely the zero operator O sending every member x
??X to the zero vector in X. In general, L (X, X) is not a commutative Algebra. Neither it has divisor of zero. Definition 4.1.2.
An elgebra X is said to be a Banach Algebra if X is a Banach space (over ?) with respect to a norm || . || such that for x, y
22X A xy [ 2211 x [ 1y |]. If X possesses the identity element e, then || e || = 1. Example 4.1.3. Consider the Banach space
Cla, b] of all real-valued continuous functions over the closed interval [a, b] of reals with sup norm. Then Cla, b] is a
commutative Banach Algebra with identity e = constant function equal to 1 throughout [a, b], and with usual
multiplication, namely (xy) (t) = x(t) y(t) in a ??t ??b and x, y ??Cla, b]. Example 4.14. Let ? ?n 1 denote the Vector space of
all complex polynomials of degree ??n. Since this is a finite dimensional vector space it becomes a Banach space with
repect to the norm of x ??? ?n 1 defined as || [[xaiin???1wherex(tt =a0+alt+a2t2+..+antn????n1,and

Then ? ?n 1 becomes a Banach Algebra. Example 4.1.5. The collection BdL (X, X) of all bounded Linear operators : X ? X
becomes a Normed Linear space when X is a Normed Linear space with usual operator norm || T || as T ??BdL (X, X). If X
is a Banach space, then BdL (X, X) becomes a Banach space. Taking multiplication of two members of BdL (X, X) as their
usual

76 composition it is now a routine exercise to check that BdL (X, X) is a Banach Algebra, where the identity member
equals to the Identity operator | : X ??X. As observed earlier Banach Algebra BdL (X, X) may not be commutative. Take the
case when X = Euclidean n-space R n which is Banach space with usual norm. By Matrix representation Theorem every
member of BdL (R n, R n) is represented by a square matrix of size n over reals. As we know that matrix multiplication is
not commutative, so BdL (R n, R n) is not commutative. Theorem 4.1.1. Multiplication operation in a Banach Algebra X is
a continuous operation. Proof : Let {x n } and {y n } be two sequences of elements in X such that lim

nnxx???andin norm of X. So, . Now,

PARASAKTHI_MATHEMATICS_GAC Krish.pdf

56% MATCHING BLOCK 3/17 SA (D110268816)

XNyn—-xy=Xn-x)yn+xlyn—y) givesxyXxyXxXyXyyyxxxyyn
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is a convergent sequence in X we know that it is bounded and let || y n || ??M for all n for some +ve real M. Therefore

An element x in a Banach Algebra X with identity e is said to be invertible if x —1 (inverse of x) exists in Xi.e.x —=1? X
satisfying x —1 (x) = xx —1 = e. Otherwise, x is said to be a non-invertible element in X. Explanation : (I) If inverse of x exists
in X (x ??X), x =1 is unique. Because suppose yx = e = xz, then we have,y =ye = y(xz) = (yx) z=ez =z (Il) If xand y are
both invertible, then xy is invertible and (xy) -1 =y -1x -1.

77 Because, (xy) (x =1y =1x -1) =x(yy =1) x =1 = xex =1 = xx =1 = e. and similarly, (y =1 x —=1) (xy) = e. Theorem 4.1.2.
The set G of all invertible elements in X forms a Group. The proof readily follows from Explanations (I) and (Il) 4.2.
Suppose X is a Banach algebra with identity e. Then, ofcourse, e is an invertible element in X ; There are non- invertible

elements of X forms an open set in X. Theorem as under presented demonstrates that even members of X close to e are
invertible. Theorem 4.2.1. If x ??X satisfies ||

Representations of Locally Compact Groups (Rau ...

90% MATCHING BLOCK 4/17 SA (D9189229)

X || &gt; 1, then e-x is invertible and (e — x) -1 = e x
jj????1. Proof: By Induction we have x x j j ? ?for all +ve integers j. Therefore the series xjj? ? ? 1 is convergent,

We now verify that Inverse of e — x equal to s i.e. (e — x) —1 = s. For any natural number n we have (

Representations of Locally Compact Groups (Rau ...

68% MATCHING BLOCK 5/17 SA (D9189229)

e-x)(le+x+x2+..+xn)=(e+x+x2+..+xn)le—x)=e—-x

n+1 Because || x || &gt; 1, we have limnnx?? ?? 10 (zero vector in X).
78 So one can pass on lim n?? in (1) and since multiplication operation is continuous we have, (e - x)s=s(e - x) = e
That gives, (e — x) —1 exists and it is equal to s. i.e. (e —

24% MATCHING BLOCK 6/17 SA Fuctional Analysis.pdf (D142230889)

eexjj????2?()1.Corollary 2. Suppose x ??????????X and a scalar ??????????satisfies || x || &gt; | ?2??2??222?|. Then

90% MATCHING BLOCK 7/17 SA Fuctional Analysis.pdf (D142230889)

af.Theorem 4.2.2. The set G of all invertible elements of X forms an open set in X. Proof : Take?x 0 ??G ; Take an open
ball Br(x0)withradiusrx??101ThenxBxr?(), 0ifand only if
xxx??2?70011.Puty=xx01?andz=e -y, Thenwe have, ze
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from above). So Theorem 4.2.1 applies and we conclude that e — z is invertible. i.e., y is invertible. Hence y ??G. As x O
??Gandy ??G and Gis a Group, We see that (x 0y) ?7?G. Now x 0y =()xxxG001??and henceBxGr()07?;
showing x O is an interior point G and therefore G is open as wanted to be shown. Corollary : The set of all non-invertible

atx Owithradius??12101.

46% MATCHING BLOCK 9/17 SA S41441 Mathematics 04.pdf (D164868804)

that

taking inverse mapping is continuous at x O . The proof is now complete. 4.3. An elegent way of proving some results in
Theory of Convolutions of functions or in Fourier Transforms of functions in L 1 (G) as applications of Duality Theory in a
Topological Group rests in a Banach Algebra. One of the reasons is that in a Banach Algebra ideas from Algebra,

Topology and Analysis converge simultaneously. Let G be a locally compact Hausdorff Topological Abelian Group. Then

g) (x) = f(x y)gly)dy G ? z That is why we need demonstrating more in a Banach Algebra X in a quick form as under.

81 Definition 4.3.1. (Topological divisor of zero) : An element z in X is called a Topological divisor of zero if there is a
sequence {z n } of elements z nin X with || z n || = 1 such that either im O or, iImOnnnnzzzz??????(0 = zero
Vector in X) Explanation : Every divisor of 0 is, ofcourse, a Topological divisor of zero. We have the subset G of X
comprising of all invertible elements in X. Let Z denote the set of all topological divisors of zero in X, then we see
presently that there is a connection between Z and the set (X\G). Theorem 4.3.1. Z ??(X\G) Proof : Take z? Z, Let{z n } be
a sequence in X with zn ? 1 such that either limor, imnnnnzzzz??????00.If possible let z??G ; Then z -1 ??G. By
continuity of multiplication we havezn=z-1zzn=z-1(zzn)??z-10=0asn??; That contradicts the assumption

Theorem 4.3.3. If f is a complex homomorphism on X, then (i) f(e) = 1, e being the identity in X, and (ii) if x is an invertible
element in x, then f(x) ??0. Proof : (i) Since f is a non-zero linear functional take u ??X so that f(u) ??0. Then f(u) = f(u. e) =
f(u) f(e) and this gives f(e) = 1. (i) Let x ??X be an invertible element, then f(x) f(x =1) = f(xx —=1) = f(e) = 1 from (i).
Therefore,

f(x) ??0. Theorem 4.34. If f is a complex homomorphism on

4 of 11 02-05-2023, 18:00
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fle — x) 2?0 or, f(e) — f(x) 2?0 or, f(x) ??f(e) = 1, giving f(x) 7?1

Next let || x || &lt; 1; choose a scalear ??with 0 &gt; ??&gt; 1 such that ???? x ?2?&gt; 1 or, 2???x ???&gt; 1 ; As above f(?x)
2?1 or, ?f(x) ??1 or, , where ??satisfies O &gt; ? &gt; 1 and therefore f(x) ??1. The proof is now complete. The converse part
of Theorem 4.3.3 is also true. The proof of converse part is rather long and involved ; We present a special case for
simplicity.

83 Theorem 4.3.5. If ? is a dinear functional over X with ?(e) = 1 and ?(x) 7?0 for every invertible element x in X and Null
space of ? is a sub-algebra of X, then ? is a complex homomorphism. Proof : Let Null-space of ? be denoted by N. Take x
72X Put?(x) =??? Now ? (x — ?e) = ?(x) — ??(e) = 0 ; So (x — ?e) ??N Put x — 7e = a; so that we may represent x = a + ?e =
a + ?(x)e, where a ??N. Similarly, write y ??X asy = b + ?(y)e, where b ??N. Therefore, xy = ab + ?(y) a + ?(ab) = O ; because
N is Null-space of ? which is also an Algebra (ab ??N). Therefore we have from above ?(xy) = ?(x) ?(y) for all x, y ??X and
proof is complete. 4.4 Resolvent set ; Spectrum As before X is taken as complex Banach Algebra with identity e. Take x

X),
Then

59% MATCHING BLOCK 11/17 SA Fuctional Analysis.pdf (D142230889)

X?1l)=(x-?1le)-landx(?2)=(x—-?2e)-1;andx(?1) -1x?2)=x—-?1e)x(?2)=(x-?2e+?2e-21e)x(?
2)=x=-?2e)x(?2)+(?2e-?1e)x(?2)=e+(?2-?1)x(?2) Thatgivesx (?2)=x(?1)+(?2-?1)x(?2)x(?1
)

of, . ... (*) Theorem 4.4.1. The resolvent function x(?) is an analytic function. Proof : Take ???? 0 ???(x) with ????? 0 . From
(*) above

45% MATCHING BLOCK 12/17 SA 541441 Mathematics 04.pdf (D164868804)

continuous function of scalar ?. Take ? 0 ???(x). That means x — ? 0 e is invertible. So (x — ? 0 e) ??G. Since G is open, we
find an openballBxer ()?? 0 centred at (x — ? 0 e) with a +Ve radius r suchthatBxe Gr()??? 0. Since fis
continuous at ? 0, choose a +Ve ? such that ???f(?) — f(? 0) ???&gt; r whenever ???2?2?2?2?2?2222??? ie,f(?) = (x — ?7e) ?? Bx e
r()??0 whenever, 7?22?2722 0?2?2727 i.e., ?????(x) whenever ????—-? 0 ??&gt; ?? Hence ? 0 is an Interior point of ?(x), and
?(x) is shown to be an open set. Theorem 4.4.3. For x ??X, spectrum ?(x) ???. Proof : Consider the Dual

50f11 02-05-2023, 18:00
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X* of X and take f ??X*. For ? ???(x), Let f(?) = f((x — ?e) —1) = f(x(?)). Since f is continuous it follows that f(?) is a

af
ej11
86 For large value of | ?| we, have and therefore,

38% MATCHING BLOCK 14/17 SA Fuctional Analysis.pdf (D142230889)

???and f(?) becomes an entire function. So by Lioville's Theorem f(?) must be a constant function, and from limit above
we see that this constant = 0. i.e. f(?) = 0 for all ????= ?(x). This is true for every member f coming from X*, and therefore
it follows that x(?) = (x — ?e) —1 = 0 is X for and ? ? ?. But this is not the case ; because || e || = ||(x - ?e) x(?) || = || O ||— a
contradiction. Therefore conclusion is that ??(x) ???. Theorem 4.4.4 If a Banach Algebra X with identity e has every non-

member of X is invertible. Therefore x — ?e = 0 or x = ?e.

87 Now if ?1and ? 2 are two scalars withx =?1e=7?2e,Then?? ?=?? . xis a unique multiple of e. Consider the
mapping ??: X ????given by ?(x) = ?(?e) = ? This mapping ??is 1 — 1, Linear plus ??is onto. Then ??is a desired isomorphism
as wanted. Theorem 44.5 If zero is the only Topological divisor of zero is X, then X is isometrically Isomorphic to the

topological divisor of zero. By assumption x — ?e = 0 gives x = ?e. Now one can copy rest of the proof as in proof of
Theorem 4.4.4 to conclude that X is Isomorphic to ??as desired. 4.5 Spectral radius formula Let x?X and ?(x) is spectrum.
We know that ? 7 2?2 2?? ()x x sup ? ? Theorem 4.5.1 If p(t) is a polynomial with complex coefficients and x?????X, then

0 }. So in this case ?(p(x)) = p (?(x)). For any member z?X and any scalar ??we show that ??(?z) = ???(z). This is ok when
??= 0. Supper ????0. Then take ??7??(??x), ? 7z — ?eis not invertible ? z — ? a e is not invertible

88 7 ??(z) ? 7?? ?(2). Let us now consider polynomial with leading coefficient equalto 1, and let p(t) =tn +? n-1tn-1
+..+?21t+?0(n?1), and take ????and p(t) — ?. Since scalarfield ??is algebrically closed we know that p(t) — ??is
completely factorisable like, p(t) = ? =(t-?21)(t-72) ... (t-?n) ... (1) writexfortandsetp(x) —?e=(x-?1e)(x —
22e€) .. xX—-?ne).... (2) If 222?(p(x)), then one of factors (x — ? j e) must be non-invertible and in that case ? j ??(x).
That implies p(? j)???p (?(x)) = {p(?) : ??2?2(x)} ......(3) Taking ? j for t in (1) above we see that p?(? j) = ??and (3) becomes
??p(?(x)), thus we have shown ?(p(x)) ? p(?(x)). To obtain opposite inclusion relation let ??p(?(x)) ; by Definiton of p(?(x)), we
find ? j 7??(x) such that ? = p(? j). Now from p(t) = ??=(t - ?1) (t =??72) ... (t = ?j) ... (t = ? n), itis clear that ? j is a root of

p(t) — ?. Taking x for t we obtain. p(x) —?e=(x-?1e) ... (x - ?je)..(x-?ne)..... (4) If 22?2(p(x)), that is if, p(x) — ?e were
invertible, we could havemultiplied both sides of (4) on left by (p(x) — ?e) —1 and move (x — ? j e) all the way to the right to
gete=(p(x) —?e)-1[(x-?1e) ... (x=2?ne)lx =??je) ... (5) to conclude that (x — ? j e) has left inverse. similarly (x — ?

j e) has right inverse—a contradiction that ? j ??(x). Therefore we conclude that ???(p(x)), and that implies p(?(x)) ? ?(p(x))

formula) : .

6 of 11 02-05-2023, 18:00
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xnxn??222Sup | [ ((N??2?2xn?2?2Sup||()?2?22xn?FHGIKJI?Sup||()??22xn?FHIK??()xnWe always have
?2?2()xxnn?or??()xxnnbg?or,??()xxnn?1Thisgives, ?7? ()limxnx

nn??2?21.. (*)
Since inferior limit of a sequence ? its superior limit, if it is shown that? ? () imxxnnn??2?21?2...... (**) We at once
have, lim lim

46% MATCHING BLOCK 16/17 SA Fuctional Analysis.pdf (D142230889)
nnnnnxnx?????11(from*) and thisimplieslimnnnx?? lexistsand?? ()limxxnnn??? 1.
Now (**) is obtained by computing the radius ofconvergence of a power seriesvia cauchy-Hadamard formula. Example

.Solution: Herey =ye=yxz=ez=2

90 Therefore yx = e = xz = xy, showing that x has an invarse = y and hence = zi.e.y =z = x =1 . EXERCISE-A Short-
Answer type questions 1. If x is an invertible element in a Banach Algebra X with identityesuch that x commuteswith y?X,
show that x —1 commutes withy. (Here xy = yx : Sox =1 xy =x -1 =yxorey =x-lyxor,y=x—-1yxor, yx =1 = x =1 yxx
-lor,yx-1=x-1ye=x-1yHerex-1andy commute.) 2. If {xn}and{y n} are two cauchy sequences in a Banach
Algebra X, show that {x ny n } is a cauchy sequence in X. 3. For a Banach X, and for Identity operator | : x ? X, find ?(l). 4. If
in a Banach Algebra X with identity e, ???(xy), then show that ???(yx). 5. If e — yx is invertible in a Banach Algebra X, then
show that e-xy is alsoinvertible in X where e = identity element in X, and x, y?X. 6. Let X be a Banach Algebra and G is the
set of all invertible members of X. Show that mapping : G ? G given by x ? x =1in G is a Homeomorphism. EXERCISE-B 1.
Let X he a complex-Banach space and BdL (X 1 X) denote the Banach Space of all bounded lincar transformations : X ??X.
If A?BdL(X, X) and ??is a scalar satisfying |?| &lt; ||Al| &lt; O show that ?1 — A is invertible and (?1 = A) —1 = where | is the
identity operator. 2. Let X be a commutative Banach Algebra with identity, then for any x?X, show that ?(x n) = (?(x)) n .

Banach Algebra with identity e with || e || = 1, and let f : X ? ??be a non-zero homomorphism ; show that || f || = 1. 5. Let X
be a continuous character of topological Group G, Prove that X is uniformly continuous. 6. Let H be a closed sub-group
of a topological Group G, Prove that dual of G/H is isomorphic and homeomorphic to the sub-group of ? comprising of
all charcters that are constants on H and its cosets. 7. Suppose X is a Banach Algebra. If there is a constant m &lt; 0 such
that || xy || 2 m || x || || y || for all x, y?? X, then show that X is isomorphic to ?. EXERCISE—C 1. Show that following
statements are equivalent in a Banach Algebra

PARASAKTHI_MATHEMATICS_GAC Krish.pdf

71% MATCHING BLOCK 17/17 SA (D110268816)

X () [Ix 2 1] = [Ix]] 2 for all x?X and (i) ? ? (x) = ||x|| for all x?

X. 2. In a Banach Algebra X with identity e if x?X satisfies ||x|| &gt; 1, show that || (e = x) -1 —e - x|[??xx213.Ina
Banach Algebra X with identity e if x is invertible and y satisfies || yx —1 || &gt; 1, show tht x — y is invertible and (x — y) -1 =

denote the algebra of all complex matrices? ? 2 0 F H | K (??2???), show that |?| + |?] is a norm in X with respect to which
X'is a Banach Algebra.

Hit and source - focused comparison, Side by Side
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XNnyn—-xy=Xn-x)yn+xlyn-y)givesxyxyxxyxy
YYyXxxyyn

SA  PARASAKTHI_MATHEMATICS_GAC Krish.pdf (D110268816)
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100101()(
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.().00101001012¢€j..... (1) Hence xx 0 1? is
invertible ; and hence xx G0 1? ? b g. Further, 80 x x x x e

. This shows that
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X* of X and take f ??X*. For ? ???(x), Let f(?) = f((x — ?e) -1
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xfxx()O)(O)()?22222222%0ie, fffx()()(()?2?2?7?
22?2722
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1 Unit-1 0 Contents : Topological Group : Definition : Examples ; Self- homeomorphisms ; Neighbour- hoods of Idendity

Group and let G be also a Topological space. If not stated otherwise, group operation is taken as multiplication.
Definition1.1.1.

K.Rajakumari,M.Phil Dissertation,Mathematics,2 ...

% MATCHING BLOCK 1/2
80 CHING BLoCK 1/23 SA (D61273517)

G is said to be a Topological Group if mappings () GX G? G

given by (x, y) ? xy (x +y, in case Group operation is additive), x, y?G and (ii) G ??G given by x ??x —1 (taking inverse) as
x?G are both continuous. Explanation : The multiplication mapping (i) (x, y) ??xy in G and Inverse mapping (i) x ??x =1in G
are continuous with respect to the given Topology in G and the induced product topology in G X G. If g 1: (x, y)??xy in G
;and g 2:x??x =1in G, by continuity of multiplication mapping g 1 we mean : Given any neighbourhood W of xy in G.
there is a neighbourhord U of x, and there is a neighourhood V of y in G such that UV ??W. (U + V ??W, in case Group
composition is additive). Similarly, by continuity of Inverse mapping g 2 we mean : Given any

neighbourhood W of x -1in G,

100% MATCHING BLOCK 2/23 SA MS - 334.docx (D110841764)

there is a neighbourhood U of x such that U —1 ??W (-

U ??W, incase Gis

additive).

2 For example, the set R of all reals is an addition Group (with respect to arithmetic addition + (additive inverse being —ve
sign) and R is also a Topological space with respect to the usual metric topology whose basic open sets are open
intervals like (a, b) where a, b are reals with a &gt; b. Then R is a Topological Group. Because , if x, y?R, and W = ((x +y) —
2?2 (x +y) +?), 2?&lt; Ois any neighbourhood of x + y in R, there is a neighbourhood U of x, say, xx????22,ejand
there is a neighbourhood V of y, say, such that if u?? = U and v? =V, we have and ; Sothat | (u+Vv) — (x+y) | =] (u—-x) +
V=Y |2?2lu=-x|+|v-ylogt;?;ie (U+V)2(x+y) =2 (x+y)+?). Similarly, if x?Rand W = (- x -, = x+7?),?26&lt; 0
be any neighbourhood of — x in R, We find a neigbourhood U =xx??71212?7,ejof xsuch thatifu?Uie. ie ie ??7??

opeations, namely addition and its inverse (subtraction) are continuons with respect to the concerned Topology in R.
There R is a Topogical Group. Example 1.1. Let M n (R) denote the collection of all square matrices with real entries (nis a
+ ve integer). Then we know that M n (R) forms an additive Group with respect to usual matrix addition wherein the null
matrix becomes the Identity member of this Group. M n (R) is also a metric space with respect to a metric d given by d (A,
B) = Where Aaijnn??chdiand are any two members of M n (R).
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3 Then M n (R) forms a Topological Group. It is a routine work to verify that M n (R) is a metric space with respect to the
metric d as given above ; There we know that open balls constitute a base for the metric Topology and with respect to
this metric topology it is now another exercise to check that group operations are rendered continous here, and M n (R)
is a Topological Group. Remarkl.1 We may take entries in matrix as complex scalers from ?, then similarly we get the
collection M n (?) of n X n matrices with complex entries to form a Topological Group. Remark 1.2 Statemants (i) and (ii)
regarding continuity of mappings g 1 and g 2 may be coupled as under. Theorem 1.1.1 Continuities of g 1 and g 2 are
equivalant to the following : For any x 1y ?G if W is any neighbourhood of xy —1 in G there is a neighbour hood U of x

X, y?G and W any neighbourhood of xy —1 in Topological Group G. Then we find a neighbourhood U of x and H a
neighbourhood of y —1 such that UH ??W. (Applying continuity of g 1) .....(i) Sincey ? ? 1 1af = y ; corresponding to
neighbourhood H of y —1 continuity of g 2 gives a neighbourhood V ofy such that V =1 ??H ........ (2) Combining (1) and (2)
we have UV -1 ??UH ??W, which was wanted. Conversely assume the opposite. That is, assume the continuity of (x, y)
??xy —1in G. First we deduce that g 2 is continuous i.e. x ??x —1 is continuous is G where x?G. Write ey —1 = y —1 taking x
= e = the Identity element e of G. By assumed condition corresponding to a neighbourhood W of y =1, there is a
neighbourhood V of e and a neighbourhood U of y such that VU -1 ??W We have €?V, and hence U -1 = eU -1 ?7?VU -1
7?2W.

4 That means mapping g 2 of taking inverse in continuous. Now write and take W to be any neighbourhoodof xy ; by
assumed condition we find a neighbourhood U of x and a neighbourhood H of y —1 in G respectively such that UH -1
??W. Since H is a neighbourhood of y —1in G, by established continuity of taking inverse (as done above), We find a
neighbourhood V and y such that V =1 ??H. This gives V ??H -1, and hence from above we deduce UV ??UH -1 ??W.
Thus continuity of g 1 of Group composition is established. Corollayl.1 Composition of any three members of G is a
continuous operation. 1.2 If x, y?G, (

X, y) ??x 2 y is a continuous operation in Topological Group G. 1.3

fxl,y2,... x 1 are n elements of Toplogical Group G, and ? ? 7?7 ? ?7?77???? n are + ve indices. Then (x1,x 2, ....., X n
) ?? is a continuous operation in G. We have seen that if G is a Topological Group then G is a Group and it is a Topological
space ; but converse is false. Following Example supports this contention. Example 1.1.2 Consider the additive Group R of
all reals and let R be equipped with the upper limit Topoligy whose basic open sets look like all left open (and right
closed) intervals {(a, bl : a, b ?R ; a &gt; b}. This topology is strictly stronger then the usual topology of R. We verify that
taking inverse i.e. x ??— x (x?R) in R is not a continuous operation. Take a neighbourhood like [0,??) ??&lt; 0 of O in R with
upper limit Topolog. Then there is no neighbourhood V of O in R in this Topology such that — V ??[o, ?). Therefore R is

G given by x ??xx 0 as x?G, and (ii) Mapping : G ??G given by x ??x 0 x as x?G are homeomorphisms. PrOof : (i) The
mapping : x ??xx 0 as x?Gis 1-1; Because let

47% MATCHING BLOCK 3/23 W

Xx1Ix0=x2x0forx1,x2?G:Thenx1x0x0-1=x2x0x0 -1(by multiplying x 0 -1 fromright) 50r,x1e =x2

e (e = the identity element of G).

or, x 1 = x 2 Hence this mapping is 1 — 1 (one-one). This mapping is also onto. For any u?G, then ux 0 -1 = v?G, such that
under the mapping V ??vx 0 = ux 0 =1 .x 0 = u. Thus this mapping is invertible. We now check that the mapping is
continuous. Take W to be any neighbourhood of xx 0 ; By continuity of Group composition we find

88% MATCHING BLOCK 4/23 SA 120004039-Project-1982444.pdf (D19454576)

a neighbourhood U of x and a neighbourhood V of x 0 such that
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UV ??W This gives Ux 0 ??W since x 0 ?V. So the mapping is continuous at x?G. Now its inverse mapping is given by x
?7?2xx 0 =1 as x?G. Which is essentially of the same type as given one, and hence becomes continuous. Therefore the
concerned mapping is bi-continious, and it is a Homeomorphism. By a similar argument the mapping under (ii) is shown
to be a Homeomorphism— and it is a self homeomorphism like (i). Corollaryl.1 Let P be an open set in Topological
Group G and Let A be any subset of G, then (i) Pu, uP are open sets in G for any member u?G (i) PA and AP are open sets
in G. Because (i) the mapping T u : G ?? G given by T u (x) = xu for x?G is a homeomorphism, and further T u ??T u-1 and
by continuity of Tu?lwefind Tu??11af(P=anopenset) =anopensetinGi.e. Tu(P)=anopensetinGie. Pu=an
open set in G. Similarly employing other multiplying operator we have uP as an open set in G. (i) Writing PA=PaaA??a
union of some open sets in G = an open set in G ; and similarly, AP is again an open set in G.

6 Corollary 1.2 Let Q be a closed set in G and u?G, then Qu and uQ are closed sets. Corollary 1.3 if u, v?G, then is a self
homeomorphism ? of G such that ?(u) = v. Here puta = u -1 v ; There a?G and Look at ? : G ??G given by ?(x) = xa as
x?G. Then ? is a self homeomorphism of G such that ?(u) = ua = uu —1v = v. Corollary 1.4. In a Topological Group G if
a?G, then mapping : G ??G given by x ??axa —1 as x?G is a self homeomorphism, called an inner antomorphism of G.
Because Given mapping : G ??G defined by x ??axa —1 as x?G is a composite mapping out of two self homeomorphisms :
X ??xa —1 and x ??ax as x?G, and therefor is again a self homeomorphism. Theorem 1.1.3 In a Topological Group G the

is continuous ; Further, its inverse f —1is given by f -1 = f (i.e. f is self-inverse) and hence is continous ; So fis a
bicontinous bijective mapping making it a self-homeomorphism of G. Corollary : If P is an open set in G, then P —1is an
open setin G ; because f —1 (P) = an open set in G, by continuity of f. i.e. f(P) = an open set in G, because f -1 ??f. i.e. P
-1 =an open set in G. Remarks : We have seen that in a Topological Group G products (Addition) PQ and QP of any two
sets P and Q are always open sets. There is a contion! Products of two closed sets may not be a closed set. This would
be demonstrated later on. 1.2 Neighbourhood systems of Identity member e of a Topologi- cal Group G. Let ? e denote
the collection of all neighbourhoods of the identity element e of G. Definition 1.2.1 A Sub-collection B e of ? e is called a
fundamental system of

7 neighbourhoods of e if for any member N e ?N e, were there is a member B e ?B e ??Be such that Be ??N e . For
examples, the sub-family comprising of al open intervals like? 11 nn,ej, n =1, 2,.... constitutes a fundamental system
of neighbourhood of 0 = the identity element of the additive Topological Group R of the reals with usual Topology.
Before we proceed further we recall following Theorem. Theorem 1.2.1 If V is a neighbourhood of e, there is a symmetric
neighbourhood U (i.e. U = U —1) of e such that U ??????????V. Proof : Put U =V ??V -1 . So U is again a neighbourhood
of e such that U ??V. It remains to check that U is symmetric. Now there is an open set, say O is G with O ??V, and
therefore, O —=1??V =1 .Then (O ??0 -1) ??(V ??V -1). If x ??U, we have x ??V and x ??V -1 as well. Now x -1 ??V -1 and
x?V =1implies x =1 ?V ; therefore x =1 ??(V ??V —-1) = U. What we haev shown above is when x?U, then x =1 ?U. Thus U =
U -1.Theorem12.2 If

Visa

73% MATCHING BLOCK 5/23 SA MS - 334.docx (D110841764)

\Y

Proof : We have e. e = e is G and using continuity of group operation corresponding to a neighbourhood V if e in G we
find neighbourhoods V1and V 2 of e such that V1V 2 ??V. PutU = V1??V 2. Then U is a neighbourhood of e in G such
thatU2 =UU? V1V 27??V, and the proof is complete. Remarks 1.2. Without loss of generality one may take U to be
symmertic. Remark 2.2. For any integer n there is a neighbourhood U of e such that U n ? V in G by Induction. Corollary
to Theorem 1.2.1 In a Topological Group G there is a fundamental system {U} of symmetric neighbourhoods of e in G.

8 In view of Theorem 1.1.2 where it is revealed that translation like homeomorhphisms are responsible to send

65% MATCHING BLOCK 6/23 SA MS - 334.docx (D110841764)

a fundamental system of neighbourhoods of e in G to another fundamental system of neighbourhoods of
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open neighbourhood of a in G. Now the mapping T a : G ??G given by x ??a x as x?G is a self homeomorphism of G, we
have Ta -1 (W) =T a-1(W) =a -1 W as an open set containing e ; It invites a member, say, U ? of the fundamental
system of open neighbourhood of e in G such that U ? ???a =1 W ; or, aU ? ???W That shows that {xU ? } x?G and ???
?forms a base for the Topology of G. Corollosy : Under assumption of Theorem 1.2.3 the family {(xU ? } x?? and ??G forms
a base for the Topology of G.

45% MATCHING BLOCK 7/23 SA 120004039-Project-1982444.pdf (D19454576)

therefore (xU ? —1) ??A ?????That means x?AU ? . Since x is any member of we have ??? ??7??.........(1) Conversely, Take
anyy? ? AU Ue??7???7and so y?AU ? ?for each U ? ?from ? e . Then if P is any open neighbourhood of y, we have Py -1
is a neighbourhood of e in G, and y?AP y —1 because P -1y?? e . That means y = ap —1y for some a?A and some p?P.
Nowy =ap-lygivesyy-1=ap-leor,e=ap -1

(1) and (2) we have A=? AU U e???? Remark : A?=?7?7?7??eU?A The proof is a copy of that of Theorem 1.2.4.
Corollary : The closed neighbourhoods of e form a fundamental system of neighbourhods of e is G. Because given any

63% MATCHING BLOCK 8/23 SA Selvi C Chapter3.docx (D35106187)

neighbourhood U of the identity element e in G, there is a neighbourhood V of e such that

follows that V ??U ; V being a closed neighbourhood of e in G, the conclution stands ok. Theorem 1.2.5 In a Topological
Group G there is a fundamental system {U ? } ??? of closed neighbourhoods of the identity e such that (i) each member U
? ?is symmetric (i) for each U ? ?in the system there is another member U ? ?satisfying U ? 2 ??U ? ; and (iii) for each
member U ? ?in the system, and the each a?G there is a member U ? in the system suchthatU? ??a-1U??aoralU?a
—-1?2?U ? ? Conversely, given a group G with a filter base {U ? } ??? ?to satisfy (i) — (iii), then there is a unique Topology on
G to make G a Topological Group where {U ? } ??? ?forms a fundamental system of neighbourhoods of e in G.

10 Proof : (i) and (ii) are consequences of Theorem 1.2.1 and 1.2.2. And corollary following Theorem 1.1.2 says that
mapping : x ??ax a —1is a self-homeomorhism in G, and a -1 U ? a becomes a neighbourhood of e and hence (iii)
follows. Conversepart : Let {U ? } ??? ?be a filter base satisfying (i) — (iii). Take any member U ? ?in the family. By (i) and (ii)
we find a member U ? ?of this family to satisfy. U ? ?2U ? =1 77U ? ??(By symmetry, U? ?=U? -1) If x?U ?, then the
Identity elementin G=e =xx-1??U??U? -1??U ? . Therefore each member U ? ?of the family contains e. And each
member the family {xU ? } ??? and {U ? x} ??? contains x for every x?G. Further, {xU ? } ??? and {U ? x} ???? each forms a
filter base at x because so is the family {U ? } ??? . We now construct a Topology ??in G. Let ??consist of ??(emply set) and
{xU ?}7??? ?as x?X. Since xU ? ???X. by filter proerty X ??{xU ? } ??? . Thus X??? Suppose U 1, U 2 are two memebers of ??,
and x??(U 1??U 2), then both U 1, U 2 are members of {xU ? } ??? ?and Filter base property (U 1??U 2) is a member of
this family implying (U 1, ??U 2) ???. Finally, {U r } r?? be a family of members of ?? Say ; So x?U r for some ?. They by
choice for some of ? ???, and U r = (xU ?) ??? . As, by filter-base property the Union is a member of {xU ? } ??? : That
means the Union ??? Now equipped with this Topology ?, G is a Topological Group if continuity of Group operation : (x,
y) 2?2xy =1; x, y?G is verified with respect to the Topology ? A and that we do presently as under : Take x, y?G and put xp
=uandyq = v where p, g?G. Now (xy —=1) (uv -1) =yx =1uv -1 =yx -1 xplyq) -1 =ypg -1y -1
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11 Let N e be a neighbourhood of e (relative to ?) ; so we find a member Uin U ?? ? g ?? sasisfying. U P ? ? Now ypq -1
y-12?2U?ifpg-1?2?y -1U?y ... (1) Using (iii) we find a member U ? ?in {U ? } ??? ?satisfying U ? ???y =1 U ? y Again
from (i) and (ii) there is a member W ? ??2{U ? } ??? Sothat W? W ??2?2U? SoW? W? ?2?2U????y -1 U ?y Letp, g?W ? ?;
Then we have pq -1 ?2?W?W? -1 =W? W ? ??(W ? ?is summetric) i.e. pqg =1 ?2?W? W ? ???y -1 U ? y From (1) we
conclude thatypq -1y Y ??U ? ???P or, (xy —=1) (uv =1) ??P or, (uv —1) ??(xy —1) P whenever p, g?W ? ? That confirms
that G is a Topological Group. The proof is complete. Example 1.2 Let E 1 and E 2 he compact subsets of a Topological
Group G. Then E 1 E 2 is compact. Consider the mapping h : G X G ??G where h (x, y) = xy as x, y?G. Since Eland E 2 are
compact, the product sub-space E 1 X E 2 is compact. The mapping h is a continuous mapping and since continuous
image of a compact space is compact, E 1 E 2 = image of E 1 X E 2 under h becomes compact. 1.3 Separation Axions :
First the recall Definitions of separation axioms like TO,T1, T 2 ..... in a Topological space (X, ?) as under : Definition 1.3.1
(X, ?)is called a T O -space if given two distinct points in X, where is an open set containing any one without containing
the other. For example, real number space R with usual topology is a T O -space; because if

12 x, y?R and x ??y, there is an open interval containing x keeping y outside. On the other hand there are topological
spaces that are not T 0 . Example 1.3.1 Let X = (a, b, c) and let ??be a family of subset of X consisting of ?, X, {a} and {b, c}.
Then (X, ?) is a Topological space which is not T O ; because distinct elements b and c in X have no T O -separation.
Definition 1.3.2 (X, ?) is called a T 1 -space if given any two district elements in X, there is an open set to contain each one
of them without containing the other. Explanation : A very common exmaple of a T 1 -space is real number space R with
usual topology. On the other hand if X = (a, b, c) where a, b, c are all distinct, and if ??= {???X, (a), (a, b)}, Then (X, ?) is
Topological space where T 1 —stipulation is missing. Because pair (a, b) of district elements in X has no attracting open
sets as demanded by T 1 -condition. Thus (X, ?????) is not T 1. Remark : Definitions 1.3.1. and 1.3.2 are so framed thata T
1 -space is always T O ; but opposite implication is, however, false. For example, taking X = {a, b}, a ??b ; and ??= {??7?X,
(@)}isa T 0 -space without being T 1. Because only open set to take b inside is {a, b} that does not leave a. Definition
1.3.3 A topological space (X, ?) is called a T 2 -space or a Hausdorff space if given any two distinct members x and y is X,
there are open sets U and V in X such that x?U and y?V with U ??V = ?? As per Definitions we atonce see that T 2

is T 2 seperation. And there are topological spaces that are T 1 without being T 2 . Example 1.3.3 shall bear it out. Example
1.3.3 (Cofinite Topology) : Let X be an infinite set and Let ??= {G ??X : (X | G) is a finite set (may be empty)} ??{?}; Then
??becomes a Topology in X ; very often this Topology is named as Co- finite Topology in X. This Topological space (X, ?)
is T 1 without being T 2 . Take two members x, y in X without x ??y ; Put U = X\{y} and V = X\{x}. Then U and V are
members of ??such that U contains x leaving y outside and V contains y learning x outside. Therefore (X, ?)is T 1. If
possible, let any two distinct elements u

13 and vin X have T 2 separation. Then there are two open sets, say, H and Kin X such that u ??H, v ??K with H ??K = ? So
(X\H) and (X\K) are each finite subsets of X, so is their union (X\H)?(X\K) X\(H?K) = X ; since H ??K = ?. —a contradiction ;
because X is not a finite set. Thus (X, ?) is not T 2 . Here we quote some important Theorems whose proofs may be found
in any text of General Topology. Theorem 1.3.1 If (X, ?????) is T O, then closures of district points in X are distinct.
Theorem 1.3.2 (X, ????2?) is T 1 if and only if each singleton in X is closed. Theorem 1.3.3 (X, ?????)is T 2 (

66% MATCHING BLOCK 9/23 SA suriyaprakasam REG.NO P17CAK8118.pdf (D58411288)

Hausdorff) if and only if every net in X converges to atmost one point in

X. Theorem 1.3.4 A product of T 2 -spacesisa T 2 -
70% MATCHING BLOCK 10/23 SA 120004039-Project-1982444 pdf (D19454576)

space. Definition 1.3.4.(a) (X, ?) is called a regular space if given any closed set F
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in X, and an outside point x in X (x?F) there open sets U and V in X such that x?U and F ??V with U ??V = ?. (b) A regular
space thatis alsoa T 1 -space is called a T 3 -space. Explanation : If X = (x, y, ), and ??= {?, X, (x), (y, 2)}, Then (X, ?) isa
Topological space whose only closed sets are X, ?, (y, z) and (x). We easily check that (X, ?) is a regular space ; (X, ?) is not
0 . Definition 1.3.5 (a) (X, ?) is called a Normal space if given any pair of disjoint closed sets F and G is

47% MATCHING BLOCK 11/23 SA Plag_Rama pathak_33.pdf (D15260422)
X, there are disjoint open sets, U and V satisfying F ??U and G ??V. (b) A normal space that is
alsoaTliscalledaT4 -space. Example 1.34 Take X = (

40% MATCHING BLOCK 12/23 w
a,b,cde fland??={? X (e), (f), (e f), (a b, c), (c df)(ab ef)l(cde )}
Then we can verify that (X, ?) is a Normal space where we find four pairs of disjoint non-empty closed sets only : {(

52% MATCHING BLOCK 13/23 w
a, b), (c, d)}, {(a, b), (c, 14 d, )}, {(a, b, e), (c, d)} and {(a, b, e), (c, d,
f)}. Here each pair is separated by disjoihnt pair of open sets {(a, b, e), (c, d, f)}. Here we observe that this Normal space is
not regular; because (a, b) is a closed in X with an outside element e (e?(a, b)); and there is no disjoint pair of open sets in
X to separate them. Further we note that T 4 ??T 3 ; because if F is a closed setina T 4 -space X with x (??F) as an outside
pointin X ; Then singleton {x} is a closed set ; So normality is X attracts desired separation. So Xis T 3 . Definition 1.3.6(a)

54% MATCHING BLOCK 14/23 SA 120004039-Project-1982444.pdf (D19454576)

A topological space (X, ?) is called completely regular if given any closed set F and an outside point x (i.e., x?F) there is a

continuous function f : X ??[0, 1] (
closed unit interval of reals) such that f(x) = 0 and f(u) = 1 for u?F. (b) A completely regular space which is also T 1 is called
a Tychonoff space, often disignated as -

Totally na-Feebly regular continuous Function ...

o,
71% MATCHING BLOCK 15/23 SA (D22998329)

space. Theorem 1.3.4 A topological space (X, ??7??) is a Normal space if and only if

Normal space where (F, H) is a pair of closed and open sets such that F ??H (F = a closed set ; H = an open set). The
complement of H = H cis a closed set in X with F ??H c = ?. By normality is X we find a pair of disjoint open sets, say, G
and M satisfying. F ??Gand H ¢ 2?M with G ??M = ?? Thus G??M cand Hc ??M givesM c??(Hc)c=HAsMCisa

?). Suppose F 1 and F 2 are a pair of disjoint closed sets in X.
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15 Then we have F 1 ?? F ¢ 2 (complement of F 2 ), which is open. Hence by assumed condition we find an open set G in
XsuchthatFGGFcl12???NowGFc?2givesFGc27?,andofcourse, G??7G.SoGGc???Thus, F1??GandFG
c 2 ? where G and G c form a pair of disjoint open sets to bring the disired separation. Hence (X, ?) is Normal. Theorem
1.3.5 (Separation Theorem is Topoligical Group G) In a Topological Group G let F be a closed set anc C a compact set

systemate. =?we Fw ?? where W = UU -1V = F (closure of F) = F, because F is closed ; and F U is closed. Thus as per
assumption, F ??C = ??we have F U ??C = ?? This is true for all open neighbourhood U of e. Therefore the family {G\F U }
is

16 an open cover for C. By compactness of C there is a finite sub-family, say,

M Asha Merlin, Reg.N0.182311720920010, Chapter ...

55% MATCHING BLOCK 16/23 (D113514283)

FUL1,FU2, .., FUnsuchthat G\FU1,G\FU?2, ..... G\FUn

forms on open cover for C. Therefore, ??7C = ?7.......... (1) PutW=Uiin?1?Then W is neighbourhood of e in G. Now

—1??C = ? Therefore FW ??CW = ?. This is exactly what has been wanted in (i). Similarly, one can establish (ii) i.e., VF ??VC
= ??for some V ?? e . Remark : If one takes U = W ??V, this neighbourhood U of e works in (i) as well as in (ii). Theorem
1.3.6 Let F be a closed set and C a compact set in a Topological Group G. Then FC (CF) is closed. Proof : Take x?G\FC ;
So, (Fx =1) ??C = ?. F being closed F -1 is closed (F —1 is hommeomorphic image of F under homeomorphic : u ??u -1 as
u?G; and therefore F x =1 is a closed setin G. Thus F x =1 is closed and

17 Cis Compact in G and we apply Theorem 1.3.5 (separation Theorem) to obtain a neighbourhood U of the identity e in
G such that (Fx —1 U) ??(CU) = ? That means (xUU —-1) ??(FC) = ?. Now xUU -1 is a neighbourhood of x because UU -1 is
a neighbourhood of e in G. And as x is any member outside FC, it follows that FC is closed. Similarly we show that CF is
closed, and Theorem is proved. Remarks 1.3.1 Under hypothesis of the Theorem 1.3.5 FW CW ? ? ?, bar denoting the
closure. Because, if p? FW CW ?b g ; p becomes a limit point of FW and there fore any neighbourhood of p shall meat
FW.?Without loss of generality taking W to be open we find CW to be an open set with p as an inside point and therefore
CW acts as a neighbourhood of p. That calls for FW ?? CW ?? ?? — a contraticting. Therefore FW CW ? ? ? . Theorem 1.3.7
In

53% MATCHING BLOCK 17/23 SA MS - 334.docx (D110841764)

a Topological Group G following statements are equivalant. () Gisa T 0 -space (ii) Gisa T 1 — space. (iii) Gisa T 2 —
space or a Hausdorff space. (iv) ? U F e ? U = {e}, 6 e denoting a fundamental system of neighbourhood of e.

Proof :
SLT)Zose statement (i) is true. Take x, y?G with x ??y. Because of To— separation in G, say, x has an open neighbourhood N
x such that y?N x . Now x =1 N x = V (say) is an open neighbourhood of identity e in G. Therefore
55% MATCHING BLOCK 18/23 SA SITHEESWARI (16PMAVO31).docx (D38133619)
V2?2V -1 =W (say) is an open symmeric neighbourhood of e ; and hence yW is neighbourhood of y.
We claim that x?yW. Otherwise, x =1 7?W -1y -1 = Wy -1 (W symmetric) ??Vy =1 ??x =1 N xy -1Soe = xx =1 ??xx =1 N

xy—-1=Nxy-1
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18 giving y?N x which is not the case. Therefore x?yW. Thus T 1, separation holds in G. So statement (i) stands OK. Now
we check that (ii) ??(iii). Suppose x, y?G with x ??y. Since T 1 separation holds in G we know that each singleton is closed ;
Thus {x} is closed. Put P = G\{x}. Then P

69% MATCHING BLOCK 19/23 SA SITHEESWARI (16PMAVO31).docx (D38133619)

is an open neighbourhood of y and therefore y —1 P is an open neighbourhood of the identity e in G. Choose an open
neighbourhood V of e such that VV =1 ?? y —1 P Thus yV is an open neighbourhood of y. Put Q GyV ? \ ;

So Q is open set. Here x?Q ; otherwise, x yV yV ? ?; Therefore, xV ??yV ??? That means x?yVV -1 ??y (y -1P) =P — a
contradiction. Further, Q ??yV = ???y?yV and x?Q where yV and Q are open sets. Hence T 2 -separation is established i.e.
statement (iii) is true. Now let statement (iii) be true. We show that statement (iv) remains true. Suppose F 2 denote a
fundamental system of neighbourhood of e in G. Let x U U ? ?F 2 ? Assume that x ??e. Then by T 2 separation property,
we find

36% MATCHING BLOCK 20/23 SA SITHEESWARI (16PMAVO31).docx (D38133619)

a neighbourhood P of e such that x?P. Let U ??F 2 such that U ??P Then x?U (because x? U U?F 2 ? )—a contradiation
that x?P. Hence

we haev shown that x = e and (iv) is established. Finally the proof shall be completed by showing that statement (iv) ??(i).
Take x, y?G with x ??y ; Then xy —1 ??e, and therefore from (iv) we find a member U??F e such that xy —=1??U ; Now U y is
a neighbourhood of y such that x ??yU —

19 confirming T O —separation in G. Thus statement (i) holds. The cycle of inplication being complete, we have proved
Theorem. Example 1.3.5 Let E be a compact set and O an open set in a Topological Group G. If E ??0, show that there is
a neighbourhood V of the idendity e in G such that VE ??0. Solution : Take x?E ??0 ; write x = ex and using continuity of
group operation find

a neighbourhood Vx of the identity e in G, such that V

x x 2?20 (O = open set containing x). Find

an open neighbourhood W x of e such that WV z x 2 ? So one writes E W x x x

E??7ie {Wxx}isan open cover of E which is compact in G. So we pick up a finite number of members like W x W x W
XXXxxnnl212.... suchthat EW x xiini??1? Construct a neighbourhood V of the indentity e where VW W W x x x
n???2?212 .. Itis now clear that V ??W x i for 1 ??2i ??n. x?W x i x i ; that means VX VW x WW x W x V x O x i x x i x i X i iii

Hausdorff (T 2 ) is completely regular. Proof : Let G be a Topological Group which is Hausdorff. Let F e denote

a fundamental system of neighbourhoods of the identity e in G

satisfying (i) each member of F e is symmetric (ii) for each member U is F e there is member V?F e such that V 2 ??U and
(iii) for each member U?F e and a?G, there is a member V in F e to satisfy V ??a —1 Ua or aVa -1 ??U.

20 Take C be a closed subset of G such that e?C. Put U 0 = G\C. Then U 0 is an open neighbourhood of e in G. For each
natural number n there is a member U n ??F e such that (i) U 2 n+1 ??U n If D = set of all dyadic nationals of form ??=, K
?2?2n.n,K??0in [0, 1], then for each ??D, by Induction, let us define (i) V = U n, n ??0. Suppose V(?) has ben defined for
all 2?=, K??2 n, then define (iii) if K??= 2K, and (iv) if K??=2K + 1. If 0 7?K =2m ??2 nwe have = by (i) =?nnVm21? e
j by (ii) since e?U n by (i) by (iv) Therefore, (v) for all 0 ??K ??2 n, K = 2m. Similarly, one can prove (V) when K = 2m + 1. So,
(v) is true for all integers K such that 0 ??K + 1?72 n. We now check thatfor?1,?2??Dand?1,? 2 we have V(? 1) ?2?V(?
2)
21Suppose?1=Knl2land?2=Kn222.ThenKKnnl22221?andhenceKKnnnnnnl222222121127?
??Clearly, ifm+1&gt; 2nthenVmVmnn212ejej??by(v). And we have V K
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O,
76% MATCHING BLOCK 21/23 (D113514283)

e?V ? ?forall ??D and Inf D = O we see f(e) = 0. Further more V1=V 12?ej=UO0 = G\C, and, hence f(C) = 1. By
definition of f we have 0 ??f(x) ??1 for all x?G. We know show that f is continuous. Take x?G, such that f(x) = 1. If y?V 12 n
ejxtheny?G\V (K/2n), K&gt; 2n — 2. Otherwise, y?V Kn 2 e j x and symmetry of V's shows that x?VKn2ejy??V12n
ejVKn2ej??VKn?1l2ejby (v). Hence f(x) &gt; 1, contradicting assumption that f(x) = 1. Thus it follows that 112212
??2?2nnn??f(y) ??1. Hence | f(y) — f(x) | 2?? 1 2 1n? ?. If for a given ??&lt; O, appropriately large n satisfies 1 2 1n? &gt; ?.
Continuity of f at x fallows. It is more easy to establish continuity of f when f(x) = 0. Now let O &gt; f(x) &gt; 1 for some
x?G. Then there are integers m, K with K &gt; 2m, m &lt; n + 1 such that x?V (K/2m)\WKm?12ej

22 because f(x) = Inf {??D : x?V ? } and D is dense in [0, 1]. Using (v) as before, for each y?V x, y?V . But x?V implies y?V by
(v). Hence by Definition of f, 2?f(y) ?? . Since (K — 1)/2 m ??f(x) ?, We have | f(x) — f(y) | ?? Hence employing same
argument as above f is shown to be continuous in all cases that arise. As we know translations have homeomorphism
effect, above construction may be carried out at any point x?G instead of the identity e in G. The proof of Theorem is
now complete. Example 1.3.6 In a Topological Group G if U is

55% MATCHING BLOCK 22/23 SA MS - 334.docx (D110841764)

any neighbourhood of the identity e in G and F any compact subset of G. Then there is a neighbourhood V of e such
that xVx -1 ??U

for all x?F. Solution : Let S e denote family of all symmetric neighbourhoods of e in G. First we check that for a fixed y in
G, there is a member V?S e such that x?Vy implies xVx —1 ??U Take a member V 1 ?S e such that V 1 3 ??U and take a
member V2 ?SesuchthatyV2y —1??V 1. (see Theorem 1.2.5) PutV =V 1??V 2. Letx?Vy, ie. xy =1??V ??V1and
henceyx =17??V1-1=V1(V1symmetric) Hence xVx =1??xV2x -1=xy -1yV2y-1yx -1??V 13, (because xy -1
72V1,yx=1??V1andyV 2y -17?V1see above) ??U (see above) Therefore (1) holds. Now for each y?F, thereisa Vy ??S
e such that x?Vyy implies xVy x =1 ??U. Since ?and F is compact, we find a finite number of members, say,y1,y2, ...y
n?FsuchthatFVyVyVyyyynn????21212..diPut.Ifx?F then x?VyKyKforsomeK (=12, ..,n), and hence
xVx =1 7?2?2xVy Kx -17?U.

23 EXERCISE A Short answer type questions 1. If X = [0, 1) with a Topology ??={?, [0, ?) : 0 &gt; ??&gt; 1}. Show that (X, ?)
isnotT1.2. Show that any sub-space of a Hausdorff space is Hausdorff. 3. Let G be an algebraic Group with discrete
Topology. Examine if G is a Topological Group. 4. Show that an albegraic Group G with indiscrete Topology is a
Topological Group, and examine if itis T 0. 5. Let G be an infinite Group with co-finite Topology. Examine if G is a
Topological Group. 6. Show that every Topological vector space when treated as an additive group is a Topological
Group. 7. Show that additive Group Z of all integers with usual Topology of reals is a discrete Topological group that
satisties second axiom of countability. 8. If R is the set of all reals, Show that R\{0} with arithmetic multiplication and with
usual Topology of reals forms a multiplicative commutative Topological Group. EXERCISE B 1. Let X be a Hausforff space
and let C and D are disjoint compact sets in X. Show that there are open sets H and K in X such that C ??H and D ??K with
H??K =7?. 2. In a Topological Group G if x?G, and V is any

43% MATCHING BLOCK 23/23 SA MS - 334.docx (D110841764)

neighbourhood of x, Show that there is a neighbourhood W of x such that WV ?, bar denoting the closeure. 3. If a
Topological Group
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G is T 1 show that G is Hausdorff. 4. Let ? e be the system of all neighbourhood of the identity e of a Topological Group
G, show that for any subset A of G, closure of AAAe???7?27?22?2? 5 If Ris the set of all reals, show that R\{0} with
arithmetic multiplication as Group composition and with usual Topology of reals forms a multiplicative commutative
Topological Group.

24 6. In a Topological Group G if A and B are closed subsets, show that AB need not be closed. (Solution : Consider the
additive Group R of reals equipped with usual Topology. Then R is a Topological Group. Here the set Z of all integers is a
closed subset ; If ??is any irratinal number, then ?Z is a closed set. The set Z + ?Z consisting of all numbers m +
n???where m and n are integers is not closed. This set is a dense subset of R.) 7. Let A and B be subsets of Topological
Group G. Then show that (a) ABABbgbgbg?, bar denoting the closure, (b)) AAbgaf????11, (c) xAy xAy ? ? ?, for
all x, y?G, .,
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PREFACE In the curricular structure introduced by this University for students of Post- Graduate Degree Programme, the
opportunity to pursue Post-Graduate course in any subject introduced by this University is equally available to all
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and further improvement in due course. On the whole, therefore, these study materials are expected to evoke wider
appreciation the more they receive serious attention of all concerned. Chandan Basu
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PREFACE In the curricular structure introduced by this University for students of Post—Graduate degree programme, the
opportunity to pursue Post—Graduate course in a subject as introduced by this University is equally available to all
learners. Instead of being guided by any presumption about ability level, it would perhaps stand to reason if receptivity of
a learner is judged in the course of the learning process. That would be entirely in keeping with the objectives of open
education which does not believe in artificial differentiation. Keeping this in view, study materials of the Post—Graduate
level in different subjects are being prepared on the basis of a well laid-out syllabus. The course structure combines the
best elements in the approved syllabi of Central and State Universities in respective subjects. It has been so designed as
to be upgradable with the addition of new information as well as result of fresh thinking and analysis. The accepted
methodology of distance education has been followed in the preparation of these study materials. Co-operation in every
form of experienced scholars is indispensable for a work of this kind. We, therefore, owe an enormous debt of gratitude
to everyone whose tireless efforts went into the writing, editing, and devising of

a proper lay-out of the materials. Practically speaking, their roleamounts

to an involvement in invisible teaching. For, whoever makes use of these study materials would virtually derive the benefit
of learning under their collective care without each being seen by the other. The more a learner would seriously pursue
these study materials the easier it will be for him or her to reach out to larger horizons of a subject. Care has also been
taken to make the language lucid and presentation attractive so that they may be rated as quality self-learning materials.
If anything remains still obscure or difficult to follow, arrangements are there to come to terms with them through the
counselling sessions regularly available at the network of study centres set up by the University. Needless to add, a great
deal of these efforts is still experimental—in fact, pioneering in certain areas. Naturally, there is every possibility of some
lapse or deficiency here and there. However, these do admit of rectification and further improvement in due course. On
the whole, therefore, these study materials are expected to evoke wider appreciation the more they receive serious
attention of all concerned. Prof. (

Dr.) Subha Sankar Sarkar Vice-Chancellor
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25 Unit 2 A -Sub-group, Normal Sub-group, Locally Compact Group, Topological Group Involving Connectedness,
Locally Euclidean Group, Homomorphisms between Topological Groups, Lie Group. Structure 2.1 Introduction 2.2 Given
A Topological Group G and Closed sub-group H in G 2.3 Locally compact Groups 2.4 Topological Groups Involving
Connectedness 2.5 Linear Groups, Locally Eudidean Groups and lie Groups 2.6 Lie Groups 2.1 Introduction
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Let G be a Topological Group and H be a subgroup of G. Then H

inherits topology in G. Now Group operation : (x, y) ??xy —1 from G X G to G is continuous as (x, y) ??G X G. Its restriction
from H X H (??(G x G)) to H (H ??G) therefore remains continuous. Therefore H forms a Topological Group in its own
right. H is called a Topological sub-group or simply a sub-group of G. There are always two sub-groups in a group ;
namaly G Itself and singleton {e} where e is the Identity member of G. These two sub-groups are so called trivial sub-
groups. If H is a sub-group of G. Then we have HH = H 2 becomes coincident with H and we write H 2 = H and similarly,
H -1 =H. Leta?? G, itis a routine exercise to see that a —1 Ha is also a sub-group of G. By chance, if a is also a member
of H, then, ofcourse, a —1 Ha = H. In case a?(G|H), then a —1 Ha need not coincide with H.

26 Definition 2.1.1. For a sub-group H of G, if a =1 Ha = H for every member a?G, then H is said to be a normal sub-
group on an invariant sub-group of G. Explanation : If Z is the additive group of all integers and is endowed with usual
topology of reads. Then Z is a topological group of which 2Z forms a subgroup. It is a normal sub-group of Z. Trivially,
the suigleton {e} of any topological group G whose identity equals to e forms a normal sub-group of G. In this
connection following Theorem is an additional information. Thorem 2.1.1. If H is a sub-group of a topological group G,
than its closure H is so. Proof : A subset P of an algebraic group G is again a sub-group if PP =1 ? Pi.e. uv -1 ?P for all u.
v?P. In a topological group G we have seen that for any subsets A, Biis Gwe have (i) () ()AA??? 11, bar denoting the
closere. (ii) AB AB ? () (iii) xAx xAx ? ? ? 1 1 for any x?G ; bar denoting closure. Here H is a given subgroup of G ; so HH -1
=HNow, HHHH???11from () HH???11didi??HH1from (i) = H, because H is a subgroup ; HH -1 = H. This
confirms that H is an algebraic subgroup of G ; Finally, continuity of group operation : (x, y) ??xy —1in G works in respect
of H to make H a Topological sub-group of G. Corollary : If it is normal sub-group of G, then H is so. because if x?G, we
have x H x =1 = xHx ?1 from (iii) = H since H = xHx =1, H is normal.

27 So H is a normal sub-group (algebraic) of G ; Also as above, group operation : (x, y) ??xy —1in H is continuous. That
makes H a topological normal sub Group. Remarks : In Topological Group G with indentity e, the closure of e = {e }is a
closed normal sub-group of G and it is the smallest closed sub-group of G. Further, closure of a singleton {a} (a?G) i.e. { a

neighbourhood. ? of the indentity e of G such that x? ?H. Now take any y?H ; we have y? = yx -1 x?? yx —1 H (because
x??H). Since H is a sub-group and x, y?H we have yx —1 H?H ; Therefore y??H ; So H is open, as every number of H is an
interior point of H. Conversely, if H is open we have Int H ?? ?. (b) Let H be an open sub-group of G ; then uH is an open
set for every member u?G. Now write H = (G\{?xH}) where x?G such that {xH} is the family of all pairwise disjoint left
cosets in G other than H. Clearly ?xH is an open set in G and hence H is its complement ; it follows that H is closed.

32% MATCHING BLOCK 2/33 SA Selvi C Chapter 6.docx (D35106226)

a symmetric open neighbourhood of the identity e in topological group GandL=????nn1, thenLisan openand
closed (clo-open) sub-group of G. Because we have
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the following reasons. Take a and y?L. Then let?x?? k and y?? | for some indices k and | (say). Then xy?? k+land x =1 ?(?
—-1) k which is the same as ? k because ? is symmetric. That means L is a subgroup of G. We appeal to Theorem 2.12. to
conclude that L is closed because L is open. Definition 2.1.2. Given a group G the set C = {x?G : xa = ax for all a?G} is
called the centre of the Group G. Explanation : Centre C of the group G comprises of those member of G that

28 commute with every element of G. Then C becomes a sub-group of G ; because let ?, g?C. So pa = ap and ga = aq
for alla?G. Now (pg) a = p(ga) = p(aq) since ag = ga = (pa)q by associtivity = (ap)q = a(pq) and this is o.k. for every
member a?G. Therefore pg?C. Again for a?G we have pa=ap So,p -1pap-1=p -lapp-lor,ap-1=p-laThusp -1
commutes with every member a?G making sure that p —1 ?C. Hence C forms a sub-group of G. Finally, take any member
a?G, if x?C we have, ofcourse ax = xa or, axa =1 = x?C. That means, aCa =17 C and C is normal subgroup of G. Theorem
2.1.1. has corollary to tell us that its closure i.e. C is a normal subgroup if C is the centre of a topological group G.
Theorem 2.1.3. The centre C of a Hausdorff Topological Group G is a closed Normal sub-group. Proof : Now C (=
closure of C) is a normal subgroup of G. We now show that C ?C. Take x? C, let there be a member a in G such thata -1
xa ? x. Since G is Hausdorff, and G is regular, Therefore we find open sets, ? and V is G such that x?? and (a —1 xa) ? V with

()di, because Cis the centre of Group G——This is a contradiction and proof is complete. Example 2.1.1. In a
Topological Group G if H is a sub-group of G such that ? ?H is closed in G for some neighbourhood U of e in G, then H is
closed.

29 Solution : Suppose U is a neighbourhood of the indentity e of G such that ? ?H (bar denoting the closure) is closed.
Take a symmetric neighbourhood V of e satisfying V 2 = VV ??? Let x be a limit point of H ; we show that x?H. take x D ?
?: (directedset), ? ? | g be a net in H converging to x. Clearly, x? H and since H is also a sub-group we find x -1 ? H . So,
the neighbourhood Vx —1 of x =1 shallcut Hi.e. (Vx —=1)? H? ?. Take y?(Vx —=1) ? H. Since x D ? ?:, ? ? L g ?converges to
X, we see that x ? ?xV for ?—? 0 for some ? 0 ?D. Thus for ?? ? 2 0 we find? (yx ? ) ? (Vx =1 )(xV) =V 2 ?2?? (? ? ) Therefore
(yx ?2)?? (? ?H). Now the net {yx ? : ??D, —} converges to yx, and ? ?H being closed, we have (yx) ? ( ? ?H). Hence, x = (y
-1yx) ?Hi.e. H? H ; that makes H to be closed. 2.2 Given a Topological Group G and Closed sub-group Hin G 2.2. Given
a Topological Group G and closed sub-group H in G. Suppose G/H denotes

100% MATCHING BLOCK 3/33 SA T-Group.pdf (D48987336)

the family of all (Left) cosets of Hin G

i.,e. G/H = {aH : a?G}. If H is a normal sub-group we need not make any distinction between left and right cosets of H in
G. Thus G/H consists of all distinct cosets of H in G. We now take H to be a normal closed sub-group of G. Now G/H
forms a group with respect to binary composition aH bH = abH for a, b?G, where in it is well known that H itself serves as
the identity element in group G/H, and inverse member of aH (a?G) in G/H is a =1 H. Definition 2.2.1. If H is a normal
closed sub-group of Topological Group G, then the group G/H of all cosets of H in G is called the Quotient Group (also
known as factor group) of G by H.

30 Example 2.2.1. Algebraically if G is the additive Group of all integers and H = {2n : n?G}, then H is a normal sub-group
of G and the Quotient Group G/ H consists of two members H and 1 + H. Example 2.2.2. Algebraically if G denotes the
additive group of all rationals and H = the set of all integers in G, then H is a normal sub-group of G and a typical
member of the quotient group G/H looks like m n H? where m is an integer &gt; n, and prime to n (n is a natural
number). Therefore the Quotient Group G/H is an infinite group. We are now after an appropriate topology for the
Quotient Group G/H in order to make G/H a topological Group, called very often, Quotient Topological Group or simply
Quotient Group. Let f : G ?? G/H be the canonical mapping where f (a) = aH as a?G. Desired Topology in G/H shall make f
continuous. We call a subset W of G/H to be ‘open’ if and only if f =1 (W) is an open set in Topological Group G. We verify
that the collection W of such open sets W in Quotient group G/H forms a Topology in G/H. (2.1.1) Since f -1 (?) = ? and f
-1 (G/H) = G we see that ? and G/H are members of W. (2.1.2) Let W 1, W 2 be any two members of W, then we have f
-1(W1l)andf-1(W2)areopensetsinG,andsoisf-1(W1)?f-1(W2)whichequalstof-1(W1?W 2). That means
W1?W 27?7 W.(2.1.3) Finally take {w ? } ??? as a collection of member w ? ?W, then we know that f =1 (w ? ) is an open set
in Gforeach???,andf??1???(w?)isalsoopensetinG.ie.fwa??FHIK1()????isalsoopen setinG; that
means, w a ??? ? is a member of W and w a ??? ? is an open set in G/H.

3of21 02-05-2023, 17:59
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31 So, (2.1.1) (2.1.3) verify that W is a topology in G/H ; This topology is called the Quotient topology in G/H. The Quotient
Topology in G/H is one that makes canonical mapping f (see above) to be continuous. Theorem 2.2.1. With respect to

Topological Group G. We cheek that f (0) is an open set in G/H. We need showing f -1 (f(0)) is open is G. Now. f(0) = {aH :
a?0} = OH Take x?f -1 (f(O)) ; so, f(x) ?f(O) = OH ; there we find a member y?O such that f(x) = yH or, xH = yH or, {xh as
h?H} = {yh as h?H} Since H is a sub-group, e?H and we see x = xe? {xh : h?H} = {yh : h?H} Therefore, x = yh for some
h?H. That means x?OH or we have f -1 (f(O)) ? OH. Reversing the argument we deduce OH ? f —1 (f(O)) ; and therefore f
-1 (f(O)) = OH which is, of course, an open set in G. Therorem 2.2.2. (H aclosed sub-group) In the quotient Group G/H
Quotient Topology is Hansdorff. Proof : Lety, x ? G with xH ? yH So, x?yH As H is closed, we see that yH is closed with x
as an outside point ; and x is not a limit point of yH ; so we

find a neighbourhood ? of the identity e in G such that (?x) ? (

yH) = ?? We now find a symmetric open neighbourhood of e satisfying W 2 ? ? We assert that (WxH) ? (WyH) =72 ...

(1)
32 Otherwise, we find somew 1, w2?Wandhl,h2?Hsuchthatwlxhl=w2yh2Thuswwxyhh211211??7?
Now

58% MATCHING BLOCK 4/33 w

xx211??2?2bgWhileyhhyH2111???bg, because H is subgroup. i.e. (Ux) ? (yH) ?? ? —a contradiction. Thus our
assertion (1) stands. i.e. (WxH) ? (WyH) = ? and that means, (Wx) ? (Wy) = ? ; (taking e?H) (Wx) ? (WxH), and similarly (Wy)
?2?2(WyH). Put W? = f(Wx) = WxH and W?? = f(Wy) = WyH showing W??W?? = ?. To complete the proof we now show that
(xH) ? W? and (yH) ? W?? (here W??are W?? are open in G/H ; f sending open sets to open sets). To that end we recall f(x)
?f(Wx) because e?W. or (xH) ?W?, and similarly, (yH)?W?? and therefore W? and W?? are respectively dispoint open covers
for xH and yH in

G/

H.

Theorem 2.2.3.

56% MATCHING BLOCK 5/33 SA B.Viba Nandhini-205207145.pdf (D136277979)

Let G be a Topological Group and H a closed normal subgroup of G, then the quotient Group G/H is a Topological
Group

with quotient Topology. Proof : Consider the canonical mapping f : G ? G/H. In preceding Theorems we have seen that f
is a continuous and open mapping. Now we check that f is a group Homomorphism. Take x, y ? G. Then f(xy) = (xy) H =
xHyH = f(x) f(y). Thus f is a Homomorphism.

33 We now show that Group operation in Quotient Group G/H shall be continuous with respect to underlying
topologies. i.e. one must show that the mapping (xH, yH) ?? xH(yH) -1 = (xy -1 ) H : (G/H) X (G/H) ? G/H is continuous.
Suppose W be an open neighbourhood of xH (yH) =1 = (xy =1) H (x, y ? G), then f =1 (W) is open in G with (xy —1) ?f -1
(W). By continuity of group operation in G (a Topological Group), we find

open sets ? and Vin G such that x??andy -1?V -1with?V -17?

f—=1(W), orf(?V-1)? W  Since fis also a Group homomorphism, we have from above f (?) f (V —1) =f (?V -1) ?? W. Let
u??andv -1?V -1; ThenuHv -1H = f(u) flv -1) ?f(?) f(V -1) ? Wi.e. uH (vH) =1 ? ? W This shows that group operation
in G/H is continuous to make the quotient group G/H a Topological Group with quotient topology. Definition 2.2.2. A

4 of 21 02-05-2023, 17:59
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Topological space X is said to a Homogeneous space if for any two member x 1, x 2 in X there is a self
Homeomorphism fin X such that f (x 1) =

x 2 . For example, every topological group G is always a Homogeneous space ; because if x1,x 2 ?? G, letus take xx 11
2 ? = u?G and inviting the mapping f: G ? G where f (x) = xu for x?G, we see atonce that f is a sef-homeomorphism of G
suchthatf(x1)=xuxxxexx1111222???? Theorem 2.2.3.(a). If His a sub Group of a Topological Group G, then
G/H, the quotient Topological Group is homogeneous. Proof : Take two members x 1 Hand x 2 H in G/H with x 1, x 2 ?G.
Taking xxu1127?7??in G consider a homeomorphism ??: G/H ? G/H given by ?(xH) = (xu)H (= xHuH) for all (xH) ? G/H.
Thenwe have? ?(x 1 H) = x1uH = () xxxHxH11122?? . Hence G/H

46% MATCHING BLOCK 7/33 SA MS - 334.docx (D110841764)

is homogeneous. 34 Theorem 2.2.3.(b). Let G be a Topological Group and H a sub-group of G. Then G/H is T 1 if and
only if H

is

closed. Proof :

Suppose G/H is T 1. Then every suigleton in G/H is closed. Therefore {H} = {eH} is

closed in G/H ; Under conomical mapping f : G ? G/H which is continuous we have f —1 (eH) = H. Therefore H is closed is
G. Conversely let the sub-group H be closed is G. Take any member xH in G/H. consider the singleton {xH} in G/H. Since
H is closed we know that xH is closed making G\{sH} to be open in G. Therefore under cononical mapping f: G ? G/H,
we have f(G\{xH}) is open in G/H. Now f (G\{xH}) = (G/H)\{xH} we conclude that {xH} is closed in G/H. Therefore every
singleton in G/H is closed and that makes G/HT 1.

The proof

is complete. Theorem 2.2.3(c)

Let G be a Topological Group and

61% MATCHING BLOCK 8/33 SA 120004039-Project-1982444.pdf (D19454576)

H a sub-group of G. Then G/H is a discrete space if and only of H is open. Proof :

Suppose G/H is a discrete space. Therefore each singleton of G/H is open. In particular, eH = H (e being the identity of G)
is open. Under cononical mapping f : G ? G/H which is continuous, we have f —1 (eH) = H becomes open in G.
Conversely let sub-group H be open. If x?G, we have xH is open. That means every suigleton in G/H is open in G/H and
this is why G/H is a discrete space. Theorem 2.2.3(d) : Let H be a sub-group of a Topological Group G, and f : G ??on to
G/H be the cononical mapping. If {? 7 } ?t?

be a fundamental system of neighbourhoods of the identity e in G, then the family {

f(? ? )} ?t? is a fundamental system of neighbourhoods of the identity eH = H of G/H. Proof : Let f : G ??G/H be the
canonical mapping. By property of f we see that if ? ?? is any member of

64% MATCHING BLOCK 9/33 SA MS - 334.docx (D110841764)

a fundamental system {? ? } ??? of neighbourhoods of the identity e in G, then f (? ? ) is a neighbourhood of

the identity eH in G/H. Suppose V is any neighbourhood of eH in G/H. Then f -1 (V) by continuity of f, is a
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35 neighbourhood of the identity e in G. So we find a member, say, ? ? in the family {? ? } ???? such that? ? ? 2 fV 1 () or,
fV?7?7?afThis shows that the family f ? ? ? 7 a f L g ? ?is a fundamental system of neighbourhoods of the identity e.H = H
in G/H. Definition 2.2.3. A Topological Group G is said to be totally disconnected if the compononent of the identity e in
G equals to {e}. Theorem 2.2.3. (e) : Let C be the component of the identity e in a Topological Group G. Then the
quotient topological Group G/C becomes a totally disconnected T 2 space. Proof : First we show that C is a closed
normal sub-group of G. Since C is the component ; by maximality C becomes closed. Now take a?C. Thena -1 C? C,
because a -1 C is the image of C under the homeomorphism x ? a =1 x becomes connected with e?a -1 C ; therefore, a
aC??1?C=C-1C?CSo, Cisa closed sub-group of C. Further, by continuity of the mapping : x ? a =1 xa we have
for a?G, a —1 Cais also connected ; thus a =1 Ca ? C for each a?G because C is the component. Therefore C is a Normal
sub-group of G. As C is closed it follows that quotient G/C is T 1 -space and hence itis T 2 . We have now to show that
G/C is totally disconnected. Lt U be the component of the identity member (eC = C) in G/C. If ? is the natural
homomorphism of G ? G/C, we have ? -1 (U). CG and C?? -1 (U). If G/C is not totally disconnected there is a member
(x.C)(? e.C) such that (x.C) ? U. That

76% MATCHING BLOCK 10/33 SA MS - 334.docx (D110841764)

means C is a proper subset of ? —1 (U). Since C is a maximal connected set containing e, ? -1 (

U) is not connected. Let a disconnection of ? =1 (U) be like : ? =1 (U) = [P?? -1 (U)] 7 [Q? ?? ? =1 (V)] ..... (1) where
42% MATCHING BLOCK 11/33 SA MS - 334.docx (D110841764)

P and Q are open sets in G, such that [P ??? -1 (U)] ??[Q ? ? -1 (U)] = ? and neither is empty. So U = [?(P) ? U] ??[?(Q) ?
U]. Taking U = UC Let x?U?such that xC ? ?C ; Hence from (1) we have 36 xC = (P?xC) ?? ?Q?xC) Since xC is connected,
either xC? (P?xC) or, xC? (Q?xC). Consequently, images P?UC and Q?UC under ? are disjoint, since they are unions of
cosets of C. ? (?(P) ?

U) ?? (2(Q) ? U) = ? Now ??is an open mapping, so ? (P) and ?(Q) are open sets, and hence we have shown that U is not
connected—a contradiction what U is the component of eC. Hence we have proved that G/C is totally disconnected.
Remark : Given a topological Group G and a closed normal sub-group H is G, we have seen that cononical mapping f: G
? G/H, where G/H is topological group with quotient topology, becomes a continuous mapping which is also an open
mapping. This mapping may not he a closed mapping. Example 2.2.3. Let R he the topological Group with addition as
Group Composition and with usual topology of reals ; If Z is the sub-group of R consisting of all integers, then we see
that Z is closed and a Normal sub-group of R. Here canonical mapping f : R ? R/Z is not closed. Solution : Consider the
setE=nnn??121,{}.ThenEis a closed set in topological Group R. Every coset x + Z in R contains the number x -
[x], {[x] denoting the largest integer not larger than real x) and no other real number in [0, 1). Therefore, [0, 1) may be
treated as the quotient space R/Z. The Topology imposed in [0, 1) as a model of the space R/Z has basic open sets like (?,
?),and [0, ?]1 ? (?, 1) where 0 &gt; ? &gt; ??&gt; 1. Now canonical mapping f sends E into a non-closed set (having 0 as a
limit point outside the image set f(E)). Hence the conclusion stands OK. However we have following Theorem in this
connection. Theorem 2.24. If H is a compact normal sub-group of a Topological Group G, then the cononical mapping :

G ; and the canonical mapping f : G ?? G/H is in action to send x?G to xH u f(x) = xH as x?G.
37 Take xH ?(G/H)\f(C), and x?CH. As C is closed and H is compact we know that CH is closed. Therefore x is an outside
point of the closed set CH, and we find an open set ? in G such that x???(G|CH). Cononical mapping f heing an open

(G|H)|f(C), showing that (G|H)|f(C) is open and hence f(C) is closed. The proof is complete. 2.3 Locally compact Groups :
We recall following Definition : Definition 2.3.1. A topological space X is called locally compact if each point x in X has an
open neighbourhood ? whose closere ? is compact. Then it is true that a Hausdorff topological space is locally compact
if and only if, each point has a compact neighbourhood. Also we remember that every Hausdorff locally compact
topological space is completely regular (and hence regular). Theorem 2.3.1.
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A Locally compact Hausdorff topological space X is normal if it is the union of an increasing

45% MATCHING BLOCK 13/33 w

2?7?1101\

af,where? 0 =7?? Suppose P??{}?? ?is an open cover for X. Since each ? ? ?n n 1\ ?is compact, there shall be a finite
sub-coverof P?? {}?? for?? ?nn1\. This is true for each n. As countable union of fanite families of sets constitute a
countable family, one has a countable sub-family of P ? ? {} ?? ?to cover X-making X a Lindeloff space. Since every
Lindeloff regular space is normal, the conclusion is arrived at as desired. Theorem 2.3.2. Every compact Hausdorff space
is normal. For proof see any text book on general tohology.

38 Theorem 2.3.3. A Topological Group is a locally compact topological group if and only if its identity e has a compact
neighbourhood. Proof : Suppose G is a locally compact topological group. So its identity e has a neighbourhood ? whose
closure ? ?is compact. Conversely, suppose G is a Topological Group where identity e has a compact neighbourhood =
?. Choose

53% MATCHING BLOCK 14/33 SA MS - 334.docx (D110841764)

a neighbourhood V of e such that VV =V 2 ??. Now, VVVV??? 7?2 : Hence V ?is a closed subset of compact set ? and
therefore V is a compact neighbourhood of e.

Let x be any element in G. Then xV is a neighbourhood of x

and we have xV xV ? ?becomes compact, because translation operator is a homemorphism in G. The proof is now
complete. Theorem 2.34. A locally compact stausdorff topological Group is normal. Proof : First we establish that in a
general topological Group G if ? is a symmetric neighbourhood of its identity e, then ? ? ?n n 1 ?is a clo-open (closed and

Further,x =1?(?n) -1=(? —=1) n =? n (? being symmetric). Therefore H is a sub-group of G. If y?H, we have y??y H = H,
showing every member of H is an interior point of H and H is open, and every open sub-group of G is also closed. Hence
the assertion follows. Now it is know that

33% MATCHING BLOCK 15/33 SA MS - 334.docx (D110841764)

?11.?But? nis compact, because ? is compact. Thus H is a union (countable union) of increasing sequence of
compact sets. H is normal (see theorem 2.3.1). Consider the collection {aH} of paviwise disjoint cosets in G. Since

translation (loft or right) is always a homeomorphism in G, each member aH (a?G) is homeomorphic to H and becomes
normal. Therefore G = ?aH becomes normal. The proof is complete.

39 Corollary : If G is a locally cmpact Hausdorff Topological Group and C is a closed subset in G and ? an open set with C
???, then there is a real-valued continuous function f over G such that f(x) = 1if x?C and f(x) = 0 if x?(G\?). Because G is
normal by Theorem above and C and (G\(?)) are a pair of disjoint closed sets, by Urysohn's Lemma we find a continuous
function f : G ??[0, 1] satisfying. f(x) = 0 if x ? (G|?) = 1ifx ? C

Theorem 2.3.5. Let G be a locally compact Topological Group, and
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is a neighbourhood V of e such that

CV VC ?is compact with CV VC ? ??2?7??????2????7 Proof : As C ? ? which is open, if x?C, we find an open neighbourhood
V x

of the identity e in G such that xV x ??. Also choose an open neighbourhood W x of e such that W x W x = W x 2 ?? V x
Now the family {xW x } x?C becomes an open

coves

for C. By compactness of C, there is a finite sub-cover, say

x1Vx1l,x2Vx2,..,xnVxntocover C.NowputWWinxs11???,then W 1isan open neighbourhood of e in G.

an open neighbourhood W 2 of e in G such that W2 C ?? ?. Since W 1 ?W 2

isan

open neighbourhood of e

in G, we choose a neighbourhood V of e in G such that

its closure Vis compactand VW W ? ? () 12 . Therefore CYVC ? ? ? . As C is compact and V is compact we know that C
Vand V C are each closed set ; Also CV ? V C as a Union of two compact sets becomes a compact set.

in a Topological Group G and C be a compact set in G. Then there is an

31% MATCHING BLOCK 18/33 SA MS - 334.docx (D110841764)
of the identity e in G such that W13 ? ?, and for a fixed a?G take a symmetric open neighbourhood W 2 of e such that
aW2a-1?W1.PutW=W1?W2.Now x?Wa gives (xa-1)?W?W1;andax -1?WW111?7?7?(
W 1is symmetric). Therefore. xWx =1 ?xW2x -1=(xa-1)aW?2a-1(ax -1)?W1IW1IW1=W13??. SinceWis
dependent an a ?G, we designate W by W a . Now the family WaaaC{}?
is an open cover for C ; by compactness of C, there is a finite sub-cover, say,

WaWaWaaaannl212,, .. .tocoverC.LetasputVWinai???1.ThenVisan open symmetric neighbourhood of

This completes
the proof. Example 2.3.1.

35% MATCHING BLOCK 17/33 SA B.iba Nandhini-205207145.pdf (D136277979)

Let G be a Topological Group and N is a closed Normal sub-group. (i) if G is compact, then G/N is a compact quotient
Topological Group ; and (ii) if G is locally compact, then G/N is a Locally compact

quotient Topological Group. Solution. given that N is a closed normal sub-group. Then the quotient group G/N becomes
a Topological Group (See Theorem 2.2.3). (i) Suppose G is compact. Now the canonical mapping f : G ? G/N where
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41 f(x) = xN ?G/N as x?G is continuous, and therefore f(G) is compact since G is compact. Here f(G) = G/N. So, G/N
becomes compact. (i) Suppose G is locally compact. So there is an open neighbourhood O of the Identity e in G such
that O (closure of O) is compact. Now f(e) = eN = N ; Therefore N = f (¢)?f (O) ? f (O ) as O? O ? By continuity of f we
also have f( O), is compact. So f( O )?is a compact subset of a Hausdorff space, and therefore f( O ) is closed. Also f(O) is
an open neighbourhood of N (f is an open mapping) and fOfO fO () () () ? ?, because f O() is closed. Thus f O() is
closed subset of f O() which is compact. Therefore f O() is compact. Hence G/N is locally compact. 2.4 Topological
Groups Involving

87% MATCHING BLOCK 19/33 SA chapterOl.pdf (D95760313)

Connectedness : Definition 2.4.1. A topological space X is said to be connected if

X does not admit of a decomposition like X = P ?? Q Where P and Q are non-empty disjoint open sets in X. Explanation :
A connected Topological space X is thus such a strong piece of objects that it does not allow its partition in the manner
as above. Definition 2.4.1 shows that a Topological space X is connected if any only if in the space X there are no clo-
open (Closed and open) sets other than ? and X. A subset E of X shall be taken as a connected set if it is a connected
space in respect of relative tropology of E. In the real number space R with usual tyoplogy it is known that a subset of R is
connected if and only if it is an interval. Definition 2.4.2. Given a point in X, the maximal connected subset in X containg
the point is said to be the component of that point. In consequence, we recall that given a connected set A in X, it
closure A is also a connected set, and thus every component in X is a closed set. Furthers, if {E ? } ??? is a family of

85% MATCHING BLOCK 20/33 SA chapterOl.pdf (D95760313)

is connected. 42 A topological space X is said to be Locally Connected if each

open neighbourhood of every point in X contains a connected open neighbourhood. We also recall that continuous
image of a connected space becomes connected, and this gives as a special case that every real-valued continuous
function over an interval enjoys Inter-mediate value property. In the following we present some basic properties of
Topological groups depending upon connectedness of the Group when taken as a topological space.

Theorem 24.1.

46% MATCHING BLOCK 21/33 SA 120004039-Project-1982444.pdf (D19454576)

Let G be a Topological Group and H be the component of the Indentity e of G. Then H is a closed Normal sub-group
of G.

Proof :
We know that in G group operation inversion : x ? x —1 as x?G is a homeomorphism, and therefore H —1 being
continuous image of connected set H becomes connected, and it is a connected set containing e. This shows that by

connected set such that e = xx =1 ?xH ; Therefore xH is a connected set containing e ; By maximal property of H as the
component containing e we have xH ? H That means, H 2 ? H (x is any member of H) .......... (2) From (1) and (2) it follows
that H is a sub-group in G. Now take a?G ; then the mapping : x ? axa —1 as x?G is a homeomorphism ; thus by its

continuity we have as a continuous image aHa —1 is a connectedset containing e. Again by maximality of H as a maximal

component in a topological space is always closed we have H as a closed set. Thus
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H is a closed Normal sub-group in G. Example 2.4.1. Let G be a Topological Group and H be the component of
the identity
a?G, we have aHa -1 = H ; giving aH = Ha.

43 Since translation is a homeomorphism we have aH as a connected set containing a (H is the component e, hence a
connected set with e?H). Let C be the component of a. The we have aH ? C. .......... (1) Lake L as a connected set with

C?aH .o (2) From (1) and (2) we have C = aH i.e. aH is the component of a. Theorem 2.4.2. Let G be a connected
Topological Group and H is the component of this identity e. If N is any neighbourhood of e, then GNnn???? 1. Proof
: Choose a symmetric neighbourhood V j of the identity e in G such that V?N. Then we have (see corollary following
Theorem 2.1.2)?? ? nnV 1is open and closed. Since G is connected, G is the only non-empty open and closed (clo-

topology. Let x = {x?} ??? ,y ={y ? } ??? be two elements of G. Then xy is defined as : xy = {x ? y ? } ??? ; with this
definition of composition of two members of G we easily verify that G forms a Group where the identity element e of G is

44 Theorem 2.4.3.

83% MATCHING BLOCK 22/33 SA B.Viba Nandhini-205207145.pdf (D136277979)

?=G?for???|[{?1,?2,...,?n}and??ias open neighbourhoods of xy ? ? .21 (1?i?? n), and ??W. Since (
X??y?)?xy??.?1isa continuous operation in topological Group G ?

70% MATCHING BLOCK 23/33 SA B.iba Nandhini-205207145.pdf (D136277979)

G is a Topological Group with Group composition and product Topology. Theorem 244. Let GG? ?? ? ? ? ??77?77be the
direct product of Topological Groups {

finite number of them that are each a locally compact Topological Group.
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compact ; ifpr??:TTG? 7?7?72 =G??G? ?is the ?th projection mapping, then we known that p r ? ?is continuous for
each ???Since continuous image of compact space is compact we see that pr ? (G) = G ? is compact. (i) It suffices to
check this statement (ii) in respect of to-separation, because in a Topological Group TO ? T 2. Suppose x ? e in G. Then
there is an index, say ??? such thatx? ? ? e 7 in G ? (e ? denoting the identity in G ? ).

Since G ?is T 2 we find

68% MATCHING BLOCK 26/33 SA SITHEESWARI (16PMAVO31).docx (D38133619)
an open neighbourhood ? ? of e ? such thatx? ??? .Now Pr???? 1()is an open neighbourhood of
e in G such that x

proved in part (i) we find that H is a compact Topological Group, and therefore is a locally compact Topological Group.
Thus (iii) shall be O.K. if one proves that product of a finite number of locally compact Topological Group is again a
locally compact Topological Group. To that end, Take ? ? i ?as a neighbourhood of the identity e ? i in G ? i such that

Locally Euclidean Groups and lie Groups. The Unitary space ? n =? x ?? X ? X ?? (n factors), where ? denotes the field of
complex numbers is a complex vector space with scalar field as that of complex numbers. Let M n (?) denote the
collection of all square matrices ((a ij )) nxn with entries a ij ??. It is a routine exercise to check that M n (?) is a
commutature additive Group with

46 identity element as the nullmatrix 000000 ... ... ... e s o FHGGIKJJ?nnwhere addition means usual matrix
addition. Let us recall the following Definition of a linear mapping (operator) over ? n . Definition 2.5.1. f: 2 n ?? ? n is said
to be a linear mapping if (i)

57% MATCHING BLOCK 25/33 SA B.Viba Nandhini-205207145.pdf (D136277979)
fix +y) = f(x) + f(y), and (ii) f(?x) = ?f(x) for all x, y ??? n and

for any scolar ???. Zero Linear mapping is one that sends every thing of ? n the zero = (0, ..., 0) ? ? n, i.e. identity number
of 7 n. LetL (? n) denote the collection of all linear mappings : ? n? ? n. Then additively L (? n ) forms a commutative
Group. By wellknown matrix representation Theorem in linear Algebra one sees that each member i.e. linear mapping
over ? n is represented by an n X n matrix over ? i.e. by a member of M n (?) and vice-versa. Therefore M n (?) and L (? n)

Group. Proof : Let M n (?) be assigned a topology. An element of M n (?) i.e. a matrix over ? may be indentified with a
member of some unitary space explained as under : Let entries of each matrix A = ((@ij)) nxn; ai,j??in M n (?) be
arranged in a definite order. Then A may be looked upon an ordered n 2 tuple of complex scalars and therefore A may be
identified with a member of ? n 2 . The correspondence so achieved is a mapping f: M n (?) ? ? n 2. This mapping fis 1-1
and onto (bijective). Now ? n 2 is a unitary space with an Euclidean Topology. Define a subset H in M n (?) to be open if
and only if f(H) is an open set in ? n 2 under the Euclidean Topology. Then M n (?) is equipped with a Topology so that M
n (?) becomes a T 2 -locally compact additive Topological Group Because ? n 2 is so. Remark : This Topological Group M

with many interesting properties. Let Gn (?) = {A = (@ ij)) nxn ?M n (?) : Alis non-singular}. Non-singular member A?M n

(?) means that there a member, known as inverse of A, denoted by A -1 ?M n (?) satisfying AA -1 = A -1 A =, | denoting
the n-th order indentity matrix in M n (?). It is also a routine exercise to check that G m (?) is a linear Group.
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?2(A) =detAas A?M n (?). Now Gn (?) ={A?Mn (?) : det A? 0}. Since? -1 (O) = {A?Mn (?) : ?(A) =0} ={A?Mn (?) :det A =
0} we have. Gn (?) = M n (?)\{? -1 (O)} Since ? is continuous we see that ? =1 (O) is a closed set in M n (?) and therefore G

Topology indiced by M n (???7?). Proof : We know that product of two non-singular square matrices of order nis again a
non-singular matrix of the same size. Further if A?G n (?), then (A —=1) -1 = A, and we see that A -1 ?G n (?). Thus with
matrix maltiplication G n (?) forms a Group whose identity element is the identity matrix =111 0O nn?FHGGIKJJ
? with upper and lower blocks comprise of zeros since M n (?) is T 2, one sees that G n (?) with respect to relative
topology inherited from M n (?) is also T 2 . We now elxamine continuity of group composition of G n (C) in this topology.
Let A, B?Gn (?),and A= ((@ij)) nxn,B = ((bij)) nxn.If AB=Cwhere C =((cij))nxnandcij=abikkikn??1.Now
mappings A ? a ij are continuous, because they are projections of ? n 2 onto co-ordinate spaces. Similarly B ?? b ij are
continuous, therefore AB ? C ij is also continuous. So mapping (A, B) ? AB is continuous. Finally, if A?G n (?), we have AAd
ij??11detchch?wheredij’sare minors in and are poly nomials in coefficients in A. As det A ? O, mapping. A? 1 det A
dij c hc his also continuous.

48 Therefore A? A =1 is continuous. Thus G n (?) isa T 2 -topological multiplication Group. Definition 2.5.2. A

andxkkn?211?7??} Explanation : A Topological Group is locally Euclidean if and only if for some +ve integer n, its
identity e has a neighbourhood homeomorphic to the open unit ball of the Euclidean-n space R n . Theorem 2.54. M n

(?) is homeomorphic to ? n 2 which in turn is homeomoephic to the Euclidean space R 2n 2 . Thus conclusion stands
O.K. Remark : One can prove a similar Theorem saying that G n (?) is locally Euclidean. Thus examples of locally
Euclidean topological group are not scarce. However, we note that there are topological Groups that are not locally

an infinite number of copies of R. G is equipped with the product topology. Then G is a topological Group that is not
locally Euclidean. 2.6. Lie Groups : Consider a real-valued function f over an open set S ? R n (Euclidean n-space). f is said
to belong to the class C ? if all partial derivatives including mixed devivatives of all orders of f exist and they are

.............................................

.........................

2?272722)??2?2?A. (i) A Hausdorff topological space X with an atlas A is called a manifold. Explanation : Consequence of
Definition 2.6.1. is that every manifold is locally Euclidean and therefore it is locally compact. We recally that M n (R) may
be identified with the Euclidean space R n 2 and that M n (?) may be identified with the Euclidean space R 2n 2 ; therefore
they are each a Manifold. Definition 2.6.2. A manifold G which is also a Group is called a Lie Group if mappings (i) (x, y)

n-space R nis a lie Group, because, forx = (x1,x2, .., xn)?Rn; xiare reals, taking the identity mapping I(x) = (x 1, x 2
... XNn)=x?Rn, we verify that | belongs to C ?, and all requirements are O.K. for R n to be a manifold. SoRnis a
manifold. Further R n is additively a commutative Group such that (x, y) ? x + y as x, y ? R n is analytic, and similarly x ? —x
X?R nis also analytic. Therefore, R nis a lie group. Example 6.2.1. Topological Group M n (?) is a lie Group. Every lie Group
is locally Euclidean and hence locally compact. The famously well known fifth problem of Hilbert says that every locally
Euclidean topological Group is a lie Group. For compact and Abelian Topological Group Problem had been solved long
before the general solution was found. one may see pontrjagin “Topological Group”. Homomorphism between
Topological Groups : Theorem 2.6.2. If
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(CD)

50 (c) If Sis a symmetric set in G, then f(S) is symmetric in H (d) If T is a symmetric set in H, then f =1 (T) is symmetric in
G. Proof : (a) Since f is a homomorphism, we have f(AB) = f(A) f(B) whenever A?G and B?G. (b) Let f be a homomorphism :
G ? Hand take x?f -1 (C) and y?f —1 (D) ; So we have f(x) ? C and f(y)?D Now f(xy) = f(x) f(y) ?CD ; since fis a
homomorphism. Therefore, xy?f —1 (CD). So, we write, f =1 (C)f =1 (D) ?? f -1 (CD). (c) Let S be a symmetric setin G. We
show that f(S) is a symmetric set by showing f(S) = (f(S)) —1 . Take y?f(S) ; So f(x) = y for some x?S. Since S is symmetric, we
have x =17?S -1 =S Hencey -1 = (f(z)) -1 = f(z —-1), Since f is a homomorphism. So, y —1 ?(S) or y?(f(S)) —1 This gives f(S)
22 (f(S) -1 .......... (1) Conversely, take x?(f(S)) =1 Then x =1 ?f(S) So x —1 = f(u) for some u?S. Thus (f(u)) -1 = flu 1) (fisa
homomorphism) ?f(S) because S is symmetric. This gives x = (f(u)) —1 ?f(S) or, (f(S)) =12 f(S) ............. (2) (1) and (2) give f(S)
= (f(S)) =1, showing that f(S) is symmetric. (d) proof shallbe similar to that of (c).

67% MATCHING BLOCK 28/33 SA Selvi C Chapter3.docx (D35106187)

Theorem 2.6.3. Let G and H be two topological Groups and f : G ? H be a Homomorphism. Then (

a) For any two subsets Aand Bof G, fAfBfAB () ()? b g. (b) Forany two subsets Cand Dof H, fCfDfCD???2?2111(
) () (). (c) For any symmetric set Sin G f S() is symmetricinHand fSfS()()???11bg.

51 (d) For any symmetric subset Tin H, f T ?1 () ? is symmetricin GandfBfB????2111() ()b g, bar denoting the
closure. Proof : First we observe that for any two subsets A and B in G, using continity of group operation in G we have.
AB AB ?, bar denoting the closure. Taking note of this inclusion relation proof of (a) and (b) shall follow from (a) and (b)
parts of Theorem 2.6.2. above. (c) Inverse mapping in a Topological Group is a homemorphism, Therefore for any subset
EinGwehaveEE???11bgbg.LetSbeasymmetric setin G. Then Theorem 2.6.2. Says that f(S) is symmetric.

78% MATCHING BLOCK 29/33 SA MS - 334.docx (D110841764)

is a Homomorphism. Then f is continuous if and only if f is continuous

at the indentity e in G. Proof : Let f : G ? H be a Homomorphism, and let f be continuous. Then of course
39% MATCHING BLOCK 30/33 SA Selvi C Chapter 6.docx (D35106226)

f is continuous at the identity element e of G. Conversely, suffose f is continuous at e, and x?G (x ? e). Let W be a
neighbourhood of f(x) in H.

Choose a neighbourhood V of the identity €? in H such that W = f(x) V. Now f being a Homomorphism we know that f(e)
= e?, and using continuity of f at e, we find a neighbourhood ? of e in G such that f(?) ? V. Clearly x? is a neighbourhood

of x in G such that f(x?) = f(x) f(?) (f is homomorphism) ?f(x) V = W That shows, f is continuous at x. The proof is complete.

67% MATCHING BLOCK 31/33 SA Selvi C Chapter3.docx (D35106187)
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f sends any open set in G to an open set in H iff f(O) is open in H for every open set O containing the identity e in G.

52 Proof : Suppose f is an open mapping i.e. f sends any open set in G to an open set in H. Then, of course, f(O) is open
in H whenever O is an open set in G containing the identity e of G. Conversely, suppose the condition holds and take any
openset ? in G. If x??, then ? is a neighbourhood of x in G and choose an open set V containing the identity e in G such
that U = xV ; Now f(V) is open in H. Then f(?) = f(xV) = f(x) f(V), because f is a Homomorphism. Now f(V) being open we
have r.h.s. is an open set in H. i.e. f(?) is open in H. So, f sends an open set in G to an open setin H. Example 2.6.2. A
continuous Homomorphism between two topological Groups may not be not be an open mapping. Solution. Take R as
the set of all reals. Treat Ras an additive commutative Topological Group with discrete Topology. Also treat R an additive
commutative Topological Group with usual Euclidean Topology and call it R u . Then consider the indentity mapping | : R
? R uas a Homomorphism which is, in this case, 1 — 1 and onto. Since discrete topology is strictly finer than the usual
topology of reals in R we see at once that | is not an open mapping ; mevertheless, | is continuous. EXERCISE-A Short
Answer type Questions 1. Definie a sub-group of a Topological Group with an example with justification. 2. When is a
sub-group of a Topological Group called discrete ? Find a discrete sub-group of the Topological additive Group R of all
reals. 3. If H is a sub-group of a Topological Group G, show that its closure H is a sub-group of G. 4. In a Topological
Group Gisx1,x2??G show that there is a self- homeomorphism f of G such that f(x 1) = x 2. 5. Let G be a locally
compact Topological Group and f : G ??F is an open continuous homeomorphism where F is another. Topological
Group. Show that F is locally compact.

53 6. If a topological Group G is connected and H is a sub-group of G, show that G/H is connected. 7. If H is a sub-group
(a normal sub-group) of a Topological Group G, show that its closure H ?is a subgroup (a normal sub-group) of G. 8.
Example if the set Q of all rationals forms a Topological sub-group of Topological additive Group R of all reals. 9. Find a
discrete sub-group of Topological additive Group R of all reals with reasons. EXERCISE-B 1. Let G be a topological Group
and H a sub-group of G. If ?

is a neighbourhood of the idendity e in G such that

H? ? is closed in G, show that H is closed in G. Solution : Take a symmetric neighbourhood V of the identity e in G such
that V2 =VV 7?72 Letx? H;if {x ?:??D, —}is a netin H such that {x ? } converges to x is g. Now x =1 ? H (H, a sub-
group). So (Vx =1) ? H ???. Take y?(Vx —=1)?H. Let x ? ?xV for ? ? 7 0 ?(say), ? 0 ?D ; then we have yx ? ?(Vx =1)(xV) =V 2

? . Therefore x = y =1 yx?H, showing H ?H. Therefore H is closed. 2. If H is a normal sub-group of a topological group G,
show that quotient Group G/H is homogenous. 3.
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Let G be a Topological Group and H a sub-group of G. If H

and G/H are locally compact, show that G is so. 4. Let G be a locally compact topological group, and C be the
component of the identity e is G. Show that C = ?{H : H is any open sub-group of G}. 5. Let? ? ? ? { } ? he the

the closure.
54 6. Let G be a Topological Group with the identity e. Show that e? ? is a normal closed sub-group of G, and hence, G e
/?7?
is
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a Hausdorff Topological Group. 7. Prove that the component of the identity of a Topological Group is a closed Normal
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sub-group. 8. Let R 2 be an additive topological Group and H be the st. liney = ?xin R 2 which is a sub-group of R 2 . If
:R2?R2/N be the cononical mapping where N = {(m, n) : m, n an integers} is a sub-group of R 2, examine if f(H) is a
closed sub-group of Topological Group G/N for ? to be (i) a rational number and (ii) an irrational number. 9. Let G be the
additive Topological Group of all reals, and Z be the sub-group of G. show that Z is a discrete sub-group of G and factor
Group G/Z is homeomorphic to a Circle. 10. Prove that topological product of two Eudidean spaces R nand R mis
homeomorphic to the Euclidean space R n+m .
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PREFACE In the auricular structure introduced by this University for students of Post- Graduate degree programme, the
opportunity to pursue Post-Graduate course in Subject introduced by this University is equally available to all learners.
Instead of being guided by any presumption about ability level, it would perhaps stand to reason if receptivity of a learner
is judged in the course of the learning process. That would be entirely in keeping with the objectives of open education
which does not believe in artificial differentiation. Keeping this in view, study materials of the Post-Graduate level in
different subjects are being prepared on the basis of a well laid-out syllabus. The course structure combines the best
elements in the approved syllabi of Central and State Universities in respective subjects. It has been so designed as to be
upgradable with the addition of new information as well as results of fresh thinking and analysis. The accepted
methodology of distance education has been followed in the preparation of these study materials. Co-operation in every
form of experienced scholars is indispensable for a work of this kind. We, therefore, owe an enormous debt of gratitude
to everyone whose tireless efforts went into the writing, editing and devising of a proper lay-out of the materials.
Practically speaking, their role amounts to an involvement in invisible teaching. For, whoever makes use of these study
materials would virtually derive the benefit of learning under their collective care without each being seen by the other.
The more a learner would seriously pursue these study materials the easier it will be for him or her to reach out to larger
horizons of a subject. Care has also been taken to make the language lucid and presentation attractive so mat they may
be rated as quality self- learning materials. If anything remains still obscure or difficult to follow, arrangements are there
to come to terms with them through the counselling sessions regularly available at the network of study centres set up
by the University. Needless to add, a great deal of these efforts is still experimental-in fact, pioneering in certain areas.
Naturally, there is every possibility of some lapse or deficiency here and there. However, these do admit of rectification
and further improvement in due course. On the whole, therefore, these study materials are expected to evoke wider
appreciation the more they receive serious attention of all concerned. Professor (Dr.) Subha Sankar Sarkar Vice-
Chancellor

NETAJI SUBHAS OPEN UNIVERSITY PG (MT)-=IX A(l) Unit 1 ? Analytic Continuation 7-25 Unit 2 ? Harmonic Functions
26-40 Unit 3 ? Conformal Mappings 41-49 Unit 4 ? Multi-valued Functions and Riemann Surface 50-82 Unit 5 ?
Conformal Equivalence 83-104 Unit 6 ? Entire and Meromorphic Functions 105-155 NETA J I S UBHAS OPEN UN |V E
RSITY
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7 Unit 1 Analytic Continuation Structure 1.0 Objectives of this chapter 1.1 The idea of analytic continuation 1.2 Direct
analytic continuation 1.3 Analytic continuation of elementary functions 1.4 Analytic continuation by power services 1.5
Analytic continuation along a curve 1.6 Multi-valued Functions and Analytic continuation 1.0 Objectives of this Chapter In
this chapter we shall introduce the idea of direct analytic continuation of an analytic function. The concepts of analytic
continuation by means of power series, complete analytic function, natural boundary, analytic continuation along a
curve will be explained with the help of examples. Homotopic curves, analytic continuation of multi-valued function and
Monodromy theorem will also be discussed. 1.1 The idea of analytic continuation The idea of analytic continuation rests
on the notion of analytic function. A function f(z) is analytic at z = z O if it is differentiable in some €-neighbourhood of z
0 or, equivalently if it can be expressed in the form of a Taylor series in a neighbourhood of that point. The domain of
convergence of this power series will be the region of analyticity of the function f(z). Following Uniqueness

Theorem : “If two functions f(z) and g(z), analytic on a region D, are such that f(z) = g(z) on a set AcD having a limit point
in D, then f(z) = g(z) V

z € D,” we know that if two analytic functions agree in some small neighbourhood of a point situated in their common
region of analyticity D, they

8 coincide everywhere in D. We first introduce the idea of analytic continuation by the following examples. The
geometric series 1 + z + z 2 + ... converges for |z| &gt; 1 and its sum function g(z z) — = 1 1 is an analytic function for |z|
&gt; 1. The geometric series diverges for |z| > 1. However, the functionhz z () — = 1 1is analytic for all z except z = 1. But
we observe thathzg(zzzC ())\{} = V € &gt; / 11 Thus, we may regard h(z) as determining an analytic continuation of
g(z) from the domain |z| &gt; 1 into the domain /C \{1}. Example 1.1 Consider the Laplace transform of 1 in the z -plane, F
zzdtzzt()E{}()Re — ===6§lt;eeforz110 0 We introduce a function ¢()z z = 1 which is analytic in the complex
plance /C except the origin. Here @() () /() RezFzz C =V € /N &lt; 0 0 zand we consider ¢(z) as analytic
continuation of F(z) from the domain Re z &lt; O into the complex plane with the point z = 0 deleted. We put these ideas
more precisely in the following discussion. 1.2 Direct analytic continuation Let (i) f(z) and g(z) be analytic functions on
domains D 1 and D 2 respectively. (i) D D 1 2 = ¢ (iii) f(z) = g(z) for all z belongingto D D 12 Then g (z) is called a direct
analytic continuation of f(z) to D 2, and vice versa.

9 Theorem 1.1. A direct analytic continuation, if it exists, is unique. Proof. Let f(z) be an analytic function with domain of
definition D 1 and let g(z), another analytic function with domain of definition D 2, be its direct analytic continuation. We
shall show that g(z) is unique. On the contrary suppose ¢(

z) be another analytic continuation of f(z) into D2 . Thenfzg(zDD())=€eforallz12Also,fzzDD()()=€e ¢ forallz
12

and so @(z) coincides with g(z) in D D 1 2 . Thus we have, by the Uniqueness theorem, @(z) = g(z) in D 2. 1.3 Analytic
continuation of elementary functions The functions e z, sin z, cos z, sinh z etc are already known to us. These functions
are regular in the entire complex plane. Let us assume, by definition, thateznznn == 3 1 0 and observe that it
coincides with e x, known earlier, for real values of z. Thus we can take e z as the analytic continuation of e x from real
axis into the entire complex plane. Likewise introducing

sin z, cos z sinh z, cosh z in the form of

power series— sin (=1) ()!, cos (=1) ()!

z

z

nz

zZn

nnnnnn=+=+=e=0%%21200212sinh()lcosh()lzznzz

n

n

n

n

N=+=+=0e=0¢%%21200212

and

We

can treat them as the analytic continuation of the functions sin x, cos x, sinh x and cosh x respectively from the real axis
into the entire complex plane. D 1 D 2 Fig. 1
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10 1.4 Analytic continuation by power series We now explain the concept of analytic continuation by means of power
series. Suppose

the initial function f 1 (z) is analytic at a point z 1. Then f 1 (z) can be represented by its Taylor series about
zlasfzazzfznnnnnnl11101()(=)..0), () ()===e¢%

where a The circle of convergence y 1 of the series (1) isgivenbyy111:—-,zzR=wherel11Rannn=—elimsup Let
D1={z:|z-2z1|8&gt;R1} Thenf1l(z)isanalyticin D 1. We draw a curve y from z 1 and perform analytic continuation
along y as follows : We take a point z 2 on y such that the arc z1 z 2 lies inside y 1 . We then compute the values f1 (z 2),
fl11(z2),...f1l(n)(z2)bysuccessive term by term differentiation of the series (1) and writefzbzznnn2022()(-)
.()==eYwherebfznnn=12()()!The circle of convergence y 2 of the series (2) isgivenbyy222:-zzR =,
wherel21Rbnnn=—elimsupletDzzzR222=_§gt;: —.Thenf2(z)is analyticin D 2 . By uniqueness theorem, f 1
(z)=f2(z)forallzD D e€12.Ify2extends beyondy 1, then f 2 (z) gives an analytic continuation of f 1 (z) from D 1 to D
2 . Similarly, considering a pointz3onysuchthat(R1Z1D1D2D3R2R3Z2Z3yly2y3y

1lthearcz2z 3 liesinsidey 2, we get an analytic

function f 3 (z) in a circular domain

D 3suchthatf2(z) =f3(z) forallzD

De23. If

D 3 extends beyond D 2, then f 3 (z) gives an analytic continuation of f 2 (z)

from D 2 to D 3 . Repeating this process we get a number of different power series representing analytic functions f i (z)
in their respective circular domains D i which form a chain of analytic continuations of the original function f 1 (z) such
that (fi, D i) is a direct analytic continuation of (fi-1, D i—1). Note : We may obtain the series (2) from the series (1) in
the following way : We rewrite the series (1) intheform:azzzznnn=e¢3% +0221(-)(—-) Using binomial theorem
we thenexpand (- ) (-)zzzzn?221+ and collect the terms in like powers of (z—z 2 ) and obtain the series (2). We
give two examples. Example 1.2 The function fz z ()= + 11 2 possesses two simple poles at z = + i; Otherwise it is
regular throughout the whole complex plane. We first choose a point, say z = O at which f(z) is analytic and obtain its
Taylor series expansion represented by g(z) as g(z) =1 -z2 + z4 — ..., |z| &gt; 1 The series fails to converge on and
beyond the unit circle, as is clear from the ( series for z = 1 even though the function f(z) is analytic at that point. We can
in fact continue the expansion from one region to another. Let us consider a second expansion of f(z), this time about a
point z = 3 4 lying inside the unit circle (i.e. lying inside

the region of convergence of the former series). We form

the expansion

as

follows11112112+=+4=+

z

ziziizizi()(-)—--o0i-iz=-34Fig.2

12=+++

121343413434izizi—--—-—-=+

+++
121341343413413434iiziizi—--//-—--//-1-1=+123413434343422iizizil(/-){-(=-/)/
(/=)= =)=3=12-=(){=(=0)/(/)(=/)/(])=},——-34134343434345422++++6&qtjiziziz

P =
+

+
1625321625341116162534211616253423244 - —-—-—-22
z..(2)

We
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denote this expansion by h(z), which converges in the right-hand circle z — 34 5 4 &gt; and coincides with g(z) in the
shaded region. We see that h(z) is clearly a direct analytic continuation of g(z). Let us construct another analytic
continuation of g(z). Now we consider a neighbourhood of the point z = 1 (though it is a boundary point of the unit circle
the function f(z) is analytic there) and obtain an expansion represented by @() - (=) (—-) —-...zzz=+121211412 for
z - ..() 123 &gt; In this way we can determine all possible direct analytic continuations of g(z) and then continuations of
these continuations and so on. A complete analytic function is defined as consisting of the original function and the
collection of all the continuations so achieved. Here the complete analytic functionis 112 + z, defined in the whole
complex plane barring the points z = +i. Example 1.3 Consider the functionFig.3v v v v v Oz-&gt;3454

13fzz ()= + 11 Clearly this function is analytic everywhere except at z = — 1. We take a function () —zzz=+12 .. (4)
Then sum function @(z) is 1 1+ zin | z | &gt; 1. Take a point z = — 1/4 inside the region of convergence of ¢(z) and in a
neighbourhood of this point we determine W()zzz = -+

+

+

4314314431422z +6&gt;1434..(5) Itcanbe checked easily that @(z) and W(z) are direct analytic continuation of
each other. Again in the neighbourhood of z = i/2 we obtain an expansionk ziziizii()/////..=+—-—-+

+ -+

-11212122122zi-6&gt; 252 ..(6) In performing analytic continuations we notice that there are certain points
which always lie on the boundary of domains in which expansions are not valid. These points are nothing but the
singularities of the complete analytic function. In example 1.2 these are z = + i whereas itis z = —1 for example 1.3.
Regular and Singular points Let f(z) be an analytic function defined in the domain D, bounded by a simple closed curve I'.
A point ¢ € I"is called a regular point of the function f(z) if

there exist a neighbourhood | z — ¢ | &gt; € of the point ¢ and an analytic function @ ¢ (z) suchthat@¢g()()||zfzzDz
=V e N - &gt;e . The boundary point { which is not a regular Fig. 4 Fig. 5Fig. 6 vvvvyv | -1 -1/401-110zi-252
&at;Dlg

14 point is called a singular point of f(z) i.e., in any neighbourhood of the point ¢, there cannot be any analytic function
coinciding with f(z) in the part common to the neighbourhood of  and the domain D. Natural boundary In examples 1.2
and 1.3 we have encountered with finite number of singular points situated on the boundary of the region of analyticity
of the given function. It might happen that the boundary is dense with singular points. In this case analytic continuation
across the boundary of the region is not possible. Such a boundary is called a natural boundary. Example 1.4 Test
whether analytic continuation of the functionfzznn ()= =3 2 0 is possible outside its circle of convergence. Solution
: Applying the ratio test we find that the given series

fz)=z+22+2z4+2z8+ ..(7) converges for |z| &gt; 1. The point z = 1 is a singular point of f(z)

as it is seen for real z that the sum x n n 2 0= e ) increases indefinitely as x — 1. Now to test whether the circle of
convergence, the unit circle, is a natural boundary we examine the behaviour of the given function at the points. ze k s i
skk,,,,,..==221232Ts(kisany natural number). For this sake we consider the points ~.zreksisk=2210
&gt; r &gt; 1 and evaluate f(z) at these points. Thenfzrereksnkisnkisnknnkn(~),..=+=—-=¢%5%201222
2 2 2 21 1 and observe that the first term consists of a finite number of terms and hence bounded in absolute value,
whereas the second term is absolute value reducestornnk 2 = e 3 . Clearly this sum increases indefinitely as r — 1. This
shows that the points z k,s (as lim ~, , rks ks zz — = 1 are singular points of the Fig. 7 | O1~,zks

15 given function f(z). Now as k — e these points form an everywhere dense set of points on the boundary of the unit
circle. Thus analytic continuation outside the circle of convergence of the given

function is not possible. Example 1.5 Show that the functionfzznn()!==e¢5% 1
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has unit circle as its natural boundary. Theorem 1.2 Every power series has at least one singular point on its circle of
convergence. Proof. Letf(z) =a0+al(z-z0)+a2(z-2z0)2+ .. beanypower series with region of convergence
K:lz — z 0| &gt; R. We shall have to prove there lies at least one singular point on the circle of convergence |z —zn | =
R of the function. Suppose, on the contrary, that every point on I" are regular points. Let¢1,¢2,...Gi,... be certain
number of regular points belonging toMand N(g 1), N(g 2 ), ..., N(gi)... be their neighbourhoods respectively. The points ¢
i 's are chosen in such a way that N(g i ) has non null intersection with N(¢i — 1) and N(¢ i + 1) and the union of these
neighbourhoods completely cover the boundary I'. Let D be the union of K and all these neighbourhoods N(gi). D is
open since K and every N(g i) are open. D is also connected since. (i) any two points lying in KcD can be connected by a
straight line segment lying in K, since K is connected. (ii) one point z 1 eN(g 1) and the other z 2 €K can be connected by
two straight line segments z 11 {and ¢ 1 2 z lying within N(g 1 )UKcD. (iii) one point zm eN(C m ) and zn eN({ n ) can be
connected by a curve consistingofzzDmmmnnn{{{{++ csincezNDDmmmmnd{{{l{cccc(),and(C
nnnzNDcc().((Fig8HgiziZOKRIz1z2C1¢2Ba......................

16 and finally if two points lie in the same neighbourhood N(Z i) it is always connected by a curve y ¢ N(Ci) c D. Now we
introduce an analytic function w(z) on the open connected set D which satisfies W(z) = ¢ ¢ i (z), z € N(Z i) f(z), zeK where @
Gi(z) is a direct analytic continuation of f(z) in the neighbourhood N(C i) of the regular point {i. We now prove that y(z)

is well-defined on D. Let a, B be any two points on I such that HN N = = () () a B ¢ and since a, B are regular points
there exist functions @ a (z) and @ B (z) as direct analytic continuations of f(z) in N(a) and N(B) respectivelyie.@eaa () ()
()zfzzK=V NoeBB()()()zfzzK=V NsothatoeeaBaB()()()()()zzfzzGNKNKH ==V =c.Nowsince @

a (2), B (z) are analytic in H and G is a part of H, by the uniqueness theorem @ a (z) =@ B (z) Vze H. Asa and 3 are
arbitrary points of I' we conclude that y(z) is a well-defined analytic function on D. Let C be the boundary of D and let p C
Ce=2z0, C be the minimum distance from z 0 to the boundary C of D. Then clearly p &lt; R as ¢ lies outside the circle I'.
Thus we observe that W(z) coincides with f(z) on the disc |z-z 0 | &gt; R. Then it is obvious to conclude that

the radius of convergence of the given power seriesazznn

n(-)00=e3% isp, notR, which is a contradiction. Hence every point on I cannot be regular points, i.e., there must be
at least one singular point on I'. 1.5 Analytic continuation along a curve Earlier, analytic continuation by power series
method, we have extended f(z) to a

17 larger domain considering its power series expansion about a point a from its original circle of convergence with
centre at z 0 (—a = z 0) and radius r. We know, this power series converges in the disc D 1:|z — a|] &gt; R, where R > r—|z
0 - al [(see Fig. 9), for example 1.2]. Then it converges to an analytic function g(z) defined on D 1, which is equal to f(z)
on D D 1. Analytic continuation along a curve is an extension of this idea to the situation where a curve is covered by an
overlapping sequence of discs and an analytic function defined on the first disc, can be extended succesively to each
disc in the sequence (see figure 10). We will make this idea more precise after introducing the definition of function
element. Definition 1. An ordered pair (f, D), where D is a region and f is an analytic function on D is called a function
element. We say that it is a function element at z O if z 0 belongs to D. Two function elements (¢, G) and (g, H) are equal
if and only if @(z) = w(z), G = H. Clearly a function element (f 1, D 1) is a direct analytic continuation of another function
element(f2,D2)whenD1ND2=@andfl=f2inD1ND 2. In this case the two function elements (f1, D 1) and (f 2
, D 2) are said to be equivalent. Definition 2. Let y [0,1] : — /C be a curve and (f 0, D 0 ) be a function elementatz 0 =
y(0). Suppose there exists (i) a partition 0 =t 0 &gt; t 1 &gt; ... &gt; t n = 1 of [0, 1] and (ii) a finite sequence of function
elements(fO,D0),(f1,D1), ... (fn,Dn)withy(tj, tj+1]) c Djand i)

fi(z2=fj+1(z2onDjNDj+lforj=0,1, ..n=-1.Then (fn, D n)is called an analytic continuation

of (f 0, D 0) along y. Apparently, it seems that the function element (f n, D n) of the above definition, depends on the
choice of partition 0 =t 0 &gt; t 1 &gt; ... &gt; t n = 1 of [0, 1] and the finite sequence (fO,D0), (f1,D1), .. (fn,Dn)of
function elements. It turns out that up to equivalence, it is actually independent of these choices. Fig. 9 Fig. 10 o —i i
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18 Theorem 1.3 Given a curve y [0,1] : — /C beginning at z 0 and ending at z n and a function element (fO0, D 0)atz O,
any two analytic continuations of (f 0, D 0) along y give rise to two function elements at z n that are direct analytic
continuations of each other. [Though the theorem can be proved by taking different partitions of [0, 1] for two different
analytic continuations of (f 0, D 0 ) along vy, here we prove the theorem taking the same partition of [0, 1] for two analytic
continuations along y]. Proof. Let (fO,FO0),(f1,F1),...(fn,Fn)and(g0,G0),(g1,G1), .. (gn,Gn)betwo analytic
continuations of (f 0, D 0) along y, using the same partition, 0 =t 0 &gt; t 1 &gt; ... &gt; tn =1wherey(tj) =zjand y (It]
JtjiHll) cFjandy(tj, tj+1]) c Gjforj=0,1, .., n. By given hypothesis, (f0O,D0)=(f0,F0)=(g0,G0). Now we set
Ej=FjNGjforj=12,..n,andEO0O=F0=GO0.TheneachE jisaconnected open set containing y(tj) and y(tj+1). To
prove the theorem we show, by induction, thatfn=gnonEn.Wehavef0=g0onEO =FO0 = G 0 by definition.
Suppose j&gt; nandfj=gjonEj.Butwehavefj=fj+lonfjNFj+landgj=gj+lon GjN Gj+landy(tj+1)is
common to both the open sets F j NF j+1and Gj NG j+1. So it follows that f j+1 = g j+1 in a neighbourhood of y(t j+1)
and hence on E j+1 by the uniqueness theorem. By induction the proof is therefore complete. Homotopic curves. Two
arcsy landy 2, with common end points, contained in a region R are said to be homotopic if one can be obtained from
the other by continuous deformation where the process of continuous deformation must be confinedinR.y1ly2y3y4
Yy5R

19 In the given figure {y 1,y 2 and y 3 } is one set of homotopic curves while {y 4, y 5} is the other set. Here no curve of
the first set is homotopic to any curve of the second set. These are geometrical interpretations. We now explain such a
deformation in an analytical manner. Let us supposey0:z=00(t),0<t<landyl:z=01(t), 0 <t<1betwo curves,
lying in a region R, having common end pointsaandbie,a=00(0)=01(0)andb =00 (1) =01 (1) hold. We say that
the curve y O can be continuously deformed into the curve y 1 keeping the process confined to R, if there exists a
function af(t, s) which is continuous in the unit square 1 2 = | X |, | = [0, 1] and satisfies the following conditions : (i) for
eachfixedse [0, 1] thecurveys:z=0(ts), 0<t<lliesinR.(ilo(t, 0)=0c00@®ando(t,1)=01(t), 0<t<1(i)o(0, s =
aando (1, s)=b, 0<s <1 Letaand g be two points lying in a domain D and suppose thaty 0 and y 1 are two curves
connecting a to ¢. Let there exist, as in definition 2, two finite sequences of function elements (fO, G0 ), (f1,G1) ..., (fn
,Gn)and(g0,HO0),(g1,H1) .., (gm,Hm)along the curvesy 0 and y 1 respectively. We also suppose that the
function elements (f0, G 0) and (g 0, H 0 ) at the point a are equivalent. Then a question arises whether the function
elements (fn, Gn)and (gm, Hm) at the point ¢ are also equivalent? If y 0 and y 1 are the same curve the Th. 1.3
confirms the answer for equivalence. However, if y 0 and y 1 are distinct there is no definite answer. The reason behind
this is the fact that the regions enclosed by the curves y 0 and y 1 may contain points at which we can not find any
function element that can be included in the sequence of function elements from the point a to ¢ along any curve
passing through these points. Here we discuss a few problems highlighting these facts : Example 1.6 Let Q1 = {z& /C | Re
z &lt; 0, Im z &lt; 0} denote the first quadrant and set f(z) = log z for all z € Q 1 Show that, if g 1 is the analytic continuation
to /C \(—e, O] of fand g 2 is the analytic continuation to /C\[0, e) of f, then g 1 # g 2 throughout the third quadrant, Q 3 =
{ze/C|Rezé&gt; 0, Imz &gt; 0}. Proof. Clearly, g 1is the principal branch of logz throughout /C\(—e, 0] A A A A A A A
AANAAAANAAAANQ-1O0zZ AAAAALFig. 10

20 by the uniqueness theorem. Thatisgzdz11()[,] =¢¢forall z barring the negative real axis including origin. We
define () gzdiCz2()\[O,]1[-1,1=+/eggtmeforallzand showthat(ii)g2(z) =gl(z) +2miforallze Q3. Letybe
the closed curve (see figure) consisting of the line segments [, z], [z, —1] and a semi-circular path " with centre at the
origin and radius 1, where z is any point in Q 1. Now we wish to calculate d¢ ¢ y By Cauchy's Residue Theorem, it is equal
to 21 origin is the only pole inside y). So breaking up the contoury, we canequate211m¢gggggidddzz=++1[,]1
—-|IFr=+gzdizl()-[-1]lggmie,gzdigzz12()-()[-L]lggm+=Henceg2(z)=gl(z)=logzforallzeQ1l,
that is, the mapping g 2 defined in (i) is the unique analytic continuation of f to /C \[0, ). To prove (ii) Let z € Q 3 and y be
the curve joining the line segments [-1, z], [z, +1] and a unit semi-circular path I in the upper half plane. Thus 2 1M ¢¢G¢
¢sggyiddddzz==++T[-1L][-1=+1m¢cidgzz[-1,]-()1-1PzOQTFIgQIIIAAAAAAAAAAAAA
AANANANNAA
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2lie,g2(z) =gl(z)+ 2miforallze Q 3. Remark : The preceding example presents the following observation : If y 1
and y 2 be the two curves joiningz 0 and ¢, (f 0, D 0) be a function element at z 0, then the resulting function elements
of (fO, D 0) along the curves y 1 and y 2 at ¢ may not be direct analytic continuations of each other. We shall now
discuss for what reasons such type of situation occurs. 1.6 Multi-valued Functions and Analytic continuation When we
define both real and complex functions we always keep in mind that for each value of the independent variables the
value of the function must be unique. For example, even Cauchy's theorem is based on the assumption that a function
can be defined uniquely in the region under consideration. All the same, multivaluedness often arises out of necessity in
the actual construction of functions, the simplest example is perhaps the logarithm : In section 5.2 [14] we showed that if
z is a non zero complex number, then the equation z = e w has infinitely many solutions. Since the function f(w) = e w is
a many- to-one mapping, its inverse (the logarithm) is multi-valued. Definition 3 : [Multi-valued logarithm] : For z = 0, we
define the function log z as the inverse of the exponential function; that is, log z = w if and only if z = e w (8) If we go
through the same steps as we did to obtain (5.5) [14], we find that, for any complex number z # 0O, the solutions w to
equation (8) take the form w = log z = log |z| + i6, for z = 0 (9) where 8 € arg z and log |z| denotes the natural logarithm
of the positive number |z|. Because arg z is the set arg z = Arg z + 2nTI, where n is an integer, we can express the set of
values comprising

log z as log z = log |z| + i (Arg z + 2nTT), where n = integer (10) or log z = log |z| + iarg z for z = 0, (11)

where it is understood that the identity (11) refers to the same set of numbers given in identity (10). We call any one of the
values given in identities (10) or (11) a logarithm of z. Notice that the different values of log z all have the same real part
and that their imaginary parts differ by the amount 2n1, where n is an integer. Regarding analytic continuation, we treat
log z for complex valued z as the extension of log x from positive real domain to complex domain. Consider the Taylor
series expansion of log x :

22 loglog{ (=)} (-1) (=), —xxnxxnnn=+=8&gt; &gt; = > 11102 11(12) We take this series for complex valued z
andwritefznznnn0111()(-1) (-)- ==Y (13) which converges in the disc K 0 : |z-1| &gt; 1 so that f O (x) = log x
for 0 &gt; x &gt; 2. Thus f 0 (z) and log x are direct analytic continuations of each other. Our object is to specify the
curves along which the analytic continuation of the function element (f 0, K Q) is possible. For this purpose it is
advantageous to apply the integral representation. log, x ds s x x = &gt; &gt; ¢ 0 1 (14) Lemma 1.1. The following formula
fzdz01()=¢¢g (15 holds for z € K O where the integral is taken along any path lying completely within K O . Proof. The
function f O (z) given by (13) is regular in K 0 and following Theoren 3.2[14] the integral on the r.h.s of (15) is also regular in
K O . But we see that this integral coincides with log x in (14) for O &gt; x &gt; 2. By the uniqueness theorem.fznzdnnz
n011101()(-D(-),.—==3% =e¢gcezKIncontinuing f 0 (z) analytically to an arbitrary point w we isolate a single-
valued piece of log z, as we shall do later for other multivalued functions, called a branch of the function. The standard
way to isolate single-valued branches is by the use of branch cuts to different branches. For log z the question of
multivaluedness arises when z goes around the origin, as a result argument changes by 21. Such a point is called a
branch point. If we do not allow the paths to travel around a branch point of a multi-valued function then certainly we
would not face varied values at a point lying in the domain of definition of the function.

23 Let C be any simple curve from 0 to e, so that z cannot go around the origin crossing C. The above consideration
shows that if analytic continuation along a given curve I is possible, then one can get from a function element at the
initial point of the curve another function element at the terminal point of the curve by a finite number of applications of
direct analytic continuation. If there is no function element at the initial point of " that can be continued along I, then
there exists a definite point on the curve ' which is a singular point at which the process of analytic continuation must
stop. The following question immediately arises : if w is some non-singular point outside the disc D O, then there may
two or more chains of function elements which eventually continue analytically f O (z) onto a disc D containing w. For
example, let (fj, D j) be the function element of one chain and (f k, D k) be the function element of a different chain
andthatweDjNDk; willthenfj(z) = fk(z) V ze D? The Monodromy Theorem The above question is answered by the
Monodromy theorem, which, simply stated, is : if there are no singular points in between the two paths of analytic
continuation, then the result of analytic continuation is the same for each path. Another way of stating the theorem is :
Theorem 1.4 [Monodromy Theorem] Let (f O, D 0 ) be a function element

7 of 55 02-05-2023, 17:55



Ouriginal

by Turnitin

at z 0 and R be a simply connected region containing D O, ¢ be any point lying in R. We suppose (i) (f 0, D 0) can be
analytically continued along every curve in R. (ii) y 0 and y 1 are homotopic curves from z O to ¢. Then the continuations
of the function element (fO, D 0) alongy 0 and y 1 at ¢ are equivalent. Fig. 12 Fig. 130 AAAAAAAAAAAANAA
AAAAANAAAAAANAANAAAANAAAAAANAAAAAANAAAAAANAANAAAAANAANAAAANANAANAZLXCzLIXxlogz -2TTiyYy
AANAANA

24 Proof. A homotopy from y 0 to y 1 determines a continuous one parameter family of curves{y s}, 0 <s<1fromz O to
G given by the equations z = 0 s (t), 0 < t < 1. By hypothesis, the function element (f 0, D 0 ) has an analytic continuation
along each of the curves, y s . Denote the terminal function element at ¢ for the continuation along y s by @ s . We claim
that, for each k € [0, 1], there is a d &lt; O such that @ s is equivalent to @ k whenever [s—k| &gt; 8. Let 0 =t 0 &gt; t 1 &gt;
... &gt tn=1beapartitonand (f0,D0), (f1,D1), .. (fn, Dn)be a finite sequence of function elements defining @ k
= (fn, D n) as the terminal function element at ¢ for the analytic continuation of (f0, D 0)alongyk.ThenEj=0ok ([t],
tj+1])cDjforj=0,1, ..,n-1Foreachj=0,1, .. n-1 let €] be the minimum distance from the compact set E j to the
boundary of the Dj . If [os (t)—o k (t)] &gt; €], t € [0, 1], then it will also be true thato s ([tj, tj+1]) ¢ Dj. Thus, if € = min
{€0,¢1,....en-1}and we choose d &lt; 0 such that |o s (t) — o k (t)] &gt; € whenever |s—k| &gt; 8, then for each s with
[s—Kk| &gt; d, the partition 0 = t 0 &gt; t 1 &gt; ... &gt; t n = 1 and sequence of function elements (f0,D0), (f1,D1), ..., (f
n, D n)also defines (fn, D n) as the terminal function element at ¢ for the analytic continuation of (f0, D 0) alongys.
Since, by the previous theorem 1.3, any other continuation of (f 0, D 0 ) along y s results function element equivalent to
this one, we conclude that @ k is equivalent to @ s . This proves that @ s is equivalent to ¢ k whenever [s—k| &gt; 3. This
means that for every s € | = [0, 1] there is a positive 8(s) such that if s lies in the interval | s = (s—3(s), s + 8(s)), then the
analytic continuation of f 0 (z) along all such curves y s, result equivalent function elements at the point ¢. Now by the
Heine-Borel theorem, we can always choose a finite number of intervals I sj, 0 =s 0 &gt; s1&gt; .... &gt; sn = 1 that
cover the segment | and are such that the intervals I sjand Fig. 14 E1os(tj)zOykysos(tj+l)ok(tj)ok(tj+1)¢g
251sj+1, 0 <j < n-1have a non-empty intersection. Then, ifsels0N1s1, the analytic continuation of f O (z) result
equivalent function elements at the point ¢. The same is true forse s 1M 1s 2 and so on. Continuing in this way we
observe that the analytic continuation of the function element (f 0, D 0 ) along all the curves y s, 0 < s < 1 produce
equivalent function elements at the point ¢. This completes the proof of the theorem. The above theorem leads us to the
following most important corollary. Corollary. Let R be a simply connected region and (i) (f 0, D 0 ) be a function
element at z 0 belonging to R (i) (f 0, D 0 ) admit analytic continuation along every curve in R. Then there is a function F
which is analytic on R and coincides with f 0 on D O . Proof. Let z 1 be a pointin R. Then, since R is simply connected any
two curves from z 0, to z 1 are homotopic in R. The Monodromy theorem implies that any two terminal function
elements of analytic continuations of (f 0, D 0 ) along curves from z 0 to z 1 in R will be equivalent and hence, will
determine a function F 1 analytic in some neighbourhood of z1,say Q1. Clearly, F1(z) =f0(z7onDO0,F1(z) =f1(2)
onD1, .., etc for the continuation along the curvey 1 fromz O toz 1. Again let z 2 be a pointin R, and y 2 be a curve in
R joiningz 0 toz 2 and let (g n, E n) be the function element at z 2 continuing along the curve y 2 withf0=g0on D 0
=E 0. We simply join z2 to z 1 by a curve y and claim that continuation of (F1, Q 1), along the curve y to z 2, will be
equivalentto (g n, E n) (since the curves y 1 uy and y 2 are homotopic), which gives rise to the fact that there is a
function F 2 analytic in some neighbourhood of z 2, say Q 2, which coincides with F 1 On Q 1. Clearly, F 2 (z) possesses
larger domain of analyticity than F 1 (z). Proceeding in this way finite number of times we can achieve a function F
analytic throughout the region R.

26 Unit 2 Harmonic Functions Structure 2.0 Objectives 2.1 Harmonic Function 2.2 Gauss' Mean Value Theorem for
harmonic 2.3

Inverse point of a given point with respect to a

circle 2.4 The Dirichlet Problem 2.5 Subharmonic & Superharmonic Functions 2.0 Objectives In this chapter we shall
mainly study harmonic functions and their basic properties. Gauss’ mean value theorem, Poisson'’s integral formula,
Dirichlet’s problem for a disc and Harnack inequality for harmonic functions will be discussed. Subharmonic and super
harmonic functions will be explained through examples. 2.1 Harmonic Function A function u(x, y) of two real variables x
and y defined in an open set D is said to be harmonic in D if it has continuous derivatives of the second order and
satisfies the equation 990922220 uxuy+ = (16) known as Laplace’'s equation. The differential operatorddd o222 2
Xy + is called the Laplacian and is denoted by V 2 . We introduce the differential operators 000900009 dddzxiyzxi
y=—-=+4+1212and(17)

27 in order to achieve a condition equivalent to (16) for
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f(

z). If

we write x

z
zizz=+=-1212()()andy(18)then809080930909ddfz
fxx

zf

yyzfxify=-+.-=+1212

(19a-

b)0odddoodoooodofzfx
xzfyyzfxify=-+.-=-121200000000000000000000022222221212fzzf
xxzxyyzif

X

y

X

zfyyz=-+4-

-4
=+-+=+1414141414
f

ififfffxxxyxyyyxxyyand consequently the condition equivalentto (16)is V=224 ffzzddad(20) A function f(z) is
said to be harmonic in D if f has continuous second derivatives in D and satisfies V.= V 20fz,eD (21) Result 1 : If f = u
+ ivis analyticinadomain D, thenddefzz =V O, D. Proof : uand v satisfy the Cauchy-Riemann equations and using
(19b) we have, ddfzuiviuivxxyy=4+-+1212()()=+-=-+1212() (), uiviviuxxxxusing C-R equations = 0
Result 2 :

The

real and imaginary parts of an analytic function are

harmonic. Proof :

Let f = u + iv be analytic in

a domain D.

By

Cauchy-Riemann equationsux =vyanduy = — v X

ie.u

XX =V

xy and uyy = —v

Xy [since v xy = v yx, partial derivatives being continuous] and on addition it proves that u is harmonic in D. Likewise v is
also harmonic in D. Harmonic conjugates :

Let u (x, y) and v(x, y) be two harmonic functions ina domainD C € /.

28 If they

satisfy

the Cauchy-Riemann equations : 099999 d o

UXVYUYVX==—,,

in D, then we say that v is a harmonic conjugate of u.

It follows

that

f(z) = ulx, y) + iV (x,y)is analytic in

a domain

D if and only if

v(

X, Y)

is a harmonic conjugate of u(x, y)
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in D. Remark : We know that the real part as well as the imaginary part of an analytic function are harmonic. Now the
questions arise : 1. Can any real harmonic function be the real part of an analytic function? 2. Whether every real
harmonic function has a harmonic conjugate? Existence of Harmonic conjugates Theorem 2.1 Let u(x, y) be a real-valued
harmonic function in a simply connected domain D C € /. Then there is an analytic function f in D such that u = Re f (or,
equivalently there is a function v, a harmonic conjugate of u) which is unique to within addition of an arbitrary real
constant. Proof. Since the function u(

X, y) is harmonic in a simply connected domain D,

wehave 90900922220 uxuy+ =which can be rewrittenasddddoddddyuyxux—=,where-—9dddduyuxand
are given functions with continuous first partial derivatives. This implies that —+ ddd d uy dx u x dy is exact. So there is a
single-valued function v(x, y) which is unique to within an additive arbitrary constant, i.e. vxyuydxuxdy Kxyxy (,) (,
)(,)=—++00090900 (22) K = real constant, where (x 0,y 0) is an initial point and (x, y) is any variable point lying in D
and the integral on the curve connecting (x 0,y 0) to (x, y) is path independent. From (22) we find that0999ddddadv x u
yvVyux=—-=—,,

29 which in turn ensures that v(x, y) is harmonic in D and harmonic conjugate to u(x, y) i.e. f = u + iv forms an analytic
function in D. Observation : If D is multiply connected then the integral in (22) may take different values for different
paths connecting (x 0,y 0), to (x, y) giving v(x, y) as a multi-valued function, unless the paths are restricted to a simply
connected sub domain contained in D. Example 1. Let D be the whole plane cut along the negative real axis including the
origin(y = 0, x < 0).

Show

that u(x, y) = sin x cosh y is harmonic in D, and find its harmonic conjugate.

Also find the corresponding analytic function. Solution : Here u(x,

y) possesses continuous second order partial derivatives in D and also satisfies the Laplace equation : u xx + uyy = 0.
Hence u(x, y) is harmonic in D. Let v(x, y) be its harmonic conjugate. Then according to the formula (22), we have vxy uy
dxuxdyKKxy(,),(L)(,)=—++=0009090 real constant, where M(L, 0) is the initial point. Here,

u(

X, y) =sinxcoshyux=cosxcoshyuy =sinxsinhy

Now let the point Q(x, y) lie in the 1st quadrant of the right-half plane. Then integrating along MNQ, we find thatvxy uy
dxuxdyKMNNQ(,)=-+-+400909091=-+ +sinsinhcoscoshxodxxKxy110ydy=cosxsinhy+ K1Again, if the
point (x, y) lies in the 2nd quadrant of the left-half plane, then we obtain
vXyuxdyuydxKMNNQ(,)=+-+0009112=0

y

cos 1 cosh

ydy +1x—=sinxsinhydx+ K2 =coslsinhy+ cosxsinhy —coslsinhy+ K2 = cos x

sinhy +

K2 The

expression for v(x, y) in both the cases turns out to be the same apart from an additive constant. It results from the fact
that the two paths in determining the Fig. 15 N O M(1, 0) Q(x, y) Q(x, y) N 1

30 integral lie in a simply connected domain. Thus, v(x, y) = cos x sinh y + K at all points of D. Therefore, an analytic
function with the given real part will be of the form

f(z) = sinx coshy +icos xsinhy +

iK, K = real constant = sin(x + iy) + iK = sin z + iK As for uniqueness, if two analytic functions in D have the same real part,
then their difference has derivative zero, by the Cauchy-Riemann equations. In that case the functions differ by a
constant. 2.2 Gauss' Mean Value Theorem for harmonic functions Let u(z) = u(x, y), z = x + iy, be harmonic in the disk K :
|z -z 0| &gt; R and continuous on the closed disk K. Thenuzuzi()(Re)000212=+m616d(23) Proof. Let f(z)
be an analytic function defined in K such that Re f (z) = u(z). It follows from Cauchy's integral formula thatfzifzzz dzr

Rzzr()(),|/001200 = - &gt; &gt; — = 7 using the parametric form of the circle |z -z 0| =r.zzrei=+<<00280
O1,,sothatdziredi=0686.TheintegralthengivesfzfzredrRi()(),0002120 =+ &gt; &gt; ™6 6 1 Equating the
real parts, we obtainuzuzredi()()000212 =+ 16 061 whence taking the limit r — R, we obtain the desired result
(23) 2.3

Inverse point of a given point with respect to a
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circle Lety : |z — a] = Rand z 0 be a given point. Let z 1 be another point on the radius through z 0 such that |z 0 — a| [z 1
—a| = R 2. Then either of the points z 0 and z 1 is called the inverse point of the other with respect to y. The centre of
the circle y is called the centre of inversion. It follows from the definition that (i) if z O lies inside y, then z 1 must lie
outside

31y, (i) if z O lies ony, then z 1 must also lie on y and it coincides with z O, {iii) if z O lies outside y, then z 1 must lie inside
y. Every point, except the centre of the circle, on the plane has a unique inverse point with respect to the circle. We
associate the point at infinity to the inverse point of the centre. Result : Lety : |z| = R and z 0 be a given point. Then the
inverse point of z 0 with respecttoyis givenby Rz 2 0. Proof : Let z 0 = re i6 . Then its inverse point with respect to y is
givenbyzl=rleif,whererrl=R2.Hencerl=Rr2andsozRreRreRziil2220=-==-0686 Poisson’s
integral formula : Theorem : Let u(x, y) be a harmonic function in a simply connected region D and y : |[g| = R be a circle
contained in D. Then forany z =re i@, r &gt; R, u can be writtenas u(r,0) = -+ --122222202mmo@e0O (). (,)
cos() RruRdRrRr,where Reigis a point ony. Proof : Since u(x, y) is harmonic in D, there exists a conjugate harmonic
function

v(x, y) in D so

that

f(z) = ulx, y) + iv(x, y) is analytic

in

D.

Then

f(z) is analytic

within and on y and so for any z within y, by Cauchy's integral formula, fzifz () () = - 12Ty d ¢ ¢ (24) The inverse
point of z with respect to y lies outside y and is given by R z 2 . Hence by Cauchy-Goursat theorem, 0122 =-1myifRz
d ()¢ ¢ ¢ (25) Subtracting (25) from (24) we get, fzizRzd () () =—-—-—

12112mygggef

32=—--12221myizRzfdzRz()()gggg(26) Letg=Reip.Also,zrei=-0.Then (26) becomesfreireRrefid
reRreiiiiiiiii()(Re)Re(Re)ReBBO@BOBOPOETTEP=---122202=---+122202TTQ@OQ@OQOT()
(Re)(Re)(Re)()rRefdrereiiiiii=-———-—-- 122202mooeb@0OT()(Re)(Re)Re)Rrfdrereiiiii=-+--1
2222220210 @m()(Re)cos()RrfdRrRri(27) Letf(reiB) = ulr, 8) + iv(r, 6). Then (27) becomesurivrRruR
VRRrRr(,)(,)O)(,)(,)cos()6OTQO@POM+=—++--122222202d(28)

Equating real parts in (28) we get, urRruRRrRr(,) () (,) cos()

OmeeBem=-+--122222202d(29) Formula (29) is known as Poisson’s integral formula. Note : Let R r
RrRrPRr22222—-+—-—-=-cos()(,,)@0 0. Then, the function P(R, r, ¢ — 6) is called the Poisson Kernel.

Hence we can write (29) inthe formurRruRd(,),,)(,)0meoeeem=-1202 P((30)

33 We can also get a formula similar to (29) for the imaginary part of f(z) by equating the imaginary part in (28). The
corresponding formulaisvrRrvRdARrRrPRrvRd(,)()(,)cos()(,,)(,)6moooebmTQBQemm=-4+—-—-=-12

21222220202 (31) Remark :

Cauchy’s integral formula expresses the values of an analytic function inside a circle
in terms of its values on the

boundary of

the

circle whereas Poisson'’s

integral formula expresses the values of a harmonic function inside a circle

in terms of its values on the

boundary of the

circle.Result3.1202m@0@mPRrd(,,)— =1 Proof : By Poisson’s integral formula we have,urPRruRd(,)(,,)(,
J)OTTeO@em=-1202Takingu(r,®)=1weget, 12102me0O@mTPRrd(,,)—=Result4.PRrzz(,,)Re@B¢gg-—
=+ —Proof:Letg=Reip,z=reib,r&gt;R. Then, g+ -=+-=+++—-+-zzrereRriRrRriRriiiiReRe(cos
cos) (sinsin)(coscos)(sinsin) 6B BPOPBPO=+++-—-—-——+—{(

cos cos ) (sin sin)H{( cos cos ) (sinsin )} ( cos cos) ( sin

sin)

RriRrRriRrRrR

11 of 55 02-05-2023, 17:55



Ouriginal

by Turnitin

reo

@O P8 PO PO PO 22Simplifyingwe get, Recos() (,,).¢¢+—-=—+—-—-=-zzRr

RrRrPRr22222@6 @0 Result 5. Poisson Kernel P(R, r, ¢ — 8)

is harmonic in |z| &gt; R. Proof : Letfzzz (). =+ — ¢ ¢ Then f(z) is analytic in |z| &gt; R. By result 4, P(R, r ¢— 6) = Re f(z).
Hence the Poisson Kernel is the real part of an analytic function. Hence P(R, r, 9—8) is harmonic in |z| &gt; R. Note : We
caneasily show that RrRrRrRzzi22222222—-+—-—-=—-——-cos()Re@B o

34 wherez=reif,r&gt; R.Hence ReRe¢g@ + —=—--2zzRzzi222and Poisson’s integral formula (29) can be
writtenasurRzzuRdi(,)Re(,)0moooem=-—-1222202(32) The functonRzzi222-—Re@isthe Poisson

Kernel. Theorem 2.2 Let u(x, y) = constant be harmonic on a simply connected domain D.

Then u(x, y) has neither a maximum nor a minimum at any point of D. Proof. Let z 0 = x O + iy O be an arbitrary point

of D. Then following theorem 2.1 there is an analytic function f(z) in a neighbourhood N(z 0) of z 0 such that Re f = u.
Then g(z) = e f(z) is analytic on N(z 0 ) and not equal to constant since u(x, y) # constant and |g(z)| = e u(x,y) Again
exponential function is strictly increasing, so a maximum foru at (x 0,y 0) is also a maximum for e u, and hence also a
maximum of |e f | i.e. of [g(z)] atz O .

The function u(x, y) cannot have a maximum at (x 0, y 0 ), since otherwise |g(z)| would have a maximum at

z 0, thereby contradicting the maximum modulus principle. Likewise, following the minimum modulus principle |g(z)|
cannot have a minimum value at z 0 since |g(z)| # 0 on D. Therefore u(x, y) cannot possess minimum value

at(x 0,y 0). Corollary. Let u(x, y) be harmonic on a domain D and continuous on D . Then u(x, y) attains its maximum
and

its minimum on the boundary of D. Proof. Since u(x, y) is continuous on the compact set D, it attains both its maximum
and its minimum on D, but u(x, y) cannot possess a maximum or a minimum at a point of D. Therefore the corollary
follows. Example 2. Given u(x, y) harmonic in the disk |z| &gt; R and A(r j ) its maximum value on the circle |z| = rj, rj &gt;
R, j=12 3. ProvethatArrrrrArrrrrAr()loglogloglog()loglogloglog()22131332311<—-—-+—-—for0Q
&gt; r 1 &gt; r 2 &gt; r 3 &gt; R. Solution. Since u(x, y) is harmonic in |z| &gt; R, u(x, y) + alogr, rxy =+ 22, a = a real
constant to be fixed later, is also harmonic in the annulusrzr 1 3 < <. Hence its

35 maximum is attained on the boundary of the annulus i.e. on |z| = r 1 or, |z| = r 3 or, on both. Either A(r 1) + alog r 1 or,
Alr 3) + alog r 3 is maximum. We defineasothatAlrl) +alogrl=A(r3)+alogr3or,a=——ArArrr()()loglogl
331 Thecircle |z| = r 2 lies inside the annulus r 1 < |z| < r 3 and according to corollary of the theorem 2.2 regarding
maximum value of the harmonic function u(x, y) + alog rwe have A(r2) + alogr2 <A(r3) + alog r 3 or, Al
r2)<Alr3)+allogr3-logr2)=+-—-—=ArArArrrrr()()()loglog(loglog)3133132=—--+--logloglog
log()loglogloglog ()rrrrArrrrr

Ar213133231124The Dirichlet Problem Let D be a domain with boundary I' and let (x, y) be a continuous real
function defined on I'. The Dirichlet problem is to find a function u(x, y), harmonic on D and continuous on D, which
coincides with (x, y) at every point of I'. Existence of a solution of Dirichlet’s problem for a disc Theorem 2.3 Let D be the
disc |z| &gt; R with boundary I : |z| = R and let U(¢g) be a continuous real function on the interval [0, 211] such that U(0) =
U(21). Then the function u(r, 6) defined by the integralurRrURrRrd (,)()()cos()Bmooebem=—+--122222
2 0 2 (33) for any point (r, 8) on D any by u(R, @) = U(g) (34) for any point (R, ¢) on T, solves the Dirichlet problem for the
disc D. In otherwords, (i) u is harmonic on D and continuous on D and (i) im (,) (), RereiiurU 8¢ 6 ¢ — = 0 0 where
Reip O is any fixed point on I". Proof : To prove that u(r, 8) defined by (33) on D is harmonic on D we observe that

36 RrRrRrPRr22222-+-—-=-cos()(,,)9p0¢90=+-Re,ggzz

where P (R, r, 9—0) is the Poisson Kernel

andg=Reip,z=reiB, r&gt; R. Ther.hs. is the real part of the function ¢ ¢ + — z z which is analytic in D. Hence the
Poisson Kernel P(R, r, 9—8) is harmonic in D. So, differentiation under the sign of integration is valid. Applying the
Laplacian V 2in (r, 8) to both sides of (33) weget, V=V -=2022120u

PRrdmoeeB@mU().,,)I[Since PR, r, p—B) is harmonicinD =V 2P((R,r,¢ —06) =0]. =
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u is harmonic on D. Next we prove that the function u(r, 8) defined by the integral (33) approaches U(p 0 ) as the point (r,
8) in D tends to any fixed point (R, ¢ 0) onT. Let (rn, 8 n) be an arbitrary sequence of points in D converging to the
boundary point (R, @ 0 ). We now consider the differenceurURrUdUnnnn(,)(),,)()()6emeBQoe@mT—=——
002012P(=--12020mpoeB@m{()()},,)UUPRrdnn(35)(Since12102meOmPRrdnn(,,))-=
Since U(@) is continuous on T, for given € &lt; O there exists a 8(€) &lt; O such that U U () () @ ¢ — &gt; € 0 2 (36)
whenever @ @ 8 — &gt; 0 2 (37) we choose & so small that (36) is satisfied and @ 0 — 28 &lt; 0, @ 0 + 28 &gt; 2. We break

the integralonrh.s. of (35)asurUPRrUuUdnnnn(,) (), {O)()}0emeBepepeppd-<---0020120++=+
+-++12120002222123med@d@d™|||]|]]111(38)
37Now, [ 1O OITPRrUUANN22201200<—-—-—-+TT@0Qo@@dedogt;e-—=212202Tmp0@peT]|,

) P(Rrdnn(39) To estimate the other two terms we choose n so large that [ 0 — 8 n | &gt; &. Then, [p -0 n|=|p — @
0+90-0n|>|le-90|-]p0-06n)&lt; 20 - & =3since |p — ¢ 0| &lt; 256 whenever @ belongs to either of the
intervals [0, @ O — 28] or, [@ O + 23, 2m]. Then, | ||| ..cos I IMRrRrRrddnnn1322222202212200+<—-+-
++-mMOPPPOTMPO &g, —+—-—>—>2202222MRrRrRrRnnnncos,dasrwhere M MaxUUn =—--&gt; e 11
ed@Od[,1]() () cos()cos.020andThus, for sufficiently largen, | ||| 1113 2 + &gt; € (40) Using (39) and (40) in (38)
weget, | (,)()urUnn®ee-&gt; 0 forsufficiently large n; ie. lim(,)()nnnurU —e =8¢0 (41) where (rn,8n)is
an arbitrary sequence of points in D approaching (R, @ 0 ). Equation (41) still holds if some or all the points (rn, 8 n) lie
on T since in that case we can directly use the fact that U(@) is continuous on I'. This implies u(r, ) is continuous on D.
This completes the proof. Uniqueness of the solution to the Dirichlet problem for a disc. Let u 1 and u 2 be two solutions
of the Dirichlet problem. Then their difference u 1 — u 2 = h is harmonic in D and continuous in the closed disk and takes
the value zero on the boundary. Hence h attains its upper bounds at some points of the closed disk. If | &lt; O, the upper
bound will occur in the open disk, since on the boundary I" h is zero. This contradicts the conclusions of theorem 2.2. So
then | = 0. In the same way we can show that the lower bound of h on D is zero. Thus there is no alternative but h to be
zero on D.

38 Theorem 2.4 Any continuous function u(z) possessing the mean-value property in a domain D is harmonic in D. Proof.
Let K be a closed disk contained in D. By hypothesis of the theorem u satisfies the mean value property in K. We shall
prove that u is harmonic in K. By the theorem 2.3 on the Dirichlet problem for a disk there exists a continuous function ~
() u zin K, which is harmonic in the interior of K and coincides with u(z) on the boundary of K. The difference uu — ~ is
continuous and satisfies the mean-value property in K. By the corollary to the theorem 3.7 [(14) page-58] u u — ~ satisfies
the maximum modulus prnciple in K. Now as u u — ~ is zero on the boundary of K, it will be identically zero in K.
Therefore u coincides with the harmonic function ~ u in the interior of K and since K is arbitrary, u is harmomic in the
domain D. The Harnack Inequality : Let u be a non-negative Harmonic function on a closed disk D (O, R). Then, for any

pointzeD(0,R)RzRzuuzRzRzu-+<<+-()()()00(42) where D(0, R) denotes a disk with centre 0 and radius
R. Proof. From the Poisson’s integral formula foruon D (0,R) :uzuRzzdii()(Re)Re=--1202222TTQ QT @
Now,

RzzRzRzRzRz
i222222--<--=+—Re @ Combining these two, we seethatuzRzRzudRzRzui()(Re)(),<+-=+-120

0 2 1 ¢ @ T where we make use of the mean value theorem. Similarly, the other inequality in (42) will follow from
RzzRzRzRzRz

i1222222—-->—-+4 =4 Re — ¢ Corollary Let u be a non-negative harmonic function on a closed disk DR (,) ¢. Then
foranyzeD (G R,RzRzuuzRzRzu-+<<+---()()--()56Ggggg(43)

39 2.5 Subharmonic & Superharmonic Functions Definition : A real-valued continuous function u(x, y) in an open set D of
the complex plane C/ is said to be (i) subharmonic if, foranyge Duuredi()()gg<+1202 18 6 1 hold for
sufficiently small r &lt; O. (i) superharmonic if, foranyaeDuauaredi()()>+120 218661 hold for sufficiently small
r &lt; 0. From the definition it follows that every harmonic function is subharmonic as well as superharmonic. Example 3.
If f(z) is analytic on a domain D, then |f(z)|
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is subharmonic but not harmonic in D unless f(z) = constant. Solution : Using the Cauchy’s integral formulafafaredi()
()<+12021m0606T1(44) for every a € D and r (&lt; 0) is small enough. Here equality holds only if f(z) = constant. We now

show that the integrallrfaredi()()=+1202m00mis a strictly increasing function of r, if f(z) = constant. Let 0 &gt; r
1 &at; r 2 &gt; k(a) and g(8) be continuous on [0, 21] and F(z) be defined by () gfarefareii()()(),00mB806+=+<<
1102(i)Fzfazegdzri()()(),=4<12022mw6066 T (iii) k(@) = minmum distance between a and the boundary of

D. F(z) is regular for |z| < r 2 and attains its maximum of the boundary of the disc, sayatz=r2eip.Thenlrfaredi()(
)110212=+mOOTm=+12102m0B060MTmfareqg(di())

40=F(r1)&gt;Frei()20<++12202m00@mfaredi()()=++1222TTYyyomofaredi(),takingp +0 =
p=—-+++12222002nmyymmoeoemfaredi()=+12202myywmfaredil(), (substitutingy = 21T + B in the
third integral, we find that it cancels the second term) = | (r 2)). Hence equality in (44) is possible if and only if f(z) =

constant. Therefore |[f(z)| is subharmonic but not harmonic

in D unless f(z) = constant. Example 4.

If f(z) = O is analytic in a domain D, then log [f(z)]

is subharmonic in

D. Solution : Let ®(z) = log|f(z)|. Here at the zeros of f(z), P(z) has poles and takes the value — e there. In every closed disk
contained in D there are at most a finite number of points where log f(z) = — . Now let a € D be any point at which f(z) is
distinct from zero. Since f(z) is analytic and not identically zero, there exists a small neighbourhood of a where f(z) is
distinct from zero. We find that log f(z) = log |f(z)| + i arg f(z) is analytic in this neighbourhood and hence log [f(z)| is
harmonic there and we have the equality @ ® () ()aaredi=+120 216 6 1 (45) for all sufficiently small values of r.
On the otherhand, if a is a zero of f(z), we have ® ® () ()aaredi=-e&gt; + 120 2 76 6 1 (46) Combining (45) with
(46) we obtain ®(z) is subharmonic in D.

41 Unit 3 Conformal Mappings Structure 3.0 Objectives of this Chapter 3.1 Conformal Mappings 3.2 Basic Properties of
Conformal Mapping 3.0 Objectives of this Chapter This chapter deals with conformal mappings and their basic
properties. Many examples are given to explain different concepts on conformal mappings. The inverse function theorem
is also discussed. 3.1 Conformal Mappings Let X be an open set in /C and suppose a function f : X — /C is given. We
know from functional analysis that if f is

continuous, a compact set of X is mapped onto a compact set in f(X) and a connected set of X onto a connected set of f(
X). If moreover, f is single-valued and analytic there occur several interesting results. In this chapter we study mappings
which transform different curves and regions from one complex plane to other complex plane with reference to
magnitude and orientation. Such type of mappings play an important role in the study of various physical problems
defined on domains and curves of arbitrary shape. Level Curves Let w = f(z) with z = x + iy and w = u + iv where

f(z) is analytic. u =

u (
X, y) V=V Yy)
satisfy Cauchy-Riemann equationsux =vy,uy = —vXx

from which it follows that u
xx+uyy=0vxx=vyy=0AIso, V

u. Vv =0, where Fig. 16 u(

X, y) = constant v(

X, y) = constant

42V =900 adxy, So that the

level curves u (x, y) = constantand v (x, y) =
constant are orthogonal.

Now

flz)=ux+ivx =
ux—iuy=vy+ivxsothatfzuuvvxyx
yl22222().=+=+
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Two basic results : No. 1 Suppose that w = f(z) maps D into D 1. Let w(u, v) = @ ((u (x, y), v (X, ¥)) = @ (x, y). To prove @ xx +
eyy=1|fl@|2@Wuu+wvw)wecalculate X =WPUUX+PVVXOQYPW PP PXXUUXWXUVXXUXXVXXUVUVUY =+
+++2220YPPYPYPYPYyuuywyuvyyuyyvyyuvuvuv=++++222Thus, QY P P XXyyXyuuxywuvuvu
Uvv+=++++VV()().,22222sinceu, v satisfy Laplace equation. Again, Vu. V v = 0, so we obtain ¢ xx + ¢ yy =
[f1(z)] 2 (Wuu + wvv) Therefore if f 1 (z) = 0 inside D we have @ xx + @ yy = 0 imples @ uu + @ vv = 0 and vice-versa. Fig.
17 Fig. 18w =f(z) ¢ (x, y) Dy (u, v) D1 xy plane uvplanew =f(zZ) DD 1o xx+ @yy=0inDyuu+ypw=0inD1lz=x+
iyw=u+iv

43 No. 2. Consider a level curve F(x, y) = 0 upon V¢ . n = 0. Let under the analytic mapping w = f(z) the level curve map
to G(u, v) = 0. We shall show that Vy.n = 0 on G(u, v) = 0 Consider the map w = f(z) - w = u +iv, so u = u(x, y), v = v(x,
y). Suppose f(z) is analytic. Then,

PYYoOYYyYooyy

X

UXVXYUYVYXYUVXXY

v

uv

u

v

soSwithSuvuv=+=+4=-=,

Then, Vo =SV y, VF=SVGandclearly, STS=1|f1(z)] 21 Now, dp an F F

SSGSGSSGSGS

GGfzGGTTTTT=Ve-VV=VyVV=VpgVVV=VpgVvVvVv.0O0O00O00O0OO//

12112 (where the usual vector operations, a.bo =a T b and (a.a) 1/2 = (a T a) 1/2 = |a|] have been used) So, dp ddw dn F F
fzGGfzn=Ve-VV=VyVV=11()()Thisshows thatif dp on = 0 on the boundary of D then oy dn = 0 on the
boundary of D 1, provided [f 1 (z)| = 0 on the boundary of D. Note : These give us a means of transforming the domain
over which the Laplace’s equation is to be solved comfortably. Such type of things is usually dealt in solving boundary
value problems in potential theory. Angle of Rotation Given a function of a complex variable w = f(z) analytic in a domain
D. Let z 0 be any point lying within D,y : z=0o(t),a<t<b,o(t0) =z 0, be a curve passing Fig. 19 D D 1 Fig. 20 F(x, y) = 0
G(u,v)=0nn

44 through z 0 (and lying within D). The function a(t) has a non zero derivative o 1 (t 0 ) at the point z 0 and the curve y
has a tangent at this point with a slope equal to Arg 0 1 (t 0 ). Under the mapping w = f(z) the curve y is transformed into
acurvel :w=f(ot) =plt),a<t<b put0)=Ffz0)=wO0 inthe w-plane. u(t) is differentiable at t = t 0 and the curve I'
has a tangentat w 0 = f(z 0 ). Then following the chain rule for differentiation of composite functions, assuming f1(z 0)
z20pl(t0)=f1l(c(t0)ol(t0O)ItfollowsthatArgpul(t0)=Argfl(zO)+Argol(tO)ie,Argpl(t0O)=Argol(tO)
+ Arg f1(z 0) (47) This implies that change in slope of a curve at a point under a transformation depends only on the
point and not on the particular curve through that point. Example 1. Verify the result given in equation (47) for the curve y
= X 2 under the transformation f(z) = z 2 at z = 1 + i. Solution. First we calculate the change in slope of the curvey = x 2
at the given point under the transformation w = f(z) = z 2 . Following the formula given in eq. (47) Arg f 1 (1 + i) = Arg 2(1
+ i) = tan -1 1 A parametric form of the given curvey = x 2 isgivenbyy:z=t+it2, —e &gt; t &gt; e. HerezO=1+iatt
O=1landz1(1) =1+ 2i, so that slope of the curve y is tan —1 2. Now we find slope of the transformed curve. w = f(z) = u
+iv=(x+iy)2So,u=x2-y2andv =2xy =2x.x2 =2x 3. Fig. 21 Fig. 22 z-plane w-planexuy vy Ol

4500C1C2z000cll=wlt)c2l=w2®) =f(z2t)wOThen,uxxvv=—-=-24234322//,whichisthe
equation of the transformed curve I'. The image of the point (1 + i) of z-plane is the point 2i in the w-plane and the slope
of the curve I atw = 2iisdvduw i = = -2 3 Thus the change in slope of the curve y under the transformation is tan ()
tan()tantan - - — - - — =---=11113232161whichisthe same as obtained earlier following equation (47).
Definition : A mapping w = f(z) is said to be conformal at a point

Z =

z 0, if it preserves angles between oriented curves, passing through z 0, in magnitude and in sense of rotation.
Theorem 3.1:

Let

f(z) be

an analytic function in a domain
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D

containingz 0 . Iff1(z0) = 0, then f(z) is conformal at

z0.

Proof. LetCl:z=z1(t)and C2:z =2z 2 (t), t = parameter, be two curves which intersect at somet =t 0wherez1(t0)
=z2(t0)=z0,CC1121, are theirimages under the mapping w = f(z). Then following the result given in eq. (47) Arg
wtArgz

t Arg

fztArgfz (()(()((()N()N11011011010-==andArgwtArgztArgfzt

Argfz ((D(()((()().21021012010~-==

Fig. 21 Fig. 22 z-plane w-plane tangent linesarez1=z11(

t0),z1=2z21(t0)att=1t0tangentlines are

wll(t0)=

f1(z1(t0)z11(t0)w21(t0)=f1(z2(t0)z2(t0)z21(t0)

46

Subtracting, Argw t Argw tArgztArgzt (() (()) (()(()1102101102100---=

ie, 0=, wheref =

angle between the curves C1and C 2 at z 0 and ¢ = angle between the curvesCand C1121

at w 0 . Observation : From the basic results proved earlier we learn that if f is a conformal mapping, then orthogonal
curves are mapped onto orthogonal curves. 3.2 Basic Properties of

conformal Mappings

Let f(z) be an analytic function in a domain

D,

andletz O

be a point in D.

If

fz0) =0,

then we can express

fi(

z)

in the form

f(

z2)=f(z0)+(z-z0)f1(z0)+(z-2z0)

n(),

where n(z) - 0

asz —

z0.

If z

isnearz O, then

the transformation w = f(z) has the linear approximation G(z) = A+ B(z -z 0). where A=f(z0)

andB=f1(z0).

Asn(z) - O0whenz—z0,

for

points near z n the transformation w = f(z) has an effect much like the linear mapping w = G(z). The effect of the linear
mapping G is a rotation of the plane through the angle a = Arg (f 1 (z 0)), followed by a magnification by the factor |f(z O
)|, followed by a translation by the vector A + BZ 0 . Remark : If f1 (z 0 ) = 0, the angle may not be preserved. Let us
consider, w = f(z) = z 2, then we have f 1 (0) = 0 and the angle at z = 0 is not preserved but is doubled. Definition :
Let f(z) be a nonconstant analytic function. If f 1 (z 0 ) = O, the z O is called a critical point of

f(z),

and the mapping w = f(z) is not conformal at z 0 .

We shall see afterwards what happens at a critical point. Fig. 23 Fig. 24 z-plane w-plane 0 0

47 The Inverse Function theorem 3.2 Let f(z) be
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analyticatzOandf1(z0) = 0. Then there exists a

neighbourhood N(w 0, €) of w O = f(z 0 ) in which the inverse function z = F(w) exists and is analytic. Moreover, F 1 (w 0)
=1/f1(z0). (48) Proof : Given w = f(z), (z = x + iy, w = U + iv) is analytic in a neighbourhood of z0, K: |z -z 0 | &gt; p.
We shall show that for each wel : |w — w 0 | &gt; € there is a unique solution z = F(w), where zeK. We express the
mapping w = f(z) in terms of the set of

equations u = u(x, y) and v = v(x, y) (49)

which represents a transformation from the xy plane to the uv plane, u, v, possess continuous first-order partial
derivatives satisfying C-R equations. The Jacobian determinant J(x, y), is defined by I xyuuvvxyxy (,)= (50) The
transformation in equations (49) has a local inverse in L provided J(x, y) = 0 in K [(3) pp. 358-361]. Expanding r.h.s. of
equation (50) and using the C-R equations, we obtain Jxyuxyvxyxx(,)(,)(,)00200200=+=[f1(z0)|2(51)
# 0, by the given hypothesis. Utilising the continuity of J(x, y) in a small neighbourhood of (x 0,y 0), equations (49) and
(51) imply that a local inverse z = F(w) exists in a neighbourhood of the point w 0 = f(z 0 ). The derivative of F(w) is given
by the familiar expression

F

w

Fww

Fw

w

zZw

zfzz

fzww

z1000O)im(O) O)limlim()()=+-==4+->>>5AAAAAAAAA=+—-=+—-—>>1lim/()()/
im()(JAAAAAA

z

z

fzzfzzfzzfz

z0011

ie,F

w f

z111()() =

holds in

a

neighbourhood of the point w 0, as f(z) is analytic

in K. In particular, Fwfz10101()() =

Theorem 3.3 Let f(z) be analytic at the pointz 0 . If

f1(z0)=0,f11(z0)=0, ..,

48f(k-1)(z0)=0andf(k) (z0) = 0, then the mapping w = f(z) magnifies

anglesatz 0

by

k times. Proof. By the given hypothesis, f(z) has the Taylor expansion in a neighbourhood

ofzQintheformf(z) =f(zO)+ck(z-z0)k+ck+1(z-z0)k+1+...,c

k = 0 so that we can express

f(z) -

fz0)=(z -

z 0) k + h(z) (52) where h(z) is analytic at z 0 and h(

z0)=0.

Now let w = f(z)

and w 0 = f(z 0 ) and we obtain from (52) Arglw —w 0 ) = kArg(z =z 0) + Arg(h(z)) Let z— z 0 along a curve y. Then w
— w 0 along the image curve I’
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and the slope of tangent to the curve y at z O and that of the tangent to the curve " at w O are connected by the relation
im () im () lim (()) ww z zz z Argww k Argzz Arghz > — —>-=-+00000i.e, 80 = k¢ 0 + Arg(h(z)) Thus, ify 1 and
y 2 be two curves passing through z 0 and their images ' 1 and I' 2 under the mapping w = f(z), pass through w 0, the
difference of slopes of the curvesy 1 and y 2 at z 0 and that of the curves T 1and ' 2 atw O are relatedas 02 — 8 1 = k(¢
2 — @ 1) with the sense remain unchanged. Example 2. Show that the mapping w = f(z) = z 2 maps the rectangle R x iy x
y=+-<<<<:,11012of unitarea onto the region enclosed by the parabolasvuandvu221441=+=--().
Solution : Here f 1 (z) = 2z and the mapping w = z 2 is conformal for all z = 0. We note that the right angles at the vertices
z1=122=1+4i/2,z3=-1+i/2andz4 = - 1 are mapped into right angles at the verticeswwiwil2313434 ==

+ =—,,and w 4 = 1 respectively.
49 The parabolas shown in the figure are obtained as follows : Letw = u +iv. Thenu =x2 -y 2, v = 2xy }... (53) The line
x = 1 corresponds to thecurveu =1-y2,v =2y. Eliminating y, we getv 2 = — 4(u — 1), which is a parabola with vertex

(1, 0) and opens towards the negative side of the u-axis in the w-plane. Also, the part

of the line x = 1 lying above the real axis corresponds to the part of the parabola lying above the u-axis in the w-plane.
The same parabola in the w-plane is the image of the line x = — 1. In this case, the part

of the line x = — 1 lying above the real axis corresponds to the part of the parabola lying below the u-axis in the w-plane.
Again, wheny =12, from (53) we getu x =—-214 and v = x. Eliminating x we get, vu 2 14 = + which is also a parabola
with vertex — 1 4 0, and opening towards the positive side of the u-axis in the w-plane. By similar argument as before we
can say that the mapping w = z 2 maps the rectangle Rx iy xy = + —<<<<:,11012 onto the region enclosed by the
parabolasvuandvu221441=+=--(). Note: Itisnot hard to prove that the parabolas intersect each other
orthogonally at w 2 and w 3 . At the pointz0 =0, wehavef1(z0)=f1(0)=0andf11(z0) =2 = 0. Hence the angles
at the origin z O = 0 are magnified by the factor k = 2. In particular the straight angle at z 0 = 0 is mapped onto 21 angle
atw0 =0.Fig.25Fig. 26i/l2y - +i34--i34--14-34x0lu-1lvv2=-4u-1lov2=u+-14

50 Unit 4 Multi-valued functions and Riemann Surface Structure 4.0 Objectives of this Chapter 4.1 Multi-valued functions
4.2 The logarithm function 4.3 Properties of log z 4.4 Branch, Branch point and Branch cut 4.5 Integrals of Multi-valued
function 4.6 Branch points at infinity 4.7 Detection of branch points 4.8 The Riemann Surface for w = z 1/2 4.9 Concept
of neighbourhood 4.10 The Riemann Surface for w = log z 4.11 The Inverse Trigonometric Functions 4.0 Objectives of
this Chapter In this chapter we shall study multi-valued functions and their Riemann surfaces. In particular, multi-valued
logarithm function, the power function z a both z, a complex numbers, z = O will be discussed. The ideas of branch,
branch point, branch cut, branch point at infinity will be explained by means of different examples. A few contour
integrations of multi-valued functions will be performed. Also Riemann surfaces for different multi- valued functions will
be constructed. 4.1 Multi-valued functions So far we have considered single-valued functions i.e., one-to-one mapping
or, many- to-one mapping. In the later case, under certain restrictions, inverse mappings give rise to multi-valued
functions i.e., one-to-many. For example,

51z=ew,z=w?2,z=sinw, z=cosw For each of these functions, a given value of z corresponds to more than one
value of w. w = f =1 (z) is multi-valued and z = f(w) is single-valued, given w, there is a unique value of z. The aim of this
chapter is as follows : (i) To determine all possible values of the inverse function w and (ii) To construct an inverse
function which is single-valued in some region of the complex plane. Let w = f(z) be a multi-valued function.

A branch of f is any single-valued function f O that is continuous in some domain (

except, perhaps, on the boundary). At each point z in the domain, it assigns one of the values of f(z). Example 1: We
consider branches of the two-valued square-root function f(z) = z 1/2 (z = 0). The principal branch of the square root
functionisfzzerArgzill1221222()cossin,()///==+=06060806wherer =|z| and — T &gt; 6 < . The function f
lis a branch of f. Using the same notation, we can find other branches of the function f. For example if we letfzzerii2
1222122222()cossin/ () /==+++
+t0memOmthenfzrereefziii2a12221221().()./()///===-+6mB1So, fland f2 can be taken as the two
branches of the multi-valued square root function. The negative real axis is called a branch cut for the functions f 1 and f
2 . Each point on the branch cut is a point of discontinuity for both functions f 1 and f 2 . Result 1 : Show that the function
f 1is discontinuous on the negative real axis. w = f —=1 (z) Fig. 27z 0 w 1 w 2 Z-plane w-plane

52 Solution : Let z 0 = r O e i1 be any point on the negative real axis. We compute the limit as z approaches z 0 through
the upper half plane Im z &lt; 0 and the limit as z approaches z O through the lower half plane Im z &gt; 0. The limits are
im () (,)(,)lim¢(,)(,)cossin,//f1001201222rerrrrriirandi@0@mOTOO —=— +
=lim(,)(,)O)Im(,)(,)cossin//rrfrerrriiri@omdmTO0606 >—=—>—+
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=-0101201222Thetwo limits are distinct, so the function f 1 is discontinuous at z 0 . Since z 0 is an arbitrary point
on the negative real axis, f 1 is discontinous there. Note : Likewise, f 2 is discontinuous at z O . Figures : 28-29 The
Branches f 1 and f 2 of f(

z) = z1/2 1234567890 123456789 0 123456789 0 123456789 0 123456789 0 123456789 0 123456789 0 123456789 0O
123456789 0 123456789 0 123456789 0 123456789 0 123456789 0 123456789 0 123456789 0 123456789 0 123456789
0 123456789 0 123456789 0 123456789 0 123456789 0 1234567890 12345678901 1234567890 1 1234567890 1
1234567890 11234567890 1 1234567890 1 1234567890 1 1234567890 1 1234567890 1 1234567890 1 1234567890 1
1234567890 11234567890 1 1234567890 1 1234567890 1 1234567890 1 1234567890 1 1234567890 1 1234567890 1
1234567890 11234567890 1 12345678901 &lt; &1t &l 6t 61t &6l 6l GGl &lLEEE Gl &l 66l S
AANAAN ANAAN ANAAN AAAAN BIEELIGEILELLEL GO EILEEL &l &l &l &l &l &l &l &l &l &l w =11
(Z7w=f2(2)z=w2z=w?2z-plane z-plane w-

plane Fig. 28 a Fig. 28 b Fig. 29 aFig. 29 boyxOQuvyxou

53 4.2 The logarithm function Let us define the inverse functionf -1 (z) forz=ew:Letz=reiBand w = u +iv. Thenre
iB=eu.eivSothatr=euandv=0+2km k=0,+1+2,..andw=logr+i® + 2km), k=0, + 1, + 2,... Butr = |z| and
without loss of generality, we can take 6€(—1r, 7). This motivates the definition of the inverse functionf -1 (z) forz=e w
w =logz=log|z| +i(Arg z + 2km), k = 0, + 1, + 2,... or, equivalently w = log z = log |z| + i arg z. Mapping of the strip |Im
wWwwww| &gt; T under z = e Wwwww |. Take u = u 0 &lt; 0, ve (-, 1) for the line PQ : xiyeiu + =+ 0 (cos sin) v
V===

—+=§lt; xeyexyeuuu0002221cossin,vyva full circle in z-plane outside |z| = 1. Now approach Q; u = u 0 &lt;
Ov=-mm+ex=euOcos(-m+¢)—>-eulase—>0+and-eu0&gt; -1lasu0&lt; 0y=euOsin(-m+¢ —>0-ase
— 0+ Now approachP:u=u0&lt; 0,v="m-¢eFig. 30 w-planev=1mv=-mTu=u06&lt; 0Qu=0u=u0&gt; 0SRo
ew=zP1Q1llz|=1xz-planeyR1S1
54x=eulcos(m-¢)—>-eulase—>0+y=eulsin(m-—¢) >0+ase—0+Il. Nowtakeu = u 0 &gt; O, ve (-1, m)
forthelineRS: = xeyexyeuuu=-=

—+=8gt;——-0002221cossinvVrepresents a full circle in z-plane inside |z| &gt; 1. Approach S : u = — u 0 &gt; 0,
v=-T+ex=e-uOcos(-m+¢)>-e-ul6&lt; -lase>0+y=e-uOsin(-m+¢) >0-ase— 0+ Now
approachR:u=-u0&gt;0,v=mr—ex=e-uOcos(mr—-¢) >—-e-u06&lt;-lase>0+y=e—-uOsin(m—¢) —>0as

€ — 0 + Observation : Points along the negative real axis in the z-plane yield multiple w values. In order to obtain a
single-valued inverse function for the fundamental strip |Im w|&gt; T we require a cut in z-plane along Re z &gt; 0. The
mapping z = e w and w = f —1 (z) will be single-valued in |lm w| &gt; T and z€ /C \(e, 0). Clearly the inverse function w =
Log z = log |z| + iArg z, — T &gt; Arg z < T O is single-valued. We call this function

the principal value of log z. The principal value of log z

is not defined at z = 0 and is discontinuous as z approach the negative real axis from top and bottom. Using the
necessary and sufficient conditions for differentiability we findd dzLogzzzz=#¢ -100,,(,) Thepointz=0s
called a branch point of Log z since if we encircle the origin z = 0 by a closed contour then Log z changes by an amount
proportional to 2mi. 4.3 Properties of log z (i) log (z1z2) =logz1 + log z 2 (means

that the set of all values of log z 1 + log z 2 is the same as the set of all values of log (z 1

z 2)). Fig. 31 8 Branch cut z-plane

55(i)z=elogz, butloglez) =z + 2k, k=0+1, 42, ... Letz=x+ iy loglog() tansincoseeiyykxiykixiyx+ - =+
+++=122mmm=2z+2km, k=0, +1.. (ii)logzn=nlogzingeneral. Letz=reiBlogzn=nlogr+i(nB + 2km), k = 0,
+l..nlogz=nlogr+in® + 2mm), m = 0, +1,... Let n be fixed. Then the set of values of {k}, k = 0, +1, +2,... do not
coincide with the set of values of {mn}, m =0, +1, 4+2,.. ® logzn = nlog z (iv) log log / zn znl 1 = (provided the set of
values are the same) n = + ve integer. Now,z=rei®,z1/n=r1l/neil® + 2km/n,k=0,1,2,...,n-1loglog,, ... —;,, ...
/znriknknnl122011012=+++==4++06mmAgain,112012nznrinmnmloglog,,,,.=4++=4++0T
The set of values of log (z 1/n) and 1/n log z are the same if the sets {k + In}, k=0, 1., n =1, 1 =0, +1, +2,... coincide
with the set {m}, m = 0, 41, +2,... Complex exponents If ais complex and z # 0 then z a = e a log z multi-valued. za = e
alloglz| + i(Argz + 2km)], k = 0, +1, +2,... = e allog|z| + i(8 + 2k™)] agrees with our previous resultsifa=m,a=1m;m =
integer. If ais a rational number say p/q, then z a will have only g number of distinct values, occurred against k = 0, 1, 2,
... @ — land the values of e i2pkt/q fork = = 1, — 2, ..., — (q — 1) coincide with
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56 its values fork =q -1, g - 2, ..., 2, Lrespectively, whereas the values of e i2pkTtr/q for k = +q, +(g + 1), ... coincide with
its values for k = 0, +1, 42, ... z a takes infinite number of values when a is irrational or complex. Clearly there is a distinct
branch of z a for each distinct branch of log z and the branch cuts are determined as in the case of log z. Every branch of
z ais analytic except at the branch point z = 0 and on a branch cut. Example 2. Find all distinct values of i —=2i . Solution : i

eekiiiiiik——++

===42222201loglog,,,.mm=e(dk+ 1w, k=0, +1, +2,... So, there are infinite number of values. Example 3.
Find all solutions of z1 — i = 6. Solution : e (1 —i)logz=elog6 = (1 -i)logz =log 6 + 2kmi, k=0, +1, +2,..0r, 2 log z =
(1 +i)llog 6 + 2kl or, loglog (log)zkik==-++622262mmThus,zekikk=+++—logcos(log)sin(log)6 66T
mm=---6166¢eikkT()cos(log) sin(log) 44 Branch, Branch point and Branch cut Definition : F(z) is a Branch of

the multi-valued function f(z) in a domain D if F(z) is single-valued and continuous in D and has the property that for
each z in D the value

of F(z) is one of the values of f(z).

To determine F(z) we introduce a line imanating from a point (called a Branch Point) to ensure that F is single-valued in
the cut plane by the line. A Branch Point is one for which if we enclose it with a curve the function changes
discontinuously as the variable makes a complete round over the curve. For instance, consider w =z 1/2 . Let P be a
point on the z-plane wherew z 1112 =/andArgz1=¢1,0&gt; p 1 &gt; 2. Letzreilll=¢, thenatPwreilll
221=//.¢ We now encircle the region along closed

57 curve C through P. Upon travelling anticlockwise once, we have @ = @ 1 + 21, ie, wrerei==-+11222112121
1/0)/ 1/ @ @atthe point P. = w = - w 1atP. This shows that w has changed discontinuously after performing a loop
about z = O, which establishes z = 0 a Branch Point. Now we consider a different loop, a closed curve [ around some
point z* which does not enclose the origin. As before, zreilll=08andwreilll1221=//@ upon returningto P,
travelling anticlockwise, we have @ = @ 1 again. Hence w is continuous after performing the loop. So z = z* is not a
Branch Point for z 1/2 = w. Example 4. Discuss the multivaluedness of the function f(z) = (z 2 — 1) 1/2 and introduce cuts
to obtain single-valued branches.

Solution : Let

z-1=rlei@andz+1=r2eipgThenfzrrei()()/=+1226

W We choose a branch of f(z) at a point z 0 by taking values of 8 0 of 6 and @ 0 of w. Then at z 0, f(z) takes the value frr
ei012200=+()/6ylf now z traverses from the point z 0, and form a simple closed contour (end pointalsoz 0) C
0 enclosing the point z = 1, where the point z = —1 lies outside C O, the value of f(z) at z 0 changestorrefil122200
O()/Bwm++=-0@1Fig.33Fig.320Pz*oCP@lTl &lt; &lt; &lt; &lt; &lt; &lt; &lt; &lt; &lt; &lt; &lt; &lt; &lt; &lt; &lt; Fig.
34 -1Fig.35C1z01CO0z0 sl &l &l &l &l &l &l &l &l &l &l &l &l &lt; &l &l &l &l &l &l

58 f(z) takes the same value - f O while z travelling from z 0 and returns to z 0 itself forming a closed contour C 1 which
encloses —1, but not 1. Hence it is clear that —1 and 1 are the branch points for the function f(z). In order to obtain single-
valued branches we introduce two different set of branch cuts. (i) A branch cut between the points —1 and 1 on the real
axis. In this case consider the closed contour C enclosing the branch points —1 and 1. Here f(z) returns to the value (from
itsvaluefOatzO).rrerrefiil2222122000000)/()/0mymOY+ + + + = = So, itis a single-valued branch.
(ii) Two branch cuts on the real-axis, (—e, —1) and (1, e). Here the contour ' does not enclose any of the branch points, so
f(z) remains single-valued as z makes a complete round through [ initiating from z 0 . Example 5. Construct a branch of
logzz -+ 11, whichis analytic at the origin and takes the values 5ri there. Solution : Letgzzz()log=—-+11.The
points z = + 1 are the branch points of g(z) and the behaviour of g(z) at these branch points are similar to f(z) as shown in
the previous example. We do not repeat these here. Write bothz -1, andz+ linpolarform:z-1=reif,z + 1 = pe iy
Then we can expressgzreereiii()loglog() ==

-BywbuywppFig. 36 -1Fig.371z0z0C-11T

59 =+ —log () ripBy We consider the complex z-plane with two branch cuts (—e, —1), and (1, ¢). Here the principal
branch of g(z) is takenas log (), ; ripOwOTmY T+ — < &gt; — < &gt; 0 2 Now, g 0 = g(0) = i1 In the branch 41 < 6 &gt;
61T; T < W &gt; 31, g(z) will take the value 511i at the origin. Example 6. Let z = w 2 and consider Re w &lt; 0. Image is z € /
e C\ (-, )0 Note : Injective mapping if Re w &lt; 0 and z € /C \(-e, 0). We need a Branch cut along negative real-axis in
the z-plane. Hencew =z 1/2, z = re ip, -1 &gt; @ < 1 This ensures that Re w &lt; 0. Here the points on the cut go either
to P or Q. P and Q are arbitrary. 4.5 Integrals of Multi-valued functions Example 7. Evaluate x x dx aa — ¢ + &gt; &gt; 101
01,.Letus consider the integal z z dz C a- - 1 1 where the contour C consists of a large Circle ' R

with centre at the origin and radius R, a small circle y € with centre origin and radius € joined to the large circle
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Q101z-plane w-plane O QPP1w?2 =zFig. 38
60 I' R along the negative side of
the real axis from € to R by means of a cut as shown in the figure 39. Thus we have avoided the branch point z = 0.

We take principal branchof za-1.ThenzzdzRRRRRasRRaocamm-—-—-<+=4+—>—-511121210T,sincea
at;l,zzdzayaaemeemee———<=—>—>11121200as, sincea &lt; 0. Thus, by residue theorem, zzdziszzCa
am—-—--Re—-;111211=

Observe that zza— — 1 1 has a simple pole at z = 1 which lies inside C. or, im - lm - - --2----Rzzzzzzdzzzi
R—oe—>+++=acayayayeapfml101111111Tdzdzdzso,zzzziayayaBm—-—-—-—-— 21111+ =dzdz(54)
Onya:z=peim,0&gt;pbgt;esol-z=1+panddz=eimdpandzzededeiiiaoymamaTaamooaadppppp
pppp-(-)----1011100111==+=+4eeedzl+ed-1i(-1)OnyB,z=pe—-im,08&gt; p&gt;esol-z=
l+p dz=e-imdp,thenzzeedeiiiaymamamaaBpppppp----(-)-(-)---1011110111++=+
eedzd=+eedi- —-TmaappplO01Substituting these integrals into (54), we get Fig. 39T Ryayeyp1
6l{]-++=—-—-—-ecediiimumaapppmlOl2iepppmmaoa—e+=10122diisinor,xxdxamma—-e+=101

sin Example 8 : Evaluate x x dx aa—e + &gt; &gt; 13010 3, . We take the contour integral z
zdzCa-+131, where Cis the contour as shown in the

fig. 40. Take principal branchof za - 1. Then,zzdzasayeoaameemeee—+>=—>—>—>&lt; 131123123000 -
sinceandzzdzRRRRRaaamma-—-—-+<=—e—e5gt;13133123233T asR since Now the function z z a-
+131hasonlyonesimplepolezei=m3inside C. ThuszzdziszzeieeieiiiiCaaamamTTTTT-——-—+ =+
==-13131233121232333Re;.()//ie,zzdzzzeeddieiiiRRRoaamaTOoameeyeppppppm———
——+++++++=-13131321323133111123()///T [Inthe thirdintegral, we used z = pe 2mi/3, dz = e 2™i/3
dp.14+z3=1+p3,andin the fourth integral, z = p, dz = dp] Taking R — ¢ and € — 0 in the above integrals, we find

using the earlierresults -+ + + = ——eddieii2313133001123amaaamaappppppeT//Fig. 40T R take
branch cut on the negative real-axis z = pe 2mi/3yRyey 1R
62Sothat pppmmamaamam——e+=--=13330123133dieeii//sinor,xxdxamam—e+=130133sin

Riemann Surface A Riemann surface is a generalization of the complex plane to a surface

comprising several sheets so that a multi-valued function can have

only one value corresponding to each point on that surface. Once such a surface is ascertained for a given multi-valued
function, the function becomes single-valued on the surface and

can be treated according to the theory of single-valued functions. This topology removes artificial restrictions-Branch
Cuts and gives us a more general notion of a domain so that a multi-valued analytic function becomes single- valued if it
is considered as a mapping to an appropriate generalized domain as suggested by G. F. B. Riemann (1826-1866) in 1851.
The idea is ingenious—a geometric construction that permits surfaces to be the domain or range of a multi- valued
function. 4.6 Branch points at infinity So far we have considered only branch points in the finite plane. Now we discuss
about the possibility of a branch point at infinity. For this sake we map the point at infinity to the origin with the
transformation ¢ = 1 z and then examine the point ¢ = 0. Example 9 : Again we consider the multi-valued function f(z) = z
1/2 . Making the transformation ¢ = 1 z, the point at infinity is mapped to the origin, we have f()g g =112 . For each
value of ¢, there are two values of ¢ =1/2 . Writing ¢ —1/2 in modulus-argument form¢gg—-1-()/ |22 1 =eiArg
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63 we find that like z 1/2 , ¢ —1/2 possesses double sheeted Riemann surface. We see that each time we walk around the
origin, the argument of ¢ —1/2 changes by —1. This means that the value of the function changes by the factor e —itr =
-1, i.e. the function changes sign. If we walk around the origin twice, the argument changes by —21r, so that the value of
the function does not change, e —21i = 1. Now, since ¢ —1/2 has a branch point at zero, we conclude that z 1/2 has a
branch point at infinity. Example 10 : Again consider the multi-valued logarithm function f(z) = log z. Mapping the point
at infinity to the origin, we have f() log — log ¢ ¢ ¢ = = 1 But log ¢ has a branch point at ¢ = 0. Thus log z has a branch
point at infinity. Branch points at infinity : Paths around infinity We can also check for a branch point at infinity by
considering a path that encloses the point at infinity and no other singularities. This can be done by drawing a simple
closed curve that separates the complex plane into a bounded region that contains all the singularities of the function in
the finite plane. Then, depending upon the orientation, the curve is a contour enclosing all the finite singularities, or the
point at infinity and no other singularities. Once again consider the function z 1/2 . We know that the function changes
value on a curve that goes around the origin. Such a curve can be considered to be either a path around the origin or a
path around the point at infinity. In either case the path encloses one branch point. Now consider a curve that does not
go around the origin. Such a curve can be considered to be either a path around neither of the branch points or both of
them. Thus we see that z 1/2 does not change value when we follow a path that encloses neither or both of its branch
points. Example 11 : Consider the multi-valued function f(z) = (z 2 — 1) 1/2 . Rewriting the function f(z) = (z - 1) 1/2 (z + 1)
1/2 , we see that there are branch points at z = + 1. Now consider the point at infinity. f(c -1) = (¢ -2 - 1) 1/2 = +¢ -1 (1 -
G 2) 1/2 which shows that f(g —1) does not have a branch point at ¢ = 0 and f(z) does not have a branch point at infinity.
We might reach the same conclusion by considering a path around the point at infinity. Consider a path that encircles
the branch points at z = +1 once in the positive direction. Equivalently it encircles the point at infinity once in the
negative direction. In traversing this path, the value of f(z) is multiplied by the factor (e 2imr) 1/2 (e 2imr) 1/2 = e 2ir = 1.
Thus the value of the function remains unchanged. There is no branch point at infinity.

64 4.7 Detection of branch points We have the definition of a branch point, but we do not have a convenient criterion for
determining if a particular function has a branch point. We have noticed that log z and z k for non-integer k have branch
points at zero and infinity. The inverse trigonometric functions like sin =1 z, cos —1 z etc. also have branch points, but
they can be written in terms of the logarithm and the square root. In fact all the elementary functions with branch points
can be written in terms of the functions log z and z k . Furthermore, note that the multi-valuedness of z k comes from
the logarithm, z k = e klogz . This gives us a way of determining branch points of a function if there is any. Result : Let f(z)
be a single-valued function. Then log f(z) and (f(z)) k may have branch points only where f(z) is zero or singular. Example
12 : Consider the functions 1. (z2) 1/2 2. (z1/2) 2 3. (z 1/2) 3 Are they multi-valued? Do they have branch points?
Solution1.zzz2122/ =+ =+ Because of (.) 1/2, the function is multi-valued. The only possible branch points are at
zero and point at infinity. If (€i8) 2) 1/2 = 1, then as ((e 2111 ) 2) 1/2 = (e 4i) 1/2 = e 2mi = 1 the function does not
change value when we walk around the origin. We can also consider this to be a path around infinity. This function is
multi-valued, but has no branch points. 2. zzz12 2 2/ = + = This function is single-valued. 3.2z2z12333/=+ =+
This function is multi-valued. We consider the possible branch pointatz =0.1f(ei0)1/2)3 =1, thenas ((e 2itr)1/2) 3 =
((eim2)1/2) 3 =(eim) 3 = e 31 = -1, the function changes value when we walk around the origin. So it has a branch
point at z = 0. Since this is also a path around infinity, there is a branch point at the point at infinity. Example 13 : Consider
the function f(z) = log (1/z — 1). Since 1 1 z — has only zero at infinity and its only singularity (a pole here) is at z = 1, the
only, possible branch points areatz =1and z = e.

65Herefzzz()log—--log(-)log, ===111w say We know that log w has branch points at zero and infinity, so f(z)
has branch points at z = 1 and z = . Example 14 : Consider the functions 1. e logz 2. log e z Are they multi-valued? Do
they have branch points? Solution : 1. elogz = elogz +i2mk,k=0,+1, .. =elogzei2 Tk = z The function is single-

valued. 2. loge z = Loge z + i2Ttk = z + i21k, k = 0, + 1, ... This function is multi-valued. It may have branch points only
where e z is zero or infinite. This occurs only at z = e. Thus there are no branch points in the finite plane. The function
does not change when traversing a simple closed path and since this path can be considered to enclose the point at
infinity, there is no branch point at infinity. Note : Let f(z) be single-valued and have either a zero or a singularityatz=2z 0
. Then {f(z)} k may have a branch pointatz = z 0 . If f(z) is not a power of z, then we are not sure whether {f(z)} k changes
value when we walk around z O . Now

if f(z) can be decomposed into factors f(z) = h(z) g(z), where h(z) is finite and non zero at z 0, then from g(z)
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we know how fast f(z) vanishes or tends to infinity. Again {f(z)} k = {h(z)} k {g(2)} k and {h(z)} k does not have a branch
point at z 0 . So that {f(z)} k has a branch point at z O if and only if {f(z)} k has a branch point there. Similarly, we can
decompose log {f(z)} = log {h(z)g(z)} = log {h(z)} + log {g(z)} to see that log {f(z)} has a branch point at z 0 if and only if
log {g(z)} has a branch point there. Example 15 : Consider the functions : 1. sinz1/2 2. (sinz) 1/2 3.z1/2 cos z 1/2 4. (sin z
2) 1/2 . Find the branch points and the number of branches. Solution : 1. sinsinsinzzz 12 = + = + So it is multi-valued.
It has two branches and the possible branch points are zero and infinity. Consider the unit circle |z| = 1 which is a path
around the origin and infinity. If sin(e i0 ) 1/2 = sin(1), then as

66 sin((e i21m) 1/2) = sin(e i) = sin(—=1) = — sinl, there are branch points at the origin and infinity 2. (sin)sin/zz12 = +
The function is multi-valued and has two branches. The sine function vanishes at z = n1T and is singular at infinity. These
may be branch points of the function. Consider the point z = ntr. We can express sin ( —)
sin—,zznzzn=mTmnaninteger. Butlimsin - limcos(-1)znznnzznz— —=-=

T 1 1 So, (sin z) 1/2 has branch points at z = n1T since (z — n11) 1/2 has a branch point at z = n11. Here the branch points
arez =n1, n =0, +1, ... and they go to infinity. So it is not possible to make a path that encloses infinity and no other
singularities. The point at infinity is a non-isolated singularity. A point can be a branch point only if it is an isolated
singularity. 3.2z2zz1212//coscos - =+ + =+ zz cos The function is multi-valued. It may possess branch points at z
=0andz=-..1f(ei0) 1/2 cos(ei0) 1/2 = cos(l), then as (e i2 ) 1/2 cos((e i2m) 1/2) = (-1)cos(e iTT) = — cos(-1) = -
cosl, there are branch points at the origin and infinity. 4. (sin) sin / zz 2 12 2 = + The function is multi-valued. Now
sincesizz2 = 0atz = (nm) 1/2, there may be branch points there. We consider first the point z = 0. We can write

sin

sin

zzzz2222=hbutlimsinlimcoszzzzzz

z—>—>==02202221

So, (sinz?2)1/2

does not have a branch pointat z = 0 as (z 2) 1/2 does not have a branch point there. Next consider the point

zn=T

67 sin — sin —

zz

nzzn22=mmbutlimsin-limcos(-1)znznnzznzzn— — ==

mmmm22212Sincezn—-/m12

has a branch pointatznz =,(sin) 212, too as a branch point there. Thus we see that (sin z 2 ) 1/2 has branch points at
z = (nm) 1/2 for n € Z\ {0}. This is the set of numbers: + + + + T, ,...,,,... 2 2ii.The point at infinity is a non-
isolated singularity and hence it is not included in the set of branch points. Example 16 : Find the branch points of f(z) = (z
3 — z) 1/3 and introduce the branch cuts. If f(), 32 3 3 = find f(-3). Solution : Here f(z) =z 1/3 (z - 1) 1/3 (z + 1) 1/3 So the
branch points are at z = -1, 0 and 1. We consider the point atinfinity f111111131313¢¢gg=+—-/=4+1111313
¢GG(—)()//Since f(1/g) does not have a branch point at ¢ = 0, f(z) does not have a branch point at infinity. Here we
give three possible branch cuts : In the first and third the function is single-valued but in the second it is not. It is clear
that the first branch cut does not allow us to walk around any of the branch points. &lt;&lt GGG, AAAAA AAAAA
AAAAN BIEEIEIEL S BSOS Fig. 41 O Three possible branch cuts for f(z) = (z3-2)1/300-11-11-1
1

68 The second branch cut allows us to walk around the branch points at z = + 1. If we walk around these two once in
the positive direction, the value of the function would change by the factor e i41/3 . The third branch cut allows us to
walk around all the three branch points, the value of the function will not change (since e i61/3 = e i21 = 1). To find f(-3),
we consider the third branch cut with f() . 3233 =feeeiii()()()()//3324230130130133 = =The value of
f(-3)isfeeeiii(-3)()()()-//==324231313133mwmmExample 17 : Determine the branch points of the
function f(z) = (z 3 — 1) 1/2 . Construct branch cuts and define a branch so that z = 0 and z = -1 do not lie on a cut, such
that f(0) = —i; then what is f(-1/2)? Solution : The roots of the equationz3 -1=0are1132322343,,,-1,-1-//e
ejiiimm=+

sothat,zzzizi31212121211132132-(-)-//=++ + There are branch points at each of the cube roots of
unityzii=+

13232,-1,-1- Now we examine the point at infinity. We make the change of variable z = 1/¢ f(1/¢) = (1/¢3 - 1) 1/2 =
¢-3/2(1-¢3)1/2¢-3/2 has abranch point at ¢ = 0, while (1 — ¢ 3) 1/2 is not singular there. Since f(1/¢)
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has a branch point at ¢ = 0, f(z) has a branch point at

infinity. There are several ways of introducing branch cuts to separate the branches of the function. The easiest approach
is to put a branch cut from each of the three branch points in the finite complex plane out to the branch point at infinity
(see Figure 42a). Clearly this makes the function single-valued as it is impossible to walk around any of the branch points.
Another approach is to have a branch cut from one of the branch points in the finite plane to the branch point at infinity
and a branch cut connecting the remaining two branch points (see Figure 42 bcd). In this case, in walking around

69 any one of the finite branch points (in the + ve direction), the argument of the function changes by 1. This means that
the value of the function changes by e itT, which is to say, the value of the function changes sign. In walking around any
two of the finite branch points (in the +ve direction), the argument of the function changes by 21 i.e., the value of the
function changes by e i21, that means the value of the function does not change. Figure 42. Branch cuts for (z 3 1) 1/2
Now we choose the branch 42a, and introduce the variables
z-1=r1eiB,0<016&gt;2mzirei+=<6&gt;132233222—-,-0mOmzirei+=<8&gt;132323333—-,-6
e

™ We compute f(0) to see whether it has the desired value, fzrrrei()()/=++1232123660f0) =ei(m-
m/3+1/3)/2 = e im/2 =i Since it does not have the desired value, we change therangeof 861,z-1=rl1leif1 2m<061
&gt; 41 f(0) now has the desired value, f(0) = e i(3TT—-1/3+1/3) = — i We compute f -, 12fi—--123232323222="
+emmmabcd

70==982232eiim/ -3 Example 18 : Identify the branch points of the function w = f(z) = (z3 + z2 — 62z) 1/2 in the
extended complex plane. Specify the branch cuts and select a branch that gives a single-valued function where it is

continuous at z = —1 with f(—1) = —V6. Solution : First we factor

the function f(z) = [z(z - 2(z + 3)]11/2=21/2(z-2)1/2 (z + 3) 1/2

There are branch points at z = -3, 0, 2. Now we examine the point at infinity. f(/) — (= )() =3//111213121312212
¢GGGGegg=+

= + Since ¢ —3/2 has a branch point at ¢ = 0 and the rest of the terms are analytic there, f(z) has a branch point at infinity.
Now consider the branch cuts given in the figure 43. These cuts do not permit us to walk around any single branch point.
We can walk around none of the branch points (or all of the branch points considering the cuts [-3, 2] and x = 0, y < 0).
The cuts can be used to define a single-valued branch of the function. Now to define the branch, we choosez + 3 =rie
01, -m<01&gt;mz=r2eiB2,-MOM2322<8&gt;andz-2=r3eiB3,0<03&gt; 2m The functionis, f(z) = (r1
r2r3)1/2ei(01+062+063)/2Heref(-1) =[(2)(1)(3)] 1/2 ei(0 + 7+ 1)/2 = — 6 So our choice of angles gave the
desired branch. 4.8 The Riemann surface for w w w w w = z 1/2 We have seen that w = z 1/2 possesses two branch
points z = 0 and z = . To utilize the developments made in Example 1, we introduce a branch cut along the negative real
axis. The given function has two values foranyz=0.f1(z) =r1/2eiB /2, -m&gt; 6 < mFig. 430 -3 2

7landf2(z) =r1/2eiB/2, 1 &gt; 8 < 3 Each function f 1 and f 2 is single-valued on the domain formed

by cutting the z- plane along the negative real-axis.

Let D 1and D 2 be the domains of f 1 and f 2 respectively. The range set for f 1 is the set R 1 consisting of the right-half
plane and the positive imaginary axis [see Figure 28b]; the range set for f 2 is the set R 2 consisting of the left-half plane
and the negative imaginary axis [see Figure 29b].

The sets R 1 and R 2 are glued together along the positive

imaginary axis and the negative imaginary axis to form the w-plane with the origin deleted. We stack D 1 directly above D
2 . The edge of D 1 in the upper-half plane is joined to the edge of D 2 in the lower-half plane, and the edge of D 1in the
lower-half plane is joined to the edge of D 2 in the upper-half plane (it is needless to mention that the line of joining is
the negative real-axis). When these domains are glued together in this manner, they form a Riemann surface domain for
the mapping w = f(z) = z 1/2 shown in the figure 44 for some finite r. 4.9 Concept of neighbourhood When a point lies
on the boundary of two domains D 1 and D 2, we define a neighbourhood of that point in the following manner. Here
the boundary of D 1 and D 2 is the negative real-axis. (i) Neighbourhood of a point ceD 1 with Im ¢ &gt; 0, Arg¢g =T, |z —
¢l &gt; € consists of pointson : (@) D 1if Im ¢ > 0 (b) D 2 if Im ¢ &gt; 0. (ii) Neighbourhood of a point neD 2 with Imn = 0,
Arg n = 3, |z—n| &gt; € consists of points on (a) D 1if Im n &gt; 0 and (b) D 2 if Im n > 0. With these definitions of
neighbourhood of a point, it becomes clear that w = z 1/2 is continuous and differentiable everywhere on the Riemann
surface except at the origin and the point at infinity. The derivative is givenby ddzzff12112121121/=onDonD?2
Fig. 44
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72 4.10 The Riemann Surface for w = log z The Riemann surface for the multivalued function w = log z is similar to the
one we presented for the square root function. However, it

requires infinitely many copies of the z-plane cut along the negative x-axis,

which mark Skfork=.. -n,..,-10,1 .., n, ... Now we stack these cut planes directly on each other so that the
corresponding points have the same position. We join the sheet S k to S k+1 as follows. For each integer k, the edge of
the sheet S k in the upper half-plane is joined to the edge of the sheet S k+1 in the lower-half plane.

The Riemann surface for the domain of log z looks like a spiral staircase that extends upward on the sheetsS1,S2 ..,
and downward on the sheets S -1,S -2, ...

as shown in figure 45. For Sk, we use z = re i = r (cos 8 + i sin B), where r = |z| and 2Tk—TT &gt; 8 < T + 21k Again, for S
k , the correct branch of log z on each sheet is log z = log r + i 6, where r = |z| and 2k—1 &gt; 8 < 11 + 21k Example 19 :
Form a Riemann surface for f(z) = (z — 1) 1/3 taking a branch cut along the liney = 0, x > 1. Detect the point where the
function takes the value V2 (i — 1). Solution : Let r = |z — 1| and 8 = arg (z — 1), where 0 < 6 &gt; 21. Here the Riemann
surface consists of three domainsD1D2and D 3:f1(z)=r1/3ei8/3,0<0&gt;2m(D1)f2(z2)=r1/3eiB/3,2m<H
&at; 41 (D 2) Fig. 45 Fig. 46 w-plane 3m2mmu -1 -2 -3mVvy z-plane S1S0x S -1

73f3(z2) =r1/3eiB/3,4m <0 &gt; 67 (D 3) Each functionf 1, f 2 and f 3 is single-valued on the domain formed by
cutting the z-plane along the liney = 0, x > 1. We place D 1 on the top, then D 2 and D 3. The edge of D 1 in the upper-
half plane is joined to the edge of D 2 in the lower-half plane and the edge of D 2 in the upper- half plane is joined to the
edge of D 3 in the lower-half plane and finally the edge of D 3 in the upper-half plane is joined to the edge of D 1 in the
lower-half plane. Sayatz=¢ f(g) = V2 (i—- 1ie. fi() —2-¢=122==22434eceiiimmm—-/==+22943423
eeiimmm//So,¢gmm—,1218344==+¢eeiilyinginthedomainD 2. Example 20 : Form the Riemann surface
for the function f(z) = (z 2 — 1) 1/2 . Solution : Here the given function f(z) = (z 2 — 1) 1/2 has branch points at z = +1. To
examine the point at infinity, we substitute z = 1/g and examine the pointg=0.fi1111122212212¢G6GgG =
=—()(=)///Since there is no branch point at ¢ = 0, f(z) has no branch point at infinity. Letz—1=rleiplandz+1=
r2eip2,wherepl=Arg(z-1Dand@2=Arg(z+1).Thenw=1z)=(z2-11/2=z-1D1/2z+1)1/2=(r1r2)1/2
eil@l+@2)0O1xyFig.47¢DFig.4891D10-1B'Br21C'Czrle2)1

74 Case-10<@logt;2m, 0<@2&gt; 2montheple2ei(@ 1+ 2)/2 Continuity segment of f(z) B 0 i No B' 1 21 —i
COO01YesC'2m2miDmm-1YesD'mm—-1Fig. 49 Case-1l0<@ 1 &gt; 2, —-T<@ 2 &gt; montheplp2ei(@l +¢ 2
)/2 Continuity segment of f(z) B0 iYesB'MOIiCO001NoC'2m0 -1 D mm -1No D'm -1 1 Two branches of (z — 1) 1/2
canbetakenasfzrezrefzil12212211102()(),-()/()/ ==<8&gt;=+ilandf@ @1 ¢ 1TAgain two branches
of(z+1)1/2canbetakenasgzrezreil2222222202()(),/()/==<&gt;+i2andgeemem=—-gl(z)Let
us construct a Riemann surface for w = (z 2 — 1) 1/2 considering case |. Here a Riemann surface consists of two sheets
Soand S1.LetS 0 be an extended complex plane cut along the real axis from z = —=1to z = 1 and S 1 be another
extended complex plane cut of similar nature. SArgzArgzArgzArgz01012012214214<6&gt; <+ &gt <&agt; <
+&gt; (=) (=) ()mmmmmS The sheets S 0 and S 1 are joined along the segment [-1, 1] in such a way that the
lower edge of the slitin S 0 is joined to the upper edge of the slitin S 1, and the lower edge of the slitin S 1 is joined to
the upper edge of the slitinS0.-101xy -101xy Fig. 50 Branch cut [-1, 1] Fig. 51 Branch cuts (—e, —1] and [1, e) ’
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75 Let a point on the sheet S 0 move anticlockwise and form a simple closed curve which encloses the segment [-1, 1]
once. Then both @ 1 and ¢ 2 change by an amount 21T upon returning to their original position. i.e. (¢ 1 + ¢ 2)/2 changes
by an amount 21, so thevalueof wemoeme@==++++()()/()//()/rrerreiil212222121221212
remains unchanged. Thenw =flglonS0andaswellasonS1.Ifapointstarting on the sheet S O travels a path which
makes a complete round about only the branch point z = 1, it crosses from the sheet S0 to S 1. In this case, the value of
¢ 1 changes by an amount 21, while the value of ¢ 2 does not change at all. The changein (¢ 1+ @ 2)/2 is then 1. The
changein (@ 1 + @ 2)/2 remains the same if a point on the sheet S 0 makes a complete round about the branch point z =
—1only and enters on the S 1 sheet. Thistime.w=fgfgl110111onSonS - Thus the double-valued function w = (z 2
— 1) 1/2 can now be considered as a single-valued function on the Riemann surface constructed above. Hence the
transformation w = (z 2 — 1) 1/2 maps each of the sheets S 0 and S 1 forming the Riemann surface on the entire w-plane.
Riemann surface for the case Il Here the Riemann surface is formed by two sheets S 0 and S 1. Each of these sheets is an
extended complex plane cut along the line (—e, —1) U [1,¢) SArgzArgzArgzArgz01012121413<&gt; <+ &agt; <
Gagt; <+ &gt (=) - () (=) ()mmmmm S These sheets are joined along the line (—e, —1] U [1, ®) in such a way that
the lower edge of the slitin S O is joined to the upper edge of the slitin S 1, and the lower edge of the slitin S 1 is joined
to the upper edge of the slitin S O . If a point traverses a simple closed curve on either of the sheets S 0 or S 1 not
enclosing any of the branch points —1 or 1, then the function f(z) remains single-valued on the respective sheet, whereas
if it encloses any one of the branch points the function changes the branch as explained in case I. In the same way the
double-valued function f(z) = (z 2 — 1) 1/2 can be treated as a single-valued function on the Riemann surface formed

earlier.

Example 21 : The power function w = f(z) = [z(z — 1)(z - 2)] 1/2 has two branches. Show that f(-1) can be either —V6i or
V6i. Suppose the branch that corresponds to f(-1) = —V6i is chosen, find the value of the function at z = i.

76 Solution : The given power function can be expressed as

WT===++

fzzzzeiArgzArgzArgzik () (=)(=),,[(=)(=)1/1201122ekwhere the two possible values of k correspond to

the two branches of the double- valued power function.
If figure 52a branch cutsarey = 0,x<0andy =0, 1 <x < 2 and in figure 52b branch cutsarey =0,0<x<landy =0, x
> 2. In both the cases Riemann surface is formed by two branches. At z = -1, we note that Arg

z=Arg(z-1)=Arg(z-2)=mmandzzz(-)(-).126=S0,f(-1) canbeeither6 66663222232
eiore

e

i

m/()/—.===+++++

The branch that gives f(~1) = V6i corresponds to k = 0. With the choice of that branch, we find fii(iie i Argi ArgiArgi ()
“N=)(=)(=)=++4+12122==+4++2510234122442212¢ece€iii(//-tan/)/ —tan-1-1/mmmmme = =
——(tan-tan/)/(tan/)/ -1-1-110104111224132eei4llThe Inverse Trigonometric Functions (i) The function
sin —1 z is defined by the equation z = sin w Substitutinge eiiiw w — — 2 for sin w, we find that (e iw) 2 - 2ieiwz - 1=
Oie,eiw=iz+(1-2z2)1/2=iw=logliz+ (1 -2z2)1/2}sothatsin -1z = —ilog{iz+ (1 - z2) 1/2 } Similarly, we can
have 1 0 2 Fig. 52a 1 0 2 Fig. 52b

77 cos =1z = —ilog{z + (z 2 —1) 1/2 } (ii) We take the function w = tan -1 z, which is the inverse of z = tan w. Expressing
tan w in terms of sin w and cos w and then converting to their exponential form, we getzeieeiiii=+lewww w —
—-—=+11122¢ciiieww-ie,izeeeiziziii=+=>=42221111www-—-andfinally w=+1211liizizlog -
Note :

When z = + 1, the quantity (1 — z 2) 1/2 has two possible values. For each value, the logarithm generates infinitely many
values. Therefore sin —1 z has two sets of infinite values. For example, considersin =112 =+1232iilog =
++1162562

ieieikikloglog

TOTTor =+

+

1621562iikiikmTmmmor=++TTmTmTmT62562
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k kor, kis any integer. Likewise, the set of values for other inverse trigonometric functions can be ascertained. Example
22 : Discuss the mapping w = sinh z that transforms the infinite strip —e &gt; x &gt; », 0 &gt; y &gt; 1T into the w-plane.
Find cuts in the w-plane which make the mapping continuous both ways. What are the images of the lines (a) y = 1/1 (b)
x = 17 Solution : First we express sinh z in cartesian form w = sinh z = sinh x cos y + icosh x siny = u + iv We consider the
line segment x = ¢, y € (0, m). Its image is

78 {sinh c cosy + i cosh c sin yly € (0, m} Clearly, u and v then satisfy the equation for the ellipseucvc2 2 2 2 1 sinh
cosh + = The ellipse starts at the point (sinh ¢, 0), passes through the point (0, cosh c¢) and ends at (—sinh ¢, 0). As ¢ varies
from zero to e or from zero to —e, the semi-ellipses cover the upper-half of w-plane. Thus the mapping is 2—to—1. Now
consider the infinite liney = ¢, x €(—e, ). It's image is {sinh x cos ¢ + i cosh x sin c|x (-, *)}. Here u and v satisfy the
equation for a hyperbolaucvc?22221cos - sin = As ¢ varies from 0O to /2 or from 1/2 to m, the semi-hyperbola
cover the upper- half of w-plane. Thus the mapping is 2-to-1. We look for branch points of sinh —-lww =sinhzw =ee
zz--2e2z-2wez-1=0ez=w+wW2+1)1/2z=logw+ (w-1i)1/2 (w+1i1/2) The branch points are at w = +i.
Since w + (w 2 + 1) 1/2 is non zero and finite in the finite complex plane, the logarithm does not introduce any branch in
the finite plane. Thus the only branch point in the upper-half of w-plane is at w = i. Any branch cut that connects w =i
with the boundary of Im w &lt; O will separate the branches under the inverse mapping. We consider the line y = T1/4. The
image under the mapping is the upper-half of the hyperbola 2u 2 — 2v 2 = 1 Consider the segment x = 1. The image
under the mapping is the upper-half of the ellipse. uv2 222 111sinh cosh + =

79 Example 23 : Construct a Riemann Surface for cos —1 z. Solution : The functionw =cos -1z = -ilog [z +(z2 - 1) 1/2
| has two sources of multi-valuedness; one due to the square root function (z 2 — 1) 1/2 and the other due to the
logarithm, if any. First we construct the branch of the square root (

z2-11/2=(z+1)1/2(z-1) 1/2 We see that there are branch pointsat z = -1 and z = 1.

In particular we want the cos -1 z to be defined for z = x, x€[-1, 1]. Hence we introduce the branch cuts on the lines (e,
—1land [l e). letz+1=reiB,z - 1= peip With the given branch cuts, the angles have the possible ranges —11 < 0 &at;
M, 0 < @ &gt; 211 Now we must determine if the logarithm introduces additional branch points. The only possibilities for
branch points are where the argument of the logarithmis zero.z+ (z2 -1)1/2=0o0r,z2=2z2 -1 = 0 = -1 We see that
the argument of the logarithm can not be zero and thus there are no additional branch points. Here the Riemann surface
consists of two sheets S 0 and S 1 joined on the real axis (—e, —1] U [1,¢):S0102243<&gt; <&gt; <&gt; <&gt, o
emmemMmOTIT-S

A particular branch of this function can be obtained by first takingz + 1 =

rei@, —-m<0&gt; M z-1=peip, 0 <@ &gt; 21T Then adding these relations, we find z = (re iB + pe ip )/2 and the
functionz+ (z2 - 1) 1/2reducestozzreereiii+ =+++(-)()//()/212122126¢90¢ppp=++rerereiiib@
BeBpp2122(-)(-)/Fig.53-11yx

80=+rereii®@0Bp2122(-)/Thencos - loglog-1(-)/zirereii=++

212206906 ponSO0.Ifapointlying on the sheet S 0 is allowed to travel a path making a complete round about only
the branch point z = 1, it enters to the sheet S 1 from the sheet S O . In this case the value of ¢ changes by 21T while the
value of 8 remains unchanged. The change in (¢—6)/2 is 1. So in this case, cos — loglog — -1(-)/zirereii=+
2122090 ponS1.Similarly we can analyse the case when the point on S 0 encloses only the branch pointz = -1
while travelling a complete round. Some standard branch cuts of elementary functions. Function Branch cuts z s, non
integral s with Re s &lt; 0 (e, 0) z's, non integral s with Re s <0 (- ¢, 0] e znone log z (—e, 0] sin =1z, cos =1z (- e, 1]
and[l,e)tan -1zy< -1, x=0andy>1 x=0cosec -1z, sec -1z(-1,1)cot-1z[-i ilsinh-1zy&gt; -1, x=0andy
lt; L x=0cosh -1z (- e, 1) cosech -1z -1&gt; y&gt; 1, x =0sech -1z (-, 0land (1, ®)tanh -1zy <1, x=0andy >
1, x=0coth -1z[-1,1]

81 Exercises 1.

Find the principal value of each of the following complex quantities : (a) (1 —i) 1+i (b) 3 3—i(c) 2 2

i 2. Give the number of branches and locations of the branch points for the functions. (a) cos (z 1/2) (b) (z + i) -z 3.
Determine the branch points of the function w = {(z 2 - z)(z + 2)} 1/3 4. Find the branch points of (z 1/2 -1) 1/2 in the
finite complex plane. Introduce branch cuts to make the function single-valued. 5. Let D be the complex z-plane with a
cut along the segment [-1, 1], determine the regular branches of the functionfzzz () -/ =+ 1112 6. Split the function
fzzz()(-)-)=2249into two regular branches in the domain D C: \{[-3, - [,[2,1} /23 7. Evaluate () xxaa 20111
—, —* &gt; &gt; dx (ii) log x x 2 0 1+ e dx 8. Prove that logsin — log . xdx = m 1 2 0 9. Construct a Riemann surface for the
following functions : (il w =z 1/3 (i(lw=(z2+1) 1/2(ilw=+log-zz11(iv)w=sin-1z
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82 O -ii10. Let f(z) have branch points at z = 0 and z = + i but nowhere else in the extended complex plane. How does
the value and argument of f(z) change while traversing the contour given in the figures 51(a) (b). Do the branch cuts
make the function single valued? O Fig. 54 (b) —i i Fig. 54 (a) &lt; &lt; &lt; &lt; &lt; &lt; &lt; &lt; &lt; &l;

83 Unit 5 Conformal Equivalence Structure 5.0 Objectives 5.1 Riemann Mapping Theorem 5.2 The Schwarz Reflection
Principle 5.3 The Schwarz-Christoffel Transformation 5.4 Examples : Triangles / Rectangles 5.0 Objectives of this Chapter
The concept of conformal equivalence of two regions will be introduced in this chapter. The main theorem of this
chapter is Riemann mapping theorem. Also Hurwitz's theorem, Schwarz lemma, Schwarz reflection principle, Schwarz-
Christoffel transformation will be studied and their applications will be shown through a few examples. 5.1 Riemann
Mapping Theorem In the family of analytic functions that concern geometrical orientation, conformal mapping plays a
leading role. As its consequences we shall present here a most important result named after G. F. B Riemann, known as
"Riemann mapping theorem”. Throughout H(G) will denote the family of analytic functions defined on the region G.
Definition : Conformal Equivalence : Two regions R 1 and R 2 are said to be conformally equivalent if there exists a f € H
(R1)suchthatfisone-to-oneinR1andf(R1)=R2i.e.if there exists a conformal mapping one to one of R1ontoR 2.
Clearly, this is an equivalence relation (reflexive, symmetric and transitive).

Theorem 5.1 [Hurwitz's Theorem] Let G be a region and {fn } be a

sequence in H(G) that converges uniformly to

fe H(G). Suppose f = 0, D (a, R) ¢ Gand f(z) # 0 ony : |z—a| = R. Then there exists an integer N such

that for n > N, f n and f have the same number of zeros

in

D(a, R).

84 Proof. Since f(z) is never zero on the circle y, we have Inf f zy & ()= &lt;0 Again, f n — f uniformly ony, so

there is an integer N such that forn > N

sup ()= ()yd

fzfzn &gt 2and thusonthecircley, fzfzfzn()-()() &gt &gt; <

0 & 2 for n > N. Using Rouche’s theorem we find that

fn

and f have the same number of

zeros

inside the circle

Y : |z—a] = R for n > N. By means of the above theorem, we can easily prove Corollary 1. Let G be a region and {f n } be a
sequence in H(G) such that each f n never vanishes in G. Suppose f n — f uniformly in H(G). Then f(z) never vanishes in G,
unless f = 0. Some useful results (i)

If f(z)

isanalyticatzOandf1(z0) =0, then

there is a neighbourhood of z 0

in which f(z) is univalent. (ii) An univalent analytic function f on a domain G has a non-zero derivative at every point of G,
i.e., f1(z) =0 on G. (iii) The inverse of an univalent analytic function is analytic. (iv) Any domain in /C, that is conformally
equivalent to a simply connected domain must itself be simply connected. (v) A domain D in /C is simply connected if
and only if every analytic function in D has a primitive in D. Schwarz Lemma Let f: D (0, 1) — D (0, 1) be an analytic
function which maps the unit disc D(0, 1) to itself. If f(0) = 0, then (i) |f (2)| < |z| for O < |z| &gt; 1 (ii) |f 1 (0)] < 1 (iii) if equality
holds in (i) for at least one zeD (0, 1) — {0}, or, if equality holds in (i), then f(z) = A z, where A is a constant, |A| = 1. Proof :
Let us consider the functiongzfzz () () =

85 which is analytic in the disc D(0, 1) —{0} and it has removable singularity at z = 0, since f(0) = 0. It can be made analytic
atz=0ifwedefinegfzzfz()lim()()0001==—(55)For|z|=r, where0&qgt;r&gt;1gzfzzr()()=&gt; 1Bythe
Maximum Modulus Principle, |g(z)| &gt; 1/ r for the entire disc |z| < r. We fix zeD (0, 1) —{0} and letr — 1. Then |g (z)| < 1.
This is true for all ze

D (0,1) -{0} and we get

fzzz(),<&gt &gt; 101(56)ie.|f(z)| <|z|, 0 &gt; |z| &gt; 1. Since f(0) = O, we have [f(z)| < |

z| for 0 < |z| &gt; 1.
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So, (i) is proved and we find from (55) that |g (0)| = |f 1 (0)| < 1 which proves (ii) To prove (iii), we observe that if at a point z
0=0(z0]&gt; 1) |g(z0)| 1 =1ie.|g(z)] attains its maximum at an internal point and hence by the maximum modulus
principle g(z) = A, a constant and that |\| = 1, so f(z) = Az. Theorem 5.2 Let aeD (0, 1). Then ¢ a defined by pazzaaz () -
— =1maps D (0, 1) onto D (0, 1). Proof. Clearly, @ a is a bilinear transformation, it is analytic in the whole complex plane
except the point 1 a (which is the inverse point of the point a with respect to the circle |z| = 1, and hence lies outside |z| =
1). We observe that ¢ @

a
azzaazaazaaz-()--=+4++++111l=zaall22--=z=

@ -alfal

z)),

similarly.

86

Thus @ amaps D (0, 1) onto D (0, 1) in a one to one way. Now let 6 be a real number. Then @66 6
diiieeaae=—--1l===eaeaeceaeca

iiiiieeeO0 - - - - - 11lie,@amaps|z| =1on|z| =1 Thus, @ amaps D (0, 1) onto D (0, 1). A maximal problem Let
a, B be two complex numbers with |a| &gt; 1, |B] &gt; 1 and f be analytic on D(0, 1) satisfying f(a) = B. What is the
maximum possible value of |f 1 (a)] among such mappings? Solution : Letg =@ B 0 f 0 ¢ —a where @ B is defined as in
theorem 5.2 (57) Then g maps D (0, 1) to D (0, 1) and satisfies g(0) = ¢ B {flp —a (0)} = @ B {fla)} =@ B (B) =0 Thus g
satisfies all the conditions of Schwaz's lemma and hence |g 1 (0)| < 1. To obtain an explicit form of g 1 (0), we use (57) and
apply the chainrule g 1 (0) = {(p B Of) 1 (¢ —
aO}el-a(0)=(@RO0AN1(a)(Ll-lal2)=¢@RLl(fl@)fl(a(@-lal2)=¢B1P)fLll-laj2)=11221--()apafButlg
1(0)| <1, thereforef12211() || -| | aBa < (58)

Equality in (58) occurs only when |g 1 (0)| = 1. In that case by virtue of Schwarz

87 lemma there is a constant A, |\| = 1 so that g(z) = Az. Hence, f(z) = @ — B{A\p a (2)}, z €D (0, 1) (59) We now present an
important consequence of Schwarz's lemma, which may be seen as the converse form of theorem 5.2. Theorem 5.3 : Let
f: D (0,1) — D (0, 1) be any conformal map of the unit disc onto itself and f(a) = 0, a€D (0, 1). Then there is a constant A,
[N = 1 such that f(z) = A a (z) where @ a is defined as in theorem 5.2. Proof. Since f is a conformal map from D(0, 1) to D
(0, 1), we can have inverse of f, g defined by g {f(z))} = z, which is analytic too. Applying the chainruleg1 (0)f1(a) =1
(60) But according to inequality (58), f and g have to satisfyfaal211()—-,<gal201() - <(61) (since, f(@) = 0 and
g(0) = a). From (60), (61) it follows that |[f 1 (a)| = (1 — |a] 2) =1 . Hence applying the result (59) we find that f(z) = Ap a (2)
for some A with |A] = 1. Lemma 5.1 : Let G be a simply connected region and {f n } be a sequence of injective analytic
mappings (conformal mappings) of G into /C which converges uniformly on every compact subset of G, then the limit
function f is either constant or injective. Proof. Suppose f is not constant and not injective. Then there exist two points ¢
and neG, ¢ = n such that f(¢) = f(n) = w 0, say. Letgn (z) = fn (z) — w 0. We can find a positive d, & &gt; |[c—n|/2 so that
the discs D(g, 8) and D(n, &) are included in G. Now g(z) = f(z)-w 0 never vanishes on the circles |z — ¢/ =& and |z — n| =
O, wheregzgznn()lim()=—e.Applying Hurwitz's theorem, for large n, there exists ¢ n lying inside the circle |z - ¢| =
dwithgn(cn)=0asgn— guniformly in G. Similarly, for all large n, there is n n within [z—n| = d with gn (nn) = 0. But
by construction, D(g, 8 N D (n, ) = @ andhenceg¢n=nn.Thusgn(cn)=gn(nn)=0,¢n=nnthatis,fn(cn)="fn
Nn),¢n=nn

88 contradicting the injectivity of each f n and the proof follows. NOTE : There is no conformal map f of the unit disc D
(0, 1) onto the whole complex plane /C because then the inverse function f —=1: /C — D (0, 1) would be a bounded entire
function which is not constant, contradicting the Liouville's

theorem. Open mapping theorem : Let G be a region and suppose that f is a non-constant analytic function on G. Then
for any open set U in G, f(U) is open.

Proof : Omitted. Uniform boundedness : A sequence of functions {f n } defined on a set D

is said to be uniformly bounded on D if

there exists a constant M &lt; O such that |f

n (z)| < M for all n and for all

zeD. Normal family : Let F be a family of functions in a region G. The family F is said to be normal in G if every sequence
{f n} of functions f n eF contains a subsequence {f n k } which converges uniformly on every compact subset of G.
Montel's theorem : A family F in H (G) is normal
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if and only if F is uniformly bounded

on every compact subset of G. Proof : Omitted.

Theorem 5.4 : [Riemann Mapping Theorem] Let G be a simply connected region,

except for /C itself and let aeG. Then there is a unique conformal map f : G — D (0, 1) of G onto the unit disc which
satisfies f(a) = 0 and f 1 (a) &lt; 0. Proof. Let us first prove that f is unique. If there was another conformalmapg: G — D
(0, 1) with the given properties, then fog —=1: D (0, 1) — D (0, 1) would be a conformal map and also (fog —1) (0) = f(a) = 0
Hence, applying Theorem 5.3, we find that there is a constant A with |A| = 1 (fog —1) (z) = Az Deriving the derivative at the
origin, we find () () OO0 OO () () (), -1-1-1-1fogfggfaggfaga’'=""=""=""6lt; 00010 0 from which it
follows that A is positive. But also |A] = 1, so A = 1. Thus fog —1 is an identity map and f = g. The proof of existence is
divided into several stages. Lemma 5.2 Let G be a simply connected region other than /C . Then there exists an injective
analytic map f on G with f(G) c D (0, 1). Proof. We choose a point b € /C\G. Since G is simply connected there exists a g :
G — /C analytic with

g2 =z-h

89 Here g is injective since

g(zl)=9g(z2)=9g2(z1)=g2(z2)ie.zl-b=z2-b=z1=22.

By

open mapping theorem g(G) is open. Let us pick w 0 €g(G) and choose r &lt; 0 so that D(w 0, r) cg(G). Then D(-w 0, 1)
c /C\g(Q). For, if there exists a point we D(-w 0, r) N g(G), thenw =g (z1) forsome z1 eGandalso —weD (w0 ,r)cg
(G), so that —w =

g(z2)forsomez?2e

G. Again,

a(

z1)=-

gl

z2)=>9g2(zl)=g2(z2)or,z1-b=z2-biezl=z2o0r9g(zl)=9(z2)=-g(zl)=

giz1)=0=0=9g2(z1) =

z1-

bie z1=be/

C\G contradicting z 1 €G.

We takefzrz ()]

g)l=+20

w (62) Then f is injective analytic map on G (by construction |g(z) + w 0 | > r for zeG) and also satisfiesfz G (). < &gt; € 1
2 1forz Lemma 5.3 : Let G be a simply connected region other than /C itself and let aeG be fixed. Then there exists a
conformal map f : G — D(0, 1) of G onto the unit disc with the properties f(z) = 0 and f(a) &lt; 0. Proof : Let F denote the
family of analytic functions f : G — /C such that either f = 0 or f is injective, and f(G) c (0, 1), f(a) = 0 and f' (a) &lt; 0. Let us
consider the function w() ()- () - () ()zfzfafaz=1fwhere f(z) is given by (62) of lemma 5.2 and we find that w(G) c
D (0, 1), yl@) = 0and w1 (a) &lt; 0. So F is non empty and by Montel's theorem it is normal. Applying Lemma 1 we see that
all functions in the closure of F in H(G) are either constant or injective. Now since all functions in F take the value zero at
a, the same is true for all functions in the closure of F. Likewise the only constant function in the closure is

90 0 while the other functions in the closure satisfy f(G) c D (0, 1). Since f(G) is open, by open mapping theorem, f(G) c D
(0, 1). Again since the f — f 1 (a) is continuous, all functions in the closure of F must satisfy f 1 (a) > 0. The functions in the
closure, that are not identically zero, are injective, so f 1 (a) &lt; O unless f = 0. These observations prove that the set F is
closed in H(G). Hence F is compact in H(G). Since the map f — f'(a) : F — R is a continuous function on a compact set, it
must attain its maximum value, as we are not considering constant function (here it is zero). Let feF be a function with
f'(@) maximum. We now show that f(G) = D (0, 1). On the contrary, suppose that f(G) = D (0, 1) and choose we D(0, D\f(G).
Using the property that every non-vanishing analytic function in a simply connected region has an analytic square root,
we take a function h eH(G) with [()] ()= = () hzfzfz21=w w (63) Now as the bilinear transformation@azzaaz () -
—=1maps D (0, 1) onto D (0, 1) and as feF,

h(G) c D (0, 1). Let g : G — /C defined by

gzhahahzhahaz()()()() -0 -0 ()=""-1hThenclearly, g(G) c D (0, 1), gla) = 0 and g is analytic injective and
g'(a) &lt; 0,since'=-gahahahahaha()()()O[-0)1[-()111122211=6&ltthahal210()-()(64)So,ge
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F. Again, differentialing (63) we find that 2h(a)h 1 (a) = f 1 (a)(1-|w| 2 ) So, from (64) gahahahaha
fal112121121000 (=0 0(=(-),==wwwas|h@)]2 = |w|

91=+6&lt;fafalll2()(). ww contradicting the choice of feF as maximising f 1 (a). Thus f(G) = D (0, 1). Note : The
Riemann mapping theorem is one of the most celebrated results of complex analysis. It is the beginning of the study of
complex analysis from a geometric view point. G. F. B. Riemann in 1851 correctly formulated the theorem, but
unfortunately his proof of the theorem was lacking. According to various accounts, he assumed but did not prove that a
certain maximal problem had a solution. A final proof was definitely known by the early 20th century, different sources
attributed to it particularly, W. F. Osgood, P. Koebe, L Bieberbach etc. 5.2 The Schwarz Reflection Principle Let

f be analytic in the domains D 1, D 2 which have a common piece of boundary, a smooth curve y. Assume further that f
is continuous across y. Then, by Morera’s theorem, f is analyticin D 1 u D 2 . This allows us to perform analytic
continuation in some cases.

Theorem 5.5 [The Schwarz reflection principle] Given a function f(z) analytic in a domain D lying in the upper half plane
whose boundary contains a segment | c IR,

assume fis continuous on D u | and real-valued on |. Then f has analytic continuation across |, in a domain D u

U

D*, where D* = € {: }. zz D Proof. Let us consider the function

fz

fzfzzDUIzDUI()()(), = € € = Itis clear that F is analytic in D. We shall show that F is also analytic in D*.

Let zand z + h lie within D*. Then z and z h + lie within D and we can express. lim ()— () lim () = () im ()= () ().

hh

h

F

zhFzhfzhfzhfzhfzhf

Z—>—>—>+=+=+

='000

So, F

is

analytic

in D*. Fis also continuous on D*U |. For,z e I lim () im () () (), zxzxFzfz

fx f x > — = = = by hypothesis. Thus F is continuous on D U | U D*. To prove F is also analytic there, we consider the
function

92¢91m¢cc()()—ziFzd=12T (65)ItisanalyticinDUIUD*[as (i) Fz () — ¢ ¢gis continuous function of both variables
when z lies within T and g on T". (i) for each such gg g, () — F zis analyticin zin D U | U D*. [see (14)]. To complete the
proof, we try to establish ¢(z) = F(z) for allz € D U | D*. Breaking the integral in (65) and adding the two integrals along |,
which are in opposite directions, we write @ M¢GcmGGgG()()—()—ziFziFzd=+121212TTd (66)wherel 1and
[ 2 are the boundary of D U | and D* U | respectively. When zeDUI, the second integral in (66) vanishes and ¢(z) = F(z).
Again, the first integral vanishes when z € D* U | and @(z) = F(z) in this case too. Thus @(z) = F(z) for allze D U | U D* and
we have found a function F(z), analytic in D U | U D*, and coincides with f(z) in D U I. 5.3 The Schwarz-Christoffel
Transformation We know from Riemann’s mapping theorem that there is a conformal mapping which maps a given
simply connected domain onto another simply connected domain, or equivalently onto the unit disc. But it does not
help us to determine such mappings. Many applications in boundary-value problem requires construction of one-to-one
conformal mapping from the upper half plane Im z &lt; 0 onto a polygon Q in the w-plane. Two German mathematicians
H. A. Schwarz and E. B. Christoffel independently discovered a method for finding such mappings during the years
1864-1869. Theorem 5.6 [Schwarz and Christoffel] Let P be a polygon with vertices w 1, ..w k in the anticlockwise
direction and interior angles a 1 17, ..., a k 1T respectively, where =1 &gt; a 1, .., a k &gt; 1. Then there exists a one-to-one
conformal mapping of the formfzAsxsxsxBkkzz()(-)(-).(-)—-—-—-—-— =+1121111201aaads(67)1x
DD*zTl z - Fig. 54
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93 where A, Be /C, that maps the upper plane Im z &lt; O onto the interior of P, with f(x 1) =w1 ..., fxk=1)=wk-1,
f(e) = w k . (68) Remarks : (i) We do not need to have specific information on w k and a k . While travelling the polygon
anticlockwise direction we made a left turn of an angle TT—a j T at the vertex w j . (ii) Sometimes certain infinite regions
can be thought of as infinite polygons. In this case it is convenient to take w k as the point at infinity, as we need no
information on a k . (iii) It can be shown that Schwarz-Christoffel transformation can be uniquely determined by three
points as in the case of bilinear transformation. One of these is used by taking f(e) = w k . We can therefore have the
freedom to choose two points say, x 1 and x 2 satisfying —e &gt; x 1 &gt; x 2 &gt; e. (iv) Note that the integral involved
may be impossible to calculate theoretically. In practical problems numerical techniques are often used to evaluate the
integral. In first part of the proof we take f(x k) = w k, x k = finite. Proof. By Riemann mapping theorem such a mapping
exists. We shall prove that its form is given by (67). So f(z) is analytic for Im z &lt; 0 and f 1 (z) = O in the upper half plane.
From these itis clearthatddzfzfzfzlog () ()()'=""isanalytic in the upper half plane. To construct the function f(z)
our aim is to establish that f"(z)/f'(z) is analytic for Im z > O save for the pre-image points of the vertices of the polygon
lying on the real axis. Let | be a side of the polygon P, which makes an angle 6 (positive sense) with the real- axis and ¢ be
any point on | but not a vertex of the polygon P. Then for any w on |, (w—g)e —i 6 is real and there is a point z on the real
axis of the z-plane so that f(z) = w and a corresponding point z = a for ¢ on the same line. Hence {f(z) — ¢}e —i 6 is real
and continuous on the segment y of the real axis of the z-plane corresponding to the straight line | of the w-plane.
Moreover, this function is also analytic for Im z &lt; O, thus following the Schwarz reflection principle we can continue
this function analytically across y to the lower half plane Im z &gt; 0. In particular, this function is analytic in a
neighbourhood of the point z = a and can be expanded in the form of the Taylor series. Fig. 55 a 8 w-plane |
94{()-}(-)-fzeczaikkkgB==e3% 1wherecl="f(a)=0, maintaining the status quo that f(a) = ¢ and the
function f maps the segment y onto the straight line . Now f'(z) = ei@{c1+c22(z - a) + ..} and logf(z) =6 + log{c 1 +
2c2(z—-a)+..}So,ddzfzlog()1isanalytic in a neighbourhood of z = a and real on a real line segment intercepted by
the neighbourhood. Let us consider the case when the point g is the corresponding point at infinity on y (in this case y is
divided into two parts, each of infinite lenght). Here the Taylor series expansion in the neighbourhood of point at infinity {
()-}/—-fzeczikkkgB==1e3% 1whereeachcRisrealand c 1= 0 (with the same reason mentioned in the finite
case). So ' =

f

ze

cz

czczi()—-—--—-..-012233423"=+++fzeczczczi()...-02612132435andwe findthat"'=++ +
++=+++f

zf

z

zcczczczcczccczcc

z()() o=/ == /..=3-226121212612123212111221=+=% —~227

c

z

k

kk (69)ddzfzlog()1lisanalyticina

neighbourhood of the

point at infinity and is real when z is real. In the polygon P, let 1 be an adjacent side to making on angle a 1 1T at their point
of intersection w 1. The corresponding point of w 1 on the real axis is x 1. Here
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95 the function f(z) is not analytic in a neighbourhood of x 1, we choose the branch of the argument so thatmm2 321
&at; &gt; Arg z x ( — ) introducing a branch cut along the axis {x 1 + iy : y < 0} [f(z) is not continuous on this branch cut].
Here Arg {(w 1 — w)e —i0 } is equal to zero or a 1 T according as w lies on or 1. So the function { - ()}]1 -/ wBalllfz
eiis real and continuous on the segment of the real axis corresponding to the consecutive sides and 1. Again this
function is analytic for Im z &lt; O since f(z)—w 1 is analytic and non zero there. Expanding{ - ()} - /wBalllfzeiin
Taylor's series in a neighbourhood of x 1we find { - ()} (- ) -/wBalllllfzeczxikkk==e) whereeachckis
realand c 1 = 0. On simplifying, we findfzezxczxi()-(=-)lc(-).J=4++wBaalll2lll=+=¢ywbOallll
Olezxczxikkk(—=)(=)wherecO1lisaconstant multiple of c 1, hence not equal to zero. Now we have "= + + + f
zezxcczxi()(=-)()(=)..-0aaal11101111111=(z-x1)al-1F(z Fig.56 Fig. 57 new position after rotation
through an angle 6 clockwisealmAalmBOAwalmwlll

96 where F(z) is analytic and not zero in a neighbourhood of z = x 1 and we obtainddzfzzxFzFzlog()--()()111
11 =+ a(70) This shows that if the polygon P has an angle a 1 1 at a point w 1 then d dz f z log () 1 will have a simple
pole of residue a 1 —1 at its corresponding point x 1 . Now if the point at infinity be the corresponding point to w 1 at

which the polygon P has an angle a 1 1, then we can expresswBa 111221 -()...—-/fzeczczi=++or,fzeczc
zci()—-.=++wabBalll2lll’'=++++fzeczczceczczcii()..——-..0a00aa0al11121112211
111=+++
+eczczciBaaaall11211111().."=++++++++fzeczczceczczcii()-()()..-()-..aabaaa
aaa0l111212111112211111111=++++
+-()()..eczczciBaaaaalllz21l2111112ddzfzfzfzzczcczclog()()()—-()..—=().."=""=4+4++++

+000112112111211=4+++-(--)..aaall1211121lzczc=++=2) —~al2lzczkkk(71) Now
since x 2, x 3 ..., x k are the corresponding points lying on the real-axis of the z-plane, to the verticesw 2, w 3, .wk
respectively of the polygon P with angles a 2 T,

97 a3, ... a kT there, the function d dz f z log () 1 will have simple poles with residue aj - 1atxj,j=2, .., k Thus we
see that this function is analytic for Im z &lt; 0 and continuous on Im z = 0 except the points x 1, x 2, ..., x k and using the
Schwarz reflection principle it can be continued analytically across the real axis. Hence d dz f z log () 1 possesses only
simple polesatx 1, x 2, ... x k as its only singularities and can be expressed asddzfzzxzxzxGzkklog() - - - — ..
-, 111122 =4++4+=S0,ddzfzzxzxzGziiikikiklog()(=)/(=)/(=-)/..()1121112131111=+++
+===%Y>aaa=++=0> —-()22zdzGziii(73) Using the property of the sum of the exterior angles of a
polygon,(1 —al)m+ (1 —a2)m+..(1-ak)m=2m Comparing (73) with (69) we get G(z) identically zero. Finally
integrating equation (72), we find the desired mapping f(z) asfzAsxsxsxdsBkzzk()(-)(-).(-)----1=+41
1211012aaa(74) Role of constants A and B (i) |A| controls the size of the polygon (ii) Arg A and B help to select the
position, if any, in determining orientation and translation respectively. An useful observation In some occasions we urge
to make the evaluation process of the integral in (74) simple. For this sake, we consider the point at infinity corresponds
to the vertex w k where the polygon P has an angle a k 1. Then we can express [see eq. (71)]ddzfzzczkiilog() — ~1
21=+e5>a(75

98 in the neighbourhood of the point at infinity. Again considering the expression of d dz f zlog () 1 in the
neighbourhood of the points corresponding to the verticesw 1, w2 .., wk-1[see eq. (70)]. ddzfzzxzxzx Gz kklog
()-—=-=-..—=()--1112211111=+++ +0aaa(751) where G(z) is a polynomial. If |z| is large enough,
proceeding as earlierddzfzzxzxzGziiikkiikilog()(=)/(=)/(=)/()-=--111122113111=+++3>3
aaa=+++ey —~()akizdzGz112 (76) Comparing (76) with (75), G(z) turns out to be identically zero and hence
integrating (751) we obtainfzAsxsxsxdsBkzzk()(-)(-).(-)----1-1=4+11211120 aaawherethe
role of the constants A and B remain as before. 54 Examples : Triangles / Rectangles The Schwarz-Christoffel
transformation is expressed in terms of the points x j, not in terms of their images i.e., the vertices of the polygon. Not
more than three points (x j ) can be chosen arbitrarily. If the point at infinity be one of the x j 's then only two finite points
on the real-axis are free to be chosen, whether the polygon is a triangle or a rectangle etc. Triangle Let the polygon be a
triangle with verticesw 1, w 2 and w 3 . The S-C transformation is writtenaswAsxsxsxdsBzz=+(-)(-)(-) - -
-1121311230aaa(77)whereal, a2 1and a3 1 are the internal angles at the respective vertices. Fig. 58 Fig.
59 w-plane z-plane x 1 x2x3wlw2w3a3malma2T
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99 Here we have chosen all the three finite points x 1, x 2, x 3 on the real-axis. The constants A, B control the size and
position of the triangle respectively. If we take the vertex w 3 as the image of the point at infinity, the S-C transformation
becomeswAsxsxdsBzz=+4+(-)(-)--1121120aa(78) Herex1landx2

can be chosen arbitrarily. Example 1 : Find a

Schwarz-Christoffel transformation that maps the upper half- plane to the inside of

the triangle with vertices -1, 1

and V3i. Solution : Following our notation, we writew 1= -1, w2 =landw 3 =V3isothatal=a2 =a3 = 1/3. We

choose the form (78) of S-C transformation and consider the mapping. fzAsxsxdsBz()(-)(-),-2/-2/=+132
30 [here f(e) = V3i] We may choose x 1 = —1and x 2 = 1, so that f(-1) = =1 and f(1) = 1. Therefore fzAssdsBz () () (-)
-2/ -2/=++11330=+AsdsBz(-)-2/2301ltthenfollowsthat=+=+=AsdsBsdsB(-)-1(-).-2/-1
-2/2302301111ARewritingtheseas —-1,(-)-2/ALBBsds+=+==andALwherelL112301WeobtainAs
dsandB==1102301(-).-2/Hence Fig. 60 Fig. 61 -113i -11
100fzsdssdsz()(—-)(—-).-2/-2/=1112301230 Example 2 : Using Schwarz-Christoffel transformation map

the upper half-plane onto an equilateral triangle of side 5 units. Solution : It is convenient to choose three arbitrary points
x1=-1x2=1andx 3 = e which are mapped into the vertices of the equilateral triangle, so we take S-C transformation

(78).fzAssdsz()()(-)-2/-2/=+11331Here f(-1)=wl=0andf(l)=w?2=5 SothatAsds=51231/(-)
-2/ =1 Hence the desired transformationisfzsdssdsz()(=)(-)//-1=511223122 31 Alternative : We take z 0
= -1, A =1, B = 0and find S-C transformation as, (choosing one of x i 's as point at infinity) wssds =+ ()(-)112312

(79) takingx1=-1andx2 =1. Then ~ () ~, fw 12 = say, and the image of the point z = -1 is the point ~w 1 0= . When
z = 1lin the integral we can write s = x, where -1 &gt; x &gt; 1. Then x + 1 &lt; 0 and Arg (x+1) = O, while |[x-1| = 1-x and

Arg (x=1) =m. Hence~ () (-)/-1/-wxxedxi2231232311=+mFig.62Fig.63((-11wiw2w3-m3-13
10l==-(-)-(=-)/-1ledxxxiimm32120112123323edx=-(—-),//edtttim323011substitutingx =
Vt.=—,./eBim31213Wechoosew?2as,wkw?225==~wherekeBi=-5,.-//m31213Tofindw 3 let us first
calculate for ~ w3~ ()(-)-2/-2/-1w

X
xdx3331ll=4e=+++e()(=)()(-)-2/-2/-1-2/ -2/ xxdxxxdx1111331331=++e—,—-/—--2/-1eB
exxdxiimm3312131l=++e—-,-—-/—--2/-eBexxdxiiimm3312131l=++++——---2/--1--2/
-2/exex

edxiiiiimmmmm23232311333=++e—()(-)/-2/-2/-1-exx

dx133311m

Now, the value of ~ w 3 can also be represented by the integral () (- ) =2/ =2/ — — xxdxi+ 113 3 when ztends to

infinity along the negative real axis. Thus from the above relation, we have ~ —, ~//weBewii33331213=+mT
ie,~—,//weeBii3331213=-mmSo,wkwei3353==~T11

102 Therefore, the three vertices of the equilateral triangle arew 1 =0, w 2 = 5and w 3 = 5e iTr/3 . Clearly each of it's
side is of length 5 unit. The desired transformation isthenfz Kfz () ~()==+-5,() (=) -/ -2/ -2/ -1eBssdsizm3
33121311 whichissame as obtained in the first process. Remark : Following the above technique we can determine a
S-C transformation from Im z > 0 onto a triangle, in particular, whose one side opposite to an angle is given. Rectangle :
Example 3 : Find a S-C

transformation that maps the upper half

of the z-plane to the

inside of the rectangle in the w-plane

with vertices —a, a, a + ib and —a + ib which are the preimages of —1, 1, a and —a respectively. Solution : Let us first make
the identification of the vertices of therectanglew 1= -a+ib,w2=-aw3=a, w4 =at+tibal=a2=a3=a4=1/2
We choose x1=-a,x2=-1,x3=1 x4 =awhere a&lt; 1 will be determined later. We are attempting to benefit from
the symmetry here, which requires the image z = 0 to be w = 0. So taking z 0 = 0 we get B = 0 in the formula (74) for
S-C transformation, which reducestofzAssssdsz () [)()(=)(=) -1/ =+ +aa 1120 Fig. 64 Fig. 65 AAAAA A A A
AAN-a+iba+ib-aavu-2-112xy00
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103==Adssszz[(-)(-)((,)12220a@a(80)The constant A may be found by using the fact that f(1) = aie,aA
dsssadsss==[(-)(=-)/[(-)-)1112220122201aaorA=a/ela), say (81) To find a, we apply fla) =a + ib, a
ibadsssa+=@aa()[(-)-)12220=+adsssidssseaaaa()[(—=)(-)N(-)-)11222222101from
which, equating imaginary parts, we arrive atbdsss@aaaa () [(—-)(—)=22211Sinceaand b are known, this
equation determines a, which gives rise to the evaluation of @(a) i.e. A is completely known. Note : The function ¢(z, a),
given in (80), which involves z as the upper limit of an integral, is called an elliptic integral of the first kind and it is not an
elementary function. The real definite integral @(a) in (81) is called a complete elliptic integral of the first kind.

Example 4 :

Find a Schwarz-Christoffel

transformation that maps the upper half

of the z-plane to the

vertical semi-infinite strip —11/2 &gt; u &gt; /2,

v &lt; O of the w-plane. Solution : Fig. 66 Fig. 67 w-plane z-plane =110 - -2 -1 2

104 Here we take x 1 = -1, x 2 = 1 and x 3 = @ and the image points are w 1 = —11/2 and w 2 = 11/2 respectively, so that a
S-C transformation can be writtenasfzAssdsBzz () ()(-)-1/-1/=++11220=4+AsBzz112120(-)/ds =
+~log-~AizzB12Usingf(-1) —=m2andf(),12=mwefindfziizz()-log -, =+ 12 Choosing a suitable branch
of the logarithm.

105 Unit 6 Entire and Meromorphic Functions Structure 6.0 Objectives 6.1 Entire function 6.2 Infinite Products 6.3 Infinite
product of functions 6.4 Weierstrass Factorization 6.5 Counting zeros of analytic functions 6.6 Convex functions 6.7
Order of an entire function 6.8 The function n(r) 6.9 Convergence exponent 6.10 Canonical Product 6.11 Hadamard's
Factorization Theorem 6.12 Consequences of Hadamard's Theorem 6.13 Meromorphic functions 6.14 Partial Fraction
Expansions of Meromorphic Functions 6.15 Partial Fraction Expansion of Meromorphic functions Using Residue theorem
6.16 The Gamma Function 6.17 A few properties of [TTTT(z) 6.0 The Objectives of the Chapter In this chapter we shall
study entire functions, their growth properties and meromorphic functions. Infinite products and their convergence will
be discussed. Properties of zeros of

106 an entire function, convex functions, gamma function and its important properties will also be discussed. 6.1 Entire
function A function f(z)

analytic in the finite complex plane is said to be entire (or

sometimes integral) function. Clearly, the sum, difference and product of two or more entire functions are entire
functions. Examples : The polynomial function P(z) =a0+alz+..+anzn, exponential function e z, sin z, cos z etc.
are entire functions. Let us consider the first example, the polynomial function. It is evident that P(z) can be uniquely
expressed as a product of linear factors in

the form

A

zzzzzzn01201110--—-=,ifaor,Azzzz

a

a

a

ppnppplll1001201l-—--===#--¢G¢G,,,ifa(82)whereAOQ (or,Ap)isconstantandz=2z1,z2,..,zn (or,
z=0,61,62,..¢n-p) are the zeros of P(z), multiple zeros are counted according to their multiplicities. There arises a
natural question : whether any entire function can be expressed in a similar manner in terms of its zeros. The
observations are as follows : (i) There may exist entire function which never vanishes, (ii) If an entire function possesses
finite number of zeros, then it is always possible to express it in the form (82) stated above. But when the number of
zeros are infinite the form (82) reduces to a product of infinite number of linear factors which need not always be
convergent. We first consider infinite products of complex numbers and functions. 6.2 Infinite Products An infinite
product is an expression of the form pnn=¢[]1(83)

107 wherepl,p?2, .. pn,..are non-zero complex factors. If we allow any of the factors be zero, it is evident that

the infinite product would be zero regardless of the behaviour of the other terms.
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letPn=plp2..pn.IfPntendsto afinite limit (hon-zero) p as n tends to infinity, we say that the infinite product (83)
is convergent and write as p p n n= ¢ [] = 1 (84) An infinite product which does not tend to a non-zero finite limit as n
tends to infinity is said to be divergent. To find the necessary condition for convergence for the infinite productpnn=e
[11, say (84) holds, then writingp nasp PP nnn = -1we conclude in view of (84) that
imlimnnnnnpPPPP—oe e —===11

Thus, limnnp —e =1(85)is a necessary condition for convergence of the infinite product (83). It is then better to write
the productas()11+ =e[]ann(86)sothatan— 0asn— eisanecessary condition for convergence. Theorem 6.1 :
The infinite product (86) converges if and only if log() 11+ =3 an

n (87) converges. We use the principal branch of the log function and omit, as usual, the terms withan = —-1.

Proof. LetPaankknnkkn=+=4+==[]>()log().1111andSThenlogPn=SnandPn=-eSn.Now if the given
series is convergenti.e.SSn —asn— e, Pntendsto the limit P = e S (= 0). This proves the sufficiency of the condition.
108 Conversely, assume that the product convergesi.e. PP n — (= 0) as n — e. We shall show, by virtue of Pn = e Sn,
that the series (87) converges to some value of log P, not necessarily the principal value of logP. FornPPPPNnn—e —
—, .10 and Log Now there exists an integer K n such that LogP PSLogP kinnn=-+2 1 (88) To establish the

convergence of the sequence {k n }, we form the difference () () kkiLlogPPLogPPLogannnnn+++-=--+11
121m=--+
++iArgPPArgPPArglannnlll)andthatkn+l -kn=--+

++12111mArgPPArgPPArglannn)tendstozeroasn— e, and let the limit of the sequence {k n } be k. Taking
limit in (88), we find that S LogP ki n — — 2 1T and so the condition assumed is necessary. Definition : An infinite product (
)11+ =e[]annisabsolutely convergent if and only if log() 11 + = e > an nis convergent. Theorem 6.2 : The infinite
product (86) converges absolutely if and only if the series Y a n converges absolutely. Proof : If Y a n converges absolutely,
then in particularan — —e0asn.Also, iflog() 11 + = ¢ ann converges absolutely thenlog().100+ —>—ann
and a Thus in

109 either of the cases a n — 0 and we can take | | a n < 1 2 for sufficiently large n. Then by elementary calculation, 11 2
32—+ =-+log()

a

a

a

annnn<+++<l21223aaannn

,n = large enough. It follows that12132aaa

n

nn<+<

log() confirming the occurrence of the absolute convergence simultaneously for the two series. 6.3 Infinite product of
functions So far we have considered infinite product of complex numbers. Now we shall study infinite products whose
factors are functions of a complex variable. Some of the factors (finite in number) may vanish on a region considered. In
that case we consider the infinite product omitting those factors. The theorems proved earlier hold good in this case too
with some modifications. Definition : (Uniform convergence of infinite products) An infinite product{ ()} 11+ =¢[]azn
n (89) where the functions a n (z) are defined on a region D,

is said to be uniformly convergent on D if the sequence of partial products

Pzaznkkn(){()} =+ =[]11converges uniformly to a non-zero limit on D. Theorem 6.3 : An infinite product (89) is
uniformly convergent on a domain D if the seriesaznn () = Y 1 converges uniformly and has a bounded sum there.
Proof : Let M be the upper bound of the sum

azn()YonD. Then1111212+ + + &gt; <+ +

a

zZazazee

nazazazM

nOOOTOHONTOI

110

Let us consider the sequence{Qn}withQzaz

nkkn(){|O=+=[]111Weobserve QzQ

z
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azazazazn
nnn()OO0O).O00-—-=4+++-11211116&gt;

eaz

Mn ()

Now since

the series Yazn ()

is uniformly convergent, the series > ——{ () ()} Q z Q z nn 1is uniformly convergent.

Thus the sequence {Q n}tendsto alimit. AgainPzPzQzQznnnn()()() (), —<—---11s0 the result follows.
Theorem 6.4 : An infinite product { ()} 11 + = ¢ [] a z n n converges uniformly and absolutely in a closed bounded
domain D if each function a n (z) satisfiesazM nn ()< for allze€ D and M n is independent of zand moreover ZM n is
convergent. Proof : Given ZM n is convergent, so the infinite product M M nn =+ = e[] () 11 converges by theorem 6.2
Now, for

n&lt, mQ

zQ

zQ

zazn

mmkmn()()O{(}-=+=-+[1111(090)Again, {(}O)OOOOO,, 1111+-=+++=+[]3Y 2>

a

z

az

azazazaz

a

z

m
n

kkmniijnjiijnjll++++...()()... ().

azazaz

m

mn1l2Takingmoduli{()},,,1111+-<++++=+[]>>>az

MMMMMMkmnkkmniijnjiijnj

Ll++++. . MMMmmnl2=+-+4+[]()111Mkm n Utilising this in (90) we obtain

111QzQzMMnm

Kkmkmn()()()()-<++-

==[]11111=+-+==[]T10)1111MMkknkkm(91) Now as the infinite product () 11 + e[ MKk s
convergent, we choose m large enough so that r.h.s in (91) is less than € and hence |Q n (z) - Q m (z)| &gt; €, when n &lt;
m Thus the sequence {Q n (z)} converge uniformly, since m depends only on €. Finally, absolute convergence of the
infinite product follows on utilising Th. 6.2 Example 1 : Test for convergence of the infinite product1221—-=9¢[]znn
Solution : The terms of the product vanish whenz =+ +12,,.. etc. Hereazznazznnn()()=-<22221and Now
since the series Y 12 nis convergent, the given infinite product is uniformly and absolutely convergent in the entire plane
excluding the points z = + +1 2, , etc. Example 2 : Discuss the convergence of the infinite product 11111212 -+ -+ 2z
zzzSolution: LetPzzknkn()=—-=[]1221and we consider a bounded closed domain D which does not contain
the points z =+ +1 2, ,.... The sequence {P n (z)} converges uniformly in D (see example 1). Again

let

F

z

z

zz2z

znznn21111121211()=-+-+-+FzFzznnn21211l4+=-+()(),thenFzPzzz

n

Pz
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nn
n

n221110000)==-++

and

F

112

and obviously the sequencesF2,F4,F6,...andF1,F3,F5..

converge uniformly in D. Hence the given infinite product converges uniformly in D. To test for the absolute
convergence of the given product we notice thataznie) =+ + + + + +

1112121313 anditis divergent since the series on the right is divergent and |z| is finite. Therefore the given product
does not converge absolutely. Considering the theorem 4.4 on uniformly convergent sequence of analytic functions [(14)
Page-72] we get the following theorem : Theorem 6.5 : If an infinite product M{1 + f n (z)} converges uniformly to

f(z) in a bounded closed domain D and if each function f n (z) is analytic in D, then f(z) is also analytic in D. 6.4
Weierstrass' Factorization Theorem 6.6 : If f(z) is an entire function and never vanishes on C/, then f(z) is of the form f(z) =
e g(z), or, more generally, f(z) = ce g(z), c = 0, constant. where g(z) is also an entire function. Proof : Since f is entire and
never vanishes on C/, f 1 /f is also entire and is thus the derivative of an entire function g(z). [follows from Result 1,

PG(MT) 02-complex analysis [14, page-54]. Then'="ffgie.'="ffgNow, ()fefefgeggg—-—--"="-"= 0 Hence, f(z)
=ceg(z)

proving the result. Assume now that f possesses finitely many zeros, a zero of order m &lt; 0 at the origin, and the
non-zero

ones, possibly repeated area 1, ...

an.Thenfz

zzae

mnkngz()()=-=[]11wheregis

entire. This is clear, since if we divide f by the

factors which produce zero at the pointsz=0,al, .., a n we get an entire function with no zeros. However

we cannot expect, in general, such a simple formula to hold

in the case of

infinitely many zeros. Here we have to take care of convergence problems

for an infinite product. In fact the obvious generalization.

113fzzzaemkkngz()()=-=[]11isvalidin abounded closed domain D if the infinite product converges
uniformly in D. Theorem 6.7 (Weierstrass' Factorization Theorem) :— Let {a n } be a sequence of complex numbers with
the property an — ¢ — e asn. Then it is possible to construct an entire function f(z) with zeros precisely at these points.
Proof : We need Weierstrass’ primary factors to construct the desired function. The expressions

E(zo)=1-zE@zp =()122-+++zezzzpp,p=12.., are called Weierstrass' primary factors. Each primary
factor is an entire function having only one

simple zero at z = 1. Now, when |

z| &gt; 1

we have, log

E(

z,p) = log (1-

z) +

z+zzppl22++=————- +-++++=—-+-+-+++zzzpzpzzzpzpz

p

ppppp2121221212........Herewe have taken the principal branch of log (1 — z). Hence if zE z

pzzzzz

ppp<<++=++++++1211212,log(,)..... <+++=++zzppl2lll2122.. .. (92)

We may suppose that the origin is not a zero of the entire function f(z) to be constructed so thata n = O for all n. For,
if origin is a zero of f(z) of order m we
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need only multiply the constructed function by z m . We also arrange the zeros in order of non-decreasing modulus (if
several distinct points a n have the same modulus, we take them in any order) sothatlal|<|a2|<...Letlan|=rn.
Since r n — @ we can always find a sequence of positive inegersm1, m2, .. mn, .. such thatthe seriesrrnnmn =1 }%
1 converges for all positive values of r.

114 In fact, we may take m n = n since for any given value of r, we have r

rnnn&gt; 12 for all sufficiently large n and the series

is therefore convergent. Next we take an arbitrary positive number R and choose the integer N such thatr Rr N N < &gt;
+21.Hence, whenzR<andn&lt; Nwe have,zaRrRrnnN<<&gt; +112 and so by (92), log, E
zamRrnnnmn <+ 2 1By Weierstrass’ M-test the series

log,Ezamnnn=e}% 1converges absolutely and uniformly when z R < and so the infinite productEzamnnn =[]
1, converges absolutely and uniformly in the disc z R <, however large R may be. Hence the above product represents
an entire function, say G(z). Thus, GzEzamnnn (), = = ¢[]1(93) With the same value of R, we choose another
integer k such that r Rr k K < &gt; +1 . Then each of the functions of the sequence Ezammkknmnn=[]=++112
.., ... vanish at the pointsa 1 ..., a k and nowhere else in z R <. Hence by Hurwitz's theoroem the only zeros of Gin z R <
areal, ..ak.Since Ris arbitrary, this implies that the only zeros of G are the points of the sequence {a n }. Now, if origin
is a zero of order m of the required

entire function f(z), then f(z) is

of the form f(z) = z m G(z). Again, for any entire function

g(z), e g(z) is also an entire function without any zero. Hence the general form of the required entire function f(

z) is

f

zzeGzmgz()()()===9¢[]zek

zammg

znnn(),1(94)=-=e+++[]zezaemgznnzazamzan

nnnmn()..111212(95)

115

Remark : As there are many possible sequences {m n } in the construction of the function G(z) and ultimately of f(z), the
form of the function f(z) achieved is not unique. 6.5

Counting zeros of analytic functions The rate of growth of an entire function is closely related to the density of zeros. We
have a quite effective

formula in this regard due to J.L.W.V. Jensen, a Danish mathematician who discovered it in the year 1899. Theorem 6.8
[Jensen’s Formula] :— Let f(z) be analytic on |z| < R, f(0) # 0 and f(z) # O on |z| = R. Ifa 1, ..., a n be the zeros of f(z) within
the circle |z| = R, multiple zeros being repeated according to their multiplicities, then log () log (Re ) logffdRaiknk O
12021=-3=m006T1(96) Proof : Let@() (). ()zfzRazRzakkkn=—--=[]21(97) The zeros of the denominator
of @(z) are also the zeros of f(z) of the same order. Hence the zeros of f(z) cancels the poles a n in the product and so
©(z) is analytic on |z| < R. Also, @()z 2 0 on |z| <R. For,ifRazk 2 0 — =then zR ak = 2 is the inverse point of a k with
respect to the circle |z| = R and so lies outside the circle. Again, @() () () ().

zf

zR

a

zRzaRazRzann=----2112Now, when |

z| = R we have, R

azR

zazzazRzazRzaz

a

kkkkkk21-—-=-—-=--=()()Hence |o()| = I[f(z) on |z] =

R. Since @(z) is analytic and non-zero on |z| < R, log ¢(z) is also analytic on |z| < R and consequently Re log ¢(z) = log
l@(z)| is harmonic on |z| < R. Hence by Gauss’ mean value theorem, log () logRe @ m@086T01202 =id (98)
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116 From (97) we have, () () .0012 =-fRaRaRanHence from (98) we get, log () loglog (Re)fRadkkni0121
02+==Ym@o606mie log()log(Re)log||ffdRaikkn012021=-3 =mw00T(since |p(z)| = |f(z)] on |z|] = R)
Note : We observe that Jensen’s formula can also be expressed as log ... log (Re ) log ()....Raafdfnnil02120 = -
m™O 01 (99) or as, log ... log (Re) log] ()]...... Rrrfdfnnil02120=-m0606T1m(100)wherelai|l=ri,i=1 ..n.
Theorem 6.9 (Jensen'’s inequality) :— Let f(z) be analytic on |z| < R, f(0) # 0 and f(z) # Oon |z| = R. Ifa 1, .., a n be the
zeros of f(z) within |z| = R, multiple zeros being repeated according to their multiplicities, and [ai| =ri,i=1, .., n, thenR
frrMRnn()..()01<(101) where MRfzzR()max().|| == Proof: Asin Jensen's formula (theorem 6.8) we have,
lo(z)| = |f(z)] on |z| = R and so by the maximum modulus theorem, |@(z)| < M(R) for |z| < R. In particular, |@(0)| < M(R) i.e. R
f

rrMRnn()..().01<Theorem 6.10 (Poisson-Jensen formula) :- Let f(z) be analytic

on|z| <R, f(0)=0andf(z) =0on |zl =R.Ifal..an be the zeros of f(z) within the circle |z| = R, multiple zeros being
repeated according to the their multiplicities, then forany z =re i@, r &gt; R, log () cos() log (Re) freRrRrRrtfdtiito
mml=-+--122222202---=5%log().knkiikRareRreal2686

117 Proof : Let@() (). ().zfzRazRzakkkn=—-—-=[]21Then, as in Jensen’s formula we have, |p(z)| = |f(z)| on |z| =
R. Since @(z) is analytic and non-zero on |z| < R, log ¢(z) is also analytic on |z| < R and consequently log |@(z)] is harmonic
on |z| < R. So, by Poisson'’s integral formula, log () cos() log (Re) @mO @O TreRrRrRrtdtiit=-+--12222220
2 (102) Now, log () log () log()pB6660BrefreRareRreaiikiikkn=+-—-=73 21Since log|e(z)| = logl|f(z)| on |z| =
R we get from (102) log () cos() .log (Re) fre RrRrRrtfdtiitemmBO=-4+--122222202---=5%log()RareR
reakiikkn2166(103) 6.6 Convex functions The property of convexity plays an important role in function theory
because in several cases some lead factors associated with entire, meromorphic and subharmonic functions appear to
be convex functions. A real-valued function ¢ defined on the interval | = [a, b] is said to be convex if for any two points s,
uinfa, bl@AAAPAQGA(() () () (Jusus+—-<+—<<1101for (104) Geometrically, the condition (104) is equivalent to
the condition that if s &gt; x &gt; u, then the point (x, ®(x)) should lie below or on the chord joining the points (s, ®(s)) and
(u, ®(u)) in the plane. Analytical condition for @e@@@(x) to be convex in [a, b] :- Let the coordinates of the points A, B, C
on the curve y = @(x) as shown in the adjoining figure be (s, @(s)), (u, ®(u)) and (x, @(x)) respectively where s &gt; x &gt; u.

118 Equation of the chord ABisy —@(x) =@ @ () () ().ususxs———-or,ysususxs=+—-—-—-@ oo () ()()()(105) Let
the coordinates of any point D on the chord AB be (x, y). According to definition ¢(x) will be convex if and only if CN <
DN.i.e., ifandonlyif o(x) <y;ie. ifandonlyife@ @@ () () () ()();xsususxs<+—-——ie,ifandonlyifee ¢ ()()()x

UXUSSXsUusu<——+——(106) for s &gt; x &gt; u. We now state two results on convex functions without proof. Result
1. A differentiable function f(x) on [a, b] is convex if and only if f'(x) is increasing in [a, bl. Result 2. A sufficient condition for
f(x) to be convex is that f'(x) &lt; 0.

The maximum modulus function : Let f(z) be a non-constant analytic function

in |z| &gt; R. Then for 0 < r &gt; R we define the maximum modulus function M(r, f) or, simply M(r) by Mrfz zr () max ().
|| = = By maximum modulus theorem we can also write Mrfzzr () max (). || == Result: Let f(z) be a non-constant
analytic function in |z| &gt; R. Then M(r) is a strictly increasing function of rin 0 < r < R. Proof : Let 0 < r 1 &gt; r 2 &gt; R.
Since f(z) is analytic in |z| <

r 2, the maximum value of |[f(z)| for |z| < r 2

is attained on |z| =r 2 . Let z 2 be a point on |z| = r 2 such that |f(z 2)| = M(r 2). Similarly, the maximum value of |f(z)| for
|z| <rlisattained on |z| =r 1. Let z1 be a point on |z| = r 1 such that |[f(z 1)| = M(r 1). Since r 1 &gt; r 2, z 1 is an interior
point of the closed region |z| < r 2 . Hence by maximum modulus theorem, |f(z 1)| &gt; M(r 2 ); i.e. M(r 1) &gt; M(r 2).
This proves the result. y x s o N u C (x, @(x)) (s,@(s)) D(x,y) B(u, @(u)) A

119 Corollary : Let f(z) be a non-constant entire function. Then its maximum modulus function M(r) — e as [z| =r — .
For, if M(r) is bounded, then by Liouville’s theorem f(z) would be a constant function. Theorem 6.11 [Hadamard'’s three-
circles theorem]. Let 0 &gt; r 1 &gt; r &gt; r 3 and suppose that f(z) is analytic on the closed annulus r 1 < |z| <

r3. fMrfzzr()max (), ==,thenMrMrMrrrrrrr()().()log

loglog 313113 <(107) Proof : Let us consider the function ¢(

z) = z a f(z), where a is a real constant to be chosen later.
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If a = an integer, @(z) is multi-valued in r 1 < |z| < r 3 and so we cut the annulus along the negative part of the real axis.
Thus we obtain a simply connected region G in which the principal branch of ¢(z) is analytic. Hence the maximum
modulus of this branch of @(z) in G is attained on the boundary of G. Since a is real, all the branches of @(z) have the
same modulus. If we consider another branch of ¢(z) which is analytic in another cut annulus it is clear that the principal
branch of @(z) can not attain its maximum value on the cut. Hence maximum of |@(z)| is attained on at least one of the
bounding circles |z| =rlor, |z| =r3.Thus, zfzrMrrMraaa()max(),().<1133Henceon|zl=r,rMrrMrrMra
aa()max (), ()<1133(108) We now choose asuchthatrMrrMr1133aa()()=.Thena=-log(())/()) log(/)M
rMrrr3131. Substituting this value of ain (108) we get, xy M N o |z| =

rijzl=r|z|=r3
120MrrrMr()()<-1la=rrrrMrMrMr131131log()()log.()andsoMrrrMrrrMrMrrr().()

log(/) log(()/ () log(/)31313111<Thatis MrMrMrMrrrrrrr()()().()log(/)
log(/)log(/)31131311<]I[sincealogb=Dblogal-=

M(r 1) log(r 3 /r) .M(r 3) log(r/r1).

Note : Equality in (107) occurs when @(z) is a constant, i.e. when f(z) is of the form cz a for some real a and c is a
constant. Corollary : log M(r) is a convex function of log r. Proof : Let f(z) be analytic in the closed annulus 0 &gt; r 1 < |z|
<r2.Ifrl&gt; r &gt r 2 we have, by Hadamard's three-circles theorem,
MrMrMrrrrrrer()().().log(/)log(/)log(/)212112 < Taking logarithms we get (log log )log () (log log )log () rr
MrrrMr2121-<—-+(oglog)log().rrMr—12Thatis, log () log log log log log () log
loglogloglog()MrrrrrMrr

rerMr<——-+--22111212(109)

The inequality (109) shows that log M(r) is a convex function of log r. 6.7

Order of an entire function An entire function f(z) is said to be of finite order

if there is a positive number A such that as |z| = r — e, the inequality M(r) &gt; e r A holds. The lower bound p of such
numbers A is called the order of the function. f is said to be of infinite order if it is not of finite order. From the definition it
is clear that order of an entire function is non-negative. Result : Let f be an entire function of order p and M(r) = max{|f(z)|
|zl = r}. Then

121 p = —e limsup log log () log r M r r (110) Proof : By hypothesis, given € &lt; O there exists r O (€) &lt; O such that Mr e
forrrr()&gt; &lt; +p € 0 while Mrer ()&lt; +p € for an increasing sequence {r n } of values of r, tending to infinity. In
otherwords, log log () log Mrrrr&gt; + V &lt; pe 0 and (111) log log () log M r r &lt; — p € (112) for a sequence of values
of r — +e (111) and (112) precisely means p = —e limsup log log () log r M r r Example 3 : Determine the order of the
functions. (i)

pl

z) =

aO0+alz+..+anzn,an=0.(

ii) e kz, k= 0. (iii) sin z (iv) cos z Solution : (i)

p

z

a

azazaaza

z

n

nnn().... =+++<+++0101Hence, Mrp(zaararz

n()max)..||=<+++=01<++raann0..(

choosing r > 1. Since ultimately r — e, the choice is justified). = Brn, where Baan =+ + 0 .... Hence log

M(r) <log B+ nlogr < logr + nlog r (Taking r sufficiently large). = (n + 1) log r. Now, p = < + + = —e —e [imsup log log (
) log limsup log() log loglogrrMrrnrrl10

i.e. p < 0. But by definition p > 0. Hence p = 0 (i) Here M(r) = e |k|r and hence p = = = —e —e limsup loglog () log limsup
loglogrrMrrkrrl
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122 (iii) We know thatsin! lzzzz=-+-3535andsosin!!llsinh.zzzzrrrronzr<+++=+++=<353535
35=——eerr2.Alsoatz=ir,sinzeeirr=—--2andsosinz
eerr=—--2.HenceMreeeerrrr()()=—=---2122log()loglogMrrerrerr=+4+—-=+4—
—-—-12111222Therefore, lim loglog () loglim log log /logrrrMrrrer —e —e — = + + —

=1111212

So order of sin zis 1. (iv) Following as in (iii) we find that the order of cos z=1/2. Letfzaznnn ()= = ¢} 0 be an entire

function. We now state a theorem which will give us order of f(z) in terms of the coefficients a n of the power series
expansion of f(z). Theorem :

Letfzaznnn()==e3 0bean entire function of finite order p. Then,

p=—-=-—e—elimsup log log limsup loglog/nnnnnnannal6.8 The function n(r) Let f(z) be an entire function
with zeros at the pointsa 1, a 2, ..., arranged in order of non-decreasing modulus, i.e. aa 1?2 < <, multiple zeros being
repeated according to

123 their multiplicities. We define the function n(r) to be the number of zeros of f(z) in z r <. Evidently n(r) is a non-
decreasing, non-negative function of r which is constant in any interval which does not contain the modulus of a zero of
f(z). We observe that if f(0) 2 0. n(r) = O forra &gt; 1. Also, n(r) = nforarann < &gt; +1 . Jensen’s inequality can also be
written in the following form involving n(r).

Theorem 6.12 (Jensen’s inequality) : Let f(z) be an entire function with f(0) = 0,

andal,a?2, .. bethe zeros of f(z) such thataa 1l 2 < <, multiple zeros being repeated according to their multiplicities. If
araNN<&gt; +1,thenlog () log ()log()raanxxdxMrfNNr100 =< - (113) Proof : Let|ai|=ri,i=1,2, .., and
r be a positive number such thatrrr NN < &gt; +1. Let x 1 ..., x m be the distinct numbers of theset A={r1, ., rN}
wherex1l=r1,.,xm=rN.Suppose xiisrepeatedpitimesinA. Then,pl+..+pm=N.Alsoletti=pl+.. +pi,i
=1, ..., m. We now consider two cases. Case 1) Let r N &gt; r. Then,

n

X

xdxnxxdxn

X X dxnxxdxnxxdx

X X X

X

X X

X

r

rmmmQ)lim@O)()...0)0)=+++
+—>—-—-—-——-€€€€0012312(sincenxxdxx()=-001legasnx)=0for0<x&gt;x1) =+ ++

+ o= imeeee012112312txdxtxdxtxdxNxdxmxxxxxxrtmmN=+4++++—>—-———— lim [ log
logloglogeeee012112111txtxtxNxxxxxmxxrrmmN=—-—-+4—-—-+ —>lim[{log()log}{log()log}teee01
21232txxtxx+—-——4+—-———txxNrrmmmN11{log()log}l (loglog)e=t1(log
x2-logxl)+t2(logx3—-logx2)+..+tm-1(logxm-logxm-1)+ N(logr—-logrN)=pllogx2-pllogxl+
Pl+p2)logxl-(pl+p2)logx2+.+(pPl+.+pm-1)logxm-(pl+.+pm-1)logxm-1+Nlogr—-(pl
+.+pm)logxm=Nlogr-(pllogxl+p2logx2+.+pmlogxm)

124 = - =log log log r x x X r X x x

NppmpNppmpmm12121212=logrrrNN1Thus, nxxdxraaNNr()log=10(114) Case 2). Letr N =r. As
before, nxxdxtxdxtxdxmxxxxrmm{()lm=—+ +
————-€€€0110112=-+—-+==-YtxxtrriiimNim(loglog) (loglog)111=1lograaN N1 (Proceedingasin
case 1). Thusinany case, nxxdxraaNNr()log.=10 ButJensen'sinequality givesusraaMrfNN10<()().
Hence,nxxdxraaMrfNNr()loglog()log(). =<—-100 Theorem 6.13 : If f(z) be an entire function with finite order
p, then n(r) = O(r p + €) for € &lt; O and for sufficiently large values of r. Proof : By Jensen'’s inequalilty, n x x dx M r fr ()
log () log () < =0 0 (115) We replace r by 2r in (115) and obtainn x x dx M rfr () log () log () < =2 0 0 2 (116) Since order
of f(z) is p we have for any € &lt; O, log M(2r) &gt; (2r) p + € = Kr p + € for all large r, K being a constant. Hence from (116).
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125 nxxdxArr () &gt; + pe 0 2 forall large r, A being a constant independent of r. Since n(x) is non-negative and non-
decreaing function of x, n x xdxnxxdxrrr()()<&gt;022Arp+eandalsonxxdxnrxdxnrrrrr()()()og>=2
22 Hence,nrnxxdxArrr()log(),22<&gt;+peie,nrAr()log&gt; + 2 peforalllarger. Hence, n(r) = O(rp + €).
6.9 Convergence exponent (or, exponent of Convergence) Let f(z) be an entire function with zeros at the pointsal,a 2,
..., arranged in order of non-decreasing modulus, multiple zeros being repeated according to their multiplicities and |a i |
=ri,i=1 2, .. Wedefine convergence exponent p 1 of the zeros of f(z) by the equation p1 = —e limsup loglognnnr
(117) or, equivalently by p 1 = —e limsup log () log n n r r (118) The convergence exponent has the following property.
Theorem 6.14 : Let f(z) be an entire function with zerosatala 2, ..., arranged in order of non-decreasing modulus,
multiple zeros being repeated according to their multiplicities and |ai | = ri . If the convergence exponent p 1 of the
zeros of f(z) is finite, then the series11rnna = e ) converges when a &lt; p 1 and divergeswhena &gt; p1.Ifplis
infinite, the above series diverges for all positive values of a. Proof : Let p 1 be finiteand a &lt; p 1. Then,ppall1l?2 &gt
+ (). Hence, log log () nrn &gt; + 12 1 p a for all large n.

126or,loglog, ()nrné&gt;+121paienrornrienné&gt &gt ++12112();,..,paparnnnwherepnpapa
apapaapapél,===—-+6lt; ++-++201111111, . Hence,111rnnpaé&gt; + foralllargen. Hence,11rnn
a =) converges. Next, leta &gt; p 1. Then, log log n r n &lt; a for a sequence of values of n, tending to infinity. That is,
loglognrné&lt; aor,11rnnaé&lt; (119) for a sequence of values of n tending to infinity. Let N be such a value of n for
which (119) holds and m be the least integer &lt; N 2 . Then, asr niis non-decreasing, 11111 11rrrrrrnNmNmNN
NnNmNaaaaaa=+++>++-—-+=-> =+l &l 5t mrmrmNNN112aa.Since N may be as large as
we please, by Cauchy'’s principle of convergence, the series11rnna = e diverges. If p 1is infinite, then for any positive
value of a, log log n r n &lt; a for a sequence of values

127 of n tending to infinity; i.e.,, n r n &lt; a for a sequence of values of n tending to infinity. Hence as before, the series 1 1
rnna= e} diverges for any positive a. Note 1. Observe that p 1 may also be defined as the lower bound of the positive
numbers a for which the series11rnna = e ) is convergent. If f(z) has no zeros we definepl=0andifllrnna=e}
diverges for all positive a, then p 1 = e. Note 2. If p 1 is finite, the series111rnn p = ® 3} may be convergent or divergent.
For example, ifrn =n,thenp 11 == —e limsup log log

nnnrand111llirnnnnp==-e=-e3% 3% diverges. Again, ifrn =n(logn) 2, then, p121 =+ = —e limsup log log
loglog,nnnnand11121lrnnnnn

p==e=e%% (log) converges. Theorem 6.15 : If f(z) is an entire function with finite orderpandr1,r2, .., are the
moduli of the zeros of f(z), then11rnna = e converges if a &lt; p. Proof : We choose 3 such that p &gt; B &gt; a. Since
forany € &lt; 0, n(r) = 0 (r p + €), n(r) &gt; Kr B (120) for all large r, K being a constant. Putting r = r n, n large, (120) gives n
Krn&gt;B,ie,rnkn&l; 11//BBor, lrBnnaaf &gt; /foralllarge n, B being a constant. SinceaBa &lt; =Y 111,
rnnconverges.

128 Corollary : Since convergence exponent p 1 is the lower bound of positive numbers a for whichllrnna=e3 is
convergent, it follows thatp 1 < p. Note: p1 may be O or e. Forexampleifrn=en,pl=0andifrn=logn, thenpl=
e Forthe functionf(z) =ez,p=1andpl=0sothatp1l&gt; p. Butforsinzorcosz p=p1=1 Result:Ifthe
convergence exponent p 1 of the zeros of an entire function f(z) is greater than 0, then f(z) has infinite number of zeros.
Proof : If possible, suppose f(z) has finite number of zeros with modulir1..,rN.TheseriesllrnnNa= ), being of
finite number of terms, converges for every a &lt; 0. Hence p 1 = 0, a contradiction. Hence f(z) has infinite number of
zeros. Note : For an entire function with finite number of zeros, p 1 = 0. Example : Find the convergence exponent of the
zeros of cos z. Solution : First method : The zeros of coszaremmmm223232,,,,..——Now,1222131rnnaaa
aamMmTTT=+++=0> =4++++++2211315111315maaaaaa.Theseriesconvergeswhena &lt; 1 and
diverges when a &gt; 1. Hence the lower bound of the positive numbers a for which1llrnna =) convergesislie., p

1 =1 Second method : The zerosof coszare 2n+ 1) M2, ne=++--012223232,,,;..,.., immmmletaaal
122223232="=-="=-mrUT0IM,,.,, aanannn=-"=—=-=(),(),,212212mmHence,raaaaaannnlll
222232:='==='==='='|'|"|'|',l,r|"

129(),212n—-1mHence,pl=—elimsuploglognnnr=—-+=-

43 of 55 02-05-2023, 17:55



Ouriginal

by Turnitin

+ —e —e [imsup log log() log limsup log loglognnnnnnn212212mwm=+ -+ = —elimsup logloglog/log.nnn
n112121mw6.10 Canonical Product Let f(z) be an entire function with infinite number of zerosatan,n=1,2, ...an=
0. If there exists a least non-negative integer p such that the series111rnpn+ =Y is convergent, wherern =lan|,
we form the infinite product GzEzapnn (), = =[] 1. By Weirstrass' factor theorem G(z) represents an entire
function having zeros precisely at the points a n . We call G(z) as the Canonical product corresponding to the sequence
{a n} and the integer p is called its genus.

Ifz=0

is a zero of f(z) of order m, then

the canonical product is z m G(z). Observe that if the convergence exponent p 1 = an integer, thenp =[pl]andifpl=
aninteger,thenp=plwhenlllirnnp=-e) isdivergentandp=pl-1ifl1llrnnp=-e} isconvergent. Inany case,
ppplll-<<<p,wherep=orderoff(z). Examples: (i) Letan=n.Thenll1l212lrnnnn=e=e5% 5% =is
convergentwhilel1lllrnnnn=e=e% % =isdivergent. So, p = 1. (i) Letan =en.Then p = 0. We now state an
important theorem without proof. The proof can be found in any standard book.

130 Borel's theorem : The

order of a canonical product is equal to the convergence exponent of its zeros.

Example : Find the canonical product of f(z) = sin z. Solution : f(z) is an entire function with infinite number of zeros at z =
nTT, N being an integer. First we consider the zeros of f(z) excluding the simple zero atz = 0. Let a

n=nmn=+14+2, ..lan|=rn.Then,rn=|nm.Now,111llrnnnn=e=e¢Y Y =m==e%1111nnisdivergent,
butll1l121221lrnnnn=e=e¢% 5% =

T is convergent. Hence genus of the required canonical product p = 1. Hence the canonical product G(z) is given by G
zEz

ann(),,==—ee¢[]1lwhere'=—9ee[1nmeansn = 0 is excluded in the product. = - = - - —

=—ee—_=e[][]1111

Zznezneznenznznzn

n

TTTTTT=—=—90¢[]1222znn

. Since origin is a simple zero of sin z, the required canonical product of sin z is given by sin . z
zznn=-=e[]122211 Exercises 1. Find the order

of the entire functions : (a) sinh

z(b)ezsinz (c)ezn,(d)e

ez, (e) cosz (f)e p(z), where

pl

z)=aa

zaz

annn010+++=,,(@zn

nn(!),aa=e>&lt;00,(h)enznn

n

aaaglt; =00/, 2 Givenfl(z)andf 2 (z) are two entire functions of orders p 1 and p 2 respectively, show that (i)
orderof f1(z)f2(z)is<max(pl,p?2)(ii)orderoffl(z)+f2(z)is<max(pl,p2) andequality occursifpl=p2.3.
Find the convergence exponent of the zeros of sinz.""’

131 4. Find the canonical product of cos z. 5. Show that if a &lt; 1, the entire function11-=e[]znanisof orderla.
6.11 Hadamard's Factorization Theorem Before taking up Hadamard's factorization theorem we state a theorem due to
Borel and Caratheodory. Borel and Caratheodory’s

theorem : Let f(z) be analyticinzRMrfzrfzzrzr<====,()

max (), () max{Re ()}. A Then for 0 &gt;

rggt; R, MrrRrARRrRrfRrRrAR

fOOOO0)<=—++-8&gt;+—-4+200 (121) Proof : Omitted (cf. Theory of entire functions—A.S.B Holland- p. 53).
Corollary :max ().1 ()OOl OzrnnnfznRRrARf=++<-+2021(122) Hadamard's Factorization Theorem
6.16 : If f(z) is an entire function of finite order p with infinite number of zeros

and f(0) = 0, then f(z) = e Q(z) G(z), where G(z) is
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the canonical product formed with the zeros of f(z) and Q(z) is a polynomial of degree not greater than p. Proof : By
Weierstrass’ factor theorem we already have f(z) = e Q(z) G(z) (123) where G(z) is the canonical product with genus p
formed with the zerosa 1, a 2, ... of f(z) and Q(z) is an entire function. Since p is finite we need to show that Q(z) is a
polynomial of degree < p. Let m = [p]. Then, p < m. Taking logarithms on both sides of (123) we have, log () () log ()
fzQ

zGz=+=+++++

=e=03%Qzza

zazapza

nn

nnn

pn()

log —..1121121(124) Differentiating both sides of (124) m + 1 times,

132ddzf

zfzQzmaz
mMmmnmnll11110)0)0)!'0)()===++=e3 (125 [Sincepmddzzazapzammnnnpn<+++
=++=03%,.11211210

andddzzaddzazmazmmnmmn

nm+++++-=-=--1111111

log log() ! () ] Now, Q(z) will be a polynomial of degree m at most if we can show that Q (m+1) (z) = 0. LetgzfzfzaRn
aRn()()().]l==-<-T]1011Then gR (2) is an entire function and g R (z) = 0 in |z| < R. [Since f(z) is entire, f(0) = 0 and
11-<-[lzanaRn||cancels with factors in f(z)]. For |zl =2Rand l[an|<Rwehave,11->zan.Hence,gzfzfAeR
R()()()()<&gt; +02peforlzl = 2R (126) By maximum modulus theorem, gz Ae RR () () &gt; + 2 p € (127) for |z| &gt;

2R. Leth R (2) = log g R (z) such that h R (0) = 0. Then h R (z) is analytic in |z| < R. Hence from (127) Re h R (z) = log |g R
(2)] &gt; KR p+e, K = Constant (128) Hence from the corollary of the theorem of Borel and Caratheodory we have h z m

RRrKRRMmmm(QO)OO)! (). ++++<+-13221pefor|zl=r&gt;RHenceforzrR==2,hzRRmm()()++-
-=110p¢e(129)

133ButhzgzfzfzaRRaRnn()log()log()log()log==---<>01HencehzddzfzfzmazRmmmnma
Rn(O)OOO!M)++<="+->111=++--46&lt;>00111()RamnmaRnpe(l130) forzR =2 and so also for z

R &gt; 2 by maximum modulus theorem. The first term on the right of (130) tends to 0 as R — e if € &lt; O is small enough
since m + 1 &lt; p. Also the second term tendsto Osincelllanmn+ =e ) isconvergent. Infact,t 11anmaRn + &lt;
> becomes the remainder term for large R. Hence Q (m+1) (z) = 0 since Q (m+1) (z) is independent of R. Thus, Q(z) is a
polynomial of degree not greater than p. 6.12 Consequences of Hadamard's Theorem Theorem 6.17 : An entire function
of finite order admits any finite complex number except, perhaps, one number. Proof. Let us suppose that f does not
admit two finite values a and b. Then f(z) — a = O for all z in C/ and hence there exists an entire function g(z) such that f(z)
— a = e g(z) The function f(z) — a is of finite order since f(z) has finite order. Following Hadamard's factorization theorem
g(z) must be a polynomial. Now e g(z) does not assume the value b — ai.e. g(z) # log (b — a) for any z in C/. As because
g(z) is a polynomial it contradicts the essence of the Fundamental Theorem of Algebra [(14), Th. 3.11, page-65]. Theorem
6.18 : An entire function of fractional order possesses infinitely many zeros. Proof. Let f be an entire function of fractional
order p. If possible, suppose the zeros of f(z) are{al,a 2, .. an), finite in number, counted according to their
multiplicity. Then f(z) can be expressed as

134

flz)=eglz)(z-al)(z-a2)..(z—-an)whereg(z)is an entire function.

Applying Hadamard's factorization theorem, the degree of the polynomial g(z) < p. It is easy to check that f(z) and e g(z)
are of same order. But we have already seen that the order of e g(z) is exactly the degree of g(z), which is an integer. This
implies p is an integer. This contradiction completes the proof. 6.13 Meromorphic Functions The term meromorphic
comes from the Ancient Greek "meros” meaning part, as opposed to “holos” meaning whole. This function is analytic on
a domain D except a set of isolated points, which are poles for the function. Definition :

A function f(z) analytic in a domain D except for poles is said to be meromorphic.

Theorem 6.19 :

A rational function is meromorphic. Proof :

Let
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fi(

z) = p(z)/q(z) where p and q are

polynomials

with no

common zeros. If the degree of p is less than or equal to the degree of g, then f has only a finite number of poles and the
point at infinity is not a pole. On the otherhand, if the degree of p is greater than the degree of q, then (taking degree of
p(z) = m and degree of g(

zazazazab
zbzbzb
mmm

nnnn().... =+++4++++4+4----11101110=4+4++++-—-—--—-- czcz

czcrzgzmn

mnmn

mn1110..()()wheredegree of r(z) < n — 1. This shows that the point at infinity is a pole of order (m — n) and there lie
a finite number of poles in the unextended plane. These establish that f(z) is meromorphic. Theorem 6.20 : [Partial
fraction decomposition]. Let p(z), q(z) be two polynomials with no common zeros and that O < deg (p) &gt; deg (q). Let a
ki()()()====3>11a(131) Proof. The decomposition is unique. We assume that the relation (131) exists. Let r &lt; O
be small enough. Then forze N (a i, r), (131) can be rewritten as

) () O)(
J()—=—-4+-—-=%aaaal(l33) Now the functionpzqgzzaii()()()—aisanalytic forall z belonging to N(a i, r) and
hence can be expanded in a Taylor series in a neighbourhood of aiinN(ai,rfpzqzzaczainnini()()()()—-=-=
e % a0 (134) Combining (133) and (134), we writeczagzzacczaninniiiiiii()(O)()()..-=—-++-++=>-01
agaaa+-—-czaiiill()aComparingthe coefficientswe findcccccciiiiiicaa===--01111,,.., uniquely
Existence of the decomposition. The principal part associated to each poleaiisczaijijji()— =3 1a Now if we
subtract all the principal parts we find the functionfzpzgzczaijijjiki()()()()=-===3> 11aisanalytic in the
extended plane. Now each of the terms c zaijij () — converges to zero for z — e, and also p(z)/q(z) converges to zero
for z — e since deg(q) &lt; deg(p). This shows that f(z) — O for z — e. But then f is necessarily
136 bounded and hence constant by Liouville’s theorem. A constant function tending to zero as z — ¢ must be identically
zero. Example 4 : Consider the rational function
p
zqzziziz()(O)O)()=+++--253351324 We can write thisas p

zqzzzzizi()()=—+++-++aByd11(135) =+-9gzz11()aconsidering z belonging to |z — 1| &gt; 1. Then p z

qz
zgzz()OOOO)-=-+==1121

aa6.14

Partial Fraction Expansion of Meromorphic Functions Let f(z) be a meromorphic function and z O be a pole of
order m

with the principal partpzczzczzczzmmm()()()..=—-+-++---+4++-010110Then

f(z) can be written as [see § 6.2, (14)] f(z) = p(
z) + g(z) where g(z) is
an entire function. Now
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if,ingeneral,z1,z 2, .., zn are the poles of a meromorphic function f with the corresponding principl partsP1,P2 ..., P
n then f can be expressedasfzPzzjjn()()() =+ =3 wl(136) where y(z) is an entire function. But the question
arises whether it is possible to construct a meromorphic function possessing poles at the sequence of points {z n } with
corresponding principal parts P 1, P 2 ... Because in this case the series ZP j (z) in (136) turns out to be an infinite series P
zjjn() =31, which needs to be convergent.

137 Goésta Mittag Leffler (1846-1927), German in origin but his several generations lived in Sweden, overcame this
difficulty by introducing a polynomial p n (z) dependent on z nand P n (z) so that the series{ () ()}Pzpznnn—-=e31
is uniformly convergent in any compact set K not containing any points of the sequence {z n }. Theorem 6.21 [The Mittag
Leffler Theorem] : Given a sequence of distinct complex numbers{zn},zzznnl1l2 << = —e _limand a sequence of
rational functions{Pn (z)}, Pzczznnknkkn()(),,,,.In==>==3% 11112 n (137) there exists a meromorphic
function f(z) having poles at the points z n and only there with P n (z) as its principal part at z n and can be represented in
the form of an expansion

fzPzpzhznnn()[()()]()=-+ =13 1where h(z) is an arbitrary entire function

and p n (z) is suitable partial sum of Taylor's expansion of the singular part which is analytic in the open disc |z| &gt; [z n |.
Proof. Without loss of generality we assume that z = 0 is not a pole of f(z). Now P k (z) is analytic for |z| &gt; |z k | and can
be expanded in this neighbourhood of z: Pzczkjkjj() () ==Y 0and hence this series converges uniformly in the
diskzzk<?2 Letpzczkjkjjk()()==3 0abe apartial sum of this expansion suchthatPzpzkkk()()-&gt; 12
for zz k < 2. Let R be an arbitrary large positive number and since zn — ¢ as n — ¢ we can find an N(R) so large that |z n |
&lt; 2R when n > N(R). Therefore in the circle

zR

z

N &gt; &gt; 2P zp

zP

zpzP

z

p

z

n

nnnnnNRRN

nn

N

ROOOOOODONOD-=-+-—=e=-=355%111

138

the

first sum in the r.h.s is finite and the second sum Y e N R() is absolutely and uniformly convergent by comparison with
the convergent seriesy =e—nNRn()2.Thereforey —=ennnPzpz1[()()]isanalyticin |z| &gt; R except at the
poles belonging to the sequence {z n }. It is thus a meromorphic function with the polesatz 1,z 2, ... and with the
principal parts P 1 (z), P 2 (z), ... at each point z n respectively. Now if f(z) possesses the same poles only with the same
principal partsthenfzPzpznnn()[()()]-—- =3 1isan entire function h(z), say. This completes the proof. Example
5:Provethatmrmcotzzznnn=+-+

=—9e 5 111" Solution : The given function 1 cot 1z

has simple poles at z = O, +1, +2, ... with residue 1.

Here, 11111122

z
nnznnznznzn-=--=—+++ &gt; ..., (138) Let |z| &gt;

R and N(R)

be so large that R n &gt; 2 when n > N(R). Then from (138), we find1122znnRNn
N-+<>,

Now, since Z1/N 2 is convergent, the series'11znnn -+

:—ooz
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converges uniformly on any compact set (lying in |z| &gt; R) not containing any of the points z = +1, +2, ... Therefore
applying the

Mittag-Leffler theorem we can express 1 1T cot ()

zzznnhzn=+-+

+=—900%111"(139)

139 where h(z) is an entire function.

Differentiating term-wise, we obtainTTm22 2 211 cosec

z
zznh
Zn=+—-——=—9ee3 "' ()()=——=—9ee312()()znhzn'andhzznzfzz
nN'O00(0), =--=-=-0e51222

T T Y cosec say (140) We notice that the functions f(z) and w(z) are both periodic with period 1 and consequently h'(z) is
also periodic with the same period. Let z = x + iy. Consider the strip O < x < 1. In fact, the convergence of the series in
(140) is uniform for y > 1, say and the limit tends to O as y — e (this can be seen on taking the limit in each term of the
series). Again,

sin(x + iy) = sin

x cos (iy) + cos x sin (iy) = sin x coshy + i cos x sinh y
andsosinsin()mmzxiy22=+=+sincoshcossinh2222mTmTmTTXxyxy=—coshcos?22T 1y x which establishes
that m 2 cosec 2 11z tends uniformly to zero as y — e . From these we conclude that h'(z) is bounded in the period strip 0
< x <1and due to its periodicity it is bounded in the entire plane. By Liouville’s theorem it then reduces to a constant.
Now since lim () lim () lim ()yyyhzfzz —e —e »e'=—=— =y 00 0 h'(z) is indeed zero and h(z) = ¢, a constant.
Then from (139), mmcotzzznncn=+—-++=—ee>111'For,z=12022122121=+-+++3 kkc
M40=4+-++-++-++

+22111313151517..c=2-2+c=c=0ie h(z)=0. Finally we obtainTmcotz = + — +

=—ee5 111zznnz Now since the series on the r.h.s is uniformly convergent on any compact set not containing the
points z = 0, +1, +2 ..., rearrangement of the terms are permissible and hence mmcotz=+-=¢3%12221zzznn
(141) Remark : Here it is proved incidentally that mm2 22 1 cosecz= - =—9e e 3 () zn n (142) [see equation (140)] We
can now utilize the identity (141) to calculate easily some familiar sums. Here the Lh.s of (141) has the Laurent series
expansion in the neighbourhood of

z=0.mMmmmWTWMWCot...zzzzz=—-—---134529452 4 365 Note that the series on the r.h.s of (141) converges
uniformly near z = 0. By Th. 4.14 [14] it converges uniformly together with all derivatives. Again222223456
zz

nznznzn-=-+++..andweobtaineasily, 161901945212414616nnnnn

nz=e=e33%===

)

mT,, (143) Example 6. Prove thatmmtanzznnn=—-—-+++=—90¢5% 112112

141 [or, equivalently, mmmtanzznzn=+-=¢-%2122201]

Solution : Here the given function 11 tan 11z possesses simple polesatz =+ + 12 3 2, , with residue —1. Then, - — + = + -
+=++++++112112112112112122

zZn

nznnznznandtheseries——+—-+=—90¢%112112znn

n

converges uniformly on any compact set not containing any of the poles of the given function. By Mittag-Leffler
theorem, mmtan()zznnhzn=—-—-++++=—9e5% 112112 where h(z) is an arbitray entire function. Now
proceeding as in example 5, we can have the desired result. Example 7 : Establishthat11121242221
ezzznzn-=—+++ =9 mSolution: Werewrite l/ez-1as111212122222222222
eeeeeeecee

e

22222222227 Z-=-=—4++—-=—4+————— 1111

coth

142 But coth cosh sinh cossincotzzziiziz
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ii1z222222===

Now

utilising (141) we get the result. 6.15 Partial Fraction Expansion of Meromorphic Functions Using Residue theorem Let us
suppose f to be

a meromorphic function whose only singularities are simple polesz 1,z 2, ... with

increasingmoduli012 &gt; <<zz..limnnz—e=eandRes (f(z); zn) = An. Suppose there exists a sequence {C n}
of simple closed contours such that (i) C n does not contain any of the poles z k (ii) each C n lies inside C n+1 (i) min z C

nnzRe=—-+e¢—+easn(v)lengthof CnisORN)(vymax()()zCnnfzRe=0ThenfzfAzzzkkkk()()=+
—+ =95 0111 (144) The series (144) converges uniformly in any bounded domain not containing the poles of f(z). To
prove the above result we consider the integral | zizfznCn () () () =-12m¢gggd (145 wherezeIntCnandz =zk
(k =1, 2, ...) Here the integrand in (145) possesses simple polesat ¢ =0,¢ =z and ¢ =z k € Int Cn. Then using the
Residue theorem, we find from (145) that l zzfzzf zsfznzzkk () () () ()Re (();)=—-++-===6666G6G6G6G¢cc01
143 =-+4+-€)

ffzzAzzzkkkztCkn()()()InOThus, fzfAzzzizfz
dkkkztCCknn()(D()()In=+-++-€Y01112m¢cgcc(146) We now show thatlim () nn |z —e =0 for |z| &gt;
RlzzfzdRfRANCCnn()|[|()()<-6gt;——>220TGGGGTGGGGasn— e by the given conditions (iii), (iv) and

(v). Then (144) follows from (146) considering all the contours C1, C 2, ... etc. Example 8 : If a n are positive roots of the
equation tan

z = z, show that

22222222

n

n

sinsincos—=+-=9)3222lawherennn-6&gt; &gt;+1212

 a 1. Solution : Given a n are positive roots of tan z = z, so + a n are roots of sin z — z cos z = 0. To check whether
the function

f(

z)/9(z), where f(

z) = z sin zand g(z) = sin z — z cos z, has any pole at z = 0 we notice that ' = +

fzzzz()sincos'==

gzzz
fz()sin()"=-fzzzz()

cossin2"="gzfz()()'="=

f

f()()O0OO0OO0but"="fzgz()()

SO

9

gg.000

but'="="=0000 0 Thus origin is the double zero of f(z) and triple zero of g(z). As a result the given function f/g
possesses

a simple pole at z = 0. To find its residue at z = O we note that " " ="""=fzzgzz () () () () 23113 andand so residue

there is 3. Thus

the functionFzzzzzzz()

sin sin cos = — — 3 has the

144 simple poles atz = +

a n as its only singularities and Res (F(z); + an) =1 and F(0) = O since F(z) = —=F(-z). Sincennn —-&gt; &gt;+ 1212 a
T, we consider the sequence of contours {C n }, formed by the straightlinesx =+ bn,y=+bnwithbn=n+121m,n
=12.,AnBnPnQnshown below : We find thatwhenze BnPn,z=bn+iy, where —bn<y<bn.Hence, cot
cossinzniyniy =+ +

+ +

1212mm==—-+—--sin()cos()iyiyeeeeyyyy (147) Same result holds whenz € An Q n.Now when z lies on
either of thelinessAnBnorQnPn,z=x+in+12mcotcossinsinhcoshzxinxinnn=++
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+ +
>++12121212mmmm=—+>-+—-+-+11112121eeeenn()()mmm(148) The given function can be
rewrittenaszzzzzzzsinsincoscot—=-11BnAnPnQnxyobn-bn-bn

145 1. Bound on the sidesAn Q n & B n P n of the square C n : Using (147), weobtain111111122zzzzeeeebyyy
yyn-<—-=—-+4+—-+——>e——cotcot.asnll. Bound onthesidesAnBn&QnPnofCn:Hereweapply (148) to
achieve111111111122zzzzeebyeen-<—-<—-+-+—>+-—>ecotcot. mmmmasnThus,zzzzzeezCn
nsinsincos,,,,.—<+—-€=mm1112 This shows that the function F(z) is bounded on the sequence of contours {C n

} and we can apply (144) to prove
ZZzZzZzZzZzZnNnnnn

n
sinsincos—=+—-+++-=¢5%3211111laaaa=+-=%322221zznn

a Exercises 1. Obtain partial fraction expansion of cosec z. 2. Prove thatsec () ()znznnn=—----=¢5%12112222
lmmw3. Showthattanzzznn=—--—-=e¢5% 2122221

146 and hence deduce 113158222 + + + = 1w 6.16 The Gamma Function The gamma function I'(z) was introduced
by Swedish Mathematician L. Euler (1707- 1783), in 1729 while he was seeking for a function of a real variable x which is
continuous for positive x and reduces to x! when x is a positive integer. Gamma function is widely used in the fields of
probability and statistics, as well as combinatorics. Gamma function I'(z) can be introduced in either of the ways : (i) in
terms of infinite product (ii) in the form of infinite integral (iii) in limit formula We establish the form (i) first considering the
fact that it possesses simple poles at z = 0, -1, -2, ... and nowhere vanishes in the entire plane and satisfies zI'(z) = ['(z +
1), (1) = 1 (149) To construct I'(z) we claim that f(z) = 1/T'(z) is entire with simple zerosatz=-n(n =0, 1, 2, ...). Again we
know that k = 1 is the largest non-negative integer for which 1 1 n k n= e } diverges. Then utilizing the Weierstrass
Factorization theorem f(z) can be represented as f z ze

znegznzn()()=4=e¢—[]11whereg(z)is an entire function,

so that gamma function will be of the form () () /zezznegzzn=+—-—-9¢[]111(150) Now we find g(z) so that (149)
hold. We write (150) in the form

147 T() lim ()

zezzmengzzmn=+—oe——[]ll=—-4++4++=—>e—e>limlexp()()()lim(),n

nnnn

9

z

zm

z

z

znzlllsay(151)zzznzgzzmzzznzzz

n

ngzz

m

n

nnn

FrO0Mexp OO0 O lexp()+==+++++++-+++3>>111211111=+++-=-3>()exp()()z

n

gzgzmnllll=+++--311111z7

nngz

gz

mnexp()()=+++--+>11111zngzgz

mnn

exp () () log Now from the relation

zzzzzznn

NCTrrO)Olim() (), +=+—>ellwefindthatzzzzngzgzmnn

n
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FrrO)O)limexp()()log+=+++--+—>3111111=+--exp()()gzgzlywherey=—-=-—e3limlognnm
n 1057722 1(152) is known as the Euler's constant. Thus in order that the conditions in (149) to hold, we should have g(z
+ 1) — g(z) =y + 2kmi (k = integer) (153) and
14811111111l===+=—>0e—e—+——+4+ [T ()lim()lim()log()nnngzmngenenysothatg(l) =y + 2jmi
= integer) (154) The simplest entire function satisfying (154) is given by g(z) = yz Finally from (150), () /zezznezzn =
+ ——9¢[]y111(155) Gauss's Formula From (151) we have the representation I'() lim lexp () ()

z

nm

zzz

znnn=—-++—oe3111ly=-—-+

++ —e > limlexploglog () () n

nnmnn

zzzznlll

y=++-—=—>e—5e5>Im!()(), limlognznnnn

zz

z

n

mnll101

since y (156) The above expression for(z), z= 0, — 1, — 2, .... is termed as Gauss's formula, though it was first derived by
Euler. In many places it is known as Euler’s limit formula. Example 9 : Let I'(, ) ! () ()

z

n

nn

zzznz=++1ProvethatF T T(,)()()()

z

nnnzn

zz=+++11

149 and hence deduce that
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Fr()()+— — e1Solution : I(

n+
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z(

z + 1)(

nnnz
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z
rrrrrooo00o000ro0000)+++=++++=+++=1111212 Now,
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z
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z
rcrrO0O0C)O0+=+tmO)0)limltim(,) ()

n

znnnnn

zz

nz

n

Z_)._).—).-|-:+:

FTTT11byGauss's formula. In the expression (155) for I'(z) the infinite product is uniformly convergent on every
compact subset of /C — {0, -1, .....}. So calculating I'"(z)/T'(z) we find that "= ==+ -+ +=e¢3TT()()zzznznnyl1l1l
1 This function T T () () z z is denoted by y(z) and named as Gaussian psi function and it is seen from its expression that
W is meromorphic in /C with simple poles atz =0, -1, — 2, ...and Res(y; —n) = =1forn =0, 1, 2, ... Example 10 : Show
that (Y w) =-y(ww()()zzz+-=11GIlwwmm()()cot.

zzz—--=-1Solution: (lywy()zznznn=--+-++=31111

150so, gy ()1111ll=——-+—++=03nnn=—-—+-+—-+-y1112121313=-y.(iywyy()()
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T cot, () 6.17 A Few Properties of ITTTT(
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Wehave111T1()/
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151=--9o[]z
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zz
n

mml22l=-zz

)

msinor, ITT()[()lsinzzzz--=

mmie 11Mr()()sin,zz

Z— =

m

mlusing zl'(z) =T(z+ 1Die, - z[(-2) =T(1 - 2)] (157)

In particular, 7122 =1and ' 1 2 =  (minus sign is excluded since I 1 2 is positive by (155)). Likewise using I'(z + 1) =
zZlM(z)wefindFT32121212==mml5232323212==.mI[725252523212==--1mandingenerall nn
nn+=-=121321212.(),(,, i

elfnnnn+=12222/0)()(158) If nis a positive integer repeated use of (149) produce I'() ' nn + =1The
[-function can therefore be considered as an extension of the factorial function to the complex plane.
152 Legendre’s Duplication Formula Let us consider the Gauss's formula T T () im ! () () lim (, ),
z
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m=+-21221z
z
z

Il T ()[usingexample 9] SothatmF IF'r()()221221

zzzz=+-(159)

153 This is known as Legendre’s duplication formula.

Residue of I'TTTT(z) at its poles '(z) is analytic throughout the complex plane except at its only singularities which are
simple poles situated at z = 0, -1, -2, .... That is ['(z) is analytic in the right half of the complex plane Re z &lt; 0. Using the

fact that zI'(z) = T'(

z+ 1),

we have I

rOO000«0,

z

n

Znznznzzz
nN++=4++-+-+=1121

positive integerand 'T () () () ()()

zzn
ZZ
zNnz

nN=++++—-+111Res(();)lim()()-TT
znznzzn-=+—-=++++-—>lm()()..()-znz

n
z

zz

n
rMii=-=(01!,,,,..1012n
n

n

Integral representation of ITTTT(z) Theorem : Prove that I'()
zettz=--9e10dtforRez&lt; 0. Proof. Let

F

znnzzznnz()!()..()=++1
We prove the theorem in the following two steps : (i) Fztntdtnnzn ()

tn

-=110(i)limnnztzn

tdtetdt—e———e—-=1110 0 To establish (i) we change the variable ttonsin110-—-tntdtnzntoobtain11110

10-=—-—-—-tntdtnssdsnzznzn{()
154 Now integrating by parts we find the right hand side is equal to
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nnz11101101()()-+-—-=--nnzssdsznz()110l=-++4+—-+-nnnz
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Integrating by parts (n — 1) times] = + + =nn
z

z

z

n

Fz

nt()..0)0()21

Now to prove (iijwe show that lim, — n

t

nznetntdt—e—---=1010Rez§&lt; 0(161) For this, notethat 111 + < < — &gt;
tnetnfortntn(162) Then, 11+ <—-< -
tneandtnentnt; Consequently, 01111122<--=--<—-———-——— etneetnet
ntnttntn=4+-++-<—-—-—-etntntnetntn

t22222212111. Therefore, etntdt

netdtt

n

zntzn---+--6gt;111010Re

155 which approaches zero as n — ® because the integral on the right converges. This completes the proof of (ii). Finally
combining the results (i) and (i) with the Gauss's formula (156) we get I'() lim () limzFztntdtetdtnnnnztzn==-
=—e 5e_———-0711100
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7 UNIT - 1 1.1 Calculus on R n: Let R denote the set of real numbers. For an integer n &lt; O, let R n be the cartesian

be denoted at times by a single letter, e.g. xxxnyyyn??(,,),(,,)11??and so on. Co-ordinate functions : Let12 (,,
).??2nnixxxxRThen, the functions:iu?nRRdefinedby12(,,)???iniiuxxxxxWe are now going to define a
function to be differentiable of class C . A real-valued functionf U CR R n:?, U being an open set of R n, is said to be of
class c k if i) all its partial derivatives of order less than or equal to k exist and ii) are continuous functions at every point of
U. By class C 0, we mean that f is merely continuous from U to R. By class C, we mean that that partial derivatives of all
orders of f exist and are continuous at every point of U. In this case, f is said to be a smooth function. Note : By class C on
U, we mean that f is real analytic on U i.e. expandable in a power series about each point on U. A C functionis a C
function but the converse is not true. Exercise : 1. Let fRR: ? be defined by 12 (), ??xfxex? 0 =0, x = 0 Show that f

??2uufoueApplying L' Hospital rule successively, we find ??f ()0 ? ? 2 imuuueu8232???limuueud22???lim
uuueu822???limueud42=0
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9 Proceding in this manner, we can show that. fn (), 0 0 forn ?1 2, ,? Hence f is a function of class C . A mapping f U V :
? of an open set U R n to an open set V R n is called a homeomorphism if i) f is bijective i.e. one to one and onto, as well
as ii) f, f =1 are continuous. Exercise : 2. Let f RR : ? be such that f x x () ? ?5 3 Show that f is a homoeomorphism on R. 3.
Letf RR:? be defined by f x x () ? 3 Test i) whether f is a differentiable function of class C or not ii) whether fis a
homeomorphism or not. [ Ans. : i) fis of class C . ii) f is homeomorphism ] Solution : 2. Note that fx fy xy () () ()???57?
?fxfy()()ifandonlyif xy? Hence fisone one. Lety x? ?53? xy??35and hencefRR??1:isdefinedasfyy???1
35()Again, ffyy??1()bgandffxx??1()bg, Thusfisonto. Consequently fis bijective. fUV ? Rn

10 Both f f, ?1 are continuous functions, (being polynomial functions) f is a homeomorphism on R. Note : () ffURR nm

co-ordinate functions on m R we define the Jacobian matrix of fat (,,), xxn1? denoted by J, as J ?

f

XEXfxfxfxfxfxfxf

X

n

nm

mmnll1212122212?2?2?2??2FHGGGGGGGGIKJIIIIIIIIIN Inparticular, when? mnie,if:??2nn
f U R Ris a mapping such that, if fff(,,,) 12 ? f n has continuous partial derivatives i.e. if each fi1,2,,.? ?in has
continuous partial derivatives on U, we say that f is continuously differentiable on.? n U R (i) If fffn (,,)17is
continuously differentiable on ? n U R and the Jacobian is non- zero, then f is one-one on U. Exercise : 4. Consider the
mapping ??: RR22?givenby ??:yxx112?cosyxx212?sinnRfvmRiuRfCU

11 Show that ? is one-to-one on a sufficiently small neighbourhood of each point (,) x x 12 of R 2 with x 1 0? . Solution :
The given mapping1222 (,):

XXXX???2?2Then,wehavel12xxcos,???21212xxx??sin,??2?2212xx?sin,??2?272212xx

X?

cos Henceeach???ijx,,12ij?

is continuous for all values of x 1 and x 2 in R 2 . Thus ? is continuously differentiable on R 2 . Again the Jacobian is given
byJ=7??2?211x?7??212x??x10ifandonlyifx10?inR2.??2?21x7???722xConsequently, ? is one-to-one on a
sufficiently small neighbourhood of each point (,) xx 12 of R 2 with x 1 0?7 . Amapping f: U ? V of an openset URn
onto an open set V R nis called a C k — diffeomorphism, k ?1 if i) f is a homeomorphism of U onto V and ii) f, f =1 are of
class C k. when fis a C — diffeomorphism, we simply say diffeomorphism. Exercise : 5. Let ? : RR 2 2 ? be defined by ? (,
)(,Juvveuu?

12 Determine whether ? is a diffeomorphism or not. 6. Let ? :
RR227?bedefinedby?(,)(,)xxxexxexxx121212227?7?7?Show that? is a diffeomorphism. [

Ans. : 5. ? is a diffeomorphism [ Forin ?1,,; ? let:inu R R ? be the coordinate functionsonn R i.e. foreverypRn? 1. 1)
uppii()?wherepppn?(,,)1?Suchusiare continuous functions from RR n? .. We call this n-tuple of functions (,
,,Juuunl2?the standard co-ordinate system of Rn.If f UR R nn:isamapping defined on U R n, then, fis
determined by its co-ordinate functions (,,)ffnl1?where12)fufinii??,,,1andeachfURRin:arereal valued
functions, defined on an open subset U of Rn . Thus foreveryp? URNnfpufpii()()()????()iufp?wherefpqgqq
n()(,,)??212(,,)iinugqqg???qiby11) 13) consequentlyfpfpfpfpn()()(),.(),12?2chpURnThemapfis
of class c k if each of its co-ordinate functions fini:,, ?1?isofclassck.RRnui?

13 1.2 Differentiable Mainfold : Let M be a Hausdorff, second countable space. If every point of M has a neighbourhood
homeomorphic

to an open setin R n, then M is said to be a manifold.
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Thus in a manifold for each p M?, there exists a neighbourhood U of p M? and a homeomorphism ? of U onto an open
subset of Rn . The pair (,) U ? is called a chart. Each such chart (,) U ? on M induces a set of n real valued functions on
Udefinedby21) xuii???,in?12,,?whereusi,are defined by (1.1) and it is to be noted that whatever be the point p
and the neighbourhood , , 1,2,i U uin ? ? always represent co-ordinate functions. The functions (,,)xxxn127? are
called coordinate functions or a coordinate system on U and U is called the domain of the coordinate system. The chart (
., ) U ?is sometimes called an n-coordinate chart. Let (, ) V ? be another chart of p, which overlaps the previous chart (, ).

Jp?OURNuUi?pMURIX
1422)yuinii????2?,,,,,12We can construct two composite maps2.3)1: () ()UVRUVRnn1l:()()UVRUVR
n n If these maps are of class ¢ k, we say that the two charts (,)U ?and (,)V?areck - related. fqUV???()andg UV
RUVRnNN:()()isamapping defined on an opensetin Rn,wewrite24)gqq()().????1bgExercise:1Finda
functional relation between the two local coordinate systems defined in the overlap region of any point of a manifold M.
Solution : giventhatqU V (),gqq()()()?1by24)Let(), pgwherepUV.Thengppp()()()bgbgbg?lor????

xxxiin?(,,,)127?Note: If weconsidergqq()(),1ch
15thenonefindsxgyyyiin?(,,,),12?in?1,,?Acollection??(,),,iiUiA???7?(anindex set) of c k related charts
are said to be maximal collection if a co-ordinate pair (V, ? ), c k related with every chart is also a member of ? . A
maximal collection of ¢ k -related charts is called a c k -atlas. A ¢ k n-dimensional differen- tiable manifold M is an
n-dimensional manifold M together with a ¢ k -atlas. Unless otherwise stated, we shall consider a differentiable manifold
of class C . Examples : 1. R n with the usual topology is an example of a differentiable manifold with respect to the atlas
(U, ?)where U = Rnand ? = the identity transformation. 2. Let S 1 be the circle in the xy plane R 2, centered at the origin
and of radius 1. We give S 1, the topology of a subspace of R 2 . Let
Upxysyl110??2?2?2{(,)|[}Upxysy210?2?2?22{(,)[}Upxysx310?2?222{(,)|[}Upxysx410?2?2?2?2{(,)|}
Then each U iis an open subsetof S1and, 1,2,34???iiSUUiLetl = (-1 1) be an open interval of R and we define ? 1
1:U7? IR besuch

that?1(,)

X??7?7?

Note that each ?iis a

homeomorphism on R and thuseach (,)uii?isachartof . 2SNowUU12??? UUst131??quadrant UUnd142
??quadrant, UU th2347?? quadrant, UU rd 24 37? ? quadrant.

16 ThenAUiii??2{(,):,,,)?1234isanatlasof s1IAsUU??3?, letpUU??13,then()()(,)???21311??7??yxy
xand ()()(,)???23113????xxyyThuseach??131??and??3117??isofclass C. Similarly, it can be shown that
each??141?7?,?2?24117?72,?22231?27,?2?23217?27?2,2?22417??,?2742177 isofclassCand hences1isanone
dimensional differentiable manifold with an atlas ? ? 1,2,3,4 (,)iiiU? ? Exercise : 2. Let (M n, A) be a differentiable
manifold with a C atlas A. Let p M. Then there exists (,) U Asuch thatp U and (). p O Note : 1. Itis to be noted that every
second countable, Hausdorff Space M admits parti- tions of unity. Partitions of unity admits Riemannian metric. Our aim
is to study a Riemannian Manifold and for this reason we consider such topological spaces for a manifold. 2. It is enough
to consider only a topological space for studying mainfold. 1.3. Differentiable Mapping : Let M be an n-dimensional and
M be an m-dimensional differentiable manifold. A mapping f M N : ? . is said to be a differentiable mapping of class c k , if
for every chart (U, ? ) containing p of M and every chart (V, ? ) containing f(p) of NRm M f .p. f(p) f(UUNRN? 2?2?2127,
Op QU .fp(VUV
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17 3.1) i) f(U) V and ii) the mapping ? 2f URV R nm 1: () () is of class c k . By a differentiable mapping, we shall mean,
unless otherwise stated, a mapping of class C . If (,, ) xxn1?and (,,)yy m1? arerespectively the local coordinate
systems defined in a neighbourhood U of p of M and V of f(p) of N, then it can be shown, as done earlier 3.2) ygjjnfxx

M and N be two n-dimensional differentiable manifolds. A mapping f M N : ? is called a diffeomorphism if i) f and f —1 are
differentiable mappings of class C ii) f is a bijection In such cases, M and N are said to be diffeomorphic to each other.
Exercise : 1. Let M and N be two differentiable manifolds with M=N=R. Let (U, ? ) and (V, ? ) be two charts on M and N
respectively, where U = R? : U ? R be the identity mapping and V =R ? : V ? R be the mapping defined by ?() . x x? 3
Show that the two structures defined on R are not C -related even though M and N are diffeomorphic where f M N : ?

18 isdefined by ftt()/? 13 Hint: Notethat, () ()????fxx??land ()()./???2??2113xxThus????1is of class C but
??27??lisnotofclassC.Again () ()????fxx??1Alsofyfx()()?ifandonlyifyx?.Thusfisone-one. Finallyfyy??1
3(),sothatffyy??1()bgandffxx1().bg?Thus

fis a bijection. Note : A diffeomorphism f of M onto itself is called a transformation

of M. A real-valued functionon M ;i.e. f: M ? R is said to be a differentiable function of class C, if for every chart (U, ?)

differentiable functions on M and will sometimes denote by F(p), the set of functions on M which are differentiable at p of
M.RNnRMFfU?U)f?2?2?2L p??()p?1?7?

19 It is to be noted that such F(M) is i) an algebra over R ii) a ring over R iii) an associative algebra over R and iv) a module
over R Where the defining relations are a) ()() () ()

fgpfpgp???2b)()0) ()0 fgpfpgp?2c) ())(),??f

pfp???2fgFM,(),??R, pM?.14 Differentiable Curve : We are now in a position to define a curve on a manifold. A
differentiable curve through p in M of class r C is a differentiable mapping ?:[,1a b R M ? ?, namely the restriction of a
differentiable mapping of class r C of an open interval] ¢, d [ containing [a, b]. such that4.1) ?()tp0?,atb?? 0 Also

The tangent vector to the curve ?()tatpisa functionRRnuiMR[]?0t?0()pt??
20XFpRp:()?definedby44)Xfddtftptt? LNMOQP??2(()?0lm(()(()hfthfthtt???LNMOQP?0
0??whereptfFp???(), ()0 Itcan be shown that it satisfies 4.5) XafbgaXfbXgppp () ()()??7?: Linearity 4.6) X
fggpXffpXgppp()()(),??fgFp,()?: Leibnitz Product Rule. Note : Each function X p : F (p) ? R, cannot be a
tangent vector to some curve at p?M, unless it is a linear function and satisfies Leibnitz Product Rule. Exercises : 1. Let a
curve ?onRnbegivenby?iiiabt??,in?12,,,? Find the tangent vector to the curve ? at the point ().ai 2. If Cis a
constant function on M and X is a tangent vector to some curve ? at p?M, then Xp .C=0[Ans.i)(,,,)bbbn127?ii)use
4.5), 4.6) and the definition of constant function. Let us define 4.7) () XY fXfYfpppp???248) ()bXbXfpp?, b?RIf
we denote the set of tangent vectors to M at p by T p (M), then from 4.7) and 4.8) it is easy to verify that T p (M) is a vector
space over R. We are now going to determine the basis of such vector space. For each i =1, ..., n, we define a mapping ?
XFpRi:()?

21by 4.9)???2?xffxtpipiFHIK?FHGIKJ()()Notethat? ?xafbgipFHIK??()??()()()afbgxtpi? FHGI
KJby49),a,bR,f,g?F(P)? FHGIKJ?FHGIKJafxtpbgxtpii????2()()()()byaofL3?FHGIKJI?FHGI
KJafxtpbgxtii????()()()bya)of L3?FHIK?FHIKaxfbxgipi????Thussuchamapping satisfies

differentiable function and every tangent vector,, say X p, to some curve, say ?()tatp t? ?() O can be expressed as a
linear combination of the tangent vector ? ?x ti (), in ?1,,? to the curve ? defined in (4.10)
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23 If possible, for a given linear combination of the form? ? ?iipx () FHIK?, where ? i s are functions on M, let us

??2?2iippx()FHIK?Ifweassumethat???iippx()FHIK??0then, ???iipkipxx()FHIK??0wherexk:M
?R 12, . Kn??or???ikipipxx()FHIK??20??kp().?20forl2, .??knThustheset??xinipFHIK?RSTUV
W :,,1?is linearly independent. Hence we state Theorem 1: If (,,)

xxn17?isalocal coordinate system in a neighbourhood U of p ? M,

then, the basis of the tangent space T p (M) isgivenby xxpnplFHIKFHIKRSTUVW,, ? Let us define TIM) U p M
T (M). p ? ? This T(M) is called the tangent space of M.

24 1.5. Vector Field : In classical notation, if to each point p of R 3 or in a domain U of R 3, a vector : () p p is specified,
then, we say that a vector field is given on R 3 or in a domain U of R 3. A vector field X on M is a correspondance that
associates to each point p M, a vector X p T p (M). In fact, if f F(M), then Xf is defined to be a real-valued function on M,
defined as follows 5.1) (Xf) (p) = X p f A vector field X is called differentiable if Xf is so for every f F (M). Using (4.11) of 14, a
vector field X may be expressed as 5.2) X x i i where i 's are differentiable functions on M. Let ()M denote the set of all
differentiable vector fields on M. We define 5.3) () XY f XfYf 2?22 () () bXfb Xf?

It is easy to verify that ()M is a vector space over R.

Also, for every f F(M), fX is defined to be a vector field on M, defined as 54) (fX) (p) = f (p)X p Let us define a mapping as [,
1:F(M)F (M) as 55) [ X, Y]f=X(Yf) - Y(Xf), X, Y ()M Such a bracket is known as Lie bracket of X, Y. Exercises : 1. Show that
for every X, Y, Zin (M), for every f, gin F(M), i) [

X, YI (M) i) [bX, Y] = [X, bY] = b[

X, Y], b Riii) [

X+Y, Z1=[X ZI + Y, Z1 W) [X Y + Z] = [X, Y] + [X, Z] {
25

v) [X, X] = vi) [

X, Y] = = 1Y, X] vii) X,[Y,Z] Y,[Z,X]

Z,[XY]??7?7: Jacobi ldentity

viii) [fX, gY] = (fg) [

X, YT+ Af(Xg)tY = {g(Y)X} a) [X, fY] = f [X, Y] + (Xf)Y b) [
X, Y] =f[X, Y] = (Y)X 2.
In terms of a local co-ordinate system i) x xii, LNMOQPOii [

xxFHGIKJ,xj, where

X?2?2?272ii

x,Y???27jjx3 Complete [X, YIwherei) Xx1,Yxexx213ii)Xxxx121,Yxx224

Prove that i) (M) is

a F(M) module Hints : 1. viii) Note that { f(Yh)} (p) = f(p) ( Yh) p by (5.4) of 1.5) = f(p) Y p h by (5.1) of 1.5) Again, {(fY)} (p) =
(fY)(p) h by (5.1) = f(p) Y p h by (5.4) Thus {f(Yh)}(p) = {(fY)h}p), p f(Yh) = (fY)h Use the above result, 5.5) of 1.5 & (4.6) of 1.4,
the result follows after a few steps.

26 . 1.6. Integral Curve : In this article, we are going to give the geometrical interpretation of a vector field. Let Y be a
vector field on M. The assignment of the vector Y p at each pointp U M, isgiven by Y:pYY p TT p (M) A curve is an
integral curve of Y if the range of is contained in U and for every a t b 0 in the domain [a, b] of , the tangent vector to at (t
0)=pcoincideswithY pie. YYp??2()tOYfYfpt??2(),0, fFMLNMOQPddtfttt()()?0by(44) of 14 Using
411)14onecanwrite???2iipipxf()FHIK?LNMOQPddtfttt()()?0where?i’sarefunctionson M. FHGIK
JFHIKdxtdtxfittip()OAsxini:,, 1?{}arelinearlyindependent, we musthave?iittpdxdt()?FHGIKJ?0
or??ittitttdxdt()bg???FHGIKJO0OQor????inttitttttdxdt(()(),,()1200????FHGIKJUsing (4.3)
of 1.4 we get

27?2 inttittxtxtxtdxdt((),(),,()1200????FHGIKJHencethey are related by 6.1) dxdtxtxtiin?? ((),, ()
1? c h Exercises : 1. Find the integral curve of a zero vector. 2. Find

the integral curve of the following vector field i)

onR2
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Solution : 2.i) From (6.1) of 1.6, we see that dx dtx 117, dxdtx22?ordxxdt117?,dx xdt2 2 ? Integratinglogxt1? ?C
,logxtD 27?7say, where C, D are integrating constant. Whent=0,ifxp11?,xp227?,thenfromxCetl?andxDet
2?wefindthatpl=C,p2=DThus?:,pepettl2bgistheintegral curve of X passing through the point12(,)pp
28 . 1.7 Differential of a mapping : Let f : M ? N be a a differentiable mapping of an n-dimensional manifold M to an
m-dimensional manifold N. Let F(p) denote the set of all differentiable functions at p?M and F f p() b g denote the set of
all differentiable functionsat fp N (). ? Such amap f, inducesamapfFfpFp*: () ()b g?, usually called pull back map.
and is defined by 7.1) fgg f*(),???? () gF fp? called the pull back of g by f, which satisfies 7.2) fagbhafgb fh***(
)()()?2?22fghfgfh***()()()?where??,()ghFfp?and,?abRThemapf, also induces a linear mapping f T M p
*()?2()O)fpTNsuchthat73)??2?2?2**()()()pppfXgXgfXfg???calledthe push forward of X by f. Such f * is
also called derived linear map or Jacobian map or differential map of f on T p (M) f * ? push forward objects defined on
objects defined on f * ? pull back N M f f *

80% MATCHING BLOCK 1/10 SA MA4K9 Project.pdf (D27014346)
fMNpfp?()Tp(MTf(p)(N) {29

Letuswrite 74) f XfXpfp**() () ()? We can also define push forward of X by f, geometrically, in the following manner
: Given a differential mapping f M N :, ? the differential of f at p M? is the

linear mapping f

TMp*:()?()()fpTN defined as follows : ForeachXp ? T p (M),

we choose a curve ?()tin M such

that X p is the tangent vector to the curve ?()

tatp

t?7?(). 0 Then f X p * () is defined to be the tangent vector to the curve ft?()bgatfpft()()?? 0 b g Exercises: 1. If fis
a differentiable map from a manifold M into another manifold N and g is a differ- entiable map from N into another
manifold L, then, show thati) () ***gfgf???i)()***gffg???2 Iffisatransformation of Mand g is a
differentiable function on M, prove that i) f XY fXY** [, 1[,]1?i)ffXgXfg***)()bg?ii)fgXgffX**()()()???1
for all vector fields X, Y on M. Solution : 1. By definition,

f X p*()isthe tangent vector to the curve ft?()bgatfpf

t()()??0bgwhere

X p is the tangent vector to the curve ?()t at p

t??(). 0 Hence by (4.4) of 14
30fgp*()Xdi?ddtgfttt(()?bgLNMOQP?0gFfp?()bg?LNMOQP?ddtgfttt()()??bg0=Xp()g
f? by 44) of 1.4 Hints 3. Given that f : M ? M is a transformation and hence for every p?M, fp g (),? say.. Thus, pfqg? ?1 ()
consequently, from 7.3) of 1.7, we find that f Xgfpp * (()di{}?Xgfpp () (), ?ns??pMorfXggXgffgpp*()()(
)()di{}ns???lorfXgXgff*()()bgbg???1Using this relation, one can deduce the three results. We are now
going to give a matrix representation of the linear mapping f * . Theorem 1 : If f is a mapping from an n-dimensional
manifold M to an m-dimensional manifold N, where (,,) x x n 1?7 is the local co-ordinate system in a neighbourhood of
apointpof Mand (,)yym17?isthe local co-ordinate system in a neighbourhood of f p() of N, thenfxfxyipjipjmj

31 where a sij, are unknown to be determined or fxyayyikijjfpkjm*()????FHIKRSTUVW?FHGIKJ??
lwhereeachy Ffpk?? (())km?1,.., using73)of 1.7, wefind???xyfaipkijjkjmFHIK???()?1or??xfaipki

GIKJ??1Note: 1 The matrix of f *, denoted by (f *) is
given by () *

f

f

XExfxfxfxfxfxfxf

X

n
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thesetof X TM pp ? () for which f X p *()?? The image of f *isthe setof () () () fpfp Y TN ? for which, there exists X
TMpp?()suchthatf XYpfp*()()?Now fromaknown theorem

32 dim (kernel f * ) + dim (Range f *) = dim T p (M). We write it as 7.5) dim (kernel f *) + dim (Range f *) = dim T p (M) for
each p? M The dim (Range f *) is called the rank f * If rank f * = dim T p (M) we say i) f is an immersion if dim M ? dim N
and f(M) is an immersed submanifold of N ii) f is an imbedding if f is one to one and an immersion and then f(M) is an
imbedded submanifold of N iii) f is a submersion if dim M ? dim N. Exercises : 1. Show thatf RR : ? 2 given by f(t) = (a
cost, sint) is an immersion. 2. Find (f * ) in the following cases i) f: R2? R2 givenby f=() (),
xxxx12221223?bgi)f:R2?R2givenbyf=xexxexxx1212227?7?,

chat(0,0)wherel?2(,)xxarethe local co-ordinates on R 2 . 1.8 f-related vector Field : Let X and Y be fields on M and
N respectively. Then, for p?M, letp p X T (M) ? and f (p) f(p) Y T (N) ? and such that 8.1) f XY pfp* () () ? where f MN : ? is
a differentiable mapping and f * is already defined in the previous article. In such a case, we say that the two vector fields
X, Y are f-related.

33ForgFfp?()bgweseethatf XgYpfpg*()()ns?Using73)of17and (5.1) of 1.5we find that XgfYgfpp () () (
)??,p?Then82) () () XgfYgf??Iffisatransformationon Mand fXXpfp*()()? we say that, X is f-related to itself
or X is invariant under f. We also write it as 8.3) f X X * ? Exercises : 1. Let X Yiii, (,) ?1 2 be two f-related vector fields on
M and N respectively.. Show that the vector fields [X 1, X 2]and [Y 1, Y 2] are also f-related. 2. Prove that two vector
fields X, Y respectively on M and N are f-related ifand only if ff XgXfg*** () () bg? wheref: M? Nisa Cmap. 3. If f
is a transformation on M, show that, for every X M ? ? (), there exists a unique f- related vector field to X. Solution : 1.
From the definition of the Lie bracket, we see that [, () X X

bgbg??X

YgfXYgfl1221()()bgbghby(82) above??YYgfYYgf1221(){()}lgby(8.2)above??YYgYYgfl1221()()
Lq

340,10 [, 1XXgfYYgfl1212?7?

L g from the definition of the Lie Bracket. Hence from 8.2), one claimsthat [ X1, X2]and [Y1,Y 2] are f-related. . 1.9
One parameter group of transformations on a manifold : Definitioin Let a mapping ?: RM M ? ? is defined by ? ? :(,) () tp

t()1i)?ttR]|?Lqgform an abelion group. Let us set 9.1) ?() () t p t? ? Then ?()t is a differentiable curve on M such that
?()()007?7?7?ppbyDef. (i) above Such a curve is called the orbit through p of M. The tangent vector, say X p to the
curve ?()tat pis therefore 9.2) X fd dtftpt? LNMOQP??2()bg0???lm()()tfpfptt0O?bg,??fFM()

35 In this case, we say that ? t t R | ? | g induces the vector field X and X is called the generator of { }.? t The curve ?()t
defined by 9.1) is called the integral curve of X. Exercises : 2. Show that the mapping ?:
RRR??33definedby?(,)(,,)tpptptpt????123isaone-parameter group of transformations

,).bgch??23Show that ? defines a one-parameter group of transformation on R 2 and find its generator.. Note :
Since every 1-parameter group of transformations induces a vector field on M, the question now arises whether every
vector field on M generates one parameter group of trans- formations. This question has been answered in the negative.
Example: Let Xexxx???2112????onM=R2.Then, dxdtex11??,dxdt21? ThusetAx???1,xtB27??,
where A, B are integrating constant. Letxp11?,xp22?fort=0Then,Aep??1,Bp?2.

36 Consequently the integral curve of Xis ?() log, ttetpp??? FHIK? 112 which is not defined for all values of tin R.
Thus, if 2?2 () (), t pt?then, X does not generate one parameter group of transformations. Problem 7 leads us to the
following definition : Let | ? be an open interval (, ) ? ?? and U be a nbd of p of M. Let a mapping??: () IUUMt??2??
denoted by ?? (,) () tp pt? besuch thati) Uisan open set of Mii) foreacht1??,22(,) () tp

p t ? is a transformation of U onto an open set? t U() of M

and 0 ()pp??ii)ifts,t+sareinl?andif?sp()U???tstspp()()bg??Suchafamily?ttl??lqgof mappingsis
called a local one parameter group of transforma- tions, defined on 1 U ? ? . We are now going to establish the following
theorem Theorem 1: Let X be a

vector field on a manifold M. Then, X generates a local one- parameter group of
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transformations in a neighbourhood of a point of M. Proof : Let (, ,.... )
x x xn 12 be alocal coordinate system in a neighbourhood U of
pof Msuchthat?()(,..,)p?00?Rn,where (U, ?)isthechartatpof M. Thenxpupii()()(),???220in7?1, .., LetXx

37 be a given vector field on U, the neighbourhood of p ? M, where each ? i, s the components of X, are differentiable
functioins on U of M. Then, for every X on M, we have a ? -related vector field on,n 1 (U) U CR? ? with ? (p) =(,...,) 00 n
1UCR.?Let?i, s be the components of the ? -related vector field on U 1 of R n. Then by the exist- ence theorem of
ordinary differential equations, for each ? (p)? U1 R n, there exists a ? 1 0? and a neighbourhood V 1 of ? (p), V1 U 1 such
that, foreachqqqgn?(,..) 1?2V 1,qr??(), say, there exists n-tuple of C ? functionsftqftgnl(,)... (,)definedonl?
11?1and mappingfil:?1?V1U1,in?l.., which satisfies the system of first order differential equations 1) df tdt tpii
(),0),???2bgin?l,.., with the initial condition 2) (0, )iifqq? Letuswrite 3)?tnqftgftqg()(,).. (,)?1bgWeare
goingtoshow ???tstsqq??()().bgNotethatift,s,t+sareinl?landif?sq()?V1Ultheneachftsqil(,) ?ft
qgis,()?bgaredefinedon!?1U1.Nowletussetgtgtftsqftsgnnll(),..()(,)..(,)bgbg???Forsimplicity,
wewritegtftsqgii()(,)bgbg??Theneachgti()isdefinedon|?1U1and hence satisfies 1) with the initial
condition4)gofsqii()(,)bgbg?

38 Also, letusseththtftgftgnsns11(),..(0)(, ()...(, ()chch???Forsimplicity, wewritehtftqgiis()(,()bg
bg??theneachhtil()isdefinedon|?1U1and hence satisfies 1) with the initial conditionhofoqgiis(),()bgbgc
h????siqg()bgby2)?fsqi(,)bgby3) ?goil()bgby4) Hence from the uniqueness we musthavegthtii()()b
gbg?Using3) wemusthave???tstsqq??()().bgThus, we claim that, for every vector field defined in a
neighbourhood U 1 of ? (p) of R n, there exists ? ? t t | ? 1 n s as its local 1-parameter group of transformations defined
onl?1U1l. LetussetV=??1(V1)Uanddefine??:()IVVMt????asfollows???trtq()(,)??1bgTheni)??(,)
()trrt?isatransformation of Vonto ? t ()V of M

steps ? ? ? t s r() Thus for the given vector field X, defined in a neighbourhood U of p of M, there exists ? tt 1| ? ? L g as its
local 1-parameter group of transformations, defined on | ? V U of M. Note that if we define????2 () () (,).,trtqt???1
bgqr??()????21().tbgsay,then???1()tbgisthe integral curve of X. This completes the proof. Theorem 2 : Let ?
be a transformation of M. If a vector field X generates ? t as its local 1-parameter group of transformations, then, the
vector field ? * X will generate ?? ? t ?1 as its local 1-parameter group of transformations. Proof : Left to the reader.

tt? where ? tis the local 1-parameter group of transformations induced by X. We

now give a geometrical interpretation of [X, Y], for every vector field X, Y on M. Theorme 3 : If X generates ? t as its local
1-parameter group of transformations, then, for every vector field Yon M. [, 1lim () *XYttYYqqtq???01?bg{}
whereqgpt??(Jand () () ()**???2tpttYYp?bg

40 To prove the theorem, we require some lemmas which are stated below : Lemma 1: If ? (t, p) is a functionon | ? M,
where | 7 is an open interval (, ) ? ?? such that ? (0, p) = 0, ? p?M then, there exists a function h (t, p) on | ? M such thatt h
(t, p) = ? (t, p) Moreover h (o, p) = ?? (0, p), Where ? ? ? ?d dt . Proof : It is sufficient to definehtptspdtst(,)(,)()??z
? 0 1 Hence by the fundamental theorem of calculushtpttsp(,)(,)?LNMOQP101??thtptp(,)(,)??Also

vector field on M which induces a local 1-parameter group of transformations ? t then there exists a function g t defined
on|?V,V being the neighbourhood of p of M, where

gpgtpt()(,)?suchthatfpfptgp

tt?()()()bg??

41 Moreover, Xfgopgpp??(,) ()0 Symbolically, Xf g? 0 on M. Proof : Letusset~(,)()(),ftpfpfpt????bgbg

Lemma 1, there exists a function, say, g(t, p) on 1 ? V, VV M being the neighbourhood of p of M, such

thattgtpftp(,)~(,)??gtpfpfptt(,)()()????bgbgOor,gopttfpfpXftp(,)
im()()??2?2?2010??bgmrbgAs, tgtpfpfpt(,)()()???bgwefindthatfftgtt???? Proof of the main
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42Now, () )Y OO *?22tttYfgqYfpYftgpbgmrlglg????2bylemma2or()() ()OO OO ()*YfqYqVYf

im()()tYgqtt0?2bg=lmQO)0) OO OO)ttYfgYfpYgqg???2010Llg=limO)() () (). ttYfqYfpyXfgq???01lq
by Lemma 2 From the definition we find that, X fttfqfqqt???lim()()01?bgmror????Xfttfpfqgqglim()()0
11 qg Taking f Yf? , we find from above after a few steps X YfttYfq Yfpqg () lim ()() ()()???011lqg Thus we write, lim () *
ttYYfgtg??FHIKO1?bg{}??XYfYXfqq()()?[.1(), XY fqglqgafterafewsteps.[,]lim()*XYttYYqqtqg?
??201?bg{}Note: We abbreviate the above resultas [, ] lim () *XYttYYt???201?bgmr Corollary : 1. Show that ?
??ssstXYttYYbgbgbgot***[,]lim()????01

43 Proof : From the last theorem ? s XYttbg*[,]lim??01???sstYYbgbgot***(),?as?sbg*isalinear
mappingim () **ttYYsst??01???bgbgot?, fromaknown result Using the definition of local 1-parameter
group of transformations, the result follows immedi- ately. Corollary 2 : Show that () [.] () **??sttsXYdYdt??FH
G I KJ?bgProof : Left to the reader Corollary 3 : Let X, Y generate ? t and ? s respectively, as its local 1-parameter group
of transformations. Then? ? ? 2t sst? ? ? if and only if [X, Y]. Proof : Let? ? ? ? tsst? ? ? Then from Exercise 4, the
vector field Y is invariant under ? t . Hence by 1.8 () * ? t Y Y? Consequently from Theorem 3, [X, Y] = O Converse result
follows from corollary 2.

A vector field X on a manifold M is said to be

complete if

it induces a one param- eter group of transformations on M. Theorem 4 : Every vector field on a compact manifold M is
complete. Proof : Let X be a given vector field on M. Then by Theorem 1, X induces { }? t as its

44 local 1-parameter group of transformations in a neighbourhood U of pof Mand t? | ? R. If p runs over M, then for
each p, we get a neighbourhood U(p) and | ? (p), where all such U(p) from an open coverings of M. Since M is compact,
every open covering {U(p)} of M has a finite subcovering { () :,..,}Upini?lsay. Ifwelet?????min (), (), ... ()pppn
12l gthen, thereisatsuchthatfor|[t???tp():(,)???xM? Mis local 1-parameter group of transformations on M. We
are left to prove that ? t p() is defined on R M. Case a) : t? ? We write tkr????22,||,r?? 2 k being integer Then? ? tkr
2?22?27 °Kkr2?7222...r?27?2227272727?7?27ktimes Similarly fort???, wecanshowthat???2?2tr??2?277?27222 ...
Thus ? tis a local 1-parameter group of transformations on M. Combining all the cases, we claim that ? t is defined on R
M. Hence X induces ? t as its 1-parameter group of transformations on a compact manifold M. Thus X is a complete
vector field.

45 1.10 Cotangent Space : Note that ?(M) is a vector space over the field of real numbers. A mapping ? : ?(M) ? F(M) that
satisfies 22(X+Y) = 22(X) + ?2?2(Y) 2?(bX) = b ??(X), b ? R and for all X, Y ? X(M), is a linear mapping over R. The linear mapping
?:?2(M) ? F(M) denoted by ? : X ? ??(X) is called a 1-formon M. Let DMMFM1bgbgbgns?????7?,,.: bethe set of

1 (M) is a vector space over R, called the dual of ? ??). For every p?M,? XFMbgbg?isamapping? XMRbg: ? defined
by102)??XpXppbgmrbgdi?

46sothat? pp TMR:bg?Thus?p?dualof TMpbg.Wewritethedualof TMpbgby TMp*bgandis the
cotangent space of TM p b g. Elements of T M p * b g are called the covectors at p of M or linear functionalson TMp b
g . For every f ? F(M), we denote the total differential of f by df and is defined as 10.3) df X Xfp Xfppppbgdibgbg??
?, We also write it as 10.4) (df) (X) = Xf Exercises : 1. Show that for every f ? F(M), df isa 1-formon M. 2. If xxxn12, .., di

are coordinate functions defined in a neighbourhood U of p ? M, show thateach dxini, ..., ?lisal-formonU? M.
Solution : 2 Note that dx XY XY xiichbgbg???,(104)above? ? Xx Yxii? ?dx XdxYiichbgchbg,by(104)
Similarly it can be shown that dx bXb dx Xiichbgchbg? Thuseachdxini,,.., ?1isal-formon R. From Exercise 2
above, it is evident thateach ?? * ()ippdx TM?, fori=1, ..., n. Wee now define

47105)dxxipipjich???FHIK?Let?pp TM?*bgbesuchthat10.6)???pjpjpxfFHGIKJ?diwhere each
fRjpdi?Ifpossible let?pp TM?*bgbesuchthat?pppnpnpfdxfdx???1ibgdibgdi.... then???pppn
pnpxfdxfdx111FHIK???bg{}()()()???xfppllFHIK?()by(10.5) Proceeding in this manner we will find

pnnlnsFinallyif()(),fdxipipi??0then,
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48 (fdxxipipkpich??FHIK??0ie fkpbg?O0.by(10.5) Similarly it can be shown thatffpnpl10bgbg???
..... ThusthesetffpnplObgbg???.. islinearly independent and we state Theorem 1: If xxn 1, ,... diare local
coordinate system in a neighbourhood U of p of M, then the linear functionals {() : ,...., }dxnip?lonTp(M)forma
basis of T (M). p * Note that ()() dX Xi? Xxiby104)=??7?jjixx?by5.2)of 1.510.8) ()()dx Xii? ? Thus, one can find (

define f ? to be a 1 form in M and write 10.10) ()() () fXfX??? b g Note : D 1 (M) is a F(M)-module

49 . 1.11 r-form, Exterior Product : An r-form is a skew-symmetric mapping ? ? 7 : () ....... () ()MMFM???such thati)w
is R-linear ii) if ? is a permutation of 1,2.....r with (1, 2, ......., N??222(),0),...0012rbgthen111)? 2?2?2222 XXXrXXXrr
12121,,000) ...es, F(sgn) (, ... )di??where(sgn)?is 4+ 1 or —1according as ? is even or odd permutation . If 7 is a
r-form and ? is a s-form, then, the exterior product or wedge product of ? and ? denoted by ? ?? is a (r+s)-form. defined
as11.2 ()(, ... ) 222X XXX Xrrs121=1212() (sgn) (o) (e JOOOOrsXXXXrrrs??2?22222222727
where ? ranges over the permutation (1, 2,.....r+s), XMirsi??2?2?2 ()., .., 12 For convenience, we write 11.3) fgfg ? 7,
fgFM, (). ?Itcan be shown that, if ? isar-form 114) ()(,...,) (,,...,)

f

XXX

XXrr?22221120)(,...)(,...) 2222 fXXfXXrr11Again,if? and ? are 1-forms, then 11.5) ()(,) () () () () 2?2?2222 727?
2XXXXXX

ri122112

la{

show that ()(,,)???7?
100% MATCHING BLOCK 2/10 wW

XXX12313222?22200()00 )0 C)XXXXXXXXX12323131277

2 ... are differentiable functions on M. Proof : Let D r (M) denote the set of all differentiable r-forms on M. In terms of a
local co- ordinate system (, ,..., ) xxxn12inaneighbourhood U of p of M, the setdxdxiiiniirrl1112?2?2?22?2?27 .
... Lg form a basis of D r (M). Using 11.2) we find i) (... ) dxdxiirl??(,,...)XXXr12?1rl(sgn)..()???2dxXilldi?
dx Xirr?2()diiiirl2?2?2?2..{

51 where ? ranges over the permutation (1, 2, ..., r) and each X i ??(M). Letii) Xk=???kjjjnmmmx? ? 1 where ?'s are
functions, called the components of X k. Using ii), we get from i) dx dx X Xiirr11??..(,..,)ch?1lrl(sgn)..()()???

k-independent 1-forms on M. If ? i be k 1-forms satisfying ? ?iii? ? ? 0 show that ? 7 iijj A ? ? with A Aj ji ? Solution : 3.
Let the given set of 1-forms be linearly dependent. Hence any one of them, say, ? k 71 can be expressed as a linear

11 of 30 02-05-2023, 17:54



Ouriginal

by Turnitin

43% MATCHING BLOCK 3/10 W

b ?? =0 by 11.6) of this article. Converse follows easily. 4. As {,..., } ? ? 1 k is a independent set of of 1-forms, we
complete the basis of D 1 (M) by taking 1-forms ? ? kn ?1,..., . Thus the basisof D 1 (M) isgiven by {,...,, ... }. 7?2?2211k k
n ? Consequently any 1-from ? i, ik ?1,... can be expressed as

be linearly independent, so we must have AAjji??0andBij? Oi.e. AAijji ? Consequently i) reducesto ? ? iijjA??
with A Aijji ? . 1.12. Exterior Differentiation : The exterior derivative, denoted by d on D is defined as follows : i)d (D r) D

for some (r—1) form ? then, ? is said to be an exact form. Exercise : 3. Test whether ? is closed or not where i) ? ? ? ? FH |
Kxydxxydyl1l22ii)???eydxeydyxxcossin Theorem1:If?isal-form,thend X X?(,)12712122112XXXXX
X?2?2?2()()[,bgbgbgmr??Proof : Without any loss of generality, one may take an 1-formas???fdgfg,, F(M) ?d
XXdfdg X X?(,)()(,)12127??Using 11.5) of 1.11, we find d
XX?2(,)1272121221000000)()df XdgXdf XdgX?lq

55 Using (10.4) of 1.10, we get d X

X?(,)1272?212122100(0)0)()

XfXgXfXglg??2?2?21212122121XfXgfXXgXfXgfXX

g ()0

bgbgbgbgmronusing (4.6) of 14 Now ?() ()() (), XfdgXfdgX111??bgas()()()f
XfX??2?2bg?fXg()1lby(104)of 1.10 by ?() () Xf X g2 2 ? Thus we get from above

d

XXXXXXEXXgXXg?2?2?2(,)((()()121221122112???2?bgbglq???12122112XXXXfXX
g??(([.1lbgbgbgmr?dXX?(,)1212?XXXXX

X122112?2?2?2()0)1[.]

bgbgbgmr?? This completes the proof. Existence and Uniqueness of Exterior Differentiation : Without any loss of
Dasl124)ddfiiir??12..dxdxiirl??..Clearlyi)d(Dr)Dr+1andii)if ? is a O-form, then d? is the total differential
of 7 .iii) Let ? ? D s and it is enough to consider

dxiisk? =0 Thus existence of such d is established. It is easy to establish the uniqueness of d. Thus there exist a unique
exterior differentiation on D. . 1.13 Pull-back Differential Form : Let M be an n-dimensional and N be an m-dimensional
manifold and f M N : ?
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57 be a differentiable mapping. Let T p (M) be the tangent space at p of Mwhere () () *fp T Nisitsdual. Let () () fp TN
be the tangent space at f(p) of N where () () *fp T Nisitsdual. If (x1,...xn)and (y 1,...y m) are the local corrdinate

respectively the basisof Tp (M)and () () fp T N. Consequently {dxi:i=1,..nyand{dyj:j=1, .., m}arethebasisof Tp*
(M)and () () *fp T N respectively.. Let ? be a 1-form on N. We define an 1-form on M, called the pull-back 1 form of ? on

already defined in 1.7 So, we write 13.2) fffpp * () * () () ? ? ? then, by 74) of 1.7, we get from 13.1, on using 13.2) 13.3) ()
OO*O)*(), fXfXpofMppfpfp????Therefore we may write, for a 1 form ? on N and a vector field X on M by 13.4)
OO () **fXfX???Theorem 1: If fis a mapping from an n-dimensional manifold M to an m-dimensional manifold N,

where (,,...) xxxn12is the local coordimate system in a neighbourhood of a point pof Mand (....) y y m 1is the local

m ?1,.... Proof : Since * () ()i f p f dy is a co-vector at P on M, it can be expressed as the linear combination of the basis
co-vectors ()ipdxatPandwetakefdyadxjfpijipin*()()()???1
58 Where aij's are unknown s to be determined or { ()} () * () fdyxpadxxpjfpkijiipk????FHIK?FHIK?

finddyfxyajjimfpskpsfpkjch?? FHGIKIJFHGIKJI?()()??7??Using (10.5) of (1.10) we find? ? fxajk p kj
FHGIKJ? Thuswegetfdyfxdxjfpjkpipin*()()?FHGIKJ????chl,jm?1,..,;fyfjj??Note: 1 Using
(10.9) of 1.10, one find from above theorem 13.5) fdy df jmjfpjp* () () (),,... ? ?1 we can also write it as 13.6) f dy df d
yfjfpjj*()().??ch

59 2. If ? is a 1-form, then, its pull-back 1-form f * ? is given by 13.7) fdf jjj*? ? ? ? , where ? j are the components of ?

02;??lgandletf:U?R2bethemapfr(,)??xrCos?? computef*?yrSin??Letusnow suppose that ? be a
r-form on N. In the same manner, as defined earlier, we define an r-form on M, called the pull-back r-form on M,
denoted by f * ?, as follows : 13.8) f X Xfpprp*()(),..()?diejdil??fpprpfXfX()**(),.,(),1di?p{

60 We also write itas 13.9) ()(...,) (,..., ) *** f X XfXfXrr??117? Proposition: 1 Letf: Mn? Nm beamap,?and? be

r-formson N, () ? ?? is also so. Hence

fXX

Xfpr*()()(,..)?222di12?22()(,..)()**?2fpr
FXEXL?2222fprfpriXEXEXEXO)**()**(,.,) (... ) L1222 fXXFXXS
prfp

r*()*() e o 27

OG...)0**g
fX

fXfXfpr?21222gfpfp()()?

di(,,.,)***

fXEXEXr12?20)0)(,,...) ) ***gfpfXfXfXfpr?2?2dil2?()()(,..)()**gfpfXfXf
pr??1?fgp

fEXEXS

prx*()**()0)(,..)7

dil
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6lorfgfgpffpfp*()**()()())()??2didi?orfgfgpfpp***()()()(),??bgbgbg??pHencefgfgf***

of 1.11, we see that, any r-form ? can be expressedas? ???????2gdxdxiiiriiiiirrl2112...... wheregiiirl?2..
are differentiable functionson N. Then ffgdx dxiiiriiiiirr** L2272727222212112ej???22fgfdxfdxiiirii
r*..** . 121bythe Proposition 1(b) and Exercise 4 above ? ? ? 2 gffdx fdxiiiirrll..** .. ?diUsing13.5) of 1.13
we see that 13.10) fg fdfdfiiiiiiirrr* ... ......?2227?27?2?27?2?211217ejExercise: 7. Let M be acircleand ?M beR 2 so

thatf M M : ? ? be defined by xrxr12??cos,sin??
621f???2adxbdx12and???1112adxbdx, findf*()???Solution:Inthiscase,????121211????abab,,,df

63 where the symbols have their usual meanings. Proof : We shall consider the following cases. i) ? is a o-form ii) ? is a
r-form Case i) : In this case, let ? ? h, where h is a differentiable function Then fdh X* () () mr?
dhfX()*?()*fXhby(104)of 1L10 =X hf()? by (73)of 1.7 =d hf X ()() ? by (104) of 110 =d fh X () () * m r by (10.4)
of .10 orfdhdfh**()()? The result is true

in this case. Case ii) : In this case, we assume that the result is true for () r 71 form. Without any loss of generality, we may
takeanr-form?as??7??g

rrdib g Note that dxiris a 1-form and hence the theorem is true in this case. Thusd fdx fd dxiirr**()()bgbg??
0 by (12.1) of 1.12

also. Combining we claimthatd ffd () () **?? ?i.e. d and f commute each other.. REFERENCES 1. W.M.Boothby : An
Introduction to Differentiable Manifolds and Riemannian Geometry. 2. Kobayashi & Nomizu : Foundations of
Differentiable Geometry, Volume | 3. N. J. Hicks : Differentiable Manifold 4. Y. Matsushima : Differentiable Manifold

65 UNIT - 2. 2.1 Lie group, Left translation, Right translation : Let G be a differentiable manifold. If G is a group and if the
map(,)gggl12g2?fromGGtoGandthe mapgg??lfrom G to G are both differentiable, then G is called a Lie
group. Exmaple : Let GL(n, R) denote the set of all nonsingular n n matrices over real num- bers. GL(n, R) is a group under
matrix multiplication. Define ? () (, ... ;. o il 0 1)

100% MATCHING BLOCK 4/10 W

A?aaaaaaaaa

nnnnnn111212122212then?:(,) GLNnRRnN?2isamapping of class C . Hence GL(n, R) is a Lie group. Note : Lie
groups are the fundamental building blocks for gauge theories. For every a ? G, a mapping La : G ? G defined by 2.1) L x
axa?,??xGis called a Left translation

on G. Similarly, a mapping R a : G ? G defined by 2.2) R x xa

a?,??xGis called a right translation on G.
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66 Notethat LLxLbxabxaba??()andLxabxab??lLala=LabRRxab?Rbxxbaa()?andRxxbaab??RRR
abba?LRxLxbaxbaba??()andRLxRaxaxbbab??()?LRRLabba?Thus23)LLLabab? RRRabba?,
LRRLabba?AgainLLxLaxbaxabxLLxbabab????(), Thus24)LLLLbaab?,unlessGiscommutative

Takingba??lin23)wefindLLLaaaa???11by23)?LeThus25 LLaa???11()Itisevidentthat, foreverya? G,
each L a and R a are diffeomorphism on G.. Exercise : 1 Show that the set of all left (right) translation on G form a group.

??7?2?2LRbb?(),?ab,inG.
67 3. Let ? be a 1-1 non-identity map from Gto G. If ? ? ? ? L L g g ? is satisfied for all g ? G, then there is a h ? G such that
?? Rh . Solution : 2. From the definition of group homeomorphism of a Lie group G 1 to another Lie group G 2,7 ?? () (

ge??()Leg?()()??Leg?()(), Leg??asgiven? Lge?()bg=Lgh=gh=Rhg????Rgh,
68 . 2.2. Invariant Vector Field : We have already defined a vector field to be invariant under a transformation in 1.8. Note
that, in a Lie group G, for every a, b in G, each L a, R b is a transformation on G. Thus we can define invariant vector field

underLa,Rb.

A vector field X on a Lie group G is called a left

invariant

vector fieldon Gif2.6) (), *()LXXapLpa??p? G, where()* Lais the differential of
La.

Thusfrom17()*()()LXXapLpLpaadi? Wewriteitas2.7)()*LXXa? Similarly for a right invariant vector field,
write 2.8) () * RX X a? From 1.7) we know that () ()*LXgXglLappadi??or()()*()LXgXgLapLppaadi??If

?17 Letgbe

the set of all left invariant vector field on G. If X, Y, ? g,a, b ? R, then 2.10) () () *
LaXbYp???aLXbLYpp()()**?2?2aXbY,()*Lpbeing linear explained in Unit1.2.11) () [,1().()***LXYLXLY
pap?,seel” =1[XY]

69 ThusaXbYg??and[,].XY g? Consequently g is a vector space over R and also a Lie- algebra. The Lie algebra
formed by

the set of all

left invariant vector fields on G is called the Lie algebra of the Lie group G.

Note that

every left invariant vector field is a vector field i.e. g G ? ?() where ?()G denotes the set of all vector field on G. The
converse is not necessarily true. The converse will be true if a condition is satisfied by a vector field. The following
theorem states such condition. Theorem 1 :

84% MATCHING BLOCK 5/10 SA MA4K9 Project.pdf (D27014346)
A vector field X on a Lie group G is left invariant if
and only if forevery fFG? ()212) () () XfLXfLaa???

46% MATCHING BLOCK 6/10 SA MA4K9 Project.pdf (D27014346)

Proof : Let X be a left invariant vector field on a Lie group G. Then for every f F G ? (), we have from (2.6) () * () LXf X f
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apLpans?orXfLXfLppaa()()()??byQl7orXfLpXfLpaa()()()()??21lq?,??pG?XfLXfLaa???()
Conversely let (2.12) be true. Reversing the steps one gets the desired result. Note : i) The behaviour of a Lie group is
determined largely by its behaviour in the neighbourhood of the identity element e of G. The behaviour can be
represented by an alge- braic structure on the tangent space of e, called the Lie algebra of the group. ii) Note that, two
vector spaces U and V are said to be isomorphic, if a mapping f: U ? Vis i) linear and ii) has an inverse f?1:V ? U
Theorem 2 : As a vector space, the Lie subalgebra g of the

Lie group G is isomorphic to the tangent space T e (G) at the identity element e ? G..

70

Proof : Let us define a mapping ?: g T e ? (G) by i) ?()X X e ? Note that, forevery X, Ying, XYg??and?() () XYXYe??
?byi)??XYee????()()XYAlsoforbR?,bXg?and?()()bXbXe?byi?bXe?bXbyi) Thus ?is linear.. We choose
XTGaa?()suchthatii)(),*LVXaea?, WhereVTGee?().Then()*LXssa?1??()()**LLssaelVfrom
above??LLssae?lbg*Vfroml7??Lasselbg*Vby(3)?()*LaeV?Xa,aschosenor()*()()LXXsLsa
Lsassbg???11byQl7or()*LXXs??Xg?Wedefine???1:T(G)eghby

Thus an inverse mapping exists and we claim that g ? T (G) e Exercises : 1. If, X, Y are left invariant vector fields, show that
X, Ylisalsoso. 2. Ifcijknijk(,,,,..,)?12arestructure constants on a

Lie group G with respect to the basis X X

Xnl2,,.., lgofg, showthati)ccijkjik??i)ccccccijkkstjskkitsikkjt???0 Solution: 1. From Q 1.7), we see
that () [,1*LXYfalg?[,]I()XYfLa???XYfLYXfLaa((,??bgbgfromthe definition of Lie Bracket?? XLYfYL
Xfaa()()**bgmrbgmrby17??XYfYXf()()by(2.7)?[,]1XY ffrom the definition of Lie Bracket

72?2000, 11, 1, *LXYXYfa??Using (2.7), we see that [X, Y] is a left invariant vector field. 2. Using problem 1 above, we
seethatevery [, ] XXgij?asXgi?,in?l..,.SinceXXXnl2,,., lgisabasisofg, every [,]XXqgij?canbe
expressed uniquely as, 1) [, I X Xc Xijijkk? wherecijk ?Ri) Note thatifijXXij=,[,170So, letij?.Then froma
known result, [, ][, I XXX Xijji??Using1) we findthatc XcXijkkjikk??AsthesetXXn1l,..,lqisa basis of g and
hence linearly independent, we must have c c ij k ji k ? ? ii) Using Jacobi Identity, we find that [, I, [, I. [, 1.
XXXXXXXXXijsjsisij????Hencefroml)cXXcXXcXX
jkksjskkisikkjl[,1[,1[,1?2??2?2as[,I[,],bXYbXYDbR??Againapplying1), we findthatccXccXccXijkkstt
jskkittsikkjtt????AsXXn1l,.,lqgisa basis and hence linearly independent, we must have ccccccijkks tjs k ki
tsikkjt????

73 . 2.3 Invariant Differential Form : A differential form ?

100% MATCHING BLOCK 7/10 SA MA4K9 Project.pdf (D27014346)
on a Lie group G is said to be left invariant if 2.13)
La
Lppa*(),??2di???pGwewriteitas2.14) La*???and callL a * ?, the pull-back differential form of ?. Similarly, a
differential form ?

87% MATCHING BLOCK 8/10 SA MA4K9 Project.pdf (D27014346)

on a Lie group G is said to be right invariant if 2.15)
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Ra*? ?? Adifferential form, which is both left and right invariant, is called a biinvariant differential form. Exercises : 1. If ?
? 12, are left invariant differential forms, show that, each d? ? ?, 12 ? is also so. 2. Prove that a differential 1-form ? on a
Lie group is left invariant if and only if for every left invariant vector field X on G, ?(X) is a constant function on G. 3. Let ? :
G? Gbesuchthat?(),aa??1??a G. Show that a form ? is left invariant if and only if ? ? * is right invariant. 4. Prove that
the set of all left invariant forms on G is an algebra over R. Such a set is denoted by A, say. 5. If g * denotes the dual space
of g, then, prove that A ? g * where A is the set already defined in Exercise 4 above. Solution : 1. From Q 1.13, we see that
LddLaa**()??11?chwherelLa*?1isthe pull-back 1 form of ? 1 Using on (2.14) on the right hand side of the
above equation, we seethatLdda*()??211?

74 Consequently, d? 1 is a left invariant differential form. It can be proved easily that ? ? 1 2 ? is a left invariant differential
form. 2. Let us consider a differential 1-form ? . Then for every a G?, L a * ? will be defined as the pull-back differential
1-form. Consequently from the definition of pull-back. LXaLppa*()()?ej??LpapalLX()*(),di??pGLetus
consider X to be left invariant. Then on using (2.6) on the right hand side of the above equation, we get1l) LXalLppa ™ (
)()?ej??LplLpaaX()()ejletusnow consider?to be left invariant 1-form. Then by (2.13), we get from1)? ? pp L p
LpXXaa()()()?ej??apapX() Takingp e?, weseethat???eeaecacaaXX

X () () ()?7? Consequently, ?(X) is a constant function on G.. Conversely, if ?(X) is a constant function on G, then () ()
ppapapXX???Hencel)reducestoLXXalLppppa*()()??ej?orLaLppa*()???whichis(2.13) Thus?isa
left invariant differential form. This completes the proof.

75 Theorem 1 : If g is a Lie subalgebra of a Lie group G and g * denotes the set of all left invariant form on G, then d XY X
Y??2(,)[,1??12bgwhere??g*,XYqg,,? Note : Such an equatioin is called Maurer-Carter Equation. Proof : From
theorem 1 of 1.12, we know that d XY XYYY XY ??2?22(,)()()[,1???12bgbgbgmrforevery vector field X, YY If
X, Y are in g then by Exercise 2, ? ? (), () XY are constant functions on G. Hence by Exercise 2 of 1.4), X Y. (),??0Y X. ()
? ? 0 Thus the above equation reducestod XY XY ??2(,)[,].?12bgExercise: 6. Showthatdccijkijkjkjkijkkj?

76 Again from L1l c X Xcmnimnjkmnimnmn()(,),,???2?22212?2?2??2mjnkmknjXXXX()()()()?ns??
212cmnimnjmknkmijn,????ns??12ccjkikjiiot??12ccjkijkiotbyi)of Exerciselof22??122cjki?

77 Thus, wewrited cijkijkjk????????Hencedcijkijkkj???2?2?2?22?. .24 Automorphism : A mapping,
denoted by ? a foreverya ?G, ? a:G G ? defined by ?axaxa (), ??1? ?x Gis said to be an inner automorphism if i) ? ? ?
aaaxyxy()()()?ii)?aisinjective iii) ? a is surjective such ? a is written as ada. Exercise : Show that if G is a Lie group, h
?G, thenthe map | G G h: ? defined by | h k hkh () ? ?1 is an automorphism. An inner automorphism of a Lie group G is

adaaa??1Using 2.3) we get

78217)adaLRRLaaaa????11Notethatada is a diffeomorphism. Theorem 1 : Every inner automorphism of a Lie
group G induces an automorphism of the Lie algebra g of G. Proof : For every a ?G let us denote the inner automorphism
on Gbyi) ()(),adaxaxa??1? ?x G Now for every G, e ?G and from 1.7 such ada : G G ? induces a differential mapping
(ada)*, () :*adaada T(G) TT(G) e (e) (G) e?? Such a mapping is a linear mapping and by Theorem 2 of 2.2, the Lie
subalgebra g of a Lie group G is such that g T (G) e ? Thus to show every ada induces an automorphism of the Lie algebra
g of G we are to show ii) (ada) * is a mapping from g to g iii) (ada) * is a homomorphismi.e. () () () () ***ada XY ada X
adaY???()()()**adabXbadaX?()[,]1()()***adaXYadaXadaY??,?XY,ingiv)(ada) * is injective v) (ada) * is
surjective ii) Let Y ?G . Thenon using 2.17) weget () **adaYRLYaa??1?bg??RLYaalbgbg**as()***fgfg

?G
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79??LRYpa?ldi*??RLYapl?di*by23)??RLYaplbgdi{}**?=RLYap?lbgdi**=RYa?lbg*as
Y g? Consequently, from above, it follows that RY a ?1 b g * ?g. Hence (ada) * is a mapping from g to g. iii) From 1.7) we
know that such (ada) * is a linear mappingie. () () ()()***adaXYadaXadaY???()()(),**adabXbadaX?bR?
Further, such (ada) * satisfies () [,1(), () ***ada XY ada X ada Y ? Thus (ada) * is a homomorphism from g to g. iv)
Clearly (ada) * is injective, on using vi) and the fact that R a ?1 is a translation on G.. v) For every a ?G, a ? ? 1 G and we set
(), *adaXY??1where X?G we will show that Y ?G and (). *ada Y X? Now, fors?G, () *LYs? () () ()()****LadaX
LRLaXssa???11?by(217)??2()()()***LRLXsaallg?()()**LRXsa?

g*by(217)???LRadaXaa?1llbg**()asdefined??? LRRLXaaaa??11lbgbg**by(217)???LRRLXaa
aa??11lbg*by(1.7)?()*LXeby(2.3), where () * L e is the identity differential = X Consequently, () * ada is a
surjective mapping. Combining ii) —— v), we thus claim () : * ada g g ? is a Lie algebra automorphism. This completes the
proof. Note : We also write () * ada = AAda, for every a g? . and a ? Ada is called the Adjoint representation of Gto g.. 2.5
One parameter subgroup of a Lie group Let a mapping a : R ? G denoted bya : t ? a(t)

81 be a differentiable curve on G. If foralls, tinRatasats()()()??thenthe familyattR ()| ? L qis called a one-
parameter subgroup of G.. Exercises : 1. Let H=attR ()| ? l g be a one-parameter subgroup of a Lie group G.. Show that
H is a commutative subgroup of G. 2. If X is a left invariant vector field on G, prove that, it is complete We set 2.18)atae
tt()()???2where?tt:?Rlq

is one parameter group of transformations on G, generated by the left invariant vector field x.

Exercises : 3. Let ? t t| ?R | g be a one-parameter group of transformations on G, gener-- ated by Xg? and?teat () ().?
If foreverysg?,??tsstLL???showthatthesetattR ()| ?lqisaone-parameter subgroup of Gand? ta R t? holds,
for all t R? 4. Let the vector field X be generated by the one parameter group of transformationsRtRat|? oton G.
Show that X is left invariant on G. Solution : As ? t t| ?R | g is a one-parameter group of transformationson GandatRa't
() ???Gis a differentiable mapping, by definitonataslLasat()()()()??bg=Leats()()?bg, as defined in the
hypothesis? Leats()()??di??satlLe?()()dibythe hypothesis
827??satelL()()ej??sate()bg??sat()bg??stge()bgasdefined???ste?bg()=?ste?()is?()tlga
one-parameter group of transformationson G???tse(),asstts???inR??ats() ThusthesetattR()|?lqgisa
one-parameter subgroup of G.. Again????tttstssselLelLe()()()())???bg???LelLastst?()()bgby(2.18)
?sator?tasRst()(),???2sG???taRt4 From Exercise 3above Ratt?? AsitisgiventhatRtRat|? ot generates
the vector field X, from 1.9, we can say that X s is the tangent vector to the curve R atand we write XfttfRsfssat??

F)XEXfLsgsq??1l()?from 1.9 We are left to prove that X g? . Note that, forqg? . LG G q: ? is a left translation on G
and ():O)OO*OLTGTGTGagpLpagpq??isits differential. Hence () () *LXfXfLqpqgdi?? by 17 wherefFG?
Dor())*()LXfXfLgLppgqgdi??IfLpsqg(),?2thenpLsLsgq????11()()by(2.57?pqgs??1lConsequently,
the above equation reducesto () () * LXfXfLXfqgsqgsqsdi???1?byi)?(),*LXXqssdi???sG?(),*LXq?

which shows that X is left invariant. Theorem 1: 1f X,Y g, then [1im Y, XY YttAdat? 11chotProof: Every X ginduces t

84 Now from24AY =Y*daadattllchchRLYaatt?lej*by217)=RLYaattejej{}**1RYatej*,asYg
=tb g*Y by Exercise 3. Consequently, the above question reduces to, [ imY,XAYYttdat?1l1lchot?26 Lie
Transformation group (Action of a Lie group on a Manifold) A Lie group G is a Lie transformation group on a manifold M
or G is said to act differentiably on M if the following conditions are satisfied : i) Each a G induces a transformation on M,
denoted by p pa, p M.ii) (a, p) : GM p M a is a differentiable map.ii)pabpab () (),abp,,. GM We say that G acts on
M on the right. Similarly, the action of G on the left can be defined. Exercise : 1. Let G=GLR 2 ()and M = Rand :GM M
be a differentiable mapping defined byab papb O1FHIKFHIK,,a0, ab, R Show thatis an action on M.

bbpO01,asdefinedFHIKFHIKFHIKababp0101, Thusisan action on M. Definition : If G acts on M on the right
such that 2.19) pa p, p M implies that a e then, G is said to act effectively on M. Note : There is no transformation, other
than the identity one, which leaves every point fixed. If G acts on M on the right such that 2.20) pa p, p M, implies that a e
for some p M then, G is said to act freelyeely on M. Note : In this case, it has isolated fixed points. Theorem 1 : If G acts on
M, then the mapping : () g M denoted by :A () * A A
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86 is a Lie Algebra homomorphism Note : ()A is called the fundamental vector field on M corresponding to A g . Proof :
For every p G let p :G M be a mapping such that i) p a pa () Such a mapping is called the fundamental map
corresponding to p M? . We want to show that : () g M is a Lie Algebra homomorphism i.e. we are to proveii)? 2?2 () () ()
XYXY?2220i)?2?2() (), bXbXbR??2iv)?2?2?2[,]1[,]1XYXY?Itisevidentfromi)thatv)paapap()()RLetAg. Then
from 2.5, A generates t t| R | g as its 1-parameter group of transfor-- mation on G, such thatataett()()??? In this
case, such a t() is the integral curve of Aon G. Themap * () () : () ()????ppeep TGTMT (M) is the differential map
of p and is a linear mapping by definition such that () (). * p e p X T M Using the hypothesis of the theoremvi)peepp p
dilglg*()*A(A) (A)A

87 Note that for every A, B,ing, A+ Bisingandhence (A+B)(A+B)lgdippe*pdi*(A+B)eeppdidi**, A+B
eeaspdi*islinear (A)(B)lglgpp? (A+B)=(A)+ (B), pM. Also forb RbAgandhence () *bA(bA)lgdippepepe
pbdidi**{()}(A)AbA???()()bbAA?Thusis alinear mapping Now A e is the tangent vector to the curveatat ()
atae (). 0 Consequently by 1.7, the vector field??e () * AT (M) T (M) ???? p p e p is defined to be the tangent vector
tothecurve?pttaapapt()()??Ratpopaep()().consequently, by vi), we see that Ae *induce Ratp asits
one-parameter group of transformations on M. Again [ (), ()I[,L]JABAB**ppRSTUVWIm***ttpaptO1BRBe
jejby Theorem 3 of 1.9lim**ttpaqtOldiej{}*eBRBsay wherevijpgatR()vii)orgpppaaatttRRejl1l1
()JThusRBRBagapatttejej****1byvi)aboveRBapaettejej**1byviRBapaett?lej*whereRGMa
patt?1:

88 Henceforb GRRapaapabttttb?llejej()()=Rattpab()lbyi)=pabattlbydefinitionpttabalchby
)ptadabl()chby2l16)of24???ptada?ldi()b?Rapaptttada??11Consequently RRBagapaetttBej
ej***?2?77?1reducestoRBaqgptetBadaejdi***????1???pteadadichej**1B???ptedadichej**

petettdadich{}**lim011BABas?pdi*isalinear mapping.??pedi*[]JABby19??[]A Bbgpbyvi)????
[1(), ()ABAB?Thusthe mapping??:()g? Misa Lie Algebra homomorphism.

89 Theorem 2 : If G acts effectively on M, thenthemap ? ? : () g ? M defined by ?? : () * AAA? ? is an isomorphism.
Proof : From Theorem 1, we know that suchmap ? ? : () g ? M is a Lie Algebra homo- morphism. Hence we are left to
prove that i) ? is injective and ii) ? is surjective. i) Let A, B?gand ?? () ()AB? Then?? (), AB?? as ? is a linear mapping.
or()*AB???ie. ()*AB?is the null vector on M. Now A-B ?g and it will generate ? te t() | ?R | g as its 1-parameter
group of transformations on G such that () A B? e is the tangent vector to the curve, saybtbett()()???atboe()?
Consequently, the vector field () () **ABAB????pediisthe tangent vector tothecurve? ptbbtpbRpt()()bg
??2at??ppboepep()().bg???Thus()()**ABAB????pedigeneratesRRbtpt()]?otasits 1-parameter
group of trans- formations on M. But () * A B? is the null vector on M. Hence the integral curve of () * A B? will reduce to
a single point of itself. Thus Rbtp p () ? or pb p t ? As G acts effectively on M, comparing this with 2.19) we get, be t?,?
?pM. AgainLgqdi*()ABAB???as()AB??g
90?LLQgttq????2?2from19Thus???tttgqgqgee()()??2bgdilL???2())()()()????LLLggtgteeb???qgb

q?ThusAB=??ie. A=B.Hence??()()AA?implies that A = B. Consequently ? is injective. ii) As G acts effectively on
M, ? is surjective. Thus the map is a Lie Algebra isomorphism and this completes the proof. Theorem 3 : If G acts freely on
M, then, for every non-zero vector field A ?g, the vector field A * on M can never vanish. Proof : If possible, let A * be a
null vector on M. Then, as done in the previous theorem, every A ? g will generate ? t e t() | ?R L g as its 1-parameter
group of transformations on G and we will have ? t g q () ? Consequently from the definition, as givenin L9 Aqttfddtf
g?LNMOQP??()bg0???lim()()tfqfgtt0?bg=0.

91 Hence A becomes a null vector, contradicting the hypothesis. Thus the vector field A * on M can never vanish.
REFERENCE 1. P. M. Cohn : Lie groups 2. B. B. Sinha : An Introduction to Modern Different geometry 3. S. Helgason :
Differential geometry, Lie groups and Symmetric spaces.

92 UNIT - 3 3.1 Linear Connection : The concept of linear (affine) connection was first defined by Levi-Civita for
Riemannian manifolds, generalising the notion of parallelism for Eucliden Spaces. This definition is given in the sense of
KOSZUL. A linear

connection

on a manifold M isamapping???:()()()??? MM M denoted

by???2:()XYYX
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XYZY+Z()ii)YZ(Y4+2Z) XX X?7?7?727ii) X

fxXy

fY?222i) XX(EY)XOY+FY?2?272,222XY,

Z(

M), F(

M) ? f The vector field ?

XY is called the covariant derivative of Y in the direction of X

with respect to the connection If P is a tensor field of type (0, s) we definev) ? XP =XP, ifs=0vVvi)?X12nPYYYbgbg
ey 22222251201 Xisi=1XPY,Y, . YPY,. Y, . Y????Exercisel:LetM=RnandX,Y,??(M) besuchthatY=Dbi

2222 Again, 2?2 fiiiifbxfxXYXXbbgchchej???2as()()f
fYhYh?=YXf?and??XYX () ffbxiichej??as?? () ()XXfbfbxiiich??asX(g) = (X)g+ (Xg) fff??()()XX

efficients or the compo-
94 nents of the connection. Hence if X? 2?2 ?iix,Y????jjxwhereeach??ij,,?F(M)in?l,.., weseethat?? FHIKX

XYYyxxyxyxliilljsixlsbyiii)??2?2?2?22?222?22?2?2?2?22XyyXXyXyX
Lijlljsislkk?by31)??22?22222222222222722
XYYYXYyXyXyX

XYXXYYYXyyxyySince??y
knk:????2RSTUV W lis a basis of the tangent space and hence linearly independent and the result follows
immediately. 3.2 Torsion tensor field and curvature tensor field on a linear connection we define a mapping T:??? MM

96 3.3)
R

Then T is a tensor field of type (1,2)

and is called the torsion tensor field and R is a tensor field of type (1, 3), called the curvature tensor field of M. A linear
connection is said to be symmetric if 3.4) T(X, Y) = O In such case 3.5)

XY XYY X?7??7?Exercise : 1. Verify that i) T(X, Y) = =T(Y, X); i) TX, ZTY,

ZfXgYZfTg???,bgbgbag;iii) T(fX, gY) =fg T(X, Y). 2. 1f 2?2 ? 2

XYXYTXYbg,show that ? is a linear connectionand T T ? ? 3. Show thati) TT

XXYO;, RXYZRYXZbgbgbg???;RXYZ+RY,ZXRZXY =0
bgbgbg?ii)RTXY,ZR,ZRZ RXY,ZXYYX
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R

XAYZREYYZRXY fZfRXY

z

bgbgbgbg???Hence Show that R fX,gY hZ fgh R XY Zb g b g ? 4. Exercise 3 : Prove Ricci Identity a) for a 1-form w :

TXY(,)

Thus T

is skew-symmetric ii) fX gY Z T(
X gV,2) Z (fX gY) [fX gV,

Again,

using the definition, given in 3.1 and also from 1.5 we get Thus T is a bilinear mapping. 2. To prove that ? is a linear
connection, we have to prove i), ii), iii), iv) of 3.1. Now

X

TX
Y(,)(,)(,) by Ex1()above? 2TXY (,)?2TT??
99 3. (iv) From the definition R(X,FY)Z X Y fY X |

of
A Tensor Field of type (o, s) The covariant differential of a tensor field of type (O,
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s)
is a tensor field of type (0, s + 1) and is defined as 3.6) ? ? x 112 X1 X12S (P)X X,, X)P (X,
X, X)?2222222%

102
103 UNIT - 47
104 Theorem 1 : Every Riemannian manifold (M, g) admits a unique Riemannian Connection. Proof : To prove the

X(fY) (XOY fY??27?27?

Thus such a mapping determines a linear connection on M. Also, from (4.3) it can be shown that
X29(Y,2)

Xa(Y,Z) Yg(z,

such a metric connection admits a Riemannian connection To prove the uniqueness, let ? be another such connection.
Then we must have

X

X

Xg(

Y,Z) g(Y,2)

XXg(YY.2Z)glY,ZZ) 0 XY,
2?22?2727

and X

XYY

YYX

Y

Y??7?27?

Thus uniquences is established. This completes the proof

Exercise : 1 In terms of a local coordinate system 12 n .... {x ,x, ,x } in a neighbourhood U of p of a Riemannian Manifold
(M, g) show that i) the components i jk ? defined in UNIT 3 is symmetric and ii) the Riemannian metric is covariantly
constant. 2.

Let ? be a metric connection of a Riemannian manifold (M, g) and ? ? be another linear connecting given by X X Y Y T(X.Y)
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g(Y.T(X,Y)) 0 ? ? 3. In terms of a local coordinate system 1 n ....... {x, .x} the components i jk ? of the Ri- emannian
connection are given by

106

107

108 4.6)

gl

XY)Z,U) g(R(XY)U,Z) ? ? 47) g(R(X,Y)Z,U) g(R(Z,U)X)Y) ? ? Proof : Using 3.3), 3.5) one gets R(

XY)Z R(Y,Z)X R(Z,

X)Y [

by

Jacobi identity 4.5)

is Left to the reader To prove 4.6), one gets from 4.1) X (
a)(

ZU) 0, X,

ZU?7?2?2 XX )Xg(

or, XX Y(Xg(Z,U)) Yg( Z,

U)

Yg(Z, U) ? ? ? ? using )? on the right side we get
Y X

XYYY

Y X

Y(Xg(Zz,U) g(,Z,U) g( Z, U)
a(Z,

U) g(z,

Thus,

we find X(Yg(Z,U)) Y(Xg(Z,U)) [

55% MATCHING BLOCK 9/10 SA Main Thesisl.pdf (D46262243)

Using the definition of [ X, Y ] f, on the left hand side, one finds g(

R(

X.Y)Z,U) g(Z,R(X,Y)U) 0 ? ? Again,

R(

XY)Z R(Y,Z)X R(ZX)Y 0 ? ? ? g(R(XY)Z) g(R(Y,2)X,U) g(R(ZX)Y,

U)0...)??7??

109 Similarly, we can write g(R(U,Z2)XY) g(R(Z,X)UY) g(RIX,U)ZY) O ........ ) 2?22 ?2g(R(Y,X)U,Z) g(RIX,U)Y.Z) g(RIUY)X,Z) O ........
)??2727?

g(RZU)Y.X) g(R(UY)ZX) g(R(Y,Z)UX) O ........ )????Adding),),).),)?????and using 4.6) we get g(R(X,Y)Z,U) g(R(U,2)X,Y)
g(R(Y,X)U,

7Z)

g(R(Z, V)Y,

X)0??27?7?

Using Exercise 3(ii) 3.2 in the second and in the third term of the above equation. or,

g(

23 of 30 02-05-2023, 17:54



Ouriginal

by Turnitin

R(

XY)Z,U) g(RZ,U)XY) g(R(X.Y)U,Z) g(R(Z,U)Y.X) O ? ? ? ? After a few steps one gets 2g(R(X,Y)Z,U) 2g(R(Z,U)X)Y) ? i.e.
g(RIXY)Z,U) g(R(Z,U)X,

Y)?

Exercise 4. In terms of a local coordinate system1n ....... {x, ,x}in a neighbourhood U of p of (M, g) show thati) m m m
ijkjkikf RRRO???ii)hhhikmjmkimikjRRRO???ii)hhhmhkikjimRgRg??ivyhhhmhjikkmiRgRg??
Solution : i) From ii) of Exercise 5 in 3.2 and also using the result m m jk kj ? ? ? the result follows immediately ii) Left to

??2?2mttimimkikhmmihtikjkjkimjitmg
9999ggll22xxxXxXXX

111

112 3.4.2 Riemann Curvature tensor field : The Riemann Curvature tensor field of 1st kind of M is a tensor field of degree
(0, 4), denoted also by R R: (M) (M) (M) (M) F(M) ? ?? ?? ?? ? and defined by 4.10) R(

XY.ZW) g(R(X,Y)ZW),XY,ZW ? in (M) ? Exercise : 1 Verify thati) R(X, Y, Z, W) = = R(Y, X, Z, W) ii) R(X, Y, Z, W) = = R(X, Y, W,
Z) i) R(X, Y,

Z,W)=-R(Z WX Y)iv)RX, Y, Z W) +R(Y, Z, X, W) + R(Z, X, Y, W) = 0 v) UZ W (R)(XY.ZW) (R)(X,Y,W,U) (R)(X,Y,U,Z) 0 ??
2272722

If hijk R and hm g are the components of the curvature tensor and the metric tensor with respect to a local coordinate

g(ZY) d (Y) Yf, F(M) ? ? ? f f for every vector field Y and M. Show that for such Z XY g( ZY) g( Z,X) ? ? ? for every vector field
X on M. Solution : From 4.1) we see that X ( g)(

Y,Z)0??forall X, Y, Zin (M)?orX

X Xg(Y,Z) g(Y,Z) g(Y, Z) ? ? ? ? Using 4.11), one finds X X

g(Zy)

X(Y) gf

Y,Z)? ??7? fsimilarly

YYg(ZX)Y(X)g(X

2)??2?22fXYYXg(ZY)g(ZX)

Z)?7

fby 4.2) IXYT[X)Y] ??
f

f

by 4.11) =0

Thus XY g(
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ZY)g(ZX)??7?343

Einstein Manifold : Let12 n ... {e ,e, e } be an orthonormal basis of p T (M) Then the Ricci tensor field, de- noted by S, is
the covariant tensor field of degree 2 and is defined by ??? 2 nppiPPiPPil1S(X,Y)R (e XY (e)??? We writeitas
412)niiilS(X)Y)R(e,XY,e)???Such atensor field S(X, Y) is also called the Ricci Curvature of M. If there is a constant ?

rijp) Se,e??7?is called the scalar curvature of M. We write itas 4.14)niiilrS(e,e)?? ? Exercise : 1. Show that the Ricci
tensor field is symmetric. At any p M, ? we denoted by ? a plane section i.e., a two dimensional subspace of p T (M) . The
sectional curvature of ? denoted by K( ? ) with orthonormal basis X, Y is defined as 4.15) K( ? )=g(R(X, Y) Y, X) = R(X, Y, Y, X)
If K(?) is constant for all plane section and for all points of p M,

114 Then (M, g) is called a manifold of constant curvature. For such a manifold 4.16)

R(

XY)Z k{g(Y,Z)X g(X,Z2)Y} ? ?

where k()? say Example : Euclidean space is of Constant Curvature

Exercise : 1, Show that a Riemannian manifold

of constant curvature is an Einstein Manifold. 2.

If M is a 3-dimensional Einstein Manifold, then, it is a manifold of constant curvature

Solution : Let 12 3 {X X ,X } be an orthonormal basis of p T (M) Then, the sectional curvature with orthonormal basis 1 2 X
X denoted by 12 K() ? is given by 1212 2 1 K()

R(

XXX X)??22112R(X X X, X)?21LK()??Thus,ijji K()K(),ij????Againfrom4.12)312i12ii15(

X . X) R(

XXX X)?2?2?2112121213123R(X,X,X,X)RX X, X,X)

R(X,

X,

X, X)?2?2?221310

K()????Asitisa3-dimensional Einstein manifold, so from4.13) 1111
SX ,X)g(X , X)?2?2?221212S(X X)g(X,X)0???

115

116

using

the above result

in 4.8)

we get

Exercise 1. If ?
and ? correspond to a semi-symmetric connection and the Levi-Civita connection respectively, then for any 1-form ? ? ?

gets the desired result. 2. Note
that

XY T(

X,

X (X)
Y, 7?2?7277

on using the hypothesis (Y)X (
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Z(X)2)??2?2222222X(g)(Y.2) 2(X)g(Y.2),? 7?7?27

on using the hypothesis Xg2 (X)g,????asg0.??
117

118 Or, 1 C(

n1)(n2)????Hints: 1 Using 4.13) in 4.14, one gets r n ? ? Alsing above result, 4.13), one gets from 4.21) r Ax x n ? Using
4.20) in 4.22) and also the result deduced above, one gets the desired result after a few steps. 2. Using goldberg’s result,

119 4.5 Conformally Symmetric Riemannian Manifold :

A Riemannian manifold (M, g) is said to be conformally symmetric if 4.23)

C 0 7?? Where C is the Weyl Conformal Curvature tensor Theorem 1 : A conformally symmetric manifold is of constant
scalar curvature if

ZW (S)(

Y,W) (S)(Y,Z) ? ? ? for allY, Z, WW Proof : From 4.22) we see

that 1 C(

W)} (

n 1)(

Taking co-variant derivative on both sides and using (4.23), we get U U U 1 ( R)(

X,

Y,ZW) {g(Y.2)(S)gX.W) g(X,.2)(S)IglYW)n 22222222 U U (SIY.2gX.W) (S)(X.Z2)g(Y.W)} ? 2 22 U r {g(Y,2)g(X,W) g(X,Z)g(Y.
W)} (n 1)(

Using the result deduced above, and also the hypothesis one gets
U
Zr{

2107?27?27
Leti... {e:i 1, n}? beanorthonormal basis vectors.
120 Taking the sumforlin??foriXUe, ? ? we getonusing theresulteiizrgle,z)r???thatwzzzw

r0?7?7?7?Finally taking the sumforlin??foriYZe,??wegetwr0,nl ??7?Thusthe manifold is of constant
curvature. Definition : A linear transformation A is

Exercise : 1. Show that for a symmetric linear transformation A and a skew-symmetric linear transformation R, the new
linear transformation T defined by, TA. R R. ? ? Ais skew - symmetric. Theorem 2 : For a conformally flat n(n 3)? -

? ? where X Y? denotes the skew - symmetric endomarphism of the tangent space at every point defined by (
XY)Z g(Y,Z2)X g(X,2)Y ??7?

As the manifold is conformally flat,

we get on using the above result and the hypothesis, 1
r
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RXY)Z{AXY)Z (XAY)Z}{IXY)Z}n2(n1(n2)???2?2?2?2?2?27ie 1rRXXY) (AXY XAY) XY

of this article A. R(X, Y) = R(X, Y). A'is skew - symmetric. Thus R(Z, W)A is a skew symmetric linear transformation and from
4.24) we can write

g((R(Z, W)

A)X, X) = = g(X, (R (Z, W) A) X) or g(R(Z, W)A)X, X) = = g(X, R (

Z, W) AX) = = g(R(Z, W) AX, X), as g is symmetric. ? g(R(Z, W)AX, X) = 0 Using 4.7) one gets g(R (AX, X)Z, W) = 0

Whence R(AX, X)Z = 0 i.e., R(AX, X) = 0 Again (AXAX)Z 0 ? ?i.e, AXAX 0 ? ? for every Z. Using Theorem 2, one gets 2 1 r

called a geodesic on M with a linear connection ? if 4.25) X X 0 ? ? Where X is the vector tangent to the integral curve ? at
x(t). Note that the integral curves of a left invariant vector fields are geodesic. 4.7 Biinvariant Riemannian metric on a Lie
group : A Riemannian metric g on a Lie group

100% MATCHING BLOCK 10/10 SA MA4KO9 Project.pdf (D27014346)

is said to be biinvariant if it is both left and right

invariants. Exercise 1 : If g is a left invariant convariant tensor field of order 2 on G and X, Y are left invariant vector fields
on G, show that g(X, Y) is a constant function. Theoxem 1: If G is a Lie group admitting a biinvariant Riemannian metric

o}

then 4.26)

all

X,

Y1, Z) = of

X, 1Y, Z1) 4.27) LRIXY)Z [[X,Y],Z1 4? ? 4.28) 1 g(R(X,Y)Z,
W) g(IX,Y1[Z,

W]) 4 ? ? Proof : Since X, Y

are left invariant vector fields, X + Y is

also so and hence from 4.25) XY XY Q?7?7??

123 Using 4.25, we find from above i) XYY X 0?2 7??

since M admits a unique Riemannian connection, we must have
X

Using Exercise 1

of this article and Exercise 2 of ? 1.4 we see that Y. g(X, Z) = 0 Thus from ii) we find that 1 1
all

Y. X12) g(

XIY,Z21)022??7?or g(XY2) gX[V.2]) ? or,

g(lX\Y1.2) g(X.[Y.2]) ?

Again from the definition Z

XY

Y1,Z427?7??byJacobildentity ????11]
XY1.Z [XY],
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2427227221 [XY,247?7

Again????1R(XY)ZW) g XY],Z, W4 7??2by427)??2?2?21gXY]Z, |

Z,

W] 47?7?by4.26)

This completes the proof.

124

Theorem 2 : If G is a Lie group admitting a biinvariant Riemannian metric g and ? is a plane section in p T (M) where ? is
determined by orthonormal left invariant vector fields X, Y at p on G, then the sectional curvature at p is zero if and only if
[X, Y] = 0. Proof : From 4.15) K() g(

RIXY)Y.X)? 2 Lg(IXYLIY.X]) 4 2 ? by 4.28) 1 g([X,Y][X.Y]) 4 ?

The result follows immediately as g is nonsingular. Theorem 3 : If G is a Lie group admitting a biinvariant Riemannian
metric g, then for all left invariant vector fields, X, Y, Z, W, P. Proof : From Jacobi’s identity [W, [

P.ZII + [P, [Z, WII + [Z, [W, P]] = 0 Taking P = [

X, Y1, we get W, [IX, Y], Z] + [[X, Y], [Z, WII + [Z, W, [X, YIIl = O or [W, [[

XYL ZI = (DK YL W, ZIT = [IW, [X, Y11, Z] = [ = [ X, Y, WIT = [Y, [W, X]], Z ] by Jacobi Identity i) [W, [[X, Y], ZI] - [[X, Y], [W, Z]]
= [[X, W, YII, Z] + [[W, X, Y],

P)??
125
REFERENCES 1. W. B. Boothby : An Introduction to differentiable Manifold and Riemannian Geometry. Using 4.28), one

PgllwWXLYlLZ,

P88??=0

by i) for all left invariant vector fields X, Z, Y, W, P. This completes the proof.
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