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PREFACE

In the curricular structure introduced by this University for students of Post-Graduate
degree programme, the opportunity to pursue Post-Graduate course in Subjects
introduced by this University is equally available to all leamers. Instead of being
guided by any presumption about ability level, it would perhaps stand to reason if
receptivity of a learner is judged in the course of the learning process. That would be
entirely in keeping with the objectives of open educaion which does not belicve in
artificial differentiation.

Keeping this in view, study materials of the Post-Graduate level in different subjects
are being prepared on the basis of a well laid-out syllabus. The course structure combines
the best elements in the approved syllabi of Central and State Universities in respective
subjects. It has been so designed as to be upgradable with the addition of new
information as well as results of fresh thinking and analysis.

The accepted methodology of distance education has been followed in the preparation
of these study materials. Co-operation in every form of expetienced scholars is
indispensable for a work of this kind. We, therefore, owe an enormous debt of gratitude
to everyone whose tircless efforts went into the writing, editing and devising of proper
lay-out of the meterials. Practically speaking, their role amounts to an involvement in
invisible teaching. For, whoever makes use of these study materials would virtually
derive the benefit of learning under their collective care without cach being seen by
the other.

The more a learner would seriously pursue these study materials the casier it will
be for him or her to reach oul to larger horizons of a subject. Carc has also been taken
to make the language lucid and presentation attractive so that may be rated as quality
self-learning materials. If anything remains still obscure or difficult to follow,
arrangements are there to come to terms with them through the counselling sessions
regularly available at the network of study centres sel up by the University.

Needless to add, a great part of these efforts is still experimental—in fact, pioneering
in certain areas. Naturally, there is cvery possibility ol some lapse or deficiency here
and there. However, these do admit of rectification and further improvement in due
course. On the whole, therefore, these study materials are expected to evoke wider
appreciation the more they reccive serious attention of all concerned.

" Prof. (Dr.) Subba Sankar Sarkar
Vice-Chaneellor
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Unit 1 0 Basic Concept of Probability

 Structure
1.1 Introduction
1.2 Basic Terminology
1.3 Classical or a-Priori Definition of Probability
1.4 Empirical or Statistical Definition of Probability
1.5 Axiomatic or Modern Definition of Probability
1.6 Set Theory ;
1.7 Laws of Algebra of Sets
1.8 Some Fundamental Theorems on Probability
1.9 Some Important Results
1,10 Conditional Probability
1.11 Compound Probability
1.12 Independent Events
1.13 Pair-Wise Independent Events
1.14 Mutually Independent Events
1.15 Bayes’ Theorem
1.16 Problems on Probability

1.17 Exercises

- 1.1 Introduction

Chance is what makes life worth living, If anything was known in advance, imagine
(he disappointment, if decision makers had perfect information about the future as well
as the present and the past there would be no need to consider the concept of probability.
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However, it is unusually the case that uncertainty can not be climinated and hence its
presence should be recognised and used in the process of decision making. Information
about uncertainty is often available to the decision maker in the form of probabilitics,
There are many events which are associated with our real life where the results can
not be predicted with certainty. For example :

a) A sales manager can not say with certainty that he will achieve the sales

target in a month.

b) The future life of an electric bulb or tube can not be predicied in advance.
A producer can not ascertain the future demand for his product with
cerlainty.

Such phenomena are frequently observed in Economics, business and social scicnces
or even in our day-to-day life.

1.2 Basic Terminology

Random Experiment : An experiment is an activity and it is called a random
experiment if when conducted repeatedly under essentially homogeneous condifions,
the result is not unique but may be any one of the outcomes. It is called random
because it depends upon chance. For example: tossing a coin, Thmwmg a die, drawing
cards from a full pack, drawing a ball from a box etc.

Outcome: The result of a random experiment will be called an outcome.

Trial and Event : Performing a random experiment is called a trial and out
comes are termed as events. For example : throwing a die is a trial and petting any
one of the faces 1,2,3,....6 is an cvent.

Simple and compound event: Elementary or simple events are those which can
not be decomposed further. Compound events, on the other hand, can be decomposed
into several simple events,

Exhaustive event: The total number of paséihie elementary cvents associated with
a random experiment is known as exhaustive events. For example, if two coins arc
tossed the exhaustive events will be HH, HT, TH, TT.

Mutually Exclusive Events: By mutually exclusiveness of events is meant that
the simultaneous occurrence of those events is not possible.




For example: In a coin tossing experiment head and tail cannot oceur simultangously.
Thus head and tail are mutually exclusive events.

Equally likely cvents: The events are said to be equally likely or equally probable if
none of them is expected to occur in preference to the other. In tossing a coin all the
outcomes, viz., H, T are equally likely if the coin is an unbiased one.

Independent events: If the occurrence of one event does not affect the probability of
the oceurrence or non-occurrence or of other events, then events are said to be
independent of cach other.

Favourable cases to an event : The number of outcomes of a random experiment
which result in the happening of the event concerned are known as the cases favourable
to the event,

~ For example, in drawing a card from a full pack of cards, the number of cases?
favourable to drawing a spade is 13 because there are 13 spades int a full pack of cards.

Sample space:  Lach concfeivable outcome of a random experiment under
consideration is said to be a sample point. The totality of all conceivable sample points
is called a sample space Sample 3 pace of a trial conducted by 3 tossing of a coin
is {HHIL, HHT. IITH, THH, TTH, THT, HIT and TTT} i.e.; 8 sample points constitute
the sample space.

1.3 Classical or a-Pripri Definition of Probability

If a random experiment results in N exhaustive, mutually exclusive and equally
likely outcomes and M of them are favourable to an event L, then the probability of the
. event E, denoted by P(E), is defined as,

P(E) = M/N

Remarks @ Since, M and N are non-negalive integers with
0<M<N

ie. 0=MMN <]

ie. 0 <P(E) =1, for any event E.



If P(E) = 0, then E is called an impossible event and is denoted by &
If P(E) =1, then L is called a sure event and is denoted by S.

Limitations : The classical definition of probability suffers from the following
limitations :

1. This definition will not work if the size of the sample space is infinite i.e.
N—o,

& The definition is true when the elementary cvents are cqually likely. So
the defimition is circular in nature.

3. It is applicable if the outcomes are exhaustive, mutually exclusive and
equally likely, without which the definition is inapplicable,

4. The definition has limited application in the games, viz.. coin tossing, die
throwing cascs efc, Practically it has limited application in the prospective
field of Statistics and probability.

1.4 Empirical or Statistical Definition of Probability

Let f; (E) be the number of times an event E occurs in N repetition of a random
experiment under essentially homogeneous condition. The ratio LAEYN gives the
relative frequency of the event E. Then the probability of the occurrence of the event
. E, denoted by P(E), is given by

pE)= 8,2
N
provided the limit exists.
It can be demonstrated graphically as follows. Along the horizontal axis we measure
the number of times the coin is tossed and on the vertical axis relative frequency is
measured.

T

Tos | \/A\/hv

fiy(EY/N

W

N —

As N —oc, the probability of occurrence of IT or T when an unbiased coin is

tossed is just 0.5.
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Note : 1. In this definition we require to repeat the random experiment for an
infinitely large number of times under homogeneous and identical
conditions..

2.  Compared to the classical definition this definition 1s broad enough in the
sense that it is applicable if the sample space contains infinite number as
well as not equally likely event points.

3, This delinition gives a definile operational meaning of probability.
Limitations
.  The condilions may not remain identical, specially when the number of

trial is very large.

2. The relative frequency may not attain a unique value, no matter what ever
large N may be.
It may not be possible to repeat an experiment a large number of times.

4.  Like the clasical definition, this delinition does not lead to any mathematical
freatment of probability. :

1.5 Axiomatic or Modern Definition of Probability

Let S be a sample space of a random experiment. If to cach event; E (f € 5} we
associate a real number P(E), then P(E) is called the probability of event E, il the
following axioms are satisfied :

Axiom 1. For any cvent E = &
P(F) = 0.
Axiom 2. For the sample sapce 5, P(5) = 1.
Axiom 3. For any finite or countably inlinite number of mutually exclusive events
By By B, ot b -
P(E; U E;U Ey U ) = PB(E)+PE;) + PEH ..
Note: It may be noted that the axiomatic definition of probability is a general case
which includes the classical and the statistical definitions as its particular cases.

Resides this, it gives a number of mathematical rules that are useful for further
mathematical treatment of the subjeet of probability.
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1.6 Set Theory

Definition of a Set: .A well defined collection of distinct objects is called a set.
The objects may be people, number, books, number of telephone calls cte.

Example.
1.  The set of rivers in West Bengal,
2, The set ol students in a Management College.
3.  The sct of consonants in the English Alphabet.
Let us suppose that 1,2,3,4,5,6,7 are the elements of a set A. Then we represent
the set A by Roster method and we write A = { 1, 2, 34, 5, 6, 7}.
Flement of a Set :
If ‘a’ is an element of a set A, we write it as ag A

~which is rcad as a belongs to A or a is in A.

Null Set :
A sel which contains no element is called the null sef or emply set, It is denaoted
by ¢.If A is a null set, then A = { . }.

Singleton Set :

A set which contains only one element is called a singleton or unit sef.

A=1{1} is a singleton set.

Sub-set :

If every element of a set A is also an element of a set B, then A is said to be a
sub-set of B and we write

A< BorB 2 A % llere A is a sub-sct of B while B is a superset of A.

Universal Set :

In any application of set theory, all the sets under investigation are likely to be
considered as sub-sets of a particular set. This set is called the Universal Ser. It is
denoted by U or S.
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Union of Sets -
The unim} of sets A and B is the set of all elements which belong to either im A

or in B or in both A and B. It is written as A |J B. Tt has been shown interms of

the following venn diagram.

AlUUB=B | A=The shaded region.

Intersection of sets :
The intersection of sets of A and B is the sct of all elements which belong to both

A and B. It is denoted by A (] B. Tt has becn demonstrated in the following venn

diagram.

A ANB B

ANB=B N A=The shaded region.

Complement of a Set :
The complement of a set A

do not belong to A. This is denoted by A or A€ or A/,
It has been shown in the following venn diagram.

is the set of all elements of the universal set UJ which




Difference of Two Sets :
The difference of two sets A and B is the set of all elements which belong to A but
do not belong to B. This is written as A — B,

1.7 Laws of Algebra of Sets

1. Commutative Laws :
1) AUB=BUA.
i) AN B=BN A
2. Associative Laws :
) A C) = (A L BEL C.
) ANGBNO=ANBNC
3.  Distributive Laws :

) AUBNO=AUBNM@U C).
W ANBUO=MANB UMM C.
4. De Morgan’s Laws :
) (Al BY=A'Nn B,
i) (A BY=A"| B.
5. Idempotent Laws :
i) AlJA=A
i) A} A=A,
6. Identity Laws :

) AU bd=A
i) ANé=4¢
iii) AUUS=8

w) ANS=A
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7. Complement Laws :

) AlJA=8
i) ANA=¢
iliy (A=A

iv) 8 =¢and =S5,

The various operations on sets, viz., union, intersection, dilference and
complementation can be explained through examples below :

Example :

Let 8=11.2 34,5 6,7 8 9},
A=11,23,4,5,6} and
B = {5, 6,78, 9}

Then AUB=BU A={1,2,3,4,56,78,9} =8,
A B=B [} A="1{5,6},
A or A or A’ = {7, 8 9},
ANB=A-B={1,2 3,4} and
B A=B-A={7 8, 9}

1.8 Some Fundamental Theorems on Probability

Theorem 1 :
P(¢) = 0, when ¢ is an impossible event.

Proof :
From the algebra of sets
AN $=19
That is, A and ¢ arc mutually exclusive.
Now A L) ¢ = A.
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S0, by Axiom 3 .
P(A) = P(A U ¢) = P(A) + P(¢p).
Hence, P(d) =0 .
Theorem 2 : For any event A,
P(A%) = 1 - P(A).
Proof : A [ AC = ¢, :
that is, A and A® are mufual]y exclusive events.
Further A |J A€ = 8. '
Hence by Axiom 2 and 3,
1 = P(S) = P(A L) A%) = P(A) + P(AS).
Therefore, P(A€) = 1 - P(A).
Theorem 3 : If A — B for any two events A and B in §,
Then P(A) < P(B).
Proof : If A = B, then B can be wrilten as
B=A UAS N B)
Where A and (A [ B) are mutually exclusive,
Hence by Axiom 3,
P(B) = P(A) + P(A® N B).
Further, P(AC ] B)'2 0, by Axiom 1,
Hence P(B) = P(A).
Theorem 4 : (0 < P(A) = 1,

Proof : Since A = S, using theorem 3
P(A) < P(8).
ie P(A) = 1.
Again, by Axiom 1, P(A) = 0.
| Hence, 0 < P(A) = 1.
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Theorem 5 : For any two cvenis A and B in 5
(i) P(A) =P(A N B) + P(A MBS :
(i) P(B) = P(A N B) + P(A® ) B).
Proft : Events A (] B and A [ B® are mutually cxclusive. Again
A=(ANB) U AN B9
Hence by Axiom 3,
P(A) = P(A N B) + P(A N B%).

Similarly, (ii) can be proved.

X

Theorem 6 : For any two events A and B in §
P(A |J B) = P(A) + P(B) - P(A ] B).
Proof :
One can write A |] B as
AUB=(ANBYUMAMNB UM N B
where the events (A ) BY), (A N B)and (A€ 1 B) are mutually exclusive.
Hence, by Axiom 3,
P(A | B) = P(A ] B + P(A ] B) + P(AC (] B).
E‘an from Theorem 5
P(A N BY) =P(A) - P(A N B)
and P(A® N B)=P(B)-P(A N B)
Substituting these values,
P(A U B) = [P(A) - P(A NB)] + P(A )| B) + [P(B) — P(A ] BJ]
= P(A) + P(B) - P(A N B).
Corollary : If A and B arc mutually exclusive then
B(A |J B) = P(A) + P(B).
Theorem 7 : For any three events A, B and C in 8,
P(A UB U C)=P@A)+P®B) +P(C) - P(A NB) - P(A NC) - BB N
Cy+P(A FEBIRCL
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Proof :
' In Theorem 5 if B is replaced by (B |J C) then
PAUBUCOC=PALU(BUCQC]
=PA)FPBUCO-PAN B U O]
=PA)+P(B UC)-P[A M B) U (A ) ©), by the distributive law.
50 repeated application of Theorem 6 gives.
":"(AUBUC}=P{A}+P(B}+F'[C]mP[B{’iC}—F{AﬂH)—P(ﬂﬂC}
+PIANBNANOI
= P(A) + P(B) + PO) - PANB) - P(ANC)-PBNC)
+ P(AMIBNO)

Hence the prool of the theorem.

Theorem 8 :
For any n events B, B,, B, ............ , B in 8
n n n n
P UBi :ZP{Bi]_ Z P(B; (B} +. Z P(B; N B;NBy) -
i=1 i=l i, =1, i<j i g k=T, i<j<k
n
it (D CE( (CHAER
_ i=I
Corollary : If B B ) B, are mutually exclusive events, then

i=l

P [QBEJ = ib{ﬂj) .

1.9 Some Important Results

1. For any two events A and B in 5,

P(AB) = P(A) or P(B) < P(A U B) < P(A) + P(B).
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2,  Foranynevents B, B,, ..., B in §

PBUB, U.....UUB,) < B(B)) + P(B,) + oot P(By) -

This result is known as Boole’s Incquality.

3 P[ﬁ&-]zl -3 P
1=l 1=l

1 i1

P[ﬂﬂi]zzr’mﬂ—(ﬂ—n.

i=| i=I

This result is known as Bonferroni’s Inequality

for n = _2, P(B]} M Bz) = P(HL} + P(Bg}—l g

1.10 Conditional Probability

Let us consider two cvents A and B in the sample space 8 of a random experiment
such that P(B) = 0. Then the conditional probability of A given that B has actually
ocewred, denoted by P(A/B), is defined by

P(A/B)=P(A (1B)/ P(B).
Note : The conditional probability P(A/B) will be undefined if P(B) = 0.

1.11 Compound Probability

From the definition of conditional probability it follows that
P(A M B) = P(B) P(A /B) with P(B) = 0.

The probability of occurrence of the event A as well as B is given by the product
of unconditional probability of B and conditional probability of A given that B has
already occurred. This is known as multiplicative thorem of probability.
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Similarly, if P(A) > 0, the conditional probability of B given that A has already
ocecurred is

P(B/A) = P(A [ B) / P(A).
This implies that
P(A [ B) = P(A) P(B/A)  with P(A) = 0.
Similatly, for three events A, B and C in S
P(A N B N C) = P(A) P(B/A) P(C/A N B) with P(A [} B) = 0.
In general, for n cvents B, By, ..., B, in 8
PB, N B, N..MNBy = P@B) P(B,/B,) P(B,/B; N B,) .. BB, /B, NB,..NB, )
with P(B, N B, ... N B ) = 0.

1.12 Independent Events

Two events A and B in a sample space S of a random experiment are said to be
independent (or statistically independent) when the occurrence of the event B does
not affect the probability of occurrence of A. By notation two events A and B are said
to be statistically independent if

P(A [ B) = P(A) P(B).
By the compound probability theorem we have
P(ANB) = P(B) P(A/B), if P(B) > 0
= P(A) P(B/A), if P(A) = 0.
It P(A/B) = P(A) and P(B/A) = P(B), then
P (A [ B) = P(A) P(B).
Three events A, B and C in S are indepcndent if
P(A-N B N C) = P(A) P(B) P(C).
In general, for n (finite) events By, B,, ... B, are independent if

P(B, M B, N ... M B,)=PB) PBy wccco. P(B,).
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Result : If A and B arc iwo indeperident events, then
(i) A and B (ii) AC and B (iii) A® and B¢ are also independent events.

Proof : (i) From Theorem 3
P(A) = P(A NB)+ P(ANBS)
or, P(A(BS) = P(A) — PANB)
= P(A) — P(A) P(B) (since A and B are independent)
= P(A) [1 - P(B)]
= P(A) P(B).
Thus the events A and BE are independent.
(i) Similar is the proof as in ().
(iii) For any event L
P(E®) = 1 - P(E).
Now P(AC ) BY) =PA U B)¢ (by Demorgan’s law)
=1-PA U B)
~ 1 — P(A) - P(B) + P(A | B) (by Theorem 6)
= 1 — P(A) - P(B)+P(A) P(B) (Since A and B are independent)
= [1 = B(A)] [1 - P(B)].
= P(A%) P(BS)
Therefore, the events AC and B€ are also independent.
Note : If A and B are independent, then
@ P (AU B)=PA) +P®) - P(A) P®).
ity P(A U B)=1-PA U B)©
1 — P(AS N BY
=1 — P(A%) P(B%)

I
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1.13 Pair-Wise Independent Events

A set of n events B, B o » B, are said to be pair-wise indzﬁp::ndc_ht if any
pair of these events are independent.

That is, if P(B; N B) = P(B) P(B)) for i #j (i, ] =1,2, ..., n).

In this case we have "C, conditions.

1.14 Mutually Indeljendent Events

A set of n evens B, B,, ........, B, are said to be mutually indepnedent if the
probability of simulatancous occurrence of any number of events is equal to the
product of their individual probabilities, That is, if

P(B; N B) =P(B) P(B) fori #j,i,j=1,2,..,n

P(@B N B NB)=PBYPB)PB) fori #j = kijk=12 .,n

..............

and (B, B, (] ... N B,) = P(B,) PB)) ........... P(B)

The total no, of conditions when the events B, B,....B, are mutually independent
are 1C; + 80+ i +0C = (O 4 DE, 408 g ey ag _ne

=M NG ~mC =n g,

Obviously, mutual independence implies pair-wise independence but the converse
15 not necessarily frue. ;

1.15 Bayes’ Theorm (Thomas Bayes — 1763)

- Anevent E can occur only if one of the mutually exclusive and exhaustive events
B B,, ... B, oceurs. Assume that the unconditional probabilities P(B,), P(B,),....
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P(B,) and the conditional probabilities P(E/B,), P(E/B,), ......... P(E/B,) are known.
Then the conditional probability of a specified event B; when the event E has actually
oceurred is given by '

P(BYE) = [P(B) PE/B)] / [ 2 PBIPE/B)| r=1,2, .. n.
1=l

This is known as Bayes’ Theorem.
Proof : Given that B, B,, ..., B, are mutually exclusive and exhaustive.
8o, B, U B,U .ol U B, = S (sample space) .
Now for any arbitrary event E we have
E =ENS8
=8 Bt By . b8
=ENB)UENBY U .. LLAE [} B
The events (E () B,), (E N By, e , (E N B,) are also mutually exclusive.
Therefore,

P(E)= P(ENB,) + P(ENB,) + ... + P(E N B)
= P(B,) P(E/B,) + P(B,) P(E/B,) + ....... + P(B,) P(E/B,)

- Y PE)RE/B).
1=]

Again, P(B. N E) = P(B,) P(E/B) if P(B) > 0.
and P(B, N E) = P(E) P(B, /E) if P(E) > 0.
Hence,P(B/E) = [P(B,) P(E/B))] / P(E)

= [P(B) P(E/B)] / [Z P(B) P{EIB-J}
i=l

Hence the theorem is proved,

1.16 Problems on Probability

Example 1 : An unbiased die is thrown and the number of points appearing on
the uppermost face is noted. What is the probability of
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(2) and odd number, (b) an even number and (¢) more than 4.

Solution : The sample space of the random experiment shows 6 possible sample
points, Viz. 1, 2, 3, 4, 5 and 6. The outcomes are mutually exclusive, exhaustive and
equally likely. Total number of outcomes (N) = 6.

(a) Let £, denote the event that an odd number of points is obtained .Among 6
outcomes 3 (Viz, 1, 3, 5) are favourable to E;.

Hence, P [an odd number is obtained] = P(E,) = 3/6 =1/2,

(b) Let E, denote the event that an even number of points is obtained, So 3
outcomes (Viz. 2, 4, 6) are favorable to E,.

Now, P [an even number is obtained] = P(E;)=3/6=1/2,

(¢)  Let E, be the event that a number is obtained which is more than 4. Tn this
case 2 outcomes (Viz. 5, 6) are favorable to E,.

5o, P (number is more than 4) = P(E,)=2/6=1/3.

Example 2 : An unbiased coin is tossed thrice, What f3 the probability that there are a)
three heads, b) at least one head and ¢) at most one tail?

Solution : Here the sample space S gives 2* = 8 sample points which are mutually
exclusive and exhaustive, S = {HHII, HTH, THH, TTH, HHT, HTT, TI-IT,_TTT}.

Sinee the coin is unbiased, these sample points are equally likely.

a) LetE, be the event of getting the three heads, There is only one sample point
HITH which is favourable to the event Ej.

So, P(E,)=I/8.

(b) LetE, be the event of getting at least one head, Out of 8 sample points 7 are
favourable to the event E,, Hence the required probability is

P(E,) = 7/8.
(¢)  LetE, be the event of getting at most one tail. Tn this case out of § cases,

4 cases (Viz., HHH, THH, HTII, HHT ) are favourable to the event S
Henee the required probability is

P(E,) = 4/8 =112,
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Example 3 : stockist has 30 items in a lot, oul of which 8§ are defeclive, A
customer selects three items from the lot.

a)  What is the probability that all 3 are defective?

b)  What is the probability that out of 3 ilems two are non-defective and one is
deflective?

Solution @ 3 itcms can be selected out of 30 items in 3°C, ways, These cases are
mutually exclusive, exhaustive and equally likely. Out of 30 items therc arc 8 defective
items and 22 arc non-defective items.

a)  LetE, be the cvent of selecting all 3 non-defective items. Hence number of
cases famurabic to the event E, is C,,

So, P(E, ) = *C, /¥C, = (22 x 21 x 20 )/ (30 x 29 x 28) = 0.3793

b)  Let I, be the cvent of geiling 2 non-defective items and one defective
item. So the customer has to select 2 non-defective items from 22 items and
1 defective item from 8 defeciive items. So the no. of cases favourable to the
event E, is #2C, x ¥C,. Hence the required probability is P(E,) = R
PG —{3><22><21XH}I(B{}KEQKEE]—(}ﬂiSSE -

Example 4 : The probability that a contractor gets a plumbing coniract is 2/3 and
the probability that he will not get an electric contract is 5/9. If the probability of
getting at least one contract in 4/5, what is the probability that he will get both the
contracts? :

Solution : Let E; be the event that the contractor will get the plumbing contract and
E, be the event that the contractor will get the electric contracl.

The probability of getting least one contract is = P(E, | E;) = 4/5
The probability of getting the plumbing contract is = P(E) = 2/3
The probability of getting the electric contract is = P(E,) = 1 — P(E,%)
= 1-59=4/9

Hence the probability of getting both the contracts is P(E, 1 E,). This can be obtained
by the theorem of total probability as follows:

P(E, U E,) = P(E)) + P(E,) - PE, N E)
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O, PE, N E)=PE,) +PE,) - PE U E,).
=2/3 + 4/9 - 4/5 = 14/45,

Example 5 : In a bridge game, North and South have 9 spades between them. Find
the probability that either East or West has no Spades.

Solution : The players are designated by the position they have occupied , Viz, North,
South, East and West.

Let A denote the event that East has no spades and B denote the event that West
no spades.

I'here are only 13 spades in a pack of 52 cards and cach player has 13 cards.

Since South and North have 9 spades between them, East and West have 4 spades
between them.

It is clear that East and West have 26 cards between them in total, of which 4 are
spades.

Ilence, P [either East or West has no spades.] = P[A |) B]
= P(A) + P(B) - 2 P(A NB).
Here the events A and B are mutually exclusive. So, P(A ] B) = 0.
i.e., P(A | B) = P(A) + P(B) = 2P(A) = 2P(B).
Now, P(A) = P(B) = #C,; / ¥C, = 11/230.
Therefore, P(A |J B) = 2 x (11/230) = 11/115.

Example 6 : A candidate is selected for interview for 3 posts. For the first post
there are 3 candidates. For the second post there are 4 candidates. For the third post
there are 2 candidates. What is the chance of gelling at least 1 post?

Solution : Let E, E; and B, denote the respective events that the candidate will get
the first, second and the third post. In the question it is piven that

P(E,) = 1/3, B(E) = 1/4 and P(E) = .
Here the events B, E, and E, are mutually independent,
Hence, P [The chance of getting at least one posi]
=PE; [J B LE)
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=P(E)) + P(E,) + P(Ey) - P(E, ] E,)-P(E, N E;)-PE, N E+PE, O E, N E,)
= P(E,) + P(E,) + P(Ey) - PEDP(E,) - PEP(E;) - P(EP(E,) + P(E,PIL,)PE,)
(Since the events arc independent)
1/3 - 1/4 - 1/2 - (/3) = (1/4) - (1/3) (];’2_} - (I4) (172) + (1/3) = (1/4) = (1/2)

= 3/4. ;
Alternatively, P(E, U E, U E;) = 1-P(E, U E, LB

=1 -PES N ESNED

=1-PES P(E,%) P(E,%)

= | — (1-1/3) (1-1M4) (1-1/2) = 3/4.

Example 7: A bag contains 8 red and 5 white balls. Two successive draws of 3 balls
are made without replacement. Find the probability that the first drawing will give 3 white
balls and the second 3 red balls.

Solution : Let E; be the event that the first drawing gives 3 white balls and E, be the

cvent that the second drawing gives 3 red balls. We arc required to calculate P(K, L,]
E,). By the compound law of probability

P(E, N Ej) = P(E) P(E,/E)).

To find P(E,), the total number of possible outcomes Is 13C3i and it is clear that only
3C, cases are favourable to the event B
Hence, P(E)) = 3C; / BC, = 5/143.

Again, to compute P(E,)/E,), it is to be considered that 3 white balls are alrcady
selected. So there are 8 red balls and 2 while balls in the bag. Hence the probability of
getting 3 red balls in the sccond draw is

P(E, /B, ) = °C, / 1C; = Th5.
Therefore , the required probability 13
PE, N E,) = PIEYP(E,L, ) = (5/143) ( 7/15) = 7/429.

Example 8 : Three salesmen A, B and C have been given a target ol selling
10,000 units of a particular produet, the probability of their success being respectively
0.25, 0.30 and 0.40. If those three salesmen try lo sell the product , find the probability
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that there is success of only one and failure of the other two.

Solution: Let E,, E, and E; denote respectively the cvents that A, B and C will
be successful to achieve a target of selling 10,000 units,

Here it is given that
P(E) = 0.25, P(E,) = 0.30 and P(E,) = 0.40.
Hence, P(ES,) = 0.75, P(E,) = 0,70 and P(EC,) = 0.60,

I 'E denotes the event that success of one salesman and failure of the other two, then
L can oceur in the following mutually exclusive ways:

Suceess of A and failure of B and C.
Success of B and failure of A and C.
Success of C and failure of A and B.
ie. By N ES N ES orES, N E, N ES, or ES, N ES, N E,.
Hence,
P(E) = PI(E, N E, N ES) UES, N E, N ES) U S, N ES, 0 B
That is, P(E) = P(E, N ES, N E%) + PES, N E, N ES) + P i B 0 B
= P (E,) P(ES)) P(ES,) + P(EC,)PE,)P(ES;) + P(EC )P(ES, P(E,)
(Since B, E, and E, are mutually independent)
=025 % 0.70 x 0.60 + 0.75 = 0.30 = 0.60 + 0,75 x 0.70 x 0.40.
=045

Example 9 : An electronic device is made up of three components A, B and C,
The probability of failure of the component A is 0.01, that of B is 0.05 and of C is 0.2
in some fixed time period. Find the probability that the device will work satisfactonly
during the period of work. Assume that the three components work independently of one
another,

Solution : Let E, E; and L, denote respectively the events that the failure of
components A, B and C are in some fixed period of time, Given that

P(E;) = 0.01, P(E,) = 0.05 and P(E;) = 0.02.
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Agai'nj the components are working independently.

So'the probability that the device will work satisfactorily during the given period
of time will be

Probability that all the components are working simultaneously.

= P(ES, 1 ES; N ES).

= P(E€,)P(EC,)P(ES,).

= (1-0.01) (1-0.05) (1-0.02)
= 0.99 x 0.95 x 0.98.

= 0.92169.

Example 10: Suppose that there is a chance for a newly constructed house to
collapse whether the design is faulty or not. The chance that the design is faulty is
0.1.The chance that the house collapses if the design is faulty is 0.95 and otherwise
it is 0.45. It is seen that the house collapsed. What is the probability that it is due
to faulty design?

Solution : Let B, and B, denote the events that the design is faulty and tha design
is not faulty. Let A be the event denoting that the house is collapsed. We are given
that

P(B,) = 0.1 and P(B,) = 1-B(B)) = 0.9

P(A/B,) = 0.95 and P(A/B,) = 0.15. .

Here we are interested in computing the probability that the design is faulty given
that the house collapsed. By using Bayes® theorem we get

P(B,/A) = [P(B,) P(A/B))] / [P(B,) P(A/B)) + P(B,) P(A/B,)]

= (0.1 x 0.95/[0.1 % 0.95 + 0.9 x 0.43]

=0:19

Example 11 : A company has 3 plants to manufacture 10,000 scooters in a mionth,
Plant L, II and Il manufacture 5000, 3000 and 2000 respectively per month. 90%
92% and 95% scooters are rated standard quality in Plant I, II and 11T respec,twdy

iy  What is the pmbahtllty that a scooter sclected at random is of standard
quality?

ii) What is the probability that a scooter selected al random comes from
plant 1L if it is known that the scooter is of standard quality?
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Solution ;: Tet us define the following events :
E, : A scooter is manufaciured by plant 1.
E, : A scooter 1s manufactured by plant 11,
E; . A scooter is manufactured by plant 111
E : A scooter is rated as standard quality.

It is given that
P(E;) = 5000/10000 = 0.5, P(E,) = 3000/10000 =0.3,
P(E;) = 2000/10000 = 0.2, P(E/E,) = 0.90,

P(E/ E,) = 0.92 and P(E/ E;) = 0.95,

1) The probability that a scooter selected at random is of standard qualil‘y = _P(E}
= P(E,) P(E/ E;) + P(E;) P(E/ E,) + P{Ej] P(ES Ey).
=05 x09+03 x092+02 %095 '
= 0.8455

ii} The probability that a scooter selected at random comes from Plant IT if it is
known that the scooter is of standard quality = P(E,/E)

By Bayes’ theorem,
P(E, / E) = P(E, ) P(E /E,) / P(E)
= 0.3 x 0.92/0.8455

= 0.3264

Example 12: Two players A and B alternatively toss an unbiased coin.- He who
first tosses a head wins the game. I A starts, find their respective probability of
winning the game,

Solution : Let I} and E, denole the events that A and B toss a head respectively,
Obviously, the two events are independent.

Since A starts , he can first obtain a head in the following mutually exclusive
ways : .

(i) E, oceurs only, (if) ES, N ES, N E; oceurs, (ifi) ES, N ES, N ES, N ES,

1 E, occurs and so on,
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Hence, P(EC)) = P(E5,) = /2.

Therefore, the probability that A wins the game
= P(E,) + P(ES, N ES, N E)) + PES, N ES N ES NES, N Ept.
= P(E,) + P (ES)) P(ES)P(E)) + P(E, JP(EC,)P(EC DP(ES,)P(E,) +
=124 12 % 1/2 % 124+ 1/2 x 12 x 1/2 x 1/2 x 1/2 +..
= 1/2 + (112 + (/2)* +
= (112) / [ 1= (1/2)*] = 2/3.

 So the probability that B wins the gené 1812y =1/

1.17 Exercises

1. What do you understand by the term probability? Discuss its importance in
business decision making.

2. Explain various approaches to pmbahﬂity. Are they contradictory?

3. Define independent and mutually exclusive events. Can two evenls be
mutually exclusive and independent simultaneously? Give an example to
illustrate your answer . :

4,  Explain the meaning of conditional probability of an cvent. State the
multiplicative rule of probability.

5. State and prove Bayes’ theorem on conditional probability.
6. What arc the limitations of the classical definition of probability?

7. Distinguish between pair-wise independent events and mutually independent
events,

8. For any two events A and B prove that
P(AN B =PA)<P(AU B) 2PA) TP (B)

9. If A and B are two independent events, prove that i) A® and BF, ii) A®and
B and iii) A and B® are also independent.
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10,

11,

B

13.

14,

15.

The eight possible outcomes e, 1 = 1,2, 8 of a random experiment are
equally likely. Suppose the events A, B and C are defined as follows

A={epey e e}, B={ey e, e e, C={ey, e, &, €.}, Examine the
type of independence of events A, B and C.

3 compressors used in refrigerators are manufactured by a mmp'any at 3
factories located at X, Y and Z. It is known that the factory A produces twice
as many compressors as factory B which produces the same number as the
factory C. It is known that 2%, 3% and 4% compressors produced by lactory
A, B and C respectively are defective. A quality control engineer while
maintaining a refrigerator finds a defective compressor, What is the probability
that factory A is not fo be blamed?

The probabilities of X, Y and 7 becoming managers are 4/9, 2/9 and 1/3
respectively. The probability that a new product will be introduced if By
and Z becorne managers are 3/10, 1/4 and 4/5 respectively.

a)  What is the probability that a new product will be introduced?

b)  What is the prﬂhabilit;-.; that the manager appointed was Z given that
the new product had been introduced?

The probability that a man will be alive for one year is 3/5 and the same for
his wife is 4/5. Find the probability that afier one year

i)  both will be alive.

it)  only the man will be alive,

iii) only the wife will be alive.

iv) . at least one of them will be alive.

Four cards are drawn one by one from a full pack of 52 cards. What is the
probabilily that they belong to (i) 4 different suits and (i1) different suits and
denominations,

In a city 3 daily newspapers X, Y and 2 are published. 40% of the people
of the city read X, 50% read Y, 30% read Z, 20 % read both X and Y, 15%
read X and Z, 10% read Y and Z and 24 % read all the 3 papers. Calculate
the percentage of people who do not read any one of the 3 news papers.
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16.

17.

18.

19,

20.

25

22.

23

24.

There are six hotels in a town. If 4 men check into hotels a day, whal is the
probability that each checks into a different hotels? f

If P(A) = 1/4, P (B) = 2/5, P (A () B)=1/7, find (i) P (A UIB), (i) P (A’
M BY, (i) P (A N B) and (i) P (&' UBY.

If A and B are two events, prove that (i) P(A/B) < {1 - P(AYP(B) and (ii)
P(A/B) = 1 - P(A!/B), given P(B) > 0.

A speaks truth in 80% cases and his friend B speaks lie in 30% cases. In
what percentage of cases are they likely to contradict each other in narrating
the same incident?

A person fails to remember the last digit of the telephone number of his

friend. What is the probability that at most 3 aticmpls are neccssary to find
the actual number?

A company has a security system comprising four electronic devices (A, B,
C and D) which operate independently. Each device has a probability of 0.2
of failure, The lour electronic devices are arranged so that the whole system
operates if at least one of A or B functions and at least one of C or D
functions. What is the probability that the whole system will fail?

There are 10 electric bulbs in the stock of a shop, out of which 4 are
defective. A customer demands 2 bulbs and the shopkeeper picks up two
bulbs randomly. What is the probability that both these bulbs arc defective.?

The probability that a salesman of vacuum cleaner will succeed in persuading
a customer on the first call is 0.6. If he fails, the probability of success on
the second call is 0.3 . If he fails on the first two calls, the probability of
success on the third and the last call is 0.1, Find the probability that the
salesman makes a sale of vacuum cleancr to a customer. :

Two dice are thrown at a time and oulcomes are noted down . Decfine the
evenis A, B and C as

A = odd number on the first die
B = even number on the second die.

C = combined odd sum.
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25.

26.

27.

28,

29

30.

Verify that A, B and C are pair-wise independent, but they are not mutually
independent.

A company has four production sections A, B, C and D which contribute
30%, 20%, 28% and 22% respectively to the total output. It was observed
that these sections produced 1%, 2%, 4% and 6% defective items respectively.
If an item is selected al random and found to be defective, what is the
probability that it has come from D?

A and B sland in a line at random with 10 other persons. What is the
probability that therc are 3 persons between A and B?

A and B stand in a line with 10 other persons. Iind the probability that there
are 3 persons between A and B.

A fair coin is lossed six times. What is the probability of (i) exactly two
heads and (11) at least two heads?

Three candidates Mr. Wiseman, Miss Drinkwater and Mr. Page stand for
student President in a university. A public opinion poll shows their chances
of winning as 0.5, 0.3 and 0.2 respectivly. The probabilites that they will
promote “‘student power”’ if they are elected are 0.7, 0.6 and 0.9 respectively.
What is the probability that the *‘student power'” will be promoted after the
election?

Suppose A and B are two events. Show that the probability that exactly one
of the events oceurs is equal to P(A) + P(B) - 2P (A ] B).
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2.1 Introduction

In Probability theory the basic entities are elementary events (sample points) in the
sample space. These types of entities arc abstract in nature. Tt is not convenient to
develop mathematical theory of these abstract entities, But if we have a sét of real
numbers we can easily develop mathematical theory, So if' it is possible to associate
a real number with each sample points in the sample space a mathematical theory of
probability can be easily developed. For each sample point in a sample space of a
random experiment we assign a real number and such assignment gives a function on
the sample space which is called a random variable. This chapter deals with the
concept of a random variable, its probability distribution, mathematical expectation,
variance, different types of moments and moment generating function. This chapter
also contains the bivariate pmbai:si]i_Ly distribution of two dependent random variables,

2.2 Random Variable

In tossing a coin we may associate the number 1 with the appearance of a head
and the number 0 with the appearance of a tail, In throwing a die, we may associate
six numbers 1, 2, 3, 4, 5 and 6 corresponding to the face that appears uppermost.

Definition 1. A real-valued function defined on the sample space is called a
random variable i.e., different values of a random variable are obtained by associating
a real number with each element at the sample space. A random variable is also called
a stochastic variable or a chance variable or a pmbabilify variable.

Example 1. 3 coins are tossed simultaneously with the sample space of the random
experiment. What are the possible values of the tandom variable ‘number of heads’
obtained?.

Solution : In the random experiment of tossing 3 coins, the sample space will be
S = {HHH, HHT, HTH, THH, TTH, THT, HTT, TTT}.

If X be the random variable denoting the ‘number of heads’, then we can assign
a number to each sample point as follows :
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X (HHIT) = 3, X (HHT) = 2, ...... X (TTT ).= 0. So the range of X, R = {0, 1,
9. 3L, : :

In the above example the outcome set or range is discrete and then the variables
are defined on a discrete set. Such variables are called discrete random variables.
Some more examples are number of accidents, number of printing mistakes, number
of defectives, number of telephone calls ete. But, for example, consider the life time
of an electrical item, length of cloth manufactured in a textile mill, the time between
arrivals of customers at a service station, consumption of petrol etc. which are defined
ori a continuous set and hence the variable associated with those is a contihuous
random variable. ' '

If the range of a random variable has only a finitely many values or countable
many values, then the random variable is called a discrete one. On the other hand,
if the range of a random variable has uncountable many values over an interval, the
random variable is called a continuous one.

2.3 Probability Distribution

A probability distribution associated with a discrete random vatiable is referred
to as a probability mass function (p.m.f) and a probability distribution associated
wilh a continuous random variable is referred to as a probability density function

(p.d.£).

If X is a diserete random variable then the function given by p(x) = P[X = x| for
each x within the range of X is called the probability distribution of X.

Definition 2. The function p(x) is called the probability mass function (p.m.f.) of
the discrete random variable X if and only if its values satisfy the conditions :

1. p(x)= 0, for each value within its domain.

2. Z p(x) =1 where the summation extends over all the values within its domain.
. :

Example 2. Find the probability distribution of the random variable in Example -
1 with the assumption that the coin is unbiased.
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Seiution : Let X be the number of heads obtained by tossing 3 unbiased coins
simultaneously.

Hetre the range of X, R = {0, 1, 2, 3}
P(X=0)=p(0)=1/8
p(X=1)=p(l)=3/8
P(X=2)=p(2)=3/8
P(X=3)=p(3)=1/7E
" The set of all possible values of the random variable X along with their respective

probability is known as the probability distribution of X. So in this case the probability
distribution of X can be written as :

Y el 0 1 = 3 Total
iz 2 1/8 38 3% 18 |
If X is a continuous random variable, then a- function with values (%), defined

over the set of all real numbers, is called the probability density function of x if

b
Pla<x<bl= |/

for any real constants a and b with a < b.

Definition 3. The function [(x) is called the prohai:rlility density [unction (p.d.f.)
of a continuous random variable X if its values satisfy the conditions :

1. f(x)=0 for —x<x<x
: b
2. If(x}cbf =

Example 3. Can the following be a probabilily density function?

fixy= Y, if-2<x<2
= 0, otherwise. :
If so, evaluate a) P x < 1], b) P [|x] <1]and ¢) P[2x + 4 > 3]
Solution : Here f{x) = 0, for all x.
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o3 2

Again, j S(x)dx = j %dx e _2-(=2) _

4_,
4 e

—an -2
So f(x) satisfies both the conditions of being the pdf.
Hence, [(x) is a probability density function .
Now,

1
9  Pa<l= | feade= | fde=g
=0 -2

b) PXK<I]=P[-1<x<I]

1 1
-4 -4

=1 ~1

e)" PB2x44>3]
=p[2x>1]=P [ x> 0.5]

oo

= [ fooax=

2
j‘ 2o kS
0.5 05

AT

R

2.4 Cumulative Distribution Function

There are many situations in which we are interested in knowing the probability
that the value of a random variable is less than ot equal to some real number x. So,
let us write the probability that X takes a value less than or equal to x as F(x) = P
[X < x] and refer to this function defined for all real numbers of x as the distribution
function or the cumulative distribution function of X.

Definition 4. If X is a discretc random variable, the function given by

Fx) = P[X < x] = 2, p)
. =X

where p(u) is the value of the p.m.f of X at u. F(x) is called the distribution
function or cumulative distribution function (¢.d.f.) of the random variable X.
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Distribution function 'F[x) satisfies the following properties:

1)
2)
3)
4)
5.}

0<Fx) <1
F(-)=0
F (x)=1

F(a)=<F () foralla<bh.

F(x) is right continuous.

If X is a continuous random variable, then the cumulative distribution function is

X :
given by F(x) =P [X < x] = jf{u}du Jor—«c<x <o,

where f{u) is the value of the p.d.f. of x at u.

Definition 5. If f(x) and F(x) are the values of the p.d.f. and the c.d.f. of X at X,
then P [a < X < b] = F(b) - F(a).

For any real constants a and b with a < b and [{(x) = %F{x}, provided the

derivative exists.

It is to be noted that P [X = ¢] =P [ ¢ < X < ¢]

c
j S{x)dx =0 when X is a contlinuous random variable.

Example 4. Find the distribution function of the following p.m.f. and represent it

graphically,
p ()

Solution : By definition, the distribution function F(X) of the random variable X

= 1/8 forx =0
= 1/4 forx =1
= 3/8 for x =2
= 1/4 for x=13

=) elsewhere.

with the p.m.f. p(x) is given by
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Flx)= p)

=X

F(-1)=> pw)=0

T |

Hence, F(0) = z o) =0+1= 1

uzl g8 8
i gl bad
F(I]—zp(u}—l]+8+4 -
wzl
Y S I S N T
F{Z}—ép(u}—l:_l4g+4+g :

F{S}=Zp{u}=ﬂ+%+%+%+ﬁ:=l

H=3
Fix)=1forx=3
Now F(x) can be written in a better way as
F(x) =0 when—sc<x<0

= %Uixc:l
leax<2

—

s ool

I 3=x<w

‘The graphical representation of F(x), which is a step function, is as wollows :




That is, at x = 0 there is a jump of 1/8, then at x = 1 an additional jump of 2

8
and so on, ;

Example 5. Find the c.d.f. for the following density function.
fix) =3e* forx>0
=0. elsewhere,
Hence find P [0.5 = x < 1]

Solution : Forx = 0
X x
F(x) = j S = ‘[33'3":1’::
— 0

. _e—.}rf f .a: 1_6—31'

For x 20, Fx)=10
Therefore, F(x) =0 ifx <0
= lisig™ £ x >0
Now to evaluale the probability
P [0.5 = x < 1], we use the definition of ¢.d.f,
That is,
P05 <x < 1] = F1) — F(0.5)
= =t~ (1 —e'?)
= 0.173

2.5 Mathematical Expectation

If X is a discrete random variable with the p.m.f. p(x) at X = x, then the mathematical
expectation of X is defined as
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E0= 3 500

A= o

Correspondingly, if X is a continuous random variable with the pd.f fix) at X =
x, then the expected value of X denoted by E(X) defined as,

E)= [ af

That is,
EX) = z x p(x),]if X is a discrete random variable.
X= —c0
= I xf(x)elx, if X is a continuous random variable.

In gerneal, if ¢(x) is a function of X which is, again, a random variable, then the
mathematical expectation of ¢(x) is defined as,

E[¢0] = Z 0(x) p(x), if X is discrete.
= _[ G(x)/(x)dlx, | if X is continuous.

(i) If X takes only positive integral values then E(X) =ZP{X > K)
=1

(i) 1f F(x) be the c.df. of X with X > 0, then E(X)= [[1-F(x)]dx
1]

Example 6. A diserete random variable X has the following probability mass
function. Find E(X).

X 3 1 2 3 4 i

Py 2/5 2/15 1/15 ©i10 1410

5
Solution : E(X) = pr[x]_

x=l
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el i3 o
lx 42x15+ +5><m

- 60+16+2+94+6 _93 =43
30 30
Example 7. The p.d.f. of lifetime (X) in years of a musical C.D. is given by
f(x) =C (10 - x), for 0 < x < 10
= 0, otherwise

Find the expected life time of the C.D,

1 10
Solution : Since f{x) is a p.d.f, so CI(lﬂ—x} dx=1 or, C’[I{}x—-ﬂ‘;} =1
0 ;
or €[ 100-50]=1 or C= %
10
Therefore, E(X)= Ixf (x)edx
0

10
= f,'_[ {lt}x —xz}dx
i

A _ 1000 [_ ~ 500 _ 1 ., 500_10
—C[S{]ﬂ X ] €300 - 1530010,

So the expected life of the C.D. is 10/3 years i.e. 3 years 4 months.
3.5.1 Physical Interpretation of E(X)

Suppose a discrete random variable X takes n different values x, x,, . . X connected
with a random experiment. If the random expetiment is rcpcaled N times under
identical conditions and x, occurs f, times, X, occurs f, times and so on then the
arithmetic mean of x is
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Ji

If N —w then from the empirical definition of probability NE} m-ﬁ"=p,--,
provided the limit exists.

i.e. X takes the value x, with probability p..

Therefore, as N — o0 X — E(x)

Hence the mathematical expectation of a random variable is nothing but limiting
form of ils arithmetic mean,

H
Ifp, = P, = o = P, = Un, then EQ) =13 ;.
]

For example, if an unbiased die is thrown N tir1nv:5, the probability of face 1 is p,
= 1/16, face 2 is p, = 1/6 and so on. In this situation expected value of the uppermost
face of a die and the arithmetic mean of the face of a dic are exactly same.

i.E-'. E(X): I:&ﬁ';u-_ﬂ__ﬁz:alﬁ.

2.5.2 Some Important Results
ij If x = C, a constant, then E (X) = C
if) U= CX, C being a constant, then E(U) = C E (X)
i) E[X-E(X)]=0
iv) E(X+C)=E (X) % C, C being a constant,
v) IfV =aX +bY¥, aand b arc constant, then E (V) = a E(X) + b E(Y),
where X and Y are two random variables defined on the sample space.

vi) 1f W=XY, where X and Y are independent random variables defined on the
same sample space then E'(W) = E (X) E (Y).
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vii) If X is a random variable and ¢ (x) is a function of X, then
E {C ¢ (0} = CE {¢ (X}
viii) If ¢, (X) and ¢, (X) be two functions of X,

then B [y (X) + ¢,(X)] = E [¢; (X)] + E [$2(X)]

Note : Result (v) and (vi) are true for more than two random variables,

2.6 Variance of a Random Variable

Variance is a very important characteristic which measures the dispersion of a
random variable. Variance of X denoted by V(X), or ot or Var(X) is defined by
VIX)=E|[ X -E X))~
The positive square root of the variance is called the standard deviation which is
denoted by o, .
The expression for the variance can be simplified as :
VIX)=E[X-E X))
=E [X? - 2X E (X) + E? ()], where E? (X) = {E(X)}?
= B(X?) - 2 E(X) E(X) + EXX)
=EX) -2 (X)+ E* (X)=E (X% - EAX).
S0, o, = YEXD) - EXX)
= E (X)) - [EQ)P

= YEQ) - [ECOT
2.6.1 Some Important Results

(i) IfX=c,aconstant, then V(X) =0 and V(X) = 0 implies that X is a constant
with probability one. ;

(i) V(X £ d) = V(X), d being a constant,
(iti) IfU = cX, ¢ being a constant, then V(U) = ¢? V(X) and hence o, =|c|a,,

(iv) If W =aX + bY, a and b are constants and X and Y are two independent
random variables, then, V (W) = a V (X) + b® V(Y).

(v) E [(X -d)’] = V(X), when d is a constant.
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2.7 Moments

Here we will consider various types of moments for a random variable X,

(2) The r-th moment about origin or r-th raw moment denoted by pJ | and is
defined by uf- = L(X"). When r = 1, we have p.Lf = E(X), which is just the
expected value of the random variable X, In view of the importane of E (X)
in Statistics, we dnote E(X) by R,

(b) The r-th moment about mean or simply the r-th central moment is denoted by
u, and is denoted by p, and is defined by p, = E[(X) - p" ]

The second central moment, i.e. {,, 18 of special importance in Statistics

- because it means the spread or scatter or dispersion of a random variable. p,
is called the variance of the random variable X and it is denoted by c,‘i_ or
V(X) or Var (X).

(¢) The r-th factorial moment is denoted by My, and is defined as M, = B[X(X-
1)(-2) ..... (X -t + 1]

(d) The r-th absolute moment about a constant C is denoted by

!J-Fr].- f 1X_Ci"1
The raw moments can be obtained from factorial moments by using the relations

“{ =Bl
/
B3 = Hia1 TRl
/
M3 = Hiap a1 + B

!
My = g1+ OBy + TRy T By

Similarly, the central moments can be obtained from the raw moments by using
the relations :

/
By = -1 =0
/
My =Ha— “1{1
13
g = 3 — 305 By 20

g =1t = 4y i + Gy i -3
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2.8 Moment Generating Function

Though the moments of most of the probabilily distributions can be evaluated
directly, an alternative method is of immense value in statistical literature, This
method is moment generating function (m.g.f)

The moment generating function, M (1), of a random variable X, if it exists, is
given by M, (1) = E (&™)

oo

= Z " p(x) when X is discrete

X=—m

L= i}

= I e f(X)dx, when X is continuous,
T

where t is a real constant and we are usually interested in values of t in the
neighbourhood of 0. Expanding e™ as a power series, we pet :

D ryr
Mx'ff)=5[l+ﬁ+%+%+m-+Ir! o

=1+ L BOO + L B + L () + L B

=ity X) 51 (. )+3! ) ek (X +...c
o I

=LHp (M o F I By F oot B 4

"
where pf, is the r-th moment about the origin and is the coefficient of % in the

power series expansion of M (t). It may also be noted that p:’_ will be determined by
the r-th dertvative of M (t) att =0 ie.

s [Mﬁﬂ
£ i de

The m,g.f. does not exist for some probability distributions. But this function, if
it exists, completely determines the probability distribution of a random variable, If
two random variables have same m.g.f. they must have the same probability
distribution,
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Some important results relating the m.g.f. are :

If a and b are constants, then

) M= B et Bty ~ BN T
(i) M, (0 =E [e™] = e (&) = M (bt)

(i) M, O =E[¢e*M] =t E (eltx) = e M_ (bi).

To obtain moments about the mean, that is, the central moihents, we may use

M, , @ = E &) = ¥ M.

That is, the r-th central moment, p, is the coeflicient of :—rl in Mx_u{t). So p, will

be obtained by computing the r-th derivative of Mx_p{t} att = 0.
d”
ie, i =[——- M, (f)}
Al
Note : E(1¥) generates the factorial momenis in the sense that

“) =[ﬂ(ﬁ] .
=l

arr

2.9 Characteristic Function

The moment generating function does notl exist for all probability distributions,
However, another function which always exists is called the characteristic function

(C.F.). It is defined by E(e"™) with ; = \/_1 for all real t. If the characteristic function
of a random variable X is denoted by §,(1), then

¢.0) = E(e").
Two probability functions are identical if their characteristic functions are identical.

Example 8. Consider a case where an unbiased coin is tossed 3 times and is X
is the random variable denoting number of heads occurring, compute V(X) and o .
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Solution : From Example 2 the probability distribution of X is
X g S 2 3 Total
pix) 1/8 3/8  3/8 1/8 1
Now V(X) = E(X?) - EXX).
3

E(X) = 2 %)

x=(0

£ 1
{}x3+l>< +2><15 3::::S

—04340,3,3 12
_D+E"E+ 8—8—1.5

=]

3
E(X?) = };ﬂxzp{x}

S e T
—ﬂx8+l>< +2 ><15+3 3

gl e 24
=0+3+2+2=20_3

+ VX) = EQX) — (B(X) 2
=3 - (152 =075
S$.D. = o =4 1X) = 4075 =+ 0.86 (appr)

Example 9. Find the standard deviation of a random variable X that has the
following probability density funetion.

fix)y = % for 0 <x <2
0

elsewhere
Solution ; First of all, we calculate V(X)
VIX) = E(X?) - {E(X)}?

(5]

! £
Now E(X) = f xflx)ex = j X -%d,'x
._m D
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=1[x_3]2=§=1
P e e

Rl o]

So, V(X)=2 - (%]2 =

Hence o, =+ F{X) =+ g

2.10 Skewness and Kurtosis

The lack of symmetry of a probability distribution 15 called its skewness. If a
probability distribution is symimetric then it can be checked that the odd order central
moments, m. =L =019, . . The distribution can be skewed to the left
(positively skewed), skewed to the right (negatively skewed) and symmetric (zero
(skewed). The skewness or asymmetry of a probability distribution can be measured

{
by 1= ;T’t%% i.c., the probability distribution is positively skewed, negatively skewed
and symmelric, according as y, > 0, v, < and v, = 0,

Kurtosis refers to the degree of peakedness of a probability distribution. Kurtosis

M H
or peakedness of a probability distribution is usually measured by 72 =,H_:_ R g_: =k

The distribution for which y, =0, ¥, < 0 and y, = 0 are called lepmkul tic, piaiykurtlc
and mesokurlic respectively.
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2.11 Median and Mode of a Random Variable

The median may be defined in terms of the distribution function of a random
variable. The median (M) value is such that the probability for X to be less than oy
equal to M_ and the probability for X to be greater than or equal to it are both equal.

In discrete case M, is such that
P(X < M)<12 <P (X = M,) = F(M,).

In the continuous case M, is such that

Jﬂx}aﬁc J oy =%

Me

The mode (M) of a random variable X is that value of X which has the highest
probability. So the mode of a discrete random variable is the most probable value of
X. In continuous case, M, is such that the p.d.f. {{x) is maximum at X = = M. That

is, I”{M]—ﬂandf”(M}{ﬂ

2.12 Mean Deviation

The mean deviation of a random variable X about A (a measure of central ten-
deney) is defined by MD, = E(JX - Al), A = E(X) or M . or M provided the expec-
tation exists. But the problem with the MD, is that, if it is defined, it may not be
easily amenable to algebraic treatment for its modulus value. It can be verified that
{or any random variable X, MD, = MD,.

2.13 Bivariate Probability Distribution

Let us consider two random variables X and Y. X takes the values Xis Ty e X
and Y takes the values y,, ¥,, ... y,. Here p; notes the probability that (X, Y) takes
value (x, :.'j), that is, P [X = x,, Y }f] = Pu’ =1, L mand =130
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The joint distribution of two rondom variables is shown in the following two-way

table.
Y
X Vi ¥ etir e A Total
X, | Py Pygoremeseren D Pio
X Pag  Pag eemveveenes Pyp Pag
. % b Py Pogivisiin. el ) P
Total Disi . P secssimvacii Pon 1
With

i)
po = PIX = x] = 2PV

I
pg = PIY =yl = ;,.mf

The marginal distribution of X is as follows :

X ; X, X, SR X Total

P(X=x) P Py e S P 1
Similarly, the margma} distribution of Y is as fu!lnws

Y : ¥y ¥a o S0 : ¥ Total

BT = ) Po1 I TR L KR Pon - 1

Using the rnargmal distribution of X one can compute

e
=E(X) = JZ;. XiPjs and

o2 = V(X) = E[X - EQ)P = BX) ~ pi2 = i XD = 1.

Similarly, the marginal disiribution of Y gives.
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[
.nu_],.- = E{Y) = ;J";Fw and

i
o, =LY ~ENP = E(YY) - pi2 = ;y;? o

[Two random variables X and Y are said to be independent if
PiX=ag, o= yil = P(X = x) P(Y = }rj}.

e P = DiPgjs ri=1,2 o omand j=1 2 . &

The correlation coeflicient between X and Y

o

Py = -{?’;’; ol BT
ﬁh’ere
Oy = oV (X, y) = L [{(x-ECO}H(Y-E(Y)}]

= E(xy) —p .
E(XY) =22 %y

The conditional distribution of X = X, given that Y = ¥, is

P(X=x,-,Y=yj)_£i
P(F:.}'j] Py

Similarly, the conditional distribution of ¥ = ¥, eiven that X = x. is

PlY=yp,X=x) Py
HI":yJ;J’X:_xJ.}: POT=x) i =E-i-‘
Theorem 1. Let X and Y be two jointly distributed random variables, then
E(X +Y) = E(X) + E(Y).
Proof : Let Z = X + Y be a random variable that takes valucs Z.=x + ¥, with
probability p,, 1 =1, 2, ....,mand j =1, 2, ........ S
Therefore, from the definition of expectation

B@)=2.2.2py
= 220 +y) Py =Y N xpy Z‘?‘yiﬂﬂ
ok ] i
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= XX 2Pyt 22 Py
I A ]

= 2% Piot LV Py = BQX) + E(Y) |

This theorem can casily be extended to the case of several random wvariables.

Theorem 2. If X and Y are independent random variables then E(XY) = E(X)
E(Y) '

Proof ;: Let V = XY be a random variable which takes values Vij = X[Y]. with
probability O i=1,2, .,mandj=1,2, ..,n

So, by the definition of expectation,

BOCY) = 22 Vyby = L2050y
i I )

s E?:mp,-ﬂp@ =$xr pa,.;yqu,- = E(X) E(Y).

This resullt can also be extended to more than two mutually independent random
variables.

Theorem 3. If X and Y are independent random variables then p, = 0.
Proof : From Theorem 2
o,, = Cov(X, Y) = E(XY) - E(X) (Y) = 0.

Therefore, Ao = Fi

Note : If two random variables are independent, then they must be uncorrelated
(i.e. p, = 0) but the converse is not generally true. If each of the random variable
takes two distinct values only, then the converse is true.

Theorem 4. If X and Y are two jointly distributed random variables, then
V(aX + bY) = a2V (X) + b¥(Y) + 2ab Cov (X, Y),

where a and b are constants.

Proof : Let Z = aX + bY
So E(Z) = E(aX + bY) = aE (X) + bE(Y).

Mow,
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V(aX + bY) = E[Z - E(D)?
= E[aX + bY — aE (X) — bE(Y)]?

= B[a{X — EG)}]? + E[b{Y-E(Y)}]* + 2E[ab{(X-E(X)} {(Y-E(Y)}]

= @E[X-EX)]? + 22E[Y-E(Y)]* + 2ab E[{X-E(X)} {Y-E(Y)}]

= a* V(X) + b* V(Y) + 2ab Cov (X, Y).
Corollary : If X and Y are uncorrelated then V(aX + bY) =a’ V(X) + B*V(Y).
In particular, V (X+Y) = V(X) + V(Y) = V(X=Y)
Theorem 4 can be extended to more than two random variables. For k random

variables X, X, ... X, the general result is

R k ok ;
V(;ai}{i)=z;af V) +2 l_Zla-Lbj Cov (X;, Y) with i < j,
1= I I=L]=

Example 10 : X and Y are two randam variables having the joint probability
distribution as given below ;

Y 1 3 5
X :
05 10 25
4 1 .05 15
6 10 10 05

(i)  Give the marginal distribution of X and marginal distribution of Y.

(i) Compute P(X +Y>8).P(X+Y=7,P(Y=3/X=6)and
PX=4/Y=35)

(iii) Compute the correlation coefficient between X and Y.

(iv) Are X and Y independent?
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Solution :

The joint distribution is as follows :

T Margianal
\ 1 3 5 Total
2 0.05 0.10 0.25 0.40
4 0.15 0.05 0:15 0.35
6 0.10 0.10 0.05 0.25
Marginal
Total 0.30 0.25 0.45 1
(i) Marginal distribution of X :
X . 2 4 6 Total
p(x) 0.40 0.35 025 1
Marginal distribution of Y :
y : 1 3 5 Total
py) 0.30 0.25 0.45 i

(i) PIX + Y > 8]
—P[X =4, Y=5]+P[X=6Y=3+P[X=6Y=5]
= 0.15 + 0.10 + 0.05 = 0.30. ;
PIX+Y=7]=PX=2Y=5+P[X=4,Y=3] +P[X =6, Y =1]
= 0,25 + 0.05 + 0.10 = 0.40.
P[Y =3/X=6]=P[Y=3X=6]/PX=6]
= 0.10 / 025 = 0.40.
PIX = 4/Y = 5] =P[X =4, Y =5]/P[Y=5]
= 0,15 /045 = 1/3. '
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(iii) Here, from the marginal dileiiJutioll of X

B =E(X)=2x%x040+4%x035+6%x025=08+14+15=37
and

62 = V(X) = B(X?) — 2
Now E(X?) =22 x 0.40 + 42 x 035 + 6! x 025 = 1.6 + 5.6 + 9.0 = 162
S0 62 =E(X) -u2=162-(3.7)2 =251 and o, =+1.584.
Similarly, from the marginal distribution of Y

b, = E(Y)=1x%030+3%x025+5%045=003+0.75+225=133
and

s A 2
of = V(Y) =E(Y?) - p2 .
Now E(Y?) = 12 % 0.30 + 32 x 0.25 + 52 x 0.45 = 0.3 + 0.75 + 1125 = 138
So 02 = B(Y?)~ 2 =13.8~(3.3)° =2.91 and &, = +1.7059

o, = Cov (X, Y) = E(XY) - E(X) E(Y)

E(XY) =2 % 1x0.05) + (@4 x1x0.15+(6x1x0.10)+ (2 x 3 x 0.10) +
(4 x3x0.05)+ (63 x0.10)+ (2 x5 x025) + (4 x5%x0.15) + 6 x 5 x 0.,05)
= B '

So o, = B(XY) -~ E(X) E(Y) = 11.3 - 3.7 x 3.3 = — 091

Hence, the correlation coefficient between X and Y = Py = s =—(.3368
_ Ay

(iv} X and Y are independent if PIX =%, Y=y) =P =x)P(Y =y)
Here 05 =P(X =2, Y=1) 2 BIX =2} P(Y = 1) =030 x 040 =0.12
So, X and Y are not independent.

Definition 6 : For a pair of discrete random variables X and Y, a function p(x, y)
=P(X =x, ¥ = y) is called the joint probability mass function of X and Y, if p(x,
v) satisfies the conditions :

(i) p(x, ¥) =0, for each pair of values of (x, ¥)

(i) > > p(x.»)=1, where the summation is over all possible pairs (x, ¥).
xo¥
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Definition 7 : For a pair of continuous random variables X and Y, a function

db
f(x.y), such that jjﬂx,Jf)dxdy = Pla<X<bhc<Y=dis called the joint
oo
probability density function of X and Y if f(x, y) satisfies the conditions :

() fix, y) = 0, for all x and y

(ii) [ [ fovypdxdy =1

&14 Exerise

1. Define a random variable. How do you distinguish between the discretc and
continuous random variables? [llustrate with examples.

9 What do you mean by probability mass function and probability density fune-
tion? Give cxamples in each case.

3. How do you define mode and quartiles of a probability distribution?

4 What is meant by mathematical expectation of a random variable? Stale its
important properties. Give an example to illustrate its usefulness.

5 Define an m.g.f, How do you use this to compute different moments? State its
important properties.

6. Compule the measures of skewness and kurtosis from the following p.m.f.
X Al | 2 3 4 5 6
pix) : 005 0.15 0.20 0.45 0.10 0.05

7. If the probability that the price of a stock will remain the same is 0.36, the
probability that its value will increase by Rs. 1.00 or Rs. 2.00 per share arc 1.00
per share is 0.14, compute the expected gain per share.
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8.

10.

I1.

12,

Let (x, y) be a pair of discrete random variable with the joint distribution

/o o 2 3
X
l 5/27 4/27 2/27
2= 1/27 3/27 3/27
3 327 4/27 2127

a.  Obtain the marginal probobility distribution of x and Y.

b.  Compute P(X > Y), P(X = Y P2V &= 5y
PX=2/Y=3)and (Y=1/X = 2).

c.  Calculate the correlation coefficient.

I:  Are X and Y independent?

Let two tandom variables X and Y be such that E(X) + E(Y) = 0, V(X) - V(Y)
=0and ] + P, = 0. What is the relationship between X and Y?

For two fga.ndum variables X and Y

E(X) = 50, E(Y) = 60, V(X) = 160, V(Y) = 360.

P, = [}TSI Compute

(@ COVX+Y,Y)

(b) V(5X - 3Y)

(c)  Correlation coeffeient between (5X - 3Y) and (5X + 3Y).

Prove that two uncorrelated random variables are independent, if each of the
variables takes two distint valyes only.

Find K if the following function is the pm.f or pdf

@ f09= o forx=1,234

= Kiforx =5

= 0 elsewhere,
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13.

16.

17,

18,

It

(b  fx) KBe 0, x>0

I

0 elsewhere
where B iz constant with 6 = 0

Evaluate the distribution function and compute E(X) and V(X) for the follow-
ing probability function

(aypx)y = 12 forx=1 (b) f(x)=4x/5, 0<x<],
= 14 forx=2 =2x-x)5 1< x.g 2.
= 14 forx=3
=1 elsewhere.

Obtain central moments p,, pq and py from the mgf M(t) = ¢ Hence
compute measures of skewness and kurtosis.

A discrete random variable X has the following p.m.f,
X o2 3 4 5 6 7
plx) 3a. S5a Ta Ba 10a 6a Oa
(a)  Determine the value of a.
(b) P[X <4]and P[2 <X < 5]
(c)  Find the minimum value of K such that”

P[X <K] = 0.5.

For what value of k, p(x) = ﬁ for x = 1, 2, ...k is the probability
distribution?
The p.d.f. of a random variable X is given by
px)=6x(l-x)for0 <x <1

=1{ elsewhere
Find P(X = 0.35), P(X > 0.5) and P(0.25 < X < 0.75).

In a certain city the daily consumption of water (in millions of liters) is a
random variable with the density function
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19.

20,

21

2

23.

24,

f(x}=éxe_% for x > 0

= 0 clsewhere. .
What is the probability that on a given day
(a)  the water consumption in the cily is not more than 6 milion liters?

(b)  the water supply is inadequate if the daily consumption of this city is 9
milion liters?
Evaluate the probability mass function from the following distribution function :
Fixy =20, x<1
=g Fsaa?
=12, 2<x=<3

=1, =i
Evaluate the density funciion from the following distribution function
F(x) = 2x%5 0<x<l

= —3/5 + 2(3x - x¥2)/5, I =x=<2

=1, : X =2

A discrete randam variable can take all possible integral values from 1 to k
cach with probability 1/k. Find the mean and variance of the distribution.

For a distribution with the pdf
fix) = %xj 0=x<3
find the mean and the standard deviation,

A person plays a game of throwing a dix under the condition that he could get
as many rupees as the number of points on the uppermost face. Find the expec-
tation and variance of his winnings.

A random variable X has the pdf
Bx)=ax, D=x <1
0 else where
Find the value of the constant C and hence find

; L
@ pl0 < X = [, @) pX > 7).
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Unit 3 O Discrete Probability Distribution

Structure

3.1 Introduction

3.2 - Uniform Distribution

3,3 The Binomial Distribution
3.3.1 Important Properties of Binomial Distribution
3.3.2 Some Real Life Examples

3.4 Poisson Distribution
3.4.1 Important Properties of Poisson Distribution
3.4.2 Some Real Life Examples

3.5 Geometric Distribution
3.5.1 Important Properties of Geometric Distribution

3.6 Exercises

3.1 Introduction

In Statistics the main problem is to infer some characteristics of a population or
universe. This is done by observed frequency distribution based on a sample by using
theoretical distributions. The construction of observed frequency distribution and its
various descriptive statistical measures have been done earlier. ITere we are interested
in studying the population through theoretical probability distribution of some random
variables. If a random variable saisfies the condition of a theoretical probability
distribution, the distribution can be fitted to the observed data. These distributions are
of two types, depending upon the random variable which is discrete or continuous.
In this chapter we will consider some probability distribution of discrete random
variables, namely Uniform distribution, Binomial distribution, Poisson distribution
and Geometric distribution. Also we will discuss some important properties of these -
distributions. ]
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3.2 Uniform Distribution

It is the simplest of all probability distributions where each possible value of a
random variable has equal probability of occurrence. Such a proability distribution is
called uniform distribution. If a random variable X takes k different values x,, x,,

weeneeesy X, With eqaul probability, then the p.m.f of X is defined as

P(X) = 1k, for X =X, X,, oy X, Where x; 2 x fori % j,i 1,2, .., k and
i e A 1

By notation X ~ U (k), means that X follows the uniform distribution with param-
eter k.

In accordance with the definition of the p.m.f, of the random variable X, the mean

k
= E(X) :;xi(] k) and the variance
f=

V(X) = E(X )2 = i{xi —? (1/K)

In a special case, when x_ = i, the uniform distribution becomes
px)y=1l/k forx = 1,2, ....... . k

With this form of uniform distribution,

the mean = p = E(X) = (k + 1)/2

and the variance = g2 = (k* — 1)/12

This form can be applied to an example of the number of points appeared i we
roll a balanced die.

3.3 The Binomial Distribution

By the word ‘trial” we mean an attempl to produce a particular event which is
neither certain nor impossible. For example, in tossing a coin to get a head is a trial,
When trials are repeated, they form a series of trials. Trials are said to be independent
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if the probability of an event is not affected by any other trials.
A series of trials are said to be Bernoullian series if,

(i} any trial results two outcomes : a success oOr a failure.
(ii) the trials are independent,
(iii) the probability of success at any trial is constant (p).

Let X be the random variable denoting the number of successes in n independent
trials. Here X can lake the values 0, 1, 2, ......, n with non-zero probabilities, If there
_ are exactly x successes, then the remaining (n-x) are failures. Let the probability of

success be p and that of failure be q = 1 — p. The probability of gelling x successes
(S) and consequently (n—x) failures (F) in n independent trials in a specified order

(say) SSFSFES ........ SIS is given by the expression.
P[SSFSES .......... SFS] = P(8) P(S) P(F) P(S) ........ P(E) P(S)
= PPAP: s GP:
= pt g

Now x successes out of n trials can oceur in "C_ways and the probability of each

of these ways is p*q" *. Hence the probabilily of exactly x successes in n Bernoullian
trials is given by

p(x} —_ ||CXPKL1I1—K X = '[}! II, 2_\ ....... na
=D elsewhere

Here p(x) = 0, for all x and

I I

2p0) =%, "C,prq"* =(q+p) =1,
i=0 i=0
So this is the p.m.f of the binomial distribution, By notation X ~ bin (n, p), means.
that X follows the binomial distribution with parameters n and p.

This distribution is called the binomial distribution because p(x) is the (x+1)" term
in the binomial expansion of (g+p)".

3.3.1 Imporiant Properties of the Binomial Distribution

I.  Binomial distribution is a probability mass function of a discrete random vari-
able X which takes finitc unmber of values 0, 1, 2, ......., n. The distribution is
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completely defined by the two parameters n and p.

2. Mean of the distribution = E(X) = np
Proof : Mean = E(X)

=3 80
x=[}

X ncxpan Wl

1]
M=

x=0

x nl/ {x(n—x)1) prgn—x

[~=

x=I

i n!/H{x-1)!n-x)!} P>
x=]

1p i (=D {x-1)! {n-x)!) p'-“—h-_ll‘l—x.
1=l

n=1
np 2 (n=DV{yn-y-1)4 pPq" ¥ here y=x—1
St when x =1, y=0 and

=np (g +p)*! when x=n, y=n-1
= np
3. Variance = V(X) = npq and S.D. =+ V(X) =+4/npg
Proof : V(X) = E[X-E(X)]?

E(X?) — EXX)
= B[X(X=1)] + E(X) — B{(X).

1]

Now, E[X(X-1)] = 2. x(x~1) nC, p¥*qr—=

x=2

= Zn: ol {x—2)! (n~x)} p¥qi—=
=2

— n@-1p? 3 @-2H(x-2! (n=x)} pr-iqrr
¥l
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11.

12.

=n(n-1)p?2 g(n—z]u{yt(n—y--zn} pyqn-y-2

=nn - 1) p* (g +p)? where x -~ 2=y
x=y+2
s when x = 2, y = 0
50, V{X): 11(]'1 == 1} pz + np — n2p2 when x = o = n—2 .
=np (1 -p)
= npq

Third and fourth order central moments are

iy =npq (q—p) and gy =3np2q? + npq (1-6pq).

BT 2 i T e e
Skewmess Tl —Ti' So the distribution is symmetric if p = q = /2.

A npq

Kurtosis (y.)= (1 — 6pg)/npq.

The recursion relation for the probabilities is as follows :
n=xal) o
pl===——px=1)

Binomial distribution tends to Normal distribution as n is large enough.
The moment generating function is
ML (1) = B(e%) = (q+pe)"

A recursion relation concerning three consecutive central moments 13

d
Hest = P4 {nru,-q +-d%L], p=153:300

The distribution may be unimodal as well as bimodal,
Mode = M, = [nt1)p), if (n + 1)p is not an integer

=@+ p,m+ Dp—1,if (0 + 1)pisan intcger
where |m] = greatest integer contained in m.

If X and Y are two independent binomial variates with parameters (n,, p) and
(n,, p) respectively then (X + Y) is also a binomial variate with parameler as
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13

14.

15.

16.

(n, + n,, p). The result holds for more than two binomail vatiables, provided
p remains the same.

This distribution can be obtained as a limiting form of hypergeometric distii-
bution.

Cumulative probability function :

: k
P[X <x]=F, (k) = Zﬂp(xjﬂq (n—k, k+1),

1
where I(s,0) = Tus‘*(l ) du/ _{us-l (1-u)-! du .
0 o

The function 1 (s, t) is extensively tabulated by Karl Pearson iri tables of
Incomplete Beta Function.

The r-th order factorial moment,
Hy=E [x(x - 1) ...... x-—r+1)]= S R O SR

Mean deviation about mean of a binomjal variate is
MD“F =E|X-np|=2mg £ B i

= 4/(@npg/ ), when n is large,

where m is the largest integer contained in (n+1)p.

3.3.2 Some Real Life Examples

The following are some real life examples of a binomial variable

(1)
(1)

(iii)
(iv)
(v)
(vi)
(vii)

Occurrence of heads or tails when a number of limes a coin is tossed.

Occurrence of odd points or even points when a number of times a die is
thrown.

Arrival or non-arrival of ships in a port.
Infected or non-infected by diseases,
Defective and non-delective items in a lost
Success and failure in an examination.

Vegetarian and non-vegelarian in a given populaton.

(viii) Literate and illiterate persons in a community,
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Some Problems on Binomial Distribution

n
e
Solution : We know that for the binomial distribution Var (x) = npg. So to prove

1. Show that for the binomial distribution var (x) =

that Var (x) E% we are to prove that npg .‘E%.

that is, we are to prove that pgq = -_}T

that is, we are to prove that 4pq < |
For this distribution p+q = 1

That is, p* + q* + 2pq = 1

That is, p* + @ — 2pq + 4pq = 1
That is, (p—q)* + 4pq = 1

That is, 4pgq < 1.

: 4
SIS g

That is, npg < E—

The equality sign will hold good when p=q=-é— .

7. Find the maximum value of variance of the binomial distribution.
Soluton : For the binomial distribution

Var(x) = npq = np(1-p) = np — np*
To maximise var(x) we proceed as

dvg;!x! i n—2np

Hence, when p= % =q the var(x) of the binomial distribution is maximum.In this

Ly
case var(x) = npq .t.12-2~41
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3, Let x be a binomially distributed random variable with mean 2 and s.d. o (ET
Find the corresponding probability function.

Solution : Here p=2and 6 = 2 //3 . That s, np=2and \/npq =2/3 so that
24
npq——j-.

2
Here "l =q=%andp=

1
np 3

Smce np = 2 and p=%, n=6,

Thus, the probability function of the binomial distribution is

1Y {2
fij=‘f'c1(-,;-] (E] e (1 O

3.4 Poisson Distribution

Here the Poisson probability distribution will be derived as a limiting case of the
binomial distribution. This is a probability distribution of a discrete random variable
which assumes a countable infinite number of values. The distribution is due to 8.D.

Poisson, a French Mathematician.

First let us consider the limiting form of the binomial distribution. [et
i) The number of trials be very large ie., n —w

i) The probability of success p be very small ie, p — 0,

iii) np = A, a finite quantity, when n — @« and p— 0.

Under the above conditions the binomial distribution will be reduced to the poisson
distribution in the following way :

lim p(x) = lim °C prq™

n-—»

p—>0

np = A

= lim n!/ {x! (n - x)!} pig™*
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= limn(n-1)...{n-x+1)/x!p (l-py

= Ux! liml (1 - Un)(1 - 2/m) .« (1 = (x = D) (np)* (1 - np/n)™, dividing each
multiplier by n.

= 1! liml(d - Vn)! - 2/n) ......... (1 - (x - Iym) A*(1 - Am)y=*

= Xxlim{ld - Un)(l - 2/n) e (1 = (x = Din)}lim(l - A/n)m=

= et A¥/ x!

[ Since 1M {1(1 - 1/m) (1 - 2/M) i (1 - (= D) }= 1

lim (1 . 3y =e* and

X O

im (1 - amy =1]

X

Hence the probability mass function p(x) is reduced to the form
pix et aarirl , =01, 3 ... ey

Hence the Poisson distribution is defined by the p.m.f

p(x) =e™M*/x! . x=0,12. ...
=0 elsewhere.

where A(=0) is the only parameter of the distribution.
By notation X ~ P(A), means that X follows the Poisson distribution with
parameter .
Tt is clear that p(x) = 0, for all x and

. o
Zp(x} =Ze_:" A xl=etet=e=1
x=0 x=0

Thus the pmf of the poisson distribution holds both the properties of being the pmf.
3.4.1 Imporiant Properties of the Poisson Distribution

1. Poisson distribution is a theoretical distribution of a discrete random variable,
X which takes infinite number of values 0, 1, 2, ..... . The distribution is completely
defined by the parameter A.

2. Mean of the distribution = E(X) = A.
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ol
Proof. Mean = E(X) = ZKP[K}
x=()

| ixe_}"}."h{!

x=l

= e S A/ (x—1)
x=]
.
L J&,f:'lz&"‘l fx—1N
x=]

= ke ZI«L”};! where y =x—1
=[]

whe1;e x=1,v=0
= he et
= he
= A
3, Variance = V(X) = A.
V(X) = E[X - EXJ
= E(X’) ~ ()
= E[X(X - 1)] + E(X) - EXX) coxPex(x-D4x

NowE [X(X-1)] = Zx(x—i)e"“ A%/ x|
x=0

= e 3 A/ (x-2)!
x=2

o
K2 Zv-ﬂ f{x—2)
=
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3o - 7y, wherez=x-2
= A'e ;‘?‘ fiat whenx=2,2=0.
X

= P..Ec"}"e

VX)=a+h-A =47

4. The third and fourth order central moments arc m, = A and m, = A + 337,
Skewness (y,) = 1A . the distribution is always positively skewed.

6. Kurtosis (y,) = /A, the distribution is always leptokurtic.

7. The recursion relation for the probabilities is as follows :
p(x) = (1 / x) p(x = 1)

8. The moment generating function is

M) = B = M€

9. A recursion relation concerning three consecutive central moments is

10. The distribution may be unimodal as well as bimodal,
Mode = M, =[ 1] if A is not an intcger
=A, A-1 if his an integer
where [ A J = greatest integer contained in A,

11. IfX and Y ate two independent Poisson variates with parameter 4, and A,

respectively then (X + Y) is also a Poisson variate with parameter (A, + ).
12, This distribution can be obtained as a limiting form of the binomial distribution

when p is small, n is large but np is a finite positive number.

13. Cumulative probability function:

_ k
PIX < kj= F (k) = _Z::np("}z l_l(ﬁkl;_uk]
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z o
where [ (s, t) = J'E_? vPdv/ je“’v!‘ dv
i i

with s=z/ J(t+1)

14.

15,

16,

0
(i)
(iii)
(iv)

(v)

(vi)
(vi)

(ix)

The function I(s, t ) is extensively tabulated by Karl Pearson in tables of
Incomplete Gamma Function.

The r-th order factorial moment,.

By = EBXX-D X -r+1)] =, S R S
Mean deviation about mean of a Poisson variate is
MD, =E|X-A|=2me* A"m!

where m is the largest integer conlained in A + 1.

Poisson distribution tends to the normal distribution with mean A and variance
as A is large enough.

3.4.2 Some Real Life Examples

The following arc some examples of a Poisson variable :

Number of accidents per day in a big city.
Number of printing mistakes per page in a book.

Number of deaths from a rare disease per year in a given region.

Number of cars passing through a road crossing per unit interval of time
during a busy period.

Number of defects per unit sheet materials (e.z. Paper, metal sheet, cloth
ete.)

Number of defective items per packet manufactured by a reputed company.

Number of customer visiting a service centre per hour,

(viii) Number of persons born blind per year in a large region.

Number of goals scored in football match,
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(x) Number bacteria present in a given liquid per unit volume,

3.5 Geometric Distribution

Here the discrete random variable X denotes the number of trials that are needed
to get the first success. The probability mass function of X is

p(x) = pg 5] o il B A e
= 0 elsewhere

where ¢ = 1 - p and p is the probability of success in any frial of a binomial
distribution. Since the different terms in the distribution are the terms in the peometric
_series, the distribution is known as a geometric distribution.

By notation X~g(p) means that X follows the geometric distribution with parameter
pl a
Here p(x) = 0, for all x and

ZP(K) > pa =plleqg+gs )
x=0 x=0

=p/(l-9q =pp=1
3.5.1 Important Properties of the Geometric Distribution

1.  Geometric distribution is a probability mass function of a discrete random

variable X which takes countable infinite number of values 0, 1, 2 ... o .

The distribution is completely defined by the parameter p.
Mecan of the distribution, that is, B(X) = q/p. '

Variance = V(X) = g/p*.
4, ‘The third and the fourth order central moments are respectively
p=all + @/p' and  u = (g + 7a* + q)/p.
5. Skewness (y,) = (I + q}f\l[q,
6. Kurtosis (y,) = (1 + 4q + g*)/q
7. The recursion relation for the probabilitics is as follows:
p(x) = (1= p) p(x - 1).
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8. The moment generating function is
M (1) = E(e®) = p(l - ge"', for ge' <1
Example 1. The probability that an applicant for a driver’s license will pass the
road test on any given try is 0.75. What is the probability that an applicant will finally
pass the test on the fourth try?

Solution : Let X be the random variable denoting number of failures before the
first success. Here x =3 and p = 0,75. Hence using the geometric distribution,

P(the applicant will finally pass the test on the fourth try) = n3)
= 0.75(1- 0.75 )
= 0.0117

Example 2. A firm produces an item of which 0.1% are usually defective, if
packed then in boxes each containing 500 items. If a wholesaler purchases 1000 such
boxes, how many boxes are expected to be :

(i) Free from defective items 7
(i) One defective item ?

Solution : Let X be a random variable denoting number of defective ifems ina
box of 500 items. Here X follows the binomial distribution with n = 500 and p=1
1000. Sinee n is sufficiently large, p is very small but np = (.5 (finite), the binomial

distribution can be approximated by the Poisson distribution with pam.f

plel= ANl = o,
Here, A = (1/1000) x 500
= 05
(i) P(a box which is free from defective items)= P(X = 0)
= p(0)
=g = 0.6065

Hence the number of boxes which are firee from defeetive items is
1000 = 0.6065 = 6065
(i)  P(a box with one defective item ) = P(x =1 )

=1

= @03 % ().5

= 0,3033
Hence the number of boxes with one defective item is
1000 = 0.3033 = 303.3 ~ 303.
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Example 3. The distribution of printing mistakes in a book of 200 pages is as

follows:
No. of printing mistakes in a page (x) : 0 ISR S T
No. of pages (f) _ SRS Lo M I R R

Fit a Poison distribution to the above data.

Solution : Let X be the random variable representing the number of printing
mistakes per page.

If the given frequency distribution is approximated by the Poisson distribution,
then it has only onc parameter A. % can be estimated from the observed data by the
method of moments. The first order raw moment of the Poisson distribution about
zero is A, while the first moment about zero of the observed distribution is average
number of printing mistakes per page

= Y %/ Y F
=(0x112+1x63+2x20+3x3+4x1+35x1)/200
121 / 200

0.605

Hence 4.=X, =0.605

X f P(x) Np(x)

0 112 0.545 109

1 63 0.330 66

2 20 0.100 20

3 3 0.020 4

4 1 0.005 1

5 1 0 0
Total 200 1,00 200

Example 4. The manufacturer of a popular brand of T.V. knows from past experience
that the probability of a T.V. set failing to work properly during the warranty period
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is 0.04. Find the probability that in a sample of 25 sold T.V. sets selected at random,

6 or less will be failing to work properly during the warranty period. Use both
binomial and Poisson distributions to compare the results,

Solution: Let X be the random variable denoting that the number of T.V. sets will
be failing to work properly in a sample of size n. Here p=0.04,9=096, n=25

50 by binomial distribution

P(x26)=> 2C, (0.04)* (0.96)*>*

M

|
=

T

().9999
and by the Poisson distribution with

A=np=25x004 =1, we have

&
P(x <6) = D.e ' 1*/x!=0.9999
x=0

Thus two results are identical.

Example 5. The probability that a bulb will fail before 100 hours is 0.3. Bulbs fail
independently. If 15 bulbs are tested for lengths of life, what is the probability that

in a sample of 10 bulbs a) exactly 4 will fail, b) at most 2 will fail and ¢) at least
one will fail before 100 hours?

Solution : Here X = number of bulbs failing before 100 hows. X follows the
binomial

distribution with n = 10 and p = 0.3,
D PX=4) =p@)="C, (03 (0.7 = 0.2
i) PX=2) = p0)+p) + p)
= BC, (0.7)!" + °C,(0.3) (0.7)° + "C(03) (0.7)" = 0.3828
i) P(X>1] =1-POC=0)=1-p0)=1-"C(07)"=09717
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3.6 Exercises

12,

13.

Explain the concept of theoretical distribution with reference to a discrete
random variable. '

Explain briefly the characteristics of the binomial and Poisson distributions.

Prove that variance of the binomial distribution can not be greater than its
mean. Also show that the vanance can not exceed n/4.

Show that the mean and variance of a Poisson distribution are equal.

For a binomial distribution with parameters n and p, establish the following
relationship :

dp
el

where 113 the central moment of order r. Hence find measures of skewness
and kurtosis of the binomial distribution.

Describe Poisson distribution as a limiting form of the binomial distribution.
Give some examples of binomial and Poisson variables from our daily life.
Determine the mode of the binomial and the Poisson distributions.

For a discrete uniform distribution obtain the mean and variance.

Show that binomial distribution is symmetric when p = %

If the probability of having a male or a female child is both 0.5, find the
probability that :

(a) A family’s fourth child is their first son.

(b) A family’s fifth child is their first daughter.

When taping a television commercial the probability is 0.3 that cerlain actor
will get his lines straight on any one take. What is the probability that he will
get his lines straight for the first time on the sixth take?

A diserete random variable X follows the uniform distribution and assumes
the values 5, 7, 12. 17, 19, 22, 25. Find the following probabilities: P(X=T7),
P(X < 17) and P(2=12).
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14.

15,

16.

17.

18.

19.

The incidence of a certain occupational disease is such that on the average
30.% workers suffer from it, If 8 workers are selected at random, find the
probability that

a)  exactly 2 workers suffer from the disease,
b)  not more than 2 workers suffer from the discase.

The probability of a salesman achieving his sales quota is 0.3.Find the
probability that in a random sample of 7 salesmen

a) at least two, b) at most three and ¢) exactly four will achieve their respective
sales quota.

A certain factory is turning put with optical lenses, There is a small chance
1/500 for any one lens to be defective. The lenses are supplied in packets of
10. Use the poisson distribution to calculate the approximate number of packets
containing no defective lenses in a consignment of 20,000 packets.

A period of 100 days was observed for the number of aceidents taking place
per day in a busy city. The distribution of the observed days according to the
number of accidents per day is given below. Assuming Poisson distribution,
find the expected frequency.

Mo. fo accidents : 0 | 2 3 4 5  More than 5
No. of days : 40 23 14 10 i 4 2

The screws manufactured by a certain machine were checked by examining
samples of 8 screws. The following freqency distribtion gives 200 samples
according to number of defective screws they contain. Fit a binomial distribtion
to the given data.

Defective screws = 0 1 2 3 4 5 i} T it
No. of samples : 2 10 24 38 48 35 25 12 6

An indstrial area has power brake down one in 30 days, on the avarage.
Assuming Poisson distribution, what is the probahi lity that

(i) no power brakes down in the next 7 days?

(if) more than one power brakes down in the next 7 days?
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20.

21.

Fh

23

24,

23.

26.

T

Point out the fallacy in the following statements :

(i) The mean of a binomial distribtion is 9/2 and the standard devition on is
3.
(i1) The mean of binominal distribution is 4 and the standard devotion is 3.

In a binomial distribution with parameters n and p the mean is 3 and the
standard deviation is ,f3 . Find the values of n and p and hence find p(x =5),

A random variable x follows the poisson distribution with parameter 4. Find
the probabilities that x assumes the values (i) 0, 1, 2, and 4; (ii) less than 2
and (iii) at least 3. [It is piven that e™* = 0.0183]

Suppose x has a poisson distribution such that ils mean is 2 times its standard
deviation. Find (x=2).

Prove that the binomial distribution is symmetrical if p = %

For a binomial distribution, the mean and the standard deviation are respectivly
4 and /3. Find out the probability of getting a non-nagative value from this
distribution.

In a shooting competition the probability of a man hitting a target is 0.2, If
he fires 5 times, find the probability of hitting the target at least twice.
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Unit 4 0 Continuous Probability Distribution

Structure
4.0 Introduction
4.1 Rectangular Distribution
4.1.1 Some Important Properties
4.2 The Normal Distribution
4.2.1 Important Properties of the Normal Distribution

4.3 Exercises

4.0 Introduction

In this chapter we will consider some continuous distributions and discuss their
important proporties, The distribution will be defined in terms of probability density
function (p. d. £.).

4.1 Rectangular Distribution

This is also known as the continuous uniform distribution. The distribution has the
same probability density at all values through the range of a continuous variable X,
The probability density function is

The following figure gives a graphical representation of the distribution. Due to
its rectangular shape, it is called a rectangular distribution.

This distribution is also called the uniform distribution because this distribution
has uniform or same probability over the range of the values, a to p.
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f(x)

W

— X

By notation X ~ R (a, B) means X follows the rectangular distribution with two paramenters
o and P. It is to be noted that f(x) > 0 and

B B
jﬂxmx=£ﬁéaﬂx:1.

Lo g

So the pdf of the rectangular distribution holds both the properties of being the
pdf.
Example : The buses on a certain route run after every 20 minutes. If a person
arrives at the bus stop at random, what is the probability that
(a) he has to wait between 5 to 15 minutes,
(b) he gets a bus within 10 minutes
and (c) he has to wait at least 15 minutes?

Solution : Let the random variable X denote the waiting time of the person, which
follows a rectangular distribution with p.d.f.

fix) = 1/20, 0 <x <20,

15

; 1 I5=5 1
Now, &) P[5 < X £ 151 = 35 | &% =735~ =2
: 3
() P[0 <X < 10] = %z%
(©PlIs = X <20) = 22—

4.4.1. Some Important Properties

1.  Thisis the p.d.f. of a continuous random variable X. It is completely defined
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by two parameters o and p.

2. The mean of the distribution is E(x) :ﬁ_TU‘.

2
3. The variance of the distribution is p, = V(x)= @—}%L.
4.  Third order central moment M, = 0 and Fourth order central moment My =

(B-a)’

80

5. Measure of Skewness (y,)= il}?,
. g2

i.e. the distribution is symmetric about {u;— B) ;

6. Measure of Kurtosis (11)= ti_é— 3 1.2, i.e. the distribution is platykurtic.

7.  The moment generating function of X is

MJt]:t—m(elﬂ-EM},un

4.2 The Normal Distribution

A continuous random variable X follows the normal dist_rihutiﬁn and it is referred
to as a normal random varable if and only if the probability density {unction of X is

' 2
given by Hx}=ﬁ£ﬂxp{w%{x;f} }—m{x{m,

where there are two parameters | = E(X) and o = V(X). By notation X ~ N(u,
o?) and we mean that X follows the normal distribution with two parameters . and

a*, 1t is clear that f{x) = 0 for all x, and it can easily be verified that I fix)dx=1,

=00
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The shape of the above distribution has been shown in the following diagram
measuring x horizontally and {{(x) vertically.

T l_l_ ]
— X
Standard Normal Variable

A variable Z defined by Z =X—;E— is called the Standard normal variable.

o

i o : 2
Here E(Z) = f“ﬁ}ﬂ#‘—ﬁhﬂ and v{z}:i’%lﬁ =1,

It can be shown that Z is itself a normal variable with mean zero and unit variance.

2
e
The p.d.f. of Z is given by ¢(2) =712-e 1,-0<Z<om
m

By notation we write Z ~ N(0, 1). That is, Z follows the normal distribution with
mean zero and s.d. unity.
The curve representing the standard normal variable has been shown below.

- o0 ot > bl

- Z
4.2.1 Important Properties of the Normal Distribution
1. The Normal distribution is the p.d.f. of a continuous random wvariable
X, —w< X <. The distribution is completely defined by two parameters

wand o?.
2. Mean, Median and Mode coincide and all are equal to i, i.e. Mean = Median
| = Mode = (1] :
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10.

11.

12.
13.

14.

'V(X) = o and Standard Deviation = +,/V(X) = ¢

The distribution is unimodal and bell-shaped.

The distribution is symmetric about p, i.e. if f{(x) be the p.d.f. of the distri-
bution, then f(u — k) = f{n + k) for any value of k.

As X deviates from the central value p in cither direction, the curve comes
closer and closer to the X-axis but never touchcs it, i.e., the curve is asymp-
totic to the X-axis to both direction.

The distribution has two points of inflexion at x = i + o which is the

d’f(x)

solution of the equation —d-'%x— = (. Le. at these points the normal curve

changes its curvature. The curve is convex upwards within the interval (u —
@, | + o) and concave upwards outside this interval,

Although a normal variable can theoretically take any value between -
and oo for all practial purposes it may be assumed (o lie between p — 3¢ and

-+ 3o. The interval [p — 3o, p + 30] is often called the effective range of

a normal variable. It may be m}ted that
Plp - 30 < X £ p + 36] = 0.9973 (app.) which is very close to 1.

Since the distribution is symmetrical about , its odd order central moments
vanish, i.e. W, =0 forr=0, 1,2, ...

Even order central moment arc ;
=m—nw—3@—g ......... 531&n=123 ...........

A useful recursion relations of even order central moments is given by Hy.
=gt @ik st =125 ;

In particular, p, = o%, p, = 3c*,
The coefficient of skewness (y,) = 0, that is, the distribution is symmetric.

The coefficient of kurtosis (¥,) = 0, that is, the distribution is mesokurtic and
hence peakedness of the distribution is ideal.

The moment generating function of the normal distribution is M_(t) = E(e™)
_ S
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16.

17.

18.

19.

20.

The first quartile (Q,) and the third quartile (Q,) are equidistant from the
mean and’ Q, = p - 0.67c (app) and Q, = p + 0.67c (app). So the quartile

deviation = QELQ =0.67a (app).

The distribution of probability of a normal curve is as follows :

Plp—o < X < pn + o] = 0.6827

Pl — 20 < X < p + 20] = 0.9545

U-30 pdo @-0 gy PO pilo pHo
—i 6837

Plu-3c <X = p+ 3c] = 09973 0.9545

0.9973

The values of e.d £ of Z=2=t is ©()=P(Z2K) = [§ (2) dz are avaliable

in statistical tables for different values of k. From the symmetry of the
distribution we have ®(k) = ®(-k) and hence ®(0) = 0.5.

If X ~ N (u, o?), then for any two constants and and b (b > a) we have

@) P[Xza]= j fx)dx = m[a—;ﬁ]

oy _1-@(b=2
(b) ?{xzb]_ir(x}dx_l—'c?( = ]

a0

(c) P[a.i o b]':ljaf{;;)dx=m(b;ﬂ]_¢(ﬂ'u]

If X and Y are independent normal variates with means p, and p, and
standard deviations o, and o, respectively, then (aX + bY) is also a normal
vatiable with means ap, + ny, variance a’s? + bla,?.

Under certain assumptions the binomial distribution and the Poisson distri-

bution can be approiximated by normal distribution. i.e. If X ~ birt (1, p) then

b+—l--rnp

! | '
a—5—1np
"[“““E‘I’[T%W}"‘{T%r]
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and if X ~ P(A) then

1 2
Pla<X <b] = m[#]—m{%&}

21. Mean deviation about mean

MD}A.=E|X'—]A|=UEEG.EUG
Example 2 : The average monthly sales of 5000 firms are normally distributed
with mean Rs. 36 lakhs and 8.D. Rs. 10 lakhs. Find
i) the number of firms the sales of which are below Rs. 30 lakhs,
ii)  the percentage of firms the sales of which are more than Rs. 45 lakhs.

iif) * the percentage of firms the sales of which are between Rs, 30 lakhs and Rs.
40 lakhs.
Solution : Let X be the random variable denoting the monthly sales of a firm (in
lakhs rupees). Assuming that X follows the normal distribution with mean Rs. 36
lakhs and 8.D. Rs. 10 lakhs we can compute.

30-36
10

= D(-0.6) = 1 — D(0.6) = 1 — 0.7257 = 0.2743,

Therefore, the number of firms the sales of which are below Rs. 30 lakhs = 5000
% 0.2743 = 1352,

(i) P[X < 30] =P[Z<: :|=P[Z-=:—-ﬂ.6]

45-36
10

=1 - ®(0.9)=1- 08159 = 0.1841.

So, the percentage of firms the sales of which are more than Rs. 45 lakhs. = 100
x 0.1841 = 18.41%.

(i) P[X>45] =Pz > I e ﬂ.éj

_ »[40=36) . (30-36
(iii) P[30 < X < 40] = ‘I’(T') ‘I’(—“_m. )

= (0.4) — O(-0.6) = D(0.4) + BO0.6) — 1.
= 0.6554 + 07257 — 1 = 0.3811.

The percentage of firms the sales of which are between Rs. 30 laksh and Rs. 40
lakhs = 100 = 0.3811 = 38.11.
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Example 3 ¢ The average life of a certain type of small motor is 12 vears with an
s.d. of 2.5 years. The manufacturer replaces free all motors that fail while under
guarantee. If he is willing to replace only 2.5% of the motors that fail, how long a
puarantee should he offer? Assume that the lives of the motors follow a normal distri-

butioin.

Solution @ Let X be the random variable denoting the life (in years) of a small
motor. It is given that the life of a motor follows the normal distribution with mean
it = 12 years and standard deviation, ¢ = 2.5 years. Let T be the guarantee period (in
years) of a motor offered by the manufacturer so that he will replace 2.5% of motors,

ie. P[life of a motor does not exceed its guarantec period] = 2.5/100 = 0.025,
orr PIX s T]= 0025
or P[Z < (T — p)o] = 0.025 $(-1.960)
or T'=p-1.9600=12-25x 1.960=12-49 %1 =7 (app)

Therefore, the manufacturer should offer approximately 7 years of guarantee if he
is willing to replace only 2.5% motors.

Example 4 : In a normal distribution 31% of the items are under 45 adn 8% are
over 64. Tind the mean and the standard deviation of the distribution.

Solution : Let X be a random variable which follows the normal distribution with
mean p and variance &2, It is given that

P[X = 45] = 0.31 and P[X > 64] = 0.08
Now, P[X < 45} = 031
or, P[(X - o < (45— p)o] = 0.31
or @[(45-p)o] = 0.31
From the normal table @ (-0.496) = 0.31
So (45 — pyo = 0496 ... (1)
Again, P[X > 64] = 0.08
or, P[X<=64]= 0.92
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or, P[(X—p)o < (64— p)ie] =0.92
or, @64 - p)c]=0.92
~ I'rom the normal table @ (1.405) = 0.92
S0 (64 - p)o = 1405 ..ot (2)
Solving (1) and (2), we get p = 49.96 = 50 (app.) and o = 10.

Example 5 : A wholesale distributor of a produet finds that the annual demand for
tl1e product is normally distributed with mean 120 and s.d. 16. If he orders ounly once -
a year, what quantity should be ordered to ensure that there is only a 5% chance of
running short?

Solution : Let X be the random variable denoting the annual demand for the product.
[t is given that X follows the normal distribution with mean () = 120 units and s.d.
(o) = 16 units. Supposc Q is the annual order quantity.

P[The annual demand exceeds the annual order quantity] = 0.05
or P[X>Q]=0.05

or P[X <0Q]=095

or PX - i < (Q - pic] = 0.95

®[(Q - p)lo] = 0.96

From the normal table @©(1.645) = 0.95

0

=

“So (Q - o = 1.645
or Q=p+ 1.6450 = 120 + 1.645 x 16 = 146.32 = 146 (app.)

Therefore, the yearly ordered quantity should be 146 (app.) to ensure that there is
only a 5% chance of running short.

Example 6 : The mean purchases per day by a customer in a large store is
Rs.250 with an s.d. of Rs. 100. If on a particular day, 100 customers purchased for
Rs.378 or more, estimate the total number of customers who purchased from the store
that day.

Solution : Let X be the random variable denoting the purchases (in rupees) per
day by a cerlain customer in a large store. X follows the normal distribution with
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mMean

= Rs. 250 and s.d. Rs. 100. Suppose N is the total number ol customers who

purchased from the store that day.

Given that,

P[a customer purchases more than Rs. 378 on a particular day] = 100/N

or,
or,
or,
or,

So

P[X = 378] = 100/N

P[Z > (378 — 250)/100] = 100/N

P[Z < 128/100] = 1 — 100/N

@f(1.28) = 1 — 100/N = 0.9 (from normal table)
N = 1000.

Therefore, 1000 customers purchased from the store that day.

4.3

Exercises

Write down the probability density function of a normal distribution with mean
u and variance o®. Show that it is symmetric about |1,

State the important properties of the normal distribution.
Describe briefly the importance of the normal distribution in business decision,

Find the mode and points of inflexion of the normal distribution with mean W
and variance o”.

The income of a group of 1,00,00 persons was found to be normally distributed
with mean Rs. 7500 p.m. and s.d. Rs. 500, What is the lowest income among
the richest 10007

A production engineer finds that on an average mechanic working in a machine
shop completes a certain task in 30 minutes. The time required to complete the
task is approximately normally distributed with an s.d. of 5 minutes. Find the
probability that the task is completed a) in less than 15 minutes, b) in more than
20 minutes.

A bank manager finds that the lengths of times the customets have to wait for
being attended to by the teller are normally distributed with mean 3 mmutes

91



10.

11,

13.
14,

and s.d. of 0.6 min. Find the prob. that a customer has to wait
a) for less than 2 minutes.

b)  for more than 1.5 minutes.

¢) DBetween 1 and 2 minutes.

1000 light bulbs with a mean life of 120 days are installed in a new factory,

their length of life is normally distributed with an s.d. of 20 days.

a)  Iow many bulbs will expire in less than 90 days?

b) I it is decided to replace all the bulbs topether, what interval should be
allowed between replacement, if not more than 10% should expire before
replacement? :

The mean of the inner diameters (in inches) of a sample of 200 tubes produced
by a machine is 0.502 and the s.d. is 0.005. The purpose for which these tubes
are intended allows a maximum tolerance in the diameter of 0.496 to 0.508
otherwise the tubes arc considered defective. What percentage of the tubes
*produced by the machine is defective if the diameters are found to be normally
distributed?

The Kolkata Municipal Corporation installed 2,000 bulbs in a street of Kolkata.
If these bulbs have an average life of 1000 burning hours and standard deviation
of 200 hours, what number of bulbs might be expected to fail between 700 and
1300 hours?

An editor of a publishing company calculates that il requires 10 months on an
average to complete the publication process from manuscript to finished books
with a standard deviation of 2.5 months. He believes that the distribution of
publication time follows the normal law. Out of 350 books he will handle this
year, how many will complete the process in less than a year?

In a normal distribution, 8% of the ilems are under 50 and 10% are over 60.
Find the mean and standard deviation of the distribution.

What is a standard normal variate? Find out its mean and standard deviation,

The marks is Statistics are normaly distributed with mean 50 and 8.D. 10. Find
the proportion of individuals getting (a) 60 marks or more and (ii) less than 30
minutes.

It is given @(1) = 0.841745.
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564 Quota Sampling

5.7 Exercises

5.1 Introduction

Sampling denotes the selection of a part of the aggregate with a view to
obtain information about the whole. This aggregate or totality of statistical information
on a particular character of all the members covered by an investigation is called
population or universe. When the population size is very large, it may not be possible
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to take a complete enumeration of the population, Then we select a small part of the
population called sample and by examining this small part we can infer about the
nature of the whole population. The basic objective of sampling is to make inference
- about the population by examining a small part of it. In other words, sampling is only
a tool which helps us o know the characteristics of the populatmn by examining only
a small part of it.

Some application of sampling in business :

- a)  Sampling methods are used in market rescarch for assessing customer
behaviour, especially during launching of new products in the market.

b)  Sampling is also used to estimate the prupm'tmn of defective incoming lots
from suppliers.

¢)  Inindustry sampling is done for statistical quality control. During manufacture,
a few consecutive items are picked from the production line at regular intervals
of time and these items are thoroughly tested.

5.2 Some Basic Terms

Population : In statsitical application the term population is applied to any finite
or infinite collection of individuals. It is practically synonymous with aggregate and
does not necessarily refer to collation of living organisms. The population may be
finite or infinite. By finite population we mean a population which contains a finite
number of members. Similarly, by an infinite population we mean a population
containing an infinite number of members. The population size is denoted by N.

Sample : A part of a population, or a sub-set from a sel of units, which is provided
by some process of selection with the object of investigating the proportion of the -
parent population. The sample size is denoted by n.

Census : The complete enumeration of a population or groups of a point of time
with respect to well defined characteristic such as population, production, traffic on
particular roads.

Sample survey : A survey which is carried out using a sampling method i.c., in
which a portion of population is surveyed.
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Sampling frame : A list, map or other specification of the units which constitute
the available information relating to the population designated for a particular sampling
scheme. That is, sampling frame is a complete list of elements comprising the
population from which a sample is to be selected

Sampling distribution : The frequency distribution of all possible samples of a
cerlain size drawn from a particular population. '

Sampling error : This is the difference between population parameter and the
observed statistic. The error which arises due to only a sample being used to estimate
the population parameters is known as sampling error or sampling fluctuation.

This error is inherent and unavoidable in any and every sampling scheme. A
sample with the smallest sampling error will always be considered a good representation
of the population. This error can be reduced by increasing the sample size. When the
sample survey becomes census, the sampling error becomes zero,

Non-sampling error : A sample estimate may be subject {o other errors which,
grouped together, are termed as non-sampling error. The main source the of non-
sampling errors are:

i) Failure to measure some of the units in the selected sample.
ii) Observational error due to defective measurement techniques.
iii) Errors introduced in editing, coding and tabulating the results.

In practice, the census results may suffer from non-sampiing error although this
may be from sampling error. The non-sampling error is likely to increase with increase
in sample size, while sampling error decreases with the increase in the sample size.

Parameter: Any statistical measure computed based on all the units in the
population is called a parameter, e.g., population mean (), s.d,(c_r[], proportion(p) ete.

Statistic : Any statistical measure computed on the basis of sample observations
is called a statistic, e.g. sample mean (%), s.d. (8), proportion (x/n) ete.

Estimator: An estimator is a rule or method of estimating a population parameter.
It is generally cxpressed as a function of sample variates. An estimator is itself a
random variable.

Estimate: A particular value of an ecstimator obtained from a sct of values of a
random sample is known as an estimate.

95



Random number table : A random number table is an arrangement of digits (-
to 9, in either a linear or rectangular pattern, where each position is filled with one L}fﬂ"g;—_,l
digits. A table of random numbers is so constructed that all numbers O, 1 253
appear independent of each other. Some random number tables in common are -

i)
it}

Tippelt’s random number table

Tisher and Yates™ table.

iii) Kendall and Smith tables.

iv)

A million random digits,

5.3 Procedure for Selecting a Random Sample

The simplest way of sclecting a sample of the required size is by selecting a
random number from 1 to N and then taking the unit bearing the number. The
procedure involves a number of rejections since all numbers greater than N appearing
in the table are not considered for selection. The use of a random number is muodified,
some of these modified procedures are :

i)

Remainder approach

Let N be an r-digit number and let its r-digit highest multiple be N*. A
random number R is chosen from 1 to N* and the unit with the serial
number equal te the remainder obtained on dividing R by N is selected, If
the remainder is zero, the last unit is selected. As an illustration supposc N
= 32, the highest two-digit multiple of 32 is 96. For selecting a unit, one
random number form 01 to 96 has to be selected. Let the random number
selected be 75 the remainder is 11. Hence, the unit with serial number 11 is
selected in the sample.

Quotient approach

Let N be an r-digit number and let its r-digit highest multiple be N* such
that N*/N=q . A random number R is chosen from 0 to (N* - 1). Dividing
R by q the quotient r is obtained and the unit bearing the serial number
(r - 1) is selected in the sample. As an illustration let N = 32 and hence
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N# = 96 and q = 96/32 = 3. Let the two-digit random number choscn be 65
which lies between.0 and 95, Dividing 65 by 3 the quotient is 21. Hence the
unit bearing number (21 - 1) = 20 is selected in the sample.

5.4 Sampling Schemes

The procedure adopted o sclect the sample 1s known as sampling scheme.

Sampling schemes are broadly classified as non-probabilistic, probabilistic and
mixed.

In non-probabilistic sampling, there is a fixed sampling rule but there is no-
probability attached to the mode of selection. On the other hand, il for each individunal
there is a definite pre-assigned probability of being selected, the sampling is said to
be probabilistic. Probabilistic sampling is also called random sampling. In mixed
sampling the selection process is partly probabilistic and partly non-probabilistic.

5.5 Some Random Sampling Schemes

5.5.1 Simple Random Sampling (SRS) :

The simplest most commonly used type of probability sampling is simple random
sampling. Tn this sampling, each member of the population has the same probability
of being included in the sample. Simple random sampling is said to be with or
without replacement according as any individual once sclected is returned to the
population or not.

a) Simple Random Sampling with replacement (SRSWR) :

* In this case, a unit is selected from a population with known probability and
the unit is returned to the population before the next selection is made. Thus.
in this method at each selection, the population size remains constant and the
probability at each selection or draw remains the same. Under this sampling
schemie, a unit has chances of being selected more than once. Let us SUppose
that the size of the population is N and a sample of size n is to be drawn
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from the given population, In case of SRSWR the n units of the sample are
drawn from the population one by one. After each drawing the unit selected

being returned to the population in such a way that at each drawing each of

the N member gets the same probability 1/N of being selected, Clearly, here
the same unit of the population may oceur more than once in the sample and
there will be N possible samples, each with probability 1/N" to be selected.

b) Simple Random Sampling Without Replacement (SRSWOR) :

In this selection procedure, if a unit from a population of size N is selected,
it is not returned to the population. Thus for any subsequent selection, the
population size is reduced by one. Obviously, at the time of the first selection,
the population size is N and the probability of a unit being selected randomly
is 1/N, for the second unit to be randomly selected, the population size is (N
- 1) and the probability of selection of any one of the remaining is 1/ (N -
1), similarly at the third draw, the probability of selection is 1/(N - 2) and
S0 on. Here no member of the population can occur more than once in the
sample. There are NC_ all possible samples each with probability

nn-1n-2 I 1

NN-IN-2 “"N-n+1_ Ne, to be seleced.

5.5.2 Straiiﬁcd Random Sampling

In stratified sampling the population of N units is sub-divided into k sub-population
called strata, the i~th sub-population having Nj units (j = 1, 2, ..., k). These sub-
populations are non-overlapping so that they comprise the whole population such that
N+ Ny+ .. #+ N. = N.

A sample is drawn from cach stratum independently, the sample size within the

i-th stratum beingn, (i =1, 2, ......... » k) such that
iy ok, =

The procedure of taking samples in this way is known as stratified sampling. Tf
the sample is taken randomly froni each stratum, the procedure is known as stratified
random sampling. The stratification of population should'be done in such a way that
the strata are homogeneous within themselves, with respect to the characteristic under
study.
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For example, human population may be divided into different strata or éub-gmups
on the basis of sex, age group, education, income and occupation ete,

5.5.3 Multistage Sampling

This sampling involves the selection of units in more than one stage. In such a
sampling, the population consists of a number of first stage units or primary sampling
units (psu), then a sample is taken of the second stage units. This process continues
until the selection of the [inal sampling units.

Suppose a sample of 10,000 urban households from all over the country is to be
selected. In such a case the first stage sample may involve the selection of states. The
second stage may involve the selection of districts. The third stage may involve
sclection of cities. Some wards from cach selected city may be chosen. Finally, some
households from each ward may be seleeted. Thus 10000 urban households are
arrived at in five stages. So the final stage unit is the houschold. Thus this sampling
becomes five stage sampling :

1st stage units - states

2nd stage units - districts
3rd stage units - cities
4th stage unils - wards

5th stage and final stage units - households.

5.54 Cluster Sampiiﬁg or Area Sampling

In random sampling, it is presumed that the population has been divided into a
finite number of distinct and identifiable units defined as sampling units. The smallest
unit into which the population can be divided is called an element of the population.
A group of such clements is known as a cluster. When the sampling unit is a cluster,
the procedure is called cluster sampling. If the entire area containing the population
under study is divided into smaller sepments and each element in the population
belongs to one and only one segment, the procedure is some times called arca sampling.
As a simple rule, the number of elements in a cluster should be small and the number
of cluster should be large. Afler dividing the population into specified cluster, the
required number of clusters can be selected either by equal or unequal probabilities
ol selection, All the clements in seleeted eluster archenumerated.

99



The advantages of cluster sampling are as follows :

a) Collection of data for neighbouring clements is easier, cheaper, [aster and
operationally more convenient than observing units spread over a region.

b) It is less costly than simple random sampling.

c) When the sampling frame of elements may not be readily available, ideally
clusters should be formed so that within a given cluster study objects are as
heterogencous as possible. Each cluster should have a complete representation
of the study objects and identical to every other cluster.

5.5.5 BSystematic Sampling

It is different from the SRS mainly on the basis of the fact that every combination
of study objeets does not possess equal chance of being sclected. In particular, suppose
that a population has N objects and a sample of size n is {o be selected. Now k = N/
n is called the sampling interval. Now a random number between 1 to k is drawn.
Thus in systematic sampling the study objects to be included are r, r + k, r + 2k, ...,
r+ (n - Dk. IfN = nk, the resultant sample is called every k-th systematic and such
a procedure is known as linear systematic sampling.

If'N # nk and every k-th unit be included in a circular manner till the whole list
is exhausted, will be called circular systematic sampling.

To overcome the difficulty of varying sample size under the situation N # nk, the
precedure is modified slightly by which a sample of constant size is always obtained.
The procedure consists in seleeting a unit, by a random start, from 1 to N and then
selecting every k-th unit, k being an integer nearest to N/n, in a circular manner, until
a sample of n units is obtained. Suppose that a unit with random number i is selected.
The sample will then consist of the units corresponding to the serial numbers

i+ jk, if i+jk<N forj=0,1,2 .n-|
i+ijk-N, if i+jk>N
As an illustration, let N = 11 and n = 4. Then k = 3.

The possible samples are:

(1 4, 7010 (2,8, 8, 18 69, 1)., (4, 7, A0:2). (5, 8 1k 30 6,9, 1,4
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(7, 10, 2, 5), (8, 11, 3,6), (9, 1,4,7), (10,2, 5, 8 and (11,43, 6, 9),

Advantages of Systematic Sampling :

The main advantage of the systematic sampling is its simplicity of selection,
operational convenience and every spread of sample over the population. It has,
therefore, been very useful in forest survey for estimating the volume of timber, in
fisheries for estimating total catch of fish etc. Another advantage is that, except for

population with periodicities, systematic sampling provides an effective estimate as” -

compared to alternative design. Some times, systematic sampling variances are much
smaller than the variance for random selection of units within strata.

5.6 Non-Probability Sampling Schemes

We have so far discussed probabilistic sampling schemes. In reality, because of

various difficulties involved in obtaining reliable lists of the desired target population,
it is difficult to use a probabilistic scheme. Therefore, some compromises could be
made, some of the nen-probabilistic techniques may also be made c::{plmlﬂy in cases
where it is not feasible to use probability-based methods. The major difference is that
in non-probabilistic techniques the extent of bias in selecting sample is not known,
This makes it difficult to say anything about the representativeness or accuracy of the
sample. There are four major non-probabilistic sampling schemes. They are convenience
sampling, judgmental or purposive sampling, quota sampling and snowball sampling,

5.6.1 Snowball Sampling

This technigue is used where the population being Sﬁught is a small one and
chances of finding them by traditional methods are low. For example, one respondent

being used to gencrate names of others iz called snowballing and it can be again done

on the sccond set of respondents. Tt could be also called networking to find
respondents. : :

For example, to find owner of Mercedes benz car in a city, we may go (o one or
two and ask them il they know any one else who owns the car.
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5.6.2 Convenience Sampling

It refers to selecting a sample of study objects based on convenicnce. Thus a study
may include objects which are conveniently located, willing to co-operate in o ffering
the necessary data and in the process one would derive the advantage of economy in
cost or time. Findings based on convenient sampling procedure can not be generated.
In exploratory type of results, convenience sampling procedures may be adopted in
conducting the focus group interview or survey. Similarly. questionnaire be pretested
on a sample selected by convenience. Such sampling scheme helps to understand the
possible variability of responses within a short span of time and cost. An example of
convenience sampling includes on the T.V. reporters who caich any person passing
and interviewed on the street.

~ 5.6.3 Purposive or Judgmental Sampling

When the choice of individual items of a sample entirely depends on the individual
judgment of the investigator, it is called purposive or judgmental sampling.

In this method, the units constituting the sample are chosen not according to some
scientific procedure, but according to personal choice of the person who seleets the
sample. Two or more such independent purposive samples may pive widely different
estimates of the same population. For example, an observer who wishes to take a
sample of oranges from a lot run his eyes over the whole lot and then chooses
average oranges, averages in size, shape, or whatever other quality he may have in
his mind.

5.6.4 Quota Sampling

If the sampling frames for the different strata into which the population may be
divided are not available and are costly to construct, it may be possible to fix ﬁp a
sample quota for each stratum and to continue sampling;until the necessary quola for
each strata is filled up. The objective is to gain the benefits of stratifications as far
as possible without the high costs that may be incurred in any other to have recourse
to probabilistic sampling. The method has been found useful in many socio-
economic and opinion survey. In many studies the researcher can, a-priori, decide
on the type of target respondent and quotas of different groups of respondents.
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Suppose in a cerlain region we want to conduct a survey of households
where total number of households is 1,00,000. It is required that a sample of |
percent, i.e. 1,000 households is to be covered. A sample of 1,000 households has
been chosen, subject to the condition that 600 of those should be from rural areas and
400 from the urban areas. Likewise, of the 1,000 households the rich households
should number 75, the middle class ones 325 and the remaining 600 should be from
poot class.

Advantages :

a) It is economical as fravelling costs can be reduced.
b} It is administratively convenient,

¢)  When the field work is to be done quickly, quota sampling is the most
appropriate and feasible.

d) It is independent of existence of sample frames. Whenever a suitable

sampling frame is not available, quota sampling is perhaps the only choice
available.

Limitations ;
a)  Since the quota sampling is not a random selection, it is not possible to -
calculate the estimates of standard error for the sample results.

b)  This is not, in general, a representative sample, it depends entirely on the
mood and convenience of the interviewer.

¢) It may be extremely difficult to éupcwise and control the ficld survey
under quota sampling,

5.7 Exercises

What are the advantages of sample surveys over complete census?
What are random sampling numbers 7

3. Describe the following methods of sampling with suitable business examples,
i) Stratified sampling ii) Multistage sampling, iii) Systematic sampling and (iv)
Purposive sampling. :

4. Whalt are the differences belween sampling error and non-sampling error? How
car you control non-sampling error?

-
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" 5. In what respect does circular systematic sampling differ from linear system-
atic sampling? When are thest two types of sampling equivalent?

6. Distinguish between sampling with replacement and sampling without re-
placement. ,

7.  What is the standard error of a statistic and what is its uility? What is the
difference between standard error and standard deviation? :

8.  Distinguish between a parameter and a statistic. Which one of these is a
. variable and why?

9. Describe various methods of drawing a random sample from a finite popu-
lation.

10. Draw a random sample of size 10 without replacement from the following
data on daily sales (in thousand rupees) of 32 shops in Kolkata, stating”
clearly the procedure followed by you.

3o 28 JAF a3 Af 98 40 35
24 32 s 26 38 36 37 AL
26 35 46 41 43 33 46 26
45° 46 48 27 36 41 32 30
You may use the random number given below :
5967 8941 78897 3335 7577 9735
3042 B409 7053 5364 5872 1143

11. What is meant by stratified random sampling? Eﬁplain the procedure and
advantages of stratification.

12. A population contains six units given below : 2, 6, 5, 1, 7 and 3. Consider
all possible samples of size two and verify that the mean of the population
is exactly equal to the mean of the sample means.

13. A simple random simple of size 64 is drawn from a finite population con-
. sisting of 122 units, If the population s.d. is 16.8, find the standard error of
the sample mean when the sample is drown (i) with replacement and
(i) without replacement. _
14. A simple random sample of size 10 is drawn without replacement from a
finite population consisting of 200 units. If the number of defective units in
the population is 15, find the S.E. of the proportion of defectives.
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Unit 6 O Sampling Distribution

Structure

6.1 Introduction
6.2 Sampling Distribution of Sample Mean
6.3 Chi-square (3% Distribution

6.3.1  Properties of 3? Distribution
6.4 The Student’s t-Distridution

6.4.1  Properties of t-Distribuiion
6.5 Snedecor’s F-Distribution -

6.5.1  Properties of F-Distribution

6.6 Sampling Distribution of Sample Mean for Non-normal Population

6.7 The Central Limit Theorem

6.8 Sampling Distribution of Sample Proportion

6.9 Sampling Distribution of the Difference Between Two Sample Means
6.10 Sampling Distribution of the Difference Between Two Sample Proportions

6.11 Exercises

6.1 Introduction

The statistical measures caleulated on the basis of the population observations are *
called parameters and the statistical measures calculated on the basis of the sample
observations are called statistic. For a given population a parameter has always a
fixed value. But since different samples can be drawn from the same population, the
value of the statistic is likely to vary from one sample to another. The differences of
statistic are called sampling fluctuations. Thus, if a number of samples, cach of size
‘n’ are taken from the same population and if for each sample the value of a statistic
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is calculated, a serics of values of the statistic will be obtained. If the number of
samples be farge, these may be atranged ina frequency distribution table. The frequency

distribution of the statistic is called the sampling distribution of the statistic. Therefore, !
sampling distribution of a statistic may be defined as the probability law which the

statistic follows, if repeated random samples of a fixed size are drawn from a spcmﬁed

population. Standard error of a statistic is the standard deviation calculated from the

samp]i‘hg distribution of the statistic.

Unbiased Estimator : An estimator T is said to be an unbiased estimator of a
parameter 0 if E(T) = 0.¥ 0 '

If E(T) # 0, then T is said to be a biased estimator of 0. The bias of the estimator
is given by ]

Bias = B(T) -8 or E(T) + 8.

Let us consider a random sample of size n as X, X,, ..., X, drawn from a population
with mean p and variance o’ Then we have,

CBE((X) = b the sample mean X, is an unbiased estimator ol the population
mean L .

E(82)=1— - {;2 £gl Le the sample variance S* is not an unbiased estimator of

_pnpu!almn varance, o°,

6.2 Sampling Distribution of the Samplé Mean

Let us consider a random sample of size n as x,, X,,.... X, drawn from a normal

" population with mean p and variance o®. If X denotes the sample mcan which is

defined by X =~ ZK follows a normal distribution with mean p and standard de-
g :

vigtion o/J7 Thatis, Z :%Eg follows the standard normal distribution,
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6.3 Chi-sciuare. (xzDis'.tributiﬁn) _

A random variable y is said to follow the Chi-square (x2) distribution with n
deprees of freeom if its p.d.[. is of the form,
f(y) = Constant e ¥2y"21: 0 <y <-c0.

Again, if X is a random variable which follows the normal distribution with mean

it and standard deviation o, then Z = K—;H is a standard normal variate, The square

2
of Zie. 2= (—X-_EL) follows a y* square variate with one degree of freedom and

is written as y,* and the range of 2 distribution is from 0 to .

Result 6.1 : If 7, Z,, .o, 7 ALE M independent standard normal variables, then

Z.J_".z 111,0{;(‘2{00.

Result 6.2 : If X is a random variable which follows the normal distribution with
medn p and standard deviation o, then

Z(K Fi] / & follows the chi-square dlstﬂbulmn with n degrees of freedom ; and

i=]

i i 2 .
Z{X;—K} ! Gz_ follows the chi-square distribution with (n-1) degrees of f‘rcec_lnm.

6.3.1 Properties of y* distribution

1. The distribution has only onc parameter, i.e., number of degrees of freedom

which is a positive integer.

2. o2 distribution realizes only non-negatie values,
The mean of the distribution = E(y, ) =n and the variance of the distribution,
=V {2y =0n

4, distribution is not symmetric. It is pnsﬂ;wely skewed.
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5. If % and x,* are two chi-square variates with n, and n, degrees of freedom
respectively, then % % + y,* follows also a chi- squarc distribution with (n; +n,)
degrees of freedom.

6.4 The Student’s t-—Distrihutiﬂn

A random variable is said to ntl::-w Student’s t distribution or simply t distr 1but1c+n
with n degrees of freedom, if its p.d.f. is of the form

: 2 ~n+1i2

f{t) = Constant. (I +—) ,—m<t<w
n

Let X, X, vy X be n independent random variables [rom a normal population

with mean p and standard deviation o (unknown).

When o is not known, it is estimated by the sample standard deviation s =

J n_l—f ' (x;=%)*| which is an unbiased estimator of o} In such a case we would like

G e s X— ke
to know the exact distribution of the statistic ﬂq—uh and the answer to this is

provided by the t-distribution.

Jn(x-p

W. 8. Gosset defined the t statistic as t = which follows the t-distribu-

L]

tion with (n—1) degrees of freedom.

Result 6.3 : If Z and Y are independent random variables, where 7, follows the
standard normal distribution and Y follows the chi-square distribution with n degrecs

of freedom, then { = ﬁ follows the t distribution with n degrees of freedom.

Result 6.4 : If x,, x,, ..., x, be n independent random variables from & normal

population with mean p and standard deviation o (unknown), then t = ﬁ-%—_—-&)

which follows the t-distribution with (n-1) degrees of freedom.
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X—H «.l"!_‘i[f—p.}.

Proof : To show this we can write t = e = -

Dividing the numerator and the denominator by o, we get

Vn(2-p {i ul (X-p)

o !I ey aldn

526 J Z(K""ijz
—1 a2

(x—p)

a/Jn i Standard Normal Variate
% Jl%;L 42 - Variate with (n—1) degrees of freedom
n-1 m-1) .

Result 6.5 : If two independent random samples of sizes n; and n, from two
normal populations with means i, and p, and common variance o, are taken then

7 X = %) (1 1)
T7n, +1/n,
which follows the t-distribution with (n; + n, — 2) degrees of freedom, where

n;S¢ + n,83 n 3
s = 111]411"112—22 with Sf =7~ i(nh‘}?l} and 53 = 12 i}[“zi—xz)l be the vari-
i=1 =

ances of the first sample and the second sample respectively.

6.4.1 Properties of the t-Distribution

1. Like %? - distribution the t-distribution also has one parameter v = (n-1)
where n denotes sample size. Hence, this distribution is known if n is known.

9. Mean of the random variable t is zero and standard deviation is vaz , for
v

3, The probability curve of the t-distribution is symmetrical about the ordinate
at t = 0, Like a normal variable, the t variable can take any value from —ec to.ec.
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4.  The disribution approaches the normal distribution as the number of degrem!
of freedom becomes iarge

Standard Normal Distribution

t-Distribution with 10 d.f,

t-Distribution with 4 d.f.

*

5. .:_Thé' random variable { is defined as the ratio of a standard normal variate to
the square root of y* — variate divided by its degrees of freedom.

6;5 Sﬁédecnr’s F-D'istributiun

A randam variable is said to follow the F distribution mth n, and n, degrees of
frﬂedr:-m If thﬂ p d.f. is of the form

. (ny+ng)/2
I{F) = Cummt Fi“”ﬂ‘ [1+—Ll] ;0<F<eo,
ny

Result 6.6 : If Y, and Y, are independent random variables, where Y, and Y'z
follow chi-square distributions with n, and h, degrees of freedom respectively, then

Y, /n . -
E= ﬁj follows the F distribution with n, and n, degrees of freedom.

Re«mlt 6.7 : Let there be two mdt:pendent rand-::m samples of sizes n, and n, from
two normal pﬂpulatmns w:th variances o,* and :::17’] respectively, Further, let
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A

S Ll .
—X,)" be the variances of the first

sample and the second sample mspectiveky. Then the F-statistic is defined as the ratio
of two 3% — variates. Thus, we can write

1%11—1}![11: /(nt '“‘)
Ifnl_ljf(nz L_}Sz/ = }

L‘LP*‘»

B ~F

n=tona-l

%

a3

Fd b

6.5.1 Properties of the F-Distribution

This distribution has two parameters v, ( =n, — 1) and v, fimny =1 )
9. The mean of the F — variate with v, and v, degrees of freedom is v,/(v,—2)
v, J (v, +vy—2
vi(va-4)

We note that the mean will exist if v, > 2 and the standard error will exist
if v, > 4. Further, the mean > L. -

and Standard Deviation = (vz—l

3.  The random variate F can take -:ml:-,f values fmm 0 to . The curve is
positively skewed.

4.  Por large values of v, and v, the distribution approachies the normal distri-
bution. This behaviour is shown in the following figure. :

ﬂ=‘3ﬂ,ﬁ=lﬂ
W =10, %= 10

i)

U
b 3
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6.6 Sampling distribution of the Sample Mean for
Non-normal Population

Let there be a population containing N units. Let us consider a random sample Xy
X35 wens X 0f size n drawn from this population. Then the sample mean is defined

1 ¢ : ] ; e W, o
by X = T ZR,- . Now we are interested in the sampling distribution of the statistic 7.
= :

When sampling is done with replacement, we get n" equally likely possible samples
and when sampling is done without replacement then the possible number of samples
will be NC,, Here samples will be all distinct but sample means may not be al]

distinct, The probability distribution of the sample mean X with comesponding prob-
ability is called sampling distribution of the sample mean.

Case — 1 : SRSWR

Result 6.8 : It x,, x,, ... x_be a simple random sample of size n drawn with
replacement from a finite population of size N with E(x;) = p and V(x)) = ¢?, then

) E(f).:ﬁ&ixi] Sinbud
=1

i) V®=v [% gxi) =o2/n

Note : o is unbiasedly estimated by s= —nl_—l ¥ (x,-x).

Proof :

Here P(J{y =xi)=%, = 3o, Moo= 1, 2.3 Lo

M=

Xy

i
-

_ "
So B(x) = 2% p(x,=x) =13

where | = population mean
and V(x)) = E {x. - E(x)}*
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l*. s
=B (x,— b

i{xi "P)Iz P(x=x)

%é{xi_f-‘lf

= Uz
where o? is the. population variance.

Now (i) E(x)= E(-:‘Tixi]

i=1

It
=
i gl
gy
—_—
o
—_—

= % V(x) (Sinee X, 's are independent)
1=l b

) 1 n

s i .
=i T
ﬂz

o?

/ n
Thus in SRSWR the standard error of the sample mean is

i

= J .
| SE(%) =
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SASE - II : SRSWOR
Result 6.9 :

Let ¥, Xps vosneneens X, e @ simple random sample of size n drawn without replace-
ment from a hmte populatmn of size N with E(x) = m and V(x)) = o2 Then

() B0 = E(%;’%JIH and

Proof :
H ol
" Here P(Xr B xi} = ﬁ

i ) o N._2F11—2 o 1
and P(x,-"'_'Xi’ K= .i}_ Np i N{N_l}

n

Now, COV. (xf x) = 22X p.}(X —H)P (%, =X, X, =X;)

iz

- FAD S Ximm(X)

1#]

T—ﬁHZ(X u)} _ i{}&i-_ };]2}

E(x)=p same as SRSWR

Also, VIX)=V [-:;Zx,]
i=1
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1l
e
M:r
=
N
+
et
1 g
3
2
=
2
><
L

n? N—1
Soties B
n N-1

Thus in SRSWOR, the standard error of the sample mean is
se0= & {17

The term 1'%%[11 is termed as finite population correction (f.p.c.)

Example 1 : Construct a sampling distribution of the sample mean for the follow-
ing population when-random samples of size 2 are taken from it (a) with replacement

and (b) without replacement. Also find the mean and standard error of the dlstnl:-u-
tion in each case.

Poplulation Unit: 1 2 3 4
Observation " 22 24 26 28
Solution : ; :
The mean and standard deviation of the population are

22424426428
2 4

= 25 and

= J(22)2 +(24].2 1 (26)° +(28)° I o R e T rcspcﬁtively.

(a) When random samples of size 2 are drawn, we ha‘fi.a.dlz = 16 samples shown
below :
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sample No. Sample Values : b4
a1 23,99, ' 22
2 22, 24 23
3 2326 . 24
4 22, 28 25
5 24, 22 23
6 24, 24 24
7 24, 26 25
8 24, 28 | 26,
9 26,22 : 24
10 26, 24 25
11 26, 26 26
12 26, 28 27
13 28 29 25
14 28, 24 | 26
15 28,96 27
16 28, 28 28

Since all of the above samples are equally likely, thetefore, the probability each

value of X 1s % Thus, we can write the sampling distribution of X as given below :

X 22 23 24 25 26 27 28 | Total

e SE AR A e
e ST 16 16 16 16 16 16

The mean of X, i.c.,

Loio3x? 1oax3 1054t L o6xd 42752 1085 Lok

by =E(X)=22x 12 6 16 16 6 6 16

[_Further, SE. of (X)=0, = J E(f}_z—- [E(i}]z," where
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E(')E’}=%(222+232><2+241x3+251x4+263x3+23’1x2+28)
26275 wk
Thus, oy = 627525 =425 which is cqual to =

(b) When random samples of size 2 are drawn without replacement, we have )
samples shown below :

Sample No. . Sample Values x
1 22,24 N
2 22, 26 24
2 9 0 | 25
4 24, 26 25
& 24, 28 26
6 24, 28 27

Since all the samples are equally likely, the probability of each value of X is 1—16-
Thus, we can write the sampling distribution of X as
¥ 93 0 oy 25 26 27 | Total
- 1 & 3 2 2
6 I8 O SIS 3 ol

Further, ji=E(R) = ¢ [23+24 +25x2426+27] =25

To find 8.E. E(X), we first find E(x?

B(X?) = %{23% 242 42 %252 4262 + 27) =£ﬁ® =626.67

Thus, o, = /626,67 - 252 =1.67 =1292

N-no® _ [4=2,5 .

T Toxg =167 =129

Alternatively, o, = J
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6.7 The Central Limit Theorem

According to the central limit theorem, for a large sample size, the sampling

distribution of the sample mean X is approximately normal, regardless of the shape
of the population distribution. Symbolically, the mean of the sampling distribution of
X is p and the standard deviation is

23
UKITE-

By.a large sample size, we mean that n > 30,

6.8 Sampling Distribution of Sample Proportion

Let the parameter p denote the proportion of successes in a binomial population.
Further, let p denote the sample proportion of successes in n trials. We know from
the central fimit theorem that the sampling distribution of p will be approximately
normal with mean p and standard error. In other words,

let = = population proportion of units belonging to a particular class

and p = sample proportion of units belonging a particular class.

Result 6.10 : SRSWR

If 7 = proportion of units belonging to a particular class in an infinite population.
" Then, '

(i) E(p) = 7 and _

(i V() = 2=

Note : @ is unbiasedly estimated by ﬂ%ﬂl

Result 6.11 : SRSWOR

If m = proportion of units belonging to a particular class in a finite population of
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- size N. Then
() E(p)=n and

@) v(p)=Rprl-n

- Note : 1;31:111 n{ln—ﬂ:) is unbiasedly estimated by E“I*«_“Iﬂ PEII_—IP

6.9 Sampling Distribution of the Difference Between
Two Sample Means

If two independent random samples of sizes n, and n, from two normal popula-
tions with means p; and p, and variances o,? and o,%, are taken then

F (i ‘“xz} (Pt Pz)

G-E 2

J__L+ Oy
1

HE T H,

follows the standard normal distribution,

6.10 Sampllng Distribution of the leference Between
Twn Sample Proportions

Let m, = proportion of units helungmg to a particular calss in the i-th population,
1 =1, 2, and p, = sample prupnrtmn of units belonging to a particular class in a
sample of size n,

If two populations are independent, then for large sample sizes
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(p, ~p;) ~(m-m,)

s EEA R

follows the standard normal distribnution.

6.11 Exercises

1.

If x,, x, and x, be a random sample from N(0, 6%) population, what is the
distribution of (x> + x,2 + x,% ) / 6, ? State the sampling distribution of the
statistic -

v2x/ J(x3+x3) and x.2 + x,2,

Derive the formula for the expectation and standard error of the sample propor-
tion in both SRSWR or SRSWOR. Show that the standard error can not exceed

the values 1/2vn and (1/24n) JIN—n)/(N-1}. )

A random sample of size 17 from an 'N{p,, o) yielded a sample variance of 25.
What is the probability that the sample mean will not differ from the population
mean by 21:18 in absolute value? :

If two independent random samples of sizes 10 and 12 are taken from N(u,,

6% and N (p,62) respectively, where 0’ = 4 and o,% = 9, what is the *

probability that X — ¥ will not differ from Ky — I, by 3 in absolute value?

Obtain the expectation and standard error of sample mean for a random sample
ol size n drawn from a population of size N by (aj SRSWR and (b) SRSWOR.

Ht:arting from the density function of a normal distribution, state density func-
tion of %%, t and P-distributions. Also state their important properties,

A population consists of numbers 4, 7 and 9.

(a) Enumerate all possible samples of size 2 which can be drawn from the
populatidn without replacement.

| (b) Show that the mean of the sampling distribution of the sample means is

equal to the population mean.
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10

12,

13.

14.

¢)  Calculate the variance of the sample mean and show that it is less than
the population variance.

The income of a group of workers is distributed normally with mean Rs,3000
and standard deviation of Rs. 500. If a random sample of 49 workers 15 taken
from this group, determine

a)  the sampling distribution of mean,

By the probability that the sample mean will lie between Rs. 2800 and Rs.
3300 and

¢)  the number of samples having their means greater than Rs. 3200,

The life of tyres manufactured by a company A is distribuled normally with
mean 16,000 kms and s.d. 2,000 kms and of that manufactured by a company
B is distributed normally with mean 20,000 kms and s.d. 2500 kms. Tf 64 tyres

of company A and 36 tyres of company B are selected at random, determine
the sampling distribution of the difference between mean life of tyres.

10% of articles produced by Machine A are defective and 5% of them produced
by Machine B are defective. A random sample of 250 articles is taken from
Machine A’s output and a random sample of 300 articles is taken from Machine
B’s output. What is the probability that the difference in sample proportion of
fclﬂfer.:tive articles is greater than or equal to 0.037

An automatic machine pours, on an average 199 ml. of soft drink into bottles
that arc supposed to contain 200 ml. The standard deviation of the amount
filled is 3 ml. Assuming that the amount filled is distributed normally, find the
probability that a random sample of 25 bottles will have a mean of 200 ml.or
ore.

Distinguish between

a) Parameter and statistic.

b) Sampling distribution and probability distribution.

c) Standard deviation and standard error.

Explain the concept of sampling distribution of a statistic.

If x|, x, and x, is a simple random sample of size 3 from a large population
with mean 12 and variance 9, evaluate the expecled value and standard crror
of the statistic T = (2x, + x, - 3x).

A simple random sample of size 36 is drawn from a finite population consisting
of 101 unils. If the population 8.D. is 12.6, find the standard error of sample
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15:

16.

17.

18.

19.
20.

21,

i
23,

24,

mean when the sample 1s drawn (i) with replacement and (ii) without replacement,

The diameter of a compound produced on a semi-automatic machine is known
to be distributed normally with mean of 10 mm and standard deviation of 0.2
mm. Il we pick up a random sample of size 16, what is the probability that the
sample mean will lie between 9.95 to 10.05 mm?

It is known that 7% of the bolts manufactured by a factory are defective. If a
random sample of 100 bolts are chosen at random from a day’s production,
obtain the sampling distribution of (i) the number of defective and ii) the
proportion of defective bolts.

The guaranteed life of a certain type of electric bulbs is 1000 howrs with
standard deviation of 125 hours. It is proposed to sample the output so as to
assure that 90% of the bulbs do not fall short of the gﬁaranteed average life by
more than 2.5%. What should be the minimum size of the sample?

[Hint: P(X - p =~ 2.5% of p ) = 0.90. From the area of the standard normal
distribution Yn = 5 % 1.28 or n = 40.92 = 41 (app.)]

A lot of 100 items contains 20 defectives. If a simple random sample of size
10 is drawn without replacement, find out the standard error of the sample
proportion of defective items.

What is meant by stratified random sampling? Explain the proceduce and
advantages of stratification.

Deﬁng,sﬁﬁf}lc random sampling and stratified random sampling. What are
random numbers and how can you use them?

The values of a characteristic x of a population containing six units are given
as 2, 6,5, 1,7, 3. Take all possible samples of size two and verify that the mean
of the population is exactly equal to the mean of the sample means.
Distinguish between sampling error and non-sampling error. How can you
control non-sampling. error?

Explain the relative advantages and disadvantages of sampling and census
methods for collection of statistical information, \

Define a randon sample. What is the diffence between random sampling with
and without Ieplacemem? '
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Unit 7 O Theory of Estimation

Structure
7.1 Introduction
7.2 Properties of a Good Estimator

7.3 Methods of Point Estimation

7.3.1 Method of moments

7.3.2 Maximum likelihood Method

7.4 Inmterval Estimation

7.4.1 Confidence Interval for Population Mean
7.4.2 Confidence Interval for Population Proportion

7.5 Determination of an Approximate Sample Size for a Specified Confidence
Level : '

7.6 Exercises

7.1 Introduction

Statistical inference is that branch of Statistics which is concerned with using probability
concept to deal with uncertainty in decision making. The field of statistical inference
refers to the process of selecting and using a sample statistic to draw inference about
the population parameter based on a sub-set, drawn from the population, The problem
of statistical inference can be divided into two categories : 1. Estimation 2. Test of
hypothesis. '

Fstimation - When data are collected by sampling from a population, the most
important objective of statistical analysis is to draw inference about that population’
from the information given in the sample data. Statistical estimation is concerned with
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the methods by which population characteristics are estimated from the sample
information. The true value of a parameter is an unknown constant that can be
correctly ascertained only by an exhaustive study of the population. Statistical
estimation procedures provide us with the means of obtaining estimates of population
parameters with desired degrees of precision.

Let us consider a random sample x,, kz, .« » X, 0f size n which follows a distribution
with an unknown parameter 8. In estimation theory, it is required to find an estimate
of 8 on the basis of sample values. The estimation of 8 can be made in the follawing
two ways : 1) Point estimation and ii) Interval estimation.

Point Estimation : A point estimate is a single number which is used as an
estimate of the unknown parameter. Although a point estimate may be the most
comunon way to express an estimate, it suffers from a major limitation since it fails
to indicale how close it is to the quantity it is supposed to estimate,

Interval Estimation : An interval estimate of a population parameter is a statement
of two values between which it is estimated that the unknown parameter lies with
definite probability. An interval estimate would always be specified by two values,
i.e. the limits.

7.2 Properties of a Good Estimator

There are four criteria by which we can evaluate the quality of a statistic as an
estimator, These are : Unbiasedness, Efficiency, Consistency and Sufficiency.

Unbiasedness : An estimator T is said to be an unbiased estimator of a parameter 6
if E(T) = 6 T,

IfE(T) # 6, then T is said to be a biased estimator of 8. The bias of the estimator
is given by :

Bias = E(T) — €.
Example 1 : Let us consider a random sample of size an as x, X, ..., X drawn
. i ke 1 n
from a population with mean pi and variance s*. Then we have E(x)= E[H ;"‘1 ] =,

That is, the sample mean, X, is an unbiased estimator of the population mean [i.
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g2~ 2 [x ~%)" is not an unbiased estimator of o?, because E(S?) = —“l- o’ # o’

i c. the sample variance, S2 is not an unbiased estimator of po ulation variance, o
p _ pop :

Efficiency: An estimator is said to be efficient, if its value remains stable from

sample to sample. The best estimator would be that estimator which would have the

least variance, Thus if T and T* are two estimators of 0 and V(T) < V(T*), then T
is more efficient than T*. '

Among three point estimators of central tendency, the arithmetic mean, the median
and the mode, the arithmetic mean is considered to have the least variance and hence
a better estimator.

An estimator which is unbiased and has also minimum variance is said to be the
minimum variance unhiased Estimator (MVUE). Also an estimator having minimum
variance among all estimators of a population parameter is known as the mast efficient
estimator or best estimator. If an estimator is unbiased and best, then it is known as
the best unbiased estimator Further, if the best unbiased estimator is the linear
function of the sample observations, it is known as best linear unbiased estimator
(BLUE). 1t may be noted that the sample mean is the best linear unbiased estimater
of the population mean.

Consistency : It is desirable to have an estimator with a probability distribution

that comes closer and closer to the population parameter as the sample size is increased.

" An estimator possessing this property is called a consistent estimator. An estimator
T is said to be consistent estimator of the parameter 6 if

T — 6 with probability 1 as n — =.

We may say that the sample mean ¥ is a consistent estimator of the population
mean L.

Since F(x) = p and V(x) = o¥n = 0 asn — =.
Sufficiency ; An estimator is said to be sufficient if it possesses all the information
about the population parameter contained in the sample. If x, x,, ... x, be a random

sample of size n from a population with p m.f. or p.d.f. f(x, 0) and T is a sufficient
estimator of 0 if we have
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fix, 0) = g(T, 0) i S e LR

where g(T, B) is the sampling distribution of T and 16 4 CRICES
dent of 8. Sufficient estimators are the most desirable but are not Very commonly
available. The following points must to be noted about sufficient estimators

(i) A sufficient estimator is always consistent.
if there exists an efficient estimator

+s X, ) 18 indepen-

(i) A sufficient estimator is not efficient

(iif) A sufficient estimator may or may not be unbiased.
Example 2. If x, Xgs ey X, 18 @ sample of n independent observations from a
normal population with mean i and variance o, show that y is an unbiased estima-

Sl ; : :
. tor of p but § =%Z(Xt-—x) is not an unbiased estimator of o,

il

Solution : We know f:%in',

Now we have to show that E(%)= p and E[&Z(xi—if] # o7,
S =

Since the sample is from a normal pr:-ptdﬁtinﬁ, therefore
; N : | N '
b(xi}zgxip(xi =X;) ='ﬁzxi =4

et T

Vixp = E[(x) — E(x)]?

LS ) o _ -
=g vaxi), SINCE Xy Xy ervirinns , X are independent.
i=l ' :
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i 2
=— 3 g
n? izl
-
= —No"=—
f il
MNow,

Again,

{1306
Ao

_—ZF(X } E(x2)

n&S

-1 g["ﬁf{xﬂ + B2 ()] - [V (0 + B2 (%))

4
n

n 2
G
=1
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Hence, x is an unbiased estimator of i but %Z(xi-—i}z is not an unbiased

cestimator of o2,

Note : B[ LS (x —x) |21
ote + B L3 -x)' =21

or, E(nl—l i(x]. —E)z] = o7

1
Therefore, s? =ﬁ2( xi—i)z is an unbiased estimator of o?.
g By .

Example 3 : I T, T, and T, arc independent unbiased estimates of 6 and all have
the same variance, which of the following unbiased estimates of O would you prefer?

Li+2E4 T SE4+T, =35 T4+l+E
4 i 2 ; 3

Solution : IHere V(T,) = V(T,) = V(T,) = ¢*

Now, V _|.._...jl.._l

-(T + 214 T )
- S [V(R) -4V (D)4 V(T)]

B B et O e
_lﬁ[ﬁ +40? + o?]
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= L[OV(T)+ V(1) +4V(T,)]

= %[9-:13 +6?+407]

Clearly V(%th] is minimum

So, we say that (-l-l+—§?*+—T3—] would be the most preferable.

7.3 Methods of Point Estimation

For obtaining point estimates of parameters of a probability distribution, several
methods arc available. These are :
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i}-  Method of moments

ii)  Maximum likelihood Method
iii) Least squares method

iv)  Minimum chi-square method

We shall discuss here the method of moments and the maximum likelihood Methad
only, : ' i

7.3.1 Method of moments

This is one of the classical methods and the motivation comes from the fact that
the sample moments are in 'some sense estimates for the population moments. Thus
according to this principle the sample moments are equated to the population moments
and by using these cquations the parameters in a given population are estimated. That
is, the parameters are estimated by using the relations, S VIS el e e
where m' and p_are sample and population moments about the origin respectively.
We can equate cotresponding central moments as well. For simplicity, moments of
lower order arc usually taken. ;

Example 4 : Suppose we are to estimate the parameter X of a Poisson distribution
on the basis of sample observations Kps Ky seemmrennnennnenn X o We know that, for the

; n
Poisson distribution E(X)=A=p}| and the sample mean E(%)=E [% Z Ki) =m]
: i=1
Writing m; = p{ we gel an estimate of ), as j.=% = the sample mean.

7.3.2 Maximum likelihood Method

This method is simple and it gives cstimates that possesses many desirable
properties, Let X, x,, x_be a random sample from a population with probability mass
function or probability density function f(x; ), involving a parameter 6. For fixed 8,

I

the function f{x,, x, ... , X H]; = Hf{xii H] may be looked upon as a function of
i=1
the sample observations. But when Ky Kypersnr K GIE given, the above function may be

looked upon as a function of 8, which is called the likelihood function of 8 and is
denoted by L(8). The principle of maximum likelihood suggests to take that value as

an estimate of 0 for which L(8) is a maximum. That is, we may choose 6 such

130




LH.(F#):| o [dﬁL{ﬁ)]
that [Hd[} L1‘=E]_l'lamzl 102 @:ﬁ{ﬂ'

Siime log L(0) is a monotonic increasing function of L(8), log L (8) is also
maximum for the same value for 8, and it is more gencrally worked with log L(0).

‘We should note that.'

(a) When the derivative does not exist at 0 the method fails.

(b) The technique of differentiation is a convenient tool but it is not rcquited in
all the problems.

(¢) If there arc a number of maxima in a particular problem, then the one
corresponding to the largest ordinate is taken as the maximum liklihood
estimate.

Example 5 : For a normal population with parameters | and a2, obtain the
maximum likelihood estimators of the parameters.

o' 2n

For a random sample of n independent observations the likelihood function L. i
given by '

' 2
_ T “lfa—p
Solution : The p.d.f. of the normal distribution f{x; p, o) = & e 2( -ﬁu} :

n 2
Ln o) =[] 0)= e

Taking logarithm on both sides,

2
lopg L == e LY L : (___LI”E)
g nlogo 7 log 2m = E |
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1] E
or, 2, %-—np=0
1

=

n
or, H==)%-%
i=1
or |t =X = the sample mean..

(i} MLE of o®

Let us differentiate logL with respect to o to get

o glonle on Pese a3 o
or, S 2;( : pl.:l{ 263)
4 2
 Six-w)
or, ——+&El— =9
o o

San li{xi —n).
n i__l' 3 -

n 5
Hence, the MLE of p is x and o? is %Zl(xl —i)z.
=

7.4 Interval Estimation

In the theory of interval estimation, it is desired to find an interval, based on
sample values, which is expected to include the unknown parameter with a specified
probability. Let x,; X, ...... , X, be a random sample from a population with an
unknown parameter 6, We will try to find two functions t, and 1, of the sample values
such that the probability of 0 being included in the random interval (t,, t,) has a given
value, say 1 - . So

Pit; =0 =t)¥=1"wo _
Here the interval (1, t,) is called a 100(1 - o)% confidence interval for the
paramieter 0. The quantities t, and , which serve as the lower and upper limits of the
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interval are known as confidence limits. (1 — ) is called the confidence coefficient
This has the meaning that if samples of same size n are taken and if the interval (L,
L) is constructed for every sample, then in the long run 100 (1 — w)% of the intervals
will cover the unknown parameter 8. It may be noted that the probability statement
is on the random interval (t,, t,) rather than on the parameter 0.

It is to be noted that a 100 (1 - 0% confidence interval is not unique. We look
for that interval which is shorter than any other interval with the same confidence
coefficient. If a confidence interval is constructed by omitting equal tail arcas, then
we get what is known as central interval. In a symmetrical distribution, it can be
shown that the central interval is the shortest.

In practice, the method of finding confidence interval consists in first finding a
random variable, call it v, that involves the sample values and the desirable parameter
0 but whose distribution does not depend on  any unknown parameter. Next two
numbers v, and v, are chosen such that

Plv, cv=v)=1-aq,
where (1 - o) 15 the desired confidence coefficient, such as 0.95, 0.99 etc. Then
this inequality is solved so that the probability statement assumes the form
Pl =8 =ty=1_—4;

where t, and t, are random variables depending on v but not involving 8. Finally,
one substitutes the sample values in t, and t, to obtain a numerical interval which is
then the desired confidence interval.

As compared to point estimation, interval eslimation is better as it takes into
‘account the variability of the estimator in addition to its single value and thus,
provides a range of values, Unlike point estimation, interval estimation indicates that
estimation is an uncerfain process.

The methods of construction of confidence intervals in wvarious situations are
explained through the following examples,

7.4.1 Confidence Interval for Population Mean

a) 100 (I — @)% confidence interval for p in a random sample of size n
from a normal population with mean p and standard deviation o 1s as
follows :
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S o
(X—Zuu?‘nﬂ K"'Lurz:ﬁ;

where 7, is the upper o point of the standard normal distribution., That is,
B(Z=Z)=a.

Note : If the sample size is sufficiently large, then for unknown standard deviation
o, one can obtain the interval by using the standard normal distribution,

(b) If the slandard deviation o is unknown, then for small sample, the above
interval will be obtained by using the t-distribution which is as follows :

F s s
(X ~tasan-1 E’J X i 201 ﬁ)!

where t_. . is the upper a—point of the t-distribution with (n-1) degrees of
freedom.

Example 6 ; Construct 95% confidence intervals for mean of a normal population.

Solution : Let x;, X,, .........., X, be a random sample of size n from a normal
population with mean p and standard deviation o.

We know that sampling disiribution of X is normal with mean ,u] and standard
a : _X- el : ;
error —r—. Therefore, £ —m% will be the standard normal variate,

From the tables of areas under the sandard normal curye, we can write
P[-1.96 = Z = 1.96] = 0.95

s P[—l.%ﬂ%ﬁ-ilﬂﬁ} —095 .. (D)

The inequality — 1.96 < ﬁ can be writien as

196 P~ < X —porps X + 1,9'63? S

Similary, from the inequality g—ﬁ,%i 1.96, we can write
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v o :
: p=X I'%Tﬁ" ...... (7.3)
Combining (7.2) and (7.3), we get
X-196 L sp<X+1967
_ 96 i il +1 963-1-{.
Thus, we can wrile equation (7.1) as

P(Kil.aﬁi <p< K+1.9af‘-)=t}.95_
Jn m

"This gives us a 95% confidence interval for the parameter p. The lower limit of

o is 3—1-96'% and the upper limit is XH.%%. The probability of p lying

between these limits is 0.95 and, therefore, this interval is also termed as 95% con-
fidence interval for .

In a similar way, we can construct a 99% confidence interval for p as
¥ K

P[R —2.53%«:ng+ 258%):0.99,

Thus, the 99% confidence limits for p are X + 2,58%.
n

Remarks : When o is unknown and n < 30, we use { value instead of 1,96 or 2.58
and use s in place of ©.
7.4.2 Confidence Interval for Population Proportion

100 (1 — «)% confidence interval for 7w from a binomial population with param-
eters n and 7 with sulliciently large n is as follows :

y f =nr .. [ (1—m)
(p_"ffu."z L n i ?P+zm."2 E'“mn_n]:

where 7. is the upper o - point of the standard normal distribution,

Since = is not known in general, its estimator p iz used in the estimation of
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standard error of p, e estimated S. E. (p) = J@ . Then the corresponding

confidence interval will be

’ {1— 1-
(p_zm'l % !F+Z::fl\l@)'

Example 7 : Obtain the 95% confidence limits for the proportion of successes in
a binomial population,

Solution : Let the parameter 7 denote the proportion of successes in a binomial
population. Further, let p denote the sample proportion of successes in n (> 50) trials,
We know that the sampling distribution of p will be approximately normal with mean

7t and standard error mll-m)

Since © is not known, therefore, its estimator p is used in the estimation of the

standard crror of p, i.e. estimated S.E.(p) = ,J p_[l—p: ;

n

Thus, the 95% confidence interval for p is given by

P(p—].?ﬁ,j@ﬂﬂ:i p+1.95] =095,

This gives the 95% confidence limits as p+1 .96.\(@.

Example 8 : A sample of 1600 screws is taken from a large cm}signment.. 64%
of the screws were found to be defective. Assuming that the simple sampling condi-
tions hold good, estimate the confidence limits of the proportion of defective screws,

Solution : Let 7t be the proportion of defective screws. Corresponding proportion
in the sample is given as p = 0.64.

: _ [0:64%x036 048 .
o S.E.(p)—( Teo0 = 4p- = 0012

We know from the normal distribution that almost whole of the distribution lies
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between 3o limits. Therefore, the 99% confidence interval is piven by P[p—E.SSS.U.(i::}
<m<p+2. 588.E.(p)] = 0.9973. . .

Thus, the 99% confidence limits are 0.609 { =064 - 2.58 = 0.012) and 0.671
(=0.64 + 2.58 = 0.012) respectively.

Hence, the proportions of defective screws in large consignment are beween 60.9%
and 67.1%. '

Example 9 : A random sample ol 100 i't_cms taken from a large batch of articles
contains 5% defective items. (a) Set up 96% confidence limit for the proportion of
defective items in a batch, (b) I the batch containg 2,697 items, set up 95% confi-
dence limits for the proportion of defective items.

Solution : Here n = 100,
p = proportion of defective in the sample = 5/100 = 0.05.

(a) Here cstimate of 5. E. of p is given by

; i
SE.(p)= HJP['In_ p) = [205X095 009179 0:022.

From the table-of the normal distribution .
Loy =208, .

Hence 96% confidence limits for the p_opulation propartion of defectives are :
ptZys SE. (p) = 0.05 + 2.05 x 0022 = (0.005, 0.095).

(b) IfN = 2669, then 95% confidence limits for p is given by

1 : . N 1l
px m}zs SE(p) =p £ L. 96 m_—l%q

[ %l g:? is not unbiased but ﬁ% Nﬁn is unbiased'j_

(2669—100) o 0.05x0.95
2669 99

= 0.050 + 1,96 x 0.0215 = 0.050 + 0,042
= (0.008, 0.092).

= 0.050 + 1.96 x J
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7.5 Determination of an Approximate Sample Size
for a specified Confidence Level

Le us assume thal we want o find the size of a sample to be taken from (he
population such that the difference between sample mean and population mean would

not exceed a given value, say E, with a given level of confidence. In other words, we
want to find n such that

P(IX—p|<L)=1-0, say e (14)

Assume that the sampling distribution of ¥ is normal with a mean u and standard

o : X ; :
crror %, I'hercfore, we can write Z:F\f% which will be a standard normal

variate. If Z  be the upper o - point of the standard normal distribution, then from
the tables of arcas under the standard normal curve, we can write.

P( Z‘c!fz e ;"I\I"_ n!l] =l-0
oo
P(Hﬂ 5 E.{um)—f—u

i P([X |2 Zuﬂ%)=l—a..,r{?,5)

Comparing (7.4) and (7.5), we get

e b
ua2|'|' =E or n= 51_”2]:2,

The lesser the magnitude of E, the more precise will be the interval estimate.

7.6 Exerciese

1. Distinguish between point estimation and inteval estimation.

2. What are the criteria of a pood estimator?
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9.

10.

11.

12.
1.

14.

15:

16.

Whal i3 a consislent estimator?
Define a sufficient statistic.

Briefly discuss the importance of estimation theory in decision making in the
face of unccrtainty.

What do you mean by unbiased estimator and minimum variance unbiased
estimator?

If X}, X5 ey X, be @ random sample from N(, o?), oblain the maximum
likelihood estimator of p and o and check whether these arc unbiased or nat,

Verify that the estimates of Posisson parameter obtained by the method of
moments and by the maximum likelihood method are identical.

Explain the concept of confidence interval, confidence limits and conlidence
coefficient.

If the variance of two unbiased estimators T, or T, of O are same, which of

£ PR o = e 29 g . 3
1 5 Z and —! 3 L is the minimum variance unbiased estimator of 0 7

i1, T, and T, are 3 statistics with expectations L(T,) = 30, + 28, + 0,,
E(T,) =20, + 30, + 0, and E(T,) =0, + 0, + 0,, find the unbiased cstimator
of 0,, 0, and 0,,

What do you mean by best lincar unbiased estimator? Give an example.

A random sample of 100 days shows an avarage daily sales of Rs. 5,000/
with an s.d. of Rs. 1000/~ in a particular shop. Assuming a normal distribu-
tion, construct the 95% confidence interval for the mean sales per day.

A random sample of size 1000 selected from a large lot of machine parts
shows that 7% are defective, What information can be inferred about the
percentage of defective in the lot?

On the basis of a random sample of size 10 from a normal population with
mean 50 and variance 144, find 99% confidence limits for the population
nea,

lind the sample size such that the probability of the sample mean differing
from the population mean by not more than 1/10" of standard deviation is
0.95. ]
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17.

18.

19.

20.

With sample sizc of 635 the calculated standard crror of mean is 3 with
a mean of 150. What sample size should be taken so that we could be 95%
confident that the population mean lics within 4+ 3.5 of the sample mean,

In a market area there are 300 shops. A researcher wants to estimate the
number of customers visiting these shops per day. The researcher also
wants that the sampling error in these estimates is not larger than + 10 with
95% confidence. The previous studies indicate that the s.d. of the customer
arrivals is 85, Tf the cosl per interview is Rs.20, Lalculate the total cost of
the survey involved.

In a marketing survey for the introduction of a niew product in a town, a
sample ol 600 persons was drawn, When they were approached for sale,
180 of them purchased the product. Find 95% confidence limils for the
percentage of persons who would buy the product in the town.

A researcher ‘wishes to estimate the mean of a population by using
sufficiently large sample. The probability is 0.95 that the sample mean will
not differ from the true mean by more than 50% of the standard deviation.
How large a sample should be taken?
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Unit 8 O Test of Hypothesis

Structure

8.1
8.1.1

8.2
8.2.1
8.2.2
8.3
8.3.1

8.3.2
8.3.3

8.4
8‘4 l-].

8.4.2
- 85

8.6
8.7
8.7.1
8.7.2
8.8

Introduction

Some Definitions

Test of Hypothesis Concerning Mea of Single Population

Test of Hypothesis Cuncerﬁng Specified Mean (o being known)
Test of Hypothesis Cunccmmg Specified Mean (o being unknuwn}
Tests of IIypntheﬂls Cnncemmg Means of Two Pnpulatmm

Test of H:.fpulhe:ma Concerning Equality of Two Means (o, and o,b
known) '

‘Test of Hypothesis Concerning Equality of Two Means (o, and ¢, unknoy.
but o, = o,)

Test of Hypothesis Concerning Equality of Twe Means (o, and o, unknown
for a bivariate population) '

Test of H:.rpnthea.ﬁ for Prnpuruﬂn _

Test of Hypothesis for Spec:ﬁed Pupulatwn Proportion

Test of Hypothesis Concerning Equahty of Proportions

Test of H}rpothesis Concerning Pqpuiatiuu Standard Deviation’

Test of Hypothesis Cm}cermng the Fqualltjr of Standard Devlatmna

" Frequency Chi-square (Pearsonian y 2 -

Test for {mudnesa of Fit .
Test for Independence of Attnbutes

Exercises

141



8.1 Introduction

A test of statistical hypothesis is a statistical procedure which, when the sample
values have been obtained, leads to a decision to accept or to reject the hypothesis
under consideration. In many cases we are to make decisions about populations on
the basis of sample data. Some information as to the feature of the population or the
hypothetical values of the parameters may be available and on the basis of certain
rules or criteria we may decide whether the hypothesis is acceptable or not in the
light of the sample data collected from the population, This is the problem of hypothesis
testing or test of signficance, The theory of hypothesis testing begins with a basic
assumption about the parameter of the population. This assumption is termed as
hypothesis made on the basis of the sample observations. The validity of a hypothesis
will be tested by analysing the sample. The procedure which enables us to decide
whether a certain hypothesis is true or not, is called test of hypothesis.

8.1.1 Some Definitions

Statistical hypothesis

A statistical hypothesis is an assertion about the probability distribution of vandom
variables which is verified on the basis of a sample.

Null hypothesis and alternative hypothesis’

The null hypothesis is that which is tested for possible rejection under the assumption
~ that it is true. It is denoted by I1,. This hypothesis asserts that there is no difference
between population and sample in the matter under consideration,

Any hypothesis which contradiets the null hypothesis is called an alternative
hypothesis. It is denoted by H,.

For example [ H, : p = p, against alternatives a) H.: !_1,:“-; M,
or b o=
or  ©) : Hop#p

Test Statistic

Any statistic is a function of sample observations, Test statistic is a statistic whose
computed value determines the final decisions regarding acceptance or rejection of
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the null hypothesis. The appropriate test statistic is to be chosen very éarcfully and
knowledge of its sampling distribution under null hypothesis is essential in framing
decision rules. If the value of the test statistic falls in the critical region, the null
hypothesis is rejected.
Level of significance

This is the probability level, under the null hypothesis, which is employed in
defining the critical region. It is generally denoted by the symbol o and is usually
taken to be 0.05 or 0.01.

Critical region and acceptance region

The set of values of the test statistic which leads to the rejection of the null
hypothesis is known as erifical region or rejection region of the test. On .the other
hand, the values that lead to the acceptance of the null hypothesis are said to form
the aceeptance region. Here we are to test the validity o' Hy against that of H, at a
certain level of significance. In a normal distribution the area under the normal curve
outside the ordinates at mean + 1.96 (s.d.) is only 5%, the probability that the
observed value of the statistic differs from the expected value of 1.96 times the
standard error or more is .05, and the probability of a larger difference will be still
smaller,

LetZ = ﬂ};_—m and then if | Z | = 1.96, we reject the null hypothesis.

Therefore | Z | = 1.96 constitules the critical region of the test. It 1s denoted by ®,
Thus | Z | < 1.96 constitutes the acceptance region of the test and it is denoted by @.

Type I and Type 1l error

Probability of type I error is defined as the probability of rejecting the null hypothesis
when it is true. The critical region is so determined that the probability of type I error
does not exceed the level of significance of the test.

Probability of Type I error = P(xamf IIU}

Probability of type Il error is defined as the probability of accepting the null
hypothesis when it is really false.
Probability of type II error = P(xew — @ / H;) = 1 - P(xew / H)).

Power of a tesi

The power of a test is defined as the probability of rejecting the null hypothesis
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when it is false. On the other hand, power of a test is defined as
Power = 1 - Probability of type T error

= P(xew / H))

Two-tailed and one-tailed test

The specification of a critical region for a test depends upon the nature of the.
alternative hypothesis and the value of o For example, H, : 1 # i, this implies
that p1, may be less or greater than p,. Thus, the critical region is 10 be specified
on “both tails of the curve with cach part corresponding to hall of the value of a.
A test having critical region at both the tails of the probability curve is termed as
a two ailed Lest, : 205 '

Further, if 1 @ p - H, or p < p, the critical region is to be specified only at one

" tail of the probability curve and the corresponding test is termed as a onc-tailed test.

-]

Critical region for two-tailed test. Critical region for one-tailed (right tail) test

27
_zﬂ!
Critical region for one-tailed (left tail) test
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8.2 Tests of Hypothesis Concerning Mean of Single
Population

These tests can be divided into two broad categories depending upon whether o,
the population standard deviation, is known or not.

8.2.1 Test of Hypothesis Concerning Specified Mean (o being known)

This test is applicable when the random sample X], '}{P gy O is drawn from
a normal population with mean p and standard deviation . We can consider the {est
in the folowing steps :

Step 1. (Hypothesis Formulation)

We set up the null hypothesis and alternative hypothesis on the basis of the given
problem. That is,

I, : p =y, (specified) against alternatives a Ho:p>p,
or b)Y Heope =
or ¢ Ho:pxp,
Step 1L (Test Sﬁﬁstic)
To test the above null hypothesis we consider the appropriate test statistic

v _}_{_“nzﬁ(i_}‘*ﬂ)m .
o e = N(O, 1} under the null hypothesis.

Step TIL {Enmputatiﬂn_]

H(X—Pn)
)

L= {say).

Step IV. (Conclusion)

() Reject the null hypothesis Hy @ u = p, against the alternative H, : p = pjat
o. level of significance if Z,., = Z _,
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b)  Reject the null hypothesis H, : p = p_ against the alternative H:p<p at
o level of significance if Z_, < - Z and
c)  Reject the null hypothesis H : p = p, against the alternative Hopxp
at o level of significance if | Z__ | = 7 _,
Here 7 denotes the upper o-point of a standard normal distribution, That is,
P(7 = Z )} = o, where Z is a standard normal variate.

Example 1. Suppose a beverage company wished to study whether the average
per household consumption of tea is more than 200 gms with a possible variation of
10 gms. The researcher collected 10 samples of households and found that the
- consumptions (gms) were :

175, 225, 190, 210, 200, 180, 220, 230, 150 and 160. Du the data indicate that the
consumption is below 200 gms?

Solution. T.et X be the random variable denoting consumption of tea of a household.
We assume that X follows the normal distribution with a mean p and standard
deviation o. Let X, X, ... X be arandom sanple of size n from a normal population
with mean p and standard deviation o.

Here we have to fest
H, : p = 200 against the alternative H, = p = 200,

The appropriate test statistic is

Xy . 'E(T{_Hu]
a/n o

Z= ~N(0, I)| under the null hypothesis.

7. —dn(X=p) _195-200__;,
aSTET

Since Z., = — 1.7 < - Z,,, =~ 164, so the H, is rejected at 5% level of
significance. Hence the average consumption per houschold can be taken as below
200 gms.

Example 2. Construct 95% confidence interval for mean of a normal population,

Solution : Let X, X, ... X be a random sample of size n from a normal population with
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mean p and standard deviation o.
We know that sampling distribution of X is normal with mean ul and standard
|
|

X—pn- :
error :,% Thercfore, sz% will be a standard normal variate,

From the tables of areas under the standard nomml CUrve, We can write

P[- 1.96 < Z < 1.96] = 0.95 or l—‘[ l?ﬁé—fv}—{l%} 0.95....(8.1)

The inequality L%Eﬁ can be written as
—!%J—{X K or phXH%T ' e (82)
Similarly, from the inequality —Jiil 96 we can write

= - |
Combining (8.2) and (8.3), we gel

T S W a

Thus, we can write equation (8.1) as
X196 2 s X 41 “]:ﬂ.ui

This gives us a 95% confidence interval for the parameter p, The lower limit of

pis X --1-%\%— and the upper limit is J‘_{+1-96%. The probability of p lying

between these limits is 0.95 and, therefore, this interval is also termed as 95% con-
fidence interval for .. 3
In a similar way, we can construct a 99% confidence interval lor  as

X258 2 ey 12 ﬁ):n.a

Thus, the 99% confidence limits for p are X +2. sp O i
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Remark : When o is unknown and n < 30, we use t value instead of 1.96 or 2.58
and use s in place of o.

8.2.2 Test of Hypothesis Concerning Specified Mean (o being unknown)

This test is applicable when the random sample X, X,, ..., X_is drawn from a
normal population with mean i and standard deviation o. We can consider the test
in the following steps :

step 1. (Hypothesis Fﬂrmulatiim}

The null hypothesis and the alternative hypothesis on the basis of the given prob-
lem arc as follows :

H, @ p = p, (speified) against alternatives a) Hi:p>p,
or l::}'III:},Lf:p,\U
of e} Herp oy,
Step II. (Test Statistic)
To test the above null hypothesis we consider the appropriate test statistic

X—py "'rﬁ(}_{"lln}m
8 5 5

In

, 7
under null hypothesis, where g = M

yE [T

ts

t— distribution with (n 1) ¢ 1rces of freedom

Step II1. (Computation)

Let the value of this statistic calculated from sample be denoted as

Loy = —w (say).

Step IV. (Conclusion)

(a) Reject the null hypothesis T, : p = My against the alternative H, : p > p,

at o level of significance if t. > b, et

(b) Reject the null hypothsis Hy : p = M, Against the alternative H, : p < Hy at

o level of significance if t,, <—1t _  and
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(¢)  Reject the null hypothesis Hy : p = p, against the alternative H @ p#p,

a level of significance if |tr;_,.|| = L no1e

Here t, | denotes the upper a-point of a-t-distribution with n — 1. degrecs
ol freedom. That is,

P{l i tnt, 11--1:.' -

Note : When s is not known, we use its éstimate computed from the given samle,
Here, the nature of the sampling distribution of ¥ would depend upon sample size
n. There are the following two possibilities :

(i)  If the parent population is normal and n < 30 (popularly known as small
sample case), use t - test. The unbiased estimate of o in this case is given by

(i) If n > 30 (large sample case), use the standard notmal test. The unbiased

: )
estimale of ¢ in this case can be taken as g= Z(X —IK) , since the difference
n {

between n and n — 1 is negligible for large values of n. Note that the parent popu-
lation may or may not be normal in this case.

Example 3. A company making ice-cream and sells it in 500 gms packs. Periodi-
cally, a sample of 16 packs is taken and sample mean is found to be 460 pms. and
the unbiased estimated standard deviation of 40 gms. Does the sample mean differ
significantly from the intended weight of 500 gms? ;

Solution : Let X be the random variable denoting weight of an ice-cream pack. |
We assume that X follows the normal distribution with a mean p and sandard devia-
tion o. X, X, ..ccoer, X be a random sample of size n from a normal population w1th
mean p and standard dewatmn .

Here we have to test
Hy : p = 500 against the allernative H, = p 5 500,
To test the above null hypothesis we consider the appropriate test statistic

(=X Mo _ ﬁ()—i_u“}”tl' distribution with (n - 1) degrees of freedom under
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the null hypothesis, where 5= LKL_IE_)_
ll_

(X —po) _JT6(460-500) _ _,
= ;

t{'la.l T 40

Sinee [t | = 4 = 1y 0,5 = 2.131, so the H is rejected at 5% level of significance,
Hence the sample mean differs significantly from the intended weight of 500 gIms,

- 8.3 Tests of Hypothesis Concerning Means of Two
Populations

These tests can be divided into several categories depending upon whether a, and
o, the population standard deviations arc known or not. The populations may be
dependent or independent.

8.3.1 Test of Hypothesis Concerning Equality of Two Means (o, anﬂ g,
being known)

This test is applicable when two random samples of sizes n; or n, drawn from two
independent normal populations with unknown means j1, and p, and standard devia-
tions o, and o, . We can consider the test in the following steps :

Step L. (Hypothesis Formulation)

We set up the null hypotesis and the alternative hypothesis on the basis of the
above problem. That is,

H, : p; = ., against alternatives a) By psiey
or. by H.o pesipy
or ¢) H, 1wz

Step IL (Test Statistic) :

To test the above null hypothesis we consider the appropriate test statistic

o (X =X5)= (i —Ha) _ (X, _Xz) d)

= N (0,1) under the null hypothesis,
of , o3 of (o =
g 1, n; n,
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Setp 111 (Computation)
Let the value of this statistic calculated from the sample be denoted as

(21-%3) (cay).

L+_2.
n, o,

Liow =

al

Step IV. (Conclusion)

(a) Reject the null h}'Pnlheais Hy B, = p, against the alternative H, : p, > p,’
at o level of significance if Z.; > Z_ . :

(b) Reject the null hypothsis Hy : p, = 11, against the alternative I1, 2 By <y
at o level of significance if Z., > —~ Z_ and

(¢) Reject the null hypothesis H : p, = p, against the alternative Hy:opy#p,
at o level of significance if |2, | > Z

Here 2, denotes the upper a - point ol a standard normal distribution. That
is, P(Z > Z_) = o, where Z is a standard normal variate.

8.3.2. Test of Hypothesis Concerning Equality of Two Means (ul and o,
unknown but o, = o,)

This test is applicable when two random samples of sizes n, or n, drawn
from two independent normal populations with unknown means p,, i, and
standard deviations o and o, The population standard deviations are assumed
to be equal.

Step 1. (Hypothesis Formulation)

We set up the null hypothesis and alternative hypothesis on the basis of the
above problem. That is,

H, : §; = 1, against alternatives a) . Hy oy = 1y
' or by Hpaipn <,
or e) H S s
Step II. (Test Statistic)

To test the above null hypothesis we consider the appropriate iest statistic
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tz(}_{t_xi)"[ﬂﬂ,'—“ﬂ:ji_xz Lo
i o m+ip-2 under the null hypothesis,
ﬁi I, ‘Jn] Hy

where the pooled cstimate of o, denoted by s, is defined as

.

(X - X, }2 + 2 (X~ }_{2)_1_ _ (n;S{ +n, 82

2

n+n,—2 n;+n,-2

_ [ —1)sf +(n, —1)sf
i n+n,-2 '

Setp ITI. (Computation)
Let the value of this statistic calculated from the sample be denoted as

X, -X
tc3t={7;—-§=l<say}.
5 o

L

Step IV. (Conclusion)

(a)

®

Reject the null hypothesis H, : p, = M, against the allernative H, : p, > p,
at o level of significance if tey >t,; (nj4ny-2)-

Reject the null hypothsis H, : My = K, against the alternative H, : p, < p,
at o level of significance if Loy < Lo :(nj2ny-2). and

Reject the null hypothesis Hy : p, = M, against the alternative H, : p, 2p,

at o level of significance if | t., | = to/2.(a, bniy-2) ©

Here L, (n+n,-2) denotes the upper o - point of a t-distribution with 1+,

2) degrees of freedom. That is, P(t> 8, 5y =@,

¥

Note : If we consider two random samples of sizes n, or n, drawn from two
independent normal populations with unknown means Hys W, and standard deviations
_ 6., o, respectively, then '

n, 1

2
X, _}_‘:2’_'”(!-11 ~H; ag U—I)
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Case I : If o, and o, arc known, we use the standard normal test.

(a) To test H, : p; = p, against IT, © p, 2w, (two-tailed test) the test statistic is

7= i) () (X - Xl /N (0,1) under II, .

a 2 2 2
EL+E?L _L+ﬁ
T S

This value is compared with 1.96 (2.58) for 5% (1%) level of signilicance.
(b) To test H_ : p, = p, against H, @ p, > 1, (one-tailed test), the test statlistic is

X -
( 1 %] -N(0,1) under II,.

By e

and the critical value of 5% (1%) level of significance 15 1.645 (2.33).

(¢) Totest Hy:u, = p, against H, @ p, < p, (one-tailed test), the test statistic
7.y is same as in (b) above, however, the critical value for 5% (or 1%) level of
significance is — 1.645 (or — 2.33).

Case Il : If o, and g, are nol known, their esimates based on samples are used.
This category of tests can be further divided into two sub-groups.

Small sample tests (when either n, or n, or both are less than or equal to 30). For
this test H, : p, = p,, we use t-test, The respective estimates of o, and o, are given

by
’ {X]l ’ E.ﬂd s _J (xm XZ) SE n?i]_

This test is more restrictive because it is based on the assumption that the two
samples are drawn from indepedent normal populations with equal standard devia-

tions. i.e. o, = o, = ¢ (say). The pooled estimate of o, denoted by s, is defined as

\{Z{Kh X) + 2 (Xyi- 2}2 _

n,+hn,—2

n,+n2—2 n+n,-2

4 JE& 2+ n,82 J{n]—l)sl +(n,—1)s3
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(a) To test 11, : pt, = p, apainst II;:p, = p, (two-tailed test), the test statistic is

2 (X~ Xzz} _X-X) (K- ?) nn, . which folows the t-dis-
Jsl_+s_ SJ__L+_1_ 5 n,+n,
Ty n, n,

tribution with (n, + n, — 2) d.f.

(b) Totest I, : u, = W, against IT; : p, > p, (one-tailed test), the test statistic

;St:(}_‘rl_ 3)x BME TR
5 Jnﬁnz

(c) Totest Hy:p, = p, against H, : p; < p, (one-tailed test), the test statistic,
i.e. t is same as in (b). This value is compared with the negative t value.

2. Large Sample test (when each of n, and n, is geater than 30)

In this case o, and o, arc cstimated by their repective sample standard deviations
S, and 8,. The test statistic for two and one-tailed test is

X
ﬁé~w{ﬂ 1) and the remaining procedure is same as above.
+
hp 1y

Remark :

100 (1 — )% confidence limits for h, — h, are given by (X;~X,)*+Z,,
S.E. g %, If the two samples are drawn from populations with same standard
deviation, i.e. 0, = o, = © (say), then S-E-R;_x =0 ’-ri—+ﬂL for problems covered

1 My

under case land SE.g 5 =8 nl+nl for problems covered under case II. For large

M L
sample tests, o can also be cstimated by 5 as

S iz E{X!J + Z(XEL !]2 e nISIE + nls% ;
F n L1 : n,+n,
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Example 4.

Two types of batterics are tested for their length of life and the following data are
obtained.

No. of sample Mean life (inches) Variance
Type - A 9 600 121
Type-B 8§ 640 144

Is there a significant difference in the two means ? Value of t for 15 d.[. at 5%
level is 2.131.

Solution : Let X, and X, be the life of two types of batteries A and B with mean
i, and p, respectively.

Here T1; : p, = p,, apainst H : p, = p,.

To test the above null hypothesis the appropriate tesl statistic is

Ki T Kz :
b ) TR "tn|+n1-z under the null hypothesis,
5 Tﬂl- £ I'I_I

where the pooled estimate of o, denoted by s, is defined as

sz\(z{xii ”}_{E}E“" Z{Xzi_xz}z _ | S+ m,53

n+n,—2 n;+n,—2

In this problem

By : n, =%

X, =600 X, =640

8,7 = 121 8,2 = 144
IHence,

2 2
g JBET I o e g
n;+n,—2

Therefore, {qy = 5““"‘54‘3'1 =61
12.2 ’%+ 4
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Since the observed value of | t| (6.7) is greater than the tabulated value of t (2.131)
at 5% level of significance so the null hypothesis I is rejected at 5% level of
significance. So there is a significant difference belween the two means of lives of
batleries at 5% level of significance.

8.3.3 Test of Hypothesis Concerning Equality of Two Means (o, and o,
unknown for a bivariate population)

Suppose we have a random sample of n pairs of obscrvations from a bivariate
normal population with unknown means p,, p, and standard deviations o, and o,
The population standard deviations are not assumed to be equal. Suppose the paired
data are available

6. VN1 =12, 3; crinnns .3 = 102, B 1
Step 1. (Hypothesis Formulation)

We set up the null hypothesis and alternative hypothesis on the basis of the above
problem. That is, H, : 1, = u, against alternatives

al Hb =l
ofr b H.: [ <
or 3 s 2 Sl S S 1
Step 1. (Test Statistic)
Let U, = X, — Y, difference in the values of X and Y lor the i-th pair, i =1, 2,
3, ..., 1. To test the above null hypothesis we consider the appropriate test statistic

Jn U

t=—g— which follows the t-distribution with (n—1) degrees of freedom under the
K3y :

—7
null hypothesis, where §, = M

n-1
Step I1L (Computation)

Ict the value of this statistic calculated from the sample be denoted as

beat = ."IETU (say) .

Step IV. (Conclusion)
(¢) Reject the null hypothesis H @ |1, = [, against the alternative H, @ b, > |,

at o, level of significance if oy =1, o .
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(d) Reject the null hypothesis IT; @, = p, against the alternative H, 1 p, <,
at o level of significance if tey<—-t, ;. and
(e) Reject the null hypothesis Hy : p; = p, against the alternative H, : p, =p,
at o level of significance if | toy | > t, o
Here t, ., denotes the upper o - point of a t-distribution with n — 1 degrees of
freedom. That is, P(t=1, , )=0.

Note : The above test is known as Paired t-tcst which may be viewed as Student’s
t-test with n — 1 degrees of freedom. ' '

8.4 Test of Hypnthésis for Proportion

8.4.1 Test of Hypothesis for Specified Population Proportion
Seip I. (Hypothesis Formulation)

We set up the null hypothesis and alternative hypothesis on the basis of the given
problem. That is, the null hypothesis to be tested 1s

H, : m, = m, against alternatives gl Hy cmens
or b) H, im<m,
or ¢) H:imz#mn
Step L. (Test Statistic)
To test the above null hypothesis we consider the appropriate test statistic

o P—"g

n
= =(p=-n ~N(0,1)
i“a“_“uj ( o) o (1) under the null hypothesis for
n

sufficiently large n.

Step III. (Computation)
Let the value of this statistic calculated from sample be denoted as

= p - 'E -
n
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Step IV. (Conclusion)
(e} Reject the null hypothesis Hy : m = m, against the alternative H :in> T, at

o level of significance il Zqy > Z, .

(d) Reject the null hypothesis H : u = m, against the alternative H, :n<m, at
o level of significance if Zo, <—Z, and

(¢) Reject the null hypothesis H, 1 = = n, against the alternative H:n 2w,
at o level of significance if | 7., | > Z.p

Iere 7, denotes the upper o - point of the standard normal distribution. That is,
P(£ > Z ) = a, where Z is a standard normal variate.

Remark : The 100(1 — a)% confidence limits for p are m + Z..23-E(p).

Example 5 : A cerain controlled process produces 15 percent defective items, A
supplier of a basic raw material claims that the use of his material would reduce the
fraction of defective. On making a production trial run with the new material, it was
found that from an output of 400 units 52 were defective. Would you accept the
supplier’s claim?

Solution. Let X be the random variable denoting the number of defectives in a

sample of size n. We assume that X follows the binomial distribution with parameters
n and 7.

Here we have to test the null hypothesis
I, : m= 0.15 against the alternative II, : m < 0.15,
p=2Xmh=52/400=0.13

? k> p_ﬂﬂ. o {],13—{}15 ] 12
c Jﬂugr-nﬂ) 0.15% 085
n 400
Zyqs = 1.645.

i.e. at 3% level of significance the supplier’s claim that the new material will
reduce the fraction of defective is rejected at 5% level of significance,

Example 6 : A random sample of 100 items taken from a large batch of articles
contains 5% defective items. (a) Set up 96% confidence limit for the proportion of
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defective items in a batch, (b) Il the batch contains 2, 697 items, set up the 95%
confidence limits for the proportion of defective items. i

Solution : Here n = 100.
p = proportion of defectives in the sample = 5/100 = 0.05

(a) Here estimate of 5.E. of p is given by

SE (p) = Jphn"f’j =Jﬂ-ﬂfﬂxﬂ-95 ~0.02179 =0.022.

From the table of the normal distribution

Zoiy = 205,

Hence 96% confide nee limits for the population proportion of defectives are
P+ Zypn SEp) = 0.05 £ 2.05 x 0.022 = (0.005, 0.095)
(b) I N = 2669, then 95% confidence limits for p are given by

=1 N-nlp
D+ Zygps SE(P) = p £ 1.96 x (=il

[ El? IIfI_—Ill is biased but EIEELI NI:IH is unbiased ]

¥ 5 (2669-100) _ 0.05x0.95
=0.050 + 1.96 xJ S

= 0.050 + 1.96 = 0.0215 = 0.050 £ 0.042
= (0.008, 0.092)

8.4.2 Test of Hypothesis Concerning Equality of Proportions
Setp I. (Hypothesis Formulation)

We set up the null hypothesis and alternative hypothesis on the basis of the given
problem. That is, the null hypothesis to be tested is
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II, : m; = m, against the alternatives a) H, :m >mn,

or b} Hyim =7,
of @) Hy:u = m,
Step 1L (Test Statistic)
To test the above null hypothesis we consider the appropriate test statistic

iy : (Pl_Pz) e iy o
) =(p,~ps) =0 ) N(0, 1) under the null

hypothesis for sufficiently large n, and n, under the assumption that n, = x, = .
where © is known. Ofien population proportion 7 is unknown and it is estimated on
the basis of samples, The pooled estimate of n, denoted by p, is given by p =

gy + 10,0,
1+,

¥ nn
Thus, the test stalistic becomes 7 = (p, — p,) Jp(l-— p}](;] Fn,)

Setp III. (Computation)
Let the value of this statistic calculated from the sample be denoted as

'!'Ill'l-z
PJ(“I +n

Step IV, (Conclusion)

(c) Reject the null hypothesis H, : n; = m, against the alternative H, : 7, > 7,

zcm:{l‘i‘Pz}JP{l_- N (say)

at o, level of significance if Z.,>Z,.
(d) Rejeet the null hypothesis H, : m; = n, against the altcrpative H) : m <7,
at o level of significance if' Z., <-Z, and

(¢) Rejeet the null hypothesis Hy : m; = m, against the alternative H, : 7, 27,
at o level of significance if | Z.., | = Z .
Here Z, denotes the upper o - point of standard normal distribution. That is,
P(Z > Z ) = o where Z is a standard normal variate,
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Remark : The 100(1 — @)% confidence limits for m,— m, are (py —py) £
Z’m’l Sill"':p] =T pi)

Example 7 : A survey of television audiance in a big city revealed that a particular
programime was liked by 50 oul of 200 males and 80 out of 250 females, Test the

hypothesis that whether there is a real difference ol opinion about the programme
between males and females.

Solution : Tet n, and m, be the proportion of males and females who liked the
particular television prgaramme, The null hypothesis to be tested is

Hy : n, = m, against alternative H, : m, » m,.

To test the above null hypothesis we condsider the appropriate test statistic .

2 ! (pl_pz:] J 1, ;
P ABE o e i
JH(I_E][J L 1 ) [p; P‘*} n{l—n)(nt.,.nz) N(0, 1) under the null
R L

hypothesis for large n, and n, under the assumption that m, = @, = ® where = is
known. Often population proportion  is unknown and it si cstimated on the basis of
samples.

The pooled estimate of n denoted by p is given by p = E'%—:EZE?‘
| T

np+u,p, . 50+80 _ 13
n; 1, 200+250 45

Here P=

_ 032-025 .
= s

Since the computed value of Z (0.958) is less than the tabulated value of Z (1.96)
at 5% level of isgnificance, so the null hypothesis is accepted. That is, there is no real
difference of opinion about the programme between males and females.

Example 8 : Obtain the 95% confidence limits for the proportion of success in a
binomial population.
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Solution : Let the parameter 'rr| denote the proportion of successes in population.
Further, p denote the proportion of successes in n (3 50) trials. We know that the
sampling distribution of p will be approimately normal with mean p and standard

Since 7 is not known, therefore, its estimator p is used n the estimation of

standard error of p, i.e. S.E(p) = p :

Thus, the 95% confidence interval for p is given by

F(p—] .%Jﬂln‘lj <n<p+1.96 1’1’—“11“}5):-:},95.

[This gives the 95% confidence limits as p + 1.96 .

Example 9 : In a newspaper article of 1600 words in Hindi, 64% of the words
were found to be of Sanskrit origin. Assuming that the simple sampling conditions
hold good, estimate the confidence limits for the proportion of Sanskrit words in the
writer’s vocabulary. ;

Solution : Let = be the proportion of Sanskrit words in the writct’s vncabﬁlary.

Corresponding proportion in the sample is given as p = 0.64

: _ [064%x036 _ 048 _
5 SE(p)= (R0 = S8 = 0,012,

We known that almost whole of the distribution lies between 3o limits. Therefore,
the confidence interval is given by

Plp — 3S.Ep) <7 < p + 3SE. (p)] = 0.9973

Thus, the 99% confidence limits are 0.609 (0.64 — 2.58 x 0.012) and 0.671 (=0.64
+ 2.58 = 0.012) respectively.

Hence, the proportion of Sanskrit words in the writer’s vocabulary are between
60.9% and 67.1%.
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8.5 Test of Hypothesis Concerning Population Standard Deviation
Step I. (Hypuihesis Formulation)

We set up the null hypothesis and altermative hypothesis on the basis of the given
problem. That is, the null hpothesis to be tested is

H, : o = o, against the alternatives a) H o >0,
or b) H,:o<g,
or ¢) H :o 2 g

Step I, (Test Statistic)
~ To test the above null hypothesis we consider the appropriate test statistic

—X}z nS?

3 =52 Iollows a y? - variate with (n — 1) degrees of freedom
i

under the null hypothesis.
Setp 11 (Computation)

Let the value of this statistic calculated from the sample be denoted as

Step IV, (Conclusion)
(¢) Reject the null hypothesis I, : o = o, against the alternative H :io>0,at

o level of significance if %2, > e

(d) Reject the null hypothesis H; : o = o, against the alternative H :o<o,at

o level of significance if T.':E-\ﬂ' >0 iy and
(¢) Reject the null hypothesis II; : ¢ = o, against the alternative Il i o %0,

at o level of significance if Xy < Ié_{n_} of Yy > JEZE g,
7 _ 5
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Here %7 (,1) denotes the uper « - point of a y? - variate with (n — 1) degrees of
fredom. That is, P(xz }}gﬁ__{n_ﬂ} =11

Note : It can be shown that for large sample (n > 30), the sampling distribution

of § is approbiatelity normal with mean ¢ and standard error :’%' Thus

Z = (ﬁ—cg‘_ﬂ ~ N(0, 1) for sufficiently large value of n.

Alternatively, using Fisher’s approximation, we can say that when n = 30 the

slalistic ,ll' 22 fu_!Iuwsi a normal distribution with mean 77,1 and standard error

unity. Thus Z=,2%%—+2n can be {aken as a standard normal variate for suffi-

ciently alrge values of n.

8.6 Test of Hypothesis Concerning the Equality of
Standard Deviations

Step . (Hypothesis Formulation)
We set up the null hypothesis and the alternative hypothesis on the basis of the
- given problem. That is, the null hypothesis to be tested is
H, : o, = o, against alternative H, : ¢, > a,,
Step I1. (Test Statistic) ;
To test the above null hypothesis we consider the appropriate test statistic

2 ) =2 2
S S::E ‘:;'2 which would become ‘“"_; and under H,, it follows the F — distribution
i3 £ Oy 85

with v; (= n, — 1) and v, (=n, — 1) degrees of freedom.
Setp 1L (Computation)
Let the value ol this statistic calculated from the sample be denoled as

o2
Hai= -S—k— (say)-
5
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‘ - Setp IV. (Conclusion)
Reject the null hypothesis H; : o, = o, against the alternative H, : o, > 0, at

level of significance if K, > Fu:{nl—l}{ng—l}'

Here F . (-1 denotes the upper o, - point of an F — variate with (n, — 1) and

Mma-1)
(n, 5 1) degrees of freedom. That is, P(F > B oy t)(ag-1)) = -

Remarks :

5 t 1 ok 1 Xk
1. We can write 82 :;FE{XH_XL} = n:]li g2 = (Z Xfi_{zn]n} J

: ; > l .
and s?= 5 ¥ (X -X) = L ) e (Z}{Ei _LZ_EQL]_

' 2
2. In the variance ratio F= 3—12, we take, by convenion, the Jargest of the two
g
2 -

sample variances as s,% Thus, this test is always a one-tailed test with
critical region at the right hand tail of the I - distribution.

2
3. The 100 (1 — )% confidence limits for the variance ratio G—'z[ are given by
2

e
Sl ):1—11
5 Flanm ;

LS

.2
pli L g
(s% E.na

8.7 Frequeny Chi-square (Pearsonian y*)

8.7.1 Tést for Goodness of Fit

The use of chi-square (3?) test was first devised by Karl Pearson to decide whether
the observations are in good agreement with a hypothetical distribution i.e., whether
the sample may be supposed to have come from a specified population, The observed
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values (f}) for different classes are compared with expected values (f)) forming the
test statistic.

- 1’}:2%“:(%—11

This is called the goodness of fit Chi-square or Pearsonian Chi-square or freqhency
Chi-square distribution with k-1 degrees of freedom under the null hypothesis where
k is the number of classes. We reject the null hypothesis if the observed value of the
statistic exceeds the tabulated value of ¥* at a particular level.

Example 9 : A die was thrown 60 times with the following resulis.

Face ) 2 3 4 5 6 Total

Fl'eq.ueuc}r 6 10 8 13 e 12 60

Are the data consistent with the hypothesis that the die is unbiased ? (Gven y =
15.09 for 5 degrees of freedom at 0.01 level)

“Solution : Let us consider that the null hypothesis is that the die is unbiased. Then
the probability of each face is 1/6 and the expected frequency is 10 for cach.

Values Observed Expected (£, = £,
frequency (fﬂ] frequency (f o)

| 6 10 M =

2 10 i o 0

3 8 - 10 0.4

4 13 10 0.9

5 11 10 0.1

6 12 2 G 10 0.4
Total 60 60 34

. 3:2 = Z {fu }f;}z =14 .

There are 6 classes and hence degree of freedom =6 — 1 = 5.

Since the observed value of y* is less than the tabulated value of y2, =15.09,
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we accept the null hypothesis at 1% level of significance and conclude that the die
is unbiased.

Example 10. 5 identical coins are tossed 320 times and the number of heads
appearing cach time is recorded. The results are !

MNo. of heads 0 1 2 3 < 5 Total
Frequency 2 14 45 80 112 61 B 320

would you decide that the coins are biased?
(Given %2, =11.07, 3, =15.09 for 5 degrees of freedom)
Solution, Let X follow the binomial distribution with parameters n and p.

Here the null hypotheis Hy : p = 1/2 against H, : p= 112,

That is, under the null hypothesis the p.m.f. is p(x) = °C, (%)5

No. of heads (x) f, E p(x) . f,(Np(x) - f;]2 Ll
0 14 0.03125 10 1.60
I 45 0.15625 50 ~ B0
2 80 0.31250 100 - © 4,00
k. 112 0.31250 100 _ 1.44
4 61 0.15625 . 50 2.42
5 8 0.03125 sl i . 040
Total N=320. 1 320 10.36

Since the observed value (10.36) is less than the tabulated value (11.07) at 5%
level of significance, so the H, is accepted at 5% level of significance. Hence, we can
decide that the coins can be treated as unbiased. :

8.7.1 Test for Independence of Attributes

When observations are classified according to two attributes and arranged
in a two-way table, the display is put in terms of a contingeny table.
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Two-Way Contingency Table

Attribute B Attribute A Total
' A, !'\1 2 An
Bl 011 G11 : 0y, Rl
B, U;l 0,, Dzn R,
Em {}nﬂ Dmi Umn Rm
Total CI Cz ......... i N

Here it may be noted that the attributes A and B have been classified into
mutually exclusive categories. The value Dij represents the frequency of the
observation corresponding to.the i-th row and j-th column. The expected fre-

Sy g R.xC.
quency E, is given by Eﬂz-%x#x}ﬁ:%.f_

[Here the null Hypuihesis I, : A and B are independent
against the alternative H, : A and B are dependent
The test statistic under the null hypothesis for the test is

e M RS S

(0-E)
12 = E E ak K%m—lﬁfn—l‘i *

We reject the null hypothesis at 0% level of significance if observed 3*
- 12
o, (m-1)(n-1) °

Example 11 : In a recent diet survey, the following results were obtained -
in an Indian city :

MNo. of families Hindus Muslims Total
Tea takers 1236 164 1400
Non-tea takers 564 36 600

Total 1800 200 2000
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Discuss whether there is any sigificant difference between the two commu-
nities in the matter of laking tea. Use 5% level of significance.

Solution : The null hypothesis that is to be tested can be written as H, :
There is no difference between the two communities in the matter of taking tea.

2
Using the direct formula, we have y? = 20000123636 —164x564)” _ 15.24.

1400 x 1800 x 200 x 600

The value of y2from the table for 1 d.f, and at 5% level of significance is
3.84. Since the calculated value is greater than the tabulated value, H is
rejected. That is, there is a significant difference between the two communities
in the matter of taking tea at 5% level of significance.

Example 12 : A cerlain drug is claimed to be effective in curing clods. In
an expenriment on 500 persons with clods, half of them werc given the drug,
The patients’ reaction to the trealment are recorded in the following table.

Treatment Helped Reaction No efect |. Total
Drug 150 30 70 250
Sugar Pills 130 40 80 1 250
Total 280 70 T 450 500

On the basis of the data, can it be concluded that there is a significant
difference in the effect of the drug and sugar pills? (Given %%, s » = 5.99).

Solution : Let us take the null hypothesis that there is no siguif%cant differ-
ence in the effect of the drug and sugar pills,

The contingency table is of size 2 x 3, the degree ol freedom would be (2 —
1) (3 — 1) = 2. The expected frequencies can be calculated in the follwoing way :

E, =%= 140, E,, =% =140, and S0 on.
Contingency table for expected frequencies 1s as follows :
Treatment ‘Helped Reaction No efect | Total
Drug 140 35 75 250
Sugar Pills 140 35 75 250
Total 280 70 150 500
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Arranging the observed and the expected frequencics in the following table
we calculate the value of %2 test statistic.

Cell (i.j) Observed Expected (O - EYE
frequency (O) frequency (E)

1 T 150 140 ' 0.714

2 130 140 0.714
1,2 30 35 0.714

2,2 40 35 0.714

153 70 15 0.333

1.3 80 47 0.333
Total - 300 500 ; 3.522

2
f:Z{D%E} 3522

Since, the observed %2 <3§s.2, therefore, we accept the null hypothesis at

5% level and conclude that there is no significant difference in the effect of
the drug and suggar pills.

‘8.8 Exercises

1.  What is test of significance ? Explain the procedure generally followed in
testing of hypothesis.

2. Distinguish between (a) critical region and acceptance regions, (b) null hypoth-
esis and alternative hypothesis, (¢) one-tailed and two-tailed test, (d) type I
error and type II error. :

3. Explain clearly the procedurc of testing hypothesis. Also point out the assump-
tions in hypothesis testing in large samples.

How does small sampling theory differ from large sampling theory?

Explain the following terms : test statistic, level of significance, confidence
level and power of a test.
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10.

11.

12.

Give some important applications of ‘1’ test and explain how it helps in busi-
ness decision making,

Discuss the F-test for testing the equality of two variances.

What is chi-square test? Explain its important uses with the help of examples.
A sample of 25 male students is found to have a mean height of 171.38¢m. Can
it be reasonably regarded as a sample from a population with a mean height of
171.17 ems and a standard deviation of 3.30 cms?

A toothpase company conducted a survey and found that it could sell only 60
tubes on an average per month per shop. Immediately, the company advertised
heavily in several media and after 3 months again conducted a survey and
found that the mean sales was 83 tubes with a standard deviation of 10 tubes
in a sample of 20 shops. Can it be concluded that the adverliesement is effee-
tive? (tygs. 19 = 1729, t01. 107 2.861)

In a survey at a super market, the following number of people were observed
purchasing different brands of coffee :

A B C D B

74 53 81 70 82

Do these data support the hypothesis that the population of coffee buyers prefer.
each of the five brands equally?

_2241924924224+10% _ 5

72
A sample of 540 households was selected to study the occupational pattern of
the father and the son. The number of households obtained has been tabulated
below. Test the hypothesis that the son’s occupation is independent of the
father’s occupation.

Hint : %3

Son’s oceupation
F B 9o &
Farming T (N < S

Father's occupation  Business 22 28 30 41

Services 32 10 | 20
Miscellancous 38 25 14 28

(2, 005 = 16919, 22y, g1 = 21.666)
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13.  An automobile manufacturing firm is bringing out a new model. In order to
map out its advertising campaign, it wants to determine whether the model will
appeal most to a particular age group or equally to all age groups, The firm
conducted a survey and the results are summarised below :

Age group
Below 20 20-39 40-59 60 and above
Liled S 14D 78 48 28
Disliked 54 52 32 62

" What conclusion would you draw from the above data? % o= 1815,
fa-, aa 11.341)

14, A man buys 15 electric bulbs of ‘Philips’ make and another 10 of the ‘GE’
make. He finds that the Philips bulbs give an average lifc of 1200 hours with
S.D. of 60 hours and the GE bulbs give an average of 1242 hours with an §.D.
of 80 hours. Is there a significant difference between the two makes?

(Gssnes = 2969, L gps ™ 2:806)

15.  The sales data of an item in six shops before and afier a special promotional
campaign are as follows :

Shops : A B C D E F
Before campaign : 53 28 31 48 . 50 42
After campaign : 58 29 30 ) 56 45

Can the campaign be judged to be a success 7 (t = 2.015)

5 n0s

16. Two types of scooters manufactured in India are tested for petrol mileage, One
group consisting of 12 scooters with average mileage of 44 km/It and of standard
deviation of 2 km while the other group consisting of 10 scooters with an
average mileage of 50 km/ It and standard deviation of 1.5 km of petrol, Test
whether statistically there exists a significant difference in the petrol consumption
of two types of scooters. (t = 2.086, t = 2.845) :

20, 0025 207 0,005

17. Two laboratories A and B carry out independent estimates of fat content in
ice-cream made by a firm. A sample is talen from each population, halved and the
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separate halves sent to the two laboratories, The fat content obtained by the
laboratories is recorded bhelow :

BatchNo: | 2 3 4 5 6 g 9 10
Lab A : TS 7 3 8 6 9 3 7 ity
LabB. 29 % 8 4 7 7 9 6 GOl

Is there a significant difference between the mean fat content obtained by the
two laboratories A and B? ((t, conps © 2262, 4o = 3.250)

18. A company making a brand of detergent and toilet soap wanted to compare the
expenses incurred on sales promotion for these two products, The data for the
preceding year were retricved from the books of accounts of these two products
and they are reproduced below :

. Expenditure in Rs. Thousand
Months Product 1 4 3 4 5 e 7wl 10
Toilet soap 35 80 50 60 50 60 70 45 50 60 60 70
Detergont S0 25 70 45 60 S5 45 60 55 55 45 35

Further, suppose that both the products had offered equal amount of profitability
and turnover. Then verify whether the above sales promotion expenditure are
justifiable or not. yias sy R0 e ki)

19.  The following data were obtained froni a test in a laboratory.

Method sample size sample variance
A 10 1296
B 15 7R
Test whether there is any difference in the variances of two methods at 5%
level.
(B o =205, P vpps = 2y

20. A random sample of 15 observations gave an unbiased estimator s = 12.63 of
the population variance o2, May the sample be reasonably regarded as drawn
from a normal population with variance 8 ? Test at 5% level of significance.

(xzu.us; u — 23.68, 7{29_,5,; = 2914
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21, A stock broker claims that he can predict with 80% accuracy whether the values

of a stock will rise or fall during the coming month. As a test he predicts the

outcome of 40 stocks and is correct in 28 of the predictions. Does the evidence
support the stock broker’s claim?

22. 500 units from a factory are inspected and 12 are found to be defective. Simi-
larly, 800 units from another factory are inspected and 17 arc found to be
defective. Can it be concluded that production in the second factory 1s better
than in the first?

23.  Determine the sample size for estimating the true weight of tea containers from
(i) a large number of containers and (i) from 1000 containers so that the
estimate should be within 10 gms of the true average weight. Variance is 40
gms (on the basis of past record).

Hint : '

E=|X-py|=10 o =40
azZ ; s
n =~—*’-1E§ for SRSWR
N {5233:2]
"TNE oz, for SRSWR
For proportion
g
n= r(l Eﬁ]zﬂf ' for SRSWR
Np(1-p)zi;; -
H=
NE? + p(1-p)z2), SR
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Appendix Table 1: Area Under standard Normal Curve
(The given proportions indicate area above the given value of Z)

Normal 00 001 002 003 004 005 006 007 008 009
Deviate :
z
0 05000 0.4960 0.4920 04880 04840 04801 04761 04721 0.4681 04641
0.0 04602 04562 04522 04483 04443 04404 04364 04325 04286 04247
02 04207 04168 04129 04090 0.4062 04013 03974 03936 03897 0.3850
03  03821' 03783 03745 03707 03669 03632 03504 0.3557 03520 0.34%3
04 03446 03409 03372 03336 03300 0.3264 03228 03192 03156 0317
05 03085 03050 03015 02981 02946 02912 02877 02843 0.2810 027176
06 02743 02709 02676 02643 02611 02578 02546 02514 02483 02451
07 02420 02389 02258 02327 02296 02266 02236 02206 02177 02148
08 02119 02090 02061 02033 02005 0.1977 0.1949 - 0.1822 01894 01867
0o 0.184] 0.1814 01788 01762 01736 ﬂ.!?l[_ 01685 00660 01635 01611
10 0.587 0.1562 0.1530 0.0515 0.1492 0.1469 0.1446 0.1423 0.1401 01379
LI 01357 0.1335 00314 0.1292 01271 01251 0.1230 01210 0.1190 0.1170
12 01151 01131 04112 01093 0.1075 0.1056 0.1038 0.1020 0.1003 0.0985
L3 00968 0.0951 00934 00918 0.090! 0.0885 00869 0.0853 00838 0.0823
L4 00808 00793 00778 0.0764 0.0749 0.0735 00721 00708 0.0694 00681
1.5 00668 0.0655 0.0643 (.0630 0.0618 -0.0606 0.0594 00582 00571 0.0559
L6 00548 0.0537 00526 00516 00505 0.0495 0.0485 00475 0.0465 0.0455
17 00446 0.0436 00427 00418 00409 0.0401 0.0392 0.0384 00375 0.0367
I8 00359 00351 00344 00336 0.0329 0.0322 00314 00307 00301 0.0294
L9 00287 0.028! 00274 0.0268 00262 00256 0.0250 00244 0.0239 0.0233
20 0.0228 -0.0222 00217 00212 00207 0.0202 00197 00192 00188 00I83
21 00179 00174 00170 0.0156 00162 00158 00154 00150 0.0146 0.0143
22 00139 00136 00132 00129 00125 00122 00119 00116 00113 00110
23 00107 00104 00102 0.0099 0009 0.0094 00090 0.0089 0.0087 0.0084
2.4 0.0082 00080 00078 0.0075 0.0073 00071 00060 00068 00066 00064
25 00062 0.0060 0.0059 00057 00055 0.005¢ 00052 0.0051 0.0049 0.0048
26 00047 00045 0.0044 00043 00041 00040 0.0039 0.0038 0.0037 0.0036
27 00035 0.0034 00033 00032 00031 00030 00029 0.0028 00027 0.0026
28 00026 0.0025 0.0024 00033 00023 00022 00021 00021 00020 00019
29 00019 0.0018 00018 00017 00016 00016 00015 00015 0.0014 0.0004
30 00013 0.0013 00013 00012 00012 00011 00011 0.00L1 0.0010 0.0010
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Appendix Table 2: Percentile Values of the Student’s t- distribution

df\l-g 0.75 0.9 0,95 0.975 0.99 ' 0995  0,9995
1 1 1.078 6.314 12.706 31.821 63.657 636619
9 0.816 1.886 2.92 4,303 6.965 9925  31.508
3 0.765 1.638 2,353 3.182 4,541 5841  12.941
4 0.741 1.533 2.132 2,776 3,747 4,604’ 8.6
5 0.727 1474 2.015 2.571 3,365 4,032 6.859
b 0.718 1.44 1.913 2.447 3,143 1.707 5.959
T 0,711 1.415 1.895 2.365 2.998 3.499 5.405
8 . 0.706 1.387 1.86 2,306 2.896 3.355 5.04]
9 0.703 1.383 1.833 2.262 2.821 3.250 4,781
10 0700 . 1.372 1812 2278 2.764 3.169 4.587
Il 0.697 1,363 1.796 2,201 2,718 3.106 4.437
12 0.695 1.356 1,782 2.179 2,671 3.055 4,318
13 0,694 1.35 1.771 2.160 2.65 3012 4.271
14 0.692 1.345 1.761 2,145 2,624 2.977 4.140
15 0.691 1.341 1.753 2.131 2.602 2.047 4.073
16 0.690 1.337 1.746 2.12 2,583 2.921 4.015
4 0.689 1333 1.740 211 2,567 2.808 3,965
18 0,688 1,330 1.734 2.101 2552 2878 3.002
19 0.688 1.328 1.729 2,093 2.539 2,861 1.883
20 0.687 1335 . 1728 2.086 2.528 2.845 3,850
21 0.686 1.323 1.721 2.08 2518 2.831 3.810
22 0,686 e/ B ) 2.074 2.508 2.819 3792
23 0.685 1.319 1.714 2.069 2.500 2.807 3.767
24 0.685 1.318 1711 2.064 2.492 2.797 3,745
25 0.684 1.316 1,708 2.060 2.485 2.787 1,725
26 0.684 1.315 1.706 2,056 2.479 2.779 1.707
27 0.684 - 1314 1,703 2052 24713 2,771 3.690
28 0.683 1313 1701 2.048 2.467 2.763 3.674
29 0.683: 1311 1.699 2,045 2.462 2.756 3,659
10 0.683 1.310 1.697 2,042 2,457 2,750 3,646
40 0.681 1.303 1.684 2021 . 2423 2.704 1.551
60 0.699 1.296 1,671 2000  2.390 2,660 3,460
120 0.677 1.289 1.658 1.980 2,358 2,617 3,373
= 0.674 1.282 1645 1.960 2,326 2.576 3291
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Appendix Table 3 : Percentile Values of the the Chi-square distribution

.98

dfila 0,99 0.95 0.9 0.8 0.7 05 005  0.01 .00
I . 000393 00158 0642 0.048 0455 3841 6635 10827
2 00201 00401 0103 0211 0446 0713 2386 5991 921 13815
3 LS 0. 185 y 0,352 0,584 [.005 1.414 2366 7.B15S 10345 16766
4 0297 0420 0711 1064 1649 2195 3357 9488 13277 18467
5 055 0752 L145 - 1710 2343 3000 4351 1107 15086 20515
6 0862 1134 1635 2204 307 3828 5348 12,592 16812 22457
7 L139  LS64 2067 2833 3822 4671 6346 14067 18475 24322
£ Leds: 2082 2733 349 4594 5527 7344 15507 2009 26175
9 2088 2532 3325 4068 538 6393 B343 16919 21.666 27.871
10 2558 3050 394 4865 6179 7267 9342 18307 23209 29588
I 3083 3609 4575 5578 6989 B.I48 10341 19.675 24.725 31264
12 3571 4178 5226 6304  7.807 9024 1134 21026 2621 32909 -
13 4107 4765 5892  7.042 8634 9926 1234 22362 27688 34.528
14 ' 466 5368 6571 779 9467 10821 13339 23685 29.141 36123
15 5229 5985 7261 8547 10307 11721 14339 24996 30578 37.607
6 5812 6614 7962 9312 11,152 12624 15398 26206 32001 139752
1T 6408, 7.255  B672 10085 12,002 13531 16338 27.587 33.409 40.79]
18 7015 7906 939 10865 12857 1444 17338 28.869 34.805 42312
19 7633 BS67 10017 11651 13716 15352 1B338 30,144 36.191 43821
20 826  9.237 10851 12443 14578 16266 19337 3141 36566 45315
21 8897 9915 11591 1324 15445 ' 17.182 20337 32641 38932 46798
22 9542 106 12238 14041 16314 18101 21337 33924 40289 48268
23 10096 11,293 13.091 © 14.848 . 17187 19201 22337 35172 41.638 497128
24 10836 11992 13848 15659 1B062 19943 23337 36415 4298 SLIM
25 11524 12697 14611 16473 1894 20867 24337 37.652 44314 52.620
26 12198 13409 15379  17.292  19.82 21792 25336 3B.885 45642 54052
27 12879 14125 16151 IB114 20703 22719 26336 40.113 46963 55.467
28 13565 14847 16928 18939 21588 23647 27336 41337 48278  56.893
29 14256 15574 17708 [9.768 22475 24577 28336 42557 49588 58303
0 14953 16306  18.493  20.589 23364 25508 29336 43773 50892 59.703
40 22,164 23838 26509 29.051 32345 34872 39335 55759 636027 73402
50 20707 30644 34764 37689 41449 44313 34335 67.595 76154 B6.66I
60 37485 39.699 '43.188 46459 50641 53800 59.335 79.082 88379 99.407
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Appendix Table 6 : Random Numbers

(4 58 912 1316 1720 124 2528 2932 3336 1740
I 2315 7548 5901 8372 5993 7624 9708 8695 2303 6744
2 0S54 5550 4310 5374 . 3508 9061 1837 4410 9622 . 1343
3 1487 1603 5082 4043 6223 5005 1003 2211 5438 0834
4 3807 6749 5194 0517 5833 7880 S0 9432 4287 1695
5 9731 2617 1899 7553 OB70 9425 1258  41S4 8821 0513
6 1174 2693 -8l44 3393 0872 3279 7331 1822 6470 6850
7 4336 1288 5911 OI64 5623 9300 9004  9943° 6407 403
8 9380 6204 7838 2680 4491  556%- 1189 3258 4755 2571
9 4954 0131 BIOB 4298  4I87 6953 8296 6177 738D 9527
10 3676 8726 3337 9482 9569 4195 9686 7045 2748  3RE0
110709 2523 9224 6271 2607 0655 8453 4467 3384 5320
2. 4331 0010 8144 8638 0307 5255 5161 4889 7420 4647
i3 6157 0053 6006 1736 3775 6314 8951 2335  OL7T4 6993
14 3135 2837 9910 7791 8941 3157 9764 - 4862 5848 6919
15 5704 8865 2627 7959 . 3682 9052 9565 4635 0653 2254
16 0924 _ 3442 0068 7210 7137 3072 9757 5609 2982 7650
17 9795 5350 1840 8948 8329 5223 0825 2122 5326 1587
18 9373 2595 7043 7819 8885 5667 1668 3695 9964 4569
19 7262 1112 2500 . 9226 8264 3566 6594 3471 6875 1867
20 6102 0744 1845 3712 0794 9511 7378 6699 5361 9378
20 9783 9854 7433 0559 1708 4547 3541 4422 0342 3000
22 8916 0971 9222 2329 0637 3505 5454 8988 ° 4381 436l
23 2596 6882 2062 8717 9265 0292 3528 6248 9195 4883
24 8144 2317 1905 0495 4806 ° 7569 0075 6765 OI71 6545
25 1132 2549 3142 3623 4386 0862 4976 6762 2452 3245
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Any system of education which ignores Indian conditions,
requirements, history and sociology is too unscientific to commend ilself
Lo any rational support. '

Sublias Chandra Bose
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