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PREFACE

In the curricular structure introduced by this University for students of Post-
Graduate degree programme, the opportunity to pursue Post-Graduate course in Subject
introduced by this University is equally available to all learners. Instead of being guided
by any presumption about ability level, it would perhaps stand to reason if receptivity
of a learner is judged in the course of the learning process. That would-be entirely in
keeping with the objectives of open education which does not believe in artificial
differentiation.

Keeping this in view, study materials of the Post-Graduate level in different
subjects are being prepared on the basis of a well laid-out syllabus. The course structure
combines the best elements in the approved syllabi of Central and State Universities in
respective subjects. 1t has been so designed as to be upgradable with the addition of
new information as well as results of fresh thinking and analysis.

The accepted methodology of distance education has been followed in the
preparation of these study materials. Co-operation in every form of experienced scholars
is indispensable for a work of this kind. We, therefore, owe an enormous debt of gratitude
to everyone whose tireless cfforts went into the writing, editing and devising of proper
lay-out of the meterials. Practically speaking, their role amounts to an involvement in
invisible teaching. For, whoever makes use of these study materials would virtually
derive the benefit of learning under their collective care without each being seen by the
other.

The more a learner would seriously pursue these study materials the easier it
will be for him or her to reach out to larger horizons of a subject. Care has also been
taken to make the language lucid and presentation attractive so that they may be rated
as quality sel-lcarning materials. If anything remains still obscure or difficult to follow,
arrangements arc there to come to terms with them through the counselling sessions
regularly available at the network of study centres sctup by the University.

Needless to add, a great part of these cfforts is still experimental—in fact,
pioneering in certain arcas. Naturally, therc is every possibility of some lapsc or deficiency
here and there, However, these to admit of rectification and further improvement in due
course. On the whole, therefore, these study materials arc expected to cvoke wider
appreciation the more they receive serious attention of all concerned.

Professor (Dr.) Subha Sankar Sarkar
Vice-Chancellor
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CHAPTER 1 0 INTEGRAL TRANSFORM
AND DIFFERENTIAL
EQUATIONS

Structure

1.1 Introduction
1.2 Integral Transform
1.3 Applicaiion to Differential Equations

1.0 INTRODUCTION

Integral transforms play an essential part of mathematical background
required by scientists and engineers, as these provide an easy and effective
means for the solutions of many problem arising on those areas. An attempt
has been made to cover the commeonly used properties of those integral
transforms which are currently in use the solution of differential equations.
It iz to be noted these transforms can fruitfully applied to find the solutions
of integral equations also. There are chapters on Fourier, Laplace and Hankel
transforms. Closely related topics such as finite transforms, dual integral
equations etc. are also considered. '

1.1 INTEGRAL TRANSFORM

The integral transform of a function f{x) of real variable x denoted by 1[f(x)]
is defined by

g
)= [Kloe,x)f(xdx (1.1)

*1

where K (0, x) is called the kernel of the transform and is a function of
the variables x and @, x being real and o being real or complex and where ¥,
xy are two real constants. Obviously I[fix)] is a function of « and so we can

denote Ilflx)] by f(c).

The integral transform can be considered as an integral operator I, which
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operates on [lx) to produce the functinnf{n.}l on o-space. This integral operator
I is linear due to the following reasons :

(i) If flx} and g(x) be two funections of real variable x which posses the
integral transforms by the Kernel K(o, x), then we have

)+ g0)] = [ Ko, ) £(x) + glx)]dr

X

*2 = *2

= | Ko, 0)f(x)dx+ [ Ko, x)g(x)dx
*1 *1

= I[f(x)] + Ig(x)]

(ii) If ¢ be a constant real or complex then,

X xz
1ef(x)] = fm:a, x)ef (x)dx = ¢ [ K(o, x)f(x)dx

x1 |

= el[f(x)]-

If there exists an operator I-' which transforms the fnction f(a) back to
the function flx), then T! is called the inverse of the integral transform
operator I. So we can write,

[ =1 1(x)] (1.2)
The following are some examples of integral. transforms :
(a) When K(w, x) = e®%, x; = —es, x5 = o, where w1 i real, the mn:esp-unding
integral transform is called Fourier transform,
(b) When K(c, x) = sin % (or cos —%} % = 0, x;, = a (> 0) where o is

real and positive integer, the corresponding integral transform is ca]leﬂ Finite
Fourier sine (or consine) transform.

(¢c) When Ko, x) = e, xy = 0, %3 = oo, where o is complex, the corresponding
integral transform is called Laplace transform.
(d) When K(uo, x) = xJy (o, x), [T = —%) %1 = 0, x5 = oo, 0. beng real and positive
integer, the corresponding integral transform is called Hankel transform.
8




1.2 APPLICATION TO DIFFERENTIAL EQUATIONS

The application of integral transform is quite extensive. But we shall
reatrict our attention in solving ordinary and partial diffreential equations. By
the use of integral transform, ordinary and partial differential equations can
be reduced respectively to algebraic and ordinary differential equations, which
are pasier to solve than solving the original ones.

As an example, we consider the following Cauchy problem for ordinary
linear differential equation with constant coefficients which is to be solved by
the use of Laplace transform.

Let the equation is

agy " (0) + agy" (et a0 = @), (1,3)
satisfying the initial conditions. :
¥(0) = ¥, ¥'(0) = ¥q4-00nen y*=1(0) = e (1.4)
where Yo, ¥1, .. Ynoi are some given constants. The coefficients of the
equation @g, @y, ....., @, are constants, flt) is a given function of { and
U}t i ﬂ -
g ==

Specific examples have been taken to solve ordinary differential equations
with variable coefficients by the use of Laplace transform. Fourier, Laplace and
Hankel tranform have been applied in solving various initial-boundary value
problems related to partial differential equations of the type.

AV 22— % =i (1.5a)
v2u— 1 2% g 5b

{:2 atz . {1 }
2y = 0 (1.5¢)

in different geometries, which appear in numerous problems of practical
applications in theoretical physics and applied mathematics.



CHAPTER 2 0 FOURIER TRANSFORM

WITH APPLICATION TO
DIFFERENTIAL EQUA-
TIONS

Structure

2.0
2.1
2.2
2.3
2.4

2.5
2.6

2.7

2.8

2.9

2.10
2.11

2.12

Introduction

Definition And Elementary Properties of fourier Transform
Continuity And Differentiability of Fourier Transform
Fourier Transform of Derivatives

Evaluation of Fourier Transform of Some Commonly occuring
Functions

Inverse Fourier Transform

Convolution Theorem and Parseval’s Relation for Fourier
Transform

Some Examples on application of Fourier Inversion and Con-
volution theorems

Fourier sine and cosine Transform : definition, inversion for-
mulas and parseval’s relations

Some applications of inversion formulas and parseval relations
for fouvier sine and cosine transforms

Finite fourier transform
Multiple Fourier Transform

Solution of partial differential equations

2.0 INTRODUCTION

Joseph Fourier (1768-1830), a French mathematician, invented a
mathematical tool, called Fourier transform, in 1801, to explain the heat flow
around an anchor ring. Later, this transform has been to be a powerful effective
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method in diversified fields of science and engineering. Fourier transform
provides a means in golving problems arising in dynamic response to
electricity, heat or light, identifications of contributions to fluctuating signal
in astronomy, medicine etc, designing electrical crcuits, analyzing mechanical
vibrations and so on, Sometimes, it is also necessary to come across finite
intervals in boundary value problems for which it ig natural to extend Fourier
transform method for the finite range of independent variable.

In this unit, we proceed to discuss Fourier transform, infinite or finite, its
properties and its applications in golving differential equations,

2.1 DEFINITION AND ELEMENTARY PROPERTIES OF
FOURIER TRANSFORM

Definition : The Fourier transform of a function flx) of real variable x is
a function of real variable k, which we denote by F(k) or Fiflx)], is defined by

) gy e
Fk)=—— 2R e
(k) Jﬁiﬂx-}’“ (1.1)
provided the integral exists.
The integral in (2.1.) exists, if flx) is integrable in any finite interval and

the integral j f(x)dx is absolutely convergent. Since if flx) is integrable in any
finite interval then flx)ei** is also integrable in the same interval and if

I|f{x}[dx is convergent, the integral _|',J” (x)e'** is also convergent due to the

following inequality : _[ f(x)e™dx

—oa

< T lpeolle|ds = [IFola

In the subsequent development of the theory of Fourier transform, we shall '
often consider functions, which satisfy the following conditions, known as
Dirichlet’s conditions.

Divichlet’s conditions : A function flx) is said to satisfy Dirichlet’s
conditions in an interval (a, b) in which it is defined, if it satisfies any one of
the following conditions :

11



(i) flx) is bounded in (a, b) and the interval ean be broken up into a finite
number of intervals in each of which flx) is monotonic.

(ii) flx) has only a finite number of maxima and minima in (a, #) and a finite
number of finite discontinuities is (@, b).

Obviosuly if the function flx) satisfies Dirichlet’s conditions in —e < x < o

and the integral _[ [(x)dx is absclutely convergent, then the integral in (1)

exists and therefore the Fourier transform of flx) exsts.
Some elementary properties
(a) The Fourier transform of a function, if exists, is bounded.
Proof : Let F(k) be the Fourier transform of a function flx). Then

;
F(k)=— x)ehxdy
(k) @L fx)
Since F(k) exists, the integral [|f(x)|dx is convergent and hence
J|f{x}]c£x£ B, a positive constant.

L s i el e B [l =
Now, |P(h) s 7= i [Flelae = == _L Feojdr < == [e*]=1]

Hence the Fourier transform of fix) is bounded.

(b) Fourier transform is linear. That is, if Fy(k) and Fy(k) are the Fourier
transforms of the two functions fi(x) and fy(x) respectively, then the Fourier
transform of ayfi(x) + ogfalx) is oy Fy(k) + apFa(k), where o, and oy are two
complex constants.

Proof : If we suppose that both Fi(k) and Fy(k) exist, then both fi(x) and
folx) are integrable in any finite interval and the integrals.

[If(x)ldx and  [|f(x)]du

are convergent. This implies that the function oyfi(x) + oufilx) is also
integrable in any finite interval and
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j |t fi () + oo (2)|dx < oty J' |f10)ldx + oy “fg(xﬂix- a bounded quantity.

—

H ence Fourer transfomm  of oyfi(x) + ogfa(x) exists and is given by

Flogfy(a) + 0afy(0)] = 7= [loafi() + anfi(m)]etdx

I i 1 T ihe
[V Té;_'[u fi(x)e B e Oy E‘i&{x)p ket oo

gy () + ety By (R) (2)

() If F(k) is the Fourier transform of flx), then F(k)et* is the Fourier
transform of flx - a).

Proof. If we assume that F(k) exists, then flx) is integrable in any finite
interval and the integral j|f{x}]dx is convergent. This implies that flx — a) is

also integrable in any finite interval and since.

T |f(x - a)dx = T[f(y}[dy,y = x — g, the integral T|f(x — a)|dx is conver-

gent. Hence Fourier transform of flx — a) exists and is given by

Flf(x-a)] = -J% [ Fla—ayeidz

—

= [ M7y, y=x-a
T

—_—

= e'ok, ﬁ%ﬁ- [ F)ey

1l

el sk F( k). (3)
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(d) If F(k) is i'fhe Fourier transform of ﬂx},.then Fik + a) is the Fourier
transform of flx)e™, where a is real.

Proof. Assuming the existence of F(%), we can show as in (¢) above that
the Fourier transform of flx) e exists and is given by

F[f(x)elor] = ﬁ- [ Flx)eian. et iz

= 5= [ F@e® ¥ = Pl +a) ()
gince in the expression.

F(k) = x)eitdlx

i
=g [
for F\k) replacing K by & + a, we get

F(k+a) = Té_; [ Flxpeithrarigy

2,2 CONTINUITY AND DIFFERENTIABILITY OF FOURIER
TRANSFORM

Theorem-1 : If the Fourier transform F(k) of a function flx) exists, then
F(k) is a continuous function of k. :
Proof. Since Fourier transform of flx) exists, flx) is integrable in any finite

interval and the integral Iif (x)|dx is convergent, We further assume that fix)
ia bounded in any finite interval.
Since the integral _“f (x)|dx is convergent, corresponding to any arbitrary

positive € there exists a number X (> 0) such that

ﬁiir‘(xitﬁ < %ﬁ_j}!ﬂx}!m <£ (2.1)

14



Now, F(k+h)—F(k) = J_;_;t_ I Fla)eththddy - -J% jf'tx]e”‘*"dx

=¥
L 1 ? L ifix
= G(h+ k) —G(R)+ T _Lf{xje ke (il — 1) dx

+J' f{x}ﬁ,ikx (eﬂm: — 1}[:{.1: (2‘2}
.4

where ((k ihe (2.3)

X
S X
= Lﬂ:x}e

Since flx) is bounded and integrable in the finite interval (=X, X) and e
is a continuous function of x and £ in the intervals (X < x < X), (—ee < k < =),
G(k) is the continuous function of k. Therefore corresponding to the arbitrary
positive €, which we have already choosen, there exists a pogitive number &
such that

Gk + h)— G(k)| < &, whenever [h| <3 (2.4)

Therefore from (2.2) we get

-X
1 i ikl
|F(k+ h) - F(k) < |G(k+ k) - G()| + T _L]f{x}[!e el || + Delx

+

|

1 T L (el
— Jj;lf(x}i e (e + D

<\i

£

et

enfm
o[

+ZE ¢, by (1) and (4)] whenever [} <3

Hence F(k) is a continuous function of .

Theorem-2. If the Fourier transform of a function flx) and xf{x) exist, then
the derivative of F(k), the Fourier transform of flx), exists and is given by

F'(k) = Flixf (x)] (2.5)

15



Proof, Since Fourier transform of f(x) exists, flx) is integrable in any finite
interval, We further assume that flx) is bounded in any finite interval. Further

since Fourier transform of xf{x) exists, the integral j|:x:i |f(x)|dx is convergent,
which implies that corresponding to any arbitrary positive € there exists a
number X (> 0) such that

=X

1 e 0. F
=0 __Lifo{x}HI < ‘grEJJ;lx”ﬂx]idx < *g‘ (2.6)

We now show that

IF”‘”;:‘FW)— = [inf (x)eibedta] <e

wherever |h| <8, which depends on e.

We have
F(k+ﬁ'}_F{k]_ 1 m- i
2 &Eimf{x}e dx
_[eksm-cmry 1 "f AL e T 2£sin%
= 5 \E‘E_xm (x)e +J_2E'_'[u flx)e S == dx
W
5 ¥ 1{k+£}x 21,5111? 1 X :
+J‘ﬁlf{x}e 3 dx-E_‘LMf{x}P k"dx,
T [t e

X
GR) = —= [ flaeit
where @__‘[(f':xjﬂ dx

Since flx) is bounded and integrable in the finite interval (—X, X) and eik*
16




and its partial derivative with respect to & are continuous function of x and
k in the intervals —-X < x < X and —e= < k < =, the derivative of G(k) exists
and is equal to

X
% j.-le (x)e™**dx.
T Ty

Therefore, corresponding to the arbitrary positive €, which we have
already chosen, there exists a positive number & such that

GR+M =GB 1 [, piribegd < €
l h Jon _L‘*xﬂ":’e &E (2.8)
whenever |h] < 6.
From (2.7) we have
|Fle+m)=Fk) 1 T. .0\ e
| 7 &ﬂ_iwf{x}fs dx
X
et rm-6t_ T, o
|nectaill x
. hx
—x (pe By, | 2510
+L I |f[x][ Eb[k g} l'jﬁ
om L Al
. hx
1 :[k+%}x 2| g,
*Jm W 7

=X =
1 : 1 ' :

<

; X
G(h+ h}:— G _ i piapeit d{
=

17




| flﬂx:ltxldx+ j [Folleld

iy b
o J WA+ = [l o,

[Smce ’mn 5 ‘ Jh_”ij
<gtE+tETE+E=E by (26) and (2.8) whenever [|< 3,

Therefore, };1- n e };3 4 J_ Ju: f(x)e*dx,

which means that the derivative of F(k) exists and is given by
hy=—1. Tix F(x)eidy
Jom o

or, F'(k) = Flix f(x)}
This completes the proof of the theorem.

It is seen that the formula (2.5) for the derivative of Fourier transform ecan
be obtained from the expression (1.1) for F(k) by differentiating under the sign
of integration. This has been justified in the proof of theorem-2. The
justification of differentiating (1.1) under sign of integration can be made not
only for differentiation once but also for any number of times, and the result
is .

F (k) = [ (i)™ f(x)edx

or FUV(k) = Fl(ix)" f(x)] (2.9)

where by F"(k) we mean m times differentiation of F(k), m being any positive
integer.

(2.9) is a generalization of theorem-2 and remains vaild if Fourier transform

" of xflx) exist for n = 0, 1, 2, ...., m.

18




2.3 FOURIER TRANSFORM OF DERIVATIVES

The Fourier transform of the derivative of a function can be expressed in
terms of the Fourier transform of the function. This is stated in the following
theorem.

Theorem-3, If in any finite interval a function flx) is continuous and its

derivative is piecewise continuous, the integrals _[ fix)dx and _[f'{-r}c.’x G

—a

absolutely convergent, and fix) — 0 as |x| — e, then (2.10)

F[f'(x)] = ikF(k)
where F(k) is the Fourier transform of flx).
Proof : flx) being continuous in any finite interval, is integrable in any

finite interval. Further since the integral J]f{x}|¢ix exists, Fourier transform

of flx) exists. Similarly, it follows that Fourier transform of f'(x) exists.
X
i F T 1 by ihex
Obviously, F[f'(x)]= ‘21_11':1“ T __Lf (x)e™ dx (2,11)

where the limit exists, since the Fourier transform of f(x) exists.

Since f(x) is piecewise continuous, the finite interval (—X, X) can be broken
up into a finite number of sub-intervals in each of which f(x) is continuous.
Let there be n such subintervals and let (b,_;, b,) be the r-th sub-interval, where
by = — X and b, = X. Therefore we can write

j f(ehds =3, Teids
r=lp._y

i by
=Y [ ol _ik [ f)elaxt (integrating by parts)
)+ b

L i[em,. f(b, —0)-e™r-1f(b,_, +0)]- ;;;E _( f(x)e ™ dyx
r=1

L’r 1
19



X
= [e¥F00 - X FX0] - ik [ e (212)

Since flx) is continuous in b,_; <b,,f(b, -0)=f(b,) and f(b,_; +0)= f(b,_,).
Now, le®f(X)|=|f(X)|—> 0 as X — e
and !‘eumxf{_xﬂ =|f(-X)|—= 0 as X —3 — oo

Therefore, ¥ f(X),e~#Xf(X)— 0 as |X] - . (2.13)

Since Fourier transform of flx) exists; we have

x o=
im ﬁ Lf (x)eih* = ﬁ__{ f(x)e™* = F(k) (2.14)

Therefore by the use of (2.12) we can write (2.11) as
1 1 X
vl = 1 X £0XY — oK fr_ 3] - 1B T il

= —ik F(k), by (2.13) and (2.14).
Thiz complets the proof of the theorem.

A generalization of the above theorem giving a formula for the Fourier
transform of the higher derivative of a function is stated in the following
theorem without proof,

Theorem-4. If a function flx) and its derivatives up to order n — 1 are
continuous in any finite interval, its n-th derivative is piecewise continuous

in any finite interval, the inteprals J' [ (x)dx are absolutely convergent for
m=0,1,2 ... nand f"%x) - 0as |x| secform=0,1, ... n—1, then
F[f®)x)] = (-ik)" F (R), (2.15)

where by f*(x) we mean the n-th derivative of flx).
20




2.4 EVALUATION OF FOURIER TRANSFORM OF SOME
COMMONLY OCCURING FUNCTIONS

In thig section we take some examples on the evaluation of Fourier
transform of some important functions. The convergence of the integral

Tlf (x)|dx

is actually a sufficient condition for the existence of Fourier transform of
the function flx). In some of the following examples we shall see that the
Fourier transform of a function may exist even if the above condition is not
satisfied. For rigorous treatment of Fourier transform of such function, it is
necessary to introduce the concept of generalized functions, which is beyond
the scope of this book.

Ex, 2.4.1, Find the Fourier transform of ¢ 2 a > 0.

Soln. F{ —uiri] je “]"!g’hd_x_. J%Eig_m _fu&fl-i- J%}[EMEIMJI

1 [olatik)x 1 ,~(a-ik)x 1 :
= T [a+:k:l J_—[_ a—ik 1} JE[E+£.E i k]’ since a > 0.
5 \E a
"V k% 4a?

Ex. 2.4.2. Find the Fourier transform of e‘“ﬂ-“g,a = 0.

Soln. F e_“‘z“g] =T1= E—uzngikxdx = 1 _(E {ﬂ- P :k:c}dx

2n Jﬁﬂ
17 ‘(‘“‘i—if :21 | '%“ =T o ik
=E_’[.e 4 —r‘me _‘Le e, 10 = ax 5
W 1 % o
= afﬁ—e 432£e u du=a geq da? Ie‘”uﬂ dv, v =u®

21



42 _ A% .
= 1 e 4a? F{-]-'- == 1 e da” J‘;E-, since r(%} = ‘JE

a2 27 aon
2 L
o

Ex. 2.4.3. Find the Fourier transform of ;2371-2 = (.

1 T age
izl 5
Boln, &3 + x? o _-n[xﬂ +a?
To evalute this integral we apply the theory of residues of complex variable.

ikz
We integrate the function f(z) = zgﬂ+ = of complex variable z round the closed

dx

contour C; or C; according as k > 0 or < 0 in the complex z-plane, €, consists

of straight line segment AB Jjoining the points —R to R and a semi-circular arc
Cir: |z| =R, 0 < agrz < m; C; consists of straight line segment CD Joining the

points R {o —R and a semi-circular are
Cor:lz| =R, -n<argz <0, 1

(i) For & = 0, |

The only singularity of the function Can
Az) that lies inside C; for sufficiently
large R is at z = ia, which is a simple
pole, and the residue of fiz) at this pole

is %e‘“k. Therefore by Cauchy’s residue

A Contour )~ B real axis

R

j —thx i e FR(con+i5in 0)
ave i) o
theorem, we h i 28 4 gl : R2.%0 | 2

i Re'® df = e~k (2.16)

(since, on AB, =z = x and on Cyp, 2 = Relt)

N~ kRsin® “
R aRda
Now, Dl € |28 =) < ’
Iqj-ﬂf{ )elz| i[IRzezrn + azi _l!ichzm o az’

{sinmfor(}':[i{n, sin 8> 0

22




b
= j%ﬂ;-dﬂ = % — Das R — ==, and therefore ethsint <1
0

If(z}dz’ —0asR o
CR

Therefore from (2.16) proceeding fo the limit B — = we get

ihx

ae
4 x%+a

dx = e~ 0* (2.17)

(ii)) For k < 0

In this case the only singularity of the
function flz) that lies inside Cj is at z = —ia,
which is also a simple pole, and the residue of

_ Ik
flz) at this pole is - “‘;:{:B (k being negative we

C

i 'l
yeal axis

s

; &
can write & = —|k|). Therefore by Cauchy’s 3

residue theorem, we have Contour Cy

i 0 ikR{cosB+isin0)

.-_ix+j“" : i Ret® df = —qe=l®
o 28 2 i
2. Re™+ta (2.18)

i

ae
___L %% 4+

The integration on Cop for large R becomes

0 ijk|R(cosDsigin®) .
[ee iRei® d
=%

REG 2i0

[F(a)dz
Cak

] :
ﬂ.E,+|k|H5il1 8

< [,

-n

T k| Rsin !
= j-‘l"-L.L?—qidr.p, pulling 8 = —p < E;— _y gas R— o=, since e lHRSING < ],
0

asgingp>0for 0 <@ <

Therefore from (2.18) proceeding to the limit R — = we get

23



et —ali
7 dx = me ot
_I p (2.19)

consequently whether & > 0 or < 0, we have

T ae™

_m;w:2+|:r:2

and tharafics F[ ]= JEE—HI#E
%322 2

Ex. 2.4.4. Find the Fourier transform of %

= :I'[E_ulkl

0 o
: | [P | 1 i 1 1 ik I
F[—]——— —edy = | —pthegpe - [Laiksg,
Sol x O 1 % 1'21':_;[,1: -JE::J-T

= J'z_ {k}f-—dylklx y= J——sgn(k}

B . [sinx LR
= :,J; sgn(k), [smceél; S dx 2]

Ex. 2.4.5. Find the Fourier transform of __sgn(lx}
2

24




1-85:&{1:} .4 Sgn{x) pik
SD]H'F{ z } "@;“J“’ 2 y

|2

1 1
Van -, ||z 2n |2
o 1 ﬂJ- _Erh:r it 1 Dj eik:c de
= f 1 1

1 Teh—g v . 90 Tginkx
=gl = O
- k smﬂkhx _ 2 sgn{k} sin u

B O g L e

9 EETL(J'E] ginx _ [m
== Ikl_ J7, [Bmce_[ ‘/;]
- sgn(k}

|kt2

2.6 INVERSE FOURIER TRANSFORM

If F(k) is the Fourier transform of a function flx), then by inverse Fourier
transform of F(k) we mean a function G(x) of real variable x denoted by
F-1|F(k)] and defined by

2is



Gx) = FY[F (k)] =%j F(k)e =dk (2.19)

In this section we shall show that if flx) satisfies certain conditions then
G(x) = flx), at points of continuity of flx)
= % [flx + 0) + flx — 0)], at points of finite discontinuity of flx).

This is the content of theorem-6. To prove this theorem we require the
following theorem known as Riemann-Lebesgue’s theorem.

Theorem-5 (Riemann-Lebesgue’s theorem) : If flx) satisfies Dirichlet’s
conditions in —e= < x < o, the integral ILF (x)|dx exists and F(k) be the Fourier

transform of flx), then F(k) — 0 as |k| — =, f.e. iélim Fik)y=0 (2.20)
¥ —

Proof. Since the integral jif[x}ldx is convergent, corresponding to an

arbitrary positive € there exists a positive number X such that

= e
= Jlreojas < g,ﬁllﬂ:xﬁl di< g (2.21)

As [lx) satisfies Dirichlet’s condition in (—X, X), we can suppose that there are
finite number of points, a,, ag, ....... a, taken in order in this interval, at which
flx) has either a turning value or a finite discontinuity. If we replace —X by
a, and X by a,,;, then we can write. .

1 X . T+l
E_L f(x)eP*dx = i J f(x)e™dx (2.22)

r—[r

Now in each of the intervals (a,, a.) (r = 0, 1, 2, ....., p), fix) is a continuous
function and is either monotonic inereasing or monotonic deereasing, so that
by the second mean-value theorem of integral caleulus we have
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B4
j fx)e®dx = f(a, +ﬂ}_[e"“*dx+f{ar+l—ﬂ} [ et dx,
o E
where £ lies in the interval (a, o ,,,1).
Performing the integrations on the right hand side we get

Grsl

I f(x)e™dx = k_f{a +U)[ ihE _ ptka )+%f{aﬁ1—ﬂ}{eék“"“ —E”“é)

from which we find

Gps]

. ik 2k =
iklPPw ﬁjﬂx)e de=0,7r=0,1,2, .., p
Therefore equation (2.22) gives
X
thx e
IEFI[L L flx)e*dx = 0 (2.23)

This implies that corresponding to tbe arbitrary positive €, which we have
already chosen, there exists a number N dependent on € such that

ﬁ“—' If (x)e™ {E whenever |k| > N. (2.24)
Now, |F(b] = 7= | f(x}e“"-‘dx‘
pur g 1 T
et ' M N i ihx oL ik
= m__[ﬂf{x}e o+ Jﬁ_£f{x}e dx) + Jz_ﬂj[f{x‘,ie dx

{-i—+§+§=e by (2.21) and (2.24) whenever |k| > N (€) (2:25)

Equation (2.25) implies that
|J’1FH“ F(k)=0
This completes the proof of the theorem.
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Theorem-6 (Fourier inversion theorem) : If flx) satisfies Dirichlet’s

conditiong in — e < x < = and the integral I|f{x]]dx exists, then

7= | Pl = L -0y + e +0)] (2.26)

where F(k) is the Fourier transform of flx).
Proof. We consider the function,

(v, x) = ﬁ— | F(Rye-*dk,v > 0 (2.27)

Replacing F(k) by —L1_ [f)eids according to the definition of Fourier
T

transform, we can write (2.27) as

O(v,x) = 5= jdrc g j dif (e | (2.28)

To prove the theorem we shall have to show that

0w~ 5 [f(x=0)+ f(x+0)]
can be made arbitrarily small by making v sufficiently large,

Now we express (2.28) in a different form, Since the integral I | flx)ldx is

convergent, the integral ]:dt f(tyeikt is absolutely and uniformly convergent

with respect to k. Therefore we can change the order to mtegratmn in (2.28)
and write it as

o, ) =g [ dtf(t) [ kel

' =p
17 sin v(t x)
== j flt)————dt, (Performing the second integration).
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sin
b 4

Y dy, (g =t — %)

=
é‘—\ﬂ

fly+x)

—_—

_];.
i

fly+0)=Fdy+ [y +0) %2 dy
]

:

(replacing y by — » in the first integral)

sin vy
y

or, cp{u,x}=-1]:_[[f(x—:}'}+f(-‘¢+}’)} dy
d :

- L1 -9+ fla 4 3) - = 0= flae+ 0] =52 dy
0 : #

+%[f{x—{)]+ fix+ 0] (sinm]qﬂn”ydy = E]
0

¥ 2
Therefore,
o0, %)~ 2 [ = 0)+ Fla+ 0)] = 2 [ 8 =5 d, (2.29)
0
Whereg(}'3=f'[x-y}+f[x+y}—-f{x-—ﬂ]—f(:c+ﬂ}. (2.30)

Since flx) satisfied Dirichlet’s conditions in —e < x < &, the function gly)
considered as a function of y also satisfies the same Dirichlet’s conditions in
— o < y < o=, From (2.30) we find that g(+0) = 0 Let, a, be the first (starting
from y = 0) maximum or minimum or a point of discontinuity of gly) for y > 0.
Then since g(y) is eontinuous in (0, a;), corresponding to an arbitrary choszen
positive number €, there exists a number & (> 0) such that

|E(f¥}—£(+ﬂ}1{§, whenever h < &

or, |g(h)|< 5, whenever h <38 (2.31)
Let y; > 0 satisfies the condition y; < &, then according to (2.31)
lg)l<5 (2.32)
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Dividing the interval (0, ) into two intervals (0, ¥1) and (yq, =), the relation
(2.29) can be written as

(v, x) - %[f(x —0)+ f(x+0)]

| F o= .
_ 17 siney o 17 sinuy
= gg{:f} i g yflg(y} S 2.33)

Since g(y) i continuous and monotonic increasing or decreasing in (0, y,)

dsm vy .

an 18 bounded and integrable in (0, y;) for any positive v, by the second

mean-value theorem of integral calculus we have

sin vy

1 £ . i
1 =l s1n Uy I sin Uy
% B =5dy = 2le© =5 A e-0) ! = d0<E<y

"o,
= —g [JH}J =2 du, (since g(0 +) = 0 and g(3) is continuous at ¥ =y,

i | .
Therefore, = | E(f]ﬁ%w‘dv = Zlg(y,) “ sinu g,
L]
g .;
% % 7, (by (2.32) and by the inequality I*Sn;—xdx <7, when 0<p <q)
o
1? L =
&g ¥ 2 (2.34)

Now, we define a function h(x) as follows
hix) = 0, forx <y,

= 28(), forx 2y, (2.35)

Obviously this function satisfies Dirichlet’s conditions in —es < ¥ < ¢ and
30




j|h(x}1dx is convergent. If H(k) be the Fourier transform of h(x), then by

Riemann Lebesgue’s theorem
lim H(k)=10
k4o

: 1 71 iRy Anr —
or; B —m= i}'gme s

Taking imaginary part of this and then multiplying by E we get

--poa

tim £ [Lg(y) sin vydy = 0. (2.36)
- _'!'.'ly

where we have replaced k by v. (2.36) implies that corresponding to the
arbitrary positive €, which we have already chosen, there exists a positive
number, V, such that

1

= e
= IH(J’)—'?”‘T_d.}' ‘:gr forv =V (2.37)

¥

By the use of the inequalities (2.34) and (2.37) we get the following from (2.33)

00,0~ L[~ 0)+ fa + O]

i T sin vy d
. j[lg(:f} =y

1‘\‘rl sinpy
= P ggf.}']—'y—d}' +

{%+-§-=E, (whenever v > V.) (2.38)

From this it follows that

Jim (v, %) = 5[/ (5~ 0) + f(+ 0]

lim _J;T __["F(k}ﬁ"hdk : %if(x —0)4 fx+0)]

0Ty e
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or, J;_n; 1 F(k)e keh = %[f{x ~0)+ flx+0)] (2.39)

This completes the proof of the theorem.
At points of continuity of flx), the formula (2.26) becomes

_J;T: i F(kye ™ dk = f(x) (2.26a)

Corollary : If flx) satisfies the same conditions as in theorem-6, then

%{f{x 0)+ f(x+0)] = —%‘!dk If{t} cos[k(t — x)]dt (2.40)

—a

This is known as Fourier integral theorem.

Proof. From Fourier inversion theorem we have

(=00 + flx+0)] = jdkak} e

= EIE Id;w-ka J'dt f(t)e'™, (substituting for F(k))

il

| L
1 G 1 1
E-Ldk;[drf{.!]e ki r—x) +‘ﬁ£'d‘k Iif-'f{f]em“ x

= im T — ikt _Lm T ikt
zﬂgdﬁt i dt (e +2n‘£dk-_£dtf[t}e £-x)

(Replacing %2 by —& in the first integral)

= %Idkidt £(t) %[e"k(f—x} ) e"!’-’e(':—x;]

oo
= E!dkidtf{t)cmk(t-x}
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2.6 CONVOLUTION THEOREM AND PARSEVAL’S RELA-
TION FOR FOURIER TRANSFORM

Definition : The function,
h(z) = -ﬁ | Flx-ygty)dy = ﬁ [ F)e - y)dy (2.41)

is called the convolution or Faltung of the two functions flx) and g(x).

it can be shown that if both the functions flx) and g{x) are integrable in
any finite interval and the integrals Ii flx)ldx and J| g(x)|dx exist, then the

integral in (2.41) exists.

Theorem-7 (Convolution theorvem) : The Fourier transform of the
convolution of the two functions flx) and glx) is equal to F(&)G(k), where F(k)
and G(k) are Fourier transforms of flx) and g{x) respectively, i.e.

-En jmh 1 jf(:r Mg(y)dy = F(RIG(E) (2.42)

By, Fourier inversion theorem this can be written as

J‘_ j P(k}G(Fc}e ksl = J_ jf{x y)g(y)dy (2.42a)

Proof : Let H(E) be the Fourier transform of the convolution hix) of the
two functions flx) and glx), where

hix) = J—;_; jf (x— y)g(y)dy.

Therefore, H(k)= gl 1 hixe® = dx
e L (%)

(£

_ _21E J‘ it .I'f(x_ y)g(y)dx, (subsituting for A(x)).

—is
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(=5

5 Elﬁffx [ dy Fx - y)g(y)eitt==veity

—cn

We assume that we can change the order of integration in the above. Then we
have

H(k) *2% [ dy g(y)e™ [dx f(x - y)eiht==)

= 7%;_ [ dy g(z)e J;_E [ du fuyeit

(setting u = x — y in the second integral)
= G(k) F(k).

Theorem-8. If F(k) is the Fourier transform of flx), then

[P de = [|f(x) de  (2.43)

This relation is known as Parseval’s relation.

Proof : The convolution of the two functions flx) and g(x) is given by

M) = o= [ F@e(- 8yt | (244)

If F(k), G(k) and H(R) be respectively the Fourier transforms of flx), g(x)
and A{x), then according to the convolution theorem.

H(k) = F(k) G(k) (2.45)

By Fourier inversion theorem we have
£ .7 i
h(x) = ~== | H(k)e "*dk,
(%) ,—ELJ_
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where we assume that both flx) and g(x) are continuous functions of x and
consequently Ai(x) is also a continuous function of x.

Substituting in the above for Ai(x) given by (2.44) and for H(k) gives by (2.45)
we get

16 ¢ 1 7 5
= ~BdE =~ [F(& ikt g fo
Jﬁif{a}gfx E)dE == _L (k)G(R)e
Setting x = 0 we get

[ f&)a(-E)dE = | F(k)Gk)dk (2.46)

Now let g(-E)= ﬁa, where bar implies complex conjugate. Then

Gk = 7= | gede == [ gcure (=
= J_;_-; J‘?{u]e_'}“du = ?{k} (2.47)
Taking complex conjugate of F(k)= ﬁ j' flx)e™dx, we gel

o

i o 1 T ibx
F(k)-ELf{x}g ik
Therefore, from (2.46) we get

[ f&Ff©)dE= [ Fl)F(R)dk

or, | |f@)Pde= [|FR)I*dR

Theorem-9. If Fi(k) and Fy(k) are the Fourier transforms of the functions
filx) and fiylx) respectively, then
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| Ff(x)dx = [ Fy(k)F, (%) dk (2.48)

This is a generalization form of Parseval's relation, since Parseval's
relation (2.43) can be obtained from this by setting fi(x) = fi(x).

Proof : If F1(k) and G4(k) be the Fourier transforms of the two functions
filx) and gq(x) respectively, then following the proof of theorem-8 we goet

T [1(E)g(-5)dE = Tﬂ(klfﬂfk}cﬂz eqn. (3] of Th. 2 (2.49)

Now let g,(-x) = f,(x), then

Gy(k) = J—l_- J ((x)e*dx = —4,= J g1(—x)e gy, (replacing x by — x)
._f_l_'_m (x)e -tz = Ty (h)

Therefore from (2.49) we get j fE)(E)E = Tﬁ;(kﬂm}dk

2.7 SOME EXAMPLES ON APPLICATION OF FOURIER
INVERSION AND CONVOLUTION THEOREMS

In this section we take some examples to show how Fourier inversion
theorem and Parseval’s relation can be employed to evaluate certain definite
integrals and also to show how convolution theorem can be used to evaluate
Fourier inversion of certain functions,

Ex. 2.7.1. Find the Fourier transform of the function.

fl) =1, for |2| <1
0, for |x| = 1.

(.1
Hence evaluate j' sinx .
x
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Soln. F(k), the Fourier transform of flx), is

1
N el Sl T HJEsmﬁ
== oo gl et Ty

~ By Fourier inversion theorem, we get the following at points of continuity
of flx) :

f@)= = [ Pl d
__]__ zm gink. ik
o JEJ;_LT e rdk

The point * = 0 being a point of continuity of flx), setting x = 0 in the above
we get

o=

lsmkdk_%ismkdk %E__Eﬁ

::lln—l

Elﬂ k dk +

I

=

ﬁ]n—l

o —

_[ sink gy, (replacing k by —& in the first integral)
0

, (since fl0) = 1)

or, 1==

Therefore jﬁﬂ-dx =3
x 2

Ex. 2.7.2. Find the Fourier transform ol
flx) =1 — %%, for |x] =1
o) for |x| =1

e

Hence evaluate :
23

Qoln. The Fourier transform F(&) of flx) is given by

1
el i
F{k] =t E;[l(l_ xE}E k“"dx
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1 2 ik 1 E:k:c
= —=—(1-22)8 | 4+_L [g,28% ;.
2nf ) : ,@_jl YTk
ik |1 1 ks
T-RE Y gy?

= — E.-&{kcusk — sin i)

By Fourier inversion theorem we have the following at points of continuity of

flx).

—_I_w —ikx
i) e _L F(k)e~itxdy

= —T;_—Ej k%(k{:ﬂs k - sin k)e-iks
?'5 £

Since x :-% is a p-:]i_nt of continuity of flx), we have
= _ik
( ):—% I ia(kcnsk—sinfa}e 2dk
or, 1——= —% I iﬂ écuﬁk—sink}(cus%—jsin%)dﬁz "
Taking real part of this we get
el kg 3n
;_[kB (kcosk - smk}coszdk g
J'i-{xmsx—sin.*.:)c:wurﬁid,';vr:=—E
or, ﬂxa 2 16"
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(the integrand being an even function)
Ex. 2.7.8. Use Parseval’s relation to show that

Ok

j' dx gl W
J (2 +a®)(x? +b?) ablatd)

Soln : We consider two functions

£i(x) = e and fy(x) = e (a,b > 0)

If Fourier transform of these two functions be Fy(k) and Fy(k), then

Since, k, b, x are all real Fl(x} = fl(x),g{x): fo(x). Therefore from the
generalized form of Parseval’s relation (2.48), we get

A B _m L 2 b
[ 7ol ety = I\Ekhaz'\gkhbzdk

J‘ dk =
¥ 2 (R% +a®)(R + b*) Erﬂl

g.l' g latbill gy

(the integrand being an even function)

n 1

T ab’a+b

o

j dx = s
% O (2 +a?)(x* + b?) ablat b)

Ex. 2.7.4. Use Parseval's relation to show that

ginaxsinbx , _ 1a
j—_—x” dx =7~ where 0 <a <b

We consider two functions fi(x) and falx) defined by

)= llxtﬁa}f{xflallx‘]{b
S osaf  =0fd>b (2.50)
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If Fy(k) and Fy(k) be the Fourier transforms of these two functions, then

T fha 1 1 Fha —i
J'E:I: dic = Eﬂ_m(gm _e_;ku)

k) =

ot

- Jisin,fm

- ¥k

stiukb
(| S

in the generalized form of Parsevals relation (2.48), setting for fi(x) and falx)
given by (2.50), we get

and similarly Fyu(k)

[h@hG)ds = [FkFa(kyar,

Since {—-ﬁ, @) is the interval within which fitx) and filx) are different From 0,

T _ 2 1 sinkasin kb
o, [dx=Z [SRAENE g

or, 2q = % _f wdﬂ:, (the integrand being an even function)
0

552

Therefore,

el
Jsi_naxsiubx g =20

%2 B
i)

Ex. 2.7.5. Use Fourier inversion theorem to show that

-]

J' sinjx S

S

We consider the function flx) defined by
flx) =1 - |x|, when |x| <1

* 0, when |x| > 1.

Then its Fourier transform F(k) is
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1
F(h) = —= [ (1] xl)eitde

Ton 2,
1 1 1 0 1
= pibtedy — L | [(=x)e®dx + | xe'**dx
i s | Jmeae] ]
e

1 2 BN _ET
=L 2 (1 cosh)=————s

o s

Therefore, by Fourier inversion theorem we get the following at places of
continuity of flx).

ook

1 7 4 Stk 7
x)= —— | ==—"¢ "dk
=T _j,ﬂJz_ﬂ &2 -
Setting x = 0 in this relation which is a point of continuity of flx) we get
S
g T SN

_ 17 sin’x o B o
““_‘[.; " dx, (sethngz_x}

£

i
or, [ S0 %gy_g
X

—

A ot
Ex. 2.7.6. Find the Fourier inversion of | £[2 f(k), where f(k) is the Fourier
transform of flx).

Soln. F‘ll:| ki% ?{k}] = F‘l[% | k|% {wikf{k}}}
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F*[‘T‘T Ly f(k}}] FF 1) F ()] (2.51)

where ?‘;Uz} e ig?_k.,};[k} = —ikf(k)
[z
Let 'ﬁ(k} and E{ k) be the Fourier transform of the two function filx) and

falx). By the help of the formula (2.10) we get
falx) = fix)

and by Fourier inversion theorem we get

P s
fier= 7= [

% du, (u =| x| k)

F u\'.-_ i J7 n-ot
= sg1 dk =
e[S [
_Jgsgn.x( bgn:-:

=\ _

e[z I

Therefore from (2.51) we get the following by convolution theorem.

F-1 [IkJ%Ftk}} 41_ j ST“{";l 9 peyae
- i 2
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2.8 FOURIER SINE AND COSINE TRANSFORM : DEFINI-
TION, INVERSION FORMULAS AND PARSEVAL'S RELA-
TIONS

If a function flx) is defined in the interval (0, =), then its Fourier sine and
cosine transforms denoted respectively by F,(k)} and FAk) are defined by the
integrals

' o :
F (k)= J;l f(x)sin kxdx (2.52)
and F,(k) = ET f(x) cos kxdx, (2.53)
0

provided the integrals exist.

Since, | [ f(x)sin fx dx|< [1F ()| sin x| dx < (17 de
1] t} 0

and || F®)cos kxdx | [[F(x)]|cos haldx < [1F (),
0 0 0
the integrals (2.52) and (2.53) exist, if flx) 18 integrable in any subinterval of

(0, =) and the integral If{x}dx is absolutely convergent.
0

In order to derive an inversion formula for Fourier sine transform from
which we can construct the original function flx) from its sine transform, we .
define a function g(x) in (—==, =) as follows :

glx) = flx), x 20
=—fl—x),x<0

If Fourier sine transform of flx) exists, then the Fourier transform G(k) of
glx) exists and is given by

o & )
Gk) = ﬁj glaelks = J%[_I f{"-l-'}ﬂi'ﬁ‘fdx +.£f{x]gihdx]
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5

i {—T f(x)e *xdy + T f {x]n?"’”‘dx}
2n| o 0

(replacing x by —x in the fivst integral)
—iFTﬂx}sinkxdx—iF (k)
=iyf= J s
So, il f(x) satisfies Dirichlet’s conditions in (0, =) and j|f{x}|d_1: is
0

convergent, then obviously the function g(x) satisfies the same conditions in

(—eo, =a) and the integral J| g(x)|dx is convergent.
Hence by Fourier inversion theorem we get the following for x > 0 :

Lig . 3 T thi
E[f{x+ﬂ}+f(x—ﬂ}]—EiG{k}e Wl

e ; 0 i
= F (k)e thegh — L F. (ke "l + | F(Rye-itedp
&E_‘L L (R)e g @L[ (ke +£ (ke cﬂf]

i TRk bl 4 [ B (ke vtk |
Vor M o(H)8 ! s
replacing k& by —k in the first integral

J;— [ 20F, (k)sin ke dk since from (2,52, F, (—k) = —F, (k)
L)

\/ﬂ F, (k) sin kxdk
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So, the inversion formula for Fourier sine transform becomes
L1+ 0)+ e 0)| = {2 Fsin b @5
0

At places of continuity of flx), the inversion formula becomes

f(x)= EI F (k) sin kxdk (2.54a)
0

In order to derive inversion formula for Fourier cosine transform we define
a [unction g(x) in (—=o, =) as follows :

glx) = flx), x =2 0
=f(=x),x20

Then proceeding in the same way as in deriving the formula (2.54) for
Fourier sine transform, we arrive at the following inversion formula for
Fourier. cosine transform.

[f(x+0)+ flx—0)] = ET F,(k)cos kxdk _ (2.55)
0

] 1Y

At places of continuily of flx) this formula becomes

f(x) = E j F, (k) cos kxdk : (2.56a)
i]

We now derive formulas equivalent to (2.42a) representing convolution
theorem for Fourier sine and cosine transforms.

Let flx) and g(x) be two functions both defined in the interval (0, ==) and
let their Fourier sine and cosine transforms be F.(k), G(k) and F‘:{k]_, G k)
respectively, Then we have

(i) [, ()G, (k) cos kxdk
1]

= [ diF, (k) cos kx %j g(t) cos ktdl
] 0
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2 [y
= MIE_!dtg(t]l!dan{k} cos kx cos kt,

(changing the order of integration assuming that it is possible.)

= —\é_? £ dt a(t) i dRF, (k)[cos k(x + 1) + cos k(x - )]dk

B3] =

Idt g{tj{EIdﬁFﬂ (%) cos k(x +t) + Jﬂ dkF, (k) cos k| x — i J

Therefore by the use of inversion formula (2.55a) for Fourier cosine
transform we get

JE.0G, () contadl = 3 [atg@f (e 4.0) + £ ] (2.56)
¢ 0
(i) [F.(R)G, (%)sin kxdk
o
i b8 .
= dﬁf‘:(k}smkx = | g(t)sin kidt
o]

24 1’% J dtg{t}j dkF (k) sin kx sin bt
i 0
changing the order of integration assuming that it is possible,

£

- J—i_; £ dig(t) i dk F, (k)[cos k(x ~ £)  cos k(x + ¢)]

=] [

tﬂg{t}[i —g-mdkﬂ(k}cosﬂx—ﬂ— 2 dkﬂ{k}cﬂsk{xi-t}:l
Jese) 3] d

This gives the following by the use of the inversion formula (2.55a)
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oy, |

F,(k)G,(k)sin kxdk = —%— [dt g@®)f (2 =th=flx+1)] (2.57)
u

Similarly we can deduce the following formulas.

i) | Fu(k)G, (k)sin kxdk = -%- | de fnlg(x—t) - alx + )] (2.58)
] 1]

iv) | FL(R)G, (k) cos kxdlh =
0

] [

[dt ft)a(x+t) -sen(x—Dglx -] (259
0

The formulag (2.56)—(2.59) are the equivalent forms of convolution theorems
for Tourier sine and cosine transforms.

The following relations are obtained from (2.56) and (2.59) by setting x = 0.

[ E()G, (R)dk = [ Foyedt (2.60)
] ]
[ (G, (R)dk = [ Ft)a()ds 2.61)
L] D

Replacing here g{f) by E{t}, which is the complex conjugate of g(t), we get
the following generalization of Parseval’s relations for Fourier sine and cosine

transform.
[ FGetlrdh = | fit)at)dt (2.62)
1] ]
[E,(0Gs(k)dk = | ft)e(e)dt (2.63)
H 0

Setting here glt) = flt), we get the relations,

[IF, (R dle = [|f )P dt (2.64)
< L]
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and [|F,(R dk = [|f(@)f dt.
1] 0

which are the Parseval’s relations for Fourier sine and cosine transforms.

2.9 SOME APPLICATIONS OF INVERSION FORMULAS AND
PARSEVAL RELATIONS FOR FOURIER SINE AND CO-
SINE TRANSFORMS

In this section we will show through some examples how certain definite
integrals can be evaluated and some integral equations involving Fourier
kernels can be solved by the use of the formulas derived in section2.8.

Ex.2.9.1. Use the inversion formula for Fourier sine and cosine transform
to evaluate the following integrals.

3 COE Ol ", m{:{,mnu,x |
(i) Jlad bzdm_ﬁe —bhx x =), {H}J- E bﬁd“‘_ﬁ_g E"",x}ﬂ,

£
... [Sinokcosox _m |
(iii) J—__cx =g if0 <x <a.

0, ifx=>a

Soln. (i) The Fourier cosine transform F.(k) of the function flx)=eb% x>0,

F.(k) = \FI bchEkxdx-J—E-[ (—bc;jixk;ksmkx}}
0

S =k
- Vm B2 4 2

Therefore by inversion formula we get

ot _ |2 [ 2 b cos kx
= ﬂh[ﬁc{k}cuﬁkxdk—‘[;.J jb2+k2dk

18

Hence, JmSkx dk = 25 e a0
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(ii) The Fourier sine transform F k) of the same function is

T R G i
Fﬁk}:FJg-ﬁx 5inkxdx=JE[e % (~bsinbx Ekcnskx}]
"o n b +k

0
o B
- Vnp? A2

Therefore by inversion formula we get

b 27 . :F\/Eksinkx
e .J;iFS(k}smkxd}a | “i Tk

ksin kx g
Honve !kglsz dk=%£ bx x>0,

(iii) The Fourier cosine transform F.(k) of the function.
flx)=1,0<x=a
0, r>a
iz the following :

F,(k)= E‘Il.cuskxdx = %%sinka
0

Therefore by inversion formula we get

_ g e
f{x}-J;iJ%E31nkacuskxdk,x}ﬂ

in ka cos kx
{4 f‘m—fﬁ—dk:%,ﬂ{ x<a

=0 e e 4 |

Ex. 2.9.2. Use Parseval relation for Fourier cosine transform to evaluate
the following integrals :

di = n
(a® + t2)(b% + %) 2abla+ b’

(1)

1 ey

o rEinAtsinpt .. m_.
(i1) i_tT_dt = Emln(l, L),
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( }Jsm{lt}dt _(1 Elﬂ}

a 2 tz a*
Sonl, (i) We consider the two function,
flx)=e™,x>0andglx)=e ™ x>0

Let their Fourier cosine transforms be respectively F (k) and G.(%). Then
from Ex. 29.1 we get .

F(k)= ( e {}~J—bzf’k2

Therefore from the generalization of Parseval’s relation for Fourier consine
transform,

| F ()G ()t = [rweeat,
o . 0

2
n

=

we gut I'.fk = IE'“ﬁ"bxdx = 1
0

ab
I:r:r;z i kﬂ][bz ¥ ff2] atb

) T di 1A
or; o (a® +£2)(b6% + ti] Z2ab(a+b)

(11) Let F (k) and G.(k) be the Fourier cosine transform of the two functions
flz) and g(x) respectively defined by

fix) =1, 0<x<pn glx)=1,0<x <)

= []1, = 1) <5 L‘I, iy ¥
Then from Ex, 2.9.1. we get
F (k)= sm ku, G (k)= JE-—mnkl

Substituting thes-:e in the above written generalization of Parseval's
relation for cosine transform we get

"y 71 oA, ) _
!EESIH{M}J;“EBIH(lk}dkz Jldx = min(A, )
Hence IL}L::mEﬂ = gmin{l.u}
0
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(iii) Let F,(%) and G.(k) be the Fourier cosine transform of the two functions
flx) and g(x) respectively defined by,

flxd =1, 0 <x <A gx) =e®, x>0, (>0
=0,x2A

Then from Ex. 2.2.1 we get

Fik) = E L sin (M) and G(k) = E s

Substituting these in the same Generalization of Parserval’s relation for
vogine transform we get,

= A
o Ji_a;-_ A —d =l B, |
£ TSmO = dk gLa dx = —-(1-a"**)

Hence [sin(d) _ (1 —E'h} -

2a? +t2 2°\ a? |
Ex. 2.9.3. Solve the integral equation,

Jf(x}cusmdx=1-tx, D<a<1
D

= ikt ol

gin®t 4. =&
=5

Hence show that _[
0

Soln. Let F.(k) be the Fourier cosine transform of flx). Then

F.(k) = Ejf{x}makxdx -~ E{l -k, 0<ks1
i}

=0, k=l
according to the given integral equation.

By the inversion formula we get,
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fx) = ET F. (k) cos kxdk
L]

1
= Fjﬁfl—k}cuskxdk &= —2—2(1'—(205.1:}
UFA L e

Substituting this,_'cxpression for fix) in the given integral equation we get,

Ifmz—uil-cnﬁx}cusmxdx=l—a,GEEtEl
0

={ o= 1
From this proceeding to the limit o — 0 we get

m

2 l_cﬂsxdrzl

Ty %
e
4 r8in T
4 di =1
l:h"l',.j,r .'X.'2

T
or, [ 22 tdtz%—.s&i.ting%:t
]

2.10. FINITE FOURIER TRANSFORM

From the theory of Fourier sine and cosine series we know that i flx)
defined in the interval (0, a) satisfies Dirichlet’s conditions in the interval

(0, ), then

%?Emn%;ﬁm}m%:% [ftx — 0) + flx + 0)], when 0 < » < a
= fl0+), when x = 0
= fla — 0), when x = a (2.65)

e % E{n}sin—-ﬁm :% [flx—0)+flxe +0)] whenO <x <a
0, when x =0, a. (2.66)



where f.(n) - | f(x) nns%dx (2.67)
n

fo(n) = [ (o) sin ™% da (2.68)
0

The left hand sides of (2.65) and (2.66) are respectively the Fourier cosine
and sine series for the function flx) defined in the interval (0, ).

The functions F,(n)and f,(n) defined by (2.67) and (2.68) are called

respectively the Finite Fourier cosine and finite Fourier sine transform
of flx). These are functions of positive integral values of n including zero.
Obviously (2.65) and (2.66) are the inversion formulas for finite Fourier cosine
and finite Fourier sine transform respectively, If flx} is continuous at x in the
interval 0 < x < a, then the inversion formulas (2.65) and (2.66) become as
follows.

=

f) = ¢ FO + 2 R 0w cos 22X  (269)
fla) =2 >, fy(msin Lo (2.70)

2.11, MULTIPLE FOURIER TRANSFORM

In this section we consider the Fourier transform of a function of several
variables, The theory of Fourier transform of a function of single variable
developed in Sec. 2.1 can be extended to functions of several variables. If
flx, ¥) be a function of two independent variable x and y, defined in (— e <x
< o, —o < y < =a), then flx, ¥) conzidered as a function of x has the Fourier

transform f(k,y) given by

i) == [ [, p)ed (2.71)

where y appears as a parameter. Again this function [(k,y) considered as
a function of ¥ has the Fourier transform F(k, [) given by
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el = -

2 [k, y)etvdy (2.72)

5
g i

Substituting here the expression for [(k,y) given by (2,71), we get the
following expression for F(k, [) :

F{.IIE, = 1 J' f{x, y_}ei{ﬁxﬂy}dx d_}'

(/) =

This function F(k, {) defined by (2.73) is called the two dimensional
Fourier transform of the function flx, y) of two variables X, ¥

!

(2.74)

We now proceed to find the inversion formula for two dimensional Fourjer

transform. We suppose that flx, y) is a continuous function of x, ¥. Then taking
inversion of (2.71) we get.

Fl0,9) = o [ Tk, e e (2.74)

and taking inversion of (2.72) we get

e 1 v L S
flk,y) = —Eiﬁ‘(fe,ﬂe kyd (2.75)
Substituting for f(k,y) from (2.75) in (2.74) we got

L [ [P De-kindhdl

flx,y) = ( mz ) ' (2.76)

This is the inversion formula for two dimensional Fourier tranaform, where
it is supposed that flx, y) is a continuous function of (x, ¥

To derive the convolution theorem for twe dimensional Fourier {ransform
we consider two functions flx, ¥) and g{x, y) of two variables %, ¥, where we
suppose that both the functions are continuous functions of x, ¥. Let their two-
dimensional Fourier transform be F(k, I) and Gk, 1). Then according to (2.76).

Fourier inversion of F(k, [) Gk, 1)

: (Jziﬂ ]2 ;L,Fm:-”m#‘ De ikt k]
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= %-11{}{32, D=tk dfd] 21;;)2 11{(5&‘ eithis dudy,

substituting for F(k, I) according to (2.73)

R

=5 | [ w0 dudy (Ji' [ [ Gtk Deritkis-wiir-odel
gr] e

2

— g

—k

—21; ..Lf (w,v) glx —u,y = V) dudp, by (4.6) (2.77)

L

So il we define convolution of the two function flx, ¥) and glx, y) of two
variables x and y by the function,

{Jz_laz 1if(x —u,y - v) glu,v) dudv

hix,y) =

( 21 - J’ Tf{u,u} glx—u,y- v) dudu | (2.78)
ﬂ —g it

then (2.77) can be expressed as

Fourier inversion of Fik, [) G(k, [) = convolution of the twe function flz, 3)
and glx, y). : (2.79)

This is the same as saying that

Fourier transform of the convolution of the two functions fix, ¥) and glx,
y) = F(h, k), Glh, k). _ (2.80)

(2.79) and (2.80) state the convolution theorem for functions of two
variables.

The above definition and formulas for Fourier transform for a function of
two variables can obviously be extended for functions of several variables. Let
1, Agy wees %) be a function of n independent variables xy, %4, ..., X4. Then n-
dimensional Fourier transform of the functions flxy, %z, ..., %n) 18 defined by the
function

i



Flkyhys.irk) = (*’Eiﬂ)n J'__[...Jf(x],xz,...,.x"}ez"'”*rﬂdx,:fxu...aixn (2.81)

where kx = k2 + koxg + ... + Box,

If flxy, x4, ..., x,) be a continuous function of x;, X2y ooy Xy A0 (—o0 < 3y € 0
< Xg < 9 ..., =29 < X, < o) then the inversion formula (2.76) for twe dimensional
Fourier transform can easily be extended for n-dimensional Fourier transform
by

1
(Vor)

The convolution theorems stated by (2.79) and (2.80) for two-dimensional
Fourier transform can also be extended for n-dimensional Fourier transform
as follows :

Flxgi%g,0i5%, ) = jj...jkal,fzg,...,;.:n;m-fw-:uk,dkz...dﬁeu (2.82)

Let flxy, xg, ..., x,) and glxy, %, ..., x,) be two function of n independent
variables x;, xg, ..., 4, and let their n-dimensional Fourier transform be F(k;,

kg, .y k) and Glky, ks, ..., &) respectively. Then an extension of (2.79) to n
dimensions is the following.

Fourier inversion of F(ky, ks, ..., k,) Gk, kg, ..., k,) = convolution of the two
function flx;, xy, ..., x,) and glx,, Ry (2.83)

where the convolution of the two funection f and g is defined by the function,

18 T
hxy, xg, ..., %) = - AN e e ~Ugyn X, — it )
Yt (V2r) J_ _!.
Xgluy iy, .o, )dudu,.. du, = . _[ T |
n . n (&;}1_:!;_% _,L n
%g(xy — uy, X3 — uy, ... , X, — u,) ditydig ... du, - (2.84)

An obvious extension of (2.80) to n dimensions is the following.

Fourier iransform of the convolution of the two functions I T
and glxy, wy, ..., %,) = Flky, ko, ..., k) Gy, by, ..y k) (2.85)
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2.11, SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS

Tn this section we shall show how some partial differential equations,
which appear in some classical problems of theoretical physics, can be solved
by the application of Fourier transform. Taking a suitable Fourier transform,
the partial differential equation of each problem can be reduced either to an
ordinary differential equation or to an algebraic equation, which are obviously
easier to solve than solving the original ones. For partial differential equations
of infinite space dimension, exponential Fourier transforms are suitable ones.
Wile for semi-infinite and finite space dimensions, Fourier sine-cosine
transforms and finite Fourier transforms respectively are suitable.

1. Heat Conduction in Solids.

The conduction of heat in a solid is governed by following equation, which
is known as the heat equation or diffusion equation.

%i = AV g (2.86)

Here u(x, v, z, t) denotes the temperature of the solid at the point

(x, ¥, z) and at time ¢, qlx, y, 2, £) 18 proportional to the source of heat, A is a
2

constant called the diffusivity and V2 = %+ -i—'z+ %25 is the Laplacian

operator, In steady state and in absence of heat source, the equation reduces
to the Laplace's equation.

Vi =0 (2.87)

We now take some examples on problems of solution of heat equation with
given initial-boundary conditions.

Ex. 2.11.1. Solve the following heat conduction problem in an infinite rod :

2
® GGt

o < x < o9,

(i) wlx, 0) = flx), —= < x < e

(iii) mlx, 1), u.lx, t) —= 0 as |x| e
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Soln. We denote the Fourier transform of w(x, £) with respect to x by (&, ¢).
Then since

[oF]

- [ a2 L i
du
R

F[¥}= (~ik)*%, [by (2.15) by the use of (1ii),

we gel the following by taking Fourier transform of both sides of the given
equation (i)

di o .

L A% (2.88)
Taking Fourier transform of the initial condition (ii) we get,

@k, 0) = f(k). (2.89)

where f£(k) is the Fourier transform of fix).
' The solution of equation (2.88) is

Tk, 0) = Ao 4% o (2.90)
where A is a constant, i.e., independent of ¢, Setting { = 0 here we get

A = i@(k,0)= F(k), by (2.89)
Therefore w(k,f) given by (2.90) becomes _

Z(k,t) = fk)e-H | (2.91)
Taking Fourier inversion of this we shall get thé desired function ulx, ),
Let Flg(x)] = e®* = (k)
Then by Fourier inversion formula we get,

-

g(x) = IEI: Jentan - o, (2.92)

where integration is performed following the Ex. 2.4.2.
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Therefore by convolution theorem we get the following from (2.91)
ulx,t) = Ff(R)E(R) '

— convolution of the two functions flx) and glx)

1t T il -
e E:L flong(x—addo = E_'[.ﬂa}e t do (2.93)
Ex. 2.11.2. -Snlvﬂ the following heat conduction problem in an infinile rod.
(1) %'= %+Q(I,ﬂ. — o < X < 09,

(ii) ulx, 0) = 0, —e= < x < o9,
(iii) ulx, 1), wdx, t) = 0 ag |x| — =
Soln. Taking Fourier transform of the given equation (i) we get the
following equation by the use of (iii).

dw _ _ g i
i AR + @ (2.94)

where @(k,t) and g(k,¢) are the Fourier transform with respect to x of
wix, t) and glx, t) respectively, Taking Fourier transform of the initial condition

(ii), we get
u(k0=0 (2.95)

Writing the equation (2.94) as
i B = Ay
= [ize®™ ] = gk, t)e
and then replacing ¢t by T we get
_d_ T M2 i AkZq
p [k, D™ = gk, Tle

Integrating both sides of this equation with respect of T between the limits
0 to t and using the condition (2.95), the following equation ig obtained.

]
w(k,t) = [k, PIe-#*dt
o

Fourier -inversion of this gives

X - e .
{x,t) = ik, et dk
s V2 ;[

39



e ¢
= = [ dhe-it< | Gk, - M2t-v,
N - 0

[

([ S—

= ﬁ af*c_[ﬂfe, De M=) g-ikzgp (changing the order of

integration)

f >
1 I Fogin aa
= dt | gk, ) f (ke HFdy, K
'_21:‘.!- T_[)q flkle (2.96)

where [(k) = e-M*-1) = FI£(x)], say

Therefore, f(x)= F-l[e Mt-1)

=gl ]' —.i.kzu-r:l—:'n:cdk
= 8
2T

x2
el 44 ff—T}

————, following Ex. 242,
Zit-0) o

Now, J—é_; @k, ) F (ke i+ = PGk, 2)F (R)]

= convolulion of the two functions g(x, ©) and flx)

(a—dyd
g Fait-1)

JZA{ =

Therefore from (2.96) we finally get

J—J‘r.*(f ) ——

(x—£)2
e -

u{xt}—jdtr_[qﬁ, q"il_{—-— dg

{x —§12

I a4
= J-'——EE% _['?Ui, T)e DL
(1] =5 —=
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Ex. 2.11.3. Solve the following heat conduction problem in an infinite rod.

2

+glx,t)y~=<x <o
(i1} wix, 0) = fix), — = < & < oo
(iii) wlx, t), wix, t) — 0 as |x|— =
Soln. Taking Fourier transform of the given equation (i) with respect to
% and using the conditions (iii), we get

du | pom _ =
45 + Ak% =7 (2.97)

where @(k,t)and g(k,t) are Fourier transforms with respect of x of ulx, £)
and glx, £) respectively:

Taking Fourier transform of the initial condition (ii), we get
@(k,0) = f(k) (2.98)

where f(k) is the Fourier transform of flx).

The equation (2.97) can be written as
2 [k, 1)e?] = Gk, T)e i
d.r ? L] ]

where we have replaced t by 7. Integrating this equation with respect to
1 between the limits 0 to t and using the initial condition (2.98) we get,

i
Tk, t) = flk)e ¥ 4 _[ﬁ”ﬁj e~ MAt-1)r
ﬂ ¥

i
= FWER,1) = [qk, ) kst - D dr
]

x
e ik

where Z(k,t) = Flg(x, 1), g(x,t) being the function glx, ) = , according

y

to Ex. 2.4.2.
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t(x, t) can now be obtained by taking the Fourier inversion of w(k,t) as
follows :

&a . i [4 B
u(e,t) =~ [ FOOE (R Deiedlh + ﬁ | dke=ibs [k, 5k, t - D
1) T e i] s

! o
- £ 3 3 2
= Ffkigk,Ol+ | dr (k, )5 (k1 — T)e oy
LFR)E R, D) J:: o _Lq Z
(changing the order of integrating in the second termsg)

= FUFRER, ) + [ deF-[qlk, g (k, t — 7))
0

[x—cr )2

= ﬁ J'dlaf{fxlﬁ H 4.&! + Id "J‘l= Iq({x T}—-We_mdw

(by convolution theorem)

Lx x—al® -

J_ Idutf{u:j!e it +I o l{t qu Te A Ty
.“‘ 14 -

Ex. 2.11.4. Find the temperature « at time ¢ and at a distance from one
end of a semi-infinite rod satisfying the equation,

(i) —*Ei;‘,ﬂ«:x{m,

and the following initial-boundary conditions :
(ii) wlx, 0) = flx), 0 < % < =
(i) w (0, ¢) =0
(iv) w, ., > 0asx =0

Sonl. Fourier sin-e transform is appropriate for this example, If F. [f]
denotes the Fourier sine transform of flx), then

F;(%)z F?;: Elnfexdx = J—jui'.tl:x t]slnkxdx
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di,
=@

where i@, (&, t) is the Fourier sine tranform of u (&, ¢) and

9%u | _ F To%u '
Biot | [ Thante

Ek[cus ki u(x, ) — Efaﬂ i sin kvudx

1]

—k2@, (k, 1), by the use of the conditions (iii) and (iv).

Therefore taking Fourier sine transform of the given equation (i), we get
du,
dt

Also taking Fourier sine transform of initial condition (ii) we get

= —AR*TT, (2.99)
@, (k0) = F.(h), (2.100)
where ﬂ{kj is the Fourier sine transform of flx).
Solution of equation (2.99) is
T, (k1) = Ae~M |
where A'is a constant, i.e, independent of £. Setting ¢ = 0 in (3) we find that
A =, (k0) = f.(k), by (2.100)
Therefore the solution for i (k,t) is given by
i, (h,0) = [, (R)e ™™,

Talking Fourier sine inversion of this we get
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u(x,t) = J%—j ﬁ{x}e'”ﬂt sin kxt;ﬂa
0

’E DY ngl 2
ug n!d.ke sin kx njo'f(cx}am}acxda,

(substituting for f (k) according to (2.52))

» %idafm} Jﬂ' dke M* gin bo,gin bx (changing the order of integration.)

% [ daf () [ dke?*[cos k(o ~ x) - cos k(o + x)]
0 ]

2_]5& | dofe) | dke =M% [cos k(o - x) — cos R (at + ), (2.101)
0 0

(being an even function of £.)

Now from Ex. 2.4.2. we get

1 = 70 1 (a--x}z
s J’ g MR= gik(o-x) g — = o AM
v TE — v

Replacing a2, x and & by Af, & and o — x respectively and taking real part
we get

15 j 4 ot
—-2— I ? cos k(o — x)dk = T g 4 (2.101a)
Replacing here o = by o + x we get
1 = T _ 1 {J]'.+::}2
Ty e cos k(o + x)dk = OIS e 4M (2.101b)
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Using these relations (2,101a) and (2.101b) we get the following from (2.101)

= (x—a)® (ot )2
Idaf(&) a AM —p AM

wix,t) =

i
Jamt

Ex. 2.11.5. Find the temperature u at time ¢ and at a distance x from one
end of a semi-infinte rod satisfying the equation,

(i) ‘5—‘; lg 2, DS x <o
and the following initial-boundary conditions :
(i) = (0, 1) = fit)
) wix, 0)=0,0<x <=
(iv) u, v, = 0 ag x — oo,

Soln. Fourier sine tranaform is appropriate for this example. Using the
same notation and following the same procedure as in the previous example
we get

ﬂt ifﬂ

and F [ j| [ku(ﬂ t)— k% (k,t)

= Ekf (t)— k2ii(k,t), by the use of (ii) and (iv)

Therefore, if we tale Fourier sine transform of the given equation (i) and
the initial condition (iii) we shall get respectively the following two equations.

__+,u;f-a -(Mf

L, (k0)=0

The equation (i) can be written as
Ee“’ L .Ji i
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where we have replaced ¢ by . Integrating both sides of this equation with
respect to T between the limits 0 to ¢ we get the following by the use of the
initial condition

t
w (k,t) = EH&I f(T)e M2 {t-t) gy
0
Fourier sine inversion of this gives
u(x,t)= 22 J dk ksin kx‘[ f 'rjle‘:""‘zf"f}dt,
d 4] ]
which becomes the following after changing the order of integration

L i
w(x, £) = %}jd—c £(0) [ dle et gin o
0 0

; 7
= %Idr f{'r},[dkke"““zf“ﬂain kex, (2.102)
u —

(since the integrand of the last integral in an even function of k.)

Now from Ex.2.4.2. we get

m o2

L .[ e M) gikegp 1 e T

V2m 1 J2uE - 1)

by replacing a® by Mt — 1), x by & and % by x. Taking real part of this relation
we get

& 2
~Ak2(t-1) Sy n___ AT
e brdlk = |—%
I cos kx =) e

—

which gives the following by differentiating with respect to x under sign of
integration.

Z
X
Ikevmnym,z,ﬁk_ Viix o T

2[A(t - '1:]]2
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By the use of this relation, {211{}2} can be expressed as

F
[ Taa,
E T
vk i (t —T}s

u(x,t) =

Ex. 2.11.6. Find temperature u at time £ and at a distance x from one end
of a semi-infinite rod satisfying the equation.

Hu lE}u

h:j,(}ixr-:m

& 5

and the following initial-boundary conditions :
(i) w, (0, ) = - fiL),
(iii) u (x, 0) = 0,
(iv) u, u, — 0 as |x| = =

Soln. Fourier cosine transform is appropriate here. If F,lg] denotes the
Fourier cosine transform of a function gl(x), then

die
F[ ] J;Ddtmkm_ ju,(x t)cos kxdx

di,
= — ——=(k,tywherei, (k, t) is the Fourier cosine transform of

r|24]- ﬂgj; cos ke
J‘[mskx r J_kjauslnkxix
= —Eux{n, t) + E[ku sin kx]y - EHI u cos kxdx
= Eﬂt}— k"‘ﬁr_.
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Therefore taking Fourier cosine transform of the given equation (i) and the
initial conditions (ii), we get
dz,

o [
T +;Ua2uc—l‘/; f(t)

Z,(k,0) = 0

The above equation can be written as

d (=~ 2 4
{-E{ucﬂlsz) = l&f (T)ere™
where we have replaced ¢ by T,

Integrating this equation with respect to T between the limits 0 to ¢ we get

i
7, (k, )™ — T (k,0) = [ Af2f(n)eMPrd
22

¢
1y L
or, W (kt)= *""-EI flr)e M-Tigq, by (2)
0

Taking Fourier cosine inversion of this the following expression wulx, #) is
obtained :

o s
ulx, t) = %jdﬁ’.cuﬁ kx_[ f(T}E—M"f{t—t}dT
0 0
A e
- E_J'd;fmj‘g-:w (=9 oos Bedlh
T 0 5

2
= ’i]:d’ﬁ' fit) P FAM(ET)
Th (t-7)

[ Bince taking real part of the relation,

2

It ~A(t- k2 Lixk g5, _ 1 -Hfz—t}
— | g el = ————¢
Van _’,[, J2A(t - 1)
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obtaind from Ex. 2.4.2. by replacing a? k, x by Alt — 1), x, k respeclively,
we get

x

2
~A(t-T)kE = ! TTA-T)
i ] Cos kﬂlk W jl

Ex. 2.11.7. Solve the following heat conduction problem in a semi-infinite

medium

i) 9 mg U g<x<on
(i1) w0, ) = u,, for |¢] =T
=1, dor, || = T
(iii) # = 0 as x — oo
(iv) u - 0ast — £
Here we shall take Fourier transform with respect to f. Since.

au

- 1

OU ikt
a7 di

ettty x, t}I;_m = I iku(x, e di

—ikii(x, k), by condition (iv)

E}ﬁu} 1 7% A% 1 % ;
d - o ¥ el i ik
an F[sz AT dt = poe jm:x, Yeik di
d2ii(x, k)
R ek

s0, taking Fourier transform of the given equation with respect to ¢, we gel

d2u _ ik
e (2.108)
Also the Fourier transform of the boundary eonditin (ii) with respecl to

L gives
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2“{; sin kT
J—— J ugett = LSRR (2.103a)

Taking fourier fransform of the boundary condition (iii) with respect to t
wo get

7(0,k) =

i(x, k)= Dagx — o (2.103b)

s :
2
(a) For & > 0, we have -.||| 1|| [ ] 1!%{1—6}, since f = |&|

Therefore solution of equation {2.1{)3} in this case becomes

iz, k) = A J_U &) J_(l *II

where A and B are two constant,

Due to the condition (2.1038b) we must have B = 0. Hence, the solution of
equation (2.103) becomes

% ;
(%, k) = Ae""\@ S fork >0 (2.103¢)

; 1
AT
(b) For & < 0, we have —% = !—El[e‘ﬁ] = %’-%IHH}. since k = — |k]|.

Therefore the solution of equation (2.103) in this case becomes

E{x,k} o A,E—IJA(IHJ \‘ (1+i;|,

where A’ and B’ are two constants. Due to condition (2.103b) we must have
B’ = 0. Hence the solution of equation (2.103) becomes

i .
(x, k) = Afgx‘\lg“*” for k < 0 (2.103d)
The equation (2.103a) can be written as

=t 2. sinll kT
um,k}=—\g——1‘i——%|l—}, S o R S0 A R
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Setting x = 0 in (2.103c¢) we get

A = (0, k) = %—i-—m?ﬁﬂ ).

Similarly from (2.103d) we get

2u, Ein{[ k| T}
|

Therefore the solution of equation (2.103) becomes

: [
mx’k}:%Eﬁiﬁfﬂ‘* Vo k>0

_ 2uy sin(HT) ol 0

_J= |l

Taking Fourier inversion of this we finally get u(x, f) as follows :

AI

lx, t)

-

[ (x, Rje ™ dk

21

T T =X J—L o |
to f o n{||k|!T) o Betviy-a uuj-sm{iij} B riy-ine

T 1 I L [#]
E-n',l J' db Hm?;ii T) E_I\E‘.L [e:[r:g—kt} e —{IJJEJJ:—.‘M
0

o I k
2q | dr solkl) e_x\{; cos 1’-”5—[1: — 2kt
m k 23

1]

sinee within the interval of integration (0, =), we can write |k| = &.

Ex. 2.11.8. Find the solution of the following heat conduction problem in
a rod of finite length.

2
{i}%%=l%x—g.ﬂ-:x{a,t=ﬂ,

(ii) u(0, £y = fit), ¢ =0, fl0) =0
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(iil) wla, ) = 0, £ > 0,
Fryule, 0) =0, 0<x <a.
Soln. In this problem finite Fourier sine transform with respect to x is
appropriate. Il by Fy, [g(x)] or g, we mean finile Fourier sine transform of g(x),
then

(1) Fs[:x‘:"-‘ - Igi aln—ﬂ,’x

gin 27 dul® nm J’ nm du g
()

a " ox|. it :}x

2.2
= = 8T oo BTRE 0, t]' & ﬂ _[sm BT
i it x=0 a o
nm . i i : -
= /() - ——u,(n,t), since by (ii) ul0, ¢} = A,

T
@ Ful%| = [$sin T g
' [}

_ 2 [yginlnx 4, _ 95,
_ﬂtfusmadx_ dt

Therefore taking finite Fourier sine transform of the given equation (i) and
the initial _condition . {u) we get

di, ChPn },_
pralitl Iqﬁ

Also taking Finite Fourier sine transform of the initial condition (iv) we
get

Rty 200 ?"”““ Lty

w,(n0)=10

The above ‘equatiun can be written

nfnda "i.-‘u!
:;r g ol ﬁ{n,t}J f{'r:}e a?
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where we have replaced t by 1. Now integrating this equation with respect to
t between the limits 0 to t and using the initial condition, the following
expression for w, (n,t) iz obtained,

2.2
. ot SR

1
U (n,t)= -}ﬂjﬂﬂe a? dt
% o

The Fourier inversion of this according to the formula (2.70) gives

iz, t) = Eqm S, t)
g o |
P e - r:ﬂnﬁl 112:'[2!
Sl 2 fTx
=3 n211'1.9: a®  gin Id.'rf (t)e u®

Ex. 2.11.9. Solve the following problem for stationary temperature
distribution in a semi-infinite body.

@ & U, DU <oy,
an

(ii) u{x, 0) = flx), ~o<x <eo
(iii) wix, ¥) — 0, as ¥y — =
(iv) ulo, ), ulx, y) = 0, |x| = =
Taking the Fourier transform of (i), (ii) and (iii) with respect to x we get

the following equations :

g o .
B k¥ =0 @ 104)

#(k,0) = f(k) (initial condition)
u(k,y)— 0 as y— oo (regularity condition)

where @ik, y) and f(k) are the Fourier transforms of the function ulx, y) and
flac) respectively and inderiving (2.104) we have used the conditions (iv) and
the formula (2.15)

The solution of equation (2.104) is

Wk, y) = Ae MY 4 Beltly
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where A and B are two constants. Due to regularity condition we must have
B =0 and consequently the solution for @(k,y) becomes

U(h,y) = Aty
Setting here y = 0, we get

A =7(k0)= f(k), (by the initial condition)
Hence, @(k, v) = f(k)e lty : (2.104a)

Let Flg(x)]=e ™y = k) - (2.104b)

Taking Fourier inversion of this we get

= T =[]y ke
=—= |e dk
g(x) ﬁﬁi .
1 f 1 7
== : 2Ry -ihx o I
Lm o k- ijﬂ:_'k 1 e~ hly+in) gp,
" Von £ Jﬂg
h B O N | 1 __JE 3
= JE_R[J’—ix+y+:,'x]_' T 32 + 22 (2.104c)

By the use of (2.104b), the equation (2.104a) can be written as

@k, y) = f(k)E(R)
and therefore by convelution theorem we got
ulx, ) = convolution of the two functions flx) and g(x)

j f(E)g(x—E)de

3 9‘._ @‘H

= G
J; f (ﬁ]g m dE (by 2.104c)

_[ f(E)
“—m:v + (%~ E]
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Ex. 2.11.10. The steady state temperature distribution u(x, y) in any cross-
section of a long square bar with one face held at a constant temperature T
and the other faces held at zero temperature is governed by the following
equation and boundary conditions, Find ulx, y).

Ua”' Pu_go<cx<a 0<y<a

&},2
(ii) u (0, ) = 0, ufla, y) =0,
(iii) u (x, 0) = 0, u(x, @) = To
Soln. Finite Fourier sine transform is appropriate in this example. Using
the same notation as in Ex. 2.11.18. we get

5 azu .ﬁazu « HTK
ﬁ[ﬁ;i—] = jﬁmn—“—dx

i ni nm:au
= aﬂx,g-[ aﬂxdx

nmn i
= —Tcas LR :.r]l

2
i “ _[sm AT 1 dx
i

=a

T A i Rt
= —==ul0, )+~ (1) ule, y) =g i (n, )

Fo o e 7
= -—E—E-—uh,(n, v), by the boundary conditions (ii)

i To% . nnx nix
and Ff,[aygl 2 iﬂ_}fz sin—_ dx— Byz Iusm =

dm,
ot L,
dy,;( ¥)

Therefore taking finite Fourier transform of the given equation (i) and the
boundary conditions (iii) we get

15



d?u, n*n?u, :
P A =0 : (2.105)

HmG=8 (2.1058)
(] T o

i, (n,a)= %isin%dx - _fn_[("l}n ¥ 1]

2T

nn

Solution of the above equalion (2,105) is

=0,

{(according as n is even or odd) - (2.105b)

iy iy

i(n,y)=Ae ¢ +Bea (2.105¢)
where A and B are two constants.

Setting ¥ = 0 in (2.106¢) we get the following by the use of (2.105¢)(2. 105a)
A+B=u,(n0)=0

Next setting y = a in (2.105¢) get the following by the use (2.105b)

= _ 2T : "y
Ae"™ + Be™™ = (n,a) = 0or ﬂi according as n is even or odd.

Solving A and B we get

' T

s R e
ansinh nn

A=B=0, when niseven

Therefore, (2.105c) gives the following solution for u(n,y) :

2Tyasin h 22

el = E
s (n, y): nmsinh pm ,.fur Aondd

]

0, for n even.
Taking inversion of this we get the soluton for ulx, y) as given below

.o IV
2 s 2Tya Sinh—%

(w9 = a J?_::l nn  sinhnn
(e}
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LS sinh ©7%
5 E o e
n ainh R

(udtﬂ:l

Fx. 2.11.11. The end of a semi-infinite cylinder 0 =r = a, 0 <z <eis held
at a constant temperature T, while the cylinder surface is held at zero
temperature. Show that the steady temperature is given by

u(r,zj:Tn{ 31608 sinke dk],

where [, (x) is modified Bessel function.

Soln. In steady state the temperature u (x, v, z) satisgfies the equation.

2 2
-a—”+fadjf+ E};? 0

If the axis of the cylinder is along z-axis, then obviously u is symmefric
about z-axis. So in cylindrical co-ordinates this equation becomes

%u , 1du  9%u -
ar.‘,_+rar+'.i32—G D<r<a, 0z <= (2.106)

The boundary conditions are
wuir, 0) = Ty, (2.106a)
w(0,2)=10 (2.106b)

The Fourier sine transform with respect to z is appropriate in this problem

ﬂaumnkzd’z (smkzaz{u{rz}} (kjcuskzauﬂ

= -Ekcﬂskz. u{r‘,z)1 = kﬂﬁsmkz u(r,2)dz
2=l

1]

. 17



=k %u{r,a}ukzﬁs(r,fﬂ]l = Tuk\(% - k%w (r, k), by (2.106a), Here we as-

sume that u(r, 2), u, (r, 2) = 0 as z — o,

Also 1|| u(; z}smkzdz— P (ju(r z)sin kzdz

d? i,
= I‘.'i.i"z (.i", k}

2713 : 19
and 7 HFEH{""‘?}SE'&Z i Ju{r , 2) sin kzdz

1du
rodr

=(r, k)

Therefore taking Fourier sine transform of (2.106) with respect to z we get

& 1dE, 5

Taking Fourier sine transform of (2.106b) with respect to z we get
i, (a,k)=0
To solve (2.107) we set

T
i, (r,k) = E -ki +0,(r, k) (2.107a)
Substituing this in (2.107) we find that U (r, k) satisfies the equation,

d*p, +1du

e
5t gk, =0 (2.107b)

The condition # (a,k)=0 gives the following condition for u.(a,k).
U, (a, k) = —E% - ’ (2,107¢)
If we set s = ikr in (2.107b), then the equation for U,(r, k) becomes
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d?s, 147,  _
— + 15045, =0, (2.108)

which is the Bessel’s equation of order zero and therefore its solution, which

remaing finite at r = 0 i.e.,, at s = 0 is
0,(r, k) = Ady(ikr) = Al (kr)
where Io(rk) is the modified Bessel's function of order zero.

Due to the eondition (1.207c) we have

2% _
-J: 0 = Al (ka)

Therefore, A= —E E;.;ﬂf I, (ka)

and consequently
O (rs )=~y ko " Iy(ka)’

which again gives the following expression for w,(r, k) for (2.107a) :

R 2 1 1 I{kr)
i, (r, k) = J;Tﬂ[r E'I::{kﬂ}}

Fourier sine inversion of this gives

where we have used the result Is—liﬁdx :1:2-
0
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Ex. 2.11.12. Find the solution of the following heat conduction problem.

i 0%u |, %u
(i) ﬁ‘zl[;axf?)"‘”‘*“ o, =< Y < 0o

(i) w (x, 3, 0) = f (x, )
(i1) w, Uy ty = 0 a8 |x| — o5, |y| — o

Soln. We take Fourier transform both with respect to x and y according
to the definition,

= 1 e i{lcem
u(l,m,t) = : ufx, y, e M)y oy
(V2x 2 .[ J

- e

Flm) == [ [ Fe el dy

Then from equation (i) and the boundary condition (ii) and the condition
(iii) we get

ﬁ—f = =AMl + m?)a, (2.109)
u(l,m,0) = f(l, m) (2.109a)

Solution of equation (2.109) is

i 2
w(l,m,t)= Ae l{l el

where A is a constant. Setting here { = 0 we get

A =u(l,m,0) = F(I,m),

So that
@l m,t) = .}T-”’ m'}e—l{ﬂ +ﬂ12}ﬁ
= f,m)&(,m) (2.109b)
whete z(t,m) = e ¥ _ prace, yy) say

Taking Fourier inversion of this we get the function gilx, y) :
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1 T —]\[Fz’lmz]l —i(lx 1 my) -
g(x,y) = [e e ] dm
(v2m)’ 1!
2 1 T —aif? =il ] 1 T E—hmz—r'm dm
- Jax ) )
g 2 §.2n
" e_fﬂ L . 1 = —I-—E_x“-f [by Ex. 2.4.1]
2mt 2mt 20t

Now taking Fourier inversion of (2.109b) the following expression for ulx,
¥, t) is obtained.

ulx, ¥, t) = convolution of the two functions flx, y) and g(x, y), by (2.79) '

= (JEL)E J Jf(&m)g:x—a.y—nﬁ&dn
T —nz —oo

o (=8 +y-n)?
g | Jr&me ™ dgdn

e e

11 MECHANICAL VIBRATIONS

Mechanical vibration in a medium are governed by the following equations,
which iz known as wave eguation.

g 10w
Vo po B,'.‘ q

TR : ;
where V= 32 + 3y’ + orz 18 the Laplacian operator, ulx, ¥, z, ¢) is the

displacement of a material particle at time ¢ from its unperturbed position (x,
vy, 2), g(x, ¥, 2, t) is proportional to the external force acting on the system under
consideration and ¢ is a constant equal to the velocity of wave propagation in
the system.

In particular the transverse vibrations of stretched strings and membranes
are governed by the equations :
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u_ 19 _
dx2  o® gl

% %u 1 2%
and TR @ae 9

respectively.

On fthe other hand transverse vibrations of elastic bars and thin elastic
plates are governed by the equations

Pu, 10
dxt  a? ot
and .@E_+a_2-)2u+iﬂ.z_u:13
P b% of2

respectively, where @ and b are two constants, u is the transverse displacement
of the beam or plate and P is proportional to the vertical load acting on the
beam or plate.

Ex. 2.11.13. Find the solution of the following problem of free vibration
of a stretched string of infinite length.

() =72 =0, = <x <=
% ¢

(ii) u (x, 0) = fix)
(iii) u, (x, 0) = g(x)
(iviu, u, > 0as |x| = ==

Soln, Using the conditions (iv) we find that the Fourier transform of the

equation (i) with respect {o x is

2 :

B34 ﬂiﬂ% = s (2.110)
where we have used the formula (2.15). Here #(k,¢) denotes the Fourier
transform of wu(x, t) with respect to x.

Taking Fourier transform of the initial conditions (ii) and (iii) we get

Z(k,0) = (k)

4 1,0) = Z(k)
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where [(k) and Z(k) denote the Fourier transform of fix) and glx) respectively
Solution of the equation (2.110) is
EUZ, )= Aptket 4 Be—iket

where A and B are two constants, and therefore
(k1) = ikeAetet — jhoe ket

Seeting ¢ = 0 in the above we get the following two equations by the use
of

A+ B=1lh0) = Fk)
ick(A - B) = i, (k,0) = g(k)

Solving these two equations for A and B we get
= l . == _'!'. o = l i : L o
A= 1[fw- @) B = H{7w L aw)
Using these expressions for A and B we get for w(k¢) the expression,
E{fa, t) = %ﬁk}(emr + e—:‘.#ﬂ} 2 ﬁg{k}(eikut - Ei.ﬁct)

Taking Fourier inversion of this we get

ulx,£) = J_;_; [ @k et

1l 1 T ihge—at) 1 T —ik{x+et)
o o e k dk + — k dk
-2{ '_EEJf( )e B _Lﬂ Je
1 ot E{kj —th{ o —i
+2._-: [_ ;ﬂ: J' - {e ih{x-vt) _ o :Hx+c!}}dk] {2.11{]&}

MNow in the inversion formula,
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. ]_ = ik
f(x}y=—= | f(R)e""™dk
o I
replacing x by ¥ — ¢t and x + ¢f we get respectively the relations,

flx—et)= Tl_— ‘|' dRF (ke thi=et)

and  flx+et)= f [ dk F(yetteret (2.110b)

Next integrating the inversion formula,

==1E o= —ikE
8) = = ig{k}e dt

with respect to £ between the limits x - cf to x + ct, we get

xdef xtel

I g(E)dt = j dE—=— J_ [ B Wk

x—

“ea x+ol
= ?_:::n | dkg(k) [ de ey, (changing the order of integration)

x—of

N T BlR) —ik(x—ct) _ ,—ih(x+et)
ey A @iste

Using the relations (2.110b) and (2.110¢), wu(x, £) given by (2.110a) can be
expressed as

'xlrr

u(x, t) = 2[f{x+rt}+ flax— ct}]+— [ g(t)at
=
Ex. 2.11.14. Find the solution of the following problem of free Ivihratinn
of a semi-infinite stretched string.

Pu 1 %

Pu_ 1% b 6cy e
HE B PUEEE

(1)
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(i) ulx, 0) = flx), 0sx <=
(iii) u, (x, O) = g{x] 0<x <o
(iv) u (0, t) =
(v) u, u, — U as x — =
Soln. Appropriate integral transform here is Fourier sine transform. Now

2 (0% . ,F- a_H_J:. du
Hﬁsmkxdx— Esmkxaxﬂ ﬂkimskxaxdx

= J_-kmskxu{x,t} -H‘J-Tsmkxu(x tyday
0

=k u({) ) — k2, (k,t) = ~k*,(k, 1), by (iv)

and J__ smkxd.x aEJ.J‘u{xtskad:c

d*z,
dt?

Here u (k,t) denotes the Fourier sine transform of ulx, £). Due to these
relations, we get the following equation from the equation (i), if we take its
Fourier sine transform.

d—zgi = —c2k
dt®

Taking Fourier sine transform of the initial conditions (ii) and (iii) we get
the following equations, '

7 {k 0) = f.(k),

(2.111)

where f (k) and Z(k) are the Fourier sine transform of flx) and gx)

respectively.
The solution of (2.111) can be written as (2.111a)

@i, (k,t) = A cos ket + Bsin ket
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where A and B are two constants. Differentiating this with respect to t we get

a”' = —ck Asin ket + ckB cos ket

E:e-ttmg t = 0 in the above we get the following values for A and B by the
use of the initial conditions :

A =T (k0) = f (k)
1
B as - (b0) = kg“(k)

Therefore the solution (2.111a) for u (k,t) becomes

u (k,t)= f;{k) cos kel + igfﬁ{k} gin ket

Taking Fourier sine inverse of this we get

wx, t)= ﬂu (%, t)sin kx dk
4]

2&' = ‘ . L2 — : 3
J;i (%) cos ket sin kxdk +E1||E{_[EQS{"3) sin ket sin hudk

%EE fs (R){sin k(x + cf) sin k(x — ct)dk

1 4 J‘ ; Z,(k){cos ie(x —ct) — cos k(x + ct)}dk (2.112)

Now we are to consider two cases depending on whether x > ¢ or ¥ < ct.
Case 1. x > ot
Now in the inversion formula,

[(x)= Effs(k}sinkxdk, x>0,
0
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replacing x by x — ¢t and x + ¢t, we get respectively the relatons.

fx—ct) = J%ji f.(k)sin k(x - ct)dk, (2.113a)
0

flx+ct)= %—I f;(fa}sink{x +ct)dk
0

Also integrating the inversion formula,

o)~ 2] 2,(ysin kedh, & >0
0

with respect to £ between the limits x — cf Lo x + ct we get

x4k

xtet
J g(ﬁldizr ,f dajggfmmnkqdk

X+t
.J— J-d'kgs{k} smkﬁdﬁ changing the order of integration

i \/E]: dk E{k}% {eos k(x ~ ct) — cos kx + oL}
a

By the use of the relations (2.113), wulx, 1 given by {2.112} can be expres:.

agB
.!H-r't

u(w, t) = Z[f(x +e) + fl—ct)] o= [aE)de

,'xr_!!

Case IL. x < ¢t
Since in this case et — x > 0, replacing x by ¢t — x in the inversion formula

for flx), we get

flet — x) = J%T f-'s{k] sin k(et — x)dk
0

_ETﬂ{k}sm kix - ct)dk (2.114a)
[1]
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Also in the inversion formula for g(E) given above we integrate (&) with
respect to £ between the limits cf - x to ¢ + x, thus we got

el tx

J Z(E)dE = Ej-dk Eg(k}% {cos k(x — cf) — cos klx + ef) (21 14]}}
ol—x i)

Therefore by the use of (2.114), u(x, 1) given by (2.112) can be expresed as

cl+a

u(zt) =5 [f(e+ e~ Fla—et) + ok [ gz

el=x

Ex. 2.11.15. Find the solution of the following problem of free vibration
of a stretched string of finite length. .

Pu_ 1%
dx? g2 o2

(ii) ulx, O) = flx)

=0,0<x<q

(i)

Gii) %u[ﬂc,ﬂ} = ¥l
(iv) w(0, £) = 0, wula, £) =0

Soln. Finite Fourier sine transform is appropriate to this problem

Pl 4]
= i, {x,t}’ - E’Emsnﬁgﬁdx
g o 7} a ox

0

u L
it e :
= — IR oo E—u{x £y — B u(x, t)sin 25X gy
] 2 »
a @ b a® e i}

12
a2

Ug(n,t), by the boundary conditions (iv)



2
Lo, (n)

where i (n,t) is the finite Fourier sine transform of ulx, t), so taking finite

Fourier sine transform of the given equation (i) we get

1L.¢
?di? ’dz

Also taking finite Fourier sine transform of the initial conditions (1) and
{iii) we Fel

2 L"'HE'.I'EE .
w,(n,t) - u,(n,t)=0 or g, (n,t) = —— 5 (1) (2.115)

7, (n,0) = (), 2,(,0) = F,(n) (2.116)

where f_'s!:n} and Z,(n) are finite Fourier sine transform of flx) and glx)
respectively.

The solution of equation (2.115) is

Z,(n,6) = A, cos B2 4 B sin BREL (2.117a)

where A_ and B, are two constants. Differentiating (2.117a) with respect to ¢
we get

:if_"{ t}-——A 51nnm£+—n:CB cos L

Setting ¢ = 0 in (2.117) and using (2.116) we get

(2.117b)

s - oL, il
A, =1,(n0)= f;{n},ﬂﬂu leder (n,0)= g,
a dt
which give
" s
'A.rr = fn{n] and Bn = ﬁgs
With these values of A, and B, the solution for it (n,t) given by (2.11 T'a} becomes

. (n,t)= fsﬁn.jcﬂs "'E L i gsin}sm"—i'%{i

Taking inversion of this according Lo the formula (2.70) we get u(x, t) as
given below :
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: 2 o s ) e
ulx, t) = El-us (n,t)sin 20X
=

n]n..

< (o | . nmet] . nmx
g[f{n cog HICL 2 s E(n)sin - ]sm——-a

= 2 Ecaq Bt I}‘{U.}sm nzu di

+_ E 1 q Jg{u}SIH D g

where we have substituted the expression for finite Fourier sine transforms
,.l’_;{n} and g .(n) according Lo the definition (2.68).

Ex, 2.11.16. Solve the following vibration problem of an infinite elastic
beam

i) ——+ —ﬂ,—n-u-c:x{m

dxt fﬂ

(ii)uix, 0)=flx), —ce<x<e

dlu 1«
_2

lfm} {xﬂ}HE—g{-x—}, — o0 & X o

Gv) w,u,,u,.,u,.. — Das|x]— o

where flx) and g(x) are given prescribed functions and the function £(x) is such
that g, g, > 0 as |x| = =

Soln. Taking Fourier transform of the given equation (i) and the initial
conditions (ii), (iii) we get the following equations by the use of the conditions
(iv) and the formula for the Fourier transform of the derivative of a function.

1

i; + k1T =0 (2.118)
Z(k,0) = f(k)
L (1,0) = k2 (k) - | (2.119)
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The solution of equation (2.118) is
W(k, 1) = A cosck® + Bsin ck®t,
where A and B are two constants. Differentiating this with respect to t we get

ﬂu [k 1) = —ck®Asinck®t + ch?B cos ck’t

Setting ¢ = 0 in the above and using the equations (2.119} we get
A= [(k),B=-2E(k),
Therefore the solution becomes

ik, t) = f(k)cosch®t - g(m £ cin ck®t

= F(Ryotk) - = E(RYW(R) (2.119)

where (k) = cosck*t = Flg(x)], say
and (k) = sin ekt = Fy(x)], say
By inversion formula we get

glx) = J‘;—:IT: _I-cns[t:kﬁtjle'“"'?:lﬂa

:.kz.: .Fe:r ﬂkzﬂkxll
2 ,J'— J- (2.120})

We now evaluate the first integral appearing in the above :

L{i‘kﬂi k.x:j

24_'-[

1 -’.';‘—}’ {5 e
oon .

B2
,E_'i'_l'!‘t I'E;zd - . x
et [ L E=Aeth - ——
21!'2?!:1:#_'[, %8 . /et

1l

i e

1 ;
i 4“ .[ & e dE, the mt-egrand hemg an even function

Zmet
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|
m|
o [
E'.ih:
) ey, §
m
=
=
e
Il
4]
|
i
B
E‘,|t\.
—

j““”dmf.jm““du} £ =y
0 n v y

2/ B v 2 Imet Ju
2
e 4ot COos U sinuy m
= (14 £), since du = du = J_
et i % I T

dk = det (144
or, sz_n 4_&8 (1+1) (2.121a)

Similarly we can deduce that

Pl

=L i
dk = 4@.344‘-*{1— £) (2.121b)

I —i szkx]

zJ_

which ecan be obtained [rom (2.121a) by replacing i by —i and x by —.
Therefore from (2.120) we get

1
ot

e ‘1-?f(1+z}+

o=
E'{E‘f 1—:_
7 i

1 2 2
=F 2@[‘1054354-31114 ;]

Similarely by inversion formula we get

wix)= J_ J-Ei].l] (ck2t)e *dk

T[ ekt -i{ck"ahkr)]dk

2

e
1 S 5 o "
= aJE[E 4*‘{1”}—9“*{1—&}]- by (2.121) and (2.121b)

1 TR
& 2@[“‘34cf E'mdm‘.]
Therefore taking inversion of (2.119) we get the following by the use of
convolution theorem.
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w(x,t) = 1 T(x—E,} coﬂuﬁ—2—+sin§—- dt,
" oonet 2, 4et det

1 AN
" 2eZnet Lg{x X ﬁ}{cﬂs da ?‘i"f_ﬁ}d&"

11T HYDRODYNAMICS
(a) Irrotational motion of a perfect fluid is governed by the equation.

Vip =10

g 2 2
where V2 = ;2 + aa S aazﬂ' is the Laplacian operator and ¢ in the velocity
x v :

potential. The velocity components u, u, w of the fluid are given by

__Op - B0 L 00
== b= By'w_ %,

(b) Two-dimensional slow steady motion of a viscous fluid is governed by

the equation,

Viy =0
a2 s & . . .
0% | 9% | and w is the stream function. The velocity

e -
dx? oyl
components u, v of the fluid are given by

where 1 = {vﬂ}z - [

v,
= a‘}'.ﬂ—ax

Ex. 2.11.17. Solve the following problem of two dimensional flow of a
perfect fluid in a hall space, where the fluid is introduced wih prescribed

velocity through a slit on the boundary.

2 a2
d'g atp:l],—m-::xe:w,y?ﬂ

@ ezt a2
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(i1) %,E = - flx), for |x| <83 =0,
=0, for |x] >a, ¥y=0
(1ii) @lx, ¥) = 0 as y — ==
Also find the solution in the particular case when flx) = U.

Soln. Taking Fourier transform of the given equation (i) and the boundary
condition (ii), (iii) with respect to x we get .

——k%p=0 (2,122)

L5(k,0) = -2 (k)
A (2.123)

B(k,y) - Oasy — o

where ((k,y) is the Fourier transform of @(x,y) with respect to x and g(k) is
the Fourier transform of a function g(x) defined by g(x) = flx), |x| <a, =0, %] > a.

Solution of equation (2.122) is
Bk, y) = Ae My + Belkly
Since @k, y) = 0 as y — =, we must have B = 0

Hence, Gk, y) = Ae |Hy
and therefore %T;lfk,y} = —|k|Ae ™Y g0 that setting.y = 0 we get
elA = L 5(k,0) = (k)
dy

which gives A = lg{k]
e
With this value of A the solution for {(k,y) becomes

e L
Wk, ) = &lhge el



Fourier inversion of which gives

{k} ~(iRetlkly) 4,

o(x,y) = f j

o [V
1 a3 1 —likex+|k|; i
L ﬁidkﬁﬁ (ifex+|R|y) Lﬂ'a}e; @ oy (2.194)

where we have sbstituted for g(k) according to the definition of Fourier
transform.,

Now when flx) = U, we have
Ur.i o I
—k[E”‘ —eiha]

F(k) = 'J% [ Ueity = %

22U sinka
J_ B e

Henece the solution {2.124) in thiz case becomes

_U | sinka o Vil
o(z,) ﬂ_[q - lI dk

Ex, 2.11.18. Solve the following problem of steady, slow and viscous flow
of a fluid in the hall space y = 0, in which fluid is introduced normally with
prescirbed velocity through a strip |x]| < @ in the half plane y = 0.

() Viw =0, ~o<x <00, y>0

) %w{x,ﬂ) e

(1ii) %W{x.ﬂ'}= f(x), when |x| £a

= 0, when |x| > a
(iv) yrlx, ¥) — 0 as Y — e
V) ¥ W Wy W, — 0 a8 [x| e
Soln. In two dimensions the equation (i) becomes
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: 4 i o4 74
32 92 W L, a7y AW,
[:—E‘P—"_az) y=10 05 = +£&t23jz oy

Taking Fourier transform of this equation and the boundary conditions (ii)
(iii), (iv), we get the following, in which we use the conditions (v) in finding
the Fourier transform of derivatives of .

4y du -
in _ok2 dy‘; R =0 (2.125)

d L
i W(k,0)=0

ik (k0) = EW
Wik ) - 0asy - = i

where Ti(k,y) is the Fourier transform of the function yix, y) with respect
to x and g(k) is the Fourier transform of a function g(x) defined by

g(x) = flx), |x| €@
=4, {zl>a
The solution of equation (2.125) iz
wik,y)=(A+ B}']E_M}' +(C + Dy}e!kl-'"
Due to the last condition of (2.125) we must have
Ci= Dsi
and therefore the solution for W(k,y) becomes
Wk, y) = (A + By)e My _ (2.126)
Differentiating this with respect to y we get

g{k- y) = ~|k|(A + Ry)elkly 4 Be-ltly

Setling ¥ = 0 in these relations we get the following by the use of first and
second equations of (2.125)
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A-ZB g Mg

Therefore, the expression for W(k,y) given by (2.126) becomes
Wik, ¥) = -‘g%ﬂfu Flyye MY = E(R)R (R) (2.127)

where % (k)= %(1+!k|y}e‘|;*|-'" = Flh(x)] say

By inversion formula we get

W i - 1 m- k —|fe| ek
= 1 I % ifkly “‘“tﬁﬂﬁnge [elor-the g, (2.128)

A L T
_J.}.ﬂ_.\gllmr dk

ply

Now,

vkl ==kfork<0
kEfork =0




L Tif -ky-it) o j~hytiylyn — |2 (€ sinkx
e W ) 2 tie di = |2 [£2sinke g
J2n ij;k[ ] 1t £ k

Also, 1!%[&"&7" sin kxdk = 1!%!%[&"“”'“} — g Matix) ];ﬂg
0 0
- -\EL[L,L]_ J2 o
20l y-ix y+ix T y2 4 52

Integrating both sides of this relations with respect to y between the limits
0 to =, we get

gﬂje—kysiﬂkxdkﬁﬁ[ﬁ_tan-li]=Jgtm—lﬁ
ma k 4 x 4 ¥

1 7 felkly-ike 2 %
tdh = J=tan~1 =
Therefore, @_{u 2 : 1“: ¥

Consequently Ai(x) given by (2.128) becomes

. A ALY
hix) = ([t&n J" . +yj|

So by convolution theorem we get the following form (2.127)

W53 = [ a@htx-E)d

15 ax-8, ¥x-§)
=3l {E}[tﬂn' / +(if;z+yz}d§

which is the solution of the given problem.
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MODEL QUESTIONS

I. Short Questions :

1. State the conditions for which the Fourier transform of a function exists.

9 Define Fourier infinite, sine and cosine, finite, multiple transforms.

3. Show that the Fourier transform of a function is bounded and linear.

4. Assuming that the Fourier transform of fix) does exist, find the Fourier
{ransform of flx)e™, where a is real.

5. Define inverse Fourier transform.

6. State Riemann-Lebesgue’s theorem, Fourier invergion theorem, convo-
lution theorem, Parseval's relation for Fourier thransform, Fourier integral
theorem.

I1. Broad Questions :
1. Show that the Fourier transform F(£) of a function flx) is a continuous
function .of &.

9. Stating the necessary conditions, find the derivative of the Fourier
transform of a given function.

3. Stating the necessary conditions, find the Fourier transform of the
derivative of a given function.

4. State and prove Riemann-Lebesgue’s theorem.

5. State and prove Fourier inversion theorem, convolution theorem,
Parseval’s relation, Fourier integral theorem, for Fourier infinite, sine and
cosine transforms.

II1. Problems :
1. If f(k) is the Fourier transform of f(x), show that

Flf(x)cos® ow] = 2 F(k) + 5 [Flh + D)+ [k -2)]

2. If f(k) is the Fourier transform of flx), show that the Fourier inversion
of

—i%ﬁ{e*ﬂ it xﬁf[u}a:u

3. Find Fourier sine transform of el
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Hence show that Iiéi“_x[ﬁ =% x50
01+x2 2

/ 2

4. Assuming that F[e‘“'x[] = E 72 j'_" 5 and F{e‘“zxﬂ] = _153'4&_2, show that
@ a

ol

2

J.%‘ [t Su@ya) = e % i
¥

=l

the solution of the integral equation

u(x) = J%(E - xﬂ}e 2
5. Use Parseval’s identity to show that

(i) J'i_:ﬂ (ii) _-"in,_

m
o(x2+1° ¢ o(x2+1)° 4

Hint : Take Fourier sine and cosine transform ex x>0,

6. Solve the equation

4 2
%&%+aa—”=ﬂ,-m«:x<:m.y2{}

9y
subject to the conditions : (i) w(x, 0) = flx), (1) u, {x, 0) =0,

(i) w, 0,0, 0, — 0 as [x| — o

= _End
Soln. u(x,y) = J_Ji_la J f(E) ms{{x4f} —%}dﬁ

Summary : In this chapter, Fourier transform and its inversion have been
defined with special reference to infinite, sine and cosine, finite and multiple
transforms, Applications of this transform to solve differentjal equalion arising
in diversified fields of science and engineering are also shown.
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CHAPTER 3 O LAPLACE TRANSFORM
WITH APPLICATION TO
DIFFERENTIAL EQUA-
TIONS

Structure

3.0 Imtroduction

3.1 Definition and basic properties of Laplace Transform
3.2 Laplace Transform of Derivatives

3.2 Some properties of Laplace transform

3.4 Laplace Transform of some Elementary Functions

3.5 Asymptotic Properties of LaplaceTransform

2.6 Differentiation and Integration Laplace Transform

3.7 Solution of Linear Ordinary and Partial Differential Equations

3.0 INTRODUCTION

Pierre Simon de Laplace (1749-1827), a French mathematician and
astronomer introduced a transform that bears his name as Laplace transform.
This transform ig one of the most fruitful methods of analysis, specially
analyzing equations. The essence of the method is the replacement of the study
of a function by its Laplace transform. For example, a complicated equation
in fit) is converted into a simple relation in terms of its Laplace transform. This
transform is the basis of most analysis and design proceduresg for control
analysis.

In the present unit we introduce the concept of Laplace transform
and consider its various properties along with its applications in solving
differential equations arising in various branches in science and
technology.
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3.1 DEFINITION AND BASIC PROPERTIES OF LAPLACE
TRANSFORM

Definition : The Laplace transform of a function fiz) of real variable ¢
defined for ¢ = 0 is denoted by Lifit)] and is defined by the integral

[err@ae,
4]

provided the integral exists. Here p is complex and consequently the Laplace
transform of f{t) is a function of complex variable p. If we denote this function

by F(p), then

F(p)= [ePf(t)dt (3.1)
0 . . g

A class of functions f{t), for which their Laplace transform exists, i.e. the
integral in (3.1) exists, satisfies the following properties.

(1) fi£) is piecewise continuous in any finite interval of ¢ for ¢ > 0.

(ii) fit) is of exponential order at ¢ — <, i.e., |fit)| < Meo! for ¢ > 0 and for
some real positive constants ¢ and M, This a is called the index of the order
of growth of the function fz).

In the following theorem we show that if fit) satisfies the above conditions,
then the integral in (3.1) exists and F(p) is analytic in a domain of compex p-
plane.

Theorem-1 : If a real-valued function f{t) of real variable ¢ is piecewise
continuous in any finite interval of ¢ and is of exponential order 0(c9t) at ¢t —

= when £ = 0, then (i) the integral J.?‘Pﬂ f(t)dt converges in the domain Re(p)
0

> a and (ii) F(p), the Laplace transform of flt), is analytic in the domain Re(p)
> a of complex p-plane.

Proof, (i) Since f{t) is of exponential order 0(e?t) at ¢ — ==, there exist two
real positive constants M and a such that

| f(t)| = Me*
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Therefore, [Ie“a’"ﬂt}dcli I|e (=) || F(2) ddt, (p = x + &)
i) 0

< je""‘|e W Medt = M je:'{" altdt ginee|e ¥ = 1
i] (1]
which exists if x > a, i.e., Relp) > a.
Hence the integral _[ﬂ'f’t,f'(t} dt exists in the domain Relp) > a.
0

(i) We divide the interval (0, =) of ¢ into intervals (£, £)), (t;, ), ...
(t,_1s £,)s oo of finite lengths, where £, =0 and #, — =, and consider the sequence
of functions {u (p)), where

II'J-
th, (p) = je-wf{ndt,n s o e

-1

Now |F(p)- L};Mktmhl [ertfpat|

tn

< [l Fo)de

'!JI

<M _[ prlx-a)t gy
£

gy

Let x >a + &, where 8 in an arbitrary positive number. Then p-(x-a)t < -8
Therefore for x = a + 5, we have

| ¥ (p) - kzlu,,‘{p}k_i M Ie"ﬁ‘dz

EJ'I

— g

M &
8

103



Since %{E”&ﬂ —0asn e (£ — e asn — =), corresponding to an

arbitrary positive € there exist a positive integer N such that

M -
TE

Therefore, corresponding to an arbitrary positive € there exests a positive
integer I dependent on € only and nol on P such that

x, <eforn >N.

n
|F(p)- EIT‘&{PH“*'E for n > N and for Re (p) 2 a + &
k=

This implies that the series ¥ u;(p) coverges uniformly to F(p) in the
k=1 {

domain Re(p) Za + §i.e. in the domain Re(p) > a, since § in an arbitrary positive

number,

Since for any t on the real line of complex-¢ plane, et fit) is an entire
function of p, the functions.

tﬂ-
u,(p)= [ePfiydt, n=1,2, ..

b1

are also entire functions. Hence the series Z u,(p) being uniformly
convergent in the domain Re(p) > a, it sum F(p) is analytic in the same domain
Relp) > a.

3.2 LAPLACE TRANSFORM OF DERIVATIVES

Theorem-2 : If fit) is continuous and is of exponential order Q(e™) at ¢ —
= and f'(f) is piecewige continuous in any finite interval of t, then the Laplace
transform of f'(f) exists for Re(p) > ¢ and is given by

L[f()]= pF(p) - f(0) (3.2)

T
Proof. Obviously L[fﬁ:t}] = }131 J' flt)e Ptdt, (3.3)
i

provided the limit exists.
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Sinee f'(¢) is piecewise continuous in any finite interval (0, 1) of ¢, this
interval can be broken up into a finite number of gsubintervals in each of which
f(t) in continuous, Let there be n such subintervals and (b, ;, b)) be the r-th
subinterval, where b, = 0 and b, = T

Therefore, we can write

T n Br
[eptfiyde=Y, [fterd
0 r=1bh, 1

n br
¥, [E_Ptf [t}]:ir +p jf (t)e Ptdt
r=1 r-1 b

=1

Il

n L] b‘"
El[e-ﬂf’r [(b, - 0)— e Prr-1f(b,_, +0)]+ pY, [Flt)ePtdt

iL=”"r—l

T
e=PT[(T) - £(0) + p| f(e)e#dt (3.4)
0

Since fit) is continuous, fib, — 0) = fib, + 0) = flb,)
Now |e" f(T)|=|e || (1) | p = = + iy
< o~ T MeoT = Mex-aT — 0 a5 T — oo,
ifx>a ie, Relp) > a.
Therefore, }‘1_1;:}“ e PTF(T) = 0 for Relp) > a (3.5)

Also since flE) ig continuous and is of exponential order O(e™) at § — ==, its
Laplace transform exists for Re(p) > a, and so the following limit exists and
is equal to Fip) :

T
Jim, | fitye Ptdt = F(p) for Re(p) > a (3.6)
i

By the use of (3.4), the equalion (3.3) can be written as -
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T
L[f'®)]= lenme‘FT'f{T} ~[(0)+p Jim [ eyt
1]

= pF(p) — D), by (3.5} and (:_5.6}. for Relp) > a.
This completes the proof of the theorem.

A generalization of the result of this theorem concerning the Laplace
transform of the n-th derivative of a function is given in the following theorem.

Theorem-3. If the (n—1)}th derivative of a function f{t) i3 continuous, its n-
th derivative is piecewise continuous in any finite interval of ¢ and fiz), f{1),
weeen [V (£) are each of exponential order Order O(e?) at ¢ — =, then the Laplace
transform of /™ (f) exists for Re(p) > e and is given by

L[f™®)]= p"F(p) = p" {(0)~ p" 2 "(O)-... -f"(0) (3.7)
where F(p) iz the Laplace transform of fit).

Proof. Since f*)(t), the derivative of the function f"-'%t), is piecewise
continuous in any finite interval of t and the function f#*-1¢) is continuous and
is of exponential order O(e*) at ¢ — =, by the previous theorem we have

L™= e [f* )] - 1*-Veo) (3.8a)

Again since f*-1z), the derivative of the function /-2(#), is continuous and the
function f*?(¢) is continuous and is of exponential order O(e®) at { —» e, by
the same theorem we get

L[ V@)= pL[f 2®)]- F"-2(0) - (3.8)
Continuing this argument we get the following relations

L[/ @)= pL{f D w)]- £ M(0)

L{f*(®)] = pL[f'()]- £'(0) (3.8¢)

L{f"(6)] = pLIf ()] - £(0)

Multiplying (3.8a) to (3.8¢) respectively by 1, p, ...., p*! and then adding
together we gel
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L[f(:r}{”] = p"F(p)- Paa—lf{u} L Pu—‘lf!(ﬂ}___ .—f{”_]}(ﬂ)

As each of the relations (3.8a) to (3.8¢) hold for Re(p) > a, Laplace transform
of f)(t) exists for Re(p) > a.

3.3 SOME PROPERTIES OF LAPLACE TRANSFORM

(i) If L[f.()] = F,(p), which exists for Re(p) > a,, (r = 1, 2, ...n), then

L{c 1)+ e fa(tH.. e, I {t}] = oy (p) + e Fy (.. e, F.(p)

which exists for Re(p) > max (a,, a,, ..... a,). In the above ¢y, €5, ..., €, are n
constants. This is known as the linear property of Laplace transform,

Proof. Lle,fi(t)+ exfu )+ ¢, [, (2)]

[==]

je- Ple,fi(8) + epfp(t)+.. hey f (D))dE

1]

¢ [e (0L + o, [e P fy(Ddt.. e, [e P, (D)t
i 0 g

ey (p) + e Fo(p)t... -+‘-'*';;Fn (P

which exists in the common region of existence of the integrals _[e‘i”‘ £ [!:}-it.
il
This common region is the domain of complex p-plane given be
Re(p) > max (e, a, ..., a,)

(ii) The similarity theorem : If L[fl)] = F(p), which exists for Re(p) > a,
then for any real positive o.

Hfen) -1 (2]

Proof. Since the Laplace transform of f{t) exists for Re(p) > a, the function
fit) is of exponential order O(e™) at ¢ —4 =2, This implies that there exists a
positive constant M such that
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If(t)] = Me™
Replacing ¢t by of we get
[f () = Me=™
By the use of this we get

| [ flotyePtdti< [|f(at)]|e @ |de (B = = + iy)
o 0

= MJ&:"M.E‘I‘E& = .I'E—Ex—ucc}edt
a 0

which exists for x > ao or Re(p) > aa

Hence the Laplace transform of flaf) exists for Rel(p) > a

Now, L[f(at)]= Te PE(o)de, pub af = u
0

= —ﬁu 1 1=.=.. --Eu
Je @ f{u}Eda:EJE a flu)du
(3 {]

~5¥ 5]

since in the relation J' f(t)e P'dt = F(p), replacing phyg'WL' get
0

Ie'g‘ f{t}dt. = F(g}

(111) Shifting theorem : If L[flt)] = F(p), which exists for Rel(p) = a, then
for any complex constant J,

Lle™ ()] = F(A + p)
which exists for Re(p) > a — Re(A).
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Proof. Let o(t) = e™ flt). Since Laplace transform of fl¢) exists for Re
{(p) > a, fit) is of exponential order Ofe®) at ¢ — =, so there exists a positive
constant M such that |fit)|< Me®. Therefore,

|@(e)] =l etk |£(2)] < Me®ePb) = k. + ik,
= Me[u"’lr}:

and consequently ¢(f) is of exponential order D{e{“'}‘"}‘). So its Laplace
transform exists for Re(p) > @ — A, = a — Re(d)

Now L{e‘?"'f{.:t}] = TE'P‘* e~ M f(L)dl
0

= Ie'“’”‘“f{t}ds =F(p+&)
]

gince in the relation je'P‘f (H)dt = F(p), replacing p by p + A, we get
0

o

[e® Rt )= F(p+d)
0

(iv) Translation property : If LIf(t)] = F(p), which exists for Re(p) > a and
8(t) is the unit step function, then for 1 > 0, L|fit — 1) 6 (¢t — 1)] = e** F(p)
which exist for Re(p) > a.

Proof. Obviously |flt}| £ Me*, where M is a real positive number,
Replacing here ¢ by t — © we get

|£(t - T)|s Me®t=" = M e

where M= Me*7, which shows that fit — ©) 8 (£ — 1) is also of exponential
order O(e®) at t — . Hence its Laplace transform exists for Re(p) > a and is
given by

LIt =0 — 0] = [ #f (¢ - n)dt, DUt & =% =
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j 3= pluat) f[ u}l.‘f-l'l- =g Pr J g Fu _f{u :Idu
0 0 I

I

e P F(p)

(v) Convolution theorem : If L[f,(t)]= Fy(p) and Lfy()] = F,(p), which
exist respectively in the domains Re(p) > a; and Re(p) > a,, then

L{o(t)] = F\(p)Fy(p)
which exist in the domain Re(p) > max (a,, @,), where @(t) is the convolution
of the two functions fi(£) and f,(¢) defined by

i
o) = [ (Dt - D)dx
1]

s
= [At-Df()d
0

Proof. Obviosuly £,(¢) and f(t) are of exponential orders D{e“‘lf } and G( gt ]

respectively al £ — . Therefore there exist two positive constants M, and M
such that

[ OIS My, | f(8)| < M e,
By the use of these inequalities we get

¢ t
le@)< [IA@If -1 de < JMle“l"Mﬂgﬂsz—T}dr
i}

= MM, .aﬂz‘J'e{ﬂl 2Vdy = MM, s i |

a4y —ay
ayl _ L agf
= M,Mzﬂa -
&
MM, o
If a, > a,, [0@)|s s '; ¥

MM
and if @5 > ay, [Qt)|s ——2 %
0y — iy

110



MM,
E“l —ay

Hence |g(t)|< Me™ ,where M = and ¢ = max (a;, a,)

Therefore Laplace transform of ¢(t) exists in thé domain Re(p) > @ = max
(a;, a,) and is given by

e T l".a\
Ligw) = [e@ertde= lim | o(tye-r"dt T J
0 7 j!
T ¢ ' V3
== %i_[f&p_!dtﬁ_mifﬂ'ﬂfzu = T]d'}; /"

=

e lu:n Idt{’ ot J'fltr}fz{r Tyt

=0

- 11m I dr ‘[dte: P (T)fa(t = )

_.;m

(changing the order of integration)

T T
= Jim Iu'ﬁﬂm; j die Pt f,(t - T)
T= =1

T T2
~ Jim | afin) [dbe R0h0
=0 =

puttingt — 1= ¢

T -1
= Jim J (i Jurir‘f'z (t)er"

- [ dwer [arnerer
=0 =0

F(p)F,(p)
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(vi) The Laplace transform of an integral : If L|fit)] = F(p), which exists

in the domain Re(p) > a, and @(t) = j f(v)dr, then

Lio®)] = - F(p)

which exigts in the same domain Re(p) > a.

Proof. Obviously fit) is of exponential order O(e™) at ¢ — =. Therefore there
exists a positive constant M such that

| F(2)|< Medt
. t t ¢
and so |¢{ﬁ}|=|IffT}dT|5 ﬂf‘.ﬂH’L’ = M_l-e""raf’l:
0 0 0

at

g(e“f - 1} = £E
a a

Hence (t) is of same exponential order as fit) and so its Laplace transform
exists and is given by

o] t %-1“ /
Llp(t)] = _[E‘mdt_[ ft)dx du /
i 0 0

T [
lim [ ePdt [ ()
£k J.n -r'=[u v
Tr

Il
Y ey, =3 ‘I"'

T

T
Kopreastt B
qulj‘l}ii[dﬂ'(’ﬂ;[ﬁ Pt —e 7|

1T oo

Ein‘ff{T]E B EF (P), which exists for Re(p) > a
0

Since |e‘FT| = |e—'{-“+"u‘"}'T| =g *T = p-aT for x > a
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—0as T — =,

and this implies that e — 0 as T — e

3.4 LAPLACE TRANSFORM OF SOME ELEMENTARY FUNC-
TIONS

In the following f () = 0 for £ < 0.
(a) f(t) = e#, where A is a complex constant.

Lie#] = Ie‘a‘.e‘mcﬁt = Ie“-‘”"ut(ﬂ
0 0

1 e ] 1 X

: g1 1 ;
& Lle E]_—p—i (3.9)

(b) fit) = sin of, © i8 a real constant.

Ligin at] = L[El; (el®l — e""“‘}}

_L ftng _i =i
= 2!EL{E“ ] 97 Lle-"t], by (1.3)

1 1 i 1 .
=Ep—£m_ﬁp+im’ if Re(p) > 0, by (3.9)

<
P2+ w?

A P © (3.10)

o Llsinad] =
LI ] T

(c) fit) = cos i, w is a real constant.

Llcos ax] = L[%{e"”f + e-i”‘} = %L[e"“]+%ﬂe"“?. by (1.3)
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o S | e o it
=S + T if Re(p) > 0, |by (1.10)] P
~ Licosa] = —£2 (3.11)

p? + w?

d) ity = &1, vy = -1.

If -1 <y < 0, then fit) — = as t — 0+. Hence fit) is not a piccewise continuons
function in any finite integral of ¢+ and so the condition of existence of ils
Laplace transform gets violated. We now show that its Laplace transform still
exists.

Since

THg"Pﬂcﬂ
[H]

j' tre—tx+iydtJy
0

< J'ti”er"‘ﬂdr, which is known to converge
0
for y > -1 and x > 0, the Laplace transform of t' exists for Re(p) > 0. We next

proceed to evaluate the value of this integral. Let F(p) = Iﬁfe‘ﬂﬁdt. It is known
i

that F(p) is analytic in the domain Re(p) > 0.

On positive real axis, i.e. for p = x > 0 (real) the value of the integral becomes

J'He:"'“ = IEY—Q_': E, by the substitutiont = xf,
o ¥ )

! 1 J-'rt?"}l}_le 'f[ff = rl: + 1}
xF+l g il

So on positive real axis

F{p}=r—(xu:%. if p =x (> 0) real.

+

+1 ;
The function r—[;};Jr—l} is analytic in the domain Re(p) = 0 and coincides with
D : .

F(p) on positive real axis. So by uniqueness property the analytic function, F(p),

Ny +1) .

must be equal to o7 71 in domain Re(p) > 0, ie,
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FEF:LI} . J”E pidt = Lit" | for Re(p) > 0

l.']

Fip)=

Therefore the Laplace transform of ' for y > —1 exists and is given by

Ky +1
;}H 2 for Rel(p) >0 (3.12)

Litr] =

When 4 = n, a positive integer, the above formula gives

; i
Lit"] = pr:;-l (3.12a)

In particular when n = (), we get

1
LiH=2
[1] (3.12b)

(e) fl)=irek,

Litret] = Ep_’%, by shifting and similarity theorems ~ (3.13)
(f) ft) = sin te™,
Lisinatett]= ——%© by shifting theorem and (3.10) (3.14a)
(p— A2+ w?

(g) 1(t) = cos wie™,

=
Licos ot et] = m, by shifting theorem and (3.11)  (3.14b)
(h) Afit) =t sin ol

L1t sin ] = Lé_i [t(eiet - eiot)]

_ X rrcaer_ Lorresio
= & L{tei*] - o1 Lite] by (1.8)

1 1 i 1
I e ———-?, by shifting theorem and (3.12a)

e
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2

s Litsinat] = B L )2 (3.15a)

(i) fit) =t cos ax

By the same method as in the derivation for the formula (3.15a) we get

pﬁ_mﬂ

L[tuusm?] - W (315]2‘.']

3.5 ASYMPTOTIC PROPERTIES OF LAPLACE TRANSFORM

Theorem 4. If Fi(p) is the Laplace transform of a function f{t), which is
-pilecewise continuous in any finite interval of [ and is of exponential order
Olem) at £ — oo, then '

&) lim R(p) =6 ' | (3.16)
p—on

and (ii) h'_rp pFip) = f(0), [Initial value-theorem)| (3.16b)
P o

Proof : (i) F(p) = jf (thePtdt
0

Let | f(£) | < Me®

Therefore, | Fip)|< _ﬁf (t]] |E—:'Ex+£y]l£' dt, p=x+iy
0

<M[etatde =M g y5 g
o X—a

— 0 as x —3 oo,
Hence, F(p) — 0 as x — o,

But x — <= implies p — = and so

lim F(p) = 0

Py
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(ii) We suppose that f’(f) is piecewise continuous in any finite interval of
| ¢, and flt) is continuous and of exponential order Ofe*) at ¢ —» = Then the
| Laplace transform of f’(f) as given by (3.2) is

LIf' () = pLIf()] - f(0)
According to what we have proved in (i)

lim LIf(H)]=0

p—e

Therefore proceeding to the limit as p — = in the above relation we get

limpr| fi6) 1 = f10)

Theorem 5 : Final value theorem : If f{t) is confinuous and is of
exponential order Oe*) at £ — <. and f’(¢) is piecewise continues in any finite
interval of {, then :

lim pF(p) = lim f(t) = f(e=) (3.17)

Proof. Let G(p) be the Laplace transform of f'(Z), Then

G(p) = [ePtF'(e)
L1

Due to the conditions imposed on fit) and f’(£), it can be shown that Gip)
is a continuous function of p. Therefore,

lim G(p) = G(0) = [ fi(B)dt
g0 ﬂ_

or, lm G(p) = f(=) = [(0) (3.18a)
Again, G(p)= LIf'(t)l = pF(p)— f(0)
From this proceeding to the limit p — 0 we get
}Ji_rﬂj{?{p'} = E%PF{P}_ flo) | (3.18b)
From (3.18a) and (3.18b) we gel
L]_r;}] PF{F}.# [i==)
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3.6 DIFFERENTIATION AND INTEGRATION OF LAPLACE
TRANSFORM

Theorem 6. If fit) is piecewise continuous in any [inite interval of ¢ and
is of exponential order O(e™) at t — oo, then its Laplace transform is
differentiable any number of times and

=a

Fﬁn]{p] = {—l}ﬁjg—pﬂzrrf{ﬂ{” 2 [_l}uLUr:ftﬂ'L for RE{}J} = g ESIE}}
{
1] ]

< sze Le-altdt, sinee |f(x)|< Me®, M > 0
]

o

22 MIE—{I—UH fi 9 MJ E—f.'.l:—ﬂ'” d"t
=L} | y X—a

S § :

_'[—_x—a}z’ for x = a

Hence Laplace transform of {f(t) exists in the domain Re(p) > @, which is
also the domain of existence of the Laplace transform of fit).

3.1 It has been proved in § 3.1 that F(p), the Laplace transform of fit), is
analytic in the domain Re(p) > ¢. Hence its derivalive exists and is given by

F(p)= % i i% (3.20)

where F(p) = ulx, y) + iv(x, y) = je-miﬂﬂﬂdt.
i}

Separating this into real and imaginary parts we gel

L= _[e * cos yt f(t)dt, v = _[E-'"'“ gin vt fiL) dit
0 0

Now it is seen that all the following conditions for differentiability of p
under sign of integration with respect to x are satisfied :

(i) @lx,t) =e ™ cosyt is a continuous function of x and ¢ for any fixed y.
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(ii) jg'-x! cos vt f(t)dt converges uniformly for x > a and —= < ¥y < ea,
]

(iii) fit) is bounded and integrable in any finite interval of t.

(iv) The integral, jgc“[ﬂ_m cos yt f ":ﬂ] df = —J-IE_'H cos yt f(t)dt  converges
] 0

uniformly for ¥ > @ and —e <y < =,
Therefore we get,

L

& ~[tet cos yt fit) db
0

ok

and by similar argument we get,
fﬂ e J-EE‘-"“ sin ¥t fit) di
e s
Substituting these in (3.20) we get
Fip) — Ir f(tye-rt, for Relp) > a
0

or, F'(p) = (-1) L[t fit)], for Re(p) > a i (3.21)
Just as we have shown the existence of the Laplace transform #f{#), we can
show that the Laplace transform of ¢2 f{t) exists in the domain Re(p) > a. Now

_F*(p), the Laplace transform of ¢ fit), being analytic in Re(p) > a [ollowing
similar steps of deriving (3.21), we find that

—F*“(p) = (<DLIE2f ), for Relp) >

or, F"(p)=(-1)2LIt%f ()], Relp) > a
Continuing this process we get the following after n steps.

Fin(p) = (-1 Lign f(1)], for Relp) > @

Theorem 6. If a function ﬂfﬂ salisfies the existence conditions of its
Laplace transform and L{fit)] = F(p), which exists in the domain Re(p) = ¢, then

L [%] - [Flgydg (3.22)
n

Proof. Let G(p) be the Laplace transform of alt) = fiﬂ, i.e
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G(p) = L[@} = [ L9 -ptgy
t a £
Then by the above Theorem-5, G’(p) exists and is given by

G'(p) = [ fe2tdt = F(p)
0

Further both G(p) and F(p) are analytic in the domain Relp) > a, which is
the domain of existent of F(p). Integrating the above with respect to 1 between
the points p and e along any contour in the complex p-plane lying in the domain
Rel(p) > a, we get

G(p) - G(es) = [ F(p)dp

P
Now G(p) being the Laplace transform of a funetion, Gie) = 0 by (3.16a).
Therefore the above relation becomes

G(p) = [ F(p)dp
P

or, L[@} = { F(p)dp

where the integral on the right hand side does not depend on the path of
integration, since F(p) is analytic,

3.7 THE INVERSE LAPLACE TRANSFORM

So far we have considered only the problem of finding the Laplace
transform Fi(p) of a given function fiz} and have derived some properties of Fip).
But in application of Laplace transform to practical problems it is necessary
to solve the inverse problem of finding the original function f{) from its Laplace
transform F(p). This is called the inverze Laplace transform and is denoted
by L1, ie.

fle) = LUAp) (3.23)

In many cases the original function fif) can be determined from jts Laplace
transform F(p) from the existing table of Laplace transform of some elementary
function like given in the formulas (3.9) to (3.15) by application of the properties
(i}—(vi) of Laplace transform given in Sec. 33. This is possible due to the
following uniqueness property of Laplace transform.
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If the Laplace transform of a given function exists, it is delermined
uniquely. On the other hand, it can be shown that twe functions fi(£) and f£,(t)
having Lthe same Laplace transform cannot differ over any interval of ¢, though
they may differ at some isolated points, Since this is of no importance in
applications, we may say that the inverse of a given Laplace transform is
essentially unique. In particular, if two continuous functions have the same
transform, they are completely identical.

As the method of constructing the original function from its Laplace
transform stated above is a trial and error method, it may not always be
possible to construct the original funetion following this method. In such cazes
we are to depend on the complex inversion integral formula given in the last
subzection of the presenl scction.

LINVERSION BY THE USE OF LINEAR AND SHIFTING PROPERTY
By linear property and shifting theorem, we get
L7 [CiF(p) + C,F,(p) + ...+ C,F (pl]

= C, L7 [Fy()] + CLLAF P + ... + CLF.(p))
LFQ + p)) = e LAFp)]

Ex. 8.6.1 Find 71| —P=7
jJJ +6p+17

% -7 croi] (p+ 3 =10
: I 1 _P___u_ =L 1 p—.
Soln. We can write [Pz o 1?} L [(P T3kt EJ

Llﬂ-], by shifting property
L p%+8

e-3t-1

— p3t-1 s 10 J8
=e = St
p>+8 VB o +(VB)

= g3t [1 [L]—-I-QL‘I V8 , by linear property
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as] B
= e—.irtcus B —u—sm\{gt}, by (3.10) and (3.11).
J2

38
Ex. 3.6.2. Find 11| 2 —2
3 e [(;:-—1}4}

. o] =2 (p-D%+2(p-1)-1
Soln. We can write & J[U'——IT;J_ I [ T

(p*+2p-1 v
——3 |, by shifting property

4] 1 o (S = .
= H*{L L}—J+2L [p—sJ L I[P—q}} by linear property _

i 1.2 3
— [1|:+2j; ——t }hy{ﬂlﬂa}

II. INVERSION BY THE USE OF FORMULAS FOR THE DERIVA-
TIVE AND INTEGRAL OF A LAPLACE TRANSFORM

From (3.14) and (3.22) we get,
LAF(p)] = (-1)min L1 [F(p)) (3.24)

L 1[ [F@)dg =111 F{p]] (3.25)
: |

et
’ - p+1
Ex. 3.6.3. Find L [J’.n St 1}]

. . A )
Soln. Let /1&)=L 1{-%1 ;;F +1}] = L F(g)
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& = tLVF(p)l = L F(p)], by (2.4)

=g [diﬁ{tn(pz 7 1) —Inp-In(p+ 1}}]

k] 2 R i | J‘:_. B 1 i - , y
aL [F?’*'l] L [P-l L [P"‘lj" by linear property

208t —1-—pet

2
R .!rap—+-j;- = —gcnﬂt+i+le"1
plp t £

3.6.4. Find L‘l[tan“l %]

Soln. Tet [®) = L1 [tan-i %] _ IF[F(p)

o —tLMF(p) = LYF'(p), by (2.4)

Ll 23| _ .,[_ 2 ]
= I71 = e
1+i[ P“] p?+4

p?.

= — gin 2t,

& LMFE() = %sin 2t, or, L 1[!‘-.3:1_1 %] = %si-n 2t

. o N N
3.6.5. Find L [{pz +ﬂ2}2}
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‘ﬁﬂ] = 1iF{P}]

Soln, Let 78 = L_l{
(p™ +a

.:}—If'iﬂ 2 %L"-[F(p]] =Lt jff‘{q}dq}, by (2.5)

a|T__a e
L M(qur'az}zdg =0 {_ﬁ W

1 1 R a L
=L l[p2+az:|-ﬂLl[ :|=——smat

Il
b

W - A I "
Sl & [{p2+32]3:|_ zﬂsmat

111. INVERSION BY THE USE CONVOLUTION THEOREM

From convolution theorem we get,
¢
L'I[Fl (F}Fg'[p}] = Ifl (05t —1)dr (3.26)
Qs

where f£(t) = L[F;(p)] and £,(8) = L1 [F,(p)]

Ex. 3.6.6. Find L [—-—P—h—]

(p? + a2)?
v P 1 ;
Soln. Let L l[pz Lo ﬂz] ~ LR () Fy (o)l
where F(p)=—£2 =i
1{19) p2 - u‘.IE L] FELU} P ‘Pz o ﬂg

Now, filt) = L_l[pz faz] = cosat, by (3.11)
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i1 L 1. -
fg{ﬂ =I ][EW} = EHII'I at, b}i' {dlﬂ}

¢
L_l[m}z gcus ar%sin al(t — r)dr, by (3.26)

-

v

3

t
= | [¢sinat + sin alt — 20)]dr
0

JE 2 WAk gl |-
= o [tsmﬂ:t+ g 008 alt Ef}ﬁ]
O
= Ea.‘.‘smm!
- : Al 5
Ex. 3.6.7. Find L1+ —_|=[1
where f (p) = - and F,(p) = —L
1 J]_J 3 2 P P"i
_1 s
Soln. Here (1) = I ——[= L2 __1_ by (3.12)
= —gtl l"(l) J 1
P ] ma

fol®) = I [}Fi_l} = iy 1[1} - ¢, by shifting theorem and (3.12b)

&
O e ]: L _.t-rdr by (3.26)
[JI_J[P -1) J‘;JE]E

IV. INVERSION BY BREAKING UP IN PARTIAL FRACTIONS :

We consider here a method of finding I;l[%} where P (p) and @, (p)
P
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.are polynomials in p of degree n and m respectively. We note that since @ (p)/

P (p) is the Laplace transform of a function, which we are going to determine,
according to a property stated in Theorem-5 of Section (3.5) @ (p)/P, (p)-30 as
P—eo, Therefore the degree of the polynomial @, (p) is less than that of P (p),
i.e. m < n and consequently @ _(p)/P (p) is a proper rational fraction.Now to
find the Laplace inversion of such a proper rational fraction, we are to first
decompose it into partial fractions and then find Laplace inversion of each of

these partial fractions.

Now to decompose @ (p) / P (p) into partial fractions we first factorize
P (p) into real factors, which may be of four Lypes : (i) non-repeated real linear
factor (ii) repeated real linear factor (iii) non-repeated real quadratic factor
(iv) repeated real quadratic factor. To each of these four types of factors, the
partial fractions that arise in the expression for @, (p)/ P, (p) are the following
: (i) Non-repeated real linear factor : To each non-repeated real linear factor

p - o there appears a partial fraction in the decomposition of @, (p) / P, (p)

p-a
into partial fractions.

{i1) Repeated real linear factor : To each repeated real linear factor
(x — b)Y, there appear the partial fractions

7 -BJ,'
_gi(p—b]—"

in the decomposition of &, (p) / P (p) into partial fractions.

i

- (iii) Non-repeated real quadratic factor : To each non-repeated real
quadratic factor p* + ep + d, there appears the partial fraction.

Cop+ D
p*+ep+d
in the decomposition of @ (p) / P (p) into partial fractions.
(iv) Repeated real quadratic factor : To each repeated real quadratic factor
(p2 +¢'p+d’)", there appear the partial fractions
Hp? +ep+d)j
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in the decomposition of @ (p) / F (p) into partial fractions.

The constants A, B/s, C, D, C/s, DJ.’S can be determined by the standard
existing method.

: The determination of Laplace inversion of a rational fraction Q,.(p)P (p)
then reduces to the determination of the same for the partial fractions to which
the rational fraction has been resolved. Finally the Laplace inversion of these
partial fractions can be evaluated by the methods given in sections. T to III.

' 4 _14p3 g
Ex. 3.6.8. Find L—i[‘ip 14p” +30p~ —3p 111

pzﬂp— 3](;12 —4p+13)

4p4—14p3+39;33—3p—117= A _I_i Ez-—+ Cp+ D
p*(p-8)(p2-4p+13) p-3 p p* p?-4p+13

Soln. Let

4p* — 14p* + 30p? — 3p — 117 = Ap? (p? — 4p + 13) + B.p(p? — 4p + 13)

(p—38)+B,(p—3) (p* —dp + 13) + (Cp + D) pp — 3)

Setting p = 0, -117 = -39B, . B, = 3

Selling p = 3, 90 = 904 . Ve |

Equaling coeff. of p', 4 = A + B, + C

Equating coeff. of p?, — 14 = —4A — 7B, + B, + D — 3C

Equating coeff. of p?, 30 = 134 + 25B, — 7B, - 3D

Solving the above equations we get,
A =1,B =2B,=3C=1D=4

R B o
Therefore, L1 i 5 L +32Up Sl
pi(p-8)(p*-4p+13)

i [L} zL—l[l]Jr S gt R
p-3 p p? pZ—4p+13

e 49434 L1 —fii,f— +2L“[—-3T:|
(p-2)" +32 (p-2)" +32
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= o3t 4 924 3t + e cos B + 2e? gin3t
V. INTERGRAL FORMULAS FOR LAPLACE INVERSION

_ If it is known that F(p) is the Laplace transform of a function fit), which
vanishes for ¢ < 0, piecewise continuous in any finite interval of ¢ and is of
exponential order, then we have the following theorem for construction of the
funetion fit) from F(p).

Theorem-7. Let it be known that a given function F{p) of complex variable
p in the domain Re(p) > @ is the Laplace transform of a function fif) of real
variable t, which is such that (i) fit) = 0, for ¢ < 0, (ii) in any finite interval of
t, the function flt) is piecewise continuous and (iii) f{f) is of exponential order
O (e™) at t — ¢, Then

r+isa

f(t)= % jeF‘dp, where r > a (3.27 .

F—isa

Proof. Let us consider the function

ot)=e"f(t),r>a

fit) being of exponential order, there exist two positive constants a and M such
that _
|F(t)|s Me*t

(=1}

Therefore, I |wit)dt = J-E_r'tl fit)dt < MJ'E—t{r—a}dt
e 0 8

which is convergent since r > a.
In any finite invertval of £, the function @(¢) is piecewise continuous, since

flt) in so. Moreover the integral Jl(p{t]ldf is convergent. So in any finite

interval of ¢ the function ¢(f) satisfies Dirichlet conditions. Thus we can use
Fourier inversion theorem to get ¢(f) from its Fourier transform @(&) which
is

FE) = e [ o) =~ [otot)e
WE) =~ [ieteSii = —p [ o tietvds

128



Therefore by Fourier inversion theorem we have at places of . continuity,

o) = 7= [ BEpe e =~ [H-Eeidg

‘w'\l w\—

T IE_.E _1_m —F1] - iENg
L %JF fme Edn

]

& ] re vt

ol R e vdn, p=rig

A Tk T
o _Lffte F(p), dp = idE

F+ie=

L [ Fetrridp

r—i=a

1 P
Hence, fit) = jF{ plePtdt

F'IW

This completes the proof of the theorem.

Now the question that naturally arises is whether any function F(p) of
complex variable p is the Laplace transform of a function f{#) of real variable
t, and if so, how to construct f{#) from F(p). The following theorem gives certain
sufficient conditions under which a given function F(p) of complex variable p
18 the Laplace transform of a function f{#) of real variable ¢ and also gives the
method of constructing this funetion fl¢) Irom the function F(p).

Theorem-8, Let F(p) be any function of complex variable p, which is
analytic and is of order O (p~*)*, (k > 1) for Re(p) > a; also F{(x) is real for real
% > ¢. Then the integral.

*By saying that Fip) is of order Oip - k), we mean that there exists a constant M (> 0) such
that |F(p)| < M/|p |k for sufficient large |p|.
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1 r4i==
5 e F(p)dp

r—i=
is independent of r whenever r > a, and the function f{¢) defined by

==

fO)=5= [eMF(p)p,r>a (3.28)

P e
has the following properties :

(i) fit) is continuous for all £, (ii) f£) is of exponential order O(e™) at f — oo,
(iii) flt) = 0 for ¢ < 0 and (iv) F(p) is the Laplace transform of f{£).
Proof. To prove that the integral
g TR :
o _[e” Fip)dp

i ]

is independent of r, we consider the integral

T

I e F(p)dp Im(p) Rt
i

D r'+iRi

M

round the closed contour I' consisting of W J
straight line segments AB, BC, CD, DA
joining the points r + iR to r — iR, r — iR to 0
r'-iR, v — iR to r'+ iR, r'+ iR to r + iR
regpectively, where R > 0, ¥ > r, r > a.

k]
o
<
¥
5

Since the function eP* F(p) is analytic in B r-iR
the region Re(p) > a and since r > a, by
Cauchys integral theorem we have

_I'e*"F( pidp=10
.

r+ilt rHiR
or,— | eMF(p)dp+ [ eP'F(p)dp+ [ ePF(p)dp+ [ ePtF(p)dp = 0 (3.28a)
r—ill r'—iR . BC DA

On BC, p = x — iR, therefore we have
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¢

t [ it : " e*t
JEI;P F{p}dplﬂle |F{P}ldx<“"-"{|pmdx

rn’

- M [—efdx M [ty M 0 —e™
!(x2+R2)%‘ Rkie gy 3

— 0 ags B — ==

since k > 1.

Therefore, j' eP F(p)dp =0 a8 R — o=
§Tal :
Similarly we can show that

Ief’fﬁ'{p}dp >0 asR 5
DA
So proceeding to the limit B — == in (3.28a) we get

r+i=s F'tie=

| erF(p)dp= [eP'F(p)dp

= r'—jea
whenever r, r'> @, provided the integrals exists, i.e. the integral on the left
hand side is independent of 7, if r > a.

We now prove the existence of this integral and continuity of f{¢) given by
(3.28).

Let F(r + iy) = u (r, y) + v (r, ¥)
Since Flx) is real for real x,
Flr —iy) = u (r, y) —iv (r, y)

1

So [ul,|ul< (u? +v2)2 =) F(r + i)« —M— < M

perf

Whenever |y|> y,
e

Nuw, f(f) = EJJIEI ‘[ EPIF{,U-}EEP = ..2%;_ IE(F'I‘I:}':]EF(I. - Iy}l;(ijn'

e ]
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1l

I s e i
o © ﬁhﬂ‘ﬁ‘{rﬂyhie WR(r ay}dy]

= —2; e [[e¥ {ulr, y) + iv(r, )} + e ¥ {u(r, ) = iv(r, y)}|dy

%Ed I[u[r, ¥)cos yt — v(r, y)sin yt]dy
i

% "
%eﬂ [ 2ty tydy + [ #(y.t)dy
0 0

where giy, t) = u (r, ¥) cos ¥yt — v (r, ¥) sin ¥t

==l

| [ant)dsl< [la@ybldy < [[lutr, ) vir, y)dy
Yo Yo i)

Tdy 9% 1
coM [B o 2k 1 _ 4 4159
yj;v’* k=1 yg1

Hence the integral Ig{ ¥, t)dy is uniformly convergeni with respect to £
M

Further, since F(p) is analytic in the domain Re(p) > a, its real and imaginary
parts are continuous in this domain and consequently the functions u(r, y) and
vir, ¥) are continuous functions of y. Therefore the integrands of (3.28b) being
continuous functions of ¥y and { and the second integral being uniformly
convergent with respect to f, both the integrals in (3.28b) represent continuous
functions of {. Hence the funetion f{t) is a continuous function to ¢,

We now show that fiz) is of exponential order. From (3.28b) we get

re |10 =5
1f{t1li% [let,tldy+ [l tlety, Oldy
0 0
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A+

since the firs
= Be™ whore B

.iul

.%:1"”

t integral being bounded is leas than A,
is a positive constant

Hence flt) is of exponential order Ole™) at ¢ — <, where r > @.

Next we prove that fit) = 0 for ¢

= 0, To prove this we consider the Imip) P
integral ik
IEP‘F{ pldp AR

taken round the closed contour C| / A
consisting of the straight line seg- i % Heip)
ment AB joining point r — iR tor + iR e,
and a semicircular are Cp : |p—r| = il

T il
R, ~5<arg(p- <L where r > a.

g!

Since C lies in the region in which e F(p) in analytic, we have by Cauchy’s

integral theorem -

Jer Fp)dp =0

r

il
_f eP F(p)dp + IeF‘Fp
r-iR Cr

Since on Cp, p = i + Re®, we have

IEP‘F{p]dp {r+.ﬁ‘.r

Cr

ol L:.‘“"*‘

Hicosl ME

'—.Min

L

Ydp =0 (3.28¢)

]"1] F(r+ Re'® )|| Rie™|d8

do < Me” jdu

|+ Re®|

|
o]

Rkl
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Mne"t

5 . = _E{ {E ” Rtcosd
=T {Eﬂncet-:: 0 and cos 6 = Ofor 5 =6< zweh;wee < 1}

— 0 as R —3 e, gince Bk — 1= 0.

Therefore, proceeding to the limit B — < in (3.28¢) we get

r+i=s
= =
f#)=5— jf F(p)dp =0,fort <0 (3.28d)
We now show that F(p) is the Laplace transform of f{t). Since f(t) has been
proved to be continuous and is of exponential order, itz Laplace transform
exists and is given by

riio

L[f(®)] = je PLE(t)dt = j e mdz— jef#F{q}dq
= IW
Since the second integral is independent of r, provided r > a, we can take Re(p)
>r >a and r = Relg). We have proved that the second integral is uniformly
convergent with respecl to ¢. Hence we can change the order of integration in
the above and get

==

Lf®)] =, f qum}j et ddim o | dgF—ts

r'r.w rgw

q (3.2Be)

since, Re(p) > r = Relg), i.e, Re(p) — Relg) > 0.

The function % is analytic in the domain Relg) > a except at the point

q = p, where the function has a simple pole, We consider the integral

=5 Hq}d
Jmc_p—q

taken round the contour ' consisting of straight line segment AR joining the

points r + iR to r — iR and a semicircular arc Chilg—r|= R~ o) S =arg (g—r)= —

Since, Re(p) > r > a, the pole g = p lies inside the contour C’, if R is
sufficiently large. Therefore by Cauchy's residue theorem we have
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1 "‘J‘”_@d L F(q)

(3.28f)

LReiﬂlchi“i p for sufficiently large R

5

—

b

Relp)

e i e =-F
2n Jo P4 % EELChp—q ; (p)
5 i B
2 I ol
Now, | [ @4 ¢ | e+ Re P Rie Tje0
cp P79 & | p—r—Re"|
2
n n
2 T MRd9 r ]’: MRAO
i Elp-r—Reer+ReiH1k 9
4 2
Mn
=F—:~Dasﬂ-—>m I
Therefore, I (9)dg s 0as R e
Ch P—4q
So proceeding to the limit B — e in %
(3.28f) we get
AT
5t ) Feg e TR
I ies
r+ie
_ L FQ@ g, g, by (3.28
or, Lf (0] =5- F_L = _qdq — F(b), by (3.28e)

This completes the proof of part (iv) of the theorem.

Evaluation of inversion integrals : In many cases of applications, the
inversion integrals (3.27) or (3.28), which expresses the original function in
terms of a given function F(p) of complex variable p, can be evaluated by the
help of the theory of residues. Let F(p), which is defined and analytic in the
domain Re(p) > @, can be continued analytically in the domain Re(p) < a with
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exception of a finite number of isolated singularitics and let its analytic
continuation Flu.-} tends uniformly to zero in arg (p-—r), [% <arg(p-r)< ;5,2'-’_1_)
as |p —r| > e, then for ¢ > 0 (according to Jordan’s lemma)

jﬂ”*ﬂ[pjrfp —+ 0 as R — o,
Cr

where Cj, is the arc of the semicircle |p —r| =R, r > a in the left hand half
plane. In this case the integral in (3.27) or (3.28) can be evaluated with the aid
of the theory of residues,

For example, if F(p) itself be its analytic continuation in the domain Re(p)
< @, with exception of a finite number of isolated poles, then consider the
integral

[e? F(p)dp
o

taken round a closed contour C consisting of straight line segment AB
joining the points r — iR to r + iR and a semicircular arc Cp: |p-r| =R,

%E arg(p—-r) < %ﬂ We find by Cauchy’s residue theorem that
r+ilt
J‘ e’ F( pidp + JEF‘F{ pldp = 2ni % (sum of

r—it Cy

the residues of F(p) e at its poles lying within (Q),

If Fip) tends uniformly to zero in arg (p — 1), [% sarg(p-r)s ‘3;_27;') as |p —

r| = R — e, then according to Jordan's lemma the second integral in (3.28g)
vanishes as R — <. Therefore proceeding to the limit B — =0, in (3.28g) we get

o e

1 m
£ = = -pI'F {i - R 3 +
&) =5z | e"Fipdp ;,,2_1: #» by (3.28) (3.28h)

e

where R, is the residue of e F(p) at its k-th pole p = Py, If there are infinite
number of poles of Fi(p), then also (3.28h) holds good provided in that case the

sum ;R_.E is convergent.
=1
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The condition imposed on F(p) that it is of order O(p~*), k > 1, stated in
Theorem 8 ig only a sufficient condition and not necessary. The Laplace
inversion of F(p) may exist even if it does not satisfy this conditin we shall
see this in an exmaple of this section.

Ex. 3.6.8. Find by evaluating the inversion integral the function whose
Laplace transform is

20p
F(p)=————.
(p) (7 + 0%

Soln. The singularities of the function F(p) are at p = + iw, the real parts
of which are zero. So we can take r > 0 in the inversion integral. F(p) is analytic
in the domain Re(p) > r and the function itself is its analytic continuation
in the domain Re(p) < r, except at the singularities mentioned above. Hence
the function fit), whose Laplace transform is F(p), is given by the inversion
integral.

Fiea

Ft) = jEF‘ F(p)dp

rlm

= R, + R,, by (3.28h)

since F(p) tends uniformly to zero in arg (p — r), 5 _arg{p r}_ 2 , A8

|p — r| — . Here R, and R, are the residues of e”* F(p) at p; = in and
Py = —iw. As both'of the two singularies are poles of order 2, we have

ot t
R, = lim -—{(p—:m} T ¢’ Uip ]= ity ZOREC

p—in dp p? + w2 )2' p—viio dp (p+ f{j]]2

i 1 furt L -
20]{9 + tonte }_ A i ettt —ieiwf

(2iw)? . (2im)® 2

Similarly, Ry = e

Therefore [{t)= (e”‘" — e it} = ¢gin of
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Ex, 8.6.9. Find the function whose Laplace transform is, M, where
psinhap

both x and a are positive and ¢ — x > 0.

Soln. Let Fip) = M—, From this expression il appears that
psinh avlr;

p = 0 is a branch point pf F(p), but this is not so, as can be seen by substituting
the expansions of the hyperbolic functions, which iz shown below.

2 + o (xp) + o (wp)
pavb +F(ap) + F(adp) +...]

F(p)

1 1 ‘
(1 + :?jx p+= =] x4p3+...)

1
ap[] 37¢ 2p+ l_flr”’ p2+...:|

This expression shows that p = 0 is not. a branch point of F(p) but is a simple
pole and other singularities of F(p) are at the zeros of sinh a+p except at
p = 0, which are all simple poles. Now sink ayp = 0 when av‘r}? = T T
n2n?
a

0,1,2,..,i1e when p=-

,yn=0,1, 2, ..., . Therefore the singularities

of F(p) are at

2.2
p=ﬂ,p=—nag n=12,.....,

Now which are all simple poles.

R, = [esidue of # Fip) at p = 0] = Jim SB2VE _x
Pl Slﬂhﬂ-q'r_

R

2.2
[ residue of e#t F(p) at p=2 ::: s
()

i
e
8

nind )sinh(xmi 2 sinh(xy/p Je#!

(g 62 I
‘H‘& s p Hmh{“ p} P '5232 Pcmh(a@}%ap%
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nin?

zsinh[;tix ﬂ]e'?"‘.{ﬂnn} 9 _nZn?
AT 2 e o s I
BT 1 oosh| tia 2T la* e u
“a a
(1) for % 5 <arg(p—-r)=0<mn, we have
, 1.0
sinh(xu'r + Rem} smh[xR %e ? ]
Fip)= : — = for large R
(r+ Re‘“}sinh(u\’rr + Re'”) Reil mnh(uﬂ;e J]
.6 0
exp xRE[CDBE + :lsi_nﬁ] ;
= - = %exp{—(a - x]RE[cusg + i sin —g—)},
Re xp{uRE(cus-g- + i8in g)}
A
[. cos g > ﬂ]
1
(a RZ cos?

Therefore, [F(p}[-_- Z2o30asR=|p-r| ===

gince @ — X > 0 and cos E;:-{].

2
(ii) For n<arg (p —r) =8 < 3;, we have
L8 0
exp Rﬂ( 8=+ Lsin —)
2 2 8
F(p) = i ,sm{',ecusgc:{l
Rexp{ aﬂi(ms%+asmg)}
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i ¢
(a-x)R2 cos
e

Therefore |Fip)| = 2= 0 as R — oo,

since ¢ — x > 0 and cos %{(}.

; . 3
Hence, F(p) — 0 uniformly in arg (p — r), (% sarg(p-r)< ?ﬂ] as |p —r|
— =, Consequently the function f(¢), whose Laplace transform in F(p), is given
by

rpe
[ePF(p)dp, r>0

L

fit) =

2

(since real part of all the singularities are zero)

= >R, by(2.9)
=0
1 B 2
:i+gi{_1:|I P_ﬂn:;rsin@
a mnon i@

Ex.3.6.10. By evaluating the inversion integral find the function whose
1

s g S

Laplace transform is

Soln. Let F(p) =

This function has only one singularity at p = 0, which

Pu-rl o

is a branch point. In the whole complex plane with a branch cut along negative
real axis, the function F(p), which is that branch of the multiple-valued function
that assumes positive values on positive real axis, is analytic.

The function fi¢), whose Laplace transform is F(p) is given by the following
inversion integral

ri==

f0)=5= [erF(p)dp, r>0 (3.29a)

foefom
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We consider a closed contour € as shown in figure consisting of (i) straight

line segment AB joining points r — il to r

Imifp) B
+ iR and straight line segments CD and EF W=
drawn just above and below negative real i )
Lo () ol — T
axig, (ii) circular ares Cp 1 |p - r| = R, 9 Bl \
<arglp—ryem Cr: |p-r|=R,-n< F relp)

arg{p—r}i-gandcp: lp| =p, n<arg

(p) = mn i
As C is drawn in the domain in which

e I

et F(p) is analytic and single-valued by Cauchy’s integral theorem we have

[e? Fp)dp=0
c

r+iR

or, [ eP'F(p)dp+ j Pt F(p)dp+ [ e F(p)dp+ [et F(p)dp =0

r-ikt CD+EF Cp+Cp

(i) on Cp, p = pell

L s i
Thﬂl'ﬁfﬂ]'ﬂ, lim J EPEF(p}dp = lim IENE*H I dt)
p }u{'\ P—?'n 4
P

= Illm eptet® p—id;ﬁa 0, since —o > 0.

@2)YOnCp,p=r+ Re'®,

1 .

Therefore, |F(p)|= |r + Rei0jesl T Rutl

for large R

—3DasR o, since v+ 1 >0,
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and consequently F(p) — 0 uniformly in C,
Hence by Jordan’s lemma,
[eP'F(p)dp — 0 as R — .
Cr
Similarly, we can show that F(p) — 0 uniformly in C” z and therefore by

Jordan’s lemma

jeP‘F{p}dp —+ 0 as R > o,
Cr

Therefore proceeding to the limit R — < and p — 0 in (3.29b) we get (since
on CD, p = xe™ and on EF, p = xe-v)

o

A __“' ool gy T e-mo-ifds i
_[ el F(p)dp ,f putlpiol)n i 5 xO+lg-i(atn =%

r—ies ]

I fro ; o
1 sin(—om) 7 g-xt
or, fit) = 5,7 | ePF(p)dp= (ﬂ )J‘im dx, by (3.29a)
1]

p—iea

sin{—e)

&
t“fe‘“u‘“‘ldu, xt=u
0

= %sin{— e (= =<)

M
T Dl +1)

where we have used the relation I'(g) 11 — ¢) = —"— and set ¢ = — o
SN g

Ex. 3.6.11. Find by evaluating the inversion integral the function whose

Laplace transform %—e_“ﬂ , o= ),
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Soln. Let F(p)= ‘“'-"'_ The only singularity of this function is at p = 0,

which is a branch pomt. In the whole complex plane with a branch eut along

negative real axix the function F(p) with that branch of JE which assumes
positive values of positive real axis is analytic and single-valued.
The funetion f{t), whose Laplace transform is F(p), is given by the inversion
integral
ries

f(t)= 1 IEF‘F‘{p)dp (3.30a)

rrm

We take the same closed contour C as in Ex, 3.6.10. As C is drawn in the
domain in which eP'F(p) is analytic and single-valued, we have by Cauchy’s
integral theorem

JﬂF‘F{p]dp =0

c
r+ift .
or, [ eMF(pyp+ [ ePF(pddp+ [ eP'F(p)dp+ [eP'F(p)dp=0
r—ilt CO+EF CpiChr Cp
(3.30b)
(1) On C,, p = pe®
Therefore, hm J eP F(p)dp = llm I otpe® 2 pr & .ipe'?do
= - 111:!1 e’“EIH_”r "'dﬁ =—i Id{'.i =2
Jp—0
(2) On Cp, p= r+mfﬂ,%5em
|E--ml'ﬁ|[ms%+isin%}
Therefore, |F(p)|= . , for large R
erefore, |F(p)| ‘ Re® l or larg
—ixﬁmu% 0
= E-—R—{% — 0 as B — =, since WSE}G

for -zviElf-:'n: and o = 0.
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Consequently F(p) — 0 uniformly in Cg and so by Jordon's lemma we get

I'e”’F{p]dp 5085 R > =

Cr

Y T

(3) On Cj, p=r+Re®, “H<hE-G

| thr_[cus ‘H-EIII—l

Therefore, | F( p}lm’ ol ‘ for large R
e' “ﬁﬂﬂﬂ% 1 u =
A oo, di = 1 <_I
R {R—}{]ESR—} ,smcemazb-ﬂfﬁr <= 2.1;111{14:1::-[]_

Consequently it follows as stated for €y that

jﬂ”*F(p}dp —0as R - e
Ch

Therefore proceeding to the limit R — = and p — 0 is (3.30b) we get

Fties =
] Pt = 1 re™. _EJI_E g :
f#) = Eﬂf?r_{f Flop =1+ 5o | S g e d
R
1 '”e—xt_e—aﬁ"ﬁ —iﬂdx
T
(since as CD, p = xe'™ and on EF, p = xe-i"
T8t
= —J—sm{ar
)

_%f et S__m:;'“? dy, (by the substitution x = y%)
0

We now express this in terms of error function as follows,

We first evaluate the integral Ie“‘ﬂ" LT

13 o _E?. = "E[.’E—ﬁj
I—ar-umcdx_e Ij"*" 2 /oty

(3.30e)



2
[
= e "E_l'e"fzdz, where the intepration is along a line C through

o
z=-5
4t jﬂ"z dz, since the integrand is analytic in the whole

Re(z)=0

parallel to real axis in the complex z-plane.

1]
™

complex plane
ﬂg.""

_"""de =9 4t Je""’g dx

[}
™
&
b

& )
T 2 S L
[ J_J‘e /) du ‘(;e

Taking real parts on both sides,

o ¥
Ie‘f"‘s cos x dx = lﬁe 4t
2 2Vt

Let I{a) = je"“z -Si%@-dx. Differentiating under sign of integration we get,
0

- ’ _ﬁ
I'(e) = Ie'fxz m3mxdx=%\[%e 41
0

Since 1 (0) = 0, integrating this we get

/2t
Ia) = 2‘[7!9 arde = n je‘*ldfr

T 2 sinax @l
or _[e"'”‘ S dx=n j e T dr
tl x' u
0

Therefore from (3.30c) we get
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9 o/ 2T 5 "
S ok 1 — ) b
fiey=1 e | edr 1¢'(2JEJ

T o

e“ﬁdr is the so-called error function.

WhEI"E ¢I{x] = ‘—‘?2;

L=t ]

VI. HEAVISIDE’S SERIES EXPANSION
If F(p), the Laplace transform of a function /{t), can be expanded in a series
of powers of %. then from this i) can be obtained as a power series in . This

method of Laplace inversion due to Heaviside is stated in the following
theorem. -

Theorem-9. Let F(p), the Laplace transform of a function flt), be analytic
in the domain |p|> @ including the point at infinity, F(e=) = 0 and let it ean
be expanded in this domain in negative integral powers of p as

F(p)= Elﬂ,lp'“ .

in—l

Then f{f} = ";Iﬂ-n E‘!.——]_:IT {331]

Proof. From Laurent’s expansion theorem we find that the coefficients a,
are given by

e L e
%n = om IPEJ= ; F(p)ap, R > a (3.31a)

Since F (o) = 0, L.e., p = = is a zero of F(p), there exists a positive number
M such that

IF(p)|< 2 -tor|pl=p > a

Therefore from (3.31a)

anl S5 | 1ot F(p)ds = o B 1M onp - ppen-
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where ds is an element of arc of the circle |p| = R

a

Now we consider the series ), p’:iz . For the n-th term u_(p) = 5 of this
n=1

series we have

o MR
|H’u{p}| | In 2 = Rn -2

for|p|> R; > B> a.

iy
R il ] I I
The series E R-2 = MR, E[ RJ being a geometric series of constant

n=1 n=1

terms of common ratio %{ 1, is convergent.
1

Hence by Weirstrass's M-test, the series E
n=1p""

for |p| > R;. Therefore, corresponding to an arbitrary positve € there exists
an integer N (> 0) such that

is uniformly convergent

IR, (p})| <€ forn=N (3.31b)
E L ﬂ:k 5 ] 4 u’!
where R, (p) = ¥ 7.7 18 the remainder after n terms of the series E P
h=n+1 n=1 ’
I g p i
Now, J el F(p)dp - E _[ gt = % —5dp
r—ies b=lp_jee P

o =

- eﬂ*[ﬂp} z‘,—i]dp

]

BN o0
= ot L k.
y: r—J-i.:-:“‘:1 PE[ 21:" F ]d ‘

- " T
J‘ te{f-'-w]tl.m'ﬂn{pﬁdy i J' ;—‘2—-3;’—2, by (3.31h)

r+ i =
J ﬂ”‘[ 2 —‘;]dﬁ

i —ja k=n+l P

Tt
j i R, (p)dp

[
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= ne™ e= ke, for n 2 N, where & = nme™ is a constant.
This inequality implies that

r+is= n Fties P o o
| e"F(p)dp = lim 2 [ et Zhap=3 I ert L
o ] n=1p— fe= P H=lp—fea p

-1
or, f{t)= Zﬂ" i 1},; by the inversion formula.

Ex, 3.6.12, Obtain the Laplace inversion of

1

F(p) =
14 pg'

in a series of powers of £. Hence show that
Sy
sint = [Jy (1)t - D)t
0

where Jy(2) is Bessel's function of order zero.

Soln, Expanding F(p) in negative integral power of p, we get

1y 1 1
i %(“i}i% '1+i[‘ﬁ)‘E‘”*"['E“‘”‘”}(_ﬂ“

P n=1 n! pd‘

(-1)"135...2rn-1) 1 (=1)"(2n)! 1
E 2"?1-' 'P2n+1 - 2{24 Jn)E"n‘ Yn+1

1, $60@n) 1§D @ul 1
= P {2”‘ 1} pznu =h 2“.’!.'} p'.!u+1

Therefore, [(t)= L[F(p)]= Eﬂ( [1} [2; L [ pziﬂ}

[by Heaviside's series expansion|
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3 i [-—1}“{2?1}1 ;2?* & i an T
_ﬂg‘ﬂ (ERIL!)E ‘(ﬂn]' E{n‘i"‘] (3] )

Since, series expansion for .Jy(t), the Bessel's function or order i, is

et {_._]_}“ ¢ A+EN
‘hﬁhzzﬁ?n+nnn+l+u(ﬁ

RN MR !
PP+l p?41 p+l

We can write

Therefore L1 [—51—*] =L rl g =
pe+1 Jpi+1 |pP+1

L
or, sinf = IJn{t}JU{i —1)dt, by the use of convolution theorem.,
0

VIL. ASYMPTOTIC EVALUATION OF LAPLACE INVERSION INTE-
GRAL

By evaluating the Laplace inversion integral, the original function f{z) can
be determined from its Laplace transform F(p), But in many problems of
applications it remains sufficient to know the value to flt) for large ¢ instead:
of its exact analytical form. For such cases a method of asymptotic evaluation
of the inversion integral is very much needed. The following theorem, which
is- stated without proof, gives a method of asymptotic evaluation of the
inversion integral for large [. '

Theorem-10. Evaluation of the inversion integral

e

ft) =5 [ePF(p)p

P

for large t can be obtained from the behaviour of F(p) near its singularity with
largest real part. Let this singularity by p = pg = a + ib, a < r. We now make
the following assupmtions, Let p = x + iy.
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(i) F(p) is analytic in the domain Re(p) z a — 8, 8 > 0 except at p = p,,

(ii) F(p) — 0 uniformly with x for a - 8§ <x <7 as y = * e in the region
a—dzx <

y
(i1i) The integral j|F{ p)ldy converges fory — £ = in the region a -8 <x < r.

If F(p) can be expanded near p = py in the form

i

F(p) = Eﬁﬂﬁﬁ@"ﬂpﬂmﬁi%@—%fﬂﬁﬁﬂ,

n=—m =4

where the two series converge for 0 < |p - py| =1. then fit) has the following
expansion for large t.

[(t) ~ E.nuz[a l+su::t[3 E}D( 1)"b,IM(1-B+n)——— B ﬁ+:|:i| (3.32)
Ex. 3.6.13. If Laplace transform of a function flt) he £ i

find

_El
1+J;

Soln. We are to consider two cases according as x = 0 and x = 0.
(i) for x = 0

asymptotic expansion of fit) for large £

-1
In this case the expansion for F(p) = %[1—% J%] becomes

-3 (Bf +(0)- (8

[1+1+p

1 2
=l B . D
e 2 + * = A
k? ] L}é ke ph ]

Bo far large ¢ we have
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sing| 4 F(E) 1 [z] 1, &

£~ 1= : —..I,b (3.32)
A I 77T AR T g

-1~ t e 1 13 ]
Jr| ks okt zﬂ(kr}‘?/

(ii) For x # 0.

o
_,“f_
1 g "'k becomes

In this case the expansion for Flp) =

= 1
5 1 —x B
Fp)= 5 1+~J%I ok

[
=
=t
|
T
==
o, S
=]
+
A
=
j TR
[
T
==
-
b2|ca
Bl
T |
(=}
I
Py
F e
==
b S
b=
+
IR
jem———
==
f T
|
ol 8
_—
|
N
=]
+
———_

|
<3 (2
'_l.

[
———
==

|
—
=
Y
b
T
+
= |
P
Sk
+
=
+
[y
L
[
o
= |
M
talea
T
o|R
."_
L\:||HN
-+
=
1
L
—
+ U T |

=Lyl —2+x+1 1 1+ 2)+ -2 £ -"-‘E+x+-1 |
p k|2 k/E kﬁ/ ar "

Therefore for large ¢ we have

L 15). s

k% ;V (—+--—+x+ 1]+

s%.n!!- 1"[1)
f(e) ~1- EE_ l/t/




Ex. 3.6.14. Assuming that the Laplace transform of Jy(t) is 1/\/1+ p2, show
that the asymptotic expansion of Jy(t) for large t is

S (2) ~ J—gcns[t—%)[l— 12332 +‘,.:|+ %sin(t—%) 8_11.‘_]

1 Y oo
Soln. The Laplace transform Fip) = to Jy(t) has two singularities
1,|'|1+ p?

at p = + ¢ and the real parts of both are same. So we are to take contributions
from both these singularities. If £, (t) and £ () are contributions from the .
singularities p = i and p = - [ respectively in the asymptotic expansion of .J,(t),
then

Jolt) ~ fi @) + f_(8)

(i) To find f, () we expand F(p) about p = i.

1 1
F(p) = 1 =(p-i)2[2+(p-i)] 2
(p-iy2(p+i)2 S

, 1
e SR p-i|z
(p—i) 2@[1+——2£ ]

1 _% i s e
= N 2 (p—t 4! p-i 6! p-i
ol [T C=) R )
= -ﬁ[ 22\ 21 ) 9242122\ 2i 2463125\ 2 ) *

= (p- i)‘% %{1 i f,)[1 e {”2;)2 (pz—r's')f {2;!2)2 [Pg_; ET » {3!?3}2 (*“g_i ‘;Jﬂ...]
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Therefore, £, ) = 8 2300 QP w%h @) @rdh

.[r@ w M) o }

E;t

(1

”Ly e, }

Similarly, £.00 = S (1+D F T +}
imilarly, f_(£) = J" E gitte 1987

Therefore fit) ~f, (&) + f. (©)

=ﬁﬁ{*"ﬂ+e_” 5 +le - _”)t}/ }

1 + A ] 9
- —= t+ —s=int |——+...
(ﬁm V2 198¢72 ]

& %[m}s(t— %](1— %4—.. .)+ sint _%](B_lt $oo ]]
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3.7. SOLUTION OF LINEAR ORDINARY AND PARTIAL DIF-
FERENTIAL EQUATIONS

By the help of Laplace transform the problem of solving linear differential
equations, both urdinar}r and partial, can be reduced to problems, which are
easier to solve than solving the original ones. Ordinary and partial differential
equations with constant coefficients, for instance, reduce respectively to
algebraic and ordinary differential equations, which are rather simpler to
solve, These reductions of ordinary and partial differential equations and
finally finding their solutions are made in the next two subsections. In the last
subsection it is shown how in some cases ordinary differential equations with
variable coefficients can be solved by the use of Laplace transform.

L. ORDINARY DIFFERENTIAL EQUATIONS WITH CONSTANT COEF.
FICIENTS

We consider the following oridinary differential equation with constant
coefficients together with initial conditions.

@y () + @y V(). 4a, v(t) = f(2) (3.33)

YO0) = ¥, ¥'(0) = 3y, Y N(O) =,y : (3.34)
where yg, ¥1, ..., ¥,.1 ATe Some given constants.
The coefficients ay, a;, ...., a, of the equation are constants, flt) is a given

diy
did

Taking Laplace transform of (3.33) we get

funetion and y“(¢) =

aﬂ[pn:ﬂp}_pn-lyn - pu—-ﬂyj_“_l},uql}

ity {Pu_li"-{P} = Pn_z.'}"u = Pn_s.}"l_- . -_J’n_z]

'i“'f’-“'m:—1|:1i5l F{p-] g .}'{]]
+a,5(p) = f(p),
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where 5(p) and f(p) are the Laplace transforms of y(t) and flt) respectively.

Q;,.,(P}
of e?* ( )
f ot Q,.l,-l:p]

P( )

or,

or,

where

Therefore ¥(P)=

Since, @1 (p) = ap, we can write ¥(p) as fulluws,

Now let w,(t)= L'i[

If the zeros of P,(p) are at p = p;, Jj =1, 2,

¥(p) ﬂl{]pu + Elﬁn_l""“""au]
—j’n[ﬂup""l -+ ﬂ-l_pn_z“i‘... 'ﬂ'?!-—l]

—yl[aup”‘z +ap" i+ "ﬂn—E]

~Yusldop + @]
~Yn-1%0
= f(p)

it—1

y(p)pn(p) = EJ’#QA: () + f(p)

Pn(_p} =ayp" + @, p" . Aa,

Qk (P} . ﬂupn—(k+1}a1pn {k+2}+. o

EJ"'.#, Q.h(f-’} -F[P}

e Q.F.:(P] f(p) @,_1(p)

B (®) " 4 “P.(p)

ﬂp]_z’* P(p) @ Py(p)

Q(p) ]
F,(p)

© (3.35a)

(3.35b)

(3.35c)

(3.35d)

... = 1, then the singularities

areatp=p,j=12,...m=n which are poles. Let Ry; be the residue

Q.i; (p)
P (p)

at p = p;. Since

155

is the ratio of two ploynomials and the degree



Q,J; (p)
" B, (p)
— 1| — e, where r iz greater than all the real parts of pys. Therefore according
to (3.28h) we have

of @ (p) is less than that of P,(p) — 0 uniformly in arg (p — r) as P

i
Wip(t) = Elﬂfaj (3.35¢)
=
: ) ' Q_JE{P} e ;
Wi(¢) can also be obtained from (3.35d). by resolving P.(p) into partial
173
fractions as explained in See. 3.6(iv),
Since, LIAt) = [(p) and L[w“_l{t}]=%%i-£—} we have by convolution
n
theorem
| fp) @ap)]_ 1%
L [“u B ‘augﬂ")‘”u-lft"‘}d‘ (3.350)

Hence taking inversion of (3.36¢) we finally get

‘n-1 t
AE)= Ny )+ = [Hoy, (- Dde (3.35g)
k=0 g 5

by the use of (3.35d) and (3.35f), where \; (£) is given by (3.35¢)

If @MP_} — 0 uniformly in arg (p — 1) as |r — p| — ==, then without
iy Pu (P}

using convolution theorem we have the following expression for the Laplace
inversion given in (3.35f),

L.;[ﬂﬂ Q,,_lszm] -3,

Gy P.(p) {3.35h)

where 5;'s are the residues of the function EP*_M_ Qi a(p) at its singularities

P = qj, which are supposed to be ploes.
Ex. 8.7.1. Find the solution of the equation
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x"(£) + x'(f) = sint,
satisfying the initial condition
%(0) = 0, £'(0) = -2,x"(0) = 0.
Soln. Taking Laplace transform of the equation we get

[P3%(p) - p2x(0) - px'(0) - x"(0)]+ pX(p) - x(0) = p21+ 1
=T B 1
or, (p?+p)E(p)+2p= P ]
s 1 (3.36)

or, H(p)=-—
P41 p(p? 41’

since _—17 _» 0 uniformly in arg (p~r), as |p—r| = e, when r > 0,

p(p* +1)°
-1 1 "
L —2——2 = RO + R_1_ + R
p{p + 1)
where R, R,, RB_ are the residues of the function eP‘.—i—E at the poles

plp®+1)

p=0,p =i p=-i respectively.
p = 0 is a simple pole and p = & i arc ples of order 2.

: 1
Ry = limeft———=—up =1
P (p% o+ 1]2

. I et S T
Ry = Hm =« ——— =—-—te" —5e
BT I B S T
R" _!}E’I}fdf’{p(p—iﬁ}F TR
Therefore taking inversion of (3.36) we get
x(t}=1—-cust—%£sint—25in£
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Ex. 3.7.2. Find the solution of the equations
x(t) = A+ Qy'()
and ¥'(t) = —Qx'(2)
satisfying the initial conditions x(0) = 0, ;.r{{]'] = 0, 2(0) = u, y(0) = v, where A
and Q are two constants.
Slon. Taking Laplace transform of the two equations we get

p¥E(p)—u = %+ Qp¥(p)and p23(p) —v = ~Qp(p)

2% (p) - Dpy(p) = u+ X
or, P7E(p) = Qpy(p) = u+ p}
P*¥(p) +Qp(p)=v
where ¥(p) and y(p) are Laplace transform of x(t) and y(¢) respectively.

Solving the above two equations we have

A+uQd i
p(pz + gz} 2+ QP

x(p)=

—AQ I ufd 4, =y
PZ(PE A 92] p{pﬂ i ﬂﬂ} pE gt 92

y(p)=
Breaking up into partial fraction, these two equations can be written as

E{p}_ﬁ.+uﬂ[l p ] It 0

@ |p e e e

e | 1 |1 1 v Q
—_— | — + Ty
Hri=<g L‘- p? +92} H[P p2+ﬂz] Q’ p?y g2
Taking Laplace inversion of these two equations we get the following solutions

of the given equations by the use of the formulas given in Sec. 3.4,

(A +v82)

x(e) = =5

(1-cos E!t]-li-%sinﬂt
W(t) = —%{t ~sin Q1) —& (1~ cos 1) + S sin Q¢
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II. PARTIAL DIFFERENTIAL EQUATIONS

We consider the particular case of a function depending only on one space
co-ordinate and time. Let a function ulx, t), (f > 0) satisfies a partial differential
equation together with some initial and boundary conditions. I the co-
efficients of this equation do not depened on t, then taking Laplace transform
of this equaiton and the boundary conditions with respect to ¢, we get an
ordinary differential equation for i(x, p), the Laplace transform of u(x, #),
together with some boundary conditions for i(x, p). Solving this ordinary
differential equation we get @(x, p), the Laplace inversion of which gives the
solution of the partial differential equation.

Ex. 3.7.3. Find the solution of the equation,

%%=a2§i—g,x =0,t=0,
which remains bounded for x = 0 and obeys the following initial and boundary
conditions.
wilx, 0) =0, u0,t)=fe).
Soln. Taking Laplace transform of the equation and the boundary condition
with respect to f, we get

ot = a? _,;fiﬁ

dxz
(o, p) = f(p) |
where @ =%u(x,p) and f(p) are the Laplace transforms of ulx, ¢) and flt)
respectively.

The solution of the above ordinary differential equation, which remains
bounded for x > 0, is

Jr

@(x,p)= Ae "a -«
Setting x = 0, we get
w(0,p)=A or, f(p)=A

Therefore the above solution becomes

L LT :
#(x,p)=fiple & =f(p)E(p) (3.37)

J4r

where g(p)= e o, We can write
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1,2,

E(p)=p=e a =ph(p)

g~

ST
where p(p) :.'}_;,e a

Now if h(p) is the Laplace transform of a function A(f), then

ot

A1 <dE, i :
h-(t] = L 1[_.2 [+ :l: 1—-_ e v dT, b}i’ Ex. 2.&‘-11
b VT J{;

LIk'(t)] = ph(p)— h(0) = ph(p)

; 9 7 _1
Since, M0) =1 - = |e v dt=0
JE;[

2
= T ’ e =~ x
Therefore, L1 ph(p)|= h'(t) = —=e 4u2:[_]
[ ]] vn dath

P

or, L Yg(p)l= ;ﬂg_m = g(t),whose Laplace transform is g(p).
2avnt /2

Hence by (3.37) using convolution theorem we get
t
u(x,t) = [ f(E)glt - E)dE
L
2

¢ 3 e i
e (1) 4;:;2{5—:}[!-_‘.:
2avn o(t— 1:}% .

Ex. 3.7.4. Find the solution of the equation,

g_g:r%%(rzg—ﬁ). t>0,0=r=a

satisfying the initial and boundary conditions :
wir, 0)=0,for 0 =r=a, via, t) =vy ¢t > 0.
Soln. Taking Laplace transform of the given equation and the boundary
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condition with respect to t we get

kd(zd;ﬁ,)

Pﬁi?‘s;ﬂ}:r—gg g 7 (3.97a)

- u :
gnd. . Bla;p)= Fﬂ (3.37b)

where G(r, p) is the Laplace transform of v(r, ) with respect to £. In deriving
(3.37a) the initial condition vir, 0) = 0 has been used.

To solve the ordinary differential equation (3.37a) we set 7 = ) Then
r

the equation becomes

& o
dr? f
the solution of which is

f= Ae‘g: + a'.%’ae_\['Er
Therelore, ¥ = %[AEEF - BE_‘(%.]

For small r, 7 = %{A.-{- B)+0(1)

For ¥ to remain finite we must have A + B = 0 and consequently the solution
for v becomes

= _ smh ﬂtr

herea = ——
» W JE (3.37¢c)

By the use of the condition (3.37b) we have

Uy sinh By/p a

20 o= PN =i ;

p o where p=—- (3.837d)
Eliminating A between (3.37¢) and (3.37d), we get

_ 1y gsinhoyp

] o —Hsinh EJ; (3.37e)

Following Ex. 3.6.9. we find that
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41 sinhadp|_ o, 2 i{—lﬁng )
B S]Iﬂlﬁ@ B ln'“,—]_ n ﬂ
22
o i n=fmst
=£+__2_E( ) T2 g

¢ W4 n

where x and @ are repalced respectively by o« and p.
Therefore from (3.37e) we get

2.&5;2!
e _1 n_n 1
ulx, t) :uug#"—l-gzi ) e a% ginBM
rije m&l on a
2 jin2y

A | o -
U 1+2—aE( ) e of gipnlW
= r 1 a

Note. This example solves the problem of conduction of heat in a sphere
which is initially at zero temperature and whose surface is maintained at a
constant temperature. Here v(r, 1) is the temperature at a distance r from the
centre of the sphere and at time t.

Ex. 3.7.4. Find the solution of the equation

e 0% 0 oo puy 4 0
e AR o rsw
satisfying the following initial and boundary conditions
u(,0) = 0, % (x,0)=0
u(0,2) = asinwt,u(l,t) = 0
Soln. Taking Laplace transform of the given equation with respect to ¢, we
get

S dEE R o = i
¢ I pru — pulx,0) ot 1(x,0)
which by the use of the initial conditions become
g .0
L (3.384)

where i = @i(x, p) is the Laplace transform -of u{x, t).
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The Laplace transforms of the two boundary conditions become

[AiH]

(0, p) = ool u(l,p)=0 (3.38h)

w2’

Solution of the equation (3.38a) 18

=i £x 'E'I
i(x, p)=Aec” +Be ¢
The conditions (3.38b) therefu'r.e_ give
ol

0 S
A+B=—"2—- Aec +Be ¢ =0
pe+m

Solution of these two equations for A and B give

pl pl

ame © 1 e e

= - o,
2(,02 + ruﬂ)sinh% g(pﬂ 4 m"}')sinh-f—.'!

With these values of A and B, § is given by

cn Ty
i ginh 5 (I - x)

wix,p)l= o
pz o+ e sinhfﬂi (3.38¢c)

The singularities of this function are at
(i) p = £ iw, which are simple poles

(i)p =+ EEEL‘E (n =1, 2, ....), which are also simple poles.

The real part of all these singularities is zero.
Tt can be shown as in Ex. 3.6.9 that if(x, p) — 0 uniformly in arg (p —r),

X carg(p—r)< 3—“, where r > 0 (since the real part of all the singularities is

2 )
ZET0).
Hence,
u(x,t)= Y, (Ry +R,) (3.38c)
n=0
where Ri, R, are the residues of eP'u(x,p) at p = +iw, p = —i0 respectively
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e Tine
IE Y p b

and R+

nr

R; (n #0) are the residues of the same function at p =

respectively.

cox (2] ane ]2 o)

G T - 2iw s‘inh{@'{-} : —2iw Sinh{_ @} i
c i«

asin % (I-x)
————ginut
sin %

I

(ii) R + Ry, for n # 0

= EE}‘IEI am l
_mn’c? + w? ‘ i~-:~u:-s}:t[1rt.-hr1.)
2 i
_fting, . smh{— k= x}}
pon o {
3.2 2
. ?2{.' +w?  —cosh(-mnin)
et _mingt
= - zﬂamcé o 1 sin(n —E-TE]H R
0?1?% — n%n2c? icosnm {

__ 2awel (D)™ gip [T o Pt
m2]? — niéglp? {_Hn

2awmel . Bnx . nwet
= s 8in
W% — n2n2c2 l l

With these values for Ri,B; (n=0,1, 2, ..) the expression (3.38d) gives

for wuix, t)

. )
uix, ) = wsﬁn ot + i 2awcl gin 2% g BACE
1) =
sin 2 Ziw?l? — nin2e? { I

Note. The example solves the problem of vibration of a stretched string
of finite length whose one end is fixed and the other and vibrates periodically.
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1II. VARIABLE COEFFICIENT ORDINARY DIFFERENTIAL EQUA-
TIONS

By the use of the formula given by (3.19), i.e. the formula
F)(p) = (-1)" L[t (1)]

d™y(t)
i !

m, n are positive integers) in terms of derivatives of y(p), which is the Laplace

transform of y(f). So a variable coefficient ordinary differential equation having

m
terms of the type ¢" % can sometimes be (ransformed by Laplace

transform into such an equation which can be solved easily.

where F(p) is the Laplace transfrom of fit), we can express terms like t"

Ex. 3.7.5. Use Laplace transform to solve Bessel equation of order zero.

d%y  dy
bar

satisfying the condition y(0) = 1.
Soln. By the use of the formula (3.19) we have

+ty=0

. l'fz_'}-' [ d .dzj-' _d P ’
(i) L[I _d.-EH—} = (—1}5{.&«[?}] —= E[PJJ"U}) = p}r{[lj =y (U}]

dy 2 ;
= —p2=2L —2py+1, since ¥(0) = 1
B dp By .

dy

(i) Lityl = {—1)1%{ Liy)=-Z

Here ¥(p) is the Laplace transform of y(#).

Therefore taking Laplace transform of the given equation we get
dy = i dy
2 =k po el
P 2py + 1+ py 1 I 0

By dy
o (1+p2]d—§-+p}f={}, or ?"'=——P—.:fp

Integrating this we get
Iny = - %In[1+ p?)+1Ine, cis a constant.
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. 1
or, }’:-—-'3—-——5[1+—1—] *
JitoE BU B
Expanding this in negative integral powers of p, ¥ can be written as
(similar to Ex. 3.6.12.)
Z e o« D" (2a)
',[=l}{2"n1}2 . pzaul

Term by term Laplace inversion of this, which is possible according to the
theorem-9 of Sec. 3.7.(vi)., gives

y(t) = r"z‘b ;,, ,jr) t2n

Since y(0) = 1, we have ¢ = 1, Therefore the solution of the given equation
becomes

y(t) = i s B4 o (E)
= 0(2” Hi) T}
Ex. 8.7.5. By the use of Laplace transform find the solution of the equation

dy
dt dt

satisfying the initial condition y(0) = 1

2+2 +ity =sind

Soln, By the same procedure as in the previous example the [ollowing
equation is obtained after taking the Laplace transform of the given equation.

dy . - = o dE
—p2 Xy e B A
P = 2p_}-'+1+29y 2 dp =T 2

dy 1 1

or, dp p241 (p? +1)

' dy 1 1 1
Therefore < |o =t = | _pal, 4
[dp} [J’2+1] [p3+1 p“+1}

t
= - gint —J'sin tsin({t — t)dt (by convolution theorem.)
0
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1l

]
= sint - %I[cus{zf —t)—cost]dt
0

o Sarr= Ly
=— 2smﬁ zttusﬂ
By the use of the formula L[ty(t)]= --EE, we get L--‘[ﬂ] = ~ty(£).
dp dp
Ilence the above relation gives —py(t) = —%s'm g_%mst
= B ginih Lo
or, ¥(t)= msmm zmset

which is the solution of the given equation.

MODEL QUESTIONS

I. Short Questions

1. Define Laplace transform of a given function.

9 State the conditions for the existence of Laplace transform of a function,
3. Deduce the (i) linear property, (ii) similarity theorem, (ii1) shifting
theorem and (iv) iranslation property for Laplace transform.
4. Find (i) L (eM), X being a complex constant, (ii) L (sin wt) and L (cos wi),

o being a real conrtaut, (iii) L{t"eM), (iv) L(sin wt.e™) and L{cos mt.eM), (v} L

(t cos wt) and L (¢ sin o)
5. If F(p) be the Laplace transform of a function flit), then assuming the

necessary conditions, show that lim F(p)=0.
p-yee :

6. State the prove Initial and Final value theorems,

II. Broad Questins

1. Prove the Theorems 1 — 10 for Laplace transform.
9. State and prove the eonvolution theorem.

t
3. Assuming the necessary conditions, find (1) L(If {T]d't} {ii) L{ﬂ L -1
0

4. Describe various methods for the inversion of Laplace transform.
5 Describe hwo Laplace transform solving (i) linear ordinary. and partial

differential equations with constant coefficients and (i) ordinary differential

equations with variable coefficients.
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IIT. Problems |
1. By evaluating the inversion integral find the function whose Laplace

e e

(p% +6p+13)° (p? +a2)?

transform is (i)

Ans. (i) 3¢ ¥tsinz (ii) 2flla"i.’ﬁin al — at cos af)

2. Show that L[J,(t)] =

Hence find L[J,(#)] and L{E‘”*’Jn(pt}]

1
.1.|'p2+11

1
Ans, 1- £ i
'jPﬂ"'] J(p+a}2+1

3. Show that [dJ,(#)dt =1
0
4. By the use of Laplace transform above that

costx ;5. _ W
J’x2+1dx et f=0

5. By tha use of Laplace transform find the solution of the equation.

(i) dtg 20 dy + By = e’ sint, y(0) = 0, y(0) =
(ii) i:;‘ + & = tcos 2¢, x(0) = 0, x’{l}} =
(iii) j:f o cézg +x = sint, x(0) = x°(0) = x(0) = x”(0) = 0
(iv) j—:f“ + % =cost, x(0) = 0, °(0) = -2, x™(0) =
(v) %— =e‘,%+x=sint. #0) =1, y(0)=0
Ans. (1) ¥{t) = %e"‘ (sin ¢ + gin 2¢)
(if) () = Ssin2t—Ssint - Ttcos 2t

(1) x() = %{E—Eﬂlsint—%tcnst
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f _ _l _i f
(iv) =x(t) = Etcusr. zmnt

(v} ity = %- (et + cos t + 2 sin t — ¢ cos ), y{t) = %[t gint —e! + cos i
— gin {)
6. By the use of Laplace transform find the solution of the equation,
'+ (1—20y -2y =10
satisfying the initial conditions, ¥(0) =1, y'(0) =2
Ans. y(t)=e¥
7. By the use of Laplace transform find the solution of the equation

i d*u , 1 ok
E:A['&_J‘f.;}],uﬁri:ﬂ, t=0

satisfying the initial-boundary conditions : (i) u(r,0)=0,0=r = a,
@) wla, 8 = g, £> 0

a 1 :'I.Iigzi Jn [L ‘15 )
. LT o s ]_ — 2 —_ al . —ﬂ'__
Ans. ul(r,t) = u, HZ,- = e 7,(a)

5

where, 1, is the s-th root of the equation Jy(x) = 0 in x and consequently
Jolo) = 0.

8. For the following problem find v(e) by the use of [inal value theorem.

dv _ ;;{_3_‘9‘,1", 1dv

Equatinn:ﬁ— P rar],{liriu,tbﬂ

Initial-boundary conditions : v(r, 0) = 0, 0 < r < a, vla, t} = vy, ¢ > 0.

Summary : In the present unil, the concept of Laplace transform,
conditions for existence and inversions have been introduced. Laplace
transforms of some particular functions have been obtained. It has also been
shown how this transform can be applied to solve differential equations arising
in practice.
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CHAPTER 4 00 HANKEL TRANSFORMS

Structure

4.0 Introduction

4.1 Hankel Transform Definition and Inversion Formula
4.2 Hankel Transform of Derivatives

4.3 Finite Hankel Transform : Definition and Inversion Formula

4.4 Finite Hankel Transform of Derivatives

4.0 INTRODUCTION

(German mathematician Hermann Hankel introduced another type of
integral transform, known as Hankel transform, which is very different from
Fourier and Laplace transforms. Hankel transform occurs in the study of
functions and is widly used to transform partial differential equations into
ordinary differential equations, specially for problems arising with eylindrical
polar coordinate system. Here the integral Kernel is not in the form of
exponential function, but Bessel function.

We in the present unit, introduce the concepl of infinite and finite Hankel
transforms, their inversion formulae, derivalives etc. :

4.1 HANKEL TRANSFORMS : DEFINITION AND INVERSION
FORMULA

Hankel transform of order v of a function flr), 0 £ r < =, denoted by H,[fir)]
15 defined by the integral,

HUF0I1 = [rfe)d, (Gydr, for o> -3 (4.1)
]

where o, (Er) is the Bessel funclion of order v and argument &,

The corresponding inversion formula is slated in the following theorem.
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Theorem 1. If the integral _[ f(r)dr is absolutely convergent and flr) is
a

continuous in the neighbourhood of r, then
fir) = [ £ F(&4, (e (4.2)
L]

where £,(£) is the Hankel transform of order v of the function fir).

We give below the proof of this theorem for the particular case of v = 0,
which can be stated as follows :

Theorem 2. If the integral If{r}dr is absolutely convergent and flr) is
0

continuous in the nuighhnurhuﬂd of r, then
() = [ € Ry &)do(5) dE (4.3)
0

where f (£ is the Hankel transform of order 0 of the function flr).

Proof. We can write

fir) = f(-..ﬂ'x” - yi} = g(x,y), say, (4.4a)

where- x = rcogs 0, y=r sin B,
D=r<e= 0=0<2n

The two-dimensional Fourier transform z(k,0) of the function glx, y) is |
= STl iU+l
Bk =5 L ig{x, yyeilhendy dly
o 2y
= oL [ [ et esordodr, wheve £ = Ji# + 1P and where we
na
have taken the line joining (0, 0) and (%, I) in xy-plane as the initial line.

v amn :
= J-r,-"{r]Jn{ﬁr) dr, since Ie‘lm“dﬁ = 2mef y (A)
0 i
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Therefore, #k) = [rf(r)dy(Endr=fy(é) (4.4b)
]

By Fourier inversion theorem we get,

-1 ([z itk +ly)
8(6,y) = 5= [[ 7 (e, De-hertnal di

L[ 7 (&e iorososigis, by (4.4b)

2

St
o B

o 2n :
= [do-Enfy(ntat [ [ e-irenstgp = zmﬂf—m]
0

0

where the line joining (0, 0) and the point (x, y) in A/-plane has been taken as
initial line and & = £ cos ¢, ! = £ sin ¢

Since by (4.4a) flr) = glx, ¥) and Jy(~x) = Jy(x) the above rolation gives

fr) = [ERo @y (Erde
0

This completes the proof of the theorem,

4.2 HANKEL TRANSFORMS OF DERIVATIVES

Instead of deriving the formulas for the Hankel transform of the
derivatives of a function, we derive in this section the Hankel transform of a

function when it is operated on by the derivative operator o Bl
this iz needed in solving boundary value problems by means of Hankel

transform.

s

ﬂ.plﬁ_ﬁf
drsit ol pte

where [ is a function of r, 0 < r < =, is given by

F ———

dr2  rdr 2

H“[dﬂf 1df u'z:|
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:]:[‘”f Lel ﬁf}Ju@r}dr
0

Now, (a) j——u (Erdr
=N df d df
_[:Juigr}g;]u Id (rd (€ ) g

= --J-g-{rJ §r}}%dr, assuming that the expression within the square

bracket vamshes at r = 0, =

=|-& F r I m_‘f;z_ AL
_{ Ardu (¢ }}f]u + ga’rz {rd (Er)}fdr

= [ Lo, €} far (4.58)
0

assuming that the expression within the square bracket vanishes at r = 0,

Also () 9L, (& rydr =1, - [1 59, ndr
0 Lt}
B e (4.50)
: dr " 4+
assuming that the expression within the square bracket vanishes ar r = 0,
Therefore by the use of (4.5a) and (4.5b) we get
d2f | df _
i [ rar f f]
I 2 i
- [rof gt nt- Gl en) -0 r) |dr
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f{r}[r FTen 2L en-Len - e ]r

II
2 oy

=J f{r}["i {&H-—J (&) - L Ju{&}]dr
- [ Lo 2 L0~ L pin =5
L] .

= _gﬂT}f(rnJu (&) dr = —£2f, (&)
L]

Since, Bessel function of order v satisfies the equation

d?J,(p) 1 dJ,(p) p2 -
@t e dp T prflP=0

Therefore we have obtained the relations

d d 2 . _
H”I:drf i .:il d£ i_Zf]z "fzf,{‘f:‘ 4.6)

which is valid provided the function fiy) is such that the expression inside the
square brackets in the above paragraphs (a) and (b) vanish at r = 0, .

In the particular case when v = 0 the above relation becomes
d’f 1d
Ho| T L] eop e (4.7)

provided the function fir) is such that r f(r) tends to zero as r — 0 and r —
=, It can be shown that under these conditions the expression inside the square
brackets of the pragraphs (a) and (b) vanishes in the particular case of v = 0

Ex. 4.2.1 Find the solution of the following problem of free symmetric
vibration of a stretched membrane of infinite extent.

; o 1de 1 P
) SETTR a0 UsTee,

(i) wlr, 0) = flr)
(iii) wlr, 0) = glr)
where u(r, t) is the transverse displacement of the membrane.
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Soln. Taking Hankel transform of order 0 of equation (i), with respect to
r i.e., multiplying both sides of equation (i) by rdg(E) and then integrating with
respect to r between the limits O to =, we get

]:(dzu 1 &‘]rJ Blar-—S j'urJ (&)dr="0
L]

1 d, ({."3'
Py

or, &fg(ll+ 7

=0, by (4.7) - (4.8a)

where %,(E, ) is the Hankel transform of w(r, t). Here we assume that the

it
b

Taking Hankel transform of the initial conditions (ii) and (iii) we get,

function w(r, ¢) iz such that r=-—0 as r = 0 and r — o=,

B (&,0) = fH1&) (4.8b)
—(r:m Eol&)

where fu{gf} and g,(£)are Hankel transform of flx) and glx) respectively
Solution of equation (4.8a) is

Ty (£,8) = Acos(cét)+ Bsin(ed) (4.8¢)
where A and B are two constants, i.e. they are independent of .

g (£,8)
&

Noting that =¢f [FAsin(edt) + Beos(cdt)] (4.8d)

Setting ¢ = 0 in (4.8¢) and using (4.8d) we get

&y(&)
cf

Therefore, the solution for ,(E,f) given by (4.8¢) becomes

go(L)
ed

Taking inversion of this we gel the desired solution of the problem. .

A= 0 Bs
Tol€,0) = fol&)eos (ef) + 202~

2= sin{ed)

u(r,t) = [ £ [(&)cos (e (Erde + %l;,_r{.f] sin (), (&) d&
]
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= [dé costedn)Ty(&) j a fe)d  (Eoda
] [#]

+L [sin et 1,1 [ cg(erdy (& de
| 0

4.3 FINITE HANKEL TRANSFORM : DEFINTION AND IN-
VERSION FORMULA

The finite Hankel transform of order v of a function fir), 0 <r < a, denoted
by H,1f(x)] or, f,(&), is defined by

Ll

H, If@l=f (&)= Jrf{r]Ju{rft- Yr : (4.9)

]
where &; is the root of the transcendental equation
Jy(ak) = 0 - ' (4.10)

Jy(x) being the Bessel function of order v and argument x.

The inversion formula for finite Hankel transform is stated in the following
theorem, the proof of which is not given.

Theorem : If fiy) satisfies Dirichlet’s conditions in (0, @) and if its finite
Hankel transform of order v is given by

(&) = [r Fd (&) dr

o
where £; is a root of the transcendental equation Jv(af;) = 0, then at any
point of the interval (0, @) at which the function flr) is continuous

L l 7 Ju{il"fl-]
fir) = = ;ﬂ{é}—[ﬁ {“é{}]z’ (4.11)

where the sum is taken over all positive roots of the equation f (af;) = 0.

4.4 FINITE HANKEL TRANSFORM OF DERIVATIVES

Due to the reason stated in See. 4.2. we derive only the finite Hankel
transform of
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dzf 1df ey
bt e

where f{r) is a function of r defined in the interval (0, a), restricting v to
the case v = 0.

d*f lﬂff vt
H“‘|:dr rdr !TF:I

(12 1df

gf'l: Fg—— }J {r ifﬁ){tr
udgf

N —rJu[r,-f }d?

ow (a) -!drz ;

g df 7" Td df
= [“Iu':r‘fijﬁ}u = !E{FJp{'f;r}}‘&?dr
_rd af
= hju-EF{rJu {ﬁgf‘?}ﬁdﬂ since J (ag) =0
[ . T dz
= [E';{"Juif;rl'}f(r}} Id_ {rd (&} f dr

= (I, &) + rETLET L + ;—;{J'Ju Em) fdr
0

= ~a&d (a8 f (@) + [ Lol (G0} fdr (4.122)
0

since J, (Eia) = 0 and v = 0.

@) [ a,08)dr = [F0, 8D - [ £ 0,8
i) 0

T dJ
= —.ll f—-d—;'-—{rf_l’."‘ldr (412]])
[i]

gince J, (gfi) = 0 and v = 0.
Therefore by the use of (4.12a) and (4.12b) we get
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dif  1df  v2
Hu.f[af*";a‘;a‘ ]

= [ 10| Lo a0}~ () - 22 G IEn | dr-ag g
L]

e d 1 d
= [ rf(;-;[d &N+~ LT (&) - Jvfzfi;-}} dr - a&J,(aé)f(a)
I] Fil r

= Irf{r}ﬁz[d s (p)+= %J (p) - J J(p) ]dr al! (ak,)f(a)
0

where p = rE;

=—agJial)f (@) - & [1f (0, (rg ) dr
]

= —add(af)f(a) - E2f (&),
since Bessel function of order v satisfies the equation
d? 1 d ve _
S @l ) (1 h ;E-JJV{,&} ~0
Hence we have derived the relation

[df ldf_ﬁf]

dr?  rdr 2
J (@) f (@) = E2 T, (E,), (4.12¢)
which is valid for v = 0
For the particular case v = 0, the relation (4.12¢) becomes
(4.12d)

Hﬂ.i{%-f_%%J ﬂ-‘éiJl{aai}f{a}_ &??\ligl}

Ex. 4.4,1. Solve the fullawmg problem of free symmetric vibration of a
stretched circular membrane
: a1k 1 g2 :
(i) af{’ r&, 2af—ﬂ.ﬂ£r<ﬂ.
(i) ula, b=
(iii) ulr, 0) = f{r}
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(v) Zulr,0) =g
where u(r, {) is the transverse displacement of the membrane.
Soln. Taking finite Hankel transform of order 0 of the given equation (1),
i.e. multiplying both sides of equation (i) by rJo(rg;) and then integrating with
respect to r between the limits 0 to ¢, we get the following by the use of the
relation (4.12d) and the boundary condition (ii)

i

P 1du|_ 1 d* "
HU,?:]:F + ??&-—} o ;E-.Ei- g .F'H-{J",. t) Jﬂ{i"ﬁ:] dr=10
i 1 dﬁﬁﬂ -
or, ‘f?uﬂ{gisﬂ + '[:_2 di? [‘:;ﬂ =0, {4133}

where @,(§;,t) is the finite Hankel transform of order 0 with respect to
r- defined by

(&, 0) = [ rulr, 04 (r&)dr

1]
£ being the root of the equation Jylax) = 0 in x.
Also taking finite Hankel transform of order 0 of the initial conditions (iii)
and (iv) we get
y(5::0) = fo &)
di,
dt
where fj(£,) and g, (E,) are the finite Hankel transforms of order 0 of flr) and
g(r) respectively.

(£:,0) = &o(&;) (4.18b)

The solution of equation (4.13a) for &;,(E;,t) is
ity (&;,t) = Acos(cEt) + Bsin(c,t)
From this we get
E['i—iu{ﬁi 1) = —cE A sin(ct 1) + c&;B cos(cE )

Here A and B are two constants, i.e. they are independent of time,
Setting ¢ = 0 in the above and using (4.13b) we get

A =T15(8,0) = fo(E))
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dii, -
":Ef.;'B = _df‘(gnﬂ = gu{‘gf}-
Therefore the solution for u,(£.,t) becomes
o(Eist) = Fo(&,) cos(elit) + 5~ Fo(E,)sin(eE )
s
Taking inversion of this according to the formula (4.11) we get

ulr =£- F(E.)cos(cE, A NainleE 1 Jﬂ{rﬁi)
(0= %3 Fote) Mwﬂf@mmﬂﬁﬁaf

2 Jﬂ( E:;] T
= ¥ — B cos(cE 1) [ of (o) (ok, )dx
.& 2 [ Jl Eaﬁ }] ; i i :

Jo(rk;) sin(cEit) T o\ (k.
s O

where we have substituted for f(£.) and &o(E;) according to the definition of
finite Hankel transform.

Ex. 4.4.2. Slove the following problem of conduction of heat in an infinite
circular cyliner

Q) 5 L ;,{au 19u) o<r<aq,

oz ror
(1) wla, £) = 0 :
(iii) wlr, 0) = fir), 0=r<a
Taking finite Hankel transform of order 0 of the given equation (1) with
respect to r, i.e. multiplying both sides of the equation by rdy(&,r) and then

integrating with respect to r between the limits 0 to a, we get the following
by the use of the relation (4.12d) and the buundar_v condition {ii).

ALy (&52) + S (E158) = O (4.14)

Here u,(;,#) denotes the finite Hankel transform of order 0 with respect to
r defined by
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y(&;,t) = Iru(r, t)d o (rE; ydr
i

£; being the root of the equation Jg(ax) = 0 in x.
Also taling finite Hankel transform of order 0 of the initial condition (iii)
we get

(8;,0) = o &)
where fu'[‘c:,*) ia the finite Hankel transform of order zero of the functions flr). -

Solution of equation (4.14) is

—AE2

To(6rt) = Ae "

where A iz a constant, i.e. inbnpenﬂent of . Setting £ = 0 we get
A =7y (£,,0) = (&),

Therefore the solution for #,(£;,t) becomes
s =} SRR
T (&58) = Fol&;)e "

Taking inversion of this according to the fornula (4.11) we get
Jo(rE;)

utr, &) = 5 % Fol&i)e [J5(at, )]

2 o) - mk
_ 25 JoUS) MET T (of )da
o Xt )T (e
subsituting for f,(;) according to the definition and using the realtion

Ji(x) =~ ().

MODEL QUESTIONS

I. Short Questions

1. Define Hankel transform and finite Hankel transform of a function of
order .
2 State the inversion formlae for Hankel and finite Hankel transforms.
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II. Broad Questions

1. Assuming the integral j f(ridr to be absolutely convergent and fir) is
0

continous in the neighbourhood of r, show that f(;)= J'Efu(ﬁ}J o(Er)dE where
0

fn(ﬁ] is the Hankel transform of order 0 of the function flr).

2. Assuming the necessary conditions, show that

| SL AL

3. Assuming the necessary conditions, show that for finite Hankel
transform

dz 1 dr 2 . " . s
H?,a[ﬁ’f;% —{;f} — —at,J}(ak,)f (@) - E3F, (&)
for a function flr), 0 <r <a and &; are the roots of the equation J. (ag;) = 0.
III. Problems

1. Show that _Hu{}l_} = % by using the fact that the Hankel transform is its

own inverse,
- sinr
2. Find Hﬂ[;—zj
3. Applying Hankel transform, show that the solutions of the equation

Pu _ 9% 19u

%2 or® ror
1 due

V142 "ot

“ with initial conditions u(r, 0) = (r,0)=0 1s

1
Ja-it)? + 2

ulr,t) = Re
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[ Given that _[E_ZJU{E*“MF: = —21_,;]
0 -l ot

4. Solve the axisymmetric diffusion equation
du _ (%, 1o, , .o
ua?_k[ara e arj,(}c:r{ >0
u(r, 0) = wp, 0 < r < =, where % is diffusion constant.
5. Find a function u(r, z) harmonic in the half space z = 0 and satisfies the

mixed boundary conditions.

du
dz

e, 0) =0, r >a

(r0=fr,0<sr<a

and the limiting condition u(r, z) — 0 as p —

Summary. A sketch of Hankel transform has been introduced without
going into details. Some problems in cylindrical coordinate system have been
solved by using the transform.
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Group - B
INTEGRAL EQUATIONS
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UNIT 1 0 PRELIMINARY CONCEPTS

Vito Volterra
(1860-1940)

Vito Volterra was born in a citrcmely poor family in Italy. He showed interest in
mathematics at the age of 11 when he began to study Legendre’s Geometry. His
doctoral work on hydrodynamics included some results of Stokes, discovered later
but independently by Volterra.

He became the Professor of Mechanics at Pisa in 1883. At that time he conceived
the idea of theory of functions which depend on a continuous set of values of another
function, which at present termed as ‘functional’ introduced by Hadamard.

During the years 1892 to 1894, Volterra published several papers on partial
differential equations. He began this study in 1884 and in 1896 he published his
most famous work—*On integral equation of Volterra type.’

During the First World War Volterra joined the Air Force and made many journeys
to France and England to promote scientific collaboration.

In 1938 he was offered an honorary degree by the University of St. Andrews.

Erik Ivar Fredholm
(1B66-1927)

Ivar Fredholm, a Swedish mathematician, came from a merchant family. He
proved his brilliancy since studying at school and was awarded his baccalaureate in
1885. He took Master of Science degree from the university of Uppsala in the year
1888. Fredholm studied for the doctorate degree under Mittag-Leffler and was
awarded Ph: D, from the university of Uppsala in the year 1893 and then in the year
1898 he received the degree of Doctor of Science from the same university. His
doctoral dissertation involved study of partial differential equations, the study of
which was motivated by an equilibrium problem in elasticity.

Fredholm is best remembered for his work on integral equations and spectral
theory. In 1900 a preliminary report on his theory of Fredholm integral equations
was published as Sur une nouvelle méthode parr la résolution du probléme de
Dirichlet. Volterra had earlier studied some aspects of integral equations but before
Fredholm little had been done. [

Fredholm’s contributions quickly became well known to the world of
mathematics, Hilbert immediately saw the importance of Fredholm theory and
extended Fredholm’s work to include a complete eigenvalue theory for the Fredholm
integral equation. This work led directly (o the theory of Hilbeit spaces.
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3 Fredholm’s fuller version of work entitled sur une classe d'equations fonctionelle
appeared in Acta Mathematica in 1903,

After the award of his Doctor of Science degree in 1898 he was appointed as a
lecturer in mathematical physics at the University of Stockholm, later he attained
the chair of Dean in the same university.

Fredholm received many honours for his mathematical contributions, including
the V.A. Wallmarks Prize for the theory of differential equations in 1903, the Poncelet

Prize from the French Academy of Sciences in 1908, and an honourary doctorate
from the university of Leipzig in 1909,

L.1 Integral equation : An integral equation is an equation in which an unknown
function appears under an integral sign. There is a close relationship between
differential and integral equations and some problems may be formulated either way.

The most basic type of integral equation is Fredholm integral equation of the
first kind given by :

h q
f@)=[KGru@tydts asx<b. (1.1)

Here w(r) is an unknown function, f(x) is a known function and K(x,7) is another
known function of two variables, often called the kernel function, Note that the

limits of integration are constant, this is what characterizes a Fredholm integral
equation.

If the unknown function occurs both inside and outside the integral sign, it is
known as a Fredholm integral equation of the second kind : _

b
1:{1‘}=_f{x}+1_fK(x,r}u(r}rfr, asx=<bh (1.2) ;

in which A is a real or complex parameter (= (), having the same role as the
eigenvalue in linear algebra. :

It one of the limits of integration is a variable, it is called Volterra integration
equation, Thus Volterra integral equation of the first and the second kind are
respectively as :

;‘(.ﬂ:j:fc(x.;)u (0)et and u(x)= f(x)+A[K(x)yu(0) db, a<x<bh (1.3)(1.4)

The equations (1.1.)-(1.4) are termed as homogeneous or inhomogeneous
according as [ is identically zero or not.
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Integral equations are important in many applications. A problem initially
formulated as a PDE or ODE can be converted into an equivalent integral equation.
As an example, consider the problem of a stretched string, vibrating transversely
subject to applied forces :

¥y i
Fit.x = Applied foree per unit

|

Mix)= trysverse

The parameters in the motion are
e mass per unit length o(x),
e tension T

and the assumptions that we make are

e the nonlinear effects are negligible (e.g., y* and y; efc.), T is unaffected by
the motion,

e the ends of the string are fixed al () and L,

e there are no other energy losses.

Here the motion is governed by the PDE

2 2
_Ta&%‘*‘ p{x]%—% =F{l,x%x 0<x=<1

We will now convert this equation into an integral equation of the type described
previously, Define G(x,x’) as the displacement at x per unit point force applied
at x',

y unit force Clearly,
___x{f%; X L gt
e Glx,x') = @ ') ;
(7l x") = X)X M
: gt =X
¥ X %
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If point forces, I; act at point x; then the displacement at x is
S0,
l'_'.?{IEﬂdlnj:, this, if a fnrcc distribution f(x) per unit lenpth acts then the displacement
¥ I'H

L
y(x)= JG{::, X)F(x )’

If y is given and I is to be found, then this equation is of type (1.1). This equation is
equivalent to

aE
-—T——F
o (x)

subject to the usual boundary conditions.
The PDE which we had before is

_p9y %y
ot
Then we must have
I 32
tx) =[G, x'){F(x’}—p{x') -ar—-;’} ds’ :
(] 5

We will look for solutions of the form y(f,x) = yy(x)coswt where we are given

F(1,x) = Fy(x)cos@r . Substituting we find that

L
Yo%) = [ Gl xWFx) + )l yo (')} s’
0

which on re-arranging takes the form

L £
Y009 =02 [ G ) plx )y () ' = [ Glor, XV Ry () o
{1} [l

which is of same type as (1.2).
Example 1.1, Form the integral equation corresponding to the differential
equation

Y
_.__2 =1
P *)
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with initial conditions »(0) = %, y(0)=»"0)=1
3

Solution : Let d—é} =u(x). Then we have by using given initial conditions
¥

2

X
49 _[uu}+a
l'.-fx‘- 0

= [(x=nu)dr +x+1
]

(x— r}lrr{r}dwix +x

i
2

F S— ¥

3
Substituting the values of % and y in the given differntial equation we get
X

X
uix)—2x %J}.(I*!‘}lﬂ{f)df{-%xz +x|=0

or, wix)=x(x+ 1)2 S Ix{x - rfu(r}dr
0

which is Volterra’s intepral equation of second kind.

Example 1.2, Obtain Fredholm integral equation ol second kind corresponding
to the boundary value problem

73

d”y
2

+xp=1, »(0)=0and y(i)=1

Solution : Integrating both sides of the given differential equation with respect
to x, we get

dy (dv) |7 2
E_[EE l +_1[ry(r}dr =y

&

=+ —xr 1)di , where €= Lol =y'(0)
or -Er-—c X l:y{} , whe ol .

189



Integrating both sides again with respect to x we get
; 1
Y= pO) =cx+ 2’ - [tx =0y
0
Using the bounding conditions y(0) =0, y(1)=1, it follows that
I

sk i
]=|‘.+§—£f{1—f“ (1)dt

|
so that ¢ = é+ II(J —1)y(1)dr and hence
1]
| X
y(x) = %x[l +2)+ [x1(= Nyt = [tGe~ )y(e)de (1)
L] 0
X X |
o, P(x)= %x{l +3) + [t =)yt [ 10—y (o)de + [ 110~ )0y
| 1] 0 X

X |
or, Y =2x(1+x)+ [A=x)ry(0)+ [x(1— 0y (e)de @
] x
Thus the required Fredholm integral equation of the second kind is
l x
) =5x(+x)+ [K@xn pnyar
: 0

(l—x)? r<x

Kix,)=
where £(x,/) {[]&r)rx,r}x

1.2 SPECIAL TYPES OF KERNEL
(a) Symmetric kernels—Intepral equations with kernels satisfying
K(xn)=K(,x)
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have certain advantage in determining solutions. For this reason it is to be noted that
the inlegral equation :

b
u(x) = f(0)+ [ H 0 pleyu(yde (1.5)

with the unsymmetric kernel H(x,f)p(t), where however I (x,1)=H(r,x), can be
transformed into the integral equation (1.2) with symmetric kernel

K (x,0)=[pe) H(x,04/p(1)
by multiplying (1.5) by ,/p(x) and setting

¢lx) = p(x) u(x)
g(x)=+/p(x)f (x)

A complex-valued function K(x,l) satisfying K(x,r)= K *(t,x), where the star
denotes the complex conjugate, is called Hermitian. For a real kernel, this coincides
with definition K{x,¢)= K(1,x).

(b) Kernels producing convolution integrals—A class of integral equations
which is of particular interest has a kernel of the form

K(x,0)=k(x—10).

The Volterra integral equation

and

u(x) = F )+ A Ko=) (o) di
i}

and the corresponding Fredholm integral equation are called integral equations of
the convolution type. Integral equations of this type can be solved by using integral
transforms such as Laplace and Fourier transforms.

Volterra integral equations are closely relaled to initial value problems. Given
the ordinary dilferential cquation

u'(x)=Au(x)+ g(x), @)=L w(0)=0.
Integrating with respect to x and taking Au+ g as F(x), we find

W)= [ F@ydi+e
1]
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and that

w(x)= [ F(&)dEdt+ex+e, |

O e 14
ey

Using the identity

ij{é)dﬁ dt =]‘{x—r}f-“{:} dar
0o i}

We can write

u(x)= ](x -4 Au(D)+g(0)} di +ex+e;
1]

Applying the initial conditions
u(0)=1 and #'(0)=0

we get ¢, =1 and ¢ =0,

Therefore, wu(x)= FL]' (x =) u(t) df + I{x —f) gl dr.
0 0

This is Volterra integral equation of the second kind,

Similarly, the boundary value problems in ordinary differential equation lead to
Fredholm integral equations.
Solution by differentiation

It may be observed that Volterra integral equation can be reduced to initial value

problem while Fredholm integral equation reduces to boundary value pmblem To
show this we consider the following examples.

Example 1.3. Deduce the initial value problem corresponding to Volterra integral
equalion

w(x)=cosx+x—1- I(x = ()
i

Solution. Differentiating both sides of the given integral equation with respect
to x, we get

u'(x)=—sinx+1 —Iu{r)df
0
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Differentiating again, u"(x)=—cosx—u(x). Also we have w(0)=0, #'(0)=1
Thus the required initial value problem is :

2
. : . du St e i
To solve the differential equation I +u=-cosx with initial conditions
x

w(0)=0 and u'(0)=1 .
Example 1.4. Obtain the boundary value problem from the Fredholm integral
equation i

1
u(x) = %[.\:3 —3x)+ lj K(x,0u(n)df
0

K('.‘J— x,x}t
where SUBIATY L s

Solution : The integral equation can be written as

X 1
u(x)= &%x + %xl + l{jr{r]a‘r +jxu(r)a’r}
i il X

T 1 x
& u(x) = ——é—x+-|ﬁ-1‘3 +1{Ixu(r)dr +[xu(rydr - | {x—.’]u(r)dr}
L] X 0

| X
o, u(x) =—%x+%x3‘ +H.Ixu(.-‘}d.f ~lj{x-—f)n(f}d:‘ (1)
i 0

Differenting both sides w.r.t., x, we get

1 'y
u'(x)= —l+l.w:2 + R.Iu{f}cﬂ — H.ju(f)dr

2 2 . g
1,1 ;
i.e. u'(x)= ——i+ Exz -+ .lju(!]df @)
¥

Differentiating again w.r.t., x we have

u"(x) = x— Au(x)
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'
i.ci d — J:L-H X

d?

Now puttmg x=0in (1) and x = | in (2) we have the boundary conditions u(0)
=0, u(l)= ;

Thus the requin:d boundary value problem is :

2
To solve the differential equation %+ Au=x subject to boundary conditions
¢
u(0)=0, u'(1)=0.

Solution by Laplace transform

If the kernel of the Volterra integral equation is of the form K(x — 1), the equation
is said to be of convolution type and may be solved by use of the Laplace transform.
Consider the Volterra type integral equation of the first kind

£ () = [ K=oy
0

where the kernel K(x —r) depends only on the difference x - 1. Taking Laplace
transform to both sides of the above integral equation with s as transform parameter,
we get

F(5) = K(:)0(6) = 8(5) = g

where F(s)= J ¥ f(x) ete. Laplace inversion of the above equation gives the value
0

of ¢(x).
Similarly we may apply the transform method to the Volterra integral equation

of the second kind with a convolution type kernel. Consider a non-homogeneous
integral equation of second knd as

B(x)= £ () + [ K(x— )90y
1]

Taking Laplace transform to both sides and applying the convolution formula,
we have
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B(s) = F(s) + K(5)D(s5) = B(s) = F}{g}

Laplace inversion of which leads to the disired result.
Example 1.5, Solve the integral equation

sin ffx = jcnsn:(.r — 1)l ydt

!

Solution. Applying Laplace transform on both sides and using Laplace transform
of convolution formula, we find

B §
= = P8
54 ,31 o +al

whence ®@(s) ="—. S

ﬁa +o’ ﬁ+ﬂz—ﬁ2 -
¥ ..|..B ¥ ,3

J’l—
=]
+
"
P
Il
|8,
te | —
+

Laplace inversion of which gives

[x" ﬁl‘ H'I

¢{r}=F+ B cos fx

Example 1.6. Solve the integral equation

9(x) =" =2 [ cos(x— (1)t
0

Solution. Taking Laplace transform we get

sS4l _ =1 +1
(s+1)° (s +1)?

where @(s)= I ¢(x)cdx . Then D(s5)= , the inversion

of which leads to

¢(x]:L_E[{[.-+l}—1}?+1}

(v +1)°

Using first shifting theorem, we get
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. 3
5 C 5

o= €A L2, 2]

1€, P(x)=¢" [1 2x+2. —ﬁ-]—e"’ﬂ-zx+ )= H(l<x)?

Abel’s integral equation
In 1825 Abel solved the integral equation named after him having the form

)= [ (=0 g(0) (1.6)
1]

where f{x) is a continuous function satisfying f{0)=0and p<g<]. For a=1 /2

Abel’s intcgral equation corresponds to the famous tautochrone problem—7o
determine the shape of the curve with a given initial point along which a particle
slides without friction in a constant time independent of its initial position. Abel’s
equation may be solved by the use of the Laplace transform. However we solve it
directly in the following manner,

If £(x)= [e=0y oy dr, 0<a<l
) _

i

U MRS LN T_00)
then, Ela.':"" o l{:f-—x}1_“ {_:[ = ﬂdr}dx

x)
4 i i dx
=8 { [ e }d" &

In fact the inner integral in the right hand side of Eq. (1.7) is equal to mwcosec mor,
Thus -

_[@(r}dr S'“‘mj FE

(w=-x""

and we see that the solution in (1.6) is

d(x) = sin o ffj' jEr}_q dt

n o dx Lt
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Integrating by parts on the R.H.S. and assuming f is differentiable we obtain

o) = m%%[éx"ﬂm +L =070 cfr}
U

OO "
- sas| [0 [ L0 i

and in particular for a=1/2,

0 T
fx) = m-l—%i[ J O d (1.10)

(¢) Separable or Degenerate kernel : A kerncl K(x,f) is called separable or
degenerate if it can be expressed as the sum of a finite number of terms, each of
which in its turn is the product of two factors, one depends only on x and the other
only on /, '

K(x,0) = Y p,(x)g,() (1.11)
i=1

~ where the functions p; and g, are two sets of linearly independent [otherwisc the

no. of terms in (1.11) can be reduced] functions, The number n is called the rank of
the kernel.

1.3 NOTATION

Let C[a,b] be the set of all sectionally continuous functions ¢:[a,b]—>C.If ¢
and ¥ are functions in C[a.b] we define their inner product as

h
<pw>= [ 60O w() di _ (1.12)

We say that ¢ and ¥ are orthogonal if <g, >=0. The norm of ¢ is

h 1
19ll= <¢.9>% = [jwmﬁ m]y

We recall that
lp+wil < lgll+wll
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and Schwartz inequality
< y>| = [|¢]l. 1wl (1.13)

Functions ¢(7) which are square-integrable in the interval 4 <;<p satisfy the
condition

b
[ 19 dt <o (1.14)

where the integral is taken to be Riemann or Lebesgue sense for preater generality.
In the former case it is said that P(1) is an R* function and in the latter case that il is
an [ *-function, Continuous functions are square-integrable over a finite interval
since they are bounded. However the converse is not necessarily true, that is square-
integrable functions need not be continuous or bounded.

Kernels K(x.f) defined in a<x<b, a<i<b are said o be square-integrable if
they satisfy

b b
| %1P=[ [ 1 K(x,0)P vt < oo | (1.15)
a oo

together with

b : 1]
JIKGP dt < oo, a<x<h and [ |K(xt) dx < o, a<i<b,
a [t}

The integral operator

With the kernel K of the integral equation, we define the function K¢ to be

; h
(K9)(x) = [K(x0) 9(c) e (1.16)

The transformation ¢ — K¢ is called the integral ﬂpcramf with the kernel K

Remarks ;

1. We will show later that K¢ is a continuous function of x on [a,b]. This depends
upon the continuity of K

2. K +ey¢y)=c(K¢y)+c,(K¢3) ie. the map ¢p— K¢ is a linear
transformation from C[a,b] to itsell,

3. The standard Fredholm integral equation of the second kind is written as
$(x) = AKd(x)= f(x) on [ab]
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or, more briefly,

=AKp+ [
(where the two sides arc cqual as functions on [« b]).
I K is a kernel, the adjoint kernel K* is defined by

K*(x.t)=K(,x) (1.17)
Proposition 1. < K*y.¢)>=<y, K¢> forall vy, ¢e Cla.b].

Proof., Firslt we note that

b b
Koyt = [K* (6,0 p(x) dx = | KGx0) iy dx
i i
and then we consider the double integral
1= [
]

A double intcgrai of a continuous function over a closed rectangle in #* may be
carried out in cither order. So we integrate with respect to x first

lp ) K(x, ) ¢(f) dx dt

ﬁ"-‘-—‘h'

K*yn) gl di =< K*y.¢>

"-‘l"—';r-‘?

and then with respect to f to get

1]
1= [Kgp(x) pix) dv =<y, Ko >

Note : yr — K *y is the adjoint linear transformation of ¢ — K¢ on Cla,b|.

Definition. } isaregular value of K, if ¢— AK¢ = f has aunique solution ¢ for each
continuous /. }, is an eigenvaluc of K, if & = AK¢ for some non-zero function ¢.
Motes :

1. If 2 is regular value of K then ¢ =0 is the unique solution of ¢—AK¢=0 and
so } is not an eigenvalue of K.

2. If }is an eigenvalue then the functions satisfying ¢=AK¢ arc called eigen-
functions for A.
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The Resolvent :
We may express the Fredholm integral equation of the second kind as
o= f+AKd
or, (J—-AK)p=/, I=identily operator (1.18)
We now seek an integral opeator R given by

i
R=[R(x.1; 1) dt (1.19)

such that O=f+ARS
or, b=(T+AR)f (1.20)

The operator R depends on the parameter } and since it provides the solution to the

integral equation (1.2), R is called the resolvent and R(x,t;A) the resolvent kernel,
IT R exists, (1.20) will satisfy (1.18) j.e,,
(I=AKNI+ARY = [
= R-K=AKR
Substituting (1.18) into (1.20) we find that
=T+ ARNI-AK)d
= R-K=ARK
Thus, R— K =AKR=ARK . (1.21)
This equation is called the resolvent equation. If there exists an operator R with a
square-integrable kernel R(x,r; 1) satisfying the resolvent equation (1.16) for a given

value of } , then this value of ), is said to be a regular value (alternate definition) of

the kernel K(x,f). The set of all regular values of an operator K is known as the
resolvent set .

Proposition 2. If there exists a resolvent kernel R(x.: 1) of the kernel K(x.f) for a
given value of the parameter 2, then it is unique,

Proof. Suppose that there are two such kernels Ry(x,r;A) and R,(x.1;A), then
R —K =ARK = AKR,
and Ry~ K =ARK = AKR,
Subtracting we find that "= AT'K = AKT, where T'= Ry —R, (1.22)
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Hence from the equation "= L XT . we have
RI=ARKT
=(R -K)I
=RI—KT
ie, KT =0 and from (1.22) we then obtain '=(. Thus R, =R,.

Proposition 3. Given f{x) be a sguare-integrable function and ) be a regular value
of the squaré-inteprable kernel K(x,f) possessing the square-inlegrable resolvent

kernel R{x,t;A). then the equation (1.2) has the unique square-integrable solution
(1.20).

Proof. Suppose thal the [unction @(x) is given by (1.20). Then we have
fHAKp= [+AK(/+ARS)
= f+ AKf + A’KRf _
=+ AKf +A(R—-K)f, using (1.21)

= [+ ARS
=i
Conversely, il the square-integrable [unction ¢ satisfies (1.2) we have
f=9—AKo

sothat  f+ARf =¢—AKd+AR(9—AK)
=+ MR- K—ARK)D
= ¢, using resolvent equation (1.21),

which proves the unigqueness ol the solution. There may exist other solutions of
(1.2) which arec not square-integrable.

Proposition 4. If ¢(x) be a square-integrable cigen-function of a continuous kernel
K(x,0) then ¢(x) is continuous.
Proof. We have

h
| 9(x)—¢(x)| = [A] I{Ktx.f)—fi’(fs-"}} o(r) dr
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b %
<A {ﬂ ‘P(f]lﬂ'f} {|K':I=f)—K(f~f”1 }}é,l_lsing Schwarz’ inequality (1.13)

=|A||| || ev/b—a , using continuity of K(x,r; A)for | x—x"|<8.

- Thus @(x) is continuous.

Function space :

Function space is composed of all sectionally continuous complex functions of
a real variable x, defined in the interval 4 <y <5, which are square-integrable i.e.,

b
JI7)F di <o
Introducing the inner product of two such lunclions fand g as

b —_—
(/8= [ [()g(x) dv

we define the norm of the lunction f{x) as

L=

Let us establish the important inequality named afler Cauchy and Schwarz. We
have

3
0
ilf{x) gy SO dx20

s slERE DT
so0 th s )
i (/s f)=2 (g.2) - (g.2) T
e (f. /Mg gz,
Henee || f|llgll = |(f.2)] (1.23)

which is known as Cauchy-Schwarz inequality for square-integrable functions.
Again, J

AN+ =ML +eglP+21 L0l
>(f, )+ (g,2)+2|(f, )]
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by Cauchy-Schwarz inequality and since

21(f.2)|=(f.e)+(f.8)

so, (I/11+1gl)* 2(f.)+(g:8)+(f . &)+(2./)
=(f+g./+2)

= f+ell (1.24)
which is known as triangle inequality or Minkowski’s inequality for functions.

Orthonormal system of functions
Two functions f{x) and g(x) belonging to the function space are said to be
orthogonal if

[
(f.8) = [ £(x)gx) dx=0

et ¢(x), ¢(x), ... be a system of orthogonal functions cach of which is an

L * _function which does not vanish almost everywhere i.e,, that

f
19, 17=[19, | *dx >0
i

If they are also normalized ie.,

0i#]

(tﬁn ¢_,}={ (1.25)

then such a system is called an orthonormal system.

li=y

Gram-Schmidt Orthogonalisation
It is clear that the functions of any orthogonal system are linearly independent.
If not, there exist constants ¢y, ¢,..., €, nol all zero such that

E1¢|(X)+C3¢1{I}+..,+CHII-'!"(I}=U
almost everywhere in the interval (a,b). Then taking inner product of
¢ (x) (j=12,...,m) with L.H.S. we lind that

b
cj.j| o, de=0
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By (1.25), ¢;=0(j=12,...n)
Now we prove that given any finite or denumerable system of linearly independent
L * -functions Wy (%), W (x),.... it is always possible to construct a system of
orthogonal functions ¢, (x), ¢, (x), ... salisfying
$(x) =, (x)
¢, (x) = () + 2 (x)
@5 (%) = 39 (X + et () + 5 (x)
90(¥) = ¥ (%) + €0 W0 (¥) oot G g0,y () + 7, ()
in the interval.
Clearly, applying the orthogonality condition i.e., (¢;,¢ 1 )=0 for i # j we find
Cyp ==(Wa. ¢ ). All thec; can be found out by mathematical induction. !;Ea;-,r, we
know ¢; for
l=j<iz=n-|

i.e, the expression for ¢, ,(x) is known. To determine the expression for ¢,(x),
we calculate for

U= (¢m¢j} =Cp [Wh'#_,r:"“ crr!“rt'fli"'lt'jj +---+C;m-:f%-|-¢; )+ (]Fu'q[’.f\-l
=Cy(00,)+(v,.9;)
and find that
oo Wt
=00
exist linitely since (¢,.0,) # 0because @, is a lincar combination of the linearly

independent functions Y, W,,...,. 4 ; each of which cannot be zero almost everywhere,

i=12,..n-1

Approximation and convergence in the mean
Here we wish to represent an arbitrary function f{x) in terms of the orthonormal

functions ¢ (x), @, (x).... belonging to the function space

e (x)+ sy (x)+...
We know that if
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,EL'glf ()= Xah t-ﬂ]=“ (.26

k=l
uniformly, then

& n .
lim [1./(x)= Y i (x) dbr =0 (1.27)
Ll r=l

holds, but not conversely. Condition (1.27) states that to any positive number &
there exists a positive number N such that

) L]
Jlr@ =Y o di<e, (n> ).
o k=l

The infinite series, therefore, converges in the mean to the function f{x).
Let us consider the integral

] a
":u = j[ f(x} _Zc&¢k {x) |2 dx
i k=1

Using orthonormality condition, we have

L=~ Y {00+ e (Foo}H+ Yl e [
k=] | &=l

" #
=(f D+ e—a P =Y oy [ (128)
o =l
where ¢, is the Fourier coefficient of the function f{x).

Thus 7, attains its minimal value if and only if the coefficients ¢, coincide with

the corresponding Fourier coefficients @ of the function f{(x). Tn thal case [, will
take the form

: ,
L=(f.N-Xleyl
k=1
Now since [, =0, it follows that
i
(502 Yoyl (1.29)
k=1
for any positive integer n. This is known as Bessel’s inequality.
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The Ricsz-Fischer Theorem (Riesz form)

Given an orthonormal system of L *_functions o, } and a sequence of constants
{e; 1, then

i
Zf’.t ‘P&
k=l

converges in the mean to a L *-function f{x) whose Fourier coefficients are {c ) i
and only il

EI‘*} lz R
k=1

The proof of the theorem rests on a preliminary proposition termed as Weyl's
lemma :

A necessary and sufficient condition for convergence in the mean of a sequence

of L *-functions 1/¢} to a certain function f{x) of the same class [ 2, is that to any

positive g there corresponds a positive integer N such that for integers m > N and
n> N we have

b
1 £u)= £, <
To prove the necessary part of the theorem we assume this lemma and the

convergence of series Zlq. [*. We take
k=1

Jox) = (x)+ e, (x)+...+¢,0,(x)
If m = n, it simply follows that

Ll

h b i
[I )= £, F dx = jr*z at (P dx= Y | P

=i+l k=nzl
o

; f 2 i e
and since the series Z| | s convergent for any g= () there exists a positive
k=1

C 2
integer N such that for n > N z lep <€, Thusform>n>N
k=l

b
[l 1= 1P dv<e
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holds and by virtue of Weyl’s lemma the result follows.

Sufficiency : If @, @,,... be taken as the Fourier cocfficients of f{x), then as
in (1.28),

b 1] " i1
[1.7G)= f(x) F=tf.f,1+§!c;, —o P -Yley 2 kZlck oty
P = k=1 =l

Clearly, il one o, were different from the corresponding ¢, say o #¢;, it would
lead us '

i
[l £ = £, () P dezle—oq
contradicting the given hypothesis. The theorem is thus completely proved.

EXERCISES

1. Show that the function y(x)=(1+x* ].‘i' is a solution of the Volterra integral
equation

iy

1 {
nx)= - (el
) 14 x% J-H—:rz ®

aQ

2. Verify that the function u(x)= sinﬁ—; is a solution of the integral equation

I

1
Hx)==x +ET_E[K(x,r] u(t)dt

bod | —

1

2:-:(2—r‘}.ﬂ£x£|r

where K(x.t)=
%.‘{Z—x}, t<x<l

3. Show that u(x) = cos2x is a solution of the equation
s
u(x) =cosx+ 3jK (x,8) u()di
0

sinxcost,0=x =t
where K{x.f)= ;
cosxysmnf.f=x=m
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Form an integral equation corresponding to the differential equation

o
d—)—sin :r:d—y +e y=x

et dx
with the initial conditions p(0)=1, y'(0)=-1

x
[Ans, p(x)=x~sinx+e"(x=1)+ [[sinx—e"(x=Np()dt |
0
Form an integral equation corresponding to the differential equation
&y, d’y .2
— ey — (X —x)y=xe" +1
P s ( )y

witﬁ initial conditions YO =L y0)=1, y"(0)=0
[Ans. y(x)=xe* +1—x(x?-1)- ][x + %(xl = x)(x =0 0]
0

Reduce the inital value problem #"(x)+ Au(x)= f(x) with w(0)=1, 4"(0)=0
to an integral equation.

[Ans. u(x)=1+ T(x— OLF () = Aa(r) et ]
0

Converl the differential equation

2
i:ﬁ—f-d-ﬂﬂ:ﬂ

with boundary conditions u(0)=0, ¥(/) =0 into Fredholm integral equation

ﬂ}ﬂ,ﬂirsx

x(/=1)
!

Obtain the integral correspending to the boundary value problem

|

/
[Ans. u{x]z.ﬂ,j K(x,t) u(t)dr where K(x,1)=
0 SxESral

d® )
Eszi—'_ Au=xu(0)=0, u'(1)=0
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X, x>

1
[Ans. u(x)= —I-{.1'3 —3x)+ .le (x,0u(f)dt where K(x,r)=
6 9 lx<t

9. Derive the differential equation and the initial conditions from the integral

equation
1.5 .7
wx)=1-x+ gxl + J[Siﬂ.f —(x =)' +cost)|u(t)dt
0
[Ans. y"_sinx u'+e'w=x; u(0)=1, #'(0)=-1 ]
10. Derive the differential equation with the initial conditions from the integral
equation

u(x)=1-x—4sinx+ I[B — 2(x —)u(t)elt
0

[Ans, #"(x)—3u'+ 2x =4sinx;u(0)=1, u'(0)=-2]

11. Deduce the boundary value problem from the integral equation

[1—x}fi,rr:.r

u(x)= %x{l+ X)+ jK(x,r}u(:‘}dr , where K(x,/)= {
] (1-tyxt,t>x

[Ans., "+ xu =L u(0)=0,u(l)=1]
12, Solve the following integral equation by using Laplace transform method :

i = je"'_"tp{f ydt  [Ans. ¢(x)=1-x]|
0
(ii) sinx= j‘_Jﬂ (x—=0)d()dt  |Ans. ¢(x)=Jy(x)]
0

(i) ¢(x)=x"+ jsin[,\' e ;):p(r}a;: [Ans. ¢(x)= +%x4 ]

{
(iv) ¢(x)=x+ E}m‘:s{x—rw(f)dr [Ans. ¢(x)=2e" (x—1)+x+2]

]
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(v) @(x)=csinx— 2] cos(x —@(r)dr  [Ans. d(x)=cxe™]
0
V) $)=f()+ [(=09()dr [Ans. ¢(x)= f(x)+ [sinx—0) /(1) |
0 ot
(vi)) [9() ¢(x—1)dr =16sindx, [Ans. ¢(x)=+8J,(4x)]
N

(viii) f(x)= j{ ‘M”] di,0<a<1, [Ans. cp(x}_%d

{

:j{x 01 (e}
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UNIT 2 0 METHOD OF SUCCESSIVE APPROXIMATIONS
2.1 NEUMANN SERIES

In the theory of ordinary differential equations we have seen how the first-order
differential equations can be solved by Picard’s method of successive approximations.
An iterative procedure of the same method applied to integral equations of the second
kind yields a sequence of approximations leading to an infinite series solution
associated with the name of Neumann, called Neumann series.

(i) Fredholm integral equation of the second kind.
b
d(x)= f(x)+ A,jxl:x,f}fpm di, asx<h. N
a

Let ¢p(x)= f(x) be the zero-order appoximation (say) for the function ¢(x) in
the interval @ <x<h. Substituting this in place. of ¢(f) in the right hand side of
(2.1) gives the first approximation ¢,(x) for ¢(x) ie,

[}
B1() =GN+ A K(x.0) gy (1)

Continuing in this way we obtain an infinite sequence of approximations

Po (2, @y (x)s . @, (),
satisfying the recurrence relations
F :
9, (x) = Qo (x) + A[ K(x.0) 9,1 (1) b, n=1,2,... 2.2)
We introduce .
0, ()=, (x) = A"¢'"(x), n=12,... 23)
Then if ¢'”(x) =@, (x)=f(x) we have

¢, (x) = *Z,ﬂl*qﬁ“”(xl (2.4)
and that
b
-:p{“{x] = IK(x.r) qb“"”(r}dr, k21 (2.5)
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Now suppose that f{x) and K(x,7) are continuous functions in 4 <y <}p , 5o thai
they are bounded and therefore, we have

| f(x)| = m asx<bh }

| K(x.1)| = M, a<x<h, a<i<h (2.6)
Then 199 = | £ sm,
[}
16V < [IK@H 1690 di < mM(b-a),
b
162 < [IK@x0] 1900)] d < mM>(b-a)?
and in general -
10" (x)] = me’(h—a)‘?.
So, |§}1“¢:‘“(x)1 < DUAM 9| = Y (A mMt-a)t @2.7)
i k=0 k=0

and hence the series in R.H.S. of (2.7) converges absolutely and uniformly if
DA mM*(b—a)' converges ie. if |A|mM(b—a)<1, that is if
k=0

1

Thus passing to the limit # — o in (2.2), we obtain the so-called Neumann
series

$(x)= f(x)+ ;:l* 0" (x) (2.9)

as the continuous solution of (2.1) provided (2.6) holds.
(ii) Volterra integral equation of the second kind

¢(x)=f (IJHI K(x.0) o) dr (2.10)

Here the Volterra kernel K(x,f) =0 for 1 = x. The previous method holds in this
case oo, We start by setting ¢ (x) =" (x) = £(x), ¢ (x) and ¢*)(x) by (2.2) and
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(2.5) respectively as earlicer except that the integral from-a to & is replaced by the
integral from @ to x. We have further that

16| = | FX)] £ ms

10" ()| < ]|K{IJ]I| |67 (0)| dt £ mM ]dr = mM(x—-a),

2 (x—a)*
. [

|.I""\-

16209)] < [1KO1 1600 db < mb? _[u a)dt = mM

X
169 < [IK@N] 1020 de < '”M j{r—a) dr = mw3 x ;]
it
and in general, assuming that

= i1 (X ﬁ]nl
¢ N(x)| £ mM ’W

and by the principle of induction, we get

Hb“”{ = J’J'il'e"rfl)l‘l'“_ﬂ}u—l dr = mM" [I:?TJ @2.11)
. = .3..” (i) - .JI. n n {E" ﬂ)
Hence |"§n ¢"(x)| € m ”ZJ W (2.12)

which shows that the series Zl“qﬂ"”(.&:) converges absolutely and uniformly in
a=0

a<x<pb forall values of } as it is dominated by

" ZIM"M = mexp{| A| M(b—a)} (2.13)

=l

Thus ¢(x) = i A (x), (2.14)

=1
in the form of the Neumann series, stands as the solution of (2.8).

Note : The Neumann series for Volterra equation converges for all values of A
whereas it converges only for small values of A in the case of Fredholm equation.
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Example 2.1. Solve for ¢(x) by the method of successive approximations

|
() o(x) = x>+ % [t 90y a
. [}

|
(i) $(x) = '+ [o(0) dr
[i]

Solution. (i) Here we take the zero-order approximation or the initial
approximation %{x}:.tpm]’(x} as x°, then
I
oM (x) = Ixf.fz d=%
9 4
I

(2 = (el g = X
o (x]-£,11.4dr =

Likewise, tpm(x} = 50 On

36 7
Thus the Neumann series (2.9) for the solution takes the form

=8 G 3Ny
() x+;(4) j'xr¢ (t) i

]

1 | 31
g S 2 L i
= 4£1de+( ) i!‘xr4 ( ) Jx.-‘.udr+

N (l)]i
5t +4""4+(4) 2%17) 36"

4 3% ek o N
16[” et ] xh5

Allernately in terms of iteraled kernels

1 | 3
Kl{%f}:.ﬁt‘f, Kz{x,f)=‘|‘xf|.r|fdf| =xf J!‘Ffﬁl Z%r
¥ [t}
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K, (x,1)=—=x1 by induction,

Following (2. 12}.
N O i 3
pE=FE Y U(ai

T R A -
= x +-‘4—Z = x4

(ii) As usual we lake the initial approximation

{o(x) = e, then

I
B (x) = e?"'+.?LJ.e’a’|f = ¢ +AMe-1)
{l

. |
0,(x) = e +A [{e' + Me-D}dr = '+ AMe—1) + A% (e—1)
1]

. (x) = &'+ Me~1) +..+ A" (e—1)
Thus,
O(x) = "+ AMe-D+ A% (e=1)+...
= e+ Ae-D{+A1+A%+..}

2 e-*+;"[‘* LR

Example 2.2. Use th-:: method of successive approximations to solve the Volterra
integral equation of the second kind

¢(x) = .r—](x—r}ti:{r) dt
0
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Solution. In this case we start with ¢,(x)=0 and obtain ¢,(x)=x.
So if we let ¢(x)=¢(x) in the R.ILS. of the given equation, we obtain

I

b(0) = 2~ [(x=N () di
i

T it PN
I—E[{I—-’)f et = xH(T_?l

Now, s(x) = x—];{x—r‘}.:pz(f}df
0

x 3
= x—?[[x——f}(lf—%} dt

If we continue the process, we obtain the nth approximation ¢,(x) as

3 h 21
o M 5 X
= s i o
¢, (x) = x TR (=1) @n=D)1 -
which is the sth partial sum of the Maclaurin’s series of sin x. Hence the solution of
the given equation is

P(x) :P_lﬂa 9, (x) = sinx

2.2 ITERATED KERNELS

In the preceding section we found solutions to the Fredholm and Volterra
equations of the second kind in the form of the infinite series, It is advantageous to
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express these solutions in terms of iterated kernels defined by

Ki(x.0) = K(x,0) (2.15)
b
and K, (x.t) = jf«:(x,s) K, (s.f) ds (2.16)

so that

b
Kz{\unlf} - JK(I,JIW} K['l!,l'){hl

h
Ky(x,0) = [K(xs) Ky (sp.1) dsy

ot

b b
= [ [ Kx.s) K(s1,9,) K(sp,1) dsy dsy
(I

and in general

b b -
K, (x,t) = JJ K(x,8) K(5.80) - K (8,55 8,) K(5,-.0) dsy - dls,, (2.17)

i i

. Moreover, it follows at once that

i
K, (x0) = J'K,.(x,.s} K, (s.1) ds (2.18)

for any r and p with r+p=n.
Now from (2.5)

b
9 (x) = [K,(x.) f(0) df (2.19)

and hence the solution (2.9) of the Fredholm equation (2.1) can be expressed in the
form

b

0) = () + A" [K,Gm) £0) (220)
=l a
or, equivalently
’
Bx) = () +A [R(x,650) F(D al @21)
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where RixsA) = 3 A"K, (x.0) (2.22)

=1

is the resolvent kernel, which is absolutely and uniformly convergent in g <y < h,
a<{<h, since

N N
| 2 A K ()] S YA Ky (0]
i= i<

P

DAL M (b—a) | using (2.6) and 2.11)
k=0

= mM Zp ”’M , using (2.8), where p=|A | M(bh—a)

The solution of the Volterra equation {2 [0) can also be expressed in terms of
iterated kernels as

Ox) =S+ [ 3 AK, () £ 2.23)
and the resolvent kernel R(x,1;4) = 2 A Ky (1) (2.24)
ri=1{}

for every 2, where the iterated kernels K o x, 1) satisfy the velation

K, (x.0) = IK (x,8) K,y (5,1) ds (2.25)

Here the uniquencss follows as shown carlier, To check the convergence of the
series (2.23) we consider

Ki(x.0) = K(x,1)

X X
| Ko )] = | [ KGe) K0 | = | [KGxty) K(hut) ey |, sine the integrand
tl !

vanishes except for x2/, =1, a<t<h]

<M (x—1) £ M2 (x—a)-
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| K30 = | [ KGr) Ky(hu0) dty |
3
=t |J-K(I.-—f1) Ky (1) dty |, [under the same reasons as in (2.25)]

< 1K) M2 =1y diy < MTj(xua}E
¢

By induction,

|K (‘C F}| = fl!’f” {x H —]
pAsts e (”._]}I
Thus, the Neumann series f(x)+ Zl"K o J(x) is dominated by the serics
1=l
l"M”i?i X—a -1
f()-fiﬂ {IF ) (2.26)

n=|
Since the series (2.26) converges uniformly on [a,b] for every A, it follows that

the Neumann series (2.23) is convergent.
Example 2.3. Solve the Fredholm equation

|
¢H)=l+ljﬂ¢ﬂﬁﬁ (0<x<1)
1]

Solution. Here Ki(x,0)= K(x.0)=xt

|
Ky(x,t) = fo, it dty = XT
: ;

i of
K;{x.f) =1 Jlﬁ“l“ﬂrﬁ =Fo
0

and in general

Xt
K.II'I [{.-'I‘.l":l = ‘ET
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Henee the resolvent kernel is

Rixid) = Zl"KM,(x.I]

H=l

|
and thus  ¢(x) = 1+- A fha
i

Example 2.4, Find the resolvent kernel (o solve the Volterra integral equation
of the second kind

0x) = £() + [ g(0)
il

Solution. Here we have
E/(x,0) = K(x,0) =

and Ks(x,t) = J- Fhe T dpy = e Idﬁ = (x—t)e™’
1

X ) X - 2
Ks(x,0) = je-*-'- \—0e ™ dy = e (-t dy = {""2; S
I i

Ki(x,0) = j {" el = & j(rl Vi = “‘“”
F ‘

and in general

gy < G,

K. .i(x.t
1 n!

and consequently,
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IR —.I'” Xt X - ((x—1 *
R(x2) = 32 =) o = ré__ﬂi*”!l'}

EZ{J.‘—I'I

for all ). Thercfore we obtain the solution of the given equation as

X

Px) = f&) + [ ar.

i
Example 2.5. Using resolvent kernel, solve the integral equation

dlx)=1+ :t_[sin(x +0)O()dr
L]

Solution. Here K,(x,f)=K(x,/)=sin(x+¢). Then

"
K (x,t)= Jsin{x +t)sin(f + 1y)dt = %ﬂ.‘ cos(x—1/)
0

T 2
Ks(x,0)= é—:rjsin{x + 1, )sin(ty, = £)edl) = [-]z-fr] sin(x +1)
0

Proceeding in this way, we have

Ky(x.t)= (é—n‘f cos(x—t), Ks(x.t)= {%n)d sin(x +1)

5 6
K,ﬁx,f}:(%ﬂ?] cos(x—1), K@x,f}:(éﬁ) sin(x+1)

Thus the resolvent kernel R(x.r; A) is given by

R(x.t; L) = i AK, (x.1)

=0

= Ky (x6,0) + MKy (6, 0) + A K (0,0) + A Ky (0,0) + A K (6, + A K (5,0 + .0

= sinx + :‘][1 + [—12-’5)3 (Ar)' +]

+-'1TEEDS(JE- -']{1 + (%]2 + (%)4 +}
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= {sin(x +1) +A'—;cn3[x —r}}{l +(3._2n]2 i (%]‘ +}

I
-

rovided 4% <1, je |.3.Es:-2~, Hence
p 2 P

= {ﬂin(x +1)+ %cos{x —f }}.

2 h
Rix,t; Ay=———{2sin{x+1)+ 2mcos{x—1
(3,15 A = {2singe +1) + 2meos(x—1)}

Therefore the solution of the given integral equation is

o) =1+ 2 [{2sinCx+1)+ Amcos(r - N} de
— n_ 1}

24

1 = * s : 2
e plx)=1+ R (2cosx + Amsinx) , provided |x|< =

Volterra integral equation of the first kind

In the Volterra integral equation of the first kind

f(x) = [K(x.0) ¢ dr, a<x<b @227)
WeE assume
(i) K(x,x)0 for all x belonging to (a,h)

() L= ), Kok v, Kk,

exist and are continuous. Then differentiating both sides of (2.27) with respect to x,
we obtain

£ = K(x,%) () + [ K, (x,1) 9(6)

so that ¢(x) = K'f(ixx} Y R {._:_ 9 IK-T (x,0) O(t) dt (2.28)

which is of the form of the Volterra integral equation of the second kind and can be
solved accordingly.
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EXERCISES
Find the iterated kernal of the following kernels :
(i) K(x,)=sin{x—=1); a=0, b =% for, n = 2.3

- s
[Ans. J’c;(x,f}=ésin(x+r}-—%ms[x—r}, kl{'x,r}=%ﬁi!1{x—r}]

(i1) K[.\‘,r}-—-::"'r'”; a=0, h=1Torn=1

‘%IET-H 3 EE—-\"’] + {f _-X - 1}&':_x+ O=x=t
[J‘f‘lnﬂp KE(I‘I)z I ey 2—x—1t ek
e 4 4 (et =D S x <1

(i) K{x.)=x+sint; a=-mw, b=m

[Ans. K, (x,0) = 7)Y 2 (x +5int), Kyp(x,0)=(2m)*" (1+ xsint), where n =
R T

(iv) K(x,n)=¢"cost; a=b, b=n

" -1
[Ans. K"{x,t)=(—l]”_'[-l-2—e) e'cost, n=1,2,..]

Find the resolvent kernels for the following kernels :

() K(e.H=0+x)1-;a=-1,b=0

[Ans. R(x.f l}=% where |.?L|n:i]

L]

(i) K(x,t)=sinxcost;a=0, b= 3

[Ans. R(x.;A) =% |A|<2]

(i) K(x,)=x**; a=-1, b=1

5—x%*
5—24°

[Ans. R(x,1;4)= |JL|-=:-52-
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Solve the integral equation
R
dx)=3+1 j K(x.)0()drl, 0Sx<n
L]

_ sinxcost, 0<x=r<n
where Kix,1)=4
sinfcosx,0=sf=<x<nm

Show that the solution of the integral equation

I
d(x)= f(x)+ ljxe’np{r]d{, A#1
i

s 4=/ +-——jxe’ (D

and distinguish this with the case } =1

Prove that the solutions of the integral equation
e ™ =)= j Px =0 (90~ 2)dt, x=0
0

are ]ie-—ﬂ.\
Solve the integral equation

X
sinx —3cosx+3 = [(3x—3(+4) g(r)a
i}

Solve the following integral equations by using resolvent kernel :

(i) ¢(x)=x+IIIJ(I]th, [Ans, ¢(.r}=x+%]
0

X

%
(ii) ‘i‘(x]=5i“f—z+%£"x¢“)m, [Ans. ¢(x)=sinx]

(iii) ¢(x) = ( ;xe ) jnp[r)dr [Ans. @(x)= 5¢ -—éxe‘“ —%e +1]

224



. .
(V) 6()=1+A[(A~3x)g(t)dr [Ans. ¢(x)=%,|1|{2 ]
! £

Solve the following integral equations by the method of successive
approximateion to the third order

|
(i) §(x)=2x+ :Lj (x +D(0)dt, dy(x)=1
{

[Ans. ¢4(x)=2x+ }L[x + %)+ A (g-x+~§—]+ A (}%x—t— %]j

|
(i) ¢(x)=1+ ﬂ.j{xﬂ}tf){f]dr, Bo(x) =1
0

[Ans. ¢;(x)=1+ .FL(x+ %)+ A (x +%)+ A? [%I+ —g—)]

Show that the resolvent kernel of the equation

0(x) = f(x+ 1)+ [ R(x,6; A)(0)dl
b

is equal to R(x.0; A+ W)
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UNIT 3 0 FREDHOLM THEORY

In the last chapter we studied the solutions of the Fredholm integral equation
and expressed these in the form of a uniformly convergent series for small values of

A . We are now in a position to discuss the theory originally developed by Fredholm
in 1903 for all values of the parameter 2. We shall approach this by considering

different types of kernels namely, degenerate, squarc-integrable or when it is only
continuous, etc.

3.1 THE FREDHOLM THEOREMS

. L [The Fredholm Alternative] Each Ae[ is either a regular value of K or an
cigenvalue of K. [consult in this respect eq. (1.16) and definition, § 1.3]

" 1II. For cach real positive number 4 there are only finitely many eigen values )
such that | A|< A4.

HI. If A is an cigenvalue of K, then

(a) ) is an eipenvalue of K*

(b) the spaces {p:9p=AK¢}and {y:y=AK*y) have the same finite
dimension.

(c) §—AK¢ = f has a solution if and only if <y, /' >=0 for every y satislying
w=AK*y.

IV. If 2 isa regular value of K then

(a) the solution of ¢—AK¢ = f has the form

b
900 = £(x) + [Rex,1A) £

where .R{x,!; A) is the resolvent kernel of K at A.

(b) For fixed x and f, R(x,/; 1) is an analytic lunction of ) for Je {regular
values of K}. '

We prove Fredholm theorems in three special cases :

(i) Degencrate kernels

(ii) Continuous kernels

(iii) Hilbert-Schmidt kernels
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3.2 DEGENERATE KERNELS

i
Here we consider the kermnel K{x.f)= 2;;‘& (x)vp(¢) and then the corresponding
k=l
Fredholm integral equation of the sccond kind takes the form

I & e
#x) = £0) +A 30 () [ERGLGLS (3.1)
=l 7]

'b ——
Let ¢ = [v (Ol

then the equation (3.1) reduces to
()= f(x)+ A 3 1 (x) - (3.2)
[=
In order to determine the constants ¢, we substitute the expression (3.2) for
@(x) in (3.1) and obtain
i

7 i g n
Y cqu(x) = Y ue () [ O LFO+A Y e u (O}t
k=1 i =l

k=l

i b [
e, Y (x) (e —_I'vk{r) (FO+AY e u () dr] = 0
k=1 i _,I'=|

and since the u; (x) are linearly independent functions [see (1.11)] it follows that

b i
e = [W@O L O+AY e u 0} dt = 0. (3.3)
7l f=]
Substituting
b e
£, = j v (0) f() dt and ay =J.vk(r)uj(f) | (3.4-5)

equation (3.3.) reduces to a system ol lincar algebraic system of n number of non-

homogeneous equations in n number of unknowns ¢,¢5,....c, given by
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cj —H.g{%- =S k=12,...n (3.6)

which will have a unique solution if and only if the determinant
D(A) = det(1—AA)

I-Aqy —Aayy .. —Aay,

= _lﬂll l—ﬂrﬂ'gz P —Aﬂzu %0
- (3.7)

~Ady  -Aa, .. 1-Ad
Clearly, D(A) is a polynomial in } of degree not greater than n. The two possible
© cases are :
Case (i) D(A)=0

1

The system is satisfied by one and only one set of values of €1:€25:.5€, Biven by
( following Cramer’s rule ) '

¢, = D(R}Za@m}{,, k=L2..n (3.8)

where (dy; ) are the elements of the adjugate of the matrix J—1.4. Now from (3. 2)
we gel

n N

Plx) = f(x) + D(A)ZZ"&(IJ dy ()1,

1 H o n o / )
= f(x) + ,l;[ D_ﬁiggf"* () di(A) v, (1) £ (1) ait (3.9)

which shows that the resolvent kernel is

R(x,t; A) = D(R] E U (%) di (M) v, (1) (3.10)

where d,(1)/D(A) are rational functions of } and are analytic excepl at pniﬂis
where D(A)=0.
Further it is evident that the homogeneous equation (i. e., the Fredholm equation

of the first kind) has the unique solution ¢(x)=0, if D(A)#0 that is when }, isa
regular value of K
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Case (i) D(A)=0
It gives rise to non-trivial solutions of the corresponding homogeneous equation

.'i'
¢, —A E.z.rﬁgl::)I = 0, k=L2,..,n; that is, of the eqguation ¢(x)=AK¢d(x) (3.11)
=l

where } belongs to the set of eigenvalues ( 4 : roots of the equation D(A)=0) of

the equation (3.11) and the system (3.6) is either nonsolvable or else has an infinite
number of solutions.

Here D(A)=0
e det(f —AA)=0.,
equivalently, det(/f = Pk ) =0, which implies A is an eigenvalue of K*.

Let » be the rank of the matrix J—AA. Then the system of n homogeneous
equations

L]
{:k i .llll Zaﬁjc‘f = l]g k:l, 25"'!”‘ [3.6')
=1

has p=n—r number of linearly independent solutions {c}, i=1,2,..., p, and the
general solution of the homogeneous equation (3.11) can be expressed as

Px)= i Utr-¢',- (x) 0

i=l

by using (3.2) with fix) = 0, ¢ = f,ﬂc,-r:é”, k=12,...n and taking

i=l
no
ffl,{x}:ﬂ_z‘ci.']uk (x),i=1,2,..., p. This dimension p is called the rank (sometimes
k=1

the index to avoid confusion) of the eigenvalue J of K

Now since J -1 4% = (I —AA)* it follows that the eigenvalue 1 of the adjoint
homogeneous equation
w(x)=AK *y(x) (3.12)

will have the same rank p and therefore the same number of linearly independent
solutions as the homogeneous equation (3.11).
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Lastly we show that the inhomogeneous equation (3.1) has a solution for a given

value of } if and only if f{x) is orthogonal to every solution of the adjoint
homogencous equation (3.12).

If ) is a regular value of K then y=0 and then the result is obvious, But when
A is an eigenvalue of K and ¢ is a solution of (3.1) i.e., of ¢ = f + LK¢ we see that

(/3w) = (9~ 2K, )
={¢.y)—(AK9, v)=(o,y) —(t,f}b AK * lp‘), using Proposition—1, §1.3.

=(0.y—AK *y)=(p.0)=0 (3.13)
To prove the sufficiency of the condition we write the equation (3.12) expliciil;-,r
wix) = A Zv# {x}_[ u(Owie) de
k=1 %

which on introducing

£ b L
&= [ m@Ow@ di and @, = [ w@yvryar

(4]

lakes the form
y(x) = 1 ;;E*v" (x) _ (3.14)

where ¢, are to be determined from

o
E_,r _A'Z&kjﬂ_j = ﬂ', k=1,2,...,-‘? ﬁ 15)
= 2
Now we recall that the system (3.6) is solvable, when (A)=0, if and only if

the vector f =( £}, f5,.... f, ) is orthogonal to the solution é=( &.&,,..,,¢, ) of the

system (3.15) i.e. (E,f') = iéx.ﬂ =40
f=1
By hypothesis,
(wsf)=0
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B

But <y, /> = [A Y &v () £(t) df
g k=l

=AY & v fwd
=g

[ =
= ‘-LZE;-.:"A =A(E. 1)
k=i
‘Thus we have proved the Fredholm theorems completely in the case of degenerate
kernels.
Example 3.1, Considering the kernel

K(x,f) = sinfx+¢), 0=x=2m, 0=¢r=2nm,
deduce the general form of solutions of the Fredholm integral equations of the second
kind,

Solution. Here K(x.r) = sin(x+/)

= sinxcasf + cosxsin/

e
= N u(x)v(r), say
1

where
=sinx u,(x) = cosx
uy(x) =sin x il 5(x) . }
V(1) = cost v(f) = sinf
Introducing

aﬁj =

o

v (£) u (f) dr
we find that

I :
)y = JSiil.!‘EDSr‘ di =y, ; clearly a =ay, =0,
f
In I
= jcosﬁrm&ﬂ: and ¢y = I sin’ 1 dt =0
h it
and thus

D{;{) = NI_R’H‘” -;Llfn'lz

= 1-A%n?
_H.-ﬂzl I._.Jl,ﬂzz
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Now, when D(A) is not zero, 4 # +1/xn
Here dyy =dy, =1 and d}, =d,, = Am so that using the equation (3.9) for ¢(x) -
we find that

2
B0x) = £(x) + i—‘i— () o i+ )

—a:l..lﬂ'z &

]

Sf(x) +ﬁ§' (sinx+Amcosx )y +( Amsinx+cosx ) f;

in

= f(x) + I%J[(s:im:+lJrcmsx)cnsr-+(lﬂsinx+cpsx}sinf]f{!} dr
=Xy
T
= .J"L(.I}_*% _[ {sin(x+)+Amcos(x—0} F(0) dt | (3.16)
1-Arm" 5

‘Thus the resolvent kernel is
RELER) = ﬂ1n{x+r}+ﬁ,;rczus{x—r}t
|-Am
Now we show that the solution ¢(x) in (3.16) is orthogonal to the solution of

the adjoint homogeneous equation for A=x1/m, which is the same as the
corresponding homogeneous equation since the given kernel is real and symmelric,
To find the eigenfunction corresponding to the eigenvalues A = I/m or —l/m, we

first calculate for ¢;,¢, in equation (3.6) ie., e —Amwey; =0, —Ame,+¢, = 0 and

cach of these equations is reduced to c—c; =0 for } = 1;;; and lo ¢;+e¢; =0 for

A=-I/m respectivcly. We sec that the solutions in the form of orthonormalized
eigenfunctions [see (3.2)] are

2 :
N e b el 215
Wl(l}_EEﬁ'uﬁ{x}_, for ;L_E and =0 = -j-'

i (sinx+cosx)

2r

and w:(x}=~\é_£(sinx—unsx) for l=—% and ¢, =-c, =E.

Suppose f(x)=I; clearly
"‘:"Fﬂf} i {}! 1:152
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Thus fis orthogonal to the solutions of the adjoint homogeneous equation. Hence
the given inhomogeneous cquation has the general solution

B(x) = 1+ Ky (x) or ¢(x) = 1+ ky,(x) ‘
according as A= ].;'gx or —1/x respectively when f{x) = 1.

But when f(x)=x,

f{sint+cosi) i

2

1
wf>=p=]
1]

n
M I 1 0 cnsr+fsinf}!gn—I{sim‘—msr} n’r]
: :

N2
= L[—2:ﬂ:+(sinr+:.:us:‘}|ﬁ’r:| = —\2n
N2n

and <y, [ > =—2n

Here we see that the orthogonal condition is not satislied and hence the

inhomogeneous equation has no solution for A=+1/m.

2
Example 3.2. Given, [ is continuous and 1+%—% # 0, show that

I
wWx) = fix) +A f{xzr + 30 dt
i

has a solution.
Solution. Here, K(x,/)=x’t+ x> and that

(x)= X o {Ifg{-l']:_:-
¥ {'il] =f 1;2{;4):!._.

1
Letting @y = jvﬂ. ()u; (1)dt
' 0

L
we get ) = If-rzdr=a22 =%
- i

233



! 1

25 1 1

€2 =J.fjd! =a§, yy =jr4dr ZE

0 i)
A A
and thus IXA)= - A I i
5 4
R W ; |

As 1 LT # 0 given, the solution y(x) turns out to be

n
Y= £ =AY, e (x)
=l
where ¢, s are delermined from
A 4 :
[vl ] i [f-v.,f >
Ca _i & = ."Er.f =
¢
Example 3.3, For whal functions f does the equation

|
) = £() + B[’ =Dy ar
1]
have a solution?

Solution, Here K(x,t)=xt* —l, we take

4

ix)=x Uy (x)=~1

5 and 1

wir) =t v(t) = T
Introducing,

1

ay = _:!-vk () () dt

we find that

g211:= i _%af-’m: —'é‘ and  dy = %

1
i
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e e | 2
ROl 4k -84  BAS3 R
~J3A18 1_+J§.FU4 16

Therefore the given equation will have a solution if and only if' } 44 (then the

corresponding homogeneous cquation has only the trivial solution) and the form of
a solution is given by

1
Y= £x) + BLY cpu(x) (3.17)
=
where ¢; s are determined from

1+@ _i
o _ 4 J3 <v.f>
[Cz] Ve R [‘: "w-f*]
i

for any continuous function f{x) on [0.1].

If A is equal to the one of the eigenvalues (4 or —4) then the given equation

will have solutions if [ is orthogonal to the solution of the transposed homogeneous
equation

I
yx)= \EJLJ [x.rl - ﬁ) () dl
D
For j =4, the algcbraic equations (3.6') give
(1=3) ety = 0,

NE

We choose ¢ = 2(+3 +1) and o5 =+/3 and get the corresponding eigenfunction
from (3.17) as

() =c{2(3++3)x-3}, ¢= arbitrary constant.
Similarly for A =—4, the corresponding eigenlunction is

wx) = af{d4x—(3 +J§j}, ¢ = arbilrary constant.
It follows from the Fredholm theorem I11(c) that the inlegral equation

|
W) = £0) + 443 [ =y a
f
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will have a solution if f{x) satisfics the condition
1

j 203 +)x=3f(x)dx = 0
0
while the integral equation

|
Y@= 1) = 4B [ -y ar
0

will have a solution if the following condition holds :

|
[t4x-@+B1/(x) dr=0.
L]

3.2.1. Method of approximation by Degenerate Kernels

In this section it will be shown that we can approximate a square-integrable
kemel as close as we please, in the mean square sense, to a degenerate kernel of
sulliciently high rank.

et us suppose that-the given kemel K(x.f) is squarc-integrable [see notation

§1.3], we shall prove that given any g 0 there exists a degenerate kernel O(x.f)
such that

| %-D |,<e (3.18)

Let v (#), va(f)sers v (1),... be a complete orthonormal system of square-integrable
functions and lel

Hi
IK(:f,r}v,.(;}dr = u(x) (3.19)

Using the Parseval’s formula [see Th. 2 pp. 177, Goffman & Pedrick]
we have

o ] r
JZ_{ lu ) = [ 1 KG0F dr | (3.20)
w b ;

andso Y, [ |, dv = %], (3.21)
2!

from which it follows that there exists a number N such that for n = N,
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- b :
b J lu;(x) [ dx < € (3.22)

J=n+l 5

-ﬁ' "
Again, J | K(x,1)— Zu 4 {x}m I2 dt

4=

i n n
= j{K(x,r]—ZuJ{x}wJ DK =Y u (x)v, (1) di
i) =1

=

h n h fo, b
= j; K(x,0) P dt = Y u,(x) jK(x,.r}x-j(;} di =¥ i (x) jﬁ:’(x,r)v_,{r; df
I J=1 o a

A=l

+ 3 ()
=l

= zflu P -2 2; ;) P+ Z 4, using (3.19) and (3.20)]
= g o !

= 2 luf (3.23)
Jj=n+l
bk ! _
and so [ [| K(x,0) =Y u;(xy (O dv di < €, [using (3.22)] (3.24)
aa Jf=l
I
Finally taking Q(x.t) = Y u,(x)v,(1), n >N, (3.25)
= -
we have thus proved the following result ;
h b
Result 3.2 If_[ j |K{:r,r]n|1 dedt < oo
1 o

then there are kernels () and § such that
iK=0+8 - (3.26)
(i1) © is degenerate and square-integrable and

fr b
(i) [ [5G0 dedr<l,
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3.2.2. Fredholm theorems
We consider the Fredholm integral equation of the second kind

b
o(x) = f(x)+lj'.K(x,f}¢U)ﬂ’f (3.27)
i
when K{x,f) is square-integrable and } is so chosen that |A|<1.
The expression of K(x,f) in (3.26) was introduced by Schmidt in 1907 and it

enables us to write the given equation (3.27) as

] h
O()= () + A [OCe.0) 9(6) dt + A [S(x,1) (1) e

b
= fi(x,A)+ }LJ S(x.0) @(r) dr (3.28)

1)
Now since |A| || S|, < 1 it follows that the Neumann series for the resolvent
kernel R (x,t; A) of S(x.1) is convergent and the solution of the integral -:quati.-:}n

(3.28) will be of the form

b
9(x) = f(xA)+ A [ R (et M) £t A) e (3.29)

This may be written as

: .
$(x) = LAY+ A T(x.1:2) o(r) dt (3.30)
b
where  f(x,A) = f(x)+ 4 [Roxt; A) f (1) d
b
and  T(etd) = O+ ﬂ.j R, (.53 ) Q(s,6) d

Zz; (x)v, (1) +1j£ (x,5; 1)[2:: (), (:}]

J=1

N ] -
- 'E{:U(x} + A4 jR,{x_._x; A)u,(s) ds} V(1)

238



=y (w0, (3.31)
I

Clearly T(x,f; 1) is degenerate.

Thus the original equation (3.27) with square-integrable kernel K(x,f) took the
form (3.30) possessing a degenerate kernel - T'(x,; 4) . Here we note that when the
equation (3.27) is homogeneous ( ie, when [ = 0) the equation (3.30) is also
homogeneous i.e., f;(x,A)= 0. These indicate that the results obtained in §3.2 for
degenerate kernel equally hold in the case of general square-integrable kernel.

Using the expression (3.9) for degenerate kernel we obtain the solution for (3.27)
as

h . :
6(x) = £(x,4) + A [BEIAMITOO) /205 4) d (3.32)

where A (1)=1-21A and the matrix A has elements

I
ay = j m v () dt

and @ = (3, 1, Y )s © = (0, Vass0,)

Hence the resolvent kernel of K(x,f) will be of the form

Rix.t: A) = R(x.t; 2) @A (MU (D (3.33)
h
where Un=0() + Ifé{'.‘}ﬂs(s.r; A) dt (3.34)

3.3 CONTINUOUS KERNELS
Here we derive the Fredholm solutions of the integral equation

b,
()= £(x)+ A K(x,0) 90) ol (3.35)

when the kernel K(x,7) is continuous in the square 4 < y<h, g<r<p and flx) is
continuous in the interval 4 < v < p. In determining the solution Iredholm treats the

integral equation (3.35) as the limiting case of a finite system ol linear algebraic
equations and obtained this in some forms of determinants.
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To introduce the Iredholm’s method we divide the interval (a,b) into n equal
sub-intervals of length h=(h-a)/n in a form

A=Xy <X <X <<x, ;<x,=5h

where x =g+ /4. We approximate the Riemann integral on the R.H.8. of (3.35) by
the finite sum

h H
[KG.ne@yden by Kex.x;) o(x)) (3.36)
o £=

Inserting this in the equation (3.35) we get
o(x) 0 f(x) + Ah Y K(x.x;)¢(x;) (3.37)
; 1=

for all xe [a,h] and in particular for x =x;, k=1,...,n, which give rise to a system
of n algebraic equations

O(x, )= f(x) + AR K(xx,) 8(x)), k=1,2,...,n (3.38)
J=1

Writing ¢(x;) = ¢, f(x) = fp and K(xp,x;) = Ky, eq. (3.38) takes
simpler form .

H
G —ALY Ky 0,=fi, k=1,2,..,n
J=l

The solutions of this system of equations or, equivalently solution of the vector-
matrix equation

AW = f
give the values of the approximate solution for the equation (3.35) at x = x;, ... %

where @ = (0, 5,....0,) . £ =(fi. fasen ;)" and

(1-AhK), -ARK;; .. =ARK), )
—MTK“ I o .?l.hxn T -.FJIKZH

A (A)=
(3.39)

| MK, -AhK,y .. 1-ARK,, )
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provided d,(A)=det /1' (A) # 0. Then the system of equations (3 38) has the solution

| g E
Plx,) = m;i'u(xndr}f (x,) (3.40)

where C,(x,,x,) is the ( Nth element of the adjugate matrix of A (A)that is

C,(x,5%,) is the cofactor of the (1, )th element in d, (1) . Expanding ¢, (1) from its
determinantal form, we get in ascending powers of },

3 At
d(A)=1- Mi'l{ +J‘ 'I’ Ky 4ot d i":ﬂ K, (3.41)
" i KJ K
where K, =§Kw, K, =p§-—‘l ‘K:,: K::
and in general
Kﬁu.ﬂu Kﬂ.ﬁ; v Kpp,
K el i KPIFI K-UE 4 (- KPJ Pu
£ :
D) | e (3.42)
Kewrr Kpups = Kpp, '

Now if we allow s — e= then 4 —; 0 and the terms in (3.41) starting from second,

third, fourth etc. tend to single, double, triple integral etc and that e, (A) — d(A)
where

b b
d{ﬂ,;r_l—ajﬁ{(x %) dx + %-H dx, dx,

Ky Ky

o [ Ky K K5
[ 1K Kn Koy | diy iy +
NKy Ky Ky

13

T Se—

i

— Z dy A" , 5ay. (3.43)

=1}
d(A) is called the Fredholm’s determinant. Now the cofactor C,(x,,x,) of the

(1, ) element in ¢, (A) can be expressed, for r ¢, in ascending powers of }, as
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K(x,,x) K(x,,xrl}

C"{Ir,x;}=Ah[K(Iﬂ'*IF)_Hillﬁ K{I _1,;} K(I .T)

) |r|'=‘

i K(x.x) Klxx,)  K(x,x,)
{ EI} Z K{x,.1,x,,) K{xf 1 ; ] K{_lrl 'i'r..] ]
=1 K[I.-zixl'} K[J‘f:"lﬁ} K(I& ,IF:]

and allowing n—ee and x. — x,x, — we find that h_lf,*" (x.,%) = A D(x,1; A)
where

K(x.r) K(x.f)

b
S
Dts By =K s1) u! Kt K(tt)

K(xt)  K(x4) K.{x.tz)

bob
g—J [ K@D K@) Kt |dyde -
T K0 K(h,) K1)
= 2 D, (x.6) A" (3.44)
=0 1

For r=t,C, will have similar expansion like d,(4) and can be shown easily

that C', (x.,x,) — d(A) as n — oo, The series in (3.44) is called the first Fredholm’s

minor, The series for (1) and D(x.r; A) converge for all values of the parameter
A by Hadamard’s inequality :

Given the elements a; ol the determinant

Qi Bz e iy

i a S—
dot- A = 21 12 2n

'ﬂnl Gyz ey

be real and satisfy |@; |S M then detA= -Jn_" M" holds.
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For the (m+1)th term of the series in (3.43) satisfies

- IﬂmmMm(h_a}m E

| ml = P 'Im’ sHy
m!

[since the kernel K(x,/7) is continuous, it is also bounded]

and  1dD)] = Xl A" <Y a,2]"

mr=A] =0
and the series on the extreme right converges for all sufficiently small A and hence
the series for d(A) in (3.43) converges absolutely for all A sufficiently small.

Again the coefficient of A" in the (m+1)th term of the series (3.44) for d(x,1; 1)
salisfies ;

|T {I I}l z ||(m+-|}”}+] M”H-I(b_ﬂ]m
I'H' 2 Y

mi!

= ﬁm, Say
and thus

|DEts M| S P IT 600 A" < Y B I A",

=l Hi=l

Again the series Z B, | A" converges for all § and therefore the series for
=0 ;

D(x,t; A) in (3.44) converges absolutely and uniformly for all values of }.
The results obtained so far are expressed in the following theorem ;

Theorem 3.1. Given K(x,f) is a continuous kemel and 4,,, D, (x,/) are defined
by (3.43) and (3.44) respectively, then

(a) the series (A1) = i d. AV is convergent for all complex A, and d{l} 18
m=0

an integral [unction of j-

(b) for given (x, f) the series D(x,1; 1) = Z D (x.r) A" is convergent for all

m=0

complex A, and D(x,#;1) is an integral function of }.
(c) the series D(x,f; A) = z D, (x,) A" is uniformly and absolutely convergent
m=0

in (x,t,A) for ) in the entire complex plane.
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The Resolvent kernel
We now show that, when d(4)#0, ) is a regular value of K{(x, #); the resolvent
kernel can then be expressed in terms of d(1) and D(x,r:A).
~ Result. Let (i) K(x, r) be a continuous kernel and (ii) d(A)and D(x,r; A) be its
Fredholm determinant and first Fredholm minor respectively. If d(1)# 0 and A isa
regular value of K(x, 1), then the resolvent kernel R(x,t; 1) is given by

R(x.1: A}:E%;]M (3.45)

Proof. We have from (3.40)

9(x,) = ;”—{--ﬂ_} Zlff,,fx,..x, ()

e ('J:[xr?1 ot
. ff,.(l)z 7 2 /)

4 ('"{-AT

= %)
| = fﬁ{l)[(““{\,”,x A (x, }+h§ f(x)]
Now as n—eo and x. 2 x, x, 51t

b
1 . :
d(x) = m!a D(x,tA) f(6) di + f(x)
. b
= f(x) + 1 _[R{x.r;ﬂ.} 1) dt (3.46)

whete R(x,f;A) is given in (3.45).
The resolvent kernel (3.45) satisfies the resolvent equation.
In this respect we observe that
Kix,r) K(xh) .. K(xt,)
J‘l j j Kty Kb . K(ht,)
aa a

i

m

D, (x,f) = 1 dtydty ... dt,,

. K“m-f} K("mi :' Tt K[‘fir:!'tm]
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!

FH

]{ﬁ;ﬂ?i lﬁm say (34?)

Ir1" % Jrr

b
1y fiafh saess
K{\ r}{ } J .J-ﬁ._ 1+72 H.l' dﬂ'rﬂrlrz ﬁrlr
Ton Jf1 "lI! !'rm
: bb
g L S LTS PO Y ,
& }I 3 J---JK s K(t,.0) diy...dt,
i J=low oo fjadasin 'r_n"’ 'r_n"”"""r'-'!

[Expanding the determinant in terms of the minors of the first column]

(D" )

= e R B R S
]K{S,ﬂ ds dfy... dt

o, K(x,0)+

Nolpalaaioady

i m=|
¥olpalasenislyy !

) i = o e
= Em)_”,f---fﬂ “’ f" K(s:6) ity ds +d,, K(x.0)
A oa shp st
b
= [ D, (x,8) K(s,0) ds+d,, K(x.0) (3.48)

o

Multiplying both sides of (3.48) by 3 and summing over 0 to ce, we find

]
D(xt: A) = K(x,0) d(A) + A [ D(x,5:4) K(5,1) s (3.49)

Similarly expanding the determinant in (3.47) in terms of the minors of the first
row we can have

b
D, (x,0)= K0y dyy + [ K(x,5) D,y (s.0) ds (3.48)

and as earlier

h
Dix,t;A) = K(x,6) d(A) + A JK{x. §) D(s,6,0) ds (3.49)
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Dividing both sides of (3.49) and (3.49") by (1) we obtain the resolvent equation
[see (1.21)]

b :
R(x.;A)—K(x,t) = A _I-R(x.s;l] K(s,t) ds

&
f
- .FLIK(J.;,N} R(s.t:A) ds
i

'The resolvent kernel R(x,/;A) is the quotient of two entire functions of the
parameter 3 and hence is a meromorphic function of 2 i.e., an analytic function
whose only singularities are poles (here the zeros of 4(A)).

Following Proposition 2, §1.3. the results obained so far can be unified in the
next theorem.

Theorem 3.2 Given K(x,f) is a continuous kernel and flx) is a continuous
function. Let 4(A)and D(x,1;4) be the Fredholm determinant and the first Fredholm

minor of K(x,f) respectively. If } is not a zero of &(A), then the integral equation
b
$(x) = f()+A [K(x.0 0(0) di

has the unique continuous solution

0=1W+ 505 Ju(x LA (@) dr

In particular, the hnmngﬂnmus equation
b
9(x) = lIK(x,fl o) d

has the unique continuous solution ¢(x)=0; every eigenvalue of K(x,f) must be a
zero of d(h).

We now establish a simple interesting expression for logarithmic derivative of
d(A).

I'rom (3.47), we have

b b
}m | X, rI’ wolini
.lrr (s (m_”r.[ I %= dfl d"'J dfm 1
a o

ffl, rm =}
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and consequently for x = ¢, it follows that

m—l b B b 1.t
I.Dm (0 dt = n j j'ﬁ[ treesl *]dr dty..d,
ol fry

1f|! !rm—l

and so we obtain the relation

h
,é [ Dty [see (3.43)] (3.50)

Also  d'(A) = Y md, A"

m=l

= Z ) jn,,,(: () dt

=l

b A
=~ [ D10 dr @3.51)

and so using (3.45)

d'(A)
i _[R{r tA) di
oo h
= = Y A [Kypts0) dt
=1 i

by employing the Neumann expansion (2.22) of the resolvent kernel. Now if we put
b
[K,, LOdi=a, (1=1,2,3,.) (3.52)

[a, = trace of the iterated kernel K, (x.7) which is defined in (2. 17)].
We obtain the logarithmic derivative of J(A) as

d'(A - i
Tf% = Zd'nﬂ A (3.527)

n=0
whose radius of convergence obviously equals the modulus of the eigenvalue of the
kernel K(x,f) having the least value.
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The homogencous equation

We shall now show that every zero of the Fredholm determinant d(A)ol a
continuous kernel K(x,7) is an eigen value of the kernel K (x,0).

Theorem 3.3 Given K(x,f) be a continuous kernel and d(A) be its Fredholm

determinant. If A=A, be a zero of d(1), then the homogeneous equation

h
O(x) = Ay [K(xt) 91) di (3.53)

has a continuous solution ¢(x). not identically zero; in other words, A=2; is an
eigenvalue of K(x,¢).
Proof. Irom (3.49"), we get

f
D(x.t:4) = K(xt) d(A) + A [ K (x.u) D(ur,t;2) dl (3.54)

if A=A4,, this equation reduces to

b
Bzt ) = A.{}JK(I,M} Dt Ag) e (3.55)

If' D(x,t;4;)does not vanish identically as a function of (x,1), we can choose
t =1y so that D(x,f5;4,) as a function of x does not vanish identically. So, taking
@(x) = D(x.t5:4y) we find that

h
O0(x) = A9 [K(xou) pu) du

and ¢(x) is the required eigenfunction. It is to be noted that D(x.t;A) is not
identically zero for A=A, when A=1, is a simple zero of d(A) as follows from
(3.51) ie, .
b
jD(.r,.\:;Hﬂ} dx =—d'(A)) # 0.
o
But when D(x,r;1)=0 for all (x,f) we proceed as follows :

Since d(x,/;A) is an entire function of ), we have
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DO tA) = (A=Ag)" 06, (x.0) + (A= Ag)"™! @ (x.0) + - (3.56)

by Taylor’s theorem for some =1, where the coofficients o, (x./) are given by
[see 8, pp. 86, B8]

(DG, 1A (Ry)

J!
Now let | D(x,;A)| = M for all }lying in the circle |A—-A4,|< R, and arbitrary
(x.1). We get using Cauchy’s estimate |8, pp. 62]

la x| < A

Ry

(,!J,—{JL',.I’} =

So the series in the RILS. of (3.56) converges uniformly and absolutely in (x.¢, 1)
for |A=A,|= R<R,. Since R, is arbitrary, the series converges uniformly in any
bounded subset of the complex A-plane. -
Apain by (3.51) _
d'(A) = - .[D(xﬁx;ﬂh) v, (3.57)
Substituting (3.56) in the R.ILS. of (3.57), we see that 4'(4) has a zero of order at

least m at A= A; so that the zero of d(A) at A=24, must be of order m + 1. Thus
we can write

d(“l} = ﬁrﬂﬂl‘?"_‘a‘ﬂ}mﬂ r J!:flil_lﬂ'}m*‘z = iy (358}
Finally substituting the series for (x.f;A) and 4(A) in (3.54) and equating the
coefficients of (A-A,)" . we obtain

b
L) = Ay IK{x,u} ﬂ,,lfir,r] du (3.59)

Now let us choose (=1, so that o, (x,f;) does not vanish identically as a
function of x, and writing ¢(x)=0, (x.f;), we sce that ¢(x) is an cigenfunction
comresponding to the cigenvalue A=A4,.

Note : Theorems 3.2 and 3.3 together show that the zeros of the l'redholm

determinant are precisely the eigenvalues of the kernel; in other words, 3 is a regular
value of the kernel if and only if il is nol a zero of the Fredholm determinant.
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Example 3.4. Solve the Fredholm integral equuﬁnn of the second kind having
the kernel sin(x+7), 0=x<2m, 0=7<2m.

Solution. From Theorem 3.2, if f{x) is given as inhomogeneous term, the form
of the unique solution is

2 2 EFwnn
00) = f()+ 5 l D(x,t; ) f (1)t

To determine this we use formulae (3.48") and (3.50) ie.
ix '
|

= "';;,; Dm—l[xvx)dr.
]

o

n

2

and D, (x,t) = d,K(x,6) + jﬂm_j{x.u] K(u.t) du
0

Here, dy=1, Dy(x.0)=K(x,f)=sin(x+1)

I In
d == J Dy(x,x)dx=— j sin2x =0
Il ]

an 2
Dy(x.1) = ID@[I,H) K{n.l’} du = Jsiln(xﬂ:] sin(u + 1) du
0 0
1 2
= j[cns{.t—r}—cﬂs{x+ 2u+t)|du = mceos(x—t)
1]
| i ! i ;
dy = —é—_gﬂ,[x,x} dx = j{;mdx =—%

in
Dy (x.1) =g K(x,t) + J Dy (Ce.t) K (1) du
0
s
= —m K(x1) + J 7t cos(x — u) sin(u + 1) du
0

Ir
ld it J‘FZK(Iq f_:l e % I {Siﬂ{.‘t‘ + f) +Si|.'l(2” i _x)] et
{1
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=~ K(x,0) + %{Eﬁsin{x+r)} = — ;;EK{I,” + EEK{x,r]
=0.
and 80, d, =D, (x,n)= 0, j=3.
Therefore,

d(d) = 1-A’r* and D(x.;A) = sin(x+1) + Am cos(x =)

Thus, if A2 -_I:l
bis

2z
¢(x) = f(x) + -IT,%E;E— El; fsin(x+1) + Am cos(x— )} F (1) ot

I A= il i.e, d(A) =0, we seek lor the solution of the homogencous equation
T
from Theorem 3.3.
Here D{x,r;%} = sin(x+/) + cos(x—/) and D(x,f;—IE} = sin(x + () + cos(x —1)

do not vanish identically as a [unction of (x,/). So we can choose =1, =0 and take

@ (x) = sinx+cosx and ¢,(x)=sinx—cosx as the solution of the homogeneous
equation corresponding to the eigenvalues A =# and A =—# respectively.

[Compare the procedure of this example with that given in example 3]

EXERCISES

1. Using Fredholm determinant, find the resolvent kernel of the following kernels :
; xl':?“
(i) K(x,n=xe'; a=0, b=1 [Ans. R(x./; .-"L}=m]

(i) K(x.)=xt—xt"; 0<x<, 0<1<1

2 = Lo A SR |
X —xr xS -2~ A
[Ans. R{x,t; )= (: 3 5) ]
I+3%

2. Find the resolvent kernel of the following kernels :
(D) K(x,t)=x—-2¢; 0sx <1, 0=s¢i<1
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X =2+ Ax+1)-2xr -2

Ans. R(x.t;A)=
[ ( : 1+1A+14°

(i) K(x,)=4dxt—x% O=x<1, 0=

dat =% = 2% — 422 +x - 4x1)3,

[Ans. R(x,r; )= -
1—x+ i‘ﬂ—

]

Using the method of degencrate kerncls, determine the solution of the following
integral equations -

1
(i) *P{I]:tﬂ'u""jffﬁm ‘)t [Ans. ¢(x)=tanx]
2

Ax(9e"" +1)

20
(i) ¢(x) =e" + JL_[[ XtO(0)dt  [Ans. Px) = ¢ + e

I
(iii) ¢(x)=sec’ x+ 1 Ot )edt  [Ans, ¢{x}=sec2x+itan1, A=l
=7 ]
D

(iv) o(x)=x+ H.J'(Ju* + X0 ()t [Ans. @(x)= ‘—‘—I myYP _1)]

(v) ¢{1}—f(m}+1fxr¢{r)dr [Ans, ¢{x)= j[x}+ j:f(r]a': A#3]

I .
(vi) ¢(x) =cosx+ Isin(x =D@(0)dt  [Ans. ¢(x)= 23{15,};;}1‘3!!1x 1
0

Solve the following homogeneous iniEgl'al equations with degenerate kernels :

|
() 9(x)=—[9(t)dr [Ans. g(x)=0]
0

11

(i) 9() =55 [ 1w [Ans. §x)=0]
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5. Find the eigenvalues and eigen functions for the following homogeneous integral
cquations with degenerate kernels ;

|
(i) P(x)= ,lj (45x" logt — 9% log x)@(0 )l
0
[Ans. no rcal eigenvalues and eigen lunclions]

7 8

(ii) cp.:x):Ajsinl,n;.(nm [Ans. ll=m.¢t{x}=sin2 x]
{

(i) d(x) = ﬂ,jcnx{x+r)¢(f]:ﬁ [Ans, A; = -?r-, Aa =%, ¢ =sinx, ¢, =cosx]
0

6. Prove that the integral equation

I
0(x) = A[ [Vt —\1x] g(r)el
[y

does not have real eigenvalues and eigenfunctions.
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UNIT 4 0 HILBERT-SCHMIDT KERNEL

Finally we focus our attention to Hermitian integral operators % satisfying

(Jag.y) = (0, ¥y) (4.1)

for all ¢, belonging to the Hilbert space of L * functions. The present objective is
to establish the theory initiated by Hilbert and Schmidt where it was shown that the

resolvent kernel R{x,/;4) can be expanded in terms of the eigenfunctions and eigen
values of the Hermitian kernel K(x,7).

Hermitian Kernel. A kernel K(x 1) is said to be Hermitian (or symmetric) for

which K(x.r)= K(t,x) holds where K(r,x) denotes complex conjugate. (4.2)
The integral operators defined by

fi] h
Y%= [K(x)dt and %*= [ Kt xyex 4.3)

are said to be Hermitian or self-adjoint if 14 = 14+.

Definition. A Hermitian kernel which is square-integrable [see (1.17)] is called
a Hilbert-Schmidt kernel.

Theorem 4.1 Every non-null operator % possessing a Hilbert-Schmidt kernel
has al least one eigenvalue.

Proof. Here % is Hermitian and so %" is also Hermitian following (4.1). Applying
trace of the integral operator 4" using (3.52) we find that

a4, = trace {%”h")
T .

I

=|| %" | (4.4)

from which it follows that «,, 6 20,

K, (x,t) K, (t,x) dt dx

=

B e, o

h b
K, (x.0) K, (x.0) dt dx = H|K,,(x,r) P dx dr
a a
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We also have
"*’EH lld‘:ﬂ (/fu [/rJ.H-I }}

2

hoh
_{.I- JK,, ((x.t) K“”(,r‘,x}mdr]r

L bk
{ ! .[ - ]{.1',1'}]2 df dx}l .[ .[ | K“H[xJ}IE df ii’i}v

[{] o o

[using Cauchy-Schwarz’s inequality]

=IAT PN A Peagygapm,  (122) 4.5)

Now since % is non-null || % || >0 and so @) >0. Again @, >0; if not, @, =0
implies that K,(x,/)=0 almost everywhere and in particular E5(1.01) =0 so that

@, =0, which is not the actual case. Thus from (4.3) @, >0 for all n and

Eans2 e A1 B o ﬂ_
@ -2 ) {46}

Let us suppose that % has no eigenvaiue. Then d(A) has no zeros and then
(3.52) must hold for all ). We shall show that this leads to a contradiction. The

series in the R.H.S. of (3.52') is absolutely convergent for all sufficiently small 3,
whence the series

Z”ﬂ 2 Zlﬂ"ln | |';L|1“_| (4.7)
=l n=1
is convergent for all sufficiently small ). On the other hand, we observe that

IH?H—i el |;L|2 A4 > IR"E Eli_
U, Ky .

which shows that the series (4.7) is divergent when |A]| > m, a

contradiction. So the integral operator % possessing Hilbert-Schmidt kernel must

have at least one eigenvalue whose absolute value does not exceed m 3
Theorem 4.2. Every eipenvalue of % is real,
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Proof. Let ¢ =A%, where ¢ is a non-null eigenfunction associated with the
eigenvaluc A . Then

A%ad.9) = (A%d.0) = (0.9)#0

so that A(%¢.9) is rcal and non-zero. Again since % is Hermitian,

(Y0.9) = (9. 7%¢) = (74.9)
that is (%¢,) is real. The cigenvalue } is therefore real.

Theorem 4.3, Eigenfunctions of % i:untbpnndm;-, to distinct eigenvalues are
orthogonal to one another.

Proof. Let ¢, ¢, be two eigenfunctions of % corresponding to eigenvalues 4,
and A, respectively. Then
(s ) = (A %y, 92) = Ay (%404 9)
and (fy>0) = (. AL %y) = A (74, 05)

since % is Hermitian and 2, is real. Therefore

| =
(Tt'__;]{'i’p%} =10
and as A, # A, it follows that (¢y,¢,) = 0.

Theorem 4.4. The eigenvalues of % form a finite or enumerable sequence {A,}

with no finite limit point. If the cigenvalues are counted according to its rank in the
sequence, then

Z—‘f | %]P< oo “8)

Proof. We have proved in Theorem 4.1 that every non-null Hermitian kernel
K(x,f) possesses at least one cigenvalue A, and its corresponding normalized eigen-
function is ¢, say.

Let us consider the IHermitian kernel

K0 = K(x,t) - ¢I(Ii¢[[”
1
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Ir K‘l’{ x,f) is non-null, it will also possess at least one eigenvalue A, with a
corresponding normalized eigenfunction ¢, . Now one thing might happen— Ajequals

o A,, but it is certain that ¢ can not be an eigenfunction of the kernel g (2) .0
since

L) . b sl
[K@wnamd = [Keoa@d 8 [ 140 a - o
it o =

Likewise, we consider the third kernel x'¥ (x.0)

K'%x.0) = KW (i) — _%{xjj’z(f}

' O e N AR
= K(x) - Y 26O

k=1 L3
and continuing in this way either we may arrive after » steps,

K["H}(x,f):f{{x,t] 2¢A {I} ‘rb.fr[r]

and obtain the Bilinear formula, K (x,0) = ziﬂk[l} tp“ (” (4.9)

Otherwise the process will continue inde['mtn:i:-,r and as a result, an infinite number
of eigen-values A, and the associated cigenfunctions ¢, will occur.
Applying Bessel's inequality (1.29) to K(x,#), we find that

& n b
JIKG.OP a2 Y | [K(x)dp0) dr P

k=l 4
= 2 “m'i;é']] {4‘11.})

Integrating over (a,b) with respect to x it follows that

(1]
1%z ¥4
k=] .;u;
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Proof. Let ¢ = AM¢, where ¢ is a non-null eigenfunction associated with the
eigenvalue } . Then

A(%g.9) = (A%g.9) = (9.0) =0

so that A(¥4¢.0) is real and non-zero. Again since ¥ is Hermitian,

(“a0.9) = (9. %) = (%0,9)
that is (¥¢,¢) is real. The eigenvalue ) is therefore regl,

Theorem 4.3. Eigenfunctions of % corresponding to distinct eigenvalues are
orthogonal to one another.

Proof. Let ¢, ¢, be two cigenfunctions of % corresponding to eigenvalues A

and A, respectively. Then

{ﬁt‘h'f’z) = {AIM¢J:¢2)=1|(%¢|-.¢1}
and (:82) = (DA %a0) = Ay (%dy.¢,)

since % is Hermitian and A, 1s real, Therefore

I o =
[ Jen =0
and as 4, # A, it follows that (¢,,¢,) = 0.

Theorem 4.4. The eigenvalues of % form a (inite or enumerable sequence {4, }

with no finite limit point, If the eigenvalues are counted according to its rank in the
sequence, then

§ I]j' < || %P < e (4.8)
Proof. We have proved in Theorem 4.1 that every non-null Hermitian kermel

K{(x,f) possesses at least one eigenvalue A, and its Comresponding normalized eigen-
function is ¢y, say.

Let us consider the Hermitian kernel

K0 = K0 - —-—-—‘t"”;_m
1
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If K" (x,r) is non-null, it will also possess al least one cigenvalues A, with g

corresponding normalized eigenfunction ¢, . Now one thing might happer~— Aequals

to A,, but it is certain that ¢, can not be an eigenfunction of the kerne 1 Krr-{r 0
since

h ’ ) |
(2
[KP ey = [Kxo ¢,y e —TJ I de = o
i i p
Likewise, we consider the third kernel g3 (x,1)

K™ (x,0) = K¥(xr) - ML&E)\!

K-[II, f} e i ‘f’k {T;‘ 'ibk ("l}
k=1 K

and continuing in this way either we may arrive after n steps.

KW= K(x,0) — i————-ﬂ(x} ull) _ 0

(i

: g v i (%) ¢, (1)
and obtain the Bilinear formula, K(x,f) = Z—L_._ (4.9)
k=] &

Otherwise the process will continue indefinitely and as a result, an infinite number
of eigen-values 4, and the associated eigenfunctions ¢, will oceur.
Applying Bessel’s inequality (1.29) to K(x,/), we find that

b n b
[IKGOP di 2 3 | [ Ko ¢y P
a k=l g

| ¢’k{1:l[
=3 gl

Integrating over (a,b) with rﬂspcct to x it follows that r

1%1P> 3L
Ap

k=l

(4.10)
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Hence, if | A4 | £ (1S k sn), we shall have
2 % |

1%1F 2 3~

k=Y

ie., n g y?| %|F and thus there are only a finite number of eigenvalues in the

i)
7

interval (—y,y)- Therefore the system possesses at most enumerable sequence {4, }
and the inequality (4.8) follows at once.

In the discussions we shall suppose that the sequence of eigenvalues {1,) is
such that

Al S A4 S

and each eigenvalue appears in the sequence a number of times equal to its rank. We
call ¢y (x), §(x)..... the eigen functions corresponding to Ay, A,....respectively and
they form a complete orthonormal system {¢, }, which is not necessarily complete.

Expansion Theorems

The Bilinear formula given in (4.9) which is valid for a finite number of
eigenvalues cannot be extended to the general case i.e., for infinite number of eigen-
values as the corresponding infinite series for the sum in R.H.S. of (4.9) may not be
conyergent. However, we can have the following theorem.

Theorem 4.5. Given {¢, } an orthonormal system of eigenfunctions corresponding
to eigenvalues {A,)of the Hilbert-Schmidt kernel K(x,r), then the series
‘i

" )
Zﬂ—{xii*(—” converges in the mean to the kemel K(x,/) in the sense that
=l

hh [0 T

holds.

Proof. Applying Riesz form of the Riesz-Fishcher theorem we can have a L S
Hermitian kernel (Hilbert-Schmidt kernel) O(x,1) such that

b 1 %
tim [ 106u)~ R BEGHEO L ar = 0 @.12)
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1
aiil Jownaa = 52D k=12..) @.13)

2
S e (4.14)

provided Z |
k=1

holds.

We sec that () exists satisfying (4.12) and (4.13) since (4.14) holds following
(4.10).

Weset Hx 0 =Kix, )-0(x, 1 (4.15)
and it is clear that

@ (x)
i

b
J‘H(x,:m(:) di =0 (k=12,..) (4.16)

since O(x, 1) and K(x, 1) have the same Fourier coefficient.

To establish (4.11) we prove that H(x,/) is null. Let us suppose that, on the
contrary, H(x,f) is non-null and hence by Theorem. 4.1. ¢ possesses an eigenvalue

Ay and a corresponding eigenfunction ¢, . So we have
¢ =24 Gy
which gives

(-0 )= A (C 0 ) =2y (85, C ) =0 (k=12,..) (4.17).

using (4.16). Now we can express
b b i o
; X f
Jon g dr = [town -y B, 4 ) 4
a a k=1 k
by (4.17). So given any g () there corresponds an integer N such that for n> N,

] n T
D9 < [1OG1) - ):—“”““if’f{” Pd<e
k=l

a

by using Cauchy-Schwarz inequality and (4.12). Now since B¢, is independent of
n it follows that £/¢,, =0 and thus

3-nl %'i’u=-‘:l~ag¢u = My
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ie. t, is equivalent to an eipenfunction of % and as a result following (4.17) it has

lo present in the full orthonormal system of eigenfunctions of % which is not possible,
Ience (x, f) must be a null kernel and that

O(x, 1) = K(x,1)
and (4.11) is established.

The Hilbert-Schmidt theorem
b
If £(x)= [ K(xa)g(e) de (4.18)

where K(x,() is a Hilbert-Schmidt kernel and g(r) is an L? function then f{x) can be

represented in terms of the orthonormal system {g, } of eigenfunctions of K(x,/) as
J(X) =Y apdy () (4.19)
=l
where ap, =/, ¢ ). (4.20)
b
Morcover if j-”{(x,r] |1' nﬁf:,«iz{x} < N (N = constant) ¥ x e |a,b] (4.21)

i

then the infinile series (4.19) converges absolutely and uniformly for every f{x) given
by (4.18).
Proof. We observe that

A
ap = (f 0= [ 9) ([ K(or) g(0) dlt} dix
b b el !
=[] Kt.x) ¢(x) dx} at

=g(g, %) = %k(g, ) (4.22)

To prove the first part ol the theorem, we express

f
)= [K@ng@ di

260



il

JlK - E'ﬁb:rf MLLH 2(0) H+

b, (1) g{f} it

I

IfK ¥ )= Eq’}kh}‘m{} gl di FE*’&%(AJ [using (4.22))

and hence applying Cauchy-Schwarz’s inequality, we get

n s n PN I :
S =Yg (D < | K(x,r)_zwr dt f| e P dr
K=l o = i

k
and using Theorem 4.5, we find that
i f h i T
; : ETD
lim | £ = Dy () < [le@ dr lim | K{x*n—z—%hﬁ“ 2 g
b k=] 0 . s o k=1 3
= (4.23)

Now setting b, = (g,¢,) and using Cauchy-Schwarz’s inequality for sums,
we have

(Y lad I by )

k=il b=ntl

< | z |‘E"A'I Z |__{P§_“.}.)_|._ (4.24)

k=nt] k=ntl

}z

Apgain since g(x) is squzire—inlt:g" able, the series ZH& |2 is convergent and hence,
k=1
given any g=( there exists an integer NV such that

3 b [F< g (n>N)
k=il

Also (4.10) with the condition (4.21) gives

- ]‘f’.a.':"lﬂ_
2.3,

o

j| KNP dl = A2() < N

k=n+l
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Thus from (4.24).

Y, lagd(x)] < eN’

k=n+l
This shows that the series (4.19) converges absolutely and uniformly,
Hilbert’s formula :

If g(x) and h(x) are both square-integrable then

(=]

M ..Ir - L A »
(Y%g.h) g_..lk (2.0 ) (0p,F1) (4.25)

Proof. This formula follows from the Hilbert-Schmidl theorem as a corollary

replacing f by g in the inner produet (f, ) and the [act that the serics on the R.H.S.
of (4.19) is uniformly convergent.

For h = g Hilbert s formula takes the form

(Mg.g) = Z~—|g ¢ I (4.26)
=t
Applications of Hilbert-Schmidt Theorem :

(i) Expansion of iterated kernels
Let us consider iteraled kernels. By definition (2.25)

K, (x1) = JK@a) (st ds (m22)

and this equation will be of the form (4.18) if g is replaced by K, and hence it
follows from the Hilbert-Schmidt theorem that if K(x, 1) is Hilbert-Schmidt kernel then

K50 =3 0, (0) )
k=1 ]

: b

where  a,(r) = [ K, (x.1) 0, (x) dx = —ﬂh“} (k=12...)

thatis, K,,(x,/) = Z ¢*(xi 0,0 (m=2) (4.27)
k=1

where the series is absolutely and uniformly convergent if the kernel K(x,f) obeys
the condition (4.21).
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In particular if x = f in (4.27), we obtain
a,, =tace (4") = j K, (x,x) dx

=a

E ;Lm {-’ﬂ = 2} {423)

(ii) Expansion of the resolvent kernel
We consider the Fredholm equation of the second kind

b
9x) = £(x) + A[ K(x.0) 9(0) dll (4.29)

where .
(i) K(x,1) is a Hilbert-Schmidt kernel satisfying (4.21).
(ii) 2 is a regular value.

Here we observe that ¢(x)— f(x) has an integral representation like (4.18) and

hence by Hilbert-Schmidt theorem it can be expressed as an absolutely and uniformly
convergent series

D)~ f(x) = 2& 3 )

where Cp = o—=(f.0) = (6.9, — (/. 90)
Again using (4.29)

(0.0~ (f10.) = MKD, ;) = l—’iw,m

c (9.9) = H.U p). S0, Gy = f_—l(ﬁﬁh)
and thus
d(x) = flx) + li(flik{?i(x]
k=1 *
e
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From this we see that the series

= (%) 0, (1)
D 4.31)

may be taken as the resolvent kernel R(x.t; 1) provided the series is uniformly
convergent in (a,b).
Again since K(x1) is a Hilbert-Schmidt kernel we have from (4.10)

3 I‘Pk(xﬂ
Z 2

k=]

and also — 1 85 k — o= . Thus it follows that

k

LGl
=1 (A, =AY

Hence by the Riesz-Fischer theorem

Ly (%) 9, ()
é A —A

converges in the mean to a square-integrable kernel R(x,r:1). Now considering the
resolvent equation [see Eq. (1.21)]

b
RumM=Kuﬂ+”KuﬂRmnMﬁ,
we obtain, using Hilbert-Schmidt theorem,
e S 0 () 9, (0)
R(x,A) = K(x,0) + A ;_} A G —7) (4.32)

which is absolutely and uniformly convergent.
Example 4.1. Solve equation

|
mﬂ=x+qxun¢wm
0
where H,;EHE?;Z, n=12,.. and
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K(x.f)= M=), 0=x=r=l
l)= f(1-x), 021=x <l

Solution. We consider the cigenvalue problem
o=A%p

1
where ¢ = jK{.r..f}-'ﬁ{r] dr .
i

It is clear that K(x,f) is zero al x =0 and x = | and so ¢{0)=¢(1)=0 for any
solution to the eigenvalue problem. Now, we need to solve the cigenvalue problem—
in this sake we turn the integral cquation into ordinary differential equation by

repeatedly differentiating the equation ¢ = A4¢ with respect to x.

|
9(x) = A [K(xt) 9() dt
L

X I -
= AJa-x)rg@ydr + [x(1-1) o) di)
1] i

X 1
% = Alx(l—-x) ¢(x) + j{—r} o) dt = x(1—x) d(x) + J[} ~1) (1) di}
0 )

d®

£ = Ao = (-9 4}
which simplifies lo
"+ Ap = 0
with the boundary condition
@(0) = @(l) = 0
For negative }, we only get the trivial solution ¢(x)=0
Sowrite A = ¢* = 0. This gives
d(x) = Acosex+ Bsinex
As ¢(0)=0, we get 4 =0 and ¢(1)=0 gives us Bsine =0, so, c=nr.
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Therefore the eigenvalues of the ordinary differential equation are A= et

and the corresponding eigenfunctions are ¢, (x)= B, sinnmx. We choose B, by
requiring that || @, ||=1 which gives us B, = A2

So for A#A, =n*n® we have a solution for any flx), which 1s x here, Thus
using Hilbert- Sth’mdt theorem we find from (4.30) that

4’(-1‘}_ X+ lz“ \‘f—blnl?;-'r.r‘}\:qmmh
=l

2;4, fe 1)“*' sinnﬂ.‘x
s R (R .?L;_i

The resolvent kernel according to (4.31) is

R(x.t;A) = EEM, A#n'nt
n= ?r -A
: %
Example 4.2. Solve @(x)=cos2x+ .-'LIKU ) ull) dt

sinx cost, 0=x=¢
with K{x,t) = 1 |
heia sinf cosx, r‘_fxﬂg

Proof. It is easy to check that K(xf) is symmetric and square integrable on
[0.8]x[0:]

We need to solve the eigenvalue problem ¢ = A %¢. So, as before we reduce
¢=A Y o an ordinary diflerential equation

X "%
P(x) = .l[_[c-::sxsh! o) di + _I-sinx cost (1) di]

m;a

= = A[cosx sin x¢(x) + J- sinx sinf @f) df —sin x cosx ¢(x) +

s
+ Icnsx cost (1) dr |

X
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@20 4

3 A= sin” x d{x)— jmu sint (r) ot —cos” X P(x)— !smx cosf () dr)
0

- (A+ho

So our eigenvalue problem reduces to #"=(A+1)¢. It is not hard to check that

¥

the definition of the kernel implies that @(0)= lii(%) =0, As usual there is no non-

trivial solution for A +1<0 or equivalently for 4 <—1. So we take |+ 1=e220
and ¢(x)= Acoscx+ Bsincx. Applying the boundary conditions, we get 4 = 0 and
Bsine™ =0,50 ¢=2n.

We therefore have A4, =d4n*—1 and ¢, = B, sin2mx. If we take || ¢, IP=1 we

2
find that B, :T and so ¢, = r_qm2mc

Here A, = 4n® —1 is always odd. Sa if for example we take } =4 we expect a

unique solution for any fix). Here [(x)=cosZx.

Sofor A=4.
#(x) = cos2x + 4 Zf£¢aa (x)
k
= cos2x + 4 Z I q’: 21y
ﬂ-' k=l 4k
9 ? —i L H = even
where  f, = T fsin Inx cos2xdy = $fm n’ -1 S
i 0 n = odd
Fredholm integral equation of the first kind
Here we shall see how the equation of the first kind
b
f@) = [K@n o) di (asx<b) (4.33)
il

can be solved by using Hilbert-Schmidt theorem.
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Let {¢,} be the orthonormal system of eigenfunctions of K(x,), then following
as in (4.22) we obtain

_ 1
a = (f,) = Tiﬁh,tﬁw (4.34)
. .

where A, s are the cigenvalues of the kernel K(x,1), (., ) are the unknown Fouricr

coefficients of @(x) with respect (o the system @ (x)} and (f.¢;) are the
corresponding coefficients of the function f{x). From (4.34) it follows that

() = Ay
Then by the Riesz I'ischer theorem [see Chapter 1] there will exist at least one

L * -function ¢y(x) which satisfies the equation (4.33) and that
an Ap o (x)
k=1

converges in the mean to the function ¢, (x) provided the series

L]

ZI ap Ay |*

k=1
converges. If this hold then ¢ (x) is unique when K(x,¢) is closed.

Example 4.3, Consider the equation
|
J&) = [K(n) o) de
t]

l—1), O=x=r=]

h e ) =
_w o Enh) {r{!—x}, f<r<xsl

Solution. Tlerc we can find as in example. 4.1 that the eigenvalues and
cigenlunctions of '
p=AK¢
are A, = P r?, ¢y (x) = 2 sin kmx (k=1,2....) and that

I
€= J2 _[_f'{.t‘} sinkmwx dx
4]

268



Thus the given equation has one and only one L * _solution if the infinite serics

- 2 7 e

Sa A= Yk a

k=1 k=1
converges.

EXERCISES

1. Solve the integral equation

|
o(x) =e" + A k(x,Np(1)dt
i

sinh x.sinh(x —f) 2 e

sinhl

sinh¢ sinh(x —1) y<t<1

where ki(x,f)

sinh |

nil —e(=1)"}sinnmx
(14w )1+ n'n” + A)

[Ans, $(x)=e* =24} (A<-1

2. Find the eigenvalues and cigenfunctions of the humugeneon's integral equations :

2
1

(i) $x)= ﬂ.j{xr t ) d(r)dr

e

1 1
[Ans. A, 0 16,639, A, [1 0.3606 , eigenfunctions ¥ =2.2732—, ¥+ 04399.—]
(i) ¢(x)=A[k(x)p(r)dlt
1]

Y i
[Ans.A=4, =1 -(n+%) d(x) = Ams[n -1-%}1', A being arbitrary constant]
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3. Using Hilbert-Schritt theorem, Solve the symmetric integral eugations :

3!
(i) P(x) = 14 E:I; (xt + xzrz]tjﬁ[r}cﬁ
[Ans. d(x) = 5x° + Ax+1, A being arbitrary constant. |
I
(i) p(x)=(x+ D%+ j (xt + X))t
-1

[Ans. ¢(x)= %xz +6x+1, A being arbitrary constant.]
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