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PREFACE

In the curricular structure introduced by this University for students of
Post-Graduate degrec programme, the opportunity to pursue Post-Graduate
course in any subject introduced by this University is equally available to all
learners. Instead of being guided by any presumption about ability level, it
would perhaps stand Lo reason if receptivity of a learner 15 judged in the course
of the learning process. That would be entirely in keeping with the
objectives of open education which does not believe in artificial differentiation.

Keeping this in view, the study materials of the Post-Graduate level in
different subjects are being prepared on the basis of a well laid-out syllabus.
The course structure combines the best elements in the approved syllabi of
Central and State Universities in respective subjects, It has been so designed '
as (o be upgradable with the addition of new information as well as resulis of
fresh thinking and analysis. '

The accepted methodology of distance education has been followed in
the preparation of these study materials. Co-operation in every form of
experienced scholars is indispensable for a work of this Kind. We, thercfore,
owe an ecnormous debt of gratitude to everyone whose tireless efforts went
into the writing, editing, and devising of a proper lay-out of the materials.
Practically speaking, their role amounts to an involvement in ‘invisible teaching’,
For, whoever makes use of these study materials would virlually derive the

benefit of learning under their collective care withoul cach being scen by the
other.

The more a learner would seriously pursue these study materials, the
casier it will be for him or her to reach out to larger horizons of a subject. Care
has also been taken to make the language lucid and prescntation attractive so
that they may be rated as quality sclf-learning materials. I anything remains
still obscure or difficult to follow, arrangements are there to come to terms
with them through the counselling sessions regularly available at the network
of study centres set up by the University.

Needless to add, a great deal of these efforls 18 still experimental—in fact,
pioneering in certain arcas, Naturally, there is every possibility of some lapse
or deficiency here and there. However, these do admit of rectification and
further improvement in due course. On the whole, therefore, these study
materials are expected to evoke wider appreciation the more they receive
serious attention of all concerned,

Professor (Dr.) Subha Sankar Sarkar
Vice-Chancellor
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UNIT : 1 a TENSORS

§ 1.1 Introduction

The concept of a tensor has its origin in the development of differential geometry
by Gauss, Riemann and christoffel. Ricei and his student Levi-civita developed
“tensor calculus’ also known as the *Absolute Differential Calculus®.

The main aim of “Tensor calculas’ is the study of those objects of a space
endorsed with a co-ordinate system where the components of objects transform
according to a law when we change from one co-ordinate system (o another. As
a result, the *Tensor Calculus® has its application to most branches of theoretical
physics. The word ‘tensor’ comes from the word ‘tension’.

§ 1.2 Transformation of co-ordinates :

A set of n real numbers x'. » where 1,2......, n are not the powers of x
but are the superscripts ol x, is caHed and n-luple nt rcal numbers and is denoted
by (x'......x") Such a set shall be called a point of an p-dimensional space. The
variahlcs are called the coordinates of the point. The set of all such n-tuple of real
numbers shall be denoted by 8. The corresponding co-ordinate system shall be
denoted by (x').

Let (x') be another co-ordinate system in §” which is related to (x') by

Ly *r=glleh un®), 1= T agin

where g'are the single valued continuous functions of x',........., x" and have
continuous partial derivatives of upto any desired order. Equations 1.1) are said to
define a transformation of co-ordinates. In order that the transformation be reversible,

it is necessary and sufficient that the Jacobian determinant formed by the partial
i

derivatives @shnuld not be zero. Under this condition, we can solve 1.1) for the
functions of x ‘and obtain

2).2 = Ml =5 awii® )

We shall refer to a class of co-ordinate tranformations with these properties as
admissible transformations.

Example ; Consider a system of equations specifying the relation between
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the spherical polar co-ordinates x" and the rectangular cartesian co-ordinates 3
in E* (3 dimensional Cuclidean space)

y! = x' sinx? cosx®
¥ = x! vinx? sinx?
¥ x' cosx?

3

il

The Jacabian determinant J formed from the partial derivatives is given by

I = @’N a}ﬂ 6yr
o' o o
&' &' &
& o o

= ') sim?

20ifx >0 0<x¥<xn

Thus x' = /(') + () + (3" e
3
PR o~ z
JOY + PP+

Exercise : Discuss whether x', x%, x* in the ransformation between cylindrical
polar co-ordinates x' and the rectangular cartesian co-ordinates 3 in £° namely

¥ = x! cosy’
y: = x' sinx?
i

yt =



can be expressed in terms of y!, »?, »*

xi= {yl]!+{'yl‘)1 ,Ij }D
Answer: !y’ = tﬂu-*i

% LA
x=y

§ 1.3 Summation Convention :

In writing an expression such as ax' + ax” + ... + a x”

We can use the shorl notation Z a.X'. An even shorter notation to write it as

=1
ax', where we adopt the convention that when ever an indes, appears lwice, once
as a superscripl and once as a subscript, we are to sum over the index form | to
n, unless otherwise stated. This is known as summation convention and the repeated
index is called a dummy index. An index occcuring only once in a given term is
called a free index.

From 1.1) We find that
1 !
%= -—%f il
=1 O
‘which by the Einstein convention can be wrillen as
i

1.3) ax' =ﬂ£aﬁ:”
(1Y

Az

Let us introduce the Kronecker delta, defined by

& = e
L4) &= L, k=
=0, k #j
Since the co-ordinates x' are independent, we can write
o'
1.5) ﬁﬁ:——j
ox



Exercises
1. Show that
i . —i
fx Ov _gh
' ot =

Noté : We shall consider some systems, denoted by e el e,
called the e-systems and defined as follows :

(i) 854’ =4" (i) 8/=n {m)

and e,

(e =en=u, =1, e, =—1 e =0 1=
I I i
e'=eP =0, &7 =1, " fif=12

1.6) i =Em =G = } Others being zero

Cin =8 = =
123 _ B 3
[ =

213 32| 132
4 =E =&

I} ; Uhe;shemg zero

§ 1.4 Contravariant Vector, Covariant Vector :’

A set of n functions 4’ ol the n coordinates (x', ¥, ... x") are said to be the
components of a contravariant vector if they transform according lo the equation

- o
A=A
1.7) P

on change of the co-ordinate system (x')to (¥'). Also, one gels from above.

— ot
18) A'=—4d
o
A set of n funclions 4, of the n coordinates (x', e x") are said to be the

components of a covariant vector if they transform according to the equation



Exercises

a4 -
I. Show that if 4 is a covariant vector, then -517" is notl a tensor,

2. If fis a scalar function of coordinates ('), then show that ' is a contravariant

vector and P is a covariant vector.
3. Prove that the law of transformation for contravariant (or covariant) vectors
is transitive.

4. Prove that there exists no distinction between contravariant and convariant vectors
when we restrict ourselves to transformation ol the type.

X = x"+h
Where b, are n constants which do not nccessarily lorm the components of

a contravariant vector and «) are constants (which do not form a tensor)

such that a)a, =38!

§ 1.5 Invariants:

Any function w of the n coordinates (x', x%, ..... ") is called an invariant
or scalar if
1L11) w=1
Where {i be ils transform on change of the co-ordinate system (x')to (¥).
¥ ¥ ax'
Note that —=————
ote that == o o

which transforms Iike 1.9). Thus P is a covariant vector. Such a vector is somctimes

called the gradient of ¥ and is denoted by grad V.

Example : Considering the equations 1.8) and 1.10), it can be shown easily
that the expression (4"B ) is an invariant.

§ 1.6 Second Order tensors, Higher Order tensors:

A sel of n? functions 4Y of the n co-ordinates (x rorne X") ave said to be the
components of a contravariant tensor of order two or ul type (2.0) if they

11



transform according to the equation.
SN
L1y A= g™
} atnlll axil
on change of the co-ordinate system from (x')to (¥')

From 1.12) on finds that

" - \
— A" =88 A™ by Ex. 1 (iii .
P s i woar }F X (”1} ﬂf§ 13}
Thus
N
: Ar.-r :_.4!:—_.—"—.'
Vil Pl
Similarly, a set of n* functions 4, of the # co-ordinates (x', ..... x") are said

to be the components of a covariani tensor of order 2 or of order (0, 2) if they
transform according to the equation.
aer gt y
afj 'E A

on change of the co-ordinate system from (x')to (¥'). In a similar way, it can
be shown that

1.14) A" =

. e it
1.15) A=A
) i &rl l‘a}.—"
A set of n? functions A;of the n co-ordinates (x', ..... x") arc said to be the

components of a mixed tensor of order two or of order (1,1) if they transform
according to the equation.

_ iﬁl ax”

16 A

L0 A= o o
On change of the co-ordinate system from (x')to (¥7)| In a similar manner, it

can be shown that

12



In general, a sct of n”' function 4} of n co-ordinates (x', ..... x) are said
Frinidy i

to be the components of a mixed tensor of order (p, q) if they transform according
to the equation.

i _—ly > H
1 IE] A’r'i il i _ft“.'v.llnr\2 oy, ﬂfrl o ! la_].nl r'}x i
v iy e dy LT F—" &r’"' 5}{"”'" 'ﬁjl E'JJ‘.:J"'

iy e

On change of the co-ordinatc system from (x')to (¥').

Exercises
Show that the Kronecker delta is a mixed tensor of order two.
2. If all the components of a tensor in one co-ordinate system are zero at a point,
then, show that they are zero at this point in every co-ordinate system.

Note : The result stated in Exercise 2 above, cnables us to define a »ero tensor
as follows :

A tensor, whose components are all zero in every co-ordinate system, is called
a zero tensor.

~§ 1.7 Algebra of tensors:

Ir z.‘f'ji':_':_:_'_"m and Br}i":'f"{:v are components of two tensors of type (p, q), then

A5 f"’%-_l' Bij:j.;_':’f , are the componenis of another tensor of type (p, ). Such a

tensor is called the sum (or difference) of the tensors A 'J',':"-"'“J“ and B J,:,._.::!:r{ and the

algebraic operation by which it is obtained is called the addition (or subtraction) of
the tensors,

If ¢ be a scalar, than ¢4 J: """ i i arc the components of another tensor of type

(p. q). The algebraic operation by which it is obtained is called the multiplication of
the tensor by a scalar. .

If 4 '”J.r;, and 8" are the components of a tensor of type (p, q) in the

same co-ordinate system then they are said to be equal if

A T B Freee il

Vil sty
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If 4 ":I"':':“{‘ are the components of a tensor of order (p, q), p # 0. g # 0 then

'r‘nl
the quantities obtained by replacing any upper index, say i and any lower index,
say j by the same index i and performing summation over i arc the componenis

of a tensor ol type (p—1. q—l} The operation by which it is obtained is called
contraction.

I A} _:_:’ih and Bfl‘_" :‘: are the components of two tensors ol order (p, q) and

(r, 5) respectively, then A' !v' B "" is a tansor of typc (;:: I 1, g + 8). The

algebraic operation by which it is ul:rtamcd is called the outer multiplication.

By the process ol outer mutltiplication of two tensors followed by a contraction,
we get a new tensor, This new tensor is called the inner pmduct of the given
tensors and the process is called an inner umltiplication.

The alpebraic operations on tensors, namely, (i) addition, (ii) subtraction, (iii)
scalar multiplication, (iv) contraction and (v) outer mulliplication, constitute what is
called the tensor h lgebra on S" i

Note : All the operations defined in this article, relate to ténsors at the same
point only.

Exercises
. Show that the conlracted tersor A" is a scalar,

2. Show that the contraction of a tensor of order (2,3) is a tensor of order (1,

2)

3. Prove that the inner product of two tensors 4 and B/ is a tensor of order

(2.1).

4. Show that the tensor cquation. "8, = [0, where [ is an invariant and 0, arc
the arbitrary vector, demands thatl.

— ﬁ]h’ﬂ

5. 1f 4" and B, are the Components of a contravariant and covariant vector then
show lhdt their outer product is a tensor of order 2, Is the converse true?
Justify your answer.

14



Solution : 2. Let 4,,, be the components of a tensor of order (2, 3) in (x')

system. With respect to change of (x')to (¥') system, the given tensor follows
the following transformation ie.

41— g g o’ o i’ "

mp A et ot ™ " T

To perform the contraction, let us write | = n, then we get

e B o o
iy e ax-'“ arl '.afulll Eb—;.n' aful"

i o ' "
=‘)' —_—

o P by Exercies 1 (i, iii) of § 1.3
iy

This is the transformation of a tensor of order (1,2). This completes the
solution.

Solution : 5. From the definition of a contravariant vector it can be easily
prove that A'B' is a tensor of type (2,0) or, a tensor of order 2.

Converse Part : Lel us corsider two-dimensional Buclidean space B2 In E?
let us take a (2,0) tensor A defined by

Af= 1, il = i
i

Let, if possible, there exist two contravariant vectors (' and [’ such that 4" can
written as an outer product

=0, ifi =

of these two vectors, i.e., 44 = C'D..

Then ¢! = A% = 1limpliesC! =0

cip? = 412 =

@ impliey D* = 0, since €' # 0

Again C*D? = A% = |, but since D* = 0, therefore C*D* must be zero, i.c.,
A% = 0, which is a contradiction,

Hence A? can not be written as the outer product of two contravariant vectors.
This completes the solution,
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§ 1.8 Symmetric and skew Symmetric tensors:

Il two contravariant or covariant indices of a tensor can be inlerchanged without

altering the tensor, then it is said to be symmetric in every pait of such indices.

Similarly if by interchanging two contravariant or covariant indices of a tensor,

each ol 1ts components is altered in sign but not in magnitude, then the tensor is
said to be skew-symmetric with repect to these indices.

Exercises

Prove that the symmetry (skew symmetry) properly remains unchanged by tensor
law ol transformation,

|
Show that a symmetric tensor of order two has atmost EH{HH} different

components.

|
Show that a skew symmetric tensor of order two has 5’?(?! ~1)| independent

components.

Show that a tensor of order two is expressible as a sum if two tensors one of
which is symmetric and the other is antisymmetrie.

If Uﬁ # () are components of a tensor of type (0, 2) and if the eguation
fu,+ gU, = 0 holds then prove that either f= g and U/, is skew-symmetric o
f= —g and U, is symmetric.

Ir A” is a skew symmetric tensor, prove that
{E_"IS: +8, Enj}Am =0

Il the tensors a, and g, -are symmetric and ', v are components of contravariant
veclors such that '

(a, — kg )u' = 0 ko 2k
(@, — kg =0
the prove that g u'v' = 0; auv' =0

Il a tensor 4 W' is symmetric in the first two indices from the left and
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skew-symmetric in the second and the fourth indices from the left, show
that AW =1L

9. If4_ is a skew-symmetric tensor and B' is a contravariant vector, then show
that 4 B"B" = 0.

§ 1.9 Quotient Law :

Il the result of taking an inner product of a given set of functions with a
particular type of tensor of arbitraty components is known to be a tensor, then the
given functions will form the components of a tensor,

To explain it, let A (p, g, r) be a set of functions given in the (x') system, such
that the inner product of A(p, g, r) with an arbitrary tensor B is a tensor (.‘:J Thus
A(par) B =C,

Suppose in the (¥')system, the above equation is transformed to
Ay, w)B™ =C"

As B™and C"are given to the components of a tensor, using the transformation
law, we get

T E W&

Al Wi . e e
{h'.'l" W}a et A P ot "
G il ) i
= A(p,q.r)BY — =
(p.q.7)B; PR
from above.
— L 0| = ox' o’ dx”
B 4 A1, v, W).mmme e — A PG, #) — s =0
or B E}-"{ (uvu}aﬂ = I(p_gr] x"}

i

ax
: sty iih
Multiplying wi =

and using Exercisel (i, iiii) of § 1.3 we get
= ax" dx' ax”
IiAg {A{H.v, WJEW_E —A(Pst?sf'}é;:,;} =0

17
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since BY is an arbitrary tensor, we must have

= ax’ ox' ax’

Alu,v,w). —==A(p.q.r

Gty e (Prar)—;
ﬁﬂ af.l' ax.r

or A(t,q,r)= A(u,v,w), A

which is the transformation law of a mixed tensor of order (1, 2).

Exercises

Assume that A(p.g]ﬂw. = i where ﬂw. i5 an arbitrary tensor and & is a
covariant tensor of order two. Show that A(p,q) is a mixed tensor.

1.10 Conjugate Symmetric tensor :

Consider a symmetric covarianl tensor 4, of order (0,2) such that |A,,] #0.

Let us define

cofactoro of Ai"r'n|4j|
[4,]

W

1.19) 4’ =

[Then from the theory of determinants

A A%=1, j=k
={; 1k
i.e. we may write
1.20) 4,4" =8 by 1.4) of § 1.3
Exercises

Show that 47, defined in 1.19), are the components of a symmetric conlravariant
tensor of order (2,0).

18



% IfA-,;.-—'l'.]fnr i#]
# 0, for i =]

then show that A = 0, for i # j, Further,

1

A" = —  (no summation)

W

Note : The tensor AY defined in 1.19) is also known as the conjugate symmetric
tensor of 4 "

§ 1.11 Curvilinear Co-ordinates :
In the beginning of this chapter, we have considered an equation of type 1.1).

Let the co-ordinates x!, x?, x° be related to the rectangular cartesian co-
ordinates 3/, ¥, ¥’ by

=it #% 2N = L 3
Let x' = ¢!, where ¢/, is a constant and let x?, x* be allowed to vary. Then

¥y = d'(c!, ¥, ¥,

19




























































































































































































































































































































































































































































