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PREFACE

In the curricular structure introduced by this University for students of Post-
Graduate Degree Programme, the opportunily to pursue Post-Graduate course in any
subject introduced by this University is equally available Lo all learners. Instead of
being guided by any presumption aboutl ability level, it would perhaps stand to
reason if receptivity of a learner is judged in the course of the learning process, That
would be entirely in keeping with the objectives of open education which does not
believe in artificial differentiation.

Keeping this in view, study materials of the Post-Graduate level in different
subjects are being prepared on the basis of a well laid-out syllabus. The course
structure combines the best elements in the approved syllabi of Central and State
Universities in respective subjects. It has been so designed as o be upgradable with
the addition of new information as well as resulls of fresh thinking and analysis.

The accepted methodology of distance education has been followed in the
preparation of these study materials. Co-operation in every form of experienced
scholars is indispensable for a work of this kind. We, therefore, owe an enormous
debt of gratitude to everyone whose tireless efforts went into the writing, editing and
devising of proper lay-out of the materials. Practically speaking, their role amounts
to an involvement in 'invisible teaching'. For, whoever makes use of these study
materials would virtually derive the benefit of learning under their collective care
without each being seen by the other.

The more a learner would seriously pursue these study materials, the easier it
will be for him or her to reach out to larger horizons of a subject. Care has also been
taken to make the language lucid and presentation attractive so that they may be rated
as quality self-learning materials. If anything remains still obscure or difficult to
follow, arrangements are there to come lo lerms with them through the counselling
sessions regularly available at the network of study centres set up by the University,

Needless to add, a great deal of these efforts is still experimental—in facl,
pioneering in certain areas. Naturally, there is every possibility of some lapse or
deficiency here and (here. However, these do admit of rectification and further
improvement it due course. On the whole, therefore, these study materials are

expected o evoke wider appreciation the more they receive serious attention of all
concerned.
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Vice-Chancellor
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Unit-1 0O Compactness

Introduction

In this chapter we mainly deal with the notion of compactness and some of its variants, .
We start with the idea of nets and filters which was in the Topology course in PG-1, and
present some more definitions like cluster points of nets, subnets, ultrafilters etc. Which will
help us to establish some more characterizations of compactness in topological spaces. Next,
the notions of three more types of compactness, namely countable compactness, Frechet
compactness and sequential compaciness are introduced which arise naturally from equivalent
criteria of compactness in Real line with which you are already aware of. In a topological space
all the four types of compactness turn out to be distinct and we establish their interrelationships.

In the remaining part of the chapter, we deal with compaciness in stronger structures,

First, we consider metric spaces and establish equivalent criteria of compactness by showing

that all the four types of compactness are equivalent in metric spaces.

1.1 More on nets and filters

First, recall the following definitions from the earlier course on Topology,

Definition. Let (D, = ) be a directed set and X be a non-empty set. A mapping s : D
— X is called a net in X. It is denoted by {s : n €D} or simply by {5},

A net {s,}, is said to be eventually in 4 € X if 3 n €D such that 8, €A, Wne p with
H 2N,

A net {s }, is said to be frequently in 4 € X if for each m € D, 3 an n €D with n
= m such that s, € 4.

Definition. Let X be a topological space. A net {s, }, is said to converge to x, X if {8}
is eventually in every neighbourhovd of x, and we write lim s = x,, X, is called a limit point

or just a limit of {s } .
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Definition, A point x, in a topological space X is said to be a cluster point of the
net {s,}, if it is frequently in every neighbourhood of x,.

From the definition, it is clear that if a net {s,} is convergent then its limit points

Al
are the only cluster points of the net. But existence of a cluster point does not necessarily
mean that the nct is convergenl. You have already come across such examples. Recall
that taking D = N, we had non-convergent sequences which have convergent

subsequences and the limits of those convergent subsequences are in fact cluster points.
This takes us to the next definition.

Definition. A net {f, : @€ E} is said to be a subnet of the net {s, : ne D} if there
i5 # mapping i : £ — D such that

(a) 1 = s0i, _

(b) for any m € D there is o; € £ with the property that (o) = m for all we E wilh
o= D'.ﬂ

Theorem. Let X be a topological space and {5, : ne D} be a net in X. A point Xt
X' is a cluster point of {s, : #eD} iff some subnet of {5} converges 1o Xy

Proof. Let x; be a cluster point of the net {5, : ne D}, Denote by Nxﬂ the family
of all neighbourhoods of x; and let £ = {(U, n) : neD and UEqu}' For (U, n) and (¥,
p) in E, define (U, n) 2 (V, p) ilf Uc ¥V and n = p in (D, 2). It is easy to verify that
(E, =) is a direcied sel,

Let (L), m) €E. Since x!'] is a cluster point of {5 : neb)} it is frequently in . So

e L. Now define the

there is an element Py gy 0D owith p, 0 = m such that it

mapping:s L E— Dandt: E — X as follows ; (U, m) = Byy, gy And (L, m) = L
Then (s0i) (U, m) = s(i(L), m)) = S - SO L= s0i, Finally let meD. Choose any Ue
Nx, so that (U, m) e £ Now, let (F, n) €E and (V, n) = (U, m). Then i (V, n) = pyje

2 n z m. This shows that {#,, . . (U, m) €k} is a subnet of the net {5, : neD}.

Now let U be any neighbourhood of x,. Choose any meD so as to get an element

(U, meE. Now, for any (V; n) € £ with (V, n) = (I, m), we have v oy = Sewn € Fi=

)
L7 which shows that the net {I{U_ m + (Us m) € E} converges to xg.
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MNext suppose that some subnet {7, : € E} of the net {s : n €D} converges to
xg Then there is a mapping 7 : £ — D satisfying the conditions for a subnet. Let U
be any neighbourhood of x, and me D. Since {1, : e E} converges to x;, 3 o, F such

that t, el Vo z o, ae k. Again by () of the above definition 3 a,e & such that i(cx)

=mvaz o,, aell, Choose o, € £ with o, 2 oy, o, Take 0 with © = tty. Then i(a)
2z m and (, = (s0i) (0) = 5, €U So the net {s @ neD} is frequently in U. Hence x,
is a cluster point of {s : neD}.

Exercise A net {5 : n €D} is called a maximal net (or an ultranet) in X if for any

A C X il is either eventually in A or in 2\, Prove that if x; is a cluster point of a maximal

net {s, ' n €D} then it is convergent to x,.

Solution : Let [V be any neighbourhood of the point x,. Since {s : neD} is maximal,
so either it is eventually in U or eventually in Y\UL I[ possible, suppose that it is eventually
in AU, Then 3 me D such that s eX\U tor all peD), with n = m. But as x; is a cluster
point of {s, : neD}, we can find a p 2 m such thal 5, € U7 which is & contradictlion.
Therefore {5, : ne D} is eventually in U. Since this is true for every neighbourhood U
of x,, so {5, : neD} converges to x,.

We now move to the idea of filters. Recall the basic definitions.

Definition. A nonempty family <7 of subsets of X is called a filter in X if (i) ¢g <%
(iNd, BecF=2dnBed (li)d edf, 4 c B= Bed®

A filter <& is said o converge to x; in a topological space X if every neighbourhood
of x, belongs lo &%

Definition. A point x,X is called a cluster point of a filter & if for every
neighbourhood [/ of x, and FEc# U n F # ¢ or equivalently x.€ F, ¥ FeoF

Definition. A filter ©# in X is said to be an ultrafilter if if is not properly contained
in any other filter in Y.

We will now prove some inleresting results about ultrafilters.

Theorem : Let X be a non-emply set and -z be a family of subsets of X with finite
intersection property. Theén there exists an ultrafilter ™ in X containing -+ .
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Proof : Let C denote the collection of all families of subsets of X with finite
intersection property and containing the family 7. For o, &% in C, Let o, > i

iff <% © oF. It is easy to see that (C, 2) is a partially ordered set.

Let 5 be any totally ordered subset of C. Write o, = U{aF : cFe B}. Clearly .7
C o4 Let {4, 4,,.., 4.} be any finite subfamily of <%, Without loss of generality,
suppose A7 (i = 1, 2, .., n) where <#eB. Since I is totally ordered, Ja peN, < p= 1",
such that d:?i; 2 ¥ wi=1 2, ..,n Then A Ay A"Ecﬂ; and so A,MA,M.. A, # §.
Thus <& also has the finite intersection property and hence a# e, Clearly = is an
upper bound of . Therefore by Zom’s Lemma € has a maximal clement =+ (say).

Clearly ¢ & &%, Lel A, Be o *, If &% = &% U{AnB} then < has fip and contains
e - S0 #eC. But as ¥ is maximal, we must have &, = &* and hence 4  Be -7+,

Again let 4 €c#* and A © B. By similar argument we can show that Be «7*. Therefore
<+ is a filter, '

Finally,.nnt:} that if <& is any filter containing #* then «# C oF *C &' and so
& €C. Since &F* is a maximal element of C so we must have <% = &, This proves
that &#* is an ultrafilter,

Theorem : A filter &7* is an ultrafilter in X iff any subset 4 of X which intersects
every member of &% belongs to 7%,

Proof : First suppose that ¢#* is an ultrafilter in X, Let 4 be a subset of X which
intersects every member of &#%,

Let &, = {C € X : 4 1 B.C C for some B € #*}. Clearly ¢ ¢ o7, F*c o and
AedF, Let C,, C; € &7, Then AnB, © €| and ANB, c C, for B, B, €c#* Then B =
B m By #* and we have CnC, D (A n B) n(d ey By = A (B NnB)=4mB
~which implies €, €, € &, Again if Ce & and C © €' (€ X) then 3 B € o7+ such that
AnBcCandsodn Bc C which implies C'e &%, Therefore =%, is a filter in Y.

Since oF* is an ultrafilter so &% = % and so Ae oF*,

Next suppose that the given cendition holds. Let &% be any filter in X containing
o7, Let 4 €5 If B € 7 then e &Fand so 4 M B # ¢. So by our hypothesis 4 € 7.
This shows that & = ", Hence <% is an ultrafilter.
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Exercise : Let &#* be an ultrafilter in X and 4, B be two subsets of X such that
A w B ed#* Then either 4 €cF* or Be o7%,

Solution : Suppose that A2 c#*. Consider the family & = (C Cc X1 4 U C e ¥},
Then Be o, Since 4 & ¥, ¢ . Let C|, C,ecF,. Then 4 W Cps 4 W G o* and so

A (€N C)=AuwC)ndu ;) e This proves that C\n Cye o, Again
let C & o and C ' Then 4 W C eF* Butsince A w Ccdw , sod et
which then implies C'e &7, So &%, is a filter in X.

Finally as we can see, C € #* = A U Ced#* and so Ce o, Thus =#*cex, But
as @#* is an ultrafiller so & = <F*. Therefore Be 7%,

Exercise : A filter &% in X is an ultrafilter iff for any ACX either A€ &7 or Y\de =%,

Solution. First suppose that = is an ultrafilter. Let 4 C X, Since Xe * and X = 4
U (X)) so either 4 * or X\de &#*, Conversely, suppose that the given condition holds.
Let & be a filter containing <#*, If &F* C =& then we can choose some 4 € o such that
A & &#*. But then by the given condition X\de ¢&#* which implies X\de o#. Then ¢ = A
(X\d) €<# which is a contradiction. Hence <#* = & and so #* must be an ultrafilter,

1.2 Compaciness

We first recall the following definitions and a result from earlier Topology

course.

Definition : A topological space (X, T) is said to be compact if every open covering

of X has a [inile subcovering.

Compactness can be characterised "in terms of *“‘the finite intersection property’* of

closed sets,

Definition : (Finite intersection property) : A collection of subsets {FF, : vea} of
a given sel X (a being an indexing set) is said to possess the finite intersection property,
if every finite sub-collection of {F } has non-empty intersection.

Theorem : A topological space (X, ©, s compact il and only if for every collection
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of closed sets {F, : vea} in (X, 1), possessing the finite interscction property, the
intersection M{#, : vEa} of the entire collection is non-empty.

We now prove the following characterizations of compactness.

Theorem : Let (X, 1) be a topological space. Then the following statements arc
equivalent.

(i} X is compact
(ii) Every filter in X has a cluster point
(iii) Every ultrafilter in X converges.

Proof : (i) = (ii) : Suppose that X is compact. Let =F be any filter in X, Let =%
= {4: Ae &F}. Then <#* is a family of closed sets with finite intersection property. Since
X is compact, so

A AedF) # ¢

Choose a point x;, in M| A : Ae 5F}. Then Xo€ A,¥ A€ & and from definition X,
iz a cluster point of oF.

(ii) = (iii) : Let = be an ultrafilter in X, By (ii), =% has a cluster point x; in X

Let U be any neighbourhood of x;. Then Un F = ¢ ¥ Fe % . But then we must have
Ue o# . This shows that o# converges to x,.

(iii) = (i) : Finally suppose that (iii) holds. Let & be a family of closed sets in

X with finite intersection property. Then there exixts an ultrafilter -+ containing <% By

(iii), & converges to a point x,€X. Then for any neighbourhood {/ of x,, Ue =% , Take

" any Fe o Then Fe = and so UnF # ¢, This shows that X, Is a limit point of F and

so x, € F. Bul since each Fe o is closed, x; € F=F. This is true for any F €< and
50
F: Fedf} #
This proves that X is compact.
We now use the concepl of ultraftlter, developed so far, to prove the following

important theorem due to Tychonoff.
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Theorem (Tychonoff Product Theorem).

Let {X, : aea} be a collection of topological spaces. Then the topological product
space X is compact il each X is so.

Proof : If X is compacl, then clearly each factor space A7, being continuous jmage
of X under the projection map p, : X — X , is compact,

Conversely, let cach space X, be compact. By the above theorem it suffices to show
that any ultrafilter <on X converges in X. For each ae A, 3, = {p (F) : Fe o7} is clearly
a base for a filter &% on X_. We claim that &% is an ultrafilter on X, For this, we need
to show thal for any subset 4 of X, either A€ &% or X \de o . Let us write B = oA,
Since ¥ is an ultrafilter on X, either Be < or X\Be &7 Conscequently, either 4 = pAB)E
B, CF, or (M) % Hence J7, is an ultrafilter in X, for each e A. As each X, is
compact, <# converges to some x €X , for each aeA. Then =F converges to the point

x = (x,),., in X and hence X is compact.

1.3 Countable Compactness

We now look into another type of compactness which is weaker than compactness
but is equivalent to compactness in the real line.

Definition : A topological space (X, 1) is said lo be countably compact, il every
countable open covering of X has a finile subcovering.

We shall obtain several necessary and sufficient conditions for a topological space
to be countably compact. One such condition is given in terms of the concept of cluster
point of a sequence. A point p is called a cluster point of an infinite sequence {x, : n
=1, 2,...} in a topological space (X, 7) if, for any given open set I/, containing p, and

any posilive integer r, there always exists a positive integer m > r, such that x & U\
Theorem : For a topological space (X, 1) the following conditions are equivalent;
(a) (X, T) is countably compact,

(b) Every countable aggregate of closed sets, possessing the finile intersection
property; has a non-empty intersection in (X, T).
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(¢) Every descending chain of non-empty closed sets, £, 5 F, D .., has a non-empty
intersection in (X, 7). (Canlor’s intersection theorem)

(d) Every infinite sequence in X has a cluster point in X.
(¢) Every infinite set § X has an w-accumulation point in X

Proof : (a) = (b) : This is quite similar to the corresponding theorem on
compacimess.

(b) = (¢} : Clearly {F, : n €M} is a countable collection of closed sets with the
o
finite intersection property and hence by (b), (# #b
n=l1

(e) = (d) : Let {x,} be a sequence in X and Lét A = A{x, :m=>n} for each nel.

Clearly { 4 , +n €N} is a descending sequence of nonempty closed sets in X, By (e},

o
there is a point a= ﬂ A, . We claim that a is a cluster point of the given sequence. Indeed,
=1

tor any open neighbourhood U of & and any me M, we have some xed, N Uasacd,,
Then n = m such that x e U.

(d) = (a). If possible, suppose (a) does not hold, Then there is a countable open
covering {IJ , - nEM} of X having no finite sub'nuw:ring. LetC = AU w.ul). Clearly,
{C, : n €M} is a descending sequence of nonempty closed sets in .X. Choose TEL
for each m €M, Then the sequence {x,} has a cluster point x (say) in X (by (d)). Since
{U, : n €N} is a cover of X, 3 meM such that xe U

m*

e C, = x gU . Thus x cannol be a cluster point of {x, : neM}, a contradiction,

Now, m = m = C ot =ix

To complete the proof, il now suffices to prove “(d) & (e)’ which we do as follows:
(d) = (¢) : Given an infinite set § in X, we can always consiruct a sequence ta, }
in § such that @, # a for n # m (1, m =M). By (d), this sequence has a cluster point

p (say) in X. Then erery neighbouthood of p contains infinitely many terms of the sequence,
i.e, contains infinitely many points of §. Hence p is an w-accumulation point of &

(e) = (d) : Let {a,} be a sequence in X and let 4 be the set formed by the values
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taken by the sequence. If 4 is a finile set, then there is an element a such that a, = u
for infinitely many natural numbers »n. Obviously, then a is a cluster point of the
sequence. If A is an infinite set, then by (e), 4 has an w-accumulation point p (say).
Obviously, p is then a cluster point of {a }.

Exercise

(a) A subspace of a countably compact space need not be countably compact,
(b) Every closed subspace of a countably compact space is countably compacl,

{¢) The union of a finite collection of countably compact subspaces of a topological
space is a countably compact subspace.

Solution : (a) The closed unit interval [0, 1] is compacl, by Heine-Borel theorem,
hence it is also countably compact. The subspace (0, 1) of [0, 1], is, however, not
countably compact.

1.4 Sequentially Compact and Frechet Compact spaces

Finally we look into two types of compaciness, one of which is defined by using
sequences and the other defined by using the idea of limit points of sets.

Definition : (Sequentially Compact) : A topological space (X, 1) is said to be
sequentially compact, if every infinite sequence in X contains a convergent subsequence,

Definition : (Frechet Compaet) ¢ A topological space (X, 1) is said to be Frechet
compact (or B-W compact i.c., Bolzano-Weierstrass compact), if evcry infinite subset
of X has an accumulation point.

Theorem : (a) Every closed subspace of a sequentially compact space is sequentially
compact.

(b) Every closed subspace of a Frechet compact space is Frechet compact,

It follows from the following example that ;

(i) a subspace of a sequentially compact space need not be sequentially compact,
and (ii) a subspace of a Frechet compact space need not be Frechet compact.

Example : Let [ be the sel of reals, and v consists of (i) all those subsets of T,
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which do not contain 0, and (ii) the 4 subsets B\{1, 2}, E\{1}, BE\{2}, and IB. Then
(IR, v) is a first countable, Lindeloff space. Any open covering V of R must include at
least one of the sets in (ii) (in order that 0 may be covered). Let & be such a set for
the open covering V' of R, then M\G consists of al most two points 1 & 2, Let J7, &
H, be two members of V, containing the points 1 & 2 respectively. Then (G, H, H}
forms a finite subcovering of V' for B, Hence (R, v) is compact. let § = B\{0}, then Ll;e
subspace (S, v,} is not a Lindeloff space.

As v_is the discrele topology on 8. S is an infinite set having no accumulation point
in 5. Hence the subspace (5, v} is not Frechet Compact. The space (B, v) is also
sequentially compact. In fact, any infinite sequence {v ;i = 1,2 ...} in R is of any one

ol the following: lwo lypes ;

(i} x; # 1 and 2 for all i, except for finitely many values of i and the sequence {x,
0= 1,2 ..} s itself convergent. Converging to the limit 0;

(iiy x, = | or 2 for infinilcly many values of i, and then there exists an infinite
subsequence of {x, : i = 1, 2 ...}, which converges to the limit | ar 2.

1.5 Mutual dependence of different types of compactness

MNow we investigate the interrelationships between the four types of compactness

we have come across,

Theorem : (a) Every compact space is countably compact and also a Lindeloff

space.
(b) A countably compact Lindeloff space is compact,

Proof : (a) Let (X, T) be a compact space. Since for every open covering of X, there
cxists a finite sub-covering, the same is true for every countable open covering. Hence
(X, T) is countably compact. Also, since a finite sub-covering is necessarily a countable

sub-covering, it follows that (X, 1) is also s Lindeloff space.

(b) Let (X, T) be a countably compact, Lindeloff space. Let U/ be any open covering
of X. As (X, t) is a Lindeloff space, there exists a countable subcovering V of U for
X. Again, since (X, 1) is countably compact, for the countable open covering F of X,
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there exists a finile subcovering W. Then W is a finite sub-covering of U for X. Hence
the space (X, T) is compact.

Theorem : (a) A countably compact space is Frechet compact.

(b) Any Frechet compact T -space is countably compact.

Proof : (a) Let (X, T) be a countably compact space. Then every infinite subset §
of X has an w-accumulation point in X ; thus § has an accumulation point in .X. Hence
(X, 1) is a Frechet compact space.

(b) Let (X, 7) be a Frechet compact, T,-space, and S be an infinite subset of X, As
(X, 7) is Frechet compact, § has an accumulation point x (say) in X and since (X, 1)
is a T,—space, the accumulation point x is an @-accumulation point. Hence (X, 7) is
countably compact.

Theorem : (a) A sequentially compacl space is countably compact.

(b) Any countably compact, first countable space is sequentially compact.

Proof : (a) Let (X, 7) be a sequentially compact space and let o =10, 20 %
be any infinite sequence in .X. Then the sequence {x, : /= 1,2 ...} contains a cnn.wrgent
subsequence, The limit of the convergent subsequence is a cluster point of the sequence
fx. : i=1,2, ...}, Hence (X, 1) is countably compact.

(b) Let (X, ©) be a countably compact, first countable space. Let {x :i=1, 2, ...}
be an infinite sequence in X. Since (X, 7) is countably compact, it is also Frechet compact;

hence the infinite sequence {x, : i = I, 2 ..} has an accumulation point x (say) in X
Again, since the space (X, 1) is first countable, it follows that there exists a sub-sequence

ix-‘fx = 3,2,."} of the sequence {x, : i = 1, 2, ...}, such that lim x; =x. Thus the sequence

{x, ;i =1, 2, ...} contains a convergent subsequence {xh ::'=l,2,,..}1 Hence the space

(X, 1) is sequentially compact.

Note : In proving the part (b) of the above theorem, we have merely used the
property that (X, T) is Frechet compact (in place of its countable compactness). Hence,
cvery Frechet compact, first countable space is sequentially compact.
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In view of the fact that a second countable space is first countable and also a
Lindelofl space, it follows that :

Theorem : For a second countable T|-space, any one of the four properties (i)

compaciness, (ii) countable compactness, (iii) sequential compactness and (iv) Frechet
compactness, implies the other three.

If can be shown by constructing suitable counter-examples that no other
direct implication exists between the Lindeloff property and the four compactiess
properties.

Exercise : Give an example of a second countable (and hence Lindeloff), Frechet
compacl space that is not countably compact.

Solution : Consider the lopological space (M, T). Here M is the set of natural numbers
and T is the odd-even topology on M. The topology T is generated by the base B = {$}
U {@n—1,2n) :n=1,2, .} The space (M, 1) is second countable, since the oper
base B of 7 is countable. Also B forms a countable open covering of M, for which there
is no finite sub covering, hence (N, 1) is not countably compact.

Let P be an infinite subset of I and let p € P. Let now, x = p + 1 if p is odd, and
x=p — | if p is even. Then every open set, containing x, also contains p ; hence x
is an accumulation point of P in . Consequently, the space (M, 1) is Frechet compact,

Exercise ; Give an example of a compact Hausdorff space that is not sequentially
compacl,

Solution : Let I denote the closed unit interval [0, I} with the subspace topology
g, induced by the usual topology o of the real number space (R, o), Let (X, 1) = I1
I, : I, = I, reR}. Thus, X = [' is the uncountable produect of 1. Hence X is compact
and T, since I is so. Again X is not sequentially compacl, since the sequence of functions
[ X defined by f(x) = the n'™ digit in the binary expansion of x, has no convergent
sub-sequence.

For, suppose {f,,k } is a subsequence which converges to a point f X, Then, for each

xel, _f;% (x) converges in [ to flx). Let p € I have the property that U.mr{p}sﬂ' ar 1
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according as whether & is odd or even. Then {u,,k {p}] is 0, 1, 0, 1, ... which cannot

CONVETrgE.

1.6 Compactness in Metric spaces :

In the final section of the chapter we consider the four types of compactness in metric
Spaces.

Theorem : In a metric space (X, d), the concepts of second countability, separability
and Lindeloftness are equivalent.

Proof : Suppose (X, d) is separable. Let 4 = {x} be a countable dense subset ol
X. Let B = {B(x; ») ; r-rational, i = 1, 2, ...}. Then B is countable. Also if U is any open
set and xe U, 3 an € > 0 such that B(x, €) ¢ U. Since 4 in dense in X, we can choose

Xy s.t. d(x;, x) < €/2. Then it is casy to show that xe B(x,, €/2) c U and so B is also
base in X. Hence X is second countable.

It is known that a second countable space is Lindeloff. Now let (X, o) be Lindéloff.

Let £ =%. From the open cover {B[,x,l) 55 X} of X, we can find a countable covering
n

{B(xf.i] :IEA}. Let 4, = {x,; ieN}, Then 4= UAl is a countable dense subset of
5 =l n
X and so X is separable.

We now. introduce the following definition.

Definition, A finite subset F of a metric space X is called an e-net for X if X < W {B(x,
E) : xEF} X is called totally bounded if it has an e-net for every & > 0.

Theorem : A countably ‘compact metric space is totally bounded.
Proof : If possible let (X, d) be not totally bounded. Then 3 an € > 0 such that there

is no e-net for X. Let p, €X. Clearly X & B(p,, £). Choose p,e X\B(p,, €). Since {p,. p,}

is not an g-net, we can find p,e X such that dp,, p;) 2 &, dp,, p;) = & Proceeding in
this way we gel a sequence {p } of distinct points in X such that d(p, )2 E T # )
Since a melric space is first countable, so countable compactness of X implies sequential
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compactness of X But evidently the sequence {p,} has no convergent subsequence in
A. This contradicts the facl that X is countably compact.

Iixercise : Prove that a totally bounded metric space X is separable,

o
Solution : For each neM, X has an %—m:t F.Llet F=|)E, . Then F is clearly

H=l

countable. Let xeX and let & = 0 be given. Choose me ™ such that i’:: 8, Now since
F isa %-nct, 3 a weF_ such that dix, w) < ﬁ{ & i.e. weB(x, 8). This proves thatl

F'is also dense in X and so X is separable,

Theorem. For a metric space, compactness, countable compactness, Frechet
compaciness and sequential compactness arc all equivalent.

Note, A totally bounded metric space is not necessarily compact. If 4 = fxe @ : 0
=x =1} and d* = d, , where d is the usual metric, then (4, d*) is totally bounded but
not compact.

Exercise : A set 4 C (X, d) is called relatively compact if 4 is compaet in X. Show
that a relatively compact set 4 in a metric space (X, 4) is totally bounded,

Recall that in a metric space (X, d), a sequence {x } is called a Cauchy sequence
ifforanye>03akel st.manz2k= d(x , x ) < €. Every convergent sequence
is Cauchy. Also a Cauchy sequence having a convergent subsequence is also
convergent, L

Definition : (X, d) is said to be complete if every Cauchy sequence in X converges
in X.

Theorem : A compact metric space is complete,
Theorem : If (X, @) is complele and totally bounded then it is compact.

Proof : We show that (X] &) is sequentially compact. Let {x,} be a sequence in X
Since X is totally bounded, X" is contained in the union of a finite number of open balls
of radius 1. At least one of them must contains a sub-sequence of {x }, say (x, x,,
...}, Again from the property of total boundedness of X, we can find an open ball of
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PR, [y :
radius Ewhich contains a subsequence of {x, ; nelN}, say (x,,, n =1, 2, ..}. Proceeding

in this way, by induction we obtain sequences {x,,; i =1, 2, ...} (k= 1, 2...) each sequence
is a subsequence of the predecessor and the A" sequence is contained in a ball of radius

1 ;
T It is easy lo see that {x,; k=1, 2, ..} is a subsequence of {x,} which is Cauchy
in X and so is convergent in X, since X is complete. Hence (X, ) is compact.

Mote. The space [, is complete but not totally bounded and so is not compact.

Theorem : A metric space is compact iff it is complete and totally bounded.

Exercise : Prove that Lindeloff'ness is not a hereditary property.

Solution : Let X be an uncountable set and let x,€X be chosen. Define a topology
T on X as follows : (i) ¢, X €7 (ii) 4 (C X) et iff x;@4. First we will show, that (X,
T) is a Lindeloff space. Let v be an open cover of X, Since the only open set containing
x, is X itself, so Xe v and {X} is the required subcover. Now if ¥ = X\{x,} then (¥, T)
is a discrete topological space. Taking v, as the collectioin of all singletons from T, We
sec that v, cannot have a countable family which also covers 7.

Group-A
(Short questions)

. Show that the collection <#(p) of all subsets of a set X which contain a given
element peX is an ultrafilter on X,

F
2. Show that in a discrete topological space every neighbourhood filter is an
ultrafilter,

3. Prove that the net associated with an ultrafilter is a maximal net.

4. Show that a filter &# converges to a point x&X iff every ultrafilter containing o#
converges fo x.

5. Give an example of a totally bounded space which is not compact.

6. Prove that continuous image of a sequentially compact set is sequentially
compact.
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. Examine whether {{a}, {b}, {a, b}, X} where X = {a, b, ¢} is a filter.
. Give an example to show that sequential compactness is not a hereditary
property,

+ Prove that a finite union of compact subspaces of a topological space is compact.

Group-B
(Long questions)

Prove that every filter <& on X is the intersection of all the ultrafilters finer than
o8

. For an ultrafilter <% on a set X prove that n {F : Fe &#} is either empt}r or a
singleton subset of X,

. For a topological space (X, ), prove that following are equivalent,
(i) X is compact.

(ii) Every net in X has a convergenl subnet.

(iii) Every.muximal net in X converges in X

. Let (X, T) be a topological space and Ac X, Prove that 4 is T-open iff 4 belongs
to every filter which converges to a point of A.

. If {f,}, is a sequence of real valued continuous functions on a compact
topological space X and f, — f on X then prove that J, = [ uniformly on X.

. Show that a subspace of R" is bounded iff it is totally bounded,

. It (X, d) is a complete metric space and 4 X is totally bounded then prove
that 4 is relatively compact (ie. 4 is compact). «

Prove that a subnet of a subnet of a net {x : neD} is a subnet of {x : neD}.

. Give an example to show that the continuous image of a Frechet compact space
need not be Frechet compact. If /' : X — ¥ is a continuous bijection and X is
Frechet compact, is it true that ¥ is also Frechet compact? Justify.
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Unit-II O Compactification

Introduction

In this chapter we start with the idea of local compactness. Though the definition was
mentioned in the basic Topology course, here, it is dealt with in full detail as locally compact
spaces are more common than compact spaces and they have many interesting properties.
We then consider the notion of compactification. Though one-point compactification has been
already included in the earlier course, it is again described in detail for the sake of
completeness. We then consider two more ideas of compactification, which are much deeper
and which have played important role in the advancement of the subject, The first type of
compactification, that is dealt with, is Stone-Cech compactification which happens to be the
largest Hausdorff compactification among all possible Hausdortf compactifications of a given
Tychonoff space and there-in lies its importance. Another very strong resull is the Stone-
Cech theorem showing that any continuous function on a Tychonoff space can be extended
to its Stone-Cech compactification. Finally we consider Wallman's compactification which
is different from the other two compactifications in view of the use of ulirafilters in its

construction.

2.1 Locally Compact spaces

A topological space is said to be locally compact if each point of the space has at least
one compact neighbourhood.

Clearly every compact space is locally compact but the converse is not true, as R with
usual or discrete topology is locally compact bul not compact.

Theorem : 1. Let X be a locally compact space. The [amily of all closed compact
neighbourhoods of each point x of X forms a neighbourhoods basis al x if in addition X is
regular or HausdorfT,

Proof : Let xe X, Denote by 9 the family of all closed and compact neighbourhoods
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of x. Since X is locally compact, there is a compact neighbourhood C of x.
(1) First suppose that X is a regular space. Let U be any neighbourhood of x. Then
(UNC) is an open neighbourhood of x. So there is an open neighbourhood ¥ of x suct

thatxe Vc 7 c (Un C). Since V< C and C is compact, so ¥ is also compact, Clearly

I/ is then a closed compaet neighbourhood of x and so F €% Also ¥ c U and hence
% is a neighbourhood basis at x.

(I) Next let X be T, and 7 be any neighbourhood of x. Let us take W = (Ui O,
Then W is an open neighbourhood of x. Since C is compact and X is L5, C is closed,

Then W c € = W < C which implies ¥ is compact.
Write ' = W\W. Then F is a closed compact set and xg F. Since X s 75, 3 two open
sets IV, G, such that
xel, F.e G, and ¥, N G, = .

let V=WV, and G = F n G,. Then V is an open neighbourhood of x, F
Gand ¥ N G = ¢. Now

VeWMGec wiWGc wW\F=WcU
and V¥ ¢ W\Gc Wec W cC
=(F NnX\G)(' Vc V, € X\ G, closed), which implies that 7 is compact.
Hence ¥ €%, Since ¥ c U, hence 9% forms a neighbourhood basis at x,
Exericise : Every locally compact T, space is regular.
Solution : Let X be a locally compact T, space.

Let xeX and U be a neighbourhood of x. Then proceeding exactly in the same as

in the last part of the proof of theorem 1, we get two open neighbourhood ¥ and W,
and an open set G, such that.

VeW\GC W c U, where G=WnG,. Thus xe¥ c P U which proves that X
is regular.
Theorem 3 : A locally compact regular space is completely regular,

Proof : We prove the theorem by the following steps.
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(1) Let 4 be a compact subset of X and U be an open set with 4 © U Let x=4,
Since X is locally compact, there is a closed compact neighbourhood W, of x (which
is also closed by from theorem 1) such that W,  U. Now the collection {W° ; x € A}
from an open cover A, Since 4 is compact, there exists a finite number of points 5

o o o n -
Xge o %, Such that 4 ¢ W, UW, L., U W, . Write =UW\';-' Then V is an open set
=1

n
containing A, Also ?:Uer. So ¥ is compact and fc PP cl.
i=l

(1) Let I be any closed subset of X and let x,& X |E. Since X |F is open, there is
a closed compact neighbourhood 4 of x; with 4 = X\F. By step (1), there is an open
set F such that = is compact and

Ac¥VcVcX\F,
Write B=F\V, Then B is also a closed compact set with 4 N B = 9.

Clearly ¥ with the relative topology, is a compact Hausdorff space and so is normal.

Hence there is a continuous mapping g :+ 7 — [0, 1]
such that g(x) =0 v xed
=] v xe B,
We now define the mapping f: X — [0, 1] by
Ax) = glx) Vaxey
= | vxeXNV .
We now show that / is continuous.

(a) Let ze¥. Choose any € > 0. Since g is continuous, there is an open
neighbourhood U of z in the space 7 such that |g(x) — g(z)| < €, ¥xe U, we can write

U=V ~n G where G is an open set in X. Let W = V ~ G. Then W is an open
neighbourhood of z in X and we have

| Ax) — flz)| = |glx) — g(z)| < €, YxeW (since W = L) and so f is continuous at z.
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(b) Let z e X\ = W (say). Let € > 0 be given. Clearly ¥ is an open neighbourhood
of z in X and we have

[ Ax) - =N-1=0<g, vxeW

So f is continuous at z.

(c) Finally let z& P\V. Then fiz) = g(z) = 1. Let € > 0 be given, Since g is continuous,

there is an open neighbourhood U of z in the space 7 such that

| glx) = g(2)) <€, ¥xell
We can write U= 7 N G, where G is an open set in X. We have G =(G ) u(G\ 7).
Now if xeG ¥, then f{x) = g(x) and so

Ifix) — 2 = |glx) - g(2)] < €.
If xeG\VcX\V, fix) =1 and so
|fx) -2 =1 -1]=0<Ee,
Thus | fix) — fiz)] < €, YxeG. Hence f is continuous at z.

Since x,€ A(which is contained in J7) and F c X\F, we have flx;) = 0 and fx)
= 1, ¥xeF. This proves that the space X is completely regular,

Theorem : 4. A locally compact Hausdorff space is completely regular.

Proof. TFollows from Theorems 2 and 3.

Exercise : Let (X, 1) be a 7, space. Then the following statements are equivalent.

{i) X is locally compact,

(ii) For each xe X and each neighbourhood U of x there is a relatively compact open

sel ¥ such that xe ¥ c Vel

(iii) For each compact set ' and cach open set U with C < U, there is a relatively
compact open set ¥ such that C ¢ Vc Ve U

(iv) T has a basis consisting of relatively compact open sets.
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Solution : (i) = (i) :

As in Theorem 2 wé can show that 3 an open set V¥ such that ¥ is compact (i.c.

V is relatively compact) and xeV — Fc U

(ii) = (iii) : Suppose (ii) holds good. Let C be a compact set and [/ be an apen
set with C © U. Take any xe C. Then xe U and by (ii) there is a relatively compact open
set F, suct that.

xelV,cV,clU,
Now {V, ; xeC} forms an open cover of C. Since C is compact, 3 a finite number.

T "
of open sels Vx.,VxJ,.., Vx" 5. © CUI’;-, . Write V=UVJ‘r . Then ¥ is an open set. Also
i=1 i=l

n
F:UFJ:,- , being finite union of compact sets is also compact. Hence V is a relatively
i=1

compact set such that

Cclefel:

(iif) = (iv) : Suppose (iii) holds good. Let 28 be the family of all relatively compact
open sets. Let G be any open set and x€G. Since {x} is compact, by (lii) 3 a relatively

compact open set ¥ (i.e., Ve 28) such that xeV ¥ <G . Hence @ forms a basis of 1.
(iv) = (i) : Let xeX. Since X is open by (iv) there is a relatively compact open

set V such that xeVc ¥V cX. Clearly ¥ is a compact neighbourhood of x and so X
is locally compact.
Exercise : Let (X, T) be locally compact and let f: (X, 1), — (F. ') be open,

continuous and onto. Then show that ¥ is also locally compact.

Solution : Let ye Y and let ¥ be a v'-open set containing y. Let flx) = y, xe X\ Since
f is continuous at x, we can find an open set U containing x such that AL/) € V. By
local compaciness of (X, t), there is a compact set 4 such that

el A ol
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Then y=fx) efd) c f4) c AUy C V.
Write fld) = B. Since f 1s continuous and A is compact, so B is also compact, Again
as [ is open so f{4°) is an open set contained in f{4) and so

SA™) € (A = B~
Thus we have yeB* € B < F ; which shows that ¥ is locally compact,
Exercise : Prove that a closed subspace of a locally compact space is locally

compact,

Solution : Let (X, 1) be locally compact and let ¥ € X. To show that (¥, Ty) is so,
choose y €Y and let ¥ be a T neighbourhood of y, Then ¥ = U 1 ¥ for some 1-
neighbourhood U of y. Since X is locally compact, 350 there is a compact sel A4 such
that

yed° c 4 c U
Then yed* N ¥YcAn¥YcUnY=F
Write B = 4 n Y. Choose an open cover ¥ of Ty-open sets covering B, Note that
every We 9 is of the form W= W n ¥, Wert, Then (W : W = Wn Y e 9 U XA
forms an open cover of 4. By compactness of 4, this cover has a finite subcover and
consequently ¥ also has a finite subcover of B, Hence B is 1,-compact. Clearly

y= PR ¥

and this proves the result.

Exercise : The cartesian product HAX-:: (pravided non-empty) is locally compact
e

iff each X, is locally compact ¥ oeA and all X, except for finite number of spaces,

are compact.

Solution : First let X be locally compact. Since each projection map PaivX =X
is a continuous, open surjection, (by previous exercise) X, is locally compact, ¥ usA.

Now let xe X. By local compactness of X, x has a compact neighbourhood U = 1L,
(say). Then U, = X,- Yoee AVF, where F is a finite subset of A, Thus p,, (I/) = X, which

is compact (being continuous image of the compact set ), for all ce A\F, Hence all
spaces X, except for finite number of a's, are compact.
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Conversely, to prove X to be locally compact (under the stated conditions), let
x=(¥%y )aep € X. By hypothesis, there is a finite subset F = {o,, ., @} (say) of A such

that X, is compact, YoeA\F. For aeF (i = 1, 2, .., m), there exists a compact

neighbourhood U, of X“' in Xy, (by local compactness of cach X). Then - B,
e
where V, = U, for o = o, .., & and ¥, = X for & #F is a neighbourhood of x, and

V is compact by Tychonoff product theorem. Hence each point of X has a compact
neighbourhood and so X is locally compact.

2.2 Compactification

Let X be a topological space. A pair (f, ¥) is said to be a compactification of X il
the following conditions hold.

(i) ¥ is a compact space.

(ii) There is a subspace ¥ of ¥ such that ¥, is dense in ¥ and fis a homeomorphism
of X onto Y.

Let (f; ¥} be a compactification of the topological space X. If '\(X) consists of one
point only, (f, ¥) is called a one point compactification of the space X.

Exercise : 1. If X is a compact space, (i}, X) is a compactification of X where i,
is the identity mapping.

Exercise : 2, If X = (0, 1), then (f, ¥) is a compactification of X where V' = [0, I]
and /: (0, 1) — (0, 1) = [0, 1] is the inclusion.

Exercise 3. Take ¥ = [a, b], ¥; = (a, b). Then also (f, ¥) is a compactification of
(0, 1) = X, where f: X — ¥, is defined by filx) = a + (b — a)y, VxeX

Theorem : 1. Let (X, T) be a non-compact topological space and let X* = X U {=o},
where = is an element not in X. Denote by t* the family consisting of the void set §,
the set A*, the members of T and all those subsets [/ of X* such that X*\{J is a closed
compact subset of X. Then ©* is a topology on A™ and (X*, ©*) is a compactification
of X.
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I'roof : We prove the theorem in the following steps.

(Iy We first verify that T* is a topology on X*. Let G,, G, be two members of t#
and let G = G G,. If G = ¢ then clearly Get*. Suppose that G # ¢. If G,, G, et
then Get © ©*. Let G, G, #7. Then X* \ G, and X* \ G, are closed compact subsets
of X. So X* - G = (X* - G)) U (X* — G;) is also a closed compact subset of X and
so Get*. Again let G\eT but G,&t. Then X* |G, = F(say) is a closed compact subset
of X

Since F < X, e €F. 80 e €0, and we may write

G, = ANF = {=o} U (X\F) = {==} U W (say) where Wet. Then G = G\ G, = G,
Nliee} W W] =Gy W et ct® If G, g7 and G, €7 then one can similarly show thal
Get*,

Now let {G, ; ae4} be any nonemply subfamily of 1* (where 4 is an index set)
and let G = W {G, ; aed}. If Get Ya €4, then clearly Ger © t*. Suppose G, 21
for some aeA. Let 4| = {a ; Gg1} and 4, = A\,. Write U, = U{G

i

;@ €A} and U,

Il

G, 5 aed,}. For aed,, we may write G, = {eo} U W, where W 1. Also write ¥,
G, if acA,. Then

a

I

G = U{G, ; acd}
= {eo} U [V W, ; acd]}]
= {==} W W (say).
clearly W= U{WW, ; a €4) €7.

Take ayed,, Then Wﬂa C W. Now we have X*\G = X*\[{s} U W] = X\ which is
closed is X. Also X\W © XWF, = A"G, where X*\ Ga, is compact in X. Hence it follows
that XY*\G is also compact in X (being a closed subset of a compact set). Therefore Get*,
Obviously ¢, Aet® and 7F is a topology on X*,
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(1) Let Wet. Then == ¢ W. S0 we may write W =X ¥ where Wet*. Again if Ge*
but G ¢ 7 then G is of the form G = {==} U W where Wet and so G X = Wet. This
shows that T consists of exactly all those sets of the form X n G where Ge1*, Hence

(X, T) is a subspace of (X*, T%), Also since GNX # ¢ for every open set G containing
eo, 50 X is dense in X%,

(lll) Let G = {G, ; a4} be any open cover of X*. Then = €G, for some asA.
Let 4 = {a ; = gG,} and A; = A\A,, For aed, we may wrile G, = {=}U W_where

W, Also write G, = W, for a4, Take any aye4,. Then X*\G,, = X\W,,, is a compact

subset of X. Clearly {W, ; ac4} is an open cover of X\W,, . So there is a finite number

of sets Wap s Ways oo W, from the family such that

gy

X# Gy = X\ Wooc U <G,

So x* = |JG, and X* is compact.
i=0

(IV) Take ¥ = X* and ¥, = X. Define the mapping f: X — ¥, by fix) = x for xe X,

Then f is a homeomorphism of X onto ¥, Therefore (f, ¥) is a compactification
ol X.

Note : In the above theorem clearly f is the identity mapping i, on X. The
compactification (i, X*) is called the Alexandroff’s one point compactification.

Definition : If (£ ¥) is a compactification of a topological space X where ¥ is T,
then (£, ¥) is called a chumpaétiﬁcatinn of X.

Theorem 2 : Let X be a topological space which is not compact. Then Alexandroff’s

one point compactification (i,, X*) of X is a T;-compactification iff X is a locally compact
T, space.
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Proof : First suppose that (i,, X*) is a T,-compactification. Then X* is a T, space
and so X is also a T)-space,

Let xeX. Then x and eo are two distinct points of the space X*. So there are open
sets Gy, G, in A* such that xe G, = €G, and GG, = ¢. Since == &0y, G,C X and
i5 open in X. Again X*\G, is closed and compact in X. Since G,c AM\G,, so X%\ G, itself

is a compact neighbourhood of x in X. Thus every point of X has a compact
neighbourhood and so X is locally compact,

Next suppose that X" is locally compact and T,. Let x, y be two distinct points of
X*. If x, y € X then Hausdorffness of X implies that there are two disjoint open sets
Gy, G, in X containing x and y respectively. Since open sets of X are also open in X*
so the result follows. Now let xeX and y = ==, Since X is locally compact, there is a
compact neighbourhood U of x in the space X. Since X is a T,-space, U is also closed
in X, There is an open set G| in X with xe G, © U Take G, = X*\U. Then @, is open
in X* and < €0, Also Gy G, = ¢. Hence the space X* is a T,-space.

Definition : Let (X, 7) be a topological space. If there exists a topological space
(¥,7)s.. X" is homeomorphic to a subspace ¥, of ¥, then we say that X can be embedded

in the space ¥,

Let (X, 1) be a topological space and & be a family of functions s.t. each function
fin &Fis a mapping from X to a topological space ¥ r- Denote by ¥ the product of the

spaces Y, i.e, Yzf..—-llr}-’ S

Definition : Defline the mapping e : X — ¥ as follows. For xe X, e(x), = fx), where
e(x), denotes the f th component of e(x), ie. Py (e(x)) = fix), VxeX so that p.oe = f
Py 1’[]‘}—3 I’}heing the f th projection map. e is called the evaluation map. We say that
the family & distinguishes points iff for any two distinct points x, ye X, 3 f' € o7 sit. f{x)
# fiy). We say that the family < distinguishes points from closed sets if for any closed

set A in X and cach point x in X, there is a f& o7 st, flx) & f(4).
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Embedding Lemma

Let (X, T) be a topological space and <# be a family of functions on X such that

each fin < is a continuous mapping of X into a topological space ¥, Then followings
hold.

(a) e : X — Y=j_é:l;r1’f is confinuous.

(b) e is an open mapping onto e(X) if < distinguishes points from closed sets.

(c) e is one-to-one iff &F distinguishes points.

(d) e is a homeomorphism of X onto e(X) if < distinguishes points as also points
from closed sets.

Proof : (a) Lel P_,r’ denote the projection of the product space ¥ to the ' th co-ordinate
space Y. For x€X, (P,0e) (x) = Fe(x)) = e(x), = fx). Since each f is continuous, so
each Peoe is continuous for each fe o Therefore ¢ is continuous,

(b) Suppose that < distinguishes points from closed sets. Let & be any open set
in X and let y€e(G). Then 3xe G such that y = e(X). Since <# distinguishes points from

closed sets, there is a function f in <# such that flx) & f(4) where 4 = X\G. Write
_ Ufz}’f\f{A}. Then U_.r is open in ¥, and Pf'(Uf} is open in the product space T F_}

Therefore W, = Pf'{U r)me(X) is an open set in the subspace e(X) of ¥. We now show
that
}?EH’;, c el).
Since x¢ 4, by our hypothesis f(x)g f(4) and so f(x)e ¥\ f(4)=U,. Since Pfe(x))

= f{x), so y = e(x) Pf"( Up. Hence ye . Next let ze ¥, Then ZEPI“{UJJ and ze e(X).
Clearly z = e() for some ucX. Now e(u) EP;‘ (UJ,; = Py (e(u)) = e(u]f= S z-:il.{Ir =

JLED) EH = & A= uelG = z = elu) €elG). So W, € e(G). Thus e(G) is a

neighbourhood of y in the space e(X). Since ¥ is an arbitary point of e(G), it follows
that ¢(G) is an open set in the space e(X). Hence e : X — e(X) is an open mapping.
(c) Suppose that =# distinguishes points of X. Take any two points x, ¥ (x # ¥) in
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X. Then there is a function f& <& such that fx) # fly), ie., e{xh- # e(y)s. This gives that
e(x) # e(y). Hence ¢ is one-to-one,

Next, suppose that e is one-to-one. Let x and y be two distinct points of X, Then

e(x) # e(y). So there is a funetion fin & suct that e(x), # e(y), ie. fix) # fly). Hence the
family o distinguishes points of X,

(d) If the family <& distinguishes points as well as distinguishes points from closed
sets, then by (a), (b) and (c), e is a bijective mapping from X onto e(X) which is both
open and continuous. Hence e is a homeomorphism from X onto e(X).

Definition : Let X be a topological space. Denote by C*(X) the family of all
continuous mappings of X into the unit closed interval [0, 1] = Q. Now by Tychonoff’s
theorem Q") [the product of the unit interval O taken C*(Y) times] is compact. As
before let e : X — O be the evaluation map defined by e(x), = fix) for xe X. Then
¢ is continuous, Now suppose that X is a Tychonoff space (completely regular T, space),
Then from definition it follows that the family C*(X) distinguishes points of X as well
as points from closed sets. Then by Embedding Lemma, e is a homeomorphism of X

onto the subspace e(X) of O°'™. We write B(X)=e(X). Then B(X) is compact and the

pair (e, B(X)) is a compactification of X which is called the Stone-Cech compactification
of X.

Theorem : 3. (Stone-Cech Theorem)

Let X be a Tychonoff space and f be a continuous mapping of X into a compact
T, space ¥, Then there is a continuous extension of f which carries f(X) into ¥.

Proof : Let e denote the evaluation map of X into O™ and g be the evaluation
map of ¥ into O%"") where O = [0, 1]. If e C*(¥), then aof is a continuous mapping
of X into O and so aof €C*(X), Denote the mapping /* : C*(¥) — C*(X) by fMa) =
aof, for all aeC*(Y). Then for any ge C*(X) — O, gof* is a mapping of C*(}) into
0. Define the mapping f** : €W 5 QC“:Y-' by

S¥*(q) = gof* for all ge Q~*Y,
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Let rJE.C“{Y:I and ge O¢'™. We have
Pot**(q) = P (**(q)) = P (qof*)
= (gof*) (a) = g (*(a)).

But g(f*(a)) is simply the projection of g into the f*(a)-th co-ordinate space of QC*'['V!
and this is a continuous mapping. Hence the mapping f/** is continuous. By embedding
Lemma, e is a homeomorphism of X onto e(X) and g is a homeomorphism of ¥ onto
g(¥) = B(Y), because ¥ is a compact T, space.

B QB . oM S poyy=gy)

] I

X f >Y

Lot xeX and acC*(Y). Write ¢ = e(x) and y = f(x).
Then g O™ and ye¥. We have
[(F*0e) (x)] (@) = [F*(e(x))] (@) = [**(@)] (a)
= (g0r*) (a) = g(/* (a)) = g(avf)
= e(x) (a0f) = (a9/) (x) = a(fix)) = a(y)
= g0), = 20) (@ = [ (@)
This gives that
(f**0e) (x) = g(flx)) eg(¥).
Let gee(X). Then there is a point x in X such that e(x) = ¢. So
J¥*(q) = f*e(x)) = (f**0e) (x) = g(f () sgb).
Or, (g7'0f**) (@) = %) €Voricinnnns (1

Now let ¢ €P(X)\ e(X). Since e(X) is dense .in PB(X), there is a net {g, ; ne D} in
e(X) such that {g, ;. neD} converges to g. Clearly g'of** is continuous. So the net
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{g"'0r**) (g,) ; ne D} converges ta (g~'o/**) (g¢). Since (g-'of**) (g,) € X, for every ne D
and ¥ is a compact T,-space, (g'o/**) (g) €Y. Hence g'of** carries B(X) into Y.

Write h = foe!. Let gee(X). Then g = e(x) for some x€X. We have

h(g) = (foe™!) (g) = fle™! () = fix) = (& '0/**) (g). (by . (1))
Hence g-'of** is the required extension of A.

Definition : Let X be a topological space. Let us denote by % the collection of all
compactifications of X. For (f, ¥) and (g, Z) in ¢ we define (f, ¥) = (g, Z) if there is a
continuous mapping & of ¥ onto Z such that hof = g. Clearly gof! is a homeomorphism
of Iy, onto Z,. The compactifications (£, ¥) and (g, Z) of X are said to be equivalent il
there is a homeomorphism h of ¥ onto Z s.t. hof = g In this case we write (f 1)

= (g 2).

Theorem : 4. Let X be a topological space. Denote by # the collection of all Ty
compactifications of X. Then % is partially ordered by 2.

Proof : Clearly = is reflexive. Let (£ ¥), (g, Z) and (h, W) be three elements of &
and let (f, ¥) = (g, Z) and (g, Z) = (h, ). There are continuous functions f: ¥ = Z (onto)
and k : Z — W (onto) suct that g = jof and h = kog. Then clearly 4 = ko(jof) = (koj)of,
where koj is a constant mapping of ¥ onto W. So (f; ¥) = (k, W). Hence 2 is transitive,

Next let (/, ¥) and (g, Z) € % such that (f, ¥) = (g, Z) and (g, Z) = (f; ¥). There are
continuous mappings j : ¥ — Z (onto) and k : Z — ¥ (onto) such that jof = g and kog

= .
' So f'= kofjof) = (ka)of
and g = (jof) = (jok)og.

Let ye ¥, Since [ is a homeomorphism of X onto ¥, there is a point x in X sucl
that ¥ = fix). We have

¥ = flx) = [(ko f)o f] (x) = (koj) (Ax)) = (koj) (). Again let ye Y, Since ¥, is dense
in ¥, there is a net {y, ; €D} in ¥, converging to y. For each n in D, there is & point
x, in X such that y = fix ). We have
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lim y, = lim fix,) = lim [(ko fof] (x,)

lim (koj) (Ax,)) = lim (koj) () = (koj) (v} (koj is a continuous mapping of ¥
onto inself). Thus (koj) (¥) = » ¥ yeX which shows that koj is the identity mapping
- of Y. Similarly, we can show that jok is the identity mapping of Z. Let u, v (1 # v) be
two elements of ¥. Then

e
1l

(koj) (u) # (koj) (v)
i€, Kj(u)) # k((v)

which implies that j(u) # j(v). So j is one-to-one, similarly, & is one-to-one, Hence
J is a homeomorphism of ¥ onto Z, This gives that (f, ¥) and (g, Z) are equivalent i.c.,
(. ¥) = (g, Z). Hence (¢ =) is partially ordered,

Theorem : 5. Let X be a Tychonoff space which is not compact. Let % denote the
collection of all T,-compactifications of X. Then Alexandroff's one point compactification

A™ is the minimal element and Stone-Cech compactification is the maximal element of

(¢ 2).

Proof : Let (f, T) be any T,-compactification of X. Then ¥ is a compact T,-space
and f is a homeomorphism of X onto a dense subspace ¥, of V.

(I) We first show that (e, B(X)) = (f, ). Let O = [0, 1] and e denote the evaluation
map of X into the space Q%) By Stone-Cech theorem there is a continuous extension
h(say) of the map foe™! such that h carries P(X) into the space Y.

Let ye ¥, If ye ¥, then y = fix), for some x in X. Write g = e(x). Then

M) = (o) (@) = et (@) = fx) = ».

Suppose that ye \Y,. Since ¥, is dense in ¥, there is a net {y

ne D} in ¥, which
converges to y. For each n in D, there is a point x, in X such that y, = flx ), Write g,

e(x,). Then g, € e(X) < P(X), ¥ neD. Since B(X) is compact, the net {g, ; ne D} has
convergent subnel. So we may assume that the net {g, : neD} is convergent. Let ¢

]

lim g,. Since A is continuous, the net {A(g,) : neD} converges to A(g).
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We have

h(g,) = (f oe™) (q,) = Re'(g,) = Ax,) =y,
So y = lim y, = lim h(g,) = h(g).
Hence h maps P(X) onto the space ¥ which proves that (e, B(X)) = (£ 1)
(IT) We now assume X to be locally compact also. Then (i, X*) is a T,-

compactification. Further ¥ is an open subset of the Hausdorff compact space ¥ as it
is homeomorphic with X. We now show that (f, ¥) 2 (i,, X*). Define the mapping h of
Y onto X* = Xi(==} as follows. Let ye ¥, Then y = flx), for some x is .X. Since f is one-
fo-one, x is uniquely determined by y. We define A(y) = x. Also we define A(y) = eo
if ye Y,

Let G be any open set in X*, First suppose that G c X. Then Y(G) = AG), Since
f is a homeomorphism, /r'(G) is open in ¥, and so is open in ¥, Next let = € G. Then

we can write G = W u {=} where W is open in X and X*\G = X\W is a closed compact
subset of X, We have

HFY(XNG) = (XY Vri(G) = Wrl(G),
So F(G) = WIri(X*\G) = Wir'(X\W) = YXW)

Since X\W is compact in X and f continuous, f{LX\W) is compact in ¥, and so is compact
in ¥, Since Yis T, so f(X\W) is closed in ¥, Thus #'(G) is open in ¥ and so A is continuous.
Hence (f, ¥) 2 (i, X*). This completes the proof.

2.3 Wallman Compactification

We will now describe another type of compactification.

Let (X, ) be a T-topological space. Denote by %, the collection of all closed subsets
of X. Let ¥ denote the collection of all ultrafilters of & |
(I) For any GerT, let

G* ={F: Fe Yand 4 C G for some deF} and B = {G* : Ger).

If G, and G, are two members of T, then we can verify that
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il

(@) (G, M Gy)* GI* m GE‘

(b) (G, v G)* = G,* L G,*

The relation (a) gives that G* m G,* € @ whenever G *, G,* € #, Let &#F €Y. Since

Xetand A c X for any 4 € <& 50 &F €X*, Hence ¥ = X*. Thercfore 3 forms a basis
for a topology t* on F.

(1) For any xe X, let <& = {4 : xe 4€ '%}. It is easy to see that each <_is an ultrafilter
in ¥ and so ¢Fe¥. Let

Y, = (< : ¥ X},

(IlI) Now define the mapping f: X —» ¥, by flx) = &% for xeX. Obviously fis an
one-to-one mapping from X onto ¥,

Let x;& X and let § be any neighbourhood of flx,) = F, in the space F,. Since 4
is a base for t*, there is a member G"e 3 with i

e €GN K Ch

So there is a member A in .:zﬁ;n with 4 C G. This gives that x g G. Take any xeG

and let B = {x}. Then Be c#, Since B €G, so <% G* which shows that f{x) €5. Hence
f is continuous.

Write g = f!. Take anyd#e ¥, Then o, = s for some point x;€X. We have

MAxp) = @i;“ = o, and so g(<#) = x;. Let G be any open neighbourhood of x; in (X, 7).

Then G* is an open neighbourhood of <&, in the space ¥ and § = ¥;; m G* is an open
neighbourhood of <& in the space Y. Take any<#%& S. Now o = &%, for some xe X, So
A € G for some A € % which implies that xe G, Since g(<#) = g(<#) = x, we have g(+)
€G for all & €S. Hence g is also continuous. Therefore f is a homeomorphism from
X onto ¥,

(IV) Let &£ Y and let § be any < *-neighbourhood of m in the space V. Since 4
is a base for 1%, FEG*  § for some G* in 28, Take any x€G. Then o7 e G* and € ¥,
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Thus § N ¥, # ¢, which proves that ¥, is dense in Y.

(V) Finally we show that (¥, ©*) is compact. Let & be any ultrafilter in ¥, We define
a subfamily } of ¢ as follows :

P={4:A4e¥and Fc N U?, for some Fe %)
where U, = X\4 and so U *et*.
It is easy to see that ¢z

Let 4, 4, be two members of (. There are members F, and F, in & such that
Fy € NUy and Fy c Y\ U} .
Write ¥ = F, m F,. Then F € & and we have

Fc(rxugl}n(fxu,T,J;:rx(U;I Vi)

= Y\(Uy VUL =¥ \Ujgn 9.

Hence 4, N 4, ef.

Again let A€, Be ¥ and A — B. Then F C n', for some F €% Since 4 c B,
Up © Uy, which implies Up" € U = NU* © NWU,*. So F © NU,". This shows that
Bef. Hence f is a filter on % Now there is an ultrafilter B* in ‘% containing ). Clearly
f*e¥. '

We will show that B is a cluster point of & If not then there is an F & 4/ such that

f*¢ F, where F denotes the t*-closure of F. Then f*e WF. Since 2 is a basis of 7*,
there is a member G* in 98 with

B* c G* c NF.
Write A = X\G. Then Ae ¥ and U, = X\d = G. So U,* = G*, From above we have
U  NF or Fc Y\U,*.

This gives that A€} and so 4 € B*. Since B*eG*, there is a member B in B* with
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B C G = X\4. But then 4 m B = ¢ B* which contradicts that B* is a filter. Hence f*e 7,

for every I' € @7 and so &/ converges to B*. This shows that (¥, T*) is compact. We have
then the following

Theorem : (f, ¥) is a compactification of (X, 7). This compactification (f, I"} of X
is known as Wallman compactification of X and is denoted by w(x).

Exercise : Let X be a Tychonoff space, If X is locally compact then prove that for
every compactification (f, ¥) of X, P\X) is closed.

Solution : Since local compactness remains invariant under a homeomorphism, f.X)
is also locally compact. Let yef{.X). We will show that y is an interior point of fX). Since

JX) is locally compact, 3 an open neighbourhood U of x in f{X) such that [/ is compact
(A denotes the closure in fiX)). Hence there is an open set I in ¥ such that U= F
fIX). Now we have ¥ =(V r f(X)), where 4 denotes the closure of 4 in ¥ [as we know
that if D is dense in a topological space (X, t) then for any open set W, W =(W ~ D)].
Thus I

xeVeVl=(FnfX)clclc f(X)

because [7 is a closed set in fiX) containing U. This proves the assertion,

Group-A
(Short questions)

1. Give an example of a topological space which is locally compact but not
compact.

2. Show that the space of rationals with the induced topology from the usual
topology of reals in not locally compact.

3. Give examples to justify that two compactifications of a given topological space
may not be homeomorphic.

4, Show that any open subspace of i locally compact space is locally compact.
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g =1 N LA

Prove that R* with product topology is not locally compact.
Show that if X is connected then B(Y) is also connected.

Show that product of locally compact spaces may not be locally compact,

For two compactifications (7, ¥) and (g, Z) if (/, ¥) < (g, Z) and (g, Z) < (1, 1),
then show that (f, ¥) and (g, Z) are equivalent.

. Show that the Sorgenfrey line (R, 7)) in not locally compact at any point.

Group-B
(Long questions)

. In order that two compactifications (f, ¥) and (g, Z) of a topological space X

be equivalent prove that it is necessary and sufficient that for evéry pair of closed
subsets 4, B of X,

fADNfBY=b = glD)ngB)=¢ -

Show that if (f,, ¥,) is a compactification of the space .X, for every o €A then

I1(f5:¥:) is a compactification of I1 X, .
| EA wEdh

. Let X be a Tychonoff space. Then prove that every pair of sets which can be

separated by a real valued continuous function have disjoint closures in pX.

. Let X be a Tychonoff space. Prove that X is locally compact iff the remainder

BXY\B(X) is closed.

. Prove that in a locally compact space the intersection of a closed subset with

an open subset in also locally compact.

. With reasons give an example of a topological space which has only one

compactification,

. Let X be completely regular and T, Show that X is connected if and only if

fX is connected,

. Let X be discrete. Show that if U is open in X then {7 is also open in BX. Then

show that BX is totally disconnected.

. Let A4 be any subset of B? (neM) such that 4 and B"\A4 are both dense in B".

Prove that no point of 4 has a compact neighbourhood.
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Unit-IIT O Paracompactness

Introduction

In this chapter we will study a weaker notion of compactness, which is called para-
compactness ; this notion is actually more recent as it was introduced in 1944. The notion
uses the idea of locally finite family which is easier to find. The importance of the idea of
paracompactness also lies in the fact that many results, especially involving separation axioms
on which we will concentrate, which were originally proved using compactness can be found
valid by using the weaker notion of paracompactness. Apart from establishing several basic
results we will show that a stronger notion of normality, called fully normal spaces can be
abtained from paracompactness. We will finally introduce the very important notion of
partition of unity and give an equivalent criteria of paracompactness in respect of partition

of unity,

Definition : A family of subsets {B, : i € A} of a topological space X is said to be locally
finite if each point x of .X has a neighbourhood U7 which intersects at most finite number. of
members of the family i.e., there is a finite subset A, of A suct that U'n B, = ¢ for all i
in AVA|. Thus {B, : i € A} is locally finite iff there is an open cover o of X" such that every

member of ¢ meets at most finite number of members of {8, : i €A},

Remark Every finite family is clearly locally finite. Every subfamily of a locally finite
family is so. If {B, : i €A} is locally finite and {C, : i €A} is such that C; C B, Vi, then
{C, : i €A} is locally finite.

Lemma 1. Let {B, : i€ A} be a locally finite family of subsets in a topological space X,
Then { B, : i€A} is also locally finite and U {B, : icA} = U{B, :ieA}.

Proof : Let x.X. Then there is an open neighbourhood U of x and a finite subset A,
of A such that U n B, = ¢, ¥ ie A\, Tlen U,«-\E.=¢ ¥ ie A\A, and so {E{. :ieﬁ}'
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is also locally [inite. Now for each i, since B, cu {B :icA}, so B, u_{B;. ieA} and

hence u{ﬂ_;-:ieﬁ} C VB tieA}. Again let xew{B :ieA}. Now there are g

neighbourhood V' of x and a finite subset A, of A such that ¥ n B, =9, ViAW, Let
W be any neighbourhood of x. Then ¥ n W is also a neighbourhood of x and (F
Wyon (U (B, : i €A\A}) = ¢. Since (VW) (U {Bii A #d, 50V W) (Ui{B,

: £4}) # ¢. Thus xeﬁ: = U{E:fE&E}:U{E:iE&}, This proves the result.
F=Y
Definition 1. A topological space (X, 7) is said to be paracompact if every open
cover of X has a locally finite refinement which is also an open cover of X

Exercise 1. A compact space is paracompact,
Exercise 2. A discrete space is paracompact,
Theorem 1. Every closed subset of a paracompact space is paracompact,

Proof : Let X be paracompact and F X be closed. Let { U :icA} be an open
caver of F. Then for each i€, 3 an open set ¥, in X such that Uy =V, ™ F. Now {V,
: €A} W {X\F} is an open cover of X, Since X is paracompact, this open cover has a
locally finite refinement o which is also an open cover of X, Then B={UnF:Uea)
is clearly of locally finite cover of FF. Evidently every member of [ is open in # and
is contained in some UJ. Hence F is paracompact,

Theorem : 2. If every open cover of a topological space X has a closed locally finite
refinement then X is paracompact.

Proof : Let o, be any open cover of X and let 0., be a closed locally finite refinement
of o, covering X. Then for each xeX, there is an open neighbourhood P_of x which
meets at most finite number of members of o,. New {P,: x €X} = o, (say) i5 an open
cover of X. So 3 a closed locally finite refinement o, of o, covering X. For each & in
o, let U, be a member of o, containing B and let ¥, be the union of all those members
of o, which are disjoint from B. By Lemma 1, ¥V, is a closed subset of X, Put B* = Uy
M (X\V,) and denote by o the class of all sets of the form B*. Clearly each B* is open
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in X. Since B C B* VBeo, and o, covers X, so o also covers X. Evidently from
definition, o is a refinement of o..

We shall now prove that o is locally finite. For each x in X, there is a neighbourhood

0, of x which intersects at most a finite number of members of o, say D, .., D, because

m*

o is locally finite. For i = |, 2, .. , m, D, is contained in a member, say, P_ﬁ of o, ('

o, is a refinement of o). For i = 1, 2, .. m, F; meets at most a finite number of members
of o, say, Bi|, .. , Bin, So D, meets, il at all, these #, members alone of o, If B is
a member of o, which is different from all the sets_ﬂu T Ry e .
then B is disjoint from all LDo(i=1,.,m and so B* is also disjoint from all D (i =
L, ., m) ("0 WD, C V). Since () meets at most the sets D, (i = 1, ., m) and 0, covers
X, @, c UiD, 1 i = 1 to m). Consequently @, does nol meet B* Thus x has a
neighbourhood O which meets at most a finite number of numbers of ¢ Hence o,

is an open locally finite refinement of o, covering X and so X is paracompact,

Theorem : 3. If for each open cover of a regular space X there is a locally finite
refinement covering X, then for each open cover of X there is a closed locally finite
refinement covering X,

Proof : Let o be any open cover of X. For each x in X 3 a 4, ec such that xeA .
Since X is regular, 3 an open set B, such that xeB_cC Fx c A, Now p = {B_; xeX}
is an open refinement of o covering JX. By our assumption, 3 a locally finite refinement

v of P covering X. Let §={B:8ev}. By Lemma 1, & is locally finite. Since each B ev

is contained in some B_ and B_IC A_eo, s0 8 is a refinement of o. Thus & is a closed
locally [inite refinement of o covering X

Definition : A family of subsets of a topological space is said to be o-locally Tinite
if it is the union of a countable number of locally finite families.

Theorem : 4. Every open o-locally finite cover of a topological space has a locally
finite refinement,

Proof : Let & be a o-locally finite cover of a topological space X. Now w is the
union of the countable family {c, : neN} of locally finite open classes o, in A" Put B,
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=¢, B,= U (uA) for 1 <n €N and denote by P the class of all subsets of 4 of the
I=m<n Aeoy,

form '\ B; where n €N and V €. P is evidently a refinement of o. Let xe X, Let n
be the least positive integer such that x belong to some W in @, Then xe W\B_ and so
B covers X. Moreover W is an open neighbourhood of x which is disjoint from all
members of [ of the form '\ B, for all p > n. Since for each ¢ €N, @, is locally finite,
for each positive integer m < n, there is a neighbourhood U of x which intersects at
most a finite number of members of o . Consequently the neighbourhood A

m < n} N W of x meets at most a finite number of members of B. This proves the theorem.

Lemma 2. If cvery open cover of a regular space X has an open o-locally finite

refinement covering X then X is paracompact.
Proof : Follows [rom The 2, 3, 4,
Corollary 1. Every regular Lindeloff space is paracompact.

Theorem : 5. Every Hausdorff paracompact space is regular.

Proof : Let X be a T, paracompact space, Let F be a closed subset of X and ae X\F,

For each x in F, there is an open n¢ighbourhood N, of x such that @ & N, . Since X is

paracompact, the open cover {N : x €F} U {X \F} of X has an open locally finite
refinement ¢ covering X. Let B be the class of all those members of o which meet F.

Then P, as a subclass of o, is locally finite. By Lemma 1, { F : BeP} is locally finite.
Also U { B : Bep} is a closed set in X. Put U={B : Bep} and ¥=X\U {F : Bep).
Then U, ¥ are disjoint open subsets of X and F c U. Since f} consists of all those members

of & which meet F, for each B in P there is an x in F such that B — N_. Now B N,
and ag N, . Hence for each B €f, acX\B. Thus ¢ € n [X\E : B €} = V. Hence X
is rcgu.lar.

Exercise : Let X be a paracompact space and let 4, B be two disjoint closed subsets,
If for every x €B there exist open sets U,, ¥, such that 4 ¢ U, x €V, U, n ¥, = ¢ then
there are open sets U, Vsuchthat A c U, B Fand Uny ¥ = ¢.
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Solution : Clearly the family of open sets {X\B} w {V,} ., forms an open covering

of X. Since X is paracompact, this open cover has an open locally finite refinement

(W}

sEA

= {s€A : W, c V, for some xe B}.

Then AmW,=¢ for s€A, and B cUW, . We know that w ¥, =Ul, which is
sl wedy =

closed, Consequently 7 = X\ l_i W, is open. Bvidently 4 c U, B = V= Wy and U
HEL) TE""']

N =
Theorem : 6. Every paracompact Hausdorfl' space is normal.

Definition : Let X, B © X and o be a class of subsets of X, Then v {4 e : »
€A} is called the star of x over o denoted by st(x, o). Wi{dea : 4 m B # ¢} is called
the star of B over o and is denoted by st(B, o). The class of sets {s(x, o) | xeX} is
called the star of o.

Exercise : For B C X and a class of subsets o of X,
(i) st (B, ) =u {st(x, ):xehB}
(ii) B cw {4 : dec} = B C st (B, 0).

Solution : (i) For every x € B clearly st (x, o) C st(B, &) and so U{st(x, o) : xe 8}
= st{fB, o). Conversely, let yest(B, o). Then from definition there is some de o such that
yeA and ANB # ¢, Choose xed n B, Then yeA4 C stx, o) and so st(B, o) = u [st(x,
o) : xeB}. This proves the result.

(ii) Let yeB. Since B € w{d : Aea} so I a 4 €w such that yed,. Then 4 "B #
¢ and this imlies yed, c W {dea: A N B # 41} = st(B ct). This is true for every ye B
and so B < st(B, o). =

Exercise : For 8, C — X and a collection ¢ of subsets of X,
(i) B c C = st(B, o)  st{C, o).

(i) B n st(C, o) = ¢ & C n si(B, o) = ¢.

47




Solution : (i) is obvious.

(if) First suppose that B M st (C, &) # ¢. Then 3 y €8 st (C, o). Since si(C,
a) = ufdeo : An C # ¢}, we can find a 4, such that yed, where A,NC # ¢. But
then yeA,MB which implies 4, c st (B, ). Then st (B, o) m € # §. Similarly we can
show that C m st (B, &) # ¢ = B n st(C, o) # ¢. This completes the proof.

Definition : Let o and [ be two classes of subsets, of X, Then o is called a star
refinement of P if the star of o is a refinement of .

Lemma : 3. Let « and [ be covers of X such that o is a star refinement of f. Then
{st(4, o) : dea} is a refinement of the star of f.

Proof : Let 4 ed. Since o is a star refinement of B, for each xe 4, there is a member
B ep such that st(x, o) C Bx. Let x,€4 be fixed. For each xs4, B, C si(x, B), because
X, €A C st(x, o) < B. Hence

st (4, o) = U {st(x, &) : x4} € U{B, : x4} C sl(x,, B).

This completes the proof.

Definition : If for every xe.X there exists ¢ €A such that st(x, @) 8, ef={B}, . Ay

then o is called a pointwise star refinement of fi.

Lemma : 4, If an open covering o = {U/} _, of X has a closed locally finite
refinement then it also has an open pointwise star refinement.

Proof : Let o= {U} _, be an open covering of X. By our assumption o has a closed
locally finite refinement {F} reay’ For every €A, let us denote by s(f), a fixed index in

A such that I, © U, Since {Fi}ien, is locally finite, evidently A, (x) = {feA, : xeF}

is [inite for every xX. Then it follows that the set

rehg(x) iedple)

is an open set, for every xeX. Clearly xe ¥, and so § = {F,} _, in as open cover
of X. Now let us consider a point x,€X and choose an index t, € A (x,). From the above
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construction it follows that if x;e V, then f,€Ay(x) and ¥V, C U

o) Hence st(x;, B) < U,

.'IU'“}
which proves that [ is a pointwise star refinement of .
Lemma : 5. If a covering & = {4} _, of an arbitrary set is a pointwise star-refinement

of a covering = {B} . iy which is a pointwise star refinement of a covering v ={C,_

wedy *

then « is a star refinement of v.

Proof : Let us take a fixed s;€A and for every xed, choose f(x)eA; such that

A-Ta csi(x,a)c B[{ 1)
Then we have

.-..-f(Ajﬂ, o) = Wist(x, o) XEAJH} S W By From above we can get that
xed
n

whenever we choose ;v:,:,EAs{r then x€8,, for every .xEA;D.

Hence o By, € si(x, B). But then

.nEri'JiﬂI

st (AJ&, o) © st(x, B) © C,
for some wed,. This completes the proof.

Lemma : 6. If every open covering of a topological space X has an open star
refinement then every open cover of X has an open o-locally finite refinement.

We omit the proof as it is too technical.

From the above three Lemmas we can find the following equivalent conditions for
paracompactness using the star operation.
Theorem : 7. For a regular Hausdorff space X the following are equivalent.

(i) X' is paracompact.

(ii) Every open cover of X has an open pointwise star refinement.

(iii) Every open cover of X has an open star refinement.

(iv) Every open cover of X has an open o-locally finite refinement.
-
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Definition : A topological space X is said to be fully normal il every open cover
of X has an open star refinement.

Exercise : A fully normal space X is normal,

Solution : Let X be a fully normal space. Let B and C be two pairwise disjoint closed
subsets of X, Now {X\B, Y\C} is an open cover of X and so it has an open star refinement
. covering X. Let B* = st(B, o) and C* = st(C, o). Clearly 8* and C* are open in X
and B c B*, C c C*. We claim that B*~ C* = . On the contrary if xe B* ~ C* then
3 M, N ec such that xe Mn\N where M B # & # N 1 C. Then si(x, o) intersects both
B and C and as such can’t be contained in either X\B or X\C. This contradicis that o
is an open star refinement of {X\B, X\C}. Hence X is normal.

We will end the discussions with giving the idea of partition of unity without going
into the full details of the proofs,

Definition : A family {f} ., of continuous functions defined on a space X with

values in [0, 1] is called a partition of unity if Z fi(x)=1 for every xe X. This actually

=

means that for a fixed point ye.X, at most countably many functional values £(y) can

be non-zero and clearly the infinite series Z j_;.‘ {y) is convergent with its sum | where
=l

8 s ot = 18 €A L f() # 0}, A partition of unity {/.},<s is said to be locally finite

if' the covering {/;"' ((0, 11)},., is locally finite. In this case for every point ye X, there

is a neighbourhood U and a finite set A; = {5, §,, .. , §} © A such that Jix) =0 for

xe U, se A\, Clearly 3 f, (x)=1 for x € U,, We say that the partition of unity {/},. ,
=1

is subordinate to the covering {4}, il the covering {/.'((0, 11)} wa i5 a refinement of
{Af}l'l.:u‘\-' .

Lemma : 7. For each point finite open cover {L/}._, (a cover is called point finite
it every point belong to only a finite number of members of the cover) of a normal space
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X, there exists an open cover {V} ., such that ECUE'E'SE&.
Proof' is omitted,

Lemma : 8. If an open cover ¥ of a T, topological space X has a partition of unity
{/,},c4 subordinated to it, then % has a locally finite open refinement.

Proof left as an exercise in Group-B.

Theorem : B. For a T, topelogical space X, following are equivalent.

(i) X is paracompact.

(ii) Every open cover of X has a locally finite partition of unity subordinated to it.

(iii) Every open cover of X has a partition of unity subordinated to it.
Proof : First suppose X is paracompact. Let % = {U;} sep; be an open cover of X,

Let %"= {V,} ., be an open and locally finite refinement of % Then by previous Lemmas,

we can get a cover {W.} _, of X such that W, c¥, ¥seA. By Uryshon’s Lemma, there

exists a continuous function g, : X — [0, 1] such that g(x) = 1 for xeW¥,, g(x) = 0

for xe X\V,. Since % is locally finite, the function g= Z,Es is well-defined. It is easy

A

to verify that defining f, = g /g VseA, the family {f},_, is a locally finite partition of
unity subordinated to % . This proves (ii).

The implication (ii) = (iii) is obvious, Let (iii) hold. In view of preceding Lemma
we only need lo prove that X is T,. We will show that X' is Tychonoff, Let xeX, F-a
closed set such that xg £, Now %" = {X\F, X\{x}} is an open cover of X and so it has

a partition of unity {f,},., subordinated to it. So 3 s,€A such that fy,(x)=a>0 and
f;;l ((0, 17) @& X\x} i, it is contained in X\F. So f,(F)=0, Then f: X — [0, 1] where
Ax) = min [é fsﬂ[x},l} is a continuous function with f{x) = 1, fiF) = 0.
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Group-A
(Short questions)

. Giye an example of an open cover which is point finite but not locally finite.
Let " = {(=n, m)}},.y Is ¥ locally finite? Answer with reasons.
Give an example of a paracompact space that is not compact.

Prove that a discrete topological space is paracompact.

Show that every locally finite family of non-empty subsets of a countably
compact space is fnite.

Prove that a T, space is normal if each finite open cover has an open star
refinement,

Give an example of a paracompact space which is not Lindeloff.

Give an example of a paracompact space which is not countably compact.

Group-B
(Long questions)

Show that an F_-subset of a paracompact space is paracompact,

Prove that the cartesian product X * ¥ of a paracompact space X and a compact
space Y is paracompact.

Prove that a paracompact countably compact space is compact.

Prove that a Lindeloff space is paracompact.

If an open cover v of a 1, topological space X has a partition of unity {f},_,
subordinated to it then show that v has a locally finite open refinement,

Let X be a T,space. I 3 a countable open cover {U,} of X such that

0,cU,, ¥n and U, is compact ¥n then prove that X is paracompact.
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10.

A topological space X is called (a) metacompact if every open cover of X has
an open point finite refinement, (b) countably paracompact if every countable
open cover of X has an open, locally finite refinement.

Prove that a paracompact space is metacompact as well as countably
paracompact.

Prove that a countable paracompacl space is countably metacompact |a space

X is countabley metacompact if every countable open cover of X has an open,
point finite refinement]

Prove that any closed subspace of a countably paracompact (resp. metacompact,
countably metacompact) space X is respectively so.

Let 7, be the lower limit topology on [R. Assuming that (i, 1) is Lindeloff, prove
that (R, t;) is a paracompact space.
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Unit=IV 0 Metrization

Introduction

After coming across the two structures, namely, Iﬁelric spaces and topological spaces
it is evident that a metric space is a much stronger structure than a topological space with
many more additional properties arising due to the presence of the distance function. We
have already seen for example that while four types of compactness are different in a
topological space (in general with no additional assumption), they become equivalent in a
metric topology. So the natural question is that whether it is possible to get a given lopology

on a set X as the topology induced by some metric on that set. Metrization deals with this

problem. Here we will see that there are metrizable topologies as also topologics which are

not metrizable. Uryshon’s metrization theorem is recalled here. Nagata-Smirnov theorem;
though quite long and tricky with a very deep proof, is the milestone of metrization problems
as it gives necessary and sufficient conditions for a space to be metrizable. Further, in the
last section we include two very important theorems, namely, Arzela-Ascoli’s theorem and

Stone Weirstrass theorem.

3.1 Metrization of topological spaces

Definition : A topological space X is said to be metrizable if there exists a metric d on

the set X that induces the given topology of X,

Since a metric space is inherently Hausdorff, normal, and it satisfies first axiom of
countability, say the least, metrizability is a highly desirable property for a topological space.

Before we prove our main results, we recall the following,

‘Definition : Let (X, d) be a metric space. A subset 4 of X is called bounded if there
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is a number M such that dix, ¥) < M ¥x, y €4. If A is bounded, the diameter of 4 is
defined to be the number diam 4 = lub {d(a,, @;) : a;, a, €4}.

Boundedness is not a topological property and it only depends on the particular
metric 4.

Theorem A, Let (X, d) be a metric space, Define d : X x X — R by the equation
d(x, ¥) = min{d(x, ), 1}. Then d is a bounded metric that induces the topology of

(X, o), irrespective of whether d is bounded or unbounded. & is called the standard
bounded metric on X.

Lemma A, Let d and & are two metrics on the set X and v and 1" be their induced
topologies. Then t is finer than t ifl for each x in X and each € > 0, there is a § >
0 st

B fx, §) € By(x, €)
Exercise : For any ;(+) ve integer m, R" with the product topology is metrizable.
Solution : We shall prove that the cuclidean metric  on R" defined by
dx, y) = [(x = ) + oo + (&, = 3, 1°
and the square metric defined by
plx, ) = Il‘lﬂ.x{h:i =yl E=L 25, n)
for any x = (x;, ., x,) and ¥y = (3}, ... )
induce the product topology on R
First note that for x = (x, .., x.), ¥ = (¥, .. »,) ER", wWe have
plx, ¥) < dix, ) < nplx, »)
which implies that for xe R", and any > 0,
Bfx, €) C B(x, €)
B,(x, e/\n) € Bfx, ).
Hence the two metric topologies induced by 4 and p are same.

Now we show that the product topology is the same as that induced by the metric
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p. Let B = (g, b)) * .. ¥ (a,, b,) be a basis element of the product topology and let x
= (*; - . x,) €B. For each {, 3 an €, > 0 s.L.

(x,—e,x+e)c(ab)

Choose € = min {€,, .. , €,}. Then Bp(x, €) < B. Hence the p-topology is finer
than the product topology. That the product topology is also finer that the p-topology
follows from the fact that for any x = (x,, .,x) €R" and € > 0,

Ep (x,€)=(x,-€,x, T €)% . x(x,- €, x, + &) is itself a member of the product
topology. This completes the proof.

Definition : Given an index set J and given two points x = (x,),., and y = ().,
of R/, the uniform metric on R’ is defined by

p(x ¥) = lub{d(x, yNoeJ}

where o is the standard bounded metric on R. The topology induced by the metric
P islcalled the uniform topology.

Lemma : The uniform topology on R is finer than the product topology.

Proof left as an Exercise.

Theorem : The countable product of R, R with the product topology is metrizable.

Proof : If x = (x.),.y and ¥ = (1), are two points of R®, define

D, ) = mb{i‘_"#"—”}

I

where 4 is the standard bounded metric on R. Evidently D(x, ¥) 2 0 and = 0 iff

x = y. Also D{x, ) = D{y, x). To prove the triangle inequality, we note that for x, y, =z
€R®

d(x;,2) - d(%;,5;) . d0i1,%)
i i |

< Dlx, y)+ D0, 2z) ViEN
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d(x;, : :
and so D(x, z)} = 1ub{@} < D(x, y) + D(y, 2). Thus D is a metric on R*, We

shall now show that D induces the prudunt topology on R“.

First let & be open in the metric topology and let x& U/, 3 an € > 0 such that B (x,
e) © U. Choose a (+) ve integer M s.t. I/M < €. Lel

V=(x, —€,x,+€) % . % (x,—€,x,+€)*x RxRx . Then Vis open in the"
product topology. Note that for any y = () €RY,

E{-";J} 1 ’
——1_-—‘ EE (i = M)

Hence D{x, y) = max {dlxil’h}. ..,d[x*;}y M },-a;?}, Clearly if ye ¥V then D(x, y) <

e and so V C By(x, €) c U.
Conversely let U= 11,{;, be a basis element of the product topology, where U, is
e

open in R for i = o, .. , o, and U, = R for all other indices i. Let x& U. Choose an interval
(x,~€, x,+e)c U fori=a, ., oa. Wecan choose each €, < 1. Now take

€ =min {€\iii=0y.,d}
If ye B, (x, €), then (i)
d
—-—{"'j’y‘] < D(x, y) < €.
Clearly if i = o, .., @, then €< €\ i, 50 that d(x,,y;) <& <1 which in turn implies
|x, = | < €, Therefore yelll, and so
xEB(x, €) < U.
This completes the proof of the fact that D induces the product topology on R®.

Lemma : Let X be a toplogical space. Let 4 € X. If there is a sequence of points

of A converging to x then xe A. The converse holds if X is metrizable,
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This result is sometimes called the sequence Lemma, We shall use this result to
conclude the following.

Exercise : An uncountable product of R with itself endowed with the product
topology is not metrizable.

Proof : Let ./ be an uncountable index set. We show that R/ does not satisfy the
sequence Lemma.

Let A be the subset of R/ consisting of all points (x,) such that ¥, = 0 for finitely
many values of o and x, = | for all other values of . Let 0 be the point of B/ each
of whose coordinates is 0.

Let I11], be a basis open set in R/ containing 0. Then U, # R for only finitely many
values of o, say for o = Oy oo O Let (x,) be the point defined by Yy =0 for e =qa,,
«« s O, and x, = 1 for all other values of o. Then clearly x = (x,) €4 N TIL . This shows

that 0 € 4.

But there is no sequence of points of A4 converging 0. For let {a,} be a sequence
of points of 4. Each point a, is a point of the product space having only finitely many
coordinates equal to 0. For ne N, let J, denote the subset of ./ consisling of those indices

o for which the ath coordinate of a, is zero. Then UNJ,, 1S a countable set. Since J
=

is uncountable, therc is at least one index, say, B s.t. PeAC,. This means that Pth
coordinate of each 4, is equal to 1.

Now let Uy = (=1, 1) and U=II3'(Uy). Then U is an open nbd of 0 in &' but a,
g U for any neN. Thus the sequence {a,} cannot converge to 0.

The above example confirms that not every topological space is metrizable. We now
give a few necessary and sufficient conditions for metrizabilily. First we recall the
following well known theorem which provides some sufficient conditions for a
topological space to be metrizable, for the proof of which we refer to your earlier course
on set-topology.

Uryshon Metrization Theorem

Every regular T, and 2nd countable space X is metrizable.
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Exercise : Let X be a regular space with a basis 28 that is o-locally finite. Then

X is normal.
Solution' : Step 1.

Since 24 is o-locally finite, we can write 98 = w 28 where each ?33“ is I-::r:;:ﬂl}r finite,
n

Let W be any open set in X, Let C' be the collection of those basis elements B such

that Be B, and B W ., Then C,

n*

being a subcollection of 28, is locally finite. Define

U,= U B
Bell,

Then U, is open and U, = v B (v C, is locally finite),

BeC, "
consequently i, cwl, W .

We now show that = UU, = wul,. Let xe W. By the regularity of X, 3 a Be #
such that xe B ¢ B W. Now Be 28 for some n. Then BeC, by definition and so xe u,-

Step 2. Now let C' and D be two disjoint closed sets in X, By step 1 we can construct
two countable collections of open sets {U/} and {V} such that

wll, =ul, =X\ D

R

¥, =uUF, =X\ C

I

For each neN, define

Vi and ¥, =V, "ujl:«;U,.

A

U, = U\

oo -]
and let U'=w U and V'= U]
n=l =l

Then U =2 C, D — V and UF, V' are open sets with L m V' = @,

Magata Smirnov Metrization Theorem.

A topological space X is metrizable iff it is regular T, and has a o-locally finite basis.

Proofl : (sufficiency)
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Let X be a regular T space with a o-locally finite basis 23
Step 1. Let W be open in X. We have already shown that ¥ is a countable union

of closed sets {4,} of X, Using normality of X, for each n, choose a continuous function
Ju i X = [0, 1] such that £(4,) = {1} and LX) = {0}. Let
Sx) = Ef (x)i2",
Since the series converges uniformly, so the limit Functi_on [ is continuous, Clearly
fx) > 0 VxeW and XW) = {0}.

Step 2. We can write 23 = U 98, where each collection 98, is locally finite. For each
n

neN and Be 3B, choose a continuous function
Jou i X = [0, Un]

such that f, 5 (x) > 0 for xe B and Jon (X\ B) = {0}. Now given any point x,€X and
open set U containing x,, 3 a basis element B such that x,€ 8 cU. Then Be 93, for some
n and hence 1, (%) > 0 and f, X \ U) = {0}. In other words the collection of functions
{/nu} separates points from closed sets. Since X is T\, so it also separates points.

Let J be the subset of N * 28 consisting of all pairs (n, B) such that Be 28 . Define
F: X [0, 1)

by the equation
Fx) = {";.-,s{x))m,a}er

By Imbedding theorem F is an imbedding of X into [0, 1]} with the praduct
topology.

Step 3. It should be noted that [0, 1]/ with the product topology is not always
metrizable (if J is uncountable). So instead of taking the product topology, we take the
uniform topology induced by the uniform metric § on [0, 1}V

Since the uniform topology is finer than the product topology, so F is still an open

map. Evidently 7 : X — F(X) is bijective. We have only to show that F is continuous.
Let x;6 X and € > 0 be given.

First let ne N be fixed. Since 2B, is locally finite, 3 a neighbourhood U, of x; which
meets only a finite number of members of 28, say, B,, .. , B;. Then
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Sog (U) = {0}, VBeZB\B, .., B}
Again by continuity of f;,lgl,, 3 a neighbourhood V7, of x; such that

yeV, = |fup () = Top(xp) | <€/ fori=1to k
Let ¥, =V n .. 0¥, n U, Then F, is an open neighbourhood of x, and for any

x, eV ,any i =1 to k.

PAPEORTAMC) R~

as ¥, is a neighbourhood of x; on which all but finite functions, £, , vanishes

identically and the remaining functions f, ; vary atmost by 7

Now choose Me N such that 1/M < €/2, For each of the (+)ve integers 1, 2 ., M,
choose open neighbourhoods V..., V), of x, having the above property. Let

=¥ oV OV e 03
Let xeW. If n = M, then

Vot = faGo)l < 5
= on W,

b

because each f , either vanishes identically or varies by at most
If n > M, then
1 _e
Vs @) = Jyp Gl < <5

] . Therefore

[

because f , maps X into [l],

PF(x), F(xg) < g <e
Thus we have an open neighbourhood W of x, such that

xeW = p(#(x), F(xp)) < €.
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This proves that the function T is continuous. This completes the proof of the
sufficiency part.

Proof (necessily)

Step 1. Let X be a metrizable space. First we prove that any open cover ¥ of X
has a o-locally finite refinement 27 covering X.

Let d be a metric on X that induces the topology of X. Since the collection ¥ is
a poset (w.r.t inclusion) it can be well-ordered by well ordering theorem. Let ‘< be the
well ordering in %% Let neN be fixed. For Us % define

S, (L ={x - B[x, %J e U}

Then we define

S(Y=8,N\ ¥
F=tf, Ved

We shall show that {§, (U) : U € %} consists of pairwise disjoint sets. For this let
V, We %, V# W. Withoul any loss of generality we may assume that ¥'< . Now xe.§' AN
= x€5,(V). Again ye & (W) implies by definition, y € ¥ (" ¥ < W), Clearly xe& (V), ye V

= d(x, ) = ~. Thus S,(1) A §, (F) = ¢ and

1
o

x&8 (V) and ye§ (V) = dix, y) =

MNow let us define
E(U) = O{B(x, 1/3n) : xES’n(U]}.

Evidently E (L)) is open for each Ue % For ¥, We 9 V + W, we assert that E (1)
E (W) = ¢. For if not, then 3 a ze £ (V) N E(W) = Ixe§' (V) and ye S (W) such that

1 1
zeBlx,—| and z€ B} v, — | = dlx, y) < dx, z}+d{z,y}~il{l,amntmdictiﬂn.*
In In In n

Further it is easy to show that E(U) © U, YU e (* Actually it is casy to sce that
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xEE(V), YEBW) = dix, 3) 2 5=
Now let us define
@ ={E () : Ue%¥)} for neN.

Evidently T2 is a rcfinement of % Also for each xeX, B(x, ﬁjis an open

neighbourhood of x which can intersect at most one member of @, Thus & is locally
finite.

Finally let @@= UN &, Then @ is a o-locally finite refinement of % We just have
He

to show that %7 covers X.

Let xe X. Choose Ue 1o be the first element that contains x (w.r.t. the well-ordering),

Since U/ is open, choose ne N such that H(x. %] < U. Then xS (I)). Since there is no

Ve Fwith xe ¥, ¥ < U. So clearly xe8, (L)) E (L), This completes the proof of our
assertion,

Step 2. As X is metrizable, it is evidently regular and T\. We have to show that X
has a o-locally finite basis. For this we nate that for any me N,
b

(B, m

):ixeX} =98 (say)

is an open cover of X. By step 1, §_ has a o-locally finite refinement @, covering X
Note that every member of ©7 has diameter at most 2/m. Let & = ity @ .. Evidently
me

B is also G—Ioc:i!fy finite, Further given any xeX and €>0, choose meN so that Um
< €2, As @, covers X, we can choose De@ such that xe D, But as diam (D) < 2/m,

so D C B(x, €). Hence @ is a basis of X as _“ "m Is already a basis of X.

Theorem : (stone) Every metrizable space is paracompact.

The results follows from Lemma 2(paracompactness chapter) and the above
Theorem.
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Exercise : Let (X, o) be a metric space. Let X x X be endowed with the corresponding
product topology. Then d : X x X — R given by (x, ) — d(x, ¥) is a continuous
function.

Solution : Let € > 0 be given. Consider the open interval (d(x, y) — €, dl(x, y) +

€). Choose the basic open set H(x, g]x B[ ¥ %] containing (x, y) in the product
topology in X*X. Take (x,, y,) € B(x, %JXB[J‘: %J . Then d(x, x,) {gand diy, y,) < %
MNote that
cl‘{.r, J“I} s d{xs ‘xl} + d{xh y]} + d{yii .]"r]

ie, dix, y) — d(x,, y;) = d(x, x;) + diy, .]-"|}

i-E-, | d(xr J"') T d{xli yt}l = d{xs '-T|] * d':}'- .]"'t] =N

ie., dix, .}"1) € (dx, y) — €, d(x, y) + €).

This shows that d is continuous.

Exercise : Show that in a compact metrizable space X, every metric for X is a B-
metric (bounded metric),

Solution : In order to prove the result we show that there exist points @, b €.X such
that d(a, &) = diam (X) where d is the metric on X corresponding to the given topology.
Let X* =X x X with the product topology and let /: X* — R be defined as before S,

X,)) = d(x;, x;). We have already shown that f is a continuous mapping to R. Since X

is compact, X' x X'= A" is also compact. Then fX*) being continuous image of a compact
set is also a compact subset of R. Consequently fX*) is closed and bounded in R. Let
C = lub fX*). Then CefX*) and there exists peX* such that f{p) = C, Let p = (a, b).
Obviously d(a, b) = diam (X) and the assertion follows immediately,

We will now show that the cartesian product of countably many metrizable spaces

15 also metrizable.
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Theorem : Let {(X, d )}, be a countable family of metrizable spaces. Let diam (X )

< M for all large n and diam {X"} —+ 0 as n = ==, Let us define e(x, y) = Sup{a’n[x”,yn}} ,
"

Then T, (the topology corresponding to ) is the product topology of TI(X,,td,).

Proof : Let for meN, diam (X)) < M Vn 2 n, Clearly e is well-defined. We only
show the triangle inequality fo prove that e is a metric. For x =(x,),, ¥ = ()., 2 = (2,),
ellXn,

e(x, z) = supd,(x, z,) < sup {d(x,»,) +d 0. 2)
n H

1A

SU.FI dn{xn! ylr} + Supdﬂ[yﬂl Z"]
L Lk

e(x, y) + ely, z).
To show that the product topology is given by the melric e, let x = (x,),e I1 X,
and

x = (x,), €8x, €) * ... x S(x,, €, * TIIX,,=U(3ay}_
H+
Choose € = min {€, €,, .., €,}. Then € > 0 and yeB(x, €) = ¢(x, y) < € =

sup Idlr (xlf ?yl‘i} e
n

=dix,y) <€ forl =izn
Hence y € U and so B(x, €)  U. Thus one side is proved.

To prove the converse take a ball B (x, €). Since diam (X,) — 0, 3 n e N with diam
(X) <€/2 ¥ =n, Let

= X o X B (/2% T1 X,
U= B(x,, €/2) ChagoShNe T X,

Take y = (3,), €U. Clearly d{x, y) < €/2 V1<i<n,;.

Obviously then y elU = e(x, y) = €/2 = yeB,(x, €).
This completes the proof.
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o
Theorem : Let {X : neN} be a family of metrizable spaces. Then Hl X, with produet
=

topology T is metrizable.

Proof : Let d, be the metric for X,. We know that e, for each X, where ¢ (x, y) =

min {%, d,(x, y}} for (x, y) €X = X induces the same topology as d . Obviously diam

(X,) = 0 as m — == and of course it is bounded uniformly. If e(x, y) = supe,(x,.,)

Al

then T, = T and the result is proved.

Exercise : Let (X, d)) and (X;, d;) be two metric spaces, K C X and f: K — X,
be uniformly continuous. Then show that the oscillation w(p) of [ is zero al every pe X -

Solution : For each peK, w(p) = 0 follows from continuity of f at p. If PEX\K
then we have ;

0 S wp) = diam (AX\K) n K) =0

as X,\K is an open neighbourhood of p.

Finally let pe K\K. Let € > 0 be given, By the uniform continuity of £ 3 g 8§ >

0 such that
di(r, q) = & = d(fir), Ag)) < /2.

Choose r, g B(p, %] MK, Then d(g, r) = d/(p, q) + di(p. 1) < -g- I-g— =08 = dy(lg),

Sy <= /2, Henee
diam (AB(p, &2) n K)) £ €/2 < &,

Thus 0 = w(p) = diam (fB(p, 8/2) NK)) < €. Since this is true for any € > 0, w(p)
= ﬂ.-
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3.2 Two important theorems

We first consider compaciness in Cla, &] the space of all real continuous functions
on |a, b] endowed with sup metric p. Cla, 5] iltsell is not compact as it is not bounded,

Definition : Let M be a class of real functions defined on [a, 5]. M is said to be
uniformly bounded if 3 a & > 0 such that [{f)| = k& Viela, b], VJ/EM M is said to
be equi-continuous if for every € > 0, 3 a § > 0 such that [f{r)) — firy)| <€ if |¢, - |
<& YEM

We now .prove the following characterization.

Arzela-Ascoli’s Thorem

A set M C Cla, b] is relatively compact iff it is uniformly bounded and equi-
continuous,

Proof : Suppose that M is relatively compact in Cla, b]. Then M is bounded. This
is equivalent to saying that for &,(/) €Cla, b], there is @ k£ = 0 such that

plx, b)) = Sup.g; () — by(n)| = K "':-".xEM

asis
S0 Yaxe M,

sLp Ix{i’}|£ sup [x{:}—h.{-‘}|+ sup Ibli:.‘}|£k +k' (say).
azish asfzh asr=h

This shows that M is unilormly bounded,

To prove equi-continuity, choose € > 0 and construct a finite ;- net,

A= {x(5), 2(8), ., (N} for M (v M is totally bounded). The functions x(f) are

continuous and so uniformly continuous on [a, 8] Vi =1, 2..,n So 3 §, = 0 such that
k1) = ()l < 5 when 6= ] < 8, 1, t,e[a, b] for i =1,2, ., k. Choose & = min {3,

w8} Then for i = 1,2, .., k [eft,) — x(t)| < % when |t — 1) <8, 1, t, €[a, b]. Let

g

x(1) e M. There exists a xr.{.r)E_A such that p(x, x) < S0
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Then if |t,— 4| < &, 1, L,E]a, b],

lx(r)) — x(5)| = | x(t) — x| + lty) = x(6)] + |x(8) — 2(8,)]

< plx, x) + % + p(x, x) < &

This is evidently true for any x(f) e M and so M is equi-continuous. Conversely
suppose that M < Clg, b] is uniformly bounded and equi-continuous. To show that M
is relatively compact il is sufficient to prove that it is totally bounded. Suppose K is a

{+)ve integer such that x(f)] = K VxeM and refa, b]. Let € = 0 be given. Since M is

equicontinuous, choose & = 0 such that [x(s,) — x(,)] < % W xe M when |, —1,] < 5. Since

[a, b] in compact, it has a &-net ¢, ..., £ . Choose a (+)ve integer m such that %qi’

and divide [-K, K] into 2Zkm equal parts by the points
Vo=—-K=<y <y, <..<), =K where K = 2Km.
Consider those n-tuples f_‘r";l:-yaip--:.‘.l‘p”} of the numbers ¥, i = 0, ..., k such that some
X €M has the property that
g .
|x(rj}_}'rj“‘:E,J = LaBesn

and choose one such xeM for each such m-tuple.
We shall show that the resulting finite subset E of M in an e-net for M. Let xe M;

choose ¥j,¥j sV, so that

x(fj}—}'ﬂ{%,j =1, 2 ... n and so there is a corresponding

ecE, Let te[a, b] and choose j so that |¢ — #| < &. Then [x(r) — e(r)] < |x(r) — x(z)] + |x(z)
-yl + b, — )+ lett) - )] <ce

Hence p(x, €) = sup |x(r)—e(r)] <s
agih

Note : The above theorem can be generalized for any compact metric spai © X in
place of [a, B].
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We next refer to the Weierstrass approximation theorem and its generalization to
a compacl space by stone ; recall that Weierstrass approximation theorem states that P[a,
h]. the space of all polynomials on [a, b] is dense in Cla, b].

Let X be a compact metric space and let C{X) be the space of conlinuous real
functions on X with the usual metric

p(f.8)= 3“E|f (x)—g(x)] .

We define algebraic operations in C(X) as follows : If £ g eC(X) and a is real, then,
for xeX.

(+ g)x) = fx) + g(x)
(&)(x) = fx) glx)
(af)(x) = aflx)

A set A € C(X) is called an algebra if £, geA and a real imply [ + g, fg, afed. If

A is an algebra then it is easy to show that 4 is also an algebra.

Stone-Weiersirass Theorem

Let A be a closed algebra in C(X), X a compact metric space. Assume that 1.4 and
A separates points (i.e. if x, yeX, x # y, 3 fe4 for which f{x) # f{y)). Then 4 = C(X).

Proof : We first show that fed = |f| €4, First suppose that sup{|{x)| : »X} = 1.

Let € > 0 and let p(r) = a, + a;f + ... + a " be a polynomial such that ||[()] — p(r)] < &
e, 1].

Then p(f) = a, + a,f + ... + a, f"ed(*: A is an algebra) and ||f{x)] — p(fix))| <& VxeX.

This shows that |f.| is a limit of 4 and so |f| €4 as 4 is closed. For any fE4 we
can choose a constant a(# 0) such that |afix)] = 1 ¥ xeX. Then as above we can show
that |aff €4 and so [|f| €4.

We next note that if £, geA then min (f; g) and max(f, g) are in 4, [t follows readily
from the facts that
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max(f, ) = 3/ + &) + 31f - g

minmg}=%(,f+.§)" %lf—gl

and | — gl €4 if £, g4 and A is an algebra,

Next let fEC(X). Let x, ye X, x # y. Let g be the function which takes constant value
Afx) at all points. Then ge 4. Since A separates points, 3 he 4 such that A(x) # A(y). Without
any loss of generality assume that A(x) = 0. There is a constant @ such that the function
i y given by fz}, = g + ah. satisfies _,r‘;y(x} = fix) ﬂnd_;‘;g,(y} = fly) and clearly fo €4, Let'e
> 0. Since (£, =N 0} =) - Ay) =0 <&

From the continuity of Jip —f we can find an open ball s, such that ye s, and f (z)
<fzyt+e V:z £S5,

Since X is compact the open cover {S}, : ¥ €X} has a finile subcover, say, Sy, Sy,

s Sy Let f = min{f, ... £ ). Then JEA, f(x) = fx) and for every zeX, [(z) < fiz)
o] -

Again using the same argument for each ¥ X, choose an open ball 1 such that /()

>fRzy—¢ Nzl

Since X is compact, a finite number of these balls T, ...7. covers X Let F =

xpaay

max [1'11 o } :
Then F €4 and VzeX, [{z) — F(z)| < & This proves the theorem.
Group-A
(Short questions)

1. Is the discrete topology defined on a non-empty set X metrizable? Il so explain
with reasons.

2, Is the real number space endowed with the cofinite topology metrizable? Answer-
with reasons.
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Show that a metrizable space is normal.

. In a metric space (X, d) prove that xe A iff d(x, 4) = 0 where xeX, Ac X.

Let (X, o) be a metric space and 4 c X. If p is a limit poinl of A then show

that A contains an infinite sequence of distinct points converging to p.

. Let X = N w {b} where N is the set of natural numbers and b ¢ N. Define
dix, y) =1 if x, yeM, x # y

d(b, x) = d(x, b) = 1+ if xeN

dix, W»=0ifx=y
Show that & is a metric on X. Find dist (N, {5}).
Let /: (X, d) — (¥, e) be uniformly continuous.
It A, B © X be such that d(4, B) = 0, show that e(f{4), (B)) =0.

Is the real number space endowed with lower limit topology metrizable. Answer
with reasons,

Group-B
(Long questions)

Sy . | : :
Prove that metrization is invariant under homeomorphism.

Show that the derived set of a countably compact set in a metric space is
countably compact.
. For a pseudo-metric space (X, d) if ¥={{¥}:xe X}, define e({5).{7) = dix. »).

First show that {¥}={y:d(x,)=0}. Then prove that ¢ is a metric on ¥,

Let K be a subset of a metric space (X, d) and let r > 0. Define §, (K) = {xe¥
 d(x, y} < r for at least one point ye K}, Prove that §(K) is open.
Let {x }, and {p } be Cauchy sequences in a metric space (X, ). Define a relation

i L]

~" as follows : {x } ~ (y}, iff. limd(x,,»,)=0. Then *~* is an equivalence
a—x
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relation and let X™* be the collection of equivalence classes. For x*, y*e X*, define

d*(x*, y*) = m d(x,,y,) where {x} €x*, {y} €y*. Prove that the limit exists

and the limit does not depend on the members closen from the equivalence

classes,

. Prove that (X*, d*) (described in (5) above) is a metric space.

. (a) If a separable space is also metrizable then prove that the space has a countable

basis.

(b) Show that any finite subspace of a metrizable space is always discrete.

. Prove that a topological space (X, ) is metrizable iff there is a homeomorphism

of X onto a subspace of some metric space.
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Unit-V O Uniform spaces and proximity spaces

Introduction

We are already familiar with the notions of topological spaces and metric spaces. Due
to the presence of a distance function, the topology induced by a metric is much stronger
and also we can define notions like Cauchy condition, completeness, uniform continuity in
metric spaée.s which cannot be defined in general topological spaces. The theory of uniformity
was developed to bridge this gap and it is a tool which can be seen as a structure which
is stronger than a topological space but weaker than a metric space. The theory of uniform
spaces is somewhat analogas to the theory of metric spaces but can be applied to a large
number of spaces; in particularl to those spaces, not necessarily satistying the axiom of
countability (i.e., which cannot be metrizable). We will see that every uniformity induces
" atopology on a set, whereas every mefric or more generally, every family of pseudo-metrics
induces a uniformity on a set. We will study the conditions under which a given topology
can be induced by a uniformity (i.e., when the topology is uniformizable) and when a given
uniformity can be induced by a metric (i.e., when the uniform space is metrizable), We will
also study many more properties of these spaces. Finally we will study another related

structure, called proximity structure.

5.1. Basic definitions and properties

Let X be a nonempty set. A nonempty subsat If of X = X is called a relation on X. If
U is a relation on X, its inverse relation U is defined by L' = {{x, y) : (», x) € U}. Clearly
(LF'y!l = U. If U = U, the relation U is said to be symmetric. If Uand ¥ are two rciﬁtiun
on X, then their composition is defined by,

UoV = {(x, ¥) : (¥, 2) € V¥ and (z, y) €U for some z in X}. It is easy to verify that
for any three relations U, ¥, W on X, (UoVju W = Uo (VoW) and (Uul"}"' = ploU!, We
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write A = {x, x) : x € X}. For any relation Don X, Ao U= Uo A = U, 8o A is the
identity relation on X.

Let A be any nonempty subset of X, U any relation on X and ¥, € X. We define
Uld] = {y : (x ») € U for some x in 4} and U [ = {p: (xp ¥) € UL

If A is a subset of X and U and ¥ are two relations on X, then we can ver| l"y. thit

(U o V) 4] = UV [4]].

Uniformity and Uniform space.

Let X be a nonemply set. A nonempty 'family 9 of subsets of X % X is said to be
a uniformity on X if the following hold :

(i) A © U for every U ¥

(i) If U e %, then UF' e

(iii) If U/ €7 there is a member ¥ of ¥ with F o ¥ c
(v) If U}, U, are in % then U, n U, e

(VMWW cCXxXand Uc W for some U in 9 then W e ¥
The pair (X, %) is called a uniform space.

Base and subbase of a uniformity.

Let (X, 9/) be a uniform space. A nonempty subfamily 24 of % is said to be a base
for the uniformity 9/ if for every U in % there is a member V of 98 with V — [/

A nonempty subfamily < of 9 is said to be a subbase for the uniformity ‘% if the
family (96 of all finitc intersections of the members of &#) is base for the un iformity #/

Theorem 1 : Let X be a nonempty set. 4 nonempty family P of subsets of X = X
is base for some uniformity on X if the following hold.

(i) A ¢ U for every U e .

(i) If U € P, there is a member ¥ of B with ¥ c o7,

(iii) If U & P, there is a member V¥ of B with JoV c U,

(iv) If U}, U, are in B, then U, m U, contains a member of p.

Proof : First suppose that [ is a base for the uniformity % on X, Then B < % and
each member of % contains a member of P.

(i) Let U e B, Then U e % and so A = U/,
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(ii) Let U e B. Then U € % and so U e
So there is a member ¥ of § with ¥ < UFL

(iii) Let U & B. Then U €%, So there is a member I of % with W o W C U. Again,
W contains a member Vof . So Fo Vo Wo Wa U

(iv) Let U, U, belong to . Then U, U, are in % and so U, N U, €% Hence there
is a member ¥ of B with V' U, n U,

Thus the conditions are necessary.

Next, let B be a nonempty family of subsets of X »x X satisfying the given conditions,
Denote by % the family of all those subsets W of X * X such that U e iff V¥ c U
for some ¥ in B. Clearly p < %

(a) Let U €% Then there is a member V of B with ¥ U. Since AC V, A c L

(b) Let U7 €% There is a member V of B with ¥ = U. Also, there is a member W
of B with W < V. Since ' c U, W C F!, So F! e

(c) Let U &% Then V — U for some F in §. So there is a member W of [} such
that WolW < V. Since p < % W e So, WolW < UL

(d) Let Uy, U, be two members of % Then there are two members F, ¥, in [} with
¥, c U, and ¥, c U,. By condition (iv), there is a member V of f with V' C ¥, m ¥,
So ¥V c U, n U, This gives that U, mn U, €%

(e) Let ¥ be a subset of X % X such that U < W for some U in % There is a member
Vin B with ¥ c U So ¥V c W which gives that W e %

Hence, % is a uniformity on X. From the construction of %/ it is obvious that [} is
a base for the uniformity %

Exercise : Let X be a nonempty set. A nonempty family s of subsets of X * X is
a subbase for some uniformity on X if the following hold.

(i A c U for every, Ues.

(ii) If U € &, then there exist finitely many members ¥, ..., ¥, (say) in s such that
UF contains ¥y .o Y W, '

(iiiy If U € s, then there exist finitely many members ¥, ..., ¥ (say) in s
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with VoV © U. Where V= ¥, N ..... AV,

Solution : Let the family 5 of subsets of X x X satisfy the given conditjons.

Dencte by B the collection of all finite intersections of the members of . Clearly
s C B

(a) Let Ue P. Then U=m_ U, where U, € s, Since A © Uforeachi, Acnl U, =U

(b) Let U P. Then U=n,U, where U € s. We have U =1, = 7. For each
i, there is a member V, in s with ¥,y Write ¥ =L}, Then ¥ € . We have
Venu! =u!,

(c) Let U € B. Then U= i/, where U es. For each i, there is a member W, of

s with WolW,c U, Let W=n{_ W. Then W € B and Wol < Ly (W, oW, ) iU, = U,

(d) Let U and ¥ be any two members of f. Then U=, U, and ¥ =, ¥, where
U, F e s
Wehave UNn¥V=UnU,n.nU, NV, 0 ¥y o .m V. This gives that UnVep.

Thus P is a base for some uniformity % on X. From the construction of B it is clear
that s is a subbase for the uniformity 9

Theorem 3. Let (X, %) be a uniform space and let T denote the family consisting
of the void set' ¢ and all those subsets § of X such that if x € S, then Ulx] < § for some
Uin % Then T is a topology on X.

Let x, € X and % = {Ux,] : Ue¥% }. Then ‘% is a neighbourhood base at Xge

Proof : Let x € X and U € % Then Ulx] = X which gives that X € 1. Let §, and
§, be any two members of 7. Write § = S;n §,. If § = ¢, then § €1. Suppose that §
#0 Let x € §.

Then x € S, and x € S§,. So there are members U, U, in 9 such that U, [x] € 5,
and U, [x] < §;. Write U= Un U,. Then Ue%and U [x] ¢ U, [x] c §, U] c Uy[x]
C §,. So Ux] c § n §,. This gives that § € 1.

Let o= {§, : o € A} be a nonempty subfamily of T and let § = U{S, 1« eA}.
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Let x € §. Then x € S, for some o in A. There is a member U of % with Lx]
c S, Since§,cS, Ulx]c S SoSer

Therefore T is a topology on X.

For the second part we proceed as follows. Let x € X and U be a member of
Consider the set Ulx,]. '

Let 4 = {x : V[x] © Ulx,] for some ¥ in %}, Taking V' = U, we have Vix) € U
[xp] which gives thal x, € A. Also from definition we get 4 © U [x,]. We now show
that 4 is open.

Let x € A. Then there is a member V' in % with V[x] © Ulx,]. Choose a member
W in % with WolW c V.

Take any y € W [x]. Then (x, y) € W. If z € W [y], then (v, 2) € W. So (x, z) e oW
C V. This gives that z € V[x] = W[yl € Ulx] = y € 4.

Thus Wlx] = 4. So 4 is open.
Since x, €4 © Ulx,), it follows that Ulx,] is a neighbourhood of x,.

Let W be any neighbourhood of x,, Then there is an open set G with x, eG < W.
So there is a member U of % with Ulx,] € G < W.

This gives that the family.
Y= {Uxy] : U €% is a neighbourhood base at x,, .

Note : We say that the topology © on X in Theorem 3, generated by the uniformity
%, is the uniform topology.

Definition : A topological space (X, 1) is said to be uniformisable if there is a

uniformity % on X such that the topology generated by the uniformity % is identical
with the topology T.

Example 1 : Let (X, 4) be a pseudometric space. For positive number 7, let
W,={(x, ) :x, y €X and d(x, y) < r}. and p = {W_: r> 0}.
We verify that B is a base for some uniformity on X.

{i} Since d(x, x) = 0 for all x €X, it follows that A © W, for every r > 0,

(ii) Since d(y, x) = d(x, ) for all x, y in X, we get lr}':__' =W _forr> 0. So W;lEﬁ.
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(iii) Let » be any positive number and let p:%r. Let (x, j) €W, 0 W, Then (2, 2),

(v, ) € W, for some z in X. We have
dx, ) £ dlx, z) +dlz, y) <2p =1
This gives that (x, ) € W, and so
W,o W, C W.
(iv) Let Wr,, Wr, € P. Let r = min {r,, r,}. If (x, ¥) € W, then d(x, y) < r =
(1 = 1, 2) which gives that W, er and W_c H’:_z. So, W, C W,_1 (i W,,z,

‘Hence [ is a base for some uniformily % on X. A subset U/ of X % X belongs to
Wil W, c U for some » > 0,

We now show that the topology T, gcnur#ied by the pseudometric d is identical with
the topology 7, generated by the uniformity % '

Let G €1, and x €0. Then there is a positive number r such that

Sx, r; d) © G,
where S(x, r ; d) = {y : y €X and d(x, ¥) < r}
= W_[x].

Thus W _[x] € G. Since W, €% G en,.

Again, let G €71, and x €G. Then there is a member U in % with Ulx] © G. Since
P is a base for "% there is a positive number r, such that ¥, c U. So W, [x] = Ulx] cG.

Since W, [x] = S(x, r ; d), S{x, r ; d) € G. This gives that G € t,. Hence T = T
Therefore the pseudometric space (X, d) is uniformisable.

5.2. Uniformizability and metrizability

Example 2. Let X be a nonempty set and p be a family of pseudometrics on X. For
d €8 and r > 0.

Let W, = =@y :xye Xand d (x. p) =), and
s={Wy,:de Pandr> 0}
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Let d € p and » > 0, Since d (x, x) = 0 for all x € X, we have A C Wia - Again,

since d(y, x) = d(x, v) for all x, y in X, W{::f.lr'] = Hf{w,].
Also Wy | ol C Wy o
et ") < "

Therefore s is a subbase for some uniformity ¥ on X. Let [} denote the family of
all finite intersections of the members of s. Then B is a base for the uniformity u.

Let 7, denote the lopology generated by the family p of pseudo-metrics and 1, the
topology generated by the uniformity w.

Let G et, and ¥ €G. Then there is a set of the form

B=nr, Sx, r, d), where d €p and r, = 0, such that x eB C G,

Since 8(x; 1, d) = Hidi-':«}[x-i} we have B=n,S(xrd)=W][x], where

T
W=r 1) € 1

This gives that G €1,.

Again, let G €7, and x €G. Then there is a member U in # with Ulx] € G. Since
B is a base [or w, there is a set of the form

W=, W{“‘r’-"i} where d, €0 and #, > 0 such that W cU.

So Wx] € Ulx] € G.

Since W [x] = mil; S(xn.d;), we have
f“l:':u"?(x,f}:d.-)CG So G €T,

Hence T, = 1,.
Theorem 4 : Every completely regular space is uniformisable.

Proof : Let (X, T) be a completely regular space. We first show that ils ropology
T can be generated by a family P of pseudometrics on X.

In fact, let us denote the family of all real valued continuous functions defined on
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X by C(X) and let C°(X) denote the subfamily of C(X) consisting of bounded functions.
For a finite number of functions f, f; .., f, €C(X) define.

P st (59) = max{| (x) = A (A2 (x) = 0ol i ()= 1 ()}

]

for x, ye X. It is easy to verify that Pg 5 5 is a pseudo-metric on X. Let us consider

the family p of all these pseudo-metrics Py 5 5 where £, £, ., L 8CEN),

Observe that from the construction it follows that every p : X * X — R is continuous
where p €p. Let T, be the topology induced by p. Let G €1, and x €G. Then we have

IQS{I, H,P;)={J’EX=Pf[£P}<’}} C G forsome r, > 0and p, € p,i=1,2, .n
Take a fixed /. If p, is generated by f,, £, . , f; (say) €C"(X) then clearly

i :
xem_}}_] Uy &) = s f; (x) + 1) € S(x, r, p).

k
As each f is continuous so n f E{ Si(x)=r f,-[x}+rr-)=v,- (say) € T and this shows

that

n
Xxenv=v (say) C G,

where v € 1. Hence & € T,

On the other hand is U € 1 and x € U, by complete regularity of X, 3 a function
S eC(X) such that fix) = 0 and fy) = 1 ¥y € X\U. Then clearly pE P and:
1
x € Sx, E,pj;_;-:: §8

This shows that U €t,. Therefore T = 1.
For din P and » = 0, let
Wi = x2) i x p X and dx, y) < r}

and s = {W, , :d € pand r> o}
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Letd € 8 and » = 0. Since d(x, x) = 0 for all x €X, A CWM o Again, since d(y,

x) = d(x, y) for all x, y in X, we get HJ’I:;}’}=FJV{#}_ Also H}ﬂrlﬂa}i’{dlr]cﬁidﬂ
) 2

Therefore s is a base for some uniformity w on X. Denote by B the family of all
finite intersections of the members of s. Thus [ is a base for the uniformity u. Let Ty
denote the topology generated by the uniformity w.

Let G €t and x €G. Then as before d, e P and r, > 0 there is a such that x eB
=8 r,d)c G

_Since Sx, r, d) = H{: d m}[x]eti,

Thus W[x] € G which gives that G &7, Again, let G €1, and x& G, Then there
is a member U of u with Ulx]c@. Since B is a base for w, there is a set of the form

W:ﬁﬁlﬁﬂ:ﬁ-ﬁ,ﬂ (d, €0 and r)
such that W — U Thus Wx] c Ux] c G.
Since W[x] = niL8(xr.d), it follows that Get. Hence T = o

Therefore the space (X,1) is uniformisable.

Definition : Let X be a nonempty set. A mapping g : X x X = R is said to be a
quasimetric on X if the following hold.

(i) g (x, ») =2 0 and g(x, x) = 0.
(i) g (x, ) = g (%, 2) + 4(z »)
for x, y, z in X

Theorem 5. (Metrization Lemma) :

Let X be a nonempty set and let [Uﬂ}:’zﬂ be a sequence of subsets of X x X such
that (i) U, = X = X (ii) A c U for each » and

(i) oo Lot UL (=21, 2,3 s

Then there exists a quasimetric g on X such that

@Uclixigr, W<2""RJcl (n=1,2273 .)
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If each U, is symmetric, ¢ becomes a pseudometric,

Proof : It is easy to see that U, = U, for n = 1, 2, 3, ... We define a mapping
I X=X — [0, ==) as follows.

fla, =2 if (x, e U

P

I Ill' Lﬂr'
=0, if (x, y) eU, for all n.

Now we define the mapping g : X % X — [0, =] as follows : Let (x, ) €X = X
Then

g (v y) = inf {if {xr—Lxr)}

where the infimium is taken over all finite sequences {x,, x|, x5 ., x,} € X with
Xo = XX =)
It is obvious that g(x, ») 2 0 and glx, x) = 0.

Let x, ¥, z be three points of X. Choose any € > 0. Thus there are finite sequences
{255 XKy Xay i x,} and {z;, zj, 25, o 2, In X with x; =x, x, =2, z; =z and z, = y, Such
that

!
E;f(x,-_l,x,} <q(xz) +%E
i

gf(zj—]:zi) {q{Z.y] +%a

Now, {Xg *j5 X35 s Xpp 25 Z5y -, £,} i5 & finite sequence in X with x;, = x, z_ = . So.

a(5)= f__zlf(xf;;. )43/ ().

O, g% ») < 4G, 2 + 4z ») + .
This gives that

alx, ¥) < glx, 2) + q(z, y).
Thus ¢ is a quasimeiric on X.
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To prove the relation (a) we first prove the inequality

k
(b) fxy, ) S 2 ;f (xi-p%:)

for any finite sequence {x; X, x;, ., x,} C X,

Clearly the inequality (b) holds for k = 1. Take any positive integer m > |. Suppose

that the inequality (b) holds for all positive integers X < m.

M

Let §=3% f(x_,x) and § > 0.
=l

We consider the following cases :

0 f(.ru,x;]izlﬂ' and (ii) f(xn,x.}>-2‘.s.

Case (i) : Denote by & the largest positive intéger such that

k
Ef {"'H-xr]'ﬁ%& Thus k < m
=l _

Clearly ' f (x,_l,x,ji%ﬁ'.
. =kt

Also fix, x,.,) = §.
By induction hypothesis

k
S(xpx) < lg.f{r;,;.x,-] <8

and S (Xe0%m) €2 ng (%) <8
i=k+

Let # be the least positive integer such that 2 < §. Then clearly (2 (0 2

and (x,,, %,) all belong to U,. Again since U, 0 U, 0 U, € U, ,, (x5, 5,) €U, ,.
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m
So flxpx,)s2?<28=23" f(x %))
=l

Case (ii) : We have

fx,, x) = § and éf[,ti_].xf}«:%.i

By induction hypothesis, flx,, x,) s'zz %) =8,
=2 f

Let # denote the least positive integer such that 27! < S Thus (xge %))s (3, xoyedl
So (x, x) eUp U =AolU o U, c U .
This gives that

ﬂxﬂ’ xm} = A-itl = 98— Zif{x,_h.x,]
i=l

Suppose that § = 0. Thus fix_,, x) =0 fori=1,2, .., m. Let n be any positive integer.

Then (xy, x,), (x. ;) € U, 8o (xg, x;) € U, 0 Uy, © U, This gives that (x;, x;)

€ Mg U = W (say).

Similarly (x;, x;) €W, (xu,_ X,) €W. At (m — 1) th step we get (x;, x, )e W '

So fixg, x,) = 0, and

R Xy = 23=2:Zlf[x,‘—11xm)' ; |

Thus in any case the inequality (b) also holds for k = m. Hence by the principle
of finite induction (b) holds for every positive integer k.

Take any positive integer # and let (x, y) €U,

Then g(x, ¥) S flx, y) < 2711 < 22,
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This gives that
(¢) U, c{(x, ») : qlx, y) < 272},

Now let g(x, ¥) < 272, Thus there exists a finite sequence (e ¥ Xy e MR X
with x; = x, x, = y such that

i Flrnx)<2™%
i=1

By inequality (b) we have
{5 ’
f{x! .]"I} =ﬂ-xg! I,r‘} = EZ:I (I,__i,x‘.){Z_H ¢

1=

Since flx, ¥) takes values of the form 0, 222 (p = |, 2, 3, .) it follows that
fx, y) < 2742,

S0 (x, ¥) €U/, which gives that
(d) {Cx, ) i glx, y) <22} C U,
Combining (c¢) and (d) we obtain (a).

If each U, is symmetric, then f{x, y) = fly, x) for all x, y in X. This implies that g(x,
¥) = qly, x). :

So g is a pseudometric.

Theorem 6. Every uniformity on a set X can be generated by a‘ family of
pseudometrics on X,

Proof : Let u be a uniformity on the set X, Let B be a base for the uniformity
such that each member of [} is symmetric and is different from X x X. For each V in

B we choose a sequence {U,(v)}" of symmetric seis in u such that

UShoUSho U cUY,
where Uﬂi"]'= X ®x X and Uli'ﬁ' = F,

By metrization Lemma there exists a pseudometric d, on X such that
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(1) TP c{(x):d,(59) <2} U,

Let P = {d, : ¥ €B} : Denote by y the uniformity on X generated by the family P
of pseudometrics on X. For V € and r > 0, let
We, n = 1, 9) 1 d, (x5, ») < r}.
and 3, = {Wh_,}: ¥V ep and r = 0},
Thus B, is a subbase for the uniformity y.
Let U be any member of u, Since [ is a base for u, there is a member ¥ in B with
V< U. From (1) we have W, ,, c UM =V,

So W{,. 1)

Next let W €Y. Then there is a set of the form,

c U. This gives that U/ ey.

n

W:mfﬂw{w (V. €B and r, > 0)
such that j —w

Choose positive integers m, m,, ..., m, such that 272 <r(i=12..k). From (1) we

have
U () v <2} e W,
Write U=, U Then U eu and
j-' o) -
UCF‘\,,:'H"E.'H}-WCH".

This gives that W ew.

Therefore 9= u. Which proves the theorem,

Theorem 7 : As in theorem 6, for every ¥ & % We can construct a sequence {U:]

of symmetric sets in U such that
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Uy=XxX, i'=v and

¥ ¥ v v
el ol ety ¥n eN.

By metrization Lemma there is a pseudometric @ on X such that

Uy e :{x, Midfxy) < 2_‘"*2} cFr .

clearly {(x, ») : d, (x, ) < 1} cU]=v.

We will first show that the pseudometric d, thus constructed is a continuous function
from X = X to R.

Take any point (x,, ¥,) € X *X and choose € > 0. We can find # € N so that

2m2 < % Then taking U} = ¥ (say) we have a W €% such that

@y EW=d %)) <5

Consider the open neighborhood W (xg) * W () of the point (x,, v,) in the product
topology of X x X. Clearly for (x, y) €W (x;) * W (y,),

1, (x0:v0) =, (vp)| £, (x0.6) + d, (130) < 5 + 5 =e.
This proves our assertion.

Finally tc prove that (x, T) is completely regular, choose x;€ X and a closed set F,
X, F. Since 7 is induced by the uniformity % S0 3 a ¥ € %’such that Vx| n F = §.
Define /1 X — [0, 1] by f{x) = min {1, d, (x;, x)}. Then fis continuous (by above assertion)
and flx,) = 0 and fy) = 1¥y €F. This completes the proof. '

Theorem 8 : A uniform space is pseudometrizable if its uniformity has a countable
base.

Proof : Let (X, %) be a uniform space with a countable base {Vﬂ}:;u for its uniformity

1, where P’ﬂ=X><X.
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First observe that B'={¥,}" ~where 7! =y, ¥, against forms a countable basis

of P consisting of symmetric sets. Let Uy =¥ = X » X. First choose U/ | € ¥ such that
Uyo U, U, and then choose U, € U such that olr| © U,. Then

U"f‘!nU”,uU’,{:U",DU”EGU'IQE.CU"IDU’IGU"laU",CUroU"Ic:
U, '

Kake U™, = U”, n ¥, and choose a member U, (say) from B such that U, c U/",,
Then U, is symmetric,
UycVadUoUoU cU,

For each positive integer n we proceed in this way.

-Hence we obtain a sequence of symmetric sets ()", in u which forms a base
for u and possesses the properties. |

(i) U, = ¥, (i) U, ¥, and (iii) Uol,olUclU ,

By Metrization Lemma there exists a pseudometric & on X such that

(D U < {(x, ») : dx, y) <2 c Ehondie= 13, )

For any positive number r, let

W,=1{(x, ») : x, y €X and d(x, y) < r}
and B = {W, : r > 0}.

Then P is a base for some uniformity % on X, We verify that #'= y,

Let W e u. Since {U,]”  is a base for the uniformity u, U _, € W for some positive
integer n, Choose a positive number » with » < 2772 Then from (1} we have
W,cU_ cW.
This gives that W e 9

Next, let W € % Then W, c W for some r > 0. Choose a positive integer n with
272 < p | Then from (1) we have U, € W_c W which gives that W € u.
Hence %= w. Therefore the uniform space (X, u) is pseudometrizable,

Definition : Let (X, u) be a uniform space. A subset £ of X is said to be totally

88



bounded if for every U in u there are finite number of points x; x,, ..x, in X such that
Ecul, Uk

Example 3 : Every compact subset of a uniform space is totally bounded.

Solution : Let (X, ) be a uniform space and let £ be a compact subset of X, Take
any U in u. For x € E, Ulx] is a neighbourhood of x. So there is an open set G, with
xC G, C U] Let &F= {G : x € E}. Then & is an open cover of the set E. Since
E is compact, there are finite number of open sets G_q, fo ] 6 rin 2% such that

5

EcULG,
Since Gx, c Ux] (i = 1,2, .., n) we get
ECU;LUEIEJ.

Hence E is totally bounded,

5.3 Cauchy nets and Cauchy filters : Completeness.

Let (X, #) be a uniform space. A net {S : n € (D, 2)} in X is said to be a Cauchy
net il for every U in wu, there is an element n, in D such that

(X, x)elUfor all my nin D with m=n, n2n,

A filter & in X is said to be a Cauchy filter if for every U in u, there is a point
p in X such that Ulp] <7 .

Completeness : A uniform space (X, #) is said to be complete if every Cauchy net
in X is convergent. f

Theorem 8 : A uniform space (X, u) is complete iff every Cauchy filter in X is
convergent,

Proof : First suppose that the uniform space (X, %) is complete.

Take any Cauchy filter & in X. Let {s, : 4 €7} be a derived net of the filter
=

Let I/ be any member of u. Choose a symmetric member } in u with VoV < U. Then
there is a point x, in X such that V[x,] € <F.
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Write 4, = F[x;]. Take any 4, B in &Fwith 4 c Ay BC A, Then s, s, € Ay = Vix,l.

So (s, x,) €V, and (55, x;) €V which gives that (s, Sgp) € VoV U Thus {s,
: A €47} is a Cauchy net in X. Since (X, u) is complete, {s, : 4 €7} is convergent,

Let p = lims,. Let A € &% Choose any B in Fwith B C 4. Then s; € B < 4 which

gives that p € 4. So p is a cluster point of &% Since ¥ is a Cauchy filter, o7 converges
to p. [see Ex.4 page 18].

Next suppose that every Cauchy filter in X converges. Let {s, : n (D, 2)} be a
Cauchy net in X. Denote by & the derived filter of the net {s, : n €D}. Take any U

in . Then there is an element n, in D such that (x, x,) €U for all m, # in D with m
2 My, 1 2 ny. In particular

(xmx,,n)a Ufor all m in D with n 2 n,
Or, x, € U[xﬁ,ﬂ] for all n in D with n 2 n,.

This gives that U [x,,u]e o Thus &7 is a Cauchy filter in X. By our hypothesis «#

converges to a point x; in X
This completes the proof of the theorem.

Exercise : Let (X, ) be a uniform space and let &# be a Cauchy filter in X, If Xy
is a cluster point of & then <& converges to x;.

Solution : Let U be any member of % Choose a symmetric member ¥ of u with
VoVo¥ c U. Since & is a Cauchy filter in X, there is a point p in X such that ¥[p] € &%

Again, since x; is a cluster point of &, X, € V[p]. Then Vix,] n Vp] # ¢. Let z
€Vlxy] m Flpl. Then (z, x,). € ¥ and (z, p) €¥. Let u €V[p].

Then (v, p) € V. From above three we see that (v, x,) € VoVoV C U; so u € Ulxg]
which gives that Flp] © Ulx]. Thus Ulx,] €& .

Therefore <# converges to x,.
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Theorem 9 : A uniform space is compact iff it is totally bounded and complete,

Proof : Let (X, ») be a uniform space.

First suppose that X is compact. Let U/ be any member of » Take any point x in
X. Then Ulx] is a neighbourhood of x. So there is an open set G, such that x € G

Ulx]. Let
G = {G, : x €X}.
- Then G is an open cover of X. Since X is compact there are finite number of open

seis GxﬁGxil"‘Gx"in (7 such that.
X=U:-I=IGI‘
Since G, c Ulx], we have

X =, Ulx].
So X is totally bounded.

Let &# be a Cauchy filter in X. Since X' is compact, <% has a cluster point x,, (say).
So & converges to x, Hence the space X is complete.

Mext, suppose that the space (X, ) is totally bounded and complete.
Let & be an ultrafilter in X, Take any member U in . Since X is tutui];_l,r bounded,
...... x_in X such that

there are finite number of points x, x, %

() X=u, Ulx].

Since < is an ultrafilter and Xe <%, (1) implies that Ulx;]Je &# for some ( (1 =i =

n). So & is a Cauchy filter in X Since X is complete, & is convergent. Hence the space
X is compact.

This completes the proof of the theorem.

Definition : Let (X, ») and (¥, %) be two uniform spaces and let f: X — Y. The
function f is said to be uniformly continuous if for every member ¥ of %, there is a
member U in % such that
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. X') U = (fix), fx) V.

Note : For any f: X — ¥, let us define f, : X% X = ¥ % ¥ as follows, For (x', x')
EX x X, f; (¥, x") = (fix"), Ax")). Then the uniform continuity may be defi ned as follows
: The function f: X — ¥ is said to be uniformly continuous if

f7' (V) €u for every ¥ in %,

Theorem 10 : Let (X, u) and (¥, %) be uniform spaces and let J: X — ¥ be continuous,
If X is compact, then f is uniformly continuous.

Proof : Let V' be any member of % Choose a symmetric member Vo of ¥ with Vo
Vo © V. Let x € X. Since f is continuous, there is a symmetric member W™ of u such
that -

(1) u e POX] = flu) ev, [fx)].

Choose a symmetric member U in u with U™ o U™ ¢ F®. Since LT is a
neighbourhood of x, there is an open set G, with x eG, c UW [x].

Let G = {G, : x eX}.

Then G is an open cover of X. Since X is compact, we can select finite number of .
open sets Gx], ze, o Gxn from the family G such that

A= '*J:L| Gx“

Since er_ c U¥[x], we have

(2) X =Ur, URilx]

Let U= Njw U%), Then U eu.

Take any two points x', x” in X with (', x*) €U, From (2) we see that x'e U%/)[x |
for some i (1 =i < n). Thus (', x) e ) ; also (v, x) eV < M),

So (¥, x) €U o L) c W), that is, x” & W) [x;]. Therefore by (1)
(Ax"), fix) € Vo and (Ax"), flx)) €V,
So (fix), Ax") €V, 0 ¥, V.
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Hence f is uniformly continuous,

Theorem 11 : Let X be a nonempty set and let {¥, %) : a € A} be a family of
uniform spaces and for each a €4, £, : X — ¥,. Then there exists a smallest uniformity
u on X relative to which the functions f, are uniformly continuous.

Proof : We prove the theorem by the following steps.
() Let s = {(£),7 () : U, €% and a €4}.

We first verify that s is & subbase for some uniformity U on X. Let A = {(x, x) :
x € X} and A, = {0V, ¥)) 1 ¥, €Y}

(i) Let U'gs. Then U = (f),”' (L) for some a €4 and U e %, Take any x €X.
Then (£(x), £i(x)) € A, ie (), (x, x) €A, U

So (x, x) €(£),"! (L)) and hence A cU.

(ii) Let U s, Then U= (), (L) for some @ €4 and U, € % There is a member
V,in % with F,0 F,c U,

Write ¥ = (£),” (V).

Let (x, y) € ¥ o V. Then there is an element z in X such that (z, ¥) €V and (x, 2)
e V. This gives that (£), (z, ¥) €V, and (), (x, z) V..

i€ (f(2), L0)) €V, and (£,(x), £(2)) €V,
= (f,(x), L,0)) eVoV, c U,

e (1), (x, y) el

= ey U)=U

= oV cl

(iii) Let U €s. Then U = (), (U)) for some a €4 and U, €%, Since U €%
we have

W= (L) (U es.
Let (x, ¥) €W. Then (f), (x, ¥) e Ul

ie. (f(x), L) eU;!
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= (L) L) €U,

= @x)ef)' (U)=U

=5 () 4]
= et

From (i), (ii) and (iii) we see that s is a subbase for some uniformity » on X,

(II) Let @ €4, consider the function £, . Take any member V_ in ¥ Then ] = (£
(V) eu.

Let (x, ¥) € U. Then (f), (x, y) €V, ie. (f(x), £,00) €V,

Hence f, is uniformly countinuous.

(IlI) Let i be any uniformity on X relative to which the function f, (a € A) are
uniformly continuous.

Let 7 €u. Then there is a set of the form

W= i (f, ;Jz‘l (V) (a4, v, € %) such that W c U. Since the functions fa,, fa,,...
i
f“" are uniformly countinous relative to the uniformity §, there are members Wi Way o

w, in # such that

@ y) €W, = (f, (), f,0) €V, (i = 1, 2, ..., n). Write W =i, W, Let (x, y)E .

Then (x, ¥) €W, and so (,ﬂ,‘_(x}, )‘;i{y}) = Vu‘
=» 'U;,); & ) €V, = (5, ) eUe) (7)) = We U,
. - =1

So W< U. which gives that U e &.

Hence u —# and the proof is complete.

5.4. Proximity Spaces :

Definition : Let X be a nonempty set and let & be a relation on the power set P(X)
of the set X. Suppose that & satisfies the following axioms. ;
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(1) For 4, B in PX), A5 B= B b A.

(2) Let 4, B, C be in P(X). Then (AUB)S C iff A & C ot B8 C.
(3) For 4, B in P(X), 4 8 B=> A # ¢ and B # ¢.

(4) Let 4, B be in P(X). Then AnB # ¢ = A4 d B.

(5) Let 4, B be in P(X). If AB B, there exists a subset £ of X such that 43 £ and

 F6B, where E denotes the complement of £ and & denotes the negation of &.
Then & is called a proximity on X and the pair (X, &) is called a proximity space.
Example 1. Let (X, d) be a metric space. For two subsets 4, B of X, let d(4, B) =

inf{d{x, ¥) : xed, yeBj.
Now define the relation & on the power set P(X) of the set X as follows ; For 4,

B in P(X), let
ABB hold iff d(4, B) = 0
Then & is a proximity on the set X.

Solution : (1) Since d(y, x) = d(x, y) for all x, y in X, it follows that d(B, 4) = dl(4,
B) for 4, B in P(X). Let 4, B be in P(X) and 4 8 B. Then d(4, B) = 0. 50 d(B, 4) = 0
which gives that B & A.

(2) Let 4, B, C be in P(X). Suppose that (4UB)5C. Then d(AB, C) = 0. Let ABC,
Then d(A, C) = r > 0. Choose any € with 0 <€ <r.

Since d(4UB, C) = 0, there is a point x in 4 W B and a point Z in C such that

di Z)F B e av L aen i0R)
" If x €A, then d(x, Z) = d(4, C) = r > & This contradicts (*). So x €8 and

d(B, C) < d(x, Z) < &.

Since £ > 0 is arbitrary it follows that diB, C)=0. 5 B & C.

Next, let 4 8 C. Then d(4, €) = 0. Choose any £ > 0. Then there is a point x in
A and a point Z in C such that d(x, Z) < e. Since x €4UB, we have dlAUB, ) = d(x,
Z) < e. Since £ = 0 is arbitrary, we have d(4UB, C) = 0. This gives that (AwB) 6 €.

If BSC, as above we can show that (AUB) § C. Thus (4UB) & Ciff A5 C or BaC.

(3) Let 4, B be in P(X) and ABB. Choose any € > 0. Then there is a point x in 4
- and a point y in B with d(x, y) < & This gives that 4 # ¢ and B # ¢.
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(4) Let 4, B be in P(X) and AnB # ¢. Take any x € AnB. Then x €4 and x €85,
Since d(A4, B) < d(x, x), we have d(4, B) = 0. S0 4 & B.

(5) Let 4, B be in P(X) and let A38. Then
KA By =E>0 o . o (H9)

Let £={y:yeX and d"l:_].{.ﬂ}{%!'
Assume that 4 & E. Then d(4, E) = 0. So there is a point x in 4 and a point y in
E with d(x, y) <5r. Since d(y, B) <z, there is a point Z in B such that d(y, 2) <Ir

We have d(x, Z) < d(x, y) +d(y, Z) {%r +%r = %r. Since d(4, B) < d(x, 2), d(4, B) 5%- r

This contradicts (**). Hence 43 £.Next, let £88. Then d(E,By=0. So there is a point

xin E and a point 3 in B such that d{x, ) {%r. Since d(x, B) = d(x, y), we have d(x,

L]
B) {%r which gives that xe E. This contradicts the fact that xe &,

Hence EBB8.

Therefore & is a proximity on X.

Example 2 ¢ Let (X, %) be & uniform space and let the relation 6 be defined
on P(X) as follows : For A, B in P(X), let A & B if (AxB)nU + ¢ for every U in %
Then & is a proximity on X,

Solution :

(i) Let 4, B be in P(X) and let 4 & B. Take any U in %/ . Then L-'e % and so (4=xB8)m
LF1# ¢. This gives that there is a point x in A and @ point y in B such that (x, y) € LF
bor (, x) €U. So (B % A) n U # . Hence B8A.

(ii) Let 4, B, C be in o(X). Suppose that (4UB) & C. Assume that 45¢. Then there

is a member ¥ in % with (4 x C)nV = ¢. Take any U in % Write W = UV, Then We %
Since (AUB)BC, [(4UB) = C] MW # §. This gives that there is a point x in AUB and
a point z in C such that (x, Z)e W. If x4, then (x, Z)e4 » C and s0 (x, Z) € (4 * C)"W
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C (4 x C) n ¥V which condradicts the fact that (4 x C)n¥ = ¢. So x €B. Hence (x, Z)
eB x C; and (x, Z) (B x C)nU, This gives that (B x O)nU # ¢ and B & C.

Thus (AUB)SC = either ASC or B & C. Let A & C. Take any Ue % Thus (4 = O)nU/
# ¢. This gives that [(4UB) * C]nU # ¢§. So (AUB)SC. Similarly B § C = (4uB)aC,

(iii) Let 4, B be in P(X) and let 4 & B. Take any U is % Then (4 x B)nU = ¢. So

there is a point x in 4 and a point y in B such that (x, y)eU. This gives that 4 # ¢ and
B # .

(iv) Let 4, B ep(X) and 4B # ¢. Take any point x €AUB. Then x €4 and x €8.
Let Ue% Since (x, x)e U, we have (4 x B)nU # ¢. So 4 & B.

(v) Let 4, B €P(X) and let 45B. Thus there is a member U, in % such that

A xXBnl =0 .. .. (1)

Choose a symmetric member V' in ‘% with ¥V 7' < U, Let

E={y:yeXand (y, 2)€V for some Z in B}. Assume that 48E, Then there is a
point x in A and a point ¥ in E with {x, ) € V. Aslo from the definition of E, there is
a point Z in B such that (y, Z)e V. This gives that (x, Z) eV VU, = (4 x B)nU, + ¢

which contradicts (1). Hence A3E.

Again, assume that E3B. Then (ExB)(\V #¢. So there is a point y in £ and a
point Z in B such that (y, Z)eV which implies that ye £. This coniradicts the fact that
yeE. Hence E§B.

Therefore 6 is a proximity on X,

Lemma 1 : Let (X, 8) be a proximity space and let 4, B, C, D be subsets of X,
(i) If 4 & B and ACC & BeD, then C 8 D.
(ii) If xeX and 48x & x8B, then A3B.

(iii) If 488, then 458, ASB and A8B, where A= {y: yeX and y § A}.

(iv) 468 if A5B, where A is defined as in (iii).

(v) If 488, then Bc X\ A and Ac X\ B.

Proof : (i) Suppose that 4 8 B and 4 € C & B © D. We have C = AU(C \ 4) =
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AVE, where £ = C\ A, Since 488, we get (AUE) 8 B ie., C5B. Again, since D = Bu(D
\ B), we get CaD.
(ii) Suppose that there is a point x is X with
Adx and X868 ... ... .. (1)

Assume that 43 B. Then there is a subset £ of X such that

ABE and E3B .. .. .. (2)

where E= X\ E.
It xeE, then by (1) and (i) we have ABE which contradicts (2). Again, if xe E . then
(1) and (i) imply that E38 which also contradicts (2). Hence 488

(iii) Suppose that 48B. Thus there is a subset E of X such that
ABE and E3B .. ... (3

(a) Let y € B. Then yeB. If yec £, then Eyand so by (ii) E5B which contradicts
(3). So y € E ; this gives that §— p. This with 45 £ and (i) imply that 4§ F. .

Let yed. Then y84 and so Ady.

(b) If yeE, then y3E and by (ii) ASE which- contradicts (3). So y € F; this gives
that A< E, If A8B, then by (i) we get E5B which contradicts (3). Hence 43 B. Step
(iiia) implies that 48E.

(iv) Suppose that 48B. Clearly Ac 4 and B B. So by (i) 45B.

Next, suppose that 48B. .. .. (3a)

Assume that 48B. Then by (iii) A5B.
This coniradicts (3a). Hence A8B.
(v) Suppose that A3H. .. .. ()

Let yed. Then y84 and so 48y If yeB, then by (ii) 488 which contradicts (4),
So yeX\B. Hence Ac X\B.
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Let ye B. Then y8B. If y €4, then A8y and by (ii) 4B which contadits (4). So y
eX\4. Hence BeX\ 4.

Theorem 1 : Let (X, ) be a proximity space and for any subset 4 of X [et
C{4) = {y : y €X and ydd}.
Then C is the Kuratowski closure operator on X,

Proof : (i) Let A be any subset of X. Take any x in 4. There {x}4 # ¢ : 50 x §
A which pgives that xe C(4). Hence AcC(A).

Clearly C(¢p) = ¢ and C(X) = X

(ii) Let 4, B be two subsets of X and ACB. Take any xeC(4). Then x & 4 : so x
& B. This pives that xe C(B).

Hence C(4) c C(B).
(iii) Let 4, B be any two subsets of X,
Take any x e C(4d) u C(B).
Then x eC(4) or xeC(B)
This gives that x & 4 or x & B and so
x(Aus). = xe C(4UB).
Hence C(A)u C(B) © C(AUB). ... .. (1)
Next, let xe C(A\UB). Then x S(4UB) =
either x84 or x8B, This gives that xe C(A) or xeC(B) = xeC(AWC(B).
' So, C(AUB) © CA) U C(B) .. (2)
From (1) and (2) we have
CAUB) = C(4) U C(B).
(iv) Let A4 be any subset of X,
If A = ¢, then C(4) = C(¢) = ¢ and so
A =Cp) =9 =4
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Suppose that 4 # ¢. By (i) we have
C(4) c C(C(A4)). ... ... 3)
Let ye C(C(4)). Then
yoo ) .. .. (4)
Assume that yg C(4). By the definition of C(4) we get y8.4 and so p8C(4) which
contradicts (4). So yeC(4) and
C(C(A4)) = C(A).

Note : Let (X, 8) be a proximity space. For any subset 4 of X let C(4) = {y : yeX
and y 8 4}. Then by theorem 1, C is the kuratowski closure operator on X. This closure
operator C' induces a topology Ty ON X. We say that the proximity & induces the topology

Ty on X, and the topology T is compatible with the proximity &.

Theorem 2 : Let (X, T) be a completely regular space. Then there exists a proximity
& on X compatible with the topology 7.

Proof : Since (X, T) is completely regular, it is uniformisable. So there is a uniformity

% on X such that the topology induced by the uniformity % is identical with the topology
T,

Now define the relation & on P(X), the power set of X, as follows :

For 4, B in P(X), A & B if (4 x B)n#% ¢ for every Uin %, Then & is a proximity
on X. The proximity & induces a topology Ty o0 X Let A be any subset of X. Denote

by A and C(d4) respectively the t-closure and T -closure of the set 4.

Let xeA . Take any Ue #. Thus U[x] is a neighd of x. So ANI[x] # ¢. This gives
that there is a point y in 4 such that ye Ulx] ie. (x, EU.

So, (x, ¥) €(ix} » AU
e ({x}) x HNU # ¢ = x 8 A.

Hence xeC(4) = A C(A).

Next, let xeC(A).
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Then x 8 4 = ({x} »x AU = ¢ for any Ue %

Let Ue %. Then there is a point y in 4 such that (x, y)e U = ye Ulx]
= AnUlx] # ¢ = xe4d

So, C(4) c A4

Thus C(A) =A

This gives that T = T

Hence & is complatible with T.

Theorem 3 : Let (X, ) be a T space and let § be a relation on the power set P(X)

defined as follows. For 4, B in p(X), 4 & B iff AnB+# ¢. Then b is a proximity on X
compatible with 7.

Proof : We ifirst verify that 8 is a proximity on X, (i) Let 4, B € P(X) and 4 § B.
Then ANB+ ¢, Since BNA=ANE+ ¢, we get B § A.

(ii) Let 4, B, C be in P(X).

Suppose that (AUB) & c.

Then AUBNC=¢ ie.(AUB)NC=d
e (AnC)U(BNC)=

This gives that either AnC#dor BrC=4¢.
so either 4 8 C or B § C.

Next, suppose that 4 8 C. Then AnC=¢.
This gives that (ANCyU(BnC)=¢.

ie. (AUBYNC=b

o (AUB)NC#6

So, (4UB) & C.
If 8 & C, we can show that (4UB) & C.
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(iii) Let 4, B € P(X) and let 4 § B. Then Eﬁﬁ;tdn.. If A = ¢, then A=¢ and so
AnB=¢ which is a contradiction. Hence A4 # ¢. Similarly B # ¢.

(iv) Let 4, B € P(X) and 4 n B # ¢. This gives that AnB#¢ and so 4 § B.

(v) Let 4, B eP(X) and 48 B. then AnB=4.

Since (X, 7) is a T, space it is normal. So there are open seis G, G, such that

AcG, BcG, and G, 1 G, = ¢.

Write £ = X\G|. Then E is a closed set. We have AnE=AnE=4

So ABE.

Again, since £ 2 G, O 7, E'CX|G2CX|.E and so cE{E}CX‘GE::X]E, where
E=X|E

This gives that ol (E)nB=¢= EBA.

Therefore & is a proximity on X. So it induces a topology T; on X

Let A be any subset of X. Denote by 4 and C(4) respectively the T-closure and

Ty-closure of A.
*eCll) = x84 = [Jadzp={xj0d=p [ [=(x]
=xed
Again, xed=> {x}nAz¢=> [xjnd=¢

=xdd= xe C4).

Hence C(d) = 4. = 1, = .
Therefore & is compatible with T
Lemma 2 : Let (X, 6) be a proximity space and let 4, B be any two subsets of X,

(i) A3X\B= 45.X\int(5)

(ii) ATX\B = A cC int(B).
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(iii) Let A5 X\B. Then there is a subset C of X such that AZX\C and C3 X\B,

where closure and interior are taken with respect to Ts):

Proof : (i) Let A5MXB. Then there is a subset E of X such that
ABE and ES(X\B) ... ..()
where E= X\E.

Let x €cl(X\B). Then xd(X\B). If xc E, then ESx and so E8(X\8) which
contradicts (1).

Hence x¢ £ = xeF; so cl(\B) cE.

This with (1) implies that 43(X\B).

‘Now y\ B =X\ int(B)

So AS[X\int(B)] ... .. (2)

(ii) Lct AB(X\ B). Then (2) holds. Take any x in 4. This with (2) implies that
xE[X ! irft[B]}; 50 x €int{#),

Hence Ac int(B).

(iii) Let A8(X\8). Then there is a subset £ of X such that (1) holds. Write C=X\E.

Then C = E and £ = X\C. From (1) we have A5(X \C) and CB(X\ B).

Theorem 4 : Let (X, 8) be a proximity space, Then the topology T, is completely
regular

Proof : Let 4 be a closed set in X with respect to the topology Tg and x e X\1. Write
Uy = X\, Then U} is an open set and x e U,

Since x € 4 = 4, x5(X\Up). [+ 4 = U
S0 there is a set £ c X such that
*8(X\E) and EB(X\Up) .. .. (1)
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Write U, = int(E). Then U, is an open set. By (1) and Lemma 2,
x5 (XU, and U, 5 (NU)

_There are subsets £, and £, of X such that x5 0\E,, £,5 X\Uy,and U, 5 XE,, E,3
Xy ... (2)
Write U, = int(E|) and U, = int{E?}.
Then U, and U, are open sets. By (2) and Lemma 2 we get.
X3 (MU, U, 3(0\U,) and

Uy 30\, U, § (A .. .. (3)
g " L -
[ IEQMCU%CU%CUHCU%CU%CU@
Denoté by D the set of numbers of the form

Tom=135..2"" andn=1, 2, 3

Then D is dense in [0,1].

Pm-:eéding as above we can select a family of open sets {U, 1 1 € D} such that
ift, 5 € D and ¢ < g, then

xEU,C[T,CUEEE?E:Un.

We now define the functions f on X as follows :

Let zeX. flz) = 0 if z en{U,: 1eD}
1if z € X\U,
= inf {1 : z €U} otherwise.

Clearly values of f lie in the closed interval [0, 1] and f{x) = 0 and flz) = 1 for all
z Ed,

Now we prove that J is continuous.
The family of all intervals [0, @), (b, 1] (0 <a, b < 1) forms a subbase for the topology
on [0, 1]. Tt is easy to see that

fz) < a & z el for some ¢ in D with t < a.
This gives that ! ([0, a)) = U{L/, : ¢ €D and ¢ < a}.
So £ ([0, &) is open, Again,
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Mz) = a & z lies outside of U, for some 1 in D with ¢ > q.

Sof! ((a I)=uv {0, :te Dand t> a}.
Which is open.
This gives that f is continuous.

Hence the space (X, t;) is completely regular. This proves the theorem.

Theorem 5 : Let (X, T) be a completely regular space and let it have a compatible
proximity & defined as follows : For any two subsets 4, B of X.

A Biff AnB#¢. Then (X, 1) is normal.
Proof : Let 4 and B be any two disjoint closed subsets of X, Then AF B. So there
is a subset E of X such that
AZE and E3B . (1)
Where E=X\E.
By Lemma 2, we have
A C int(X\E) and B C int(\E) = int E. ... (2)
Write G, = int(X\E) and G, = inl(E).
Then G, and G, are open. Clearly G NG, =
By (2) 4 c G, and B c G,.

Hence the space (X, T) is normal.

Exercise : Prove that the interior of a set. 4 C X endowed with a uniformity 9 is
A=B={xeX: V(x)c A for some Ve¥}

Solution : Since every open set G C A is contained in B, so it is sufficient to prove
that the set B is open. Take any x €B. Then there is a Ve % such that ¥(x) © 4. Choose
WeV such that W o W C V. Note that for any ye W(x), if z& W(y) then (x, y) € W and
(v, 2) eW and so (x,z) € Wo W c V= ZeHWx). Thus

W) € Mix) c A.

Since this is true for every ye W(x) this shows that W(x) c B. So x is an interior point
of B. As x is arbitrary, this proves that B is open.
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Exercise : Let X be a Tychonoff space. Let C(X) and C*(X) denote the family of
all real valued continuous functions and real valued continuous bounded functions on
X respectively. For every finite number of functions f,, £, .., ; €C(X) (or C*X))

g fye s £ G62) = max {| fix) — O}
l=i=sk

define two pseudometrics on X

Solution : It is easy to note that
dg g f6x) = maxilfi(x) = A& .. | filx) = fl}

=4 VMx eX
If x, y €X then since |[f(x) — (¥ = () - fix)|
for i = 1, 2, .. k so it follows that
dig o) =d; 4 5 00%)

Finally if x, ¥, £ €X then we have

[fix) - fi2)] < | filx) — £ + | £ = Szl
fori=1, 2, ..k chcc

dp s ®2)Sd, o (o) +d, (h2).

Exercise : Let P and P* denote the families of pseudometrics on X defined as in
the preceeding exercise. Consequently they generate uniformities %’and 7* on X Prove
that 9 and 9* induce the same topology identical with the initial topology.

Solution : Since any f, f;, ... f € C(X) (or C* (X)) are continuous and the modulus
function is continuous so every generated pseudometric
di o (6y) = max {|fi(x) = {10 .. [fx) — f)]} is a continuous function from X

% X — R. Thus every clement of P (or P*) is a continuous function from X x X — R
Hence the sets {(x, ¥) : d(x, ¥) < z'} where d €P and i €N are open in X % X and every
open set in the topology induced by % or ¥* is open in the initial topology on X

Now let us suppose that U/ is open in the initial topology in A" Let x; € U, Since
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X is a Tychonoff space, there is a continuous function £, i.e. f eC*(X) © C(X). Such
that flx,) = 0 and fx) = | for x e \U. Let

V= {(x,y}:dfix,y}-i%},

Then we have F(x,) © U and this implies that U/ is open in the topology induced
by ¥or F*,
Exercise : Let X be a Tychonoff space, C*(X) denote the family of real valued

bounded continuous functions on X, p* the family of generated pseudometrics. Then
(X, #*) is totally bounded where 7" is the uniformity generated by p*.

Solution : It is sufficient to prove that for every system of functions f, R P
.. €C* (X) and €> 0, there exists a finite number of points Xs Xy . X, €X such that
for every x €X, there exists an i < n with the property.

deg j‘[x,x;} = max{| f,(x) — fi(x)], ... | filx) - £} < €.
Since fi, f, .. [y € C*{X} so f,(X), f(X), ..., filX) are all bounded sets in R and so

we can find a bounded closed interval J < R which contains f,(X), .., /(X). Note that

J is totally bounded and so we can find a finite number of open intervals {AJ}L af
diameter less than € which cover J. Subsequently the family of sets of the form
Jr."'{ffj,}ﬁ.f;][x‘fj,}ﬁn-rﬂf;'{zih}, AR 1

where | = j, = m for every | < k is a covering of the space X. The diameter of each

of these sets with respect to the pseudometric d, i 18 less than €. Choosing a point

x, from each of the non-empty sets of the form (1) we get the finite sequence of points
Xy, X3, ..., X, which has the required property.

L

Group-A
(Short questions)
1. Describe the uniformity on the real number space which induces the usual
topology on R and the uniformity which induces the discrete topology on R

2, If the uniformity %"on a set X has » countable base then show that the induced
topology is first countable. .
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If the intersection of all members of the uniformity consists of the diagonal only
then prove that the induced topology is 7.

In an uniform space give an example of a set which is totally bounded but not
compacl.

. Give an example of a continuous mapping from a uniform space (X, %) to
anothcr_ur;ifnrm space (¥, %) that is not uniformly continuous.

. Give an example of a topological space which is not uniformizable.

. If a uniform space (X, %) is complete then prove that the space (M, W) s
complete for each closed set M < X,

. If v, and v, are two uniformities on X and v, > v, then show that v, induces
a stronger topology than the topology induced by v,.

Group—B
(Long (uestions)

Let (X, %) and (¥, %) be uniform spaces. Prove that f': (X, %) — (¥, %) is
uniformly continuous iff for every VeB’ there is a UeB such that U < fI(F)
where B and B’ are bases of %‘and V' respectively.

. Show that every family {F(} _, of uniformities in a set X has a least upper bound
i.e. in the set X there exists a uniformity ¥ which is weakest in the set of all
uniformities stronger than V_ for every seA.

. Let (X, ¥) be a uniform space, verify that the product of the topology induced
by ¥ on X % X is identical with the topology induced by ¥ % F in X x X

If a uniformity ¥ in a set X is induced by a metric p then prove that (X, V) is
complete if the metric space (X, p) is complete. '

. Let (X, V) be a uniform space and let (¥, V) be a complete uniform space. Show
that every uniformly continuous funciton f defined on (A4, ¥,) where 4 is a dense
subset of x, with values in (¥, F) can be extended to a uniformly continuous
function from (X, V) to (¥, V).

. Let X be a compact space. Show that there exists exactly nne-"Junifurmit}r Fin
A which induces the topology on X. The base for the uniformity V consists of
-all neighbourhoods of the diagonal which are open in the space X = X.
Prove that the filter associated with a Cauchy net is a Cauchy filter and conversely
every net associated with a Cauchy filter is cauchy. ’
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