PREFACE

In the auricular structure introduced by this University for students of Post- Graduate
degree programme, the opportunity to pursue Post-Graduate course in Subject introduced by
this University isequally available to all learners. Instead of being guided by any presumption
about ability level, it would perhaps stand to reason if receptivity of alearner isjudged in the
course of the learning process. That would be entirely in keeping with the objectives of open
education which does not believe in artificial differentiation.

Keeping thisin view, study materials of the Post-Graduate level in different subjects are
being prepared on the basis of a well laid-out syllabus. The course structure combines the
best elements in the approved syllabi of Central and State Universities in respective subjects.
It has been so designed as to be upgradable with the addition of new information as well as
results of fresh thinking and analysis.

The accepted methodology of distance education has been followed in the preparation
of these study materials. Co-operation in every form of experienced scholarsisindispensable
for awork of this kind. We, therefore, owe an enormous debt of gratitude to everyone whose
tireless efforts went into the writing, editing and devising of a proper lay-out of the materials.
Practically speaking, their role amountsto an involvement in invisible teaching. For, whoever
makes use of these study materials would virtually derive the benefit of learning under their
collective care without each being seen by the other.

The more alearner would seriously pursue these study materials the easier it will be for
him or her to reach out to larger horizons of a subject. Care has also been taken to make
the language lucid and presentation attractive so mat they may be rated as quality self-
learning materials. If anything remains still obscure or difficult to follow, arrangements are
there to come to terms with them through the counselling sessions regularly available at the
network of study centres set up by the University.

Needless to add, a great deal of these efforts is still experimental-in fact, pioneering in
certain areas. Naturally, there is every possibility of some lapse or deficiency here and there.
However, these do admit of rectification and further improvement in due course. On the
whole, therefore, these study materials are expected to evoke wider appreciation the more
they receive serious attention of all concerned.
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0.1 LAW OF FORCE

The study of electrostatics is based upon the experiments of Cavendish and of
Coulomb. These show that if two charges g; and g, are at a distant r apart, then the
force between them is proportional to q,q,/r>. If the charges are of like sign, then the
forceisrepulsive ; if unlike, then it is attrative. Thisis known as the inver se square
law of electrostatics.

Coulomb’s law may be expressed as

F=C ﬁz r (0.1.1)

where F is the force exerted by g, on g, and r is the vector displacement from g, to
g,. The constant of proportionality C depends on the system of units chosen. In S|
system, which we shall use, the unit of force is newton, the charge—the coulomb and
the length—the metre. Thus the dimension of C is newton-metre?/-columb? or farad/
metre. For electrodynamics, we take

1
C = —— newton - metre® / coulomb?
4me,

where the constant € is called the per mittivity of free space and has a value 8:854
x 1072 coulomb?/newton-metre?. Thus, the vacuum, we have

1 q
F= L2y,
4mie, re (0.1.2)

If the charge q, is placed at r in space while g, is at r 4, then the force exerted
by g, on g, is

1 E‘}hqg(r _r1) ]

= 4Tte, |r _r1|3 (0.12.3)



0.2 ELECTROSTATIC POTENTIAL AND FIELD

Equation (0.1.1) may be generalized to describe the force on a charge g due to
a number of other charges g;, (i = 1, 2, ..., n).
qd < O
E=—Y% i,
ame, 41 (0.2.1)

Now suppose that a unit test charge is placed at some point P in presence of a
number of fixed charges g;, (i = 1, 2, ...., n). Then, it will, in general, experience a
force which we define as the electrostatic field or simply the electric field at P and
is denoted by E. Thus

E=— Y &y (0.2.2)

E:Iimgzlim— —h =—) (0.2.3)

: 1 1 . 1 &q ..
Noting that J| = | = ——=-r. and definin = Loitis to see from
ing (r] 30 ining @ 4"80;. easy

r3

(0.2.2) or (0.2.3) that
E=— (0.2.4)
The units of E and @ are volt/metre and volt respectively,
Since
OxE=-0xIp =0, (0.2.5)

the electrostatic field is irrotational.
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Again, we see that

1 <q 1 0 [
DEU.|— ) = |=-— ) a5 |=0
{4"50 =4 r,} 4mg £ a (rﬁ] (0.2.6)

so the electric field E is a solenoidal vector in a region not occupied by the
charge.

Combining (0.2.4) and (0.2.6), we find that ¢ Satisfies Laplace's equation
0% = 0. (0.2.7)
The function @ is called electrostatic potential.

The flux of the electric field E across a surface S, closed or open, is defined by :

flux of E across S= [[E @S (0.2.8)

0.3 GAUSS LAW (CHARGE CONTINUITY EQUATION)

Gauss law states that the total flux of the electrostatic field E out of any closed

1
surface Sis equal to . times the total charge enclosed by S
0

The above result may easily be extended to a continuous charge distribution
characterized by a charge density p. Regarding the volume distribution as a set of
discrete charges pdt, the result is equally applicable is this case also. Here the

enclosed charge is j pdt where T is the volume of the space enclosed by S, so that

by Gauss' theorem.

!Ems:éjpon, i.e.,!(D,E—g]dT =0
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which holds for arbitrary volume 1 and, therefore,
0. E = pleg (0.3.1)
The equation (0.3.1) is the differential form of Gauss' law.
Since E = —f, it follows from (0.3.1) that f satisfies Poisson’s equation

0% = — pleg (0.3.2)

0.4 POLARIZATION AND ELECTRIC DISPLACEMENT

Polarization :

If a good conductor is subject to an electric field, the conduction electrons
respond very quickly to this field and a current flows. On the other hand, a dielectric
(insulator) material has no free electron. When a field E is applied, the bound
electrons in the molecules of the dielectric material move in a direction opposite to
E but the nuclel are displaced in the direction of E. Such displacements are usually
very small on a molecular scale. We say that the medium is polarized by the field.
As aresult of this polarization, each molecule of the medium becomes a tiny dipole
whose strength depends on the electric field E. Suppose that the charges in each
molecule are separated by a distance d. Then for N molecules in unit volume, we
define dipole moment per unit volume, P by

P = Ngd. (0.4.1)

If the field is not too large, then the strength of each microscopic dipole is
proportional to E and we write aE, where a is called the polarizability. The induced
dipole aE is, for many substances, parallel to E.

There is aso another type of polarizability a where the dielectric molecules are
permanent dipoles, such as water. Here the dipoles are randomly oriented in the
absence of afield, whereas a couple is established if a field is applied. Thus there
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will be aresultant moment in the direction of the field. We suppose that this has also
been included in the value of a. The total moment induced by an electric field E is
NoE per unit volume. Thus for isotropic materials, the polarization P is given by

P = NaE = goxE. (0.4.2)

The scalar x is called the electric susceptibility which depends on the density of the
material and on the polarizability. Thus the effect of an electric field E on a dielectric
IS to create the polarization P with its dipole moment Pdrt in each volume element dt.
Hence to calculate the potential for such a system we may now set aside any
consideration of the dielectric itself, provided that we imagine it to be replaced by
the volume polarization Pdrt.

Now, for a single dipole p centered at the origin, the potential at any point is
1

r
Rp_’ or more generally for a dipole centered at some point r'.

qr—r) 1 1
(p(r)—4mo Ep|r—r'|3 4mg pm(r—rj

where prime denotes that the gradient operation is carried out on the primed

coordinates. If the dipole be replaced by a volume polarization P so that p — Pdrt,

then

®r) =

e JPC )Du(r - ]d' 043

Since

DD( P(r') ] _ () DD,( 1 ]+ OOP(r)
r—r'| r—r| r—r’|
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We have from (0.4.3) by using Ganss theorem

o) = 41150 [JP(r )[us J-DDp('r)

(0.4.4)

in which the surface integral is to be evaluated over the dielectric boundary.

It follows from (0.4.4) that for a polarization P, the resulting potentia is the same

as if we have a volume distribution of charge pp = — 0. P throughbout the dielectric,

together with a surface distribution o, = P [ on the boundary of the dielectric. The

charges pp and oy, are known as polarization or bound charge densities.

Electric Displacement :

Suppose that in a dielectric medium, the electric field is E with resulting

polarization P. Then Gauss Law takes the form

0.E gi(pJa .P)

0
o, O.(E+P)=p
Defining a new macroscopic field vector D by
D =¢goE + P,
the above Gauss' Law becomes

O.D=p

The vector D, introduced by Maxwell, is called electric displacement,

For isotropic materials
D =¢goE + P =gyl +x)E
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If we write

€ =¢y(1+X) (0.4.8)
then the equation (0.4.7) gives

D = ¢E, (0.4.9)

where € is called the permittivity of the dielectric medium € has same units as €
(farad/metre). In free space € = gp, iIsD = gpE. Sometimesit is convenient to introduce
a dimensionless quantity K, called the dielectric constant, by € = Kgo, i.e,

€
K=—=1+X (0.4.10)
8O

The electric displacement D is measured in units of coulomb/metre?.

0.5 MAXWELL EQUATIONS FOR ELECTROSTATICS

Maxwell equations for electrostatics are given by (0.2.5) and (0.3.1) which may
be rewritten as

OxE=0 (0.5.1)

0. E = pleg (0.5.2)
where in terms of the potential we have

E=-0 (0.5.3)

0% = — pleg (0.5.4)
which have already been obtained in (0.2.4) and (0.3.2) respectively.

0.6 ENERGY OF THE ELECTROSTATIC FIELD

We now proceed to find the mutual potential energy (P.E.) between a given set
of charges {qj}, (| =1, 2, ..., n). Denoting |rj —rj| by rjj, the mutual P.E" is
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W, = 1 Z q;q;

2 & & Amgl,

= lql 3_1 & +% + D]]]]]}q“
2 7 AmE, (I, I Mn

+1g,2 1%+ % gl
2 ATE, (Fy o Fon
1 1 1

= quvl +§q2V2 + Dm]}i q.V, (0.6.1)

where Vj, (j = 1, 2, ..., n), are potentials at the positions of the charges qj (j = 1, 2,
..., N) due to the others.

If the charges are not discrete, but are distributed with volume density p and
surface density o, then the mutual P.E. is

1 1
W, = Eijolr +§jovm. (0.6.2)

Using the equation (0.5.2) to replace p by p = gg [. E. the first integral on the right
hand side of (0.6.2) gives,

%_[der :% &) V(O.E)dt
:;eoj[mu E)-ED it

:%eoj OE1dS %sojE{]EdT

= ;soj DE1dS ;soj E’dt
where the surface integral is taken over the sphere at infinity and over the surface of
each conductor in which
JVE.ds= ;SOJVEnds
En being the norma component of E out of S into each conductor. Noting that the
normal component E,, in the case of surface distribution is E, = — a/eg we have
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1 1 1 2
EdeT +§JOVdS—§eojE dt
and, therefore, the total electrostatic energy is
1
W, = Eeoj E2dt (0.6.3)
1 : : : .
The quantity EEOE is known as the energy density of the field. The unit of W is

coulomb-volt or Joule.

Since D = ggE for free space, we can write (0.6.3) aternatively in the form

1
W, =2 | E D (0.6.4)

0.7 THE CURRENT VECTOR

If charges are in motion which results in a net drift of charge, we say that there
is a conduction current or smply an electric current. When the current flowing is
independent of time, but may depend spatialy, we are concerned with steady
current.

Current (1) is defined as the rate at which charge Q crosses an area A, i.e,

- daQ
dt
The unit of current is coulomb/second, or ampere in Sl system.

(0.7.1)

Suppose that the charges are moving at a point P with mean velocity v. Then if
there are n per unit volume, each carrying a charge g, the current density j at p is
defined as

j = nqv, (0.7.2)
the direction of j is that in which the current flows.

Consider a cylindrical element with dS as base and generators of length v. Then
al the charges within this element will cross ds in unit time. The total charge

contained in it isng v. dS = j. dS so that the flux of j across Sis jj.dS. Thus
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_do_d _y
| =4 _a-[nqvt.dS—_s[J.dS (0.7.3)

since the motion is steady. The unit of j is ampere/metre?.

Next suppose that the charge inside a volume 1 is enclosed by a surface S. If p

be the volume density of charge, the total included charge is j pdt and the rate at

d d
which this is decreasing is —ajpdT. If the volume T remains constant, then at

operates solely on p which is a function of space and time, i.e.

| = —_T[ g—sdT

This decrease is due to the outward flow of charge from S and, therefore,

ot

i.e, J(DD] +?;:)dT =0

which is true for arbitrary 1 and so

—j%deijbIS=jD.jdr

op .
—+[ME 0.
at J (0.7.4)

Equation (0.7.4) is known as current continuity equation or equation of conservation
of charge.

For steady state, p is independent of time and then (0.7.4) simplies to
O.j=0. (0.7.5)

0.8 OHM’S LAW

If the mean velocity of the chargesliesin the same direction of the field E causing
17
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the motion, then j and E are parallel vectors and, therefore,

j = oE (0.8.1)
where o is the electrical conductivity. Equation (0.8.1) is the Ohm's Law which can
aternatively be written as

E=nj
wheren is called the resistivity of the conductor. If the conductor be homogeneous
and isotropic, then o and n are constants independent of position. The Sl unit of
resistivity is volt-metres’'ampere, or ohm-metres and that of electrical conductivity is
ohm™-metre™, or mho-metre™.

0.9 MAGNETIC EFFECTS OF STEADY CURRENTS :
LORENTZ FORCE

Magnetic effects are associated with electric currents, which in turn represent
charges in motion. We have aready defined the electric field E by the ratio E =
F/g, where F is the force experienced by atest charge q initially at rest in this field.
Let us row generalise the expression F = gE for the electrostatic force by including
the effects of the moving charges, i.e. F = g + F'.

The interaction of currents or charges in motion is described by a magnetic field
B which we define as a function of the additional force F'. From experiments it is
observed that a test particle moving in this field experiences a force F' which is
proportional to the strength of the magnetic field B and perpendicular to the velocity
v of the particle. The magnetic field B is, therefore, defined by the relation.

F'=qvxB (0.9.1)
Thus the total electromagnetic force on a particle of charge q moving with velocity
v is given by

Fem = 0[E + v x B] (0.9.2)
The force Fgp, defined by (0.9.2) is known as Lorentz force. The unit of B is gauss.

The magnetic field B is aso termed as magnetic induction.
18



0.10 FORCE ON A CONDUCTOR CARRYING
CURRENT

Assuming the electric field E = 0, the Lorentz force for n charges is
F=ngvxB=jxB,
j being the current density. Thus the total force acting due to the current flowing is

Fiw = | ¥ Ba, (0.10.1)
T being the total volume of the plasma. For a plasma column, that is, for a current
flowing in a wire, we can rewrite (0.10.1) as

Fio = ﬂ (j xB)dSdS (0.10.2)

dS being an element of length of the column with its sense along the direction of j
and dS is an element of area. Since j and dS are parallel, we have from (0.10.2)

Fo = [[(0SxB)(j @S) = [ 1 dS xB, (0.10.3)
| being the current flowing. Thus the force on an element is
dF =1dSx B (0.10.4)

where we have dropped the subscript in F. If the current flows in a closed loop of
wire, then the force is

|::§|dsx|3:3§|dsx3 (0.10.5)

0.11 THE BIOT-SAVART LAW

Ampére found experimentally that the force between two circuits carrying electric

currents is

(0.11.1)

X X
F, :&uziﬁiﬁdsz [d351 o]
4m 15 I
This represents the force exerted on the circuit 2 due to the circuit I, 11 and |, are
the currents flowing in the circuits, dS; and dS, are respective elements of the circuits
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at a distance ri» = rp — rq apart. The constant pe is known as the magnetic
permeability of the free space and has unit henry/metre.

Now we can write (0.11.1) as

3

F, = &|1|2§§{(d52 D;lZ)dsl _ (ds, [ds, )ry, _
m 13 o P’

Since

§d523m12 :§D(1] msz =0,

2 r12 2 r12
it follows that

. ds, [ds,)r
F, = _Llllsz( > 3 e —F (0.11.2)
12 12

We may write (0.11.1) in the form

F, = I2§d5’2 xB, (0.11.3)

2
where
_ M pds xry,
B, = 4n|1f = (0.11.4)

is the magnetic field produced by the current flowing in circuit 1 at the position of
circuit 2. The result (0.11.4) is known as Biot-Savart law which, in differential form,

IS given by

de — & Ildslsx r12

mo o (0.11.5)

Magnetic Intensity Vector :

The magnetic intensity vector H, in the absence of magnetic polarization, is
defined by

B = peH (0.11.6)
20



The direction of H is the same as that of B for an isotropic medium. The unit of H
IS ampere/metre.

0.12 THE LAWS OF MAGNETOSTATICS

Suppose that instead of a current flowing in a circuit, we consider a continuous
distribution. Then, introducing the current density j, we may write analogues to
(0.11.3) and (0.11.4) as

F = Jir) xB(r 02,3
and B(r)=He j J(r) (r | (0.12.2)
t being the total volume. Now from (0.12.2) we get
ne e [IOXC-0) o
411 d
- M , 1
e, 0B -1 O 0.12.3
a JT.f(rX) (r' e )dT ( )

Notingthat 0. (a xB)=p.0xa —a .0 x 3, we get by puttinga =j and 8

1
- m(_)
r—r'
. 1 3 1 . 1
D{P( D (r_r,]} - D(r_r,]l:l[k J_DD( |:| (r_r!] (0124)

Now [ x j = o x E =0 (by (0.8.1) and (0.5.1)) so that the first term on the right
hand side of (0.12.4) vanishes. Also, the second term on the right hand side of
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1
r=ri

(0.12.4) becomes identically zero, since = [k [ ( ] =0. Thus we have from

(0.12.3).
0.B = 0. (0.12.5)

Again, from (0.12.2) we get

M . 1
[k B= ——Yk r'yxQd dt
e 110 (|r—r'|]

__ He ilr "2 1 i(r' 1
__mej[J(r )OI (r_r']—{J(r ) (] (r—r'HdT (0.12.6)

T

Now, since

oliom (2 |00 [ 2 oo [ 2]

the first term on the right hand side of which is identically zero and noting

1 (1
D(r —r'] = -0 (r —r')’ we may transform the left hand side of (0.12.6) by writing

. 1 ~ jr)y | 0O0j()
J [’“ ’Dﬂ(r—r'ﬂ"“J [DD{} —r }‘“'

Thefirst term on the right hand side vanishes by Gauss' theorem while the second term
is identically zero as [0 . j = 0O, by (0.7.5). Thus (0.12.6) reduces to

% B= pejj(r')é(r —r')dt

e, OxB=e]j (0.12.7)
22



Equations (0.12.5) and (0.12.7) are the fundamental laws of magnetostatics.
Ampére'sLaw :

From (0.12.7) we have

[ox BldS p.[pds §BOdS
where S is an open surface bounded by a closed curve C. Since, by definition,
§j [dlS = I(see (0.7.3)), the current passing through C, it follows that

jBrs=p,l (0.12.8)

which is Ampére’s Law : This result can be stated as : The circulation of B around
any closed curve C is equal to the product of the total current embraced by the
curve and the magnetic permeability of the free space.

Magnetic Potentials :
If we write

B=—e m, (0.12.9)
then V|, is called the magnetic vector potential. Since O . B = 0 by (0.12.5), V,
satisfies Laplace’'s equation

0°Vy, =0 (0.12.10)
Again, if we put

B=0OxA, (0.12.11)
we can see easily that A is not completely prescribed by this equation, since, for a
scalar function g, 0 x (A + [ ) = O x A. Thus we must have to add an extra
condition on . A which in the case of magnetostatics is chosenas 1. A = 0. The
vector A so defined is called the vector potential. Since 0 x O x A = (O . A) —
0°A = lej, S0

2 A = — lej. (0.12.12)
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Thus the vector potential satisfies Poisson’s equation whose solution is given by
J‘ i) 4
|r _r | (0.12.13)

If we suppose that the current flowing in the loop is |, then we may express (0.12.13)
as

J(f)
L=

A()_uej

_ Kl ¢ ds
A(r)=Hel
e, AM="2 ] - (0.12.14)

0.13 ENERGY OF THE MAGNETOSTATIC FIELD

The energy required or the work done by a current 1, moving in the circuit 2
through the magnetic field produced by the circuit | is

dwWm = I> B(rz) . dSZ

where dS; is the surface element of the surface S, enclosed by the circuit 2. Thus the
total magnetic energy is

W, =1,[B(r,) S, =1, [(Tx AYIdS, (using (0.12.11))
S

=1,§A[ds,, (by Stokes' theorem),
2

ds, being an element of the circuit 2, Hence

d
W, = ,zﬂzﬁrf '1rsl}msz (by (0.12.14))

_ He ds, [ds
e, W, T[ ;M 2 (0.13.1)
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In the case of salf-induction, we have

2 :

W, = “g)'T § § dsrms (0.13.2)
Again, noting that 1dS = jdt and Ids = jdt’, we get from (0.13.2)

1% ¢ ¢ jdtGdr’

W = “8en ﬁj rEj
and, on using (0.12.13), it follows that

W, = [ | Adt (0.133)

2 T

sincej= 1 x Bk H (by (0.12.7) and (0.11.6)), B = [ x A (by (0.12.11)) and

notingthat 0 . (H xA)=A .- (OxH)-H-(OxA)=j.A—-H . B, we can write
(0.13.3) as

W, :%!H [Bdt +%JD.(HX A)dr= %TJH[BdH %l(Hx AYOdS

1
If we integrate the second integral over all space for large r, then H is of order r7A

1
is of order T and dS is of order r? and, therefore, the surface integral vanishes, so

that

1
W, = E!H (Bdr, (0.13.4)

1
where the integration is carried over the whole space. The quantity 5 H.B. isknown

as the density of the magnetic energy. For isotropic medium, the density of magnetic
1
eneergy is EHGHZ.
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It follows, therefore, from (0.6.4) and (0.13.4) that the total electromagnetic
energy is given by

B 1
W@_m@+wm_iyED+HBmT (0.13.5)

0.14 GENERALIZED OHM’S LAW

The equation (0.9.2) of Section-0.9 gives the total electromagnetic force on a
moving charge and this can be interpreted as the force on a charge due to an electric
field moving with the charge velocity v through a stationary magnetic field. On the
other hand, if an observer moving with the charge will interpret this force due to an
electric field E' given by

Ezg:E+va (0.14.1)

Similarly, if a conducting medium moves with velocity v in a magnetic field, then
a moving electric field is produced giving rise to a current called the conduction
current and is given by

je=0E =0(E + v x B) (0.14.2)

On the other hand, if there be any free charges moving with the fluid, then it will
give rise to a convection current given by

iq = PV, (0.14.3)

p being the volume density of charge. Thus the total current density j in the medium
IS

j =letiqg=0(E +vxB)+pv (0.14.49)
which is generalized ohms law.
For neutral conducting fluid p = 0 and we have
j =je=0o(E + v xB). (0.14.5)
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0.15 GENERALIZED AMPERE’'S LAW (UNSTEADY
CASE) : DISPLACEMENT CURRENT

Suppose a current flows in an open circuit, say in the discharge of condenser for
which the current starts from the positively charged plate and flows to the negatively
charged one thereby decreasing continuously the charge in the positive plate. Thus we
may look upon the condenser plates as sources or sinks of currents.

Now taking divergence of equation (0.12.7) we get

O.(0xB)=pe 0. ]
e, 0.j=0
leading to the result that the current is always closed and there are no sources or sinks
which is a contradiction and, therefore, [J . ] # 0. Thus using the current continuity
equation (0.7.4) we have

op .
—=-0pg 0
ot ¥
0 . _
or, E:(DDD): +].] (using 0.4.6)
. dD
or, D-(ﬁ E) =0 (0.15.1)

This equation shows that Ampére’slaw [0 . j = 0 isincomplete and the law requires

oD oD
another term (current vector) ot which must be added to j. The term at is caled

the displacement current.

Hence the generalized Ampére's law is
. oD

[k B= —

Helt He ot

9D
e, D¢ He & - (0.15.2)
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0.16 ELECTROMAGNETIC INDUCTION : FARADAY'S
LAW

Faraday discovered by experiment that if a closed circuit moved across a
magnetic field then a current flowed even though no batteries were present there. The
same effect was observed if the loop was stationary and the magnetic field varied.
This phenomenon was given the name el ectromagnetic induction which may be stated
as follows :

Faraday’'s Law :

The electromagnetic force (e.m.f.) induced in a circuit is equal to the negative
of the rate of increase of flux of the magnetic field B through the circuit.

Mathematically, this can be written as
_d
fEI]is——aJ;BEHS (0.16.1)

Changing the line integral into a surface one and keeping the surface stationary, we
have

. d
J;Ek H1dS _dt-s[Bde

0B ..
e, j(tx E+at)I]jS—O

which is true for all surfaces and, therefore, we have

0B
k & —= 16.
ot (0.16.2)

This is the differential form of Faraday’'s Law.

0.17 MAXWELL'S EQUATIONS FOR ELECTROMAGNETISM

According to modern point of view, an electromagnetic field means the domain
of five vectors E, B, D, H and j which satisfy Maxwell’s equations already obtained
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In previous sections in an intertial system* of coordinates when the conductor
(medium) is at rest. If the conductor is set in motion, then we reformulate these
equations by taking the relativistic effects into consideration. In such cases, Maxwell’s
equations are unaltered excepting those for D and B which contain additional terms.
These two terms also can be neglected if the velocity of the medium is small in
comparison to the velocity of light.

Thus the electromagnetic field equations for non-relativistic motion are :

Maxwell’s equations :

0B
[k E= TR (Faraday’s law (0.16.2))

. dD
[x H= I+ (Generdized Ampére's Law (0.15.2))

0. D =p, (Gauss law (0.4.6))
0.B =0, (Vide equation (0.12.5))

in which the charge density p and the current density j are not independent, but are
related by the current continuity equation (0.7.4), viz.

S

ot
In addition to these, we have the following constitutive equations :
D = €E, (vide eguation (0.4.9))
B = peH, (vide equation (0.11.6))
and generalized ohm’s law (0.14.4), viz,
] =0o(E +v x B) + pv.
For completion of the set of dynamical principles, we have the Lorentz force (0.9.2)

Fem = C[E + v % B]

* A system of space coordinates in which a free particle subjected to no forces moves in a straight
line uniformly is called inertial system.
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which is electromagnetic force on a moving charge. The corresponding force per unit
volume acting on the charge and the current is

Fen = PE + X B, (0.17.1)

since for n charges, we have nq = p and nqv = j (vide (0.7.2))

0.18 ENERGY OF THE ELECTROMAGNETIC FIELD.
POYNTING VECTOR

Since
OExH)=H.OxE-E.OxH

_ _H a%? _Ef-E D%L? (by (0.16.2) and (0.15.2))

we have by taking volume integral and keeping in view the equations (0.4.9) and
(0.11.6)

. 10
O0.(x H)d= |Eljdt —=— | (E.D+ H.B)d
J 0B W= [ETjd -5« )t
ow . . .
or, — atem =_[E-chT +jE_Jqd1’ +j [(Ex H)dr (using (0.13.5))

which with the help of generalized Ohm’s law (0.14.4), gives

oW,
ot

- !Em_!(v x B).j dt +.T|.pE.vdr +Tj O(Ex H)dr

Use of divergence theorem then leads to

oW, _ j? :
S "JEdT +[S.(j xB)dr +[pEvdr +[(E xH).dS, (0.18.1)

S being the surface enclosing the volume t.

Thr equation (0.18.1) states that the rate of dcrese of the electromagnetic energy
is equal to the sum of (i) the energy dissipated due to Joulean heating of the medium
at the rate of jczlo per unit volume, (ii) the rate of the work done by the medium
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against the Lorentz force j x B on the currents during the motion, (iii) the rate of
work done by the electrical body force pE on the medium and (iv) the instaneous
flow of the electromagnetic energy passing through the surface S at the rate of
E x H.

The vector E x H, usually denoted by S, is called Poynting vector, i.e.

S=E x H (0.18.2)
and this represents the rate of flow of electromagnetic energy per unit area through
the considered surface. It is obvious that the poynting vector S is perpendicular to
both E and H.

If the field extends to infinity, then both E and H are each of order
(distance)‘2 and, therefore, the surface integral of the normal component of the
Poynting vector vanishes, Hence, the energy balance in equation (0.18.1) reduces to

oW 2 .
_Tem = J.JgedT +Jv. (j. xB)dt +_[pE.VdT (0.18.3)

where the integration is carried out over the whole space.

0.19 ELECTROMAGNETIC WAVE EQUATIONS

In vacuum (i.e. where no charges or current is present), we can write from
Maxwell equations.

e -8

ot

o, X (x B —gtze B)

o, X (@ E)B Z=E —Heoﬁo;%‘( H)

2
00 % ueoao% (0.19.1)
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where we have used Gauss Law (0.4.6), viz. [1.D = 0 and D = ggE for zero charge
density.

Similarly, we deduce

0°H

O%H= Heosoa7

(0.19.2)

Equations (0.19.1) and (0.19.2) are the standard equations of wave motion. It is,
therefore, evident that the electromagnetic waves propagate with velocity
¢ = (Meof0) Y2 = 3 x 10% metres/sec. which is equal to the velocity of light in free
space.
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Unit 1 O Fundamental Equations of Conducting
Liquid

Structure

1.1 Introduction

1.2 TheEquationsof Motion of a Conducting Fluid
1.3 Rate of Flow of Charge

1.4 The Magnetic Reynolds Number

15 Alfvén’sTheorem

1.6 Magnetic Body Force

1.7 Magnetohydrodynamic Waves

1.8 Initial and Boundary Conditions

19 Thermodynamical Considerations

1.1 INTRODUCTION

The study of the motion of electrically conducting fluid subjected to a magnetic field
Is dealt with in the subject Magnetofl uiddynamics (MFD). For incompressible fluid, like
liquid mercury, if the properties of viscosity, thermal conductivity, electrical conductivity
etc. be regarded as constants, then we use the term Magnetohydrodynamics (MHD) or
Hydromagnetics. On the other hand, for compressible fluid such asionized gas when its
other properties specially temperature be variable, then the term Magnetoflui ddynamics
is selected. In general, we consider continuum approach for the subject regarding the
conducting fluid to be a continuous medium.
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Faraday (1832) observed that when an electrically conducting liquid moves in
presence of a magnetic field, then electric currents are induced in the fluid thereby
producing their own magnetic field. Moreover, the induced currents al so interact with the
magnetic field asaresult of which electromagnetic force is devel oped perturbing the origina
motion. Thus magnetofluid dynamics leads to two important basic results: (i) the motion
of the fluid affects the magnetic field and (ii) the magnetic field affects the motion
of thefluid. In fact, the motion of the fluid dows down due to these el ectromagnetic forces
unless asufficiently large electrical field is applied along the direction opposite to the
induced magnetic field to overcome its effect as a result of which the fluid motion is
accelerated by the net electromagnetic force.

It isto be noted that some interesting results of MFD can be achieved in laboratory.
However, itsimportance liesin cosmic problemsin geophysics and astrophysics. We now
cite some applications of the subject as below :

(a) MHD power generator :

Electricity is generated in turbogenerators by the motion of a conductor through a
magnetic field (Faraday’s Law). Here the conductor is moved by a compressible fluid
which expands through a nozzle so that internal energy is transformed into mechanical
energy of the conductor and thisin turn istransformed into electrical energy.

(b) MFD flowmeter :

MFD flowmeter is used in measuring the speed of the ship and is based on the
principle that the induced voltage is proportiona to the flow rate. Thistechniqueiswidely
applied in oceanography .

(c) MFD submarines :

Thrust of MFD submarine is obtained from Lorentz force which is produced by
transverse electric and magnetic fields. These pump the electrically conducting sea water

through or past the submarine.
34



(d) Pinch effect :

The confinement of hot plasmais of great importance in nuclear fusion devices where
alarge amount of energy is released. Magnetofluidynamics may be used for magnetically
pinching the hot plasma.

Some more applications of the subject are : radio wave propagation in ionosphere,
diagnostic techniques, solar flares, space communication system, geomagnetic storms,
plasma jets etc.

1.2 THE EQUATIONSOF MOTION OF A CONDUCTING
FLUID

Navier-Stokes equation of motion of aviscous fluid is given in vector form as
Dv 1
Por = F — Opt :—BPVDG v pulv? (1.2.1)

where DBt = % +(v.4); pisthedensity of thefluid; F, the body force per unit volume;
p, the fluid pressure; v, the fluid velocity and v isthe kinematic coefficient of viscosity.

Now suppose that the fluid is conducting and it movesin presence of an dectromagnetic
field. Then the body force F per unit volume consists of three parts: (i) gravitational force
Pg, g being the acceleration due to gravity, (ii) electrical force and (iii) magnetic force.
Consider an elementary volume &t of fluid containing a charge of amount gdt so that the
force exerted on it by an electric field of intengity E is (gdT)E and, therefore, the el ectrical
body force per unit volumeis gE.

To find the magnetic body force per unit volume, we note that the total current density
vector isj +qv inwhich | represents the éectric current density vector and the chosen fluid
element moves along with local velocity v. Thus the conductive component j makes an
effective contribution to the magnetic body force but not the convective part qv. Let us
consider a normal cross-section 8S of a fluid element whose length ds lies along the
direction of j. This element moves aong with thelocal fluid velocity v, in amagnetic field
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of intengty H. It, therefore, follows that the current flowing through the element is given by
| =|]j |ds. Hence, by Biot-Savart law (0.11.3) of Unit-0, the magnetic force F4 in the
eementis

OF1 =18Sx B =|j [0S ds x B = (j x B)dsdS
which leads the magnetic body force per unit volume as
J XxB=pe xH
inwhich B isthe magnetic induction vector and | is the magnetic permeability.
Thus the total body force per unit volumeis
F=pg+He XH +gE (122

and, therefore, the equation (1.2.1) can be rewritten as
Dv _ . 1 2
Pop = TDPF YR Mox H gE+ épD(D-v} pM v (123
In addition, the equation of continuity is

)
a—f +0.(pv)= O (1.2.4)

1.3 RATE OF FLOW OF CHARGE

Since the charge are moving, the generalized Ampére's Law (0.15.2) takes the form
[k H= j+ qut € %—f , (1.3.1)
je being the conduction current. Divergence of this equation gives
0=0jg @ .v Y +g s?%( .E)

where € isthe dielectric constant of the medium. Using equation (0.5.2) (with g9 = €) and
(0.14.5) we get by replacing the charge density p by charge g.

D
F?+qD_v+ %q+ Hot.(vx H)= 0 (1.3.2)
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which represents an equation giving the rate of flow of the charge moving along with the
fluid. Two cases arisein thiscase :

(i) Fluid at rest :

Here v = 0 and the equation (1.3.2) reduces to

Jdq . g
—+==0
e (133)

wheretg = 5 aquantity having dimensions of time. 1 is called the relaxation time and

is usually very small, since 1g = 1/(peocz) where the permeability pe ~ 1 and the

conductivity o, the velocity of light c are very large. The solution of (1.3.3) isgiven by
g = Qo exp(—t/tg) (1.3.4)

which shows that the charge decays very rapidly in an exponential manner at any point

within aconducting liquid.

(ii) Fluid in motion :

In genera, equation (1.3.2) is not integrable. However, it can be shown that the term
gll.v may by made negligible in some cases. Suppose | is a characteristic, length of the
same order of magnitude as distance in which the variables in the equation change by
appreciable proportions. Then

{Heo.(v x H)} = peoVvHIL,
If these two are of comparable magnitude, then

ot _

30 that

vH vZH
Ov~—f-=
a Lc® L L2C?

<
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Hence

o{gO. v} _ VAHL V. & T,

~

O{uol.(vxH)}  L2c®povH  olpc® oL Liv

The relaxation time 1g is very small and in general 19 << (L/v). Thus the term qlJ.v can
be neglected provided that the condition (1.3.5) holds.

Assuming the result (1.3.5) to hold, we can simplify the equation (1.3.1) asfollows:
Noting that
O(|0 x H|) = HIL, 0(jqv|) = v2H/Lc?
so that
O(|gv v
o<|§<q &D (3] <

for non-relativistic velocities, we see that the term qv is negligible. Also

O(eaE

OB |_€eE _ VE
ot

S v el

and so

OsaE )
ot|) _ VE L e _ E

O(avl) Bl VPH  pgHv

which is of finite size. Hence the term E?;tz can a'so be neglected.

Thus the convective and displacement currentsin electromagnetic equation (1.3.1) can
be ignored leading to

OxH=jc=] =0(E +V x B) (1.3.6)

where the relation (1.3.5) is satisfied and velocities are of non-relativistic order.
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1.4 THE MAGNETIC REYNOLDSNUMBER

Taking curl on both sides of the equation (1.3.6) we get by using
Ox (0xH)=0of0xE+ pd x (vxH)}

H
or, O . H) - O?H = of- pe%—t + pcd x (v x H)}

{by (0.16.2) and (0.11.6}

o, Moo (w Hy o2 {by (0125) and (0.11.6)}  (L4.1)

ot

where n = is called the magnetic diffusivity or magnetic viscosity.

KO

Now if L denotes a characteristics length and v, a characteristic velocity, then

o5 (v B))= T ando(niHp= T

L2

30 that

O(Dx (v« H)) _vL _

o(n02H|) N m (1.4.2)

The non-dimensional quantity R, = vL/n = peoVvL is called the magnetic Reynolds
number.

If Ry, << 1, then the first term on the right hand side of equation (1.4.1) can be
neglected leading to the equation

‘2_';' -nO%H e %—? =n02B. (1.4.3)

On the other hand, if Ry, >> 1, the first term on the right hand side of equation (1.4.1)
is predominant and the equation can be approximated as

oH . 0B
— =k (w«w H lee —=[k (w B 144
P ( ) ot ( ) (1.4.4)

39



1.5 ALFVEN'S THEOREM

Statement : For a conducting liquid, the flux of the magnetic field through a
closed circuit of fluid particles moving along with the fluid is constant for all time.

Pr oof :

Fig. 1. 5(a) : Positions of = and ' of a surface of fluid particles bounded
by a closed contour at timet and t + ot.

Suppose an open surface Z of fluid particles be bounded by a closed curve C at any
timet. Then the flux of the magnetic field B(r, t) through the surface 3 at timetis

F=[B(r,t).dS, (15.1)
2z

r being the position vector of aparticle on = and dS is an element of area of = aong the
normal to the surface associated in the same of description of C. Now let the surface
and the curve C move with the fluid to the new positions X' and C' respectively at time
t+ ot. Thenif r' be the position vector of the same particle on Z', the change of flux as
> moveswiththefluidis

OF = [B(r',t +&).dS - [B(r,t).dS
2! 2
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{js(r',uét).ds—js(r,t +6t).dS}+{jB(r,t +&).dS - [B(r,t + &).ds}
2! 2z 2 2z

=171+ 1y, (Say) (152)

Here | refersto the change in flux F at timet + ot due to displacement of ~ and I, is
the changein flux through Z during thetime dt, i.e., it represents the local rate of change
of F. Thus, we have

I, = [[B(r,t +3t) —=B(r,1)].dS :atja—B [ds
b3 5 Ot

to the first order in ot.

Now consider the volume T enclosed by the surface %, 2’ and the cylindrical surface
area S traced out by C asit movesto C'. Then we have at timet + ot.

[B.dS-[B.dS +[B.dS = [ O.Bdt= 0, [by (0.12.5)]
5

2z S T

In the above dSis oriented in each case in the sense of the unit normal vector n as shown
infigure 1.5.1. Let us suppose that an element ds of the curve C undergoes, to the first
order, a displacement vt in time &t and this displacement traces out a vectorial area ds
x vot. Hence, to the first order in ot, we have

[B.dS=¢B.(dsxVv)dt = d&t§v x(v xB).ds
S C C
=3t[x (v B).dS(by Stokes theorem)
z

Thus to the first order in ot, we get for timet + ot

I, = [B.dS~[B.dS = -&t] x (vx B).dS
2 z z
Thenfindly, it follows that
SF=1,+1, = aj[aB - [x (vx B).ds}
5L ot
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Dividing both sides by &t and then making &t — 0, we get

9 _ [G—B - [k (wx B)} [dS =0, (by 1.4.4).
dt 5| at

so that F is constant; in other words, we say that the magnetic lines of force are ‘frozen’
in the fluid. Thusthe fluid flows freely along the lines of magnetic force, but the motion

of the fluid perpendicular to the lines of force carries them with the fluid.
Ferraro’slaw of isorotation :

As a consequence of the Alfvén theorem, we consider the motion of a rotating
conducting fluid permeated by a magnetic field. Such type of problems are of great interest
In astrophysics. Suppose a star of high electrical conductivity possesses a magnetic field
and it rotates non-uniformly about the z-axis with angular velocity w. Then by Alfvén
theorem, the lines of force are frozen in the material and so are carried round by rotation.
Thus the magnetic field of the star can be steady provided that it is symmetrical about the
axis of rotation and each line of force lies on a surface which is also symmetrical about the
same axis and rotates with uniform angular velocity. Thisisknown asFerraro’s Law of
isorotation of the magnetic field.

z

P(r, 6, 2)
A @

O

Fig—1. 5(b) : Non-uniformly rotating star
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Let us consider a simple analytical derivation of the above law. Assuming axial
symmetry about the z-axis and taking (r, 6, z) as cylindrical coordinates with origin at the

centre of the star, all variables areindependent of 6 and t, i.e., % =0, % = 0. Suppose

that the star possesses a poloidal magnetic field so that the equation [J . B = 0 impliesthat
there exists a scalar function Y(r, z) such that

19 10
B = (B, O, By = (Fa_qzj’ 0, —Fa—ﬂ (15.3)

The function  is called the magnetic stream function.
Now assume that the fluid velocity v at a point P(r, 6, ) is
vV = rwd (1.5.4)

where w = w(r, z). Noting that B is independent of time, the equation (1.4.4), viz.

0B .
= =[x (vx B) gives
3t ( )
Ox(vxB)=0 (1.5.5)
Now
VvXB= rwGX(}a—w, 0, —}a—w): —ooa—wf —ooa—wi
r 0z r or or 0z
and, therefore,
f ) A
Cxme 1| 90 2
(v ) = 1rl| or 06 0z
_wa_l'p O —wa_LIJ
or 0z

[a(e)-ale)l
or 0z 0z or
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_[0_0)0_41_0_(00_41}
“lor 9z az or
_o@ W) 4

o(r,z)

o, ) _

Hence the equation (1.5.5) gives 3 0 leading to w =f(Y), or that w is constant
rz

on the surface Y = congtant, that isthe éngul ar velocity is constant over a surface generated
by rotation of a line of magnetic force about the axis. Such surfaces are known as
isorotational or isotachial or magnetic stream surfaces. Any violation of the law causes
the lines of force to be drawn out along the direction of motion as aresult of which there
arises an azimutha component of thefield.

In aframe of reference rotating with an isorotational surface, the electrical field
E' = 0, and therefore, by (0.14.2) we see that in an inertial frame of reference
E +v x B =0. Thusthelines of force of the eectrostatic field E are perpendicular to those
of the magnetic field. Hence the electrostatic potential over an isorotational surfaceis

constant.

1.6 MAGNETIC BODY FORCE
Using equation (0.12.7), viz., Jej = 0 x B, orj =0 x H, ("." B = pgH), we can
write the equation (1.2.3) as
Dv
PDt

Now we have

1 2
:—Dp+pg+pe(D><H)XH+qE+:—gva(D.v)+vav.

~ OH
(DXH)XH =—H XZ{|><&}
= —Z{(H xa_H)f}+Z{(H.f)a—H}
0x oX
= —Z{fi(}Hz)}+H.(Zfi)H
ox\ 2 ox

= -D(—H2j+(H .O)H (16.1)
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To interpret the magnetic body force pe(CJ x H) %X H), we integrate throughout a

volume @ bounded by a closed surface [Js and obtain

At

e [ (3¢ H} Hdt= pejm{ %Hz)dr +H [ (H.O)Hadr
At At

= W | (—;Hz)ﬁds+ ueAj(H DHat  (182)

As

Now for an arbitrary non-zero constant vector a, we have

a.[(H.O)Hd= [af(HO )H}do

At At

= ja.Z{(H .f)%—H}dT

At X

= jz{(H.?)%(H.a)}dT

:AJTH.{z?a—i(H.a)}dT

= [H.O(H .a)dt

At

= [[H.OH.a} 0 .H)H.a)]dr

At

= AjTDD[H(H .a)]drt

= [[H(H .a)](hdS

As

= [(a.H)(A.H)dS

As

=a.[H(A.H)dS

As
45
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Since aisarbitrary, we must have

[(HM)Hd= [ (fOH)HAS (1.6.3)

AT As
The magnetic body force is then defined and given by (1.6.2) and (1.6.3) as
1 2 A R
He [ (DH) Hd= j(— “UH )n dS+ [uH(A.H)dS  (1.6.4)
At As 2 As
Thus the magnetic body force is equivalent to two kinds of surface acting on each
surface &S given by

—%ueHzﬁES and pH(A . H) s

The surface force - ; u H2ASS represents aforce — ; U H? per unit areaaong the

direction — i and is the hydrostatic pressure — % U H?. Tointerpret the surface force
K H (A H)3S, we notethat i.H = H cos 6, 8 being the angle between the unit normal
vector A to dS and the magnetic field intensity vector H and suppose that 8S' is the
projection of 3S normal to A so that 3S = 3S cos 8; then if H = HH , we have
which represents the force pigH? per unit areain the direction of H and may be regarded
as atensileforce per unit area amounting to peHZ in the direction of the magnetic field
We, therefore, conclude that the magnetic body force pg(C] x H) x H per unit volume

for aconducting fluid in amagnetic field, isequivalent to atension pel-l2 per unit areadong

1
the lines of force, together with a hydrostatic pressure 5 peHZ

1.7 MAGNETOHYDRODYNAMIC WAVES

According to Alfvén’ stheorem, the particles of afluid of infinite eectrica conductivity
aretied to the magnetic lines of force. Suppose that B is the undisturbed field intensity
in atube of magnetic force of section dA and p isthe dengity of the fluid. Then the magnetic
forces acting on the tube are equivalent to atension Bozlpe per unit area aong the lines
of force and a hydrostatic pressure 802/2pe. The latter can be balanced by adecreasein
fluid pressure leaving the tubesin tension T along the lines of force, where T = BOZBA/pe.
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These lines of force, for incompressible fluid, are like stretched stringsin tension T and
mass m (= pdA) per unit length. Thusif theliquid is dightly disturbed from its position of
rest, the lines of force will execute transverse vibrations, the phase velocity of the waves
being given by

1 1 1
tension 2 _ (T2 _( B3 )2

= — = =V , SA 7.
(density) (m) (uepJ i (L71)

This velocity Vp is called Alfvén’'s velocity and the waves are known as Alfvén

waves.

In the case of perfectly conducting compressible fluid, longitudinal wave propagation
isalso fessible, the nature of the wave depending on the direction of the magnetic field By
relative to the particle velocity v.

If the direction of the particle velocity v and the direction of wave propagation are both
parallel to B, then since the fluid moves aong the lines of force, no magnetic effects are
caled into play. In this case, the wavesin the fluid are ordinary acoustic waves which
propagate with sound velocity (c), since the motion of the fluid particles parallel to the
magnetic field does not give rise to any magnetic perturbation.

Now we suppose that the particle velocity is parallel to the direction of propagation
and each is perpendicular to undisturbed magnetic field intensity Bg. We show that a new
type of waveis excited in such acase. For a perfectly conducting liquid, et us suppose
that B isthefield intensity at timet and v isthe particle velocity. From (1.4.4), viz,

0B

E:Ek (v B)

we have, by taking v = v(x) i, B = B(x)f and noting that the motion is steady, i.e.,

%—? =0, —di(vB)f =0, leading to vB = constant. Also the equation of continuity
X

(1.2.4) gives for steady motion [1 (pv) = 0, so that pv = constant. Thus we get

E = constant = &,
P Po
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in which the suffix O refers to the undisturbed conditions. Since 82/2pe isthe magnetic
pressure, the effective pressure p* isgiven by p* =p + 82/2pe So that

dp*_@JrBd_B

do ~dp p dp’
Btd—B—&:E dc2=2 and o
do pp P
* 2
LN =c? +V2,
dp 2u,

where V 5 isthe Alfvén wave velocity. Thus the speed of propagation is ,/(c® + V).
Such type of wave is called magnetohydrodynamic wave.

It is to be noted that Alfvén waves are transverse waves and are propagated in
incompressible conducting fluids, but magnetohydrodynamic waves are longitudinal
and requires compressible conducting fluid of infinite conductivity for their
propagation.

A more detailed discussions of Alfvén waves :

Thedirection of propagation of Alfvén wave liesaong the lines of magnetic force and

the fluid particle velocity is at right angles to them. We now consider an undisturbed

uniform magnetic field Bo = Bok along the direction of z-axisand b is the perturbation
produced in the field due to asmall disturbance so that the resultant field is

B=Bg+b (1.7.2)
Since, for incompressible conducting fluid, there is no charge accumulation at interna
points, so the equation of motion (1.2.3) gives

Dv 1
— =-p+t — B 1.7.3
P = TP SO By B, (173)

where we have neglected the viscous effects. Also the magnetic field continuity equation
(0.12.5), viz. 0.B = 0 gives

Ob=0 (1.7.9)
and thefluid continuity equation (1.2.4) is
Ov=0 (1.7.5)

Assuming that the disturbancesto be so smdll that we can neglect the squares and products
of v and b, we have
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and
(LU xb)xB =(0xb)x(By+b)
= (0 x b) x By

= -B, xz(f x@)
[)4

= —z{?(so agg)} + z{(? EBO)Z—:}

~ 0 db
=-231—(By.b)p +By—
ab
= -[By.bF By—
(Bo-b} B, )
Thus (1.7.3) can be approximated as
1 Boob ov
Olp —Bgb|="2"-p_ 1.7.6
(pl' eoeraZ pat (1.7.6)

Taking divergence on both sides of this equation and noting the equations (1.7.4) and
(1.7.5) we are led to

02 (pl- 1Bo.bJ =0 (1.7.7)

e

1 . . : .
which shows that p + LT Bo . b isaharmonic function. Here two cases arise:

e
(i) the liquid is of infinite extent and (ii) the liquid is of finite extent :
Casel. Liquid of infinite extent
The solution of the equation (1.7.7) regular at al points (including at infinity) isgiven
by

1
p + —Bg. b = constant

e
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and, therefore, the equation (1.7.6) isreduced to
p—=—"—. (1.7.8)

Now the equation (1.7.1) governing magnetic field variations reduces to the first order

ob
—=[k (w B
p ( 0)

= By[x (w k)
= Bo[(DK)w= 0 .v)k]

. db ov .
I.e, 1 = BOE’ [using (1.7.5)]. (1.7.9)

Equations (1.7.8) and (1.7.9) then lead to the following wave equation for b and v :

6_2 -V?2 6_2
o> "ozl

J(b, v) =0, (1.7.10a, b)
1
whereVa = (B /u¢p)? isthe Alfvén wave velocity. Hence the magnetic field and fluid

particles propagate as transverse waves along the lines of force with Alfvén velocity
Va.

If awave travels along the positive direction of the z-axis, then the solutions of the
equations (1.7.10a, b) are

b =Db(z—-Vat), v=v(z-Vat)

so that % = -V, g_v and, therefore, from (1.7.9) it follows that
z

By gy o
0z V, o0z Ahep)2 0z
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whichissatisfied if
1
b= ~(p)2Vv. (1.7.11a)
Similarly, for awave travelling along the negative direction of z-axis, we have

1
b = (Hep)2V (1.7.11b)

2

: . : . b 1
The relations (1.7.11a,b) are due to Walén. It is obvious that o Epvz.

e

Thus the magnetic energy of the perturbed field is equal to the kinetic energy of the
motion.

Casell. Liquid of finite extent

1 . .
Ifp+ Ll_ Bo.b isnot constant, then there occur boundary reflections and transmissions,
e
asaresult of which the solution of the equation (1.7.7) becomes much more complicated.
However, taking curl on both sides of (1.7.6), it follows that
1 B, 0 0
[k [ — b|=—2—(x b — v
(ﬁ L ) oz (2 D Ptk W)

=Bo0j _j0¢
He 0z ~ Ot

0 (1.7.123)

where we have used the relation (0.12.7), viz. [0 x B = ygj with B = Bg + b so that
O xb=pe and{ =0 x visthevorticity vector. Also taking curl on both sides of (1.7.9)
we get

0 0

—(Ix b By—
ot ( ): 0 0z (}< V)
: 1 9 oC
e, ——=B,— 1.7.12b
et 0oz (1.7.120)
Equations (1.7.12a,b) then lead to the wave equations
0° , 0° ,
-V ,i)=0 1.7.13ab
(atZ A 622 J(Z J) ( )
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Thus the vorticity { and the current density j propagate with Alfvén wave velocity
along the lines of force.

1.8 INITIAL AND BOUNDARY CONDITIONS

The solutions of the equations given in sections 1.2 and 1.4 are completely determined
if theinitial and boundary conditions are specified. However, the appropriate conditions

depend on the nature and physical conditions of the problem.
(i) Initial conditions:

For steady motion of the conducting fluid, we need not consider initial conditions.
However, for unsteady problem, theinitia distributions of the velocity v, magnetic field B,
pressure p and density p are to be specified to solve the equations (1.2.3) and (1.4.1) and
the expressions for the current density | and the electric field E then follow from (0.12.7)
and (0.14.4).

(if) Boundary conditions on velocity field :

If the flow through the interfaces are not considered, the normal component v,, of the
velocity of fluid on either side of the boundary must be equal to its normal velocity. At a
fixed wall or at any interface in steady flow v, = 0.

For inviscid fluid, the tangential component v; of the fluid velocity is discontinuous at
the boundary, a situation which we call avortex sheet. On the other hand, on the interface
of two viscous liquids or between aviscous fluid and asolid, the tangential component v;

is continuous. At afixed wall, the no-dlip condition v; = 0 isto be specified.
(iif) Boundary conditions on electromagnetic field :

The boundary conditions to be satisfied by the magnetic and electric fields at an
interface of two media are deduced from Maxwell’ s equations.
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(a) Normal component of magnetic field

Fig-1. 8(a) : Thin cylinder on the interface between two media

Construct a thin cylinder of negligibly height h compared to the diameter at the
interface of two media (fig—1.8a). Then the equations [1.B = 0 shows that the net flux of
the magnetic field from avolumeis zero, i.e.

[BMdS= [B MdS+ [B MdS+ [B [MdS =0 (18.1)
S S S S3

If B isbounded, then taking limit ash — O, we see that the last integral or the right hand
sideof (1.8.1) vanishesand s, — S;. Thus, noting that the unit normal vectorsand arein

opposite directions, are have

which shows that the normal component of magnetic induction it discontinuous at the

interface.
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(b) Tangential component of magnetic field

Fig 1.8(b) : Rectangular closed curve intersecting the interface between two media

Congder arectangular closed curve intersecting the interface as shown in figrue-(1.8b)
such that AB = CD = As and the segments AD and BC (= h) are negligibly small. Now
from Maxwell equation (0.12.7), viz. 0 x B = [gj, i.e, O X H =] (.- B = heH by
(0.11.6)), we have

o (x saas im0
LIIT(])JS'( HYJNdS= leij AdS

or, Lijrg)jH.dS: Lim}{j (hdS

0 Hi.AS+ Hjy. (-AS) =|jg x AS]|

ie Hy =Hp, = js % 8§ (1.8.3)
where j 5 is the surface current density or sheet current and § is the unit vector in the
direction of AS. Since the equation (1.8.3) holds for any segment Aswhich is paralldl to
the interface, we can write thisas

A x(Hy—H)) =js (1.8.4)

For finite electrical conductivity, 0 = o and so js= 0. Thus (1.8.4) gives

Ax(Hy—Hy)=0 (1.85)

which shows that the tangential component of H is continuous.

For infinite electrical conductivity, i.e. when o = oo, then jg # 0 and therefore, the
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equation (1.8.5) givesthe jump in the tangential component of the magnetic field in terms
of sheet current. Thus the tangential component of H is discontinuous across the
surface.

(c) Normal component of electric field

From Gauss Law (0.4.6), viz. [1.D = p, we get the integral formulation for element
of volumeT (figure—1.83)

| 0.Dd= [pdt
or, [D.AdS=[pdt

or, [D.Ads+|D.Ads+|D.Ads+|pdt
S S S3 T

Let the volume element tends to zero in such away that s, s, -~ sash - 0and
then

o1
Dnl - Dn2 = le)gjpd-[ =Ps
T

where pgis the surface free charge distribution per unit area. Thus we have
A.(D, -D,) = ps. (1.8.6)

Hence the normal component of the electric displacement vector D is discontinuous.
However, for MHD, there is usually no surface free charge and in such a case

A.(D,-D,) =0

I.e., the normal component of the electric displacement is continuous across the
interface.

(d) Tangential component of electricfield

B
From Faraday’s law (0.16.2), viz. O X E = — %t we get by integration over the
surface boundary by arectangular loop (fig.—1.8b)

im[(x E).ds= lim 2 [B.dS

h-0y h-0 ats
or Iiij.dS:Iim—ng.dS (1.8.7)
" h-0y h-0 Ot
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0 Ey.AS+Ey. (-AS) =0

i.e., Etl - E'[ =0.

2

theright hand side of (1.8.7) vanishes provided that aa—? Is bounded. The above equation
can be written as
A x (E;—Ep) =0 (1838)

Thus the tangential component of the electric field E is continuous.
(e) Current density :

In the absence of charge density p, the current continuity equation (0.7.4) gives
[1.j = 0 which implies that the normal component of current density is continuous
across the interface, i.e.

A-(1-j2)=0 (1.8.9)
The normal component is zero on the boundary if either region adjoining the boundary is

non-conducting or vacuum, or if an insulating layer congtitutes the boundary.

Noting Ohm’slaw | = oE and the fact that the tangential component of the electric
field E is continuous, we see that the tangential component of current density is
discontinuous only if the electrical conductivities of the media are different.

1.9 THERMODYNAMICAL CONS DERATIONS

A fluid in different thermodynamic states behavesin different ways. Thusto supplement
the conservation equations of mass and momentum by the addition of an energy equation,
we must take into account thermodynamical environment of the fluid. The energy
conservation law is equivaent to the thermodynamic law

T dS = de + pdt (1.9.1)

where T isthe temperature, e isthe internal energy per unit mass of the fluid, Sisthe
entropy per unit mass of the fluid and T = 1/p isthe specific volume, i.e., the volume per
unit mass of the fluid. In areversible process TdS can be considered as the heat per unit
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mass gained by the fluid due to conduction. On the other hand, in an irreversible process,
other sources of hest like viscosity are present resulting in TdS exceeding the heat acquired
by conduction. The state of agasis defined by the quantitiesp, T, T, Sand e in which
only two are independent. It is usually most convenient to express all quantitiesin terms
of T and S. For a gas, the dependence of e on T and S is known and, therefore, the
equation (1.9.1) gives T = 0e/0S and p = — 0€/0t. In our discussions, we shall consider
only irreversible process in which the effects of viscosity and of electrical resistane are
involved. We shall also interpret the difference between TdS and the heat acquired by

conduction as the heat resulting from the effects of viscous forces and of Joule loss.

B
Now rewriting the equation (1.4.1) with H = “— , we have

e

nO?B + [x (v B)- a_?_ 0 (1.9.2)

Multiplying the equation by the magnetic field vector B, we find after some
caculations

2
R A

(1.9.3)
Integrating this equation over afixed volumeV and using Gauss divergence theorem, we

obtan

26JBZQ|V jv(BxJ)dv j’ av j[Bx(va)] -nB x( [x B).dS

(1.9.4)

where S denotes the surface enclosing the volume V. This equation shows that the hest per
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unit volume per unit time resulting from Joule loss isj2/0, whereasin ordinary hydrodynamics*
the heat due to viscous forcesis equal to

3 :
Wy [(Q v 25 )0
ik=1 an axl 3 an
per unit volume, per unit time, while the heat acquired by conduction per unit volume, per
unittimeis
O-(x OT)
wherex isthe thermal conductivity. The equation (1.9.1) shows that the increase of heat

per unit time of aunit mass of fluid as it movesin space |sT—S and, therefore, we may

equate the heat increase per unit volume, pTI%tS , to the heat influx due to viscous

dissipation, Joule heating and thermal conduction per unit volume per unit time, to give

DS 3 (odv, ov, 2 v,
T = T _f, Ov |+ 4+ O(xOT 1.9.5
P Dt Iii kzl(axk ox; 3 “ jaxk o (M) (1.93)

Now, noting that T = 1/p, we can write equation (1.9.1) as

DS De pdp
T—=p—-—-— 1.9.6
Dt -P Dt p Dt ( )

Also using the continuity equation (1.2.4) in its dternative form

dp
— +p0.v =0,
Dt P

it follows from (1.9.5) and (1.9.6) that

De _ ov; , vy o,
— _— - 5 v — + L.(xUT) (1.9
PO " vl |kzl(axk ax 30k Jaxk o (xOT) (1.9.7)

*See any book on Hydrodynamics, say Fluid Dynamics—Rutherford.
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Now the total energy U per unit volumeis

2

_1 .., B
U—Epv to TPe (1.9.8)

e

inwhich the first term on the right hand side is the contribution due to the kinetic energy,
the second term is the energy density of the magnetic field and their term represents the
internal energy density of the fluid. Differentiating equation (1.9.8) with resepct to t and
making use of equations (0.12.7), (1.9.3), (1.2.4), (1.2.3) (withg =0 and E = 0) and
(2.9.2) we finally obtain the following expression of the law of conservation of
energy :

YV ne= o (1.9.9)
ot

in terms of the energy flow vector G given by

G=pv(%v2+i)+i{8 x (v x B) — B x (0 x B)}

e

S [(ov; ,ov, 2 A
- +—K =% 0Ov|v.e —xOT (1.9.10
Hi’kzﬂ(axk ox, 3K J i® ~ X ( )

wherei = e+ pt is caled the enthalpy per unit mass of the fluid and €; isthe unit vector
paralle to the x;—axis.

When these conservation laws are supplemented by the addition of the congtitutive
equations of state such that p = p(p, T), e = &p, T), the resulting set of equations
determines completely the magnetohydrodynamic equations.

If thereis no energy transport to or from any fluid element and external region of the
fluid, then the conditionsin the fluid are said to be adiabatic. In particular, for an ided gas,
the equation of state is expressed by the law

pt = RT, (19.11)
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where R isthe universal gas constant. Theinternal energy e of an ideal gas depends only
on the temperature T and if the energy is assumed to be proportional to the temperature
T, the gasis called polytropic.

We define the specific heat at constant volume, C,, of a gas to be the limit of the
ratio of the energy T &S supplied to a unit mass of gasto oT, therising in temperature,

. oe
when the volume is kept constant. Thus from (1.9.1), it followsthat C, = T Clearly,

for a polytropic gas e = C,T. Similarly, the specific heat at constant pressure C, is
defined only when the pressure of the gas instead of volume remains constant during the
addition of energy. From (1.9.1), it is obviour that for a polytropic gas

ot
Ch=C,+p—=
p=0Cy pa_l_
and, using (1.9.11)
Ch-C/ =R (1.9.12)

Now writing equation (1.9.1) in the form
TdS = ¢, dT + pdt

and using the differential form of equation (1.9.11) in the form
pdt + tdp = RdT = (cp — ¢,)dT

we have

ds=cC, d—;’ +C, = %. (1.9.13)

Setting Cp/C, =y, the adiabatic exponent of the gas, we may integrate (1.9.13) to
yidd
p=A(SpY (1.9.14)
where
A(S) = pato’ exp{(S — So)/Cy} (1.9.15)
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inwhich theinitial conditions have been denoted by the suffix 0. This showsthat for a
polytropic gas the coefficient A(S) in equation (1.9.14) is a function of the entropy
only and does not depend on the nature of the gas.

SUMMARY

In this unit, the concept of MHD and related fields along with their applicationsin
variousfields, e.g. geophysics, astrophysics etc. has been given. The basic equations and
their consequences have been derived. Various laws and resultsin MHD are a so given.
Thewaves arising in conducting incompressible viscous fluid have been discussed. Different
types of boundary conditionsinvolved in MHD are obtained. An outline of thermodynamical
considerations, needed for later Unit, has aso been sketched.

MODEL QUESTIONS

Short questions:
1. What isthe difference between MHD and MFD?
2. What arethe basic resultsled in MFD?
3. Givesome gpplications of MFD in cosmic problemsin geophysics and astrophysics.

4. Show that the change decays very rapidly in an exponential manner at any point
within aconducting fluid at rest.

5. Define: Magnetic diffusivity (or magnetic viscosity), magnetic Reynolds number,
relaxation time, isorotational (or isotactial or magnetic stream) surfaces, Alfvén velocity,
MHD wave, polytropic gas, adiabatic exponent, magnetic stream function, vortex
sheet.

6. State Alfvén’stheorem, Ferraro’ s law of isorotation.

7. Show that the electrostatic potential over an isorotational surfaceis constant.
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8. Show that Alfvén waves are transverse waves and are propagated in
incompressible conducting fluids.

9. Show that MHD waves arelongitudina and require compressible conducting fluid
of infinite conductivity for their propagation.
10. Statetheinitial and boundary conditions involved in MHD flow.

11. Show that the normal component of magnetic induction is discontinuous at the
interface.

12. Show that the tangentia component of the magnetic field intengity is discontinuous
across the surface.

13. Show that the normal component of the electric displacement and tangential
component of the electric field are continuous across the interface.

14. Show that the tangential component of the current density is discontinuous only
if the electrical conductivities of the mediaare different.

15. Show that for a polytropic gas, the coefficients A(S) in the pressure density
relation p = A(S)pY, ybeing the adiabatic exponent, is afunction of the entropy Sonly and
not on the nature of the gas.

Broad questions :
1. Deduce the basic equations of motion of a conducting fluid.

2. Deduce the equation giving therate of flow of charge moving along with the fluid
and discuss the cases when the fluid is at rest and isin motion.

3. State and prove Alfvén’'s theorem. When are the magnetic lines of force called
‘frozen’ thefluid?

4.  Show that the magnetic body force per unit volume for a conducting fluid in a
magnetic field is equivaent to atension per unit area along the lines of force, together with
ahydrostatic pressure.

5. Discuss Alfvén waves considering its direction along the lines of magnetic force
and the fluid velocity is at right anglesto them. Hence discuss the casesif theliquid is of
infinite extent and of finite extent.
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6. Deduce the law of conservation of energy for MHD.

7. State the principle of conservation of charge. Hence or otherwise show that
[J.]j =0, for the fluid motion, where | isthe current density.

8. Starting from Biot-Savart law, calculate the divergence of magnetic induction
vector B.

9. Starting from Maxwell’s equation

OxH '+6D
X = —_—
AT

derive equation of continuity of charge

10. Write down the boundary conditions to be satisfied by B, H and E, D at the
interface between two media of different permeabilities.

11. Starting with Maxwell’ s equations

_db _. . 9b
DXE——EandDXH—J+ ot
show that

O.B=0and O .D =p,

where symbols have their usua meanings.
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Unit 2 O Exact Solutions of MHD Equations

Structure

2.1 Introduction

2.2 MHD Flow between Parallel Plates

2.3 MHD Flow in a Tube of Rectangular Cross-Section
24 MHD Flow in a Circular Pipe

25 MHD Flow in an Annular Channel

26 MHD Flow Due to a Plane Wall Suddenly Set in Motion (Rayleigh’s
Problem)

2.1 INTRODUCTION

The MHD equations derived in Unit-1 are more complicated and involve more
variables than those of ordinary hydrodynamics. However, for a few special cases,
we can obtain exact solutions making certain assumptions of the state of the
conducting fluid and for simple configuration of the flow pattern. We assume the
fluid to be incompressible and its properties like viscosity, density, electrical
conductivity etc. are constants. Let us now discuss some exact solutions of MHD
flow problems.

22 MHD FLOW BETWEEN PARALLEL PLATES

Problem 1 : Steady laminar flow of a viscous conducting liquid between two
horizontal parallel plates in a transverse magnetic field (Hartmann plane Poiseulle
flow)
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Suppose a highly conducting viscous liquid, say mercury, flows between two
parallel non-conducting horizontal plates and the liquid is ucied on by a uniform
transverse magnetic field perpendicular to the plates. As the fluid particles tend
to bind themselves to the magnetic field, so the field will inhibit the motion of
the liquid in some way. The motion of the liquid then produces tension to the
lines of force which can revert to their initial positions because of finite
conductivity.

Z
T
N
BO = Bok
A
s Ve iy i Z= L
Non-conducting /
walls e) / >y
AN
vV = V(2)i
X

z=-L

Fig—2.2(a) : Hartmann—Plane Poiseuille flow

Let the parallel planes be z = L and the magnetic field B, = Bk , acts across
them. Then the motion of the liquid across the magnetic field induces electric current
at right angles to the liquid velocity u = u(z)i and applied magnetic field B, = Bk .
The Lorentz force on the moving stream opposes the motion together with the
viscous forces. It is obvious that the equation of continuity [J . v = 0 is satisfied
identically.

Now the conducting liquid has the tendency to drag the lines of force in the
direction of motion and, therefore, the motion of the liquid produces a perturbation
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field intensity b = b(z)1 so that the total magnetic field is
B=Bp+b (2.2.1)
which evidently satisfies the magnetic field continuity equation (0.12.5), viz, [1.B = 0.

Let the pressure p(x, z) in the liquid be assumed to be in the form
p(X, 2) = po(X) *+ P1(2)

in which the first term pp(x) gives rise to the pressure gradient — % in the direction
X

of motion while the second term p4(z) is ascribable to hydrostatic stress.
Noting that for steady flow %—? = 0, the magnetic induction equation (1.4.1) with
H = B/, reduces to
Ox(vxB)+nd°B=0 (2.2.2)
where n = 1/ug0 is the magnetic diffusivity.
Also the general equation of motion of conducting liquid for steady condition is
given from (1.2.3) by using the continuity equation (1.2.4), viz.
v =0as

o(v.0) = — Opo + p1) — pok + ui(m x b) x B + vpCv.

e

(2.2.3)

Noting that v x B = — u(z)Bof and 0 x (vxB) = Bou'(z)f , the equation (2.2.2) leads
to

d’b du
— + 4 ,0B,— =0 224
o db - db »
Again, since (O x b) x B = Bod— i — bE k, we have from (2.2.3)
z
2
_dpo +&@ +Vp_d u =0 (225)

dx u, dz dz?
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pg+ & o b(2) - =0 (226)

e

From (2.2.5) we have

Bydb,  d%u_dp
U, dz dz>  dx
The left hand side of (2.2.7) is a function of z alone while the right hand side is a

(2.2.7)

function of x only and, therefore, each is equal to the same constant. Thus the
pressure gradient, for steady laminar flow, in the idrection of motion remains
constant throughout the liquid. Again, integrating (2.2.6) with respect to z, we obtain

1
z) =c, - pgz - — b?, 228
p.(2) = ¢, —pg 2 (2.2.8)
where ¢, is integration constant. Also integration of (2.2.4) with respect to z gives
db
E + GueBOL = CZ’ (229)

C, being integration constant.
Now using equations (0.12.7) and (0.14.5), viz. 0 x B = ¢j and j = o(E + v
xB)andj = (1, j2, j3), we have

1db
jl = ok, =0, jz = O'(Ez — BoU) = H_E’ j3 = ok = 0. (2.2.10)
%0 that E = (0, E,, 0) where )
1 db_ ¢ :
= — = 2.2.1 2.2.

E, = Bou + T [using ( 0) and (2.2.9)]

. db

i.e, e + OUeBou = OUeE, (2.2.11)

The equation (2.2.5) then gives

d d?u
—% + 0By(E, ~Bl) +vp_ =0
2

d°u
or, VP oBju = —(P +0B,E,)

d’u  M? P+ oB,E
or, E - ? u= —V—poz: constant = — a, say, (2.2.12)
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where

P=- ddpo and M = Byl /— =BoL \/: = Hartmann number, (2.2.13)
X

is a dimensionless quantity, 4 = vp being the coefficient of viscosity.
The no-dlip conditions on the non-conducting boundaries are
u=0,b=0onz==+%L (2.2.14)
It may be easily seen that the conditions j3 = 0 at z = +L are identically satisfied.
The solution of the equation (2.2.12) subject to the conditionsu =0 at z = £L

al? M
u(z) = ————<coshM —cosh| — z 221
(2 MzcoshM{ (L j} (22.19)

Then, from (2.2.10), it follows that

. al’B M
=o|E,-————9 !coshM —cosh| — z 2.2.1
J2 { 2 MzcoshM{ (L )H ( 6)

If there is no externally applied current, we have
L
[idz=0
-L

so that using (2.2.16) we derive)

E, = i(|\/| cothM —1) (2.2.17)
oB,
whence from (2.2.15) we get by the use of a = P+aBe&, as given in (2.2.12)
Y
u(z) = ZP—_M{cosh M - cosh(M z)} (2.2.18)
oBisnhM L

Again, substituting (2.2.17) and (2.2.18) into (2.2.11) and then integrating with
respect to z, we obtain
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uaz_iiﬂ;_gm(Mq)~5mmM (2.2.19)
B, snhM L L

where we have used the conditionsb = 0 at z = L.
The mean velocity over the section is obtained from (2.2.18) as

1k P
u=— (u(2)dz=——(McothM -1 2.2.20
oL _JL (2) GBS( ) ( )

so that (2.2.18) can be written as

uM {cosh M - cosh (M z)}
L
u(z) =

2.2.21
M coshM —sinhM ( )
For weak magnetic field, M = 0 and we have
2 4 2 ;2 4 4
uM{(l_M+M...)}_(1_MZ+MZ...J
21 3 21 12 48
u(z) = lim
M0 2 4 3 5
M(l_Mﬂ”...j-(M _M+M...J
21 4l 3l 5
2
ieqmazgup—éq (2.2.22)

Fig-2.2(b) : Velocity distribution for different values of Hartmann number M
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which shows that the velocity profile is parabolic for viscous flow in the absence of
magnetic field.

The above figure-2.2(b) gives a sketch of the velocity profiles for various values
of the Hartmann number M.

Problem-2 : Magnetohydrodynamic Couette flow :

Let us consider a viscous incompressile electrically conducting fluid of uniform
density p flowing steodily between a horizontal conducting plane Z = 0 (lower) and
a non-conducting plane Z = L (upper) of which the lower plane is held at rest, but
the upper one moves horizontally with uniform velocity vj. Suppose a uniform
magnetic field BOR acts vertically upwards and there is no pressure gradient in the
liquid. The velocity at any point (X, y, z) of the liquid isv(z) ] and the new magnetic

z
) VJ
= Byk

M

i

T T TE TEEEE R EEEEEETRRTETERRTRERRARNRARRANNRS z=L

LELELLLLLL L LS LLLL L 7=()

Fig-2.2(c) : MHD Couette flow
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fieldis B = BOIQ +b(2)] . It is evident that the magnetic field B satisfies the equation
(0.12.5), viz O0.B = 0.

For steady motion, the magnetic induction equation (1.4.1) with H = B/, gives
O x(vxB)+nd2B=0

Since v = v(z)] and B = Bgk + b(2)], the above equation leads to

dv d’b
B, dbh_g 2223
%4z L dz? ( )

Also the equation of motion (1.2.3) with the help of continuity equation .v = 0
reduces for steady condition to

p(v.0)v= — pgk- O p i[k k) B vpO4v

He
from which we obtain
2
o=5h99+vp9§ (2.2.24)
Mo dz dz
and 0= -pg _dp —3@ (2.2.25)
dz p,dz
Integrating (2.2.23) and (2.2.25) we have
Bov + n% = constant = cq, say (2.2.26)
z
and p(z) + pgz + 21 b%(z) = constant. (2.2.27)
e
Noting that v = 0 and % = 0 (since the plane is perfectly conducting) at z = 0, we
have ¢, = 0, Thus ?
b _ —&v (2.2.28)
dz n

Substituting this in (2.2.24) we obtain

2 2
vp—OI \2/— B0, =0
dz®  HeNn
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2
or, vp% -oBiv =0. ( n= 1 J
z U0

d’v_M?

e

=0 2.2.29
& (2.2.29)

where M =BjL /vgp = Hartmann number. The solution of the equation (2.2.29)

subject to the conditionsv =0az=0andv=V az=L s

sinh(Mz/L)

v(z) = V. 2.2.30
(2) snhM ( )
which gives the velocity of the liquid.
Substitution of (2.2.30) into (2.2.28) and integrating we have
b(2) = %{cosh M - cosh (W)}
MnsnhM L
_ _ He0ByVL (Mz)
b(z) = >¢—-—-<coshM —cosh| ——
i.e, b(2) M Snh M 3 (2.2.31)

where we have used the condition b = 0 at z = L. The relation (2.2.31) gives the
required magnetic field.

23 MHD FLOW IN A TUBE OF RECTANGULAR
CROSS-SECTION

Let us consider the steady laminar flow of a viscous incompressible electrically
conducting fluid through a tube of cross-section in the form of a rectangle and the
fluid is acted on by a uniform transverse magnetic field Byj. The flow, due to a
constant pressure graident, is in the direction of the z-axis. With these assumptions,
we have

v _ O,a—B =0,v ={0,0,w(x,y)},B ={0,B,, b(x,y)}.
ot ot
Then the MHD equations (1.2.3) and (1.4.1) give
1 b@ =% (2.3)
He OX oX
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| |
2b
s WX, Y)
g - —~¥ 7
© —— b(x,Y)
/ /‘7 .
I |

Fig. 2.3 : MHD flow in a rectangular tube

Bo)
1 b@ -_% (232
He OX ox
V] 62_W + 62_W + i B a_b = @
p axz ayz “e 0 ay 0z (233)
0°b . 9%b ow
dn|—+— |+B,— =0. 2.34
o r][axz asz o, (234)
From (2.3.1) and (2.3.2), it follows that
1
P=Po _Poz_?“bz
where P, is constant and
%P _ —P, (constant) (2.3.6)

oz
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Then equations (2.3.3) and (2.3.4) give

2 2
av2v+av2v+ B b, R g (2.3.7)
ox* 9y’ Hvpdy Vp

2 2
and 900D BooW (239
ox?> dy?> n ay
Now suppose that the cross-section of the tube is bounded by the planesx = +a
and y = £ b and the arrangement is an open circuit arrangement so that the induced

magnetic field on the boundaries is zero. Thus the boundary conditions are
w=0,b=0onx=ay=zh. (2.3.9

The coupled differential equations (2.3.7) and (2.3.8) can be made decoupled by
introducing the following variables V and W defined by

B
V=w+ (ovp) 2 b
Me
B
and W =P 2 (2.3.10)
Me

Then from (2.3.7) and (2.3.8) we have

9’V 09°V MoV P
+ +——— +-0

R =0
o o aay o (2.3.11)
2 2

and I 4 9 V;/ MOW % _g (2.3.12)

ax2  ay> a dy vp

where M = By a /g = Hartmann number. The boundary conditions are then
vp

V=W=0ax=xay==h (2.3.13)

It may easily be seen that it is sufficient to solve only one equation, say V, as
their solutions are connected by the relation

V(x,y) = W(x, —y) (2.3.14)
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A particular integral of the equation (2.3.11), satisfying the boundary conditions
ax=zxais

p
V, = —9 (a? - x? 2.3.15
1 2Vp( ) ( )

which, however, does not satisfy the boundary conditions at y = +b. We, therefore,
seek the solution V, satisfying the homogeneous equation

0%V, . 0%V, JMov, _

0 2.3.16
x>  dy? a ody ( )

so that V =V + V, satisfies the equation (2.3.11) and the boundary conditions
V =0a x =+a y = b. It isto be noted that V, should be an even function of x.

To solve the equation (2.3.16) by separation of variables method we put
V,(X,y) = X(x)Y(y) init and get

1d?X _ 1d?%Y M 1dY _ .
- D=+ — [ — =K. (sy),
XdX? Ydy? a Ydy ()

whose solutions are given by
X(x) = C cos(kp X) + D sin(ky, x),
Y(y) = EeM™Y + Fe™Y, (2.3.17)

where mq, m, are roots of the equation
m? +—m-k?2 =0, (2.3.18)
Since V,, is even function of x, so D = 0 and then by superposition, we have from

V = i(az ~-x?) + %{Enemﬂ +F,e"™ ] cos(k,x) (2.3.19)
n=0

The boundary condition V = 0 a x = +agives cos(k,a) =0, i.e, k, = (@n+Dm
2a
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Also the boundary condition V =0 aty = + b gives

R

2 2 s m,b m,b (2n+1)nx}
a - = Ee?t +Fe'? coy ——— ¢, 2.3.20
qup & TX) = 2B +Re™) s{ 5 (2.3.208)
I:)0 2 2 s —myb -m,b (2n + 1)T[X}
-——(a - = Ee v +Fe "?lco{~—FF— , 2.3.20b
2Vp( x%) ngo{ ; "m0} s{ o ( )

for —a < x < b. Multiplying both sides of (2.3.20a) by cos{(znzﬂ} and then
a
integrating between the limits —a to a, we get

_16R,a . (-n"

E.e™ +Fe™ = 2.321
n® § vp  (2n+1)3m (23.213)
Similarly, from (2.3.20b) we obtain
2 _1\n
Eemb+pemb = 16R& 5 (D (23.21h)

vp  (2n+1)3m

Solving (2.3.21a,b) for E, and F,, we get

:16P0a2D (-" - Sinh(m,b)

E i)
n vp  (2n+1)*® sinh(m, - m,)b

_16P@® . (-D)" sinh(m,b)
F,=- E — O
vp  (2n+13m® sinh(m,-m,)b

Hence from (2.3.19), we have

V=P (@) 25 (D" e sinh(myb) €™ snh(mb) |
2vp ™ % (2n+1)° sinh(m; - m,)b

cos {(2n + 1)an
2a
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and, in view of (2.3.14)

0 —_1\n —mMy Ay o
W = i (a2 - X2) + 32a z ( 1) - € snh(mzb) e Smh(mlb)
2vp T i=0(2n+1) sinh(m, —m,) b

X Cog{(zn-l-l)nx}:|
2a

Finally, using (2.3.10) it follows that

_ PRl 2 2y 3280 8 (-D" y
W_Zp{(a )+ s nZo(zn+1)3

cosh(m,y) sinh(m,b) — cosh(m,y) sinh(m,b) Cos{ <2n+1>HX} (2.3.22)
sinh(m, — m,)b 2a h

_| |0 J6Ra” & (9" %
and b{ﬁ&nﬁ“ nz()(2n+1)3

sinh(m,y) sinh(m,b) — sinh(m,y) sinh(m,b) (2n + 1) TIX
{ 1 sinr?(ml - mz)bz 1 }cos{za H (2.3.23)

The volume flow rate Q is given by

Q= tj) dexdy

-b-a

_4Ra’ |1 b+ 128 & (M, —my) sinh(m,b) sinh(m,b)
po |3 1 &mm,(2n+1)*sinh(m, - m,)b
(2.3.24)

In the above, u(= vp) is the coefficient of viscosity.
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24 MHD FLOW IN A CIRCULAR PIPE

Let us consider the motion of an electrically conducting liquid along a uniform
circular pipe under a uniform transform magnetic field By. The flow is in positive
z-direction, the magnetic field is in y-direction and the pipe is electrically non-
conducting.

Fig-2.4 : MHD circular pipe flow

In this case, it is convenient to start first with Cartesian coordinates and then
convert the equations into polar coordinates. So we have to solve equations (2.3.7)
and (2.3.8) subject to the boundary conditions

w=0b=0ar=a
and w, b are finite at r = 0, (24.1)
a being the radius of the pipe,

For convenience, we introduce the following non-dimensional quantities :

W*:ﬂ’b*: b ,X*zé,y*:X,P:
a a

Vo VoyOVP

/ o
M = Bya v_p =Hartmann number,

R, = OlV,a = magnetic Reynolds number,

a’P,

VPV,

(2.4.2)

where vg is a characteristic velocity,
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Using (2.4.2), the equations (2.3.7) and (2.3.8) reduce (omitting asterisks) to

2
Pw W b o g
ox?  dy? ay

2
and6b+6b Ma—W—O

x> oy? ay
respectively and these equations are decoupled to

2 2
6Y+6Y+M6—V+P =0
x> oy’ ay

°W  9°W oW
d + +M +p =0
RlPe: dy? P

by putting
V=w+b W=w-Db
It is to be noted that for a circular pipe
VX, y, M) = W(X, y, —M)

To make the equation (2.4.3) homogeneous, we introduce

VXY, M) = X0y, M) =
in it and get

X, X L X =

x> ay 6y

Introducing the transformation

My/2

(=xe
the equation (2.4.8) reduces to

0°C az M?2
6r2 oy’ 4

Z=0
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(2.4.3)

(2.4.4)

(2.4.5)

(2.4.6)

(2.4.7)

(2.4.8)

(2.4.9)

(2.4.10)



which, in cylindrical coordinates x = r cos6, y = rsin 6, is changed to

9%C 107 1 0% M?
o+ 2 T~ 71 =0 2411
o> ror r?00*> 4 ¢ ( )

The boundary condition is

— Pcos6 eM cosf/2 onr =1
M (2.4.12)

and Cisfiniteatr = 0.

¢

The solution of (2.4.11) finiteat r = 0 is

(= gAnln (Nzlrjcosne (2.4.13)
n=0

where A, are constants and |,, are modified Bassel functions of order n of first kind.
It is to be noted that since the flow is symmetrical about the magnetic field, we have
taken cos 6 and not sin 6.

Using the boundary condition (2.4.12) we have

Pcos6 oMoose/2 — gAn”](M/z) cosn@, for al 6

M n=0
which leads to
A =2Pda(MP2)
M 1,(M/2)
Thus
V= —Ercose + % w[ﬂn(MrIZ) cosno
M n=o MI,(M/2)

<) — nyr
and W:Brcose+z 2P(=1)"1,(M/2)
M Sl M, (M/2)

a,(Mr/2) cosne}
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Hence the use of (2.4.5) gives the required velocity and magnetic field as
P )
w(r,B) = — Y e (Mreosd/2) | (_qyng(Mreosdi2)]
v 2 j

1" (M/2)
1. (M/2)

[,(Mr/2)cosn6 (2.4.14)

and b(r,0) = —5“;039 +— Z{e (Mreos®/2) _( 1) e(MrcosG/Z)}

Ia(M/2)
1. (M/2)

I,(Mr/2) cosnb (2.4.15)

The mean velocity is obtained, by integrating (2.4.14) over the circular cross-
section, i.e.

w=—2_1 Tw(r0).rdocr

ml? r=0 0=0

which gives

W = —

PiM2) | P o {( vt dpa(M/2) +10.0(M12)

Mlo(M/2) M i 1,(M/2) ”'l(M/2)|”+l(M/2)}

(2.4.16)

When M - O, W -

00\'0

25 MHD FLOW IN AN ANNULAR CHANNEL

Consider the steady motion of an electrically conducting incompressible fluid in
the annular region of two concentric infinite circular cylinders of radii aand ¢ (c > a)
under an applied radial magnetic field Bpalr, where By is constant. The flow isin the
axial directon which we take as the aixs of z, due to an applied pressure graident.
The equation of continuity [1.v = 0 then gives v = {0, 0, w(r)}. Moreover, the
symmetry of the problem states that the induced magnetic field in 8-direction is zero.
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In addition, the continuity of the normal component of the magnetic field across the

boundary shows that the radial component of the induced magnetic field is also zero.

Thus the magnetic field continuity equation [1.B = 0 gives B = {Bgalr, 0, b(r)}
Now from Ohm’s law (0.14.5) we have

j :O'(VXB) :0‘{0’ goa’o}

and aso

2,2
jxB = {GBOa wh, 0, %2 w}.
r r

Hence the equation of motion (1.2.3) in cylindrical polar coordinates gives

oBOaW :@’

. ar (2.5.1)
d°w ldw) oBZza’ op
——+t-— |- w == 5.
[ dr2 rdr ) r2 0z (252)
and the Maxwell equation (0.12.7) viz. yej = [0 x B gives
0Bea, _ _1db (2.5.3)

r M dr
Equations (2.5.1) and (2.5.2) together imply
p(r, z) = p(r) — zPy (25.49)
where Py is constant. The equation (2.5.2) can now be written as

dz_W + }d_W - M2 ﬂ = —&
dr> rodr r2 vp
whose solution is
w=c M +c,r™ +1(r) (2.5.5)
Pr?
where f(n = |-——%—5-.M#2
vp(4 - M*7)
_Fo 2 logr,M =2 (2.5.6)
Y
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and M = Bpa /i is the Hartmann number. The boundary conditions are
vp

w=0ar=a,-c. (25.7)
Hence using these, we have from (2.5.5)

{(en™ - @/} (0) - {@)" -(ac®/)"}1(a)

w(r) =f(r) - M _ g2M

(2.5.8)

If we take the outer cylinder to be non-conducting so that b = 0 at r = ¢, then
from (2.5.3), the magnetic field is obtained as

r
b(r) = ~p,0B,al "rv dr
C

M
i.e, b(r) :WH(COM _,_[a:C) —c2M —aZMHf(C)

M
_{(ar)M +[a¢:2) _2(a:)M}f(a)]—mjoaj.f(rr)dr (25.9

_ I:)0
vp(4 - M?)

—Po{rz(logr —1)—cz(logc—1ﬂ, M=2
8vp 2 2

2.6 MHD FLOW DUE TO A PLANE WALL SUDDENLY
SET IN MOTION (RAYLEIGH’S PROBLEM)

where

O ———=
—h
~
-
~

- ‘

(r’=c®, M #2

Let us now consider the unsteady flow of an electrically conducting liquid due
to the impulsive motion of an infinite flat insulated plate with uniform velocity Uy
in its own plane in presence of a uniform transverse magnetic field By which is
otherwise at rest.
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Suppose the plate be y = 0 and uniform magnetic field B be applied along the
direction of y-axis. The nature of flow then suggests the following forms of v . B
and p :

v = {u(y, t), 0, 0}, B = {b(y, t), Bg, O}, p = constant.

Then the MHD equations (1.2.3) and (1.4.1) with H = B/, give

ou _ 62u+ B, b

==y bty 26.1
ot dy* pHe Oy (261

ob ou 9%b
E: BOE-H‘]W’ (262)

where n = is the magnetic diffusivity.

e
The initial conditions are
uly, 0) =0, by, 0) =0 (2.6.3
and the boundary conditions are
u(o, t) = Ug, b(0, t) =0

ub-0asy - o (2.6.4)
For convenience, we introduce the following non-dimensional quantities :
u b y tU,
W=—, b =—sF—, y == t* =—,
Ug pLUS. /o / . ' 1 L
/ o
M =B,L v_p = Hartmann number, (2.6.5)

Rm = UgLope = magnetic Reynolds number,
R = UgL/v = Reynolds number,
where L is a characteristic length.
Then the equations (2.6.1) and (2.6.2) reduce, in non-dimensional form, to
(omitting asterisks)

2
u_ 9o, 1o (2.6.6)
ot dy R ay?

2
o__M ou, 1 0% (26.7)

ot  R.Rmdy Rmay?
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The initial and boundary conditions (2.6.3) and (2.6.4), in non-dimensional form,
are

uly, 0) =0, by, 0) =0
u,t) =1, b0, t)=0 (2.6.8)
u b - Oasy - oo.
We shall discuss the solutions of (2.6.6) and (2.6.7) for Rm = R and Rm « 1.
Casel : R, =R
We decouple equations (2.6.6) and (2.6.7) by substitutions
V=u+Rband W=u-Rb (2.6.9)
Then these equations give

2
oV _\, 0V, &V

Moy Ty (2.6.10)
2

LR 2511
y

It is obvious that
W(y, t, M) = V(y, t, =M). (2.6.12)

Defining Laplace transform ¢(y,s) of the function @y, t) with s as parameter,

oy, 9 = [e gy, 1) dt,
0
we see that Laplace-transformed boundary conditions of V(y, t) are

V(0,9 = i V(y,9 - 0asy - o (2.6.13)
and the equation (2.6.10) is transformed to
- _
av \2/ + M v _ SRV =0
dy dy
whose solution subject to the conditions (2.6.13) is

- 1 M (M? 2
V(y,s):gexp _?_(T“LSR] y
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the inverse transform of which leads to

1 1 /R M [t M 1 /R _M l
V(y,t)—E{erfc(E\/;y+E\/;j}+e yerfc(i\/; 2\/;} (2.6.14)

where ‘erfcx’ is the complementary error function of x defined by

erfcx = ije‘EZdE.
TU

Hence, in view of (2.6.12), we get

W(y,t) = ;{erfc(; \/?y - %\/g] +eM erfc(% \/Ey + %\/%]}} (2.6.15)

Finally, we have by using (2.6.9)

u(y,t) = i{(1+e‘My)afc£;ﬁy —%\/g) + (1+eMy)erfc£%\/§y +%\/§)}

(2.6.16)
and b(y, t) =
1 1R M |t 1R M [t
—1-(1-eW)}erfc \/7 ——\/: +(1-e")erfc —\/: +—\/:
A A L e
(2.6.17)
Casell : Ry<< 1
In this case the equation (2.6.7) can be written as
9°b M du
— __+__ " =0
dy> Ry
which, on integration, gives
LI LY (2.6.18)
dy R
the constant of integration vanishes by virtue of the boundary conditions at infinity
L _ ob
(-OxH=] —G(VXB)andB—peH,soE_,Oasya oandu - Qasy - »
by (2.6.8).
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Now the equation (2.6.6) with the hep of (2.6.18) becomes
d?u ou

- - MZU -R— = O,
dy ot
Laplace transform of which gives
2
U mzg-Rsu =0
dy

Its solution satisfying Laplace transformed boundary conditions of (2.6.8) is

_ _1 2 2
u(y,s = gexp{—(M +Rs)?2 y}.

Laplace inversion of this leads to the velocity distribution as

u(y,t) = ;{e"\"yerfc(; ﬁy - M\/%] + e'v'yerfc(% \/?y + M\/g]} (2.6.19)

The expression for the magnetic field b(y, t) can similarly be obtained.

SUMMARY

This unit is dealt with the exact solutions of afew MHD flow problems. For this,
certain assumptions, like incompressibility and constancy of different properties of
the conducting fluid, have been made because of the complicacy of MHD equations.

MODEL QUESTIONS

Broad questions :

1. Solve the problem of steady laminar flow of a viscous conducting
incompressible fluid between two horizontal non-conducting parallel plates with no-
dip boundary conditionsin presence of a uniform transverse magnetic field (Hartmann-
plane Poiseuille flow).

2. Solve the problem of MHD Couette flow.

3. Solvethe problem of steady laminar flow of aviscous electrically conducting
fluid through a tube of rectnagular cross-section with no-siip and non-conducting
boundaries and the fluid is acted on by a unifrm transverse magnetic field.

4. Solve the problem of MHD flow in a circular pipe with no-slip and non-
conducting boundary conditions in presence of a unform transverse magnetic field.
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5. Solve the above problem-4 for an annular channel with the same conditions.

6. Solve the problem of unsteady flow of an electrically conducting liquid due
to the impulsive motion of an infinite flat insulated plate moving with uniform
velocity in its own plane under the action of a uniform transverse magnetic field
which is otherwise at rest (Rayleigh’s problem).

7. A viscous incompressible finitely conducting fluid flows steadily under a
uniform pressure graident in a channel formed by two infinite parallel plates which
are non-conducting. If a uniform magnetic field acts perpendicular to the channel
walls, find the velocity and magnetic field in the channel.

8. State and explain Maxwell’s electromagnetic field equations governing the
motion of conducting fluids. What is Lorentz force?

9. Derive the equation for the magnetic induction in MHD flows and explain
the significance of high and low magnetic Reynolds number.

10. A viscous incompressible fluid of uniform density is confined between two
horizontal non-conducting planes z = 0 (lower) and z = h (upper). The lower plane
is held at rest and the upper one is moved horizontally in its own plane with uniform
velocity U. A uniform magnetic field Hy acts perpendicular to the planes. Find the
velocity and magnetic field between the planes.

11. Show that the magnetic flux linking and loop moving with a perfectly
conducting fluid is constant.

12. Show that if a steady axisymmetric motion of a conducting liquid permeated
by an axisymmetric magnetic field with no azimuthal component, the liquid at al
point of amagnetic field line rotates about the axis of symmetry at a uniform angular
velocity.

13. Show that in an infinite mass of an inviscid, perfectly conducting
incompressible fluid (of density p and magnetic permeability [ permeated by a
uniform magnetic field Hy, a small disturbance in the magnetic field is propagated
in the form of transverse waves along the magnetic lines of force with velocity

Ho(ke/P) 2.
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Unit 3 O MHD Boundary Layer Flow

Structure
3.1 Introduction

3.2 Two-Dimentional MHD Boundary Layer Equations For Flow Over a Plane
Surface For Fluids of Large Electrical Conductivity

3.3 Two-Dimensional MHD Boundary Layer Equations For Flow Over a Plane
Surface For Fluids of Very Small Electrical Conductivity

3.4 MHD Boundary Layer Flow Past a Flat Platein an Aligned Magnetic Field

3.1 INTRODUCTION

In 1904, Prandtl introduced the concept of boundary layer in fluid mechanics on
the hypothesis that for fluids with small viscosity, the flow about a solid body can
be divided into regions: (i) avery thin layer in the neighbourhood of the body, known
as the velocity boundary layer or viscous boundary layer and (ii) the region outside
this layer where the viscous effects can be considered to be negligible and the fluid
is regarded as inviscid. According to this hypothesis, Navier-Strokes equations are
reduced to mathematically simplified form and it is possible to give physical
explanation of the importance of viscosity in the assessment of frictional drag and flow
separation.

The MHD boundary layers, which are of recent origin, may be classified into two
types by considering the limiting cases of large and small electrical conductivity. If
the electrical conductivity is large (i.e. magnetic diffusivity n = 1/ope is small), then

the magnetic Reynods number R_ = %UO is also large and the diffusion of the

magnetic field takes place in a narrow zone, called the magnetic boundary layer and
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is of the same size as the viscous boundary layer. In this case, the axial component
of the externally applied magnetic field differentiates the MHD equations from
ordinary hydrodynamic equations and for incompressible flow, the MHD equations are
solved simultaneously for the velocity and magnetic field. On the other hand, if the
electrical conductivity issmall, that is, if the magnetic Reynolds number is small, then
the thickness of the magnetic boundary layer is very large and the flow direction
component of the magnetic interaction is afunction of the transverse magneticfield and
local velocity in the flow direction. Changes in the transverse magnetic field
component and pressure across the boundary layer are negligible. The induced
magnetic field is neglected in comparison with the applied magnetic field in the

transverse direction.

3.2 TWO-DIMENSIONAL MHD BOUNDARY LAYER
EQUATIONS FOR FLOW OVER A PLANE
SURFACE FOR FLUIDS OF LARGE ELECTRICAL
CONDUCTIVITY

The governing equations of motion of viscousincompressible eectrically conducting
fluid as given in Unit-1 are

Ov =0 (3.2.1)
Dv B? 1

pFt :_D(pl- 2“e]+“—e(B. O)B+ vpO?v (3.2.2)

0B = (3.2.3)

oB 2

5 T(v-DB—(BU ) n0’B (3.24)

For two-dimensional motion, we set
V= {U(X’ Y, t)! V(X’ Y, t)! 0} B = {BX(X1 Y, t)! By(X1 Y, t)’ O}

(3.2.5)
and then the equations (3.2.1) to (3.2.4) reduce respectively to
% + a_V =
dx oy (3.2.6)
1 1
du v odu_ d|p, 6 B> B
—t+— 4tV —=——| =+ + L
dx ox 39y oX|p 2Up 24P
1 1 s 1 1 87
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+——|B By — 1tV 57 T (3.2.7)

1 0B 0B, 0°v  9%v
+ B X +B +v +
up| “ox Yooy | & ox® oy’ (32.8)
5 % s 3 /5
0B, 0B,
—_ X4 V= O’

0B 0B 0Bx ou ou _ | 8°Bx  0BX
+ B

L+u—2+v -B,—-By_—=n—5t—>
ot D ox say  vax 2 ay ?ga>l<2 3y’

1 1 1/3g s}

(3.2.10)
0B, +uaBy +VaBy ~ ‘LV_ @:n asz a2By
ot ox 88y  ax Yoy & ox* oy’
3 1 13, 3 3 3 Udg

(3.2.11)

where the plane of motion is the (x, y)-plane, the x-axis is along the wall and y-axis

is perpendicular to it. The external magnetic field B, (x, t) isapplied in the direction

Assuming no-dlip condition and the wall to be solid, we have u = v = 0 a

y = 0. Let us now assess the order of magnitude, symbolically 0 ( ), of the terms
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involved in equations (3.2.6) to (3.2.11). The velocity component u parallel to the
wall in the velocity boundary layer rises rapidly from a value zero at the wall to a
value U in the main stream within a short distance 6 (say), the thickness of the velocity
boundary layer or viscous boundary layer. In a similar way, the magnetic field
component B, rises rapidly from its nearly zero value to a value B, in the main
stream within a short distance dg (say), which is the thickness of the magnetic
boundary layer from the wall. We take t, X, u and H as quantities of O(1) and y is
of 0(d) in the velocity variation while y is of 0(dg) in magnetic field variation. We
have indicated the order of each of magnitude of each term in each equation, such that
0 << 1, &g << 1, but they themselves are of comparable magnitude (6 = dg). Thus,
as in arguments for ordinary fluid dynamics,

v = 0(3), By = 03g), v = 0(3?), n = 0(3g2).

Hence 0= 0{%) O = 0{%) (3.2.12)

where R = UL (Reynolds number), R, = % (magnetic Reynolds number)
v

Fig—3.2 : Coordinate system for two-dimensional MHD boundary layer flow over a plane wall
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Neglecting small quantities of order o, &g and of higher order, the equations
(3.2.6) to (3.2.11) reduce to

ou ov -0
X + E =0, (3.2.13)
ou. ou, k6 odu_ d(p B 1 0Bx 0Bx 0°u
—+tU—+V—=——| =+ + B +B +v ,
ot ox dy ox\p 2up) up\ “ox Y oy ay?
(3.2.14)
o(p, B )_
6y(p + 2}1[3] =0, (3.2.15)
oB. 0B
Txx + aTy =0, (3.2.16)
0B, , 9B, , 0B, 50U g ou_ 0B,
o Cax oy Koax ey Vay (32.17)

2
The equation (3.2.15) shows that g + 2& is independent of y in the boundary layer

e

and may be taken to be the same as that outside the boundary layer where it is
determined by the inviscid flow. We may therefore write

_9(p, BL)_9U,,0U_B,. 0B,
ot 0X Hp OX

(3.2.18)

where U is the potential flow velocity and By_ is the external applied magnetic field
along the direction of x-axis.
The boundary conditions are usualy taken as
y=0:u=0,v=0 By =0,
y - o u=U(Xt), Hy = Hy (X, 1) (3.2.19)
The above set of equations are known as Prandtl—MHD boundary layer
equations for a strong interaction of the magnetic field. It is to be noted that in
addition to R, Ry, should also be large.
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3.3 TWO-DIMENSIONAL MHD BOUNDARY LAYER
EQUATIONS FOR FLOW OVER A PLANE
SURFACE FOR FLUIDS OF VERY SMALL
ELECTRICAL CONDUCTIVITY

In many aeronautical engineering problems, it is found that the magnetic Reyrolds
number Ry, isusually very small and then the thickness (&g) of the magnetic boundary
layer is very large. In such a case the approximations applied in section-3.2 are no
longer valid and the induced magnetic field due to the flow may be neglected in
comparison to the applied magnetic field By. Here the transverse component of the
magnetic field affects the fluid motion appreciably.

Assuming the fluid properties to be constant, the equations governing the motion
of the conducting fluid are

Ov =0, (3.3.2)
Dv .

pfi~=—Dﬂ-VPD“ﬁ ¥ By, (3.3.2)
0 Bg = 0, (3.3.3)
0xE=0, (3.3.4)

] = o(E + v x Byp) (3.35

We consider two-dimensional flow in at ransverse magnetic field. Thus

v ={ux, y), v(x, y), O},

BO = {0’ ByO(X)’ 0}7

E = {0, 0, E;},

j ={0, 0, jz, (3.3.6)
where E; is constant and j, = o(E; + uBy). For fixed magnetic field on a stationary
surface, (3.3.6) satisfy the equations (3.3.3) to (3.3.5).

When the magnetic field isin the direction of x-axis moving with velocity Uy, then

jz = o{ Ez + (U= Ug)By} (3.3.7)

We may now write equations (3.3.1) and (3.3.2) as

ou oOv _

ax + E =0, (3.3.8)
2 2 B i

O L R T

ot ox oy p Ox ox oy p =
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@+ua_v+\/@:_1%+vﬂ+ﬂ
ot Cox oy pov loxt oy’ ) (3:3.10)

Considering Prandtl boundary layer approximations, noting that the electro-magnetic
force is of comparable magnitude with the inertia force and then dropping the
negligibly small terms, the boundary layer equations for velocity distribution are
obtained from (3.3.8) to (3.3.10) as

ou ov
A

% -0
5 (3.3.11)

My &= 2P 08 g i (3.3.12)

—= == (3.3.13)

wherej; is given either by j, = o(E; + UBy ) or by (3.3.7) depending on the orientation
of the magnetic field. Since the pressure in the boundary layer is the same outside the
layer so this is determined by the invisicid flow theory, viz.

10p _oU . oU (B,
———==—+U—+| ==
T2k 3314

The boundary conditions for the problem are
y=0:u=0,v=0
y —» o u=U(,t) (3.3.15)
we now consider the following two cases :
(i) When the magnetic field is fixed to the surface which is taken as stationary,
then taking E, = 0, we have from (3.3.14)

2
_1@:67U+U67U +M (3316)
pox ot ox p

In this case, the velocity U at the outer edge of the boundary layer is affected by
the magnetic field. In general, the pressure gradient of the inviscid ordinary flow is
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prescribed and the value of U is determined. For example, in steady flow with zero
pressure gradient, i.e., for flow past a flat plate

U _ 9B
0x ot
If Byg is constant, then,
2
U=u — 0B, X
Y

This shows that the magnetic field deaccelerates the inviscid flow. In other words,
an adverse pressure gradient is generated in the flow by the magnetic field which
retards the fluid motion in the boundary layer.

(if) If the magnetic field moves with velocity U(i.e. if Ug = U), of the inviscid
flow; in other words, the magnetic field is fixed in thefluid, then we have

In this case the velocity U is not affected by the magnetic field. For zero pressure
gradient we have in the case of steady flow U = U,,.

The above set of equations are MHD boundary layer equations for a weak
interaction of the magnetic field.

3.4 MHD BOUNDARY LAYER FLOW PAST A FLAT
PLATE IN AN ALIGNED MAGNETIC FIELD

Let us consider the steady two dimensional motion of a viscous incompressible
electrically conducting fluid past a semi-infinite rigid flat plate. We assume that the
fluid properties are constant and the applied magnetic field B,, is uniform in the
direction of the undisturbed stream to the plate and perpendicular to its edge and
having a velocity U,,. In the present case, we have

%( )=0, B, =B, (const.), U =U,_(const.)

Then the equation (3.2.18) gives
0(p, B?
R e =N 1}
A @41)
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The boundary layer equations (3.2.13) to (3.2.17), therefore, give
ou av

ax oy =0 (34.2)
ou ., ou_ 1 0Bx 0B d°u
“tv—=—|B 2+ x 4y 2

uax Vay “ep( * ox y Gy] ay? (3.4.3)

0B, 0B, _

< +7ayy =0, (3.4.4)

uai + Vai — @ B @ = nm 3.45
ox dy  “ox Yoy ay? (3.4.5)

The corresponding boundary conditions are
y=0;u=0,v=0,By =0,
y - o;u=U_ By =B.,. (3.4.6)
To solve the equation (3.4.1) to (3.4.5), we introduce the stream function § and
the magnetic potential function @ by

_ 09 0
B,=-*, B, =—*
X ay ax (3.4.7)

Then the equations (3.4.2) and (3.4.4) are identically satisfied and the equations
(3.4.3) and (3.4.5) reduce respectively to

oy 'y oy o’y _ (a_cp 0’ _a_cpﬂpj+ A
HeP

V—7,
dy oxdy Ox oy’ dy oxdy ox dy’ ay® (3.4.8)

oY 0°¢ 0y 9°p_09 0y 090y _ _n 0% o
dy oxdy 0dx dy> dy oxdy " ox dy? ay (34.9)

Integrating (3.4.9) with respect to y, we get

Wap_owoe_ o'
o oxay Moy (3.4.10)
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where the arbitrary function of x, due to integration, vanishes if the electric field E
IS zero everywhere.

Thus our basic equations are (3.4.8) and (3.4.10) which are to be solved subject
to the boundary conditions

oy 09
=0: :O’ — =0, — =0,
y=0:0=0 5079 5%
(3.4.11)
y_)ooa_LIJ:Uw’a_(p: 00 )
oy oy

Let us now introduce the following transformations due to Blasins for dependent
and independent variables :

VX 1 U,
W =/(VU.x) (&),0= Bw\/U:m (8. ¢ =§y\/% (3.4.12)

Then
1 1 |U_v
=2U '), v== —=-%&f'€)-1fE€)}
U= ULf@), v= o [ E @) -TE))
(3.4.13)
B, = B.g(). B,=.8, | ' [(g€)-0€)}
X 2 oog 1 y 2 00 wa g g
and the equations (3.4.8) and (3.4.10) reduce respectively to
fm +f" _ngg" :O’ (3414)
9"+P. (fg'—f'g)=0 (3.4.15)
where the prime denotes differentiation with respect to ¢ and
2
P, = B. 5~ (magnetic pressure number),
(3.4.16)

P :% =M vo (magnetic Prandtl number)

rm

The magnetic pressure number is interpreted as the square of the ratio of the Alfvén
speed to the undisturbed fluid flow speed.

The boundary conditions (3.4.11) then give
§=0:f=0,f"=0,g=0
§ > o0:f'=2,g=2 (3.4.17)
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Greenspan and carrier (1959) have pointed out that for P, > 1, the whole
formulation of the problem breaks down, because then the afvén speed becomes
greater than the fluid speed and the disturbances penetrate upstream ahead of the plate.
Thus it is not possible to describe the flow in terms of the Blasius variables which
are based on leading edge. They obtained the solution for P, =1 and (1 - Py) <1
and concluded that the entire flow is plugged, i.e., brought to rest at the critical value
Pp =1

The existence and uniqueness of the solutions of equations (3.4.14) and (3.4.15)
have been studied thoroughly by various authors in different directions. However, we
consider here a series solution given by Glauert (1961).

Glauert’s Series Solution :

Let us suppose that Py, < 1 and (1 — Py, is not small. Glauert obtained solutions
for large and small magnetic Prandtl number.

Case |—Perfectly conducting fluid
In thiscase 0 - o so that Py — o and then the equation (3.4.15) reduces to

fg —f'g=0 (3.4.18)
whose only solution satisfying the boundary conditions (3.4.17) is

9(€) = (&) (3.4.19)
which when substituted in (3.4.14) leads to

f" +(1-Pyff =0 (3.4.20)

This equation is to be integrated under the boundary conditions (3.4.17).

The solution of (3.4.20) is related to the blasius solution F(§) [i.e. the solution
of (3.4.20) with Py, = 0 and the boundary conditions (3.4.17) asin the case of ordinary
fluid dynamics] by the relation

1 1
f(8) = 0-P,) *HA-P,) 28 (34.21)
where
1 1
f'(0) = 1-P,) 2F"(0) =1328(1-P,)2. (34.22)
However, the result breaks down when P, = 1. Because, in this case the inertial forces
are calcelled by the electromagnetic force as a result of which the boundary layer
approximations no longer hold. On the other hand, for 0 < P, < 1, the solution (3.4.21)
shows that the effect of magnetic field is to thicken the viscous boundary layer and
reduce the skin friction and the result is valid for al values of Py,
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Case Il : Large magnetic Prandtl number :

A series solution of equations (3.4.14) and (3.4.15) were obtained by Glauert by
matching the inner and outer expansions of f(&) and g(&) for large values of Py, and
noted that the skin-friction 1, a the plate and the tangential component B; of the

magnetic field are given by

Y 1
=O[33206p(u)°(°vj (1-P.)?

rm m rm

X{l— 0 [4444P, Elpi x |og(1pfr|;] +0 E577FF:m +0(P2log? P,, )}

(3.4.23)
and
1
B,=-B_g'(0
t 2 oog ( )
1

=005549B, (1-P,)*P, 3{1—(0[4148P, +0[1778) x

p -1 |og(1P;;] +(01583R, —0026)P;* +0(P; log? P, )}
(3.4.24)

Case |11—Small magnetic Prandtl number :

for small electrical conductivity, i.e. for small values of P, the corresponding
values of 1, and B; obtained by Glauert, are

1 1
39 \2 2
T,=0 Bazoe(uwv) 1-2 [2875':;” Fon +101104R, [P, Dog{(1-P,) (P, } +
X —_

m

2
+11[814P, [P, +0 [606 dgwi':"; +0(P¥2logP,, )} (3.4.25)
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1 1

and B, = B_{1-105250(1-P, ) 2P2 +3[028P, —0 117

P

m P +0(PlogP. )\
a_py m+ 0P 100 rm)} (3.4.26)

Note: For details of the results considered in this section, the reader should consult
with the paper—Glauert, M.B. : A study of MHD Boundary Layer on a Flat Plate,
Journal of Fluid Mechanics, Vol. 10, Part Il, pages 276-288 (1961).

SUMMARY

Thisunit isdedt with an outline of steady two-dimensional MHD boundary layer flow.
The discussions are limited to the large and small electrical conductivity. Equations are
established for different types of flows of which the solutions are given only for one
problem.

MODEL QUESTIONS

Short questions:

1. Define : velocity boundary layer (or viscous boundary layer) and magnetic boundary
layer, magnetic Prandtl number.

2. What are meant by thickness of velocity boundary layer and that of magnetic
boundary layer from the wall?

3. How does the MHD boundary layer theory differ from ordinary boundary layer
theory for incompressible viscous fluid?
Broad questions :

1. Deduce the Prandtl—MHD boundary layer equations for a strong interaction of the
magnetic fied.

2. Deduce the MHD boundary layer equations for aweak interaction of the magnetic
fidd.

3. Deduce the basic equations for MHD boundary layer flow past aflat plate in an
aligned magnetic field and give a sketch of Glauert’s series solutions of these equations for
(a) perfectly conducting fluid, (b) large magnetic Prandtl number and (c) small magnetic

Prandtl number.
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Unit 4 O Magnetohydrodynamic Shock Waves

Structure

4.1 General Considerations

4.2 Magnetohydrodynamic Shocks

4.3 The Generalised Hugoniot Condition

4.4 The Compressive Nature of Magnetohydrodynamic Shocks

4.5 Classification of Magnetohydrodynamic Shock Wave

4.1 GENERAL CONSIDERATIONS

Of the many possible types of magnetohydrodynamic wave motion, asin ordinary
gas dynamics, the simplest one is the class of one-dimensional flows which can exist
adjacent to aregion of constant state, i.e. in aregion in which the density p, velocity
v, magnetic field B etc. all have constant values. In this case, the flows describe the
basic transition flows of magnetohydrodynamics such as compression and expansion
processes that must take place if a gas undergoes a change from one constant state to
another. These waves represent simple solutions of the magnetohydrodynamic
characteristic equations and the behaviour of all the physical quantitiesis determined
by a single ordinary differential equation. It can be shown that it is a direct
consequence of the result that the dependent variables p, v, B, involved in the wave
motion adjacent to the constant state may all be expressed as functions of one of these
dependent variables, say p, Magnetohydrodynamic waves having this special property
is caled magnetohydrodynamic simple waves.

For simple wavesin aperfect gas, it is seen that under certain conditions the wave
profiles of the dependent variables can steepen until at acertaintimet = t; (say), they
develop an infinite gradient. It is also noted that the solution is not unique at time t;
and that it is sufficient to take this non-uniqueness in the form of an ordinary jump
discontinuity in the dependent variables when crossing the wave front. Such type of
wave for which the dependent variables experience finite jJumps across the wavefront,
is called a shock wave and the shock waves are strong discontinuities while the wave
fronts considered in Unit-3 are weak discontinuities.
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This situation is obviously a mathematical idealisation of a physical process
involving real gases with dissipative effects in which there are large changes in
physical variables within avery thin region of the flow. It is found experimentally that
the thickness of a shock wave in areal gasis of the order of a few mean free paths.
Thus a mathematical idealisation of a shock wave in which the dependent variables
experience a finite jump across a geometrical surface is a good approximation in
reality. In our discussions, we shall neglect the dissipative effects of viscosity and
electrical resistivity.

Before we establish an important theorem regarding the rate of change for volume
integral, in which the bounding surface is moving, let us first recall the genera
differential form of a conservation law given by

%¥~+D$% G (4.1.1)
By integrating this equation over a volume element dV and using the definition of the
divergence operator, we can intepret this equation physically. We find that the sum
of the rate of change of a scalar U contained in a volume element dV and flux of the
vector F into dV isequal to the contribution from the source distribution G throughout
dV per unit time.

Now let us consider a general theorem which is important in the study of shock
waves. For this, we must take into account the possibility of discontinuities across a
moving surface which we now call shock front. Suppose an arbitrary surface S(t) is
moving with velocity q that bounds a volume V(t) in which a differentiable scalar
function U is defined.

Let
| = jUdv

4.1.2
KA (4.1.2)

% 5
ot

But during this time increment dt, the volume bounded by S(t) changes as V(t) changes.
In order to find the effect of this change we note that the vector surface element dS
of S(t) moves adistance qét in the time increment dt, and so the corresponding element
of volume change is q.dS d&t. Thus the corresponding increment in the integrand of |

due to this is thus U,.dSot. Combing all these results, we have

ou
| +dl = {U +—6t}dv + [ Ug.dSét 413
vJ(.o ot s'([> ( )

So that in time increment t, the integrand of | becomes, to the first order, U +
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Subtracting (4.1.2) form (4.1.3), dividing the result by &t and then taking the limit as
ot —» 0 we have the following volume rate of change theorem

D ov
v(t) v(t) s(t)

b

ie JUdV = J udv = j {‘?;+D.(Uq)} dv

V(t) V(t) V(t)
(By Gauss divergence theorem) (4.1.5)

We now use this theorem to derive the jump conditions that are permitted by a
conservation law of the form (4.1.1). Suppose a discontinuity surface exists and that
an arbitrary part S*(t) of it divides the volume V (t) into volumes V(t) and V(t) and
the surface S(t) into surfaces Sy(t) and S;(t) respectively. We denote the value of
functions on adjacent sides of, and arbitrarily close to S*(t) by the suffixes 0 and 1
according as S*(t) is approached from V(t) and V4(t) respectively.

Now assuming that neither U nor G have any singularities, we have from (4.1.4)
by using (4.1.1)

D

- Juav = [(Uug-F) s+ [Gav (4.1.6)

V(1) S(t) v(t)

So, by subtracting from this equation the corresponding equation in which V(t) is
identified with V(t) and V4(t), we have

[ (U, =F)ods,* + [(Ug-F), [@S,* =0

4.1.7
s) s) ( )

where dS;* is the outward directed vector surface element of S*(t) with respect to
V4(t). But dSy* = —dS;* = pgs*, where  is the outward drawn normal to S*(t) with
respect to V(t) and S*(t) isan arbitrary part of adiscontinuity surface. Thus, we have
from (4.1.7)

(Ug-F),.Ai—(Ug-F),.h =0 (4.1.8)

If we denote the jJump X; — X, in the quantity X across S*(t) by [X], then the equation
(4.1.8) can be written as

[XU -F. ﬁ] =0 (4.1.9)
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where
A=q.A (4.1.10)
is the normal speed of propagation of the discontinuity surface.

As a specia case, if the source term G of equation (4.1.1) is a divergence of
some vector G, i.e, G= (.G, Which is also discontinuous across S*(t), then the
volume integral in the last term of equation (4.1.6) can also be transformed into a
surface integral by Gauss divergence theorem and, by the same argument as above,
we obtained the jump condition

[A\U-F.A]+[G.A]=0 (4.1.11)
Equation (4.1.11) is the compatibility condition to be satisfied by jumps in the terms
U and G of the conservation law (4.1.1) across each element of area of a general
curved discontinuity surface which moves with local normal velocity A = g.f.

4.2 MAGNETOHYDRODYNAMIC SHOCKS

In order to determine the jJump relations in magnetohydrodynamic shocks, we first
display the constitutive equations in conservation form. Equation (1.2.4) is already in
conservation form

0
a—f+ [M(pv)= 0 (4.2.1)
The momentum equation (1.2.3) can easily be transformed in the following

component form :

0 0 B? 1

—(pv,) + M(pv,VF —— +—[(B,B

6t(p )+ (pv, v ax(p* 2“6] e (B,B) (4.2.2)
and similar two equations. Also for large magnetic Reynobls number, the equation
(1.4.4) gives

a;'t" +0.(B,vF O (v,B)

and similar two equations.
The energy conservation equation (1.9.9) with no dissipative effects reduces to

o(1 B? 1 ., B?
—| =pv® +pe+ + 04V =pv™+ per
ot (2 PV pe 2“’e] {V(Z Ve P 2,

=—D-(|Ov+ g v—(V'B)B] (4.2.4)

TR
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Applying the result (4.1.11) to the above equations, the following jump conditions
are obtained :

(a) mass conservation
[Xp —pV. ﬁ] =0 (4.2.5)

(b) momentum conservation

[va — pv(v. ﬁ)] = {p +28—“Jﬁ —“ie[(B. f)B] (4.2.6)
(c) magnetic field
FB%mmﬂ:{QﬁW] (4.2.7)

(d) energy conservation

i 2 2
= X(lpv2 +pe + B ]—(lpv2+pe+ B ](v.ﬁ)}
| (2 2u

e) \2 2l
= _p(v. n) + 25:6 (v.n) = (Vg?) (B. ﬁ)} (4.2.8)
(e) Solenoidal jump condition
[B.A]=0 (4.2.9)

Sometimes, it is useful to express these results in terms of the normal fluid
velocity component

V, =V.A—A (4.2.10)
relative to the velocity of the idscontinuity surface and in such a case, the jump
conditions are :

(a) mass conservation
[pV,]=0 (4.2.5)
(b) momentum conservation

~ _ 1
[pvnv + p* n] = “_[BnB] (426')

(c) magnetic field
[v.B-B,v]=0 (4.2.7)
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(d) energy conservation

~(1_, B? . (v.B), |_

a0 o “428)
(e) solenoidal jump condition

[Bd =0, (4.2.9)

2

where plF p+ ZB is the total pressure and the suffix n denotes the normal

e

component.

Equation (4.2.4") shows that the mass flow m, say, through the discontinuity
surface is constant, so that

M =PV, =PV, (4.2.11)

in which 0 and 1 denote opposite sides of the discontinuity surface. If m # O, then
a discontinuity surface will be called a shock. Hence fluid particles must cross a
shock front. It aso follows from (4.2.8) that B, is continuous across a shock front.

In our discussions, we shall assume that shock propogation is steady and that the
shock front (discontinuity surface) is plane, so that the jump conditions are uniformly
true across the entire shock front for all time. The constant value of ) determines how
the shock moves relative to the given reference frame. In particular, if ) = Q, the shock
is stationary; whereas if A =V _,, then v, = 0 and the shock propagates with speed

V,, into the gas of region 0 which is at rest.

4.3 THE GENERALISED HUGONIOT CONDITION

Let us rewrite the energy equation (4.2.8") in the form

%m[vz] +m[e] +2_r;1[TBZ] +[v,p] +

1
21,

Bn
21,

[v.B?]-=-[v.B] =0 [4.3.1]
where T = 1/p is the specific volume of the fluid. But R = C, — C, and the adiabatic
exponent y = C,/C, while for a polytropic gas e = C, T and, therefore, we can write
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the equation (1.9.11) as

e=——" [4.3.2]
Then the energy equation (4.3.1) becomes

] +yi_1[m] +2ﬂ“e[TBZ] +[v,p] +2—1e[vn82] —ZB—:[v. B]=0 [433

We can replace the first term of this equation by forming the scalar product of
. _ 1
equation (4.2.6) with < v >, where <Q >= > (Qo +Q,) denotes the average value of
Q. The transformed equation of (4.3.3) is then

M o]+ [v,pl-[p] <V, >+ [1B?] +——[v,B]
y-1 2

e e

B 1 B
—“—“[v. B] _2_[32] <v, > +u—“[B]. <v >=0 [4.3.4]

e e e

Now the speed ) of the discontinuity surface must be continuous across the
discontinuity surface and, therefore, it follows from equation (4.2.9) that

[Va]=[v] [4.35]
e, mt]=[v,] [4.3.6]
So applying the identity [PQ] = < P> [Q] + < Q > [P] to the second and third terms

of equation (4.3.4), using equation (4.3.6) and re-writing the remaining terms
containing the magnetic field vector we find that

e e

B 1 B
~ LBl (B <v, > e8] <v >=0, [4.3.7

Expanding terms of the form [PQ] in equation (4.3.7) and using the identity
1
<P?>PJ? EZ[F’Z] we get, together with the result

m < 1 > [B] . <B> + m[t] <B>2 = B[v].<B> [4.3.8]
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which is obtained by forming the scalar product of equation (4.2.6") with <B>

y_il[pT]+ <p>[1] +i[T][B]Z =0 [4.3.9]

e ler<p>T] =—%[T][B]2 (4.3.10]

provided that m # 0. The relation (4.3.10) with right hand side zero is the Hugoniot
relation of ordinary gas dynamics and, for this reason, the equation (4.3.10) is known
as generalised Hugoniot relation.

If the magnetic field B is normal to the plane of the shock then the conducting fluid
behaves as an ordinary fluid for then, as B = B n and since H, is continuous across
the shock front, we must have [B] = 0.

We can express the pressure ration p,/py across the shock front from the equation
(4.3.9) in terms of the ratio r = 1y/11 (= p1/Po) &S

P _(y+Dr—(y-1  [B (y-D(r-1) _
Po (Y+D)—(y-Dr 2pp, (Y+)—-(y-Dr

(4.3.11)

44 THE COMPRESSIVE NATURE OF MAGNETOHYDRO-
DYNAMIC SHOCKS

The jump conditions (4.2.5") and (4.2.9") relate values on adjacent sides of a
discontinuity surface. But these do not determine the senses of the jumpsinvolved (i.e.
the increase or decrease). Since in a physical situation, a solution must be unique, it
is clear that some extra condition must be imposed on the jump conditions so that we
may have real jump conditions. For this we require the thermodynamical requirement
that the entropy cannot decrease across a shock front. This supplementary condition
is imposed from outside the framework of MHD and that it is implied by the second
law of thermodynamics.

First, we suppose that the direction of the normal to the shock front is such that
V.=V, —A>0 (4.4.1)
and denote the quantities by the suffix 1 on the side of the shock front into which

is directed and the other side by 0. Thus the fluid particles leave region 0 and cross
the shock front to enter into the region 1. In general, we refer to the side of the shock
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front through which the fluid enters as the front of the shock or the side ahead of the
shock, while the other side is called the back of the shock or the side behind the
shock.

Now since by the second law of thermodynamics, the entropy cannot decrease
across a shock front

S, =S, (4.4.2)

which also implies that p; > pg and p; > po. Thus the second law of thermodynamics
imposes the requirement that compressive shocks are allowed.

Again from equations (1.9.14) and (1.9.15), it follows that

-l-V
%—%=%m%%i] (4.4.3)
ie %—%=%k4ﬁj—WJwr (4.4.4)

2
where r = T¢/T,. Now putting k> = Z[B] , it follows from (4.3.11) that
elF0
2 2
b _ ARy +Dr=(y-D-k'r _ L+Kk?) Ay +Dr=(y-1}
Po (y+D)—(y-Dr {(y+D)-(v-Dn}
since k2 is non-negative. Noting that the pressure ratio is inherently positive, the

numerator and denominator of the inequality in (4.4.5) must be of the same sign. Also
the fact that y > 1 shows that

y_1<r<y+1

(4.4.5)

v+l y—1 (4.4.6)
We now proceed to show that if
_(y+Dr—(y-3
B (Y (4.4.7)

Po  (Y*+1)-(y-Dr’
then the entropy condition (4.4.2) implies that r > 1. Using (4.4.7), we have from
(4.4.4)

_ (y+Dr—(v-1
%—%—CJW{W+D_W_D}—kam (4.4.8)
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Let us assume that the state O ahead of the shock to be a fixed state so that r = r(Sy).
Then from (4.4.8) we get

ds, _ C.y(y* -1(r-1°

dr fy +r—(y-DH(v+D)-(v-1)1
Now the numerator is positive and since both the factors in the denominator have the
same sign (by (4.4.6)), so

(4.4.9)

d_Sl >0
dr
Also the condition (4.4.2) implies that the entropy cannot decrease across the shock
and the condition (4.4.10) implies that S; and r change in the same sense, so r1(S,)
increases across aMHD shock. Asr(Sp) =1, sor > 1 and hence magnetohydrodynamic
shocks are compressive. Inequality (4.4.7) must then be modified to

(4.4.10)

y+1
1<r< y_—l (4.4.11)
The mass conservation jump condition (4.2.5") shows that
V, = IV, (4.4.12)

and, therefore, the gas ahead of the shock moves faster than the gas behind the shock
relative to the shock front.

The local Mach number M = v/a of an ordinary gas flow is defined to be the
ratio of the gas speed v and the local speed of sound a. In general, the mach number
isafunction of position, while in the steady flow across a shock, it will have different
constant values on opposite sides of the shock front. If, for agas, M < 1, then its flow
Is said to be subsonic and if M > 1, then the flow is called supersonic.

Let us now consider a stationary perpendicular MHD shock in which the magnetic
field acts normal to the direction of flow. Suppose the normal lies along the direction
of x-axis so that B,, = 0 and v,, = v, = |v|. We denote the transverse magnetic field
by B,,. Then equations (4.2.5") and (4.2.8") become

pl - VxO
P 4.4.13
pO Vxl ( )
2 Bb _ .2 BL
PoVy, TP + 20, =PV, TP +2“e (4.4.14)
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. B_to (4.4.15)
2 2
% 2 + Y% fBulo L 0T BuL, (4.4.16)
y-1 p, 2 y-1 K
Equations (4.4.13) and (4.4.15) show that
— pl - —_ Btl _VxO
r=bi="e-2u_Je 4.4.17
pO Tl BtO Vxl ( )
and then we can write equations (4.4.14) and (4.4.16) in the form
1 p
M (1——)-— (—1—1] —10_(r?-1)
r V{ Po 2I1epo (4.4.18)
1 p
M (1—)- ( L —1] 0 (r2 -1)
and i y{ 0, 2uepo (4.4.19)

where we have used the relation a2 = yp,1,, Noting that MHD shocks must be

compressive so that r > 1, we get, by eliminating the ratio p,/py between these
equations, the following quadratic equation in r :

2 2
@-v)5 0 +v{ Bo_ 1y _nme +1}r——v(v+1)M2—0
epo 2p'ep0 2

(4.4.20)
Conseguently, since r > 1, the equation (4.4.20) yields the inequality

1 B? B? 1
“y(y+D)M: >(2- 0+ 0+ (y=D)M: +1¢,
2y(v Mg > ( y)2uepo y{Zuepo 2(y )M }

provided y <2(y=5/3) for plasma More precisely, we can write the above
inequality as

V2> b2 +al, (4.4.21)
where by, the Alfvén speed ahead of the shock, is given by
BZ
b = —2° 4.4.22
t0 1.0, ( )
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By analogy with the Mach number, we may define Alfvén number A as the ratio
of the, fluid speed v to the Alfvén speed b, i.e.

\
A=~
o (4.4.23)

and, then, the inequality (4.4.21) gives

Thus the flow ahead of a perpendicular MHD shock is super-Alfvénic relative to
the conditions ahead of the shock front. Similarly, the flow behind the shock front is

1
sub-Alfvénic relative to the conditions behind the shock front. Theratio y_ / (bt2 + a2 )E

is called the magnetic Mach number.

45 CLASSIFICATION OF MAGNETOHYDRODYNAMIC
SHOCK WAVE

We have seen that a continuous wave motion can tend to a shock wave under
certain conditions. This fact, when coupled with different types of wave motions, e.g.,
fast and slow waves, transverse waves and entropy waves leads to classification for
shock waves. To establish such a classification for MHD shock waves we first use

(4.2.9) and (4.2.1) to write the jump relation (4.2.6) in the form
Bn

mivi +Pga+ L <B > B -
(1]

[B] =0 (4.5.1)

Then, using the scalar equation (4.3.6), viz.

m[t] vl =0
which was derived from the continuity of the shock front velocity 3, the jumps relation
(4.2.7') gives

Biv] —<B > [v]-m<t>[B] =0 (4.5.2)

The two vector equations (4.5.1, 2) and the scalar equation (4.3.6") then represent

seven homogeneous scalar equations for seven scalar, jump quantities, viz, the six
scalar components of [v] and [B] and scalar quantity [t1]. These equations will be

consistent and a non-trival solution exists, provided that the determinant of the
coefficients of these jJump quantities vanishes, i.e.

113
PG MT (XB-1)-8



2
<1>? m{<'[ >m? _E}{<T >m?* +(<t >[1]7[p]

e

<B>?

BZ
m® —[1]7[p] “} =0 (45.3)
We may regard this either as an equation for mass flux m through the shock front, or
as an equation for the shock velocity. In fact, by writing equation (4.4.1) in the form
mt = v, —A, and averaging across the shock front we find that

A =<v, >-m<T > (4.5.4)
The vanishing of different factors of equation (4.5.3) corresponds to different
modes of MHD shock wave propagation.
(a) Fast and slow shocks
Suppose the last factor of (4.5.3) vanishes so that

<t>m (<t >[p - <B 7 me - B = 0
e, (M) + [T]-l[p](mZ— <> ﬁ—] - mé—”_« B >-B?) (455)

This is a quadratic equation in m2 having two roots mg (smaller one) and my (larger
one). Since the right hand side of this equation is positive, each factor on the left hand
side must be of the same sign and so

mZ < -{1]'[p] £ m,® (4.5.6)
2 Bz 2
and m;S < L —<m; (4.5.7)
He <T>

Now we know from thermodynamical considerations of section-4.4 that [p] > 0 across
a shock wave and [1] < 0 and, therefore, the middle term in (4.5.6) is positive. The
roots my and mg of equation (4.5.5) describe the mass flow or the shock velocity of
fast and sslow MHD shock waves.
The use of the equation (4.5.5) and the jump relations (4.2.5) to (4.2.9) give the
jump of quantities across MHD fast and slow shocks as
[B] =€, ,m*(<B >-B,n), (4.5.8)
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[v] = gfysm(% <B>-<t1 >m2ﬁ], (4.5.9)

e

BZ
[t] = —Ef,s(q >m’ —“—] (4.5.10)

in which &, ¢ is a parameter characterising the strength of the jump across a fast (f)
or a slow (s) shock.

Notingthat [B?] = 2 < B.[B], it follows from (4.5.8) that
[B]* = 2, ,m*(<B > -B}) (4.5.11)
and, therefore, taking scalar product of (4.2.6") with n and using this result we get

2 2 < B >2
[p] =& M| <T>m" - 0 (4.5.12)
Finally, eliminating &, 5 between equations (4.5.10) and (4.5.11), we find that
BZ
[B*] = 2m*[1]{<B >* -B}} / {<T >m? —”}. (4.5.13)
He

Since [1] < 0 across a shock wave, it follows from the equation (4.5.13) and the
inequality (4.5.7) that the magnetic field increases across a fast shock, but decreases
across a slow shock. Also the equation (4.5.8) shows that the magnetic field
experiences a tangential jump discontinuity on crossing the shock front.

Expanding equation (4.5.8) we get

1+ ;af’sm2
By = 1 Bio
1- "¢, m?
2 »

in which the suffix t denotes the transverse component. Consequently,

& ,m’

[Bl=[B]=| —5——
1—££me2
2 ¥

B

to

This shows that the jump [B] is paralel to By, while we see from equation
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(4.5.8) that the sense of the jump is the same as that of the tangential component of
<B>.

(b) Transverse shocks

Here we suppose that the second factor of (4.5.3) vanishes and this gives the
result

BZ
m=z= n
(“e < T] (4.5.14)

Such types of disturbances are called transverse shock waves. It follows from the
jump equations (4.2.5") to (4.2.9") and the equation (4.5.14) that in transverse shock
waves

[B] =em <B > xn, (4.5.15)
[=e>n <B>xh (4.5.16)
[1] = 0, (4.5.17)
[p] = O. (4.5.18)

It is evident from (4.5.15) and (4.5.16) that the jumps [B] and [v] are paralel and
lie in the plane of the transverse shock, but the pressure and density remain constant
across it. Noting that the density remains constant, we get from (4.5.15) and (4.5.16)
the relation

1
[V]=+ [B]\/u_ep (4.5.19)
Also the equation (4.5.15) implies that
[B =2<B>.[B] =0 (4.5.20)

Thus the magnetic field remains unchanged across a transverse shock and this field
simply rotates on crossing the plane of the shock.

Equations (4.5.17) and (4.5.18) together with the equation (4.4.3) yields
[S] = 0. (4.5.21)
(c) Contact discontinuities
The vanishing of the only remaining factor in equation (4.5.3), namely
m=0 (4.5.22)
leads to the contact discontinuity which has no flow across the discontinuity surface.
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If B, # 0, the jump relations (4.2.5') to (4.2.9') are given by

[B] =0 (4.5.23)
[v] = 0 (4.5.24)
[p] =0 (4.5.25)

but [T] may be arbitrary.

However, if B, = O, then

[p*]= [p + 2E:1J =0 (4.5.26)

and the tangential components of the jumps [B] and [v] may be arbitrary.
(d) Weak shocks

Here we note that although B, v, T = 1/p and p are continuous across the
discontinuity surface, their first derivatives are discontinuous there. Consequently, we

make the following changes in notations :

V] - dv,[1] - —pizép, [B] - B

and m - Fpc,,<T1>- l,_ﬂ - p’a’,<B>-B
p [T
in which & denotes the jump in the normal derivative of the quantity associated with
it on crossing the wave-front and & = ypt. This result implies that shock waves and

weak discontinuities propagate at different speeds.

Now for a weak shock, we can write the density ratioasr=1+¢, 0<e <1,
Thus from (4.4.9), we have

ds, _ 2
& 2 NV -1 €

integration of which leads to

1
Sl_SO _ECVV(VZ _1) £.

Thus the entropy change S; — S across a weak shock is of third order with respect
to the change in r. It also follows that the entropy increase across a shock is not
greater than third order with respect to the change in B.
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SUMMARY

In this Unit, an elementary idea of magnetohydrodynamic shock waves has been
given. The propagation of the discontinuity surface, jump conditions, the generalised
Hugoniot condition have been carried out. The compressive nature of MHD shocks
and their classification are also shown.

MODEL QUESTIONS

Short questions::

1. Define : shock wave, strong and weak discontinuities, shock front, front
(ahead) and back (behind) of the shock, Mach number, supersonic and subsonic flows,
Alfvén number, magnetic Mach number, super and sub-Alfvénic flows, fast and slow
shocks, transverse shock waves, contact discontinuity, weak shock.

2. When is a discontinuity surface called a shock? Show that fluid particles
cross a shock front.

3. Show that fluid enters on the side of the region of the shock front into which
the normal p is directed, but leaves on the opposite side.

4. Show that the jumps [B] and [v] are parallel to one another for transverse
shock and lie in its plane, but the pressure and density remain constant across it.

5. Show that the magnetic field remains unchanged across a transverse shock.

6. Show that the entropy change across a weak shock is of third order with
respect to the change of density ratio.

7. Show that the magnetic field increases across a fast shock and decrease a
slow shock

8. Show that for fast and slow shocks, the jump [B] is parallel to By.

9. Find the limits in which the density ratio lies.

10. Show that, relative to the shook front, the gas ahead of the shock moves faster
than the gas behind the shock.
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11. Deduce the equation describing the mass flow (or the shock velocity) of fast
and slow MHD shock waves.

12. Derive the jump conditions across fast and slow MHD shocks, transverse
shocks and contact discontinuities.

13. Deduce the equation describing the mass flux (or the shock velocity) through
the shock front.

14. If the magnetic field B (# 0) is normal to the plane of the shock, then show
that the conducting fluid behaves as an ordinary fluid.

Broad questions::

1. Deduce the compatibility condition to be satisfied by the jumps in terms of
the conservation law across each element of area of a general curved discontinuity
surface moving with local normal velocity.

2. Establish the jump relations that are permitted in MHD shocks. Hence give
physical interpretations of these relations.

3. Deduce the generalised Hugoniot condition for MHD shock waves. Hence
show that if the magnetic field is normal to the plane of the shock, the conducting fluid
behaves as an ordinary fluid.

4. Show that MHD shocks are compressive in nature.

5. Show that the flow ahead of a perpendicular MHD shock is super-Alfvénic
relative to the conditions ahead of the shock front.

6. Deduce the equation for the mass flow (shock velocity) through the shock
front. Hence classify MHD shock wave propagation according to the vanishing of
different factors of this equation.

7. Using the generalised Hugoniot relation, the equation of state pt = RT and
the fact that MHD shocks are compressive, prove that the temperature behind a shock
is greater than the temperature ahead of a shock.
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