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PREFACE

In the curricular structure introduced by this University for students of Post- Graduate
diploma programme, the opportunity to pursue Post-Graduate Diploma course in any
Subject introduced by this University is equally available to all learners. Instead of
being guided by any presumption about ability level, it would perhaps stand to reason
if receplivity of a learner is judged in the course of the learning process. That would
be entirely in keeping with the objectives of open education which does not believe
in artificial differentiation.

Keeping this in view, study materials of the Post-Graduate Diploma level in different
subjects are being prepared on the basis of a well laid-out syllabus. The course structure
combines the best elements in the approved syllabi of Central and State Universities
in respective subjects. Tt has been so designed as to be upgradable with the addition
of new information as well as results of fresh thinking and analysis.

The accepted methodology of distance education has been followed in the
preparation of these study materials. Cooperation in every form of experienced scholars
is indispensable for a work of this kind. We, therefore, owe an enormous debt of
gratitude to everyone whose tircless cfforts went into the writing, editing and devising
of a proper lay-out of the materials, Practically speaking,.their role amounts to an
involvement in ‘invisible teaching’. For, whoever makes use of these study materials
would virtually derive the benefit of learning under their collective care withoul each
being seen by the other.

The more a learner would seriously pursue these study materials, the easier it will
be for him or her to reach out to larger horizons of a subject. Care has also been taken
o make the language lucid and presentation attractive so that they may be rated as
quality sclf-learning materials. If anything remains still obscure or difficult to follow,
arrangements are there to come to terms with them through the counselling sessions
regularly available at the network of study centres set up by the University.

Needless to add, a great deal of these efforts is still experimental—in fact, pioneering
in certain areas. Naturally, there is every possibility of some lapse or deficiency here
and there. However, these do admit of rectification and further improvement in due
course. On the whole, therefore, these study malerials are expected to evoke wider
appreciation the more they receive serious atlention of all concerned.
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Unit 1

(Contents : Vector spaces, convex sets, their algebra, convex hull of a set, its
representation Theorem, Symmetric sets, balanced sets, absorbing sets, Linear operators
over a vector space, space of linear operators, Isomorphism between vector spaces,
Topological vector spaces, Translation and multiplication operators as
homeomorphism, Bounded sets in TVS, Fundamental properties of TVS.)

§ 1.1 Linear/Vector spaces :

Let R {¢} denote the field of reals (complex) scalars.
Definition 1.1.1 A vector-space X is a collection of objects called vectors satisfying
following conditions :-
. X is additively an Abelian Group, the additive identity O in X being called the
zero vector in X.

1I. For every ordered pair (&, x), where o, is a scalar and x €X |, there is a vector
donoted by owx, called scalar multiple of x in X satisfying

(aj l.x = x for every x € X ]

(b) @ (x + y) = ox + oy for all scalars o and for all vectors x and y in X,

(c) (o + i}j x = ox + Px for all scalars o and P for all vectors x € X,
and  (d) o (Bx) = (of)x for all scalars o, P and for all vectors x & X.

For example, the Buclidean n-space R" consisting of all ordered n-tuples (xy, X3,
..., X, ) of reals x; forms a vector space with scalars as reals, where vector addition and
scalar multiplication are taken as :—

(%12 Xy wor X + gz Y2u 2onr y.) = (% + Y1 Xp b Yy oo Xy F y,) and ¢ (x;, X s
Xx,) = (0%, OXp, «oy OX).
Similarly, the collection C [a, b] of all real-valued continuous functions over the

closed interval [a, b] (a < b) forms a vector space over reals by taking vector-sum
and scalar multiplication as :—



F+ray=f+g(yinast<bforf ge Cla b

and (& f) (f) = 0. f(t) in a < t < b for all scalars & and for all fe (g, h], We
need only remember that sum of two continuous functions over [a, b] and a scalar
multiple of a continuous function over [a, b] are also continuous functions over

[a, b].
A vector-space X may also be termed as a real or complex vectot-space according
as the associated field of scalars is that of reals or complex numbers,
Let A and B be two subsets of a vector space X and let @ be a scalar. Then
A+B=(a+tb:ae Aand be B}
O0A={oa:ae A).
Clearly A + B = B + A,
But A — B may not be the same as B — A; because take A = {{1, O)} and B =

(€0, 0)} as singleton in Euclidean 2-space R?; where we find A — B = (1, 0)}, and
B-A{(-1,0)}.80A ~B+B - A

Also A — B may not be the same as 24| . Let us take A © R? with A = i
(0, 1)}. Then we have 2A = {(2, 0), (0, 2)) and A + A = ((2, 0, (0, 2), (1, 1)}, So
here 2A #+ A + A. Forx e X the subset x + A = [x + a: aed) is called a translate
of A,

Example 1.1.1 : The Unitary space ¢™ = collection of all ordered n-tuples of

complex numbers forms a vector-space where vector addition and scalar multiplication
,are given by

2HW=(z+ W, + W02, +w,)
and Az=(Az,Az;,..,Az,) where

Z=(Z 20 s W= (W, Wy, )€ €7 and A is a complex scalar.

Definition 1.1.2. : A finite sct of vectors x, Xy, ..., x, in X{ is said to be linearly
dependent it there arc scalars ¢y, ¢;, ..., ¢, not all zero such that ¢.x, + Coxa# ...+

¢x, = 0. : : \

If the set (x), x;, ..., x,) is not linearly dependent, it is called (Vectors Xi, Xay «e
x, are called) linearly independent.



Explanation : IT (x;, x5, ..., ¥,) is linearly independent, then Z,Fl.r.;cr = () implies

that scalars A, =0 fori=1,2, .., n Also a finite subset of X that contains a linearly
dependent set of vectors becomes linearly dependent and any subset contained in a
linearly independent set of vectors becomes linearly independent. Plus, any subset of
¥ that includes the zero vector becomes linearly dependent.

Definition 1.13 : An infinite set E of vectors in X is said to be lincarly independent
:,|"' every finite subset of E becomes Linearly dependent. '

Example 1.1,1 : For any real @ show that (sin(x + 8), cos(x + @)} | is a linearly
independent set in Vector-space C[0, 2rt].

Solution : Let Asin (x + 8) + pcos (x + 8) = O
Or, A(sin xcos® + cos xsin 0) + [t (cos xcos B — sin x sin 8) = 0

Or, (hcosO - wsin®) sin x + (Asind + jicosO) cos x = O

T
‘This is true for O < x < 2, Taking x = 0 and x= 5 we have

heos @ — psin® = o = Asin 8 + {Leosd

A

or, “=—% or, A*+u’ =0 giving A=p =10

That means, Given set of vectors is Linearly independent,

Definition 1.1.4 : A veclor space X | is said to he finite dimensional if for some
"ve integer n, X contains a sct consisting of 5 vectors that are linearly mdcpendent
while every subset of (n + 1) number of vectors in X becomes lincarly dependent.

In this case we say Dimension of X = n,
or, Dim(X) = n.
¥ is said to be infinite dimensional (Dim (X} = =} if X is not fipile dimensional,

Example 1.1.2 : The Vector-space 2[4, b] consisting of all real-valued
polynomials in [a b] (a < b) is not a finite Dimensional veetor-space.



Solution : Let po(t) = 1, pi(1) = ¢, P (1) = ? o P (t)=1" .whereg<i<ph
Then {pg, p, ..., py .-} 18 2 subset of go[a, b]. It suffices to show that any finite part
of {pp Py - P -] becomes a linearly independent set in g@(a, b]

Suppose there arc scalars a, dy, .., a, not all zero such that doPy + ayp; + ...+
oty = 0
or agpglt) + aypy(t) + ... + apft) = 0 inasr<bh
or  agt+at+a + .. +aft=0 inasr<h (D)

Now 1.h.s. of above is polynominal of degree <n ; so (1) corresponding polynomial
equation does not have more than n roots : a contradiction that (1) in an Identity.

Hence the infinite set {py. py, py ... p,, ..} is a linearly independent set in @la, b)
and Dimension of @[a, b] is not finite.

Remarks 1. The vector-space fa,,,, [a, b] | consisting of all polynomials over[a,
b] of degrec < n (n being a +ve integer) is however finile dimensional, and

Dim (g2,,,[a. b)) =n + 1.

Remarks 2. The Eudidean 2-space R? over reals has Dim (R?) = 2; The Euclidean
plane taken as argand plane of all complex numbers x + Iy (x, ¥ reals) and treated

as a vector-space over & has Dimension = 1,

§ 1.2 Definition 1.2.1. A subset C of a Vector-space X is called a convex set if

for any two members x, y € C, and for any real, x, ye C, with 0 < o < 1, (ox +
{1 —a)y) e C

lor, equivalently, for any o, B with 0 <o, < 1, and = ot + B =1, (ox + Byle C.
lor, equivalently, aC + BC eC.

For examples, any interval in space Rl of reals; any circular disc in space R?| are
examples of convex sets. A circle in R? is not a convex set in RZ.

Theorem 1.2.1. (a) Intersection of any number of convex sels in a vector space
X is a convex set in X.

(b) If C is a convex set in X and X any scalar, than AC is a convex set in X.

%
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l(c) If A and B arc two convex Scts in X, then A + B is a convex set in X
Proof : The proofs are casy workout and left out.
Remarks 2. Union of two convex sets may not be a convex set in & vector-space.

For instance, a figure like X as a union of two triangular picces in R? s not a convex

set, through any triangular part of R* is a convex set.

Theorem 1.2.2. A subset B in a Vector space X is a convex set if and only if
sB + tB = (s + t) B for all +ve scalars s and t.

Proof : We have (always) (s + 1) B € sB + (B ik ]
Now if B is convex, and s, 1 are +ve scalars, we have

5 4
—B+—BCB
s+t s+t

ar sB+the (s+ 1B : i (7.0
(1) and (2) give sB + 1B = (s + 1) B.

Conversely, let (s + 1) B = sB + (B hold for all +ve and sand . Taking 0 <51
and t = 1 — 5 we find for any subset B of X.

sB + (1 — &) B = B; Hence B is convex.

Convex hull of a set : Let S be a non-empty subset of a vector-space X.Then
convex hull of §, denoted by conv. huss (5) = intersection of all convex subsets if
Xleach of which contains S.

So conv. hull (S) is always a convex sct, irrespective of S being cnvex or not;
and it is the smallest size convex set to cover 5.

Theorem 1.2.3 (Representation Theorem for convex hull).

Conv. hull (§) Consists of all vectors X = Oxy+ OpXy + ... + 0, X, Where Xy, ...

x, €8; o= 0 with Zﬂf =1 and then index n is not fixed.
=1

Proof : We apply Induction Principle. Let 71 be the collection of all vectors

Izﬂ,-x,-: a, 2 0 with Zﬂ’.- =1 and n is not fixed, For n = 1, we find every member

i=l y i=l

- of § belongs w.T. So S T.
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We show that T is convex. If u = ayx; + 0xy 4 ... + and @9 = Biyy + Boyy +
e+ By, are two members of T and if 0 < y < 1, then yp + (1 - T O =y, +v

oty o+ + 0L, + {] - Y} [il +..4+(1 = ] ﬁn= Tzag"'ﬁi =l —=p=] * where
k=l
Yo tYey o b YOG (I-Y) B ¢+ o o+ (1 = 9 f =

?EH.HI—?'?ZH* =¥+ (1-y)=1. Therefore yu + (1-13eT. So T is convex
i=1 k=1 3

suchthat Se T,
Thercfore conv hull (8) ¢ T
Now let W be any convex set containing S,
For n = 1, points of T are those of §, and therefore are tose of W. Lot us suppose

that points of T are those of W if points of T are like Y= Ea; + X+ where oy 2 0l
=l
with Z“.- =1, and oS, We now verify that the statement is valid for (n+ 1), and
i=l
induction will be complete.

i+l

aH
Take x'_'Zﬁ.xf, where B, = 0 with Zﬁf =land x; € §; Then x&'T.
= ey
TR
Put =+ B, + ..+ B, and f,v-T. E= 1, 2.0

Then {; 2 0 such that 2,34:151_ and by assumption y € 7| where
i=l

y =lxt Lxot.. + Lx, e W,
Now x =Ilx, + Ly + o v bx )+ (1 =D 5,y
=W+ (1 = D,
which is a member of W because Wi is convex containing y and Xiiqe
Therefore xe W. The conclusion is T ¢ W,
Since W is any convex sct contaimng § we have T e conv. hull (8) ... (2)

Combing (1) and (2) we have T = conv. hull (5)

Example 1.2.1 : If a, b, ¢ are position vectors of three non-collinear points A,
B and C in Euclidean 2-space K?, then conv, hull {a, b, ¢} equals to the triangular
region ABC of vector space R2

12



Difiniton 1.2.2. : A Subsel § in a vectorspace X is called symmeiric if -§ ¢ §.

For example, a circular disc centered at O of R% (Euclidean 2 space) is 2 symmetric
sel,

Remark 1. A symmetric set may not contain @ of the space. Consider the
annulus {z ! ry<l zl < ry 3 ry and r, are two +ve reals} is a symmetric set of R? and
it does not contain O.

Remark 2. Intersection of any number of syminetric sets in X is a symumnetric set,

Remark 3. Union of any number of symmetric sets in X is a symmetric set.

Remark 4. If § is a symmetric set, AS is a symmetric set for any scalar A.-

Remark 5. IT A and B are two symmetric sets, then A + B is a symmetric set.

Definition 1.2.3. A subset B in a Vecior-space X is called balanced if 0B < B
for all scalars o with | & | £ 1. L

Explanation : A balanced set is always symmetric. 1t also contains O of the
space. But there is a symmetric set without being balanced. Look at the set {z : 2 <l
713} of Buclidean 2-space R% It is symmetric, it is not balanced O ¢ this set.

Remark. Intersection of any number of balanced sets is X is balanced if and only
if C is symmelric.

Theorem 1.2.4. A convex set C in a vector-space X is balanced if and only if
C is symnetric.

Proof : Let C be a convex set in X and let € be balanced. Then of course
Definition 1.2.2. says that C is symimetric,

Conversely, let C he a convex set that is symmetric. Then —x € Cifxe Cl Then

1
% x+5(—x}E C or, 0 € C. Take la) < 1, and say, 0 <o < 1; For x €C, we have

ox + (1 — 0) Q& C because C is convex. Thus ox € C. Similarly, we can show that

ox & C whenever -1 < a £ 0. Therefore ox € C whenever el £ 1, Hence C) is
balanced.

Example 1.2.2 Give an example of a balanced set that is not convex.

13



Solution : In Buclidean 2-space R* consider a wedge. W vertexed at O . This
subset W is a balanced set, but it is not a convex set.

Definition 1.2.4. A subset A in a vector space X is called absorbing if each x e
X corresponds some £ > 0 such that cx e Aif O <l ol <.

Or, equivalently, if to each x € X, there corresponds some r > 0 such that x e &
A for lgd= r,

Theorem 1.2.5. In a vector space X a balanced set B is absorbing if and only if
to each x € X, there corresponds some o, # 0 such o B,

Proof : Let a balanced set B be absorbing, and take xeX. Then we find r > 0|
such that x eaB for lal = r. Clearly x eAB if A>r (>0).

|
or, :EEB; Take ﬂ=-1— and we have o € B (o0 # 0).

Conversely, suppose B is balanced where condition holds, Take xe X. By supposed
condition let P # 0 such that
fx e B.
Since B is symmetric, we have
IBlxe B o 1)
Choose 0 < € =Ifl. Then £ > 0; such that if 0 <la| < g,

a
We have |;| < 1. As B is balanced we have from (1)

14



& |BlxeB.
E

Or, ox £ B

S0, B is absorbing

§ 1.3 Linear operators over a vector (Linear) space :

Let X and ¥ denote two vector spaces over same ficld of scalars (reals or complex).

Definition 1.3.1. : A mapping T: X = ¥ is called a linear operator if
@ Tx+x)=Tx +T) forall x, x' & X,
and (i) T (Ax) = AT (x) . for all xeX] and for all scalars A.

(Operator, mapping, map, function, transformation are all synonyms-meaning the
. same).

Explanation : Condition (i) Says under a Linear Operator image of sum of two
vectors is the sum of their images, and Similar conclusion holds for condition. (ii)
Further taking A = 0 (scalar), one sees that a Linear operator always sends the zero
vector in X to the zero vector in ¥, Also readily it follows that a Linear operator
transforms a Linearly dependent set of vectors in X to a similar set of vectors in Y,
However, if does not send a linearly independent set of vectors in X into a similar
set of vectors in ¥, For instance, the zero operator (which is a linear operator . X —
¥ transforming every member of X to the zero vector in ¥) sends a linearly independent
set of vectors in-X into a Linearly dependent set in Y.

Example 1.3.1. In Euclidean 2-space R? consider T : R? — R? given by T(x, y)
=(x, 0) for (x, y) € R% Then T is a Linear operator.

Theorem 1.3.1, If T : X — Y is a Linear operator; Then T(X) is a sub-space
of ¥. '

Proof : If y;, y, € T'(X), and A is a scalar; we find x;, x; € X such that y; = T(x;)
and y, = T(x). Since T is Linear we have T (x, +x,0 = T (%) + T (x)) = ¥ + ¥
Therefore, y, +¥, is a member of T(x); and similarly we can show that Ay, is a
member of T(X). Thus T(X) is a sub-space of ¥.

15



Remark : Like Theorem 1.3.] it is easy lo check that a linear operator transforms
any sub-space of X into a sub-spuce of X into a sub-space of ¥,

Theorem 1.2.3. IF T : X — Yl is a Linear operator which is onto, then 7-! exists
il and only il x = @ is the only solution of 7{x) = O and if T exists, then T! :

¥ — X is a Linear operator,

Proof : Let T X — Y (X, ¥l are vector-space over the same scalar field) be a

lincar operator that is onto and let 7' : ¥ — Xi exists; Then I{x) = O gives T(x) =0
=TQO,l Here Tis | — ; s0 we have x = 0,

Conversely, Suppose the condition holds, We check that T is 1-1: If Xy XEX
such that T(x)) =T (%) = O ie, T(x; - x,) = O ie., T{x, = x;) =0, By supposed
condition x) ~ X, or x;= x,. Now T ; X — Y being onto and 1 - 1 we see that T-'
: ¥ > X exists,

Now since y €Y there is exactly one x € X with 7(x) = ylie, x = T-y). Take
Y ¥,6Y and let x, x, € X with T(x;) = y, and T (x;) = y,. So Txy+x) =T (x) + T
(63) = ys + Yo EivIng T (3 4y5) = X, + x5, = T (v + T (y,).l Similarly for any scalar
o we deduce that T (o)) = aT \(y,).

Notation : Let £(X, Y) denote the collection of all Linear operators : X — Y.

Theorem 1.3.3 £(X, ¥) forms a vector-space with same scalar field as that of
© X(Y),

Proof : If ) and T, are two members of £(X, ¥), then (T, + T,) : X — ¥ | is
defined as (T, + ) () = T, (&) + T, (x) for all x eX, Then it is a routine exercise
to see that 74 73 is also a Linear operator and so (T\+7,) € £(X, ¥). For any scalar
A by a similar argument we see AT\e £(X, 'Y) where of course (AF) X = Y1
given by (AT)) (x) = AT(x) for all x eX. So &(X, ¥ is a w:.cmr-spam: with zero
operator as the zero vector in £(X, ¥).

Definition 1.2.3. Two vector space X and ¥ with same scalar field are sajd to be
isomorphic if there is a Linear operator T : X — ¥ that is 1 ~ L and onto (bijective).

Remark : If is not difficut to see that relation of isomorphism is an equivalence
relation over the family of all vector-spaces over the same scalar field.
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Theorem 1.3.3. Every real vector-space X of dimension n is isomorphic to the
Euclidcan n-space R

Proof : Here Dim (X) = n. Let (uy, ¥, ..., u,) form a basis in X so that every
member xeX has a unique representation x =0k + Ogity + ... + O4u, where o,'s are
reals. Let us define T : X — R" by the rule :-

T(x) = (0, O, ..., 0,) € R" where *= P

i=l

It is easy to verify that T is a linear operator such that x= Zﬂi“: and Y= Eﬂﬂ |

=l
are two member of X with x %y, then we have n-tuples (o) and (j,) | are not the same
i.e, (U'l"‘ 0'.2, sy uﬂ) # {13!, f.llz. . ﬁn] in R

Or, T (x) # T(y). Thus Ths 1 — 1; Further, if (y;, Y5 - Y, JeR" we find

w=x=Y yu.€X satisfying

=1
T(®) = Yy, Yar o0 Wy )- S0 T is 1nto.
That is, T is an isomorphism between X and R".

Corollary : Any two real vector-spaces with same finite dimension are isomorphic.

§ 1.4 Topological Vector Spaces (TVS).

Suppose X is a vector-space and X is also Topological space such that its Topology
satisfies T, separation axiom.

Definition 1.4.1, X is said to be a Topological Vector space or simply TVS if
the mappings —

i) XxX — X defined by (x, y) = x+ )y x y € X and
ii) R¢ xX — X defined by (cbx) = ox; x € R (¢) and x € X are both
coniinuous Mappings.

Explanation : Conditions (/) and (ii) say that principal compositions (operations)
in Vector-space X i.e. vector addition and scalar multuplication are rendered continuous
with respect to the assigned Topology, so that X becomes a TVS.
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Further, Topology in X is assumed to T;. That debars X from being a TVS in case
we give X the indiscrete Topology which is not T,.

[n TVS X to explain further, in respect of (i) corresponding to any neighbourhood
Wof x + yin X, we have to find a neighbourhood say V, of x and a neighbourhood
V5 of y in X such that

Vi+ Voo W

Again in respect of (ii) corresponding to a neighbourhood W of ox in X, we find
4 neighbourhood of a, say (0.~ 8, o+ 8) (8 > 0, in case of o being real scalar) an
open interval of R and a neighbourhood V of x in X such that

Bx' e W whenever e (0. -6, a0+ &) and x' € V,
or, equivalently BV < Wfor IB — o | < . s
(If scalar field is that of complex numbers, one has to take an open circular disc

(in place of open interval above) centred at o & ¢).

So this stipulation debars X from being a TVS whenever we assign discrete
Topology on X, because (*) fails in this case where one may take singletons in role
of neighbourhoods.

Let X be a TVS and a be a fixed member of X, Let us define an operator T, :
X — X by the rule :—

Tix)=x+aforxe X
Thi.s operator T, is known as a translation operator. If a = @ in X, T, equals to
the ldentity operator, I |
For a non-zero scalar A, let us define an operator M; : X — X as
My, (x)=Aasxe X

This operator M, is known as a multiplication operator on X, If A = 1, then M,
equals to the identity operator, [,

Theorem 1.4.1. T, and M, are homeomorphisms over TVS X.

18



Proof : T, : X — X may be described as a mapping : Xx{a} — X where (x, a)
— x + @ as x € X. And this mapping is restriction of vector-addition operation that
is continuous. So T, is continuous such that it is 1 — 1 and onto. Therefore a T, :
X —» X exists. It is equal to T_, which is again a translation operator, and consequently
T,”! is continuous. Therefore T, is a bijective and bicontinuous mapping, So T, is a
Homeomorphism.

Using the fact that scalar multiplication operation is continuous is TVS X, we
prove by a similar argument that M, is a Homeomorphism where M, =yt

Corollary 1. If G in an open set in TVS X, its translate a + G is open set in X|
where a € X.

Proof : By continuity of T_, we have T_ (G) | is an open set in X.
Now T (G) = Ty (G) = T,(G) = a + G. So a + Gl is open.

Corollary 2. If A is any subset in TVS X, and G is an open set in X, then
A+ G is an open set,

Because, A + &G = ﬂ':{_ fa + G) = an ar_bitrary union of open sets in X = an
open set in X,

Corollary 3. For any non-zero scalar o, | and for any open set G, oG is an open
set.

By a similar argument one can prove that translate of a closed set in X is a closed
set.

Definition 1.4.2. A neighbourhood base of @ in TVS X is called a local base
in X.

If Bis a Local base in X and a € X, then the family {a + B : B € B} becomes
a neighbourhood base at a.

Definition 1.4.3. A TVS X is called locally convex if X has a Local base consisting
of members that are each a convex set.

Theorem 1.4.2. A TVS X has a balanced Local base (i.e., a Local whose members
are balanced).

Proof : We prove by taking X as a real TVS. Let U be a neighbourhood if Q
in X. As 0. @ = O by continuity if scalar multiplication we have a neighbourhood
V of Q@ and a+ ve & such that
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BV c U for | Bl < &.

Put W =|J:%.-fﬁ-‘£')‘"r ; Then W is a neighbourhood of 0| such that We U, We are

ready to check that W is balanced, Take a scalar & with | X | <1. Then | AB [=IAll B
l<d because IPI <&; and APV W and this being true for all f with IBl<d, we have

A=) BV cw

im<s
ie., AW W So W is balanced, and proof 1s complete.
Theorem 1.4.3. Every neighbourhood of @ is TVS X contains an absorbing
neighbourhood of O is X
Proof. Let W be a neighbourhood of Qof TVS X, and Theorem 1.4.2 says that
there is a balanced neighbourhood V of O such that
VeWw

Take x € X; we have 0.x =0 and by continuity of scalar multiplication we find

1
T V' for large n.

or, x € nV for some n,

By Theorem 1.2.5 V is absorbing and the proof is complete.

Definition 1.4.4. A subsel E of a TVS X is said to be bounded if every
neighbourhood V of @ in X, corresponds a scalar s > O such that E < rV for 1 >s.

Theorem 1.4.4. In a TVS X following statements are equivalent.

(a) A subset E of X its bounded

(b) If {x,} is any sequence in £ and {0, } is a sequence of scalars such that E‘_{E
o= 0; then E‘_Ij] AA,= O in X

Proof : Let statement (a) holds, and let E be a bounded set in X, Suppose V is
a neighbourhood of @ in X, and we may assume V to be balanced. Then we have
some +ve scalar 1 such that,

Ee 1V irss )
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; 1
Since lim x, = 0, there is an index N such that lo,,| < - for n 2 N or f loc,|<1i for

¥ .
n 2 N. from (1) we have x, € 1V or, T" e V; and since V is balanced, and lo, fl<l we

find o.t. €V for n 2 N,
1.e. ox,€VfornzN.

That means, 1“31 a,x, = O is X. Thus (b) holds. Let (b) hold. Suppose E is not

Hye

hounded. Then there is a neighbourhood V of Q, and sequence (7, : r,, > 0} with lim
r, = such that E ¢r,V, n = 1,2, ... '

1
X
Take x, € E\r,V. Then x,&r,V or, = & V; That means { -"n} does not converge

r r

m L

. )
to O in X, although {x,}e E Vand |'_{'-}_ - =0 | . _ a contradiction. Hence Theorem

is proved.

Example 1.4.1. If A and B are two bounded sets in a TVS X. Show that A + B
is bounded set in X.

Solution : Let V be a neighbourhood of @ in X. Since 0+0 =0, using
continuity of vector addition we find neighbourhoods V', and V, of O | in X such that

Vi+V,cV {1}
Since A is bounded, we find a +ve 5, such that

ActV, forall t>s sl 2)
Similarly, there is a +ve s, such that

BctVyforalt>s; e

Taking s = max (s;, 8y), we see that A + B V) + tVy
or, A+ Bct(V,+ Vy <tV whent > s from (1),
(2) and (3). Therefore A + B is bounded in X.
Theorem 1.4.5, Let X be a TVS.

(a)If A © X, then =A= {"{A +V : where V runs through all neighbourhoods of
0 }, bar denoting the closure.
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(b) If A and B are two subsets of X, then A+ B c (A+B),
(c) If ¥ is a sub-space of X, then its closure Y is a sub-space of X,
(d) I B is a bounded set in X, then its closure 7 is bounded in X,

(c) If C'is a convex sets in X, then IntC (Interior of ) and ¢ (closure of C) are
convex sets in X.

() I £ is a balanced set in X, then its closure 7 is balanced. Further, if Q¢ int
E. then int E is balanced.

Proof : (a) By Translation property xt 4 if and only if (x + V) n A # ¢ for any
neighbourhood V of O X and this happens il and only it x € A-V. Now — Vis a
neighbourhood of @ if and only if V is a neighbourhood of 0 X; Therefore

xe A ifand only if x €(A + V), thatis x € A {A + V: Vis any neighbourhood
of 0 in X}. Thus,

A= M{A + V : where V runs through all neighbourhood of 0 in X}

(b)letae A and b e B and Let W be a neighbourhood of (a + b), Using
continiuty if vector addition we find a neighbourhood W, of a and a neighbourhood
W, of b such that

W+ W, c W

Since a e A, we havq A W, # ¢, | and similarly

B W,#¢. Takex e (An W) and y e (B Wikl Then we have
(x+yle (A W)+ (B W) c(A+ B)'n W | Therefore

(A +B) n W= ¢

So (a+b) € (A+B). Therefore we have shown 7‘-+E+{A+B}.

(c) Let ¥ be a sub-space of X, Then ¥ is closed with respect to vector addition
and scalar multiplication operation, These operation are each continuous operation in

a TVS. Thercfore  becomes a sub-space of X,
(d) Let B be a bounded set in X, and V be a ﬁeighbuurht}nd of O in X. As O

+ 0 = O, continuity of vector addition gives a neighbourhood W of @ such that
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w+WcV
Let xﬁﬁ,_ﬂlan x + (W) is neighbourhood of x ;
So(x-W)ynW#d¢. Take y n (x - W) ~W; Then y = x — w for some w e W;
Sox =1y + weW+ W, and by (1) x € V. Therefore we have wcV
Since B is bounded, there is A > 0 such that |
BctWfortzA

So, gcw=Wciorali2)

That means g is bounded in X,

(&) Let C be a convex set in X and O<a=l.
Now IntC < C, and odntC + (1 — o) Int C
caC + (1 —-0) € c C, because C is convex.

Sirice o Int C + (1 — @) Int C is an open subset of C, we have o Int C + (1 -
o) Int C < Int C, :

Therefore Int C i5 a convex set.

Again aC + (l—a)r(f':ﬁﬂl-—ajc c{eC+{1-a)C)c C because C is convex
(aC + (1 —a) C = C). Thus ¢ is convex.
(f) Let E be a balanced set; for a scalar o0 with let | = 1,
We have 0E c E. S0 gEcE ©. aEcE.
So g is balanced.

Now if 0 <l @1 < 1, since x —ox (o # 0) is a homeomorphism o Int E = Int (0.E)
— oF c E because E is balanced. Since o Int E is open, it follows that o In Ec

Int E. Tt Int E contains @, then o Int E  Int E even for o. = 0,
The proof if now complete.
Theorem 1.4.6. Let V be a neighbourhood of @ in s TVS X.

(a) If 0 < ry <ry < ... with ‘“"“‘ =, then X = Ur‘.f

=l
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(b) 168> 8, > .. with lim im &, =0, and if V is bounded, then {8 V) | is a

Local base in X,
Proof : (a) Take a fixed x € X. Since scalar multiplication is a continuous

operation in TVS X, from O.x =0 we find a +ved such that ox € V whenever |a

S 1
<8.| Given (0 < r, with ,.hfl 'n =% we have ——0 as n — oo, and therefore for
r

n

I

=]

r, X = D V.
=]

(b) Let V be a bounded neighbourhood of @ in X. Given any neighbourhood 7

of @ |in X, we find s > 0 such that
Vet fort = s

1 |
Since, {8,} 4 0, we have {5_} T with E{T5—=+m,

# a

We see 5 >3 for large values of n. So we then have
"

1

Ve=-U
o,
or, avecl.
Hence, {8,V) becomes a neighbourhood base at @ in X.

or, {8,V} is a Local base in X,
Corollary : If K is compact set in TVS X, then K is bounded in X

Proof : Given any neighbourhood V of O we find a balanced neighbourhood W

of 0 with W < V., Then by part (a) of Theorem 1.4.6 we have K — Unw. By
=1
compactness of K, there are integers n; < n, < ... < n, such that
KenmyWnm WunWu ...un, W= nW,
If t>n, we have K < 1W c 1V, Hence K is bounded,
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EXERCISE-A

Short answer type questions
In a TVS X show that a subset of a bounded set is bounded.
Show that translate of a closed set is.a closed set in TVS XL

=)
If V is bounded neighbourhood of O in a TVS X, show that {HVJ\ is a

Local base in X,

Show that A + B is a bounded set when each if A and B is a compact in
a TVS X.

EXERCISE-B
In a TVS X if B is a Local base, Show that every member of B contains

the closure of some member of B.

Everv TVS X is Hausdroff (73).

Show that.convex hull of an open set in TVS X 1 an open set,

In a TVS X if A is compact and B is closed, show that A + B is closed.
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Unit -2

(Contents : Separation Theorem in TVS, Linear operators on TVS and their continuity;
Linear functionals, Locally compact TVS and its finite Dimensional property,
Minkowski functional, semi-norms in TVS, Locally convex TVS, Kolmogoroy
Theorem on normability it a TVS.) '

Let X denote a Topological vector space (TVS) with scalar field as
‘that of reals/complex numbers.

Theorem 2.1.1 (Separation Theorem)

In a TVS X if K and C respectively non-empty compact and closed sets with K
M € = ¢, then there 15 a neighbourhood V of zero (0) in X such- that

_ (K+ V) (C+ V) =y

To prove this Theorem we first prove a Lemma.

Lemma 2.1.1. If W is a ncighbourhood of @ in X then there is a symmetric
neighbourhood V of @ such that V + Vo W

Proof : Since 0 +0 =0 we use continuity of veclor addition to find
neighbourhoods V| and V; of Q. satisf}riﬂg Vit VoeW. Pt V=V nV,n-=V)n
(=V5). Then V1 is a neighbourhood of @ and V is symmetric such that V + V Vi
+ V, < W. (By repeating argument one can increase the number by two each time:
So that we find a symmetric neighbourhood V of with 0 V+ V+ V + Vc W)

Proof of Theorem 2.1.1. Let K n C =¢, where K is compact and C is closed
in X, Take x € K; As Cis closed with x ¢ C, we find a neighbourhood H of @ in

X with (x + H) N C =¢. By Lemma 1.1 find a symmetric neighbourhood U, of @
such that '

R R £ S Sl D
Then x+U + U+ U + U, c x + H, and hence
(x +U + U+ U + U) n C = §; | This gives
x+U + U+ U N (C+ U )=0
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Taking U, as open we see the family {x + U}, ; as an open caver for K. By
compactness of K, we find a finite number of points x;, X, ..., X, € X such that

Kc()x+U,)
=l

Put V= U, N, N..OU,  Then

K +VcC U{-‘f.- A CU(—‘J;“‘U,, +U, ), wherc none of rhs cuts C + V,
i=l

=1

Therefore (K + V) m (€ + V) = ¢. The proof is now complete.

Corollary 1. Under hypothesis of Theorem 2.1.1 there is a symmelric
neighbourhood V of O such that

{_R’_+‘F)H{C+V}:¢.} because here C + V is open.

Corollary 2. If & is a Local base in X, then for every members UeB, there is a
member U €B such that

Ve UL
Here Let us take K = (@} and U/ € B as an open neighbourhood iI)[" 0 in X,
Taking € = X | U; So C is a closed set with Q0¢C.

Now Corollary 1 says that there is a symmetric nf:ighb::)urhuﬂd Vof 0| such that
Ve B and

(0+V)n((X 1) +V)=¢
or vy (XI)=4¢

or ycU, this is what is wanted.

Corollary 3. TVS X is T, (Hausdorff)

Because essentially Corollary 2 says that TVS X is regular, and a Topological
space being regular plus T, is, of course T, (Hausdroff).

§ 2.2 Linear operator | functional over a TVS X,
Let X and ¥ denote TVS over the same scalar field.
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Theorem 2.2.1 : A linear operator 7' : X — Y is continuous if and only if 7' is
continuous at Q0 € X.

Proof : Let a lincar operator 7 : X — Y | be conlinuous at 0 e Xand x#0I.
1s any other point of X. Let W be a neighbourhood of T{x) in Y. There is a
neighbourhood U/ of O 1n ¥ such that

T(x) + U W. Now T (Q) = O in ¥ and T is continuous at Qe X.| Therefore,
we find a neighbourhood V of @ in X such that.
(V) c U

- AsTis Linearwe have T (x + V) = T'{x) + T (V) c T(x) + U c W. This shows
that T"is continuous at x, and hence T is shown as continuous over X. The other part
being obvious, proof is complete.

Deflinition 2.2.1 : A scalar-valued Linear operator over X is called a linear
functionas denoted by [ over X,

Theorem 2.2.2 : Let [ be a non-zero linear functional over X; Then following
stalements are equivalent,

(a) fis continuous,

(b) Null space Nif] ={x e X : f(x) = 0} is closed.

(c) M(f) is nat dense is X,

(d) f is bounded in some neighbourhood of @ in X.
Proof : We assume ficld of scalers as that of reals.

(a) = (b) let (a) be true. Write N(f) = (/! (0) =l Inverse image of a closed
set under a continuous mapping = a closed set in X,

{(b) = (c) Let (b) hold, Suppose N{f) is dense in X ie.,
N(f) =X
_i.n:. N() = X, because N(f_} is closed.
That means f is the zero functional—a contradictin. Hence (¢) stands,

(¢) =»(d) Since N(f) is not dense is X. Then X \ N(f) has a non-empty interior.
So there 15 x € X, and a balanced neighbourhood V of @1 satisfying
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(x + VN X\N({D
Le. x+VIAN@=0¢ (D)
There arise two cases o consider \—
Case [ f{V) is bounded; in that case we have finished.

Case 1L f{V) is unbounded. In this case we show that f{iV) = whole scalar field
= R. Let A be any real number. Since f{V) is unbounded in R, we find v € W such

A
that f{v) > A. Take scalar & such that o f v)=A. Then lal = |‘ﬁ:}“1: Since V1 is

balanced, cveV and flow) = affv) =A. Thus A is attained at some point v € V.
Then —f{x) is attained at some point y € Vie., f {yj'z ~f (x)

or, fix)+ fly) =0, or, f(x+y) =0 Showing thereby (x+y) € N (f).| But (x+y)
€ (x+V). Hence (x+V) n N (f) #d-la contradiction of (1). So (d) is established.

(d) = (a) Let f be bounded in some neighbourhood V of 0 is X, Let |f (W) <.

E
M as ve V(M > 0). If £ > 0 is given, Letus put W = EV : Then W is neighbourhood

of O is X such that if x € W, we have

1 fix}) =

E
I[E“’] for some v € V.

e
= o | f(vii<e.

That means, [ is continuous at @ of X, and as seen in proceeding theorem f is
continuous over X. The proof is now complete.

Definition 2.2.2 : A TVS X is called Locally compact if O | of X had a
neighbourhood whose closure is compact.

Theorem 2.2.3 : Let Y be a sub-space of TVS X; Uf ¥ is Locally TVS (with
relativised Topology), then Y is a closed sub-space of X,

Proof : Since ¥ is Locally compact, there is a neighbourhood of Q is Y whose
closure (relative to Y), say = K is compact in Y. So we find a neighbourhood U of
in X satisfying (U nY) C K.

Take a symmetric neighbourhood V of O in X satisfying.
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Consider the sub-space Y spanned by (xy, X3, ..., x,,} i.e, ¥ = Lin. hull {x,, x,,
..... x,,} Clearly Dim (Y) m. Hence Theorem 2.2.4 applies here. Thus ¥ is closed.
Now we have :

V-::Fc{xﬁ—l-if}u xz-i-—l—V @ v .rm+-£tf A
2 2 2

1 |
=i ¢ +EV , because Y is the sub-space generated by x,, x,, ...., x,; and (I,- +-2-1"']

c[lr’+-l-if'}
2
1 1
Further, for any scalar A, AY c Y. So EVC[Y+§V}

So one has V — (}’+ -%‘if ]cl’+ ¥+ zitlf cY +%-V. |we continue the argument

to produce

Ve ]r’-t—%;'ﬁ”(n =12
4 [
so Ve[| +=V)
k=1 2’

v
Since {2;} is a Local base in X, it follows that

Vey
i.e,, V.c ¥ because Y is closed.

Since ¥ 15 a sub-space, for any +ve integer & we have
5 i il A =il e s

As Vis bounded we have X = UH": | and therefore,
k=1
X c ¥, where Dim (¥) < m.
Hence X is finite dimensional,
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§ 2.4 Minkowski functional
_ Definition 2.4.1. Let K be a convex absorbing set containing @ of TVS X. and
let x & X. '
Pu A, =[ee>0:x¢e ak}
Since K is absorbing, we have A s 0. Let us put
Py () = Inf A,
Then pk : X -» Reals is called Minkowski functional for K.
Nate : For any x €X, 0 £ P, (x) < oo,

Theorem 2.4.1. Suppose K is a convex absorbing set containg 0 of TVS X, and
let p, be the Minkowski functional for K.

Then (a) p, (0) =0
(b) py (x+y) € py (x) + p W) tor all x, ye X.
(c) p, (Ax) = Ap, (x) for all scalars A > 0, | and forall x € X.

(d) If X is balanced then p; (Ax) = IAl py (x) for all scalars A and for all
xeX

1
Proof ; (1) Here @ € K, For every +ve integer n we have O€ :K , giving p;

R and hence p, (Q) = 0.

(b) Let x, y € X, and take o € A, and [} € A, arbitrarily, then we have x & oKl
and y € K, so that '

(x +y) € oK + PK = (x + P) K (since K is convex), and this gives
(ot + P) € A, and hence

py (x+y) 0+ P As a B arc arbitrary members of A, and A, |
respectively, we have
plx + ¥) = plx) + py).
(c) Take & >0, and x € X; If e A, we have xe ak: So Axe hak, |giving p, (Ax)
< Ao and hence py(Ax) € pylx).
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Agawn for B € A, We have Ax e BK; piving ye % K, and hence p,(x) S% /

Since [ is an arbitrary members of A, We have

|
P (x) = 'i Py (Ax)

or, App (x) £ p, (Ax) = 6
Combining (1) and (2) we deduce p, (Ax) = Ap, (x).
(d) Suppose K is balanced; Take A # 0, and x € X. If x €4, we have x e oK

LiE, %E K . As Kl is balanced, We have r% Tek This gives Axe| Aok fromwhere
a :

we have P, (Ax) < JA| @ and this gives p, (A< M. p () o)
Again take o € Ay, giving Ax e ok,

A
So = X€ K As K is balanced we get

LJLIxEK
X

o

o
P K . 0
This gives & € T and hence p, (x) < Y

or, [Al P (x) < o; As o is any member of Aj, we have
I\ P, (x) < Py (Ax) o (@)
Combining (3) and (4) we get ph (Ax) = IM p, (x).
Theorem 2.4.2. Let K be a convex absorbing set containing O of TVS X and
#; be the Minkowski functional for K Then (i) x € K implies prlx) =1,
(i1) p; (x) < 1 implies x € K,
Proof : (i) Let x € k; So 1ed, and hence Pk.{x] = L.

(11) Let p, (x) < | lor some x € K, So we find o e A, satisfying 0 <o
<l Now O € K, and x € 0k
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X
ie., EE K ; By convexity of K we find

al+(l-a). oe K.
% 0

or, xe K
Theorem 2.4.3. Let K be a convex absorbing set containing @ of TVS X, and
p, be the Minkowski functional for K.
! Suppose Ki={xe X:p,(x) <1} and
K,=(xe X:p,(x) <1}

Then (a) IntK c K,c K c K, < ¢losure K

(b) K =K, if K is open

(¢) K=K,if K is closed

(d) If p, is continuous, then K; = Int K, and K, = .

(e) p, is continuous if and only if 0 e Int K.

Proof : (a) Take x € Int K i.c. 1.x € Int K which is open. By continuity of scalar
multiplication in X, we find scalar o near but > I such that

cxe Int K — K

1
So, xe— K
i

|
This gives P, (x) = E{ 1; Hence x € K;.

Therefore Int K < K;. Theorem 2.4.2 says K, € K < K;.
To complete the desired chain of inclusion let us take x € K.
So p (x) = 1. If pk (x) < 1, we have finished. Let p, (xy=1.

We find {0, }c A, satisfying im o = 1o, > 1),

X S i
So x ea, K or Now (a_) € K. and therefore 11_."1 E‘= * | and thereforc x €

n n

"% - Thus inclusion chain arrived at is
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R ck ckckck.
(b) and (c) are straight consequences; their proofs are left out,
(d) Using contunity of p, we find K = (x : p, (x) < 1} = P, (0,1) which
becomes an open set, This gives K| = Int K, and by a similar argument K, =k,
(e) Suppﬂse pj s continuous; then Int K = K.
Now p(0) =0 < 1; Hence O € Int K,
Conversely let Oe Int K. Suppose U be a neighbourhood of 0 with Qe lUc

Int K} So we have p, (x) <l forx € U. Now ife > 0 is given advance, el/ is a
neighbourhood of O is X1, and we have for x € €U, and Pi (x) = py (ew)l (for some

ue U)=ep (u) <€ as p; (u) < 1. That shows, p, is continuous at O and hence P
k becomes continuous everywhere in X. The proof is not complete.
§ 2.5 Semi-norms :
Let X be a vector space.
Definition 2.5.1 p : X — Reals is called a semi-norm if
(1) plx+y) =p(x)+p(y forall x, ye X and
(i) plox) =lo | p (x) for all x € X and for all scalars @, ]
Explanation : Taking o = 0 in (ii) We find p(Q) = 0l and from (i) taking x =

—y we find p(x) 2 0 for all x € X. Thus a semi-norm p becomes a norm over X if
plx) # 0l whenever x 20.

Theorem 2.5.1 Let p be a semi-norm over X, Then
(1) [ plx}—ply) 1= ple—y) forall x, y € X
(2) {x: plx) = 0} is a sub-spacc of X

" (3) IFK=(xe X:p(x)<l}, then K is convex, balanced and absorbing with
its Minkowski functional p, = p.

Proof : (1) Letx, ye X, wehave p () =p (x ~ y + ¥) £ p (x - y) + p(y)
o, p(x) — p(y) < plx-y); and interchanging x and y we have
pO) — px) s ply-x) = p(-1) G-y} =l (=1) | p (=) = plx-y).
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Therefore we have | plx) — p(y) 1= pla—y).
(2) The proof is easy and left out,

3 Let K= {xe X plx) <1}, Ifay, x; K and O£ 1 = 1, we have, p(rx; +(1
— ) x) Stpxy) + (=0 px) <] i

This shows that K 15 convex,

Suppose IA | £ 1, if u € K, then p(Au) =IA | p(u) < | because p(u) < 1.| Therefore
Au e K and K is balanced.

x 1 X
Also, let x € K, and take s > p(x). Then F[T)=; plx)<l . 8o € K or
. . =

x € $K; That means K is absorbing (K is balanced). Finally, let P, be Minkowski
functional of K over X, and let x € X; Take 5 > p(x). As before we see xesK. Then
py (x) € 5 This is true for all s > p(x), So we deduce

gl - (1)

x1 1
Now take ¢ with 0 < 1 < p(x). Then P( : ]Z;P(I]El-

X
Clearly, ';E Le,xe tk

Therefore pk (x) > ¢, this being true for 0 <t < p (x), we deduce

pk (x) 2 plx) (I 7

From (1) and (2) we get p(x) = p; (x) So p = p,

Definition 2.5.2 : A family g of semi-norms fover TVS X is said to be scparating
it for x # (@ in X, there is a member f € fosuch that f (x) = 0.

Theorem 2.5.2. Let B he a convex balanced local base of TVS X. For cach V
& B let p, denote its Minkowski functional ove X. Then the family [p,}veg 18 &
separating family of continuous semi-norms in X.

Proof : For V & 8, Vis a convex, balanced and absorbing set with 0e V. So

its Minkowski functional p, is a seminorm over X. Take x € X with x # 0. So x
¢ V for some Ve® and then py(x) = 1; So pyx) # 0. Thus the family {p,} Vs
seminornms is a separating family,
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; 1
Also if x e V, then 1x e V for some > 1, because V is taken as open. So xe ? 7

: 1
That gives, py (x)= i <]

So, py(x) <l forxeV.

Given € > 0, and ze (eV), we have p, (z)= py (gv) for some ve V. So py (2) =
ePviv)<e.] = E

Asp, (@) =0 we find | Pv (z) - py (O) |< & whenever z €(eV).

That shows py, is continuous at @, and hence by sub-additivity py, is continuous
everywhere in X.

Theorem 2.5.3 : suppose f2 is a separating family of seminorms in a vector-
1
space X, For each p € fo and for each +ve integer n put V (p, n) = {XE X plx) < ;}

Let B denote the collection of all finite intersections of members V (p, #).] Then
B forms a convex, balanced Local base for a Topology T to make X a locally convex
TVS such that (i) every member p € § is continuous and

(ii) a subset E of X is bounded if and only if every memberp € o | is bdunded
over E.

Proof : We call a subset A in X to be open if and only if A is a union of translates
of members of B. The collection of open sets so designated is a Topology T on X.
It is a routine check up to see that every member of @ is convex, balanced and @
forms a l.ocal base for T.

We verify that 1 is T}, Take a non-zero x in X, By separating property of 0, we
find a member p € o such that p(x) # 0 i.e., p(x) > 0, Take a +ve integer n such that

np {x) = 1
Then x € V (p, n).
iLe., Qex—V (p, n); x — V (p, n) being a neighbourhood of x we see that x is

not a limut point of {Q }. i.e,, x € { O }; That means singletor {0} | is closed and
hence every singleton is closed in X, So1 is 7). ~
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Next comes verificatiion of continuity of vector addition and scalar multiplication
operations in X. Let U be a neighbourhood of O in X. There iS Py Pav voeees Py € (0

and + ve integers ny, My, ..., N, satisfying,
V (P, ) Vipy ng) Mo VR, ) e U,

Put V :ﬂ'r” (P 2p;), take x, y from V. Then we have
a -1

] 1
pi(x)< — and p;(y) < 7= (=12, ..., m
2n 2n,

By sub-additivity of p; we find

- 5
Pt Spi® +p0) < 5 450 =0y

Hence (x+y) € nV (pn n) c U.
n=|

e, V+ VU
So vector addition 1s continuous,

Next take x € X, and o a scalar, and Let U be a neighbourhood of O. So there
are Py, Pas s Py @0d +VE INERELS 11y, Mgy ooy My such that

ﬁ‘eﬁ’.{pi. n) c U.

Put V = ﬂV (p,, 2n,). We have x € sV for some 5 > 0.

Now take ¢ =

_Then x + tV is a neighbourhood of x. If y x + ¢V and |
I+lals

B—ulc‘.l.wefmd By—ox=a{y-x)+P-o)xe P iVHp-alsV
5 .

cV + VU, _
Since V is balanced and IBl ¢ <1.

[Iﬁlﬂﬁ—al+|alc:l+lc£l=l+m]x=l)
3 5 t

So By ewx + U which is a neighbourhood of ow. This holds when | B — ol -::l
&

and yex+ (V.

That means scalar multiplication is continuous in X.
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Hence X becomes a Locally convex TVS.

From Definition of V (p, n) it follows that p is continuous at Q. and henee p
becomes continuous everywhere on X. )

Finally, let E be a bounded set in X. Forp e g, V (p, Di is neighbourhood of
Q in X. So E c kV (p, 1) for some k <es. For x € E, let x = k where EeV (p, 1),

ie., pl€) < 1

ar o <]
T i
or, p{x) <k.

This being true for all x € E, we, find p to be bounded over E,

Conversely, £ satifics the condition. Let U he a neighbourhood of 0, and let
Vipp 1) vV (py, 1) 0 oo 0 V(p,, ny,) < U,

Where p|, py, oo, Py € @ and iy, ny, ..., 0, are +ve integers.
Since each p; is bounded over E, we find +ve numbers M, such that
pE<Milorxe E(i=1,2 ..., m.

Take y >03X |Mn]; So np, (x) < nM, <y

k=ism

. 1
Le., px) < b

S0, p; [-{]‘:J—
T ™
- x 7
This gives ; €V (p;, n;). This being true for 1= { < m.

X el
We deduce that ; = ﬂl’ (P n) c U,

i=l
e, x € yl.
and this true for all xeE, we have E cyU.

Therefore £ is shown to be bounded. The proof is now complete.
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Theorem 2.5.4 (Kolmogorov Theorem) A TVS X is normable if and only if
there is a convex bounded neighbourhood of O in X.

Proof. Let U be a bounded convex neighbourhood of @ in TVS X. Without loss
of generality U is taken to be symmetric.

For x e X, let us defing Il x Il = Inf {A >0 :x e AU).

We now verify that |l Il is indeed a norm function over X. Clearly Il x Il 2 0
always. As @ € AU for all +ve A, we find 1011 = 0.

. : |
If x is non-zero member of X, we find a +ve integer ny such that x ¢ — U/,

Ty

= i ‘
Infact, if x € [ |— €/, then {y,= nx} is a sequence is U where U is bounded such
#

.l1=l'r'I

v o : porg ak
that |im - y, = O givesx= 0 —a contradiction. So |l x Il 2 = 0.
n—te gy ]

Thus Norm axiom (N. 1) 15 O.K,
For (N. 2) we have x € AU if and if — x € AU (U is symmrtric) 1e., | - x |l =
Il x Il. Take o > 0, and x € yU; then ox € ayU, and conversely, cxeadU implies
xerll. So :
I eex I =Inf {L=0:ox e uU}
= Inf [oh : ax & odU}
=o Inf (A:xe A U)
=oll xil
In General, l o Il =ll £ lalxl=1clllxll
Therefore (N. 2) is established.
For triangle inequality, let x, y € X, and let | x Il = o0 and |l x Il = [3. Without loss

of Generality, suppose x, y are non-zero. Then || g = % e
Now, —e (1 +e) U
ow, HE (1 +¢&)
and %E (1 +8) Ufore>0.

As U/ is convex, (1 + ) U is convex, S0
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[a.r._!_ﬁﬁ

a+ﬁ;x- a+f ﬁ]E Lad L

X4y
e (148U
O o+ fi ( )

or, (x+ye (u+B)(1+8e) U

Therefore lx + y Il < (o + B) (1 + g)

As € > 0 is arbitrary, we deduce that
lx+ylisa+B=0xll+Iyl

Therefore (X, Il Il) becomes a Normed Linear space (NLS). To complete the proof
we will show that for any neighbourhood V of 0 in TVS X, there is an open ball

B, (Q) of NLS X such that B, {i:}_ ) © V and vice-versa.

Take V as a neighbourhood of O in TVS X. Since U is a bounded neighbourhood
of 0 in TVS X, there is a +ve r satis{lying

fc--V.
r
ar, rlf =V

Now open Unit ball By (O) of (X, Il Il) satisfies B, Oc U.
S0, B {(Olcrllcl

Conversely, let B, (@) be an open ball centred at O of (X, IL1). If 0 < €' <¢g, then
e'lV < B, (0) where £'U = & neighbourhood of O in TVS X,

Thus we have finished proving sufficient part of the proof; the necessary part is
rather obvious.
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Unit-3

(Contents : Representation Theorem for bounded linear functional over spaces R”,
(1 <p <) and C[0, 11; Banach Steinhauss Theorem and its application, weak
convergence in NLS. Comparison with Norm convergence, notions being identical in
1 finite Dimensional NLS. Approximation in NLS, Existence of best approximation,
strictly convex norm, uniqueness.of the best approximation.
§ 3.1 Let X denote a Normed Linear space (NLS) over reals /complex
numbers. Then X* denotes the Banach space of all bounded Linear
functionals over X. It is the first conjugate space X; and Second
conjugate space X** is obtained. We now examine how conjugate
(Dual) spaces look like, This opens an area of theory of representations
of bounded Linear functionals over a given NLS X. We show right
now that the Dual space (R")* of the Euclidean n-space R" as a NLS
is isomorphic with R". ;

Theorem 3.1.1. The Dual space of R" is isomorphic with R”. (Dual of R" is R"IR"
is self-dual).

Proof : Let us take & =(1,0,0...,0, ¢, =(0,1,..0),..., €,=(0,0,0,..,1) to form
\.__"._,-—l'

n places

4 basis of NLS R". So that any member x=(&,&,,.....&,)€ R” can be expressed
uniquely as

"
X= Zékﬁk .

k=l

k=1 k=l k=1

If fe(R")*, then fx)= f[z,djkﬂk ]: kaf{ﬂ} = Zéﬂk | where 7, = fleg)k

= e n) and (¥, Yar-r Ya) € R™.

Conversely, if (¢, €3 €,) € R", Let us define ¢ : R* — R where o(x)= Y Eer 1.
k=l

and x=(&.&.-.E)eR",
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Then it is easy to see that @ is a bounded linear functional over ", and Q€ (RM)*.

This correspondence (R")* — R”, we show presently, is an Isomorphism. This
correspondence is, of course, linear plus 1 — 1 and onto.

Further, Let f € (R")*, then its comresponding member as we see ahove is

(Y11 ¥as-s ¥y )€ R" such that if x e RY, then

F@ =Y En <V A 7 (x =€y onf)
k=1

k=1 k=]
by € — § inequality llxllli¢ll where c=(y,%,...7,)€ R",| and thercfore,
I Fitsliel....... (i)

‘Taking x =c, we find f{g)=i?k= and |!f||2!!~“;fr.(—£%=\ariyf=l|gll
k=1 € k=1

SEFN=lell

Hence R: = R" (= denoting isumﬂfphiSm}..
Let {x,} be a sequence in NLS X :
IS, =x +x;+ ...+ x,, and if there is a member s € X! such that IS, — sll—

0 an n — == or equivalently lim S, = s€ X || then the infinite series X+ X+ = ixi
fi—poo 5
k=

. 18 said to converge to the sum = § (in norm in X) in X: and we write xXp + Xy + .
=

or, Z X =8
k=1

If there is a sequence {e,} of vectors in X such that for every member x & Xl
there is a unique sequence {a,} of scalars satisfying

Zﬂ'kfk =X
k=1
Then {e,) is called a Schauder basis in X,

Example 3.1.1. The sequence space L,(1 < p < =) consisting of all real sequence
|

X = (X}, XgpernnXypenr) With (21 Xy F"Jﬂ <e2| s a Banach space with respect to the norm
k=1

IxIl given by IFxll,= ¥l 1P, x=(x,%.) € b

k=]
IThis Banach space [| has a Schauder basis consisting of {e,}, where
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- | 0 ;
xll= " =120
0 »n"place -

Theorem 3,2.1. (Riesz representation Theorem).l The conjugate (Dual) space
of [, is isomorphic to the sequence space {, where 1 < p, g < = and rl+qgl=1.

Proof, Let f€ [,* Since fis Linear and bounded if x € [, with x = (€riEavrennEvenss)
we have

flx)= f[i‘fr‘—’k ]: ié&f‘fﬁk}= iﬁk}’k where 7, = f(e,)
k=1 el

k=1

Let g satisfy p,™' + g7' = 1; consider x ={&™}, n=1,2,... where

b = ka1%| if k<n and ¥, #0
¢ 0 if k>n or T, =0

So, flx)=2,"n=2Inl G ey
k=1

k=]

or, |f(,5n)|5ufun=||fu[i|§§”’ JP]%
k=1

=l f |“[i[h J*‘f"iﬂ]yp =Ilf1[[iln rf]yp
k=1 k=1

Therefore, from (1) iiﬂ. P=flx )shf Il{iln |4 Jy
k=1 k=1

n P
Dividing both sides by [E[n I"’J/ we have
k=1
1 -;)'

[iln f ] <l 7
k=1 .

ie. [E"ﬂr |q]y <UL FIl: ¢ hus, being independent of n, we proceed as n — o to
k=1

[im WT <l £l
k=l

This shows that {y,}el,.

obtain
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Again {B,}el, gives rise to a member ge f;l in following ways '—

Define g : I, — Reals, where

ulx) = ngkﬁk where x=(§.53.-J)el,.
k=1

The infinite series on r.h.s. is convergent by Holders inequality because

ilﬁkﬁk Iﬂ[ilﬁk 1 r[il g, T , and therefore {§,}€l,.
k=1 k=t

k=l

Therefore, g is linear, and its boundedness follows from Hélders inequality, So,
g e Ln

Therefore, there is an 1 ~ 1 correspondence between the elements of ip' and those
of I, and this correspondence between them is also onto.

Finally, we verify that the correspondence preserves the norm. To that end if
fe [,* we have ' '

o (-] rP - q
Y & s[zlgiE 4 J/ [Eln [*]V (by H drders' inequality)
k=1 k=1 k=1

i | Sy ¢ q
k=1 .

: Sup oo q
Hence I f =0 I =11 £(x)! S[Elh rf]y

k=1

S 1=

= L
Also as we have seen above Il f “=(E|Tk i”]y el G . (2)
k=1

where ¢=(7. Y21 ¥y )€ Iq,-, where ¥, = fle ) (k=1,2,..,n,..)

Mow the mapping : Ip' — [, defincd by correspondence f & IP" —» ¢ € [, is Linear
and bijective, and (2) says that il is norm-preserving. Therefore it is an isomorphism.

Corollary. The Banach space [,(1 < p < e=) has its sccond Dual (conjugate) space

1, isomorphic to it sell.

~ Because [, = I, and by same reasoning (Theorem 3.1.2)

o o U = . ’ '
Iq _Iq{ P tg =1), and = denoting isomorphism.

Procecding same way as in Theorem 3.1.2 one can prove following theorem, the
proot of which is left over.
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Theorem 3.1.3. The Dual space /" of the sequence space /; is isomorphic to I_(/_
is the space of all bounded sequence of with sup norm),

Theorem 3.1.4. Let C[0, 1] be the Banach space of all real valued continuous
functions over the closed unit interval [0,1] with sup norm and f€ C'[0,1], then f

can be represented as a stieltjes integral f(x) =J1(f3d3(ﬂ; x & C[0,1) where g is a
0

function of bounded variation over [0,1] such that

I
Hfﬂ=gg.

Proof : The space C[0,1] is a sub-space of the space M0, 1] consisting of-all
real-valued bounded functions over [0, 1].

Take f as a bounded Linear functional over C[0, 1], and then by Hahn-Banach
Theorem f can be extended to F as a bounded Linear functional over M[0,1] with

HEN=Nf.
Let <t <1; consider the function

(1 for 0<é&s<t
"'{5}"{t} for t1<E<1

Clearly u,'s are bounded functions over [0, 1] i.e., u, € M[0,1].
Put g(f) = F{u (&), in0<r<1
We now verify that g is a function of bounded variation in [0, 1]. Let us take
a partition
tg=0<p < <..<r,-l<r =1 of [D, 1].

Put & = Sgn[g(r,)— g1, =],

Then the sum zlg(I;}—E(I;“l)| :
=l

=3 £ lgtt) - 5t =D
i=l

L

i=1

Therefore, | g(t)—g(t, =~ DISUF Y &Gt =t

i=l i=]

ZIHEN
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because Il Fll=1l f 1l and 'Y € (u; —u,,_)11-1

i=l
Thus 318()- g~ DI<H £ e S

i=l
r.ls, being independent of choice of parutmn [ty e 2] 0F [0, 1]

We find g is a function of bounded variation in [0, 1]
Now take any member x € Cl [0, 1], and construct Z,, as follows :—

En(f} ZI[EJ[HJ{I) H.t-l{”] 0=r<l,

k=l
iLe., cach Z, is a step function in [0, 1], We have

F(ZH)ZF(E ( Hx{f} uH(ﬂ:’J
k=1
e k
_Ex[n) HIU} ”1-1':1])}

SGLCH
rutor, )=t (3 oo

f
Now Summation Z represents Stielijes sum arising out of a partition of [0,1]
k=l
and since x is continuous and g is a function of bounded variation we know that

- ] k k—1
I i | I
. nl_r’rlélx[u g(nJ E( - ]:I lis actually J.r dg .

Therefore !”“ F(Z,)= _[ xdg —J._x{r}dg{r}

On thc other hand lﬂﬂkmg on L H.S. We find as n — =, {Z,(r)} converges
uniformly to x(#) in [0, 1}; So,

NZ,—xll—=0 as n — =, By continuity of F, we conclude that 1““ F(Z}
= F(x). Hence we obtain

th)=jx(r}dgfr> |

Since F is an extension of f form C [0, 1] to M[0, 1], we have for xe C10,1]
F = f and form above we wnte
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flx)= jx(f ) dg(t) . and this is the representative formula for f as a Stieltjes
g )
Integral.

Finally to determine |l £1l, We have from (*) above

H %
Y lglt) gt =DIsIfIl Since r.hs. does not change by changing
k=1

partition of [0,1] we conclude that
Sup ¥l g(t;)—g(f;.4)! Partitions over [0, 1] <IIfN.

1
or, vg I/l D)

1
Again from f{x}:jx{:} dg(t). We find

| fen) =l j x(1) dg(t)| S sup |.x(rJlVg
O=r=1

=
|x||\éfg
|
This gives I flI= 'E‘g Ryl

; |
(1) and (2) together give ||f|!='gg.| as wanted. The proof is now complete.

§ 3.2 One of the corner stones of functional analysis in Normed
Linear spaces is very often marked by Banach-Steinhaus Theorem
or Uniform boundedness Principle theorem, others being the Hahn-
Banach Theorem, open mapping Theorem, and closed graph
Theorem.

Theorem 3.2.1. (Banach-Steinhaus Theorem). Let X be a Banach space and Y
4 NLS over the same scalarfield and T, € Bd&(X, Y) {T Lbe a bounded Iinear
operator : X — 1), n = L, 2,... such that

{1 T,(x)ll is bounded for gach x € X,

Then (Il T} is bounded.

Proof : For any +ve integer k let

A, ={xe XN T ()lIsk for all n}.
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We verify that A, is closed, Because, for any x€ Ay - We [ind a sequence (x;} in

Ay such that lim Il x; —x1=0

Jo==

For a fixed n, we have Il T,(x)ll < k, by continuity of 7,, We have ||T. Il < K.
This is true for all n; Hence x € A, And Ak is closed.

Also X = U A, ; Since X is Banach space, by completeness in X, Baire Category
k=]

Theorem applies here. So as an application we find some A, = A, contains an open
ball. say B,(x,)c A

Take x e X as arbitrary non-zero member, and put

¥ !
z=x,+¥yx where 'J—’—E—EH o i (2)

Then lz—xyll<r ie. ze B (x;),] and from (1) we have
T (z) 1< ky for all a,

Further, 1T, (x,) ISk, since x is centre of B (x,). So from (2) get,

1
*=—(z2-%),
Y
This yields for all n, II';"""{f,'afﬂ,}ll-—-l T, (z—xp) Ml
Y
1 4
ST (D NHNT, (x5) IS —Hxll key.
r r

Hence for all m, 1T, ll=sup I T, (t}ll‘i4k
lxll=1

That means {7} } is norm-bounded,; that is what was wanted. The proof is complete.

An application : NLS @ of all real polynomials with | pll= mjax lla; Il where
P =ty + ayl + ... + a,t"is not a Banach space. _

The conclusion is derived by applying uniform Boundedness principle of Theorem

3.2.1. So we make appropirate seting of Theorem 3.2.1.
We may put p € 2 in a form ;
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p o =dy+alt..tat(a, #0)

n+l

=agtat+..ta " ta, 1"+ with a,,, =a,.5=...... =0

=Zajrf
k=l ;
(It does not matter if p is the zero polynomial). Now define a sequence of

functionals {f,} in the following way :—
[{zero poly) =0

and f(p#20)=a,+ta +....+a,,
Then it is routine exercise to check that each f| is linear; each f, is bounded

because la; 1</l pll.
So that | f (x}I=nllxll
Further more, for fixed p € @2 {/,(p)}
satisfies | f, (p)I<(N, +1)maxla;| where N, = degree of p.
i

That means at each p € @ {f,} is bounded; However we will show right now that
{f.1] is not norm (operator-norm) bounded.

Letp(r) =1+t +1* +...+1% So, Il pll = 1.
And f,(p)=1+1+..+1=n=lpl,

e ferms

Now Il f, 1l

—-‘{;’(‘T ) =n, where n is free to take indefinite large values.
p .

Clearly here supll f, ll=+e<=, and hence.

Uniform boundedness Principle (Theorem 3.2.1).| is failing; because o is not
complete.
S0, NLS s is not a Banach space.
Example 3.2.1 : Let X be a Banach space and ¥ and NLS over the same scalars,
and Let T, € Bd#(X,Y) such that for each x € X, {T,(x)} is Cauchy in ¥. Show that

sup I T, 1< oo,

Solution : Here for each x € X, image sequence {T,(x)} is Cauchy in ¥, and
therefore it is bounded there.
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or, supliT, (x)ll<ea

Since X is a Banach space, and we apply Uniform boundedness principle Theorem
3.2.1. to conclude that (T,) is operator-norm bounded and we get

supIIT Il < oo

n

§ 33 Weak convergence in a NLS X.

Let X be a NLS, and X* denote its dual / Conjugate space of all bounded linear
functionals over X.

Definition 3.3.1 A sequence {x,} in X is said to converge weakl},r to xeX if
hm f(a )= f(x) for every member xeX*,

If (x,} converges weakly to x, we write {x, f,x or weak lim x, =x or simply
q : i=yes
w-limx, =x

A —om

Theorem 3.3.1 If {x,} is weakly convergent in X, then m-—_‘lim *n is unique.

Proof : Let @—limx, =u and @-limx, =& in X. Then for every bounded
fi—ies H—yes

Linear functional fover X i.e., f€ X* We have Eiin"f{xn}=f(u} and Eﬂf{-’fn) -
fB).

That means f{u) = Av) or fw) —fO) =0or, flu-9)=0

This is true for every member feX* and hence (v - ) = 0 or, u = 9.

Theorem 3.3.2. If (x,} converges to x in norm in X, then {x,} converges weakly
to x, but not conversely,

Proof : Let {x,} converge to x in respect of norm in X; We also say (x,}
converges strongly to x. That means

lim lx, —xlI=0_
n—yes

‘Take feX* arbitrary; then | f(x )= f(x) = flx, =) ISl flllx, - x| =0 as n
—» o0, Therefore

w—lim x, =x
fl—ea b
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- 1 0
. s = R e
Converse is not true. Consider a basis {Schaudm'l basis) ©k [ﬂ kth place —]'

k = 12,.) in the sequence space l,| which is a Banach-space. First we verify that

w=lime, =0 in [,

H—e

By representation Theorem we know that every member fe I,"| may be

represented as Jf (=2 ETe, where x=(£.&,,..)el,; where we also recall
k=l

}(Ir = f(fkjr k = 1,2,,..

Since limy, =0, we find
=¥t

lim f(e,)=0

H—yea

That means lim e, =0 in ,, because f is any member of I;’.
n=yes

Now if n # m, we al once see that |le, —e,, I’=2,| and sequence {e, ] does not

converge to any element in [, in [, norm. The proof is now complete.
However situation looks simple in some cases.

Theorem 3.3.3. If X is a finite dimensional NLS, then notion of norm convergence
and weak convergence of elements, in X are coincident.

Proof ; Actually, we need showing that weak convergence implies norm
convergence (strong convergence) if Dim (X) < ee.

Let {x,} be a sequence in X such that

lim x, = x,eX

e

Suppose Dim (X) = k and (e, €,.....¢;) form a basis in X; Therefore, we write

=< =€-Itrﬂ£i +52{“j£2 A tfﬂﬂk*"___l,zvu

and  x =" +£,%, +..+ 5%,
Define functionals f|.f,....fy over X in the following way :
f{x) = &;, when x =& e +&e ot e X (f=120..Kk).

53



Also since Dim (X) < o=, each of Lhcsc linear functionals is continuous, Tht,.n_.lﬂn_.
cach f & X"

Now, fi(x, }:§';’” and f-(xn}:&"}.

Since @—lm x, = x| m hm f_,():} f{xu}

M=fod

e, w—lim zjﬂﬂl_gjmh F= 0k

H—po

Put M = max lle;ll; given £>0, therc is a +ve integer n; such that
==

for n2ny and j=1, 2, ..., k

£
|‘£J,-:n: _gjrm ]‘:“ﬁ
Then for n2ny, we have

k 3 ;
I, =g W=l 2 oy =& ) 1< D16 — 60 LM
J=l J=1

£
<M. —.k=k£,
MK
Consequently, {xn] converges in norm to x;.
ie, ImMx, =% in norm in X,
[

The proof is now complete.

Theorem 3.3.4. Let X and ¥ be two NLS with same scalars. Let T € Bd2(X, Y)
if {x,) converges weakly to x in X then {T(x,)) converges weakly to T{x,) in ¥,

Proof : Take @€ ¥*, Consider the composition @,7 : X — | Scalars Then it is

an ‘easy exercise (o see that P,T is a linear functional over X, As W-1lim x, = x5

A—je=

in Xl So !.]ﬂ (@, T)(x,) =(@,T)(x,)

or, lim ¢, (T'(x,))=@(T(x,)) As @ € ¥*l is an arbitrary member it follow that

{T(x,)} converges weakly to T(xy) in ¥,
Theorem 3.3.5, If {x,} converges weakly in X, then it is norm bounded in X,
Proof : Take fe X*, So (fix,)) is a convergent sequence of scalars, Hence it is

bounded, Thus | f{x,) = M, where M(> 0) a fixed scalar. Via canonical mappmg let
** & X"l such that

FI
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. MfexN = frin=12 .
So inequality above gives
I x,(N Il £ M;
Thus {x, **} is a sequence of bounded linear functionals over X" (which is a
Banach space) and this becomes sequence bounded at f € X", By Uniform

boundadeness Principle Theorem (or Banach—Steinhauss Theorem) We conclude that
{x,"") becomes norm bounded ie.

supll x, ll<ea.

But we know that Il x,"* Il = Il x, || . | Therefore from above we have

supll x " li<ee, and Proof is complete.

Example 3.3.1. If w—hm x, = xgin x Show that lim [lx, | 2 1l x5 Il (X is taken
a real NLS).
Solution : Given Wh—_'l_im x, = xpin X. Let fe X7, | we have lim f(x,) = (xp).

By Hahn-Banach Theorem there is a member f€ X" | such that Il x, Il = f; (xp) and
Il fy Il = 1. So taking f; in place of fin limit above we oblain, '

fol) = lim fiox,)

ar, a T lim Tils)

s o

Now fo(x.) € | fule) 1 S Hfy hx, 1=l x, Il

Sy e
nes n-—»

hx, 0,
(="

—folx) =z, I,

. lim
From (1) we have lim [lx [l 2 v

Example 3.3.2. Let {x,) convcrgcs wcakly 10 X in NLS X and Y = clesed sub-
space of X spanned by (x|, X%, X3, ..., X, ...) Show that X € Y.

Solution : Let m-—hm x, = x, and ¥ = closure of Lin. hull [x, x;, ... X, |

which is the closed sub-space generated by (x, Xy, ..., %, ...) in X. Supposc xy & Y.
Then dist (x5, ¥) is +ve, say = 3(> ©) We apply HahmBanach Theorem Lo obtain a
‘hounded Linear functional f over X te., fe X' such that
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fxg) =6
and fly) = 0 for all ye¥.
Clearly, fix,) = 0 for all n; Hence {f{x,)}| does not converge to flx;) =& >0, a

contradiction that w—1lim x, = x,; Hence conclusion follows.

]

§ 3.4. Approximation in NLS

Theory of approximation is a very useful area of study in Mathematics, Numerical
Analysis is an extensive area to take care of some approximation Theory.

Let X be a NLS (Normed Linear Space) and let ¥ be a fixed sub-space of X, Take
xe X andputd=(x, N = In’fllx—yll.
3

Definition 3.4.1. If there is a member y; € ¥ such that Il x — y, Il = & = | dist
(x, ¥l then y, is said to be a best approximation of x oul of Y.

Explanation : A best approximation y, out ¥ is thus an element whose distance
from x is minimum. Such an element y, may or may not be there. Even if it is there
problem of uniqueness is of interest too.

Theorem 3.4.1. Let ¥ be a sub-space of a NLS X with Dim (¥) < o=, Then for
each x € X there'is a best approximation to x out of ¥. '

Proof : Letx e X,and B = {ye Y: Il yll <2l x I} denote the closed ball in
Y, Clearly, Oe B, and we see that dis (x, B) = Infllx=§ll<llx—0ll=ll x Il
el

Now if ye B, then liyl>2Ildl, and lx ~ ylI2liyl-Ilisixl = dist (x, B). ... (1)
Again if yg B, then |l x — y I = dist (x, B). - w2
Combining (1) and (2) we duduce ' '

dictie WyEdiweEy . . L oy e (3)
On the other hand B c Y, thercfore

dist (x, ¥) = dist (x;ﬁ'}
combining (3) and (4) we have

dist (x, B) dist (x, ¥).
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Now dist (x, ¥) is not equal to Il x - ¥ Il for any position y € (¥'\ B)! because
from (1) we know that in this case Il x —y Il > dist (x, B) = dist (x, 1),

So if a best approximation to x exist in B, then we have finished. Now B| is
a bounded closed subset of a finite dimensional NLS, and therefore it is compact, and

therefore by continuity of norm function there is a point y, € B such that
Il x = yoll = dist (x, ¥).
So y, is a base approximation to x out of Y.

Example 3.4.1. Let po() = L,=p(N =1 .. p)=r"inasts b and n be kept
fixed. If ¥ = lin. hull [pg, Py, p,] 18 the sub-space of Cla, b] generated by [pg, pryees
p,l, then Y is a finite Dimensional NLS as a sub-space if Cla, b].

Now given a continuous function x over [a, b] ie. x € C [a, b], we apply
Theorem 3.4.1. to find a member of ¥ sat = p, that Il p - p, Il = dist (x, )

or; = {:i'g_: | p(r}—-pn{f}i:ﬂr:tllx—pll
| = ﬁi_frn ﬂrﬁlx{r}—p{t}l

We now examine necessity of assumption that sub-space ¥ in Theorem 3.4.1 is
such that Dim (¥) < ==. Example 3.4.2 serves our purpose.

Example 3.4.2. Cosiden NLS ¥ consisting of all real polynomial over [“- %] (ot

any degree), So we have
Dim (¥) = +eo.

Consider a continuous function x(f) = IL in [{], l] | Then we have x(f) = 1
=1

o I e in [ﬂ, ]E] Let p.(f) = | + 1 + ... + 1", Then we know that

lim p_ =x in sup norm.

A—hm

Given a + ve € we obtain p(f) = 1 + t + ... + (" such that
hx—p, Il <eforalnzh

ie, dist (x, ¥) = 0.
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Here x is not 4 polyminal function and x & ¥, and we see that there in no y, &
Ysuch that | x —y, Il = 0

Theorem 3.4.2. In a NL.S X, the set M of best approximations (o a givenxe X
out of a sub-space ¥ is a convex set.

Proof : Conclusion is obvious if either M ® or M = a singleton. So let M
consists of more then one element, and take u, vEM. Then we have Il x — u Il x = il
=dist(x, ¥). IE0<A s |, and put @ = Au + (1 — A)v. Then we¥ (because u, vel)

Then | x — @ |l dist x, Y.
Again llx — @ ll =l x = (hae + 1 =) I = HA (x — ) + (1 = &) (x = v) I
ZMx—ull+ (1 =x—vll =&+ (1 —4) dist (v, V)
T s I e D (2}
From (1) and (2) we have .
I x — vl = dist (x, ¥) Therefore @ € M. Hence M is convex.

To examine uniqueness of best approximation we recall Definition of strict convex
MO,

Definition 3.4.3. Norm in a NLS X is said to be strict convex if l x Il = 1l y |l
=] imply lx + vl <2 (x=2y)

A NLS with a strict convex norm is called a strictly convex NLS.

Explanation : |l x Il = || y Il= 1 give by triangle inequality, | x + y | £ Il x || +
Il v Il = 2, and strictly convexily of the norm demands thal Ix+ yll <2 (equality
sign s excluded).

Example 3.4.3. Every Hilbert space H is strictly convex.
Solution : Tetx, ye Hix2yand ll xll =111 y |l
Put Il x — y Il = ; then o > 0. By law of parallelogram, we have
Nx+yIPallx=yP=2UxIP+Iyl®
or, Nx+yP=202+0ylH-Nlx-yl?
=4 - of < 4; This gives ll x + y Il < 2.

58



Theorem 3.4.3. Let X be a NLS with strict convex norm and ¥ be a sub-space
of X. If x € E then there is atmost one best approximation (o x out of ¥,

Proof : Suppose for x € X, there is a hest approximation to x out ¥ and let u,
v be two distinct best approximations. Then we haven w, v e Y with ll x —u Il = I
x— vl =) dist (x, 1)

Putting & = dist (x, ¥) > 0; we have it B8 f-;—” =1 and by strict convex
norm of X, we have
ié_i'-t—h : c‘i. ”“ =
G %x—”*” < § = dist (x, 1) s (1)
- Now L eV (Y i1s sub- ';pm:r::} 50 x—— dist (x, ¥) i 62D

So (1} and (2) are contradictory, and therefore we have proved Theorem 3.4.3.

Theorem 3.4.4. Let C be a non-empty closed convex subsel of a Hilbert space
H and let x & H; if

d=Infllx—yli,
¥t
Then there is a unique member y, in C satisfying | x — y, l = 8 .
Proof : Let {y,} be a sequence in C such that
limllx—y l=4.

By Law of parallelogram we see
hy,—~ 3, IF =2y, —xF+ 2y, ~xIF-ll 2x~y,~y, I

=My —xIP+20y, x|

.r-_-}lﬂ+}'.l1l
2

Yot ¥

By convexity of C we have x— - e C, and therefore,

P
=

Above gives Il y, — y, 1P <2 [l y, = x 12 + 20l y,, —x Il - 452,

59



rhs tends to @ as n, m — ==, because lim fl.ic—}:n IF= &% ete,

Therefore {y,) is Cauchy; Hence there is y, € H such that lim ¥, =¥, Since

yg € C and C is closed we have y,e C.

Now ll x = yg ll Sl x—y, Il + 1l y, = yll, Letting n — ==, we have || x — y, |
< &; Also |l x — y, Il 2 &; these together mean Il x — y, Il = 6.

For uniqueness of y,, let y; € C such that Il x — y, Il &; Since C is convex, %

(¥g + ¥) & C. Therefore.

1 A (R
B Ellx-E(}*ﬂ+}vl}ll=tlix——2-;,fn+—~

x-l ]
5 2.‘]"l

1 1 1 1
i;llx-}’ﬂ H-[—Elfl.x—y, ll= 554‘55 =4,

Therefore |l x— %{yﬂ +y)lI=4.
By Law of parallelogram we have

lyg — ¥ilP = 2l x—y, IPF 421l x—y, il—4llx-%(yn +y) It

=282 + 267 - 432 =0
S0, ¥; = ¥y . The proof is complete.

EXERCISE-A
Short Answer type questions

1. InaNLS xif m—ﬂlim x, = x, and m-_}im v, = y and o any scalar, show that
(i) @—lim (x, + y,) = x + y and (ii) m—ﬂm (ax,) = ox

2. Show that the space g4 of all real polynomials of degree not exceeding two is
isomorphic to Eudidean 3-space R’

3. In a NLS X if fx) = fiy) for every member feX", Show that x =y,

4, Using representation Theorem for a bounded linear functional show that every
Hilbert space is self-dual.
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EXERCISE-B

In a Hilbert space H show that @—lim x, = xif and only of lim <x,, u> = <x,

u> for all u € H.

Show that Banach space Cla, b] with sup norm is not strictly convex.

In Euclidean 2-space R? with norm lI(x, Yl = ld + | y 1 for (x, y) € R 2. Obtain
all the best approximation to (1, — 1) out of the sub-space ¥ € R? where ¥ = {(x,
e R:x=y)

If {x,} in a Banach space X is such that {f{x,)} is bounded for all fe X', | show

that supllx, llk<ee,

In a NLS X which is strictly convex, show that Il x + y Il =l x Il + Il y Il (x =
0 y # Q) implies x = py for some +ve scalar L.

If a NLS has a Schauder basis, show that it is separable (converse is false : In
1975 Enflo had constructed a Banach space that is separable without a Schauder
basis).
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Unit - 4

(Concepts : Resolvant set.p(7) and spectrum o(7)] of a bounded Linear operator T,

expansion of (/ — T)™!, properties of o(T) : compact linear operators, their al gebra,
properties of compact operators; spectral properties‘of bounded self-adjoint aperators,
tormula Il T Il = sup |< T(x),x>|, projection operators, their sum and product;
orthogonal projection operators, their properties.)
§ 4.1 Over a finite Dimensional NLS spectral Theory is essentially
matrix eigen-value theory. The importance of spectral theory over a
NLS rests in its application like solving equations (system of Lincar
algebraic equations, Differential and integral equations).

Let X be a Normed Linear space (NLS) over real/complex field, and assume X

to be nonnull,

Suppose T is a bounded Linear operator : X — X.|I For a complex scalar Al
consider another operalor.

T, ¢ X — X defined by
L(x)=Tx) - Ax for all x € X
or, T, = T— Al where [ is Identity operator of X.

Definition 4.1.1. (a) A is called a regular value of T if T, has an inverse or
equivalently operator 7 - Al is invertible.

(b) The collection p(T) of all regular values of T is called resolvant set of T.

(¢) The complement o(T) = C'\p(T) in the complex plane ¢ is called the
spectrum of T, every A € o(T) is called a spectral value of T

Explanation : We have € =o(T)u p(T) Suppose A is an eign value of T: So
there is a non-zero Vector x € T such that T(x) = Ax

or, T{x)-hx=0
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o, (T-A)(x)=0
o, T;(x)=0

That means Null-space of T, i{DH and hence linear operator T, has got no
inverse i.e. T,”! does not exist, Therefore A is a spectral value of 7, or A e al(T).

But converse is not true. Consider Example 4.1.1.
Example 4.1,1. Consider the Hilbert space I, where let T: I, = ;| be defined by

T(E i Eaie ) =10i&1:E501r) 08 (EGainlels

(This operator is known as a shift operator on /)
Then T has a spectral value which is not an cigen value.

Solution : Here 7 is linear such that

e

=E|ﬁ Jt =|lx|" x where,
j=0 .

So T is bounded Linear operator over [, Here

T is not onto; because (1,0,0, ... 0, ....) € [, has no pre-image in Ll under 7. So
T-! + X — X does not exist. Thus (T — A with & = 0 does not exist. A = 0l is a
spectral value of 7, but A = 0 is not an eigen value of T.

Theorem 4.1.1, Let T e Bd2(X, X) where X is a Branch space. If |1 <1, then

I - T is invertible as a bounded lincar operator over X and (I - '=1+T+T+
... {r.h.s. is convergent in operator norm of BdZ(X, X)),

Proof : We have by Induction ||Tj ||£[|T|{’ because, |[7{<1, geometric series

STl is convergent.

j=
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As X is complete r.h.s. series as in statement of Theorem is absolutely convergent
for |7 <1 Let.

5:21”‘" =L+ TH+T +
j=0

We now verify that § = ( — T)™! For a + ve integer n we have
T-DU+T+T+ .. +T)=(+T+7+..+T(-T),and
gach=1-T"*! As 7] <1, we have lim T" +1 = 0 (zero operator), Therefore
f=jos

from above we obtain,
(-DS=sU-N= 11 (-T+) =]
That means § = (I - 7).
Thearem 4.1.2, If T & Bd2(X, X), the resolvant set p(T) is an open set,

Proof ; If p(T)-= ¢, it is open, Say p(T) # ¢. Take a fixed Ay € p(T). For any
complex scalar A, we havé

T-M=T-MA— (A=A
= (T = A [T = (A = AXT = A0
= (T = ANV (say) where V = - (A — AT = A"
Putting T, = T'~ M we write from above.
T, = T, V where v=f—{l—lD)Tlu“ ..... (1)

Since A, €p(T) and T is bounded we have

=l
T, € Bd(X, X)

So, ||?.:"-ﬂ_1 “ SR

From (1) [1 = VlI=A~2)%;, | =2~ 4[|,
Therefore; JI-¥}=< Ly (2)

whenever, [4 -4, < By of | SNSRI R ST (3)
7.

So we find T; has inverse for all X satisfying (3)
le. ' = (T}ﬂﬂ“ = Y-l Tlu" for all & satisfying (3).
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In other words, A, has a ncighbourhood for every scalar A of which 7, is invertible
i.e, this neighbourhood of A, is entirely made up by regular values of 7. Hence A,
is an interior point of p(7T); and p(T) is open.

Corollary : Spectrum o(T) is a closed set m .

Theorem 4.1.3. The spectrum o(7) of a bounded Linear operator T : X — X
where X is a Banach space is compact, and |A| < |1 for all X & o(T).

Proof : For non-zero A, take K = l Then

1 o ] oo " I o 1 i
R WO . (S ) ) ey G i iz_nz KT’"——Z(—T)

and Theorem, 4.1.1. says, the series on rh.s. above converges for all A satisfying

ILr
A

I= |;I.| [Th<1l ie. for all A with = |1 >|7].
Thus such scalar Aep(T); Thus spectrum o(7) = ¢\P(T) and further o(T)| must
lie in disk {A € €:|A| <|T]}. Moreover o(T) is bounded and a bounded closed set of
€| is compact, '
Definition 4.1.2. If X is a Banach space and T'e 842(X, X), then spectral redius
r,(T) of T is equal o

_ Sup
l'ﬂ(ﬂ 3 J’.EU.IJ?;I. .
We shall later on obtain a formula for r (T).

Example 4.1.1. Let X be the Banach space C[0, 1] wiith sup norm let T :
X — X be given by T(x) = éx, where & is a fixed element C[0, 1] and C[0, 1]. Obtain -
a(T), and verify that it is compact,

Solution : It is a routine check up that T is a Linear operator over C[0, 1], For
boundedness, We have [Tx]= Sup|(dx)(1)] = Sup|d(t)x(2)] = Supld()fx () = 7] il
==l 0zl 5

d=isl

Since |} is a fixed quantity, we see that T is bounded.

For scalar A consider operator T — Al, [ being identity uperafnr over C[0, 1]. If
x € C[0, 1] we have
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(T — M) = T(x) — Ax
= fx — Ax
Now (x(f) —dx = () — A in 0D £r sl
Thus T — AJ is not inevitable if &(r) — Al vanishes in [0, 1].

Now & is continuous in [0, 1] s0 T8 3() = m and M = B §(1)| arc finite reals
and m < M,
Hence T — AT is not invertible it A lies in [m, M)

Thus, here o(T) equals to the range of & = closed interval [m, M] and this is a
compact set of scalars.

Remarks (1). If &(r) = ¢ then 0 < 1 < 1, closed interval [0, 1]
(2). If &(f) = constant = ¢, then o(T) = singleton {c}.

Example 4.1.2. Obtain a Linear operator T : C[0,1] — C[0, 1] such that o(T) =
[a,6]; a < b.

4.2. Let X and Y be two-Normed Linear spaces (NLS) over the same scalar ficld,
Theory of compact operators from X to Y owes primarily o Fredholm's famous
integral equation related to linear functional equations T(x) = Ax = yl with a complex
parameter A.

Definition 4.2.1. A linear operator 7@ X — Y is called a compact linear operator
(or simply compact) if for every bounded set B is X closuer of T(B) is compact
in?.

Theorem 4.2.1. Every compact operator T X — ¥l is bounded (hence continuous),

Proof : The unit sphere § = {x € X:[x| =1} is bounded. For a compact operator

T we have
) ﬁ’hIS JI is compact, and hence it is bounded, and T(S) is also bounded. That means.
[T(x)l< M for all x with = [x| =1

for some +ve constant M,
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and therefore Sup|7{xJ| <e= and therefore T is bounded (hence continuous).
1x§=1

Converse of Theorem 4.2.2. is not true. Because let X be a infinite dimensional

NLS, There we know that closed unit ball B = {xe X:|x]|<1} is bounded. Now

identity operator [ : X — X is 4 bounded (hence continuous) continuous operator
where I(B) = B is not compact, although B is closed,

Theorem 4.2.2. Let T : X — Y be a linear operator. Then T is compact if and
only if T sends every bounded sequence {IH} inX to {T(.rn)} that has a convergent
subsequence in Y.

Proof : Let 7 : X — Y be a compact Linear operator, and {x } be a bounded

sequence in X; Then {T(x,, }} is compact in ¥, and hence from sequential compactness

it follows that {T(x,)} has a convergent subsequence in ¥,

Conversely, suppose every bounded sequence {x, } has a subsequence (x , }l such
that {T(x,)} converges in Y. Now take B any bounded set B is X and {y } any
sequence in T(B); Then let x_ be pre-image of y, in X under 7' ie. y = Tix ). Hence
{T{x,)} by assumplion contains a4 convergent sub-sequence. Therefore T(B) is
compact. So T is a compact Linear operalor.

Corollary (1) Sum of two compact linear operators : X — Y| is a compact Linear
Operator.

(2) A scalar multiple of a compact Lineat operator : X — ¥'| is a compact Linear
aperator,

Therefore we have the following Theorem the proof of which is left out.

Theorem 4.2.3, The collection of all compact Linear operators : X — Y forms a
vector space and it is a sub-space of Bd£(X, Y).

Theorem : 4.2.4. Let T : X — ¥ be a Linear operator.
(a) If T is bounded and Dim (T(X)) < = then T is compacl.
(b) If X is finite Dimensional NLS, Then T is compact.
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Proof : (a) Let A be a non-empty bounded set in X. Because T: X — ¥Yisa
bounded Linear operator, we have T(A) as a bounded set in T(X) which is finite

Dimensional, and is therefore closed. Thus T(A) c T(X) = T(X); Hence T(A) becomes
a bounded and closed subset of a finite Dimensional NLS; Hence T A} is compact;
and 7" is compact.

(b) follows from (a); To see it we first show tt_lal Dim (7T(X)) < = when Dim
X0 < os.

Let Dim (X) = n; Take any n + 1 elements y , ¥,, ..., ¥,,, from T(X), So we find
Xy My ey Ak oy in X such that T{.ri.} =y, (=12, ., n+ 1) Since Dim (X) = n,
the set of vectors {x,, X,, ..., X, X, ]} becomes linearly dependent and we find scalars
Uy, Oy oy O, O not all zero such that

Oy + QX + o HOLX + 0+ X = 0

By linearity of T, we have

n+l

me;] =T(0)=(0)

i=l

or, oy, + o), + ey o+ v = 0 where scalars o's are not all zero.

That means {y, Yo, s ¥ Yout | 18 @ linearly dependent set, Thus 7(X) contains
no linearly independent subsets of (n + 1) vectors; Hence

Dim (T{(X)) £ n.

Thus our observation stand OK, and Dim T(X) < e, and part (a) applies by
remeinbering only that over a finite Dimensional NLS every Lincar operator becomes
bounded. The proof is now complete.

Example 4.2.1. Let K{(3, 1) be continuous in the square 0 £ s< 1, 015 1; and
let T; C[0,1] = C[0,1] be defined by '

y = Ix) as x € C[0,1] such that
1
Ws) = jﬂ kis,t)x(r)de: 0 <5< 1.
Show that T is a compact Linear operator.
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Solution : Put M = Max|k(s,1)]
Degsl

0=l

Take a sequence {x_} in C[0,1] with ]|x,,H51 for all n. (C[0O, 1] taken as Banach
space with sup norm).

1
Iy, = T Then = [y, =| k(s 0%, 1)

< Maxlk(s, 1) Max|x, (01, = M|x,[ = M
Du*;ffll iz

Therefore, the sequence of functions (y, (s)} is uniformly bounded.
For £ > 0, by uniform continuity of K(s, 1) we find a & > 0 such that

Ik{s,,i,}—k{’sl,rﬂ < & whenever [sl ""‘zi < 8 5, 5 €[0l1] and for all
te[0,1] Then for n = 1, 2,....,

i
We get |y, (5,) = ¥u(52)| S Iulﬂ’fsl.flnﬁfsg.r,il |(x,,(t )t
<gif ls; — sl < B
Therefore sequence of functions (y (8)} is equi-continuous. By Arzela-Ascoli

Theorem the set consisting of members of the sequence {y, (5) = T(x,)} is compact,
and so {7(x,)} has a convergent sub-sequence. Therefore T is compact Linear operator.

Theorem 4.2.5. Let X be a Banach space and T : X — X be a compact linear
operator and let SeBd2(X, X) then ST and 7§ are compact.

Proof : Let {Xﬂ} be a bounded sequence in X; Then {S(X )} is bounded, because

Iscx 0 <180 |lx. ], Therefore {T(S(X,))} has a convergent sub sequence, because T i
compact. As (TS) (x) = T(S(x,)), we have verified that TS is compact.

On the other hand, {T(x )} has a convergent subsequence, say = {'i"‘(:cmt }} Since
S is continuous we have {S(T(x,,l ])} also convergent, This proves that §T is compact.

Theorem 4.2.6. Let X be a NLS and ¥ a Banach space over same scalars; and
let {T, : X — Y] be a sequence of compact Linear operators such that

lim7, —T] = 0 where T"e Bd£(X, ¥) Show that T is compact,
—e

Proof : The proof rests upon applying ‘diagonal method.”
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Let {x,} be a bounded sequence in X. We show that {T(x )} has a convergent
sub-sequence, Since T, is compact, {x_] has a sub sequence, say, (x,, 1 such that
{T,(x,, )] is convergent, and hence is Cauchy. Similarly, {x, } has a sub-sequence
{{x,, )} such that {T,(x,, )} becomes Cauchy. Continuing this process we arrive at
the diagonal sequence {y, = x,, .} as a sub-sequence of {x_} such that for every
fixed +ve integer n, the sequence {T,(y,)},, = 1, 2, ... is Cauchy. {x_} is bounded,

say, |x,|s€M (> 0) for all m. Hence |y, |<M for all m. Take £ > 0 Since
lim|T,, — T}= 0 there is n = p such that

: E
-l
AT

Since {TPUMJ} is Cauchy, there is an index N satisfving

So for j, k 2 N we have

[703;)= T | S [T =Ty N+ T3, - T v |+ [T k) = T3 )|

o 7 R R T

! £ :
()= Ty)| <5 forj k2 N

il M+E+L.M'=E
IM 3 M

Theretore {I({y,)} is Cauchy, and because ¥ is a Banach space, {T(y )} is
convergent in Y,

Now nothing that {y_} is a subsequence of any bounded sequence (x_} we see
that 7 becomes a compact operator.

Example 4.2.2. Let T: [, — [, be defined as
Nx)y=yforx=(§, &, ..) € |, where y = (U, 1, ...) € I, such that 1,

51. (i=1,2 3, ..). Show that T is a compact linear opegator.

513"

L; and it is easy to see that T is linear. For every +ve integer n let us define an

Solution : Here T(E, &,, &;, .-.) = [.{;’1;—2. -'g-l é—”] whenever (€, i) &
- n
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operator T, : [, = L, given by ity Eav B [Hjl, 52 éq’ é-EII[H}J when
n

{ﬁt, Sas woe) € Iy Then a fixed # we see T, to be Linear and bounded and because Dim

(T (1)) <+ oo, we conclude that T is al:m cumpar:t i.e., each T, is a compact linear

operator, Further for x = (§, &, ...) € I, we have

|D G ﬂ' n+1 n+'2 1|

| 12
Li{T—T,,Jt’fJ] 1'”-"!" L ”‘]4 n+l'n I-21|

H p]'u:!:-!

LA

supu(T o :f)n

xf=1

1
L [ e

Therciore fLm uT~T:,“ = (). Now Theorem 4,2.6 applies for desired conclusion.

Theorem 4.2.7. If X is NLS and T ; X — X is a compact Linear operator Then
(a), Every non-zero.spectral value of T ia an eigen value of T.

(b) The set all eigen value of T is atmost countable,

(c) For non-zero cigen value of T the Dimension of any eigen-sub-space of
T is finite,

Proof.: Part of the proof is rather deep and lenghthy. For short of space proof
is left out.

Remark : The reader may like to consult Kreyszing’ book on Functional
analysis—chapter on compact linear operators for proof of above theorem and
allied matters.

§ 4.3 Spectral properties of bounded self-adjoint operators on a
complex Hilbert space H.

We know that a bounded Linear operator T : ff — HI has its adjoint operator
1% . H — H satisfying
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<Tx), y>=<x THy) >forall x, ye H; and T is known as self-adjoimt if T
= T* Therefore for a sclf-adjoint operator T : H — H we always have

<Tx),y>=<xT{y)lorallx, ye H.
Theorem 4.3.1. If T H — H is a bounded self-adjoint operator. Then
(a) All the eigen values of T (if they exist) are real.
(b) Eigen veclors corresponding to different eigen values of T are orthogonal.
Proof : (a) Suppose A is an eign value of T and let x be a corresponding gigen
vector. Then x # @ and T(x) = Ax By self-adjointness of T we get.

A<x, > =<y, x> =<T(x), > =<x T(x) > = <x, Axe>

1 <x, x>

ie. Ax|* = 2|xf* since x # O it follows that A = 7 So A is real.

(b) Let A and p be two distinct eigen values of T, and let x and y be corresponding
eigen vectors. Then we have T(x) = Ax and T(y) = py. As T is self adjoint and u is
also real, we write. .

A < y> = <hx, > = <T{x), ¥y > = <, T(y)>= <x, ty> = U<y, >,
Since A # W, we have < x, y > = 0. Hence x and y are orthogonal,

Remark : For a bounded sell-adjoint operator T'; H — H surprising result is that
(in connection with Theorem 4.3.1) spectrum o(T) of T consists of real scalars only.
Interested readers are advised to look into Advanced Functional text like “Dunford
and Schwarlz, Linear operators, vols, I & I, Wiley Intersciences, New York, 1963,
in this connection.

Theorem 4.3.2. Let T : H — H be a bounded self-adjoint Linear operator. Then
Ae p(T) if and only if ”T_,_ {x ,II" 2 c|x| for some +ve ¢ and for all x € H(T, = T~ AD).

Proof : Let ) € "p(T). Then Inverse T, = T — A exists; and T;,,_“‘ is a bounded
Linear operator over H; put ||T,_'l'| = K(=> D). .

Now for x € H, ﬁx"zu'ﬂ_" Ty x)"ii

7 I7atx] < KT ()
: 1 '
Therelore, HT_,_{ ,t}” > cl|x|) taking ¢ = - =0,
~ Converse part is a bit involved. Suppose condition holds. Then we will prove
(1) T, is bijective,
(1) T,(H) is dense in H,

(iii} T,(H) is closed
s0 that T,(H) = H and T,7' is bounded.
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(i) For x|, x, € H, we have 1|TA.[IE}--'T:1{:€-_1_){
So, T,(x,) T;(x,) implies x, = x,.

(i)  We show that x, L T;(H) implies x;, = O ; Then T,(H) = H. So take
x, L T, (). Then x, L Ty(H)(T,(H1)c(Ty(H)). So for all x € H we have
0=<T(x). 1, > =< T(x), x,> - A <x x, > As T is self-adjoint we obtain < x, T{x,)
= < Tlx), £, > = < x, A%, So that T(x,) Now x, # O is impossible, because that
would mean } is an eigen value of T so that 3 = A and Tix,) ~ Mxp) = Tylxy) = O
and a contradiction results 0 = [T, (xy)] 2 ¢fx,] > 0.

[y s 2 s )

Therefore x, = 0. Then T_;(_HF = {0}, because x, was any vector orthogonal to
T,(H). Hence T, (H) = H. So T,(H) is dense in H,

(iii) Finally we show that y € T,(/f) implies y € T;(H); so that T,(H) is closed,
and T,(f) = H Take y & T,(H), There is a sequence {y,} in Ty(H) such that

limy, = y. Say, A, =T,(x,) for some x € H. Then |[xﬂ—xm||£-]|i'},_{xﬂ—xm}u

Preepes
|l}',. }',,.“ Therefore {x } is Cauchy. As H is cc:mplctc say 11!11 X, =xe H Now
T and hence T, is continuous, and y, = 7;(x,) ; 50 lim n 7T, (x, J = T,(x). S0 T,(x) €

T,(H). Clearly Ty(x) =y i.e, y € T,(H). Hence T,(H) is closed because y € Tl{‘ H)
was arbitrary. Thus 7,(H) = H. Hence I, is defined on all of H, and is bounded.

Therefore & €p(T).
Theorem 4.3.3. The spectrum o(7T) of a bounded self-adjoint linear operator

T: H — H lies in the closed interval [m, M] on real axis where m = Ii?f; <T(x), x>

M = o <1, x>
Proof : It is known that spectrum a(T) for T cmmsts of real scalars only, Put A
= M + £ with £ > (. We show that
he p(T) (The resolvant sel for T),

For every non-zero x, put ¢ = , Soand x = |tx11'i|' :md

||x1|

< T(x), % >=|x|" < T(), ¥ >< sup < T(u),u>=<x x> M.
pu=1

Hence — <T(x), x> 2 — <x, ¥ ;-,, M, and by C - § inequality, we have (Putting
T, =T—AD
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= ||?j, {x}""x" 2=<Tix,x>=<T(x), x>+ < x,x>2(-M+A)<x,x>

2
= £l
where € = A —~ M > 0. Thus from above chain we get [T, (x)| = £]x
Now by Theorem 4.3.2. this implies A is a member of p(T) Similarly, one shows

that for any real A < m is a member of p(T); Therefore o(T)  [m, M].

Theorem 4.3.4. For any bounded Linear operator 7: H — H, T is self-adjoint
if and only if < T(x), x > is real for cach x € H.

Proof : Suppose T is self-adjoint, and x € H; we have < T(x), x > = <x,T{x)>
::hﬁxj,x > = and so < T(x), x > is real.

Conversely, suppose T is a bounded Linear operator over H such that <7(x), x >
is real for each x € &, Then for all x € H,

<Tx), x>=<T(x}x> = <lx), x> )
Now if x, y € H, two elementary calculations show that

4T y>=<Tx + ) > -<T(x—yph x—y>+i<lT(x+ iy, x+iy>

i<l (x—-iy),x-iy>l .. {2)
and 4 <x, T >=<x+ ) Tx+y)>=-<x yTx—y)+i<x+ iy
Tx+iy)>—i<x—iy Tlx—iy) > . wnee(3)
Equations (1), (2) and (3) show thal <T(x), y> = <x, T (¥)>, therefore T is self-

adjoint,
Theorem 4.3.5 If T : # — H 15 a bounded Lincar self-adjoint operator, then
|7 = Supl< T(x), x >|
b=t

Proof : Put K = Supl<T(x),x >|. By C - § inequality

=t

We obtain |< T(x), x >| <|T(x)l< Tl for all x & H, and therefore K <[]

ain Tix) % X
i o) <|l K ||> KT[nxu}uxD

ie < T(x) x> < KJx forall x e H s (4)

< supl< T(u), u >| =
Ixl=s

14




A simple exercise yiclds. :
<Tx + ), x+y>—-<T{x-y. x=y>=4Rl < T (x), y > for all

N - I (5)
Using (4) and (5) and parallclogram law, we get
4 [Re< T, v ISl Ty + ¥, x4y 2l + 1< T(x = y), x -y =
= <offe+ i +ix— 1)
= 20l + -_;yf] forall, ye I. . ... (6)
e - T(x) . ;
let x e H with {xi<l and Tfx)# 0, Put y = in (6) one obtains
- iT1x)|
T{X} | ol :
T(x)l=Re <T(x),———><—2K(|x]" +1)£ K.
() o4 (b +1)

The last inequality is, of course true when 7(x) = 0, se we have

|71 = sup{|Z(x)|} = K. Now combining with K <!7} we getl

ficdi=l

e M=K
= |ix] Ull?‘ l< T(x), x>1,

Example 4.3.1. Show that T : L,[0, 1] — L,[0, I] given by
Tx) =y xe L0 1],
where y(1) = (), 0 =1 £ 1
is a bounded linear self-adjointed operator wihtout eigen values.
Solution : We know that the space L,[0,1] consisting of all square integrable

functions x over [0, 1] is a Hilbert space with [P function <x, y> = E x(t) w(t)dt
(Integration taken in Lebesgue sense) as x, y € L,10,1]. So L, — norm
Ik = ¥ [[ixt) e
Here T is clearly linear, For boundedness we have for x € Ly[01] [T ) =
ﬁrn—frf}df

L:Iz_rz ()dt <

1.

Mz, ye L, [0, 1] we have <T(x), y> = ﬂrijy{:jda‘

Sup{tz}‘[;xz{i‘]dr

osis]
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and < x,T(y)>= J;xt'rlf y(t)dt

and therefore <T(x), y> = <x, T (y)>, and that shows T to be self-adjoint. For A
to be an eigen value of the operator T we have

Tx) = hx gives () = Ax() in 0 <1< 1
or, xXNA-D=0m0=<r=1,

Since x is non-zero member Ly[0, 1 we have A—t=0in0 |1 <t <] —a
contradiction that A is a scalar (fixed). Hence no scalar A exists to satisfy T(x) = Ax(x
# 0) in L,[0, 1].

i.e., T has got no eigen value,
§ 4.4 Projection operators

If A is a Hilbert space.and Y is a closed sub-space of H, then Decomposition
theorem says that each member x € H has a unique representation as

x=1y +z where y € ¥ and z ¥4
y! denoting orthogonal complement of ¥ where

¥ =ilreH: e LX)

={ze H:<z y>=0forall ye ¥}

And in this case we write

H=¥® YJ: as a direct sum decomposition of H,
MNow consider a mﬂppihg H — H sending x € H to.

ye¥@x=y+zxe¥YcH ze Yrc i)
1t is well defined because gives x, y is unique,

Definition 4.4.1. The mapping : H — H | defined as x € Has y € Y is called
a Projection (or orthogonal projection) on H. It is denoted by P.

Explanation : It is readily seen that a Porjection P : H — H is a Linear operator
where Y is given a closed Lincar sub-space of H and P(x € H) € Y.

Ifye ¥Yc H, We see y = y + O by representation formula and P(y) = y € Yl
Thercfore P restricted to Y becomes the Identity operator on Y.
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Onthe otherhad if z YL c H, We have z = O + z where O &€ Yand z ¢ ¥* we
see that P(z) = O and conversely if P(u) = O we have u= 0 + u showing u e ¥~

Therefore Null-space of P = ¥
Also we can now write x =y + z
= Plx)4z
or, x = x = P(x) = (I - P)(x).
So we treat the operator [ — P as the projection of H onto ¥*.

Theorem 4.4.1, A bounded Linear operator P : H — H (H being a Hilbert space)
is a Projection if and only if P is sclf-adjoint and Idempotent (i.e. P? = P).

Proof : Let P : H — H be a Projection operator _and denote P(H) = Y. It
x € H and P(x) = y € ¥, we have PX(x) = P(P(x)) = P(y) = y = P(x). So P2 = P,

Further, Let x, =y, + 2, and X, =y, + g, where, y,, y, € Yand g;,z, € Y. Then
<. 2y > =<y, 7;> =0, because ¥ L YL | Finally, <P(x,), %,> = <y, ¥, + > = <Y
L>=< Y+, Y=, P(x,)> | That means P is scif-adjoint.

Conversely, let P? = P and denote P(H) = Y. Then for every x € H we have x =
P(x) + (I — P)x). '

Now P being self-adjoint we have
<P(), (L~ PYy)> =<x, PU -~ P) O)> = <x, PO) - PPO)>
= <x, 0> = () because P = P2,
Now (I — P)(P(x) = P(x) — P¥(x) = 0, | shows that
Null space of I — P ie., N(I - P) satisfies _
PN =F) L e (1)

Again (I — P)(x) = O gives x = P(x) is. x € X

T e ) ot I S T (2)
(1) and (2) together give N( — P) = ¥. So Y is closed. '
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E*m.ﬂly, F restricted to Y is Identity operator on Y because y = p(x) gives p(y) =
ppx) = pPx) = plx) =

Theorem 4.4.2, If P is pmjuctiun on H, then

(a) <P(x)x>= ]|F(x}}]1 for all x € H.

(b) Pi<1 and |P|=1 if P(H) = {0},

Proof : (a) if x € H, then <P(x), x> = <P¥x), x> = <P(x), P(x)>
= {P(x)* =0,

(b) By C — § inequality,
= [P’ =< P(x) x>< [P(x)] o]

o 1Pl
E

Therefore, |P|=<1.

<1 for every non-zero x in H,

[{E7
&

So (b) is proved.

Also =1if x e P(H), and x = O.

Definition 4.4.2. Two Projection operators P, and P, on a Hilbert space H are
called orthogonal if their composition PP, is l:hc zero uperamr

If PP, =0, then PP, =0 because () = (PP = PR * = ler:]ac (Projection
operators are Self-adjoint).

Theorem 4.4.3. Two projection operators P, and P, over H are orthogonal if and
only if their corresponding sub-spaces Y, and ¥, of H are orthogonal (¥ 25)

Proof ; If PP, = 0; and x, € y, and x, € Y, we have (2, %3) =(P;{xl}, PE[IZ})
<x, PR, () =<, P Py (x) > = =X, 0 > = (). | Therefore, (¥ AT

Conversely if ¥, 1. ¥,; for each x € H we know that Pylx) e Y., So P {):} e
Thus writing

Pyx) = O + P, (x) where O € ¥, and Py(x) € YL,

Therefore, P, P,(x) = O, This is true for all x € H. So, PP, = the zero operator,

78



Notation : If a projection operator over H is associated with a closed sub-
space Y of H, we write Projection operator as P,.

Theorem 4.4.4. If Py and B, are two projection operators over H, their sum is
a Projection operator if and only if /, and P, are orthogonal.
Proof ; The condition is necessary. Suppose £, + P is a Projection operator.
Then (P, + P02 = By, + Py
or, B, By = Py Py =0 (zero operator).
or, By By By + By B By =0
or, Py P, + PP, By =0 ™
or, Fﬁ' Y Pyl e F}rl Py, Pﬂz = '
or, BB, B, + BB B =0
o, ’Pﬂ Frl Fﬂ = 0.
So from (*) we get ."‘“ .Pyl =0
The condition is sufficient : Suppose Fy P, = P, Py =0
Then (P, + Py)?= P2+ PP + B2 =P, + By
And (B, + B )* = K*+ B,* =K + B,
So the sum operator is both self adjoint and Idempotent. And Theorem 4.4,1
applics to say that Py + B, is a Projection operator.
Theorem 4.4.5. The product of two projection operators £y and £, is a Projection
operator if and only if
PP, = B, B
Proof : The condition is necessary : Let Fy F}, be a Projection operator; So
Fy Py is self-adjoint. Therefore
By By = (BB = B¥B ¥ = B Py
The condition is sufficient : Suppose P, Py = Iy By
Then (P, P )* = Py * Py* = P By = BB,

So By P, is self-adjoint.
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Also (P, P, = Py P P Py = R P P Py = P2R2= B B,

So £ B, is idempotent. Therefore Theorem 4.4.1 applies to conclude that Py By,
is a Projection operator. |

Example 4.4.1 Let f, and £, be two projection operators over a Hilberi space
H with corresponding sub-space ¥, and Y, of 1. Show that if £, B, = F, Py (hen By,
+ K, = B, B, is a Projection operator on H.

Solution : Here (P],'I 3 P},: o Fv[ Pr:,}*

(Fy + B)*— (B B )*

Pp* + Py *— P *Py+

- P,

1

ik Pf: g P]"z PJ"L

= P,

-+ By, - B Ry

So, Fy + B, — B Py is self-adjoint,

Again (P + Py = BBy = (By + By = By B + By~ By By)

which on simplification supported by assumption P:.-, P,fn = P,,? PY. shall give
= F + B, - B, Fy, . That means (B, + B, — £, B,) is idempotent. Therefore this

operator is a Projection operator on H.

EXERCISE-A

Short answer Type Question
I, If T 15 self-adjoint operator on a Hilbert space H for any +ve inleger show that
T 15 self-ajoint, _
2. I P is projection operator, on a Hilbert space /f with corresponding sub-space
¥, show that I — P is a Projection operator with ¥,
3, Let T: Lf0, 1] — L,[0, I] be definied as T(x) = y for x € L,[0, 1] where y(r)
= tx(f) in O 5 t £ 1 show that T is a self ajoinl operator.

4.  Let T : H — H be a Self-adjoint operator (H is Hilbert space) and W e Bd£(H,
H) show that W* TW is self-adjoint W* denoling ajoint of W),
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EXERCISE-B

Show that every linear over a finite dimensional NLS is a compact operator.

Show that an operator T'is a Projection operator on a Hilbert space H if and only
P =T¥F

If {P ] is a Sequence of Projection operators over a Hilbert space H and

E‘_ﬂ P_= P, show that P is a Projection operator on H,

Find the eigen values of ¥ ; R" — R” given by

'fl_J'x_z,.. J‘ﬂ__l) where X =/(x;, Xy .y X.) € RN,
1 2 n-—1 o ;

W) = [n

Let H u Hilbert space and T : H — Hl be a compact linear operator. Show that
its adjoint T is compact.
If z is any Mxed element in an LP. space X, show that flx) = <v, 2> forx e X

is a bounded Linear funtional over X, and find | f].
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Unit - 5

(Concepts : Eigen value, Eigen vector of a Lincar operator over NLS X with Dim
(X) < o, Characteristic cquation, Characteristic polynomial, Existence Theorem, finite
Dimensional Spectual Theorem, Banach algebra X with identity, examples, invertibel
and non-invertible elements of X, Topological divisor of zero X: for x € X, | Resolvant
set p(x), Spectrum o(x) Properties of o(x) Gelfand-Mazur Theorem, Spectral radius
formula.)

§ 5.1 Finite Dimensional spectral Theory.

Let X be a Normed Linear space NLS with Dim (X) <ecand let 7: X = X be
a linear operator. Then spectral Theory of such an operator T is simpler than that of
its counterpart acting on an infinite dimensional NLS. We know that T has a matrix
representation. We see al present that spectral theory of T is essentially eigen-value
(eigen vector) theory. '

We recall that a scalar A is called and eigen value of T. if there is 2 non-zero
vector x € X, called in eigen vector of T corresponding to eigen valuel, if T(x) = Ax.

If M be the collection of all such eigen vectors of T corresponding to eigen value
A, and if we adjoins O with M, then M becomes a Linear sub-space of X, called an
eigen-sub-space X, We also remember that a Linear operator over X (Dim (X) < <o)
becomes a bounded linear operator on X, and hence T is continuous, and consequently
eigen M becomes a closed linear sub-space of X. Let Dim (X) = n. Let A be the
Matrix (a Square matrix of order n) that represents T in respect of an ordered basis
of X. Then eigen value—eigen vector relation T(x) = Ax is transformed into
Alx) = Ax.

.Wherﬂ (say) (A) = {{aﬁ)}"x" , X = | column matrix -z x, arc Scalers and A is

&

i

a scalar (eigen-value). Note that X a non-zero matrix. Malrix equation above is
(A — I'J} X=0
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Where rh.s. zero matnix 0 = n places and / = unit matrix of order n. This

0

is a homogeneous system of n linear equations in n unknowns Fin Xy oeen 2 (00
ordinates of vector X), In order that this system admits of a non-zero solution we
have det (A — Al = 0.

an=4 @y 4
ay  ap-4 @20
or,
a, " R - [ |

This equation (1) in A is called characteristic equation of Al with corresponding
polynomial in A of degree n known as charactenistic polynomial of A.

Theorem 5.1.1. Eigen values of A = ([au.})“" are solutions of the characteristic
equation’ (1) and Linear operator 7 has an eigen value,

Proof : Fundamental Theorem of algebra says that equation (1) has always a
¢olution and second part of Theorem is thus taken care of. Since a polynomial
equalion with degree of the polynomial # has exactly n roots and no more in complex

scalar if follows that A has at most n | numerically different eigen-values,
e : a b
Example 5.1.1. Find eigen values and eigen vectors of ( 5 ) where a and b
-b a

are real with b 2 0.
Solution : Let A be a (complex) scalar such that

a—A b -0
- a-A
or, (@a—A2+bp*=0 or, (_a-n'il.:|z=—.~.51=;’*‘-af2
a—h=b
h=azxib
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So eigen values are a — ib and a + ib.

1 { Fir b][ﬂ)z fa—ib)[z]{z] bej_ng & non-zero vector.
—b al\w WIAw

We have az + bo = (a — ib)z

and —bz + aw = (a — by

Now az + bw = az — ibz pives W= —iz (b #0)

and  —bz + a® = a® ~ ib z= i@ (b # 0)

Therefore eigen-vectors corresponding to eigen value = a — ib is given (z, @) =
z(1, — {). Similarly we show that corresponding to eigen value = a + ibl, we have
eigen vector = (z, @) = z(1, 7).

. Therefore eigen values and corresponding eigen—vectors are given as g — ib,
(1, =), and a + ib, (1, i)

We have seen that a Linear operator T: X — X i_s_rﬂpf&semad by a square matrix
of size n,(X 1s a NLS with Dim (X) = n), and this matrix changes as basis taken.in
X changes.

Theorem 5,12, Let T: X — X (X a NLS with Dim (X) = n) be a Linear operator,
Then all matrices representing T cormresponding to various basis in X have the same
eigen values. .

Proof : Let E = (e;, 5, ... €,) and F = (f, f5, ..., f,) be two basis for X. Then
each f, can be written as

fl = Zaﬂej.i=l,2,...,n

i

So F=(fyfpmlf)= {zﬂ'u"ﬁ-Z”M*‘*’p----z"‘nf"f]
j=1

= =
Ay gy e Ay
(B gy oy Y TR S S
Qp Gan o Gy

= EC, where C 15 a non-singular matrix.
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n o n
If x € X we write x = Zﬁ;-‘fj and x = Eﬂkfk
k=1

J=1

or, x = Ex, where x, = (&ys €y +s €)1 and similarly,

F= zﬁ'kfk = Fx, where x, = (1], Ny . T
k=1

Thus x = Ex, = Fx, = Bex,

Thus x, = Cx,
Similarly, T(x) = y = Ey, = Fy, we have
=Gy,

Now T(e) j = L, 2, ..., h may be expressed as a Linear combination of E, So

T‘(gjj - "U’E’-’j =k 2, e | H
i=1

Therefore we have from above

Ey, = T(x) :T(igj*e'i]:iﬁ_j?{g!)
i=l

jel

= &, T(e;)+6,T(ey )+ +E,T(e,)

= EIZHIIEE +¢12‘?fsz +~--+§nz Min€i

i=l fusl ]
= EB,x, where B is the matrix representing T with repsect to E.
Thus y, = B x,. Similarity, if B, denotes the matrix the represents T with respett
to basis F then y, = Box,.
Therefore y, = T\x; and y, = Tpx,.
Thus, CBx, = Cy, =y, = Byx, = B|Cx,,
Multiplying by C! one obtains
B,=C'BC
with the help of this, we verify that the characteristic determinant of B and B,

are equal and from this it follows that eigen values of B, and B, are equal. As 5.
det C = Identity matrix I, we have det (B,— Al) = det (C'B,C - AC' IC ).
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= det (C'(B, - M)IC)
= det (C") det (B, - M) det C
= det (B, — M)
Theorem 5.1.3. (Existence Theorem) : Every Linear operator on a finite.

Dimensional NLS # {0} has one eigen value. Theorem 5.1.3 is now clear and no

proof need be given.
§ 5.2 Spectral Theorem.

"Let H be a Hilbert space with cnﬁ:plcx scalars and let Dim (H) < e=. Without loss
of generality let &/ be pon-null and T : H — H be a (bounded) Linear operator.
Suppose ?I.,I. ;'L'z, i lm are all the distint eigen values of T and M, M,,..., M, are
the corresponding eigen spaces. Let P, P,,..., P be the projections with corresponding
sub-spaces M’l, Mz,..,, M

mo
Theorem 5.2.1. (Spectrum Theorem). Following statements arc equivalent ;-

L. The cigen spaces M, M,,..., M_ arc pairwise orthogonal such that linear
hull M|, M,,... M_]=H

e, H= M, @M, ®.. ® M,

II. The projection P,'s are pairwise orthogonal and P, + P, + ...+ P_= I (Identity
operator) and AP, + AP, + .. + A P =T,

L. T*T = TT*

Proof : [ = II. Let { hold. Since M,'s arc pairwise orthogonal, Projections P's
are orthogonal. Now we write every member x € H uniquely as

x=x +Xx +..+x wherex € M, and x, 1 x; (i #Jj). lk)
Therefore, T(x) = T(x)) + T(x,) + ... + T(x,)
=M F Xt o A, | yeurs 62)
We have P(x) =x, (i =1, 2, ..., m). So
x)=x =x+x+..+x

= P(x) + PE(:.:) + LK)
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= (P, + P, +.+ P,) (x). This is true all x & H. Therefore, /=P, + P, +.. + P_

M:

B

=

Form (2), T(x) = Ax, + % S R o W
= R P () A AsPy() + ot AP (x)
= (AP + KP4+ WP ()

This being true for all x € H, we produce

This is what was wanted in I1

1 = TN Suppose II holds; from (3) we have
T = LA+ A8y +... A, P, Therefore
TT* = (MP + P+ o+ AP (AR + AP+ A P,)
= A, M B2+ A A B+ 44, AR, because PP, = 0 (i # )

— A+ B+ R AL B,

That shows TT* = T*T and III is established.

I = I This will be proved by help of following Lemimas.

Lemma 5.2.1. If x is an cigen vector of T with eigen-value A, then x is an eigen
vector of T* with eigen-value A and conversely. This result is known.

Lemma 5.2.2. M, 's are orthogacnal.

This is also a known resull.

Lemma 5.2.3, Each M, 's is invariant under T and T,

Proof : Let x €M, then T(J_c? = Ax, as M is sub-space Lx e M and T(M) c M,
Again T(x) = Ax gives TH(x) = Il_x| which is als-u a member of M. as M, is a sub-
space. Therefore T*M) c M; Lemma is proved.

Now M = M, + M, +.. + M, is a closed sub-space of H and corresponding
projection on M is P =P, + P, +... -+ P, Since cach M, is invariant under T (and under
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T%*), we have TP, = PT for each { and TP = T(E ] E?P EPT PT and
i=l i=l
therefore M remains invariant under T and under T*.

So M~ is invariant under T ie., T(MY) < ML,

we now check that M* = {U}

Suppose no. As M* is a closed sub-space MY is a non-null Hilbert space with

... T :
dim (M*) < oo, Now all eigen vectors of T belong to M, so restriction e has neither

. T : ST .
cigen vector nor T has an eigen-value :— a contradiction of existence theorem as

in Theorem 5.1.3. Therefore proof is now complete,

§ 5.3 Banach Algebra : -

In Banach Algebra two apparently diverse trains of thought—topological and
algebraic are fused into a single Mathematical system.

Definition 5.3.1, An algebra X over a field of real | complex scalars is a vector-
space where multiplication is defined subject to —

(1) (xy)z = x(yz) for any there elements x, ¥ ze X

(Za) x(y + 2) = xz + yz

and (2b) (x + ¥)z = xz + yz for any there elements x, Y, 2 € X,

(3) alxy) = (ax)y = x(ay) for any scalar ¢ and any element x, y, z € X.

We shall generally deal with complex field C of scalars and term X as Algebral
(over C).

An algebra X is said to be commutative if multiplication operation in X is
commutative ie., for all x, y € X, xy = yx.

X is said to be an Algebra with identity if there is a member e called the Identity
in X such thal xe = ex = x holds for all x € X

It is not difficult to see that identity element e in X is unique.
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Definition 5.3.2. and algebra X is said to be a Banach algebra if X is Banach
space (over () which is also an algebra as per Definition 5.3.1. such that for all x,
i ] X

oyl <l 1)
And if X has the identity e then || = I,

Example 5.3.1.(a) The space R of reals and space € of complex numbers are
examples of Commutative Banach algebra with identity e = 1, the norm being taken

as the usual norm of RIC.

(k) The Banach space Cla, b| of all real-valued continuous lunctions over the
closed interval [a, #] with Sup norm is a Cimmutative Banach algebra with identity
¢ = Constant function équal 1o 1 in [a, b] and with multiplication defined as usual,
namely

(D) =xinxyinasr<basx ye Cla b

Example 5.3.2. Let X be a Banach space (#{0}).] Then the collection Bd£(X,

X) of all bounded Linear operators » X — X forms a Banach algebra with identity,

Solution : We know that B42(X, X) forms a Normal Linear space (NLS} with
operator norm |7 as T e Bd2(X, X) and sicne X is a Banach space Bd&(X, X) is also
a Banach space. Further, if T\, T, € Bd2(X, X) defining multiplication T\ T, : X=X
as (T, T,)(x) = T(T,(x)) as x € X, it is a routine exercise to check that all axioms of
algebra as in Definition 5.3.1, above are satisfied here, Further, the Identity operator
I becomes the [dentity element of this Banach algebra Bd£(X, X).

Remark : In general, Bd2(X, X) may not be commutative. Take the case when
X = Euclidean n-space R" which is a Banach space with respect to usual norm, We find
by matrix representation theorem that every member of Bd£2(R", R") is rcpresented by
a square matrix of size n over rgals, because matrix multiplication is not commutative
we conclude that here commutativity fails in Banach algebra Bd£(R", R")

Theorem 5.3.1. Multiplication operation in a Banach algebra X is a continuous
operation. '
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Proof : Let {x } and {y } be two sequences in X such that lim x, = x and lim y
K=%ca kopoa "
= y in norm of X.

ie., limx, —x|=0=lim[y, - |
Now xy, —xy=(x —x)y +x(y —¥;
S0 Hxn}'n =) " < M{‘rn —& -}}'nﬂ*" |[1:{’ Yo~ '5'.:'"

< Iyl e =5+ =)
Since {y, ] is a convergent sequence in X, we know that it is bounded and Let

ﬂ}'n ""5 M for all n, So above reads as

Faya =l s Ml ~ x| +lxd by, =] > 0 as n = oo
so lim(x,y,) = xy. Hence theorem is proved.

Definition 5.3.3. An element x in a Banach algebra X with identity e is said to
be invertible if »! exists. i.e. if x' e X satisfying x! x = xx! = .
Otherwis, x is said Lo be a non-inveritble element in X,

Explanation : (a) If inverse of x exists in X, then it is unique. Because, suppose
yx = e = xz, then we have

y=ye=yxz) = (yx)z = ez =z

(b) If x and are y both invertible then xy is invertible and (xy)! = ylx! .
Because, (x)(yx ) = x(yy ! = xexl =l = e
and similarly (3! — xY(oy) = e.

From this observation one may conclude that the sef G of all invertible elements

~of X froms a Group.

§ 5.4 Let X be a Banach algebra with identity e. Then there are invertible
elements like ¢ in X. Also 0¢ X is not inveritble element in X.

Theorem 5.4.1. Let x € X with |[x]| < 1. Then e — x is invertible and (e — x)!

=
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Proof : By induction we have hx*"lsﬂx"j for all +ve integers j. So the infinite

series zux’ " is convergent because |xf| < 1. Because X is also a Banach space the
=l

infinite series Z.x-’ is convergent to some member in X.
: o

PutS=e+ ) x!
=1
We now show that § = (e — x)"!. For any natural number n, we have
(e-XN(e+x+x 4+ +2)=(e+x+x+ .. +x)(e—21)
—sens il B S e (1)

= Therefore, we pass on limn in (1) and
H—tee

Because [x|<1 we see lim x""
il <hea

because multiplication is continuous we have
(e —x)5=8e—x)=e
This gives § = (e — x)™'

Corollary 1, If x € X with |le—x| <1, then x' exists and x! = e+2{’e—x}f_
j=1
-In Theorem 5.4.1. replace x by e — x then

Theorem 5.4.1 says (e — (e — x))! = Zfa—x}" then
j=l

or, x'= e+ fe—x),
j=\

Corollary 2. Let x € X and A be a scalar such that ||x] <|A|. Then (ke - x)~! exists
and

Me-2" = 2A-"2"" (=)
n=l
Proof : Write ke — x = A{e—i—] By Corollay 1 above

H (e—-—)P—” “ x1|-:11 Therefore
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Jf
[E_%J exists. So (Ae — x)! exists. Then

_ o1
e ¥ = ;1,[3._::_'] and (Ae - x)7) = ﬂ._i(c—%]

{Hg[ ( ]j|n]=l_'|:e+§(l"lx)":|

.: i;rn.xn-«l

n=}

IJ

Theorem 5.4.2. The set G of all invertible elements of X is an open set,
Proof ; Let x, € G. We find an open ball centered at x, so that open ball < G.

l
b7l

Consider the open ball B (x,) with radius r = Then x € B (x,) if and only

if = }x x,_,u-::" ,D_l"

Let y = x° ! x and z = ¢ — y, Then from (1) we have
= el =le~yl=ly~el=fx " x—xs" x| =o (x|

-c:” rﬂ-l” |x—xy )] <1. Now Theorem 5.3.1. applics and e — z| is invertible i.e, y

is invertible, So y G Now x, € Gand y € G, and because G forms a Group, x,y
€ G; Now Xy = Xg%o~ % = x € G|l and therefore B'(x)) < G i.e. » X, is an interior point
of Gl and G is qhuwn to be open.

Corollary : The set of all non-invertible elements of X forms a closed set in X,

Theorem 5.4.3. The mapping of talung inverse ie, x > x!' 1 G =5 G is
continuous,

Proof : Suppose x; € G. Consider the set B (x,)NnG Where B (x,) = | open ball

e
2™

Now take any x & (B, (x;) N G).

centered at S 2 with radious r =

Then frox—d =[x =sol| sl -mal<s 1)

Therefore x,”! x is invertible i.e. x; x € G. Further
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= (xﬂ‘1¥}" = o if SR e (2)

Now 7' xy | = 50~z | | 50

= ™| (B -7 -

o 5 D3 SR R [ SRR S|
=

1- “er Xy .x|l

from {2}

oy b=l Gince fex7a] = froxd] = o 'x-27)]

| = xo)] and from (1)

Thus = ||.r_"'—xu_1 "'ﬁzuxg"lﬂz”x-i'fu"l gives the continuity of the concerned
mapping at x,. The proof is now complete.

Corollary : The mapping : G — G given by x > x~' as x € G is a homemorphism
onto itself,

Definition 5.4.1 (Topological divisor of zero).
An element z is X called a Topology divisor of zero if there is a sequence {z,

of elements z_in X with [z,| = 1 such that either lim zz, = O or, limz,z=0,
PYIme, —doe

Explanation : Every divisor of 0| is fo course a Topological divisor of O. We
have denoted the set of all invertible elements in X by G. If Z denotes set of all

topological divisor of O in X, then presently we see that there is connection between
Z and the set (X | G) = set of all non-invertible elements in X.

Theorem 5.4.4. Z is subset of (X | G) (Z c (X I_G]).
Proof : Let z € Z, then we find a sequence {z,_} in X with Hz#ﬂ = 1 such that either
lim zz, = O or, Ellm z,2=0. If possible, let z € G, 8o ' € G. Now multiplication
—h=m

fi—#=
is continoous, we have

z::':zl_z'zn:z_l {EZ.“}—!'Z_EQ:{_)asn—}w.
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This contradicts assumption that [z, = 1 for all n. Therefore we have shown that
ze (X\G).

Theorem 5.4.5. Boundary (X\ G) c Z ,

Proof : Since G is open (X \ G) is a closed set in X.

So Boundary (X\ G) (X \ G), Further, if u € Bdry(X\ G). We find a sequence
{u,) of elements u, € (X \ (X\ G)) = G such that limu, = u,

=g

Now u ™ u—e=u-"(u-u)

If {flu

u, "} is bounded, then because limy, = u, from (1) it follows that for large

n—x
values of n.

""|<:1

and this would imply (¢, «) € G, and hence

t,(u, " w) ie,, u & G—a contradiction that u € (X\ G) hence {Jlu, ']} is

n“li] =oo Put 9, = u Y "un"", So [0,| = 1. and

n—pra !

. uu”'l et(u—uu™ e

TR R R

[£3
Now lun"u H = oo and limu, =u with ||ﬂ ]|_l. we see from above lim

n—tes ne—pims

ud = 0.

That means u € Z, Hence we have shown Boundary (X' \ G) Z
§ 5.5 Resolvant set; Spectrum

Here also we take X to be a Banach algebra with identity e, and take x € X.

Definition 5.5.1 (a) The resolvant sct p(x) of x is equal to the set of all scalars
A € ¢ such that x — Ae is invertible. ie., p(x) = (A €@ : (x — Ae) exists in X),

(b) The complement €I1P(x) = (A € ¢ : (x — he)™! does not exist in X} is called
_ the spectrum of x, denoted by o(x).

Any scalar A € o(x) is called a spectral value of x. So we have p(x) W © (x) =
¢ with p(x) N o(x) = ¢.
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For a fixed x € X,
Consider the mapping : p(x) — X given by
Aep(x), A = (x — hey' e X. We write x(A) = (x — Ae)™!

Therefore, the mapping A — x(A) is well-defined and this function x(X) is called
the reselvant function associated with x &€ X, Thus a resolvant function 15 a Vector-
valued function over p(x) with rangc in a Banach algebra.

Remark : Take A, A, € p(x). Then x(X,) = (x — A,e)™" and x(},) =
(x — A,e)! and ;
() x(h) = (x = Ae) x(hy) = ((x = Aye) + (Aye = M) x(A,)
=e + (A — Ap) x(A)
That means, x(A,) = x(A) + (A, = &) x(A)x(h,)
o )] _Sosas aeny. L *
':"2 7 “;Ll
Theorem 5.5.1 The resolvant function x(A) is analytic at every point of p(x).
Proof : Take A, A, €p(x) with A2 A Then from (*) above we have

x(A)—x(Ay) - %
T x (Ag)x(A)

1 . : = | e -1 = - " = 5
notice that J.Ilrnﬂ?n x(ﬂj-ﬂr&mﬂ:‘x Ae) (x—Age) x(Ay)

o X(A)=x(Ag) _ .
Thus ;.ILT._, 2w “——A{' = aliﬂlﬂm{ Ay )x(A))
=t .r{.lﬂ)llirguxt’ﬂj
= I{lﬂ)}z

So derivative x'(A;) exists, and hence x{A) is analytic as wanted,

Definition 5.5.2. For x € X the spectral radius of x denoted by r_(x) = sup 4]
Aecix)

Theorem 5.5.2. r (x) <|x|

X

Proof : Take A € ¢ with |3]> [, So Ak 1 and therefore e — &' x is invertible.

So x — ke = — AMe — A' x) is also invertible. That means Ae p(x).

Therefore r(x) < ||x| -
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Theorem 5.5.3. o(x) is a compact set of scalars.
Proof : Theorem 5.5.2. says o(x) is bounded and we need showing that it is

closed, This we will proved by showing that is complement ¢\a(x) = p(x)l to be open,
Consider the function f: ¢ — X given by
fiM) =x—heas L eg

This is a continuous function of scalar A, Take lﬂ € plx). Sox- ?l.ﬂel is invertible.
So (x — M) € G. As G is open, we find an open ball B (x, — Ae)l centered at
(xy — Aye)l with a +ve radius r such that

B (x, - ke) c G.

since f is continuous at A, we find a + ved such that
I£(2)= f(Ay)] < r whenever |A—A | <.

i€, flA) =(x - Ae) € B (x, — Ae) whenever [}“*‘Aui <38,

i.e., A€ p(x) whenever li—lu]“:ﬁ'

Hence A, is an interior point of p(x), and p(x)| is shown as an open sef,
Theorem 5.5.4. for x € X, spectrum ofx) # ¢.
Proof : Let fe X°. For A € p(x), Let L) = fix — he) ™),
= flx(A))
since f'is continuous it follows that f{A)l is a continuous function of Al over plx).
We have already had

x(A)=x(p)

T = x(A) x(u) for any scalars A, (A # p). Since fl is Linear, we

have

Jx(A)— f(x(p))

vy = flx(R)xip))

e M = fx(Mx())
4
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30_- lim &M =ﬁ1(11]2}~
g A-p .

This shows that f{\A) is analytic on p(x). Further,
(2 = (A<l 2 ()]

- viaf-)

For large value of [A|, we have

| - i
(E“%) =e+§[i—] , and therefore

Eﬂ:%—l < 1 and therefore

X X
e o= Lslsf 1ﬂ 7
SRR S
A |]

-1
50, (e-—i—) —> e 85 |A| = e

s

A

Therefore from Step |f(4) <|f]

-1
L(e-—i-) "ahcwc

If o(x) = ¢ we have p(x) = ¢ and f{A) becomes an entire function. So, by
Lioville's theorem f{A) must be a constant function, and from limit above we see this
constant =

ie fiA) =0 forall A e¢ = px)
This is true for every f coming from X, and therefore it follows that x(A) = (x

We duduce that lim |[f{A) = 0.
¢ duduce tha m_mi_f{ )

~ %e)! = O in X for any A € ¢. But this is notl the case. Because
llel = it~ Ae )| x( 1) =|0] = 0— al contradiction. Therefore conclusion is that 6(x) # .

Theorem 5.5.5, [f a Banach algebra X with identity e has every non-zero member
inver table, them X is isometrically isomorphic to scalar field €.

(This theorem is due to Gelfand and Mazur who had left memorable marks in
Advanced funciton Analysis).
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Proof : Take x € X. Then Theorem 5.5.4 says that o(x) # ¢, So there is a scalar
A # ¢ such that x — Ae is not invertible. By assumption that every non-zero element
of X is invertible. Therefore x — he = O or x = Ae. |

Now if A, and ?1.2 are two scalars with x = A, = }e then clearly ?t! = ?‘-1- Hence
x is unique scalar multiple of e.

Now consider the mapping f: x — ¢ givf::n by
fix) = flhe) = A,

Then f1s | — 1 and linear plus f is onto. Therefore fis the desired isomorphism
as wanted,

Theorem 5.5.6 If O is the only Topological divisor of zero in X, then X is
isomietrically isomorphic to scalar field €. | .

Proof : Tnkﬁ x € X. So.0(x)# ¢, o(x)is also bounded. Let A be a boundary point
of o(x). Then x — Ae is a Topology divisor of zero (see Theorem 5.4.5). By assumption
x—he =0 ie., x = he. Now one cun copy rest of the proof as in proof of Thearem
5.5.5 to conclude that X is isomorphic to ¢ as desired.

§ 5.6 Spectral radius formula :

Let x € X, o(x) its spectrum. We know that r_(x) = sup|A| . Presently we derive
lesix)

formula for rﬁfx] like

Ln

lim |!x"

R—3iw

o) =
Theorem 5.6.1. 1f p(f) is a polynomial with complex coefficients and x € X,
Then o(p(x)) = p(a(x)).
Proof : The proof proceeds by stages. First take p(f) to be a constant polynomial,
say p(r) = o, = oyt and we have
o(p(x)) = ologe) = (A : (e — Ae) €, X)
= {0y}
Now p(o(x)) = {p(d) : A€ o (x)}
= (Ogh; 1 A eo(x))
= {Ay)

so in this case o(p(x)) = p(c(x)).
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For any vector z and anjf scalar o. we show that
(o) = ao6(z)

This is ok. for o = 0, suppose o # 0. then

A e ofoz)
= otz — Ae 15 not inveritible
) - X
= 7——g 15 notl invertible
o
A
= —eo(z)
o
= A Qo (x).

Let us now consider polynomial with leading coefficient equal to 1, and let
plO) ="+ 0 M4+ 0"+ O (n 2 1)

and consider p() — A for any scalar A € € since field ¢ is algebraically closed,
plr) - A is completely factorisable like

pO =Mt =Bt -B;) ... 6B s
Taking x for ¢, we get _
px) — de = (x — Bie)x — Pye)...(x — Be) L@

If A & o(p(x)), then one of factors x — B; € must be non-invertible and in that
case ﬁj e o(x).

That implies p(B) € p(6EW) = (M) = p((A) : A € o). v 3)
Taking ﬂj for ¢ in (1) above we see p(ﬂj) = A and (3) becomes
A e plo(x)).

So we have shown p(c(x)) c p(o(x)) 1
To obtain opposite inclusion, supposc A & p(a(x)), by definition of p(o(x)), there
is Y€ olx) such that :
A = p(y) Now from p(f) = A = (1 =;) e (£ =) ... (£=7,), it being clear
that 7 is a root of p(f) — A Taking x for ¢ we obtain
) plx) = ke = (x — Ye) ... (x - Ye) - (k= v,€) )]
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| if A ¢ o(p(x)) that is, if p(x) — Ae were invertible, we could multiply both sides
of (4) on left by (p(x) — Ae)™ and move (x — y) all the way to the right to get

e = (p(x) - )™ [(x ~ 1,8 ... (x = ¥,&)] (x = ¥e) s (5)

to conclude that (x — '}’-E) has left inverse. Similarly we show that (x — ';'43) has right

inverse—a cnnn"admtmn that Y; € a(x). We therefore conclude that ?n.E ag(p(x)) and
that implies.

p(o(x)) < a(p(x))
And the proof is now complete,
Corollary : o(x") = (o(x))" for any +ve integer n.

Next consider, r Ifx‘"} = sup A = sup |3

ea(x") Aefofs" )"
= sup Juf
Aeafx)
n
= ( sup 1;{}]
AEaix)
= (rg(®))"
Of course r,
o, (s x|
or,
AT lim Ln
This gives 7,(x) < _’m"x (*)
Since inferior limit of a Sequence is € superior limit,
if we can show that r.(x) = Tmfx"[". .« .. (%)
M=y
We at once have = 11 J [lr“"IL < i " ! from (*)
n— e

And this implies l:m“.t I exists and

A=jaa

rgx) =
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Now (**) is obtained by cnmpunng the radins of convergence of a powar series
via Cauchy-Hadamard formula.
Theorem 5.6.2. Prove that following statements are equivalent,

" (a) ’|x2|| = [|x?‘|| forall x € X,
and  (b) r (x) = x| for all x € X,
Proof : (a) = (b). Let (a) hold. Then we have |x*] = U(xi 7| = [*] and vy

induction ”x““ = [|x|** for +ve integers k.

Now r(x) = i

aliln
x| (See above).

A=pns

1l

E-i_?lu"lk"# ~|#] and this is (b).
(b) = (a). Suppose (b) holds. Then || = r (x)?

= (r, (x)? =|x]* which is (a).
Example 5.6.1 In a Banach algebra X with identity e if x € X satisfies Il x|l <
1, Show that '

N

e—x)" —e~xlI<
e—x)" —e—xl BT

Solution : Since ll x Il < 1. e — x is inverible and (e—x)" l=e +ZI’
i

or, e=x) 1 —e-x= Zx"—hmz:r

j=2 "7

) ol i+l i 4 n+l
s Me=x)" —e=xli=|lim 3 x/ll = Hm|y x
* j=2 L =

n+]

< lim ):nxw <l P+ i +.

e

=l 1 {l+li.tll+ = IILT:—]E the convergence of infinite series being taken

care of fxll < 1.
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Example 5.6.2. Let X be a Banach algebra with identity e. If x € X and there
are y, z € X such that yx = e and xz = ¢, show that x is invertible and y = 7 = x°!.
~ Solution : Here y =ye
= yxz
= ex
=z
Therefore yx =
= Xz
I

Showing x has an inverse equal to y (hence = z) ie, y=z=2".,

EXERCISE-A

Short answer Type Question

I. If x is an invertible element of a Banach algebra X with identiti e such that x
commutes with y € X, show that x’! commutes y,

Here xy = yx; Soxley + xlyx: - or ey =xlyx
Orl }F =. fl}'x ﬂn yfl . _f_ll'}l‘_xx'_l Dr’ }rr] — I-f}lx = I'J—"}-'
Thus x! and y commute),

2. M {x } and {y, } are Cauchy sequences in a Banach algebra X, then show that
{xy,} is a Cauchy sequence X,

3. Let X be a Banach space, for the Identity operator 1:X — X and a(1).

S
4. Obtain (i) the eigen values and (ii) eigen vectors of (—B “J

EXERCISE-B

1. Show that ecigen vectors Xy KgyrseerXy corresponding to different eigen values ?L.I,
?I..z,“... l“ of a linear operator T on a Normed Linear space X form a linearly
independent set.
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Show that collection of all Lincar operators on a vector-space into itself forms
of algebra.

In a Banach algebra X with identity e if invertible and yl satisfies ||yx_1” <l.

- - A 1
Show that x — y is invitable and (X =) =% T e
-0

If G is the set of all invertible clements of a Banach algebra X with identity e
and x € G and h € X salisfies.

||hL|<:%"x'JI|_IT then prove that (x + h) € G and

H{x AR .x_]hx"'!" = Eiif';rﬂhﬁz

Let fo,,, denote the vector space of all polynomials with campiax coefficicnts

of degree < n(n is a +ve integer), examine if 2,,, is a Banach algebra with norm.

to be specified by you,
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Unit-6

(Contents : Weak mpuI-::-gy._v.;eaIc* topology, Banach-Alacgulu Theorem)
§ 6.1 In a Normed Linear space (NLS) (X, | |[) we have seen that .

there are two Topologies, namely Norm Topology 7j| arising out of

the norm | | in X and weak Topology 7, governed by weak

convergence in X as described earlier.
Let X* be the conjugate space of X consisting of all bounded Linear functional
Ml over X. For x; € X and € > 0, define

V(xg: fis faren Sn8) ={xe Xl fi(x) = filxp) | < €}, where

P RO X'}, and n is not fixed.

Then r.;.olle.ction of all such members V(xy; fi, fo,......f,, €)1 We may check,
forms a base for a Topology 7, Known as weak Topology on X, generated by
members of X¥.

Since each member f cX" is continuous, it follows that member
V(xi fi. foso-fys€) are all open sets of 7| || in X. So we have

7, € || [|. Hence the name ‘Weak Topology' T, for X.
It is now an exercise to verify that notion of weak convergence as deseribed

through weak convergence of a sequence in X ie., @—lim x, =x, in X actually
i © H—pes

coincides with convergence notion arising out of Ty in X,
To this end let {x,}; x, € X be cdnvergent to x, relative to 7, |. That means

every member of 7, that contains x; shall include all but a finite number of members
of {x;).

Therefore Vixg: FL€Xe>0, fe X '} contains all but a finite number of members
of x,. .

So | f(x,)~ f(xy)I<e for sufficiently large n. That means, @~ lim X, =X as
. n—4e

per definition of weak convergence.
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Conversely, Let @w—lim x, =x, in X
e ]

Take an open set Oe 7, such that x; € 0.
As we have seen right above that sets of the form V{(x,, fi, f5s00 [, €) form a
basis for 7, we find V(xy; fj, fosoes [, €) © X, satisfying

V{xﬂ, -fi 3 I?“"""frrl"gj-c ] i

Now @- lim x, = x; says that for sufficiently large n.
Fipra

| fi(x, )= filxg)1<€ forall i =1, 2, ..., m; showing thereby
x, € V(xg: fis [orewensfnn €) o for sufficiently large n.

Therefore lim x, = x, relative to 7,,. and the exercise is over,
Hi—pea

We shall employ suffices 5 and w relatively to strong or norm Topology il || and

weak Topology 7, on X respectively for convergence or closure / interior ctc.

Suppose K is a subset of X, then E and E® shall be respectively strong and
weak closare of E.

Thus if E* — E then E, is weakly closed and hence X\ E is weakly open.
Because T » © I 11 we see that X\ E is strongly open. So E is strongly closed
ie, E'-E.

Hence F? = E implies E* - E . However converse is not true. However we have
the following theorem.

‘Theorem 6.1.1. A sub-space M of a NLS X is weakly closed if and only if it is
strongly closed,

Proof : In a NLS X we know that every weakly closed strongly closed. So it
remains to check that if M be strongly closed, then M is weakly closed.

ie. if M =M, we show that M M .
That is to say, we show that (X\M ) (X\M )=X\M
e, (X\M)=(X\M").

Take xe F:fjiz M) : Then dist (x, M) > 0. By Hahn-Banach Theorem we find a

" member fe X' satisfying '
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fiM) = [0} and fx) = 0.

Now the sets {y € X : fly) > 0} and {y € X : Ay)l are each open in T ie., the
set {ye X : fly) # 0} is T, -open, say = O, and here O, " M = §.

Thus here O, & 7, with xe 0, ; but O, "M = ¢, because M) = {0}, Therefore

4 i . 1
& M- Thus we have shown

(X\M)c X ‘I.Em) and the proof ends.

§ 6.2, We have scen that under the Cononical mapping J : X — X** | where X*¥|

is the second conjugate space of X, We have J(X) € X** and in general, this
inclusion is proper i.e., J(X) = X** Now look at the first conjugate space X# that
have (i) the usual norm Topology T through operator norm Il {1l as fe X*, (ii) Weak
Topology 1, 4s induced by all members £(X*)* = X** And now X* has yet another
weak Topology, called weak* Topology T, . generated by members in J(X), a part of
X#** and thereforcone has T, c 7, C T

Let us describe a typical open set in 7 ,. It is of the form V(fy;J, ./, 1oid, ,E),

§asan X,

where f, e X', and € > 0 is given; and wherc

Vsl g o)
=(fe X M, (H-1 (e i=12..n)

={feX’ A(f, )= folx) e, i=12,..,n)

Because *‘-'x, (f)=fix).

It 15 customary to denote V{f{};jﬁljxlr-"r“’xﬁmg} by V{(/fo.%. %5, X, €) as
neEX. |
Theorem 6.2.1. T, is a Hausdorff Topology in X"..
Proof : Take f,, /5 € X* with f| # f,.| So there is a member x € X such that
S # fofx),

or, 1(f,) # J )

Let us take € > 0 with 0 < 2& <l fi(x) - fL(x)l. Then V(f}; x, &) and V(f;; x, £) are
T, -open sets Containing fy and f; respectively such that
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Vi % € 0 Vil x, €)= .
Therefore T . is T5,

_ The following important Theorem (Banach-Alaogulu Theorem) Pertaining to
weak* Topology = %, in X" has gained importance for application in theory of
maximal ideals of a Banach algebra.

Theorem 6.2.2. (Banach-Alaogulu Theorem).
The closed unit ball in X* is T, — compact.
(B" = (f e X"lfIl € 1}l is compact in weak * Topology T, of X').

~ Proof. Let x € X, we can associate a compact space C, = The closed interval in
real line or compact circular disc {z:lizIl €llx|l} in ¢ according as X is-a real or

complex NLS. So by Tychonoff Theorem the product space C = xE[x C, | is compact.

Recall that C consists of all functions g: X — k..;c C, such that g(x) € C_
X

Now for fe B* we have | fI(x)I<lI FIl lxli<lxll. So

flx)e[-Nxlxl] ie. f(x)cC,; Hence B" < C.

Now Tycheonoff (Product) Topology for C is the weakest topology for which all
projection are rendered continuous and a typical basic open set is of the form

V(Z0: X Xpaenn X E) = {gé Cilg(x)—golx)l<e,i=12,..,n}| where g, e C e

> 0 and Pr(g) = g(x). and So B" as a subset of C has an induced Topology, namely
that induced by the product Topology of C and a typical basic open set in this

topology is
V(gy: Xps Xg0om Xy E) N B =(geB 1l g(x) — 8o ()€, i=1,2,...,n}.

However B as a part of X* inherits 1 . (weak” topology) of X". On examination
of basic open sets of T . we see that these two Topologies coincide in B". Since C
is compact in Product Topology it follows that B" is compact in T, if we show B*

is closed in C. To that end take g5 € B . Then every open set of T . containing g,

shall cut B*, So a basic open set of T ., say = V(gy; x, y, x + y, €), € >0 and x, y,
€ X shall meet B'. Suppose

fe Vigg x yx+y € nB.
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Since f € B — X', by Linearity of f we have f{x + ) = fix) + f{y), and since
fe Vg x » x + y &), we have lgo(x) — il < € Igy() — fy)l <€ and
1go(x + ¥) ~ fix + y)l <e. Therefore,

I gg(x+y) = gy()+8o(W 1=l golx+ y) = fFlx+ 21 +1 flx+y)=(ga(x)+ g, (3))
|Slgg(x+y)=F(x+0 1+ f(x)—go(x)+ F(¥)— 8oV} S golx+Y)— flx+ y) |+

| flx)=go(x) 1 +] f(0)—go(¥)I<3e. As & > 0| is arbitrary we find

Golx+y)=gy(0)+ go(y)

By a similar argument we show gy(Ax) = Agy(x) for any scalar A. Thus 2o 18
shown lo be Linear,

For any x € X, there is f, € V(g xe) N B, so
(0~ fr()l<e
Thus lga(x) 11 () +e I F N el +e=lxli+e.
that means | g,(x) | <!l x|l (g > 01is arbitrary) and hence ll g, 1] showing that

go € B'; Thus B® is shown to be closed, and the proof is now complete,

Example 6.2.1. In a NLS X show that every weak Cauchy sequence is bounded.

Solution : Let X be a NLS and X~ be its conjugate space. Suppose {x,) is a weak
Cauchy sequence in X, That is, [f{x,)} is a cauchy sequence for all f & X', Recall
that J : X — X" is a canonical mapping from X to its second conjugate space X™*.

Now Jx.(f) = fix,) if fe X

Given Supl f(x, )l<es 50
H

Sup | Jx,(f) I{u-n_
n
By Uniform boundedness Principle Theorem we obtain
supll Jx, |l <eo.

Since llJx, ll=llx, | we deduce that Suplx, |<ee
H

So [x,) is a bounded sequence,
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Example 2. In a NLS X every weakly convergence Sequence is bounded. This
is a consequence of Example above,

Definition 6.2.1, A NLS X is said to be weakly complete if every weakly Cauchy
sequence in X converges weakly lo some member of X,

Theorem : 6.2.3. If a NLS X is reflexive, then if is weakly complete.

Proof : Take {x,]) as a weakly Cauchy sequence in X, if f € X, it follows that
{fix,)} is a cauchy. If X™ is second conjugate space of X and J: X — X'l is the
canonical mapping, we have Jx, (f) = f(x,); Hence {Jx,(f)) is a Cauchy sequence of

scalars for all fe X', As scalars are real or complex take y(/)=bm Jx (f).
n—pen

Here y becomes a linear functional and we verify that y is bounded, Since

WJx, i=lix, |l and {x,} is a weak Cauchy sequence it follows it is bounded. Let M
be a positive real satisfying lix, |l < M for all n.

Therefore we have 1Jx, (f) =1 f(x,)]
Slhfllx, I e L, (ISMIFI
This gives lim Jx (=Ml Il
f—iea

or 1y(f)l<MIfI

Tthis is true for all f€ X', Therefore y is a bounded linear functional over X7l i.e.,
y € X** and by reflexivity of X, we see an clement x € X such that Jx = y. Therefore

for any f€ X', we have P_I:if‘:xn)=EEan{f:':}’{f)_:Jx(f}:f(ﬂ and this tells

us that {x, }| weakly converges to x ie.,

@~ lim x, =x. The proof is now complete.
n—es

Example 6.2.2. If A is a subset of a NLS X such that Sup| f(x)l<e= for every

XEA
member [ in X” (conjugate space of X). Show that A is a bounded set in X.

Solution : If J is the canonical mapping : X — X where X" is the second
conjugale space, we have Jx € X*" as x € X such that Jx(f) = fix) for f X'

and I/, 11 = llxH,
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Let x € A and Jx = x** € X** with

X**m =ﬁx}.
- given sup| f(x)l<eo,| and thercfore supl X**(f)|<e
XEA XEA

as f e X*; and ny Uniform boundedness Principal Theorem we have

sup - X **ll<oo fe. supllJ(x)ll<ee
XEA XEA

te. supllxll<+4ee,

IEA

Hence A is bounded.

EXERCISE-A
Short Answer type guestions

Let X be a Banach space. Show that infinite series Z-’*’» in X converges in X if

n=l

and only if for each £ > 0 there is an index N such that
W Fxppg ot X, I<€ foralln > Nand for p = 1, 2, 3, ...

Let X be a Normed Linear space. Show that every x € X induces a Linear
functional f; on X* such that

(i) f{A) = A(x) as A € X% and (i) {f,}),.x! separates members of X*,

Explain weak Topology t,, and weak * Topology T,. on conjugate X* of a NLS
X and show that ]

T CF

Verify that weak * Topology T . on conjugate space X* of a NLS X has Hausdorff
propetty.
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EXERCISE-B
Short Answer type questions

o

1. Let zxn be an infinils series in a Banach space X such that le X, l<oa,

=l n=|

=]

Eilt.xn .

=1

Show that the series Z,r,, 18 convergent in X and

n=l

1=

If X is a Banach space. Show that X is reflexive if and only if its conjugate X*
is reflexive,

3. LetX and ¥ be two NLS with same scalars, Show that Te Bd£(X,Y)| is adjoint
I* if and only if its adjoint 7 is an Isometry ol Y* onto X*.
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