PREFACE

In a bid to standardise higher education in the country, the University Grants
Commuission {(UGC) has introduced Choice Based Credit System (CBCS) based on
five types of courses viz. core, discipline specific generic elective, ability and skill
enhancement for graduate students of all programmes at Honours level. This brings
in the semester pattern, which finds efficacy in sync with credit system, credit
transfer, comprehensive continuous assessments and a graded pattern of evaluation.
The objective is to offer learners ample flexibility to choose from a wide gamut of
courses, as also to provide them lateral mobility between various educational
institutions in the country where they can carry acquired credits. I am happy to note
that the University has been accredited by NAAC with grade ‘A’

UGC (Open and Distance Learning Programmes and Online Learning Programmes)
Regulations, 2020 have mandated compliance with CBCS for U.G. programmes for
all the HEIs in this mode. Welcoming this paradigm shift in higher education, Netaj
Subhas Open University (NSOU) has resolved to adopt CBCS from the academic
session 2021-22 at the Under Graduate Degree Programme level. The present
syllabus, framed in the spint of syllabi recommended by UGC, lays due stress on all
aspects envisaged in the curricular framework of the apex body on higher education.
It will be imparted to learners over the six semesters of the Programme.

Self Learning Materials (SLMs) are the mainstay of Student Support Services
(SSS) of an Open University. From a logistic point of view, NSOU has embarked
upon CBCS presently with SLMs in English / Bengali. Eventually, the English
version SLMs will be translated into Bengali too, for the benefit of learners. As
always, all of our teaching faculties contributed in this process. In addition to this we
have also requisitioned the services of best academics in each domain in preparation
of the new SLMs. I am sure they will be of commendable academic support. We look
forward to proactive feedback from all stakeholders who will participate in the
teaching-learning based on these study materials. It has been a very challenging task
well executed, and I congratulate all concerned in the preparation of these SLMs.

I wish the venture a grand success.

Professor (Dr.) Subha Sankar Sarkar
Vice-Chancellor



Netaji Subhas Open University
Under Graduate Degree Programme
Choice Based Credit System (CBCYS)
Sub: Honours in Mathematics (HMT)

Course : Real Analysis
Course Code : CC-MT-04

First Print : November, 2021

Printed in accordance with the regulations of the
Distance Education Bureau of the University Grants Commission.



Netaji Subhas Open University
Under Graduate Degree Programme
Choice Based Credit System (CBCS)
Sub: Honours in Mathematics (HMT)

Course : Real Analysis
Course Code : CC-MT-04
: Board of Studies :

Members
Professor Kajal De Dr. P. R. Ghosh
(Chairperson) Retd. Reader of Mathematics,
Professor of Mathematics and Director, Vidvasagar Evening College
School of Sciences, NSOU
Mr. Ratnes Misra Professor Buddhadeb Sau
Associate Professor of Mathematics, Professor of Mathematics,
NSOU Jadavpur University
Mr. Chandan Kumar Mondal Dr. Diptiman Saha
Assistant Professor of Mathematics, Associate Professor of Mathematics,
NSOU St. Xavier's College
Dr. Ushnish Sarkar Dr. Prasanta Malik
Assistant Professor of Mathematics, Assistant Professor of Mathematics,
NSOU Burdwan University
Dr. Rupa Pal, WBES.
Associate Professor of Mathematics,
Bethune College
: Course Writer : : Course Editor :
Unit 1-3 : Dr. Shyamal Kumar Hui Dr. Sanjay Kumar Ghosal
Associate Professor of Mathematics, Associate Professor of Mathematics,
University of Burdwan North Bengal University

Unit 4 :  Mr. Chandan Kumar Mondal
Assistant Professor of Mathematics,
Netaji Subhas Open University
: Format Editor :
Mr. Chandan Kumar Mondal, NSOU

Notification

All rights reserved. No part of this Study meterial be reproduced in any form without
permission in writing from Netaji Subhas Open University.

Kishore Sengupta
Registrar






@E Netaji Subhas UG : Mathematics
D\ ng Open University (HMT)

Ag

WYLIN

Course : Real Analysis
Course Code : CC-MT-04

Unit-1 QA Preliminaries 7-15
Unit-2 Q Real Numbers 16-66
Unit-3 U Sequences 67-109

Unit-4 Q Series of Real Number 110-138






Unit 1 0 Preliminaries

Structure
1.1  Objectives

1.2  Introduction

1.3  Sets

1.4 Functions or Mappings
1.5 Summary

1.6 Keywords

1.7 References

1.1 Objectives

The aim of this unit is to recall some definitions and useful results for studying
and understanding clearly the next units 2, 3 and 4.

1.2 Introduction

Real analysis is a development of the set of real numbers and real valued
functions. Therefore the concept of set and function are very much needed to study
real analysis. For that purpose, in this unit, some basic terms and results about set
and function are discussed.

1.3 Sets

A set is a well defined collection of distinct objects. Here well defined means it
must be possible to tell without any ambiguity whether a given object belongs to that
collection or not. Sets are usually denoted by capital letters A, B, S, .. .etc.

If an object x 1s a member of a set S, then we write x € S and read as ‘x belongs
to S8 or ‘x is a member of a set S’. If y is not an element of S, we write y ¢ S and
read as ‘y does not belongs to S’.

Example : The collection of the letters of the word ‘logic’ is a set as it is a well
defined collection of distinct objects. If we denote this set by S, then

S = {11 0? g) i? C}'
We can also write the set as
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S = {x : x = a letter of the word logic}.

The first form of S is known as tabular form, where the second one is known as
set-builder form of S. The order, in which the objects of a set are taken is immaterial.

Some special sets are denoted as

IN = the set of all natural numbers.
Z = the set of all integers.

@ = the set of all rational numbers.
IR = the set of all real numbers.

¢ = the set of all complex numbers,

Finite and Infinite set : If the number of elements of a set is finite (respectively
infinite) then set is called finite (respectively infinite) set.

For example, the collection of all prime numbers between 10 and 20 is a finite
set. If we denote this set by P, then P = {11, 13, 17, 19}, which contains only four
(finite) elements. Again the set F = {X : x is a fraction and 0 < x < 1} is an infinite

set as it contains infinite number of elements. Above IN, Z Q. IR and C are all
infinite sets.

Null Set : A set is called null (or void or empty) set if it has no member in it.
It 1s denoted by ¢ and written as ¢ = { }.

For example, the set of all prime numbers between 32 and 36 is a null set.

Sub set and super set of a set : If every element of a set A is also an element
of a set B, then A is said to be a subset of B. We write this as A C B. Here A is
contained in B,

Thus A € B if yxeA=xeB.

If A < B then B is said to be a superset of A. We write this as B o A Here
B contains A.

For any set A, we have ¢ A and Ac A . The sets ¢ and A (entire set) are

called improper subsets of A. Any other subset of A, if exists, is called a proper
subset of A.

It may be clear that a set S is called a proper subset of A, written as S < A, if
for any xeS=xec A, but Iyc A such that yg$§.

Moreover, two sets A and B are said to be equal, wnitten as A=B, if Ac B
and B ¢ A.

Singleton set : If a set consists of exactly one element then it is called singleton
set.



NSOU « CC-MT-04 9

For example, the set {1} is a singleton set.

Universal set : If all the sets under study are subsets of a particular set, then that
particular set is called the universal set.

Power set of a set : Let A be any set. The set of all subsets of the set A is called
the power set of A and it is denoted by P(A).

For example, if A = {a, b, ¢} then
P(A) = {¢.{a}, {b}, {c}, {a, b}, {b, c}, {c,a}, A}.
Note that if A contains ‘n’ elements then P(A) contains 2" elements.

Set operations : Some important operations on sets are :

Union and Intersection of sets : If A is any arbitrary index set then {A. :1e A}

is called an arbitrary collection or family of sets. The union of the above arbitrary

family of sets, denoted by UAi

1EA

is defined by

2

A, ={x:xe A for at least one i € A}

and the intersection of the above arbitrary family of sets, denoted by

nAi:{XIXGAifor every i € A }.
Thus for any two sets A and B, the union of A and B, denoted by AUB, is
defined by

AUB = {x:xe AorxeBorxeboth A and B} .

The Venn-diagram representation of it as A = B
The intersection of A and B, denoted by A ~ B, \L

is defined by AnB={x:x € A and x € B}.
It’s Venn-diagram representation is

Disjoint sets : Two sets A and B are called A B
disjoint if AnB=¢. That means the disjoint sets
have no common element. ANB

Difference of sets : Let A and B be any two sets. The difference of B from A,
denoted by A — B, is defined by

A -B = {x:xeAbut x ¢B}.
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Its Venn-diagram representation is

For example, if A = {0, 1, 2, 3, 4} and

B = {2, 4, 6, 8} then

A-B=1{0,13}and B— A = {6, 8}. AR

Thus A — B #B — A and it is true in general. The symmetric difference of A and
B, denoted by A A B, is defined by A A B = (A - B) UB - A).

Complement of a set : Let U be an Universal set and A < U. The complement
of A, denoted by A' (or A°), is defined by

A ={x:xeuvandx ¢ A}.

s}

Its Venn-diagram representation as A
It is clear that U

Also for any two sets A and B, AcB=B ' cA".
Laws of Algebra of sets
(i) Idempotent laws : For any set A, AUA=A A[NA=A.
(i) Identity laws : For any set A, AUd=A, ANNUu=A.
(iii) Commutative laws : For any sets A and B, we have
AUB=BUA,ANB=BNA.
(iv) Associative laws : For any three sets A, B and C, we have
(AUB)UC=AUBUC), (ANB)YNC=ANMBNC)
(v) Distributive laws : For any three sets A, B and C, we have
AUBNC)=(AUB)N(AUC),ANBUC)=(ANB)U(ANC).

(vi) De-Morgan’s laws : For any two sets A and B, we have
(AUB) =A°NB°, (ANB) =A°UB*
Cardinality of a set : For any set A, the number of elements of A is called the
cardinality of A and it is denoted by n(A).
It may be noted that n(¢) = 0 and n(B) = «© for an infinite set B.
For any two finite sets A and B, we have

n(AUB)=n(A)+n(B)-n(AB).
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Also for any three finite sets A, B, and C, we have

n(AUBUC)=n(A)+n(B)+n(C)-n(ANB)-n(BC)
-n(ANC)+n(ANBNC).
Cartesian product of sets : The cartesian product of any two sets A and B,
denoted by A x B, is defined by A x B ={(a,b): a€ Aand b € B}

Similarly we can define B xA = {(b, a) - b e B and a € A},

In general, A x B # B x A

For any set A, we have A X ¢ =¢ = ¢ x A,

The cartesian product of any three sets A, B and C can be similarly defined as
AxBxC={(a,b,c);acA beB,ceC}

Similarly the cartesian product of n sets A, A, .., A is defined as
A <A, x.xA, ={(a,,a,,..,a, ):a €A, 1<i<n}

where (a,, a,, ..., a) is known as an ordered n-tuple.

If IR is the set of real numbers, then IR* = IR x IR = {(x,y) x IR, yeIR}

represents the set of all ordered pairs of real numbers, 1.e, the cartesian plane,

Similarly IR* =IRxIR xIR ={(x,y,z):x € IR, y € IR,z € IR} represents the three
dimensional space, i.e., the Euclideam space.

n _ IRXIR .. XIR_ . <3
And IR" = ﬁn fimes) ={(X,,X5,..,X;):X; € IR,1<i<n}represents the

n-dimensional Euclidean space.

1.4 Functions or Mappings

Let X and Y be any two sets. A function or mapping f of X to Y is a rule which
associates to each element x in X, a unique element y in Y and it is written as f :
X — Y. Here X and Y are called respectively the domain and codomain of f Also
y 1s called the f-image of x and written as y = f{x), while x is called pre-image of
y. The set of all f-images of (the elements of) X, denoted by f(X), is called the image
of X under f or range of f of course f(X)C Y.

Types of functions : There are many kind of functions such as :
One-one function A function f: X — Y is said to be one-one (or injective) if
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distinct elements of X have distinct images. Thus f : X — Y is injective if for all

X, X, € X, X, #X, = f(x,) #f(x,) or equivalently f(x,)=1f(x,)=x, =x,.

-y
I A

f = Y3
X Y
Many one functions : A function f : X — Y is called many one function if
Ix,,x,in X, x; #x,such that f(x) = f(x).

X Y

Into function : A function f : X =Y is called an into function if f(X)C Y.

In this case, we say that f maps X into Y.

f ‘
X Y
Onto function : A function f : X — Y is said to be onto (or surjective) function
if fiX)=Y.
In this case, we say that f maps X onto Y.

A function f: X — Y is called bijective if f is injective and surjective, i.e., one-
one and onto.

Constant function : A function f : X — Y is called constant if

f(x)=c Vx e X, where c is an element in Y. Here f(X) is a singleton set.
Identity function : A function f: X — Y is said to be identity function if
f(x)=xVx e X. Such a function on X is denoted by I or simply L.
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Equal functions : Two functions f: X — Y and h : X — Y are said to be equal
if f(x) = h(x) Vx € X In this case, we write f =h.

The sum, difference and the product of two functions f : X — Y and h :
X — Y are defined as

(f+h)(x) = fx)+hx)VvVxeX

(f - h)x) = f(x)-hx)VxeX

and (th)(x) = f(x)h(x) VxeX.

If h(x)#0VxeX, the quotient f/h is defined as

(f/h)(x)=f(x)/h(x) Vx e X.
Also (cf)(x)=cf(x),celR.
Restriction and Extension of a function : Let f : X — Y be a function and

A(#¢)c X The function h : A — Y defined by h(x)=f(x)vx € A,is called the
restriction of f to A and it is denoted by f/A. Thus h = f/A.

Ifh: A —= Y is a restriction of £ : X — Y then f is called an extension of h to
X.

As the f-images of the elements of X — A can be choosen arbitrarily, the
extension f of h to X is not unique.

Composite function : Let f : X — Y and g : Z — W be two functions such that
f(x)c Z

Then the composite of f and g is a function g of : X — W defined by

(gof)(x) =g(f(x)) Vx e X.

Thus the composite function g of : X — W is defined only when f(X) is a subset
of the domain of g.

The existence of gof does not ensure the existence of fog.
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Property of composite functions : Some important properties regarding composite
functions are as follows :

(1) For two functions f : X - Yand g . Y — X, both gof : X =X and fog :
Y — Y are defined. However, gof # fog, in general, 1.e, the operation of composite
function is not commutative.

(2) For three functions f: X > Y, g: Y > Zand h: Z —» W, h o (gof) = (hog)of,
i.e. the operation of composite function is associative.

B3)yIff: X > Y and g: Y — Z are both bijective functions then gof is also
bijective function. However, the converse of this statement may not be true.

Inverse of a function : Let £ : X — Y be a bijjective function. Then f is said to
be invertible if 3 a function g : Y — X such that gof =1, and fog=1, . This g is
called the inverse of f and written as g = .

It may be noted that the inverse of an in_\]fertiblfi1 mapping is unique. Also if
f: X — X 1s an invertible mapping then fof =I=fof, where I is the identity
mapping on X.

Properties of Inverse functions :

1y
(1) For an invertible mapping f : X — Y, (f] =f.

-1

(2)Letf: X > Yand g: Y — Z be two bijective mappings and f:Y — X and
-1
g:Z—Y be their respective inverse functions. Then the function gof : X — Z is

-1
also invertible and (gof)' =fog.

1.5 Summary

@ Sets are well defined collection of distinct objects.

@ If a set contains no element then it 1s called empty set.

@ The complement of complement of a set is itself.

@ The number of elements of a set 1s called the cardinality of that set.
® For any two sets A and B, A x B # B x A, in general.
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® Functions are, in all, of four kinds :
(1) One-one into functions
(i) One-one into functions
(1ii) Many-one into functions
(iv) Many-one onto functions.

1.6 Keywords

Sets, union, intersection of sets, complement, cardinality of a set, cartesian
product of sets, Function or mapping, injective and bijective mappings, restriction
and extension of a mapping, composite functions, inverse of a function.
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2.1 Objectives

One of the important branch of mathematics is real analysis which 1s consisted
with set of real numbers. Thus to study real analysis it is necessary to know the
properties of real numbers. That is why the object of this unit are as :

® To study algebraic, order and completeness properties of IR.

® To study the concept of rational numbers, irrational numbers and construction
of real numbers from system of rational numbers.

16
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@ To know the concept of neighbourhood of a point, imit point of a set, open
set, closed set in IR.

® To study Blozano Weierstrass theorem which states the sufficient condition
for the existence of limit points of a set.

2.2 Introduction

It is know that IN cZ <@, where IN, Z and @ are respectively the set of
natural numbers, integers and rational numbers. The concept of real numbers IR is
systematically developed from IN via the construction of Z and Q. The set of real

numbers and their properties are discussed in this unit. The set of real numbers can
be described as a complete ordered field. 7he analysis, die to set of real numbers
is known as real analysis, which is one important branch of mathematics. We discuss
the limit point of a set, open set, closed set etc. as a basic part of real analysis. It is
known that a finite set has no limit point, while an infinite set may or may not have
a limit point. Thus the necessary condition for the existence of a limit point is that
set must be infinite. We have studied Bolzano Weierstrass theorem, which tells the
sufficient condition for the existence of limit point of a set.

2.3 Algebraic and Order properties of IR

This section deals with some algebraic and order properties of real numbers,
which can be derived by Field axioms and order axioms.

Field Axioms : It is known that the set of real numbers IR is a field with respect
to two operations addition and multiplication, denoted by ‘+’ and ‘.’ respectively.
That means these two operations ‘+’ and “.” on IR satisfying the following axioms,
known as Field axioms,

Addition Axioms :

(A)) Closure law : a+belR,Va,belR.

(A)) Associativelaw:a+(b+c¢)=(at+b)+¢ Va,bcelR.

(A)) Existence of additive identity : The real number O, called the additive
identity such that a + 0 =a=0+a, VaelR.

(A, Existence of additive inverse : For each a IR, J an element —a € IR, called
the additive inverse of a such that a + (-a) = 0 = (-a) + a.

(A,) Commutative law : a +b=b +a, VabelR.
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Multiplication Axioms :
(M) Closure law : abelR,Va,belR

(M,) Associative law : a.(b.c)=(a.b).c,Va,b,ceR
(M,) Existence of multiplicative identity : The real number 1, called the
multiplicative identity satisfies a.1 =a = 1. a, VasIR.

(M,) Existence of multiplicative inverse : For each a IR, 3 an element

a! IR, called the multiplicative inverse of a such that a . a' =1 =a"a
Q 1
Here we may also denote a~ by —.
a

(M) Commulative law : ab = ba, Va,belR.

Distributive laws
D) a(bt+tc)=ab+ac Vab,celR.
M) (b+c¢)y.a=batca Vab,celR

Subtraction and Division in IR

The subtraction of a real number ‘b’ from a real number ‘a’, denoted by a - b, is
defined by a — b = a + (-b).

The division of a real number ‘a’ by a non-zero real number ‘b’ denoted by a/b,
is defined by a/b = a.b™.

Algebraic property of IR
The set of real number satisfies Field axioms. Moreover, some algebraic properties
of IR are as follows :
For a, b, ¢, IR, we have
() atc=b+¢c=a=bandcta=c+b=a=h,
(i) a+b=0=b=-a,
(iii) —(-a) = a,
(iv) fc*0thena ¢c=b . c=a=bandca=cb=a=b,
(v) ab=1=b=a,
(vi) ifa = 0then (a”')y' =a,
(vii) a. 0=0,
(vi) a0, b0 =a b=0,
{ix) ab&s 0=a=0or/andb=0,
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(x) a (-b) =—(ab)=(-a) b,
(xi) (-a)(-b)=a.b;(-1)a=-a,
(xii) (a.by!'=a'b!, provideda = 0,b = 0.
(xiii) the equation x + a = b has a unique solution x = b — a in IR.
{xiv) for a # 0, the equation a.x = b has a unique solution x = b/a in IR.

Order Axioms : The set of real numbers IR is an ordered field, 1.e., IR is ordered
with respect to order relation “>’, called greater than. That means the relation ‘>’
between pairs of real numbers satisfies the following axioms, known as order
axioms.

(O,) Law of trichotomy : For all a,beIR, one and only one of the following is
true
a>b,a=b,b>a

(0,) Transitivity law : For all a,b,ccIR,a>bandb>c=>a>c

(O,) Monotone property for addition :
Foralla,b,cclR,a>b=a+c¢c>b+c.

(O, Monotone property for multiplication :
Foralla, b,c elRand ¢ > 0, a>b = ac > bc

Remark : (1) The order relation ‘<’, called less than, i1s defined as a < b if
b > a. The order axiom can also be stated with the relation ‘<’ instead of >’

(2) The relation a < b means either a < b or a = b and a > b means either
a>bora=h,
(3) A real number ‘a’ is said to be positive or negative according as a > 0 or
a < 0. The set of positive (respectively negative) real numbers is denoted by IR*
(respectively IR").
Order property of IR : Beside the order axioms, IR satisfies the following order
properties
(i) For each real number a, one and only one of the following holds :
a>0,a=0-a>0
(i) a<0<=-a>0
(ii) a>b<=a-b>0foralabe IR
(iv) Foralla,b,ce IR if ¢ <0 thena>b = ac < bc.

(v) Fora, b, €lR+, a>b :>l<l
a
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Extended real number system : We can extend the system of real numbers by
adjoining o> and —cc. The enlarged set is called the extended real number system.

If aelR, we have —o0 < a < oo.

atow =0 =00 ta a- ow=-w0 =-wn t+a,
a ©0 o if a>0

— =0 —==xa=aXeo= )

o a —o if a<0

Also 0 X = o0 =(—w) x (-0) =0 + 0,

o X (=00} ==—w =(-00) X 00 = —00 — 0O,

However, © — o, -0 + @, 0 ¥ ©, w x 0, = are meaningless.

2.4 Countable sets, Uncountable sets and Uncountability of IR.

This section deals with countable sets and uncountable sets through which
infinite set may classify two ways
Countably infinite set and Uncountably infinite set.

Countable and Uncountable sets : A set S i1s said to be enumerable or
denumerable if 3 a bijection from IN onto the set S.

A set S is called countable if either S is finite or S is enumerable. A set S is
called uncountable if it is not countable. Thus an uncountable set must be infinite.
The empty set ¢ is countable as it is assumed a finite set.

Examples :

(1) The set E = {2n : n €IN} is denumerable, as there is a byection f : IN — E.
Here E is the set of even natural numbers. It is an infinite set, but countable. So, E
is countably infinite set.

(2) The set {(of odd natural numbers) O = {2n — 1 : n € IN} is also denumerable
and hence O is countable.

(3) The set Z of all integers is countable as Z is denumerable.

(4) The set of real numbers in the interreal (0, 1) is uncountable.

Theorem : Any subset of a countable set is a countable set.

Proof : Let B be a subset of a countable set A. We show that B is countable.
If possible, let us suppose that B is uncountable. Then every injective function

f: IN — B must be into, not onto, 1.e. f {IN) C B. Since B C A, therefore f(IN) CA
Thus for every injective function f . IN — A f (IN) # A
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So, A is an uncountable set, which is a contradiction. Hence B must be

countable.
Theorem : A countable union of countable sets 1s countable.

Proof : Let {A :i€IN} be a countable collection of countable sets and let

A= CJAi .
i=1

Each countable set A, i € IN may be represented as

Ap=ia,8,, 8558, 0

A, ={a;,a,,a,,..,8, ..}

Am :{aml’aml’ "5"11133""3a G }

There are two cases arises :

Case I : If the sets A, A, ..., A, ... are disjoint, the elements of A can be
arranged as

A={ay,a,,,8,,23;,3,,8;, .}

We may construct a one-one function f from IN onto A

mn°

such that f[%(m+n—1)(m+n—2)+m}=a

Then (1) =a,, fi2) = a,, f(3) = a,,, ...
So, A 1s countable.
Case II : If the sets A, A, ... are not all disjoint, consider the sets B, = A |

m-1
B,=AM_ B =AMUA, ..,B = A, \L_IJAi _

Then the sets B, B, ..., B_ are disjoint and UA. = UB. .
i=1

i=1

So, by Case I, UB. is countable and hence UA. is countable.

i1=1 i1=1
Corollary : The union of two enumerable sets is enumerable.
Corollary : The union of an enumerable number of enumerable sets is enumerable.
Theorem : The Cartesian product of two countable sets is countable.
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Proof : Let A and B be two countable sets. We have to show that A x B is
countable.

Since A and B are countable, we can write

A=1{a,a, ., a, . ..}and B={b, b, ., bj, .51, e IN.

Then AxB=JP where P, ={(a,b,).(a,,b.), ., (a,b)...}.
i=1

The jth member of P. is (a, bj). Clearly P, is countable for each i. So, by previous
theorem, A x B is countable.

Remark : If A, A, ..., A_ are countable sets them the cartesian product A, x A,
x ... »x A_is also countable.

Proof : It can be proved by method of mathematical induction.

. P
Rational Numbers : If a real number can be expressed in the form of E , where
p, g€ Z, g # 0 such that ged (p, q) =1 (1.e. p and q are prime to each other), then
it 1s called a rational number. QOtherwise, it 1s called an irrational number. The set of
rational numbers is denoted by Q.

Let x, y € 4, then we can write X =

where a, b, ¢c,de Z, b=0,d =0
We now define the operations addition, subtraction, multiplication and division
are as

y=2<
H d,

o |

a ¢ ad+be a ¢ ad-be
b d bd ° b d bd °
ac ac x a ¢ ad )
Xy=——=—and Z=2+==""_ provided ¢ # 0.
bd bd y b d be P
Also x =y ie —=— iffad = b
sox =yie = iff ad = be.

Properties of () : Some important properties of ) are as follows :

(1) Algebric Property : The set () forms a field with respect to addition and
multiplication defined as above. That means @ satisfies the field axioms, mentioned

in section 2.3. Here ‘—a’ is the additive inverse of ‘a’ € @ and % is the

multiplicative inverse of b(# 0) € . The zero element and unity are respectively
0 and 1.
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(2) Order Property : Further, one can check that (@ satisfies the order axioms,

discussed in section 2.3. Thus @ becomes an ordered field.

(3) Density Property : It is known that if X, y € @ with x <y then Xty

eQ

and x <

X+ . .
> Y « y. That means between any two rational numbers there exists

1
another rational number E(XJFY). By similar way, it can be check that between

X+y

x and %(x +y){asx < ), 3 another rational number. Proceeding in this way, we

can conclude that between any two rational numbers x and y (where x <y) 3 infinitely
many rational numbers. This property of @@ is known as the density property of Q.

In this case, we can say that Q) is dense.

Problem : Show that there does not exist a rational number x such that x* = 2.
Solution : If possible, let there exist a rational number x such that x* = 2.

Since x is rational, so Jp,qe Z, q# 0such that ged (p, ) =1 and x = B.
) q
p—q =x"=2
¢

= p® =2q°, which implies that p* is even and hence ‘p’ is even.

Let p = 2m, where ‘m’ is an integer.

Then p* = 2¢° = q° =2m?, which also implies that q is even.

Thus p and q are both even which contradicts our assumption that ged (p, q)=1.

Therefore, there is no rational number whose square is 2.
Problem : Show that the set of all rational numbers is countable.

Solution : Let @@ be the set of all rational number. Then we can write  as
Q= Q,J_rl],(il], 142y f(ela2 ol
1 1)\ 2 33 n n n

where a_ contains all rational numbers where denominator is n. Hence the set @

is countable.
Geometrical representation of rational number, irrational number and real
number : Consider any directed straight line extending indefinitely on both sides.
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We divide it into two parts and mark middle point by O. The right part of O is called
positive and left part of O is called negative.

O AB P
Take any point ‘A’ on the positive part. Assume that the point O and A represent
rational numbers O and 1, so that the distance OA is unity.

Let pe”Z and qeIN and let us divide OA into ‘q’ equal parts. Then take ‘p’

: p :
numbers such subparts and we represent the rational number a by the point P on the

directed line.

So, OP = P .
’ q

If p > O then P lies to the right part of O and if p < O then P lies to the left part
of O. When p = 0, the point P lies on ‘O’.

Thus the point ‘P’ corresponds to the rational number — and vice-versa. This

representation is unique. Here ‘P’ is known as rational points.

Note that between any two rational points closely enough on the line, there are
many points which does not represent rational numbers. Such points are called
irrational points and the corresponding numbers are called irrational numbers.

For example, if we consider the point B on the line such that OB is the diagonal
of a square of the side unity (i.e. OA) does not correspond to any rational number,
as there is no rational number whose square is 2. Thus we may conclude that

Dedekind— Cantor Axiom : Every real number corresponds to a unique point
on a directed line and every point on the directed line corresponds to a unique real
number.

Remark : The above axiom shows that the set of real numbers is a continuum
(means without any gap). That is why the set of real numbers is called the
Arithmetical continuum and the set of points on a straight line is called linear or
geometric continuum.

Dedekind section of rational number : Let Q be the set of all rational numbers.
A partition of Q into two subsets L and R (called classes) satisfying the following
conditions is called a Dedekind section of rational numbers.

1 Lo, R=0
(i) LUR=Q
(i) Voel and VBeR=a<p.
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There are three types of Dedekind section.

Type-1 : Let us divide the set of all rational number Q into two classes L and
R as follows :

L={x xe Qandx < 2}

R={x:x€ Qand x> 2}

Clearly it is a Dedekind section, because 2 € L and 3 € R such that LR = Q.

Also VaeL=>a<2 and Ve R=>p>2

o<,

In this section L class has greatest number 2, but R class has no least number.

Type-2 : Let us divide Q@ into two classes L and R as follows :

L={x:xeQandx <3}

R={xxeQandx =3}

It 1s Dedekind section and in this section, least number of R class 1s 3 but L class
has no greatest number.

Type-3 : Let us divide Q into two classes L and R as follows :

L = {x:xeQandeitherx <Qorx>0but x> <2}

R={x:xeQandx>0,x>>2}.

Clearly 0 € Land 2 € R

L LzdandR=¢.

As there 1s no rational number whose square is 2, it follows that LUR = Q.

YoeL =eithera<Oora>0buta’<2 and VpeR =B >0and p* > 2

When o <0thena <p and when o >0 then ot® < 2.

o < [3* and hence o < f3.

Thus it is a Dedekind section.

Now we shall show that L class has no greatest number and R class has no least
number.

If possible, let ‘m’ be the greatest number of L class, then m > 0 and m* < 2.

4+3m
Let us take n =
3+2m
Then n2—2:rn.—_2640 and hence neL.
(3+2m)”
443 4-2m’
Now n—m= m -m= m >0,1.e. n > m, which is a contradiction.

3+2m 3+2m
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Therefore, L class has no greatest number.
If possible let ‘r’ be the least number of R class.
“r>0andrf>2ie rr-2>0.

Let s = 4+43r
et us put s 3 or
4+3rY F-2 ,
> 1_2 = -2= ~>0asr -2>0
Then s > 0 and s* — 2 [3+2r) Grar)
=5 >2
. 8 € R class

4 +3r _ 2(r--2) -0
3+2r 3+2r
Therefore, r > s, which is a contradiction and hence R class has no least number.

Nowr—s=r1-—

Remark : Type -3 of Dedekind section about rational number shows that the
system of rational number has gaps. To fill up these gaps, Dedekind introduced new
numbers which are called irrational numbers. Thus irrational numbers are introduced
by section of rational numbers as follows :

Modified section of rational numbers : A division of set of all rational numbers
into two classes L and R satisfying the following condition is called the modified
section of rational numbers.

1) Lz¢,R=¢

(i) LUR = Q,

(m) YoeLandVBeR =>a <

(iv) L class has no greatest number.

Definition of real number by section of rational number : Every modified
Dedekind section defines a real number o If the section is (L, R), then we write
a = (L, R).

The real number ‘@’ is called the real rational number if ‘c” 1s the least number
of R-class and ‘o’ is called an irrational number if R class has no least number.

Exercise : Define the following real numbers by Dedekind section of rational
numbers.

(i) 2 (i) /3 (i) 7/ .
Section : (i) We define the real numbers 2 as 2=(L,R),
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where L = {x:xeQand x <2}
and R = {x :xeQand x >2}.

(i) We define the real number /3 by +/3 =(L, R),

where L = {x -x e Q, either x <0 or x>0 and x* <3}

and R = {x:xeQ,x>0and x* >3}.

(iiiy We define 7 =(L,R),

where L = {x :xeQandx’<7} and R=Q — L.

Relative magnitude of real numbers : Let o =(L,,R,)and 3 =(L,, R, )be two
real numbers defined by section of rational numbers. We define o <3 if and only
if L is a proper part of L, i.e, VxelL, = xeL, and there is yeL,but y¢L

We also define o= if and only if L, =L,

and o> if and only if B< o
ie, if and only if L, is a proper part of L,.

Exercise : Prove that the following by Dedekind section :
(i) 1 < 3 (i) VZ<+3 and (i) 53 <2.
Ans. (i) Let 1=(L,,R,), where L, ={x:x<Qand x <1} and

\/EE(LE,RE),where L,={x:xeQ,eitherx<0Oorx>0and x* <2}.
Then, VxeL = x <1 and VxeL, = either x <0 or x >0and x* < 2.

Thus VxeL, =>xeL,.

5 ., 25
Let us take a number y = 7~ Then y™ =——< 2 and hence yeL,.

5
Buty: Z>1?SOY§LI'

-~ L, is a proper part of L,. Consequently 1 < /2.
(ii) Let J2 = (L,,R,), where L, = {x:x€Q,eitherx <0or x>0and x? <2}

and \/3=(L,.R,), where L, = {x:x€Q,either x <Oorx >0and x* < 3}.
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Then ¥x eL, = either x <Oorx >0and x* <2
and Vx eL, = either x <Oorx >0and x* <3,

Thus ¥xelL, =>xeL,.

3 . 9 . 9 )
Let us take y=5 Then yé=Z<3,SO}'EL2,blltyd=Z>2,l‘e‘y€L]‘

Thus L, is a proper part of L, and hence /2 <./3.

(i) Let us consider NE) =(L,,R,),

where L, = {x:x € Q, either x <0 or x >0 but x” < 3}

and 2=(L,R)), whereL, ={x :xeQ, x<2}.

It can be proved that L, is a proper part of L, and hence /3 <2

Addition of two real numbers : Let oo =(L,R,}andp=(L,,R,)} be two real
numbers, given by Dedekind section of real numbers. We define the number
a+B=(LR),

where L={x:x=%x,+%,,Xx,€L,,x,€L,jand R=Q - L.

Reciprocal of a positive real number : Let ¢ > (0 be a real number, where
a=(L,,R,).

We define 1 =(L, R), where L = {x :either x <0 or x >0 and
o

1 1,
;E R, so that  Is not the least number of R, }.

Dedekind’s Theorem on real number : If we divide the set of all real numbers
IR into two classes L and R satistying the following conditions :

1) Lz, R=0¢

(i) LUR=IR

() YVoeLand VBeR=>a <3,

then there is a number ) separating the two classes such that all numbers
< i eLclass and all numbers >A € R class.

The number } may belong to either class. If A e L then A is the greatest number
of L class and if A< R then A is the least number of R class.
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2.5 Intervals

Let a, b € IR such that a < b. Then the open interval and closed interval are
respectively defined as

(a,b)={xeIR:a<x<b} and [a,b]={xcIR:a<x <b}

The points ‘a’ and ‘b’ are known as end points. The closed interval contains end
points, while the end points are not included in open interval.

Also the sets

[a,by={xcIR:a<x<b}and (a,b]={x IR :a <x <b}are called semi-open or
semi-closed intervals. There are also known as closed-open and open-closed intervals
respectively.

Since the length of each above intervals is equal to b — a ; which is a finite
positive real number, there above intervals are called finite intervals. Infinite
intervals are the intervals of infinite length.

For instance, the sets (a,a)={xcIR x>a} and (-w,a)={xecIR:x <a}are
known as infinite open intervals, while

[a,0)={xeIR:xza}and (-»0,a]={x € IR : x <a} all known as infimite closed
intervals, The entire set IR is also considered as an infinite open interval by taking
IR = (-0, ®}.

Absolute value of a real number : The absolute value {or modulus) of x IR |
denoted by [x| is defined as

x,1fx 20
[x|=
X= —x,if x<0

For example [5|=5and |-5|=—(-5)=5.

For any x,y IR the distance between x and y is [x — y|.
Observations

(i) [x|z0and|x| =x*
Gi) |-

(1i1) |x| =max{x, — X}
(iv) —|x| = min{x, — x}

) feyl=[x] Iyl



30 NSOU « CC-MT-04

5|=M,y::20
y| |y

(vi1) |X + y| < |x| + |y|

(vi)

(viii) |x —y|z|x|-|y| and |x-y|z|y|-|¥|
Consequently, |[x—y|2 |(|x| - |y|)|
(ix) [x—a|<e=>xe(a—ga+e)and |x—a|<e=xela—ca+<]

(x) x =y = x| =|y|. while the reverse implication does not hold.

2.6 Bounded and Unbounded sets

Let S— IR If M IR such that x < MV¥x e §,then S is called bounded above.
This M is called an upper bound of S.
Again, if dm € IR such that x 2m ¥x €8 then §S is called bounded below and

such m 1s called a lower bound of S.
If S is bounded above as well as bounded below then S is said to be bounded.

Thus S is bounded if 3m, M < IR such that
m<x<M,vVxeS (2.6.1)
If M >0, taking m = —M, the relation (2.6.1) reduces to

|x| <MVxeS
Hence S is said to be bounded 1iff I M = O such that

|X|SM ¥x eS8

Consequently, a subset S is called unbounded or not bounded if it is either not
bounded above or not bounded below.
Examples :

1
(1) The set {; ne IN} is bounded. Here 0 and 1 are lower bound and upper

bound respectively.
(2) Let a,be IR Then (a, b), [a, b], (a, b] and [a, b) are bounded.
(3) The set IN is bounded below by 1 but not bounded above.
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(4) The set IR" ={x<IR :x =>0}is bounded below but not bounded above,

whereas the set IR™ ={x IR :x <0} is bounded above but not bounded below.
(5) The set Q, IR are unbounded.

Greatest and Smallest element of a set : Let ¢ =S IR. If S contains a largest
element M, i.e. x <M Vx €8, then M is called the maximum (or largest or greatest)

element of S. And if S contains a smallest element m, i.e., x >m Vx €8, then ‘m’ is
called the minimum (or smallest or least) element of S. In this case, we write Max
S=Mand min S = m.

For example, if S = {0, 2, 4, 6, 8, 10}, then max S = 10 and min S = 0.

1
Again for S = {H -ne ]N}, max S = 1, while S does not contain the minimum

element.
Remark :

(1) For S =[a, b] a,beIR,a<b, max S = b, which is also upper bound of S.
And min S = a, which is also lower bound of S.

(2) The set S = (a, b) does not contain the maximum and minimum element,
though S is bounded.

(3) Note that a bounded set S of IR may not contain an upper bound and (or) a
lower bound. But if S has an upper bound (respectively a lower bound) then it will
have infinitely many upper bounds (respectively lower bounds), because if M is an
upper (respectively lower) bound of S, then every number greater (respectively less)
than M 1is also an upper (respected, a lower) bound. Thus we get a set of upper
bounds (respectively lower bounds) for a bounded above (respectively bounded
below) set of IR.

We now define the following :

2.7 Supremum and Infimum

Let ¢ #ScIR. If M is an upper bound of S and any real number less than M

is not an upper bound of S, then M is called supremum or least upper bound (lub)
of S. Here, we write sup S (or lub §) = M.

Hence a real number M is supremum of S if

(i) M is an upper bound of S

and (ii)) M < K for every upper bound K of S.
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Similarly, if ‘m’ 1s a lower bound of S and any real number greater than ‘m’ is not
a lower bound of S then ‘m’ is called greatest lower bound (glb) or infimum of S.

Here, we write inf S (or glb S) = m.

Hence a real number m is infimum of S if

(1) m 1s a lower bound of S

and (i) m =k for every lower bound k of S.

Note : The supremum and infimum of a non empty subset of IR are unique, if
they exist.

Examples :
(1) Let a,belR witha<band S=1[a b] and T = (a, b).
Then sup S=b=Sup Tand inf S =a=inf T.

1
(2) For S = {1+E:ne]N}1 sup S=2and inf S = 1.

(3) The supremum of IN does not exist, while inf IN = 1.
(4) The set @ has neither supremum nor infimum,

Theorem : Let ¢ =S IR and let pf < [R - Then M is the supremum of S if and
only if
(1) x<M V¥xeS.

and (i) for each >0,3 a real number x 8§ such that x > M — €.

Proof : Let >0 be arbitrary. Since M- e<M, by definition of supremum, it
follows that M = sup S

& M is an upper bound of S and M - € is not an upper bound of S,

1e. @x<MVxeS and x>M-< for some xc8§.

Theorem : Let ¢ S IR and meIR . Then m is the infimum of S if and only
if (i) x2m V¥xe$S and

(1) for each €>0,3 a real number x €S such that x <m+<.

Proof : Since m < m+e for arbitrary <= 0. So, by definition of infimum, the
result follows :

Problem : Find the supremum and infimum of the following sets :

() S={-2, 2}U{1+l:nelN}U{—l—l:n e]N}
n

n
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={—2,2,1+l,—1—l:neIN} ={_2,2’

n n

Let > (0 be arbitrary.
¥VxeS=>x<2and2€8§,2>2-¢
sosup §=2

Similarly we find that inf § = -2,

(ii) Consider T = (—1)“[1+lj:ne]N “p3 345 67
n 2 34 56
We find that VxeTéxi%_
. 3.3 3
Let & be an arbitrary small + ve number. Then 5> E—Sancl EG T,

So, sup T= % andinf T=-2.

Properties of Supremum and infimum : From the definition and above results
one can prove the following :
{1) For any bounded set S, inf S < sup S.
{(ii) Sup S = max S, if max S exists and inf S = min S, if min S exists.
(iii) For ¢z A cIRand$=B IR,
inf(AUB) =min{inf A, inf B}
and sup (AUB)=max{supA, supB}
Further if AcBtheninf B<inf A<supA<supB

Problem : Let ¢ =ScIRand T={x . -x8S}.

Show that supT = inf S and inf T = - sup S.

Solution : Let sup S =B and inf S = b.

Let §>0 be arbitrary small number. Then
¥VxeS=>x<B=>—x>-B

and there is a member x c§ such that x > B-§= -x<-B+§.
Thus ¥V-xeT=-x>-B

and there i1s some _x < T such that —x <« —B+38.
sinfT=-B=-supS.

Similarly we can prove that sup T = —b =—inf S,
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2.8 Completeness property of IR

In similar to field axioms and order axioms, the set of real numbers satisfies
another important axiom, Known as Completeness axiom, as follows :

Every non-empty bounded above subset of IR has a supremum in IR,

With the above axiom, we can say that the set of real numbers 15 a complete
ordered field. As a consequence of completeness axiom, we have the following
theorem :

Theorem : Every non empty bounded below subset of IR has an infimum.

Proof : Let ¢ =S IR such that S is bounded below. Then 41K < IR such that
xz2K ¥xe8§
Define a set TCIR by T={x -x<§}.

Clearly T=¢asS=¢. Then by just previous problem, T is bounded above by

—K. So, by completeness axiom, T has a supremum in IR, say M and by previous
problem, —M is the infimum of S. Hence, the theorem is complete.

We have already seen that the set of rational numbers Q is an ordered field.
However, Q does not satisfies the completeness axiom. Thus Q is not a complete
ordered field. For this, it is sufficient to construct a non-empty bounded above subset
of Q which does not have a supremum in Q.

Define A ={x<Q":x* <2}, where Q" is the set of all positive rational numbers.

vx e A=xeQ" and x* <2 = x < 2, which implies that 2 is an upper bound of
A Thus A is a non-empty bounded above subset of Q.

If possible let a{c Q) be the supremum of A. Then o >1landsoxeQ”.

There are three cases arises :

ol=2 0" >2, 0’ <2

The case 2 =2 is not possible as there is no rational number whose square is

2. So, o #sup Ain this case.

3o +4
200+3

eQ".

Now choose =

3oo+4 Ao’ -2)
2a+3 20043

3a+4]2_ 2-o’

2-p1=2- = _
and 2-P [2a+3 (200 +3)

Then ot—pB=a—

If o2+ 2 then from above we get § <o and B° > 2, which implies that « = sup A.
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Again if 2 <7 then by similar way as above, it follows that o < and p* <2,

which implies that ¢ is not an upper bound of A Thus a#supA Hence the
supremum of A does not exist in Q. Consequently, Q is not complete.

Remark : The completeness axiom distinguishes between Q and IR as IR is
complete while Q is not.

2.9 Archimedean property of IR

If x and y are any two positive real numbers with y < x then In € IN such that
ny > x.

Proof : If possible let ny < x.

Set S={ny neIN}. Then S=¢ as yeS. Also S is bounded above by x. So,
by the completeness property of IR, sup S exists, say = M.

Now we have ny<MVneIN=(n+1)y<Mas n+leIN

=>ny<M-yvVnelN

This means that M — y is an upper bound of S and M - y < M, which is a
contradiction to the fact that M = sup S.

So ny > x for some ncIN.

From the above property, the following results are immediately holds

Result 1 : If v is a +ve real number and x is any real number then there exists
a positive integer ‘n’ such that ny > x.

Result 2 : For any real number X, there exists a +ve integer n such that n > x.

Theorem 2.9.1 For any x<IR,Im,neZ such that m < x < n.

Proof : From Result 2, we have for any x IR, dne Z" (set of +ve integers)

such that x < n ...{2.91)
Since x € IR, —x IR, s0d a +ve integer p such that p > —x.
ie —-p < x = m<x by taking -p = m. . {292)

From (2.9.1) and (2.9.2), the result follows.
Theorem 2.9.2 For any x cIR, there exists a unique integer n such that

n<x<n+l
Proof : Set [x] = n, where [x] is the integral part of x.
Then n<x (293)

We claim that x <n + 1. If not, x >n+1, which is an integer.

So, [x]zn+1=>n=>n+1, which is absurd.
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Thus x <n + 1 ..(2.9.4)
The result follows from (2.9.3) and (2.9.4).

Theorem 2.9.3 For any xeIR, there exists a unique integer n such that

x—-1<n<x

Proof : By theorem 2.9.1, for x<IR, 3 two integers m and p such that

m < x < p.
Choose n = max{re N . r<x} ..{2.9.5)
Then by Theorem 2.9.2, we get n+12x i.e. x—1<n .{(2.9.6)

(2.9.5) and (2.9.6) gives the theorem.

By density property of Q we have seen that there are infinitely many rational
numbers between any two rational numbers, which can be extended as the
following :

Theorem 2.9.4 : There is at least one rational number and hence infinitely many
rational numbers between any two distinct real numbers.

Proof : Let x,y<IR such that x #zyand x <y.

So,y —x>0.

By Archimedean property for y — x and 1<IR,Ja+ve iteger n such that
n(y—x) >1

ienx+1<ny .{2.9.7)

It is clear that nx € IR. So, by theorem 2.9 2, there exist a +ve integer ‘m’ such
that

m-1<nx<m ..{2.938)
> m<nx+1<ny, ..{(2.9.9)
using (2.9.7)

From (2.9.8) and (2.9.9), we get nXx < m < ny

. m
1e. x <r <y, where TZXEQ

Thus we get a rational number lying between x and y. By similar argument, we
get rational number r, between x and r and another rational number r, between r and
y such that

X<r <r<r,<y.

Proceeding in this way, we can find inifintely many rational numbers lying
between x and y.

For the case of irrational numbers,
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Theorem 2.9.5 : There is at least one irrational number and hence infinitely
many irrational numbers between any two distinct real numbers.

Proof : Let X,y € IR such that x =y and x <y . Then x —p <y —p for arbitrary

irrational number ‘p’. Since x —p,y—p<IR and x—p= y—p,3 a rational number r
such that

X —p <r<y-p, by just previous theorem,

ie. x<K(=r+p)<y.

Here K must be irrational number as it is the sum of a rational number and an
irrational number.

Thus we get an irrational number K between x and y. By similar argument as
above, we get irrational number K' between x and K and another irrational number
K" between K and y such that

x<K'«K<K"«y.

Proceeding in this way, we can find infinitely many irrational numbers lying
between x and y. Hence the proof of the theorem i1s complete,

By virtue of Theorem 2.9.4 and Theorem 2.9.5, we can state the following :

Theorem 2.9.6 There is at least one real number and hence infinitely many real
numbers between any two distinct real numbers.

2.10 Neighbourhood of a point

A set N is called a neighbourhood (abbreuiated by nbd) of a point p IR if there
exists an open interval I containing p and contained in N, 1.e, pelcCN.

The set N—{P} is called a deleted neighbourhood of p.

Examples :

(1) The set IR is a nbd of each of its points, because

VxelR, xe(x—e,x+e)cIR for every >0 The open interval

{(x—¢,x+¢) is known as € —nbd of x.

(2) The set Q of rational numbers i1s not a nbd of any of its points, since if
x € Q, then (x— €, x+ €) contains an infinite number of irrational points and hence
(x—€,x+c)z Q for every <> 0.

Properties of Neighbourhood

Theorem 2.10.1 : Every open interval is a neighbourhood of each of its points.
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Proof : Let ‘p’ be an arbitrary point of the given open interval (a, b). Since every
set is a subset of itself, we can write pe(a,b)c (a,b),

which means that (a, b} is a neighbourhood of p. As p i1s an arbitrary point of
(a, b), so (a, b) 1s a neighbourhood of each of its points.

Corollary : Any closed interval [a, b] i1s a neighbourhood of each point in it
except the points a and b,

Hints : p<(a,b)<[a,b].

Theorem 2.10.2, Any superset of a neighbourhood of a point 15 also a
neighbourhood of that point.

Proof : Let N be a neighbourhood of a point p and let M N.

Since N is a neighbourhood p, so an open interval (a, b) containing p such that

pe(a,b)c NcM,

which implies that M is a neighbourhood of p.

Since p and M are choosen arbitrarily, the result follows.

Theorem 2,10.3 : The intersection of two neighbourhoods of a point is also a

neighbourhood of that point.

Proof : Let N, and N, be two neighbourhoods of a point p. So,3¢,>0 and €,> 0
such that

pe(p—-<€,p+<,)c N, and pe(p-<,,p+<,) = N,.

Choose €=min{e,,e,} so that

pe(p-< pre)c(p-<,.p+s)c N,

and pe(p-<,p+te)c(p—¢<,, p+s,)N,,

which follows that

pe(p-< pte)c N,NN,.

Hence N (1N, is also a neighbourhood of p.

Note : By repeated applications of the above theorem, we can state the

following :
The intersection of fimitely many neighbourhoods of a point is also a neighbourhood

of that point.
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However, the intersection of an infinite number of neighbourhoods of a point
may not be a neighbourhood of that point.

I 1). .
For example, for every neIN, [——, —j is a neighbourhood of 0.
n n

= 11
But ﬂ[—?gj ={0} , which is not a neighbourhood of 0, as {0} is finite set.
n=]

Theorem 2.10.4 : The union of two neighbourhoods of a point is also a
neighbourhood of that point.

Proof : Let N, and N, be two neighbourhoods of a point peIR.So, 3 open
intervals (a, b)) and (a,, b)) such that pe (al,bl)ch and pe(a,,b,)cN,.

a4 & op ll)l b,
Choose a, = min {a, a,} and b, = max {b, b_}.

Then pe(alabl)U(aZJbZ):(aSbS)'

Also (a,,b)cN,UN, and (a,,b,) = N,UN,
:>(a37b3):(alabl)U(a’27b2)CNlUNZ'
Hence pe(a,,b,)c N, UN,,

which shows that N, UN,is a neighbourhood of p.

Note : By repeated applications of the above theorem, we can state the
following :

The union of a finite number (or arbitrary number) neighbourhoods of a point is
also a neighbourhood of that point.

2.11 Limit points of a set

Let $ #Sc IR. A point peIR is called a limit point (or limiting point) of S
if every deleted neighbourhood of p contains atleast one point of S.

Thus a point pelIRis a limit point of S if

(N-{pHNS=0¢,

where N—{p} is the deleted neighbourhood of p.

A limit point of a set is also sometimes known as an accumulation point or a
condensation point or a cluster point of the set.
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Isolated point : A point of a set is called an 1solated point of the set if it 1s not
a limit point of that set.

Examples : The set S={l:neIN} has only a limit point 0, which is not a
n

member of the set. However, each point in the set S is an isolated point of the set.

Remark : A hmit point of a set may or may not be a member of the set.
Moreover, a set may have no limit point, a unique limit point, or a finite or an infinite
number of limit points.

Theorem 2.11.1 : Let $=ScIR. A point peIR is a limit point of S if and
only if every neighbourhood of p contains infinitely many points of S.

Proof : At first, let us take that every neighbourhod of p contain infinitely many
points of S. So, every neighbourhood of p contains a point of S other than p.
Consequently, p is a limit point of S,

Conversely, suppose that p is a limit point of S. We have to prove that every
neighbourhood of p contains infinitely many points of S.

If possible, let a neighbourhood N of p contains only finite number of points
p,, P -, p, different from p.

E ""'?Ip_pn }'
The € > 0 and (p— <, p+<) is a neighbourhood of p which contains no point of

S other than p. So, p is not a limit point of S, which 1s a contradiction to our
assumption. Hence every neighbourhood of p contains infinitely many points of S.

Choose € = min{|p - 131|= |IJ—P2

Note : In view of the above theorem, the definition of limit point can be rewritten
as .

A point p 1s a limit point of a non empty set S in IR if every neighbourhood of
p contains infinitely many points of S.

Thus the empty set ¢ and a finite set have no limit point. So, a set, having limit
point, must be infinite. Though there are so many infinite set which has no limit
point. For example, the set of natural numbers has no limit points even though it is
an infinite set.

Theorem 2.11.2 : Let ¢ #S IR and S is bounded above. If S has no maximum
member then sup S is a limit point of S.

Proof : Since S is a non empty bounded above subset of IR, the sup S exists (by
completeness property) in IR and sup s = p(say). Clearly p=Sas S has no maximum
member.
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Let <> Qbe arbitrary number.

Since sup S =p, s0 Vxe§, xIp=>x<pte

and 3 an x €s such that x >p—€.

Hence xe(p—¢€,p+€) and x#p as xesandpes.

This shows that every deleted € -neighbourhood of p contains a point of S and
hence p, i.e., sup S is a limit point of S.

Theorem 2.11.3 : Let ¢ =S < IR and S 1s bounded below. If S has no minimum
member then inf S is a limit point of S.

Proof : The proof is similar as above just using the concept of infimum instead
of supremum.

Derived set : The set of all the limit points of a set S is called the derived set
of S and is denoted by S'

Examples :

(1) For S= {(—1)“(1+%J ne IN}, S'={-11}.

(2) For any finite set A, A, = ¢ and hence ¢' = ¢.
(3) (a, b) = [a, b] and [a, b]' = [a, b].
(4) Q' =1R.

Exercise : Find the derived set of the set {L+l+l m,n,pe IN}
m n p

Solution : Let S:{i+l+l:m,n,pelN}
m n p

Let & be an arbitrary small positive number.

1
Let us keep m, n are fixed and we choose p such that — <3
p

1 1 1 1 1 1 1 1 1 1
Hence —+—+—<—+—+9 and also —+—+—>—+—-9
m n p m n m n p m n

1 1 1 1 1 1 1
Thus —+—-8<—+—+—<—+—+3§,
m n m n p m n
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where iJrlJrleS,
m n p

1 1
which implies that E+ o€ S', Vm,neIN.

. 1 1
Let us keep ‘m’ fixed and choose integers n and p such that —<%, —<§.
n p
Therefore l+l<6, which implies that
n p
i+1+1<i+8 and i+1+1>i—6
m n p m m n p m

1 I 1 1 1
Thus, —0<—+—+—<—+0
> m m n p m ’

which implies that 1 €S, VmeIN.

m
i —<—= l<§andl<§
Again let us choose m, n, p such that m 30 3 P 3
.'.i+l+l<6 and hence O—8<i+l+l<0+5.
m n p m n p

This shows that 0eS".

Thus S':{O,i,i+l:m,ne]N}
m m n

Theorem 2.11.4 : The derived set of a bounded set is bounded.

Proof : Let S be a bounded set, So, sup S and inf S exists and let sup S = B and
inf S =b.

Therefore, yxeS=b<x<B.

We have to show that S' is bounded. If possible, let S' is not bounded above.
Then Jaa eS' such that o > B.

O(.—B | | | | |
Choose S_T. b B oS o 0rd
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As ae8', therefore o is a limit point of § and hence the interval (o0 — 9,
o + 0) contains a member x € S, where x = o.

As X lies in (a0 — &, o + 3), therefore x > B, which is a contradiction to the fact
that x < B.

Thus the set S' is bounded above.

Similarly we can prove that the set S'is also bounded below. Hence the derived
set of a bounded set is bounded.

Problem : Let A and B be any two subsets of IR such that A — B.
Show that A'c B"

Solution : vx e A'— every deleted neighbourhood of x contains at least one
point of A
= every deleted neighbourhood of x contains at least one point

of B (since A — B)
= X is a limit point of B
= xeB'
Hence A'< B'
Problem : For any two subsets A and B of IR, show that (AUB)'=A'UB".

Solution : Since A A|JB and Bc AUB, by above problem we have that
A'c(AUB)Y and B'c(AUB)".
Thus A'UB'< (AUB)' (1)
Again x € (A lJB)'= every deleted neighbourhood N (say) of x contains at least
one point of AUB
= N contains at least one point of A or B.
= xeA'orxeB'

= xcA'lUB'

So, (AUB)' c A'UB' .(2)

From (1) and (2) it follows thle result.

Problem : Show that (A[1B)' < A'(NB' for any two subsets A and B of IR

Solution : Since (A[1B)c A, we have (A()B)Y c A'and A()B B, we have
(ANB)Y cB' Thus (ANB)'c ANB".
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Note : However, AMIB'#(A(1B)' in general. In fact AB'z(A(B)', in
general For this, let A = (0, 1) and B = (1, 2). Then A" = [0, 1] and
B' =[1, 2].

Therefore A'MNB'=[0,1]N[1, 2]={1}, while (ANB)'=¢'=¢.

2.12 Open sets and closed sets

Before defining open sets, first of all we define the following :

Interior point : Let S IR and p €S . Then p is called an interior point of S if
3 a neighbourhood N of p such that pe NcS.

The set of all interior points of S is called the interior of S and it is denoted by
Int (S) or S°.

It may be noted that Int(S) < S. Since every neighbourhood of a point contains
infinitely many points, so no point of any finite set can be an interior point. Thus Int
S = ¢ for any finite set S. Also Int ¢ = ¢.

Moreover, Int (Int S) = Int S, i.e., (S°)° = S° for any set S.

Examples :

(1) Int (a, b) = (a, b) and Int [a, b] = (a, b) for a,be IR with a <b.

(2) Int IR = IR, since each point of IR is an interior point of IR.

(3) Int IN = ¢, since every neighbourhood of Pe€IR. contains points not
belonging to IN, i.e. no point ‘p’ of IN can not be an interior point of IN.

(4) Int Q = ¢, since every neighbourhood of p e Q contains rational as well as
irrational points, i.e., p can not be an interior point of Q.

Boundary point : Let S—IR and pelIR. Then p is called a boundary point

of S if every neighbourhood of p can intersect S & S' (same notation for derived and
complement of a set). The set of all boundary points of S is called boundary of S and

it is denoted by oS,

It may be noted that 0S=2S".
Examples :

(1) If S = (a, b) or [a, b], then S ={a, b}.
(2) If S = {(x,y)eIR*:x*+y* <1}, then
Int S = {(x,y)elR”:x*+y* <l}and 0S={(x,y) e IR’ : x* +y’ =1}.

Remark : A boundary point of a set S may or may not be a point of S.

Open set A non empty set G in IR is called an open set if every point of G is
an interior point of G.
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Thus a non empty set G in IR is an open set if and only if for each point pe G, 3
a neighbourhood N [ie., an open interval (a, b)] such that

peNcG (ie, pe(a,b)cG)

In other words, a non-empty set G in IR is called an open set if G is a
neighbourhood of each of its points.

Note that a finite set need not be open.

Examples :
{1) The entire set IR = (-, ) is open as for each x € IR, IR is a neighbourhood
of x.

{2) Each open interval (a, b) is an open set, because every point of (a, b) is an
interior point, while the closed interval [a, b] is not an open set as a & b are not
interior points of [a, b]. Similarly, {(a, b] and [a, b) are not open sets.

(3) The null set ¢ 1s open set, since ¢ contains no points, so ¢ satisfies the
defination of open sets.

Theorem 2,12,1 : The intersection of two open sets in IR is open.

Proof : Let G, and G, be two open sets in IR. We have to show that G, NG, is
an open set.

If G,NG,=¢ then G,[1G, is an open set, as ¢ is an open set.

So, let us suppose that G, G, =¢and x € G,NG..

Then x€ G, andx €@, .

Since G, and G, both are open sets, X is an interior point both of G, and G, and

hence x is an interior point of G,NG,.
Since x is arbitrary point of G,NG,, so every point of G,[1G, is an interior

point of G, G,. Hence G,(1G, is an open set.

Theorem 2.12.2 : The intersection of a finite number of open sets in IR is an
open set.

Proof : Let G, G,, ..., G be n open sets and let G :ﬂGi . We have to show

1=1
that G is open.
If G = ¢, then G 15 an open set.



46 NSOU « CC-MT-04

So, let us suppose that G#¢ and take xe G = mG,

i=1

So, xeG, foreachi=1,2, .., n
Since G, is an open set, so, x is an interior point of G for each =1, 2, ., n

Hence x is an interior point of G = ﬂGi .

i=1

Since x is choosen arbitrarily, every point of G = mGi 1s an interior point of G.

i=1

Hence G = ﬂ(}i is an open set.
i=1
Note : The intersection of an arbitrary family of open sets may or may not be
an open set.

For example, for each n<IN,let G, =(0,n). Then each G_is an open set.

Also [1G, =(O.DN(©,2N N0, m)N..=(0, 1), which is open.

11
Again if we consider G, = [_;’I] Then for each 1< IN,G, is an open set.

= 11 11
However, DGi=(—131)n(—5,5}ﬂ(—535}ﬂ ------ ={0}.

which is a fimte set and hence not open set.

Similarly if we take B, = [0, 1+ 1J , where i is any positive integer. Then each B,
i

being an open interval, is an open set, whereas mBi =(0.1] is not open as the point

i=1

1in ﬂBi is not an interior point of ﬂBi _

i=1 i=1
Theorem 2.12.3. : The union of an arbitrary family of open sets is open set.
Proof : Let {G,:i<A} be an arbitrary family of open set, where ~ is an index

set.
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Put G=|JG,

We have to show that G is an open set.
Let xeG. Then x€G; for some i, en.

Since G, is open, so X is an interior point of G, and hence 3 a neighbourhood
N of x such that xe Nc G,

Since G; € G, we get x e Nc G, which implies that x is an interior point of
G. As x is arbitrarily choosen, so every point of G is an interior point of G.
Consequently, G is open.

Corollary : The union of two open sets is an open set.

Theorem 2,12.4 : A subset G of IR is open if and only if it is a union of open
intervals.

Proof : Let us suppose that G is open set and {G, :i € ~}be an arbitrary family
of open intervals contained in G, where A is an index set.

We have to show that G=|JG,.

Evidently | JG, < G. . (2.12.1)

iEn

Again if x €@, then x is an interior point of G as G is open. So, there exists

some open interval G, in{G,:ieA} containing x, ie xeG, c|JG,

(=24

which implies that GQUGI : .{(2.12.2)

From (2.12.1) and (2.12.2), it follows that G =|JG, .
Conversely, let G be a union of open intervals. Then since each open interval is
an open set, G is a umon of open sets. Hence G is open.

Theorem 2.12.5 : Let S < IR. Then

{i) Int S equals to the union of all open subsets of S.
{(ii) Int S 1s an open set,

(i1} Int S is the largest open subset of S.

{iv) Sis open if and only if Int S = §.
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Proof : (i) Let {G,} be the collection of all open subsets of S. We have to show

that Int S = JG,

Let x € Int S. Then x must belongs to some open subset, say G, of S and hence
X € UGi _
Thus Int Sc| JG;. {2.12.3)

Now let us suppose x EUG, so that x € G, , for some i Since G, is open, x

is an interior point of G,

But G, S and hence x is an interior point of S, i.e. x € Int S. Hence

UG, cInts. (2.12.4)
From (2.12.3) and (2.12.4), we get Int S=|JG,.

(1) From (i) we have Int S= UGI , which 15 the union of arbitrary family of open

sets, so Int S is open.
(i) Let {G;} be the collection of all open subsets of S. Then

Ge{Gi}:GgUGi = GclIntS, as Int S:UGi. This shows that Int S is the

largest open subset of S.
(iv) If S is open, then SC Int S, as Int S 1s the largest open subset of S. Also
Int S € S always. Hence Int S = S,
Conversely, if Int S = S, then S is open as Int S is open by (i1).
Theorem 2.12.6. Let S and T be two sets such that S—T.
Then §°—T°.
Proof : Let p be an arbitrary point of S°. Then
peS°= S is a neighbourhood of p.
= T 1s a neighbourhood of p.
=pe T
Thus p € S8°= p € T° and hence S°=T°.
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Theorem 2,12.7 : For any two sets S and T, (S(1T)°=S°NT°.

Proof : Since for any two sets S and T,
SOTcS and SONT-T.
So, we have by Theorem 2.12.6 that

(SNTYcS®and (SNT)° < T°

Hence (SNT)°c S°NT° .{2.12.5)
Again let p be an arbitrary point of S°T°.

Then we have

peST=pecSandpe T°

= S 15 a neighbourhood of p and T is a neighbourhood of p.
= SNT is a neighbourhood of p.

= pe(SNTY

Hence S°NT°c (SNT)° .{2.12.6)

From (2.12.5) and (2.12.6) it follows that (SNT)°=S°NT°

Theorem 2,12.8 : For any two sets S and T, SCUT°c (SUT)°.

Proof : Since for any two sets S and T, we have
ScSUTand T<=SUT.
So, by virtue of Theorem 2.12.6, we have that
S°c (SUTY and T°c(SUT)* = SCUT°c (SUT)".

Remark : In general S°UT°= (SUT)°.In fact (SUT)°e S°UT?®, in general.

For this, let us consider S = [0, 1] and T = [1, 3].

Then S° = (0, 1) and T° = (1, 3). Also SUT = [0, 3] and hence (S\UT)° = (0, 3).
But S°UT°= (0, HU(1, 3)=(0,3)-{1}.

Thus S°UT°z (SUT)® and hence S°UT°=(SUT).

Closed Set : A subset F of IR is called a closed set if all the limit points of F
are members of F, i.e. F'F, where F' is the derived set of F.

Examples :

{1) Any closed interval [a, b] is closed, while {a, b) is not.
{2) The sets [a, b) and (a, b] are neither open nor closed.
(3) Every finite set F is closed, since F'=¢ —F.
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(4) The entire set IR is closed.

(5) The null set ¢ is closed, since ¢'=dpc¢.

Remark : The words ‘open’ and ‘closed’ are not antonyms. Any set in IR may
be of four types such as

(1) open, for example the open interval {(a, b) in IR.

(u) closed, for example the closed interval [a, b] in IR

(1) both open and closed, for example the sets ¢ and IR

(iv) neither open nor closed, for example the intervals (a, b] and [a, b).

The relationship between open sets and closed set are characterised by the
following :

Theorem 2.12,9 : A set F in IR is closed if and only if its complement F° is open.
Proof : At first, Let us take F is closed. We have to show that F° is open.
Let p be an arbitrary element of F°. So, pgF.

Since F is closed and p e F, so ‘p’ is not a limit point of F. So3 a neighbourhood

N containing p such that F[1N =¢, which means that pe N c F*.

Consequently, p is an interior point of F°. Hence F° is open.

Conversely, suppose that F° is open. We show that F is closed. For this, let p be
a limit point of F. Then every deleted neighbourhood of p contains at least one point
of F. Hence there is no neighbourhood of p, which is contained in F. So
p ¢ Int(F*)=F°as F° is open, by Theorem 2.12.5(iv). Therefore p € F. Since p is

arbitrary, we may conclude that F' ¢ F and hence F is closed.
Corollary : A set G in IR 1s open if and only if its complement G° is closed.

Proof : It follows from above theorem by just taking F = G* and use (G°)* = G,
i.e. complement of complement of a set is itself

Theorem 2.12.10 : The derived set of every set is closed.

Proof : Let S be a set and S' be its derived set. We show that §' is ¢losed. For
this, let us take o be a limit point of §'. We have to show that ¢ < S', i.e, o is a limit
point of S.

Let §>0 be an arbitrary number.

Since o is a limit point of §', the interval (o -8, o +3)contains an infimte
number of members of S' other than c.

Let Be(a—-0,a+8)cS'and =
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Since PeS' therefore P is a limit point of S. So, the interval (-8, +8)

contains an element of S other than o This shows that o is a limit point of S and
hence the theorem 1s proved.

Theorem 2,12.11 : The intersection of two closed sets is a closed set.

Proof : Let F, and F, be two closed sets. Then F°, and F°, are open sets (by

Theorem 2.12.9) and hence F UFE; is an open set as union of two open sets is an
open set,

Since F'UE =(ENE), by De Morgan’s law. So, (F,(E,)"is an open set and

hence F(F, is a closed set.

Theorem 2.12.12 : The intersection of an arbitrary family of closed sets is
closed.

Proof : Let {F :i< A} be an arbitrary family of closed sets, where ~ is any index
set.

Put F=(F,

1A

Using De-Morgan’s Law, we have

(o] e
Since each F? is open, so F° is the union of an arbitrary family of open sets. So,
by theorem 2.12.3, F* is open and hence by Theorem 2.12.9, F is closed.

Theorem 2,12,13 : The union of two closed sets 1s a closed set.
Proof : Let F, and F, be two closed sets.

So, F and E; are open sets, by Theorem 2.12.9.
= E'(1F, is an open set, by Theorem 2.12.1.

= (FUE) is an open set, by De-Morgan’s law.
= F UF, is a closed set, by Theorem 2.12.9.

Theorem 2.12.14. The union of a finite number of closed sets is a closed set.
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Proof : Let F, F,, ..., F_be nclosed sets. Then F°, F.f, ..., F ¢ are open sets and

hence me . the intersection of a finite number of open sets, is an open set.

i=1
So, by De-Morgan’s law, [UEJ :ﬂE° 15 an open set and hence UE is a
=1 i=1 1=1
closed set, by Theorem 2.12.9.
Note : The union of an arbitrary family of closed sets may or may not be closed.

n+l

For example, for each n<IN, letF, = {1, ] Then each F_is a closed set.

n

® 3 4
Now UFn =[L, Z]U{l» E}U[L g} U...= [1, 2], which is a closed set.
n=1

n
Again if we consider S, :[0, E] for each n<IN. Then each S_is a closed

set.

However 0 F = [O, %} U [O, %} U [O, %] U....

n=1

= [0, 1), which 1s not a closed set.

Problem : Let G be an open set and F be a closed set in IR. Show that
(1) G - F 15 open and (1) F - G closed.

Solution : (1) Let x « G—F. Therefore xeG but x¢F. Since xeG and G 1s
open, so X is an interior point of G. Thus there is a positive number €, such that

xe(x—-g,x+¢€)cq

Again since x ¢ F and F 1s closed, so x cannot be a limit point of F. Therefore,
there exists a positive number <, such that

(x-€,,x+e,)NF=¢

Choose e=min{e,, €,}.

Then xc(x-¢,x+e)c Gand (x-¢,x+<)[1F=9¢,

which implies that x ¢ (x—¢,x+¢)c G-F.
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This shows that x 1s an interior point. Hence G — F is open as x is arbitrary.

(ii) Again let p be a limit point of F — G.

Since F — G C F, therefore p is a limit point of F.

So, peF as F is closed

We now show that pe G . If possible, let peG. Then there exists a positive
number € such that

pe{p—<.p+e)cG.

This shows that (p —¢, p+e)(F-G)=¢,

which 1s a contradiction to our assumption that p is a limit point of F — G.

Thus pg G and hence peF-G, which means that F — G contains all its limit
points and hence it 1s closed.

2.13. Closure of a set

Let S be a subset of IR. The closure of S, denoted by g, is the intersection of
all closed supersets of S,

ie. S={F:Fisclosed and SCF?}.

Note that S § for any subset S of IR

Also ¢ =¢pand IR =IR.

Theorem 2.13.1 : If S is any subset of IR then
(i) § is closed

(ii) § is the smallest closed superset of S.

(iii) S 1s closed = g$=§

Proof : (i) From the definition of §, it is the intersection of some closed sets
containing S. Since intersection of an arbitrary family of closed sets is closed, so §
is closed.

(ii) By definition of S (closure of S) and using above (i), (i) follows.

(iii) Let us suppose that S=S. Since S is always closed, therefore S is closed.
Converely suppose that S is closed. Then clearly S is the smallest closed superset

containing itself Consequently S=S.

Note : Since for any set S in IR, § is always closed Thus (§) =S by above (iii).
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Theorem 2.13.2 If S is any subset of IR, then §=SUJS', where §'is the derived
set of S.
Proof : We now show that S[JS'is closed. For this, let x be any limit point of

SUS'. Then x must be a limit point of S and (or) S

If x is a limit point of S, then x €S§'. Again, if X is a limit point of S' then x = S'
as S' 15 always closed. Thus, in both the cases, xcS'. Hence x<SUS', and
consequently SUJS' 1s closed.

Since SUUS' is a closed superset of S, and § is the smallest closed superset of
S, we have

S SsuUs! . (213.1)

Again, since S is closed, we have S c§.

Now ScS=8'cS' cSandScS always, we may conclude that
SUS'cS. L. (2132)

From (2.13.1) and (2.13.2), it follows that §=S|JS'

Remark : The above theorem can be used as alternative definition of closure of
a set. We can also find the closure of a set using the formula in above theorem. For
example,

() N=INUIN'=INU¢=INas IN'=¢
(2) Z=zZUZ'=ZUp=ZasZ'=¢

(3) R=IRUIR'=IRUIR =IR asIR'=1IR.
(4) Q=QUQ'=QUIR=R as Q'=IR.

(5) For s={l:nem},s'={0} and hence §=sus'={o,1,
n

1
SRk

o | —

Theorem 2.13.3 : For anytwo sets Sand T, ScT=ScT
Proof : Let ScTand xS,

Then xeSUS'=xeSorxef'

=>xceTorxeT asScT=>8'cT!'

=>xeTUT'=xeT

So, ScT.
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Theorem 2.13.4 : If S and T are two subsets of IR then S|UT=SUT.
Proof : SUT=SUT)USUTY

=SUTUE UT), as(SUT)' =8 UT

=(SUSHU(TUT)=SUT.

Theorem 2.13.5 : If S and T are two subsets of IR, then SNT<=SNT-
Proof : Since SONTcSand SOTc<T.

Therefore, SONT = SandSNT< T by theorem 2.12.17.
—=SNT<=SNT.

Remark : However S(\T = ST in general, for any two subsets S and T of IR.
For this, let S = (1, 2) and T = (2, 3).

Then S=[1,2]and T =[2, 3].

= SNT={2} and SNT = ¢, which implies that SNT=¢ =p.

Thus SOT ¢S(']_T‘

Some important sets :

(i) A set S is called dense in IR if S = IR

(ii)) A set S in IR is called dense-in-itself if S < S'.
(iii) A set S in IR is called perfect if S = §"

For example,

(i) The set Q is dense in IR as Q=IR . Also Q is dense-in-itself as Q= Q"
Similarly IR is dense-in-itself
(i) If we consider S=(a,b)cIR. Then S'=[a,b].So S € $' and hence S is

dense-in-itself.
(iii) Let S = [a, b], a, b € IR. Then S"=[a, b]. So, S is a perfect set.

2.14 Bolzano Weierstrass Theorem for sets

In section 2.11, we have seen that a finite set has no limit point. Also an infinite

set may or may not have a limit point. For example, the infinite set {H ‘ne ]N} has

limit point 0, while the infinite set 7 of integers has no limit point. So, a natural
question arises— what is the sufficient condition for the existence of a limit point
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of an infinite set. The following theorem known as Bolzano— Weierstrass Theorem
gives us the said sufficient condition.

Theorem 2.14.1 (Bolzano-Weierstrass Theorem) : Every bounded infinite
subset of IR has at least one limit point.

Proof : Let S be a bounded infinite subset of IR. Since S is bounded, So sup S
and inf S exists by completeness property of IR,

Let inf S = m and Sup § = M.

Define a subset H of IR by

H = {x € IR : x exceeds at most finitely many elements of S}.

Then m € H as m does not exceed any element of S and hence H # ¢.

However, M exceeds infinitely many elements of S, since S is infinite and Sup
S = M. So, there is no number greater than or equal to M in H. Consequently M is
an upper bound of H. So, H is a non-empty bounded above subset of IR.

Therefore sup H exists and Sup H = « (say).
We now show that a is a limit point of S.
Choose ¢ > 0.

Since Sup H = «, so 3 any < Hsuch that a—e<y.

So, a—e exceeds at most finitely many elements of S as ye H.

Also by definition of sup, o+ can not belongs to H So g+e exceeds
infinitely many elements of S. Thus for each <> (, the €-neighbourhood (& - €,
o + €) of o contains infinitely many elements of S. Hence ¢ is a limit point of S.

Remark : In above theorem, the condition of boundedness is only sufficient
condition for the existence of a limit point of an infinite set, while this condition is
not necessary for an infinite set may have a limit point. For this, the set of rational
numbers Q is an infinite and unbounded set and Q has himit points. In fact Q' = IR

2.15 Summary

In this unit we have discussed many important properties of IR (set of real
numbers) like algebraic property, order property and completeness property. Through
this unit, the students can learn the concept of neighbourhood of a point in IR, limit
point of a set, open set, closed set in IR etc. The students also can know the sufficient
condition for the existence of limit points of a set. Many results regarding the topic
are given here. One can study more. For them, a list of references is given in section
2.18. Some important data and results are cited in section 2.16 (summaries) at a
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glance. For understand the topic clearly, some model questions are given in
section 2.19.

The system of real numbers can be described by means of certain axioms which
can be divided into three categories, namely Field axioms, Order axioms and
completeness axiom. The system IR of real numbers equipped with above three
axioms 1s called a complete ordered field.

The set of rational numbers is an ordered field but not a complete ordered field.

A set is countable if it is either finite or enumerable. A set is uncountable if
it is not countable.

Subset of a countable set 15 a countable set.
The cartesian product of two countable sets is countable.

A real number of the form B, where p, q e 7, q=0 and ged (p, q) = 1, is
q

a rational number.

J/m, where m is a non-square positive integer, is an irrational number.

The terms ‘real number’ and a ‘point’ on the real line can be used
interchangeably.

{Archimedean property) If x and y are any two positive real numbers with y <
x then I3 neIN such that ny > x.

Between any two distinct real numbers, there exists infinitely many rational
numbers, irrational numbers and hence real numbers,

The set IR is a neighbourhood of each of its points, while each of the set IN,
Z, Q and the set of irrational numbers are not a neighbourhood of any of its
points.

A set having limit point must be infinite or in otherwords a finite set has no
limit points.

Every infinite and bounded set in IR has at least one limit point. (Bolzano
Weierstrass Theorem).

The set of all the limit points of a set is known as its derived set.
A set 15 open if each point of it is an interior point.
Any arbitrary union of open sets is an open set.

The intersection of a finite number of open sets 1s an open set. However, the
intersection of an infinite number of open sets may or may not be an open set.
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Any subset of IR is open if and only if it is a union of open intervals.
A set is closed if all the limit points of the set are members of that set.
A set is closed (open) if and only if its complement is open (closed).
Any arbitrary intersection of closed sets is a closed set.

The union of a finite number of closed sets is a closed set. However, the union
of an infinite number of closed sets may or may not be a closed set.

The union of a set and its dervied set is the ¢losure of that set.

For any set S in IR, Int S is the largest open subset of S, while S (closure of
S) is the smallest closed superset of S,

2.16 Keywords

Real numbers, Field axioms, order axioms, completeness axiom, ordered field,
complete ordered field, countable sets, uncountable sets, rational number, irrational
number, Archimedean property, Neighbourhood of a point, limit points, open sets,
closed sets, Bolzano Weierstrass theorem for sets.
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2.18 Model Questions

[A] Multiple Choice Questions (MCQ) :
(Choose the correct answer each of the following) :

[1]

[2]

[3]

(4]

[5]

(6]

(7]

[8]

(]

The set of rational numbers 1s

(a) complete ordered field {b) ordered field but not complete
(¢) field but not ordered {d) none of the above.

Let S be a bounded set. Then

(a) inf S < sup S {b) inf S = sup S.

(¢)inf S < sup S {d) sup S = inf S,

1
The lower bound of {; ne IN} is
(a) 0 (b) 1

1
© n @ —

For any two positive real numbers x and y with y < x, there is n <IN such
that

(@) ny2x (b) ny<x (c) ny > x (d) ny <x.

Between any two distinct real numbers, there exists

(a) only one irrational number (b) finite number of rrational numbers
(c) infinitely many irrational numbers (d) None of the above.

Every non empty bounded above subset of real numbers has

(a) Supremum (b) Infimum

(c) both infimum and supremum {d) neither infimum nor supremum
The derived set of any set is

(a) open {b) closed

(¢) both open and closed {d) neither open nor closed.

For any set S, Int S is

(a) open (b) closed

(¢) both open and closed {d) neither open nor closed.

For any set S, S is
(a) open {b) closed
(c) both open and closed {d) neither open nor closed.
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[10]

Ans, :

1
Let § = {H:neIN}_ Then S is

(a) closed (b) dense-in-itself
{c) both closed and dense-in-itself  (d) neither closed nor dense-in-itself.

[1] (b), [2] (c), [3] (a), [4] (¢}, [5] (c), [6] (a), [7] (b), [8] (a), [9] (b),
[10] (d).

[B] Miscellaneous Questions :

[1]

[2]

[3]

[4]

[5]

[6]

Let a, be F such that a # 0 and a . b = a, show that b = 1.

Hints : Multiply both sides of a . b = a by a™' and use the property M, and
M, of section 2.3.

Let F be an ordered field. If a, b, ¢ € F such that a < b and b < ¢ then show
that a < c.

Given in an ordered field F, 0 <a<band 0 <c<d, where a, b, ¢, d €F. Show
that 0 <ac <bd,

Hints : 0<a<b—=>0<b-a and since 0<¢,

it follows that 0 <bc—ac=0<ac<be (1)
Similarly one can show that be < bd .(2)

(1) and (2) gives the result.

Let A and B be two sets such that A — B. If A is an uncountable then show
that B is an uncountable, 1.e, every superset of an uncountable set is
uncountable,

Hints : If possible, let B be a countable set. Then A being a subset of a
countable set, must be countable, which is a contradiction. Hence the result.

Let A be the domain of a function f and let A be countable. Show that f{A)
is countable.

Hints : Since A is countable, A can be arranged as a, a,, a,, ... So, f{A) can
also be arranged as f(a ), f{a,), f(a,), ..., which means that f(A) has one to one
correspondence with IN. Hence f{A) is countable.

Prove that the set IN x IN is countable, where IN is the set of natural
numbers.
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Hints : Here IN x IN = U{A_ :n e IN}, where

Define a mapping f: A — IN by f(n, m) = m,meIN.

Then f is bijective. Consequently A is countable for each n<IN. Hence
IN x IN is countable.

[7] Let Z be the set of all integers. Show that Z is countable.

Hints : Define a mapping £ : IN —> Z by
f(n)=

Show that f is bijective and hence Z is countable.

[8] Prove that union of two countable sets is also countable.

[9] Let ‘m’ be a non-square positive integer. Show that there is no reQ such
that r* = m.

Solution : If possible let 3r < Q such that r* = m. So, 3p,qeZ,q=0 and

ged (p, q) = 1 such that T'= %

Since m is a non-square positive integer, 3 two consecutive square integers
A* and (L +1)* such that

Ar<m<(A+1Y

:7\,<B<l+l
q

=>0<p-Ag<q (D)

p2

2

Now m{p—2q)’ = mp*—2kmpq +2’mq* = (mq—Ap)* as

=m
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[10]
[11]

[12]

[13]

[14]

[15]

[16]

mq —Ap
p—Aq

m:(E} andm:(—mq_xp] ,
q P—2q

Since ged(p, q) = 1, we must have p-2Aiq>q, which contradicts to (1).
Hence the result.

2
Thus m =[ ] , which implies that m has two representations

If p is any prime number, show that \/E is not a rational number.

Show that if x is rational and y is irrational then x + vy is irrational and if
x # 0 then xy is irrational.

Prove that between any two distinct real numbers, there exists infinitely many

real numbers both rational and irrational.
Hints : Density property of IR.

Give examples of sets which are

(i) bounded below but not bounded above
(ii) bounded above but not bounded below
(iii) bounded

{(iv) unbounded.

Give an example of an infinite set which is bounded.
Ans. . The open interval (1, 2).

Give an example of a subset of an unbounded set which is not necessarily
unbounded.
Ans. : The set IR 1s unbounded but its subset {0, 1) is bounded.

Find the infimum and supremum, if they exists, of the following sets :

Q) {%ZHEIN}
_ln
(i) {( n) :ne]N}

(iii) {1+ I ne IN}
n
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(iv)
(v)
(vi)

{(vit)

{(—1)”n ‘ne IN}

{L:ne]N}
n+l

{XEZTX:S25}

{H+l:neIN}
n

1
Solution : (i) Let S = {E:n € IN} Then max S = 1 and hence sup S =1. And

by definition of infimum, inf § = 0.

(it)

(iii)

(iv)

V)

(vi)

(vii)

The maximum and minimum element of the given set are respectively

| 1 .
5 and -1. So, sup SZE and inf S = -1

D°

n

If § = {1+ :neIN} then max S:% and min § = 0. So,

sup S=% and inf S = 0.

Let S = {(-1)’n:necIN} Then S = {-1, 2, -3, 4, -5, 6, ..} =

{..-5-3-1,2,4,6,..}.
Clearly the set is neither bounded below nor bounded above. Hence
infimum and supremum of S do not exist.

Given S= L:neIN = lz,é,
n+l 23 4

1
Here sup S = 1 and inf S=E'

Let S = {er;x2£25}. Then sup S = max S = 5 and inf S =

min § = -5
1

Let S= {H+—:neIN}_ Then sup S = []+1 and inf S = IT by similar
n

to ().
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(17) Show that a non empty finite set can not be a neighbourhood of any of its
points.

Hints : Let S (*¢) be a fimte set and p be an arbitrary point of S. Since for
any positive real number €, the open interval (p — €, p + €) contains infinitely
many points, so {(p — €, p + €) can not be a subset of the finite set S. Then
S is not a neighbourhood of p.

(18) Give an example of

(i) a set which is a neighbourhood of each of its points.

(i1)) a set which is not a neighbourhood of any of its points.

(iii) a set which is a neighbourhood of each of its points with the exception
of one point.

(iv) a set which 1s a neighbourhood of each of its points with the exception
of two points.

(v) a set which is not an interval but is a neighbourhood of each of its
points.

Ans. (1) any open inerval in IR, say (a, b).
(i1) any non empty finite set.
{iii) any semi open interval in IR, say (a, b].
(iv) any closed interval in IR, say [a, b].

(v) (0, HU(Z, 3).

(19) Show that the set of integers is not a neighbourhood of any of its points.
(20) Is the set of natural numbers a neighbourhood of 5 ? Give reasons.
(21) Define hmit points and derived set of a set.
(22) Give an example of a set which coincides with its derived set.
(23) Find the limit points of the following sets :

(i) IN (ii)[a, b) (i) IR — Q (iv) {1, 2, 3, 4}.
(24) Give examples of sets S such that

1y SNS'=¢

(i) §'cS

(i) S8

Ans. (i) S={l:neIN}

n
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(25) Give example of each of the following :
(1) a bounded set having limit points.
(i) a bounded set having no limit point.
(1)) an unbounded set having limit points.
(iv) an unbounded set having no limit point.

(v) an infimte set having a finite number of limit points.
1 1 1
Ans, (i) [a, b], (ii) any finite set, (iii) Q, (iv) IN, (v) {; ot 5 im,n,p e IN}_
(26) Give example of each of the following :

{i) an open set which is not an interval

(i1) a closed set which is not an interval.

(i) an interval which is an open set.

(iv) an interval which is a closed set.

(v) an interval which 1s not an open set.

(vi) an interval which is not a closed set.
(vii) a set which is neither an interval nor an open set.
(viil) a set which 1s neither an interval nor a closed set.

(ix) a set which 1s open as well as closed

(x) a set which is neither open nor closed.

Ans. (1) (1,2)U(3,4) (1) {1, 2, 3, 4}, (i) {(a, b), {iv) [a, b], (v) [a, b],

1
(vi) (a, b), (vii) IN, (viii) {;:n eIN} , (ix) IR, (x) [a, b).
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(27) Verify Bolzano-Weierstrass theorem for the set S in IR, where

S={L:neIN}
n+l '

(28) Prove that arbitrary union of open sets in open.
(29) Show that arbitrary intersection of closed sets is closed.

(30) Is the union of an infinite number of closed sets a closed set 7 Justify your
answer.

(31) Is the intersection of an arbitrary family of open sets an open set ? Give
reason.
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3.1 Objectives

The Object of this unit are as :

to study sequences, its boundedness and convergence.
to know about non-convergent sequences.

to know about the sum, difference, product and quotient of two or more
convergent sequences as well as some limit theorems.

to study a special type of sequence, called monotone sequence and its
properties.

to know monotone convergence theorem through which we get the necessary
and sufficient condition of a monotone sequence to be convergent.

to study subsequence and its properties including Bolzano weierstrass theorem
for sequences.

67



68 NSOU « CC-MT-04

® to study Cauchy sequence and Cauchy’s convergence criterian, which states
that the necessary and sufficient condition of a sequence to be convergent.

3.2 Introduction

This unit deals with the sequences of real numbers. Its foundation was laid by
the French mathematician Augustin Louis Cauchy (1789 - 1857). To the development
of sequences of real numbers, the contribution of George Cantor (1845 — 1918) i
also significant. A sequence of real numbers i1s a function from IN to IR Such
functions plays an important in real analysis.

3.3 Sequences

A function f : IN — IR is called a sequence in IR {or a real sequence), where
IN and IR are respectively the set of natural numbers and set of real numbers.

The value of the function f at n € IN is denoted by f(n). If f(n) = x_then the
sequence is denoted by {fin)} or {x }, ie, {x, x,, ...}. Here x_is called the n™ term
or general term of the sequence {x }.

Two sequence {x } and {y } are said to be equal if x =y for each n €IN.

Remark : (1) The domain of every sequence is IN, but its range is
{fin) : n € IN} < IR. That means the range of the sequence may be a finite or an
infinite set. So, the range of a sequence {x } is the set consisting of all the distinct
elements of the sequence {x }.

(2) We use IN with usual well ordering.

Examples :
1 (1
(1) Let f:IN — IR be defined by f(n)z;, neIN. So, the sequence is {H}

1

1
which can be also written as {1, 23 } The range of this sequence is infinite.

(2) Let f-IN—>IRbe defined by f(n)=n,ncIN.So, the sequence is

{n},ie {1, 2, 3,4,..}.Its range is also infinite.
(3) Similarly {n*} is the sequence {1% 2% 3% ...}

n
(4) Let £ :IN — IR be defined by f(n)= L, n € IN . The sequence is {—},
n+l1 n+l
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. . n+1‘ .
s-o- . Similarly T'HEIN is the sequence

Bl

2
’3’

k| —

whose elements are {

8

{(—1)“}, ie{-1,1,-11,-1..} The range of this sequence is {—1,1}, i.e., finite.

4
3 } The range of both the sequences are infinite.

] w2

(5) Let f:IN —IRbe defined by f(n)=(-1)", neIN. The sequence is

. NT
(6) Let £ -IN—> IR be defined by f(n):sm?,neIN‘ So, the sequence is

. NT
{SIHF},i‘e. {1,0,-1,0, 1,0, ..} Its range is {-1, 0, 1}, 1.e, finite.

{7) Let £ :IN — IR be defined by f(n) =3, ¥ n<IN. So, the sequence is {3}. i.e,,
{3, 3, 3, .....}. This sequence 1s called the constant sequence.

3.4 Bounded Sequence

A sequence {x_} is called bounded above if 3nf < IR such that x, <M, ¥neIN.
Here M is known as an upper bound of the sequence {x }.

A sequence {x } is bounded above as well as bounded below if IM < IR such
that x, =2m, YneIN. Here m is known as a lower bound of the sequence {x }.

If a sequence {x } is bounded above as well as bounded below then bounded
below ther {x } is called bounded. Thus, a sequence {x } is bounded if dm, M IR
such that

m<x, £M,VnelN

In other words, a sequence {x } is bounded if there exists a real number M(2
0) such that

[x.|<M, ¥neN,

that means if the range of the sequence is bounded.

A sequence {x } is called unbounded if it is not bounded.

Remark : Every number greater than an upper bound is also an upper bound and
every number smaller than a lower bound is also a lower bound.

An upper bound of a sequence is called the supremum (or least upper bound),
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written as sup or lub, if it is less than or equal to every upper bound of the sequence.
Similarly a lower bound of a sequence is called infimum (or greater lower bound),
written as inf or glb, if it is greater than or equal to every lower bound of the
sequence.

Examples :

(1) The sequence {-n} is bounded above by —1, but not bounded below.

(2) The sequence {n*} is bounded below by 1, but not bounded above.

1

(3) The sequence {H} is a bounded sequence, as 0<151, VneIN. The
n

supremum and infimum of this sequence are 1 and 0 respectively. So, this sequence
contains its supremum, but not infimum.

. nm
(4) The sequence {sin %} is bounded as —1< SIHFS 1, VnelIN,

(5) The sequence {(—1)“} is a bounded sequence. In this case, the bounds are
-1, and 1.

1
(6) The sequence {L} is a bounded sequence, as — < LI I, VneIN. The
n+1l 2 n+l

supremum and infimum of this sequence are 1 and 1 respectively. So, this sequence
P 2
contains its infimum, but not surpemum,
Exercise : Show that the sequence {x, }, where x_ :1+l+ is
bounded.

+....+

Y
2

211—1

Solution : Here, x, =1, x, =1+l, X.. =1+1+L7+‘__‘, that means the sequence
- 3 2_

is strictly increasing. Consequently the sequence is bounded below by the first term
re. I

22+..”+2n_1 = T

Also, xn=l+%+ 2—2:_] <2,¥nelN.

Hence the sequence is bounded above also. Thus the given sequence {x } is
bounded.
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3.5 Convergent Sequence

A sequence {X } is said to be convergent if there is a real number ¢ such that
for each € > 0, there exists a natural number m (depending on &) satisfying

X, —f|<e, Vnzm. (351D
.~

In this case, we also say that the sequence {x } convergesto £ or ‘£’ is the limit
of the sequence and we write

X, > fasn—oe or limx, =¢
or Simply limx, =~

Note : (1) We know that

xn—€|<e=}xne(€—e, {+¢e)

So, we may use X, € ({—¢, {+¢<) instead of [x, —€| <€ In the above definition.

This means that after a finite number of terms from the begining, all the terms of the
sequence must lie in the open interval (/- e, £+ ¢€).

Thus if Imx ={ thep limx ,, =7
N=—poe TL=hoe

(2) The choice of m, in the definition, is not unique. As, if the critenian (3.5.1),
in above definition, is satisfied then (3.5.1) also holds for any greater natural number
of m,

Non-Convergent sequence : A sequence is called non-convergent sequence if it
is not convergent. Non-convergent sequences are either ‘divergent’ or ‘oscillatory’,
as defined below :

Divergent sequence A sequence {x } is said to diverge to + o if for every
positive real number K, however large, 3 a natural number m such that

X, >K,Vnzm.

In this case, we write 11_>m¢ X, =+% or limx, =+wor X, — +9o.
Again a sequence {x } is said to diverge to —e if for positive real number K,

however large, 3 a natural number m such that x, <-K,¥Vnzm

In this case, we write limx, =— or imx, =— or x, — —oo.
n—yoo

Thus a sequence {x }, which diverges to either o0, or —o is called a divergent
sequence.
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Oscillatory Sequence : A sequence {X } is said to be oscillatory if it is neither
convergent nor divergent.

In this case, the sequence {x } oscillates between two numbers as n — .

Also an oscillatory sequence is said to oscillate finitely or infinitely according as
it is bounded or unbounded.

Examples :
(1) The following sequences are convergent :

(i) {l} is convergent and converges to 0, as liml: 0.
n n

=1.

n
(ii) { } is convergent and converges to 1, as lim

n+1 n+1

(iii) {xn},where x =3 for all ne N, is convergent and converges to 3.

n°+3

m} diverges to+w .

(2) Each of the sequences {n:}’{

1
(3) Each of the sequences {—n},{log[;]} diverges to —w.

n-1 . nn . .
(4) The sequence {(‘1) }aﬂd {Slny} oscillate finitely betdween —1 and 1,

N 1
whereas the sequence {(—1)”11} and {(—1) n+;} oscillate infinitely.

Theorem 3.5.1. The limit of a convergent sequence 1s unique.

Proof : Suppose {x } is a convergent sequence. If possible, let {x } converges

.. . 1 .
to two distinct limits ¢ and ¢’ Choose E=Elf —€’|‘ Then >0 So, there exists

m,,m, € IN such that—

Xn—€|<e,‘v’n2m, and |x, —¢]<e, Vnzm,.
Take m, = max {m, m,}. Then it follows from above that

X, —€| <€ and |><1n —€'|<e, Ynzm,. -.{352)
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Thus ¥n=m,, we have
=|(x, =)= (x, - 0)|
< Ixn =+ x, —E|
<e+¢€, using (3.5.2)

e ¢

= 2e=|(-¢
So, |/-¢
Consequently, the limit of a convergent sequence is unique.

< ‘f—f’\, which is absurd and hence our assumption is wrong.

Theorem 3.5.2. Every convergent sequence is bounded.
Proof : Let {x } be a convergent sequence and it converges to £.

Choose e=1. Then ImeIN such that [x, —€|<1, Ynzm.

Now [x,|-|<]x, —¢<1, Vnzm ie |x,|<I+[(,Vn2zm. . (353)
If M = max {l+|€|,|x1|, X, ,....,|xm_1|},then
[x.|sM,¥nz12, ., m-1 .. (35.4)

and since 1+|¢|<M, it follows from (3.5.3) that

X, |€M, ¥nzm .. {3.5.5)
From (3.5.4) and (3.5.5), we see that

|xn|SM, VnelN,
Consequently the sequence {x } is bounded.

Note : The converse of the above theorem is not true. For this, we consider the

sequence {(—1)”‘1}={1,—1, 1,-1,....}, which is bounded but it i1s not convergent,

because lim (—1)*"' oscillates between —1 and 1.

0
Exercise 3.5.1 : Show that the sequence { is convergent .
olution : Here X5, = - and X3, =75~

So, lim x,, =0=Ilimx,,,,, which implies that the given sequence is convergent
and it converges to zero.
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2n° +1
Exercise 3.5.2, Show that the sequence {x }, where X, = Sai_] converges to L.

Solution : Let € > 0 be given, then
2n° +1
2n° -

<E

xn—1|<e<:>

—1‘<e =

2n° -1
1

2 2 | 2
. 1<e<:>2n‘—l>g ;)n2>2;e=)n>(2;€)2=8,say
- € 2e

Choose m = [§ ]+1, where [§] is the greatest integer, but not greater than §.

Then an:>n>i*):>|xn —1|<e,
which means that the sequence {x } converges to 1.

3.6 Limit Theorems

The sum, difference, product and quotient of two sequences give rise to new
sequences. In this section, we show that the sum, difference, product and quotient of
two convergent sequences are also convergent and determine their limits.

Theorem 3.6.1 : Let {x } and {y } be two convergent sequences such that

limx, =x and lim y_ =y respectively.
Then
(1) lim{x, +y, )=x+y=limx, +limy,
(i) lim{(x, -y }=x-y=limx, —limy_
(i) lim{cx, )=cx =climx,,V ce IR

(iv) lim(x,y, }=xy=limx_.limy,

liml X2 =X = limx . .
(v) m Z = ; = m provided {y_}is a non-zero real numbers and y =0.

Proof : (1) Let <> O be arbitrary small number. Since limx, =x and limy_ =y,
so there exists two natural numbers m, and m, such that

1
xn—x‘<§e, Vn>m, .{3.6.1)

1
yn—yl<56, vn>m,, .(3.62)

and
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Choose m = max {m, m,}. Then (3.6.1) and (3.6.2) hold ¥n>m.
Thus ¥n > m, we have

|(x, +v.) - G+ 9)|=|x, - %) + (v, - ¥)

<

X, —X|+

— |<le+le—e
Yo ¥ 5 2

ie. |()'1n +y - (x+ y)| <&, Vn >m,
which implies that the sequence {x + y } is convergent and
im(x +y )=x+y=limx_+limy_.

(ii) It is similar as above. Only note that ¥n >m, we have

(x, —y.) - x-y)|=|(x, - x)— (v, - V)| < |x, — x|+

—|<le+le—e
an22 )

which implies that the sequence {x_ -y, } is convergent and
Iim{(x, -y, )=x-y=limx, -limy,.

(i} If ¢ = O then the result is obvious. So, suppose ¢ = 0.
We know that

X, —%|. .{3.63)

|ex,, — ex|=|¢]
Let >0 be given. Since limx_ =x, so there exists a nutural number m such

that

xn—x|<ﬁ,‘v'n2m- .(3.64)
c

In view of (3.6 4) we have from (3.6.3) that

|cxn—cx|<eVn2m,
which implies that the sequence {c x } is convergent and

lim{cx )=cx=climx_, forallceIR.
{iv) We have that

X, Yo = XY= [(%,¥, = X,¥) + (X, 7 - xy)|

X, (Yo = V) +Y(X, - %)

=

X 1Ya = Y] +]¥] %, — x| .(36.5)
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Since {x } is convergent, it is bounded. So, there exists pM'< R such that
<M' VnelN . (3.6.6)

Xn

Take M = max {M', ‘y|} Then, in view of (3.6.6), we have from (3.6.5) that

XY, —xy|<Mly, —y|+M

x, —%|. (367)

Since {x } and {y_} are convergent, so for arbitrary >0, 3 two natural numbers
m, and m, such that

X —x|<i,v’n2m1 (3.6.8)
f 2M . A

and

Yo -y <=, Vn2m, .(3.6.9)
n 2M =

Choose m = max (m,, m,). Then the relations (3.6.8) and (3.6.9) hold for all
n > m

Thus ¥ n>m we have from (3.6.7) that

X,¥, —Xy|< M—+M— =¢,
2M 2M
which implies that the sequence {xy } is convergent and

lim (xy)=xy =lmx . lmy_

(v) Since lim y =y, so for €= |%| 3 a natural number m, such that
v, —y|<%, vnzm =|y|[-|y, 4%,‘v’n2 m,
n 2 * - 1+ A,
Xo _X|_[XuY —XY, _|ytx, =0 =x(y, - y)|
Now = =
Yo ¥ | Y.y | | Y.y
|y X, —x|+|x ¥, —y| 2 2|x|
< <—|x, —X[+—=|y, ¥/
y. y| |y | |y| | ..{3.6.11)

v nzm, by (3.6.10).
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Again since {x } and {y } are convergent, so for arbitrary €>0,3 two natural
numbers m, and m, such that

|x x|<|4i|e,v’n2m2 ..{3.6.12)
d lya—v|< b €Vnzm 3.6.13
an n 4(|X|+1) 9 3. ( 0. )

Choose m = max {m, m,, m_}. Then each of the relations (3.6.11) — (3.6.13)
hold for all n > m.

Thus ¥ n >m,in view of (3.6.12) and (3.6.13), we have from (3.6.11) that

i_i 4EME+ML —_—t =
va ¥ Iyl 4y 4k 202
Thus we get [~ —|<S vYnzm,

Yo ¥

Xn
which implies that the sequence {y_} is convergent and

. [xn] x _limx,

lim| & [=—=— .
Yo/ y limy,

Note : By virtue of Theorem 3.6.1(V), we can say that

. 1 1 |
llm[z] = ; = limy, > that means if {yn} is a convergent sequence of non-zero

1
real numbers and converges to a non-zero real number y, then the sequence {y_}

1

|
is also a convergent sequence and converges to v

Theorem 3.6.2. : If {x } is a convergent sequence of real numbers and converges
to x, then the sequence {|x |} is also convergent and converges to |x|.

Proof : Let <> be an arbitrary small number.
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Since {x } is convergent sequence and converges to X, so 3 a natural number m
such that

[, —x|<e, Vnzm, -{(3.6.14)

Now |(|Xn| ‘|X|)| = |>‘1n - X| <€, Yn=m  using (3.6.14)

which implies that the sequence {|x |} is convergent and lim [x,|=x|.

Note : The converse of the above theorem is not true. For this, if we consider

thle sequence {x,}={(-1)""}. Then

convergent sequence and converges to 1, while the sequence {X } is not a convergent
sequence.

X, xn} is a

=1, ¥nelIN. So, thle sequence {

Theorem 3.6.3 : Let {x } be a convergent sequence of real numbers such that
limx =x If x, 20VneIN, then x = 0.

Proof : We have to show that x > 0.
If possible, let us suppose that x < 0.

Since, lim x_ = x, so for a given €>0,3 a positive integer m such that
[x,—x|<€,Vnzm

ie X-e<x <x+&,Vnzm. ..{3.6.15)

X
Since x < 0, choosing EZ_E>0 in (3.6.15) , we get
x+£<xn<x—i,‘v’n2m
2 2

X
ie, xn<E<O,Vn2m,

which is a contradiction to the fact that x_ =0, ¥n<IN. So, our assumption is

wrong. Hence we have x = 0.
Theorem 3.6.4 : Let {x } and {y } be two convergent sequences and there exists

a natural number m such that x <y ,Vnzm.Then lim x < limy_

Proof : Let lim x = x and lmy =y

Suppose z =y_—x_. Then {z } is a convergent sequence such that z, =20, Vn2m.
So, by Theorem 3.6.3, it follows that im Z > 0, and hence lim x < lim y .
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Theorem 3.6.5 (Sandwich Theorem) : Let {x}, {y} and {z} be three
sequences of real numbers and there is a natural number m such that x <y <z,

vnzm Iflinx = ¢ =1lin z, then {y } is convergent and limy = ¢.

Proof : Let > Since imx = ¢/ =lim z, so 3 two natural numbers m, and
m, such that

|xn - €| <€, Vn2m, and |z, —€| <&, Vnzm,.
Choose m, = max {m,, m,}. Then it follows from above that

xn—€|<e and |zn—€'| <€, Vn2m,.
ie f—e<x, <f+eandl-e<z <{+&, Vnzm, .(3.6.16)

Also given that X <y <z, wp>m- L(3.6.17)
Again let us choose K = max{m,, m} Then from (3.6.16) and (3.6.17) we can
write

f—e<x, <y <z <f+e VnzK,

which implies that {y } is convergent sequence and limy = £.
Examples :

Ex 3.6.1. Prove that Ilii_l}r’lm(wfn+ —\/H)=0.

Solution : Here lim(~;‘n+1—\/a)=lim\/ 11 J_=lim 1
AL 'JH[H\]HLJ

n

_ limL_lim;l —0l=o
n 1+J1+— 2
n

. 1 1 1
Ex 3.6.2 : Prove that hm[ —+ ot ]=1
=\ Vn? +1 +n

Jni42 n
. 1 1 1
Solution : Let us take x = ——+—=+. +———
\/n‘+1 \/n‘+2 n“+n
< ! + ! +.. o+ ! sincen” +r>n°+1
- -~ Tt "\—’ f 2 S S .
\/n‘+1 \/n‘+1 e +1 ot r n
n
= .vnz2. ..{3.6.18)

n®+1
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lim

n—w

1 1 2
Jn®+1 +\/n3+2 i’ dn*i2
1 1 1 3
Similary Jni+l +\/n2+2 ! Jn?+3 g Jni43-

Again clearly

n
Proceeding in this way, we get *» > 7=— Vnz2 .{3.6.19)

From (3.6.18) and (3.6.19) we obtain

0 <X, < ? , ¥n=2 (3620)
n +n n +1 ' T
. n . |
Now lim\/ n =lim ! =1 and ll_>nc‘102—=£l_lllo—2=1‘
n-+n \/1_'_1 n°+n 1+[1]
n n

So, by Sandwich theorem, it follows from (3.6.20) that limx_=1.

34+2Vn

Ex. 3.6.3. Find the value of Lii‘}o o

Solution : We have 1im3+2‘/H :1im[i+2J:31im—+2:3.0+2:2_

1
\/H H—u0 n M ,\/H

Ex. 3.6.4. Show that lim O DM =2) 5

n>e  n(n+3)

Solution : We know that liml: 0.

n
1 2 1 o)
3+—|[1-=| lim|3+= |lim|1-2
Now 1im(3“+1)(“‘2)=1im[ “J( nj_m[ n]m[ n]_3‘1_3
" 3 s 3 - — =J.
H(n+3) 142 llm[1+EJ 1
n —p0 n

Uy
Theorem 3.6.6. Let {u } be a sequence such that lim—=<- = £ ¢ f|<1, then

n—yea
l'ln

u]’l:0.



NSOU « CC-MT-04 81

Proof : Let € be an arbitrary small positive number.

un+l - g

<, Vnzm.

. . u,
Since lim—"*=/{ so 3 a natural number m such that

fn—e n

As |t|<1, we choose € so small such that |¢|+ e<1and let|/|+e=r.
Then 0 <r <1

u u u
n u, u,
u
nll o r Vn 2 m.
un
l'lm+l l'lm+3 Un
Hence we have [~ |<5L[— < ........ <T.
um um+1 un—l
n
il "™ = I“_
Multiplying above, we get u =
m

u
and hence 0 <u,| <|—$r“, where 0 <1 <1
r

aking limit as n — e, we get |u ,sincer asn — oo,
Taking limit — oo, get [u,|— 0. "0 -

This means that limu,_ =0

M

Example 3.6.5 Show that for any x € IR, limlx—!|= 0.
n—e |

1

X
Solution ;: Let u, =—

nl
n+l
So. UYnu _ _X n_!: X
2 ‘..n
u, (n+1)!x" n+l
1
u X X, —
Hence lim—t=]lim——=lim—L-=0<1.
n— un n—y:f.-n_|_] n—
n

. X
So by above theorem, it follows that }11_)110105= 0
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m{m-1)m-2)..(m-n+1) o
n!

Example 3.6.6 : Show that lim =0, |x|<1.

m(m—-1)}m-2).. {m—n+l) <

Solution : Let U, =

n!
L
. lim2ett = i 2Ty iy I X =—x ={, say,
n—sea un n== 141 n—wo1+_
n
o e =-x| =% < 1.

So, by Theorem 3.6.6. we have limu, =0

ie. lim m(m —1)(m —2). .. (m—n+1)xn_

n—s<o n!

Theorem 3.6.7 If {u } be a sequence such that lim 2ot — ¢ >1, then li_{{loun =00

n—pea un
Proof : Let =~ ( be arbitrary small number.
Since £ > 1, we choose € such that { — & > 1

u
. . . 1 _ ¢ . .
Again since lim—=={ therefore 3 a positive integer m, such that
n—e ]
n
u
2 _fl<e VnZzm
un

, u
le f—e<—"l < i+e Vnzm.
u

n

So, ttl 5 ¢ c=K(say), where K > 1, ¥n=m

n

Puttingn=m, m+ 1, m+ 2 .., n— 1 in above and multiplying them, we get
—nls K =—n» which means that |u >M K"
u_ K" T Rm

Since K > 1, therefore K" —>sasn —

Hence limu, = .
n—s0
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s
Theorem 3.6.8 : Hu>0ﬁnthﬂNMMhm tL = ¢(finite) then lim(u, )™ =¢.
un

Proof : Let <> (0 be an arbitrary small +ve number.

. . u
Since lim— =/ So 3 a natural number m such that
n=e un

un+l l
u

1

<€, ¥Ynzm le f-c< “+1<€+e Yn > m.
u

1

u
Thus we get, (—e< "< /te p_ecdm2 cppe
un u

Multiplying all these above, we get

m+l u n-1

Uy U2 E) (ere)y
(f—¢) <q<(f+e) le (Top <um<(€+e)

" L <u .asu_>0.
(f—e)" (t+e)"

u : L u, % '_
[(f e)“’] ({—e)<u, [(€+e)m] (t+¢<)

1 1 1

Le. An(f— e)<u ® <B"({+€), ...(3.6.21)

>0and B = —m
w—e) (t+ &)

where A=

1 1 1
It is known that for p > 0, 11m imp" =1 and hence limAn =1 and limB® =1.

H—u0 n—»u

Consequently it follows from (3.6.21) that
1
(f—e)<u " <({+€),Vnzm

I
un—f

1
<g,Vn2m and hence limu » =/,

fi—yan

Le.
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1
Remark (1) In above theorem, if {=o0 then limu " =

M

(2) The converse of the Theorem 3.6.8 is not true. For this, if we consider the

_ 3+ D . _ lim ZnsL
sequence {u_}, where u, = 5 . Then limu " =1 but does not exist.

I n—s l.l

1

(1

Example 3.6.7 : Prove that lim
n—* e

1
n |'I+ —_
Solution : Let “n=n— Then u, >0,¥neIN and }11_{‘}0 u, : —g>0-

So, by virtue of Theorem 3.6.8, it follows that

!
llmr —1e11m(n) l

n—»u n—»u e

1
Example 3.6.8. Prove that fim (0¥ D +2)..CGn)j» _ 4

n—i n

a

_{n+1)}n+2)..(2n)

n

Solution : Let U, = -Then u_ >0, vneINand

22n+1) 1 4

lim 2o — lim _2.0

n—poe u, s 4] [ ljn
1+=—
n

So, by virtue of Theorem 3.6.8, it follows that

1

llmr . i.e lim {(n+D(n+2)..(2n) _4

fi—yre ' fi—yre n e

Theorem 3.6.9. (Cauchy’s first theorem on limits)
a,t+a,+..+a,

If lima_ =/, then lim =£.
n=s s n=ses n
Proof : Let ustake b =a — £ . ..{(3.6.22)

Since lima, = ¢, Solimb, =0,and hence the sequence {b } is convergent.

fi—yan n—yea
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Also from (3.6.22), we have that
a,+a,+..+a, b,+b,+.... . +b,
= ={+ = :
n n

b+b,+..+b,
1

0.

So, to prove the theorem, we have to show that lim

Since {b } is convergent, so it is bounded and hence 3 a number K such that
b |<K,vneIN. ..(3.6.23)
Again since {b } converges to 0, so 3 a natural number m such that

b, <%G,Vn2m. ..{3.6.24)

[b,+b,+.... +bn|:|b, +by by by +bm+2+..”+bn|
n n

+..+

m+1 bn ng+E(n_m)

,¥n>m,
n n n 2 n

s—+_. -....(3.6.25), using (3.6.23) and (3.6.24).

mK ¢
so that —<—, Vnzm,.
n 2

Let m be the positive Integer greater than

[b,+b,+..+b,
Thus for all n 2 max(m, m,) we have from (3.6.25) that | o |<€

b+b,+. +b, _

which means that lim 0.

f1—sea

a+a,+..+a, _
. =
Note : The converse of the above theorem is not true. For this, let us consider

a sequence {a j, where a_= (-1)"

¢

Consequently, lim

a, +a,+..+a,

Then =0, if n is even

|
= ——.if n is odd.
n
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So, lim © =0, but the sequence {a_} is not convergent, i.e. lima,

does not exist.

SETOR .
Example 3.6.9 : Show that }}_‘){1;(“‘2"*33‘*'--"‘“"):1-

1 1
Solution : Let a, =n". Then lima_=limn®» =1

H—e n—»u

1

) . . . a+a,+...+a
So by Cauchy’s first theorem on limits, we have lim—1——23 " L=
N3

Lo L
ie liml(1+22 +3*+ .. +n® J =1.

n=se [

n=s

. 1 1 1
E le 3.6.10 : Show that M| 7——+———+ .+ J=1‘
xample Show that (\/n'+1 \/n'+2 \/n2+n

=

n ) .
Solution : Let 3. = tn Then l'_,mm a4 =ll_l>rolo 2

n +n

=lim ! 1 =1
i+~
n

Thus by Cauchy’s first theorem on limits, we have

ata,+..+a, _

lim

n—s n

1

- liml[ 1 + 1 + +;J—1
F e hter Ynte2 n’+n

1 1 1
; lim + +. =
L€ “""’[\/n3+1 Jn?+2 n3+n] '

Example 3.6.11 : Show that lim 1,,+ L —+ ! —+ ...+ 1,, =0.
el nt (n+1y (n+2) (Zn)“
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: lim L+ ! + ! + +L
Solution : Now .| 2 n+1) (m+27 (2n)2

N | n n n

=lim —+lim— —+ —~+_....+ =
noont noeon | (n+1)° (n+2) (n+n)
.1
=0+lim—(a, +a,+....+a,), (3.6.26)
n—>r>0n
where a = n —and lima_ = n ,,:limizo_
"o (n+r)y n—o (n+n)” > 4n
So, by virtue of Cauchy’s first theorem on limits, we have
lim l(a, +a,+..+a,)=0
n—* )
and hence it follows from (3.6.26) that
lim| —+ ! —+ ! ~+. .+ 1,, =0
n>el it (n+1)y  (n+2) (2n)
Theorem 3.6.10 (Cauchy’s second theorem on limits)
If lima, =¢, wherea, >0VneINand £ # 0 then ll_lg“ a,a,..a, =L
Proof : Define a sequence {u }, whereu =loga, ¥YneIN.
Since each a_> 0 and lima, =£>0, we have
limu, =lim loga, =log (lim an)= logt.
Hence by Cauchy’s first theorem on limits, we get
LT PR “log .
n—oo n
1 1

ie lim—(loga +loga,+... +loga,)=log{ = limlog(a a,.. .a )" =log#

n—e )

1
= loglim (a, a, ....a )" =log ¢,

1
which yields that lim(a, a,....a,)* = ¢,
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Example 3.6.12.: Show that lim tn=1

Solution : Define a sequence {a_}, where

2 3 n
a=la,=—a,=—,...,a, =——

1 2 n-1
Then eacha > 0O and a a, ... a =n

. . . 1
Also lima_ =lim ? o lim =1>0,
fn—yoc n—w o —| n—xol_l
n

Therefore by Cauchy’s second theorem on limits, we get

1
lim(a, a, .....a,)" =1, and hence lim¥n =1

H—e

1

203V 4 (n+1Y ]
Example 3.6.13. : Show that lim nolo R e =e.

Solution : Let a_ =[1+1J =[H—+IJ :
n n

. . 1Y
Then a, >0,¥vneIN and ll_lganzllm[H—J =e>0.

n—u n

So, by Cauchy’s 2nd theorem on limits, we get lim{a a, ..a )i =e

o 2[3]3[4]3 [n+1]“
Le. im|—=|=||—=|.. .| — =e
H’"L 213 n
1

. (n™ )
Example 3.6.14 : Prove that llm[—J =e.

B |—

n—=l nl

1

n
Solution : Let a, =—
n!
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1+l I n n
Then Znst = (n+1) n_=[n_+1] =[1+1J .
a (n+1)! n" n n

1

So, 1imh=1im[1+l] —es0.
n

n—* g n—s0
21

Hence by virtue of Theorem 3.6.8, it follows that

o |-

: Lo (n
lim(a, )= —e,l.e.llm{n—!.] =e.

n—os n—e

3.7 Monotone Sequences

Let {x } be a sequence of real numbers. Then {x } is said to be

(i) monotonically increasing if x_, 2x_,VnelN;

(ii)) monotonically decreasing if x_,<x_ ,VnelN

A sequence {x } which is either monotonically increasing or monotonically
decreasing, is called a monotonic sequence or montone sequence.

Note : If a sequence {X } such that x > x wneINthen {x } is called strictly
increasing sequence and if x < x then {x } is called strictly decreasing sequence.
Examples of montonic sequences

(1) The sequence {x }, where x = n, is a monotonically increasing sequence, as
X, = X, ¥nelN.

1, . .
(2) The sequence {x }, where X, = S isa monotonically decreasing sequence, as

X <X, VnelN.
(3) The sequence {x }, where x = (-1)" is neither a monotonically increasing
sequence nor monotonically decreasing sequence.

Example 3.7.1 : Is the sequence {x }, where

X, :1+E+—+----+H, a monotonic sequence ?

Solution : We have
1 1 1 1 1 1 1
Xog—X, =(I+=+=+.. +—)—(1+=+—+.. +— =——>0, —
(14543 e g3 =i % vnelN
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So, X,, > X, ¥nelN,
which implies that the given sequence {x } is monotonically increasing and
hence monotonic.
. 4n -1
Example 3.7.2 : Find the bounds of the sequence {x }, where X, = St

) < -x _4n+43 4n-1 13 X
Solution : Here Xu.i — X, 5n+7 Sn+t2 (5n+7)5n+2)
which implies that the sequence {x } is monotonically increasing.

E

So, a lower bound is the first term of the sequence, 1.e., x,, which is equal to

-1 w

Moreover, an upper bound is = 11“}’% = 5
n—

3 4
It may be noted that 7 is the greatest lower bound and 3 is the least upper

bound.

Theorem 3.7.1 : Every monotonically increasing sequence, which is bounded
above, is convergent and converges to its least upper bound.
Proof : Let {a } be a monotonically increasing sequence which is bounded

above.
Let sup {a } = B. Then for given an arbitrary small positive number €,3 a

member a_ of the sequence {a } such that

a,>B-e.

Therefore a_ >B-<,¥Vnzm, (371
since the sequence i1s monotonically increasing.

Also a, £B,Vn ie a, 6 <B+egVn. .(3.72)

From (3.7.1) and (3.7.2), we get
B-c<a, <B+e,Vn2m ie. |a, —B| <€, Vnzm.

This shows that the sequence {a } is convergent and it converges to B, i.e, its
supremum,

Theorem 3.7.2. Every monotonically decreasing and bounded below sequence is
convergent and converges to its greatest lower bound.

Proof : Let {a} be a monotonically decreasing sequence, which is bounded
below.
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Let inf{a_}= b. Then for given an arbitrary small positive number €, there is a
number a_ of the sequence {a } such that

a <b+e

Therefore, a, <b+e, ¥Yn2m, .{(3.73)
as the sequence {a_} is monotonically decreasing

Also a_  =b, Vn.

Then a_  >b—€,¥n {(3.74)

From (3.7.3) and (3.7.4), we get

a, —b|<e, Vnz=m,

b-e<a <b+e Vnzm ie.

which implies that the sequence {a } is convergent and its limit is b. Thus the

sequence converges to its infimum.
By virtue of Theorem 3.5.2, Theorem 3.7.1 and Theorem 3.7.2, we can state the

following :

Theorem 3.7.3. (Montone convergence Theorem) : A monotonic sequence is
convergent if and only if it is bounded.

Remark : Every monotonically increasing sequence which is not bounded above
diverges to « . And every monotonically decreasing sequence which is not bounded

below diverges to —ao.

1 n
Example 3.7.3 Let 3, =[1+H] . Show that the sequence {a } is monotonically

increasing and bounded above.
If the limit of the sequence is e then show that 2 < e < 3

Solution : We have

an=[l+l =1+E.l+n(n_l).%+n(n_l)(n_z)+ ..... +to terms (n+1)
n 1l n 2l n 3

:1+l+i 1—l +l 1—l 1—g +.....to{n+1) terms.
| LA n,; 3l n n

Similarly,

an+1=1+l+l 1—L +L 1- L 1- 2 +.....to(n+2) terms
1 21 n+l, 3! n+l n+l1
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Comparing a_ with a_ , we find that first two terms are equal. From the third
term, every term of a , 1s greater than the corresponding term of a , and a _ contains
one term more than a .

Therefore, a_,, >a,, v n;
which implies that {a } is montonically increasing sequence.

1
Now, we have 1—541

1 1 1
So=ll-= <=
2! n; 2!

. 10 1Y, 2} 1
Similarly, ;[ 1== |/ 1==|<= and so on.

3! n n/ 3l
a <1+l+l+l+ +i 3
Hence, a, TRETRETRRRY ..{3.7.5)
1 1 | |
Now, —=———=<7T=

31 123 22 2°

.. 1
Similarly, we can show that o < 5% F{ =

Thus from (3.7.5), we get

Thus a, <3—2L vn

n-17?

and hence a, <3, Vn, which implies that the sequence {a } is bounded above.
Consequently the sequence {a } is convergent, by Theorem 3.7 1.

If ima, =e, then we have a, <a, <3- ie. 2<a, 6 <3-

n-1 n-1"

Taking limit as n — o in above, we get 2 < e < 3,
Example 3.7.4 : Show that the sequence f, where

1 1 1

f{n)=——-H+ +...+—— is convergent.
n+l n+2 n+n
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1 1 1
Solution ;: Here f(n)=——+ +o+
n+l n+2 n+n
e —— gL gL, L]
n+2 n+3 2n 2n+1 2n+2

1 1 | 1
+ - = >0,
2n+1 2n+2 n+1 2n+D(2n+1)
which implies that the sequence {f{n)} is monotonically increasing.

YneIN

E

Thus fin + 1) — f(n) =

1 1 1 1 1 1
Now <—, <=, < —.
n+l n n+2 n n+n n
So, f(n) = Ly <l+l+”..+l=5=l, Yn
n+l n+2 n+n n n n n

which means that the sequence {f(n)} is bounded above.
Thus by virtue of Theorem 3.7.1, the sequence {f{n)} is convergent.

Example 3.7.5 : Prove that the sequence f defined by
f()=~/7, f(n+1)=/7+f(n) converges to the positive root of x2 — x =7 =0,

Solution : Here f(1)= J7, f(n+1)=,/7+f(n)
Therefore {f(2)} —{f ()} =7++7-7=7 >0,

which implies that f{2) > f{(1). .(3.7.6)
Now {f(n+D} - {fm)’ = {7+ ~{y7+f@-D}
= f{n} - fn - 1).

So, fint1) > f{n) whenever f{n) > f(n — 1)
1.e. whenever fin — 1) > f{n — 2)

Thus f(n+1) > f{n), ¥n, which means that the sequence {f(n)} is monotonically

increasing.
Since f(n) < f(n+1), so {f{in)}* < {f{n+1)}> = 7 + f{n)
ie {f{n)}* —f(n) — 7 <0. (377

Consider a quadratic equation x? — x — 7 = 0, which has two roots, one positive,
say o and another is negative, say — 5, such that f > 0.
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So, x> —x—-7=x-o)x +p)

and hence {f(n)}* ~f(n)~7 = {f(n)- o} {f(n) + B}

So, we have from (3.7.1) that {f(n)-o}{f(n)+B} <0

Since f(n)+p >0,

so, f(n)—a >0

ie. f(n)<a, ¥n, which imples that the sequence {f(n)} is bounded above.

Consequently, by virtue of Theorem 3.7.1, the sequence {f{n)} 1s convergent.

Let us take li_1}nf(n)= £ Then limf(n+1)=¢

Now, {f(n+1)}"=7+f(n)

Taking limit as n — o we get £2=7+ {

le. £2—- 4 -T7=0={-a){+p)=0

Since £ > O, therefore /# - <0, so { =a

Thus the limit of the given convergent sequence is the positive root of the

equation x* — X -7 = 0,

Example 3.7.6 : Show that the sequence f defined by
£(1)=+2 and f(n+1)=/2f(n) converges to 2.
Solution : The members of the sequence {f(n)} are \f2_ \/2\/5 N2, \/ 232 e

We have 2.2 > 2= 242 > /2, ie f(2) > f(1)
Supose that f(n + 1) > f{n).
Then \/2f(n+1) > \2f(n) = f(n+2) > f(n+1).

Thus f{n + 1) > fin) => f{in + 2) > f{n + 1), and f(2) > f(1).
So, by mathematical induction, we may conclude that the sequence {f{n)} is

monotonically increasing.

Clearly we have f(1) < 2.
Suppose that f{n) < 2. Then fin + 1) = J2f(n) <+/22=2
Thus fin) < 2 =>fin + 1) < 2, and (1) < 2.

So by mathematical induction, we have f(n) < 2, Vn.
This show that the sequence {fin)} is bounded above.
Consequently the sequence {f{n)} is convergent by virtue of Theorem 3.7.1.

Let limf(n)="¢
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Since f{n + 1) = m, we have {f'(n+1)}3 = 2f(n).

Taking limit of above as n — o, we get

P =2{=4({-2)=0.

But this limit ‘¢’ can not be equal to zero. So, we must have { = 2, ie,
limf(n)=2.

n—ro

3.8 Subsequences

Let {x} be a sequence of real numbers and {in }::1 be a strictly increasing

sequence of natural numbers, ie., i, <i,<i,< .. = Then the sequence
{X,n} {X X, Xy e } is called a subsequence of {x }.

Note : (1) If {y } is a subsequence of {x } then each y = x; forsomei, 2n

{2) Every sequence can be regarded as a subsequence of itself
Examples of subsequences.
{1) Each of the sequences

(1){ } (ii ){ } (111){ }and (iv) {(21 )'} are subsequences of the

1
sequences { " } _

(2) Each of the sequences {x,,,} and {x,, }are subsequences of the sequence

§X.}-
(3) The sequence of prime numbers {2, 3, 5 7, 11, ...} 1s a subsequence of
natural numbers {1, 2, 3, 4, ...},

Theorem 3.8.1 : Let {y } be a subsequence of a sequence {x } Then
(i) {yn} is bounded if {x } is bounded.

(ii) {yn} is montonic if {x } is monotonic.

(iii) {y,} is convergent if {x_} is convergent. Further, if {x } converges to /

then {y } converges to {.
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Proof : Since {y } is a subsequence of {x }, we have y, =x, , where {1} is a

sequence of natural numbers such that i <i . and i, 2n, VneIN.

(1) If {x } is bounded then there exists real numbers m and M such that
m<x, €M, Vne N,

So, in particular we have m<x, <M, ¥n e IN.

Consequently the subsequences {y } is bounded.
(i) If {x } is monotonic increasing then

L <l =X =X

ie y <y, VnelN,

which implies that {y } is also monotonic increasing.

Similarly if {x } is monotonic decreasing then we can prove that {y } is also
monotonic decreasing. Hence if {X } is monotonic sequence then {y } is a monotonic
sequence.

(1) Let {x } be a convergent sequence and converges to ¢. Then for given an
arbitrary small positive number €, then there exists a positive integer K such that

X, —€| <€ Vn =K.

Since 1 2 n, we have n > K =>1 2K

= |X-n - E| <egiely, - {|<e.

Thus Vn =K, |yn —€| <&, which implies that the subsequence {y } 1s convergent

and converges to £
Note : The converge of (iii) is not true. If there exist two different subsequences

{X-n} and {x Jn} of {x }such that they converse to two different limits, then the

sequence {x } is not convergent. That means if a sequence {x } has a divergent
subsequence then {x } is divergent. For example, it is known that {y } = {1, 1, 1,
~.yand {z }={-1, -1, -1, ..} are two subsequences of {x_}, where x = (-1)" Then
both the subsequences {y } and {z } are convergent and they converge to 1 and -1
respectively. However, the sequence {x } is not convergent.

. nm| .
Example 3.8.1 : Show that the sequence {sm n?} 1s not convergent.

., N7
Solution : Let X, = sIin 7.Then
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LT . 3m . . 5m
{x,}=1sin=, sin®, sin—, sin 27, sin—, . ...
2 2 2

= {1» 0» _13 03 13 03 _13 0» }y
which has the subsequences {x 4n_3} ={1, L. },

1x,,1=10,0,0,.....} and {x, }={-1-1-1..}.

Since the subsequences {x 4n_3}, {XEn} and{x4n_,}

converge to different limits 1, 0 and —1 respectively, the sequence {x } does not
converge.

Corollary 3.8.1 : A sequence {x } converges to a real number ¢ if and only if
its subsequences {x, } and {x, } converges to the same limit £

Proof : Suppose the sequence {x } converges to /. Then by Theorem 3.8.1

(ii1), its subsequences {x, } and {x _} also converges to £.

ie limx, =f=lmx, (3.8.1)

Conversely, suppose (3.8.1) is true. Then for given an arbitrary small positive
number €, there exists two natural numbers m, and m, such that

|x2n —E| <&, Vn 2m,. and

X, — £ <€, Vn 2 m,.
Choose m = max {m, m } Then from above we get

f—e<x, <f+teandf-e<x, <f+e,Vnzm.
Hence {—e<x, <f{+e&Vnz2m-1, which is also a natural number.
Consequently, limx_=¢.

Note : Any two subsequences of a sequence {xX } converge to the same limit do
not imply that the sequence {X } is convergent.

. ) Y
For this let us consider the sequence {x }, where X, = SIHT‘

Then {Xsur}= sinZ, sin 9—“ sin ”—R ““““
2 4 4

d {X )= Sin3—JFE Sinlﬂ sinlg—Tc
an #n-3 4"’ 4’ 47T
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1
are subsequences of {x }. Each of {x, ,}and {x,, .} converges to 7 but the

sequence {xn} is not convergent.

Now we have seen that every convergent sequence is bounded, (Theorem 3.5.2),
but the converse is not true, 1.e., bounded sequence may not be convergent. However,
we have the following :

Theorem 3.8.2 (Bolzano-Weierstrass Theorem for Sequences) :
Every bounded sequence has a convergent subsequence.

Proof : Let S be the set of all distinct points of a bounded sequences {x }. Then
S is bounded. There are two cases | S may be finite or infinite.

If S is finite, then there must be at least one element. say o, in S, which is
infinitely repeated in {x }. Let {1 } be strictly increasing sequence of natural numbers

such that x;, =, VneIN. Clearly {x } is a subsequence of {x } and hence {xnl}
converges to O, as {an} is a constant sequence {a, @, @, ....}. So the sequence {x }

has a convergent subsequence {an}-

Now, if S is infinite, then by Bolzano Weierstrass Theorem for sets, it has a limit
point (see, Theorem 2.14.1), say ¢ in IR. We have to construct a subsequence of {x }
which converges to £

1 ¢ ¢
Since 7 is a limit point of S, the — — neighbourhood I =(1——.» 1+—) of £
m m m

contains infinitely many element of S. Hence for each m, there are infinitely many

values of n such that x_eI_.
Choose x, €I, x; €l, such that i, >i,. Then choose x; €I,such that i, >1,
and so on. So, we obtain a subsequence {Xi..} of {xn} such that x, €l ie.
1
|Xin _€| < o’ VnelN.
Consequently limx; =£. That means we get a convergent subsequent {Xi..} of

fi—yea

{x,}. Hence the theorem.
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. N7
Note (1) : In Example 3.8.1, we have seen that the sequence {Xn} = {sm?} is

bounded (but not convergent), which has three convergent subsequences {x, .}, {XEn}

and {x 4n_1} . So, Bolzano Weierstrass Theorem for sequences is verified.

Note (2) : However a bounded sequence may have a divergent subsequence. For
this, in the sequence {x } of Example 3.8.1, the subsequence

{in-l} = {1, -L1L-L1-1.. . } is a divergent subsequence of the bounded
sequence {X }.
Also an unbounded sequence may have a convergent subsequence. For this we

-1 1 ]-
consider a sequence {x,}= {nH" } = {1, 2, 3 4, 3 6,..... }, which is unbounded. The

sequence {x, } is a divergent subsequence of {x }, while the sequence {xgn_l} is a

n
convergent subsequence of {x }.

3.9 Cauchy Sequences

A sequence {x,} is called a Cauchy sequence if for given an arbitrary small
positive number €, there exists a natural number K such that
%, - X.| <€, ¥nmzK.

Taking n=m + p, where p = 1, 2, 3, ..., the above condition can also be written
as

X

<, Vvmz=K and p=1,2, 3, ..

=X
m+p m

Thus a sequence {x } is cauchy if x and x_ are close together when m and n are
large w. 1. to K.

1
Example 3.9.1 : Show that the sequence {;} is a Cauchy sequence.
. 1 : . :
Solution : Let X, = N Let € be an arbitrary small positive number. It is known

1
that {H} converges to 0.
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1o

So,
n

e
<5 vn 2K (3 natural number)

1
ie —<E, vn =K.
n 2

1 1 e €
C—t—<—+—=¢,Vmn 2K
m n 2

N
m n

<€, V'm,n 2 K, which shows that {x } is a Cauchy sequence.

Now |Xm X,

ie. |xm -X,
Theorem 3.9.1 : Every convergent sequence is a Cauchy sequence.

Proof : Let {x } be a convergent sequence and limx =¢

Then for given an arbitrary small positive number €, 3 a natural number K such
that

xn—e|<§,vn21<, L(39.1)

and hence ‘Xm—€|<§.»vm >K. ..(392)

Thus ¥n, m>K, we have

€
—_=c

2 il
which shows that the sequence {x } is a Cauchy sequence.
Theorem 3.9.2. : Every Cauchy sequence is bounded.

Proof : Let {x } be a Cauchy sequence.

Choose € = 1. Then there exists a natural number K such that

m

SRR E

X — X, Xn—f|<§+

X, —xm|<1, vn,m>K.

So, in particular taking m = K+1, we have

X, —|XK+1 <X, —Xp|<L ¥n2K.
or, [x,| <1+ x| =2(say), vn 2K .{293)
Let M = max {|x1|, Xs|yeres |XK_]|,?u}_

Then it is evident that
[x.|<sM,¥n=12,.,K-1 (394
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and also from (3.9.3) we have [x_

<M, Vn2K . (395)
From (3.9.4) and (3.9.5) it follows that <M,vVnelN,

which means that the sequence {x } is bounded.

Note : The converse of the above theorem is not true, 1.e., bounded sequence
may not be a Cauchy sequence.

For this, let us consider the sequence {x }, where x = (-1)" Clearly this

<1, vnelN.

Xn

sequence 1s bounded as

Xn

Now =|(-)™* - (-1)"|=]-1-1|=2,Vm € IN . (3.9.6)

X3m+l _Xﬁm

Choose €=1 and take p = 2m+1, q = 2m then p, q > m.

Then (3.9.6) shows that it is not possible to find any meIN such that
|xp —xq‘ <€, Vp,q>m.

That means the sequence {x } is not a Couchy sequence.

Theorem 3.9.3 : Every Cauchy sequence in IR is convergent.

Proof : Let {xn} be a Cauchy sequence. So, {xn} is bounded by Theorem 3.9.2.
Hence it has a convergent subsequence by Theorem 3.8.2. Let {y } be a convergent

subsequence of {x } such that y —£.

We shall show that {x } also converges to (.
Let € be an arbitrary shall positive number.

Since y, — £, 3a natural number K|, such that

<
yn—€|<5,Vn2K1- {397

Again since {x } is Cauchy, there exists a natural number K, such that

S
xn—xm|<5, ¥Ynm>K,. ..{3.9.8)

Let K, = max {K, K }. Then ¥ n,m=K,we have

X, ~Xp| <= and |y, —f <= .(3.9.9)
2 2

Since {y, | is a subsequence of {x }, we have

Vi, = X for some m > K,. ..{(3.9.10)
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Now, [, = =%, =%, Gt = 0] 2|5, =)+ (v, =)

€ €
m|+|Yk3 —€| < E+E =€, using (3.9.9).

Thus ¥n=K, we have |xn—€| <e, which implies that the sequence {x }

converges to /. Hence the theorem.
Combining Theorem 3.9.1. and Theorem 3.9.3, we can state the following :

Theorem 3.9.4 : (Cauchy’s Convergence Criterion) A sequence of real
numbers is convergent if and only if it is a Cauchy sequence.

Using the definition of Cauchy sequence, the Cauchy’s convergence criterion can
be stated equivalently in the form as

A necessary and sufficient condition for the sequence {x } is Cauchy that for given
every arbitrary shall positive number <, there exists a natural number m such that

X

n+p Xq

The above criteria is also known as Cauchy’s general principle of convergence.

Example 3.9.2. Show that, with the help of Cauchy’s general principle of
convergence, the sequence {x },

where X, =1+E+—+ ---- +;, is not convergent.

1 1
Solution ; Here X, :1+§+§+.....+—,

n
1 1 1 1 1 1
Rpp =1F—+o+ o+ —+——+ +..+ _
2 3 n n+l n+2 n+p
1
e=—
Choose )
X —X |= ! + : + | + 1
Now, [uee =%l = (T " hr2 n+p| n+l1 n+2 T on+p

1 1 | .
>—+—+..+— takingp=n=m
2m

2m  2n

m 1
:—:—:E_

2Zm 2

Thus by Cauchy’s criterian for convergence, it follows that the given sequence

{x,} 1s not convergent.
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Example 3.9.3 Use Cauchy’s general principle of covnergence to prove that the

n

sequence | ( is convergent.
4 {n + 1} g

n
Solution : Let X, =E- Then for all p € IN,

n+p

Pon4p+l
Let € ge 51 arbitrary small positive number. Choose m € IN such that
m= [l} +1.
€

T I

_|n+p+1 n+1|_ {(n+p+1{n+1)

n+p Xn

Now,

<L,since b <1, VpelN
n+l nt+pt+l

1 1
<—<g, forn>—.

n €
Thus |x,,, —x,| <€, Vnzmand p <IN, which proves that the sequence {x } is

convergent.

3.10 Summary

In this unit we have defined the concept of sequence of real numbers, bounded
sequence, montone sequence, Cauchy sequence and their convergence to a limit with
examples. We also discussed the subsequence of a sequence of real numbers and
their properties with examples. Many important results related to the topic have been
presented here. Some problems have also been worked out with help of them. For
more study, a list of references is given in section 3.13. The important data and
results are also mentioned in section 3.11 as a summary of this unit. Some problems/
questions are given at the end of this unit,

e A sequence is a function from IN to IR

e A sequence is called bounded if it is bounded above as well as bounded below.

If a sequence is convergent then its limit is unique.

Every convergent sequence is bounded, but the converse is not true,
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¢ Non-convergent sequences are the sequences which are not convergent.

e Non-convergent sequences are either divergent or oscillatory.

o The sum, difference and product of two convergent sequences are also
convergent.

e The quotient of two convergent sequences is also convergent, provided the
limit of the sequence & each terms of the sequence in denominator is not equal
10 Zero.

o If a sequcne {x } is convergent then {[x |} is also convergent, but the converse
is not true.

e A sequence 1s called monotonic if it is either a monotonically increasing or

monotonically decreasing.

Every monotonic sequence is either bounded above or bounded below,

Every incresing sequence is bounded below.

Every discreasing sequence is bounded above.

A sequence having althernatively positive and negative terms can not be

monotonic.

e A monotonic sequence 1s convergent if and only if it is bounded (Monotone
convergence Theorem).

e Every subsequence of a bounded sequence is bounded.

e Each subsequence of a monotonic sequence is monotonic.

e Every subsequence of a convergent sequence is convergent and converges to
the same limit of a sequence. However, the converse 1s not true.

e Every bounded sequence has a convergent subsequence (BolzanoWeierstrass
Theorem for sequences). However, a bounded sequence may have a divergent
subsequence. Also an unbounded sequence may have a convergent subsequence.

¢ Every convergent sequence is a Cauchy sequence, but the converse is not true.
However, every Cauchy sequence in IR is convergent.

e Every Cauchy sequence is bounded.

¢ A sequence of real numbers is convergent if and only if it is a Cauchy sequence
(Cauchy’s General Principle of Convergence)

3.11 Keywords

Sequence, bounded sequence, convergent sequence, divergent sequence, oscillatory
sequence, limit of a sequence, monotone sequence, montone convergence theorem,
subsequence, Cauchy sequence.
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3.13 Model Questions

[A] Multiple Choice Questions (MCQ) :
(Choose the correct answer each of the following) :

[1]

(2]

[4]

The sequence {n} is

(a) bounded above {b) bounded below
(c) bounded {d) unbounded.
The sequence{2"} is

(a) bounded below (b) bounded above
(c) bounded {d) unbounded.
The sequence {(—1)"n} is

(a) bounded below (b) bounded above

(¢) neither bounded above nor bounded below
(d) None of these.

The sequence {l+ﬂ} s
n

(a) convergent {b) divergent
(c) oscillatory {d) none of these.
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34+2Vn

[S] The value of lim % is

(a) 0 (b) 1
{c) 2 (d) 3
: 2y
[6] The value of LLI?[IJFEJ is
(a) e (b) €
! Pt
© 3 d =
[71 An example of oscillatory sequence is
)i .
(a) { " (b) {(-1"n}
(0 {1} d) {(-1'n?}
[8] A sequence can converges to
(a) one limit (b) finite number of limits
(c) infinitely many limits (d) All of the above.
[9] Every bounded monotonically decreasing sequence is
{a) oscillatory (b) diverges to +o
{(c) diverges to-a (d) covnergent

[10] Which of the following statement 1s true ?
{a) a convergent sequence is not bounded
(b) a bounded sequence has no divergent subsequence.
{c) an unbounded sequence may have a convergent subsequence.
{d) None of these above.

Ans. : [1] (b), (2] (a), [3] (©), [4] (a), [5] (c), [6] (B), [7] (b), [8] (a), [9] (d),
[10] (c).

[B] Miscellaneous Questions :
[1] Explain the boundedness of the following sequences :

) f—n? (i cos<nn i) st cosm b iy IH“/H,
(i) -} Gi) e0sZNRp (i) {Sin—-Feos==r (i) 1T
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(2]

[4]

[5]

(6]

[7]

Give examples of a sequence which is

(1) bounded above but not bounded below

(i1) bounded below but not bounded above

(1)) bounded

(iv) Neither bounded below nor bounded above.

Show that the sequence{(—1)"} does not converge.

Hints : If x = (-1)", then x, = 1 and x, = —1.
1

Show that limn® =1

n—»u

hat lim 1 =0
Prove that JE

n—»u

1
Show that lim p* =1, where p > 0.

1
Hints : Case I ; p=1. It is obvious as p" is constant sequence.

1
Case IL : p >1, Then pn =14 ¢ for some q_ > 0.

So, p=(l+q,)" =1+nq,
. p-1
ie 4, ET,VH €IN and hence

] -1 .
pn_lzqnng—m as n — o, which means limp® =1.

n—s

1

Case IIL: 0 < p < 1 : Then P" =

forsomer, > 0.
I+r

n

1 1 1

= 1
= < <
(I1+r)" 1+nr, nr, =0<r, <E,Vne IN and hence

Sp

1 1

0<l-pn=—2 <rnéi—>Oasn—>c0,which implies that limp® =1.
l+r np e

1

n° +3n+5

Examine, whether the sequence -
2n“+5n+7

} is convergent or not. Find

limit, if 1t converges.
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[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Show that the sequence {x }, where x_ =+n+1- Jn, vn € IN, is convergent.
| | 1

Show that the sequence {b_}, where b, =

converges to 1.
1 1

ez +E}:oo'

1
lim
Show that n—““j{\/n 1

Prove that 112;% =1

Hints : Use Theorem 3.6.8 for u =n

Show that lim_ ! + ! + +;}—L
o P+l N2nP+2 A2nP+n] V2

Hints . Use Cauchy’s first theorem on limits.

. [ 1 1
m| —=+—+.....+—/— =
Show that n_m_\/a — m} .

Prove that lim —=€.
1
. n" n n
Hints : See example 3.6.14 as [—J = .
n! -
(nh)

Show that lim2™n’ =0

Hints ; Use Theorem 3.6.6. for u, = ;—n
Give an example of a sequence in each of the following :

(i) monotonically increasing but not bounded above.

(ii) monotonically decreasing but not bounded below.

(i1} bounded above as well as bounded below but not monotonic
{iv) not monotonic.

Is every bounded sequence a monotonic ?

Hints : No. For this, consider {(—1)“"}_
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[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]
[26]
[27]

211

Is the sequence {n |} monotonically increasing or decreasing ? Find bounds
of this sequence, if any.

1 1 .
+....+— is convergent.

Show that the sequence f, where f(n)= %+5 |
I 21 n!

Hints : Use Theorem 3.7.1 by showing that the given sequence is monotonically
increasing and bounded below.

Show that the sequence /3 ./3./3, 4/34/3\/5 . converges to 3.

Let a, b, be two distinct positive real numbers and

|
a :E(a“"' +b, )andb, = fa,_b,,,¥n=2. Show that the sequences {a }

and {b_} are monotonic and convergent.

Also show that Ei_{l;an =lmb,

n—yar
Define a subsequence. Give an example of a subsequence of a sequence.

-

3n
an+1

n
} is a subsequence of the sequence {—}

Show that the sequence {
n+l

Prove that the sequence {x } satisfying the condition

X~ Xpn| 2C|X, 0 — X, |, Yn € IN, where 0 < c< 1, is a Cauchy sequence.

State and prove Cauchy’s general principle of convergence.
State and prove Bolzano Weierstrass Theorem for sequences.

Give an example of a bounded sequence that 1s not a Cauchy sequence.
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4.1 Objectives

The Object of this unit are as :

to study infinite series, and its convergence.

to study a special type of series, geometric series & its behaviour.

to know about Telescoping series.

to know about convergence Tests like comparison test, D'Abmbert’s Ratio
test, Cauchy’s Root test, Integral test.

to study about Alternating series & Leibuitz test for alternating series.

to study Absolute convergence and conditionally convergence.

to know about power series and radius of convergence of a power series.

4.2 Introduction

In this chapter we shall discuss the techniques of testing the behaviour of infinite
series as regards convergence. The most important technique for series, all of whose
terms are of the same sign (all positive or all negative), is to compare the given series
with another suitably chosen series with known behaviour. So, first of all, comparison
tests are discussed, and then some special tests for convergence are considered.
Leibnitzs testis for alternating series. At last, power series will be discussed in detail
towards the end.

110
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The most important application of sequences is the defimition of convergence of
an infinite series. From the elementary school you have been dealing with addition
of numbers. As you know the addition gets harder as you add more and more
numbers. For example it would take some time to add

Sie =1+2+3+4+54+ .. +98+99+100

It gets much easier if you add two of these sums, and pair the numbers in a
special way :

28, =14+2+3+4+..+97+98+99+100

100+99+98+97+... +4+3+2+1.
A straight forward observation that each column on the right side to 101 and that
there are 100 such columns yields that

2S,,, =101.100, that is S, = w — 5050

This can be generalized to any natural number n to get the formula

:(n+1)n

S,=14+2+43+4+5+ . +(n-1+n

This procedure indicates that it would be impossible to find the sum
14+2+3+4+5+ . 4+n+..

where the last set of ... indicates that we continue to add natural numbers.
The situation is quite different if we consider the sequence

1 11 1 1

2°4°8 167 2"

and start adding more and more consecutive terms of this sequence.

1 _-1_1
2 2 2
I 1 1 3
2 4 4 4
I 1 1 1 7
—_t -4+ - =]1-—=—
2 4 8 8§ 8
I 1.1 1 1 15
—t+—+—+— =l-—=—
2 4 8 16 16 16
I 1.1 1 1 1 31
—t+—t—+—+— =l-—=—
2 4 8 lo 32 32 32
1P 1.1 1 1 1 1 63
—+—t—t—+—+— =l-—=—
2 4 8 16 32 64 64 64
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These sums are nicely illustrated by the following pictures

i |
11

In this example it seems natural to say that the sum of infinitely many numbers

11 -
SRR equals 1 :

N | —

Why does this make sense ? This makes sense since we have seen above that as
we add more and more terms of the sequence

1111
TR I
we are getting closer and closer tol, Indeed,
T 1 1 1 1 1

. 1
and £1£130[1_2_nj:1~

This reasoning leads to the definition of convergence of an infinite series.
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4,3 Infinite Series

Definition : 4.3.1 : Given a sequence (a ) of real numbers, a formal sum of the

form Z:zlan {or Zan for short) is called an infinite series.

For anyne N, the finite sum s : =a + .. +a_is called the (n-th) partial sum

1
of the series Zan :
A more formal definition of an infinite series is as follows. By the symbol

Znan we mean the sequence (s ) where s :=a + . +a_
We say that the infinite series Zan is convergent if the sequence (s ) of partial
sums is convergent. In such a case, the limit s - = lim s_is called the sum of the series

and we denote this fact by the symbol Zan =s.

We may that the series Zan 1s divergent if the sequence of its partial sums is
divergent.

The series Z ., is said to be absolutely convergent if the infinite series Z ala.

is convergent. Note that a series Zan of non-negative terms, (that is, a_> 0 for all

n) is convergent iff it is absolutely convergent.

If a series is convergent but not absolutely convergent, then it is said to be
conditionally convergent.

Let us look at some examples of series and their convergence.

Example 4.3.1 : Let (a ) be a constant sequence a_= ¢ for all n. Then the infinite

series Zan is convergent iff ¢ = 0. For, the partial sums is s = nc. Thus (s ) is
convergent iff ¢ = 0.

Example 4.3.2 : Let an be non-negative real numbers and assume that Zan is
convergent. Since s ., = s +a_ , it follows that the sequence (s ) is increasing. We

+1*

have seen (Theorem 2.3.2) that (s ) is convergent iff it is bounded above. Hence a
series of non-negative terms is convergent iff the sequence of partial sums is

bounded. Note that if Zan is convergent, then Zan =lub {s,:ne Nj}.

Example 4.3.3 : (Geometric Series), Let a and r be real numbers. The most
important infinite series is

a+ar+ar’ +ar’ +. . +ar"+..=> ar’
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This series is called a geometric series. To determine whether this series
converges or not we need to study its partial sums :

S, = a, S =a-+ar,
S.=a+ar+ ar’ S,=a+ar+ar +ar,
S, =a +ar + ar’ +ar’ + ar?, S.=a+ar+ar + ar’+ ar* + ar’,

3
Sn=e1.+:c1.r+zc1.r“r.‘.Jrar“‘1+arn

k!

1
Notice that we have already studied the special case when a =1 and r= 5 In

this special case we found a simple formula for S and then we evaluated nli,lﬂo S,

It turns out that we can find a simple formula for S_in the general case as well
First note that the case a = 0 is not interesting, since then all the terms of the
geometric series are equal to 0 and the series clearly converges and its sum is 0.

Assume that a # 0. If r =1 then S_= n a. Since we assume that a # 0, nl_iglo n a does

not exsit. Thus for r = 1 the series diverges.
Assume that r # 1. To find a simple formula for S, multiply the long formula
for S above by r to get :

S,=a+ar+ar +..+ar"" +ar"
1S =ar+ar’ + .. +ar" +ar"";
now subtract, S,-rS, =a-ar"",
l_rn+l

1-r

and above for § : S, =a

We already proved that if |r[<1, then lim ™' =0. If [r| > 1, then }LTWTM does

not exist. Therefore we conclude that

_ n+l
lim S = lim za.1 L -2 ! for|rl<1,

n—s+eo N—r+ed 1 -r 1 -r

lim S, does notexist for|r|=1,

f—yen

In conclusicn

. . - n . . 1
If |r] <1, then the geometric series Za " converges and its sum is al—.
n=" =T
If [r] = 1, then the geometric series » ar" diverges.

n=0
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1
Example 4.3.4 : Prove that the series HZ:]: n(n+1)

Solution : We need to examine the series of partial sums of this series :

1 | | 1
=—t—t—+ . .+ ,
12 23 34 n(n+1)

It turns out that it is easy to find the S if we use the partial fraction
decomposition for each of the terms of the series

1 11

k(k+1) k k+1

Now we calculate :
1,11 1

=—+— + .+
"T12 23 34 n(n+1)

1 1] 1 1] 1 1] [1 1 J 1
=|-—= |+ +H == |t | ———— || —— =1- .
[1 2 3 4 n-1 n n n+l n+l

1
Thus S, =1-——— for all n = 1,
n+l

converges and find its sum.

forallk=1223, ... .

2,3, ... Using the algebra of limits we

conclude that

lim S, = lim [1—L]= L

s+ n—+eo n+l

1

o
Therefore the series z converges and its sum is 1 :

oo n(n+1)
+eo 1
,,Z:,: n(n+1) -

Example 4.3.5 : (Telescoping Series). Let (a ) and (b ) be two sequences such
that a, =b,,,—b,n=1. We note that s, =a =b,-b,s, =a +a =(b,-b) +
(b,-b)=b, —b and

s, =a,+...+a_=(b,—b)+(b,-b,)+...+(b_,,—-b )=b_, —b.

Thus we see that Xa, converges iff imb_exists, in which case we have

Za,=-b +limb .

n+l
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a0 n
Example 4.2.6 : Consider zn:1m- This is one of the series for which
we can find the sum! We observe
4 = n 3 n 3 n
" nf+n’+l (0P +1Y-n° (@ +1+n)(n”+1-n)

1 1 1

_ZLE—n+1_n2+n+l}

1 1
Note that the sum in the brackets is a telescoping series with b, = E[mj

1 1 1 1
S, =————| ———— | —7—.
Hence we get 54 5 2[n‘+n+1] 5

1
Example 4.3.7 : Let us look at the series 2,

e of positive terms. Observe that

1 | |
— <———forn =2 If s denotes the partial sum of the series 2, — and t_that
n~ n{n-1) n n n

of Zﬁ, it follows that s <t . Since (t ) is bounded above (Example 5.1.6)
the sequence (s ) is bounded above. Hence in view of Example 5.1.3 we see that the
series Y n~ is convergent.
This is a special case of the comparison test to be seen below.
Example 4.3.8 : (Harmonic Series), The harmonic series is
il:1+l+l+l+.....
= n 2 3 4
The first few terms in the sequence of partial sums are :
3.1 S - 25 S 137 49

S =1:‘S"‘=_1S - * - 2 =, = *
: 27T 6T 127 607t 207
363 761 7129 7381
S;=—=.5; = ;S = g
140 280 2520 2520

This series diverges to + « . To prove this we need to estimate the nth term in
the sequence of partial sums. The nth partial sum for this series is
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4.4 Convergence Tests

Theorem 4.4.1 : (Cauchy Criterian). The series > a_converges iff for each ¢ > 0
there exists Ne N such that

nm>N=—=

5, —Sa| <€
Thus, the series > a_converges iff for each g > ( there exists NeN such that

n>m2N=la,, +a,,+..+a|<¢e

m+1 m+2

This cauchy criterian is quite useful when we want to show that a series is
convergent without bothering to know its sum. See Theorem 5.1.17 for a typical use.

Proof. Let > a be convergent. Then the sequence (s) of its partial sums is

convergent. We know that a real sequence is convergent iff it 1s Cauchy. Hence (s )
is convergent iff it is Cauchy. The result follows from the very definition of Cauchy
sequences.

Corollary  If > a converges, then a_ — 0.

Proof, We need to estimate [a |. The key observationis a =s —s  and the fact
that (s ) is convergent and hence is Cauchy. (Here (s ) is an usual the sequence of

the partial sums of the series >.a_).

Let € > 0 be given. Since the sum Xa_ is convergent, the sequence (s ) of partial
sums is convergent and in particular, it is Cauchy. Hence for the given € there exists
such that for n 2 m 2 N we have |[s - s | < & Now if we take any n2N+1, then

_Note that n — 1 > N. Hence we obtain

a =s - a[=[s,-s, |<e forn>N+1.

This proves that a, — 0.
The converse of the above proposition is not ture.

Remark : Most often we need the following observation on a convergent series
@ N
Ya If X a_ =s, then Zn=N+1an :S_Zkzl a, .

[Eal

Now what 1s the meaning of the symbol Zn ?7 We define a new sequence

=N+1 an

(b,) by setting b, :=a, The infinite series associated with the sequence (b ) is

Ll

denoted by ZFNH a, or simply by Z:ZNH A, -
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MN+n

Let s, denote the partial sums of Xa, Let 6, = ZNH a, =ZEZI b, Lets, :=a,

+ .. +a, Then we have 6, =s,,, —s, Clearly 6, —s—s,. The claim follows from
this.
An important corollary, which is used most often, is the following.

Corollary. Given g0, there exists Ne N such that the “tail” of the series

Z::NH an <.

Proof : This is easy. Since s, —s, for g >0 there exists Ne [N such that for
nzN,s, €(s—¢g,s+¢€). In particular, s—g <s,,, thatis, s—s, <& By the last remark
2ane @, =S—8,. Hence the corollary follows.

Exercise 4.4.1 : Given a sequence (a ), let us assume the associated infinite series
>a_is convergent. Let Nc N be fixed. Let b, e R, 1<k <N be given. We form a

new sequence (¢ ) where ¢, =b_for [<k<N and b =a fork >N Let s=3a,
and b - = b, + ..+b,. Show that X ¢ is convergent and that ¢ =s+b—s,.

Given two series (whether or not convergent) >a, and Xb_, we may define their
sum as the infinite series associated with the sum (a_+ b ) of the sequences (a ) and

(b). Thus, Ta,+Xb, =X(a, +b,). Similarly, given a scalar 3 ¢ R we define the
scaler multiple A2 a_ to be the series 2(ia ).

Theorem 4.4.2 : (Algebra of Convergent Series), Let >a, and >b_be two
convergent series with their respective sums A and B, respectively.

(1) Their sum >(a,  +b_ )is convergent and we have >{a_ +b )=A+B.

(ii) The series A> a_ is convergent and we have A>a =AiA.

The set of all (real) convergent series is a vector space over R

Proof, The proofs are straight forward and the reader should go on his own.

Let (s,), (t ), and (a ) be the partial sums of the series >a , b, and X.(a, +b,).
Observe that using standard algebric facts about the commutativity and associativity
of addition, we obtain.

G,=(a,+b)+... . +(a,+b,)=(a, +..+a )+ (b +..+b,)

=5 +t.
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It follows from the algebra of convergent sequences that , - A+B.
(ii) is left to the reader.

Remark The ONLY way to deal with an infinite series is through its partial sums
and by using the definition of the sum of an infinite series.

We need to be careful when dealing with infinite series. Mindless algebraic/formal
manipulations may lead to absurdities.

Lets=1-1+1-1+ ..+ + .

{Note that s has no meaning, if we apply our knowledge of infinite series!) Then

—s=-1+1-1+1+.. . =1+(-1+1+.)-1=s-1

Hence s = 1/2. On the other hand

s=(1-D+{0 -1+ ...=0
Hence we arrive at the absurdity 0 = 1/2.

Theorem 4.4.3 : The series Z::,un , where u_ 20, n2= N e IN converges iff its

sequence of partial sums {U } is bounded, in which case, U =sup{U_-n =N} =Z°° u

n=l N’

Proof : If Z::,un converges, then {U } converges. Since in view of Theorem

7.2 every convergent sequence is bounded, Z: u, has bounded partial sums. On

o Un
the other hand, suppose u, [€M,neN. Since u, >0 for n>N, U, is an increasing
sequence for n 2 N. Now in view of Theorem 8.1(1) every increasing bounded
sequence converges to its supremum, it follows that Z::,un converges to U.
Theorem (Comparison Test), 4.4.4 : Suppose 0 <u_<v_for large neN.
(). If Z:zlvn < 00, thenZ;un <
(2). If Y. u, =oo, theny v, =0
Proof : Let N< N be so large that 0<u <v, n>N. Then for the partial sums

U, = zzzluk and V, = zzzlvk . we have0<U -U, <V -V nzN Since N is

fixed, U_is bounded if V_is bounded, and V_is unbounded if U_is unbounded. The
result now follows from above Theorem.

Example 4.4.1 : Since n!>2"" neN, the converges of the series Y~ 1/n!

immediately follows from Theorem 9.6 and Example 9.1. Similarly the divergence

of the series z:zllf’ n®,0<g <1 follows by comparing it with the harmonic series.
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Theorem (Limit Comparison Test) 4.4.5: Suppose u, v_> 0 for large ne N.

. w0 . o
If O0<lim,_, u, /v, <, then an]un converges ift anlvn converges.

Proof . Let ¢=Iim___ u /v,. Then there is a large NecN such that

(£/2)v, <u, <(3£/2)v for n > N. The result now follows from comparison Theorem.

Example 4.4.2 : As an application to above theorem we shall show that
@ 143
zn:, [(ns +1) —HJ converges. For this, it suffices to consider the convergent series

z:ﬂlf’n2 , and note that u_=[(n’+1)"* —n] and v_=1/n" both are positive for all
nelN and

o=l 1) -] IR
" (n"+1)""+n(n"+1) " +n
= I —)l
A+1/0H* +1+1/0*) 41 3

- n+1
Example 4.4.3 : Determine whether the series 2, —7—— converges of diverges.
Solution : The dominant term in the numerator is n and the dominant term in the

denominator i1s /¢ — 3. This suggests that this series behaves as the convergent

i

1

series z - Since we are trying to prove convergence we will take
n=1

n+l 1
andb, = —
J1+n® n

In the Limit Comparison Test. Now calculate :

a, =

n+l n*(n+1) 1]
. J1+n® . n(n+D) 0 ) n
lim = lim = lim ——— = lim =1
=yt L =yt 1+n6 n—s+a0 ,‘1+n6 n—y+io 1 1
n2 3 _6+
1 n

In the last step we used the algebra of limits and the fact that

lim |~ +1=1

n—+x y

which needs a proof by definition.
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=1 and since we know that Z

Since we proved that lim e
n=1

=+t

n
NI < 1
ﬁ% is convergent,

2

n

— n+1
the Limit Comparison Test implies that the series Z \/H—ﬁ converges.
n

n=l
Theorem 4.4.6 : (d' Alembert’s Ratio Test), Let > c  be a series of positive
reals. Assume that
lime_, /¢, =1

n+l

Then the series X c_ is (i) convergent if 0 <r <1, (i) divergent if r > 1.

The test is inconclusive if r = 1.

Proof : If r < 1, choose an s such that r < s < 1. Then there exists N} such
thatc .,
follows.

< n>N. Coy S8°Cy, eN. \'
<sc_ forall n> N Hence ¢, <s"c,, for ke N. The convergence of X¢_

If r > 1, then ¢, =z ¢ for all n>N and hence X c, is divergent as the n-th term

does not go to 0.
Can you think of why the test is inconclusive when r = 1 ? The failure of the test

when r = 1 follows from looking at the examples > 1/n and ¥_1/n’
Theorem 4.4.7 : (Cauchy’s Root Test). Let > a_ be a series of positive reals.

Assume that lim_ a:” =a.Then the series X a_ is convergent if 0 <g <1, divergent

if a > 1 then and the test is inconclusive a =1.
Proof : If a < 1, then choose a such that a <o < 1. Then a_< o" for n = N. Hence

by comparing with the geometric series Z“ , the convergence of X a_ follows.

nzh
If then a_ =1 for all large n and hence, the n-th term does not approach zero.
Can you think of why the test is inconclusive when r = 1 ?
The examples > 1/n and > 1/n? illustrate the failure of the test when r = 1.
Exercise set :

n

2'n!

(1) Show that 2, is convergent.

nn
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n+l1

911

convergent ?

2)Is 2,

n
(3) Use your knowledge of infinite series to include that §—>0-

n!
(4) Show that the sequence [n_nj is convergent. Find its limit.

(5) Assume that > a, converges and >a =s. Show that 2 (a,, +a,,,) converges
and 1ts sum is s.

(6) Let (a ) be given such that a, — 0. Show that there exists a subsequence (ank)

such that the associated series 2, a, 1s convergent.

1
2" —
(8) Let (a ) be given. Assume that a_> O for all n. Let s denote the n-th partial

(7) Show that the series 2, " is convergent.

. . Sn . .
sum of the series> a_ . Show that the series Zn? is divergent. Can you say
anything more specific ?

Exercise 4.1 Determine whether the series is convergent or divergent. If it is
convergent find its sum.

o 2 n-1 e (_2)n+3 +°0 \/E " +op N3
(a) 26[5] Y © z( , @ 2

n=1 s 2n+l
+w1 ~2n-1 s 5 o ‘ . . )
O D 2oy (® 2(6inh (hy D0 dn+3
- R 2 + it
(1) Z(COSI)H ) an_l (k) Z_‘,('ﬂanl)n (1) Zln(H%)
on el i LI, L oo 3 -
m =7 ;amtan N (o) ZO: i ) ;[n3+l+e_“J
+<0 en +TCn +e0 . 1 +0 (n+1)2 o, i )
@ XS gnsm[;} CPRr NG CDRSCI
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4.2 Let Zn: u_ be a divergent series of positive numbers. Show that there exists

a sequence {e,} of positive numbers which converges to zero, but > " gu,

diverges.
4.3 Let {u } be a nonincreasing sequence of positive numbers and converges.

Show that lim __ nu = 0. Further, give an example to show that if the sequence {u }
is not nonincreasing then the result is false.

n—

4.4 Suppose u v, >0,neN,and {u /v }, {v/u} are both bounded sequence.

Show that the series Zi]un andZ::] v, either both converge or both diverge.
4.5 Suppose that {u } and {v_} are sequences of positive real numbers, and there

exists an N« N such that u /un <v,, /v, forall n 2 N show that

n+l n+l

(i) If ZL v_converges then Z;un converges.
(i) If Y u, diverges, then > " v, diverges.

4.6 Suppose that (u ) is a sequence of positive real numbers, and the series u_

Z“n diverges show that the series.

n=l
() 3.7 u,/(1+nu,) converges
(ii) z:=| u_/(1+nu_ ) diverges
(i) )" u, /(1+u;)diverges.

(10) Let 2.a, be absolutely convergent. Assume that a_+ 1 = 0 for any n. Show

. Z n
that the series l+a,

We shall now state and prove the integral test. We shall use some of the results
from the theory of integration, which will be stablished in Chapter 6. (See Page 202).

If £ [a,b] > Ris continuous with o <f(x)<Bforx c[a,b] then

is absolutely convergent.

a(b—a) < L" f(x)dx < p(b—a).

We can motivate this inequality geometrically by considering a non-negative
function f and using the geometric interpretation of the definite integral.
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Theorem 4.4.8 : (Integral Test) Assume that f : [1,20] —[0,0) 1s continuous and
decreasing Let a_ - =f(n) and b_: = jlnf (t)dt Then

(1) Xa, converges if (b ) converges

(i) 2a, diverges if (b ) diverges.

Proof . Observe that n = 2, we have a, s_f:_] f(tydt<a,, so that

n n-1
>a <[ f(tdt<Ya,
k=2 k=1

If the sequence (b ) converges, then (b ) is a bounded increasing sequence.

n .
zkzzak <b, Hence (s ) is convergent.

If the integral diverges, then b, — 0. Since b, < Z:ak , the divergence of the

series follows.

In the following examples, you will again have to use results such as the
fundamental theorem of calculus to compute the integral.

Exercise Set (Typical application of the integral test).

(1) The p-series ¥ n™® converges if p > 1 and diverges if p < 1.

(2) The series X L diverges.

{n+2)log(n+2)

logn
nP

(3) Show that the series 2 1s convergent if p > 0.

4.5 Alternating Series

Let a, a,, a,,..be a sequence of positive numbers. A series of the form
a —a ta—a +ta —a+ ..
is said to be alternating beacause of the alternating sign pattern. (The series
—a, +a,—a, + .. is also alternating, but it is more reassuring to start summation with
a positive term.)
The partial susm S_of an alternating series are evidently not monotone.
S, >8,8,>S8,8 >5, ..
However, the subsequences of odd-numbered and of even-numbered partial sums
S-S, 8, ... 8,88, ...
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may exhibit monotonic behaviour. In fact, S,
if the original sequence a,, a., a,, ....is monotone.

If convergent, an alternating series may not be absolutely convergent. For this
case one has a special test to detect convergence.

4.5.1. Alternating Series Test (Leibniz). If a, a, a

S
positive numbers monotonically decreasing to 0, then the series

a-a +ta-a ta-—-a+..

and S, are monotone if and only

is a sequence of

converges.

It 1s not difficult to prove Leibniz’s test. Indeed, since
a,za,>a, > ..

we have

a,>a, —a,+ta, >a —a,+a,—a,+a; >..

a,—a,<a —a,—a,<a —a,ta,—a,ta;,—a, <.

which means that S, ., is monotone decreasing and S, is monotone increasing.
Also S, ,, =8,, +a,,, > S, for every n, implying that both sequences are bounded

and hence convergent. To see that and S, and S, converge to the same limit,

observe that lim___(s,,,—S,,}=lim___ a,  =0. Proof finished.

n—

4.5.1 Example : The alternating harmonic series

converges by Leibniz’s test. Indeed, the sign pattern is + — + — + ... and, as

1
n —o the term 0 monotonically decreases to 0.

To illustrate the error estimate, observe for instance that

1—l+l—l+l—l+l—l+lm_746
2 34 5 6 7 8 9

is larger than the true sum but by no more than 0.1.

4.6 Absolute convergence

s - o . . . o
Definition : A series E 2,18 said to converge absolutely, if E a, | converges.
n- n-—

Theorem 4.6.1 : Every absolutely convergent series converges.
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Proof. Suppose Z:zl a, is an absolutely convergent series. Let s and G, be the

respetively. Then, for n > m,

n-th partial sums of the series >~ a  and Y " |a,
we have

n

<3

j=m+l

al=|o, —Gml.

n
2 2

J=m+l

sn—sm|:

Since { o, } converges, it is a Cauchy sequence. Hence, form the above relation
it follows that {s } is also a Cauchy sequence Therefore, by the Cauchy criterion, it
converges.

Definition : A series Z::] a, 1s said to converge coditionally Z::] a, if converges,

but not absolutely.
Example 4.6.1 : We observe the following

(1)n+1

(1) The series Zw_l— is conditionally convergent.
= oon

(_1)n+l

(i1) The series Z'j"_l ~— is absolutely convergent.
n= n’

n+l
o {1
(iii) The series ZFI& is absolutely convergent.

n!
) = sin{not)
Example 4.6.2. : For any ¢ < R, the series Zn:, s absolutely convergent
. Note that
sin{no 1
(q ) <— V¥YnelN,
n n
. w1 ) « |sin{no)

Since anl 7 converges, by comparison test, zn:, | also converges,

Theorem 4.6.2 : Suppose Z:zlan is an absolutely convergent series and (b ) is
a sequence obtained by rearranging the terms of (a ). Then Z; b_ is also absolutely

convergent and Y~ a, =Y " b, .

n=l n
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4,77 Power Series

A power series {centered at 0) is a series of the form

Yax"=a +ax+ax +..+ax"+. ..
n=0
where the a_are some coefficients. If all but finitely many of the a_are zero, then
the power series is a polynomial function, but if infinitely many of the a_are nonzero,
then we need to consider the convergence of the power series.
The basic facts are these : Every power series has a radius of convergence
0 <R <o which depends on the coefficient a . The power series converges absolutely
in x| < R and diverges in |x| > R and the convergence is uniform on every interval
x| < p where 0<p<R. If R > 0, the sum of the power series i1s infinitely

differentiable in |x| < R, and its derivatives are given by differentiating the original
power series term-by-term.

Definition : Let (a )., be a sequence of real numbers and ¢ R. The power
series centered at ¢ with coefficient a_1is the series,

ian(x—c)“_

Here are some power series centered at 0 :
- n 2 3 )

Zx =l4+x+x" 4+ +x" 4.,

n="
=1 1 1 1

—xX" =1+ +—x+=x+—x"+...
—nl 2 6 24

D" =1+x+2x% +6x7 +24x" + .

n={

Z“(l)“m2n =x x +x*+x"+...
n=0

and here 1s a power series centered at 1 :

= ()™ n 1 > ; 1 4
> (x-D)"=(x-D——(x -1V +=(x—-1P ——(x-1)*+....
n={ n 2 3 4
The power series in Definition 6.1 is a formal expression, since we have not said
anything about its convergence. By changing variables x — (x — ¢), we can assume
without loss of generality that a power series is centered at 0, and we will do so when
it’s convenient.
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4.8 Radius of convergence

First, we prove that every power series has a radius of convergence
Theorem 4.8.1 : Let

ian(x—c)"

be a power series. There 15 an 0<R <o such that the series converges
absolutely for 0 < |x — ¢| < R and diverges for x — ¢ > R. Furthermore, if 0< p <R,
then the power series converges uniformly on the interval |x — ¢/ < p. and the sum
of the series is continuous in [x — ¢| < R
Proof : Assume without loss of generality that ¢ = 0 (otherwise, replace x by
X — ¢). Suppose the power series
zanxg
n=0
converges for some x, € R with x # 0. Then its terms converges to zero, so they
are bounded and there exists M > 0 such that

aX|sM  forn=01,2, .

If x| < |x,|, then

n
X

< Mr* r= <1,

¥

nf _ nf| &
a,x"|=a,x;

Xy

Comparing the power series with the convergent geometric series S Mr", we see
that 2a x" is absolutely convergent. Thus, if the power series converges for some
X, € R, then it converges absolutely for every x e R with |x |<| x, |.

Let

R =sup {l X|20:Za x" converges}

If R = 0 then the series converges only for x = 0. If R > 0, then the series

converges absolutely for every x € R with [x|<R, because it converges for some

x e R with [x|<[x | < R. Moreover, the definition of R implies that the series diverges
for every with [x| > R If R = e then the series converges for all x c R .

Finally, let 0 <p <R and suppose |x| < p. Choose g >0 such that p<o<R.
Then Y a c" converges, so |an0'"|SM, and therefore

pn
a, 6" —<Mr",
o

X
ax"=agc —"<
G
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where r = p/q <1. Since ZMrn < oo the M-test {Theorem 5.22) implies that the

series converges unformly on | x | < p, and then it follows from Theorem 5.16 that the
sum 1s continuous on |x| <p. Since this holds for every O0<p <R, the sum is
continuous in x < R.

Theorem 4.8.2 : Supose that a_ =0 for all sufficiently large n and the limit

R = lim u

n—* g

n+l

exists or diverges to infinity. Then the power series

ian(x c)

has radius of convergence R.

Proof. Let
. la,(x—c)™ E
r=1lim M =|x—cllm —n+l
s an(x —C) s an

By the ratio test, the power series converges if 0<r<lor[x-¢/<R, and

diverges if 1<r<, or [x—¢|>R, which proves the result.

The root test gives an expression for the radius of convergence of a general
power series.
Theorem 4.8.3 : Hadamard The radius of convergence R of the power series

i a (x-c¢)

1

limsup, ., |a, |

is given by =

where R = O if the lim sup diverges to s0,and R = oo, if the lim sup 15 O.
1 L
Proof. Let l'=£i_l)'l;l°|an(X—C)n|" =|x—c|rlli_1)1;1°sup|an|"

By the root test, the series converges if 0<r<l or|x—c¢|<R, and diverges if

l<r=w,or|x—-cl>R, which proves the result.

This theorem provides an alternate proof of Theorem 6.2 from the root test ; in
fact, our proof of Theorem 6.2 is more-or-less a proof of the root test.
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Examples of Power Series
We consider a number of examples of power series and their radii of convergence.
Examples 4.8.1 : The geometric series

(73]
an =l4+x+x"+ .

n=0

has radius of convergence

R=lim1=1‘

n— 1

so it converges for x < 1, to 1/(1- x), and diverges for x > 1. At x = 1, the series

becomes
1+1+141+...
and at x = 1 it becomes
1 1+1 1+1...

so the series diverges at both endpoint x = + 1. Thus, the interval of convergence
of the power series is (—1, 1). The series converges uniformly on [—p, p] for every
0 <p <1 but does not converges uniformlyon (—1, 1) (see Example 5.20. Note that
although the function 1/(1 — x) 1s well-defined for all x # 1, the power series only
converges to it when |x[<1.

Example 4.8.2 : The series
Z—x" =x+lx3+lx3+lx4+ ....
o 2 3

has radius of convergence

R = lim—/" :lim(1+l]:1.
(D) moel n

At x = 1, the series becomes the harmonic series

= 1 I 1 1
D=l o+
2 3 4

n=1 n
which diverges, and at x = —1 it is minus the alternating harmonic series
= (—1)" 11 1
Z( LT L
= n 2 3 4

which converges but not absolutely. Thus the interval of convergence of the
power series is [-1, 1). The series converges uniformly on [—p, p] for every 0<p <1
but does not converge uniformly on (-1, 1).
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Example 4.8.3 : The power series

. lxn =14+ —xX+—X"+ ...
— n! ! !
has radius of convergence
!
R =1lim L/n' (n+ Lt =lim{n+1)=<
n— ]J."(n +])! n—)c-o nl n—s0

so it converge for all xR Its sum provides a definition of the exponential
function exp : R — R (see Function 6.5.)
Example 4.8.4 : The power series
z( LANC N L
(2n)* 2l 4l
has radius of convergence R =, and it converges for all xR . Its sum
provides a definition of th cosine function cos | R - R
Example 4.8.5 : The series
S LT SO S
oy (2n+1)' 3 5!
has radius of convergence R =, and it converges for all x <R . Its sum
provides a defintion of the sine function sin : § >R
Example 4.8.6 : The power series

i(n!)x“ =1+x+2Dx+(3Nx° +(4D)x* + ...

n={
has radius of convergence

. n! . 1
R =lim =lim——=0.
o {n+1)t nern+l

so it converges only for x = 0, if x # 0, its terms grow larger once n > 1/x and

(n)x"|>wasn—>w.
Example 4.8.7 : The series

Z( l)m(x D" =(x —1)——(x 1 +— (x 1)°..

n=1
has radius of convergence
(-D)™'/n . n . 1

R=1im — =lim =lim =1
a1/ n+1) m>en+l1 r><1+1/n

E
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so it converges if (x—1) < 1 and diverges if (x—1) > 1. At the endpoint x = 2, the
power series becomes the alternating harmonic series.

1 1 1
l——+———+...
2 3 4
which coverages. At the endpoint x = 0, the power series becomes the harmonic
series
1 11
l+—+=- —+

which diverges. Thus the interval of convergence is (0, 2)

Example 4.8.8. : The power series

E

z:(—l)“xEn =x—x"+x—x +x" x4, .

1 if n=2%
an: .
0 if n=2"

has radius of convergence R = 1. To prove this, note that the series converges

with

for |x| < 1 by comparison with the convergent geometric series Y |x|", since

W ifn=2
0<x P ifn=2"

If |x| > 1, the terms do not approach O as , so the series diverges Alternatively,

we have
lin 1 if n= 2k
0 ifnz2"

limsup|a,|"=1

n
|anx

a

n

S0,

H—e

and the root test gives R = 1. The series does not converge at either endpoint
x =+1, 50 its interval of convergence is (-1, 1).
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4.9 Summary

In this umt, we have introduced the concept of infinite series, the convergence
of series, alternating series, absolutely convergent series, power series, and its radius
of convergence. Many essential results, along with their application, have been
discussed in this unit. Some problems have been given at the end of this unit.

e A formal sum of a sequence is called a series

e If the sequence of partial sum of the sequence is convergent, then the series
1s convergent; otherwise, the series is divergent.

e The series is said to be absolutely convergent if the series is convergent.
e If converges then

e Sum of two convergent serieses is convergent.

o Every absolutely convergent series converges.

o A series of the form 1s called a power series with center at and coefficient.

e The radius of convergence of a power series is the radius of the largest disk
in which the series converges.

e The radius of convergence of a power series is either a non-negative real
number or infinite.

4.10 Keywords

Series, convergent series, divergent series, geometric series, d” Alembert’s ratio
test, Cauchy’s root test, alternating series, absolutely convergent series, power series,
the radius of convergence.
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4.12 Model Questions

A (1)

2)

()

4

)

(©6)

(7

(8)
©)

Let b, be a convergent series of non-negative terms. Let (a ) be sequence
<Mb, for n>N, for a fixed N and M > 0. Show that

such that |a,

Z a, is convergent.

If (a ) and (b ) are sequences of positive terms such that a /b, — (>0,
Prove that Y a and ) b, either both converge or both diverge.

As an application of the last item, discuss the convergence of
(@) Y 1/2n, (b) Y 142n-1) and (c) D> 2/(n*+3).

Assume that z a, is absolutely convergent and (b ) is bounded. Show that
Z‘anbn is convergent.

Show that the sum of two absolutely convergent series and a scalar multiple
of an absolutely convergent series are again absolutely convergent. Hence

conclude that the set ¢' of all absolutely convergent series is a real vector
space.

Let Zan be a convergent series of positive terms. Show that Zai is

convergent. More generally, show that Zaﬁ is convergent for p > 1.

. n' .
Let p > 0. Show that the series Z wgr 18 convergent. Can we take p = 07

Find the values of x &[0, 2] such that the series D sin"(x)is convergent.

Let Zan and an be convergent series of positive terms. Show that

> Ja,b, is convergent.
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(10)

(11)

(12)

(13)
(14)

(15)
(16)

(17)

(18)
(19)

Give an example of a convergent series » a, such that the series Y a;
is divergent.

Give an example of a divergent series Zan such that the series Zai is

convergent.

Let (a ) be a real sequence. Show that Z(an —a,, ) is convergent iff (a )

is convergent. If the series converges, what is its sum?
When does a series of the form a + (ath) + {(at+2b) + ... convergent?

-

g( n_ ),‘ for ne N. Show that the series Zan is
n+1)

a_+1|
a

n

Assume that

absolutely convergent.

a

nl -

)

Prove that if Y |a,| is convergent, then |Zan
Prove that is | x| < 1,

1+x2+x+x4+x6+x3+x8+xm+x5+...=1L‘
— X

Prove that if a convergent series in which only a finite number of terms
are negative is absolutely convergent.

If (n"a ) is convergent, then Zan is absolutely convergent.
Assume that (a ) is a sequence such that Znai is convergent. Show that

z a, is absolutely convergent.

B. Solved Questions :

1. In each of the following cases determine whether or not the series converges.

S

1
@ 23

n=l

Ans. We could show convergence here by using the ratio or root test or more
simply by using the comparison test by noting that

0=

1 1

2"+1 2"

The upper bound is a term from a convergent geometric series.
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Ans.

(c)
Ans.

(d)
Ans.

(a)

=

4n°—n+3
(b) E n“+2n

This is divergent.

_An'-n+3_1. . _4-1/n+3/n’

. & —4 asn oo
n n’ +2n n ™ 1+2/n°

¢, =4 implies that there exists N such that ¢ >3 for n>N. Hence for
n=N we have a, 23/n and since 21/ n diverges we have by comparison

that Zan diverges.

Zn++/n
z“2n3—1'

n=l

This converges.

_n+vn _ 1 _1+1/vn
"2’ -1 n* Mt 2-1/n’

a —>%asn—>oo.

¢, — 1/2 implies that there exists N such that ¢ < 1 for n >N . Hence for
n=N we have a_ < 1/n” and since z“lf*’n2 converges we have by

comparison that Y a, diverges.

zncle—n‘.
n=l
By the root test
.t : 44 _ 23yln ad
a, =n'e™, a)" =(n""} (e " ) =(n'"")e" >0 asn—>e

Here the results is as a consequence of n''" — 1 and e™ — 0. By the root test
the series converges.

For each of the following series determine the values of x € R such that the
given series converges.

Xk

“~ k!
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Ans. Let a,_=x"/k! and use the ratio test. We have

k+1

a, X /(k+1)  x

= = =0 ask oo
a, S k10 ®

By the ratio test the series converges (absolutely) for all xeR .

(b) In the following ¢re R is not an integer.

(r.(ot—l)X2

+..

i(a(o&—l)..‘(a—kﬂ)

= )xk=1+ax+

k=0

Ans. Let a, = (0 —1). (e¢—k+1)x*/k!. Using the ratio test

ay _o—-k_ _oa/k-1

= = - k— e
a2, k+l I+lk % ®

Thus the series Zak converges absolutely if | x | < 1 which in turn imples
that the series converges for | x| < L.

If | x| > 1 then the terms of the series are unvounded and thus the series
diverges. What happens when x = —1 or x = 1 needs more refined tests to
determine if the series converges or diverges and the outcome depends on o.
This will not be considered further here.

k’x*
© X
Ans. The root test is the easiest test to use here. With a, =k’x"/3* we have

LKy
o (P TII
|ak| =T_)? as k> .
By the root test the series converges (absolutely) if | x| < 3, it diverges if
|x|> 3. If | x| =3 then | a | = k* and since these terms become unbounded

it follows that the series diverges when | x| = 3.

=

(d) E krx*

k=0
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Ans.

(e)

Ans.

The root test is the easiest test to use here. With a = k¥x* we have
17k
|ak |= |kx|.

This only converges if x = 0 and is unbounded for x #0. Hence the series
only converges when x = 0.

Zakxk =14 2x+x"+2x +x*+.

k=0

ie. witha,=landa, =2fork=0 1,2, . .

2k+1
Let b, = a x* The ratio test does not give any information here as a , /a_does
not have a limit as k — «. However we can still use the root test. Since

1<a, <2 1<a*<2™ 5lask— oo

Thus  [o,[" =al|x| > |x| ask —ee

The series converges (absolutely) if x| < 1 and diverges if x| > 1. By inspection
the series diverges if x = 1 as the terms of the series do not tend to 0 as

k — o . It can be shown that the series also diverges when x = —1.
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