
PREFACE

In a bid to standardise higher education in the country, the University Grants Commission
(UGC) has introduced Choice Based Credit System (CBCS) based on five types of
courses: core, generic discipline specific elective, and ability/ skill enhancement for graduate
students of all programmes at Elective/ Honours level. This brings in the semester pattern,
which finds efficacy in tandem with credit system, credit transfer, comprehensive and
continuous assessments and a graded pattern of evaluation. The objective is to offer
learners ample flexibility to choose from a wide gamut of courses, as also to provide them
lateral mobility between various educational institutions in the country where they can carry
acquired credits. I am happy to note that the University has been recently accredited by
National Assessment and Accreditation Council of India (NAAC) with grade “A”.

UGC (Open and Distance Learning programmes and Online Programmes) Regulations,
2020 have mandated compliance with CBCS for all the HEIs in this mode. Welcoming this
paradigm shift in higher education, Netaji Subhas Open University (NSOU) has resolved
to adopt CBCS from the academic session 2021-22 at the Under Graduate Degree
Programme level. The present syllabus, framed in the spirit of syllabi recommended by
UGC, lays due stress on all aspects envisaged in the curricular framework of the apex body
on higher education. It will be imparted to learners over the six semesters of the Programme.

Self Learning Materials (SLMs) are the mainstay of Student Support Services (SSS)
of an Open University. From a logistic point of view, NSOU has embarked upon CBCS
presently with SLMs in English. Eventually, these will be translated into Bengali too, for the
benefit of learners. As always, we have requisitioned the services of the best academics in
each domain for the preparation of new SLMs, and I am sure they will be of commendable
academic support. We look forward to proactive feedback from all stake-holders who will
participate in the teaching-learning of these study materials. It has been a very challenging
task well executed, and 1 congratulate all concerned in the preparation of these SLMs.

I wish the venture a grand success.

Professor (Dr.) Subha Sankar Sarkar

Vice-Chancellor
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Unit 1  Calculus

Structure

1.1 Objectives

1.2 Introduction

1.3 Recapitulations

1.3.1 Limit of a Function

1.3.2 Continuity of Function

1.4 Continuity and Differentiability

1.5 Intuitive Ideas of Continuous and Differentiable
Functions

1.6 Average and Instantaneous Values of A Function

1.7 Approximation

1.8 Summary

1.1  Objectives

While you go through the pages of this chapter, you will learn

1. Continuity and differentiability of functions using intuitive ideas.

2. Method of approximation.

3. How to find out average and instantaneous values of functions defined in appropriate
domain.

1.2  Introduction

Calculus is widely used to create mathematical models in order to arrive at an optimal
solution. In physics calculus is used in a lot of its concepts, in the mathematical study of
continuous change, in dynamics, astronomy, astrophysics and quantum mechanics. However
in the pages to follow we will indulge in some introductory topics in the form of
recapitulations of some basic ideas of calculus. Even in thermodynamics and statistical
mechanics, differential are redefined to apply the rules of calculus.
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Key words

Limits, continuity, Differentiability, Taylor’s and Binomial series. Approximate solution,
average value of functions.

1.3  Recapitulation

1.3.1 Limit of a function

We say that a function f(x) has a limit L at a if and only if for every ε > 0 there exists
a positive number δ depending on ε such that for any x in the domain of f(x) with the
property

0 < |x – a| < δ we have |f(x) – L| < ε .

In symbol we write

lim ( ) ;
x a

f x L


  or, f(x) → L ; as x → a

A similar definition extends to functions in two variables. We say that L is the limit of
a function f(x, y) at the point (a, b), written,

( , ) ( , )
lim ( , )

x y a b
f x y L




If  f(x, y) is as close to L as we please whenever the distance from the point (x, y)
to the point (a, b) is sufficiently small, but not zero.

Using ε – δ definition we say that L is the limit of f(x, y) as (x, y) approaches (a, b)
if and only if for every given ε > 0 we can find a δ > 0 such that for any point (x, y) where

   2 20 x a y b      , we have ( , )f x y L   .

1.3.2. Continuity of a function

A function f (x) is said to be continuous at x = a, if; f (x) has a definite value at x =
a;  lim

x→a  
f(x) exists and lim

x→a  
f(x) = f(a).

In other words, f(x) is said to be continuous at x = a, if

lim ( ) lim ( ) ( )
x a x a

f x f x f a
  

 

Using the ε – δ definition, the single valued function f(x) is said to be continuous at
x = a provided f(x) possess a definite finite value at x = a and given any pre-assigned
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positive quantity ε, however small, we can determine another positive quantity δ (whose

value depends on ε), such that, ( ) ( )f x f a    for all x in x a  

A function f(x, y) is continuous at the point (a, b) if the following two conditions are
satisfied :

a) Both f(a, b) and lim
(x, y) → (a, b)

 f(x, y) exist.

b) lim
(x, y) → (a, b)

 f(x, y) = f(a, b)

Example : Art (1.4.1) :

Example 1: Find 
3 3

( , ) (0,0)
lim

x y

x y

x y




Solution : 
3 3

2 2

( , ) (0,0) ( , ) (0,0)
lim lim 0 ,

x y x y

x y
x xy y

x y 


   

     0x y 

Example 2: Find 
2

( , ) (0,0)
lim

x y

x xy

x y




Solution : 
  
  

  2
( , ) (0,0)

( , ) (0,0)

lim ( )

lim
x y

x y

x x y x yx xy x y

x yx y x y





  


 

 
( , ) (0,0)

lim 0


  
x y

x x y

Exercise Art 1.4.1 :

1) Find the limit : 
0

2 2 1
lim :

2 2x

x
ans

x

   
  

2) Find 
2

4 2( , ) (1,1)

( ) 1
lim :

2x y

x y
ans

x y

 
  

1.4  Continuity and Differentiability

If a function f(x) is differentiable at x = a then f (x) must be continuous at x = a.
However the converse is not always true i.e. if a functions f(x) is continuous = a, it is not
necessarily differentiable at x = a.
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Proof :

Now since f(x) is differentiable at x = a

0
( ) ( )

( ) limh
f a h f a

f a
h

    is a finite quantity.

Now  
0 0 0

( ) ( )
lim ( ) ( ) lim lim ( ) 0 0
h h h

f a h f a
f a h f a h f a

h  

        

Therefore 
0

lim ( ) ( )
h

f a h f a


   i.e. f (x) is continuous at x = a.

However from the definition of continuity we cannot always arrive at the differentiability
of a function, as is discussed in the following examples.

Example of Art 1.5:

Example 1: A function f (x) is defined as follows

0
( )

0

x when x
f x

x when x


  

Examine the continuity and differentiability of f(x) at x = 0.

Solution : We have 
0 0

lim ( ) lim 0
x x

f x x
  

 

Since f(x) = x when x > 0

And 
0 0

lim ( ) lim ( ) 0
x x

f x x
  

  

Since f (x) = – x when x < 0

Again f (0) = 0

Therefore, 
0 0

lim ( ) lim ( ) (0)
x x

f x f x f
  

 

Therefore the function is continuous at x = 0

Now 
0

( ) ( )
( ) lim

h

f x h f x
f x

h

  

∴
0 0

(0 ) (0) ( )
(0) lim lim

h h

f h f f h
f

h h 

   
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Since  f (0) = 0

Now 
0 0

( )
lim lim 1

h h

f h h

h h  
 

Since f(x) = x when x> 0 and h → 0+ means 0h 

And 
0 0

( )
lim lim 1

h h

f h h

h h  


  

Therefore right hand limit and left hand limit of f / (0), though exist, are unequal.
Therefore f(x) is not differentiable at x = 0

Example 2 : Examine the continuity and differentiability of f(x) = 2x2 + 3 at x = 1

Solution :  2

1 1
lim ( ) lim 2 3 5

x x
f x x

  
  

2

1 1
lim ( ) lim 2 3 5

x x
f x x

  
  

And f (1) = 5

Therefore 
1 1

lim ( ) lim ( ) (1)
x x

f x f x f
  

 

And f(x) is continuous at x = 1

Now  
0

( ) ( )
( ) lim

h

f x h f x
f x

h

  

∴ 
0

(1 ) (1)
(1) lim

h

f h f
f

h

  

Or,
2

0

2(1 ) 3 5
(1) lim

h

h
f

h

                 (1) 5f 

2

0

2 4
lim
h

h h

h



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Now Right hand limit of  
2

0 0

2 4
(1) lim lim 2 4 4

h h

h h
f h

h  

          0h 

And left hand limit of 
2

0 0

2 4
(1) lim lim 2 4 4

h h

h h
f h

h  

    

Therefore right hand limit of f  (1) and left hand limit of f  (1), both exist and are

equal.

And so, f  (1) exists and its value is 4 i.e. f (x) is differentiable at x= 1.

Exercise of Arts 1.4 and 1.5 :

1)
21

sin( ) 0
( )

0 0

x when x
f x x

when x

  
 

Discuss the continuity and differentiability of f (x) at x = 0.

2) Find the co-efficient a and b such that the following function f is continuous and
differentiable at x = 1

2

1
| | 1

| |( )

2 | | 1

when x
xf x

ax b when x

  
  

Solution Exercise of Arts : 1.4 and 1.5 :

Solutions (1) : Differentiability at x = 0, we have by the definition

0

(0 ) (0)
(0) lim ,

h

f h f
f

h

    therefore right hand limit,

21 2

2
0 0 0 0

sin( ) sin ( ) sin
lim lim lim lim 1;h

h h h z

hf h h z

h h zh      
    

where, h2 = z  ∴ z → 0+ as h → 0+

Similarly,  
0

( )
lim 1

h

f h

h

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Therefore the function f (x) is differentiable at x= 0. Since f(x) is differentiable at = 0,
it must be continuous at x= 0.

Solution 2 : Since f (x) is continuous at x = 1, 
1

lim ( ) (1) 1
x

f x f


   or

2

1
lim (2 ) 1

x
ax b


   i.e. 2a + b = 1

Again, f (x) is differentiable at x = 1.

0 0

( ) (1) (1 ) 1
(1) lim lim

h h

f x h f f h
f

h h 

       and right hand f  (1) = left hand

f  (1)

Or,
0 0

(1 ) 1 (1 ) 1
lim lim

h h

f h f h

h h  

   


Or,
2

0 0

1 1 1
lim 1 lim 2 (1 ) 1

1h h
a h b

h h h  

           

21
( ) when 1 and ( ) 2 , when 1f x x f x ax b x

x
       


Or, 2

0 0

1 1
lim lim 2 1 2 (2 )

1h h

h
a b a h h

h h h  

           
         2 1a b 

0 0

1 2 (2 )
lim lim

1h h

ah h

h h  

     

Or, – 1 = 
0

lim 2 (2 ) 4
h

a h a


 

1

4
a  

Therefore  
1 3

1 2 1
2 2

b a    
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1.5  Intuitive Ideas of Continuous and Differentiable
Function

1) The function 
1

( )
1

f x
x




 is discontinuous

at x = 1 because at = 1, f (1) is not defined (has

0 as denominator) and because 
1

lim ( )
h

f x


 does

not exist (equals  ). The function is however
continuous every where except at x = 1, where it
is said to have an infinite discontinuity (Fig 1.6.1].

2) The function 
2 2

( )
x a

f x
x a





 is

discontinuous at x = a because f(a) is not defined (has zero, both numerator and

denominator) and because lim ( ) 2
x a

f x a


 . The discontinuity here is called removable

since it may be removed by redefining the function as 
2 2

( )
x a

f x
x a





 for

, ( ) 2x a f a a  .

Fig. (1.6.2) Fig. (1.6.3)

(Note that the discontinuity in example (1) cannot be so removed because the limit also

does not exist). The graphs of 
2 2

( )
x a

f x
x a





 and g(x) = x + a are identical except at

x = a, where the former has a break [fig 1.6.2]. Removing the discontinuity consists simply
of joining the break [fig 1.6.3].

A differentiable function of one real variable is a function whose derivative exists at

--
--

--
--

--
--

--
---------2a

a0

Fig. (1.6.1)
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each point in its domain. As a result, the graph of a differentiable function must have a
tangent line (non-vertical) at each point in its domain, be relatively smooth and cannot
contain any breaks, bends or cusps.

Fig. (1.6.4) Fig. (1.6.5)

In fig (1.6.4) the absolute value function is continuous i.e. it has no gap. It is differentiable
everywhere except at the point x= 0, where it makes a sharp turn as it crosses the y –
axis.

A cusp on the graph of a continuous function fig (1.6.5) at x = 0. The function is
continuous but not differentiable.

A function with a bend, cusp a vertical tangent may be continuous but fails to be
differentiable at the location of the anomaly.

Below are graphs of functions that are not differentiable at x = 0 for various reasons.

Fig. (1.6.6) : no tangent at x = 0 Fig. (1.6.7) : jump in the value of function
at x = 0
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Fig. (1.6.8) : function increases indefinitely Fig. (1.6.9) : tangent at x = 0 is vertical.
at x = 0

Example : Art (1.6)

Find the  
1

lim ( )
x

f x


, where f (x) = x + x2 by intuitive ideas.

Solution : We tabulate the values of f(x) near x = 1 in the following table

x 0.9 0.99 0.999 1.01 1.1 1.2

f(x) 1.11 1.9701 1.997001 2.0301 2.31 2.64

From this it is reasonable to say that, lim x → 1– f(x) = lim x → 1+ f(x) = lim x +1
f(x) = 2

1.6  Average and Instantaneous values of functions :

Suppose a function f (x) is continuous on
the interval (a, b). We want to find the average
value of f(x) in the interval (a, b). We divide
the interval by n numbers of intervals x

1
 = a,x

2
,

...., x
n
 = b and find the n numbers of values of

f (x) [fig 1.7.1] e.g. at x
1
, f(x

1
); at x

2
, f(x

2
);

and so on and we get the approximate average
value of f (x) on (a, b) as :

1 2( ) ( ) ... ( )nf x f x f x

n

  
       (1.1)

Now let the points x
1
, x

2
, ... be Δx apart. And we multiple the numerator and the

denominator of the approximate average by Δx , then average of  f(x) on (a, b) is
approximately equal to

Fig. 1.7.1

x
n
 = b
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1 2( ) ( ) ... ( )nf x f x f x x

n x

     


Where  nΔx = b – a.

Now in the limit , 0n x     and we get the average value of f(x) as

( ) ( )
( )

b b
a a

b
a

f x dx f x dx
f x

b a dx
 


 


(1.2)

We see that f(x
1
), f(x

2
), ... etc are the instantaneous values of f(x) at x

1
, x

2
, ... etc.

In alternating current theory we take the instantaneous value of current as i = i
0
 sin ωt

or i
0
 cos ω t, i

0
 is the amplitude. Now average value of i for the period 

2
T




  is given

as,

00
0

00

sin 1
sin

T T

T

i t dt
i i t dt

Tdt


   





.

If we put , ,
d

t dt d dt
   


  

Or, 2
00

1
sin 0, 2

2
i i d T

    


    
Thus we see that the average value of sin θ or cos θ for a complete period or any

number of periods is zero. In such cases the average of the square of the function is taken
to define a significant mean like root mean square current.

1.7  Approximation

There are many problems in physics which can be written as an infinite series and its
solution lies in finding the sum of the infinite series. However it is often found that the results
differ very little if we would have taken a finite number of terms at the beginning of the
series rather than taking the entire infinite series. In this way we can find an approximate
solution of the problems which cannot be solved exactly. The accuracy of the solution can
be reached to the desired value, by taking as many terms of the series as required to reach
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the desired accuracy. Also many functions can be expanded in infinite power series (i.e. a
series expanded in powers of x having infinite number of term).

Taylor’s series :

We can write the Taylor series for a function f(x) about x = a ;

2 ( )1 1
( ) ( ) ( ) ( ) ( ) ( ) ... ( ) ( ) ...

2! !
n nf x f a x a f a x a f a x a f a

n
          (1.3)

Where f (n)(x) represents nth derivative of f(x)

Or,
( )

0

( )
( ) ( )

!

n
n

n

f a
f x x a

n




  (1.4)

The Maclaurin series for f(x) is the Taylor’s series about the origin. Putting a = 0 in
equation (1.4) we obtain the Maclaurin series for f(x) :

( )

0

(0)
( )

!

n
n

n

f
f x x

n




  (1.5)

The polynomial formed by taking some initial terms of the Taylor’s series is called
Taylor’s polynomial.

A Taylor’s series is a representation of function as an infinite sum of terms that are
calculated from the values of the function’s derivatives at a single point. The function can
be approximated by using the Taylor polynomial of suitable number of terms. Taylor’s
theorem gives quantitative estimate on the error introduced by the use of such an
approximation.

Example 1 : The sine function is closely approximated by its Taylor polynomial of degree
7 (dotted) for a full period centred at the origin.

The dotted curve is a polynomial of degree seven.

3 5 7
sin

3! 5! 7!

x x x
x x   

The error in this approximation is no more than 
9

9

x
. In particular for – 1 < x < 1

the error is less than 0.000003 (fig. 1.8.1).

Fig. 1.8.1
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Example 2 : Using the quadratic Taylor polynomial for 
2

1
( )f x

x
 , approximate the value

of 
1

4.41
.

Ans. The quadratic Taylor polynomial is 
2

2
( ) ( )

( ) ( ) ( ) ( )
1! 2!

f a f a
f x f a x a x a

 
    

Now 3 4
2 6

( ) ; ( )   f x f x
x x

; we write 4.41 = (2 + 0.1)2, implies a = 2 & x = 2.1

2
2

(2) (2)
( ) (2) (2.1 2) (2.1 2)

1! 2!

f f
f x f

 
     

2

2 6
8 16

(2) (2.1 2) (2.1 2)
1! 2!

f

      
       

= 0.25 – 0.025 + 0.001875 = 0.226875

The actual value is 
1

4.41
 = 0.226775

So the approximation deviates only about 0.05%.

Example 3 : What is the quadratic approximation of the function ( ) 4f x x   at

x = 0

Solution :  
1

2 2 232
2

(0) (0) 1 1 1
( ) (0) 2 2

1! 2! 4 2! 4 14

f f
f x f x x x x x x

 
        

Binomial series : The binomial series can be written as :

2 3

0

( 1) ( 1)( 2)
(1 ) 1 ...

2! 3!
p n

n

p p p p p p
x x px x x

n





    
       

 
   (1.6)

P is any real number, positive or negative or fractional and the expansion is an infinite

series, 
p

n

 
 
 

 is called a binomial co-efficient.
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The binomial co-efficients are

( 1) ( 1)( 2)
1; ; ; ;

0 1 2 31! 2! 3!

p p p pp p p p p p         
          

       

( 1)( 2)...( 1)

!

p p p p p n

n n

     
 

 

To get an approximation we can consider a few terms from the expansion (1.6).

Example 1 : For small x, 1 + px is a reasonable approximation for (1 + x)p. Notice
that this correspond to picking the first two terms from (1.6). Now suppose x = 0.0007.
Therefore

(1.0007)9 = 1 + 0.0007 × 9   1.0063

Now actual value of (1.0007)9 = 1.006317668842...

Therefore our result is correct up to four decimal place.

1.8  Summary

Definitions of limit, continuity and differentiability are recapitulated. Application of series
in finding the approximate solution of physical problems which cannot be solved exactly has
been discussed. Average and instantaneous values of function is defined.
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Unit 2  Second Order Differential Equation

Structure

2.1 Objectives

2.2 Introduction

2.3 Linear Second Order Differential Equation

2.3.1 Second Order Linear Homogeneous Differential
Equations with Constant Coefficient

2.3.2 Second Order Linear Homogeneous Equations with
Constant Coefficient : Working Rules for Solutions
(Complementary Functions)

2.4 The Existence and Uniqueness Theorem

2.5 Linearly Dependent And Linearly Independent
Solutions of Differential Equations : Wornskian

2.5.1 Non-Homogeneous Linear Equation with Constant
Coefficient

2.5.2 Inhomogeneous Linear Equations with Constant
Coefficient: Working Rules for Finding the Particular

Integral

2.6 Summary

2.1  Objectives

In going through the chapter you will learn :

1. To classify second order differential equation.

2. To find out solution of second order differential equation in terms of complementary
functions and particular integral.

3. To find out the general solution and to define linearly dependent and independent
solutions in terms of wronskian.

4. Statement of existence and uniqueness theorem for initial value problems and their
applications.
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2.2  Introduction

An universally accepted method for formulations and solutions of physical problems
is to construct the relevant differential equation and then attempt to solve it. Thus differential
equations are at the centre to many physical problems. In this chapter we shall limit our
discussions to the techniques of solving second order linear homogeneous or inhomogeneous
equations with constant co-efficients and also some relevant physical applications will be
discussed.

An equation containing derivatives is called differentials equation, which may be
classified as ordinary or partial.

Ordinary differential equation : Differential equation containing only one independent
variable is called ordinary differential equation.

Example : 
2

2
2

0
d x

x
dt

  , where x = x(t) i.e. functions of one independent

variable t.

Partial differential equations : Differential equations containing partial derivatives
of the dependent variable y (x

1
, x

2
, x

3
 ... x

n
) with respect to more than one independent

variables x
1
, x

2
, ... x

n
 are called partial differential equations.

Example : 
2 2 2

2 2 2
0

x y z

     
   

  
 where ( , , )x y z 

Order of differential equation :  It is defined as the order of the highest derivative
on the equation.

Degree of differential equation : It is defined as the power of the highest derivative
in the equation after fractional powers have been removed.

Examples :

i)
22

2
0

d y dy
xy

dxdx

    
 

 is a second order and 1st degree differential equation,

while the equation.

ii)
2

2
0

d y dy
xy

dxdx
    is a second order, 2nd degree differential equation, because
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when the square root is removed, 
2dy

dx
 
 
 

appears in the equation as the highest

power of highest order.

Linear differential equation : A linear differential equation satisfies the following
properties :

i) Power of each derivative and of the dependent variable must be unity.

ii) The coefficient of all derivatives occurring in the equations may be constant or
may be functions of the independent variables.

iii) The dependent variables and its derivatives is not multiplied together is the differential
equation.

Differential equation obeying no such properties or property are termed non-linear
differential equation.

Example : 
2

2
0

d y dy
y y

dxdx
    ; the presence of the term 

dy
y

dx
 makes it non-linear.

Homogeneous and in-homogeneous differential equation : When the right hand member
of the differential equation is either zero or constant, the differential equation is called
homogeneous, otherwise the differential equation is in-homogeneous, when the right hand
side is function of independent variable.

Example :  
2

0 1 22
( )

d y dy
P P P y Q x

dxdx
   (2.1)

If Q(x) = 0 or constant, equation (2.1) is homogeneous, otherwise in-homogeneous.

Solution of Differential equation : A solution of differential equation is a function
which, when substituted in the differential equation produces an identity.

Key Words

Homogeneous and inhomogeneous equations, wronskian, complementary function,
particular integral. Existence and uniqueness theorem.

2.3  Linear second order differential equation :

A linear second order differential equation has the following general form
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2

0 2
( )

d y
P x

dx
 1 2( ) ( ) ( )

dy
P x P x y Q x

dx
  (2.2)

Where P
0
(x), P

1
(x), and P

2
(x) are called co-efficient functions and Q(x) is the force

function. If the function Q(x) = 0, the equation is called homogeneous.

For the homogeneous equation, it is to be noted that the function y(x) = 0 always
satisfy the equation, regardless what P

0
(x), P

1
(x) and P

2
(x) are. The solution y (x) = 0 is

called the trivial solution of the homogeneous equation.

2.3.1 : Second order Linear homogeneous differential equations with
constant co-efficient

When P
0
, P

1
 and P

2
 are constants and Q(x) = 0, 0 0P  , we get from equation (2.2)

2

0 1 22
0

d y dy
P P P y

dxdx
   (2.3)

2
1 2

2
0 0

0
P Pd y dy

y
P dx Pdx

   

2

2
0 ,

d y dy
y

dxdx
     (2.4)

Where 1

0

P

P
   and 2

0

P

P
  ,

We seek solution equation (2.4) as xy e (2.5)

Substituting the solution (2.5) in equation (2.4), we find that  2 0xe         (2.6)

Which shows that xe  is a solution of (2.4) only when 2 0          (2.7)

Equation (2.7) is called the characteristic equation. The characteristic roots are

2
1

2
1

1
4

2 2
1

4
2 2

  

  

   

   
(2.8)
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Thus, solutions of equation (2.4) are given by : 1 2
1 2,x xy e y e   (2.9)

Now the Wronskian of the solutions (2.9) is

1 2

1 2

1 2

1 2 1 2

( )
x x

x x

y y e e
W x

y y e e

 

  
 

 

   1 2
2 1

x
e
     (2.10)

Thus the solutions y
1
, y

2
 given by equation (2.10) will be linearly independent only

when 1 2  . In this case, the general solution is : 1 2
1 2( ) x xy x C e C e       (2.11)

Now we put 2 4l    (2.12)

If l > 0 the two roots λ
1
, λ

2
 are real.

In such a case, the solution (2.11) takes the form :

2 2 2
1 2( )

x lx lx

y x e C e C e

  
   
  

(2.13)

or, 2( ) sinh cosh
2 2

x
l l

y x e C x D x


     

  
(2.14)

If l < 0, the two roots λ
1
, λ

2
 are imaginary. Then the general solution (2.11) takes the

form

2 2 2
1 2( )

x i l x i l x

y x e C e C e

   
   
  

(2.15)

or, 2( ) sin cos
2 2

x
l l

y x e C x D x


     

  
(2.16)
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When l = 0, the two roots 1 2 2

     are equal and the wronskian of the solution

(2.11) is W(x) = 0. Therefore, the two solutions given by equation (2.9) are not linearly
independent and the solution (2.11) is not acceptable as general solution.

Since the solutions y
1
(x) and y

2
(x) are now dependent we try the second solution as,

2( ) ( ) xy x z x e (2.17)

Substituting equation (2.17) in equation (2.4)

We get  
2

2
2

(2 ) 0x d z dz
e z

dxdx

     
 

      
  

(2.18)

Now co-efficient of z = 0 by equation (2.7) and co-efficient of 0
dz

dx
  since we

assumed equal root of (2.7) which are 
2

   . Thus from equation (2.18) we get since

0xe 
2

2
0

d z

dx
   (2,19), which implies z = x.

Thus the second solution is,

2
2( )

x

y x xe




 (2.20)

Thus, the general solution is

2 2
1 2( )

x x

y x C e C xe

 
 

  (2.21)

2.3.2 : Second Order Linear Homogeneous Differential Equation with
Constant Co-Efficient : Working Rules for Solutions (Complementary
Function)

We consider a linear homogeneous second order differential equation with constant
co-efficient.

2

0 1 22
0 ;

d y dy
P P P y

dxdx
   (2.22)
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0 0;P   P
1
 and P

2
 are constants.

In terms of the linear operator d
D

dx
  where 

2
2

2
,

dy d y
Dy D y

dx dx
  , equation (2.22)

can be written as

 2
0 1 2 0P D P D P y   (2.23)

Or, F(D)y=0 (2.24)

Where F(D) is a polynomial in the variable D. Now the polynomial F(D) can be
factored as :

F(D) = P
0 
D2 + P

1 
D + P

2
 = P

0
(D – m

1
) (D – m

2
) and equation (2.24) reduces to

P
0
(D – m

1
) (D – m

2
)y = 0 (2.25)

The equation F(D) = P
0
(D – m

1
) (D – m

2
) = 0

Or, (D – m
1
)(D – m

2
) = 0, since 0 0P  (2.26)

Is called the characteristic equation of (2.24) and the roots m
1
, m

2
 are called

characteristic roots.

Now to solve equation (2.22) we first write it in the form of equation (2.25) and then
write its characteristic equation. The characteristic roots m

1
m

2
 are found out.

Now we are ready to write down the solution depending on the nature of the roots.
The solutions are termed complementary function (y

c
).

Rule I : If the roots are real and different i.e. if 1 2m m , then the solution is

1 2
1 2 1 2; ,m x m x

Cy C e C e C C   are arbitrary constant.

Rule II : If roots are equal i.e. m
1
 = m

2
, then the solution is : 1 1

1 2 ;m x m x
Cy C e xC e 

1 2,C C  are arbitrary constant.

Rule III : If the roots are imaginary i.e. 1m i    and 2m i   , then the

solution is 1 2cos sinx
cy e C x C x      ; 1 2,C C  are arbitrary constant.

Example of Rule I : Find the complementary function of the equation :

2

2
5 6 0

d x dx
x

dtdt
    → (1)
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Solution : Equation (1) can be rewritten as (D2 – 5D + 9)x = 0, where d
D

dt


Auxiliary equation is (D2 – 5D + 6) = 0

Or, (D – 3) (D – 2) = 0 → (2)

Roots of auxiliary equation (2) are m
1
 = 3, m

2
 = 2; both are real and different.

Therefore solution of equation (1) is x
c
 = C

1
e3t + C

2
e2t

 
; x

c
 is the complementary function.

Example of rule II : Find complementary function of the equation :

2

2
6 9 0

d y dy
y

dtdt
    → (1)

Solution : Equation (1) can be re-written as (D2 + 6D + 9)y = 0 → (2)

Auxiliary equation is,    
d

D
dt

   

(D2 + 6D + 9) = 0

Or, (D + 3) (D + 3) = 0  → (3)

Roots of auxiliary equation are m
1
 = – 3, m

2
 = – 3

Therefore, roots are real and equal.

Therefore solution 3 3
1 2

x x
cy c e xc e  

Example of Rule III : Find the complementary function of 
2

2
4 0

d y
y

dx
    → (1)

Solution : Equation (1) can be re-written as (D2 + 4)y = 0 ; 
d

D
dx



Auxiliary equation is D2 + 4 = 0

Or, (D + 2i) (D – 2i) = 0;      1i  

Therefore, roots are imaginary i.e. m
1
 = + 2i, m

2
 = – 2i and the complementary

function is

y
C
 = C

1
 cos 2x + C

2
 sin 2x



NSOU  CC-PH-04  29

2.4  The Existence and Uniqueness Theorem

Consider the initial value problem 
2

0 02
( ) ( ) ( ), ( ) ,

d y dy
x x y Q x y x y

dxdx
    

0 0( )y x y  .

If the functions α, β and Q are continuous on the interval I : p < x < q containing

the point x = x
0
 ; then there exists a unique solution ( )y x  of the problem, and this

solution exists throughout the interval I.

That is the theorem guarantees that the given initial value problem will  always have
(existence of) exactly one (uniqueness) twice differentiable solution, on any interval containing
x

0
 as long as all three functions α(x), β(x) and Q(x) are continuous on the same interval.

Conversely neither existence nor uniqueness of a solution is guaranteed at a discontinuity
of α(x), β(x) or Q(x). All the initial conditions in an initial value problem must be taken
at the same point x

0
.

The set of conditions where the values are taken at different points [e.g. : x = x
0
;

0 0,x x x x    etc.] are known as boundary conditions. A boundary value problem does
not have the existence and uniqueness guarantee.

Example 1 : Find the largest interval where :  2 1 3 cos ;xx y xy xy c      y(0)

= 4, (0) 5 y  is guaranteed to have a unique solution.

Solution : The given equation can be rewritten as : 2 2 2

3 cos

1 1 1

xx x e
y y y

x x x
   

  

Comparing with the standard form, we get 
2 2

3 cos
( ) , ( )

1 1

x x
x x

x x
  

 
 and

2
( )

1

xe
Q x

x



But they are continue on – |< x < | containing the point x

 
= 0

We see that α(x), β(x) and Q(x) all have discontinuities at x = – 1 and x = 1. Thus
the theorem tells us that there is a unique solution on the interval I : – 1 < x < 1. Since
α(x), β(x) and Q(x) are all continuous on – 1 < x < 1 containing x = 0.

Now we investigate solutions to linear homogeneous differential equations :

( ) ( ) 0y x y x y     (2.27)
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where 
2

2

d y
y

dx
   and 

dy
y

dx
  . Now if y

1
(x) and y

2
(x) are solutions of equations (2.27),

then y (x) = C
1
y

1
(x) + C

2
y

2
(x) is also a solution. This is known as theorem of superposition

principle.

Proof : since y
1
(x) is a solution of (2.27), 

2

1 12
( ) ( ) 0

d y
x y x y

dx
    (2.28)

similarly y
2
(x) is a solution of (2.27) 

2
2

2 22
( ) ( ) 0

d y
x y x y

dx
    (2.29)

multiplying equation (2.28) by C
1
 and equation (2.29) by C

2
 and adding the result since

C
1
 and C

2
 are two arbitrary constants, we get

   2
1 1 2 2 1 1 2 2

1 1 2 22
( ) ( ) ( ) 0

d C y C y d C y C y
x x C y C y

dxdx
 

 
    (2.30)

Equation (2.30) shows that y(x) = C
1
y

1
(x) + C

2
y

2
(x)  (2.31) also is a solution of

equation (2.27).

Next we investigate the initial conditions. If we find a general solution to the homogeneous
system, can we choose constants such that the solution satisfies the initial conditions ? That
is can we find C

1
 and C

2
 such that

1 1 0 2 2 0 0

1 1 0 2 2 0 0

( ) ( )

( ) ( )

C y x C y x y

C y x C y x y

 
    (2.32)

In matrix form, equation (2.32) can be written as

1 0 2 0 01

1 0 2 0 02

( ) ( )

( ) ( )

y x y x yC

y x y x yC

    
          

(2.33)

Equation (2.32) has a unique solution if and only if the determinant of the matrix is not

zero. This determinant 1 2

1 2

y y

y y   is called wronskian.

Thus our discussion proves the following theorem.

Let 0( ) ( ) 0, ( )y x y x y y x      = 0 0 0, ( )y y x y   be a homogeneous linear
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second order differential equation and let y
1
 and y

2
 be two solutions (Any initial value), then

if the wronskin.

1 2 2 2y y y y   is non-zero, there exists a solution to the any initial value problem of the

form y = C
1
y

1
 + C

2
y

2

Example  2 : Construct the wronskian of the solution of the differential equation :

2 8 0y y y     and show that any initial value problem will have a unique solution.

Solution : The general solution of the given equation : y = C
1
e2x + C

2
e–4x, now the

wronkian of y
1
 = e2x and y

2
 = e–4x

2 4
2 2 21 2

2 4
1 2

4 2 6 0
2 4

x x
x x x

x x

y y e e
W e e e

y y e e


  


       

  

Thus W is never zero and we can conclude that any initial value problem will have a

unique solution of the form 2 4
1 2

x xy C e C e  .

Exercise 2.4.3 : For each IVP below, find the largest interval on which a unique
solution is guaranteed to exist.

a)  2( 2) cot 1, (2) 11, (2) 2x y xy xy x y y         

Solution : The standard form is

2cos 1

2 ( 2) sin 2

x x x
y y y

x x t x

   
  

 and x
0
 = 2. The discontinuity α, β and Q are

x = – 2, 0, , 2 , 3      ... ..., x = –2 respectively. The largest interval that contain

x
0
 = 2 but none of the discontinuities is, therefore (0, π).

b) 216 ln( 1) cos 0, (0) 2, (0) 0x y x y xy y y        

Solution : The standard form is :

2 2

ln( 1) cos
0

16 16

x x
y y y

x x

   
 

α(x) is only defined (and is continuous) on the interval (–4,4) and similarly β (x).
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Q(x) is continuous everywhere.

Combining these we see that α, β and Q are all continuous on the interval (– 4,4).
Since this interval contains x

0
 = 0, it must be the largest interval on which the solution is

guaranteed to exist uniquely.

2.5  Linearly Dependent and Linearly Independent Solution
of Differential Equation : Wronskian

Definition : If y
1
(x) and y

2
(x) are any two solutions of the differential equation :

( ) ( ) 0y x y x y     (2.34)

On the interval [a, b], then their wronskian, defined by :

1 2
1 2 1 2 2 1

1 2

( ) ( )
( , ) ( ) ( ) ( ) ( )

( ) ( )

y x y x
W y y y x y x y x y x

y x y x
   

  (2.35)

Is either identically zero or never zero on the interval [a, b]

When W(y
1
, y

2
) = 0, y

1
(x) & y

2
(x) are linearly dependent solutions (or function) of

the equation (2.34) on [a, b]. In this case 2

1

( )

( )

y x

y x
  constant.

When W(y
1
, y

2
)   0, y

1
(x) & y

2
(x) are linearly independent solutions of equation

(2.34) on the interval [a, b]. In this case 2

1

( )

( )

y x

y x
  constant and the general solution of

equation (2.34) can be written as : y(x) = C
1
y

1
(x) + C

2
y

2
(x) (2.36)

Where C
1
 and C

2
 are two arbitrary constant.

Proof : We suppose y
1
(x) and Y

2
(x) are linearly dependent solutions of equation

(2.34) on an interval [a, b]. Then we may assume y
2
(x) = Cy

1
(x) where C is a constant.

Therefore

1 2
1 2 1 2 2 1

1 2

( ) ( )
( , ) ( ) ( ) ( ) ( )

( ) ( )

y x y x
W y y y x y x y x y x

y x y x
   

 

Again  2 2( ) ( )y x Cy x 
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Therefore  1 2 1 1 1 1( , ) ( ) ( ) ( ) ( ) 0W y y C y x y x C y x y x    (2.37)

Again we assume that y
1
(x) and y

2
(x) are two linearly independent solutions of equation

(2.34) on the interval [a, b]. Then we have

1 1 1( ) ( ) ( ) ( ) ( ) 0y x x y x x y x     (2.38)

And 2 2 2( ) ( ) ( ) ( ) ( ) 0y x x y x x y x     (2.39)

Now multiplying equation (2.38) by y
2
(x) and (2.39) by y

1
(x), we get respectively :

1 2 1 2 1 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0y x y x x y x y x x y x y x     (2.40)

And 2 1 2 1 2 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0y x y x x y x y x x y x y x     (2.41)

Subtracting equation (2.40) from (2.41),

2 1 1 2 2 1 1 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0y x y x y x y x x y x y x y x y x             (2.42

Now wronskian  1 2 2 1 1 2( ), ( ) ( ) ( ) ( ) ( )W y x y x y x y x y x y x    

Therefore  1 2 2 1 1 2( ), ( ) ( ) ( ) ( ) ( )W y x y x y x y x y x y x     

And equation (2.42) can be written as  1 2( ), ( ) ( ) 0W y x y x x W  

Or ( ) 0
dw

x W
dx

  (2.43)

Solution of equation (2.43) is ( )x dxW Ce   (2.44)

Where C is a constant, depending on y
1
 and y

2
, but not on x. We assume that the

function α(x) is continuous on the interval [a, b], then ( )x dx  will also be continuous,

on [a, b], so that ( ) 0x dxe     in the assumed interval and therefore wronskian of two
linearly independent solutions is never zero for all x in [a, b].

Now we have the following theorem :

Let y
1
(x) and y

2
(x) be differentiable on [a, b]. If wronskian W(y

1
, y

2
) is non-zero for

some x
0
 in [a, b], then y

1
(x) and y

2
(x) are linearly independent on [a, b]. If y

1
(x) and y

2
(x)

all linearly dependent then the wronskian is zero for all x in [a, b].
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2.5.1 : Non-Homogeneous Linear Equation with Constant Co-Efficient

We consider the differentiable equation, 
2

2
( )

d y dy
y Q x

dxdx
    (2.45)

Where α and β are constants.

The general solution of equation (2.45) can be written as y = y
c
 + y

p
(2.46)

Where y
c
 is the complementary function (solution) corresponding to Q(x) = 0 in

equation (2.45) and y
p
 is the particular integral (solution) of equation (2.45); corresponding

to ( ) 0Q x  . In sec 2.4.2A we have discussed how to find y
c
. Now we discuss how to

find the particular integral y
p
 using the method of undetermined co-efficient.

Case I : If Q(x) is a polynomial of degree n and zero is not a root of the characteristic
equation, then y

p
 can be written as,

y
p
 = A

0
 + A

1
x + ... + A

n
xn (2.47)

If however zero is a single root of the characteristic equation then

y
p
 = x(A

0
 + A

1
x + ... + A

n
xn) (2.48)

Case II : If ( ) xQ x ce  and λ is not a solution of the characteristic equation, then

x
py Ae (2.49)

If λ is a single root of the characteristic equation, then x
py Axe (2.50)

If λ is a double root of the characteristic equation, then 
2 x

py Ax e (2.51)

Case III : If 
sin

( )
cos

C x
Q x

D x





 


 and iλ is not a root of the characteristic equation,

then

cos sinpy A x B x   (2.52)

If however iλ is a root of the characteristic equation, then

( cos sin )PY x A x B x   (2.53)

Case IV : Use of complex exponentials :

To find particular solution of F(D)y = Q(x) where 
sin

( )
cos

C x
Q x

C x








 and where F(D)
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= 0 is the characteristic equation, first solve F(D)y = Ceiλx and then take the real and
imaginary part.

Case V : When Q(x) is an exponential times a Polynomial i.e. ( ) ( )x
nQ x e P x

Where P
n
(x) is a Polynomial of degree n, a particular solution Y

p
 of

( ) ( )( ) ( ),x
nF D y D a D b y e P X     is

2

( ) is not or

( ) equals or ,

( )

x
n

x
p n

x
n

e Q x if a b

Y xe Q x if a b a b

x e Q x if a b














 


 

(2.54)

Where Q(x) is a polynomial of the same degree as P
n
(x) with undetermined co-

efficient to be found to satisfy the given differential equation. Note that sines and cosines
are included in eλx by use of Complex exponentials as in Case IV.

Example of Case (I) : Find the general solution of 22y y y x x     (1)

Solution : The characteristic equation is 2 1 9
2 0 ie

2
    

   

or,  1 2
1 3 1 3

1; 2
2 2

    
    

Therefore the roots of the characteristic equation are (1, –2) and zero is not a root
of the characteristic equation.

Therefore 2
1 2

x x
cy C e C e  (2)

And y
p
 may be taken in the form

2
0 1 2py A A x A x   (3)

Substituting equation (3) in equation (1), we get

 2 2
2 1 2 0 1 22 2Aa A A x A A x A x x x      

Or, 2A
2
 – 2A

2
x2 + A

1
 – 2A

1
x + 2A

2
x – 2A

0
 = x2 – x

Or, – 2A
2
x2 – 2A

1
x + 2A

2
x + 2A

2
 + A

1
 – 2A

0
 = x2 – x

Comparing the co-efficient of various power of x, we get
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x0 → 2A
2
 + A

1
 – 2A

0
 = 0

x1 → 2A
2
 – 2A

1
 = – 1, A

1
 = 0

x1 → – 2A
2
 = 1, 1

2 2A  

1
0 2A  

Hence 21 1

2 2py x  

 21
1

2
x  

Therefore general solution y is given by

 2 2
1 2

1
1

2
x x

c py y y C e C e x     

Example of Case (II) : Solve the equation (D – 1) (D + 5)y = 7e2x (1)

Solution : Characteristic equation is (D – 1)(D + 5) = 0 (2)

∴ Roots of characteristic equation

1 21 and 5   

5
1 2

x x
cy C e C e  

We see that 2 2   is not a root of the characteristic equation.

To find a particular solution we take  2x x
py Ae Ae  (3)

Now equation (1) can be re-written as

2 2( 4 5) 7 xD D y e  

Or,
2

2
2

4 5 7 xd y dy
y e

dxdx
   (4)

Substituting (3) in equation (4)

4Ae2x + 8Ae2x – 5Ae2x = 7e2x

7Ae2x = 7e2x 2 0, 1xe A 

∴ y
p
 = e2x (5)
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Therefore general solution : 5 2
1 2

x x xy C e C e e  

Example of Case (III) : Solve the initial value problem 
2

2
4 2 sin

d y
y x

dx
  , given

(0) 1, (0) 0
dy

y
dx

 

Solution : Here λ = 1

Now characteristic equation D2 + 4 = 0,  1 22 , 2i i     , are the roots of the
characteristic equation. Hence λ

1
 = 1 is not a root of the characteristic equation.

Now Complementary function y
c
 = C

1
 cos 2x + C

2
 sin 2x (1)

We assume particular integral y
p
 = A sin x + B cos x (2)

Substituting (1) in the original equation we get,

(– A sin x – B cos x) + 4(A sin x + B cos x) = 2 sin x

Comparing co-efficient of sin x and cos x on both sides, we find 
2

, 0
3

A B 

2
sin

3py x 

And the general solution 1 2
2

sin 2 sin 2 sin
3c py y y C x C x x     (3)

Now 1 2
2

2 sin 2 2 cos 2 cos
3

dy
C x C x x

dx
   

Using the initial value y(0) = C
1
 = 1 and 2

2
(0) 2 0

3

dy
C

dx
  

2
1

3
C  

Hence the specific solution is 
1 2

cos 2 sin 2 sin
3 3

y x x x  

Example of Case (IV) : Find the complementary function of 2 4sin 2y y y x   
(1)

Solution : To find the particular solution y
p
 of equation (1), we find Y

p
 for the equation

22 4 ixY Y Y e     (2) and take its imaginary part.
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We observe that 2i is not equal to a root of the auxiliary equation of (2).

Following the method written in case (II), we assume a solution.

Y
p
 = Ae2ix (3) and substitute it in equation (2) to get

2 2( 4 2 2) 4ix ixi Ae e   

4 4(2 6) 1
( 3)

2 6 40 5

i
A i

i


     

 

21
( 3)

5
    ix

pY i e

Taking the imaginary part of Y
p
,

We get y
p
 of equation (1)

Or,  
2 23

5 5
ix ix

p m
i

y I e e
     

3
(cos 2 sin 2 ) (cos 2 sin 2 )

5 5p m m
i

y I x i x I x i x
              

1 3
cos 2 sin 2

5 5
x x  

Where I
m
 means Imaginary Part.

Example of Case (V) : Find a particular solution of 36 9 12 xy y y xe    (1)

Solution : Equation (1) is re-written as (D – 3)(D – 3)y = 12xe3x (2)

We observe that λ = 3 is equal to either of the roots of the auxiliary equation i.e. λ
1

= a = b = λ
2
 also P

n
(x) = 12x = P

1
(x) is a polynomial of degree 1. Then Q(x) is also

a polynomial of degree 1 namely AX + B. Since λ = a = b, we write y
p
 = x2e3x(Ax + B)

= e3x (Ax3 + Bx2)                                                                (3)

We substitute equation (3) in equation (1) and find A and B so that we have an identity:

36 9 12 x
p p py y y xe   

We find A = 2 and B = 0,

3 3(2 )x
py e x 
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2.5.2 : Inhomogeneous Linear Equation with Constant Co-efficient :
Working Rule for Finding the Particular Integral :

We have linear inhomogeneous differential equation with constant co-efficient
F(D)y = Q(x) (2.55)

As started earlier the solution of equation (2.55) consists of two parts

1) Solution for F(D)Y = 0, which is called complementary function (C.F) and

2) Any particular integral (P.I) of equation (2.55) given by

1
( )

( )
PI Q x

F D
 (2.56)

Thus the solution of equation (2.55) is y = CF + PI

Rules for finding the particular integral (Pl) :

Rule I : When Q(x) = eax, a is a constant, 
1 1

( ) ; ( ) 0
( ) ( )

axPI Q x e F a
F D F a

  

If F(a) = 0; 
1

; ( ) 0
( )

axPI x e F a
F a

 


If  2 1
( ) 0; ; ( ) 0

( )
axF a PI x e F a

F a
   



And so on

Where ( ) ( ); ( ) ( )
d a

d d
F D F D F a F D

dD dD 
   etc.

Rule II : When Q(x) = eexV(x); When V(x) is any function of x;

1 1
( ) ( )

( ) ( )
ax axPI e V x e V x

F D F D a
 



Rule III : When Q(x) = xV(x), When V(x) is of the form sin(ax + b) or cos (ax
+ b);

Then, 
 2

1 1 ( )
( ) ( ) ( )

( ) ( ) ( )

F D
PI xV x x V x V x

F D F D F D


  
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Rule IV : If Q(x) = xm, m being a constant; 
1

( )
mPI x

F D
 .

Find 
1

( )F D
 by actual division in ascending powers of D and retains term up to Dm.

Rule V : If Q(X) = sin (ax + b) or cos(ax+ b); where a & b are constant, then follow
the method shown in worked out example.

Example of Rule I  Find the particular integral of : 23 2 xy y y e   

Solution : F(D) = D2 – 3D + 2

F(a) = F(2) = 22 – 3.2 + 2 = 0

Now  ( ) 2 3F D D  

And (2) 2 2 3 1 0     F

Therefore, 2 21

(2)
x xPI x e xe

F
 



Example of Rule II : Find the particular integral of the equation :

2 4 cosxy y y e x   

Solution : Here a = 1, V(x) = cos x

1 1
( ) ( )

( ) ( )
ax axPI e V x e V x

F D F D a
 



Now, F(D) = D2 – 2D + 4

F(D + 1) = (D + 1)2 – 2(D + 1) + 4

= D2 + 2D + 1 – 2D – 2 + 4

= D2 + 3

∴ 2 2

1 1
cos cos

3 1 3
x xPI e x e x

D
 

  
 (see example of Rule V)

1 1
cos cos

2 2
x xe x e x 
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Example of rule III : Find the particular integral of the equation :

(D2 + 3D +2)y = x sin 2x

Solution : Here Q(x) = xV(x) = x sin 2x

F(D) = D2 + 3D + 2

( ) 2 3F D D  

2

1
( sin 2 )

3 2
 

 
PI x x

D D

 2 22

1 2 3
sin 2 sin 2

3 2 3 2

D
x x x

D D D D


 

   

 2 22

sin 2 (2 3)
sin 2

2 3 2 2 3 2

x D
x x

D D


 

     

Where we have substituted D2 = (– a2); here a = 2

2

sin 2 2 3
sin 2

3 2 (3 2)

x D
x x

D D


 

 

Since the 1st term contains 3D – 2 in the denominator we make it 9D2 – 4 by
multiplying both numerator and denominator by 3D + 2.

2 2

(3 2) sin 2 (2 3) sin 2

9 4 9 12 4

D x D x
x

D D D

 
 

  

2 2

(3 2) sin 2 (2 3) sin 2

9( 2) 4 9( 2) 12 4

D x D x
x

D

 
 

    

Where we have substituted D2 = – a2 = (– 22)

(3 2) sin 2 (2 3) sin 2

40 (12 32)

D x D x
x

D

 
 

 

In the 2nd term since there is no term contain D2 in the denominator, we multiply both
numerator and denominator of the 2nd term by 12D – 32
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(6cos 2 2sin 2 ) (2 3) (12 32)
sin 2

40 (12 32) (12 32)

x x D D
x x

D D

  
 

  

2

(6 cos 2 2 sin 2 ) (2 3) ( 8) sin 2

40 4(9 64)

x x D D x
x

D

  
  



or
3 cos 2 sin 2 (2 3) (6cos 2 8 sin 2 )

20 4( 100)

x x D x x
PI x

  
  



(3cos 2 sin 2 ) 48 sin 2 14 cos 2

20 400

x x x x x 
  

Also see example of Rule – V.

Example of Rule IV : Find the particular integral of the equation :

(2D2 + 2D + 3)y = X 2 + 2x + 1

Solution : Q(x) = X 2 + 2x + 1

 21
2 1

( )
  PI x x

F D

Where F(D) = 2D2 + 2D + 3

Now 2
1

3 2 2D D   is found by actual division (not using any formula) and retaining up

to the term containing D2 in the quotient, since the degree of the polynomial x2 + 2x + 1
is 2.

Therefore 2 2
2

1 1
( 2 1) ( 2 1)

( ) 3 2 2
     

 
PI x x x x

F D D D

2 21 2 2
( 2 1)

3 9 27
D D x x

      
 

21 4 4 2 4 1

3 9 27 3 9 3

x
x x     

21 2 2
( 2 1) (2 2) (2)

3 9 27
x x x     
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Example of Rule V : Find the particular integral of the equation :

(D2 + 3D –4)y = sin 2x

Solution : Here F(D) = D2 + 3D – 4 ; a = 2, b = 0

i.e. sin(ax + b) = sin 2x

Now 
2

1 1
( ) sin 2

( ) 3 4
PI Q x x

F D D D
 

 
Now putting D2 = – a2 = – 22,   we get

1 (3 8) sin 2
sin 2

3 8 (3 8) (3 8)

D x
PI x

D D D


 

  

2

(3 8) sin 2

9 64

D x

D






Again putting D2 = – a2 = – 22

(3 8) sin 2

100

D x
PI





6 cos 2 8 sin 2

100

x x




Case VI : When Q(x) is sum of several terms consisting of exponential, polynomial
and trigonometric functions etc. ; then particular integral will be algebraic sum of individual
particular integrals according to the principle of superposition. For example, if Q(x) = (eax)
+ (4 sin bx) + (ax2 + bx) ;

Then the particular integral will be algebraic sum of the individual particular integrals
corresponding to the respective function.

We take an imaginary differential equation :

2
2

2
2 [4 sin ]axd y dy

y e bx ax bx
dxdx

           

Then the particular integrals of the given differential equation will be given by :

1 2 3p p p py y y y  

When 
1py  is the particular integral for 

2

ax
pe y  is the particular integral for 4 sin bx

and 
3py  is the particular integral for [ax2 + bx].



44  NSOU  CC-PH-04

Exercise (2.4.5) :

1) Obtain the general solution of the equation : 
2

3
2

3 2
d y dy

y x
dxdx

  

2) Solve the equation (D2 + 4)y = sin 2x

3) Solve 
2

2
2 sinxd y dy

y x e x
dxdx

  

Solution (1) : In D-operator notation, the equation become, (D2 – 2D + 2)y = x3

Auxiliary equation is : D2 – 3D + 2 = 0

Roots of the auxiliary equation are m
1
 = 1, m

2
 = 2

Complementary function C = y
c
 = Aex + Be2x

Particular integral is given by 
3 3 2

2

1 1 9 21 45

2 2 2 42 3py x x x x
D D

      
   

∴  the complete solution is y = y
c
 + y

p

Solution (2) : The auxiliary equation is D2 + 4 = 0

Roots of auxiliary equation is m = ± 2i

Complementary function y
c
 = A cos 2x + B sin 2x

Where A and B are arbitrary constant.

Particular integral  2

1
sin 2

4py x
D




Now D2 = – (2)2 = – 4        ∴ D2 + 4 = 0

1 1 cos 2
sin 2 sin 2

2 2 4p
x x x

y x x x
D D

    

cos 2 sin 2 cos 2
4c p
x

y y y A x B x x     

Solution 3 : Complementary function y
c
 = (A + Bx)ex

Particular integral,

2 2

1 1
sin sin

2 1 ( 1) 2( 1) 1
x x

py e x x e x x
D D D D

 
     
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2

1 1 1
sin sin ( cos ) ( cos )x x xe x x e x xdx e x x x dx

D DD
        

( cos sin )xe x x x dx  

 sin sin cosxe x x x dx x     
= – ex (x sin x + 2 cos x)

∴ Complete solution of y = y
c
 + y

p

2.6  Summary

i) Classification of second order differential equation explained.

ii) Different method of finding particular integral have been exemplified.

iii) Rules for finding complementary function and particular integral have also been
included.

iv) Existence and uniqueness theorems for IVP have been illustrated with examples.

v) Use of wronskian to identify linear dependent and independent solutions have
been discussed.
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Unit 3  Calculus of Functions of More than one
Variable

Structure

3.1 Objectives

3.2 Introduction

3.3 Partial Derivatives

3.3.1 Total Differential

3.3.2 Error Determinations and Approximation

3.4 Exact and Inexact Differentials

3.4.1 Integrating Factor

3.4.2 Rules to Find Out Integrating Factor

3.5 Constrained Maximization Using Lagrange’s Undetermined Multipliers

3.5.1 Method of Lagrange’s Undetermined Multipliers with Functions of Two
Independent Variables and one ´ Equations

3.5.2 Method of Lagrange’s Undetermined Multipliers with Three
Independent Variables and one ´ Equation

3.5.3 Method of Lagrange’s Undetermined Multipliers with two ´ Equations

3.5.4 Working Rules for Constraint Maximization or Minimization Using
Lagrange’s Undertermined Multipliers

3.6 Summary

3.1  Objectives

1. To know what is partial and total derivatives and differentials.

2. To make an idea about exact and inexact differential.

3. To know how to convert inexact differential into exact differential with the help
of integrating factor.

4. To know how to find out maximum and minimum values of functions with constraints
using Lagrange multipliers.
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Keywords : Partial derivatives, total derivatives, exact and inexact differentials, integrating
factors, maxima and minima problems with constraint.

3.2  Introduction

We consider a field scalar such as temperature (T) and its distribution in a region of
space. We see that temperature may change with x, y and z co-ordinates of space and
also with time t if the state is not steady. Thus we see temperature is, in essence, function
of several variables x, y, z, t i.e.

T = T (x, y, z, t) (3.1)

Now if we want to find the rate of change of temperature we can find it in various
ways. Suppose we want to find the rate of change with x co-ordinate only keeping y, z,

and t constants. We use partial derivative  T
x




. If temperature T is function of x- co-

ordinates alone we could find the above rate of change by dT
dx , the ordinary derivative.

Derivatives are also used in finding the maxima or minima of a curve.

Now rates occur very often in physics e.g. time rates, space rate etc. and we have
to find these rates in the form of differential equations which we have to solve to find out
the rate of functional dependence of the quantity with other.

3.3  Partial Derivative

Suppose we have a function f, having more than one independent variables (x, y) i.e.
f = f (x, y). Now if for f (x, y), keeping y as constant, an ordinary differentiation with
respect to x is found, the derivative so obtained is called partial derivative and is denoted

by  f
x

  or f

x
 where 0

( , ) ( , )
limx x

f x x y f x y
f

x 
  




(3.1)

Similarly treating x as constant, we get 
 

0

, ( , )
limy y

f x y y f x yf
f

y y 
  

 
 

(3.2)

Now we can determine higher order partial derivatives also which are denoted by f
xx

,
f

xy
, f

yy
 for second order; f

xxx
, f

xxy
, f

xxz
 etc. for third order partial derivatives.

Where 
2 2 2

2 2
, ,xx xy yy

f f f
f f f

x yx y

  
  

  
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3 3 3

3 2 2
, ,xxx xxy xxz

f f f
f f f

x x y x z

  
  
    

 etc.

A notation which is frequently used in thermodynamics is 
y

f

x

 
  

, meaning we have

to find out partial derivative of f (x, y) with respect to x when y is held constant. Similarly

x

f

y

 
  

 is defined.

Now suppose we find out 
2f f

x y x y

   
     

 and also find out 
2f f

y x y x

         
. Then

a question automatically comes out that could we write 
f f

x y y x

             
 ?

It can be proved that if the first and second order partial derivatives of f(x, y) are

continuous, then only 
2 2f f

x y y x

 


   
, otherwise not.

In thermodynamics these conditions are usually satisfied and the equality hold.

3.3.1 Total Differential

We consider a function of two variable (x, y) represented by z = f (x, y), which

represents a surface. Now the derivatives ,x y
f f

f f
x y

 
 

 
, at a point, are the slopes

of the two tangent lines to the surface in the x and y directions at that point. The symbols

x dx   and y = dy represent changes in the independent variables x and y. The quantity
z means the corresponding change in z along the surface.

We define dz by the equation 
z z

dz dx dy
x y

 
 
 

(3.3)

The differential dz is called the total differential of z.

Equation (3.3) may also be interpreted as follows. Any change in z, z will be sum
of changes due to change in x and changes in y respectively. Now rate of change of z with

respect to x and y is given by respectively 
z

x




 and 
z

y




.
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Therefore we can write change in z as 
y x

z z
z x y

x y

             
.

Now in the limit 0x   and 0y   we can write

z z
dz dx dy

x y

           
(3.3)

3.3.2 Error determination and approximation

If z = f (x, y, u, ...), then the total variation z in z due to changes x, y, u, ...
in x, y, u, ... is given by [see 3.3A].

...
z z z

z x y u
x y u

  
       

  

Here x (or x ), y, ... are the actual errors in x & y, ... while z is the approximate
error in z i.e. in z = f (x, y, u, ...)

Now x, y, ... are known as absolute errors in x, y, ... in measurement and ,
x y

x y

  ,...

are called the proportional error in x, y, ... etc.

Example of Art : 3.2 and 3.3 :

1. If  
1

u
r

 , where 2 2 2r x y z  

Show that 
2 2 2

2 2 2
0

u u u

x y z

  
  

  

Solution : 

 
 

1
2

1
2

2 2 2

2 2 2

1
u x y z

x y z


   

 

   
3 3
2 22 2 2 2 2 21

. 2
2

u
x y z x x x y z

x

 
        



And    
3 5
2 2

2
2 2 2 2 2 2

2

3
1. 2

2

u
x y z x x y z x

x

             
   
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 
5
22 2 2 2 2 2 23x y z x y z x


        

     
5
22 2 2 2 2 2 5 2 2 22 2x y z x y z r x y z

        

Similarly  
2

5 2 2 2
2

2
u

r y x z
y


  



and  
2

5 2 2 2
2

2
u

r z x y
z


  



   
2 2 2

5 2 2 2 2 2 2
2 2 2

2 2 0
u u u

r x y z x y z
x y z

             
   

2) Express two-dimensional Laplace’s equation :

2 2

2 2
0

u u

x y

 
 

 
 in polar co-ordinate.

Solution : Equation of transformation from Cartesian co-ordinates (x, y) to polar co-
ordinates (r, ) is given by : x = r cos , y = r sin 

2 2 1, tan
y

r x y
x

        
 

(i)

Now
2 2

2
cos

2

sin

r x x

x rx y

r y

y r





      


    

(ii)

2

2

2

2

2 2 2

2 2

1 sin

1

1 1 cos

1

y

x

y

x

y y

x rx x y

x

x x rx y

 

 

             


           

(iii)
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Now

sin
cos

cos
sin

r

x r x x r r
r

y r y y r r

 


 
 

 

                    
            

       

(iv)

2

2

sin sin
cos cos

x x r r r rx

 
 

 
                               

2 2 2 2 2
2

2 2 2 2

2 sin cos sin sin 2 sin cos
cos

r r rr r r

     
  

    
    

    
(v)

Similarly 
2 2 2 2 2 2

2
2 2 2 2

2 sin cos cos cos
sin

r r ry r r

   


 
    

   
    

2

2 sin cos

r

 




 (vi)

Adding (v) and (vi) we get,

2 2 2 2

2 2 2 2 2

1 1

r rx y r r 
    

   
   

2 2 2 2

2 2 2 2 2

1 1
0

u u u u u

r rx y r r 
    

     
   

3) Prove that if f(x, y, z) = 0

I.
 

1
x

y z y

z

x 


    
 and two similar relation

II. 1
x yz

x y z

y z x

                   

Proof : We have, f (x, y, z) = 0 i.e. x = x(y, z) and z = z(x, y)

yz

x x
dx dy dz

y z

           
(i)
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and
y x

z z
dz dx dy

x y

           
(ii)

Eliminating dz from (i) and (ii) we get

y yz x

x x z z
dx dy dx dy

y z x y

                              
(iii)

Now dx and dy are independent of each other. So, equating the co-efficient of dx
from both side of (iii), we get,

 
1

1
x

y y y z y

x z z

z x x 


                     
 (I)

Similarly, by equating the co-efficient of dy we obtain,

0
yz x

x x z

y z y

                 

or, 1 0
x y z

y z x

z x y

                   

or, 1
x y z

y z x

z x y

                   
  (II)

Note : Relation (I) and (II) are extensively used in thermodynamics systems e.g.
hydrostatic system given by f (P, V, T) = 0.

Example 4 : The rate of flow (V) of a liquid through a capillary tube of radius r and

length l at a pressure difference P between it ends is given by : 
4

8

P r
V

l




 , where   is

the viscosity of the liquid. In an experiments, the errors in the measurements of P, r, l and
V are 1%, 1.5%, 0.5% and 2% respectively. Evaluate the error in the measurements of
 .

Solution : We have 
4

8

P r

Vl

 

4ln ln ln ln ln 8 ln lnP r V l       
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or, 0 4 0
P r V l

P r V l

    


     

or,
max

4
P r V l

P r V l

    


 
    

 
, therefore

Percentage error, 
max

100 100 4 100 100 100
P r V l

P r V l

    


 
         

 

= 1 + 4 × 1.5 + 2 + 0.5 = 9.5%

Notes : During experiments students are asked to find out the maximum proportional
error in their measurement. Therefore all the terms are added. For percentage error ;
proportional error is multiplied by 100.

Example 5 : If u = f (x, y, z, ...) where x, y, z, ... are all functions of a variable t.

Prove that,

I) ...
du u dx u dy

dt x dt y dt

 
    
 

II)
f
x
f
y

dy

dx






 

Proof : We have u = f (x, y, ...)

...
u u u

du dx dy dz
x y z

  
    

   (i)

But from the definition of differential. We obtain : , ,
du dx dy

du dt dx dt dy dt
dt dt dt

  

etc.

From (i) ...
du u dx u dy

dt x dt y dt

 
    
 

(I)

If u = f (x, y) = C (constant), then y is an implicit function of x.

Now from equation (i) 0
du u dx u dy

dx x dx y dx

 
    
 
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0
f f dy

x y dx

 
  

 

or,
f
x
f
y

dy

dx






 

Exercise : Art 3.2 and 3.3 :

1) If u = log(x3 + y3 + z3 – 3xyz), show that

 
2

22 2 2

9
u

x y z x y z

   
         

2) If z varies directly as x and inversely as y and the possible errors in measuring

x and y are 1% and 0.5% respectively, find the amount of error in z. Given 
1

3
z 

when x = 3; y = 5.

3) If ( ) ( )z f x ct x ct    , show that 
2 2

2
2 2

z z
c

t x

 


 
, where c is a constant.

Solutions to exercise Art : 3.2 and 3.3 :

Solution (1) : u = log (x3 + y3 + z3 – 3xyz)

2 2 2

3 3 3 3 3 3 3 3 3

3 3 3 3 3 3
, ,

3 3 3

u x yz u y xz u z xy

x y zx y z xyz x y z xyz x y z xyz

     
   
          

 
 

2 2 2

2 2 2

3 3

( )

x y z xy yz xzu u u

x y z x y zx y z x y z xy yz xz

      
    
          

Now 

2
u u u

u
x y z x y z x y z

            
                      

3

x y z x y z

     
            
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2 2 2 2

3 3 3 9

( ) ( ) ( ) ( )x y z x y z x y z x y z


    

       

Solution 2 :  We have z x  and 
1

z
y

 .

x
z k

y
  , where k is a constant.

Now when x = 3, y = 5, 
1 3

3 5
z k 

5

9
k 

5

9

x
z

y
 

 ln z = ln 5x – ln  9y = ln 5 + ln x – ln 9 – ln y

0 0
z x y

z x y

  
    

max

z x y

z x y

      
 

100 100 100
z x y

z x y

  
       = 1 + 0.5 = 1.5%

 maximum proportional error in z is 1.5%.

Now 
z x y

z x y

  
 

1 0.5 1.5

100 100 100

x y
z z z z

x y

 


           
  

 error in z is 1.5% of z.

Solution (3) : We have ( ) ( )z f x ct x ct   



56  NSOU  CC-PH-04

( ) ( ) ( ) ( )
z

f x ct x ct x ct x ct
x x x

         
  

( ).1 ( ).1f x ct x ct    

2

2
( ) ( )

z
f x ct x ct

x
      


(i)

Again ( ) ( ) ( ) ( ) ( ) ( )
z

f x ct x ct x ct x ct c f x ct c x ct
t t t

                 
  

And  
2

2 2 2
2

( ) ( ) ( ) ( )
z

c f x ct c x ct c f x ct x ct
t

            


(ii)

From (i) and (ii) : 
2 2

2
2 2

z z
c

t x

 


 

3.4  Exact and Inexact Differentials

We consider a function z = f (x, y) = constant, which is continuous along with its first

order partial derivative. Then the total differential is 0
f f

dz dx dy
x y

           
This can be expressed as dz = M(x, y)dx + N(x, y)dy = 0 (3.4)

where ( , )
f

M x y
x

    
 and ( , )

f
N x y

y

 
   

.

Since the function f (x, y) has continuous first order derivative, we can write
2 2f f

x y y x

 


   
 i.e 

N M

x y

      
(3.5)

This is the necessary and sufficient condition that the expression (3.4) be an exact
differential equation and the differential dz = M(x, y)dx + N(x, y)dy be an exact differential.

If dz is an exact differential z = f (x, y) is called a point function or state function.

If however equation (3.5) is not satisfied then the differential dz is called inexact
differential and the function z = f (x, y) is called a path function. Conditions for equality of
f

xy
 and f

yx
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a) I f (a, b) be a point in the domain of definitions of  f(x, y) so that  f
x
(x, y) and

f
y
(x, y) are differentiable at (a, b) then f

xy
(a, b) = f

yx
(a, b)

b) If (a, b) be a point in the domain of definitions of f(x, y) so that f
x
(x, y) exist in

a certain neighborhood of (a, b) and f
xy

(x, y) is continuous at (a, b) then
f

xy
(a, b) = f

yx
(a, b)

3.4.1 : Integrating factor : Integrating factor is a function chosen to make an
inexact differential to be transformed into an exact differential.

We consider the equation dz = M(x, y)dx + N(x, y)dy = 0

Which we suppose, to be not exact. Now if there exists a function ( , )x y  such that

 ( , )x y Mdx Ndy d    for some function ( , )x y , then ( , )x y  is called an integrating

factor of equation (3.4)

For example the equation xdy – ydx = 0 is not exact, multiplying it by 
2

1
y

 , the

equation became

2 2
0

xdy ydx ydx xdy

y y

  
 

Or, 0
x

d
y

 
 

 

which is exact and has the general solution  
x

y
 = constant.

Thus 
2

1

y
  is integrating factor (I.F) of the inexact differential xdy – ydx.

3.4.2 : Rules to find out integrating factor :

Let the differential equation dz = M(x, y)dx + N(x, y)dy = 0 is not exact. i.e.

M N

y x

         

Rule I :

i. Mdx + Ndy  = 0 and M(x, y), N(x, y) are both homogeneous functions of (x,

y) of the  same degree, then 
1

Mx Ny
 is an integrating factor of the equation
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Mdx + Ndy = 0

Example 1 : Consider the differential equation dz = (x2y – 2xy2)dx + (3x2y – x3)dy
= 0

Here M(x, y) = x2y – 2xy2 2 4
M

x y
y


  



      N(x, y) = 3x2y – x3 26 3
N

xy x
x


  



Therefore, 
M N

y x

         
 and dz is not exact differential.

Now 
2

2 2 3
2

( , ) 2 2
y y

M x y x y xy x
x x

  
         

3 y
x

x
    
 

 M(x, y) is a homogeneous function of degree 3 in x and y.

Similarly N(x, y) is a homogeneous function of degree 3 in x and y

Therefore 2 2 0Mx Ny x y   .and 
2 2

1

x y
 is an I.F..

Now multiplying both sides of the given equation by 
2 2

1

x y
, we get

2 2 2 3

2 2 2 2

2 3
0

x y xy x y x
dx dy

x y x y

 
 

Or,
2

1 2 3
0

x
dx dy

y x y y

  
          

Or,
2

1 2 3
0

x dx dy
dx dy

y x yy
   

Or, 2

2 3
0

ydx xdy dx dy

x yy


  
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Or, 2 (log ) 3 (log ) 0
x

d d x d y
y

 
   

 

Therefore 2 2
2 log 3log

dz x
d x y

yx y

 
   

 
 is an exact differential.

Rule II : Consider the differential equation M(x, y)dx + N(x, y)dy = 0. If this

equation is not exact, then 
M N

y x

 


 
 however if 

M N
y x

N

 
 

 is function of x only denoted

by f(x), then ( )( ) f x dxx e   will be an integrating factor of the given differential equation.

Rule III : However if 
M N
y x

N

 
 


 is function of y only, denoted by f (y) then

( )( ) f y dyy e   will be an integrating factor..

Example 2 :  The differential equation dz = (3xy – y2)dx + x(x – y)dy = 0 is not

exact, since 3 2
M

x y
y


 


 and 2

N
x y

x


 


.

M N

y x

 
 

 

However note that 
1

M N
y x

N x

 
 

  therefore by Rull II ( ) ln
dx
xf x dx xe e e x

     will

be an integrating factor.

Now multiplying both sides of the given equation by  (x) = x yields (3x2y – xy2)dx
+ (x3 – x2y)dy = 0 which is exact because

23 2
M

x xy
y


 



23 2
N

x xy
x


 



M N

y x

 
 

 
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Example 3 : The differential dz = (x + y) sin ydx + (x sin y + cos y)dy is not exact,
since

( ) cos sin
M

x y y y
y


  



sin
N

y
x






However 
cos

sin

M N
y x y

M y

 
 

 


 is a function of y alone denoted by ( )y

Now
cos

( ) ln(sin )
sin

y
y dy dy y

y
     

Therefore, I.F = ( ) ln(sin )y dy ye e 
1ln(sin ) 1(sin )ye y

  

cos
( )

sin sin

dz y
x y dx x dy

y y

 
     

 
 which is exact.

Since, 1, 1
M N

y x

 
 

 

3.5  Constrained Maximization using Lagrange’s
Undermined Multipliers

We discuss a problem of maximum and minimum values of a function with constraint
as follows,

Suppose we want to find the maximum or minimum of a function u(x, y), where x and
y are related by an equation ( , )x y  = constant i.e. x, y are not independent. This type
of extra relation between the variables are known as constraints.

In such type of cases the points where maxima or minima occur and corresponding
maximum or minimum values of the function can be determined by a number of methods
e.g. a) method of elimination; b) method of implicit differentiation ; c) method of Lagrange
multipliers.
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Sometimes methods a) and b) can involve enormous calculation and we can solve the
problem in concise form by a process known as method of Lagrange’s undetermined
multipliers.

3.5.1. Method of Lagrange’s Undetermined Multipliers with Functions
of Two Independent Variables and one f´ Equations

Now we discuss the method of Lagrange’s undetermined multipliers, to find the maximum

or minimum points of u = u(x, y) consisting of two independent variables. We set 0
du

dx


or du = 0. Again since ( , )x y  = constant, we get 0d  . Then u is really a function of

one variable, say x. therefore,

0

0

f f
du dx dy

x y

d dx dy
x y

 


       
    
  

(3.6)

We multiply the d  equation by   and add it to the du equation, then we have,

0
u u

dx dy
x x y y

 
 

                
(3.7)

where   is undetermined multiplier..

Now we chosen   so that,

0
u

y y

 
 

 
(3.8)

From equation (3.7) and (3.8) we get,

0
u

x x

 
 

 
(3.9)

Equation (3.8), (3.9) and ( , )x y  = constant can now be solved for the three unknowns
x, y, .

3.5.2 : Method of Lagrange undetermined multiplier with function of three
independent variables and one  – equation

Now we discuss the same problem with function of three independent variables (x, y,
z). We want to find maximum or minimum values of u(x, y, z), when (x, y, z) = constant.
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For maximum or minimum values of u, we set

0

0

u u u
du dx dy dz

x y z

and d dx dy dz
x y z

  

          
      
   

(3.10)

Now multiplying d  equation by   and adding it to the du equation, we get

0
u u u

dx dy dz
x x y y z z

  
  

                           
(3.11)

Since x, y, z are related by  = constant, there are two independent values in this
problem when x and y are indepenent, z is determined from the  equation. Similarly, dx
and dy may have any values we chose, then dz is determined from d  equation.

We chose   so that

0
u

z z

 
 

 
(3.12)

Then from (3.11), for dy = 0, we get

0
u

x x

 
 

 
(3.13)

and for dx = 0; 0
u

y y

 
 

  (3.14)

Solving equations (3.12), (3.13), (3.14)

and (x, y, z) = constant, we can find out x, y, z and .

3.5.3 : Method of Lagrange’s undetermined multiplier with two 
equations

Suppose we have two constraint equations : 
1
(x, y, z, w) = constant (3.15)

And 
2
(x, y, z, w) = constant (3.16)

And our function is now u(x, y, z, w) (3.17)

There are two independent variables, say x & y.

Therefore, 1 1 1
1 0d dx dy dz

x y z

  


  
   
  

(3.18)
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And 2 2 2
2 0d dx dy dz

x y z

  


  
   

  
(3.19)

And we set 0
u u u u

du dx dy dz dw
x y z w

   
    
   

(3.20)

Multiplying equation (3.18) by 
1
 and equation (3.19) by 

2
 and adding the result to

equation (3.20), we get

1 2 1 2
1 2 1 2

u u
dx dy

x x x y y y

   
   
       

               

1 2 1 2
1 2 1 2 0

u u
dz dw

z z z w w w

   
   
       

                 
(3.21)

We determine 
1
 and 

2
 from the equations,

1 2
1 2

1 2
1 2

0

0

u

z z z

u

w w w

 
 

 
 

  
     

        

(3.22)

Then for dy = 0, we have

1 2
1 2 0

u

x x x

 
 
  

      
(3.23)

And for dx = 0, we have,

1 2
1 2 0

u

y y y

 
 
  

      
(3.24)

Now solving equations (3.22), (3.23), (3.24) and (3.15), (3.14) we get x, y, z, w, 
1

& 
2
.

3.5.4 : Working rules for constraint maximization or minimization using
Lagrange’s multipliers

Rule I : To find the maximum and minimum values of u(x, y, z) if  (x, y, z) =
constant, we form the function U = u +  and set the three partial derivative of U equal
to zero. We solve these equations and the equation  = constant, for x, y, z and .
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Rule II : To find maximum or minimum of u subject to the conditions 
1
 = constant

and 
2
 = constant, we define 1 1 2 2U u        and set each of the partial derivatives

of U equal to zero. Solve these equation and the equations for the variables and ’s.

Rule III : For a problem with still more variables and conditions there are more
equations but no change in method.

Example of Art 3.6 :

Example I : Using the method of Lagrange’s multiplier, find the area of largest
rectangle that can be inscribed in a semi-circle of radius R with one of the largest side of
the rectangle coinciding with diameter.

Solution : The rectangle to be inscribed in a circle should be symmetric about y-axis.
When length and breadth of the rectangle is 2x and y, its area is 2xy. Also x2 + y2 = R2.
Therefore U = 2xy + (x2 + y2 – R2)

2 2
U

y x
x


  



2 2
U

x y
y


 



For 0, 2 2 0
U

y x
x


  


 (i)

And 0, 2 2 0
U

x y
y


  


 (ii)

From equation (i) and (ii), we get,

y x

x y
   

or, x2 = y2 i.e. x = y   (iii)

2 2 22 2
2

R
R x y x y     

2Area 2 2
2 2

R R
xy R    

 Maximum area = R2
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Example 2. Show that the rectangular solid of maximum volume that can be inscribed
in a sphere is a cube.

Solution : Let inscribable maximum rectangular solid has got length, breadth and
height 2x, 2y, and 2z respectively.

 volume of solid, V = 8 xyz (i)

Also, x2 + y2 + z2 = r2, where r is the radius of the sphere

2 2 2 2( , , )x y z x y z r     (ii)

U V    (iii)

Now, 0;
U V

x x x

  
  

  

or, 8 (2 ) 0yz x  (iv)

0;
U V

y y y

  
  

  

or, 8 (2 ) 0xz y  (v)

0;
U V

z z z

  
  

  

or, 8 (2 ) 0xy z  (vi)

From (iv), 22 8x xyz  

From (v), 22 8y xyz  

From (vi), 22 8z xyz  

2 2 2 2 2 22 2 2 ; . .x y z i e x y z      

 x = y = z

Hence in a sphere, the rectangular solid having maximum volume that can be inscribed
within it is a cube.

Example 3 : Using the method of Lagrange multiplier find the maximum of F = 4xyz
subject to the constraint  x2 + y2 + z2 – a2 = 0
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Solution : Let 2 2 2 2( , , )x y z x y z a     (i)

We consider ( , , ) ( , , ) 4 ( , , )U F x y z x y z xyz x y z     (ii)

4 2 0
U

yz x
x


   


(iii)

4 2 0
U

yz y
y


  

 (iv)

4 2 0
U

yz z
z


  


(v)

From equations (iii) and (iv)

2 22 2
i.e. or

yz zx
y x y x

x y
      

Similarly, from equation (iv) and (v), we get x = z
 x = y = z (vi)

From equation (i), x = y = z = 
3

a


Then F = 4xyz will lie within 
4 4

to
3 3 3 3

a a
 . So, the maximum value of F will be

4

3 3

a

Exercise of Art 3.5 :

1) The temperature T at any point (x, y, z) in space is T = 400 xyz2. Find the highest
temperature at the surface of a unit sphere x2 + y2 + z2 = 1.

2) Find the volume of the greatest rectangular parallelepiped that can be inscribed

in the ellipsoid 
2 2 2

2 2 2
1

x y z

a b c
  

3) Find the point on the plane ax + by + cz = p at which the function f = x2 + y2

+ z2 has a minimum value and find the minimum f.

Solution of exercise of Art 3.5 :

Solution to the problem 1 :
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We have T = 400 xyz2

2 2 2( , , ) 1x y z x y z    

Therefore U T   (i)

and 2400 (2 ) 0
U T

yz x
x x x

   
    

  
(ii)

2400 (2 ) 0
U T

xz y
y y y

   
    

   (iii)

800 (2 ) 0
U T

xyz z
z z z

   
    

  
(iv)

Now multiplying equation (ii) (iii) and (iv) by x, y & z respectively and adding we get,

2 2 2 21600 2 ( ) 0xyz x y z   

Or, 2800xyz   ,        since x2 + y2 + z2 = 1

Putting the value of   in equation (ii) we get

400yz2 + 2x(– 800 xyz2) = 0;  or, 1 – 4x2 = 0;  or,  
1

2
x  

Similarly  
1

2
y  

Putting the value of   in equation (iv), we get

800xyz – 1600xyz3 = 0

or, 1 – 2z2 = 0;   or,  
1

2
z  

now using the values of x, y, z in T, we get T = 
1 1 1

400 50
2 2 2

   

Solution to problem 2 : We take, 2x, 2y and 2z as the edges of the parallelopiped
whose edges are parallel to the x, y, z – axes respectively. Therefore the volume of the
parallelepiped is v = 8xyz.

Let 
2 2 2

2 2 2
( , , ) 1

x y z
x y z

a b c
    
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Therefore following Lagrange’s method of undetermined multiplier, we have

( , , ) ( , , )U x y z V x y z  (i)

or,
2 2 2

2 2 2
( , , ) 8

x y z
U x y z xyz

a b c

 

     
 

2

2
8 0

U x
yz

x a
        

(ii)

2

2
8 0

U y
xz

y b
       

(iii)

and 2

2
8 0

U z
xy

z c
       

(iv)

From equation (ii); 
2

2

8
x

a

yz
    and from equation (iii), 

2
2

8
z

c

xz  

2 2 2 2

2 2

8 8

2 2

yza xzc x y
or

x z a b
  

Similarly, from (iii) and (iv), we get,

2 2

2 2

y z

b c


2 2 2

2 2 2

x y z

a b c
  

Again we have 
2 2 2 2

2 2 2 2

1
1; or,

3

x y z x

a b c a
   

, , and
3 3 3

a b c
x y z   
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Thus the volume of the largest rectangular parallelepiped is V = 8xyz =

8
8

3 3 3 3 3

a b c abc
 .

Solution to problem (3) :

We have ( , , ) ( , , ) ( , , )U x y z f x y z x y z  (i)

Where f(x, y, z) = x2
 
+ y2 + z2 and ( , , )x y z ax by cz p    

Therefore from (i),  differentiating partially,

2 0 or,
2

U f a
x a x

x x x

    
      

  

2 0 or,
2

U f b
y b y

y y y

    
      

  

2 0 or,
2

U f c
y c z

z z z

    
      

  

Substituting the values of x, y, z in equation ax + by + cz = p, we get

2 2 2

a b c
a b c p

                 
     

Or,  2 2 2
2 2 2

2
2 ; or,

p
a b c p

a b c
  

    
 

2 2 2 2 2 2 2 2 2
, ,

ap bp cp
x y z

a b c a b c a b c
   

     

minimum values of  

     
2 2 2 2 2 2

2 2 22 2 2 2 2 2 2 2 2

a p b p c p
f

a b c a b c a b c
  

     

or,
 

 

2 2 2 2

22 2 2

p a b c
f

a b c

 


 
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or,
2

2 2 2
 

  minimum
p

f f
a b c

Note : Lagrange’ method cannot determine the nature of the stationary points. However
it is ascertained from the condition of the problem.

3.6  Summary

1. Emphasis is given on error calculation in physical measurements with the help
partial and total derivatives.

2. Exact and inexact differential are defined and rules are stated to make inexact
differentials, exact.

3. Constrained maximization with Lagrange’s multipliers discussed.
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Unit 4  Vector Calculus

Structure

4.1 Objective

4.2 Introduction

4.3 Vectors and Scalars

4.3.1 Familiarities with Vectors and Scalars

4.3.2 Examples of Graphical Representation

4.3.3 Vector in Terms of Components

4.3.4 Examples of Scalars, Vectors and Tensors

4.3.5 Equal Vectors and Null Vectors

4.3.6 Unit Vectors

4.3.7 Position Vectors or Radius Vector

4.3.8 Addition of Vectors (Graphical Representation)

4.3.9 Subtraction of Vectors

4.3.10 Addition and Subtraction of Vector (Algebraic or Co-ordinate
Representation Method)

4.3.11 Multiplication of Vectors by Scalars

4.4 Laws of Vector Algebra

4.4.1 Linear Dependence of Vectors

4.4.2 Product of Vectors

4.4.3 Scalar Product of Two Vectors

4.5 Vector Product

4.5.1 Kronecker Delta and Levicivita Symbols

4.5.2 Multiple Product of Vectors

4.5.3 Triple Scalar Product

4.5.4 Triple Vector Product

4.5.5 Product of Four Vectors

4.6 Reciprocal System of Vectors
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4.6.1 Properties of Reciprocal System

4.7 Properties of Vectors Under Rotation

4.7.1 Scalar Product of Two Vectors, Under Rotation of Co-Ordinate System

4.7.2 Vectors Product of Two Vectors Under Rotation of Co-Ordinate Axes

4.8 Polar, Axial Vectors and Pseudo Scalars

4.8.1 Scalar and Vector Fields

4.8.2 Classification of Vector Fields

4.9. Summary

4.10 Vector Differentiation

4.11 Constant Vector Function : Constancy in Direction and Magnitude

4.11.1

4.11.2

4.11.3

4.12 Derivative of Triple Scalar Product

4.13 Derivative of Triple Vector Product

4.14 Velocity and Acceleration of Particle

4.15 Relative Velocity and Acceleration

4.16 Gradient of a Scalar Filed

4.17 Directional Derivative

4.18 Normal Derivative

4.19 Geometrical and Physical Meanings of Grad 

4.20 The ‘Del’ or ‘Nabla’ Operator

4.20.1 Divergence of a Vector Field

4.20.2 Integral Form of Divergence

4.21 Curl of Vector Filed

4.22 Vector Identities

4.23 Lists of Vector Relations

4.23.1

4.23.2
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4.23.3

4.23.4

4.24 Summary

4.25 Vector Integration

4.26 Double and Triple Integral

4.26.1 Examples of Double Integration

4.26.2 Change of Order of Integration

4.26.3 Examples of Triple Integrals

4.27 Change of Variables : Jacobian

4.28 Ordinary Integrals of Vectors

4.28.1 Line Integral of a Vector Field

4.28.2 Surface Integral of a Vector Field

4.28.3 Volume Integral of a Vector Field

4.29 Green’s Theorem in a Plane

4.30 Gauss’s Divergence Theorem

4.31 Stoke’s Theorem

4.32 Summary

4.1  Objectives

When you go through the article you may be able to learn

1. Definitions of scalars and vectors

2. Vector algebra, which is a little bit different from scalar algebra

3. Some examples of application of vectors in different branches of physics.

4.2  Introduction

One may ask why we need to study scalars, vectors or in general Tensors ? One of
the simple reasons may be that physical laws can be expressed effectively in concise form
and without any ambiguity with the help of scalars, vectors and tensors. But this is not all.
More logical reason for using scalars, vectors and tensors lies in the fact that physical laws
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must obey the principle of Galilean Invariance (in non-relativistic domain) which states that
physical phenomena appear to be the same for all observers moving in inertial frames with
constant relative velocity with respect to each other in respect of translation and rotation
of the co-ordinate system. In other words physical laws must be invariant in all inertial
frames of references.

In view of the above mathematical formulation of the physical laws must contain those
entities which have such invariance properties and these entities are scalars, vector and
Tensors. This is why a student of physics and science in general, must learn the properties
of scalars, vectors and tensors.

4.3  Vectors and Scalars

4.3.1 Familiarities with Vectors and Scalars

Measurable physical entities which have both magnitude and direction and obey
parallelogram law of addition are called Vectors. This is geometrical or graphical
representation of vectors. On the other hand physical quantities which have magnitude only
are called scalars. Both the vectors and scalars have their respective units.

Vectors can also be defined as a set of three numbers (in three dimensional spaces)
which we call its components with respect to a co-ordinate system in vector space. This
is algebraic definition of vector.

A physical scalar is a quantity which remains invariant under all co-ordinate
systems.

4.3.2 Example of graphical representation

Graphically or geometrically a vector is represented by a line with an arrow head. The
length of the line is its magnitude and the arrow points towards its direction. Beginning of
the line is termed as origin or tail and the arrow head is called terminus.

O A


P

Vector P is represented by the Line OA


 with an arrow, O is its tail and A is terminus.
The modulous or magnitude of P = | P | = P is given by the length OA. This representation
is independent of the origin of any co-ordinate system. Vectors are represented by bold
face letters and their magnitudes by ordinary letters.

O
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4.3.3 Vectors in terms of components

We consider a rectangular co-ordinate system as in fig (4A.1). Let the vector i be a
unit vector in the positive x direction and let j and k be unit vectors in the positive y and
z directions. If A

x
 and A

y
 are the scalar components of a vector in the (x, y) plane, iA

x
 and

jA
y
 are its vector components and their sum is the vector A (fig. 4A.2).

Fig. (4A.1) (Fig. 4A.2)

Similarly, in three dimension, A = iA
x
 + jA

y
 + kA

z

However these two ways of representing a vector are not completely equivalent, for
the algebraic definition requires a co-ordinate system, but the geometrical representation
does not require any co-ordinate system.

This difficulty is removed by making the algebraic representation also independent of
any particularly co-ordinate system by defining a vector in the following way.

A vector in three dimensions is a set of three numbers, called its components, which
transform under a rotation of co-ordinate system according to the following transformation
equation.

1 1 2 2 3 3i i i iY b x b x b x  

3
1 ik kk b x (4A.1)

Y
i
 are the components of x in the new co-ordinate system and x

k
 are the component

of x in the old co-ordinate system. The co-efficient b
ik
 etc are the numbers which are

determined by the given co-ordinate rotation, they do not depend on x.

We note that translation have no effect on the components of vector which are numbers
but not scalars, because they do not remain invariant under rotation of co-ordinate system.
However exception to the definition of vector given in equation (4A.1) is position vector
r = ix + jy + kz which is defined with respect to specific origin.



76  NSOU  CC-PH-04

Tensors are quantities that do not have any specified directions but have different
values in different directions. Examples are moment of inertia tensor, dielectric susceptibility
tensor etc. Tensors however are defined only through their transformation under changes
of co-ordinate system.

A physical entity which has only one component is called tensor of zero rank or a
scalar. If it has more than one component but less than or equal to four, it is called a vector
or a tensor of rank 1. A tensor of rank 2 has nine components.

4.3.4 Examples of scalars, vector and tensors

Scalar : A scalar field is created by simply assigning scalar quantities (numbers) to
each point in space.

Temperature of a body or potential of gravitational or electrostatic field are examples
of scalar fields. Mass, volume, density, length etc. are scalar quantities.

Vector : A vector field is created by assigning vectors to each point in space. An
electrostatic field, a gravitational field, electromagnetic field are examples.

Vectors usually possess both magnitude and direction. Force, momentum, electric
dipole moment, magnetic dipole moment etc. are examples of vectors.

Tensor. A tensor cannot be visualised geometrically hence it is defined in terms of field
or transformation properties under rotation of co-ordinate system. A tensor field has a
tensor corresponding to each point space. An example is the stress on a material.
Other examples of tensors include the strain tensor, the conductivity tensor and the inertia
tensor.

4.3.5 Equal vectors and null vectors

Two vectors are said to be equal when their magnitudes as well as direction are
identical i.e. A = B i.e. A – B = 0. The right hand side of this vector equation is also a
vector called null vector with arbitrary direction.

4.3.6 Unit Vectors

A vector having unit scalar magnitude is defined as unit vector. Any vector A can be

written as A = Aa (4A.2), where 
A

Aa  is a unit vector in the direction of the vector A.

In the Cartesian co-ordinate system, unit vectors i, j, k in the direction of X, Y, Z-axes
respectively are commonly used.
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4.3.7 Position vector or radius vector

The position vector r of an object located at P(x, y, z) is given by r = ix + jy + kz
(4A.3). Now

2 2 2 2 2 2 2 2 2OP OB BP OA AB BP x y z       

2 2 2| |OP r x y z     r (4A.4)

Fig. (4A.3)

In equation (4A.3) ix, jy, kz are the components of the vector r in X,Y,Z direction
respectively.

If the vector r makes an angle , ,    respectively with X,Y,Z -axes,

then cos , cos , cosx r y r z r    

therefore,  2 2 2 2 2 2 2cos cos cosx y z r       

or comparing with equation (4A.4), we get 2 2 2cos cos cos     = 1 (4A.5)

equation (4A.5) is known as vector direction cosine law and cos, cos, cos are called
direction cosine of r with respect to x, y, z axes respectively. Sometimes we represent cos
 by l, cos  by m, cos  by n, so that

l2 + m2 + n2 = 1 (4A.6)

So any vector A with components iA
x
, jA

y
 and kA

z
 along X, Y and Z directions

respectively can be written as

A = iA
x
 + jA

y
 + kA

z

< XOA = 
< AOY = 
< AOZ = 
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= Ax + Ay + Az (4A.7)

If the vector A makes an angle , ,  with X, Y and Z-axes respectively,

cos , cos , cosx y zA A A A A A    

22 2 2 2
x y zA A A A    A (4A.8)

4.3.8 Addition of vectors [Graphical representation]

The sum of vectors A and B is a vector C by placing the origin of B on the terminus
of A and joining the initial point of A to the terminus of B.

Fig. 4A.4(a) Fig. 4A.4(b)

We write A + B = C. This definition is equivalent to the parallelogram law for vector
addition as indicated in fig 4A.4(c)

Fig. 4A.4(c)

The law of vector addition therefore is the parallelogram law of addition which states
that the sum of two vectors A and B is given in magnitude and direction by the diagonal
of the parallelogram formed by the sides representing the vectors A and B.

In the same way any number of vectors can be added. Fig. 4A.5 shows how to obtain
the sum of resultant R of the vectors A, B, C and D.
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Fig. 4A.5

4.3.9 Subtraction of vectors

Subtraction of the vector B from the vector A is defined as the addition of the negative
vector –B to A. Thus A + (– B) = A – B.

4.3.10 Addition and subtraction of vector [algebraic or co-ordinate
representation method]

To find sum or difference of two vectors, we add or subtract like components together
as follows.

Let ,x y zA A A  A i j k  where 2 2 2 ;x y zA A A A   A

and ,x y zB B B  B i j k  where 2 2 2
x y zB B B B   B

Therefore      x x y y z zA B A B A B      A B i j k

and      
1 222 2

x x y y z zA B A B A B
         

A B

Likewise for the sum and the difference of a large number of vectors.

4.3.11 Multiplication of vectors by scalars

If A is a vector and m is any positive real number, and then mA is defined to be
a vector having magnitude equal to m times that of the given vector A in the same
direction.

Likewise – mA is a vector in the direction opposite to that of A and having magnitude
equal to m times that of A.
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4.4  Laws of Vector Algebra

Vector addition is commutative and associative i.e. A + B = B + A

And A + (B + C) = (A + B) + C, respectively also multiplication of vectors by scalars
is commutative, associative and distributive i.e.

mA = Am

m (nA) = n (mA)

m (A + B) = mA + mB, respectively.

m and n are two different scalars.

4.4.1 Linear dependence of vectors

Let A
1
, A

2
, A

3
... be vectors and 1 2 3, , , ...    are scalars, not all of which are zero.

If there exists a relation of the type 1 1 2 2 3 3 ... 0i i i        A A A A  (4A.9)

Then the system of the vectors A
1
, A

2
, A

3
... is said to be linearly dependent.

If the system of vectors A
1
, A

2
, A

3
 are not linearly dependent, then 1 2 3, , , ...    are

all zero i.e.

1 2 3 .... 0      (4A.10)

The system of vectors in this case is said to be linearly independent.

If 1 1 2 2 3 3 ...     r A A A  i.e. 1 1 2 2 3 3 ... 0       r A A A , then system

of vectors r, A
1
, A

2
, A

3
, ... is linearly dependent.

Any vector r coplanar with any two non-collinear vectors A & B can be uniquely

expressed as a linear combination of the given vectors i.e.   r A B  (4A.11)

Where ,   are scalars.

From equation (4A.11) we can write –   r A B = 0 i.e. r, A, B vectors are
linearly dependent. It is to be noted that necessary and sufficient condition that three
vectors be linearly dependent is that they may be coplanar.

Example of Art 4.3.7 to 4.4.1 :

Example 1 : Position vectors of three points P, Q, R and 2i – j + k, i – 3j – 5k and

3i – 4j – 4k respectively. Find the vectors PQ


 and QR


 and their magnitudes.
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Solutions :     3 5 2 2 6PQ          i j k i j k i j k


2 2 2( 1) ( 2) ( 6) 41PQ PQ        


 3 4 4 ( 3 5 ) 2QR          i j k i j k i j k


2 2 2(2) ( 1) (1) 6QR QR      


Example 2 : Prove that, the line joining the mid points of two sides of a triangle is
parallel and half to the third.

Solution : In the triangle PQR, the position vectors
of P, Q, R be a, b and c respectively. If the mid points
of PQ and PR be D & E respectively, then the position

vectors of 
2

D



a b

 and the position vector of E is

2

a c
.

 ( )  DE position vector of E position vector of D


  1

2 2 2 2
BC

 
   

c ba c a b 

Hence DE


 is parallel to BC


 and half of BC.

Example 3 : Prove that (i) if P and Q are two non-collinear vectors and 0  P Q ,

then show that, 0  

(ii) If P, Q, R are non-coplanar vector and 0    P Q R , then show that

0    

Solution : (i) suppose, 0 

m
a


  P Q Q  where m is a scalar..

Therefore P and Q collinear if 0  .

Again, 0;




  Q P

Fig. Example (2)
Q(b) R(c)

P(a)
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Or, Q = nP where n is scalar.

Therefore again Q and P are collinear when 0  .

Therefore we see that P and Q are non-collinear when 0  

(ii) Let 0  ,  
 
 


  P Q R

Or, P = mQ + nR where m and n are two scalars. Therefore P, Q, R are coplanar

when 0  . Similarly we can prove that P, Q, R are coplanar when 0   and 0  .

Therefore for 0     , P, Q and R are non-coplanar..

Example 4 : If A = 2i + 3j – k and B = 3i – j + 5k. Find the value of A ± B

Solution : We have

A = A
x
i + A

y
j + A

z
k = 2i + 3j – k

B = B
x
i + B

y
j + B

z
k = 3i – j + 5k

  A + B = (A
x
 + B

x
)i + (A

y
 + B

y
)j + (A

z
 + B

z
)k

= (2 + 3)i + (3 – 1)j + (–1 + 5)k

= 5i + 2j + 4k

Similarly A – B = – i + 4j – 6k

4.4.2 Product of Vectors

We often come across in physics, certain combination of vectors which have the
properties of products. The products of two vectors may be a scalar or a vector quantity
depending upon how the product is defined.

For example work done is the scalar product of two vectors namely force (F) and
displacement (d), whereas angular momentum of a particle about the origin is the vector
product of position vector (r) and its linear momentum (mv). Work done being a scalar
quantity but angular momentum is vector.

4.4.3 Scalar product of two vector :

We define scalar product or dot product of two vector as follows :

A.B = AB cos  (4A.12)

Where |A| = A and |B| = B and  is the acute angle between A and B, clearly, the
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scalar product is the product of the magnitude of one vector and the projection of the other
on it.

From the fig (4A.6) B cos  is the length of the
resolved part of OC


 i.e OD along A, i.e. A.B = AA(B

cos ) = A (resolved part of modulous of B along A).

Similarly we can write

A.B = B(A cos ) = B(resolved part of modulus A
along the direction B). From equation (4A.12) it is clear
that if A and B are two non-zero vectors, then their dot
product will be zero only when the direction of the vectors
are perpendicular. The dot product will be equal to the product of their moduli, when their
directions are parallel.

For the unit vectors i, j, k along the rectangular co-ordinate system,

i.i = j.j = k.k = 1 (4A.13)

and i.j = j.k = k.i = 0 (4A.14)

Hence the scalar or dot product of two vectors :

A = iA
x
 + jA

y
 + kA

z
(4A.15)

B = iB
x
 + jB

y
 + kB

z
(4A.16)

will be written as A.B = A
x
B

x
 + A

y
B

y
 + A

z
B

z
(4A.17)

scalar product of two vectors obey commutative law i.e. A.B = B.A

also scalar product of two vectors obey distributive law i.e. for three vector A, B & C we
can write

A.(B + C) = A.B + A.C (4A.18)

For two vectors A and B, we can have the following relations

1. (A + B).(A – B) = A.A + B.A – A.B. – B.B. = A2 + B2

2. (A + B)2 = (A + B).(A + B) = A.A. + A.B. + B.A. + B.B. = A2 + B2 + 2A.B

4.5  Vector Product

The vector product or cross product C of two vectors A and B is defined as

A × B = AB sin  n = C = Cn (4A.19)

Fig. 4A.6
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Where A = |A|, B = |B| and C = |C |

And  is the acute angle between A & B when joined tail to tail, and n is a unit vector
in the direction of C. Direction of C is normal to the plane containing A & B and in a sense
such that the vectors A, B & C form a right handed system (fig 4A.7)

Fig. 4A.7

( ),OP OQ A B
 

Geometrically the magnitude of the cross product of two vectors represents the area
of the parallelogram having the two vectors as its side.

From the fig 4A.7, the area of the parallelogram OPRQ  = area of the triangle

QOP + area of the triangle PQR

1 2
1 1

( ) ( )
2 2

OP h QR h 

Now 1 2sin , sinh QO h PR  

1 1
( )( ) sin ( )( ) sin

2 2
OPRQ OP OQ QR PR  

1 1
sin sin

2 2
  A B A B

[Since QR = OP = |A| and PR = OQ = |B|]

= sinA B

sinOPRQ    A B A B
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If n be a unit vector normal to the plane of the parallelogram then it gives = | A × B|n.
This suggests that it may be useful to represent area by vectors. Following properties of
vector products are easily verified.

1. A × B = – B × A

2. A × [B + C + D + ...] = A × B + A × C + A × D + ...

3. A × A = 0

4. i × j = k; j × k = i; k × i = j

5. i × i = j × j = k × k = 0

6. x y z

x y z

A A A

B B B

 
i j k

A B

4.5.1 Kronecker delta and Levicivita symbols

1;

0 ;ij

if i j

if i j


 
 

Example : e
1
, e

2
 and e

3
 are unit vectors along Cartesian co-ordinate axes X, Y and

Z respectively. We can define i j ij e e

The definition of the Levicivita symbol is 1ijk  ; if i, j, k = 1,2,3; 2,3,1; 3,1,2

= – 1; if i, j, k = 3,2,1; 2,1,3; 1,3,2

= 0 if any indices are repeated

We say that ijk  is anti-symmetric with respect to every pair of indices, since each

exchange of indices produce a change in sign.

If you read the indices i, j, k cyclically, then if the indices read in the direction 1, 2,
3; 1, 2,3; 1,... the result is +1; if the indices read in the opposite direction the result
is – 1

i, j, k; j, k, i ; k, i, j

k

j

i
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We now show that the components of the cross-product of two vectors can be written

as   ijk j ki
 B C B C

We have B × C = i(B
y
C

z
 – B

z
C

y
) + j(B

z
C

x
 – B

x
C

z
) + k(B

x
C

y
 – B

y
C

x
)

We replace x, y, z by 1, 2, 3

Now the first component of 1 1( )  jk j kB CB C

Now if j, k = 2, 3 or 3, 2

1 123 2 3 132 3 2( )  B C B C B C

Now 123 1    and 123 1  

  (B × C)
1
 = B

2
C

3
 – B

3
C

2

If we take j, k = 1, 3 or 1, 2; 1 0jk 

Similarly other components of B × C can be found out 2 2( )  jk j kB CB C

With j, k = 3, 1 or 1, 3

2 231 3 1 213 1 3( )  B C B C B C

= B
3
C

1
 – B

1
C

3

Since 231 2131, 1 ;    

It is to be noted that the formulae in vector analysis can be written in the form using

andij ijk  .

4.5.2 : Multiple products of vectors

With the help of dot and cross products of two vectors, it is possible to build multiple
products involving several vectors. We shall discuss here two kinds of triple products which
are specially important. One is called triple scalar product and the other is called triple
vector product.
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4.5.3 Triple Scalar Product

We consider three vectors A,B,C and arrange them in anticlockwise direction (right
handed) as shown below in fig(4A.7)

Fig (4A.7)

Then triple scalar product [ABC] is defined as [ABC] = A.B × C = B.C × A = C.A
× B (4A.20)

Thus if a cyclic change (right handed) is made in the sequence of B, C; the triple scalar
product remains the same.

However for left handed (clockwise) cyclic change as shown below in fig. (4A.8)

Fig. (4A.8)

We have [ACB] = A.C × B = C.B × A = B.A × C. Thus triple scalar product
depends on the handedness of the vectors A,B and C. In writing A.B × C etc. no bracket
is necessary. It is then seen that [ABC] = – [ACB]

Properties :

1. [ ]

x y z

x y z

x y z

A A A

B B B

C C C

ABC
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where A
x
 etc. are components of the respective vectors.

2. In a triple scalar product ‘dot’ and ‘cross’ can be interchanged, implying

[ABC] = A × B.C = B × C.A = C × A.B

3. If any of the two non-vanishing vectors A, B, C be parallel or equal,
[ABC] = 0

4. [ABC] = 0, the vectors A, B, C are coplanar and also linearly dependent.

5. [ABC] gives the volume of a parallelopiped having A, B and C as coterminous
edges. This is the geometric interpretation of triple scalar product.

6. Triple scalar product is distributive i.e. [A B + C D – E] = [ABD] + [ACD] –
[ABE] – [ACE].

7. The volume of the tetrahedron ABCD is the numerical value of 
1

6
AB AC AD  


, Fig

4A.9

Fig. (4A.9)

8. For an orthonormal right handed vector triad i, j, k we have

[ijk] = [jki] = [kij] = 1 and for left handed triad [ikj] = [kji] = [jik] = – 1

Geometrical interpretation :

The vectors A, B, C are represented by , ,OA OB OC
  

 respectively. The magnitude of

the vector B  × C is the area of the parallelogram OBDC and its direction is along OP


,
perpendicular to the plane OBDC.

Drop perpendicular from A on OP which is AM. So OM is the height of the
parallelepiped.

Then A.B × C = (projection of A on B × C) × magnitude of B × C
= height of the parallelepiped × area of the base of the parallelepiped

= volume of the parallelepiped
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By taking a various faces in turn we find that A.B × C = B.C × A = C.A × B
= volume of the parallelepiped with three adjacent side

as the magnitude of A, B and C

Fig. (4A.10)

4.5.4 : Triple Vector Product

If A, B and C are the three vectors, then triple vector product is defined as either A
× (B × C) or (A × B) × C, parentheses is essential, since A × B × C is meaningless.

We have

A × (B × C) = (A.C)B – (A.B)C (4A.21)

The value of a triple vector product is a linear combination of the two vectors in the
parentheses, e.g. B and C; the co-efficient of each vector is the dot product of the other
two, the middle vector in the triple product, e.g. B; always has the positive sign and the
other vector in the parentheses e.g. C; always has the negative sign. Thus the vector A ×
(B × C) lies in the plane of B and C.

From the discussion as above

(A × B) × C = (A.C)B – (B.C)A (4A.22)

Now (B × C) × A = (B.A)C – (A.C)B

= – [(A.C)B – (A.B)C]

= – A × (B × C)

Proof of equation (4A.21) :

B × C is a vector perpendicular to the plane of B and C. thus A × (B × C) is some
vector in the plane of B and C.
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Therefore we can write

A × (B × C) = lB + mC ; (4A.23)

l, m are scalars. Making dot product with A both sides A. A × (B × C) = l(A.B) +
m(A.C)

or, 0 = l(A.B) + m(A.C)

Using property (3) of triple scalar product

Or,
.

  
l m

n
A C A.B  (say)

Substituting the values of l and m in equation (4A.23) ,

A × (B × C) = n (A.C)B – n(A.B)C (4A.24)

Since vector equations are independent of co-ordinate system, we can take, to facilitate
our calculations, but without any loss of generality,

A = C = i, B = j
Therefore from equation (4A.24)

i × (j × i) = nj
Or i × (– k) = nj
Or k × i = nj = j
 n = 1

Therefore A × (B × C) = (A.C)B – (A.B)C (24.21)

proof of equation (4A.22) is left as an exercise.

4.5.5 Product Of Four Vectors

Scalar product of four vectors :

Scalar product of four vectors A, B, C and D is defined as (A × B). (C × D)

Now let’s suppose C × D = N

Then (A × B).(C × D) = (A × B).N

= A.B × N = A.B × (C × D)

= A. [(B.D)C – (B.C)D]

= (A.C)(B.D) – (A.D) (B.C)
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. .

. .


A C A D
B C B D (4A.24A)

Vector product of four vectors :

Vectors product of four vectors A, B, C and D is defined as,

(A × B) × C × D)

now let A × B = N
 (A × B) × (C × D) = N × (C × D)

= (N.D)C – (N.C)D
= (A × B.D)C – (A × B.C)D
= lC – mD (4A.24B)

where l and m are scalar.

Therefore (A × B) × (C × D) lies in the plane of C and D.

Now let C × D = N

 (A × B) × (C × D) = (A × B) × N

= (A.N)B – (B.N)A

= (A.C × D)B – (B.C × D)A

= pB – qA (4A.25)

where p and q are scalars. Therefore (A × B) × (C × D) can also be expressed as a  linear
combination of the vectors B and A.

Example of Art 4.4.2 to 4.5.5 :

Example 5: If A and B are two vectors, show that 2( . )( . ) ( . )  A B A A B B A B

Solution :  R.H.S : 2 2 2 2 2 2cos 1 cos sinA B A B AB AB        A B

Example 6 : Find the angle between the vectors A = 4i + 3j + k and B = 2i – j + 2k.
Also find a unit vector perpendicular to both A and B. Use concept of dot product only.

Solution : Using the definition of dot product,

.
cos 

A B
A B

, where  is the angle between the A and B.
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Now 2 2 2(4) (3) (1) 26   A

2 2 2(2) ( 1) (2) 9 3     B

And A.B = (4i + 3j + k). (2i – j + 2k) = 8 – 3 + 2 = 7

17 7
cos ; cos

3 26 3 26
    

    
 

Now let r̂  be a unit vector perpendicular to both A and B so that ˆ     r i j k

Therefore 2 2 2 1     (i)

Again ˆ. 2 0     r B (ii)

And ˆ. 4 3 0     r A (iii)

Solving equation (ii) and (iii) by cross-multiplication

2 2 2

2 2 2

1

4 2 10 120(4) ( 2) ( 10)

      
   
     

4 2 1 5
; ;

120 30 30 30
  

     

therefore  1
ˆ 2 5

30
  r i j k

Example 7 : Given A = i + j + k and C = j – k. Find a vector B such that, A × B =
C and A.B = 3

Solution : Suppose     B i j k

Now A × B = C gives,

1 1 1

  
 

i j k
j k
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Or, ( ) ( ) ( )           i j k j k

Corresponding co-efficient of i, j and k from both sides,

We have 0, 1, and 1            

as , 1 , 1; 1               (i)

Again, A.B = 3 gives 3      (ii)

Solving equations (i) and (ii) we get

2 5
and 1

3 3
       

Therefore  5 2 2 1
5 2 2

3 3 3 3
B     i j k = i j k

Example 8 : If a = 4i + 3j + k, b = 2i – j + 2k, find a unit vector n̂  perpendicular to

vector a and b such that a, b, n̂  form a right handed system. Find the angle between the
vectors a and b.

Solution : We have, 4 3 1 7 6 10

2 1 2

a b    


i j k
i j k

And  2 2 2(7) ( 6) ( 10) 185      a b

Therefore 
7 6 10

ˆ
185

  
 


a b i j kn
a b

Also 2 2 24 3 1 126   a

2 2 22 1 2 3   b

If  be the angle between a and b, then

sin , a b a b  then 0185
sin sin 62 42 ;

3 26



  


a b
a b

 062 42  
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Example 9 : Find the value of  for which vector :

A = 2i – j + k

B = i + 2j – 3k

C = 3i + j + 5k, are coplanar.

Solution : There vectors A, B, C are coplanar if [ABC] = 0

or,

2 1 1

1 2 3 0

3 5


 

Or, 2(10 3 ) (5 9) ( 6) 0      

Or, 7 28 0  

4  

Example 10 : Show that, (A × B) × C = A × (B × C) only when A and C are collinear
or (A × C) × B = 0

Solution : Given (A × B) × C = A × (B × C)

This is possible if, B(A.C) + C(A.B) – B(A.C) – A(B.C) = 0

or, if C(A.B) – A(B.C) = 0

or, if (A × C) × B = 0

This show that either B = 0 or A × C = 0, but 0B , hence A × C = 0, hence A
and C are collinear.

Example 11 : If A, B and C satisfy the condition (A × B) + (B × C) + (C × A) = 0,
show that the vector are coplanar.

Solution : We have (A × B) + (B × C) + (C × A) = 0

  [(A × B) + (B × C) + (C × A)].A = 0

or, A × B.A + B × C.A + C × A.A = 0

or, B × C.A = 0 ; or  [ABC] = 0

Therefore, A, B, C are coplanar



NSOU  CC-PH-04  95

4.6  Reciprocal System of Vectors

The concept of reciprocal vectors finds applications in solid state physics in connection
with reciprocal lattice.

Let there be a set of three non-coplanar vectors a, b, c. The set of other three vectors
A, B, C defined by the equation

, ,
[ ] [ ] [ ]

  
  

b c c a a bA B C
abc abc abc (4A.26)

Are called reciprocal vectors triads to the vectors a, b and c.

The vector triads a, b and c and its reciprocal triads A, B, C are either both right
handed or both left handed. The vector triads (a, b, c) and (A, B, C) are mutually
reciprocal.

i.e.  , ,
[ ] [ ] [ ]

  
  

B C C A A Ba b c
ABC ABC ABC

Where A, B, C are non-co-planar vectors given by [ ] 0ABC

Properties of reciprocal system :

1. If a, b, c and A, B, C be reciprocal triads of vectors, then

a.A = b.B = c.C = 1 (4A.27)

Proof : We have 
[ ]




b cA
abc

[ ]
. 1

[ ] [ ]

. 
   

a b c abca A
abc abc

Similarly b.B = c.C = 1 ;

Then a.A + b.B + c.C = 3

And
1 1 1

, ,  A B C
a b c

2. If a, b, c and A, B, C are reciprocal triad of vectors, then

a.B = a.C = 0

b.A = b.C = 0 (4A.28)



96  NSOU  CC-PH-04

c.A = c.B = 0

Proof :  
[ ]

. 0
[ ] [ ]

.


  
c a acba B a
abc abc

Since [aca] = 0; and similar for other relation.

3. The triple scalar product of any three non-co-planar vectors a, b, c is reciprocal
to the corresponding triple scalar product of reciprocal vectors A, B, C.

Proof :

 
3

( ) ( )
[ ] . ( ).

[ ]

c a a b

abc

  
   ABC A B C b c , using equation (4A.26)

Now (c × a) × (a × b) = (c × a) × N when N = a × b

= a(c.N) – c(a.N)

= a(c.a × b) – c(a.a × b)

= a[abc] since a.a × b = 0

2

3 3

( ). [ ] [ ] 1
[ ]

[ ][ ] [ ]


   

b c a abc abcABC
abcabc abc (4A.29)

Example of Art 4.6 :

Example 12 : Show that the orthonormal vector triads (i, j, k) is self reciprocal.

Solution : Let ( , , )  i j k  be the set of vectors reciprocal to (i, j, k) then,

, ,
[ ] [ ] [ ]

      
j k k i i ji j k
ijk ijk ijk

; ;     i i j j k k

Therefore the orthonormal set of vector triads i, j, k is self-reciprocal.

Example in Machanics :

Example 13 : A particle being acted on by constant force (4i + j – 3k) and (3i +
j – k) is displaced from the point (i + 2j + 3k) to the point (5i + 4j – k). Find the total
work done by the forces.
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Solution : The displacement d is given by d = (5i + 4j – k) – (i + 2j + 3k) = 4i
+ 2j – 4k

Resultant forces F = (4i + j – 3k) + (3i + j – k) = 7i + 2j – 4k

 Work done = F.d = 28 + 4 + 16 = 48 units of work

Example 14 : A rigid body is spinning with angular velocity 27 radians per sec about
an axis parallel to 2i + j – 2k passing through the point i + 3j – k. Find the velocity of
the point of the body where position vector is 4i + 8j + k.

Solution : Unit vector along the direction of the angular velocity  is

2 2 1
(2 2 )

34 1 4

i j k 
  

 
i j k

Or,
27

(2 2 ) 9(2 2 )
3

      i j k i j k

Let O be the point having position vector i + 3j +
k and the point P of the body has the position vector, 4i
+ 8j + k. Then (4 8 ) ( 3 )      r OP i j k i j k



Or, r = 3i + 5j + 2k

 Linear velocity of P is, v = w × r

9 2 1 2 9(12 10 7 )

3 5 2

   
i j k

i j k

Example 15 : Find the torque about O (3, –1, 3) of a Force F(4, 2, 1) passing
through the point A(5, 2, 4)

Solution : Position vector of A(5, 2, 4) relative to
O (3, –1, 3) is r = 2i + 3j + k

Again the force F = 4i + 2j + k

 Torque = r × F = 2 3 1 2 8

4 2 1

  
i j k

i j k

Fig. Example (4)

Fig. Example (15)


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4.7  Properties of Vectors Under Rotation

A vector is a mathematical object that transforms in a particular way under rotation.

We consider a point P(x, y) in a two
dimensional co-ordinate system OX and OY,
let now the co-ordinate frame rotate in
anticlockwise direction by an angle  so that
OX´, OY´ are the new positions of the axes.

If the co-ordinate of the point P in the new
co-ordinate frame by (x´, y´), then from
fig(4A.11), we find

x OM MN NC   

cos sin sin sin sinx p q x y         (4A.30)

Since p + q = y and OR = x

cos ( ) cosy PC q PR RN     

( )cos cos cosy p y p     

cos cos siny MR y x     

sin cosx y    (4A.31)

Since in , cos cos
MR MR

MRN MR p
RN p

     

Again in , sin sin
MR MR

ORM MR x
OR x

     

The transformation given by equation (4A.30) and (4A.31) are called orthogonal
transformation.

We take i, j unit vectors along OX and OY axes and i´,j´ along rotated axes OX´,
OY´ respectively. Then the position vector

OP x y  r i j


 (in old coordinate axes)

x y    i j  (in new co-ordinate axes) (4A.32)

Fig. (4A.11)



p

q


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Therefore component, of r in new co-ordinate axes are x i  and y j  which is different

from ix and jy respectively. But magnitude of 2 2 2 2( ) ( )x y x y     r r  is same

in both co-ordinate system ; since

   2 22 2 cos sin sin cosx y x y x y         

2 2 2 2 2 2 2 2cos sin 2 sin cos sin cos 2 sin cosx y xy x y xy            

   2 2 2 2 2 2 2 2cos sin cos sinx y x y         (4A.33)

Thus we have following observations :

OPr


1. The vector r remains the same in the two co-ordinate systems, though its
components change.

2. The length of the vector OPr


 remains the same in both the co-ordinate system.

The results can be generalised for any vector in three dimensions also i.e.

x y z x y zA A A A A A          A i j k i j k (4A.34)

and 2 2 2 2 2 2
x y z x y zA A A A A A A        (4A.35)

Thus our conclusions are vectors and scalars remain invariant under rotation of co-
ordinate systems.

4.7.1 Scalar product of two vectors under rotation of coordinate system

Consider two vectors A = iA
x
 + jA

y
 + kA

z
 and B = iB

x
 + jB

y
 + kB

z
 and their scalar

products A.B = AxBx + AyBy + AzBz with respect to a rectangular Cartesian co-ordinate
system fig (4A.11). We consider rotation of the co-ordinate system about Z-axis which is
perpendicular to the plane of the paper and passing through the origin O. Under anticlockwise
rotation through angle , the new co-ordinate system becomes x´, y´ and z´ = z and the
components of the vectors A and B are transformed according to equation (4A.30) and
(4A.31) as

cos sin

cos sin

x x y

y x y

z z

A A A

A A A

A A

 

 

  
    
  

(4A.36)
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cos sin

cos sin

x x y

y x y y

z z

B B B

B B B

B B

 

 

  
    
  

(4A.37)

In the new co-ordinate system the scalar product become

. x x y y z zA B A B A B         A B (4A.38)

Now substituting equation (4A.36) and (4A.37) in equation (4A.38), we get

  . cos sin cos sinx y x yA A B B       A B

   sin cos sin cosx y x y z zA A B B A B        

2 2 2cos cos sin sin cos sin sinx x x y y x y y x xA B A B A B A B A B          

2sin cos cos sin cosx y y x y y z zA B A B A B A B       

   2 2 2 2cos sin cos sinx x y y z zA B A B A B       

.x x y y z zA B A B A B    A B (4A.39)

equation (4A.39) shows that scalar product of two vectors remains invariant under rotation
of co-ordinate systems or conversely since A.B remains invariant it must be scalar.

4.7.2 Vector Product of Two Vectors Under Rotation of Coordinate Axes

Consider two vectors A and B and their vector product A × B. Under rotation of
coordinate axes through angle  counter clockwise about z axis, let the cross product
become A´× B´.

By equation (4A.30) and (4A.31), we can write

( ) ( ) cos ( ) sinx x y      A B A B A B (4A.40)

( ) ( ) sin ( ) cosy x y       A B A B A B (4A.41)

( ) ( )z z   A B A B (4A.42)
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Now squaring equations (4A.40) and (4A.41) both sides and adding, we get

2 2 2 2 2 2( ) ( ) ( ) ( ) ( ) ( )x y z x y z                 A B A B A B A B A B A B

or, 2 2   A B A B

   A B A B (4A.42)

The invariance of dot and cross products imply that both the magnitude of the vectors
and the angle between them remains unchanged in a rotation.

Exercise of Arts 4.6 to 4.7.2 :

1) Find a unit vector parallel to the sum of vectors A
1
 = 2i + 4j – 5k and A

2
 = i

+ 2j + 3k.

2) Find the position vector of the centroid of a triangle ABC, when the position
vector A, B and C are a, b, c.

3) If |A + B| = | A – B|, then show the A and B are perpendicular.

4) If A.B = A.C, does it necessarily follow that B and C are equal.

5) If |A| = |B|, prove that A + B is perpendicular to A – B.

6) Define direction cosine of a vector. If l
1
, m

1
, n

1
 and l

2
, m

2
, n

2
 be the direction

cosine of the vectors, show that the angle   between them is cos  = l
1
l
2
 + m

1
m

2

+ n
1
n

2
.

7) a) A, B and C are three vectors. If A + B + C = 0, show that A × B = B ×
C = C × A.

b) Is the converse true ?

8) Show that the components of a vector G along and perpendicular to a vector  H 

in the planes of G and H are respectively given by 
2

( . )H G H
H

 and 
2

( ) H G H
H

.

9) Prove that :

a)  (A × B).(C × D) = (A.C)(B.D) – (A.D)(B.C)

b)  (A × B).(C × D) + (B.C).(A × D) + (C × A).(B × D) = 0

10) If A,B,C,D are such that A × C = B × D and A × B = C × D, then show that
the vectors (A – D) and (B – C) are collinear.
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Solution of exercise of art 4.6 to 4.7 :

Solution (1) :

Required unit vector 1 2

1 2






A A
A A

Now A
1
 + A

2
 = 3i + 6j – 2k

 22 2
1 2 3 6 2 49 7       A A

 required unit vector 
3 6 2

7

i j k 


Solution (2) : The centroid G of ABC divides the
median of the triangle in the ratio 2:1

Now position vector of  
2

D



b c

Therefore position vector of

2( )
21

1 2 3

  
 



b ca a b cG

Solution (3) : We have |A + B| = |A – B|

Squaring both sides,

|A + B|2 = |A – B|2

Or A2+ B2 + 2A.B = A2 + B2 – 2A.B

Or, 4A.B = 0

A.B = 0 i.e. A is perpendicular to B and vice-versa.

Solution (4) :

If A.B = A.C, then A.(B – C) = 0, i.e. either A is perpendicular to B– C or B– C
= 0 where 0 is a null vector. Hence, it does not necessarily follows that B and C are equal.

Solution (5) :

We have |A| = |B|

Fig. Solution (2)
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Or, |A|2 = |B|2; or A.A = B.B

Now, (A + B).(A – B) = A.A – A.B+ B.A – B.B = 0

Since A.A = B.B

 A + B is perpendicular to A – B.

Solution (6) :

The cosine of the angles made by a vector with X, Y and Z axes of a rectangular
Cartesian co-ordinate axes, are called direction cosine l, m, n of the vector respectively.

If the vector makes angle , and    with respect to X, Y and Z axes respectively, then

cos , cos and cosl m n     .

Let A = iA
x
 + jA

y
 + kA

z
, then 

yx z
AA A

l m n     
A i j k i j k
A A A A

(i)

Now cos ; cos ; cos
yx z

AA A
    

A A A

 2 2 2 2
2 2 2

2 2
cos cos cos 1

x y zA A A
  

 
     

A

A A
(ii)

If there are two vectors A
1
 and A

2
, then from equation (i),

1
1 1 1

1

l m n  
A

i j k
A (iii)

where l
1
, m

1
, n

1
 are direction cosines of the vector A

1
.

and
2

2 2 2
2

l m n  
A i j k
A (iv)

where l
2
, m

2
, n

2
 are direction cosine of the vector A

2
.

Now if  be the angle between A
1
 and A

2
, we have

   1 1 1 1 2 2 2 21 2

1 2 1 2

.
cos

.

    
 

l m n l m n


A i j k A i j kA A
A A A A
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using equations (iii) and (iv).

1 2 1 2 1 2cos l l m m n n   

Solution (7) :

a) We have A + B + C = 0, then A + B = – C, now B × (A + B) = – B × C

Or, B × A + B × B = – B × C, or, – A × B = – B × C

Or, A × B = B × C (i)

Similarly, B × C = C × A (ii)

Therefore, A × B = B × C = C × A

b) We have A × B = B × C

 – A × B = – B × C  B × A = C × B

or, B × A + B × B = C × B = – B × C

or, B × A + B × B + B × C = 0

or, B × (A + B + C) = 0 now 0B

therefore A + B + C = 0

Solution (8) :

Let ,OA OB H G
 

 and OM, the projection of G on H.

The component of G along H G 
H
H

where 
H
H

 is the unit vector along OA


. Therefore vector

component G along H is

2

( . )
,

 
   

 

H H G H HG
H H H  vector

component of G perpendicular to H

2 2 2

( . ) ( . ) ( . ) ( )
OB OM

  
     

G H H H H G G H H H G HG
H H H

 

Fig. Solution (8)
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Solution (9) :

a) Let P = A × B, then (A × B).(C × D) = P.(C × D)

Now P.(C × D) = (C × D).P = C.D × P = C.D × (A × B)

= C.[(D.B)A – (D.A)B] = (C.A)(D.B) – (C.B)(D.A)

= (A.C)(B.D) – (A.D)(B.C)

b) Now, (A × B).(C × D) = (A.C)(B.D) – (A.D)(B.C)

Similarly (B × C).(A × D) = (B.A) (C.D) – (B.D) (A.C)

(C × A).(B × D) = (C.B) (A.D) – (C.D) (A.B)

  (A × B).(C × D) + (B × C).(A × D) + (C × A).(B × D) = 0

Solution (10) :

We have

(A – D) × (B – C) = (A – D) × B – (A × D) × C

= A × B – D × B – A × C + D × C

= A × B + B × D – A × C – C × D = 0

Therefore (A – D) and (B – C) is collinear.

4.8  Polar, Axial Vectors and Pseudo Scalars

A polar vector remains invariant under reversal of co-ordinate axes from x to –x, y
to – y and z to – z, since, the displacement vector r = ix + jy + kz = –i(–x) –j(–y) –
k(–z), on reversal of co-ordinate axes.

Let us consider the reflection
of OX axis by a mirror as shown
in the figure (4A.12).

On mirror reflection OX is to
the left, OY remains unchanged.

Therefore d = ix + jy (before
reflection)

And d = – i(–x) + jy = ix +
jy (after reflection)

Fig. (4A.12)
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Therefore displacement vector d remains invariant under mirror reflection. Such vectors
as r or d are called polar vectors or true vectors.

Again in polar vectors only linear action in a particular direction is involved and hence
does not depend on the frame of reference. Example of polar vectors are force, linear
momentum etc.

Now vectors such as angular velocity, angular momentum etc. which are defined in
terms of cross or vector product of two vectors, are called axial vectors for, some kind
of rotation about an axis is involved in these vectors. The sense of direction in these vectors
depend on the handedness (right or left) of the reference frame.

In the figure (4A.13)
below, we have shown that an
axial vector reverse its
direction on mirror reflection.

If A and B are two polar
vectors then A × B must be
an axial vector or pseudo
vector.

Again for three polar
vectors A,B,C the triple scalar
product A.B ×C changes its sign through reversal of axes x to –x, y to –y and z to –z.
Such scalars are called pseudo scalars.

4.8.1 Scalar and vector fields

Physical entities may have different values at different points in a region of space and
in this sense we can say that physical entities are functions of the space coordinates x,y,z.
Suppose we have a physical quantity ( , , )x y z   so that   is single valued, finite
continuous function of x,y,z and possessing continuous first space derivatives, in the region
under consideration. Then the region is called a field of  . If   is a scalar, then the field
is called a scalar field and   is called field scalar. Alternatively if 


 is a vector quantity,,

then the region is called a vector field and 


 is called the field vector..

Examples of scalar point functions are the temperature, electrostatic potential due to
a charged body, gravitational potential energy of a massive body etc. and are called field
scalars and the corresponding fields are called scalar fields.

Fig. (4A.13)
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In electric, magnetic and gravitational field, the intensity of the field in general varies
from point to point and is function of the co-ordinates. Hence these intensities are field
vectors and the corresponding fields are called vector fields.

It is to be noted that with the aid of certain differential operators, it is possible to
associate a vector field with each scalar field. This association is of fundamental importance
in mathematical physics.

A scalar field may be drawn geometrically by a series of surfaces on which the field
scalar does not vary e.g. isothermal surfaces, equipotential surfaces etc. On which
temperature, potential remain constant respectively. Such surfaces are called level surfaces.
Obviously level surfaces cannot intersect each other, for if they do, there will be two values
of   at their common line of intersection which contradicts the very definition of scalar
field.

4.8.2 Classification of vector fields

A vector field A is characterised by its divergence and curl and the field is determined
completely, if its divergence and curl are known.

Absence or presence of curl and
divergence of a vector field can be pictorially
represented as follows :

In case of parallel flow of an
incompressible field with constant velocity
as shown in (fig.4A.14A), div A and curl A
are both zero. Such vector fields are called
solenoidal and irrotational respectively.

Vortex as shown in (fig.4A.14B) is
formed in a moving field where curl 0A
at the centre of such vortex and the vector
field is characterised as rotational. In this
case net inward or outward flow is zero
and div A = 0 and we call the vector field
as solenoidal.

In case fluid is compressible, there can
be excess of outflow over the inward in
addition to the flow being rotational. This is

Fig. (4A.14A)

Fig. (4A.14B)
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shown in (fig. 4A.14C). In this case div
0A  and curl 0A .

Again when there is no rotation of a
compressible fluid as shown in fig.
(4A.14D,14E), there can be excess of
outward flow over the inward [fig.
4A.14D] or excess of inward flow over
the outward [fig. 4A.14E], we say curl A
= 0, but div 0A .

Fig. (4A.14D) Fig. (4A.14E)

Now when the vector field is irrotational i.e. 0,    A A ; and when it is

solenoidal i.e. 0 A , or 0    or 2 0   (Laplace equation).

When 0 A  but 0 A , we get 0    or 2 0   (Poisson’s equation)

4.9  Summary - I

1) Invariance properties of scalar vectors are discussed.

2) Various types of product of vectors are discussed with reference to the example
of machanics.

3) Use of kronecker delta, Levicivita symbol and classification vector field discussed
for curious students.

4.10   Vector Differentiation

From the definition of derivatives applied to vector functions, different space and time
derivative of vectors(with their physical meaning) have been explained and to obtain idea

Fig. (4A.14C)
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of special type of vector differential operators, for
example, del or nabla applied to scalar and vector
functions like gradient, divergence and curl. Also an
important objective of this chapter is to fully realise
the physical or geometrical interpretation of gradient,
divergence and curl. Different vector identities are
listed with or without del.

Operations of differentiation of vectors are
important in the sense that this concept is necessary for defining the various operators useful
in vector analysis.

Consider a vector A(u) which is a continuous function of a continuous scalar variable
u. As u change, a curve is traced by the terminus of A(u) (fig. 4B.1). In analogy with scalar

functions, we define the derivative 
d

du

A
 as

0 0

( ) ( )
lim lim
u u

d u u u

du u u   

        
A A A A

(4B.1)

The derivative 
d

du

A
 is a vector..

whose direction is the limiting direction of A as u  0. That is the direction of the
derivative lies along the tangent to the curve at the point P as u  0 in the sense of
increasing u.

If r(u) be the position vector of the point P(x,y,z) with respect to a set of rectangular

axes with origin O, then r(u) = ix(u) + jy(u) + kz(u). And 0lim 



u

d

du u

r r

0
( ) ( )

lim u
u u u

u 
  




r r
.

This 
d

du

r
 is a vector in the direction of the tangent to the space curve at (x, y, z) and

is given by

            
     

d dx dy dz

du du du du

r i j k (4B.2)

The derivative of a constant vector is a null vector.

Fig. (4B.1)
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From equation (4B.2) we see that derivative of a vector r means a vector whose
components are the derivatives of the components of r, since, i, j, k, the unit basis vectors
in rectangular Cartesian system are constant in magnitude and direction. But in other co-
ordinate system, for example plane polar co-ordinate in two dimensions and spherical or
cylindrical co-ordinate system in three dimensions, the unit basis vectors change with
direction though their magnitudes are constant. Therefore in calculating the derivative of a
vector written in these co-ordinate systems, we must differentiate the basis vectors as well
as the components.

Now consider the vector A is a derivable function of other scalar s and s is a derivable

function of another scalar u, then 0lim u
d s d ds

du s u ds du 
 

   
 

A A A

As 
d

du

A
 is a vector and in general a function of u, we may find 

2 3

2 3
,

d d

du du

A A
 etc.

Rules for differentiation :

If A and B be two derivable vectors, each being function of the scalar variable u and
s be another scalar. Then

i>  d d d

du du du
  

A BA B

ii> ( )
d d ds

s s
du du du

 
AA A

iii> ( )
d d d

du du du
    

B AA B A B  [dot product being associated, the order of the

vectors, may be changed].

iv> ( )
d d d

du du du
    

A BA B B A  [vector products does not obey commutative

law, the order of the vectors cannot be changed].

v>
2

2
,

      
 

d d d d d

du du du du du

A A A AA A  since cross product of equal vectors is

zero.
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4.11  Constant vector function: Constancy in direction and
magnitude

 4..11.1 : The necesssary and sufficient condition for a vector function A(u) to be a

constant is ( ) 0
d

u
du

A

Proof : Condition is necessary

If A(u) is constant, then for every change in u of the scalar variable u

( ) ( ) 0u u u   A A

0

( ) ( )
lim 0

( )u

u u u d

u du 

 
  

A A A
A

Condition is sufficient :

Consider A(u) = iA
1
(u) + jA

2
(u) + kA

3
(u)

where A
1
, A

2
, A

3
 are three scalar functions of u.

Then  31 2 0
dAdA dAd

du du du du
   

A i j k

Implies 31 20 ; 0 ; and 0
dAdA dA

du du du
  

Therefore A
1
, A

2
, A

3
 are constant and hence A(u) is a constant vector. Thus the

condition is sufficient.

4.11.2 : The necessary and sufficient condition for a vector A(u) to have

constant magnitude is A. 0
d

du


A

Proof : Condition is necessary :

We have A(u).A(u) = |A(u)2|

Therefore 
( )

( ). ( ) ( )
d u d

u u u
dt du

 
AA A A
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And
( )

( ). 0
d u

u
dt


AA  if and only if ( ) 0

d
u

du
A

Or A(u) = constant.

Therefore condition is necessary.

Condition is sufficient :

Assume that A(u) has a constant magnitude |A(u)|. Then definitely ( )
0

d u

du


A . So

that, 
( )

( ). 0
d u

u
du


AA . Thus the condition is also sufficient.

4.11.3 The condition for a vector A(u) to have constant direction is
( )

( ) 0
d u

u
du

 
AA

Proof : Consider ˆ( )a u  to be a unit vector in the direction of A(u), the A(u) =

ˆ ˆ ˆ( ) ( ) ( ) ( )u u A u u A A a a a

Therefore 
ˆ( ) ( ) ( )

ˆ( ) ( ) 
d u dA u d u

u A u
du du du

A aa

ˆ
ˆ

d dA d
A

du du du
       

A aA A a

ˆ
ˆ ˆ

dA d
A A

du du
     

aa a

2 ˆ
ˆ ˆ ˆ 0

dA d
A A

du du
    

aa a a

Now ˆ( )ua  is constant, ˆ
0

d

du


a ; and ˆ ˆ 0 a a

4.12  Derivative of Triple Scalar Product

Consider S = A. B × C, where A, B and C are vector functions of the scalar variable u.

Then
dS d

du du
  [A. B × C]
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.
d d d

du du du
       

A B CB C A C A B

The cyclic order of the factor on each term is maintained.

4.13    Derivative of Triple Vector Product

Consider S = A × (B × C), where A, B, C are vector functions of the scalar variable
u.

Then ( )
dS d d d

du du du du
              
   

A B CB C A C A B

The order of the factor in each term is maintained.

4.14    Velocity and Acceleration of a Particle

The position vector of a particle at time t is given by

r(t) = ix(t) + jy(t) + kz(t)

The displacement r(t) in time t is given by

( ) ( ) ( )t t t t    r r r

Now time rate of change of displacement of a particle is its velocity

0lim t
d

dt t 


 


r rv  and this velocity v is in the direction of the tangent to the path of

the particle at (x, y, z) in time t.

The acceleration of the moving particle being the time rate of change of v and we have

acceleration of the particle 
2

0 2
lim t

d d

t dt dt 


  


v v rf

Exxample of 4.4:

Example (1): A particle moving in a plane. Find the radial and transverse components
of velocity and acceleration of the particle in plane polar co-ordinate.

Solution : At any time t, let the position vector of the particle at a point

ˆ( , ), ;  r r x y r r i j  (i)
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or, ˆ cos sin ( cos sin ),r r r r       r r i j i j  where cos ; sinx r y r  

and r̂  = unit vector in the direction vector cos sin ;  r i j  (i) θ̂  is unit vector in a

direction perpendicular to r.

ˆ cos sin
2 2

            
   

θ i j

or, ˆ sin cos   θ i j (ii)

Now the velocity of the particle is given by,

ˆ
ˆ ˆ( )

d d dr d
r r

dt dt dt dt
   

r rv r r

Now,
ˆ ˆ( sin cos )

d d d

dt dt dt

     
r i j θ

And
ˆ

ˆ( cos cos )
d d d

dt dt dt

      
θ i j r

Therefore ˆ ˆˆ ˆ
dr d

r r r
dt dt

    v r θ r θ

where the dot (.) indicate differentiation with time.

Thus radial and transverse components of velocity are : ;rv r v r     so that

ˆˆ rv r vv θ

Acceleration of the particle is given by,

ˆˆˆ ˆ ˆˆ ˆ
d d d d

r r r r r r r
dt dt dt dt

            
v r θa r θ r θ θ      

where
2

2

d r
r

dt
  and 

2

2

d

dt

  .

Now substituting the values of 
ˆd

dt

r
 and 

ˆd

dt

θ
, we get

Fig. Solution 1



NSOU  CC-PH-04  115

   2ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ2 r
d d

a r r r r r r r r r a a
dt dt 
                   

 
r θ θ θ r r θ r θ         

where a
r
 is the radial component and a  is the transverse component of acceleration.

4.15    Relative Velocity and Acceleration

Consider two particles at P
1
 and P

2
 moving

along the curve C
1
 and C

2
 and having respectively

position vectors r
1
 and r

2
 at time t

Then 1 2 2 1P P   r r r


Differentiating with respect to time t, we get

2 1 
d dd

dt dt dt

r rr
 = relative velocity of particle P

2

with respect to that at P
1
. Similarly relative velocity of the particle at P

1
 with respect to

that at P
2
 is given by

1 2  
d d d

dt dt dt

r r r

Relative acceleration of the particle at P
2
 with respect to P

1
 is given by 

2

2

d

dt

r
 and that

of P
1
 with respect to P

2
 is – 

2

2

d

dt

r
.

4.16    Gradient of a Scalar Field

The gradient of a scalar field ( , , )x y z  at a point (x
0
, y

0
, z

0
) is a vector, denoted by

the symbol   (read “del ”) and is defined by

grad 
0 0 0 0 0 00 0 0

x y z x y zx y zx y z

  
 

                    
i j k (4B.3)

where the operator ‘del’ or ‘nabla’ is a vector differential operator given by

  
  

  x y z
i j k (4B.4)

Fig. (4B.2)
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Let (r) be some field scalar at some point r(x, y, z) and (r + dr) be the value of
 at r + dr(x + dx, y + dy, z + dz); then  (r + dr) –  (r) = d

When d dx dy dz
x y z

     
  
  

Or, .d
x y z

  


   
      

i j k

=  dx dy dz i j k

. .d grad dr   r (4B.5)

Now the points (x, y, z) satisfying (x, y, z) = k = constant, in general defines a
surface in region of space. This surface (x, y, z) = k is called a level surface, since at
every point of the surface (x, y, z) has a value equal to k [fig. 4B.3].

Now differentiating equation (4B.5) with respect to r, we get ˆ.
r

 
 


r  (4B.6),

where r̂  is a unit vector in the direction of r.

Now suppose r̂  is tangent to the surface  = constant at the point P. Consider 
r




for path PL, PM, PN etc approaching the tangent r̂ . Since  = constant on the surface

and L, M, N, P etc are all on the surface,  = 0 and 
r




 = 0 for such path. But 
r




in the tangent direction is the limit of 
r




 as r  0 (that is as PL, PM, PN etc

approaches r̂ , so 
r




 in the direction r̂  is zero also).

Thus for r̂  along the tangent to  = constant ˆ. 0 r , this means that   is
perpendicular to r̂ . Since this is true for any r̂  tangent to the surface at the point, then
at that point, the vector   is perpendicular to the level surface  = constant.

Again from equation (4B.5), since  = constant, ˆ0 .d dr   r . Since 0dr  ,

ˆ. 0 r  i.e.   is perpendicular to r̂ .

4.17   Directional Derivative

Suppose rate of change (x, y, z) with distance is to be evaluated at a given point

P
0
 (x

0
, y

0
, z

0
) and  in a given directional 0P Q


 as shown in fig [4B.4]. Let R be the distance

Fig. (4B.3)

L

 r̂
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in the direction R̂  where ˆ l m n  R i j k , is the unit vector in that direction; l, m, n being

the direction cosine of the directed line 0P Q


 . Then, r – r
0
 = R R̂  = R(il + jm + km) where

(x, y, z) is the position co-ordinate of the terminus of the vector R and (x
0
, y

0
, z

0
) is that

of it’s tail. Therefore, we write,

x = x
0
 + Rl

y = y
0
 + Rm (4B.7)

z = z
0
 + Rn

From equation (4B.7) we see that (x, y, z)
is function of just one variable R, the distance along
the line measurement from (x

0
, y

0
, z

0
). Then

d dx dy dz

dR x dR y dR z dR

     
  
  

l m n
x y z

    
  

  

= ˆ. R (4B.8)

where 
x y z

     
   

  
i j k

Equation (4B.8) gives the directional derivative

if we take (x
0
, y

0
, z

0
) = (0, 0, 0) i.e. the origin of co-ordinate system, then ˆ ˆR r  and

vector R becomes positions vector r and therefore equation (4B.8) can be written as

ˆ.
d

dr

   r (4B.6)

4.18    Normal Derivative

We consider two neighbouring level surface defined by  and  + d. Shorted
distance between surfaces at the point P is ˆcos .dn dr d  r n  as shown in the figure

(4B.6). Therefore 
cos

dn
dr


 .

Fig. (4B.4)

R
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Now rate of increase of  at P in the direction PQ


 is cos
d d

dr dn

  

Or, 
max

d d

dr dn

    
 

 [now as

discussed previously 
maxr




     
]

since   is the value of the directional
derivative in the direction normal to the
surface it is often called normal derivative

and written 
d

dn

    (4B.12)

Example of Art 4B.8 and 4B.9 :

Example 1: Find directional derivative of = x2 – 2y2 + 4z2 at the point (1, 1, – 1)
in the direction 2i + j – k. In what direction the directional derivative at that point is
maximum and what is its value ?

Solution 1 : (2 4 8 ) 2 4 8x y z      i j k i j k  at the point (1, 1, –1)

Unit vector along the direction 2i + j – k is  1
2

6
 i j k

 Required directional derivative is,    1 4 4 8 8
2 4 8 . 2

6 6 6

 
     i j k i j k

Directional derivative is maximum along   and its maximum value is

84 2 21  

Example 2 : Find the equation of tangent plane and normal to the surface z = x2 +

y2 at the point (2, – 1, 5).

Solution 2 : 2 2 4 2x y      i j k i j k at (2, – 1, 5)

Position vector of the point (2, – 1, 5) is, r
0
 = 2i – j + 5k

Therefore equation of tangent plane is given by (r – r
0
). 0 

Fig. (4B.6)
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Where r = ix + jy + kz is any point on the tangent plane.

i.e. (ix  + jy + kz – 2i + j – 5k).(4i – 2j – k) = 0

or, (x – 2).4 – 2(y + 1) – (z – 5) = 0

i.e. 4x – 2y – z = 5

equation to the normal to the surface is (r – r
0
) × 0 

where r is any point on the nromal.

i.e.  ( 2) ( 1) ( 5) (4 2 ) 0x y z        i j k i j k

or,
2 1 5

4 2 1

x y z  
 

 

Exercise of Art 4.14, 4.15 and 4.18 :

1) Find unit vector normal to the surface x2 + y – z = 1 at the point (1, 0, 0).

2) For the function 2 2
( , ) ,

x
x y

x y
 


 find the magnitude of the directional

derivative along a line making an angle 300 with the positive x – axis at
(0, 2).

3) The velocity of a boat relative to water is represented by 3i + 4j, and that of
water relative to earth is i – 3j. What is the velocity of the boat relative to earth,
if i and j represent 1 km an hour east and north respectively.

4) Find the angle between the surface x2 + y2 + z2 = 4 and z = x2 + y2 – 5 at the
point (1, –1, 2).

5) Find  , (i) when   = ln |r| and (ii) prove that 2 1 ˆn n nr nr nr   r r

6) Find the normal derivative of f = xy + yz + zx at (1, 1, 3).

Solution :

Solution (1) : 2 2 2( , , )x y z x y z    

2 2 2 2 2x y z     i j k i k  at the point (1, 0, –1).

Now unit normal to ( , , )x y z   at (1, 0, –1) is,
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2 2

( (1,0, 1)) 2( )
ˆ

( (1,0, 1)) 22 2

at the point

at the point




   
  
  

i k i kn

Solution 2 : We have 2 2
( , )

x
x y

x y
 



2 2

x

x y z x y


    
              

i j k

2 2 2 2
.0

x x

x yx y x y

    
             

i j k

   2 2 2 22 2 2 2

1 (2 ) (2 )x x x y

x y x y x y

 
        

i j

  at the point (0, 2) is 
4

i
.

Now as the line makes an angle 300 with the x – axis : r = i(r cos 300) + j(r sin 300)

3

2 2
r
 

  
 

ji

3
ˆ

2 2
   

r

r jr i

 directional derivative along r̂  is,

(0,2)
3 3

ˆ.
4 2 2 8


 

      
 

i jr i

Solution 3 : We assume v
B
 & v

w
 be the velocity of the boat and that of water relative

to earth respectively.

Therefore, 3i + 4j = v
B
 – v

w
, where v

w
 = i – 3j

 v
B
 = 3i + 4j – v

w
 = 3i + 4j + i – 3j = 4i + j

2 24 1 17B   v  km/hr
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If   be the angle between v
B
 and east direction then 11 1

tan or tan
4 4

   

Solution 4 : We suppose 2 2 2
1( , , ) 4 0x y z x y z       and 2 ( , , )x y z

2 2 2 5 0x y z    

Now, the angle between two surfaces is the
angle between normals at a point P(1, –1, 2).

Now, 1
1

1

ˆ







n  at the point (1, –1, 2)

And 2
2

2

ˆ







n  at the point (1, –1, 2)

1 2
1 2

1 2

ˆ ˆ. cos
 


 

 
  

 
n n  at (1, –1, 2)

Where 1n̂  and 2n̂  are the unit normal on the surface 
1
 = constant and 

2
 = constant

at the point P.

Now, 1 (1, 1,2) 2 2 4    i j k  and 2 (1, 1,2) 2 2    i j k

2 2 2 2 2 2

(2 2 4 ).(2 2 ) 4 4 4 4 2
cos

12 9 6 3 3 32 ( 2) 4 2 ( 2) ( 1)

     
    

      

i j k i j k


Solution 5 :

i) We have r = ix + jy + kz

2 2 2r x y z    r

 2 2 2 2 2 21
ln ln

2
x y z x y z      

 2 2 21
ln

2
x y z

x y z


   
         

i j k

Fig. Solution (4)
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2 2 2 2 2 2 2 2 2 2 2 2

1 2 2 2

2

x y z x y z

x y z x y z x y z x y z

   
    

        

i j ki j k

2

ˆ

rr
 

r r

ii) We have  2 2 2 2

n
nr x y z  

 2 2 2 2

n
nr x y z

x y z

   
         

i j k

     2 2 2 2 2 2 2 2 22 2 2

n n n

x y z x y z x y z
x y z

  
        

  
i j k

Or

   1 12 2 2 2 2 22 2.2 .2
2 2

n n
n n n

r x y z x x y z y
    

         
      

i j

  12 2 2 2 .2
2

n
n

x y z z
 

   
  

k

  12 2 2 2 ( )
n

n x y z x y z


    i j k

  12 2 12 ˆ
n

n nn r nr nr
    r r r

Solution 6 : From equation (4B.12), normal derivative 
d

dn

  

Now f xy yz zx    
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Now ( ) ( ) ( )
f f f

f y z z x x y
x y z

  
         

  
i j k i j k

f  at the point (1, 1, 2) is 4i + 4j + 2k

2 2 24 4 2 16 16 4 36 6f        

4.19 Geometrical and Physical Meanings of Grad  :

From equations (4B.8) using the definition of dot product, since ˆ 1R

ˆ cos cos
d

dR

       R (4B.7)

where   is the angle between ˆ& R . Therefore 
max

d

dR


    

 
 i.e. maximum value

of 
d

dR


 is   and it is in the direction of   [fig. 4B5)

When  = 180o, we get largest of decrease of

 i.e. 
d

dR

   

When ˆ,
2

  R , is tangent to the surface 

(x, y, z) = constant at the point P Fig. [4B.5] and

ˆ 0  R  i.e.   is perpendicular to the tangent

R̂  at the point P, since this is the true for any R̂  tangent to the surface at the point P then

  is perpendicular to the surface  ( , , )x y z  constant.

4.20 : The ‘Del’ or ‘Nabla’ operator

When we write grad 
x y z

 
   

      
i j k , we call the bracket Del or Nabla or

 . Thus ‘Del’ is a differential operator, has no meaning by itself like other operator, e.g.
d

dx
 or sine or log

e
 etc but has vector properties.

So far we have discussed   where   is a scalar. But   can operate on vectors

Fig. (4B.5)
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too.

Suppose A(x, y, z) is a continuously differentiable point function with components A
x
,

A
y
 and A

z
 in the X, Y and Z direction repectively and A can vary in magnitude and direction

from point to point.

We can now form two useful combination of   and A. We define the divergence of
A i.e. div A or  .A by

yx z
AA A

x y z

 
   

  
 Α (4B.9)

And curl A or rot A or  × A by

  
 

  

x y z

x y z

A A A

i j k

Α

y yx xz z
A AA AA A

y z z x x y

                         
i j k (4B.10)

Equation (4B.9) follows from the definition of dot product of two vectors A and B and
equation (4B.10) follows from definition of cross product. So we can say that in the above
two equation   behave almsot like a vector..

Now   is a vector function and we can write  Α , where   is a scalar function.

Now  . AA becomes    = div gard  . This important expression is called Laplacian

of   and is written as

2

x x y y z z

  


                        


2 2 2

2 2 2x y z

    
  
  

(4B.11)

Several important equations in mathematical physics involving Laplacian are :
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2

0





   (Poisson’s equation)

2 0   (Laplace’s equation)

2
2

2 2

1

c t

 



  (Wave equation)

2
2

1

th

 



 [diffusion, heat conduction equation etc.]

where h is constant and t is time.

4.20.1 Divergence of a vector field

Divergence of a vector field A measures how much the vector A spreads out from the
point in question. The vector function in fig (4B.6) has a positive divergence at the point
P, if it is spreading out from there. If the arrows pointed inwards, it would be a negative
divergence on the other hand the function in fig (4B.7) has zero divergence at P, as it is
not spreading outwards or inwards at all.

Fig. (4B.6) Fig. (4B.7)

The points, at which  . A  > 0 are called sources, while the points at which  . AA
< 0 are called sinks of vector field A. But if at all points  . AA = 0, then the vector field
is said to be solenoidal. Thus a solenoidal vector field is without a source or sink.

Physical significance of a divergence is that it gives the net rate of outflow per unit
volume evaluated at a point. This is ‘outflow’ of actual substance for liquids, gases or
particles and ‘flux’ for electric and magnetic fields.
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We consider an element of volume
[fig (4B.8)] in a region through which
water is flowing and take the vector
point function A to be equal to v,
where  is the density and v, the velocity
of water flow at that point such that A
= v, Obviosuly v gives the mass of
water following per unit area per second
in the direction of v. If water is flowing
in the direction v making an angle 
with the normal n̂  to a surface, then
amount of water crossing unit area of the surface in unit time is A. n̂ , if n̂  is a unit vector..

The rate at which water flows into element of volume dxdydz through surface 1 is
(A.i)dydz = A

x
dxdydz, where A = iA

x
 + jA

y
 + kA

z
. Similarly the rate at which water flows

out through the surface 2 is x
x

A
A dx dydz

x

   
, since the value of x-component of A at

the surface 2 is 
x

x
A

A dx
x

   
, for constant y & z. Therefore the net outflow through

these two surface is

[(A
x
 at surface 1) – (A

x
 at surface 2)] dydz

xA
dxdydz

x






We get similar expression for the net outflow through the other two pairs of opposite
surfaces ; namely

yA
dxdydz

y



  (through ABCD and OB´C´D´ surfaces)

And zA
dxdydz

z




 (through OB´BA and CC´D´D surfaces)

Then the total net rate of outflow of water from the volume element dxdydz is

Fig. (4B.8)
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yx z
AA A

dxdydz dxdydz
x y z

  
       

A (4B.12)

From definition of divergence in equation (4B.9). Therefore net rate of outflow of
water per unit volume is A . This is the physical meaning of divergence.

Equation of continuity :

If some physical entity is generated within a certain region of a field, then that region
is termed as source. On the other hand, if the physical entity is absorbed then the region
is called a sink.

Clearly, if there are no source or sink presents in the field, then the net outflow of the
incompressible physical entity over any part of the region is zero.

If the total strength of the sources is greater than that of the sinks, the net outflow is
said to be positive, otherwise it is zero or negative.

Now from the physical significance of divergence, we see that, divergence is somewhat
like density, since like density, divergence is evaluated per unit volume and may vary from
point to point.

Therefore from the above discussions we see that divergence of a vector field A will
be different from zero due to i) non-equality of source and sink strength and ii) time
variation of density, in case of compressible fluids.

Now we consider a region of volume dxdydz is which water is flowing and where
there is source and sink. From the principle of conservation of mass :

Rate of increase of mass in dxdydz = Rate of creation of mass minus Rate of outwards
flow in dxdydz

Or dxdydz dxdydz dxdydz
t

 
  


A (4B.13)

Where   is the net mass of fluid being created per unit time per unit volume, which

is source density minus sink density and   is the mass per unit volume or density of the

fluid and 
t




 is the rate of increase of mass per unit volume per unit time. Since 0dxdydz  ,

we get

t

 
  


A (4B.14)
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If there are no source or sink or source strength equals sink strength, then   = 0 and

the resulting equation (4B.15) is called equation of continuity : 0
t


  


A (4B.15)

In case of incompressible fluid, 0
t





 and we get  A (4B.16)

In case of electric field, D, the electric displacement vector, and the sources and sink

are electric free charges and we get   charge density D .

For magnetic field B, the source and sinks are magnetic free poles, which does not
exist. Therefore 0 B .

4.20.2 Integral form of divergence

We consider n̂  to be the unit vector normal
to d, a small area from the surface of a small
volume element of fig (4B.9) then the mass of
fluid flowing out through d is A. n̂  d  and the
total outflow from the volume enclosed by the

surface is ˆ. d A n .

Again to the volume element d  = dxdydz,

the total outflow from d  is d A

Therefore, ˆ.d d   A A n

Or, 0
1

ˆlim .d d
d 
  A A n (4B.17)

Equation (4B.17) gives the integral definition of divergence.

Examples of Art 4.20 :

Example 1 : Prove that ( 3)n ndiv r n r r

Solution 1 : Let    
1

2 2 2 2
1 2 3,n nr r x y z r x y z           r i j k i j k

31 2ndiv r
x y z

   
   

  
r

Fig. (4B.9)

d

n̂
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now 1
nxr 

1 1 2 21 n n n n n nr x
r nxr r nxr r nr x

x x r

    
      

 

similar expressions for 32 ,
y z

 
 

 can be obtained and are given by

2 22 n nr nr y
y

 
 



2 23 n nr nr z
z

 
 



   2 2 2 23 3 ( 3)n n n n n ndiv r r nr x y z r nr r n        r

Note : When n = – 3, 3
0.n r

div r
r

  r  Therefore the vector 3

r

r
 is solenoidal.

Example 2 : Show 2 2( ) ( 1)n nr n n r  

Solution 2 :  2 2 2n n n nr r nr n r          r r

Let 2nr  . Now using formula (9) in Art 4B.14.2, we can write

2 nr n n n          r r r

Now 
x y z

x y z

  
   

  
 r  = 1 + 1 + 1 = 3, where r = ix+ jy + kz and

2 3 ˆ( 2)n nr n r      r

= (n – 2) rn–4
 
r

2 2 4 2 23 ( 2) . 3 ( 2)n n n n nr nr n n r nr n n r          r r

  2 2 2 23 ( 2) ( 1)n n nn n n r n n r n n r          
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Example 3 : Prove that 
2

2
2

2
( )

d f df
f r

r drdr
 

Solution 3 : 2 ( ) ( )f r f r   

Now,
( ) ( ) ( ) ( ) ( ) ( )

( )
f r f r f r f r r f r r f r r

f r
x y z r x r y r z

        
        

        
 i j k i j k

( ) ( ) ( ) 1 ( ) ( )
( )

f r x f r y f r z f r f r
x y z

r r r r r r r r r r

    
         

    
ri j k i j k

Now 2 1 ( )
( )

df r
f r

r dr
   r

( ) ( ) ( )x df r y df r z df r

x r dr y r dr z r dr

                     

( ) ( ) ( )
x y z

f r f r f r
x r y r z r

                       

Now,
1 1

( ) ( ) ( ) ( )
x x

f r f r x f r f r
x r r x r r x

                 

( ) 1
( ) ( )

f r r x r
x f r f r

r r r x r r x

              

2 2

3 3

( ) ( )
( ) ( ) ( ) ( )

f r x x x f r x x x
f r f r f r f r

r r r r r rr r

 
        

2 2

3 2

( )
( ) ( )

f r x x
f r f r

r r r


    (i)

Similarly 
2 2

3 2

( )
( ) ( ) ( )

         

y f r y y
f r f r f r

y r r r r
(ii)

And
2 2

3 2

( )
( ) ( ) ( )

z f r z z
f r f r f r

z r r r r

         
(iii)
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Adding equations (i), (ii) and (iii), we get

2 2 2 2 2 2
2

3 2

3
( ) ( ) ( ) ( )

x y z x y z
f r f r f r f r

r r r

        

3 ( ) 2
( ) ( ) ( ) ( )

f r
f r f r f r f r

r r r


       

Exercise of Art 4.20 :

1) A rigid body is rotating with constant angular velocity . Show that the linear
velocity is solenoidal.

2) Prove that 2 1
0

r
   
 



3) Prove that . 6( )x y z  F , when  3 3 3 3x y z xyz   F 

4) A vector field is defined by 
2

r

r



F , Evaluate F.

5) For what value of a the vector, A = (x + 3y)i + (y – 2z)j + (x + az)k is
solenoidal.

Solution :

Solution (1) : x y z    i j k  = constant vector

Now linear velocity x y z

x y z

    
i j k

v r

or,       y z z x x yz y x z y x          v i j k

Now,       0 0 0 0y z z x x yz y x z y x
x y z
       

          
  

v

Since, 0, v v  is solenoidal.
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Solution 2 : From example (2) of Art 4B.11

We have 2 2( ) ( 1)n nr n n r  

Putting n = – 1, we get 2 1
0

r
   
 



Solution (3) :  3 3 3 3x y z xyz   F

or,    3 3 3 3 3 33 3x y z xyz x y z xyz
x y

 
       

 
F i j

 3 3 3 3x y z xyz
z


   


k

     2 2 23 3 3 3 3 3x yz y xz z xy     i j k

Now,      2 2 23 3 3 3 3 3x yz y xz z xy
x y z

  
      

  
 F

= 6x + 6y + 6z = 6(x + y + z)

Solution (4) : 2 2 2 2

r x y z

r r r r
   


F i j k  where r2 = x2 + y2 + z2

Now,
2 2 2

x y z

x y zr r r

                      
 F

Now,   22 2 2 2
2 2 2 2 2 2 2

1
2

x x
x y z x

x xr x y z x y z

                    

2

2 4

1 2x

r r
 

Similarly, 
2

2 2 4

1 2y y

y r r r

       
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Fig (4B.10)

and
2

3 2 4

1 2z z

z r r r

       

 2 2 2

2 4 2 2 2

23 3 2 1x y z

r r r r r

 
       F

Solution 5 : A = (x+ 3y)i + (y – 2z)j + (x + az)k

Now, ( 3 ) ( 2 ) ( ) 1 1 2x y y z x az a a
x y z

  
           

  
 A

For A to be solenoidal 0  A
i.e. 2 + a = 0

i.e. a = – 2

4.21  Curl of A Vector Field

We have shown earlier that if a rigid body rotates, about an axis with a constant
angular velocity   in the direction of the axis, it is related to the linear velocity v of a

particle in rigid body by 
1

( )
2

   v (4B.18)

Thus curl v relates to angular velocity of rotation and gives us a clue to the name curl
v or rotation v or rot v of the vector del × v.

In case of flow of fluid the value of  v  at a point is the measure of the angular

velocity of the fluid in the neighbourhood of the point.

When  v  = 0 everywhere in some region,
the velocity field v is called irrotational, or in
general for any vector field A, if 0  A  in a
region of space the field A is called irrotational or
conservative field or lamellar vector field. In such
vector fields line integral around a closed path is
zero.

But for non-lamellar vector fields the line
integral around a closed path is not zero and curl
of a vector field plays an important role.
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Fig (4B.12)

We consider a vector field A, if we define circulation as the line integral .d A r
around a closed plane curve. For flow of water we can take  A v  and we can get a
physical meaning of the circulation as follows.

We consider a closed rectangular path abcd
in a vector field A as shown in figure (4B.10). If
the plane of this rectangle is perpendicular to the
vector field A, then the circulation along this path
is zero, since A is perpendicular to every element
dr of abcd.

If however the plane of the rectangle is made
parallel to the direction of A, the line integral
along ad and bc will be zero ; but the line integral
along ab and cd will have some definite value [fig
4B.11] and therefore circulation will not be zero.

Let A be the vector point function having
components A

x
, A

y
, A

z
 along x, y, z co-ordinate.

We consider the plane are dydz. Fig (4B.11).

The value of the components of vector A
along side of rectangle adcb are (fig. 4B.12)

(along ad) : A
y

(along bc) : 
y

y

A
A dz

z






(along ab) : A
z

(along dc) : z
z

A
A dy

y





Hence the line integral around the closed path adcda is

y z
z y z y

A A
A dz A dz dy A dy dz A dy

z y

   
           

[since direction of cd and da are in opposite sense]. In evaluating the line integral we

Fig (4B.11)
[X-axis being perpendicular to the plane of the
paper at a]

d
y
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must go around the area element dydz as in Fig (4B.11) keeping the area to ours left/right
hand rule,

y z
A A

dydz
z y

 
    

Since the path of the integration are either parallel or antiparallel to the vector
components, the line integral will have maximum value.

Now the area enclosed by the path of integration being dydz, the maximum value of

the line integral per unit area is y z
A A

z y

 
   

, which according to the definition (4B.10)

of curl is scalar component of A  along the unit positive normal to the area i.e. i.

  1
.y z

around dydz

A A
d

z y dydz

 
        

A i A r

Similarly considering rectangular path whose planes are perpendicular to y and z axes,
it can be shown that

  1
.x z

around dzdx

A A
d

z x dzdx

          A j A r

and   1
.y x

around dxdy

A A
d

x y dxdy

 
       

A k A r

  y yx xz z
A AA AA A

z y z x x y

                           
A i j k

Therefore  A  is related to the maximum value of circulation per unit area and can
be written as

0
1

ˆ lim .d around d d
d    A n A r (4B.18)

Where d  is any arbitrary area with positive unit outward normal n̂  so that when n̂
= i,  d  = dydz etc. Equation (4B.18) can be written as a definition of A .
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Example of Art. 4.20 :

Example (1) : If a rigid body rotates about on axis passing through the origin with

angular velocity   and with linear velocity  v r , then prove that  1

2
 v .

Solution 1 : x y x z constant       i i j k

and  v r

Therefore ( ) ( ) ( )       v r r r      (i)

using equation (4A.21).

Since   is a constant vector 0   ; therefore we have used (  ) as co-

efficient of r in equation (i)

3 3x y z x y zx y z x y z
     
        

                   

r r rv r  

   1
3 3 2

2x y z           i j k v    

Example 2 : Find the constant a, b, c so that the vector,

A = (x + 2y + az)i + (bx – 3y – z)j + (4x + cy + 2z)k, is irrotational.

Solution 2 : Since A is irrotational, 0 A

Or, 0

2 3 4 2

x y z

x y az bx y z x cy z

  


  
     

i j k

Or, (c + 1)i + j(a – 4) + k(b – 2) = 0

Therefore,  1 0 1c c    

4 0 4a a   

2 0 2b b   
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Example 3 : Find the corresponding scalar potential of the vector A in
example 2.

Solution 3 : Since 0 A  and A is defined in a simply connected region, vector
field A is said to be conservative and hence it can be expressed as a gradient of a scalar

potential, say,  .

x y z

     
      

  
A i j k

Or, if A
x
, A

y
 and A

z
 are the components of the vector A, we can write,

x y zA A A
x y z

    
      

  
A i j k i j k

( 2 4 )xA x y z
x


      


(i)

(2 3 )yA x y z
y


     

 (ii)

(4 2 )zA x y z
z


     


(iii)

Integrating equation (i) with respect to x, keeping y, z constant, we get,

2

12 4 ( , )
2

x
yx zx f y z

 
      

 
(iv)

Similarly integrating equation (ii), with respect to y; keeping x and z as constant, we
get

2

2
3

2 ( , )
2

y
xy zy f x z

 
      

 
(v)

And from equation (iii), we get,

 2
34 ( , )xz yz z f x y      (vi)
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f
1
(y, z), f

2
(x, z) and f

3
(x, y) are constants of integration. Now f

1
, f

2
 and f

3
 are to be

suitably chosen in order that function   were identical in all these three equations.

By inspection, we find f
1
(y, z) = – zy 

2
23

2
 

y
z

2 2
2 2

2 3
3

( , ) 4 2 , ( , ) 2
2 2

x y
f x z zx x z f x y yz     

2 2
23

2 4
2 2

x y
z yx yz xz c

 
          

 

where c is a constant independent of x, y, z.

Example 4 : What do you mean by an exact differential? Show that a necessary and

sufficient condition that F
1
dx + F

2
dy + F

3
dz be an exact differential is that 0 F

where F = iF
1
 + jF

2
 + kF

3
.

Solution 4 : If P = P(x, y, z); Q = Q(x, y, z); R = R(x, y, z), then Pdx + Qdy + Rdz

is an exact differential if there exists a function ( , , )x y z  such that

d dx dy dz
x y z

     
  
  

is equal to Pdx + Qdy + Rdz.

Pdx + Qdy + Rdz, is an exact differential, if the following conditions hold good :

0
P Q Q R R P

y x z y x z

                            

The necessary condition that F
1
dx + F

2
dy + F

3
dz is an exact differential :

Let F
1
dx + F

2
dy + F

3
dz be an exact differential. Then F

1
dx + F

2
dy + F

3
dz = d

dx dy dz
x y z

    
  
  

1 2 3; ;F F F
x y z

    
   

  
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1 2 3F F F
x y z

     
       

  
F i j k i j k 

0    F  

The sufficient condition that F
1
dx + F

2
dy + F

3
dz is an exact differential :

Let 0 F

or,

1 2 3

0
x y z

F F F

  


  

i j k

or, 3 32 1 2 1 0
F FF F F F

y z z x x y

                          
i j k

or,
3 32 1 2 1 0

F FF F F F

y z z x x y

                         
=

 F
1
dx + F

2
dy + F

3
dz = exact differential

also, when 0, F   F  , so . d   F dr dr

or, (iF
1
 + jF

2
 + kF

3
). (i dx + j dy + k dz) = d

or, F
1
dx + F

2
dy + F

3
dz = d  = an exact differential

Exercise of Art 4.21 :

1) If 0 00, 0, , ,
H E

t t
  

      
 

E H E H     where 0 0,   are

constants. Show that E and H satisfy the wave equation 
2

2
0 0 2




t
  uu .

2) If A and B are irrotational, show that A× B is solenoidal.

3) If u vF  , where u, v are scalar field and F is a vector field, show that

0  F F .

4) Prove the following ; (i) If A is irrotational (A × r) is solenoidal, (ii) If 
B

t


 


A ,

then show that B  is independent of t.
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5) Prove that (i) ( ) 2  A r A  and (ii) ( ) 2   A r A ,where r = ix + jy +

kz where A is a constant vector.

Solution of exercise of Art 4B.12 :

Solution (1) : We have

2( ) ( )    E E E     (i)

See Art 4B.13 item no (3)

Now substituting 0 t
 

  

HE  in equation (i)

2
0 0

t
 

     


H E E  

or, 2
0 ( )

t
 

 


H E 

or,  
2

2
0 0 2t
  




E E       (ii), substituting  0 t
 



EH =

Similarly we can arrive at

2
2

0 0 2t
  




H H  (iii), by replacing E by H,

Using common term u for E and H,

We get : 
2

2
0 0 2t
  




u u

Solution 2 : We have 0, 0   A B 

( ) 0        A B B A A B  

(See Art 4B.14.2 item no. 12)

 A × B is solenoidal.

Solution 3 : Since 
1

v
u

F  , u and v are scalars,

1 1 1
v v v

u u u
             
   

F      
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(see Art 4B.14.2 item no. 15)

Now 0v  

1
v

u
     
 

F  

1 1
0v v

u u
        
 

F F   

Since any two vector in a triple scalar product is equal, implies the product is zero.

Solution 4 :

i) We have 0 A

Now          A r r A A r  

Now 
x y z

x y z

  
 

  

i j k

r

.0 .0 .0 0
z y x z y x

y z z x x y

                               
i j k i j k

Since x, y, z are independent.

Therefore       A r r A      and (A × r) is solenoidal.

ii)
B

t


 


A

taking divergence on both sides   0
t


    


A B  

since 0  A 

therefore B  is independent of t.



142  NSOU  CC-PH-04

Solution 5 :

i)       3 x y zA A A
x y z

   
             

A r r A A r A r  

3 x y zA A A
x y z

   
       

r r rA

3 3 2x y zA A A        A i j k A A A

where A = iA
x
 + jA

y
 + kA

z

ii) We have x y z

x y z

A A A

  
  

 
i j k

A 

y z z x x yA A A A A A
z y x z y x

                           
i j k

Now,

  y z z x x y

i j k

A A A A A A
z y x z y x

x y z

     
     

     
A r

z x x y x yA A z A A y A A x
x z y x y x

                            
i i j

y z y z z xA A z A A y A A x
z y z y x z

                            
j k k

= – iA
x
 – iA

x
 – jA

y
 – jA

y
 – kA

z
 – kA

z

= – 2[iA
x
 + jA

y
 + kA

z
] = – 2A
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4.22    Vector Identities

In various application of vector analysis expressions involving   and scalar or vector
functions are involved. We can verify these expressions by writing out components. These
verifications become however easier if we treated   an ordinary vector remembering
that it is also a vector differential operator.

1 > Curl (grad  ) = 0

Proof : curl( ) ( )grad    

x y z

x y z

  

  

  
  
  

i j k

2 2 2 2 2 2

y z z y z x x z x y y x

               
                               

i j k

= i(0) + j(0) + k(0) = 0

2> div(curl A) = 0

proof : div (curl A) 0      A A   

interchanging “dot” and “cross” in a triple scalar product and treating   as a
normal vector.

3> curl (curl A) ( )   A 

2( )  A A  

Proof : 2( ) ( ) ( )        A A A A A        

Using the formula for A × (B × C), treating   as a normal vector and also an operator

which differentiate A. Laplacian of a vector, 2A , simply means a vector whose components

are 2 2 2, ,x y zA A A  
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4> ,      A A A  where   is a scalar..

Proof :    A        A A A

Where the subscript on   indicate which function is to be differentiated i.e.   will
diferentiate  , keeping A constant.

Now          A A A , since   is a scalar, we can put it on either side of

dot. On the last step we have removed the subscript since A no longer appear after. Again

     A A  since   is a scalar and is not differentiated, it may be treated as a

constant. Therefore, collecting all the terms we have :

( )        A A A

5> grad ( . ) ( . ) ( . ) ( . ) ( ) ( )            A B A B A B B A A B B A

Pooof :  consisting only the x-component

 ( . )x x x y y z zgrad A B A B A B
x


  


A B

y yx x z z
x x y y z z

B AB A B A
A B A B A B

x x x x x x

    
     

     

x x x x x x x x
x y z y z x y z

B B B B B A A A
A A A A A B B B

x y z y z x y z

          
                    

y yx x z z
y z y y z z

B AA A B A
B B A B A B

y z x x x x

    
     

     

. y yx x x z
x x y y z

B AB A B B
B A A B A

x y x y z x

                              
 A B

x z
z

A A
B

z x

      

   .x x x x
B A curl curl       A B A B B A

Hence, considering y and z components of L.H.S and adding them all, we get
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( . ) ( . ) ( . ) ( ) ( )       A B A B B A A curl B B curl A

Now we find out ( ) ( ) ( )x y z z yA A  A curl B curl B curl B

y x x z
y z

B B B B
A A

x y z x

               

Similarly, (B × curl A)
x
 = B

y
(curl A)

z
 – B

z
(curl A)

y

y x x z
y z

A A A A
B B

x y z x

               

6>   ( )div       A B B A A B 

Proof : ( ) ( )div
x j z

   
         

A B i j k A B

     y z z y z x x z x y y xA B A B A B A B A B A B
x y z

                   
i j k i j k

     y z z y z x x z x y y xA B A B A B A B A B A B
x y z

  
     
  

y yx xz z
x y z

A AA AA A
B B B

y z z x x y

                         

y yx xz z
x y z

B BB BB B
A A A

y z z x x y

                             

     B A A B 

7>    ( ) ( ) ( )curl         A B A B B A B A A B   

= A div B – B div A + B grad A – A grad B
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Proof :

( )

y z z y z x x z x y y x

curl
x y z

A B A B A B A B A B A B

  
 

  
  

i j k

A B

Considering the x-component only

   ( )x x y y x z x x zcurl A B A B A B A B
y z

 
    

 
A B  Adding and subtracting

 x xA B
x




, we get

( )xcurl A B

     x x x y x zA B A B A B
x y z

  
  
  

     x x y x z xA B A B A B
x y z

   
      

y yx xz z
x x y z

B AB AB A
A B B B

x y z x y z

      
                

y yx xz z
x x y z

A BA BA B
B A A A

x y z x y z

      
                

       . . . .x x x xA A B B   B B A A   

Considering components in y and z direction and adding. We get

curl(A × B)

       . .x y z x y zA A A B B B     B i j k A i j k 

     . .x y z x y zA A A B B B     i j k B i j k A 

       ( ) . . . .      A B B A A B A B B A    
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8>   ( ) ,curl curl grad     A A A  is a scalar

Proof : ( )curl         A A A A  

( ) ( ) ( )x y zA A A
x y z

  
                

i j k i j k

( ) ( )( ) ( )( ) ( )y yx xz z
A AA AA A

y z z x x y

                            
i j k

Considering only x-components

( )( )
( ) yz

x z y

AA
curl A A

y z y z

  
    

           
A i

Similarly 
( ) ( )

( ) x z
y x z

A A
curl A A

z x z x

 
 

               
A j

And 
( ) ( )

( ) y x
z y x

A A
curl A A

x y x y

  
    

           
A k

Adding we get,

( ) ( ) ( )x y zcurl curl curl curl     A i A j A k A

    A A 

    A A 

4.23  List of Vector Relations

4B.14  We list below some useful vector relations and vector equations which are
frequently used in many areas of physics. Students should carefully go through these
relations for their benefit.

We have grouped the vector identities into two categories – one involving ‘del’ operator
and the other not involving it.

Similarly we grouped the vector equations in physics into two categories – one involving
Laplacian and the other not. The symbols in equations have usual meaning.
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4.23.1 : Vector relations not involving ‘del’ operator

1. A × (B + C) = A × B + A × C

2. (B + C) × A = B × A + C × A

3. A × B.C = A.B × C

4. A × (B × C) = B(A.C) – C(A.B)

5. x y z

x y z

A A A

B B B

 
i j k

A B

6.

x y z

x y z

x y z

A A A

B B B

C C C

  A B C

4.23.2. : Vector relations involving ‘del’ operator

1. 3 r

2. 0 r

3. 1 2ˆn n nr nr nr  r r

4. 2 2( 1)n nr n n r  

5. 2 1
0

r
   
 



6. ( )m n m n       

7. ( )       

8. ( ) ( ) ( )m n m n     A B A B  

9. ( ) ( )      A A A  

10. ( ) ( ) ( )m n m n     A B A B  

11. ( ) ( ) ( )      A A A  

12. ( ) ( ) ( )       A B B A A B  
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13. ( ) ( ) ( ) ( ) ( )          A B A B B A A B B A    

14.
2 2 2

2
2 2 2

( )
x y x

  
 

  
    

  
  

15. ( ) 0  

16. ( ) 0  A 

17. 2( ) ( )    A A A    

4.23.3. : Vector equation of variation branches of physics

1. Lorentz forces : F = q[E + v × B]

2. Maxwell’s field equation (in vacuum)

0;
t


    


BD E 

0;
t


    


DB H 

Where 0 0and  D E B H

In vacuum 0 0and  J

3. Equation of continuity : ( ) 0
t

 
  


 v

4.23.4. : Vector equation involving Laplacian

1. Poisson’s equation 2

0





 

2. Laplace’s equation : 2 0 

3. Wave equation : 
2

2
2 2

1

c t

 





4. Diffusion (or heat conduction) equation : 2 1

h t

 





Keywords :

Gradient of a scalar function, divergence and curl of vector function, directional and
normal derivatives, integral forms of divergence and curl.
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4.24  Summary - II

 Constancy of direction and magnitude of vector function have been discussed
with respect to derivatives.

 Derivatives of triple scalar and vector products have been discussed.

 Velocity, acceleration and relative velocity of a particle in terms of time derivatives
have been exemplified.

 Gradient, divergence and curl have been defined, obtained their geometrical
meanings.

 Physical meaning of directional derivative has been discussed.

4.25   Vector Integration

There are plenty of uses of integration in physics. Relevant integrals are set up to
represent physical quantities such as volume, mass, moment of inertia etc. and then evaluated
by suitable methods. The basic idea behind setting up of the evaluating is that an integral
is the limit of a sum.

Objective

This unit deals with definition of multiple integrals with special reference to double and
triple integrals with examples. Algebraic method suitable to find the elements of area,
volume etc. in different co-ordinate systems is developed. Line, Surface and volume integrals
of vector fields are discussed. Applications of Gauss’s divergence theorem, Stoke’s theorem
and Green’s theorem in a plane are discussed with examples.

4.26   Double and Triple Integral

In case of single variable x, we define the

definite integral ( )
b

a
f x dx  as the limit of the sum

of the areas of the rectangle as shown in the fig

(4C.1) and use ( )
b

a
f x dx  to calculate the area

of the curve :

0 1

( ) lim ( ),
nb

a h r

b a
f x dx h f a rh h

n 


   Fig (4C.1)



NSOU  CC-PH-04  151

(4C.1)

From the geometry of fig (4C.1) it is apparent that the sum of the areas of the
rectangles will tend to the area under the curve in the limit n  ,

Where 
1

0

( ) lim ( )
b n

rra n
r

f x dx f x r






  , and r is the width of the rectangle.

(4C.2)

We define the double integral of f(x,y) over the area A is the (x, y) plane.

[Fig 4C.2] as a limit of the sum and write it as,

 
10

( , ) lim ,

r

n

r r r
n rA A

f x y dA f x y A




 

  (4C.3)

Where the elementary area dA can be chosen accordingly. In Cartesian co-ordinate

elementary area r r rA x y     0
0

lim x
y

dA x y dxdy


 


   . In polar co-ordinate

elementary area

.A r r r r    

0
0

lim
r

dA r r rd dr



 



  

In fig 4C.2 we have divided the (x, y) plane into little rectangles of area r r rA x y   .

Above each r rx y   is a box reaching up to the surface. We can approximate the volume
of this cylinder by a sum of those boxes as represented by the double integral (4C.3).

Fig. (4C. 2) Fig. (4C.3)
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Multiple integrals are usually evaluated by using interated (repeated) integrals.

A triple integral of f(x, y, z) over a volume V, written ( , , ) ,V f x y z dxdydz , is also
defined as the limit of a sum and is evaluated by an iterated integral. We consider a function
f(x, y, z) to be defined at every point in a region bounded by a volume V. If (x

r
, y

r
, z

r
)

be any point in the rth element of volume rV , then the limit of the sum

 
1

, ,r r r r
r

f x y z V





If it exits as r   and 0rV   then,

 
10

lim , ,

r

n

r r r r
r rV

f x y z V




 



( , , ) ( , , )
V V

f x y z dV f x y z dx dy dz   (4C.4)

is known as the triple integral of f(x, y, z) over the volume V.

Now volume element in Cartesian co-ordinate system is dV = dxdydz but in cylindrical
and spherical co-ordinate systems are respectively dV = r drddz and

2 sindV r d d dr   , we summarize below expression for line element, surface element
and volume element in different co-ordinate systems.

Cylindrical co-ordinates (r, , z) :

cos

sin

x r

y r

z z




 
 
 

 (transformation equations from rectangular to cyliderical co-ordinates)

dV = r drddz} element of volume.

2 2 2 2 2( ) ( ) ( )dS dr r d dz    line element

dA rd dz  surface element

Spherical co-ordinate  r,θ, :

sin cos

sin sin

cos

x r

y r

z r

 
 


 
 
 

 transformation equations from rectangular to spherical co-ordinates

X
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Fig. (4C.4)

2 sindV r d d dr    volume element

2 2 2 2 2 2 2( ) ( ) sin ( )dS dr r d r d      line element

2 sindA r d d    surface element.

4.26.1 : Examples of double integration

Problem 1: Evaluated 
A

xy dx dy , where A is the domain bounded by X-axis,
ordinate x = 2a and the curve x2 = 4ay.

Solution 1:

Point of intersection Q [fig 4C.4] is given by (2a,a). The domain of intersection is
OPQ.

2

4
2

0 0

x

a
a

A

xy dxdy xy dxdy   

First method :

Here first we integrate with respect to y, treating

x as constant between the limits 0 to 
2

4

x

a
. The limits

of integrations are x = 0 to 2a and y = 0 to 
2

4

x

a
.

2

2

4
2 42 2

0 0 0
0

2

x

a

x

aa a

A

y
xy dxdy x ydy dx x dx

   
     
     

   

25 62 2 5
2 2 20 0

0

1 1

632 32 32

a
a ax x

dx x dx
a a a

 
    

  
 

6 4
6

2 2

1 64
(2 ) 0

3192 192

a a
a

a a
     
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Second method :

We now integrated w.r.t. x first, treating y as

constant between the limits 4ay  to 2a [fig 4C.5].

The limits of integration are y = 0 to a and 4x ay
to 2a.

2

0 4

a a

ay
A

xy dxdy y x dx dy       

22

0
4

2

a
a

ay

x
y dy
 

  
  



 
4

2 2

0 0
(2 2 ) 2

3

a a a
y a ay dy a ay y dy     

Problem 2 : Evaluate 
2 2

0 0
( )

x

x y
x x y dx dy

 
 

Solution 2 : 
2 22 23 2 3

0 0 0
0

( )
2

x
x

x y x

x y
dx x x y dy dx x y

  

 
   

  
  

42 4
0

48

2 5x

x
x dx



 
   

  


Problem 3 : Find by double integration, the area inside the circle sinr a   and the

cardioid (1 cos )r a   .

Solution 3 : Points of intersection of the circle : sinr a   and the cardioid :

(1 cos )r a    are (0, 0) and ,
2

a
 

 
 

 since when

, ; 0, 0
2

r a r
    

 required area within the circle and cardioid is :

Fig. (4C.5)
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sin sin
2 2

0 (1 cos ) 0 (1 cos )

r a r a

r a r a
r d dr d r dr

 
   

   
 

   

     
   

sin
22

0 (1 cos )

1

2

a

a
d r



 




 
   

2 2 2 22
0

1
sin (1 cos )

2
d a a





  




    

 
2

222
0

sin 1 cos
2

a
d



       

 
2

2 22
0

sin 1 2cos cos
2

a
d



       
 

2
2 22

0
1 2cos sin cos

2

a
d



         

2 2 2

0
2cos 2cos

2
   

a
d


  

 22 2
0

cos cos a d


  

 2 1 2a  

Problem 4 : Find the volume bounded by the cylinder x2 + y2 = 4 and the planes y+
z = 4 and z = 0

Solution 4 : From fig (4C.7) it is evident that the required volume V,

A
V z dx dy  , where A is the circle x2 + y2 = 4 in XOY plane.

(4 )V y dx dy  
Or

Fig. (4C.6)
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2

2

42

2 4

x yy

y x y

V dy dx
 

  

  

22 4

2 0
2 (4 )

y x y

y x
dy y dx

  

 
  

 
22 4

02
2 4

y y

y
dy x yx

 


 

2 2 2
2

2 4 4 4
y

y
dy y y y




      

2 22 2
2 2

2 4 4 2 4
y y

y y
y dy y y dy

 

 
    

= 16  units

Now to evaluate 
2

2

2

2 4 4
y

y

y dy




  we put 22cos 4 cosy y    and dy

2sin d    when 2, cos 1 0y      and when y

2, cos 1     and  

 the given integral 
0 0

22 8sin ( 2 sin ) 32 sind d
 

       

0

16 (1 cos 2 ) 16d


    

similarly it can be shown,  
2 2
2

2 4 4 0
y

y
y dy




 

4.26.2 Change of order of integration

In case of double integration we have two method of evaluting the double integration
by using iterated integrals. It is often seen that one of the methods we use is more

Fig. (4C.7)
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Fig. (4C.8)

Fig. (4C.9)

convenient; we choose the easier method. It is common experience that if we change the
order, the corresponding limits of the variables are to be changed.

Example 1 : Change the order of integration in the integral :

2

1

0

( , )
x

y x
x

f x y dy dx



 

Solution 1 : In the given integral, integration with respect to y should be given first
preference. So, the strip AB parallel to y- axis with thickness dx is considered. Finally the
strip AB moves from x = 0 to x = 1 and the
area is obtained.

While changing the order, let us consider
the strips CD with thickness dy, parallel to the
x-axis is considered. Now C is on x = y2 and

D is on x y  and y moves from 0 to 1,
we write the above integral as :

2

1

0

( , )
x yy

y x y

dy f x y dx


 
 

Example 2 : Evaluated the following integral by changing the order of integration :

2
2

0 x
a

a a x
xy dx dy


 

Solution 2 : In the given order, first we

integrate with respect to y, from 
2x

y
a

  to

y = 2a – x along the vertical strip MN; then
the strip  MN moves parallel to x-axis from
x = 0 to x = a as shown in fig (4C.9).

When the order of integration is
reversed, we have to consider the total area
OPQ as a sum of two similar areas PQR
and POR.
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On the area OPR, we consider the strip ST parallel to x-axis and integrated with

respect to x from x = 0 to x ay  and ST slides from y = 0 to y = a.

Again on the area RPQ, we consider the strips UV and integrated from x = 0 to x
= 2a – y and finally the strips slides from y = a to y = 2a.

2
2

0 0
0 0

a a
ay a y

x x
y y

I xy dx dy xy dx dy


 
 

             

222 2

0 0 0
2 2

a yay y aa

y y a

x y x y
dy dy



 

   
    

      
 

2
2 2

0

1 1
(2 )

2 2

y aa

y y a

ay dy a y y dy


 

   

23 3 4
2 2 4

0

1 4 3
2

2 3 2 3 4 8

a a

a

a y ay y
a y a

   
       

      

4.26.3 Examples of triple integral

1. Volume as triple integral : The
volume of a solid is obtained by
evaluating the triple integral fig
(4C.10),

V V x y z     
If  is the density of the solid, it’s
mass,

M x y z    
2. Volume as volume of revolution : We consider an element of area x y   on

a plane area A. The revolution of the element about X-axis will generate a ring
of volume (4C.11) :

Fig. (4C.10)
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Fig. (4C.11)

2 2( )V y y y x       

 22 22y y y y y x         

 22 y y y x       

Since y  is small,  2y  is smaller,,

and we can neglect it in comparison to

2y y .

2V y y x    

therefore the whole volume generated by
the entire area about the X-axis is

1 2
A

V y dy dx 

Similarly, V  about Y-axis is

 2 2V x x x y        

2 ,x x y    neglecting  2x

2 2
A

V x dx dy 

4.27  Change of Variables : Jacobian

It is convenient to develop an algebraic method suitable to find the elements of area,
volume etc. in different co-ordinate systems and also at the same time for any change of
variables in a multiples integral.

In two dimensions suppose x and y are given functions of two new variables u and
v by the transformation equations.

x = x(u, v) & y = y(u, v)

The Jacobian of (x, y) with respect to (u, v) is the determinant in equation (4C.5)
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, ( , )

, ( , )

x x
x y x y u vJ J

y yu v u v

u v

 
          

 
(4C.5)

Then the area element dy dx is replaced in (u, v) system by the area element

dA = |J | du dv (4C.6)

where |J | is the absolute value of the Jacobian given in equation (4C.5).

In three dimensions, suppose = x(u, v, w); y = y(u, v, w) and z = z(u, v, w) then the
Jacobian of transformation from (x, y, z) to (u, v, w) is given by

( , , )

( , , )

x x x

u v w
x y z y y y

J
u v w u v w

z z z

u v w

  
  

   
 
   

  
  

(4C.7)

Then the volume element dx dy dz is replaced in (u, v, w) system by the volume
element

dV = | J | du dv dw (4C.8)

Evaluation of double and triple integral becomes easier by change of variables. Two
important formulae are listed below for the purpose.

1. Double integral :

 ( ) ( , ), ( , ) | |
xy uvR R

f xy dx dy f x u v y u v J du dv  (4C.9)

R
xy

 and R
uv

 are symbols of region in xy-plane and uv-plane respectively.

Where 
( , )

( , )

x y
J

u v





2. Triple integral :

( , , )

xyzR

f x y z dx dy dz
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 ( , , ), ( , , ), ( , , )

uvwR

f x u v w y u v w z u v w J du dv dw  (4C.10)

where 
( , , )

( , , )

x y z
J

u v w





Special cases :

A> Cartesian to polar co-ordinate system : ( , ) ( , )x y r 

Transformation equations are cos , sinx r y r  

2 2cos sin( , )
cos sin

sin cos( , )

x x
rx y rJ r r

y y rr

r

   
 



 
      

 
 

 2 2cos sinr r   

Therefore, element of area dA dx dy J dr d r dr d   

And ( , ) ( cos , sin )
xy rR R

f x y dx dy f r r J dr d


   

( cos , sin )

rR

f r r r dr d



   

B> Cartesian to cylindrical co-ordinate system :  , , ( , , )x y z r z

Transformation equations are cos , sin ,x r y r z z   

cos sin 0
( , , )

sin cos 0
( , , )

0 0 1

x x x

r z r
x y z y y y

J r
r z r z

z z z

r z

  
 

 



  
   

   
   

   
  
  
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Or, J = r

Therefore

( , , ) ( cos , sin , )

xyz r zR R

f x y z dx dy dz f r r z J dr d dz



   

( cos , sin , )

r zR

f r r z r dr d dz



   

C> Cartesian to spherical polar co-ordinates :  , , ( , , )x y z r  

Transformation equations are

sin cosx r  

sin siny r  

cosz r 

 
sin cos cos cos sin sin

, ,
sin sin cos sin sin cos

( , , )
cos sin 0

x x x

r
r r

x y z y y y
J r r

r r
r

z z z

r

       
     

   
 

 

  
   

   
   

   


  
  

 2 2 2 2 2 2 2sin sin ( sin cos ) cos sin cosr               
2 sinr 

 Volume element 2 sindV dxdydz J drd d r dr d d      

Exercise of 4.26 and 4.27 :

1) Change the order of the integration in 
0

y

x

e
dxdy

y

 
   and hence find its value.

2) Evaluate the integral  2 2 2
V

x y z dx dy dz   where V is the volume of the

sphere with center at the origin and radius R.
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Figure : Solution (1)

3) Evaluate 
2( )

R
x y dx dy , where R is the parallelogram in the xy – plane with

vertices (1, 0), (3, 1), (2, 2) and (0,1) using the transformation, u = x + y,
v = x – 2y.

4) Transform the integral 
11

1
x

x
V dx dy dz



   by the substitution i.e. u = 1 + x and

v = xy

5) Given the transformation x = u2 – v2, y = 2uv(a) compute its Jacobian; (b)

Evaluate 
y

u

x

 
  

 and 
y

v

x

 
  

.

Solution :

Solution 1 : The region of integration is bounded by y = x, x = 0 and infinity
boundary.

We take a strip parallel to x – axis to change the
order.

The  extremities of the strips lies on x = 0 and y
= x. Therefore limits of x are from x = 0 to x = y and
the limits of y are from y = 0 to y = 

0 0 0 0

y yy ye e
dx dy dy dx

y y

  
    

 0 0
0 0

1
y

y y ye
x dy e dy e

y

          

Solution 2 : Using spherical polar co-ordinate

sin cos , sin sin , cosx r y r z r      

 2 2 2 2 2 4sin sinx y z dx dy dz r r d d dr r d d dr        

 
2

2 2 2 4

0 0 0

sin
R

V r

x y z dx dy dz r d d dr
 

 

  
  

      
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2 2 5
4

0 0 0 0 0

sin sin
5

R
R

d d r dr d d
   

     
 

    
 

    

 
5 5

0

2
2 cos [ cos cos 0]

5 5

R R        

5 5 52 2 4
[1 cos ] [1 ( 1)]

5 5 5

R R R       

Solution 3 : The region R, i.e. the parallelogram ABCD in xy – plane because they
became the region R/, i.e. the rectangle A´B´C´D´ in the uv – plane.

(Figure solution 3)

Where u = x + y, v = x – 2y

1 1
(2 ), ( )

3 3
x u v y u v    

Now Jacobian of transformation,

( , ) 1

( , ) 3

x y
x y u u

x yu v

v v

 
    

 
 

 the given integral is,

4 1 42 2 2 1
21 2 1

1 1
[ ]

3 3u v u
R

u J du dv u du dv u du v   


    

v
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4 42 2
1 1

1
.3

3u u
u du u du

 
  

43 3 3

1

4 1 1 63
(64 1) 21

3 3 3 3 3

u 
       
  

Solution 4 : u = 1 + x; v = xy

1,
1

v
x u y

u
   



2
1

( , ) 1( 1)
( , ) 11

0
1

vx y
x y uu ujacobian

x yu v u

v v u

  
     

  
  

so, 
1

1
dx dy J du dv du dv

u
 



Now, the limits of y are x to 
1

x
 also v = xy, so v varies from x2 to 1 i.e. (u – 1)2

to 1. Limits of x varies from – 1 to + 1.

So, limits is u varies from 0 to 2.

Hence 
1

2

1 2 1

1 0 ( 1)

1

1
x

u v

x u v u
V dx dy V du dv

u

  

   


   

where V´ is the function V changed in u and v.

Solution 5 :

a) The Jacobian J(u, v) of u, v with respect to x, y is,

2 22 2
( , ) 4( )

2 2

x x
u vu vJ u v u v

y y v u

u v

 
    

 
 
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b) We have u2 – v2 = x and 2uv = y

   2 22 2 2 2 2 2 2 24u v u v u v x y      

 2 2 21

2
u x x y   

Differentiating partially with respect to x

2 2 2

2 2 2 2 2 2

1 1
2 1

2 2y

x x yu x u
u

x x y x y x y

                        

2 22y

u u

x x y

     

Again  2 2 21

2
v x y x  

2

2 22 2

1
2 1

2y

u x v
v

x u vx y

               

2 22( )y

v v

x u v

      

4.28  Ordinary integrals of vector

Vectors which are functions of single variable, are integrated in the same way as scalar.
Thus if V(t) = iV

x
(t) + jV

y
(t) + kV

z
(t), then

( ) ( ) ( ) ( )x y zt dt V t dt V t dt V t dt     V i j k (4C.11)

(4C.11) is indefinite integral of V(t)

However if ( ) ( )
d

t t
dt

V R  then,
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Fig. (4C.13)

( ) ( )t dt t V R C , where C is a constant vector. The definite integral of V(t) between

the limits t = T
0
 to t = T, is given by,

 
00 0

0( ) ( ) ( ) ( ) ( )
T T T

TT T

d
t dt t dt t t T

dt
     V R R C R R (4C.12)

4.28.1 Line integral of a vector field

We consider a vector field with field vector V.
We draw a continuous curve C in the field (Fig.
4C.12) where V is defined at every point on it. Let
us choose (n–1) points C

i
, which divide the curve C

into n segments C
i
  and form the sum

1

0
.


n

i ii
V C  (4C.13), where V

i
 is the value of V

at C
i
 and C

i
 is the vector whose rectangular

components are  ix
i
, jy

i
, kz

i
 and which joins

C
i–1

 and C
i
.

Now taking the limit of the sum (4C.13), e.g.

1
0

0

lim

i

n
i iii

C






 V C  (4C.13) and if then the sum approaches a definite limit, then this

limit is defined as the line integral .C d V r  along the curve C. i.e.

1

00

lim .

i

n

i i
i i CC

d






 

  V C V r
(4C.14)

In general the value of the line integral depends upon V and the path C joining the end
points C

0
 and C.

We note the followings :

1. If V(r) be the force acting on a particle which moves along the curve from C
0

to C, then the line integral (4C.14) represents the work done by the force. If this

line integral along a closed path .C V dr  is zero, then V(r) is called a conservative
force field and in that case V(r) is also called irrotational.

2. If V(r) is a conservative force filed, then the line integral (4C.14) does not depend
on the choice of path connecting any two points on the curve i.e. it becomes
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independent of path, between any two points on the curve and in that case V(r)
can be expressed as a gradient of a scalar, called potential function (say  ) of
the force field i.e. ( )  V r 

3. If V(r) represents the velocity of fluid flow, then the integral is called the circulation
of V along the closed curve C. When the circulation of V(r) along a closed curve
is zero the V(r) is called irrotational.

Essentially line integral is an integration along a curve and there is only one
independent variable. Therefore to evaluate a line integral we have to transform
the integrand in terms of a single variable using the equation of the curve along
which integration is required to be evaluated.

Example Art of 4.28.1 :

Example 1 : Prove that if the closed line integral of a field vector A vanishes, then
it is the gradient of a field scalar .

Solution 1 : Let P
1
 and P

2
 be two points connected

by any two curves P
1
Q P

2
 and

 
P

1
RP

2
,  forming a closed

curve P
1
QP

2
RP

1
. Now

2

1
. . 0

P

P
C

d   A dr A r

Or,  
1 2 2 1

. . . 0
C

     P QP P RPA dr Adr A dr

Or, 
1 2 2 1 1 2

. . .    P QP P RP P RPA dr A dr A dr (i)

From (i) we see that line integral of a vector A is independent of path connecting two
points P

1
  and P

2
 and depends only on the co-ordinates of ends points P

1
 and P

2

therefore 
2

2 1

1

.
p

p p
p

   A dr (ii)

where   is some scalar field.

. d A dr . If P
1
 and P

2
 are two very close points in the field. Then .   A dr dr

Fig. Example (1)
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Fig. Example (3)

or,   0A   dr

which is true for any dr.

Therefore  A (iii)

Example 2 : If F = (5xy – 6x2)i + (2y – 4x)j, then calculate the line integral

.C F dr  along the curve C in the xy plane given by y = x3 from the point (1, 1) to (2,8)

Solution 2 :

F.dr = (5xy – 6x2)dx + (2y – 4x)dy

We convert F.dr in terms of x only by substituting y = x3, dy = 3x2 dx

 F.dr = (5x.x3 – 6x2)dx + (2x3 – 4x)3x2dx

= (5x4 – 6x2)dx + (6x5 – 12x3)dx

 
2 25 4 3 2 6 5 4 3

1
1

. 6 5 12 6 3 2
x

C x

x x x x dx x x x x




           F dr

= (64 – 1) + (32 – 1) – 3(16 – 1) – 2(8 – 1) = 65 + 31 – 45 – 14 = 35

Example 3 : If A  , where   is some scalar functions of position, show that the

line integral of A along a curve C linking two points A and B is independent of the choice
of the curve C.

Solution 3 : We consider a close line integral along APBQA of the vector A, i.e.

.APBQA A dr

Therefore . . 0APBQA APBQA APBQA d       A dr dr (i)

. . 0
B A

A B
P Q   A dr A dr

Or, . . .
B A B

A B A

P Q Q    A dr A dr A dr   (ii)

For equation (ii) we see that line integral is
independent of path connecting A and B.
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Example 4 : Calculate the work done when a force F = 3xyi – y2j moves a particle
in the xy – plane from (0, 0) to (1,2) along the parabola y = 2x2

Solution 4 : F = 3xyi – y2j = 3x(2x2)i – (2x2)2j = 6x3j – 4x4j now, r = xi + yj

or, dr = dxi + dyj = dxi + 4xdxj

11
3 5 4 6

0 0

3 8 7
. (6 16 )

2 2 6
C

x dx x dx x x unit
          F dr

Example 5 : A particle of constant mass m is moving in a conservative force field

 F  . If A and   be two points in space, prove that 2 21 1
( ) ( )

2 2A BA mv B mv    ,

where v
A
 and v

B
  are the magnitudes of velocities of the particle at A and B

respectively.

Solution 5 : The work done by the force F is

2

2
.

d r d dr dr
dw m m dt

dt dt dtdt

          
   

F dr dr

2
21 1

( )
2 2

d dr
m dt m d v

dt dt
   
 

where 
dr

dt
v

 total work done,  2 2 21 1
( )

2 2

B
B AA

W m d v m v v   (i)

but  F 

. .
B B B

A B
A A A

W dr d          F dr  (ii)

from (i) and (ii) : 2 21 1

2 2B A A Bmv mv    



NSOU  CC-PH-04  171

or, 2 21 1

2 2B B A Amv mv   

where A  and 21

2 Amv  are respectively potential energy and kinetic energy of the particle

at A. Thus total energy at A and B are equal (conservation of energy). This is known as
work-energy theorem in mechanics.

Exercise of Art 4.28.1 :

1) If F = (3x2 + 6y)i – 14yzj + 20 xz2k. Evaluate .F dr  along the straight line from
(0,0,0) to (1,1,1).

2) Find the work done in going around a unit circle in the xy plane, (i) counter
clockwise from 0 to   (ii) clockwise from 0 to –   against a force field given
by,

2 2 2 2

y x
F

x y x y
  

 
i j

Solution :

Solution 1 : We take the parameter t such that x = t, y = t, z = t varies from 0 to
1.

Now F.dr = (3x2 + 6y)dx – 14yz dy + 20xz2 dz

= (3t2 + 6t)dt – 14t2dt + 20t3dt

= (3t2 + 6t – 14t2 + 20t3)dt

   1 12 2 3 2 3

0 0

13
. 3 6 14 20 11 6 20

3C t t
t t t t dt t t t dt

 
           F dr

Solution 2 : We have 
2 2

y x

x y

 



i jF

Now for unit circle x2 + y2 = 1

2 2

y x
y x

x y

 
    


i jF i j

Now dr = idx + jdy
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 F.dr = – ydx + x dy, also cos , sin , sin , cosx y dx d dy d         

i) Let the counter clockwise path be C
1
(0 to  ).

 work done along the counter clockwise is

   
1 0

sin sin cos cos
C

y dx x dy d d


            

 2 2

0 0
sin cos d d

 
        

ii) The work done along the clockwise path C
2
 is

 
2

2 2
0 0

(sin cos )
C

y dx x dy d d
 

    
 

        
Therefore we see that work depends on path. Therefore F is not conservative. Now

2 2

0 0
. . . 2 2d d

   

 
                 F dr F dr F dr

Or, using the results of (i) and (ii)

1 2 0 0
. . . . . ( ) 2

C C
C

 
  


            F dr F dr F dr F dr F dr

Fig. : Solution (2) Fig : Solution (2)
for c

1
 :  = 0 to  For c :  = 0 to 2

for c
2
 :  = 0 to –  Origin 0 is within circle

Origin 0 is within circle.

o o
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Fig (4C.13)



Note : However if the origin o is outside the circle, work done . 0 F dr  as shown

in fig. below.

Fig. : Solution (2)

Origin O is outside the circle.

In this case . . 0



   F dr F dr

4.28.2 Surface integral of a vector field

We consider a surface defined by z = f(x, y) having continuous first order partial
derivatives. Let ds be a small area of the surface and n̂  the limit normal vector in the
outward direction to this small area. Then the area vector corresponding to this small
portion of the surface is ˆd ds n .

The normal surface integral of a continuous vector point function V(r) is defined as

ˆ
S S

V d V ds    n
(4C.15)

Now the projection of a vector area
n̂ds on the xy – plane [Fig 4C.13]
whose unit normal is k is given by

ˆ ˆds ds  n k n k

But the projection of ds on xy plane

is dxdy. Hence ˆ( )ds dxdy n k ,

Therefore 
ˆ

dxdy
ds 

n k
 and equation

(4C.15) can be written as
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ˆ ˆ
ˆS

s S

dxdy
d ds    

  V V n V n
n k  (4C.16)

Similarly, considering the projection of vector
area on yz plane and zx plane, the surface integral
can be expressed as :

ˆ
ˆS

dzdy


 V n
n i  and  ˆ

ˆS

dxdz

j


 V n
n  respectively

When a surface enclosed a cetain volume it is
called a closed surface. The positive normal to the closed surface is drawn outward from
the surface and that is the direction of elementary surface dS on the closed surface S.

For open surface the direction of the positive
normal is determined from sense of traversing its
boundary. If it is right handed then the positive
normal is outward. When left handed it is inward
as shown in figures 4C.14 and 4C.15
respectively.

Flux of a vector field :

The quantity ˆ.
S S

d ds V σ V n  is called

the flux of the vector filed V. In most case flux cannot be equated to any physical concept.
However in the following case we can relate flux to specific physical quantity.

1. When V = v, the velocity vector of flow of liquid, ˆ.
S

v ds n  gives the volume

of he liquid crossing the surface S per second normally.

2. When V v , where   is the density of the following liquid and v its velocity

of flow, ˆ.
S

ds v n  represents  the mass of liquid crossing per second normally

through the surface.

3. In case of electric and magnetic field flux represents the total number of lines of
force crossing the surface normally.

We have also flux of particles and flux of heat, defined similarly.

Fig (4C.15)

Fig (4C.14)
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Exercise of 4.28.2

1. Evaluate ˆ. ds A n  where S is the surface of unit cube bounded by x = 0, x =
1; y = 0, y = 1; z = 0, z = 1 or bounded by co-ordinate planes and the planes
x = 1, y = 1, z = 1 when i) A = r; ii) A = 4xzi – y2j + yzk

2. Evaluate ˆ.
S

ds A n , over the entire surface S of the region bounded by

the cylinder x2 + z2 = 9, x = 0, y = 0, z = 0 and y = 8, if A = 6zi + (2x + y)j
– xk

Solution 1 :

(fig. solution 1)

We have  . .     x y zS S
d ds ds dsA S A i j k

or,  . .
S S

dy dz dx dz dx dy    A ds A i j k

. . .
ABCD EFGH BFGC

dy dz dy dz dx dz     A i A i A j

. . .
AEHD DCGH ABFE

dx dz dx dy dx dy      A j A k A k

i) When A = r = ix + jy + kz

For the surface ABCD, x = 1

1 1

0 0
( ). 1

ABCD

x y z i dy dz dx dz      i j k
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For the surface EFGH, x= 0

1 1

0 0
( ). (0) 0       

EFGH

x y z dy dz dy dzi j k i

Similarly

. 1and . 0   
BFGC AEHD

dx dz dx dzA j A j

and . 1 and . 0
DCGH ABEF

dx dy dx dy   A k A k

(1 0) (1 0) (1 0) 3         A ds

ii) When A = 4xzi – y2j + yzk

For the surface ABCD, x = 1

1 1 1 12
0 0 0 0

(4 ). 4 4
ABCD

xz y yz dydz z dz dy z dz dy        i j k i

 
1 12

00
2 2.1.1 2z y    

For the surface EFGH, x = 0

1 12
0 0

(4 ). (0) 0
EFGH

xz y yz dy dz dy dz       i j k i

For the surface BFGC, y = 1

1 1 1 12 2
0 0 0 0

(4 ). 1
BFGH

xz y yz dxdz y dx dz dx dz            i j k j

For the surface AEHD, y = 0

1 12
0 0

(4 ). (0) 0
AEHD

xz y yz dx dz dx dz       i j k j
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For the surface DCGH, z = 1

  1 1 1 12

0 0 0 0

1 1
4 1

2 2
DCGH

xz y yz dx dy ydx dy y dy dx            i j k k

For the surface ABFE, z = 0

  1 12
0 0

4 (0) 0
AEHD

xz y yz dxdy dx dy       i j k k

1 3
(2 0) ( 1 0) 0

2 2
S

           
  A ds

Solution 2 :

(fig. solution 2)

Here the surface S is composed of the bottom circular surface S
1
 top circular surface

S
2
, curved surface S

3
.

Therefore 
1 2 3

ˆ ˆ ˆ ˆ.
S S S S

ds ds ds ds         A n A n A n A n

But  
1 1 1

ˆ 6 (2 ) .( ) (2 )
S S s

ds z x y x ds x y ds          A n i j k j (i)

Now   
2 2 2

ˆ 6 2 (2 )
S S S

ds z x y xk ds x y ds         A n i j j (ii)
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Evaluation of integral (i) :

1 1

1(2 ) 2 0 ,
S S

x y ds x dx dz y in s ds dx dz       

 
2

1

3 9 3
2

0 0 0

(2 ) 2 2 9
x

S x z x

x y ds x dx dz x xdx


  

         

3
2 2

0
2 9 1. 9x x dx x dx         

3 3
2 2

1 1

0 0

9 9 9 9
2 sin 2 sin

2 2 3 2 2 3

x x x x x x
x  
                       
            

9 9
2.3. . 2. . 9

2 2 2 2

      

Evaluation of integral (ii)

2

ˆ(2 )
S

x y dx dz ds dx dz and    n j

2 23 9 3 9

2
0 0 0 0

2 8 8
x x

x z x z

x dx dz dx dz y in S
 

   

      

3
3 3 2

2 2 1

0 0 0

9 9
2 9 8 9 9 8 sin

2 2 3
x

x x x
x x dx x dx  



        
  

 

9
9 8 9 18 27

2 2

           

again  
3

ˆ ˆ .
ˆ.

S R

dy dz
ds   A n A n

n i  Now 2 2( , ) 9x z x z      constant
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ˆ ˆ.
3 3

x z x



    

i kn n i


3 3

5 5
ˆ ˆ. . 5

3 3 x
S

dydz
xz ds xz z dy dz      A n A n

3

3 8 3

3 0 3

ˆ. 5 40 0
S z y

ds z dy dz z dz
 

  

      A n

ˆ. 9 27 0 18ds         A n

4.28.3 Volume integral of a vector field

We consider a closed surface in space enclosing a volume V. If V(r) be a continuous
vector point function, then volume integral is defined as,

( )
V

r dVV

In Cartesian co-ordinate it is written as,

 x y z
V

V V V dx dy dz  i j k

( ) ( ) ( )x y z
V V V

V dx dy dz V dx dy dz V dx dy dz    i j k

4.29  Green’s  theorem in plane

Statement : It states that if M and N are continuous functions of x and y having
continuous derivative in a region R of the xy-plane bounded by a closed curve C, then

( )
C R

N M
M dx N dy dx dy

x y

  
     

  (4C.17)

The line integral in counter clockwise around the boundary of area R
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Proof : Let us assume that the region R,
bounded by a closoed curved C be such that
the vertical lines at x = p and at x = q as
shown in Fig (4C.16) cuts the curve C in at
most two points at P and Q. Similarly the
horizontal lines at y = m and y = n cuts the
curve C in at most two points at M and N.

Let the equation to the curve PMQ be

1( )y x  and that to the curve QNP be

2 ( )y x  which is denoted by C
1
 and C

2
 respectively. Now

 2 2

11

( ) ( )
( )( )

( , )
x q y x x q x

xx p y x x p
R

M M
dx dy dy dx M x y dx

y y

 


  

  

  
    

   

   2 1, ( ) , ( )
x q

x p
M x x M x x dx 




   

   
2 1

2 1
( ) ( )

, ( ) , ( )
 
   

x q x q
x p x p
along C along C

M x x dx M x x dx 

   2 1, ( ) , ( ) ( , )
p q

q p
C

M x x dx M x x dx M x y dx        (4C.18)

Again, let the equation to the curve NPM be 3( )x y  and that to MQN be 4 ( )x y

 4 4

33

( ) ( )
( )( )

( , )
n y n y

yy m y y m
R

N N
dx dy dx dy N x y dy

x x

 
 

          

   4 3( ), ( ),



   

y n

y m
N y y N y y dy 

   4 3( ), ( ),
 

 
  

y n y m

y m y n
N y y dy N y y dy 

( , )
c

N x y dy  (4C.18A)

Fig (4C.16)

C
1
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C
1
 is the curve y = x2

C
2
 is the curve y = x
Fig Example (1)

Combining (4C.18) and (4C.18A) we get,

 ( , ) ( , )
R C

N M
dx dy M x y dx N x y dy

x y

  
     

  (4C.17)

In vector form equation (4C.17) can be re-written as :

. .
C R

d dx dy  V r V k

Where V = Mi + Nj,   r = xi + yj,  dr = i dx + j dy

 V.dr = M dx + N dy and .
N M

x y

  
     

V k

Example of Art 4.29 :

Example 1: Verify Green’s theorem for  2 2
C

xy y dx x dy    , where C is

bounded by y = x, and y = x2.

Solution 1 : The curve C
1
 and the line C

2
 intersect

at (0, 0) and (1,1). The positive direction in traversing C
is as shown in figure.

Along the curve C
1
, the given integral become

 
1

2 4 2
1

0

2I xx x dx x x dx   
 

 
1

3 4

0

19
3

20
x x dx  

Along the curved C
2
, the integral become

 
0 0

2 2 2 2
2

1 1

3 1I x x dx x dx x dx      
  

 2 2
1 2

19 1
1

20 20
C

xy y dx x dy I I           (i)
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Now applying Green’s theorem, we set that

2 2, .M xy y N x    Now 2 , 2
N M

x x y
x y

 
  

 

2 2 2
N M

x x y x y
x y

 
     

 

Now  2 2

C

xy y dx x dy  
 

2

1

0

( 2 ) ( 2 )
x

x

N M
dx dy x y dx dy dx x y dy

x y

  
        
   

[We have 1 2C CC
f f  . Along C

1
, y = x2, x varies from 0 to 1. Along C

2
, y = x

and x varies from 1 to 0]

   2

1
1 12 2 2 3 4 4 3
0 0

0

1
–

20
            

x

x
dx xy y dx x x x x dx x x (ii)

Since (i) and (ii) equal, Green’s theorem is verified.

Example 2 : Apply Green’s theorem in the plane to evaluate the integral
3[(2 ) ]

C
x y dx xy dy   over the boundary of the region bounded by the circles x2 + y2

= 1 and x2 + y2 = 9.

Solution 2 : Here M = 2x – y3      N = – xy    23
M N

y and y
y x

 
    

 

   3 22 3
C

x y dx xy dy y y dx dy      
  

Now in plane polar co-ordinate cos , sin ,x r y r dxdy r dr d     . Here r

varies from 1 to 3 and   varies from 0 to 2 .

   
3 2

3 2 2

1 0

2 sin 3 sin
C r

x y dx xy dy r r r dr d




  
 

      
   
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2 3
2 2 2

0 1

sin 3 sin
r

r d dr r d dr




   
 

     

2 3 2 3
2 2 3

0 1 0 1

sin sin 3d r dr d r dr
 

        

34
4 4

1

3 3 3
0 3 1 .80 60

4 4 4

r   
 

           

Since 
2 2

2

0 0

sin 0 sind and d
 

      

Exercise of Art (4..29) :

1) If C be the boundary of the rectangle (in xy plane) defined by y = 0, x = a; y

= b, x = 0; evaluate the integral .
C F dr , where F = (x2 + y2)i – 2xyi by

applying Green’s theorem.

2) Verify Green’s theorem in the plane to  evaluate the integral

 2 2

C
xy x dx x y dy  

   over the triangle bounded by the line y = 0, x = 1

and y = x.

3) Apply Green’s theorem to prove that the area enclosed by a plane curve is
1

( )
2 C

x dy y dx . Hence find the area of an ellipse whose semi-major and

minor axes are of lengths a and b.

Solution 1 : Now applying Green’s theorem we have M = x2 + y2 ; N = – 2xy

2 ; 2
N M

y y
x y

 
   

 

 2 2 2 ( 2 2 )
C

x y dx xy dy y y dx dy      
  
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2 2
0 0

4 4 [ ] 2 2
a y b

y
y dx dy dx y dy a b ab




           

Solution 2 : Along OA : y = 0 dy = 0

along AB : x = 1, dx = 0

along BO : y = x, dy = dx

Now  2 2
C

xy x dx x y dy   

2 3

OA AB BO

x dx y dy x dx     

1 1 0
2 3

0 0 1

1 1 1 1

3 2 4 12
x dx y dy x dx            (i)

Now M = xy – x2 N = x2y

M
x

y





2

N
xy

x






Therefore using Green’s theorem

 
1

2 2

0 0

(2 ) (2 )
y x

OABO y

xy x dx x y dy xy x dx dy dx xy x dy




      
    

   
11 1 4 3

2 3 2

0
0 0 0

1 1 1

4 3 4 3 12

x x x
dx xy xy dx x x

 
          

  
  (ii)

From equation (i) and (ii) we see that Green’s theorem is verified.

Solution 3 : We have from Green’s theorem,

[ ]
C R

N M
Mdx Ndy dx dy

x y

  
     

  (i)

Fig. Solution (2)
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Now we put N = x and M = – y        1, 1
N M

x y

 
   

 

[ ] (1 1)
C R

y dx x dy dx dy     

or,  [ ] 2 2
C R

x dy y dx dx dy A   
where A is the area of the plane curve.

1
[ ]

2
C

A x dy y dx   (ii)

Now equation of the ellipse : 
2 2

2 2
1

x y

a b
 

Therefore cosx a   and siny b  , is the parametric equation of the ellipse.

 1
cos . cos sin . ( sin )

2
C

A a b d b a d        

2 21
cos sin

2
C

ab d d      

 
2

2 2

0

1 1
cos sin

2 2
C

ab d ab d ab


        

Now for a circle a = b    
2A a 

4.30  Gauss’s Divergence Theorem

Statement : This theorem states that, the volume integral of the divergence of the
vector V taken over any volume   in its field is equal to the surface integral of V over
the closed surface enclosing the volume  . In vector notation, the theorem is written as

( )
ˆ. .

surface enclosing
d d


  V V n (4C.19)

( n̂  points out of the closed surface  )
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Proof : We consider a small volume element

id  of the total volume   shown in Fig (4C.17) in
a vector field V.

From the definition of divergence of vector fields,
we get net outflow from each id  as . idV  and
then adding the total outflow from the entire volume
  as

. i
i

dV        (4C.20)

which is explained below. From Fig (4C.17) it is seen that an outflow from a to b is an
inflow from b to a, so that such outflows across interior faces cancel. The total sum in
(4C.20) then equals just the total outflow from the entire volume  .

When id   0, the sum (4C.20) is converted into a triple integral over the

volume   :

0

lim . .

i

i
i id

d d


 



  V V  (4C.21)

Now consider the Fig (4C.18) below, outflow or flux

of vector field V through d  is ˆ. dV n  and the total
outflow from the volume enclosed by the surface is

ˆ. dV n (4C.22)

Where n̂  is the unit normal to the surface element

d  and pointing outwards.

(  is the surface enclosing volume  )

Thus both the equations (4C.21) and (4C.22) give the total outflow from the total
volume   and hence they are equal to each other and we get equation (4C.19)

Example 4.28 and 4.20

Example 1: Evaluate ˆ.
S

d r n

Solution 1: Using divergence theorem,

ˆ. . 3 3
S V V

ds dV dv V     r n r

Fig (4C.17)

Fig (4C.18)
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Example 2 : Using divergence theorem evaluate 
2.

S r ds

Solution 2 : We have 
2 2. .

S V
dV    r ds r

Now,      2 2 2 2r r r r
x y z

  
  

  
i j k

where r2 = x2 + y2 + z2.

2 2 2 2r x y z   i j k

2. (2 ) (2 ) (2 ) 2 2 2 6r x y z
x y z

  
       

  


2 2. . 6 6
S V V

r r dV dV V      ds 

Example 3 : Prove that ˆ( ) ( )
S V

ds dV    n B B

Solution 3: We have from Gauss’s divergence theorem,

ˆ. .
S V

ds dV  A n A

Let A = C × B, where C is a constant vector.

ˆ. .
V S

dV ds    C B C B n

Now . . .( ) .( )C          C B B C C B B , since C is a constant vector,,

0 C

ˆ ˆ. .
V

S S

dV ds ds         C B C B n C n B

ˆ
V S

dV ds    B n B
(1)
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[now if the vector B is always normal to a given closed surface S, then B and ds is

parallel and B × ds = 0 and hence from equation (1) ˆ
V S

dV ds    B B n

0]
S

    B ds

Example 4 : Prove that  . 0
S

   ds 

Solution 4 : We put   A    then,

 . ( . ) .
S V V

dV dV      A ds A  

Now, . . . 0                 

Since 0    and 0  

  . 0
S

    ds 

Example 5 :

   2 2 .
V V

dV           ds   

Where V is the volume bounded by the surface S and ,   are scalar fields.

Solution 5 : Let  A   Now by divergence theorem

ˆ. .
V S

dV ds  A A n  or  ˆ.( ) . .
V S

dV ds       n

But 2. . . .                   

therefore, 
2 . ( ).

V
S

dV             ds (i)

Now interchanging   and  , we get

2 . .
V

S

dV             ds (ii)
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Subtracting equation (ii) from equation (i), we get

2 2 ( ).
V S

dV                ds

Example 6 : Applying Gauss’s divergence theorem evaluate 
3

ˆ.
S

n
ds

r
r

, where S

represents any closed surface enclosing volume V. When the origin is outside S.

Solution 6 :

Let 3r


rA . Now A is continuously differentiable throughout the volume enclosed by

S. By Gauss’s divergence theorem,

ˆ. .
V

S

ds dV  A n A

Now  3 3 3

1 1
. . ( . )

r r r
     

rA r r

Now  
4

3 5

1 3
ˆ3r

r r
   

rr

3 5 3 3

3 3 . 3 3
. 0

r r r r
     

r rA

3 3

ˆ( . )
. 0

V
S

r
ds dV

r r
    

r n

Exercise of Art 4.28 and 4.30 :

1) Evaluate ˆ. dS F n , where F = 4xzi – y2j + yzk and S is the surface of the cube
bounded by x = 0, x = 1, y = 0, y = 1, z = 0 & z = 1 by using divergence
theorem.

2) Evaluate 2x y dV , where V is the closed region bounded by the planes 4x +
2y + z = 8, x = 0, y = 0 & z = 0.
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Solution 1 :

ˆ. .
S V

ds dV  F n F

now  2. (4 ) ( )xz y yz
x y z

  
   
  

 F

or,  . 4 2 4z y y z y     F

   
1 1 1 112

0
0 0 0 0

. (4 ) 2 2
V

dV z y dxdy dz z yz dx dy y dx dy            F

11 12

0 00

3 3
2

2 2 2

y
y dx dx

 
     

 
 

Solution 2 : In the problem, z varies from 0 to 8 – 4x – 2y, y varies from 0 to 4
– 2x and x varies from 0 to 2.

 the given integral

8 4 22 4 2 2 4 2
2 2 2

0 0 0 0 0

(8 4 2 )
x yx x

V x y z x y

x y dV x y dx dy dz x y x y dx dy
  

    

        

4 22 4 2 2 2 2 3
2 2 3 2

0 0 0 0

(8 4 2 ) 8 4 2
2 2 3

xx

x y x

y y y
x y x y dy dx x x x dx



  

   
       
     

  

4 22
2 2 3 2 2 3

0 0

2
4 2

3

x

x

x y x y x y dx





     

2
2 2 3 2 2 3

0

2
4 (4 2 ) 2 (4 2 ) (4 2 )

3
x

x x x x x x dx


        

22 3 4 5 6
2 3 4 5

0 0

64 8 64 8 128
32 16 32 16

3 3 3 3 4 5 3 6 45
x

x x x x
x x x x dx



                

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4.31  Stoke’s Theorem

Statements : It states that if   is an open two-sided surface bounded by a simple
closed curve and if V be continuously differentiable point function, then

ˆ. .
curved bounding open surface 

   V dr V n dσ
(4C.23)

where the boundary is traversed in the counter clockwise direction. n̂  is the outward
drawn unit normal to the surface element d .

Proof : We consider an open surface which is two sided and whose bounding curve
is simple (i.e. it must not cross itself) and closed (Fig 4C.19). We consider the surface to
be divided into a large number of elementary surfaces, d  with a unit vector n̂  normal
to each area element and lying on the same side of the surface (Fig. 4C.20).

Fig. (4C.19) Fig. 4C. 20)

Now from the difinition of curl

 
0

1
ˆ. lim .

d
around d

d


  V n V dr

or, ˆ. .
around d d

d
 

   V dr V n (4C.24)

For each area element d .

Adding now for all the area elements we get

ˆ. .
all d around d surface

d d
  

    V r V n
(4C.25)



192  NSOU  CC-PH-04

From Fig 4C.20 we see that all the interior line integral cancel because along a
common curve between two d ’s, the two integral, are in opposite direction.

Therefore left hand side of equation (4C.25) becomes simple the line integral around
the outside curve bounding the surface. Therefore we can write,

ˆ. . .
all d around d curved bounding open surface

d d d
   

      V r V r V n (4C.26)

which is Stoke’s theorem.

Example of Art 4.31 :

Example 1 : Using Stoke’s theorem prove that

 ˆ
S S

C

d d dS        r S n 

Where   is a scalar function of r, S is a open surface bounded by a closed curve C.

Solution 1 : Let A be a constant vector. Then by Stoke’s theorem

. .
S

C

d    A r A dS

or  . ( ) .
C S

d      A r A A dS 

since A is constant vector, 0 A

. . .
C S S

d d d       A r A S A S 

or,  . . ;
C S

d d   A r A S     or,  
C S

d d    r S 

Example 2 : Evaluate by Stoke’s theorem the integral,

 2x
C

e dx y dy dz 
where C is the curve x2 + y2 = 4, z = 2.
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Fig. Example (3)

Solution 2 :

 2 .x
x y z

C C C

e dx y dy dz A dx A dy A dz         A dr

2 1x
x y zA e A y A    

Now  0

2 1x

x y z

e y

  
  

  





i j k

A

By Stoke’s theorem :  ˆ. .
C S

dS   A dr A n

where S is the surface bounded by the circle.

x2 + y2 = 4 and z = 2. Also ˆ n k

. 2 0 0x

C C

e dx y dy dz        A dr A

Example 3 : Verify Stoke’s theorem for A = (2x – y)i – yz2j – y2zk, the region of
integration being the upper half surface of the sphere x2 + y2 + z2 = 1 and C its boundary.

Solution 3 : The boundary is the circle of unit radius
in xy – plane in C is a circle of  x2 + y2 = 1 = r2   r =
1. Substituting x = r cos   = cos   and y = r sin   = sin

  and z = 0, we get

2 2. (2 )
C C

A dr x y dx yz dy y z dz       

or     
2

0

. 2 cos sin sin 0
C

d z


         A dr

 
2 2 2

2 2

0 0 0

sin 2sin cos sin sin 2d d d
  

            
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or,  
2 2

0 0

1
. 1 cos 2 sin 2

2
C

d d
 

        A dr

2 2 2

0 0 0

1 1
cos 2 sin 2

2 2
d d d

  
        

2 2

0 0

1
.2 cos 2 sin 2 0

2
d d

 
         

Now,

2 22

x y z

x y yz y z

  
  

  

  



i j k

A k

  ˆ ˆ. .
S S

ds k ds    A n n

Now the projection of vector area n̂  dS on the xy plane whose unit normal is k, is

given by  ˆ ˆ. .dS dSn k n k .

But the projection of dS on xy plane is dx dy.

Hence ˆ( . )dS dx dyn k

ˆ ˆ( ) . .
S S S

dS dS dx dy     A n k n

Now 
1 2

0 0

1
.2

2
dx dy r dr d r dr d


         

 Stoke’s theorem is verified.
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Fig. (Solution 1)

Exercise of Art 4.31 :

1) Verify Stoke’s theorem for A = (y – z + 2)i + (yz + 4)j – zxk over the
surface of the cube x = 0, y = 0, z = 0; x = 2, y = 2, z = 2; above the xy
plane.

2) Verify Stoke’s theorem for the function F =
x2i – xyj integrated round the square in the line
x = 0, y = 0; x = e, y = a

Solution 1 : We have from Stoke’s theorem

ˆ. ( ) .
C S

dS   A dr A n (i)

We first evalute R.H.S. of equation (1), we
have

( 1)

2 4

y z
x y z

y z yz xz

  
       

  
   

i j k

A i j k F

Now we consider the cube

Now . ( ) ( )x y z
S S S

dS dS dS dy dz dx dz dx dy         F dS F i j k F. i j k

. . . .
ABCD EFGH BFGC AEHD

dy dz dy dz dx dz dx dz        F i F i F j F j

. .
DCGH ABFE

dx dy dx dy   F k F k

therefore . . .
S S ABFE

dx dy   F dS F dS F k
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Now 

22 2 2
2
0

0 0 0

. [ ] 4
2

ABCD

y
dy dz y dy dz y dy dz z

 
       

  
   F i

2 2

0 0

. 4
EFGH

dy dz y dy dz y dy dz        F i

2 2 2

0 0

2
. ( 1) ( 1) 2 2 0

2
BFGC BFGC

dx dz z dx dz dx z dz
 

       
  

   F j

. ( 1) 0
AEHD AEHD

dx dz z dx dz     F j

2 2

0 0

. ( 1) 4
DCGH DCGH

dx dy dx dy dx dy        F k

. 4 4 0 0 4 4        F dS

Now we evaluate L.H.S. of equation (1)

 . ( 2) ( 4)
C C

y z dx yz dy xz dz       A dr

. . . .
EA

      AB BF FE
A dr A dr A dr A dr

Now along EA : y = 0, dy = 0, z = 0, dz = 0

2

0

. 2 4
EA

dx   A dr

Along AB : x = a, dx = 0, z = 0, dz = 0

2

0

. 4 8
AB

dy   A dr
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Fig. Solution (2)

Along BF : z = 0, dz = 0, y = 2, dy = 0

0

2

. 4 8
BF

dx   A dr

Along FE : z = 0, dz = 0, x = 0, dx = 0

0

2

. 4 8
FE

dy   A dr

. 4 8 8 8 4
C

       A dr

 L.H.S of equation (1) is – 4 and R.H.S of equation
(1) is also – 4. Therefore Stoke’s theorem is verified.

Solution 2 : F = x2i – xyj      y   F k

Now, ˆ ˆ. .
S S

dS y dx dy   F n k n

.
S

y dx dy  k k

0 0

ˆ.
a a

S
S

ds y dx dy y dy dx        F n

3

2

a
 

Now, F.dr = (x2i – xyj) (i dx + jdy) = x2dx – xy dy

Now . . . . .
OA AB BC CO

C

       F dr F dr F dr F dr F dr
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Along OA : y = 0, dy = 0

3
2

0
.

3

a

OA

a
x dx   F dr

Along AB : x = a, dx = 0

3

0

.
2

a

AB

a
ay dy     F dr

Along BC : y = a, dy = 0

3
2

0
.

3

a

BC

a
x dx    F dr

Along CO : x = 0, dx = 0

. 0
CO

  F dr

3 3 3 3

. 0
3 2 3 2

C

a a a a
       F dr

ˆ. .
C S

ds   F dr F n

 Stoke’s theorem is verified.

Keywords

Double and triple integral, Jacobian, line, surface, volume integral of a vector field,
Gauss’s divergence theorem, Stoke’s theorem and Green’s theorem in plane.

4.32  Summary

 Definitions of double and triple integration as a limit of sums are given.
Change of order of integration is exemplified and example of triple integral are
given.
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 Change of variables of integrands with respective Jacobians are introduced.

 Line, surface, volume integrals of vector field are discussed with examples.

 Elementary proofs of Gauss’s divergence theorem, Stoke’s theorem and Green’s
theorem in a plane are given. Also verification of these theorems with examples
are provided.
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Unit 5  Orthogonal Curvilinear Co-ordinates

Structure

5.1 Objectives

5.2 Introduction

5.3 Curvilinear Co-Ordinates

5.4 Orthogonal Curvilinear Co-Ordinates

5.4.1 Elements of Arc Length, Area and Volume

5.4.2

 i

r

u  and  iu  (i = 1, 2, 3) Forms A Reciprocal System of Triads :

5.5 Gradient in Orthogonal Curvilinear Co-Ordinates

5.5.1 Gradient in circular cylindrical co-ordinates

5.5.2 Gradient in spherical polar co-ordinates

5.6 Divergence in Orthogonal Curvilinear Co-Ordinates

5.6.1 Divergence in circular cylindrical co-ordinates

5.6.2 Divergence in spherical polar co-ordinate

5.7 Curl in Orthogonal Curvilinear Co-Ordinates

5.7.1 Curl in circular cylindrical co-ordinates

5.7.2 Curl in spherical polar co-ordinate

5.8 Laplacian in Orthogonal Curvilinear Co-Ordinates

5.8.1 Laplacian in circular cylindrical co-ordinate

5.8.2 Laplacian in spherical co-ordinate system

5.8.3 Exercise

5.9 Summary

5.1  Objectives

Objective of this chapter is to set up an orthogonal curvilinear co-ordinate system
and find its unit vectors. The line element, area and volume elements are expressed in
terms of orthogonal curvilinear co-ordinate. Now we have derived expressions for gradient,
divergence, curl and Laplacian in terms of orthogonal curvilinear co-ordinates and have
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shown this expressions in some special co-ordinate system like circular cylindrical and
spherical polar co-ordinate system.

5.2  Introduction

In rectangular co-ordinate system the co-ordinate surfaces are planes and they intersect
at right angles to each other producing straight co-ordinate axes. In the previous chapters
we have defined gradient, Divergence, curl and Laplacian in rectangular co-ordinates x,
y, z. But in solving many physical problems, depending on the symmetry of the problems,
we have to express those vector operators in other co-ordinate systems like, cylindrical,
spherical etc. in which the surfaces are not all planes and the intersection of the surfaces
are curve lines rather than straight lines. Therefore, it has now become necessary to
define a co-ordinate system whose co-ordinate surfaces are curved surfaces and the
intersections of these curved surfaces produce curved lines as axes of co-ordinate system.
This preferred co-ordinate system is called curvilinear co-ordinate system. When the curved
surfaces intersect at right angles, we have orthogonal curvilinear co-ordinate system and
orthogonal curvilinear co-ordinates are convenient to study the physical problems.

5.3  Curvilinear co-ordinates

Three curve surfaces u
1
 = constant, u

2
 = constant and u

3
 = constant are taken such

that any two surfaces always intersect to produce a
curve and all the three surfaces intersect at a point.

For example, (Fig 5.1), surfaces u
1
 = constant

and u
2
 = constant intersect along a curve called u

3
 –

axis and similarly u
1
 – axis and u

2
 – axis are defined.

We can take these curves of intersections as reference
axes to construct a co-ordinate system, called
curvilinear co-ordinate system.

Let the Cartesian co-ordinates and the curvilinear
co-ordinates of a same point P be (x, y, z) and (u

1
, u

2
, u

3
) respectively. Since there need

be point to point correspondence between the co-ordinate systems :

 
 
 

1 2 3

1 2 3

1 2 3

, ,

, ,

, ,

x x u u u

y y u u u

z z u u u


 
 

(5.1)

Fig (5.1)

P
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And

1 1

2 2

3 3

( , , )

( , , )

( , , )

u u x y z

u u x y z

u u x y z

 
 
 

(5.2)

The functions defined by (5.2) ae continuous having first order continuous
derivatives.

If r be the position vector of the point P, then the vectors along tangents to u
1
, u

2
,

u
3
 axes will be 

1 2 3

, and
u u u

  
  

r r r
 respectively and the unit vectors along these tangents

are :

1 1 2 2 3 3

1 1 1
, , ,

  
  

  1 2 3h u h u h u

r r re e e  (5.3) respectively,,

where 



i

i
h

u

r
 (5.4) ; i = 1, 2, 3 and called scale factors which may have

dimensions.

Now in order that the co-ordinate surfaces u
1
 = constant, u

2
 = constant and u

3
 =

constant uniquely defines a point of intersection, the vectors 
1 2 3

, and
u u u

  
  

r r r
should be

non-coplaner and their triple scalar product do not vanish i.e. 
1 2 3

. 0
u u u

  
 

  
r r r

 where

r = ix + jy + kz

i.e.

1 1 1

2 2 2

3 3 3

0

x y z

u u u

x y z

u u u

x y z

u u u

  
  
  


  
  
  

(5.5)

or,  1 2 3

( , , )
0

, ,

x y z

u u u





(5.6)
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where (5.6) gives the Jacobian of transformation : (see article 4C.5).

5.4  Orthogonal Curvilinear Co-ordinates

The curvilinear co-ordinate system would be orthogonal if the unit vectors given by
equations (5.3) along the tangent to the axes are orthogonal.

i.e.
0

.
1

 
   

i j
for i j

for i j
e e (5.7)

and e
1
 × e

2
 = e

3
; e

2
 × e

3
 = e

1
; e

3
 × e

1
 = e

2

5.4.1 : Elements of Arc length, Area and volume

Arc length = since r = r(u
1
, u

2,
 u

3
),

1 2 3
1 2 3

u u u
u u u

  
     
  

r r rdr (5.8a)

= h
1
e

1
du

1
 + h

2
e

2
du

2 
+ h

3
e

3
du

3
(5.8b)

using equation (5.3)

Now square of the differential arc length ds is given by :

     2 2 22 2 2 2
1 1 2 2 3 3.ds h du h du h du   dr dr (5.9)

Using the equation (5.7)

or, 2 2 2 2
1 2 3ds ds ds ds   (5.10)

where ds
1
 = h

1
du

1
, ds

2
 = h

2
du

2
 and ds

3
 = h

3
du

3
 are the differential arc lengths along u

1
,u

2

and u
3
 respectively.

Now plane area is a vector given by the cross-product of two vectors. Thus element
of area in this case is, ds

1
 × ds

2
 = h

1
du

1
e

1
 × h

2
du

2
e

2
 = e

1
 × e

2
h

1
h

2
du

1
du

2

Or, ds
1
 × ds

2
 = e

3
h

1
h

2
du

1
du

2
  or, |ds

1
 × ds

2
| = h

1
h

2
du

1
du

2
(5.11)

Similarly, |ds
2
 × ds

3
| = h

2
h

3
du

2
du

3
(5.12)

And |ds
3
 × ds

1
| = h

3
h

1
du

3
du

1
(5.13)
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Again, volume element having sides ds
1
, ds

2
 and ds

3
 is given by triple scalar product

dV = ds
1
.ds

2
 × ds

3
 = (e

1
.e

2
 × e

3
)h

1
h

2
h

3
du

1
du

2
du

3

Or, dV = h
1
h

2
h

3
du

1
du

2
du

3
(5.14)

using equation (5.7). Equation (5.14) gives the volume element in orthogonal curvilinear co-
ordinate system.

5.4.2 : 

 i

r
u

 and iu (i = 1,2,3) forms a reciprocal System of Triads [see

article 4A.3.21]

We have dr = idx + jdy + kdz,  and 31 2
1

uu u
u

x y z

 
  

  
i j k

.i iu d du r (5.15)

Again if we multiply both sides of equation (5.8a) scalarly by 1u , we get

1 1 1 1 2 1 3
1 2 3

. . . .u d u u u u u u
u u u

      
                

r r rr    (5.16)

Comparing equation (5.15) and (5.16), we get 1 1
1 2

. 1, . 0,u u
u u

 
 

 
r r

 

1
3

. 0u
u





r



Similarly, by multiplying equation (5.8a) scalarly by 2u  and 3u , we get

2 2 2
1 2 3

. 1; . 1; . 0u u u
u u u

  
  

  
r r r

  

And 3 3 3
1 2 3

. 0; . 0; . 1u u u
u u u

  
  

  
r r r

  

From these relations we can say that vectors 
iu




r
 and iu  (i = 1, 2, 3)

form a reciprocal system of triads. Therefore,
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   2 3 2 2 3 3 2 3 2 3 1
1

1 2 3 1 2 3 1 2 3 1

1 2 3

( )

  
        

    
    

r r

u u h h h h
u

h h h h h h hr r r
u u u

e e e e e
e e e



Since e
1
.e

2
 × e

3
 = 1 & e

2
 × e

3
 = e

1
,

Similarly 2
2

2

u
h

e
  and 3

3
3

u
h

e


Or, we get  
1 1 1

2 2 2

3 3 3

h u

h u

h u

 
 
 





e
e
e

(5.17)

5.5  Gradient in orthogonal curvilinear co-ordinates

We consider a scalar function (u
1
, u

2
, u

3
) where u

1
, u

2
, u

3
 are functions of x, y, z

defined by equation 5.2.

Then we have :

31 2

1 2 3

31 2

1 2 3

31 2

1 2 3

uu u

x u x u x u x

uu u

y u y u y u y

uu u

z u z u z u z

   

   

   

    
          

               
    

   
       

(5.18)

Multiplying equation (5.18) by i, j, k respectively and adding we get :

1 2 3
1 2 3

u u u
x y z u u u

     


     
     

     
   i j k

or,
31 2

1 1 2 2 3 3h u h u h u

  


  
  

  


ee e
(5.19)

Using (5.17).
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Fig. 5.2

5.5.1 : Gradient in circular cylindrical co-ordinates

In this co-ordinate system, the three curvilinear co-ordinates are :

u
1
 = r, 0 r  

2 ,u  0 2  

u
3
 = z, z   

Transformation equations are :

cos

sin

x r

y r

z z




 
 
 

(5.20)

Now r = ix + jy + kz = cos sinr r z  i j k

cos sin
r

 
  


r i j

 ( sin ) sin sin cosr r r   



     


r i j i j

z





r k

Therefore unit vectors are :

cos sin

sin cos




 

 












   



    

 



r
r

r r
r

r

r

z

e i j

e i j

e k

(5.21)

Scale factors are, 1; ; 1zh h h
z 

  
     
  r

r r rr
r
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Therefore 31 2

1 1 2 2 3 3h u h u h u

  


  
  

  


ee e

1

z

  


  
  

  r θe e k
r r (5.22)

5.5.2 : Gradient in spherical polar co-ordinates

In this co-ordinate system, 1 2 3; ;u r u u   

Transformation equations are

sin cos

sin sin

cos

x r

y r

z r

 
 


 
 
 

(5.23)

We have r = ix + jy + kz

or,

sin cos sin sin cosr r r      r i j k

sin cos sin sin cos
r

    
  


r i j k

1 1rh h
r


  


r

cos cos cos sin sinr r r    



  


r i j k

2h h r


   


r

sin ( sin ) sin cosr r   



  


r i j

3 sinh h r 



   


r

Fig. 5.3
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1

2

3

1

sin

rh h

h h r

h h r


 

   
   
   

(5.24)

Now,

1

2

3

sin cos sin sin cos

cos cos cos sin sin

sin cos
r

r










    

    

 


















     

     




     


r
r

r r
r
r

θ r

e e i j k

e e i j k

e e i j

(5.24a)

Therefore, replacing   by  ; in (5.19)

31 2

1 1 2 2 3 3

1

sinh u h u h u r r
     


  

     
     

     
 r r

ee e e e e (5.25)

5.6  Divergence in orthogonal Curvilinear Co-ordinates

We consider a vector point function A(u
1
,u

2
,u

3
) having components A

1
,A

2
,A

3
 along the

unit vectors e
1
,
 
e

2
, & e

3
 respectively, such that A = A

1
e

1
 + A

2
e

2
 + A

3
e

3
 = A

1
 + A

2
 + A

3

(5.26)

Since the unit vectors are orthogonal, e
1
= e

2
 × e

3
; e

2
 = e

3
 × e

1
; e

3
 = e

1
 × e

2
 (5.9)

Let us consider the component A
1
 of the vector point function.

We have, 1 1 1 1 2 3 1 2 3 2 3A A A h h u u     A e e e , using equation (5.17)

Therefore, 1 1 2 3 2 3A h h u u     A

 1 2 3 2 3 1 2 3 2 3A h h u u A h h u u          
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But 2 3 3 2 2 3 0u u u u u u                  (see article 4B.13)

 1 1 2 3 2 3A h h u u       A (5.27)

Now for any function f(u
1
), we have

1 1 1 1 1 1
1

1 1 1

( ) ( ) ( )
( )

f u f u f u u u uf f f
f u

x y z u x u y u z

       
        

        
 i j k i j k

1
1

f
u

u





 (5.28)

Using the identity (5.28) we get, from equation (5.27),

    31 2
1 1 2 3 1 2 3 1 2 3

1 1 1 2 3

 
      

 
A h h u u u A h h

u u h h h

ee eΑ     using (5.17)

   1 2 3 1 2 3
1 2 3 1 1 2 3 1

1
A h h A h h

h h h u h h h u

   
 

 
1 2 3e e e

1 2 3 1  e e e

Similarly, we can find,  2 2 3 1
1 2 3 2

1
A h h

h h h u


 


 Α

 3 3 1 2
1 2 3 3

1
A h h

h h h u


 


 Α

Thus, we have

1 2 3         Α Α Α Α

     1 2 3 2 3 1 3 1 2
1 2 3 1 2 3

1
A h h A h h A h h

h h h u u u

   
      

(5.29)

Equation (5.29) gives the divergence of a vector point function in orthogonal curvilinear
co-ordinates.
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5.6.1. Divergence in circular cylindrical co-ordinates

In this co-ordinates system u
1
 = r, u

2
 = , u

3
 = z; h

1
 = h

r
 = 1; h

2
 = h = r; h

3
 = h

z

= 1 and e
1
 = er, e2

 = e , e3
 = ez = k from equation (5.24),

Therefore 
1 1

( ) z
r

A A
r A

r r r z



 
   

  
 Α (5.30)

where 1 2 3, ,r zA A A A A A   .

5.6.2. Divergence in spherical polar co-ordinate

In this co-ordinate system 1 2 3, , ;u r u u   

1 2 31; , sin ;rh h h h r h h r       

1 2 3 1 2 3, , ; , ,rA A A A A A       r θe e e e e e

Therefore from equation (5.29),

   2
2

1
sin sin

sin
r

A
r A r A r

r rr


 



  
       

 Α

5.7  Curl in Orthogonal Curvilinear Co-ordinates

We have A = A
1
e

1
 + A

2
e

2
 + A

3
e

3

Now using equation (5.17), we get,

1 1 1 2 2 2 3 3 3A A h u A h u A h u    

     1 1 1 2 2 2 3 3 3A h u A h u A h u             Α (5.31)

Now

     1 1 1 1 1 1 1 1 1 1 1 1A h u A h u A h u A h u             

     1 1 1 1 1 1 2 1 1 1 3 1
1 2 3

A h u u A h u u A h u u
u u u

  
     
  

      (5.32)
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Now from equation (5.17)

32 1
2 1

1 2 1 2

u u
h h h h


    

ee e

3 1 2
3 1

1 3 1 3

u u
h h h h


   

e e e

Therefore equations (5.32) becomes

     32
1 1 1 1 1 1 1

1 3 3 1 2 2

 
  

 
A h u A h A h

h h u h h u

ee
 

Similarly we get,

     3 1
2 2 2 2 2 2 2

1 2 1 3 2 3

A h u A h A h
h h u h h u

 
  

 
 

e e

     1 2
3 3 3 3 3 3 3

1 3 2 1 3 3

A h u A h A h
h h u h h u

 
  

 
 

e e

Thus

       1 2
3 3 2 2 1 1 3 3

2 3 2 3 1 3 3 1
A h A h A h A h

h h u u h h u u

      
             


e eΑ

   3
2 2 1 1

1 2 1 2
A h A h

h h u u

  
    

e
(5.33)

Equation (5.33) can be written in a determine from

1 1 2 2 3 3

1 2 3 1 2 3

1 1 2 2 3 3

1   
 

  

h h h

h h h u u u

A h A h A h

e e e

Α
(5.34)

5.7.1. Curl in circular cylindrical co-ordinates

In this co-ordinate system, h
1
 = h

r
 = 1; h

2
 = h = r; h

3
 = h

z
 = 1; e

1
 = er, e2

 = e ,
e

3
 = ez = k; A

1
 = A

r
, A

2
 = A , A

3
 = A

z

From equation (5.34),
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1

r z

r

r r z
A rA A


  

 
  



r θe e k

Α (5.35)

5.7.2. Curl in spherical polar co-ordinates

In this co-ordinate system :

h
1
 = h

r
 = 1; h

2
 = h = r; h

3
 = h = r sin ; u

1
 = r, u

2
 = , u

3
 =  ; A

1
 = A

r
,

A
2
 = A, A

3
 = A

Therefore from equation (5.34)

2

sin

1

sin
sin

  
 

  

r

r r

rr
A rA r A



 



 


r θe e e

Α
(5.36)

5.8  Laplacian in Orthogonal Curvilinear Co-ordinate

From equation (5.19) :  31 2

1 1 2 2 3 3h u h u h u

     
  

  


ee e

let 1 1 2 2 3 3A A A   Α e e e   (5.37), comparing (5.19) and (5.37) we get,

1 2 3
1 1 2 2 3 3

1 1 1
, ,A A A

h u h u h u

    
  

   (5.38)

From equation (5.29) :

     1 2 3 2 3 1 3 1 2
1 2 3 1 2 3

1
,A h h A h h A h h

h h h u u u

   
       

 Α

substituting A
1
, A

2
, A

3
 from equation (5.38), we get
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2 3 3 1 1 2

1 2 3 1 1 1 2 2 2 3 3 3

1 h h h h h h

h h h u h u u h u u h u

            
                    

 Α (5.39)

2 2 3 3 1 1 2

1 2 3 1 1 1 2 2 2 3 3 3

1 h h h h h h

h h h u h u u h u u h u

   
          

                     
   (5.40)

5.8.1. Laplacian in circular cylindrical co-ordinate

In this co-ordinate system : h
1
 = h

r
 = 1; h

2
 = h = r; h

3
 = h

z
 = 1; u

1
 = r, u

2
 = ,

u
3
 = z ; A

1
 = A

r
, A

2
 = A , A

3
 = A

z 
; e

1
 = er, e

2
 = e, e

3
 = k

Therefore from equation (5.40)

2 1 1
r r

r r r r z z

  


 
                               

2 2

2 2 2

1 1
r

r r r r z

  


           
(5.41)

5.8.2. Laplacian in spherical co-ordinate system

In this co-ordinate system : h
1
 = h

r
 = 1; h

2
 = h = r; h

3
 = h = r sin ; u

1
 = r, u

2

= , u
3
 =  ; A

1
 = A

r
, A

2
 = A , A

3
 = A 

; e
1
 = er, e

2
 = e, e

3
 = e

Therefore from equation (5.40) we get changing to 
2

2 2
2 2

1 1
sin sin

sinsin
r

r rr

    
   

                        
(5.42)

5.8.3. Exercise

1) Express the vector V = ix + j2y + kz in circular cylindrical co-ordinates.

2) Express the vector V = i2x – jy + 3kz in spherical co-ordinates.

Solution :

Solution 1 : Transformation equations in circular cylindrical co-ordinates are

cos

sin

x r

y r

z z




 
 
 
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using equation (5.20).

cos 2 sinr r z    V i j k

Now i, j and k are given in terms of er, e and ez by solving equation (5.21) and we
get

cos sin  r θi e e

sin cos  r θj e e

k = ez

Therefore

   cos cos sin 2 sin sin cosr r z         r θ r θ zV e e e e e

   2 2cos 2 sin sin cos 2 sin cosr r r r z          r θ ze e e

 21 sin sin cosr r z     r θ ze e e

Solution 2 : Transformation equations for spherical co-ordinates are,

sin cos

sin sin

cos

x r

y r

z r

 
 


 
 
 

using equation (5.23).

2 sin cos sin sin 3 cosr r r       V i j k

Now i, j, k are given in terms of , , r θe e e  by solving equations (5.24a) and we get

sin cos cos cos sin      r θi e e e

sin sin cos sin sin      r θj e e e

cos sin  r θk e e

Therefore

 2 sin cos sin cos cos cos sinr         r θV e e e
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 sin sin sin cos cos sin sinr         r θe e e

 3 cos cos sinr    r θe e

 2 2 2 2 22sin cos sin sin 3cosr       re

 2 22sin cos cos sin cos sin 3 sin cosr          θe

 22 sin sin cos sin sinr        e

   2 2 2 2 23sin cos 4cos 1 sin cos 2cos sin 3r r           r θe e

sin sin (2cos sin )r      e

Keywords

Curvilinear co-ordinate system, orthogonal curvilinear co-ordinate system; gradient,
divergence, curl and Laplacian.

5.9  Summary

 We have defined curvilinear and orthogonal curvilinear systems.

 Expressions for elements of arc length, area and volume have been obtained in
orthogonal curvilinear co-ordinate system.

 Expression for gradient, divergence, curl and Laplacian have been obtained in
orthogonal curvilinear co-ordinate systems and in circular cylindrical and spherical
polar co-ordinate systems.
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Unit 6  Dirac Delta Function

Structure

6.1 Objective

6.2 Introduction

6.3 Definition

6.4 Step Up / Step Down Function : Unit Impulse Function

6.5 Different Representation of the Delta Function

6.5.1 Properties of Delta Function

6.5.2 Delta Function in Three Dimension

6.6 Summary

6.1  Objectives

The objective of this chapter is to introduce Direc Delta function to the students. It’s
definition and properties are explained. Also various representations of delta function have
been discussed.

6.2  Introduction

Delta function appears in many physical problems. It was first used by P.A.M Dirac
in quantum mechanics and thereafter it became popular among physicists and mathematicians
and is popularly known now as Dirac Delta function ( )x .

The point to be remembered is that ( )x  is not a function at all in the usual sense.
Since its value is not finite at x = 0 and it is only treated as if it were a function for
certain clearly defined purpose in physics and mathematics.

6.3  Definition

In one dimension, the Dirac Delta function ( )x , can be thought of as a function on
the real line which is zero everywhere except at the origin where it has such a large value
that the integral of the function over an interval containing the point x = 0 is equal to
unity. Thus
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( ) 0, for 0

, for 0

and ( ) 1

x x

x

x dx









  

   


 
(6.1)

  – function has the unit area under the curve.

When the centre of the delta function is shifted to x = a from the origin  equation
6.1 is rewritten as :

( ) 0, for 0

, for 0

and ( ) 1

x a x a

x a

x a dx









    

    


  
(6.1a)

Equation 6.1a is shown in figure (6.3)

6.4  Step up/step down function : Unit Impulse Function

We consider a function,

1
2

( ) ,

0,

y x x

x

   



     


  
  (6.2)

As shown in fig (6.1)

We can make an approximation to  -function
by making a step-up / step-down function shown
in fig (6.1).

Now let ( ) ( ) ( )y x u x u x      

Where ( )u x  the step is up function and ( )u x  is the step down function. The

width of the curve being ( ) 2      and the height is 
1

2
 so that area of the curve is

1
(2 ) 1

2



 . Now when 0  , we get

Fig. 6.1
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0( ) lim ( )x x   (6.3)

And equation (6.3) is represented by fig (6.2).

Equation (6.2) also defines a unit impulse function
of impulse F

t
(x) × t = 1

where F
t
(x) = 

1
'

2 2

0 ,
2

t t
x

t
t

x

   

 


A rule for integration of its product with another function f(x) is given by

( ) ( 0) (0)f x x dx f




  (6.4)

when ( )x  centred at origin. When ( )x  is centred at x

= a, we get

( ) ( ) ( )f x x a dx f a



   (6.5)

Equation (6.5) is valid for any continuous function f(x),
because ( ) 0x a    for x a  and we can replace the
function f(x) by its value at x = a while integrating since,

( ) ( ) ( ) ( ) ( ) ( )f x x a dx f a x a dx f a x a dx  
  

  

      

Now ( ) 1x a dx



   by equation (6.1a), and equation (6.5) follows.

The range of integration of equation 6.1 or 6.1a or 6.4 or 6.5 need not be from

to  . It may be over any region containing the centre of the  -function where it

does not vanish.

It is to be noted that if x has the dimensional length, ( )x a   would have the

dimension of inverse length.

Fig. 6.3

Fig. 6.2
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Similarly if x has the dimension of time, then ( )x a   would have the dimension of

(time)–1.

6.5  Different representation of the -function

a. -function as a limiting form of rectangular function :

We suppose :

1
, for

( ) 2
0 , for 0

x a
y x

x a


 


     
   

(6.6)

We see that as   decreases, the rectangular distribution becomes narrower as sharper..
The integral

1
( ) 1

2

a

a
y x dx dx


 

 

 
  

This is true for any value of  . Thus even in

the limit 0   the structure becomes infinitely

peaked, however still retaining the area under the
curve as unity so,

0
lim ( ) ( )y x x a


 


 

Also

1
( ) ( ) ( )

2

a

a
f x y x dx f x dx


 

 

 
 

Assuming f(x) to be continuous at x = a and when in the infinitesimal integral
x a     , f(x) may be assumed to be a constant, we get

0
( ) ( ) lim ( ) ( )

a
f x x a dx f x y a dx

 


 

  

0
lim ( ) ( )

a

aa
f a dx f a











  

Fig. 6.6


1
 > 

2
 > 

3



220  NSOU  CC-PH-04

Therefore, the distribution ( )y x  in the limit 0   represent of  -function.

b. Gaussian representation of the -function.

A Gaussian is denoted by

2( )
22

2

1
( ) ; 0

2

x a

y x e 
 





  , again as 

decreases the Gaussian becomes sharper and in the
limit 0   and will get a  -function. Also the

integral,

( ) 1y x dx





Further it has a width   and at x = a it has a value 
2

1

2
.

So,

2( )
22

20

1
( ) lim

2

x a

x a e 









 

6.5.1 Properties or characteristics of delta function

1. ( ) ( )x x   (6.7)

It states that the delta function is an even function of x.

2. ( ) 0x x  (6.8)

Since, if we take a continuous function f(x) and find that ( ) ( ) 0f x x x dx  . This

shows that ( )x x  as a factor in the integral is equivalent to zero.

3.
1

( ) ( ), 0x x a
a

   (6.10)

We consider ( ) ( ) (0) ( ) .f x ax dx f ax dx 
 

 
 

Now putting ( ) (0)
, ( )

l f
l ax f x l

a a

 



  (6.11)

Fig. 6.7
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But we have ( ) ( ) (0)f x ax dx f



 (6.4)

Comparing equation (6.11) and (6.4)

( ) ( )
( )

l ax
ax

a a

   

4.    2 2 1
( ) ( ) , 0

2
x a x a x a a

a
        (6.12)

We have    2 2 ( ) ( )x a x a x a      
1 1

( ) ( )x a x a
x a x a

    
   using

(6.4)

Hence, considering an arbitrary continuous function f(x), we can write,

 2 2 ( ) ( )
( ) ( ) ( )

f x f x
f x x a dx x a dx x a dx

x a x a
       

  

 1
( ) ( )

2
f a f a

a
   (6.13)

using equation (6.10).

The right hand side of the equation (6.13) can be written as

1
( ) ( ) ( ) ( )

2
f x x a dx f x x a dx

a
      

Hence we get    2 2 1
( ) ( )

2
x a x a x a

a
      

5. ( ) ( ) ( ) ( )f x x a f a x a    (6.14)

Since ( ) 0x a    at x = a but is zero for all other value of x, the product

( ) ( )f x x a   will remain non-zero for x = a and will result in ( ) ( )f a x a  .
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6.5.2 Delta function in Three Dimension

The three dimensional delta functions are defined as :

3

( ) 0, for 0

( ) 1

r r

and r d r





  


  
(6.15)

Equation (6.4) and (6.5) in three dimensional forms are

3( ) ( ) (0)f d f  r r r (6.16)

3( ) ( ) ( )f d f   0 0r r r r r (6.17)

Key Words

Delta functions, unit impulse function.

6.6  Summary

 Dirac delta function is defined and explained. Shift of origin considered.

 Rectangular and Gaussian representation discussed.

 Listed the properties of Dirac delta functions.
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7.1  Objectives

In this chapter we shall discuss various arithmetic operation with matrices covering
various terminologies and notation. We shall define a number special matrices which
frequently occur in physics and discuss methods of matrix algebra that are useful in solving
a system of linear equations in some unknowns.

7.2  Introduction

Historically study of matrices arose in connection with, successive linear transformtions
in vector spaces. The simplest of such transformations are the linear transformtions of
components of vectors under rotation of co-ordinate axes as discussed in chapter 4 :

3

1
i ij

j

a


  jA A (7.1)

Where iA  are the components of vector A in the new co-ordinate system and Aj

are those in old co-ordinate system.

where

2 2 1( 1,2,3)   ij ji
j j

a a i
(7.2)

0 ( )ij ik ji ki
i i

a a a a j k    (7.3)

Now we consider a further linear transformation of the co-ordinate system in which
the same vector has components ,iA  which are linearly related to the components iA
by

3

1
i ik k

k

b


 A A (7.4)

It is possible to eliminate the intermediate co-ordinate system and obtain a
transformation directly from the components Ai to iA

3 3

1 1
i ik kj

j k

a a
 

 jA A (7.5)
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3 3

1 1
ik kj

j k

b a
 

 jA

3

1
ij

j

c


 jA (7.6)

Where

1

1 ,
n

ij ik kj
k

c b a i j n


  

In dealing with such transformation it is convenient to introduce the concept of matrices.
Now using equation (7.1) and (7.4) we get (7.5), which is the result of two successive
linear transformation in the vector space. In fact it is in the study of such successive linear
transformations that the branch of matrix algebra historically developed.

For a proper understanding of the basic concept of quantum mechanics, a sound
foundation in matrix algebra is essential. Matrices occurs in physics mainly two ways: first
in the solution of linear equation and second, in the solution of eigenvalue problems in
classical and quantum mechanics.

In this chapter we shall discuss various arithmetic operation with matrices covering
various terminologies and notation. We shall define a number special matrices which
frequently occur in physics and discuss methods of matrix algebra that are useful in solving
a system of linear equations in some unknowns.

7.3  Definition, Notation and Terminology

A rectangular array of numbers (real or complex) is called a matrix. The array consists
of m rows and n colomns. The individual members of the array are called the elements.
Sometime the elements may be functions like f

1
(x) etc.

If a matrix has m rows and n columns, the matrix is of order m × n (called m by n).
A general m by n matrix can be written as,

11 12 1

21 22 2

1 2

...

...

... ... ...

... ... ...

...

 
 
 
 
 
 
  

n

n

m m mn

a a a

a a a

a a a

A
(7.1)
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Or ij m n
a


   A  (7.8), is shorthand notation.

Terminologies :

1. Row matrix : If there be only one row of elements in the matrix, it is called a
row matrix. Thus A = [a, b, c, d], is a row matrix of order 1 × 4.

2. Column matrix : A matrix having elements in one column only is called a column
matrix. Thus

 , , ,

p

q
p q r s

r

s

 
 
  
 
 
 

A , to save space, is a column matrix of order 4 × 1.

3. Null matrix : The matrix A of arbitrary order is said to be a null (or zero) matrix
if, and only if, every element of A equals zero. We denote a null matrix by 0. Thus if

A = 0, then ij m n
a


   A = 0, thus

0 0 0
,

0 0 0

 
  
 

A  is a null matrix of order 2 × 3. It is evident that for any arbitrary

matrix A – (– A) = 0

4. Negative matrix : – A is the negative matrix of A, when sign of all the element
of A is reversed. If

a b

c d

 
   

A , then 
a b

c d

  
     

A

5. Transpose of matrix : If the rows and the columns of a matrix are interchanged,

the resulting matrix is called the transpose of the former matrix e.g. if 

2 4 6

3 5 7

1 3 5

 
   
  

A ,
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the transpose of A i.e. AT or A  (called A-tilde) is given by, 

2 3 1

4 5 3

6 7 5

 
   
  

A .

In notation ij m n
a


   A  then jia


   

T
n m

A

6. Square matrix : If the number of rows and columns of a matrix are equal i.e.
m = n, the matrix is said to be a square matrix. If A is a square matrix of order n × n
we say that A is of order n. Square matrices gives rise to various types of special matrices
which frequently occur in physics. For example

2 3 4

2 5 6

0 9 0

 
   
  

A  is a square matrix of 3 × 3.

7. Diagonal matrix : A square matrix having all its non-diagonal elements as zero is

called a diagonal matrix. Let ij n
a   A  be a square matrix of order n. The elements a

11
,

a
22

, a
33

, ... a
nn

 form the principle diagonal of the matrix. The elements a
ii
 are called the

diagonal elements of the equare matrix A.

All the remaining elements a
ij
 for i j  are called the off-diagonal elements.

Thus in a diagonal matrix A, 0, 0 ,ii ija a   or in short ij ij ijn
a a     .

For example : 

3 0 0

0 5 0

0 0 4

 
   
  

A , is a diagonal matrix of 3 × 3.

8. Scalar matrix : If the elements of a diagonal matrix are all equal, then the matrix

is called a scalar matrix. Thus a
ii
 = x, a

ij
 = 0, 

0 0

0 0

0 0

x

x

x

 
   
  

A , is a scalar matrix of order

3 × 3.
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9. Unit matrix : If the elements of a diagonal matrix are all equal to unity, then the

matrix is called a unit or identity matrix i.e. a
ii
 = 1, a

ij
 = 0; A = I = 

1 0 0

0 1 0

0 0 1

 
 
 
  

, is a unit

matrix or order 3 × 3.

10. Singular matrix : A square matrix A is a singular matrix, if det A = 0. Thus

2 5 19

1 2 4

3 2 0

 
    
  

A , is a singular matrix, since det A = 0, if det 0A , then the matrix

is called a regular or non-singular matrix.

11. Determinant of a matrix : The determinant whose elements are corresponding
elements of a square matrix A is called the determinant of matrix A and denoted by det A
or |A|.

Thus if 

1 2 3

2 3 4

3 4 5

 
   
  

A , then det 

1 2 3

2 3 4

3 4 5

A . Now we see that det A = 0 i.e. A

is a singular matrix. Again let 1

1 4 3

4 9 6

5 6 2

 
   
  

A  and we see det 1

1 4 3

4 9 6 0

5 6 2

 A ,

therefore A
1
 is a non-singular matrix.

12. Triangular matrices : A square matrix in which all the elements below the
principle or leading diagonal are zero is called an upper triangular matrix. If however, all
the elements above the principle diagonal of a square matrix are zero, then it is called a
lower triangular matrix. For example.

1

1 2 2 3

0 4 5 2

0 0 0 4

0 0 0 7

  
   
 
 
 

A u
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Is an upper triangular matrix and 1

2 0 0

5 3 0

2 0 2

  B L , is an lower triangular matrix.

13. Symmetric matrix : If a square matrix A = [a
ij
] such that AT = A (7.9)

i.e. [a
ij
] = [a

ji
] for all i, j. Then the matrix A is called a symmetric matrix. For example

: if  

a h g

h b f

g f c

 
   
  

A ,

a h g

h b f

g f c

 
    
  

TA  i.e. ij jia a        for all i,j .

14. Skew-symmetric or anti-symmetric matrix : A square matrix A = [a
ij
] is called

a skew-symmetric or an anti-symmetric matrix if–

i) a
ij
 = – a

ji
 for all values of i, j

ii) a
ii
 = 0 i.e. all the leading diagonal elements are zero. Above two properties are

satisfied if AT = – A (7.10)

for example the matrix : 

0

0

0

h g

h f

g f

  
  
  

, is a skew-symmetric matrix or anti-symmetric

matrix.

Any square matrix can be expressed as the sum of a symmetric and a skew-symmetric

matrix in the following manner : 
1 1

2 2
         

T TA A A A A (7.11)

Where first part in R.H.S is a symmetric matrix and the second part is skew-
symmetric.

15. Constant matrix : If all the non-vanishing elements of a diagonal matrix happen
to be equal to each other, it is said to be a constant matrix. The elements of a constant
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matrix are thus given by ij ijn
A a a      (7.12), where = a

ij
 = a = constant for all

i, j and a is a scalar when a = 1, we get unit matrix. Thus A = aI (7.13)

This shows that a constant matrix is a constant multiple of the unit-matrix.

16. Equal matrices : Two matrices A and B are said to be equal if and only if a
ij

= b
ij
 for all values of j. This requires that i) they are of the same order and ii) they have

their corresponding element identical. A = [a
ij
], B = [b

ij
]

7.4  Complex Matrices

Study of complex matrices with complex elements is useful in quantum mechanics.

17. Conjugate matrix : A be a given matrix having complex elements, then the
conjugate matrix of A, written A*, is the matrix whose corresponding elements are the
complex conjugates of the elements of A.

That is if 


   ija
m n

A , then *


   ija
m n

A* . Also if c is any scalar, then,

( )* * *c cA A (7.14)

For matrix A whose elements are real numbers, the conjugate matrix A* = A.

18. Hermitian conjugate : When the two operations of complex conjugation and
transposition are carried out one after another on a matrix, the resulting matrix is called the
Hermitian conjugate of the original matrix and will be denoted by A+ (called A-dagger). The
order of the two operation is immaterial, thus A+ = (A*)T.... (7.15)

For example : 
2 3 2 3

2 3

  
   

i i
A

i

   
*

2 3 2 2 3 2
*

2 3 3 2 3 3
T       

           
T i i i i

A A A*
i i

19. Hermitian matrix : A complex square matrix A = [a
ij
] is called Hermitian matrix

if (A*)T = A or A+ = A.

Example : 
0 0

*
0 0

A A
   

        

i i
i i
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  0

0
T  

   
 

i
A* A

i

Or, A+ = A i.e. A is Hermitian.

Every diagonal element of a Hermitian matrix must be real ; since A+ = A, or,

   ii iia a
 

Or,    *
T

ii iia a  or,  *ii iia a

 a
ii
 is real.

20. Symmetric and Hermitian matrix

We consider equality of A, AT and A+. The equality of A and AT or of A and A+ will
be defined only if A is a square matrix with m = n. We then get the following four special
matrices e.g. symmetric, anti-symmetric, Hermitian, anti-Hermitian. Symmetric : A = AT ;
Hermitian : A = A+; Anti-symmetric : A = – AT; Anti-Hermitian (skew-Hermitian) :
A = – A+.

21. Orthogonal matrix : A square matrix A is called orthgonal if AAT = I, where I
is an identity or unit matrix. Since AAT = I, AT = + A–1 i.e. if transpose of A is equal to
its inverse.

The orthogonality condition of two square matrices is that the determinant.

|AAT| = I

Example : 
cos sin

sin cos

 
 

 
  
 

A

A matrix A satisfying the relations AAT = In (7.16a)

    ATA = Im (7.16b)

Where In and Im are two unit matrices, not necessarily of the same order, is called an
orthogonal matrix. Again it can be shown that if A is a finite matrix satisfying both equations
(7.16), then A must be square and AAT= I,   AAT A = I.



232  NSOU  CC-PH-04

Let det A = d. Taking the determinants of both sides of equation 7.16a, we have
2 1 1d d    . This shows that the determinant of an orthogonal matrix can only have

values +1 or –1. At the same time this shows that A is non-singular, so that A–1 exists.
Multiplying equation 7.16a by A–1 from the right, we have A–1 = AT.

22. Unitary matrix : A complex square matrix A is said to be unitary [not unit or
identity matrix], if A–1 = A+. Therefore AA–1 = AA+ = I

So, if the product of the matrix and its Hermitian conjugate is an identity matrix, it is
a unitary matrix.

7.5  Matrix Algebra

Matrix algebra is different from ordinary algebra in as much as vector algebra is
different from a scalar algebra. We ordinarily indicate a matrix by a bold face letter like
A or B etc. but the later does not have a numerical values, it simply stands for the array.

The various operation of addition, subtraction, multiplication etc. on matrices are called
its algebra.

7.5.1 Addition of Matrices : If A and B be two matrices of the same order then their
sum A + B is defined as the matrix whose elements are obtained by adding the corresponding
elements of A and B.

If A = [a
ij
] and B = [b

ij
], then A + B = [a

ij
 + b

ij
]. (7.17)

Therefore the sum of two matrices, each of order m × n, is a matrix of the same order
m × n with each element being the sum of the corresponding elements of the given
matrices.

Thus it is evident that matrices are useful in case which are added by components, for
example, vectors. To explain, suppose,

1 1 1 2 2 2

1 1 1 2 2 2
and

a b c a b c

d e f d e f

   
    
   

A B

and 1 2 1 2 1 2

1 2 1 2 1 2

a a b b c c

d d e e f f

   
      

A B
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Suppose the column in A and B represent the displacement of three particles. Then
first particle has displacement ia

1
 + jd

1
 in A, the first particle has displacement at a later

time ia
2
 + jd

2
 B.

Then the total displacement of the first particle is i(a
1
 + a

2
) + j(d

1
 + d

2
) is the first

column of matrix A + B. Similarly the second and third columns represent displacement of
the second and third particles.

Properties of matrix addition :

1> Matrix addition is commutative : A + B = B + A

2> Matrix addition is associative : A + (B + C) = (A + B) + C

Two matrices must be conformable for addition,; by conformity we mean both the
matrices must have the same number of rows and the same number of columns i.e. they
are of the same order.

7.5.2 : Scalar multipliction of a matrix :

If a matrix A is multiplied by a scalar quantity k, the each element of A gets multiplied
by k. example : if A = [a

ij
], then kA = [ka

ij
].

In determinants however only one row or one column is multiplied and not every
elements of the determinant.

It is known that the components of a vector A = ai + bj may be conveniently written

as elements of a matrix either 
a

b

 
  
 

A , called a column matrix or a column vector or

AT = (a b) called a row matrix or row vector.

The row matrix AT is the transpose of the matrix A. Now a vector twice the length

of A is 
2

2 2 2 & 2 (2 2 )
2

a a
a b a b

b b

   
      

   
Ti j A

7.5.3 : Matrix Multiplication :

Let 
a b e f

and
c d g h

   
    
   

A B

Then 
a b e f ae bg af bh

c d g h ce dg cf dh

      
             

AB C
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Thus all the elements of C may be obtained by using the following simple rule. The
element in row m and column n of the product matrix AB is equal to row m of A times
column n of B. In notation

 mn
k

 mk knAB A B (7.18)

We consider the elements in a row or a column of a matrix as the components of a
vector. Then row times column multiplication for the matrix product AB corresponds to
finding the dot product of the row vector of A and a column vector of B e.g. (ai + bj).
(ei + gj) = ae + bg

The product AB (maintaining the order) can be found if and only if the number of
elements in a row of A equals the number of elements in a column of B: the matrices A,B
in that order are then called conformable. The number of rows in A and of column in
B have nothing to do with the question of whether we can find AB or not.
Matrix multiplication is not commutative i.e. in general, matrices do not commute under
multiplication.

We define the commutator of the matrices A and B by [A, B] = AB – BA =
commutator of A and B (7.19)

If [A, B] = 0, then A and B commutes (in some special matrices).

Commutators are widely used in classical and quantum mechanics.

Properties of matrix multiplication :

1. Non-commutative : AB BA  in general

2. Associative : A(BC) = (AB)C = ABC

3. Distributive : A(B + C) = AB + AC and (A + B)C = AC + BC

4. AI = IA = A, where I is a unit matrix conformable with A.

5. AA–1 = A–1A = I provided 0A

6. [AB]T = BTAT

7. If A.B = 0, it does not mean necessarily that A or B is a null matrix.

8. If A and B are two square matrix of the same order then det AB = detBA =
(det A) (det B) even when A and B do not commute.
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7.5.4 : Adjoint and inverse of a matrix : The cofactor of an element in a
square matrix A means exactly the same thing as the cofactor of that element in det A since
if

1 1 1 1 1 1

2 2 2 2 2 2

3 3 3 3 3 3

,

a b c a b c

a b c a b c

a b c a b c

 
   
  

A A

The matrix obtained from the cofactor of |A| is given by C, where

1 1 1

2 2 2

3 3 3

A B C

A B C

A B C

 
   
  

C

The transpose of the matrix of the co-factor is

1 2 3

1 2 3

1 2 3

 
 
 
  

A A A

B B B

C C C
 = adjoint of matrix A = adj A = CT, (7.20)

Now we define the inverse of a matrix A as the matrix A–1 such that AA–1 and A–1A
are both equal to unit matrix I. It is to be noted that only square matrices can have inverse
and acatually some square matrices do not have inverse either.

Now if A–1A = I, then (det A–1) (det A) = det I = 1. If two numbers have product
equal to one, then neither of them is zero. Thus det 0A  is a requirement for A to have

an inverse.

Thus the condition for a square matrix A to have an inverse is that A is non-singular

i.e. 0A .

If a matrix has an inverse, it is called an invertible and if it does not have an inverse,
it is called singular.

If A be an invertible matrix, then the inverse of matrix A is given by,

1 adj  
TA CA

A A (7.21)



236  NSOU  CC-PH-04

7.5.5 : Properties of inverse of a matrix :

1. Inverse of matrix is unique.

2. Every matrix commutes with its inverse, i.e. AA–1 = A–1 A = I

3. Inverse of the product of a number of matrices (all square and of the same order),
none of which is singular, equals the product of the inverses taken in the reverse
order i.e. (ABC)–1 = C–1B–1A–1

4. If A be an invertible matrix, then A–1 is invertible and (A–1)–1 = A.

5. Inverse of the transpose of a square matrix is the transpose of its inverse, i.e.
[A–1]T = [AT]–1

7.5.6 : Properties of orthogonal matrix : [see Art 7.2.2., item 21]

1. Every orthogonal matrix is non-singular i.e. if A is an orthogonal matrix,

0A

2. Unit matrix is an orthogonal matrix.

3. If A is an orthogonal matrix, then its determinant, 1 A

4. The product of two orthogonal matrices is also orthogonal.

5. The transpose of a orthogonal matrix is also orthogonal.

6. The inverse of an orthogonal matrix is also orthogonal.

7.5.7 : Properties of unitary matrix : [see 7.4 : item no 22]

A matrix U satisfying the relations,  UU+ = In  (7.22a)

U+ U = I
m
   (7.22b)

is called a unitary matrix. If U is a finite matrix satisfying both equations (7.22), then U must

be a square matrix, and    UU I U U I . The elements of a unitary matrix may be
complex. In fact it is evident from equations (7.22) that a real unitary matrix is orthogonal.

Let det U = d. Taking the determinants of both sides of equation (7.22a) and noting

that U+ = d*, we have * 1 1  dd d
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This shows that the determinant of a unitary matrix can be a complex number of unit
magnitude, i.e. a number of the form ei

 
, where  is real. It also shows that a unitary matrix

is non-singular and possess an inverse properties :

1) The inverse of a unitary matrix is unitary.

2) The Hermitian conjugate of a unitary matrix is its inverse i.e. U+ = U–1

3) The product of two unitary matrices is also unitary.

4) A unitary matrix with elements as real numbers is orthogonal.

7.5.8 : Trace of matrix :

The trace of a square matrix A = [a
ij
] is defined as the sum of its diagonal elements.

It is also called spur or the diagonal sum and is denoted by T
r
A or S

p
A. Thus,

1

n

r ii
i

T a


A (7.23)

Properties :

1) The trace of sum (or difference) of two matrices is the sum (or difference) of their
traces.

2) The trace of the product of two matrices A and B is independent of the order
multiplication i.e. T

r
(AB) = T

r
(BA).

This property is true even when AB   BA and the above equation implies that
the trace of any commutator [A, B] is zero.

3) The above equation also gives, T
r
(ABC) = T

r
(BCA) = T

r
(CAB)

i.e. the trace is the invariant under cyclic permutation of matrices in a product. It
is important to note that trace of a number of matrices is not invariant under any
permutation, but only under a cyclic permutation of the matrices.

7.5.9 : Rank of a matrix :

An integral number r is said to be the Rank of a matrix A; if,

i. There is at least one square sub-matrix of A of order r whose determinant is non-
zero.

ii. All the square sub-matrices of A of order (r + 1), have determinants zero.
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Generally speaking the rank r of a matrix is the largest order of any non-vanishing
minor of the matrix.

Example : Let 

1 2 3

2 3 4

3 4 5

 
   
  

A  be a matrix of 3rd order and |A| = 0. Since |A| is zero,

the rank of A is not 3. But, there is at least one 2 × 2 sub-matrix 
3 4

4 5

 
 
 

 whose

determinant is not zero. In fact none of the minors is zero. So, the rank of A i.e. r(A) =
2.

We observe the following :

1) The rank of a non-singular square matrix of order n is n and that of a singular
square matrix of order n is less than n.

2) The rank of a null matrix is obviously zero.

3) The rank of the transpose of a matrix A is the same as the rank A.

4) The rank of product of two matrices never exceeds the rank of either matrix.

5) The rank of a matrix is not altered, (i) If interchange of rows is made, (ii) If the
elements of any row are multiplied by a non-zero number, (iii) If  times the
elements of a row is added to corresponding elements of another row, 
being any number, (iv) If the matrix is pre or post multiplied by a non-singular
matrix.

Sub-matrices and rank : Let A be a matrix of order m × n. Any matrix obtained
from A by omitting some of its rows or columns is called a sub-matrix A. When a matrix
is partitioned into a number of blocks, each block is a sub-matrix of the original matrix.

If a matrix A has at least one square non-singular sub-matrix of order r but every
square sub-matrix of A of order greater than r is singular, then r is said to be the rank of
the matrix A. The rank of the matrix A given below is 3 because it has non-singular square
sub-matrices of order 3 but not higher than 3.

3 5 9 1

2 0 1 3

3 6 1 2

 
   
   

A
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Example : Find the rank of the matrix :

1 0 2 4

3 1 1 2

5 1 5 6

4 1 3 2

 
  
  
   

Solution : We note that the determinant of the given matrix is zero. So that its rank
is less than 4. Next we consider all possible sub-matrices of order 3 (there are 16 of
them) and observe that all of them are also singular, so that rank is less than 3. Finally,
we note that the given matrix has non-singular sub-matrices of order 2, so that its rank
is 2.

A simple method to find the rank of a matrix is to find the maximum number of linearly
independent row vectors or column vectors of the matrix. This maximum number is the
rank of the matrix.

7.5.10 : Normal form :

A matrix which commutes with its own Hermitian conjugate is said to be a normal
matrix or in normal form. Thus if matrix A is in normal form if and only if

[A, A+] = 0 (7.24)

It can be easily seen that symmetric, antisymmetric, Hermitian and antihermitian matrices
are also normal matrices.

For this reason they often occurs in physics.

Properties :

1) The inner product of the ith and jth rows of the normal matrix equals the inner
product of the ith and jth columns.

2) The norm of the ith row of a normal matrix equals that of the ith column.

7.6  Characteristic Equation of a Square Matrix :
Eigenvalues and Eigen vectors of Matries

Let A be a square matrix of order n and X a non-zero column vector. If there exists
a scalar  such that AX = X (7.25)
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Then the vector X is defined as an eigenvector and  is defined as an eigenvalue
corresponding to the eigenvector X. Equation (7.25) is called eigenvalue equation and may
be written as

( ) 0    AX IX A I X (7.26)

Characteristic matrix : For a given square matrix A, the matrix ( )A I  is called
the Characteristic matrix of A, where   is a scalar parameter and I the unit matrix of the
same order.

Characteristic polynomial : The determinant A I , an expansion will give rise
to a polynomial and is known as the characteristic polynomial of matrix A.

Characteristic equation : The equation A I  = 0 is known as the characteristic
equation of matrix A determines the eigenvalues of the matrix A.

Eigenvectors or characteristic vectors :  For each eigenvalues  , we have a non-
zero column vector X that satisfies the equation ( ) 0 A I X (7.27)

The non-zero vector X is known as the eigenvector or the characteristic vector.

Orthogonal vectors : Two vectors X
1
 and X

2
 are said to be orthogonal vectors if

the condition 1 2 0 X X  is satisfied. Let 
1 4

1 2 2 5

3 6

x x

x and x

x x

   
       
      

X X

 
4

1 2 1 2 3 5 1 4 2 5 3 6

6

0

x

x x x x x x x x x x

x


 
       
 
 

X X

Normalised form of vectors : With the condition 1 1 1 X X  we can find out

normalised form of vector X
1
, similarly from the condition 2 2 1 X X , we can find out

nromalised form of X
2
.

7.6.1 : Some theoretical aspects of Eigenvalues and Eigenvectors of matrix

Theorem I :

The determinant of matrix A is the products of its eigenvalues.

Proof : We have 0 A I (7.28)
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Equation (7.28) can be expanded as

11 12 1

21 22 2

1 2

...

...
0

... ... ...

...

n

n

n n nn

a a a

a a a

a a a












(7.29)

or,  1
1( 1) ... 0n n n

n        (7.30)

Where 1 2, ... n    are constants expressed in terms of the coefficient a
ij
 of the

matrix A given by equation (7.7). (see Art 7.2.1)

The identity  1
1( 1) ...n n n

n         A I (7.31)

If 1 2, ... n    are the eigenvalues of A, the roots of the right hand side polynomial of

(7.31) will be 1 2, ... n  

Therefore      1 2 ... n          A I (7.32)

Putting 0   on both sides

1 2... n  A (7.33)

Hence theorem is proved. Also if any of the eigenvalues of A is zero, then |A| = 0 i.e.
the matrix A is singular.

Theorem II : If A be a square matrix, then its trace is the sum of its eigen
values.

Proof : If A be a square matrix of order n, then 
1

( )
n

r iii
T a


A

Now if 1 2, ... n    be eigenvalues of A, then we have the identity

 1
1( 1) ...n n n

n         A I (7.34)
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The coefficient of 1n   in L.H.S is

( 1)( 1)
n

n
ii

i i

a


  (7.35)

and the coefficient of 1n   in R.H.S. is

( 1)( 1)
n

n
i

i i




  (7.36)

Equating these quantities, we have

( 1) ( 1)( 1) ( 1)
n n

n n
ii i

i i i i

a  

 
   

Therefore

1

n n

ii i
i i i

a 
 

 

Thus the theorem is proved.

7.7  Diagonalization

We have a square matrix A of order n which we have to diagonalize. We now construct
a matrix P of order n whose columns are the eigen vectors of the given matrix A. Since
the eigenvectors are linearly independent, P is non-singular. Therefore P–1 exists. Now we
state that the matrix P–1 AP is diagonal whose diagonal element are the eigenvalues of A.

Example 1 : Consider the matrix 
3

3

i

i

 
   

A . Find the eigenvalues and eigen vectors

and hence construct the unitary matrix U that diagonalize A. Also compute U–1AU.

Solution : The characteristic equation of matrix A is

3
0

3

i

i







  
 

A I

Or,   2 4 0   
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 the eigen values are 1 22, 4  

for 1 2; 2 ,
 

    
 

x

y
 AX X X  so that

3
2 2

3

i x x x

i y y y

      
             

I

or,
3 2 0

0
3 0 2

i x

i y

      
             

or,
1

0
1

i x

i y

  
    

or,
0

0

x iy

ix y

  
   

Both the equations are equivalent. Choosing x = 1, the convenient eigenvector 1
1

i

 
  
 

X .

Similarly for 2 4  , the eigenvector is 2
1

i

 
   

X

Normalised eigenvectors are 
11

2 i

 
 
 

 and 
11

2 i

 
  

Therefore 
1 11

2 i i

 
   

U

11

12

i

i
  
  

 
U

1 0

0 1
  

   
 

UU  I thus U is unitary..

now 2 0i  U



244  NSOU  CC-PH-04

1 1 11 1

1 12 2

i i

i ii
      

          
U

1 1 3 1 1 1 1 1 2 01

1 3 2 2 0 42

i i i

i i i i i i i
            

                          
D U AU

Therefore D is a diagonal matrix whose diagonal elements are the eigenvalues of A.

Example 2 : A square matrix 
0

0

i

i

 
  
 

A  is given. Find the eigenvalues and

eigenvectors of the matrix A. Construct an appropriate matrix which will diagonalize A and
find the diagonal matrix.

Solution : Characteristic equation :

0 0
i

i





 

   


A I

Therefore eigenvalues are 1  

Using the equation :   0 A I X , we get the eigenvectors 1

2

x

x

 
  
 

X

For  1

2

1
1, 0

1

xi

xi


    
      

or,  – x
1
 – ix

2
 = 0, ix

1
 – x

2
 = 0

These equations are not independent so that x
1
 and x

2
 are not unique and infinitely

many solutions can be obtained. If we take x
1 
= 1 we get x

2
 = i

Therefore, eigenvector corresponding to 1   is 1
1

i

 
  
 

X  and that corresponding to

1    is 2
1

i

 
   

X

Now we construct a 2 × 2 matrix P with the column vectors X
1
 and X

2

Therefore 
1 1

i i

 
   

P
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Therefore 1 1 1 1

2 2
TAdj Adj

i i
    

 
P P P C

P

Where C is the cofactor matrix of A and is given by 11 12

21 22

c c

c c

 
  
 

C

Where 11 12 21 22( ); ( ), (1), (1)c i c i c c        

1 1

i i  
    

C

Therefore 
1

1 1 1

T
T i i i

i

      
        

C

Therefore 1 11

12

i

ii
   
    

P

Now, 
0 1 1

0

i

i i i

    
    
   

AP

1 1 1 1 2 0 1 01 1

1 0 2 0 12 2

i i

i i i ii i
          

                  
P AP D

where D is the diagonal matrix with diagonal elements as the eigen values of A.

Thus we can state the following theorem.

If a matrix of order n has n linearly independent eigenvectors, then it is related through
a similarity transformation to a diagonal matrix whose diagonal elements are the eigenvalues
of the matrix.

However the matrix P is not a unique matrix, because we could arrange the eigenvectors
X

1
, X

2
 in any order in the construction of  P i.e. we could form P in example 2 as

1 1

i i

 
   

P
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We can therefore state the general rule that in the process of Diagonalisation P–1AP
= D, the order of the eigenvalues in D corresponds to the order of the eigenvectors of A
in constructing P. The matrices A and D are said to be related by a simiarity transformation.
The inverse transformation A = PDP–1 is also similarity transformations.

7.8  Solutions of systems of linear homogenous and non-
homogenous equations : An application of theory of
matrices

7.8.1 : We consider a set of m non-homogeneous linear equations in n
unknowns : (m < n)

11 1 12 2 1 1... n na x a x a x b   

21 1 22 2 2 2... n na x a x a x b   

... ... ... ... ... ... ... ... ... ... ...

1 1 2 2 ...m m mn n ma x a x a x b   

Which can be represented as,

11 12 1 1 1

21 22 2 2 2

1 2

...

...

... ... ... ...

...

n

n

m m mm n m

a a a x b

a a a x b

a a a x b

     
     
     
     
     
     

 

or, AX = B (7.37)

and A
b
 = 

11 12 1 1

21 22 2 2

1 2

...

...

... ... ... ...

...

n

n

m m mm m

a a a b

a a a b

a a a b

 
 
 
 
 
 



A
b 
= [A, B] is called the augmented matrix of order n × (m + 1)

Now,

i) The equations are consistent, if rank A = rank A
b
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ii) The solutions are unique, if rank A = rank Ab
 = n, where n= numbers of

unknowns.

iii) Infinite solutions, if rank A = rank Ab= r, r < n

iv) The equations are inconsistent, if rank A   rank Ab

7.8.2 : Solutions of homogeneous equations : (m = n)

For homogeneous system, equatiosn (7.37) can be written as AX = 0 (7.38)

If 0A  then A–1 exists

Pre-multiplying both sides by A–1, we get

A–1 AX = A–10 or, IX = 0

Which shows that X = 0 i.e x
1
 = x

2
 = ... = x

n
 = 0

This is called the trivial solution.

If however the matrix A is singular i.e. |A| = 0, then the equations under
considerations will have infinite solutions where some solutions may be non-zero (non-trivial
solution).

7.8.3 : Solutions for non-homogeneous system of equations : (m = n)

A system of non-homogeneous equations is represented by : AX = B (7.39)

Now if 10, A A  exists. Therefore A–1 AX = A–1B or, IX = A–1 B

 X = A–1 B (7.40)

Thus finding the value of A–1, we can find out the solution using equation (7.40).

This method of finding out the solution however fails if A is singular. However the
solution given by equation (7.40) is unique.

7.9  Solutions of Coupled Linear Ordinary Differentical
Equations in Terms of Eigenvalue Problems

We want to reduce a system of coupled ordinary differential equation to an eigenvalue
problems.
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We exemplified the process by a specific problems of discussing the vibrations of the
two coupled springs shown in fig (7.1)

Fig. (7.1)

In the figure y
1
, y

2
 are the displacements of the two masses.

The equations of motion for the coupled vibrations can be written as

 
 

1 1 1 1 2 2 1

2 2 2 2 1

m y k y k y y

m y k y y

    
   


 (7.41)

where the dots denote time derivatives.

 

 1 2

1

1

2

2

1

2 2

2 2

k k
m

y

y

k

m
and

k k

m m



 
  
  

   
   

  
 

y

A (7.42)

Equation (7.41) can be written as y Ay (7.43)

With the trial solution, ty xe   (7.44) we get from equation (7.43)

We get 2 t te e  x Ax

2Ax x (7.45)

We now define
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Equation (7.45) is the eigenvalues equation 2  being the eigenvalues corresponding

to the matrix A with the eigenvector x. Thus 2  gives the frequency of oscillation and
eigenvector x gives the displacement equation of the system.

Now suppose m
1
 = 3, m

2
 = 2, k

1
 = 18, k

2
 = 6

Therefore 
8 2

3 3





A (7.46)

The eigen values and eigenvectors of this matrix are found to be,

2 2
1 2

2 1
9, ; 2,

1 3
x x 

   
           

The most general solution of the system is therefore,

3 3 2 2
1 1 2 1 3 2 4 2( ) it it it itb e b e b e b e    y t x x x x

or, 1 1 2 1 3 2 4 2( ) cos3 sin 3 cos 2 sin 2a t a t a t a t   y t x x x x (7.47)

where a and b are the arbitrary constants.

7.10  Functions of a Matrix

There are two methods by which a function of a matrix can be evaluated

1) Functions of a diagonalizable matrix

2) Functions of any matrix based on the existence of a minimal
polynomial.

7.10.1 : Functions of a diagonalizable matrix

We have P–1 AP = D, A = PDP–1 (7.48)

Where A be a diagonalizable square matrix, P be the diagonalising matrix for A and
D is the diagonal matrix containing the eigenvalues of A as its diagonal elements.

Now if f is any function of a matrix, then we have

f(A) = P f (D)P–1 (7.49)

Thus, if we can define f(D), we can define and evaluate f(A).
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7.10.2 : Powers of a matrix

We have from second equation of (7.48), we taking kth power

Ak = (PDP–1) (PDP–1) ....... (k times)

= PDkP–1 (7.50)

Similarly, if m = – k is a negative integer and 0A , then Am = PDmP –1 = P(D–1)k

P–1 (7.51)

Example : Find Ak, where k is any integer, positive or negative, where 
3

3

i

i

 
   

A

Solution : The eigenvalues of the matrix A are 2, 4. Eigen vectors are 
1

i

 
 
 

 and 
1

i

 
  

Therefore 11 1 2 0
,

0 4i i
   

        
P P AP D

Now 0A . For any integral k, therefore we have :

1 1
1 12 2

1 1
2 2

1 1 2 0 1 2 ( 1 2 )
2

0 4 (1 2 ) 1 2

 
       
                      

k k k
k ki

k k k
i

i

i i i

kA PD P (7.52)

7.10.3 : Roots of a matrix

We consider a diagonal matrix D, whose elements are given by i ijd    D . It is

evident that Dk is again a diagonal matrix whose diagonal elements are d
i
k, i.e.

k k
i ijd    D . Now let 

1
p

k
  and consider a diagonal matrix D

0
 whose elements are

given by 0
p

i ijd    D . Clearly the kth power of D
0
 will equal D i.e. D0

k = D. Then

consider the matrix B = PD
0
P–1 = PDPP–1. Taking the kth power of B, we find,

Bk = (PDPP–1) (PDPP–1) ... (PDPP–1)(kth times) = PDP–1 = A (7.53)

Thus B = PDPP–1 is a kth root of A.

The same result holds good for any fractional power. Thus if q is any fraction, we have

Aq = PDqP–1 (7.54)
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7.10.4 : Series

Suppose u is a series in matrix A with scalar co-efficient a
k
 as in equation (7.55)

0
k

k

u a



 kA (7.55)

Now if and only if every element of the right hand side converges then the series
converges. In each case, equation (7.55) can be written as :

0

( ) k
k

f u a



  kA A (7.56)

Where f(A) is a matrix of the same order as A and whose elements are given by

   
0

( ) kij ij
k

f a



 kA A (7.57)

Now we may state that a series f(A) in a matrix A is convergent if and only if the

coresponding algebraic series ( )f   is convergent for every eigenvalue i  of A.

Thus, if

0

( ) k
k

f a



 kA (7.58)

exist for R  , then,

0

( ) k
k

f a



 kA A (7.59)

exists if and only if every eigenvalue i  of A satisfy i R  . R is called the radius of

convergence of the series.

7.11  Cayley-Hamilton’s Theorem

The theorem can be stated as follows,

The square matrix satisfies its own characteristic equation.
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Stated mathematically :

If 2
0 1 2 ... 0n

nx a a x a x a x      A I

be the characteristic equation of a square matrix A, then

2
0 1 2 ... 0n

na a a a    I A A A (7.60)

Where every x is replaced by A, and thus

0 0
0 0 0 0a a x a a  A I

Thus, for any square matrix of order n, there is a matrix polynomial of degree not more
than n which equals the null matrix. If A is a square matrix where characteristic polynomial
is |A – xI| = D(x), then D(A) = 0. If i  are the eigenvalues of A, equation (7.60) can be
written as

 1 2( )...( ) 0n     A I A I A I (7.61)

Example : Consider the matrix 

11 10 5

5 4 5

20 20 4

  
   
   

A

Show that this matrix satisfies the cayley-Hamilton theorem.

Solution : The eigenvalues of A are 4, –6, –1, we have (A – 4I)(A + 6I)(A + I)

15 10 5 5 10 5 10 10 5

5 0 5 5 10 5 5 5 5 0

20 20 0 20 20 10 20 20 5

          
              
               

7.3.16.1 : Minimal polynomial

In case of some matrices having eigenvalues, with multiplicity greater than unity, there
may exist polynomial of degree less than n which equal the zero matrix. The following
example follows the statement.

Example 1 : If 

q p p

p q p

p p q

 
   
  

A , where p, q are scalar and 0p  , show that,
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  ( 2 ) ( ) 0q p q p    A I A I

Where q – p, q – p and q + 2p are the eigenvalues of A.

Solution : The eigenvalues of the given matrix are found to be q + 2p with multiplicity
unity and q – p with multiplicity two, greater than unity.

From cayley-Hamilton theorem, we get

  2( 2 ) ( ) 0q p q p    A I A I (7.62)

However, now we consider the given matrix polynomial

  
2

( 2 ) ( ) 2

2

p p p p p p

q p q p p p p p p p

p p p p p p

   
           
      

A I A I

0 0 0

0 0 0

0 0 0

 
   
  

(7.63)

This shows that for the matrix under consideration we have got a polynomial of degree
2 which is equal to zero. i.e.

 2 2 2(2 ) 2 0q p q pq p     A A I (7.64)

From equation (7.61) we see that highest degree of polynomial of A is 3. But from
equation (7.64) we see that highest degree under the given condition is 2. Polynomial is
equation (7.63) can be termed as minimal polynomial and polynomial in equation (7.61) is
called characteristic polynomical of the matrix.

In the given problem the highest degree of the minimal polynomial is evidently 3 when
it is equal to the characteristic polynomial. It is also evident that minimal polynomial divides
the characteristic polynomial exactly.
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7.3.16.2 : Matrix polynomial

An expression of the form

1
1 1 0( ) ...k kf a a a a
    k kA A A A I (7.65)

Where a
i
 are scalar co-efficient, is called a matrix polynomial in A of degree K. The

existence of a minimal polynomial [it can be shown] for every matrix provides a greater
simplification in evaluating matrix polynomials.

7.11.1 Evaluation of functions of any matrix, Diagonalisable or not, using
cayley-Hamiltonian theorem

If the degree of the minimal polynomial of a matrix A is m, any functions f(A), which
is sufficiently differentiable, can be expressed as a linear combination of the m linearly
independent matrices

I, A, A2 .... Am – 1, i.e. f(A) = s(A) (7.66), where 1 2
1 2( ) m ms   
  m mA A A

1 0...    A I  (7.67), where i  are scalars which can be suitably evaluated by a

process.

7.11.2 : Inner product :

In some practical situation in basic science we cannot do without some concept of
measurement for distance and angle between two lines etc. The inner product in some way
is a generalisation of these everyday concepts.

We discussed in 7.1 the way matrices occurs in physics by virtue of transformation of
vectors in vector space and the operation of linear operators on vector space.

A linear transformation from one set to another can be written as

1

( 1, 2.. ) ( 1, 2,3,..., )
p

i ik k
k

i n b i n


   A A (7.68)

Or as A´ = BA where B = [b
ik
] is now an n × p matrix. If now the variables A´i are

further related to the m variables A´´i by a linear transformation of the form

1

( 1, 2... ) ( 1,2, ..., )
p

i ik k
k

i n c i m


   A A (7.69)

which can be written in the matrix notation as A´´= CA´ where A´´ = {A´´i} is a column
vector of order m × 1 and C = [C

ij
] is a matrix of order m × n.
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Therefore the combined transformation can be written as :

   A CA CBA DA (7.70)

The product matrix D = CB will be of order m × p.

Now we define inner product space in matrix notation in line with equation (7.70)
which gives a reason of definition of matrix multiplication as we have given earlier equation
(7.70).

A vector space V defined over a field F, where F is the field of real or complex

numbers, becomes an inner product space if with every pair of element.   and ,V
there is associated a unique scalar belonging to the field F, denoted by ( ,  ) and
called the inner product or the scalar product of ( ,  ); for which the following properties
hold

( , ) ( , )*

( , ) * ( , )

( , ) *( , ) *( , )

a b a b

a b a b

 
 

    

 
 
   

ψ ψ
ψ ψ

ψ ψ
(7.71)

These three equations in equations (7.71) together form the definition of inner product
of vectors.

The vector space of n-tuplets of real or complex numbers can be made an inner
product space if we define the inner product of two vectors by

*

1

( , )
n

i i
i

 


ψ ψ (7.72)

Now when we regard vectors as column matrix, their inner product defined in equation
(7.72) can also be written in a concise way in the matrix notation.

If  1 2, , ..., n  ψ  and  1 2, , ..., n     are two column vectors,

1 2

* * *, , ...,
n

      ψ  and  
1 2

* * *
1 2, , ..., , , ...,

n n          ψ

*
1

n
i ii



 ψ (7.73)
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Which is the same expression in equation (7.72). Hence, the inner product can be

expressed as ( , ) ψ ψ (7.74)

The orthogonality condition is now 0 ψ    (7.73)

Examples :

Example 1 : Show that the matrix 

1

2 2
1

2 2

i

i

 
 
 
   

A  is unitary..

Solution : 

1

2 2
( *)

1

2 2

T
i

i


  
  
 
  

TA A

or,  

1

2 2
,

1

2 2

i

i


 
 
 
   

A  Now  
1 0

0 1
  

  
 

A A I

 A is unitary.

Example 2 : Show that the matrix 
cos sin

sin cos

 
 

 
  

 is orthogonal.

Solution : Let 
cos sin cos sin

sin cos sin cos

   
   

   
        

TA A

Now  
2 2

2 2

cos sin cos sin sin cos

sin cos cos sin sin cos

     

     

   
  
    

TAA

1 0

0 1

 
  
 

= I = unit matrix     A is orthogonal.
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Example 3 : If 
cos sin

sin cos

i

i

 
 

 
  
 

A  show that A is unitary..

Solution : 
cos sin cos sin

( *)
sin cos sin cos

T
i i

i i

   
   

     
         

TA A

cos sin cos sin

sin cos sin cos

i i

i i

   
   

    
        

A A

2 2

2 2

cos sin cos sin sin cos 1 0

0 1sin cos sin sin sin cos

i i

i i

     

     

    
    
      

= unit matrix

A is unitary matrix.

Example 4 : Consider the following transformation in three dimension :

cos sinx x y   

sin cosy x y    

z´ = z

i) Write down the transformation matrix ( )A θ .

ii) Show that  1 2 1 2( ) ( )    A A A

iii) Show that ( )A  is unitary..

Solution :

i) The transformation in this case is

cos sin 0

sin cos 0

0 0 1

x x

y y

z z

 
 

     
            
          
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The transformation matrix is 

cos sin 0

( ) sin cos 0

0 0 1

 
  

 
   
 
 

A

ii)  
1 1 2 2

1 2 1 1 2 2

cos sin 0 cos sin 0

( ) sin cos 0 sin cos 0

0 0 1 0 0 1

   
     

   
        
   
   

A A

   
     

1 2 1 2

1 2 1 2 1 2

cos sin 0

sin cos 0

0 0 1

   
     

  
       
 
 

A

iii)  *
1( ) ( ) ( )

T T      A A A  since ( )A  is real matrix.

Now    
cos sin 0 cos sin 0

( ) ( ) ( ) ( ) sin cos 0 sin cos 0

0 0 1 0 0 1

T
   

       
   

        
   
   

A A A A

1 0 0

0 0 1 0

0 0 1

 
   
 
 

I

Exercises :

Pauli matrices : The following set of three 2 × 2 matrices is called Pauli spin matrices.

1 2 3
0 1 0 1 0

1 0 0 0 1

i

i

     
            

σ σ σ

Prove that :

i) 22i j j i ij σ σ σ σ I  where  I
2
 is a 2 × 2 unit matrix, 

0,

1,ij
i j

i j


 
  



NSOU  CC-PH-04  259

ii) , , ,i j ki i j kσ σ σ  is a cyclic permutation of 1,2,3

iii) 2
2i σ I

Keywords

Adjoint, inverse, Orthogonal, Hermitian, Trace, Rank, Normal form, matrix functions,
Eigen value and Eigen functions.

7.12  Summary

1. Definitions, notation and terminology of real and complex matrices have been
discussed with examples.

2. Properties of inverse, orthogonal, unitay matrices, have been stated.

3. Procedures for Diagonalisation and to find rank of matrix have been discussed.

4. Eigen value equations have been set up and procedure to obtain eigenfunction and
eigen values have been indicated. Coupled linear ordinary differential equation
have been discussed in terms of eigen value problem.

5. Evaluations of function of any matrix have been incorporated.
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Unit 8 C and C++ Programming Fundamentals

Structure

8.1 Objectives

8.2 Introduction to Programming

8.3 Constants, Variable and Data Types

8.3.1 C Tokens

8.3.2 C Constants

8.3.3 Variables

8.3.4 Data Types

8.4 Operators and Expressions

8.5 I/O Statements

8.6 Manipulators for Data Formatting

8.7 Control System

8.8 Loop Statements

8.8.1. Jumping out of loops

8.8.2 Goto statement transfer of control branching within a loop

8.9 Summary

8.10 Exercises

8.11 References

8.1  Objectives

This chapter is designed for software programmers with a need to understand the C
programming language starting from scratch. This chapter will give you enough understanding
on C programming language from where you can take yourself to higher level of expertise.

8.2  Introduction to Programming

In computing, a program is a specific set of ordered operations for a computer to
perform. In the modern computer that John von Neumann outlined in 1945, the program
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contains a one-at-a-time sequence of instructions that the computer follows. Typically, the
program is put into a storage area accessible to the computer. The computer gets one
instruction and performs it and then gets the next instruction. The storage area or memory
can also contain the data that the instruction operates on. Note that a program is also a
special kind of “data” that tells how to operate on “application or user data”.

The processs of writing computer programs is known as Programming, and
the language of writing programs is known as Programming Language. Example : C &
C++.

C is a general-purpose, high-level language that was originally developed by Dennis
M. Ritchie to develop the UNIX operating system at Bell Labs. C was originally first
implemented on the DEC PDP-11 computer in 1972. In 1978, Brian Kernighan and
Dennis Ritchie produced the first publicly available description of C, now known as the
K&R (Kernighan and Richie) standard. The UNIX operating system, the C compiler,
and essentially all UNIX application programs have been written in C. C has now become
a widely used professional language for various reasons : Easy to learn Structured language
it produces efficient programs it can handle low-level activities. It can be compiled on a
variety of computer platforms.

Keywords : C, C++, auto, break, case, char, const, continue, default, do, double, else,
enum, extrn, float, for, goto, if, int, long, register, return, short, signed, sizeof, static,
struct, switch, typedef, union, unsigned, void, volatile, while.

Facts about C :

C was invented to write an operating system called UNIX. C is a successor of B
language which was introduced around the early 1970s. The language was formalized in
1988 by the American National Standard Institute (ANSI). The UNIX OS was totally
written in C. Today C is the most widely used and popular System Programming Language.
Most of the state-of-the-art software have been implemented using C. Today’s most
popular Linux OS and RDBMS MySQL have been written in C.

Why Use C :

C was initially used for system development work, particularly the programs that
make-up the operating system. C was adopted as a system development language because
it produces code that runs nearly as fast as the code written in assembly language. Some
examples of the use of C might be :
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 Operating Systems

 OVERVIEW C Programming Language

 Compilers

 Assemblers

 Text Editors

 Print Spoolers

 Network Drivers

 Modern Programs

 Databases

 Language Interpreters

 Utilities

C Programs :

A C program can vary from 3 lines to millions of lines and it should be written into
one or more text files with extension “.c”; for example, hello.c. You can use “vi”, “vim” or
any other text editor to write your C program into a file. This tutorial assumes that you
know how to edit a text file and how to write source code inside a program file.

Sample :

# include<stdio.h> //header file

void main(){ //main Function

//code

}

8.3  Constants, Variable and Data types

8.3.1 C Tokens :

The smallest individual units and punctuation marks are known as C Tokens. C
Programming Language has six types of Tokens.

Keywords : Keywords are special words that are used to give a special meaning to the
program and can’t be used as variable and constant. They are basically a sequence of
characters that have fixed to mean for example break, for, while, do-while, do, if, int, long,
char.



NSOU  CC-PH-04  263

‘C’ tokens

Keyword Constant String Operator
void, int 65, 11.7 “jdfh”, “year” +,-,*

Identifier Special symbols
main, amount &,#,$

Identifiers : Identifiers refer to the variable name, array name, function name.
It is user defined and collection of letters and digits but first letter always
character.

Constants : The quantity which does not change during the execution of a program is
known as constant. There are types of constant.

Variables : Variables are used to give the name and allocate memory space.
An entity that may vary data during execution. For example, sum, area, a, b, age, city.

String : String is a collection of character. For example, “RAM”, “Meerut”, “Star” String
is represented by a pair of double quotes.

Operators : Operators act as connectors and they indicate what type of operation is being
carried out. The values that can be operated by these operators are called operands. They
are used to perform basic operations, comparison, manipulation of bits and so on.

8.3.2 C Constants

C Constants

Numeric constant Character constant

Integer constant Real constant Character constant String constant
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Integer Constants :

An integer constant is a sequence of digits from 0 to 9 without decimal points or
fractional part or any other symbols. There are 3 types of integers namely decimal integer,
octal integers and hexadecimal integer.

Decimal Integers consists of a set of digits 0 to 9 preceded by an optional + or -
sign. Spaces, commas and non digit characters are not permitted between digits. Example
for valid decimal integer constants are

int y=123;//here 123 is a decimal integer constant

Octal Integers constant consists of any combination of digits from 0 through 7 with
a O at the beginning. Some examples of octal integers are

Real Constants

Real Constants consists of a fractional part in their representation. Integer constants
are inadequate to represent quantities that vary continuously. These quantities are represented
by numbers containing fractional parts like 26.082. Example of real constants are

float x = 6.3; //here 6.3 is a double constant.

float y = 6.3f; //here 6.3f is a float constant.

float z = 6.3 e + 2; //here 6.3 e + 2 is a exponential constant.

float s = 6.3L ; //here 6.3L is a long double constant

Real numbers can also be represented by exponential notation. The general form for
exponential notation is mantissa exponent. The mantissa is either a real number expressed
in decimal notation or an integer. The exponent is an integer number with an optional plus
or minus sign.

Single Character Constants

A single character constant represent a single character which is enclosed in a pair of
quotation symbols.

Example for character constants are

char p = ‘ok’ ; // p will hold the value ‘o’ and k will be omitted

char y = ‘u’; // y will hold the value ‘u’

char k = ‘34’ ; // k will hold the value ‘3’, and ‘4’ will be omitted

char e = ‘ ’; // e will hold the value ‘ ’, a blank space

chars = ‘\45’; // s will hold the value ‘ ’, a blank space
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All character constants have an equivalent integer value which are called ASCII Values.

String Constants

A string constant is a set of characters enclosed in double quotation marks. The
characters in a string constant sequence may be a alphabet, number, special character and
blank space. Example of string constants are

“VISHAL” “1234” “God Bless” “!.....?”

Backslash Character Constants [Escape Sequences]

Backslash character constants are special characters used in output functions. Although
they contain two characters they represent only one character. Given below is the table of
escape sequence and their meanings.

8.3.3 Variables

C variable is an identifier that is used to store a data value and whose value may be
changes during the program execution. C variable might be belonging to any of the data
type like int, float, char etc.

Variable Declaration in C :

All variable which are used in the program should be declared before use. Declaration
consists of one or more variable name (that are chosen by programmer) with data type and
ending with semicolon.

Example int sum;

Data type variable name

Condition for declaring Variable

1. They must begin with letter.

2. Length of a variable should not be more than 31 characters.

3. It should not be Keyword.

4. No white space is allowed.

8.3.4 Data Types

Data types specify a particular kind of data item, as defined by the values variable can
take. C language has some predefined set of data types to handle various kinds of data
that we can use in our program. These data types have different storage capacities.
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C language supports 2 different types of data types :

1. Primary data types :

These are fundamental data types in C namely integer (int), floating point (float),
character (char) and void.

2. Derived data types :

Derived data types are nothing but primary data types but a little twisted or
grouped together like array, structure, union and pointer. These are discussed
in details later. Data type determines the type of data a variable will hold. If a
variable x is declared an int. It means x can hold only integer values. Every
variable which is used in the program must be declared as what data-type it is.

Primary Data type

Character Integer Float Void

Char signed unsigned float

Signed char int int double

Unsigned short int short int
char long double

long int long int

Summary : This has been a lengthy and perhaps disconcerting article. The alphabet
of C although of relevance, is not normally a day to day consideration of practicing
programmers, so it has been discussed but can now be largely ignore.

Much the same can be said regarding keywords and identifiers, since the topic is not
complicated and simply becomes committed to memory. The declaration of variables is
rarely a problem, although it is worth re-emphasizing the distinction between a declaration
and a definition. If that still remains unclear, you might find of benefit to go back and re-
read the description. The standard has substantially affected parts of the language described
in this chapter. In particular, the changes to the conversions and the change from
‘unsignedness preserving’ to ‘value preserving’ rules of arithmetic may cause some surprises
to experienced C programmers. Even they have some real relearning to do.
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8.4  Operators and Expressions

An operator is a symbol that tells the compiler to perform specific mathematical or
logical functions. C provides the following types of operators

 Arithmetic Operators

 Relational Operators

 Logical Operators

 Bitwise Operators

 Assignment Operators

 Misc Operators

Arithmetic Operators

Operator Operation of Operator Example

+ Adds two operands. A + B

– Subtracts second operand from the first. A – B

* Multiplies both operands. A*B

/ Divides numerator by de-numerator B/A

% Modulus Operator and remainder of after an B % A
integer division.

++ Increment operator increases the integer value by one A++

-- Decrement operator decreases the integer value by one. A--

Relational Operators

Operator Operation of Operator Example

= = Check if the values of two operands are equal or (A == B)
not. If yes, then the condition becomes true.

!= Check if the values of two operands are equal or (A != B)
not. If the values are not equal, then the condition
becomes true

> Check if the value of left operand is greater than (A > B)
the value of right operand. If yes, then the condition
becomes true.
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< Check if the value of left operand is less than the value (A < B)
of right operand. If yes, then the condition becomes true.

>= Check if the value of left operand is greater than or (A >= B)
equal to the value of right operand. If yes, then the
condition becomes true.

<= Check if the value of left operand is less than or equal (A <= B)
to the value of right operand. If yes, then the condition
becomes true.

Logical Operators

Bitwise Operators

Operator Operation of Operator Example

&& Called Logical AND operator. If both the operands (A && B)
are non-zero, then the condition becomes true

|| Called Logical OR Operator. If any of the two (A || B)
operands is non-zero, then the condition becomes true

! Called Logical NOT Operator. It is used to reverse ! (A && B)
the logical state of its operand. If a condition is true,
then Logical NOT operator will make it false.

Bitwise operator works on bits and perform bit-by-bit operation. The truth tables for
&, I, and ^ is as follows –

A B A&B A | B A^B

0 0 0 0 0

0 1 0 1 1

1 1 1 1 0

1 0 0 1 1

Assignment Operator

This type of Operators are used to assisgn the result of an expression to an identifier.
The most common assignment operator is “ = “.

Example : C = A + B will assign the value of A + B to C.
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Misc Operators

Operator Operation of Operator Example

sizeof() Returns the size of a variable. sizeof(a), where a is integer, will
return 4.

& Returns the address of a variable. & a; returns the actual address
of the variable.

* Pointer to a variable * a;

? : Conditional Expression. If condition is true? then value X :
otherwise value Y

C Programming Expresson :

1. In programming, an expression is any legal combination of symbols that represents
a value.

2. C Programming provides its own rules of Expression, whether it is legal
expression or illegal expession. For example, in the C language × +5 is a legal
expression.

3. Every expression consists of at least one operand and can have one or more
operators.

4. Operands are values and Operators are symbols that represent particular actions.

Valid C Programming Expression :

C Programming code gets compiled firstly before execution. In the different phases of
compiler, C programming expression is checked for its validity.

Expressions Validity

a + b Expression is valid since it contain + operator which is
binary operator

++ a + b Invalid Expression

Priority and Expression :

In order to solve any expression we should have knowledge of C Programming
Operators and their priorities.
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Types of Expression :

In programming, different varities of expressions are given to the compiler. Expressions
can be classified on the basis of Position of Operators in an expression –

Type Explanation Example

Infix Expression in which Operator is in between Operands a + b

Prefix Expression in which Operator is written before + a b
Operands

Postfix Expression in which Operator is written after Operands ab +

These expressions are solved using the stack.

Example of Expression :

Now we will be looking into some of the C Programming Expressions, Expression can
be created by combining the operators and operands

Each of the expression results into the some resultant output value. Consider few
expressions in the table below.

Expression Examples, Explanation n1 + n2, this is an expression which is going to
add two numbers and we can assign the result of addition to another variable.

x = y. This is an expression which assigns the value of right hand side operand to
left side variable.

v = u + a* t, We are multiplying two numbers and result is added to ‘u’ and total
result is assigned to v

x <= y, This expression will return Boolean value because comparison operator will
give us output either true or false ++j, This is expression having pre increment
operator, it is used to increment the value of j before using it in expression
[/table].

Summary : This chapter has described the entire range of control of flow available
in C. The only areas  that cause even moderate surprise are the way in which cases in a
switch statement are not mutually exclusive, and the fact that goto cannot transfer control
to any function except the one that is currently active. None of this is intellectually deep
and it has never been known to cause problems either to beginners or programmers
experienced in other languages. The logical expressions all give integral results. This is
perhaps slightly unusual, but once again take very little time to learn.
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8.5  I/O Statements

C programming has several in-built library functions to perform input and output tasks.

Two commonly used functions for I/O (Input/Output) are printf() and scanf().

The scanf() function reads formatted input from standard input (keyboard) whereas the
printf() function sends formatted output to the standard output (screen).

Example 1 : C Output

#include<stdio.h>// Including header file to run printf() function.
int main()
{
printf(“C Programming”);// Displays the content inside quotation
return O;
}

Output

C Programming

How this program works ?

 All valid C program must contain the main() function. The code execution begins
from the start of main () function.

 The printf() is a library function to send formatted output to the screen. The
printf() function is declared in “stdio.h” header file.

 Here, stdio.h is a header file (standard input output header file) and #include is
a preprocessor directive to paste the code from the header file when necessary.
When the compiler encounters printf() function and doesn’t find stdio.h header
file, compiler shows error.

 The return O; statement is the “Exit status” of the program.

Example 2 : C Integer Output

#include<stdio.h>

int main()

{

inttestInteger=5;

printf(“Number = %d”, testInteger);
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return 0;

}

Output

Number = 5

Inside the quotation of printf() function, there is a format string “%d” (for integer). If
the format string matches the argument (testInteger in this case), it is displayed on the
screen.

Example 3 : C Integer Input/Output

#include<stdio.h>

int main()

{

inttestInteger;

printf(“Enter an integer:”);

scanf(“%d”, &testInteger);

printf(“Number = %d”, testInteger);

return 0;

}

Output

Enter an integer : 4

Number = 4

The scanf() function reads formatted input from the keyboard. When user enters an
integer, it is stored in variable testInteger.

Note the ‘&’ sign before testInteger; & testInteger gets the address of testInteger
and the value is stored in that address.

Example 4 : C Floats Input/Output

#include<stdio.h>

int main()

{

float f;

printf(“Enter a number:”);
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//%f format string is used in case of floats

scanf(“%f”,&f);

printf(“Value = %f”, f);

return 0;

}

Output

Enter a number : 23.45

Value = 23.450000

The format string “%f” is used to read and display formatted in case of floats.

Example 5 : C Character I/O

#include<stdio.h>
int main()

{
char chr;
printf(“Enter a character: “);
scanf(“%c”,&chr);

printf(“You entered %c.”,chr);
return 0;
}

Output

Enter a character : g

You entered g.

Format string %c is used in case of character types.

Little bit on ASCII code

When a character is entered in the above program, the character itself is not stored.
Instead, a numeric value (ASCII value) is stored.

And when we displayed that value using “%c” text format, the entered character is
displayed.

Example 6 : ASCII Code

#include<stdio.h>
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int main()

{

char chr;

printf(“Enter a character: “);

scanf(“%c”,&chr);

//When %c text format is used, character is displayed in case of character types
printf(“You entered %c.\n”, chr);

//When %d text format is used, integer is displayed in case of character types
printf(“ASCII value of %c is %d.”,chr,chr);

return 0;
}

Output

Enter a character : g

You entered g.

ASCII value of g is 103.

The ASCII value of character ‘g’ is 103. When, ‘g’ is entered, 103 is stored in variable
chr instead of g.

You can display a character if you know ASCII code of that character. This is shown
by following example.

Example 7 : C ASCII Code

#include<stdio.h>

int main()

{

int chr=69;

printf(“Character having ASCII value 69 is %c.”, chr);

return 0;

}

Output

Character having ASCII value 69 is E.

More on Input/Output of floats and Integers

Integer and floats can be displayed in different formats in C programming.
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Example #7 : I/O of Floats and Integers

#include<stdio.h>

int main()

{

int integer = 9876;

float decimal=987.6543;

// Prints the number right justified within 6 columns

printf(“4 digit integer right justified to 6 column : %6d\n”, integer);

//Tries to print number right justified to 3 digits but the number is not right adjusted
because there are only 4 numbers

printf(“4 digit integer right justified to 3 column: %3d\n”, integer);

//Rounds to two digit places

printf(“Floating point number rounded to 2 digits: %.2f\n”, decimal);

//Round to 0 digit places

printf(“Floating point number rounded to 0 digits: %.f\n”, 987.6543);

//Prints the number in exponential notation (scientific notation)

printf(“Floating point number in exponential form: %e\n”, 987.6543);

Return 0;

}

Output

4 digit integer right justified to 6 column : 9876

4 digit integer right justified to 3 column : 9876

Floating point number rounded to 2 digits : 987.65

Floating point number rounded to 0 digits : 988

Floating point number in exponential form : 9.876543e+02

8.6  Manipulators for data formatting

Formatting output using manipulators

Formatted output is very important in development field for easily read and
understand.



276  NSOU  CC-PH-04

C++ offers the several input/output manipulators for formatting, commonly used
manipulators are given below .

Manipulator Declaration in

endl iostream.h

setw iomanip.h

setprecision iomanip.h

setf iomanip.h

endl

endl manipulator is used to Terminate a line and flushes the buffer.

Difference b/w ‘\n’ and endl

When writing output in C++, you can use either std::endl or ‘\n’ to produce a newline,
but each has a different effect.

 std::endl sends a newline character ‘\n’ and flushes the output buffer.

 ‘\n’ sends the newline character, but does not flush the output buffer.

The distinction is very important if you’re writing debugging messages that you really
need to see immediately, you should always use std::endl rather than ‘\n’ to force the flush
to take place immediately.

The following is an example of how to use both versions, although you cannot see the
flushing occurring in this example.

#include <iostream.h>

int main()

{

cout<<“USING’\\n’ ...\n”;

cout<<“Line 1 \nLine 2 \nLine3 \n”;

cout<<“USING end ....”<<endl;

cout<< “Line 1” <<endl<< “Line 2” <<endl << “Line 3” <<endl;

return 0;

}
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Output

USING ‘\n’ ...

Line 1

Line 2

Line 3

USING end ...

Line 1

Line 2

Line 3

setw() and setfill() manipulators

setw() manipulator sets the width of the filed assigned for the output.

The field width determines the minimum number of characters to be written in some
output representations. If the standard width of the representation is shorter than the field
width, the representation is padded with fill characters (using setfill).

setfill() character is used in output insertion operations to fill spaces when results have
to be padded to the field width.

Syntax

setw([number_of_characters]);

setfill([character]);

Consider the example

#include <iostream.h>

#include <iomanip.h>

int main()

{

cout<<“USING setw() ............\n”;

cout<<setw(10) <<11<<“\n”;

cout<<setw(10)<<2222<<“\n”;

cout<<setw(10) <<33333<<“\n”;

cout<<setw(10) <<4<<“\n”;

cout<<“USING setw() &setfill() [type- I]..\n”:
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cout<<setfill(‘0’);

cout<<setw(10) <<11<<“\n”;

cout<<setw(10)<<2222<<“\n”;

cout<<setw(10) <<33333<<“\n”;

cout<<setw(10) <<4<<“\n”;

cout<<“USING setw() &setfill() [type- II]..\n”:

cout<<setfill(‘-’)<<setw(10) <<11<<“\n”;

cout<<setfill(‘*’)<<setw(10)<<2222<<“\n”;

cout<<setfill(‘@’)<<setw(10) <<33333<<“\n”;

cout<<setfill(‘#’)<<setw(10) <<4<<“\n”;

return 0;

}

Output

USING setw()............

11

2222

33333

4

USING setw() &setfill() [type- I]...

0000000011

0000002222

0000033333

0000000004

USING setw() &setfill() [type-II]...

------- – 11

******2222

@@@@@33333

#########4

setf() and setprecision() manipulator

setprecision manipulator sets the total number of digits to be displayed, when floating
point numbers are printed.
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Syntax

setprecision([number_of_digits]);

cout<<setprecision(5)<<1234.537;

//output will be : 1234.5

On the default floating-point notation, the precision field specifies the maximum number
of meaningful digits to display in total counting both those before and those after the
decimal point. Notice that it is not a minimum and therefore it does not pad the displayed
number with trailing zeros if the number can be displayed with less digits than the precision.

In both the fixed and scientific notations, the precision field specifies exactly how many
digits to display after the decimal point, even if this includes trailing decimal zeros. The
number of digits before the decimal point does not matter in this case.

Syntax

setf([flag_value], [field bitmask]);

field bitmask flag values

adjustfield left, right or internal

basefield dec, oct or hex

floatfield scientific or fixed

Consider the example

#include <iostream.h>

#include <iomanip.h>

int main ()

{

cout<<“USING fixed .................\n”;

cout.setf(ios::floatfield,ios::fixed);

cout<<setprecision(5)<<1234.537<<endl;

cout<<“USING scientific .................\n”;

cout.setf(ios::floatfield,ios::scientific);

cout<<setprecision(5)<<1234.537<<endl;

return 0;

}
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Output

USING fixed ......................

1234.53700

USING scientific ...............

1234.5

Consider the example to illustrate base fields

#include <iostream.h>

#include <iomanip.h>

int main()

{

intnum=10;

cout<<“Decimal value is :”<<num<<endl;

cout.setf(ios::basefield,ios::oct);

cout<<“Octal value is :”<<num<<endl;

cout.setf(ios::basefield,ios::hex);

cout<<“Hex value is :”<<num<<endl;

return 0;

}

8.7  Control System

In any programming language, there is a need to perform different tasks based on the
condition and we can control the flow of program in such a way so that it executes certain
statements based on the outcome of a condition. In C programming Language we have
following decision control statements

1. if statement

2. if-else & else-if statement

3. switch-case statement

If Statement

It is basically a two way decision statement, used to decide whether a certain statement
or block of statements will be executed or not.
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Syntax of if statement

If (condition)

{

Body Of If Statement

}

Flow Diagram of if statement
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Example of if statement

Output

If-Else Statement

If-Else statement is an extension of if statement. If the condition of if statement is
TRUE the If block is executed otherwise Else block is executed.

Syntax of if- Else statement

if (Condition)

{

Body Of If

}

else

{

Body of Else

}
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Example of if-else statement

Output

The Else If Statement

The else...if statement is useful when you need to check multiple conditions

Syntax Of Else-If Statement

if (condition 1)

Body Of Else If
}

else if (Condition 2)

{
Body Of Else If

}

else

{
Body Of Else

}
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Example Of Else-If Statement

Output

Nested If ..Else statement

When an if else statement is present inside the body of another “if” or “else” then this
is called nested if else.

“Enter the value of A”

“C is big”

“B is big”

“A is big”

“% d”

“Enter the value of B”

“Enter the value of C”
“% d”

“% d”
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Example Of Nest If Statement

Output

Switch Statement in C/C++

The switch statement is used when we have multiple options and we need to perform
a different task for each option.

switch (n)
{

case 1 : //code to be executed if n = 1;
break ;

case 2://code to be executed if n = 2;
break;

default://code to be executed if n doesn’t match any cases
}

“\n enter the value of A”

“C is big”

“A is big”

“% d”

“\n enter the value of B”

“\n enter the value of C”
“% d”

“% d”

“C is big”

“B is big”
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Example of Switch Statement

Output

“Wrong choice”

“% d”

“January”

“February”

Entry your choice

In Press for January
In Press for February



NSOU  CC-PH-04  287

8.8  Loop Statement

Loop : Loop is used when we need to repeatedly execute a block of statements
according to the condition given in the loop.

C programming language provides the following types of loops to handle looping
requirements.

1. for loop

2. while loop

3. do... while loop

For Loop

The syntax of for loop is :

for (initialization Statement; testExpression; updateStatement)

{

// codes

}

How for loop works ?

The initialization statement is executed only once.

Then, the test expression is evaluated. If the test expression is false (0), for loop is
terminated. But if the test expression is true (nonzero), codes inside the body of for loop
is executed and the update expression is updated.
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This process repeats until the test expression is false.

The for loop is commonly used when the number of iterations is known.

To learn more on test expression (when test expression is evaluated to nonzero (true)
and 0 (false)), check out relational and logical operators.

For Loop Flowchart

Example for Loop

// Program to calculate the sum of first n natural numbers

// Positive integers 1,2,3...n are known as natural numbers

#include<stdio.h>
int main()
{

int num, count, sum =0;
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printf(“Enter a positive integer: “);

scanf(“%d”, &num);

//for loop terminates when n is less than count

for (count = 1; count <=num;++count)

{

sum += count;

}

printf(“Sum = %d”, sum);

return 0;

}

Output

Enter a positive integer : 10

Sum = 55

While loop

The syntax of while loop is :

while (testExpression)

{

//codes

}

where, testExpression checks the condition is true or false before each loop.

How while loop works?

The while loop evaluates the test expression.

If the test expresion is true (nonzero), codes inside the body of while loop are exectued.
The test expression is evaluated again. The process goes on until the test expression is
false.

When the test expression is false, the while loop is terminated.
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Flowchart of while loop

Example 1 : While Loop

// Program to find factorial of a number

// For a positive integer n, factorial = 1*2*3...n

#include<stdio.h>

int main()
{
int number;

long long factorial;

printf(“Enter an integer: “);

scanf(“%d”, &number);

factorial = 1;

//loop terminates when number is less than or equal to 0

while (number >0)
{
factorial *= number://factorial = factorial* number;

--number;
}

printf(“Factorial= %lld”, factorial);
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return 0;

}

Output

Enter an integer: 5

Factorial = 120

do...while loop

The do..while loop is similar to the while loop with one important difference. The body
of do... while loop is executed once, before checking the test expression. Hence, the
do...while loop is executed at least once.

do...while loop Syntax

do

{

// codes

}

while (testExpression);

How do...while loop works?

The code block (loop body) inside the braces is executed once.

Then, the test expression is evaluated. If the test expression is true, the loop body is
executed again. This process goes on until the test expression is evaluated to 0 (false).

When the test expression is false (nonzero), the do... while loop is terminated.

Flowchart of do... while Loop
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Example 2: do...while loop

//Program to add numbers until user enters zero

#include<stdio.h>

int main()

{

double number, sum = 0;

//loop body is executed at least once

do

{

printf(“Enter a number: “);

scanf(“%If”.&number);

sum += number;

}

while(number !=0.0);

printf(“Sum = % %.2lf”, sum);

return 0;

}

Output

Enter a number : 1.5

Enter a number : 2.4

Enter a number : –3.4

Enter a number : 4.2

Enter a number : 0

Sum = 4.70

Nested Loop : C programming allows to use one loop inside another loop. Loop
inside the another loop is called Nested Loop.



NSOU  CC-PH-04  293

Syntax

while (condition) {

while (condition) {
statement (s);

}

statement (s);

}

Loop Control Statements :

1. Break : When a break statement is encountered inside a loop, the loop is
immediately terminated and the program control resumes at the next statement following the
loop.

2. Continue : When a continue statement is encountered inside a loop, control jumps
to the beginning of the loop for next iteration, skipping the execution of statements inside
the body of loop for the current iteration.
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Theory Questions

1. State whether the following statement are True or False

(a) Every statement in C program should end with a semicolon.

(b) Every C program ends with and END word.

(c) A printf Statement can generate only one output line.

(d) Like variable constant have a type./

(e) All static variable are automatically initialized to zero.

(f) The statement a+ = 10 is valid.

(g) The expression !(a>=b) is same as a>b.

(h) = & ‘==’ both are same.

(i) While loop is an entry control loop.

(j) An exit controlled loop is executed a minimum of one time.

2. Fill the blanks in the following statements.

(a) The ___________ Function is used to display the output of the screen.

(b) The ___________ header file contains mathematical functions.

(c) A variable can be made constant by using the keyword ___________.

(d) __________ is the increment operator.

(e) ?: Operator known as __________ operator.
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(f) The __________ statement is used to immediately exit from the loop.

(g) The first part of for loop declaration is __________ .

(h) The do-while is known as __________ control loop.

(i) A for loop within a for loop is known as __________ loop.

(j) while (1) is known as __________ loop.

3. Programming problems

(a) C “Hello, World!” Program.

(b) C Program to Print an Integer (Entered by the User).

(c) C Program to Add Two Integers.

(d) C Program to Swap Two Numbers.

(e) C Program to find Factorial of a Number.

(f) C Program to Make a Simple Calculator Using switch...case.

(g) C Program to Generate Multiplication Table.

(h) C Program to Check Whether a Number is Prime or Not.

(i) C Program to Check Armstrong Number.

Answer

1.

2.

(a)T (b)F (c)F (d)T (e)T (f)T (g)F (h)F (i)T

(a)printf( ) (b)math.h (c)constant (d)++

(e)ternary (f)break (g)initialization (h)exit

(i)nested (j)infinite
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8.8.1 Jumping out of Loops

While executing any loop, it becomes necessary to skip a part of the loop or to leave
the loop as soon as certain condition becomes true, which is called jumping out of loop.
C language allows jumping from one statement to another within a loop as well as jumping
out of the loop.

There are two keywords in C language to Jumping out or Break Loop.

 break statement

 continue statement

Break Statement

When break statement is encountered inside a loop, the loop is immediately excited
and the program continues with the statement immediately following the loop.

While (condition check)

{

Statement – 1;

Statement – 2 ;

if (some condition)

{

break;

}

Statement – 3 ;

Statement – 4 ;

}

jumps out of the loop no matter how many cycles are left, loop is excited

Continue Statement

It causes the control to go directly to the test condition and then continue the loop
process. On encountering continue, curson leave the current cycle of loop, and starts with
the next cycle.

→
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while (condition check)

{

Statement – 1 ;

Statement – 2 ;

If (some condition)

{

Continue ;

jumps to the

next cycle directly.

Statement – 3 ;

Statement – 4 ;

}

8.8.2 Goto Statement transfer of control branching within a loop

C supports a unique form of a statement that is the goto statement which is used to
branch unconditionally within a program from one point to another. Although it is not a
good habit to use the goto statement in C, there may be some situations where the use of
the goto statement might be desirable.

The goto statement is used by programmers to change the sequence of execution of
a C program by shiffing the control to a different part of the same program.

The general form of the goto statement is :

goto level :

Not executed for
the cycle of loop in
which continue is
executed.





→
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A lebel is an identifier required for goto statement to a place where the branch is to
be made.

8.9  Summary

This chapter has introduced many of the basics of the language although informally.
Functions in particular, from the basic building block for c. Art 8.4 provides a full descriptions
of this fundamental objects, but you should by now understand enough about them to
follow their informal use in the intervening material.

8.10  Exerceises

1. History of C

Why we use C programming language ?

2. Procedure to create a Program in C Programming Language.

3. What is the importance of header files ?
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Notes


